ANALOG SWITCHES MULTIPLEXERS A/D \& D/A CONVERTERS LINEAR DEVICES DISCRETES/FETs TIMERS COUNTERS DISPLAY DRIVERS ROMs/EPROMs MICROPROCESSORS AND PERIPHERALS

HOTIDEASIN CMOS

ANALOG SWITCHES MULTIPLEXERS A/D \& D/A CONVERTERS LINEAR DEVICES DISCRETES/FETs

TIMERS
COUNTERS DISPLAY DRIVERS ROMs/EPROMs MICROPROCESSORS AND PERIPHERALS

TABLE OF CONTENTS

GENERAL INFORMATION/CROSS REFERENCES

A

DISCRETES

DIGITAL DATA ACQUISITION

LINEAR

TIMERS, COUNTERS, AND DISPLAY DRIVERS
CONSUMER CIRCUITS

ENGINEERING SOLUTIONS ON A CHIP FROM INTERSIL

Product offerings described in this data book reflect Intersil's commitment to industry leadership as a producer of advanced low-power analog and digital semiconductor components and data acquisition systems.

These components are fabricated using a wide variety of process technologies and are intended to provide state-of-the-art performance and maximum cost effectiveness.

Product areas in which Intersil demonstrates its innovative approach to providing engineering solutions on a chip include:

- FIELD EFFECT AND DUAL MATCHED BIPOLAR TRANSISTORS

A complete line of high-performance junction FETs, dual JFETs, MOSFETs and matched dual bipolar devices.

- DIGITAL

Very low-power CMOS ROMs and EPROMs, as well as high-speed HMOS ROMs; CMOS microprocessors, peripherals and UARTs.

- ANALOG SWITCHES AND MULTIPLEXERS

The industry's broadest offering of highest-performance switches, including a videoRF switch with excellent isolation at 100 MHz , and multiplexers featuring the least error as well as unprecedented input overload protection.

- ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERTERS
$31 / 2$ - and $41 / 2$-digit display output (DVM) analog-to-digital converters; 12 -, 14 - and 16 -bit microprocessor-compatible analog-to-digital converters; and high-speed precision digital-to-analog converters up to 14 bits.

- LINEAR

A new set of low-power devices with unequalled performance- $1-\mu \mathrm{V}$ offset voltage op amps, $4-\mu \mathrm{A}$ quiescent current regulators and supply monitors, 95 -per-cent-efficient voltage converters and $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ voltage references; a complete family of CMOS op amps; and a wide variety of special analog function circuits.

- TIMERS, COUNTERS AND DISPLAY DRIVERS

A wide range of low-power counters, timers and multidigit LED, LCD and vacuum fluorescent display decoder/drivers, including those with full alphanumeric capability.

General Information

Explanation of Terms, Indices, and Special Subsections	Page A-2
Alphanumeric Index	A.3
Base Number Index	A-5
Functional Index	A. 7
Obsolete Products	
List	A. 9
IC Alternate Source Index	A-10

EXPLANATION OF TERMS, INDICES AND SPECIAL SUBSECTIONS

PRODUCTION DATA SHEET

This is a full, final data sheet, and describes a mature product in full production. Although Intersil reserves the right to make changes in specifications contained in these data sheets at any time without notice, such changes are not common and are usually minor, generally relating to yield and processing improvements. These data sheets are not marked; others are marked preliminary.

PRELIMINARY DATA SHEET

A preliminary data sheet is issued in advance of the availability of production samples and generally indicates that at the time of printing, the device had not been fully characterized. In the case of a secondsource part, the specifications are already determined, and a "preliminary" designation indicates the anticipated availability of the device.

ALPHANUMERIC INDEX

This part number index is arranged first by alpha sequence, (ie: ADCxxxx, DGxxx, Gxxx, ICLxxxx, ICMxxxx, etc.) then by numeric sequence (ie: LM100, LM101A, LM102, LM105, etc.) and ignoring package/temperature/ pin number suffixes. The basic numbering sequence, is sorted by reading the part number characters from left to right. Reading the left character first (which is usually an alpha character), then the next character to the right and so forth.

BASE NUMBER INDEX

If only the basic part number is known, use the Base Number Index as a locator aid. The Base Number Index is organized in numeric sequence (with alpha prefixes appearing in bold type and numeric characters set in medium type). Devices are arranged in this index according to the numeric value of the first digit on the left, then the value of the second digit, then the third, and so on. For example, device number ICM7218 precedes ICL741, no package/temperature/pin number suffixes are included, but these may be obtained from the specific product data sheet.

FUNCTION INDEX

This is an index of Intersil device types categorized by product grouping and function. The first major subsection, DISCRETES, is further subdivided into categories for JFETs and Special Function devices.

All remaining major subsections (ANALOG SWITCHES/MULTIPLEXERS, DATA ACQUISITION, LINEAR, TIMERS/COUNTERS, TIMEKEEPING/DTMF, MEMORIES and MICROPROCESSORS/PERIPHERALS)
are organized alphabetically by function. The Functional Index appears in its entirety in section A, and an appropriate subindex appears at the beginning of each major product section.

CROSS-REFERENCE GUIDES

Two cross-reference guides are provided: one for Discrete Devices and one for Integrated Circuits.

The Discrete Cross-Reference Guide indicates whether Intersil can provide the industry-standard type, or an Intersil preferred part instead.

The IC Alternate Source Cross-Reference Guide lists competitive manufacturer device types for which Intersil makes pin-for-pin replacements. In the left-hand column, the competitive device part number is organized alphabetically by manufacturer. The Intersil pin-for-pin replacement appears in the right hand column.

SELECTOR GUIDES

Selector guide tables appear at the front of each major product category subsection and provides a quick reference of key parameters for devices contained in that section.

DEVICE FUNCTION/PACKAGE CODES

Package dimensions and diagrams explaining device prefix and suffix codes appear in Appendix B.

DIE SELECTION CRITERIA

Many of Intersil's semiconductor products are available in die form. This subsection of Appendix B contains general information on criteria for transistor and integrated circuit die selection, including physical parameters, packaging for shipment, assembly, testing and purchase options.

HIGH-RELIABILITY PROCESSING

This subsection of Appendix B defines Intersil's commitment to 100 percent compliance with MIL-STD-883, MIL-STD-750, MIL-M-38510 and MIL-S-19500 specifications. It also outlines Intersil's programs for quality conformance, quality testing and limited use qualification and includes a glossary of military/aerospace Hi Rel terms.

Intersil reserves the right to make changes in circuitry or specifications contained herein at any time without notice.

Intersil assumes no responsibility for the use of any circuits described herein and makes no representations that they are free patent infringement.

[^0]1. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
2. Life support devices or systems are devices or systems which, (a) are inended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instruc. tions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

TYPE \#	PAGE						
2N2607	1.9	2N5115	1.37	3N173	$1-60$	ICH8500	5-208
2N2608	1.9	2N5116	21-37	3N188	1-61	ICH8510	5-214
2N2609	1.9	2N5117	1-39	3N189	1.61	ICH8515	5-222
2N3684	$1-10$	2N5118	$1-39$	3N190	1-61	ICH8520	5-214
2N3685	1-10	2N5119	1-39	3N191	1-61	ICH8530	5-214
2N3686	$1-10$	2N5196	1.40	$\mu \mathrm{A} 723$	**	ICL101ALN	5-46
2N3687	1-10	2N5197	1.40	$\mu \mathrm{A} 733$	**	ICL108ALN	5-46
2N3810	$1-11$	2N5198	$1-40$	$\mu \mathrm{A} 740$	**	ICL301ALN	5-46
2N3811	1-11	2N5199	1.40	μ A741	**	ICL308LN	5-46
2N3821	1-13	2N5397	1.41	$\mu \mathrm{A} 748$	**	ICL7104	4-166
2N3822	$1-13$	2N5398	1.41	$\mu \mathrm{A} 777$	5-49	ICL7106	4-20
2N3823	$1-14$	2N5432	1.42	AD503		ICL7107	$4-20$
2N3824	1-15	2N5433	1.42	AD590	5-28	ICL7109	4-30
2N3921	1-16	2N5434	1.42	AD741K	**	ICL7115	4-46
2N3922	1-16	2N5452	1.43	AD7520	4-138	ICL7116	4-59
2N3954	$1-17$	2N5453	1.43	AD7521	4-138	ICL7117	4.59
2N3955	$1-17$	2N5454	1.43	AD7523	4-144	ICL7126	4-67
2N3956	$1-17$	2N5457	1.44	AD7530	4-138	ICL7129	4.75
2N3957	$1-17$	2N5458A	1.44	AD7531	4-138	ICL7134	4-86
2N3958	1-17	2N5459	1.44	AD7533	4-148	ICL7135	$4-98$
2N3970	$1-18$	2N5460	$1-45$	AD7541	4-152	ICL7136	4-108
2N3971	$1-18$	2N5461	1.45	ADC0801	4-4	ICL7137	4-116
2N3972	1-18	2N5462	1.45	ADC0802	4-4	ICL7145	4-124
2N3993	$1-19$	2N5463	$1-45$	ADC0803	4-4	ICL7146	4-132
2N3994	1-19	2N5464	$1-45$	ADC0804	4-4	ICL741HS	5-44
2N4044	1-20	2N5465	$1-45$	D123	3-9	ICL741LN	5-46
2N4045	1-20	2N5484	$1-46$	D125	3-9	ICL7605	5-63
2N4091	1-22	2N5485	$1-46$	D129	$3-13$	ICL7606	5-63
2N4092	1-22	2N5486	$1-46$	DG118	3-6	ICL7611	5-73
2N4093	1-22	2N5515	1-47	DG123	3-6	ICL7612	5-73
2 N 4100	1-23	2N5516	$1-47$	DG125	3.6	ICL7613	5-73
2N4117	1-25	2N5517	1.47	DG139	3-15	ICL7614	5-73
2N4118	$1-25$	2N5518	1.47	DG142	3-15	ICL7615	5-73
2N4119	1-25	2N5519	1.47	DG143	3-15	ICL7621	5-73
2N4220	1-26	2N5520	1.47	DG144	3-15	ICL7622	5-73
2N4221	1-26	2N5521	$1-47$	DG145	3-15	ICL7631	5.73
2N4222	1-26	2N5522	1.47	DG146	3-15	ICL7632	5-73
2N4223	1-27	2N5523	$1-47$	DG161	3-15	ICL7641	5-73
2N4224	1-27	2N5524	$1-47$	DG162	3-15	ICL7642	5-73
2N4338	1-28	2N5638	1-49	DG163	3-15	ICL7650	5-88
2N4339	1-28	2N5639	$1-49$	DG164	3-15	ICL7652	5-96
2N4340	1-28	2N5640	$1-49$	DG180	3-19	ICL7660	5-104
2N4341	1-28	2N5902	$1-50$	DG181	3-19	ICL7663	5-111
2N4351	1-29	2N5903	1.50	DG182	3-19	ICL7664	5-111
2N4391	1-30	2N5904	$1-50$	DG183	3-19	ICL7665	5-121
2N4392	$1-30$	2N5905	1.50	DG184	3-19	ICL7667	5-128
2N4393	1-30	2N5906	1.50	DG185	3-19	ICL8001	5-135
2N4416	1-31	2N5907	$1-50$	DG186	3.19	ICL8007	5-139
2N4856	1-32	2N5908	1.50	DG187	3-19	ICL8008	5-142
2N4857	1-32	2N5909	$1-50$	DG188	3-19	ICL8013	5-144
2N4858	1-32	2N5911	1.51	DG189	3-19	ICL8017	5-151
2N4859	1-32	2N5912	1.51	DG190	3-19	ICL8018A	4-158
2N4860	1-32	2N6483	1.52	DG191	3-19	ICL8019A	4-158
2N4861	1-32	2N6484	$1-52$	DG200	3-28	ICL8020A	4-158
2N4867	1-33	2N6485	$1-52$	DG201	3-32	ICL8021	4-155
2N4868	1-33	3N161	$1-56$	DGM181	3-23	ICL8022	5-155
2N4869	$1-33$	3N163	$1-57$	DGM182	3-23	ICL8023	5-155
2N4878	1-34	3N164	1.57	DGM184	3-23	ICL8038	5-158
2N4879	1-34	3N165	1.58	DGM185	3-23	ICL8043	5-167
2N4880	1-34	3N166	1.58	DGM187	3-23	ICL8048	5-174
2N5018	1-36	3N170	1.59	DGM188	3-23	ICL8049	5-174
2N5019	1-36	3N171	$1-59$	DGM190	3.23	ICL8052A	4.166
2N5114	1-37	3N172	$1-60$	DGM191	3-23	ICL8063	5-182

[^1]

[^2]

[^3]| TYPE \# | | PAGE | TYPE \# | PAGE | TYPE \# | PAGE | TYPE \# | PAGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IH | 5030 | . 3.41 | 2N 5458 | 1-44 | ICL 7109 | 4-30 | ICM 7555 | 6.143 |
| IH | 5031 | 3-44 | 2N 5459 | 1-44 | ICL 7115 | 4-46 | ICM 7556 | 6 -143 |
| IH | 5032 | 3.41 | 2N 5460 | $1-45$ | ICL 7116 | 4-59 | ICL 7605 | $5 \cdot 63$ |
| IH | 5034 | 3-41 | 2N 5461 | 1-45 | ICL 7117 | 4-59 | ICL 7606 | 5.63 |
| IH | 5035 | 3-41 | 2N 5462 | 1-45 | ICL 7126 | 4-67 | ICL 7611 | 5-73 |
| IH | 5036 | 3-41 | 2N 5463 | 1-45 | ICL 7129 | 4.75 | ICL 7612 | 5.73 |
| IH | 5037 | 3-41 | 2N 5464 | $1-45$ | ICL 7134 | 4.86 | ICL 7613 | 5.73 |
| IH | 5038 | 3-41 | 2N 5465 | $1-45$ | ICL 7135 | 4.98 | ICL 7614 | 5-73 |
| IT | 504 | 1.71 | 2N 5484 | $1-46$ | ICL 7136 | 4-108 | ICL 7615 | 5.73 |
| IH | 5040 | $3-48$ | 2N 5485 | $1-46$ | ICL 7137 | 4-116 | ICL 7621 | 5-73 |
| IH | 5041 | $3-48$ | 2N 5486 | 1.46 | ICL 7145 | 4-124 | ICL 7622 | 5.73 |
| IH | 5042 | 3.48 | IT 550 | 1.74 | ICL 7146 | 4-132 | ICL 7631 | 5.73 |
| IH | 5043 | $3-48$ | 2N 5515 | 1-47 | ICM 7201 | ** | ICL 7632 | 5.73 |
| IH | 5044 | $3-48$ | 2N 5516 | $1-47$ | ICM 7206 | 7-31 | ICL 7641 | 5.73 |
| IH | 5045 | $3-48$ | 2N 5517 | $1-47$ | ICM 7207 | 6-3 | ICL 7642 | 5-73 |
| IH | 5046 | $3-48$ | 2N 5518 | 1.47 | ICM 7207A | 6.3 | ICL 7650 | 5-88 |
| IH | 5047 | 3-48 | 2N 5519 | $1-47$ | ICM 7208 | 6-7 | ICL 7652 | 5-96 |
| IH | 5048 | $3-48$ | 2N 5520 | 1.47 | ICM 7209 | 7.39 | ICL 7660 | 5-104 |
| IH | 5049 | $3-48$ | 2N 5521 | 1.47 | ICM 7211 | 6-14 | ICL 7663 | 5-111 |
| IT | 505 | 1.71 | 2N 5522 | $1-47$ | ICM 7212 | 6-14 | ICL 7664 | $5 \cdot 111$ |
| IH | 5050 | $3-48$ | 2N 5523. | $1-47$ | ICM 7213 | 7.42 | ICL 7665 | 5-121 |
| IH | 5051 | 3-48 | 2N 5524 | $1-47$ | ICM 7215 | 7-47 | ICL 7667 | 5-128 |
| IH | 5052 | 3-56 | 2N 5638 | $1-49$ | ICM 7216 | 6-24 | $\mu \mathrm{A} 777$ | 5-49 |
| IH | 5053 | 3-56 | 2N 5639 | $1-49$ | ICM 7217 | 6-39 | ICL 8001 | 5-135 |
| IH | 5101 | | 2N 5640 | $1-49$ | ICM 7218 | 6.55 | ICL 8007 | 5-139 |
| IH | 5108 | 3-63 | AD 590 | $5-28$ | ICM 7223 | | | 5-142 |
| IH | 5110 | 5-57 | 2N 5902 | $1-50$ | ICM 7223A | 7.59 | ICL 8013 | 5-144 |
| IH | 5111 | 5-57 | 2N 5903 | $1-50$ | ICM 7223VF | 7-67 | ICL 8017 | 5-151 |
| IH | 5112 | 5-57 | 2N 5904 | $1-50$ | ICM 7224 | 6-64 | ICL 8018A | 5:158 |
| IH | 5113 | 5-57 | 2N 5905 | 1.50 | ICM 7225 | 6-64 | ICL 8019A | 5-158 |
| 2N | 5114 | 1.37 | 2N 5906 | 1.50 | ICM 7226 | | | 5.158 |
| 1 H | 5114 | 5-57 | 2N 5907 | 1.50 | ICM 7227 | 6-39 | ICL 8021 | 5-155 |
| 2 N | 5115 | 1.37 | 2N 5908 | 1.50 | $\mu \mathrm{A} 723$ | ** | ICL 8022 | 5-155 |
| 1 H | 5115 | 5-57 | 2N 5909 | 1-50 | ICM 7231 | 6-84 | ICL 8023 | $5 \cdot 155$ |
| 2N | 5116 | $1-37$ | 2N 5911 | $1-51$ | ICM 7232 | 6-84 | ICL 8038 | 5-158 |
| 2N | 5117 | 1-39 | | | | | | 5-167 |
| 2 N | 5118 | $1-39$ | 2N 5912 | 1-51 | ICM 7234 | 6.84 | ICL 8048 | 5-174 |
| 2 N | 5119 | $1-39$ | IT 5912 | $1-51$ | ICM 7235 | 6-104 | ICL 8049 | 5.174 |
| IH | 5140 | 3.71 | NEISE 592 | 5-38 | ICM 7236 | 6-110 | ICL 8052A | 4-166 |
| IH | 5141 | 3.71 | NE 592-8 | 5-41 | ICM 7240 | 6-116 | ICL 8063 | 5-182 |
| | | | | | ICM 7241 | | ICL 8068 | 4-166 |
| IH | 5143 | 3.71 | IH 6116 | $3-99$ | ICM 7242 | 6-127 | ICL 8069 | $5 \cdot 190$ |
| IH | 5144 | 3.71 | IH 6201 | 3-105 | ICM 7243 | 6-133 | ICL 8075 | 5-192 |
| IH | 5145 | 3.71 | IH 6208 | 3-109 | ICM 7245 | 7.77 | ICL 8076 | 5-192 |
| 2N | 5196 | $1-40$ | IH 6216 | 3-115 | ICM 7250 | 6-116 | ICL 8077 | 5-192 |
| | | 1.40 | IM 6402 | 2-3 | ICM 7260 | 6-116 | ICL 8078 | 5-192 |
| 2N | 5198 | $1-40$ | IM 6403 | 2-3 | ICM 7281 | 6-143 | ICL 8079 | 5-192 |
| 2 N | 5199 | 1.40 | 2N 6483 | 1-52 | μ A 733 | | IM 82C43 | 2-24 |
| IH | 5200 | $3-28$ | 2N 6484 | 1-52 | IM 7332 | $2-18$ | ICL 8211. | 5-198 |
| IH | 5201 | 3.32 | 2N 6485 | 1-52 | IM 7364 | 2-21 | ICL 8212 | 5-198 |
| IH | 5208 | 3-79 | IMF 6485 | 1-54 | MA 740 | ** | ICH 8500 | 5-208 |
| IH | 5341 | 3.87 | IM 6653 | 2.17 | $\mu \mathrm{A} 741$ | ** | ICH 8510 | 5-214 |
| NE | 536 | ** | IM 6654 | 2.17 | ICL 741 HS | 5-44 | ICH 8515 | 5-222 |
| SU | 536 | ** | VCR 7N | $1-92$ | AD 741 K | ** | ICH 8520 | 5-214 |
| 2 N | 5397 | 1-41 | ICM 7038 | 7-5 | ICL 741LN | 5-46 | ICH 8530 | 5-214 |
| 2N | 5398 | $1-41$ | ICM 7045 | 7-10 | MA 748 | ** | IGC 10000 | 2-28 |
| 2 N | 5432 | $1-42$ | ICM 7050 | 7-19 | AD 7520 | 4-138 | | |
| 2N | 5433 | 1.42 | ICM 7051 | 7-23 | AD 7521 | 4-138 | | |
| 2N | 5434 | $1-42$ | ICM 7070 | 7-27 | AD 7523 | 1-144 | | |
| 2N | 5452 | 1.43 | ICL 7104 | 4-166 | AD 7530 | 4.138 | | |
| 2N | 5453 | $1-43$ | ICL 7106 | 4-20 | AD 7531 | 4-138 | | |
| 2N | 5454 | $1-43$ | ICL 7107. | 4-20 | AD 7533 | 4-148 | | |
| 2 N | 5457 | $1-44$ | | | AD 7541 | 4-152 | | |

[^4]
DISCRETES

JFET Single Switches
N-Channel
2N3970-72
2N4091-93
2N4391-93
2N4856-61
2N5432-34
2N5638-40
ITE4091-3
Page
1-18
$1-22$
$1-30$
$1-32$
$1-42$
$1-49$
$1-22$
$1-30$
1.77
$1-78$
1.85
1.92
$1-19$
$1-36$
$1 \cdot 37$
$1-64$
1.79

JFET Single
Amplifiers
N-Channel
2N3684-87
2N3821/22
2N3823
2N3824
2N4117-19
2N4220-22
2N4223/24
2N4338-41
2N4416
2N4867-69
2N5397/98
2N5457-59
2N5484-86
ITE4416
J201-4
J308-10
1-10
$1-13$
$1-14$
1-15
$1-25$
1-26
$1-27$
$1-28$
$1-31$
$1-33$
1.41
$1-44$
1.46
1.31
$1-80$
1.82

U308-10
P-Channel
2N2607-9
1.9

2N5460-65
U304-6
JFET Dual
Amplifiers
N.Channel

2N3921/22	$1-16$
2N3954-58	$1-17$
2N5196-99	$1-40$

2N5452-54	$1-43$
2N5515-24	$1-47$
2N5902-9	$1-50$
2N5911/12	$1-51$
2N6483-85	$1-52$
IMF6485	$1-54$
IT500-5	$1-71$
IT550	$1-74$
IT5911/12	$1-51$
U231-35	$1-86$
U257	$1-87$
U401-6	$1-90$
MOSFET Switches/	

Amplifiers

N-Channel

2N4351 1-29

3N170/1 $1-59$
IT1750
$1-76$
M116
$1-84$
P-Channel
3N161 $\quad 1.56$
3N163/64 $1-57$
3N172/73 1-60
IT1700 1-75
Dual P.Channel
3N165/66 1-58
3N188-91 1-61
Bipolar Dual Amplifiers
NPN Devices
2N4044/45 1-20
2N4100 1-23
2N4878-80 1.34
IT120-22 1-65
IT124 1-66
IT126/29 1-67
LM114 1.83
PNP Devices
2N3810/11 1-11
2N5117-19 1-39
IT130-32 1 1-68
IT136-39 1-69
Special Function
High Speed Dual Diodes
ID100/1 1,62
Voltage Controlled
Resistors
VCR2-7
1.92

DIGITAL
Memory
NMOS ROMs
IM7332 2-18
IM7364 2-21
CMOS EPROMs
IM6653/4 2-11
Gate Arrays IGC10000 2-28

Peripherals

IM6402/3	$2-3$
IM82C43	$2-24$

ANALOG
SWITCHES AND
MULTIPLEXERS
MU
Multiplexers
IH5108
IH5208
IH6108
IH6116
IH6208
IH6216
Analog Switch
Drivers/
Level Translators

D123/125 3-9

D129
3-13
IH6201
3-105

Analog Switches

 with Drivers| DG118/123/125 | $3-6$ |
| :--- | ---: |
| DG139A Family | $3-15$ |
| DG180 Family | $3-19$ |
| DGM181 Family | $3-23$ |
| DG200 | $3-28$ |
| DG201 | $3-32$ |
| IH5009-24 | $3-36$ |
| IH5025-38 | $3-41$ |
| IH5040-51 | $3-48$ |
| IH5052/3 | $3-56$ |
| IH5140-45 | $3-71$ |
| IH5200 | $3-28$ |
| IH5201 | $3-32$ |

Video/RF Switch

IH5341 3-87
DATA ACQUISITION

AID Converters

 DVM Circuits| ADC0801-4 | $4-4$ |
| :--- | ---: |
| ICL7106/7 | $4-20$ |
| ICL7109 | $4-30$ |
| ICL7115 | $4-46$ |
| ICL7116/17 | $4-59$ |
| ICL7126 | $4-67$ |
| ICL7129 | $4-75$ |
| ICL7135 | $4-98$ |
| ICL7136 | $4-108$ |
| ICL7137 | $4-116$ |
| ICL8052A/7104 | $4-166$ |
| ICL8068/7104 | $4-166$ |

\dagger The ICL7136 is recom.
mended for all applica-
tions which currently
employ the ICL7126.
DIA Converters

AD7520/21/30/31	$4-138$
AD7523	$4-144$
AD7533	$4-148$
AD7541	$4-152$
ICL7134	$4-86$
ICL7145	$4-124$
ICL7146	$4-132$
D/A Current	
Switches	

ICL8018A/19A/20A 4-158

LINEAR

Amplifiers

Driver Amplifier for
Power Transistors
ICL8063 5-182

Driver Amplifier for
Actuators, Motors
ICH8510/20/30 5-214
ICH8515 5-222
Instrumentation
Commutating Auto-Zero
ICL7605/6
5-63
Log-Antilog
ICL8048/49
5.174

Operational,
Chopper Stabilized
ICL7650
5-88
ICL7652 5-96

[^5]
OBSOLETE PRODUCTS

The products listed below have been designed into circuits in the past, but are no longer likely to be the most economic choice for new designs.
These products are still available for use in existing designs. Data sheets for these products are available upon request.

AM2502/3/4	AD503
AM25L02/3/4	SU/NE536
DG126A Family	μ A740
G115/123	LM101/301
G116-19	LM107/307
G125-32	μ A741
ICL7600/01	AD741K
ICL8052/7101	μ A748
ICL8052/71C03	LH2101/2301
ICL8068/71C03	IH5101
ICL8052/53	LM4250
IH401	μ A733
IMF5911/12	LM102/302
LD110/111	LM110/310
LD114	LH2110/2310
MM450/550	LH2111/2311
MM451/551	LM111/311
MM452/552	LM100/300
MM455/555	LM105/305
VCR5P	μ A723
LH0042	ICM7201

AMD	Intersil	AD7531KD	AD7531KD	HIT-0201.5	DG201BK	
AM9232	IM7332	AD7531KN	AD7531KN	H11.0201.8	DG201AK/883B	
AM9264	IM7364	AD7531LD	AD7531LD	H13.0201.5	DG201CJ	
LH2101	LH2101	AD7531LN	AD7531LN	H10.0508.6	$1 \mathrm{H6108C/D}$	
LH2301	LH2301	AD7533AD	AD7533AD	H11-0508-2	IH6108MJE	
LH2311	LH2311	AD7533BD	AD7533BD	H11.0508.5	IH6108CJE	
LM101	LM101	AD7533CD	AD7533CD	HI1.0508.8	IH6108MJE/883B	
LM102	LM 102	AD7533JN	AD7533JN	HI3.0508.5	IH6108CPE	
LM105	LM105	AD7533KN	AD7533KN	H10.0508A-6	$1 \mathrm{H} 5108 \mathrm{C} / \mathrm{D}$	
LM107	LM107	AD7533LN	AD7533LN	HI1.0508A. 2	IH5108MJE	
LM108	LM108	AD7533SD	AD7533SD	HI1.0508A. 5	IH51081JE	
LM110	LM110	AD7533TD	AD7533TD	HI1.0508A.8	IH5108MJE/883B	
LM111	LM111	AD7533UD	AD7533UD	HI3.0508A. 5		
LM301 LM302	LM301	AD7541BD	AD7541AD	H10.0509.6	$\begin{aligned} & \text { IH5108CPE } \\ & \text { IH6208C/D } \end{aligned}$	
LM305	LM305	AD7541JN	AD7541jN	H11.0509.2	1H6208MJE	
LM307	LM307	AD7541KN	AD7541KN	H11.0509.5	1H6208CJE	
LM308	LM308	AD7541SD	AD7541SD	H11.0509.8	IH6208MJE/883B	
LM310	LM310	AD7541TD	AD7541TD	H13-0509-5 H10.0509A. 6	IH6208CPE	
${ }_{723}^{\text {LM319 }}$	LM311	Commodore	Intersil	H10.0509A. 6 H11.0509A. 2	$\begin{aligned} & \text { IH5208C/D } \\ & \text { IH5208MJE } \end{aligned}$	
733	μ ¢A733		IM7332	H11.0509A. 5	1H52081JE	
741	μ A741.	$\begin{aligned} & 2332 \\ & 2364 \end{aligned}$	$\begin{aligned} & \text { IM7332 } \\ & \text { IM7364 } \end{aligned}$	H11.0509A.8	IH5208MJE/883B	
748	μ A748	Datel	Intersil	$\begin{aligned} & \text { H13.0509A.5 } \\ & \text { H10.0506.6 } \end{aligned}$	$\begin{aligned} & \text { IH5208CPE } \\ & \text { IH6116C/D } \end{aligned}$	
AMI	Intersil	AMC-8013	ICL8013	H11.0506-2	IH6116MJI	
S68332	IM7332	DAC7520	AD7520	H 11.0506 .5 H	IH6116CJI	
S68364	-IM7364	DAC7521 DAC 7523	AD7521 AD7523	$\begin{array}{r}\mathrm{H} 11.0506 .8 \\ \mathrm{H} 13.0506 .5 \\ \hline\end{array}$	IH6116MJI/883B \|H6116CPI	
Analog Devices	Intersil	DAC7533	AD7533	H10.0507.6	H6216C/D	
AD101	LM101	TT. 590	AD590	H11.0507.5	IH6216CJI	
AD108	LM108	WG.8038	ICL8038	Hi1.0507.8	\|H6216MJI/883B	
AD301	LM301	VR-8069	ICL8069	HI3.0507.5	\|H6216CP	
AD503	AD503	Eurosil	Intersil	H10.5040.6	IH5040C/D	
AD590	AD590		ICM1115A	H11.5040-2 H11.5040.5	IH5040MJE	
AD741 AD7506/COM/CHIPS	AA741 IH6116C/D	E1151	ICM1115A ICM1115B	H11.5040-5 H11.5040-8	IH5040MJE/883B	
AD7506/MILCHIPS	IH6116M/D			HIO.5041.6	IH5041C/D	
AD7506JD	\|H6116CJ		Exar	Intersil	H11.5041.2	IH5041MJE
AD7506JD/883B	\|H6116JI/883B	$\times \mathrm{R} 2240$	ICM7240	$H 11.5041 .5$ $H 11.5041 .8$	IH5041CPE ${ }_{\text {IH5041MJE/883B }}$	
AD7506JN	IH6116CPI	$\times R 8038$	ICL8038	H10.5042-6	IH5042C/D	
AD7506KD	IH6116CJI	XRL555	ICM7555 ICM7556	HI1.5042.2	IH5042MJE	
AD7506KD/883B AD7506KN	IH6116CJ//883B IH6116CPI	XRL556 \times X 2242	ICM7556 ICM7242	H11.5042.5	IH5042CPE	
AD7506SD	\|H6116MJ		XR2242	ICM7242	H11.5042.8	IH5042MJE/883B
AD7506SD/883B	\|H6116MJI/883B	Fairchild	Intersil	H10.5043.6 H11.5043.2	IH5043C/D	
AD7506TD	IH6116MJI	$\mu \mathrm{A} 101$	LM101	H11.5043.5	IH5043CPE	
AD7506TD/883B AD7507/COM/CHIPS	H66116MJI/8838 IH6216C/D	$\mu \mathrm{A} 102$	LM102	H11.5043.8	1H5043MJE/883B	
AD7507/MILCHIPS	IH6216M/D	$\mu \mathrm{A} 105$	LM105	H10.5044-6	$1 \mathrm{HO44C/D}$	
AD7507JD	1H6216CJI	$\mu A 107$ μ A 108	LM108	H11-5044-2	IH5044MJE	
AD7507JD/883B	\|H6216CJI/883B	$\mu \mathrm{A} 110$	LM110	H11.5044.5	1 IH5044MJE/883B	
AD7507JN	IH6216CPI	$\mu \mathrm{A} 111$	LM111	H10.5045.6	1 H5045C/D	
$\begin{aligned} & \text { AD7507KD } \\ & \text { AD7507KD/883B } \end{aligned}$	\|H6216CJI ${ }_{\text {\|H6216 }}$	$\mu \mathrm{A} 301$	LM301	H19.5045-2	IH5045MJE	
AD7507KD/883B AD7507KN	$\begin{aligned} & \text { 1H6216CJI/883B } \\ & \text { IH6216CPI } \end{aligned}$	μ A302	LM302	HI1.5045.5	IH5045CPE	
AD7507SD	IH6216MJI	$\mu \mathrm{A} 305$	LM305	HI1.5045-8	IH5045MJE/883B	
AD7507SD/883B	H6216MJI/883B	μ A307	LM307	H10.5046.6	$1 \mathrm{H} 5046 \mathrm{C} / \mathrm{D}$	
AD7507TD	H66216MJI	${ }_{\mu}^{\mu} \mathrm{A} 310$	LM310	H11.5046.2	IH5046MJE	
AD7507TD/883B AD7520JD	IH6216MJI/883B	$\mu \mathrm{A} 311$	LM311	HI1.5046.8	IH5046MJE/883B	
AD7520JD	AD7520JD	μ A723.	μ A723	HIO.5047.6	1 H 5047 ClO	
AD7520KD	AD7520KD	4A733	$\mu 4733$	H11.5047.2	IH5047MJE	
AD7520KN	AD7520KN	μ A740	μ A740	HI1-5047.5	IH5047CPE	
AD7520LD	AD7520LD		μ A74	H11.5047.8	1H5047MJE/883B	
AD7520LN	AD7520LN	$\mu \mathrm{A} 777$	${ }_{\mu \text { A }}{ }^{\text {A }} 777$	H10.5048.6 H11.5048.2	1H5048C/D	
AD7520SD	AD7520SD			HI1.5048.5	IH5048CJE, CPC	
AD7520UD	AD7520UD	GI	Intersil	H11-5048.8	IH5048MJE/883B	
AD7521JD	AD7521JD	9332	IM7332	$H 10.5049 .6$ H11.5049.2	IH5049C/D	
AD7521JN	AD7521JN	9364	1M7364	$\begin{aligned} & \mathrm{H} 11-5049 \cdot 2 \\ & \mathrm{H} 11.5040 .5 \end{aligned}$	TH5049MJE	
AD7521kD AD7521kN	AD7521kD			HI1-5049-5 HI1-5049-8	TH5049CJE,CPE	
AD7521KN AD7521LD	AD7521KN AD7521LD	GTE	Intersil	HIO.5050.6	$\begin{aligned} & \text { IH5050CID } \\ & \text { IH505 } \end{aligned}$	
AD7521LN	AD7521LN	2114	2114	H11.5050.2	IH5050MJE	
AD7521SD	AD7521SD	2332	1M7332	H11.5050-5	IH5050CJE,CPE	
AD7521TD	AD752.1TD	2364	IM7364	H11.5050-8	1H5050MJE/883B	
AD7521UD	AD7521UD			H10.5051.6	H55051C/D	
AD7523AD	AD7523AD	Harris	Intersil	H11.5051.2 H 11.5051 .5	IH5051MJE	
AD7523BD	AD7523BD	HA2720		H111.5051.8	TH5051CJE,CPE	
AD7523CD AD7523JN	AD7523CD	$\begin{aligned} & \text { HA2720 } \\ & \text { HD6402 } \end{aligned}$	$\begin{aligned} & \text { ICL8021 } \\ & \text { IM6402 } \end{aligned}$	LM101	LM101	
$\begin{aligned} & \text { AD7523JN } \\ & \text { AD7523KN } \end{aligned}$	AD7523JN	H10.0200-6.	DG200B/D	LM4250	LM4250	
AD7523LN	AD7523LN	$\mathrm{H} 11.0200-2$ $\mathrm{H} 11.0200-4$	DG200AK			
AD7523SD	AD7523SD	H11.0200.4	DG200BK			
AD7523TD	AD7523TD	H11.0200.5	DG200BK	Systems		
AD7523UD	AD7523UD	H11.0200.8	DG200AK/833B	Systems	Intersi\|	
AD7530JD	AD7530JD	H 12.0200 .2 H	DG200AA	MP7520JD	AD7520JD	
AD7530JN	AD7530JN	H12.0200.4	DG200BA	MP7520JN	AD7520JN	
AD7530KD	AD7530KD	H 12.0200 .5 $\mathrm{H} 12.0200 \cdot 8$	DG200BA	MP7520KD	AD7520KD	
AD7530KN	AD7530KN	H12.0200.8	DG200AA/883B	MP7520KN	AD7520KN	
AD7530LD	AD7530LD	H13.0200.5 H	DG200CJ	MP7520LD	AD7520LD	
AD7530LN	AD7530LN AD7531JD	H10.0201.6 HI1.0201.2	DG201AK	MP7520LN	AD7502LN	
AD7531JN	AD7531JN	Hil-0201.4	DG2018K	MP7520TD	AD7520TD	

IC Alternate Source Index (continued)

IC Alternate Source Index (continued)

alternate SOURCE PRODUCT	INTERSIL EQUIVALENT						
$\begin{aligned} & 100 \mathrm{~S} \\ & 100 \mathrm{U} \\ & 102 \mathrm{M} \\ & 1025 \\ & 103 \mathrm{M} \end{aligned}$	$\begin{aligned} & \text { 2N5458 } \\ & \text { 2N3684 } \\ & \text { 2N5686 } \\ & \text { 2N5457 } \\ & \text { 2N5457 } \end{aligned}$	2N2606 2N2607 2N2608 2N2609 2N2609JAN	2N2607 2N2607 2N2608 2N2609 2N2609JAN	2N3331 2N3332 2N3333 2N3334 2N3335	$\begin{aligned} & \text { 2N5270 } \\ & 2 N 5268 \\ & 1 T 132 \\ & \text { TT32 } \\ & \text { T132 } \end{aligned}$	2N3814 2N3815 2N3816 2N3816A 2N3817	IT132 T132 T130 IT130A IT130
$\begin{aligned} & 103 \mathrm{~S} \\ & 104 \mathrm{M} \\ & 105 \mathrm{M} \\ & 105 \mathrm{U} \\ & 106 \mathrm{M} \end{aligned}$	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N4340 } \\ & \text { 2N5485 } \end{aligned}$	$\begin{aligned} & \text { 2N2639 } \\ & \text { 2N2640 } \\ & \text { 2N2641 } \\ & \text { 2N2642 } \\ & \text { 2N2643 } \end{aligned}$	IT120 -T122 1T122 $1 T 120$ 17122	$\begin{aligned} & \text { 2N3336 } \\ & \text { 2N3347 } \\ & \text { 2N3348 } \\ & \text { 2N3349 } \end{aligned}$	$\begin{aligned} & 1 T 132 \\ & 1137 \\ & 1 T 138 \\ & 1 T 139 \\ & 1 T 137 \end{aligned}$	$\begin{aligned} & \text { 2N3817A } \\ & \text { 2N3819 } \\ & \text { 2N3820 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \end{aligned}$	$\begin{aligned} & 1 T 130 A \\ & 2 N 5484 \\ & 2 N 2608 \\ & 2 N 3821 \\ & \text { 2N3822 } \end{aligned}$
$\begin{aligned} & 107 \mathrm{M} \\ & 110 \mathrm{U} \\ & 120 \mathrm{U} \\ & 125 \mathrm{U} \\ & 1277 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2N5485 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N4339 } \\ & \text { 2N3822 } \end{aligned}$	2N2644 2N2652 2N2652A $2 N 2720$ 2N2721	IT122 T120 IT120 T120 IT122	$\begin{aligned} & \text { 2N3351 } \\ & \text { 2N3352 } \\ & \text { 2N3365 } \\ & \text { 2N3366 } \end{aligned}$	$\begin{aligned} & 1 T 138 \\ & 1 T 139 \\ & 2 N 4340 \\ & 2 N 4338 \\ & \text { 2N4338 } \end{aligned}$	2N3823 2N3824 2N3907 2N3S08 2N3909	$\begin{aligned} & \text { 2N3823 } \\ & 2 N 3824 \\ & 1120 \\ & 1 T 120 \\ & \text { 2N2609 } \end{aligned}$
$\begin{aligned} & 1278 \mathrm{~A} \\ & 1279 \mathrm{~A} \\ & 1280 \mathrm{~A} \\ & 1281 \mathrm{~A} \\ & 1282 \mathrm{~A} \end{aligned}$	2N3821 2N3821 2 N 4224 2N3822 2N4341	$\begin{aligned} & \text { 2N2722 } \\ & \text { 2N2802 } \\ & \text { 2N2803. } \\ & \text { 2N2804 } \\ & \text { 2N2805 } \end{aligned}$	IT120 $1 T 139$ IT139 $1 T 139$ IT139	$\begin{aligned} & \text { 2N3368 } \\ & \text { 2N3369 } \\ & \text { 2N3370 } \\ & \text { 2N3376 } \end{aligned}$	$\begin{aligned} & 2 N 4341 \\ & 2 N 4339 \\ & 2 N 4338 \\ & 2 N 2608 \\ & \text { 2N2608 } \end{aligned}$	2N3909A 2N3911 2N3922 2N3494 2N3950	$\begin{aligned} & \text { 2N2609 } \\ & \text { 2N3921 } \\ & \text { 2N3922 } \\ & \text { T132 , } \\ & \text { IT132 } \end{aligned}$
$\begin{aligned} & 1283 \mathrm{~A} \\ & 1284 \mathrm{~A} \\ & 1285 \mathrm{~A} \\ & 1286 \mathrm{~A} \\ & 130 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4222 } \\ & \text { 2N3821 } \\ & \text { 2N4220 } \\ & \text { 2N3687 } \end{aligned}$	2N2806 2N2807 2N2841 2N2842 2N2843	$\begin{aligned} & 1 T 139 \\ & \text { T139 } \\ & 2 N 2607 \\ & 2 N 2607 \\ & \text { 2N2607 } \end{aligned}$	$\begin{aligned} & \text { 2N3380 } \\ & \text { 2N3382 } \\ & \text { 2N3384 } \\ & \text { 2N3386 } \\ & \text { 2N3409 } \end{aligned}$	$\begin{aligned} & \text { 2N2609 } \\ & 2 N 3994 \\ & 2 N 3993 \\ & 2 N 5114 \\ & \text { iT122 } \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954A } \\ & \text { 2N3955 } \\ & \text { 2N3955A } \\ & \text { 2N3956 } \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { NN3954A } \\ & \text { 2N3555 } \\ & \text { NN3955A } \\ & \text { NN3956 } \end{aligned}$
$\begin{aligned} & 1325 \mathrm{~A} \\ & 135 \mathrm{U} \\ & 14 \mathrm{~T} \\ & 155 \mathrm{U} \\ & 171.4 \mathrm{~A} \end{aligned}$	2N4222 2N4339 2N4224 2N4416 $2 N 4340$ 2N4340	2N2844 2N2903 2N2903A 2N2910 2N2913	$\begin{aligned} & 2 N 2607 \\ & 11122 \\ & 11120 \\ & 1122 \\ & 19122 \end{aligned}$	2N3410 2N3411 2N3423 $2 N 3424$ $2 N 3425$ 2N3425	$1 T 122$ IT122 IT122 $1 T 122$ IT122	2N3957 2N3966 2N3967 2N3967A 2N3968	2N3957 2N4416 2N4221 2N4221 2N3685 2N3685
$\begin{aligned} & 182 \mathrm{~S} \\ & 1835 \\ & 1975 \\ & 1985 \\ & 1995 \end{aligned}$	$\begin{aligned} & 2 N 4391 \\ & 2 N 3823 \\ & 2 N 4338 \\ & 2 N 4340 \\ & 2 N 4341 \end{aligned}$	2N2914 2N2915 2N2915A 2N2916 2N2916A	IT120 $1 T 120$ IT120 IT120 IT120	$\begin{aligned} & \text { 2N3436 } \\ & \text { 2N3437 } \\ & \text { 2N3438 } \\ & \text { 2N3452 } \\ & \text { 2N3453 } \end{aligned}$	$\begin{aligned} & 2 N 4341 \\ & 2 N 4340 \\ & 2 N 4338 \\ & 2 N 4220 \\ & 2 N 4338 \end{aligned}$	2N3968A 2N3969 2N3969A 2N3970 2N3971	$\begin{aligned} & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3686 } \\ & \text { 2N3970 } \\ & \text { NN3971 } \end{aligned}$
$\begin{aligned} & 2000 \mathrm{M} \\ & 2001 \mathrm{M} \\ & 2005 \\ & 2000 \\ & 2015 \end{aligned}$	$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N3823 } \\ & \text { 2N4392 } \\ & \text { 2N3824 } \\ & \text { 2N4391 } \end{aligned}$	2N2917 2N2918 2N2919 2N2919A 2N2920	। 1 122 $1 T 122$ $1 T 120$ T120 2N2920	2N3454 2N3455 2N3456 $2 N 3457$ $2 N 3458$ 2N3458	$\begin{aligned} & 2 N 4338 \\ & 2 N 4340 \\ & 2 N 4338 \\ & 2 N 4338 \\ & \text { 2N4341 } \end{aligned}$	2N3972 2N3993 2N3993A 2N3994 2N3994A	$\begin{aligned} & \text { 2N3972 } \\ & \text { 2N3993 } \\ & \text { 2N3993 } \\ & \text { 2N3994 } \\ & \text { 2N3994 } \end{aligned}$
$\begin{aligned} & 2025 \\ & 2035 \\ & 2045 \\ & 2078 \mathrm{~A} \\ & 2079 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2N4392 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \end{aligned}$	$\begin{aligned} & \text { 2N2920A } \\ & \text { 2N9236 } \\ & \text { 2N2937 } \\ & \text { 2N9972 } \\ & \text { 2N2973 } \end{aligned}$	$\begin{aligned} & \text { 2N2920 } \\ & 11120 \\ & 11120 \\ & 11922 \\ & 1 T 122 \end{aligned}$	$\begin{aligned} & 2 N 3459 \\ & \text { 2N3460 } \\ & \text { 2N3513 } \\ & \text { 2N3514 } \\ & \text { 2N3515 } \end{aligned}$	2N4339 2N4338 IT122 IT122 17122	2N4009 2N4010 2N4011 2N4015 2N4016	$\begin{aligned} & \text { T132 } \\ & 1132 \\ & T 132 \\ & 1 T 139 \\ & 1 T 137 \end{aligned}$
2080 A 2081 A 2093 M 2094 M 2095 M	$\begin{aligned} & \text { 2N3955A } \\ & \text { NN3555A } \\ & \text { NN3687 } \\ & \text { 2NB686 } \\ & \text { 2N3686 } \end{aligned}$	$\begin{aligned} & \text { 2N2974 } \\ & \text { 2N2975 } \\ & \text { 2N2976 } \\ & \text { 2N2977 } \\ & \text { 2N2978 } \end{aligned}$	IT120 IT120 17120 1 T120 17120	$\begin{aligned} & \text { 2N3516 } \\ & \text { 2N3517 } \\ & \text { 2N3521 } \\ & \text { 2N3522 } \\ & \text { 2N3574 } \end{aligned}$	IT122 IT122 $1 T 122$ IT122 2N2607	2N4017 2N4018 2N4019 $2 N 4020$ 2N402	$\begin{aligned} & 1 T 139 \\ & 1 T 139 \end{aligned}$
$\begin{aligned} & 2098 \mathrm{~A} \\ & 2099 \mathrm{~A} \\ & 2100 \\ & 21304 \\ & 2132 \mathrm{u} \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3955A } \\ & \text { 2N4416 } \\ & \text { 2N5152 } \\ & \text { 2N3955 } \end{aligned}$	$\begin{aligned} & \text { 2N2979 } \\ & \text { 2N29880 } \\ & \text { 2N2981 } \\ & \text { 2N29882 } \\ & \text { 2N3043 } \end{aligned}$	$\begin{aligned} & \text { T120 } \\ & 1 T 121 \\ & \$ 122 \\ & 1 T 122 \\ & 1 T 121 \end{aligned}$	2N3575 2N3578 2N3587 2N3608 2N3680	$\begin{aligned} & \text { 2N2607 } \\ & \text { 2N2608 } \\ & \text { 1T122 } \\ & 3 N 172 \\ & 1 T 120 \end{aligned}$	2N4O22 2N4023 2N4O24 2N4O25 2N4O26	$\begin{aligned} & 1 T 139 \\ & 1 T 137 \\ & 1 T 137 \\ & 1 T 137 \\ & 3 N 163 \end{aligned}$
2134 U 2136 U 21384 2139 U 2147 U	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3958 } \\ & \text { 2N3958 } \\ & \text { 2N3958 } \end{aligned}$	$\begin{aligned} & \text { 2N3O44 } \\ & \text { 2N3045 } \\ & \text { 2N3046 } \\ & \text { 2N3047 } \\ & \text { 2N3048 } \end{aligned}$	1T122 IT122 IT121 IT122 IT122	2N3684 2N3684A 2N3685 2N3685A 2N3686	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \end{aligned}$	$\begin{aligned} & \text { 2N4038 } \\ & \text { 2N4039 } \\ & \text { 2N4065 } \\ & \text { 2N4066 } \\ & \text { 2N4067 } \end{aligned}$	$\begin{aligned} & \text { 2N4351 } \\ & 2 N 4351 \\ & 3 N 163 \\ & 3 N 166 \\ & 3 N 166 \end{aligned}$
$\begin{aligned} & 2148 \mathrm{y} \\ & 2149 \mathrm{u} \\ & 2315 \\ & 2325 \\ & 2335 \end{aligned}$	$\begin{aligned} & \text { 2N3958 } \\ & \text { 2N3958 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3956 } \end{aligned}$	$2 N 3049$ $2 N 3050$ $2 N 3051$ 2N3052 2N3059	$\begin{aligned} & 1 T 139 \\ & 1 T 139 \\ & T 139 \\ & 1 T 129 \\ & 1 T 139 \end{aligned}$	2N3686A $2 N 3687$ 2N3687A 2N3726 2N3727	$\begin{aligned} & \text { 2N3686 } \\ & \text { 2N3687 } \\ & \text { 2N3687 } \\ & \text { T131 } \\ & \text { T130 } \end{aligned}$	$\begin{aligned} & 2 N 4082 \\ & 2 N 4083 \\ & 2 N 4084 \\ & \text { 2N4085 } \\ & \text { 2N4091 } \end{aligned}$	2N3954 2N3955 2N3954 2N3955 2N4091
$\begin{aligned} & 234 \mathrm{~S} \\ & 235 \mathrm{~S} \\ & 241 \mathrm{U} \\ & 250 \mathrm{U} \\ & 251 \mathrm{U} \end{aligned}$	$\begin{aligned} & 2 N 3957 \\ & \text { 2N395B } \\ & \text { 2N4869 } \\ & \text { 2N4091 } \\ & \text { 2N4392 } \end{aligned}$	2N3066 2N3067 $2 N 3068$ 2N3069 2N3070	$\begin{aligned} & 2 N 4340 \\ & 2 N 4338 \\ & 2 N 4338 \\ & 2 N 4341 \\ & 2 N 4339 \end{aligned}$	2N3728 2N3729 2N3800 2N3801 2N3802	$\begin{aligned} & 1 T 122 \\ & \text { T121 } \\ & \text { T132 } \\ & 1 T 132 \\ & 1 T 132 \end{aligned}$	2N4091A 2N4091JAN 2N4091 JANTX 2N4091 JANTXV 2N4092	2N4091 2N4091JAN 2N4091JANTX 2N4091JANTXV 2N4092
2N2060 2N2060A 2N2060B 2N22г3 2N2г23A	$\begin{aligned} & \text { T120 } \\ & \$ 121 \\ & T 121 \\ & \$ 1122 \\ & 1 T 121 \end{aligned}$	$\begin{aligned} & 2 N 3071 \\ & \text { 2N3084 } \\ & \text { 2N3085 } \\ & \text { 2N3086 } \\ & \text { 2N3087 } \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4339 } \end{aligned}$	2N3803 2N3BO4 2N3804A 2N3805 2N3805A	$\begin{aligned} & 1 T 132 \\ & 1 T 130 \\ & T 130 \mathrm{~A} \\ & 1 T 130 \\ & 1 T 130 \mathrm{~A} \end{aligned}$	2N4092A 2N4092JAN 2N4092JANTX 2N4092JANTXV 2N4093	$\begin{aligned} & \text { 2N4092 } \\ & \text { 2N4092JAN } \\ & \text { 2N4092JANTX } \\ & \text { 2N4092JANTXV } \\ & \text { 2N4093 } \end{aligned}$
$\begin{aligned} & \text { 2N2386 } \\ & \text { 2N23B6A } \\ & \text { NN253 } \\ & \text { 2N2533A } \\ & \text { 2N2480 } \end{aligned}$	2N2608 2N2608 $1 T 122$ $1 T 121$ IT122 T122	$\begin{aligned} & \text { 2N3088 } \\ & \text { 2N3088A } \\ & \text { 2N3089 } \\ & \text { 2N3089A } \\ & \text { 2N3113 } \end{aligned}$	2N4339 2N4339 2N4339 2N4339 2N2607	$\begin{aligned} & 2 N 3806 \\ & \text { 2N3807 } \\ & \text { 2N3808 } \\ & \text { 2N3809 } \end{aligned}$	IT122 IT122 IT122 17122 2N3810	2N4093A 2N4093JAN 2N4093JANTX 2N4093JANTXV 2N4100	$\begin{aligned} & \text { 2N4093 } \\ & \text { 2N4093JAN } \\ & \text { 2N4093JANTX } \\ & \text { 2N4093JANTXV } \\ & \text { 2N4100 } \end{aligned}$
$\begin{aligned} & \text { 2N2480A } \\ & \text { RN2497 } \\ & \text { NN2498 } \\ & \text { 2N2509 } \end{aligned}$	IT121 2N2608 2N2608 2N2609 2N2608	$\begin{aligned} & \text { 2N3277 } \\ & \text { 2N3278 } \\ & \text { 2N3328 } \\ & \text { 2N3329 } \end{aligned}$	$\begin{aligned} & \text { 2N2606 } \\ & \text { 2N2607 } \\ & \text { 2N5265 } \\ & \text { 2N5267 } \\ & \text { 2N5268 } \end{aligned}$	$\begin{aligned} & \text { 2N3810A } \\ & \text { 2N3811 } \\ & \text { 2N3811A } \\ & \text { 2N3812 } \\ & \text { 2N3813 } \end{aligned}$	$\begin{aligned} & \text { 2N3810A } \\ & 2 N 3811 \\ & 2 N 3811 \mathrm{~A} \\ & 1 T 132 \\ & 1 T 132 . \end{aligned}$	2N4117 2N4117A 2N4118 2N4118A 2N4119	2N4117 2N4117A 2N4118 2N4118A 2N4119

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
3N180 3N181 3N182 3N183 3N188	$\begin{aligned} & \text { 3N172 } \\ & \text { 3N161 } \\ & \text { 3N161 } \\ & \text { 3N161 } \\ & \text { 3N188 } \end{aligned}$	BCY89 BF244 BF244A BF244C	17122 2N5486 2N5484 2N5486	BFX78 BFX82 BFX83 BFX99 BFY20	$2 N \dot{1} 397$ $2 N 5019$ $2 N 5019$ T120A IT122	CM652 CM 653 CM697 CMB800 CM856	$\begin{aligned} & \text { 2N5432 } \\ & \text { 2N5433 } \end{aligned}$
$\begin{aligned} & \text { 3N189 } \\ & \text { 3N190 } \\ & \text { 3N11 } \\ & \text { 3N201 } \\ & \text { 3N208 } \end{aligned}$	$\begin{aligned} & \text { 3N189 } \\ & \text { 3N190 } \\ & \text { 3N191 } \\ & \text { 3N190 } \\ & \text { 3N188 } \end{aligned}$	BF245 BF245A BF245 BF245C BF246	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N5485 } \end{aligned}$	BFY81 BFY82 BFY83 BFY84 BFY85 BFY85	$\begin{aligned} & 1 T 122 \\ & \text { TT122 } \\ & 19122 \\ & \text { T122 } \\ & \text { T122 } \end{aligned}$	$\begin{aligned} & \text { CMB60 } \\ & \text { CM } 7440 \\ & \text { CP640 } \\ & \text { CP650 } \end{aligned}$	$\begin{aligned} & \text { 2N4888A } \\ & \text { 2N5532 } \\ & \text { 2N4011 } \\ & \text { 2N5434 } \\ & \text { 2N5432 } \end{aligned}$
$\begin{aligned} & 35 K 22 \\ & 3 S K 23 \\ & 35 K 28 \\ & 42 T \\ & 4360 T P \end{aligned}$	2N5486 $2 N 5397$ 2N5397 2N43S2 2N5462	BF246A BF246B BF246C BF247 BF247A	$\begin{aligned} & \text { 2N5639 } \\ & \text { 2N5638 } \\ & \text { 2N5638 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \end{aligned}$	BFY86 BFY91 BFY92 BN209 BSV2a	17122 IT122 1T122 IT122 2N4416	CP651 CP652 C653 D101 D1102	$\begin{aligned} & 2 N 5433 \\ & 2 N 5433 \\ & \text { 2N5433 } \\ & \text { 2N3B21 } \\ & \text { 2N3821 } \end{aligned}$
$\begin{aligned} & 5033 T P \\ & 588 \mathrm{~T} \\ & 58 \mathrm{~T} \\ & 59 \mathrm{~T} \\ & 703 \mathrm{u} \end{aligned}$	$\begin{aligned} & \text { 2N5460 } \\ & \text { 2N4416 } \\ & \text { 2N5457 } \\ & \text { 2N4416 } \\ & \text { 2N4220 } \end{aligned}$	BF247B BF247C BF256 BF256A BF256B	$\begin{aligned} & 2 N 4091 \\ & 2 N 4091 \\ & 2 N 5484 \\ & 2 N 5484 \\ & 2 N 4416 \end{aligned}$	BSV78 BSV79 BSVBC BSX82 C21	2N4856A 2N4857A 2N4858A 2N3822 2N3821	D1103 0177 D1778 D179 D1180	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N3821 } \\ & \text { 2N3B21 } \\ & \text { 2N4338 } \\ & \text { 2N3822 } \end{aligned}$
$\begin{aligned} & 704 \mathrm{U} \\ & 705 \mathrm{U} \\ & 707 \mathrm{U} \\ & 714 \mathrm{U} \\ & 734 \mathrm{EU} \end{aligned}$	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4224 } \\ & \text { 2N4860 } \\ & \text { 2N3822 } \\ & \text { 2N4416 } \end{aligned}$	BF256C BF320 BF320A BF320 BF3200	2N4416 2N5461 2N5460 2N5461 2N5462	$\begin{aligned} & \mathrm{C} 2306 \\ & \mathrm{C38} \\ & \mathrm{C413N} \\ & \mathrm{C610} \\ & \mathrm{C} 611 \end{aligned}$	$\begin{aligned} & \text { 2N5196 } \\ & \text { 2N4338 } \\ & 2 N 5434 \\ & \text { 2N4392 } \\ & \text { 2N4221 } \end{aligned}$	D1181 0182 01183 0184 01185	2N4338 2N4338 2N4341 2N4340 2N4339
$\begin{aligned} & 734 \mathrm{U} \\ & 751 \mathrm{U} \\ & 752 \mathrm{U} \\ & 753 \mathrm{U} \\ & 754 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N5516 } \\ & \text { 2N4340 } \\ & 2 N 4340 \\ & \text { 2N4341 } \\ & \text { 2N4340 } \end{aligned}$	BF346 BF347 BF348 BF800 BF801	$\begin{aligned} & \text { ITE4392 } \\ & \text { J201 } \\ & \text { 2310 } \\ & \text { 2N4867 } \end{aligned}$	C612 C613 C614 C615 0620	$\begin{aligned} & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4220 } \\ & \text { 2N4221 } \\ & \text { 2N4220 } \end{aligned}$	01201 01202 01203 01301 01302	2N4224 2N3821 2N4220 2N4222 2N42こ0
$\begin{aligned} & 755 \mathrm{U} \\ & 756 \mathrm{U} \\ & \text { A190 } \\ & \text { A191 } \\ & \text { A192 } \end{aligned}$	2N4341 $2 N 4340$ ITE4416 ITE4416 2N4416	BF802 BF804 BF805 BF806 BF808	2N4338 2N4338 2N4869 2N4869 2N4868	C621 C622 C623 C624 C625	2N4220 2N4220 $2 N 4220$ 2 N 42 O 2N422	01303 01420 01421 01422 D2T2218	2N4220 2N4868 2N3822 2N4869 IT129
$\begin{aligned} & \text { A193 } \\ & \text { A194 } \\ & \text { A195 } \\ & \text { A196 } \\ & \text { A197 } \end{aligned}$	2iN5484 2N5484 2N5484 ITE4416 ITE4391	BFB10 BF811 BF815 BF816 BF817	$\begin{aligned} & 2 N 4858 \\ & 2 N 4858 \end{aligned}$	$\begin{aligned} & \text { C650 } \\ & \text { C651 } \\ & \text { C652 } \\ & \text { C653 } \\ & \text { C6690 } \end{aligned}$	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4220 } \\ & 2 N 4220 \\ & 2 N 4220 \\ & 2 N 4341 \end{aligned}$	D2T2218A ロ2T2219 D2т2219A р2т2904 D2T2904A	IT129 IT129 IT129 IT139 1T139
A198 A199 A5T3821 A5T3822 A5T3823	ITE4392 ITE4393 2N5484 2N5484 2N4416 2N4416	BF818 BFO10 BFQ11 BFO12 BF013	2N4858 4401 U401 4402 U403	C6631 C6692 C673 $C 674$ C 880	$\begin{aligned} & \text { 2N4341 } \\ & 2 N 4339 \\ & 2 N 4341 \\ & 2 N 4341 \\ & 2 N 4338 \end{aligned}$	D2T2905 D2T2905A D2T918 DA102 DA402	$\begin{aligned} & \text { T1139 } \\ & \text { T139 } \\ & \text { T1299 } \\ & \text { 2N5196 } \\ & \text { 2N5196 } \end{aligned}$
A5T3824 A5T5460 A5T5461 A5T5462 AD3954	$\begin{aligned} & \text { 2N4341 } \\ & 2 N 5460 \\ & 2 N 5461 \\ & \text { 2N5462 } \\ & \text { 2N3954 } \end{aligned}$	BFQ14 BFQ15 BFQ16 BFO23 BFQ26 BFQ26	U404 $\cup 405$ U406 175912 U403	C680A C681 C681A C682 C682A	2N4338 2N4338 2N4338 2N4339 2N4339	DN3066A DN3067A DN3068A DN3069A DN3070A	2N3821 $2 N 4338$ $2 N 4338$ $2 N 3822$ 2N3821
AD3954A AD355 AD3956 AD3558 AD5905	$\begin{aligned} & \text { 2N3954A } \\ & \text { 2N3955 } \\ & \text { NN3956 } \\ & \text { 2N3958 } \\ & \text { 2N5905 } \end{aligned}$	BFO44 BFQ45 BFO49A BFO49B BFQ49C	$\begin{aligned} & 175912 \\ & 1 T 5912 \\ & 2 N 3055 \\ & 2 N 3958 \\ & \text { 2N3958 } \end{aligned}$	C683 C683A C684 C684A C685	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \end{aligned}$	DN3071A DN3365A DN3365B DN3366B	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4220 } \\ & \text { 2N4091 } \\ & \text { 2N3686 } \\ & \text { 2N4091 } \end{aligned}$
AD5906 AD5907 AD5909 AD810	$\begin{aligned} & 2 N 5906 \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \text { 2N4878 } \end{aligned}$	BFS21 BFS21A BFS67 BFS67P BFS68 BFS68	2N5199 2N5199 2N3821 2N5459 2N3823	$\begin{aligned} & \text { C685A } \\ & \text { C8D } \\ & \text { C81 } \\ & \text { C84 } \\ & \text { C85 } \end{aligned}$	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N433B } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \end{aligned}$	DN3367A DN3367B DN3368A DN3368B DN3369A	2N3687 2N4091 2N4341 2N4221 2N4339
AD811 AD812 AD813 AD814 AD815 AD815	$\begin{aligned} & 2 N 4878 \\ & 2 N 4878 \\ & 2 N 4878 \\ & T 124 \\ & 1 T 124 \end{aligned}$	$\begin{aligned} & \text { BFS68P } \\ & \text { BFS70 } \\ & \text { BFS71 } \\ & \text { BFS72 } \\ & \text { BFS73 } \end{aligned}$	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N3823 } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & \text { C91 } \\ & \text { C92 } \\ & \text { C93 } \\ & \text { C94 } \\ & \text { C94E } \end{aligned}$	$\begin{aligned} & \text { 2N4858 } \\ & \text { 2N4091 } \\ & \text { 2N4393 } \\ & \text { 2N5457 } \\ & \text { 2N5457 } \end{aligned}$	DN3369B DN3370A DN3370B DN3436B	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \text { 2N4222 } \end{aligned}$
'AD816 AD818 AD820 AD821 AD822	IT120A IT140 $1 T 132$ IT130A IT130A	BFS74 BFS75 BFS76 BFS77 BFS78	2N4B56 2N4857 2N4858 2N4859 2N4860	C95 C95E C96E C97E C9BE	$\begin{aligned} & 2 N 5457 \\ & \text { 2N5459 } \\ & 2 N 5484 \\ & 2 N 3822 \\ & 2 N 3822 \end{aligned}$	DN3437A DN3437B DN3438A DN3438	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4220 } \\ & \text { 2N433B } \\ & \text { 2N4339 } \\ & \text { 2N4341 } \end{aligned}$
AD830 AD831 AD832 AD833 AD833A	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \text { 2N5522 } \\ & \text { 2N5523 } \\ & \text { 2N5524 } \end{aligned}$	BF579 BFS80 BFT10 BFT11 BFW10	2N4861 2N4416A 2N5397 2N5019 2N3823	CC4445 CC4446 CC697 CF2386 CF24	$\begin{aligned} & 2 N 5432 \\ & \text { 2N5434 } \\ & 2 N 4856 \\ & 2 N 5458 \\ & 2 N 3824 \end{aligned}$	DN3458B DN3459A DN3459B DN3460A DN3460B	2N4222 2N4339 2N4220 2N4220
AD835 AD836 AD837 AD839	$\begin{aligned} & 2 N 3954 \\ & \text { 2N3955 } \\ & 2 N 3955 \\ & \text { 2N3956 } \\ & \text { 2N3957 } \end{aligned}$	BFW11 BFW12 BFW13 BFW39 BFW39A	2N3822 2N4416 2N4867 1T129 IT120	CFM13026 CM600 CM601 CM502 CM603	$\begin{aligned} & \text { 2N4858 } \\ & \text { 2N4092 } \\ & 2 N 4091 \\ & \text { 2N4091 } \\ & \text { 2N4091 } \end{aligned}$	DNX1 DNX2 DNX3 DNX4 DNX5	$\begin{aligned} & 2 N 4338 \\ & 2 N 4338 \\ & 2 N 4338 \\ & \text { 2N4B69 } \\ & \text { 2N4868 } \end{aligned}$
ADB40 AD841 AD842 BC264 BC264A	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \text { 2N5523 } \\ & \text { 2N5458 } \\ & \text { 2N5457 } \end{aligned}$	BFW54 BFW55 BFW56 BFW61 BFX11	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N4860 } \\ & \text { 2N4224 } \\ & \text { IT132 } \end{aligned}$	CM640 CM641 CM642 CM643 CM644	$\begin{aligned} & 2 N 4093 \\ & 2 N 4093 \\ & 2 N 4093 \\ & 2 N 4092 \\ & 2 N 4092 \end{aligned}$	DNX6 DNX7 DNX8 DNX9 DU4339	2N4338 2N4416 2N4416 2N4339 2N5397
BC264B BC264C BC264D BCY87 BCYB8	2N5458 2N5458 2N4416 $1 T 121$ IT122	$\begin{aligned} & \mathrm{BF} \times 15 \\ & \mathrm{BF} \times 36 \\ & \mathrm{BF} \times 70 \\ & \mathrm{BF} 771 \\ & \mathrm{BF} \times 72 \end{aligned}$	$\begin{aligned} & \text { T122 } \\ & \text { T131 } \\ & \text { T122 } \\ & 1 T 122 \\ & 1 T 122 \end{aligned}$	CM645 CM646 CM647 CM650 CM651	$\begin{aligned} & 2 N 4092 \\ & 2 N 4092 \\ & 2 N 4091 \\ & 2 N 5432 \\ & 2 N 5433 \end{aligned}$	$\begin{aligned} & \text { DU4340 } \\ & \text { E100 } \\ & \text { E101 } \\ & \text { E102 } \end{aligned}$	$\begin{aligned} & \text { 2N5398 } \\ & \text { 2N5458 } \\ & \text { J204 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \end{aligned}$

DISCRETE CROSS REFERENCE (cont.)

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT						
J 177 J 177718 J 201 $\mathrm{~J} 201-18$ J 202	$\begin{aligned} & \mathrm{J} 177 \\ & \mathrm{J177} \\ & \mathrm{~J} 201 \\ & \mathrm{~J} 201 \\ & \mathrm{~J} 202 \end{aligned}$	K309-18 K310-18 KE3684 KE3685 KE3686	$\begin{aligned} & \mathrm{J} 309 \\ & \mathrm{~J} 310 \\ & 2 N 3684 \\ & \text { 2N3685 } \\ & \text { 2N3686 } \end{aligned}$	LS5105 LS5245 LS5246 LS5247 LS5248	$\begin{aligned} & \text { 2N5486 } \\ & \text { ITE4416 } \\ & 2 N 5484 \\ & 2 N 5486 \\ & 2 N 5486 \end{aligned}$	MD7002B MD7003 MD7003A MD7003B MD7004	$\begin{aligned} & 1 T 122 \\ & 1 T 132 \\ & 1132 \\ & 1132 \\ & 1 T 129 \end{aligned}$
$\begin{aligned} & \mathrm{J} 202-18 \\ & \mathrm{~J} 203 \\ & \mathrm{~J} 203-18 \\ & \mathrm{~J} 204 \\ & \mathrm{~J} 204-18 \end{aligned}$	$\begin{aligned} & \mathrm{J} 202 \\ & \mathrm{~J} 203 \\ & \mathrm{~J} 203 \\ & \mathrm{~J} 204 \\ & \mathrm{~J} 204 \end{aligned}$	KE3687 KE3823 KE3970 KE3971 KE3972	2N3687 2N3823 TTE4391 ITE4392 ITE4393 1 TE4393	LS5358 LS5359 LS5360 LS5361 LS5362	$\begin{aligned} & \mathrm{J} 204 \\ & \mathrm{~J} 204 \\ & \mathrm{~J} 202 \\ & \mathrm{~J} 202 \\ & \mathrm{~J} 203 \end{aligned}$	MO7007 MD7007A MD7007B MD708 MD708A	17129 IT129 IT129 $1 T 129$ $1 T 129$
J210 $J 211$ $J 212$ J230 J231	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N4867 } \\ & \text { 2N4868 } \end{aligned}$	KE4091 KE4092 KE4093 KE4220 KE422	\|TE4091 ITE4092 iTE4093 2N5457. 2N5459 2N5459	LS5363 LS5364 LS5391 LS5392 LS5393	$\begin{aligned} & \text { J203 } \\ & \text { 2N4 } 20367 \mathrm{~A} \\ & \text { 2NA868A } \\ & \text { 2N4869A } \end{aligned}$	MD708B MD8001 MD8002 MD8003	เT129 $1 T 120$ 19120 $1 T 122$ 1T122
$\begin{aligned} & \mathrm{J} 232 \\ & \mathrm{j} 270 \\ & \mathrm{j} 270-18 \\ & \mathrm{j} 271 \\ & \mathrm{~J} 271-18 \end{aligned}$	$\begin{aligned} & 2 N 4869 \\ & \mathrm{~J} 270 \\ & \mathrm{~J} 70 \\ & \mathrm{j} 271 \\ & \mathrm{~J} 271 \end{aligned}$	KE4222 KE4223 KE439 KE4392 KE4393 KE4393	2N5459 J204 ITE4391 ITE4392 1 1E4393	LS5394 LS5395 LS5396 LS5457 LS5458	$\begin{aligned} & \text { 2N4869A } \\ & \text { NN4869A } \\ & \text { 2N4869A } \\ & \text { NN5557 } \\ & \text { 2N5458 } \end{aligned}$	M0918A MD918B MD982 MO984 MEF103	$1 T 122$ T122 T139 T139 2N5457
$J 300$ J304 J305 J308 J309	$\begin{aligned} & \text { 2N5397 } \\ & 2 N 5486 \\ & 2 N 5484 \\ & \text { J308 } \\ & \text { J309 } \end{aligned}$	KE4416 KE4856 KE4857 KE4858 KE4859 K 485	ITE4416 ITE4391 ITE4392 ITE4393 ITE4391 TE4391	LS5459 LS5484 LS5485 LS5486 LS5556	$\begin{aligned} & 2 N 5459 \\ & 2 N 5484 \\ & 2 N 5485 \\ & 2 N 5486 \\ & 2 N 3685 \end{aligned}$	MEF104 MEF3069 MEF3458 MEF3459	2N5459 2N4341 2N4339 2N4341 2N4339
J310 J315 J316 J317 J3970	$\begin{aligned} & \text { J310 } \\ & 2 N 5397 \\ & \text { U309 } \\ & \text { U310 } \\ & \text { TE4391 } \end{aligned}$	KE4860 KE4861 KE510 KE5103 KE5104 KE5104	ITE4392 ITE4393 ITE4393 J204 ITE4416	LS5557 LS5558 LS5638 LS5639 LS5640	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3684 } \\ & \text { 2N5638 } \\ & \text { 2N5639 } \\ & \text { 2N5640 } \end{aligned}$	MEF3460 MEF3684 MEF3685 MEF3686 MEF3687	$\begin{aligned} & 2 N 4338 \\ & 2 N 3684 \\ & 2 N 3685 \\ & 2 N 3686 \\ & 2 N 3687 \end{aligned}$
$\begin{aligned} & \mathrm{J} 3971 \\ & 13972 \\ & \mathrm{~J} 401 \\ & \mathrm{j} 402 \\ & \mathrm{~J} 03 \end{aligned}$	ITE4392 TTE4393 $1 T 501$ 17502 17503	KE5105 KE511 KH5196 KH5197 KH5198	ITE4416 ITE4392 2N5196 $2 N 5197$ $2 N 5198$	M103 M104 M106 M107 M108	$\begin{aligned} & \begin{array}{l} \text { 3N161 } \\ \text { NN161 } \\ \text { 3N166 } \\ \text { NN189 } \\ \text { 3N191 } \end{array} \end{aligned}$	MEF3821 MEF3822 MEF3954 MEF3955	2N3821 2N3822 2N3823 2N3954 2N3955
$J 404$ J405 J406 J4091 J4092	$1 T 503$ T504 T505 TE4091 ITE4092	KH5199 LOF603 LDF604 LDF605 LM114	$\begin{aligned} & \text { 2N5199 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { T120 } \end{aligned}$	M113 M114 M116 M117 M119	3N161 3N161 M116 2N4351 3N161	MEF3956 MEF3957 MEF3958 MEF4223 MEF4224 MEF4224	$\begin{aligned} & 2 N 3956 \\ & 2 N 3957 \\ & 2 N 3958 \\ & 2 N 4223 \\ & 2 N 4224 \end{aligned}$
$\begin{aligned} & \mathrm{J} 4093 \\ & \mathrm{J40} \\ & \mathrm{N411} \\ & \mathrm{J412} \\ & \mathrm{~J} 420 \end{aligned}$	$\begin{aligned} & \text { ITE4093 } \\ & 1 T 502 \\ & 1 T 503 \\ & 15503 \\ & 1 T 5911 \end{aligned}$	LM114A LM114AH LM114H LM115 LM115A	IT120A IT120A IT120 $1 T 120$ IT120A	M163 M164 M511 M511A M517	3N163 3N164 $3 N 172$ $3 N 172$ $3 N 163$ 3 N163	MEF4391 MEF4392 MEF4393 MEF4416 MEF4856 MEF4856	ITE4391 ITE4392 ITE4393 ITE4416 2N4856
J421 J4220 J4221 J4222 Ј4223	$\begin{aligned} & 175912 \\ & \text { J204 } \\ & \text { J202 } \\ & \text { J203 } \\ & \text { J202 } \end{aligned}$	LM115AH LM115H LM194 LM394 LS3069	IT120A T120 IT120A IT120A 2N5458	MA7807 MA7809 MAT-01AH MAT-01FH MAT-01GH	IT132 $1 T 132$ 1T140 $1 T 140$ IT140	MEF4857 MEF4858 MEF4859 MEF4860 MEF4861	2N4857 2N4858 2N4859 2N4860 2N4861
$\begin{aligned} & J 4224 \\ & 4430 \\ & J 4402 \\ & 44303 \\ & J 4304 \end{aligned}$	$\begin{aligned} & \mathrm{J} 202 \\ & \mathrm{~J} 309(\times 2) \\ & 2 N 4302 \\ & 2 N 5459 \\ & 2 N 5458 \end{aligned}$	LS3070 LS3071 LS3458 LS3459 LS3460	$\begin{aligned} & 2 N 5458 \\ & 2 N 5458 \\ & \text { J204 } \\ & \text { J204 } \\ & \text { J204 } \end{aligned}$	MAT-01H MD1120 MD1121 MD1122 MD1123	1T140 $1 T 122$ IT122 $1 T 122$ IT139	MEF5103 MEF5104 MEF5105 MEF5245 MEF5246	ITE4416 ITE4416 ITE4416 ITE4416 2N5484
$J 431$ $J 433$ $J 4338$ J4339 J4391	$\begin{aligned} & \text { J310(x2) } \\ & 2 N 5457 \\ & 2 N 5457 \\ & \text { 2N5457 } \\ & \text { 1TE4391 } \end{aligned}$	LS3684 LS3685 LS3686 LS3687 LS3819	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \\ & \text { 2N5484 } \end{aligned}$	MD1129 MD1130 MD2218 MD2218A MD2219	IT129 $1 T 139$ $1 T 129$ T129 $1 T 129$	MEF5247 MEF5248 MEF5284 MEF5285 MEF5286	2N5486 2N5486 2N5484 2N5485 2N5486
J4392 J4393 $J 4416$ $J 4856$ $J 4857$	ITE4392 TE4393 TE4416 ITE4856 TE4857	LS3821 LS3822 LS3823 LS3921 LS3922	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5458 } \\ & \text { 2N3921 } \\ & \text { 2N3922 } \end{aligned}$	MD2219A MD2369 MD2369A MD2369B MD2904	IT129 $1 T 129$ IT129 IT122 IT139	MEF5561 MEF5562 MEF5563 MEM511 MEM511A	U401 4402 U403 3N172 3N172
J4858 J4859 J4860 J4861 J4867	ITE4858 ITE4859 TE4860 ITE4861 2N4867	LS3966 LS3967 LS3968 LS3969 LS4220	ITE4416 ITE4416 TE4416 ITE4416 J204	MD2904A MD2905 MD2905A MD2974 MD2975	$\begin{aligned} & \text { IT139 } \\ & \text { IT139 } \\ & \text { T139 } \\ & \text { T120 } \\ & \text { IT120 } \end{aligned}$	MEM511C MEM517 MEM517A MEM517B MEM517C	$\begin{aligned} & 3 N 172 \\ & 3 N 172 \\ & \text { 3N172 } \\ & \text { 3N172 } \\ & \text { 3N172 } \end{aligned}$
J4867A J4867RR J4868 J4868A J4868RR	2N4867A 2N4867 2N4868 2N4868A 2N4868	LS4221 LS4222 LS4223 LS4224	J202 J203 J202 J202 2N5457	MD2978 MD2979 MD3008 MD3250 MD3250A	$\begin{aligned} & \text { T120 } \\ & 1 T 120 \\ & \text { T120 } \\ & \text { T132 } \\ & \text { T131 } \end{aligned}$	MEM550 MEM550C MEM550F MEM551 MEM551C	$\begin{aligned} & 3 N 189 \\ & 3 N 189 \\ & 3 N 189 \\ & 3 N 190 \\ & \text { 3N189 } \end{aligned}$
$J 4869$ J4869A J4869RR J5103 $J 5104$	$\begin{aligned} & \text { 2N4869 } \\ & \text { NN4869A } \\ & \text { N48899 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \end{aligned}$	LS4339 LS4340 LS4341 LS4391 LS4392	2N5457 2N5457 2N5458 ITE4391 ITE4392	MD3251 MD3251A MD3409 MD3410 MD3467	IT132 IT131 IT129 IT129 IT139	MEM556 MEM556C MEM560 MEM560C MEM561	$\begin{aligned} & 3 N 172 \\ & 3 N 172 \\ & 3 N 161 \\ & 3 N 161 \\ & \text { 3N163 } \end{aligned}$
J 5105 J 1663 $\mathrm{~K} 114-18$ K210-18 K211-18	$\begin{aligned} & \text { 2N5486 } \\ & \text { 2N5486 } \\ & \text { 2N5555 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \end{aligned}$	LS4393 LS4416 LS4856 LS4857 LS4858	$\begin{aligned} & \text { ITE4393 } \\ & \text { TE4416 } \\ & \text { TE4091 } \\ & \text { TE4092 } \\ & \text { TE } 4093 \end{aligned}$	MD3725 MD3762 MD4357 MD5000 MD5000A	$\begin{aligned} & \text { T129 } \\ & \text { T139 } \\ & T 132 \\ & 1 T 132 \\ & 1 T 132 \end{aligned}$	MEM561C MEM562 MEM562C MEM563 MEM563C	3N163 2N4351 2N4351 2N4351 2N4351
K212-18 K300-18 K304-18 K305-18 $\mathrm{K} 308-18$ K308-18	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5397 } \\ & 2 N 5486 \\ & \text { 2N5484 } \\ & \text { J308 } \end{aligned}$	LS4859 LS4860 LS4861 LS5103 LS5104	ITE4091 ITE4092 ITE4093 2N5484 2N5485	MD5000B MD7000 MD7001 MD7002 MD7002A	$\begin{aligned} & 1 T 132 \\ & 1 T 129 \\ & T 139 \\ & 1 T 122 \\ & \text { T122 } \end{aligned}$	MEM711 MEM712 MEM712A MEM713 MEM806	M116 M116 M116 3N170 3N163

ALTERNATE SOURCE PRODUCT	INTERSIL. EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL. EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
MEM806A MEM807 MEM807A MEM814 MEM816	3N163 3N172 3 N172 3N161 3N172	MP840 MP841 MP842 MPF102 MPF103	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \text { 2N5523 } \\ & \text { 2N5486 } \\ & \text { 2N5457 } \end{aligned}$	NKT80111 NKT80112 NKT80113 NKT80211 NKT80212	2N4220 2N4220 2N3821 2N4339 2N4339	$\begin{aligned} & \text { SA2718 } \\ & \text { SA2719 } \\ & \text { SA2720 } \\ & \text { SA2721 } \\ & \text { SA2722, } \end{aligned}$	$1 T 122$ IT120 IT121 17122 17120
MEM817 MEM823 MEM954 MEM954A MEM954B	$3 N 172$ MFE823 3N188 3 N188 3N188	MPF104 MPF105 MPF106 MPF107 MPF108	$\begin{aligned} & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N5486 } \end{aligned}$	NKT80213 NKT80214 NKT80215 NKT80216 NKT80421	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4220 } \end{aligned}$	$\begin{aligned} & \text { SA2723 } \\ & \text { SA2724 } \\ & \text { SA2726 } \\ & \text { SA2727 } \\ & \text { SA2738 } \end{aligned}$	IT121 17122 $1 T 122$ IT122 IT120A
MEM955 MEM955A MEM955B MF510 MF803	3N190 3N190 3N190 2N4092 2N4338	MPF109 MPF111 MPF112 MPF161 MPF208	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5458 } \\ & \text { 2N5458 } \\ & \text { 2N5398 } \\ & \text { 2N3821 } \end{aligned}$	NKT80422 NKT80423 NKT80424 NPC108 NPC211N	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N5484 } \\ & \text { 2N4338 } \end{aligned}$	SA2739 SDF1001 SDF1002 SDF1003 SDF500	$\begin{aligned} & \text { IT120 } \\ & 2 N 5432 \\ & 2 N 5433 \\ & 2 N 5434 \\ & 2 N 5520 \end{aligned}$
MF818 MFE2000 MFE2001 MFE2004 MFE2005	$\begin{aligned} & \text { 2N4858 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N4093 } \\ & \text { 2N4092 } \end{aligned}$	MPF209 MPF256 MPF4391 MPF4392 MPF4393	2N3821 ITE4416 ITE4391 ITE4392 ITE4393	NPC212N NPC213N NPC214N NPC215N NPC216N	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \end{aligned}$	SDF501 SDF502 SDF503 SDF504 SDF505	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N5520 } \\ & \text { 2N5520 } \\ & 2 N 5520 \\ & \text { 2N5520 } \end{aligned}$
MFE2006 MFE2007 MFE2008 MFE2009 MFE2010	$\begin{aligned} & \text { 2N4091 } \\ & \text { 2N4860 } \\ & \text { 2N4859 } \\ & \text { 2N4859 } \\ & \text { 2N4859 } \end{aligned}$	MPF820 MPF970 MPF971 MTF101 MTF102	$\begin{aligned} & \text { J310 } \\ & \text { J175 } \\ & \text { J175 } \\ & \text { 2N5484 } \\ & \text { 2N5484 } \end{aligned}$	NPD5564 NPD5565 NPD5566 NPD8301 NPD8302	$\begin{aligned} & 1 \text { IT550 } \\ & 1 T 550 \\ & \text { iT550 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \end{aligned}$	$\begin{aligned} & \text { SDF506 } \\ & \text { SDF507 } \\ & \text { SDF508 } \\ & \text { SDF509 } \\ & \text { SDF510 } \end{aligned}$	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N3954 } \end{aligned}$
MFE2011 MFE2012 MFE2012 MFE2093 MFE2094	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N5434 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \end{aligned}$	MTF103 MTF104 ND5700 ND5701 ND5702	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { IT120A } \\ & \text { IT120A } \\ & \text { IT120 } \end{aligned}$	$\begin{aligned} & \text { NPD8303 } \\ & \text { OT3 } \\ & \text { P1004 } \\ & \text { P1005 } \\ & \text { P1027 } \end{aligned}$	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N4338 } \\ & \text { 2N5116 } \\ & \text { 2N5115 } \\ & \text { 2N5267 } \end{aligned}$	SDF512 SDF513 SDF514 SDF661 SDF662	2N3954 2N3954 2N3954 IT122 IT122
MFE2095 MFE2133 MFE2912 MFE3002 MFE3003	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4860 } \\ & \text { 2N5433 } \\ & \text { 3N170 } \\ & \text { NN164 } \end{aligned}$	NDF9401 NDF9402 NDF9403 NDF9404 NDF9405	$\begin{aligned} & \text { IT500 } \\ & \text { IT501 } \\ & \text { IT502 } \\ & \text { IT503 } \\ & \text { IT504 } \end{aligned}$	$\begin{aligned} & \text { P1028 } \\ & \text { P1029 } \\ & \text { P1069E } \\ & \text { P1086E } \\ & \text { P1087E } \end{aligned}$	$\begin{aligned} & \text { 2N5270 } \\ & \text { 2N5270 } \\ & \text { 2N2609 } \\ & \text { 2N5115 } \\ & \text { 2N5516 } \end{aligned}$	SDF663 SES3819 SFT601 SFT602 SFT603	IT122 2N5484 2N4338 2N4338 2N4339
MFE3020 MFE3021 MFE4007 MFE4008 MFE4009	3N166 3N166 2N3686 2N3686 2N3685	NDF9406 NDF9407 NDF9408 NDF9409 NDF9410	$\begin{aligned} & \text { IT500 } \\ & 17501 \\ & 17502 \\ & \text { IT503 } \\ & \text { IT504 } \end{aligned}$	P1117E P1118E P1119E PF510 PF5101	$\begin{aligned} & \text { 2N5640 } \\ & \text { 2N5641 } \\ & \text { 2N5640 } \\ & \text { 2N5115 } \\ & \text { 2N4867 } \end{aligned}$	SFT604 SL301AT SL301BT SL301CT SL301ET	2N4339 IT129 IT129 IT129 17129
MFE4010 MFE4011 MFE4012 MFEB23 MK10	2N2608 2N2608 2N2609 IT1700 2N4416	NF3819 NF4302 NF4303 NF4304 NF4445	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \text { 2N5432 } \end{aligned}$	$\begin{aligned} & \text { PF5102 } \\ & \text { PF5103 } \\ & \text { PF511 } \\ & \text { PF5301 } \\ & \text { PF5301-1 } \end{aligned}$	$\begin{aligned} & 2 N 4867 \\ & \text { 2N4867 } \\ & \text { 2N51144 } \\ & \text { 2N4118A } \\ & \text { 2N4117A } \end{aligned}$	SL360C SL362C SU2000 SU2020 SU2021	IT129 IT129 $2 N 4340$ 2N3954 2N3954
MMF1 MMF2 MMF3 MMF4 MMF5	$\begin{aligned} & \text { 2N5197 } \\ & \text { 2N3921 } \\ & \text { 2N5198 } \\ & \text { 2N3922 } \\ & \text { 2N5199 } \end{aligned}$	NF4446 NF4447 NF4448 NF500 NF501	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N4224 } \\ & \text { 2N4224 } \end{aligned}$	$\begin{aligned} & \text { PF5301-2 } \\ & \text { PF5301-3 } \\ & \text { PL1091 } \\ & \text { PL1092 } \\ & \text { PL1093 } \end{aligned}$	2N4118A 2N4118A 2N3823 2N3823 2N3823	SU2022 SU2023 SU2024 SU2025 SU2026	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \end{aligned}$
MMF6 MMT3823 MP301 MP302 MP303	$\begin{aligned} & \text { 2N3955A } \\ & \text { 2N3823 } \\ & \text { IT124 } \\ & \text { IT124 } \\ & \text { IT124 } \end{aligned}$	NF506 NF5101 NF5102 NF5103 NF511	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N4860 } \end{aligned}$	$\begin{aligned} & \text { PL1094 } \\ & \text { PN3684 } \\ & \text { PN3685 } \\ & \text { PN3686 } \\ & \text { PN3687 } \end{aligned}$	$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \end{aligned}$	SU2027 SU2028 SU2029 SU2029 SU2030	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N5197 } \\ & \text { 2N3954 } \end{aligned}$
MP310 MP311 MP312 MP313 MP318	$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4045 } \\ & \text { 2N4044 } \\ & \text { IT124 } \\ & \text { IT120A } \end{aligned}$	NF5163 NF520 NF521 NF522 NF523	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N3865 } \end{aligned}$	PN4091 PN4092 PN4093 PN4220 PN4221	ITE4091 ITE4092 ITE4093 J204 J202	SU2030 SU2031 SU2031 SU2032 SU2033	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N5198 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \end{aligned}$
MP350 MP351 MP352 MP358 MP360	IT132 IT130 IT130 IT130A 1T132	$\begin{aligned} & \text { NF530 } \\ & \text { NF5301 } \\ & \text { NF5301-1 } \\ & \text { NF5301-2 } \\ & \text { NF5301-3 } \end{aligned}$	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N4118A } \\ & 2 N 4117 A \\ & 2 N 4118 A \\ & \text { 2N4118A } \end{aligned}$	PN4222 PN4223 PN4224 PN4342 PN4360	$\begin{aligned} & J 203 \\ & J 204 \\ & J 202 \\ & 2 N 5461 \\ & 2 N 5460 \end{aligned}$	SU2034 SU2034 SU2035 SU2035 SU2074	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3954 } \end{aligned}$
MP361 MP362 MP3954 MP3954A MP3955	$\begin{aligned} & \text { IT130A } \\ & \text { IT130A } \\ & 2 N 3954 \\ & 2 N 3954 A \\ & 2 N 3955 . \end{aligned}$	NF531 NF532 NF533 NF5457 NF5458	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4341 } \\ & \text { 2N4339 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \end{aligned}$	PN4391 PN4392 PN4416 PN4856 PN4857	ITE4391 ITE4392 ITE4416 2N4856 2N4857	SU2075 SU2076 SU2077 SU2077 SU2078	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \end{aligned}$
MP3956 MP3957 MP3958 MP5905 MP5906	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3958 } \\ & \text { 2N5905 } \\ & \text { 2N5906 } \end{aligned}$	NF5459 NF5484 NF5485 NF5486 NF5555	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5488 } \\ & \text { 2N5484 } \end{aligned}$	PN4858 PN4859 PN4860 PN4861 PN5033	$\begin{aligned} & \text { 2N4858 } \\ & \text { 2N4859 } \\ & \text { 2IN4860 } \\ & \text { 2N4861 } \\ & \text { 2N5460 } \end{aligned}$	SU2079 SU2080 SU2081 SU2098 SU2098A	$\begin{aligned} & \text { 2N3955 } \\ & \text { U404 } \\ & \text { U404 } \\ & \text { 2N5197 } \\ & \text { 2N5197 } \end{aligned}$
MP5907 MP5908 MP5909 MP5911 MP5912	$\begin{aligned} & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \text { 2N5911 } \\ & \text { 2N5912 } \end{aligned}$	NF5638 NF5639 NF5640 NF5653 NF5654	$\begin{aligned} & \text { 2N5638 } \\ & \text { 2N5639 } \\ & \text { 2N5640 } \\ & \text { 2N4860 } \\ & \text { 2N4861 } \end{aligned}$	PTC151 PTC152 SA2253 SA2254 5A2255	$\begin{aligned} & 2 N 5484 \\ & 2 N 5485 \\ & \text { 1T122 } \\ & \text { IT122 } \\ & \text { IT122 } \end{aligned}$	SU2098B SU2099 SU2099A SU2365 SU2365A	$\begin{aligned} & \text { 2N5196 } \\ & \text { 2N5197 } \\ & \text { 2N5197 } \\ & \text { 2N3954 } \\ & \text { 2N3954 } \end{aligned}$
MP804 MP830 MP831 MP832 MP833	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \text { 2N5522 } \\ & \text { 2N5523 } \end{aligned}$	NF580 NF581 NF582 NF583 NF584	$\begin{aligned} & \text { 2N5432 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5434 } \\ & \text { 2N5433 } \end{aligned}$	SA2644 SA2648 SA2710 SA2711 SA2712	$\begin{aligned} & \text { IT120 } \\ & \text { IT121 } \end{aligned}$	SU2366 SU2366A SU2367 SU2367A SU2368	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3956 } \end{aligned}$
MP835 MP836 MP837 MP838 MP839	$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3955 } \\ & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \text { 2N3957 } \end{aligned}$	NF585 NF6451 NF6452 NF6453 NF6454	$\begin{aligned} & 2 N 4859 \\ & 4310 \\ & 4310 \\ & 4310 \\ & 4310 \end{aligned}$	$\begin{aligned} & \text { SA2713 } \\ & \text { SA2714 } \\ & \text { SA2715 } \\ & \text { SA2716 } \\ & \text { SA2717 } \end{aligned}$	IT121 IT122 IT120 IT120 IT121	$\begin{aligned} & \text { SU2368A } \\ & \text { SU2369 } \\ & \text { SU2369A } \\ & \text { SU2410 } \\ & \text { SU2411 } \end{aligned}$	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3957 } \\ & \text { 2N5907 } \\ & \text { NNS } \end{aligned}$

ALTERNATE SOURCE PRODUCT	intersil EQUIVALENT	alternate SOURCE PRODUCT	intersil EQUIVALENT	alternate SOURCE PRODUCT	intersil EOUIVALENT	alternate SOURCE PRODUCT	intersil EQUIVALENT
SU2412 SU2652 SU2652M SU2653 SU2653M	2N5909 U401 U401 $\cup 401$ $\cup 401$	T05909A TD5911 TD5911A TD5912 TD5912A	$\begin{aligned} & 2 N 5909 \\ & 1 T 5911 \\ & 1 T 5911 \\ & 15912 \\ & 1 T 5912 \end{aligned}$	U183 U1837E U184 U1897E U1898E	$\begin{aligned} & \text { 2N3824 } \\ & \text { 2N5486 } \\ & \text { 2N5397 } \\ & \text { U1897 } \end{aligned}$	U405 U406 U410 U411 U412	U405 $\cup 406$ 2N3955 2N3956 2N3958
SU2654 SU2654M SU2655 SU2655M SU2656	U401 $\cup 401$ $\cup 402$ $\cup 402$ $\cup 404$	$\begin{aligned} & \text { TD700 } \\ & \text { T0701 } \\ & \text { ID709 } \\ & \text { TV710 } \\ & \text { TD711 } \end{aligned}$	IT122 T122 IT122 1T122 ІТ122	U1899E U197 U198 U199 U1994E	U1899 2 N 4338 2N4340 2N4341 2N4416	U421 U422 U423 U424 U425	$\begin{aligned} & \text { 2N5908 } \\ & 2 N 5908 \\ & \text { 2N5909 } \\ & \text { 2N5908 } \\ & \text { 2N5908 } \end{aligned}$
SU2656M SX3819 SX3820 TD100 TD101	1404 2N5484 2N2608 IT129 IT129	$\begin{aligned} & \text { TD713 } \\ & \text { TIS14 } \\ & \text { TIS25 } \\ & \text { TIS26 } \\ & \text { TIS27 } \end{aligned}$	17122 2N4340 2N3954 $2 N 3954$ 2N3955	บ200 บ201 U202 U2047E U221	$\begin{aligned} & \text { 2N4861 } \\ & \text { 2N4860 } \\ & \text { 2N4859 } \\ & \text { 2N4416 } \\ & \text { 2N4391 } \end{aligned}$	U426 4430 U431 $\cup 440$ 044	2N5909 J309(x2) J310(X2) 175911 $1 T 5912$
T0102 TD200 $T D 201$ TD202 TD2219	IT129 $1 T 129$ $1 T 129$ $1 T 129$ IT129	$\begin{aligned} & \text { TIS34 } \\ & \text { TS41 } \\ & \text { TIS42 } \\ & \text { TS58 } \\ & \text { TIS59 } \end{aligned}$	$\begin{aligned} & 2 N 5486 \\ & 2 N 4859 \\ & 2 N 4393 \\ & 2 N 5484 \\ & 2 N 5486 \end{aligned}$	U222 U231 บ232 ч2зз บ234	2N4391 U231 บ232 U233 U234	UC100 UC110 UC115 UC120 UC130	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N4340 } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \end{aligned}$
TD224 TD225 TD226 TD227 TD228	IT122 $1 T 122$ 17122 IT122 $1 T 122$	$\begin{aligned} & \text { TIS68 } \\ & \text { TS69 } \\ & \text { TSTO } \\ & \text { TS73 } \\ & \text { TIS74 } \end{aligned}$	$\begin{aligned} & \text { 2N3955A } \\ & \text { NNOS55A } \\ & \text { NN3956 } \\ & \text { ITE4391 } \\ & \text { ITE4392 } \end{aligned}$	U235 U240 U241 U242 U243	U235 2N5432 2N5433 2N5433	UC155 UC1700 UC1764 UC20 UC200	2N4416 3N163 3 N 163 2N3686 2N3824 2N3824
$\begin{aligned} & \text { TD229 } \\ & \text { TO230 } \\ & \text { TO231 } \\ & \text { TO232 } \\ & \text { TO233 } \end{aligned}$	$1 T 122$ 17121 $1 T 121$ $1 T 122$ - 17122	$\begin{aligned} & \text { TIS75 } \\ & \text { TIS8B } \\ & \text { TISB8A } \\ & \text { TIXS33 } \\ & \text { TIXS35 } \end{aligned}$	ITE4393 2N4416 2N4416 2N4392 2N4857 2N4857	U244 U248 U248A $\cup 249$ U249A	$\begin{aligned} & \text { 2N5433 } \\ & 2 N 5902 \\ & 2 N 5906 \\ & 2 N 5903 \\ & \text { 2N5907 } \end{aligned}$	UC201 UC21 UC210 UC2130 UC2132	$\begin{aligned} & \text { 2N3824 } \\ & 2 N 3687 \\ & 2 N 4416 \\ & 2 N 5452 \\ & 2 N 5453 \end{aligned}$
$\begin{aligned} & \text { TD234 } \\ & \text { TD235 } \\ & \text { TD236 } \\ & \text { TD237 } \\ & \text { TD238 } \end{aligned}$	IT122 $1 T 122$ 1T122 $1 T 122$ 1 T122 Іт122	$\begin{aligned} & T \times 536 \\ & T M X S 41 \\ & T M X 542 \\ & T M X S 59 \\ & T 1 \times 578 \end{aligned}$	2N4391 2N4859 2N5639 2N5459 2N4341	U250 U250A U251 U251A U252	$\begin{aligned} & \text { 2N5904 } \\ & \text { 2N5908 } \\ & \text { 2N5905 } \\ & 2 N 5909 \end{aligned}$	UC2134 UC2136 UC2138 UC2139	$\begin{aligned} & \text { 2N5454 } \\ & \text { 2N5454 } \\ & \text { 2N5454 } \\ & \text { 2N3958 } \\ & \text { 2N3958 } \end{aligned}$
$\begin{aligned} & \text { TD239 } \\ & \text { TD240 } \\ & \text { TO241 } \\ & \text { TO242 } \\ & \text { TO243 } \end{aligned}$	-17122 IT121 IT121 IT120A IT120A	TIXS79 TN4117 TN4117A TN4118 TN4118A	2N4341 2N4117 2N4117A 2N4118 2N4118A	U253 U254 U255 U256 U257	IT5912 2N4859 2N4860 2N4861 U257	UC2148 UC2149 UС220 UC240 UC241	$\begin{aligned} & \text { 2N3958 } \\ & \text { 2N3958 } \\ & \text { 2N3822 } \\ & \text { 2N4869 } \end{aligned}$
$\begin{aligned} & \text { TD244 } \\ & \text { T2 } 245 \\ & T O 246 \\ & \text { TOD247 } \\ & \text { TO248 } \end{aligned}$	IT129 IT129 IT129 IT129 IT129	TN4119 TN4119A TN4338 TN4339 TN4340	2N4119 2N4119A 2N4338 2N4339 2N4340	$\begin{aligned} & \text { U257/TO-71 } \\ & \text { U266 } \\ & \text { U273 } \\ & \text { U273A } \\ & \text { U274 } \end{aligned}$	$\begin{aligned} & \text { U257/TO-71 } \\ & \text { 2N4856 } \\ & \text { 2N4118A } \\ & \text { 2N418A } \\ & \text { 2N4119A } \end{aligned}$	UC250 UC251 UC2766 UC300 UC310	2N4091 2N4392 3N166 2N2608
$\begin{aligned} & \text { TO250 } \\ & \text { TD2905 } \\ & \text { TO400 } \\ & \text { TO401 } \\ & \text { TO402 } \end{aligned}$	IT120A IT139 IT139 T1139 IT139	$\begin{aligned} & \text { TN4341 } \\ & \text { TN5277 } \\ & \text { TN5278 } \\ & \text { TP5114 } \\ & \text { TP5115 } \end{aligned}$	$\begin{aligned} & 2 N 4341 \\ & 2 N 4341 \\ & 2 N 4341 \\ & \text { 2N5114 } \\ & \text { 2N5115 } \end{aligned}$	U274A U275 U275A U280 U281	2N4119A 2N4119A 2N4119A 2N5452 2iv5453	บСзго Uс330 UC340 UC40 UC400	$\begin{aligned} & \text { 2N2607 } \\ & \text { 2N2607 } \\ & \text { 2N2607 } \\ & \text { 2N2608 } \\ & \text { 2N5270 } \end{aligned}$
$\begin{aligned} & \text { TO500 } \\ & \text { T501 } \\ & \text { TD502 } \\ & \text { T5509 } \\ & \text { TD510 } \end{aligned}$	17139 17139 IT139 IT132 17132	TP5116 U110 $U 111$ U112 U 113	$\begin{aligned} & \text { 2N5116 } \\ & \text { 2N2608 } \end{aligned}$	U282 U283 U284 U285 U290	$\begin{aligned} & 2 N 5453 \\ & 2 N 5453 \\ & 2 N 5454 \\ & 2 N 5454 \\ & \text { 2N5432 } \end{aligned}$	UC401 UC41 UC410 UC420 UC450	2N5116 2N2608 2N5268 $2 N 5267$ 2N5114
$\begin{aligned} & \text { TD511 } \\ & \text { TD512 } \\ & \text { T5513 } \\ & \text { T514 } \\ & \text { Th517 } \end{aligned}$	IT132 $1 T 132$ 1T132 17132 IT132	U114 U1177 U1178 U1179 01180	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N4220 } \\ & 2 N 3821 \\ & \text { 2N3821 } \\ & \text { 2N4221 } \end{aligned}$	U291 U295 U296 $\cup 300$ U3000	2N5434 2N5432 2N5434 2N5114 2N4341 2N4341	UC451 UC588 UC703 UC704 UC705	2N5116 2N4416 2N4220 $2 N 4220$ 2N4224 2N4224
$\begin{aligned} & \text { TD518 } \\ & \text { T519 } \\ & \text { TD520 } \\ & \text { TO521 } \\ & \text { TO522 } \end{aligned}$	1T132 IT132 IT139 IT139 IT139	U1181 U 1182 U 1277 U 1278 U 1279 U1279	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N3821 } \\ & \text { 2N3684 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \end{aligned}$	U3001 U3002 U301 43010 U3011	$\begin{aligned} & 2 N 4339 \\ & 2 N 4338 \\ & 2 N 5115 \\ & 2 N 4341 \\ & 2 N 4340 \end{aligned}$	UC707 UC714 UC714E UC734 UC734E	2N4860 2N3822 2N4341 2N4416 2N4416
$\begin{array}{r} T 0523 \\ \text { TO524 } \\ \text { TD525 } \\ \text { TO526 } \\ -\quad T D 527 \\ \hline \end{array}$	$\begin{aligned} & 1 T 139 \\ & 1139 \\ & 1132 \\ & T 132 \\ & 17131 \end{aligned}$	U1280 U1281 U1282 $\mathrm{U1283}$ $\mathrm{U1284}$ し1284	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3822 } \\ & \text { 2N4341 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \end{aligned}$	U3012 U304 U305 U306 U308	$\begin{aligned} & 2 N 4338 \\ & \text { U304 } \\ & \text { U305 } \\ & \text { U306 } \end{aligned}$	UC751 UC752 UC753 UC754 UC755	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \end{aligned}$
$\begin{aligned} & \text { TD528 } \\ & \text { TD5432 } \\ & \text { TD5433 } \\ & \text { TD5434 } \\ & \text { TD550 } \end{aligned}$	TT131 2N5432 2N5433 2N5434 IT129	U1285 U1286 U 1287 U1321 U1з22	2N4220 2N4341 2N4092 2N4860 2N3822 2N382?	U309 U310 U311 U312 U314	บ309 4310 U310 2N5397 2N5555	UC756 UC805 UC807 UC814 UC851	$\begin{aligned} & 2 N 4340 \\ & 2 N 5270 \\ & 2 N 5115 \\ & 2 N 5270 \\ & \text { 2N2608 } \end{aligned}$
T05902 TD5902A TD5903 TD5903A TD5904	$\begin{aligned} & \text { 2N5902 } \\ & \text { 2N5900 } \\ & \text { 2N5903 } \\ & \text { 2N5903 } \end{aligned}$	41323 $U 1324$ U1325 $\cup 133$ 41420	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N3687 } \\ & \text { 2N3686 } \\ & \text { 2N2608 } \\ & \text { 2N3821 } \end{aligned}$	U315 U316 U317 U320 U321	$\begin{aligned} & \text { 2N5397 } \\ & \text { U309 } \\ & \text { U310 } \\ & 2 N 5433 \\ & \text { 2N5434 } \end{aligned}$	UC853 UC854 UC855 UT100 UT101	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \end{aligned}$
$\begin{aligned} & \text { TD5904A } \\ & \text { TD5905 } \\ & \text { TD5905A } \\ & \text { TO5906 } \\ & \text { T05906A } \end{aligned}$	2N5904 2N5905 2N5905 2N5906 2N5906	U1421 U1422 U146 U147 U148	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \end{aligned}$	U322 บ328 U329 4330 บ331	$\begin{aligned} & \text { 2N5433 } \\ & n * \\ & n * \\ & s * \\ & n * \end{aligned}$	UXC2910 VCR1ON VCR11N VCR12N VCR13N	19126 2N4869 VNR11N 2N3958 2N3958
$\begin{aligned} & \text { T05907 } \\ & \text { TO5907A } \\ & \text { T05908 } \\ & \text { T05908A } \\ & \text { T05909 } \end{aligned}$	$\begin{aligned} & \text { 2N5907 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5SOB } \\ & \text { 2N5909 } \end{aligned}$	U149 U168 U1714 U1715 U182	2N2609 2N2609 2N4340 2N4857	U350 4401 U402 $\cup 403$ U404	84 U401 4402 U403 U404	VCR2ON VCR2N VCR3P VCR4N VCR5P	2N4341 VCR2N VCR2P VCR4N VCR5P VCRSP

DISCRETE CROSS REFERENCE (cont.)

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT									
AD7506/COM/CHIPS AD7506/MIL/CHIPS AD7506.JD AD7506JD/883B AD7506JN	IH6116C/D IH6116M/D IH6116CJ IH6116CJI/883B IH6116CPI	AH5010CN AH5012CN AH5013CN AH5014CN AH5015CN	IH5010CPD IH5012CPE IH5013CPD IH5014CPD IH5015CPE	$\begin{aligned} & \text { DG180AP } \\ & \text { DG180BA } \\ & \text { DG180BP } \\ & \text { DG181AA } \end{aligned}$	DG180AK DG180BA DG180BK DG181AA DGM181AA	DGZOOAK DG200AL DG200AP DG200BA DG200BK	DG200AK DG200AL DGZ00AK DG200BA DG200BK			
AD7506KD AD7506KD/B83B AD7506KN AD7506SD AD7506SD/883B	IH6116CJ 1H6116CJI/883B IH6116CPI IH6116MJI IH6116MJI/883B	AH5016CN AM5011CN D123AL D123AP D123BP	IH5016CPE IH5011CPE D123AL D123AK D1238J	DG181AL DG181AL DG181AP DG181AP DG181BA	DG181AL DGM181AL DG181AK DGM181AK DG181BA	OG200BP DG200CJ DG201AK DG201AP DG201BK	DG200BK DG200CJ DG201AK DG201AK DG201BK			
AD7506TD AD7506TD/883B AD7507/COM/CHIPS AD7507/MIL/CHIPS AD7507JD	tH6116MJI \|H6116MJI/8838 H6216C/D IH6216M/D IH6216CJI	D123BP D125AL D125AP D125BP D129AL	D123BK D125AL D125AP D1258K D129AL	DG181BA DG181BP DG1818P DG181BP DG182AA	DGM181BA DG181BK DGM181BK DGM181CJ DG182AA	DG201CJ DG210BP DG281AA DG281AP DG281BA	DG201CJ DG201BK IH182MTW IH182MJD IH182CTW			
$\begin{aligned} & \text { AD7507JD/883B } \\ & \text { AD7507JN } \\ & \text { AD7507KD } \\ & \text { AD7507KD/883B } \\ & \text { AD7507KN } \end{aligned}$	IH6216CJI/8838 \|H6216CP	IH6216CJI IH6216CJI/8838	H6216CP		D129AP D129BP DG123AL DG123AP DG123BP	D129AK D129BK DG123AL DG123AK DG123BK	DG182AA DG182AL DG182AL DG182AP DG182AP	DGM182AA DG182AL DGM182AL DG182AK DGM182AK	$\begin{aligned} & \text { DG281BP } \\ & \text { DG284AP } \\ & \text { DG284BP } \\ & \text { DG287AA } \\ & \text { DG287AP } \end{aligned}$	IH182CJD IH185MJE IH185CJE IH188MTW IH188MJD
$\begin{aligned} & \text { AD7507SD } \\ & \text { AD7507SD/883B } \\ & \text { AD7507TD } \\ & \text { AD7507TD/883B } \\ & \text { AH0126CD } \end{aligned}$	IH6216M/D H6216MJI/883B IH6216MJI IH6216MJI/883B DG126BK	DG125AL DG125AP DG125BP DG126AK DG126AL	DG125AL DG125AK DG125BK DG126AK DG126AL	DG182BA DG182BA DG182BP DG182BP DG182BP	DG182BA DGM182BA DG182BK DGM182BK DGM182CJ	DG287BA OG287BP DG290AP DG290BP DG381AA	IH188CTW IH188CJD IH191MJE IH191CJE DGM182AA			
$\begin{aligned} & \text { AHO126D } \\ & \text { AHO126D/883 } \\ & \text { AHO129CD } \\ & \text { AH0129D } \\ & \text { AH0129D/883 } \end{aligned}$	$\begin{aligned} & \text { DG126AK } \\ & \text { DG126AK/883B } \\ & \text { DG129BK } \\ & \text { DG129AK } \\ & \text { DG129AK/883B } \end{aligned}$	$\begin{aligned} & \text { DG126BP } \\ & \text { DG129AL } \\ & \text { DG129AP } \\ & \text { DG129BP } \\ & \text { DG133AL } \end{aligned}$	DG126BK DG129AL DG129AK DG129BK DG133AL	DG183AL DG183AP DG183BP DG184AL DG184AL	DG183AL DG183AK DG183BK DG184AL DGM184AL	$\begin{aligned} & \text { DG381AK } \\ & \text { DG381AP } \\ & \text { DG3B1BA } \\ & \text { DG381BK } \\ & \text { DG381BP } \end{aligned}$	DGM182AK DGM182AK DGM181BA DGM181BK DGM181BK			
$\begin{aligned} & \text { AHO133CD } \\ & \text { AHO133D } \\ & \text { AHO133D/883 } \\ & \text { AHO134CD } \\ & \text { AH0134D } \end{aligned}$	$\begin{aligned} & \text { DG133BK } \\ & \text { DG133AK } \\ & \text { DG133AK/883B } \\ & \text { DG134BK } \\ & \text { DG134AK } \end{aligned}$	DG133AP DG133BP DG134AL DG134AP DG134BP	$\begin{aligned} & \text { DG133AK } \\ & \text { DG133BK } \\ & \text { DG134AL } \\ & \text { DG134AK } \\ & \text { DG134BK } \end{aligned}$	DG184AP DG184AP DG184BP DG184BP DG184BP	DG184AK DGM184AK DG184BK DGM184BK DGM184CJ	DG381CJ DG384AK DG384AP DG384BK DG384BP	DGM181CJ DGM185AK DGM185AK DGM184BK DGM1848K			
$\begin{aligned} & \text { AHO134D/883 } \\ & \text { AHO139CD } \\ & \text { AHO139D } \\ & \text { AHO139D/883 } \\ & \text { AH0140CD } \end{aligned}$	$\begin{aligned} & \text { DG134AK/883B } \\ & \text { DG139BK } \\ & \text { DG139AK } \\ & \text { DG139AK/883B } \\ & \text { DG140BK } \end{aligned}$	$\begin{aligned} & \text { DG139AL } \\ & \text { DG139AP } \\ & \text { DG1398P } \\ & \text { DG140AL } \\ & \text { DG140AP } \end{aligned}$	$\begin{aligned} & \text { DG139AL } \\ & \text { DG139AK } \\ & \text { DG139BK } \\ & \text { DG140AL } \\ & \text { DG140AK } \end{aligned}$	DG185AL DG185AL DG185AP DG185AP DG185BP	DG185AL DGM185AL DG185AK DGM185AK DG185BK	$\begin{aligned} & \text { DG384CJ } \\ & \text { DG387AA } \\ & \text { DG387AK } \\ & \text { DG3B7AP } \\ & \text { DG387BA } \end{aligned}$	DGM184CJ DGM188AA DGM188AK DGM188AK DGM187BA			
$\begin{aligned} & \text { AH0140D } \\ & \text { AH0140D/883 } \\ & \text { AH0141CD } \\ & \text { AH0141D } \\ & \text { AH0141D/883 } \end{aligned}$	$\begin{aligned} & \text { DG140AK } \\ & \text { DG140AK/883B } \\ & \text { DG141BK } \\ & \text { DG141AK } \\ & \text { DG141AK/883B } \end{aligned}$	DG140BP DG141AL DG141AP DG141BP DG142AL	DG140BK DG141AL DG141AK DG1418K DG142AL	DG1858P DG185BP DG186AA DG186AL DG186AP	DGM185BK DGM185CJ DG186AA DG186AL DG186AK	$\begin{aligned} & \text { DG387BK } \\ & \text { DG387B } \\ & \text { DG390AK } \\ & \text { DG390AP } \\ & \text { DG390BK } \end{aligned}$	DGM187BK DGM187BK DGM191AK DGM191AK DGM190BK			
$\begin{aligned} & \text { AH0142CD } \\ & \text { AHO142D } \\ & \text { AHO142D/883 } \\ & \text { AHO143CD } \\ & \text { AH0143D } \end{aligned}$	$\begin{aligned} & \text { DG142BK } \\ & \text { DG142AK } \\ & \text { DG142AK/883B } \\ & \text { DG143BK } \\ & \text { DG143AK } \end{aligned}$	$\begin{aligned} & \text { DG142AP } \\ & \text { DG142BP } \\ & \text { DG143AL } \\ & \text { DG143AP } \end{aligned}$	$\begin{aligned} & \text { DG142AK } \\ & \text { DG142BK } \\ & \text { DG143AL } \\ & \text { DG143AK } \\ & \text { DG143BK } \end{aligned}$	DG186BA DG186BP DG187AA DG187AA DG187AL	$\begin{aligned} & \text { DG186BA } \\ & \text { DG186BK } \\ & \text { DG187AA } \\ & \text { DGM187AA } \\ & \text { DG187AL } \end{aligned}$	DG390BP DG390CJ DG5040AK DG5040AL DG5040CJ	DGM190BK DGM190CJ IH5040MJE IH5040MFD IH5040CPE			
$\begin{aligned} & \text { AHO143D/883 } \\ & \text { AHO144CD } \\ & \text { AHO144D } \\ & \text { AHO144D/883 } \\ & \text { AH0145CD } \end{aligned}$	$\begin{aligned} & \text { DG143AK/883B } \\ & \text { DG144BK } \\ & \text { DG144AK } \\ & \text { DG144AK/883B } \\ & \text { DG145BK } \end{aligned}$	$\begin{aligned} & \text { DG144AL } \\ & \text { DG144AP } \\ & \text { DG144BP } \\ & \text { DG145AL } \\ & \text { DG145AP } \end{aligned}$	DG144AL DG144AK DG144BK DG145AL DG145AK	$\begin{aligned} & \text { DG187AL } \\ & \text { DG187AP } \\ & \text { DG187AP } \\ & \text { DG187BA } \\ & \text { DG187BA } \end{aligned}$	DGM187AL DG187AK DGM187AK DG187BA DGM187BA	DG5040CK DG5041AA DG5041AK DG5041AL DG5041CJ	IH5040CJE IH5041MTW IH5041MJE IH5041MFD IH5041CPE			
AH0145D AH0145D/883 AHO146CD AHO146D AH0146D/883	$\begin{aligned} & \text { DG145AK } \\ & \text { DG145AK/883B } \\ & \text { DG145BK } \\ & \text { DG146AK } \\ & \text { DG146AK/883B } \end{aligned}$	DG145BP DG146AL OG146AP DG146BP DG151AL	DG145BK DG146AL DG146AK DG146BK DG151AL	$\begin{aligned} & \text { DG187BP } \\ & \text { DG187BP } \\ & \text { DG188AA } \\ & \text { DG188AA } \\ & \text { DG188AL } \end{aligned}$	DG1878K DGM187BK DG188AA DGM188AA DG188AL	DG5041CK DG5042AA DG5042AK DG5042AL DG5042CJ	IH5041CJE IH5042MTW IH5042MJE IH5042MFD IH5042CPE			
$\begin{aligned} & \text { AHO151CD } \\ & \text { AHO151D/883 } \\ & \text { AHO152CD } \\ & \text { AHO152D } \\ & \text { AH0152D/883 } \end{aligned}$	$\begin{aligned} & \text { DG151BK } \\ & \text { DG151AK/883B } \\ & \text { DG152BK } \\ & \text { DG152AK } \\ & \text { DG152AK/883B } \end{aligned}$	DG151AP DG151BP DG152AL DG152AP DG152BP	DG151AK DG151BK DG152AL DG152AK DG152BK	DG188AL DG188AP DG188AP DG188AP DG188BA	DGM188AL DG188AK DGM188AK DGM188BK DG188BA	DG5042CK DG5043AK DG5043AL DG5043CJ DG5043CK	IH5042CJE IH5043MJE IH5043MFD IH5043CPE IH5043CJE			
$\begin{aligned} & \text { AHO153CD } \\ & \text { AHO153D } \\ & \text { AHO153D/883 } \\ & \text { AHO154CD } \\ & \text { AH0154D } \end{aligned}$	$\begin{aligned} & \text { DG153BK } \\ & \text { DG153AK } \\ & \text { DG153AK/883B } \\ & \text { DG154BK } \\ & \text { DG154AK } \end{aligned}$	DG153AL DG153AP DG153BP DG154AL DG154AP	DG153AL DG153AK DG153BK DG154AL DG154AK	$\begin{aligned} & \text { DG188BA } \\ & \text { DG188BP } \\ & \text { DG189AL } \\ & \text { DG189AP } \\ & \text { DG189BP } \end{aligned}$	$\begin{aligned} & \text { DGM188BA } \\ & \text { DG188BK } \\ & \text { DG189AL } \\ & \text { DG189AK } \\ & \text { DG189BK } \end{aligned}$	$\begin{aligned} & \text { DG5044AA } \\ & \text { DG5044AK } \\ & \text { DG5044AL } \\ & \text { DG5044CJ } \\ & \text { DG5044CK } \end{aligned}$	IH5044MTW IH5044MJE IH5044MFD IH5044CPE IH5044CJE			
$\begin{aligned} & \text { AHO154D/883 } \\ & \text { AHO155D } \\ & \text { AHO161CD } \\ & \text { AHO161D } \\ & \text { AHO161D/883 } \end{aligned}$	$\begin{aligned} & \text { DG143AK/883B } \\ & \text { DG151AK } \\ & \text { DG161BK } \\ & \text { DG161AK } \\ & \text { DG161AK/883B } \end{aligned}$	DG154BP DG161AL DG161AP DG161BP DG162AL	DG154BK DG161AL DG161AK DG161BK DG162AL	DG190AL DG190AL DG190AP DG190AP DG190BP	DG190AL DGM190AL DG190AK DGM190AK DG190BK	$\begin{aligned} & \text { DG5045AK } \\ & \text { DG5045AL } \\ & \text { DG5045CJ } \\ & \text { DG5045CK } \\ & \text { DG506AR } \end{aligned}$	IH5045MJE IH5045MFD IH5045CPE IH5045CJE IH6116MJI			
$\begin{aligned} & \text { AH0162CD } \\ & \text { AH0162D } \\ & \text { AH0162D/883B } \\ & \text { AH0163CD } \\ & \text { AH0163D } \end{aligned}$	$\begin{aligned} & \text { DG162BK } \\ & \text { DG162AK } \\ & \text { DG162AK/883B } \\ & \text { DG163BK } \\ & \text { DG163AK } \end{aligned}$	$\begin{aligned} & \text { DG162AP } \\ & \text { DG162BP } \\ & \text { DG163AL } \\ & \text { DG163AP } \\ & \text { DG163BP } \end{aligned}$	DG162AK DG162BK DG163AL DG163AK DG163BK	$\begin{aligned} & \text { DG190BP } \\ & \text { DG190BP } \\ & \text { DG191AL } \\ & \text { DG191AL } \\ & \text { DG191AP } \end{aligned}$	DGM190BK DGM190C J DG191AL DGM191AL DG191AK	DG506BR DG506CJ DG507AR DG507BR DG507CJ	iH6116C기 IH6116CPI IH6216MJI HE216CII IH6216CPI			
$\begin{aligned} & \text { AH0163D/883 } \\ & \text { AHO164CD } \\ & \text { AHO164D } \\ & \text { AHO164D/e83 } \\ & \text { AH5009CN } \end{aligned}$	$\begin{aligned} & \text { DG163AK/883B } \\ & \text { DG164BK } \\ & \text { DG164AK } \\ & \text { DG164AK/883B } \\ & \text { IH5009CPD } \end{aligned}$	$\begin{aligned} & \text { DG164AL } \\ & \text { DG164AP } \\ & \text { DG164BP } \\ & \text { DG180AA } \\ & \text { DG180AL } \end{aligned}$	DG164AL DG164AK DG164BK DG180AA DG180AL	DG191AP DG191BP DG191BP DG191BP DG200AA	DGM191AK DG191BK DGM191BK DGM191CJ DG200AA	$\begin{aligned} & \text { DG50BAP } \\ & \text { DG508BP } \\ & \text { DG508CJ } \\ & \text { DG509AP } \\ & \text { DG509BP } \end{aligned}$	IH6108MJE IH6108CJE IH6108CPE IH5208MJE HH6208CJE			

ANALOG SWITCH CROSS REFERENCE (cont.)

DATA ACQUISITION CROSS REFERENCE

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EOUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
AD7520JD AD7520JN AD7520KD AD7520KN AD7520LD	AD7520JD AD7520JN AD7520KD AD7520KN AD7520LD	MP7521LN MP7521SD MP7521TD MP7521UD MP7523JN	AD7521LN AD7521SD AD7521TD AD7521UD AD7523JN				
AD7520LN AD7520SD AD7520TD AD7520UD AD7521JD	AD7520LN AD75205D AD7520TD AD7520UD AD7521JD	MP7523KN MP7523LN MP7621AD MP7621BD MP7621JN	AD7523KN AD7523LN AD7541AD AD7541BD AD7541JN				
AD7521JN AD7521KD AD7521KN AD7521LD AD7521LN	AD7521JN AD7521KD AD7521KN AD7521LD AD7521LN	MP7621KN MP7621SD MP7621TD	AD7541KN AD7541SD AD7541TD				
AD7521SD AD7521TD AD7521UD AD7523AD AD7523BD	AD7521SD AD7521TD AD7521UD AD7523AD AD7523BD						
AD7523CD AD7523JN AD7523KN AD7523LN AD7523SD	AD7523CD AD7523JN AD7523KN AD7523LN AD7523SD						
AD7523TD AD7523UD AD7530JD AD7530JN AD7530KD	AD7523TD AD7523UD AD7530JD AD7530JN AD7530KD						
AD7530KN AD7530LD AD7530LN AD7531J0 AD7531JN	AD7530KN AD7530LD AD7530LN AD7531JD AD7531JN						
AD7531KD AD7531KN AD7531LD AD7531LN AD7533AD	AD7531KD AD7531KN AD7531LD AD7531LN AD7533AD	1	.				
AD7533BD AD7533CD AD7533JN AD7533KN AD7533LN	AD7533BD AD7533CD AD7533JN AD7533KN AD7533LN						
AD7533SD AD7533TD AD7533UD AD7541AD AD7541BD	AD7533SD AD7533TD AD7533UD AD7541AD AD75418D						,
AD7541 JN AD7541KN AD7541SD AD7541TD DAC1020LCD	AD7541JN AD7541KN AD7541SD AD7541TD. AD7520LD	-					
DAC1020LD DAC1021LCD DAC1021LD DAC1022LCD DAC1022LD	AD7520U AD7520KD AD7520TD AD7520JD AD7520SD					.	
DAC1218LCD DAC1218LCN DAC1218LCN DAC1219LCD DAC1219LCN	AD7541BD AD7541KN AD7541LN AD7541AD AD7541JN					.	
DAC1220LCD DAC1220LD DAC1221LCD DAC1221LD DAC1222LCD	AD7521LD AD7521UD AD7521KD AD7521TD AD7521JD	.					
DAC1222LD MP7520JD MP7520 N MP7520KD MP7520KN	AD7521SD AD7520JD AD7520JN AD7520KD AD7520KN					.	
MP7520LD MP7520LN MP7520SD MP7520TD MP7520UD	AD7520iD AD7520LN AD7520SD AD7520TD AD7520UD			.			-
MP7521JD MP7521JN MP7521KD MP7521KN MP7521LD	AD7521JD AD7521JN AD7521KD AD7521KN AD7521LD				.		

WATCH \& CLOCK CROSS REFERENCE

sourcer praieuct	Emifugilit	soutemparient				sourcernaiemer	
	$\begin{aligned} & 101024 \\ & \hline \end{aligned}$						
				.			

LINEAR CROSS REFERENCE

ALTERNATE SOURGE PRODUCT	INTERSIL EOUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUGT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
$\begin{aligned} & 723 \\ & 733 \\ & 741 \\ & 748 \\ & \text { AD101 } \end{aligned}$	UA723 UA733 UA741 UA748 LM101	MC1741 MC1748 MHW590 MPS5010 NE590	UA741 UA748 AD590 ICL8069 AD590				
AD108 AD301 AD308 AD503 AD532	LM108 LM301 LM308 AD503 AD532	$\begin{aligned} & \text { NE592 } \\ & \text { OP-05 } \\ & \text { OP-07 } \\ & \text { OP-08 } \\ & \text { PM308 } \end{aligned}$	NE592 OP-05 OP-07 OP-08 LM308				
AD534 AD590 AD741 AM2502 AM2503	AD534 AD590 UA741 AM2502 AM2503	RC723 RC733 RC741 RC748 RM723	UA723 UA733 UA741 UA748 UA723				
AM2504 AM5402 AM5402 CA101 CA107	AM2504 HA2505 HA2525 LM101 LM107	RM741 RM748 SC748 SG101 SG105	UA741 UA748 UA748 LM101 LM105				
CA111 CA301 CA307 САЗО CA311	LM111 LM301 LM307 LM308 LM311	SG107 SG108 SG110 SG111 SG2502	LM107 LM108 LM110 LM111 AM2502				
CA723 CA741 CA748 DG503 DM2502	UA723 UA741 UA748 AD503 AM2502	SG2503 SG301 SG305 SG307 SG308	AM2503 LM301 LM305 LM307 LM308				
DM2503 DM2504 HA2500 HA2502 HA2505	AM2503 AM2504 HA2500 HA2502 HA2505	SG311 SG4250 SG723 SG733 SG741	LM319 LM4250 UA723 UA733 UA741				
HA2507 HA2510 HA2512 HA2515 HA2517	HA2507 HA2510 HA2512 HA2515 HA2517	SG748 SSS741 SU536 TL503 TLS92	UA748 UA741 SU536 AD503 NE592				
HA2520 HA2522 HA2525 HA2527 HA2600 HA2600	HA2520 HA2522 HA2525 HA2527 HA2600	TT-590 UA101 UA102 UA105 UA107	AD590 LM101 LM102 LM105 LM107	,			
HA2602 HA2605 HA2607 HA2620 НА2622	HA2602 HA2605 HA2607 HA2620 HA2622	UA108 UA110 UA111 UA301 UАЗО2	LM108 LM110 LM111 LM301 LM302				
HA2625 HA2627 HA2720 LH0042 LH2101	HA2625 HA2627 ICL8021 LH0042 LH2101	UA305 UАЗО7 UA308 UA310 UA311	LM305 LM307 LMЗО8 LM310 LM311				:
LH2108 LH2110 LH2111 LH2301 LH2308	LH2108 LH2110 LH2111 LH2301 LН2308	UA723 UA733 UA740 UA741 UA748	UA723 UА733 UA740 UA741 UA748				
LH2310 LH2311 LM100 LM101 LM102	LH2310 LH2311 LM100 LM101 LM102	UA777 UHP-503 VR-8069 WG-8038 XR8038	UA777 AD503 ICL8069 ICL8038 ICL8038				
LM105 LM107 LM108 LM110 LM111.	LM105 LM107 LM108 LM110 LM111						
LM300 LM301 LM302 LM305 LM307	LM300 LM301 LM302 LM305 LM307						
LM308 LM310 LM311 LM4250 LM723	LM308 LM310 LM311 LM4250 UA723						
LM733 LM740 LM741 LM748 MC1723	UA733 UA740 UA741 UA748 UA723					-	

Discretes

JFET Single Switches		2N5457-59	1.44	3N170/1	$1-59$
N-Channel	Page	2N5484-86	$1-46$	IT1750	$1-76$
2N3970-72	Page	ITE4416	1.31	M116	1-84
2N4091-93	1.22	J201-4	1.80	P.Channel	
2N4391-93	1-30	J308-10	1.82	3N161	1-56
2N4856-61	1-32	U308-10	$1-89$	3N163/64	1.57
2N5432-34	1-42	P-Channel		3N172/73	$1-60$
2N5638-40	$1-49$	2N2607-9	$1-9$	IT1700	$1-75$
ITE4091-3	1-22	2N5460-65	$1-45$	Dual P.Channel	
ITE4391-3	1-30	U304-6	$1-88$	3N165/66	1.58
J105-7	$1-77$	JFET Dual		3N188-91	$1-61$
J111-13	$1-78$ 1.85	Amplifiers		Bipolar Dual	
U1897-99	1-92	N-Channel		Amplifiers	
P.Channel		2N3921/22	1-16		
2N3993/4	1-19	2N3954-58	1-17	NPN Devices 2N4044/45	
2N5018/19	$1-36$	2N5196-99	$1-40$	2N4044/45	1-20
2N5114-16	$1-37$	2N5452-54	1-43	2N4100	1-23
1T100/1	1.64	2N5515-24	$1-47$	2N4878-80	1-34
J174-77	1.79	2N5902-9	1.50	IT120-22	$1-65$
JFET Single		2N5911/12	1.51	IT126/7	$1-66$ $1-67$
		2N6483-85	$1-52$ $1-54$	LM114	1-83
Amplifiers		IT500-5	1.71	PNP Devices	
N-Channel		A050 (IT 500)	1.73	2N3810/11	$1-11$
2N3684-87	1-10	IT550	1.74	2N5117-19	$1-39$
2N3821/22	1-13	1T5911/12	1-51	IT130-32	1-68
2N3823	1-14	U231-35	1-86	IT136-39	1-69
2N3824	$1-15$	U257	$1-87$		
2N4117-19	1-25	U401-6	1-90	Special Fun	
2N4220-22 2N4223/24	$1-26$ 1.27	MOSFET S	es/	High Speed Du	
2N4338-41	1-28	Amplifier		ID100/1	1-62
2N4416	$1 \cdot 31$	Amplifers		Voltage Contro	
2N4867-69	1-33	N-Channel		Resistors	
2N5397/98	1-41	2N4351	1-29	VCR2-7	$1-92$

DISCRETE PRODUCT REFERENCE GUIDE

Switches - Junction FET

Ordering Information									
Preferred	${ }^{\text {DSS }}$ (on)	V_{p}	IGSS	$\mathrm{BV}_{\text {GSS }}$	$I^{\text {(}}$ (ffit	IDSS	$t_{\text {total }}$	$\mathrm{C}_{\text {iss }}$	$\mathrm{C}_{\text {rss }}$
Part	max	min/max	max	min	max	min/max	max	max	max
Number Package	Ω	V	PA	V	PA	mA	ns	pF	pF

N-channel: Generally requires driver circuit to translate the popular logic levels to voltages required to drive the JFET.

2N3970	T0-18	30	-4.0	-10.0	(-250)	-40	250	50	150	50	25	6.0
2N3971	T0-18	60	-2.0	-5.0	(-250)	-40	250	25	75	90	25	6.0
2N3972	T0-18	100	-0.5	-3.0	(-250)	-40	250	5	30	180	25	6.0
2N4091	T0-18	30	-5.0	-10.0	- -200	-40	200	30		65	16	5.0
2N4092	T0-18	50	-2.0	-7.0	-200	-40	200	15		95	16	5.0
2N4093	T0-18	80	-1.0	-5.0	-200	-40	200	8		140	16	5.0
2N4391	T0-18	30	-4.0	-10.0	-100	-40	100	50	150	55	14	3.5
2N4392	T0-18	60	-2.0	-5.0	-100	-40	100	25.	75	75	14	3.5
2N4393	T0-18	100	-0.5	-3.0	-100	-40	100	5	30	100	14	3.5
2N4856	T0-18	25	-4.0	-10.0	-250	-40	250	50		34	18	8.0
2N4857	T0-18	40	-2.0	-6.0	-250	-40	250	20	100	60.	18	8.0
2N4858	T0-18	60	-0.8	-4.0	-250	-40	250	8	80	120	18	8.0
2N4859	T0-18	25	-4.0	-10.0	-250	-30	250	50		34	18	8.0
2N4860	T0-18	40	-2.0	-6.0	-250	-30	250	20	100	60	18	8.0
2N4861	T0-18	60	-0.8	-4.0	-250	-30	250	8	80	120	18	8.0
2N5432	T0-52	5	-4.0	-10.0	-200	-25	200	150		41	30	15.0
2N5433.	T0-52	7	-3.0	-9.0	-200	-25	200	100		41	30	15.0
2N5434	T0-52	10	-1.0	-4.0	-200	-25	200	30		41	30	15.0
2N5638	T0-92	30		-12.0	-1nA	-30	1 nA	50		24	10	4.0
2N5639	T0-92	60		-8.0	-1nA	-30	1nA	25		44	10	4.0
2N5640	T0-92	100		-6.0	$-1 \mathrm{nA}$	-30	1 nA	5		63	10	4.0
ITE4091	T0-92	30	-5.0	-10.0	-200	-40	200	30		65	16	5.0
ITE4092	T0-92	50	-2.0	-7.0	-200	-40	200	15		95	16	5.0
ITE4093	T0-92	80	-1.0	-5.0	-200	-40	200	8		140	16	5.0
ITE4391	T0-92	30	-4.0	-10.0	-100	-40	100	50	150	55	14	3.5
ITE4392	T0-92	60	-2.0	-5.0	-100	-40	100	25	75	75	14	3.5
ITE4393	T0-92	100	-0.5	-3.0	-100	-40	100	5	30	100	14	3.5
J105	T0-92	3	-4.5	-10.0	$-3 \mathrm{nA}$	-25	3 nA	500	-	60	(70)	(3.5)
J106	T0-92	6	-2.0	-6.0	$-3 n A$	-25	$3 n A$	200	-	60	(70)	(3.5)
J107	T0-92	8	-0.5	-4.5	$-3 \mathrm{nA}$	-25	3 nA	100	-	60	(70)	(3.5)
J111	T0-92	30	-3.0	-10.0	$-1 n A$	-35	1 nA	20		48	(16)	(5.0)
J112	T0-92	50	-1.0	-5.0	$-1 \mathrm{nA}$	-35	1 nA	5		48	(16)	(5.0)
$J 113$	- T0-92	100	-0.5	-3.0	$-1 \mathrm{nA}$	-35	1 nA	2		48	(16)	$(5,0)$

2N3993	T0-72	150	4.0	9.5	1.2 nA	25	1.2 nA	-10.0			16	4.5
2N3994	T0-72	300	1.0	5.5	1.2 nA	25	1.2 nA	-2.0			16	4.5
2 N 5114	T0-18	75	5.0	10.0	500	30	500	-30.0	-90	37	25	7.0
2N5115	T0-18	100	3.0	6.0	500	30	500	-15.0	-60	68	25	7.0
2N5116	T0-18	150	1.0	4.0	500	30	500	-5.0	-25	102	25	7.0
1 T 100	T0-18	75	2.0	4.5	200	35	100	-10.0			35	12.0
IT101	T0-18	60	4.0	10.0	200	35	100	-20.0			35	12.0
J174	T0-92	85	5.0	10.0	1 nA	30	$-1 \mathrm{nA}$	-20.0	-100	22	(25)	(8.0)
J175	T0-92	125	3.0	6.0	1 nA	30	$-1 \mathrm{nA}$	-7.0	-60	45	(25)	(8.0)
J176	T0-92	250	1.0	4.0	1 nA	30	$-1 \mathrm{nA}$	-2.0	-25	70	(25)	(8.0)
J177	T0-92	300	0.8	2.25	1 nA	30	-1nA	-1.5	-20	90	(25)	(8.0)
J270	T0-92	-	0.5	2.0	200	30	-	-2.0	-15	-	32 typ.	4.0 typ.
J271	T0-92	-	1.5	4.5	200	30	-	-6.0	-50	-	32 typ.	4.0 typ.
P1086	T0-92	75	-	10.0	2 nA	30	-10nA	-10.0	-	100	45	10.0
P1087	T0-92	150	-	5.0	2nA	30	-10nA	-5.0	-	215	45	10.0

() Approximate Value

Switches and Amplifiers - MOSFET

		$\mathbf{V G S}_{\text {G (TH) }}$						ID
Ordering Information Preferred Part		$V_{\text {GS (OFF) }}$	$B V_{\text {GSS }}$	IDSS	$\mathrm{I}_{\text {GSS }}$	$\mathrm{G}_{\text {fs }}$	$\mathrm{r}_{\text {OS }}(\mathrm{ON})$	$\mathrm{I}_{\text {(ON })}$
		min/max	min	max	max	min	max	min/max
Number	Package	V	V	pA	pA	$\mu \mathrm{mho}$	Ω	mA

P-Channel Enhancement: Gen. used where max isolation between signal source and logic drive required: sw. "On' resistance varies with signal amplitiude.										
3N161	T0-72	-1.5	-5.0	-25	-10nA	-100.0	3500.0	(125)	-40	-120 Diode Protected
3N163	T0-72	-2.0	-5.0	-40	-200	-10.0	2000.0	250	- 5	- 30
3N164	T0-72	-2.0	-5.0	-30	-400	- 10.0	2000.0	300	- 3	- 30
3N172	T0-72	-2.0	-5.0	-40	-400	-200.0	(2000.0)	250	- 5	- 30 Diode Protected
3N173	T0-72	-2.0	-5.0	-30	- 10nA	-500.0	(1000.0)	350	- , 5	- 30 Diode Protected
IT1700	T0-72	-2.0	-5.0	-40	-200	-10.0	2000.0	400	- 2	-

N-Channel Enhancement: Can switch positive signals directly from TTL logic; gen. requires driver or translator circuit to switch bipolar signals.

2N4351	TO-72	1.0	5.0	25	$10 n A$	10.0	1000.0	300	3	
3N170	TO-72	1.0	2.0	25	10nA	10.0	1000.0	200	10	
3N171	T0-72	1.5	3.0	25	$10 n A$	10.0	1000.0	200	10	
IT1750	T0-72	0.5	3.0	25	$10 n A$	10.0	3000.0	50	10	100
M116	T0-72	1.0	5.0	30	$(10 n A)$	100.0	(1000.0)	100	-	

Amplifiers - N-Channel Junction FET

Ordering Preferred Part Number	ormation Package	$g_{\text {ts }}$ min $\mu \mathrm{mho}$	$\begin{gathered} \mathrm{IDSS} \\ \min / \max \\ \mathrm{mA} \\ \hline \end{gathered}$		$\begin{gathered} V_{p} \\ \min / \max \\ V \end{gathered}$		$\mathrm{I}_{\mathrm{GSS}}$ max PA	$\underset{\min _{V}^{B V_{G S S}}}{ }$	$\begin{gathered} \mathrm{C}_{\mathrm{iss}} \\ \max \\ \mathrm{pF} \end{gathered}$	$\begin{gathered} \mathbf{C}_{\text {rss }} \\ \text { max } \\ \mathrm{pF} \end{gathered}$	
2N3684	T0-72	2000	2.5	7.5	-2.0	-5.0	-100	-50	4	1.2	140 @ 100Hz
2N3685	T0-72	1500	1.0	3.0	-1.0	-3.5	-100	-50	4	1.2	140 @ 100Hz
2N3686	T0-72	1000	0.4	1.2	-0.6	-2.0	-100	-50	4	1.2	140 @ 100Hz
2N3687	T0-72	500	0.1	0.5	-0.3	-1.2	-100	-50	4	1.2	140 @ 100Hz
2N3821	T0-72	1500	0.5	2.5		-4.0	-100	-50	6	3.0	200 @ 10Hz
2N3822	T0-72	3000	2.0	10.0		-6.0	-100	-50	6	3.0	200 @ 10Hz
2N3823	T0-72	3500	4.0	20.0		-8.0	-500	-30	6	2.0	-
2N3824	T0-72	-	-	-		(-8.0)	-100	-50	6	3.0	-
2N4117	T0-72	70	0.03	0.09	-0.6	-1.8	-10	-40	3	1.5	-
2N4117A	T0-72	70	0.03	0.09	-0.6	-1.8	-1	-40	3	1.5	-
2N4118	T0.72	80	0.08	0.24	-1.0	-3.0	-10	-40	3	1.5	-
2N4118A	T0-72	80	0.08	0.24	-1.0	-3.0	-1	-40	3	1.5	-
2N4119	T0-72	100	0.2	0.6	-2.0	-6.0	-10	-40	3	1.5	-
2N4119A	T0-72	100	0.2	0.6	-2.0	-6.0	-1	-40	3	1.5	-
2N4220	T0-72	1000	0.5	0.3		-4.0	-100	-30	6	2.0	-
2N4221	T0-7.2	2000	2.0	6.0		-6.0	-100	-30	6	2.0	-
2N4222	T0-72	2500	5.0	15.0		-8.0	-100	-30	6	2.0	-
2N4223	T0-72	3000	3.0	18.0	-0.1	-8.0	-250	-30	6	2.0	-
2N4224	T0-72	2000	2.0	20.0	-0.1	-8.0	-500	-30	6	2.0	-
2N4338	T0-18	600	0.2	0.6	-0.3	-1.0	-100	-50	7	3.0	65 @ 1kHz
2N4339	T0-18	800	0.5	1.5	-0.6	-1.8	-100	-50	7	3.0	65 @ 1kHz
2N4340	T0-18	1300	1.2	3.6	-1.0	-3.0	-100	-50	7	3.0	65 @ 1kHz
2N4341	T0-18	2000	3.0	9.0	-2.0	-6.0	-100	-50	7	3.0	65 @ 1kHz
2N4416	T0-72	4500	5.0	15.0		-6.0	-100	-30	4	2.0	(
2N4867	T0-72	700	0.4	1.2	-0.7	-2.0	-250	-40	25	5.0	10@1kHz
2N4867A	T0-72	700	0.4	1.2	-0.7	-2.0	-250	-40	25	5.0	5 @ 1kHz
2N4868	T0-72	1000	1.0	3.0	-1.0	-3.0	-250	-40	25	5.0	10 @ 1kHz
2N4868A	T0-72	1000	1.0	3.0	-1.0	-3.0	-250	-40	25	5.0	5 @ 1kHz
2N4869	T0-72	1300	2.5	7.5	-1.8	-5.0	-250	-40	25	5.0	10 @ 1kHz
2N4869A	T0-72	1300	2.5	7.5	-1.8	-5.0	-250	-40	25	5.0	$5 @ 1 \mathrm{kHz}$
$2 N 5397$	T0.72	6000	10.0	30.0	-1.0	-6.0	-100	-25	5	1.2	3.5 dB @ 450MHz
2N5398	T0.72	5500	5.0	40.0	-1.0	-6.0	-100	-25	5.5	1.3	-
2N5457	T0-92	1000	1.0	5.0	-0.1	-6.0	$-1 \mathrm{nA}$	-25	7	3.0	-
2N5458	T0-92	1500	2.0	9.0	-1.0	-7.0	$-1 \mathrm{nA}$	-25	7	3.0	-
2N5459	T0-92	2000	4.0	16.0	-2.0	-8.0	-1nA	-25	7	3.0	-

Amplifiers - N-Channel Junction FET (continued)

Ordering Information		$g_{\text {fs }}$ min $\mu \mathrm{mho}$	$\underset{\mathrm{mA}}{\mathrm{I}_{\mathrm{DSS}}}$		$\begin{gathered} V_{P} \\ \min / \max \\ V \end{gathered}$		IGSS max PA	$B_{\text {GSS }}$ min V	$C_{\text {iss }}$ max pF	$C_{\text {rss }}$ max pF	
PreferredPartNumber	Package										
2N5484	T0-92	3000	1.0	5.0	-0.3	-3.0	- 1nA	-25	5	1.0	120 @ 1kHz
2N5485	T0-92	3500	4.0	10.0	-0.5	-4.0	$-1 n A$	-25	5	1.0	120 @ 1kHz
2N5486	T0-92	4000	8.0	20.0	-2.0	-6.0	$-1 \mathrm{nA}$	-25	5	1.0	$120 @ 1 \mathrm{kHz}$
ITE4416	T0-92	4500	5.0	15.0		-6.0	-100	-30	4	2.0	- -
J201	T0-92	500	0.2	1.0	-0.3	-1.5	-100	-40	4	1.0	$5 @ 1 \mathrm{kHz}$
J202	T0-92	1000	0.9	4.5	-0.8	-4.0	-100	-40	4	1.0	$5 @ 1 \mathrm{kHz}$
J203	T0-92	1500	4.0	20.0	-2.0	-10.0	-100	-40	4	1.0	$5 @ 1 \mathrm{kHz}$
J204	T0-92	1500	1.2	typ.	-0.5	-2.0	-100	-25	4	1.0	10 @ 1kHz
J308	T0.92	8000	12.0	60.0	-1.0	-6.5	-1nA	-25	(8)	(5.0)	-
J309	T0-92	10,000	12.0	30.0	-1.0	-4.0	$-1 n A$	-25	(8)	(5.0)	-
J310	T0-92	8000	24.0	60.0	-2.0	-6.5	$-1 \mathrm{nA}$	-25	(8)	(5.0)	-
U308	T0-52	10,000	12.0	60.0	-1.0	-6.0	-150	-25	7 typ.	4.0 typ.	10 @ 100Hz typ.
U309	T0-52	10,000	12.0	30.0	-1.0	-4.0	-150	-25	7 typ.	4.0 typ.	10 @ 100Hz typ.
U310	T0-52	10,000	24.0	60.0	-2.5	-6.0	-150	-25	7 typ.	4.0 typ.	10 @ 100Hz typ.

Amplifiers - P.Channel Junction FET

Differential Amplifiers - Dual Monolithic N-Channel Junction FET

Preferred Part Number	Package	$\mathbf{V}_{\mathrm{GSI}-2}$ max mV	$\Delta \mathbf{V}_{\mathrm{GS}}$ max $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	I_{G} max PA	$B V_{G S S}$ \min V	$V_{P}$$\min /$ maxV		$\underset{\mathrm{min}_{\mathrm{mhox}}^{\mathrm{g}_{\mathrm{fs}}}}{\substack{\text { max }}}$		IDSS $\min /$ max mA		
2N3921	T0-71	5	10	-250	-50	-	-3.0	1500	7500	1.0	10.0	-
2N3922	T0-71	5	25	-250	-50	-	-3.0	1500	7500	1.0	10.0	-
2N3954	T0-71	5	10	- 50	-50	-1.0	-4.5	1000	3000	0.5	5.0	160 @ 100Hz
2N3954A	T0.71	5	5	-50	-50	-1.0	-4.5	1000	3000	0.5	5.0	160 @ 100Hz
2N3955	T0-71	10	25	-50	-50	-1.0	-4.5	1000	3000	0.5	5.0	160 @ 100Hz
2N3955A	T0-71	15	15	-50	-50	-1.0	-4.5	1000	3000	0.5	5.0	160 @ 100Hz
2N3956	T0-71	15	50	-50	-50	-1.0	-4.5	1000	3000	0.5	5.0	160 @ 100Hz
2N3957	T0-71	20	75	-50	-50	-1.0	-4.5	1000	3000	0.5	5.0	160 @ 100Hz
2N3958	T0-71	25	100	-50	-50	-1.0	-4.5	1000	3000	0.5	5.0	160 @ 100Hz
2N5196	T0.71	5	5	-15	-50	-0.7	-4.0		$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz
2N5197	T0-71	5	10	-15	-50	-0.7	-4.0		$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz
2N5198	T0-71	10	20	-15	-50	-0.7	-4.0		$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz
2N5199	T0-71	15	40	-15	-50	-0.7	-4.0		$200 \mu \mathrm{~A}$	0.7	7.0	20 @ 1kHz
2N5452	T0-71	5	5	IGSS-100	-50	-1.0	-4.5	1000	4000	0.5	5.0	20 @ 1kHz
2N5453	T0-71	10	10	IGSS-100	-50	-1.0	-4.5	1000	4000	0.5	5.0	20@1kHz
2N5454	T0-71	15	25	IGSS - 100	-50	-1.0	-4.5	1000	4000	0.5	5.0	20 @ 1kHz
2N5515	10.71	5	5	- 100	-40	-0.7	-4.0	1000	4000	0.5	7.5	30 @ 10Hz
2N5516	T0-71	5	10	- 100	-40	-0.7	-4.0	1000	4000	0.5	7.5	30 @ 10Hz
2N5517	T0-71	10	20	- 100	-40	-0.7	-4.0	1000	4000	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
2N5518	T0-71	15	40	-100	-40	-0.7	-4.0	1000	4000	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
2N5519	T0-71	15	80	- 100	-40	-0.7	-4.0	1000	4000	0.5	7.5	30 @ 10Hz
2N5520	T0-71	5	5	-100	-40	-0.7	-4.0	1000	4000	0.5	7.5	15 @ 10Hz
2N5521	T0.71	5	10	-100	-40	-0.7	-4.0	1000	4000	0.5	7.5	15 @ 10Hz
2N5522	T0-71	10	20	-100	-40	-0.7	-4.0	1000	4000	0.5	7.5	15 @ 10Hz
2N5523	T0-71	15	40	- 100	-40	-0.7	-4.0	1000	4000	0.5	7.5	15 @ 10Hz
2N5524	T0-71	15	80	-100	-40	-0.7	-4.0	1000	4000	0.5	7.5	$15 @ 10 \mathrm{~Hz}$
2N5902	T0-99	5	5	-3	-40	-0.6	-4.5	70	250	0.3	0.5	200@1kHz
2N5903	T0-99	5	10	-3	-40	-0.6	-4.5	70	250	0.03	. 05	200 @ 1kHz
2N5904	T0-99	10	20	-3	-40	-0.6	-4.5	70	250	0.03	. 05	200 @ 1kHz
2N5905	T0-99	15	40	-3	-40	-0.6	-4.5	70	250	0.03	. 05	200 @ 1kHz
2N5906	T0-99	5	5	-1	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1kHz
2N5907	T0-99	5	10	-1	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1kHz
2N5908	T0-99	10	20	-1	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1kHz
2N5909	T0-99	15	40	-1	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1kHz
2N5911	T0-99	10	20	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 @ 10kHz
2N5912	T0-99	15	40	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 @ 10kHz
2N6483	T0-71	5	5	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	10 @ 10Hz
2N6484	T0-71	10	10	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	10 @ 10Hz
2N6485	T0-71	15	25	- 100	-50	-0.7	-4.0	1000	4000	0.5	7.5	10 @ 10Hz
IMF6485	T0-71	25	40	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	15 @ 10Hz
17500	T0-52	5	5	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10Hz
1 I501	T0-52	5	10	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10Hz
1 T502	T0-52	10	20	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10Hz
17503	T0-52	15	40	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10Hz
IT504	T0-52	25	100	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	$35 @ 10 \mathrm{~Hz}$
17505	T0-52	50	200	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10Hz
1 T5911	T0-71	10	20	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 @ 10kHz
IT5912	T0-71	15	40	-100	-25	-1.0	-5.0	5/10	5 mA	7.0	40.0	20 @ 10kHz
U257	T0-99	100	-	IGSS - 100	-25	-1.0	-5.0	5000	10000	5.0	40.0	30 @ 10kHz
U401	T0.71	5	10	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10Hz
- U402	T0-71	10	10	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10Hz
U403	T0-71	10	25	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10Hz
U404	T0-71	15	25	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10Hz
U405	T0.71	20	40	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10Hz
U406	T0.71	40	80	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10Hz
U421	T0-99	10	10	0.1	-60	-0.4	-2.0	300	800		$000 \mu \mathrm{~A}$	20 @ 10Hz
U422	T0-99	15	25	0.1	-60	-0.4	-2.0	300	800		000 $\mu \mathrm{A}$	20 @ 10Hz
U423	T0.99	25	40	0.1	-60	-0.4	-2.0	300	800		000 $\mu \mathrm{A}$	20 @ 10Hz
U424	T0-99	10	10	0.5	-60	-0.4	-3.0	300	1000		000 $\mu \mathrm{A}$	20 @ 10Hz
U425	T0-99	15	25	0.5	-60	-0.4	-3.0	300	1000		000 $\mu \mathrm{A}$	$20 @ 10 \mathrm{~Hz}$
U426	T0-99	25	40	0.5	-60	-0.4	-3.0	300	1000		$00 \mu \mathrm{~A}$	20 @ 10Hz

Differential Amplifiers - Dual Monolithic P.Channel MOSFETS (Enhancement)

Ordering Information											
Preferred		$\begin{aligned} & V_{G S}(T H) \\ & \min / \max \\ & V \end{aligned}$		BV ${ }_{\text {OSS }}$	IDSS	$I_{\text {GSS }}$	$\mathbf{G}_{\text {fs }}$	IDS (ON)\min / \max		${ }^{\text {P }}$ (${ }^{(0 N)}$	$\mathrm{V}_{\text {QS 1-2 }}$
Part				min/max	max	max	min			$\max ^{\text {ax }}$	max
Number	Package			V	PA	PA	$\mu \mathrm{mho}$	$m A$		Ω	mV
3N165	T0-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300	100
3N166	T0-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300	
3N188	T0-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	100 Zener Protected
3N189	T0-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	Zener Protected
3N190	T0-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	100 Zener Protected
3N191	T0-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	

Differential Amplifiers - Dual NPN Bipolar Transistors

Differential Amplifiers - Dual PNP Bipolar Transistors																														
Ordering Information				$\begin{gathered} \mathrm{h}_{\mathrm{fE}} @ \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{VV} \\ \text { min } \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CE} E}=5 \mathrm{VV} \\ \mathrm{nA}^{2} \\ \max \end{gathered}$	$\underset{\substack{\mathrm{BV}_{\mathrm{CEO}} \\ \mathrm{Yin}}}{ }$	$\begin{aligned} & \mathrm{I}_{\mathrm{CBO}} \\ & \text { nA } \\ & \text { ma } \end{aligned}$	$\begin{aligned} & \text { Noise } \\ & \text { dB } \\ & \text { max } \end{aligned}$		$\begin{aligned} & \mathrm{C}_{\mathrm{obo}} \\ & \text { pf } \\ & \text { max } \end{aligned}$	Structure																			
Preferred . Part Number	Package	$\begin{gathered} \mathbf{v}_{\mathrm{BE}_{1}-2} \mathrm{mV}_{\max } \\ \mathrm{m}^{2} \end{gathered}$																												
2 N 5117	т0.78	3	3	100	10	45	. 1	4	$100 @ 0.5 \mathrm{~mA}$. 8	Dielec. Isol.																			
2 5 118	т0-78		5	100	15	45	. 1	4	100 @ 0.5mA	. 8	Dielec. Isol.																			
2 N5119	10-78	5	10	50	40	45	. 1	4	$100 @ 0.5 \mathrm{~mA}$. 8	Dielec. Isol.																			
17130	T0.78 T0.71		5	200	5	-45	1	2 typ.	110 @ 1mA	2	Junc. Isol.																			
IT130A	т0.78 T0-71	1	3	200	2.5	-60	1	2 typ.	110 @ 1 mA	2	Junc. Isol.																			
$1 T 131$	T0.78 T0.71 $^{\text {c }}$	5	10	80	10	-45	1	2 typ.	90 @ 1mA	2	Junc. Isol.																			
17132	T0-78 T0-71	10	20	80	25	-45	1	2 typ.	$90 @ 1 \mathrm{~mA}$	2	Junc. Isol.																			
17136	T0.78 0 T0.71	1	3	150	2.5	-60	. 1	2 typ.	150 @ 10mA	4	Dielec. Isol.																			
17137	T0.78 $\mathrm{T}^{0} \mathbf{0} 71$	2	5	150	5	-60	. 1	2 typ.	150 @ 10mA	4	Dielec. Isol.																			
17138	т0-78 0 T0-71	3	10	120	10	-55	. 1	2 typ.	180 @ 10mA		Dielec. Isol.																			
IT139	T0-78 [0-71	5	20	70	20	-45	. 1	2 typ.	100 @ 10mA	4	Dielec. Isol.																			
Specialty Items																														
$\begin{aligned} & 1 D-100 \\ & 10-101 \end{aligned}$	This product is a diode combination used to protect those P-channel MOSFET duals which are not diode protected. Their chief characteristic is $<1 \mathrm{pA}$ leakage when voltage across them is less than 5 mV . If voltage across diodes is adjusted to $0 \mathrm{~V} \pm 0.1 \mathrm{mV}$, leakage is less than 0.01																													
VCR2NVCR3P																														
VCR4N VCR5P	The VCR family consists of three terminal variable resistors where the resistance value between two of the terminals is controlled by the voltage potential applied to the third.																													
VCR7N ${ }^{\text {a }}$																														
VCR11N (Dual)																														

Note: Intersil offers the following military qualified devices:*

N-channel switches	N-channel amplifiers	P-channel switches	P-channel amplifiers
2N4091 JAN, JANTX, JANTXV	2N3821 JAN, JANTX, JANTXV	2N5114 JAN, JANTX, JANTXV	2N2609 JAN
2N4092 JAN, JANTX, JANTXV	2N3823 JAN, JANTX, JANTXV	2N5115 JAN, JANTX, JANTXV	
2N4093 JAN, JANTX, JANTXV		2N5116 JAN, JANTX, JANTXV	

,
$2 N 4856$ JAN, JANTX, JANTXV
2N4857 JAN, JANTX, JANTXV
2N4858 JAN, JANTX, JANTXV
*JAN processing consists of a sample Group B pulled from the production run.
JANTX processing consists of JAN processing plus 100% electrical read and record, and 100% burn-in. JANTVX processing consists of JANTX processing plus 100% pre-cap visual and on-shore assembly.

DISCRETE SELECTOR GUIDE

	Detailed Application	Important Parameters	Recommended Part Numbers							
			Single N -Channel JFET	$\begin{gathered} \text { Single } \\ \text { P-Channel } \\ \text { JFET } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Dual } \\ \mathrm{N} \text {-Channel } \\ \text { JFET } \end{array}$	Single N -Channel MOSFET	Single P-Channel MOSFET	Dual P-Channel MOSFET	Dual NPN Bipolar	
Amplifiers	Audio	low noise	$\begin{aligned} & \text { 2N4220, } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & \text { 2N2607 } \\ & \text { 2N5460 } \end{aligned}$	$\begin{aligned} & \text { 2N3958 } \\ & \text { IT505 } \end{aligned}$	$\begin{aligned} & \text { 2N4351 } \\ & \text { 3N170-1 } \end{aligned}$	$\begin{aligned} & \hline \text { 3N163 } \\ & \text { 3N164 } \end{aligned}$	3N165	$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { IT130 } \\ \text { IT136 } \\ \text { 2N3810 } \\ \hline \end{array}$
	Buffer	low leakage, high gain	2N4221	$\begin{aligned} & \text { 2N2609 } \\ & \text { 2N5462 } \end{aligned}$	$\begin{aligned} & \text { 2N5905 } \\ & \text { IT505 } \end{aligned}$	M116 IT1750	$\begin{aligned} & \text { 3N172 } \\ & \text { IT1700 } \end{aligned}$		IT120	
	Differential	good matching \& drift	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { U401 } \\ & \text { 2N5515 } \end{aligned}$	-	-		IT126	
	Fet Input Op Amp					-	-		-	-
	High Impedance	low leakage	2N4117A	$\begin{array}{\|l\|} \hline \text { IT100 } \\ \text { J176 } \\ \text { 2N5116 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { 2N5905 } \\ & \text { IT505 } \\ & \text { U426 } \\ & \hline \end{aligned}$	IT1750 2N4351 3N170-1 M116	$\begin{aligned} & \text { IT1700 } \\ & \text { 3N163 } \\ & \text { 3N164 } \\ & \text { 3N172 } \end{aligned}$		-	-
	High Frequency	high gain, low capacitance	U308 2N5397	2N5114 J176	$\begin{aligned} & \hline \text { 2N5912 } \\ & \text { IT5912 } \\ & \hline \end{aligned}$			3N188	$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \\ & \text { IT120 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { IT130 } \\ \text { IT136 } \\ \text { 2N3810 } \end{array}$
	Low Supply Voitage	low pinch-off voltage	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N3687 } \end{aligned}$	$\begin{aligned} & \text { 2N5265 } \\ & \text { J177 } \end{aligned}$	$\begin{aligned} & \text { U406 } \\ & \text { 2N3958 } \end{aligned}$					
	Low Noise	low noise	2N4867A	$\begin{aligned} & \text { 2N5116 } \\ & \text { J176 } \end{aligned}$	$\begin{aligned} & \text { 2N5519 } \\ & \text { 2N5199 } \end{aligned}$				2N4044	IT130
	Preamplifier	high gain	$\begin{aligned} & \text { 2N5397 } \\ & \text { U310 } \end{aligned}$	$\begin{aligned} & \text { 2N5116 } \\ & \text { J176 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { IT550 } \\ \text { U406 } \end{array}$				$\begin{aligned} & \hline \text { 2N4044 } \\ & \text { 2N4878 } \\ & \text { IT120 } \end{aligned}$	$\begin{aligned} & \hline \text { IT130 } \\ & \text { IT136 } \end{aligned}$
	Video	high gain, low capacitance	$\begin{aligned} & \text { 2N4393 } \\ & \text { ITE4393 } \end{aligned}$	IT100	$\begin{array}{\|l} \text { IT5912 } \\ \text { 2N5912 } \\ \hline \end{array}$				IT126	2N3810
Mixers	VHF	RF parameters, high gis $/ \mathrm{C}_{\text {iss }}$	U310 2N5397 J310 2N5484	$\begin{aligned} & \hline \text { IT100 } \\ & \text { J174 } \\ & \text { 2N5114 } \end{aligned}$	$\begin{aligned} & \text { 2N6485 } \\ & \text { IT5912 } \\ & \text { 2N5912 } \\ & \hline \end{aligned}$	-	-	-	-	-
Switches	Commutators Sample and Hold	Iow Crss	$\begin{aligned} & \hline \text { 2N4391 } \\ & \text { ITE4391 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 2N3993-4 } \\ \text { IT100-1 } \\ \text { 2N5114-6 } \\ \hline \end{array}$	$\begin{aligned} & \text { IT550 } \\ & \text { 2N5912 } \\ & \text { IT5912 } \end{aligned}$	IT1750 3N170-1	$\begin{array}{\|l\|} \hline \text { IT1700 } \\ 3 N 163 \\ \\ 3 N 164 \\ \text { 3N172 } \end{array}$	3N165 3N188	-	-
	Analog Gates	fast switching,	2N4091-3 2N4391-3 ITE4391-3 2N5432-4 J111-3 J105-7	$\begin{array}{\|l\|} \hline \text { 2N5114-6 } \\ \\ \text { J174-7 } \\ \text { IT100-1 } \end{array}$						
	Digital	low rDS(on) low rDS(on), high loss								
	Chopper									
	Integrator Reset									
Voltage Control Resistors	Gain Control Amplitude Stability Attenuators	high VGS(off)	VCR2N VCR4N VCR7N	VCR3P	VCR11N	-	-	-	-	-
Protection Diodes	Signal Clipping and Clamping	low leakage current	-	-	-	-	-	-	ID100-1	IT139

APPLICATIONS

- Low-level Choppers
- Data Switches
- Commutators

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source Voltage 30 V
Gate-Drain Voltage . 30 V
Gate Current ... 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots{ }^{(200}+30{ }^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$........................... $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	PARAMETER	2N2607		2N2608		2N2609		Unit	Test Conditions	
		Min	Max	Min	Max	Min	Max			
${ }^{\prime}$ GSSR	Gate Reverse Current		3		10		30	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			3		10		30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	
$B V_{G S S}$	Gate-Drain Breakdown Voltage	30		30		30		V	$1_{G}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
V_{P}	Gate-Source Pinch-Off Voltage	1	4	1	4	1	4	V	$\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$	
${ }^{1} \text { DSS }$	Drain Current at Zero Gate Voltage	-0.30	-1.50	-0.90	-4.50	-2	-10	mA	$V_{D S}=-5 \vee, V_{G S}=0$	
$g_{f s}$	Small-Signal Common-Source Forward Transconductance	330		1000		2500		$\mu \mathrm{mho}$	$V_{D S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{kHz}$	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		10		17	.	30	pF	$\begin{gathered} V_{D S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1 \mathrm{~V} \\ f=140 \mathrm{kHz} \end{gathered}$	
NF	Noise Figure		3					dB	$\begin{aligned} & V_{D S}=-5 V_{i} \\ & V_{G S}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega$
					3		3			$\mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$

FEATURES

- Low Noise
- High Input Impedance
- Low Capacitance

APPLICATIONS

- Low Level Choppers
- Data Switches
- Multiplexers
- Low Noise Amplifiers

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage $-50 \mathrm{~V}$
Gate Current ... 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.). $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C} . \ldots$.

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N3684		2N3685		2N3686		2 N 3687		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
BVGSS	Gate to Source Breakdown Voltage	-50		-50		-50		-50		V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1.0 \mu \mathrm{~A}$
VP	Pinch-Off Voltage	2.0	5.0	1.0	3.5	0.6	2.0	0.3	1.2		$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.001 \mu \mathrm{~A}$
IGSS	Total Gate Leakage Current		-0.1		-0.1		-0.1		-0.1	$n \mathrm{~A}$	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-0.5		-0.5		-0.5		-0.5	$\mu \mathrm{A}$	
IDSS	Saturation Current, Drain-to-Source Forward Transadmittance	2.5	7.5	1.0	3.0	0.4	1.2	0.1	0.5	mA	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}$
\|Y ffs !		2000	3000	1500	2500	1000	2000	500	1500	umhos	
Gos	Common Source Output Conductance		50		25		10		5	$\mu \mathrm{mhos}$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{G S}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$
$C_{\text {iss }}$	Common Source Input Capacitance		4.0		4.0		4.0		4.0	pF	
$\mathrm{C}_{\text {rss }}$	Common Source Short Circuit Reverse Transfer Capacitance		1.2		1.2		1.2		1.2	pF	
PDS(on)	On Resistance		600		800		1200		2400	Ohms	$\begin{aligned} & V_{D S}=0, V_{G S}=0 \\ & f=100 \mathrm{~Hz}, R_{G}=10 \mathrm{M} \Omega \\ & N B W=6 \mathrm{~Hz}, V_{D S}=10 \mathrm{~V} \\ & V_{G S}=0 \mathrm{~V} \end{aligned}$
NF	Noise Figure		0.5		0.5		0.5		0.5	dB	

ELECTRICAL CHARACTERISTICS

*When ordering wafer/dice refer to Appendix B-23.

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ Ambient Temperature unless otherwise noted

SYMBOL	PARAMETER	2N3810/A		2N3811/A		UNITS	TEST CONDITIONS		
		MIN	MAX	MIN	MAX				
BVCBO	Collector-Base Breakdown Voltage	-60		-60		V	$I C=-10 \mu \mathrm{~A}, ~ I E=0$		
BVceo	Collector-Emitter Breakdown Voltage (Note 2	-60		-60			$I_{C}=-10 \mathrm{~mA}, I_{B}=0$		
BVEBO	Emitter-Base Breakdown Voltage	-5		-5			$I_{E}=-10 \mu A, I C=0$		
IC(0ff)	Collector Cutoff Current		-10		-10	nA	$V_{C B}=-50 V_{1} I_{E}=0$		
	$\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$		-10		-10	$\mu \mathrm{A}$			
IE(off)	Emitter Cutoft Current		-20		-20	nA	$\overline{V_{B E}}=4 \mathrm{~V} .1 \mathrm{C}=0$		
hfe	Static Forward Current Transfer Ratio Note 2	100		225			$V_{C E}=-5 V$	IC $=-10 \mu \mathrm{~A}$	
		150	450	300	900			$I_{C}=-100 \mu A$ to -1 mA	
		125		250				$I_{C}=10 \mathrm{~mA}$	
	, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	75		150				$I_{C}=100 \mu \mathrm{~A}$	
VBE(sat)	Base-Emitter Saturation Voltage (Note 2)		-0.7		-0.7	V	$\begin{aligned} & V C E=-5 V \\ & I C=-100 \mu \mathrm{~A} \end{aligned}$	$\mathrm{I}_{\mathrm{B}}=-10 \mu \mathrm{~A}$	
			-0.8		-0.8			$\mathrm{I}_{B}=-100 \mu \mathrm{~A}$	
VCE(sat)	Collector-Emitter Saturation Voltage , Note 2		-0.2		-0.2		$18=-10 \mu \mathrm{~A}, I^{\prime}=-100 \mu \mathrm{~A}$		
			-0.25		-0.25		$I_{B}=-100 \mu A, I_{C}=-1 \mathrm{~mA}$		
h_{19}	Input Impedance	3	30	10	40	k $\sqrt{ }$	$\begin{aligned} & V_{C E}=-10 V \\ & I C=-1 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{KHZ} \end{aligned}$		
hie	Forward Current Transier Ratio	150	600	300	900				
$h_{\text {re }}$	Reverse Voltage Transfer Ratio		0.25		0.25				
hoe	Output Admittance	5	60	5	60	$\mu \mathrm{mho}$			
\|hee		Magnitude of small signal current gain	1	5	1	5		$V_{C E}=-5 \mathrm{~V}$	$1 \mathrm{C}=-1 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$
		1		1				IC $=-500 \mu \mathrm{~A}, \mathrm{f}=30 \mathrm{MHz}$	

NOTES:

1. Per transistor.
2. Pulse witdth $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2.0 \%$.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ Ambient Temperature unless otherwise noted

NOTES:

33 dB down at 10 Hz and 10 kHz .

2N3821, 2N3822 N-Channel JFET

FEATURES

- Low Capacitance
- Up to $\mathbf{6 5 0 0} \mu \mathrm{mho}$ Transconductance
ABSOLUTE MAXIMUM RATINGS($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source Voltage $-50 \mathrm{~V}$
Gate-Drain Voltage $-50 \mathrm{~V}$
Gate Current 10 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$$+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$ $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ORDERING INFORMATION*

TO.72	WAFER	DICE
2N3821	2N3821/W	2N3821/D
2N3822	2N3822/W	2N3822/D

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N3821		2N3822		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
	Gate Reverse Current $\mathrm{TA}=150^{\circ} \mathrm{C}$		-0.1		-0.1	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
GSSS			-0.1		-0.1	$\mu \mathrm{A}$		
BVGSS	Gate-Source Breakdown Voltage	-50		-50		V	$\mathrm{IG}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-4		-6		$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{nA}$	
GS	Gate-Source Voltage	-0.5	-2				$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{ID}=50 \mu \mathrm{~A}$	
GS				-1	-4		VDS $=15 \mathrm{~V}, 1 \mathrm{D}=200 \mu \mathrm{~A}$	
IDSS	Saturation Drain Current	0.5	2.5	2	10	mA	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
$9^{\text {fs }}$	Common-Source Forward Transconductance (Note 1)	1500	4500	3000	6500	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$
$\left\|Y_{f s}\right\|$	Common-Source Forward Transadmittance	1500		3000				$f=100 \mathrm{MHz}$
g_{os}	Common-Source Output Conductance (Note 1)		10		20			$f=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6		6	pF	VIS $=15 \mathrm{~V}, \mathrm{VGS}=0$.	$f=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		3		3			$f=1 \mathrm{MHz}$
NF	Noise Figure	"	5		5	dB	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{gen}}=1 \mathrm{meg}, \mathrm{BW}=5 \mathrm{~Hz} \end{aligned}$	$f=10 \mathrm{~Hz}$
$\overline{e_{n}}$	Equivalent Input Noise Voltage		200		200	$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{BW}=5 \mathrm{~Hz}$	

Note 1: These parameters are meassured during a 2 msec interval 100 msec after DC power is applied. 2N3823 N-Channel JFET

FEATURES

- Low Noise
- Low Capacitance
- Transductance up to $6500 \mu \mathrm{mho}$

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage
$-30 \mathrm{~V}$
Gate Current ... 10 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$.

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS	
			-0.5	nA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
IGSS	Gate Reverse Current $T_{A}=150^{\circ} \mathrm{C}$		-0.5	$\mu \mathrm{A}$		
BVGSS	Gate-Source Breakdown Voltage	-30		V	$\mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-8		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{nA}$	
VGS	Gate-Source Voltage	-1.0	-7.5		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=400 \mu \mathrm{~A}$	
loss	Saturation Drain Current	4	20	mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
gfs	Common-Source Forward Transconductance	3,500	6,500	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$ (Note 1)
${ }^{\text {Y }}$ fs \mid	Common-Source Forward Transadmittance	3,200				$\mathrm{f}=100 \mathrm{MHz}$
gos	Common-Source Output Transconductance		35			$\mathrm{f}=1 \mathrm{kHz}($ Note 1$)$
giss	Common-Source Input Conductance		800			
goss	Common-Source Output Conductance		200			$f=200 \mathrm{M}$
$\mathrm{Ciss}^{\text {is }}$	Common-Source Input Capacitance		6	pF		
Crss	Common-Source Reverse Transfer Capacitance		2			$\mathrm{f}=1 \mathrm{MHz}$
NF	Noise Figure		2.5	dB	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & R_{G}=1 \mathrm{k} \Omega \end{aligned}$	$f=100 \mathrm{MHz}$

[^6]2N3824
N-Channel JFET

FEATURES

- ${ }_{\text {rds }}<250$ ohms
- $I_{D(o f f)}<0.1$ nA

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage -50V
Gate Current 10 mA
Storage Temperature Range $. \ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Load Temperature (Soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C} \ldots$.

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETER			MIN	MAX	UNIT	TEST CONDITIONS	
	Gate Reverse Current			-0.1	nA	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
IGSS		$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-0.1	$\mu \mathrm{A}$		
BVGSS	Gate-Source Breakdown Voltage		-50		V	$\mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
	Drain Cutoff Current			0.1	nA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$	
ld(off)		$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		0.1	$\mu \mathrm{A}$		
rds(on)	Drain-Source ON Resistance			250	Ω	$\mathrm{VGS}=0 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
Ciss	Common-Source Input Capacitance			6	pF	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance			3		$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	

FEATURES

- Low Drain Current
- High Output Impedance
- Matched $\mathbf{V}_{\mathbf{G S}}, \Delta \mathbf{V}_{\mathbf{G S}}$, and g_{fs}

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

*When ordering wafer/dice refer to Appendix B-23.

PARAMETER			MIN	MAX	UNIT	TEST CONDITIONS	
				-1	nA		
IGSSR	Gate Reverse Current	$T_{A}=100^{\circ} \mathrm{C}$		-1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
BVDGO	Drain-Gate Breakdown Voltage		50		V	$\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{S}}=0$	
VGS(off)	Gate-Source Cutoff Voltage			-3		$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
VGS	Gate-Source Voltage		-0.2	-2.7		$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	
	Gate Operating Current $T_{A}=100^{\circ} \mathrm{C}$			-250	pA	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=700 \mu \mathrm{~A}$	
IG				-25	nA		
IDSs	Saturation Drain Current (Note 1)		1	10	mA	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
gfs	Common-Source Forward Transconductance(Note 2)		1500	7500	$\mu \mathrm{mho}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
gos	Common-Source Output Conductance			35			
Ciss	Common-Source Input Capacitance			18	pF		
Crss	Common-Source Reverse Transfer Capacitance			6			
gis	Common-Source Forward Transconductance		1500		$\mu \mathrm{mho}$	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=700 \mu \mathrm{~A}$	$\mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance			20			
NF	Spot Noise Figure			2	dB	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{meg} \end{aligned}$

MATCHING CHARACTERISTICS		2N3921		2N3922		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
\| $\mathrm{V}_{\text {GS1 }}$-VGS2 \mid	Differential Gate-Source Voltage		5		5	mV	$\begin{aligned} & V D G=10 \mathrm{~V} \\ & \mathrm{ID}=700 \mu \mathrm{~A} \end{aligned}$	
$\frac{\Delta\left\|V_{\mathrm{GS} 1} 1-V_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	Gate-Source Differential Voltage Change with Temperature		10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & T_{B}=100^{\circ} \mathrm{C} \end{aligned}$
Gfs2	Transconductance Ratio	0.95	1.0	0.95	1.0			$\mathrm{f}=1 \mathrm{kHz}$

NOTES: 1. Per transistor.
2. Pulse test duration $=2 \mathrm{~ms}$.

2N3954-2N3958 Monolithic Dual N-Channel JFET

FEATURES

- Low Offset and Drift
- Low Capacitance
- Low Noise
- Superior Tracking Ability
- Low Output Conductance

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain
Breakdown Voltage (Note 1) 50V
Any Pin to Case Voltage 100V
Gate Current (Note 1) 50 mA
Storage Temperature .. $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature
$\begin{array}{ccc}\text { (Soldering, } 10 \mathrm{sec} .) & \ldots \ldots \ldots . .+300^{\circ} \mathrm{C} \\ & \text { ONE } & \text { BOTH } \\ & \text { SIDE } & \text { SIDES } \\ & 250 \mathrm{~mW} & 500 \mathrm{~mW} \\ \text { Power Dissipation } & 2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C} & 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\end{array}$
CHIP TOPOGRAPHY

ORDERING INFORMATION*

TO-71	WAFER	DICE
2N3954	2N3954/W	2N3954/D
2N3954A	2N3954A/W	2N3954A/D
2N3955	2N3955/W	2N3955/D
2N3955A	2N3955A/W	2N3955A/D
2N3956	2N3956/W	2N3956/D
2N3957	2N3957/W	2N3957/D
2N3958	2N3958/W	2N3958/D

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N3954		2N3954A		2N3955		2N3955A		2N3956		2N3957		2N3958		UNIT	TEST CONDITIONS		
		MIN	MAX																
IGSSR	Gate Reverse Current		-100		-100		-100		-100		-100		-100		-100	PA	$\begin{aligned} & V_{G S}=-30 \mathrm{~V}, \\ & V_{D S}=0 \end{aligned}$		
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		-500		-500		-500		-500		-500		-500		-500	nA			
BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50		-50		-50		-50		V	$\begin{aligned} & V_{D S}=0 \\ & \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A} \end{aligned}$		
VGS(off)	Gate-Source Cutoff Voltage	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5		$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA} \end{aligned}$		
$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Forward Voltage		2.0		2.0		2.0		2.0		2.0		2.0		2.0		$\begin{aligned} & V_{D S}=0 \\ & 1 \mathrm{G}=1 \mathrm{~mA} \\ & \hline \end{aligned}$		
VGS	Gate-Source Voltage		-4.2		-4.2		-4.2		-4.2		-4.2		-4.2		-4.2		$V_{D S}=20 \mathrm{~V}$	ID $=50 \mu \mathrm{~A}$	
		-0.5	-4.0	-0.5	-4.0	-0.5	-4.0	-0.4	-4.0	-0.5	-4.0	-0.5	-4.0	-0.5	-4.0			$1 \mathrm{D}=200 \mu \mathrm{~A}$	
	Gate Operating Current		-50		-50		-50		-50		-50		-50		-50	pA	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \end{aligned}$		
${ }_{6}$	$T_{A}=125^{\circ} \mathrm{C}$		-250		-250		-250		-250		-250		-250		-250	nA			
'DSS	Saturation Drain Current	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	mA	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & V_{G S}=0 \end{aligned}$		
	Common-Source Forward Transconductance	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	$\mu \mathrm{mho}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{v}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$	
gfs		1000		1000		1000		1000		1000		1000		1000				$\mathrm{f}=200 \mathrm{MHz}$	
gos	Common-Source Output Conductance		35		35		35		35		35		35		35			$\mathrm{f}=1 \mathrm{kHz}$	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		4.0		4.0		4.0		4.0		4.0		4.0		4.0	pF		$f=1 \mathrm{MHz}$	
Crss	Common Source Reverse Transfer Capacitance		1.2		1.2		1.2		1.2		1.2		1.2		1.2				
$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance		1.5		1.5		1.5		1.5		1.5		1.5		1.5		$\begin{aligned} & V_{D G}=10 \mathrm{~V} \\ & \mathrm{~S}=0 \end{aligned}$		
NF	Common-Source Spot Noise Figure		0.5		0.5		0.5		0.5		0.5		0.5		0.5	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \\ & \hline \end{aligned}$	$f=100 \mathrm{~Hz}$	
\|IG1-IG2		Differential Gate Current		10		10		10		10		10		10		10	nA	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$T=125^{\circ} \mathrm{C}$
IDSS1/Ioss2	Drain Saturation Current Ratio	0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	0.90	1.0	0.85	1.0		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \hline \end{aligned}$		
$\mathrm{V}_{\mathrm{GS} 1}{ }^{-} \mathrm{V}_{\mathrm{GS} 2} \mid$	Differential Gate-Source Voltage		5.0		5.0		10.0		5.0		15		20		25	mV	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & I D=200 \mu \mathrm{~A} \end{aligned}$		
$\xrightarrow{\Delta V_{\mathrm{GS}}{ }^{-} \mathrm{V} \mathrm{VSS}^{1}}$	Gate-Source Differential		0.8		0.4		2.0		1.2		4.0		6.0		8.0			$\mathrm{T}=25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$	
ΔT	Temperature		1.0		0.5		2.5		1.5		5.0		7.5		10.0			$\mathrm{T}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
9fs1/9fs2	Transconductance Ratio	0.97	1.0	0.97	1.0	0.97	1.0	0.95	1.0	0.95	1.0	0.90	1.0	0.85	1.0			$\mathrm{f}=1 \mathrm{kHz}$	

NOTE 1: Per transistor.

FEATURES

- Low rDS(on)
- ID(off) < 250 pA
- Fast Switching

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage \qquad
Gate Current .. . 50 mA
Storage Temperature Range . . $\ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
Power Dissipaton 1.8W
Derate above $25^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

*When ordering wafer/dice refer to Appendix B-23.

	PARAMETER	2N3970		2N3971		2N3972		UNIT	TEST CONDITIONS			
		MIN	MAX	MIN	MAX	MIN	MAX					
BVGSS	Gate Reverse Breakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$			
IDGO	Drain Reverse Current		250		250		250	pA	$V_{D G}=20 \mathrm{~V}, \mathrm{IS}=0$			
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		500		500		500	nA				
ID(off)	Drain Cutoff Current		250		250		250	pA	$V_{D G}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$			
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		500		500		500	nA				
VGS (off)	Gate-Source Cutoff Voltage	-4	-10	-2	-5	-0.5	-3	V	$V_{D S}=20 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{nA}$			
IDSs	Saturation Drain Current (Pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$)	50	150	25	75	5	30	mA	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			
VDS(on)	Drain-Source ON Voltage						2	V	$V_{G S}=0$		$\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	
					1.5						$\mathrm{ID}_{\mathrm{D}}=10 \mathrm{~mA}$	
			1								$\mathrm{ID}=20 \mathrm{~mA}$	
rDS(on)	Static Drain-Source ON Resistance		30		60		100	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{lD}=1 \mathrm{~mA}$			
rds(on)	Drain-Source ON Resistance		30		60		100		$\begin{array}{\|l\|} V_{G S}=0, I_{D}=0 \\ V_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ \hline \end{array}$			$\mathrm{f}=1 \mathrm{kHz}$
Ciss	Common-Source Input Capacitance		25		25		25	pF				$\mathrm{f}=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		6		6		6		$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$			
	Turn-On Delay Time							ns	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\mathrm{on})}=0$			
$\mathrm{t}_{\text {d }}$			10		15		40			ld (on)	VGS(off)	R_{L}
$\mathrm{tr}^{\text {r }}$	Rise Time		10		15		40		2N3970	20 mA .	-10V	450Ω
toff	Turn-Off Time		30		60		100		$\begin{aligned} & \text { 2N3971 } \\ & \text { 2N3972 } \end{aligned}$	10 mA 5 mA	$\begin{aligned} & -5 V \\ & -3 V \end{aligned}$	$\begin{aligned} & 850 \Omega \\ & 1.6 \mathrm{~K} \Omega \end{aligned}$

INPUT PULSE
RISE TIME 0.25 ns
FALL TIME 0.75 ns
PULSE WIDTH 200 ns
PULSE RATE 550 pps

[^7]
2N3993, 2N3994 P-Channel JFET

FEATURES

- Low rds(on)
- High $\mathrm{Y}_{\text {fs }} / \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure-of-Merit)

APPLICATIONS

Used in high-speed commutator and chopper applications. Also ideal for "Virtual Gnd" switching; needs no ext. translator circuit to switch ± 10 VAC. Can be driveh direct from $T^{2} L$ or CMOS logic.

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage
-25V
Drain-Source Voltage - 25 V
Continuous Forward Gate Current -10 mA
Storage Temperature Range $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C} \ldots \ldots$.

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

SYMBOL	PARAMETER	2N3993		2N3994		UNIT	TEST CONDITIONS (Note 3)
		MIN	MAX	MIN	MAX		
BVGSS	Gate-Source Breakdown Voltage	25		25		V	$\mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{DS}}=0$
IDGO	Drain Reverse Current		-1.2		-1.2	nA	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$
			-1.2		-1.2	$\mu \mathrm{A}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{DG}}=-15 \mathrm{~V}, & \mathrm{I}_{\mathrm{S}}=0, \\ & T_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{array}$
'DSS	Zero-Gate-Voltage Drain Current	-10		-2		mA	$\begin{aligned} \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, & \mathrm{~V}_{\mathrm{GS}}=0, \\ & \text { (See Note 1) } \end{aligned}$
ID(off)	Drain Cutoff Current				-1.2	nA	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}$
					-1	$\mu \mathrm{A}$	$\begin{array}{ll} V_{D S}=-10 \mathrm{~V}, & V_{\mathrm{GS}}=6 \mathrm{~V} \\ & T_{A}=150^{\circ} \mathrm{C} \end{array}$
			-1.2			nA	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
			-1			$\mu \mathrm{A}$	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, V_{G S}=10 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Voltage	4	9.5	1	5.5	V	$V_{D S}=-10 \mathrm{~V}, 1 \mathrm{D}=-1 \mu \mathrm{~A}$
${ }^{\text {dss }}$ (on)	Small-Signal Drain-Source On-State Resistance		150		300	Ω	$\begin{array}{ll} V_{G S}=0, & I D=0, \\ f=1 \mathrm{kHz} & \end{array}$
$\|\mathrm{yfs}\|$	Small-Signal Common-Source Forward Transfer Admittance	6	12	4	10	mmho	$\begin{array}{ll} \hline \mathrm{VDS}=-10 \mathrm{~V}, & \mathrm{VGS}_{\mathrm{GS}}=0, \\ \mathrm{f}=1 \mathrm{kHz}, & \text { (See Note 1) } \end{array}$
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance		16		16	pF	$\begin{array}{ll} \hline V_{\mathrm{DS}}=-10 \mathrm{~V}, & \mathrm{~V}_{\mathrm{GS}}=0, \\ \mathrm{f}=1 \mathrm{MHz}, & \text { (See Note 2) } \end{array}$
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance				5	pF	$\begin{array}{ll} V_{D S}=0, & V_{G S}=6 V, \\ f=1 \mathrm{MHz} & \\ \hline \end{array}$
			4.5			pF	$\begin{array}{ll} V_{D S}=0, & V_{G S}=10 \mathrm{~V}, \\ f=1 \mathrm{MHz} \end{array}$

NOTES: 1. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{p}}=100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
2. This parameter must be measured with bias voltage applied for less than 5 seconds to avoid overheating.
3. The case should be connected to the source for all measurements.

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good h ${ }_{\text {FE }}$ Match
- Tight V_{BE} Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers.

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base or Collector-Emitter Voltage (Note 1) 2N4044, 2N4878 60 V 2N4100, 2N4879 55 V
2N4045, 2N4880 45 V
Collector-Collector Voltage 100 V
Emitter-Base Voltage (Note 2) 7V
Collector Current (Note 1) 10 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $.{ }^{\circ}+300^{\circ} \mathrm{C}$

	T0-71	TO-78	
ONE SIDE	BOTH SIDES	ONE SIDE	$\begin{aligned} & \text { BOTH } \\ & \text { SIDES } \end{aligned}$
Power			
Dissipation .. 300 mW	500 mW	400 mW	750 mW
Derate above $25^{\circ} \mathrm{C}$			
$\left(\mathrm{mW} /{ }^{\circ} \mathrm{C}\right) \ldots . .1 .7$	2.9	2.3	4.3

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{array}{r} \text { 2N4100 } \\ \text { 2N4879 } \\ \hline \end{array}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \\ & \hline \end{aligned}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
hfe	DC Current Gain	200	600	150	600	80	800	V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
		225		175		100			$I^{\prime} \mathrm{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	75		50.		30			$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
$\mathrm{V}_{\text {BE }}$ (on)	Emitter-Base On Voltage		0.7		0.7		0.7		
$\mathrm{V}_{\text {CE }}$ (sat)	Collector Saturation Voltage		0.35		0.35		0.35		$I_{C}=1.0 \mathrm{~mA}, I_{B}=0.1 \mathrm{~mA}$
ICBO	Collector Cutoff Current		0.1		0.1		$0.1{ }^{*}$	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V} *$
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		0.1		0.1		0.1*	$\mu \mathrm{A}$	
IEBO	Emitter Cutoff Current		0.1		0.1		0.1	nA	$\mathrm{I}^{\prime}=0, V_{E B}=5 \mathrm{~V}$
Cobo	Output Capacitance		0.8		0.8		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{array}{r} \text { 2N4100 } \\ \text { 2N4879 } \\ \hline \end{array}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \end{aligned}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Cte	Emitter Transition Capacitance		1		1		1	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Capacitance		0.8		0.8		0.8	pF	$\mathrm{V}_{\mathrm{cc}}=0$
${ }^{\prime} C_{1}, C_{2}$	Collector to Collector Leakage Current		5		5		5	pA	$V_{C C}= \pm 100 \mathrm{~V}$
$\mathrm{V}_{\text {CEO(sust) }}$	Collector to Emitter Sustaining Voltage	60		55		45		V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
f_{t}	Current Gain Bandwidth Product	200		150		150		MHz	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$
$\mathrm{ft}^{\text {t }}$	Current Gain Bandwidth Product	20		15		15		MHz	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$
NF	Narrow Band Noise Figure		2		3		3	dB	$\begin{array}{\|l\|l\|} \hline \mathrm{I}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} & \mathrm{f}=1 \mathrm{kHz} \\ \mathrm{R}_{\mathrm{G}}=10 \text { kohms } & \mathrm{BW}=200 \mathrm{~Hz} \\ \hline \end{array}$
$\mathrm{BV}_{\text {cBO }}$	Collector Base Breakdown Voltage	60		55		45		V	$I_{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
$\mathrm{BV}_{\text {Ebo }}$	Emitter Base Breakdown Voltage	7		7		7		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$

MATCHING CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

$\mathrm{h}_{\mathrm{FE}_{1}} / \mathrm{hFE}_{2}$	DC Current Gain Ratio (Note 3)	0.9	1	0.85	1	0.8	1		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$
$\left\|V_{B E_{1}} \cdot V_{B_{B E}}\right\|$	Base Emitter Voltage Differential		3		5		5	mV	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
$\left\|{ }^{B_{1}}{ }^{-1} \mathrm{~B}_{2}\right\|$	Base Current Differential		5		10		25	nA	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$
$\left\|\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right)\right\| / \Delta T$	Base Emitter Voltage Differential Change with Temperature		3		5		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\left\|\Delta\left(\mathrm{I}_{\mathrm{B}_{1}}{ }^{-1} \mathrm{~B}_{2}\right)\right\| / \Delta T$	Base Current Differential Change with Temperature		0.3		0.5		1	$n A /{ }^{\circ} \mathrm{C}$	

SMALL SIGNAL CHARACTERISTICS

PARAMETER		TYPICAL VALUE	UNIT	TEST CONDITIONS
$\mathrm{h}_{\text {ib }}$	Input Resistance	28	ohms	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C B}=5 \mathrm{~V}$
$h_{\text {rb }}$	Voltage Feedback Ratio	43	$\times 10^{-3}$	
$\mathrm{hfe}_{\mathrm{fe}}$	Small Signal Current Gain	250		$\mathrm{IC}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
$h_{\text {ob }}$	Output Conductance	60	$\mu \mathrm{mhos}$	
$\mathrm{h}_{\text {ie }}$	Input Resistance	9.6	k ohms	
$\mathrm{hre}^{\text {e }}$	Voltage Feedback Ratio	42	$\times 10^{-3}$	
$\mathrm{h}_{\text {oe }}$	Output Conductance	12	μ mhos	

NOTES:

1. Per transistor.
2. The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed 10μ amps.
3. The lowest of two $h_{F E}$ readings is taken as $h_{F E_{1}}$ for purposes of this ratio.

ITE4091-ITE4093 2N4091-2N4093, JANTX* N-Channel JFET
FEATURES- Low rDS(on)- ID(OFF) < 100 pA (JAN TX Types)

- Fast Switching
ABSOLUTE MAXIMUM RATINGS
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
Gate-Source or Gate-Drain Voltage $-40 \mathrm{~V}$
Gate Current
\qquad Storage Temperature Range $\ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots . . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range
Lead Temperature (Soldering, 10 sec.$)$
$\ldots+300^{\circ} \mathrm{C}$Derate above $25^{\circ} \mathrm{C} \ldots . .1 .7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \ldots 3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

PINCONFIGURATIONS		CHIP TOPOGRAPHY	
TO-18 TO-92			
TO-92	TO.18†	WAFER	DICE
ITE 4091	2N4091	2N4091/W	2N4091/D
ITE 4091A	2N4091A		
ITE 4092	2N4092	2N4092/W	2N4092/D
ITE 4092A	2N4092A		
ITE 4093	2N4093	2N4093/W	2N4093/D
ITE 4093A	2N4093A		
tadd JANTX to the	numb	JANTX pro	ing is desired.

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

2N4044, 2N4045, 2N4100,

 2N4878, 2N4879, 2N4880 Dielectrically Isolated Dual NPN Transistor
FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good hre Match
- Tight $V_{B E}$ Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers.

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Collector-Base or Collector-Emitter Voltage (Note 1)
2N4044, 2N4878
60 V
2N4100, 2N4879
55 V
2N4045, 2N4880 45V
Collector-Collector Voltage 100 V
Emitter-Base Voltage (Note 2) 7V
Collector Current (Note 1) 10 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$\ldots . . .+300^{\circ} \mathrm{C}$

	T0-71		TO-78	
	ONE SIDE	$\begin{aligned} & \text { BOTH } \\ & \text { SIDES } \end{aligned}$	ONE SIDE	BOTH SIDES
Power SIDE				
Dissipation	300 mW	500 mW	400 mW	750 mW
Derate above 25		29	23	

*When ordering wafer/dice refer to Appendix B-23.
ORDERING INFORMATION*

TO.78	TO.71	WAFER	DICE
2N4044	2N4878	2N4044/W	2N4044/D
2N4045	2N4879	2N4045/W	2N4045/D
2N4100	2N4880	2N4100/W	2N4100/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N4100 } \\ & \text { 2N4879 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \\ & \hline \end{aligned}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIIN	MAX	MIN	MAX		
$h_{\text {FE }}$	DC Current Gain	200	600	150	600	80	800	V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
		225		175		100			$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
	$T_{A}=-55^{\circ} \mathrm{C}$	75		50		30			$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
$\mathrm{V}_{\text {BE }}$ (on)	Emitter-Base On Voltage		0.7		0.7		0.7		
$\mathrm{V}_{\text {CE }}$ (sat)	Collector Saturation Voltage		0.35		0.35		0.35		$I_{C}=1.0 \mathrm{~mA}, I_{B}=0.1 \mathrm{~mA}$
ICPBO	Collector Cutoff Current		0.1		0.1		0.1*	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=45 \mathrm{~V}, 30 \mathrm{~V} *$
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		0.1		0.1		0.1*	$\mu \mathrm{A}$	
IEBO	Emitter Cutoff Current		0.1		0.1		0.1	nA	$\mathrm{I}^{\prime}=0, \mathrm{~V}_{\text {EB }}=5 \mathrm{~V}$
Cobo	Output Capacitance		0.8	.	0.8		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{array}{r} \text { 2N4100 } \\ \text { 2N4879 } \\ \hline \end{array}$		$\begin{array}{r} \text { 2N4045 } \\ \text { 2N4880 } \\ \hline \end{array}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{C}_{\text {te }}$	Emitter Transition Capacitance		1		1		1	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Capacitance		0.8		0.8		0.8	pF	$v_{C C}=0$
$\mathrm{I}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Leakage Current		5		5		5	pA	$V_{C C}= \pm 100 \mathrm{~V}$
$\mathrm{V}_{\text {CEO(sust) }}$	Collector to Emitter Sustaining Voltage	60		55		45		V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
ft_{t}	Current Gain Bandwidth Product	200		150		150		MHz	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=10 \mathrm{~V}$
ft_{t}	Current Gain Bandwidth Product	20		15		15		MHz	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$
NF	Narrow Band Noise Figure		2		3		3	dB	$I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$ $\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{R}_{\mathrm{G}}=10 \mathrm{kohms}$ $\mathrm{BW}=200 \mathrm{~Hz}$
BV CBO	Collector Base Breakdown Voltage	60		55		45		V	$I_{C}=10 \mu A, I_{E}=0$
$\mathrm{BV}_{\text {Ebo }}$	Emitter Base Breakdown Voltage	7		7		7		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

$\mathrm{h}_{\mathrm{FE}_{1} / h_{\mathrm{FE}_{2}} \text { }}$	DC Current Gain Ratio (Note 3)	0.9	1	0.85	1	0.8	1		$\begin{aligned} & I_{C}=10 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA} \\ & V_{C E}=5 \mathrm{~V} \end{aligned}$
$\left\|V_{B E_{1}}-V_{B E_{2}}\right\|$	Base Emitter Voltage Differential		3		5		5	mV	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$
$\left\|\mathrm{B}_{\mathrm{B}_{1}}{ }^{-1} \mathrm{~B}_{2}\right\|$	Base Current Differential		5		10		25	nA	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$
$\mid \Delta\left(\mathrm{V}_{\left.\mathrm{BE}_{1}-\mathrm{V}_{\mathrm{BE}_{2}}\right) \mid / \Delta T}\right.$	Base Emitter Voltage Differential Change with Temperature		3		5		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & T_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\left\|\Delta\left(I_{B_{1}}{ }^{-1} \mathrm{~B}_{2}\right)\right\| / \Delta T$	Base Current Differential Change with Temperature		0.3		0.5		1	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$	

SMALL SIGNAL CHARACTERISTICS

PARAMETER		TYPICAL VALUE	UNIT	TEST CONDITIONS	
$h_{\text {ib }}$	Input Resistance	28	ohms	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CB}}=5 \mathrm{~V}$	
$\mathrm{hrb}_{\text {b }}$	Voltage Feedback Ratio	43	$\times 10^{-3}$		
$\mathrm{hfo}_{\text {fe }}$	Small Signal Current Gain	250		$\mathrm{IC}=1 \mathrm{~mA}, \mathrm{VCE}=5 \mathrm{~V}$	
$h_{\text {ob }}$	Output Conductance	60	$\mu \mathrm{mhos}$		
$h_{\text {ie }}$	Input Resistance	9.6	k ohms		
$\mathrm{hre}_{\mathrm{re}}$	Voltage Feedback Ratio	42	$\times 10^{-3}$		
$h_{\text {oe }}$	Output Conductance	12	$\mu \mathrm{mhos}$		
NOTES: 1. Per transistor. 2. The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed $10 \mu \mathrm{amps}$. 3. The lowest of two $h_{F E}$ readings is taken as $\mathrm{h}_{\mathrm{FE}_{1}}$ for purposes of this ratio.					

2N4117-19, 2N4117A-19A N-Channel JFET

FEATURES

- Low Leakage
- Low Capacitance

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) Gate-Source or Gate-Drain Voltage -40V
Gate Current 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C} . \ldots$.
ORDERING INFORMATION*

TO.72	WAFER	CHIP
2N4117	$2 N 4117 / \mathrm{W}$	$2 \mathrm{2N4117/D}$
2N4117A	-	-
2N4118	2N4118/W	2N4118/D
2N4118A	-	-
2N4119	2N4119/W	2N4119/D
2N4119A	-	-

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$ unless otherwise noted

	PARAMETER	$\begin{array}{r} \text { 2N4117 } \\ \text { 2N4117A } \end{array}$		$\begin{array}{r} \text { 2N4118 } \\ \text { 2N4118A } \end{array}$		$\begin{array}{r} \text { 2N4119 } \\ \text { 2N4119A } \end{array}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$
IGSSR	Gate Reverse Current		-10		-10		-10	pA	$V_{G S}=-20 \mathrm{~V}, V_{D S}=0$
	Gate Reverse Current A devices		-1		-1		-1		
	$\mathrm{T}_{A}=+100^{\circ} \mathrm{C}$		-25		-25		-25	nA	
			-2.5		-2.5		-2.5		
VGS (off)	Gate-Source Pinch-Off Voltage	-0.6	-1.8	-1	-3	-2	-6	V	$V_{D S}=10 \mathrm{~V}, 1 \mathrm{D}=1 \mathrm{nA}$
IDSS	Drain Current at Zero Gate Voltage (Note 1)	0.02	0.09	0.08	0.24	0.20	0.60	mA	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & V_{G S}=0 \end{aligned}$
g_{fs}	Common-Source Forward Transconductancè (Note 1)	70	210	80	250	100	330	$\mu \mathrm{mho}$	$\begin{aligned} & \mathrm{VDS}=10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
g_{fs}	Common-Source Forward Transconductance	60		70		90			$V_{G S}=0, f=30 \mathrm{MHz}$
g_{OS}	Common-Source Output Conductance		3		5		10		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
$\mathrm{Ciss}^{\text {is }}$	Common-Source Input Capacitance		3		3		3	pF	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$
Crss	Common-Source Reverse Transfer Capacitance		1.5		1.5		1.5		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, V_{G S}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$

NOTE: 1. Pulse test: Pulse duration of 2 ms used during test.

2N4220-2N4222 N-Channel JFET

FEATURES

- Crss $^{\text {< } 2 ~ p F ~}$
- Moderately High Forward Transconductance

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage -30V
Gate Current :... 10 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots{ }^{-5} 5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C} \ldots$.

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N4220		2N4221		2N4222		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX			
IGSSR	Gate Reverse Current $T_{A}=150^{\circ} \mathrm{C}$		-0.1		-0.1		-0.1	nA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
'GSSR	Gate Reverse Current $T_{A}=150^{\circ} \mathrm{C}$		-0.1		-0.1		-0.1	$\mu \mathrm{A}$		
BVGSS	Gate-Source Breakdown Voltage	-30		-30		-30		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-4		-6		-8		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{nA}$	
$V_{G S}$	Gate-Source Voltage	-0.5	-2.5	-1	-5	-2	-6	V	$V_{D S}=15 \mathrm{~V} \left\lvert\, \begin{aligned} & I_{D}=50 \mu \\ & I_{D}=200 \\ & I_{D}=500\end{aligned}\right.$	$\begin{aligned} & \text { N4220) } \\ & \text { 2N4221) } \\ & \text { 2N4222) } \end{aligned}$
IDSS	Saturation Drain Current (Note 3)	0.5	3	2	6	5	15	mA	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
gfs	Common-Source Forward Transconductance (Note 1)	1000	4000	2000	5000	2500	6000	umho	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
$\left\|y_{f s}\right\|$	Common-Source Forward Transadmittance	750		750		750				$f=100 \mathrm{MHz}$
gos	Commen-Source Output Conductance (Note 1)		10		20		40			$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6		6		6	pF		$f=1 \mathrm{MHz}$
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		2		- 2		2			

NOTE 1: Pulse test duration 2 ms .

FEATURES

- NF $=3$ dB Typical at $200 \mathbf{~ M H z}$
- $\mathrm{Crss}^{<} 2 \mathrm{pF}$
ABSOLUTE MAXIMUM RATINGS($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)Gate-Source or Gate-Drain Voltage$-30 \mathrm{~V}$
Gate Current 10 mA

\qquad
Storage Temperature Range

\qquad
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$ $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N4223		2N4224		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX				
IGSSR	Gate Reverse Current ${ }^{T_{A}=+150^{\circ} \mathrm{C}}$		-0.25		-0.5	nA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
			-0.25		-0.5	$\mu \mathrm{A}$			
BVGSS	Gate-Source Breakdown Voltage	-30		-30		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
VGS(off)	Gate-Source Cutoff Voltage	-0.1	-8	-0.1	-8		$V_{D S}=15 \mathrm{~V}$	$\begin{aligned} & I_{D}=0.25 \mathrm{nA}(2 \mathrm{~N} 4223) \\ & I_{D}=0.5 \mathrm{nA}(2 \mathrm{~N} 4224) \end{aligned}$	
VGS	Gate-Source Voltage	-1.0	-7.0	-1.0	-7.5			$\begin{aligned} & I_{D}=0.3 \mathrm{~mA}(2 \mathrm{~N} 4223) \\ & I_{D}=0.2 \mathrm{~mA}(2 \mathrm{~N} 4224) \end{aligned}$	
IDSS	Saturation Drain Current (Note 1)	3	18	2	20	mA	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$		
${ }_{9}{ }_{\text {s }}$	Common-Source Forward Transconductance (Note 1)	3000	7000	2000	7500	$\mu \mathrm{mho}$	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$f=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Output Shorted)		6		6	pF			$\mathrm{f}=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		2		2				
$\left\|y_{\text {fs }}\right\|$	Common-Source Forward Transadmittance	2700		1700		$\mu \mathrm{mho}$	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$\mathrm{f}=200 \mathrm{MHz}$
$\mathrm{g}_{\text {ss }}$	Common-Source Input Conductance (Output Shorted)		800		800				
$\mathrm{g}_{\text {oss }}$	Common-Source Output Conductance (Input Shorted)		200		200				
$\mathrm{G}_{\text {ps }}$	Small Signal Power Gain	10							
NF	Noise Figure		5			dB	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{R}_{\mathrm{gen}}=1 \mathrm{k} \Omega \end{aligned}$		

2N4338-2N4341 N-Channel JFET

FEATURES

- Exceptionallly High Figure of Merit
- Radiation Immunity
- Extremely Low Noise and Capacitance
- High Input Impedance

APPLICATIONS

- Low-level Choppers
- Data Switches
- Multiplexers and Low Noise Amplifiers

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage $-50 \mathrm{~V}$
Gate Current 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$....................... $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N4338		2N4339		2N4340		2N4341		UNITS	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
			-0.1		-0.1		-0.1		-0.1	nA	$V_{G S}=-30 \mathrm{~V}, V_{\text {DS }}=0$	
'GSS	Gate Reverse Current ${ }^{T_{A}=150^{\circ} \mathrm{C}}$		-0.1		-0.1		-0.1		-0.1	$\mu \mathrm{A}$		
BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage	-0.3	-1	-0.6	-1.8	-1	-3	-2	-6		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$	
${ }^{1}$ D(off)	Drain Cutoff Current		$\begin{aligned} & \hline 0.05 \\ & (-5) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & (-5) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$		$\begin{aligned} & \hline 0.07 \\ & (-10) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \text { (V) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=11 \end{aligned}$	
Idss	Saturation Drain Current	0.2	0.6	0.5	1.5	1.2	3.6	3	9	mA	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
9fs	Common-Source Forward Transconductance	600	1800	800	2400	1300	3000	2000	4000	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
gos	Common-Source Output Conductance		5		15		30		60			
rDS(on)	Drain-Source ON Resistance		2500		1700		1500		800	ohm	$V_{\text {DS }}=0,1$ DS $=0$	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		7		7		7		7	pF	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \quad \therefore$	$f=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		3		3		3		3			
NF	Noise Figure		1		1		1		1	dB	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{VGS}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\text {gen }}=1 \mathrm{meg}, \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$

N-Channel Enhancement Mode MOS FET

FEATURES

- Low ON Resistance
- Low Capacitance
- High Gain
- High Gate Breakdown Voltage
- Low Threshold Voltage
ABSOLUTE MAXIMUM RATINGS($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source Voltage or Drain-Gate Voltage 25V
Peak Gate-Source Voltage (Note 1) $\pm 125 \mathrm{~V}$
Drain Current 100 mA
Storage Temperatưre Range

\qquad

 \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
 Operating Temperature Range $\ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $\ldots{ }^{\circ}+300^{\circ} \mathrm{C}$
Power Dissipation 375 mW
Derate above $25^{\circ} \mathrm{C}$
$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
Substrate connected to source.

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	25		V	$I_{\text {D }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$
IGSS	Gate Leakage Current		10	pA	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
IDSS	Zero-Gate-Voltage Drain Current		10	nA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate-Source Threshold Voltage	1	5	V	$V_{D S}=10 \mathrm{~V}, 1 \mathrm{D}=10 \mu \mathrm{~A}$
ID(on)	"ON" Drain Current	3		mA	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$
VDS(on)	Drain-Source "ON" Voltage		1	V	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
r ${ }_{\text {DS }}(\mathrm{on}$)	Drain-Source Resistance		300	ohms	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=0, \mathrm{f}=1 \mathrm{kHz}$
$\mid \mathrm{yfs}$ \|	Forward Transfer Admittance	1000		$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$
Crss	Reverse Transfer Capacitance		1.3	pF	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=140 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Input Capacitance		5.0		$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=140 \mathrm{kHz}$
$\mathrm{C}_{\text {d(sub) }}$	Drain-Substrate Capacitance		5.0		$\mathrm{V}_{\mathrm{D}(\mathrm{SUB})}=10 \mathrm{~V}, \mathrm{f}=140 \mathrm{kHz}$
$t_{d}(\mathrm{on})$	Turn-On Delay		45	ns	
t_{r}	Rise Time		65		
t_{d} (off)	Turn-Off Delay		60		
t_{f}	Fall Time		100		

[^8]
FEATURES

- $\mathrm{r}_{\mathrm{ds}(\mathrm{on})}$ < 30 ohms (2N4391)
- $\mathrm{ID}_{\mathrm{D}(\mathrm{fff})}<100 \mathrm{pA}$
- Switches ± 10 VAC with $\pm 15 \mathrm{~V}$ Supplies (2N4392, 2N4393)

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage $-40 \mathrm{~V}$
Gate Current
Storage Temperature Range $\ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ 50 mA

Operating Temperature Range $\ldots \ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)^{\ldots} \ldots . .+300^{\circ} \mathrm{C}$ TO-18

TO-92
Power Dissipation 1.8 W 360 mW
Derate above $25^{\circ} \mathrm{C} \ldots . .1 .7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \ldots 3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

CONFIGURATIONS

CHIP TOPOGRAPHY

ORDERING INFORMATION*

TO.92	TO.18	WAFER	DICE
ITE 4391	2N4391	2N4391/W	2N4391/D
ITE 4392	2N4392	2N4392/W	2N4392/D
ITE 4393	2N4393	2N4393/W	2N4393/D

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FEATURES

- Low Noise
- Low Feedback Capacitance
- Low Output Capacitance
- High Transconductance
- High Power Gain

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage
2N4416, ITE4416 30 V
2N4416A .. -35 V
Gate Current 10 mA
Storage Temperature Range
2N4416/2N4416A
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
ITE4416 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range
2N4416/2N4416A
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
ITE4416 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $\ldots . . .+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$

ITE4416 $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER				MIN	MAX	UNIT	TEST CONDITIONS		
$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Forward Voltage				1	V	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$		
	Gate Reverse Current				-0.1	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
IGSS			$=150^{\circ} \mathrm{C}$		-0.1	$\mu \mathrm{A}$			
BVGSS	Gate-Source Breakdown Voltage	2N441	TE4416	-30		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
		2N441		-35					
VGS(off)	Gate-Source Cutoff Voltage	2N441	TE4416		-6		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		
		2N441		-2.5	-6				
IDSS	Drain Current at Zero Gate Voltage			5	15	mA	$f=1 \mathrm{kHz}$		
g_{fs}	Common-Source Forward Transconductance			4500	7500	$\mu \mathrm{mho}$			
gos	Common-Source Output Conductance				50	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$	
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance				0.8	pF		$\mathrm{f}=1 \mathrm{MHz}$	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance				4	pF			
$\mathrm{C}_{\text {oss }}$	Common-Source Output Capacitance			12					
PARAMETER		100 MHz		400 MHz		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX				
giss	Common-Source Input Conductance		100		1000	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
$\mathrm{b}_{\text {iss }}$	Common-Source Input Susceptance		2500		10,000				
goss	Common-Source Output Conductance		75		100				
boss	Common-Source Output Susceptance		1000		4000				
g_{fs}	Common-Source Forward Transconductance			4000					
$\mathrm{G}_{\text {ps }}$	Common-Source Power Gain	18		10			VDS $=15 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~m}$		
NF	Noise Figure		2		4	dB	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~m}$	$\mathrm{R}_{\mathrm{G}}=1 \mathrm{~K} \Omega$	

2N4856-2N4861 2N4856-2N4858 JAN, JTX, JTXV* N-Channel JFET

FEATURES

- Low r ${ }^{\text {DS(on) }}$
- $I_{D(\text { off })}<250 \mathrm{pA}$
- Switches $\pm 10 \mathrm{~V}$ Signals with $\pm 15 \mathrm{~V}$ Supplies (2N4858, 2N4861)

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage
2N4856-58 $-40 \mathrm{~V}$
2N4859-61 $-30 \mathrm{~V}$

Gate Current 50 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Led Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 1.8W
Derate above $25^{\circ} \mathrm{C} \ldots \ldots . \ldots . . .10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
$\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

*When ordering wafer/dice refer to Appendix B-23.

NOTE:

1. Pulse test required, pulsewidth $=100 \mu \mathrm{~s}$, duty cycle $\leqslant 10 \%$.

[NIERERLL

2N4867IA-2N4869/A N-Channel JFET

FEATURES

- Low Noise Voltage

- Low Leakage
- High Gain

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted) Gate-Source or Gate-Drain Voltage$-40 \mathrm{~V}$

Gate Current 50 mA
Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$....................... $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER			$\begin{gathered} \text { 2N4867 } \\ \text { 2N4867A } \\ \hline \end{gathered}$		$\begin{gathered} \text { 2N4868 } \\ \text { 2N4868A } \end{gathered}$		$\begin{gathered} \text { 2N4869 } \\ \text { 2N4869A } \\ \hline \end{gathered}$		UNIT	TEST CONDITIONS	
			MIN	MAX	MIN	MAX	MIN	MAX			
	Gate Reverse Current ${ }^{\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}}$			-0.25		-0.25		-0.25	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
GGSR				-0.25		-0.25		-0.25	$\mu \mathrm{A}$		
BVGSS	Gate-Source Breakdown Voltage		-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-0.7	-2	-1	-3	-1.8	-5		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$	
IDSS	Saturation Drain Current (Note 1)		0.4	1.2	1	3	2.5	7.5	mA	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
g_{f}	Common-Source Forward Transconductance (Note 1)		700	2000	1000	3000	1300	4000	$\mu \mathrm{mho}$	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{g}_{\text {OS }}$	Common-Source Output Conductance			1.5		4		10			
Crss	Common-Source Reverse Transfer Capacitance			5		5		5	pF		$f=1 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance			25		25		25			
\bar{e}_{n}	Short Circuit Equivalent Input			20		20		20	$\frac{n V}{\sqrt{H z}}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & V_{G S}=0 \end{aligned}$	$\mathrm{f}=10 \mathrm{~Hz}$
				10		10		10			$f=1 \mathrm{KHz}$
	Noise Voltage A devices			10		10		10			$\mathrm{f}=10 \mathrm{~Hz}$
				5		5		5			$\mathrm{f}=1 \mathrm{kHz}$.
NF	Spot Noise Figure			1		1		1	dB	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & R_{\text {gen }}=20 \mathrm{~K},(2 \mathrm{~N} 4867 \text { Series }) \\ & R_{\text {gen }}=5 \mathrm{~K},(2 \mathrm{~N} 4867 \mathrm{~A} \text { Series }) \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$

[^9]2N4044, 2N4045, $2 \mathrm{~N}_{1} 100$, 2N4878, 2N4879, 2N4880 Dielectrically Isolated Dual NPN Transistor

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good h ${ }_{\text {FE }}$ Match
- Tight V_{BE} Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers.

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N4100 } \\ & \text { 2N4879 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \end{aligned}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
hFE	DC Current Gain	200	600	150	600	80	800	V	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
		225		175		100			$\mathrm{I}^{\prime} \mathrm{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	75		50		30			$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
, $\mathrm{V}_{\text {BE(on) }}$	Emitter-Base On Voltage		0.7		0.7		0.7		
$\mathrm{V}_{\text {CE }}$ (sat)	Collector Saturation Voltage		0.35		0.35		0.35		$I_{C}=1.0 \mathrm{~mA}, I_{B}=0.1 \mathrm{~mA}$
ICBO	Collector Cutoff Current		0.1		0.1		0.1*	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V}$ *
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		0.1		0.1		0.1*	$\mu \mathrm{A}$	
IEBO	Emitter Cutoff Current		0.1		0.1		0.1	nA	$\mathrm{I}^{\prime}=0, \mathrm{~V}_{\text {EB }}=5 \mathrm{~V}$
Cobo	Output Capacitance		0.8		0.8		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \hline \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{aligned} & \text { 2N4100 } \\ & \text { 2N4879 } \end{aligned}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \end{aligned}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Cte	Emitter Transition Capacitance		1		1		1	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Capacitance		0.8		0.8		0.8	pF	$\mathrm{V}_{\mathrm{CC}}=0$
$\mathrm{I}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Leakage Current		5		5		5	pA	$V_{C C}= \pm 100 \mathrm{~V}$
$\mathrm{V}_{\text {CEO }}$ (sust)	Collector to Emitter Sustaining Voltage	60		55		45		V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
$\mathrm{ft}^{\text {t }}$	Current Gain Bandwidth Product	200		150		150		MHz	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$
$\mathrm{ft}^{\text {t }}$	Current Gain Bandwidth Product	20		15		15		MHz	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$
NF	Narrow Band Noise Figure		2		3		3	dB	$\begin{array}{\|l\|l\|} \hline \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} & \mathrm{f}=1 \mathrm{kHz} \\ \mathrm{R}_{\mathrm{G}}=10 \text { kohms } & \mathrm{BW}=200 \mathrm{~Hz} \\ \hline \end{array}$
BV CBO	Collector Base Breakdown Voltage	60		55		45		V	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
$\mathrm{BV}_{\mathrm{EbO}}$	Emitter Base Breakdown Voltage	7		7		7		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$

MATCHING CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

$\mathrm{h}_{\mathrm{FE}_{1} / \mathrm{h}_{\mathrm{FE}_{2}} \text { }}$	DC Current Gain Ratio (Note 3)	0.9	1	0.85	1	0.8	1		$\begin{aligned} & I_{C}=10 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA}, \\ & \mathrm{~V}_{C E}=5 \mathrm{~V} \end{aligned}$	
$\left\|\mathrm{V}_{\mathrm{BE}_{1}} \cdot \mathrm{~V}_{\mathrm{BE}_{2}}\right\|$	Base Emitter Voltage Differential		3		5		5	mV	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	
$\left\|\\|_{B_{1}}-{ }^{-1}{ }^{2}\right\|$	Base Current Differential		5		10		25	nA	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	
$\left\|\triangle\left(V_{B E_{1}}-V_{B E_{2}}\right)\right\| / \Delta T$	Base Emitter Voltage Differential Change with Temperature		3		5		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \\ & \mathrm{~V}_{C E}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
$\left\|\Delta\left(I_{B_{1}}{ }^{-1} \mathrm{I}_{2}\right)\right\| / \Delta T$	Base Current Differential Change with Temperature		0.3		0.5		1	$n A /{ }^{\circ} \mathrm{C}$		

SMALL SIGNAL CHARACTERISTICS

PARAMETER		TYPICAL VALUE	UNIT	TEST CONDITIONS	
$h_{\text {lb }}$	Input Resistance	28	ohms	$I_{C}=1 \mathrm{~mA}, \mathrm{~V}_{C B}=5 \mathrm{~V}$	
$h_{\text {rb }}$	Voltage Feedback Ratio	43	$\times 10^{-3}$		
$h_{\text {fe }}$	Small Signal Current Gain	250		$\mathrm{IC}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	
$h_{\text {cb }}$	Output Conductance	60	$\mu \mathrm{mhos}$		
$\mathrm{h}_{\text {ie }}$	Input Resistance	9.6	k ohms		
$\mathrm{hre}_{\text {re }}$	Voltage Feedback Ratio	42	$\times 10^{-3}$		
$h_{\text {Oe }}$	Output Conductance	12	$\mu \mathrm{mhos}$		
NOTES: 1. Per transistor. 2. The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed 10μ amps. 3. The lowest of two $h_{F E}$ readings is taken as $h_{F E E_{1}}$ for purposes of this ratio.					

2N5018,2N5019 P-Channel JFET

FEATURES

- Low Insertion Loss
- No Offset or Error Voltages Generated by Closed Switch
- Purely Resistive

APPLICATIONS

- Analog Switches
- Commutators
- Choppers

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage 30V
Gate Current 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) ... $+300^{\circ} \mathrm{C}$
Power Dissipation 500 mW Derate above $25^{\circ} \mathrm{C} \ldots3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

NOTE 1: Due to symmetrical geometry these units may be operated with source and drain leads interchanged.

INPUT PULSE RISE TIME < 1 ns FALL TIME < 1 ns PULSE WIDTH 100 ns REPLETION RATE $1 \mathbf{M H z}$

SAMPLING SCOPE RISE TIME 0.4 ns INPUT RESISTANCE 10 M Ω INPUT CAPACITANCE 1.5 pF

NNIER R

2N5114-2N5116 JAN, JTX P-Channel JFET

FEATURES

- Low ON Resistance
- $I_{D(o f f)}<500 \mathrm{pA}$
- Switches directly from T^{2} L Logic

GENERAL DESCRIPTION

Ideal for inverting switching or "Virtual Gnd" switching into inverting input of Op. Amp. No driver is required and ± 10 VAC signals can be handled using only +5 V logic ($\mathrm{T}^{2} \mathrm{~L}$ or CMOS).

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Drain or Gate-Source Voltage
30 V
Gate Current 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $\ldots+300^{\circ} \mathrm{C}$
Power Dissipation 500 mW

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER			2N5114		2N5115		2N5116		UNIT	TEST CONDITIONS
			MIN	MAX	MIN	MAX	MIN	MAX		
BVGSS	Gate-Source Breakdown Voltage *		30		30		30		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$
'GGSR	Gate Reverse Current ${ }^{T_{A}=150{ }^{\circ} \mathrm{C}}$			500		500		500	pA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
'GSSR				1.0		1.0		1.0	$\mu \mathrm{A}$	
	Drain Cutoff Current $\mathrm{T}^{\text {T }}$ = $150^{\circ} \mathrm{C}$			-500		-500		-500	pA	$\begin{aligned} 2 N 5114 & =12 \mathrm{~V} \\ V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{G S}=2 N 5115 & =7 \mathrm{~V} \\ 2 N 5116 & =5 \mathrm{~V} \end{aligned}$
'D(off)				-1.0		-1.0		-1.0	$\mu \mathrm{A}$	
V_{P}	Gate-Source Pinch-Off Voltage		5	10	3	6	1	4	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{nA}$
${ }^{\prime}$ DSS	Drain Current at Zero Gate Voltage (Note 1)		-30	-90	-15	-60	-5	-25	mA	$2 N 5114$ $=-18 \mathrm{~V}$ $V_{G S}=0, V_{D S}$ $=2 N 5115$ $=-15 \mathrm{~V}$ $2 N 5116$ $=-15 \mathrm{~V}$
VGSSF	Forward Gate-Source Voltage			-1		-1		-1	V	$\mathrm{IG}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$
$V_{\text {DS }}(0 n)$	Drain-Source ON Voltage			-1.3		-0.8		-0.6		 $V_{G S}=0, I D 5114$ $=-15 \mathrm{~mA}$ $=2 N 5115$ $=-7 \mathrm{~mA}$ $2 N 5116$ $=-3 \mathrm{~mA}$
rDS(on)	Static Drain-Source ON Resistance			75		100		150	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$
	Small-Signal Drain-Source ON			75		100		150		$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{l}$ D $=0, \mathrm{f}=1 \mathrm{kHz}$
rds(on)	Resistance	Jan TX only		75		100		175		
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance Jan TX only			25		25		25	pF	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$
Ciss				25		25		27		
Crss	Common-Source Reverse Transfer Capacitance			7		7		7		$2 N 5114=12 \mathrm{~V}$ $V_{D S}=0, V_{G S}$ $f=1 \mathrm{MHz}$ $2 N 5115=7 \mathrm{~V}$ $2 N 5116=5 \mathrm{~V}$

Note 1. Pulse test; duration $=2 \mathrm{~ms}$.

SWITCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	2N5114	2N5115	2N5116	JAN TX 2N5114	JAN TX 2N55115	JAN TX 2N5116	UNIT
t_{d} Turn-ON Delay Time	$\begin{gathered} \text { MAX } \\ 6 \end{gathered}$	$\begin{gathered} \text { MAX } \\ 10 \end{gathered}$	$\begin{gathered} \text { MAX } \\ 12 \end{gathered}$	$\begin{gathered} \text { MAX } \\ 6 \end{gathered}$	$\begin{gathered} \text { MAX } \\ 10 \end{gathered}$	$\begin{gathered} \text { MAX } \\ 25 \end{gathered}$	ns
t_{r} Rise Time	10	20	30	10	20	35	
$\mathrm{t}_{\text {off }}$ Turn-OFF Delay Time	6	8	19	6	8	29	
t_{f} Fall Time	15	30	50	(not JAN TX specified)			

TEST CONDITIONS			
	$2 N 5114$	$2 N 5115$	2 N 5116
$\mathrm{~V}_{\mathrm{DD}}$	-10 V	-6 V	-6 V
$\mathrm{~V}_{\mathrm{GG}}$	20 V	12 V	8 V
R_{L}	430Ω	910Ω	$2 \mathrm{~K} \Omega$
R_{G}	100Ω	220Ω	390Ω
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	-15 mA	-7 mA	-3 mA
$\mathrm{~V}_{\mathrm{IN}}$	-12 V	-7 V	-5 V

 Dielectrically Isolated Dual PNP Transistor

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good hfe Match
- Tight V_{BE} Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { 2N5117 } \\ & \text { 2N5118 } \\ & \hline \end{aligned}$		2N5119		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
hFE	DC Current Gain	100	300	50			$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	
		100		50			$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
	$T_{A}=-55^{\circ} \mathrm{C}$	30		20			$\mathrm{I}^{\mathrm{C}} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
ICBO	Collector Cutoff Current		0.1		0.1	nA	$I_{E}=0, V_{C B}=30 \mathrm{~V}$	
	$\mathrm{T}_{A}=150^{\circ} \mathrm{C}$		0.1		0.1	$\mu \mathrm{A}$		
IEBO	Emitter Cutoff Current		0.1		0.1	nA	$I_{C}=0, V_{E B}=5.0 \mathrm{~V}$	
${ }^{\mathrm{I}_{1}-\mathrm{C}_{2}}$	Collector-Collector Leakage		5.0		5.0	pA	$\mathrm{V}_{C C}=100 \mathrm{~V}$	
GBW	Current Gain Bandwith Product	100		100		MHz	$\mathrm{I}^{\prime} \mathrm{C}=500 \mu \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	
$\mathrm{C}_{\text {ob }}$	Output Capacitance		0.8		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {te }}$	Emitter Transition Capacitance		1.0		1.0		$1 \mathrm{C}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$	
$\mathrm{C}_{\mathrm{C}_{1}-\mathrm{C}_{2}}$	Collector-Collector Capacitance		0.8		0.8		$\mathrm{V}_{\mathrm{CC}}=0$	
$\mathrm{V}_{\text {CEO }}$ (sust)	Collector-Emitter Sustaining Voltage	45		45		V	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	
NF	Narrow Band Noise Figure		4.0		4.0	dB	$\begin{aligned} & I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$	$\mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{~K} \Omega$
$B V_{\text {CBO }}$	Collector Base Breakdown Voltage	45		45		V	$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	
BVEBO	Emitter Base Breakdown Voltage	7.0		7.0		V	$I_{E}=10 \mu \mathrm{~A}, \mathrm{I} C=0$	

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5117		2N5118		2N5119		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX			
$\mathrm{hFE}_{1} / \mathrm{hFE}_{2}$	DC Current Gain Ratio (Note 3)	0.9	1.0						$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{C}}$	
				0.85	1.0	0.8	1.0		$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
$\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}}{ }_{2}$	Base-Emitter Voltage Differential		3.0					mV	$\mathrm{I}_{\mathrm{C}} \mathrm{C}=10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{C}}$	
					5.0		5.0		${ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
${ }^{1} \mathrm{~B}_{1}{ }^{-1} \mathrm{~B}_{2}$	Base Current Differential		10.0		15		40	nA		
$\Delta\left(V_{B E}{ }^{-}-V_{B E}{ }^{\prime}\right) / \Delta T$	Base Voltage Differential Change with Temperature		3.0		5.0		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\Delta I_{B_{1}}{ }^{-1} \mathrm{~B}_{2} / / \Delta T$	Base-Current Differential Change with Temperature		0.3		0.5		1.0	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$		$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^10]
2N5196-2N5199 Dual Monolithic N-Channel JFET

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) -50V
Gate Current (Note 1) 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range........$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $\ldots \ldots . .+300^{\circ} \mathrm{C}$
ONE SIDE BOTH SIDE
Power Dissipation
$250 \mathrm{~mW} . . . \quad 500 \mathrm{~mW}$ Derate above $25^{\circ} \mathrm{C} \ldots . . .2 .6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.. $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
*When ordering water/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER					MIN	MAX			TEST CONDITIONS					
	Gate Reverse Current					-25		nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$					
'GSSR			$\mathrm{T}_{A}=150^{\circ} \mathrm{C}$			-50								
BVGSS	Gate-Source Breakdown Voltage				-50			V	$I_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$					
V_{GS} (off)	Gate-Source Cutoff Voltage				-0.7	-4			$V \mathrm{DS}=20 \mathrm{~V}, \mathrm{ID}=1 \mathrm{nA}$					
V_{GS}	Gate-Source Voltage				-0.2	-3.8			$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$					
IG	Gate Operating Current		$T_{A}=125^{\circ} \mathrm{C}$			-15		pA						
${ }_{\text {G }}$				-15		$n \mathrm{~A}$								
IDSS	Saturation Drain Current (Note 2)				0.7	7		mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					
9fs	Common-Source Forward Transconductance				1000	4000		$\mu \mathrm{mho}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			$\mathrm{f}=1 \mathrm{kHz}$		
gfs	Common-Source Forward Transconductance				700	1600			$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$					
gos	Common-Source Output Conductance					50			$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					
gos	Common-Source Output Conductance					4								
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance					6		pF	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$			$\mathrm{f}=1 \mathrm{MHz}$		
Crss	Common-Source Reverse Transfer Capacitance					2			$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					
. NF	Spot Noise Figure					0.5		dB				$\begin{aligned} & f=100 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{C}}=10 \mathrm{M} \Omega \end{aligned}$		
\bar{e}_{n}	Equivalent Input Noise Voltage					20		$\frac{\mu n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$				$\mathrm{f}=1 \mathrm{kHz}$		
	PARAMETER	2N5196		2N5197		2N5198		2N5199		UNIT	TEST CONDITIONS			
		MIN			MAX	MIN	MAX	MIN	MAX				MIN	MAX
${ }^{\prime} \mathrm{I}_{\mathrm{G}} \mathbf{l}^{\mathbf{I}} \mathrm{G}_{2} \mid$	Differential Gate Current		5		5		5		5	nA	$\begin{aligned} & V_{D G}=20 \mathrm{~V} \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$125^{\circ} \mathrm{C}$		
IDSS1/ 'DSS2	Saturation Drain Current Ratio (Note 2)	0.95	1	0.95	1	0.95	1	0.95	1		$V_{\text {DS }}=20 \because, V_{G S}=0 \mathrm{~V}$			
$\mathrm{gfs} 1 / \mathrm{gfs} 2$	Transconductance Ratio (Note 2)	0.97	1	0.97	1	0.95	1	0.95	1		$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$		
$\mid V_{G S 1}{ }^{-V_{G S 2}}$	Differential Gate-Source Voltage		5		5		10		15	$\mathrm{m} \cdot \mathrm{V}$				
$\Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}$	Gate-Source Differential Voltage Change with Temperature (Note 3)		5		10		20		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$		
			5		10		20		40			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$		
\| $g_{\text {os } 1-g_{\text {cs }} 2}$	Differential Output Conductance		1		1		1		1	$\mu \mathrm{mho}$		$\mathrm{f}=1 \mathrm{kHz}$		

NOTES: 1. Per transistor.

2. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $<3 \%$.
3. Measured at endpoints T_{A} and T_{B}.

2N5397, 2N5398 N-Channel JFET

FEATURES

- $G_{p s}=15 \mathrm{~dB}$ Minimum (Common Gate) at 450 MHz
- Low Noise
- Low Capacitance
ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage $-25 \mathrm{~V}$
Drain-Source Voltage $-25 \mathrm{~V}$
Continuous Forward Gate Current
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec $+300^{\circ} \mathrm{C}$
Power Dissipation
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5397		2N5398		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
IGSSR	Gate Reverse Current $\quad \mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$		-0.1		-0.1	nA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-0.1		-0.1	$\mu \mathrm{A}$		$150{ }^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-25		-25		V	$\mathrm{V}_{\mathrm{DS}}=0,1_{\mathrm{G}}=-1 \mu \mathrm{~A}$	
VGS(off)	Gate-Source Cutoff Voltage	-1.0	-6.0	-1.0	-6.0		$V_{D S}=10 \mathrm{~V}, I_{D}=1 \mathrm{nA}$	
IDSS	Saturation Drain Current (Note 1)	10	30	5	40	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(f)	Gate-Source Forward Voltage		1		1	V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$	
g_{f}	Common-Source Forward Transconductance (Note 1)	6000	10,000			$\mu \mathrm{mho}$	$V_{D S}^{*}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$f=1 \mathrm{kHz}$
				5500	10,000		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
$\mathrm{g}_{\text {OSS }}$	Common-Source Output Conductance		200				$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	
					400		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
Crss	Common-Source Reverse Transfer Capacitance		1.2			pF	$\mathrm{V}_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$f=1 \mathrm{MHz}$
					1.3		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
$\mathrm{Ciss}^{\text {is }}$	Common-Source Input Capacitance		5.0				$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	
					5.5		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
giss	Common-Source Input Conductance		2000			$\mu \mathrm{mho}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$f=450 \mathrm{MHz}$
					3000			
goss	Common-Source Output Conductance		400				$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA}$	
					500		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
gfs	Common-Source Forward	5500	9000		10,000		$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA}$	
9fs	Transconductance (Note 1)			5000	10,000		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
G_{ps}	Common-Source Power Gain (neutralized)	15				dB	$V_{\text {DG }}=10 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA}$	
NF	Common-Source, Spot Noise Figure (neutralized)		3.5					

Note 1: Pulse test duration $=2 \mathrm{~ms}$

2N5432-2N5434 N-Channel JFET

FEATURES

- Low rds(on)- Excellent Switching- Low Cutoff Current
ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source Voltage -25V
Gate-Drain Voltage -25V
Gate Current 100 mA
Drain Current 400 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C}$ $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5432		2N5433		2N5434		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX	MIN	MAX				
	Gate Reverse Current		-200		-200		-200	pA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
GGSSR	Gate Reverse Current $\quad T_{A}=150^{\circ} \mathrm{C}$		-200		-200		-200	nA			
BVGSS	Gate Source Breakdown Voltage	-25		-25		-25		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
ID (off)	Drain Cutoff Current $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		200		200		200	pA	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		
D (off)			200		200		200	nA			
VGS(off)	Gate-Source Cutoff Voltage	-4	-10	-3	-9	-1	-4	V	$V_{D S}=5 \mathrm{~V}, \mathrm{ID}=3 \mathrm{nA}$		
I DSS	Saturation Drain Current (Note 1)	150		100		30		mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
rDS(on)	Static Drain-Source ON Resistance Drain-Source ON Voltage	2	5		7		10	ohm	$V_{G S}=0, I_{D}=10 \mathrm{~mA}$		
VDS(on)			50.		70		100	mV			
$\mathrm{r}_{\mathrm{ds}}(\mathrm{on})$	Drain-Source ON Resistance		5		7		10	ohm	$V_{G S}=0, I_{D}=0$	$\mathrm{f}=1 \mathrm{kHz}$	
Ciss	Common-Source Input Capacitance		30		30		30	pF	$V_{D S}=0, V_{G S}=-10 \mathrm{~V}$	$f=1 \mathrm{MHz}$	
Crss	Common-Source Reverse Transfer Capacitance		15.		15		15				
t_{d}	Turn-ON Delay Time		4		4		4	ns	$\begin{aligned} & V_{\mathrm{DD}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}(\mathrm{on})}=0, \\ & V_{\mathrm{GS}(\mathrm{off})}=-12 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}(\text { on) }}=10 \mathrm{~mA} \end{aligned}$		
t_{r}	Turn-OFF Delay Time		1		1		1				
$t_{\text {off }}$			6		6		6				
t_{f}	Fall Time		30		30		30				

NOTE: 1. Pulse test required, pulsewidth 300μ s, duty cycle $\leqslant 3 \%$.
 RISE TIME 0.25 ns
FALL TIME 0.75
PULSE WIDTH 200 ns

SAMPLING SCOPE
RISE TIME 0.4 ns INPUT RESISTANCE 10 M INPUT RESIATANCE 10 M
INPUT CAPACITANCE 1.5 pF

[^11]
2N5452-2N5454 Dual Monolithic N-Channel JFET

FEATURES

- Low Offset Voltage
- Low Drift
- Low Capacitance
- Low Output Conductance

GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers. This family of general purpose FETs is characterized for low and medium frequency differential amplifier applications requiring low drift and low offset voltage.

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

2N5457-2N5459 N-Channel JFET

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Gate Voltage25 V

Drain-Source Voltage 25V
Continuous Forward Gate Current 10 mA
Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $\ldots+300^{\circ} \mathrm{C}$
Power Dissipation 300 mW
Derate above $25^{\circ} \mathrm{C} \ldots \ldots . \ldots$.

CHIP TOPOGRAPHY
5010*

DICE VITH 4 MIL BONDING PADS
AVAILABLE. CONSULT FACTORY FOR DETAILS.

ORDERING INFORMATION*

TO.92	WAFER	DICE
2N5457	2N5457/W	2N5457/D
2N5458	2N5458/W	2N5458/D
2N5459	2N5459/W	2N5459/D

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER			MIN	TYP	MAX	UNITS	TEST CONDITIONS
BVGSS	Gate-Source Breakdown Voltage		-25	-60		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$
IGSS	Gate Reverse Current				-1.0	nA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$
				. 05	-200		$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$
VGS(off)	Gate-Source Cutoff Voltage	2N5457	-0.5		-6.0	V	$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=10 \mathrm{nA}$
		2N5458	-1.0		-7.0		
		2N5459	-2.0		-8.0		
VGS	Gate-Source Voltage	2N5457		2.5		V	$\begin{aligned} & \begin{array}{l} \mathrm{VDS} \end{array}=15 \mathrm{~V}, I \mathrm{D}=100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{I}=400 \mu \mathrm{~A} \end{aligned}$
		2N5458		3.5			
		2N5459		4.5			
IDSS	Zero-Gate-Voltage Drain Current	2N5457	1.0	3.0	5.0	mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0_{4}$
		2N5458	2.0	6.0	9.0		
		2N5459	4.0	9.0	16		
$\left\|y_{f s}\right\|$	Forward Transfer Admittance	2N5457	1000	3000	5000	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz}$
		2N5458	1500	4000	5500		
		2N5459	2000	4500	6000		
\|Yos	Output Admittance			10	50	$\mu \mathrm{mho}$	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Input Capacitance			4.5	7.0	pF	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \dot{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			1.5	3.0	pF	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$
NF	Noise Figure				3.0	dB	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{MHz} \\ & \mathrm{BW}=1 . \mathrm{Hz}, \mathrm{f}=1 \mathrm{KHz} \end{aligned}$

[^12]
2N5460-2N5465 P-Channel JFET

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)Drain-Gate or Source-Gate Voltage2N5460-2N546240V
2N5463-2N5465 60 V
Gate Current 10 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 310 mW
Derate above $25^{\circ} \mathrm{C}$ $2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)
CONFIGURATION

CHIP
TOPOGRAPHY

ORDERING INFORMATION*

TO-92	WAFER	DICE
2N5460	2N5460/W	2N5460/D
2N5461	2N5461/W	2N5461/D
2N5462	2N5462/W	2N5462/D
2N5463	2N5463/W	2N5463/D
2N5464	2N5464/W	2N5464/D
2N5465	2N5465/W	2N5465/D

*When ordering wafer/dice refer to Appendix B-23.

PARAMETER			MIN	TYP	MAX	UNITS	TEST CONDITIONS	
$\mathrm{BV}_{\mathrm{Gss}}$	Gate-Source Breakdown Voltage	2N5460, 2N5461, 2N5462	40			V	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{DS}}=0$	
		2N5463, 2N5464, 2N5465	60					
VGS(off)	Gate-Source Cutoff Voltagė	2N5460, 2N5463	0.75		6.0	v	$V_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{ID}=1.0 \mu \mathrm{Adc}$	
		2N5461, 2N5464	1.0		7.5			
		2N5462, 2N5465	1.8		9.0			
IGSSR	Gate Reverse Current	2N5460, 2N5461, 2 N5462			5.0	nA	$V_{D S}=0$	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$
		2N5463, 2N5464, 2N5465			5.0			$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$
		2N5460, 2N5461, 2N5462			1.0	$\mu \mathrm{A}$		$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}$
	$\mathrm{T}^{\prime} \mathrm{A}=100^{\circ} \mathrm{C}$	2N5463, 2N5464, 2N5465			1.0			$\mathrm{V}_{\mathrm{GS}}=30^{\prime \prime}$
'DSS	Zero-Gate Voltage Drain Current	2N5460, 2N5463	-1.0		-5.0	mA	$V_{D S}=-15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=0$
		2N5461, 2N5464	-2.0		-9.0			
		2N5462, 2N5465	-4.0		-16			
VGS	Gate-Source Voltage	2N5460, 2N5463	0.5		4.0	V		$1 \mathrm{D}=0.1 \mathrm{~mA}$
		2N5461, 2N5464	0.8		4.5			$\mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~mA}$
		2N5462, 2N5465	1.5		6.0			$\mathrm{I}_{\mathrm{D}}=-0.4 \mathrm{~mA}$
$g_{\text {fs }}$	Forward Transadmittance	2N5460, 2N5463	1000		4000	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D S}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{f}=1.0 \mathrm{kHz}$
		2N5461, 2N5464	1500		5000			
		2N5462, 2N5465	2000		6000			
$\mathrm{g}_{\text {OS }}$	Output Admittance				75	$\mu \mathrm{mho}$		
$\mathrm{C}_{\text {iss }}$	Input Capacitance			5.0	7	pF		
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			1.0	2.0	pF		
NF	Common-Source Noise Figure			1.0	2.5	dB		$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{BW}=1.0 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{G}}=1.0 \mathrm{M} \Omega \end{aligned}$
\bar{e}_{n}	Equivalent Short-Circuit Input Noise Voltage			60	115	$\begin{aligned} & \mathrm{nV} / \mathrm{l} \\ & \sqrt{\mathrm{~Hz}} \end{aligned}$		

2N5484-2N5486 N-Channel JFET

FEATURES

- Up to 400 MHz Operation
- Economy Packaging
- $\mathrm{C}_{\mathrm{rss}}<1.0 \mathrm{pF}$
ABSOLUTE MAXIMUM RATINGS($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)Drain-Gate Voltage25V
Source Gate Voltage 25V
Drain Current 30 mA
Forward Gate Current 10 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$Power Dissipation310 mW
Derate above $25^{\circ} \mathrm{C}$ $2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		2N5484		2N5485		2N5486		UNITS	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX			
IGSSR	Gate Reverse Current ${ }^{T_{A}=100^{\circ} \mathrm{C}}$	*	-1.0 -200	1	-1.0 -200		-1.0 -200	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
BVGSS	Gate-Source Breakdown Voltage	-25		-25		-25		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage	-0.3	-3.0	-0.5	-4.0	-2.0	-6.0		$V_{\text {DS }}=15 \mathrm{~V}, 1 \mathrm{D}=10 \mathrm{nA}$	
IDSS	Saturation Drain Current	1.0	5.0	4.0	10	8.0	20	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)	
gfs	Common-Source Forward Transconductance	3000	6000	3500	7000	4000	8000	. μ mhos	VOS $=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
gos	Common-Source Output Conductance		50		60	,	75			
Re (yfs)	Common-Source Forward Transconductance	2500								$\mathrm{f}=100 \mathrm{MHz}$
				3000		3500				$f=400 \mathrm{MHz}$
Re (yos)	Common-Source Output Conductance		75							$f=100 \mathrm{MHz}$
					100		100			$f=400 \mathrm{MHz}$
$\operatorname{Re}\left(y_{\text {is }}\right)$	Common-Source Input Conductance		100							$f=100 \mathrm{MHz}$
		,			1000		1000			$\mathrm{f}=400 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		5.0		5.0		5.0	pF		$f=1 \mathrm{MHz}$
Crss ${ }^{\text {* }}$	Common-Source Reverse Transfer Capacitance		1.0		1.0		1.0			
Coss	Common-Source Output Capacitance		2.0		2.0		2.0			
NF	Noise Figure		2.5		2.5		2.5	dB	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$	$\mathrm{f}=1 \mathrm{kHz}$
			3.0		2.0		2.0		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$	$f=100 \mathrm{MHz}$
					4.0		4.0		$V_{D S}=15 \mathrm{~V}, I_{D}=4 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$.	$\mathrm{f}=400 \mathrm{MHz}$
G_{ps}	Common-Source Power Gain	16	25						$\mathrm{V}_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	$f=100 \mathrm{MHz}$
				18	30	18	30		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	
				10	20	10	20			$f=400 \mathrm{MHz}$

FEATURES

- Tight Temperature Tracking
- Tight Matching
- High Common Mode Rejection
- Low Noise

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Gate-Source or Gate-Drain Voltage -40V
Gate Current (Note 1) 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $\ldots{ }^{\circ}+300^{\circ} \mathrm{C}$ ONE SIDE BOTH SIDES
Power Dissipation 250 mW ... 500 mW
Derate above $25^{\circ} \mathrm{C} \ldots . .3 .8 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \ldots 7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix 8-23.

ELECTRICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER			MIN	MAX	UNITS	TEST CONDITIONS	
IGSSR	Gate Reverse Current	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-250	pA	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
BVGSS	Gate-Source Breakdown Voltage		-40		\checkmark	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
$\mathrm{V} P$	Gate-Source Pinch-Off Voltage		-0.7	-4		$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
IDSS	Drain Current at Zero Gate Voltage (Note 1)		0.5	7.5	mA	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
gfs	Common-Source Forward Transconductance (Note 1)		1000	4000	$\mu \mathrm{mho}$		$\mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance			10			
Crss.	Common-Source Reverse Transfer Capacitance			5	pF		$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance			25			
\bar{e}_{n}	Equivalent Input Noise Voltage	2N5515-19		30	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$	$\mathrm{f}=10 \mathrm{~Hz}$
		2N5520-24		15			
		2N5515-24		10			$\mathrm{f}=1 \mathrm{kHz}$
IG	Gate Current			-100	pA		
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		-100	nA		
VGS	Gate Source Voltage		-0.2	-3.8	V		
gfs	Common-Source Forward Transconductance (Note 1)		500	1000	$\mu \mathrm{mho}$		$\mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance			1	$\mu \mathrm{mho}$		

MATCHING CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		2N5515,20		2N5516,21		2N5517,22		2N5518,23		2N5519,24		UNIT	TEST CONDITIONS	
		MIN	MAX											
IDSS1	Drain Current Ratio at	0.95	1	0.95	1	0.95	1	0.95	1	0.90	1		$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
IDSS2	Zero Gate Voltage (Note 1)													
\|IG1-IG2		Differential Gate Current $\left(+125^{\circ} \mathrm{C}\right)$		10		10		10	:	10		10	$n \mathrm{~A}$	$V_{\text {DG }}=20 \mathrm{~V}, I_{\text {d }}=200 \mu \mathrm{~A}$
9fs1	Transconductance Ratio	0.97	1	0.97	1	0.95	1	0.95	1	0.90	1		$\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	
9fs2	(Note 1)								,				$f=1 \mathrm{KHz}$	
\|goss1 - ${ }_{\text {oss }}$ 2 1	Differential Output Conductance		0.1		0.1		0.1		0.1		0.1	$\mu \mathrm{mho}$	$\begin{aligned} & \text { VDG }=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & f=1 \mathrm{KHz} \end{aligned}$	
\|VGS1-VGS2		Differential Gate-Source Voltage		5		5		10		15		15	mV	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
$\frac{\Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 21}}{\Delta \mathrm{~T}}$	Gate-Source Voltage Differential Drift ($T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)		5		10		20		40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
CMRR	Common Mode Rejection Ratio (Note 2)	100		100		90					.	dB	$V_{D D}=10$ to $20 \mathrm{~V}, 1 \mathrm{D}=200 \mu \mathrm{~A}$	

NOTES:

1. Pulse duration of 28 ms used during test.
2. $C M R R=20 \log _{10} \Delta V_{D D} / \Delta I V_{G S 1}-V_{G S 2} I,\left(\Delta V_{D D}=10 V\right)$

2N5638-2N5640 N-Channel JFET

FEATURES

- Economy Packaging
- Fast Switching
- Low Drain-Source 'ON' Resistance

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Drain-Source Voltage
Drain-Gate Voltage
Source-Gate Voltage
Forward Gate Current 10 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $\ldots-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 310 mW Derate above $25^{\circ} \mathrm{C} \ldots$.

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5638		2N5639		2N5640		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX	MIN	MAX				
BVGSS	Gate Reverse Breakdown Voltage	-30		-30		-30		\checkmark	$I_{G}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$		
IGSSR	Gate Reverse Current $\quad T_{A}=100^{\circ} \mathrm{C}$		$\frac{-1.0}{-1.0}$		$\frac{-1.0}{-10}$		-1.0	nA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
			1.0		1.0		1.0	$n \mathrm{~A}$	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=-12 \vee(2 N 5638) \\ & V_{G S}=-8 \vee(2 N 5639), V_{G S}=-6 \vee(2 N 5640) \end{aligned}$		
D (off)	Drain Cutoff Current $T_{\text {T }}=100^{\circ} \mathrm{C}$		1.0		1.0		1.0	$\mu \mathrm{A}$			
I DSS	Saturation Drain Current	50		25		5.0		mA	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$ (Note 1)		
VDS(on)	Drain-Source ON Voltage		0.5		0.5		0.5	V	$\begin{aligned} & V_{G S}=0, I_{D}=12 \mathrm{~mA}(2 N 5638) . \\ & I_{D}=6 \mathrm{~mA}(2 \mathrm{~N} 5639), I_{D}=3 \mathrm{~mA}(2 \mathrm{~N} 540) \end{aligned}$		
r DS(on)	Static Drain-Source ON Resistance		30		60		100	Ω	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$		
$r_{\text {ds }}(\mathrm{on})$	Drain-Source ON Resistance		30		60		100		$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$		$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		10		10		10	pF	$V_{G S}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		$f=1 \mathrm{MHz}$
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		4.0		4.0		4.0				
t_{d} (on)	Turn-On Delay Time		4.0		6.0		8.0	ns	$V_{D D}=10 \mathrm{~V}$ ID (on) $=12 \mathrm{~mA}(2 \mathrm{~N} 5638)$ $V_{G S(\text { on })}=0$ ID(on) $=6 \mathrm{~mA}(2 \mathrm{~N} 5639)$ $V_{G S(\text { off })}=-10 \mathrm{~V}$ $\mathrm{D}($ on $)=3 \mathrm{~mA}(2 \mathrm{~N} 5640)$ $\mathrm{R}_{\mathrm{G}}=50 \Omega$		
t_{t}	Rise Time		5.0		8.0		10				
t_{d}	Turn-OFF Delay Time		5.0		10		15				
tf_{f}	Fall Time		10		20		30				

NOTE: 1. Pulse test; $\mathrm{PW} \leqslant 300 \mu \mathrm{~s}$, duty cycle $\leqslant 3.0 \%$.

2N5902-2N5909 Monolithic Dual N-Channel JFET

FEATURES

- Tight Tracking
- Good Matching

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) Gate-Drain or Gate-Source Voltage (Note 1) $-40 \mathrm{~V}$
Gate Current (Note 1) 10 mA
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$

ORDERING INFORMATION*

T0.99	WAFER	DICE	T0.99	WAFER	DICE
2N5902	2N5902/W	2N5902/D	2N5906	2N5906/W	2N5906/D
2N5903	2N5903/W	2N5903/D	2N5907	2N5907/W	2N5907I
2N5904	2N5904/W	2N5904/D	2N5908	2N5908/W	2N5908/
2N5905	2N5905/W	2N5905/D	2N5909	2N5905/W	2N590

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

[^13]
[NTER尺

FEATURES

- Tight Tracking
- Low Insertion Loss
- Good Matching

ABSOLUTE MAXIMUM RATINGS

Gate-Drain or Gate Source Voltage -25V		
Gate Current		50 mA
Storage Temperat	Range	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Tempera	ure Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	oldering, 10 sec.$)$	$+300^{\circ} \mathrm{C}$
	то-71	то-99
	one Side both sides	One Side both sides
Power Dissipation	300 mW 500 mW	300 mW 500 mW
	$1.7 \quad 2.9$	$3.0 \quad 4.0$
Derate above $25^{\circ} \mathrm{C}$	$\mathrm{mW} /{ }^{\circ} \mathrm{C} \quad \mathrm{mW} /{ }^{\circ} \mathrm{C}$	$\mathrm{mW} /{ }^{\circ} \mathrm{C} \quad \mathrm{mW} /{ }^{\circ} \mathrm{C}$

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FEATURES

- Ultra Low Noise
- High CMRR
- Low Offset
- Tight Tracking

2N6483-2N6485 Monolithic Low Noise Dual N-Channel JFET

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

MATCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	2N6483		2N6484		2N6485		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
$\frac{\text { 'DSS } 1}{\text { IDSS2 }}$	Drain Current Ratio at Zero Gate Voltage	0.95	1	0.95	1	0.95	1		$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 2)
${ }^{\prime} \mathrm{I}_{\mathrm{G} 1}{ }^{-1} \mathrm{G}_{2} \mid$	- Differential Gate Current		10		10		10	nA	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$
$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{gs} 2}}$	Transconductance Ratio	0.97	1.	0.97	1	0.95	1		$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \\ & \mathrm{f}=1 \mathrm{KHz} \text { (Note 2) } \end{aligned}$
$\left\|g_{\mathrm{os} 1}-\mathrm{g}_{\mathrm{os} 2}\right\|$	Differential Output Conductance		0.1		0.1		0.1	, $\mu \mathrm{mho}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{KHz} \end{aligned}$
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage		5		10		15	mV	$V_{\text {DG }}=20 \mathrm{~V},{ }^{\prime} \mathrm{D}=200 \mu \mathrm{~A}$
$\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	Gate-Source Voltage Differen. tial Drift		5		10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
CMRR	Common Mode Rejection Ratio	' 100		100		90		dB	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A}(\text { Note } 3) \end{aligned}$

NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of 2 ms used during test.
3. $\mathrm{CMRR}=20 \log _{10} \Delta \mathrm{~V}_{\mathrm{DD}} / \Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2} 1,\left(\Delta \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}\right)$, not included in JEDEC registration

TYPICAL OPERATING CHARACTERISTICS

TYPICAL CAPACITANCE vs. VDS

Monolithic Low Noise Dual N-Channel JFET

FEATURES

- Ultra Low Noise
- High CMRR
- Low Offset
- Tight Tracking

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) -50V
Gate-Gate Voltage . $\pm 50 \mathrm{~V}$
Gate Current (Note 1) 50 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$

	ONE SIDE	
Power Dissipation	250 mw	500 mW
Derate above $25^{\circ} \mathrm{C} \ldots . .3 .8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$..... $7.7 \mathrm{~mW} /$		

GENERAL DESCRIPTION

This N-Channel Junction FET is characterized for ultra low noise applications requiring tightly controlled and specified noise parameters at 10 Hz and 1000 Hz . Tight matching specifications make this device ideal as the input stage for low frequency differential instrumentation amplifiers.

ORDERING INFORMATION*

TO.71	WAFER	DICE
IMF6485	IMF6485/W	IMF6485/D

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
			-200	pA	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$,
GSS	Gate Reverse Current $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-200	nA	
$B V_{\text {GSS }}$	Gate-Source Breakdown Voltage	-50		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$
V_{p}	Gate-Source Pinch-Off Voltage	-0.7	-4.0		$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$
'DSS	Drain Current at Zero Gate Voltage (Note 2)	0.5	7.5	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
g_{fs}	Common-Source Forward Transconductance (Note 2)	1000	4000	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{KHz}$
$\mathrm{g}_{\text {oss }}$	Common-Source Output Conductance		10		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{KHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		20	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		3.5		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$
${ }^{\prime}{ }^{\text {G }}$	Gate Current		-100	pA	$\mathrm{V}_{\mathrm{GD}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} .$
	$T_{A}=150^{\circ} \mathrm{C}$		-100	nA	
V_{GS}	Gate-Source Voltage	0.2	-3.8	V	$V_{\text {DG }}=20 \mathrm{~V},{ }_{\mathrm{D}}=200 \mu \mathrm{~A}$
$\mathrm{g}_{\text {f }}$	Common-Source Forward Transconductance	500	1500	$\mu \mathrm{mho}$	$V_{D G}=20 \mathrm{~V},{ }^{\prime} \mathrm{D}=200 \mu \mathrm{~A}, f=1 \mathrm{KHz}$
9 OS	Common Source Output Conductance		1		$V_{D G}=20 \mathrm{~V},{ }^{\text {D }}=200 . \mu \mathrm{A}$
\bar{e}_{n}	Equivalent Input Noise Voltage		15	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{D}=200 \mu \mathrm{~A}, \mathrm{f}=10 \mathrm{~Hz}$
			10		$V_{D S}=20 \mathrm{~V}, 1_{D}=200 \mu \mathrm{~A}, 1=1 \mathrm{KHz}$

NOTES:

1. Per transistor.
2. Pulse test required; pulse width $=2 \mathrm{~ms}$.

IMF6485

MATCHING CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
$\frac{I_{\text {DSS1 }}}{I_{\text {DSS2 }}}$	Drain Current Ratio at Zero Gate Voltage	0.95	1		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 2)
$\left\|\mathrm{I}_{1}-\mathrm{I}_{\mathrm{G}_{2}}\right\|$	Differential Gate Current		10	$n A$	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$
$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{gs} 2}}$	Transconductance Ratio	0.95	1		$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{KHz}(\text { Note } 2) \end{aligned}$
$\left\|g_{o s 1}-g_{o s 2}\right\|$	Differential Output Conductance		0.1	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{KHz} \end{aligned}$
$\left\|v_{G S 1}-v_{G S 2}\right\|$	Differential Gate-Source Voltage		25	mV	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
$\frac{\Delta\left\|V_{G S 1}-v_{G S 2}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{C G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
CMRR	Common Mode Rejection Ratio	90		dB	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \text { (Note 3) } \end{aligned}$

NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of 2 ms used during test.
3. $\mathrm{CMRR}=20 \log _{10} \Delta \mathrm{~V}_{\mathrm{DD}} / \Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2} 1,\left(\Delta \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}\right)$

TYPICAL OPERATING CHARACTERISTICS

TYPICAL CAPACITANCE vs. VDS

$\mathrm{V}_{\mathrm{DS}}(\mathrm{V})$

Diode Protected P-Channel Enhancement Mode MOSFET

FEATURES

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibilty in Biasing
- Internally Connected Diode Protects Gate from Damage due to Overvoltage
ABSOLUTE MAXIMUM RATINGS($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source or Drain-Gate Voltage 40V
Drain Current 50 mA
Gate Forward Current $10 \mu \mathrm{~A}$
Gate Reverse Current 1 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
pead Tomperature Sold
Lead Temperature (Soldering, 10 sec .) $+300^{\circ} \mathrm{C}$
Power Dissipation 375 mW
Derate above $25^{\circ} \mathrm{C}$ $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ORDERING INFORMATION*

TO.72	WAFER	DICE
3N161	3N161/W	3N161/D

When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FEATURES

- Very High Input Impedance
- High Gate Breakdown
- Fast Switching

- Low Capacitance

ABSOLUTE MAXIMUM RATINGS (Note 1)

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-Source or Drain-Gate Voltage

```
3N163 40 V
``` 3N164 .............................................. . 30 V
Static Gate-Source Voltage
```

3N163 $\pm 40 \mathrm{~V}$

```
3N164 \(\pm 30 \mathrm{~V}\)
Transient Gate-Source Voltage (Note 2) \(\pm 125 \mathrm{~V}\)
Drain Current 50 mA
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec .) \(+300^{\circ} \mathrm{C}\)
Power Dissipation 375 mW
Derate above \(+25^{\circ} \mathrm{C}\) \(3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

\section*{NOTES:}
1. See handling precautions on 3 N 170 data sheet.
2. Devices must not be tested at \(\pm 125 \mathrm{~V}\) more than once, nor for longer than 300 ms .

3N163, 3N164 P-Channel Enhancement Mode MOS FET

ELECTRICAL CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{BS}}=0\) unless noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|c|}{3N163} & \multicolumn{2}{|c|}{3N164} & \multirow[b]{2}{*}{UNITS} & \multirow[b]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN & MAX & MIN & MAX & & \\
\hline IGSSR & Gate Reverse Leakage Current & & 10 & & 10 & \multirow{3}{*}{pA} & \multirow{3}{*}{\[
\begin{aligned}
& V_{G S}=-40 V(3 \mathrm{~N} 163) \\
& V_{G S}=-30 \mathrm{~V}(3 \mathrm{~N} 164)
\end{aligned}
\]} \\
\hline \multirow[t]{2}{*}{IGSSF} & Gate Forward Current & & -10 & & -10 & & \\
\hline & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & & -25 & & -25 & & \\
\hline \(B V_{\text {oss }}\) & Drain-Source Breakdown Voltage & -40 & & -30 & & \multirow{5}{*}{v} & \(I_{D}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}: 0\) \\
\hline \(B V_{\text {SDS }}\) & Source Drain Breakdown Voltage & -40 & & -30 & & & \(\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=0, \mathrm{~V}_{\mathrm{DB}}=0\) \\
\hline \(\mathrm{V}_{\text {GS(m) }}\) & Threshold Voltage & -2.0 & -5.0 & -2.0 & -5.0 & & \(V_{\text {DS }}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}\) \\
\hline . \(V_{G S(t)}\) & Threshold Voltage & -2.0 & -5.0 & -2.0 & -5.0 & & \(V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}} \cdots-10 \mu \mathrm{~A}\) \\
\hline \(\mathrm{V}_{\text {GS }}\) & Gate Source Voltage & -3.0 & -6.5 & -3.0 & -6.5 & & \(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-0.5 \mathrm{~mA}\) \\
\hline \(\mathrm{I}_{\text {Dss }}\) & Zero Gate Voltage Drain Current & & 200 & & 400 & \multirow[b]{2}{*}{pA} & \(V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}-0\) \\
\hline \(\mathrm{I}_{\text {SOS }}\) & Source Drain Current & & 400 & & 800 & & \(V_{S D} 15 \mathrm{~V}, \mathrm{~V}_{G S} \mathrm{~V}_{\mathrm{DB}}-0\) \\
\hline ros(on) & Dran Source on Resistance & & 250 & & 300 & ohros & \(V_{G S}=-20 \mathrm{~V}, I_{D}=-100 \mu \mathrm{~A}\) \\
\hline Ioton) & On Drain Current & -5.0 & -30.0 & -3.0 & -30. \({ }^{\text {d }}\) & mA & \(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=-10 \mathrm{~V}\) \\
\hline \(\mathrm{gfs}^{\text {s }}\) & Forward Transconductance & 2000 & 4000 & 1000 & 4000 & \multirow[b]{2}{*}{\(\mu \mathrm{mhos}\)} & \multirow[t]{2}{*}{\(V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}} \quad-10 \mathrm{~mA}, 1.1 \mathrm{KH}\)} \\
\hline gos & Output Admittance & & 250 & & 250 & & \\
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance - Output Shorted & & 2.5 & & 2.5 & \multirow{3}{*}{pF} & \multirow{3}{*}{\(V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}\)} \\
\hline \(\mathrm{C}_{\text {rss }}\) & Reverse Transfer Capacitance & & 0.7 & & 0.7 & & \\
\hline Coss & Output Capacitance Input Shorted & & 3.0 & & 3.0 & & \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{BS}}=0\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{t}_{\text {on }}\) & Turn-On Delay Time & 12 & 12 & \multirow{3}{*}{ns} & \(V_{D O}=-15 \mathrm{~V}\) \\
\hline t, & Rise Time & 24 & 24 & & \(I_{\text {Dion }}=-10 \mathrm{~mA}\) \\
\hline \(\mathrm{t}_{\text {oft }}\) & Turn-Off Time & 50 & 50 & & \(\mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{L}}=1.4 \mathrm{k}!2\) \\
\hline
\end{tabular}

SWITCHING TIME CIRCUIT

SWITCHING WAVEFORM

\section*{3N165, 3N166 Dual P-Channel Enhancement Mode MOS FET}

\section*{FEATURES}
- Very High Impedance
- High Gate Breakdown
- Low Capacitance
ABSOLUTE MAXIMUM RATINGS (Note 1)
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified)Drain-Source or Drain-Gate Voltage (Note 2)3N16540 V
3N166 30 V
Transient Gate-Source Voltage (Note 3) \(\pm 125\)
Gate-Gate Voltage \(\pm 80 \mathrm{~V}\)
Drain Current (Note 2)

\(\qquad\) 50 mA
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec .) \(+300^{\circ} \mathrm{C}\)
Power Dissipation
One Side 300 mW
Both Sides 525 mW
Total Derating above \(25^{\circ} \mathrm{C}\) \(4.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

PIN
CONFIGURATION
TO-99

DEVICE SCHEMATIC

CHIP
2506 TOPOGRAPHY

ORDERING INFORMATION*
\begin{tabular}{|c|c|c|}
\hline TO-99 & WAFER & DICE \\
\hline 3N165 & 3N165/W & 3N165/D \\
\hline 3N166 & 3N166/W & 3N166/D \\
\hline
\end{tabular}
*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{35}=0\) unless notes).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline IGSSR & Gate Reverse Leakage Current & & 10 & \multirow{5}{*}{pA} & \(\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{IGSSF} & Gate Forward Leakage Current & & -10 & & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}\)} \\
\hline & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & & -25 & & \\
\hline IDSS & Drain to Source Leakage Current & & -200 & & \(V_{\text {DS }}=-20 \mathrm{~V}\) \\
\hline ISDS & Source to Drain Leakage Current & & -400 & & \(V_{S D}=-20, V_{D B}=0\) \\
\hline ID(on). & On Drain Current & -5 & -30 & mA & \(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\mathrm{GS}}(\mathrm{th})\) & Gate Source Threshold Voltage & -2 & -5 & \multirow[t]{2}{*}{v} & \(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\) \\
\hline \(\mathrm{V}_{\mathrm{GS}}(\mathrm{th})\) & Gate Source Threshold Voltage & -2 & -5 & & \(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\) \\
\hline rDS(on) & Drain Source ON Resistance & & 300 & ohms & \(V_{\text {GS }}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}\) \\
\hline \(\mathrm{g}_{\mathrm{fs}}\) & Forward Transconductance & 1500 & 3000 & \multirow[t]{2}{*}{\(\mu \mathrm{mhos}\)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}\)} \\
\hline gos & Output Admittance & & 300 & & \\
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance & & 3.0 & \multirow{3}{*}{pF} & \multirow{3}{*}{\(V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}\)} \\
\hline \(\mathrm{C}_{\text {rss }}\) & Reverse Transfer Capacitance & & 0.7 & & \\
\hline Coss & Output Capacitance & & 3.0 & & \\
\hline \(\mathrm{R}_{\mathrm{E}}\left(\mathrm{Y}_{\mathrm{fs}}\right)\) & Common Source Forward Transconductance & 1200 & & \(\mu\) mhos & \(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{MATCHING CHARACTERISTICS 3N165}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline \(\mathrm{Y}_{\mathrm{fs} 1} / \mathrm{Y}_{\mathrm{fs} 2}\) & Forward Transconductance Ratio & 0.90 & 1.0 & & \(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz}\) \\
\hline \(\mathrm{V}_{\mathrm{GS1} 12}\) & Gate-Source Threshold Voltage Differential & & 100 & mV & \(V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}\) \\
\hline \[
\left|\frac{\Delta V_{\text {GS1-2 }}}{\Delta T}\right|
\] & Gate Source Threshold Voltage Differential Change with Temperature & - & 100
100 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) & \[
\begin{aligned}
\mathrm{V}_{\mathrm{DS}} & =-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A} \\
\mathrm{~T}_{\mathrm{A}} & =-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: See handling precautions on 3N170 data sheet.
Note 2: Per transistor.

Note 3: Devices must not be tested at \(\pm 125 \mathrm{~V}\) more than once, nor for longer than 300 ms .

3N170, 3N171 N-Channel Enhancement Mode MOS FET

\section*{FEATURES}
- Low Switching Voltages
- Fast Switching Times
- Low Drain-Source Resistance
- Low Reverse Transfer Capacitance
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ABSOLUTE MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)} \\
\hline Drain-Gate Voltage & \(\pm 35 \mathrm{~V}\) \\
\hline Drain-Source Voltage & 25 V \\
\hline Gate-Source Voltage & \(\pm 35 \mathrm{~V}\) \\
\hline Drain Current & 30 mA \\
\hline Storage Temperature & \\
\hline Range & \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\) \\
\hline Operating Temperature & \\
\hline Range & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Lead Temperature & \\
\hline (Soldering, 10 sec .) & \(+300^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & 300 mW \\
\hline Derate above \(25^{\circ} \mathrm{C}\) & \(1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted) Substrate connectored to source.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline , & \multicolumn{2}{|l|}{PARAMETER} & \multirow[t]{2}{*}{\[
\frac{\text { MIN }}{25}
\]} & \multirow[t]{2}{*}{MAX} & \multirow[t]{2}{*}{\(\frac{\text { UNITS }}{\text { V }}\)} & \multirow[t]{2}{*}{TEST CONDITIONS
\[
I_{D}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0
\]} \\
\hline BVDSS & \multicolumn{2}{|l|}{Drain-Source Breakdown Voltage} & & & & \\
\hline IGSS & \multicolumn{2}{|l|}{Gate Leakage Current \({ }^{T_{A}=125^{\circ} \mathrm{C}}\)} & & 10 & pA & \(\mathrm{V}_{\mathrm{GS}}=-35 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0\) \\
\hline \multirow[t]{2}{*}{IDSS} & \multicolumn{2}{|l|}{Zero-Gate-Voltage Drain Current} & & 10 & nA & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline & & \({ }_{A}=125^{\circ} \mathrm{C}\) & & 1.0 & \(\mu \mathrm{A}\) & \\
\hline \(\mathrm{V}_{\mathrm{GS}}(\mathrm{th})\) & Gate-Source Threshold & 3N170 & 1.0 & 2.0 & V & \(V_{D S}=10 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}\) \\
\hline & & 3N171 & 1.5 & 3.0 & & \\
\hline ID(on) & "ON" Drain Current & & 10 & & mA & \(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}\) \\
\hline VDS(on) & Drain-Source "ON" Vo & & & 2.0 & V & \(1 \mathrm{D}=10 \mathrm{~mA}, \mathrm{VGS}=10 \mathrm{~V}\) \\
\hline rds(on) & Drain-Source ON Resist & ance & & 200 & \(\Omega\) & \(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, \mathrm{f}=1.0 \mathrm{kHz}\) \\
\hline \(\left|Y_{f s}\right|\) & Forward Transfer Admi & tance & 1000 & & \(\mu \mathrm{mhos}\) & \[
\begin{aligned}
& \mathrm{VDS}=10 \mathrm{~V}, \mathrm{ID}=2.0 \mathrm{~mA}, \\
& \mathrm{f}=1.0 \mathrm{kHz}
\end{aligned}
\] \\
\hline Crss & Reverse Transfer Capaci & ance & & 1.3 & & \(V_{D S}=0, V_{G S}=0, f=1.0 \mathrm{MHz}\) \\
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance & & & 5.0 & pF & \(V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1.0 \mathrm{MHz}\) \\
\hline \(\mathrm{C}_{\mathrm{d} \text { (sub) }}\) & Drain-Substrate Capacit & nce & & 5.0 & & \(V_{D(S U B)}=10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\) \\
\hline \(t_{d}(0 n)\) & Turn-On Delay .Time & & & 3.0 & & \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Rise Time & & & 10 & ns & \[
V_{G S}(o n)=10 \mathrm{~V}, V_{G S}(n f f)=0 .
\] \\
\hline \(\mathrm{t}_{\mathrm{d}}\) (off) & Turn-Off Delay Time & & & 3.0 & & \(\mathrm{V}_{\mathrm{GS}}(\) on \()=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}(\) off \()=0\),
\[
\mathrm{R}_{\mathrm{G}}=50 \Omega
\] \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Fall Time & & & 15 & & \\
\hline
\end{tabular} Mode MOS FET
FEATURES
- High Input Impedance
- Diode Protected Gate
ABSOLUTE MAXIMUM RATINGS(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Drain-Source or Drain-Gate Voltage
3N172 40 V
3N173 30 V
Drain Current 50 mA
Gate Forward Current \(10 \mu \mathrm{~A}\)
Gate Reverse Current 1 mA
Storage Temperature \(65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec .) \(+300^{\circ} \mathrm{C}\)
Power Dissipation 375 mW
Derate above \(25^{\circ} \mathrm{C}\) \(3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (\(@ 25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{BS}}=0\) unless noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow{2}{*}{PARAMETER}} & \multicolumn{2}{|c|}{3N172} & \multicolumn{2}{|c|}{3N173} & \multirow{2}{*}{UNITS} & \multirow{2}{*}{TEST CONDITIONS} \\
\hline & & MIN & MAX & MIN & MAX & & \\
\hline \multirow[t]{2}{*}{IGSSR} & Gate Reverse Current & & -200 & & -500 & pA & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {GS }}=-20 \mathrm{~V}\)} \\
\hline & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & & -0.5 & & -1.0 & \(\mu \mathrm{A}\) & \\
\hline \(\mathrm{BV}_{\text {Gss }}\) & Gate Breakdown Voltage & -40 & -125 & -30 & -125 & \multirow{6}{*}{V} & \(I_{D}=-10 \mu \mathrm{~A}\) \\
\hline \(B V_{\text {DSs }}\) & Drain-Source Breakdown Voltage & -40 & & -30 & & & \(\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\) \\
\hline \(\mathrm{BV}_{\text {SDS }}\) & Source-Drain Breakdown Voltage & -40 & & -30 & & & \(\mathrm{I}_{S}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DB }}=0\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {GS(th) }}\)} & \multirow[t]{2}{*}{Threshold Voltage} & -2.0 & -5.0 & -2.0 & -5.0 & & \(V_{\text {DS }}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}\) \\
\hline & & -2.0 & -5.0 & -2.0 & -5.0 & & \(V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mu \mathrm{~A}\) \\
\hline \(V_{\text {Gs }}\) & Gate Source Voltage & -3.0 & -6.5 & -2.5 & -6.5 & & \(V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}\) \\
\hline Ioss & Zero Gate Voltage Drain Current & & -0.4 & & -10 & nA & \(V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\) \\
\hline IsDS & Zero Gate Voltage Source Current & & -0.4 & & -10 & & \(\mathrm{V}_{\mathrm{SD}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0, \mathrm{~V}_{\mathrm{GD}}=0\) \\
\hline \(\mathrm{r}_{\text {DS }}\) (on) & Drain Source On Resistance & & 250 & & 350 & ohms & \(V_{G S}=-20 \mathrm{~V}, I_{D}=-100 \mu \mathrm{~A}\) \\
\hline \(\mathrm{I}_{\text {D(on) }}\) & On Drain Current & -5.0 & -30 & \(-5.0\) & -30 & mA & \(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{FEATURES}
- Very High Input Impedance
- High Gate Breakdown 3N190-3N191
- Zener Protected gate 3N188-3N189
- Low Capacitance

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Drain-Source or Drain-Gate Voltage (Note 1)
3N188, 3N189... 40V
3N188, 3N189... 30 V
Transient Gate-Source Voltage (Notes 1 and 2) .. \(\pm 125 \mathrm{~V}\)
Gate-Gate Voltagae
\(\pm 80 \mathrm{~V}\)
Drain Current (Note 1) 50 mA
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature \(\ldots-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.) \(\ldots{ }^{2}+300^{\circ} \mathrm{C}\)
Power Dissipation
One Side 300 mW
Both Sides 525 mW
Total Derating above \(25^{\circ} \mathrm{C} \ldots \ldots4 .2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

\section*{CHIP \\ TOPOGRAPHY}

2506

ORDERING INFORMATION*
\begin{tabular}{|c|c|c|}
\hline TO-99 & WAFER & DICE \\
\hline 3N188 & - & - \\
\hline 3N189 & - & - \\
\hline 3N190 & 3N190/W & 3N190/D \\
\hline 3N191 & 3N191/W & 3N191/D \\
\hline
\end{tabular}
*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) and \(\mathrm{V}_{\mathrm{BS}}=0\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} & \multicolumn{2}{|c|}{\begin{tabular}{l}
3N188 \\
3N189
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
3N190 \\
3N191
\end{tabular}} & \multirow[b]{2}{*}{UNITS} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} \\
\hline & & MIN & MAX & MIN & MAX & & & \\
\hline IGSSR & Gate Reverse Current & & & & 10 & \multirow{3}{*}{pA} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}\)} \\
\hline & Gate Forward Current \(T^{\circ}\) & & -200 & & -10. & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(V_{G S}=-40 \mathrm{~V}\)}} \\
\hline GSSF & Gate Forward Current \(T_{A}=125^{\circ} \mathrm{C}\) & & -200 & & -25 & & & \\
\hline BV \({ }^{\text {DSS }}\) & Drain-Source Breakdown Voltage & -40 & & -40 & & \multirow{5}{*}{V} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\)} \\
\hline \(\mathrm{BV}_{\text {SDS }}\) & \multirow[t]{3}{*}{Source-Drain Breakdown Voltage Threshold Voltage} & -40 & & -40 & & & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {BD }}=0\)} \\
\hline \(\mathrm{V}_{\text {GS }}(\mathrm{th})\) & & -2.0 & -5.0 & -2.0 & -5.0 & & \multicolumn{2}{|l|}{\(V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mu \mathrm{~A}\)} \\
\hline & & -2.0 & -5.0 & -2.0 & -5.0 & & \multicolumn{2}{|l|}{\(V_{\text {DS }}=V_{\text {GS, }} \mathrm{I}_{\text {D }}=-10 \mu \mathrm{~A}\)} \\
\hline \(\mathrm{V}_{\text {GS }}\) & Gate Source Voltage & \(-3.0\) & -6.5 & -3.0 & -6.5 & & \multicolumn{2}{|l|}{\(V_{D S}=-15 \mathrm{~V} I_{D}=-500 \mu \mathrm{~A}\)} \\
\hline \({ }^{\text {I DSS }}\) & Zero Gate Voltage Drain Current & & -200 & & -200 & \multirow[t]{2}{*}{pA} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}\)} \\
\hline ISDS & Source Drain Current & & -400 & & -400 & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {SD }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0\)} \\
\hline msinn) & Drain-Source on Resistance & & 300 & & 300 & ohms & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {DS }}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}\)} \\
\hline ID(on) & On Drain Current & -5.0 & -30.0 & -5.0 & -30.0 & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}\)} \\
\hline \(\mathrm{g}_{\mathrm{fs}}\) & Forward Transconductance(Note 3) & 1500 & 4000 & 1500 & 4000 & \multirow[t]{2}{*}{\(\mu \mathrm{mhos}\)} & \multirow{5}{*}{\(V_{D S}=-15 \mathrm{~V}, 1 \mathrm{D}=-5 \mathrm{~mA}\)} & \multirow[t]{2}{*}{\(\mathrm{f}=1 \mathrm{kHz}\)} \\
\hline Yos & Output Admittance & & 300 & & 300 & & & \\
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance Output Shorted & & 4.5 & & 4.5 & \multirow{3}{*}{pF} & & \multirow{3}{*}{\(f=1 \mathrm{MHz}\)} \\
\hline \(\mathrm{C}_{\text {rss }}\) & Reverse Transfer Capacitance & & 1.5 & & 1.0 & & & \\
\hline Coss & Output Capacitance Input Shorted & & 3.0 & & 3.0 & & & \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{BS}}=0\) unless noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(t_{\text {d }}\) (on)} & \multirow[b]{2}{*}{Turn On Delay Time} & MIN & MAX & UNITS & \multicolumn{2}{|l|}{TEST CONDITIONS} \\
\hline & & & 15 & \multirow{3}{*}{ns} & \(V_{D D}=-15 \mathrm{~V}, I_{D}=-5 \mathrm{~mA}\) & \\
\hline \(t_{r}\) & Rise Time & & 30 & & \(R_{G}=R_{L}=1.4 \mathrm{k} \Omega\) & \\
\hline \({ }_{\text {toff }}\) & Turn Off Time & & 50 & & & \\
\hline
\end{tabular}

MATCHING CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{BS}}=0\) unless noted) 3N188 and 3N190
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\mathrm{Y}_{\mathrm{fs} 1} / Y_{\mathrm{fs} 2}\)} & \multirow[b]{2}{*}{Forward Transconductance Ratio} & MIN & MAX & UNITS & \multirow[b]{2}{*}{\(V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{kHz}\)} \\
\hline & & 0.85 & 1.0 & & \\
\hline \(\mathrm{V}_{\text {GS1-2 }}\) & Gate Source Threshold Voltage Differential & & 100 & mV & \(\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}\) \\
\hline \[
\frac{\Delta V_{\mathrm{GS1-2}}}{\Delta T}
\] & Gate Source Threshold Voltage Differential Change with Temperature (Note 4) & & 100 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) & \[
\begin{array}{r}
V_{D S}=-15 \mathrm{~V}, \mathrm{I} D=-500 \mu \mathrm{~A}, \\
T=-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C}
\end{array}
\] \\
\hline \(\frac{\Delta V G S 1-2}{\Delta T}\) & Gate Source Threshold Voltage Differential Change with Temperature (Note 4) & & 100 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) & \[
\begin{array}{r}
V_{D S}=-15 V, I D_{D}=-500 \mu \mathrm{~A} \\
T=+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{array}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. Per transistor

\footnotetext{
3. Pulse test duration \(=300 \mu \mathrm{sec}\); duty cycle \(\leqslant 3 \%\).
4. Measured at end points, \(T_{A}\) and \(T_{B}\).
}

\section*{FEATURES}
- \(\mathrm{I}_{\mathrm{R}}=0.1 \mathrm{pA}\) (typical)
- \(\mathrm{BV}_{\mathrm{R}}>30 \mathrm{~V}\)
- \(\mathrm{C}_{\mathrm{rss}}=0.75 \mathrm{pF}\) (typical)

\section*{GENERAL DESCRIPTION}

The ID100 and ID101 are monolithic dual diodes intended for use in applications requiring extremely low leakage currents. Applications include interstage coupling with reverse isolation, signal clipping and clamping and protection of ultra low leakage FET differential dual and operational amplifiers.

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Diode Reverse Voltage30 V

Diode to Diode Voltage \(\pm 50 \mathrm{~V}\)
Forward Current 20 mA
Reverse Current \(100 \mu \mathrm{~A}\)
Storage Temperature Range \(\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.) \(+300^{\circ} \mathrm{C}\)
Power Dissipation 300 mW
Derate above \(25^{\circ} \mathrm{C}\).

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} & \multicolumn{3}{|c|}{ID100, ID101} & \multirow[b]{2}{*}{UNITS} & \multirow[b]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN. & TYP. & MAX. & & \\
\hline \(V_{F}\) & Forward Voltage Drop & 0.8 & & 1.1 & V & \(I_{F}=10 \mathrm{~mA}\) \\
\hline \(B V_{R}\) & Reverse Breakdown Voltage & 30 & & & V & \(I_{R}=1 \mu \mathrm{~A}\) \\
\hline \multirow[t]{3}{*}{\({ }^{\prime} \mathrm{R}\)} & \multirow[t]{2}{*}{Reverse Leakage Current} & & 0.1 & & \multirow[t]{2}{*}{pA} & \(V_{R}=1 \mathrm{~V}\) \\
\hline & & & 2.0 & 10 & & \multirow{3}{*}{\(V_{R}=10 \mathrm{~V}\)} \\
\hline & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & 10 & nA & \\
\hline \({ }^{\prime} \mathrm{R}_{1}-\mathrm{I}_{\mathrm{R}_{2}} \mid\) & Differential Leakage Current & & & 3 & pA & \\
\hline \(\mathrm{Cr}_{\text {rs }}\) & Total Reverse Capacitance & & 0.75 & 1 & pF & \(\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{TYPICAL CHARACTERISTICS OF ID100/ID101}

\section*{FEATURES}
- Interfaces Directly w/T²L Logic Elements
- rDS(on) < 75』 for 5V Logic Drive
- \(I_{D(\text { off })}<\mathbf{1 0 0}\) pA

\section*{GENERAL DESCRIPTION}

This P-channel JFET has been designed to directly interface with \(T^{2} L\) logic, thus eliminating the need for costly drivers, in analog gate circuitry. Bipolar inputs of \(\pm 15 \mathrm{~V}\) can be switched. The FET is OFF for hi level inputs \(1+5 \mathrm{~V}\) or +15 V) and ON for low level inputs \((<0.5 \mathrm{~V}\) for \(\mathrm{IT} 100 ;<\) 1.5 V for IT101.

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Source Voltage .. 35V.
Gate-Drain Voltage 35V
Gate Current .. 50 mA
Storage Temperature Range \(\ldots-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots \ldots . .-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec .) \(+300^{\circ} \mathrm{C}\)
Power Dissipation 300 mW Derate above \(25^{\circ} \mathrm{C} \ldots \ldots . . . \ldots . .\).

\section*{IT100, IT101 Channel JFET}

*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} & \multicolumn{2}{|r|}{1 T100} & \multicolumn{2}{|c|}{IT101} & \multirow[b]{2}{*}{UNIT} & \multirow[b]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN & MAX & MIN & MAX & & \\
\hline IDSS & Drain Current & -10 & & -20 & & mA & \(V_{G S}=0, V_{D S}=-15 \mathrm{~V}\) \\
\hline Vp & Pinch Off Voltage & 2 & 4.5 & 4 & 10 & \multirow{2}{*}{V} & \(I_{D}=1 \mathrm{nA}, V_{D S}=-15 \mathrm{~V}\) \\
\hline BVGSS & Gate-Source Breakdown Voltage & 35 & & 35 & & & \(\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0\) \\
\hline IGSSR & Gate Reverse Current & & 200 & & 200 & pA & \(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\) \\
\hline \(\mathrm{g}_{\mathrm{fs}}\) & Transconductance & 8 & & 8 & & \multirow[b]{2}{*}{mmho} & \multirow[b]{2}{*}{\(V_{G S}=0, V_{\text {DS }}=-15 \mathrm{~V}\)} \\
\hline \(\mathrm{g}_{\mathrm{OS}}\) & Output Conductance & & 1 & & 1 & & \\
\hline \({ }^{\text {I }}\) (off) & Drain (OFF) Leakage & & -100 & & -100 & pA & \(V_{\text {DS }}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=15 \mathrm{~V}\) \\
\hline r DS (on) & Drain-Source "ON" Resistance & & 75 & & 60 & \(\Omega\) & \(V_{G S}=0, V_{\text {DS }}=-0.1 \mathrm{~V}\) \\
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance & & 35 & & 35 & \multirow[b]{2}{*}{pF} & VDG \(=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\) \\
\hline Crss & Reverse Transfer Capacitance & & 12 & & 12 & & VDG \(=-10 \mathrm{~V}\), IS \(=0\) \\
\hline
\end{tabular}

\section*{IT120-IT122 Monolithic Dual NPN Transistor}

\section*{FEATURES}
- High hfe at Low Current
- Low Output Capacitance
- Good Matching
- Tight \(\mathrm{V}_{\mathrm{BE}}\) Tracking

\begin{abstract}
ABSOLUTE MAXIMUM RATINGS
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Collector-Base Voltage (Note 1) 45V
Collector-Emitter Voltage (Note 1) 45V
Emitter Base Voltage (Notes 1 and 2) 7V
Collector Current (Note 1) 50 mA
Collector-Collector Voltage 60V
Storage Temperature Range \(\ldots \ldots-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec) \(+300^{\circ} \mathrm{C}\)
\end{abstract}
\begin{tabular}{lcccc}
& \multicolumn{2}{c}{ TO-71 } & \multicolumn{2}{c}{ TO-78 } \\
& ONE & BOTH & ONE & BOTH \\
Power & SIDE & SIDES & SIDE & SIDES \\
Dissipation \(\ldots\). & 400 mW & 750 mW & 300 mW & 500 mW \\
Derate Above & & & & \\
\(25^{\circ} \mathrm{C}\) & \(\ldots \ldots \ldots .1 .7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
\end{tabular}

ELECTRICAL CHARACTERISTICS
\(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted

\section*{PIN CONFIGURATION}

TO-71
TO-78

CHIP TOPOGRAPHY

4003

ORDERING INFORMATION*
\begin{tabular}{||l|c|c|c||}
\hline TO-78 & TO.71 & WAFER & DICE \\
\hline IT120 & IT120-TO71 & IT120/W & IT120/D \\
\hline IT121 & IT121-TO71 & IT121/W & IT121/D \\
\hline IT122 & IT122-TO71 & IT122/W & IT122/D \\
\hline \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}
*When ordering wafer/dice refer to Appendix B-23.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} & \multicolumn{2}{|l|}{IT120A} & \multicolumn{2}{|r|}{IT120} & \multicolumn{2}{|r|}{IT121} & \multicolumn{2}{|r|}{IT122} & \multirow[b]{2}{*}{UNIT} & \multirow[b]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN & MAX & MIN & MAX & MIN & MAX & MIN & MAX & & \\
\hline \multirow{3}{*}{hFE} & \multirow[b]{2}{*}{DC Current Gain} & 200 & & 200 & & 80 & & 80 & & & \(\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}\) \\
\hline & & 225 & & 225 & & 100 & & 100 & & & \(\mathrm{I}^{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}\) \\
\hline & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 75 & & 75 & & 30 & & 30 & & & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}\)} \\
\hline \(\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})\) & Emitter-Base On Voltage & & 0.7 & & 0.7 & & 0.7 & & 0.7 & \multirow[b]{2}{*}{V} & \\
\hline \(\mathrm{V}_{\text {CE }}(\mathrm{SAT})\) & Collector Saturation Voltage & & 0.5 & & 0.5 & & 0.5 & & 0.5 & & \(\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\). \\
\hline İCBO & Collector Cutoff Current & & 1.0 & & 1.0 & & 1.0 & & 1.0 & nA & \multirow[t]{2}{*}{\[
I_{E}=0 ; V_{C B}=45 \mathrm{~V}
\]} \\
\hline & \(\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}\) & & 10 & & 10 & & 10 & & 10 & \(\mu \mathrm{A}\) & \\
\hline IEBO & Emitter Cutoff Current & & 1.0 & & 1.0 & & 1.0 & & 1.0 & nA & \(\mathrm{I}^{\prime}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}\) \\
\hline \(\mathrm{C}_{\text {obo }}\) & Output Capacitance & & 2.0 & & 2.0 & & 2.0 & & 2.0 & \multirow{3}{*}{pF} & \(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{~V} \quad \mathrm{f}=\) \\
\hline \(\mathrm{C}_{\text {te }}\) & Emitter Transition Capacitance & & 2.5 & & 2.5 & & 2.5 & & 2.5 & & \(\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}, 1 \mathrm{MHz}\) \\
\hline \(\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}\) & Collector to Collector Capacitance & & 4.0 & & 4.0 & & 4.0 & & 4.0 & & \(\mathrm{V}_{\mathrm{CC}}=0\) \\
\hline \({ }^{1} \mathrm{C}_{1}, \mathrm{C}_{2}\) & Collector to Collector Leakage Current & & 10 & & 10 & & 10 & & 10 & nA & \(V_{C C}= \pm 60 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\text {CEO }}\) (SUST) & Collector to Emitter Sustaining Voltage & 45 & & 45 & & 45 & & 45 & & V & \(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) \\
\hline GBW & \begin{tabular}{l}
Current Gain \\
Bandwidth Product
\end{tabular} & \[
\begin{array}{r}
10 \\
220
\end{array}
\] & & \[
\begin{array}{|r|}
\hline 10 \\
220 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
7 \\
180
\end{array}
\] & & \[
\begin{array}{r}
7 \\
180
\end{array}
\] & & MHz & \[
\begin{aligned}
& I_{C}=10 \mu \mathrm{~A}, V_{C E}=5 \mathrm{~V} \\
& I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}
\end{aligned}
\] \\
\hline \(\left|V_{B E_{1}}-V_{B E_{2}}\right|\) & Base Emitter Voltage Differential & & 1 & & 2 & & 3 & & 5 & mV & \multirow[t]{2}{*}{\(I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}\)} \\
\hline \(\|{ }^{\prime} \mathrm{B}_{1}{ }^{-1} \mathrm{~B}_{2} \mid\) & Base Current Differential & & 2.5 & & 5 & & 25 & & 25 & nA & \\
\hline \[
\Delta\left(V_{B E_{1}}-V_{B E_{2}}\right)
\] & Base-Emitter Voltage Differential Change with Temperature & & 3 & & 5 & & 10 & & 20 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& \mathrm{C}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed \(10 \mu A\).

\section*{FEATURES}
- Very High Gain
- Low Output Capacitance
- Tight Vbe Matching
- High GBW

ABSOLUTE MAXIMUM RATINGS
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Collector-Base Voltage (Note 1) 2 C
Collector-Emitter Voltage (Note 1) 2V
Emitter-Base Voltage (Notes 1 and 2) 7V
Collector-Current (Note 1) 10 mA
Collector-Collector Voltage 100 V
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec) \(\ldots+300^{\circ} \mathrm{C}\)
TO-78
ONE BOTH
SIDE SIDES
Power Dissipation \(300 \mathrm{~mW} \quad 500 \mathrm{~mW}\)
Derate above \(25^{\circ} \mathrm{C} \ldots . . \ldots . . .1 .7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS @ \(25^{\circ} \mathrm{C}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & MAX & UNITS & CONDITIONS \\
\hline \multirow{3}{*}{hfe} & \multirow[b]{2}{*}{DC Current Gain} & 1500 & & & \(\mathrm{IC}=1 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}\) \\
\hline & & 1500 & & & \multirow{3}{*}{\(\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}\)} \\
\hline & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 600 & & & \\
\hline \(\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})\) & \multicolumn{2}{|l|}{Emitter-Base "ON" Voltage} & 0.7 & \multirow{2}{*}{V} & \\
\hline VCE(SAT) & Collector Saturation Voltage & & 0.5 & & \(\mathrm{IC}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}\) \\
\hline \multirow[t]{2}{*}{Icbo} & Collector Cutoff Current & & 100 & pA & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}\)} \\
\hline & \(\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}\) & & 100 & nA & \\
\hline IEBO & Emitter Cutoff Current & & 100 & pA & \(\mathrm{IC}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}\) \\
\hline Cobo & Output Capacitance & & 0.8 & \multirow{3}{*}{pF} & \(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V} \mathrm{~V}^{\text {a }}\) \\
\hline \(\mathrm{C}_{\text {te }}\) & Emitter Transition Capacitance. & & 1.0 & & \(\mathrm{IC}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{MHz}\) \\
\hline \(\mathrm{Cc}_{1} \mathrm{C}_{2}\) & Collector to Collector Capacitance & & 0.8 & & \(\mathrm{V}_{\text {cc }}=0\) \\
\hline \(\mathrm{IC}_{1} \mathrm{C}_{2}\) & Collector to Collector Leakage Current & & 250 & pA & \(\mathrm{VCC}= \pm 50 \mathrm{~V}\) \\
\hline \multirow[b]{2}{*}{GBW} & \multirow[b]{2}{*}{Current Gain Bandwidth Product} & 10 & & \multirow[t]{2}{*}{MHz} & \(I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}\) \\
\hline & & 100 & & & \(\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}\) \\
\hline NF & Narrow Band Noise Figure & & 3 & dB & \[
\begin{aligned}
& \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \\
& \mathrm{f}=1 \mathrm{KHz}, \mathrm{RG}_{\mathrm{G}}=10 \mathrm{Kohms}, \\
& \mathrm{BW}=200 \mathrm{~Hz}
\end{aligned}
\] \\
\hline BVCBO & Collector-Base Breakdown Voltage & 2 & & & \(\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{l}\) E \(=0\) \\
\hline BVEBO (Note 2) & - Emitter-Base Breakdown Voltage & 7 & & V & \(\mathrm{IE}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{IC}=0\) \\
\hline VCEO(SUST) & Collector-Emitter Sustaining Voltage & 2 & & & \(\mathrm{IC}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) \\
\hline
\end{tabular}

MATCHING CHARACTERISTICS @ \(25^{\circ} \mathrm{C}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & TYP & MAX & UNITS & CONDITIONS \\
\hline | \(\mathrm{BBE}^{1}\)-VBE2| & Base Emitter Voltage Differential & 2 & 5 & mV & \(\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}\) \\
\hline \(\Delta\left|\left(\mathrm{V}_{\text {BE1 }}-\mathrm{V}_{\mathrm{BE} 2}\right)\right| / \Delta \mathrm{T}\) & Base Emitter Voltage Differential Change with Temperature & 5 & 15 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\
& \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline & Base Current Differential & . & . 6 & nA & TC \(=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed \(10 \mu \mathrm{~A}\).

FEATURES
- High Gain at Low Current
- Low Output Capacitance
- Tight \(I_{B}\) Match
- Tight \(\mathrm{V}_{\text {BE }}\) Tracking
- Dielectric Isolated Matched Pairs for Differential Amplifiers

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified)
Collector-Base Voltage (Note 1)
IT126, IT127 60 V
IT128 .. 55 V
IT129 ... 45 V
Collector-Emitter Voltage (Note 1)
IT126, IT127 60 V
IT128 55 V
IT129 ... 45 V
Emitter-Base Voltage (Notes 1 and 2) 7.0V
Collector Current (Note 1) 100 mA
Collector-Collector Voltage 70 V
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec .) \(\ldots+300^{\circ} \mathrm{C}\)

ORDERING INFORMATION*
\begin{tabular}{|c|c|c|c|}
\hline TO78 & TO-71 & WAFER & DICE \\
\hline IT126 & IT126-TO71 & IT126/W & IT126/D \\
\hline IT127 & IT127-TO71 & IT127/W & IT127/D \\
\hline IT128 & IT128-TO71 & IT128/W & IT128/D \\
\hline IT129 & IT129-TO71 & IT128/W & IT128/D \\
\hline
\end{tabular}
*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} & \multicolumn{2}{|c|}{1 T 126} & \multicolumn{2}{|c|}{\(1 \mathrm{T127}\)} & \multicolumn{2}{|c|}{IT128} & \multicolumn{2}{|c|}{\(1 \mathrm{T129}\)} & \multirow[t]{2}{*}{UNITS} & \multirow[b]{2}{*}{CONDITIONS} \\
\hline & & MIN & MAX & MIN & MAX & MIN & MAX & MIN & MAX & & \\
\hline \multirow{5}{*}{\(h_{\text {FE }}\)} & \multirow{4}{*}{DC Current Gain} & 150 & & 150 & & 100 & & 70 & & & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}\) \\
\hline & & 200 & 800 & 200 & 800 & 150 & 800 & 100 & & & \(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) \\
\hline & & 230 & & 230 & & 170 & & 115 & & & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) \\
\hline & & 100 & & 100 & & 75 & & 50 & & & \(\mathrm{I}^{\prime} \mathrm{C}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) \\
\hline & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 75 & & 75 & & 60 & & 40 & & & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{\(V_{B E}\) (on)} & \multirow[t]{2}{*}{Emitter-Base On Voltage} & & . 9 & & . 9 & & . 9 & & . 9 & \multirow{4}{*}{V} & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) \\
\hline & & & 1.0 & & 1.0 & & 1.0 & & 1.0 & & \(\mathrm{I}^{\prime} \mathrm{C}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{\(V_{C E(s a t)}\)} & \multirow[t]{2}{*}{Collector Saturation Voltage} & & . 3 & & . 3 & & . 3 & & . 3 & & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\) \\
\hline & & & 1.0 & & 1.0 & & 1.0 & & 1.0 & & \({ }^{\prime} C=50 \mathrm{~mA}, \mathrm{I}_{B}=5 \mathrm{~mA}\) \\
\hline \multirow[t]{2}{*}{\({ }^{\text {I CBO }}\)} & Collector Cutoff Current & & 0.1 & & 0.1 & & 0.1 & & 0.1* & nA & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V}^{*}\)} \\
\hline & \(\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}\) & & 0.1 & & 0.1 & & 0.1 & & \(0.1 *\) & \(\mu \mathrm{A}\) & \\
\hline 'EBO & Emitter Cutoff Current & & 0.1 & & 0.1 & & 0.1 & & 0.1 & nA & \(I_{C}=0, V_{E B}=5 \mathrm{~V}\) \\
\hline \(\mathrm{C}_{\text {obo }}\) & Output Capacitance & & 3 & & 3 & & 3 & & 3 & pF & \(I_{E}=0, V_{C B}=20 \mathrm{~V}\) \\
\hline \(\mathrm{BV}_{\mathrm{C}_{1} \mathrm{C}_{2}}\) & Collector to Collector Breakdown Voltage & \(\pm 100\) & & \(\pm 100\) & & \(\pm 100\) & & \(\pm 100\) & & \multirow{4}{*}{V} & \({ }^{\prime} \mathrm{C}= \pm 1 \mu \mathrm{~A}\) \\
\hline \(\mathrm{V}_{\text {CEO }}\) (sust) & Collector to Emitter Sustaining Voltage & 60 & & 60 & & 55 & & 45 & & & \(I_{C}=1 \mathrm{~mA}, \mathrm{I}_{B}=0\) \\
\hline \(\mathrm{BV}_{\mathrm{CBO}}\) & Collector Base Breakdown Voltage & 60 & & 60 & , & 55 & & 45 & & & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) \\
\hline BV \({ }_{\text {EBO }}\) & Emitter Base Breakdown Voltage & 7 & & 7 & & 7 & & 7 & & & \(I_{E}=10 \mu \mathrm{~A}, \mathrm{I}^{\prime}=0\) \\
\hline \multicolumn{12}{|l|}{MATCHING CHARACTERISTICS} \\
\hline \(\left|\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2} \mid}\right|\) & Base Emitter Voltage Differential & & 1 & & 2 & & 3 & & 5 & mV & \(\mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{ma}, \mathrm{V}_{\text {CE }}=5 \mathrm{~V}\) \\
\hline \[
\begin{array}{|c||c|}
\hline \Delta\left(\mid V_{\mathrm{BE}_{1}}-\right. \\
\mathrm{V}_{\mathrm{BE}_{2}} \mid 1 / \Delta \mathrm{T} \\
\hline
\end{array}
\] & Base Emitter Voltage Differential Change with Temperature & & 3 & & 5 & & 10 & & 20 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& { }^{I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}} \\
& T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{\(\left|{ }^{\prime} B_{1}-I_{B_{2}}\right|\)} & \multirow[t]{2}{*}{Base Current Differential} & & 2.5 & & 5 & & 10 & & 20 & \(n \mathrm{~A}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) \\
\hline & & & . 25 & & . 5 & & 1.0 & & 2.0 & \(\mu \mathrm{A}\) & \({ }^{1} \mathrm{C}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and

\section*{FEATURES}

\section*{- High \(\mathrm{h}_{\text {fe }}\) at Low Current}
- Low Output Capacitance
- Tight \(I_{B}\) Match
- Tight \(V_{B E}\) Tracking

\begin{abstract}
ABSOLUTE MAXIMUM RATINGS.
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise specified
Collector-Base Voltage (Note 1) . 45 V
Collector-Emitter Voltage (Note 145 V

Emitter Base Voltage (Notes 1 and 2) 7V
Collector Current (Note 1) 50 mA
Collector-Collector Voltage 60 V
Storage Temperature Range \(65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots \ldots \ldots-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec . \(\ldots \ldots \ldots+300^{\circ} \mathrm{C}\)
\end{abstract}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{TO-71} & \multicolumn{2}{|c|}{TO-78} \\
\hline & ONE & BOTH & ONE & BOTH \\
\hline Power & SIDE & SIDES & SIDE & SIDES \\
\hline Dissipation & 00 mW & 750 mW & 300 mW & 500 mW \\
\hline & \(\mathrm{mW} /{ }^{\circ}\) & \(3 \mathrm{~mW} /{ }^{\circ}\) & \(7 \mathrm{~mW} /{ }^{\circ}\) & \(3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{IT130A} & \multicolumn{2}{|r|}{IT130} & \multicolumn{2}{|c|}{IT131} & \multicolumn{2}{|c|}{IT132} & \multirow[t]{2}{*}{UNIT} & \multirow[t]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN & MAX & MIN & MAX & MIN & MAX & MIN & MAX & & \\
\hline \multirow{3}{*}{hFE} & \multirow[t]{2}{*}{DC Current Gain} & 200 & & 200 & & 80 & & 80 & & & \({ }^{1} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}\) \\
\hline & & 225 & & 225 & & 100 & & 100 & & & \(I^{\prime} \mathrm{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}\) \\
\hline & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 75 & & 75 & & 30 & & 30 & & & \(\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}\) \\
\hline \(V_{\text {BE }}\) (ON) & Emitter-Base On Voltage & & 0.7 & & 0.7 & & 0.7 & & 0.7 & \multirow[b]{2}{*}{V} & \(I^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\text {CE }}(S A T)\) & Collector Saturation Voltage & & 0.5 & & 0.5 & & 0.5 & & 0.5 & & \(I^{\prime}=0.5 \mathrm{~mA}, I_{B}=0.05 \mathrm{~mA}\) \\
\hline \multirow[t]{2}{*}{\({ }^{\text {I CBO }}\)} & \multirow[t]{2}{*}{Collector Cutoff Current
\[
T_{A}=+150^{\circ} \mathrm{C}
\]} & & -1.0 & & -1.0 & & -1.0 & & -1.0 & nA & \multirow[t]{2}{*}{\(I_{E}=0, V_{C B}=45 \mathrm{~V}\)} \\
\hline & & & -10 & & -10 & & -10 & & -10 & \(\mu \mathrm{A}\) & \\
\hline IEBO & Emitter Cutoff Current & & -1.0 & & -1.0 & & -1.0 & & -1.0 & nA & \(\mathrm{I}^{\prime} \mathrm{C}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}\) \\
\hline \(\mathrm{C}_{\text {ob }}\) & Output Capacitance & & 2.0 & & 2.0 & & 2.0 & & 2.0 & \multirow{3}{*}{pF} & \(\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}\) \\
\hline \(\mathrm{C}_{\text {te }}\) & Emitter Transition Capacitance & & 2.5 & & 2.5 & & 2.5 & & 2.5 & & \(\mathrm{I}^{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}\) \\
\hline \(\mathrm{C}_{\mathrm{C}_{1}-\mathrm{C}_{2}}\) & Collector to Collector Capacitance & & 4.0 & & 4.0 & & 4.0 & & 4.0 & & \(\mathrm{V}_{\mathrm{CC}}=0\) \\
\hline \({ }^{1} C_{1}-C_{2}\) & Collector to Collector Leakage Current & & 10 & & 10 & & 10 & & 10 & nA & \(\mathrm{V}_{\text {CC }}= \pm 60 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\text {CEO }}\) (SUST) & Collector to Emitter Sustaining Voltage & -45 & & -45 & & -45 & & -45 & & V & \(I_{C}=1.0 \mathrm{~mA}, I_{B}=0\) \\
\hline \multirow[b]{2}{*}{GBW} & \multirow[t]{2}{*}{Current Gain Bandwidth Product} & 5 & & 5 & & 4 & & 4 & & \multirow[t]{2}{*}{MHz} & \(\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}\) \\
\hline & & 110 & & 110 & & 90 & & 90 & & & \(\mathrm{I}^{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\) \\
\hline \(\left|V_{B E_{1}}-V_{B_{2}}\right|\) & Base Emitter Voltage Differential & & 1 & & 2 & & 3 & & 5 & mV & \(\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}\) \\
\hline \({ }^{\| B_{1}{ }^{-1} \mathrm{~B}_{2} \mid}\) & Base Current Differential & & 2.5 & & 5 & & 25 & , & 25 & nA & \(I^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}\) \\
\hline \(\Delta\left(V_{B E}{ }_{1}-V_{B E}{ }_{2} / / \Delta T\right.\) & Base-Emitter Voltage Differential Change with Temperature & & 3 & & 5 & & 10 & & 20 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 V , and the reverse base-to-emitter current must never exceed \(10 \mu \mathrm{~A}\).

\section*{FEATURES}
- High Gain at Low Current
- Low Output Capacitance
- Tight \(\mathrm{I}_{\mathrm{B}}\) Match
- Tight \(V_{B E}\) Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Collector-Base Voltage (Note 1)
IT136, IT137 60 V
IT138 ... 55 V
IT139 .. 45 V
Collector-Emitter Voltage (Note 1)
IT136, IT137 .. . 60 V
IT138 ... 55V
IT139 ... 45 V
Emitter-Base Voltage (Notes 1 and 2) 7 V
Collector Current (Note 1) 100 mA
Collector-Collector Voltage 70 V
Storage Temperature Range \(\ldots \ldots-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec .) \(\ldots{ }^{\circ}+300^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{T078} \\
\hline & ONE & BOTH \\
\hline & SIDE & SIDES \\
\hline Power Dissipation & 0.4 Watt & 0.75 Watt \\
\hline \multicolumn{3}{|l|}{Derate above \(25^{\circ} \mathrm{C} \ldots2 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)} \\
\hline & \multicolumn{2}{|c|}{T071} \\
\hline & ONE SIDE & BOTH SIDES \\
\hline Power Dissipation & 0.3 Watt & 0.5 Watt \\
\hline Derate above \(25^{\circ} \mathrm{C}\) & \(1.7 \mathrm{~mW} /{ }^{\circ}\) & \(2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (\(25^{\circ} \mathrm{C}\) unless otherwise noted)

NOTES: 1. Per transistor.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed \(10 \mu \mathrm{~A}\)

\title{
IT500-IT505 Monolithic Dual Cascoded N-Channel JFET
}

\section*{GENERAL DESCRIPTION}

A low noise, low leakage FET that employs a cascode structure to accomplish very low \(I_{G}\) at high voltage levels, while giving high transconductance and very high common mode rejection ratio.

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Drain-Source and Drain-Gate} \\
\hline Voltages (Note 1) & 60 V \\
\hline Drain Current (Note 1) & 50 mA \\
\hline Gate-Gate Voltage & \(\pm 60 \mathrm{~V}\) \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\) \\
\hline Operating Temperature & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Sold & \(+300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Power Dissipation
ONE SIDE
BOTH SIDES
Derate above \(25^{\circ} \mathrm{C}\)
250 mW
500 mW
\(3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
\(7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

NOTE 1. Per transistor.
NOTE 2. Due to the non-symmetrical structure of these devices, the drain and source ARE NOT interchangeable.

PIN CONFIGURATION

TO-71
low proille

CHIP TOPOGRAPHY
(Note 2)

ORDERING INFORMATION*
\begin{tabular}{|c|c|c|}
\hline TO.78 & WAFER & DICE \\
\hline IT500 & IT500/W & IT500/D \\
\hline IT501 & IT501/W & IT501/D \\
\hline IT502 & IT502/W & IT502/D \\
\hline IT503 & IT503/W & IT503/D \\
\hline IT504 & IT504/W & IT504/D \\
\hline IT505 & IT505/W & IT505/D \\
\hline
\end{tabular}
*When ordering wafer/dice refer to Appendix B-23.

IT500-IT505

ELECTRICAL CHARACTERISTICS (\(25^{\circ} \mathrm{C}\) unless otherwise specified)

\[
* C_{M R R}=20 \log _{10} \Delta V_{D D} / \Delta\left[v_{g s} 1 \cdot v_{g s 2}\right], \Delta v_{D D}=10 / \cdot 20 \mathrm{~V}
\]

NOTES: 1. Pulse test required, pulsewidth \(=300 \mu \mathrm{~s}\), duty cycle \(\leqslant 3 \%\). 2. Measured at end points, \(T_{A}\) and \(T_{B}\).
3. With case guarded \(\mathrm{C}_{\text {rss }}\) is typically \(<0.15 \mathrm{pF}\).

\section*{TYPICAL PERFORMANCE CURVES}

\section*{GATE LEAKAGE}

OUTPUT
CHARACTERISTICS

TYPICAL CAPACITANCE VS. GATE-SOURCE VOLTAGE

\section*{INTRODUCTION}

The LF156 family of BIFET OPAMPS is very popular because of the combination of high slew rate (typically \(12 \mathrm{~V} / \mu \mathrm{s}\) @ unity gain) and moderate offset voltage (about 2 mV). Input bias current, however, varies directly with input voltage, rising from \(30 \mathrm{pA} @ \mathrm{~V}_{\mathrm{IN}}=-10 \mathrm{~V}\), to \(50 \mathrm{pA} @ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}\), and finally to \(80 \mathrm{pA} @\) \(\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}\). This can be improved markedly by using one of the IT500 series to drive the inputs of the LF156.

The IT500, like the others in its family, is a dual cascoded \(n\) channel JFET pair, featuring a typical input bias current of \(<1 \mathrm{pA}\) with inputs ranging from -15 V to +15 V ; actual \(\mathrm{IG}_{\mathrm{G}}\) is guaranteed to be less than \(5 \mathrm{pA} @ \mathrm{~V}_{\mathrm{DG}}=50 \mathrm{~V}\).
Figure 1 shows an IT500 being used to drive the inputs of an LF156. This greatly reduces the input bias current, and in no way affects the already superior slew rate; the offset voltage is not significantly degraded because of the excellent matching of the IT500.

FIGURE 1. INPUT DRIVE CIRCUIT USING IT500

The constant current source can be designed with any transistor pair having a high beta @ IC \(=400 \mu \mathrm{~A}\). See Figure 2.
An added bonus of the IT500 is its CMRR \(>100 \mathrm{~dB}\), compared to the LF156 CMRR of 85 dB .
This configuration is ideal for electrometer circuits, with good measurement accuracy down to 10pA of input current (<10\% error with 10 pA of input current). A \(10 \mathrm{M} \Omega\) glass feedback resistor connected between the -INPUT and OPAMP OUTPUT does the trick. Other possible applications include sample and hold amplifiers, instrumentation amplifiers, etc.
Although this application note has dealt solely with the LF156, all present day BIFET OPAMPS exhibit the same IBIAS vs. VIN dependancy, and all will benefit from using the IT500 as a preamplifier.

FIGURE 2. CONSTANT CURRENT SOURCE

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS (\(25^{\circ} \mathrm{C}\) unless otherwise noted)

*When ordering wafer/dice refer to Appendix B-23.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETERS & \multicolumn{2}{|l|}{TEST CONDITIONS} & MIN. & MAX. & UNIT \\
\hline \multirow[t]{2}{*}{IGSSR} & Gate-Reverse Current & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\)} & & & -100 & pA \\
\hline & \(\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\) & & & & -200 & mA \\
\hline \(B V_{\text {GSS }}\) & Gate-Source Breakdown Voltage & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0\)} & -40 & & \\
\hline \(\mathrm{V}_{\text {GS(off) }}\) & Gate-Source Cutoff Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}\)} & -0.5 & -3 & V \\
\hline \(\mathrm{V}_{\mathrm{GS}(\mathrm{f})}\) & Gate-Source Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=O V, \mathrm{I}_{\mathrm{G}}=2 \mathrm{~mA}\)} & & 1.0 & \\
\hline I DSS & Saturation Drain Current (Note 1) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} & 5 & 30 & mA \\
\hline \({ }^{\text {D DS }}\) (on) & Static Drain Source ON Resistance & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0\)} & & 100 & \(\Omega\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{g}_{\text {f }}\)} & \multirow[t]{2}{*}{Common-Source Forward Transconductance (Note 1)} & \multirow{7}{*}{\(V_{D G}=15 \mathrm{~V}, I_{D}=2 \mathrm{~mA}\)} & \(\mathrm{f}=1 \mathrm{kHz}\) & 7500 & 12,500 & \\
\hline & & & \(f=100 \mathrm{MHz}\) & 7000 & & \(\mu \mathrm{mho}\) \\
\hline \(\mathrm{g}_{\text {os }}\) & Common-Source Output Conductance & & \(\mathrm{f}=1 \mathrm{kHz}\) & & 45 & \\
\hline \(\mathrm{C}_{\text {rss }}\) & Common-Source Reverse Transfer Capacitance & & \(\mathrm{f}=1 \mathrm{MHz}\) & & 3 & pF \\
\hline \(\mathrm{C}_{\text {iss }}\) & Common-Source Input Capacitance & & & & 12 & \\
\hline NF & Spot Noise Figure & & \(\mathrm{f}=10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{g}}=1 \mathrm{M}\) & & 1.0 & dB \\
\hline \(e_{n}\) & Equivalent Short Circuit Input Noise Voltage & & \(\mathrm{f}=10 \mathrm{~Hz}\) & & 50 & \(\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETERS} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CONDITIONS}} & \multicolumn{2}{|c|}{IT550} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & MIN. & MAX. & \\
\hline \[
\frac{\mathrm{I}_{\mathrm{DSS} 1}}{\mathrm{I}_{\mathrm{DSS} 2}}
\] & Saturation Drain Current Ratio (Notes 1 and 2) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} & 0.95 & 1 & - \\
\hline \(\left|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right|\) & Differential Gate-Source Voltage & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{aligned}
& V_{D S}=15 \mathrm{~V}, I_{D}=2 \mathrm{~mA} \\
& \left(T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)
\end{aligned}
\]}} & & 50 & mV \\
\hline \[
\frac{\Delta\left|\mathrm{V}_{\mathrm{GS} 1} \cdot \mathrm{~V}_{\mathrm{GS} 2}\right|}{\Delta T}
\] & Gate-Source Voltage Differential Drift (Note 3) & & & & 100 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \[
\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{fs} 2}}
\] & Transconductance Ratio (Notes 1 and 2) & \(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}\) & \(f=1 \mathrm{kHz}\) & 0.90 & 1 & - \\
\hline
\end{tabular}

\section*{NOTES:}
1. Pulse test required; pulse width \(300 \mu \mathrm{~s}\), duty cycle \(\leq 3 \%\).
2. Assumes smaller value in numerator
3. Measured at end points \(T_{A}\) and \(T_{B}\)

IT1700

\section*{P-Channel Enhancement Mode MOSFET}

\section*{FEATURES}
- Low ON-Resistance
- High Gain
- Low Noise Voltage
- High Input Impedance
- Low Leakage
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ABSOLUTE MAXIMUM RATINGS (\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)} \\
\hline Drain-Source and Gate-Sour & \\
\hline Peak Gate-Source Voltage (Note & \(\pm 125 \mathrm{~V}\) \\
\hline Drain Current & m \\
\hline Storage Temperature -65 & \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range ... -55 & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 sec) &) \(\ldots . .+300^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & 375 mW \\
\hline Derate above \(25^{\circ} \mathrm{C}\) & \(3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted \(), \mathrm{V}_{\mathrm{BS}}=0\) unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline BVDSS & Drain to Source Breakdown Voltage & -40 & & V & \(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}^{\text {d }}=-10 \mu \mathrm{~A}\) \\
\hline BVSDS & Source to Drain Breakdown Voltage & -40 & & V & \(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\) \\
\hline IGSS & Gate Leakage Current & \multicolumn{3}{|c|}{(See note 2)} & \\
\hline IDSS & Drain to Source Leakage Current & & 200 & pA & \multirow{4}{*}{\(V_{G S}=0, V_{D S}=-20 \mathrm{~V}\)} \\
\hline IDSS (\(150^{\circ} \mathrm{C}\)) & Drain to Source Leakage Current & & 0.4 & \(\mu \mathrm{A}\) & \\
\hline ISDS & Source to Drain Leakage Current & & 400 & pA & \\
\hline ISDS (\(150^{\circ} \mathrm{C}\)) & Source to Drain Leakage Current & & 0.8 & \(\mu \mathrm{A}\) & \\
\hline \(\mathrm{V}_{\mathrm{GS}}(\mathrm{th})\) & Gate Threshold Voltage & -2 & -5 & V & VGS \(=\) V DS, \({ }^{\text {I }}\) = \(=-10 \mu \mathrm{~A}\) \\
\hline rDS (on) & Static Drain to Source "on" Resistance & & 400 & ohms & \(V_{G S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\) \\
\hline IDS (on) & Drain to Source "on" Current & 2 & & mA & \(\mathrm{VGS}^{\prime}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}\) \\
\hline \(\mathrm{g}_{\mathrm{fs}}\) & Forward Transconductance Common Source & 2000 & 4000 & \(\mu \mathrm{mhos}\) & \[
\begin{aligned}
& \text { VDS }=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA} \\
& f=1 \mathrm{kHz}
\end{aligned}
\] \\
\hline \(\mathrm{C}_{\text {iss }}\) & Small Signal, Short Circuit, Common Source, Input Capacitance & & 5 & pF & \[
\begin{aligned}
& V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA} \\
& \mathrm{f}=1 \mathrm{MHz}
\end{aligned}
\] \\
\hline \(\mathrm{Crss}^{\text {r }}\) & Small Signal, Short Circuit, Common Source, Reverse Transfer Capacitance & & 1.2 & pF & \[
\begin{aligned}
& \text { VDG }=-15 \mathrm{~V}, \mathrm{ID}=0 \\
& f=1 \mathrm{MHz}
\end{aligned}
\] \\
\hline Coss & \begin{tabular}{l}
Small Signal, Short Circuit, Common \\
Source, Output Capacitance
\end{tabular} & & 3.5 & pF & \[
\begin{aligned}
& V_{D S}=-15 V, I D=-10 \mathrm{~mA} \\
& f=1 \mathrm{MHz}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTES: 1. Device must not be tested at \(\pm 125 \mathrm{~V}\) more than once nor fonger than 300 ms .
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of \(<10 \mathrm{pA}\). External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.

IT1750

\section*{N-Channel Enhancement Mode MOSFET}

\section*{FEATURES}
- Low ON Resistance
- Low Cdg
- High Gain

\author{
- Low Threshold Voltage
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
ABSOLUTE MAXIMUM RATINGS \\
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\end{tabular}} \\
\hline Drain-Source and Gate-Source Voltage & \\
\hline Peak Gate-Source Voltage (Note & 125 V \\
\hline Drain Current & 00 mA \\
\hline Storage Temperature Range & -65 \({ }^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 sec.) & \(+300^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & 375 mW \\
\hline & \\
\hline
\end{tabular}

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS \(\boldsymbol{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Body connected to Source and \(\mathrm{V}_{\mathrm{BS}}=0\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & MIN & TYP & MAX & UNITS & TEST CONDITIONS \\
\hline VGS(th) & Gate to Source Threshold Voltage & 0.50 & - 1.5 & 3.0 & V & \(\mathrm{V}_{\text {DS }}=\mathrm{V}_{\text {GS }}, I_{\text {d }}=10 \mu \mathrm{~A}\) \\
\hline IDSS & Drain Leakage Current & & 0.1 & 10 & nA & \(V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\) \\
\hline IGSS & Gate Leakage Current & \multicolumn{3}{|c|}{See note 2.} & & \\
\hline BV DSS & Drain Breakdown Voltage & 25 & & & V & \(\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0\) \\
\hline \(r_{\text {rss }}\) (on) & Drain To Source on Resistance & & 25 & 50 & ohms & \(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}\) \\
\hline ID(on) & Drain Current & 10 & 50 & & mA & \(V_{\text {DS }}=V_{\text {GS }}=10 \mathrm{~V}\) \\
\hline \(\mathrm{Y}_{\mathrm{fs}}\) & Forward Transadmittance & 3,000 & , & & \(\mu \mathrm{mhos}\) & \[
\begin{aligned}
& V_{D S}=10 \mathrm{~V}, I \mathrm{I}=10 \mathrm{~mA}, \\
& \mathrm{f}=1 \mathrm{KHz}
\end{aligned}
\] \\
\hline Ciss & Total Gate Input Capacitance & & 5.0 & 6.0 & pF & \[
\begin{aligned}
& I D=10 \mathrm{~mA}, \mathrm{VDS}=10 \mathrm{~V}, \\
& f=1 \mathrm{MHz}
\end{aligned}
\] \\
\hline \(\mathrm{C}_{\text {dg }}\) & Gate to Drain Capacitance & & 1.3 & 1.6 & pF & \(V_{\text {DG }}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\) \\
\hline
\end{tabular}

NOTES:
1. Devices must not be tested at \(\pm 125 \mathrm{~V}\) more than once nor longer than 300 ms .
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of \(<10 \mathrm{pA}\). External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.

\section*{FEATURES}
- Low ros(on)

\section*{APPLICATIONS}
- Analog Switches
- Choppers
- Commutators

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Drain or Gate-Source Voltage -25V
Gate Current 50 mA
Storage Temperature Range .. \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.) ... \(+300^{\circ} \mathrm{C}\)
Power Dissipation 360 mW
Derate above \(25^{\circ} \mathrm{C} \ldots3 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

\section*{ELECTRICAL CHARACTERISTICS}

TEST CONDITIONS: \(25^{\circ} \mathrm{C}\) unless otherwise noted

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} & \multicolumn{3}{|c|}{\(J 105\)} & \multicolumn{3}{|c|}{\(J 106\)} & \multicolumn{3}{|c|}{J107} & \multirow[b]{2}{*}{UNIT} & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & & & & & \\
\hline IGSS & Gate-Reverse Current (Note 1) & & & -3 & & & -3 & & & -3 & nA & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}\)} \\
\hline \(\mathrm{V}_{\text {GS(off) }}\) & Gate-Source Cutoff Voltage & -4.5 & & -10 & -2 & & -6 & -0.5 & & -4.5 & \multirow[b]{2}{*}{\(v\)} & \multicolumn{4}{|l|}{\(V_{D S}=5 \mathrm{~V}, I_{D}=1 \mu \mathrm{~A}\)} \\
\hline BVGSS & Gate-Source Breakdown Voltage & -25 & & & -25 & & & -25 & & & & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}\)} \\
\hline 'oss & Drain Saturation Current (Note 2) & 500 & & & 200 & & & 100 & & & mA & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\)} \\
\hline \({ }^{\text {D }}\) (off) & Drain Cutoff Current (Note 1) & & & 3 & & & 3 & & & 3 & nA & \multicolumn{4}{|l|}{\(V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}\)} \\
\hline \({ }^{\text {' DS }}\) (on) & Drain source ON Resistance & & & 3 & & & 6 & & & 8 & \(\Omega\) & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{DS}} \leq 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\)} \\
\hline \(\mathrm{C}_{\text {dg(off) }}\) & Drain Gate OFF Capacitance & & & 35 & & & 35 & & & 35 & \multirow[b]{3}{*}{pF} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}\)}} & \multicolumn{2}{|l|}{\multirow{3}{*}{\(f=1 \mathrm{MHz}\)}} \\
\hline \(\mathrm{C}_{\text {sg(off) }}\) & Source Gate OFF Capacitance & & & 35 & & & 35 & & & 35 & & & & & \\
\hline \[
\begin{gathered}
\mathrm{C}_{\mathrm{dg}(\mathrm{O})} \\
+ \\
\mathrm{C}_{\mathrm{sg}(\mathrm{O})}
\end{gathered}
\] & Drain Gate plus Source Gate ON Capacitance & & & 160 & & & 160 & & & 160 & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}\)} & & \\
\hline \(t_{d}(0 n)\) & Turn On Delay Time & & 15 & & & 15 & & & 15 & & \multirow{4}{*}{ns} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Switching Time Test Conditions \(\begin{array}{lll}\mathrm{J} 105 & \mathrm{~J} 106 & \mathrm{~J} 107\end{array}\)}} \\
\hline \(t_{r}\) & Rise Time & & 20 & & & 20 & & & 20 & & & & & \(J 106\) & \[
J 107
\] \\
\hline \(t_{\text {d }}\) (off) & Turn Off Delay Time & & 15 & & & 15 & & & 15 & & & \(V_{\text {GS }}\) (off) & \[
-12 \mathrm{~V}
\] & -
-7 & \[
\begin{aligned}
& 1.5 \mathrm{~V} \\
& -5 \mathrm{~V}
\end{aligned}
\] \\
\hline \(t_{f}\) & Fall Time & & 20 & & & 20 & & & 20 & & & & \(50 \Omega\) & \(50 \Omega\) & \(50 \Omega\) \\
\hline
\end{tabular}

NOTES: 1. Approximately doubles for every \(10^{\circ} \mathrm{C}\) increase in \(\mathrm{T}_{\mathrm{A}}\).
2. Pulse test duration \(=300 \mu \mathrm{~s}\); duty cycle \(\leq 3 \%\).

\section*{FEATURES}
- Low Cost
- Automated Insertion Package
- Low Insertion Loss
- No Offset or Error Voltage Generated by Closed Switch

\section*{Purely Resistive}

High Isolation Resistance from Driver
- Fast Switching
- Short Sample and Hold Aperture Time

\section*{APPLICATIONS}
- Analog Switches
- Choppers
- Commutators

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Drain or Gate-Source Voltage -35V
Gate Current .. 50 mA
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.) \(+300^{\circ} \mathrm{C}\)
Power Dissipation 310 mW

*When ordering wafer/dice refer to Appendix B-23.

\section*{ELECTRICAL CHARACTERISTICS}

TEST CONDITIONS: \(25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETERS}} & \multicolumn{3}{|c|}{\(J 111\)} & \multicolumn{3}{|c|}{J112} & \multicolumn{3}{|c|}{\(J 113\)} & \multirow[b]{2}{*}{UNIT} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{TEST CONDITIONS}} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & & & & \\
\hline IGSSR & Gate Reverse Current (Note 1) & & & -1 & & & -1 & & & -1 & nA & \(V_{D S}=0\) & , \(\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}\) & \\
\hline VGS(off) & Gate Source Cutoff Voltage & -3 & & -10 & -1 & & -5 & -0.5 & & -3 & \multirow[t]{2}{*}{V} & \multicolumn{3}{|l|}{\(V_{D S}=5 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mu \mathrm{~A}\)} \\
\hline BVGSS & Gate Source Breakdown Voltage & -35 & & & -35 & & & -35 & & & & \multicolumn{3}{|l|}{VDS \(=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}\)} \\
\hline IDSS & Drain Saturation Current (Note 2) & 20 & & & 5 & & & 2 & & & mA & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{VGS}^{\prime}=0 \mathrm{~V}\)} \\
\hline ID(off) & Drain Cutoff Current (Note 1) & & & 1 & & & 1 & & & 1 & nA & \multicolumn{3}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}\)} \\
\hline rDS(on) & Drain Source ON Resistance & & & 30 & & & 50 & & & 100 & \(\Omega\) & \multicolumn{3}{|l|}{\(\mathrm{VDS}=0.1 \mathrm{~V}, \mathrm{VGS}=0 \mathrm{~V}\)} \\
\hline \(\mathrm{C}_{\text {dg }}\) (off) & Drain Gate OFF Capacitance & & & 5 & & & 5 & & & 5 & \multirow[b]{3}{*}{pF} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{VGS}=-10 \mathrm{~V}\)}} & \multirow{3}{*}{\[
f=1 \mathrm{MHz}
\]} \\
\hline \(\mathrm{C}_{\text {sg(off) }}\) & Source Gate OFF Capacitance & & & 5 & & & 5 & & & 5 & & & & \\
\hline \[
\begin{aligned}
& \mathrm{C}_{\mathrm{dg}}(\mathrm{on}) \\
& \mathrm{C}_{\mathrm{sg}}{ }^{+}(\mathrm{on}) \\
& \hline
\end{aligned}
\] & Drain Gate Plus Source Gate ON Capacitance & & & 28 & & & 28 & & & 28 & & \multicolumn{2}{|l|}{\(\mathrm{VDS}=\mathrm{V}_{\mathrm{GS}}=0\)} & \\
\hline \(t_{d}(\) on) & Turn On Delay Time & & 7 & & & 7 & & & 7 & & & Switch & Time Test Co & Onditions \\
\hline \(\mathrm{tr}_{r}\) & Rise Time & & 6 & & & 6 & & & 6 & & & & J111 J112 & J113 \\
\hline td(off) & Turn Off Delay Time & & 20 & & & 20 & & & 20 & & ns & VDD & 10 V 10 V & 10 V \\
\hline \(\mathrm{tf}_{f}\) & Fall Time & & 15 & & & 15 & & & 15 & & & VGS(off) \(\mathrm{R}_{\mathrm{L}}\) & \[
\begin{array}{cc}
-12 \mathrm{~V} & -7 \mathrm{~V} \\
0.8 \mathrm{k} \Omega & 1.6 \mathrm{k} \Omega \\
\hline
\end{array}
\] & \[
\begin{gathered}
-5 \mathrm{~V} \\
2 \quad 3.2 \mathrm{k} \Omega \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. Approximately doubles for every \(10^{\circ} \mathrm{C}\) increase in \(\mathrm{T}_{\mathrm{A}}\).
2. Pulse Test duration \(300 \mu \mathrm{~s}\); duty cycle \(\leq 3 \%\).

\section*{FEATURES}
- Low Insertion Loss
- No Offset or Error Generated by Closed Switch

\section*{Purely Resistive}

High Isolation Resistance from Driver
- Short Sample and Hold Aperture Time
- Fast Switching

\section*{APPLICATIONS}
- Analog Switches
- Choppers
- Commutators

\begin{tabular}{|c|c|}
\hline ABSOLUTE MAXIMUM RATINGS & se \\
\hline Gate-Drain or Gate-Source Voltage (Note 1) & 30 V \\
\hline Gate Current & 50 mA \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 sec .) & \(300^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & 350 mW \\
\hline & \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

TEST CONDITIONS: \(25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETERS}} & \multicolumn{3}{|c|}{\(J 174\)} & \multicolumn{3}{|c|}{\(J 175\)} & \multicolumn{3}{|c|}{\(J 176\)} & \multicolumn{3}{|c|}{\(J 177\)} & \multirow[b]{2}{*}{UNIT} & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} \\
\hline & & MIN & TYP & MAX & & & & & \\
\hline IGSSR & Gate Reverse Current (Nate 2) & & & 1 & & & 1 & & & 1 & & & 1 & nA & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=20 \mathrm{~V}\)} \\
\hline VGS(off) & Gate-Source Cutoff Voltage & 5 & & 10 & 3 & & 6 & 1 & & 4 & 0.8 & & 2.25 & \multirow[b]{2}{*}{V} & \multicolumn{4}{|l|}{\(V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{nA}\)} \\
\hline BVGSS & Gate-Source Breakdown Voltage & 30 & & & 30 & & & 30 & & & 30 & & & & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}\)} \\
\hline IDSS & Saturation Drain Current (Note 3) & -20 & & -100 & -7 & & -60 & -2 & & -25 & -1.5 & & -20 & mA & \multicolumn{4}{|l|}{\(V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline ID(off) & Drain Cutoff Current (Note 2) & & & -1 & & & -1 & & & -1 & & & -1 & nA & \multicolumn{4}{|l|}{\(V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}\)} \\
\hline ros(on) & Drain-Source ON Resistance & & & 85 & & & 125 & & & 250 & & & 300 & \(\Omega\) & \multicolumn{4}{|l|}{\(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-0.1 \mathrm{~V}\)} \\
\hline \(\mathrm{Cdg}_{\text {(off) }}\) & Drain-Gate OFF Capacitance & & 5.5 & & - & 5.5 & & & 5.5 & & & 5.5 & & \multirow[b]{3}{*}{pF} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}\)}} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\(\mathrm{f}=1 \mathrm{MHz}\)}} \\
\hline Csg(off) & Source-Gate OFF Capacitance & & 5.5 & & & 5.5 & & & 5.5 & & & 5.5 & & & & & & \\
\hline \[
\begin{gathered}
\hline \mathrm{C}_{\mathrm{dg}(\mathrm{on})} \\
+ \\
\mathrm{C}_{\mathrm{sg}(\mathrm{on})}
\end{gathered}
\] & Drain-Gate Plus Source Gate ON Capacitance & & 40 & & & 40 & & & 40 & & & 40 & & & \multicolumn{2}{|l|}{\(V_{D S}=V_{G S}=0\)} & & \\
\hline tdion) & Turn On Delay Time & & 2 & & & 5 & & & 15 & & & 20 & & \multirow{4}{*}{ns} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Switching Time Test Conditions \\

\end{tabular}} \\
\hline \(\mathrm{tr}_{r}\) & Rise Time & & 5 & & & 10 & & & 20 & & & 25 & & & VDD -10V & -6V & -6V & -6V \\
\hline \(t_{d}\) (off) & Turn Off Delay Time & & 5 & & & 10 & & & 15 & & & 20 & & & \(V_{G S}(\) off \() ~ 12 V ~\) & 8 V & 6 V & 3 V \\
\hline \(\mathrm{tf}^{\text {f}}\) & Fall Time & & 10 & & & 20 & & & 20 & & & 25 & & & \[
\begin{array}{|l|l}
\hline R_{L} & 560 \Omega \\
V_{\text {GS(on) }} & 0 \mathrm{~V} \\
\hline
\end{array}
\] & \begin{tabular}{|c}
12 K, \\
0 V
\end{tabular} & \[
\begin{gathered}
5.6 \mathrm{~K} \Omega \\
0 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
10 \mathrm{~K} \Omega 2 \\
0 \mathrm{~V}
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged.
2. Approximately doubles for every \(10^{\circ} \mathrm{C}\) increase in \(T_{A}\).
3. Pulse test duration \(-300 \mu \mathrm{~s}\); duty cycle \(\leq 3 \%\).

\section*{FEATURES}
- High Input Impedance
- Low IGSS

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Source or Gate-Drain Voltage -40V
Gate Current 50 mA
Storage Temperature Range .. \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.\() \ldots+300^{\circ} \mathrm{C}\)
Power Dissipation 360 mW
Derate above \(25^{\circ} \mathrm{C} \ldots . . \ldots . . .3 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

\section*{ELECTRICAL CHARACTERISTICS}

*When ordering wafer/dice refer to Appendix B-23.

TEST CONDITIONS: \(25^{\circ} \mathrm{C}\) unless otherwise noted
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETERS}} & \multicolumn{3}{|c|}{J201} & \multicolumn{3}{|c|}{\(J 202\)} & \multicolumn{3}{|c|}{\(J 203\)} & \multicolumn{3}{|c|}{J204} & \multirow[b]{2}{*}{UNIT} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TEST CONDITIONS}} \\
\hline & & MIN & TYP & MAX & & & \\
\hline 'GSS & Gate Reverse Current (Note 2) & & & -100 & & & -100 & & & -100 & & & -100 & pA & \(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-20 \mathrm{~V}\) & \\
\hline \(\mathrm{V}_{\text {GS(off }}\) & Gate-Source Cutoff Voltage & -0.3 & & -1.5 & \(-0.8\) & & -4.0 & -2.0 & & \(-10.0\) & -05 & & -2.0 & \multirow{2}{*}{V} & \multicolumn{2}{|l|}{\(V_{D S}=20 \mathrm{~V}, I_{D}=10 \mathrm{nA}\)} \\
\hline BVGSS & Gate-Source Breakdown Voltage & -40 & & & -40 & & & -40 & & & -25 & & & & \multicolumn{2}{|l|}{\(V_{D S}=0, I_{G}=-1 \mu \mathrm{~A}\)} \\
\hline 'DSS & Saturation Drain Current (Note 3) & 0.2 & & 1.0 & 0.9 & & 4.5 & 4.0 & & 20 & & 1.2 & & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline \({ }^{\prime} \mathrm{G}\) & Gate Current (Note 1) & & -3.5 & & & -3.5 & & & -3.5 & & & -3.5 & & DA & \multicolumn{2}{|l|}{\(V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}\)} \\
\hline \(\mathrm{g}_{\text {fs }}\) & \begin{tabular}{l}
Common-Source Forward \\
Transconductance(Note 2)
\end{tabular} & 500 & & & 1,000 & & & 1,500 & & & & 1500 & & \multirow[b]{2}{*}{\(\mu \mathrm{mho}\)} & \multirow{4}{*}{\[
V_{D S}=20 \mathrm{~V}, V_{G S}=0
\]} & \multirow[b]{2}{*}{\(\mathrm{f}=1 \mathrm{kHz}\)} \\
\hline \(g_{0 s}\) & \begin{tabular}{l}
Common Source Output \\
Conductance
\end{tabular} & & 1 & & & 3.5 & & & 10 & & & 2.5 & & & & \\
\hline Ciss & Common-Source input Capacitance & & 4 & \% & & 4 & & & 4 & & & 4 & & \multirow[t]{2}{*}{pF} & & \multirow[b]{2}{*}{\(f=1 \mathrm{MHz}\)} \\
\hline Crss & \begin{tabular}{l}
Common-Source Reverse \\
Transfer Capacitance
\end{tabular} & & 1 & & & 1 & & & 1 & & & 1 & & & & \\
\hline \(\bar{e}_{n}\) & Equivalent Short-Circuit Input Noise Voltage & & 5 & & & 5 & & & 5 & \(\cdots\) & & 10 & & \(\frac{n V}{\sqrt{H z}}\) & \(V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\) & \(\mathrm{f}=1 \mathrm{kHz}\) \\
\hline
\end{tabular}

NOTES: 1. Approximately doubles for every \(10^{\circ} \mathrm{C}\) increase in \(\mathrm{T}_{\mathrm{A}}\).
2. Pulse test duration \(=2 \mathrm{~ms}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{PARAMETERS}} & \multicolumn{3}{|c|}{J204} & \multirow[b]{2}{*}{UNIT} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} \\
\hline & & & MIN & TYP & MAX & & & \\
\hline \multirow{5}{*}{S
T
A
T
I
C} & Igss & Gate Reverse Current (Note 2) & & & - 100 & pA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-20 \mathrm{~V}\)} \\
\hline & \(\mathrm{V}_{\text {GS(off) }}\) & Gate-Source Cutoff Voltage & -0.5 & & -2.0 & \multirow[t]{2}{*}{v} & \multicolumn{2}{|l|}{\(V_{D S}=20 \mathrm{~V}, \mathrm{ID}=10 \mathrm{nA}\)} \\
\hline & \(\mathrm{BV}_{\mathrm{GSS}}\) & Gate-Source Breakdown Voltage & -25 & & & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=-\mu \mathrm{A}\)} \\
\hline & IdSs & Saturation Drain Current (Note 3) & & 1.2 & & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline & \(\mathrm{I}_{G}\) & Gate Current (Note 1) & & -3.5 & & pA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}} 200 \mu \mathrm{~A}\)} \\
\hline \multirow{5}{*}{D
Y
N
A
M
I
C} & \(\mathrm{g}_{\text {fs }}\) & Common-Source Forward Transconductance (Note 2) & & 1500 & & \multirow[b]{2}{*}{\(\mu \mathrm{mho}\)} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} & \multirow{2}{*}{\(\mathrm{f}=1 \mathrm{kHz}\)} \\
\hline & gos & Common Source Output Conductance & & 2.5 & & & & \\
\hline & \(\mathrm{C}_{\text {iss }}\) & Common-Source Input Capacitance & & 4 & & \multirow[b]{2}{*}{pF} & & \multirow[b]{2}{*}{\(\mathrm{f}=1 \mathrm{MHz}\)} \\
\hline & \(\mathrm{C}_{\text {rss }}\) & Common-Source Reverse Transfer Capacitance & & 1 & & & & \\
\hline & \(\mathrm{e}_{\mathrm{n}}\) & Equivalent Short-Circuit Input Noise Voltage & & 10 & & \(\frac{\mathrm{nV}}{\mathrm{Hz}}\) & \(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\) & \(\mathrm{f}=1 \mathrm{kHz}\) \\
\hline
\end{tabular}

\section*{FEATURES}
- Industry Standard Part in Low Cost Plastic Package
- High Power Gain
- Low Noise
- Dynamic Range Greater than 100 dB
- Easily Matched to \(\mathbf{7 5 \Omega}\) Input

\section*{APPLICATIONS}
- VHF/UHF Amplifiers
- Oscillators
- Mixers

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Drain-Gate Voltage \(-25 \mathrm{~V}\)
Drain-Source Voltage -25V
Continuous Forward Gate Current -10 mA
Storage. Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots \ldots . .-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature Soldering, \(10 \mathrm{sec} . \ldots . . .{ }^{\text {. }}+300^{\circ} \mathrm{C}\)
Power Dissipation 300 mW
Derate above \(25^{\circ} \mathrm{C} \ldots \ldots\).

\section*{ELECTRICAL CHARACTERISTICS}

TEST CONDITIONS: \(25^{\circ} \mathrm{C}\) unless otherwise noted

NOTE: 1. Pulse test PW \(300 \mu \mathrm{~s}\), duty cycle \(\leq 3 \%\).

\title{
NNIMRESIL \\ \\ LM114/H, LM114A/AH \\ \\ LM114/H, LM114A/AH Monolithic Dual NPN Monolithic Dual NPN Transistor
} Transistor
}

\section*{GENERAL DESCRIPTION}

These devices contain a pair of junction-isolated NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible extremely tight parameter matching at low cost. Further, advanced processing techniques yield exceptionally high current gains at low collector currents, virtual elimination of "popcorn noise," low leakages and improved long-term stability.

Although designed primarily for high breakdown voltage and exceptional DC characteristics, these transistors have surprisingly good high-frequency performance. The gain-bandwidth product is 300 MHz with 1 mA collector current and 5 V col-lector-base voltage and 22 MHz with \(10 \mu \mathrm{~A}\) collector current. Typical collector-base capacitance is only 1.6 pF at 5 V .

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Collector-Base Voltage (1) 45V
Collector-Emitter Voltage (1) 45V
Collector-Collector Voltage ...45V
Emitter-Base Voltage (1) .. 6V

Storage Temperature Range \(\ldots \ldots \ldots \ldots \ldots \ldots-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.)..............\(+300^{\circ} \mathrm{C}\)
Power Dissipation 800 mW

\section*{ELECTRICAL CHARACTERISTICS (Note 2)}

\section*{FEATURES}
- Low offset voltage
- Low drift
- High current gain
- Tight beta match
- High breakdown voltage
- Matching guaranteed over a OV to 45 V collector - base voltage range
- CMRR \(>100 \mathrm{~dB}\)
\begin{tabular}{cc}
PIN & CHIP \\
CONFIGURATION & TOPOGRAPHY \\
TO-71 \\
& 4003
\end{tabular}

TO-71 TO-78

4003

ORDERING INFORMATION*
\begin{tabular}{|c|c|c|c|}
\hline TO.71 & TO.78 & WAFER & DICE \\
\hline LM114 & LM114H & LM114/W & LM114/D \\
\hline LM114A & LM114AH & & \\
\hline
\end{tabular}
*When ordering wafer/dice refer to Appendix B-23.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|c|}{MAXIMUM LIMITS} & \multirow[b]{2}{*}{UNITS} & \multirow[b]{2}{*}{CONDITIONS} \\
\hline & LM114A, AH & LM114, H & & \\
\hline Offset Voltage & 0.5 & 2.0 & mV & \(1{ }_{\mu} \mathrm{A} \leq \mathrm{I}_{\mathrm{C}} \leq 100 \mu \mathrm{~A}\) \\
\hline Offset Current & 2.0 & 10 & nA & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}\) \\
\hline \multirow{3}{*}{Bias Current} & 0.5 & \multirow{3}{*}{40} & \multirow{3}{*}{nA} & \(\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}\) \\
\hline & 20 & & & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}\) \\
\hline & 3.0 & & & \(\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}\) \\
\hline Offset Voltage Change & 0.2 & 1.5 & mV & \multirow[t]{2}{*}{\(O V \leq V_{C B} \leq V_{M A X}, I_{C}=10 \mu \mathrm{~A}\)} \\
\hline Offset Current Change & 1.0 & 4.0 & nA & \\
\hline Offset Voltage Drift & 2.0 & 10 & \({ }^{\mathrm{V} /} /{ }^{\circ} \mathrm{C}\) & \multirow{3}{*}{\(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}\)} \\
\hline Offset Current & 12 & 50 & \multirow[b]{2}{*}{nA} & \\
\hline Bias Current & 60 & 150 & & \\
\hline Collector-Base Leakage Current & 10 & 50 & pA & \(\mathrm{V}_{\mathrm{CB}}=\mathrm{V}_{\text {MAX }}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 10 & 50 & nA & \\
\hline Collector-Emitter Leakage Current & 50 & 200 & pA & \(\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{MAX},} \mathrm{V}_{\mathrm{EB}}=0 \mathrm{~V}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 50 & 200 & nA & \\
\hline Collector-Collector Leakage Current & 100 & 300 & pA & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{MAX}}\) \\
\hline \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 100 & 300 & nA & \\
\hline
\end{tabular}

Note 1: Per transistor.
Note 2: These specifications apply for \(T_{A}=+25^{\circ} C\) and \(O V \leqslant V_{C B} \leqslant V_{M A X}\), unless otherwise specified. For the LM114 and LM114A, \(V_{M A X}=\) 30 V .

\section*{Diode Protected} N-Channel Enhancement Mode MOSFET

\section*{FEATURES}
- Low lgSS
- Integrated Zener Clamp for Gate Protection

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Drain to Source Voltage . 30 V
Gate to Drain Voltage 30 V
Drain Current .. 50 mA
Gate Zener Current \(\pm 0.1 \mathrm{~mA}\)
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots \ldots . .-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.) \(\ldots+300^{\circ} \mathrm{C}\)
Power Dissipation 300 mW
Derate above \(25^{\circ} \mathrm{C}2 .2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} & \multicolumn{2}{|r|}{M116} & \multirow[b]{2}{*}{UNITS} & \multirow[b]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN & MAX & & \\
\hline \multirow[b]{2}{*}{\({ }^{\text {r }}\) DS(on)} & \multirow[t]{2}{*}{Drain Source ON Resistance} & & 100 & \multirow[t]{2}{*}{\(\Omega\)} & \(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0\) \\
\hline & & & 200 & & \(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {BS }}=0\) \\
\hline VGS(th) & Gate Threshold Voltage & 1 & 5 & \multirow{4}{*}{V} & \(V_{G S}=V_{\text {DS }}, I_{D}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {BS }}=0\) \\
\hline BVDSS & Drain-Source Breakdown Voltage & 30 & & & \(\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0\) \\
\hline BVSDS & Source-Drain Breakdown Voltage & 30 & & & \(\mathrm{I}_{\mathrm{S}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0\) \\
\hline BVGBS & Gate-Body Breakdown Voltage & 30 & 60 & & \(\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{S B}=V_{D B}=0\) \\
\hline ID(OFF) & Drain Cutoff Current & & 10 & \multirow[t]{2}{*}{nA} & \(V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0\) \\
\hline IS(OFF) & Source Cutoff Current & & 10 & & \(\mathrm{V}_{\mathrm{SD}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0\) \\
\hline IGSS & Gate-Body Leakage & & 100 & pA & \(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{BS}}=0\) \\
\hline \(\mathrm{C}_{\text {gs }}\) & Gate-Source & & 2.5 & \multirow{4}{*}{pF} & \(V_{G B}=V_{\text {DB }}=V_{S B}=0, f=1 \mathrm{MHz}\) \\
\hline \(\mathrm{C}_{\text {gd }}\) & Gate-Drain Capacitance & & 2.5 & & Body Guarded \\
\hline \(\mathrm{C}_{\mathrm{db}}\) & Drain-Body Capacitance & & 7 & & \(\mathrm{V}_{\mathrm{GB}}=0, \mathrm{~V}_{\mathrm{DB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\) \\
\hline \(\mathrm{C}_{\text {iss }}\) & Input Capacitance & & 10 & & \[
\begin{aligned}
& V_{G B}=0, V_{D B}=10 \mathrm{~V}, V_{B S}=0 \\
& f=1 \mathrm{MHz}
\end{aligned}
\] \\
\hline
\end{tabular}

U200-U202 N-Channel JFET

\section*{FEATURES}
- Low Insertion Loss
- Good OFF Isolation

\section*{APPLICATIONS}
- Analog Switches
- Commutators
- Choppers

*When ordering wafer/dice refer to Appendix B-23.

ABSOLUTE MAXIMUM RATINGS (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Drain or Gate-Source Voltage 30 V
Gate Current ... 50 mA
Storage Temperature Range . .. \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range ... \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.) ... \(+300^{\circ} \mathrm{C}\)
Total Device Dissipation
1.8W

Derate above \(25^{\circ} \mathrm{C}\)
\(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Parameter}} & \multicolumn{2}{|c|}{U200} & \multicolumn{2}{|c|}{U201} & \multicolumn{2}{|c|}{U202} & \multirow{2}{*}{Unit} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Test Conditions}} \\
\hline & & & Min & Max & Min & Max & Min & Max & & & \\
\hline \multirow[b]{2}{*}{IGSS} & \multirow[b]{2}{*}{Gate Reverse Current} & & & -1 & & -1 & & -1 & nA & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{GSS}}=20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0\)} & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\) & & -1 & & -1 & & -1 & \(\mu \mathrm{A}\) & & \\
\hline BVGSS & \multicolumn{2}{|l|}{Gate-Source Breakdown Voltage} & -30 & & -30 & & -30 & & \multirow{2}{*}{V} & \(\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0\) & \\
\hline \(\mathrm{V}_{\text {GS }}\) (off) & \multicolumn{2}{|l|}{Gate-Source Cutoff Voltage} & -0.5 & -3 & -1.5 & -5 & -3.5 & -10 & & \(V_{D S}=20 \mathrm{~V}, I_{D}=10 \mathrm{nA}\) & \\
\hline \multirow[b]{2}{*}{ID(off)} & \multirow[b]{2}{*}{Drain Cutoff Current} & & & 1 & & 1 & & 1 & nA & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}\)}} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\) & & 1 & & 1 & & 1 & \(\mu \mathrm{A}\) & & \\
\hline IDSS & \multicolumn{2}{|l|}{Saturation Drain Current (Note 1)} & 3 & 25 & 15 & 75 & 30 & 150 & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline rds(on) & \multicolumn{2}{|l|}{Drain-Source ON Resistance} & & 150 & & 75 & & 50 & ohm & \(V_{G S}=0, l_{D}=0\) & \(\mathrm{f}=1 \mathrm{kHz}\) \\
\hline \(\mathrm{C}_{\text {iss }}\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Common-Source Input \\
Capacitance (Note 1)
\end{tabular}} & & 30 & & 30 & & 30 & \multirow[t]{2}{*}{pF} & \(\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\) & \multirow[t]{2}{*}{\(\mathrm{f}=1 \mathrm{MHz}\)} \\
\hline Crss & \multicolumn{2}{|l|}{Common Source Reverse Transfer Capacitance} & & 8 & & 8 & & 8 & & \(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}\) & \\
\hline
\end{tabular}

NOTE 1: Pulse test required, pulsewidth \(=300 \mu \mathrm{sec}\), duty cycle \(\leq 3 \%\).

\section*{FEATURES}
- Good Matching Characteristics

\section*{APPLICATIONS}
- Differential Amplifiers
- Low and Maximum Frequency Amplifiers

ABSOLUTE MAXIMUM RATINGS
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) -50V
Gate Current (Note 1) 50 mA
Storage Temperature Range \(\ldots \ldots-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots \ldots . .-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Load Temperature (Soldering, 10 sec .) \(+300^{\circ} \mathrm{C}\)
Power Dissipation 300 mW
Derate above \(25^{\circ} \mathrm{C} . \ldots\).
ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: \(25^{\circ} \mathrm{C}\) unless otherwise noted.

*When ordering wafer/dice refer to Appendix B-23.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Matching Characteristics & \begin{tabular}{l}
U231 \\
Max
\end{tabular} & \[
\begin{aligned}
& \text { U232 } \\
& \text { Max }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{U} 233 \\
& \text { Max }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { U234 } \\
\text { Max }
\end{array}
\] & \[
\begin{aligned}
& \text { U235 } \\
& \text { Max }
\end{aligned}
\] & Unit & \multicolumn{2}{|l|}{Test Conditions} \\
\hline |lal-lal & Differential Gate Current & 10 & 10 & 10 & 10 & 10 & nA & \multicolumn{2}{|l|}{\(\left.V_{D G}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}\right] 125^{\circ} \mathrm{C}\)} \\
\hline \[
\frac{(\operatorname{lDSS} 1-\operatorname{lDSS} 2)}{\operatorname{lDSS} 1}
\] & Saturation Drain Current Match (Note 2) & 5 & 5 & 5 & 10 & 15 & \% & \multicolumn{2}{|l|}{\(V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline |VGS1-VGS2| & Differential Gate-Source Voltage & 5 & 10 & 15 & 20 & 25 & mV & \multirow{5}{*}{\(V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}\)} & \\
\hline \multirow[t]{2}{*}{\[
\frac{\Delta\left|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right|}{\Delta \mathrm{T}}
\]} & \multirow[t]{2}{*}{Gate-Source Voltage Differential Drift (Note 3)} & 10 & 25 & 50 & 75 & 100 & \multirow[t]{2}{*}{\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\)} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C} \\
& T_{B}=125^{\circ} \mathrm{C} \\
& \hline T_{A}=-55^{\circ} \mathrm{C} \\
& T_{B}=25^{\circ} \mathrm{C}
\end{aligned}
\]} \\
\hline & & 10 & 25 & 50 & 75 & 100 & & & \\
\hline \[
\frac{\left(\mathrm{g}_{\mathrm{f} 1} 1-\mathrm{g}_{\mathrm{fs} 2}\right)}{\mathrm{g}_{\mathrm{fs} 1}}
\] & Transconductance Match (Note 2) & 3 & 5 & 5 & 10 & 15 & \% & & \multirow[t]{2}{*}{\(\mathrm{f}=1 \mathrm{kHz}\)} \\
\hline |Gos1-gos2| & Differential Output Conductance & 5 & 5 & 5 & 5 & 5 & \(\mu \mathrm{mho}\) & & \\
\hline
\end{tabular}

\section*{NOTES:}
1. Per transistor.
2. Pulse test required, pulse width \(=300 \mu \mathrm{~s}\), duty cycle \(\leq 3 \%\).
3. Measured at end points, \(T_{A}\) and \(T_{B}\).

\section*{FEATURES}
- \(\mathbf{g}_{\text {fs }}>5000 \mu \mathrm{mho}\) from DC to 100 MHz
- Matched \(V_{G S}, g_{f s}\) and \(g_{\text {os }}\)
ABSOLUTE MAXIMUM RATINGS(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Drain or Gate-Source Voltage (Note 1) \(-25 \mathrm{~V}\)
Gate Current (Note 1) 50 mA
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec .) \(+300^{\circ} \mathrm{C}\)
Power Dissipation ONE SIDE BOTH SIDES
250 mW 500 mW
Derate above \(25^{\circ} \mathrm{C}\) \(3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
ORDERING INFORMATION*
\begin{tabular}{|l|l|c|}
\hline TO.99 & WAFER & DICE \\
\hline U257 & U257/W & U257/D \\
\hline
\end{tabular}
*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & MIN & MAX & UNIT & \multicolumn{2}{|l|}{TEST CONDITIONS} \\
\hline IGSSR & Gate Reverse Current \(\quad T_{A}=150^{\circ} \mathrm{C}\) & & -100 & pA & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\)}} \\
\hline GSSR & 砛 \(15150^{\circ} \mathrm{C}\) & & -250 & nA & & \\
\hline BVGSS & Gate-Source Breakdown Voltage & -25 & & \multirow[b]{2}{*}{V} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0\)} \\
\hline VGS(off) & Gate-Source Cutoff Voltage & -1 & -5 & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}\)} \\
\hline IDSS & Saturation Drain Current (Note 2) & 5 & 40 & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline gfs & Common-Source Forward Transconductance & 5000 & 10,000 & \multirow{4}{*}{\(\mu \mathrm{mho}\)} & \(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}\) & \(f=1 \mathrm{kHz}\) \\
\hline 9fs & Common-Source Forward Transconductance & 5000 & 10,000 & & \(V_{\text {DG }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}\) & \(\mathrm{f}=100 \mathrm{MHz}\) \\
\hline gos & Common-Source Output Conductance & & 150 & & \(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}\) & \(\mathrm{f}=1 \mathrm{kHz}\) \\
\hline goss & Common-Source Output Conductance & & 150 & & \multirow[t]{4}{*}{\[
V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}
\]} & \(\mathrm{f}=100 \mathrm{MHz}\) \\
\hline \(\mathrm{C}_{\text {iss }}\) & Common-Source Input Capacitance & & 5 & \multirow[b]{2}{*}{pF} & & \\
\hline Crss & Common-Source Reverse Transfer Capacitance & & 1.2 & & & \(f=1 \mathrm{MHz}\) \\
\hline \(\overline{e_{n}}\) & Equivalent Input Noise Voltage & & 30 & \(\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}\) & & \(\mathrm{f}=10 \mathrm{kHz}\) \\
\hline \[
\frac{\mathrm{DDSS} 1}{\mathrm{I} \mathrm{DSS} 2}
\] & Drain Current Ratio at Zero Gate Voltage' (Note 2) & 0.85 & 1 & & \multicolumn{2}{|l|}{\(V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline |VGS1-VGS2| & Differential Gate-Source Voltage & & 100 & mV & \multirow{3}{*}{\(V_{\text {DG }}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}\)} & \\
\hline \(\frac{\mathrm{gfs} 1}{\mathrm{gfs} 2}\) & Transconductance Ratio & 0.85 & 1 & & & \\
\hline |gos1-gos2| & Differential Output Conductance & & 20 & \(\mu \mathrm{mho}\) & & \(=1 \mathrm{kl}\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. Per transistor.
2. Pulse test required, pulse width \(=300 \mu\) s, duty cycle \(\leqslant 3 \%\).

\section*{FEATURES}
- Low ON Resistance
- \(I_{D(o f f)}<\mathbf{5 0 0} \mathrm{pA}\)
- Switches directly from T²L Logic (U306)

\section*{APPLICATIONS}
- Analog Switches
- Commutators
- Choppers

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Drain or Gate-Source Voltage (Note 1) 30V
Gate Current 50 mA
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots \ldots \ldots . .-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering. 10 sec.\()^{\prime}\).............. \(300^{\circ} \mathrm{C}\)
Power Dissipation
350 mW
Derate above \(25^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots . .\).

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: \(25^{\circ} \mathrm{C}\) unless otherwise noted.

*When ordering wafer/dice refer to Appendix B-23.

\section*{NOTES:}
1. Due to symmetrical geometry these units may be operated with source and drain leads interchanged.
2. Pulse test pulsewidth \(=300 \mu \mathrm{~s}\), duty cycle \(\leq 3 \%\).

U308-U310 N-Channel JFET

\section*{FEATURES}
- Industry Standard Part in Low Cost Plastic Package
- High Power Gain
- Low Noise
- Dynamic Range Greater than 100 dB
- Easily Matched to \(\mathbf{7 5 \Omega}\) Input
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
ABSOLUTE MAXIMUM RATINGS \\
(\(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\end{tabular}} \\
\hline Gate-Drain or Gate-Source Voltage & \\
\hline Gate Current & 20 mA \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Led Temperature (Soldering, 10 sec.) & \(+300^{\circ} \mathrm{C}\) \\
\hline wer Dissipation & 500 mW \\
\hline Derate above \(25^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}

*When ordering wafer/dice refer to Appendix B-23

ELECTRICAL CHARACTERISTICS (\(25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{PARAMETER} & \multicolumn{3}{|c|}{U308} & \multicolumn{3}{|c|}{U309} & \multicolumn{3}{|c|}{U310} & \multirow{2}{*}{UNIT} & \multicolumn{2}{|l|}{\multirow{2}{*}{TEST CONDITIONS}} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & & & \\
\hline \multirow[t]{2}{*}{'GSSR} & Gate Reverse Current & & & -150 & & & -150 & & & -150 & pA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}\)} \\
\hline & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -150 & & & -150 & & & -150 & nA & \(V_{G S}=0\) & \\
\hline B \({ }_{\text {GSS }}\) & Gate-Source Breakdown Voltage & -25 & & & -25 & & & -25 & & & \multirow[b]{2}{*}{V} & \multicolumn{2}{|l|}{\({ }^{\prime}{ }_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0\)} \\
\hline \(V_{\text {GS (off) }}\) & Gate-Source Cutoff Voltage & -1.0 & & -6.0 & -1.0 & & -4.0 & -2.5 & & -6.0 & & \multicolumn{2}{|l|}{\(V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}\)} \\
\hline \({ }^{\prime}\) DSS & Saturation Drain Current (Note 1) & 12 & & 60 & 12 & & 30 & 24 & & 60 & mA & \multicolumn{2}{|l|}{\(V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline \(V_{G S(f)}\) & Gate-Source Forward Voltage & & & 1.0 & & & 1.0 & & & 1.0 & V & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0\)} \\
\hline \(\mathrm{g}_{\mathrm{fg}}\) & Common-Gate Forward Transconductance (Note 1) & 10 & & 20 & 10 & & 20 & 10 & & 18 & mmho & \multirow[b]{2}{*}{\[
\begin{aligned}
& V_{D S}=10 \mathrm{~V} \\
& I_{D}=10 \mathrm{~mA}
\end{aligned}
\]} & \multirow[b]{2}{*}{\(f=1 \mathrm{kHz}\)} \\
\hline \(\mathrm{g}_{\text {ogs }}\) & Common-Gate Output Conductance & & & 150 & & & 150 & & & 150 & \(\mu \mathrm{mho}\) & & \\
\hline \(\mathrm{C}_{\mathrm{gd}}\) & Drain-Gate Capacitance & & & 2.5 & & & 2.5 & & & 2.5 & \multirow[b]{2}{*}{pF} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}
\end{aligned}
\]} & \multirow[b]{2}{*}{\(f=1 \mathrm{MHz}\)} \\
\hline \(\mathrm{C}_{\mathrm{gs}}\) & Gate-Source Capacitance & & & 5.0 & & & 5.0 & & & 5.0 & & & \\
\hline \(\bar{e}_{n}\) & Equivalent Short Circuit Input Noise Voltage & & 10 & & & 10 & & & 10 & & \(\sqrt{\text { Hz }}\) & \[
\begin{aligned}
& V_{D S}=10 \mathrm{~V} \\
& I_{D}=10 \mathrm{~mA}
\end{aligned}
\] & \(f=100 \mathrm{~Hz}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{g}_{\mathrm{fg}}\)} & \multirow[t]{2}{*}{Common-Gate Forward Transconductance} & & 15 & & & 15 & & & 15 & & \multirow{4}{*}{mmho} & \multirow{8}{*}{\[
\begin{aligned}
& V_{D S}=10 \mathrm{~V}, \\
& I_{D}=10 \mathrm{~mA}
\end{aligned}
\]} & \(f=100 \mathrm{MHz}\) \\
\hline & & & 14 & & & 14 & & & 14 & & & & \(\mathrm{f}=450 \mathrm{MHz}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{g}_{\text {ogs }}\)} & \multirow[t]{2}{*}{Common-Gate Output Conductance} & & 0.18 & & & 0.18 & & & 0.18 & & & & \(f=100 \mathrm{MHz}\) \\
\hline & & & 0.32 & & & 0.32 & & & 0.32 & & & & \(\mathrm{f}=450 \mathrm{MHz}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\mathrm{pg}}\)} & \multirow[t]{2}{*}{Common-Gate Power Gain} & & 16 & & & 16 & & & 16 & & \multirow{4}{*}{dB} & & \(f=100 \mathrm{MHz}\) \\
\hline & & & 11 & & & 11 & & & 11 & & & & \(\mathrm{f}=450 \mathrm{MHz}\) \\
\hline \multirow[b]{2}{*}{NF} & \multirow[b]{2}{*}{Noise Figure} & & 1.5 & & & 1.5 & & & 1.5 & & & & \(\mathrm{f}=100 \mathrm{MHz}\) \\
\hline & & & 2.7 & & & 2.7 & & & 2.7 & & & & \(\mathrm{f}=450 \mathrm{MHz}\) \\
\hline
\end{tabular}

NOTE: Pulse test duration \(=2 \mathrm{~ms}\).

\section*{FEATURES}
- Minimum System Error and Calibration
- Low Drift with Temperature
- Operates from Low Power Supply Voltages
- High Output Impedance

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Drain or Gate-Source Voltage (Note 1
Gate Current (Note 1) 10 mA
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots \ldots . .-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec) \(\ldots \ldots . . .+300^{\circ} \mathrm{C}\)
\begin{tabular}{ccc}
& ONE SIDE & BOTH SIDES \\
Power Dissipation \(\ldots \ldots\). & 300 mW & 500 mW \\
Derate above \(25^{\circ} \mathrm{C} \ldots\) & \(2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

TEST CONDITIONS: \(25^{\circ}\) unless otherwise noted.

*When ordering wafer/dice refer to Appendix B-23.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Parameters}} & \multicolumn{2}{|r|}{U401} & \multicolumn{2}{|l|}{U402} & \multicolumn{2}{|r|}{U403} & \multicolumn{2}{|r|}{U404} & \multicolumn{2}{|r|}{U405} & \multicolumn{2}{|r|}{U406} & \multirow[b]{2}{*}{Unit} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Test Conditions}} \\
\hline & & Min & Max & & & \\
\hline BVGss & Gate-Source Breakdown Voltage & -50 & & -50 & & -50 & & -50 & & -50 & & -50 & & V & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{IG}=-1 \mu \mathrm{~A}\)} \\
\hline IGSS & Gate Reverse Current (Note 2) & & -25 & & -25 & & -25 & & -25 & & -25 & & -25 & pA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-30 \mathrm{~V}\)} \\
\hline VGS(off) & Gate-Source Cutoff Voltage & -5 & -2.5 & -. 5 & -2.5 & -. 5 & -2.5 & -. 5 & -2.5 & -. 5 & -2.5 & -. 5 & -2.5 & \multirow[b]{2}{*}{V} & \multicolumn{2}{|l|}{\(V_{D S}=15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{nA}\)} \\
\hline VGS(on) & Gate-Source Voltage (on) & & -2.3 & & -2.3 & & -2.3 & & -2.3 & & -2.3 & & -2.3 & & \multicolumn{2}{|l|}{\(V_{D G}=15 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}\)} \\
\hline IdSs & Saturation Drain Current (Note 3) & 0.5 & 10.0 & 0.5 & 10.0 & 0.5 & 10.0 & 0.5 & 10.0 & 0.5 & 10.0 & 0.5 & 10.0 & mA & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\)} \\
\hline & Operationg & & -15 & & -15 & & -15 & & -15 & & -15 & & -15 & pA & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& V_{D G}=15 \mathrm{~V}, \\
& I_{D}=200 \mu \mathrm{~A}
\end{aligned}
\]}} \\
\hline IG & Gate Current (Note 2) \(T_{A}=125^{\circ} \mathrm{C}\) & & -10 & & -10 & & -10 & & -10 & & -10 & & -10 & nA & & \\
\hline BVG1-G2 & Gate-Gate Breakdown Voltage & \(\pm 50\) & & V & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{IG}_{\mathrm{G}}= \pm 1 \mu \mathrm{~A}\)} \\
\hline gfs & Common-Source Forward Transconductance (Note 3) & 2000 & 7000 & 2000 & 7000 & 2000 & 7000 & 2000 & 7000 & 2000 & 7000 & 2000 & 7000 & \multirow{4}{*}{\(\mu \mathrm{mho}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{D S}=10 \mathrm{~V}, \\
& V_{G S}=0
\end{aligned}
\]} & \multirow[b]{2}{*}{\(\mathrm{f}=1 \mathrm{kHz}\)} \\
\hline gos & Common-Sourçe Output Conductance & & 20 & & 20 & & 20 & & 20 & & 20 & & 20 & & & \\
\hline gfs & Common-Source Forward Transconductance & 1000 & 1600 & 1000 & 1600 & 1000 & 1600 & 1000 & 1600 & 1000 & 1600 & 1000 & 1600 & & \multirow{4}{*}{\[
\begin{aligned}
& V D G=15 \mathrm{~V}, \\
& I_{D}=200 \mu \mathrm{~A}
\end{aligned}
\]} & \\
\hline gos & Common-Source Output Conductance & & 2.0 & & 2.0 & & 2.0 & & 2.0 & & 2.0 & & 2.0 & & & \(\mathrm{f}=1 \mathrm{kHz}\) \\
\hline Ciss & Common-Source Input Capacitance & & 8.0 & & 8.0 & & 8.0 & & 8.0 & & 8.0 & & 8.0 & \multirow[t]{2}{*}{pF} & & \multirow[b]{2}{*}{\(f=1 \mathrm{MHz}\)} \\
\hline Crss & Common-Source Reverse Transfer Capacitance & & 3.0 & & 3.0 & & 3.0 & & 3.0 & & 3.0 & & 3.0 & & & \\
\hline \(e_{n}\) & Equivalent Short-Circuit Input Noise Voltage & & 20 & & 20 & & 20 & & 20 & & 20 & & 20 & \[
\frac{n V}{\sqrt{\mathrm{~Hz}}}
\] & \[
\begin{aligned}
& \mathrm{VDS}=15 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{GS}}=0
\end{aligned}
\] & \(\mathrm{f}=10 \mathrm{~Hz}\) \\
\hline CMRR & Common-Mode Rejection Ratio (Note 4) & 95 & & 95 & & 95 & & 95 & & 90 & & & & dB & \multicolumn{2}{|l|}{VDG \(=10\) to \(20 \mathrm{~V}, 1 \mathrm{l}=200 \mu \mathrm{~A}\)} \\
\hline \(\left|V_{G S 1}-V_{G S 2}\right|\) & Differential Gate-Source Voltage & & 5 & & 10 &) & 10 & & 15 & & 20 & & 40 & mV & \multicolumn{2}{|l|}{\(V_{D G}=10 \mathrm{~V}, \mathrm{ID}^{2}=200 \mu \mathrm{~A}\)} \\
\hline \[
\frac{\Delta \mid V_{\text {GS } 1-V_{G S} 2 \mid}}{\Delta T}
\] & Gate-Source Voltage Differential Drift (Note 5) & & 10 & & 10 & & 25 & & 25 & & 40 & & 80 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& V_{D G}=10 \mathrm{~V}, \\
& I_{D}=200 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& T_{A}=-55^{\circ} \mathrm{C}, \\
& T_{B}=+25^{\circ} \mathrm{C}, \\
& \mathrm{ID}_{\mathrm{D}}=200 \mu \mathrm{~A} \\
& \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{NOTES:}
1. Per transistor.
2. Approximately doubles for every \(10^{\circ} \mathrm{C}\) increase in \(\mathrm{T}_{\mathrm{A}}\).
3. Pulse test duration \(=300 \mu \mathrm{sec}\); duty cycle \(\leq 3 \%\).
4. Measured at end points, \(T_{A}\) and \(T_{B}\).
5. \(C M R R=20 \log _{10}\left[\frac{\Delta V_{D D}}{\Delta\left|V_{G S_{1}}-V_{G S_{2}}\right|}\right], \Delta V_{D D}=10 \mathrm{~V}\).

\section*{U1897-U1899 N-Channel JFET}

\section*{FEATURES}

\section*{- Low Insertion Loss}
- No Error or Offset Voltage Generated by Closed Switch

\section*{APPLICATIONS}

Analog Switches, Choppers

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Drain or Gate-Source Voltage - 40 V
Forward Gate Current 10 mA
Storage Temperature Range .. \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range. . \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec). . \(+300^{\circ} \mathrm{C}\)
Power Dissipation
Derate above \(25^{\circ} \mathrm{C}\)
350 mW
\(3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

\section*{ELECTRICAL CHARACTERISTICS}

TEST CONDITIONS: \(25^{\circ} \mathrm{C}\) unless otherwise noted

*When ordering wafer/dice refer to Appendix B-23.

\section*{VCR2N/3P/4N/7N Voltage Controlled Resistors}

\section*{APPLICATIONS}
- Small Signal Attenuators
- Filters
- Amplifier Gain Control
- Oscillator Amplitude Control

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
Gate-Drain or Gate-Source Voltage
Gate Current 10 mA
Storage Temperature Range .. \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\)
Operating Temperature Range. \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec.\() \ldots+300^{\circ} \mathrm{C}\)
Power Dissipation .300 mW Derate above \(25^{\circ} \mathrm{C} \ldots . . \ldots . . .2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

ORDERING INFORMATION*
\begin{tabular}{|c|c|c|c|}
\hline TO.18 & TO.72 & WAFER & DICE \\
\hline VCR2N & - & VCR2N/W & VCR2N/D \\
\hline VCR4N & - & VCR4N/W & VCR4N/D \\
\hline- & VCR3P & VCR3P/W & VCR3P/D \\
\hline- & VCR7N & VCR7N/W & VCR7N/D \\
\hline
\end{tabular}
*When ordering wafer/dice refer to Appendix B-23.
ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) unless otherwise noted) N-Channel VCR FETs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{Parameter}} & \multicolumn{2}{|l|}{VCR2N} & \multicolumn{2}{|l|}{VCR4N} & \multicolumn{2}{|l|}{VCR7N} & \multirow[b]{2}{*}{Unit} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Test Conditions}} \\
\hline & & & Min & Max & Min & Max & Min & Max & & & \\
\hline \multirow[t]{4}{*}{C} & IGss & Gate Reverse Current & & -5 & & -0.2 & & -0.1 & \(n \mathrm{~A}\) & \(\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0\) & \\
\hline & BVGss & Gate-Source Breakdown Voltage & -15 & & -15 & & -15 & & \multirow[b]{2}{*}{V} & \(\mathrm{IG}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0\) & \\
\hline & VGS(off) & Gate-Source Cutoff Voltage & -3.5 & -7 & -3.5 & -7 & -2.5 & -5 & & \(\mathrm{ID}=1 \mu \mathrm{~A}, \mathrm{VDS}=10 \mathrm{~V}\) & \\
\hline & rds(on) & Drain Source ON Resistance & 20 & 60 & 200 & 600 & 4,000 & 8,000 & \(\Omega\) & \(V_{G S}=0, l_{D}=0\) & \(\mathrm{f}=1 \mathrm{kHz}\) \\
\hline D & Cdgo & Drain-Gate Capacitance & & 7.5 & & 3 & & 1.5 & \multirow[t]{2}{*}{pF} & \(V_{G D}=-10 \mathrm{~V}, I_{S}=0\) & \multirow[t]{2}{*}{\(\mathrm{f}=1 \mathrm{MHz}\)} \\
\hline Y & Csgo & Source-Gate Capacitance & & 7.5 & & 3 & & 1.5 & & \(V_{G S}=-10 \mathrm{~V}, \mathrm{ID}=0\) & \\
\hline
\end{tabular}

\section*{P-Channel VCR FETs}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Parameter} & \multicolumn{2}{|l|}{VCR3P} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Unit } \\
\hline \text { nA }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Test Conditions} \\
\hline \multirow[t]{4}{*}{[} & IGSS & Gate Reverse Current & & 20 & & \(V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0\) & \\
\hline & BVGss & Gate-Source Breakdown Voltage & 15 & & \multirow[b]{2}{*}{V} & \(\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0\) & \\
\hline & VGS(off) & Gate-Source Cutoff Voltage & 3.5 & 7 & & \(\mathrm{ID}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}\) & \\
\hline & rds(on) & Drain-Source ON Resistance & 70 & 200 & \(\Omega\) & \(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{lD}=0\) & \(\mathrm{f}=1 \mathrm{kHz}\) \\
\hline \multirow[t]{2}{*}{\[
\mathrm{V}
\]} & Cdgo & Drain-Gate Capacitance & & 6 & \multirow[t]{2}{*}{pF} & \(\mathrm{V}_{\mathrm{GD}}=10 \mathrm{~V}, \mathrm{IS}=0\) & \multirow[t]{2}{*}{\(\mathrm{f}=1 \mathrm{MHz}\)} \\
\hline & \(\mathrm{C}_{\text {sgo }}\) & Source-Gate Capacitance & & 6 & & \(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=0\) & \\
\hline
\end{tabular}

\section*{JFETS AS VOLTAGE CONTROLLED RESISTORS}

The voltage controlled resistor is a junction field effect transistor whose drain to source ON resistance is controlled by gate to source voltage.
The gate control terminal is high impedance thereby allowing negligible control current. The gate voltage is zero for minimum resistance, and increases as the gate voltage approaches the pinch-off voltage.
This VCR is intended for use on applications using low level AC signals. Figure 1 shows the output characteristics, with an enlarged graph of VDS \(=0\) for AC signals with no DC component. Operation is in the first and third quadrants; the device will operate in the first quadrant only if a constant current is applied to the drain and the input signal level is kept low.

Figure 1 also shows that certain combinations of gate control voltage and signal levels will cause resistance modulation. This distortion may be improved by introducing local feedback as shown in figure 2 for best frequency response and impedance levels; eliminating the feedback capacitor will require the gate control voltage to be double for the same ON resistance. The resistor values should be equal, and about \(100 \mathrm{k} \Omega\).
Best gate control voltage for best linearity is up to about 0.8 V PK; ON resistance increases rapidly beyond this point.

FIGURE 1

FIGURE 2

\section*{Digital}

\section*{DIGITAL}

ROMs
\begin{tabular}{ccccc}
\hline Organization & Max Access Time (ns) & Iod Max(mA) & No. Pins & Package* \\
\hline \(4096 \times 8\) & & & & \\
IM7332 & 300 & 80 & 24 & Temp Range* \\
\(8192 \times 8\) \\
IM7364 & & & & \\
\hline
\end{tabular}

\section*{EPROMs}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Organization & Max Access Time (ns) & \begin{tabular}{l}
VCC \\
(v)
\end{tabular} & Icc Max (mA) Operating & Icc Max (\(\mu \mathrm{A}\)) Standby & No. Pins & Package* & Temp Range \\
\hline \(1024 \times 4\) & & & & & & & \\
\hline IM6653 & 550 & 5 & '6 & 140 & 24 & J & I.M \\
\hline IM6653A & 300 & 10 & 12 & 140 & 24 & J & I.M \\
\hline \multicolumn{8}{|l|}{\(512 \times 8\)} \\
\hline IM6654 & 550 & 5 & 6 & 140 & 24 & \(J\) & I.M \\
\hline IM6654A & 300 & 10 & 12 & 140 & 24 & J & I.M \\
\hline
\end{tabular}

\section*{PERIPHERAL}

\section*{IM8048 Peripheral}

> IM82C43 - CMOS I/O Expander
*Package and Temperature Key
F-Flatpack \(\quad \mathrm{C}\)-Commercial. \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
J -Ceramic Dual In-Line \(\quad\)-Industrial, \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
P-Plastic Dual In-Line \(\quad\) M-Military. \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
D-Ceramic Side Brazed (Not Recommended for High Volume)

\section*{UARTS}
\begin{tabular}{ccccc}
\hline & \begin{tabular}{c}
Max. \\
Clock \\
Frequency
\end{tabular} & \begin{tabular}{c}
XTAL \\
Frequency
\end{tabular} & V Supply
\end{tabular}

GATE ARRAYS
\begin{tabular}{ccccc}
\hline Part Number & Delay & \begin{tabular}{c}
Input Nand \\
Gate Equivalent
\end{tabular} & \begin{tabular}{c}
\(1 / 0\) \\
Cells
\end{tabular} \\
\hline IGC10408 & 6 ns & 408 & 34 \\
IGC10756 & 6 ns & 756 & 44 & \(3-9 \mathrm{~V}\) \\
IGC11500 & 6 ns & 1500 & 62 & \(3-9 \mathrm{~V}\) \\
IGC12001 & 6 ns & 2001 & 70 & \(3-9 \mathrm{~V}\) \\
\hline
\end{tabular}

\title{
NNucre
}

\section*{IM6402/IM6403 Universal Asynchronous Receiver Transmitter (UART)}

\section*{FEATURES}
- Low Power - Less Than 10 mW Typ. at 2 MHz
- Operation Up to 4MHz Clock (IM6402A)
- Programmable Word Length, Stop Bits and Parity
- Automatic Data Formatting and Status Generation
- Compatible with Industry Standard UART's (IM6402)
- On-Chip Oscillator with External Crystal (IM6403)
- Operating Voltage -

IM6402-1/03-1: 5V
IM6402A/03A: 4-11V
IM6402/03: 5V

\section*{PIN CONFIGURATION \\ (outline dwg DL, PL)}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{V}_{\mathrm{Cc}} \mathrm{C}_{1}\) & \(1 \cdot\) & 40 & \\
\hline * \(\mathrm{C}^{2}\) & 2 & 39 & TEPE \\
\hline GND \({ }^{3}\) & 3 & 38 & PCLS1 \\
\hline RRD 4 & 4 & 37 & PCLS2 \\
\hline RBR8 5 & 5 & 36 & \(\square \mathrm{SBS}\) \\
\hline RBR7 6 & 6 & 35 & 7 PI \\
\hline RBR6 7 & 7 & 34 & pCRL \\
\hline RBR5 8 & 8 & 33 & \(\square\) tbr8 \\
\hline RBR4 5 & 9 & 32 & -tbr7 \\
\hline RBR3 & 10 & 31 & -tbra \\
\hline RBR2 11 & 11 & 30 & тtrrs \\
\hline RBR1 12 & 12 & 29 & TBR4 \\
\hline PE 13 & 13 & 28 & TtBR3 \\
\hline FE 1 & 14 & 27 & TBR2 \\
\hline OEG & 15 & 26 & - TBR1 \\
\hline SFD & 16 & 25 & Ptro \\
\hline * & 17 & 24 & Ttre \\
\hline \(\overline{\text { DRR }}\) & 18 & 23 & \(\overline{T B R L}\) \\
\hline * DR & 19 & 22 & \(\square\) TBRE* \\
\hline RRIL & 20 & 21 & FMR \\
\hline
\end{tabular}
*See Table 1

TABLE 1
\begin{tabular}{|c|c|c|c|}
\hline PIN & IM6402 & IM6403 w/XTAL & IM6403 w/EXT CLOCK \\
\hline 2 & N/C & Divide Control & Divide Control \\
17 & RRC & XTAL & External Clock Input \\
19 & Tri-State & Always Active & Always Active \\
22 & Tri-State & Always Active & Always Active \\
40 & TRC & XTAL & GND \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The IM6402 and IM6403 are CMOS/LSI UART's for interfacing computers or microprocessors to asynchronous serial data channels. The receiver converts serial start, data, parity and stop bits to parallel data verifying proper code transmission, parity, and stop bits. The transmitter converts parallel data into serial form and automatically adds start, parity, and stop bits.

The data word length can be 5, 6, 7 or 8 bits. Parity may be odd or even, and parity checking and generation can be inhibited. The stop bits may be one or two (or one and one-half when transmitting 5 bit code). Serial data format is shown in Figure 6.
The IM6402 and IM6403 can be used in a wide range of applications including modems, printers, peripherals and remote data acquisition systems. CMOS/LSI technology permits clock frequencies up to 4.0 MHz (250 K Baud), an improvement of 10 to 1 over previous PMOS UART designs. Power requirements, by comparison, are reduced from 670 mW to 10 mW . Status logic increases flexibility and simplifies the user interface.
The IM6402 differs from the IM6403 in the use of five device pins as indicated in Table 1 and Figure 1.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|c|}
\hline ORDER CODE & IM6402-1/03-1 & IM6402A/03A & IM6402/03 \\
\hline PLASTIC PKG & IM6402-1/03-1IPL & IM6402/03-AIPL & IM6402/03-IPL \\
\hline CERAMIC PKG & IM6402-1/03-1IDL & IM6402/03-AIDL & IM6402/03IDL \\
\hline MILITARY TEMP. & IM6402-1/03-1MDL & IM6402/03-AMDL & - \\
\hline MILITARY TEMP. & IM6402-1/03-1 & IM6402/03-AMDL & - \\
WITH 883B & MDL883B & \(883 B\) & \\
\hline
\end{tabular}

\section*{IM6402/IM6403}

IM6402/IM6403

\section*{ABSOLUTE MAXIMUM RATINGS}

Operating Temperature

IM6402/03
Storage Temperature
\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)

Operating Voltage
\(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)

Supply Voltage 4.0 V to 7.0 V

Virage On Any Input or Ouput Pin .. -0.3 V to \(\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}\)
Voltage On Any Input or Output Pin .. -0.3 V to \(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\)

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

\section*{D.C. CHARACTERISTICS}

TEST CONDITIONS: \(V_{C C}=5.0 \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & SYMBOL & PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline 1 & \(V_{\text {IH }}\) & Input Voltage High & & \(\mathrm{V}_{\mathrm{CC}}-2.0\) & & & V \\
\hline 2 & \(V_{\text {IL }}\) & Input Voltage Low & & & & \(0.8{ }^{\prime}\) & V \\
\hline 3 & IIL & Input Leakage[1] & GND \(\leqslant V_{\text {IN }} \leqslant V_{\text {CC }}\) & -5.0 & & 5.0 & \(\mu \mathrm{A}\) \\
\hline 4 & \(\mathrm{V}_{\mathrm{OH}}\) & Output Voltage High & \(\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}\) & 2.4 & & & V \\
\hline 5 & \(\mathrm{VOL}_{\text {OL }}\) & Output Voltage Low & \(1 \mathrm{OL}=1.6 \mathrm{~mA}\) & . & & 0.45 & V \\
\hline 6 & IOLK & Output Leakage & GND \(\leqslant \mathrm{V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}\) & -5.0 & & 5.0 & \(\mu \mathrm{A}\) \\
\hline 7 & \({ }^{1} \mathrm{CC}\) & Power Supply Current Standby & \(\mathrm{V}_{\text {IN }}=\mathrm{GND}\) or \(\mathrm{V}_{\text {CC }}\) & & 1.0 & 800 & \(\mu \mathrm{A}\) \\
\hline 8 & \({ }^{1} \mathrm{CC}\) & Power Supply Current IM6402 Dynamic & \(\mathrm{f}_{\mathrm{c}}=500 \mathrm{KHz}\) & & & 1.2 & mA \\
\hline 9 & \({ }^{\text {I CC }}\) & Power Supply Current IM6403 Dynamic & \(\mathrm{f}_{\text {crystal }}=2.46 \mathrm{MHz}\) & & & 3.7 & mA \\
\hline 10 & CIN & Input Capacitance[1] & & & 7.0 & 8.0 & pF \\
\hline 11 & \(\mathrm{CO}_{\mathrm{O}}\) & Output Capacitance[1] & & , & 8.0 & 10.0 & pF \\
\hline
\end{tabular}

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
A.C. CHARACTERISTICS

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & SYMBOL & PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline 1 & \(\mathrm{f}_{\mathrm{c}}\) & Clock Frequency IM6402 & \multirow{7}{*}{See Timing Diagrams (Figures 2,3,4)} & D.C. & & 1.0 & MHz \\
\hline 2 & \(\mathrm{f}_{\text {crystal }}\) & Crystal Frequency IM6403 & & & & 2.46 & MHz \\
\hline 3 & \(\mathrm{t}_{\mathrm{pw}}\) & Pulse Widths CRL, \(\overline{\text { DRR, }}\), \(\overline{\text { BRL }}\) & & 225 & 50 & & ns \\
\hline 4 & \(\mathrm{t}_{\mathrm{mr}}\) & Pulse Width MR & & 600 & 200 & & ns \\
\hline 5 & \(t_{\text {ds }}\) & Input Data Setup Time & & 75 & 20 & & ns \\
\hline - 6 & \(t_{\text {dh }}\) & Input Data Hold Time & & 90 & 40 & & ns \\
\hline 7 & \(t_{\text {en }}\) & Output Enable Time & & & 80 & 190 & ns \\
\hline
\end{tabular}

FIGURE 1. Functional Difference Between IM6402 and IM6403 UART (6403 has On-Chip 4/11 Stage Divider)

The IM6403 differs from the IM6402 on three Inputs (RRC, TRC, pin 2) as shown in Figure 1. Two outputs (TBRE, DR) are not three-state as on the IM6402, but are always active. The on-chip divider and oscillator allow an inexpensive crystal to be used as a timing source rather than additional circuitry such
as baud rate generators. For example, a color TV crystal at 3.579545 MHz results in a baud rate of 109.2 Hz for an easy teletype interface (Figure 10). A 9600 baud interface may be implemented using a 2.4576 MHz crystal with the divider set to divide by 16 .

IM6402A/IM6403A

\section*{ABSOLUTE MAXIMUM RATINGS}

Operating Temperature
\begin{tabular}{|c|c|}
\hline Industrial IM6402AI/03AI & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline Military IM6402AM/03AM & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Operating Voltage & 4.0 V to 11.0 V \\
\hline Supply Voltage & +12.0V \\
\hline Voltage On Any Input or Ou & . 3 V to \(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\) \\
\hline
\end{tabular}

NOTE: Stresses above those listed under "Absolute Maximum Ratings", may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

\section*{D.C. CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}\) to \(11.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\) Industrial or Military
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & SYMBOL & PARAMETER & CONDITIONS & MIN & TYP \({ }^{2}\) & MAX & UNITS \\
\hline 1 & \(V_{\text {IH }}\) & Input Voltage High & & 70\% \(\mathrm{V}_{\mathrm{CC}}\) & & & V \\
\hline 2 & \(V_{\text {IL }}\) & Input Voltage Low & & & & 20\% VCC & V \\
\hline 3 & \(I_{\text {IL }}\) & Input Leakage [1] & GND \(\leqslant \mathrm{V}_{1 N} \leqslant \mathrm{~V}_{\text {CC }}\) & -1.0 & & 1.0 & \(\mu \mathrm{A}\) \\
\hline 4 & \(\mathrm{V}_{\mathrm{OH}}\) & Output Voltage High & \(\mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA}\) & \(\mathrm{V}_{\mathrm{CC}}-0.01\) & & & V \\
\hline 5 & \(\mathrm{VOL}^{\text {O }}\) & Output Voltage Low & \({ }^{1} \mathrm{OL}=0 \mathrm{~mA}\) & & & GND+0.01 & V \\
\hline 6 & IOLK & Output Leakage & GND \(\leqslant \mathrm{V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}\) & -1.0 & & 1.0 & \(\mu \mathrm{A}\) \\
\hline 7 & \({ }^{\text {ICC }}\) & Power Supply Current Standby & \(\mathrm{V}_{\text {IN }}=\mathrm{GND}\) or \(\mathrm{V}_{\text {CC }}\) & & 5.0 & 500 & \(\mu \mathrm{A}\) \\
\hline 8 & \({ }^{1} \mathrm{CC}\) & Power Supply Current IM6402A Dynamic & \(\mathrm{f}_{\mathrm{C}}=4 \mathrm{MHz}\) & & & 9.0 & mA \\
\hline 9 & \({ }^{1} \mathrm{CC}\) & Power Supply Current İM6403A Dynamic & \(\mathrm{f}_{\text {crystal }}=3.58 \mathrm{MHz}\) & & & 13.0 & mA \\
\hline 10 & \(\mathrm{CIN}^{\text {IN }}\) & Input Capacitance[1] & & & 7.0 & 8.0 & pF \\
\hline 11 & \(\mathrm{C}_{\mathrm{O}}\) & Output Capacitance[1] & & & 8.0 & 10.0 & pF \\
\hline
\end{tabular}

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{A.C. CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\) Industrial or Military
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & SYMBOL & PARAMETER & CONDITIONS & MIN & TYP2 & MAX & UNITS \\
\hline 1 & \(\mathrm{f}_{\mathrm{c}}\) & Clock Frequency IM6402A & \multirow{7}{*}{See Timing Diagrams (Figures 2,3,4)} & D.C. & & 4.0 & MHz \\
\hline 2 & \(\mathrm{f}_{\text {crystal }}\) & Crystal Frequency IM6403A & & & & 6.0 & MHz \\
\hline 3 & \(t_{\text {pw }}\) & Pulse Widths CRL, \(\overline{\text { DRR, }}\), \(\overline{\text { BRL }}\) & & 100 & 40 & & ns \\
\hline 4 & \(\mathrm{t}_{\mathrm{mr}}\) & Pulse Width MR & & 400 & 200 & & ns \\
\hline 5 & \(t_{\text {ds }}\) & Input Data Setup Time & & 40 & 0 & & ns \\
\hline 6 & \(\mathrm{t}_{\mathrm{dh}}\) & Input Data Hold Time & & 30 & 30 & & ns \\
\hline 7 & \(t_{\text {en }}\) & Output Enable Time & & & 40 & 70 & ns \\
\hline
\end{tabular}

\section*{TIMING DIAGRAMS}

FIGURE 2. Data Input Cycle

FIGURE 3. Control Register Load Cycle

FIGURE 4. Status Flag Enable Time or Data Output Enable Time

IM6402-1/IM6403-1

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operating Temperature} \\
\hline Industrial IM6402-11/03-11 & \(830^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline Military IM6402-1 M/03-1 M & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Operating Voltage & 4.0 V to 7.0V \\
\hline \multicolumn{2}{|l|}{Supply Voltage +8.0 V} \\
\hline Voltage On Any Input or Outp & . 3 V to \(\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}\) \\
\hline
\end{tabular}

Operating Temperature
Industrial IM6402-1I/03-1I \(40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Military IM6402-1M/03-1 M \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Voltage 4.0 V to 7.0 V
Supply Voltage .. +8.0 V
Voltage On Any Input or Output Pin .. -0.3 V to \(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\)

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

\section*{D.C. CHARACTERISTICS}

TEST CONDITIONS: \(V_{C C}=5.0 \pm 10 \%, T_{A}=\) Industrial or Military
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & SYMBOL & PARAMETER & CONDITIONS & MIN & TYP2 & MAX & UNITS \\
\hline 1 & \(\mathrm{V}_{\text {IH }}\) & Input Voltage High & & \(\mathrm{V}_{\mathrm{CC}}{ }^{-2.0}\) & & & V \\
\hline 2 & \(V_{\text {IL }}\) & Input Voltage Low & & & & 0.8 & V \\
\hline 3 & IIL & Input Leakage[1] & GND \(\leqslant V_{\text {IN }} \leqslant V_{\text {CC }}\) & -1.0 & & 1.0 & \(\mu \mathrm{A}\) \\
\hline 4 & \(\mathrm{V}_{\mathrm{OH}}\) & Output Voltage High & \({ }^{1} \mathrm{OH}^{=}=0.2 \mathrm{~mA}\) & 2.4 & & & V \\
\hline 5 & \(\mathrm{V}_{\mathrm{OL}}\) & Output Voltage Low & \(1 \mathrm{OL}=2.0 \mathrm{~mA}\) & & & 0.45 & V \\
\hline 6 & lolk & Output Leakage & , GND \(\leqslant V_{\text {OUT }} \leqslant V_{\text {CC }}\) * & -1.0 & & 1.0 & \(\mu \mathrm{A}\) \\
\hline 7 & \({ }^{\text {ICC }}\) & Power Supply Current Standby & \(\mathrm{V}_{\text {IN }}=\) GND or \(\mathrm{V}_{\text {CC }}\) & & 1.0 & 100 & \(\mu \mathrm{A}\) \\
\hline 8 & \({ }^{1} \mathrm{CC}\) & Power Supply Current IM6402 Dynamic & \(\mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}\) & & & 1.9 & mA \\
\hline 9 & \({ }^{\text {c C }}\) & Power Supply Current IM6403 Dynamic & \(\mathrm{f}_{\text {crystal }}=3.58 \mathrm{MHz}\) & & & 5.5 & mA \\
\hline 10 & \(\mathrm{CIN}^{\text {IN }}\) & Input Capacitance[1] & & & 7.0 & 8.0 & pF \\
\hline 11 & \(\mathrm{C}_{\mathrm{O}}\) & Output Capacitance[1] & & & 8.0 & 10.0 & pF \\
\hline
\end{tabular}

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{A.C. CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\) Industrial or Military
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & SYMBOL & PARAMETER & CONDITIONS & MIN & TYP2 & MAX & UNITS \\
\hline 1. & \({ }^{\text {f }}\) c & Clock Frequency IM6402 & \multirow{7}{*}{See Timing Diagrams (Figures 2,3,4)} & D.C. & & 2.0 & MHz \\
\hline 2 & \(\mathrm{f}_{\text {crystal }}\) & Crystal Frequency IM6403 & & & & 3.58 & MHz \\
\hline 3 & \({ }^{\text {ppw }}\) & Pulse Widths CRL, \(\overline{\text { DRR }}, \overline{\text { TBRL }}\) & & 150 & 50 & & ns \\
\hline 4 & \(t_{\text {mr }}\) & Pulse Width MR & & 400 & 200 & & ns \\
\hline 5 & \(\mathrm{t}_{\text {ds }}\) & Input Data Setup Time * & & 50 & 20 & & ns \\
\hline 6 & \(t_{\text {dh }}\) & Input Data Hold Time & & 60 & 40 & & ns \\
\hline 7 & \(t_{\text {en }}\) & Output Enable Time & & & 80 & 160 & ns \\
\hline
\end{tabular}

*DIFFERS BETWEEN IM6402 AND IM6403.
FIGURE 5. Pin Configuration

\section*{IM6403 FUNCTIONAL PIN DEFINITION}
\begin{tabular}{|c|c|c|}
\hline PIN & SYMBOL & DESCRIPTION \\
\hline 1 & \(\mathrm{V}_{\mathrm{CC}}\) & Positive Power Supply \\
\hline 2 & IM6402-N/C & No Connection \\
\hline & IM6403-Control & Divide Control \\
\hline & & Low: \(2^{11}\) (2048) Divider \\
\hline 3 & GND & Ground \\
\hline 4 & RRD & A high level on RECEIVER REGISTER DISABLE forces the receiver holding register outputs RBR1-RBR8 to a high impedance state. \\
\hline 5 & RBR8 & The contents of the RECEIVER BUFFER REGISTER appear on these three-state outputs. Word formats less than 8 characters are right justified to RBR1. \\
\hline 6 & RBR7 & See Pin 5 - RBR8 \\
\hline 7 & RBR6 & See Pin 5-RBR8 \\
\hline 8 & RBR5 & See Pin 5 - RBR8 \\
\hline 9 & RBR4 & See Pin 5 - RBR8 \\
\hline 10 & RBR3 & See Pin 5-RBR8 \\
\hline 11 & RBR2 & See Pin 5 - RBR8 \\
\hline 12 & RBR1 & See Pin 5-RBR8 \\
\hline 13 & PE & A high level on PARITY ERROR indicates that the received parity does not match parity programmed by control bits. The output is active until parity matches on a succeeding character. When parity is inhibited, this output is low. \\
\hline
\end{tabular}

IM6403 FUNCTIONAL PIN DEFINITION (Continued)
\begin{tabular}{|c|c|c|}
\hline PIN & SYMBOL & DESCRIPTION \\
\hline 14 & FE & A high level on FRAMING ERROR indicates the first stop bit was invalid. FE will stay active until the next valid character's stop bit is received. \\
\hline 15 & OE & A high level on OVERRUN ERROR indicates the data received flag was not cleared before the last character was transferred to the receiver buffer register. The Error is reset at the next character's stop bit if \(\overline{\mathrm{DRR}}\) has been performed (i.e., DRR: active low). \\
\hline 16 & SFD & \begin{tabular}{l}
A high level on STATUS FLAGS DISABLE forces the outputs PE, FE, OE, DR,'TBRE* to a high impedance state. See Block Diagram and Figure 4. \\
*IM6402 only.
\end{tabular} \\
\hline 17 & IM6402-RRC IM6403-XTAL or EXT CLK IN & The RECEIVER REGISTER CLOCK is 16 X the receiver data rate. \\
\hline 18 & \(\overline{\text { DRR }}\) & A low level on DATA RECEIVED RESET clears the data received output (DR), to a low level. \\
\hline 19 & DR & A high level on DATA RECEIVED indicates a character has been received and transferred to the receiver buffer register. \\
\hline 20 & RRI & Serial data on RECEIVER REGISTER INPUT is clocked into the receiver register. \\
\hline 21 & MR & A high level on MASTER RESET (MR) clears PE, FE, OE, DR, TRE and sets TBRE, TRO high. Less than 18 clocks after MR goes low, TRE returns high. MR does not clear the receiver buffer register, and is required after power-up. \\
\hline 22 & TBRE & A high level on TRANSMITTER BUFFER REGISTER EMPTY indicates the transmitter buffer register has transferred its data to the transmitter register and is ready for new data. \\
\hline 23 & \(\overline{\text { TBRL }}\) & A low level on TRANSMITTER BUFFER REGISTER LOAD transfers data from inputs TBR1-TBR8 into the transmitter buffer register. A low to high transition on TBRL requests data transfer to the transmitter register. If the transmitter register is busy, transfer is automatically delayed so that the two characters are transmitted end to end. See Figure 2. \\
\hline 24 & TRE & A high level on TRANSMITTER REGISTER EMPTY indicates completed transmission of a character including stop bits. \\
\hline 25 & TRO & Character data, start data and stop bits appear serially at the TRANSMITTER REGISTER OUTPUT. \\
\hline
\end{tabular}

IM6403 FUNCTIONAL PIN DEFINITION
(Continued)
\begin{tabular}{|c|c|c|}
\hline PIN & SYMBOL & DESCRIPTION \\
\hline 26 & TBR1 & Character data is loaded into the TRANSMITTER BUFFER REGISTER via inputs TBR1-TBR8. For character formats less than 8-bits, the TBR8, 7, and 6 Inputs are ignored corresponding to the programmed word length. \\
\hline 27 & TBR2 & See Pin 26 - TBR1 \\
\hline 28 & TBR3 & See Pin \(26-\) TBR1 \\
\hline 29 & TBR4 & See Pin 26 - TBR1 \\
\hline 30 & TBR5 & See Pin 26 - TBR1 \\
\hline 31 & TBR6 & See Pin 26 - TBR1 \\
\hline 32 & TBR7 & See Pin 26 - TBR1 \\
\hline 33 & TBR8 & See Pin 26 - TBR1 \\
\hline 34 & CRL & A high level on CONTROL REGISTER LOAD loads the control register. See Figure 3. \\
\hline
\end{tabular}

IM6403 FUNCTIONAL PIN DEFINITION (Continued)
\begin{tabular}{|c|c|c|}
\hline PIN & SYMBOL & DESCRIPTION \\
\hline 35 & P1* & A high level on PARITY INHIBIT inhibits parity generation, parity checking and forces PE output low. \\
\hline 36 & SBS* & A high level on STOP BIT SELECT selects 1.5 stop bits for a 5 character format and 2 stop bits for other lengths. \\
\hline 37 & CLS2* & These inputs program the CHARACTER LENGTH SELECTED. (CLS1 low CLS2 low 5-bits) (CLS1 high CLS2 low 6-bits)(CLS1 low CLS2 high 7-bits) (CLS1 high CLS2 high 8-bits) \\
\hline 38 & CLS1* & See Pin \(37-\mathrm{CLS} 2\) \\
\hline 39 & EPE* & When PI is low, a high level on EVEN PARITY ENABLE generates and checks even parity. A low level selects odd parity. \\
\hline 40 & IM6402-TRC IM6403-XTAL or GND & The TRANSMITTER REGISTER CLOCK is 16X the transmit data rate. \\
\hline
\end{tabular}
*See Table 2 (Control Word Function)

TABLE 2. Control Word Function
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{CONTROL WORD} & \multirow[b]{2}{*}{DATA BITS} & \multirow[b]{2}{*}{PARITY BIT} & \multirow[b]{2}{*}{STOP BIT(S)} \\
\hline CLS2 & CLS 1 & PI & EPE & SBS & & & \\
\hline L & L & L & L & L & 5 & ODD & 1 \\
\hline L & L & L & L & H & 5 & ODD & 1.5 \\
\hline L & L & L & H & L & 5 & EVEN & 1 \\
\hline L & L & L & H & H & 5 & EVEN & 1.5 \\
\hline L & L & H & X & L & 5 & DISABLED & 1 \\
\hline L & L & H & X & H & 5 & DISABLED & 1.5 \\
\hline L & H & L & L & L & 6 & ODD & 1 \\
\hline L & H & L & L & H & 6 & ODD & 2 \\
\hline L & H & L & H & L & 6 & EVEN & 1 \\
\hline L & H & L & H & H & 6 & EVEN & 2 \\
\hline L & H & H & X & L & 6 & DISABLED & 1 \\
\hline L & H & H & X & H & 6 & DISABLED & 2 \\
\hline H & L & L & L & L & 7 & ODD & 1 \\
\hline H & L & L & L & H & 7 & ODD & 2 \\
\hline H & L & L & H & L & 7 & EVEN & 1 \\
\hline H & L & L & H & H & 7 & EVEN & 2 \\
\hline H & L & H & X & L & 7 & DISABLED & 1 \\
\hline H & L & H & X & H & 7 & DISABLED & 2 \\
\hline H & H & L & L & L & 8 & ODD & 1 \\
\hline H & H & L & L & H & 8 & ODD & 2 \\
\hline H & H & L & H & L & 8 & EVEN & 1 \\
\hline H & H & L & H & H & 8 & EVEN & 2 \\
\hline H & H & H & X & L & 8 & DISABLED & 1 \\
\hline H & H & H & X & H & 8 & DISABLED & 2 \\
\hline
\end{tabular}

X = Don't Care

\section*{TRANSMITTER OPERATION}

The transmitter section accepts parallel data, formats it and transmits it in serial form (Figure 6) on the TROutput terminal.

\section*{FIGURE 6. Serial Data Format}

Transmitter timing is shown in Figure 7. (A) Data is loaded into the transmitter buffer register from the inputs TBR1 through TBR8 by a logic low on the TBRLoad input. Valid data must be present at least \(t_{D S}\) prior to and \(t_{D H}\) following the rising edge of TBRL. If words less than 8 bits are used, only the least significant bits are used. The character is right justified into the least significant bit, TBR1. (B) The rising edge of TBRL clears TBREmpty. 0 to 1 clock cycles later, data is transferred to the transmitter register, TREmpty is cleared and transmission starts. TBREmpty is reset to a logic high. Output data is clocked by TRClock; which is 16 times the data rate.(C)A second pulse on TBRLoad loads data into the transmitter buffer register. Data transfer to the transmitter register is delayed until transmission of the current character is complete.(D)Data is automatically transferred to the transmitter register and transmission of that character begins.

FIGURE 7. Transmitter Timing (Not to Scale)

\section*{RECEIVER OPERATION}

Data is received in serial form at the RI input. When no data is being received, RI input must remain high. The data is clocked by the RRClock, which is 16 times the data rate. Receiver timing is shown in Figure 8.
(A) A low level on DRReset clears the DReady line. (B) During the first stop bit, data is transferred from the receiver register to the RBRegister. If the word is less than 8 bits, the unused most significant bits will be a logic low. The output character is right justified to the least significant bit RBR1. A logic high on OError indicates an overrun which occurs when DReady has not been cleared before the present character was transferred to the RBRegister. A logic high on PError indicates a parity error. (C) \(1 / 2\) clock cycle later, DReady is set to a logic high and FError is evaluated. A logic high on FError indicates an invalid stop bit was received. The receiver will not begin searching for the next start bit until a stop bit is received.

FIGURE 8. Receiver Timing (Not to Scale)

\section*{START BIT DETECTION}

The receiver uses a 16X clock for timing (see Figure 9.) The start bit (A) could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion. The center of the start bit is defined as clock count \(71 / 2\). If the receiver clock is a symmetrical square wave, the center of the start bit will be located within \(\pm 1 / 2\) clock cycle, \(\pm 1 / 32\) bit or \(\pm 3.125 \%\). The receiver begins searching for the next start bit at the center of the first stop bit.

FIGURE 9. Start Bit Timing

\section*{TYPICAL APPLICATION}

Microprocessor systems, which are inherently parallel in nature, often require an asynchronous serial interface. This function can be performed easily with the IM6402/03 UART. Figure 10 shows how the IM6403 can be interfaced to an IM6100 microcomputer system with the aid of an IM6101 Programmable Interface Element (PIE). The PIE interprets Input/Output transfer (IOT) instructions from the processor and generates read and write pulses to the UART. The SENSE lines on the PIE are also employed to allow the processor to detect UART status. In particular, the processor must know when the Receive Buffer Register has accumulated a character (DR active), and when the Transmit Buffer Register can accept another character to be transmitted.

In this example the characters to be received or transmitted will be eight bits long (CLS 1 and 2: both HIGH) and transmitted with no parity (PI:HIGH) and two stop bits (SBS:HIGH). Since these control bits will not be changed during operation, Control Register Load (CRL) can be tied high. Remember, since the IM6402/03 is a CMOS device, all unused inputs should be committed.
The baud rate at which the transmitter and receiver will operate is determined by the external crystal and DIVIDE CONTROL pin on the IM6403. The internal divider can be set to reduce the crystal frequency by either 16 (PIN 2:HIGH) or 2048 (PIN 2:LOW) times. The frequency out of the internal divider should be 16 times the desired baud rate. To generate 110 baud, this example will use a 3.579545 MHz color TV crystal

\section*{IM6402/IM6403}

and DIVIDE CONTROL set low: The IM6402 may use different receive (RRC) and transmit (TRC) clock rates, but requires an external clock generator.
To ensure consistent and correct operation, the IM6402/03 must be reset after power-up. The Master Reset (MR) pin is active high, and can be driven reliably from a Schmitt trigger inverter and R-C delay. In this example, the IM6100 is reset through still another inverter. The Schmitt trigger between the processor and R-C network is needed to assure that a slow rising capacitor voltage does not re-trigger RESET. A long reset pulse after power-up (-100 ms) is required by the processor to assure that the on-board crystal oscillator has sufficient time to start.

The IM6402 supports the processor's bi-directional data bus quite easily by tying the TBR and RBR buses together. A read command from the processor will enable the RECEIVER BUFFER REGISTER onto the bus by using the RECEIVER REGISTER DISABLE (RRD) pin. A write command from the processor clocks data from the bus into the TRANSMITTER BUFFER REGISTER using TBRL. Figure 10 shows a NAND gate driving TBRL from the \(\overline{\text { WRITE }}_{2}\) pin on the PIE. This gate is used to generate a rising edge to \(\overline{\mathrm{TBRL}}\) at the point where data is
stable on the bus, and to hold TBRL high until the UART actually transfers the data to it's internal buffer. If TBRL were allowed to return low before TBRE went high, the intended output data would be overwritten, since the TBR is a transparent latch.

Although not shown in this example, the error flags (PE, FE, OE) could be read by the processor, using the other READ line from the PIE. Since an IM6403 is used, TBRE and DR are not affected by the STATUS FLAGS DISABLE pin, thus, the three error flags can be tied to the data bus and gated by connecting SFD to \(\overline{\operatorname{READ}}_{2}\).

If parity is not inhibited, a parity error will cause the PE pin to go high until the next valid character is received.

A framing error is generated when an expected stop bit is not received. FE will stay high after the error until the next complete character's stop bit is received.

The overrun error flag is set if a received character is transferred to the RECEIVER BUFFER REGISTER when the previous character has not been read. The OE pin will stay high until the next received stop bit after a \(\overline{\mathrm{DRR}}\) is performed.

FIGURE 10. 110 Baud Serial Interface for IM6100 System

\title{
IM6653/IM6654 4096 Bit CMOS UV Erasable PROM
}

\section*{FEATURES}
- Organization - IM6653: \(1024 \times 4\)

IM6654: \(512 \times 8\)
- Low Power - 770 \(\mu\) W Maximum Standby
- High Speed
- 300ns 10V Access Time for IM6653/54 AI
- 450ns 5V Access Time for IM6653/54-1I
- Single \(+5 V\) supply operation
- UV erasable
- Synchronous operation for low power dissipation
- Three-state outputs and chip select for easy system expansion
- Full \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) MIL range devicesIM6653/54 M, IM6653A/64A M

\section*{GENERAL DESCRIPTION}

The Intersil IM6653 and IM6654 are fully decoded 4096 bit CMOS electrically programmable ROMs (EPROMs) fabricated with Intersil's advanced CMOS processing technology. In all static states these devices exhibit the microwatt power dissipation typical of CMOS. Inputs and three-state outputs are TTL compatible and allow for direct interface with common system bus structures. On-chip address registers and chip select functions simplify system interfacing requirements.
The IM6653 and IM6654 are specifically designed for program development applications where rapid turn-around for program changes is required. The devices may be erased by exposing their transparent lids to ultra-violet light, and then re-programmed.

ABSOLUTE MAXIMUM RATINGS
Supply Voltages
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{12}{*}{\begin{tabular}{l}
 \\
Input or Output Voltage Supplied. GND -0.3 V to \(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\) \\
Storage Temperature Range...................................... \(65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Operating Range \\
Temperature \\
Industrial. .. \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
Military. .. \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Voltage \\
6653/54 I, - 11 4.5-5.5 \\
\(6653 / 54\) M.. . 4.5-5.5 \\
NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

DC CHARACTERISTICS
TEST CONDITIONS: \(\mathrm{V}_{C C}=\mathrm{V}_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\) Operating Temperature Range
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{2}{|l|}{IM6653/54I, -11,M} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & MAX & \\
\hline \multirow[t]{2}{*}{Logical "1" Input Voltage} & \(\mathrm{V}_{\mathrm{IH}}\) & \(\bar{E}_{1}, \bar{S}\) & \(\mathrm{V}_{\mathrm{DD}}-2.0\) & & \multirow{3}{*}{V} \\
\hline & \(\mathrm{V}_{\text {IH }}\) & Address Pins & 2.7 & & \\
\hline Logical "0" Input Voltage & \(\mathrm{V}_{\text {IL }}\) & & & 0.8 & \\
\hline Input Leakage & 1 & \(\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{DD}}\) & -1.0 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Logical "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}{ }^{2}\) & \(\mathrm{l}_{\text {OUT }}=0\) & \(\mathrm{V}_{\mathrm{CC}}-0.01\) & & \multirow{4}{*}{V} \\
\hline Logical "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH} 1}\) & \(\mathrm{IOH}=-0.2 \mathrm{~mA}\) & 2.4 & & \\
\hline Logical "0" Output Voltage & \(\mathrm{V}_{\mathrm{OL} 2}\) & lout \(=0\) & & GND + 0.01 & \\
\hline Logical "0" Output Voltage & \(\mathrm{V}_{\mathrm{OL} 1}\) & \(\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}\) & * & 0.45 & \\
\hline Output Leakage & IoLk & \(\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}\) & -1.0 & 1.0 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline \multirow[t]{2}{*}{Standby Supply Current} & IDDSB & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}\) & & 100 & \\
\hline & ICC & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}\) & & 40 & \\
\hline Operating Supply Current & IDDOP & f=1 MHz & & 6 & mA \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & Note 1 & & 7.0 & \multirow[t]{2}{*}{pF} \\
\hline Output Capacitance & \(\mathrm{C}_{0}\) & Note 1 & & 10.0 & \\
\hline
\end{tabular}

Note 1: These parameters guaranteed but not \(100 \%\) tested.

\section*{AC CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=\) Operating Temperature Range
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{IM6653/54-1I} & \multicolumn{2}{|l|}{IM6653/54 I} & \multicolumn{2}{|l|}{IIM6653/54 M} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & MAX & MIN & MAX & MIN & MAX & \\
\hline Access Time From \(\overline{\mathrm{E}}_{1}\) & TE \({ }_{1}\) LQV & & 450 & & 550 & & 600 & \multirow{9}{*}{ns} \\
\hline Output Enable Time & TSLQV & & 110 & & 140 & & 150 & \\
\hline Output Disable Time & TE \({ }_{1}\) HQZ & & 110 & & 140 & & 150 & \\
\hline \(\bar{E}_{1}\) Pulse Width (Positive) & \(\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}\) & 130 & & 150 & & 150 & & \\
\hline \(\bar{E}_{1}\) Pulse Width (Negative) & \(\mathrm{TE}_{1} \mathrm{LE}_{1} \mathrm{H}\) & 450 & & 550 & & 600 & & \\
\hline Address Setup Time & \(\mathrm{TAVE}_{1} \mathrm{~L}\) & 0 & & 0 & & 0 & & \\
\hline Address Hold Time & TE \({ }_{1}\) LAX & 80 & & 100 & & 100 & & \\
\hline Chip Enable Setup Time (6654) & \(T E_{2} V E_{1} L\) & 0 & & 0 & & 0 & . & \\
\hline Chip Enable Hold Time (6654) & \(\mathrm{TE}_{1} \mathrm{LE}_{2} \mathrm{X}\) & 80 & & 100 & & 100 & & \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Supply Voltages} \\
\hline \(\mathrm{V}_{\mathrm{DD}}\). & +11.0 V \\
\hline \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}\) & . +11.0 V \\
\hline Input or Output Voltage Supplied. & .GND -0.3V to \(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\) \\
\hline Storage Temperature Range. & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Operating Range} \\
\hline \multicolumn{2}{|l|}{Temperature} \\
\hline Industrial . & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline Military. & . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Voltage} \\
\hline \(6653 / 54\) AI, AM . & . 4.5 to 10.5 V \\
\hline
\end{tabular}

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{DC CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}\) to \(10.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\) Operational Temperature Range
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{2}{|r|}{IM6653/54AI, AM} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & MAX & \\
\hline Logical "1" Input Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & \(\bar{E}_{1}, \bar{S}\) & \(\mathrm{V}_{\mathrm{DD}}-2.0\) & & \multirow{3}{*}{V} \\
\hline & \(\mathrm{V}_{\text {IH }}\) & Address Pins & \(\mathrm{V}_{\mathrm{DD}}-2.0\) & & \\
\hline Logical "0" Input Voltage & \(\mathrm{V}_{\text {IL }}\) & & & 0.8 & \\
\hline Input Leakage & 1 & \(\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}\) & -1.0 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Logical "1" Output Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & lout \(=0\) & \(\mathrm{V}_{\mathrm{CC}}-0.01\) & & \multirow[b]{2}{*}{V} \\
\hline Logical "0" Output Voltage & \(\mathrm{V}_{\text {OL }}{ }^{\text {L }}\) & IOUT \(=0\) & & GND + 0.01 & \\
\hline Output Leakage & IOLK & \(\mathrm{GND} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{CC}}\) & -1.0 & 1.0 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline \multirow[t]{2}{*}{Standby Supply Current} & IDDSB & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}\) & & 100 & \\
\hline & ICC & \(V_{\text {IN }}=V_{\text {DD }}\) & & 40 & \\
\hline Operating Supply Current & IDDOP & \(\mathrm{f}=1 \mathrm{MHz}\) & & 12 & mA \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & Note 1 & & 7.0 & \multirow[t]{2}{*}{pF} \\
\hline Output Capacitance & \(\mathrm{C}_{0}\) & Note 1 & & 10.0 & \\
\hline
\end{tabular}

Note 1: These parameters guaranteed but not \(100 \%\) tested.

\section*{AC CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=\) Operating Temperature Range
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{IM6653/54 AI} & \multicolumn{2}{|l|}{IM6653/54 AM} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & MAX & MIN & MAX & \\
\hline Access Time From \(\overline{\mathrm{E}}_{1}\) & TE \({ }_{1}\) LQV & & 300 & & 350 & \multirow{9}{*}{ns} \\
\hline Output Enable Time & TSLQV & & 60 & & 70 & \\
\hline Output Disable Time & TE1 HQZ & & 60 & & 70 & \\
\hline \(\overline{\mathrm{E}}_{1}\) Pulse Width (Positive) & \(\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}\) & 125 & & 125 & & \\
\hline \(\bar{E}_{1}\) Pulse Width (Negative) & \(\mathrm{TE}_{1} \mathrm{LE}_{1} \mathrm{H}\) & 300 & & 350 & & \\
\hline Address Setup Time & TAVE \({ }_{1}\) L & 0 & & 0 & & \\
\hline Address Hold Time & TE \({ }_{1}\) LAX & 60 & & 60 & & \\
\hline Chip Enable Setup Time (6654) & \(\mathrm{TE}_{2} \mathrm{VE} \mathrm{E}_{1} \mathrm{~L}\) & 0 & & 0 & & \\
\hline Chip Enable Hold Time (6654) & \(\mathrm{TE}_{1} \mathrm{LE}_{2} \mathrm{X}\) & 60 & & 60 & & \\
\hline
\end{tabular}

PIN ASSIGNMENTS
\begin{tabular}{|c|c|c|l|}
\hline PIN & SYMBOL & \begin{tabular}{c}
ACTIVE \\
LEVEL
\end{tabular} & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline \(1-8,23\) & \(\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~A}_{8}\) & - & Address Lines \\
\hline \(9-11,13-17\) & \(\mathrm{Q}_{0}-\mathrm{Q}_{7}\) & - & Data Out lines, 6654 \\
& \(\mathrm{Q}_{0}-\mathrm{Q}_{3}\) & - & Data Out lines, 6653 \\
\hline 12 & GND & - & \\
\hline 18 & Program & - & Programming pulse input \\
\hline 19 & \(\mathrm{~V}_{\mathrm{DD}}\) & - & Chip V+ supply, normally tied to \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline 20 & \(\overline{\mathrm{E}}_{1}\) & L & Strobe line, latches both address lines and, for 6654, Chip enable \(\overline{\mathrm{E}}_{2}\) \\
\hline 21 & \(\overline{\mathrm{~S}}\) & L & Chip select line, must be low for valid data out \\
\hline 22 & \(\mathrm{~A}_{9}\) & - & Additional address line for 6653 \\
& \(\mathrm{E}_{2}\) & L & Chip enable line, latched by Chip enable \(\overline{\mathrm{E}}_{1}\) on 6654 \\
\hline 24 & \(\mathrm{~V}_{\mathrm{CC}}\) & - & Output buffer + V Supply \\
\hline
\end{tabular}

READ CYCLE TIMING

\section*{READ MODE OPERATION}

In a typical READ operation address lines and chip enable \(\bar{E}_{2}{ }^{*}\) are latched by the falling edge of chip enable \(\bar{E}_{1}(T=0)\). Valid data appears at the outputs one access time (TELQV) later, provided level-sensitive chip select line \(\overline{\mathrm{S}}\) is low (\(T=3\)). Data remains valid until either \(\bar{E}_{1}\) or \(\bar{S}\) returns to a high level \((T=4)\). Outputs are then forced to a high-Z state.
Address lines and \(\bar{E}_{2}\) must be valid one setup time before (TAVEL), and one hold time after (TELAX), the falling edge of \(\bar{E}_{1}\) starting the read cycle. Before becoming valid, \(Q\) output lines become active (\(T=2\)). The Q output lines return to a high-Z state one output disable time (\(\mathrm{TE}_{1} \mathrm{HQZ}\)) after any rising edge on \(\bar{E}_{1}\) or \(\overline{\mathrm{S}}\).
The program line remains high throughout the READ cycle. Chip enable line \(\bar{E}_{1}\) must remain high one minimum positive pulse width (TEHEL) before the next cycle can begin.

FUNCTION TABLE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TIME REF} & \multicolumn{4}{|c|}{INPUTS} & \multirow[t]{2}{*}{OUTPUTS Q} & \multirow[t]{2}{*}{NOTES} \\
\hline & E1 & E2* & \(\overline{\mathbf{S}}\) & A & & \\
\hline -1. & H & X & X & X & Z & DEVICE INACTIVE \\
\hline 0 & \(\checkmark\) & L & X & V & Z & CYCLE BEGINS; ADDRESSES, \(\bar{E}_{2}\) LATCHED* \\
\hline 1 & L & X & X & X & Z & INTERNAL OPERATIONS ONLY \\
\hline 2 & L & X & L & X & A & OUTPUTS ACTIVE UNDER CONTROL OF \(\bar{E}_{1}, \overline{\mathrm{~S}}\) \\
\hline 3 & L & X & L & X & V & OUTPUTS VALID AFTER ACCESS TIME \\
\hline 4 & \(\pi\) & X & L & X & V & READ COMPLETE \\
\hline 5 & H & X & X & X & Z & CYCLE ENDS (SAME AS -1) \\
\hline
\end{tabular}

READ AND PROGRAM CYCLES

DC CHARACTERISTICS FOR PROGRAMMING OPERATION
TEST CONDITIONS: \(V_{C C}=V_{D D}=5 \mathrm{~V} \pm 5 \%, T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|l|l|l|r|r|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Program Pin Load Current & \(\mathrm{I}_{\text {PROG }}\) & & & 80 & 100 & mA \\
\hline Programming Pulse Amplitude & \(\mathrm{V}_{\text {PROG }}\) & & 38 & 40 & 42 & V \\
\hline \(\mathrm{~V}_{\mathrm{CC}}\) Current & \(\mathrm{I}_{\mathrm{CC}}\) & & & 0.1 & 5 & mA \\
\hline \(\mathrm{~V}_{\mathrm{DD}}\) Current & \(\mathrm{I}_{\mathrm{DD}}\) & & & 40 & 100 & \\
\hline Address Input High Voltage & \(\mathrm{V}_{\mathrm{IHA}}\) & & & \(\mathrm{V}_{\mathrm{DD}}-2.0\) & & \\
\hline Address Input Low Voltage & \(\mathrm{V}_{\mathrm{ILA}}\) & & & & 0.8 \\
\hline Data Input High Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & & & V \\
\hline Data Input Low Voltage & \(\mathrm{V}_{\mathrm{IL}}\) & & & & & \\
\hline
\end{tabular}

\section*{AC CHARACTERISTICS FOR PROGRAMMING OPERATION}

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Program Pulse Width & TPLPH & \(\mathrm{t}_{\text {rise }}=\mathrm{t}_{\text {fall }}=5 \mu \mathrm{~s}\) & 18 & 20 & 22 & ms \\
\hline Program Pulse Duty Cycle & & & & & 75\% & \\
\hline Data Setup Time & TDVPL & & 9 & & & \multirow[t]{2}{*}{\(\mu \mathrm{S}\)} \\
\hline Data Hold Time & TPHDX & & 9 & & & \\
\hline Strobe Pulse Width & \(\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}\) & & 150 & & & \multirow{4}{*}{ns} \\
\hline Address Setup Time & TAVE \({ }_{1}\) L & & 0 & & & \\
\hline Address Hold Time & \(\mathrm{TE}_{1} \mathrm{LE} \mathrm{E}_{1} \mathrm{X}\) & & 100 & & & \\
\hline Access Time & TE \({ }_{1}\) LQV & & & & 1000 & \\
\hline
\end{tabular}

\section*{PROGRAM MODE OPERATION}

Initially, all 4096 bits of the EPROM are in the logic one (output high) state. Selective programming of proper bit locations to " 0 "'s is performed electrically.
In the PROGRAM mode for all EPROMs, \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{DD}}\) are tied together to a +5 V operating supply. High logic levels at all of the appropriate chip inputs and outputs must be set at \(V_{D D}-2 V\) minimum. Low logic levels must be set at GND + . 8 V maximum. Addressing of the desired location in PROGRAM mode is done as in the READ mode. Address and data lines are set at the desired logic levels, and PROGRAM and chip select (\(\overline{\mathbf{S}})\) pins are set high. The address is
latched by the downward edge on the strobe line \(\left(\bar{E}_{1}\right)\). During valid DAT'A IN time, the PROGRAM pin is pulsed from \(V_{D D}\) to -40 V . This pulse initiates the programming of the device to the levels set on the data outputs. Duty cycle limitations are specified from chip heat dissipation considerations. PULSE RISE AND FALL TIMES MUST NOT BE FASTER THAN \(5 \mu \mathrm{~s}\).
Intelligent programmer equipment with successive READ/PROGRAM/VERIFY sequences, such as the Intersil 6920 CMOS EPROM programmer, is recommended.

\section*{PROGRAMMING SYSTEM CHARACTERISTICS}
1. During programming the power supply should be capable of limiting peak instantaneous current to 100 mA .
2. The programming pin is driven from \(V_{D D}\) to -40 volts \((\pm 2 \mathrm{~V})\) by pulses of 20 milliseconds duration. These pulses should be applied in the sequence shown in the flow chart. Pulse rise and fall times of 10 microseconds are recommended. Note that any individual location may be programmed at any time.
3. Addresses and data should be presented to the device within the recommended setup/hold time and high/low logic level margins. Both " \(A\) " (10V) and non " \(A\) " EPROMs are programmed at \(V_{C C}, V_{D D}\) of \(5 \mathrm{~V} \pm 5 \%\).

\section*{ERASING PROCEDURE}

The IM6653/54 are erased by exposure to high intensity short-wave ultraviolet light at a wavelength of \(2537 \AA\). The recommended integrated dose (i.e.,UV intensity \(x\) exposure time) is 10 W sec/ \(\mathrm{cm}^{2}\). The lamps should be used without short-wave filters, and the IM6653/54 to be erased should be placed about one inch away from the lamp tubes. For best results it is recommended that the device remain inactive for 5 minutes after erasure, before reprogramming.
The erasing effect of UV light is cummulative. Care should be taken to protect EPROMs from exposure to direct sunlight or florescent lamps radiating UV light in the \(2000 \AA\) to \(4000 \AA\) range.
4. Programming is to be done at room temperature.

\section*{PROGRAMMING FLOW CHART}

IM6653 CMOS EPROMS AS EXTERNAL PROGRAM MEMORY WITH THE IM80C35

IM6653 CMOS EPROMS AS PROGRAM MEMORY WITH THE IM6100

\section*{FEATURES}
- High Speed - 300ns Maximum access time
- Completely static - no clock required
- Single +5V supply
- Fully TTL Compatible
- Two programmable Chip Selects
- Three-state outputs
- Industry standard 24 lead pinout

\section*{GENERAL DESCRIPTION}

The IM7332 is a 32,768 bit read-only memory (ROM) organized 4096 words by 8 bits. The device is fabricated using Intersil's HMOS technology to minimize cell area and optimize circuit performance.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing to common bus structures. Two chip select inputs which are programmable to either active high or active low, facilitate ease of memory expansion.
The IM7332 operates over 5V \(\pm 5 \%\) at 75 mA with an access time of 300ns.

\section*{ABSOLUTE MAXIMUM RATINGS}

> Supply Voltage ... +7.0 V
> Voltage on Any Pin Relative to GND . -0.5 V to +7.0 V
> Commercial Operating Temperature Range \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\[
\begin{aligned}
& \text { Power Dissipation }
\end{aligned}
\]

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DESCRIPTION} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN. & TYP. & MAX. & \\
\hline Input High Voltage & \(V_{\text {IH }}\) & & 2.0 & & \(\mathrm{V}_{\mathrm{CC}}\) & \multirow[t]{2}{*}{V} \\
\hline Input Low Voltage & \(V_{\text {IL }}\) & & -0.5 & & 0.8 & \\
\hline Input Leakage Current & IILK & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) to 5.25 V & -10 & & 10 & \(\mu \mathrm{A}\) \\
\hline Output High Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& \text { lout }=-400 \mu \mathrm{~A} \\
& \mathrm{~S}_{1} / \overline{\mathrm{S}}_{1}=\mathrm{S}_{2} / \mathrm{S}_{2}=2.0 \mathrm{~V} / 0.8 \mathrm{~V}
\end{aligned}
\] & 2.4 & & & \multirow[b]{2}{*}{V} \\
\hline Output Low Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{aligned}
& \text { IOUT }=2.1 \mathrm{~mA} \\
& \mathrm{~S}_{1} / \overline{\mathrm{S}}_{1}=\mathrm{S}_{2} / \overline{\mathrm{S}}_{2}=2.0 \mathrm{~V} / 0.8 \mathrm{~V}
\end{aligned}
\] & & & 0.4 & \\
\hline Output Leakage Current & lolk & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OUT}}=\mathrm{OV} \text { to } 5.25 \mathrm{~V} \\
& \mathrm{~S}_{1} / \overline{\mathrm{S}}_{1}=\mathrm{S}_{2} / \overline{\mathrm{S}}_{2}=0.8 \mathrm{~V} / 2.0 \mathrm{~V}
\end{aligned}
\] & -10 & & 10 & \(\mu \mathrm{A}\) \\
\hline Operating Supply Current & Icc & \[
\begin{aligned}
& \hline \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { Data Out Open } \\
& \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{~S}_{1} / \overline{\mathrm{S}}_{1}=\mathrm{S}_{2} / \overline{\mathrm{S}}_{2}= \\
& 2.0 \mathrm{~V} / 0.8 \mathrm{~V} \\
& \hline
\end{aligned}
\] & & & 75 & mA \\
\hline Input Capacitance & \(\mathrm{C}_{\text {IN }}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}\) & & & 7 & \multirow[t]{2}{*}{pF} \\
\hline Output Capacitance & COUT & \(\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}\) & & & 10 & \\
\hline
\end{tabular}

NOTE: 1. Typical values are measured at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\).
2. Capacitance values are sampled, not \(100 \%\) tested.

\section*{AC CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & SYMBOL & JEDEC SYMBOL & MIN & TYP & MAX & UNIT \\
\hline \(\begin{array}{lr}\text { Address Access Time } & 7332-45 \\ 7332\end{array}\) & \(t_{\text {aa }}\) & TAVQV & & & \[
\begin{array}{r}
450 \\
300 \\
\hline
\end{array}
\] & \multirow{5}{*}{ns} \\
\hline Chip Select to Low Impedance & \(\mathrm{t}_{12}\) & TSVQX & 20 & & & \\
\hline Chip Select Delay & \(\mathrm{t}_{\mathrm{co}}\) & TSVQV & & & 100 & \\
\hline Chip Deselect Delay & \(t_{\text {df }}\) & TSXQZ & & & 100 & \\
\hline Output Hold Time & \(t_{\text {oh }}\) & TAXQX & 20 & & & \\
\hline
\end{tabular}

\section*{READ CYCLE TIMING}

\section*{AC TEST CONDITIONS}

OUTPUT LOAD CIRCUIT

\section*{FEATURES}
- High Speed - 350ns Maximum access time
- Completely static - no clock required
- Single +5V supply
- Fully TTL Compatible
- Two Programmable Chip Select
- Three-state outputs
- Industry standard 24 lead pinout

\section*{GENERAL DESCRIPTION}

The IM7364 is a 65,536 bit read-only memory (ROM) organized 8192 words by 8 bits. The device is fabricated using Intersil's HMOS technology to minimize cell area and optimize circuit performance.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing to common bus structures. A chip select input, which is programmable to either active high or active low, facilitates ease of memory expansion.

The IM7364 operates over \(5 \mathrm{~V} \pm 5 \%\) at 90 mA with an access time of 350 ns .

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Supply Voltage & + 7.0V \\
\hline Voltage on Any Pin Relative to GND & -0.5 V to +7.0 V \\
\hline Commercial Operating Temperature & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & \\
\hline
\end{tabular}

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{DC CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DESCRIPTION} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN. & TYP. & MAX. & \\
\hline Input High Voltage & \(\mathrm{V}_{\text {IH }}\) & & 2.0 & & \(\mathrm{V}_{\mathrm{CC}}\) & \multirow{2}{*}{V} \\
\hline Input Low Voltage & \(\mathrm{V}_{\text {IL }}\) & & -0.5 & & 0.8 & \\
\hline Input Leakage Current & IILK & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) to 5.25 V & -10 & & 10 & \(\mu \mathrm{A}\) \\
\hline Output High Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & \[
\begin{aligned}
& \text { loUT }=-400 \mu \mathrm{~A} \\
& \text { S } / \overline{\mathrm{S}}=2.0 \mathrm{~V} / 0.8 \mathrm{~V}
\end{aligned}
\] & 2.4 & & & \multirow[t]{2}{*}{V} \\
\hline Output Low Voltage & \(\mathrm{V}_{\mathrm{OL}}\) & \[
\begin{aligned}
& \text { lout }=2.1 \mathrm{~mA} \\
& \mathrm{~S} / \overline{\mathrm{S}}=2.0 \mathrm{~V} / 0.8 \mathrm{~V}
\end{aligned}
\] & & & 0.4 & \\
\hline Output Leakage Current & IOLK & \[
\begin{aligned}
& \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \mathrm{~S} / \overline{\mathrm{S}}=0.8 \mathrm{~V} / 2.0 \mathrm{~V}
\end{aligned}
\] & -10 & & 10 & \(\mu \mathrm{A}\) \\
\hline Operating Supply Current & ICc & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { Data Out Open } \\
& \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{~S} / \overline{\mathrm{S}}=2.0 \mathrm{~V} / 0.8 \mathrm{~V}
\end{aligned}
\] & & & 90 & mA \\
\hline Input Capacitance & \(\mathrm{C}_{\mathrm{IN}}\) & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}\) & & & 7 & \multirow[t]{2}{*}{pF} \\
\hline Output Capacitance & COUT & \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}\) & & & 10 & \\
\hline
\end{tabular}

NOTE: 1. Typical values are measured at \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\) and \(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}\).
2. Capacitance values are sampled, not \(100 \%\) tested.

\section*{AC CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DESCRIPTION & SYMBOL & JEDEC SYMbol & MIN & TYP & MAX & UNIT \\
\hline \begin{tabular}{lr}
Address & \(7364-45\) \\
Access Time & 7364
\end{tabular} & \(t_{\text {aa }}\) & TAVQV & & & \[
\begin{aligned}
& 450 \\
& 350
\end{aligned}
\] & \multirow{5}{*}{ns} \\
\hline Chip Select to Low Impedance & \(\mathrm{t}_{12}\) & TSVQX & 20 & & & \\
\hline Chip Select Delay & \(\mathrm{t}_{\mathrm{co}}\) & TSVQV & & & 120 & \\
\hline Chip Deselect Delay & \(t_{\text {df }}\) & TSXQZ & & & 120 & \\
\hline Output Hold Time & \(\mathrm{t}_{\text {oh }}\) & TAXQX & 20 & & & \\
\hline
\end{tabular}

\section*{READ CYCLE TIMING}

\section*{AC TEST CONDITIONS}\(V_{C C}\)\(5 \mathrm{~V} \pm 5 \%\)
\(\mathrm{T}_{\mathrm{A}}\) \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
Input rise and fall times 20ns (10\% to 90\%)
Input and output reference level 1.5 V

OUTPUT LOAD CIRCUIT

\section*{FEATURES}
- 8048/41 compatible I/O expander
- CMOS pin-for-pin replacement for standard NMOS 8243
- Low power dissipation - maximum 25 mW active
- Four 4-bit I/O ports in 24-pin DIP
- Logical AND/OR directly to ports
- High output drive
- Single +5 V supply

\section*{DESCRIPTION}

The Intersil IM82C43 is a CMOS input/output expander equivalent to the NMOS 8243. It is designed to provide 1/O expansion for the CMOS IM80C48 and NMOS 8048 families of single-chip microcomputers.

The 24-pin IM82C43 provides four 4-bit bidirectional I/O ports: 8048/41 instructions control bidirectional transfers between the 82C43 and the 8048 family microcomputers, and can execute logical AND/OR operations directly on the data contained in the 82C43 ports.

ABSOLUTE MAXIMUM RATINGS
Operating Temperature \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Voltage on Any Pin
With Respect to Ground. .Ground -0.5 V to \(\mathrm{V} C C+0.5 \mathrm{~V}\)
Power Dissipation

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. AND OPERATING CHARACTERISTICS \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN. & TYP. & MAX. & UNITS \\
\hline Input Low Voltage & VIL & & -0.5 & & 0.8 & \multirow{7}{*}{V} \\
\hline \multirow[t]{2}{*}{Input High Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} & \(\mathrm{V}_{C C}=4.5\) & 2.0 & & \(\mathrm{V}_{\text {cc }}+0.5\) & \\
\hline & & \(\mathrm{VCC}=5.5\) & 2.4 & & \(\mathrm{Vcc}+0.5\) & \\
\hline Output Low Voltage Ports 4-7 & \multirow{3}{*}{Vol} & \(\mathrm{IOL}=10 \mathrm{~mA}\) & & & 0.4 & \\
\hline & & \(\mathrm{IOL}=20 \mathrm{~mA}\) & & & 0.8 & \\
\hline Output Low Voltage Port 2 & & \(1 \mathrm{OL}=1.6 \mathrm{~mA}\) & & & 0.4 & \\
\hline Output High Voltage Ports 4-7 & VOH & \(1 \mathrm{OH}=3.2 \mathrm{~mA}\) & 2.8 & & & \\
\hline Output Voltage Port 2 & \(\mathrm{VOH}_{2}\) & \(\mathrm{IOH}=1.6 \mathrm{~mA}\) & 2.8 & & & mA \\
\hline Input Leakage Ports 4-7, Port 2, \(\overline{\overline{C S}}, \mathrm{PROG}\) & IILK & \(\mathrm{V}_{\text {IN }}=\mathrm{VCCC}^{\text {to }} 0 \mathrm{~V}\) & -10 & & 10 & \(\mu \mathrm{A}\) \\
\hline Supply Current & Icc & \begin{tabular}{l}
WRITE mode, \\
All outputs open,
\[
\mathrm{t}_{\mathrm{k}}=700 \mathrm{~ns}
\]
\end{tabular} & & 1.6 & 5.0 & mA \\
\hline Standby Current & Iccsb & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}},
\] \\
All outputs open
\end{tabular} & & & 100 & \(\mu \mathrm{A}\) \\
\hline Sum of all ICL from 16 Outputs & 2ilol & 5 mA each pin average & & & 80 & mA \\
\hline
\end{tabular}

\section*{A.C. CHARACTERISTICS \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%\)}
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & SYMBOL & CONDITIONS & MIN. & MAX. & UNITS \\
\hline Code Valid Before PROG & \(\mathrm{t}_{\mathrm{a}}\) & 80 pF Load & 100 & & \\
\hline Code Valid After PROG & \(\mathrm{t}_{\mathrm{b}}\) & 20 pF Load & 60 & \\
\hline Data Valid Before PROG & \(\mathrm{t}_{\mathrm{c}}\) & 80 pF Load & \\
\hline Data Valid After PROG & \(\mathrm{t}_{\mathrm{d}}\) & 20 pF Load & 140 & \\
\hline Floating After PROG & \(\mathrm{t}_{\mathrm{t}}\) & 20 pF Load & 20 & \\
\hline PROG Negative Pulse Width & \(\mathrm{t}_{\mathrm{k}}\) & & 0 & 150 \\
\hline CS Valid Before/After PROG & \(\mathrm{t}_{\mathrm{cs}}\) & & n & \\
\hline Ports 4-7 Valid After PROG & \(\mathrm{t}_{\mathrm{p}}\) & 100 pF Load & 700 & \\
\hline Ports 4-7 Valid Before/After PROG & \(\mathrm{t}_{\mathrm{p}}\) & & 50 & \\
\hline Port 2 Valid After PROG & \(\mathrm{t}_{\mathrm{acc}}\) & 80 pF Load & & 700 \\
\hline
\end{tabular}

\section*{FUNCTIONAL PIN DESCRIPTION}
\begin{tabular}{ccc}
\begin{tabular}{c}
Designator \\
PROG
\end{tabular} & \begin{tabular}{c}
Pin \\
Number
\end{tabular} & \multicolumn{1}{c}{ Function }
\end{tabular}

\section*{FUNCTIONAL DESCRIPTION}

The IM82C43 has four 4-bit I/O ports, which are addressed as Ports 4 thru 7 by the processor. The following operations may be performed on these ports:
- Transfer accumulator to port (write)
- Transfer port to accumulator (read)
- AND accumulator to port
- OR accumulator to port

All communication between the microcomputer and the 82C43 occurs over Port 2 (P20-P23) with timing provided by an output pulse on the PROG pin of the processor. Each data transfer consists of two 4-bit nibbles:
- The first contains the port address and command to the 82 C 43 . This is latched from Port 2 during the high-to-low transition of PROG and is encoded as shown in the table on page 3.
- The second contains the four bits of data associated with the instruction. The low-to-high transition of PROG indicates the presence of data.

Port Address And Command Format
\begin{tabular}{|c|c|c|c|c|c|}
\hline P23 & P22 & \begin{tabular}{c}
INSTRUCTION \\
CODE
\end{tabular} & P21 & P20 & \begin{tabular}{c}
ADDRESS \\
CODE
\end{tabular} \\
\hline 0 & 0 & Read & 0 & 0 & Port 4 \\
0 & 1 & Write & 0 & 1 & Port 5 \\
1 & 0 & ORLD & 1 & 0 & Port 6 \\
1 & 1 & ANLD & 1 & 1 & Port 7 \\
\hline
\end{tabular}

\section*{Write Modes}

The device has three write modes. MOVD P,A directly writes new data into the selected port with old data being lost; ORLD P,A ORs the new data with the old data and writes it to the port; and ANLD P,A ANDs new data with old data and writes it to the selected port.
After the designated operation is performed, the data is latched and directed to the port. The old data remains latched until the new data is written by the rising edge of PROG.

\section*{Read Mode}

The device has one read mode. The command and port address are latched from port 2 on the high-to-low transition of the PROG pin. As soon as the read operation and port address are decoded, the designated port output buffers are disabled and the input buffers enabled. The read operation is terminated by the low-to-high transition of the PROG pin. The port selected is switched to the high impedance state while port 2 is returned to the input mode.
Normally a port will be in an output mode (write) or
input mode (read). The first read of a port, following a mode change from write to read should be ignored; all following reads are valid. This is to allow the external driver on the port to settle after the first read instruction removes the low impedance drive from the 82C43 output. A read of any port will leave that port in a high impedance state.

\section*{I/O Expansion}

The use of a single 82C43 with an 8048 or 8021 is shown in figure 1. If more ports are required, more 82C43s can be added as shown in figure 2. Here, the upper nibble of port 2 is used to select one of the 82C43s. Two lines could have been decoded but that would require additional hardware. Assuming that the leftmost 82C43 chip select is connected to P24, the instructions to select and de-select would be:
\begin{tabular}{ll}
MOV A, \#OEFH & P24 =0 \\
OUTL P2, A & Enable 82C43 \\
. & \\
. & \\
MOV A, \#OFFH & Disable All \\
OUTL P2, A & Send It
\end{tabular}

\section*{Power On Initialization}

Initial applicaiton of power to the device forces ports 4, 5,6 , and 7 to the high impedance state. Port 2 will be in an input state if PROG or \(\overline{C S}\) are high when power is applied. The first high-to-low transition of PROG causes the device to exit the power-on mode. The power-on sequence is initiated if \(V_{C C}\) drops below one volt.

\section*{WAVEFORMS}

TYPICAL APPLICATIONS

EXPANDER INTERFACE

\section*{Note:}

The 82C43 does not have the same quasi-bidirectional port structure as P1/P2 of the 8048. When a " 1 " is written to P4-7 of the 82 C 43 it is a "hard 1 " (low impedance to +5 V) which cannot be pulled low by an external device. All 4 bits of any port can be switched from output mode to input mode by executing a dummy read which leaves the port in a high impedance (no pullup or pulldown) state.

Figure 1

USING MULTIPLE 82C43s

\title{
NNㅍㄹㅗSL
}

\section*{FEATURES}

Complexity from 408 to 1500
Equivalent 2-input Gates
- Mature Silicon Gate CMOS Technology -Low development cost
-3.3 to 9 V nominal power supply range \(\pm 10 \%\)
-Full CMOS temperature range: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
-Resistance to latch-up and electrostatic discharge
Extensive Macro Cell Library
-Numerous combinational and sequential macros
-Facilitates 7400 and 4000-based designs
-TTL or CMOS compatible I/O
-Analog capability
Fully Integrated CAD Software Support -Highly efficient auto-routing capability
-Layout fully verified against input logic
-Accurate post-layout simulation with calculated RC delays
-Automatic test code conversion

\section*{The IGC10000 Series \\ CMOS Gate Arrays}

\section*{GENERAL DESCRIPTION}

An IGC10000 Gate Array is a matrix of identical cells, each containing 3 uncommitted N-P transistor pairs. Large numbers of identical arrays are prefabricated and stockpiled. A particular circuit is constructed from a prefabricated array by specifying the interconnections among the transistors within and between cells on the final metal layer. Because all except the final metal layer are prefabricated, the cost advantages of mass production can be realized even for low-volume applications. In addition, prefabrication provides a saving in both design and manufacturing time; in some cases customers can receive prototype chips in as few as 6 weeks after initiation of the project.

In most cases IGC10000 gate arrays are processed with one mask step (a customized metal mask along with a standardized contact mask). For some analog applications or where more routing flexibility is needed, users have the option of programming the contact mask in addition to the metal mask.

\section*{THE IGC10000 FAMILY OF GATE ARRAYS}

Figure 1 shows a structural representation of an IGC10000 Gate Array. Each rectangle in the body of the matrix represents an array cell; the rectangles

Figure 1. Gate Array Configuration
along each of the four sides of the chip represent I/O cells. Table 1 lists the members of the IGC10000 Gate Array family with their capacities and cell counts.

Table 1. The IGC10000 Gate Array Family
\begin{tabular}{|c|c|c|c|}
\hline Part No. & \begin{tabular}{c}
Equivalent \\
2-Input Gates
\end{tabular} & \begin{tabular}{c}
Number of \\
Array Cells
\end{tabular} & \begin{tabular}{c}
Bonding Pads \\
and I/O Cells
\end{tabular} \\
\hline IGC10408 & 408 & 272 & 34 \\
IGC10756 & 756 & 504 & 44 \\
IGC11500 & 1500 & 1000 & 62 \\
\hline
\end{tabular}

\section*{TECHNOLOGY}

IGC10000 gate arrays are fabricated using Intersil's high performance selectively oxidized 4 -micron silicon gate CMOS process with single-layer metal interconnect. Wafers are processed using state-of-theart processing technology with these features:
- Positive photoresist
- 1-1 scanning projection lithography
- Polysilicon, nitride and silicon dioxide plasma etching
- Ion implantation for source/drain doping and threshold adjustment
- Sputter metal deposition
- Industry standard oxidation and diffusion techniques
- Nitride and polysilicon Low Pressure Chemical Vapor Deposition (LPCVD)

\section*{ARRAY CELLS}

An array cell, shown in topographical form in Figure 2, consists of three complementary transistor pairs and five strips of polysilicon (called crossunder strips) for making horizontal interconnections among array cells. Power (\(\mathrm{V}_{\mathrm{DD}}\)) and ground (\(\mathrm{V}_{\mathrm{SS}}\)) buses run vertically as shown. Metal strips (not shown) on top
of the crossunder strips make the vertical interconnections within the array. The top and bottom polysilicon strips (called feed-throughs) are used for feeding horizontal connections through the array cell beneath the power and ground buses.

Figure 3 shows the circuit diagram for the array cell. Small hollow circles represent possible connection points; \(\mathrm{V}_{\mathrm{SS}}\) and \(\mathrm{V}_{\mathrm{DD}}\) metal strips are shown as dotted lines.

Figure 3. Schematic Diagram of the Array Cell

Figure 2. Topography of the Array Cell

\section*{I/O CELLS}

I/O cells are used to interface the array with external circuitry. Each I/O cell consists of an array of transistors of varying sizes, and allows construction of normal digital I/O interface circuits as well as analog circuitry of simple to moderate complexity.

I/O cells have these features:
- Protection against electrostatic discharge (ESD)
- Logic level translation (CMOS-to-TTL and TTL-toCMOS)
- Bonding pad for connecting the cell to its corresponding package pin
- Ratioed transistors for analog implementation

The output drive capability of a single output buffer is one TTL load. Applications that require additional drive capability can be handled by using multiple \(1 / 0\) cells in parallel. (In a typical application, not all available I/O cells are needed for external connections; unused cells will thus usually be available to provide added drive capability where needed.)

\section*{MACROS}

A macro is a physical implementation of a functional block and is realized by interconnections among transistors in one or more array cells. For example, the NOR function is constructed by connecting two p-channel transistors in series to \(V_{D D}\) and two n -channel transistors in parallel to \(\mathrm{V}_{\mathrm{SS}}\), as shown in the topographical and schematic diagrams, Figures 4 and 5.

Designers implement their circuits by selecting and interconnecting the macros in the Macro Library, listed in-Table 2.

Figure 5. Schematic Diagram for the 2-Input NOR

Figure 4. Interconnect Pattern for the 2-Input NOR

Table 2．IGC10000 MACRO Library
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{IGC10000 Combinational Macros} \\
\hline Type & \multicolumn{4}{|l|}{Description} \\
\hline NOR／NAND & 2－input NAND 3－input NAND 4－input NAND 2－input NOR 3－input NOR 4－input NOR & & & \\
\hline XOR／XNOR & \begin{tabular}{l}
2－input XOR \\
2－input XNOR
\end{tabular} & & & \\
\hline Adder & One－bit full adder & & & \\
\hline Buffers and Inverters & 1 X inverter 2 X inverter \(3 X\) inverter 4X inverter & & & \\
\hline Multifunction & 2－1 AND－OR invert 2－2－2 AND－OR invert 3－2 AND－OR invert 2－1 OR－AND invert & & & \\
\hline Multiplexer & 2 to 1 multiplexer & & & \\
\hline Schmitt Trigger & Schmitt Trigger & & & \\
\hline Transmission Gate & Buffered transmission gate Unbuffered transmission gate & & & \\
\hline Tristate Control & Tristate control & & & \\
\hline \multicolumn{2}{|l|}{IGC10000 Sequential Macros} & Set & Reset & Jam Load \\
\hline \multirow[t]{6}{*}{D Flip－Flops} & D flip－flop with reset & － & Yes & － \\
\hline & D flip－flop with set & Yes & － & － \\
\hline & D flip－flop with set and reset \({ }^{\text {Divide by }} 2\) flip－flop w／jam load and & Yes & Yes & － \\
\hline & Divide by 2 flip－flop w／jam load and reset & － & Yes & Yes \\
\hline & Divide by 2 flip－flop w／reset & － & Yes & － \\
\hline & D flip－flop w／jam load and reset D flip－flop shift register with reset & 二 & Yes
Yes & Yes \\
\hline JK Flip－Flops & JK flip－flop with reset JK flip－flop with set & \(\overline{\text { Yes }}\) & Yes & 二 \\
\hline T Flip－Flops & T flip－flop with reset & － & Yes & － \\
\hline \multirow[t]{4}{*}{Latches} & \begin{tabular}{l}
D latch \\
D latch w／single input control
\end{tabular} & 二 & 二 & 二 \\
\hline & D latch with reset & － & Yes & － \\
\hline & D latch w／reset and single input control & － & Yes & － \\
\hline & D latch w／transmission gate on output & － & & － \\
\hline \multirow[t]{5}{*}{Counters} & Down counter with reset & － & Yes & － \\
\hline & Down counter w／jam load and reset & － & Yes & Yes \\
\hline & Up counter with reset & － & Yes & － \\
\hline & Up counter w／jam load and reset & － & Yes & Yes \\
\hline & \begin{tabular}{l}
Up／down counter with reset \\
Up／down counter w／jam load and reset
\end{tabular} & － & Yes & Yes \\
\hline
\end{tabular}

Table 2. IGC10000 MACRO Library (continued)
\begin{tabular}{|l|l|}
\hline IGC10000 Digital IIO Cell Macros \\
\hline Type & \multicolumn{1}{c|}{ Description } \\
\hline Bidirectional & \begin{tabular}{l}
Tristate output/unbuffered input \\
Tristate output/inverting TTL input buffer \\
Input feedthrough
\end{tabular} \\
\begin{tabular}{ll}
Feedthrough \\
Internal Buffer \\
Inverting internal buffer \\
Initernal tristate buffer
\end{tabular} \\
\begin{tabular}{ll}
Input Buffer
\end{tabular} & \begin{tabular}{l}
Non-inverting TTL input buffer \\
Non-inverting CMOS input buffer with pull-up options \\
Open drain output buffer \\
Non-inverting TTL output buffer \\
Inverting TTL output buffer
\end{tabular} \\
Tristate output buffer \\
Symmetrical drive output buffer
\end{tabular}

\section*{COMPUTER AIDED DESIGN SOFTWARE TOOLS}

The IGC10000 family is supported by a proprietary computer aided design (CAD) system developed at the General Electric Microelectronics Center. The system provides CAD tools for logic simulation, accurate prediction of circuit speed performance, automated design of interconnect circuitry, electrical and design rule checking, post-layout simulation using RC delays extracted from the layout, and automatic conversion of simulation test pattern files into tester format.

The CAD tools are integrated under a supervisory program called the CADEXEC (for CAD Executive) that runs on a Digital Equipment Corporation VAX com-
puter. Once the user has entered the circuit's interconnect information into the computer, this information is converted into a common database accessed by all other parts of the software through the CADEXEC.

Logic Simulation: Users have access to the TEGAS logic simulator. For pre-layout logic (functional) verification, customers may perform TEGAS simulation using our Unit Delay Macro Library database; for design verification (pre-layout timing analysis), calculated delays based on fanout are used in conjunction with Best, Typical, and Worst Case libraries, whose parameters are described in Table 3.

Table 3. Best, Typical, and Worst Case Parameters
\begin{tabular}{|l|c|c|c|}
\hline Parameter & Best & Typical & Worst \\
\hline Voltage \((\mathrm{V})\) & 5.5 & 5.0 & 4.5 \\
Temperature \(\left({ }^{\circ} \mathrm{C}\right)\) & 0 & 27 & 70 \\
Process & Best & Typical & Worst \\
\hline
\end{tabular}

Routing: The SILICA layout system uses a proprietary automatic router developed at the General Electric Microelectronics Center. The SILICA router has consistently performed with higher completion rate and lower CPU time than other commercially available routers; in addition, the router improves the overall performance of the circuit by selecting paths that produce the smallest delay. Like many routers, the SILICA router has a Critical Net feature that minimizes polysilicon and total net length by routing the critical net first. Unique to the SILICA router is the Super Critical Net feature, which prohibits the use of polysilicon gates in a specified net.

Electrical and Design Rule Checking: SILICA DRC (Design Rule Checker) performs electrical and design rule checking in minutes instead of hours and extracts geometric data from the layout for input into the RC delay extraction software.

Manual editing: In rare instances manual layout editing may be done on one of our CALMA workstations. CALMA output is fed into SILICA DRC for convenient verification of electrical integrity.

Post-layout simulation: A specialized circuit simulator has been developed at the General Electric Microelectronics Center to compute the delays of the RC-interconnect nets from the topology of the network after performing layout. The RC Delay extraction software uses a full transient analysis for each net; delays are based on resistance as well as capacitance of the interconnection nets. The software calculates delays as a function both of load switching voltage and driver output impedance and handles loops, bidirectional drivers, and multiple drivers on the net.

After the RC delay information is extracted, the CADEXEC system inserts the delays into the network database for post-layout TEGAS simulation and critical path analysis, thus providing an additional opportunity for refining the layout prior to PG tape generation.

Tester Tape Generation: Test program conversion software automatically translates the customer's final TEGAS simulation output file into a test vector pattern file to be used in testing the finished device.

\section*{PACKAGING}

Five types of packages are available for the IGC10000 gate arrays. Dual inline packages are available in plastic (Plastic DIP), ceramic (CerDIP) and multilayer ceramic (Side Brazed DIP); leadless chip carriers and pin grid arrays are provided ins multilayer ceramic. Table 4 presents recommended package types for each pin count and array size.

Table 4. Recommended Package Types
\begin{tabular}{|c|c|c|c|c|c|}
\hline Number of Pins & Plastic DIP & CerDIP & Side Brazed DIP & Leadless Chip Carrier & Pin Grid Array \\
\hline 8 & 408 & & 408 & & \\
\hline 14 & 408 & 408 & 408 & & \\
\hline 16 & 408 & 408 & 408 & & \\
\hline 18 & 408 & 408 & 408 & & \\
\hline 20 & & 408 & 408 & & \\
\hline & 408 & 408 & 408 & & \\
\hline 24 & 756 & 756 & 756 & & \\
\hline & 1500 & 1500 & 1500 & & \\
\hline & 408 & 408 & 408 & & \\
\hline 28 & 756 & 756 & 756 & & \\
\hline & 1500 & 1500 & 1500 & & \\
\hline & 408 & 408 & 408 & & \\
\hline 40 & 756 & 756 & 756 & & \\
\hline & 1500 & 1500 & 1500 & & \\
\hline 44 & & & & 756 & \\
\hline & & & & 1500 & \\
\hline 48 & & & 756 & & \\
\hline & & & 1500 & & \\
\hline 52 & & & & 1500 & \\
\hline 68 & & & & 1500 & 1500 \\
\hline
\end{tabular}

\section*{DEVELOPMENT}

An overview of the gate array development process is shown in the flow chart of Figure 6. During Phase 1 (Design Translation), most of the responsibility lies with the customer; during Phase 3 (Fabrication), with Intersil. In Phase 2 (Design Implementation), most of the activities are performed by Intersil, but require
customer interaction and approval. Figure 6 delineates the responsibilities of the customer and of Intersil. For more information, contact either your local Intersil representative, or Semicustom Marketing at the General Electric Microelectronics Center, Research Triangle Park, NC, telephone 919-549-3607.

Figure 6. Simplified Flowchart for Gate Array Development

\section*{OPERATING CHARACTERISTICS \({ }^{1}\)}

Absolute Maximum Ratings \({ }^{2}\) (Referenced to \(\mathrm{V}_{\mathrm{SS}}\))
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Symbol & Limits & Units \\
\hline DC Supply Voltage & \(\mathrm{V}_{\mathrm{DD}}\) & -0.5 to +10.0 & V \\
Input Voltage & \(\mathrm{V}_{1}\) & -0.5 to \(\mathrm{V}_{\mathrm{DD}}+0.5\) & V \\
DC Input Current & \(\mathrm{I}_{1}\) & \(\pm 10\) & mA \\
Operating Ambient Temperature Range & \(\mathrm{T}_{\mathrm{A}}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
Storage Temperature Range (Ceramic) & \(\mathrm{T}_{\text {STG }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
Storage Temperature Range (Plastic) & \(\mathrm{T}_{\text {STG }}\) & -40 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE 1: Stress ratings only. Functional operation of the device at these or any conditions beyond those indicated as Recommended Operating Conditions is not implied.
NOTE 2: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{Recommended Operating Conditions}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Parameter } & Symbol & Limits & Units \\
\hline DC Supply Voltage & \(\mathrm{V}_{\mathrm{DD}}\) & \(3.3 \pm 0.3 \mathrm{~V}\) to \(9.0 \pm 0.9 \mathrm{~V}\) & V \\
Typical Operating Frequency & \(\mathrm{f}_{\mathrm{CK}}\) & 8.0 & MHz \\
Operating Ambient Temperature Range \({ }^{1}\) & \(\mathrm{~T}_{\mathrm{A}}\) & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE 1: IGC10000 gate array macros are currently characterized between 0 and \(70^{\circ} \mathrm{C}\).

\section*{AC CHARACTERISTICS}

Specified for nominal processing \(=5 \mathrm{~V}, 27^{\circ} \mathrm{C}\).
Calculated for a fanout of 1.
\begin{tabular}{|l|l|c|}
\hline & Parameter & Typical Delay (ns) \\
\hline Array Cell Macros & & \\
\hline 2-input NAND & D to Output & 6 \\
2-input NOR & D to Output & 6 \\
4-input NAND & D to Output & 8 \\
4-input NOR & D to Output & 18 \\
1X inverter & D to Output & 5 \\
4X inverter & D to Output & 4 \\
2-1 AND-OR invert & D to Output & 9 \\
D flip-flop with reset & CK to Output & 9 \\
Schmitt trigger & Input to Output & 18 \\
Up counter with reset & CK to Output & 11 \\
\hline I/O Cell Macros & & \\
\hline Input feedthrough & & \\
Non-inverting Input Buffer & Pad to Output & \\
Non-inverting Output Buffer & Pad to Output & 9 \\
& D to Pad & \(10(15 \mathrm{pF})\) \\
\hline
\end{tabular}

DC CHARACTERISTICS
\(V_{D D}=5 \mathrm{~V} \pm 10 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{Parameter} & \multirow[b]{3}{*}{Condition} & \multicolumn{8}{|c|}{Limits \({ }^{1}\)} \\
\hline & & & \multicolumn{2}{|c|}{\(0^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(70^{\circ} \mathrm{C}\)} \\
\hline & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & Units \\
\hline \(\mathrm{IDD}^{2}\) & Quiescent Device Current & \[
\begin{gathered}
\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}} \text { or } \\
\mathrm{V}_{\mathrm{SS}}
\end{gathered}
\] & & & & 0.3 & & & . 100 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\text {OL }}\) & Low Level Output Voltage & \(\left|I_{0}\right| \leq 1 \mu \mathrm{~A}\) & & 0.05 & & & 0.05 & & 0.05 & v \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output. Voltage & \(\left|I_{0}\right| \leq 1 \mu \mathrm{~A}\) & \[
\begin{gathered}
V_{D D} \\
-0.05
\end{gathered}
\] & & \[
\begin{gathered}
v_{D D} \\
-0.05
\end{gathered}
\] & & & \[
\begin{gathered}
\mathrm{V}_{\mathrm{DD}} \\
-0.05
\end{gathered}
\] & & v \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low Level Input Voltage & CMOS I/O Macro & & 1.5 & & & 1.5 & & 1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & \begin{tabular}{l}
CMOS \\
I/O Macro
\end{tabular} & 3.5 & & 3.5 & & & 3.5 & & V \\
\hline \(V_{\text {IL }}\) & Low Level Input Voltage & TTL I/O Macro & & 0.8 & & & 0.8 & & 0.8 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & \[
\begin{aligned}
& \text { TTL } \\
& \text { I/O Macro }
\end{aligned}
\] & 2.0 & & 2.0 & & & 2.0 & & V \\
\hline \multirow{2}{*}{\(1 \mathrm{OL}^{3}\)} & \multirow{2}{*}{Output Low \({ }^{4}\) (Sink Current)} & \(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\) & 1.8 & & 1.8 & 3.6 & & 1.6 & & mA \\
\hline & & \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) & 3.8 & & 3.8 & 7.6 & & 3.4 & & mA \\
\hline \multirow{2}{*}{\(\mathrm{IOH}^{3}\)} & \multirow{2}{*}{Output High (Source Current)} & \(\mathrm{V}_{\mathrm{O}}=4.6 \mathrm{~V}\) & 0.3 & & 0.3 & 0.6 & & 0.25 & & mA \\
\hline & & \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}\) & 1.8 & & 1.8 & 3.6 & & 1.6 & & mA \\
\hline IN & Input Leakage Current & \[
\begin{aligned}
& \mathrm{V}_{\text {IN }}=0 \text { or } \\
& \mathrm{V}_{\text {DD }}
\end{aligned}
\] & & \(\pm 0.1\) & & \(\pm .001\) & \(\pm 0.1\) & & \(\pm 1.0\) & \(\mu \mathrm{A}\) \\
\hline Ioz & Tristate Output Leakage Current & \[
\begin{gathered}
\mathrm{V}_{\mathrm{O}}=0 \text { or } \\
\mathrm{V}_{\mathrm{DD}}
\end{gathered}
\] & & \(\pm 1.0\) & & \(\pm .001\) & \(\pm 1.0\) & & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance & Any Input & & & & 5.0 & & & & pF \\
\hline
\end{tabular}

\section*{NOTES:}
1. IGC10000 gate arrays are designed to perform under conditions up to \(125^{\circ} \mathrm{C}\). Limits reflect temperature range at which the macro library is characterized.
2. Any internal oscillators disabled.
3. Results depend on specific output macro used.
4. There may be limitations on maximum current when many outputs are simultaneously low.

\title{
Analog Switches and Multiplexers
}

\section*{Multiplexers}
\begin{tabular}{lr}
& Page \\
IH5108 & \(3-63\) \\
IH5208 & \(3-79\) \\
IH6108 & \(3-93\) \\
IH6116 & \(3-99\) \\
IH6208 & \(3-109\) \\
IH6216 & \(3-115\) \\
& \\
Analog Switch & \\
Drivers/Level & \\
Translators & \\
D123/125 & \(3-9\) \\
D29 & \(3-93\) \\
IH6201 & \(3-105\)
\end{tabular}

\section*{Analog Switches with Drivers}
\begin{tabular}{lr}
\\
DG118/123/125 & \(3-6\) \\
DG139A Family & \(3-15\) \\
DG180 Family & \(3-19\) \\
DGM181 Family & \(3-23\) \\
DG200 & \(3-28\) \\
DG201 & \(3-32\) \\
IH5009-24 & \(3-36\) \\
IH5025-388 & \(3-41\) \\
IH5040-51 & \(3-48\) \\
IH5052/3 & \(3-56\) \\
IH5140-45 & \(3-71\) \\
IH5200 & \(3-28\) \\
IH5201 & \(3-32\) \\
& \\
VideolRF Switch
\end{tabular}

\title{
Analog Switch
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Low Leak Low Quiesce & \multicolumn{3}{|c|}{High Speed} & Low 'DS(on) \\
\hline & & & & & \\
\hline \begin{tabular}{l}
OG2001201 \\
1H5200/5201 \\
Monolithic CMOS \\
drivergate \\
combination
\end{tabular} & IH5040 Family Monolithic CMOS driver gate combination & IH5140 Family Monolithic CMOS driver gate combination & DGM181 Family Monolithic CMOS replacement for DG180 Family & DG180 Family BipolarimOS driver with N-JFET gate & DG 126 Family Bipolar driver with N-JFET gate \\
\hline
\end{tabular}

\section*{Selector Guide}
\begin{tabular}{|c|c|c|c|}
\hline Low Charge Injection & Video/RF Switch & For switches whose outputs go into the Inverting Input of an Op Amp & For switching positive signa only \\
\hline IH181 Family CMOS driver and Varafet gate & IH5341 Family series shunt video/RF switch & \begin{tabular}{l}
IH5009 \\
Virtual ground switch
\end{tabular} & \begin{tabular}{l}
IH5025 \\
Positive signal switch
\end{tabular} \\
\hline
\end{tabular}

Features
1. Lowest charge
injection
2. Almost as fast as

IH5140 and DG180
Families
3. Very low quiescent current resulting
in low power
consumption
4. Ultra low leakage

\section*{Features}
1. \({ }^{\text {DS }}\) (on) \(<750\), flat from

DC to \(100 \mathrm{MHz}(<3 \mathrm{~dB}\))
2. "OFF" isolation \(>60 \mathrm{~dB} @ 10 \mathrm{MHz}\)
3. Cross coupling isolation \(>60 \mathrm{~dB}\) @ 10 MHz
4. \(+1-5 \mathrm{~V}\) to \(+1-15 \mathrm{~V}\) power supply range
5. High speed switching

Output of a switch must
go into the virtual
ground point of an
ground point of an
Op Amp (unless signal
Features
1. Very low quiescent current
2. Does not need
driver; can be
driven directly by
CMOS gates
3. Low cost

Can switch positive signals only unless signals only uniess a translator driver is used

\section*{Features}
1. Very fow quiescent current
2. Does not need
driver; can be driven directly by TTL
3. Low cost

Notes
1. TTL, HTL, CMOS
and PMOS compatible
2. Pin for pin compatible with DG180 family
H181/182 Dual SPS
|H184/185 Dual DPST
IH187/188 SPDT
|H190/191 Dual SPDT

Notes
1. TTL, DTL, RTL and CMOS compatible 2. IH5341 Dưal SPST

Nótes
1. All switches in IH5009 family are SPST
2. Odd numbered devices are driven by 15 V logic
3. Even numbered devices are driven by 5 V logic

IH5009/5010 quad. compensated IH5011/5012 quad IH5011/5012 quad IH5013/5014 triple IH5013/5014 triple Compensated iH5015/5016 triple uncompensated IH5017/5018 dual Compensated IH5019/5020 dual
uncompensated IH5021/5022 single H5021/5022 sing Compensated uncompensated

Notes
1. All switches in IH5025 family are SPST
2. All devices can be driven by 15 V logic. All devices can be driven by 5 V logic if input signal is less than 1V

IH5025/5026 quad, common drain IH5027/5028 quad IH5029/5030 triple, common drain
1H5031/5032 triple IH5033/5034 dual,
common drain IH5035/5038 dual IH5037/5038 single

\section*{ANALOG SWITCHES \& MULTIPLEXERS}

\section*{Analog Switches with Driver}

Analog Switches with Driver continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Mo. of } \\
& \text { Channols }
\end{aligned}
\]} & \multirow[t]{2}{*}{Device No.} & \multirow[b]{2}{*}{Switch Technology} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { rosion) } \\
\text { I } \\
\max (1) \\
\hline
\end{gathered}
\]} & & \(t\) & \(t\) & \multicolumn{4}{|c|}{Logic input} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Power } \\
\text { Consumption } \\
\text { mW } \\
\hline
\end{gathered}
\]} \\
\hline & & & & & nA max & \begin{tabular}{l}
48 \\
\(\max\)
\end{tabular} & \(\mu 8\) max & \multicolumn{3}{|r|}{Logic Leval} & \[
\begin{gathered}
\text { Input } \\
\text { Type(2) }
\end{gathered}
\] & \\
\hline \multirow{6}{*}{SPDT} & \multirow{6}{*}{2} & OG189 & N-JFET & - 10 & 10.0 & 0.3 & 0.25 & & TTL. RTL & & (3) & 120 \\
\hline & & DG190 & N-JFET & 30 & 1.0 & 0.15 & 0.13 & & TTL. RTL & & (3) & 120 \\
\hline & & DG191 & N-JFET & 75 & 1.0 & 0.25 & 0.13 & & TTL. RTL & & (3) & 120 \\
\hline & & DGM191 & CMOS & 75 & 0.1 & 0.25 & 0.13 & DTL. & TTL. RTL & & (3) & . 035 \\
\hline & & IH5043 & CMOS & 75 & 1.0 & 0.5 & 0.25 & DTL. & TTL. RTL. & PMOS. CMOS & (3) & . 035 \\
\hline & & \[
\begin{aligned}
& \text { 1H5051 } \\
& \text { IH5143 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CMOS } \\
& \text { CMOS }
\end{aligned}
\] & \[
\begin{aligned}
& 35 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.25 \\
& 0.175
\end{aligned}
\] & \[
\begin{aligned}
& 0.15 \\
& 0.125 \\
& \hline
\end{aligned}
\] & & TTL. RTL. CMOS & PMOS CMOS & \begin{tabular}{l}
(3) \\
(3)
\end{tabular} & \[
\begin{aligned}
& .035 \\
& .035
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{DPST} & \multirow[t]{2}{*}{1} & IH5044 & CMOS & 75 & 1.0 & 0.5 & 0.25 & DTL. & TTL. RTL. & CMOS. PMOS & hi & . 035 \\
\hline & & IH5144 & CMOS & 50 & 0.1 & 0.175 & 0.125 & & CMOS & & hi & . 035 \\
\hline \multirow{7}{*}{DPST} & \multirow{7}{*}{2} & DG183 & N-JFET & 10 & 10.0 & 0.3 & 0.25 & & TTL. RTL & ; & hi & 84 \\
\hline & & DG184 & N-JFET & 30 & 1.0 & 0.15 & 0.13 & & TTL. RTL & & hi & 84 \\
\hline & & DG185 & N-JFET & 75 & 1.0 & 0.25 & 0.13 & & TTL. RTL & & hi & 84 \\
\hline & & DGM185 & CMOS & 75 & 0.1 & 0.25 & 0.13 & DTL. & TTL. RTL & & hi & . 035 \\
\hline & & IH5045 & CMOS & 75 & 1.0 & 0.5 & 0.25 & & TTL RTL. & PMOS. CMOS & hi & . 035 \\
\hline & & IH5049 & CMOS & 35 & 1.0 & \[
0.25
\] & \[
0.15
\] & & TTL. RTL. & PMOS. CMOS & hi & \[
.035
\] \\
\hline & & 1H5145 & CMOS & 50 & 0.1 & 0.175 & 0.125 & & CMOS & & hi & . 035 \\
\hline \multirow{6}{*}{DPDT} & \multirow{6}{*}{1} & DG139A & N-JFET & 30 & 1.0 & 0.4 & 0.8 & DTL. & TTL. RTL & & (3) & 84 \\
\hline & & DG142A & N-JFET & 80 & 1.0 & 0.4 & 0.8 & & TTL. RTL & & (3) & 84 \\
\hline & & DG145A & N-JFET & 10 & 10.0 & 0.5 & 1.25 & & TTL. RTL & & (3) & 84 \\
\hline & & DG163A & N-JFET & 15 & 10.0 & 0.5 & 1.25 & DTL. & TTL. RTL & & (3) & 90 \\
\hline & & DG164A & N-JFET & 50 & 2.0 & 0.4 & 0.8 & DTL. & TTL. RTL & & (3) & 90 \\
\hline & & IH5046 & CMOS & 75 & 1.0 & 0.5 & 0.25 & DTL. & TTL. RTL C & CMOS. PMOS & (3) & . 035 \\
\hline 4PST & 1 & IH5047 & CMOS & 75 & 1.0 & 0.5 & 0.25 & OTL. & TTL. RTL & CMOS PMOS & hi & . 035 \\
\hline
\end{tabular}

\section*{Multiplexers}

\section*{Drivers for FET Switches}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Electrical Characteristics @ \(+25^{\circ} \mathrm{C}\)-Military Temperature Devices} \\
\hline Mo. el Channels & \begin{tabular}{l}
Oevice \\
No.
\end{tabular} & Positive Volts & Megative
Volts & \(\mathrm{t}_{\mathrm{on}}\) ns max & \(t_{\text {oft }}\) \({ }^{n 8}\) max & \[
\begin{gathered}
l_{\text {INL }} \\
\mu h^{(\max)} \\
\hline
\end{gathered}
\] & \[
\operatorname{mA}_{\text {INH }}(\text { max })
\] & Logic Input Level & Power Consumption (mW) \\
\hline 2 & 1H6201 & +14.0 & -14.0 & 200 & 300 & 1.0 & 1.0 & TTL & 350 \\
\hline 4 & 0129 & \(\checkmark\) Supply & -19.3 & 250 & 1000 & 200 & \(0.25 \mu \mathrm{~A}\) & TTL/DTL & 55 \\
\hline 6 & 0123 & \(\checkmark\) supply & -19.7 & 250 & 600 & 1.0 & \(1.0 \mu \mathrm{~A}\) & TTL/DTL & 20 \\
\hline & D125 & \(\checkmark\) Supply & -19.7 & 250 & 600 & 1.0 & \(1.5 \mu \mathrm{~A}\) & TTL & 50 \\
\hline
\end{tabular}

RF/VIDEO SWITCH
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Type & No. of Channels & Device No. & \[
\begin{gathered}
{ }^{\mathrm{D} D S}(O N) \\
\Omega \\
\mathrm{Max} .
\end{gathered}
\] & \[
\begin{gathered}
0 \mathrm{ff} \\
\text { Isolation }
\end{gathered}
\] & Logic Input & \[
\begin{aligned}
& \text { Power } \\
& \text { Consumption } \\
& (\mathrm{mW})
\end{aligned}
\] \\
\hline CMOS & 2 & 1H5341 & 75. & >60dB@ 10 MHz & TTL. CMOS & 0.030 \\
\hline
\end{tabular}

\footnotetext{
Nofes:
1. Switch Resistance under worst case analog voltage.
2. Positive logic LO ("0") or \(\mathrm{HI}\left({ }^{\prime} 1\right.\) ") voltage at driver input necessary to turn switch on
3. Logic " 0 " or " 1 " can be arbitrarily assigned for double-throw switches.
4. Switch resistance under best case analog voltage.
}

\section*{FEATURES}
- Available With and Without Programmable Constant Current pull-up
- Zener Protection on All Gates
- P-Channel Enhancement-Type MOS-FET Switches
- Each Switch Summed to One Common Point

\section*{GENERAL DESCRIPTION}

This series includes devices with four and five channel switching capability. Each channel is composed of a driver and a MOS-FET switch. Two driver versions are supplied for inverting and noninverting applications. A MOS-FET, used as a current source provides an active pull-up for faster switching.

An external biasing connection is brought out for biasing the current source for optimization of speed and power.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

ORDERING INFORMATION

TRUTH TABLE
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ DG123 } & \multicolumn{2}{c|}{ DG118, DG125 } & Switch \\
\hline VIN \(^{2}\) & V \(_{\text {R }}\) & VIN \(^{\prime}\) & V \(_{\text {L }}\) & Cond. \\
\hline L & L & L & L & OFF \\
H & L & L & \(H\) & ON \\
L & \(H\) & \(H\) & L & OFF \\
H & \(H\) & \(H\) & \(H\) & OFF \\
\hline
\end{tabular}
\[
L=O V, H=+V
\]

\section*{ABSOLUTE MAXIMUM RATINGS}

Collector to Emitter (\(\mathrm{V}^{+}-\mathrm{V}^{-}\)) 33 V
Collector to Pull-up (\(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{P}}\)) 33V
Drain to Emitter (\(\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}\)) 32V
Source to Emitter (\(V_{S}-V^{-}\)) 32V
Drain to Source (\(\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}}\)) 28 V
Source to Drain (\(V_{S}-V_{D}\)) 28 V
Logic to Emitter (\(\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}\)) 33V
Reference to Emitter (\(\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}\)) 31V
Reference to Input \(\left(V_{R}-V_{I N}\right)\). \(6 V\)
Logic to Input (\(V_{L}-V_{I N}\)) \(\pm 6 \mathrm{~V}\)

Input to Emitter (\(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{-}\)) 33V
Current (any terminal) . 30 mA
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Dissipation (Note) . 750 mW
Lead Temperature (soldering, 10 sec .) \(300^{\circ} \mathrm{C}\)
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of \(70^{\circ} \mathrm{C}\). Derate \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for higher ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS}

Test conditions unless specified otherwise are as follows: \(V_{L}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}^{-}=-20 \mathrm{~V}\), and \(\mathrm{P}=-20 \mathrm{~V}\). Input ON and OFF test conditions used for output and power supply specifications.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{PARAMETER (NOTE)} & \multicolumn{4}{|c|}{MAX LIMITS} & \multirow[b]{2}{*}{CONDITIONS} \\
\hline & & & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & UNITS & \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& 5 \\
& \stackrel{\rightharpoonup}{2} \\
& \underline{Z}
\end{aligned}
\]} & \multirow[b]{2}{*}{DG123} & I IN(OFF) & 1 & 1 & 100 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}\) \\
\hline & & \(V\) inion) & 1.3 & 1.0 & 0.8 & V & \(\mathrm{I}_{\text {IN }}=1 \mathrm{~mA}\) \\
\hline & DG118 & I in(off) & 1 & 1 & 20 & \(\mu \mathrm{A}\) & \(V_{\text {IN }}=4.1 \mathrm{~V}\) \\
\hline & DG125 & IINON) & -0.7 & -0.7 & -0.7 & mA & \(V_{\text {IN }}=0.5 \mathrm{~V}\) \\
\hline \multirow{6}{*}{\[
\begin{aligned}
& 5 \\
& \frac{5}{2} \\
& 5 \\
& 0
\end{aligned}
\]} & \multirow{6}{*}{All circuits} & \multirow{3}{*}{rosion)} & 100 & 100 & 125 & \(\Omega\) & \(V_{D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}\) \\
\hline & & & 200 & 200 & 250 & \(\Omega\) & \(V_{D}=0, I_{S}=-100 \mu \mathrm{~A}\) \\
\hline & & & 450 & 450 & 600 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mu \mathrm{~A}\) \\
\hline & & ID(ON) & & 4 & 4000 & nA & \(\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S} \text { (all }}=0\) \\
\hline & & Idoff) & & -4 & -4000 & nA & \(\mathrm{V}_{\mathrm{S} \text { (al1) }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}\) \\
\hline & & \(\mathrm{I}_{\text {SIOFFI }}\) & & -1 & -1000 & nA & \(\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}\) \\
\hline \multirow{8}{*}{} & \multirow{4}{*}{All circuits} & ICC(ON) & & 3 & & mA & \multirow{4}{*}{One Channel (ON)} \\
\hline & & \(I_{\text {LION }}\) & & 3 & & mA & \\
\hline & & \(\mathrm{I}_{\mathrm{R} \text { (ON) }}\) & & -0.5 & & mA & \\
\hline & & \(l_{\text {EEION })}\) & & -6 & & mA & \\
\hline & \multirow{4}{*}{All circuits} & ICC(off) & & 10 & & \(\mu \mathrm{A}\) & \multirow{4}{*}{All Channels (OFF)} \\
\hline & & I L(off) & & 10 & & \(\mu \mathrm{A}\) & \\
\hline & & \(\mathrm{I}_{\text {R(OFF) }}\) & & -15 & & \(\mu \mathrm{A}\) & \\
\hline & & \(I_{\text {eE(}}^{\text {(FFF) }}\) & & -20 & & \(\mu \mathrm{A}\) & \\
\hline \multirow[t]{2}{*}{} & \multirow{2}{*}{All circuits} & \(\mathrm{t}_{\text {(ON }}\) & & 0.3 & & \(\mu \mathrm{s}\) & \multirow{2}{*}{See Switching Times} \\
\hline & & \(\mathrm{t}_{\text {(OFF) }}\) & & 1 & & \(\mu \mathrm{s}\) & \\
\hline
\end{tabular}

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the MOS-FET switch for the given test condition.

TYPICAL CHARACTERISTICS

\section*{APPLICATION TIPS}

The recommended resistor values for interfacing RTL, DTL, and \(T^{2} L\) Logic are shown in Figures 1 and 2.

Figure 1. DG 118 and DG 125
Interface

Figure 2. DG123
Interface

\section*{Enable Control}

The \(V_{R}\) and \(V_{L}\) terminals can be used as either a Strobe or an Enable control. The requirements for sinking current at \(V_{R}\) or sourcing current at \(V_{L}\) are: \(I_{L(O N)} \times\) No. of channels used, for DG118 and DG125, and \(I_{R(O N)} \times\) No. of channels used, for the DG123 devices. The voltage at \(\mathrm{V}_{\mathrm{L}}\) must be greater than the voltage at \(\mathrm{V}_{\text {IN }}\) by at least +4 V .

\section*{SWITCHING TIMES}

\section*{FEATURES}
- Provides DC level shifting between low-level Logic and MOS-FET or J-FET switches
- External Collector Pull-ups required
- Direct interface with G116, G117, G119, G115, and G123 MOS-FET switches

\section*{GENERAL DESCRIPTION}

The D123 and D125 monolithic bi-polar drivers convert low-level positive signals \((0 \&+5 \mathrm{~V})\) to the high level positive and negative voltages necessary to drive FET switches. One lead can be used to provide an enabling capability.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

\section*{ORDERING INFORMATION}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{lr}
Input-to-Emitter Voltage \(\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {EE }}\right)\) & 33 V \\
Output-to-Emitter Voltage \(\left(\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{EE}}\right)\) & 33 V \\
Logic Supply-to-Emitter Voltage \(\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{EE}}\right)\) & 27 V \\
Input-to-Reference Voltage \(\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{R}}\right)\) & 2 V \\
Input-to-Logic Supply Voltage \(\left(\mathrm{V}_{I N}-\mathrm{V}_{\mathrm{L}}\right)\) & +6 V \\
Reference-to-Emitter Voltage \(\left(\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{EE}}\right)\) & 31 V \\
Maximum Dissipation (Note) & 750 mW \\
Current (any pin) & 30 mA
\end{tabular}
\(\begin{array}{lr}\text { Storage Temperature } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Operating Temperature } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } 10 \mathrm{sec} \text {) } & 300^{\circ} \mathrm{C}\end{array}\)

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of \(70^{\circ} \mathrm{C}\). Derate \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for higher ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS}

Test conditions unless otherwise specified are as follows: \(\mathrm{V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0, \mathrm{~V}_{\mathrm{R}}=0\). Output and power supply measurements based on specified input conditions.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{4}{|c|}{MAX LIMIT} & \multirow[t]{2}{*}{CONDITIONS} \\
\hline & & & \(-55^{\circ} \mathrm{C}\) & \(25^{\circ} \mathrm{C}\) & \(125^{\circ} \mathrm{C}\) & UNITS & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 5 \\
& \underline{n} \\
& \underline{2}
\end{aligned}
\]} & \(\stackrel{\sim}{\square}\) & \begin{tabular}{l}
IIN(OFF) \\
\(V_{\text {IN (ON) }}\)
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1.3
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{gathered}
100 \\
0.8
\end{gathered}
\] & \[
\begin{gathered}
\mu \mathrm{A} \\
\mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& V_{I N}=0.4 \mathrm{~V} \\
& \mathrm{I}_{1 \mathrm{~N}}=1 \mathrm{~mA}
\end{aligned}
\] \\
\hline & \(\stackrel{\sim}{\sim}\) & \begin{tabular}{l}
IIN(OFF) \\
IIN(ON)
\end{tabular} & \[
\begin{gathered}
1 \\
-0.7
\end{gathered}
\] & \[
\begin{gathered}
1 \\
-0.7
\end{gathered}
\] & \[
\begin{aligned}
& 20 \\
& -0.7
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& V_{\text {IN }}=4.1 \mathrm{~V} \\
& V_{\text {IN }}=0.5 \mathrm{~V}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5 \\
& \frac{2}{2} \\
& 5
\end{aligned}
\] & \[
\left|\begin{array}{ll}
\infty \\
\stackrel{\sim}{\sim} & \underset{\sim}{0} \\
\underset{\sim}{n}
\end{array}\right|
\] & \begin{tabular}{l}
Iout(off) \\
Vout (on) \\
\(V_{\text {OUT(ON) }}\)
\end{tabular} & \[
\begin{array}{r}
0.1 \\
-19.7 \\
-19.2
\end{array}
\] & \[
\begin{array}{r}
0.1 \\
-19.7 \\
-19.2
\end{array}
\] & \[
\begin{gathered}
10 \\
-19.5 \\
-19.0
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
V \\
V
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\text {OUT }}=+10 \mathrm{~V} \\
& \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \\
& \mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{} & \(\stackrel{\sim}{\sim}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{R}(O N)^{(1)}} \\
& \mathrm{I}_{\mathrm{R}(O F F)^{(2)}} \\
& \mathrm{I}_{\mathrm{EE}(\mathrm{ON})^{(1)}} \\
& \mathrm{I}_{\mathrm{EE}(\mathrm{OFF})^{(2)}}
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 1 \\
& 1 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 1 \\
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{array}{r}
0.5 \\
150 \\
1 \\
200 \\
\hline
\end{array}
\] & \begin{tabular}{l}
mA \\
\(\mu \mathrm{A}\) \\
mA \\
\(\mu \mathrm{A}\)
\end{tabular} & \multirow[b]{2}{*}{I Out \(=0\) for ON measurements. \(V_{\text {OUT }}=+10 \mathrm{~V}\) for OFF measurements.} \\
\hline & \[
\stackrel{\perp}{\sim}
\] & \[
\begin{aligned}
& I_{\text {L(ON) }}{ }^{(1)} \\
& I_{\text {L(OFF) }}{ }^{(2)} \\
& I_{\text {EE (ON) }}{ }^{(1)} \\
& I_{\text {EE (OFF) }}{ }^{(2)}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 1 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 1 \\
& 2 \\
& 2
\end{aligned}
\] & \[
\begin{gathered}
1.9 \\
100 \\
1.9 \\
200
\end{gathered}
\] & \begin{tabular}{l}
mA \\
\(\mu \mathrm{A}\) \\
mA \\
\(\mu \mathrm{A}\)
\end{tabular} & \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \[
\begin{aligned}
& t_{\text {(on) }} \\
& t_{\text {(off) }}(4)
\end{aligned}
\] & & \[
\begin{aligned}
& 250 \\
& 800
\end{aligned}
\] & & ns ns & \(I_{\text {OUT }}=1 \mathrm{~mA} \mathrm{C}_{\text {OUT }}{ }^{(3)}=10 \mathrm{pF}\) (See Switching Times) \\
\hline & & \[
\begin{aligned}
& t_{\text {(on) }} \\
& t_{\text {(off) }}
\end{aligned}
\] & & \[
\begin{aligned}
& 250 \\
& 600
\end{aligned}
\] & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] & \begin{tabular}{l}
\[
\mathrm{I}_{\mathrm{OUT}}=4 \mathrm{~mA} \mathrm{C} \mathrm{OUT}^{(3)}=10 \mathrm{pF}
\] \\
(See Switching Times)
\end{tabular} \\
\hline
\end{tabular}

NOTES: (1) One channel ON, 5 channels OFF.
(2) All channels OFF.
(3) Add 30 ns per pF for 1 mA and add 8 ns per pF for 4 mA for additional capacitive loading.
(4) For Dual-In-Line package add 120 ns to t (off).
(5) For Dual-In-Line package add 30 ns to t(off).

\section*{SWITCHING TIMES}

\section*{TYPICAL CHARACTERISTICS}

IIN VS VIN D123

SWITCHING TIMES VS TEMPERATURE D123 AND D125 (SEE NOTES 4 AND 5)

VSAT VS TEMPERATURE D123 AND D125

VIN(ON) VS
TEMPERATURE D123

\section*{APPLICATION TIPS}

\section*{Interfacing the D123 and D125}

In order to meet all the specifications on this data sheet, certain requirements must be met by the drive circuitry.
The D125 can be turned ON easily, but care must be exercised to insure turn-off. Keeping \(V_{L}-V_{I N} \leq 0.4 \mathrm{~V}\) is a must to insure turn-off. To accomplish this a shunt resistor must be added to supply the leakage current (ICES) for DTL devices. Since \(I_{\text {CES }}=50 \mu \mathrm{~A}\), a \(0.4 \mathrm{~V} / 0.05 \mathrm{~mA}=8 \mathrm{k}\) or less should be used. For \(\mathrm{T}^{2} \mathrm{~L}\) devices using a 2 k resister will insure turn-off with up to \(200 \mu \mathrm{~A}\) of leakage current.

\section*{Using the ENABLE Control}

Device pins \(V_{R}\) or \(V_{L}\), can be used to enable the D123 or D125 drivers. For the D123 the enabling driver must sink \(I_{R(O N)} X\) no. of channels used. For the D125, \(I_{L(O N)} X\) no. of channels used must be sourced with a voltage at least \(+4 V\) greater than \(V_{I N}\).

\section*{APPLICATIONS}

Using INTERSIL'S MOS-FET SWITCH G117 with either the D123 or D125 drivers provides a reliable means of providing up to 5 channels with a series block for multiplexing applications.

5-Channel Multiplexer

\section*{FEATURES}
- Quad Three-Input Gates Decode Binary Counter to Four Lines
- Inputs Compatible with Low Power TTL and DTL, \(I_{F}=200 \mu \mathrm{~A}\) Max
- Output Current Sinking Capability 10 mA
- External Pull-Up Elements Required
- Compatible with G115 and G123 Series Multichannel MOS FET Switches which include Current-Limiter PullUp FETs

\section*{GENERAL DESCRIPTION}

The D129 is a 4-channel driver with binary decode input. It has been designed to provide the DC level-shifting required to interface low-level logic outputs (0.7 to 2.2 V) to fieldeffect transistor inputs (up to 50 V peak-to-peak). For a 5 V input logic supply, the \(\mathrm{V}^{-}\)terminal can be set at any voltage between -5 V and -30 V . The output transistor is capable of sinking 10 mA and will stand-off up to 50 V above \(\mathrm{V}^{-}\) in the off-state.

The ON state of the driver is controlled by a logic " 1 " (open) on all three input logic lines, while the OFF state of the driver is achieved by pulling any one of the three inputs to a logic " 0 " (ground).

The 4-channel driver is internally connected such that each one can be controlled independently or decoded from a binary counter.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

\section*{ORDERING INFORMATION}

ABSOLUTE MAXIMUM RATINGS
\(\mathrm{V}_{\mathrm{O}}-\mathrm{V}^{-} . .\). 50 V
GND - V- 33 .

VIN - GND . \(\pm 6 \mathrm{~V}\)
Current (any terminal) . 30 mA
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Power Dissipation (note) 750 mW
Lead Temperature (Soldering. 10 sec) \(300^{\circ} \mathrm{C}\)

Note: Dissipation rating assumes device mounted with all leads welded or soldered to pc board in ambient temperature of \(70^{\circ} \mathrm{C}\). Derate \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) fo: munner ambient termperatures.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS Test conditions unless otherwise specified \(\mathrm{V}^{-}=-20 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow{3}{*}{PARAMETER}} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{CONDITIONS}} & \multicolumn{6}{|c|}{MAX LIMITS} & \multirow{3}{*}{UNIT} \\
\hline & & & & & \multicolumn{3}{|c|}{D129M} & \multicolumn{3}{|c|}{D1291} & \\
\hline & & & & & \(-55^{\circ} \mathrm{C}\) & \(25^{\circ} \mathrm{C}\) & \(125^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) & \(25^{\circ} \mathrm{C}\) & \(85^{\circ} \mathrm{C}\) & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l|l}
0 \\
\(U\) \\
U \\
T
\end{tabular}} & \(v_{\text {OL }}\) & Output Voltage, Low & \(\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}\) & \multirow[b]{2}{*}{\(\mathrm{V}_{1 \mathrm{I}}=2.2 \mathrm{~V}, \mathrm{~V}^{+}=4.5 \mathrm{~V}\)} & -19.3 & -19.3 & -19 & -19.25 & -19.25 & -19 & \multirow[b]{2}{*}{V} \\
\hline & \(\mathrm{V}_{\mathrm{OL}}\) & Output Voltage, Low & \(\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}\) & & -19.8 & -19.8 & -19.75 & & & & \\
\hline & \({ }^{\mathrm{I}} \mathrm{OH}\) & Output Current, High & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0.7 \mathrm{~V}\)} & 0.1 & 0.1 & 20 & 0.2 & 0.2 & 10 & \(\mu \mathrm{A}\) \\
\hline 1 & \({ }^{1} \mathrm{INH}{ }^{*}\) & Input Current Input Voltage High & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(V_{\text {IN }}=5 \mathrm{~V}\) Input Under Test, \\
\(V_{\text {IN }}=0\) All Other Inputs
\end{tabular}} & 0.25 & 0.25 & 5 & 1 & 1 & 5 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline N & \({ }^{1} \mathrm{INL}{ }^{*}\) & Input Current, Input Voltage Low & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {IN }}=0, \mathrm{~V}^{+}=5.5 \mathrm{~V}\)} & -250 & -200 & -160 & -250 & -225 & -200 & \\
\hline \multirow[t]{2}{*}{} & \(\mathrm{t}_{\mathrm{on}}\) & Turn-ON Time & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{See Switching Time Test Circuit}} & & 0.25 & & & 0.3 & & \multirow{2}{*}{\(\mu \mathrm{s}\)} \\
\hline & \(\mathrm{t}_{\text {off }}\) & Turn-OFF Time & & & & 1.0 & & & 1.5 & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
S \\
\hline \\
\(\mathbf{U}\) \\
P \\
P \\
\(\mathbf{L}\) \\
\(\mathbf{Y}\)
\end{tabular}} & IEE & Negative Supply Current & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{V}^{-}=-20 \mathrm{~V} \\
& \mathrm{~V}^{+}=5.5 \mathrm{~V}
\end{aligned}
\]} & \multirow[t]{2}{*}{One Channel "ON"} & & -2 & & & -2.25 & & \multirow[t]{2}{*}{mA} \\
\hline & \(\mathrm{I}_{\mathrm{L}}\) & Logic Supply Current & & & & 3 & & & 3.3 & & \\
\hline & \({ }_{\text {I }}\) E & Negative Supply Current & & All \(\mathrm{V}_{\text {IN }}=0\), & & -10 & & & -25 & & \(\mu \mathrm{A}\) \\
\hline & \(I_{L}\) & Logic Supply Current & & All Channels "OFF" & & 0.75 & & & 1 & & mA \\
\hline
\end{tabular}

\footnotetext{
*Per gate Input
}

\section*{SWITCHING TIME AND TEST CIRCUIT}

\section*{FEATURES}
- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, 1 mW
- Switches analog signals up to 20 volts peak-to-peak
- Low rds(on), 10 ohms max on DG145 and DG146

\section*{GENERAL DESCRIPTION}

Each package contains a monolithic driver with differential input and 2 or 4 discrete FET switches. The driver may be treated as a special purpose differential amplifier which controls the conduction state of the FET switches. The differential output of the driver sets the switches in opposition, one pair open and the other pair closed. All switches may be opened by applying a positive control signal to the \(V_{R}\) terminal.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

\section*{ORDERING INFORMATION}

\section*{DG139, DG142-DG146, DG161-DG164}

\section*{ABSOLUTE MAXIMUM RATINGS}
\(\mathrm{V}^{+}-\mathrm{V}^{-}\) 36 V
\(V_{S}-V^{-}\) 30 V
\(V^{+}-V_{S}\) 30 V
\(V_{S}-V_{D}\) \(\pm 22 \mathrm{~V}\)Power Dissipation (Note)\(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{R}}\)17V
\[
\mathrm{V}^{+}-\mathrm{V}_{\text {IN1 }} \text { or } \mathrm{V}_{\mathrm{IN} 2} \text {. } 14 \mathrm{~V}
\]
\[
V_{I N 1}-V_{I N 2} \ldots \ldots \pm 6 V
\]
\[
V_{I N 1}-V_{R} \ldots \ldots \pm 6
\]
\(V_{R}-V^{-}\) 21 V
\[
V_{I N 2}-V_{R} \ldots \ldots \pm V
\]
Power Dissipation (Note) 750 mW Current (any terminal)30 mA

Storage Temperature -65 to \(+150^{\circ} \mathrm{C}\)
Operating Temperature -55 to \(+125^{\circ} \mathrm{C}\)
Lead Temperature (soldering, 10 sec) \(300^{\circ} \mathrm{C}\)
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below \(70^{\circ} \mathrm{C}\). For higher temperature, derate at rate of \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS}

Applied voltages for all tests: DG139, DG142, DG143, DG144, DG145, DG146 (\(\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0\), \(\mathrm{V}_{\mathrm{IN} 2}=2.5 \mathrm{~V}\)) and DG161, DG162, DG163, \(\mathrm{DG} 164\left(\mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathrm{IN} 2}=2.5 \mathrm{~V}\right)\). Input test condition that guarantees FET switch ON or OFF as specified is used for output specifications.

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{SYMBOL (NOTE)} & \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{TYPE} & \multicolumn{3}{|l|}{ABSOLUTE MAX. LIMIT} & \multirow{2}{*}{UNITS} & \multirow{2}{*}{TEST CONDITIONS} \\
\hline & & & & \(-65^{\circ} \mathrm{C}\) & \(25^{\circ}\) & \(125^{\circ}\) & & \\
\hline & \multirow[b]{2}{*}{ton} & \multirow[t]{2}{*}{Turn-On Time} & DG139, DG142 DG143, DG144 DG162, DG164 & & 0.8 & & \(\mu \mathrm{s}\) & \multirow[t]{2}{*}{See Below} \\
\hline & & & \[
\begin{aligned}
& \text { DG139, DG } 142 \\
& \text { DG143. DG } 144 \\
& \text { DG162. DG } 164
\end{aligned}
\] & & 0.4 & 0.7 & \(\mu \mathrm{s}\) & \\
\hline S & \multirow[b]{2}{*}{toff} & \multirow[b]{2}{*}{Turn-Off Time} & DG139, DG142 DG143, DG144 DG162, DG164 & & 1.6 & & \(\mu \mathrm{s}\) & \multirow[b]{2}{*}{See Below} \\
\hline \(W\)
1
\(T\)
\(C\) & & & \[
\begin{aligned}
& \text { DG } 139 \text {, DG } 142 \\
& \text { DG } 143, \text { DG } 144 \\
& \text { DG } 162, \text { DG } 164
\end{aligned}
\] & & 0.8 & 1.2 & \(\mu \mathrm{s}\) & \\
\hline H
I & \multirow[b]{2}{*}{ton} & \multirow[b]{2}{*}{Turn-On Time} & \[
\begin{aligned}
& \text { DG145, DG } 146 \\
& \text { DG161, DG } 163
\end{aligned}
\] & & 1.0 & & \(\mu \mathrm{s}\) & \multirow[b]{2}{*}{See Bẹlow} \\
\hline \[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{G}
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { DG145, DG146 } \\
& \text { DG161. DG } 163
\end{aligned}
\] & & 0.5 & 0.8 & \(\mu \mathrm{s}\) & \\
\hline & \multirow[b]{2}{*}{tof F} & \multirow[b]{2}{*}{Turn-Off Time} & \[
\begin{aligned}
& \text { DG145, DG } 146 \\
& \text { DG161, DG } 163
\end{aligned}
\] & & 2.5 & & \(\mu \mathrm{s}\) & \multirow[b]{2}{*}{See Below} \\
\hline & & & \[
\begin{aligned}
& \text { DG145, DG } 146 \\
& \text { DG161, DG } 163
\end{aligned}
\] & & 1.25 & 1.8 & \(\mu \mathrm{s}\) & \\
\hline \begin{tabular}{l}
P \\
\hline
\end{tabular} & Pon & ON Driver Power & \multirow{2}{*}{All Circuits} & & 175 & & mW & Both Inputs \(V_{1 N}=2.5 \mathrm{~V}\) \\
\hline \begin{tabular}{l}
E \\
R \\
\hline
\end{tabular} & P \({ }_{\text {OFF }}\) & OFF Driver Power & & & 1 & & mW & Both Inputs \(V_{\text {IN }}-1.0 \mathrm{~V}\) \\
\hline
\end{tabular}

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES \(\left(25^{\circ} \mathrm{C}\right)\)

DG 139, 142, 143, 144, 145, 146

OFF MODEL

ON MODEL

\[
\text { DG } 161,162,163,164
\]

OFF MODEL

ON MODEL

FIGURE 1

FIGURE 2

NOTE1: An example of Absolute Minimum Differential Voltage, \(\left|V_{9}-V_{13}\right|\), is when \(V_{9}=3 V\) and \(V_{13}=2.5 V\), the \(V\), side of the switch is ON and the \(V_{13}\) side of the switch is OFF at \(25^{\circ} \mathrm{C}\). Conversely, when \(\mathrm{V}_{9}=2 \mathrm{~V}\) and \(\mathrm{V}_{13}=2.5 \mathrm{~V}\), the \(\mathrm{V}_{9}\), side of the switch is OFF and the \(V_{13}\) side of the switch is ON at \(25^{\circ} \mathrm{C}\).

TYPICAL CHARACTERISTICS (per channel)

DG 139, 142, 144, 145, 146

DG161, 162, 163, 164

\section*{FEATURES}
- Constant ON-resistance for signals to \(\pm 10 \mathrm{~V}\) (DG182, \(185,188,191\)), to \(\pm 7.5 \mathrm{~V}\) (all devices)
- \(\pm 15 \mathrm{~V}\) power supplies
- <2nA leakage from signal channel in both ON and OFF states
- TTL, DTL, RTL direct drive compatibility
- ton, toff <150ns, break-before-make action
- Cross-talk and open switch isolation \(>50 \mathrm{~dB}\) at 10 MHz (\(75 \Omega\) load)

\section*{GENERAL DESCRIPTION}

The DG180 thru DG191 series of analog gates consists of 2 or 4 N -channel junction-type field-effect transistors (J-FET) designed to function as electronic switches. Level-shifting drivers enable low-level inputs (0.8 to 2 V) to control the ON OFF state of each switch. The driver is designed to provide a turn-off speed which is faster than turn-on speed, so that break-before-make action is achieved when switching from one channel to another. In the ON state, each switch conducts current equally well in both directions. In the OFF condition, the switches will block voltages up to 20 V peak-topeak. Switch-OFF input-output feedthrough is \(>50 \mathrm{~dB}\) down at 10 MHz , because of the low output impedance of the FETgate driving circuit.

\section*{SCHEMATIC DIAGRAM (Typical Channel)}

ONE AND TWO CHANNEL SPDT AND SPST CIRCUIT CONFIGURATION

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
PART \\
NUMBER
\end{tabular} & TYPE & \begin{tabular}{c}
rDS(on) \\
(MAX)
\end{tabular} \\
\hline DG180 & Dual SPST & 10 \\
DG181 & Dual SPST & 30 \\
DG182 & Dual SPST & 75 \\
DG183 & Dual DPST & 10 \\
DG184 & Dual DPST & 30 \\
DG185 & Dual DPST & 75 \\
DG186 & SPDT & 10 \\
DG187 & SPDT & 30 \\
DG188 & SPDT & 75 \\
DG189 & Dual SPDT & 10 \\
DG190 & Dual SPDT & 30 \\
DG191 & Dual SPDT & 75 \\
\hline
\end{tabular}

TWO CHANNEL DPST CIRCUIT CONFIGURATION

MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline \(\mathrm{V}+\mathrm{V}-\) & 36V \\
\hline \(V+V_{D}\) & 33V \\
\hline \(V_{D}-V^{-}\) & 33 V \\
\hline \(\mathrm{V}^{2} \mathrm{~V}_{S}\) & \(\pm 22 \mathrm{~V}\) \\
\hline \(\mathrm{V}_{\mathrm{L}}-\mathrm{V}-\). & 36 V \\
\hline
\end{tabular}

Lead Temperature (Soldering, 10 sec) \(300^{\circ} \mathrm{C}\)

Current (S or D) See Note 3 . 200 mA
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Power Dissipation* 450 (TW), 750 (FLAT), 825 (DIP) mW
*Device mounted with all leads welded or soldered to PC board.
Derate \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) (TW); \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) (FLAT); \(11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) (DIP) above \(75^{\circ} \mathrm{C}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}\right.\), Unless Noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{10}{*}{\[
\begin{aligned}
& \text { S } \\
& \text { W } \\
& \mathbf{1} \\
& \mathbf{T} \\
& \mathbf{C} \\
& H
\end{aligned}
\]} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{DEVICE} & \multicolumn{3}{|c|}{A SERIES} & \multicolumn{3}{|c|}{B SERIES} & \multirow[b]{2}{*}{UNITS} & \multirow[t]{2}{*}{\begin{tabular}{l}
TEST CONDITIONS \\
(Note 1)
\end{tabular}} \\
\hline & & & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+85^{\circ} \mathrm{C}\) & & \\
\hline & \multirow{3}{*}{Is(off)} & \[
\begin{aligned}
& \text { DG181, 182, 184, } 185 \\
& \text { 187, 188, 190, 191 } \\
& \text { (DG180, 183, 186, 189) }
\end{aligned}
\] & & \[
\begin{gathered}
1 \\
(10)
\end{gathered}
\] & \[
\begin{array}{r}
100 \\
(1000) \\
\hline
\end{array}
\] & & \begin{tabular}{l}
\[
5
\] \\
(15)
\end{tabular} & \[
\begin{array}{r}
100 \\
(300) \\
\hline
\end{array}
\] & nA & \[
\begin{aligned}
& V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}^{+}=10 \mathrm{~V} \\
& \mathrm{~V}^{-}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" }
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& \text { DG181, 184, 187, } 190 \\
& \text { (DG180, 183, 186, } 189 \text {) }
\end{aligned}
\] & & \[
\begin{gathered}
1 \\
(10)
\end{gathered}
\] & \[
\begin{gathered}
100 \\
(1000)
\end{gathered}
\] & & \[
\begin{gathered}
5 \\
(15)
\end{gathered}
\] & \[
\begin{array}{r}
100 \\
(300)
\end{array}
\] & nA & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" }
\end{aligned}
\] \\
\hline & & DG182, 185, 188, 191 & & 1 & 100 & & 5 & 100 & nA & \[
\begin{aligned}
& V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" }
\end{aligned}
\] \\
\hline & \multirow[t]{3}{*}{lo(off)} & DG181, 182, 184, 185 187, 188, 190, 191 (DG180, 183, 186, 189) & & 1
(10) & \[
\begin{gathered}
100 \\
(1000) \\
\hline
\end{gathered}
\] & & \begin{tabular}{l}
5 \\
(15)
\end{tabular} & \[
\begin{array}{r}
100 \\
(300) \\
\hline
\end{array}
\] & nA & \[
\begin{aligned}
& V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}^{+}=10 \mathrm{~V} \\
& \mathrm{~V}^{-}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" }
\end{aligned}
\] \\
\hline & & \[
\begin{aligned}
& \text { DG181, 184, 187, } 190 \\
& \text { (DG180, 183, 186, } 189 \text {) }
\end{aligned}
\] & & \[
\begin{gathered}
1 \\
(10)
\end{gathered}
\] & \[
\begin{gathered}
100 \\
(1000)
\end{gathered}
\] & & \[
\begin{gathered}
\hline 5 \\
(15)
\end{gathered}
\] & \[
\begin{gathered}
100 \\
(300)
\end{gathered}
\] & nA & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\
& \mathrm{VIN}=\text { "OFF" }
\end{aligned}
\] \\
\hline & & DG182, 185, 188, 191 & & 1 & 100 & & 5 & 100 & \[
n A
\] & \[
\begin{aligned}
& V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\
& \mathrm{~V}_{\mathbb{N}}=\text { "OFF" }
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{\(\mathrm{ld}(\mathrm{on})+\mathrm{Is}\) (on)} & \[
\begin{aligned}
& \text { DG180, 181, 183, } 184 \\
& 186,187,189,190
\end{aligned}
\] & - & -2 & -200 & & -10 & -200 & nA & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S }}=-7.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\) "ON" \\
\hline & & DG182, 185, 188, 191 & & -2 & -200 & & -10 & -200 & nA & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\) "ON" \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathbf{I} \\
& \mathbf{N}
\end{aligned}
\]} & IINL & ALL & -250 & -250 & -250 & -250 & -250 & -250 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) \\
\hline & IINH & ALL & & 10 & 20 & & 10 & 20 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\) \\
\hline \multirow{9}{*}{\[
\begin{aligned}
& \mathbf{D} \\
& \mathbf{Y} \\
& \mathbf{N} \\
& \mathbf{A} \\
& \mathbf{M} \\
& \mathbf{I} \\
& \mathbf{C}
\end{aligned}
\]} & \multirow{3}{*}{ton} & 10S2 Switches & & 300 & & & 350 & & \multirow{5}{*}{ns} & \multirow{5}{*}{See switching time test circuit} \\
\hline & & 30ת Switches & & 150 & & & 180 & & & \\
\hline & & 75s Switches & & 250 & & & 300 & & & \\
\hline & \multirow[t]{2}{*}{toff} & 10ת Switches & & 250 & & & 300 & & & \\
\hline & & \(30 \Omega\) and \(75 \Omega\) Switches & & 130 & & & 150 & & & \\
\hline & \(\mathrm{C}_{\text {S }}\) (off) & \multirow[t]{4}{*}{DG181, 182, 184, 185, 187, 188, 190, 191 (DG180, 183, 186, 189)} & \multicolumn{6}{|c|}{9 typical (21 typical)} & \multirow{3}{*}{pF} & \(\mathrm{V}_{\mathrm{S}}=-5 \mathrm{~V}, 1 \mathrm{l}=0, \mathrm{f}=1 \mathrm{MHz}\) \\
\hline & \(\mathrm{Co}_{\mathrm{D} \text { (off) }}\) & & \multicolumn{6}{|c|}{6 typical (17 typical)} & & \(\mathrm{V}_{\mathrm{D}}=+5 \mathrm{~V}, \mathrm{IS}=0, f=1 \mathrm{MHz}\) \\
\hline & \(\mathrm{CD}_{\text {(on) }}+\mathrm{CS}_{\text {S }}\) (on) & & \multicolumn{6}{|c|}{14 typical (17 typical)} & & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=0, \mathrm{f}=1 \mathrm{MHz}\) \\
\hline & OFF Isolation & & \multicolumn{6}{|c|}{Typically \(>50 \mathrm{~dB}\) at 10 MHz (See Note 2)} & & \(\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}\) \\
\hline \multirow{18}{*}{\[
\begin{aligned}
& \mathbf{S} \\
& \mathbf{U} \\
& \mathbf{P} \\
& \mathbf{P} \\
& \mathbf{L}
\end{aligned}
\]} & \multirow{3}{*}{\(1+\)} & \[
\begin{aligned}
& \text { DG180, 181, 182, } 189 \\
& 190,191 \\
& \hline
\end{aligned}
\] & & 1.5 & & & 1.5 & & \multirow{18}{*}{mA} & \multirow{9}{*}{\(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\)} \\
\hline & & DG183, 184, 185 & & 0.1 & & & 0.1 & & & \\
\hline & & DG186, 187, 188 & & 0.8 & & & 0.8 & & & \\
\hline & \multirow[t]{3}{*}{\(1-\)} & \[
\begin{aligned}
& \text { DG180, 181, 182, 189, } \\
& 190,191
\end{aligned}
\] & & -5.0 & & & -5.0 & & & \\
\hline & & DG183, 184, 185 & & -4.0 & & & -4.0 & & & \\
\hline & & DG186, 187, 188 & & -3.0 & & & -3.0 & & & \\
\hline & L & DG180, 181, 182, 183, 184, 185, 189, 190, 191 & & 4.5 & & & 4.5 & & & \\
\hline & & DG186, 187, 188 & & 3.2 & & & 3.2 & & & \\
\hline & IGND & ALL & & -2.0 & & & -2.0 & & & \\
\hline & \(1+\) & \[
\begin{aligned}
& \text { DG180, 181, 182, } 189, \\
& 190,191
\end{aligned}
\] & & 1.5 & & ! & 1.5 & & & \multirow{9}{*}{\(\mathrm{VIN}=0 \mathrm{~V}\)} \\
\hline & & DG183, 184, 185 & & 3.0 & & & 3.0 & & & \\
\hline & & DG186, 187, 188 & & 0.8 & & & 0.8 & & & \\
\hline & \multirow{3}{*}{\(1-\)} & \[
\begin{aligned}
& \text { DG180, 181, 182, 189, } \\
& 190,191
\end{aligned}
\] & & \(-5.0\) & & & -5.0 & & & \\
\hline & & DG183, 184, 185 & & -5.5 & & & -5.5 & & & \\
\hline & & DG186, 187, 188 & & -3.0 & & & -3.0 & & & \\
\hline & \multirow[t]{2}{*}{L} & \[
\begin{aligned}
& \text { DG180, 181, 182, } 183, \\
& 184,185,189,190,191
\end{aligned}
\] & & 4.5 & & & 4.5 & & & \\
\hline & & DG186, 187, 188 & & 3.2 & & & 3.2 & & & \\
\hline & IGND & ALL & & -2.0 & & & -2.0 & & & \\
\hline
\end{tabular}

Note 1: See Switching State Diagrams for VIN "ON" and VIN "OFF" Test Conditions.
Note 2: Off Isolation typically \(>55 \mathrm{~dB}\) at 1 MHz for DG180, 183, 186, 189.
Note 3: Saturation Drain Current for DG180, 183, 186, 189 only, typically 300 mA (2 msec Pulse Duration). Maximum Current on all other devices (any terminal) 30 mA .

ELECTRICAL CHARACTERISTICS (CONT'D)
MAXIMUM RESISTANCES (DDS(ON) MAX)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DEVICE NUMBER} & \multicolumn{3}{|l|}{MILITARY TEMPERATURE} & \multicolumn{3}{|c|}{INDUSTRIAL TEMPERATURE} & \multirow[t]{2}{*}{UNITS} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CONDITIONS (Note 1)
\[
\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}
\]}} \\
\hline & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) & \(\underline{+25^{\circ} \mathrm{C}}\) & \(+85^{\circ} \mathrm{C}\) & & & \\
\hline DG180 & 10 & 10 & 20 & 15 & 15 & 25 & \(\Omega\) & \(\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}\) & \\
\hline DG181 & 30 & 30 & 60 & 50 & 50 & 75 & \(\Omega\) & \(\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}\) & \\
\hline DG182 & 75 & 75 & 100 & 100 & 100 & 150 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}\) & \\
\hline DG183 & 10 & 10 & 20 & 15 & 15 & 25 & \(\Omega\) & \(V_{D}=-7.5 \mathrm{~V}\) & \\
\hline DG184 & 30 & 30 & 60 & 50 & 50 & 75 & \(\Omega\) & \(\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}\) & \\
\hline DG185 & 75 & 75 & 150 & 100 & 100 & 150 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}\) & Is \(=-10 \mathrm{~mA}\) \\
\hline DG186 & 10 & 10 & 20 & 15 & 15 & 25 & \(\Omega\) & \(\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}\) & \\
\hline DG187 & 30 & 30 & 60 & 50 & 50 & 75 & \(\Omega\) & \(V_{D}=-7.5 \mathrm{~V}\) & \(\mathrm{V}_{\mathrm{IN}}=\) "ON" \\
\hline DG188 & 75 & 75 & 150 & 100 & 100 & 150 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}\) & \\
\hline DG189 & 10 & 10 & 20 & 15 & 15 & 25 & \(\Omega\) & \(\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}\) & \\
\hline DG190 & 30 & 30 & 60 & 50 & 50 & 50 & \(\Omega\) & \(V_{D}=-7.5 \mathrm{~V}\) & \\
\hline DG191 & 75 & 75 & 150 & 100 & 100 & 150 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}\) & \\
\hline
\end{tabular}

APPLICATION HINT (for design only): Normally the minimum signal handling capability of the DG180 through DG191 family is 20 V peak-topeak for the \(75 \Omega\) switches and 15 V peak-to-peak for the \(10 \Omega\) and \(30 \Omega\) switches (refer \(I_{D}\) and \(I_{s}\) tests above). For other Analog Signals, the following guidelines can be used: proper switch turn-off requires that \(V^{-} \leq V_{\text {ANALOG }}(p e a k)-V_{p}\) where \(V_{p}=7.5 \mathrm{~V}\) for the \(10 \Omega\) and \(30 \Omega\) switches and \(V_{p}=5.0 \mathrm{~V}\) for \(75 \Omega\) switches e.g., -10 V minimum (-peak) analog signal and a \(75 \Omega\) switch (\(\mathrm{V}_{\mathrm{p}}=5 \mathrm{~V}\)), requires that \(\mathrm{V}^{-} \leq-10 \mathrm{~V}\) \(-5 \mathrm{~V}=-15 \mathrm{~V}\).

\section*{SWITCHING TIME TEST CIRCUIT}

Switch output waveform shown for \(V_{S}=\) constant with logic input waveform as shown. Note that \(V_{S}\) may be + or - as per
switching time test circuit. \(V_{O}\) is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

LOGIC INPUT FOR "OFF" TO "ON" CONDITION (DG180/181/182 SHOWN)

DUAL DPST
DG183/184/185

TEST CONDITIONS
\begin{tabular}{|l|l|}
\hline \multicolumn{3}{|c|}{ DG183/184/185 } \\
\hline VIN "ON" \(=2.0 \mathrm{~V}\) & All Channels \\
VIN "OFF' \(=0.8 \mathrm{~V}\) & All Channels \\
\hline
\end{tabular}

SPDT
DG186/187/188

TEST CONDITIONS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DG186/187/188} \\
\hline VIN "ON" \(=2.0 \mathrm{~V}\) & Channel 1 \\
\hline VIN "ON" \(=0.8 \mathrm{~V}\) & Channel 2 \\
\hline VIN "OFF" \(=2.0 \mathrm{~V}\) & Channel 2 \\
\hline \(\mathrm{VIN}^{\prime}\) "OFF" \(=0.8 \mathrm{~V}\) & Channel 1 \\
\hline
\end{tabular}

DUAL SPDT
DG189/190/191

SWITCH STATES ARE
FOR LOGIC "1" INPUT \(=2.0 \mathrm{~V}\)

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT \(=2.0 \mathrm{~V}\)

TEST CONDITIONS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DG189/190/191} \\
\hline \(\mathrm{VIN}^{\prime}\) "ON" \(=2.0 \mathrm{~V}\) & Channels 1 \& 2 \\
\hline \(\mathrm{VIN}^{\text {IN }}\) "ON" \(=0.8 \mathrm{~V}\) & Channels 3 \& 4 \\
\hline \(\mathrm{VIN}^{\prime}\) "OFF' \(=2.0 \mathrm{~V}\) & Channels 3 \& 4 \\
\hline VIN "OFF" \(=0.8 \mathrm{~V}\) & Channels 1 \& 2 \\
\hline
\end{tabular}

PIN CONFIGURATIONS AND SWITCHING STATE DIAGRAM (See previous page for logic input)

(OUTLINE DWG TO-100)

DUAL SPST (DG180, 181, 182)

Flat Package

(OUTLINE DWG FD-2)

CERDIP*

(OUTLINE DWG JD)

DUAL DPST (DG183, 184, 185)

Flat Package

(OUTLINE DWG FD-2)

CERDIP*

(OUTLINE DWG JE)

SPDT (DG186, 187, 188)
Flat Package

(OUTLINE DWG FD-2)

CERDIP*

DUAL SPDT (DG189, 190, 191)

Flat Package

CERDIP*

\title{
DGM181-191 High-Speed CMOS Analog Switches
}

\section*{FEATURES}
- Pin and Function Replacement for DG181 Family
- Meets or exceeds all DG181 family specifications with monolithic reliabillity
- Low power consumption
- InA leakage from signal channel in both ON and OFF states
- TTL, DTL, RTL direct drive capability
- \(t_{\text {on }}, t_{\text {off }}<150 \mathrm{~ns}\), break-before-make action
- Crosstalk and open load switch isolation \(>50 \mathrm{~dB}\) at 10MHz (75 \(\Omega\) load)

\section*{GENERAL DESCRIPTION}

The DGM181 family of CMOS monolithic switches utilizes Intersil's latch-free junction isolated processing to combine the speed of the hybrid DG181 family with the reliability and low power consumption of a monolithic CMOS construction. These devices, therefore, are an ideal replacement for the DG181 family.
The DGM181 family has a high state threshold of 2.4 V ; devices which have a threshold of 2.0 V (the DG181 specification) can be selected and are available as the DGMS series - see ordering information.
Both series meet or exceed all other specifications of the DG181 family.
No quiescent power is dissipated in either the ON or OFF state of the switch. Maximum power supply current is \(10 \mu \mathrm{~A}\) from any supply, and typical quiescent currents are in the 10nA range. OFF leakages are guaranteed to be less than 200 pA at \(25^{\circ} \mathrm{C}\).

\section*{SCHEMATIC DIAGRAM (Typical Channel)}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline TYPE & \begin{tabular}{c}
STANDARD \\
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c}
SELECTED \\
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c}
\(\mathbf{r}_{\text {DS(on) }}\) \\
MAX \\
AT \(25{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Dual SPST & \begin{tabular}{c}
DGM181BX
\end{tabular} & \begin{tabular}{c}
DGMS181BX
\end{tabular} & 50 \\
& DGM182AX \\
DGMS182AX & 50 \\
Dual DPST & DGM182BX & DGMS182BX & 75 \\
& DGM184BX & DGMS184BX & 50 \\
& DGM185AX & DGMS185AX & 50 \\
& DGM185BX & DGMS185BX & 75 \\
SPDT & DGM187BX & DGMS187BX & 50 \\
& DGM188AX & DGMS188AX & 50 \\
& DGM188BX & DGMS188BX & 75 \\
& Dual SPDT & DGM190BX & DGMS190BX \\
& DGM191AX & 50 \\
& DGMS191AX & 50 \\
& DGM191BX & DGMS191BX & 75 \\
\hline
\end{tabular}

MAXIMUM RATINGS

V+_V- 36V
\(V^{+}-V_{D} \ldots \ldots\). . \(33 V\)
\(V_{D-V}-\ldots \ldots \ldots \ldots\).........33V
\(V_{D}-V_{S} . \ldots . \ldots \pm 22 V\)
VL-V- 36V
\(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }} \ldots \mathrm{I}_{3} 30 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{L}} \mathrm{V}_{\mathrm{GND}} \ldots2^{20 \mathrm{~V}}\)
\(\mathrm{V}_{\mathrm{IN}}\)-VGd........\({ }^{20 \mathrm{~V}}\)
GND-V- 27V
GND-Vin 20V
Current (Any Terminal) . 30mA

Storage Temperature \(\ldots . \ldots \ldots-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Power Dissipation* 450 (TW), 750 (FLAT), 825 (DIP) mW
*Device mounted with all leads welded or soldered to PC board.
Derate \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) (TW); \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) (FLAT); \(11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) (DIP) above \(75^{\circ} \mathrm{C}\). Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}\right.\), unless noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{8}{*}{S
\(\mathbf{W}\)
\(\mathbf{I}\)
\(\mathbf{T}\)
\(\mathbf{C}\)
\(\mathbf{H}\)} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{DEVICE} & \multicolumn{3}{|c|}{A SERIES} & \multicolumn{3}{|c|}{B SERIES} & \multirow[b]{2}{*}{UNITS} & \multirow[t]{2}{*}{TEST CONDITIONS
(Note 1)} \\
\hline & & & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+85^{\circ} \mathrm{C}\) & & \\
\hline & \multirow[t]{2}{*}{\(I_{\text {S }}^{\text {(off }}\))} & DGM181, 184, 187, 190 & & & & & 2.0 & 100 & nA & \[
\begin{aligned}
& V_{S}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IN}}=\text { "OFF". }
\end{aligned}
\] \\
\hline & & DGM182, 185, 188, 191 & & 0.2 & 50 & & 0.5 & 50 & nA & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\
& \mathrm{~V}_{\text {IN }}=\text { "OFF" }
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{ID(off)} & DGM181, 184, 187, 190 & & , & & . & 2.0 & 100 & nA & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" }
\end{aligned}
\] \\
\hline & & DGM182, 185, 188, 191 & & 0.2 & 50 & & 0.5 & 50 & nA & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\
& \mathrm{~V}_{\text {IN }}=\text { "OFF" }
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{ID(on) +1 S(on)} & DGM181, 184, 187, 190 & & & & & 5.0 & 100 & nA & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\) "ON" \\
\hline & & DGM182, 185, 188, 191 & & 0.5 & 50 & & 2.0 & 50 & nA & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\) "ON" \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathbf{I} \\
& \mathbf{N}
\end{aligned}
\]} & IINL & ALL & & 1.0 & 20 & & 10 & 20 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) \\
\hline & IINH & ALL & & 1.0 & 20 & & 10 & 20 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{1 \mathrm{~N}}=5 \mathrm{~V}\) \\
\hline D & ton & DGM181, 184, 187, 190 DGM182, 185, 188, 191 & & 250 & & & \[
\begin{array}{r}
180 \\
300 \\
\hline
\end{array}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{See switching time test circuit} \\
\hline N & toff & ALL & & 130 & & & 150 & & & \\
\hline \[
\underset{\mathbf{M}}{\mathbf{A}}
\] & \(\mathrm{C}_{\text {S(off) }}\) & \multirow[t]{4}{*}{DGM181, 182, 184, 185, 187, 188, 190, 191} & \multicolumn{6}{|c|}{5pF typical} & \multirow{4}{*}{pF} & \(\mathrm{V}_{S}=-5 \mathrm{~V}, \mathrm{lD}=0, \mathrm{f}=1 \mathrm{MHz}\) \\
\hline M & \(\mathrm{C}_{\text {D(off) }}\) & & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\[
\frac{6 \mathrm{pF} \text { typical }}{11 \mathrm{pF} \text { typical }}
\]}} & & \(\mathrm{V}_{\mathrm{D}}=+{ }^{5} 5 \mathrm{~V}, \mathrm{IS}=0, f=1 \mathrm{MHz}\) \\
\hline C & \(\mathrm{C}_{\text {(on) }}+\mathrm{CS}_{\text {(on) }}\) & & & & & & & & & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=0, \mathrm{f}=1 \mathrm{MHz}\) \\
\hline & OFF Isolation & & \multicolumn{6}{|c|}{Typically \(>50 \mathrm{~dB}\) at 10 MHz} & & \(\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}\) \\
\hline \multirow{8}{*}{\[
\begin{aligned}
& \mathbf{S} \\
& \mathbf{U} \\
& \mathbf{P} \\
& \mathbf{P} \\
& \mathbf{L}
\end{aligned}
\]} & \(1^{+}\) & ALL & & 10 & 100 & & 100 & & \multirow{8}{*}{\(\mu \mathrm{A}\)} & \multirow{4}{*}{\(V_{I N}=5 \mathrm{~V}\)} \\
\hline & \(1^{-}\) & ALL & & 10 & 100 & & 100 & & & \\
\hline & IL & ALL & & 10 & 100 & & 100 & & & \\
\hline & IGND & ALL & & - 10 & 100 & & 100 & & & \\
\hline & \(1^{+}\) & ALL & & 10 & 100 & & 100 & & & \multirow{4}{*}{\(\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}\)} \\
\hline & \(1^{-}\) & ALL & & 10 & 100 & & 100 & & & \\
\hline & IL & ALL & & 10 & 100 & & 100 & & & \\
\hline & IGND & ALL & & 10 & 100 & & 100 & & & \\
\hline
\end{tabular}

NOTE 1: See Switching State Diagrams for VIN "ON" and VIN "OFF" Test Conditions.

\section*{ELECTRICAL CHARACTERISTICS \\ MAXIMUM RESISTANCES (rDS(ON) MAX)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DEVICE NUMBER} & \multicolumn{3}{|l|}{MILITARY TEMPERATURE} & \multicolumn{3}{|c|}{INDUSTRIAL TEMPERATURE} & \multirow[t]{2}{*}{UNITS} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CONDITIONS (Note 1)
\[
\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}
\]}} \\
\hline & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+85^{\circ} \mathrm{C}\) & & & \\
\hline DGM181 & & & & 50 & 50 & 75 & \(\Omega\) & \(\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}\) & \\
\hline DGM182 & 50 & 50 & 75 & 75 & 75 & 100 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}\) & \\
\hline DGM184 & & & & 50 & 50 & 75 & \(\Omega\) & \(V_{D}=-7.5 \mathrm{~V}\) & \\
\hline DGM185 & 50 & 50 & 75 & 75 & 75 & 100 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}\) & Is \(=-10 \mathrm{~mA}\) \\
\hline DGM187 & & & & 50 & 50 & 75 & 8 & \(V_{D}=-7.5 \mathrm{~V}\) & \(\mathrm{VIN}=\) "ON" \\
\hline DGM188 & 50 & 50 & 75 & 75 & 75 & 100 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}\) & \\
\hline DGM190 & & & & 50 & 50 & 75 & \(\Omega\) & \(V_{D}=-7.5 \mathrm{~V}\) & \\
\hline DGM191 & 50 & 50 & 75 & 75 & 75 & 100 & \(\Omega\) & \(V_{D}=-10 \mathrm{~V}\) & \\
\hline
\end{tabular}

APPLICATION COMMENT: The charge injection in these switches is of opposite polarity to that of the standard DG180 family, but considerably smaller.
switching time test circuit. \(V_{0}\) is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

\section*{SWITCHING TIME TEST CIRCUIT}

Switch output waveform shown for \(\mathrm{V}_{\mathrm{S}}=\) constant with logic input waveform as shown. Note that \(\mathrm{V}_{\mathrm{s}}\) may be + or - as per

LOGIC INPUT FOR "OFF" TO "ON" CONDITION (DG180/181/182 SHOWN)

\section*{SWITCH STATES}

DUAL SPST
DGM181/182

DUAL DPST DGM184/185

SPDT DGM187/188

DUAL SPDT DGM190/191
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DGM181/182} \\
\hline \[
\begin{array}{|l|}
\hline V_{\text {IN " }} \text { ON" }=0.8 \mathrm{~V} \\
V_{\text {IN }} " O F F "=2.4 \mathrm{~V}+
\end{array}
\] & All Channels All Channels \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DGM187/188} \\
\hline \(\mathrm{V}_{1 \mathrm{C}} \mathrm{CON}^{\prime}=2.4 \mathrm{~V}+\) & Channel 1 \\
\hline \(\mathrm{V}_{1 \mathrm{~N}}\) "ON" \(=0.8 \mathrm{~V}\) & Channel 2 \\
\hline \(\mathrm{V}_{\text {IN }}{ }^{\prime \prime} \mathrm{OFF}\) " \(=2.4 \mathrm{~V}+\) & Channel 2 \\
\hline \(\mathrm{V}_{\text {IN }}\) "OFF" \(=0.8 \mathrm{~V}\) & Channel 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DGM190/191} \\
\hline \(\mathrm{V}_{\text {IN }}\) "ON" \(=2.4 \mathrm{~V}+\) & Channels 1 \& 2 \\
\hline \(V_{\text {IN }}{ }^{\prime \prime} \mathrm{ON} "=0.8 \mathrm{~V}\) & Channels 3 \& 4 \\
\hline \(\mathrm{V}_{1 \times}\) "OFF" \(=2.4 \mathrm{~V}+\) & Channels 3 \& 4 \\
\hline \(\mathrm{V}_{\text {IN }}\) "OFF" \(=0.8 \mathrm{~V}\) & Channels 1 \& 2 \\
\hline
\end{tabular}

\section*{DGM181-191}

PIN CONFIGURATIONS \& SWITCHING STATE DIAGRAM

Metal Can Package

(OUTLINE DWG TO-100)

DUAL SPST (DGM181, 182)
Flat Package (FD-2)

SWITCH STATES ARE FOR LOGIC " 1 " INPUT

Dual-In-Line Package

DUAL DPST (DGM184, 185)

Flat Package

(OUTLINE DWG FD-2)

Dual-In-Line Package

SPDT (DGM187, 188)

Flat Package (FD-2)

SWITCH STATES ARE FOR LOGIC " 1 " INPUT

Dual-In-Line Package

DUAL SPDT (DGM190, 191)
Flat Package

\section*{DGM181-191}

\section*{CHIP TOPOGRAPHIES}

CONSULT FACTORY

NOTE: BACKSIDE OF CHIP IS COMMON TO V+.

\section*{DG200/IH5200 CMOS Dual SPST Analog Switches}

\section*{FEATURES}
- Switches Greater Than 28Vpp Signals With \(\pm 15 \mathrm{~V}\) Supplies
- Break-Before-Make Switching \(t_{\text {off }} \mathbf{2 5 0} \mathbf{n s e c}, \mathrm{t}_{\text {on }}\) 700nsec Typical
- T²L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG200)
- Improved Performance Version (IH5200)

\section*{GENERAL DESCRIPTION}

The DG200/IH5200 solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. They provide ease-of-use and performance advantages not previously available from solid state switches. Destructive latch-up of solid state analog gates has been eliminated by INTERSIL's CMOS technology.

The DG200 is completely spec and pin-out compatible with the industry standard device, while the IH5200 offers significantly enhanced specifications with respect to ON and OFF leakage currents, switching times, and supply current.

\section*{SCHEMATIC DIAGRAM (1⁄2 DG200/IH5200)}

ORDERING INFORMATION
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
INDUSTRY \\
STANDARD \\
PART
\end{tabular} & \begin{tabular}{c}
IMPROVED \\
SPEC \\
DEVICE
\end{tabular} & PACKAGE & \begin{tabular}{c}
TEMPERATURE \\
RANGE
\end{tabular} \\
\hline DG200AA & IH5200MTW & \begin{tabular}{l}
10-Pin \\
Metal Can
\end{tabular} & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DG200AK & IH5200MJD & 14-Pin CERDIP & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DG200AL & IH5200MFD & 14-Pin Flat Pak & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DG200BA & IH5200ITW & \begin{tabular}{l}
\(10-\) Pin \\
Metal. Can
\end{tabular} & -25 to \(+85^{\circ} \mathrm{C}\) \\
\hline DG200BK & IH5200IJD & 14-Pin CERDIP & -25 to \(+85^{\circ} \mathrm{C}\) \\
\hline DG200BL & IH5200IFD & 14-Pin Flat Pak & -25 to \(+85^{\circ} \mathrm{C}\) \\
\hline DG200CJ & IH5200CPD & \begin{tabular}{l}
\(14-\) Pin \\
Epoxy DIP
\end{tabular} & 0 to \(+70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{PIN CONFIGURATIONS}

CERDIP \& EPOXY
DUAL-IN-LINE PACKAGE METAL CAN PACKAGE
(outline dwgs JD, PD)
(outline dwg TO-100)
\(\mathbf{v}^{+}\)(Substrate and CASE)

FLAT PACKAGE
(outline dwg FD-2)

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|c|}
\hline \(v+-\mathrm{V}-\) & <33V & \\
\hline \(V^{+}-V_{D}\) & \(<30 \mathrm{~V}\) & Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline \(V_{D}-V^{-}\) & \(<30 \mathrm{~V}\) & Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline \(V_{D}-V_{S}\) & \(\pm 22 \mathrm{~V}\) & Power Dissipation . 450mW \\
\hline VIN-GND & <20V & (All Leads Soldered to a P.C. Board.) Derate \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) Above \(75^{\circ}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{DG200}

ELECTRICAL CHARACTERISTICS \(\left(@ 25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PER CHANNEL}} & \multicolumn{6}{|c|}{MIN./MAX. LIMITS} & \multirow[b]{3}{*}{UNITS} & \multirow[b]{3}{*}{TEST
CONDITIONS} \\
\hline & & \multicolumn{3}{|c|}{MILITARY} & \multicolumn{3}{|l|}{COMMERCIALINDUSTRIAL} & & \\
\hline SYMBOL & CHARACTERISTIC & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & 01-25 \({ }^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}\) & & \\
\hline IIN(ON) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}\) \\
\hline IINIOFF) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}\) \\
\hline rDS(on) & Drain-Source On Resistance & 70 & 70 & 100 & 80 & 80 & 100 & \(\Omega\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\text {ANALOG }}= \pm 10 \mathrm{~V} \\
& \hline
\end{aligned}
\] \\
\hline rDS(on) & Channel-to-Channel \({ }^{\mathrm{DSS}}(\mathrm{on})\) Match & & \[
\begin{gathered}
\hline 25 \\
\text { (typ) } \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
\hline 30 \\
\text { (typ) } \\
\hline
\end{gathered}
\] & & \(\Omega\) & \\
\hline Vanalog & Min. Analog Signal Handling Capability & & \(\pm 15\) & & & \(\pm 15\) & & V & \\
\hline ID(OFF) & Switch OFF Leakage Current & 2 & 2 & 100 & 5 & 5 & 100 & nA & \[
\begin{aligned}
& \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline Is(off) & Switch OFF Leakage Current & 2 & 2 & 100 & 5 & 5 & 100 & nA & \[
\begin{aligned}
& \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& I_{\mathrm{D}(\mathrm{ON})} \\
& +\mathrm{I}_{\mathrm{S}(\mathrm{ON})}
\end{aligned}
\] & Switch ON Leakage Current & 2 & 2 & 200 & 10 & 10 & 200 & nA & \[
\begin{aligned}
& V_{D}=V_{S}=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline ton & Switch "ON" Time & & 1.0 & & & 1.0 & & \(\mu \mathrm{S}\) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\
& =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { See Fig. } \mathrm{A} \\
& \hline
\end{aligned}
\] \\
\hline toff & Switch "OFF" Time & & 0.5 & & & 0.5 & : & \(\mu \mathrm{S}\) & \[
\begin{aligned}
& R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\
& =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { See Fig. } \mathrm{A}
\end{aligned}
\] \\
\hline \(Q_{\text {(INJ. }}\) & Charge Injection & & 15 & & & 20 & & mV & See Fig. B \\
\hline OIRR & Min. Off Isolation Rejection Ratio & & 54 & . & & 50 & & dB & \[
\begin{aligned}
& f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\
& \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF} \\
& \text { See Fig. } \mathrm{C},(\text { Note } 1)
\end{aligned}
\] \\
\hline \(\mathrm{lv}_{1}\) & + Power Supply Quiescent Current & 1000 & 1000 & 2000 & 1000 & 1000 & 2000 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { or } \\
& \mathrm{V}_{\text {IN }}=5 \mathrm{~V}
\end{aligned}
\] \\
\hline Iv2 & - Power Supply Quiescent Current & 1000 & 1000 & 2000 & 1000 & 1000 & 2000 & \(\mu \mathrm{A}\) & \\
\hline CCRR & Min. Channel to Channel Cross Coupling Rejection Ratio & & 54 & & & 50 & , & dB & One Channel Off (Note 1) \\
\hline
\end{tabular}

Note 1: These parameters are not tested in production.

\section*{DG200/IH5200}

TEST CIRCUITS

Figure A

Figure B

Figure C

\section*{IH5200}

ELECTRICAL CHARACTERISTICS (\(@ 25^{\circ} \mathrm{C}, \mathrm{v}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\), \(\mathrm{V}_{\text {REF }}\) open \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PER CHANNEL}} & \multicolumn{6}{|c|}{MIN.IMAX. LIMITS} & \multirow[b]{3}{*}{UNITS} & \multirow[b]{3}{*}{TEST CONDITIONS} \\
\hline & & \multicolumn{3}{|c|}{MILITARY} & \multicolumn{3}{|l|}{COMMERCIALINDUSTRIAL} & & \\
\hline SYMBOL & CHARACTERISTIC & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & 0/-25 \({ }^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{Cl}+85^{\circ} \mathrm{C}\) & & \\
\hline IINON) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}\) \\
\hline IIn(off) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}\) \\
\hline ros(on) & Drain-Source On Resistance & 70 & 70 & 100 & 80 & 80 & 100 & \(\Omega\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\text {ANALOG }}= \pm 10 \mathrm{~V}
\end{aligned}
\] \\
\hline ros(on) & Channel-to-Channel \(r_{\text {DS(on) }}\) Match & & \[
\begin{gathered}
25 \\
\text { (typ) } \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
30 \\
\text { (typ) }
\end{gathered}
\] & & \(\Omega\) & \\
\hline \(V_{\text {analog }}\) & Min. Analog Signal Handling Capability & & \(\pm 15\) & & & \(\pm 15\) & & V & \\
\hline Idofa & Switch OFF Leakage Current & 0.2 & 0.2 & 50 & 1 & 1 & 50 & nA & \[
\begin{aligned}
& \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\text {S(OFF }}\) & Switch OFF Leakage Current & 0.2 & 0.2 & 50 & 1 & 1 & 50 & nA & \[
\begin{aligned}
& \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{DON})} \\
& +\mathrm{I}_{\mathrm{S}(\mathrm{ON})}
\end{aligned}
\] & Switch ON Leakage Current & 0.5 & 0.5 & 100 & 1 & 1 & 100 & nA & \[
\begin{aligned}
& V_{D}=V_{S}=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline ton & Switch "ON" Time & , & 0.7 & & . & 0.8 & & \(\mu \mathrm{S}\) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\
& =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { See Fig. } \mathrm{A}
\end{aligned}
\] \\
\hline \(\mathrm{t}_{\text {off }}\) & Switch "OFF" Time & & 0.25 & & & 0.4 & & \(\mu \mathrm{s}\) & \[
\begin{aligned}
& R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }} \\
& =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { See Fig. } \mathrm{A}
\end{aligned}
\] \\
\hline \(\mathrm{Q}_{\text {(INJ.) }}\) & Charge Injection & & 5 & & & 10 & & mV & See Fig. B \\
\hline OIRR & Min. Off Isolation Rejection Ratio & & 54 & & & 50 & & dB & \[
\begin{aligned}
& f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\
& C_{L} \leq 5 \mathrm{pF} \\
& \text { See Fig. C, (Note 1) }
\end{aligned}
\] \\
\hline lv1 & + Power Supply Quiescent Current & 250 & 200 & 150 & 300 & 250 & 200 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \\
& \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}
\end{aligned}
\] \\
\hline \(\mathrm{IV}_{2}\) & - Power Supply Quiescent Current & 10 & 10 & 100 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline CCRR & Min. Channel to Channel Cross Coupling Rejection Ratio & & 54 & & & 50 & & dB & One Channel Off (Note 1) \\
\hline
\end{tabular}

Note 1: These parameters are not tested in production.

\section*{TYPICAL CHARACTERISTICS}

CHIP TOPOGRAPHY

\section*{APPLICATIONS}

\section*{Using the \(\mathbf{V}_{\text {REF }}\) Terminal}

The DG200 has an internal voltage divider setting the TTL threshold on the input control lines for +15 V on \(\mathrm{V}^{+}\). The schematic is shown here, with nominal resistor values, giving approximately 2.4 V on the \(\mathrm{V}_{\text {REF }}\) pin . As the TTL input signal goes from +0.8 V to +2.4 V , Q1 and Q2 switch states to turn the switch ON and OFF.
If the power supply voltage is less than +15 V , then a resistor needs to be added between \(\mathrm{V}^{+}\)and the \(\mathrm{V}_{\text {REF }}\) pin, to restore +2.4 V at \(\mathrm{V}_{\text {REF }}\). The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels on a +5 V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5 V to +5 V , no resistor is needed.
In general, the "low" logic level should be \(<0.8 \mathrm{~V}\) to prevent Q1 and Q2 from both being ON together (this will cause incorrect switch function). With open collector logic, and a low value of pull-up resistor, the logic "low" level can be above 0.8 V . In this case, INTERSIL can supply parts with thresholds \(>1.5 \mathrm{~V}\), allowing the user to define the "low" as \(<1.5 \mathrm{~V}\) (consult factory). The \(\mathrm{V}_{\text {REF }}\) point should be set at least 2.6 V above this "low" state, or to \(>4.1 \mathrm{~V}\). An external resistor of \(27 \mathrm{k} \Omega\) between \(\mathrm{V}^{+}\) and \(V_{\text {REF }}\) is required, for \(a+15 \mathrm{~V}\) supply.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
\(\mathbf{V}^{+}\) \\
Supply \\
\((\mathbf{V})\)
\end{tabular} & \begin{tabular}{c}
TTL \\
Resistor \\
\((\mathbf{k} \Omega)\)
\end{tabular} & \begin{tabular}{c}
CMOS \\
Resistor \\
\((\mathbf{k \Omega})\)
\end{tabular} \\
\hline+15 & - & - \\
+12 & 100 & - \\
+10 & 51 & - \\
+9 & \((34)\) & 34 \\
+8 & \((27)\) & 27 \\
+7 & 18 & 18 \\
\hline
\end{tabular}

\section*{DG201/IH5201 \\ Quad SPST CMOS Analog Switches}

\section*{FEATURES}
*
- Switches Greater Than \(\mathbf{2 8 V}_{\text {ppp }}\) Signals With \(\pm \mathbf{1 5 V}\) Supplies
- Break-Before-Make Switching \(\mathrm{t}_{\text {off }}=\mathbf{2 5 0 n s e c}, \mathrm{t}_{\text {on }}=\) Typically 500nsec
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG201)
- Improved Performance Version IH5201

\section*{GENERAL DESCRIPTION}

The DG201/IH5201 solid-state analog gates are designed using an improved, high-voltage CMOS monolithic technology. They provide ease-of-use and performance advantages not previously available from solid-state switches. Destructive latch-up of solid-state analog gates has been eliminated by INTERSIL's CMOS technology.
The DG201 is completely spec and pin-out compatible with the industry standard device, while the IH5201 offers significantly enhanced specifications with respect to ON and OFF leakage currents, switching times, and supply current.

\section*{SCHEMATIC DIAGRAM (1/4 DG201/IH5201)}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|l|l|}
\hline \begin{tabular}{c}
INDUSTRY \\
STANDARD \\
PART
\end{tabular} & \begin{tabular}{c}
IMPROVED \\
SPEC \\
DEVICE
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c}
TEMPERATURE \\
RANGE
\end{tabular}} \\
\hline DG201AK & IH5201MJE & 16-Pin CERDIP & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline DG201BK & IH5201IJE & 16-Pin CERDIP & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline DG201CJ & IH5201CPE & \begin{tabular}{l}
16 -Pin \\
Plastic DIP
\end{tabular} & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

CHIP TOPOGRAPHY

NOTE: Backside of chip common to \(\mathrm{V}+\).
dUAL-IN-LINE PACKAGE

\section*{DG201/IH5201}

\section*{ABSOLUTE MAXIMUM RATINGS}

V+_V- \(<33 \mathrm{~V}\)

VREF-V- .. \(<\) <33V
VREF-VIN \(<30 \mathrm{~V}\)
VREF-GND ... \(<20 V\)
VIN-GND ... \(<\). \(<20 V\)

Current (Any Terminal) . \(<30 \mathrm{~mA}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Power Dissipation 450 mW
Derate \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) Above \(70^{\circ} \mathrm{C}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation, of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{DG201}

ELECTRICAL CHARACTERISTICS (@25 \(\left.{ }^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PER CHANNEL}} & \multicolumn{6}{|c|}{MIN./MAX. LIMITS} & \multirow[b]{3}{*}{UNITS} & \multirow[b]{3}{*}{TEST CONDITIONS} \\
\hline & & \multicolumn{3}{|c|}{MILITARY} & \multicolumn{3}{|c|}{COMMERCIAL} & & \\
\hline SYMBOL & CHARACTERISTIC & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{C}\) & & \\
\hline IIN(ON) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}\) \\
\hline IIN(OFF) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}\) \\
\hline rDS(ON) & Drain-Source On Resistance & 80 & 80 & 125 & 100 & 100 & 125 & \(\Omega\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\text {ANALOG }}= \pm 10 \mathrm{~V}
\end{aligned}
\] \\
\hline rDS(ON) & Channel to Channel rDS(ON) Match & & \[
\begin{gathered}
\hline 25 \\
\text { (typ) }
\end{gathered}
\] & & & \[
\begin{gathered}
\hline 30 \\
\text { (typ) }
\end{gathered}
\] & & \(\Omega\) & \\
\hline Vanalog & Analog Signal Handling Capability & & \(\pm 15\) & & & \(\pm 15\) & & V & \\
\hline ldoff & Switch OFF Leakage Current & 1 & 1 & 100 & 5 & 5 & 100 & nA & \[
\begin{aligned}
& \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline Is(OfF) & Switch OFF Leakage Current & 1 & 1 & 100 & 5 & 5 & 100 & nA & \[
\begin{aligned}
& \text { VANALOG }=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{D}(\mathrm{ON})} \\
& +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\
& \hline
\end{aligned}
\] & Switch On Leakage Current & 2 & 2 & 200 & 5 & 5 & 200 & nA & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 14 \mathrm{~V}\) \\
\hline ton & Switch "ON" Time & & 1.0 & & & 1.0 & & \(\mu \mathrm{S}\) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\
& =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { See Fig. } \mathrm{A}
\end{aligned}
\] \\
\hline \(\mathrm{t}_{\text {off }}\) & Switch "OFF" Time & & 0.5 & & & 0.5 & & \(\mu \mathrm{S}\) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\
& =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { See Fig. } \mathrm{A}
\end{aligned}
\] \\
\hline \(\mathrm{Q}_{(\text {IN } \mathrm{N} .)}\) & Charge Injection & & 15 & & & 20 & & mV & See Fig. B \\
\hline OIRR & Min. Off Isolation Rejection Ratio & & 54 & & & 50 & & dB & \[
\begin{aligned}
& f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\
& C_{\mathrm{L}} \leq 5 \mathrm{pF} \\
& \text { See Fig. C, (Note 1) }
\end{aligned}
\] \\
\hline 10 & + Power Supply Quiescent Current & 2000 & 1000 & 2000 & 2000 & 1000 & 2000 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) or 5 V \\
\hline \(1{ }^{-}\) & - Power Supply Quiescent Current & 2000 & 1000 & 2000 & 2000 & 1000 & 2000 & \(\mu \mathrm{A}\) & \\
\hline CCRR & Min. Channel to Channel Cross Coupling Rejection Ratio & & 54 & & & 50 & & dB & One Channel Off (Note 1) \\
\hline
\end{tabular}

Note 1: These parameters not tested in production.

\section*{DG201/IH5201}

\section*{TEST CIRCUITS}

Figure A

Figure B

Figure C

\section*{IH5201}

ELECTRICAL CHARACTERISTICS \(\left(@ 25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PER CHANNEL}} & \multicolumn{6}{|c|}{MIN./MAX. LIMITS} & \multirow[b]{3}{*}{UNITS} & \multirow[b]{3}{*}{TEST CONDITIONS} \\
\hline & & \multicolumn{3}{|c|}{MILITARY} & \multicolumn{3}{|c|}{COMMERCIAL} & & \\
\hline SYMBOL & CHARACTERISTIC & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{C}\) & & \\
\hline IINON) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}\) \\
\hline lin(off) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}\) \\
\hline rDS(ON) & Drain-Source On Resistance & 75 & 75 & 100 & 100 & 100 & 125 & \(\Omega\) & \[
\begin{aligned}
& I_{\mathrm{S}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\text {ANALOG }}= \pm 10 \mathrm{~V}
\end{aligned}
\] \\
\hline rDS(ON) & Channel to Channel ros(on) Match & & \[
\begin{gathered}
\hline 25 \\
\text { (typ) } \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
30 \\
\text { (typ) } \\
\hline
\end{gathered}
\] & & \(\Omega\) & \\
\hline Vanalog & Analog Signal Handling Capability & & \(\pm 15\) & & & \(\pm 15\) & & V & \\
\hline Id(OFF) Is(Off) & Switch OFF Leakage Current & 0.2 & 0.2 & 50 & 1 & 1 & 50 & nA & \[
\begin{aligned}
& \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\
& +14 \mathrm{~V}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& I_{\text {DON }} \\
& +I_{S(O N)}
\end{aligned}
\] & Switch ON Leakage Current & 0.5 & 0.5 & 100 & 1 & 1 & 100 & nA & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 14 \mathrm{~V}\) \\
\hline \(\mathrm{t}_{\text {on }}\) & Switch "ON" Time & & 0.5 & & ! & 0.75 & & \(\mu \mathrm{S}\) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\
& =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { See Fig. } \mathrm{A}
\end{aligned}
\] \\
\hline \(\mathrm{t}_{\text {off }}\) & Switch "OFF" Time & & 0.25 & & & 0.3 & & \(\mu \mathrm{S}\) & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\
& =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { See Fig. } \mathrm{A}
\end{aligned}
\] \\
\hline \(\mathrm{Q}_{(1 \mathrm{NJ} .)}\) & Charge Injection & & 5 & & & 10 & & mV & See Fig. B \\
\hline OIRR & Min. Off Isolation Rejection Ratio & & 54 & & & 50 & & dB & \[
\begin{aligned}
& f=1 \mathrm{MHz}, R_{\mathrm{L}}=100 \Omega, \\
& C_{\mathrm{L}} \leq 5 \mathrm{pF} \\
& \text { See Fig. C, (Note 1) }
\end{aligned}
\] \\
\hline 1* & + Power Supply Quiescent Current & 1000 & 750 & 600 & 1500 & 1000 & 1000 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) to 5 V \\
\hline \(1{ }^{1}\) & - Power Supply Quiescent Current & 10 & 10 & 100 & 20 & 20 & 200 & \(\mu \mathrm{A}\) & \\
\hline CCRR & Min. Channel to Channel Cross Coupling Rejection Ratio & & 54 & & & 50 & & dB & One Channel Off (Note 1) \\
\hline
\end{tabular}

Note 1: These parameters not tested in production.

TYPICAL CHARACTERISTICS

\section*{APPLICATIONS}

\section*{Using the \(\mathbf{V}_{\text {REF }}\) Terminal}

The DG201 has an internal voltage divider setting the TTL threshold on the input control lines for +15 V on \(\mathrm{V}^{+}\). The schematic is shown here, with nominal resistor values, giving approximately 2.4 V on the \(\mathrm{V}_{\text {REF }}\) pin. As the TTL input signal goes from +0.8 V to +2.4 V , Q1 and Q2 switch states to turn the switch ON and OFF.

If the power supply voltage is less than +15 V , then a resistor needs to be added between \(\mathrm{V}^{+}\)and the \(\mathrm{V}_{\text {REF }}\) pin, to restore +2.4 V at \(\mathrm{V}_{\text {REF }}\). The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels on a +5 V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5 V to +5 V , no resistor is needed.
In general, the "low" logic level should be \(<0.8 \mathrm{~V}\) to prevent Q1 and Q2 from both being ON together (this will cause incorrect switch function). With open collector logic, and a low value of pull-up resistor, the logic "low" level can be above 0.8 V . In this case, INTERSIL can supply parts with thresholds \(>1.5 \mathrm{~V}\), allowing the user to define the "low" as \(<1.5 \mathrm{~V}\) (consult factory). The \(\mathrm{V}_{\text {REF }}\) point should be set at least 2.6 V above this "low" state, or to \(>4.1 \mathrm{~V}\). An external resistor of \(27 \mathrm{k} \Omega\) between \(\mathrm{V}^{+}\) and \(V_{\text {REF }}\) is required, for \(a+15 \mathrm{~V}\) supply.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
\(\mathbf{V}^{+}\) \\
Supply \\
\(\mathbf{(V)}\)
\end{tabular} & \begin{tabular}{c}
TTL \\
Resistor \\
\((\mathbf{k} \Omega)\)
\end{tabular} & \begin{tabular}{c}
CMOS \\
Resistor \\
\((\mathbf{k \Omega})\)
\end{tabular} \\
\hline+15 & - & - \\
+12 & 100 & - \\
+10 & 51 & - \\
+9 & \((34)\) & 34 \\
+8 & \((27)\) & 27 \\
+7 & 18 & 18 \\
\hline
\end{tabular}

\title{
IH5009 - IH5024 Virtual Ground Analog Switches
}

\section*{FEATURES}
- Switches Analog Signals up to 20 Volts Peak-toPeak
- Each Channel Complete - Interfaces with Most Integrated Logic
- Switching Speeds Less than \(0.5 \mu \mathrm{~s}\)
- Id(OfF) Less than 500 pA Typical at \(70^{\circ} \mathrm{C}\)
- Effective \(\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}-5 \Omega\) to \(50 \Omega\)
- Commercial and Military Temperature Range Operation

\section*{GENERAL DESCRIPTION}

The IH5009 series of analog switches were designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed.
Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver. The odd numbered devices are designed to be driven directly from \(\mathrm{T}^{2} \mathrm{~L}\) open collector logic (15 volts) while the even numbered devices are driven directly from low level \(T^{2} L\) logic (5 volts). Each channel simulates a SPDT switch. SPST switch action is obtained by leaving the diode cathode unconnected; for SPDT action, the cathode should be grounded (OV). The parts are intended for high performance multiplexing and commutating usage. A logic " 0 " turns the channel ON and a logic " 1 " turns the channel OFF.

\section*{ABSOLUTE MAXIMUM RATINGS}

Positive Analog Signal Voltage. 30V
Negative Analog Signal Voltage. -15 V
Diode Current 10mA
Power Dissipation (Note) . 500 mW
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec) \(300^{\circ} \mathrm{C}\)
Operating Temperature
5009C Series. \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
5009 M Series......................... \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec) \(300^{\circ} \mathrm{C}\)

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below \(75^{\circ} \mathrm{C}\). For higher temperature, derate at rate of \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{l}
SYMBOL \\
(Note 1)
\end{tabular}} & \multirow{3}{*}{CHARACTERISTIC} & \multirow[b]{3}{*}{\begin{tabular}{l}
TYPE \\
(Note 4)
\end{tabular}} & \multirow[b]{3}{*}{\begin{tabular}{l}
TEST CONDITIONS \\
(Note 2)
\end{tabular}} & \multicolumn{4}{|c|}{SPECIFICATION LIMIT} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\begin{gathered}
-55^{\circ} \mathrm{C}(\mathrm{M}) \\
0^{\circ} \mathrm{C}(\mathrm{C})
\end{gathered}
\] \\
MIN/MAX
\end{tabular}} & \multicolumn{2}{|r|}{\(25^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& +125^{\circ} \mathrm{C}(\mathrm{M}) \\
& +70^{\circ} \mathrm{C}(\mathrm{C}) \\
& \text { MIN/MAX }
\end{aligned}
\]} & \\
\hline & & & & & TYP. & MIN/MAX & & \\
\hline IIN(ON) & Input Current-ON & All & \(V_{I N}=O V, I_{D}=2 \mathrm{~mA}\) & 0.1 & . 01 & 0.1 & 100 & \(\mu \mathrm{A}\) \\
\hline IN(OFF) & Input Current-OFF & 5V Logic Ckts & \(V_{1 N}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}\) & 0.2 & . 04 & 0.1 & 10 & \(n \mathrm{~A}\) \\
\hline I'N(OFF) & Input Current-OFF & 15V Logic Ckts & \(\mathrm{V}_{\text {IN }}=+11 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}\) & 0.2 & . 04 & 0.2 & 10 & nA \\
\hline \(V_{\text {IN }}(\mathrm{ON})\) & Channel Control Voltage-ON & 5V Logic Ckts & See Figure 5, Note 3 & 0.5 & & 0.5 & 0.5 & V \\
\hline VIN(ON) & Channel Control Voltage-ON & 15V Logic Ckts & See Figure 6, Note 3 & 1.5 & & 1.5 & 1.5 & V \\
\hline \(V_{\text {IN }}(\mathrm{OFF})\) & Channel Control Yoltage-OFF & 5V Logic Ckts & See Figure 5, Note 3 & 4.5 & & 4.5 & 4.5 & V \\
\hline \(V_{\text {IN }}(\mathrm{OFF})\) & Channel Control Voltage-OFF & 15V Logic Ckts & See Figure 6, Note 3 & 11.0 & & 11.0 & 11.0 & \(\checkmark\) \\
\hline ID(OFF) & Leakage Current-OFF & 5 V Logic Ckts & \(V_{1 N}=+4.5 \mathrm{~V}, \mathrm{~V}_{A}= \pm 10 \mathrm{~V}\) & 0.2 & . 02 & 0.2 & 10 & nA \\
\hline ID(OFF) & Leakage Current-OFF & 15V Logic Ckts & \(V_{I N}=+11 \mathrm{~V}, \mathrm{~V}_{A}= \pm 10 \mathrm{~V}\) & 0.2 & . 02 & 0.2 & 10 & nA \\
\hline ID(ON) & Leakage Current-ON & 5V Logic Ckts & \(\mathrm{VIN}^{\text {I }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}\) & 1.0 & 0.30 & 1.0 & \[
\begin{aligned}
& 1000(\mathrm{M}) \\
& 200(\mathrm{C})
\end{aligned}
\] & nA \\
\hline \({ }^{\text {I }}\) (1ON) & Leakage Current-ON & 15V Logic Ckts & \(V_{1 N}=0 V, I_{S}=1 \mathrm{~mA}\) & 0.5 & 0.10 & 0.5 & \[
\begin{aligned}
& 500(\mathrm{M}) \\
& 100(\mathrm{C}) \\
& \hline
\end{aligned}
\] & nA \\
\hline \({ }^{\text {I }}\) (\({ }^{\text {(ON }}\)) & Leakage Current-ON & 5 V Logic Ckts & \(V_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}\) & 1.0 & & 1.0 & 10 & \(\mu \mathrm{A}\) \\
\hline \({ }^{\text {I }} \mathrm{D}\) (ON) & Leakage Current-ON & 15V Logic Ckts & \(V_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}\) & 2.0 & & 2.0 & 1000 & nA \\
\hline 'DS(ON) & Drain-Source ON-Resistance & 5V Logic Ckts & \(I^{\prime} \mathrm{D}=2 \mathrm{~mA}, \mathrm{~V}_{1} \mathrm{~N}=0.5 \mathrm{~V}\) & 150 & 90 & 150 & \[
\begin{aligned}
& 385 \text { (M) } \\
& 240 \text { (C) }
\end{aligned}
\] & \(\Omega\) \\
\hline 'DS(ON) & Drain-Source ON-Resistance & 15V Logic Ckts & \(\mathrm{I}^{\prime} \mathrm{D}=2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=1.5 \mathrm{~V}\) & 100 & 60 & 100 & \[
\begin{aligned}
& 250 \text { (M) } \\
& 160 \text { (C) }
\end{aligned}
\] & \(\Omega\) \\
\hline t(on) & Turn-ON Time & All & See Figures 3 \& 4 & & 150 & 500 & & ns \\
\hline (0ff) & Turn-OFF Time & All & See Figures 3 \& 4 & & 300 & 500 & & ns \\
\hline CT & Cross Talk & All & \(\mathrm{f}=100 \mathrm{~Hz}\) & & 120 & & & dB \\
\hline
\end{tabular}

NOTE 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
NOTE 2: Refer to Figure 2 for definition of terms.
NOTE 3: \(\mathrm{V}_{\text {IN(ON) }}\) and \(\mathrm{V}_{\text {IN(OFF) }}\) are test conditions guaranteed by the tests of respectively \(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}\) and \(\mathrm{I}_{\mathrm{DOFFF}}\). NOTE 4: "5V Logic CKTS" applies to even-numbered devices.
"15V Logic CKTS" applies to odd-numbered devices.

\section*{ORDERING INFORMATION}

\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l}
BASIC \\
PART NUMBER
\end{tabular} & CHANNELS & \begin{tabular}{c}
LOGIC \\
LEVEL
\end{tabular} & PACKAGES \\
\hline IH5009 & 4 & +15 & JD,DD,PD \\
\hline IH5010 & 4 & +5 & JD,DD,PD \\
\hline IH5011 & 4 & +15 & JE,DE,PE \\
\hline IH5012 & 4 & +5 & JE,DE,PE \\
\hline IH5013 & 3 & +15 & JD,DD,PD \\
\hline IH5014 & 3 & +5 & JD,DD,PD \\
\hline IH5015 & 3 & +15 & JE,DE,PE \\
\hline IH5016 & 3 & +5 & JE,DE,PE \\
\hline IH5017 & 2 & +15 & JD,DD,PA \\
\hline IH5018 & 2 & +5 & JD,DD,PA \\
\hline IH5019 & 2 & +15 & JE,DE,PA \\
\hline IH5020 & 1 & +15 & JD,DD,PA \\
\hline IH5021 & 1 & +5 & JD,DD,PA \\
\hline IH5022 & 1 & +15 & JE,DE,PA \\
\hline IH5023 & 1 & +5 & JE,DE,PA \\
\hline IH5024 & 2 & +125 & \\
\hline
\end{tabular}

NOTE: Mil-Temperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) available ceramic packages only.

\section*{TYPICAL ELECTRICAL CHARACTERISTICS (per channel)}

CROSSTALK MEASUREMENT CIRCUIT

\section*{DEVICE SCHEMATICS AND PIN CONNECTIONS}

\section*{FOUR CHANNEL}

IH5009 (ros(ON)
1H5010 (\(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega\)) 14 PIN DIP

TWO CHANNEL
\(1 \mathrm{H} 5011\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \mathrm{~S} 2\right)\) \(1 \mathrm{H} 5012\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \mathrm{~S}\right)\) 16 PIN DIP

 8 PIN DIP

\(1 \mathrm{H} 5019\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \mathrm{~S}\right.\)) \(1 \mathrm{H} 5020\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \mathrm{~S}\right)\) 8 PIN DIP

THREE CHANNEL
\(1 \mathrm{H} 5013\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \mathrm{~S}\right)\) 1 H 5014 (\(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega\)) 14 PIN DIP

\(1 \mathrm{H} 5015\left(\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 100 \Omega\right)\)
\(1 H 5016\left(r_{\mathrm{DS}}(\mathrm{ON}) \leq 150 \mathrm{~S} 2\right)\) 16 PIN DIP

SINGLE CHANNEL
\(1 \mathrm{H}_{5021}\left(\mathrm{r}_{\mathrm{OS}(\mathrm{ON})} \leq 100 \Omega\right.\))
\(1 \mathrm{H} 5023\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega\right)\)
1 H 5024 (\(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega\)) 8 PIN DIP

\section*{THEORY OF OPERATION}

The signals seen at the drain of a junction FET type analog switch can be arbitrarily divided into two categories; those which are less than \(\pm 200 \mathrm{mV}\), and those which are greater than \(\pm 200 \mathrm{mV}\). The former category includes all those circuits where switching is performed at the virtual ground point of an op-amp, and it is primarily towards these applications that the IH5009 family of circuits is directed.
By limiting the analog signal at the switching point to \(\pm 200 \mathrm{mV}\), no external driver is required and the need for additional power supplies is eliminated.
Devices are available with both common drains and with uncommitted drains.

Those devices which feature common drains have another FET in addition to the channel switches. This FET, which has gate and source connected such that \(V_{G S}=0\), is intended to compensate for the onresistance of the switch. When placed in series with the feedback resistor (Figure 1) the gain is given by
\[
\mathrm{GAIN}=\frac{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}(\text { compensator })}{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}}(\text { switch })}
\]

Figure 1. Use of Compensation FET

Clearly, the gain error caused by the switch is dependent on the match between the FETs rather than the absolute value of the FET on-resistance. For the standard product, all the FETs in a given package are guaranteed to match within 50s. Selections down to \(5 \Omega\) are available however. Contact factory for details. Since the absolute value of \(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}\) is guaranteed only to be less than 100s2 or 150 2, a substantial improvement in gain accuracy can be obtained by using the compensating FET.

\section*{DEFINITION OF TERMS}

Figure 2.

\section*{NOISE IMMUNITY}

The advantage of SPDT switching is high noise immunity when the series elements is OFF. For example, if a \(\pm 10 \mathrm{~V}\) analog input is being switched by \(T^{2} \mathrm{~L}\) open collector logic, the series switch is OFF when the logic level is at +15 volts. At this time, the diode conducts and holds the source at approximately +0.7 volts with an AC impedance to ground of 25 ohms. Thus random noise superimposed on the +10 volt analog input will not falsely trigger the FET since the noise voltage will be shunted to ground.
When switching a negative voltage, the input further increases the OFF voltage beyond pinch-off, so there is no danger of the FET turning on.

\section*{SWITCHING CHARACTERISTICS}

Figure 3. High Level Logic

Figure 4. Standard DTL, TTL, RTL

IH5009 - IH5024
LOGIC INTERFACE CIRCUITS

Figure 5. Interfacing with +5 V Logic

Figure 6. Interfacing with +15 V Open Collector Logic

APPLICATIONS (Note)

NOTE: Additional applications information is given in Application Bulletins A003 "Understanding and Applying the Analog Switch" and A004 "The 5009 Series of Low Cost Analog Switches". See also September '79 issue of Product Engineering "Analog Switching" by Paresh Maniar.

\section*{IH5025 - IH5038 \\ Positive Signal Analog Switches}

\section*{FEATURES}
- Switches up to \(+\mathbf{2 0 V}\) into High Impedance Loads (i.e. Non-Inverting Input of Operational Amp.)
- Driven from TTL Open Collector Logic
- \(I_{\text {D(OFF) }}<50 \mathrm{pA}\)
- \(\mathrm{r}_{\mathrm{DS}(0 \mathrm{O})}<150 \Omega\)
- \(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}\) Match < 50 Channel to Channel
- Switching Speeds \(<\mathbf{1 0 0 n s}\)

\section*{GENERAL DESCRIPTION}

The IH5025 series of analog switches was designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed.

Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver.

The entire family is designed to be driven from TTL open collector logic (15V), but can be driven from 5 V logic if signal input is less than 1V. Alternatively, 20 V switching is readily obtainable if TTL supply voltage is +25 V . Normally, only positive signals can be switched; however, up to \(\pm 10 \mathrm{~V}\) can be handled by the addition of a PNP stage (Figure 11) or by capacitor isolation (Figure 10). Each channel is a SPST switch. A logic " 0 '" turns the channel ON and a logic " 1 " turns the channel OFF.

\section*{PIN CONNECTIONS}

\section*{IH5025 - IH5038}

ABSOLUTE MAXIMUM RATINGS

> Operating Temperature
> 5025 C Series............................ \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
> 5025 M Series.................... \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
> Lead Temperature (Soldering, 10 sec) \(\ldots \ldots \ldots \ldots \ldots .300^{\circ} \mathrm{C}\)

Negative Analog Signal Voltage - 0.5VDC
Drain Current 25mA
Power Dissipation (Note). 500 mW
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperăture below \(75^{\circ} \mathrm{C}\). For higher temperature, derate at rate of \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{l}
SYMBUL \\
(Note 1)
\end{tabular}} & \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{TYPE} & \multirow{3}{*}{TEST CONDITIONS} & \multicolumn{4}{|c|}{SPECIFICATION LIMIT} & \multirow{3}{*}{UNITS MIN/MAX} \\
\hline & & & & \multirow[t]{2}{*}{\[
\begin{gathered}
-55^{\circ} \mathrm{C}(\mathrm{M}) \\
0^{\circ} \mathrm{C}(\mathrm{C})
\end{gathered}
\]} & \multicolumn{2}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& +125^{\circ} \mathrm{C}(\mathrm{M}) \\
& +70^{\circ} \mathrm{C}(\mathrm{C})
\end{aligned}
\]} & \\
\hline & & & & & TYP. & MIN/MAX & & \\
\hline IIN(ON) & Input Current-ON & All & \(V_{\text {IN }}=0 \mathrm{~V}\) & & 0.30 & 1.0 & \[
\begin{array}{r}
100(M) \\
25 \text { (C) }
\end{array}
\] & nA (max) \\
\hline IIN(OFF) & Input Current-OFF & All & \(V_{\text {IN }}=15 \mathrm{~V}\) & & 0.20 & 1.0 & \[
\begin{aligned}
& 50(\mathrm{M}) \\
& 10(\mathrm{C})
\end{aligned}
\] & \(n A(\max)\) \\
\hline \(V_{\text {IN }}\) (ON) & Channel Control Voltage-ON & All & See Figure 1 & 1.5 & & 1.5 & 1.5 & \(V\) (max) \\
\hline \(\mathrm{V}_{\text {IN }}(\mathrm{OFF})\) & Channel Control Voltage-OFF & All & See Figure 1 & 14.0 & & 14.0 & 14.0 & \(V(\mathrm{~min})\) \\
\hline \({ }^{\prime} \mathrm{D}\) (OFF) & Leakage Current-OFF & All & \(\mathrm{V}_{\text {IN }}=15 \mathrm{~V}\) & & 0.06 & 0.5 & \[
\begin{array}{r}
100(\mathrm{M}) \\
10(\mathrm{C}) \\
\hline
\end{array}
\] & n'A (max) \\
\hline \({ }^{1} \mathrm{D}(\mathrm{ON})\) & Leakage Current-ON & Odd Nos. & \(V_{I N}=0 \mathrm{~V}\) & & 1.00 & 10.0 & \[
\begin{array}{r}
5000(M) \\
250(C)
\end{array}
\] & \(n A(\max)\) \\
\hline ID(ON) & Leakage ' Current-ON & Even Nos. & \(V_{\text {IN }}=0 \mathrm{~V}\) & & 0.10 & 1.0 & \[
\begin{array}{r}
500(\mathrm{M}) \\
25 \text { (C) } \\
\hline
\end{array}
\] & \(n A\) (max) \\
\hline 'DS(ON) & Drain-Source ON-Resistance & Odd Nos. & \(V_{I N}=0.5 \mathrm{~V}, I_{D}=1 \mathrm{~mA}\) & & 60.00 & 100.0 & \[
\begin{aligned}
& 250(M) \\
& 150(C)
\end{aligned}
\] & \(\Omega\) (max) \\
\hline rDS(ON) & Drain-Source ON-Resistance & Even Nos. & \(\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}, 1 \mathrm{D}=1 \mathrm{~mA}\) & & 90.00 & 150.0 & \[
\begin{aligned}
& 385(M) \\
& 240(C)
\end{aligned}
\] & \(\Omega\) (max) \\
\hline r'DS(ON) & Drain-Source ON-Resistance & Odd Nos. & \(\mathrm{V}_{1 \mathrm{~N}}=1.0 \mathrm{~V}, 1_{D}=1 \mathrm{~mA}\) & & 85.00 & 160.0 & \[
\begin{aligned}
& 420 \text { (M) } \\
& 250 \text { (C) }
\end{aligned}
\] & \(\Omega(\max)\) \\
\hline 'DS(ON) & Drain-Source ON-Resistance & Even Nos. & \(V_{I N}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}\) & & 110.00 & 200.0 & \[
\begin{aligned}
& 400 \text { (M) } \\
& 250 \text { (C) }
\end{aligned}
\] & \(\Omega\) (max) \\
\hline \(t\) (on) & Turn-ON Time & All & See Figure 2 & & 0.10 & 0.2 & 0.4 & \(\mu \mathrm{S}(\) max \()\) \\
\hline \(\mathrm{t}_{\text {(off) }}\) & Turn-OFF Time & All & See Figure 2 & & 0.10 & 0.2 & 0.4 & \(\mu \mathrm{S}\) (max) \\
\hline \(\mathrm{Q}_{(\text {(NJ) }}\) & Charge Injection & All & See Figure 3 & & 7.00 & 20.0 & & \(m V_{p-p}(\max)\) \\
\hline \(\mathrm{V}_{\mathrm{A}}(\mathrm{OFF})\) & Cross Coupling Rejection & All & See Figure 4 & & 0.10 & 1.0 & & \(\mathrm{mV}_{\text {p-p }}(\) max \()\) \\
\hline \(\triangle \mathrm{DDS}(\mathrm{ON})\) & Channel to Channel r \({ }_{\text {DS }}(\mathrm{ON})\) Match & All & \(\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}\) & & 25.00 & 50.0 & 50 & \(\Omega\) (max) \\
\hline
\end{tabular}

NOTE 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

\section*{ORDERING INFORMATION}

\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l}
BASIC \\
PART NUMBER
\end{tabular} & CHANNELS & \begin{tabular}{c}
LOGIC \\
LEVEL
\end{tabular} & PACKAGES \\
\hline IH5025 & 4 & +15 & JD,DD,PD \\
\hline IH5026 & 4 & +5 & JD,DD,PD \\
\hline IH5027 & 4 & +15 & JE,DE,PE \\
\hline IH5028 & 4 & +5 & JE,DE,PE \\
\hline IH5029 - & 3 & +15 & JD,DD,PD \\
\hline IH5030 & 3 & +5 & JD,DD,PD \\
\hline IH5031 & 3 & +15 & JE,DE,PE \\
\hline IH5032 & 2 & +5 & JE,DE,PE \\
\hline IH5033 & 2 & +5 & JD,DD,PA \\
\hline IH5034 & 2 & +15 & JE,DE,PA \\
\hline IH5035 & 1 & +15 & JD,DD,PA \\
\hline IH5036 & 1 & +5 & JD,DD,PA \\
\hline IH5037 & 2 & +5 & JE,DE,PA \\
\hline IH5038 & & 2 & +12 \\
\hline
\end{tabular}

NOTE: Mil-Temperature range (\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)) available in ceramic packages only.

\section*{IH5025 - IH5038}

TYPICAL ELECTRICAL CHARACTERISTICS (per channel)

Id(off) VS. TEMPERATURE

CROSS COUPLING
REJECTION VS. FREQUENCY

TEST CIRCUITS

Figure 1
\[
\begin{aligned}
& \text { - } \\
& { }_{\omega}{ }^{\text {² }}
\end{aligned}
\]

Figure 2

IH5025 - IH5038
DEVICE SCHEMATICS

FOUR CHANNEL

THREE CHANNEL

IH5031 (\(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega\))
\(1 \mathrm{H} 5032\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \mathrm{M}\right)\) 16 PIN DIP

TWO CHANNEL
SINGLE CHANNEL

IH5037 (\(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \mathrm{~S}\))
1H5038 (\(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150\)) \()\) 8 PIN DIP

Numbers in parentheses indicate CERAMIC PACKAGE LAYOUT

\section*{IH5025 - IH5038}

\section*{THEORY OF OPERATION}

The IH5025 series differs from the IH5009 series in that they may be driven by floating outputs. This family is generally used when operating into the-non-inverting input of an operational amplifier, while the IH5009 series is used in operations where the output feeds into the inverting (virtual ground) input.

The IH5025 model is a basic charge area switching device, in that proper gating action depends upon the capacity vs. voltage relationship for the diode junctions. This C vs. V, when integrated, produces total charge \(\mathbf{Q}\). It is \(\mathbf{Q}\) total which is switched between the series diode and the gate to source and gate to drain junctions. The charge area (C vs. V) for the diode has been chosen to be a minimum of four (4) times the area of the gate to source junction, thus providing adequate safety margins to insure proper switching action.

If normal logical voltage levels of ground to +15 V (open collector TTL) are used, only signals which are between 0 V and +10 V can be switched. The pinch-off range of the P.Channel FET has been selected between 2.0 V and 3.9 V ; thus with +15 V at the logical input, and a +10 V signal in-
put, 1.1V of margin exists for turn-off. When the IH5025 is used with 5 V TTL logic, a maximum of +1 V can be switched. The gate of each FET has been brought out so that a "referral resistor" can be placed between gate and source. This is used to minimize charge injection effects. The connection is shown below:

For switching levels \(>+10 \mathrm{~V}\), the +15 V power supply must be increased so that there is a minimum of 5 V of difference between supply and signal. For example, to switch +15 V level, +20 V TTL supply is required. Up to +20 V levels can be gated.

\section*{LOGIC INTERFACE CIRCUITS}

When operating with TTL logic it is necessary to use pull-up resistors as shown in Figures 6 and 7. This ensures the necessary positive voltages for proper gating action.

Figure 5. Interfacing with +5 V Logic

Figure 6. Interfacing with +15 V Open Collector Logic

\section*{APPLICATIONS}

Figure 7. Multiplexer from Positive Output Transducers

Figure 8. Sample and Hold Switch

Figure 9. Switching up to +20 V Signals with T2L Logic

NOTE: TO SWITCH \(\ddagger 10 \mathrm{VAC}(20 \mathrm{VPP}):\) : (1) INCREASE \(\pm 5 \mathrm{~V}\) SUPPLY TO +10 V . (2) INCREASE TTL SUPPLY FROM +15 V TO +25 V .

Figure 10. Switching Bipolar Signals with \(T^{2}\) L Logic

\section*{IH5025 - IH5038}

\section*{APPLICATIONS (Cont.)}

ADVANTAGES OVER FIGURE NO. 10 METHOD
A. DC LEVELS OF UP TO \(: 10 \mathrm{~V}\) CAN BE SWITCHED, AS WELL AS DISADVANTAGES:
AC SIGNALS UP TO 100 KC ; NO. 10 METHOD SWITCHELL AS
AC RANGE OF 10 Hz TO 10 kHz .
A. PNP CKT DRA

POWER DISS. 3 mA , WHEN ON: THUS ADDS \(3 \mathrm{~mA} \times 30 \mathrm{~V}=\mathbf{9 0} \mathrm{mW}\)
B. CKT IS NOW BREAK BEFORE MAKE
B. TON TIME WILL BE CONSIDERABLY SLOWED DOWN FROM 100 ns
(BEFORE IN FIGURE NO. 10) TO \(1 \cdot 2 \mu \mathrm{~s}\) NOW.

Figure 11. Switching Bipolar Signals with \(\mathrm{T}^{2}\) L Logic (Alternate Method)

WHEN SWITCHING (+) OR (-) SIGNAL INPUTS, A SCHEME SIMILAR TO FIGURES 10 OR 11 SHOULD BE USED.
Figure 13. Gain Control with High Input Impedance

\section*{FEATURES}
- Switches Greater Than 20Vpp Signals With \(\pm 15 \mathrm{~V}\) Supplies
- Quiescent Current Less Than \(1 \mu \mathrm{~A}\)
- Overvoltage Protection to \(\pm 25 \mathrm{~V}\)
- Break-Before-Make Switching \(\mathrm{t}_{\text {off }} 200 \mathrm{nsec}, \mathrm{t}_{\mathrm{on}} \mathbf{3 0 0}\) nsec Typical
- \(T^{2}\) L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Low ros(on) - \(35 \Omega\)
- New DPDT \& 4PST Configurations
- Complete Monolithic Construction IH5040 through IH5047

\section*{FUNCTIONAL DIAGRAM}

FIGURE 1. TYPICAL DRIVER, GATE - IH5042

\section*{ORDERING INFORMATION}

\section*{GENERAL DESCRIPTION}

The IH5040 family of solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. These devices provide ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS technology provides input overvoltage capability to \(\pm 25\) volts without damage to the device, and destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The IH5040 CMOS technology has eliminated this serious systems problem.
Key performance advantages of the 5040 series are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than \(1 \mu \mathrm{~A}\). Also designed into the 5040 is guaranteed Break-Before-Make switching, which is accomplished by extending the \(t_{\text {on }}\) time (300 nsec TYP.) so that it exceeds \(t_{\text {off }}\) time (200 nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON, This eliminates the need for external logic required to avoid channel to channel shorting during switching.
Many of the 5040 series improve upon and are pin-for-pin and electrical replacements for other solid state switches.

FUNCTIONAL DESCRIPTION
\begin{tabular}{lccc}
\hline \begin{tabular}{l}
INTERSIL
\end{tabular} & & & \begin{tabular}{c}
PIN/FUNCTIONAL \\
EQUIVALENT \\
PART NO.
\end{tabular} \\
(Note 1)
\end{tabular}

NOTE 1. See Switçhing State diagrams for applicable package equivalency.

Pin and functional equivalent monolithic versions of the DG181, DG182, DG 187 and DG188 are available. See data sheet for this and also IH 181 to IH 191.

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|}
\hline ABSOLUTE MAXIMUM RATINGS & \(\mathrm{V}^{+}-\mathrm{V}^{-}\) & < 33V \\
\hline Current (Any Terminal) < 30mA & \(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{D}}\) & \(<30 \mathrm{~V}\) \\
\hline Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & \(V_{D}-V^{-}\) & <30V \\
\hline Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \(V_{D}-V_{S}\) & \(< \pm 22 \mathrm{~V}\) \\
\hline Power Dissipation 450mW & \(V_{L}-V^{-}\) & <33V \\
\hline (All Leads Soldered to a P.C. Board) Derate \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) Above \(70^{\circ} \mathrm{C}\) & \(V_{L}-V_{\text {IN }}\) & \(<30 V\)
\(<20 V\) \\
\hline Lead Temperature (Soldering, 10 sec) 300 \({ }^{\circ} \mathrm{C}\) & V/-GND
VIN-GND & \(<20 V\)
\(<20 V\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximüm Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow{2}{*}{PER CHANNEL}} & \multicolumn{7}{|c|}{MIN./MAX. LIMITS} & \multirow[b]{3}{*}{TEST CONDITIONS} \\
\hline & & \multicolumn{3}{|c|}{MILITARY} & \multicolumn{3}{|c|}{COMMERCIAL} & \multirow[b]{2}{*}{UNITS} & \\
\hline SYMBOL & CHARACTERISTIC & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & 0 & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{C}\) & & \\
\hline I'INION) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}\) Note 1 \\
\hline I'IN(OFF) & input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}\) Note 1 \\
\hline rDS(on) & Drain-Source On Resistance & 75(35) & 75(35) & 150(60) & 80 (45) & \(80(45)\) & 130 (45) & 12 & \((\) IH5048 Thru 1 H 5051\() I_{S}=10 \mathrm{~mA}\) \(V_{\text {ANALOG }}=-10 \mathrm{~V}, 10+10 \mathrm{~V}\) \\
\hline \({ }^{\text {arosen }}\) (ON) & Channel to Channet \({ }^{\text {r DS }}(O N)\) Match & & \[
25 \text { (15) }
\]
(typ) & & & \begin{tabular}{l}
30(15) \\
(typ)
\end{tabular} & & 12 & (1H5048 thru IH5051) \\
\hline VANALOG & Min. Analog Signal Handling Capability & & \(\pm 11(\pm 10)\) & & & \(\pm 10(\pm 10)\) & & v & \\
\hline 'D(OFF) & Switch OFF Leakage Current & 1(1) & \(1(1)\) & 100(100) & 5(5) & \(5(5)\) & 100(100) & nA & \[
\begin{aligned}
& \mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\
& \text { (IH5048 thru } 1 \mathrm{H} 5051
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\({ }^{1} \mathrm{D}(\mathrm{ON})\) \\
\({ }^{+1}\) S(ON)
\end{tabular} & Switch On Leakage Current & 2(2) & 2(2) & 200(200) & \(10(10)\) & 10 (10) & 100(200) & \(n \mathrm{~A}\) & \begin{tabular}{l}
\[
V_{D}-V_{S}=-10 V \text { to }+10 V
\] \\
(1H5048 thru IH5051)
\end{tabular} \\
\hline \(t_{\text {on }}\) & Switch "ON" Time & & 500(250) & & & 500(300) & & ns & \[
\begin{aligned}
& R_{L}=1 \mathrm{ks}, V_{\text {ANALOG }}=10 \mathrm{~V} \\
& \text { to }+10 \vee \text { See Fig. A }
\end{aligned}
\] \\
\hline \(t_{\text {off }}\) & Switch "OFF' Time & & 250(150) & & & 250(150) & & ns & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{ks} \Omega, V_{\text {ANALOG }}=-10 \mathrm{~V} \\
& \text { to }+10 \mathrm{~V} \text { See } \mathrm{F} / \mathrm{A} . \mathrm{A} \\
& \text { (1H5048 thru } 1 \mathrm{H} 5051 \text {) }
\end{aligned}
\] \\
\hline \(\mathrm{a}_{\text {(INJ.) }}\) & Charge Injection & . & 15 (10) & & & 20 (10) & & \(m \mathrm{~V}\) & See Fig. B (IH5048 thru IH5051) \\
\hline OIRR & Min. Off Isolation Rejection Ratio & & 54 & & & 50 & & dB & \begin{tabular}{l}
\[
f=1 \mathrm{MHz}, R_{L}=100 \mathrm{~s} 2, C_{L} \leqslant 5 \mathrm{pF}
\] \\
See Fig. C, (Note 1)
\end{tabular} \\
\hline \(1^{+} 0\) & + Power Supply Quiescent Current & 1 & 1 & 10 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline \({ }^{-}\) & - Power Supply Quiescent Current & 1 & 1 & 10 & 10 & 10 & . 100 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}
\end{aligned}
\] \\
\hline \(1^{-}\)LQ & \begin{tabular}{l}
+5 V Supply \\
Quiescent Current
\end{tabular} & 1 & 1 & 10 & - 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline \({ }^{1}\) GND & \begin{tabular}{l}
Gnd Supply \\
Quiescent Current
\end{tabular} & 1 & 1 & 10 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline CCRR & Min. Channel to Channel Cross Coupling Rejection Ratio & & 54 & & & 50 & : & dB & One Channel Off: Any Other Channel Switches as per Fig. E (Note 1) \\
\hline
\end{tabular}

\section*{TEST CIRCUITS}

FIG. A
FIG. B
FIG. C

NOTE 1: Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

TYPICAL ELECTRICAL CHARACTERISTICS (Per Channel)

FIGURE D

FIGURE F

POWER SUPPLY QUIESCENT CURRENT

LOGIC FREQUENCY @10\% DUTY CYCLE (Hz)
FIGURE G

SWITCHING STATE DIAGRAMS
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
SWITCH STATES \\
ARE FOR LOGIC " " " INPUT
\end{tabular} & (OUTLINE DWG FD-2) & IOUTLINE DWGS DE, JE, PE) & (OUTLINE DWG TO-100) \\
\hline \[
\begin{aligned}
& \text { SPST } \\
& \text { IH5040 }(\text { rDS }(o n)<75 \Omega)
\end{aligned}
\] & & & 1. \\
\hline DUAL SPST IH5041 (rDS(on) < 75) & & & \\
\hline
\end{tabular}

SPDT
IH5042 (rDS(on) < 75 \()\)

(DG188 EQUIVALENT)

DUAL SPDT
IH5043 (rDS(on) < 75)

(DG191 EQUIVALENT)

DPST
IH5044 (rDS(on) < 75)

(DG185 EQUIVALENT)
DUAL DPST
IH5045 (rDS(on) < 75)

\section*{SWITCHING STATE DIAGRAMS (Cont.)}

SWITCH STATES
\begin{tabular}{|c|c|c|c|c|}
\hline ARE FOR LOGIC " 1 " INPUT & FLAT PACKAGE (FD-2) & DIP (DE) PACKAGE & TO-100 & \\
\hline \begin{tabular}{l}
DPDT \\
IH5046 (rDS (ON) <75s2)
\end{tabular} & & & & \\
\hline & & & , & 1 \\
\hline
\end{tabular}

DUAL SPST
IH5048 (rDS (ON) <35 \()\)

\section*{APPLICATIONS}

USING THE CMOS SWITCH TO DRIVE AN R/2R LADDER NETWORK (2 LEGS)

EXAMPLE: If \(-\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{VDC}\) and \(+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}\) then Ladder Legs are switched between \(\pm 10 \mathrm{VDC}\), depending upon state of Logic Strobe.

DIGITALLY TUNED
LOW POWER ACTIVE FILTER
 provides simultaneous Lowpass, Bandpass, and Highpass outputs. With the component values shown, center frequency will be 235 Hz and 23.5 Hz for high and low logic inputs respectively, \(\mathrm{Q}=100\), and Gain \(=100\).

\section*{THEORY OF OPERATION}

\section*{A. FLOATING BODY CMOS STRUCTURE}

In a conventional C-MOS structure, the body of the " \(n\) " channel device is tied to the negative supply, thus forming a reverse biased diode between the drain/source and the body (Fig. J). Under certain conditions this diode can become forward biased; for example, if the supplies are off (at ground) and a negative input is applied to the drain. This can have serious consequences for two reasons. Firstly, the diode has no current limiting and if excessive current flows, the circuit may be permanently damaged. Secondly, this diode forms part of a parasitic SCR in the conventional C-MOS structure. Forward biasing the diode causes the SCR to turn on, giving rise to a "latch-up" condition.
Intersil's improved C-MOS process incorporates an additional diode in series with the body (Fig. K). The cathode of this diode is then tied to \(V+\), thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path, but also prevents the SCR from turning on.

\section*{B. OVERVOLTAGE PROTECTION}

The floating body construction inherently provides overvoltage protection. In the conventionalC-MOS process, the body of all N -channel FET is tied to the most negative power supply and the body of all P-channel devices to the most positive supply (i. e., \(\pm 15 \mathrm{~V}\)). Thus, for an overvoltage spike of \(> \pm 15 \mathrm{~V}\), a forward bias condition exists between drain and body of the MOSFET. For example, in Fig. J if the analog signal input is more negative than -15 V , the drain to body of the \(N\)-channel FET is forward biased and destruction of the device can result. Now by floating the body, using diode D1, the drain to body of the MOSFET is still forward biased, but D1 is reversed biased so no current flows (up to the breakdown of D1 which is \(\geqslant 40 \mathrm{~V}\)). Thus, negative excursions of the analog signal can go up to a maximum of -25 V . When the signal goes positive \(\geqslant+15 \mathrm{~V}\), D1 is forward biased, but now the drain to body junction is reversed for the \(N\)-channel FET; this allows the signal to go to a maximum of +25 V with no appreçiable current flow. While the explanation above has been restricted to N-channel devices, the same applies to P-channel FETs and the construction is as shown in Fig. L. Fig. L describes an output stage showing the paralleling of an \(N\) and \(P\) channel to linearize the \(\operatorname{rDS}(O N)\) with signal input. The presence of diodes D1 and D2 effectively floats the bodies and provides over voltage protection to a maximum of \(\pm 25 \mathrm{~V}\).

FIGURE J

FIGURE K

FIGURE L

FOR INTERFACING WITH TZL OPEN COLLECTOR LOGIC.

TYP. EXAMPLE FOR + 15 V CASE SHOWN

FOR USE WITH CMOS LOGIC.

\section*{LOGIC INTERFACING}

\section*{IH5052/IH5053 CMOS Analog Gates}

\section*{FEATURES}
- Switches Greater Than 20Vpp Signals With \(\pm 15 \mathrm{~V}\) Supplies
- Quiescent Current Less Than \(10 \mu \mathrm{~A}\)
- Overvoltage Protection to \(\pm \mathbf{2 5 V}\)
- Break-Before-Make Switching toff 100nsec, ton 250nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- IH5052 4 Normally Closed Switches
- IH5053 4 Normally Open Switches

\section*{GENERAL DESCRIPTION}

The IH5052/3 solid state analog gates are designed using an improved, high voltage CMOS technology. This provides ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS
technology provides input overvoltage capability to \(\pm 25\) volts without damage to the device, and the destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has eliminated this serious systems problem. Key performance advantages are TTL compatible and ultra low-power operation. The quiescent current requirement is less than \(10 \mu \mathrm{~A}\). Also designed into the 1H5052/3 is guaranteed Break-Before-Make switching. This is logically accomplished by extending the ton time (400nsec TYP.) such that it exceeds toff time (200nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON and eliminates the need for external logic required to avoid chanrel to channel shorting during switching. The 1 H 5052 is designed to have switch closure with Logic " 0 " (0.8 V or less) and the IH5053 is designed to close switches with a Logical " 1 " (2.4V or more).

\section*{FUNCTIONAL DIAGRAM}

\section*{PIN CONFIGURATIONS}

OUTLINE DWGS
DE, JE

DUAL-IN-LINE PACKAGE

switch states are FOR LOGIC "1" INPUT

\section*{ORDERING INFORMATION}

\section*{IH5052/IH5053}

\section*{MAXIMUM RATINGS}

Current (Any Terminal) . \(<30 \mathrm{~mA}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Power Dissipation 450 mW
(All Leads Soldered to a P.C. Board)
Derate \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) Above \(70^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec)
\(300^{\circ} \mathrm{C}\)
V+-V- \(<33 V\)
\(V^{+}-V_{D}\) \(<30 \mathrm{~V}\)
\(V_{D}-V^{-}\) \(<30 \mathrm{~V}\)
\(V_{D}-V_{S}\) \(\pm 22 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}\) \(<33 V\)
\(V_{L}-V_{\text {IN }}\) \(<30 \mathrm{~V}\)
VL-GND \(<20 \mathrm{~V}\)
VIN-GND \(<20 \mathrm{~V}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (\(@ 25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PER CHANNEL}} & \multicolumn{7}{|c|}{MIN./MAX. LIMITS} & \multirow{3}{*}{TEST CONDITIONS} \\
\hline & & \multicolumn{3}{|c|}{Military} & \multicolumn{3}{|c|}{COMMERCIAL} & \multirow[b]{2}{*}{UNITS} & \\
\hline SYMBOL & CHARACTERISTIC & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & 0 & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{C}\) & & \\
\hline IIN(ON) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}(1 \mathrm{H} 5053)=0.8 \mathrm{~V}(1 \mathrm{H} 5052)\) \\
\hline IIN(OFF) & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}(1 \mathrm{H} 5053)=2.4 \mathrm{~V}(1 \mathrm{H} 5052)\) \\
\hline \({ }^{\text {'DS(ON) }}\) & Drain-Source On Resistance & 75 & 75 & 100 & 80 & 80 & 100 & \(\Omega\) & \[
\begin{aligned}
& I S=10 \mathrm{~mA}, V_{\text {analog }}=10 \mathrm{~V} \text { to } \\
& +10 \mathrm{~V}
\end{aligned}
\] \\
\hline \({ }^{\text {a }}\) '0S(ON) & Channel to Channel RDS(ON) Match & & \[
\begin{gathered}
25 \\
\text { (typ) } \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
30 \\
\text { (typ) } \\
\hline
\end{gathered}
\] & & \(\Omega\) & \\
\hline Vanalog & Min. Analog Signal Handling Capability & , & \(\pm 11\) & & & \(\pm 10\) & & V & \\
\hline Id(OFF) & Switch OFF Leakage Current & 1 & 1 & 100 & 5 & 5 & 100 & nA & \(\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}\) to +10 V \\
\hline \[
\begin{aligned}
& \text { ID(ON) } \\
& \left.+I_{S(O N}\right)
\end{aligned}
\] & Switch On Leakage Current & 2 & 2 & 200 & 10 & 10 & 100 & nA & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}\) to +10 V \\
\hline ton & Switch "ON" Time & & 500 & & & 500 & & ns & \[
\begin{aligned}
& R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {analog }}=-10 \mathrm{~V} \text { to } \\
& +10 \mathrm{~V} \text { See Fig. } A
\end{aligned}
\] \\
\hline toff & Switch "OFF" Time & & 250 & & & 250 & & ns & \[
\begin{aligned}
& R_{L}=1 \mathrm{k} \Omega, V_{\text {analog }}=-10 \mathrm{~V} \text { to } \\
& +10 \mathrm{~V} \text { See Flg. } \AA
\end{aligned}
\] \\
\hline \(\mathbf{Q}_{(\text {INJ. })}\) & Charge Injection & & 15 & & & 20 & & mV & See Fig. B \\
\hline OIRR & Min. Off Isolation Rejection Ratio & & 54 & & & 50 & & dB & \[
\begin{aligned}
& f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF} \\
& \text { See Fig. C (Note 1) }
\end{aligned}
\] \\
\hline \(1^{+}\) & + Power Supply Quiescent Curent & 10 & 10 & 100 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline \(1^{-}\) & - Power Supply Quiescent Current & 10 & 10 & 100 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\
& \text { with GND }
\end{aligned}
\] \\
\hline IvL & +5V Supply Quiescent Current & 10 & 10 & 100 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline IaND & Gnd Supply Quiescent Current & 10 & 10 & 100 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline CCRR & Min. Channel to Channel Cross Coupling Rejection Ratio & & 54 & \(\cdot\) & & 50 & & dB & One Channel Off; Any Other Channel Switches as per Fig. E (Note 1) \\
\hline
\end{tabular}

Note 1: Not tested in production.

\section*{TEST CIRCUITS}

FIG. A

FIG. B

FIG. C

\section*{IH5052 / IH5053}

TYPICAL ELECTRICAL CHARACTERISTICS (Per Channel)

FIGURE D

OFF ISOLATION vs FREQUENCY

FIGURE F

POWER SUPPLY QUIESCENT CURRENT
vs LOGIC FREQUENCY RATE

figure \(\mathbf{G}\)

\section*{THEORY OF OPERATION}

\section*{A. Floating Body CMOS Structure}

In a conventional C-MOS structure, the body of the " \(n\) " channel device is tied to the negative supply, thus forming a reverse biased diode between the drain/source and the body (Fig. H). Under certain conditions this diode can become forward biased; for example, if the supplies are off (at ground) and a negative input is applied to the drain. This can have serious consequences for two reasons. Firstly, the diode has no current limiting and if excessive current flows, the circuit may be permanently damaged. Secondly, this diode forms part of a parasitic SCR in the conventional C-MOS structure. Forward biasing the diode causes the SCR to turn on, giving rise to a "latch-up" condition.
Intersil's improved C-MOS process incorporates an additional diode in series with the body (Fig. I). The cathode of this diode is then tied to \(\mathrm{V}+\), thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path, but also prevents the SCR from turning on.

\section*{B. Overvoltage Protection}

The floating body construction inherently provides overvoltage protection. In the conventional C-MOS process, the body of all N -channel FETs is tied to the most negative power supply and the body of all P-channel devices to the most positive supply (i.e., \(\pm 15 \mathrm{~V}\)). Thus, for an overvoltage spike of \(> \pm 15 \mathrm{~V}\), a forward bias condition exists between drain and body of the MOSFET. For example, in Fig. H if the analog signal input is more negative than -15 V , the drain to body of the N -channel FET is forward biased and destruction of the device can result. Now by floating the body, using diode D1, the drain to body of the MOSFET is still forward biased, but D1 is reversed biased so no current flows (up to the breakdown of D1 which is \(\geq 40 \mathrm{~V}\)). Thus, negative excursions of the analog signal can go up to a maximıum of -25 V . When the signal goes positive (\(\geq+15 \mathrm{~V}\), D1 is forward biased, but now the drain to body junction is reversed for the N -channel FET; this allows the signal to go to a maximum of +25 V with no appreciable current flow. While the explanation above has been restricted to N -channel devices, the same applies to P-channel FETs and the construction is as shown in Fig. J. Fig. J describes an output stage showing the paralleling of an N and P -channel to linearize the ros(on) with signal input. The presence of diodes D1 and D2 effectively floats the bodies and provides overvoltage protection to a maximum of \(\pm 25 \mathrm{~V}\).

FIGURE H

FIGURE I

FIGURE J

\section*{IH5052/IH5053}

LOGIC INTERFACING

FOR INTERFACING WITH T2L OPEN COLLECTOR LOGIC.

TYP. EXAMPLE FOR + 15V CASE SHOWN

FOR USE WITH CMOS LOGIC.

PROGRAMMABLE GAIN NON-INVERTING AMPLIFIER WITH SELECTABLE INPUTS

ACTIVE LOW PASS FILTER WITH DIGITALLY SELECTED BREAK FREQUENCY

\section*{IH5052/IH5053}

APPLICATIONS (Continued)

\section*{4-Channel sequencing mux}

Truth Table (IH5052)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ENABLE} & \multirow[t]{2}{*}{MUX
SEQUENCE
RATE} & \multicolumn{2}{|l|}{SEQUENCER
OUTPUT} & \multicolumn{4}{|l|}{\begin{tabular}{l}
SWITCH STATES \\
(- DENOTES OFF)
\end{tabular}} \\
\hline & & 20 & \(2^{1}\) & SW1 & SW2 & SW3 & SW4 \\
\hline 0 & 0 & 0 & 0 & - & - & - & - \\
\hline 1 & 0 & 0 & 0 & ON & - & - & - \\
\hline 1 & 1 pulse & 1 & 0 & -- & ON & - & - \\
\hline 1 & 2 pulses & 0 & 1 & - & - & - & - \\
\hline 1 & 3 pulses & 1 & 1 & - & - & - & ON \\
\hline 1 & 4 pulses & 0 & 0 & ON & - & - & - \\
\hline
\end{tabular}

\section*{A Latching DPDT}

The latch feature insures positive switching action in response to non-repetitive or erratic commands. The \(A_{1}\) and \(A_{2}\) inputs are normally low. A HIGH input to \(A_{2}\) turns \(S_{1}\) and \(S_{2} O N\), a HIGH to \(A_{1}\) turns \(S_{3}\) and \(S_{4}\) ON. Desirable for use with limit detectors, peak detectors, or mechanical contact closures.

Truth Table (IH5052)
\begin{tabular}{|cc|cc|}
\hline \multicolumn{2}{|c|}{ COMMAND } & \begin{tabular}{c}
STATE OF SWITCHES \\
AFTER COMMAND
\end{tabular} \\
\hline \(\mathrm{A}_{2}\) & \(\mathrm{~A}_{1}\) & \(\mathrm{~S}_{3} \& \mathrm{~S}_{4}\) & \(\mathrm{~S}_{1} \& \mathrm{~S}_{2}\) \\
0 & 0 & same & same \\
0 & 1 & on & off \\
1 & 0 & off & on \\
1 & 1 & INDETERMINATE \\
\hline
\end{tabular}

\section*{8-Channel Fault Protected CMOS Analog Multiplexer}

\section*{FEATURES}
- Ultra low leakage- \(I_{D(\text { off })} \leq 100 \mathrm{pA}\)
- Power supply quiescent current less than 1mA
- \(\pm 13 \mathrm{~V}\) analog signal range
- No SCR latchup
- Break-before-make switching
- Pin compatible with DG508, H1508 and AD7508
- All channels OFF (\(\mathrm{I}_{\mathrm{ILK}} \leq 100 \mathrm{nA}\)) when power OFF, for analog signals up to \(\pm 25 \mathrm{~V}\)
- Any channel turns OFF (\(\mathrm{I}_{\mathrm{ILK}} \leq 100 \mathrm{nA}\)) if input exceeds supply rails by up to \(\pm \mathbf{2 5 V}\). Throughput always \(< \pm 14 \mathrm{~V}\) (\(\pm 15 \mathrm{~V}\) supplies)
- TTL and CMOS compatible binary Address and ENable inputs

\section*{GENERAL DESCRIPTION}

The IH5108 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the DG508 and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to \(\pm 25 \mathrm{~V}\), even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc. Cross talk onto "good" channels is also prevented.
A binary 3-bit address code together with the ENable input allows selection of any one channel or none at all. These 4 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading.

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{V}_{\text {IN }}(\mathrm{A}, \mathrm{EN})\) to Ground & 15 V to 15 V & Operating Temperature -55 to \(125^{\circ} \mathrm{C}\) \\
\hline \(V_{S}\) or \(V_{D}\) to \(V^{+}\) & +25V, -40 V & Storage Temperature - 65 to 150 \({ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}_{S}\) or \(\mathrm{V}_{\mathrm{D}}\) to \(\mathrm{V}^{-}\) & \(-25 \mathrm{~V},+40 \mathrm{~V}\) & Power Dissipaton (Package)* 1200mW \\
\hline \(V^{+}\)to Ground & 16V & \\
\hline \(V^{-}\)to Ground & -16V & *All leads soldered or welded to PC board. Derate \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \\
\hline Current (Any Terminal) & . . 20 mA & \(70^{\circ} \mathrm{C}\). \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS \(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}\), unless otherwise specified.

Note 1. Readings taken 400 ms after the overvoltage occurs.

Figure 1. \(t_{\text {transition }}\) Switching Test

Figure 2. \(\mathrm{t}_{\text {open }}\) (Break-Before-Make) Switching Test

Figure 3. \(t_{\text {on }}\) and \(t_{\text {off }}\) Switching Test

Figure 4. Break-Before-Make Delay Test

\section*{DETAILED DESCRIPTION}

The IH5108, like all Intersil's multiplexers, contains a set of CMOS switches forming the channels, and driver and decoder circuitry to control which channel turns ON, if any. In addition, the IH5108 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special treatment that many multiplexer enable inputs require for proper logic swings. This identical circuit treatment of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section).

Another, and more important, difference lies in the switching channel. Previous devices have used parallel \(n\) - and p-channel MOSFET switches, and while this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals, it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the input goes outside the supply rails, and even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in cases of input overrange. The IH 5108 uses a novel series arrangement of the p - and n -channel switches (Figure5) combined with a dielectrically isolated process to obviate these problems.

Figure 5. Series Connection of Channel Switches

Within the normal analog signal band, the inherent variation of switch ON resistance will balance out almost as well as the customary parallel configuration, but as the analog signal approaches either supply rail, even for an ON channel, either the \(p\) - or the n-channel will become a source follower, disconnecting the channel (Figure 6). Thus protection is provided to any input or output channel against overvoltage on any (or several) input or output channels even in the absence of multiplexer supply voltages, and applies up to the breakdown voltage of the respective switches, drawing only leakage currents. Figure 7 shows a more detailed schematic of the channel switches, including the back-gate driver devices which ensure optimum channel ON resistances and breakdown voltage under the various conditions.

Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 8).
(a) OVERVOLTAGE WITH MUX POWER OFF

(b) OVERVOLTAGE WITH MUX POWER ON

Figure 6. Overvoltage Protection

Figure 7. Detailed Channel Switch Schematic

Figure 8. Protection Against Logic Input

\section*{MAXIMUM SIGNAL HANDLING CAPABILITY}

The IH5108 is designed to handle signals in the \(\pm 10 \mathrm{~V}\) range, with a typical \(\mathrm{r}_{\mathrm{DS}(\mathrm{on})}\) of 6008; it can successfully handle signals up to \(\pm 13 \mathrm{~V}\), however, \(r_{\text {DS(on) }}\) will increase to about 1.8 K . Beyond \(\pm 13 \mathrm{~V}\) the device approaches an open circuit, and thus \(\pm 12 \mathrm{~V}\) is about the practical limit, see Figure 9.

Figure 10 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detailed Description), while Figure 11 gives the ON resistance variation with temperature.

Figure 9. \(r_{D S(o n)}\) vs Signal Output Voltage @ \(T_{A}=+25^{\circ} \mathrm{C}\)

Figure 10. MUX Output Voltage vs Input Voltage
Channel 1 Shown; All Channels Similar

Flgure 11. Typical \(\mathrm{r}_{\mathrm{DS}(o n)}\) vs Temperature

\section*{USING THE IH5108 WITH SUPPLIES OTHER THAN \(\pm 15 \mathrm{~V}\)}

The IH5108 will operate successfully with supply voltages from \(\pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\); \(r_{\mathrm{DS}(o n)}\) increases as supply voltage decreases, see Figure 12. Leakage currents, however, decrease with a lowering of supply voltage, and therefore the error term product of \(\mathrm{r}_{\mathrm{DS}(\mathrm{on})}\) and leakage current remains reasonably constant. \(r_{D S(o n)}\) also decreases as signal levels decrease. For high system accuracy [acceptable levels of \(r_{D S(o n)}\) the maximum input signal should be 3 V less than the supply voltages. The logic levels will remain TTL compatible.

Figure 12. \(\mathrm{r}_{\mathrm{DS}(o n)}\) vs Supply Voltages

\section*{IH5108 APPLICATIONS INFORMATION}

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline\(A_{3}\) & \(A_{2}\) & \(A_{1}\) & \(A_{0}\) & ON SWITCH \\
\hline 0 & 0 & 0 & 0 & S 1 \\
0 & 0 & 0 & 1 & S 2 \\
0 & 0 & 1 & 0 & S 3 \\
0 & 0 & 1 & 1 & S 4 \\
0 & 1 & 0 & 0 & S 5 \\
0 & 1 & 0 & 1 & S 6 \\
0 & 1 & 1 & 0 & S 7 \\
0 & 1 & 1 & 1 & S 8 \\
1 & 0 & 0 & 0 & S 9 \\
1 & 0 & 0 & 1 & S 10 \\
1 & 0 & 1 & 0 & S 11 \\
1 & 0 & 1 & 1 & S 12 \\
1 & 1 & 0 & 0 & S 13 \\
1 & 1 & 0 & 1 & S 14 \\
1 & 1 & 1 & 0 & S 15 \\
1 & 1 & 1 & 1 & S 16 \\
\hline
\end{tabular}

Figure 13. 1 of 16 channel multiplexer using two IH5108s. Overvoltage protection is maintained between all channels, as is break-before-make switching.

Figure 14. 1 of 32 multiplexer using 4 IH5108s and an IH5053 as a submultiplexer. Note that the IH5053 is protected against overvoltages by the IH5108s. Submultiplexing reduces output leakage and capacitance.

\section*{APPLICATION NOTES}

Further information may be found in:

A003 "Understanding and Applying the Analog Switch,"' by Dave Fullagar
A006 "A New CMOS Analog Gate Technology," by Dave Fullagar

A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger
R009 "Reduce CMOS Multiplexer Troubles Through Proper Device Selection," by Dick Wilenken

\section*{CHIP TOPOGRAPHY}

\title{
IH5140 Family High Level CMOS Analog Gates
}

\section*{FEATURES}
- Super fast break before make switching \(t_{\text {on }} 80 n s\) typ, \(t_{\text {off }} 50 \mathrm{~ns}\) typ (SPST switches)
- Power supply currents less than \(1 \mu \mathrm{~A}\)
- OFF leakages less than \(100 p A\) @ \(25^{\circ} \mathrm{C}\) guaranteed
- Non-latching with supply turn-off
- Single monolithic CMOS chip
- Plug-in replacements for IH5040 family and part of the DG180 family to upgrade speed and leakage
- Greater than 1 MHz toggle rate
- Switches greater than 20Vp-p signals with \(\pm 15 \mathrm{~V}\) supplies
- \(\mathbf{T}^{2} \mathrm{~L}, \mathrm{CMOS}\) direct compatibility

\section*{GENERAL DESCRIPTION}

The IH5140 Family of CMOS monolithic switches utilizes Intersil's latch-free junction isolated processing to build the fastest switches now available. These switches can be toggled at a rate of greater than 1 MHz with super fast \(t_{\text {on }}\) times (80ns typical) and faster \(\mathrm{t}_{\text {off }}\) times (50ns typical), guaranteeing break before make switching. This family of switches therefore combines the speed of the hybrid FET DG 180 Family with the reliability and low power consumption of a monolithic CMOS construction.
OFF leakages are guaranteed to be less than 100pA at \(25^{\circ} \mathrm{C}\). No quiescent power is dissipated in either the ON or the OFF state of the switch. Maximum power supply current is \(1 \mu \mathrm{~A}\) from any supply and typical quiescent currents are in the 10nA range which makes these devices ideal for portable equipment and military applications.

The IH5140 Family is completely compatible with TTL (5 V) logic, TTL open collector logic and CMOS Iogic gates. It is pin compatible with Intersil's IH5040 Family and part of the DG180/190 Family as snown in the switching state diagrams.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline Order Part Number & Function & Package & Temperature
Range \\
\hline IH5140 MJE & SPST & 16 Pin CERDIP & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5140 CJE & SPST & 16 Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline 1 H 140 CPE & SPST & 16 Pin Plastic DIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline \(1 \mathrm{H5140}\) MFD & SPST & 14 Pin Flat Pack & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline 1 H & Dual SPST & 16 Pin CERDIP & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline 1H5141 CJE & Dual SPST & 16 Pin CERDIP & C to \(70^{\circ} \mathrm{C}\) \\
\hline IH5141 CPE & Dual SPST & 16 Pin Plastic DIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline 1 H 5141 MFD & Dual SPST & 14 Pin Flat Pack & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline 1 H5141 CTW & Dual SPST & T0-100 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline IH5141 MTW & Dual SPST & T0-100 & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5142 MJE & SPDT & 16 Pin CERDIP & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5142 CJE & SPDT & 16 Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline 1 H 142 CPE & SPDT & 16. Pin Plastic DIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline 1 H5142 MFD & SPDT & 14 Pin Flat Pack & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline 1 H5142 CTW & SPDT & T0-100 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline IH5142 MTW & SPDT & T0-100 & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5143 MJE & Dual SPDT & 16 Pin CERDIP & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5143 CJE & Dual SPDT & 16 Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline IH5143 CPE & Dual SPDT & 16 Pin Plastic DIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline IH5143 MFD & Dual SPDT & 14 Pin Flat Pack & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5144 MJE & DPST & 16 Pin CERDIP & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline 1 H 5144 CJE & DPST & 16 Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline 1 H 5144 CPE & DPST & 16 Pin Plastic DIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline 1 H5144 MFD & DPST & 14 Pin Flat Pack & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5144 CTW & DPST & T0-100 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline IH5144 MTW & DPST & T0-100 & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5145 MJE & Dual DPST & 16 Pin CERDIP & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline IH5145 CJE & Dual DPST & 16 Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline IH5145 CPE & Dual DPST & 16 Pin Plastic DIP & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline IH5145 MFD & Dual DPST & 14 Pin Flat Pack & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note:
1. Ceramic (side braze) devices also available; consuft factory.
2. MIL temp range parts also available with MIL-STD-883 processing.

FUNCTIONAL DIAGRAM

FIGURE 1. Typical Driver/Gate - IH5142
\begin{tabular}{|c|c|c|}
\hline ABSOLUTE MAXIMUM RATINGS & \(\mathrm{v}^{+}-\mathrm{V}^{-}\) & <33V \\
\hline Current (Any Terminal) < \(<30 \mathrm{~mA}\) & \(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{D}}\) & \(<30 \mathrm{~V}\) \\
\hline Storage Temperature -65 \({ }^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}\) & \(<30 \mathrm{~V}\) \\
\hline Operating Temperature \(\ldots . .-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{s}}\) & < \(\pm 22 \mathrm{~V}\) \\
\hline Power Dissipation 450 mW & \(\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}\) & <33V \\
\hline (All Leads Soldered to a P.C. Board) & \(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}\) & \(<30 \mathrm{~V}\) \\
\hline Derate \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) Above \(70^{\circ} \mathrm{C}\) & VL & <20V \\
\hline Lead Temperature (Soldering 10 sec .) .. \(300^{\circ} \mathrm{C}\) & VIN & <20V \\
\hline
\end{tabular}

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow{2}{*}{PER CHANNEL}} & \multicolumn{7}{|c|}{MIN./MAX. LIMITS} & \\
\hline & & \multicolumn{3}{|c|}{MILITARY} & \multicolumn{3}{|c|}{COMMERCIAL} & \multirow[b]{2}{*}{UNITS} & \\
\hline SYMBOL & CHARACTERISTIC & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & 0 & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{C}\) & & TEST CONDITIONS \\
\hline IINH & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}\) Note 1 \\
\hline IINL. & Input Logic Current & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}\) Note 1 \\
\hline \(\mathrm{r}_{\mathrm{DS}(\mathrm{On})}\) & Drain-Source On Resistance & 50 & 50 & 75 & 75 & 75 & 100 & \(\Omega\) & \[
\begin{aligned}
& \text { Is }=-10 \mathrm{~mA} \\
& \text { VANALOG }=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}
\end{aligned}
\] \\
\hline \(\Delta r_{\text {DS }}(\) on) & Channel to Channel \(r_{\text {DS(on) }}\) Match & & \[
\begin{gathered}
25 \\
\text { (typ) }
\end{gathered}
\] & & & \[
\begin{gathered}
30 \\
\text { (typ) }
\end{gathered}
\] & & \(\Omega\) & \\
\hline Vanalog & Min. Analog Signal Handling Capability & & \(\pm 11\) & & & \(\pm 10\) & & v & \\
\hline \[
\begin{aligned}
& I_{D(\text { off })^{+}} \\
& I_{S(\text { oft })}
\end{aligned}
\] & Switch OFF Leakage Current & \[
\begin{aligned}
& 0.1 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & \begin{tabular}{l}
20 \\
20
\end{tabular} & nA & \[
\begin{aligned}
& V_{D}=+10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\
& V_{D}=-10 \mathrm{~V}, V_{S}=+10 \mathrm{~V}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& I_{D(o n)^{+}} \\
& I_{S(0 n)}
\end{aligned}
\] & \begin{tabular}{l}
Switch On Leakage \\
Current
\end{tabular} & 0.2 & 0.2 & 40 & 1 & 1 & 40 & nA & \(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}\) to +10 V \\
\hline \begin{tabular}{l}
\(t_{0}\) \\
\(t_{\text {off }}\)
\end{tabular} & \begin{tabular}{l}
Switch "ON" Time \\
Switch "OFF" Time
\end{tabular} & \multicolumn{8}{|l|}{See switching time specifications and timing diagrams.} \\
\hline \(Q_{(1 N J .)}\) & Charge Injection & & 100 & & & 150 & & pC & See Fig. 4, Note 2 \\
\hline OIRR & Min. Off Isolation Rejection Ratio & & 54 & & & 50 & & dB & \(\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}\) See Fig. 5, Note 2 \\
\hline \(1^{+}\) & + Power Supply Quiescent Current & 1.0 & 1.0 & 10.0 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline \(1^{-}\) & - Power Supply Quiescent Current & 1.0 & 1.0 & 10.0 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{V}^{+}=+15 \mathrm{~V} . \mathrm{V}^{-}=-15 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\mathrm{L}}\) & +5 V Supply Quiescent Current & 1.0 & 1.0 & 10.0 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & See Fig. 6 \\
\hline IGND & Gnd Supply Quiescent Current & 1.0 & 1.0 & 10.0 & 10 & 10 & 100 & \(\mu \mathrm{A}\) & \\
\hline CCRR & Min. Channel to Channel Cross Coupling Rejection Ratio & . & 54 & & . & 50 & & dB & One Channel Off; Any Other Channel Switches See Fig. 7, Note 2 \\
\hline
\end{tabular}

Note: 1. Some channels are turned on by high (1) logic inputs and other channels are turned on by low (0) inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce ON or OFF state.
2. Charge injection, OFF isolation, and Channel to Channel isolation are only sample tested in production.

\section*{IH5140-IH5145 Family}

KiNTERSIL

FIGURE 2. rDS(on) vs. Temp., @ \(\pm 15 \mathrm{~V},+5 \mathrm{~V}\) Supplies.

FIGURE 3. ros(on) vs. Power Supplies.

FIGURE 4. Charge Injection vs. Analog Signal.

FIGURE 6. Power Supply Currents vs. Logic Strobe Rate.

FIGURE 7. Channel to Channel Cross Coupling Rejection vs. Frequency.

\section*{IH5140-IH5145 Family}

SWITCHING TIME SPECIFICATIONS
(ton, toff are maximum specifications and ton-toff is minimum specifications)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Part \\
Number
\end{tabular}} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Characteristics} & \multicolumn{3}{|c|}{MILITARY} & \multicolumn{3}{|c|}{COMMERCIAL} & \multirow[b]{2}{*}{Units} & \multirow[b]{2}{*}{Test Conditions} \\
\hline & & & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{C}\) & & \\
\hline \multirow{2}{*}{\[
\begin{gathered}
\text { IH5140- } \\
5141
\end{gathered}
\]} & \(\mathrm{t}_{\text {on }}\) \(\mathrm{t}_{\mathrm{tff}}\) ton-toff & Switch "ON" time Switch "OFF" time Break-before-make & & \[
\begin{gathered}
100 \\
75 \\
10
\end{gathered}
\] & & & \[
\begin{gathered}
150 \\
125 \\
5
\end{gathered}
\] & & ns & Figure 8 \\
\hline & ton \(t_{\text {off }}\) \(t_{\text {on-toff }}\) & Switch "ON" time Switch "OFF" time Break-before-make & & \[
\begin{gathered}
150 \\
125 \\
10
\end{gathered}
\] & & & \[
\begin{gathered}
175 \\
150 \\
5 \\
\hline
\end{gathered}
\] & & ns & Figure 9 \\
\hline \multirow{4}{*}{\[
\begin{gathered}
\text { IH5142- } \\
5143
\end{gathered}
\]} & ton toff ton-toff & Switch "ON" time Switch "OFF" time Break-before-make & & \[
\begin{aligned}
& 175 \\
& 125 \\
& 10
\end{aligned}
\] & & & \[
\begin{gathered}
250 \\
150 \\
5
\end{gathered}
\] & & ns & Figure 8 \\
\hline & ton toff ton-toff & Switch "ON" time Switch "OFF" time Break-before-make & & \[
\begin{gathered}
200 \\
125 \\
10 \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
300 \\
150 \\
5 \\
\hline
\end{gathered}
\] & & ns & Figure 9 \\
\hline & ton toff ton-toff & Switch "ON" time Switch "OFF" time Break-before-make & & \[
\begin{gathered}
175 \\
125 \\
10
\end{gathered}
\] & & & \[
\begin{gathered}
250 \\
150 \\
5 \\
\hline
\end{gathered}
\] & & ns & Figure 10 \\
\hline & ton toff ton-toff & Switch "ON" time Switch "OFF" time Break-before-make & & \[
\begin{gathered}
200 \\
125 \\
10 \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
300 \\
150 \\
5 \\
\hline
\end{gathered}
\] & & ns & Figure 11 \\
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\text { IH5144- } \\
5145
\end{gathered}
\]} & ton toff ton-toff & Switch "ON" time Switch "OFF" time Break-before-make & & \[
\begin{gathered}
175 \\
125 \\
10
\end{gathered}
\] & & & \[
\begin{gathered}
250 \\
150 \\
5 \\
\hline
\end{gathered}
\] & & ns & Figure 8 \\
\hline & ton toff ton-toff & Switch "ON" time Switch "OFF" time Break-before-make & & \[
\begin{gathered}
200 \\
125 \\
10
\end{gathered}
\] & & & \[
\begin{gathered}
300 \\
150 \\
5 \\
\hline
\end{gathered}
\] & & ns & Figure 9 \\
\hline
\end{tabular}

NOTE: SWITCHING TIMES ARE MEASURED @ 90\% PTS.

FIGURE 8.

FIGURE 9.

FIGURE 11.

\section*{IH5140-IH5145 Family}

TYPICAL SWITCHING WAVEFORMS
SCALE: VERT = 5V/DIV
HORIZ. \(=100 \mathrm{~ns} /\) DIV .

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 8)

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 9)

\(-55^{\circ} \mathrm{C}\)

\(+25^{\circ} \mathrm{C}\)

\(+125^{\circ} \mathrm{C}\)

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 10)

\(+25^{\circ} \mathrm{C}\)

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 11)

\(+25^{\circ} \mathrm{C}\)

\section*{IH5140-IH5145 Family}

\section*{APPLICATION NOTE}

To maximize switching speed on the IH5140 family use TTL open collector logic (15 V with a \(1 \mathrm{k} \Omega\) or less collector resistor). This configuration will result in (SPST) \(t_{\text {on }}\) and \(\mathrm{t}_{\text {off }}\) times of 80 ns and 50 ns , for signals between -10 V and +10 V . The SPDT and DPST switches are approximately 30 ns slower in both \(\mathrm{t}_{\text {on }}\) and \(\mathrm{t}_{\text {off }}\) with the same drive configuration. 15V CMOS logic levels can be used (0 V to +15 V), but propagation delays in the CMOS logic will slow down the switching (typical \(50 \mathrm{~ns} \rightarrow 100 \mathrm{~ns}\) delays).

When driving the IH5140 Family from either +5 V TTL or CMOS logic, switching times run 20ns slower than if they were driven from +15 V logic levels. Thus ton is about 105ns, and toff 75 ns for SPST switches, and 135 ns and 105 ns (\(t_{\text {on }}, t_{\text {off }}\)) for SPDT or DPST switches. The low level drive can be made as fast as the high level drive if \(\pm 5 \mathrm{~V}\) strobe levels are used instead of the usual \(\mathrm{OV} \rightarrow+3.0 \mathrm{~V}\) drive. Pin 13 is taken to -5 V instead of the usual GND and strobe input is taken from +5 V to -5 V levels as shown in Figure 12.

The typical channel of the IH5140 family consists of both P and N-channel MOS-FETs. The N -channel MOS-FET uses a "Body Puller" FET to drive the body to \(-15 \mathrm{~V}(\pm 15 \mathrm{~V}\) supplies) to get good breakdown voltages when the switch is in the off state (See Fig. 13). This "Body Puller" FET also allows the N -channel body to electrically float when the switch is in the on state producing a fairly constant RDs(ON) with different signal voltages. While this "Body Puller" FET improves switch performance, it can cause a problem when analog input signals are present (negative signals only) and power supplies are off. This fault condition is shown in Figure 14.
Current will flow from -10 V analog voltage through the drain to body junction of Q1, then through the drain to body junction of Q3 to GND. This means that there is 10 V across two forward-biased silicon diodes and current will go to whatever value the input signal source is capable of supplying. If the analog input signal is derived from the same supplies as the switch this fault condition cannot occur. Turning off the supplies would turn off the analog signal at the same time.

This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 15. Now when the power supplies are off and a negative input signal is present this diode is reverse biased and no current can flow.

FIGURE 12.

FIGURE 13.

FIGURE 14.

FIGURE 15.

\section*{APPLICATIONS}

FIGURE 16. Improved Sample and Hold Using IH5143

EXAMPLE: If \(-\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{VDC}\) and \(+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}\) then Ladder Legs are switched between \(\pm 10 \mathrm{VDC}\), depending upon state of Logic Strobe.

FIGURE 17. Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

CONSTANT GAIN, CONSTANT Q, VARIABLE FREQUENCY FILTER WHICH PROVIDES SIMULTANEOUS LOWPASS, BANDPASS, AND HIGHPASS OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FR
WILL BE 235 Hz AND 23.5 Hz FOR HIGH AND LOW LOGIC INPUTS RESPECTIVELY, \(Q=100\), AND GAIN \(=100\).
\[
f_{n}=\text { CENTER FREQUENCY }=\frac{1}{2 \pi R C}
\]

\section*{IH5140-IH5 145 Family}

SWITCHING STATE DIAGRAMS sWITCH STATES ARE FOR LOGIC " 1 " INPUT

IH5140 (rDS(on) < \(75 \Omega\)

\section*{FLATPACK (FD-2)}

FLATPACK (FD-2)
(DG188 EQUIVALENT)

SPDT
IH5142 (rDS(on) < \(75 \Omega\))

DPST
(H5144 (rDS(on) \(<75 \Omega\))
.' (DG191 EQUIVALENT)

IH5143 (rDS(on) < 75 3)

TO-100

DUAL DPST

IH5145 (rDS(on) < 75)

\section*{CMOS Analog Multiplexer}

\section*{GENERAL DESCRIPTION}

The IH5208 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the DG509 and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to \(\pm 25 \mathrm{~V}\), even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply ralls, thus affording protection to any following circuitry such as Op amps, D/A converters, etc. Cross talk onto "good" channels is also prevented.

A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading.

FUNCTIONAL DIAGRAM

2 LINE BINARY ADDRESS INPUTS
(0 0) AND EN \(=1\)
ABOVE EXAMPLE SHOWS CHANNELS 1a AND 1b ON

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline\(A_{1}\) & \(A_{0}\) & EN & \begin{tabular}{c}
ON \\
SWITCH \\
PAIR
\end{tabular} \\
\hline\(X\) & \(X\) & 0 & NONE \\
0 & 0 & 1 & \(1 a, 1 b\) \\
0 & 1 & 1 & \(2 a, 2 b\) \\
1 & 0 & 1 & \(3 a, 3 b\) \\
1 & 1 & 1 & \(4 a, 4 b\) \\
\hline
\end{tabular}
\(A_{0}, A_{1}, E N\)
Logic "1" \(=V_{A H} \geq 2.4 \mathrm{~V}\)
Logic " 0 " \(=V_{A L} \leq 0.8 \mathrm{~V}\)
PIN CONFIGURATION (outline dwg JE, PE)

\begin{tabular}{|l|c|c|}
\hline PART NUMBER & TEMPERATURE RANGE & PACKAGE \\
\hline IH5208MJE & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 16 pin CERDIP \\
\hline IH 5208 IJE & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 16 pin CERDIP \\
\hline IH 5208 CPE & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 16 pin plastic DIP \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
\(\mathrm{V}_{\text {IN }}(\mathrm{A}, \mathrm{EN})\) to Ground. \(-15 \mathrm{~V},+15 \mathrm{~V}\)
\(\mathrm{V}_{\mathrm{S}}\) or \(\mathrm{V}_{\mathrm{D}}\) to \(\mathrm{V}^{+} \ldots .25 \mathrm{~V},-40 \mathrm{~V}\)

\(\mathrm{V}+\) to Ground .. 16 V
\(V^{-}\)to Ground
\(-16 \mathrm{~V}\)
Current(Any Terminal)
.20 mA

Operating Temperature......................-55 to \(125^{\circ} \mathrm{C}\)
Storage Temperature . 65 to \(150^{\circ} \mathrm{C}\)
Power Dissipaton (Package) \({ }^{*}\) 1200 mW
*All leads soldered or welded to PC board. Derate \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(70^{\circ} \mathrm{C}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions abovethose indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS \(\mathrm{v}^{+}=15 \mathrm{~V}, \mathrm{v}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=2.4 \mathrm{~V}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[b]{3}{*}{CHARACTERISTIC}} & \multirow[b]{3}{*}{measured terminal} & \multirow[t]{3}{*}{\begin{tabular}{l}
NO \\
TESTS \\
PER \\
TEMP
\end{tabular}} & \multirow[b]{3}{*}{\[
\left|\begin{array}{c}
\mathrm{TYP} \\
25^{\circ} \mathrm{C}
\end{array}\right|
\]} & \multicolumn{6}{|c|}{MAX LIMITS} & \multirow[b]{3}{*}{UNIT} & \multicolumn{2}{|r|}{\multirow{3}{*}{TEST CONDITIONS}} \\
\hline & & & & & & \multicolumn{3}{|c|}{M SUFFIX} & \multicolumn{3}{|c|}{I/C SUFFIX} & & & \\
\hline & & & & & & \(-55^{\circ} \mathrm{C}\) & \(25^{\circ} \mathrm{C}\) & \(125^{\circ} \mathrm{C}\) & \[
\begin{gathered}
-20^{\circ} \mathrm{Cl} \\
0^{\circ} \mathrm{C}
\end{gathered}
\] & \(25^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& 85^{\circ} \mathrm{Cl} \\
& 70^{\circ} \mathrm{C}
\end{aligned}
\] & & & \\
\hline \multirow{9}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {dSS }}\) (on)}} & \multirow[t]{2}{*}{S to D} & 8 & 700 & 900 & 900 & 1200 & 1200 & 1200 & 1800 & \multirow[b]{2}{*}{\(\Omega\)} & \[
\begin{aligned}
& V_{D}=10 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}
\end{aligned}
\] & Sequence each switch on \\
\hline & & & & 8 & 500 & 900 & 900 & 1200 & 1200 & 1200 & 1800 & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
\mathrm{V}_{\mathrm{AL}} & =0.8 \mathrm{~V}, \\
\mathrm{~V}_{\mathrm{AH}} & =2.4 \mathrm{~V}
\end{aligned}
\] \\
\hline & \(\Delta^{\text {r }}\) (on) & & & & 5 & & 10. & \% & & 10 & & \% & \(\Delta r_{\text {DS }}(\mathrm{On})=\frac{r^{\text {dS }} \text { (on) max }}{}{ }^{-r^{\prime}}\) & avg. \({ }^{\text {din)min }} \mathrm{V}_{\text {S }}= \pm 10 \mathrm{~V}\) \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{I}_{\text {(} \mathrm{Off}}\)}} & \multirow[t]{2}{*}{S} & 8 & 0.002 & & 0.05 & 50 & & 0.1 & 50 & \multirow{6}{*}{nA} & \(\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}\) & \\
\hline & & & & 8 & 0.002 & & 0.05 & 50 & & 0.1 & 50 & & \(\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}\) & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {D (off }}\)}} & \multirow[t]{2}{*}{D} & 1 & 0.03 & & 0.1 & 100 & & 0.2 & 100 & & \(\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}\) & \(V_{\text {EN }}=0\) \\
\hline & & & & 1 & 0.03 & & 0.1 & 100 & & 0.2 & 100 & & \(\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{S^{\prime}}=10 \mathrm{~V}\) & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {D(on) }}\)}} & \multirow[t]{2}{*}{D} & 8 & 0.1 & & 0.2 & 100 & & 0.4 & 100 & & \(\mathrm{V}_{\text {S(AII) }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}\) & Sequence each switch on \\
\hline & & & & 8 & 0.1 & & 0.2 & 100 & & 0.4 & 100 & & \(\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}\) & \(\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{F
A
U
L
T} & \multicolumn{2}{|l|}{Is with Power OFF} & S & 8 & 1 & & 100 & 1000 & 50 & 50 & 5000 & \multirow[b]{2}{*}{nA} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V^{+}=V^{-}=0 V, V_{S}= \pm 25 \mathrm{~V}, \\
& V_{E N}=V_{O}=0 V, A_{0}, A_{1}, A_{2}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}
\end{aligned}
\]} \\
\hline & \multicolumn{2}{|l|}{\(\mathrm{I}_{\text {S(off) }}\) with Overvoltage (Note 1)} & S & 8 & 1 & & 2000 & 5000 & & 5000 & 5000 & & \(V_{S}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}\) & Sequence each switch \\
\hline \[
1
\] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{\[
\begin{gathered}
A_{0}, A_{1}, A_{2}, \\
\text { or } \\
E N
\end{gathered}
\]} & 4 & . 01 & & -10. & -30 & & -10 & -30 & \multirow{2}{*}{\({ }_{\mu} \mathrm{A}\)} & \(\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}\) or 0 V & \\
\hline & & & & 4 & . 01 & & 10 & 30 & & 10 & 30 & & \(\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}\) or 0 V & \\
\hline \multicolumn{3}{|c|}{\(\mathrm{t}_{\text {transition }}\)} & D & & 0.3 & & 1 & & & & & \multirow{4}{*}{\({ }^{\mu \mathrm{S}}\)} & \multicolumn{2}{|l|}{See Figure 1} \\
\hline & \multicolumn{2}{|l|}{\(\mathrm{t}_{\text {open }}\)} & D & & 0.2 & & & & & & & & \multicolumn{2}{|l|}{See Figure 2} \\
\hline & \multicolumn{2}{|l|}{ton(EN)} & D & & 0.6 & & 1.5 & & & i & & & \multicolumn{2}{|l|}{See Figure 3} \\
\hline & \multicolumn{2}{|l|}{\(\mathrm{t}_{\text {off(EN) }}\)} & D & & 0.4 & & 1 & & & & & & & \\
\hline \[
\left\lvert\, \begin{gathered}
\mathbf{Y} \\
\mathbf{N} \\
A \\
A \\
M
\end{gathered}\right.
\] & \multicolumn{2}{|l|}{\(\mathrm{t}_{\text {on }} \mathrm{t}_{\text {off }}\) Break-Before-Make Delay Settling Time} & D & 8 & 50 & & 25 & & & 10 & & ns & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{E N}=+5 V, A_{0}, A_{1}, A_{2} \text { Strobed } \\
& V_{I N}= \pm 10 \mathrm{~V} \text {, Figure } 4
\end{aligned}
\]} \\
\hline & \multicolumn{2}{|l|}{"OFF" Isolation} & D & & 60 & & & & & & & dB & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 \mathrm{pF}, V_{S}=3 \mathrm{vRMS}, \\
& f=500 \mathrm{KHz}
\end{aligned}
\]} \\
\hline & \multicolumn{2}{|l|}{\(\mathrm{C}_{\mathrm{S}_{\text {(off) }}}\)} & S & & 5 & & & & & & & \multirow{3}{*}{pF} & \(\mathrm{V}_{\mathrm{S}}=0\) & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{E N}=0 V, \\
& f=140 \mathrm{KHz} \\
& \text { to } 1 \mathrm{MHz}
\end{aligned}
\]} \\
\hline & \multicolumn{2}{|l|}{\(C_{\text {D(off) }}\)} & D & & 25 & & & & & & & & \(V_{D}=0\) & \\
\hline & \multicolumn{2}{|l|}{\({ }^{\text {DSS(off) }}\)} & D tos & & 1 & & & \(\cdot\) & \(\cdots\) & & & & \(\mathrm{V}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{D}}=0\) & \\
\hline \multirow[t]{2}{*}{S} & \multirow[t]{2}{*}{Supply Current} & \(+\) & \(\mathrm{v}^{+}\) & 1 & 500 & 900 & 750 & 600 & & 1000 & & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{All \(\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{E N}=0\) or 5 V}} \\
\hline & & - & \(\mathrm{V}^{-}\) & 1 & 500 & 900 & 750 & 600 & & 1000 & & & & \\
\hline
\end{tabular}

Note 1. Readings taken 400 ms after the overvoltage occurs.

Figure 1. \(t_{\text {trans }}\) Switching Test

Figure 2. \(t_{\text {open }}\) (Break-Before-Make) Switching Test

Figure 3. \(\mathrm{t}_{\mathrm{on}}\) and \(\mathrm{t}_{\text {off }}\) Switching Test

Figure 4. Break-Before-Make Delay Test

\section*{DETAILED DESCRIPTION}

The IH5208, like all Intersil's multiplexers, contains a set of CMOS switches forming the channels, and driver and decoder circuitry to control which channel turns ON, if any. In addition, the IH5208 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special treatments that many multiplexer enable inputs require for proper logic swings. This identical circuit treatment of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section).

Another, and more important, difference lies in the switching channel. Previous devices have used parallel \(n\) - and p-channel MOSFET switches, and while this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals, it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the inpout goes outside the supply rails, and even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in cases of input overrange. The IH5208 uses a novel series arrangement of the p-and n-channel switches (Figure5) combined with the dielectrically isolated process to obviate these problems.

Figure 5. Series Connection of Channel Switches

Within the normal analog signal band, the inherent variation of switch ON resistance will balance out almost as well as the customary parallel configuration, but as the analog signal approaches either supply rail, even for an ON channel, either the p - or the n-channel will become a source follower, disconnecting the channel (Figure 6). Thus protection is provided to any input or output channel against overvoltage on any (or several) input or output channels even in the absence of multiplexer supply voltages, and applies up to the breakdown voltage of the respective switches, drawing only leakage currents. Figure 7 shows a more detailed schematic of the channel switches, including the back-gate driver devices which ensure optimum channel ON resistances and breakdown voltage under the various conditions.

Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 8).
(a) OVERVOLTAGE WITH MUX POWER OFF

(b) OVERVOLTAGE WITH MUX POWER ON

Figure 6. Overvoltage Protection

Figure 7. Detailed Channel Switch Schematic

Figure 8. Protection Against Logic Input

\section*{MAXIMUM SIGNAL HANDLING CAPABILITY}

The IH5208 is designed to handle signals in the \(\pm 10 \mathrm{~V}\) range, with a typical \(r_{D S(o n)}\) of \(600 \Omega\); it can successfully handle signals up to \(\pm 13 \mathrm{~V}\), however, \(\mathrm{r}_{\mathrm{DS}(\text { on) }}\) will increase to about 1.8 K . Beyond \(\pm 13 \mathrm{~V}\) the device approaches an open circuit, and thus \(\pm 12 \mathrm{~V}\) is about the practical limit, see Figure 9 .

Figure 10 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detalled Description), while Figure 11 gives the ON resistance variation with temperature.

Figure 9. \(r_{D S(o n)}\) vs Signal Input Voltage \(\|_{A}=+25^{\circ} \mathrm{C}\)

Figure 10. MUX Output Voltage vs Input Voltage Channel 1 Shown; All Channels Similar

Figure 11. Typical \(\mathrm{r}_{\mathrm{DS}(o n)}\) vs Temperature

\section*{USING THE IH5208 WITH SUPPLIES OTHER THAN \(\pm 15 \mathrm{~V}\)}

The IH5208 will operate successfully with supply voltages from \(\pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\); \(\mathrm{r}_{\mathrm{DS}(\mathrm{on})}\) increases as supply voltage decreases, see Figure 12. Leakage currents, however, decrease with a lowering of supply voltage, and therefore the error term product of \(\mathrm{r}_{\mathrm{DS}(\mathrm{on})}\) and leakage current remains reasonably constant. ross(on) also decreases as signal levels decrease. For high system accuracy [acceptable levels of \(r_{\text {DS(on) }}\)] the maximum input signal should be 3 V less than the supply voltages. The logic thresholds will remain TTL compatible.

Figure 12. \(\mathrm{r}_{\mathrm{DS}(\mathrm{on})}\) vs Supply Voltages

IH5208 APPLICATIONS INFORMATION

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline\(A_{2}\) & \(A_{1}\) & \(A_{0}\) & \begin{tabular}{c}
ON \\
SWITCH \\
PAIR
\end{tabular} \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 1 & 0 & 3 \\
0 & 1 & 1 & 4 \\
1 & 0 & 0 & 5 \\
1 & 0 & 1 & 6 \\
1 & 1 & 0 & 7 \\
1 & 1 & 1 & 8 \\
\hline
\end{tabular}

Figure 13. 2 of 16 channel multiplexer using two IH5208s. Overvoltage protection and break-before-make switching are extended to all channels.

IH5208 APPLICATIONS INFORMATION (Continued)

Figure 14. Submultiplexed 2 of 32 system. The two IH5043s are overvoltage protected by the IH5208s. Submultiplexing reduces output capacitance and leakage currents.

\section*{APPLICATION NOTES}

Further information may be found in:

A003 "Understanding and Applying the Analog Switch," by Dave Fullagar
A006 "A New CMOS Analog Gate Technology," by Dave Fullagar

A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger R009 "Reduce CMOS Multiplexer Troubles Through Proper Device Selection," by Dick Wilenken

\section*{CHIP TOPOGRAPHY}

\section*{FEATURES}
- \(r_{d s(o n)}<75 \Omega\), flat from DC to \(100 \mathrm{MHz}(<3 \mathrm{~dB})\)
- "OFF" isolation \(>60 \mathrm{~dB}\) @ 10 MHz
- Cross coupling isolation \(>60 \mathrm{~dB}\) @ 10 MHz
- Directly compatible with TTL, CMOS
- Wide operating power supply range
- Power supply current \(<1 \mu \mathrm{~A}\)
- "Break-before-Make" switching
- Fast switching (80ns/150ns typ)

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c}
TEMPERATURE \\
RANGE
\end{tabular} & PACKAGE \\
\hline IH5341CPD & 0 to \(+70^{\circ} \mathrm{C}\) & \(14-\) Pin DIP \\
\hline IH5341ITW & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & TO-100 \\
\hline IH5341MTW & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & TO-100 \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The IH5341 is a dual SPST, CMOS monolithic switch which uses a "Series/Shunt" ("T"' switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.
Construction of remote and portable video equipment with extended battery life is facilitated by the extremely low current requirements. Switching speeds are typical \(t_{\mathrm{on}}=150 \mathrm{~ns}\) and \(\mathrm{t}_{\mathrm{off}}=80 \mathrm{~ns}\), and guaranteed "Break-beforeMake" switching.
Switch "ON" resistance is typically 40 \(2-50 \Omega\) with \(\pm 15 \mathrm{~V}\) power supplies, increasing to typically \(175 \Omega\) for \(\pm 5 \mathrm{~V}\) supplies. The devices are available in TO-100 and 14-pin epoxy DIP packages.

\section*{FUNCTIONAL DIAGRAM}

Circuit of Switch Channel

Note: Only one side shown.

PIN CONFIGURATIONS

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Supply Voltages \(\mathrm{V}^{+}\)and & 7 V \\
\hline Current in any Terminal & 50mA \\
\hline Analog Input Voltage & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) \\
\hline Operating Temperature & \\
\hline (M Version) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline (I Version) & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline (C Version) & Oto \(+70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline St & \(-65^{\circ} \mathrm{C}\) to \(+160^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & 250 mW \\
\hline Derate above \(25^{\circ} \mathrm{C}\) @ & . . \(7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Logic Control Voltage & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) \\
\hline Voltage on Pin 10 & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) \\
\hline & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS \(\mathrm{v}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multirow[b]{2}{*}{TYP} & \multicolumn{3}{|c|}{M GRADE DEVICE} & \multicolumn{3}{|c|}{I/C GRADE DEVICE} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(-2010^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \[
\begin{array}{r}
+851 \\
+70^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & \\
\hline Supply Voltage Ranges Positive Supply Logic Supply Negative Supply & \[
\begin{aligned}
& V^{+} \\
& V_{L} \\
& V^{-}
\end{aligned}
\] & (Note 3) & \[
\begin{gathered}
4.5>16 \\
4.5>V^{+} \\
-4>-16
\end{gathered}
\] & & \[
\begin{gathered}
5 \text { to } 15 \\
5 \text { to } V^{+} \\
-5 \text { to }-15
\end{gathered}
\] & & \(\cdots\) & \[
\begin{gathered}
5 \text { to } 15 \\
5 \text { to } v^{+} \\
-5 \text { to }-15
\end{gathered}
\] & & V \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Switch "ON" \\
Resistance \\
(Note 4)
\end{tabular}} & & \(V_{D}-5 V\) to \(+5 V\) & & 75 & 75 & 100 & 75 & 75 & 100 & \multirow{4}{*}{\(\Omega\)} \\
\hline & \(\mathrm{r}_{\mathrm{ds}(\mathrm{On})}\) & \[
\begin{aligned}
& I_{S}=10 \mathrm{~mA}, V_{I N}=2.4 V \\
& V_{D}-15 V \text { to }+15 V
\end{aligned}
\] & - & 125 & 125 & 175 & 150 & 150 & 175 & \\
\hline \begin{tabular}{l}
Switch "ON" \\
Resistance
\end{tabular} & \(\mathrm{r}_{\text {ds(on) }}\) & \[
\begin{aligned}
& V^{+}=V_{L}=5 V, V_{I N}=3 V \\
& V^{-}=5 \mathrm{~V}, V_{D}= \pm 5 V
\end{aligned}
\] & & 250 & 250 & 350 & 300 & 300 & 350 & \\
\hline On Resistance Match & & \(\mathrm{l}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}\) & 5 & & & & & & . & \\
\hline \begin{tabular}{l}
Switch "OFF" \\
Leakage \\
(Notes 2 and 4)
\end{tabular} & \(I_{D(0 f f)}\) or 1s(off) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{S} / \mathrm{D}}=+5 \mathrm{~V} \text { to }-5 \mathrm{~V} \\
& \mathrm{~V}_{I N}=0.8 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{S} / \mathrm{D}}=+14 \mathrm{~V} \text { to }-14 \mathrm{~V}
\end{aligned}
\] & . & \[
\begin{aligned}
& 0.1 \\
& 0.2
\end{aligned}
\] & \begin{tabular}{l}
0.1 \\
0.2
\end{tabular} & \[
\begin{aligned}
& 20 \\
& 50
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 100
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
Switch "ON" \\
Leakage
\end{tabular} & \[
\begin{aligned}
& I_{D(o n)} \\
& + \\
& I_{S(o n)}
\end{aligned}
\] & \[
\begin{aligned}
& V_{D}=+5 \mathrm{~V} \text { or }-5 \mathrm{~V} \\
& V_{I N}=2.4 \mathrm{~V} \\
& V_{D}=+14 \mathrm{~V} \text { to }-14 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
0.3 \\
\vdots \\
0.5
\end{gathered}
\] & \[
\begin{aligned}
& 0.3 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 100
\end{aligned}
\] & \[
1.0
\]
\[
1.0
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
40 \\
100
\end{gathered}
\] & \\
\hline Input Logic Current & IN & \(\mathrm{V}_{\mathrm{IN}}>2.4 \mathrm{~V}\) or \(<0\) & * & 1 & 1 & 10 & 1 & 1 & 10 & \\
\hline Positive Supply Quiescent Current & \(1+\) & \(V_{I N}=0 \mathrm{~V}\) or +5 V & ; & 1 & 1 & 10 & 1 & 1 & 10 & \(\mu \mathrm{A}\) \\
\hline Negative Supply Quiescent Current & \(1^{-}\) & \(V_{I N}=0 \mathrm{~V}\) or +5 V & & 1 & 1 & 10 & 1 & 1 & 10 & \\
\hline Logic Supply Quiescent Current & \(\mathrm{I}_{2}\) & \(V_{I N}=0 \mathrm{~V}\) or +5 V & & 1 & 1 & 10 & 1 & 1 & 10 & \\
\hline
\end{tabular}

Note 1: Typical values are not tested in production. They are given as a design aid only.
Note 2: Positive and negative voltages applied to opposite sides of switch, in both directions successively.
Note 3: These are the operating voltages at which the other parameters are tested, and are not directly tested.
Note 4: The logic inputs are either greater than or equal to 2.4 V or less than or equal to 0.8 V , as required, for this test.

AC ELECTRICAL CHARACTERISTICS \(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}^{2} \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified (Note 5).
\begin{tabular}{|l|l|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & SYMBOL & CONDITIONS & MIN & TYP & MAX \\
\hline Switch "ON" Time & \(t_{\text {on }}\) & See Figure 1 & & & \\
\hline Switch "OFF" Time & \(t_{\text {off }}\) & See Figure 1 & & \\
\hline "OFF" Isolation Rejection Ratio & OIRR & See Figure 2 (Note 6) & 60 & & \\
\hline Cross Coupling Rejection Ratio & CCRR & See Figure 3 (Note 6) & 60 & & \\
\hline Frequency where \(r_{\text {ds(on) }}=0.7 \times\) DC & & See Figure 4 (Note 6) & 100 & & \\
\hline
\end{tabular}

Note 5: All AC parameters are sample tested only.
Note 6: Test circuit should be built on copper clad ground plane board, with correctly terminated coax leads, etc.

\section*{TEST CIRCUITS}

Note: Only one side shown. Other acts identically.
Figure 1. Switching Time Test Circuit and Waveforms

\(V_{I N}= \pm 5 V(10 V p-p) @ f=10 \mathrm{MHz}\)
OIRR \(=20 \log \frac{V_{\text {IN }}}{V_{\text {OUT }}}\)
Note: Only one side shown. Other acts identically.
Figure 2. OFF Isolation Test Circuit

\[
\begin{aligned}
& V_{\text {IN }}=225 \mathrm{mVrms} @ f=10 \mathrm{MHz} \\
& \text { CCRR }=20 \log \frac{V_{\text {IN }}}{V_{\text {OUT }}}
\end{aligned}
\]

Figure 3. Cross-Coupling Rejection Test Circuit
\(r_{d s(o n) 3 \mathrm{~dB}}=>\) frequency where \(20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}\) changes by +3 dB i.e., from DC to \(f=40 \mathrm{MHz}, 20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}} \cong-4 \mathrm{~dB}\); when this ratio reaches -1 dB , the frequency causing this is
\(r_{\text {ds(on)3dB }}\) frequency.
\(\mathrm{V}_{\mathrm{IN}}=225 \mathrm{mVrms} @ \mathrm{f}=10 \mathrm{MHz}-100 \mathrm{MHz}\)
\(\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{75 \Omega \text { (load) }}{75 \Omega+r_{\text {ds(on) }}}=\frac{141 \mathrm{mVrms}}{225 \mathrm{mVrms}}\) typically @ \(f=10 \mathrm{MHz}\)

Note: Only one side shown. Other acts identically.
Figure 4. \(\mathrm{r}_{\mathrm{ds}(\mathrm{AC})}\) Pole Frequency Test Circuit

\section*{TYPICAL CHARACTERISTICS}

CCRR (Cross Coupling
Rejection) vs Frequency (See Figure 3)

Switch \(\mathrm{r}_{\text {dexon) }}\) Change with
Frequency (Expressed in
Voltage Divider Terms with a \(75 \Omega\) Load (See Figure 4)

\section*{DETAILED DESCRIPTION}

As can be seen in the Functional Diagram, the switch circuitry is of the so-called " T " configuration, where a shunt switch is closed when the switch is open. This provides much better isolation between the input and the output than does the single series switch, especially at high frequencies, and the result is excellent performance in the Video and RF region compared to conventional Analog Switches.

The input level shifting circuit is similar to that of the IH5140 Series of Analog Switches, and gives very high speed and guaranteed "Break-before-Make" action, with negligible static power consumption and TTL compatibility.

\section*{APPLICATIONS}

\section*{Charge Compensation Techniques}

Charge injection results from the signals out of the level translation circuit being coupled through the gate-channel and gate-source/drain capacitances to the switch inputs and outputs. This feedthrough is particularly troublesome in Sample-and-Hold or Track-and-Hold applications, as it causes a Sample (Track) to Hold offset. The IH5341 devices have a typical injected charge of \(30 \mathrm{pC}-50 \mathrm{pC}\) (corresponding to \(30 \mathrm{mV}-50 \mathrm{mV}\) in a 1000 pF capacitor), at \(\mathrm{V}_{\mathrm{S} / \mathrm{D}}\) of about 0 V .

\section*{IH5341}

This Sample (Track) to Hold offset can be compensated by bringing in a signal equal in magnitude but of the opposite polarity. The circuit of Figure 5 accomplishes this charge injection compensation by using one side of the device as a S \& H (T \& H) switch, and the other side as a generator of a compensating signal. The 1 k potentiometer allows the user to adjust the net injected charge to exactly zero for any analog voltage in the -5 V to +5 V range.

Since the individual parts are very consistent in their charge injection, it is possible to replace the potentiometer with a pair of fixed resistors, and achieve less than 5 mV error for all devices without adjustment.

An alternative arrangement, using a standard TTL inverter to generate the required inversion, is shown in Figure 6. The capacitor needs to be increased, and becomes the only method of adjustment. A fixed value of 22 pF is good for analog values referred to ground, while 35 pF is optimum for \(A C\) coupled signals referred to -5 V as shown in the figure. The choice of -5 V is based on the virtual disappearance at this analog level of the transient component of switching charge injection. This combination will lead to a virtually "glitch-free" switch.

*Adjust pot for OmVp-p step @ \(\mathrm{V}_{\text {OUT }}\) with no analog (AC) signal present

Figure 5. Charge Injection Compensation

Figure 6. Alternative Compensation Circuit

\section*{Overvoltage Spike Protection}

If sustained operation with no supplies but with analog signals applied is possible, it is recommended that diodes (such as 1 N914) be inserted in series with the supply lines to the IH5341. Such conditions can occur if these signals come from a separate power supply or another location, for example. The diodes will be reverse biased under this type of operation, preventing heavy currents from flowing from the analog source through the IH5341.
The same method of protection will provide over \(\pm 25 \mathrm{~V}\) overvoltage protection on the analog inputs when the supplies are present. The schematic for this connection is shown in Figure 7.

Figure 7. Overvoltage Protection Circuit

EQUIVALENT SCHEMATIC DIAGRAM (1/2 of actual circuit on chip shown)

CHIP TOPOGRAPHY

\section*{8-Channel CMOS Analog Multiplexer}

\section*{FEATURES}
- Ultra Low Leakage - \(\mathrm{ID}_{\mathrm{D}}(\mathrm{off}) \leq 100 \mathrm{pA}\)
- rDS(on) < \(\mathbf{4 0 0}\) ohms over full signal and temperature range
- Power supply quiescent current less than \(100 \mu \mathrm{~A}\)
- \(\pm \mathbf{1 4 V}\) analog signal range
- No SCR latchup
- Break-before-make switching
- Binary Address control (3 Address inputs control 8 channels)
- TTL and CMOS compatible strobe control
- Pin compatible with DG508, H1.508 \& AD7508

\section*{GENERAL DESCRIPTION}

The IH6108 is a CMOS monolithic, one of 8 multiplexer. The part is a plug-in replacement for the DG508. Three line binary decoding is used so that the 8 channels can be controlled by 3 Address inputs; additionally a fourth input is provided to use as a system enable. When the ENable input is high (5 V) the channels are sequenced by the 3 line Address inputs, and when low (OV) all channels are off. The 3 Address inputs are controlled by TTL logic or CMOS logic elements, a "0" corresponding to any voltage greater than 2.4 V . Note that the ENable input (EN) must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

FUNCTIONAL DIAGRAM

3 LINE BINARY ADDRESS INPUTS
(101)ANDEN@5V

ABOVE EXAMPLE SHOWS CHANNEL 6 TURNED ON

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline\(A_{2}\) & \(A_{1}\) & \(A_{0}\) & \(E N\) & ON SWITCH \\
\hline \(\mathbf{x}\) & \(\mathbf{x}\) & \(\mathbf{x}\) & 0 & NONE \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 & 3 \\
0 & 1 & 1 & 1 & 4 \\
1 & 0 & 0 & 1 & 5 \\
1 & 0 & 1 & 1 & 6 \\
1 & 1 & 0 & 1 & 7 \\
1 & 1 & 1 & 1 & 8 \\
\hline
\end{tabular}
\(A_{0}, A_{1}, A_{2}\)
Logic " 1 " \(=V_{A H} \geq 2.4 \mathrm{~V} \quad V_{E N H} \geq 4.5 \mathrm{~V}\)
Logic " 0 " \(=V_{A L} \leq 0.8 \mathrm{~V}\)

PIN CONFIGURATION

\section*{ORDERING INFORMATION}

Ceramic package available as special order only (IH6108MDE/CDE)
\begin{tabular}{|c|c|c|}
\hline PART NUMBER & TEMPERATURE RANGE & PACKAGE \\
\hline IH6108MJE & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 16 pin CERDIP \\
\hline IH6108CJE & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 16 pin CERDIP \\
\hline IH 6108 CPE & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 16 pin plastic DIP \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}

VIN (A, EN) to Ground -15 V to 15 V

\(V_{s}\) or \(V_{D}\) to \(V^{-}\).. \(0,32 \mathrm{~V}\)
\(\mathrm{V}^{+}\)to Ground 16V
\(\mathrm{V}^{-}\)to Ground -16V
Current (Any Terminal) 30 mA

Current (Analog Source or Drain) 20 mA
Operating Temperature -55 to \(125^{\circ} \mathrm{C}\)
Storage Temperature 65 to \(150^{\circ} \mathrm{C}\)
Lead Temp (Soldering, 10 sec) \(300^{\circ} \mathrm{C}\)
Power Dissipation (Package)* 1200 mW
*All leads soldered or welded to PC board. Derate \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(70^{\circ} \mathrm{C}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS \(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}\) (Note 1), Ground \(=0 \mathrm{~V}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow{3}{*}{CHARACTERISTIC}} & \multirow{3}{*}{MEASURED TERMINAL} & \multirow[t]{3}{*}{\[
\begin{array}{|c|}
\hline \text { NO } \\
\text { TESTS } \\
\text { PER } \\
\text { TEMP } \\
\hline
\end{array}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& \text { TYP } \\
& 25^{\circ} \mathrm{C}
\end{aligned}
\]} & \multicolumn{6}{|c|}{MAX LIMITS} & \multirow{3}{*}{UNIT} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{TEST CONDITIONS}} \\
\hline & & & & & & \multicolumn{3}{|c|}{M SUFFIX} & \multicolumn{3}{|c|}{C SUFFIX} & & & \\
\hline & & & & & & \(-55^{\circ} \mathrm{C}\) & \(25^{\circ} \mathrm{C}\) & \(125^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) & \(25^{\circ} \mathrm{C}\) & \(70^{\circ} \mathrm{C}\) & & & \\
\hline \multicolumn{3}{|c|}{\multirow[b]{2}{*}{rDS(ON)}} & \multirow[b]{2}{*}{\(S\) to D} & 8 & 180 & 300 & 300 & 400 & 350 & 350 & 450 & \multirow[b]{2}{*}{\(\Omega\)} & \(\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{Is}^{2}=-1.0 \mathrm{~mA}\) & Sequence each switch on \\
\hline & & & & 8 & 150 & 300 & 300 & 400 & 350 & 350 & 450 & & \(\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{Is}=-1.0 \mathrm{~mA}\) & \(\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {AH }}=2.4 \mathrm{~V}\) \\
\hline & \multicolumn{2}{|l|}{\(\triangle \mathrm{OSS}(\mathrm{ON})\)} & & & 20 & & & & & & & \% & \multicolumn{2}{|l|}{\[
\mathrm{SS}(\mathrm{on})=\frac{\mathrm{rDS}_{\text {(on) }} \text { max }- \text { rDS(on) } \min }{\text { rDS(on)avg. }} V_{S}= \pm 10 \mathrm{~V}
\]} \\
\hline 1 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I}} & \multirow[b]{2}{*}{S} & 8 & 0.002 & & 0.05 & 50 & & 0.1 & . 50 & \multirow{6}{*}{nA} & \(\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}\) & \multirow{4}{*}{\(V_{E N}=0\)} \\
\hline T & & & & 8 & 0.002 & & 0.05 & 50 & & 0.1 & 50 & & \(\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}\) & \\
\hline \multirow[t]{3}{*}{} & C & & \multirow[b]{2}{*}{D} & 1 & 0.03 & & 0.1 & 100 & & 0.2 & 100 & & \(\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}\) & \\
\hline & HID(OfF) & & & 1 & 0.03 & & 0.1 & 100 & & 0.2 & 100 & & \(\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}\) & \\
\hline & & & \multirow[b]{2}{*}{D} & 8 & 0.1 & & 0.2 & 100 & & 0.4 & 100 & & \(\mathrm{V}_{\text {S(AII }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}\) & \multirow[t]{2}{*}{Sequence each switch on
\[
V_{A L}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}
\]} \\
\hline \multicolumn{3}{|c|}{ID(ON)} & & 8 & 0.1 & & 0.2 & 100 & & 0.4 & 100 & & \(\mathrm{V}_{S(\mathrm{~A} \mid 1)}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}\) & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
I \\
N \\
P \\
U \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IAN(ON) or IA(on) lan(off) IA(off) \(^{2}\)}} & \multirow[t]{3}{*}{\(A_{0}, A_{1}\) or \(A_{2}\) inputs \(A_{0} A_{1}\) \(\mathrm{A}_{2}\)} & 3 & . 01 & & -10 & -30 & & -10 & -30 & \multirow{4}{*}{\(\mu \mathrm{A}\)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}\) or 0V} \\
\hline & & & & 3 & . 01 & & 10 & 30 & & 10 & 30 & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}\) or 0 V} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IA}} & & 3 & & & -10 & -30 & & -10 & -30 & & \(V_{E N}=5 \mathrm{~V}\) & \multirow[t]{2}{*}{All \(\mathrm{V}_{\mathrm{A}}=0\) (Address pins)} \\
\hline & & & EN & 1 & & & -10 & -30 & & -10 & -30 & & \(\mathrm{V}_{\mathrm{EN}}=0\) & \\
\hline \multicolumn{3}{|c|}{transition} & D & & 0.3 & & 1 & & & & & \multirow{4}{*}{\(\mu \mathrm{s}\)} & \multicolumn{2}{|l|}{See Fig. 1} \\
\hline D & \multicolumn{2}{|l|}{0 topen} & D & & 0.2 & & & & & & & & \multicolumn{2}{|l|}{See Fig. 2} \\
\hline \multicolumn{3}{|c|}{Y \(\tan\) (EN)} & D & & 0.6 & & 1.5 & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{See Fig. 3}} \\
\hline N & \multicolumn{2}{|l|}{toff(EN)} & D & & 0.4 & & 1 & & & & & & & \\
\hline A & \multicolumn{2}{|l|}{"OFF" Isolation} & D & & 60 & & & & & & & dB & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 p F, V_{S}=3 \mathrm{VRMS}, \\
& f=500 \mathrm{kHz}
\end{aligned}
\]} \\
\hline 1 & \multicolumn{2}{|l|}{\(\mathrm{Cs}_{\text {(0ff) }}\)} & S & & 5 & & & & & & & \multirow{3}{*}{pF} & \(V_{S}=0\) & \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{EN}}=\mathrm{OV} . \mathrm{f}=140 \mathrm{kHz} \text { to } \\
& 1 \mathrm{MHz}
\end{aligned}
\]} \\
\hline C & \multicolumn{2}{|l|}{Cd(off)} & D & & 25 & & & & & & & & \(V_{D}=0\) & \\
\hline \multicolumn{3}{|c|}{Cos(off)} & D to S & & 1 & & & & & & & & \(V_{S}=0, V_{D}=0\) & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
S \\
\hline \\
\hline \\
\(P\) \\
\(P\) \\
L \\
L \\
Y
\end{tabular}} & \multirow[t]{2}{*}{Supply Current} & + & \(\mathrm{V}^{+}\) & 1 & 40 & & 200 & & & 1000 & & \multirow{4}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}\)} & \multirow{4}{*}{All \(\mathrm{V}_{\mathrm{A}}=0\) or 5 V} \\
\hline & & - & \(V^{-}\) & 1 & 2 & & 100 & & & 1000 & & & & \\
\hline & \multirow[t]{2}{*}{Standby Current} & + & \(\mathrm{V}^{+}\) & 1 & 1 & & 100 & & & 1000 & & & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{EN}}=0\)} & \\
\hline & & - & \(\mathrm{V}^{-}\) & 1 & 1 & & 100 & & & 1000 & & & & \\
\hline
\end{tabular}

NOTE 1: See Enable Input Strobing Levels, Section 1.

Figure 1. ttransition Switching Test

Figure 2. topen Break-Before-Make, Switching Test

Figure 3. \(t_{o n}\) and \(\mathbf{t}_{\text {off }}\) Switching Test

\section*{IH6108 APPLICATION INFORMATION}

\section*{I. ENable Input Strobing Levels}

The ENable input on the IH 6108 requires a minimum of +4.5 V to trigger to the " 1 " state and a maximum of +0.8 V to trigger to the " 0 " state. If the ENable input is being driven from TTL
logic, a pull-up resistor of \(1 k\) to \(3 k \Omega\) is required from the gate output to +5 V supply. (See Figure 4)

Figure 4. ENable Input Strobing from TTL Logic

\section*{IH6108 APPLICATION INFORMATION}

When the EN input is driven from CMOS logic, no pullup is necessary, see Fig. 5.

Figure 5. ENable Input Driven from CMOS Logic

The supply voltage of the CD4009 affects the switching speed of the IH6108; the same is true for TTL supply voltage levels. The chart below shows the effect, on trans for a supply varying from +4.5 V to +5.5 V .
\begin{tabular}{cc}
CMOS OR TTL SUPPLY VOLTAGE & TYPICAL \(\boldsymbol{\text { trans }}\) @ \(\mathbf{2 5}^{\circ} \mathbf{C}\) \\
+4.5 V & 400 ns \\
+4.75 V & 300 ns \\
+5.00 V & 250 ns \\
+5.25 V & 200 ns \\
+5.50 V & 175 ns
\end{tabular}

The throughput rate can therefore be maximized by using a +5 V to +5.5 V supply for the ENable Strobe Logic.

The examples shown in Figures 4 and 5 deal with ENable strobing when expansion to more than eight channels is required; in these cases the EN terminal acts as a fourth address input. If eight channels or less are being multiplexed, the EN terminal can be directly connected to +5 V logic supply to enable the IH 6108 at all times.

\section*{II. Using the IH6108 with supplies other than \(\pm 15 \mathrm{~V}\)}

The IH6108 can be used with power supplies ranging from \(\pm 6 \mathrm{~V}\) to \(\pm 16 \mathrm{~V}\). The switch rDS(on) will increase as the supply voltages decrease, however the multiplexer error term (the product of leakage times rDS(on)) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the enable (EN) voltage is at least 0.7 V below \(\mathrm{V}+\) at all times. If this is not done the Address input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to \(\mathrm{V}+\) (pin 13) via a silicon diode as shown in Figure 6. When using this type of configuration, a further requirement must be metthe strobe levels at A0 and A1 must be within 2.5 V of the EN
voltage in order to define a binary " 1 " state. For the case shown in Figure 6 the EN voltage is 11.3 V which means that logic high at A 0 and A 1 is \(=+8.8 \mathrm{~V}\) (logic low continues to be \(=\) 0.8 V). In this configuration the IH 6108 cannot be driven by TTL (+5 V) or CMOS \((+5 \mathrm{~V})\) logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the IH6108 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7 V differential voltage required between \(\mathrm{V}^{+}\)and EN. (See Figure 7) A \(1 \mu\) F capacitor can be placed across the diode to minimize switching glitches.

Figure 6. IH6108 Connection Diagram for less than \(\pm 15 \mathrm{~V}\) Supply Operation.

\section*{IH6108}

IH6108 APPLICATION INFORMATION (Continued)

Figure 7. IH6108 Connection Diagram with ENable Input Strobing for less than \(\pm 15 \mathrm{~V}\) Supply Operation.
III. Peak-to-Peak Signal Handling Capability

The IH6108 can handle input signals up to \(\pm 14 \mathrm{~V}\) (actually -15 V to +14.3 V because of the input protection diode) when using \(\pm 15 \mathrm{~V}\) supplies.

The electrical specifications of the IH6108 are guaranteed for \(\pm 10 \mathrm{~V}\) signals, but the specifications have very minor changes for \(\pm 14 \mathrm{~V}\) signals. The notable changes are slightly lower rDS(on) and slightly higher leakages.

\author{
IH6116 \\ 16-Channel
}

\section*{CMOS Analog Multiplexer}

\section*{FEATURES}
- Pin compatible with DG506, HI-506 \& AD7506
- Ultra Low Leakage - ID(off) \(\leq 100 \mathrm{pA}\)
- \(\pm 11\) analog signal range
- rDS(on) \(<\mathbf{7 0 0}\) ohms over full signal and temperature range
- Break-before-make switching
- TTL and CMOS compatible Address control
- Binary Address control (4 Address inputs control 16 channels)
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than \(100 \mu \mathrm{~A}\)
- No SCR latchup

\section*{GENERAL DESCRIPTION}

The IH6116 is a CMOS monolithic, one of 16 multiplexer. The part is a plug-in replacement for the DG506. Four line binary decoding is used so that the 16 channels can be controlled by 4 Address inputs; additionally a fifth input is provided to use as system enable. When the ENable input is high (5V) the channels are sequenced by the 4 line, Address inputs, and when low (0 V), all channels are off. The 4 Address inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 3.0 V . Note that the ENable input must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

\section*{FUNCTIONAL DIAGRAM}

4 LINE BINARY ADDRESS INPUTS
\((0) 0 \quad 0 \quad 1)\) AND EN @ 5 V
ABOVE EXAMPLE SHOWS CHANNEL 9 TURNED ON

\section*{DECODE TRUTH TABLE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(A_{3}\) & \(A_{2}\) & \(A_{1}\) & \(A_{0}\) & \(E N\) & \(O N\) SWITCH \\
\hline\(x\) & \(x\) & \(x\) & \(x\) & 0 & NONE \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 & 3 \\
0 & 0 & 1 & 1 & 1 & 4 \\
0 & 1 & 0 & 0 & 1 & 5 \\
0 & 1 & 0 & 1 & 1 & 6 \\
0 & 1 & 1 & 0 & 1 & 7 \\
0 & 1 & 1 & 1 & 1 & 8 \\
1 & 0 & 0 & 0 & 1 & 9 \\
1 & 0 & 0 & 1 & 1 & 10 \\
1 & 0 & 1 & 0 & 1 & 11 \\
1 & 0 & 1 & 1 & 1 & 12 \\
1 & 1 & 0 & 0 & 1 & 13 \\
1 & 1 & 0 & 1 & 1 & 14 \\
1 & 1 & 1 & 0 & 1 & 15 \\
1 & 1 & 1 & 1 & 1 & 16 \\
\hline
\end{tabular}

Logic " 1 " \(=V_{\text {AH }} \geq 3.0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{ENH}} \geq 4.5 \mathrm{~V}\)
Logic " 0 " \(=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}\)

PIN CONFIGURATION

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline PART NUMBER & TEMPERATURE RANGE & PACKAGE \\
\hline IH 6116 MJI & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 28 pin CERDIP \\
\hline IH 6116 C J & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 28 pin CERDIP \\
\hline IH 6116 CPI & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 28 pin Plastic DIP \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS
ViN (A, EN) to Ground.............................. . -15 V to 15 V
\(V_{S}\) or \(V_{D}\) to \(\mathrm{V}^{+}\) \(0,-32 \mathrm{~V}\)
\(V_{s}\) or \(V_{D}\) to \(V^{-}\)... \(0,32 \mathrm{~V}\)
\(\mathrm{V}^{+}\)to Ground .. 16 V
\(\mathrm{V}^{-}\)to Ground 16 V
Current (Any Terminal) 30 mA

Current (Analog Source or Drain) 20 mA
Operating Temperature -55 to \(125^{\circ} \mathrm{C}\)
Storage Temperature -65 to \(150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 secs) \(300^{\circ} \mathrm{C}\)
Power Dissipation (Package)* 1200 mW
*All leads soldered or welded to PC board. Derate \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(70^{\circ} \mathrm{C}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS \(\mathrm{v}^{+}=15 \mathrm{~V}, \mathrm{v}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{E N}=+5 \mathrm{~V}\) (Note 1), Ground \(=0 \mathrm{~V}\), unless otherwise specified.

NOTE 1: See Section V. Enable Input Strobing Levels.

Figure 1

Figure 3
Figure 2

\section*{IH6116 APPLICATIONS}
I. 1 out of \(\mathbf{3 2}\) channel multiplexer using 2 IH6116s
 pullup to drive EN input.

DECODE TRUTH TABLE
DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(A_{4}\) & \(A_{3}\) & \(A_{2}\) & \(A_{1}\) & \(A_{0}\) & ON SWITCH \\
\hline 0 & 0 & 0 & 0 & 0 & S 1 \\
0 & 0 & 0 & 0 & 1 & S 2 \\
0 & 0 & 0 & 1 & 0 & S 3 \\
0 & 0 & 0 & 1 & 1 & S 4 \\
0 & 0 & 1 & 0 & 0 & S 5 \\
0 & 0 & 1 & 0 & 1 & S 6 \\
0 & 0 & 1 & 1 & 0 & S 7 \\
0 & 0 & 1 & 1 & 1 & S 8 \\
0 & 1 & 0 & 0 & 0 & S 9 \\
0 & 1 & 0 & 0 & 1 & S 10 \\
0 & 1 & 0 & 1 & 0 & S 11 \\
0 & 1 & 0 & 1 & 1 & S 12 \\
0 & 1 & 1 & 0 & 0 & S 13 \\
0 & 1 & 1 & 0 & 1 & S 14 \\
0 & 1 & 1 & 1 & 0 & S 15 \\
0 & 1 & 1 & 1 & 1 & S 16 \\
\hline
\end{tabular}

Figure 4

\section*{IH6116}

IH6116 APPLICATIONS
(Continued)
II. 1 out of \(\mathbf{3 2}\) channel multiplexer using 2 IH6116s; using an IH5041 for submultiplexing

*TTL gate must have
pullup resistor to +5 V to drive EN inputs

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{A}_{4}\) & \(\mathbf{A}_{3}\) & \(\mathbf{A}_{2}\) & \(\mathbf{A}_{1}\) & \(\mathbf{A}_{0}\) & ON SWITCH \\
\hline 0 & 0 & 0 & 0 & 0 & S 1 \\
0 & 0 & 0 & 0 & 1 & S 2 \\
0 & 0 & 0 & 1 & 0 & S 3 \\
0 & 0 & 0 & 1 & 1 & S 4 \\
0 & 0 & 1 & 0 & 0 & S \\
0 & 0 & 1 & 0 & 1 & S 6 \\
0 & 0 & 1 & 1 & 0 & S 7 \\
0 & 0 & 1 & 1 & 1 & S 8 \\
0 & 1 & 0 & 0 & 0 & S 9 \\
0 & 1 & 0 & 0 & 1 & S 10 \\
0 & 1 & 0 & 1 & 0 & S 11 \\
0 & 1 & 0 & 1 & 1 & S 12 \\
0 & 1 & 1 & 0 & 0 & S 13 \\
0 & 1 & 1 & 0 & 1 & S 14 \\
0 & 1 & 1 & 1 & 0 & S 15 \\
0 & 1 & 1 & 1 & 1 & S 16 \\
\hline
\end{tabular}

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{A}_{4}\) & \(A_{3}\) & \(A_{2}\) & \(A_{1}\) & \(A_{0}\) & ON SWITCH \\
\hline 1 & 0 & 0 & 0 & 0 & S17 \\
1 & 0 & 0 & 0 & 1 & S 18 \\
1 & 0 & 0 & 1 & 0 & S 19 \\
1 & 0 & 0 & 1 & 1 & S 20 \\
1 & 0 & 1 & 0 & 0 & S 21 \\
1 & 0 & 1 & 0 & 1 & S 22 \\
1 & 0 & 1 & 1 & 0 & S 23 \\
1 & 0 & 1 & 1 & 1 & S 24 \\
1 & 1 & 0 & 0 & 0 & S 25 \\
1 & 1 & 0 & 0 & 1 & S 26 \\
1 & 1 & 0 & 1 & 0 & S 27 \\
1 & 1 & 0 & 1 & 1 & S 28 \\
1 & 1 & 1 & 0 & 0 & S 29 \\
1 & 1 & 1 & 0 & 1 & S 30 \\
1 & 1 & 1 & 1 & 0 & S 31 \\
1 & 1 & 1 & 1 & 1 & S 32 \\
\hline
\end{tabular}

Figure 5

IH6116 APPLICATIONS (Continued)
III. 1 out of 64 multiplexer using \(41 / 16\) s and IH5053 as submultiplexer

Figure 6

\section*{IV. General note on expandability of IH6116}

The IH6116 is a two tier multiplexer, where sixteen input channels are routed to a common output in blocks of 4 . Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied together. Thus 20 switches are needed to handle
the 16 channels of information. The advantage of this is lower output capacity and leakage that would be possible using a system with all 16 channels tied to one common output. Aiso the expandability into \(32,64,128\), etc. is facilitated. Figures 4, 5, and 6 show how the IH6116 is expanded.

Figure 4 shows a 1 of 32 multiplexer, using 2 IH 6116 s . Since the 6116 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. The four output channels of each 6116 are tied together so that 8 channels are tied to the Vout common point. Since only one channel of information is on at a time, the common output will consist of 7 OFF channels and 1 ON channel. Thus the output leakage will correspond to 7 ID (offs) and \(1 \mathrm{lD}(o n)\), or about 1.0 nA of typical leakage at room temperature. Thruput speed will be typically \(0.8 \mu \mathrm{~s}\) for ton and \(0.3 \mu\) s for toff. Thruput channel resistance will be in the \(500 \Omega\) area.
Figure 5 shows the 1 of 32 MUX of Figure 4, with a third tier of submultiplexing added to further reduce leakage and output capacity. The IH 5041 has typical ON resistances of \(50 \Omega\) (max. is \(75 \Omega\)) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5. Thruput channel speed is a little slower by about \(0.5 \mu \mathrm{~s}\) for both ON and OFF time, and output leakage is about 0.2 nA .
Figure 6 shows a 1 of 64 MUX using 3 tier MUXing (similar to Figure 5). The Intersil IH5053 is used to get the third tier of MUXing. The VOUT point will see 3 OFF channels and 1 ON channel at any one time, so that the typical leakages will be about 0.4 nA . Thruput channel resistance will be in the 550 ohm area with thruput switching speeds about \(1.3 \mu\) s for ON time and \(0.8 \mu \mathrm{~s}\) for OFF time.
The IH5053 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6116 (typically plus and minus 15 V) and uses break before make switching. Also power supply quiescent currents are on the order of 1 \(2 \mu \mathrm{~A}\) so that no excessive system power is generated. Note
that the logic of the 5053 is such that it can be tied directly to the ENable input (as shown in the figures) with no extra logic being required.

\section*{V. Enable input strobing levels}

The enable input (EN) acts as an enabling or disabling pin for the IH6116 when used as a 16 channel MUX. However, when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 4 and 5 show the EN pin used as the A4 input.
For the system to function properly the EN input (pin 18) must go to \(5 \mathrm{~V} \pm 5 \%\) for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up resistor of \(1 \mathrm{k} \Omega\) or less should be used to pull the output voltage up to 5 V . When using CMOS logic, the high state goes to the power supply so no pull-up is required.
If used on high voltage logic supplies, EN should be at least 0.7 V below \(\mathrm{V}+\) at all times. See IH6108 data sheet for details.

\section*{APPLICATION NOTES}

Further information may be found in:
A003 "Understanding and Applying the Analog Switch," by Dave Fullagar
A006 "A New CMOS Analog Gate Technology," by Dave Fullagar
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger
R009 "Reduce CMOS Multiplexer Troubles Through Proper Device Selection," by Dick Wilenken

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the \(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}\) of the switch is maintained at specified values.

\section*{FEATURES}
- Driven direct from TTL or CMOS logic
- Translates logic levels up to 30 V levels
- Switches 20V \({ }_{\text {ACPP }}\) signals when used in conjunction with Intersil IH401A Varafet (as an analog gate)
- ton \(\leq \mathbf{3 0 0 n S} \&\) toff \(\leq \mathbf{2 0 0 n S}\) for \(\mathbf{3 0 V}\) level shifts
- Quiescent supply current \(\leq 100 \mu\) a for any state (d.c.)
- Provides both normal \& inverted outputs

\section*{GENERAL DESCRIPTION}

The IH6201 is a CMOS, Monolithic, Dual Voltage Translator; it takes the low level TTL or CMOS logic level and converts them to higher levels (i.e. to \(\pm 15 \mathrm{~V}\) swings). This translator is typically used in making solid state switches, or analog gates.

When used in conjunction with the Intersil IH401 family Varafets, the combination makes a complete solid state switch capable of switching signals up to 22 Vpp and up to 20 MHz in frequency. This switch is a "break-before-make" type (i.e. toff time <ton time). The combination has typical toff \(\approx 80 \mathrm{nS}\) and typ. ton \(\approx 200 \mathrm{nS}\) for signals up to 20 Vpp in amplitude.
A TTL "1" input strobe will force the \(\theta\) driver output up to \(\mathrm{V}^{+}\)level; the \(\bar{\theta}\) output will be driven down to the \(\mathrm{V}^{-}\)level. When the TTL input goes to " 0 ", the \(\theta\) output goes to \(V\) ' and \(\bar{\theta}\) goes to \(\mathrm{V}^{+}\); thus \(\theta\) and \(\bar{\theta}\) are \(180^{\circ}\) out of phase with each other. These complementary outputs can be used to create a wide variety of functions such as SPDT and DPDT switches, etc.; alternatively the complementary outputs can be used to drive an N and P channel Mosfet, to make a complete Mosfet analog gate.
The driver typically uses +5 V and \(\pm 15 \mathrm{~V}\) power supplies; however a wide range of \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)is possible, however \(\mathrm{V}^{+}>5 \mathrm{~V}\) is necessary for the driver to work properly.

\section*{ABSOLUTE MAXIMUM RATINGS}

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Operating Temperature................\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Lead Temperature (Soldering 10 sec) \(300^{\circ} \mathrm{C}\)
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering 10 sec) \(300^{\circ} \mathrm{C}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL SPECIFICATIONS \(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ITEM} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{IH6201CDE} & \multicolumn{3}{|c|}{IH6201MDE} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \(-25^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+85^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \\
\hline \(\theta\) or \(\bar{\theta}\) driver output swing & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~J}\) 」 \({ }^{+3 \mathrm{~V}} \mathrm{~L}\) fig. 2B & 28 & 28 & 28 & 28 & 28 & 28 & Vpp \\
\hline Vin strobe level (" 1 ") for proper translation & \[
\begin{aligned}
& \theta \geq 14 \mathrm{~V} \\
& \bar{\theta} \geq-14 \mathrm{~V}
\end{aligned}
\] & 3.0 & 3.0 & 3.0 & 2.4 & 2.4 & 2.4 & V.c. \\
\hline VIN strobe level (" 0 ") for proper translation & \[
\begin{aligned}
& \theta \geq-14 \mathrm{~V} \\
& \bar{\theta} \geq 14 \mathrm{~V}
\end{aligned}
\] & 0.4 & 0.4 & 0.4 & 0.8 & 0.8 & 0.8 & VD.C. \\
\hline IIN input strobe current draw (for \(0 \mathrm{~V} \rightarrow 5 \mathrm{~V}\) range) & \(\mathrm{VIN}=0 \mathrm{~V}\) or +5 V & 1 & 1 & 1 & 1 & 1 & 1 & \(\mu \mathrm{A}\) \\
\hline ton time & \begin{tabular}{l}
\[
\mathrm{viN}_{\mathrm{iN}}=0 \mathrm{vV} \sqrt{\frac{3 \mathrm{~V}}{4 \mu \mathrm{~S}}}, C_{L}=30 \mathrm{pf}
\] \\
switching turn-on time fig. 2B
\end{tabular} & 400 & 400 & 400 & 300 & 300 & 300 & nS \\
\hline toff time & \(V_{i N}=0 v \sqrt{43 V} C_{L} \quad C_{L}=30 \mathrm{pf}\) switching turn-off time fig. 2B & 300 & 300 & 300 & 200 & 200 & 200 & nS \\
\hline \(\mathrm{I}^{+}\left(\mathrm{V}^{+}\right)\)power supply quiescent current & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) or +5 V & 100 & 100 & 100 & 100 & 100 & 100 & \(\mu \mathrm{A}\) \\
\hline I- (V-) power supply quiescent current & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) or +5 V & 100 & 100 & 100 & 100 & 100 & 100 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{L}}\left(\mathrm{V}_{\mathrm{L}}\right)\) power supply quiescent current & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) or +5 V & 100 & 100 & 100 & 100 & 100 & 100 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{APPLICATIONS}

\section*{I. INPUT DRIVE CAPABILITY}

The strobe input lines are designed to be driven from TTL logic levels; this means \(0.8 \mathrm{~V} \rightarrow 2.4 \mathrm{~V}\) levels max. and min. respectively. For those users who require 0.8 V to 2.0 V operation, a pull-up resistor is recommended from the TTL output to +5 V line. This resistor is not critical and can be in the \(1 \mathrm{k} \Omega\) to \(10 \mathrm{k} \Omega\) range.
When using 4000 series CMOS logic, the input strobe is connected direct to the 4000 series gate output and no pull up resistors, or any other interface, is necessary.

When the input strobe voltage level goes below Gnd (i.e. to -15 V) circuit is unaffected as long as \(\mathrm{V}^{+}\)to \(\mathrm{V}_{\mathrm{IN}}\) does not exceed absolute maximum rating.

\section*{II. OUTPUT DRIVE CAPABILITY}

The translator output is designed to drive the Intersil IH401 family of Varafets; these are N -channel J-FETS with built-in driver diodes. Driver diodes are necessary to isolate the signal source from the driver/translator output; this prevents forward biasing between the signal input and the +VCC supply. The IH6201 will drive any J-FET provided some sort of isolation is added i.e.

Figure 1
You will notice in Figure 1 that a "referral" resistor has been added from 2N4391 gate to its source. This resistor is needed to compensate for inadequate charge area curve for isolation diode (i.e. if C vs. V plot for diode \(\leq 2\) [C vs. V plot for output JFET] switch won't function; then adding this resistor overcomes this condition. The "referral" resistor is normally in the \(100 \mathrm{k} \Omega\) to \(1 \mathrm{M} \Omega\) range and is not too critical.

\section*{III. MAKING A COMPLETE SOLID STATE SWITCH THAT CAN HANDLE 20Vpp SIGNALS}

The limitation on signal handling capability comes from the output gating device. When a J-FET is used, it's the pinch-off of the J-FET acting with the \(\mathrm{V}^{-}\)supply that does the

\section*{IH6201}

\section*{APPLICATIONS, CONTINUED}
limiting. In fact max. signal handling capability \(=2(\mathrm{Vp}+\) (\(\mathrm{V}^{-}\))) Vpp where \(\mathrm{Vp}=\) pinch-off voltage of J-FET chosen. i.e. \(V p=7 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \therefore\) max. signal handling \(=2(7 \mathrm{~V}+\) \((-15 \mathrm{~V})) \mathrm{Vpp}=2(7 \mathrm{~V}-15) \mathrm{pp}=2(-8 \mathrm{Vpp})=16 \mathrm{Vpp}\). Obviously to get \(\geq 20 \mathrm{Vpp}, \mathrm{Vp} \geq 5 \mathrm{~V}\) with \(\mathrm{V}^{-}=-15 \mathrm{~V}\). Another simple way to get 20 Vpp with \(\mathrm{Vp}=7 \mathrm{~V}\), is to increase \(\mathrm{V}^{-}\)to -17 V . In fact using \(\mathrm{V}^{+}=+12 \mathrm{~V}\) or +15 V and setting \(\mathrm{V}^{-}=-18 \mathrm{~V}\) allows one to switch 20Vpp with any member of IH401 family. The
advantage of using the \(\mathrm{Vp}=7 \mathrm{~V}\) pinch-off (along with unsymmetrical supplies) over the \(\mathrm{Vp}=5 \mathrm{~V}\) pinch-off (and \(\pm 15 \mathrm{~V}\) supplies) is that you will have a much lower \(\operatorname{RDS}(\mathrm{ON})\) resistance for the \(V p=7 \mathrm{~V}\) fet.(i.e. for the 2 N 4391 fet \(\mathrm{rDS}(\mathrm{ON}) \approx 22 \Omega, \mathrm{rDS}(\mathrm{ON}) \approx 35 \Omega\)) \(\mathrm{V}_{\mathrm{p}}=7 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{p}}=5 \mathrm{~V}\)

The IH6201 is a dual translator, each containing 4 CMOS FETs. The schematic of one-half IH6201, driving one-fourth of an IH401, is shown in Figure 2A.

Figure 2A

Figure 2B

NOTE: Each translator output has a \(\theta\) and \(\bar{\theta}\) output. \(\theta\) is just the inverse of \(\bar{\theta}\).

A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See III.)

\section*{I. Dual SPST Analog Switch}
II. DPDT Analog Switch

NOTE: Either switch is turned on when strobe input goes high.

APPLICATIONS, CONTINUED
III. Dual SPDT

IV. Dual DPST

\title{
4-Channel Differential CMOS Analog Multiplexer
}

\section*{FEATURES}
- Ultra low leakage - ID(off) \(\leq 100 \mathrm{pA}\)
- rDS(on) < \(\mathbf{4 0 0}\) ohms over full signal and temperature range
- Power supply quiescent current less than \(100 \mu \mathrm{~A}\)
- \(\pm 14 \mathrm{~V}\) analog signal range
- No SCR latch up
- Break-before-make switching
- Binary Address control (2 Address inputs control 2 out of 8 channels)
- TTL and CMOS compatible Address control
- Pin compatible with HI509, DG509 \& AD7509

\section*{GENERAL DESCRIPTION}

The IH6208 is a monolithic 2 of 8 CMOS multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable. When the ENable input is high (5 V) the channels are sequenced by the 2 line binary inputs, and when low (OV) all channels are off. The 2 Address inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 2.4 V . Note that the ENable input must be taken to 5 V to enable the system, and less than 0.8 V to disable the system.

\section*{ABSOLUTE MAXIMUM RATINGS}

Vin (A, EN) to Ground \(-15 \mathrm{~V}, \mathrm{~V}_{1}\)
\(V_{S}\) or \(V_{D}\) to \(\mathrm{V}^{+}\).. . . \(0,-32 \mathrm{~V}\)
\(V_{S}\) or \(V_{D}\) to \(\mathrm{V}^{-}\) \(0,32 \mathrm{~V}\)
\(V^{+}\)to Ground 16 V
\(\mathrm{V}^{-}\)to Ground .. -16V
Current (Any Terminal)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS \(\mathrm{v}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V}\) ((ote 1), Ground \(=0 \mathrm{~V}\), unless otherwise specified.

NOTE 1: See Section I Enable Input Strobing Levels.

\section*{SWITCHING INFORMATION}

Figure 1. trans Switching Test

\section*{SWITCHING INFORMATION (Continued)}

Figure 2. topen (Break-Before-Make) Switching Test \(_{\text {(Bat }}\)

Figure 3. \(t_{0 n}\) and \(t_{0 f f}\) Switching Test

\section*{IH6208 APPLICATION INFORMATION}
I. ENable Input Strobing Levels

The ENable input on the IH 6208 requires a minimum of +4.5 V to trigger it into the " 1 " state and a maximum of +0.8 V to trigger it into the " 0 " state. If the ENable input is
being driven from TTL logic, a pull-up resistor of \(1 k\) to \(3 k \Omega\) is required from the gate output to +5 V supply. (See Figure 4).

Figure 4. ENable Input Strobing from TTL Logic

\section*{IH6208 APPLICATION INFORMATION (Continued)}

When the EN input is driven from CMOS logic, no pullup is necessary. (See Fig. 5)

Figure 5. CMOS Logic Driving ENable Pin.

The supply voltage of the CD4009 affects the switching speed of the IH6208; the same is true for TTL supply voltage levels. The chart below shows the effect on trans for a supply varying from +4.5 V to +5.5 V .
\begin{tabular}{cc}
CMOS OR TTL SUPPLY & TYPICAL ttrans @ \(\mathbf{2 5}^{\circ} \mathbf{C}\) \\
+4.5 V & 400 ns \\
+4.75 V & 300 ns \\
+5.0 V & 250 ns \\
+5.25 V & 200 ns \\
+5.50 V & 175 ns
\end{tabular}

The throughput rate can therefore be maximized by using a +5 V to +5.5 V supply for the ENable Strobe Logic.

The examples shown in Figures 4 and 5 deal with ENable strobing when expansion to more than four differential channels is required; in these cases the EN terminal acts as a third address input. If four channel pairs or less are being multiplexed, the EN terminal can be directly connected to +5 V to enable the IH6208 at all times.

\section*{II. Using the IH6208 with supplies other than \(\pm 15 \mathrm{~V}\)}

The IH6208 can be used with power supplies ranging from \(\pm 6 \mathrm{~V}\) to \(\pm 16 \mathrm{~V}\). The switch rDS(on) will increase as the supply voltages decrease, however the multiplexer error term (the product of leakage times rDS(on)) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the enable (EN) voltage is at least 0.7 V below \(\mathrm{V}+\) at all times. If this is not done the Address input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to \(\mathrm{V}^{+}\) (pin 14) via a silicon diode as shown in Figure 6. A further requirement must be met when using this type of configuration; the strobe levels at A0 and A1 must be within
2.5V of the EN voltage in order to define a binary " 1 " state. For the case shown in Figure 6 the EN voltage is 11.3 V , which means that logic high at A0 and A1 is \(=+8.8 \mathrm{~V}\) (logic low continues to be \(=0.8 \mathrm{~V}\)). In this configuration the IH 6208 cannot be driven by TTL \((+5 \mathrm{~V})\) or \(\mathrm{CMOS}(+5 \mathrm{~V})\) logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the IH6208 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7 V differential voltage required between \(\mathrm{V}^{+}\)and EN (See Figure 7). A \(1 \mu \mathrm{~F}\) capacitor can be placed across the diode to minimize switching glitches.

Figure 6. IH6208 Connection Diagram for less than \(\pm 15 \mathrm{~V}\) Supply Operation.

IH6208 APPLICATION INFORMATION (Continued)

Figure 7. IH6208 Connection Diagram with ENable Input Strobing for less than \(\pm 15 \mathrm{~V}\) Supply Operation.

\section*{III. Peak-to-Peak Signal Handling Capability}

The IH6208 can handle input signals up to \(\pm 14 \mathrm{~V}\) (actually -15 V to +14.3 V because of the input protection diode) when using \(\pm 15 \mathrm{~V}\) supplies. .

The electrical specifications of the IH6208 are guaranteed for \(\pm 10 \mathrm{~V}\) signals, but the specifications have very minor changes for \(\pm 14 \mathrm{~V}\) signals. The notable changes are slightly lower ros(on) and slightly higher leakages.

\title{
8-Channel Differential CMOS Analog Multiplexer
}

\section*{FEATURES}
- Pin compatible with HI507, DG507 \& AD7507
- \(\pm 11 \mathrm{~V}\) analog signal range
- rDS(on) < \(\mathbf{7 0 0}\) ohms over full signal and temperature range
- Break-before-make switching
- TTL and CMOS compatible Address control
- Binary Address control (3 Address inputs control 2 out of 16 channels)
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than \(\mathbf{1 0 0} \mu \mathrm{A}\)
- No SCR latch up
- Very low leakage \(I_{D(\text { off })} \leq 100 p A\)

\section*{GENERAL DESCRIPTION}

The IH6216 is a CMOS monolithic 2 of 16 multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable. When the ENable input is high (5 V) the channels are sequenced by the 3 line binary inputs, and when low (0 V) all channels are off. The 3 Address inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 3.0 V . Note that the ENable input must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

\section*{FUNCTIONAL DIAGRAM}

TO DECODE LOGIC
CONTROLLING BOTH
TIERS OF MUXING

3 LINE BINARY ADDRESS INPUTS
(0000) AND EN = 5V
ABOVE EXAMPLE SHOWS CHANNELS la \& 1b ON.

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline A \(_{2}\) & \(A_{1}\) & A \(_{0}\) & EN & \begin{tabular}{c}
ON \\
SWITCH \\
PAIR
\end{tabular} \\
\hline \(\mathbf{X}\) & X & X & 0 & NONE \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 & 3 \\
0 & 1 & 1 & 1 & 4 \\
1 & 0 & 0 & 1 & 5 \\
1 & 0 & 1 & 1 & 6 \\
1 & 1 & 0 & 1 & 7 \\
1 & 1 & 1 & 1 & 8 \\
\hline
\end{tabular}

LOGIC " 1 " \(=V_{\text {AH }}>3 V \quad V_{E N H}>4.5 \mathrm{~V}\) LOGIC " 0 " \(=V_{\text {AL }}<0.8 \mathrm{~V}\)

\section*{PIN CONFIGURATION}

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline PART NUMBER & TEMPERATURE RANGE & PACKAGE \\
\hline IH 6216 MJI & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 28 pin CERDIP \\
\hline IH 6216 CJI & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 28 pin CERDIP \\
\hline IH 6216 CPI & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 28 pin Plastic DIP \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS

\(V_{s}\) or \(V_{D}\) to \(V^{+} \ldots . ~ 0, ~-32 V\)
\(V_{s}\) or \(V_{D}\) to \(V^{-}\)... \(0,32 \mathrm{~V}\)
\(\mathrm{V}^{+}\)to Ground .. 16 V
\(V^{-}\)to Ground ... -16 V
Current (Any Terminal)
30 mA
Current (Analog Source or Drain)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS \(\mathrm{v}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V},-\mathrm{V}_{\mathrm{EN}}=+5 \mathrm{~V}\) (Note 1), Ground \(=0 \mathrm{~V}\), unless otherwise specified.

NOTE 1: See Section V. Enable Input Strobing Levels.

\section*{SWITCHING INFORMATION}

\section*{SWITCHING INFORMATION (Continued)}

SWITCH OUTPUT
\(V_{D}\)

Figure 3

\section*{IH6216 APPLICATIONS}
I. 2 out of \(\mathbf{3 2}\) channel multiplexer using 2 IH6216s

Figure 4

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|l|}
\hline \(\mathbf{A}_{3}\) & \(\mathbf{A}_{2}\) & \(\mathbf{A}_{1}\) & \(\mathbf{A}_{0}\) & ON SWITCH & \\
\hline 0 & 0 & 0 & 0 & S1a & \\
0 & 0 & 0 & 1 & S2a & \\
0 & 0 & 1 & 0 & S3a & \\
0 & 0 & 1 & 1 & S4a & \\
0 & 1 & 0 & 0 & S5a & \\
0 & 1 & 0 & 1 & S6a & \\
0 & 1 & 1 & 0 & S7a & \\
0 & 1 & 1 & 1 & S8a & VouT1 \\
1 & 0 & 0 & 0 & S9a & \\
1 & 0 & 0 & 1 & S10a & \\
1 & 0 & 1 & 0 & S11a & \\
1 & 0 & 1 & 1 & S12a & \\
1 & 1 & 0 & 0 & S13a & \\
1 & 1 & 0 & 1 & S14a & \\
1 & 1 & 1 & 0 & S15a & \\
1 & 1 & 1 & 1 & S16a & \\
\hline
\end{tabular}

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|l|}
\hline\(A_{3}\) & \(A_{2}\) & \(A_{1}\) & \(A_{0}\) & ON SWITCH & \\
\hline 0 & 0 & 0 & 0 & S1b & \\
0 & 0 & 0 & 1 & S2b & \\
0 & 0 & 1 & 0 & S3b & \\
0 & 0 & 1 & 1 & S4b & \\
0 & 1 & 0 & 0 & S5b & \\
0 & 1 & 0 & 1 & S6b & \\
0 & 1 & 1 & 0 & S7b & \\
0 & 1 & 1 & 1 & S8b & VouT2 \\
1 & 0 & 0 & 0 & S9b & \\
1 & 0 & 0 & 1 & S10b & \\
1 & 0 & 1 & 0 & S11b & \\
1 & 0 & 1 & 1 & S12b & \\
1 & 1 & 0 & 0 & S13b & \\
1 & 1 & 0 & 1 & S14b & \\
1 & 1 & 1 & 0 & S15b & \\
1 & 1 & 1 & 1 & S16b & \\
\hline
\end{tabular}

\section*{IH6216 APPLICATIONS (Continued)}

\section*{II. 2 out of \(\mathbf{3 2}\) channel multiplexer using 2 IH6216s; with an IH5043 for submultiplexing}

Figure 5

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|l|}
\hline \(\mathbf{A}_{3}\) & \(\mathbf{A}_{2}\) & \(\mathbf{A}_{1}\) & \(\mathbf{A}_{0}\) & ON SWITCH & \\
\hline 0 & 0 & 0 & 0 & S1a & \\
0 & 0 & 0 & 1 & S2a & \\
0 & 0 & 1 & 0 & S3a & \\
0 & 0 & 1 & 1 & S4a & \\
0 & 1 & 0 & 0 & S5a & \\
0 & 1 & 0 & 1 & S6a & \\
0 & 1 & 1 & 0 & S5a & \\
0 & 1 & 1 & 1 & S8a & VouT 1 \\
1 & 0 & 0 & 0 & S9a & \\
1 & 0 & 0 & 1 & S10a & \\
1 & 0 & 1 & 0 & SS1a & \\
1 & 0 & 1 & 1 & S12a & \\
1 & 1 & 0 & 0 & S13a & \\
1 & 1 & 0 & 1 & S14a & \\
1 & 1 & 1 & 0 & S15a & \\
1 & 1 & 1 & 1 & S16a & \\
\hline
\end{tabular}

DECODE TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|l|}
\hline\(A_{3}\) & \(A_{2}\) & \(A_{1}\) & \(A_{0}\) & ON SWITCH & \\
\hline 0 & 0 & 0 & 0 & S1b & \\
0 & 0 & 0 & 1 & S2b & \\
0 & 0 & 1 & 0 & S3b & \\
0 & 0 & 1 & 1 & S4b & \\
0 & 1 & 0 & 0 & S5b & \\
0 & 1 & 0 & 1 & S6b & \\
0 & 1 & 1 & 0 & S7b & \\
0 & 1 & 1 & 1 & S8b & VoUT2 \\
1 & 0 & 0 & 0 & S9b & \\
1 & 0 & 0 & 1 & S10b & \\
1 & 0 & 1 & 0 & S11b & \\
1 & 0 & 1 & 1 & S12b & \\
1 & 1 & 0 & 0 & S13b & \\
1 & 1 & 0 & 1 & S14b & \\
1 & 1 & 1 & 0 & S15b & \\
1 & 1 & 1 & 1 & S16b & \\
\hline
\end{tabular}

IH6216 APPLICATIONS

\section*{III. 2 out of 64 multiplexer using 4 IH6216s and 2 IH5043s as submultiplexers}

TTL/CMOS NOR GATE
(TTL gate must have resistor pullup to drive EN)

Figure 6

\section*{IV. General note on expandability of IH6216}

The IH6216 is a two tier multiplexer where 8 pairs of input channels are routed to a pair of outputs in blocks of 4. Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied in pairs. Thus 20 switches are needed to handle
the 16 channels of information. The advantages of this are lower output capacity and leakage than would be possible using a system with all 8 channels tied to one common output. Also the expandability into 2 out of \(32,64,128\), etc. is facilitated. Figures 4,5, and 6 show how the IH6216 is expanded.

Figure 4 shows a 2 of 32 multiplexer using 2 IH6216s. Since the 6216 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. Corresponding output points of each of the 6216 are connected together, and the ENable input strobe is used as the \(A_{3}\) input. Since each output (pins 2 and 28) corresponds to an "ON" FET and an "OFF" FET, the overall system looks like 1 "ON" FET and 3 "OFF" FETs for each of the Vout1 and Vout2 outputs. Thus the output leakage will be 1 ld (on) plus 3 ld (off)s or about 0.4 nA at room temperature. Thruput speed will be typically \(0.8 \mu\) s for ton and \(0.3 \mu \mathrm{~s}\) for toff, with thruput channel resistance in the \(500 \Omega\) area.
Figure 5 shows the 2 of 32 MUX of Figure 4, with a third tier of submultiplexing added to further reduce leakage and output capacity. The IH5043 has typical ON resistance of \(50 \Omega\) (max. is \(75 \Omega\)) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5. Thruput channel speed is a little slower by about \(0.5 \mu \mathrm{~s}\) for both ON and OFF time, and output leakage is about 0.2 nA . Figure 6 shows a 2 of 64 MUX using 3 tier MUXing (similar to Figure 5). The Intersil IH5043 is used for the third tier of MUXing. Each Vout point will see 3 OFF channels and 1 ON channel at any time, so that the typical leakages will be about 0.4 nA . Thruput channel resistance will be in the \(550 \Omega\) area and thruput switching speeds will be about \(1.3 \mu \mathrm{~s}\) for ON time and \(0.8 \mu \mathrm{~s}\) for OFF time.
The IH5043 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6216 (typically plus and minus 15 V) and uses break before make switching. Also power supply quiescent currents are typically \(1-2 \mu \mathrm{~A}\) so
that no excessive system power is generated. Note that the logic of the 5043 is such that it can be tied directly to the ENable input (as shown in the figures) with no extra logic being required.

\section*{V. Enable input strobing levels}

The ENable input acts as an enabling or disabling pin for the IH6216 when used as a 2 out of 16 channel MUX, however when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 4 and 5 show the EN pin used as the \(A_{3}\) input:
For the system to function properly the EN input (pin 18) must go to \(5 \mathrm{~V} \pm 5 \%\) for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up of \(1 \mathrm{k} \Omega\) or less resistor should be used to pull the output voltage up to 5 V . When using CMOS logic, the high state goes up to the power supply so no pull-up is required.
If used on high voltage logic supplies, EN should be at least 0.7 V below \(\mathrm{V}^{+}\)at all times. See IH 6208 data sheet for details.

\section*{APPLICATION NOTES}

Further information may be found in:
A003 "Understanding and Applying the Analog Switch," by Dave Fullagar
A006 "A New CMOS Analog Gate Technology," by Dave Fullagar
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Slieger
R009 "Reduce CMOS Multiplexer Troubles Through Proper Device Selection," by Dick Wilenken

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the rDS(ON) of the switch is maintained at specified values.

\section*{Data Acquisition}

\section*{A/D Converters/ DVM Circuits}

ADC0801.4 ICL7106/7
ICL7109 ICL7115 ICL7116/17
\(\dagger\) ICL7126
ICL7129
ICL7135
ICL7136
ICL7137
ICL8052A/7104 ICL8068/7104

Page
4-4
4-20
4-30
4-46
4-59
4-67
4.75
\(4-98\)
4-108
4-116
4-166
4-166

D/A Converters
\begin{tabular}{lr}
ICL7134 & \(4-86\) \\
ICL7145 & \(4-124\) \\
ICL7146 & 4.132 \\
AD7520/21/30/31 & \(4-138\) \\
AD7523 & 4.144 \\
AD7533 & \(4-148\) \\
AD7541 & \(4-152\)
\end{tabular}

D/A Current Switches

ICL8018A/19A/20A
4-158
\(\dagger\) The ICL7136 is recommended for all applications which currently employ the ICL7126.

\section*{DATA ACQUISITION}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Integrating Analog-to-Digital Converters for Display} \\
\hline \multicolumn{7}{|l|}{Maximum Electrical Specification at \(25^{\circ} \mathrm{C}\) unless otherwise noted.} \\
\hline Model & ICL7136 & ICL7137 & ICL7135 & ICL7129 & ICL7106/ICL7116 & ICL7107/ICL7117 \\
\hline Resolution & \(\pm 31 / 2\) Digit & \(\pm 31 / 2\) Digit & \(\pm 41 / 2\) Digit & \(\pm 41 / 2\) Digit & \(\pm 31 / 2\) Digit & \(\pm 31 / 2\) Digit \\
\hline Accuracy Non-Linearity Zero Input Reading Ratiometric Reading \(V_{\text {IN }}=V_{\text {REF }}\) Rollover Error & \[
\begin{aligned}
& \pm 1 \text { Count } \\
& \pm 0.000 \\
& \pm 1.000 \\
& \pm 1 \text { Count } \\
& \pm 1 \text { Count }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \text { Count } \\
& \pm 0.000 \\
& \pm 1.000 \\
& \pm 1 \text { Count } \\
& \pm 1 \text { Count }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \text { Count } \\
& \pm 0.000 \\
& \pm 1.000 \\
& \pm 1 \text { Count } \\
& \pm 1 \text { Count }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \text { Count } \\
& \pm 0.000 \\
& \pm 0.9997 \\
& \pm 3 \text { Counts } \\
& \pm 1 \text { Count }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \text { Count } \\
& \pm 0.000 \\
& \pm 1.000 \\
& \pm 1 \text { Count } \\
& \pm 1 \text { Count }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1 \text { Count } \\
& \pm 0.000 \\
& \pm 1.000 \\
& \pm 1 \text { Count } \\
& \pm 1 \text { Count }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Stability \\
Offset vs. Temperature Gain vs Temperature
\end{tabular} & \begin{tabular}{l}
\(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
\(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
\(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
\(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
\(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
\(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Conversion } \\
& \text { Time }
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \text { to } 3 \\
& \text { conv/sec }
\end{aligned}
\] & 0.1 to 3 conv/sec & 0.1 to 15 conv/sec & 0.1 to 6 conv/sec & 0.1 to 15 conv/sec & 0.1 to 15 conv/sec \\
\hline Analog input Voltage Range Impedance Leakage Current Noise (peak-to-peak) & \[
\begin{aligned}
& \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\
& 1012 \Omega \\
& 2 \mathrm{pA} \\
& 15 \mu \mathrm{~V} \text { typ. }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\
& 100^{12} \Omega \\
& 2 \mathrm{pA} \\
& 15 \mu \mathrm{~V} \text { typ. }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 2 \mathrm{~V} \\
& 100^{12} \Omega \\
& 3 \mathrm{pA} \\
& 15 \mu \mathrm{~V} \text { typ. }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\
& 1012 \Omega \Omega \\
& 1 \mathrm{pA} \\
& 7 \mu \mathrm{~V} \text { typ. }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\
& 10^{12} \Omega \\
& 2 \mathrm{pA} \\
& 15 \mu \mathrm{~V} \text { typ. }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\
& 100^{12 \Omega} \Omega \\
& 3 \mathrm{pA} \\
& 15 \mu \mathrm{~V} \text { typ. }
\end{aligned}
\] \\
\hline Digital Input & - & - & -, & Decimal Points Continuity Hold, Range Select & Display Hold (7116) & Display Hold (7117) \\
\hline Digital Outputs Format & Direct 7 Segment LCD Display & Direct 7 Segment LCD Display & Multiplex
\[
B C D
\] & 41⁄2 Digit Triplexed LCD Display Drive w/Decimal Points. & \begin{tabular}{l}
Direct \\
7 Segment \\
LCD Display
\end{tabular} & Direct 7 Segment LED Display \\
\hline Logic Level & AC:4.5V Down from \(\mathrm{V}+\) & \[
\begin{aligned}
& \text { AC:4.5V } \\
& \text { Down from } V+
\end{aligned}
\] & TTL/CMOS & Low Battery and Continuity Indicators & \[
\begin{aligned}
& \text { AC:4.5V } \\
& \text { Down from } V+
\end{aligned}
\] & Comm Anode DTL/TTL/CMOS \\
\hline Power Supply Voltage Current Package & \begin{tabular}{l}
\(+9 \mathrm{~V}\) \\
\(100 \mu \mathrm{~A}\) \\
40 pin DIP
\end{tabular} & \[
\begin{aligned}
& \pm 5 \mathrm{~V} \\
& 200 \mathrm{~A} \\
& 40 \text { pin DIP }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 5 \mathrm{~V} \\
& 1.8 \mathrm{~mA} \\
& 28 \mathrm{pin} \text { DIP }
\end{aligned}
\] & \[
\begin{aligned}
& +9 \mathrm{~V} \\
& 1.8 \mathrm{~mA} \\
& 40 \mathrm{pin} \text { DIP }
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& +9 \mathrm{~V} \\
& 1.8 \mathrm{~mA}
\end{aligned}
\] \\
40 pin DIP
\end{tabular} & \[
\begin{aligned}
& \pm 5 \mathrm{~V} \\
& 1.8 \mathrm{~mA} \\
& 40 \mathrm{pin} \text { DIP }
\end{aligned}
\] \\
\hline
\end{tabular}
-Also available LDI 10/111/114 (not recommended for new designs), and ICL7126 (recommended use ICL7.136)

\section*{Integrating Analog-to-Digital Converters for Data Acquisition}
\begin{tabular}{|c|c|c|c|}
\hline Type & Single Chip & \multicolumn{2}{|l|}{Two Chip System***} \\
\hline Model & ICL7109 & \[
\begin{aligned}
& \text { ICL8052A/8068 } \\
& \text { ICL710414 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ICL8052A/8068 } \\
& \text { ICL7104-16 }
\end{aligned}
\] \\
\hline Resolution & \(\pm 12\) - Bit Binary & \(\pm 14\) - Bit & \(\pm 16\)-Bit \\
\hline Accuracy & \(\pm 1\) Count & \(\pm 1\) Count & \(\pm 1\) Count \\
\hline Microprocessor Compatible & Yes & Yes & Yes \\
\hline Output & \begin{tabular}{l}
Programmable: \\
1. Latched parallel 3 state Binary \\
2. Controlled 2-8 bit bytes
\end{tabular} & \begin{tabular}{l}
Programmable: \\
1. Latched parallel 3 state Binary \\
2. Controlled 2.8 Bit Byte for ICL7104-12/14 3-8 Bit Byte for ICL7104-16
\end{tabular} & \\
\hline
\end{tabular}

Control Lines Run/Hold. Busy. Byte Enables. Mode. Load. Send Enable. Out of Range
\begin{tabular}{|c|c|c|c|}
\hline Conversion Time & 10 ms & 80 ms & 330ms \\
\hline UART Compatible & Yes & Yes & Yes \\
\hline Noise (Typical) & \(15 \mu \mathrm{~V}\) & \(2 \mu \mathrm{~V}\) (8068) & \(2 \mu \mathrm{~V}\) (8068) \\
\hline Input Current & 10pA & 30 pA (8052) & 30 pA (8052) \\
\hline Input Voltage Range & \[
\begin{aligned}
& +400 \mathrm{mV} 10 \\
& +4.1 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +100 \mathrm{mV} \text { to } \\
& +10 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +200 \mathrm{mV} \text { to } \\
& -10 \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
\(\cdots\) ICL8052/8068 and ICL8053 can be combined as analog portion of dual-slope AD converter under \(\mu\) p control. See ICL8052/8068 and ICL \(7104-16\) for performance characteristics.
}

\section*{Digital-to-Analog Converters*}

Maximum Electrical Specification at \(25^{\circ} \mathrm{C}\) unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Model & ICL7134U/B & 7145 & 7146 & AD7523 & AD7533 & AD7520 (7530) & AD7520 (7531) & AD7541 \\
\hline Resolution & 14 bit & 16 bit & 12 bit & 8 bit & 10 bit & 10 bit & 12 bit & 12 bit \\
\hline Accuracy & J/K/L & J/K & J/K & J/K/L & J/K/L & J/K/L & J/K/L & J/K/L \\
\hline Linearity & 0.01/0.006/0.003\% & 0.006/0.003\% & 0.01\% & 0.2\%/0.1\%/0.05\% & 0.2\%/0.1\%/0.05\% & 0.02\%/0.01\%/0.05\% 0 & 0.2\%/0.1\%/0.5\% & 0.02\%/0.01\%/0.01\% \\
\hline Zero Offset & 10 nA & 10 mV & \(120 \mu \mathrm{~V}\) & \(50 \mu \mathrm{~A}\) & 200 nA & \(200 \mathrm{nA}(300 \mathrm{nA})\) & \(200 \mathrm{nA}(300 \mathrm{nA})\) & 50 nA \\
\hline Full Scale Reading & 0.003\% & 0.04/0.02\% FSR & 0.04/0.02\% FSR & 1.5\% max & 1.4\% & 0.3\% typ & 0.3\% typ & 0.3\% \\
\hline \multicolumn{9}{|l|}{Stability} \\
\hline \multicolumn{9}{|l|}{Gain vs.} \\
\hline Temperature & \(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) typ & \(5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) typ & \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{9}{|l|}{Linearity vs.} \\
\hline Temperature & \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) typ & \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) typ & \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{9}{|l|}{Setting Time} \\
\hline To \(1 / 2\) LSB & \(0.9 \mu \mathrm{styp}\) & \(3 \mu \mathrm{~S}\) & \(10 \mu\) & 150 ns & 600 ns typ & 500 ns typ & 500 ns typ & \(1 \mu \mathrm{~S}\) \\
\hline Input Code & DTL/TTL/CMOS & DTL/TTL/CMOS & DTL/TTL/CMOS & DTL/TTL/CMOS & DTL/TTL/CMOS & DTL/TTL/CMOS & DTL/TTL/CMOS & DTL/TTL/CMOS \\
\hline Logic Compatibility & Binary (U) & & Binary or & Binary & Binary & Binary & Binary & Binary \\
\hline option & 2's Complement (B) & 2's Complement & 2's Complement & Offset Binary & Offset Binary & Offset Binary & Offset Binary & Offset Binary \\
\hline \multicolumn{9}{|l|}{Power Supply} \\
\hline Voltage & +3.5 to +6.0 V & 4.5 to 5.5V & \(\pm 4.5\) to 5.5 V & +6 to +16 V & +5 to +15 V & +5 to +15 V & +5 to +15 V & +5 to +16 V \\
\hline Current & 2 mA & 1.2 mA & 5 mA & \(100 \mu \mathrm{~A}\) & 2 mA & 2 mA & 2 mA & 2 mA \\
\hline Package & 28 pin DIP & 28 pin DIP & 28 pin DIP & 16 pin DIP & 16 pin DIP & 16 pin DIP & 18 pin DIP & 18 pin DIP \\
\hline
\end{tabular}
*R2R Ladder Multiplying Type

\section*{Successive Approximation Analog-to-Digital Converters}

\section*{Quad Current Switches ICL8018/8019/8020}

High speed precision current switches for use in current summing D/A converters Can be purchased individually or in matched sets with accuracies of \(0.01 \%\) (ICL8018). \(0.1 \%\) (ICL8019). or \(1.0 \%\) (ICL8020)

\section*{Sample and Hold}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & \[
\begin{gathered}
V_{\text {analog }} \\
\left(V_{p-\rho}\right)
\end{gathered}
\] & \[
\begin{gathered}
\text { taca** } \\
(\mu \mathrm{s})
\end{gathered}
\] & \[
\begin{gathered}
\hline V_{\text {iniecec }},{ }^{(\mathrm{mV})}
\end{gathered}
\] & \[
\begin{aligned}
& \hline V_{\text {os }} \\
& \text { (mV) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Drift } \\
\text { Rate (mV/sec) }
\end{gathered}
\] \\
\hline 1 1H5110 & \(\pm 7.5\) & 6 & 5 & 40 & 5 \\
\hline IH5111 & \(\pm 10\) & 6 & 5 & 40 & 5 \\
\hline IH5112 & \(\pm 7.5\) & 6 & 5 & 10 & 5 \\
\hline IH5113 & \(\pm 10\) & 6 & 5 & 10 & 5 \\
\hline IH5114 & \(\pm 7.5\) & 6 & 5 & 5 & 5 \\
\hline 1H5115 & \(\pm 10\) & 6 & 5 & 5 & 5 \\
\hline
\end{tabular}
\({ }^{\circ}{ }^{-} \mathrm{C}_{\text {STO }}=0.01 \mu \mathrm{~F}\)

\section*{Monolithic Voltage Converter-The ICL7660}

Converts positive voltage into negative over a range of +1.5 V through +10 V . May be cascaded for higher negative output voltages, paralleled for greater output current, used as a positive voltage multiplier, or any combination of the above. Typical supply current is \(170 \mu \mathrm{~A}\), and output source resistance is 555 l at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{I}_{0}=20 \mathrm{~mA}\).

\section*{ADC0801-ADC0804 \\ 8-Bit Microprocessor Compatible A/D Converters}

\section*{FEATURES}
- MCS-48 and MCS-80/85 bus compatible-no interfacing logic required
- Conversion time \(<\mathbf{1 0 0} \mu \mathrm{s}\)
- Easy interface to all microprocessors
- Will operate "stand alone"
- Differential analog voltage inputs
- Works with bandgap voltage references
- TTL compatible inputs and outputs
- On-chip clock generator
- 0 V to 5 V analog voltage input range (single +5 V supply)
- No zero-adjust required

\section*{GENERAL DESCRIPTION}

The ADC0801 family are CMOS 8-bit successive approximation A/D converters which use a modified potentiometric ladder, and are designed to operate with the 8080A control bus via three-state outputs. These converters appear to the processor as memory locations or I/O ports, hence no interfacing logic is required.
The differential analog voltage input has good common-mode-rejection, and permits offsetting the analog zero-inputvoltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

The ADC0801 family is available in the industry standard 20 pin CERDIP package.

\section*{TYPICAL APPLICATION}

\section*{PIN CONFIGURATION}

(Outline dwg. JP)

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline PART & ERROR & \begin{tabular}{c}
TEMPERATURE \\
RANGE
\end{tabular} & PACKAGE & \begin{tabular}{c}
ORDER \\
NUMBER
\end{tabular} \\
\hline ADC0801 & \(\pm 1 / 4\) bit adjusted full-scale & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADCO801LCN \\
& & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 20 pin CERDIP \\
& & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 20 pin CERDIP & \begin{tabular}{c}
ADC0801LCD \\
ADC0801LD
\end{tabular} \\
\hline ADC0802 & \(\pm 1 / 2\) bit no adjust & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADC0802LCN \\
& & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADC0802LCD \\
& & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADC0802LD \\
\hline ADC0803 & \(\pm 1 / 2\) bit adjusted full-scale & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADC0803LCN \\
& & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADC0803LCD \\
& & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADC0803LD \\
\hline ADC0804 & \(\pm 1\) bit no adjust & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADC0804LCN \\
& & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 20 pin CERDIP & ADC0804LCD \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|}
\hline \multirow[b]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{OPERATING RATINGS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Temperature Range} \\
\hline ADC0801/02/03LD & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline ADC0801/02/03/04LCD & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline ADC0801/02/03/04LCN & \(.0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Supply Voltage Range & 4.5 V to 6.3 V \\
\hline
\end{tabular}

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{SYSTEM ELECTRICAL CHARACTERISTICS (Notes 1 and 7)}

Converter Specifications: \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}\) and \(\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}\) unless otherwise stated.
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \begin{tabular}{l}
ADC0801: \\
Total Adjusted Error
\end{tabular} & With Full Scale Adjust & & & \(\pm 1 / 4\) & LSB \\
\hline \begin{tabular}{l}
ADC0802: \\
Total Unadjusted Error
\end{tabular} & Completely Unadjusted & & & \(\pm 1 / 2\) & LSB \\
\hline \begin{tabular}{l}
ADC0803: \\
Total Adjusted Error
\end{tabular} & With Full Scale Adjust & & & \(\pm 1 / 2\) & LSB \\
\hline \begin{tabular}{l}
ADC0804: \\
Total Unadjusted Error
\end{tabular} & Completely Unadjusted & & & \(\pm 1\) & LSB \\
\hline \(\mathrm{V}_{\text {REF }} / 2\) Input Resistance & Input Resistance at Pin 9 & 1.0 & 1.3 & & \(\mathrm{k} \Omega\) \\
\hline Analog Input Voltage Range & (Note 2) & GND - 0.05 & & \(V^{+}+0.05\) & V \\
\hline DC Common-Mode Rejection & Over Analog Input Voltage Range & & \(\pm 1 / 16\) & \(\pm 1 / 8\) & LSB \\
\hline Power Supply Sensitivity & \(V^{+}=5 \mathrm{~V} \pm 10 \%\) Over Allowed Input Voltage Range & & \(\pm 1 / 16\) & \(\pm 1 / 8\) & LSB \\
\hline
\end{tabular}

\section*{AC ELECTRICAL CHARACTERISTICS}

Timing Specifications: \(\mathrm{V}^{+}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise stated.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Clock Frequency & \(\mathrm{f}_{\text {CLK }}\) & \[
\begin{aligned}
& \mathrm{V}^{+}=6 \mathrm{~V}(\text { Note } 3) \\
& \mathrm{V}^{+}=5 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 640 \\
& 640
\end{aligned}
\] & \[
\begin{gathered}
1280 \\
800
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{kHz} \\
& \mathrm{kHz}
\end{aligned}
\] \\
\hline Clock Periods per Conversion (Note 4) & \(\mathrm{t}_{\text {conv }}\) & & 66 & & 73 & \\
\hline Conversion Rate In Free-Running Mode & CR & \(\overline{\text { INTR }}\) tied to \(\overline{W R}\) with \(\overline{\mathrm{CS}}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}\) & & & 8888 & conv/s \\
\hline Width of \(\overline{\text { WR }}\) Input (Start Pulse Width) & \(\mathrm{t}_{\mathrm{W}}(\overline{\mathrm{WR}}) 1\) & \(\overline{\mathrm{CS}}=0 \mathrm{~V}\) (Note 5) & 100 & & & ns \\
\hline Access Time (Delay from Falling Edge of \(\overline{\mathrm{RD}}\) to Output Data Valid) & \(t_{\text {acc }}\) & \(C_{L}=100 \mathrm{pF}\) (Use Bus Driver IC for Larger \(\mathrm{C}_{\mathrm{L}}\)) & & 135 & 200 & ns \\
\hline 3-State Control (Delay from Rising Edge of \(\overline{\mathrm{RD}}\) to \(\mathrm{Hi}-\mathrm{Z}\) State) & \(t_{16}, t_{0 h}\) & \[
\begin{aligned}
& C_{L}=10 \mathrm{pF}, R_{L}=10 \mathrm{k} \\
& \text { (See 3-State Test Circuits) }
\end{aligned}
\] & & 125 & 250 & ns \\
\hline Delay from Falling Edge of \(\overline{W R}\) to Reset of INTR & \(t_{W I}, t_{\text {RI }}\) & & & 300 & 450 & ns \\
\hline Input Capacitance of Logic Control Inputs & \(\mathrm{C}_{\text {IN }}\) & & & 5 & 7.5 & pF \\
\hline 3-State Output Capacitance (Data Buffers) & \(\mathrm{Cout}^{\text {O }}\) & & & 5 & 7.5 & pF \\
\hline
\end{tabular}

DC ELECTRICAL CHARACTERISTICS

Digital Levels and DC Specifications: \(\mathrm{V}^{+}=5 \mathrm{~V}_{D C}\) and \(\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}\), unless otherwise noted.

Note 1: All voltages are measured with respect to GND, unless otherwise specified. The separate AGND point should always be wired to the DGND, being careful to avoid ground loops.
Note 2: For \(V_{i N(-)} \geq V_{1 N(+)}\) the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the \(\mathrm{V}^{+}\)supply. Be careful, during testing at low \(\mathrm{V}^{+}\)levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. As long as the analog \(V_{i N}\) does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range will therefore require a minimum supply voltage of 4.950 V over temperature variations, initial tolerance and loading.

Note 3: With \(\mathrm{V}^{+}=6 \mathrm{~V}\), the digital logic interfaces are no longer TTL compatible.
Note 4: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process.
Note 5: The \(\overline{C S}\) input is assumed to bracket the \(\overline{W R}\) strobe input so that timing is dependent on the \(\overline{W R}\) pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see Timing Diagrams).
Note 6: CLK IN (pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately.
Note 7: None of these A/Ds requires a zero-adjust. However, if an all zero code is desired for an analog input other than 0.0V, or if a narrow full-scale span exists (for example: 0.5 V to 4.0 V full-scale) the \(\mathrm{V}_{\mathrm{IN}(-)}\) input can be adjusted to achieve this. See Zero Error below.

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

Full-Scale Error vs \(\mathbf{f}_{\text {CLK }}\)

Output Current vs
Temperature vs \(\mathbf{V}_{\text {REF }} / 2\) Voltage

\(\mathbf{f}_{\text {clk }}\) vs Clock Capacitor

Effect of Unadjusted
Offset Error

Power Supply Current vs Temperature

\section*{ADC0801-ADC0804}

\section*{3-STATE TEST CIRCUITS AND WAVEFORMS}

TIMING DIAGRAMS

Start Conversion

Output Enable and Reset \(\overline{\mathrm{NNTR}}\)

Note: All timing is measured from the \(50 \%\) voltage points.

\section*{ADC0801-ADC0804}

\section*{UNDERSTANDING AID ERROR SPECS}

A perfect A/D transfer characteristic (staircase waveform) is shown in Figure 1a. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB (19.53 mV with 2.5 V tied to the \(\mathrm{V}_{\text {REF }} / 2\) pin). The digital output codes which correspond to these inputs are shown as \(\mathrm{D}-1\), \(D\), and \(D+1\). For the perfect \(A / D\), not only will center-value (\(A-1, A, A+1, \ldots\)) analog inputs produce the correct output digital codes, but also each riser (the transitions between adjacent output codes) will be located \(\pm 1 / 2\) LSB away from each center-value. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages which extend \(\pm 1 / 2\) LSB from the ideal center-values. Each tread (the range of analog input voltage which provides the same digital output code) is therefore 1 LSB wide.

Figure 1 b shows the worst case transfer function for the ADC0801. All center-valued inputs are guaranteed to produce the correct output codes and the adjacent risers are guaranteed to be no closer to the center-value points than \(\pm 1 / 4\) LSB.

In other words, if we apply an analog input equal to the center-value \(\pm 1 / 4\) LSB, the A/D will produce the correct digital code. The maximum range of the position of the code transition is indicated by the horizontal arrow and it is guaranteed to be no more than \(1 / 2\) LSB.

The error curve of Figure 1c shows the worst case transfer function for the ADC0802. Here the specification guarantees that if we apply an analog input equal to the LSB analog voltage center-value, the A/D will produce the correct digital code.

Next to each transfer function is shown the corresponding error plot. Notice that the error includes the quantization uncertainty of the A/D. For example, the error at point 1 of Figure 1a is \(+1 / 2\) LSB because the digital code appeared \(1 / 2\) LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt upside steps are always 1 LSB in magnitude, unless the device has missing codes.

Figure 1. Clarifying the Error Specs of an A/D Converter

\section*{ADC0801-ADC0804}

\section*{FUNCTIONAL DESCRIPTION}

A functional diagram of the ADC0801 series of A/D converters is shown in Figure 2. All of the package pinouts are shown and the major logic control paths are drawn in heavierweight lines. The device operates on the successive approximation principle (see A016 and A020 for a more detailed description of this principle). Analog switches are closed sequentially by successive-approximation logic until the analog differential input voltage \(\left[\mathrm{V}_{\mathrm{IN}(+)}-\mathrm{V}_{\mathrm{IN}(-)}\right]\) matches a voltage derived from a tapped resistor string across the reference voltage. The most significant bit is tested first and after 8 comparisons (64 clock cycles), an 8 -bit binary code (1111 1111 = full-scale) is transferred to an output latch.

The normal operation proceeds as follows. On the high-tolow transition of the \(\overline{W R}\) input, the internal SAR latches and
the shift-register stages are reset, and the INTR output will be set high. As long as the \(\overline{\mathrm{CS}}\) input and \(\overline{W R}\) input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition. After the requisite number of clock pulses to complete the conversion, the INTR pin will make a high-to-low transition. This can be used to interrupt a processor, or otherwise signal the availability of a new conversion. A \(\overline{R D}\) operation (with \(\overline{C S}\) low) will clear the \(\overline{I N T R}\) line high again. The device may be operated in the free-running mode by connecting \(\overline{\mathrm{NTR}}\) to the \(\overline{\mathrm{WR}}\) input with \(\overline{\mathrm{CS}}=0\). To ensure start-up under all possible conditions, an external \(\overline{W R}\) pulse is required during the first power-up cycle. A conver-sion-in-process can be interrupted by issuing a second start command.

Figure 2. Block Diagram of ADC0801-ADC0804

\section*{Digital Details}

The converter is started by having \(\overline{\mathrm{CS}}\) and \(\overline{\mathrm{WR}}\) simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flip-flop, DFF1, which is at the input end of the 8 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of DFF1. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F/F. If the set signal is no longer present (either \(\overline{W R}\) or \(\overline{C S}\) is a " 1 "), the start F/F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would be at a " 1 " level) and the 8 -bit shift register would continue to be held in the reset mode. This allows for asynchronous or wide \(\overline{\mathrm{CS}}\) and \(\overline{\mathrm{WR}}\) signals.

After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR operation) it appears as the input to DFF2. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the 3-state output latches. When DFF2 is subsequently clocked, the \(\bar{Q}\) output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR output signal.
When data is to be read, the combination of both \(\overline{C S}\) and \(\overline{R D}\) being low will cause the INTR F/F to be reset and the 3-state output latches will be enabled to provide the 8 -bit digital outputs.

\section*{Digital Control Inputs}

The digital control inputs (\(\overline{\mathrm{CS}}, \overline{\mathrm{RD}}\), and \(\overline{\mathrm{WR}}\)) meet standard \(\mathrm{T}^{2} \mathrm{~L}\) logic voltage levels. These signals are essentially equivalent to the standard A/D Start and Output Enable control signals, and are active low to allow an easy interface to microprocessor control busses. For non-microproceśsor based applications, the \(\overline{\mathrm{CS}}\) input (pin 1) can be grounded and the standard A/D Start function obtained by an active low pulse at the \(\overline{W R}\) input (pin 3). The Output Enable function is achieved by an active low pulse at the \(\overline{\mathrm{RD}}\) input (pin 2).

\section*{Analog Operation}

The analog comparisons are performed by a capacitive charge summing circuit. Three capacitors (with precise ratioed values) share a common node with the input to an auto-zeroed comparator. The input capacitor is switched between \(\mathrm{V}_{\mathrm{IN}(+)}\) and \(\mathrm{V}_{\mathrm{IN}(-)}\), while two ratioed reference capacitors are switched between taps on the reference voltage divider string. The net charge corresponds to the weighted difference between the input and the current total value set by the successive approximation register. A correction is made to offset the comparison by \(1 / 2\) LSB (see Figure 1a).

\section*{Analog Differential Voltage Inputs and Common-Mode Rejection}

This A/D gains considerable applications flexibility from the analog differential voltage input. The \(\mathrm{V}_{\mathrm{IN}(-)}\) input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in \(4 \mathrm{~mA}-20 \mathrm{~mA}\) current loop conversion. In addition, commonmode noise can be reduced by use of the differential input.

The time interval between sampling \(\mathrm{V}_{\mathrm{IN}(+)}\) and \(\mathrm{V}_{\mathrm{IN}(-)}\) is \(41 / 2\) clock periods. The maximum error voltage due to this slight time difference between the input voltage samples is given by:
\[
\Delta V_{e}(\mathrm{MAX})=\left(\mathrm{V}_{\mathrm{p}}\right)\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)\left(\frac{4.5}{\mathrm{f}_{\mathrm{CLK}}}\right)
\]
where:
\(\Delta V_{e}\) is the error voltage due to sampling delay
\(V_{P}\) is the peak value of the common-mode voltage
\(f_{c m}\) is the common-mode frequency

For example, with a 60 Hz common-mode frequency, \(f_{c m}\), and a 640 kHz A/D clock, \(\mathrm{f}_{\mathrm{CLK}}\), keeping this error to \(1 / 4\) LSB \((\sim 5 \mathrm{mV})\) would allow a common-mode voltage, \(\mathrm{V}_{\mathrm{P}}\), given by:
\[
V_{\mathrm{P}}=\frac{\left[\Delta \mathrm{V}_{\mathrm{e}}(\mathrm{MAX})\left(\mathrm{f}_{\mathrm{CLK}}\right)\right]}{\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)(4.5)}
\]
or
\[
\mathrm{V}_{\mathrm{P}}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)} \simeq 1.9 \mathrm{~V}
\]

The allowed range of analog input voltages usually places more severe restrictions on input common-mode voltage levels than this.
An analog input voltage with a reduced span and a relatively large zero offset can be easily handled by making use of the differential input (see Reference Voltage Span Adjust).

\section*{Analog Input Current}

The internal switching action causes displacement currents to flow at the analog inputs. The voltage on the on-chip capacitance to ground is switched through the analog differential input voltage, resulting in proportional currents entering the \(\mathrm{V}_{\mathrm{IN}_{(+)}}\)input and leaving the \(\mathrm{V}_{\mathrm{IN}(-)}\) input. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not inherently cause errors as the on-chip comparator is strobed at the end of the clock period.

\section*{Input Bypass Capacitors}

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the \(\mathrm{V}_{\mathrm{IN}(+)}\) input voltage at full-scale. For a 640 kHz clock frequency with the \(\mathrm{V}_{\mathrm{IN}(+)}\) input at 5 V , this DC current is at a maximum of approximately \(5 \mu \mathrm{~A}\). Therefore, bypass capacitors should not be used at the analog inputs or the \(V_{R E F} / 2\) pin for high resistance sources (\(>1 \mathrm{k} \Omega\)). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the effects of the voltage drop across this input resistance, due to the average value of the input current, can be compensated by a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage at a constant conversion rate.

\section*{Input Source Resistance}

Large values of source resistance where an input bypass capacitor is not used, will not cause errors since the input currents settle out prior to the comparison time. If a low-pass filter is required in the system, use a low-value series resistor (\(\leq 1 \mathrm{k} \Omega\)) for a passive RC section or add an op amp RC active low-pass filter. For low-source-resistance applications, (\(\leq 1 \mathrm{k} \Omega\)), a \(0.1 \mu \mathrm{~F}\) bypass capacitor at the inputs will minimize EMI due to the series lead inductance of a long wire. A \(100 \Omega\) series resistor can be used to isolate this capacitor (both the \(R\) and \(C\) are placed outside the feedback loop) from the output of an op amp, if used.

\section*{Stray Pickup}

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize stray signal pickup (EMI). Both EMI and undesired digital-clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below \(5 \mathrm{k} \Omega\). Larger values of source resistance can cause undesired signal pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate this pickup but can create analog scale errors as these capacitors will average the transient input switching currents of the A/D (see Analog Input Current). This scale error depends on both a large source resistance and the use of an input bypass capacitor. This error can be compensated by a full-scale adjustment of the A/D (see Full-Scale Adjustment) with the source resistance and input bypass capacitor in place, and the desired conversion rate.

\section*{Reference Voltage Span Adjust}

For maximum application flexibility, these A/Ds have been designed to accommodate a \(5 \mathrm{~V}, 2.5 \mathrm{~V}\) or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 3.

Notice that the reference voltage for the IC is either \(1 / 2\) of the voltage which is applied to the \(\mathrm{V}^{+}\)supply pin, or is equal to the voltage which is externally forced at the \(\mathrm{V}_{\text {REF }} / 2\) pin. This

Figure 3. The \(\mathrm{V}_{\text {Reference }}\) Design on the IC
allows for a pseudo-ratiometric voltage reference using, for the \(\mathrm{V}+\) supply, a 5 V reference voltage. Alternatively, a voltage less than 2.5 V can be applied to the \(\mathrm{V}_{\text {REF }} / 2\) input. The internal gain to the \(\mathrm{V}_{\text {REF }} / 2\) input is 2 to allow this factor of 2 reduction in the reference voltage.

Such an adjusted reference voltage can accommodate a reduced span or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from 0.5 V to 3.5 V , instead of 0 V to 5 V , the span would be 3 V . With 0.5 V applied to the \(V_{i N(-)}\) pin to absorb the offset, the reference voltage can be made equal to \(1 / 2\) of the 3 V span or 1.5 V . The A/D now will encode the \(\mathrm{V}_{\mathrm{IN}_{(+)}}\)signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the 3.5 V input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range. The requisite connections are shown in Figure 4. For expanded scale inputs, the circuits of Figures 5 and 6 can be used.

Figure 4. Offsetting the Zero of the ADC0801 and Performing an Input Range (Span) Adjustment

Figure 5. Handling \(\pm 10 \mathrm{~V}\) Analog Input Range

Figure 6. Handling \(\pm 5 \mathrm{~V}\) Analog Input Range

\section*{ADC0801-ADC0804}

\section*{Reference Accuracy Requirements}

The converter can be operated in a pseudo-ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final digital output code. In absolute conversion applications, both the initial value and the temperature stability of the reference voltage are important accuracy factors in the operation of the A/D converter. For \(\mathrm{V}_{\text {REF }} / 2\) voltages of 2.5 V nominal value, initial errors of \(\pm 10 \mathrm{mV}\) will cause conversion errors of \(\pm 1\) LSB due to the gain of 2 of the \(\mathrm{V}_{\text {REF }} / 2\) input. In reduced span applications, the initial value and the stability of the \(\mathrm{V}_{\text {REF }} / 2\) input voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV (5 V span) to 10 mV and 1 LSB at the \(\mathrm{V}_{\text {REF }} / 2\) input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.

In general, the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the A/D transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive.

\section*{Zero Error}

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, \(\mathrm{V}_{\text {IN(MIN) }}\), is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the \(A / D V_{\left.I_{N(-)}\right)}\) input at this \(V_{\text {IN(MIN) }}\) value (see Applications section). This utilizes the differential mode operation of the \(A / D\).

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the \(\mathrm{V}_{\mathrm{IN(-)}}\) input and applying a small magnitude positive voltage to the \(\mathrm{V}_{\mathrm{IN}(+)}\) input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal \(1 / 2\) LSB value \(\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.\) for \(\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}\)).

\section*{Full-Scale Adjust}

The full-scale adjustment can be made by applying a differential input voltage which is \(11 / 2\) LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the \(\mathrm{V}_{\text {REF }} / 2\) input (pin 9) for a digital output code which is just changing from 11111110 to 11111111. When offsetting the zero and using a span-adjusted \(\mathrm{V}_{\text {REF }} / 2\) voltage, the full-scale adjustment is made by inputting \(V_{\text {MIN }}\) to the \(\mathrm{V}_{\mathrm{IN}(-)}\) input of the \(A / D\) and applying a voltage to the \(\mathrm{V}_{\operatorname{IN}(+)}\) input which is given by:
\[
V_{I N(+)} f s \text { adj }=V_{M A X}-1.5\left[\frac{\left(V_{\mathrm{MAX}}-V_{\mathrm{MIN}}\right)}{256}\right]
\]
where:
\(\mathrm{V}_{\text {MAX }}=\) the high end of the analog input range and
\(\mathrm{V}_{\text {MIN }}=\) the low end (the offset zero) of the analog range. (Both are ground referenced.)

\section*{Clocking Option}

The clock for the A/D can be derived from an external source such as the CPU clock or an external RC can be added to provide self-clocking. The CLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 7.

Heavy capacitive or DC loading of the CLocK R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to 7 A/D converter clock inputs from a single CLK R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power \(\mathrm{T}^{2} \mathrm{~L}\) buffer or PNP input logic should be used to minimize the loading on the CLK R pin (do not use a standard \(T^{2}\) L buffer).

\section*{Restart During a Conversion}

If the A/D is restarted (\(\overline{C S}\) and \(\overline{W R}\) go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the conversion in progress is not completed. The data from the previous conversion remain in this latch.

\section*{Continuous Conversions}

In this application, the \(\overline{\mathrm{CS}}\) input is grounded and the \(\overline{\mathrm{WR}}\) input is tied to the \(\overline{\text { NTR }}\) output. This \(\overline{W R}\) and \(\overline{\text { INTR }}\) node should be momentarily forced to logic low following a power-up cycle to insure circuit operation. See Figure 8 for details.

Figure 7. Self-Clocking the A/D

Figure 8. Free-Running Connection

\section*{Driving the Data Bus}

This CMOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in 3-state (high-impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus.
There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see Typical Performance Characteristics).

At higher CPU clock frequencies time can be extended for I/O reads (and/or writes) by inserting wait states (8080) or using clock-extending circuits (6800).
Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be 3-state buffers (low power Schottky is recommended, such as the 74LS240 series) or special higher-drive-current products which are designed as bus drivers. High-current bipolar bus drivers with PNP inputs are recommended.

\section*{Power Supplies}

Noise spikes on the \(\mathrm{V}^{+}\)supply line can cause conversion errors as the comparator will respond to this noise. A lowinductance tantalum filter capacitor should be used close to the converter \(\mathrm{V}^{+}\)pin and values of \(1 \mu \mathrm{~F}\) or greater are recommended. If an unregulated voltage is available in the system, a separate 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the \(\mathrm{V}^{+}\) supply. An ICL7663 can be used to regulate such a supply from an input as low as 5.2 V .

\section*{Wiring and Hook-Up Precautions}

Standard digital wire-wrap sockets are not satisfactory for breadboarding this A/D converter. Sockets on PC boards can be used. All logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup; therefore, shielded leads may be necessary in many applications.

A single-point analog ground should be used which is separate from the logic ground points. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any \(\mathrm{V}_{\text {REF }} / 2\) bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the AID converter. Zero errors in excess of \(1 / 4\) LSB can usually be traced to improper board layout and wiring (see Zero Error for measurement). Further information can be found in A018.

\section*{TESTING THE A/D CONVERTER}

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 9.

For ease of testing, the \(\mathrm{V}_{\mathrm{REF}} / 2\) (pin 9) should be supplied with 2.560 V and \(\mathrm{a} \mathrm{V}^{+}\)supply voltage of 5.12 V should be used. This provides an LSB value of 20 mV .

If a full-scale adjustment is to be made, an analog input voltage of \(5.090 \mathrm{~V}(5.120-11 / 2 \mathrm{LSB})\) should be applied to the \(\mathrm{V}_{\mathrm{IN}(+)}\) pin with the \(\mathrm{V}_{\mathbb{I N (-)}}\) pin grounded. The value of the \(\mathrm{V}_{\mathrm{REF}} / 2\) input voltage should be adjusted until the digital output code is just changing from 11111110 to 1111 1111. This value of \(\mathrm{V}_{\mathrm{REF}} / 2\) should then be used for all the tests.

Figure 9. Basic Tester for the A/D

Figure 11. Basic "Digital" A/D Tester

Figure 10. A/D Tester with Analog Error Output. This circuit can be used to generate "error plots" of Figure 1.

The digital-output LED display can be decoded by dividing the 8 bits into 2 hex characters, one with the 4 mostsignificant bits (MS) and one with the 4 least-significant bits (LS). The output is then interpreted as a sum of fractions times the full-scale voltage:
\[
\mathrm{V}_{\mathrm{OUT}}=\left(\frac{\mathrm{MS}}{16}+\frac{\mathrm{LS}}{256}\right)(5.12) \mathrm{V}
\]

For example, for an output LED display of 10110110 , the MS character is hex \(B\) (decimal 11) and the LS character is hex (and decimal) 6, so
\[
V_{\text {OUT }}=\left(\frac{11}{16}+\frac{6}{256}\right)(5.12)=3.64 \mathrm{~V}
\]

Figures 10 and 11 show more sophisticated test circuits.

\section*{ADC0801-ADC0804}

APPLICATIONS

\section*{Interfacing MCS-48, and MCS-80/85 Processors}

This converter has been designed to directly interface with an MCS-80/85 microprocessor or system. The 3-state output capability of the A/D eliminates the need for a peripheral interface device, although address decoding is still required to generate the appropriate \(\overline{\mathrm{CS}}\) for the converter. The A/D can be mapped into memory space (using standard memoryaddress decoding for \(\overline{\mathrm{CS}}\) and the \(\overline{\mathrm{MEMR}}\) and \(\overline{\mathrm{MEMW}}\) strobes) or it can be controlled as an I/O device by using the \(\overline{/ O R}\) and \(\overline{\mathrm{I} O W}\) strobes and decoding the address bits \(\mathrm{AO} \rightarrow \mathrm{A}\) ((or ad-
dress bits A8 \(\rightarrow\) A15, since they will contain the same 8 -bit address information) to obtain the \(\overline{\mathrm{CS}}\) input. Using the I/O space provides 256 additional addresses and may allow a simpler 8 -bit address decoder, but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A/D should be mapped into memory space. See A020 for more discussion of memory-mapped vs I/Omapped interfaces. An example of an A/D in I/O space is shown in Figure 12.

*Note: Pin numbers for 8228 system controller: others are 8080A

Figure 12. ADC0801 to 8080A CPU Interface

\section*{ADC0801-ADC0804}

The standard control-bus signals of the 8080 (\(\overline{\mathrm{CS}}, \overline{\mathrm{RD}}\) and \(\overline{\mathrm{WR}}\)) can be directly wired to the digital control inputs of the A/D, since the bus timing requirements, to allow both starting the converter, and outputting the data onto the data bus, are met. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100pF.

It is useful to note that in systems where the A/D converter is 1 of 8 or fewer I/O-mapped devices, no address-decoding circuitry is necessary. Each of the 8 address bits (A0 to A7) can be directly used as \(\overline{\mathrm{CS}}\) inputs, one for each I/O device.

\section*{Interfacing the Z-80 and \(\mathbf{8 0 8 5}\)}

The Z-80 and 8085 control busses are slightly different from that of the 8080. General \(\overline{R D}\) and \(\overline{W R}\) strobes are provided and separate memory request, \(\overline{M R E Q}\), and I/O request, \(\overline{\mathrm{ORQ}}\), signals have to be combined with the generalized strobes to provide the appropriate signals. An advantage of operating the A/D in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the \(\overline{\mathrm{RD}}\) and \(\overline{\mathrm{WR}}\) strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 13. By using \(\overline{M R E Q}\) in place of \(\overline{\mathrm{ORQ}}, \mathrm{a}\) memory-mapped configuration results.

Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A/D can be accomplished with this operating mode.

The 8085 also provides a generalized \(\overline{\mathrm{RD}}\) and \(\overline{\mathrm{WR}}\) strobe, with an IO/M line to distinguish I/O and memory requests. The circuit of Figure 13 can again be used, with \(10 / \bar{M}\) in place of \(\overline{\text { IORQ for a memory-mapped interface, and an extra inverter }}\) (or the logic equivalent) to provide \(\overline{\bar{O} / M}\) for an I/O-mapped connection.

\section*{Interfacing 6800 Microprocessor Derivatives (6502, etc.)}

The control bus for the 6800 microprocessor derivatives does not use the \(\overline{R D}\) and \(\overline{W R}\) strobe signals. Instead it employs a single R/W line and additional timing, if needed, can be derived from the \(\phi 2\) clock. All I/O devices are memory-mapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 14 shows an interface schematic where the A/D is memory-mapped in the 6800 system. For simplicity, the \(\overline{C S}\) decoding is shown using \(1 / 2\) DM8092. Note that in many 6800 systems, an already decoded \(\overline{4 / 5}\) line is brought out to the common bus at pin 21 . This can be tied directly to the \(\overline{C S}\) pin of the A/D, provided that no other devices are addressed at HEX ADDR: 4XXX or 5XXX.

In Figure 15 the ADC0801 series is interfaced to the MC6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter (PIA). Here the \(\overline{C S}\) pin of the A/D is grounded since the PIA is already memory-mapped in the MC6800 system and no \(\overline{\mathrm{CS}}\) decoding is necessary. Also notice that the A/D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/D \(\overline{\mathrm{RD}}\) pin can be grounded.

\section*{APPLICATION NOTES}

Some applications bulletins that may be found useful are listed here:
A016 "Selecting A/D Converters," by Dave Fullagar.
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Sliger.
A030 "The ICL7104-A Binary Output A/D Converter for Microprocessors," by Peter Bradshaw.
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

Figure 13. Mapping the A/D as an I/O device for use with the Z-80 CPU

*Note 1: Numbers in parentheses refer to MC6800 CPU pinout.
* *Note 2: Numbers or letters in brackets refer to standard MC6800 system common bus code.

Figure 14. ADC0801 to MC6800 CPU Interface

Figure 15. ADC0801 to MC6820 PIA Interface

\section*{CHIP TOPOGRAPHY}

4

\section*{FEATURES}
- Guaranteed zero reading for 0 volts input on all scales.
- True polarity at zero for precise null detection.
- 1 pA typical input current.
- True differential input and reference.
- Direct display drive - no external components required. - LCD ICL7106
- LED ICL7107
- Low noise - less than \(15 \mu \mathrm{~V}\) p-p.
- On-chip clock and reference.
- Low power dissipation - typically less than 10 mW .
- No additional active circuits required.
- Evaluation Kit available.

\section*{GENERAL DESCRIPTION}

The Intersil ICL7106 and 7107 are high performance, low power \(31 / 2\)-digit A/D converters containing all the necessary active devices on a single CMOS I.C. Included are sevensegment decoders, display drivers, reference, and a clock. The 7106 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7107 will directly drive an instrument-size light emitting diode (LED) display.

The 7106 and 7107 bring together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy like auto-zero to less than \(10 \mu \mathrm{~V}\), zero drift of less than \(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation (7106), enabling a high performance panel meter to be built with the addition of only 7 passive components and a display.

ABSOLUTE MAXIMUM RATINGS
```

Supply Voltage
ICL7106, V+ toV-.................................... . . . 15V
ICL7107,V+}\mp@subsup{}{}{+}\mathrm{ to GND . ................................. + + 6V
ICL7107, V- toGND . . . . . . . . . . . . . . . . . . . . . . . - - 9V
Analog Input Voltage (either input)(Note1). . . . . . . V + to V
Reference Input Voltage(either input) ........... V+' to V-
Clock Input
ICL7106
TEST to V }\mp@subsup{}{}{+
ICL7107 ....................................... . . GND to V +

```
Power Dissipation (Note 2)Ceramic Package1000 mW
Plastic Package 800 mW
Operating Temperature \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+160^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 60 sec) \(300^{\circ} \mathrm{C}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to \(\pm 100 \mu \mathrm{~A}\).
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

\section*{ELECTRICAL CHARACTERISTICS (Note 3)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTICS & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Zero Input Reading & \[
\begin{aligned}
& \mathrm{VIN}=0.0 \mathrm{~V} \\
& \text { Full Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & -000.0 & \(\pm 000.0\) & +000.0 & Digital Reading \\
\hline Ratiometric Reading & \[
\begin{aligned}
& \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }} \\
& \mathrm{V}_{\text {REF }}=100 \mathrm{mV}
\end{aligned}
\] & 999 & 999/1000 & 1000 & Digital Reading \\
\hline Rollover Error (Difference in reading for equal positive and negative reading near Full Scale) & \(-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \simeq 200.0 \mathrm{mV}\) & -1 & \(\pm .2\) & +1 & Counts \\
\hline Linearity (Max. deviation from best straight line fit) & Full scale \(=200 \mathrm{mV}\) or full scale \(=2.000 \mathrm{~V}\) & -1 & \(\pm .2\) & +1 & Counts \\
\hline Common Mode Rejection Ratio (Note 4) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\
& \text { Full Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & & 50 & & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Noise (Pk-Pk value not exceeded 95\% of time) & \[
\begin{aligned}
& \mathrm{VIN}=0 \mathrm{~V} \\
& \text { Full Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & & 15 & & \(\mu \mathrm{V}\) \\
\hline Leakage Current | Input & \(\mathrm{V}_{\text {IN }}=0\) & & 1 & 10 & pA \\
\hline Zero Reading Drift & \[
\begin{aligned}
& V_{\text {IN }}=0 \\
& 0^{\circ}<T_{A}<70^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.2 & 1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor Temperature Coefficient & \[
\begin{array}{|l}
\hline \mathrm{V}_{\mathrm{IN}}=199.0 \mathrm{mV} \\
\mathrm{O}^{\circ}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\
\text { (Ext. Ref. Oppm } /{ }^{\circ} \mathrm{C} \text {) }
\end{array}
\] & & 1 & 5 & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline V+ Supply Current (Does not include LED current for 7107) & \(\mathrm{V}_{\text {IN }}=0\) & & 0.8 & 1.8 & mA \\
\hline V- Supply Current (7107 only) & & & 0.6 & 1.8 & mA \\
\hline Analog Common Voltage (With respect to Pos. Supply) & \(25 \mathrm{k} \Omega\) between Common \& Pos. Supply & 2.4 & 2.8 & 3.2 & V \\
\hline Temp. Coeff. of Analog Common (With respect to Pos. Supply) & \(25 \mathrm{k} \Omega\) between Common \& Pos. Supply & & 80 & & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
7106 ONLY \\
Pk-Pk Segment Drive Voltage, Pk-Pk Backplane Drive Voltage (Note 5)
\end{tabular} & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}=9 \mathrm{~V}\) & 4 & 5 & 6 & V \\
\hline \begin{tabular}{l}
7107 ONLY \\
Segment Sinking Current (Except Pin 19) \\
(Pin 19 only)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}^{+}=5.0 \mathrm{~V} \\
& \text { Segment voltage }=3 \mathrm{~V}
\end{aligned}
\] & \[
5
\]
\[
10
\] & \[
8.0
\]
\[
16
\] & & mA
\(m A\) \\
\hline
\end{tabular}

Note 3: Unless otherwise noted, specifications apply to both the 7106 and 7107 at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clock}}=48 \mathrm{kHz}\). 7106 is tested in the circuit of Figure 1. 7107 is tested in the circuit of Figure 2.

Note 4: Refer to "Differential Input" discussion.
Note 5: Back plane drive is in phase with segment drive for 'off' segment, \(180^{\circ}\) out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .

TEST CIRCUITS

Figure 1: 7106

Figure 2: 7107

\section*{DETAILED DESCRIPTION}

\section*{ANALOG SECTION}

Figure 3 shows the Block Diagram of the Analog Section for the ICL7106 and 7107. Each measurement cycle is divided

Figure 3: Analog Section of 7106/7107

\section*{1. Auto-zero phase}

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor \(\mathrm{C}_{A Z}\) to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than \(10 \mu \mathrm{~V}\).

\section*{2. Signal Integrate phase}

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and

IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

\section*{3. De-integrate phase}

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is \(1000\left(\frac{V_{I N}}{V_{\text {REF }}}\right)\).

\section*{Differential Input}

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity. See A032 for a discussion of the effects of stray capacitance.

\section*{Differential Reference}

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for \((+)\) or \((-)\) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition. (See Component Value Selection.)

\section*{Analog COMMON}

This pin is included primarily to set the common mode voltage for battery operation (7106) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate (\(>7 \mathrm{~V}\)), the COMMON voltage will have a low voltage coefficient (. \(001 \% / \%\)), low output impedance \((\sim 15 \Omega)\), and a temperature coefficient typically less than \(80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).
The limitations of the on-chip reference should also be recognized, however. With the 7107, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from 25 \(\mu \mathrm{V}\) to \(80 \mu \mathrm{Vp}-\mathrm{p}\). Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111 (8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. All
these problems are of course eliminated if an external reference is used.

The 7106, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Fig. 4.

Figure 4: Using an External Reference

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently referenced to analog COMMON, it should be since this removes the common mode voltage from the reference system.
Within the IC, analog COMMON is tied to an \(N\) channel FET that can sink 30 mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only \(10 \mu \mathrm{~A}\) of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

\section*{TEST}

The TEST pin serves two functions. On the 7106 it is coupled to the internally generated digital supply through a \(500 \Omega\) resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

Figure 5: Simple Inverter for Fixed Decimal Point

Figure 6: Exclusive 'OR' Gate for Decimal Point Drive

The second function is a "lamp test". When TEST is pulled high (to \(\mathrm{V}^{+}\)) all segments will be turned on and the display should read -1888 . The TEST pin will sink about 10 mA under these conditions.

Caution: on the 7106, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and may burn the LCD display if left in this mode for several minutes.

\section*{DIGITAL SECTION}

Figures 7 and 8 show the digital section for the 7106 and 7107, respectively. In the 7106, an internal digital ground is generated from a 6 volt Zener diode and a large \(P\) channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.
Figure 8 is the Digital Section of the 7107. It is identical to the 7106 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .
In both devices, the polarity indication is "on" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

\section*{DISPLAY FONT}

Figure 7: Digital Section 7106

\section*{DISPLAY FONT}

Figure 8: Digital Section 7107

\section*{System Timing}

Figure 9 shows the clocking arrangement used in the 7106 and 7107. Three basic clocking arrangements can be used:
1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

Figure 9: Clock Circuits
The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/. second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of \(240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}\), \(40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}\), etc. should be selected. For 50 Hz rejection, Oscillator frequencies of \(200 \mathrm{kHz}, 100 \mathrm{kHz}\), \(662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}\), etc. would be suitable. Note that

40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

\section*{COMPONENT VALUE SELECTION}

\section*{1. Integrating Resistor}

Both the buffer amplifier and the integrator have a class \(A\) output stage with \(100 \mu \mathrm{~A}\) of quiescent current. They can supply \(20 \mu \mathrm{~A}\) of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, \(470 \mathrm{~K} \Omega\) is near optimum and similarly a \(47 \mathrm{~K} \Omega\) for a 200.0 mV scale.

\section*{2. Integrating Capacitor}

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7106 or the 7107, when the analog COMMON is used as a reference, a nominal \(\pm 2\) volt full scale integrator swing is fine. For the 7107 with \(\pm 5\) volt supplies and analog COMMON tied to supply ground, a \(\pm 3.5\) to \(\pm 4\) volt swing is nominal. For three readings/ second (48 kHz clock) nominal values for CINT are \(0.22 \mu \mathrm{~F}\) and \(0.10 \mu \mathrm{~F}\), respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

\section*{3. Auto-Zero Capacitor}

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise
is very important, a \(0.47 \mu \mathrm{~F}\) capacitor is recommended. On the 2 volt scale, a \(0.047 \mu \mathrm{~F}\) capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

\section*{4. Reference Capacitor}

A \(0.1 \mu \mathrm{~F}\) capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent rollover error. Generally \(1.0 \mu \mathrm{~F}\) will hold the roll-over error to 0.5 count in this instance.

\section*{5. Oscillator Components}

For all ranges of frequency a \(100 \mathrm{~K} \Omega\) resistor is recommended and the capacitor is selected from the equation \(f=\frac{45}{R C}\). For 48 kHz clock (3 readings/second), \(C\) \(=100 \mathrm{pF}\).

\section*{6. Reference Voltage}

The analog input required to generate full-scale output (2000 counts) is: \(\mathrm{VIN}^{2}=2 \mathrm{~V}_{\text {REF }}\). Thus, for the 200.0 mV and 2.000 volt scale, Vref should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select \(V_{\text {REF }}=.341 \mathrm{~V}\). Suitable values for integrating resistor and capacitor would be \(120 \mathrm{~K} \Omega\) and \(0.22 \mu \mathrm{~F}\). This makes the system slightly quieter and also avoids a divider network on the input. The 7107 with \(\pm 5 \mathrm{~V}\) supplies can accept input signals up to \(\pm 4 \mathrm{~V}\). Another advantage of this sytem occurs when a digital reading of zero is desired for \(\mathrm{V}_{\mathbb{N}} \neq 0\). Temperature

\section*{TYPICAL APPLICATIONS}

The 7106 and 7107 may be used in a wide variety of configurations. The circuits which follow show some of the

Figure 11: 7106 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9 V battery).
and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

\section*{7. 7107 Power Supplies}

The 7107 is designed to work from \(\pm 5 \mathrm{~V}\) supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application. See ICL7660 data sheet for an alternative.

Figure 10: Generating Negative Supply from \(+5 v\)

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:
1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than \(\pm 1.5\) volts.
3. An external reference is used.

\section*{ICL7106/ICL7107}

\section*{TYPICAL APPLICATIONS (Contd.)}

Figure 13:7107 with an external band-gap reference (1.2V type). IN LO is tied to COMMON, thus establishing the correct common mode voltage. If COMMON is not shorted to GND, the input voltage may float with respect to the power supply and COMMON acts as a preregulator for the reference. If COMMON is shorted to GND, the input is single ended (referred to supply ground) and the pre-regulator is over-ridden

Figure 15: 7106/7107: Recommended component values for 2.000V full scale.

Figure 17: 7107 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

Figure 14: 7107 with Zener diode reference. Since low T.C. zeners have breakdown voltages \(\sim 6.8 \mathrm{~V}\), diode must be placed across the total supply (10V). As in the case of Figure 12, IN LO may be tied to either COMMON or GND.

Figure 16: 7107 operated from single +5 V supply. An external reference must be used in this application, since the voltage between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)is insufficient for correct operation of the internal reference.

Figure 18: 7106 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about \(-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor \(\dot{p} o t e n t i o m e t e r ~ a d j u s t e d ~ f o r ~ 100.0 ~ r e a d i n g . ~\)

Figure 19: Circuit for developing Underrange and Overrange signals from 7106 outputs.

Figure 20: Circuit for developing Underrange and Overrange signals from 7107 outputs. The LM339 is required to ensure logic compatibility with heavy display loading.

Figure 21: AC to DC Converter with 7106. TEST is used as a common mode reference level to ensure compatibility with most opamps.

Figure 22: Display Buffering for increased drive current. Requires four DM7407 Hex Buffers. Each buffer is capable of sinking 40 mA .

\section*{ICL7106/ICL7107}

\section*{7106/7107 EVALUATION KITS}

After purchasing a sample of the 7106 or the 7107 , the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of additional components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of these unique circuits, Intersil is offering a kit which contains all the necessary components to build a \(31 / 2\)-digit panel meter. With the help of this kit, an engineer or technician can have the system "up and running" in about half an hour.
Two kits are offered, the ICL7106EV/KIT and the ICL7107EV/KIT. Both contain the appropriate IC, a circuit board, a display (LCD for \(7106 \mathrm{EV} / \mathrm{KIT}\), LEDs for \(7107 \mathrm{EV} / \mathrm{KIT}\)), passive components, and miscellaneous hardware.

\section*{APPLICATION NOTES}

A016 "Selecting A/D Converters", by David Fullagar.
A017 "The Integrating A/D Converter", by Lee Evans.
A018 "Do's and Don'ts of Applying A/D Converters", by Peter Bradshaw and Skip Osgood.
A019 " \(41 / 2\)-Digit Panel Meter Demonstrator/Instrumentation Boards", by Michael Dufort.
A023 "Low Cost Digital Panel Meter Designs", by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family", by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106", by Larry Goff.
A052 "Tips for Using Single-Chip 3½-Digit A/D Converters", by Dan Watson.

ICL7 10912 Bit Binary A/D Converter for Microprocessor Interfaces

\section*{FEATURES}
- 12 bit binary (plus polarity and overrange) dual slope integrating analog-to-digital converter.
- Byte-organized TTL-compatible three-state outputs and UART handshake mode for simple parallel or serial interfacing to microprocessor systems.
- RUN/HOLD input and STATUS output can be used to monitor and control conversion timing.
- True differential input and differential reference.
- Low noise - typically \(15 \mu \mathrm{~V}\) p-p.
- 1pA typical input current.
- Operates at up to 30 conversions per second.
- On-chip oscillator operates with inexpensive 3.58MHz TV crystal giving 7.5 conversions per second for 60 Hz rejection. May also be operated as RC oscillator for other clock frequencies.
- Fabricated using MAX-CMOS \({ }^{\text {™ }}\) technology combining analog and digital functions on a single low power LSI CMOS chip.
- All inputs fully protected against static discharge; no special handling precautions necessary.

\section*{GENERAL DESCRIPTION}

The ICL7109 is a high performance, low power integrating A/D converter designed to easily interface with microprocessors.

The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inputs and a chip select input for a simple parallel bus interface. A UART handshake mode is provided to allow the ICL7109 to work with industry-standard UARTs in providing serial data transmission'; ideal for remote data logging applications. The RUN/HOLD input and STATUS output allow monitoring and control of conversion timing.

The ICL7109 provides the user with the high accuracy, low noise, low drift, versatility and economy of the dual-slope integrating \(A / D\) converter. Features like true differential input and reference, drift of less than \(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), maximum input bias current of 10 pA , and typical power consumption of 20 mW make the ICL7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications.

\section*{PIN CONFIGURATION AND TEST CIRCUIT:}
(See Figure 1 for typical connection to a UART or Microcomputer)

(OUTLINE DWGS DL, JL, PL)

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|l|l|}
\hline Part & Temp. Range & \multicolumn{1}{c|}{ Package } & Order Number \\
\hline 7109 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 40 -Pin Ceramic DIP & ICL7109MDL \\
7109 & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 40 -Pin Ceramic DIP & ICL7109IDL \\
7109 & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 40 -Pin CERDIP & ICL7109IJL \\
7109 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin Plastic DIP & ICL7109CPL \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Positive Supply Voltage (GND to \(\mathrm{V}^{+}\))} \\
\hline Negative Supply Voltage (GND to \(\mathrm{V}^{-}\)) & -9V \\
\hline Analog Input Voltage (Lo or Hi) (Note 1) & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) \\
\hline Reference Input Voltage (Lo or Hi) (Note 1) & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) \\
\hline Digital Input Voltage & \(\mathrm{V}^{+}+0.3 \mathrm{~V}\) \\
\hline (Pins 2-27) (Note 2) & GND - 0.3V \\
\hline \multicolumn{2}{|l|}{Power Dissipation (Note 3)} \\
\hline Ceramic Package & 1W@+85 \({ }^{\circ} \mathrm{C}\) \\
\hline Plastic Package & 500 mW @ +70 \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Operating Temperature} \\
\hline Ceramic Package (MDL) & \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}\) \\
\hline (IDL) & \(-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}\) \\
\hline Plastic Package (CPL) & \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{} \\
\hline Lead Temperature (soldering, 60 sec .) & \(+300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{TABLE I OPERATING CHARACTERISTICS}

All parameters with \(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise indicated.
Test circuit as shown on page 1.

\section*{ANALOG SECTION}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Zero Input Reading & & \[
\begin{aligned}
& \mathrm{V}_{\text {IN }}=0.0 \mathrm{~V} \\
& \text { Full Scale }=409.6 \mathrm{~mW}
\end{aligned}
\] & \(-00008\) & \(\pm 0000_{8}\) & \(+0000_{8}\) & Octal Reading \\
\hline Ratiometric Reading & & \[
\begin{aligned}
& V_{I N}=V_{\text {REF }} \\
& V_{\text {REF }}=204.8 \mathrm{mV}
\end{aligned}
\] & 37778 & \[
\begin{aligned}
& 37778 \\
& 40008
\end{aligned}
\] & 40008 & Octal Reading \\
\hline Non-Linearity (Max deviation from best straight line fit) & & Full Scale \(=409.6 \mathrm{mV}\) to 4.096 V Over full operating temperature range. & -1 & \(\pm .2\) & +1 & Counts \\
\hline Roll-over Error (difference in reading for equal pos. and neg. inputs near full scale) & & Full Scale \(=409.6 \mathrm{mV}\) to 4.096 V Over full operating temperature range. & -1 & \(\pm .2\) & +1 & Counts \\
\hline Common Mode Rejection Ratio & CMRR & \[
\begin{aligned}
& V_{C M} \pm 1 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\
& \text { Full Scale }=409.6 \mathrm{mV}
\end{aligned}
\] & & 50 & & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Input Common Mode Range & VCMR & Input Hi , Input Lo, Common & \(\mathrm{V}-+1.5\) & & \(\mathrm{V}+-1.0\) & V \\
\hline Noise (\(p-\mathrm{p}\) value not exceeded 95\% of time) & \(e_{n}\) & \[
\begin{aligned}
& V_{i N}=O V \\
& \text { Full Scale }-409.6 \mathrm{mV} \\
& \hline
\end{aligned}
\] & & 15 & & \(\mu \mathrm{V}\) \\
\hline Leakage current at Input & Illk & \[
\begin{aligned}
& V_{I N}=0 \text { All devices } 25^{\circ} \mathrm{C} \\
& \text { ICL7109CPL } 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\
& \text { ICL7109IDC }-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& \text { ICL7109MDL }-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
\begin{gathered}
1 \\
20 \\
100 \\
2
\end{gathered}
\] & \[
\begin{gathered}
10 \\
100 \\
250 \\
5
\end{gathered}
\] & \begin{tabular}{l}
pA \\
pA \\
pA \\
nA
\end{tabular} \\
\hline Zero Reading Drift & & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) & * & 0.2 & 1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor Temperature Coefficient & & \[
\begin{aligned}
& \mathrm{VIN}=408.9 \mathrm{mV}=>7770_{8} \\
& \text { reading } \\
& \text { Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{aligned}
\] & & 1 & 5 & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Supply Current \(\mathrm{V}^{+}\)to GND & \(1^{+}\) & \begin{tabular}{l}
\(\mathrm{Vin}_{\mathrm{in}}=0\), Crystal Osc. \\
3.58 MHz test circuit
\end{tabular} & & 700 & 1500 & \(\mu \mathrm{A}\) \\
\hline Supply Current \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) & ISUPP & Pins 2-21, 25, 26, 27, 29, open & & 700 & 1500 & \(\mu \mathrm{A}\) \\
\hline Ref Out Voltage & VREF & Referred to \(\mathrm{V}^{+}, 25 \mathrm{k} \Omega\) between \(\mathrm{V}^{+}\)and REF OUT & -2.4 & -2.8 & -3.2 & V \\
\hline Ref Out Temp. Coefficient & & \(25 \mathrm{k} \Omega\) between \(\mathrm{V}^{+}\)and REF OUT & & 80 & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Input Common Mode Range & Vсм & IN HI, IN LO, COMMON & \(V^{-}+1.5\) & \[
\begin{aligned}
& V+t_{0}^{-0.5} \\
& v-+1.0
\end{aligned}
\] & \(V^{+}-1.0\) & V \\
\hline
\end{tabular}

DIGITAL SECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PARAMETER} & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{2}{|l|}{Output High Voltage} & VOH & \[
\begin{aligned}
& \text { lout }=100 \mu \mathrm{~A} \\
& \text { Pins } 2-16,18,19,20
\end{aligned}
\] & 3.5 & 4.3 & & V \\
\hline \multicolumn{2}{|l|}{Output Low Voltage} & VOL & lout \(=1.6 \mathrm{~mA}\) & & 0.2 & 0.4 & V \\
\hline \multicolumn{2}{|l|}{Output Leakage Current} & & Pins 3-16 high impedance & & \(\pm .01\) & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{Control I/O Pullup Current} & & Pins 18, 19, 20 VOUT \(=\mathrm{V}^{+}-3 \mathrm{~V}\) MODE input at GND & & 5 & & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{Control 1/O Loading} & & HBEN Pin 19 LBEN Pin 18 & & & 50 & pF \\
\hline \multicolumn{2}{|l|}{Input High Voltage} & \(\mathrm{V}_{\mathrm{IH}}\) & Pins 18-21, 26, 27 referred to GND & 2.5 & & & V \\
\hline \multicolumn{2}{|l|}{Input Low Voltage} & VIL & Pins 18-21, 26, 27 referred to GND & & & 1 & V \\
\hline \multicolumn{2}{|l|}{Input Pull-up Current} & & Pins 26, 27 VOUT \(=\mathrm{V}^{+}-3 \mathrm{~V}\) & & 5 & & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{Input Pull-up Current} & & Pins 17, 24 Vout \(=\mathrm{V}^{+}-3 \mathrm{~V}\) & & 25 & & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{Input Pull-down Current} & & Pin 21 Vout = GND + 3V & & 5 & & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Oscillator Output Current} & High & OOH & \(\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}\) & & 1 & & mA \\
\hline & Low & OOL & VOUT \(=2.5 \mathrm{~V}\) & & 1.5 & & mA \\
\hline \multirow[t]{2}{*}{Buffered Oscillator Output Current} & High & BOOH & \(\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}\) & & 2 & & mA \\
\hline & Low & BOOL & VOUT \(=2.5 \mathrm{~V}\) & & 5 & & mA \\
\hline \multicolumn{2}{|l|}{MODE Input Pulse Width} & tw & & 50 & & & ns \\
\hline
\end{tabular}

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to \(\pm 100 \mu \mathrm{~A}\)
Note 2: Due to the SCR structure inherent in the process used to fabricate these devices, connecting any digital inputs or outputs to voltages greater than \(\mathrm{V}^{+}\)or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources other than the same power supply be applied to the ICL7109 before its power supply is established, and that in multiple supply systems the supply to the ICL7109 be activated first.
Note 3: This limit refers to that of the package and will not be obtained during normal operation.

Figure 1A. Typical Connection Diagram UART interface - To transmit latest result, send any word to UART

Figure 1B: Typical Connection Diagram Parallel Interface With MCS-48 Microcomputer

TABLE 2 - Pin Assignment and Function Description
\begin{tabular}{|c|c|c|}
\hline PIN & SYMBOL & DESCRIPTION \\
\hline 1 & GND & Digital Ground. OV. Ground return for all digital logic \\
\hline 2 & STATUS & \begin{tabular}{l}
Output High during integrate and deintegrate until data is latched. \\
Output Low when analog section is in Auto-Zero configuration.
\end{tabular} \\
\hline 3 & POL & Polarity - HI for Positive Input. \\
\hline 4 & OR & Overrange - HI if Overranged. \\
\hline 5 & B12 & Bit 12 (Most Significant Bit) \\
\hline 6 & 811 & Bit 11 \\
\hline 7 & B10 & Bit 10 All \\
\hline 8 & B9 & Bit 9 stat \\
\hline 9 & B8 & Bit 8 output \\
\hline 10 & B7 & Bit \(7 \mathrm{HI}=\) true data \\
\hline 11 & B6 & Bit 6 bits \\
\hline 12 & B5 & Bit 5 \\
\hline 13 & B4 & Bit 4 \\
\hline 14 & B3 & Bit 3 \\
\hline 15 & B2 & Bit 2 \\
\hline 16 & B1 & Bit 1 (Least Significant Bit) \\
\hline 17 & TEST & \begin{tabular}{l}
Input High - Normal Operation. \\
Input Low - Forces all bit outputs high. \\
Note: This input is used for test purposes only. Tie high if not used.
\end{tabular} \\
\hline 18 & LBEN & \begin{tabular}{l}
Low Byte Enable - With Mode (Pin 21) low, and \(\overline{C E / L O A D}\) (Pin 20) low, taking this pin low activates low order byte outputs B1-B8. \\
- With Mode (Pin 21) high, this pin serves as a low byte flag output used in handshake mode. See Figures 7, 8, 9.
\end{tabular} \\
\hline 19 & HBEN & \begin{tabular}{l}
High Byte Enable - With Mode (Pin 21) low. and \(\overline{C E / L O A D}\) (Pin 20) low, taking this pin low activates high order byte outputs B9B12. POL, OR. \\
- With Mode (Pin 21) high, this pin serves as a high byte flag output used in handshake mode. See Figures 7, 8, 9.
\end{tabular} \\
\hline 20 & \(\overline{C E / L O A D}\) & \begin{tabular}{l}
Chip Enable Load - With Mode (Pin 21) low, \(\overline{C E / L O A D}\) serves as a master output enable. When high, 81-B12, POL, OR outputs are disabled. \\
- With Mode (Pin 21) high, this pin serves as a load strobe used in handshake mode. See Figures 7, 8, 9.
\end{tabular} \\
\hline
\end{tabular}

Note: All digital levels are positive true.

\section*{DETAILED DESCRIPTION}

\section*{Analog Section}

Figure 2 shows the equivalent circuit of the Analog Section of the ICL7109. When the RUN/HOLD input is left open or connected to \(\mathrm{V}^{+}\), the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 3. They are (1) Auto-Zero (AZ), (2) Signal Integrate (INT) and (3) Deintegrate (DE).

\section*{1. Auto-Zero Phase}

During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the autozero capacitor \(C_{A Z}\) to compensate for offset voltages in
\begin{tabular}{|c|c|c|}
\hline PIN & SYMBOL & DESCRIPTION \\
\hline 21 & MODE & \begin{tabular}{l}
Input Low - Direct output mode where \(\overline{C E / L O A D}\) (Pin 20), FBEN (Pin 19) and LBEN (Pin 18) act as inputs directly controlling byte outputs. \\
Input Pulsed High - Causes immediate entry into handshake mode and output of data as in Figure 9. \\
Input High - Enables CE/LOAD (Pin 20), HBEN (Pin 19), and LBEN (Pin 18) as cutputs, handshake mode will be entered and data output as in Figures 7 and 8 at conversion completion.
\end{tabular} \\
\hline 22 & OSC IN & Oscillator Input \\
\hline 23 & OSC OUT & Oscillator Output \\
\hline 24 & OSC SEL & \begin{tabular}{l}
Oscillator Select - Input high configures OSC IN, OSC OUT, BUF OSC OUT as RC oscillator - clock will be same phase and duty cycle as BUF OSC OUT. \\
- Input low configures OSC IN, OSC OUT for crystal oscillator - clock frequency will be \(1 / 58\) of frequency at BUF OSC OUT.
\end{tabular} \\
\hline 25 & BUF OSC OUT & Buffered Oscillator Output \\
\hline 26 & RUN/HOLD & Input High - Conversions continuously performed every 8192 clock pulses. Input Low - Conversion in progress completed, converter will stop in Auto-Zero 7 counts before integrate. \\
\hline 27 & SEND & Input - Used in handshake mode to indicate ability of an external device to accept data. Connect to +5 V if not used. \\
\hline 28 & V & Analog Negative Supply - Nominally -5V with respect to GND (Pin 1). \\
\hline 29 & REF OUT & Reference Voltage Output - Nominally 2.8 V down from \(\mathrm{V}^{*}\) (Pin 40). \\
\hline 30 & BUFFER & Buffer Amplifier Output \\
\hline 31 & AUTO-ZERO & Auto-Zero Node - Inside foil of \(\mathrm{C}_{\text {AZ }}\) \\
\hline 32 & INTEGRATOR & Integrator Output - Outside foil of CINT \\
\hline 33 & COMMON & Analog Common - System is Auto-Zeroed to COMMON \\
\hline 34 & INPUT LO & Differential Input Low Side \\
\hline 35 & INPUT HI & Differential Input High Side \\
\hline 36 & REF IN + & Differential Reference Input Positive \\
\hline 37 & REF CAP + & Reference Capacitor Positive \\
\hline 38 & REF CAP & Reference Capacitor Negative \\
\hline 39 & REF IN & Differential Reference Input Negative \\
\hline 40 & V & Positive Supply Voltage - Nominally +5 V with respect to GND (Pin 1). \\
\hline
\end{tabular}
the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than \(10 \mu \mathrm{~V}\).

\section*{2. Signal Integrate Phase}

During signal integrate the auto-zero loop is opened, the internal short is removed and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time of 2048 clock periods. Note that this differential voltage can be within the common mode range of the inputs. At the end of this phase, the polarity of the integrated signal is determined.

Figure 2: Analog Section

Figure 3: Conversion Timing (RUN/ \(\overline{\text { HOLD }}\) Pin High)

\section*{3. De-integrate Phase}

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged (during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to return to zero (represented by the number of clock periods counted) is proportional to the input signal.

\section*{Differential Input}

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 1.0 volts below the positive supply to 1.5 volts above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator
positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.
The ICL7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of +5 V and -5 V , this allows a 4 V full scale integrator swing positive or negative maximizing the performance of the analog section.

\section*{Differential Reference}

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for \((t)\) or \((-)\) input voltage will give a roll-over error. However, by
selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection below).
The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog COMMON.

\section*{Component Value Selection}

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.
The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with \(\pm 5 \mathrm{~V}\) supplies and COMMON connected to GND, the nominal integrator output swing at full scale is \(\pm 4 \mathrm{~V}\). Since the integrator output can go to 0.3 V from either supply without significantly affecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With \(\pm 5 \mathrm{~V}\) supplies and a common mode range of \(\pm 1 \mathrm{~V}\) required, the component values should be selected to provide \(\pm 3 \mathrm{~V}\) integrator output swing. Noise and rollover errors will be slightly worse than in the \(\pm 4 \mathrm{~V}\) case. For larger common mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and rollover errors. To improve the performance, supplies of \(\pm 6 \mathrm{~V}\) may be used.

\section*{1. Integrating Resistor}

Both the buffer amplifier and the integrator have a class \(A\) output stage with \(100 \mu \mathrm{~A}\) of quiescent current. They supply \(20 \mu \mathrm{~A}\) of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 4.096 volt full scale, \(200 \mathrm{k} \Omega\) is near optimum and similarly a \(20 \mathrm{k} \Omega\) for a 409.6 mV scale. For other values of full scale voltage, RINT should be chosen by the relation
\[
\text { RINT }=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
\]

\section*{2. Integrating Capacitor}

The integrating capacitor CINT should be selected to give the maximum integrator output voltage swing without saturating the integrator (approximately 0.3 volt from either supply). For the ICL7109 with \(\pm 5\) volt supplies and analog common connected to GND, \(\mathrm{a} \pm 3.5\) to \(\pm 4\) volt integrator output swing is nominal. For \(7-1 / 2\) conversions per second (61.72 KHz clock frequency) as provided by the crystal oscillator, nominal values for CINT and CAZ are \(0.15 \mu \mathrm{~F}\) and \(0.33 \mu \mathrm{~F}\), respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output voltage swing. In general, the value of CINT is given by
\[
\mathrm{C}_{\text {INT }}=\frac{(2048 \times \text { clock period })(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
\]

An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost up to \(85^{\circ} \mathrm{C}\). For the military temperature range, Teflon \({ }^{\circledR}\) capacitors are recommen-
ded. While their dielectric absorption characteristics vary somewhat from unit to unit, selected devices should give less than 0.5 count of error due to dielectric absorption.

\section*{3. Auto-Zero Capacitor}

The size of the auto-zero capacitor has some influence on the noise of the system; a big capacitor, giving less noise. However, it cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and more important the error that exists at the end of an auto-zero cycle. For 409.6 mv full scale where noise is very important and the integrating resistor small, a value of CAZ twice CINT is optimum. Similarly for 4.096 V full scale where recovery is more important than noise, a value of \(C_{A Z}\) equal to half of CINT is recommended.
For optimal rejection of stray pickup, the outer foil of \(\mathrm{C}_{A Z}\) should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of CINT should be connected to pin 32 and the inner foil to the R-C summing junction. Teflon \({ }^{\circledR}\), or equivalent, capacitors are recommended above \(85^{\circ} \mathrm{C}\) for their low leakage characteristics.

\section*{4. Reference Capacitor}

A \(1 \mu \mathrm{~F}\) capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the reference low is not at analog common) and a 409.6 mV scale is used, a larger value is required to prevent roll-over error. Generally \(10 \mu \mathrm{~F}\) will hold the roll-over error to 0.5 count in this instance. Again, Teflon®, or equivalent capacitors should be used for temperatures above \(85^{\circ} \mathrm{C}\) for their low leakage characteristics.

\section*{5. Reference Voltage}

The analog input required to generate a full scale output of 4096 counts is \(V_{I N}=2 V_{\text {REF }}\). Thus for a normalized scale, a reference of 2.048 V should be used for a 4.096 V full scale, and 204.8 mV should be used for a 0.4096 V full scale. However, in many applications where the \(A / D\) is sensing the output of a transducer, there will exist a scale factor other than unity between the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 409.6 mV , the input voltage should be measured directly and a reference voltage of 0.341 V should be used. Suitable values for integrating resistor and capacitor are 34 k and \(0.15 \mu \mathrm{~F}\). This avoids a divider on the input. Another advantage of this system occurs when a zero reading is desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing polarities carefully. However, in proces-sor-based systems using the ICL7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software.

\section*{6. Reference Sources}

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7109 at 12 bits is one part in 4096, or 244 ppm . Thus if the reference has a temperature coefficient of \({ }^{\prime} 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) (onboard reference) a temperature difference of \(3^{\circ} \mathrm{C}\) will introduce a one-bit absolute error.

For this reason, it is recommended that an external highquality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.
The ICL7109 provides a REFerence OUTput (pin 29) which may be used with a resistive divider to generate a suitable reference voltage. This output will sink up to about 20 mA without significant variation in output voltagé, and is provided with a pullup bias device which sources about \(10 \mu \mathrm{~A}\). The output voltage is nominally 2.8 V below \(\mathrm{V}^{+}\), and has a temperature coefficient of \(\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) typ. When using the onboard reference, REF OUT (Pin 29) should be connected to REF - (pin 39), and REF + should be connected to the wiper of a precision potentiometer between REF OUT and \(\mathrm{V}^{+}\). The circuit for a 204.8 mV reference is shown in the test circuit. For a 2.048 mV reference, the fixed resistor should be removed, and a \(25 \mathrm{k} \Omega\) precision potentiometer between REF OUT and \(\mathrm{V}^{+}\)should be used.
Note that if pins 29 and 39 are tied together and pins 39 and 40 accidentally shorted (e.g., during testing), the reference supply will sink enough current to destroy the device. This can be avoided by placing a \(1 \mathrm{k} \Omega\) resistor in series with pin 39.

\section*{DETAILED DESCRIPTION}

\section*{Digital Selection}

The digital section includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic, and UART handshake logic, as shown in the Block Diagram, Figure 4.
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined in Table 1 "Operating Characteristics". For minimum power consumption, all inputs should swing from GND (low) to \(\mathrm{V}^{+}\) (high). Inputs driven from TTL gates should have \(3-5 \mathrm{k} \Omega\) pullup resistors added for maximum noise immunity.

\section*{MODE Input}

The MODE input is used to control the output mode of the
converter. When the MODE pin is low or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

\section*{STATUS Output}

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 3 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter.

\section*{RUN/ \(\overline{H O L D}\) Input}

When the RUN/HOLD input is high, or left open, the circuit will continuously perform conversion cycles, updating the output latches after zero crossing during the Deintegrate (Phase III) portion of the conversion cycle (See Figure 3). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value.
If RUN/ \(\overline{H O L D}\) goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to AutoZero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If RUN/ \(\overline{H O L D}\) stays or goes low, the converter will ensure minimum Auto-Zero time, and then wait in Auto-Zero until the RUN/ \(\overline{H O L D}\) input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at RUN/HOLD. See Figure 5 for details.

Figure 4: Digital Section

Figure 5: Run//Fold Operation

Using the RUN/ \(\overline{H O L D}\) input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in auto-zero with RUN/ \(\overline{H O L D}\) low. When RUN/FOLD goes high the conversion is started, and when the STATUS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). RUN/HOLD may now go low terminating Deintegrate and ensuring a minimum Auto-Zero time before stopping to wait for the next conversion.
Alternately, RUN/ \(\overline{\text { HOLD }}\) can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the RUN/ \(\overline{\mathrm{HOLD}}\) input can be provided by connecting it to the Buffered Oscillator Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A032 for a discussion of the effects this will have on AutoZero performance.

If the RUN/ \(\overline{H O L D}\) input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for RUN//TOLD to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

\section*{Direct Mode}

When the MODE pin is left at a low level, the data outputs (bits 1 through 8 low order byte, bits 9 through 12, polarity and over-range high order byte) are accessible under control of the byte and chip enable terminals as inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in the section entitled "Interfacing." The timing requirements for these outputs are shown in Figure 6 and Table 3.

Table 3 - Direct Mode Timing Requirements
\begin{tabular}{|c|l|c|c|c|c|}
\hline SYMBOL & DESCRIPTION & MIN & TYP & MAX & UNITS \\
\hline tBEA & Byte Enable Width & 350 & 220 & & ns \\
\hline tDAB & \begin{tabular}{l}
Data Access Time \\
from Byte Enable
\end{tabular} & & 210 & 350 & ns \\
\hline tDHB & \begin{tabular}{l}
Data Hold Time \\
from Byte Enable
\end{tabular} & & 150 & 300 & ns \\
\hline tCEA & Chip Enable Width & 400 & 260 & & ns \\
\hline tDAC & \begin{tabular}{l}
Data Access Time \\
from Chip Enable
\end{tabular} & & 260 & 400 & ns \\
\hline tDHC & \begin{tabular}{l}
Data Hold Time \\
from Chip Enable
\end{tabular} & & 240 & 400 & ns \\
\hline
\end{tabular}

————= HIGH IMPEDANCE
Figure 6: Direct Mode Output Timing
It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STATUS output will prevent this. Data is never updated while STATUS is low.

\section*{Handshake Mode}

The handshake output mode is provided as an alternative means of interfacing the ICL7109 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is specifically designed to allow a direct interface between the ICL7109 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7109 provides all the control and flag signals necessary to sequence the two bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.
Entry into the handshake mode is controlled by the MODE pin. When the MODE terminal is held high, the ICL7109 will enter the handshake mode after new data has been stored in the output latches at the end of every conversion performed (See Figures 7 and 8). The MODE terminal may also be used to trigger entry into the handshake mode on demand. At any time during the conversion cycle, the low to high transition of a short pulse at the MODE input will cáuse immediate entry

Figure 7: Handshake With Send Held Positive

Figure 8: Handshake - Typical UART Interface Timing
into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 9) until the converter completes the output cycle and clears the handshake mode.
When the converter enters the handshake mode, or when the MODE input is high, the chip and byte enable terminals become TTL-compatible outputs which provide the control signals for the output cycle (See Figures 7, 8, and 9).

In handshake mode, the SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data.

Figure 7 shows the sequence of the output cycle with SEND held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the \(\overline{C E / L O A D}, \overline{L B E N}\) and HBEN terminals are active as outputs). The high level at the SEND input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the \(\overline{C E / L O A D}\) and the \(\overline{\text { HBEN }}\) outputs assume a low level, and the high-order byte (bits 9 through \(12, \mathrm{POL}\), and OR) outputs are enabled. The \(\overline{C E / L O A D}\) output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte enable remains low for two clock periods. Thus the CE/LOAD output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the
byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using \(\overline{\mathrm{CE} / L O A D}\) and \(\overline{\mathrm{LBEN}}\) while the low order byte outputs (bits 1 through 8) are activated. The handshake mode is terminated when both bytes are sent.
Figure 8 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake to ensure correct data transfer. This timing diagram show .. relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEND input to the ICL7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the \(\overline{C E / L O A D}\) terminal of the ICL7109 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs.
Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake mode is entered after new data is stored. The \(\overline{C E / L O A D}\) and \(\overline{\mathrm{HBEN}}\) terminals will go low after SEND is sensed, and the high order byte outputs become active. When CE/LOAD goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7109

Figure 9: Handshake Triggered By Mode
internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the \(\overline{C E / L O A D}\) and LBEN outputs go low, and the low order byte outputs become active. Similarly, when the \(\overline{C E / L O A D}\) returns high at the end of one clock period, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the \(\overline{\mathrm{CE} / \mathrm{LOAD}}, \overline{\mathrm{HBEN}}\), and \(\overline{\mathrm{LBEN}}\) terminals return high and stay active (as long as MODE stays high).
With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEND input, and the sequence for the first (high order) byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/ \(\overline{\text { HOLD }}\) input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

\section*{Oscillator}

The ICL7109 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation.
When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 10. The circuit will oscillate at a frequency given by \(f=0.45 / \mathrm{RC}\). A \(100 \mathrm{k} \Omega\) resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60 Hz period (but not less than 50 pF).

Figure 10: RC Oscillator
When the OSCILLATOR SELECT input is low a feedback device and output and input capacitors are added to the oscillator. In this configuration, as shown in Figure 11, the

Figure 11: Crystal Oscillator
oscillator will operate with most crystals in the 1 to 5 MHz range with no external components. Taking the OSCILLATOR SELECT input low also inserts a fixed \(\div 58\) divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58 MHz TV crystal, this division ratio provides an integration time given by:
\[
T=(2048 \text { clock periods }) \times\left(\frac{58}{3.58 \mathrm{MHz}}\right)=33.18 \mathrm{~ms}
\]

This time is very close to two 60 Hz periods or 33.33 ms . The error is less than one percent, which will give better than 40 dB 60 Hz rejection. The converter will operate reliably at conversion rates of up to 30 per second, which corresponds to a clock frequency of 245.8 kHz .
If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency.
When using the ICL7109 with the IM6403 UART, it is possible to use one 3.58 MHz crystal for both devices. The BUFFERED OSCILLATOR OUTPUT of the ICL7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive, and when driving more than one slave device, external buffering should be used.

\section*{Test Input}

When the TEST input is taken to a level halfway between \(\mathrm{V}^{+}\) and GND, the counter output latches are enabled, allowing the counter contents to be examined anytime.
When the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the input returns to the \(1 / 2\left(\mathrm{~V}^{+}\right.\)-GND) voltage (or to \(\mathrm{V}^{+}\)) and one clock is applied, all the counter outputs will be clocked to the low state. This allows easy testing of the counter and its outputs.

\section*{INTERFACING}

\section*{Direct Mode}

Figure 12 shows some of the combinations of chip enable and byte enable control signals which may be used when interfacing the ICL7109 to parallel data lines. The \(\overline{C E / L O A D}\) input may be tied low, allowing either byte to be controlled by its own enable as in Figure 12A. Figure 12B shows a configuration where the two byte enables are connected together. In this configuration, the \(\overline{\mathrm{CE} / L O A D}\) serves as a chip enable, and the \(\overline{\mathrm{HBEN}}\) and \(\overline{\mathrm{LBEN}}\) may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Figure 12C shows the \(\overline{H B E N}\) and \(\overline{\text { LBEN }}\) as flag inputs, and CE/LOAD as a master enable, which could be the READ strobe available from most microprocessors.

Figure 12: Direct Mode Chip and Byte Enable Combinations

Figure 13 shows an approach to interfacing several ICL7109s to a bus, ganging the \(\overline{\mathrm{HBEN}}\) and \(\overline{\mathrm{LBEN}}\) signals to several converters together, and using the \(\overline{C E / L O A D}\) inputs (perhaps decoded from an address) to select the desired converter.

Some practical circuits utilizing the parallel three-state output capabilities of the ICL7109 are shown in Figures 14 through 19. Figure 14 shows a straightforward application to the Intel MCS-48, -80 and -85 systems via an 8255PPI, where the ICL7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be used in a read-anytime mode, although a read performed while the data latches are being updated will lead to scrambled data. This will occur very rarely, in the proportion of setup-skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than \(1 / 2\) converter clock period. If STATUS is now low, the second reading is correct, and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read-after-update sequence, as shown in Figure 15. Here the high to low transition of the STATUS output drives an interrupt to the microprocessor causing it to
access the data. This application also shows the RUN/ \(\overline{H O L D}\) input being used to initiate conversions under software control.

A similar interface to Motorola MC6800 or MOS Technology MCS650X systems is shown in Figure 16. The high to low transition of the STATUS output generates an interrupt via the Control Register B CB1 line. Note that CB2 controls the RUN/HOLD pin through Control Register B, allowing software-controlled initiation of conversions in this system also.
Figure 17 shows an interface to the Intersil IM6100 CMOS microprocessor family using the IM6101 PIE to control the data transfers. Here the data is read by the microprocessor in an 8-bit and a 6-bit word, directly from the ICL7109 to the microprocessor data bus. Again, the high to low transition of the STATUS output generates an interrupt leading to a software routine controlling the two read operations. As before, the RUN/HOLD input to the ICL7109 is shown as being under software control.
The three-state output capability of the ICL7109 allows direct interfacing to most microprocessor busses. Examples of this are shown in Figures 1, 18 and 19. It is necessary to

Figure 13: Three-stating Several 7109's to a Small Bus
carefully consider the system timing in this type of interface, to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long busses. Generally this type of interface is only favored if the memory peripheral address density is low so
that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case.

Figure 14: Full-time Parallel Interface to MCS-48, -80, -85 Microcomputer Systems

Figure 15: Full-time Parallel Interface to MCS-48, -80, -85 Microcomputers With Interrupt

ICL7109

Figure 16: Full-time Parallel Interface to MC680X or MCS650X Microprocessors

Figure 17: ICL7109-IM6100 Interface Using IM6101 PIE

*MEMR or \(\overline{\text { IOR }}\) for 8080/8228 System

Figure 18: Direct Interface - ICL7109 to 8080/8085

Figure 19: Direct ICL7109-MC680X Bus Interface

\section*{Handshake Mode}

The handshake mode allows ready interface with a wide variety of external devices. For instance, external latches may be clocked by the rising edge of \(\overline{C E / L O A D}\), and the byte enables may be used as byte identification flags or as load enables.

Figure 20 shows a handshake interface to Intel microprocessors again using an 8255PPI. The handshake operation with the 8255 is controlled by inverting its Input Buffer Full (IBF) flag to drive the SEND input to the ICL7109, and using the \(\overline{C E / L O A D}\) to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 7109 is in handshake mode and the 8255 IBF flag is low, the next word will be strobed into the port. The strobe will cause IBF to go high (SEND goes low), which will keep the enabled byte outputs active. The PPI will generate an interrupt which when executed will result in the data being read. When the byte is read, the IBF will be reset low, which causes the ICL7109 to sequence into the next byte. This figure shows the MODE input to the ICL7109 connected to a control line on the PPI. If this output is left high, or tied high
separately, the data from every conversion (provided the data access takes less time than a conversion) will be sequenced in two bytes into the system.

If this output is made to go from low to high, the output sequence can be obtained on demand, and the interrupt may be used to reset the MODE bit. Note that the RUN/HOLD input to the ICL7109 may also be driven by a bit of the 8255 so that conversions may be obtained on command under software control. Note that one port of the 8255 is not used, and can service another peripheral device. The same arrangement can also be used with the 8155.

Figure 21 shows a similar arrangement with the MC6800 or MCS650X microprocessors, except that both MODE and RUN/ \(\overline{H O L D}\) are tied high to save port outputs.

The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the Intersil IM6402/6403 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown on page 3. In this circuit, any word received by the UART causes

Figure 20: Handshake Interface - ICL7109 to MCS-48, -80, 85

Figure 21; Handshake Interface - ICL7109 to MC6800, MCS650X
the UART DR (Data Ready) output to go high. This drives the MODE input to the ICL7109 high, triggering the ICL7109 into handshake mode. The high order byte is output to the UART first, and when the UART has transferred the data to the Transmitter Register, TBRE (SEND) goes high and the second byte is output. When TBRE (SEND) goes high again, LBEN will go high, driving the UART DRR (Data Ready Reset) which will signal the end of the transfer of data from the ICL7109 to the UART.

Figure 22 shows an' extension of the one converter - one UART scheme of the Typical Connection to several ICL7109s with one UART. In this circuit, the word received by the UART (available at the RBR outputs when DR is high)
is used to select which converter will handshake with the UART. With no external components, this scheme will allow up to eight ICL7109s to interface with one UART. Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line.
The applications of the ICL7109 are not limited to those shown here. The purpose of these examples is to provide a starting point for users to develop useful systems, and to show some of the variety of interfaces and uses of the ICL7109. Many of the ideas suggested here may be used in combination; in particular the uses of the STATUS, RUN/ \(\overline{H O L D}\), and MODE signals may be mixed.

Figure 22: Multiplexing Converters with Mode Input

\section*{APPLICATION NOTES}

A016 "Selecting A/D Converters," by David Fullagar A017 "The Integrating A/D Converters," by Lee Evans A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood

A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors," by Peter Bradshaw
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family," by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

\section*{FEATURES}
- 14-bit linearity and resolution (0.003\%)
- No missing codes
- Microprocessor compatible byte-organized buffered outputs
- Fast conversion \((40 \mu \mathrm{~s})\)
- Auto-zeroed comparator for low offset voltage
- Low linearity and gain tempco (1ppm \(/{ }^{\circ} \mathrm{C}, 4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\))
- Low power consumption (60 mW)
- No gain or offset adjustment necessary (0.006\% FS)
- Provides \(3 \%\) useable overrange
- FORCE/SENSE and separate digital and analog ground pins for increased system accuracy

PIN CONFIGURATION (outline dwg JL)
\begin{tabular}{|c|c|c|}
\hline \(V_{\text {reft }} 1\) & \multirow[t]{20}{*}{I} & 40 Vint \\
\hline \(\mathrm{AGND}_{4} 2\) & & 39 AGND \\
\hline cs 3 & & 38 V VEFs \\
\hline RD 4 & & 37 Vins \\
\hline \(\mathrm{A}_{0} 5\) & & 36 COMP \\
\hline Bus 6 & & 35 v - \\
\hline dGND 7 & & 34 CAZ \\
\hline MSB) \(\mathrm{D}_{13} 8\) & & 33 WR \\
\hline \(\mathrm{D}_{12} 9\) & & 32 sc \\
\hline D11 10 & & \(31 \mathrm{OsC2}\) \\
\hline \(\mathrm{D}_{10} 11\) & & \(30 \mathrm{OSC1}\) \\
\hline D9 12 & & 29 test \\
\hline D8 13 & & 28 PROG \\
\hline D7 14 & & \(27 \mathrm{v}+\) \\
\hline \(\mathrm{D}_{6} 15\) & & 26 OVR \\
\hline D5 16 & & 25 EOC \\
\hline D4 17 & & \(24 \mathrm{~B}_{17}\) \\
\hline \(\mathrm{D}_{3} 18\) & & \({ }^{23} \mathrm{~B}_{16}\) \\
\hline \(\mathrm{D}_{2} 19\) & & \(22 \mathrm{~B}_{15}\) \\
\hline Di 20 & & 21] \(\mathrm{DO}_{0}(\mathrm{LSB})\) \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The ICL7115 is the first monolithic 14-bit accurate, fast successive approximation A/D converter. It uses thin film resistors and CMOS circuitry with an on-chip PROM calibration table circuit to achieve 14-bit linearity without laser trimming. Special design techniques used in the DAC and comparator result in high speed, while the fully static silicon-gate CMOS circuitry keeps the power dissipation very low.

Microprocessor bus interfacing is made easy by the use of standard WRite and ReaD cycle timing and control signals, combined with Chip Select and Address pins. The digital output pins are byte-organized and three-state gated for bus interface to 8,12 , and 16 -bit systems.

The ICL7115 provides separate Analog and Digital grounds. Analog ground, voltage reference and input voltage pins are separated into force and sense lines for increased system accuracy. Operating with \(\pm 5 \mathrm{~V}\) supplies, the ICL7115 accepts 0 V to +5 V input with a -5 V reference or 0 V to -5 V input with a +5 V reference.

The ICL7115 is available in several versions with different accuracies, temperature ranges and packages. A Leadless Chip Carrier (LCC) package is also available; consult factory.

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline ACCURACY & PACKAGE & TEMPERATURE & \begin{tabular}{c}
PART \\
NUMBER
\end{tabular} \\
\hline \(0.01 \%\) & \(40-\) Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7115JCJL \\
\hline \(0.01 \%\) & \(40-\) Pin CERDIP & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & ICL7115JIJL \\
\hline \(0.01 \%\) & LCC & - & - \\
\hline \(0.006 \%\) & \(40-\) Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7115KCJL \\
\hline \(0.006 \%\) & \(40-\) Pin CERDIP & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & ICL7115KIJL \\
\hline \(0.006 \%\) & LCC & - & - \\
\hline \(0.003 \%\) & \(40-\) Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7115LCJL \\
\hline \(0.003 \%\) & \(40-\) Pin CERDIP & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & ICL7115LIJL \\
\hline \(0.003 \%\) & LCC & - & - \\
\hline
\end{tabular}

\section*{ICL7115}

ABSOLUTE MAXIMUM RATINGS (Note 1) \(_{\text {1) }}\)

Supply Voltage \(\mathrm{V}^{+}\)to DGND. -0.3 V to +6.5 V
Supply Voltage \(\mathrm{V}^{-}\)to DGND +0.3 V to -6.5 V
\(\mathrm{V}_{\text {REFs }}, \mathrm{V}_{\text {REFf }}, \mathrm{V}_{\text {INs }}, \mathrm{V}_{\text {INf }}\) to DGND. +25 V to -25 V
AGND \(_{s}\), AGND \(_{\mathrm{f}}\) to DGND. +1 1V to \(-1 V\)
Current in FORCE and SENSE Lines 25 mA
Digital I/O Pin Voltages. -0.3 V to \(\mathrm{V}^{+}+0.3 \mathrm{~V}\)
PROG to DGND Voltage \(V^{-}\)to \(V^{+}+0.3 V\)

Lead Temperature (Soldering, 10 sec)
\(300^{\circ} \mathrm{C}\)
Note 1: Allvoltages with respect to DGND, unless otherwise noted.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS \(\mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFs}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & . CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Resolution & & \[
\begin{aligned}
& \overline{\overline{\mathrm{SC}}=\text { High }} \\
& \overline{\mathrm{SC}}=\text { Low }
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 12
\end{aligned}
\] & & & Bits \\
\hline Total Unadjusted Error & & & & & 1 & \multirow{2}{*}{LSB} \\
\hline Differential Non-Linearity & & Full Operating Temperature Range & & \(1 / 2\) & & \\
\hline Overall Accuracy (Note 3) & & \[
\begin{aligned}
& \text { ICL7115J } \\
& \text { ICL7115K } \\
& \text { ICL7115L }
\end{aligned}
\] & & & \[
\begin{gathered}
0.01 \\
0.006 \\
0.003
\end{gathered}
\] & \% FSR \\
\hline Full-Scale Error & & \begin{tabular}{l}
\[
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\] \\
Operating Temperature Range (Note 2)
\end{tabular} & & \[
\begin{gathered}
1 / 2 \\
1
\end{gathered}
\] & \[
\begin{aligned}
& 1 \\
& 4
\end{aligned}
\] & LSB ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Zero Error & & \begin{tabular}{l}
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Operating Temperature Range (Note 2)
\end{tabular} & & & \[
\begin{gathered}
1 / 8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{LSB} \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Power Supply Rejection & PSRR & \begin{tabular}{l}
\[
T_{A}=+25^{\circ} \mathrm{C}
\] \\
Full Operating Temperature Range
\end{tabular} & & 1/16 & 1/8 & LSB \\
\hline \(\mathrm{V}_{\text {INs }}, \mathrm{V}_{\text {REFs }}\) Resistance & \(Z_{\text {IN }}, Z_{\text {REF }}\) & \begin{tabular}{l}
(Note 4) \\
Operating Temperature Range
\end{tabular} & 3 & \[
\begin{array}{r}
5 \\
-300
\end{array}
\] & 7 & \[
\begin{gathered}
\mathrm{k} \Omega \\
\mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{gathered}
\] \\
\hline Low State Input Voltage & \(\mathrm{V}_{\text {il }}\) & Operating Temperature Range & & & 0.8 & V \\
\hline High State Input Voltage & \(V_{\text {in }}\) & Operating Temperature Range & 2.4 & & & V \\
\hline Logic Input Current & \(l_{\text {lih }}\) & \(0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{+}\) & & 1 & 10 & \(\mu \mathrm{A}\) \\
\hline Low State Output Voltage & \(\mathrm{V}_{\text {ol }}\) & \begin{tabular}{l}
IOUT \(=3.2 \mathrm{~mA}\) \\
Operating Temperature Range
\end{tabular} & & & 0.4 & V \\
\hline High State Output Voltage & Von & \begin{tabular}{l}
\(\mathrm{I}_{\text {OUT }}=-200 \mu \mathrm{~A}\) \\
Operating Temperature Range
\end{tabular} & 2.8 & & & V \\
\hline Three-State Output Current & \(\mathrm{I}_{0 \times}\) & \(0<\mathrm{V}_{\text {OUT }}<\mathrm{V}^{+}\) & & 1 & & \(\mu \mathrm{A}\) \\
\hline Logic Input Capacitance & \(\mathrm{C}_{\text {in }}\) & (Note 2) & & 15 & & \multirow[t]{2}{*}{pF} \\
\hline Logic Output Capacitance & \(\mathrm{C}_{\text {out }}\) & Three-State (Note 2) & & 15 & & \\
\hline \multirow[t]{2}{*}{Supply Voltage Range} & \(\mathrm{V}^{+}\) & Functional Operation & 4.5 & & 6.0 & \multirow[b]{2}{*}{V} \\
\hline & \(\mathrm{V}^{-}\) & & -4.5 & & -6.0 & \\
\hline \multirow[t]{2}{*}{Supply Current} & \(1^{+}\) & Excluding Ladder Current & & 5 & & \multirow[t]{2}{*}{mA} \\
\hline & \(1^{-}\) & \(\mathrm{F}_{\text {CLK }}=1 \mathrm{kHz}\) & & 5 & & \\
\hline
\end{tabular}

Note 2: Assumes all leads soldered or welded to printed circuit board.
Note 3: Full-scale range (FSR) is \(10 \mathrm{~V}(+5 \mathrm{~V}\) to \(-5 \mathrm{~V})\).
Note 4: Guaranteed by design, not \(100 \%\) tested in production.

AC ELECTRICAL CHARACTERISTICS \(\mathrm{v}^{+}=+5.0 \mathrm{~V}, \mathrm{v}^{-}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[t]{2}{*}{Conversion Time} & \multirow[t]{2}{*}{, \(\mathrm{t}_{\text {conv }}\)} & \(\overline{\mathrm{SC}}=\mathrm{High}\) & & & 40 & \multirow[b]{2}{*}{, \(\quad \mu \mathrm{S}\)} \\
\hline & & \(\overline{\mathrm{SC}}=\) Low & & & 36 & \\
\hline Address to Data Access & \(\mathrm{t}_{\text {ada }}\) & & & 250 & & \\
\hline ReaD Low to Data & \(t_{\text {rd }}\) & & & 200 & & \\
\hline ReaD High to Three-State & \(t_{\text {rx }}\) & & 20 & & 100 & \\
\hline ReaD, Address Hold Time & \(t_{\text {rah }}\) & & & & 0 & \\
\hline ReaD Pulse Width High & - \(t_{\text {rah }}\) & & 200 & & & \\
\hline .WRite Pulse Width Low & \(t_{w r}\) & & 200 & & & ns \\
\hline EOC High to Data & \(t_{\text {ed }}\) & & & 200 & & \\
\hline CS, WR Set-Up Time & \(\mathrm{t}_{\mathrm{cws}}\) & & & & 0 & \\
\hline CS, WR Hold Time & \(t_{\text {cwh }}\) & & & & 0 & \(\therefore \quad\). \\
\hline CS, ReaD Set-Up Time & \(\mathrm{t}_{\mathrm{crs}}\) & & & & 0 & \\
\hline CS, ReaD Hold Time & \(\mathrm{t}_{\mathrm{cr}}\) & & & & 0 & \(\cdots\) \\
\hline EOC Pulse Width High & \(t_{\text {eo }}\) & Free-Run Mode & & 0.5 & & \\
\hline WRite Low to EOC Low & \(t_{\text {we }}\) & Wait Mode & 1 & & 2 & K \\
\hline
\end{tabular}

Read Cycle Timing

Write Cycle Timing

\section*{ICL7115}

\section*{PIN DESCRIPTION TABLE}
\begin{tabular}{|c|c|c|c|}
\hline PIN & NAME & \multicolumn{2}{|l|}{FUNCTION} \\
\hline 1 & \(\mathrm{V}_{\text {REFf }}\) & \multicolumn{2}{|l|}{FORCE tine for reference input} \\
\hline 2 & \(A^{\text {GND }}\) f & \multicolumn{2}{|l|}{FORCE input for analog ground} \\
\hline 3 & \(\overline{\mathrm{CS}}\) & \multicolumn{2}{|l|}{Chip Select enables reading and writing (active low)} \\
\hline 4 & \(\overline{\text { RD }}\) & \multicolumn{2}{|l|}{ReaD (active low)} \\
\hline 5 & \(\mathrm{A}_{0}\) & \multicolumn{2}{|l|}{Byte select (low \(=D_{0}-D_{7}\), high \(=D_{8}-D_{13}\), OVR)} \\
\hline 6 & BUS & \multicolumn{2}{|l|}{Bus select (low = outputs enabled by \(A_{0}\), high = all outputs enabled together)} \\
\hline 7 & DGND & \multicolumn{2}{|l|}{Digital GrouND return} \\
\hline 8 & \(\mathrm{D}_{13}\) & \multirow[t]{14}{*}{\begin{tabular}{l}
Bit 13 (most significant) \\
Bit 12 \\
Bit 11 \\
Bit 10 \\
Bit 9 \\
Output \\
Bit 8 \\
Data \\
Bit 7 \\
Bits \\
Bit 6
\[
\text { (High }=\text { True })
\] \\
Bit 5 \\
Bit 4 \\
Bit 3 \\
Bit 2 \\
Bit 1 \\
Bit 0 (least significant)
\end{tabular}} & \multirow{6}{*}{High Byte} \\
\hline 9 & \(\mathrm{D}_{12}\) & & \\
\hline 10 & \(\mathrm{D}_{11}\) & & \\
\hline 11 & \(\mathrm{D}_{10}\) & & \\
\hline 12 & \(\mathrm{D}_{9}\) & & \\
\hline 13 & \(\mathrm{D}_{8}\) & & \\
\hline 14 & \(\mathrm{D}_{7}\) & & \multirow{8}{*}{Low Byte} \\
\hline 15 & \(\mathrm{D}_{6}\) & & \\
\hline 16 & \(\mathrm{D}_{5}\) & & \\
\hline 17 & \(\mathrm{D}_{4}\) & & \\
\hline 18 & \(\mathrm{D}_{3}\) & & \\
\hline 19 & \(\mathrm{D}_{2}\) & & \\
\hline 20 & \(\mathrm{D}_{1}\) & & \\
\hline 21 & \(\mathrm{D}_{0}\) & & \\
\hline
\end{tabular}

\section*{I/O CONTROL TRUTH TABLE}
\begin{tabular}{|c|c|c|c|c|l|}
\hline\(\overline{\mathbf{C S}}\) & \(\overline{\mathbf{W R}}\) & \(\overline{\mathbf{R D}}\) & \(\mathbf{A}_{0}\) & BUS & \multicolumn{1}{|c|}{ FUNCTION } \\
\hline 0 & 0 & x & x & x & Initiates a Conversion \\
\hline 1 & x & x & x & x & Disables all Chip Commands \\
\hline 0 & 1 & 0 & 0 & 0 & Low Byte is Enabled \\
\hline 0 & 1 & 0 & 1 & 0 & High Byte is Enabled \\
\hline 0 & 1 & 0 & x & 1 & Low and High Bytes Enabled Together \\
\hline x & x & 1 & x & x & Disables Outputs (High-Impedance) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PIN & NAME & FUNCTION \\
\hline 22 & \(\mathrm{B}_{15}\) & \\
\hline 23 & \(\mathrm{B}_{16}\) & Used for programming only (leave open) \\
\hline 24 & \(\mathrm{B}_{17}\) & \\
\hline 25 & EOC & End Of Conversion flag (low = busy, high = conversion complete) \\
\hline 26 & OVR & OVerRange flag (valid at end of conversion when output code exceeds full-scale, threestate output enabled with high byte) \\
\hline 27 & \(\mathrm{V}^{+}\) & Positive power supply input \\
\hline 28 & PROG & Used for programming only. Tie to \(\mathrm{V}^{+}\)for normal operation \\
\hline 29 & TEST & Used for programming only. Tie to \(\mathrm{V}^{+}\)for normal operation \\
\hline 30 & OSC1 & Oscillator inverter input \\
\hline 31 & OSC2 & Oscillator inverter output \\
\hline 32 & \(\overline{\mathrm{SC}}\) & Short cycle input (high \(=14\)-bit, low \(=12\)-bit operation) \\
\hline 33 & WR & WRite pulse input (low starts new conversion) \\
\hline 34 & \(\mathrm{C}_{A Z}\) & Auto-zero capacitor connection \\
\hline 35 & \(\mathrm{V}^{-}\) & Negative power supply input \\
\hline 36 & COMP & Used in test, tie to \(\mathrm{V}^{-}\) \\
\hline 37 & \(V_{\text {INs }}\) & SENSE line for input voltage \\
\hline 38 & \(\mathrm{V}_{\text {REFS }}\) & SENSE line for reference input \\
\hline 39 & \(\mathrm{AGND}_{\text {s }}\) & SENSE line for analog ground \\
\hline 40 & \(\mathrm{V}_{\text {INf }}\) & FORCE line for input voltage \\
\hline
\end{tabular}

\section*{TRANSFER FUNCTION TABLE}

\section*{ICL7115}

\section*{DETAILED DESCRIPTION}

The ICL7115 is basically a successive approximation A/D converter with an internal structure much more complex than a standard SAR-type converter. Figure 1 shows the functional block diagram of the ICL7115 14-bit A/D converter. The additional circuitry incorporated into the ICL7115 is used to perform error correction and to maintain the operating speed in the \(40 \mu\) s range.
The internal 17-bit DAC of the ICL7115 is designed around a radix of 1.85 rather than the traditional 2.00 . This radix gives each bit of the DAC a weight of approximately \(54 \%\) of the previous bit. The result is a useable range that extends to \(3 \%\) beyond the full-scale input of the A/D. The actual value of each bit is measured and stored in the on-chip PROM. The absolute value of each bit weight then becomes relatively unimportant because of the error correction action of the ICL7115.
The output of the high-speed auto-zeroed comparator is fed to the data input of a 17 -bit successive approximation register (SAR). This register is uniquely designed for the ICL7115 in that it tests bit pairs instead of individual bits in the manner of a standard SAR. At the beginning of the conversion cycle, the SAR turns on the MSB \(\left(\mathrm{B}_{16}\right)\) and the MSB- 4 bit \(\left(B_{12}\right)\). The sequence continues for each bit pair, \(B_{x}\) and \(B_{x-4}\), until only the four LSBs remain. The sequence concludes by testing the four LSBs individually.

The SAR output is fed to the DAC register and to the preprogrammed 17 -word by 17-bit PROM where it acts as PROM address. PROM data is fed to a 17-bit full-adder/accumulator
where the decoded results from each successive phase of the conversion are summed with the previous results. After 20 clock cycles, the accumulator contains the final binary data which is latched and sent to the three-state output buffers. The accuracy of the A/D converter depends primarily upon the accuracy of the data that has been programmed into the PROM during the final test portion of the manufacturing process.

The error correcting algorithm built into the ICL7115 reduces the initial accuracy requirements of the DAC. The overlap in the testing of bit pairs reduces the accuracy requirements on the comparator which has been optimized for speed. Since the comparator is auto-zeroed, no external adjustment is required to get ZERO code for ZERO input voltage.

Twenty clock cycles are required for the complete 14 -bit conversion. The auto-zero circuitry associated with the comparator is employed during the last three clock cycles of the conversion to cancel the effect of offset voltage. Also during this time, the SAR and accumulator are reset in preparation for the start of the next conversion. When the Short Cycle(\(\overline{\mathrm{SC}})\) input is low, 18 clock cycles are required to complete a 12 -bit conversion.

The overflow output of the 17-bit full-adder is also the OVerRange (OVR) output of the ICL7115. Unlike standard SAR-type A/D converters, the ICL7115 has the capability of providing valid useable data for inputs that exceed the full-scale range by as much as \(3 \%\).

Figure 1. ICL7115 Functional Block Diagram

Figure 2. \(V_{I N}\) and \(V_{\text {REF }}\) Input Buffers

Figure 3. Using a Forced Ground
for \(V_{I N}\) and \(V_{\text {REF }}\), connections should be made directly to the SENSE lines. The external op-amps also serve to transform the relatively low impedance at the \(\mathrm{V}_{I N}\) and \(\mathrm{V}_{\text {REF }}\) pins into a high impedance. The input offset voltages of these amplifiers should be kept low in order to maintain the overall A/D converter system accuracy.

\section*{INTERFACING TO DIGITAL SYSTEMS}

The ICL7115 provides three-state data output buffers, CS, RD, WR, and bus select inputs (\(A_{0}\) and BUS) for interfacing to a wide variety of microcomputers and digital systems. The I/O Control Truth Table shows the functions of the digital control lines. The BUS select and \(A_{0}\) lines are provided to enable the output data onto either 8 -bit or 16 -bit data busses. A conversion is initiated by a WR pulse (pin 33) when Chip Select (pin 3) is low. Data is enabled on the bus when the chip is selected and RD (pin 4) is low.

Figure 4 illustrates a typical interface to an 8-bit microcomputer. The "Start and Wait" operation requires the fewest external components and is initiated by a low level on the WR input to the ICL7115 after the I/O or memory-mapped address decoder has brought the CS input low. After executing a delay or utility routine for a period of time greater than the conversion time of the ICL7115, the processor issues two consecutive bus addresses to read output data into two bytes of memory. A low level on \(A_{0}\) enables the LSBs and a high level enables the MSBs.

Figure 4. "Start and Wait" Operation

By adding a three-state buffer and two control gates, the End-of-Conversion (EOC) output can be used to control a "Start and Poll" interface (Figure 5). In this mode, the \(A_{0}\) and \(\overline{C S}\) lines connect the EOC output to the data bus along with the most significant byte of data. After pulsing the WR line to initiate a conversion, the microprocessor continually reads the most significant byte until it detects a high level on the EOC bit. The "Start and Poll" interface increases data throughput compared with the "Start and Wait" method by eliminating delays between the conversion termination and the microprocessor read operation.

Other interface configurations can be used to increase data throughput without monopolizing the microprocessor during waiting or polling operations by using the EOC line as an interrupt generator as shown in Figure 6. After the conversion cycle is initiated, the microprocessor can continue to execute routines that are independent of the A/D converter until the converter's output register actually holds valid data. For fastest data throughput, the ICL7115 can be connected directly to the data bus but controlled by way of a Direct Memory Access (DMA) controller as shown in Figure 7.

Figure 5. "Start and Poll" Operation

Figure 6. Using EOC as an Interrupt

Figure 7. Data to Memory via DMA Controller

\section*{APPLICATIONS}

Figure 8 shows a typical application of the ICL7115 14-bit A/D converter. A bipolar input voltage range of +5 V to -5 V is the result of using the current through \(\mathrm{R}_{2}\) to force a \(1 / 2\) scale offset on the input amplifier \(\left(A_{2}\right)\). The output of \(A_{2}\) swings from 0 V to -5 V . The ICL8078-5D0 provides a very stable and accurate +5 V for the reference buffer amplifier \(\mathrm{A}_{1}\). The overall gain of the A/D is varied by adjusting the \(100 \mathrm{k} \Omega\) trim resistor, \(R_{5}\). Since the reference voltage will have a tempco of \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), typically, and the ICL7115 is automatically zeroed every conversion, the system gain and offset stability will be superb as long as stable external resistors are used.

In Figure 8, note that the \(0.22 \mu \mathrm{~F}\) auto-zero capacitor is connected directly between the \(C_{A Z}\) pin and analog ground

SENSE. \(A_{3}\) forces the analog ground of the ICL7115 to be the zero reference for the input signal. Its offset voltage is not important in this example because the voltage to be digitized is referred to the analog ground SENSE line rather than system analog ground.

The clock for the ICL7115 is taken from whatever system clock is available and divided down to the 500 kHz level for a conversion time of \(40 \mu \mathrm{~s}\). Output data is controlled by the BUS and \(A_{0}\) inputs. Here they are set for 8 -bit bus operation with BUS grounded and \(A_{0}\) under the control of the address decode section of the external system.

Figure 8. Typical Application with Bipolar Input Range, Forced Ground, and Heated-Substrate Reference

\section*{ICL7115}

Because the ICL7115's internal accumulator generates accurate output data for input signals as much as \(3 \%\) greater than full-scale, and because the converter's OVR output flags overrange inputs, a simple microprocessor routine can be employed to precisely measure and correct for system gain and offset errors. Figure 9 shows a typical data acquisition system that uses a 5.0 V reference, input signal multiplexer, and input signal Track/Hold amplifier. Two of the multiplexer's input channels are dedicated to sampling the system analog ground and reference voltage. Here, as in Figure 8, bipolar operation is accommodated by an offset resistor between the reference voltage and the summing junction of \(A_{1}\). A flip-flop in \(I C_{3}\) sets \(I C_{2}\) 's Track/Hold input after the microprocessor has initiated a WR command, and resets when EOC goes high at the end of the conversion.

The first step in the system calibration routine is to select the multiplexer channel that is connected to system analog ground and initiate a conversion cycle for the ICL7115. The results represent the system offset error which comes from the sum of the offsets from \(I C_{1}, I C_{2}\), and \(A_{1}\). Next the channel
connected to the reference voltage is selected and measured. These results, minus the system offset error, represent the system full-scale range. A gain error correction factor can be derived from this data. Since the ICL7115 provides valid data for inputs that exceed full-scale by as much as 3\%, the OVR output can be thought of as a valid 15th data bit. Whenever the OVR bit is high, however, the total 14-bit result should be checked to insure that it falls within \(100 \%\) of full-scale and 103\% of full-scale. Data beyond 103\% of fullscale should be discarded.

The ICL7115 provides an internal inverter, OSC1 and OSC2, for crystal or ceramic resonator oscillator operation. The clock frequency is calculated from:
\[
f_{C L K}=\frac{20}{t_{\text {conv }}} \text { for 14-bit operation }
\]
and
\[
f_{C L K}=\frac{18}{t_{\text {conv }}} \text { for 12-bit operation }
\]

Figure 9. Multi-Channel Data Acquisition System with Zero and Reference Lines Brought to Multiplexer for System Gain and Offset Error Correction

Note 1: Finish: Gold plated 60 micro inches minimum thickness over nickel plated.
Note 2: Pin number 1 connected to die attach pad ground

\section*{ICL7116／7117 3½－Digit Single Chip AID Converter with Display Hold}

\section*{FEATURES}
－HOLD Reading Input allows indefinite display hold
－Guaranteed zero reading for \(\mathbf{0}\) volts input on all scales．
－True polarity at zero for precise null detection．
－ 1 pA input current typical．
－True differential input
－Direct display drive－no external components required．－LCD ICL7116
－LED ICL7117
－Low noise－less than \(15 \mu \mathrm{~V} k\)－pk typical．
－On－chip clock and reference．
－Low power dissipation－typically less than 10 mW ．
－No additional active circuits required．

\section*{GENERAL DESCRIPTION}

The Intersil ICL7116 and 7117 are high performance，low power 3－1／2 digit A／D converters．All the necessary active devices are contained on a single CMOS I．C．，including
seven segment decoders，display drivers，reference，and a clock．The 7116 is designed to interface with a liquid crystal display（LCD）and includes a backplane drive；the 7117 will directly drive an instrument－size light emitting diode（LED） display．
The 7116 and 7117 have almost all of the features of the 7106 and 7107 with the addition of a HOLD Reading input．With this input，it is possible to make a measurement and then retain the value on the display indefinitely．To make room for this feature the reference input has been referenced to Common rather than being fully differential．These circuits retain the accuracy，versatility，and true economy of the 7106 and 7107 ．High accuracy like auto－zero to less than \(10 \mu \mathrm{~V}\) ， zero drift of less than \(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) ，input bias current of 10 pA maximum，and roll over error of less than one count．The versatility of true differential input is of particular advantage when measuring load cells，strain gauges and other bridge－ type transducers．And finally the true economy of single power supply operation（7116），enabling a high performance panel meter to be built with the addition of only seven passive components and a display．

TYPICAL CONNECTION DIAGRAMS

ICL7116 with Liquid Crystal Display

ICL7117 with LED Display
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{PIN CONFIGURATION} \\
\hline \multirow[t]{19}{*}{} & & HLDR［ & 1 & \(\checkmark\) & 40 & －osc 1 \\
\hline & & D15 & 2 & & 39 & 己 Osc 2 \\
\hline & & C15 & 3 & & 38 & DOSC 3 \\
\hline & क & B1［ & 4 & & 37 & \(\square\) test \\
\hline & E & A15 & 5 & & 36 & PREF HI \\
\hline & 2 & F1듬 & 7 & & 35 & \(\mathrm{p}^{+}\) \\
\hline & & G1－ & 7 & 7116 LCD & 34 & \(\mathrm{ZC}^{+}\)ref \\
\hline & & E1发 & 8 & 7117 LED & 33 & \(\square^{\text {C－REF }}\) \\
\hline & & D2 & 9 & & 32 & COMMON \\
\hline & क & C2 & 10 & & 31 & gin Hi \\
\hline & 른 & A2 & 12 & & 29 & 日A／Z \\
\hline & \(E\) & F2马 & 13 & & 28 & BuFF \\
\hline & & E2口 & 14 & & 27 & ］int \\
\hline & & D3－ & 15 & & 26 & \(\mathrm{V}^{-}\) \\
\hline & 8 & B3－ & 16 & & 25 & \(\mathrm{G}_{2}\)（TENS） \\
\hline & 을 & F3［ & & & & \(\mathrm{C}_{3}{ }^{\text {a }}\) \\
\hline & & AB4 & 18 & & 23 & \(\square^{\square} \mathrm{A}_{3}{ }^{\text {a }}\) \\
\hline & & POL & & & 21 & \(\mathrm{G}_{3}\) BP／GND \\
\hline & （MIN & US） & & & & （7116）／（7117） \\
\hline
\end{tabular}

\section*{ICL7116/ICL7117}

\section*{ABSOLUTE MAXIMUM RATINGS \\ ICL7116}

Supply Voltage (\(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\))................................ 15 V
Analog Input Voltage (either input) (Note 1) V to \(\mathrm{V}^{-}\)
Reference Input Voitage (either input)............\(V\) to \(\mathrm{V}^{-}\)
HLDR, Clock Input Test to \(\mathrm{V}^{+}\)
Power Dissipation (Note 2)
Ceramic Package
1000 mW
Plastic Package 800 mW
Operating Temperature \(\ldots \ldots \ldots \ldots \ldots \ldots \ldots 0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature \(\ldots \ldots . \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}\) to \(+160^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 60 sec) \(300^{\circ} \mathrm{C}\)

\section*{ICL7117}

Supply Voltage \(\mathrm{V}^{+} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .\).
Analog Input Voltage (either input) (Note 1) \(\ldots . . . \mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)
Reference input Voltage (either input) \(\ldots \ldots \mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)
HLDR, Clock Input . Gnd to \(\mathrm{V}^{+}\)
Power Dissipation (Note 2)
Ceramic Package . 1000 mW
Plastic Package . 800 mW
Operating Temperature \(\ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature \(\ldots \ldots \ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}\) to \(+160^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 60 sec) \(300^{\circ} \mathrm{C}\)

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to \(\pm 100 \mu \mathrm{~A}\).
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS (Note 3)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTICS & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Zero Input Reading & \[
\begin{aligned}
& V_{\text {IN }}=0.0 \mathrm{~V} \\
& \text { Full Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & -000.0 & \(\pm 000.0\) & +000.0 & Digital Reading \\
\hline Ratiometric Reading & \[
\begin{aligned}
& V_{V_{N}}=V_{\text {REF }} \\
& V_{\text {REF }}=100 \mathrm{mV}
\end{aligned}
\] & 999 & 999/1000 & 1000 & Digital Reading \\
\hline Rollover Error (Difference in reading for equal positive and negative reading near Full Scale) & \(-\mathrm{V}_{\mathrm{IN}}=+\mathrm{V}_{1 \mathrm{I}} \cong 200.0 \mathrm{mV}\) & -1 & \(\pm 0.2\) & +1 & Counts \\
\hline Linearity (Max. deviation from best straight line fit) & Full Scale \(=200 \mathrm{mV}\) or Full Scale \(=2.000 \mathrm{~V}\) & -1 & \(\pm 0.2\) & +1 & Counts \\
\hline Common Mode Rejection Ratio (Note 4) & \(\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}\), Full Scale \(=200.0 \mathrm{mV}\) & & 50 & & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Noise (Pk - Pk value not exceeded 95\% of time) & \[
\begin{aligned}
& \hline V_{\text {IN }}=0 \mathrm{~V} \\
& \text { Full Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & & 15 & & \(\mu \mathrm{V}\) \\
\hline Leakage Current @ Input & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) & & 1 & 10 & pA \\
\hline Zero Reading Drift & \[
\begin{aligned}
& V_{1}=0 \\
& 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.2 & 1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor Temperature Coefficient & \[
\begin{aligned}
& V_{I N}=199.0 \mathrm{mV} \\
& 0^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C} \\
& \text { (Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \\
& \hline
\end{aligned}
\] & & 1 & 5 & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}^{+}\)Supply Current (Does not include LED current for 7117) & \(\mathrm{V}_{\mathrm{IN}}=0\) & & 0.8 & 1.8 & mA \\
\hline \(\mathrm{V}^{-}\)Supply Current (7117 only) & & & 0.6 & 1.8 & mA \\
\hline Analog Common Voltage (With respect to pos. supply) & \(25 \mathrm{k} \Omega\) between COMMON \& pos. Supply & 2.4 & 2.8 & 3.2 & V \\
\hline Temp. Coeff. of Analog Common (with respect to pos. Supply) & \(25 \mathrm{k} \Omega\) between COMMON \& pos. Supply & & 80 & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Input Resistance, Pin 1 (Note 6) & & 30 & 70 & & k ת \\
\hline \(\mathrm{V}_{\text {IL }}\), Pin 1 (7116 only) & & & & TEST +1.5 & V \\
\hline \(V_{\text {IL, }}\) Pin 1 (7117 only) & & & & GND +1.5 & V \\
\hline \(\mathrm{V}_{\text {IH, }}\) Pin 1 (Both) & & \(\mathrm{V}+-1.5\) & & & V \\
\hline \begin{tabular}{l}
7116 ONLY \\
Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage (Note 5)
\end{tabular} & \(\mathrm{V}^{+}-\mathrm{V}^{-}=9 \mathrm{~V}\) & 4
4 & 5
5 & 6
6 & v \\
\hline \begin{tabular}{l}
7117 ONLY \\
Segment Sinking Current (Except Pin 19 (Pin 19 only)
\end{tabular} & \[
\begin{aligned}
& \hline \mathrm{V}^{+}=5.0 \mathrm{~V} \\
& \text { Segment Voltage }=3 \mathrm{~V}
\end{aligned}
\] & 5
10 & 8.0
16 & & mA \\
\hline
\end{tabular}

Note 3: Unless otherwise noted, specifications apply to both the 7116 and 7117 at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=48 \mathrm{kHz}\). 7116 is tested in the circuit of Figure 1. 7117 is tested in the circuit of Figure 2.

Note 4: Refer to "Differential Input" discussion.
Note 5: Back plane drive is in phase with segment drive for 'off' segment, \(180^{\circ}\) out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
Note 6: The 7116 logic input has an internal pull-down resistor connected from HLDR, pin 1, to TEST, pin 37 . The 7117 logic input has an internal pull-down resistor connected from HLDR, pin 1 to GROUND, pin 21.

\section*{TEST CIRCUITS}

Figure 1: 7116

Figure 2: 7117

\section*{DETAILED DESCRIPTION}

\section*{ANALOG SECTION}

Figure 3 shows the Block Diagram of the Analog Section for the ICL7116 and 7117. Each measurement cycle is divided into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Figure 3: Analog Section of 7116/7117

\section*{1. Auto-zero phase}

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor \(\mathrm{C}_{A Z}\) to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than \(10 \mu \mathrm{~V}\).

\section*{2. Signal Integrate phase}

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between INHI
and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

\section*{3. De-integrate phase}

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is \(1000\left(\frac{\text { Vin }}{\text { Vref }}\right)\).

\section*{Differential Input}

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worse case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity. See A032 for a discussion of the effects of stray capacitance.

\section*{Reference}

The reference input must be generated as a positive voltage with respect to COMMON. Note that current flowing in the COMMON pins' internal resistance causes a slight shift in the effective reference voltage, disturbing ratiometric readings at low reference inputs. If possible, do not let this current vary.

\section*{Analog COMMON}

This pin is included primarily to set the common mode voltage for battery operation (7116) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate (\(>7 \mathrm{~V}\)), the COMMON voltage will have a low voltage coefficient (. \(001 \% / \%\)), low output impedance (\(\approx 15 \Omega\)), and a temperature coefficient typically less than \(80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).
The limitations of the on-chip reference should also be recognized, however. With the 7117, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from 25 \(\mu \mathrm{V}\) to \(80 \mu \mathrm{Vpk}-\mathrm{pk}\). Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111 (8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.

The 7116, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Fig. 4.
Analog COMMON is also the voltage that input low returns to during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be
set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter.

Figure 4: Using an External Reference
Within the IC, analog COMMON is tied to an \(N\) channel FET that can sink 30 mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only \(10 \mu \mathrm{~A}\) of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

\section*{TEST}

The TEST pin serves two functions. On the 7116 it is coupled to the internally generated digital supply through a \(500 \Omega\) resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

Figure 5: Simple Inverter for Fixed Decimal Point

Figure 6: Exclusive 'OR' Gate for Decimal Point Drive
The second function is a "lamp test". When TEST is pulled to high (to \(\mathrm{V}^{+}\)) all segments will be turned on and the display should read - 1888. [Caution: on the 7116, in the lamp test mode, the segments have a constant DC voltage (no squarewave) and will burn the LCD display if left in this mode for several minutes.]

\section*{ICL7116/ICL7117}

\section*{DIGITAL SECTION}

Figures 7 and 8 show the digital section for the 7116 and 7117, respectively. In the 7116, an internal digital ground is generated from a 6 volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.

Figure 8 is the Digital Section of the 7117. It is identical except the regulated supply and back plane drive have been eliminated and the segment drive has been inctreased from 2
to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .
In both devices the polarity indicator is ON for negative analog inputs. This can be reversed by simply reversing \(\operatorname{IN}\) LO and IN HI .

\section*{HOLD Reading Input}

The HLDR input will prevent the latch from being updated when this input is at a logic " HI ". The chip will continue to make \(A / D\) conversions, however, the results will not be updated to the internal latches until this input goes low. This input can be left open or connected to TEST (7116) or GROUND (7117) to continuously update the display. This input is CMOS compatible, and has a 70 k typical resistance to either TEST (7116) or GROUND (7117).

\section*{DISPLAY FONT}

Figure 8: Digital Section 7117

\section*{System Timing}

Figure 9 shows the clocking arrangement used in the 7116 and 7117. Three basic clocking arrangements can be used:
1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

Figure 9: Clock Circuits
The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/ second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of \(240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}\), \(40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}\), etc. should be selected. For 50 Hz rejection, Oscillator frequencies of \(200 \mathrm{kHz}, 100 \mathrm{kHz}\), \(662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}\), etc. would be suitable. Note that

40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

\section*{COMPONENT VALUE SELECTION}

\section*{1. Integrating Resistor}

Both the buffer amplifier and the integrator have a class \(A\) output stage with \(100 \mu \mathrm{~A}\) of quiescent current. They can supply \(20 \mu \mathrm{~A}\) of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, \(470 \mathrm{k} \Omega\) is near optimum and similarly a \(47 \mathrm{k} \Omega\) for a 200.0 mV scale.

\section*{2. Integrating Capacitor}

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7116 or the 7117, when the analog COMMON is used as a reference, a nominal \(\pm 2\) volt full scale integrator swing is fine. For the 7117 with \(\pm 5\) volt supplies and analog common tied to supply ground, a \(\pm 3.5\) to \(\pm 4\) volt swing is nominal. For three readings/ second \((48 \mathrm{kHz}\) clock), nominal values for CINT are 0.22 and \(0.10 \mu \mathrm{~F}\), respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

\section*{3. Auto-Zero Capacitor}

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise

\section*{ICL7116/ICL7117}
is very important, \(\mathrm{a} 0.47 \mu \mathrm{~F}\) capacitor is recommended. On the 2 volt scale, a \(0.047 \mu \mathrm{~F}\) capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

\section*{4. Reference Capacitor}

A \(0.1 \mu \mathrm{~F}\) capacitor gives good results in most applications. If rollover errors occur a larger value, up to \(1.0 \mu \dot{\mathrm{~F}}\) may be required.

\section*{5. Oscillator Components}

For all ranges of frequency a \(100 \mathrm{k} \Omega\) resistor is recommended and the capacitor is selected from the equation \(f=\frac{0.45}{\mathrm{AC}}\). For 48 kHz clock (3 readings/second), C \(=100 \mathrm{pF}\).

\section*{6. Reference Voltage}

The analog input required to generate full-scale output (2000 counts) is: \(\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}\). Thus, for the 200.0 mV and 2.000 volt scale, VREF should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select \(\mathrm{V}_{\text {REF }}=\) 0.341 V . Suitable values for integrating resistor and capacitor would be \(120 \mathrm{k} \Omega\) and \(0.22 \mu \mathrm{~F}\). This makes the system slightly quieter and also avoids a divider network on the input. The 7117 with \(\pm 5\) volts supplies can accept input signals up to \(\pm 4\) volts. Another advantage of this system occurs when a digital reading of zero is desired
for \(\mathrm{V}_{\mathrm{IN}} \neq 0\). Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

\section*{7. 7117 Power Supplies}

The 7117 is designed to work from \(\pm 5\) volt supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application. See ICL7660 data sheet for an alternative.

Figure 10: Generating Negative Supply from \(+5 v\)

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:
1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than \(\pm 1.5\) volts.
3. An external reference is used.

\section*{TYPICAL APPLICATIONS}

The 7116 and 7117 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these \(A / D\) converters.

Figure 11: 7116 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9 V battery).

Figure 12: 7117 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog Common.)

Figure 13: 7116/7117: Recommended component values for 2.000 V full scale.

Figure 15: 7117 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

\section*{APPLICATION NOTES}

A016"'Selecting A/D Converters," by David Fullagar.
A017"'The Integrating A/D Converter," by Lee Evans.
A018"Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A019" 4112 -Digit Panel Meter Demonstrator/Instrumentation Boards," by Michael Dufort.
A023"Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032"Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family," by Peter Bradshaw.
A046"Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff.
A047"'Games People Play with Intersil's A/D Converters," edited by Peter Bradshaw.
A052"Tips for Using Single-Chip 3½-Digit A/D Converters,' by Dan Watson.

Figure 14: 7117 operated from single +5 V supply. An external reference must be used in this application, since the voltage between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)is insufficient for correct operation of the internal reference.

Figure 16: 7116 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about \(-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

Single-Chip 3½-Digit
Low-Power A/D Converter

\section*{FEATURES}
- Guaranteed zero reading for 0 Volts input on all scales
- True polarity at zero for precise null detection
- 1pA typical input current
- True differential input and reference
- Direct LCD display drive - no external components required
- Pin compatible with the ICL7106
- Low noise - less than \(15 \mu \mathrm{~V}\) p-p
- On-chip clock and reference
- Low power dissipation guaranteed less than \(1 \mathbf{m W}\)
- No additional active circuits required
- Evaluation Kit available (ICL7126EV/KIT)
- 8,000 hours typical 9 Volt battery life

\section*{GENERAL DESCRIPTION}

The Intersil ICL7126 is a high performance, very low power \(31 / 2\)-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven segment decoders, display drivers, reference, and clock. The 7126 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive. The supply current is \(100 \mu \mathrm{~A}\), ideally suited for 9V battery operation.
The 7126 brings together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy, like auto-zero to less than \(10 \mu \mathrm{~V}\), zero drift of less than \(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation allows a high performance panel meter to be built with the addition of only 7 passive components and a display. The ICL7126 can be used as a plug-in replacement for the ICL7106 in a wide variety of applications, changing only the passive components.

\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage (\(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)) 15 V
Analog Input Voltage (either input) (Note 1) \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)
Reference Input Voltage (either input)
\(\qquad\)
Clock Input \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to \(\pm 100 \mu \mathrm{~A}\).
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS (Note 3)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTICS & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Zero Input Reading & \[
\begin{aligned}
& \mathrm{VIN}=0.0 \mathrm{~V} \\
& \text { Full Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & -000.0 & \(\pm 000.0\) & +000.0 & Digital Reading \\
\hline Ratiometric Reading & \[
\begin{aligned}
& V_{I N}=V_{R E F} \\
& V_{\text {REF }}=100 \mathrm{mV}
\end{aligned}
\] & 999 & 999/1000 & 1000 & Digital Reading \\
\hline Rollover Error (Difference in reading for equal positive and negative reading near Full Scale) & \(-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \simeq 200.0 \mathrm{mV}\) & -1 & \(\pm 0.2\) & +1 & Counts \\
\hline Linearity (Max. deviation from best straight line fit) & \[
\begin{aligned}
& \text { Full scale }=200 \mathrm{mV} \\
& \text { or full scale }=2.000 \mathrm{~V}
\end{aligned}
\] & -1 & \(\pm 0.2\) & +1 & Counts \\
\hline Common Mode Rejection Ratio (Note 4) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\
& \text { Full Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & & 50 & & \(\mu \mathrm{V} / \mathrm{V}\). \\
\hline Noise (Pk - Pk value not exceeded 95\% of time) & \[
\begin{aligned}
& \mathrm{VIN}=0 \mathrm{~V} \\
& \text { Full Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & & 15 & & \(\mu \mathrm{V}\) \\
\hline Leakage Current @ Input & V IN \(=0 \mathrm{~V}\) & & 1 & 10 & pA \\
\hline Zero Reading Drift & \[
\begin{aligned}
& V_{I N}=0 \\
& 0_{i}^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.2 & 1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor Temperature Coefficient & \begin{tabular}{l}
\[
\begin{aligned}
& V_{I N}=199.0 \mathrm{mV} \\
& 0^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C}
\end{aligned}
\] \\
(Ext. Ref. \(0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\))
\end{tabular} & . & 1 & 5 & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline Supply Current (Does not include COMMON current) & \[
\begin{aligned}
& \mathrm{V} \operatorname{IN}=0 \\
& (\text { Note } 6)
\end{aligned}
\] & & 50 & 100 & \(\mu \mathrm{A}\) \\
\hline Analog COMMON Voltage (With respect to pos. supply) & \(250 \mathrm{~K} \Omega\) between Common \& pos. Supply & 2.4 & 2.8 & 3.2 & V \\
\hline Temp. Coeff. of Analog COMMON (with respect to pos. Supply) & 250K \(\Omega\) between Common \(\&\) pos. Supply & & 80 & ' & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline Pk-Pk Segment Drive Voltage (Note 5) & \(\mathrm{V}+\) to \(\mathrm{V}-=9 \mathrm{~V}\) & 4 & 5 & 6 & V \\
\hline Pk-Pk Backplane Drive Voltage (Note 5) & \(\mathrm{V}+\) to \(\mathrm{V}-=9 \mathrm{~V}\) & 4 & 5 & 6 & V \\
\hline Power Dissipation Capacitance & vs. Clock Freq. & & 40 & & pF \\
\hline
\end{tabular}

Note 3: Unless otherwise noted, specifications apply at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=16 \mathrm{kHz}\) and are tested in the circuit of Figure 1 .
Note 4: Refer to "Differential Input" discussion.
Note 5: Back plane drive is in phase with segment drive for 'off' segment, \(180^{\circ}\) out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less then 50 mV .
Note 6: During auto zero phase, current is \(10-20 \mu \mathrm{~A}\) higher. 48 kHz oscillator, Figure 2 , increases current by \(8 \mu \mathrm{~A}\) (typ).

TaNTMER
TEST CIRCUITS

Figure 1: 7126 Clock Frequency 16 kHz . (1 reading/sec)

Figure 2: Clock Frequency 48kHZ. (3 readings/sec)

\section*{DETAILED DESCRIPTION}

\section*{ANALOG SECTION}

Figure 3 shows the Block Diagram of the Analog Section for the ICL7126. Each measurement cycle is divided into three
phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Figure 3: Analog Section of 7126

\section*{1. Auto-zero phase}

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor CAZ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less then \(10 \mu \mathrm{~V}\).

\section*{2. Signal Integrate phase}

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be
within a wide common mode range; within one Volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

\section*{3. De-integrate phase}

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is \(1000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)\).

\section*{Differential Input}

The input can accept differential voltages anywhere within the common mode rante of the input amplifier; or specifically from 0.5 Volts below the positive supply to 1.0 Volt above the negative supply. In this range the system has a CMRR of 86 db typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common-mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 Volts of either supply without loss of linearity.

\section*{Differential Reference}

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for (+) or \((-)\) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition. (See Component Value Selection.)

\section*{Analog COMMON}

This pin is included primarily to set the common mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 Volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate (\(<7 \mathrm{~V}\)), the COMMON voltage will have a low voltage coefficient (\(0.001 \% / \%\)), low

Figure 4: Using an External Reference
output impedance (\(\sim 15 \Omega\)), and a temperature coefficient typically less than \(80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of 2 to \(8^{\circ} \mathrm{C}\), typical for instruments, can give a scale factor error of a count or more. Also the common voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate (\(<7 \mathrm{~V}\)). These problems are eliminated if an external reference is used, as shown in Figure 4.

Analog COMMON is also used as the input low return dur-* ing auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently referenced to analog COMMON, it should be since this removes the common mode voltage from the reference system.
Within the IC, analog COMMON is tied to an N channel FET that can sink \(100 \mu \mathrm{~A}\) or more of current to hold the voltage 2.8 Volts below the positive supply (when a load is trying to pull the common line positive). However, there is only \(1 \mu \mathrm{~A}\) of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

\section*{Test}

The TEST pin serves two functions. It is coupled to the internally generated digital supply through a \(500 \Omega\) resistor. Thus it can be used as the negative supply for externally

Figure 5: Simple Inverter for Fixed Decimal Point
generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

Figure 6: Exclusive 'OR' Gate for Decimal Point Drive

The second function is a "lamp test." When TEST is pulled high (to \(\mathrm{V}^{+}\)) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10 mA under these conditions.
Caution: In the lamp test mode, the segments have a constant D-C voltage (no square-wave) and may burn the LCD display if left in this mode for extended periods.

\section*{DIGITAL SECTION}

Figure 7 shows the digital section for the 7126. An internal digital ground is generated from a 6 Volt Zener diode and a large \(P\) channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 Volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. The polarity indication is "ON" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

Figure 8: Clock Circuits

\section*{System Timing}

Figure 8 shows the clocking arrangement used in the 7126. Three basic clocking arrangements can be used:
1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are sianal integrate (1000

\section*{DISPLAY FONT}

Figure 7: Digital Section
counts), reference de-integrate (0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/ second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of \(60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}\), etc. should be selected. For 50 Hz rejection, oscillator frequencies of 66\(2 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}\), etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

\section*{COMPONENT VALUE SELECTION}

\section*{1. Integrating Resistor}

Both the buffer amplifier and the integrator have a class \(A\) output stage with \(6 \mu \mathrm{~A}\) of quiescent current. They can supply \(\sim 1 \mu \mathrm{~A}\) of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 Volt full scale, \(1.8 \mathrm{M} \Omega\) is near optimum and similarly \(180 \mathrm{k} \Omega\) for a 200.0 mV scale.

\section*{2. Integrating Capacitor}

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 Volt from either supply). When the analog COMMON is used as a reference, a nominal \(\pm 2\) Volt full scale integrator swing is fine. For three readings/second (48 kHz clock) nominal values for CINT are \(0.047 \mu \mathrm{~F}\), for \(1 / \mathrm{sec}(16 \mathrm{kHz})\) \(0.15 \mu \mathrm{~F}\). Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.
At three readings/sec., a \(750 \Omega\) resistor should be placed in series with the integrating capacitor, to compensate for comparator delay. See App. Note A017 for a description of the need and effects of this resistor.

\section*{TYPICAL APPLICATIONS}

The 7126 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities,

Figure 9: 7126 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9V battery).

\section*{3. Auto-Zero Capacitor}

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise is very important, a \(0.32 \mu \mathrm{~F}\) capacitor is recommended. On the 2 Volt scale, a \(0.033 \mu \mathrm{~F}\) capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

\section*{4. Reference Capacitor}

A \(0.1 \mu \mathrm{~F}\) capacitor gives good results in most applications However, where a large common mode voltage exists (i.e., the REF LO pin is not analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally \(1.0 \mu \mathrm{~F}\) will hold the foll-over error to 0.5 count in this instance.

\section*{5. Oscillator Components}

For all ranges of frequency a 50 pF capacitor is recommended and the resistor is selected from the approximate equation \(f \sim \frac{45}{\mathrm{RC}}\). For 48 kHz clock (3 readings/second), \(R=180 \mathrm{k} \Omega\).

\section*{6. Reference Voltage}

The analog input required to generate full-scale output (2000 counts) is: \(\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}\). Thus, for the 200.0 mV and 2.000 Volt scale, Vref should equal 100.0 mV and 1.000 Volt, respectively. However, in many applications where the \(A / D\) is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select \(V_{\text {REF }}=0.341 \mathrm{~V}\). A suitable value for integrating resistor would be \(330 \mathrm{k} \Omega\). This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for \(\mathrm{V}_{\mathrm{IN}} \neq 0\). Temperature and weighting systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.
and serve to illustrate the exceptional versatility of these A/D converters.

Figure 10: 7126 with an external band-gap reference (1.2V type). IN LO is tied to COMMON, thus establishing the correct common mode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading per second.

\section*{TYPICAL APPLICATIONS (Contd.)}

Figure 11: Recommended component values for 2.000 V full scale, 3 readings per second. For 1 reading per second, delete \(750 \Omega\) resistor, change Cint, Rosc to values of Fig. 10.

Figure 13: 7126 operated from single +5 V supply. An external reference must be used in this application, since the voltage between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)is insufficient for correct operation of the internal reference.

Figure 15: 7126 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about \(-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

Figure 12: 7126 with Zener diode reference. Since low T.C. zeners have breakdown voltages \(\sim 6.8 \mathrm{~V}\), diode must be placed across the total supply (10V). As in the case of Figure 11, IN LO may be tied to COMMON.

Figure 14: 7126 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

Figure 16: Circuit for developing Underrange and Overrange signals from 7126 outputs.
*Values depend on clock frequency. See Figure 9, 10, 11.

\section*{TYPICAL APPLICATIONS (Contd.)}

Figure 17: \(A C\) to \(D C\) Converter with 7126. Test is used as a common mode reference level to ensure compatibility with most op-amps.

\section*{APPLICATION NOTES}

A016 "Selecting A/D Converters", by David Fullagar.
A017 "The Integrating A/D Converter", by Lee Evans.
A018 "Do's and Don'ts of Applying A/D Converters", by Peter Bradshaw and Skip Osgood.
A019 " \(41 / 2\)-Digit Panel Meter Demonstrator/Instrumentation Boards", by Michael Dufort.
A023 "Low Cost Digital Panel Meter Designs", by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family", by Peter Bradshaw.
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106", by Larry Goff.
A052 "Tips for Using Single-Chip 3½-Digit AID Converters", by Dan Watson.

\section*{7126 EVALUATION KITS}

After purchasing a sample of the 7126 , the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.

To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a \(31 / 2\)-digit panel meter. With the ICL7126EV/KIT and
the small number of additional components required, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, a display (LCD), passive components, and miscellaneous hardware.

\section*{FEATURES}
- \(\pm 19,999\) count A/D converter accurate to \(\pm 1\) count
- \(10 \mu \mathrm{~V}\) resolution on 200 mV scale
- 110dB CMRR
- Direct LCD display drive
- True differential input and reference
- Low power consumption
- Decimal point drive outputs
- Overrange and underrange outputs
- Low battery detection and indication
- 10:1 range change input

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline PART & PACKAGE & TEMPERATURE & ORDER NUMBER \\
\hline 7129 & 40 -Pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7129CJL \\
\hline 7129 & 40 -Pin Plastic & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7129CPL \\
\hline 7129 & \(40-\)-Pin Plastic & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7129RCPL \\
\hline 7129 & Dice & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7129C/D \\
\hline 7129 & Flat Pack & & \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The Intersil ICL7129 is a very high-performance \(41 / 2\)-digit analog-to-digital converter that directly drives a multiplexed liquid crystal display. This single-chip CMOS integrated circuit requires only a few passive components and a reference to operate. And it is ideal for high-resolution hand-held digital multimeter applications.

The performance of the ICL7129 has not been equaled before in a single-chip A/D converter. The successive integration technique used in the ICL7129 results in accuracy better than \(0.005 \%\) of full-scale and resolution down to \(10 \mu \mathrm{~V} /\) count.

The ICL7129, drawing only 1 mA from a 9 V battery, is well suited for battery powered instruments. Provision has been made for the detection and indication of a "LOW BATTERY" condition. Autoranging instruments can be made with the ICL7129 which provides overrange and underrange outputs and 10:1 range changing input. The ICL7129 instantly checks for continuity, giving both a visual indication and a logic level output which can enable an external audible signal. These features and the high performance of the ICL7129 make it an extremely versatile and accurate instrument-on-a-chip.

\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltages (\(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\))
Reference Voltage (REF HI or REF LO) \({ }^{+}\)to \(\mathrm{V}^{-}\)
Input Voltage (Note 1)
(IN HIor IN LO) . \({ }^{+}\)to \(\mathrm{V}^{-}\)
V \(_{\text {DISP }}\). \(V^{+}\)to DGND \(-0.3 V\)
Digital Input Pins 1, 2, 19, 20, 21, 22, 27, 37, 38, 39, 40 \(\qquad\) DGND to \({ }^{+}\)

Note 1: Input voltages may exceed the supply voltages provided that input current is limited to \(\pm 400 \mu \mathrm{~A}\). Currents above this value may result in invalid display readings but will not destroy the device if limited to \(\pm 1 \mathrm{~mA}\).
Note 2: Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}=9 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.00 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTICS & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Zero Input Reading & \[
\begin{aligned}
& V_{I N}=0 V \\
& 200 \mathrm{mV} \text { Scale }
\end{aligned}
\] & -0000 & 0000 & + 0000 & Reading \\
\hline Zero Reading Drift & \[
\begin{aligned}
& V_{I N}=0 \mathrm{~V} \\
& 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C}
\end{aligned}
\] & & \(\pm 0.5\) & & \({ }_{\mu} /{ }^{\circ} \mathrm{C}\) \\
\hline Ratiometric Reading & \[
\begin{aligned}
& V_{I N}=V_{\text {REF }}=1000 \mathrm{mV} \\
& \text { RANGE }=2 \mathrm{~V}
\end{aligned}
\] & 9998 & 9999 & 10000 & Reading \\
\hline Range Change Accuracy & \begin{tabular}{l}
\(\mathrm{V}_{\text {IN }}=0.10000 \mathrm{~V}\) on Low \\
Range \(\div\) \\
\(V_{\text {IN }}=1.0000 \mathrm{~V}\) on High Range
\end{tabular} & 0.9999 & \[
1.0000
\] & 1.0001 & Ratio \\
\hline Rollover Error & \(-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }}=199 \mathrm{mV}\) & & 0.5 & 1.0 & \multirow{2}{*}{Counts} \\
\hline Linearity Error & 200 mV Scale & & 0.5 & & \\
\hline Input Common-Mode Rejection Ratio & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{tN}}=0 \mathrm{~V} \\
& 200 \mathrm{mV} \text { Scale }
\end{aligned}
\] & & 110 & & dB \\
\hline Input Common-Mode Voltage Range & \begin{tabular}{l}
\[
V_{I N}=0 \mathrm{~V}
\] \\
200 mV Scale
\end{tabular} & \(\left(\mathrm{V}^{-}\right)+1.5\) & & \(\left(V^{+}\right)-0.5\) & V \\
\hline Noise (p-p Value not Exceeding 95\% of Time) & \[
\begin{aligned}
& V_{I N}=0 \mathrm{~V} \\
& 200 \mathrm{mV} \text { Scale }
\end{aligned}
\] & & 7.0 & & \(\mu \mathrm{V}\) \\
\hline Input Leakage Current & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \operatorname{Pin} 32,33\) & & 1 & 10 & pA \\
\hline Scale Factor Tempco & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=199 \mathrm{mV} \\
& 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\
& \text { External } \mathrm{V}_{\text {REF }}=0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{aligned}
\] & * & 2 & 5 & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline COMMON Voltage & \(\mathrm{V}^{+}\)to Pin 28 & 2.8 & 3.2 & 3.5 & V \\
\hline \multirow[t]{2}{*}{COMMON Sink Current COMMON Source Current} & \(\Delta\) Common \(=+0.1 \mathrm{~V}\) & & 0.6 & & mA \\
\hline & \(\Delta\) Common \(=-0.1 \mathrm{~V}\) & & 12 & & \(\mu \mathrm{A}\) \\
\hline DGND Voltage & \[
\begin{aligned}
& V^{+} \text {to } \operatorname{Pin} 36 \\
& V^{+} \text {to } V^{-}=9 V
\end{aligned}
\] & 4.5 & 5.3 & 5.8 & V \\
\hline DGND Sink Current & \(\Delta \mathrm{DGND}=+0.5 \mathrm{~V}\) & & 1.2 & & mA \\
\hline Supply Voltage Range & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) & 6 & 9 & 14 & V \\
\hline Supply Current Excluding COMMON Current & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}=9 \mathrm{~V}\) & & 1.0 & 1.4 & mA \\
\hline Clock Frequency & & & 120 & 360 & kHz \\
\hline Display Multiplex Rate & \(\mathrm{f}_{\text {CLK }}=120 \mathrm{kHz}\) & & 100 & , & Hz \\
\hline \(\mathrm{V}_{\text {DISP }}\) Resistance & \(\mathrm{V}_{\text {DISP }}\) to \(\mathrm{V}^{+}\) & & 50 & & k \(\Omega\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS (Continued) \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}=9 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.00 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTICS & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Low Battery Flag Activation Voltage & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) & 6.3 & 7:2 & 7.7 & V \\
\hline CONTINUITY Comparator Threshold Voltages & \[
\begin{aligned}
& V_{\text {OUT }} \operatorname{Pin} 27=\mathrm{HI} \\
& V_{\text {OUT }} P \text { in } 27=\text { LO }
\end{aligned}
\] & 100 & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & 400 & mV \\
\hline Pull-Down Current & Pins 37, 38, 39 & & 2 & 10 & \(\mu \mathrm{A}\) \\
\hline "Weak Output" Current & Pin 20, 21 & & 3/3 & & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline Sink, Source & Pin 27 Sink/Source & & \(3 / 9\) & & \\
\hline Pin 22 Source Current Pin 22 Sink Current & & & \[
\begin{gathered}
40 \\
3
\end{gathered}
\] & & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Figure 1. Simplified Block Diagram of ICL7129 Digital Section

Table 1. Pin Assignments and Functions
\begin{tabular}{|c|c|c|}
\hline PIN & NAME & FUNCTION \\
\hline 1 & OSC1 & Input to first clock inverter. \\
\hline 2 & OSC3 & Output of second clock inverter. \\
\hline 3 & ANNUNCIATOR DRIVE & Backplane squarewave output for driving annunciators. \\
\hline 4 & \(\mathrm{B}_{1}, \mathrm{C}_{1}, \mathrm{CONT}\) & Output to display segments. \\
\hline 5 & \(\mathrm{A}_{1}, \mathrm{G}_{1}, \mathrm{D}_{1}\) & Output to display segments. \\
\hline 6 & \(\mathrm{F}_{1}, \mathrm{E}_{1}, \mathrm{DP} \mathrm{P}_{1}\) & Output to display segments. \\
\hline 7 & \(\mathrm{B}_{2}, \mathrm{C}_{2}\), LO BATT & Output to display segments. \\
\hline 8 & \(\mathrm{A}_{2}, \mathrm{G}_{2}, \mathrm{D}_{2}\) & Output to display segments. \\
\hline 9 & \(\mathrm{F}_{2}, \mathrm{E}_{2}, \mathrm{DP}_{2}\) & Output to display segments. \\
\hline 10 & \(B_{3}, \mathrm{C}_{3}\), MINUS & Output to display segments. \\
\hline 11 & \(\mathrm{A}_{3}, \mathrm{G}_{3}, \mathrm{D}_{3}\) & Output to display segments. \\
\hline 12 & \(\mathrm{F}_{3}, \mathrm{E}_{3}, \mathrm{DP}_{3}\) & Output to display segments. \\
\hline 13 & \(\mathrm{B}_{4}, \mathrm{C}_{4}, \mathrm{BC}_{5}\) & Output to display segments. \\
\hline 14 & \(\mathrm{A}_{4}, \mathrm{D}_{4}, \mathrm{G}_{4}\) & Output to display segments. \\
\hline 15 & \(F_{4}, E_{4}, \mathrm{DP}_{4}\) & Output to display segments. \\
\hline 16 & BP3 & Backplane \#3 output to display. \\
\hline 17 & BP2 & Backplane \#2 output to display. \\
\hline 18 & BP1 & Backplane \#1 output to display. \\
\hline 19 & \(V_{\text {DISP }}\) & Negative rail for display drivers. \\
\hline 20 & \(\mathrm{DP}_{4} / \mathrm{OR}\) & \begin{tabular}{l}
INPUT: When HI, turns on most significant decimal point. \\
OUTPUT: Pulled HI when result count exceeds \(\pm 19,999\).
\end{tabular} \\
\hline 21 & \(\mathrm{DP}_{3} / \mathrm{UR}\) & INPUT: Second most significant decimal point on when HI . OUTPUT: Pulled HI when result count is less than \(\pm 1,000\). \\
\hline 22 & \(\overline{\text { LATCH/HOLD }}\) & \begin{tabular}{l}
INPUT: When floating, AiD converter operates in the free-run mode. When pulled HI, the last displayed reading is held. When pulled LO, the result counter contents are shown incrementing during the de-integrate phase of cycle. \\
OUTPUT: Negative going edge occurs when the data latches are updated. Can be used for converter status signal.
\end{tabular} \\
\hline
\end{tabular}

\section*{DETAILED OPERATION DESCRIPTION}

Intersil's ICL7129 is a uniquely designed single-chip A/D converter. It features a new "successive integration" technique to achieve \(10 \mu \mathrm{~V}\) resolution on a 200 mV full-scale range. To achieve this resolution a 10:1 improvement in noise performance over previous monolithic CMOS A/D converters was accomplished. Previous integrating converters used an external capacitor to store an offset correction voltage. This technique worked well but greatly increased the equivalent noise bandwidth of the converter. The ICL7129 removes this source of error (noise) by not using an auto-zero capacitor. Offsets are instead cancelled using digital techniques. Savings in external parts cost are realized as well as improved noise performance and elimination of a source electromagnetic and electrostatic pick-up.
The overall block diagram of the ICL7129 is shown in Figure 1. The heart of this A/D converter is the sequence counter/ decoder which drives the control logic and keeps track of the many separate phases required for each conversion cycle.
\begin{tabular}{|c|c|c|}
\hline PIN & NAME & FUNCTION \\
\hline 23 & V & Negative power supply terminal. \\
\hline 24 & \(v^{+}\) & Positive power supply terminal, and positive rail for display drivers. \\
\hline 25 & INT IN & Input to integrator amplifier. \\
\hline 26 & INT OUT & Output of integrator amplifier. \\
\hline 27 & CONTINUITY & \begin{tabular}{l}
INPUT: When LO, continuity flag on the display is off. When HI, continuity flag is on. \\
OUTPUT: HI when voltage between inputs is less than +200 mV . LO when voltage between inputs is more than +200 mV .
\end{tabular} \\
\hline 28 & COMMON & Sets common-mode voltage of 3.2 V below \(\mathrm{V}^{+}\)for DE, 10X, etc. Can be used as pre-regulator for external reference. \\
\hline 29 & \(\mathrm{C}_{\text {REF }}+\) & Positive side of external reference capacitor. \\
\hline 30 & \(\mathrm{C}_{\text {REF }}\) - & Negative side of external reference capacitor. \\
\hline 31 & BUFFER & Output of buffer amplifier. \\
\hline 32 & IN LO & Negative input voltage terminal. \\
\hline 33 & IN HI & Positive input voltage terminal. \\
\hline 34 & REF HI & Positive reference voltage input terminal. \\
\hline 35 & REF LO & Negative reference voltage input terminal. \\
\hline 36 & DGND & Ground reference for digital section. \\
\hline 37 & RANGE. & \(3 \mu \mathrm{~A}\) pull-down for 200 mV scale. Pulled HIGH externally for 2 V scale. \\
\hline 38 & DP 2 & Internal \(3 \mu\) A pull-down. When HI, decimal point 2 will be on. \\
\hline 39 & DP \({ }_{1}\) & Internal \(3 \mu\) A pull-down. When HI, decimal point 1 will be on. \\
\hline 40 & OSC2 & Output of first clock inverter. Input of second clock inverter. \\
\hline
\end{tabular}

The sequence counter is constantly running and is a separate counter from the up/down results counter which is activated only when the integrator is de-integrating. At the end of a conversion the data remaining in the results counter is latched, decoded and multiplexed to the liquid crystal display.
The analog section block diagram shown in Figure 2 includes all of the analog switches used to configure the voltage sources and amplifiers in the different phases of the cycle. The input and reference switching schemes are very similar to those in other less accurate integrating A/D converters. There are 5 basic configurations used in the full conversion cycle. Figure 3 illustrates a typical waveform on the integrator output. INT, \(\operatorname{INT} T_{1}\), and \(\mathrm{INT}_{2}\) all refer to the signal integrate phase where the input voltage is applied to the integrator amplifier via the buffer amplifier. In this phase, the integrator ramps over a fixed period of time in a direction opposite to the polarity of the input voltage.

Figure 2. ICL7129 Analog Block Diagram

Figure 3. Integrator Waveform for Negative Input Voltage Showing Successive Integration Phases and Residue Voltage
\(D E_{1}, D E_{2}\), and \(D E_{3}\) are the de-integrate phases where the reference capacitor is switched in series with the buffer amplifier and the integrator ramps back down to the level it started from before integrating. However, since the de-integrate phase can terminate only at a clock pulse transition, there is always a small overshoot of the integrator past the starting point. The ICL7129 amplifies this overshoot by 10 and DE \(_{2}\) begins. Similarly \(D E_{2}\) 's overshoot is amplified by 10 and \(D E_{3}\) begins. At the end of \(D E_{3}\) the results counter holds a number with \(51 / 2\) digits of resolution. This was obtained by feeding counts into the results counter at the \(31 / 2\) digit level during
\(D E_{1}\), into the \(41 / 2\) digit level during \(D E_{2}\) and the \(51 / 2\) digit level for \(D E_{3}\). The effects of offset in the buffer, integrator, and comparator can now be cancelled by repeating this entire sequence with the inputs shorted and subtracting the results from the original reading. For this phase \(\mathrm{INT}_{2}\) switch is closed to give the same common-mode voltage as the measurement cycle. This assures excellent CMRR. At the end of the cycle the data in the up/down results counter is accurate to \(0.005 \%\) of full-scale and is sent to the display driver for decoding and multiplexing.

COMMON, DGND, AND "LOW BATTERY"

The COMMON and DGND (Digital GrouND) outputs of the ICL7129 are generated from internal zener diodes (Figure 4). COMMON is included primarily to set the common-mode voltage for battery operation or for any system where the input signals float with respect to the power supplies. It also functions as a pre-regulator for an external precision reference voltage source. The voltage between DGND and \(\mathrm{V}^{+}\)is the supply voltage for the logic section of the ICL7129 including the display multiplexer and drivers. Both COMMON and DGND are capable of sinking current from external loads, but caution should be taken to insure that these outputs are not overloaded. Figure 5 shows the connection of external logic circuitry to the ICL.7129. This connection will work providing that the supply current requirements of the logic do not exceed the current sink capability of the DGND pin. If
more supply current is required, the buffer in Figure 6 can be used to keep the loading on DGND to a minimum. COMMON can source approximately \(12 \mu \mathrm{~A}\) while DGND has no source capability.

The "LOW BATTERY" annunciator of the display is turned on when the voltage between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)drops below 7.2 V typically. The exact point at which this occurs is determined by the 6.3 V zener diode and the threshold voltage of the n -channel transistor connected to the \(\mathrm{V}^{-}\)rail in Figure 4. As the supply voltage decreases, the \(n\)-channel transistor connected to the V-rail eventually turns off and the "LOW BATTERY" input to the logic section is pulled HIGH, turning on the "LOW BATTERY" annunciator.

Figure 4. Biasing Structure for COMMON and DGND

Figure 5. DGND Sink Current

Figure 6. Buffered DGND

\section*{ICL7129}

\section*{I/O PORTS}

Four of the pins of the ICL7129 can be used as either inputs or outputs. The specific pin numbers and functions are described on the Pin Assignments and Functions (Table 1). If the output function of the pin is not desired in an application it can easily be overriden by connecting the pin to \(\mathrm{V}^{+}(\mathrm{HI})\) or DGND (LO). This connection will not damage the device because the output impedance of these pins is quite high. A simplified schematic of these input/output pins is shown in Figure 7 . Since there is approximately \(500 \mathrm{k} \Omega\) in series with the output driver, the pin (when used as an output) can only drive very light loads such as 4000 series, 74CXX type CMOS logic, or other high input impedance devices. The output drive capability of these four pins is limited to \(3 \mu \mathrm{~A}\), nominally.

Figure 7. "Weak Output"

\section*{\(\overline{\text { LATCH/HOLD, OVERRANGE, AND }}\) UNDERRANGE TIMING}

The \(\overline{\text { LATCH }} / \mathrm{HOLD}\) output (pin 22) will be pulled low during the last 100 clock cycles of each full conversion cycle. During this time the final data from the ICL7129 counter is latched and transferred to the display decoder and multiplexer. The conversion cycle and \(\overline{\text { LATCH/HOLD timing are directly related to }}\) the clock frequency. A full conversion cycle takes 30,000 clock cycles which is equivalent to 60,000 oscillator cycles. OverRange (OR pin 20) and UnderRange (UR pin 21) outputs are latched on the falling edge of \(\overline{\text { LATCH }} / \mathrm{HOLD}\) and remain in that state until the end of the next conversion cycle. In addition, digits 1 through 4 are blanked during overrange. All three of these pins are "weak outputs" and can be overridden with external drivers or pull-up resistors to enable their input functions as described in the Pin Assignments and Functions (Table 1).

\section*{INSTANT CONTINUITY}

A comparator with a built-in 200 mV offset is connected directly between INPUT HI and INPUT LO of the ICL7129 (Figure 8). The CONTINUITY output (pin 27) will be pulled high whenever the voltage between the analog inputs is less than 200 mV . This will also turn on the "CONTINUITY" annunciator on the display. The CONTINUITY output may be used to enable an external alarm or buzzer, thereby giving the ICL7129 an audible continuity checking capability. Since the CONTINUITY output is one of the four "weak outputs" of the ICL7129, the "continuity" annunciator on the display can be driven by an external source if desired. The continuity function can be overridden with a pull-down resistor connected between CONTINUITY pin and DGND (pin 36).

Figure 8. "Instant Continuity" Comparator and Output' Structure

\section*{ICL7129}

\section*{DISPLAY CONFIGURATION}

The ICL7129 is designed to drive a triplexed liquid crystal display. This type of display has three backplanes and is driven in a multiplexed format similar to the ICM7231 display driver family. The specific display format is shown in Figure9. Notice that the polarity sign, decimal points, "LOW BATTERY", and "CONTINUITY" annunciators are directly driven by the ICL7129. The individual segments and annunciators are addressed in a manner similar to row-column addressing. Each backplane (row) is connected to one-third of the total number of segments. BP1 has all \(F, A\), and \(B\) segments of the four least significant digits. BP2 has all of the C, E, and G segments. BP3 has all D segments, decimal points, and annunciators. The segment lines (columns) are connected in groups of three bringing all segments of the display out on just 12 lines.

\section*{ANNUNCIATOR DRIVE}

A special display driver output is provided on the ICL7129 which is intended to drive various kinds of annunciators on custom multiplexed liquid crystal displays. The ANNUNCIATOR DRIVE output (\(\operatorname{pin} 3\)) is a squarewave signal running at the backplane frequency, approximately 100 Hz . This signal swings from \(\mathrm{V}_{\text {DISP }}\) to \(\mathrm{V}^{+}\)and is in sync with the three backplane outputs BP1, BP2, and BP3. Figure 10 shows these four outputs on the same time and voltage scales.

Any annunciator associated with any of the three backplanes can be turned on simply by connecting it to the ANNUN. CIATOR DRIVE pin. To turn an annunciator off connect it to its backplane. An example of a display and annunciator drive scheme is shown in Figure 11.

Figure 9. Triplexed Liquid Crystal Display Layout for ICL7129

Figure 10. Typical Backplane and Annunciator Drive Waveforms

\section*{LOW BATTERY CONTINUITY -1.8.8.8.8}

Figure 11. Multimeter Example Showing Use of Annunciator Drive Output

Figure 12. Two Methods for Temperature Compensating the Liquid Crystal Display

\section*{DISPLAY TEMPERATURE COMPENSATION}

For most applications an adequate display can be obtained by connecting \(\mathrm{V}_{\text {DISP }}\) (pin 19) to DGND (pin 36). In applications where a wide temperature range is encountered, the voltage drive levels for some triplexed liquid crystal displays may need to vary with temperature in order to maintain good display contrast and viewing angle. The amount of temperature compensation will depend upon the type of liquid crystal used. Display manufacturers can supply the temperature compensation requirements for their displays. Figure 12 shows two circuits that can be adjusted to give a temperature compensation of \(\approx+10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) between \(\mathrm{V}^{+}\)and \(\mathrm{V}_{\text {DISP. }}\). The diode between DGND and \(V_{\text {DISP }}\) should have a low turn-on voltage to assure that no forward current is injected on the chip if \(\mathrm{V}_{\text {DISp }}\) is more negative than DGND.

\section*{COMPONENT SELECTION}

There are only three passive components around the ICL7129 that need special consideration in selection. They are the reference capacitor, integrator resistor, and integrator capacitor. There is no auto-zero capacitor like that found in earlier integrating AID converter designs.

The integrating resistor is selected high enough to assure good current linearity from the buffer amplifier and integrator and low enough that PC board leakage is not a problem. A value of 150 k should be optimum for most applications. The integrator capacitor is selected to give an optimum integrator swing at full-scale. A large integrator swing will reduce the effect of noise sources in the comparator but will affect
rollover error if the swing gets too close to the positive rail \((\approx 0.7 \mathrm{~V})\). This gives an optimum swing of \(\approx 2.5 \mathrm{~V}\) at full-scale. For 150k integrating resistor and 2 conversions per second the value is \(0.10 \mu \mathrm{~F}\). For different conversion rates, the value will change in inverse proportion. A second requirement for good linearity is that the capacitor have low dielectric absorption. Polypropylene caps give good performance at a reasonable price. Finally the foil side of the cap should be connected to the integrator output to shield against pick-up.
The only requirement for the reference cap is that it be low leakage. In order to reduce the effects of stray capacitance, a \(1.0 \mu \mathrm{~F}\) value is recommended.

\section*{CLOCK OSCILLATOR}

The ICL7129 achieves its digital range changing by integrating the input signal for 1000 clock pulses (2,000 oscillator cycles) on the 2 V scale and 10,000 clock pulses on the 200 mV scale. To achieve complete rejection of 60 Hz on both scales, an oscillator frequency of 120 kHz is required, giving two conversions per second.
In low resolution applications, where the converter uses only \(31 / 2\) digits and \(100 \mu \mathrm{~V}\) resolution, an R-C type oscillator is adequate. In this application a C of 51 pF is recommended and the resistor value selected from \(\mathrm{f}_{\mathrm{OSC}}=0.45 /\) RC. However, when the converter is used to its full potential (\(41 / 2\) digits and \(10 \mu \mathrm{~V}\) resolution) a crystal oscillator is recommended to prevent the noise from increasing as the input signal is increased due to frequency jitter of the R-C oscillator. Both R-C and crystal oscillator circuits are shown in Figure 13.

Figure 13. RC and Crystal Oscillator Circuits

\section*{POWERING THE ICL7129}

The ICL7129 may be operated as a battery powered hand-held instrument or integrated into larger systems that have more sophisticated power supplies. Figures 14, 15, and 16 show various powering modes that may be used with the ICL7129.
The standard battery connection using a 9 V battery is shown on the front page of this data sheet.
The power connection for systems with +5 V and -5 V supplies available is shown in Figure 14. Notice that measurements are with respect to ground. COMMON is not connected to INPUT LO but is used only as a pre-regulator for the external voltage reference.

It is important to notice that in Figure 14, digital ground of the ICL7129 (DGND pin 36) is not directly connected to power supply ground. DGND is set internally to approximately 5 V less than the \(\mathrm{V}^{+}\)terminal and is not intended to be used as a power input pin. It may be used as the ground reference for external logic, as shown in Figure 5 and 6. In Figure 5, DGND is used as the negative supply rail for external logic provided that the supply current for the external logic does not cause excessive loading on DGND. The DGND output can be buffered as shown in Figure 6. Here, the logic supply current is shunted away from the ICL7129 keeping the load on DGND low. This treatment of the DGND output is necessary to insure compatibility when the external logic is used to interface directly with the logic inputs and outputs of the ICL7129.

Figure 14. Powering the ICL7129 from +5 V and -5V Power Supplies

When a battery voltage between 3.8 V and 7 V is desired for operation, a voltage doubling circuit should be used to bring the voltage on the ICL7129 up to a level within the power supply voltage range. This operating mode is shown in Figure 15.

Figure 15. Powering the ICL7129 from a 3.8 V to 6 V Battery

Again measurements are made with respect to COMMON since the entire system is floating. Voltage doubling is accomplished by using an ICL7660 CMOS voltage converter and two inexpensive electrolytic capacitors. The same principle applies in Figure 16 where the ICL7129 is being used in a system with only a single +5 V . power supply. Here measurements are made with respect to power supply ground.
A single polarity power supply can be used to power the ICL7129 in applications where battery operation is not appropriate or convenient only if the power supply is isolated from system ground. Measurements must be made with respect to COMMON or some other voltage within its input common-mode range.

\section*{VOLTAGE REFERENCES}

The COMMON output of the ICL7129 has a temperature coefficient of \(\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) typically. This voltage is only suitable
as a reference voltage for applications where ambient temperature variations are expected to be minimal. When the ICL7129 is used in most environments, other voltage references should be considered. The diagram on the front page of this data sheet shows the ICL8069 1.2V band-gap voltage source used as the reference for the ICL7129 and the COMMON output as its pre-regulator. The reference voltage for the ICL7129 is set to 1.000 V for both 2 V and 200 mV full-scale operation.

Figures 17 and 18 show two other methods for generating precision references that are compatible with the ICL7129. Both reference voltage and input voltage are connected to power supply ground. The use of a 6.2 V reference diode is shown in Figure 18. The voltage drop across \(R_{1} \approx 2.8 \mathrm{~V}\) to minimize rollover error caused by stray capacitance charging or discharging the reference capacitor. The reference voltage in this case is taken with respect to \(\mathrm{V}^{+}\)and is adjusted with the trim potentiometer connected to REF LO (pin 35).

Figure 16. Powering the ICL7129 from a Single Polarity Power Supply

Figure 17. Using a Heated-Substrate 1.000V Reference with the ICL7129

Figure 18. Using a 6.2V Reference Diode with the ICL7129

\section*{FEATURES}
- 14 -bit linearity (\(0.003 \%\) FSR)
- No gain adjustment necessary
- Microprocessor-compatible with double buffered inputs
- Blpolar application requires no extra adjustments or external resistors
- Output current settiling-time \(3 \mu \mathrm{~s}\) max \((0.9 \mu \mathrm{~S}\) typ)
- Low linearity and gain temperature coefficients
- Low power dissipation
- Full four-quadrant multiplication
- Full temperature range operation

\section*{GENERAL DESCRIPTION}

The ICL7134 combines a four-quadrant multiplying DAC using thin film resistors and CMOS circuitry with an on-chip PROM-controlled correction circuit to achieve true 14-bit linearity without laser trimming.

Microprocessor bus interfacing is eased by standard memory WRite cycle timing and control signal use. Two input buffer registers are separately loaded with the 8 least significant bits (LS register) and the 6 most significant bits (MS register). Their contents are then transferred to the 14-bit DAC register, which controls the output switches. The DAC register can also be loaded directly from the data inputs, in which case the registers are transparent.

The ICL7134 is supplied in two versions. The ICL7134U is programmed for unipolar operation while the ICL7134B is programmed for bipolar applications. The \(\mathrm{V}_{\text {REF }}\) input to the most significant bit of the DAC is separated from the reference input to the remainder of the ladder. For unipolar use, the two reference inputs are tied together, while for bipolar operation, the polarity of the MSB reference is reversed, giving the DAC a true 2's complement input transfer function. Two resistors which facilitate the reference inversion are included on the chip, so only an external op-amp is needed. The PROM is coded to correct for errors in these resistors as well as the inversion of the MSB.

\section*{ICL7 134}

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (\(\mathrm{V}^{+}\)to DGND) - 0.3 V to 7.5 V
\(V_{\text {RFL }}, V_{\text {RFM }}, R_{I N V}, R_{F B}\) to DGND \(\pm 25 \mathrm{~V}\)

Current in AGND \(_{S}\), AGND \(_{F}\) 25mA
\(\mathrm{An}, \mathrm{Dn}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \mathrm{PROG}\) \(\qquad\) -0.3 V to \(\mathrm{V}^{+}+0.3 \mathrm{~V}\)
Operating Temperature Range
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Power Dissipation (Note 2) 500 mW
Derate Linearly Above \(70^{\circ} \mathrm{C}\) @ \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)Lead Temperature (Soldering, 10 seconds).\(300^{\circ} \mathrm{C}\)

Note 1: All voltages with respect to DGND.
Note 2: Assumes all leads soldered or welded to printed circuit board.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS \(\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\) unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[b]{2}{*}{PARAMETER}} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & & MIN & TYP & MAX & \\
\hline \multicolumn{2}{|l|}{Resolution} & , & & 14 & & & Bits \\
\hline \multirow[t]{3}{*}{Non-Linearity} & J & & \multirow[t]{3}{*}{Test Figure 1 (Notes 1 and 2)} & & & 0.010 & \% FSR \\
\hline & K & & & & & 0.006 & \% FSR \\
\hline & L & & & & & 0.003 & \%.FSR \\
\hline \multicolumn{2}{|l|}{Non-Linearity Temperature Coefficient} & & Operating Temperature Range & & 1 & 2 & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Gain Error} & \(J\) & & \multirow[t]{3}{*}{\begin{tabular}{l}
Test Figure 1 \\
(Notes 1 and 2)
\end{tabular}} & & & 0.020 & \% FSR \\
\hline & K & & & & & 0.012 & \% FSR \\
\hline & L & & & & & 0.006 & \% FSR \\
\hline \multicolumn{2}{|l|}{Gain Error Temperature Coefficient} & & " & & 2 & 8 & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Monotonicity} & \(J\) & & \multirow[t]{3}{*}{} & 14 & & & Bits \\
\hline & K & & & 14 & & & Bits \\
\hline & L & & & 14 & & & Bits \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Iout Leakage Current}} & lolk & \(T_{A}=+25^{\circ} \mathrm{C}\) & & & 10 & \multirow[t]{2}{*}{\(n A\)} \\
\hline & & & Operating Temperature Range & & 50 & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Power Supply Rejection}} & PSRR & \(T_{A}=+25^{\circ} \mathrm{C}, \Delta \mathrm{V}^{+}= \pm 10 \%\) & & 1 & 50 & \multirow[t]{2}{*}{\(\mathrm{ppm} / \mathrm{V}\)} \\
\hline & & & Operating Temperature Range & & & 100 & \\
\hline \multicolumn{2}{|l|}{Output Current Settling Time} & & & & 0.9 & 3 & \(\mu \mathrm{S}\) \\
\hline \multirow[t]{2}{*}{Feedthrough} & ICL7134U & & \multirow[t]{2}{*}{\(V_{\text {REF }}= \pm 10 \mathrm{~V}, 2 \mathrm{kHz}\) Sinewave} & & 250 & & \multirow[b]{2}{*}{\(\mu \vee p-p\)} \\
\hline & ICL7134B & & & & 500 & & \\
\hline \multicolumn{2}{|l|}{Reference Input Resistance} & \(\mathrm{Z}_{\text {REF }}\) & \(\mathrm{V}_{\text {RFL }}=\mathrm{V}_{\text {RFM }}\) (Unipolar Mode) & 4.0 & & 10 & k \(\Omega\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Output Capacitance}} & \multirow[t]{2}{*}{Cout} & DAC Register = All 0's & & 160 & & \multirow[t]{2}{*}{pF} \\
\hline & & & DAC Register = All 1's & & 235 & & \\
\hline \multicolumn{2}{|l|}{Output Noise} & & Equivalent Johnson Res. & & 7 & & k \(\Omega\) \\
\hline \multicolumn{2}{|l|}{Low State Input} & \(V_{\text {INL }}\) & Operating Temperature Range & & & 0.8 & V \\
\hline \multicolumn{2}{|l|}{High State Input} & \(\mathrm{V}_{\text {INH }}\) & Operating Temperature Range & 2.4 & & & V \\
\hline \multicolumn{2}{|l|}{Logic Input Current} & 1 lin & \(0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}^{+}\) & & & 1.0 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{Logic Input Capacitance} & \(\mathrm{Clin}^{\text {l }}\) & (Note 3) & & 15 & & pF \\
\hline \multicolumn{2}{|l|}{Supply Voltage Range} & \(\mathrm{v}^{+}\) & Functional Operation & 3.5 & & 6.0 & V \\
\hline \multicolumn{2}{|l|}{Supply Current} & \(1^{+}\) & (Excluding Ladder) & & 0.06 & 0.5 & mA \\
\hline \multicolumn{2}{|l|}{Long Term Stability} & & 1000 Hours, \(+125^{\circ} \mathrm{C}\) (Note 3) & & 10 & & \(\mathrm{ppm} / \sqrt{ }\) month \\
\hline
\end{tabular}

Note 1: Full-Scale Range (FSR) is 10 V for unipolar mode, 20 V (\(\pm 10 \mathrm{~V}\)) for bipolar mode.
Note 2: Using internal feedback and reference inverting resistors.
Note 3: Guaranteed by design, not \(100 \%\) tested in production.

AC CHARACTERISTICS \(\left(\mathrm{v}^{+}=5 \mathrm{~V}\right.\), see Timing Diagram \()\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Address-WRite Set-Up Time (Min) & \(t_{\text {AWs }}\) & & & & 100 & \multirow{7}{*}{ns} \\
\hline Address-WRite Hold Time (Min) & \(t_{\text {AWh }}\) & & & & 0 & \\
\hline \(\overline{\text { Chip Select-WRite Set-Up Time (Min) }}\) & \({ }^{\text {chws }}\) & & & & 0 & \\
\hline \(\overline{\text { Chip Select-馬Rite Hold Time (Min) }}\) & \(\mathrm{t}_{\mathrm{cWWh}}\) & & & & 0 & \\
\hline \(\overline{\text { WRite Pulse Width Low (Min) }}\) & \(t_{\text {WR }}\) & & & & 200 & \\
\hline Data-प्WRite Set-Up Time (Min) & \(t_{\text {dWs }}\) & & & & 200 & \\
\hline Data- WRite Hold Time (Min) & \(t_{\text {DWh }}\) & & & & 0 & \\
\hline
\end{tabular}

\section*{DEFINITION OF TERMS}

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a straight line function between endpoints. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire \(V_{\text {REF }}\) range.

RESOLUTION: Value of the LSB. For example, a unipolar converter with \(n\) bits has a resolution of \(\left(2^{-n}\right)\left(V_{\text {REF }}\right)\). A bipolar converter of \(n\) bits has a resolution of \(\left[2^{-(n-1)}\right]\left[V_{\text {REF }}\right]\). Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within \(1 / 2\) LSB for a given digital input stimulus, i.e., 0 to full-scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
FEEDTHROUGH ERROR: Error caused by capacitive coupling from \(V_{\text {REF }}\) to output with all switches OFF.

Table 1. Pin Assignment and Function Description
\begin{tabular}{|c|c|c|c|}
\hline PIN & SYMBOL & & DESCRIPTION \\
\hline 1 & \(\overline{\text { CS }}\) & \multicolumn{2}{|l|}{Chip Select (active low). Enables register write.} \\
\hline 2 & \(\bar{W}\) & \multicolumn{2}{|l|}{WRite, (active low). Writes in register. Equivalent to CS.} \\
\hline 3 & \(\mathrm{D}_{0}\) & Bit 0 & Least significant. \\
\hline 4 & \(\mathrm{D}_{1}\) & Bit 1 & \multirow{12}{*}{Input
Data
Bits
(High \(=\) True)} \\
\hline 5 & \(\mathrm{D}_{2}\) & Bit 2 & \\
\hline 6 & \(\mathrm{D}_{3}\) & Bit 3 & \\
\hline 7 & \(\mathrm{D}_{4}\) & Bit 4 & \\
\hline 8 & \(\mathrm{D}_{5}\) & Bit 5 & \\
\hline 9 & \(\mathrm{D}_{6}\) & Bit 6 & \\
\hline 10 & \(\mathrm{D}_{7}\) & Bit 7 & \\
\hline 11 & \(\mathrm{D}_{8}\) & Bit 8 & \\
\hline 12 & \(\mathrm{D}_{9}\) & Bit 9 & \\
\hline 13 & \(\mathrm{D}_{10}\) & Bit 10 & \\
\hline 14 & \(\mathrm{D}_{11}\) & Bit 11 & \\
\hline 15 & \(\mathrm{D}_{12}\) & Bit 12 & \\
\hline 16 & \(\mathrm{D}_{13}\) & Bit 13 & Most significant. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline PIN & SYMBOL & & DESCRIPTION \\
\hline 17 & PROG & \multicolumn{2}{|l|}{Used for programming only. Tie to +5 V for normal operation.} \\
\hline 18 & \(\mathrm{V}_{\text {RFL }}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {REF }}\) for lower bits.} \\
\hline 19 & \(\mathrm{R}_{\text {INV }}\) & \multicolumn{2}{|l|}{Summing node for reference inverting amplifier.} \\
\hline 20 & \(\mathrm{V}_{\text {RFM }}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {REF }}\) for MSB only (bipolar).} \\
\hline 21 & \(\mathrm{R}_{\text {FB }}\) & \multicolumn{2}{|l|}{Feedback resistor for voltage output applications.} \\
\hline 22 & DGND & \multicolumn{2}{|l|}{Digital GrouND return.} \\
\hline 23 & AGND \(_{\text {F }}\) & \multicolumn{2}{|l|}{Analog GrouND force line. Use to carry current from internal Analog GrouND connections. Tied internally to AGND \(_{\mathrm{S}}\).} \\
\hline 24 & \(\mathrm{AGND}_{\text {S }}\) & \multicolumn{2}{|l|}{Analog GrouND sense line. Reference point for external circuitry. Pin should carry minimal current; tied internally to AGND \(_{\mathrm{F}}\).} \\
\hline 25 & \(\mathrm{I}_{\text {OUT }}\) & \multicolumn{2}{|l|}{Current output pin.} \\
\hline 26 & \(\mathrm{V}^{+}\) & \multicolumn{2}{|l|}{Positive supply voltage.} \\
\hline 27 & \(\mathrm{A}_{1}\) & Address 1 & \multirow[t]{2}{*}{Control register lines} \\
\hline 28 & \(\mathrm{A}_{0}\) & Address 0 & \\
\hline
\end{tabular}

Figure 1. Non-Linearity

Figure 2. Power Supply Rejection

\section*{FUNCTIONAL DIAGRAM}

Figure 5. ICL7134 Functional Diagram

\section*{DETAILED DESCRIPTION}

The ICL7134 consists of a 14-bit primary DAC, two PROM controlled correction DACs, input buffer registers, and microprocessor interface logic (Figure 5). The 14-bit primary DAC is an R-2R thin film resistor ladder with N -channel MOS SPDT current steering switches. Precise balancing of the switch resistances, and all other resistances in the ladder, results in excellent temperature stability.

True 14-bit linearity is achieved by programming a floating polysilicon gate PROM array which controls two correction DAC circuits. A 6-bit gain correction DAC, or G-DAC, diverts up to \(2 \%\) of the feedback resistor's current to Analog GrouND and reduces the gain error to less than 1 LSB, or \(0.006 \%\). The 5 most significant outputs of the DAC register address a 31-word PROM array that controls a 12-bit linearity correction DAC, or C-DAC. For every combination of the primary DAC's 5 most significant bits, a different C-DAC code is selected. This allows correction of superposition errors, caused by bit interaction on the primary resistor ladder's current output bus and by voltage non-linearity in the feedback resistor. Superposition errors cannot be corrected by any method which corrects individual bits only, such as laser trimming. Since the PROM programming occurs in packaged form, it corrects for resistor shifts caused by the thermal stresses of packaging. These packaging shifts limit the accuracy that can be achieved using wafer level correction methods such as laser trimming, which has also been
found to degrade the time stability of thin film resistors at the 14-bit level.

\section*{Analog Section}

The ICL7134 inherently provides both unipolar and bipolar operation. The bipolar application circuit (Figure 6) requires one additional op-amp but no external resistors. The two onchip resistors, \(R_{I N V 1}\) and \(R_{I N V 2}\), together with the op-amp, form a voltage inverter which drives the MSB reference terminal, \(\mathrm{V}_{\mathrm{RFM}}\), to \(-\mathrm{V}_{\mathrm{REF}}\), where \(\mathrm{V}_{\mathrm{REF}}\) is the voltage applied at the less significant bits' reference terminal, \(\mathrm{V}_{\mathrm{RFL}}\). This reverses the weight of the MSB, and gives the DAC a 2's complement transfer function. The op-amp and reference connection to \(\mathrm{V}_{\text {RFM }}\) and \(\mathrm{V}_{\text {RFL }}\) can be reversed, without affecting linearity, but a small gain error will be introduced. For unipolar operation the \(\mathrm{V}_{\text {RFM }}\) and \(\mathrm{V}_{\text {RFL }}\) terminals are both tied to \(V_{\text {REF }}\), and the \(R_{\text {INV }}\) pin is left unconnected.

Since the PROM correction codes required are different for bipolar and unipolar operation, the ICL7134 is available in two different versions; the ICL7134U, which is corrected for unipolar operation, and the ICL7134B, which is programmed for bipolar application. The feedback resistance is also different in the two versions, and is switched under PROM control from ' \(R\) ' in the unipolar device to ' \(2 R\) ' in the bipolar part. These feedback resistors have a dummy (always ON) switch in series to compensate for the effect of the ladder switches. This greatly improves the gain temperature coefficient and the power supply rejection of the device.

\section*{Digital Section}

Two levels of input buffer registers allow loading of data from an 8 -bit or 16-bit data bus. The \(A_{0}\) and \(A_{1}\) pins select one of four operations: 1) load the LS-buffer register with the data at inputs \(D_{0}\) to \(D_{7} ; 2\)) load the MS-buffer register with the data at inputs \(D_{8}\) to \(D_{13} ; 3\)) load the DAC register with the contents of the MS and LS-buffer registers and 4) load the DAC register directly from the data input pins (see Table 2). The \(\overline{C S}\) and WR pins must be low to allow data transfers to occur. When direct loading is selected (\(\overline{C S}, \overline{W R}, A_{0}\) and \(A_{1}\) low) the registers are transparent, and the data input pins control the DAC output directly. The other modes of operation allow double buffered loading of the DAC from an 8 -bit bus.

These input data pins are also used to program the PROM under control of the PROG pin. This is done in manufacturing, and for normal read-only use the PROG pin should be tied to \(v^{+}(+5 \mathrm{~V})\).

Table 2. Data Loading Controls
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CONTROL IIP} & \multirow[b]{2}{*}{ICL7134 OPERATION} \\
\hline \(A_{0}\) & \(\mathrm{A}_{1}\) & \(\overline{\text { CS }}\) & WR & \\
\hline X & X & X & 1 & \\
\hline X & X & 1 & X & No operation, device not selected. \\
\hline 0 & 0 & 0 & 0 & Load all registers from data bus. \\
\hline 0 & 1 & 0 & 0 & Load LS register from data bus. \\
\hline 1 & 0 & 0 & 0 & Load MS register from data bus. \\
\hline 1 & 1 & 0 & 0 & Load DAC register from MS and LS register. \\
\hline
\end{tabular}

Note: Data is latched on LO-HI transition of either \(\overline{W R}\) or \(\overline{\mathrm{CS}}\).

Figure 6. Bipolar Operation, with Inverted V \(_{\text {REF }}\) to MSB

\section*{APPLICATIONS}

\section*{General Recommendations}

\section*{Ground Loops}

Careful consideration must be given to ground loops in any 14-bit accuracy system. The current into the analog ground point inside the chip varies significantly with the input code value, and the inevitable resistances between this point and any external connection point can lead to significant voltage drop errors. For this reason, two separate leads are brought out from this point on the IC, the \(A G N D_{F}\) and \(A G N D_{S}\) pins. The varying current should be absorbed through the AGND \(_{F}\) pin, and the \(A G N D_{S}\) pin will then accurately reflect the voltage on the internal current summing point, as shown in Figure 7. Thus output signals should be referenced to the sense pin AGND \(_{\text {S }}\), as shown in the various application circuits.

\section*{Operational Amplifier Selection}

To maintain static accuracy, the lout potential must be exactly equal to the \(A G N D_{S}\) potential. Thus output amplifier selection is critical, in particular low input bias current (less than 2nA), low offset voltage drift (depending on the temperature range) and low offset voltage (less than \(25 \mu \mathrm{~V}\)) are advisable if the highest accuracy is needed. Maintaining a low input offset over a 0 V to 10 V range also requires that the output amplifier has a high open loop gain (\(\mathrm{A}_{\mathrm{VOL}}>400 \mathrm{k}\) for effective input offset less than \(25 \mu \mathrm{~V}\)).

Figure 7. Eliminating Ground Loops

The reference inverting amplifier used in the bipolar mode circuit must also be selected carefully. If 14-bit accuracy is desired without adjustment, low input bias current (less than 1 nA), low offset voltage (less than \(50 \mu \mathrm{~V}\)), and high gain (greater than 400k) are recommended. If a fixed reference voltage is used, the gain requirement can be relaxed. For highest accuracy (better than 13 bits), an additional op-amp may be needed to correct for IR drop on the Analog GrouND line (op-amp \(A_{2}\) in Figure 9). This op-amp should be selected for low bias current (less than 2 nA) and low offset voltage (less than \(50 \mu \mathrm{~V}\)).
The op-amp requirements can be readily met by use of an ICL7650 chopper stabilized device. For faster settling time, an HA26XX can be used with an ICL7650 providing automatic offset null (see A053 for details).

The output amplifier's non-inverting input should be tied directly to AGND \(_{\text {s }}\). A bias current compensation resistor is of limited use since the output impedance at the summing node depends on the code being converted in an unpredictable way. If gain adjustment is required, low tempco (approximately \(50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)) resistors or trim-pots should be selected.

\section*{Power Supplies}

The \(\mathrm{V}^{+}\)(pin 25) power supply should have a low noise level, and no transients exceeding 7 volts. Note that the absolute maximum digital input voltage allowed is \(\mathrm{V}^{+}\), which therefore must be applied before digital inputs are allowed to go high. Unused digital inputs must be connected to GND or \(\mathrm{V}^{+}\)for proper operation.

\section*{Unipolar Binary Operation (ICL7134U)}

The circuit configuration for unipolar mode operation (ICL7134U) is shown in Figure 8. With positive and negative \(\mathrm{V}_{\text {REF }}\) values the circuit is capable of two-quadrant multiplication. The "digital input code/analog output value" table for unipolar mode is given in Table 3. The Schottky diode (HP5082-2811 or equivalent) protects lout from negative excursions which could damage the device, and is only

Figure 8. Unipolar Binary, Two-Quadrant Multiplying Circuit
necessary with certain high speed amplifiers. For applications where the output reference ground point is established somewhere other than at the DAC, the circuit of Figure 9 can be used. Here, op-amp \(A_{2}\) removes the slight error due to IR voltage drop between the internal Analog GrouND node and the external ground connection. For 13-bit or lower accuracy, omit \(A_{2}\) and connect \(A G N D_{F}\) and \(A G N D_{S}\) directly to ground through as low a resistance as possible.

Table 3. Code Table -Unipolar Binary Operation
\begin{tabular}{|c|c|}
\hline DIGITAL INPUT & ANALOG OUTPUT \\
\hline 11111111111111 & \(-V_{\text {REF }}\left(1-1 / 2^{14}\right)\) \\
\hline 10000000000001 & \(-V_{\text {REF }}\left(1 / 2+1 / 2^{14}\right)\) \\
\hline 10000000000000 & \(-V_{\text {REF }} / 2\) \\
\hline 01111111111111 & \(-V_{\text {REF }}\left(1 / 2-1 / 2^{14}\right)\) \\
\hline 00000000000001 & \(-\mathrm{V}_{\text {REF }}\left(1 / 2^{14}\right)\) \\
\hline 00000000000000 & 0 \\
\hline
\end{tabular}

\section*{Zero Offset Adjustment}
1. Connect all data inputs and \(\overline{W R}, \overline{C S}, A_{0}\) and \(A_{1}\) to \(D G N D\).
2. Adjust offset zero-adjust trim-pot of the operational amplifier \(A_{2}\), if used, for a maximum of \(O \mathrm{~V} \pm 50 \mu \mathrm{~V}\) at AGND \({ }_{s}\).
3. Adjust the offset zero-adjust trim-pot of the output opamp, \(A_{1}\), for a maximum of \(O \mathrm{~V} \pm 50 \mu \mathrm{~V}\) at \(\mathrm{V}_{\text {OUT }}\).

\section*{Gain Adjustment (Optional)}
1. Connect all data inputs to \(V^{+}\), connect \(\overline{W R}, \overline{C S}, A_{0}\) and \(A_{1}\) to DGND.
2. Monitor \(V_{O U T}\) for \(a-V_{R E F}\left(1-1 / 2^{14}\right)\) reading.
3. To decrease \(V_{\text {OUt }}\), connect a series resistor of \(100 \Omega\) or less between the reference voltage and the \(\mathrm{V}_{\text {RFM }}\) and \(\mathrm{V}_{\text {RFL }}\) terminals (pins 20 and 18).
4. To increase \(V_{\text {OUT }}\), connect a series resistor of \(100 \Omega\) or less between \(A_{1}\) output and the R \(_{\text {FB }}\) terminal (pin 21).

Figure 9. Unipolar Binary Operation with Forced Ground

\section*{Bipolar (2's Complement) Operation (ICL7134B)}

The circuit configuration for bipolar mode operation (ICL7134B) is shown in Figure 10. Using 2's complement digital input codes and positive and negative reference voltage values, four-quadrant multiplication is obtained. The "digital input codelanalog output value" table for bipolar mode is given in Table 4. Amplifier \(A_{3}\), together with internal resistors \(R_{I N V_{1}}\) and \(R_{I N V 2}\), forms a simple voltage inverter circuit. The MSB ladder leg sees a reference input of approximately \(-V_{\text {REF }}\), so the MSB's weight is reversed from the polarity of the other bits. In addition, the ICL7134B's feedback resistance is switched to \(2 R\) under PROM control, so that the bipolar output range is \(+V_{\text {REF }}\) to \(-V_{\text {REF }}\left(1-1 / 2^{13}\right)\). Again, the grounding arrangement of Figure 9 can be used, if necessary.

Table 4. Code Table -Bipolar (2's Complement) Operation
\begin{tabular}{|c|c|}
\hline DIGITAL INPUT & ANALOG OUTPUT \\
\hline 01111111111111 & \(-V_{\text {REF }}\left(1-1 / 2^{13}\right)\) \\
\hline 0000000000001 & \(-V_{\text {REF }}\left(1 / 2{ }^{13}\right)\) \\
\hline 00000000000000 & 0 \\
\hline 11111111111111 & \(V_{\text {REF }}\left(1 / 2^{13}\right)\) \\
\hline 1000000000001 & \(V_{\text {REF }}\left(1-1 / 2^{13}\right)\) \\
\hline 10000000000000 & \(V_{\text {REF }}\) \\
\hline
\end{tabular}

\section*{Offset Adjustment}
1. Connect all data inputs and \(\overline{W R}, \overline{C S}, A_{0}\) and \(A_{1}\) to \(D G N D\).
2. Adjust the offset zero-adjust trim-pot of the operational amplifier \(A_{2}\), if used, for a maximum of \(O \mathrm{~V} \pm 50 \mu \mathrm{~V}\) at \(A^{\prime} \mathrm{ND}_{\mathrm{s}}\).
3. Set data to \(00000 \ldots .00\). Adjust the offset zero-adjust trimpot of the output op-amp \(A_{1}\), for a maximum of \(0 \mathrm{~V} \pm 50 \mu \mathrm{~V}\) at \(V_{\text {OUT }}\).
4. Connect \(D_{13}\) (MSB) data input to \(\mathrm{V}^{+}\).
5. Adjust the offset zero-adjust trim-pot of op-amp \(A_{3}\) for a maximum of \(0 \mathrm{~V} \pm 50 \mu \mathrm{~V}\) at the \(\mathrm{R}_{\text {INV }}\) terminal (pin 19).

\section*{Gain Adjustment (Optional)}
1. Connect \(\overline{W R}, \overline{C S}, A_{0}\) and \(A_{1}\) to \(D G N D\).
2. Connect \(D_{0}, D_{1} \ldots D_{12}\) to \(V^{+}, D_{13}(M S B)\) to DGND.
3. Monitor \(\mathrm{V}_{\text {OUT }}\) for \(a-V_{\text {REF }}\left(1-1 / 2^{13}\right)\) reading.
4. To increase \(V_{\text {OUT }}\), connect a series resistor of \(200 \Omega\) or less between the \(A_{1}\) output and the \(R_{F B}\) terminal (pin 21).
5. To decrease \(V_{\text {OUT }}\), connect a series resistor of \(100 \Omega\) or less between the reference voltage and the \(\mathrm{V}_{\text {RFL }}\) terminal (pin 18).

\section*{Processor Interfacing}

The ease of interfacing to a processor can be seen from Figure 11, which shows the ICL7134 connected to an 8035 or any other MCS-48 processor such as an 8049. The data bus feeds into both register inputs; three port lines, in combination with the \(\bar{W} R\) line, control the byte-wide loading into these registers and then the DAC register. A complete DAC set-up requires 4 write instructions to the port, to set up the address and CS lines, and 3 external data transfers, one a dummy for the final transfer to the DAC register.

Figure 10. Bipolar (2's Complement), Four-Quadrant Multiplying Circuit

A similar arrangement can be used with the MCS－80 system， using an 8080A，8228，and 8224 CPU set．Figure 12 shows the circuit，which can be arranged as a memory－mapped inter－ face（using \(\overline{M E M W}\) ）or as an I／O－mapped interface（using I／O WRITE）．See A020 and R005 for discussions of the rela－ tive merits of memory－mapped versus I／O－mapped interfac－ ing，as well as some other ideas on interfacing with 8080 processors．The MCS－85 family 8085 processor has a very similar interface，except that the control lines available are slightly different，as shown in Figure 13．The decoding of the \(10 / \bar{M}\) line，which controls memory－mapped or I／O－mapped operation，is arbitrary，and can be omitted if not necessary．

Neither the MC－680X nor MCS－650X processor families offer specific I／O operations．Figure 14 shows a suitable interface to either of these systems，using a direct connection．Several other decoding options can be used，depending on the other control signals generated in the system．Note that the MCS－650X family does not require VMA to be decoded with the address lines．

Figure 15 shows an interface to the Intersil IM6100 CMOS microprocessor family using the IM6101 PIE to control the data transfers．Here the data is read directly from the micro－ processor data bus in an 8－bit and a 6－bit word．The flag lines control the data destination．

Figure 12．Interface to MCS－80 System

Figure 11．ICL7134 Interface to MCS－48 System

Figure 13．MCS－85 System Interface

\section*{Digital Feedthrough}

All of the direct interfaces shown above can suffer from a capacitive coupling problem. The 14 data pins, and 4 control pins, all tied to active lines on a microprocessor bus, and in close proximity to the sensitive DAC circuitry, can couple pseudo-random spikes into the analog output. Careful board layout and shielding can minimize the problems (see PC layout), and clearly wire-wrap type sockets should never be used. Nevertheless, the inherent capacitance of the package alone can lead to unacceptable digital feedthrough in many cases. The only solution is to keep the digital input lines as inactive as possible. One easy way to do this is to use the peripheral interface circuitry available with all the systems previously discussed. These generally allow only 8 bits to be updated at any one time, but a little ingenuity will avoid diffi-
culties with DAC steps that would result from partial updates. The problem can be solved for the MCS-48 family by tying the 14 port lines to the data input lines, with \(\overline{\mathrm{CS}}, \mathrm{A}_{0}\) and \(A_{1}\) held low, and using only the \(\overline{W R}\) line to enter the data into the DAC (as shown in Figure 16). \(\bar{W} R\) is well separated from the analog lines on the ICL7134, and is usually not a very active line in MCS-48 systems. Additional "protection" can be achieved by gating the processor \(\overline{W R}\) line with another port line. The heavy use of port lines can be alleviated by use of the IM82C43 port expander. The same type of technique can be employed in the MCS-80/85 systems by using an 8255 PIA (peripheral interface adapter) (Figure 17) and in the MC-680X and MCS-650X systems by using an MC-6820 (MCS-6520) PIA.

Figure 14. MCS-650X and MC-680X Families'

Figure 15. ICL7134 to IM6100 Interface Using IM6101 PIE

Figure 16. Avoiding Digital Feedthrough in an MCS-48 to ICL7134 Interface

Figure 17. ICL7134 to MCS-48, -80, \(\mathbf{- 8 5}\) Interface with Low Feedthrough

\section*{Successive Approximation A/D Converters}

Figure 18 shows an ICL7134B-based circuit for a bipolar input high speed A/D converter, using two AM25L03s to form a 14-bit successive approximation register. The comparator is a two-stage circuit with an HA2605 front-end amplifier, used to reduce settling time problems at the summing node (see A020). Careful offset-nulling of this amplifier is needed, and if wide temperature range operation is desired, an auto-null circuit using an ICL7650 is probably advisable (see A053). The clock, using two Schmitt trigger TTL gates, runs at a slower rate for the first 8 bits, where settling-time is most critical,
than for the last 6 bits. The short-cycle line is shown tied to the 15th bit; if fewer bits are required, it can be moved up accordingly. The circuit will free-run if the HOLD/RUN input is held low, but will stop after completing a conversion if the pin is high at that time. A low-going pulse will restart it. The STATUS output indicates when the device is operating, and the falling edge indicates the availability of new data. A unipolar version may be constructed by tying the MSB (\(D_{13}\)) on an ICL7134U to pin 14 on the first AM25L03; deleting the reference inversion amplifier \(\mathrm{A}_{4}\), and tying \(\mathrm{V}_{\text {RFM }}\) to \(\mathrm{V}_{\text {RFL }}\).

Figure 18. Successive Approximation A/D Converter

\section*{PC BOARD LAYOUT}

Great care should be taken in the board layout to minimize ground loop and similar "hidden resistor" problems, as well as to minimize digital signal feedthrough. A suitable layout for the immediate vicinity of the ICL7134 is shown in Figure 19, and may be used as a guide.

\section*{APPLICATION NOTES}

Some applications bulletins that may be found useful are listed here:
A016 "Selecting A/D Converters," by Dave Fullagar.
A017 "The Integrating A/D Converter," by Lee Evans.
(a) Printed Circuit Side of Card (Single Sided Board)

A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing," by Ed Sliger.
A021 "Power A/D Converters Using the ICH8510," by Dick Wilenken.
A030 "The ICL7104-A Binary Output A/D Converter for Microprocessors," by Peter Bradshaw.
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.
Most of these are available in the Intersil Data Acquisition Handbook, together with other material.

(b) Top Side with Component Placement

Figure 19. Printed Circuit Board Layout (Bipolar Circuit, see Figure 10)

\section*{FEATURES}
- Accuracy guaranteed to \(\pm \mathbf{1}\) count over entire \(\pm 20,000\) counts (2.0000 volts full scale)
- Guaranteed zero reading for 0 volts input
- 1 pA typical input current
- True differential input
- True polarity at zero count for precise null detection
- Single reference voltage required
- Over-range and under-range signals available for auto-ranging capability
- All outputs TTL compatible
- Blinking display gives visual indication of overrange
- Six auxillary inputs/outputs are avallable for interfacing to UARTs, microprocessors or other complex circuitry
- Multiplexed BCD output versatility

\section*{GENERAL DESCRIPTION}

The Intersil ICL7135 precision A/D converter, with its multiplexed BCD output and digit drivers, combines dualslope conversion reliability with \(\pm 1\) in 20,000 count accuracy and is ideally suited for the visual display DVM/DPM market. The 2.0000V full scale capability, auto-zero and auto-polarity are combined with true ratiometric operation, almost ideal differential linearity and true differential input. All necessary active devices are contained on a single CMOS I.C., with the exception of display drivers, reference, and a clock.
The Intersil ICL7135 brings together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy like auto-zero to less than \(10 \mu \mathrm{~V}\), zero drift of less than \(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), input bias current of 10 pA max., and rollover error of less than one count. The versatility of multiplexed BCD outputs is increased by the addition of several pins which allow it to operate in more sophisticated systems. These include STROBE, OVERRANGE, UNDERRANGE, RUN/ \(\overline{H O L D}\) and BUSY lines, making it possible to interface the circuit to a microprocessor or UART.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{2}{|l|}{ICL7135 with LED Display} & & \\
\hline \multicolumn{4}{|l|}{ORDERING INFORMATION} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{PIN CONFIGURATION (Outline dwgs JI, PI)}} \\
\hline \begin{tabular}{l}
7135 \\
7135 \\
\hline
\end{tabular} & \begin{tabular}{l}
28-Pin CERDIP \\
28-Pin Plastic DIP
\end{tabular} & \[
\begin{aligned}
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & & & & \\
\hline EVIT & Evaluation (PC Board active, p compone & Kit d, assive ents) & ICL135EV/
KIT & & & \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}

Power Dissipation (Note 2)
Ceramic Package 1000 mW
Plastic Package 800 mW
Operating Temperature \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+160^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec)
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to \(+100 \mu \mathrm{~A}\).
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ICL7135 ELECTRICAL CHARACTERISTICS (Note 1)
\(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Clock Frequency Set for 3 Reading/Sec

Note 1: Tested in 4-1/2 digit (20,000 count) circuit shown in Fig. 1, clock frequency 120 kHz .
Note 2: Tested with a low dielectric absorption integrating capacitor. See Component Selection Section.
Note 3: The temperature range can be extended to \(+70^{\circ} \mathrm{C}\) and beyond as long as the auto-zero and reference capacitors are increased to absorb the higher leakage of the ICL7135.
Note 4: This specification relates to the clock frequency range over which the ICL7135 will correctly perform its various functions. See "Max Clock Frequency" below for limitations on the clock frequency range in a system.

\section*{TEST CIRCUIT}

Figure 1: 7135 Test Circuit

Figure 2: 7135 Digital Logic Input

\section*{DETAILED DESCRIPTION}

\section*{Analog Section}

Figure 3 shows the Block Diagram of the Analog Section for the ICL7135. Each measurement cycle is divided into four phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT), (3) deintegrate (DE) and (4) zero integrator (ZI).

\section*{1. Auto-zero phase}

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor \(\mathrm{C}_{A Z}\) to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than \(10 \mu \mathrm{~V}\).
2. Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and
low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is latched into the polarity F/F.

\section*{3. De-Integrate phase}

The Third phase is de-integrate, or reference integrate. Input Low is internally-connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is \(10,000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)\).

Figure 3: Analog Section of ICL7135

\section*{4. Zero Integrator phase}

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal condition, this phase lasts from 100 to 200 clock pulses, but after an overrange conversion, it is extended to 6200 clock pulses.

\section*{Differential Input}

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale swing with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

\section*{Analog COMMON}

Analog COMMON is used as the input low return during autozero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in most applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The reference voltage is referenced to analog COMMON.

\section*{Reference}

The reference input must be generated as a positive voltage with respect to COMMON, as shown in Fig. 4.

Figure 4: Using an External Reference
3. BUSY (Pin 21). BUSY goes high at the beginning of signal integrate and stays high until the first clock pulse after zerocrossing (or after end of measurement in the case of an overrange). The internal latches are enabled (i.e., loaded) during the first clock pulse after busy and are latched at the end of this clock pulse. The circuit automatically reverts to auto-zero when not BUSY, so it may also be considered a \(\overline{(Z I+A Z})\) signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with clock and subtract 10,001 counts from the number of pulses received - as mentioned previously there is one "NO-count" pulse in each reference integrate cycle.
4. OVER-RANGE (Pin 27). This pin goes positive when the input signal exceeds the range \((20,000)\) of the converter. The output \(\mathrm{F}-\mathrm{F}\) is set at the end of BUSY and is reset to zero at the beginning of Reference integrate in the next measurement cycle.
5. UNDER-RANGE (Pin 28). This pin goes positive when the reading is \(9 \%\) of range or less. The output F-F is set at the end of BUSY (if the new reading is 1800 or less) and is reset at the beginning of signal integrate of the next reading.
6. POLARITY (Pin 23). This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be used as a null detector by forcing equal frequency of \((+)\) and \((-)\) readings. The null at this point should be less than 0.1 LSB. This output becomes valid at the beginning of reference integrate and remains correct until it is re-validated for the next measurement.
7. Digit Drives (Pins 12, 17, 18, 19 and 20). Each digit drive is a positive going signal that lasts for 200 clock pulses. The scan sequence is \(D_{5}\) (MSD), \(D_{4}, D_{3}, D_{2}\) and \(D_{1}\) (LSD). All five digits are scanned and this scan is continuous unless an over-range occurs. Then all digit drives are blanked from the end of the strobe sequence until the beginning of Reference Integrate when \(D_{5}\) will start the scan again. This can give a blinking display as a visual indication of over-range.
8. BCD (Pins 13, 14, 15 and 16). The Binary coded Decimal bits \(B_{8}, B_{4}, B_{2}\) and \(B_{1}\) are positive logic signals that go on simultaneously with the digit driver signal.

\section*{COMPONENT VALUE SELECTION}

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

\section*{Integrating Resistor}

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have a class A output stage with \(100 \mu \mathrm{~A}\) of quiescent current. They can supply \(20 \mu \mathrm{~A}\) of drive current with negligible non-linearity. Values of 5 to \(40 \mu \mathrm{~A}\) give good results, with a nominal of \(20 \mu \mathrm{~A}\), and the exact value of integrating resistor may be chosen by

\section*{Integrating Capacitor}

The product of integrating resistor and capacitor should be selected to give the maximum voltage swing which ensures that the tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). For \(\pm 5\) volt supplies and analog COMMON tied to supply ground, \(a \pm 3.5\) to \(\pm 4\) volt full scale integrator swing is fine, and \(0.47 \mu \mathrm{~F}\) is nominal. In general, the value of \(\mathrm{C}_{\text {INT }}\) is given by
\[
\mathrm{C}_{\mathrm{INT}}=\frac{[10,000 \times \text { clock period }] \times \text { linT }}{\text { integrator output voltage swing }}=
\]

A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale 0.9999 , and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

\[
\text { RINT }=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
\]

Figure 6: Timing Diagram for Outputs

\section*{Auto-Zero and Reference Capacitor}

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.
The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

\section*{Reference Voltage}

The analog input required to generate a full-scale output is \(\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}\).
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high quality reference be used where high-accuracy absolute measurements are being made.

\section*{Rollover Resistor and Diode}

A small rollover error occurs in the 7135, but this can be easily corrected by adding a diode and resistor in series between the INTegrator OUTput and analog COMMON or ground. The value shown in the schematics is optimum for the recommended conditions, but if integrator swing or clock frequency is modified adjustment may be needed. The diode can be any silicon diode, such as a 1N914. These components can be eliminated if rollover error is not important, and may be altered in value to correct other (small) sources of rollover as needed.

\section*{Max Clock Frequency}

The maximum conversion rate of most dual-slope A/D converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a \(3 \mu\) s delay, and at a clock frequency of 160 kHz (\(6 \mu \mathrm{~s}\) period) half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a \(50 \mu \mathrm{~V}\) input, 1 to 2 with \(150 \mu \mathrm{~V}, 2\) to 3 at \(250 \mu \mathrm{~V}\), etc. This transition at mid-point is considered desirable by most users; however, if the clock frequency is increased appreciably above 160 kHz , the instrument will flash " 1 " on noise peaks even when the input is shorted.
For many-dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, clock rates of up to \(\sim 1 \mathrm{MHz}\) may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally.
The clock frequency may be extended above 160 kHz without this error, however, by using a low value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage on to the integrator output at the beginning of the reference integrate phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3 . At higher frequencies, ringing and second order breaks will cause significant nonlinearities in the first few counts of the instrument - see Application Note A017.
The minimum clock frequency is established by leakage on the auto-zero and reference caps. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of \(300 \mathrm{kHz}, 200 \mathrm{kHz}, 150 \mathrm{kHz}, 120 \mathrm{kHz}, 100 \mathrm{kHz}\), \(40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}\), etc. should be selected. For 50 Hz rejection, oscillator frequencies of \(250 \mathrm{kHz}, 166^{2} / 3 \mathrm{kHz}, 125 \mathrm{kHz}\), 100 kHz , etc. would be suitable. Note that \(100 \mathrm{kHz}(2.5\) readings/second) will reject both 50 and 60 Hz .
The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in the Applications section. The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

\section*{Zero-Crossing Flip-Flop}

The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have died down. False zero-crossings caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by up to one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore, the counter is disabled for one clock pulse at the beginning of phase 3 . This one-count delay compensates for the delay of the zero-crossing flip-flop, and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001 . No delay occurs during phase 2 , so that true ratiometric readings result.

\section*{EVALUATING THE ERROR SOURCES}

Errors from the "ideal" cycle are caused by:
1. Capacitor droop due to leakage.
2. Capacitor voltage change due to charge "suck-out" (the reverse of charge injection) when the switches turn off.
3. Non-linearity of buffer and integrator.
4. High-frequency limitations of buffer, integrator, and comparator.
5. Integrating capacitor non-linearity (dielectric absorption.)
6. Charge lost by CREF in charging \(C_{\text {stray }}\).
7. Charge lost by \(\mathrm{C}_{A Z}\) and \(\mathrm{C}_{\text {INT }}\) to charge \(\mathrm{C}_{\text {stray }}\).

Each of these errors is analyzed for its error contribution to the converter in application notes listed on the back page, specifically A017 and A032.

\section*{NOISE}

The peak-to-peak noise around zero is approximately \(15 \mu \mathrm{~V}\) (pk-to-pk value not exceeded \(95 \%\) of the time). Near full scale, this value increases to approximately \(30 \mu \mathrm{~V}\). Much of the noise originates in the auto-zero loop, and is proportional to the ratio of the input signal to the reference.

\section*{ANALOG AND DIGITAL GROUNDS}

Extreme care must be taken to avoid ground loops in the layout of ICL7135 circuits, especially in high-sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line.

\section*{POWER SUPPLIES}

The 7135 is designed to work from \(\pm 5 \mathrm{~V}\) supplies. However, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:
1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than \(\pm 1.5\) volts.

See "differential input" for a discussion of the effects this will have on the integrator swing withoút loss of linearity.

TYPICAL APPLICATIONS

The circuits which follow show some of the wide variety of possibilities, and serve to illustrate the exceptional versatility of this A/D converter.
Figure 7 shows the complete circuit for a \(4-1 / 2\) digit (\(\pm 2.000 \mathrm{~V}\)) full scale) A/D with LED readout using the ICL8069 as a 1.2 V temperature compensated voltage reference. It uses the band-gap principal to achieve excellent stability and low noise at reverse currents down to \(50 \mu \mathrm{~A}\). The circuit also shows a typical R-C input filter. Depending on the application, the time-constant of this filter can be made faster, slower, or the filter deleted completely. The \(1 / 2\) digit

LED is driven from the 7 segment decoder, with a zero reading blanked by connecting a D5 signal to RBI input of the decoder. The 2-gate clock circuit should use CMOS gates to maintain good power supply rejection.
Figure 8 is similar except the output drives a multiplexed common cathode LED Display with the 7-Common Emitter Transistor Array, for the digit driver transistors, making a lower component count possible. Both versions of the complete circuit will give a blinking display as a visual indication of overrange. A clock oscillator circuit using the ICM7555 CMOS timer is shown.

Figure 7: 4-1/2 Digit A-D Converter with a multiplexed common anode LED display

Figure 8: Driving multiplexed common cathode LED displays

\section*{ICL7135}

A suitable circuit for driving a plasma-type display is shown in Fig. 9. The high voltage anode driver buffer is made by Dionics. The 3 AND gates and caps driving 'BI' are needed for interdigit blanking of multiple-digit display elements, and can be omitted if not needed. The 2.5 k \& 3 k resistors set the current levels in the display. A similar arrangement can be used with Nixie \({ }^{\circledR}\) tubes.
The popular LCD displays can be interfaced to the \(O / P\) of the ICL7135 with suitable display drivers, such as the ICM7211A as shown in Figure 11. A standard CMOS 4000 series LCD driver circuit is used for displaying the \(1 / 2\) digit, the polarity,
- Nixie is a registered trademark of Burroughs Corporation.

Figure 9: ICL7135 Plasma Display Circuit
and an 'overrange' flag. A similar circuit can be used with the ICL7212A LED driver and the ICM7235A vacuum fluorescent driver with appropriate arrangements made for the 'extra' outputs. Of course, another full driver circuit could be ganged to the one shown if required. This would be useful if additional annunciators were needed. The Figure shows the complete circuit for a \(4-1 / 2\) digit (\(\pm 2.000 \mathrm{~V}\)) A/D.
Figure 10 shows a more complicated circuit for driving LCD displays. Here the data is latched into the ICM7211 by the STROBE signal and 'Overrange' is indicated by blanking the 4 full digits.

Figure 10: LCD Display with Digit Blanking on Overrange

Figure 11: Driving LCD Displays

\section*{TYPICAL APPLICATIONS (Contd.)}

A problem sometimes encountered with both LED \& plasmatype display driving is that of clock source supply line variations. Since the supply is shared with the display, any variation in voltage due to the display reading may cause clock supply voltage modulation. When in overrange the display alternates between a blank display and the 0000 overrange indication. This shift occurs during the reference integrate phase of conversion causing a low display reading just after overrange recovery. Both of the above circuits have considerable current flowing in the digital supply from drivers, etc. A clock source using Intersil's LM311 voltage comparator in positive feedback mode (Figure 12) could minimize any clock frequency shift problem.
The 7135 is designed to work from \(\pm 5\) volt supplies. However,

Figure 12: LM311 Clock Source

Figure 14: ICL7135 to UART Interface
if a negative supply is not available, it can be generated from 2 capacitors, and an inexpensive I.C. (Figure 13).

\section*{INTERFACING WITH UARTS AND MICROPROCESSORS}

Figure 14 shows a very simple interface between a freerunning ICL7135 and a UART. The five STROBE pulses start the transmission of the five data words. The digit 5 word is 0000 XXXX, digit 4 is 1000 XXXX, digit 3 is 0100 XXXX, etc. Also the polarity is transmitted indirectly by using it to drive the Even Parity Enable Pin (EPE). If EPE of the receiver is held low, a parity flag at the receiver can be decoded as a positive signal, no flag as negative. A complex arrangement is shown in Figure 15. Here the UART can instruct the A/D to begin a measurement sequence by a word on RRI. The BUSY signal resets the Data Ready Reset (DRR). Again STROBE starts the

Figure 13: Generating Negative Supply from +5 V

Figure 15: Complex ICL7135 to UART Interface

Figure 16: IM6100 to ICL7135 Interface

Figure 17: ICL7135 to MC6800, MCS650X Interface
transmit sequence. A quad 2 input multiplexer is used to superimpose polarity, over-range, and under-range onto the \(D_{5}\) word since in this instance it is known that \(B_{2}=B_{4}=B_{8}=\) 0.

For correct operation it is important that the UART clock be fast enough that each word is transmitted before the next STROBE pulse arrives. Parity is locked into the UART at load time but does not change in this connection during an output stream.

Figure 18: ICL7135 to MCS-48, -80, 85 Interface
Circuits to interface the ICL7135 directly with three popular microprocessors are shown in Figures 16, 17 and 18. The main differences in the circuits are that the IM6100 with its 12 bit word capability can accept polarity, over-range, underrange, 4 bits of BCD and 5 digits simultaneously where the 8080/8048 and the MC6800 groups with 8 bit words need to have polarity, over-range and under-range multiplexed onto the Digit 5 word - as in the UART circuit. In each case the microprocessor can instruct the A/D when to begin a measurement and when to hold this measurement.

\section*{APPLICATION NOTES}

A016 "Selecting A/D Coniverters," by David Fullagar
A017 "The Integrating A/D Converters," by Lee Evans
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A019 "4-1/2 Digit Panel Meter Demonstrator/Instrumentation Boards," by Michael Dufort
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort

A028 "Building an Auto-Ranging DMM Using the 8052A/7103A A/D Converter Pair," by Larry Goff
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors", by Peter Bradshaw
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family", by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976

\title{
Low Power A/D Converter
}

\section*{FEATURES}
- First-reading recovery from overrange gives immediate "OHMS" measurement
- Guaranteed zero reading for OV input
- True polarity at zero for precise null detection
- 1pA typical input current
- True differential input and reference
- Direct LCD display drive - no external components required
- Pin compatible with the ICL7106, ICL7126
- Low noise - \(15 \mu \mathrm{Vp}\)-p without hysteresis or overrange hangover
- On-chip clock and reference
- Low power dissipation, guaranteed less than 1mW-gives 8,000 hours typical 9 V battery life
- No additional active circuits required
- Evaluation Kit available (ICL7136EV/Kit)

\section*{GENERAL DESCRIPTION}

The Intersil ICL7136 is a high performance, very low power \(31 / 2\)-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven-segment decoders, display drivers, reference, and clock. The 7136 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive. The supply current is under \(100 u \mathrm{~A}\), ideally suited for 9 V battery operation.
The 7136 brings together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy, like auto-zero to less than \(10 \mu \mathrm{~V}\), zero drift of less than \(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), input bias current of 10pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation allows a high performance panel meter to be built with the addition of only 7 passive components and a display.
The ICL7136 is an improved version of the ICL7126, eliminating the overrange hangover and hysteresis effects, and should be used in its.place in all applications. It can also be used as a plug-in replacement for the ICL7106 in a wide variety of applications, changing only the passive components.

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|}
\hline \multirow{4}{*}{\begin{tabular}{l}
Analog Input Voltage (either input)(Note 1) \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) \\
Reference Input Voltage (either input) \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Power Dissipation (Note2)
Ceramic Package . 1000 mW
Plastic Package .800 mW
Operating Temperature \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+160^{\circ} \mathrm{C}\)
Lead Temperature (soldering, 60 sec) \(300^{\circ} \mathrm{C}\)

Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to \(\pm 100 \mu \mathrm{~A}\).
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS (Note 3, 7)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Zero Input Reading & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\
& \text { Full-Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & -000.0 & \(\pm 000.0\) & + 000.0 & Digital Reading \\
\hline Ratiometric Reading & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}\) & 999 & 999/1000 & 1000 & Digital Reading \\
\hline Roll-Over Error (Difference in reading for equal positive and negative reading near full-scale) & \(-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \simeq 200.0 \mathrm{mV}\) & -1 & \(\pm 0.2\) & +1 & Counts \\
\hline Linearity (Max. deviation from best straight line fit) & Full-Scale \(=200 \mathrm{mV}\) or Full-Scale \(=2.000 \mathrm{~V}\) & -1 & \(\pm 0.02\) & +1 & Counts \\
\hline Common-Mode Rejection Ratio (Note 4) & \[
\begin{aligned}
& V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V} \\
& \text { Full-Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & & 50 & & \({ }_{\mu} \mathrm{V} / \mathrm{V}\) \\
\hline Noise (Pk-Pk value not exceeded 95\% of time) & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\), Full-Scale \(=200.0 \mathrm{mV}\) & & 15 & & \({ }^{\mu} \mathrm{V}\) \\
\hline Leakage Current @ Input & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) & & 1 & 10 & pA \\
\hline Zero Reading Drift & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}\) & & 0.2 & 1 & \({ }_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor Temperature Coefficient & \[
\begin{aligned}
& \mathrm{V}_{1 \mathrm{~N}}=199.0 \mathrm{mV}, 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\
& \text { (Ext. Ref. Oppm} /{ }^{\circ} \mathrm{C} \text {) }
\end{aligned}
\] & & 1 & 5 & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline Supply Current (Does not include COMMON current) & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) (Note 6) & & 70 & 100 & \(\mu \mathrm{A}\) \\
\hline Analog COMMON Voltage (With respect to positive supply) & 250k \(\Omega\) between Common and Positive Supply & 2.6 & 3.0 & 3.2 & v \\
\hline Temp. Coeff. of Analog COMMON (With respect to positive supply) & 250k \(\Omega\) between Common and Positive Supply & & 150 & & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline Pk-Pk Segment Drive Voltage (Note 5) & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}=9 \mathrm{~V}\) & 4 & 5 & 6 & V \\
\hline Pk-Pk Backplane Drive Voltage (Note 5) & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}=9 \mathrm{~V}\) & 4 & 5 & 6 & V \\
\hline Power Dissipation Capacitance & vs Clock Frequency & & 40 & & pF \\
\hline
\end{tabular}

Note 3: Unless otherwise noted, specifications apply at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=16 \mathrm{kHz}\) and are tested in the circuit of Figure 1.
Note 4: Refer to "Differential Input" discussion.
Note 5: Backplane drive is in phase with segment drive for "off" segment, \(180^{\circ}\) out of phase for "on" segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
Note 6: 48 kHz oscillator, Figure 2, increases current by \(20 \mu \mathrm{~A}\) (typ).
Note 7: Extra capacitance of CERDIP package changes oscillator resistor value to \(470 \mathrm{k} \Omega\) or \(150 \mathrm{k} \Omega\) (1 reading \(/ \mathrm{sec}\) or 3 readings/sec).

TEST CIRCUITS

Figure 1. \(\mathbf{7 1 3 6}\) Clock Frequency \(\mathbf{1 6 k H z}\) (1 reading/sec)

\section*{DETAILED DESCRIPTION—Analog Section}

\section*{CONVERSION CYCLE}

Figure 3 shows the Block Diagram of the Analog Section for the ICL7136. Each measurement cycle is divided into four phases. They are 1) auto-zero (A-Z), 2) signal iniegrate (INT), 3) de-integrate (DE) and 4) zero integrator (ZI).

\section*{1. Auto-Zero Phase}

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor, \(\mathrm{C}_{A Z}\), to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than \(10 \mu \mathrm{~V}\).

\section*{2. Signal Integrate Phase}

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low

Figure 2. Clock Frequency \(\mathbf{4 8 k H z}\) (\(\mathbf{3}\) readings/sec)
are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common-mode range; within 1V of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

\section*{3. De-Integrate Phase}

The next phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically, the digital reading displayed is \(1000\left(\mathrm{~V}_{\mathrm{IN}} / \mathrm{V}_{\mathrm{REF}}\right)\).

Figure 3. Analog Section of 7136

\section*{4. Zero Integrator Phase}

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Finally, a feedback loop is closed around the system to'input high to cause the integrator output to return to zero. Under normal conditions, this phase lasts for between 11 to 140 clock pulses, but after a "heavy" overrange conversion, it is extended to 740 clock pulses.

\section*{DIFFERENTIAL INPUT}

The input can accept differential voltages anywhere within the common-mode range of the input amplifier; or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common-mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common-mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

\section*{DIFFERENTIAL REFERENCE}

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common-mode error is a roll-over voltage caused by the reference capacitance losing or gaining charge to stray capacity on its nodes. If there is a large common-mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to de-integrate a negative input signal. This difference in reference for \((+)\) or (-) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection).

\section*{ANALOG COMMON}

This pin is included primarily to set the common-mode voltage for battery operation or for any system where the in-. put signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 3.0 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate (\(>7 \mathrm{~V}\)), the COMMON voltage will have a low voltage coefficient (\(0.001 \% / \%\)), low output impedance (\(\sim 35 \Omega\)), and a temperature coefficient typically less than \(80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).
The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of \(2^{\circ} \mathrm{C}\) to \(8^{\circ} \mathrm{C}\), typical for instruments, can give a scale factor error of a count or more. Also, the COMMON voltage will have a poor voltage coefficient when the total
supply voltage is less than that which will cause the zener to regulate (\(<7 \mathrm{~V}\)). These problems are eliminated if an external reference is used, as shown in Figure 4.

Figure 4. Using an External Reference
Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common-mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common-mode voltage from the converter. The same holds true for the reference voltage. If the reference can be conveniently referred to analog COMMON, it should be since this removes the commonmode voltage from the reference system.
Within the IC, analog COMMON is tied to an N channel FET which can sink \(100 \mu \mathrm{~A}\) or more of current to hold the voltage 3.0 V below the positive supply (when a load is trying to pull the common line positive). However, there is only \(1 \mu \mathrm{~A}\) of source current, so COMMON may easily be tied to a more negative voltage, thus overriding the internal reference.

\section*{TEST}

The TEST pin serves two functions. It is coupled to the internally generated digital supply through a \(500 \Omega\) resistor. Thus, it can be used as the negative supply for external segment drivers such as for decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

Figure 5. Simple Inverter for Fixed Decimal Point
The second function is a "lamp test." When TEST is pulled high (to \(\mathrm{V}^{+}\)) all segments will be turned on and the display should read -1888 . The TEST pin will sink about 10 mA under these conditions.
Caution: In the lamp test mode, the segments have a constant DC voltage (no square-wave). This may burn the LCD display if maintained for extended periods.

Figure 6. Exclusive "OR" Gate for Decimal Point Drive

\section*{DETAILED DESCRIPTION—Digital Section}

Figure 7 shows the digital section for the 7136. An internal digital ground is generated from a 6 V Zener diode and a large \(\mathbf{P}\) channel source follower. This supply is made stiff to absorb the relatively large capacitive currents when the backplane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square-wave with a nominal amplitude of 5 V . The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. The polarity indication is "ON" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

Figure 8. Clock Circuits

\section*{SYSTEM TIMING}

Figure 8 shows the clock oscillator provided in the 7136. Three basic clocking arrangements can be used:
1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40 .
3. An RC oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the four convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 counts to 2000 counts), zero integrator (11 counts to 140 counts*) and auto-zero (910 counts to 2900 counts). For signals less than full-scale, auto-zero gets the unused portion of reference de-integrate
* After an overranged conversion of more than 2060 counts, the zero integrator phase will last 740 counts, and auto-zero will last 260 counts.

\section*{DISPLAY FONT}

Figure 7. Digital Section
and zero integrator. This makes a complete measure cycle of 4000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of the 60 Hz period. Oscillator frequencies of \(60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}\), etc. should be selected. For 50 Hz rejection, oscillator frequencies of \(66^{2} / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}\), etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz). See also A052.

\section*{COMPONENT VALUE SELECTION (See also A052)}

\section*{Integrating Resistor}

Both the buffer amplifier and the integrator have a class A output stage with \(6 \mu \mathrm{~A}\) of quiescent current. They can supply \(\sim 1 \mu \mathrm{~A}\) of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 V full-scale, \(1.8 \mathrm{M} \Omega\) is near optimum, and similarly \(180 \mathrm{k} \Omega\) for a 200.0 mV scale.

\section*{Integrating Capacitor}

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 V from either supply). When the analog COMMON is used as a reference, a nominal \(\pm 2 \mathrm{~V}\) full-scale integrator swing is fine. For three readings/second (48 kHz clock) nominal values for \(\mathrm{C}_{\mathrm{INT}}\) are \(0.047 \mu \mathrm{~F}\), for 1 reading \(/\) second (16 kHz) \(0.15 \mu \mathrm{~F}\). Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

\section*{Auto-Zero Capacitor}

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full-scale where noise is very important, a \(0.47 \mu \mathrm{~F}\) capacitor is recommended. The ZI phase allows a large auto-zero capacitor to be used without causing the hysteresis or overrange hangover problems that can occur with the ICL7126 or ICL7106 (see A032).

\section*{Reference Capacitor}

A \(0.1 \mu \mathrm{~F}\) capacitor gives good results in most applications. However, where a large common-mode voltage exists (i.e., the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally, \(1.0 \mu \mathrm{~F}\) will hold the roll-over error to 0.5 count in this instance.

\section*{Oscillator Components}

For all ranges of frequency a 50 pF capacitor is recommended and the resistor is selected from the approximate equation \(f \sim 0.45 / \mathrm{RC}\). For 48 kHz clock (3 readings/second), \(R=180 \mathrm{k} \Omega\), for \(16 \mathrm{kHz}, \mathrm{R}=560 \mathrm{k} \Omega\).

\section*{Reference Voltage}

The analog input required to generate full-scale output (2000 counts) is: \(\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {REF }}\). Thus, for the 200.0 mV and 2.000 V scale, \(\mathrm{V}_{\text {REF }}\) should equal 100.0 mV and 1.000 V , respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full-scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select \(\mathrm{V}_{\mathrm{REF}}=0.341 \mathrm{~V}\). A suitable value for the integrating resistor would be \(330 \mathrm{k} \Omega\). This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for \(V_{I N} \neq 0\). Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

\section*{TYPICAL APPLICATIONS}

The 7136 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

Figure 9. 7136 Using the Internal Reference. Values shown are for 200.0 mV full-scale, 3 readings \(/ \mathrm{sec}\), floating supply voltage (9 V battery).

Figure 10. \(\mathbf{7 1 3 6}\) with an External Band-Gap Reference (1.2V Type). IN LO is tied to COMMON, thus establishing the correct commonmode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading \(/ \mathrm{sec}\).

\section*{ICL7136}

\section*{TYPICAL APPLICATIONS (Continued)}

Figure 11. Recommended Component Values for 2.000V FullScale, 3 Readings/Sec. For 1 reading/sec, change \(\mathrm{C}_{\mathrm{INT}}, \mathrm{R}_{\mathrm{OSC}}\) to values of Figure 10.

Figure 13. 7136 Operated from Single +5 V Supply. An external reference must be used in this application, since the voltage between \(V^{+}\)and \(V^{-}\)is insufficient for correct operation of the internal reference.

Figure 15. 7136 used as a Digital Centigrade Thermometer. A silicon diode-connected transistor has a temperature coefficient of about \(-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for a 100.0 reading. See ICL8073/4 and AD590 data sheets for alternative circuits.

Figure 12. 7136 with Zener Diode Reference. Since low TC zeners have breakdown voltages \(\sim 6.8 \mathrm{~V}\), diode must be placed across the total supply (10V). As in the case of Figure 11, IN LO may be tied to COMMON.

Figure 14. 7136 Measuring Ratiometric Values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

Figure 16. Circult for Developing Underrange and Overrange Signals from 7136 Outputs.

\footnotetext{
*Values depend on clock frequency. See Figures 9, 10, 11.
}

TYPICAL APPLICATIONS (Continued)

Figure 17. AC to DC Converter with 7136. Test is used as a common-mode reference level to ensure compatibility with most op amps.

\section*{APPLICATION NOTES}

A016 "Selecting A/D Converters," by David Fullagar.
A017 "The Integrating A/D Converter,' by Lee Evans.
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A019"412.Digit Panel Meter Demonstrator/Instrumentation Boards,' by Michael Dufort.
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032"Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family,' by Peter Bradshaw.
A046"Building a Battery-Operated Auto Ranging DVM with the ICL7106,' by Larry Goff.
A047"Games People Play with Intersil's A/D Converters," edited by Peter Bradshaw.
A052"Tips for Using Single-Chip 3½-Digit A/D Converters;" by Dan Watson.

\section*{7136 EVALUATION KITS}

After purchasing a sample of the 7136, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.
To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a \(31 / 2\)-digit panel meter. With the ICL7136EV/Kit and the small number of additional components required, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, a display (LCD), passive components, and miscellaneous hardware.

\section*{FEATURES}
- First-reading recovery from overrange gives immediate "OHMS" measurement
- Guaranteed zero reading for OV input
- True polarity at zero for precise null detection
- 1pA typical input current
- True differential input and reference
- Direct LED display drive - no external components required
- Pin compatible with the ICL7107
- Low noise \(-15 \mu \mathrm{Vp}-\mathrm{p}\) without hysteresis or overrange hangover
- On-chip clock and reference
- Improved rejection of voltage on COMMON pin
- No additional active circuits required
- Evaluation Kit available (ICL7137EV/Kit)

\section*{GENERAL DESCRIPTION}

The Intersil ICL7137 is a high performance, very low power \(31 / 2\)-digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven-segment decoders, display drivers, reference, and clock. The 7137 is designed to interface with a light emitting diode (LED) display. The supply current (exclusive of display) is under \(200 \mu \mathrm{~A}\), ideally suited for battery operation.

The 7137 brings together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy, like auto-zero to less than \(10 \mu \mathrm{~V}\), zero drift of less than \(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), input bias current of 10pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of the ICL7137 allows a high performance panel meter to be built with the addition of only 7 passive components and a display.

The ICL7137 is an improved version of the ICL7107, eliminating the overrange hangover and hysteresis effects, and should be used in its place in all applications, changing only the passive component values.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ ORDERING INFORMATION* } \\
\begin{tabular}{|l|l|l|}
\hline PART & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c}
TEMPERATURE \\
RANGE
\end{tabular}
\end{tabular} \begin{tabular}{c}
ORDER PART \\
NUMBER
\end{tabular} \\
\hline 7137 & 40 -pin CERDIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7137CJL \\
\hline 7137 & 40 -pin Ceramic DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7137CDL \\
\hline \(7137^{*}\) & 40 -pin Plastic DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL7137CPL \\
\hline 7137 Kit & Evaluation Kit & & ICL7137EV/KIT \\
\hline
\end{tabular}
*Plastic package device is available with reverse-bent leads. Order ICL7137RCPL

PIN CONFIGURATION* (outline dwgs PL, JL, DL)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{\(\frac{5}{2}\)
2
2} & \(v+5\) & \multirow[t]{9}{*}{\(\checkmark\)} & 40 & 习 OSC 1 \\
\hline & D1 \({ }^{2}\) & & 39 & D OSC 2 \\
\hline & C15 & & 38 & P OSC 3 \\
\hline & B154 & & 37 & \(\square\) TEST \\
\hline & A15 5 & & 36 & R REF HI \\
\hline & F15 \({ }^{6}\) & & 35 & PREF LO \\
\hline & G1 \({ }^{7}\) & & 34 & \(\square^{+}{ }^{+}\)REF \\
\hline & E1-8 & & 33 & \(\mathrm{C}^{-1} \mathrm{REF}\) \\
\hline \multirow{6}{*}{} & D2 \({ }^{-1}\) & & 32 & \(\square\) COMMON \\
\hline & C25 10 & \multirow{5}{*}{ICL. 7137} & 31 & DINHI \\
\hline & B25 11 & & 30 & \(\square\) INLO \\
\hline & A2 \({ }^{12}\) & & 29 & PA-Z \\
\hline & F2 \({ }^{13}\) & & 28 & \(\square \mathrm{BUFF}\) \\
\hline & E2 14 & & 27 & \(\square\) INT \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \bar{\pi} \\
& \stackrel{\rightharpoonup}{\circ}
\end{aligned}
\]} & D3 \({ }^{15}\) & & 26 & \(\mathrm{v}^{-}\) \\
\hline & B3 \({ }^{16}\) & & 25 & \(\mathrm{G}_{2}\) (TENS) \\
\hline & F3 \({ }^{17}\) & & 24 & \(\square_{3} \square^{\text {a }}\) \\
\hline & E3-18 & & 23 & \(\square_{1} \square_{3}\) \\
\hline (1000) & AB4 - 19 & & 22 & \(\square \mathrm{G}_{3} \mathrm{v}_{0}\) \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { POL } \\
& \text { (MINUS) }
\end{aligned}
\]} & & 21 & \(\square\) DIG GND \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Supply Voltage \(\mathrm{V}^{+}\) & +6V \\
\hline \(\mathrm{V}^{+}\) & -9V \\
\hline Analog Input Voltage (either input) (Note 1) & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) \\
\hline Reference Input Voltage (either input) & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) \\
\hline Clock Input & GND to \({ }^{+}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Power Dissipation (Note2)} \\
\hline Ceramic Package & 1000 mW \\
\hline Plastic Package & 800 mW \\
\hline Operating Temperature & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+160^{\circ} \mathrm{C}\) \\
\hline & \\
\hline
\end{tabular}

Plastic Package . 800 mW
Operating Temperature . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Lead Temperature (soldering, 60 sec) \(300^{\circ} \mathrm{C}\)

Note 1: Input voltages may exceed the supply voltages, provided the input current is limited to \(\pm 100 \mu \mathrm{~A}\).
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Zero Input Reading & \[
\begin{aligned}
& V_{I N}=0.0 \mathrm{~V} \\
& \text { Full-Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & -000.0 & \(\pm 000.0\) & \(+000.0\) & Digital Reading \\
\hline Ratiometric Reading & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}\) & 999 & 999/1000 & 1000 & Digital Reading \\
\hline Roll-Over Error (Difference in reading for equal positive and negative reading near full-scale) & \(-V_{\text {IN }}=+V_{\text {IN }}=200.0 \mathrm{mV}\) & -1 & \(\pm 0.2\) & +1 & Counts \\
\hline Linearity (Max. deviation from best straight line fit) & \[
\begin{aligned}
& \text { Full-Scale }=200 \mathrm{mV} \\
& \text { or Full-Scale }=2.000 \mathrm{~V}
\end{aligned}
\] & -1 & \(\pm 0.02\) & +1 & Counts \\
\hline Common-Mode Rejection Ratio (Note 4) & \[
\begin{aligned}
& V_{C M}= \pm 1 \mathrm{~V}, V_{I N}=0 \mathrm{~V} \\
& \text { Full-Scale }=200.0 \mathrm{mV}
\end{aligned}
\] & & 30 & & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Noise (Pk-Pk value not exceeded 95\% of time) & \(V_{I N}=0 \mathrm{~V}\), Full-Scale \(=200.0 \mathrm{mV}\) & & 15 & & \(\mu \mathrm{V}\) \\
\hline Leakage Current @ Input & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) & & 1 & 10 & pA \\
\hline Zero Reading Drift & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}\) & & 0.2 & 1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor Temperature Coefficient & \[
\begin{aligned}
& V_{I N}=199.0 \mathrm{mV}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\
& \text { (Ext. Ref. Oppm} /{ }^{\circ} \mathrm{C} \text {) }
\end{aligned}
\] & & 1 & 5 & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{V}^{+}\)Supply Current (Does not include LED current) & \(V_{\text {IN }}=0 \mathrm{~V}(\) Note 5\()\) & & 70 & 200 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}^{-}\)Supply Current & & & 40 & & \\
\hline Analog COMMON Voltage (With respect to positive supply) & \(250 \mathrm{k} \Omega\) between Common and Positive Supply & 2.6 & 3.0 & 3.2 & V \\
\hline Temp. Coeff. of Analog COMMON (With respect to positive supply) & 250k \(\Omega\) between Common and Positive Supply & & 80 & & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Segment Sinking Current (Except Pin 19) \\
(Pin 19 only)
\end{tabular} & \[
\begin{aligned}
& V^{+}=5.0 \mathrm{~V} \\
& \text { Segment Voltage }=3 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
5 \\
10
\end{tabular} & \[
\begin{aligned}
& 8.0 \\
& 16
\end{aligned}
\] & & mA \\
\hline Power Dissipation Capacitance & vs Clock Frequency & & 40 & & pF \\
\hline
\end{tabular}

Note 3: Unless otherwise noted, specifications apply at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {clock }}=16 \mathrm{kHz}\) and are tested in the circuit of Figure 1.
Note 4: Refer to "Differential Input" discussion.
Note 5: 48 kHz oscillator, Figure 2, increases current by \(35 \mu \mathrm{~A}\) (typ).
Note 6: Extra capacitance of CERDIP package changes oscillator resistor value to \(470 \mathrm{k} \Omega\) or \(150 \mathrm{k} \Omega\) (1 reading/sec or \(3 \mathrm{readings} / \mathrm{sec}\)).

\section*{TEST CIRCUITS}

Figure 1. 7137 Clock Frequency 16 kHz (1 reading/sec)

\section*{DETAILED DESCRIPTION—Analog Section}

\section*{CONVERSION CYCLE}

Figure 3 shows the Block Diagram of the Analog Section for the ICL7137. Each measurement cycle is divided into four phases. They are 1) auto-zero (A-Z), 2) signal integrate (INT), 3) de-integrate (DE) and 4) zero integrator (ZI).

\section*{1. Auto-Zero Phase}

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor, \(C_{A Z}\), to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than \(10 \mu \mathrm{~V}\).

\section*{2. Signal Integrate Phase}

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low

Figure 2. Clock Frequency \(\mathbf{4 8 k H z}\) (3 readings/sec)
are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common-mode range; within 1 V of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

\section*{3. De-Integrate Phase}

The next phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically; the digital reading displayed is \(1000\left(\mathrm{~V}_{\text {IN }} / \mathrm{V}_{\mathrm{REF}}\right)\).

Figure 3. Analog Section of 7137

\section*{4. Zero Integrator Phase}

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Finally, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal conditions, this phase lasts for between 11 to 140 clock pulses, but after a "heavy" overrange conversion, it is extended to 740 clock pulses.

\section*{DIFFERENTIAL INPUT}

The input can accept differential voltages anywhere within the common-mode range of the input amplifier; or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range the system has a CMRR of 90 dB typical. However, since the integrator also swings with the common-mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common-mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common-mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

\section*{DIFFERENTIAL REFERENCE}

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common-mode error is a roll-over voltage caused by the reference capacitance losing or gaining charge to stray capacity on its nodes. If there is a large common-mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to de-integrate a negative input signal. This difference in reference for (+) or (-) input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Value Selection).

\section*{ANALOG COMMON}

This pin is included primarily to set the common-mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 3.0 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate (\(>7 \mathrm{~V}\)), the COMMON voltage will have a low voltage coefficient \((0.001 \% / \%)\), low output impedance (\(\simeq 35 \Omega\)), and a temperature coefficient typically less than \(80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of \(2^{\circ} \mathrm{C}\) to \(8^{\circ} \mathrm{C}\), typical for instruments, can give a scale factor error of a count or more. Also, the COMMON voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to
regulate (\(<7 \mathrm{~V}\)). These problems are eliminated if an external reference is used, as shown in Figure 4.

Figure 4. Using an External Reference

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common-mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common-mode voltage from the converter. The same holds true for the reference voltage. If the reference can be conveniently referred to analog COMMON, it should be since this removes the commonmode voltage from the reference system.
Within the IC, analog COMMON is tied to an \(N\) channel FET which can sink \(100 \mu \mathrm{~A}\) or more of current to hold the voltage 3.0 V below the positive supply (when a load is trying to pull the common line positive). However, there is only \(1 \mu \mathrm{~A}\) of source current, so COMMON may easily be tied to a more negative voltage, thus overriding the internal reference.

\section*{TEST}

The TEST pin is coupled to the internal digital supply through a \(500 \Omega\) resistor, and functions as a "lamp test." When TEST is pulled high (to \(\mathrm{V}^{+}\)) all segments will be turned on and the display should read -1888 . The TEST pin will sink about 10 mA under these conditions.

\section*{DETAILED DESCRIPTION-Digital Section}

Figure 5 shows the digital section for the 7137. The segments are driven at 8 mA , suitable for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA . The polarity indication is "ON" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.
Figure 6 shows a method of increasing the output drive current, using four DM7407 Hex Buffers. Each buffer is capable of sinking 40 mA .

\section*{SYSTEM TIMING}

Figure 7 shows the clock oscillator provided in the 7137. Three basic clocking arrangements can be used:
1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An RC oscillator using all three pins.

DISPLAY FONT

Figure 5. Digital Section

Figure 6. Display Buffering for Increased Drive Current

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the four convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 counts to 2000 counts), zero integrator (11 counts to 140 counts*) and auto-zero (910 counts to 2900 counts). For signals less than full-scale, auto-zero gets the unused portion of reference de-integrate and zero integrator. This makes a complete measure cycle of 4000 (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of the 60 Hz period. Oscillator frequencies of \(60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}\), etc.

\footnotetext{
*After an overranged conversion of more than 2060 counts, the zero integrator phase will last 740 counts, and auto-zero will last 260 counts.
}

Figure 7. Clock Circuits
should be selected. For 50 Hz rejection, oscillator frequencies of \(66^{2} / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}\), etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz). See also A052.

\section*{COMPONENT VALUE SELECTION (See also A052)}

\section*{Integrating Resistor}

Both the buffer amplifier and the integrator have a class \(A\) output stage with \(6 \mu \mathrm{~A}\) of quiescent current. They can supply \(\sim 1 \mu \mathrm{~A}\) of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 V full-scale, \(1.8 \mathrm{M} \Omega\) is near optimum, and similarly \(180 \mathrm{k} \Omega\) for a 200.0 mV scale.

\section*{Integrating Capacitor}

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 V from either supply). When the analog COMMON is used as a reference, a nominal \(\pm 2 \mathrm{~V}\) full-scale integrator swing is fine. For three readings/second (48 kHz clock) nominal values for \(\mathrm{C}_{\text {INT }}\) are \(0.047 \mu \mathrm{~F}\), for 1 reading \(/\) second (16 kHz) \(0.15 \mu \mathrm{~F}\). Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

\section*{Auto-Zero Capacitor}

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full-scale where noise is very important, a \(0.47 \mu \mathrm{~F}\) capacitor is recommended. The Zl phase allows a large auto-zero capacitor to be used without causing the hysteresis or overrange hangover problems that can occur with the ICL7107 or ICL7117 (see A032).

\section*{Reference Capacitor}

A \(0.1 \mu \mathrm{~F}\) capacitor gives good results in most applications. However, where a large common-mode voltage exists (i.e., the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally, \(1.0 \mu \mathrm{~F}\) will hold the roll-over error to 0.5 count in this instance.

\section*{Oscillator Components}

For all ranges of frequency a 50 pF capacitor is recommended and the resistor is selected from the approximate equation \(f \sim 0.45 / \mathrm{RC}\). For 48 kHz clock (3 readings/second), \(R=180 \mathrm{k} \Omega\), while for 16 kHz (1 reading \(/ \mathrm{sec}\)), \(R=560 \mathrm{k} \Omega\).

\section*{Reference Voltage}

The analog input required to generate full-scale output (2000 counts) is: \(\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}\). Thus, for the 200.0 mV and 2.000 V scale, \(\mathrm{V}_{\text {REF }}\) should equal 100.0 mV and 1.000 V , respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full-scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select \(\mathrm{V}_{\text {REF }}=0.341 \mathrm{~V}\). A suitable value for the integrating resistor would be \(330 \mathrm{k} \Omega\). This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for \(\mathrm{V}_{1 N} \neq 0\). Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

\section*{TYPICAL APPLICATIONS}

The 7137 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

Figure 8. 7137 Using the Internal Reference. Values shown are for 200.0 mV full-scale, 3 readings/sec. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON.)

Figure 9. 7137 with an External Band-Gap Reference (1.2V Type). IN LO is tied to COMMON, thus establishing the correct commonmode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading/sec.

Figure 10. Recommended Component Values for 2.000 V FullScale, 3 Readings/Sec. For 1 reading/sec, change \(\mathrm{C}_{\mathrm{INT}}, \mathrm{R}_{\mathrm{Osc}}\) to values of Figure 9.

ICL7137
TYPICAL APPLICATIONS (Continued)

Figure 11. 7137 with Zener Diode Reference. Since low TC zeners have breakdown voltages \(\sim 6.8 \mathrm{~V}\), diode must be placed across the total supply (10V). As in the case of Figure 9, IN LO may be tied to COMMON.

Figure 12. 7137 Operated from Single +5 V Supply. An external reference must be used in this application, since the voltage between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)is insufficient for correct operation of the internal reference.

Figure 13. Measuring Ratiometric Values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

Figure 14. Basic Digital Thermometer. Both the ICL8073 (\(\left.{ }^{\circ} \mathrm{C}\right)\) and ICL8074 (\({ }^{\circ} \mathrm{F}\)) contain all necessary offset and reference (scalefactor) voltages to allow a direct-reading thermometer to be constructed without the need for external adjustments. Component values for 200 mV full-scale should be used with the ICL8073, and (ideally) 170 mV full-scale for the ICL8074.

Figure 15. Circuit for developing Underrange and Overrange signals from outputs. The LM339 is required to ensure logic compatibility with heavy display loading.

\footnotetext{
*Values depend on clock frequency. See Figures 8, 9 and 10.
}

TYPICAL APPLICATIONS (Continued)

Figure 16. AC to DC Converter with 7137

\section*{APPLICATION NOTES}

A016 "Selecting A/D Converters,' by David Fullagar.
A017 "The Integrating A/D Converter,' by Lee Evans.
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood.
A019"4 \(1 / 2\)-Digit Panel Meter Demonstrator/Instrumentation Boards,' by Michael Dufort.
A023"Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032"Understanding the Auto-Zero and Common-Mode Behavior of the ICL7106/7/9 Family,' by Peter Bradshaw.
A046"Building a Battery-Operated Auto Ranging DVM with the ICL7106,' by Larry Goff.
A047"Games People Play with Intersil's A/D Converters," edited by Peter Bradshaw.
A052"Tips for Using Single-Chip 3½-Digit A/D Converters," by Dan Watson.

\section*{7137 EVALUATION KITS}

After purchasing a sample of the 7137, the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.
To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components to build a \(31 / 2\)-digit panel meter. With the ICL7137EV/Kit, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, LED display, passive components, and miscellaneous hardware.

\section*{16-Bit \(\mu\) P-Compatible Multiplying DIA Converter}

\section*{FEATURES}
- 16-bit resolution
- High linearity-0.003\% FSR
- Microprocessor compatible with buffered inputs
- Bipolar application requires no external resistors
- Output current settling time \(3 \mu \mathrm{~s}\) max (\(1.0 \mu \mathrm{~s}\) typ)
- Low linearity and gain temperature coefficients (1ppm \(/{ }^{\circ} \mathrm{C}\) typ)
- Low power dissipation
- Full four-quadrant multiplication
- Full temperature range operation

\section*{ORDERING INFORMATION}

Package: 28-pin CERDIP only

\section*{CHIP TOPOGRAPHY}

\section*{GENERAL DESCRIPTION}

The ICL7145 combines a four-quadrant multiplying DAC using thin film resistors and CMOS circuitry with an on-chip PROM-controlled correction circ̣uit to achieve 0.003\% linearity without laser trimming.
Microprocessor bus interfacing is eased by standard memory WRite cycle timing and control signal use. The input buffer register is loaded with the 16 -bit input, and directly controls the output switches. The register is transparent if \(\overline{W R}\) and \(\overline{\mathrm{CS}}\) are held low.
The ICL7145 is designed and programmed for bipolar operation. There is an offset resistor to the output with a reference input which should be connected to \(-V_{\text {REF }}\), giving the DAC a true 2 's complement input transfer function. Two extra resistors to facilitate the reference inversion are included on. the chip, so that only an external op amp is needed:

ABSOLUTE MAXIMUM RATINGS
(Note 1)

Supply Voltage \(V^{+}\)to DGND
D. -0.3 V to 7.5 V

Current in AGND \({ }_{F}\), AGND \(_{S}\). 25mA
\(\mathrm{D}_{\mathrm{N}}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}, \mathrm{PROG}\), IOUT ,
AGND \(_{F}\), AGND \(_{S} \ldots \ldots\).
Operating Temperature
ICL7145C
\(.0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
ICL7145I \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\(\qquad\)

Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Power Dissipation (Note 2)
500 mW derate above \(70^{\circ} \mathrm{C} @ 10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
Lead Temperature (soldering, 10 seconds)
\(300^{\circ} \mathrm{C}\)

Note 1: All voltages with respect to DGND.
Note 2: Assumes all leads soldered or welded to printed circuit board.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS \(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow{2}{*}{PARAMETER}} & \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNIT} \\
\hline & & & & MIN & TYP & MAX & \\
\hline \multicolumn{2}{|l|}{Resolution} & & & 16 & & & Bits \\
\hline \multirow[t]{2}{*}{Non-Linearity} & J & & \multirow[b]{2}{*}{(Notes 3 and 4)} & & & 0.006 & \multirow[b]{2}{*}{\% FSR} \\
\hline & K & & & & & 0.003 & \\
\hline \multicolumn{2}{|l|}{Differential Non-Linearity} & & (Notes 3 and 4) & & 0.003 & & \% FSR \\
\hline \multicolumn{2}{|l|}{Non-Linearity Temperature Coefficient} & & Operating Temperature Range & & 1 & & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Gain Error} & \(J\) & & \multirow[b]{2}{*}{(Notes 3 and 4)} & & & 0.04 & \multirow{2}{*}{\% FSR} \\
\hline & K & & & & & 0.02 & \\
\hline \multicolumn{2}{|l|}{Gain Error Temperature Coefficient} & & Operating Temperature Range & & 1 & & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Zero Output Offset}} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OZ}}\)} & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & & 10 & \multirow[t]{2}{*}{mV} \\
\hline & & & Operating Temperature Range & & 10 & & \\
\hline \multicolumn{2}{|l|}{Power Supply Rejection Ratio} & PSRR & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%\) & & 1 & 20 & ppm/V \\
\hline \multicolumn{2}{|l|}{Output Current Settling Time} & & & & 1 & 3 & \(\mu \mathrm{S}\) \\
\hline \multicolumn{2}{|l|}{Reference Input Resistance} & \(Z_{\text {REF }}\) & \(V_{\text {REF }}\) & 3 & & 6 & k \(\Omega\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Output Capacitance}} & \multirow[b]{2}{*}{\(\mathrm{C}_{\text {OUt }}\)} & \(\mathrm{D}_{\mathrm{N}}=\) All 0 s & & 110 & & \multirow[t]{2}{*}{pF} \\
\hline & & & \(\mathrm{D}_{\mathrm{N}}=\) All 1 s & & 260 & & \\
\hline \multicolumn{2}{|l|}{Output Noise} & & Equivalent Johnson Resistance & & 7 & & k \(\Omega\) \\
\hline \multicolumn{2}{|l|}{Low State Input} & \(\mathrm{V}_{\text {INI }}\) & Operating Temperature Range & & & 0.8 & \multirow{2}{*}{V} \\
\hline \multicolumn{2}{|l|}{High State Input} & \(\mathrm{V}_{\text {INh }}\) & Operating Temperature Range & 2.4 & & & \\
\hline \multicolumn{2}{|l|}{Logic input Current} & ILIN & \(0 \leq \mathrm{V}_{\mathbb{N}} \leq \mathrm{V}^{+}\) & \(-1.0\) & & 1.0 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{Logic Input Capacitance} & \(\mathrm{C}_{\text {LiN }}\) & & & 15 & * & pF \\
\hline \multicolumn{2}{|l|}{Supply Voltage Range} & \(\mathrm{v}^{+}\) & Functional Operation & 4.5 & & 5.5 & \(V\) \\
\hline \multicolumn{2}{|l|}{Supply Current} & \(1^{+}\) & Excluding Ladder & & 0.5 & 1.2 & mA \\
\hline
\end{tabular}

Note 3: Full-Scale Range (FSR) is \(10 \mathrm{~V}(\pm 5 \mathrm{~V})\).
Note 4: Using internal feedback and reference inverting resistors.
AC ELECTRICAL CHARACTERISTICS \(\mathrm{v}^{+}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), see Timing Diagram.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline C̄nip Select-WRite Set-Up Time & \(\mathrm{t}_{\mathrm{cWs}}\) & & & & 0 & \multirow{5}{*}{ns} \\
\hline \(\overline{\text { Chip Select-WRite Hold Time }}\) & tcwn & & & & 0 & \\
\hline Write Pulse Width Low & t \(\overline{W R}\) & & & & 200 & \\
\hline Data-WRite Set-Up Time & \(t_{\text {DWs }}\) & & & & 200 & \\
\hline Data-WRite Hold Time & \(t_{\text {DWh }}\) & & & & 0 & \\
\hline
\end{tabular}

Timing Diagram

Table 1. Pin Assignment and Function Description
\begin{tabular}{|c|c|c|}
\hline PIN & NAME & DESCRIPTION \\
\hline 1 & \(\mathrm{D}_{0}\) & Bit 0 Least Significant Bit \\
\hline 2 & \(\mathrm{D}_{1}\) & Bit 1 \\
\hline 3 & \(\mathrm{D}_{2}\) & Bit 2 \\
\hline 4 & \(\mathrm{D}_{3}\) & Bit 3 \\
\hline 5 & \(\mathrm{D}_{4}\) & Bit 4 \\
\hline 6 & \(\mathrm{D}_{5}\) & Bit 5 \\
\hline 7 & \(\mathrm{D}_{6}\) & Bit 6 . Input \\
\hline 8 & \(\mathrm{D}_{7}\) & Bit 7 - \(\begin{gathered}\text { Input } \\ \text { Data }\end{gathered}\) \\
\hline 9 & \(\mathrm{D}_{8}\) & Bit 8 Bits \\
\hline 10 & \(\mathrm{D}_{9}\) & Bit \(9 \quad\) (High \(=\) True) \\
\hline 11 & \(\mathrm{D}_{10}\) & Bit 10 \\
\hline 12 & \(\mathrm{D}_{11}\) & Bit 11 \\
\hline 13 & \(\mathrm{D}_{12}\) & Bit 12 \\
\hline 14 & \(\mathrm{D}_{13}\) & Bit 13 \\
\hline 15 & \(\mathrm{D}_{14}\) & Bit 14 \\
\hline 16 & \(\mathrm{D}_{15}\) & Bit 15 Most Significant Bit \\
\hline 17 & PROG & Used for programming only. Tie to +5 V for normal operation. \\
\hline 18 & \(V_{\text {REF }}\) & \(V_{\text {REF }}\) input to ladder. \\
\hline 19 & \(\mathrm{R}_{\text {INV }}\) & Summing node for inverting amplifier. \\
\hline 20 & \(\mathrm{R}_{\text {OFS }}\) & Bipolar offset resistor, to - \(\mathrm{V}_{\text {REF }}\). \\
\hline 21 & \(\mathrm{R}_{\mathrm{FB}}\) & Feedback resiștor for voltage output applications. \\
\hline 22 & DGND & Digital GrouND return. \\
\hline 23 & \(\mathrm{AGND}_{F}\) & Analog GrouND force line. Use to carry current from internal Analog GrouND connections. Tiedinternally to AGND \(_{\text {S }}\). \\
\hline 24 & \(\mathrm{AGND}_{\text {S }}\) & Analog GrouND sense line. Reference point for external circuitry. Pin should carry minimal current. Tied internally to \(A^{\prime} \mathrm{ND}_{\mathrm{F}}\). \\
\hline 25 & \(\mathrm{I}_{\text {OUT }}\) & Current output pin. \\
\hline 26 & \(\mathrm{V}^{+}\) & Positive supply voltage. \\
\hline 27 & \(\overline{\mathrm{CS}}\) & \(\overline{\text { C̄hip }}\) Select (active low). Enables writing to register. \\
\hline 28 & \(\bar{W}\) & WRite (active low). Writes into register. Equivalent to \(\overline{\mathrm{CS}}\). \\
\hline
\end{tabular}

\section*{DEFINITION OF TERMS}

NON-LINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full-scale range. For a multiplying DAC, this should hold true over the entire \(V_{\text {REF }}\) range.

RESOLUTION: Value of the LSB. For example, a unipolar converter with \(n\) bits has a resolution of \(\left(2^{-n}\right)\left(V_{\text {REF }}\right)\). A bipolar converter of \(n\) bits has a resolution of \(\left[2^{-(n-1)}\right]\left[V_{\text {REF }}\right]\).Resolution in no way implies linearity.
SETTLING TIME: 'Time required for the output function of the DAC to settle to within \(1 / 2\) LSB for a given digital input stimulus, i.e., 0 to full-scale.
GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

\section*{DETAILED DESCRIPTION}

The ICL7145 consists of a 16 -bit primary DAC, PROM controlled correction DACs, the input buffer registers, and the microprocessor interface logic. The 16 -bit primary DAC is an R-2R thin film resistor ladder with N -channel MOS SPDT current steering switches. Precise balancing of the switch resistances, and all other resistors in the ladder, results in excellent temperature stability.

The high linearity is achieved by programming a floating polysilicon gate PROM array which controls the correction DAC. The most significant bits of the DAC register address the PROM array, whose outputs control a 12-bit linearity correction DAC. Thus for every combination of the primary DAC's most significant bits a different C-DAC code is selected, allowing correction of superposition errors caused by bit interaction on the primary ladder's current bus and by voltage non-linearity in the feedback resistor. Superposition errors cannot be corrected by any method that corrects individual bits only, such as laser trimming. Since the PROM programming occurs in packaged form, it corrects for resistor shifts caused by the thermal stresses of packaging, unlike wafer-level trimming methods. Since the thin film resistors do not suffer laser trimming stresses, no degradation of time-stability results.
Also controlled by the onboard PROM, the 6-bit G-DAC reduces gain error to less than \(0.02 \%\) FSR by diverting to analog ground up to \(2 \%\) of the current flowing in \(R_{\text {FB }}\).

Figure 1. ICL7145 Functional Diagram

\section*{APPLICATIONS}

\section*{Bipolar Operation}

The circuit configuration for the normal bipolar mode operation of the ICL7145 is shown in Figure 2. The 2's complement input and positive and negative reference voltage values allow full four-quadrant multiplication. Amplifier \(A_{3}\), together with the internal resistors \(R_{I N V 1}\) and \(R_{I N V 2}\), forms a simple voltage inverter circuit to generate \(-V_{\text {REF }}\) for the \(R_{\text {OFS }}\) offset input pin. This will give the nominal "digital input code/analog output value" relationship of Table 2.

Table 2. Code Table-Bipolar Operation
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{16}{|c|}{DIGITALINPUT} & & NAL \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & & 1 & & - VR \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 1 & & - VR \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & & & 1 & & \(V_{\text {REF }}\) \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & 1 & & REF \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & & & 0 & & & REF \\
\hline
\end{tabular}

Amplifier \(A_{1}\) is the output amplifier. An additional amplifier \(A_{2}\) may be used to force \(A G N D_{F}\) if the ground reference point is established elsewhere than at the DAC, as in Figure 3.
A feedback compensation capacitor, \(\mathrm{C}_{\mathrm{F}}\), improves the settling time by reducing ringing. This capacitor is normally in the \(10 \mathrm{pF}-40 \mathrm{pF}\) range, depending on layout and the output amplifier selected. If \(C_{F}\) is too small, ringing or oscillation can occur when using an op amp with a high gain-bandwidth. If \(C_{F}\) is too large, the response of the output amplifier will be overdamped and will settle slowly. Figure 6 shows the effect of \(\mathrm{C}_{\mathrm{F}}\).

The input circuits of some high speed op amps will sink large currents to their negative supply during power up and power down. The Schottky diode at I Out limits any negative going transients to less than -0.4 V , avoiding the SCR latch-up which could result if significant current was injected into the parasitic diode between \(\mathrm{I}_{\text {OUT }}\) and \(\mathrm{V}^{-}\)of the ICL7145. This diode is not needed when using the ICL7650 ultra low \(\mathrm{V}_{\text {OS }}\) op amp.

\section*{Offset Adjustment}
1. Connect all data inputs and \(\overline{W R}\) and \(\overline{C S}\) to DGND.
2. Adjust the offset zero-adjust of the operational amplifier \(\mathrm{A}_{2}\), if used, for \(< \pm 50 \mu \mathrm{~V}\) at \(\mathrm{AGND}_{\mathrm{S}}\).
3. Set data to 0000.... 000 (all low). Adjust the offset zeroadjust of output operational amplifier \(\mathrm{A}_{1}\) for \(< \pm 50 \mu \mathrm{~V}\) at \(\mathrm{I}_{\text {OUT. }} \mathrm{V}_{\text {OUT }}\) will be offset from OV by the bipolar zero error of \(\pm 10 \mathrm{mV}\).

The bipolar zero error may be trimmed out by adjusting the offset of \(A_{3}\). The bipolar zero error can be as large as 10 mV , but has a typical tempco of only \(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\).

\section*{Gain Adjustment}

In many systems, gain adjustment will not be needed since the gain of the ICL7145 is accurate to within \(0.02 \%\) FSR. When system gain must be adjusted, the low gain error limits the required adjustment range to only slightly more than the initial accuracy error of the reference. This is desirable since external gain trims degrade the gain temperature coefficient of a monolithic DAC. This degradation in the gain tempco comes about because, although the internal resistors track each other closely, they have a temperature coefficient of resistance of approximately \(-250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

Figure 2. Bipolar Operation, Four-Quadrant

Figure 3. Operation with Forced Ground

\section*{ICL7145}

\section*{(6) N M TT}

To increase \(V_{\text {OUT }}\), connect a series resistor of \(200 \Omega\) or less between the \(A_{1}\) output and the \(R_{F B}\) terminal (pin 21). To decrease \(V_{\text {OUT }}\), connect a resistor of \(100 \Omega\) or less between the reference voltage and the \(\mathrm{V}_{\text {REF }}\) terminal (pin 18). These resistor values result in a minimum of \(1 \%\) FSR gain trim and add about \(3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) gain tempco. If only a small gain trim range is needed, the resistor values should be reduced in order to preserve the excellent \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) gain tempco.

\section*{Digital Interface}

The ICL7145 has a 16 -bit latch onboard and can interface directly to a 16 -bit data bus. Use external latches or peripheral ICs to interface to an 8-bit data bus, as shown in Figure 4. To ensure that the data is written into the onboard latch, the data must be valid 200ns before the rising edge of \(\overline{W R}\). The onboard latch is transparent, meaning that if \(\overline{W R}\) and \(\overline{\mathrm{CS}}\) are tied low, the input data is directly applied to the internal R-2R
ladder switches. While this simplifies interfacing in nonmicroprocessor systems it may cause additional glitches in some microprocessor systems. These small glitches will occur if \(\overline{W R}\) goes low before data is valid. Data must be valid at the time WR goes low to avoid these additional glitches.
All digital interfaces can suffer from capacitive coupling between the digital lines and the analog section. There are two general precautions that will reduce the capacitive coupling problem: 1) reduce stray capacitance between digital lines and analog lines; and 2) reduce the number of transitions on the digital inputs. Careful board layout and shielding can minimize the capacitive coupling (see Figure 5, PCB layout). The activity on the digital input lines can be reduced by using external latches or peripheral interface ICs between the microprocessor bus and the ICL7145. This will reduce the number of transitions on the digital data and control lines of the ICL7145, and thereby reduce the amount of digital noise coupled into the sensitive analog sections.

Figure 4. Interface to 8-Bit Microprocessor

Printed Circuit Side of Card (Single Sided Board)
Figure 5a. Printed Circuit Board Layout
Figure 5b. Top Side with Component Placement

\section*{ICL7145}

\section*{Operational Amplifier Selection}

The input offset voltage, input current, gain, and bandwidth of the op amps used affect the circuit performance. Since the output impedance of \(\mathrm{I}_{\text {Out }}\) varies with the digital input code, \(\mathrm{A}_{1}\) 's input current will cause a code-dependent error at \(\mathrm{V}_{\text {out }}\), degrading the linearity. The input bias current should be significantly less than 1 LSB current, which is about 10 nA . In a similar manner, any offset voltage in \(A_{1}\) will also cause linearity errors. The offset voltage of the output amplifier should be significantly less than 1 LSB , which is \(153 \mu \mathrm{~V}\).
1. The voltage output settling time is highly dependent on the slew rate and gain-bandwidth of \(\mathrm{A}_{1}\), so for high speed operation a high speed op amp such as the HA2600 is recommended. For applications where high speed is not required, the

ICL7650 or ICL7652 can be used for A \(_{1}\). Since the ICL7650/52 offset voltage is less than \(5 \mu \mathrm{~V}\), no offset trimming is needed. To get a full 5 V swing, \(\pm 7.5 \mathrm{~V}\) supplies should be used for the ICL7650/52. Figures 6 and 7 show typical performance.

Amplifier \(A_{3}\), which is used to generate the inverted reference, needs only to have a stable offset and to be able to drive a \(3 \mathrm{k} \Omega\) load. Since this is strictly a DC amplifier, the low noise ICL7652 is an ideal choice. Any variation in the offset voltage of \(A_{3}\) will result in a drift in the bipolar zero, but will not affect the linearity of the ICL7145.

Amplifier \(A_{2}\), used to generate a high quality ground, also needs a low offset and the ability to sink about 2 mA .

Figure 6. Voltage Output Settling with HA2525-5 Output Amplifier

Upper 50 mV of a 10 V Step

Figure 7. Voltage Output Settling with LF356 Output Amplifier

\section*{ICL7145}

\section*{Ground Loops}

Careful consideration must be given to ground loops in any high accuracy system. The current into the analog ground point inside the chip varies significantly with the input code value, and the inevitable resistances between this point and any external connection point can lead to significant voltage drop errors. For this reason, two separate leads are brought out from this point on the IC, \(A G N D_{S}\) and \(A G N D_{F}\). The varying current should be absorbed through the \(A_{G N D}\) pin, and the \(A G N D_{S}\) pin will then accurately reflect the voltage on the internal current summing point, as shown in Figure 8. Output signals should ideally be referenced to the sense pin AGND \({ }_{S}\), as shown in the application circuits.

\section*{Multiplying Mode Performance}

While the ICL7145 can perform full four-quadrant multiplication, full \(0.003 \%\) linearity is guaranteed only at \(\mathrm{V}_{\text {REF }}=+5 \mathrm{~V}\). This is because the voltage coefficient of resistance of the R-2R ladder and the feedback resistor are significant at the 14- or 16 -bit level. This effect is most significant at higher voltages, and adds errors on the order of \(0.01 \%\) for a \(\pm 10 \mathrm{~V}\) full-scale. While the ICL7145 is tested and specified for \(\mathrm{V}_{\text {REF }}=+5 \mathrm{~V}\), the \(\mathrm{R}-2 \mathrm{R}\) ladder has the same voltage across it when \(V_{\text {REF }}=-5 \mathrm{~V}\). Therefore, voltage coefficients do not add any error with \(\mathrm{a}-5 \mathrm{~V} \mathrm{~V}_{\mathrm{REF}}\).

Figure 8. Eliminating Ground Loops

\section*{FEATURES}
- Low Impedance Voltage Output
- Double-Buffered Processor Interface
- Easy-To-Use Bipolar Offset
- Multiplying Capability
- On-Chip Trimmed Reference
- \(7 \mu \mathrm{Sec}\) Settling Time
- No External Gain or Offset Adjustment Required
- Low Power Dissipation 50mW
- No Critical External Components

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Linearity & Temperature Range & Package \\
\hline ICL7146LCJI & \multirow[b]{2}{*}{0.01\%} & 0 to \(+70^{\circ} \mathrm{C}\) & \multirow{6}{*}{CERDIP} \\
\hline ICL7146LIJI & & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \\
\hline ICL7146KCJI & \multirow{2}{*}{0.02\%} & 0 to \(+70^{\circ} \mathrm{C}\) & \\
\hline ICL7146KIJI & & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \\
\hline ICL7146JCJI & \multirow{2}{*}{0.05\%} & 0 to \(+70^{\circ} \mathrm{C}\) & \\
\hline ICL7146JIJI & & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The ICL7146 is the first of a series of complete 12-Bit CMOS DAC's. These DAC's feature all of the needed support circuitry to interface to processors and give a voltage output. Contained on the chip are two levels of latches for double buffers, a trimmed reference, a latch controller, and an output buffer amplifier. All devices are accurately trimmed for both gain and offset so that no external trimming is required.

CMOS circuitry is used to keep the power dissipation low, and with all devices contained on a single chip, significant board size reductions are possible. As an alternative to this, many more analog channels could be added to a board and still decrease power consumption. Intersil's patented autostabilized op amp construction eliminates drifts in the zero offset and provides a fast (\(7 \mu \mathrm{sec}\)) settling time.

Processor interface is double-buffered with all 12 -bits being brought out. The first level of latches is divided into 4 and 8 bit bytes with a 12 bit wide second buffer. Data can be directly entered into any of the three buffers or the buffers can be operated separately.

\section*{Absolute Maximum Ratings (Note 1)}

V- ... - 9.0 V
REFOUT, \(V_{\text {OUt }}, C_{\text {EXT }}\),
A \(_{\text {GND }} \mathrm{V}^{-}-0.3 \mathrm{~V}\) to \(\mathrm{V}^{+}+0.3 \mathrm{~V}\)
Digital Inputs \(\mathrm{V}^{+}+0.3 \mathrm{~V}\) to \(\mathrm{D}_{\mathrm{GND}}-0.3 \mathrm{~V}\)
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)

Streses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: All Voltages with Respect to \(\mathrm{D}_{\mathrm{GND}}\)

\section*{Operating Characteristics}
\(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}_{-}=-5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Test Conditions} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min. & Typ. & Max. & \\
\hline Resolution & & & 12 & & & Bits \\
\hline Non Linearity & & & & & \[
\begin{aligned}
& .05 \\
& .02 \\
& .01
\end{aligned}
\] & \[
\begin{aligned}
& \text { \% FSR } \\
& \% \text { FSR } \\
& \% \text { FSR }
\end{aligned}
\] \\
\hline Differential Linearity & & Guaranteed Monotonic & & \[
\begin{aligned}
& \pm 3 / 4 \\
& \pm 1 / 2 \\
& \pm 1 / 2
\end{aligned}
\] & \[
\begin{aligned}
& \pm 2 \\
& \pm 1 \\
& \pm 1
\end{aligned}
\] & LSB \\
\hline Gain Error & & & & 0.1 & 0.2 & \% FSR \\
\hline Unipolar Zero Error & & & & 60 & 120 & \(\mu \mathrm{V}\) \\
\hline Bipolar Zero Code Error & & \(R_{\text {FB }}\) Connected to \(V_{\text {OUT }}\) Ros Connected to - \(V_{\text {REF }}\) & & 0.025 & 0.05 & \% FSR \\
\hline Positive Power Supply Rejection Ratio & & \begin{tabular}{l}
\[
\mathrm{V}+=4.5 \text { to } 5.5 \mathrm{~V}
\] \\
External Reference
\end{tabular} & & \(\pm 0.001\) & 0.005 & \[
\begin{aligned}
& \text { \% FSR/ } \\
& \% \text { V }+
\end{aligned}
\] \\
\hline Negative Power Supply Rejection Ratio & & \begin{tabular}{l}
\[
V-=-4.5 \text { to }-5.5 \mathrm{~V}
\] \\
External Reference
\end{tabular} & & 0 & \(\pm 0.001\) & \begin{tabular}{l}
\% FSR/ \\
\% V+
\end{tabular} \\
\hline Voltage Setting Time (Note 1) & & To 1/2 LSB & & 7 & 10 & \(\mu \mathrm{S}\) \\
\hline Feedthrough Error & & \[
\begin{aligned}
& \mathrm{V}_{\text {REF }}=8 \mathrm{~V} \text { P-P, } \\
& 10 \mathrm{KHz} \text { Sine Wave }
\end{aligned}
\] & & & 1 & mV P-P \\
\hline Reference Input Resistance & & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 5 & 10 & 20 & K \(\Omega\). \\
\hline Internal Reference Voltage & & & -4.04 & -4.00 & -3.96 & V \\
\hline Internal Reference Tempco & & & & 25 & 50 & PPM of FSR per \({ }^{\circ} \mathrm{C}\) \\
\hline Positive Supply Voltage Range & V+ & Functional Operation, Internal or External Reference & 4.5 & 5.0 & 5.5 & V \\
\hline \multirow[t]{2}{*}{Negative Supply Voltage Range} & \multirow[t]{2}{*}{V -} & Functional Operation, External Reference & -4.5 & -5.0 & -7.5 & V \\
\hline & & Functional Operation, Internal Reference & -4.75 & -5.0 & -7.5 & V \\
\hline Output Voltage Range & & \(\mathrm{R}_{\text {FB }}\) connected to \(\mathrm{V}_{\text {OUT }}\) & & \(\pm 4\) & & V \\
\hline Output Drive Current & & & \(\pm 2\) & & & mA \\
\hline
\end{tabular}

\section*{ICL7146}

\section*{Operating Characteristics (continued)}
\(\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=-5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4.00 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Test Conditions} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Unit} \\
\hline & & & Min. & Typ. & Max. & \\
\hline Output Amp Bandwidth & & * & & 2 & & MHz \\
\hline Slew Rate & & & & 2.5 & & \(\mathrm{V} / \mu \mathrm{S}\) \\
\hline Output Impedance & & @D.C. & & . 02 & & \(\Omega\) \\
\hline Reference Input Range (Note 2) & & For design use. Linearity Guar. @4.0V & \(\pm 2.0\) & & \(\pm 10\) & V \\
\hline Logic Low & \(\mathrm{V}_{\text {INL }}\) & & & & 0.8 & V \\
\hline Logic High & ViNH & & 2.4 & & & V \\
\hline Logic Input Current & & & & & 1 & \(\mu \mathrm{A}\) \\
\hline Logic Input Capacitance (Note 1) & & & & & 8 & pF \\
\hline Positive Supply Current & & Inputs \(=0 \mathrm{~V}\) or 5 V & & 4.0 & 5.0 & mA \\
\hline Negative Supply Current & & & & 4.0 & 5.0 & mA \\
\hline Power Dissipation & & \[
\begin{aligned}
& \text { Input Code }=5.0 \mathrm{~V} \\
& \mathrm{~V}+=5.0 \mathrm{~V}, \mathrm{~V}-=-5.0 \mathrm{~V}
\end{aligned}
\] & & & 50 & mW \\
\hline Gain Error Tempco & & Internal Ref External Ref & & \[
\begin{aligned}
& \pm 30 \\
& -12
\end{aligned}
\] & & PPM of FSR \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DIGITAL SWITCHING CHARACTERISTICS
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Address \(\overline{\text { WR }}\) Set-up Time & TAWS & & 100 & & & nS \\
\hline Address \(\overline{\mathrm{WR}}\) Hold Time & TAWH & & 0 & & & nS \\
\hline\(\overline{\mathrm{CS}} \overline{\mathrm{WR}}\) Set-up Time & TCWS & & 0 & & & nS \\
\hline\(\overline{\mathrm{CS}} \overline{\mathrm{WR}}\) Hold Time & TCWH & & 0 & & & nS \\
\hline Write Pulse Width & TWR & & 200 & & & nS \\
\hline Data Set-up Time & TDS & & 200 & & & nS \\
\hline Data Hold Time & TDH & & 0 & & & nS \\
\hline ALE Pulse Width & TLL & & 200 & & & nS \\
\hline Address-ALE Set-up Time & TAL & & 60 & & & nS \\
\hline Address-ALE Hold Time & TLA & & 40 & & & nS \\
\hline\(\overline{\mathrm{CS}-A L E ~ S e t-u p ~ T i m e ~}\) & TCL & & 30 & & & nS \\
\hline\(\overline{\mathrm{CS}-A L E ~ H o l d ~ T i m e ~}\) & TLC & & 50 & & & nS \\
\hline\(\overline{\text { WR Trailing Edge to ALE }}\) & TWL & & 0 & & & nS \\
\hline
\end{tabular}

NOTE 1: Guaranteed by design, not \(100 \%\) tested in production.
NOTE 2: External Op Amp Required for \(\mathrm{V}_{\text {out }}> \pm 4.0 \mathrm{~V}\)

\section*{DETAILED DESCRIPTION}

The ICL7146 is a monolithic 12-bit processor compatible CMOS DAC. It is a complete DAC containing a DAC, a group of latches, a reference, digital control circuitry and an op amp.

A wide range of applications can be implemented with the ICL7146 laser trimmed 12-bit multiplying

DAC. CMOS switches and low tempco thin film resistors provide a stable output current proportional to the input digital code. Two matched and trimmed resistors are provided at the output for current to voltage conversion and for offset generation in bipolar operation.

An on-chip precision auto-stabilized operational amplifier is provided for current to voltage conver-

\section*{TIMING DIAGRAMS AND TRUTH TABLES}

\section*{Non-Multiplexed Bus \\ TRUTH TABLE (ALE tied to \(\mathrm{V}+\))}

TIMING FOR NON-MULTIPLEXED ADDRESS BUS
\begin{tabular}{|c|c|c|c|l|}
\hline \multicolumn{3}{|c|}{ CONTROL INPUTS } & \multirow{2}{*}{ OPERATION } \\
\hline A1 & AO & \(\overline{\mathrm{CS}}\) & \(\overline{W R}\) & \\
\hline X & X & X & 1 \\
X & X & 1 & X & \begin{tabular}{l}
No Operation Device Not \\
Selected
\end{tabular} \\
\hline 0 & 0 & 0 & 0 & \begin{tabular}{l}
Load All Registers From \\
Data Bus
\end{tabular} \\
\hline 0 & 1 & 0 & 0 & \begin{tabular}{l}
Load LSB Register From \\
Data Bus*
\end{tabular} \\
\hline 1 & 0 & 0 & 0 & \begin{tabular}{l}
Load MSB Register From \\
Data Bus*
\end{tabular} \\
\hline 1 & 1 & 0 & 0 & \begin{tabular}{l}
Load DAC Register From \\
LSB \& MSB Register
\end{tabular} \\
\hline
\end{tabular}
*Data is latched on low to high transition of \(\overline{W R}\) or \(\overline{\mathrm{CS}}\).

\section*{Multiplexed Bus}

\section*{TIMING DIAGRAM}

sion. The auto zeroing technique utilized guarantees extremely low offset and low gain drift over temperature. Two inexpensive capacitors are required for the internal auto zero circuitry. Th op amp has been left open loop for flexibility. The loop can be closed by connecting \(R_{\text {OS }}\) and \(\mathrm{R}_{\mathrm{fb}}\) to \(\mathrm{V}_{\mathrm{OUT}}\) for full scale voltages less than \(\pm 4\) volts. An external amplifier can be closed in the loop for applications requiring larger output swing or current. An inexpensive buffer amplifier with no special input characteristics can be used without any system degradation. No external offset trimming is required due to the auto zeroing circuitry.

A zener reference that can be trimmed for both output voltage and temperature drift is provided. This reference is capable of driving an extra load of \(200 \mu \mathrm{~A}\) above the current required for the DAC ladder. This allows the reference to be used for other devices in the system when required.

Latches on the chip are set up in two levels, the first level connects to the data bus and is internally ar-

TRUTH TABLE (ALE is latch control input; \(\overline{\mathrm{CS}}, \mathrm{AO}\) \& A1 are latched outputs)
\begin{tabular}{|c|c|c|c|l|}
\hline \multicolumn{3}{|c|}{ CONTROL INPUTS } & \multicolumn{1}{c|}{ OPERATION } \\
\hline A1 & AO & \(\overline{\mathrm{CS}}\) & \(\overline{\mathrm{WR}}\) & \\
\hline X & X & X & 1 & \begin{tabular}{l}
No Operation Device Not \\
X
\end{tabular} X \\
1 & X & Selected
\end{tabular}
ranged as three groups of four latches each. The decoding circuitry is designed so that the user may address either the lower eight bits or the upper four bits. This allows the user to hard wire the 4 MSB's directly to the 4LSB's for easy interface to eight bit processors. Or the DAC can be wired directly to a 12 bit or larger data bus. Following the two input latches is another latch that is 12 bits wide. This makes the ICL7146 double-buffered. By double buffering the input of the DAC it is possible to interface the DAC to an eight bit data bus and prevent the DAC from having a major output glitch as the digital code changes. With a single level of latches, say a 4 bit latch and an 8 bit latch connected to an 8 bit data bus the following would occur if an attempt was made to generate a ramp. As the input code was incremented from \(000_{\text {HEX }}\) to OFF HEX an even stair case output would occur. But to change the code to 100 HEX the processor would either have to change to code to 000 and then to 100 , or first to 1 FF and then to 100 . In the first case the output would go to zero for a full processor cycle. And in the second case it would double
its output value. Neither of these conditions are acceptable in a wide variety of applications. Hence the need for double buffering.

Buffer control is handled by a decoder to ease processor interface requirements. Operation of the decoder is shown in the truth table.

\section*{TYPICAL APPLICATIONS \\ Bipolar Output}

Offset Binary Code Table
\begin{tabular}{|lll|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c}
Binary \\
DAC \\
MSB
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{l}
Register In \\
LSB
\end{tabular}} & Analog Output, \(V_{\text {OUT }}\) \\
\hline 1111 & 1111 & 1111 & \(+V_{\text {REF }}\left(\frac{2047}{2048}\right)\) \\
1000 & 0000 & 0001 & \(+V_{\text {REF }}\left(\frac{1}{2048}\right)\) \\
1000 & 0000 & 0000 & \(0 V\) \\
0111 & 1111 & 1111 & \(-V_{\text {REF }}\left(\frac{1}{2048}\right)\) \\
0000 & 0000 & 0000 & \(-V_{\text {REF }}\left(\frac{2048}{2048}\right)\) \\
\hline
\end{tabular}
\(\pm 4 \mathrm{~V}\) BIPOLAR OUTPUT:

NOTE 1: A1 should be selected or trimmed for low offset voltage; R1 \& R2 are \(10 \mathrm{~K} \Omega\) resistors trimmed to a matching of \(0.1 \%\) or better.
\[
\pm 10 \mathrm{~V} \text { BIPOLAR OUTPUT: }
\]

NOTE 1: A1 should be selected or trimmed for low offset voltage; R1 \& R2 are \(10 \mathrm{~K} \Omega\) resistors trimmed to a matching of \(0.1 \%\) or better.

NOTE 2: A2 needs not to have a low offset voltage but it must be fast (\(>8 \mathrm{MHz}\)) to insure stability.

\section*{TYPICAL APPLICATIONS Unipolar Output}

\section*{Code Table}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Binary Number In DAC Register} & Analog Output, Vout \\
\hline 1111 & 1111 & 1111 & \[
-V_{\operatorname{REF}}\left(\frac{4095}{4096}\right)
\] \\
\hline 1000 & 0000 & 0000 & \[
-V_{\text {REF }}\left(\frac{2048}{4096}\right)=-1 / 2 V_{\text {REF }}
\] \\
\hline 0000 & 0000 & 0001 & \[
-V_{\text {REF }}\left(\frac{1}{4096}\right)
\] \\
\hline 0000 & 0000 & 0001 & OV \\
\hline
\end{tabular}

+ 10V UNIPOLAR OUTPUT:

NOTE 1: A2 needs not to have a low offset voltage but it must be fast (\(>8 \mathrm{MHz}\)) to insure stability.

\section*{TYPICAL APPLICATIONS (Continued)}

USING INTERNAL REF FOR \(V_{\text {REF }}>4 V\)

AD7520/7530 AD7521/7531

\section*{10 \& 12 Bit Monolithic Multiplying D/A Converters}

\section*{FEATURES}
- AD7520/AD7530: 10 Bit Resolution; 8, 9 and 10 Bit Linearity
- AD7521/AD7531: 12 Bit Resolution; 8, 9 and 10 Bit Linearity
- Low Power Dissipation: 20 mW (Max)
- Low Nonlinearity Tempco: 2 PPM of FSR/ \({ }^{\circ}\) C (Max)
- Current Settling Time: \(\mathbf{5 0 0} \mathrm{ns}\) to \(\mathbf{0 . 0 5 \%}\) of FSR
- Supply Voltage Range: +5 V to +15 V
- DTL/TTL/CMOS Compatible
- Full Input Static Protection
- 883B Processed Versions Available

\section*{GENERAL DESCRIPTION}

The AD7520/AD7530 and AD7521/AD7531 are monolithic, high accuracy, low cost 10-bit and 12-bit resolution, multiplying digital-to-analog converters (DAC). INTERSIL thin-film on CMOS processing gives up to 10bit accuracy with DTL/TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by diodes to ground and positive supply.
Typical applications include digital/analog interfacing, multiplication and division, programmable power supplies, CRT character generation, digitally controlled gain circuits, integrators and attenuators, etc.
The AD7530 and AD7531 are identical to the AD7520 and AD7521, respectively, with the exception of output leakage current and feedthrough specifications.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
FUNCTION \\
(Switches sh (Resistor valu
\end{tabular} & \begin{tabular}{l}
AL DIAGR \\
wn for Digit es are nomin
\end{tabular} & \begin{tabular}{l}
M \\
nputs "High")
\end{tabular} & \begin{tabular}{l}
\[
\left\{_{20 K \Omega}\right.
\] \\
louta
\(\qquad\) louti
\end{tabular} & CHIP TOPOGRAPHY \\
\hline \begin{tabular}{l}
PACKAGE \\
Suffix D: Cerd \\
Suffix N: Plastic
\end{tabular} & \begin{tabular}{l}
IDENTIFI \\
package DIP package
\end{tabular} & TION & ——ackage
_Monllinearity
Genoral Type & PIN CONFIGURATION (Outline dwgs DE, PE) \\
\hline \multicolumn{4}{|l|}{ORDERING INFORMATION} & \\
\hline \multirow[b]{2}{*}{Nonlinearity} & \multicolumn{3}{|c|}{Temperature Range} & \\
\hline & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \\
\hline 0.2\% (8-Bit) & \begin{tabular}{l}
AD7520JN \\
AD7530JN \\
AD7521JN \\
AD7531JN
\end{tabular} & \begin{tabular}{l}
AD7520JD \\
AD7530JD \\
AD7521JD \\
AD7531JD
\end{tabular} & \begin{tabular}{l}
AD7520SD \\
AD7521SD
\end{tabular} & AD7521 (AD7531) \\
\hline 0.1\% (9-Bit) & \begin{tabular}{l}
AD7520KN \\
AD7530KN \\
AD7521KN \\
AD7531KN
\end{tabular} & \begin{tabular}{l}
AD7520KD \\
AD7530KD \\
AD7521KD \\
AD7531KD
\end{tabular} & \begin{tabular}{l}
AD7520TD \\
AD7521TD
\end{tabular} & \\
\hline 0.05\% (10-Bit) & \begin{tabular}{l}
AD7520LN \\
AD7530LN \\
AD7521LN \\
AD7531LN
\end{tabular} & \begin{tabular}{l}
AD7520LD \\
AD7530LD \\
AD7521LD \\
AD7531LD
\end{tabular} & \begin{tabular}{l}
AD7520UD \\
AD7521UD
\end{tabular} & \\
\hline
\end{tabular}

\section*{AD7520/7530/7521/7531}

ABSOLUTE MAXIMUM RATINGS (\(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|}
\hline V + & +17V \\
\hline VREF & . \(\pm 25 \mathrm{~V}\) \\
\hline Digital Input Voltage Range & \(\mathrm{V}^{+}\)to GND \\
\hline Output Voltage Compliance & -100 mV to \(\mathrm{V}^{+}\) \\
\hline Power Dissipation (package) & \\
\hline up to \(+75^{\circ} \mathrm{C}\) & 450 mW \\
\hline derate above \(+75^{\circ} \mathrm{C}\) @ & \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Operating Temperatures
JN, KN, LN Versions \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
JD, KD, LD Versions \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
SD, TD, UD Versions \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
derate above \(+75^{\circ} \mathrm{C}\) @ \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
CAUTION: 1) The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2) Do not apply voltages higher than \(V_{D D}\) or less than GND potential on any terminal except \(V_{\text {REF }}\) and \(R_{f b}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS \(\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}\right.\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{aligned}
& \text { AD7520 } \\
& (\text { AD7530) }
\end{aligned}
\] & \[
\begin{gathered}
\text { AD7521 } \\
\text { (AD7531) } \\
\hline
\end{gathered}
\] & UNITS & LIMIT & TEST CONDITIONS & FIG. \\
\hline \[
\begin{aligned}
& \text { DC ACCURACY (Note 1) } \\
& \text { Resolution }
\end{aligned}
\] & 10 & 12 & Bits & & & \\
\hline Nonlinearity \(\begin{aligned} & \text { J } \\ & \\ & \end{aligned}\) & \multicolumn{2}{|c|}{0.2 (8-Bit)} & \% of FSR & Max & \multirow[t]{2}{*}{S, T, U: over \(-55^{\circ} \mathrm{C}\) to \(=125^{\circ} \mathrm{C}\)} & 1 \\
\hline \begin{tabular}{l}
K \\
\hline\(T\)
\end{tabular} & \multicolumn{2}{|c|}{0.1 (9-Bit)} & \% of FSR & Max & & 1 \\
\hline \[
\begin{aligned}
& L \\
& U
\end{aligned}
\] & \multicolumn{2}{|c|}{0.05 (10-Bit)} & \% of FSR & Max & \(-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq=10 \mathrm{~V}\) & 1 \\
\hline Nonlinearity Tempco & \multicolumn{2}{|c|}{2} & PPM of FSR \(/{ }^{\circ} \mathrm{C}\) & Max & \multirow{3}{*}{\(-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}\)} & \\
\hline Gain Error (Note 2) & \multicolumn{2}{|c|}{0.3} & \% of FSR & Typ & & \\
\hline Gain Error Tempco (Note 2) & \multicolumn{2}{|c|}{10} & PPM of FSR/ \(/{ }^{\circ} \mathrm{C}\) & Max & & \\
\hline Output Leakage Current (either output) & \multicolumn{2}{|c|}{\[
\begin{gathered}
200 \\
(300)
\end{gathered}
\]} & \(n \mathrm{~A}\) & Max & Over the specified temperature range & \\
\hline Power Supply Rejection & \multicolumn{2}{|c|}{\(\pm 0.005\)} & \% of FSR/\% & Typ & & 2 \\
\hline \[
\begin{aligned}
& \text { AC ACCURACY } \\
& \text { Output Current Settling } \\
& \text { Time }
\end{aligned}
\] & \multicolumn{2}{|c|}{500} & nS & Typ & To 0.05\% of FSR (All digital inputs low to high and high to low) & 6 \\
\hline Feedthrough Error & \multicolumn{2}{|c|}{10} & \(\mathrm{mV} p \mathrm{p}\) & Max & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{REF}}=20 \mathrm{~V} \mathrm{pp}, 100 \mathrm{kHz}
\] \\
(50 kHz) All digital inputs low
\end{tabular} & 5 \\
\hline REFERENCE INPUT Input Resistance (Note 3) & \multicolumn{2}{|c|}{\[
\begin{gathered}
5 k \\
10 k \\
20 k
\end{gathered}
\]} & \(\Omega\) & \begin{tabular}{l}
Min \\
Typ Max
\end{tabular} & All digital inputs high. lout1 at ground. & \\
\hline \begin{tabular}{l}
ANALOG OUTPUT \\
Voltage Compliance (both outputs)
\end{tabular} & \multicolumn{2}{|l|}{See absolute max. ratings} & & & & \\
\hline \multirow[t]{2}{*}{Output Capacitance} & & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Typ } \\
& \text { Typ } \\
& \hline
\end{aligned}
\] & All digital inputs high & 4 \\
\hline & & & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Typ } \\
& \text { Typ }
\end{aligned}
\] & All digital inputs low & 4 \\
\hline Output Noise (both outputs) & Equivale Johns & \begin{tabular}{l}
\[
\text { to } 10 \mathrm{k} \Omega
\] \\
noise
\end{tabular} & & Typ & & 3 \\
\hline \[
\frac{\text { DIGITAL INPUTS }}{\text { Low State Threshold }}
\] & \multicolumn{2}{|c|}{0.8} & V & Max & \multirow[t]{3}{*}{Over the specified temp range} & \\
\hline High State Threshold & \multicolumn{2}{|c|}{2.4} & V & Min & & \\
\hline Input Current (low to high state) & \multicolumn{2}{|c|}{1} & \(\mu \mathrm{A}\) & Typ & & \\
\hline Input Coding & \multicolumn{2}{|l|}{Binary/Offset Binary} & & & See Tables \(1 \& 2\) on pages 4 and 5 & \\
\hline \begin{tabular}{l}
POWER REQUIREMENTS \\
Power Supply Voltage Range
\end{tabular} & \multicolumn{2}{|c|}{+5 to +15} & V & & & \\
\hline \multirow[t]{2}{*}{\(1^{+}\)} & \multicolumn{2}{|c|}{5} & nA & Typ & All digital inputs at GND & \\
\hline & \multicolumn{2}{|c|}{2} & mA & Max & All digital inputs high or low & \\
\hline Total Power Dissipation (Including the ladder) & \multicolumn{2}{|c|}{20} & mW & Typ & & \\
\hline
\end{tabular}

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and \(\pm 10 \mathrm{~V}\) for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Ladder and feedback resistor Tempco is approximately \(-150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

\section*{TEST CIRCUITS}

NOTE: The following test circuits apply for the AD7520. Similar circuits can be used for the AD7530, AD7521 and AD7531.

Figure 1. Nonlinearity

Figure 3. Noise

Figure 5. Feedthrough Error

Figure 2. Power Supply Rejection

Figure 4. Output Capacitance

Figure 6. Output Current Settling Time

\section*{DEFINITION OF TERMS}

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with \(n\) bits has a resolution of \(\left(2^{-n}\right)\left(V_{\text {REF }}\right)\). A bipolar converter of \(n\) bits has a resolution of \(\left[2^{-(n-1)}\right]\) [VREF]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within \(1 / 2\) LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from \(V_{\text {REF }}\) to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from louti and lout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on louti terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

\section*{GENERAL CIRCUIT INFORMATION}

The AD7520 (AD7530) and AD7521 (AD7531) are monolithic, multiplying D/A converters. Highly stable thin film R-2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit, CMOS level shifters permit low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS SPDT switches steer the ladder leg currents between lout1 and lout2 busses which must be held either at ground or virtual ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")
Figure 7. 7520/7521 Functional Diagram

Converter errors are further reduced by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 8). This configuration results in DTL/ TTL/CMOS compatible operation over the full military temperature range. With the ladder SPDT switches driven by the level shifter, each switch is binarily weighted for an ON resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the \(2 R\) ladder resistors and highly accurate leg currents.

Figure 8. CMOS Switch

\section*{APPLICATIONS}

\section*{UNIPOLAR BINARY OPERATION}

The circuit configuration for operating the AD7520 (AD7530) and AD7521 (AD7531) in unipolar mode is shown in Figure 9. With positive and negative Vref values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.

Figure 9. Unipolar Binary Operation
(2-Quadrant Multiplication)

\section*{Zero Offset Adjustment}
1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for \(0 \mathrm{~V} \pm 1 \mathrm{mV}\) at Vout.

Gain Adjustment
1. Connect all AD7520 (AD7530) or AD7521 (AD7531) digital inputs to \(\mathrm{V}^{+}\).
2. Monitor Vout for a - VREF (1-2-n)reading. (\(n=10\) for AD7520 (AD7530) and \(n=12\) for AD7521 (AD7531)).
3. To decrease Vout, connect a series resistor (0 to 500 ohms) between the reference voltage and the Vref terminal.
4. To increase \(\mathrm{V}_{\text {OUT }}\), connect a series resistor (0 to 500) ohms) in the \(\mathrm{I}_{\text {OUT }}\) a amplifier feedback loop.
table 1
CODE TABLE - UNIPOLAR BINARY OPERATION
\begin{tabular}{|l|l|}
\hline DIGITAL INPUT & ANALOG OUTPUT \\
\hline 1111111111 & \(-V_{\text {REF }}\left(1-2^{-n}\right)\) \\
\hline 1000000001 & \(-V_{\text {REF }}\left(1 / 2+2^{-n}\right)\) \\
\hline 1000000000 & \(-V_{\text {REF }} / 2\) \\
\hline 0111111111 & \(-V_{\text {REF }}\left(1 / 2-2^{-n}\right)\) \\
\hline 0000000001 & \(-V_{\text {REF }}\left(2^{-n}\right)\) \\
\hline 0000000000 & 0 \\
\hline
\end{tabular}

NOTE: 1. LSB \(=2^{-n}\) VREF

\footnotetext{
2. \(n=10\) for 7520,7530
}
\(n=12\) for 7521,7531

\section*{AD7520/7530/7521/7531}

\section*{(APPLICATIONS, Cont'd.) BIPOLAR (OFFSET BINARY) OPERATION}

The circuit configuration for operating the AD7520 (AD7530) or AD7521 (AD7531) in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values 4Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

Figure 10. Bipolar Operation (4-Quadant Multiplication)
A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to lout1 bus. A "Logic 0" input forces the bit current to lout2 bus. For any code the lout1 and lout2 bus currents are complements of one another. The current amplifier at lout2 changes the polarity of lout2 current and the transconductance amplifier at lour1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0 "), is corrected by using an external resistor, (10 Megohm), from VREF to lout2.

\section*{Offset Adjustment}
1. Adjust VREF to approximately +10 V .
2. Connect all digital inputs to "Logic 1".
3. Adjust lout2 amplifier offset zero adjust trimpot for OV \(\pm 1 \mathrm{mV}\) at lout2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
5. Adjust lout1 amplifier offset zero adjust trimpot for 0 V \(\pm 1 \mathrm{mV}\) at Vout.
Gain Adjustment
1. Connect all digital inputs to \(\mathrm{V}^{+}\).
2. Monitor Vout for a-Vref (1-2-(n-1)) volts reading. (\(n=\) 10 for AD7520 and AD7530, and \(n=12\) for AD7521 and AD7531).
3. To increase Vout, connect a series resistor of up to \(500 \Omega\) between Vout and \(\mathrm{R}_{\mathrm{fb}}\).
4. To decrease Vout, connect a series resistor of up to \(500 \Omega\) between the reference voltage and the VREF terminal.

TABLE 2
CODE TABLE - BIPOLAR (OFFSET BINARY) OPERATION
\begin{tabular}{|l|l|}
\hline DIGITAL INPUT & ANALOG OUTPUT \\
\hline 1111111111 & \(-V_{\text {REF }}\left(1-2^{-(n-1))}\right.\) \\
\hline 1000000001 & \(-V_{\text {REF }}\left(2^{-(n-1)}\right)\) \\
\hline 1000000000 & 0 \\
\hline 0111111111 & \(\operatorname{V}_{\text {REF }}\left(2^{-(n-1)}\right)\) \\
\hline 0000000001 & \(\operatorname{V}_{\text {REF }}\left(1-2^{-(n-1)}\right)\) \\
\hline 0000000000 & V REF \\
\hline
\end{tabular}

NOTE: 1. LSB \(=2^{-(n-1)}\) VREF \(\quad\) 2. \(n=10\) for 7520 and 7521
\(n=12\) for 7530 and 7531

\section*{POWER DAC DESIGN USING AD7520}

Figure 11. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 11. An INTERSIL IH8510 power amplifier (1 Amp continuous output at up to \(\pm 25 \mathrm{~V}\)) is driven by the AD7520.
A summing amplifier between the AD7520 and the IH8510 is used to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise the AD7520 can be directly connected to the IH8510, by using a 25 V reference for the DAC.

An important note on the AD7520/101A interface concerns the connection of pin 1 of the DAC and pin 2 of the 101A. Since this point is the summing junction of an amplifier with an AC gain of 50,000 or better, stray
- capacitance should be minimized; otherwise instabilities and poor noise performance will result. Note that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information see: INTERSIL Application Bulletin A021-Power D/A Converters Using The IH8510 by Dick Wilenken.)

\section*{AD7520/7530/7521/7531}

\section*{(APPLICATIONS, Cont'd.)}

\section*{ANALOG/DIGITAL DIVISION}

With the AD7520 connected in its normal multiplying configuration as shown in figure 15, the transfer function is
\(V_{O}=-V_{I N}\left(\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \frac{A_{n}^{\prime}}{2^{n}}\right)\)
where the coefficients \(A_{x}\) assume a value of 1 for an \(O N\) bit and 0 for an OFF bit.
By connecting the DAC in the feedback of an operational amplifier, as shown in Figure 12, the transfer function becomes
\(V_{O}=\left(\frac{-V_{I N}}{\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \frac{A_{n}}{2^{n}}}\right)\)

This is division of an analog variable (\(\mathrm{V}_{\mathrm{IN}}\)) by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1023. With all bits ON, the gain is \(1(\pm 1\) LSB).

Figure 12. Analog/Digital Divider

For further information on the use of this device, see the following Application Bulletins:
A016 "Selecting A/D Converters," by David Fullagar
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A020 "A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger
A021 "Power D/A Converters Using the IH8510," by Dick Wilenken
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al., Electronics, Dec. 9, 1976 AD7523 8 Bit Monolithic

\section*{Multiplying D/A Converters}

\section*{FEATURES}
- 8, 9 and 10 bit linearity
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Fast settling time: 100 nS
- Four quadrant multiplication
- 883B Processed versions available

\section*{GENERAL DESCRIPTION}

The Intersil AD7523 is a monolithic, low cost, high performance, 10 bit accurate, multiplying digital-to-analog converter (DAC), in a 16-pin DIP.
Intersil's thin-film resistors on CMOS circuitry provide 8-bit resolution (8, 9 and 10-bit accuracy), with DTL/TTL/CMOS compatible operation.
Intersil AD7523's accurate four quadrant multiplication, full military temperature range operation, full input protection from damage due to static discharge by clamps to V+ and GND and very low power dissipation make it a very versatile converter.
Low noise audio gain control, motor speed control, digitally controlled gain and attenuators are a few of the wide number of applications of the 7523.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{FUNCTIONAL DIAGRAM} & \multicolumn{4}{|l|}{PIN CONFIGURATION} \\
\hline & ches shown & & "High") & & BIT 1 & \begin{tabular}{l}
AD7523 \\
TOP VIEW \\
LINE DRAW DE,PE
\end{tabular} & \begin{tabular}{l}
16 Rfeedback \\
15 VREFIN \\
\(14 \mathrm{v}+\) \\
13 NC \\
12 NC \\
11 BIT 8 (LSB) \\
10. BIT 7 \\
9 віт 6 \\
GS
\end{tabular} \\
\hline \multicolumn{8}{|l|}{ORDERING INFORMATION} \\
\hline & & & & AD7523 & \[
T
\] & D & \\
\hline \multirow[b]{2}{*}{Nonlinearity} & \multicolumn{3}{|c|}{Temperature Range} & & & & \\
\hline & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & & & D- & Pin CERDIP DIP \\
\hline \[
\begin{gathered}
\hline 0.2 \% \\
(8 \mathrm{Bit})
\end{gathered}
\] & AD7523JN & AD7523AD & AD7523SD & & & & -PIn Plastic DIP \\
\hline \[
\begin{gathered}
0.1 \% \\
(9 \mathrm{Bit})
\end{gathered}
\] & AD7523KN & AD7523BD & AD7523TD & & & Ј, к, & \[
\begin{array}{r}
-\mathrm{Commarclal}^{\circ} \mathrm{C} \text { to }+70^{\circ}
\end{array}
\] \\
\hline \[
\begin{gathered}
\hline 0.05 \% \\
(10 \mathrm{Bit})
\end{gathered}
\] & AD7523LN & AD7523CD & AD7523UD & & & \(\mathbf{S , T , U}\) & \[
\begin{array}{r}
-20^{\circ} \mathrm{C} \text { to }+8 \\
-\mathrm{miltary}^{-55^{\circ} \mathrm{C} \text { to }}+1 .
\end{array}
\] \\
\hline
\end{tabular}

\section*{AD7523}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise & \\
\hline V+ & +17V \\
\hline \(V_{\text {REF }}\) & \(\pm 25 \mathrm{~V}\) \\
\hline Digital Input Voltage Range & -0.3 to VDD \\
\hline Output Voltage Compliance & -0:3 to VDD \\
\hline Power Dissipation (package) & \\
\hline Plastic & \\
\hline up to \(+70^{\circ} \mathrm{C}\) & 670 mW \\
\hline derates above \(+70^{\circ} \mathrm{C}\) by & \(8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Ceramic}
up to \(75^{\circ} \mathrm{C}\).. . 450 mW
derates above \(75^{\circ} \mathrm{C}\) by \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
Operating Temperatures
JN, KN, LN Versions . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
AD, BD, CD Versions \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
SD, TD, UD Versions \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (soldering, 10 seconds) \(\ldots \ldots+300^{\circ} \mathrm{C}\)

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than VDD and lower than GND to any terminal except \(V_{R E F}+R_{F B}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS \(\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}\right.\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PARAMETER} & \[
\begin{array}{r}
\text { TA } \\
+25^{\circ} \mathrm{C}
\end{array}
\] & TA MIN-MAX & UNITS & LIMIT & TEST CONDITIONS \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
DC ACCURACY (Note 1) \\
Resolution
\end{tabular}} & 8 & 8 & Bits & Min & \\
\hline \multirow[t]{3}{*}{Nonlinearity (Note 2)} & (\(\pm 1 / 2\) LSB) & \(\pm 0.2\) & \(\pm 0.2\) & \% of FSR & Max & \multirow{4}{*}{\[
\begin{aligned}
& -10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V} \\
& \mathrm{~V}_{\text {OUT } 1}=\mathrm{V}_{\text {OUT } 2}=0 \mathrm{~V}
\end{aligned}
\]} \\
\hline & (\(\pm 1 / 4\) LSB) & \(\pm 0.1\) & \(\pm 0.1\) & \% of FSR & Max & \\
\hline & (\(\pm 1 / 8\) LSB) & \(\pm 0.05\) & \(\pm 0.05\) & \% of FSR & Max & \\
\hline \multicolumn{2}{|l|}{Monotonicity} & \multicolumn{2}{|l|}{Guaranteed} & & & \\
\hline \multicolumn{2}{|l|}{Gain Error (Note 2)} & \(\pm 1.5\) & \(\pm 1.8\) & \% of FSR & Max & Digital inputs high. \\
\hline \multicolumn{2}{|l|}{Nonlinearity Tempco (Note 2 and 3)} & \multicolumn{2}{|r|}{2} & PPM of FSR \(/{ }^{\circ} \mathrm{C}\) & Max & \multirow[t]{2}{*}{-10V VREF +10 V} \\
\hline \multicolumn{2}{|l|}{Gain Error Tempco (Note 2 and 3)} & \multicolumn{2}{|r|}{10} & PPM of FSR \(/{ }^{\circ} \mathrm{C}\) & Max & \\
\hline \multicolumn{2}{|l|}{Output Leakage Current (either output)} & \(\pm 50\) & \(\pm 200\) & \(n \mathrm{~A}\) & Max & VOUT1 \(=\) VOUT2 \(=0\) \\
\hline \multicolumn{2}{|l|}{AC ACCURACY (Note 3) Power Supply Rejection (Note 2)} & 0.02 & 0.03 & \% of FSR/\% & Max & \(\mathrm{V}^{+}=14.0\) to 15.0 V \\
\hline \multicolumn{2}{|l|}{Output Current Settling Time} & 150 & 200 & nS & Max & To 0.2\% of FSR, R \({ }_{\text {L }}=100 \Omega\) \\
\hline \multicolumn{2}{|l|}{Feedthrough Error} & \(\pm 1 / 2\) & \(\pm 1\) & LSB & Max & \(\mathrm{V}_{\text {REF }}=20 \mathrm{~V} p \mathrm{p}, 200 \mathrm{KHz}\) sine wave. All digital inputs low. \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { REFERENCE INPUT }}{\text { Input Resistance (Pin 15) }}\)}} & \multicolumn{2}{|r|}{5 K} & \multirow[b]{2}{*}{\(\Omega\)} & Min & \multirow[b]{3}{*}{All digital inputs high. lout1 at ground.} \\
\hline & & \multicolumn{2}{|r|}{20 K} & & Max & \\
\hline \multicolumn{2}{|l|}{Temperature Coefficient (Note 3)} & \multicolumn{2}{|r|}{-500} & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) & Max & \\
\hline \multicolumn{2}{|l|}{ANALOG OUTPUT (Note 3) Voltage Compliance (Note 4)} & \multicolumn{2}{|l|}{-100 mV to \(\mathrm{V}^{+}\)} & & & \begin{tabular}{l}
Both outputs. \\
See maximum ratings.
\end{tabular} \\
\hline \multirow[t]{4}{*}{Output Capacitance} & Cout1 & \multicolumn{2}{|r|}{100} & pF & Max & \multirow[t]{2}{*}{All digital inputs high (VINH)} \\
\hline & Cout2 & \multicolumn{2}{|r|}{30} & pF & Max & \\
\hline & Cout1 & \multicolumn{2}{|r|}{30} & pF & Max & \multirow[t]{2}{*}{All digital inputs low (VINL)} \\
\hline & Cout2 & \multicolumn{2}{|r|}{100} & pF & Max & \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { DIGITAL INPUTS } \\
& \text { Low State Threshold (} \mathrm{V}_{\mathrm{INL}} \text {) }
\end{aligned}
\]} & \multicolumn{2}{|r|}{0.8} & V & Max & \multirow[b]{2}{*}{Guarantees DTL/TTL and CMOS (0.5 max, 14.5 min) levels} \\
\hline \multicolumn{2}{|l|}{High State Threshold (\(\mathrm{V}_{\text {INH }}\))} & \multicolumn{2}{|r|}{2.4} & V & Min & \\
\hline \multicolumn{2}{|l|}{Input Current (per input)} & \multicolumn{2}{|r|}{\(\pm 1\)} & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) or +15 V \\
\hline \multicolumn{2}{|l|}{Input Coding} & \multicolumn{2}{|l|}{Binary/Offset Binary} & & & See Tables 1 \& 2 \\
\hline \multicolumn{2}{|l|}{Input Capacitance (Note 3)} & \multicolumn{2}{|r|}{4} & pF & Max & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
POWER REQUIREMENTS \\
Power Supply Voltage Range
\end{tabular}} & \multicolumn{2}{|r|}{+5 to +16} & V & & Accuracy is tested and guaranteed at \(\mathrm{V}^{+}=+15 \mathrm{~V}\), only. \\
\hline \multicolumn{2}{|l|}{\(1^{+}\)} & \multicolumn{2}{|r|}{100} & \(\mu \mathrm{A}\) & Max & All digital inputs low or high. \\
\hline
\end{tabular}

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and \(\pm 10 \mathrm{~V}\) for bipolar modes
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

\section*{APPLICATIONS UNIPOLAR OPERATION}

Figure 1. Unipolar Binary Operation (2-Quadrant Multiplication)
DIGITAL INPUT ANALOG OUTPUT
MSB LSB
\begin{tabular}{lll}
\hline 11111111 & \(-V_{\text {REF }}\) & \(\left(\frac{255}{256}\right)\) \\
10000001 & \(-V_{\text {REF }}\) & \(\left(\frac{129}{256}\right)\) \\
10000000 & \(-V_{\text {REF }}\) & \(\left(\frac{128}{256}\right)=-\frac{V_{\text {REF }}}{2}\) \\
01111111 & \(-V_{\text {REF }}\) & \(\left(\frac{127}{256}\right)\) \\
00000001 & - VREF \(^{\prime}\) & \(\left(\frac{1}{256}\right)\) \\
00000000 & \(-V_{\text {REF }}\) & \(\left(\frac{0}{256}\right)=0\) \\
\hline
\end{tabular}

Note: \(1 \mathrm{LSB}=\left(2^{-8}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{256}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)\)
Table 1. Unipolar Binary Code Table

DIGITAL INPUT
MSB LSB
\begin{tabular}{lcc}
11111111 & \(-V_{\text {REF }}\) & \(\left(\frac{127}{128}\right)\) \\
10000001 & \(-V_{\text {REF }}\) & \(\left(\frac{1}{128}\right)\) \\
10000000 & 0 & \\
01111111 & \(+V_{\text {REF }}\) & \(\left(\frac{1}{128}\right)\) \\
00000001 & \(+V_{\text {REF }}\) & \(\left(\frac{127}{128}\right)\) \\
00000000 & \(+V_{\text {REF }}\) & \(\left(\frac{128}{128}\right)\)
\end{tabular}

Note: \(1 \mathrm{LSB}=\left(2^{-7}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{128}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)\)
Table 2. Bipolar (Offset Binary) Code Table

NOTES:
1. R3/R4 MATCH \(0.1 \%\) OR BETTER.
2. R1, R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
3. R5-R7 USED TO ADJUST VOUT \(=\) OV AT INPUT CODE 10000000.
4. CR1 \& CR2 PROTECT AD7523 AGAINST negative transients.

POWER DAC DESIGN USING AD7523

Figure 3. The Basic Power DAC

A typical power DAC designed for 10 bit accuracy and 8 bit resolution is shown in Figure 3. INTERSIL IH8510 power amplifier (1 Amp continuous output with up to +25 V) is driven by the AD7523.

A summing amplifier between the AD7523 and the IH8510 is used to separate the gain block containing the AD7520 on-
chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise AD7523 can be directly connected to the IH8510, by using a 25 volts reference for the DAC.

APPLICATIONS (continued)
DIVIDER (DIGITALLY CONTROLLED GAIN)

\section*{MODIFIED SCALE FACTOR AND OFFSET}

\(V_{\text {OUT }}=V_{\text {REF }}\left[\left(\frac{R_{2}}{R_{1}+R_{2}}\right)-\left(\frac{R_{1} D}{R_{1}+R_{2}}\right)\right]\) WHERE: \(\quad D=\frac{\text { BIT 1 }}{21}+\frac{\text { BIT } 2}{2^{2}}+\cdots \frac{\text { BIT } 8}{2^{R}}\)
\[
\left(0 \leq \mathrm{D} \leq \frac{255}{256}\right)
\]

\section*{DEFINITION OF TERMS}

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with \(n\) bits has a resolution of (\(2^{-n}\)) (VREF). A bipolar converter of \(n\) bits has a resolution of \(\left[2^{-(n-1)}\right]\left[V_{\text {REF }}\right]\). Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within \(1 / 2\) LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from Iout1 and IOUT2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on louti terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

For further information on the use of this device, see the following Application Bulletins:
A016 "Selecting A/D Converters," by David Fullagar
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A020 "A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger
A021 "Power D/A Converters Using the IH8510," by Dick Wilenken
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al., Electronics, Dec. 9, 1976

\section*{Multiplying D/A Converters}

\section*{FEATURES}
- Lowest cost 10-bit DAC
- 8, 9 and 10 bit linearity
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS direct interface
- +5 to +15 volts supply range
- Low power dissipation
- Fast settling time
- Four quadrant multiplication
- Direct AD7520 equivalent
- 883B Processed versions available

\section*{GENERAL DESCRIPTION}

The Intersil AD7533 is a low cost, monolithic 10-bit, fourquadrant multiplying digital-to-analog converter (DAC).
Intersil's thin-film resistors on CMOS circuitry provide 10, 9 and 8 bit accuracy, full temperature range operation, +5 V to +15 V power range, full input protection from damage due to static discharge by clamps to V+ and ground and very low power dissipation.
Pin and function equivalent to Industry Standard AD7520, the AD7533 is, recommended as a lower cost alternative for old or new 10-bit DAC designs.
Application of AD7533 includes programmable gain amplifiers, digitally controlled attenuators, function generators and control systems.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
FUNCTIONAL DIAGRAM \\
(Switches shown for Digital Inputs "High")
\end{tabular}} & \multicolumn{4}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
(Outline dwg DE, PE) \\
PACKAGE IDENTIFICATION
\end{tabular}}} \\
\hline \multicolumn{4}{|l|}{ORDERING INFORMATION} & \multicolumn{4}{|l|}{PACKAGE IDENTIFICATION} \\
\hline \multirow[b]{2}{*}{Nonlinearity} & \multicolumn{3}{|c|}{Temperature Range} & & & & \\
\hline & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & & & & \\
\hline \(\pm 0.2 \%\)
(8-bit) & AD7533JN & AD7533AD & AD7533SD & & & & \\
\hline \(\pm 0.1 \%\)
(9-bit) & AD7533KN & AD7533BD & AD7533TD & & & & \\
\hline \(\pm \begin{aligned} & \pm 0.05 \% \\ & \text { (10-bit) }\end{aligned}\) & AD7533LN & AD7533CD & AD7533UD & & & & \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
```

V+
VREF ....................................................... . . 25V
Digital Input Voltage Range . . . . . . . . . . . . . . . . . . - -0.3V to V }\mp@subsup{}{}{+
Output Voltage Compliance
-0.3 to V+
Power Dissipation (package)
Ceramic

```

```

    derates above }+7\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ by
    6mW/* C
    ```

Plastic
up to \(70^{\circ} \mathrm{C}\).. . . 670 mW
derates above \(70^{\circ} \mathrm{C}\) by \(8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
Operating Temperatures
JN, KN, LN Versions . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
AD, BD, CD Versions \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
SD, TD, UD Versions \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (soldering, 10 seconds) \(\ldots . . .+300^{\circ} \mathrm{C}\)

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages lower than ground or higher than \(\mathrm{V}^{+}\)to any pin except \(\mathrm{V}_{\text {REF }}\) and \(\mathrm{R}_{\mathrm{Fb}}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS \(\left(V^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\mathrm{OUT} 2}=0\right.\) unless otherwise specified. \()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}} \\
&+ 25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}\) MIN-MAX & UNITS & LIMIT & TEST CONDITIONS \\
\hline DC ACCURACY (Note 1) & 10 & 10 & \(\dot{B i t s}\) & Min & \\
\hline \multirow[t]{3}{*}{Nonlinearity (Note 2)} & \(\pm 0.2\) & \(\pm 0.2\) & \% of FSR & Max & \multirow[b]{3}{*}{\[
\begin{aligned}
& -10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V} \\
& \text { VOUT } 1=\mathrm{V}_{\text {OUT } 2}=0 \mathrm{~V}
\end{aligned}
\]} \\
\hline & \(\pm 0.1\) & \(\pm 0.1\) & \% of FSR & Max & \\
\hline & \(\pm 0.05\) & \(\pm 0.05\) & \% of FSR & Max & \\
\hline Gain Error (Note 2 and 5) & \(\pm 1.4\) & \(\pm 1.5\) & \% of FS & Max & Digital Inputs \(=\) ViNH \\
\hline Output Leakage Current (either output) & \(\pm 50\) & \(\pm 200\) & nA & Max & \(\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}\) \\
\hline \begin{tabular}{l}
AC ACCURACY \\
Power Supply Rejection (Note 2 and 3)
\end{tabular} & 0.005 & 0.008 & \% of FSR/\% & Max & \(\mathrm{V}^{+}=14.0\) to 17.0 V \\
\hline Output Current Settling Time & \[
\begin{gathered}
600 \\
(\text { Note } 6)
\end{gathered}
\] & \[
\begin{gathered}
800 \\
\text { (Note 3) }
\end{gathered}
\] & nS & Max & To \(0.05 \%\) of FSR, RL \(=100 \Omega\) \\
\hline Feedthrough Error (Note 3) & \(\pm 0.05\) & \(\pm 0.1\) & \% FSR & Max & \(\mathrm{V}_{\mathrm{REF}}= \pm 10 \mathrm{~V}, 100 \mathrm{kHz}\) sine wave. Digital inputs low. \\
\hline \multirow[t]{2}{*}{REFERENCE INPUT Input Resistance (Pin 15)} & \multicolumn{2}{|c|}{5 K} & \multirow[b]{2}{*}{\(\Omega\)} & Min & \\
\hline & \multicolumn{2}{|c|}{20K} & & Max & All digital inputs high. \\
\hline Temperature Coefficient & \multicolumn{2}{|c|}{-300} & ppm \(/{ }^{\circ} \mathrm{C}\) & Typ & \\
\hline ANALOG OUTPUT Voltage Compliance (Note 4) & \multicolumn{2}{|l|}{-100 mV to \(\mathrm{V}^{+}\)} & & & \begin{tabular}{l}
Both outputs. \\
See maximum ratings.
\end{tabular} \\
\hline \multirow[t]{4}{*}{Output Capacitance (Note 3)} & \multicolumn{2}{|c|}{100} & pF & Max & All digital inputs high (VINH) \\
\hline & \multicolumn{2}{|c|}{35} & pF & Max & \\
\hline & \multicolumn{2}{|c|}{35} & pF & Max & All digital inputs low (ViNL) \\
\hline & \multicolumn{2}{|c|}{100} & pF & Max & \\
\hline \multirow[t]{2}{*}{DIGITAL INPUTS} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{0.8}} & & & \\
\hline & & & V & Max & \\
\hline High State Threshold (VINH) & \multicolumn{2}{|c|}{2.4} & V & Min & \\
\hline Input Current (lin) & \multicolumn{2}{|c|}{\(\pm 1\)} & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) and \(\mathrm{V}^{+}\) \\
\hline Input Coding & \multicolumn{2}{|l|}{Binary/Offset Binary} & & & See Tables 1 \& 2 \\
\hline Input Capacitance (Note 3) & \multicolumn{2}{|c|}{5} & pF & Max & \\
\hline POWER REQUIREMENTS VD & \multicolumn{2}{|c|}{+15 \(\pm 10 \%\)} & V & & Rated Accuracy \\
\hline Power Supply Voltage Range & \multicolumn{2}{|c|}{+5 to +16} & V & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}^{+}\)} & \multicolumn{2}{|c|}{2} & mA & Max & Digital Inputs \(=\) V \({ }_{\text {INL }}\) to V \({ }_{\text {INH }}\) \\
\hline & 100 & 150 & \(\mu \mathrm{A}\) & Max & Digital Inputs \(=0 \mathrm{~V}\) or \(\mathrm{V}^{+}\) \\
\hline
\end{tabular}

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and \(\pm 10 \mathrm{~V}\) for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.
5. Full scale (FS) \(=-\left(V_{\text {REF }}\right) \cdot(1023 / 1024)\)
6. Sample tested to ensure specification compliance.
7. \(100 \%\) screened to MIL-STD-883, method 5004, para. 3.1.1. through 3.1 .12 for class B device. Final electrical tests are: Nonlinearity, Gain Error, Output Leakage Current, \(\mathrm{V}_{\mathrm{INH}}, \mathrm{V}_{\mathrm{INL}}, \mathrm{l}_{\mathrm{IN}}\) and \(I^{+} @+25^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\) (SD, TD, UD) or \(+25^{\circ} \mathrm{C}\) and \(+85^{\circ} \mathrm{C}(\mathrm{AD}, \mathrm{BD}, \mathrm{CD})\).

Specifications subject to change without notice.

\section*{GENERAL CIRCUIT INFORMATION}

The Intersil AD7533 is a 10 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 1. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")
Figure 1
APPLICATIONS
UNIPOLAR OPERATION
(2-QUADRANT MULTIPLICATION)

NOTES:
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
2. SCHOTTKY DIODE CR1 (HP5082-2811 OR EQUIV) PROTECTS OUT1 TERMINAL AGAINST NEGATIVE TRANSIENTS.
Figure 3. Unipolar Binary Operation (2-Quadrant Multiplication)
\begin{tabular}{|c|c|c|c|}
\hline \(\underset{\text { MSB }}{\text { DIGITAL INPUT }}\) LSB & \multicolumn{3}{|l|}{NOMINAL ANALOG OUTPUT (Vout as shown in Figure 3)} \\
\hline 1111111111 & -VREF & \(\left(\frac{1023}{1024}\right)\) & \\
\hline 1000000001 & -VREF & \(\left(\frac{513}{1024}\right)\) & \\
\hline 1000000000 & -Vref & \(\left(\frac{512}{1024}\right)=-\) & \(\frac{V_{\text {REF }}}{2}\) \\
\hline 0111111111 & -Vref & \(\left(\frac{511}{1024}\right)\) & \\
\hline 0000000001 & -Vref & \(\left(\frac{1}{1024}\right)\) & \\
\hline 0000000000 & -Vref & \(\left(\frac{0}{1024}\right)=0\) & \\
\hline
\end{tabular}

\section*{NOTES:}
1. Nominal Full Scale for the circuit of Figure 3 is given by
\[
\mathrm{FS}=-\mathrm{V}_{\text {REF }}\left(\frac{1023}{1024}\right)
\]
2. Nominal LSB magnitude for the circuit of Figure 3 is given by

LSB \(=V_{\text {Ref }}\left(\frac{1}{1024}\right)\)
Table 1. Unipolar Binary Code

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 2). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2 R ladder resistors resulting in accurate leg currents.

Figure 2
BIPOLAR OPERATION
(4-QUADRANT MULTIPLICATION)

1. R3/R4 MATCH \(0.05 \%\) OR BETTER.
2. R1, R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
3. SCHOTTKY DIODES CR1 AND CR2 (HP5082-2811 OR EQUIV) PROTECT OUT1 AND OUT2 TERMINALS FROM NEGATIVE TRANSIENTS
Figure 4. Bipolar Operation (4-Quadrant Multiplication)
\begin{tabular}{ccl}
\begin{tabular}{c}
DIGITAL \\
MSB
\end{tabular} & \begin{tabular}{c}
INPUT \\
LSB
\end{tabular} & \begin{tabular}{c}
NOMINAL ANALOG OUTPUT \\
(VOUT as shown in Figure 4)
\end{tabular} \\
\hline 1111111111 & - V \(_{\text {REF }}\) & \(\left(\frac{511}{512}\right)\) \\
1000000001 & - V \(_{\text {REF }}\) & \(\left(\frac{1}{512}\right)\) \\
1000000000 & 0 & \\
0111111111 & +V & \(\left(\frac{1}{512}\right)\) \\
0000000001 & +VEF & \(\left(\frac{511}{512}\right)\) \\
0000000000 & +VREF & \(\left(\frac{512}{512}\right)\) \\
\hline
\end{tabular}

\section*{NOTES:}
1. Nominal Full Scale Range for the circuit of Figure 4 is given by
\[
\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}}\left(\frac{1023}{512}\right)
\]
2. Nominal LSB magnitude for the circuit of Figure 4 is given by
\[
\operatorname{LSB}=V_{\text {REF }}\left(\frac{1}{512}\right)
\]

Table 2. Bipolar (Offset Binary) Code Table

POWER DAC DESIGN USING AD7533

Figure 5. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 5. INTERSIL IH8510 power amplifier (1 Amp continuous output with up to +25 V) is driven by the AD7533.
A summing amplifier between the AD7533 and the IH8510 is used to separate the gain block containing the AD7533 onchip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach

\section*{10-BIT AND SIGN MULTIPLYING DAC}

minimizes drift since the resistor pairs will track properly. Otherwise AD7533 can be directly connected to the IH8510, by using a 25 volts reference for the DAC. Notice that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information write for: INTERSIL Application Bulletin A021-Power D/A Converters Using The IH8510 by Dick Wilenken.)

\section*{PROGRAMMABLE FUNCTION GENERATOR}

\section*{INPUT SIGNAL WARNING}

Because of the input protection diodes on the logic inputs, it is important that no voltage greater than 4 V outside the logic supply rails be applied to these inputs at any time, including power-up and other transients. To do so could cause destructive SCR latch-up.

\section*{FEATURES}
- 12 bit linearity (\(0.01 \%\))
- Pretrimmed gain
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Low power dissipation (20 mW)
- Current settling time: \(\mathbf{1} \mu \mathbf{s}\) to \(\mathbf{0 . 0 1 \%}\) of FSR
- Four quadrant multiplication
- 883B Processed versions available

\section*{GENERAL DESCRIPTION}

The Intersil AD7541 is a monolithic, low cost, high performance, 12-bit accurate, multiplying digital-to-analog converter (DAC).
Intersil's wafer level laser-trimmed thin-film resistors on CMOS circuitry provide true 12-bit linearity with DTL/TTL/ CMOS compatible operation.
Special tabbed-resistor geometries (improving time stability), full input protection from damage due to static discharge by diode clamps to V+ and ground, large lout1 and lout2 bus lines (improving superposition errors) are some of the features offered by Intersil AD7541.
Pin compatible with AD7521, this new DAC provides accurate four quadrant multiplication over the full military temperature range.

(Switches shown for Digital Inputs "High")

\section*{PIN CONFIGURATION}

(Outline dwg DN, PN)

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ Temperature Range } \\
\cline { 2 - 4 } Nonlinearity & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{c}
\(0.02 \%\) \\
(11-bit)
\end{tabular} & AD7541JN & AD7541AD & AD7541SD \\
\hline \begin{tabular}{c}
\(0.01 \%\) \\
(12-bit)
\end{tabular} & AD7541KN & AD7541BD & AD7541TD \\
\hline \begin{tabular}{c}
\(0.01 \%\) \\
(12-bit) \\
Guaranteed \\
Monotonic
\end{tabular} & AD7541LN & & \\
\hline
\end{tabular}

\section*{AD7541}

\section*{ABSOLUTE MAXIMUM RATINGS}
(\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise noted)
\(\mathrm{V}^{+}\)
+17V
\(\pm 25 \mathrm{~V}\)
VReF

Power Dissipation (package)
up to \(+75^{\circ} \mathrm{C}\) \(\qquad\) 450 mW
derates above \(+75^{\circ} \mathrm{C}\) by
\(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

Operating Temperatures
JN, KN, LN Versions \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
AD, BD Versions . \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
SD, TD Versions \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Storage Temperature \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)

CAUTION 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than \(V_{D D}\) or less than GND potential on any terminal except \(V_{\text {REF }}\) and \(\mathrm{R}_{\mathrm{fb}}\).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.
SPECIFICATIONS \(\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.\) unless otherwise specified)

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and \(\pm 10 \mathrm{~V}\) for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

TEST CIRCUITS

Figure 1. Nonlinearity

Figure 3. Noise

Figure 5. Feedthrough Error

Figure 2. Power Supply Rejection

Figure 4. Output Capacitance

Figure 6. Output Current Settling Time

\section*{DEFINITION OF TERMS}

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with \(n\) bits has a resolution of (\(2^{-n}\)) (VREF). A bipolar converter of \(n\) bits has a resolution of \(\left[2^{-(n-1)}\right]\left[V_{\text {REF }}\right]\). Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within \(1 / 2\) LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from Vref to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout1 and lout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

\section*{GENERAL CIRCUIT INFORMATION}

The Intersil AD7541 is a 12 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.
Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

(Switches shown for Digital Inputs "High")
Figure 7. AD7541 Functional Diagram

Each circuit is laser-trimmed, at the wafer level, to better than 12 bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.
The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first (Figure 8). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the \(2 R\) ladder resistors, resulting in accurate leg currents.

\section*{APPLICATIONS}

\section*{General Recommendations}

Static performance of the AD7541 depends on lout1 and IOUT2 (pin 1 and pin 2) potentials being exactly equal to GND (pin 3).

The output amplifier should be selected to have a low input bias current (typically less than 75 nA), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than \(\pm 200 \mu \mathrm{~V}\)).

The bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Noninverting input should be connected to GND with a low resistance wire.

Ground-loops must be avoided by taking all pins going to GND to a common point, using separate connections.

The \(\mathrm{V}^{+}\)(pin 18) power supply should have a low noise level and should not have any transients exceeding +17 volts.

Unused digital inputs must be connected to GND or VDD for proper operation.

A high value resistor (\(\sim 1 \mathrm{M} \Omega\)) can be used to prevent static charge accumulation, when the inputs are open-circuited for any reason.

When gain adjustment is required, low tempco (approximately \(50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\)) resistors or trim-pots should be selected.

\section*{AD7541}

\section*{APPLICATIONS, Continued}

UNIPOLAR BINARY OPERATION

The circuit configuration for operating the AD7541 in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1. Schottky diode (HP 5082-2811 or equivalent) prevents lout1 from negative excursions which could damage the device. This precaution is only necessary with certain high speed amplifiers.

Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment
1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for \(0 \mathrm{~V} \pm 0.5 \mathrm{mV}\) (max) at VOUT.
Gain Adjustment
1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF (1-1/212) reading.
3. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 1
Code Table - Unipolar Binary Operation
\begin{tabular}{|l|l|}
\hline DIGITAL INPUT & ANALOG OUTPUT \\
\hline \(11111111111 \uparrow\) & \(-V_{\text {REF }}(1-1 / 212)\) \\
\hline 100000000001 & \(-V_{\text {REF }}(1 / 2+1 / 212)\) \\
\hline 100000000000 & \(-V_{\text {REF }} / 2\) \\
\hline 011111111111 & \(-V_{\text {REF }}(1 / 2-1 / 212)\) \\
\hline 000000000001 & \(-V_{\text {REF }}(1 / 212)\) \\
\hline 000000000000 & 0 \\
\hline
\end{tabular}

\section*{BIPOLAR (OFFSET BINARY) OPERATION}

The circuit configuration for operating the AD7541 in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

Note: R1 and R2 should be \(0.01 \%\), low-TCR resistors.
Figure 10, Bipolar Operation (4-Quadrant Multiplication)
A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, \((\mathrm{MSB}=\) "Logic 1 ", All other bits = "Logic 0 "), is corrected by using an external resistive divider, from VREF to IOUT2.

\section*{Offset Adjustment}
1. Adjust \(V_{\text {Ref }}\) to approximately +10 V .
2. Set R4 to zero.
3. Connect all digital inputs to "Logic 1".
4. Adjust lout2 amplifier offset zero adjust trimpot for OV \(\pm 0.1 \mathrm{mV}\) at lout2 amplifier output.
5. Connect a short circuit across R2.
6. Connect all digital inputs to "Logic 0".
7. Adjust lout2 amplifier offset zero adjust trimpot for OV \(\pm 0.1 \mathrm{mV}\) at lout 1 amplifier output.
8. Remove short circuit across R2.
9. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
10. Adjust R4 for \(0 \mathrm{~V} \pm 0.2 \mathrm{mV}\) at Vout.

\section*{Gain Adjustment}
1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF (\(1-1 / 211\)) volts reading.
3. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 2
Code Table - Bipolar (Offset Binary) Operation
\begin{tabular}{|l|l|}
\hline DIGITAL INPUT & ANALOG OUTPUT \\
\hline 111111111111 & \(-V_{\text {REF }}(1-1 / 211)\) \\
\hline 100000000001 & \(-V_{\text {REF }}(1 / 211)\) \\
\hline 100000000000 & 0 \\
\hline 011111111111 & V REF \(^{(1 / 211)}\) \\
\hline 000000000001 & VREF \(^{(1-1 / 211)}\) \\
\hline 000000000000 & VREF \\
\hline
\end{tabular}

Figure 11. General DAC Circuit with Compensation Capacitor, Cc.

Figure 12. AD7541 Response with: \(A=\) Intersil 741HS

Figure 13. AD7541 Response with: \(A=\) Intersil 2515 C \(\mathrm{C}=15 \mathrm{pF}\)

Figure 14. AD7541 Response with: \(A=\) Intersil 2520

\section*{DYNAMIC PERFORMANCE}

The dynamic performance of the DAC, alsodepends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.
The output impedance of the AD7541 looking into lout1. varies between 10k) (RFeedback alone) and 5k』 (RFeedback in parallel with the ladder resistance).
Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.
A capacitor in parallel with the feedback resistor provides the necessary phase compensation to critically damp the output.
A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.
Three typical circuits and the resultant waveforms are shown in Figures 11 to 14. A low-cost general purpose (Intersil 741HS), a low-cost high-speed (Intersil 2515) and a highspeed fast-settling (Intersil 2520) amplifier cover the principal application areas.

\section*{INPUT SIGNAL WARNING}

Because of the input protection diodes on the logic inputs, it is important that no voltage greater than 4 V outside the logic supply rails be applied to these inputs at any time, including power-up and other transients. To do so could cause destructive SCR latch-up.

\section*{FEATURES}
- TTL Compatible: LOW-0.8V
- 12 Bit Accuracy
- 40 nsec, Switching Speed
- Wide Power Supply Range
- Low Temperature Coefficient

\section*{APPLICATIONS:}
- D/A-A/D Converters
- Digital Threshold Control
- Programmable Voltage Source
- Meter Drive
- X-Y Plotters

\section*{GENERAL DESCRIPTION}

The Intersil ICL8018A family are high speed precision current switches for use in current summing digital-toanalog converters. They consist of four logically controlled current switches and a reference device on a single monolithic silicon chip. The reference transistor, combined with precision resistors and an external source, determines the magnitude of the currents to be summed. By weighting the currents in proportion to the binary bit which controls them, the total output current will be proportional to the binary number represented by the input logic levels.
The performance and economy of this family make them ideal for use in digital-to-analog converters for industrial process control and instrumentation systems.

PIN DIAGRAM

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline ACCURACY & \begin{tabular}{c}
MILITARY \\
TEMP RANGE \\
CERDIP
\end{tabular} & \begin{tabular}{c}
COMMERCIAL \\
TEMP RANGE \\
PLASTIC DIP
\end{tabular} \\
\hline Individual Devices & ICL8018AMJD & ICL8018ACPD \\
\(.01 \%\) & ICL8019AMJD & ICL8019ACPD \\
\(0.1 \%\) & ICL8020AMJD & ICL8020ACPD \\
\(1.0 \%\) & & \\
\hline Matched Sets* & & \\
\(.01 \%\) & ICL8018AMXJD & ICL8018ACXPD \\
\(0.1 \%\) & ICL8019AMXJD & ICL8019ACXPD \\
\(1.0 \%\) & ICL8020AMXJD & ICL8020ACXPD \\
\hline
\end{tabular}
*NOTE: Units ordered in equal quantities will be matched such that the \(\mathrm{V}_{\mathrm{be}}\) 's of the 8019 will be within \(\pm 10 \mathrm{mV}\) of the 8018 compensating transistor, and the Vbe's of the 8020 will be within \(\pm 50 \mathrm{mV}\). The ICL8018-X matched sets consist of one 8018, one. 8019 , and one 8020 . The \(3019-X\) contains one 8019 and one 8020, while the 8020-X contains two 8020's. Units shipped as matched sets will be marked with a unique set number.

\section*{ICL8018A/8019A/8020A}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline Supply Voltage & \(\pm 20 \mathrm{~V}\) \\
\hline Logic Input Voltage & -2 V to \(\mathrm{V}^{+}\) \\
\hline Output Voltage. & baseline to +20 V \\
\hline \(V_{\text {baseline }}\) & \(\mathrm{V}^{-}\)to +5 V \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Operating Temperature ICL8018AM & \\
\hline ICL8019AM & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline ICL8020AM & \\
\hline ICL8018AC & \\
\hline ICL8019AC & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline ICL8010AC & \\
\hline Lead Temperature (soldering 10sec) & ... \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS \(\left(4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 20 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} @\right.\) pin \(6=-5 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Absolute Error ICL8018A ICL8019A ICL8020A & \[
\begin{aligned}
& V_{\text {INHI }}=5.0 \mathrm{~V} \\
& \mathrm{~V}_{\text {INLO }}=0.0 \mathrm{~V}
\end{aligned}
\] & & & \[
\begin{gathered}
\pm .01 \\
\pm 0.1 \\
\pm 1 \\
\hline
\end{gathered}
\] & \% \\
\hline ```
Error Temperature Coefficient
 ICL8018A
 ICL8019A
 ICL8020A
``` & & & \[
\begin{aligned}
& \pm 2 \\
& \pm 2 \\
& \pm 2
\end{aligned}
\] & \[
\begin{gathered}
\pm 5 \\
\pm 25 \\
\pm 50 \\
\hline
\end{gathered}
\] & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline ```
Settling Time To }\pm1/2\textrm{LSB},\mp@subsup{R}{\textrm{L}}{}=1\textrm{k}
    8 BIT
    12 BIT
``` & & & \[
\begin{aligned}
& 100 \\
& 200
\end{aligned}
\] & & ns \\
\hline Switching Time To Turn On LSB & & & 40 & & ns \\
\hline \begin{tabular}{l}
Output Current (Nominal) \\
BIT 1 (MSB) \\
BIT 2 \\
BIT 3 \\
BIT 4 (LSB)
\end{tabular} & & & \[
\begin{gathered}
1.0 \\
0.5 \\
0.25 \\
0.125
\end{gathered}
\] & & mA \\
\hline Zero Output Current & V IN \(=5.0 \mathrm{~V}\) & & 10 & 50 & nA \\
\hline Output Voltage Range & & \(\mathrm{V}_{\text {BASELINE }}+1 \mathrm{~V}\) & & +10 & V \\
\hline ```
Input Coding-Complimentary Binary
 (See Truth Table)
 Logic Input Voltage
 "0" (Switch ON)
 "1"(Switch OFF)
``` & DIOUT <400nA & 2.0 & & 0.8 & V \\
\hline \begin{tabular}{l}
Logic Input Current " 0 " \\
"1" (into device)
\end{tabular} & \[
\begin{aligned}
& V_{\mathbb{I N}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{array}{r}
-1.0 \\
0.01
\end{array}
\] & \[
\begin{aligned}
& -2 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Power Supply Rejection \(\mathrm{V}^{+}\) \\
\(\mathrm{V}^{-}\)
\end{tabular} & & & \[
\begin{aligned}
& .005 \\
& .0005
\end{aligned}
\] & & \%/V \\
\hline \begin{tabular}{l}
Supply Voltage Range \(\mathrm{V}^{+}\) \\
\(\mathrm{V}^{-}\)
\end{tabular} & & \[
\begin{array}{r}
4.5 \\
-10
\end{array}
\] & \[
\begin{gathered}
5 \\
-15
\end{gathered}
\] & \[
\begin{gathered}
20 \\
-20
\end{gathered}
\] & V \\
\hline Supply Current (VSUPP \(= \pm 20 \mathrm{~V}\) ) \(\mathrm{I}^{+}\) \(1-\) & & & \[
\begin{aligned}
& 7 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10 \\
3 \\
\hline
\end{gathered}
\] & mA \\
\hline
\end{tabular}

\section*{BASIC D/A THEORY}

The majority of digital to analog converters contain the elements shown in Figure 1. The heart of the D/A converter is the logic controlled switching network, whose output is an analog current or voltage proportional to the digital number on the logic inputs. The magnitude of the analog output is determined by the reference supply and the array of precision resistors, see fig. 2. If the switching network has a current output, often a transconductance amplifier is used to provide a voltage output.


Figure 1: Elements of a D/A Converter
\begin{tabular}{|cccc|}
\hline Logic Input & \begin{tabular}{c} 
Nominal \\
Output \\
Current (mA)
\end{tabular} \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1.750 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{tabular}

Figure 2: Truth Table

\section*{DEFINITION OF TERMS}

The resolution of a D/A converter refers to the number of logic inputs used to control the analog output. For example, a D/A converter using two quad current sources would be an 8 bit converter. If three quads were used, a 12 bit converter would be formed. Resolution is often stated in terms of one part in, e.g., 256 since the number of controlling bits is related to total number of identifiable levels by the power of 2. The four bit quad has sixteen different levels (see Truth Table) each output corresponding to a particular logic input word.
Note that maximum output of the quad switch is \(1+1 / 2+1 / 4\) \(+1 / 8=1-7 / 8=1.875 \mathrm{~mA}\). If this series of bits were continued as \(1 / 16+1 / 32+1 / 64 \ldots .1 / 2^{(n-1)}\), the maximum output limit would approach 2.0 mA . This limiting value is called full scale output. The maximum output is always less than the full scale output by one least significant bit, LSB. For a twelve bit system (resolution 1 part in 4096) with a full scale output of
10.0 volts the maximum output would be \(\frac{4095}{4096} \times 10 \mathrm{~V}\). Since the numbers are extremely close for high resolution systems, the terms are often used interchangeably.
The accuracy of a D/A converter is generally taken to mean the largest error of any output level from its nominal value. The accuracy or absolute error is often expressed as a percentage of the full scale output.
Linearity relates the maximum error in terms of the deviation from the best straight line drawn through all the possible output levels. Linearity is related to accuracy by the scale factor and output offset. If the scale factor is exactly the nominal value and offset is adjusted to zero, then accuracy and linearity are identical. Linearity is usually specified as being within \(\pm 1 / 2\) LSB of the best straight line.
Another desirable property of D/A converter is that it be monotonic. This simply implies that each successive output level is greater than the preceding one. A possible worst case condition would be swhen the output changes from most significant bit (MSB) OFF, all other bits ON to the next level which has the MSB ON and all other bits OFF, e.g., 10000 ... to 01111.
In applications where a quad current switch drives a transconductance amplifier (current to voltage converter), transient response is almost exclusively determined by the output amplifier itself. Where the quad output current drives a resistor to ground, switching time and settling time are useful parameters.
Switching time is the familiar \(10 \%\) to \(90 \%\) rise time type of measurement. Low capacitance scope probes must be used to avoid masking the high speeds that current source switching affords. The settling time is the elapsed time between the application of a fast input pulse and the time at which the output voltage has settled to or approached its final value within a specified limit of accuracy. This limit of accuracy should be commensurate with the resolution of the DAC to be used.
Typically, the settling time specification describes fow soon after an input pulse the output can be relied upon as accurate to within \(\pm 1 / 2\) LSB of an \(N\) bit converter. Since the 8018A family has been desiged with all the collectors of the current switching transistors tied together, the output capacitance is constant. The transient response is, therefore, a simple exponential relationship, and from this the settling time can be calculated and related to the measured rise time as shown in Figure 3.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Bits of \\
Resolution
\end{tabular} & \begin{tabular}{c}
\(\pm \mathbf{1 / 2}\) LSB Error \\
\(\%\) Full Scale
\end{tabular} & \begin{tabular}{c} 
Number of \\
Time Constants
\end{tabular} & \begin{tabular}{c} 
Number of \\
Rise Times
\end{tabular} \\
\hline 8 & \(.2 \%\) & 6.2 & 2.8 \\
10 & \(.05 \%\) & 7.6 & 3.4 \\
12 & \(.01 \%\) & 9.2 & 4.2 \\
\hline \multicolumn{4}{|r|}{ Rise Time (10\%-90\%)=2.2 RL Ceff } \\
\hline
\end{tabular}

Figure 3: Settling Time vs. Rise Time Resistor Load

\section*{CIRCUIT OPERATION}

An example of a practical circuit for the ICL8018A quad çurrent switch is shown in Figure 4. The circuit can be analyzed in two sections; the first generates very accurate currents and the second causes these currents to be switched according to input logic signals. A reference current of \(125 \mu \mathrm{~A}\) is generated by a stable reference supply and a precision resistor. An op-amp with low offset voltage


Figure 4: Typical Circuit
and low input bias current, such as the ICL8008, is used in conjunction with the internal reference transistor, \(\mathrm{Q}_{6}\), to force the voltage on the common base line, so that the collector current of \(Q_{6}\) is equal to the reference current. The emitter current of \(Q_{6}\) will be the sum of the reference current and a small base current causing a drop of slightly greater than 10 volts across the 80k resistor in the emitter of \(Q_{6}\). Since this resistor is connected to -15 V , this puts the emitter of \(Q_{6}\) at nearly -5 V and the common base line at one \(\mathrm{V}_{\mathrm{BE}}\) more positive at -4.35 V typically.
Also connected to the common base line are the switched current source transistors \(Q_{7}\) through \(Q_{10}\). The emitters of these transistors are also connected through weighted precision resistors to -15 V and their collector currents summed at pin 8 . Since all these transistors, \(Q_{6}\) through \(Q_{10}\), are designed to have equal emitter-base voltages, it follows that all the emitter resistors will have equal voltage drops across them. It is this constant voltage and the precision resistors at the emitter that determine the exact value of switched output current. The emitter resistor of \(Q_{7}\) is equal to that of \(Q_{6}\), therefore, Q7's collector current will be IREF or \(125 \mu \mathrm{~A}\). Q \(\mathrm{Q}_{8}\) has 40 k in the emitter so that its collector current will be twice Iref or \(250 \mu \mathrm{~A}\). In the same way, the 20 k and 10 k in the emitters of Q9 and \(\mathrm{Q}_{10}\) contribute .5 mA and 1 mA to the total collector current.

The reference transistor and four current switching transistors are designed for equal emitter current density by making the number of emitters proportional to the current switched.

The remaining circuitry provides switching signals from the logic inputs. In the switch ON mode, zener diodes \(\mathrm{D}_{5}\) through \(\mathrm{D}_{8}\), connected to the emitter of each current switch transistor \(Q_{7}\) thru \(Q_{10}\), are reverse biased allowing the transistors to operate, producing precision currents summed in the collectors. The transistors are turned off by
raising the voltage on the zeners high enough to turn on the zeners and raise the emitters of the switching transistor. This reverse biases the emitter base diode thereby shutting off that transistor's collector current.
The analog output current can be used to drive one load directly, ( \(1 \mathrm{k} \Omega\) to ground for \(\mathrm{FS}=1.875 \mathrm{~V}\) for example) or can be used to drive a transconductance amplifier to give largeı output voltages.

\section*{EXPANDING THE QUAD SWITCH}

While there are few requirements for only 4 bit \(D\) to \(A\) converters, the 8018A is readily expanded to 8 and 12 bits with the addition of other quads and resistor dividers as shown in Figure 5.
To maintain the progression of binary weighted bit currents, the current output of the first quad drives the input of the transconductance amplifier directly, while a resistor divider network divides the output current of the second quad by 16 and the output current of the third by 256.
\[
\begin{aligned}
\text { e.g., } \text { ITotal }= & 1 \times(1+1 / 2+1 / 4+1 / 8)+1 / 16(1+1 / 2+1 / 4+1 / 8) \\
& +1 / 256(1+1 / 2+1 / 4+1 / 8)=1+1 / 2+1 / 4+1 / 8+ \\
& 1 / 16+1 / 32+1 / 64+1 / 128+1 / 256+1 / 512+ \\
& 1 / 1024+1 / 2048 .
\end{aligned}
\]

Note that each current switch is operating at the same high speed current levels so that standard 10k, 20k, 40k and 80k resistor networks can be used. Another advantage of this technique is that since the current outputs of the second and third quad are attenuated, so are the errors they contribute. This allows the use of less accurate switches and resistor networks in these positions; hence, the three accuracy grades of \(.01 \%, 0.1 \%\), and \(1 \%\) for the 8018A, 8019A and 8020A, respectively. It should be noted that only the reference transistor on the most significant quad is required to set up the voltage on the common base line joining the three sets of switching transistors (Pin 9).


Figure 5: Expanding the Quad Switch

\section*{GENERATING REFERENCE CURRENTS ZENER REFERENCE}

As mentioned above, the 8018A switches currents determined by a constant voltage across the external precision resistors in the emitter of each switch. There are several ways of generating this constant voltage. One of the simplest is shown in Figure 6. Here an external zener diode is driven by the same current source line used to bias internal Zener D11.


Figure 6: Simple Zener Reference
The zener current will be typically 1 mA per quad. The compensation transistor \(Q_{6}\) is connected as a diode in series with the external zener. The VBE of this transistor will approximately match the VBE's of the current switching transistors, thereby forcing the external zener voltage across each of the external resistors. The temperature coefficient of
the external zener will dominate the temperature dependence of this scheme, however using a temperature compensated zener minimizes this problem. Since \(Q_{6}\) is operating at a higher current density than the other switching transistors, the temperature matching of VBE's is not optimum, but should be adequate for a simple 8 or 10 bit converter.
The 8018A series is tested for accuracy with 10 V reference voltage across the precision resistors, implying use of a 10 volt zener. Using a different external zener voltage will only slightly degrade accuracy if the zener voltage is above 5 or 6 volts.
When using other than 10 volt reference, the effects on logic thresholds should also be noted (see logic levels below). Full scale adjustment can be made at the output amplifier.

\section*{PNP REFERENCE}

Another simple reference scheme is shown in Figure 7. Here an external PNP transistor is used to buffer a resistor divider. In this case, the \(\mathbf{- 1 5}\) volt supply is used as a reference. Holding the \(\mathrm{V}^{-}\)supply constant is not too difficult since the 8018A is essentially a constant current load. In this scheme, the internal compensation transistor is not necessary, since the VBE matching is provided by the emitter-base junction of the external transistor. A small pot in series with the divider facilitates full scale output adjustment. A capacitor from base to collector of the external PNP will lower output impedance and minimize transient effects.

\section*{FULL COMPENSATION REFERENCE}

For high accuracy, low drift applications, the reference scheme of Figure 4, offers excellent performance. In this circuit, a high gain op-amp compares two currents. The first is a reference current generated in RS by the temperature compensated zener and the virtual ground at the non-inverting opamp input. The second is the collector current of the reference transistor \(Q_{6}\), provided on the quad switch. The output of the op-amp drives the base of \(Q_{6}\) keeping its collector current exactly equal to the reference current. Since the switching transistor's emitter current densities are equal and since the precision resistors are proportional, all of the switched collector currents will have the proper value.


Figure 7: PNP Reference


Figure 8

The op-amp feedback loop using the internal reference transistor will maintain proper currents in spite of \(V_{B E}\) drift, beta drift, resistor drift and changes in \(\mathrm{V}^{-}\). Using this circuit, temperature drifts of \(2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) are typical. A discrete diode connected as shown will keep \(Q_{6}\) from saturating and prevent latch up if \(\mathrm{V}^{-}\)is disconnected.
In any reference scheme, it is advisable to capacitively decouple the common base line to minimize transient effects. A capacitor, \(.001 \mu \mathrm{~F}\) to \(.1 \mu \mathrm{~F}\) from Pin 9 to analog ground is usually sufficient.

\section*{IMPROVED ACCURACY}

As a final note on the subject of setting up reference levels, it should be pointed out that the largest contributor of error is the mismatch of \(V_{B E}\) 's of the current switching transistors. That is, if all the \(V_{B E}\) 's were identical, then all precision resistors would have exactly the same reference voltage across them. A one millivolt mismatch compared with ten volt reference across the precision resistors will cause a . \(01 \%\) error. While decreasing the reference voltage will decrease the accuracy, the voltage can be increased to achieve better than \(.01 \%\) accuracies. The voltage across the emitter resistors can be doubled or tripled with a proportional increase in resistor values resulting in improved absolute accuracy as well as improved temperature drift performance. This technique has been used successfully to implement up to 16 bit D/A converters.

\section*{PRACTICAL D/A CONVERTERS}

The complete circuit for a high performance 12 bit D/A converter is shown in Figure 8. This circuit uses the "full compensation reference" described above to set the base line drive at the proper level, the temperature compensated zener is stabilized using an op-amp as a regulated supply, and the circuit provides a very stable, precise voltage reference for the D/A converter. The 16:1 and 256:1 resistor divider values are shown for a straight binary system; for a binary coded decimal system the dividers would be 10:1 and 100:1 (BCD is frequently encountered in building programmable voltage'sources).
The analog output current of the 8018A current switches is converted to an output voltage using the 8017 as shown. The output amplifier must have low input bias current (small compared with the LSB current), low offset voltage and offset voltage drift, high slew rate and fast settling time. The input compensation shown helps improve pulse response by providing a finite impedance at high frequencies for a point that is virtual ground at DC.
An alternative bias scheme is shown in Figure 9. In this case, the bias at the common base line is fixed by inverting op-amp \(A_{4}\), the gain of which is adjusted to give -5.0 volts at the emitter of the reference transistor. With the bias at the common base line fixed, the regular circuit of \(A_{1}\) uses the internal reference transistor and drives the bus connecting all the precision resistors. This isolates the precision resistors from \(\mathrm{V}^{-}\)fluctuations. Zener \(\mathrm{D}_{3}\) and constant current source \(\mathrm{Q}_{1}\) keep the regulating \(8008 \mathrm{op}-\mathrm{amp}\) in mid-range. There are several alternative bias schemes depending on power supplies available. If -20 volts is used for \(\mathrm{V}^{-}\), the bottom of the precision resistor will be at -15 and operation will be the same as the standard circuit. If only -15 V is available for \(\mathrm{V}^{-}\) the gain of the output transconductance amplifier can be increased by \(30 \%\) to allow use of a smaller switching currents with 7 volts across the precision resistors.

\section*{MULTIPLYING DAC}

The circuit of Figure 9 is also convenient to use as a one quadrant multiplying D/A converter. In a multiplying DAC, the analog output is proportional to the product of a digital number and an analog signal. The digital number drives the logic inputs, while the analog signal replaces the constant reference voltage, and produces a current to set up the regulating \(8008 \mathrm{op}-a \mathrm{mp}\). To vary the magnitude of currents being switched, the voltage across all the 10k, 20k, 40k and 80k resistors must be modulated according to the analog input. An analog input of 0 to +10 volts and an 80 k resistor at the input to the 8008 will fulfill this requirement.

\section*{CALIBRATING THE 12 BIT D/A CONVERTER}
1. With all logic inputs high (ones) adjust the output amplifier offset for zero volts out.
2. Put in the word 000011111111 (Quad 1 maximum output Quad 2 and 3 off) and adjust full scale pot for Vo of 15/16 (10V) where full scale output is to be 10 volts.
3. Put in the word 111100001111 and trim the Quad 2 divider for \(V_{O}\) of 15/256 (10V). This adjustment compensates for \(V_{B E}\) mismatches between quads although matched sets are available (see data sheet).
4. Put in the word 111111110000 and trim the Quad 3 divider for Vo of 15/4096 (10V).
5. Finally, with all bits ON (all O's) readjust the full scale factor pot for
\[
V_{0}=4095 / 4096(10 \mathrm{~V})
\]

\section*{SYSTEM INTERFACE REQUIREMENTS}

Using the 8018A series in practical circuits requires consideration of the following interface requirements.
Logic Levels: The 8018A is designed to be compatible with TTL, DTL and RTL logic drive systems. The one constraint imposed on the external voltage levels is that the emitters of the conducting current switch transistors be in the vicinity of -5 V ; this will be the same as the voltage on Pin 6 if the reference transistor is used. When using other than -5 V at Pin 6, the direct bearing on logic threshold should be considered.
Power Supplies: One advantage of the ICL8018A is its tolerance of a wide range of supply voltage. The positive supply voltage need only be large enough (greater than +4.5 V ) to keep \(\mathrm{Q}_{11}\) out of saturation, and the negative supply needs to be more negative than -10V to ensure constant current operation of \(Q_{12}\). The maximum supply voltage of \(\pm 20 \mathrm{~V}\) is dictated by transistor breakdown voltages. It is often convenient to use \(\pm 15 \mathrm{~V}\) supplies in systems with op-amps and other I.C.'s. These supplies tend to be better regulated and free from high current transients found on supplies used to power TTL Logic. As with any high speed circuit, attention to layout and adequate power supply decoupling will minimize switching effects.
Ground: High resolution D/A, e.g., 12 bits require fairly farge logic drive currents. The change from all bits ON to all bits OFF is a considerable change in supply current being returned to ground. Because of this, it is usually advisable to maintain separate ground points for the analog and digital sections.
Resistors: Each quad current switch requires a set of matched resistors scaled proportional to their binary currents as \(\mathrm{R}, 2 \mathrm{R}, 4 \mathrm{R}\) and 8 R . For a 10 V resistor voltage drop and " 2 mA " full scale output current, resistor values of 10 k , \(20 \mathrm{k}, 40 \mathrm{k}\) and 80 k are convenient. Other resistor values can be used, for example, to increase total output current. The
individual switched currents can be increased up to 100\% of their nominal values. The overall accuracy of the complete D/A converter depends on the accuracy of the reference, the accuracy of the quad current switch and tolerance of resistor matching. Because of the binary progression of switched currents, the tolerance of \(80 \mathrm{k} / 10 \mathrm{k}\) match can be twice that of the \(40 \mathrm{k} / 10 \mathrm{k}\) which, in turn, can be twice the tolerance of the \(20 \mathrm{k} / 10 \mathrm{k}\) ratio and still have equal output current errors. The current dividers between quads allows use of less well matched sets of resistors further along in the D/A just as it allows use of \(.01 \%, 0.1 \%\), and \(1 \%\) accurate quad current switches. There are several manufacturers producing the complete precision resistor networks required to implement up to 12 bit D/A converters. Contact Intersil for additional information.*

Figure 9
For further information see the following Applications Bulletins.
A016 "Selecting A/D Converters" by Dave Fullagar.
A018 "Do's and Don'ts of Applying A/D Converters" by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger. following companies:

\section*{Micro Networks Corporation}

5 Barbara Lane
Worcester, Massachusetts 01604
Tel. (617) 756-4635
Allen-Bradley Company
1201 S. Second Street
Milwaukee, Wisconsin 53204
Tel. (414) 671-2000
Hycomp, Inc.
146 Main Street
Maynard, Massachusetts 01754
Tel. (617) 897-4578


\section*{FEATURES}
- 16 bit binary three-state latched outputs plus polarity and overrange. Also 14 and 12 bit versions.
- Ideally suited for interface to UARTs, microprocessors, or other complex circuitry.
- Conversion on demand or continuously.
- Handshake byte-serial transmission synchronously or on demand.
- Guaranteed zero reading for zero volts input.
- True polarity at zero count for precise null detection.
- Single reference voltage for true ratiometric operation.
- Onboard clock and reference.
- Auto-Zero; Auto-Polarity
- Accuracy guaranteed to 1 count.
- All outputs TTL compatible.
- \(\pm 10 \mathrm{~V}\) analog input range
- Status signal available for external sync, \(A / Z\) in preamp, etc.

\section*{GENERAL DESCRIPTION}

The ICL7104, combined with the ICL8052 or ICL8068, forms a member of Intersil's high performance A/D converter family. The 16-bit version, the ICL7104-16, performs the analog switching and digital function for a 16-bit binary A/D converter, with full three-state output, UART handshake capability, and other outputs for a wide range of output interfacing. The ICL7014-14 and ICL7104-12 are 14 and 12bit versions. The analog section, as with all Intersil's integrating converters, provides fully precise Auto-Zero, Auto-Polarity (including \(\pm 0\) null indication), single reference operation, very high input impedance, true input integration over a constant period for maximum EMI rejection, fully ratiometric operation, over-range indication, and a medium quality built-in reference. The chip pair also offers optional input buffer gain for high sensitivity applications, a built-in clock oscillator, and output signals for providing an external Auto-Zero capability in preconditioning circuitry, synchronizing external multiplexers, etc.

\section*{PIN CONFIGURATIONS}

(OUTLINE DWGS DD,JD,PD)

(OUTLINE DWGS DL,JL,PL)

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Part } & \multicolumn{1}{c|}{ Temp. Range } & \multicolumn{1}{c|}{ Package } & \multicolumn{1}{c|}{ Order Number } \\
\hline 8052 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 14-Pin Plastic DIP & ICL8052CPD \\
8052 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 14-Pin Ceramic DIP & ICL8052CDD \\
8052 A & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 14-Pin Plastic DIP & ICL8052ACPD \\
8052 A & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 14-Pin Ceramic DIP & ICL8052ACDD \\
8068 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 14-Pin CERDIP & ICL8068CJD \\
8068 A & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 14-Pin CERDIP & ICL8068ACJD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Part & Temp. Range & Package & Order Number \\
\hline 7104 12-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin CERDIP & ICL7104-12CJL \\
\hline 7104 12-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin Plastic DIP & ICL7104-12CPL \\
\hline 7104 12-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin Ceramic DIP & ICL7104-12CDL \\
\hline 7104 14-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin CERDIP & ICL7104-14CJL \\
\hline 7104 14-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin Plastic DIP & ICL7104-14CPL \\
\hline 7104 14-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin Ceramic DIP & ICL7104-14CDL \\
\hline 7104 16-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin CERDIP & ICL7104-16CJL \\
\hline 7104 16-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin Plastic DIP & ICL7104-16CPL \\
\hline 7104 16-Bit & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 40-Pin Ceramic DIP & ICL7104-16CDL \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}


\section*{Notes:}

1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below \(+70^{\circ} \mathrm{C}\). For higher temperatures, derate \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).
2: For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.
3: Short circuit may be to ground or either supply. Rating applies to \(+70^{\circ} \mathrm{C}\) ambient temperature.
4: Input voltages may exceed the supply voltages provided the input current is limited to \(\pm 100 \mu \mathrm{~A}\).
5: Connecting any digital inputs or outputs to voltages greater than \(V+\) or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ICL7104 before its power supply is established.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7104 ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}++=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CHARACTERISTICS} & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Clock Input & CLOCK 1 & lin & \(\mathrm{Vin}=+5 \mathrm{~V}\) to 0 V & \(\pm 2\) & \(\pm 7\) & \(\pm 30\) & \(\mu \mathrm{A}\) \\
\hline Comparator I/P & COMP IN (Note 1) & lin & \(\mathrm{Vin}=0 \mathrm{~V}\) to +5 V & -10 & \(\pm 0.001\) & +10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Inputs with Pulldown} & \multirow[t]{2}{*}{MODE} & \(\mathrm{IH}_{\mathrm{I}}\) & Vin \(=+5 \mathrm{~V}\) & +1 & +5 & +30 & \(\mu \mathrm{A}\) \\
\hline & & IIL & \(\mathrm{Vin}=0 \mathrm{~V}\) & -10 & \(\pm 0.01\) & +10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Inputs with Pullups} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \left.\begin{array}{l}
\text { SEN, }, \text { R/' } \\
\frac{\mathrm{LBEN}}{\mathrm{MBEN}}, \\
\mathrm{HBEN} \\
\hline \mathrm{CE} / \mathrm{LD}
\end{array}\right\} \text { (Note 2) }
\end{aligned}
\]} & IH & \(\mathrm{Vin}=+5 \mathrm{~V}\) & -10 & \(\pm 0.01\) & +10 & \(\mu \mathrm{A}\) \\
\hline & & IIL & \(\mathrm{Vin}=0 \mathrm{~V}\) & -30 & -5 & -1 & \(\mu \mathrm{A}\) \\
\hline Input High Voltage & All Digital Inputs & \(\mathrm{V}_{\text {IH }}\) & & 2.5 & 2.0 & - & V \\
\hline Input Low Voltage & All Digital Inputs & \(\mathrm{V}_{\mathrm{IL}}\) & & & 1.5 & 1.0 & V \\
\hline \multirow[t]{3}{*}{Digital Outputs Three-Stated On} & \multirow[t]{3}{*}{\begin{tabular}{l}
 \\
BIT n, POL, OR
\end{tabular}} & VOL & \(\mathrm{IOL}=1.6 \mathrm{~mA}\) & - & . 27 & 4 & V \\
\hline & & VOH & \(\mathrm{IOH}=-10 \mu \mathrm{~A}\) & & 4.5 & - & V \\
\hline & & VOH & \(\mathrm{lOH}=-240 \mu \mathrm{~A}\) & 2.4 & 3.5 & - & V \\
\hline \begin{tabular}{l}
Digital \\
Outputs \\
Three-Stated Off
\end{tabular} & BIT \(\bar{n}, \mathrm{POL}, \mathrm{OR}\) & IOL & \(0 \leq\) Vout \(\leq\) V + & -10 & \(\pm .001\) & +10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{6}{*}{Non-Three-State Digital Output} & \multirow[t]{2}{*}{STTS} & VOL & \(\mathrm{IOL}=3.2 \mathrm{~mA}\) & - & . 3 & . 4 & V \\
\hline & & V OH & \(\mathrm{IOH}=-400 \mu \mathrm{~A}\) & 2.4 & 3.3 & - & V \\
\hline & \multirow[t]{2}{*}{CLOCK 2} & VOL & \(1 \mathrm{OL}=320 \mu \mathrm{~A}\) & & 0.5 & & V \\
\hline & & VOH & \(\mathrm{IOH}^{\prime}=-320 \mu \mathrm{~A}\) & & 4.5 & & V \\
\hline & \multirow[t]{2}{*}{CLOCK 3 (-12, -14 ONLY)} & VOL & \(1 \mathrm{OL}=1.6 \mathrm{~mA}\) & & . 27 & . 4 & V \\
\hline & & \(\mathrm{V}_{\mathrm{OH}}\) & \(1 \mathrm{OH}=-320 \mu \mathrm{~A}\) & 2.4 & 3.5 & & V \\
\hline \multirow{4}{*}{Switch} & Switch1 & rDS(on) & & - & 25k & & \(\Omega\) \\
\hline & Switches 2,3 & ros(on) & & - & 4k & 20k & \(\Omega\) \\
\hline & Switches 4,5,6,7,8,9 & rDS(on) & & - & 2k & 10k & \(\Omega\) \\
\hline & Switch Leakage & ID(off) & & - & 15 & & pA \\
\hline Clock & Clock Freq. (Note 4) & & & DC & 200 & 400 & kHz \\
\hline \multirow[t]{3}{*}{Supply Currents} & +5 V Supply Current All outputs high impedance & \(1+\) & Freq. \(=200 \mathrm{kHz}\) & & 200 & 600 & \(\mu \mathrm{A}\) \\
\hline & +15V Supply Current & \(1++\) & Freq. \(=200 \mathrm{kHz}\) & & . 3 & 1.0 & mA \\
\hline & -15V Supply Current & \(1-\) & Freq. \(=200 \mathrm{kHz}\) & & 25 & 200 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{3}{*}{Supply Voltage Range} & Logic Supply & V+ & Note 5 & 4.0 & & +11.0 & V \\
\hline & Positive Supply & V++ & & +10.0 & & +16.0 & V \\
\hline & Negative Supply & V- & & -16.0 & & -10.0 & V \\
\hline
\end{tabular}

Note 1: This spec applies when not in Auto-Zero phase.
Note 2: Apply only when these pins are inputs, i.e., the mode pin is low, and the 7104 is not in handshake mode.
Note 3: Apply only when these pins are outputs, i.e., the mode pin is high or the 7104 is in handshake mode.
Note 4: Clock circuit shown in Figs. 10 and 11.
Note 5: \(\quad \mathrm{V}+\) must not be more positive than \(\mathrm{V}++\).

8068 ELECTRICAL CHARACTERISTICS
(VSUPP \(= \pm 15 \mathrm{~V}\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{8068} & \multicolumn{3}{|c|}{8068A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{10}{|c|}{EACH OPERATIONAL AMPLIFIER} \\
\hline Vos & Input Offset Voltage & \(\mathrm{V}_{\text {CM }}=0 \mathrm{~V}\) & & 20 & 65 & & 20 & 65 & mV \\
\hline İN & Input Current (either input) (Note 1) & \(\mathrm{V}_{\text {CM }}=0 \mathrm{~V}\) & & 175 & 250 & & 80 & 150 & PA \\
\hline CMRR & Common-Mode Rejection Ratio & \(\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}\) & 70 & 90 & & 70 & 90 & & dB \\
\hline & Non-Linear Component of CommonMode Rejection Ratio (Note 2) & \(\mathrm{VCM}^{\text {c }}= \pm 2 \mathrm{~V}\) & & 110 & & & 110 & & \\
\hline Av & Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega\) & 20,000 & & & 20,000 & & & V/V \\
\hline SR & Slew Rate & & & 6 & & & 6 & & \(\mathrm{V} / \mathrm{\mu} \mathrm{~s}\) \\
\hline GBW & Unity Gain Bandwidth & & & 2 & & & 2 & & MHz \\
\hline ISC & Output Short-Circuit Current & & & 5 & 10 & & 5 & 10 & mA \\
\hline \multicolumn{10}{|c|}{COMPARATOR AMPLIFIER} \\
\hline Avol & Small-signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega\) & & 4000 & & & & & V/V \\
\hline + \({ }^{\text {o }}\) & Positive Output Voltage Swing & & +12 & +13 & & +12 & +13 & & V \\
\hline - \(\mathrm{V}_{0}\) & Negative Output Voltage Swing & & -2.0 & -2.6 & & -2.0 & -2.6 & & V \\
\hline \multicolumn{10}{|c|}{VOLTAGE REFERENCE} \\
\hline Vo & Output Voltage & & 1.5 & 1.75 & 2.0 & 1.60 & 1.75 & 1.90 & V \\
\hline Ro & Output Resistance & & & 5 & & & 5 & & Ohms \\
\hline TC & Temperature Coefficient & \()\) & & 50 & & & 40 & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline VSUPP & Supply Voltage Range & & \(\pm 10\) & & \(\pm 16\) & \(\pm 10\) & & \(\pm 16\) & V \\
\hline ISUPP & Supply Current Total & & & & 14 & & 8 & 14 & mA \\
\hline
\end{tabular}

8052 ELECTRICAL CHARACTERISTICS
(VSUPP \(= \pm 15 \mathrm{~V}\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{8052} & \multicolumn{3}{|c|}{8052A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{10}{|c|}{EACH OPERATIONAL AMPLIFIER} \\
\hline Vos & Input Offset Voltage & \(\mathrm{V}_{\text {CM }}=0 \mathrm{~V}\) & & 20 & 75 & & 20 & 75 & mV \\
\hline IIN & Input Current (either input) (Note 1) & \(\mathrm{V}_{\text {CM }}=0 \mathrm{~V}\) & & 5 & 50 & & 2 & 10 & PA \\
\hline CMRR & Common-Mode Rejection Ratio & \(\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}\) & 7.0 & 90 & & 70 & 90 & & dB \\
\hline & Non-Linear Component of CommonMode Rejection Ratio (Note 2) & \(\mathrm{VCM}^{\text {c }}= \pm 2 \mathrm{~V}\) & & 110 & & & 110 & & \\
\hline Av & Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 20,000 & & & 20,000 & & & V/V \\
\hline SR & Slew Rate & & & 6 & & & 6 & * & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline GBW & Unity Gain Bandwidth & & & 1 & & & 1 & & MHz \\
\hline Isc & Output Short-Circuit Current & & & 20 & 100 & & 20 & 100 & mA \\
\hline \multicolumn{10}{|c|}{COMPARATOR AMPLIFIER} \\
\hline Avol & Small-signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega\) & & 4000 & & & & & V/V \\
\hline +Vo & Positive Output Voltage Swing & & +12 & +13 & & +12 & +13 & & V \\
\hline - \(\mathrm{V}_{0}\) & Negative Output Voltage Swing & & -2.0 & -2.6 & & -2.0 & -2.6 & & V \\
\hline \multicolumn{10}{|c|}{VOLTAGE REFERENCE} \\
\hline Vo & Output Voltage & & 1.5 & : 1.75 & 2.0 & 1.60 & 1.75 & 1.90 & V \\
\hline Ro & Output Resistance & & & 5 & & & 5 & & ohms \\
\hline TC & Temperature Coefficient & & & 50 & & & 40 & & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline VSUPP & Supply Voltage Range & & \(\pm 10\) & & \(\pm 16\) & \(\pm 10\) & & \(\pm 16\) & V \\
\hline ISUPP & Supply Current Total & & & 6 & 12 & & 6 & 12 & mA \\
\hline
\end{tabular}

Note 1: The input bias currents are junction leakage currents which approximately double for every \(10^{\circ} \mathrm{C}\) increase in the junction temperature, \(T_{J}\). Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, \(\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{TA}+\theta \mathrm{j} A \mathrm{Pd}\) \({ }_{*}\) where \(\theta j A\) is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 2: This is the only component that causes error in dual-slope converter.

SYSTEM ELECTRICAL CHARACTERISTICS: 8068/7104
\(\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}\right.\) Clock Frequency \(=200 \mathrm{KHz}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{8068A/7104-12} & \multicolumn{3}{|c|}{8068A/7104-14} & \multicolumn{3}{|c|}{8068A/7104-16} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Zero Input Reading & \[
\begin{array}{|l|}
V_{\text {in }}=0.0 \mathrm{~V} \\
\text { Full Scale }=4.000 \mathrm{~V}
\end{array}
\] & \(-.000\) & \(\pm .000\) & +. 000 & -0.0000 & \(\pm 0.0000\) & +0.0000 & -0.0000 & \(\pm 0.0000\) & +0.0000 & Hexadecimal Reading \\
\hline Ratiometric Reading (1) & \[
\begin{array}{|l|}
V_{\text {in }}=V_{\text {Ref. }} \\
\text { Full Scale }=4.000 \mathrm{~V}
\end{array}
\] & 7FF & 800 & 801 & 1FFF & 2000 & 2001 & 7FFF & 8000 & 8001 & Hexadecimal Reading \\
\hline Linearity over \(\pm\) Full Scale (error of reading from best straight line) & \(-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}\) & & 0.2 & 1 & & 0.5 & 1 , & & 0.5 & 1 & LSB \\
\hline Differential Linearity (difference between worse case step of adjacent counts and ideal step & \(-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}\) & & . 01 & & & . 01 & & & . 01 & & LSB \\
\hline Rollover error (Difference in reading for equal positive \& negative voltage near full scale) & \(-\mathrm{V}_{\text {in }} \equiv+\mathrm{V}_{\text {in }} \approx 4 \mathrm{~V}\) & & 0.2 & 1 & & 0.5 & 1 & & 0.5 & 1 & LSB \\
\hline Noise (P-P value not exceeded \(95 \%\) of time) & \[
\begin{array}{|l|}
\hline \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\
\text { Full scale }=4.000 \mathrm{~V} \\
\hline
\end{array}
\] & & 3 & & & 2 & & & 2 & & \(\mu \mathrm{V}\) \\
\hline Leakage Current at Input (2) & \(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\) & & 200 & 265 & & 100 & 165 & & 100 & 165 & pA \\
\hline Zero Reading Drift & \[
\begin{aligned}
& V_{\text {in }}=O V \\
& 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}
\end{aligned}
\] & & 1 & 5 & & 0.5 & 2 & & 0.5 & 2 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor Temperature (3) Coefficient & \[
\begin{array}{|l|}
\hline V_{\text {in }}=+4 \mathrm{~V} \\
0 \leq \mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C} \\
\text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { ) } \\
\hline
\end{array}
\] & & 2 & 5 & & 2 & 5 & & 2 & 5 & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{SYSTEM ELECTRICAL CHARACTERISTICS: 8052/7104}
\(\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}\right.\) Clock Frequency \(=200 \mathrm{KHz}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{8052/7104-12} & \multicolumn{3}{|c|}{8052A/7104-14} & \multicolumn{3}{|c|}{8052A/7104-16} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Zero Input Reading & \[
\begin{aligned}
& V_{\text {in }}=0.0 \mathrm{~V} \\
& \text { Full Scale }=4.000 \mathrm{~V}
\end{aligned}
\] & -. 000 & \(\pm .000\) & +. 000 & -0.0000 & \(\pm 0.0000\) & +0.0000 & -0.0000 & \(\pm 0.0000\) & +0.0000 & Hexadecimal Reading \\
\hline Ratiometric Reading (3), & \[
\begin{aligned}
& V_{\text {in }}=V_{\text {Ref. }} \\
& \text { Full Scale }=4.000 \mathrm{~V}
\end{aligned}
\] & 7FF & 800 & 801 & 1FFF & 2000 & 2001 & 7FFF & 8000 & 8001 & Hexadecimal Reading \\
\hline Linearity over \(\pm\) Full Scale (error of reading from best straight line) & \(-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}\) & & 0.2 & 1 & & 0.5 & 1 & & 0.5 & 1 & LSB \\
\hline Differential Linearity (difference between worse case step of adjacent counts and ideal step) & \(-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}\) & & . 01 & & - & . 01 & & & . 01 & & LSB \\
\hline Rollover error (Difference in reading for equal positive \& negative voltage near full scale) & \(-\mathrm{V}_{\text {in }} \equiv+\mathrm{V}_{\text {in }} \approx 4 \mathrm{~V}\) & & 0.2 & 1 & & 0.5 & 1 & & 0.5 & 1 & LSB \\
\hline Noise (P-P value not exceeded \(95 \%\) of time) & \begin{tabular}{l}
\[
V_{\text {in }}=0 \mathrm{~V}
\] \\
Full scale \(=4.000 \mathrm{~V}\)
\end{tabular} & & \[
\begin{aligned}
& 20 \\
& 50
\end{aligned}
\] & & & 30 & & & 30 & & \(\mu \mathrm{V}\) \\
\hline Leakage Current at Input (2). & \(V_{\text {in }}=0 \mathrm{~V}\) & & 30 & 80 & & 20 & 30 & & 20 & 30 & pA \\
\hline Zero Reading Drift : & \[
\begin{aligned}
& v_{\text {in }}=O V \\
& 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C}
\end{aligned}
\] & & 1 & 5 & & 0.5 & 2 & & 0.5 & 2 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor Temperature Coefficient & \[
\begin{array}{|l|}
\hline V_{\text {in }}=+4 \mathrm{~V} \\
0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\
\text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { ) } \\
\hline
\end{array}
\] & & 3 & 15 & & 2 & 5 & & 2 & 5 & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Tested with low dielectric absorption integrating capacitor.
Note 2: The input bias currents are junction leakage currents which approximately double for every \(10^{\circ} \mathrm{C}\) increase in the junction temperature, TJ. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, \(\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+^{\prime} \theta \mathrm{j} A \mathrm{Pd}\) where \(\theta \mathrm{jA}\) is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 3: The temperature range can be extended to \(70^{\circ} \mathrm{C}\) and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high temperature leakage of the 8068 . See note 2 above.


AC CHARACTERISTICS \((\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=+5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V})\)


TABLE 2: Handshake Timing Requirements
\begin{tabular}{|c|c|c|c|c|c|}
\hline NAME & DESCRIPTION & MIN & TYP & MAX & UNITS \\
\hline \(t_{\text {mw }}\) & MODE Pulse (minimum) & & 20 & & \multirow{14}{*}{ns} \\
\hline \(\mathrm{t}_{\text {sm }}\) & MODE pin set-up time & & -150 & & \\
\hline \(t_{\text {me }}\) & MODE pin high to low \(Z \overline{C E / L D}\) high delay & & 200 & & \\
\hline \(t_{\text {mb }}\) & MODE pin high to XBEN low \(Z\) (high) delay & & 200 & & \\
\hline \(t_{\text {cel }}\) & CLOCK 1 high to \(\overline{C E / L D}\) low delay & & 700 & & \\
\hline \(t_{\text {ceh }}\) & CLOCK 1 high to \(\overline{C E / L D}\) high delay & & 600 & & \\
\hline \(t_{c b l}\) & CLOCK 1 high to XBEN low delay & & 900 & & \\
\hline \(\mathrm{tcbh}^{\text {chen }}\) & CLOCK 1 high to \(\overline{\text { XBEN }}\) high delay & & 700 & & \\
\hline \(t_{\text {cah }}\) & CLOCK 1 high to data enabled delay & & 1100 & & \\
\hline tcdil & CLOCK 1 low to data disabled delay & & 1100 & & \\
\hline tss & Send ENable set-up time & & -350 & & \\
\hline \(\mathrm{t}_{\mathrm{cbz}}\) & CLOCK 1 high to XBEN disabled delay & & 2000 & & \\
\hline \(\mathrm{t}_{\text {cez }}\) & CLOCK 1 high to \(\overline{C E / L D}\) disabled delay & & 2000 & & \\
\hline \(\mathrm{t}_{\text {cwh }}\) & CLOCK 1 High Time & 1250 & 1000 & & \\
\hline
\end{tabular}


Timing Relationships In Handshake Mode

TABLE 3: Pin Assignment and Function Description
\begin{tabular}{|c|c|c|c|}
\hline PIN & SYMBOL & OPTION & DESCRIPTION \\
\hline 1 & \(\mathrm{V}(++)\) & tr & Positive Supply Voltage Nominally +15 V \\
\hline 2 & GND & & Digital Ground . OV, ground return \\
\hline 3 & STTS & . & STaTuS output. HI during Integrate and Deintegrate until data is latched .LO when analog section is in Auto-Zero configuration. \\
\hline 4 & POL & & POLarity. Three-state output. HI for positive input. \\
\hline 5 & OR & & OverRange. Three-state output. \\
\hline 6 & \begin{tabular}{l}
BIT 16 \\
BIT 14 \\
BIT 12
\end{tabular} & \[
\begin{array}{r}
\hline-16 \\
-14 \\
-12 \\
\hline
\end{array}
\] & (Most significant bit) \\
\hline 7 &  & \[
\begin{aligned}
& -16 \\
& -14 \\
& -12 \\
& \hline
\end{aligned}
\] & \\
\hline 8 &  & \[
\begin{aligned}
& -16 \\
& -14 \\
& -12
\end{aligned}
\] & \\
\hline 9 & \begin{tabular}{l}
BIT 13 \\
BIT 11 \\
BIT 9
\end{tabular} & \[
\begin{aligned}
& -16 \\
& -14 \\
& -12
\end{aligned}
\] & \\
\hline 10 & \begin{tabular}{l}
BIT 12 \\
BIT 10 \\
nc
\end{tabular} & \[
\begin{aligned}
& -16 \\
& -14 \\
& -12
\end{aligned}
\] & Data Bits, Three-state outputs. See Table 4 for \\
\hline 11 & \begin{tabular}{l}
BIT 11 \\
BIT 9 \\
nc
\end{tabular} & \[
\begin{aligned}
& -16 \\
& -14 \\
& -12
\end{aligned}
\] & bytes.
\[
\mathrm{HIGH}=\text { true }
\] \\
\hline 12 & BIT 10 nc nc & \[
\begin{array}{r}
\hline-16 \\
-14 \\
-12 \\
\hline
\end{array}
\] & \\
\hline 13 & BIT 9 nc nc & \[
\begin{aligned}
& \hline-16 \\
& -14 \\
& -12 \\
& \hline
\end{aligned}
\] &  \\
\hline 14 & BIT 8 & & \\
\hline 15 & BIT 7 & & \\
\hline 16 & BIT 6 & & \\
\hline 17 & BIT 5 & & \\
\hline 18 & BIT 4. & & \\
\hline 19 & BIT 3 & & \\
\hline 20 & BIT 2 & & \\
\hline 21 & BIT 1 & & Least significant bit \\
\hline 22 & LBEN & - & Low B̄yte ENable. If not in handshake mode (see pin 27) when LO (with \(\overline{\mathrm{CE}} / \overline{\mathrm{LD}}\), pin 30) activates low-order byte outputs, BITS 1-8 When in handshake mode (see pin 27), serves as a low-byte flag output. See Figures 8,9 and 10. \\
\hline 23 & \begin{tabular}{l}
\(\overline{M B E N}\) \\
HBEN
\end{tabular} & \[
\begin{array}{r}
-16 \\
-14 \\
-12
\end{array}
\] & \(\bar{M} i d ~ \overline{B y t e} \overline{E N a b l e . ~ A c t i v a t e s ~}\) BITS 9-16, see LBEN (pin 22) High Byte ENable. Activates BITS 9-14, POL, OR, see LBEN (pin 22) \\
\hline 24 & \begin{tabular}{l}
HBEN \\
CLOCK3
\end{tabular} & \[
\begin{aligned}
& -16 \\
& \\
& -14 \\
& -12 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
High \(\bar{B} y t e ~ E N a b l e . ~\) \\
Activates POL, OR, see \(\overline{\text { LBEN ( } p \text { in } 22 \text { ). }}\) \\
RC oscillator pin. Can be used as clock output.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PIN & SYMBOL & DESCRIPTION \\
\hline 25 & CLOCK1 & Clock input. External clock or oscillator. \\
\hline 26 & CLOCK2 & Clock output. Crystal or RC oscillator. \\
\hline 27 & MODE & Input LO;Direct output mode where \(\overline{C E} / \overline{L D}, \overline{H B E N}, \overline{M B E N}\), and \([\overline{L B E N}\) act as inputs directly controlling byte outputs. If pulsed HI causes immediate entry into handshake mode (see Figure 9). If HI, enables \(\overline{C E / L D}, \overline{H B E N}, \overline{M B E N}\), and LBEN as outputs. Handshake mode will be entered and data output as in Figures 7 \& 8 at conversion completion. \\
\hline 28 & R/H & Run/ Hold; Input HI-conversions continuously performed every 217 (-16) \(215(-14)\) or \(213(-12)\) clock pulses. Input LO sonversion in progress completed, converter will stop in Auto-Zero 7 counts before input integrate. \\
\hline 29 & SEN & Send-ENable: Input controls timing of byte transmission in handshake mode. HI indicates "send'. \\
\hline 30 & \(\overline{\mathrm{CE}} / \overline{\mathrm{LD}}\) & \(\overline{\text { Cuhip-Enable/Loā. With MODE (pin 27) }}\) LO, \(\overline{C E} / \overline{\mathrm{LD}}\) serves as a master output enable; when HI , the bit outputs and POL, OR are disabled. With MODE HI, pin serves as a \(\overline{L o a \bar{D}}\) strobe (-ve going) used in handshake mode. See Figures 7 \& 8 . \\
\hline 31 & V(+) & Positive Logic Supply Voltage. Nominally +5 V . \\
\hline 32 & AN.IN & ANalog INput. High side. \\
\hline 33 & BUF IN & BUFfer INput to analog chip (ICL8052 or ICL8068) \\
\hline 34 & REFCAP2 & REFerence CAPacitor (negative side) \\
\hline 35 & AN.GND. & ANalog GrouND. Input low side and reference low side. \\
\hline 36 & A-Z & Auto-Zero node. \\
\hline 37 & VREF & Voltage REFerence input (positive side) \\
\hline 38 & REFCAP1 & REFerence CAPacitor (positive side) \\
\hline 39 & COMP-IN & COMParator INput from 8052/8068 \\
\hline 40 & V(-) & Negative Supply Voltage. Nominally -15V. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{7104-16} & \multicolumn{18}{|c|}{CE/LD} \\
\hline & \multicolumn{2}{|l|}{HBEN} & \multicolumn{8}{|c|}{MBEN} & \multicolumn{8}{|c|}{LBEN} \\
\hline & POL & O/R & B16 & B15 & B14 & B13 & B12 & B11 & B10 & B9 & B8 & B7 & B6 & B5 & B4 & B3 & B2 & B1 \\
\hline - & & & \multicolumn{8}{|c|}{HBEN} & \multicolumn{8}{|c|}{LBEN} \\
\hline 7104-14 & & & POL & O/R & B14 & B13 & B12 & B11 & B10 & B9 & B8 & B7. & B6 & B5 & B4 & B3 & B2 & B1 \\
\hline 7104-12 & & & POL & O/R & & & B12 & B11 & B10 & B9 & B8 & B7 & B6 & B5 & B4 & B3 & B2 & B1 \\
\hline
\end{tabular}

TABLE 4: Three-State Byte Formats and ENable Pins.

Fig. 1 shows the functional block diagram of the operating system. For a detailed explanation, refer to fig. 2 below.


Figure 1: 8052A (8068A)/7104 16/14/12 Bit A/D Converter Functional Block Diagram

\section*{DETAILED DESCRIPTION}

\section*{Analog Section}

Figure 2 shows the equivalent Circuit of the Analog Section of both the ICL7104/8052 and the ICL7104/8068 in the 3 different phases of operation. If the Run/Hold pin is left open or tied to \(\mathrm{V}+\), the system will perform conversions at a rate
determined by the clock frequency: 131,072 for \(-16 ; 32,368\) for -14 ; and 8092 for -12 clock periods per cycle (see Figure conversion timing).


Figure 2A: Phase I Auto-Zero

\section*{1. Auto-Zero Phase I Fig. 2A}

During Auto-Zero, the input of the buffer is shorted to analog ground thru switch 2, and switch 1 closes a loop around the integrator and comparator. The purpose of
the loop is to charge the Auto-Zero capacitor until the integrator output no longer changes with time. Also, switches 4 and 9 recharge the reference capacitor to VREF.


Figure 2B: Phase II Integrate Input
integrator output will not change but will remain stationary during the entire Input Integrate cycle. If Vin is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to \(\operatorname{ViN}\). At the end of this phase, the sign of the ramp is latched into the polaritv F/F.
2. Input Integrate Phase II Fig. 2B

During input integrate the Auto-Zero loop is opened and the analog input is connected to the buffer input thru switch 3. (The reference capacitor is still being charged to \(V_{\text {REF }}\) during this time.) If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus the


Figure 2C: Phase III + Deintegrate

Deintegrate Phase III Fig. 2C \& D
During the Deintegrate phase, the switch drive logic uses the output of the polarity F/F in determining whether to close switches 6 and 9 or 7 and 8 . If the input signal was positive, switches 7 and 8 are closed and a voltage which is VREF more negative than during Auto-Zero is impressed on the buffer input. Negative inputs will cause \(+V_{\text {ref }}\) to be applied to the buffer input via switches 6 and 9 . Thus, the reference capacitor generates the equivalent of a \((+)\) reference or a \((-)\) reference from the single reference voltage with negligible
error. The reference voltage returns the output of the integrator to the zero-crossing point established in Phase \(I\). The time, or number of counts, required to do this is proportional to the input voltage. Since the Deintegrate phase can be twice as long as the Input integrate phase, the input voltage required to give a full scale reading \(=2 V_{\text {REF }}\).
Note: Once a zero crossing is detected, the system automatically reverts to Auto-Zero phase for the leftover Deintegrate time (unless Run/Hold is manipulated, see Run/ Hold Input in detailed description, digital section).


Figure 2D: Phase III - Deintegrate

\section*{Buffer Gain}

At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the autozero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system. The circuit recommended for doing this with the ICL8068/ICL7104 is shown in Figure \(\overline{4}\). With careful layout, the circuit shown can achieve effective input noise voltages on the order of \(1-2 \mu \mathrm{~V}\), allowing full 16 -bit use with full scale inputs of as low as 150 mV . Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome. For further discussion, see App. Note A030.


Figure 4: Adding Buffer Gain to ICL8068

Table 5: Typical Component Values
\(\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}\), Clock Freq \(=200 \mathrm{kHz}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ICL8052/8068 with & \multicolumn{3}{|c|}{ ICL7104-16 } & \multicolumn{2}{c|}{ ICL7104-14 } & \multicolumn{2}{|c|}{ ICL77104-12 } & UNITS \\
\hline Full scale VIN & 200 & 800 & 4000 & 100 & 4000 & 50 & 4000 & mV \\
\hline Buffer Gain & 10 & 1 & 1 & 10 & 1 & 10 & 1 & \\
\hline RINT & 100 & 43 & 200 & 47 & 180 & 27 & 200 & \(\mathrm{k} \Omega\) \\
\hline CINT \(_{\text {CAZ }_{\text {AR }}}^{\text {Cref }}\) & .33 & .33 & .33 & 0.1 & 0.1 & .022 & .022 & \(\mu \mathrm{~F}\) \\
\hline VREF \(^{\text {Resolution }}\) & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & .47 & .47 & \(\mu \mathrm{~F}\) \\
\hline & 10 & 1.0 & 1.0 & 10 & 1.0 & 4.7 & 4.7 & \(\mu \mathrm{~F}\) \\
\hline
\end{tabular}

\section*{ICL8052 vs ICL8068}

The ICL8052 offers significantly lower input leakage currents than the ICL8068, and may be found preferable in systems with high input impedances. However, the ICL8068 has substantially lower noise voltage, and for systems where system noise is a limiting factor, particularly in low signal level conditions, will give better performance.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ COUNTS } \\
\hline & Phase I & Phase II & Phase III \\
\hline-16 & 32768 & 32768 & 65536 \\
\hline-14 & 8192 & 8192 & 16384 \\
\hline-12 & 2048 & 2048 & 4096 \\
\hline
\end{tabular}

Figure 3: Conversion Timing

\section*{COMPONENT VALUE SELECTION}

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

\section*{Integrating Resistor}

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to \(40 \mu \mathrm{~A}\) give good results with a nominal of \(20 \mu \mathrm{~A}\). The exact value may be chosen by
\[
\text { RINT }=\frac{\text { full scale voltage }{ }^{*}}{20 \mu \bar{A}}
\]
*Note: If gain is used in the buffer amplifier then -
\[
\mathrm{R}_{\mathrm{INT}}=\frac{(\text { Buffer gain) (full scale voltage) }}{20 \mu \overline{\mathrm{~A}}}
\]

\section*{Integrating Capacitor}

The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at +14 volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. In general, the value of CINT is give by
\[
\text { CINT }=\frac{\overline{\left[\begin{array}{l}
(32768 \text { for }-16 \\
(8192 \text { for }-14 \times \text { clock period }) \\
(2048 \text { for }-12
\end{array}\right.}}{\text { Integrator output voltage swing }}
\]

A very important characteristic of the integrating capacitor is that it have low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale (100...000) and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

\section*{Auto-Zero and Reference Capacitor}

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

Note: When gain is used in the buffer amplifier the reference capacitor should be substantially larger than the auto-zero capacitor. As a rule of thumb, the reference capacitor should be approximately the gain times the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

\section*{Reference Voltage}

The analog input required to generate a full scale output is \(V_{\text {IN }}=2\) V \(_{\text {REF }}\).
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7104 at 16 bits is one part in 65536, or 15.26 ppm . Thus, if the reference has a temperature coefficient of \(50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) (on board reference) a temperature change of \(1 / 3^{\circ} \mathrm{C}\) will introduce a one-bit absolute error. For this reason, it is recommended that an external high quality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

\section*{8052/7104 8068/7104}

\section*{DETAILED DESCRIPTION}

\section*{Digital Section}

The digital section includes the clock oscillator circuit, a 16, 14 or 12 bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic and UART handshake logic, as shown in the Block Diagram Figure \(\overline{5}\) (16 bit version shown).
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined under "ICL7104 Electrical Characteristics". For minimum power consumption, all inputs should swing from GND (low) to \(\mathrm{V}^{+}\) (high). Inputs driven from TTL gates should have \(3-5 \mathrm{k} \Omega\) pullup resistors added for maximum noise immunity.

\section*{MODE Input}

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in three bytes for the 7104-16 or two bytes for the 7104-14 and 7104-12, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

\section*{STaTuS Output}

During a conversion cycle, the STaTuS output goes high at the beginning of Input Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 3 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STaTuS is low) to drive interrupts, or for monitoring the status of the converter.

\section*{Run/Hold Input}

When the Run/-̄old input is connected to \(\mathrm{V}+\) or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 3). (See under "Handshake Mode" for exception.) In this mode of operation, the conversion cycle will be performed in 131,072 for 7104-16, 32768 for 7104-14 and 8192 for 7104-2 clock periods, regardless of the resulting value.
If Run/Hold goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If Run/Hold stays or goes low, the converter will ensure a minimum Auto-Zero time, and then wait in Auto-Zero until the Run/Hold input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at Run/Hold. See Figure 6 for details.
Using the Run/Hold input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in Auto-Zero with Run/त्Hold low. When Run/Hold goes high the conversion is started, and when the STaTuS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). Run/ \(\bar{H} o l d\) may now go low terminating Deintegrate and ensuring a minimum AutoZero time before stopping to wait for the next conversion. Alternately, Run/Hold can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the Run/Hold input can be provided by connecting it to the CLOCK3 \((-12,-14)\), CLOCK2 \((-16)\) Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on Auto-Zero performance.


Figure 5: Digital Section


Figure 6: Run/Hold Operation

If the Run/Fold input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for Run/Hold to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

\section*{Direct Mode}

When the MODE pin is left at a low level, the data outputs[bits 1 through 8 low order byte, see Table 4 for format of middle (-16) and high order byteslare accessible under control of the byte and chip ENable terminals as inputs. These ENable inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip ENable input is low, taking a byte ENable
input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used. The timing requirements for these outputs are shown under AC Characteristics and Table 1.

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STaTuS output will prevent this. Data is never updated while STaTuS is low. Also note the potential bus conflict described under "Initial Clear Circuitry".


Figure 7: Handshake With SEN Held Positive

\section*{Handshake Mode}

The handshake output mode is provided as an alternative means of interfacing the ICL7104 to digital systems, where the \(A / D\) converter becomes active in controlling the flow of data instead of passively responding to chip and byte ENable inputs. This mode is specifically designed to allow a direct interface between the ICL7104 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7104 provides all the control and flag signals necessary to sequence the three (ICL7106-16) or two (ICL7104-14, -12) bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.
Entry into the handshake mode will occur if either of two conditions are fulfilled; first, if new data is latched (i.e. a conversion is completed) while MODE pin (pin 27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handshake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion (other than those completed during handshake operations) will start a new
handshake operation, while if the MODE pin is pulsed high, handshake operations can be obtained "on demand."
When the converter enters the handshake mode, or when the MODE input is high, the chip and byte ENable terminals become TTL-compatible outputs which provide the control signals for the output cycle. The Send ENable pin (SEN) ipin 29) is used as an indication. of the ability of the external device to receive data. The condition of the line is sensed once every clock pulse, and if it is high, the next (or first) byte is enabled on the next rising CLOCK 1 (pin 25) clock edge, the corresponding byte ENable line goes low, and the Chip ENable/LoaD line (pin 30) (CE/LD) goes low for one full clock pulse only, returning high.
On the next falling CLOCK 1 clock pulse edge, if SEN remains , high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated off). One half pulse later, the byte ENable pin will be cleared high, and (unless finished) the \(\overline{C E} / \overline{L D}\) and the next byte \(\overline{E N}\) able pin will go low. This will continue until all three ( 2 in the case of 12 and 14 bit devices) bytes have been sent. The bytes are individually put into the low impedance state i.e.: threestated on during most of the time that their byte ENable pin is (active) low. When receipt of the last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The byte and chip ENable will be three-stated off, if MODE is low, but held high by their (weak) pullups. These timing relationships are illustrated in Figure 7, 8, and 9, and Table 2.


Figure 8: Handshake - Typical UART Interface Timing

Figure 7 shows the sequence of the output cycle with SEN held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the \(\overline{C E} / \overline{\mathrm{LD}}, \overline{\mathrm{LBEN}}, \overline{\mathrm{MBEN}}\) and \(\overline{\mathrm{HBEN}}\) terminals are active as outputs). The high level at the SEN input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the \(\overline{C E} / \overline{L D}\) and the \(\overline{\text { HBEN }}\) outputs assume a low level and the high-order byte (POL and OR, and except for -16 , Bis \(9-14\) ) outputs are enabled. The \(\overline{C E} / \overline{L D}\) output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte \(\overline{\mathrm{EN}}\) able remains low for two clock periods. Thus the \(\overline{C E} / \overline{L D}\) output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte ENable as an output may be used as a byte identification flag. With SEN remaining high the converter completes the output cycle using \(\overline{\mathrm{CE}} / \overline{\mathrm{LD}}, \overline{\mathrm{MBEN}}\) and \(\overline{\mathrm{LBEN}}\) while the remaining byte outputs (see Table 4) are activated. The handshake mode is terminated when all bytes are sent ( 3 for 16, 2 for \(-14,-12\) ).
Figure 8 shows an output sequence where the SENinput is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEN input to the ICL7104 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the \(\overline{C E} /[\bar{D}\) terminal of the ICL7104 drives the TBRL (Transmitter Buffer Register Load) input to the UART.

The data outputs are paralleled into the eight Transmitter Buffer Register inputs.
Assuming the UART Transmitter Buffer Register is empty, the SEN input will be high when the handshake mode is entered after new data is stored. The \(\overline{C E} / \overline{L D}\) and \(\overline{H B E N}\) terminals will go low after SEN is sensed, and the high order byte outputs become active. When \(\overline{\mathrm{CE}} / \overline{\mathrm{LD}}\) goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7104 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the \(\overline{C E} / \overline{\mathrm{LD}}\) and \(\overline{\operatorname{MBEN}}(-16)\) or \(\overline{\mathrm{LBEN}}\) outputs go low, and the corresponding byte outputs become active. Similarly, when the \(\overline{C E} / \overline{\mathrm{D}}\) returns high at the end of one clock period, the enabled data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7104 internal clock high to low edge, disabling the data outputs. For the 16 bit device, the sequence is repeated for LBEN. One-half internal clock later, the handshake mode will be cleared, and the chip and byte ENable terminals return high and stay active (as long as MODE stays high). With the MODE input remaining high as in these examples, the converter will output the results of every conversion

- - - = THREE-STATE HIGH IMPEDANCE
- \(\boldsymbol{d}-=\) THREE-STATE WITH PULLUP

Figure 9: Handshake Triggered By Mode
except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 11 shows a handshake output sequence triggered by such an edge. In addition, the SEN input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEN input, and the sequence for the first (high order) byte is similar to the sequence for the other bytes. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STaTuS output and Run/Hold input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

\section*{Initial Clear Circuitry}

The internal logic of the 7104 is supplied by an internal regulator between V++ and Digital Ground. The regulator includes a low-voltage detector that will clear various registers. This is intended to ensure that on initial power-up, the control logic comes up in Auto-Zero, with the 2nd, 3rd, and 4th MSB bits cleared, and the "mode" FF cleared (i.e. in "direct" mode). This, however, will also clear these registers if the supply voltage "glitches" to a low enough value. Additionally, if the supply voltage comes up too fast, this clear pulse may be too narrow for reliable clearing. In general, this is not a problem, but if the UART internal "MODE" FF should come up set, the byte and chip ENable lines will become active outputs. In many systems this could lead to buss conflicts, especially in non-handshake systems. In any case, SEN should be high (held high for nonhandshake systems) to ensure that the MODE FF will be cleared as fast as possible (see Fig. 7 for timing). For these and other reasons, adequate supply bypass is recommended.

\section*{Oscillator}

The ICL7104-14 and -12 are provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator.
Figure 10 shows the oscillator configured for RC operation. The internal clock will be of the same frequency and phase as the voltage on the CLOCK 3 pin. The resistor and capacitor should be connected as shown. The circuit will oscillate at a frequency given by \(f=.45 / \mathrm{RC}\). A \(50-100 \mathrm{k} \Omega\) resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that \(32768(-16), 8192(-14), 2048(-12)\) clock periods is close to an integral multiple of the 60 Hz period.


Figure 10: RC Oscillator
Note that CLOCK 3 has the same output drive as the bit outputs.

As a result of pin count limitations, the ICL7104-16 has only CLOCK 1 and CLOCK 2 available, and cannot be used as an RC oscillator. The internal clock will correspond to the inverse of the signal on CLOCK 2. Figure 11 shows a crystal oscillator circuit, which can be used with all 7104 versions. If an external clock is to be used, it should be applied to CLOCK 1. The internal clock will correspond to the signal applied to this pin.


Figure 1.1: Crystal Oscillator

\section*{POWER SUPPLY SEQUENCING}

Because of the nature of the CMOS process used to fabricate the ICL7104, and the multiple power supplies used, there are certain conditions of these supplies under which a disabling and potentially damaging SCR action can occur. All of these conditions involve the V+ supply (nom. +5 V ) being more positive than the \(\mathrm{V}++\) supply. If there is any possibility of this occuring during start-up, shut down, under transient conditions during operation, or when inserting a PC board into a "hot" socket, etc., a diode should be placed between \(\mathrm{V}^{+}\) and \(\mathrm{V}++\) to prevent it. A germanium or Schottky rectifier diode would be best, but in most cases a silicon rectifier diode is adequate.

\section*{ANALOG AND DIGITAL GROUNDS}

Extreme care must be taken to avoid ground loops in the layout of 8068 or 8052/7104 circuits, especially in 16-bit and high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. A recommended connection sequence for the ground lines is shown in Figure 12.

\section*{APPLICATIONS INFORMATION}

Some applications bulletins that may be found useful are listed here:

A016 "Selecting A/D Converters", by Dave Fullagar
A017 "The Integrating A/D Converter", by Lee Evans
A018 "Do's and Dont's of Applying A/D Converters", by Peter Bradshaw and Skip Osgood
A025 "Building a Remote Data Logging Station", by Peter Bradshaw
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors", by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors", by Peter Bradshaw et al, Electronics, Dec. 9, 1976.


Figure 12: Grounding Sequence

\section*{Linear}
\begin{tabular}{|c|c|c|}
\hline Amplifiers & \begin{tabular}{lr} 
LH2101/2301. & ** \\
LH2108/2308 & \(5-55\)
\end{tabular} & Voltage Reference \\
\hline Driver Amplifier for & IH5101 & ICL8069 5-190 \\
\hline Power Transistors Page & ICL8008 5-142 & L8075-9 5-192 \\
\hline ICL8063 5-182 & Operational, High Speed & ICL8211/12 5-198 \\
\hline Driver Amplifier for & ICL8017 & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l|l|l|} 
Actuators, Motors \\
ICH8510/20/30
\end{tabular}} & \multirow[t]{2}{*}{Voltage Regulators} \\
\hline \(\begin{array}{ll}\text { ICH8515 } & \\ \end{array}\) & ICL76XX Series 5-73 & \\
\hline \multirow[b]{3}{*}{Instrumentation Commutating Auto-Zero ICL7605/6 5-63} & ICL8021-23 5-155 & LM100/300 \\
\hline & Video & M105 \\
\hline & \(\mu\) A733 &  \\
\hline Log-Antilog & \begin{tabular}{ll} 
NE/SE592 & \(5-38\) \\
NE592-8 & \(5-41\)
\end{tabular} & 1CL7663/4 5-114 \\
\hline & Voltage Followers & \multirow[t]{2}{*}{Special Function} \\
\hline Operational & LM102/302 & \\
\hline ICL7650 5tabilized 5-88 & LM110/310 & Multiplier \\
\hline ICL7652 5-96 & LH2110/231 & ICL8013 5-144 \\
\hline Operational, FET Input LH0042 & \multirow[t]{2}{*}{Comparators} & \begin{tabular}{l}
Voltage Converter \\
ICL7660
\[
5-104
\]
\end{tabular} \\
\hline AD503 & & Vaveform Generator \\
\hline SU/NE536 & Dual & ICL8038 5-158 \\
\hline \(\mu \mathrm{A} 740\) & LH2111/2311 & Low Battery Detectors \\
\hline ICL8007 5-139 & Low Power & ICM7201 \\
\hline ICL8043 5-167 & ICL8001 5-135 & ICL7665 5-121 \\
\hline ICH8500 5-208 & Precision 5-135 & ICL8211/12 5-198 \\
\hline Operational, General & LM111/311 & ower Mos Driver
5-128
CL7667 \\
\hline OP-05 5-8 & & \\
\hline OP-07 5-16 & \multirow[t]{2}{*}{Sample and Hold} & \\
\hline LM101/301A & & \\
\hline LM107/307 & IH5110-15 5-57 & \\
\hline LM108/308 5-24 & & \\
\hline \(\mu\) A 741 & & \\
\hline ICL741HS 5-44 & Temperature & \\
\hline  & Sensor & catalog. Contact local \\
\hline \(\mu\) A748 & AD590 5-28 & \\
\hline \(\mu\) A777 5 -49 & AD590 5-28 & information. \\
\hline
\end{tabular}

\section*{LINEAR}

Operational Amplifiers - General Purpose
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & \[
\begin{aligned}
& V_{0 S} \\
& (m V)
\end{aligned}
\] & \[
\begin{gathered}
I_{b} \\
(n A)
\end{gathered}
\] & Avol (V/V) & \begin{tabular}{l}
GBW (typ) \\
(MHz)
\end{tabular} & \begin{tabular}{l}
\(I_{\text {supp }}\) \\
(mA)
\end{tabular} & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ} C\right)
\end{gathered}
\] & Packages* & Remarks \\
\hline 108 & Low Level, Uncompensated & 2.0 & 2.0 & 50,000 & 1.0 & 0.6 & \(-55,+125\) & J, F, T & \\
\hline 108LN & Guaranteed Noise 108 & 2.0 & 2.0 & 50,000 & 1.0 & 0.6 & \(-55,+125\) & T & \(7 \mathrm{CnV} / \sqrt{\mathrm{Hz}} @ 10 \mathrm{~Hz}\) \\
\hline 308 & Low Level, Uncompensated & 7.5 & 7.0 & 25.000 & 1.0 & 0.8 & \(0,+70\) & F, J, P, T & \\
\hline 308LN & Guaranteed Noise 308 & 7.5 & 7.0 & 25,000 & 1.0 & 0.8 & \(0,+70\) & T & \(70 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 10 \mathrm{~Hz}\) \\
\hline . 777 & General Purpose Comparator & 0.7 & 25 & 150,000 & 0.8 & 2.5 & \(-55,+125\) & P, T & \\
\hline \(777 C\) & General Purpose Comparator & 0.7 & 25 & 150,000 & 0.8 & 2.5 & \(0,+70\) & P, T & \\
\hline 8008M & Low Bias Current, Compensated & 5.0 & 10 & 20,000 & 1.0 & 2.8 & \(-55,+125\) & \(J, T\) & \\
\hline 8008C & Low Bias Current, Compensated & 6.0 & 25 & 20,000 & 1.0 & 2.8 & \(0,+70\) & J, P, T & \\
\hline LH2108 & Dual Super Beta & 2.0 & 3.0 & 25,000 & 1.0 & 0.4 & -55 to +125 & D & \\
\hline LH2108A & Dual Super Beta & 0.5 & 3.0 & 40,000 & 1.0 & 0.4 & -55 to +125 & D & \\
\hline LH2308 & Dual Super Beta & 7.5 & 10 & 15,000 & 1.0 & 0.4 & 0 to +70 & D & Build to Order \\
\hline LH2308A & Dual Super Beta & 0.5 & 10 & 60,000 & 1.0 & 0.4 & 0 to +70 & D & \\
\hline
\end{tabular}

\section*{Operational Amplifiers - Low Power Programmable}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & \[
\begin{aligned}
& V_{0 s} \\
& (\mathrm{mV})
\end{aligned}
\] & \[
\begin{gathered}
I_{b} \\
(n A)
\end{gathered}
\] & Avol (V/V) & \[
\begin{aligned}
& \text { GBW } \\
& \text { (MHz) }
\end{aligned}
\] & \begin{tabular}{l}
\(I_{\text {supp }}\) \\
( \(\mu \mathrm{A}\) )
\end{tabular} & \begin{tabular}{l}
@ \(I_{\text {set }}\) \\
( \(\mu \mathrm{A}\) )
\end{tabular} & \begin{tabular}{l}
(G) \(\mathbf{V}_{\mathbf{s}}\) \\
(V)
\end{tabular} & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Packages* \\
\hline 8021M & Programmable, Compensated & 3.0 & 20 & 50,000 & 0.27 & 40 & 30 & \(+6.0\) & -55 to +125 & J, T \\
\hline 8021C & Programmable, Compensated & 6.0 & 30 & 50,000 & 0.27 & 50 & 30 & \(+6.0\) & 0, +70 & \(T\) \\
\hline 8022M & Dual 8021M & 3.0 & 20 & 50,000 & 0.27 & 40 & 30 & +6.0 & -55 to +125 & J, F \\
\hline 8022 C & Dual 8021C & 6.0 & 30 & 50,000 & 0.27 & 50 & 30 & \(+6.0\) & 0. + 70 & J, P \\
\hline 8023M & Triple 8021M & 3.0 & 20 & 50,000 & 0.27 & 40 & 30 & \(+6.0\) & -55 to +125 & \(J\) \\
\hline 8023 C & Triple 8021C & 6.0 & 30 & 50,000 & 0.27 & 50 & 30 & \(+6.0\) & 0 to +70 & J, P \\
\hline 7611 & CMOS & 2.0 & 0.001 & 100,000 & 1.4 & 20 & - & - & C,I,M & T, P \\
\hline 7612 & CMOS, Extended CMVR & 2.0 & 0.001 & 100,000 & 1.4 & 20 & - & - & C,I,M & T, P \\
\hline 7613 & CMOS, Input Protected
\[
\text { to } \pm 200 \mathrm{~V}
\] & 2.0 & 0.001 & 100,000 & 1.4 & 20 & - & - & C,I,M & T, P \\
\hline 7631 & CMOS, Triple & 5.0 & 0.001 & 100,000 & 1.4 & 60 & - & - & C,I,M & D, P \\
\hline 7632 & CMOS, Triple, Uncompensated & 5.0 & 0.001 & 100,000 & 1.4 & 60 & - & - & C,I,M & D, P \\
\hline
\end{tabular}

\section*{Operational Amplifiers - CMOS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & Compensation. & Offset Null & \(\mathrm{V}_{\text {OS }}\) Selection & los & \(I_{B}\) & Output Swing & Input CMR & Packages* \\
\hline 7611 & Single, Selectable \(l_{0}\) & Internal & Yes & 2, 5, 15mV & 0.5pA & 1pA & \(\mathrm{V}_{\text {supp }}-100 \mathrm{mV}\) & \(V_{\text {SUPP }}-100 \mathrm{mV}\) & P. T \\
\hline 7612 & Single, Selectable Io Extended CMVR & Internal & Yes & 2, 5, 15mV & 0.5pA & 1pA & \(V_{\text {Supp }}+300 \mathrm{mV}\) & \(V_{\text {supp }}-100 \mathrm{mV}\) & P, T \\
\hline 7613 & Single, Selectable Io Input Protected to & Internal 200 V & Yes & 2, 5, 15mV & 0.5pA & 1pA & \(V_{\text {supp }}-100 \mathrm{mV}\) & \(V_{\text {Supp }}-100 \mathrm{mV}\) & P, T \\
\hline 7614 & Single, Fixed \(\mathrm{I}_{0}\) & External & Yes & 2, 5, 15mV & 0.5pA & 1pA & \(V_{\text {Supp }}\)-100mV & \(V_{\text {Supp }}-100 \mathrm{mV}\) & P. T \\
\hline 7615 & Single, Fixed Io Input Protected & External & Yes & 2, 5, 15mV & 0.5pA & 1pA & \(\mathrm{V}_{\text {supp }}-100 \mathrm{mV}\) & \(V_{\text {Supp }}-100 \mathrm{mV}\) & P, T \\
\hline 7621 & Dual, Fixed \(\mathrm{l}_{0}\) & Internal & No & 2, \(5,15 \mathrm{mV}\) & 0.5pA & 1pA & \(\mathrm{V}_{\text {supp }}\)-100mV & \(V_{\text {supp }}-100 \mathrm{mV}\) & P, T \\
\hline 7622 & Dual, Fixed \(l_{0}\) & Internal & Yes & 2, 5, 15mV & 0.5 pA & 1pA & \(V_{\text {supp }}\)-100mV & \(V_{\text {supp }}-100 \mathrm{mV}\) & P. J \\
\hline 7631 & Triple, Selectable Io & Internal & No & 5, \(10,20 \mathrm{mV}\) & 0.5 pA & 1 pA & \(V_{\text {supp }}\)-100mV & \(V_{\text {supp }}-100 \mathrm{mV}\) & P, J \\
\hline 7632 & Triple, Selectable \(I_{0}\) & None & No & 5, \(10,20 \mathrm{mV}\) & 0.5pA & 1pA & \(V_{\text {supp }}\)-100mV & \(V_{\text {supp }}-100 \mathrm{mV}\) & P, J \\
\hline 7641 & Quad, Fixed \({ }_{0}\) & Internal & No & 5, 10, 20 mV & 0.5pA & 1pA & \(V_{\text {supp }}\)-100mV & \(V_{\text {supp }}-100 \mathrm{mV}\) & P, J \\
\hline 7642 & Quad, Fixed Io & Internal & No & 5, 10, 20mV & 0.5pA & 1pA & \(V_{\text {supp }}-100 \mathrm{mV}\) & \(V_{\text {Supp }}-100 \mathrm{mV}\) & P. J \\
\hline 7650 & Chopper Stabilized & Internal & - & 0.01 mV & - & 10pA & \(V_{\text {Supp }} 100 \mathrm{mV}\) & - & P, T \\
\hline
\end{tabular}

\footnotetext{
*Package Key: D—Solder lid side brazed ceramic dual-in-line. F-Ceramic flat package. J-Glass frit seal ceramic dual-in-line. P-Plastic dual-in-line. T-Metal can.
}

Operational Amplifiers - FET Input (also see Operational Amplifier, CMOS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & \[
\begin{aligned}
& V_{O S} \\
& (\mathrm{mV})
\end{aligned}
\] & \[
\begin{gathered}
I_{b} \\
(\mu \mathrm{~A})
\end{gathered}
\] & \[
\begin{aligned}
& A_{\mathrm{VOL}} \\
& (\mathrm{~V} / \mathrm{V})
\end{aligned}
\] & \begin{tabular}{l}
GBW (typ) \\
(MHz)
\end{tabular} & \begin{tabular}{l}
Slew \\
Rate \\
( \(\mathrm{V} / \mu \mathrm{S}\) )
\end{tabular} & \[
\begin{aligned}
& I_{\text {SUPP }} \\
& (\mathrm{mA})
\end{aligned}
\] & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ}\right)
\end{gathered}
\] & Packages* & Remarks \\
\hline 8007M & General Purpose, Compensated & 20 & 20 & 50,000 & 1.0 & 6 & 5.2 & -55, +125 & T & \multirow{6}{*}{All BIFET amplifiers offer low noise see data sheets} \\
\hline 8007AM & 8007M, Low Ib & 30 & 1.0 & 20,000 & 1.0 & 2.5 & 6 & \(-55,+125\) & T & \\
\hline 8007C & General Purpose, Compensated & 50 & 50 & 20,000 & 1.0 & 6 & 6 & 0, +70 & T & \\
\hline 8007AC & 8007C, Low lb & 30 & 1.0 & 20,000 & 1.0 & 2.5 & 6 & \(0,+70\) & T & \\
\hline 8043M & Dual 8007M & 20 & 20 & 50,000 & 1.0 & 6.0 & 6 & \(-55,+125\) & J & \\
\hline 8043C & Dual 8007C & 50 & 50 & 20,000 & 1.0 & 6.0 & 6.8 & \(-55,+125\) & J, P & \\
\hline 8500 & MOSFET Input, Compensated & 50 & 0.1 & 20,000 & 0.7 & 0.5 & 2.7 & \(-25,+85\) & T & \\
\hline 8500A & MOSFET Input, Super Low Ib & 50 & 0.01 & 20,000 & 0.7 & 0.5 . & 2.7 & \(-25,+85\) & T & \\
\hline
\end{tabular}

Operational Amplifiers - High Performance
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & \[
\begin{gathered}
V_{o s} \\
(\mathrm{mV})
\end{gathered}
\] & \[
\begin{gathered}
I_{b} \\
(\mathrm{pA})
\end{gathered}
\] & Avol
\[
(V / V)
\] & \[
\begin{aligned}
& \text { GBW } \\
& \text { (MHz) }
\end{aligned}
\] &  & \begin{tabular}{l}
ISUPP \\
(mA)
\end{tabular} & \begin{tabular}{l}
\(T_{A}\) \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & Packages* \\
\hline 8017M & High Speed, Inverting & 5.0 & 200 & 25,000 & 10 & 130 & 7.0 & \(-55,+125\) & T, F \\
\hline 8017C & High Speed. Inverting & 7.0 & 200 & 25,000 & 10 & 130 & 8.0 & 0, + 70 & T, F \\
\hline OP-05 & Low Bias, Low Drift & 0.07 & 700 & 500,000 & 0.6 & 0.2 & 4.0 & \(-55,+125\) & T, J \\
\hline OP-07 & Ulitra Stable & 0.025 & 300 & 500,000 & 0.6 & 0.17 & 4.0 & \(-55,+125\) & T, J \\
\hline
\end{tabular}

\section*{Operational Amplifiers-High Slew Rate}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & \[
\begin{aligned}
& V_{\mathrm{OS}} \\
& (m V)
\end{aligned}
\] & \[
\begin{gathered}
I_{b} \\
(p A)
\end{gathered}
\] & \[
\begin{aligned}
& A_{V O L} \\
& (V / V)
\end{aligned}
\] & \[
\begin{gathered}
\text { 68W } \\
\text { (MH2) }
\end{gathered}
\] &  & Isupp (mA) & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Packages* \\
\hline \[
\begin{aligned}
& 8017 \mathrm{M} \\
& 8017 \mathrm{C}
\end{aligned}
\] & High speed, inverting High speed, inverting & \[
\begin{aligned}
& 5.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 200
\end{aligned}
\] & \[
\begin{aligned}
& 25.000 \\
& 25.000
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 130 \\
& 130
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{gathered}
-55+125 \\
0+70
\end{gathered}
\] & \[
\begin{aligned}
& \text { T.F } \\
& \text { T.F }
\end{aligned}
\] \\
\hline
\end{tabular}
*Package Key: D—Solder lid side brazed ceramic dual-in-line. F—Ceramic flat package. J—Glass frit seal ceramic dual-in-line. P—Plastic dual-in-line. T-Metal can.

\section*{Precision Operational Amplifiers, VSUPP \(= \pm 2 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & \[
\begin{aligned}
& V_{0 S} \\
& (\mu V)
\end{aligned}
\] & \[
\begin{gathered}
\Delta V_{\text {OS }} \\
\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & \[
\begin{gathered}
\Delta V_{0 S} \\
(\mu \mathrm{~V} / \text { year })
\end{gathered}
\] & \[
\begin{gathered}
A_{v} \\
(d B \min )
\end{gathered}
\] & Slew
Rate
Rate \((\mathrm{V} / \mu \mathrm{s})\) & \begin{tabular}{l}
Ibias \\
(pA)
\end{tabular} & Packages* & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] \\
\hline ICL7650C & Chopper Stabilized & \(\pm 1\) & \(\pm 0.01\) & \(100 \mathrm{nV} / \sqrt{\text { month }}\) & 126 & 2.5 & +1.5 & J, P, T & 0 to +70 \\
\hline ICL76501 & Chopper Stabilized & \(\pm 1\) & \(\pm 0.01\) & \(100 \mathrm{nV} / \sqrt{\text { month }}\) & 126 & 2.5 & +1.5 & \(J, P, T\) & -25 to +85 \\
\hline ICL7652 & Chopper Stabilized & \(\pm 1\) & \(\pm 0.7\) & \(100 \mathrm{nV} / \sqrt{\text { month }}\) & 120 & 0.5 & +1.5 & \(J, P, T\) & -20 to +85 \\
\hline
\end{tabular}

Precision Instrumentation Amplifiers, VSUPP \(= \pm 2 \mathrm{~V}\) to \(\pm 5 \mathrm{~V}\), ISUPP \(=1.7 \mathrm{~mA}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type & Description & \[
\begin{aligned}
& V_{0 S} \\
& (\mu V)
\end{aligned}
\] & \[
\begin{gathered}
\Delta V_{0 S} \\
\left(\mu V /{ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & \[
\underset{(\mu \mathrm{V} / \text { year })}{\Delta V_{0 S}}
\] & \[
\begin{gathered}
A_{v} \\
(\mathrm{~dB} \text { min })
\end{gathered}
\] & Packages* & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] \\
\hline ICL7605C & Compensated & \(\pm 2\) & \(\pm 0.01\) & 0.5 & 90 & \(J, P\) & 0 to +70 \\
\hline ICL76051 & Compensated & \(\pm 2\) & \(\pm 0.01\) & 0.5 & 90 & \(J, P\) & -25 to + 85 \\
\hline ICL7605M & Compensated & \(\pm 2\) & \(\pm 0.05\) & 0.5 & 90 & \(J, P\) & -55 to +125 \\
\hline ICL7606C & Uncompensated & \(\pm 2\) & \(\pm 0.01\) & 0.5 & 90 & \(J, P\) & 0 to +70 \\
\hline ICL76061 & Uncompensated & \(\pm 2\), & \(\pm 0.01\) & 0.5 & 90 & \(J, P\) & -25 to +85 \\
\hline ICL7606M & Uncompensated & \(\pm 2\) & \(\pm 0.05\) & 0.5 & 90 & J. P & -55 to +125 \\
\hline
\end{tabular}

\section*{Precision Voltage References}
\begin{tabular}{ll}
\hline Type & Description
\end{tabular}

ICL8069 Low Voltage Reference The ICL8069 is a 1.2 V temperature compensated voltage reference. It uses the bandgap principle to achieve excellent stability and low noise at reverse currents down to \(50 \mu \mathrm{~A}\).
ICL8075-9 Ultra Precision Temperature The ICL8075-9 is a family of precision laser-trimmed voltage references that incorStabilized Voltage References porate a substrate heater to produce extremely low overall voltage temperature coefficients. The series of devices is produced so that exact voltages are available for the most popular \(A / D\) and \(D / A\) converters. This avoids the necessity to perform adjustments in most cases, and reduces the problems with trim range and temperature coefficient loss in all others.

\section*{Video Amplifiers}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & Gains (typ) (V/V) & Bandwidths (typ) (MHz) & \[
\stackrel{\theta_{n}}{{ }_{\mu} V(\mathrm{rms})}
\] & Output Offset (V) & \begin{tabular}{l}
Isupp \\
(mA)
\end{tabular} & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Packages* \\
\hline NE/SE592 & Gain Selectable Video Amp & 400, 100, 10 & 40, 90 & 12 & 0.75 & 10 & \(0,+70 /-55,+125\) & J, T \\
\hline NE592-8 & Gain Selectable Video Amp & 400, 100, 10 & 40 & 12 & 0.75 & 10 & \(0,+70\) & P \\
\hline
\end{tabular}
*Package Key: D-Solder lid side brazed ceramic dual-in-line. F-Ceramic flat package. J-Glass frit seal ceramic dual-in-line. P-Plastic dual-in-line. T-Metal can.

\section*{Comparators}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Description & \[
\begin{aligned}
& V_{\mathrm{OS}} \\
& (\mathrm{mV}) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
I_{0} \\
(n A)
\end{gathered}
\] & \[
\begin{gathered}
A_{V} \\
(V / m V)
\end{gathered}
\] & \[
\begin{gathered}
t_{p d} \\
(n s)(t y p)
\end{gathered}
\] & \begin{tabular}{l}
ISUPP \\
(mA)
\end{tabular} & \begin{tabular}{l}
\(V_{0 L}\) \\
(V)
\end{tabular} & \[
\begin{gathered}
\mathrm{I}_{\mathrm{OL}} \\
(\mathrm{~mA})
\end{gathered}
\] & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Packages* \\
\hline 8001M & Low Power Comparator & 3 & 100 & 15 & 250 & 2 & 0.5 & 2 & \(-55,+125\) & T \\
\hline 8001C & Low Power Comparator & 5 & 250 & 15 & 250 & 2 & 0.4 & 2 & 0. +70 & T \\
\hline
\end{tabular}

Notes: \(\mathrm{t}_{\mathrm{pd}}\) measured for 100 mV step with 5 mV overdrive.
\(I_{\text {Supp }}\) measured for \(\mathrm{V}_{\text {Supp }}+ \pm 15 \mathrm{~V}\).

\section*{Power Amplifiers}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Doscription & Use & Output Current (A) & \begin{tabular}{l}
Output \\
Swing (V)
\end{tabular} & \[
\begin{aligned}
& V_{O S} \\
& (m V)
\end{aligned}
\] & \[
\begin{gathered}
I_{0} \\
(n A)
\end{gathered}
\] & Avol (V/V) & \begin{tabular}{l}
Slew \\
Rato \\
( \(\mathrm{V} / \mathrm{\mu s}\) )
\end{tabular} & Quiescent \(I_{\text {supp }}\) (mA) & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ}\right)
\end{gathered}
\] \\
\hline ICH8510M & Hybrid Power Amplifier & & 1.0 & \(\pm 26\) & 3.0 & 250 & 100,000 & 0.5 & 40 & \(-55,+125\) \\
\hline ICH85101 & Hybrid Power Amplifier & & 1.0 & \(\pm 26\) & 6.0 & 500 & 100,000 & 0.5 & 50 & \(-25 .+85\) \\
\hline ICH85151 & Hybrid Power Amplifier & & 1.25 & \(\pm 12\) & 6.0 & 500 & 100,000 & 0.5 & 80 & \(-20^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}\) \\
\hline ICH8515M & Hybrid Power Amplifier & Servo & 1.5 & \(\pm 12\) & 3.0 & 250 & 100,000 & 0.5 & 70 & \(-55^{\circ} \mathrm{C} \cdot+125^{\circ} \mathrm{C}\) \\
\hline ICH8520M & Hybrid Power Amplifier & and & 2.0 & \(\pm 26\) & 3.0 & 250 & 100,000 & 0.5 & 40 & \(-55 .+125\) \\
\hline ICH85201 & Hybrid Power Amplifier & Actuator & 2.0 & \(\pm 26\) & 6.0 & 500 & 100,000 & 0.5 & 50 & \(-25,+85\) \\
\hline ICH8530M & Hybrid Power Amplifier & & 2.7 & \(\pm 25\) & 3.0 & 250 & 100,000 & 0.5 & 40 & \(-55, \mp 125\) \\
\hline ICH85301 & Hybrid Power Amplifier & & 2.7 & \(\pm 25\) & 6.0 & 500 & 100,000 & 0.5 & 50 & \(-25,+85\) \\
\hline ICL8063C & Monolithic Power Amplifier & Transistors & 2.0 & \(\pm 27\) & 50 & & 6 & & 250 & 0, +70 \\
\hline ICL8063M & Monolithic Power Amplifier & Transisto & 2.0 & \(\pm 27\) & 75 & & 6 & & 300 & \(-55,+125\) \\
\hline
\end{tabular}

Note 1: Specifications apply at \(\pm 30 \mathrm{~V}\) supplies.
Note 3: Fully protected against inductive current flow.
Note 2: All units packaged in 8 lead TO-3 can.
Note 4: Externally settable output current limiting.
*Package Key: D-Solder lid side brazed ceramic dual-in-line. F-Ceramic flat package. J-Glass frit seal ceramic dual-in-line. P-Plastic dual-in-line. T-Metal can.

\section*{Special Function Circuits}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Description & Accuracy & \begin{tabular}{l}
\(V_{\text {SUPP }}\) \\
(V)
\end{tabular} & \[
\begin{gathered}
T_{A} \\
\left({ }^{\circ} \mathrm{C}\right) \\
\hline
\end{gathered}
\] & Packages* \\
\hline AD590 & Temperature transducer - output linear at \(1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}\) & \(\pm 1^{\circ} \mathrm{C}\) & 40 to 30 & -55 to +150 & F, H \\
\hline ICL7667C & Dual Power MOS Driver & - & 22 & 0, +70 & \(J, P, T\) \\
\hline ICL7667M & Dual Power MOS Driver & - & 22 & \(-55,+125\) & J, T \\
\hline 8013AM & Four quadrant multiplier. Output proportional to algebraic products & \(\pm 0.5 \%\) & \(\pm 15\) & \(-55,+125\) & T \\
\hline 8013BM & of two input signals. Features \(\pm 0.5 \%\) accuracy; internal op amp & \(\pm 1.0 \%\) & \(\pm 15\) & \(-55,+125\) & T \\
\hline 8013CM & for level shift, division and square root functions; full \(\pm 10 \mathrm{~V}\) & \(\pm 2.0 \%\) & \(\pm 15\) & \(-55,+125\) & \(T\) \\
\hline 8013AC & input/output fange; 1 MHz bandwidth. & \(\pm 0.5 \%\) & \(\pm 15\) & \(0,+70\) & T. \\
\hline 8013BC & & \(\pm 1.0 \%\) & \(\pm 15\) & \(0,+70\) & T \\
\hline 8013CC & & \(\pm 2.0 \%\) & \(\pm 15\) & \(0,+70\) & T \\
\hline 8038AM & Simultaneous Sine, Square, and Triangle wave outputs \(\mathrm{T}^{2} \mathrm{~L}\) com- & 1.5\% & \(\pm 5\) to \(\pm 15\) & \(-55,+125\) & \(J\) \\
\hline 8038AC & patible to 28 V over frequency range from 0.01 Hz to 1.0 MHz . & 1.5\% & \(\pm 5\) to \(\pm 15\) & \(0,+70\) & \(J\) \\
\hline 8038BM & Low distortion ( \(<1 \%\) ); high linearity ( \(0.1 \%\) ); low frequency dritt with temperature ( \(50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max); variable duty cycle ( \(2 \%-98 \%\) ). & 3.0\% & \(\pm 5\) to \(\pm 15\) & \(-55 .+125\) & \(J\) \\
\hline 8038BC & & 3.0\% & \(\pm 5\) to \(\pm 15\) & \(0 .+70\) & \(p\) \\
\hline 8038CC & External frequency modulation. & 5.0\% & \(\pm 5\) to \(\pm 15\) & \(0,+70\) & \(p\) \\
\hline 8048BC & Log amp 1V/decade (Adjustable). 120dB range. & \(\pm 30 \mathrm{mV}\) & \(\pm 15\) & \(0,+70\) & \(J, P\) \\
\hline 8048CC & with current input. Error referred to output. & \(\pm 60 \mathrm{mV}\) & \(\pm 15\) & \(0,+70\) & \(J, P\) \\
\hline 8049BC & Antilog amplifier adjustabia scale factor. & \(\pm 10 \mathrm{mV}\) & \(\pm 15\) & \(0,+70\) & \(J, p\) \\
\hline 8049CC & Error referred to input. & \(\pm 30 \mathrm{mV}\) & \(\pm 15\) & \(0,+70\) & \(J, P\) \\
\hline 8211M & Micropower voltage detector/indicator/voltage regulator/ & & 2 to 30 & \(-55,+125\) & \(T\) \\
\hline 8211 C & programmable zener. Contains 1.15 V micropower reference & & 2 to 30 & \(0,+70\) & P, T \\
\hline 8212M & plus comparator and hysteresis output. Main output & & 2 to 30 & \(-55,+125\) & T \\
\hline 8212 C & inverting (8212) or non-inverting (8211). & & 2 to 30 & \(0,+70\) & P, T \\
\hline
\end{tabular}

Note: All parameters are specified at \(\mathrm{V}_{\text {SUPP }}= \pm 15 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.
*Package Key: D-Solder lid side brazed ceramic dual-in-line. F-Ceramic flat package. J-Glass frit seal ceramic dual-in-line. P—Plastic dual-in-line. T-Metal can.

\section*{CMOS Power Supply CIrcuits}

Type Description
\begin{tabular}{|c|c|c|}
\hline ICL7660 & Voitage Converter & The ICL7660 performs the complete supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V , resulting in complementary output voltages of -1.5 V to -10.0 V . \\
\hline ICL7663 & Positive Regulator & The ICL7663 (positive) and ICL7664 (negative) series regulators are low-power, high-efficiency devices which accept \\
\hline ICL7664 & Negative Regulator & inputs from 1.6 V to 16 V and provide adjustable outputs over the same range at currents up to 40 mA . Operating current is typically less than \(40 \mu \mathrm{~A}\), regardless of load. \\
\hline ICL7665 & Programmable Micropower Voltage Detector & The ICL 7665 contains two individually programmable voltage detectors on a single chip. Requiring only \(\sim 3 \mu \mathrm{~A}\) for operation, the device is intended for battery-operated systems and instruments which require high or low voltage warnings, settable trip points, or fault monitoring and correction. \\
\hline
\end{tabular}

\section*{Low Bias Low Drift Operational Amplifier}

\section*{FEATURES}
- Low noise \((0.6 \mu \mathrm{~V}, 0.1 \mathrm{~Hz}-10 \mathrm{~Hz})\)
- Low drift with time and temperature
- Low \(V_{0 S}(\mathbf{0 . 1 5 m V}\) max)
- High CMRR, PSRR
- High Avol (300k min)
- High \(\mathbf{R}_{\text {diff }}(>30 \mathrm{M} \Omega\) )
- High R \({ }_{\text {CM }}\)
- Internally compensated
- Industry standard (741) pin configuration

\section*{GENERAL DESCRIPTION}

The OP-05 series of monolithic operational amplifiers combines high performance in low signal level applications with the flexibility of a fully protected, internally compensated op amp. OP-05 characteristics include low offset voltage and bias current and high gain, input impedance, CMRR and PSRR.
The OP- 05 is a plug-in replacement for \(725,108 \mathrm{~A}\) and unnulled 741 devices, allowing instant performance improvement without redesign. It is an excellent choice for a wide variety of applications including strain gauge and thermocouple jridges, high gain active filters, buffers, integrators, and sample and hold amplifiers.

SIMPLIFIED SCHEMATIC


\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ PART } & \begin{tabular}{c} 
TEMPERATURE \\
RANGE
\end{tabular} & PACKAGE & ORDER \# \\
\hline OP-05 & & dice & OP-05/D \\
OP-05 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 14-pin CERDIP & OP-05Y \\
OP-05 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & TO-99 & OP-05J \\
OP-05A & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 14-pin CERDIP & OP-05AY \\
OP-05A & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & TO-99 & OP-05AJ \\
OP-05C & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 8-pin MiniDIP & OP-05CP \\
OP-05C & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 14-pin CERDIP & OP-05CY* \\
OP-05C & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & TO-99 & OP-05CJ \\
OP-05E & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 8-pin MiniDIP & OP-05EP \\
OP-05E & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 14-pin CERDIP & OP-05EY \\
OP-05E & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & TO-99 & OP-05EJ \\
\hline
\end{tabular}

\footnotetext{
*Not directly interchangeable with LM108A
}

PIN CONFIGURATIONS

(outline dwgs JA, PA)

(outline dwg JD)

(outline dwg TY)

\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage \(\pm 22 \mathrm{~V}\)
Internal Power Dissipation (Note 1)
500 mW
Differential Input Voltage \(\pm 30 \mathrm{~V}\)
Input Voltage (Note2) \(\pm 22 \mathrm{~V}\)
Output Short Circuit Duration
Storage Temperature Range Indefinite

Operating Temperature Range
OP-05A, OP-05
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
OP-05E, OP-05C . . . . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Lead Temperature(Soldering, 10 seconds)
\(300^{\circ} \mathrm{C}\)

Note 1: Maximum package power dissipationvs ambient temperature.
\begin{tabular}{|c|c|c|}
\hline Package Type & \begin{tabular}{c} 
Maximum Rated \\
Ambient Temperature
\end{tabular} & \begin{tabular}{c} 
Derate Above Maximum \\
Ambient Temperature
\end{tabular} \\
\hline TO-99 (J) & \(80^{\circ} \mathrm{C}\) & \(7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline Dual-In-Line \((\mathrm{Y})\) & \(100^{\circ} \mathrm{C}\) & \(10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline MiniDIP \((\mathrm{P})\) & \(36^{\circ} \mathrm{C}\) & \(5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 2: For supply voltages less than \(\pm 22 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS These specifications apply for \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{OP.05A} & \multicolumn{3}{|c|}{OP. 05} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\text {OS }}\) & & & 0.07 & 0.15 & & 0.2 & 0.5 & mV \\
\hline Long Term Input Offset Voltage Stability & \(\Delta V_{\text {OS }} / \Delta \mathrm{t}\) & (Note 1) & & 0.2 & 1.0 & & 0.2 & 1.0 & \({ }_{\mu} \mathrm{V} / \mathrm{mo}\) \\
\hline Input Offset Current & los & & & 0.7 & 2.0 & & 1.0 & 2.8 & nA \\
\hline Input Bias Current & \(\mathrm{I}_{\text {BIAS }}\) & & & \(\pm 0.7\) & \(\pm 2.0\) & & \(\pm 1.0\) & \(\pm 3.0\) & nA \\
\hline Input Noise Voltage & \(e^{n_{p-p}}\) & 0.1 Hz to 10 Hz (Note 2) & & 0.35 & 0.6 & & 0.35 & 0.6 & \(\mu \vee \mathrm{p}\)-p \\
\hline Input Noise Voltage Density & \(e_{n}\) & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note } 2) \\
& \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 2) \\
& \left.\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \text { (Note } 2\right)
\end{aligned}
\] & & \[
\begin{gathered}
10.3 \\
10.0 \\
9.6
\end{gathered}
\] & \[
\begin{aligned}
& 18.0 \\
& 13.0 \\
& 11.0
\end{aligned}
\] & & \[
\begin{gathered}
\hline 10.3 \\
10.0 \\
9.6
\end{gathered}
\] & \[
\begin{aligned}
& 18.0 \\
& 13.0 \\
& 11.0
\end{aligned}
\] & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Noise Current & \(i^{n} n_{p-p}\) & 0.1 Hz to 10 Hz (Note 2) & & 14 & 30 & & 14 & 30 & pAp-p \\
\hline Input Noise Current Density & \(i_{n}\) & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \text { (Note 2) } \\
& \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \text { (Note 2) } \\
& \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \text { (Note 2) }
\end{aligned}
\] & & \[
\begin{aligned}
& 0.32 \\
& 0.14 \\
& 0.12
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& 0.23 \\
& 0.17
\end{aligned}
\] & & \[
\begin{aligned}
& 0.32 \\
& 0.14 \\
& 0.12
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.80 \\
& 0.23 \\
& 0.17
\end{aligned}
\] & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Input Resistance- \\
Differential Mode \\
Common-Mode
\end{tabular}} & \(\mathrm{R}_{\text {diff }}\) & & 30 & 80 & & 20 & 60 & & \(\mathrm{M} \Omega\) \\
\hline & \(\mathrm{R}_{\mathrm{CM}}\) & & & 200 & & & 200 & & G \(\Omega\) \\
\hline Input Common-Mode Voltage Range & CMVR & & \(\pm 13.5\) & \(\pm 14.0\) & & \(\pm 13.5\) & \(\pm 14.0\) & & V \\
\hline Common-Mode Rejection Ratio & CMRR & \(\mathrm{CMVR}= \pm 13.5 \mathrm{~V}\) & 114 & 126 & & 114 & 126 & & \(d B\) \\
\hline Power Supply Rej. Ratio & PSRR & \(V_{\text {Supp }}= \pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) & 100 & 110 & & 100 & 110 & & dB \\
\hline Large Signal Voltage Gain & Avol & \[
\begin{aligned}
& R_{L} \geq 2 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V} \\
& R_{\mathrm{L}} \geq 500 \Omega, V_{O}= \pm 0.5 \mathrm{~V}, \\
& V_{S}= \pm 3 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 500
\end{aligned}
\] & & \[
\begin{aligned}
& 200 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 500
\end{aligned}
\] & & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Maximum Output Voltage Swing & \(\pm \mathrm{V}_{0}\) & \[
\begin{aligned}
& R_{L} \geq 10 \mathrm{k} \Omega \\
& R_{L} \geq 2 \mathrm{k} \Omega \\
& R_{L} \geq 1 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \pm 12.5 \\
& \pm 12.0 \\
& \pm 10.5
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8 \\
& \pm 12.0
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 12.5 \\
& \pm 12.0 \\
& \pm 10.5
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8 \\
& \pm 12.0
\end{aligned}
\] & & V \\
\hline Slew Rate & SR & \(R_{L} \geq 2 \mathrm{k} \Omega\) (Note 2) & 0.1 & 0.17 & & 0.1 & 0.17 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Closed Loop Bandwidth & BW & \(\mathrm{A}_{\mathrm{V}}=+1.0\) (Note 2) & 0.4 & 0.6 & & 0.4 & 0.6 & & MHz \\
\hline Open Loop Output Res. & \(\mathrm{R}_{0}\) & \(\mathrm{V}_{\mathrm{O}}=0, \mathrm{I}_{0}=0\) & & 60 & & & 60 & & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Power Consumption} & \multirow[t]{2}{*}{Pd} & & & 90 & 120 & & 90 & 120 & \multirow[t]{2}{*}{mW} \\
\hline & & \(\mathrm{V}_{\text {Supp }}= \pm 3 \mathrm{~V}\) & & 4 & 6 & & 4 & 6 & \\
\hline Offset Adjustment Range & & \(\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega\) & & 4 & & & 4 & & mV \\
\hline
\end{tabular}

OPERATING CHARACTERISTICS (Continued)
These specifications apply for \(V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{OP.05E} & \multicolumn{3}{|c|}{OP.05C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\text {OS }}\) & & & 0.2 & 0.5 & & 0.3 & 1.3 & mV \\
\hline Long Term Input Offset Voltage Stability & \(\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{t}\) & (Note 1) & & 0.3 & 1.5 & & 0.4 & 2.0 & \(\mu \mathrm{V} / \mathrm{mo}\) \\
\hline Input Offset Current & los & & & 1.2 & 3.8 & & 1.8 & 6.0 & nA \\
\hline Input Bias Current & \(\mathrm{I}_{\text {BIAS }}\) & & & \(\pm 1.2\) & \(\pm 4.0\) & & \(\pm 1.8\) & \(\pm 7.0\) & nA \\
\hline Input Noise Voltage & \(e_{n_{p-p}}\) & 0.1 Hz to 10 Hz (Note 2) & & 0.35 & 0.6 & & 0.38 & 0.65 & \({ }^{\prime} \mathrm{Vp}\)-p \\
\hline Input Noise Voltage Density & \(e_{n}\) & \[
\begin{aligned}
& f_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note } 2) \\
& f_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 2) \\
& f_{\mathrm{O}}=1000 \mathrm{~Hz}(\text { Note } 2)
\end{aligned}
\] & & \[
\begin{gathered}
\hline 10.3 \\
10.0 \\
9.6
\end{gathered}
\] & \[
\begin{aligned}
& 18.0 \\
& 13.0 \\
& 11.0
\end{aligned}
\] & \(\because\) & \[
\begin{gathered}
10.5 \\
10.2 \\
9.8
\end{gathered}
\] & \[
\begin{aligned}
& 20.0 \\
& 13.5 \\
& 11.5
\end{aligned}
\] & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Noise Current & \(\mathrm{i}^{\mathrm{n}} \mathrm{p-p}\) & 0.1 Hz to 10 Hz (Note 2) & & 14 & 30 & & 15 & 35 & pAp-p \\
\hline Input Noise Current Density & \(\mathrm{in}^{\prime}\) & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \text { (Note 2) } \\
& \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \text { (Note 2) } \\
& \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \text { (Note 2) }
\end{aligned}
\] & & \[
\begin{aligned}
& 0.32 \\
& 0.14 \\
& 0.12
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.80 \\
& 0.23 \\
& 0.17 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0.35 \\
& 0.15 \\
& 0.13
\end{aligned}
\] & \[
\begin{aligned}
& 0.90 \\
& 0.27 \\
& 0.18
\end{aligned}
\] & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{Input ResistanceDifferential Mode Common-Mode} & \(\mathrm{R}_{\text {diff }}\) & 4 & 15 & 50 & & 8 & 33 & & \(\mathrm{M} \Omega\) \\
\hline & \(\mathrm{R}_{\mathrm{CM}}\) & & & 160 & & & 120 & & G \(\Omega\) \\
\hline Input Common-Mode Voltage Range & CMVR & & \(\pm 13.5\) & \(\pm 14.0\) & & \(\pm 13.0\) & \(\pm 14.0\) & & V \\
\hline Common-Mode Rejection Ratio & CMRR & \(\mathrm{CMVR}= \pm 13.5 \mathrm{~V}\) & 110 & 123 & & 100 & 120 & & dB \\
\hline Power Supply Rejection Ratio & PSRR & \(V_{\text {SUPP }}= \pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) & 94 & 107 & & 90 & 104 & & dB \\
\hline Large Signal Voltage Gain & \(A_{\text {VOL }}\) & \[
\begin{aligned}
& R_{L} \geq 2 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V} \\
& R_{L} \geq 500 \Omega, V_{O}= \pm 0.5 \mathrm{~V} \\
& V_{S}= \pm 3 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 500
\end{aligned}
\] & & \[
\begin{aligned}
& 120 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & & V/mV \\
\hline Maximum Output Voltage Swing & \(\pm \mathrm{V}_{0}\) & \[
\begin{aligned}
& R_{L} \geq 10 \mathrm{k} \Omega \\
& R_{L} \geq 2 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \pm 12.5 \\
& \pm 12.0 \\
& \pm 10.5
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8 \\
& \pm 12.0
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 12.0 \\
& \pm 11.5
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8 \\
& \pm 12.0
\end{aligned}
\] & & v \\
\hline Slew Rate & SR & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) (Note 2) & 0.1 & 0.17 & & 0.1 & 0.17 & & \(\mathrm{V} / \mu \mathrm{S}\) \\
\hline Closed Loop Bandwidth & BW & \(\mathrm{A}_{\mathrm{VCL}}=+1.0\) (Note 2) & 0.4 & 0.6 & & 0.4 & 0.6 & & MHz \\
\hline Open Loop Output Resistance & \(\mathrm{R}_{\mathrm{O}}\) & \(\mathrm{V}_{\mathrm{O}}=0, \mathrm{l}_{\mathrm{O}}=0\) & & 60 & & & 60 & & \(\Omega\) \\
\hline Power Consumption & Pd & \(\mathrm{V}_{\text {SUPP }}= \pm 3 \mathrm{~V}\) & & \[
\begin{gathered}
90 \\
4
\end{gathered}
\] & \[
\begin{gathered}
120 \\
6
\end{gathered}
\] & & \[
\begin{gathered}
95 \\
4
\end{gathered}
\] & \[
\begin{gathered}
150 \\
8
\end{gathered}
\] & mW \\
\hline Offset Adjustment Range & & \(\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega\) & & 4 & & & 4 & & mV \\
\hline
\end{tabular}

Note 1: Long term input offset voltage stability refers to the average trend line of \(V_{O S}\) vs time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, the change in \(\mathrm{V}_{\mathrm{OS}}\) during the first 30 operating days is typically \(25 \mu \mathrm{~V}\). Parameter is not \(100 \%\) tested; \(90 \%\) of units meet this specification.
Note 2: Parameter is not \(100 \%\) tested; \(90 \%\) of units meet this specification.

OPERATING CHARACTERISTICS
(Continued)
These specifications apply for \(V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{OP-05A} & \multicolumn{3}{|c|}{OP-05} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\mathrm{OS}}\) & & & 0.10 & 0.24 & & 0.3 & 0.7 & mV \\
\hline Input Offset Voltage Drift Without External Trim With External Trim & \(\Delta V_{\text {OS }} / \Delta T\) & \begin{tabular}{l}
\[
R_{P}=20 \mathrm{k} \Omega
\] \\
(Average Tested)
\end{tabular} & & \[
\begin{aligned}
& 0.3 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.9 \\
& 0.5
\end{aligned}
\] & & \[
\begin{aligned}
& 0.7 \\
& 0.3
\end{aligned}
\] & \[
\begin{array}{r}
2.0 \\
1.0
\end{array}
\] & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & los & & & 1.0 & 4.0 & & 1.8 & 5.6 & nA \\
\hline Input Offset Current Drift & \(\Delta \mathrm{l}_{\text {OS }} / \Delta \mathrm{T}\) & (Average Tested) & & 5 & 25 & & 8 & 50 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & \(I_{\text {BIAS }}\) & & & \(\pm 1.0\) & \(\pm 4.0\) & & \(\pm 2.0\) & \(\pm 6.0\) & nA \\
\hline Input Bias Current Drift & \(\Delta I_{\text {BIAS }} / \Delta T\) & (Average Tested) & & 8 & 25 & & 13 & 50 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Common-Mode Voltage Range & CMVR & & \(\pm 13.0\) & \(\pm 13.5\) & & \(\pm 13.0\) & \(\pm 13.5\) & & V \\
\hline Common-Mode Rej. Ratio & CMRR & \(C M V R= \pm 13.0\) & 410 & 123 & & 110 & 123 & & dB \\
\hline Power Supply Rej. Ratio & PSRR & \(V_{\text {SUPP }}= \pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) & 94 & 106 & & 94 & 106 & & dB \\
\hline Large Signal Voltage Gain & \(\mathrm{A}_{\text {VOL }}\) & \(R_{L} \geq 2 k \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\) & 200 & 400 & & 150 & 400 & & V \\
\hline Output Voltage Swing & \(\pm V_{0}\) & \(R_{L} \geq 2 \mathrm{k} \Omega\) & \(\pm 12.0\) & \(\pm 12.6\) & & \(\pm 12.0\) & \(\pm 12.6\) & & V \\
\hline
\end{tabular}

OPERATING CHARACTERISTICS These specifications apply for \(V_{S}= \pm 15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{OP-05E} & \multicolumn{3}{|c|}{OP.05C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\text {OS }}\) & & & 0.25 & 0.6 & & 0.35 & 1.6 & mV \\
\hline Input Offset Voltage Drift Without External Trim With External Trim & \[
\Delta V_{\mathrm{OS}} / \Delta T
\] & \begin{tabular}{l}
\[
R_{P}=20 \mathrm{k} \Omega
\] \\
(Average Tested)
\end{tabular} & & \[
\begin{aligned}
& 0.7 \\
& 0.2
\end{aligned}
\] & \[
\begin{gathered}
2.0 \\
0.6 \\
\text { (Note 2) }
\end{gathered}
\] & & \[
\begin{aligned}
& 1.2 \\
& 0.4
\end{aligned}
\] & \[
\begin{gathered}
4.5 \\
1.5 \\
\text { (Note 2) }
\end{gathered}
\] & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & los & & & 1.4 & 5.3 & & 2.0 & 8.0 & nA \\
\hline Input Offset Current Drift & \(\Delta l_{\text {OS }} / \Delta T\) & (Average Tested) & & 8 & 35 & & 12 & 50 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & \(I_{\text {BIAS }}\) & . & & \(\pm 1.5\) & \(\pm 5.5\) & & \(\pm 2.2\) & \(\pm 9.0\) & nA \\
\hline Input Bias Current Drift & \(\Delta I_{\text {BIAS }} / \Delta T\) & (Average Tested) & & 13 & 35 & & 18 & 50 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Common-Mode Voltage Range & CMVR & & \(\pm 13.0\) & \(\pm 13.5\) & & \(\pm 13.0\) & \(\pm 13.5\) & & V \\
\hline Common-Mode Rej. Ratio & CMRR & \(C M V R= \pm 13.0\) & 107 & 123 & & 97 & 120 & & dB \\
\hline Power Supply Rej.. Ratio & PSRR & \(V_{\text {SUPP }}= \pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) & 90 & 104 & & 86 & 100 & & dB \\
\hline Large Signal Voltage Gain & AVOL & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\) & 180 & 450 & & 100 & 400 & & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing & \(\pm \mathrm{V}_{0}\) & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) & \(\pm 12.0\) & \(\pm 12.6\) & & \(\pm 11.0\) & \(\pm 12.6\) & & V \\
\hline
\end{tabular}

Note 2: Parameter is not \(100 \%\) tested; \(90 \%\) of units meet this specification.

TYPICAL PERFORMANCE CURVES


Offset Voltage Drift with Time


Maximum Error vs Source Resistance



Untrimmed Offset Voltage vs Temperature


TEMPERATURE \(\left({ }^{\circ} \mathrm{C}\right)\)


Maximum Error vs Source Resistance


Input Bias Current vs Temperature


Typical Offset Voltage Stability vs Time


Trimmed Offset Voltage Drift as a Function of Trimming Potentiometer ( \(R_{P}\) ) Size and \(V_{O S}\)


VOS (mV) (CURVES ARE SYMMETRICAL
ABOUT ZERO FOR VOS <0)
Maximum Error vs Source Resistance


Input Offset Current vs Temperature


\section*{OP-05 Low Frequency Noise \\  \\ }


Open Loop Frequency
Response


Power Consumption vs
Power Supply



PSRR vs Frequency


Closed Loop Response
for Various
Gain Configurations




Open Loop Gain vs Power Supply Voltage



Input Bias Current vs
Differential
Input Voltage


\section*{TEST CIRCUITS}


Offset Voltage Test Circuit


INPUT REFERRED NOISE \(=\frac{V_{0}}{25,000}, S O \frac{5 \mathrm{mV} / \mathrm{cm}}{25,000} \equiv 200 \mathrm{nV} / \mathrm{cm}\)
Low Frequency Noise Test Circuit


Figure 1. Offset Nulling Circuit


Figure 2. Auto-Nulling Circuit for OP-05

\section*{APPLICATIONS}

OP-05 Series devices may be fitted directly to 725 and 108/108A* Series sockets with or without removal of external compensation components. Additionally, OP-05 may be fitted to unnulled 741 Series sockets; however, if conventional 741 nulling circuitry is in use, it should be modified or removed to enable proper OP-05 operation (see Figure 1). The OP-05 provides stable operation with load capacitances up to 500 pF and \(\pm 10 \mathrm{~V}\) swings; larger capacitances should be decoupled with a \(50 \Omega\) decoupling resistor. The designer is cautioned that stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the temperature of the device's package.

Figure 2 shows how it is possible to combine the low noise and output drive capability of the OP-05 with the low offset and drift of the ICL7650 chopper stabilized op-amp to yield a circuit which has a \(\mathrm{V}_{\text {OS }}\) of less than \(5 \mu \mathrm{~V}\) (typically \({ }_{1 \mu \mathrm{~V}}\) ), temperature drift of \(<0.01 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), long term drift of less than \(1 \mu \mathrm{~V}\) per year and input noise voltage of \(10 \mathrm{nV} / \sqrt{\mathrm{Hz}}\), while at the same time driving loads of up to \(2 \mathrm{k} \Omega\).

Figure 3 shows an OP-05 used as a low-noise preamplifier for a 16 -bit dual slope A/D converter. The preamp is autozeroed by using a simple sample-and-difference system keyed by the STATUS output of the A/D chip pair (see A030 for details).
""J" package only


Figure 3. Auto-Zeroed Low Noise Preamp for 16-Bit A/D.


\section*{Ultra-Low Offset Voltage Op Amp}

\section*{FEATURES}
- Ultra-Iow \(\mathrm{V}_{\text {OS }}(10 \mu \mathrm{~V}\) typ.)
- Ultra-low \(\mathrm{V}_{\text {os }}\) drift \(\left(0.2 \mu \mathrm{~V} I^{\circ} \mathrm{C}\right)\)
- Ultra-stable vs time ( \(0.2 \mu \mathrm{~V} /\) month \()\)
- Ultra-low noise ( \(0.35 \mu \mathrm{~V}_{\mathrm{p} \text {.p }}\) )
- No external components required
- Large input voltage range ( \(\pm 14.0 \mathrm{~V}\) )
- Wide supply voltage range ( \(\pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) )
- Fits 725, 108A/308A, 741, AD510 sockets

\section*{GENERAL DESCRIPTION}

The OP-07 series of monolithic operational amplifiers provides high performance through the use of a low noise, chopper-less bipolar input transistor amplifier circuit. The elimination of external components for offset nulling, frequency compensation and device protection permits optimization of system design, while excellent device interchangeability provides reduced system assembly time and eliminates or reduces field recalibrations.
The outstanding common-mode rejection provides maximum flexibility and performance in high noise environments and non-inverting applications. Low bias currents and extremely high inr \(: \quad\) : pedances are maintained over the entire temperature range.


\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(50 \pm 22 \mathrm{~mW}\)
Internal Power Dissipation (Note 1) . . . . . . . . . . 500 mW
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . \(\pm 30 \mathrm{~V}\)
Input Voltage (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 22 \mathrm{~V}\)
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range
. . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature Range
OP-07A, OP-07
. . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
OP-07E, OP-07C, OP-07D . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 seconds)

Note 1: Maximum package power dissipation vs ambient temperature.
\begin{tabular}{|c|c|c|}
\hline Package Type & \begin{tabular}{c} 
Max. Amb. Temp. \\
for Full Rating
\end{tabular} & \begin{tabular}{c} 
Derate Above Max. \\
Ambient Temp.
\end{tabular} \\
\hline TO-99 (J) & \(80^{\circ} \mathrm{C}\) & \(7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
Dual- C -Line (Y) & \(100^{\circ} \mathrm{C}\) & \(10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
MiniDIP (P) & \(36^{\circ} \mathrm{C}\) & \(5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
8-Pin CERDIP (Z) & \(75^{\circ} \mathrm{C}\) & \(6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 2: For supply voltages less than \(\pm 22 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{OPERATING CHARACTERISTICS}

These specifications apply for \(V_{S U P P}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{OP.07A} & \multicolumn{3}{|c|}{OP. 07} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\text {OS }}\) & (Note 1) & & 10 & 25 & & 30 & 75 & \(\mu \mathrm{V}\) \\
\hline Long Term Input Offset Voltage Stability & \(\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{t}\) & (Note 2) & & 0.2 & 1.0 & & 0.2 & 1.0 & \(\mu \mathrm{V} / \mathrm{mo}\) \\
\hline Input Offset Current & los & & & 0.3 & 2.0 & & 0.4 & 2.8 & nA \\
\hline Input Bias Current & \({ }_{\text {I BIAS }}\) & & & \(\pm 0.7\) & \(\pm 2.0\) & & \(\pm 1.0\) & \(\pm 3.0\) & nA \\
\hline Input Noise Voltage & \(e_{n_{p-p}}\) & 0.1 Hz to 10 Hz (Note 3) & & 0.35 & 0.6 & & 0.35 & 0.6 & \(\mu \mathrm{Vp}\)-p \\
\hline Input Noise Voltage Density & \(e_{n}\) & \[
\begin{aligned}
& \left.\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \text { (Note } 3\right) \\
& \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 3) \\
& \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}(\text { Note } 3)
\end{aligned}
\] & & \[
\begin{gathered}
10.3 \\
10.0 \\
9.6 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 18.0 \\
& 13.0 \\
& 11.0
\end{aligned}
\] & & \[
\begin{gathered}
10.3 \\
10.0 \\
9.6 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 18.0 \\
& 13.0 \\
& 11.0
\end{aligned}
\] & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Noise Current & \({ }^{i} n_{p-p}\) & 0.1 Hz to 10 Hz (Note 3) & & 14 & 30 & & 14 & 30 & pAp-p \\
\hline Input Noise Current Density & in & \[
\begin{aligned}
& f_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note } 3) \\
& \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 3) \\
& \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}(\text { Note } 3)
\end{aligned}
\] & & \[
\begin{aligned}
& 0.32 \\
& 0.14 \\
& 0.12
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& 0.23 \\
& 0.17
\end{aligned}
\] & & \[
\begin{aligned}
& 0.32 \\
& 0.14 \\
& 0.12
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& 0.23 \\
& 0.17
\end{aligned}
\] & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Resistance Differential Mode & \(R_{\text {diff }}\) & & 30 & 80 & & 20 & 60 & & \(\mathrm{M} \Omega\) \\
\hline Common-Mode & \(\mathrm{R}_{\text {CM }}\) & & & 200 & & & 200 & & \(\mathrm{G} \Omega\) \\
\hline Input Common-Mode Voltage Range & CMVR & & \(\pm 13.0\) & \(\pm 14.0\) & & \(\pm 13.0\) & \(\pm 14.0\) & & V \\
\hline Common-Mode Rejection Ratio & CMRR & \(C M V R= \pm 13.0 \mathrm{~V}\) & 110 & 126 & & 110 & 126 & & dB \\
\hline Power Supply Rej. Ratio & PSRR & \(V_{\text {SUPP }}= \pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) & 100 & 110 & & 100 & 110 & & dB \\
\hline Large Signal Voltage Gain & AVOL & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \\
& \mathrm{~V}_{\text {SUPP }}= \pm 3 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 500
\end{aligned}
\] & , & \[
\begin{aligned}
& 200 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 500
\end{aligned}
\] & & V/mV \\
\hline Maximum Output Voltage Swing & \(\pm \mathrm{V}_{\mathrm{O}}\), & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \pm 12.5 \\
& \pm 12.0 \\
& \pm 10.5
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8 \\
& \pm 12.0
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 12.5 \\
& \pm 12.0 \\
& \pm 10.5
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8 \\
& \pm 12.0
\end{aligned}
\] & & V \\
\hline Slew Rate & SR & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) (Note 3) & 0.1 & 0.17 & & 0.1 & 0.17 & & \(\mathrm{V} / \mu \mathrm{S}\) \\
\hline Closed Loop Bandwidth & BW & \(A_{V}=+1.0(\) Note 3) & 0.4 & 0.6 & & 0.4 & 0.6 & & MHz \\
\hline Open Loop Output Res. & \(\mathrm{R}_{0}\) & \(\mathrm{V}_{\mathrm{O}}=0, \mathrm{l}_{\mathrm{O}}=0\) & & 60 & & & 60 & & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Power Consumption} & \multirow[t]{2}{*}{Pd} & & & 75 & 120 & & 75 & 120 & \multirow[t]{2}{*}{mW} \\
\hline & & \(V_{\text {SUPP }}= \pm 3 \mathrm{~V}\) & & 4 & 6 & & 4 & 6 & \\
\hline Offset Adjustment Range & & \(\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega\) & & \(\pm 4\) & & & \(\pm 4\) & & mV \\
\hline
\end{tabular}

OPERATING CHARACTERISTICS
(Continued)
These specifications apply for \(V_{S U P P}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{OP.07E} & \multicolumn{3}{|c|}{OP-07C} & \multicolumn{3}{|c|}{OP-07D} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\mathrm{OS}}\) & (Note 1) & & 30 & 75 & & 60 & 150 & , & 60 & 150 & \(\mu \mathrm{V}\) \\
\hline Long Term Input Offset Voltage Stability & \(\Delta \mathrm{V}_{\text {OS }} / \Delta t\) & (Note 2) & & 0.3 & 1.5 & & 0.4 & 2.0 & & 0.5 & 3.0 & \(\mu \mathrm{V} / \mathrm{mo}\) \\
\hline Input Offset Current & los & & & 0.5 & 3.8 & & 0.8 & 6.0 & & 0.8 & 6.0 & nA \\
\hline Input Bias Current & \(I_{\text {BIAS }}\) & & & \(\pm 1.2\) & \(\pm 4.0\) & & \(\pm 1.8\) & \(\pm 7.0\) & & \(\pm 2.0\) & \(\pm 12\) & nA \\
\hline Input Noise Voltage & \(\mathrm{en}_{\mathrm{n} \text { p-p }}\) & 0.1 Hz to 10 Hz (Note 3) & & 0.35 & 0.6 & & 0.38 & 0.65 & & 0.38 & 0.65 & \(\mu \mathrm{Vp}\)-p \\
\hline Input Noise Voltage Density & \(e_{n}\) & \[
\begin{aligned}
& f_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note } 3) \\
& \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 3) \\
& \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}(\text { Note } 3)
\end{aligned}
\] & & \[
\begin{gathered}
10.3 \\
10.0 \\
9.6
\end{gathered}
\] & \[
\begin{aligned}
& \hline 18.0 \\
& 13.0 \\
& 11.0
\end{aligned}
\] & & \[
\begin{gathered}
10.5 \\
10.2 \\
9.8
\end{gathered}
\] & \[
\begin{aligned}
& 20.0 \\
& 13.5 \\
& 11.5
\end{aligned}
\] & & \[
\begin{gathered}
10.5 \\
10.2 \\
9.8
\end{gathered}
\] & \[
\begin{aligned}
& 20.0 \\
& 13.5 \\
& 11.5
\end{aligned}
\] & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Noise Current & \({ }^{n_{n p-p}}\) & 0.1 Hz to 10 Hz (Note 3) & & 14 & 30 & & 15 & 35 & & 15 & 35 & pAp-p \\
\hline Input Noise Current Density & in & \[
\begin{aligned}
& f_{0}=10 \mathrm{~Hz}(\text { Note } 3) \\
& f_{0}=100 \mathrm{~Hz}(\text { Note } 3) \\
& f_{0}=1000 \mathrm{~Hz}(\text { Note } 3)
\end{aligned}
\] & & \[
\begin{aligned}
& 0.32 \\
& 0.14 \\
& 0.12
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& 0.23 \\
& 0.17
\end{aligned}
\] & & \[
\begin{aligned}
& 0.35 \\
& 0.15 \\
& 0.13
\end{aligned}
\] & \[
\begin{aligned}
& 0.90 \\
& 0.27 \\
& 0.18
\end{aligned}
\] & & \[
\begin{aligned}
& 0.35 \\
& 0.15 \\
& 0.13
\end{aligned}
\] & \[
\begin{aligned}
& 0.90 \\
& 0.27 \\
& 0.18
\end{aligned}
\] & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{Input Resistance Differential Mode Common-Mode} & \(\mathrm{R}_{\text {diff }}\) & \multirow[t]{2}{*}{.} & \multirow[t]{2}{*}{15} & 50 & & \multirow[t]{2}{*}{8} & 33 & & \multirow[t]{2}{*}{7} & 31 & & \(\mathrm{M} \Omega\) \\
\hline & \(\mathrm{R}_{\text {CM }}\) & & & 160 & & & 120 & & & 120 & & G \(\Omega\) \\
\hline Input Common-Mode Voltage Range & CMVR & & \(\pm 13.0\) & \(\pm 14.0\) & & \(\pm 13.0\) & \(\pm 14.0\) & & \(\pm 13.0\) & \(\pm 14.0\) & & V \\
\hline Common-Mode Rejection Ratio & CMRR & \(C M V R= \pm 13.0 \mathrm{~V}\) & 106 & 123 & & 100 & 120 & & 94 & 110 & & dB \\
\hline Power Supply Rejection Ratio & PSRR & \(V_{\text {SUPP }}= \pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) & 94 & 107 & & 90 & 104 & & 90 & 104 & & dB \\
\hline Large Signal Voltage Gain & \(\mathrm{A}_{\text {VOL }}\) & \[
\begin{aligned}
& R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, V_{\mathrm{O}}= \pm 10 \mathrm{~V} \\
& R_{\mathrm{L}} \geq 500 \Omega, V_{O}= \pm 0.5 \mathrm{~V}, \\
& V_{\text {SUPP }}= \pm 3 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 500
\end{aligned}
\] & & 120
100 & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & . & 120 & 400
- & & V/mV \\
\hline Maximum Output Voltage Swing & \(\pm \mathrm{V}_{0}\) & \[
\begin{aligned}
& R_{L} \geq 10 \mathrm{k} \Omega \\
& R_{L} \geq 2 \mathrm{k} \Omega \\
& R_{L} \geq 1 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \pm 12.5 \\
& \pm 12.0 \\
& \pm 10.5
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8 \\
& \pm 12.0
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 12.0 \\
& \pm 11.5
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8 \\
& \pm 12.0
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 12.0 \\
& \pm 11.5
\end{aligned}
\]
\[
-
\] & \[
\begin{aligned}
& \pm 13.0 \\
& \pm 12.8
\end{aligned}
\] & & V \\
\hline Slew. Rate & SR & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{~K} \Omega\) (Note 3) & 0.1 & 0.17 & & 0.1 & 0.17 & & 0.1 & 0.17 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Closed Loop Bandwidth & BW & \(A_{\text {VOL }}=+1.0\) (Note 3) & 0.4 & 0.6 & & 0.4 & 0.6 & & 0.4 & 0.6 & & MHz \\
\hline Open Loop Output Resistance & \(\mathrm{R}_{0}\) & \(\mathrm{V}_{\mathrm{O}}=0, \mathrm{l}_{0}=0\) & & 60 & & & 60 & & & 60 & & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Power Consumption} & \multirow[t]{2}{*}{Pd} & & & 75 & 120 & & 80 & 150 & & 80 & 150 & \multirow[b]{2}{*}{mW} \\
\hline & & \(\mathrm{V}_{\text {SUPP }}= \pm 3 \mathrm{~V}\) & & 4 & 6 & & 4 & 8 & & 4 & 8 & \\
\hline Offset Adjustment Range & & \(\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega\) & & \(\pm 4\) & & & \(\pm 4\) & & & \(\pm 4\) & & mV \\
\hline
\end{tabular}

Note 1: Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. Additionally, OP-07A offset voltage is measured 5 minutes after power supply application at \(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\).
Note 2: Long term input offset voltage stability refers to the average trend line of \(\mathrm{V}_{\text {OS }}\) vs time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, the change in \(V_{\text {OS }}\) during the first 30 operating days is typically \(25 \mu \mathrm{~V}\). Parameter is not \(100 \%\) tested; \(90 \%\) of units meet this specification.
Note 3: Parameter is not \(100 \%\) tested; at least \(90 \%\) of units meet this specification.

OPERATING CHARACTERISTICS
(Continued)
These specifications apply for \(V_{S U P P}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{OP.07A} & \multicolumn{3}{|c|}{OP. 07} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\mathrm{OS}}\) & (Note 1) & & 25 & 60 & & 60 & 200 & \(\mu \mathrm{V}\) \\
\hline Input Offset Voltage Drift Without External Trim With External Trim & \(\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}\) & (Average Tested)
\[
R_{p}=20 \mathrm{k} \Omega \text { (Note } 3 \text { ) }
\] & & \[
\begin{aligned}
& 0.2 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.6 \\
& 0.6
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.3
\end{aligned}
\] & \({ }_{\mu} \mathrm{V}{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & los & & & 0.8 & 4.0 & & 1.2 & 5.6 & nA \\
\hline Input Offset Current Drift & \(\Delta l_{\text {OS }} / \Delta T\) & (Average Tested) & & 5 & 25 & & 8 & 50 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & \(\mathrm{I}_{\text {BIAS }}\) & & & \(\pm 1.0\) & \(\pm 4.0\) & & \(\pm 2.0\) & \(\pm 6.0\) & nA \\
\hline Input Bias Current Drift & \({ }^{\prime} \Delta I_{\text {BIAS }} / \Delta T\) & (Average Tested) & & 8 & 25 & & 13 & 50 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Common-Mode Voltage Range & CMVR & & \(\pm 13.0\) & \(\pm 13.5\) & & \(\pm 13.0\) & \(\pm 13.5\) & & \(\checkmark\) \\
\hline Common-Mode Rej. Ratio & CMRR & CMVR \(= \pm 13.0\) & 106 & 123 & & 106 & 123 & & dB \\
\hline Power Supply Rej. Ratio & PSRR & \(V_{\text {SUPP }}= \pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) & 94 & 106 & & 94 & 106 & & dB \\
\hline Large Signal Voltage Gain & \(A_{\text {VOL }}\) & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\) & 200 & 400 & & 150 & 400 & & V/mV \\
\hline Output Voltage Swing & \(\pm \mathrm{V}_{0}\) & \(R_{L} \geq 2 k \Omega\) & \(\pm 12.0\) & \(\pm 12.6\) & & \(\pm 12.0\) & \(\pm 12.6\) & & V \\
\hline
\end{tabular}

\section*{OPERATING CHARACTERISTICS}

These specifications apply for \(\mathrm{V}_{\text {SUPP }}= \pm 15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{OP.07E} & \multicolumn{3}{|c|}{OP-07C} & \multicolumn{3}{|c|}{OP-07D} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\mathrm{OS}}\) & (Note 1) & & 45 & 130 & & 85 & 250 & & 85 & 250 & \(\mu \mathrm{V}\) \\
\hline Input Offset Voltage Drift Without External Trim With External Trim & \(\Delta V_{O S} / \Delta T\) & (Average Tested)
\[
R_{P}=20 \mathrm{k} \Omega
\] & & \[
\begin{aligned}
& 0.3 \\
& 0.3
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.3
\end{aligned}
\] & & \[
\begin{aligned}
& 0.5 \\
& 0.4
\end{aligned}
\] & \begin{tabular}{l}
(Note 3) \\
1.8 \\
1.6 \\
(Note 3)
\end{tabular} & & \[
\begin{aligned}
& 0.7 \\
& 0.7
\end{aligned}
\] & \[
\left.\begin{array}{c}
(\text { Note 3) } \\
2.5 \\
2.5 \\
(\text { Note 3) }
\end{array}\right)
\] & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & Ios & & & 0.9 & 5.3 & & 1.6 & 8.0 & & 1.6 & 8.0 & nA \\
\hline Input Offset Current Drift & \(\Delta \mathrm{IOS}^{\text {/ }}\) T \(T\) & (Average Tested) (Note 3) & & 8 & 35 & & 12 & 50 & & 12 & 50 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & \(\mathrm{I}_{\text {BIAS }}\) & & & \(\pm 1.5\) & \(\pm 5.5\) & & \(\pm 2.2\) & \(\pm 9.0\) & & \(\pm 3.0\) & \(\pm 14\) & nA \\
\hline Input Bias Current Drift & \(\Delta I_{\text {BIAS }} / \Delta T\) & (Average Tested) (Note 3) & & 13 & 35 & & 18 & 50 & & 18 & 50 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Common-Mode Voltage Range & CMVR & & \(\pm 13.0\) & \(\pm 13.5\) & & \(\pm 13.0\) & \(\pm 13.5\) & & \(\pm 13.0\) & \(\pm 13.5\) & & \(\checkmark\) \\
\hline Common-Mode Rej. Ratio & CMRR & CMVR \(= \pm 13.0\) & 103 & 123 & & 97 & 120 & & 94 & 106 & & dB \\
\hline Power Supply Rej. Ratio & PSRR & \(V_{\text {SUPP }}= \pm 3 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) & 90 & 104 & & 86 & 100 & & 86 & 100 & & dB \\
\hline Large Signal Voltage Gain & \(A_{\text {Vol }}\) & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\) & 180 & 450 & & 100 & 400 & & 100 & 400 & & V/mV \\
\hline Output Voltage Swing & \(\pm \mathrm{V}_{0}\) & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) & \(\pm 12.0\) & \(\pm 12.6\) & & \(\pm 11.0\) & \(\pm 12.6\) & & \(\pm 11.0\) & \(\pm 12.6\) & & V \\
\hline
\end{tabular}

Note 1: Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. Additionally, OP-07A offset voltage is measured 5 minutes after power supply application at \(-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}\) and \(+125^{\circ} \mathrm{C}\).
Note 2: Long term input offset voltage stability refers to the average trend line of \(V_{O S} v s\) time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, the change in \(\mathrm{V}_{\mathrm{OS}}\) during the first 30 operating days is typically \(25 \mu \mathrm{~V}\). Parameter is not \(100 \%\) tested; \(90 \%\) of units meet this specification.
Note 3: Parameter is not \(100 \%\) tested; at least \(90 \%\) of units meet this specification.

TYPICAL PERFORMANCE CURVES




Maximum Error vs Source Resistance


Input Bias Current vs Temperature



Offset Voltage Change Due to Thermal Shock


Maximum Error vs Source Resistance


Input Offset Current vs Temperature


Typical Offset Voltage Stability vs Time



Maximum Error vs Source Resistance


Input Bias Current vs Differential Input Voltage

OP-07 Low Frequency Noise

\(1 \mathrm{SEC} / \mathrm{cm}\)


Total Input Noise Voltage vs Frequency


FREQUENCY ( Hz )


Closed Loop Response for Various
Gain Configurations


Power Consumption vs Power Supply

\(\mathrm{v}^{+}\)TO \(\mathrm{V}^{-}\)(V)

Input Wideband Noise vs Bandwidth \(\mathbf{( 0 . 1 H z}\) to Frequency Indicated)


Open Loop Gain vs Power Supply Voltage



\section*{TEST CIRCUITS}


Low Frequency Noise Test Circuit

\section*{APPLICATIONS}

OP-07 series devices may be inserted directly in 725 and 108/108A* series sockets with or without removal of external compensation components. Additionally, the OP-07 may be fitted to unnulled 741 series sockets; however, if conventional 741 nulling circuitry is in use, it should be modified or removed to enable proper OP-07 operation (see Figure 1). The OP-07 provides stable operation with load capacitances up to 500 pF and \(\pm 10 \mathrm{~V}\) swings; larger capacitances should be decoupled with a 50s decoupling resistor. The designer is cautioned that stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the temperature of the device's package.
"except " \(Y\) " package


Figure 3. OP.07s Used for Reference Inversion and Voltage Output with ICL7134B DAC

\section*{CHIP TOPOGRAPHY}


\section*{FEATURES}
- Input Bias Current - 2 nA max to 7 nA max
- Input Offset Current - 0.2 nA max to 1 nA max
- Input Offset Voltage -0.5 mV max to 7.5 mV max
- \(\Delta \operatorname{Vos} / \Delta \mathrm{T}-5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) to \(30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\)
- \(\Delta \operatorname{los} / \Delta \mathrm{T}-2.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}\) to \(10 \mathrm{pA} /{ }^{\circ} \mathrm{C}\)
- Pin for Pin Replacement for 101A/301A

\section*{GENERAL DESCRIPTION}

These differential input; precision amplifiers provide low input currents and offset voltages competitive with FET and chopper stabilized amplifiers. They feature low power consumption over a supply voltage range of \(>2 \mathrm{~V}\) to \(\pm 20 \mathrm{~V}\). The amplifiers may be frequency compensated with a single external capacitor. The LM108A and LM308A are high performance selections from the 108/308 amplifier family.

\section*{PIN CONFIGURATIONS}

(outline dwg JD)

(outline dwg TY)

(outline dwg FB-1)

\section*{ORDERING INFORMATION}
\begin{tabular}{l|l|c|c|c|c}
\begin{tabular}{c} 
Part \\
number
\end{tabular} & \begin{tabular}{c} 
TO-99 \\
Can
\end{tabular} & \begin{tabular}{c}
8 pin \\
MiniDIP
\end{tabular} & \begin{tabular}{c}
14 pin \\
CERDIP
\end{tabular} & \begin{tabular}{c}
10 pin \\
Flatpak
\end{tabular} & Dice \\
\hline LM108A & LM108AH* & - & LM108AJ & LM108AF & LM108A/D \\
LM308A & LM308AH & LM308AN & LM308AJ & LM308AF & LM308A/D \\
\hline LM108 & \begin{tabular}{l} 
LM108H
\end{tabular} & - & LM108J & LM108F & LM108/D \\
LM308 & LM308H & LM308N & LM308J & LM308F & LM308/D
\end{tabular}
*If 883 B processing is desired add /883B to order number.

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{lr} 
Supply Voltage & \\
108, 108A & \(\pm 20 \mathrm{~V}\) \\
308, 308A & \(\pm 18 \mathrm{~V}\) \\
Internal Power Dissipation (Note 1) & \\
Metal Can (TO-99 & 500 mW \\
DIP & 500 mW \\
Differential Input Current (Note 2) & \(\pm 10 \mathrm{~mA}\) \\
Input Voltage (Note 3) & \(\pm 15 \mathrm{~V}\)
\end{tabular}
\begin{tabular}{lr} 
Output Short-Circuit Duration & Indefinite \\
Operating Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\(108,108 \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\(308,308 \mathrm{~A}\) & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(300^{\circ} \mathrm{C}\)
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\boldsymbol{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified) (Note 4)


THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input Offset Voltage & & & & 10 & & & 0.73 & & & 3.0 & & & 1.0 & mV \\
\hline Input Offset Current & & & & 1.5 & & & 1.5 & & & 0.4 & & & 0.4 & nA \\
\hline Average Temperature Coefficient of Input Offset Voltage & & & 6.0 & 30 & & 1.0 & 5.0 & & 3.0 & 15 & & 1.0 & 5.0 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Average Temperature Coefficient of Input Offset Current & * & & 2 & 10 & & 2.0 & 10 & & 0.5 & 2.5 & & 0.5 & 2.5 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & & & & 10 & & & 10 & & & 3.0 & & & 3.0 & \(n \mathrm{~A}\) \\
\hline Large Signal Voltage Gain & \[
\begin{aligned}
& V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\
& R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega
\end{aligned}
\] & 15 & & & 60 & & & 25 & & & 40 & & & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Input Voltage Range & \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\) & \(\pm 13.5\) & & & \(\pm 13.5\) & & & \(\pm 13.5\) & & & \(\pm 13.5\) & & & \(v\) \\
\hline Common Mode Rejection Ratio & & 80 & 100 & & 96 & 110 & & 85 & 100 & & 96 & 110 & & dB \\
\hline Supply Voltage Rejection Ratıo & & 80 & 96 & & 96 & 110 & & 80 & 96 & & 96 & 110 & & dB \\
\hline Output Voltage Swing & \(V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{kS} 2\) & \(\pm 13\) & \(\pm 14\) & & \(\pm 13\) & \(\pm 14\) & & \(\pm 13\) & \(\pm 14\) & & \(\pm 13\) & \(\pm 14\) & & V \\
\hline Supply Current & \(T_{A}=+125^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}\) & & & & & & & & 0.15 & 0.4 & & 0.15 & 0.4 & mA \\
\hline
\end{tabular}

NOTE 1: Derate Metal Can package at \(6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for operation at ambient temperatures above \(75^{\circ} \mathrm{C}\) and the Dual In-Line package at
\(9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for operation at ambient temperatures above \(95^{\circ} \mathrm{C}\)
NOTE 2: The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
NOTE 3: For supply voltages less than \(\pm 15 \mathrm{~V}\), the maximum input voltage is equal to the supply voltage
NOTE 4: Unless otherwise specified, these specifications apply for supply voltages from \(\pm 5 \mathrm{~V}\) to \(\pm 20 \mathrm{~V}\) for the 108, and 108A and +5 V to \(\pm 15 \mathrm{~V}\) for the 308 and 308A.

\section*{TYPICAL PERFORMANCE CURVES}




CLOSED LOOP
OUTPUT IMPEDENCE




SUPPLY CURRENT




OPEN LOOP
FREQUENCY RESPONSE


VOLTAGE FOLLOWER PULSE RESPONSE


\section*{LM108/A, LM308/A}

\section*{GUARDING}

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 108 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at \(125^{\circ} \mathrm{C}\), particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99
package is accomplished by using a 10 lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage at the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration).

ALTERNATE CIRCUIT: IMPROVES REJECTION OF POWER SUPPLY NOISE BY A FACTOR OF TEN.


\section*{FEATURES}
- Linear current output: \(1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}\)
- Wide range: \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
- Two-terminal device: Voltage in/current out
- Laser trimmed to \(\pm 0.5^{\circ} \mathrm{C}\) calibration accuracy (AD590M)
- Excellent linearity: \(\pm 0.5^{\circ} \mathrm{C}\) over full range (AD590M)
- Wide power supply range: +4 V to +30 V
- Sensor isolation from case
- Low cost

\section*{GENERAL DESCRIPTION}

The AD590 is an integrated-circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance constant current regulator, passing \(1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}\) for supply voltages between +4 V and +30 V . Laser trimming of the chip's thin film resistors is used to calibrate the device to \(298.2 \mu \mathrm{~A}\) output at \(298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right.\) ).

The AD590 should be used in any temperature-sensing application between \(-55^{\circ} \mathrm{C}\) and \(+150^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.\) and \(70^{\circ} \mathrm{C}\) for TO -92)
in which conventional electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistance-measuring circuitry and cold-junction compensation are not needed in applying the AD590. In the simplest application, a resistor, a power source and any voltmeter can be used to measure temperature.

In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature. The AD590 is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments.

The AD590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high-impedance current output. Any wellinsulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590 easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

SCHEMATIC DIAGRAM


\section*{PIN CONFIGURATIONS}

(outline dwg TO-52)

(outline dwg DH)
substrate (LEAVE FLOATING)
(outline dwg TO-92)

\section*{ORDERING INFORMATION}

TO-52 and Ceramic Package:
Operate \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
TO-92:
Operate \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c} 
NON-LINEARITY \\
\(\left({ }^{\circ}\right.\) C)
\end{tabular} & \begin{tabular}{c} 
TO.52 \\
PACKAGE
\end{tabular} & \begin{tabular}{c} 
CERAMIC \\
PACKAGE
\end{tabular} & \begin{tabular}{c} 
TO.92 \\
PACKAGE
\end{tabular} \\
\hline\(\pm 3.0\) & AD590IH & AD590IF & AD590IZR \\
\(\pm 1.5\) & AD590JH & AD590JF & AD590JZR \\
\(\pm 0.8\) & AD590KH & AD590KF & AD590KZR \\
\(\pm 0.4\) & AD590LH & AD590LF & - \\
\(\pm 0.3\) & AD590MH & AD590MF & - \\
\hline
\end{tabular}

AD590
ABSOLUTE MAXIMUM RATINGS \(\left(T_{A}=+25^{\circ} \mathrm{C}\right.\) unless otherwise noted)


Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS (Typical values at \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CHARACTERISTICS & AD5901 & AD590J & AD590K & AD590L & AD590M & UNITS \\
\hline Output Nominal Output Current @ \(+25^{\circ} \mathrm{C}\left(298.2^{\circ} \mathrm{K}\right)\) & 298.2 & 298.2 & 298.2 & 298.2 & 298.2 & \(\mu \mathrm{A}\) \\
\hline Nominal Temperature Coefficient & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & \(\mu \mathrm{A} /{ }^{\circ} \mathrm{K}\) \\
\hline Calibration Error (a) \(+25^{\circ} \mathrm{C}\) (Notes) & \(\pm 10.0\) max & \(\pm 5.0\) max & \(\pm 2.5\) max & \(\pm 1.0\) max & \(\pm 0.5\) max & \({ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Absolute Error
\[
\left(-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}\right)
\] \\
Without External Calibration Adjustment With External Calibration Adjustment
\end{tabular} & \[
\begin{aligned}
& \pm 20.0 \text { max } \\
& \pm 5.8 \text { max }
\end{aligned}
\] & \begin{tabular}{l}
\(\pm 10.0\) max \\
\(\pm 3.0\) max
\end{tabular} & \[
\begin{aligned}
& \pm 5.5 \max \\
& \pm 2.0 \max
\end{aligned}
\] & \[
\begin{aligned}
& \pm 3.0 \mathrm{max} \\
& \pm 1.6 \mathrm{max}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1.7 \mathrm{max} \\
& \pm 1.0 \mathrm{max}
\end{aligned}
\] & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C}\) \\
\({ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Non-Linearity & \(\pm 3.0\) max & \(\pm 1.5\) max & \(\pm 0.8\) max & \(\pm 0.4\) max & \(\pm 0.3\) max & \({ }^{\circ} \mathrm{C}\) \\
\hline Repeatability (Note 2) & \(\pm 0.1\) max & \(\pm 0.1\) max & \(\pm 0.1\) max & \(\pm 0.1\) max & \(\pm 0.1\) max & \({ }^{\circ} \mathrm{C}\) \\
\hline Long Term Drift (Note 3) & \(\pm 0.1\) max & \(\pm 0.1\) max & \(\pm 0.1\) max & \(\pm 0.1\) max & \(\pm 0.1\) max & \({ }^{\circ} \mathrm{C} /\) month \\
\hline Current Noise & 40 & 40 & 40 & 40 & 40 & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Power Supply Rejection
\[
\begin{aligned}
& +4<V^{+}<+5 V \\
& +5<V^{+}<+15 V \\
& +15 V<V^{+}<+30 V
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.2 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.2 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.2 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.2 \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.2 \\
& 0.1
\end{aligned}
\] & \(\mu \mathrm{A} / \mathrm{V}\) \(\mu \mathrm{A} / \mathrm{V}\) \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline Case Isolation to Either Lead & \(10^{10}\) & \(10^{10}\) & \(10^{10}\) & \(10^{10}\) & \(10^{10}\) & \(\Omega\) \\
\hline Effective Shunt Capacitance & 100 & 100 & 100 & 100 & 100 & pF \\
\hline Electrical Turn-On Time (Note 1) & 20 & 20 & 20 & 20 & 20 & \(\mu \mathrm{S}\) \\
\hline Reverse Bias Leakage Current (Note 4) & 10 & 10 & 10 & 10 & 10 & pA \\
\hline Power Supply Range & + 4 to +30 & + 4 to +30 & +4 to +30 & +4 to +30 & + 4 to +30 & V \\
\hline
\end{tabular}

Notes 1. Does not include self heating effects.
2. Maximum deviation between \(+25^{\circ} \mathrm{C}\) reading after temperature cycling between \(-55^{\circ} \mathrm{C}\) and \(+150^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.\) and \(70^{\circ} \mathrm{C}\) for TO-92).
3. Conditions: Constant +5 V , constant \(+125^{\circ} \mathrm{C}\).
4. Leakage current doubles every \(+10^{\circ} \mathrm{C}\).
5. Mechanical strain on package (especially TO-92) may disturb calibration of device.

\section*{AD590}

\section*{TRIMMING OUT ERRORS}

The ideal graph current vs temperature for the AD590 is a straight line, but as Figure 1 shows, the actual shape is slightly different. Since the sensor is limited to the range of \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.\) to \(70^{\circ} \mathrm{C}\) for TO-92), it is possible to optimize the accuracy by trimming. Trimming also permits extracting maximum performance from the lower-cost sensors.

The circuit of Figure 2 trims the slope of the AD590 output. The effect of this is shown in Figure 3.


Figure 1. Trimming Out Errors

The circuit of Figure 4 trims both the slope and the offset. This is shown in Figure 5. The diagrams are exaggerated to show effects, but it should be clear that these trims can be used to minimize errors over the whole range, or over any selected part of the range. In fact, it is possible to adjust the 1 -grade device to give less than \(0.1^{\circ} \mathrm{C}\) error over the range \(0^{\circ} \mathrm{C}\) to \(90^{\circ} \mathrm{C}\) and less than \(0.05^{\circ} \mathrm{C}\) error from \(25^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\).


Figure 2. Slope Trimming


Figure 4. Slope and Offset Trimming


Figure 5. Effect of Slope and Offset Trimming

ACCURACY

Maximum errors over limited temperature spans, with \(V_{S}=+5 \mathrm{~V}\), are listed by device grade in the following tables. The tables reflect the worst-case linearities, which invariably occur at the extremities of the specified temperature range. The trimming conditions for the data in the tables are shown in Figures 2 and 3.
All errors listed in the tables are \(\pm{ }^{\circ} \mathrm{C}\). For example, if \(\pm 1^{\circ} \mathrm{C}\) maximum error is required over the \(+25^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) range (i.e., lowest temperature of \(+25^{\circ} \mathrm{C}\) and span of \(50^{\circ} \mathrm{C}\) ), then
the trimming of a J-grade device, using the single-trim circuit (Figure 2), will result in output having the required accuracy over the stated range. An M-grade device with no trims will have less than \(\pm 0.9^{\circ} \mathrm{C}\) error, and an I-grade device with two trims (Figure 3) will have less than \(\pm 0.2^{\circ}\) error. If the requirement is for less than \(\pm 1.4^{\circ} \mathrm{C}\) maximum error, from \(-25^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\left(100^{\circ}\right.\) span from \(\left.-25^{\circ} \mathrm{C}\right)\), it can be satisfied by an M-grade device with no trims, a K-grade device with one trim, or an l-grade device with two trims.

I GRADE-MAXIMUM ERRORS, \({ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{NUMBER OF TRIMS} & \multirow[t]{2}{*}{TEMPERATURE SPAN - \({ }^{\circ} \mathrm{C}\)} & \multicolumn{8}{|c|}{LOWEST TEMPERATURE IN SPAN - \({ }^{\circ} \mathrm{C}\)} \\
\hline & & -55 & -25 & 0 & +25 & \(+50\) & \(+75\) & +100 & +125 \\
\hline None & 10 & 8.4 & 9.2 & 10.0 & 10.8 & 11.6 & 12.4 & 13.2 & 14.4 \\
\hline None & 25 & 10.0 & 10.4 & 11.0 & 11.8 & 12.0 & 13.8 & 15.0 & 16.0 \\
\hline None & 50 & 13.0 & 13.0 & 12.8 & 13.8 & 14.6 & 16.4 & 18.0 & \\
\hline None & 100 & 15.2 & 16.0 & 16.6 & 17.4 & 18.8 & & & \\
\hline None & 150 & 18.4 & 19.0 & 19.2 & & & & & \\
\hline None & 205 & 20.0 & & & & & & & \\
\hline One & 10 & 0.6 & 0.4 & 0.4 & 0.4 & 0.4 & 0.4 & 0.4 & 0.6 \\
\hline One & 25 & 1.8 & 1.2 & 1.0 & 1.0 & 1.0 & 1.2 & 1.6 & 1.8 \\
\hline One & 50 & 3.8 & 3.0 & 2.0 & 2.0 & 2.0 & 3.0 & 3.8 & \\
\hline One & 100 & 4.8 & 4.5 & 4.2 & 4.2 & 5.0 & & & \\
\hline One & 150 & 5.5 & 4.8 & 5.5 & & & & & \\
\hline One & 205 & 5.8 & & & & & & & \\
\hline Two & 10 & 0.3 & 0.2 & 0.1 & \(<\) & \(<\) & 0.1 & 0.2 & 0.3 \\
\hline Two & 25 & 0.5 & 0.3 & 0.2 & \(<\) & 0.1 & 0.2 & 0.3 & 0.5 \\
\hline Two & 50 & 1.2 & 0.6 & 0.4 & 0.2 & 0.2 & 0.3 & 0.7 & \\
\hline Two & 100 & 1.8 & 1.4 & 1.0 & 2.0 & 2.5 & & & \\
\hline Two & 150 & 2.6 & 2.0 & 2.8 & & & & & \\
\hline Two & 205 & 3.0 & & & & & & & \\
\hline
\end{tabular}
<: Less than \(0.05^{\circ} \mathrm{C}\).
J GRADE—MAXIMUM ERRORS, \({ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{NUMBER OF TRIMS} & \multirow[t]{2}{*}{TEMPERATURE SPAN - \({ }^{\circ} \mathrm{C}\)} & \multicolumn{8}{|c|}{LOWEST TEMPERATURE IN SPAN - \({ }^{\circ} \mathrm{C}\)} \\
\hline & & -55 & -25 & 0 & +25 & + 50 & + 75 & +100 & +125 \\
\hline None & 10 & 4.2 & 4.6 & 5.0 & 5.4 & 5.8 & 6.2 & 6.6 & 7.2 \\
\hline None & 25 & 5.0 & 5.2 & 5.5 & 5.9 & 6.0 & 6.9 & 7.5 & 8.0 \\
\hline None & 50 & 6.5 & 6.5 & 6.4 & 6.9 & 7.3 & 8.2 & 9.0 & \\
\hline None & 100 & 7.7 & 8.0 & 8.3 & 8.7 & 9.4 & & & \\
\hline None & 150 & 9.2 & 9.5 & 9.6 & & & & & \\
\hline None & 205 & 10.0 & & & & & & & \\
\hline One & 10 & 0.3 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.3 \\
\hline One & 25 & 0.9 & 0.6 & 0.5 & 0.5 & 0.5 & 0.6 & 0.8 & 0.9 \\
\hline One & 50 & 1.9 & 1.5 & 1.0 & 1.0 & 1.0 & 1.5 & 1.9 & \\
\hline One & 100 & 2.3 & 2.2 & 2.0 & 2.0 & 2.3 & & & \\
\hline One & 150 & 2.5 & 2.4 & 2.5 & & & & & \\
\hline One & 205 & 3.0 & & & & & & & \\
\hline Two & 10 & 0.1 & \(<\) & \(<\) & \(<\) & \(<\) & \(<\) & < & 0.1 \\
\hline Two & 25 & 0.2 & 0.1 & \(<\) & \(<\) & \(<\) & \(<\) & 0.1 & 0.2 \\
\hline Two & 50 & 0.4 & 0.2 & 0.1 & < & \(<\) & 0.1 & 0.2 & < \\
\hline Two & 100 & 0.7 & 0.5 & 0.3 & 0.7 & 1.0 & & & \\
\hline Two & 150 & 1.0 & 0.7 & 1.2 & & & & & \\
\hline Two & 205 & 1.6 & & & & & & & \\
\hline
\end{tabular}
\(<\) : Less than \(\pm 0.05^{\circ} \mathrm{C}\).

K GRADE-MAXIMUM ERRORS, \({ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{NUMBER OF TRIMS} & \multirow[t]{2}{*}{TEMPERATURE SPAN - \({ }^{\circ} \mathrm{C}\)} & \multicolumn{8}{|c|}{LOWEST TEMPERATURE IN SPAN- \({ }^{\circ} \mathrm{C}\)} \\
\hline & & -55 & -25 & 0 & +25 & \(+50\) & +75 & +100 & +125 \\
\hline None & 10 & 2.1 & 2.3 & 2.5 & 2.7 & 2.9 & 3.1 & 3.3 & 3.6 \\
\hline None & 25 & 2.6 & 2.7 & 2.8 & 3.0 & 3.2 & 3.5 & 3.8 & 4.2 \\
\hline None & 50 & 3.8 & 3.5 & 3.4 & 3.6 & 3.8 & 4.3 & 5.1 & \\
\hline None & 100 & 4.2 & 4.3 & 4.4 & 4.6 & 5.1 & & & \\
\hline None & 150 & 4.8 & 4.8 & 5.3 & & & & & \\
\hline None & 205 & 5.5 & & & & & & & \\
\hline One & 10 & 0.2 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\
\hline One & 25 & 0.6 & 0.4 & 0.3 & 0.3 & 0.3 & 0.4 & 0.5 & 0.6 \\
\hline One & 50 & 1.2 & 1.0 & 0.7 & 0.7 & 0.7 & 1.0 & 1.2 & \\
\hline One & 100 & 1.5 & 1.4 & 1.3 & 1.3 & 1.5 & & & \\
\hline One & 150 & 1.7 & 1.5 & 1.7 & & & & & \\
\hline One & 205 & 2.0 & & & & & & & \\
\hline Two & 10 & 0.1 & * & * & * & * & * & * & 0.1 \\
\hline Two & 25 & 0.2 & 0.1 & * & * & * & * & 0.1 & 0.2 \\
\hline Two & 50 & 0.3 & 0.1 & * & * & * & 0.1 & 0.2 & \\
\hline Two & 100 & 0.5 & 0.3 & 0.2 & 0.3 & 0.7 & & & \\
\hline Two & 150 & 0.6 & 0.5 & Q. 7. & & & & & \\
\hline Two & 205 & 0.8 & & & & & & & \\
\hline
\end{tabular}
* Less than \(\pm 0.05^{\circ} \mathrm{C}\)

L GRADE—MAXIMUM ERRORS, \({ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{NUMBER OF TRIMS} & \multirow[t]{2}{*}{TEMPERATURE SPAN - \({ }^{\circ} \mathrm{C}\)} & \multicolumn{8}{|c|}{LOWEST TEMPERATURE IN SPAN - \({ }^{\circ} \mathrm{C}\)} \\
\hline & & -55 & -25 & , 0 & +25 & \(+50\) & \(+75\) & +100 & +125 \\
\hline None & 10 & 1.0 & 1.0 & 1.1 & 1.1 & 1.2 & 1:3 & 1.4 & 1.6 \\
\hline None & 25 & 1.3 & 1.3 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7 & 1.9 \\
\hline None & 50 & 1.9 & 1.8 & 1.7 & 1.8 & 1.9 & 2.1 & 2.4 & \\
\hline None & 100 & 2.4 & 2.4 & 2.4 & 2.4 & 2.7 & & & \\
\hline None & 150 & 2.7 & 2.6 & 2.8 & & & & & \\
\hline None & 205 & 3.0 & & & & & & & \\
\hline One & 10 & 0.2 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\
\hline One & 25 & 0.5 & 0.4 & 0.3 & 0.3 & 0.3 & 0.3 & 0.4 & 0.5 \\
\hline One & 50 & 1.0 & 0.8 & 0.6 & 0.6 & 0.6 & 0.8 & 1.0 & \\
\hline One & 100 & 1.3 & 1.2 & 1.1 & 1.1 & 1.3 & & & \\
\hline One & 150 & 1.4 & 1.3 & 1.4 & & & & & \\
\hline One & 205 & 1.6 & & & & & & & \\
\hline Two & 10 & 0.1 & * & * & * & * & * & * & 0.1 \\
\hline Two & 25 & 0.1 & * & * & * & * & * & * & 0.1 \\
\hline Two & 50 & 0.2 & * & * & * & * & * & 0.2 & \\
\hline Two & 100 & 0.3 & 0.2 & 0.1 & 0.2 & 0.3 & & & \\
\hline Two & 150 & 0.3 & 0.2 & 0.3 & & & & & \\
\hline Two & 205 & 0.4 & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
* Less than \(\pm 0.05^{\circ} \mathrm{C}\)
}

M GRADE—MAXIMUM ERRORS, \({ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{NUMBER OF TRIMS} & \multirow[t]{2}{*}{TEMPERATURE SPAN - \({ }^{\circ} \mathrm{C}\)} & \multicolumn{8}{|c|}{LOWEST TEMPERATURE IN SPAN - \({ }^{\circ} \mathrm{C}\)} \\
\hline & & -55 & -25 & 0 & +25 & \(+50\) & + 75 & +100 & +125 \\
\hline None & 10 & 0.6 & 0.5 & 0.6 & 0.6 & 0.7 & 0.7 & 0.7 & 0.9 \\
\hline None & 25 & 0.8 & 0.8 & 0.7 & 0.7 & 0.8 & 0.8 & 1.0 & 1.1 \\
\hline None & 50 & 1.0 & 0.9 & 0.8 & 0.9 & 0.9 & 1.1 & 1.2 & \\
\hline None & 100 & 1.3 & 1.4 & 1.3 & 1.4 & 1.5 & & & \\
\hline None & 150 & 1.5 & 1.6 & 1.6 & & & & & \\
\hline None & 205 & 1.7 & & & & & & & \\
\hline One & 10 & 0.2 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\
\hline One & 25 & 0.4 & 0.3 & 0.2 & 0.2 & 0.2 & 0.2 & 0.3 & 0.4 \\
\hline One & 50 & 0.5 & 0.4 & 0.3 & 0.3 & 0.3 & 0.4 & 0.5 & \\
\hline One & 100 & 0.8 & 0.8 & 0.7 & 0.7 & 0.8 & & & \\
\hline One & 150 & 0.9 & 0.9 & 0.9 & & & & & \\
\hline One & 205 & 1.0 & & & & & & & \\
\hline Two & 10 & 0.1 & * & * & * & * & * & * & 0.1 \\
\hline Two & 25 & 0.1 & * & * & * & * & * & * & 0.1 \\
\hline Two & 50 & 0.2 & * & * & * & * & * & 0.2 & \\
\hline Two & 100 & 0.2 & 0.1 & * & 0.1 & 0.2 & & & \\
\hline Two & 150 & 0.3 & 0.2 & 0.3 & & & & & \\
\hline Two & 205 & 0.3 & & & & & & & \\
\hline
\end{tabular}
* Less than \(\pm 0.05^{\circ} \mathrm{C}\)

\section*{NOTES}
1. Maximum errors over all ranges are guaranteed based on the known behavior characteristic of the AD590.
2. For one-trim accuracy specifications, the \(205^{\circ} \mathrm{C}\) span is assumed to be trimmed at \(+25^{\circ} \mathrm{C}\); for all other spans, it is assumed that the device is trimmed at the midpoint.
3. For the \(205^{\circ} \mathrm{C}\) span, it is assumed that the two-trim temperatures are in the vicinity of \(0^{\circ} \mathrm{C}\) and \(+140^{\circ} \mathrm{C}\); for all other spans, the specified trims are at the endpoints.
4. In precision applications, the actual errors encountered are usually dependent upon sources of error which are often overlooked in error budgets. These typically include:
a. Trim error in the calibration technique used
b. Repeatability error
c. Long-term drift errors

Trim error is usually the largest error souce. This error arises from such causes as poor thermal coupling between the device to be calibrated and the reference sensor; reference sensor errors; lack of adequate time for the device being calibrated to settle to the final temperature; radically different thermal resistances between the case and the surroundings \(\left(R_{\theta C A}\right)\) when trimming and when applying the device.
Repeatability errors arise from a strain hysteresis of the package. The magnitude of this error is solely a function of the magnitude of the temperature span over which the device is used. For example, thermal shocks between \(0^{\circ} \mathrm{C}\) and \(100^{\circ} \mathrm{C}\) involve extremely low hysteresis and result in repeatability errors of less than \(\pm 0.05^{\circ} \mathrm{C}\). When the thermal-shock excursion is widened to \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\), the device will typically exhibit a repeatability error of \(\pm 0.05^{\circ} \mathrm{C}( \pm 0.10\) guaranteed maximum).
Long-term drift errors are related to the average operating temperature and the magnitude of the thermal shocks experienced by the device. Extended use of the AD590 at temperatures above \(100^{\circ} \mathrm{C}\) typically results in long-term drift of \(\pm 0.03^{\circ} \mathrm{C}\) per month; the guaranteed maximum is \(\pm 0.10^{\circ} \mathrm{C}\) per month. Continuous operation at temperatures below \(100^{\circ} \mathrm{C}\) induces no measurable drifts in the device. Besides the effects of operating temperature, the severity of thermal shocks incurred will also affect absolute stability. For thermal-shock excursions less than \(100^{\circ} \mathrm{C}\), the drift is difficult to measure \(\left(<0.03^{\circ} \mathrm{C}\right)\). However, for \(200^{\circ} \mathrm{C}\) excursions, the device may drift by as much as \(\pm 0.10^{\circ} \mathrm{C}\) after twenty such shocks. If severe, quick shocks are necessary in the application of the device, realistic simulated life tests are recommended for a thorough evaluation of the error introduced by such shocks.

\section*{TYPICAL APPLICATIONS}



Figure 7. Lowest-temperature sensing scheme. Available current is that of the "coldest" sensor.


Figure 6. Simple connection. Output is proportional to absolute temperature.


Figure 8. Average-temperature sensing scheme. The sum of the AD590 currents appears across R, which is chosen by the formula
\(R=\frac{10 \mathrm{k} \Omega}{\mathrm{n}}\),
\(n\) being the number of sensors.


Figure 9. Single-setpoint temperature controller. The AD590 produces a temperature-dependent voltage across \(R\) ( \(C\) is for filtering noise). Setting \(\mathbf{R}_{2}\) produces a scale-zero voltage. For the Celsius scale, make \(R=1 \mathrm{k} \Omega\) and \(\mathrm{V}_{\text {ZERO }}=0.273\) volts. For Fahrenheit, \(R=1.8 \mathrm{k} \Omega\) and \(\mathrm{V}_{\text {ZERO }}=0.460\) volts.

TYPICAL APPLICATIONS (Cont'd)


Figure 10. Multiplexing sensors. If shorted sensors are possible, a series resistor in series with the D line will limit the current (shown as R, above: only one is needed). A six-bit digital word will select one of 64 sensors.


Figure 11. Centigrade thermometer \(\left(0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)\). The ultra-low bias current of the ICL7611 allows the use of largevalue gain-resistors, keeping meter-current error under. \(1 / 2 \%\), and therefore saving the expense of an extra meter-driving amplifier.


Figure 12. Differential thermometer. The \(50 \mathrm{k} \Omega\) pot trims offsets in the devices whether internal or external, so it can be used to set the size of the difference interval. This also makes it useful for liquid-level detection (where there will be a measurable temperature difference).

TYPICAL APPLICATIONS (Cont'd)


Figure 13. Cold-junction compensation for type \(K\) thermocouple. The reference junction(s) should be in close thermal contact with the AD590 case. \(\mathrm{V}^{+}\)must be at least 4 V , while ICL8069 current should be set at \(1 \mathrm{~mA}-2 \mathrm{~mA}\). Calibration does not require shorting or removal of the thermocouple: set \(R_{1}\) for \(V_{2}=10.98 \mathrm{mV}\). If very precise measurements are needed, adjust \(R_{2}\) to the exact Seebeck coefficient for the thermocouple used (measured or from table) note \(V_{1}\), and set \(R_{1}\) to buck out this voltage (i.e., set \(V_{2}=V_{1}\) ). For other thermocouple types, adjust values to the appropriate Seebeck coefficient.

Figure 14. Simplest thermometer. Meter displays current output directly in degrees Kelvin. Using the AD590M, sensor output is within \(\pm 1.7\) degrees over the entire range, and less than \(\pm 1\) degree over the greater part of it.

\begin{tabular}{|c|c|c|c|c|c|c|}
\multicolumn{1}{c|}{} & \(\mathbf{R}\) & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{2}}\) & \(\mathbf{R}_{\mathbf{3}}\) & \(\mathbf{R}_{\mathbf{4}}\) & \(\mathbf{R}_{\mathbf{5}}\) \\
\hline\({ }^{\circ} \mathbf{F}\) & 9.00 & 4.02 & 2.0 & 12.4 & 10.0 & 0 \\
\hline\({ }^{\circ} \mathbf{C}\) & 5.00 & 4.02 & 2.0 & 5.11 & 5.0 & 11.8 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \sum_{1}^{5} \mathrm{R}_{\mathrm{n}}=28 \mathrm{k} \Omega \text { (nominal). } \\
& \text { All values in } \mathrm{k} \Omega
\end{aligned}
\]

The ICL7106 has a \(\mathrm{V}_{\text {IN }}\) span of \(\pm 2.0 \mathrm{~V}\), and a \(\mathrm{V}_{\mathrm{CM}}\) range of \(\left(\mathrm{V}^{+}-0.5\right)\) Volts to \(\left(V^{-}+1\right)\) Volts; \(R\) is scaled to bring each range within \(V_{C M}\) while not exceeding \(\mathrm{V}_{\mathrm{IN}}\). \(\mathrm{V}_{\text {REF }}\) for both scales is 500 mV . Maximum reading on the Celsius range is \(199.9^{\circ} \mathrm{C}\), limited by the (short-term) maximum allowable sensor temperature. Maximum reading on the Fahrenheit range is \(199.9^{\circ} \mathrm{F}\left(93.3^{\circ} \mathrm{C}\right)\), limited by the number of display digits. See also note below.

Figure 15. Basic digital thermometer, Celsius and Fahrenheit scales


Figure 16. Basic digital thermometer, Kelvin scale. The Kelvin scale version reads from 0 to \(1999^{\circ} \mathrm{K}\) theoretically, and from \(223^{\circ} \mathrm{K}\) to \(473^{\circ} \mathrm{K}\) actually. The \(2.26 \mathrm{k} \Omega\) resistor brings the input within the ICL7106 \(\mathrm{V}_{\mathrm{CM}}\) range: 2 generalpurpose silicon diodes or an LED may be substituted.


Figure 17. Basic digital thermometer, Kelvin scale with zero adjust. This circuit allows "zero adjustment" as well as slope adjustment. The ICL8069 brings the input within the common-mode range, while the \(5 \mathrm{k} \Omega\) pots trim any offset at \(218^{\circ} \mathrm{K}\left(-55^{\circ} \mathrm{C}\right)\), and set scale factor.

Note on Figure 15, Figure 16 and Figure 17: Since all 3 scales have narrow \(V_{\mathbb{N}}\) spans; some optimization of ICL 7106 components can be made to lower noise and preserve CMR. The table below shows the suggested values. Similar scaling can be used with the ICL7126/36.
\begin{tabular}{|c|c|c|c|}
\hline Scale & \(\mathbf{V}_{\text {IN }}\) Range (V) & \(\mathbf{R}_{\text {INT }}(\mathbf{k} \Omega)\) & \(\mathbf{C}_{\mathbf{A Z}}(\mu \mathbf{F})\) \\
\hline K & 0.223 to 0.473 & 220 & 0.47 \\
C & -0.25 to +1.0 & 220 & 0.1 \\
F & -0.29 to +0.996 & 220 & 0.1 \\
\hline
\end{tabular}

For all:
\[
\begin{array}{rlr}
\mathrm{C}_{\mathrm{REF}} & =0.1 \mu \mathrm{~F} & \mathrm{C}_{\mathrm{OSC}}=100 \mathrm{pF} \\
\mathrm{C}_{\mathrm{INT}} & =0.22 \mu \mathrm{~F} & \mathrm{R}_{\mathrm{OSC}}=100 \mathrm{k} \Omega
\end{array}
\]

\section*{FEATURES}
- 120 MHz bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

\section*{DESCRIPTION}

The NE/SE592 is a monolithic, two stage, differential output, wideband video amplifier which offers fixed gains of 100 and 400 without external components and adjustable gains from 0 to 400 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disc head amplifiers. The NE/SE592 is a pin-for-pin replacement for the \(\mu \mathrm{A} 733\) in most applications.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline PART & TEMP & \multicolumn{3}{|c|}{ PACKAGE } \\
\cline { 3 - 5 } \begin{tabular}{c} 
TYPE \\
RANGE
\end{tabular} & \begin{tabular}{c} 
14-Pin \\
Plastic
\end{tabular} & \begin{tabular}{c} 
14.Pin \\
CERDIP
\end{tabular} & \begin{tabular}{c} 
10-Pin \\
TO-100
\end{tabular} \\
\hline SE592 & \begin{tabular}{c}
\(-55^{\circ} \mathrm{C}\) to \\
\(+125^{\circ} \mathrm{C}\)
\end{tabular} & - & SE592F & SE592H \\
\hline NE592 & \begin{tabular}{c}
\(0^{\circ} \mathrm{C}\) to \\
\(+70^{\circ} \mathrm{C}\)
\end{tabular} & NE592N & NE592F & NE592H \\
\hline
\end{tabular}

EQUIVALENT CIRCUIT (resistor values nominal only)


\section*{PIN CONFIGURATIONS}

14-Pin DIP Package (JD, PD Package)

10.Pin TO-100 Package (H Package)


Note: Pin 5 connected to case

ABSOLUTE MAXIMUM RATINGS
( \(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise specified)
\begin{tabular}{ll} 
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . & \(\pm 8 \mathrm{~V}\) \\
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . & \(\pm 5 \mathrm{~V}\) \\
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . & \(\pm 6 \mathrm{~V}\) \\
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . & 10 mA
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operating Temperature Range} \\
\hline SE592 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline NE592 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & 500 m \\
\hline
\end{tabular}

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{DC ELECTRICAL CHARACTERISTICS}
\(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0\) unless otherwise specified. Recommended operating supply voltages \(\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{NE592} & \multicolumn{3}{|c|}{SE592} & \multirow{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \begin{tabular}{l}
Differential Voltage Gain \\
Gain 1 (Note 1) \\
Gain 2 (Note 2)
\end{tabular} & Avol. & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{Vp}-\mathrm{p}\) & \[
\begin{gathered}
250 \\
80
\end{gathered}
\] & \[
\begin{aligned}
& 400 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 600 \\
& 120
\end{aligned}
\] & \[
\begin{gathered}
300 \\
90
\end{gathered}
\] & \[
\begin{aligned}
& 400 \\
& 100
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 110
\end{aligned}
\] & V/V \\
\hline \begin{tabular}{l}
Bandwidth \\
Gain 1 (Note 1) \\
Gain 2 (Note 2)
\end{tabular} & BW & & & 40
90 & & & \[
\begin{aligned}
& 40 \\
& 90
\end{aligned}
\] & & MHz \\
\hline \begin{tabular}{l}
Rise Time \\
Gain 1 (Note 1) \\
Gain 2 (Note 2)
\end{tabular} & \(t_{r}\) & \(\mathrm{V}_{\text {OUT }}=1 \mathrm{Vp-p}\) & & \[
\begin{gathered}
10.5 \\
4.5
\end{gathered}
\] & 12 & & \[
\begin{gathered}
10.5 \\
4.5
\end{gathered}
\] & 10 & ns \\
\hline \begin{tabular}{l}
Propagation Delay \\
Gain 1 (Note 1) \\
Gain 2 (Note 2)
\end{tabular} & \(t_{d}\) & \(V_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}\) & & \[
\begin{aligned}
& 7.5 \\
& 6.0
\end{aligned}
\] & 10 & & \[
\begin{aligned}
& 7.5 \\
& 6.0
\end{aligned}
\] & 10 & ns \\
\hline \begin{tabular}{l}
Input Resistance \\
Gain 1 (Note 1) \\
Gain 2 (Note 2)
\end{tabular} & \(\mathrm{R}_{\mathrm{IN}}\) & . & 10 & \[
\begin{aligned}
& 4.0 \\
& 30
\end{aligned}
\] & & 20 & \[
\begin{aligned}
& 4.0 \\
& 30
\end{aligned}
\] & & k \(\Omega\) \\
\hline Input Capacitance (Note 2) & \(\mathrm{C}_{1 \mathrm{~N}}\) & Gain 2 & & 2.0 & & & 2.0 & & pF \\
\hline Input Offset Current & Ios & & & 0.4 & 5.0 & & 0.4 & 3.0 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & \(\mathrm{I}_{\text {BIAS }}\) & & & 9.0 & 30 & & 9.0 & 20 & \(\mu \mathrm{A}\) \\
\hline Input Noise Voltage & \(\bar{e}_{n}\) & \(\mathrm{BW}=1 \mathrm{kHz}\) to 10 MHz & & 12 & & & 12 & & \(\mu \mathrm{Vrms}\) \\
\hline Input Voltage Range & \(\Delta \mathrm{V}_{\text {IN }}\) & & & & \(\pm 1.0\) & & & \(\pm 1.0\) & V \\
\hline \begin{tabular}{l}
Common-Mode Rejection Ratio \\
Gain 2 (Note 2) \\
Gain 2 (Note 2)
\end{tabular} & CMRR & \[
\begin{aligned}
& V_{C M} \pm 1 \mathrm{~V}, F<100 \mathrm{kHz} \\
& V_{C M} \pm 1 \mathrm{~V}, F=5 \mathrm{MHz}
\end{aligned}
\] & 60 & \[
\begin{aligned}
& 86 \\
& 60
\end{aligned}
\] & , & 60 & \[
\begin{aligned}
& 86 \\
& 60
\end{aligned}
\] & & dB \\
\hline Supply Voltage Rejection Ratio Gain 2 (Note 2) & PSRR & \(\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}\) & 50 & 70 & & 50 & 70 & & dB \\
\hline Output Offset Voltage Gain 2 (Note 2) & \(\mathrm{V}_{\text {OOS }}\) & \(\mathrm{R}_{\mathrm{L}}=\infty\) & & 0.35 & 0.75 & & 0.35 & 0.75 & V \\
\hline Output Common-Mode Voltage & \(V_{\text {OCM }}\) & \(R_{L}=\infty\) & 2.4 & 2.9 & 3.4 & 2.4 & 2.9 & 3.4 & V \\
\hline Output Voltage Swing Differential & \(\pm V_{0}\) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & 3.0 & 4.0 & & 3.0 & 4.0 & & V \\
\hline Output Resistance & R & & & 20 & & & 20 & & \(\Omega\) \\
\hline Power Supply Current & \(1^{+}\) & \(\mathbf{R}_{\mathrm{L}}=\infty\) & & 18 & 24 & & 18 & 24 & mA \\
\hline
\end{tabular}

Note 1: Gain select pins \(G_{1 A}\) and \(G_{1 B}\) connected together.
Note 2: Gain select pins \(G_{2 A}\) and \(G_{2 B}\) connected together.

Filter Networks

Basic Configuration (see note)

\[
\begin{aligned}
\frac{V_{0}(\mathrm{~s})}{V_{i}(\mathrm{~s})} & \cong \frac{1.4 \times 10^{4}}{Z(\mathrm{~s})+2 \mathrm{r}_{e}} \\
& \cong \frac{1.4 \times 10^{4}}{Z(\mathrm{~s})+32}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Z NETWORK & FILTER TYPE & \begin{tabular}{l}
\(V_{0}\) (s) TRANSFER \\
\(\overline{V_{i}(s)}\) FUNCTION
\end{tabular} \\
\hline \(0-\sim_{n}^{R}\) & LOW PASS & \(\frac{1.4 \times 10^{4}}{L}\left[\frac{1}{s+R / L}\right]\) \\
\hline  & HIGH PASS & \(\frac{1.4 \times 10^{4}}{R}\left[\frac{s}{s+1 / R C}\right]\) \\
\hline \[
0-\sim_{n}^{R} \operatorname{li}^{c}-
\] & BAND PASS & \(\frac{1.4 \times 10^{4}}{L}\left[\frac{s}{s^{2}+R / L s+1 / L C}\right]\) \\
\hline  & BAND REJECT & \(\frac{1.4 \times 10^{4}}{R}\left[\frac{s^{2}+1 / L C}{s^{2}+1 / L C+s / R C}\right]\) \\
\hline
\end{tabular}

Note: In the networks above, the \(R\) value used is assumed to include the internal \(2 r_{e}\) of approximately \(32 \Omega\).

Differentiation with High Common-Mode Noise Rejection


For frequency \(F_{1} \ll 1 / 2 \pi(32) C\)
\(V_{o} \equiv 1.4 \times 10^{4} \mathrm{C} \frac{\mathrm{d} V_{i}}{d T}\)

\section*{FEATURES}
- 120MHz bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

\section*{DESCRIPTION}

The NE592-8 is a monolithic, two stage, differential output, wideband video amplifier which offers a fixed gain of 400 without external components and adjustable gains from 0 to 400 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disc head amplifiers. The NE592-8 is a pin-for-pin replacement for the \(\mu \mathrm{A} 733\) in most applications.

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
PART \\
TYPE
\end{tabular} & \begin{tabular}{c} 
TEMP \\
RANGE
\end{tabular} & PACKAGE \\
\hline NE592 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & NE592N-8 \\
\hline
\end{tabular}

PIN CONFIGURATION (outline dwg PA)


EQUIVALENT CIRCUIT (resistor values nominal only)


\section*{ABSOLUTE MAXIMUM RATINGS}
( \(T_{A}=+25^{\circ} \mathrm{C}\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|}
\hline Supply Voltage & \(\pm 8 \mathrm{~V}\) & Operating Temperature Range & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline . Differential Input Voltage & \(\pm 5 \mathrm{~V}\) & Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Common-Mode Input Voltage & \(\pm 6 \mathrm{~V}\) & Power Dissipation & 500 mW \\
\hline Output Current & OmA & & \\
\hline
\end{tabular}

Storage Temperature Range . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 500mW

\section*{DC ELECTRICAL CHARACTERISTICS}
\(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0\) unless otherwise specified. Recommended operating supply voltages \(\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{NE592-8} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & \\
\hline Differential Voltage Gain Gain 1 (Note 1) & Avol & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{Vp}-\mathrm{p}\) & 250 & 400 & 600 & VIV \\
\hline \begin{tabular}{l}
Bandwidth \\
Gain 1 (Note 1)
\end{tabular} & BW & & & 40 & . & MHz \\
\hline Rise Time Gain 1 (Note 1) & \(t_{r}\) & \(V_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}\) & & 10.5 & & ns \\
\hline \begin{tabular}{l}
Propagation Delay \\
Gain 1 (Note 1)
\end{tabular} & \(t_{\text {d }}\) & \(V_{\text {Out }}=1 \mathrm{Vp}-\mathrm{p}\) & & 7.5 & & ns \\
\hline Input Resistance Gain 1 (Note 1) & \(\mathrm{R}_{\text {IN }}\) & & . & 4.0 & & k \(\Omega\) \\
\hline Input Capacitance & \(\mathrm{CiN}_{\text {I }}\) & & & 2.0 & & pF \\
\hline Input Offset Current & los & & & 0.4 & 5.0 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & IBIAS & & & 9.0 & 30 & \(\mu \mathrm{A}\) \\
\hline Input Noise Voltage & \(\overline{\mathrm{e}}_{\mathrm{n}}\) & \(\mathrm{BW}=1 \mathrm{kHz}\) to 10 MHz & & 12 & & \({ }_{\mu} \mathrm{Vrms}\) \\
\hline Input Voltage Range & \(\Delta \mathrm{V}_{\text {IN }}\) & & & & \(\pm 1.0\) & V \\
\hline Common-Mode Rejection Ratio & CMRR & \[
\begin{aligned}
& V_{C M} \pm 1 \mathrm{~V}, F<100 \mathrm{kHz} \\
& V_{C M} \pm 1 \mathrm{~V}, F=5 \mathrm{MHz}
\end{aligned}
\] & 60 & \[
\begin{aligned}
& 86 \\
& 60
\end{aligned}
\] & & dB \\
\hline Supply Voltage Rejection Ratio & PSRR & \(\Delta V_{S}= \pm 0.5 \mathrm{~V}\) & 50 & 70 & & dB \\
\hline Oûtput Offset Voltage & \(\mathrm{V}_{\text {Oos }}\) & \(\mathrm{R}_{\mathrm{L}}=\infty\) & & 0.35 & 0.75 & V \\
\hline Output Common-Mode Voltage & \(\mathrm{V}_{\text {OCM }}\) & \(\mathrm{R}_{\mathrm{L}}=\infty\) & 2.4 & 2.9 & 3.4 & V \\
\hline Output Voltage Swing Differential & \(\pm \mathrm{V}_{\text {o }}\) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & 3.0 & 4.0 & & v \\
\hline Output Resistance & \(\mathrm{R}_{0}\) & & & 20 & & \(\Omega\) \\
\hline Power Supply Current & \(1^{+}\) & \(\mathrm{R}_{\mathrm{L}}=\infty\) & & 18 & 24 & mA \\
\hline
\end{tabular}

Note 1: Gain select pins \(G_{1 A}\) and \(G_{1 B}\) connected together.

\section*{Filter Networks}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Basic Configuration (see note)} \\
\hline \multirow[b]{5}{*}{\[
\begin{aligned}
\frac{V_{0}(s)}{V_{i}(s)} & \cong \frac{1.4 \times 10^{4}}{Z(s)+2 r_{e}} \\
& \cong \frac{1.4 \times 10^{4}}{Z(s)+32}
\end{aligned}
\]} & Z NETWORK & \begin{tabular}{l}
FILTER \\
TYPE
\end{tabular} & \begin{tabular}{l}
\(V_{0}(s)\) TRANSFER \\
\(V_{i}(s)\) FUNCTION
\end{tabular} \\
\hline & - & LOW PASS & \(\frac{1.4 \times 10^{4}}{L}\left[\frac{1}{S+R / L}\right]\) \\
\hline &  & HIGH PASS & \(\frac{1.4 \times 10^{4}}{R}\left[\frac{s}{s+1 / R C}\right]\) \\
\hline & - & BAND PASS & \(\frac{1.4 \times 10^{4}}{L}\left[\frac{s}{s^{2}+R / L s+1 / L C}\right]\) \\
\hline &  & BAND REJECT & \(\frac{1.4 \times 10^{4}}{R}\left[\frac{s^{2}+1 / L C}{s^{2}+1 / L C+s / R C}\right]\) \\
\hline
\end{tabular}

Note: In the networks above, the R value used is assumed to include the internal \(2 r_{e}\) of approximately \(32 \Omega\).


For frequency \(F_{1} \ll 1 / 2 \pi(32) C\)
\(V_{o} \cong 1.4 \times 10^{4} \mathrm{C} \frac{d V_{i}}{d T}\)

\title{
High Speed 741 Operational Amplifier
}

\section*{FEATURES}
- Pin For Pin and Electrically Equivalent to \(\mu \mathrm{A} 741\)
- Guaranteed Slew Rate \(-0.7 \mathrm{~V} / \mu \mathrm{s}\) Min.
- Low Cost
- Short Circuit Protection

\section*{GENERAL DESCRIPTION}

The 741 HS high slew rate version of the 741 general purpose operational amplifier is intended for applications where slew rate performance greater than \(0.3 \mathrm{~V} / \mu \mathrm{sec}\) is required. Typical applications are oscillators, active filters, sample and hold and other large signal applications. This device has a guaranteed minimum slew rate of \(0.7 \mathrm{~V} / \mu \mathrm{sec}\) and is identical and equivalent to the standard 741 operational amplifier. It will fill the application void between the 741 and 101 A type amplifiers (slew rate \(=0.3 \mathrm{~V} / \mu \mathrm{sec}\) ) and the more costly high-speed amplifiers (slew rate \(=30 \mathrm{~V} / \mu \mathrm{sec}\) ).

HIGH-SPEED 741 OPERATIONAL AMPLIFIER


\section*{- Large Common-Mode Input Range \\ - Guaranteed Drift Characteristics \\ - No Latch Up \\ - Internal Frequency Compensation}

\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 18 \mathrm{~V}\)
Power Dissipation (Note 1) . . . . . . . . . . . . . . . . . . 500 mW
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . \(\pm 30 \mathrm{~V}\)
Input Voltage (Note 2) . . . . . . . . . . . . . . . . . . . . . . . \(\pm 15 \mathrm{~V}\)
Operating Temperature Range . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature Range. . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering at 60 sec .) . . . . . . . . . \(300^{\circ} \mathrm{C}\)
Output Short-Circuit Duration (Note 3). . . : . . . . . Indefinite
NOTE 1: The maximum junction temperature of the 741 HS is \(150^{\circ} \mathrm{C}\), while that of the 741 CHS is \(100^{\circ} \mathrm{C}\). For operating at elevated temperatures devices in the TO-5 package must be derated based on a thermal resistance of \(150^{\circ} \mathrm{C} / \mathrm{W}\), junction to ambient or \(45^{\circ} \mathrm{C} / \mathrm{W}\), junction to case. For the flat package, the derating is based on thermal resistance of \(185^{\circ} \mathrm{C} / \mathrm{W}\) when mounted on a \(1 / 16\)-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is \(100^{\circ} \mathrm{C} / \mathrm{W}\), junction to ambient.
NOTE 2: For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage. \(T_{A}=25^{\circ} \mathrm{C}\) unless otherwise specified.
NOTE 3: Short circuit may be to ground or either supply.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{741CHS} & \multicolumn{3}{|c|}{741MHS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Offset Voltage & \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega\) & & 2 & 6.0 & & 1.0 & 5.0 & mV \\
\hline Input Offset Current & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 20 & 200 & & 20 & 200 & nA \\
\hline Input Bias Current & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 200 & 500 & & 200 & 500 & nA \\
\hline Input Resistance & \(\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}\) & 0.3 & 2.0 & & 0.3 & 1.0 & & \(\mathrm{M} \Omega\) \\
\hline Supply Current & \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}\) & & 1.7 & 2.8 & & 1.7 & 2.8 & mA \\
\hline Large Signal Voltage Gain & \[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\
& V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L} \geq 2 \mathrm{k} \Omega
\end{aligned}
\] & 25 & 160 & & 50 & 160 & & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Input Offset Voltage & \(\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega\) & & & 7.5 & & & 6 & mV \\
\hline Slew Rate & \[
\begin{aligned}
& V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\
& C_{L}=50 \mathrm{pF}
\end{aligned}
\] & 0.7 & 1.0 & & 0.7 & 1.0 & & V/usec \\
\hline Input Offset Current & \multirow[t]{2}{*}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} & & & 300 & & & 500 & nA \\
\hline Input Bias Current & & & & 0.8 & & & 1.5 & \(\mu \mathrm{A}\) \\
\hline Large Signal Voltage Gain & \[
\begin{aligned}
& V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\
& R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega
\end{aligned}
\] & 15 & & & 25 & & & \(\mathrm{V} / \mathrm{mV}\) \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \(V_{S}= \pm 15 \mathrm{~V}, \quad R_{L}=10 \mathrm{k} \Omega\) & \(\pm 12\) & \(\pm 14\) & & \(\pm 12\) & \(\pm 14\) & & \(v\) \\
\hline & \(V_{S}= \pm 15 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & \(\pm 10\) & \(\pm 13\) & & \(\pm 10\) & \(\pm 13\) & & v \\
\hline Input Voltage Range & \(V_{S}= \pm 15 \mathrm{~V}\) & \(\pm 12\) & & & \(\pm 12\) & & & \(\checkmark\) \\
\hline Common Mode Rejection Ratio & \(\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega\) & 70 & 90 & & 70 & 90 & & dB \\
\hline Supply Voltage Rejection Ratio & \(\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega\) & 77 & 96 & & 77 & 96 & & dB \\
\hline
\end{tabular}

\section*{DEFINITION OF TERMS}

INPUT OFFSET VOLTAGE: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
INPUT OFFSET CURRENT: The difference in the currents into the two input terminals when the output is at zero.
INPUT VOLTAGE RANGE: The range of voltages on the input terminals for which the offset specifications apply.
INPUT BIAS CURRENT: The average of the two input currents.
COMMON MODE REJECTION RATIO: The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.
INPUT RESISTANCE: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

SLEW RATE: A measure of the large signal capability of amplifier output to follow the amplifier input. Slew Rate \(=2 \pi B W_{\text {Large Signal }} V_{\text {O.Peak }}\).
SUPPLY CURRENT: The current required from the power supply to operate the amplifier with no load and the output at zero.

OUTPUT VOLTAGE SWING: The peak output voltage swing, referred to zero, that can be obtained without clipping.
LARGE-SIGNAL VOLTAGE GAIN: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
POWER SUPPLY REJECTION: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

\section*{TEST CIRCUITS}


\title{
ICL741LN, ICL741CLN, ICL101ALN ICL301ALN, ICL108LN, ICL308LN
}

\section*{Low Noise \\ Operational Amplifiers}

\section*{FEATURES}
- Guaranteed Noise Specifications
- Complete Electrical Specifications

\section*{GENERAL DESCRIPTION}

These low noise amplifiers are suitable for all applications where low level signals are encountered. The three important noise parameters, input referred voltage noise, input referred current noise, and popcorn noise, are all 100\% screened and guaranteed.

\section*{PIN CONFIGURATIONS}

(outline dwg TY)
NOTE: PIN 4 CONNECTED TOCASE.

741

(outline dwg FB-1)

(outline dwg TY) NOTE: PIN 4 CONNECTED TO CASE.

(outline dwg JD)

741C

(outline dwg PA)

101A
 NOTE: PIN 4 CONNECTED TO CASE.

101 A/301A

(outline dwg TY)

\section*{CL741LN, ICL741CLN, ICL101ALN, ICL301ALN, ICL108LN, ICL308LN}

\section*{GUARANTEED NOISE SPECIFICATIONS ( \(\left.T_{A}=25^{\circ} \mathrm{C}\right)\)}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & 741 & 741 C & 101 A & 301 A & 108 & 308 & UNITS \\
\hline \begin{tabular}{l} 
Input Referred Voltage \\
Noisé @ 10 Hz (Max)
\end{tabular} & 50 & 50 & 50 & 50 & 70 & 70 & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline \begin{tabular}{l} 
Input Referred Current \\
Noise @ \(10 \mathrm{~Hz}(\) Max \()\)
\end{tabular} & 0.4 & 0.4 & 0.7 & 0.7 & 0.2 & 0.2 & \(\mathrm{AA} / \sqrt{\mathrm{Hz}}\) \\
\hline \begin{tabular}{l} 
Popcorn Noise Transition \\
Amplitude for \(\mathrm{R}_{\mathrm{S}}=100 \mathrm{k}(\) Max \()\)
\end{tabular} & 25 & 25 & 25 & 25 & 25 & 25 & \(\mu \mathrm{~V}\) \\
\hline
\end{tabular}

For other electrical specifications see standard data sheets.


ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline PART NUMBER & TYPE & PACKAGE & TEMPERATURE RANGE & \begin{tabular}{l}
ORDER \\
NUMBER
\end{tabular} \\
\hline 741.LN & MIL & то. 99 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & ICL741LNTY \\
\hline 741C-LN & COM & TO. 99 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL741CLNTY \\
\hline \(741 . \mathrm{LN}\) & MIL & 14 Lead DIP & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & ICL741LNJD \\
\hline 741C-LN & COM & 8 Lead DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL741CLNPA \\
\hline 741.LN & MIL & FLAT PACK & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & ICL741LNFB \\
\hline 101A.LN & MIL & TO.99 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & ICLI01ALNTY \\
\hline 301A.LN & COM & TO. 99 & \(0^{\prime \prime} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL301ALNTY \\
\hline 101A.LN & MIL & 14 Lead DIP & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & ICL101ALNJD \\
\hline 301A-LN & COM & 8 Lead DIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL301ALNPA \\
\hline 101A.LN & MIL & FLAT PACK & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & ICL101ALNFB \\
\hline 108.LN & MIL & то. 99 & \(-55^{\prime \prime} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & ICL108LNTY \\
\hline \(308 . \mathrm{LN}\) & COM & то.99 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL308LNTY \\
\hline
\end{tabular}

\section*{ICL741LN, ICL741CLN, ICL101ALN, ICL301ALN, ICL108LN, ICL308LN}

\section*{NOISE IN OPERATIONAL AMPLIFIERS}

VOLTAGE NOISE: The noise due to the equivalent input voltage generator is measured using the circuit shown in Figure 1. It is expressed in \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\).

CURRENT NOISE: The noise due to the equivalent input current generator is measured using the circuit in Figure 2. It is expressed in \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\). Popcorn noise cannot be effectively screened using this test due to its erratic nature and very low frequency.

POPCORN NOISE: Popcorn noise, sometimes referred to as burst noise, is a low frequency noise phenomenon in which the output of the amplifier appears to jump erratically between two or more stable states. It is most noticeable when operating at high source impedances and is expressed as a transition amplitude, in \(\mu \mathrm{V}\), for a given source resistance. The test circuit of Figure 3 is used.

The noise of an amplifier may be expressed in terms of an input referred voltage generator ( \(e_{n}\) ) and an input referred current generator ( \(i_{n}\) ), see Figure 4. The total noise of an amplifier in a typical application contains contributions from both these generators, together with a contribution from the source resistance. The total mean square noise for a bandwidth of 1 Hz is given by:
\[
\begin{equation*}
e^{2}{ }_{T}=e^{2}{ }_{n}+i^{2}{ }_{n} R^{2}{ }_{S}+4 k T R_{S} \tag{1}
\end{equation*}
\]

Since both \(e_{n}\) and \(i_{n}\) are frequency dependent, the total mean square noise for a given bandwidth \(\Delta f=f_{2}-f_{1}\) is given by:
\[
\begin{equation*}
e^{2} T_{T}=\int_{f_{1}}^{f_{2}} e^{2}{ }_{n} d f+R^{2} \int_{f_{1}}^{f_{2}} i_{n}^{2} d f+4 k T R_{S} \Delta f \tag{2}
\end{equation*}
\]

With most amplifiers, the voltage noise term dominates for low source impedances. The current noise term is dominant at higher source impedances.

To specify operational amplifier noise performance one of two methods is used. One is to specify the total input referred noise for a given bandwidth and source impedance. This is defined as \(e_{\mathrm{T}}\) from equation 1 above. The test circuit in Figure 5 is used. The typical broadband noise of the 741 and 101A type amplifier is shown in Figure 5.
The second method is to guarantee specific values of \(e_{n}\) and \(i_{n}\) (in equation 2) at various frequencies. A Noise Analyzer is used for this measurement (Figure 3). The values of \(e_{n}\) and \(i_{n}\) (for \(\Delta f=1 \mathrm{~Hz}\) ) are measured at 10 Hz , \(100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}\) and 100 kHz . The recorded values may be plotted graphically, as shown on page 1 . The noise information obtained from these measurements is considerably more general than that obtained from the first method, since the noise for any source impedance and bandwidth. may be calculated from equation 2. (Graphical integration can determine the area under each curve.)

figure 1.


FIGURE 2.


FIGURE 4.


FIGURE 5.

FIGURE 6.

\section*{FEATURES}
- Low offset voltage and offset current
- Low offset voltage and current drift
- Low input bias current
- Low input noise voltage
- Large common mode and differential voltage ranges

ABSOLUTE MAXIMUM RATINGS
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 22 \mathrm{~V}\)
Internal Power Dissipation (Note 1)
Metal Can
500 mW
Differential Input Voltage . . . . . . . . . . . . . . . . . . \(\pm 30 \mathrm{~V}\)
Input Voltage (Note2) . . . . . . . . . . . . . . . . . . . . . \(\pm 15 \mathrm{~V}\)
Storage Temperature Range . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature Range (HC) . . . . . . \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
(HM) . . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10s) . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
.............................................. . \(260^{\circ} \mathrm{C}\)
Output Short Circuit Duration (Note3) . . . . . Indefinite

Note 1: Rating applies to ambient temperatures up to \(70^{\circ} \mathrm{C}\). Above \(70^{\circ} \mathrm{C}\) ambient derate linearly at \(6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for Metal Can, \(8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for the DIP, and \(5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for the Mini DIP.

Note 2. For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.

Note 3. Short Circuit may be to ground or either supply. Rating applies to \(+125^{\circ} \mathrm{C}\) case temperature or \(+75^{\circ} \mathrm{C}\) ambient temperature for ISET \(\leq 30 \mu \mathrm{~A}\).

\section*{GENERAL DESCRIPTION}

The \(\mu A 777\) is a monolithic Precision Operational Amplifier. It is an excellent choice when performance versus cost trade-offs are possible between super beta or FET input operational amplifiers and low cost general purpose operational amplifiers. Low offset and bias currents improve system accuracy when used in applications such as long term integrators, sample and hold circuits and high source impedance summing amplifiers. Even though the input bias current is extremely low, the \(\mu \mathrm{A} 777\) maintains full \(\pm 30 \mathrm{~V}\) differential voltage range. High common mode input voltage range, latch-up protection, short circuit protection and simple frequency compensation make the device versatile and easily used.


\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|c|}
\multicolumn{1}{c|}{} & Dice & TO-99 Can \\
\hline \begin{tabular}{l}
\(\mu \mathrm{A} 777 \mathrm{C}\) \\
\(\mu \mathrm{A} 777 \mathrm{M}\)
\end{tabular} & \begin{tabular}{l}
\(\mu \mathrm{A} 777 \mathrm{C} / \mathrm{D}\) \\
\(\mu \mathrm{A} 777 \mathrm{M} / \mathrm{D}\)
\end{tabular} & \begin{tabular}{l}
\(\mu \mathrm{A} 777 \mathrm{HC}\) \\
\(\mu \mathrm{A} 777 \mathrm{MC}\)
\end{tabular} \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS FOR \(\mu \mathrm{A} 777 \quad\left(\mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}\right.\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETERS & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Input Offset Voltage & \(\mathrm{Rs} \leq 50 \mathrm{k} \Omega\) & & 0.7 & 5.0 & mV \\
\hline Input Offset Current & - & & 0.7 & 20.0 & nA \\
\hline Input Bias Current & & , & 25 & 100 & nA \\
\hline Input Resistance & , & 1.0 & 2.0 & & \(\mathrm{M} \Omega\) \\
\hline Input Capacitance & & & 3.0 & & pF \\
\hline Offset Voltage Adjustment Range & & & \(\pm 25\) & & mV \\
\hline Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\), VOUT \(= \pm 10 \mathrm{~V}\) & 25,000 & 250,000 & & V/V \\
\hline Output Resistance & & & 100 & & \(\Omega\) \\
\hline Output Short Circuit Current & & & \(\pm 25\) & & mA \\
\hline Supply Current & . & & 1.9 & 2.8 & mA \\
\hline Power Consumption. & & & 60 & 85 & mW \\
\hline \begin{tabular}{c|l}
\hline Transient Response \\
(Voltage Follower,
\end{tabular} Rise Time & \[
\mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV}, \mathrm{Cc}_{\mathrm{c}}=30 \mathrm{pF}
\] & & 0.3 & & \(\mu \mathrm{S}\) \\
\hline Gain of 1) Overshoot & & & 5.0 & \(\cdot\) & \% \\
\hline Slew Rate (Voltage Follower, Gain of 1) & \(\mathrm{RL}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) & . & 0.5 & & \(\mathrm{V} / \mu \mathrm{S}\) \\
\hline \begin{tabular}{c|l|}
\hline \begin{tabular}{c} 
Transient Response \\
(Voltage Follower,
\end{tabular} & Rise Time \\
\hline
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{VIN}=20 \mathrm{mV}, \mathrm{Cc}=3.5 \mathrm{pF}
\] \\
\(R_{L}=2 k \Omega C_{L} \leq 100 p F\)
\end{tabular} & & 0.3 & & \(\mu \mathrm{S}\) \\
\hline Gain of 10) \(\quad\) Overshoot & \(R_{L}=2 k \Omega, C L \leq 100 p F\) & & 5.0 & & \% \\
\hline \begin{tabular}{l}
Slew Rate \\
(Voltage Follower, Gain of 10)
\end{tabular} & \(\mathrm{R}_{\mathrm{L}} \leq 2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{c}}=3.5 \mathrm{pF}\) & & 5.5 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline The following specifications ap & ply over operating tem & ture ran & & & \\
\hline Input Offset Voltage & Rs \(\leq 50 \mathrm{k} \Omega\) & & 0.8 & 5.0 & mV \\
\hline Average Input Offset Voltage Drift & \(\mathrm{R} \mathrm{S} \leq 50 \mathrm{k} \Omega\) & & 4.0 & 30 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & & & & 40 & nA \\
\hline Average Input Offset Current Drift & \[
\begin{aligned}
& 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
\begin{aligned}
& 0.01 \\
& 0.02
\end{aligned}
\] & \[
\begin{gathered}
10.3 \\
0.6 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{nA} /{ }^{\circ} \mathrm{C} \\
& \mathrm{nA} /^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline Input Bias Current & & & & 200 & nA \\
\hline Input Voltage Range & & \(\pm 12\) & \(\pm 13\) & & V \\
\hline Common Mode Rejection Ratio & RS \(\leq 50 \mathrm{k} \Omega\) & 70 & 95 & & dB \\
\hline Supply Voltage Rejection Ratio & \(\mathrm{Rs} \leq 50 \mathrm{k} \Omega\) & & 15 & 150 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\), VOUT \(= \pm 10 \mathrm{~V}\) & 15,000 & & & V/V \\
\hline \multirow[b]{2}{*}{Output Voltage Swing} & \(R_{L} \geq 10 \mathrm{k} \Omega\) & \(\pm 12\) & \(\pm 14\) & & V \\
\hline & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) & \(\pm 10\) & \(\pm 13\) & & V \\
\hline Power Consumption & & & 60 & 100 & mW \\
\hline
\end{tabular}

EQUIVALENT CIRCUIT


\section*{TYPICAL PERFORMANCE CURVES}


POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE


INPUT OFFSET, CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE


OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE


INPUT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE


POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE


INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE


INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE


OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE


INPUT NOISE VOLTAGE AND CURRENT AS A FUNCTION OF FREQUENCY


TYPICAL PERFORMANCE CURVES


OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF
FREQUENCY FOR VARIOUS GAIN/COMPENSATION OPTIONS


INPUT RESISTANCE,
OUTPUT RESISTANCE,
AND INPUT CAPACITANCE AS A FUNCTION OF FREQUENCY


VOLTAGE FOLLOWER TRANSIENT RESPONSE (GAIN OF 1)


OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY



\section*{COMMON MODE REJECTION} RATIO AS A FUNCTION OF FREQUENCY



OÜTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY


COMPENSATION CAPACITANCE AS A FUNCTION OF CLOSED LOOP VOLTAGE GAIN


INPUT OFFSET VOLTAGE DRIFT AS A FUNCTION OF TIME


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


THERMAL RESPONSE OF INPUT OFFSET VOLTAGE TO STEP CHANGE OF CASE TEMPERATURE


\section*{FEED FORWARD COMPENSATION}

\section*{LARGE SIGNAL FEEDFORWARD}

TRANSIENT RESPONSE


VOLTAGE OFFSET
NULL CIRCUIT


SUGGESTED

\section*{TYPICAL APPLICATIONS}

BIAS COMPENSATED LONG TIME INTEGRATOR

*ADJUST R \(\mathrm{R}_{3}\) FOR MINIMUM INTEGRATOR DRIFT

CAPACITANCE MULTIPLIER


BILATERAL CURRENT SOURCE

\(\mathrm{I}_{\text {OUT }}=\frac{R_{3} V_{\text {IN }}}{R_{1} R_{5}} ; R_{1}=R_{2} ; R_{3}=R_{4}+R_{5}\)
\(\pm 100 \mathrm{~V}\) COMMON MODE RANGE INSTRUMENTATION AMPLIFIER
\(\frac{R_{1}}{R_{7}} \equiv \frac{R_{3}}{R_{4}}\) for best CMRR
\(R_{3}=R_{4}\)
\(R_{1}=R_{6}=10 R_{3}\)
Gain \(=\frac{R_{7}}{R_{6}}\)


\section*{AMPLIFIER FOR CAPA ANCE TRANSDUCERS}


LOW FREQUENCY CUTOFF R \(\mathrm{R}_{1} \times \mathrm{C}_{1}\)

HIGH SLEW RATE POWER AMPLIFIER


INSTRUMENTATION AMPLIFIER WITH HIGH COMMON MODE REJECTION


LH2108/2308
Dual Super Beta

\section*{FEATURES}
- Low offset current - 50 pA
- Low offset voltage - 0.7 mV
- Low offset voltage - LH2108A: 0.3 mV

LH2108: 0.7 mV
- Wide input voltage range \(- \pm 15 \mathrm{~V}\)
- Wide operating supply range - \(\pm 3 \mathrm{~V}\) to \(\pm 20 \mathrm{~V}\)

\section*{GENERAL DESCRIPTION}

The LH2108A/LH2308A and LH2108/LH2308 series of dual operational amplifiers consist of two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, and reduced insertion cost.
The LH2108A/LH2108 is specified for operation over the \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) military temperature range, and the LH2308A/LH2308 is specified for operation from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).


\section*{ABSOLUTE MAXIMUM RATINGS}
Supply Voltage ..... \(\pm 20 \mathrm{~V}\)
Power Dissipation (Note 1) ..... 500 mW
Differential Input Current (Note 2) ..... \(\pm 10 \mathrm{~mA}\)
Input Voltage (Note 3) ..... \(\pm 15 \mathrm{~V}\)
Output Short Circuit Duration Continuous
Operating Temperature Range
LH2108A/LH2108 ..................................................... \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)LH2308A/LH2408 ....................................................... \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)

Lead Temperature (Soldering, 10 sec ) .................................................... \(300^{\circ} \mathrm{C}\)

\section*{ELECTRICAL CHARACTERISTICS Each side (Note 4)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & LH2108 & LH2308 & \\
\hline Input Offset Voltage & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 2.0 & 7.5 & mV Max \\
\hline Input Offset Current & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.2 & 1.0 & \multirow[t]{2}{*}{nA Max} \\
\hline Input Bias Current & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 2.0 & 7.0 & \\
\hline Input Resistance & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 30 & 10 & \(\mathrm{M} \Omega\) Min \\
\hline Supply Current & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.6 & 0.8 & mA Max \\
\hline Large Signal Voltage Gain & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\
& V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega
\end{aligned}
\] & 50 & 25 & V/mV Min \\
\hline Input Offset Voltage & & 3.0 & 10 & mV Max \\
\hline Average Temperature Coefficient of Input Offset Voltage & & 15 & 30 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) Max \\
\hline Input Offset Current & & 0.4 & 1.5 & nA Max \\
\hline Average Temperature Coefficient of Input Offset Current & & 2.5 & 10 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) Max \\
\hline Input Bias Current & & 3.0 & 10 & nA Max \\
\hline Supply Current & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & 0.4 & - & mA Max \\
\hline Large Signal Voltage Gain & \[
\begin{aligned}
& V_{S}= \pm 15 \mathrm{~V}, \text { VOUT }= \pm 10 \mathrm{~V} \\
& R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega
\end{aligned}
\] & 25 & 15 & V/mV Min \\
\hline Output Voltage Swing & \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(\pm 13\) & \(\pm 13\) & \multirow[b]{2}{*}{V Min} \\
\hline Input Voltage Range & \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\) & \(\pm 13.5\) & \(\pm 14\) & \\
\hline Common Mode Rejection Ratio & & 85 & 80 & \multirow[t]{2}{*}{dB Min} \\
\hline Supply Voltage Rejection Ratio & & 80 & 80 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & LH2108A & LH2308A & \\
\hline Input Offset Voltage & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.5 & 0.5 & mV Max \\
\hline Input Offset Current & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.2 & 1.0 & \multirow[b]{2}{*}{nA Max} \\
\hline Input Bias Current & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 2.0 & 7.0 & \\
\hline Input Resistance & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 30 & 10 & \(\mathrm{M} \Omega\) Min \\
\hline Supply Current & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.6 & 0.8 & mA Max \\
\hline Large Signal Voltage Gain & \[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C} V_{S}= \pm 15 \mathrm{~V} \\
& V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L} \geq 10 \mathrm{k} \Omega
\end{aligned}
\] & 80 & 80 & V/mV Min \\
\hline Input Offset Voltage & & 1.0 & 0.73 & mV Max \\
\hline Average Temperature Coefficient of Input Offset Voltage & & 5 & 5 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) Max \\
\hline Input Offset Current & & 0.4 & 1.5 & nA Max \\
\hline Average Temperature Coefficient of Input Offset Current & & 2.5 & 10 & \(\mathrm{pA}{ }^{\circ}{ }^{\circ} \mathrm{C}\) Max \\
\hline Input Bias Current & & 3.0 & 10 & nA Max \\
\hline Supply Current & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & 0.4 & - & mA Max \\
\hline Large Signal Voltage Gain & \[
\begin{aligned}
& V_{S}= \pm 15 \mathrm{~V}, \text { VOUT }= \pm 10 \mathrm{~V} \\
& R_{L} \geq 10 \mathrm{k} \Omega
\end{aligned}
\] & 40 & 60 & V/mV Min \\
\hline Output Voltage Swing & \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(\pm 13\) & \(\pm 13\) & \multirow[t]{2}{*}{V Min} \\
\hline Input Voltage Range & \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\) & \(\pm 13.5\) & \(\pm 14\) & \\
\hline Common Mode Rejection Ratio & & 96 & 96 & \multirow[b]{2}{*}{dB Min} \\
\hline Supply Voltage Rejection Ratio & & 96 & 96 & \\
\hline
\end{tabular}

Note 1: The maximum junction temperature of the \(\mathrm{LH} 2108 / \mathrm{A}\) is \(150^{\circ} \mathrm{C}\), and that of the \(\mathrm{LH} 2308 / \mathrm{A}\) is \(85^{\circ} \mathrm{C}\). The thermal resistance of the packages is \(100^{\circ} \mathrm{C} / \mathrm{W}\), junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for \(\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}\) and \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}\), unless otherwise specified, and the LH2308A/LH2308 for \(\pm 5 \mathrm{~V} \leq\) \(\mathrm{V}_{\mathrm{S}} \leq 15 \mathrm{~V}\) and \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\).

\section*{FEATURES}
- Low cost
- Military and industrial temperature ranges
- \(\pm 10 \mathrm{~V}\) input voltage range
- 0.5mV/sec drift typical @ CS \(=0.01 \mu \mathrm{~F}\)
- TTL, DTL and CMOS compatible
- Short circuit protected
- Input offset voltage adjustable to \(<100 \mu \mathrm{~V}\) using a 20k potentiometer
- 0.1\% guaranteed sample accuracy with 10 V signals and \(C_{S}=0.01 \mu \mathrm{~F}\)
- Sample to hold offset is \(5 \mathrm{mV} \max\)

\section*{SCHEMATIC DIAGRAM}


\section*{GENERAL DESCRIPTION}

Each of the 5110 family is a complete Sample and Hold circuit, (except for sampling capacitor) including input buffer amplifier, output buffer amplifier and CMOS logic switching. The devices are designed to operate from \(\pm 15 \mathrm{~V}\) and +5 V supplies. The input logic is designed to "Sample" and "Hold" from standard TTL logic levels.
The design is such that the input and output buffering is performed by only one operational amplifier, by switching the sampling capacitor from the output back to input. Switches \(Q_{1}, Q_{2}\), and \(Q_{3}\) (see Fig. 1) accomplish this switching. In the sampling mode \(Q_{1}\) and \(Q_{3}\) are shorted and \(Q_{2}\) is open; thus the op. amp. charges up the sampling capacitor. In the hold mode \(Q_{1}\) and \(Q_{3}\) are open and \(Q_{2}\) is shorted; thus the sampling cap. is switched back to the noninverting input of the op. amp.
This structure provides a very accurate d.c. gain of 1 with very fast settling times (i.e. \(5 \mu \mathrm{~s}\) ); additionally the design has internal feedback to cancel charge injection effects (sample to hold offsets). \(Q_{1}\) and \(Q_{2}\) are driven 180 degrees out of phase to accomplish this charge nulling.

FIGURE 1
\begin{tabular}{|c|c|}
\hline ORDERING INFORMATION & PIN CONFIGURATION \\
\hline  &  \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
Supply Voltages ..... \(\pm 16 \mathrm{~V}\)
Power Dissipation ..... 500 mW
Operating Temperature
 \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)Storage Temperature Range ......................................... \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)\(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec ) ..... \(300^{\circ} \mathrm{C}\)

ELECTRICAL CHARACTERISTICS (Pin \(7=5 \mathrm{~V}\), Pin \(8=\mathrm{GND}\), Pin \(9=-15 \mathrm{~V}, \operatorname{Pin} 11=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) Note 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{CHARACTERISTIC} & \multicolumn{3}{|r|}{IH5110, 5112, 5114} & \multicolumn{3}{|r|}{IH5111, 5113, 5115} & \multirow[t]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Close & Aperature Time & & 120 & 200 & & 120 & 200 & ns \\
\hline tacq. & \begin{tabular}{l}
Acquisition Time for Max Analog Voltage Step Cs \(=0.1 \mu \mathrm{~F}(0.1 \%\) Accur. \()\) \\
Cs \(=0.01 \mu \mathrm{~F}(0.1 \%\) Accur.) \\
\(\mathrm{C}_{\mathrm{s}}=0.001 \mu \mathrm{~F}(0.1 \%\) Accur. \() \quad\) See fig. 4
\end{tabular} & & 25
4
4 & 35
6
6 & & 25
4
4 & 35
6
6 & \(\mu \mathrm{S}\) \\
\hline \(V_{\text {drift }}\) & \[
\begin{aligned}
& \text { Drift Rate } \\
& C_{S}=0.1 \mu \mathrm{~F} \\
& C_{S}=0.01 \mu \mathrm{~F} \\
& \mathrm{C}_{S}=0.001 \mu \mathrm{~F}
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 0.5 \\
& 2.0
\end{aligned}
\] & \[
\begin{gathered}
2.5 \\
5 \\
10 \\
\hline
\end{gathered}
\] & & \begin{tabular}{l}
0.3 \\
0.5 \\
2.0 \\
\hline
\end{tabular} & \[
\begin{gathered}
2.5 \\
5 \\
10 \\
\hline
\end{gathered}
\] & \(\mathrm{mV} / \mathrm{sec}\) \\
\hline \(V_{\text {inject }}\) & \begin{tabular}{l}
Charge Injection or Sample to Hold Offsets
\[
\begin{aligned}
& \mathrm{C}_{\mathrm{s}}=0.1 \mu \mathrm{~F} \\
& \mathrm{C}_{\mathrm{s}}=0.01 \mu \mathrm{~F} \\
& \mathrm{C}_{\mathrm{s}}=0.001 \mu \mathrm{~F}
\end{aligned}
\] \\
See Note 1 \& fig. 3
\end{tabular} & & \(<1\)
\(<1\)
12 & 5
5
25 & & \(<1\)
\(<1\)
12 & 5
5
25 & \(m V_{p-p}\) \\
\hline \(\mathrm{V}_{\text {switch }}\) & Switching Transients'or Spikes (Duration Less than \(2 \mu \mathrm{~s}\) )
\[
\begin{aligned}
& \mathrm{Cs}=0.1 \mu \mathrm{~F} \\
& \mathrm{Cs}=0.01 \mu \mathrm{~F} \\
& \mathrm{Cs}=0.001 \mu \mathrm{~F} \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.1 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.5
\end{aligned}
\] & & \[
\begin{aligned}
& 0.1 \\
& 0.1 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.5
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{p}}\) \\
\hline \(V_{\text {couple }}\) & A.C. Feedthrough Coupled to Output & & & 5 & & & 5 & \(m V_{p-p}\) \\
\hline \(V_{\text {offset }}\) & \multirow[t]{3}{*}{\begin{tabular}{|lr|}
\hline D.C. Offset When in & 5110 \\
Sample Mode (Trimmable & \(\frac{5111}{5112}\) \\
to Om V With Ext. 20k \(\Omega\) & \(\frac{5113}{5114}\) \\
Potentiometer & \\
& See fig. 2 \\
& 5115 \\
\hline
\end{tabular}} & & & 40 & & & 40 & \\
\hline & & & & 10 & & & 10 & mV \\
\hline & & & & 5 & & & 5 & \\
\hline Rin & Input Impedance in Hold or Sample Mode ( \(f \leq 10 \mathrm{~Hz}\) ) & & 100 & & & 100 & & Meg \(\Omega\) \\
\hline \(1 \pm 15 \mathrm{~V}\) & Plus or Minus 15 V Supply Quiescent Current & & 3.4 & 6 & & 3.4 & 6 & mA \\
\hline I5V & 5V Supply Quiescent Current & & 0.3 & 10 & & 0.3 & 10 & A \\
\hline Vanalog & D.C. Input Voltage Range & & & \(\pm 7.5\) & & & \(\pm 10\) & \\
\hline VA.C. range & A.C. Input Voltage Range See Note 2 \& fig. 5 & 15 & & & 20 & & & V \\
\hline Istrobe & TTL Logic Strobe Input Current in Either Hold or Sample Mode & & 0.1 & 10 & & 0.1 & 10 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 1. Offset voltage of op. amp. must be adjusted to 0 mV (using \(20 \mathrm{k} \Omega\) potentiometer) before charge injection is measured.
2. The A.C. input voltage range differs from the D.C. input voltage range. All versions will handle any analog input within the range of plus 10 V to minus 10 V ; however the IH5110, 5112,5114 has the added restriction that the peak to peak swing should be less than \(15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\) i.e. \(\pm 7.5 \mathrm{Vac}\).
3. All of the electrical characteristics specs, are guaranteed with \(\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}\) in series with \(100 \Omega\) as per Fig. \(2, \mathrm{C}_{\mathrm{S}}=0.1 \mu \mathrm{~F}\) \& \(\mathrm{Cs}=0.001 \mu \mathrm{~F}\) are for design aid only.
4. If supplies are reduced to \(\pm 12 \mathrm{VDC}\), analog signal range will be reduced to \(\pm 7 \mathrm{Vp}\)-p.

\section*{APPLICATIONS INFORMATION}
I. Typical Connection Diagram


NOTES: 1. To trim output offset to 0 mV , set strobe input to sample mode (3V), set analog input to GND, adjust potentiometer until \& \& H output is 0 mV .
2. Use a low dielec. .bsorption capacitor such as polystyrene.

SAMPLE MODE occurs when logic input is greater than 2.4 V .
HOLD MODE occurs when logic input is less than 0.8 V .
FIGURE 2
II. Charge Injection (sample to hold offset) measurement circuit; also switching transients test circuit.


Adjust offset to 0 mV before testing for charge injection. See note 1.


FIGURE 3

\section*{IH5110-IH5115}
III. Typical Circuit for measurement of A.C. signal handling capability.


NOTE: The acquisition time is actually a settling time spec. since the reading is only taken when the output has settled within \(1 \%\) of its final value. The \(6 \mu \mathrm{~s}\) spec. (IH5111, 5113 \& 5115 is the worst reading of the ton or toff settling time shown above. The above test can be performed with a 0 to +7.5 V or 0 to -7.5 V step for the \(1 \mathrm{H} 5110,5112,5114\).

FIGURE 4
IV. Typical Circuit for measurement of A.C. peak to peak signal handling capability.

A.C. PEAK TO PEAK


TYP. IH5111


LOGIC INPUT \(=+3 V\)
\(C_{S}=0.01 \mu F \quad t=k H z\) \(\mathbf{C S}_{\mathrm{s}}=0.01 \mu \mathrm{~F} \quad \mathrm{f}=\mathrm{kHz}\)


UPPER \&
LOWER TRACE \(=10 \mathrm{~V} / \mathrm{DIV}\). TIME \(=0.5 \mathrm{~ms} / \mathrm{cm}\)

\section*{V. Application Tips:}

If you are undecided as to which sample and hold to use within the family, the following will give you a pretty good idea of the outstanding differences between the six models. First, determine the voltage range you need to sample and hold.
The even numbered parts are designed to switch smaller a.c. signal amplitudes with the goal being to minimize the charge injection effects (sample to hold offsets). This charge injection error is shown in Fig. 3. Once the voltage offset is zeroed, the 5110 has typical error amplitudes of 1 to \(2 \mathrm{mVp}-\mathrm{p}\) (corresponds to 10 pc to 20 pc of charge). Thus one could sample very low level d.c. signals with extreme accuracy. If very low level a.c. signals are being sampled, voltage offset potentiometer can be adjusted for a zero charge injection effect. Once the potentiometer has been adjusted, there will be a zero error going from sample to hold; however there will be a d.c. error caused by adjusting the potentiometer for zero charge injection and not for zero voltage offset. In general, this d.c. error will be in the area of 2 mV to 5 mV .

The odd numbered parts are primarily designed to handle any input in the plus or minus 10 V range, regardless of whether it is a.c. or d.c.; to obtain this, the charge injection is about a factor of 2 higher than the even numbered parts.

The use of Varafet switching elements similar to Intersil's IH401/401A leads to a trade-off between AC signal swing and charge injection.

After the voltage range and charge injection requirements have been determined, all that remains is to determine the input offset voltage the system can tolerate. By using the higher numbered parts, it is possible to eliminate the offset potentiometer if system accuracy will allow 5 mV (5114, \(5115)\) or \(10 \mathrm{mV}(5112,5113)\) due to the low input offset voltage on these devices.

The drift rate is specified at \(10 \mathrm{mV} / \mathrm{sec}\). Max. for all models: this corresponds to approximately 100pA total leakage into a \(0.01 \mu \mathrm{~F}\) sampling capacitor (Cs). While the \(10 \mathrm{mV} / \mathrm{sec}\). is the Max. encountered, a more typical reading is less than
\(1 \mathrm{mV} / \mathrm{sec}\). (true for any input between -10 V and +10 V ); thus the IH5110 family is ideal for applications requiring very low drift or droop rates.

The aperture time is spec'd at 200ns Max. for all models, but a more typical value is 150 ns ; this is basically the off time of switch \(\mathrm{Q}_{1}\). The way this aperture time affects system accuracy is shown below:

Assume the input signal to the Sample and Hold is an a.c. signal of peak amplitude \(A\) (peak to peak swing is 2A) and frequency \(2 \pi f=w\), then \(V_{\text {input }}=A e_{j w t}\) then \(d V / d t=A e_{j w t}\). This means the slope of input signal \(=d V / d t\); this slope is a maximum at \(t\) (time) \(=0\), this maximum value is \(W A\) (in amplitude). (i.e.) input frequency is 10 kc , therefore \(\mathrm{dV} / \mathrm{dt}=\) \(w A=6.28 \times 104 \times 10 \mathrm{~V}=6.3 \times 10^{5} \mathrm{~V} / \mathrm{sec} . \mathrm{A}=10 \mathrm{~V}\), then slope or \(\mathrm{dV} / \mathrm{dt}=0.63 \mathrm{~V} / \mu \mathrm{s}\). Now if we wish error to be a Max. of say \(1 \%\) of full scale 10 V , we see that 100 mV (1\%/aperture time \(=\) \(0.63 \mathrm{~V} / \mu \mathrm{s}\). Solving this equation we see that aperture time must be 160 ns or less to get \(1 \%\) holding accuracy. Since our aperture time is 150 ns typical, we have \(1 \%\) accuracy in holding 10 kHz varying signals; for signal frequencies 1 kHz and less, Max. error is \(0.1 \%\). The simple interpretation of just how the off time of the switch causes this system error is due to the fact a finite time is required for the switch to react to a hold command; this reaction time manifests itself with a system voltage error because the time varying input signal is changing to a new value before the switch has actually turned off. (i.e.) in the above example off \(=10 \mathrm{kHz}\) and \(\mathrm{A}=\) 10 V , suppose we gave the hold command (thru TTL logic) at \(t\) \(=0\) (a.c. signal goes thru zero pt.) At this point we have calculated the slope to be a Max. and equal to \(0.63 \mathrm{~V} / \mu \mathrm{s}\). If there were no aperture time error, we would read 0 V at output of Sample and Hold; however because of finite time for switch to respond to hold command, 150ns passes before switch goes off. During this 150 ns , the input signal has gone to 100 mV above or below OV, thus the stored value of signal will be 100 mV and that is the reading at the output of the Sample and Hold. If the input frequency were 1 kHz , the "error voltage" would be 10 mV .

\section*{IH5110 - IH5115}
VI. Connection for Hi -Speed Sample and Hold with following typical performance: \(\mathrm{w} / \mathrm{C}_{\mathrm{s}}=0.001\)
a. \(2 \mu \mathrm{~s}\) settling time (acquisition time) to \(1 \%\) accuracy
b. 25 mV charge injection amplitude
c. \(10 \mathrm{mV} / \mathrm{sec}\) drift rate


NOTE: Typical times for the Sample and Hold to acquire the input are \(2 \mu \mathrm{~S}\) for turn on (output) goes to +10 V and \(3 \mu \mathrm{~s}\) for turn off (output goes down to OV ). As a general note, all the electrical specifications are guaranteed with a sampling capacitor equal to \(0.01 \mu \mathrm{f}\). As the above application (Fig. 6) shows, other values of sampling capacitors can be used but the best combinations of S \& H specs may not result with values other than \(0.01 \mu \mathrm{~F}\). The only advantage of using a \(0.001 \mu \mathrm{~F}\) for \(\mathrm{C}_{\mathrm{S}}\) is the acquisition time is \(2 \mu \mathrm{~S}\) typical instead of \(5 \mu\) s typical (with \(0.01 \mu \mathrm{~F}\); however the drift rate would be worse and charge injection would be affected). To minimize drift rate, use a \(0.1 \mu \mathrm{~F}\) capacitor; this should produce a \(0.1 \mathrm{mV} / \mathrm{sec}\) rate of change and a charge injection amplitude of \(0.2 \mathrm{mVp}-\mathrm{p}\). Of course the acquisition time will be slowed down to the \(25 \mu\) s area. Also use a \(0.1 \mu \mathrm{~s}\) system for slow speed changes (i.e., input frequency is less than 1 kHz . The series resistor should be about \(100 \Omega-200 \Omega\) to stabilize the system.

FIGURE 6

\section*{DEFINITION OF TERMS}

Aperture Time: The time it takes to switch from sample mode to hold mode and the actual opening of switch.
Charge Injection: The amount of charge coupled across the switch with no input voltage.
Drift Rate: The amount of drift of output voltage at a rate caused by current flow through the storage capacitor.
\(\left(\frac{d V}{d t}=\frac{i}{c}\right) \begin{aligned} & \text { This current is the leakage across the } \\ & \text { switch and the amplifier's bias current. }\end{aligned}\)

Feed Through: The amount of input signal that appears at the output when in the hold mode. Normally caused by capacitance across the switch.
Offset Voltage: Voltage measured at output with no input voltage and circuit in sample mode.
Acquisition Time: The time it takes amplifier to reach full scale output either plus or minus.

\title{

}

\section*{ICL7605/ICL7606}

\section*{Commutating Auto-Zero (CAZ) Instrumentation Amplifier}

\section*{FEATURES}
- Exceptionally low input offset voltage \(-2 \mu \mathrm{~V}\)
- Low long term input offset voltage drift \(0.2 \mu \mathrm{~V} / \mathrm{year}\)
- Low input offset voltage temperature drift \(0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\)
- Wide common mode input voltage range - \(\mathbf{0 . 3 V}\) above supply rail
- High common mode rejection ratio - \(\mathbf{1 0 0} \mathrm{dB}\)
- Operates at supply voltages as low as \(\pm 2 \mathrm{~V}\)
- Short circuit protection on outputs for \(\pm 5 \mathrm{~V}\) operation
- Static-protected inputs - no special handling required
- Fabricated using proprietary MAXCMOS \({ }^{\text {™ }}\) process technology
- Compensated (ICL7605) or uncompensated (ICL7606) versions

\section*{SYMBOL}


\section*{GENERAL DESCRIPTION}

The ICL7605/ICL7606 commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace most of today's hybrid or monolithic instrumentation amplifiers, for low frequency applications from DC to 10 Hz . This is made possible by the unique construction of this new Intersil device, which takes an entirely new design approach to low frequency amplifiers.
Unlike conventional amplifier designs, which employ three op amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key features of the CAZ principle involve automatic compensation for long term drift phenomena and temperature effects, and a flying capacitor input.
The ICL7605/ICL7606 is a monolithic CMOS chip which consists of two analog sections - a unity gain differential to single-ended voltage converter and a CAZ op amp. The first section senses the differential input and applies it to the CAZ amp section. This section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift.
The ICL7605/ICL7606 is intended for low-frequency operation in applications such as strain gauges, which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz . Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. The no-adjustment feature, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.
\begin{tabular}{|c|}
\hline PIN CONFIGURATION \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}

Order parts by the following part numbers:
\begin{tabular}{|l|l|l|c|}
\hline Compensated & Uncompensated & Package & \begin{tabular}{c} 
Temperature \\
Range
\end{tabular} \\
\hline ICL7605CJN & ICL7606CJN & CERDIP & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
ICL7605IJN & ICL7606IJN & CERDIP & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
ICL7605MJN & ICL7606MJN & CERDIP & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Order dice by the following part numbers:

> ICL7605/D ICL7606/D

\section*{ABSOLUTE MAXIMUM RATINGS}

Total Supply Voltage (sum of both positive and negative supply voltages \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)) \(\ldots \ldots \ldots \ldots\). DR Input Voltage \(\ldots . . . . . . . .\). ( \(\mathrm{V}^{+}+0.3\) ) to ( \(\mathrm{V}^{+}-8\) ) Volts Input Voltage \(\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}+\right.\) DIFF iN,
-DIFF IN, -INPUT, BIAS, OSC)
(Note 1) ..................... ( \(\mathrm{V}^{+}+0.3\) ) to ( \(\mathrm{V}^{-}-0.3\) ) Volts
Differential Input Voltage (+DIFF IN to -DIFF IN)
(Note 2) \(\ldots \ldots \ldots \ldots . . . .+\left(\mathbf{V}^{+}+0.3\right)\) to \(\left(\mathrm{V}^{-}-0.3\right)\) Volts
Duration of Output Short Circuit (Note 3) ..... Unlimited
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Continuous Total Power Dissipation (at or below \(25^{\circ} \mathrm{C}\) free-air temperature) (Note 4) .................. 500 mW} \\
\hline \multicolumn{2}{|l|}{Operating Temperature Range:} \\
\hline ICL7605/ICL7606CJN & 0 to \(+70^{\circ} \mathrm{C}\) \\
\hline ICL7605/ICL7606IJN & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline ICL7605/ICL7606MJN & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ}\) \\
\hline & \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Due to the SCR structure inherent in all CMOS devices, exceeding these limits may cause destructive latchup. For this reason, it is recommended that no inputs from sources operating on a separate power supply be applied to the \(7605 / 6\) before its own power supply is established, and that when using multiple supplies, the supply for the \(7605 / 6\) should be turned on first.
Note 2: No restrictions are placed on the differential input voltages on either the +DIFF IN or -DIFF IN inputs so long as these voltages do not exceed the power supply voltages by more than 0.3 V .
Note 3: The outputs may be shorted to ground (GND) or to either supply ( \(\mathrm{V}^{+}\)or \(\mathrm{V}^{-}\)). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded.
Note 4: For operation above \(25^{\circ} \mathrm{C}\) free-air temperature, derate \(4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) from 500 mW above \(25^{\circ} \mathrm{C}\).

\section*{BLOCK DIAGRAM}


\section*{ICL7605 /ICL7606}

OPERATING CHARACTERISTICS
Test Conditions: \(\mathrm{V}^{+}=+5\) volts, \(\mathrm{V}^{-}=-5\) volts, \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), DR pin connected to \(\mathrm{V}^{+}\)(fCOM \(\cong 160 \mathrm{~Hz}, \mathrm{fCOM} 1 \cong 80 \mathrm{~Hz}\) ), \(C_{1}=C_{2}=C_{3}=C_{4}=1 \mu \mathrm{~F}\), Test Circuit 1 unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{VALUE} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & \\
\hline Input Offset Voltage & Vos & \begin{tabular}{ll}
\(\mathrm{R} S \leq 1 \mathrm{k} \Omega\) & \begin{tabular}{l} 
Low Bias Setting \\
Med Bias Setting \\
\\
MIL version over temp.
\end{tabular} \\
\begin{tabular}{l} 
High Bias Setting \\
Med Bias Setting
\end{tabular}
\end{tabular} & & \[
\begin{aligned}
& \pm 2 \\
& \pm 2 \\
& \pm 7
\end{aligned}
\] & \[
\begin{array}{r} 
\pm 5 \\
\pm 20 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mu V \\
& \mu V \\
& \mu V \\
& \mu V
\end{aligned}
\] \\
\hline Average Input Offset Voltage Temperature Coefficient & \(\Delta \mathrm{VOS} / \Delta \mathrm{T}\) & \[
\begin{aligned}
& \text { Low or Med Bias Settings }-55^{\circ} \mathrm{C}>T_{A}>+25^{\circ} \mathrm{C} \\
&+25^{\circ} \mathrm{C}>T_{A}>+85^{\circ} \mathrm{C} \\
&+25^{\circ} \mathrm{C}>T_{A}>+125^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
\begin{aligned}
& 0.01 \\
& 0.01 \\
& 0.05 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.2 \\
& 0.2 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\
& \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
& \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] \\
\hline Long Term Input Offset Voltage Stability & \(\Delta \mathrm{VOS} / \Delta \mathrm{t}\) & Low or Med Bias Settings & & 0.5 & & \(\mu \mathrm{V} /\) Year \\
\hline Common Mode Input Range & CMVR & & -5.3 & & +5.3 & V \\
\hline Common Mode Rejection Ratio & CMRR & \[
\begin{aligned}
& \text { Cosc }=0, \text { DR connected to } \mathrm{V}^{+}, \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\
& \text { Cosc }=1 \mu \mathrm{~F}, \text { DR connected to GND, } \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\
& \mathrm{Cosc}^{2}=1 \mu \mathrm{~F}, \text { DR connected to GND, } \mathrm{C}_{3}=\mathrm{C}_{4}=10 \mu \mathrm{~F}
\end{aligned}
\] & & \[
\begin{aligned}
& 94 \\
& 100 \\
& 104
\end{aligned}
\] & & \begin{tabular}{l}
dB \\
dB \\
dB
\end{tabular} \\
\hline Power Supply Rejection Ratio & PSRR & & & 110 & & dB \\
\hline -INPUT Bias Current & - IBIAS & Any bias setting, \(\mathrm{fc}=160 \mathrm{~Hz}\) (Includes charge injection currents) & & 0.15 & 1.5 & nA \\
\hline Equivalent Input Noise Voltage peak-to-peak & \(\bar{e}_{\text {np-p }}\) & \begin{tabular}{ll} 
& Low Bias Mode \\
Band Width & Med Bias Mode \\
0.1 to 10 Hz & High Bias Mode
\end{tabular} & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& 5.0
\end{aligned}
\] & & \[
\begin{aligned}
& \mu V \\
& \mu V \\
& \mu V
\end{aligned}
\] \\
\hline Equivalent Input Noise Voltage & \(\overline{\bar{e}}_{\mathrm{n}}\) & Band Width \(\quad\) All Bias Modes
0.1 to 1.0 Hz & & 1.7 & & \(\mu \mathrm{V}\) \\
\hline Voltage Gain & Av & \begin{tabular}{ll}
\(R_{L}=100 \mathrm{k} \Omega\) & Low Bias Setting \\
& Med Bias Setting \\
& High Bias Setting
\end{tabular} & \[
\begin{aligned}
& 90 \\
& 90 \\
& 80 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 105 \\
& 105 \\
& 100 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB} \\
& \mathrm{~dB} \\
& \hline
\end{aligned}
\] \\
\hline Maximum Output Voltage Swing & \(\pm \mathrm{V}_{0}\) & \begin{tabular}{l}
\[
\begin{aligned}
& R_{L}=1 \mathrm{M} \Omega \\
& R_{L}=100 \mathrm{k} \Omega \\
& R_{L}=10 \mathrm{k} \Omega
\end{aligned}
\] \\
Positive Swing Negative Swing
\end{tabular} & +4.4 & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8
\end{aligned}
\] & -4.5 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Band Width of Input Voltage Translator & GBW & \(\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \quad\) All Bias Modes & & 10 & & Hz \\
\hline Nominal Commutation Frequency & \({ }_{\text {f }} \mathrm{COM}\) & \begin{tabular}{ll} 
Cosc \(=0 \mathrm{pF}\) & DR Connected to \(\mathrm{V}^{+}\) \\
& DR Connected to GND
\end{tabular} & & \[
\begin{gathered}
160 \\
2560 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{Hz} \\
& \mathrm{~Hz}
\end{aligned}
\] \\
\hline Nominal Input Converter Commutation Frequency & fсом1 & \begin{tabular}{ll} 
Cosc \(=0 \mathrm{pF}\) & DR Connected to \(\mathrm{V}^{+}\) \\
& DR Connected to GND
\end{tabular} & & \[
\begin{gathered}
\hline 80 \\
1280 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{Hz} \\
& \mathrm{~Hz}
\end{aligned}
\] \\
\hline Bias Voltage to define Current Modes & \[
\begin{aligned}
& \hline V_{B A} \\
& V_{B M} \\
& V_{B L}
\end{aligned}
\] & Low Bias Setting Med Bias Setting High Bias Setting & \[
\begin{aligned}
& \mathrm{V}^{+}-0.3 \\
& \mathrm{~V}^{-}+1.4 \\
& \mathrm{~V}^{-}-0.3
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{V}^{+} \\
\text {GND } \\
\mathrm{V}^{-}
\end{gathered}
\] & \[
\begin{aligned}
& \hline \mathrm{v}^{+}+0.3 \\
& \mathrm{v}^{+}-1.4 \\
& \mathrm{v}^{-}+0.3
\end{aligned}
\] & \[
\begin{aligned}
& \hline v \\
& v \\
& v
\end{aligned}
\] \\
\hline Bias (Pin 8) Input Current & IBIAS & & & \(\pm 30\) & & PA \\
\hline Division Ratio Input Current & IDR & \(\mathrm{V}^{+}-8.0 \leq \mathrm{VDR} \leq \mathrm{V}^{+}+0.3\) volt & & \(\pm 30\) & & pA \\
\hline DR Voltage to define Oscillator division ratio & VDRH VDRL & Internal oscillator division ratio 32 Internal oscillator division ratio 2 & \[
\begin{gathered}
\mathrm{V}^{+}-0.3 \\
\mathrm{~V}^{+}-8
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{V}^{+}+0.3 \\
& \mathrm{~V}^{+}-1.4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline Effective Impedance of Voltage Translator Analog Switches & RAS & " & & 30 & & k \(\Omega\) \\
\hline Supply Current & ISUPP & High Bias Setting Med Bias Setting Low Bias Setting & & \[
\begin{gathered}
\hline 7 \\
1.7 \\
0.6 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
15 \\
5 \\
1.5
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Operating Supply Voltage Range & \(\mathrm{V}^{+}-\mathrm{V}^{-}\) & High Bias Setting Med or Low Bias Setting & \[
5
\] & & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{v} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE}

INPUT OFFSET VOLTAGE AND
PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION

FREQUENCY ( \(\mathbf{C}_{1}, \mathbf{C}_{2}=\mathbf{1} \mu \mathbf{F}\) )
ein - 0.1 TO 10 Hz P/P NOISE VOLTAGE - \(\mu \mathrm{V}\)


COMMON MODE REJECTIONRATIO
AS A FUNCTION OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER CAPACITORS

- POSITIVE POWER SUPPLY VOLTAGE

NEGATIVE POWER SUPPLY VOLTAGE


INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE ( \(\mathbf{V}^{+}-\mathbf{V}^{-}\))

\section*{INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION \\ FREQUENCY ( \(\mathbf{C}_{1}, \mathbf{C}_{2}=0.1 \mu \mathbf{F}\) )}


INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE



RL - LOAD RESISTANCE


SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

\section*{OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING}


FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2).



TEST CIRCUIT 1: USE TO MEASURE:
: USE TO MEASURE:
a) INPUT OFFSET VOLTAGE \(\left(\frac{\text { VoUT }}{1000}\right)\)
b) INPUT EQUIV NOISE VOLTAGE
c) SUPPLY CURRENT
d) CMRR
e) PSRR


TEST CIRCUIT 2: DC to \(10 \mathrm{~Hz}(1 \mathrm{~Hz})\) Unity Gain Low Pass Filter

\section*{DETAILED DESCRIPTION}

\section*{CAZ Instrumentation Amp Overview}

The CAZ instrumentation amplifier operates on principles which are very different from those of the conventional three op amp designs, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the ICL7605/ICL7606 CAZ instrumentation amp is the provision for self-compensation for internal error voltages, whether they are derived from steady-state conditions, temperature, supply voltage fluctuations, or are variable over' a long term.
The CAZ instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input signal. The analog switches are driven from a self-contained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the ICL7605/ICL7606 is shown in Figure 1.


Figure 1: Simplified Block Diagram
The ICL7605/ICL7606 have approximately constant equivalent input noise voltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100 .
The only major limitation of the ICL7605/ICL7606 is its lowfrequency operation ( 10 to 20 Hz maximum). However in many applications speed is not the most important parameter.

\section*{CAZ Op Amp Section}

Operation of the CAZ amp section of the ICL7605/ICL7606 instrumentation amplifier is best illustrated by referring to Figure 2. The basic amplifier configuration, represented by the large triangles, has one more input than does a regular op amp - the AZ, or auto-zero terminal. The voltage on the AZ input is that level at which each of the internal op amps will be auto-zeroed. In Mode A, op amp \#2 is connected in a unity gain mode through on-chip analog switches. It charges external capacitor \(C_{2}\) to a voltage equal to the DC input offset voltage of the amplifier plus the instantaneous lowfrequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp \#2 has capacitor \(\mathrm{C}_{2}\) (which is charged to a voltage equal to the offset and noise voltage of op amp \#2) connected in series to its non-inverting \((+)\) input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input signal, the second op amp is in an auto-zero mode, charging a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The onchip amplifiers are connected and reconnected at a rate designated as the commutation frequency (fСом), so that at all times one or the other of the on-chip op amps is processing the input signal, while the voltages on capacitors \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) are being updated to compensate for variables such as low frequency noise voltage and input offset voltage changes due to temperature, drift or supply voltages effects.

Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important advantages:
* Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming.
* Long-term offset voltage drift phenomena can be compensated and dramatically reduced.
* Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better.
* Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and


Figure 2: Diagrammatic representation of the 2 half cycles of operation of the CAZ OP AMP.


Figure 3: Schematic of analog switches connecting each internal OP AMP to its inputs and output.
the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge injection and the widest operating voltage range. The analog section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. CMOS structure provides the CAZ amp with openloop gains of greater than 100 dB , typical input offset voltages of \(\pm 5 \mathrm{mV}\), and ultra-low leakage currents, typically 1 pA.

The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 3. Here, one op amp and its associated analog switches are required to connect each on-chip op amp, so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N -channel transistor.

\section*{DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER}

An idealized schematic of a voltage converter block is shown in Figure 4. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input, and the other from a ground or reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 5 , where the voltage steps equal the differential voltage ( \(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\) ) at commutation times \(\mathrm{a}, \mathrm{b}, \mathrm{c}\), etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, commutation and noise voltages are added. Sampling theory states that to preserve the integrity of the information to be processed, at least two samples must be taken within a period (1/f) of the highest frequency of the signal being


The frequency at which modes A \& B are cycled is
known as the INPUT COMMUTATION FREQUENCY

Figure 4: Schematic of the differential to single ended voltage converter


Figure 5: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended voltage converter graph on page 5.
sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation frequency, the input signal is transferred to a lower frequency. This phenomenon is known as aliasing. Although the output responds above the commutation frequency, the frequencies of the output responses have been aliased down to frequencies below the commutation frequency.
The voltage converter is fabricated with CMOS analog switches, which contain a parallel combination of \(P\)-channel and N -channel transistors. The switches have finite ON impedances of \(30 \mathrm{k} \Omega\), plus parasitic capacitances to the substrate. Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors \(\mathrm{C}_{0}\) and \(\mathrm{Co}_{0}\) must be about \(1 \mu \mathrm{~F}\) to preserve signal translation accuracies to \(0.01 \%\). The \(1 \mu \mathrm{~F}\) capacitors, coupled with the \(30 \mathrm{k} \Omega\) equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is approximately 3 dB at 10 Hz .

\section*{APPLICATIONS}

\section*{USING THE ICL7605/ICL7606 TO BUILD A DIGITAL READOUT TORQUE WRENCH}

A typical application for the ICL7605/ICL7606 is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure 6. In this application, the CAZ instrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting this voltage to a single-ended voltage reference to ground. The signal is then amplified by the CAZ instrumentation amplifier and applied to the input of a \(3-1 / 2\) digit dual-slope A/D converter chip for LCD panel meter display. The A/D converter device used in this instance is the Intersil ICL7106.
In the digital readout torque wrench circuit, the reference voltage for the ICL7106 is derived from the stimulus applied to the strain gauge, to utilize the ratiometric capabilities of the A/D. In order to set the full-scale reading, it is required
that, given a certain strain gauge bridge with a defined pressure voltage sensitivity, a value of gain for the ICL7605/ ICL7606 instrumentation CAZ amp be selected along with an appropriate value for the reference voltage. The gain should be set so that at full scale the output will swing about 0.5 V . The reference voltage required is about one-half the maximum output swing, or approximately 0.25 V .

In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage must be varied for full-scale adjustment. Total current consumption of all circuitry, less the current through the strain gauge bridge, is typically 2 mA . The accuracy is limited only by resistor ratios and the transducer.


Figure 6: 3-1/2 Digit Digital Readout Torque Wrench

\author{
SOME HELPFUL HINTS
}

\section*{Testing the ICL7605/ICL7606}

\section*{CAZ Instrumentation Amplifier}

Test Circuits \#1 and \#2 provide convenient means of measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscilloscope after being fed through a low-pass filter. It is recommended that for most applications, a low-pass filter of about 1.0 to 1.5 Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage.
The output low-pass filter must be of a high-input impedance type-(not simply a capacitor across the feedback resistor \(\mathrm{R}_{2}\) ) at about \(100 \mathrm{k} \Omega\) and \(1.0 \mu \mathrm{~F}\) so that the output dynamic loading on the CAZ instrumentation is about \(100 \mathrm{k} \Omega\).

\section*{Bias Control}

The on-chip op amps consume over \(90 \%\) of the power required by the ICL7605/ICL7606 instrumentation op amp. For this reason, the internal op amps have externallyprogrammable bias levels. These levels are set by connecting the BIAS terminal to either \(\mathrm{V}^{+}\), GND, or \(\mathrm{V}_{-}^{-}\)for LOW, MED or HIGH BIAS levels, respectively. The difference between each bias setting is about a factor of 3 , allowing a \(9: 1\) ratio of power supply versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the better the recovery from commutation spikes), and offset errors due to "IR" voltage drops and thermoelectric effects (the higher the power dissipation, the higher the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice.

\section*{Output Loading (Resistive)}

With a \(10 \mathrm{k} \Omega\) load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with loads as low as \(2 \mathrm{k} \Omega\).
However, with loads of less than 50k \(\Omega\), the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly \(50 \mathrm{k} \Omega\) each. Thus the open-loop gain is 20 dB less with a \(2 k \Omega\) load than it would be with a \(20 \mathrm{k} \Omega\) load. Therefore, for high gain configurations requiring high accuracy, an output load of \(100 \mathrm{k} \Omega\) or more is suggested.
There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked, and that is the additional power dissipation of the chip which will result from a large output voltage swing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions.

\section*{Output Loading (Capacitive)}

In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op amp to reduce high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter.
However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteristic in the direction of the auto-zero voltage and a high-impedance characteristic on the recovery edge, as shown in Figure 7. It can be seen that the effect of a large load capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a highimpedance type to avoid these area errors. For example, a 1.5 Hz filter will require a \(100 \mathrm{k} \Omega\) resistor and a \(1.0 \mu \mathrm{~F}\) capacitor, or a \(1 \mathrm{M} \Omega\) resistor and an \(0.1 \mu \mathrm{~F}\) capacitor.

\section*{Oscillator and Digital Circuitry Considerations}

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160 Hz . The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others.
The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired ( 5.2 kHz ) the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The ICL7605/ ICL7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratio) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to \(\mathrm{V}^{+}\)) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and the \(\mathrm{V}^{+}\)or system GND terminals. For situations which require that the commutation frequency be synchronized with a master clock, (Figure 8) the OSC terminal may be driven from TTL logic (with resistive pull-up) or by CMOS logic, provided that the \(\mathrm{V}^{+}\) supply (with respect to ground) is \(+5 \mathrm{~V}( \pm 10 \%)\) and the logic driver also operates from a similar voltage supply. The


Figure 7: Effect of a load capacitor on output voltage waveforms.


Figure 8: ICL7605 being clocked from external logic into the oscillator terminal.
reason for this requirement is that the logic section (including the oscillator) operates from an internal -5 V supply, referenced to \(\mathrm{V}^{+}\)supply, which is not accessible externally.

\section*{Thermoelectric Effects}

The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects in electrical junctions consisting of various metals (alloys, silicon, etc.) Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about \(0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\). However, these voltages can be several tens of microvolts per \({ }^{\circ} \mathrm{C}\) for certain thermocouple materials.
In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply voltages and power dissipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep well away from equipment which dissipates heat.

\section*{Component Selection}

The four capacitors ( \(C_{1}\) thru \(C_{4}\) ) should each be about \(1.0 \mu \mathrm{~F}\). These are relatively large values for non-electrolytic capacitors, but since the voltages stored on them change significantly, problems of dielectric absorption, charge bleed-off and the like are as significant as they would be for integrating dual-slope A/D converter applications. Polypropylene are the best for \(\mathrm{C}_{3}\) and \(\mathrm{C}_{4}\), though Mylar may be adequate for \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\).
Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, smaller-size capacitors, since the absolute values of the capacitors are not critical. Even polarized electrolytic capacitors rated at \(1.0 \mu \mathrm{~F}\) and 50 V have been used successfully at room temperature, although no recommendations are made concerning the use of such capacitors.

\section*{Commutation Voltage Transient Effects}

Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 10 Hz . The is due to the finite switching transients which occur at both the input and
output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest in-band frequency, then the commutation transients can be filtered out with a low-pass filter.
The input commutation transients arise when each of the onchip op amps experiences a shift in voltage which is equal to the input offset voltages (about \(5-10 \mathrm{mV}\) ), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors \(C_{1}\) and \(\mathrm{C}_{2}\) must have values of at least \(10,000 \times 10 \mathrm{pF}\), or \(0.1 \mu \mathrm{~F}\) each.
The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent DC input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0 pA at an ambient temperature of \(25^{\circ} \mathrm{C}\).
The output waveform in Test Circuit \#1 (with no input signal) is shown in Figure 9. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the onchip op amps, the input transients of approximately 7 mV are not amplified by 1000 .


Figure 9: Output waveform from Test Circuit 1.

\section*{Layout Considerations}

Care should be exercised in positioning components on the PC board, particularly the capacitors \(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\) and \(\mathrm{C}_{4}\), all of which must be shielded from the OSC terminal. Also, parasitic PC board leakage capacitances associated with these four capacitors should be kept as low as possible to minimize charge injection effects.

\section*{FEATURES}
- Wide operating voltage range \(\pm 1.0 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\)
- High input impedance - \(10^{12} \Omega\)
- Programmable power consumption - as low as \(20 \mu \mathrm{~W}\)
- Input current lower than BIFETs - typ 1pA
- Available as singles, duals, triples, and quads
- Output voltage swing ranges to within millivolts of V- to V+
- Low power replacement for many standard op amps
- Compensated and uncompensated versions

\section*{APPLICATIONS}
- Portable instruments - Meter amplifiers
- Telephone headsets
- Medical instruments
- Hearing aid/microphone - High impedance buffers amplifiers
A number of special options are available. They include:
- Single, dual, triple, and quad configurations
- Internally compensated and uncompensated versions
- Inputs protected to \(\pm 200 \mathrm{~V}\) (ICL7613/15)
- Input common mode voltage range greater than supply rails (ICL7612)
Note: See page 2 for table of options.


\section*{ICL761X/762X/763X/764X}

\section*{GENERAL DESCRIPTION}

The ICL761X/762X/763X/764X series is a family of monolithic CMOS op amps. These amplifiers provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power drain are essential.
The basic amplifier will operate at supply voltages ranging from \(\pm 1.0 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\), and may be operated from a single Lithium cell.
A unique quiescent current programming pin allows setting of standby current to \(1 \mathrm{~mA}, 100 \mu \mathrm{~A}\), or \(10 \mu \mathrm{~A}\), with no external components. This results in power drain as low as \(20 \mu \mathrm{~W}\). Output swings range to within a few millivolts of the supply voltages.

Of particular significance is the extremely low (1 pA) input current, input noise current of \(.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}\), and \(10^{12} \Omega\) input impedance. These features optimize performance in very high source impedance applications.
The inputs are internally protected and require no special handling procedures. Outputs are fully protected against shorts to ground or to either supply.
AC performance is excellent, with a slew rate of \(1.6 \mathrm{~V} / \mu \mathrm{s}\), and unity gain bandwidth of 1 MHz at \(\mathrm{I}_{\mathrm{Q}}=\) 1 mA .
Because of the low power dissipation, operating temperatures and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

\section*{SELECTION GUIDE}

BASIC TYPE


OFFSET
NULL CAPABILITY
\(Y=Y E S\)
\(\mathbf{N}=\mathbf{N O}\)
\({ }^{1} \mathrm{Q}\) SETTING \(L=10 \mu A\) FIXED \(M=100 \mu A\) FIXED \(H=1 \mathrm{~mA}\) FIXED P = PROGRAMMABLE

ORDERING
INFORMATION \({ }^{\text {[2] }}\)


PACKAGE CODE
TV - TO-99, 8 PIN
PA - PLASTIC 8 PIN MINIDIP
PD - 14 PIN PLASTIC
PE - 16 PIN PLASTIC
JD - 14 PIN CERDIP
JE - 16 PINCERDIP


NOTES: 1. Duals and quads are available in 14 pin DIP packages, triples in 16 pin only.
2. Ordering code must consist of basic device and order suffix, e.g., ICL7611BCPA.
3. ICL7632 is not compensatable. Recommended for use in high gain circuits only.

PIN CONFIGURATIONS
\begin{tabular}{|c|c|c|}
\hline DEVICE & DESCRIPTION & PIN ASSIGNMENTS \\
\hline ICL7611XCPA ICL7611XCTV ICL7611XMTV ICL7612XCPA ICL7612XCTV ICL7612XMTV ICL7613XCPA ICL7613XCTV ICL7613XMTV & Internal compensation, plus offset null capability and external \(I_{Q}\) control. & *Pin 7 connected to case. \\
\hline ICL7614XCPA ICL7614XCTV ICL7614XMTV ICL7615XCPA ICL7615XCTV ICL7615XMTV & Fixed \({ }^{Q}(100 \mu A)\), external compensation, and offset null capability. &  \\
\hline ICL7621XCPA ICL7621XCTV ICL7621XMTV & \begin{tabular}{l}
Dual op amps with internal compensation; I Q fixed at \(100 \mu \mathrm{~A}\) \\
Pin compatible with \\
Texas Inst. TL082 \\
Motorola MC 1458 \\
Raytheon RC4558
\end{tabular} & * Pin 8 connected to case. \\
\hline ICL7622XCPD & \begin{tabular}{l}
Dual op amps with internal compensation and offset null capability; \(I_{Q}\) fixed at \(100 \mu \mathrm{~A}\) \\
Pin compatible with \\
Texas Inst. TL083 \\
Fairchild \(\mu\) A 747
\end{tabular} & \begin{tabular}{l}
14 PIN DIP (TOP VIEW) (outline dwgs JD, PD) \\
ote: Pins 9 and 13 are internaliy connected.
\end{tabular} \\
\hline
\end{tabular}

PIN CONFIGURATIONS (Cont.)
\begin{tabular}{|c|c|c|}
\hline Device & DESCRIPTION & PIN ASSIGNMENTS \\
\hline ICL7631XCPE ICL7632XCPE & \begin{tabular}{l}
Triple op amps with internal compensation (ICL7631) and no compensation (ICL7632). \\
Adjustable la \\
Same pin configuration as ICL8023.
\end{tabular} & \begin{tabular}{l}
16 PIN DIP (TOP VIEW) (outline dwgs JE, PE) \\
Note: Pins 5 and 15 are internally connected.
\end{tabular} \\
\hline ICL7641XCPD ICL7642XCPD & \begin{tabular}{l}
Quad op amps with internal compensation. \\
\({ }^{1} \mathrm{Q}\) fixed at 1 mA (ICL7641) \\
\({ }^{1} \mathrm{Q}\) fixed at \(10 \mu \mathrm{~A}\) (ICL7642) \\
Pin compatible with \\
Texas Instr. TL084 \\
National LM324 \\
Harris HA4741
\end{tabular} & 14 PIN DIP (TOP VIEW) (outline dwg JD, PD) \\
\hline
\end{tabular}

\section*{GENERAL INFORMATION}

\section*{STATIC PROTECTION}

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

\section*{LATCHUP AVOIDANCE}

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer ( \(p-n-p-n\) ) structure. The 4-layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails may be applied to any pin. (An exception to this rule concerns the inputs of the ICL7613 and ICL7615, which are protected to \(\pm 200 \mathrm{~V}\).) In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2 mA to prevent latchup.

\section*{CHOOSING THE PROPER \(I_{Q}\)}

Each device in the ICL76XX family has a similar \(I_{Q}\) set-up scheme, which allows the amplifier to be set to nominal quiescent currents of \(10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}\) or 1 mA .

These current settings change only very slightly over the entire supply voltage range. The ICL7611/12/13 and ICL7631/32 have an external \(I_{Q}\) control terminal, permitting user selection of each amplifiers' quiescent current. (The ICL7614/15, 7621/22, and 7641/42 have fixed \(\mathrm{I}_{\mathrm{Q}}\) settings - refer to selector guide for details.) To set the \(I_{Q}\) of programmable versions, connect the \(l_{Q}\) terminal as follows:
\(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}-\mathrm{lQ}\) pin to \(\mathrm{V}+\)
\(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}-\mathrm{IQ}\) pin to ground. If this is not possible, any voltage from \(\mathrm{V}^{+}-0.8\) to \(\mathrm{V}^{-}+0.8\) can be used. \(\mathrm{IQ}_{\mathrm{Q}}=1 \mathrm{~mA}-\mathrm{IQ}_{\mathrm{Q}} \mathrm{pin}\) to \(\mathrm{V}^{-}\)
NOTE: The negative output current available is a function of the quiescent current setting. For maximum p-p ouput voltage swings into low impedance loads, \(I_{Q}\) of 1 mA should be selected.

\section*{OUTPUT STAGE AND LOAD DRIVING CONSIDERATIONS}

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately \(70 \%\) of the \(I_{Q}\) settings. This allows output swings to almost the supply rails for output loads of \(1 \mathrm{M}, 100 \mathrm{~K}\), and 10 K , using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB, which can supply

\section*{ICL761X/762X/763X/764X}
higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.
A special feature of the output stage is that it approximates a transconductance amplifier, and its gain is directly proportional to load impedance. Approximately the same open loop gains are obtained at each of the lasettings if corresponding loads of 10 K , 100 K , and 1 M are used.

\section*{INPUT OFFSET NULLING}

For those models provided with OFFSET NULLING pins, nulling may be achieved by connecting a 25 K pot between the OFFSET terminals with the wiper connected to \(\mathrm{V}^{+}\). At quiescent currents of 1 mA and \(100 \mu \mathrm{~A}\), the nulling range provided is adequate for all \(\mathrm{V}_{\text {OS }}\) selections; however with \(I_{Q}=10 \mu \mathrm{~A}\), nulling may not be possible with higher values of \(V_{\text {OS }}\).

\section*{FREQUENCY COMPENSATION}

Th \(\mathrm{IC}^{\prime} .7611 / 12 / 13,7621 / 22,7631,7641 / 42\) are internally compensated, and are stable for closed loop gains as low as unity for capacitive loads up to 100pF

The ICL7614 and 15 are externally compensated by connecting a capacitor between the COMP and OUT pins. A 39pF capacitor is required for unity gain compensation; for greater than unity gain applications, increased bandwidth and slew rate can be obtained by reducing the value of the compensating capacitor.

Since the \(g_{m}\) of the first stage is proportional to \(\sqrt{l_{Q}}\), greatest compensation is required when \(1 Q=1 \mathrm{~mA}\). The ICL7632 is not compensated internally, nor can it be compensated externally. The device is stable when used as follows:

1 Q of 1 mA for gains \(\geq 20\)
la of \(100 \mu \mathrm{~A}\) for gains \(\geq 10\)
IQ of \(10 \mu \mathrm{~A}\) for gains \(\geq 5\)

\section*{HIGH VOLTAGE INPUT PROTECTION}

The ICL7613 and 7615 include on-chip thin film resisitors and clamping diodes which allow voltages of up to \(\pm 200\) to be applied to either input for an indefinite time without device failure. These devices will be useful where high common mode voltages, differential mode voltages, or high transients may be experienced. Such conditions may be found when interfacing separate systems with separate supplies. Unity gain stability is somewhat degraded with capacitive loads because of the high value of input resistors.

\section*{EXTENDED COMMON MODE INPUT RANGE}

The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 volt for applications where \(V_{\text {SUPP }} \geq \pm 1.5 \mathrm{~V}\). For those applications where \(\mathrm{V}_{\text {SUPP }} \leq \pm 1.5 \mathrm{~V}\), the input CMVR is limited in the positive direction, but may exceed the negative supply rail by 0.1 volt in the negative direction (eg. for \(V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}\), the input CMVR would be +0.6 volts to -1.1 volts).

OPERATION AT \(V_{\text {SUPP }}= \pm 1.0 \mathrm{VOLTS}\)
Operation at \(\mathrm{V}_{\text {SUPP }}= \pm 1.0 \mathrm{~V}\) is guaranteed at \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) only. This applies to these devices with selectable \(I_{Q}\), and those devices are set internally to \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) (i.e., ICL7611, 7612, 7613, 7631, 7632, 7642).

Output swings to within a few millivolts of the supply rails are achievable for \(R_{L} \geq 1 \mathrm{Meg} \Omega\). Guaranteed input CMVR is \(\pm 0.6 \mathrm{~V}\) minimum and typically +0.9 V to -0.7 at \(\mathrm{V}_{\text {SUPP }}= \pm 1.0 \mathrm{~V}\). For applications where greater common mode range is desirable, refer to description of ICL7612 above.

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.

\section*{ABSOLUTE MAXIMUM RATINGS \({ }^{1}\)}


Operating Temperature Range
M Series ................................. \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
C Series .................................. \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Lead Temperature Soldering, 10 sec , ............ \(300^{\circ} \mathrm{C}\) Notes:
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Long term offset voltage stability will be degraded if iarge input differential voltages are applied for long periods of time.
3. The outputs may de shoried to ground or to either supply. for VSupp \(\leq 10 \mathrm{~V}\). Care must be taken to insure that the diss:pation rating is not exceeded.

ELECTRICAL CHARACTERISTICS \(V_{\text {Supp }}= \pm 5.0 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\), unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{76XXA} & \multicolumn{3}{|c|}{76XXB} & \multicolumn{3}{|c|}{76XXD} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & TYP. & MAX. & MIN. & TYP. & MAX. & MIN. & TYP. & MAX. & \\
\hline Input Offset Voltage & Vos & \begin{tabular}{l}
\[
R S \leq 100 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}
\] \\
\(T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}\)
\end{tabular} & - & & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & & & 5
7 & & & \[
\begin{aligned}
& 15 \\
& 20
\end{aligned}
\] & mV \\
\hline Temperature Coefficient of Vo's & \(\Delta V_{\text {OS }} / \Delta T\) & \(\mathrm{R}_{S} \leq 100 \mathrm{~K} \Omega\) & & 10 & & & 15 & & & 25 & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & los & \[
\begin{aligned}
& T_{A}=25^{\circ} C \\
& \Delta T_{A}=C^{12} \\
& \Delta T_{A}=M^{2}
\end{aligned}
\] & & 0.5 & \[
\begin{aligned}
& 30 \\
& 300 \\
& 800 \\
& \hline
\end{aligned}
\] & & 0.5 & \[
\begin{array}{r}
30 \\
300 \\
800 \\
\hline
\end{array}
\] & & 0.5 & \[
\begin{gathered}
30 \\
300 \\
800
\end{gathered}
\] & pA \\
\hline Input Bias Current & IbIas & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C \\
\Delta T_{A}=M
\end{gathered}
\] & & 1.0 & \[
\begin{array}{|c|}
\hline 50 \\
400 \\
4000 \\
\hline
\end{array}
\] & & 1.0 & \[
\begin{array}{|c|}
\hline 50 \\
400 \\
4000 \\
\hline
\end{array}
\] & & 1.0 & \[
\begin{array}{|c|}
\hline 50 \\
400 \\
4000 \\
\hline
\end{array}
\] & pA \\
\hline Common Mode Voltage Range (Except ICL7612 & VCMR & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A} \\
& \mathrm{IQ}=100 \mu \mathrm{~A} \\
& \mathrm{Q}=1 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 4.4 \\
& \pm 4.2 \\
& \pm 3.7 \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{r} 
\pm 4.4 \\
\pm 4.2 \\
\pm 3.7 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& \pm 4.4 \\
& \pm 4.2 \\
& \pm 3.7 \\
& \hline
\end{aligned}
\] & & & V \\
\hline \multirow[t]{3}{*}{Extended Common Mode Voltage Range (ICL7612 Only,} & \multirow[t]{3}{*}{VCMP} & \(1 \mathrm{Q}=10 \mu \mathrm{~A}\) & \(\pm 5.3\) & & & \(\pm 5.3\) & & & \(\pm 5.3\) & & & \multirow{3}{*}{V} \\
\hline & & \(10=100 \mu \mathrm{~A}\) & \[
\begin{array}{r}
+5.3 \\
-5.1 \\
\hline
\end{array}
\] & & & \[
\begin{array}{|l|}
\hline+5.3 \\
-5.1 \\
\hline
\end{array}
\] & & & \[
\begin{array}{r}
+5.3 \\
-5.1 \\
\hline
\end{array}
\] & & & \\
\hline & & \(\mathrm{I}=1 \mathrm{~mA}\) & \[
\begin{aligned}
& +5.3 \\
& -4.5
\end{aligned}
\] & & & \[
\begin{aligned}
& +5.3 \\
& -4.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& +5.3 \\
& -4.5 \\
& \hline
\end{aligned}
\] & & & \\
\hline \multirow[t]{3}{*}{Output Voltage Swing} & \multirow[t]{3}{*}{Vout} & \[
\text { (1) } \begin{gathered}
\mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=\mathrm{C} \\
\Delta T_{A}=\mathrm{M}
\end{gathered}
\] & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.7
\end{aligned}
\] & & . & \(\pm 4.9\)
\(\pm 4.8\)
\(\pm 4.7\) & & & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.7
\end{aligned}
\] & & & \multirow{3}{*}{V} \\
\hline & & \[
\begin{gathered}
\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, R_{L}=100 \mathrm{k} \Omega 2 \\
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=\mathrm{C} \\
\Delta T_{A}=\mathrm{M}
\end{gathered}
\] & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.5
\end{aligned}
\] & & \(\cdots\) & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.5
\end{aligned}
\] & & & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.5
\end{aligned}
\] & & & \\
\hline & & \[
\text { (1) } \begin{gathered}
\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, R_{L}=10 \mathrm{k} \Omega \\
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=\mathrm{C} \\
\Delta T_{A}=\mathrm{M}
\end{gathered}
\] & \[
\begin{aligned}
& \pm 4.5 \\
& \pm 4.3 \\
& \pm 4.0
\end{aligned}
\] & \(\because\) & & \[
\begin{aligned}
& \pm 4.5 \\
& \pm 4.3 \\
& \pm 4.0
\end{aligned}
\] & . & & \[
\begin{aligned}
& \pm 4.5 \\
& \pm 4.3 \\
& \pm 4.0
\end{aligned}
\] & . & & \\
\hline Large Signal Voltage Gain & Avol & \[
\begin{gathered}
V_{O}= \pm 4.0 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\
\mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=\mathrm{C} \\
\Delta T_{A}=M
\end{gathered}
\] & \[
\begin{aligned}
& 86 \\
& 80 \\
& 74 \\
& \hline
\end{aligned}
\] & 104 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 104 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 104 & & \\
\hline & + & \[
\begin{gathered}
V O= \pm 4.0 \mathrm{~V}, R_{L}=100 \mathrm{k} \Omega \\
I_{Q}=100 \mu \mathrm{~A}, T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C \\
\Delta T_{A}=M
\end{gathered}
\] & \[
\begin{aligned}
& 86 \\
& 80 \\
& 74 \\
& \hline
\end{aligned}
\] & 102 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68
\end{aligned}
\] & 102 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 102 & & dB \\
\hline & & \[
\begin{gathered}
V_{O}= \pm 4.0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega \\
10=1 \mathrm{~mA}^{\prime}, T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C \\
\Delta T_{A}=M
\end{gathered}
\] & \[
\begin{aligned}
& 80 \\
& 76 \\
& 72
\end{aligned}
\] & 83 & & \[
\begin{aligned}
& 76 \\
& 72 \\
& 68
\end{aligned}
\] & 83 & & \[
\begin{aligned}
& 76 \\
& 72 \\
& 68 \\
& \hline
\end{aligned}
\] & 83 & & \\
\hline Unity Gain Bandwidth & GBW & \[
\begin{aligned}
& I Q=10 \mu A \\
& I Q=100 \mu A \\
& I Q=1 m A
\end{aligned}
\] & \(\therefore\) & \[
\begin{array}{|c|}
\hline 0.044 \\
0.48 \\
1.4 \\
\hline
\end{array}
\] & & & \[
\begin{array}{|c|}
\hline 0.044 \\
0.48 \\
1.4 \\
\hline
\end{array}
\] & & & \[
\begin{array}{|c|}
\hline 0.044 \\
0.48 \\
1.4 \\
\hline
\end{array}
\] & & MHz \\
\hline Input Resistance & RIN & & & 1012 & & & 1012 & & & 1012 & & \(\Omega\) \\
\hline Common Mode Rejection Ratio & CMRR & \[
\begin{aligned}
& R_{S} \leq 100 \mathrm{~K} \Omega, I_{Q}=10 \mu \mathrm{~A} \\
& R S \leq 100 \mathrm{~K} \Omega, 10=100 \mu \mathrm{~A} \\
& R_{S} \leq 100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{a}}=1 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 76 \\
& 76 \\
& 66 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 96 \\
& 91 \\
& 87 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 70 \\
& 70 \\
& 60 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 96 \\
& 91 \\
& 87 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 70 \\
& 70 \\
& 60 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 96 \\
& 91 \\
& 87 \\
& \hline
\end{aligned}
\] & & dB \\
\hline Power Supply Rejection Ratio & PSRR & \[
\begin{aligned}
& R_{S} \leq 100 \mathrm{~K} \Omega, I_{Q}=10 \mu \mathrm{~A} \\
& R s \leq 100 \mathrm{~K} \Omega, I Q=100 \mu \mathrm{~A} \\
& R_{s} \leq 100 \mathrm{~K} \Omega, I Q=1 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 94 \\
& 86 \\
& 77 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 80 \\
& 80 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 94 \\
& 86 \\
& 77 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 80 \\
& 80 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 94 \\
& 86 \\
& 77 \\
& \hline
\end{aligned}
\] & & dB \\
\hline Input Referred Noise Voltage & \(e_{n}\) & \(\mathrm{RS}_{\mathrm{s}}=100 \Omega, \mathrm{f}=1 \mathrm{KHz}\) & & 100 & & & 100 & & & 100 & & \(n \mathrm{~V} / / \overline{\mathrm{Hz}}\) \\
\hline Input Referred Noise Current & \(i_{n}\) & Rs \(=100 \Omega, \mathrm{f}=1 \mathrm{KHz}\) & & 0.01 & & & 0.01 & & & 0.01 & & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Supply Current (Per Amplifier) & ISUPP & \[
\begin{gathered}
\text { No Signal, No Load } \\
10=10 \mu A \\
I_{0}=100 \mu A \\
I_{0}=1 \mathrm{~mA} \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& 0.01 \\
& 0.1 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
0.02 \\
0.25 \\
2.5
\end{gathered}
\] & & \[
\begin{gathered}
0.01 \\
0.1 \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
0.02 \\
0.25 \\
2.5
\end{gathered}
\] & & \[
\begin{gathered}
0.01 \\
0.1 \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
0.02 \\
0.25 \\
2.5
\end{gathered}
\] & mA \\
\hline Channel Separation & VO1/VO2 & AVOL \(=100\) & & 120 & & & 120 & & & 120 & & dB \\
\hline Slew Rate \({ }^{\text {|3| }}\) & SR & \[
\begin{gathered}
\text { AVOL=1, } C_{L}=100 p F \\
V_{I N}=8 V_{p-p} \\
I_{Q}=10 \mu A \mid 1, R_{L}=1 \mathrm{M} \Omega \\
I_{Q}=100 \mu A, R_{L}=100 \mathrm{~K} \Omega \\
I_{Q}=1 \mathrm{~mA} A^{11}, R_{L}=10 \mathrm{~K} \Omega
\end{gathered}
\] & & \[
\begin{gathered}
0.016 \\
0.16 \\
1.6
\end{gathered}
\] & & & \[
\left\lvert\, \begin{gathered}
0.016 \\
0.16 \\
1.6
\end{gathered}\right.
\] & & & \[
\begin{gathered}
0.016 \\
0.16 \\
1.6 \\
\hline
\end{gathered}
\] & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time \({ }^{|3|}\) & tr & \[
\begin{aligned}
& V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
& 1 \mathrm{Q}=10 \mu \mathrm{~A} \mid 1, R_{\mathrm{L}}=1 \mathrm{M} \Omega \\
& 1 \mathrm{Q}=100 \mu \mathrm{~A}, R_{\mathrm{L}}=100 \mathrm{~K} \Omega \\
& 1 \mathrm{Q}=1 \mathrm{~mA} \mid 1, R_{L}=10 \mathrm{~K} \Omega
\end{aligned}
\] & & \[
\begin{gathered}
20 \\
2 \\
0.9
\end{gathered}
\] & & & \[
\begin{gathered}
20 \\
2 \\
0.9
\end{gathered}
\] & & & \[
\begin{gathered}
20 \\
2 \\
0.9
\end{gathered}
\] & & \(\mu \mathrm{S}\) \\
\hline Overshoot Factor \({ }^{\text {[3] }}\) & & \[
\begin{aligned}
& \mathrm{V}_{1 \mathrm{~N}}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
& \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}|1|, R_{L}=1 \mathrm{M} \Omega \\
& \mathrm{Q}_{\mathrm{Q}}=100 \mu \mathrm{~A}, R_{\mathrm{L}}=100 \mathrm{~K} \Omega \\
& \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA} \mid 1 \mathrm{i}, R_{L}=10 \mathrm{~K} \Omega
\end{aligned}
\] & & 5
10
40 & & & 5
10
40 & & & 5
10
40 & & \% \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}, 1 \mathrm{I}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified. Specs apply to ICL7611/7612/7613 only.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{76XXA} & \multicolumn{3}{|c|}{76XXB} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & TYP. & MAX. & MIN & TYP. & MAX & \\
\hline Input Offset Voltage & Vos & \[
\begin{gathered}
R S \leq 100 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C} \\
T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}
\end{gathered}
\] & & & 2
3 & & & 5
7 & mV \\
\hline Temperature Coefficient of Vos & \(\Delta \mathrm{Vos} / \Delta \mathrm{T}\) & Rs \(\leq 100 \mathrm{~K} \Omega\) & & 10 & & & 15 & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & los & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C
\end{gathered}
\] & & 0.5 & \[
\begin{aligned}
& \hline 30 \\
& 300
\end{aligned}
\] & & 0.5 & \[
\begin{aligned}
& 30 \\
& 300
\end{aligned}
\] & pA \\
\hline Input Bias Current & Ibias & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C
\end{gathered}
\] & & 1.0 & \[
\begin{gathered}
50 \\
500
\end{gathered}
\] & & 1.0 & \[
\begin{gathered}
50 \\
500
\end{gathered}
\] & pA \\
\hline Common Mode Voltage Range (Except ICL7612) & VCMR & & \(\pm 0.6\) & & & \(\pm 0.6\) & & & V \\
\hline Extended Common Mode Voltage Range (ICL7612 Only) & VCMR & & \[
\begin{gathered}
\hline+0.6 \\
\text { to } \\
-1.1
\end{gathered}
\] & & & \[
\begin{gathered}
+0.6 \\
\text { to } \\
-1.1
\end{gathered}
\] & & & V \\
\hline Output Voltage Swing & Vout & \[
\begin{gathered}
\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\
\Delta \mathrm{~T}_{A}=\mathrm{C}
\end{gathered}
\] & & \[
\begin{aligned}
& \pm 0.98 \\
& \pm 0.96
\end{aligned}
\] & & & \[
\begin{aligned}
& \pm 0.98 \\
& \pm 0.96
\end{aligned}
\] & & v \\
\hline Large Signal Voltage Gain & Avol & \[
\begin{gathered}
V_{O}= \pm 0.1 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C
\end{gathered}
\] & & \[
\begin{aligned}
& 90 \\
& 80
\end{aligned}
\] & & & \[
\begin{aligned}
& 90 \\
& 80
\end{aligned}
\] & & dB \\
\hline Unity Gain Bandwidth & GBW & & & 0.044 & & & 0.044 & & M Hz \\
\hline Input Resistance & RIN & & & 1012 & & & 1012 & & \(\Omega\) \\
\hline Common Mode Rejection Ratio & CMRR & R \(\mathrm{S} \leq 100 \mathrm{~K} \Omega\) & & 80 & & & 80 & & dB \\
\hline Power Supply Rejection Ratio & PSRR & Rs \(\leq 100 \mathrm{~K} \Omega\) & & 80 & & & 80 & & dB \\
\hline Input Referred Noise Voltage & \(e_{n}\) & Rs \(=100 \Omega, \mathrm{f}=1 \mathrm{KHz}\) & & 100 & & & 100 & & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Referred Noise Current & \(i_{n}\) & Rs \(=100 \Omega, \mathrm{f}=1 \mathrm{KHz}\) & & 0.01 & & & 0.01 & & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Supply Current (Per Amplifier) & ISUPP & No Signal, No Load & & 6 & 15 & & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline Slew Rate & SR & \[
\begin{gathered}
\text { AvOL }=1, C_{L}=100 \mathrm{pF}, \\
\mathrm{~V}_{\mathrm{IN}}=0.2 \mathrm{Vp-p} \\
\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega
\end{gathered}
\] & & 0.016 & & & 0.016 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time & \(\mathrm{tr}^{\text {r }}\) & \[
\begin{gathered}
V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega
\end{gathered}
\] & & 20 & & & 20 & & \(\mu \mathrm{S}\) \\
\hline Overshoot Factor & & \[
\begin{gathered}
V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
R_{L}=1 \mathrm{M} \Omega
\end{gathered}
\] & & 5 & & & 5 & & \% \\
\hline
\end{tabular}

Note: \(\mathrm{C}=\) Commercial Temperature Range \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right) ; M=\) Military Temperature Range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\).

ELECTRICAL CHARACTERISTICS VSUPP \(= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{76XXB} & \multicolumn{3}{|c|}{76XXC} & \multicolumn{3}{|c|}{76XXE} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & TYP. & MAX. & MIN. & TYP. & MAX. & MIN. & TYP. & MAX. & \\
\hline Input Offset Voltage & Vos & \[
\begin{gathered}
R_{S} \leq 100 \mathrm{~K} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\
T_{\text {MIN }} \leq T_{A} \leq T_{M A X}
\end{gathered}
\] & & & \[
\begin{aligned}
& 5 \\
& 7
\end{aligned}
\] & & & \[
\begin{aligned}
& 10 \\
& 15
\end{aligned}
\] & & & \[
\begin{aligned}
& 20 \\
& 25
\end{aligned}
\] & mV \\
\hline Temperature Coefficient of Vos & \(\Delta V_{\text {OS }} / \Delta T\) & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega\) & & 15 & & & 20 & & & 30 & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & los & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C \\
\Delta T_{A}=M
\end{gathered}
\] & & 0.5 & \[
\begin{gathered}
30 \\
300 \\
800 \\
\hline
\end{gathered}
\] & & 0.5 & \[
\begin{array}{r}
30 \\
300 \\
800 \\
\hline
\end{array}
\] & & 0.5 & \[
\begin{array}{r}
30 \\
300 \\
800 \\
\hline
\end{array}
\] & pA \\
\hline Input Bias Current & IBIAS & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C \\
\Delta T_{A}=M
\end{gathered}
\] & & 1.0 & \[
\begin{array}{|c|}
\hline 50 \\
500 \\
4000 \\
\hline
\end{array}
\] & & 1.0 & \[
\begin{gathered}
50 \\
500 \\
4000
\end{gathered}
\] & & 1.0 & \[
\begin{gathered}
50 \\
500 \\
4000
\end{gathered}
\] & pA \\
\hline Common Mode Voltage Range & \(V_{\text {CMR }}\) & \[
\begin{aligned}
& \mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{1} \\
& \mathrm{IQ}=100 \mu \mathrm{~A}^{|3|} \\
& \mathrm{I} \mathrm{Q}=1 \mathrm{~mA}^{\mid 2 \mathrm{i}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \pm 4.4 \\
& \pm 4.2 \\
& \pm 3.7 \\
& \hline
\end{aligned}
\] & . & & \[
\begin{aligned}
& \pm 4.4 \\
& \pm 4.2 \\
& \pm 3.7
\end{aligned}
\] & & & \begin{tabular}{|l|}
\(\pm 4.4\) \\
\(\pm 4.2\) \\
\(\pm 3.7\) \\
\hline
\end{tabular} & & & V \\
\hline \multirow[t]{3}{*}{Output Voltage Swing} & \multirow[t]{3}{*}{Vout} & \[
\text { (1) } \begin{gathered}
\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\
\mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\
\Delta \mathrm{~T}_{A}=\mathrm{C} \\
\Delta \mathrm{~T}_{A}=\mathrm{M}
\end{gathered}
\] & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.7
\end{aligned}
\] & : & & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.7
\end{aligned}
\] & & & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.7
\end{aligned}
\] & & & \multirow{3}{*}{V} \\
\hline & & \[
\begin{gathered}
\mathrm{I}_{Q}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\
\text { (3) } \quad T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C \\
\Delta T_{A}=M
\end{gathered}
\] & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.5
\end{aligned}
\] & & & \[
\begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.5
\end{aligned}
\] & & & \[
\left\lvert\, \begin{aligned}
& \pm 4.9 \\
& \pm 4.8 \\
& \pm 4.5
\end{aligned}\right.
\] & ? & & \\
\hline & & \[
\begin{gathered}
\text { (2) } \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\
\mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\
\Delta \mathrm{~T}_{A}=\mathrm{C} \\
\Delta \mathrm{~T}_{A}=\mathrm{M}
\end{gathered}
\] & \[
\begin{aligned}
& \pm 4.5 \\
& \pm 4.3 \\
& \pm 4.0
\end{aligned}
\] & & & \[
\begin{aligned}
& \pm 4.5 \\
& \pm 4.3 \\
& \pm 4.0
\end{aligned}
\] & & & \[
\left\lvert\, \begin{aligned}
& \pm 4.5 \\
& \pm 4.3 \\
& \pm 4.0
\end{aligned}\right.
\] & & & \\
\hline \multirow[t]{3}{*}{Large Signal Voltage Gain} & \multirow[t]{3}{*}{Avol} & \[
\begin{gathered}
V_{O}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega^{[1]} \\
\mathrm{IO}_{\mathrm{O}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\Delta T_{\mathrm{A}}=\mathrm{C} \\
\Delta T_{\mathrm{A}}=\mathrm{M}
\end{gathered}
\] & \[
\begin{aligned}
& 86 \\
& 80 \\
& 74 \\
& \hline
\end{aligned}
\] & 104 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 104 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 104 & & \multirow{3}{*}{dB} \\
\hline & & \[
\begin{gathered}
V_{O}= \pm 4.0 \mathrm{~V}, R_{L}=100 \mathrm{k} \Omega^{|3|} \\
\mathrm{IO}_{\mathrm{O}}=100 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=\mathrm{C} \\
\Delta T_{A}=M
\end{gathered}
\] & \[
\begin{aligned}
& 86 \\
& 80 \\
& 74
\end{aligned}
\] & 102 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 102 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 102 & & \\
\hline & & \[
\begin{gathered}
V_{O}= \pm 4.0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega^{|2|} \\
1 Q=1 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C \\
\Delta T_{A}=M
\end{gathered}
\] & \[
\begin{aligned}
& 86 \\
& 80 \\
& 74 \\
& \hline
\end{aligned}
\] & 98 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 98 & & \[
\begin{aligned}
& 80 \\
& 75 \\
& 68 \\
& \hline
\end{aligned}
\] & 98 & . & \\
\hline Unity Gain Bandwidth & GBW & \[
\begin{aligned}
& I Q=10 \mu A \\
& I Q=100 \mu A^{|3|} \\
& I Q=1 \mathrm{~mA}^{|2|}
\end{aligned}
\] & & \[
\begin{array}{|c|}
\hline 0.044 \\
0.48 \\
1.4 \\
\hline
\end{array}
\] & & - & \[
\begin{array}{|c|}
\hline 0.044 \\
0.48 \\
1.4 \\
\hline
\end{array}
\] & & & \[
\begin{array}{|c|}
\hline 0.044 \\
0.48 \\
1.4 \\
\hline
\end{array}
\] & & MHz \\
\hline Input Resistance & RIN & & & \(10^{12}\) & & & 1012 & & & 1012 & & ת \\
\hline Common Mode Rejection Ratio & CMRR &  & \[
\begin{aligned}
& 76 \\
& 76 \\
& 66 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 96 \\
& 91 \\
& 87 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 70 \\
& 70 \\
& 60 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 96 \\
& 91 \\
& 87 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 70 \\
& 70 \\
& 60 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 96 \\
& 91 \\
& 87 \\
& \hline
\end{aligned}
\] & & dB \\
\hline Power Supply Rejection Ratio & PSRR & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{s}} \leq 100 \mathrm{~K} \Omega, \mathrm{I}=10 \mu \mathrm{~A} \\
& \mathrm{Rs} \leq 100 \mathrm{~K} \Omega, \mathrm{I}=100 \mu \mathrm{~A} \\
& \mathrm{RS} \leq 100 \mathrm{~K} \Omega, \mathrm{IQ}=1 \mathrm{~mA} \mathrm{~A}^{|2|} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 94 \\
& 86 \\
& 77 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 80 \\
& 80 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 94 \\
& 86 \\
& 77 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 80 \\
& 80 \\
& 70 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 94 \\
& 86 \\
& 77 \\
& \hline
\end{aligned}
\] & & dB \\
\hline Input Referred Noise Voltage & \(e_{n}\) & Rs \(=100 \mathrm{~s}, \mathrm{f}=1 \mathrm{KHz}\) & & 100 & & & 100 & & & 100 & & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Referred Noise Current & in & Rs \(=100 \mathrm{~S}, \mathrm{f}=1 \mathrm{KHz}\) & & 0.01 & & & 0.01 & & & 0.01 & & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Supply Current Per Amplifier & ISUPP & \[
\begin{gathered}
\text { No Signal. No Load } \\
\mid \mathrm{Q}=10 \mu \mathrm{~A} \\
\mid \mathrm{Q}=100 \mu \mathrm{~A} \\
|\mathrm{I}=1 \mathrm{~mA}| 2 \mid
\end{gathered}
\] & & \[
\begin{gathered}
0.01 \\
0.1 \\
1.0
\end{gathered}
\] & \[
\begin{gathered}
0.022 \\
0.25 \\
2.5
\end{gathered}
\] & & \[
\begin{gathered}
0.01 \\
0.1 \\
1.0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.022 \\
0.25 \\
2.5
\end{gathered}
\] & & \[
\begin{gathered}
0.01 \\
0.1 \\
1.0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.022 \\
0.25 \\
2.5 \\
\hline
\end{gathered}
\] & mA \\
\hline Channel Separation & \(\mathrm{V} 1 / \mathrm{VO}_{2}\) & AVOL \(=100\) & & 120 & & & 120 & & & 120 & & dB \\
\hline Slew Rate \({ }^{|4|}\) & SR & \[
\begin{gathered}
\text { AvoL }=1, C_{L}=100 \mathrm{pF} . \\
V_{I N}=8 V_{p-p} \\
1 Q=10 \mu A^{\prime 1}, R_{L}=1 \mathrm{MS} \\
1 Q=100 \mu A, R_{L}=100 \mathrm{~K} \Omega \\
I_{Q}=1 \mathrm{~mA}^{\cdot 1}, R_{L}=10 \mathrm{~K} \Omega^{22 \mid} \\
\hline
\end{gathered}
\] & & \[
\begin{gathered}
0.016 \\
0.16 \\
1.6 \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
0.016 \\
0.16 \\
1.6
\end{gathered}
\] & & . & \[
\begin{gathered}
0.016 \\
0.16 \\
1.6
\end{gathered}
\] & & \(\mathrm{V} / \mu \mathrm{S}\) \\
\hline Rise Time \({ }^{\text {|4| }}\) & \(\mathrm{tr}_{\mathrm{r}}\) & \[
\begin{aligned}
& V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
& 1 \mathrm{Q}=10 \mu \mathrm{~A} \mid, R_{L}=1 \mathrm{M} \Omega \\
& \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\
& \mathrm{IQ}=1 \mathrm{~mA}{ }^{|2|}, R_{L}=10 \mathrm{~K} \Omega
\end{aligned}
\] & & \[
\begin{gathered}
20 \\
2 \\
0.9
\end{gathered}
\] & & & \[
\begin{gathered}
20 \\
2 \\
0.9
\end{gathered}
\] & & & \[
\begin{gathered}
20 \\
2 \\
0.9
\end{gathered}
\] & . & \(\mu \mathrm{S}\) \\
\hline Overshoot Factor \({ }^{141}\) & & \[
\begin{aligned}
& V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
& I_{\mathrm{Q}}=10 \mu A \mid, R_{L}=1 \mathrm{M} \Omega \\
& I \mathrm{Q}=100 \mu A, R_{L}=100 \mathrm{~K} \Omega \\
& |\mathrm{Q}=1 \mathrm{~mA} A|, R_{L}=10 \mathrm{~K} \Omega
\end{aligned}
\] & & \[
\begin{gathered}
5 \\
10 \\
40
\end{gathered}
\] & & & 5
10
40 & & & 5
10
40 & & \% \\
\hline
\end{tabular}

Note: 1. Does not apply to 7641.
2. Does not apply to 7642 .
\(\mathrm{C}=\) Commercial Temperature Range: \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(\mathrm{M}=\) Military Temperature Range: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
3. ICL7631/32 only.
4. Does not apply to 7632 .

ELECTRICAL CHARACTERISTICS
\(V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified. Specs apply to ICL7631/7632/7642 only.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{76XXB} & \multicolumn{3}{|c|}{76xXC} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & TYP. & MAX. & MIN & TYP. & MAX & \\
\hline Input Offset Voltage & Vos & \[
\begin{gathered}
R_{S} \leq 100 \mathrm{~K} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\
\mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}
\end{gathered}
\] & & & 5
7 & & & \[
\begin{aligned}
& 10 \\
& 12
\end{aligned}
\] & mV \\
\hline Temperature Coefficient of Vos & دVos/دT & R \(\leq \leq 100 \mathrm{~K} \Omega\) & & 15 & & & 20 & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & los & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C
\end{gathered}
\] & & 0.5 & \[
\begin{gathered}
30 \\
300
\end{gathered}
\] & & 0.5 & \[
\begin{aligned}
& 30 \\
& 300
\end{aligned}
\] & pA \\
\hline Input Bias Current & IBIAS & \[
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C
\end{gathered}
\] & & 1.0 & \[
\begin{gathered}
50 \\
500
\end{gathered}
\] & & 1.0 & \[
\begin{gathered}
50 \\
500
\end{gathered}
\] & pA \\
\hline Common Mode Voltage Range & VCMR & & \(\pm 0.6\) & & & \(\pm 0.6\) & & & V \\
\hline Output Voltage Swing & Vout & \[
\begin{gathered}
R_{L}=1 M \Omega, T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C
\end{gathered}
\] & & \[
\begin{aligned}
& \pm 0.98 \\
& \pm 0.96
\end{aligned}
\] & & & \[
\begin{aligned}
& \pm 0.98 \\
& \pm 0.96
\end{aligned}
\] & & V \\
\hline Large Signal Voltage Gain & Avol & \[
\begin{gathered}
V_{O}= \pm 0.1 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\
T_{A}=25^{\circ} \mathrm{C} \\
\Delta T_{A}=C
\end{gathered}
\] & & \[
\begin{aligned}
& 90 \\
& 80
\end{aligned}
\] & & & 90
80 & & dB \\
\hline Unity Gain Bandwidth & GBw & & & 0.044 & & & 0.044 & & MHz \\
\hline Input Resistance & Rin & & & 1012 & & & 1012 & & \(\Omega\) \\
\hline Common Mode Rejection Ratio & CMRR & \(\mathrm{Rs} \leq 100 \mathrm{~K} \Omega\) & & 80 & & & 80 & & dB \\
\hline Power Supply Rejection Ratio & PSRR & & & 80 & & & 80 & & dB \\
\hline Input Referred Noise Voltage & \(\mathrm{en}_{n}\) & \(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{KHz}\) & & 100 & & & 100 & & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Referred Noise Current & \(\mathrm{i}_{n}\) & \(\mathrm{R}_{\text {S }}=100 \Omega, \mathrm{f}=1 \mathrm{KHz}\) & & 0.01 & & & 0.01 & & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Supply Current (Per Amplifier) & ISUPP & No Signal, No Load & & 6 & 15 & & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline Channel Separation & Vo1/v02 & AVol \(=100\) & & 120 & & & 120 & & dB \\
\hline Slew Rate & SR & \[
\begin{gathered}
A \vee o L=1, C_{L}=100 \mathrm{pF}, \\
V \text { IN }=0.2 \mathrm{Vp}-\mathrm{p} \\
\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega
\end{gathered}
\] & & 0.016 & & & 0.016 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time & \(\mathrm{tr}_{\text {r }}\) & \[
\begin{gathered}
\mathrm{V}_{1 \mathrm{~N}}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
R_{L}=1 \mathrm{M} \Omega
\end{gathered}
\] & & 20 & & & 20 & & \(\mu \mathrm{S}\) \\
\hline Overshoot Factor & & \[
\begin{gathered}
\mathrm{V}_{\text {IN }}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
R_{\mathrm{L}}=1 \mathrm{M} \Omega
\end{gathered}
\] & & 5 & & & 5 & & \% \\
\hline
\end{tabular}

Note: \(\mathrm{C}=\) Commercial Temperature Range \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\)

\section*{ICL761X/762X/763X/764X}

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF SUPPLY VOLTAGE


LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF FREE-AIR TEMPERATURE


POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE


SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF FREE-AIR TEMPERATURE


LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY


INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE


COMMON MODE REJECTIO RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE


EQUIVALENT INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY


PEAK-TO-PEAK OUTPUT VOLTAG AS A FUNCTION OF FREQUENCY


\section*{ICL761X/762X/763X/764X}

TYPICAL PERFORMANCE CHARACTERISTICS

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY


MAXIMUM OUTPUT/SOURCE CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE


MAXIMUM OUTPUT
SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


MAXIMUM PEAK-TO-PEAK VOLTAGE AS A FUNCTION OF FREE-AIR TEMPERATURE


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE


LOAD RESISTANCE - K!?

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


\section*{ICL761X/762X}

\section*{APPLICATIONS}

Note that in no case is IQ shown. The value of lQ must be chosen by the designer with regard to frequency response and power dissipation.

SIMPLE FOLLOWER*


\section*{LEVEL DETECTOR*}
*By using the ICL7612 in these applications, the circuits will follow rail to rail inputs.


\section*{PHOTOCURRENT INTEGRATOR}

Low leakage currents allow integration times up to several hours.


PRECISE TRIANGLE/SQUARE WAVE GENERATOR Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.


AVERAGING AC TO DC CONVERTER FOR A/D CONVERTERS SUCH AS ICL7106, 7107, 7109, 7116, 7117.


\section*{MEDICAL INSTRUMENT PREAMP}

Note that \(A v o l=25\); single Ni-cad battery operation. Input current (from sensors connected to patient) limited to \(<5 \mu \mathrm{~A}\) under fault conditions.


\section*{ICL761X/762X/763X/764X}

FIFTH ORDER CHEBYSHEV MULTIPLE FEEDBACK LOW PASS FILTER
The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. \(\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz}\), Avol \(=4\), Passband ripple
\(=0.1 \mathrm{~dB}\).

*Note that small capacitors ( \(25-50 \mathrm{pF}\) ) may be needed for stability in some cases.

\section*{SECOND ORDER BIQUAD BANDPASS FILTER}

Note that lQ on each amplifier may be different.
Avol \(=10, Q=100, f_{\circ}=100 \mathrm{~Hz}\).


BURN-IN AND LIFE TEST CIRCUIT


NOTES:
1. FOR DEVICES WITH EXTERNAL COMPENSATION, USE 33pF.
2. FOR DEVICES WITH PROGRAMMABLE STANDBY CURRENT, CONNECT I \(I_{Q}\) PIN TO \(V^{-}\left(I_{Q}=1 \mathrm{~mA}\right.\) MODE).

Vos NULL CIRCUIT


UNITY GAIN FREQUENCY COMPENSATION


\section*{ICL761X/762X/763X/764X}

CHIP TOPOGRAPHY



\section*{ICL761X/762X/763X/764X}

CHIP TOPOGRAPHY (Cont.)



764X
5-87

\section*{ICL7650}

Chopper Stabilized Operational Amplifier

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.
The clock oscillator and all the other control circuitry is entirely self-contained, however the 14-pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7650 is internally compensated for unity-gain operation.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline PART & TEMP RANGE & PACKAGE \\
\hline ICL 7650 CPA & \(0^{\circ} \cdot 70^{\circ} \mathrm{C}\) & 8-Pin Plastic \\
\hline ICL 7650 CPD & \(0^{\circ}-70^{\circ} \mathrm{C}\) & 14-Pin Plastic \\
\hline ICL 7650 CTV & \(0^{\circ} \cdot 70^{\circ} \mathrm{C}\) & 8-Pin TO-99 \\
\hline ICL 7650 IJA & \(-20^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\) & 8-Pin Cerdip \\
\hline ICL 7650 IJD & \(-20^{\circ} \mathrm{C} \cdot 85^{\circ} \mathrm{C}\) & 14-Pin Cerdip \\
\hline ICL 7650 ITV & \(-20^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\) & 8-Pin TO-99 \\
\hline ICL 7650 MJD & \(-55^{\circ} \mathrm{C} \cdot 125^{\circ} \mathrm{C}\) & 14-Pin Cerdip \\
\hline ICL 7650 MTV & \(-55^{\circ} \mathrm{C} \cdot 125^{\circ} \mathrm{C}\) & 8-Pin TO-99 \\
\hline ICL 7650 CPA-1 & \(0^{\circ} \cdot 70^{\circ} \mathrm{C}\) & 8-Pin Plastic \\
\hline ICL 7650 CTV-1 & \(0^{\circ} \cdot 70^{\circ} \mathrm{C}\) & 8-Pin TO-99 \\
\hline ICL 7650 IJD-1 & \(-20^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\) & 8-Pin Cerdip \\
\hline ICL 7650 ITV-1 & \(-20^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\) & 8-Pin TO-99 \\
\hline ICL 7650 MTV-1 & \(-55^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}\) & 8-Pin TO-99 \\
\hline
\end{tabular}

NOTE: By using the ICL 7650-1 versions and connecting CRETN \(^{\text {, better noise }}\) performance can be attained.

ABSOLUTE MAXIMUM RATINGS
Total Supply Voltage ( \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)) ..... 18 Volts
\(\left(\mathrm{V}^{+}+0.3\right)\) to \(\left(\mathrm{V}^{-}-0.3\right.\) Input Voltage ..... 0.3) Volts
Storage Temp. Range ..... \(-55^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Operating Temp. Range See Note 1Lead Temperature (Soldering, 10 sec ) ........ \(300^{\circ} \mathrm{C}\)Voltage on oscillator control pins ....... . \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)except EXT CLOCK IN: . \(\left(\mathrm{V}^{+}+0.3\right)\) to \(\left(\mathrm{V}^{+}-6.0\right)\) VoltsDuration of Output short circuit . ......... . Indefinite
Current into any pin ..... 10 mA
- while operating (Note 4) ..... \(100 \mu \mathrm{~A}\)
Cont. Total Power Dissipn ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) CERDIP Package ..... 500 mW
Plastic Package ..... 375 mW
TO-99 ..... 250 mW

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS: Test Conditions: \(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), Test Ckt
(unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN. & LIMITS TYP. & MAX. & UNIT \\
\hline Input Offset Voltage & \(\mathrm{V}_{\text {OS }}\) & \[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}
\end{gathered}
\] & & \[
\begin{aligned}
& \pm 0.7 \\
& \pm 1.0
\end{aligned}
\] & \[
\begin{aligned}
& \pm 5 \\
& 5.0
\end{aligned}
\] & \(\mu \mathrm{V}\) \\
\hline \multirow[t]{2}{*}{Average Temp. Coefficient of Input Offset Voltage} & \(\triangle V_{\text {OS }}\) & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C}\) & & 0.01 & \multirow[t]{2}{*}{0.05} & \multirow[t]{2}{*}{\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\)} \\
\hline & \(\triangle \mathrm{T}\) & & & 50 & & \\
\hline Input Bias Current (doubles every \(10^{\circ} \mathrm{C}\) ) & IBIAS & \[
\begin{gathered}
\mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\
-20^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C}
\end{gathered}
\] & & \[
\begin{gathered}
1.5 \\
35 \\
100
\end{gathered}
\] & 10 & pA \\
\hline Input Offset Current & Ios & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 0.5 & & pA \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{IN}}\) & & & \(10^{12}\) & & \(\Omega\) \\
\hline Large Signal Voltage Gain & AVOL & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(1 \times 10^{6}\) & \(5 \times 10^{6}\) & & VIV \\
\hline Output Voltage Swing (Note 3) & \(V_{\text {OUT }}\) & \[
\begin{array}{r}
R_{\mathrm{L}}=10 \mathrm{k} \Omega \\
R_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{array}
\] & \(\pm 4.7\) & \[
\begin{aligned}
& \pm 4.85 \\
& \pm 4.95
\end{aligned}
\] & & V \\
\hline Common Mode Voltage Range & CMVR & & -5.0 & -5.2 to +2.0 & 1.6 & V \\
\hline Common Mode Rejection Ratio & CMRR & CMVR \(=-5 \mathrm{~V}\) to +1.6 & 120 & 130 & & dB \\
\hline Power Supply Rejection Ratio & PSRR & \(\pm 3 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\) & 120 & 130 & & dB \\
\hline Input Noise Voltage & \(e^{n_{p-p}}\) & \[
\begin{gathered}
\mathrm{R}_{\mathrm{S}}=100 \Omega \\
0 \text { to } 10 \mathrm{~Hz}
\end{gathered}
\] & & 2 & & \(\mu \mathrm{Vp}\)-p \\
\hline Input Noise Current & \(\mathrm{in}_{n}\) & \(f=10 \mathrm{~Hz}\) & & 0.01 & & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Unity Gain Bandwidth & GBW & & & 2.0 & & MHz \\
\hline Slew Rate & SR & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & & 2.5 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time & \(t_{r}\) & & & 0.2 & & \(\mu \mathrm{S}\) \\
\hline Overshoot & & & & 20 & & \% \\
\hline Operating Supply Range & \(V+\) to \(V_{-}\) & & 4.5 & & 16 & V \\
\hline Supply Current & ISUPP & no load & & 2.0 & 3.5 & mA \\
\hline Internal Chopping Frequency & \(f_{\text {ch }}\) & pins 12-14 open (DIP) & 120 & 200 & 375 & Hz \\
\hline Clamp ON Current (note 2) & & \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) & 25 & 70 & 200 & \(\mu \mathrm{A}\) \\
\hline Clamp OFF Current (note 2) & & \(-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}\) & & 1 & & pA \\
\hline Offset Voltage vs Time & & & & 100 & & \(\mathrm{nV} / \sqrt{\text { month }}\) \\
\hline
\end{tabular}

NOTE 1: Operating temperature range for M series parts is \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), for I series is \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), for C series is \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) NOTE 2: See OUTPUT CLAMP under detailed description.
NOTE 3: OUTPUT CLAMP not connected. See typical characteristic curves for output swing vs clamp current characteristics.
NOTE 4: Limiting input current to \(100 \mu \mathrm{~A}\) is recommended to avoid latch-up problems. Typically 1 mA is safe, however this is not guaranteed.
NOTE 5: \(I_{O S}=2 \cdot I_{\text {BIAS }}\)

TYPICAL OPERATING CHARACTERISTICS


TOTAL SUPPLY VOLTAGE - VOLTS



LLOCK RIPPLE REFERRED TO THE INPUT



OHz P.P NOISE VOLTAGE vs. CHOPPING FREQUENCY

input offset voltage change vs. SUPPLY VOLTAGE



HOPPING FREQUENCY (CLOCK-OUT) Hz

OPEN LOOP GAIN AND PHASE SHIFT vs. FREQUENCY


OPEN LOOP GAIN AND PHASE SHIFT vs. FREQUENCY


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE *


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE *

* the two different responses correspond TO THE TWO PHASES OF THE CLOCK.

P.CHANNEL CLAMP CURRENT vs. OUTPUT VOLTAGE



DETAILED DESCRIPTION

\section*{AMPLIFIER}

The block diagram shows the major elements of the ICL7650. There are two amplifiers, the main amplifier, and the nulling amplifier; both have offset-null capability. The main amplifier is connected full-time from the input to the output, while the nulling amplifier, under the control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET back gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and AVoL.
Careful balancing of the input switches, and the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals, and also the feedforward-type injection into the compensation capacitor, which is the main cause of output spikes in this type of circuit.

\section*{INTERMODULATION}

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs. frequency characteristics near the chopping frequency. These effects are sustantially reduced in the ICL7650 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7650, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

\section*{CAPACITOR CONNECTION}

The null-storage capacitors should be connected to the Cexta and Cextb pins, with a common connection to the CRETN pin (in the case of 14 -pin devices) or the \(\mathrm{V}^{-}\)pin (in the case of the 8 -pin devices). This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into
the capacitive circuitry. The outside foil, where available, should be connected to \(\mathrm{C}_{\text {RETN }}\) (or \(\mathrm{V}^{-}\)).

\section*{OUTPUT CLAMP}

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled input differential inputs are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

\section*{CLOCK}

The ICL7650 has an internal oscillator giving a chopping frequency of 200 Hz , available at the CLOCK OUT pin on the 14 -pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to \(\mathrm{V}^{-}\)to disable the internal clock. The external clock signal may then be applied to the EXT. CLOCK IN pin. At low frequencies, the duty cycle of the external clock is not critical, since an internal divide-by-two provides the desired \(50 \%\) switching duty cycle. However, since the capacitors are charged only when EXT CLK IN is HIGH, a \(50-80 \%\) positive duty cycle is favored for frequencies above 500 Hz to ensure that any transients have time to settle before the capacitors are turned OFF. The external clock should swing between \(\mathrm{V}^{+}\)and GROUND for power supplies up to \(\pm 6 \mathrm{~V}\), and between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{+}\) -6 V for higher supply voltages. Note that a signal of about 400 Hz will be present at the EXT CLK IN pin with INT/EXT high or open. This is the internal clock signal before the divider.
In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than \(10 \mu \mathrm{~V} / \mathrm{sec}\), and relatively long measurements can be made with little change in offset.

\section*{BRIEF APPLICATION NOTES}

\section*{COMPONENT SELECTION}

The two required capacitors, CEXTA and Cextb, have optimum values depending on the clock or chopping frequency. For the preset internal clock, the correct value is \(0.1 \mu \mathrm{~F}\), and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion if an external clock is used. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorbtion capacitors (such as poly propylene) should be used. With ceramic capacitors, several seconds may be required to settle to \(1 \mu \mathrm{~V}\).

\section*{STATIC PROTECTION}

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics, which may result in increased input-leakage currents.

\section*{LATCH-UP AVOIDANCE}

Junction-isolated CMOS circuits inherently include a parasitic 4 -layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a lowimpedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

\section*{OUTPUT STAGEILOAD DRIVING}

The output circuit is a high-impedance stage (approximately \(18 \mathrm{k} \Omega\) ), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the openloop gain will be 17 dB lower with a \(1 \mathrm{k} \Omega\) load than with a \(10 \mathrm{k} \Omega\) load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a \(1 \mathrm{~K} \Omega\) load. However, for wideband applications, the best frequency response will be achieved with a load resistor of 10K or higher. This will result in a smooth 6dBloctave response from 0.1 Hz to 2 MHz , with phase shifts of less than \(10^{\circ}\) in the transition region where the main amplifier takes over from the null amplifier.

\section*{THERMO-ELECTRIC EFFECTS}

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same
temperature, thermoelectric voltages typically around \(0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), but up to tens of \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. Highimpedance loads are preferable, and good separation from surrounding heat-dissipating elements is aưvisable.

\section*{GUARDING}

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.
The pin configuration of the 14 -pin dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

\section*{CONNECTION OF INPUT GUARDS}


\section*{PIN COMPATIBILITY}

The basic pinout of the 8 -pin device corresponds, where possible, to that of the industry-standard 8 -pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , usually used for offset null or compensation capacitors, or simply not connected. The output-clamp pin (5) is similarly used. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and \(\mathrm{V}+\), by two capacitors from those pins to \(\mathrm{V}^{-}\), will provide easy compatibility. As for the LM108, replacement the compensation capacitor between pins 1 and 8 by the two capacitors to V - is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, \(\mu \mathrm{A} 748\), and similar parts.
The 14 -pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICL7650.

\section*{TYPICAL APPLICATIONS}

Clearly the applications of the ICL7650 will mirror those of other op. amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of input-offset voltage and bias current, the ICL7650 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figs. 2 and 3. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op. amps by
the ICL7650 are the supply voltage ( \(\pm 8 \mathrm{~V}\) max.) and the output drive capability ( \(10 \mathrm{k} \Omega\) load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Fig. 4, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7650. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.
Fig. 5 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current \(\approx V_{I N} / R\) without disturbing other portions of the system.
Normal logarithmic amplifiers are limited in dynamic range in the voltage-input mode by their input-offset voltage. The built-in temperature compensation and convenience features of the ICL8048 can be extended to a voltage-input dynamic range of close to 6 decades by using the ICL7650 to offset-null the ICL8048, as shown in Fig. 6. The same concept can also be used with such devices as the HA2500 or HA2600 families of op amps. to add very low offset voltage capability to their very high slew rates and bandwidths. Note that these circuits will also have their DC gains, CMRR, and PSRR enhanced.
Mixing the ICL7650 with circuits operating at \(\pm 15 \mathrm{~V}\) supplies requires the provision of a lower voltage. Although this can be met fairly easily, a highly efficient voltage divider can be built using the ICL7660 voltage converter circuit 'backwards'. A suitable connection is shown in Fig. 7.


FIG. 2 NON INVERTING AMPLIFIER WITH (OPTIONAL) CLAMP


FIG. 4 USING 741 TO BOOST OUTPUT DRIVE CAPABILITY

FIG. 3 INVERTING AMPLIFIER WITH (OPTIONAL) CLAMP


FIG. 5 LOW OFFSET COMPARATOR

\section*{ICL7650}

TYPICAL APPLICATIONS (Continued)


FIG. 6 ICL8048 OFFSET NULLED BY ICL7650


FIG. 7 SPLITTING +15V WITH ICL7660. SAME FOR -15V. >95\% EFF.



\section*{Chopper-Stabilized Operational Amplifier}

\section*{FEATURES}
- Extremely low input offset voltage \(-1 \mu \mathrm{~V}\) over temperature range
- Ultra low long-term and temperature drifts of input offset voltage ( \(100 \mathrm{nV} / \sqrt{\text { month }}, 10 \mathrm{nV} /{ }^{\circ} \mathrm{C}\) )
- Low DC input bias current-15pA
- Extremely high gain, CMRR and PSRR-min 110dB
- Low input noise voltage-0.2 Vp -p (DC-1Hz)
- Internally compensated for unity-gain operation
- Very low intermodulation effects (open-loop phase shift < \(2^{\circ} @\) chopper frequency)
- Clamp circuit to avoid overload recovery problems and allow comparator use
- Extremely low chopping spikes at input and output

\section*{GENERAL DESCRIPTION}

The ICL7652 chopper-stabilized amplifier offers exceptionally low input offset voltage and is extremely stable with
respect to time and temperature. It is similar to INTERSIL's ICL7650 but offers improved noise performance and a wider common-mode input voltage range. The bandwidth and slew rate are reduced slightly.

INTERSIL's unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes, and overrange lock-up.

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.

The clock oscillator and all the other control circuitry is entirely self-contained, however the 14 -pin version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7652 is internally compensated for unity-gain operation.

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline TEMP RANGE & PACKAGE & ORDER\# \\
\hline \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 14-pin plastic & ICL7652CPD \\
\hline\(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 14-pin CERDIP & ICL7652IJD \\
\hline \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 8 -pin TO-99 & ICL7652CTV \\
\hline\(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 8 -pin TO-99 & ICL7652ITV \\
\hline
\end{tabular}


Figure 1. Block Diagram

\section*{PIN CONFIGURATIONS}


T0.99

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline Total Supply Voltage ( \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)) . . . . . . . . . . . . . . . . . . . 18V & Current into Any Pin . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA \\
\hline Input Voltage . . . . . . . . . . . . . . . . . ( \(\left.\mathrm{V}^{+}+0.3\right)\) to ( \(\left.\mathrm{V}^{-}-0.3\right) \mathrm{V}\) & -while operating (Note 4) . . . . . . . . . . . . . . . . . . . \(100 \mu \mathrm{~A}\) \\
\hline Storage Temperature Range . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) & Continuous Total Power Dissipation ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ) \\
\hline Operating Temperature Range . . . . . . . . . . . . . . See Note 1 & CERDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . 500mW \\
\hline Lead Temperature(Soldering, 10 sec ) . . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) & Plastic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 mW \\
\hline Voltage on Oscillator Control Pins . . . . . . . . . . . V \({ }^{+}\)to \(\mathrm{V}^{-}\) & \\
\hline Duration of Output Short Circuit . . . . . . . . . . . . . Indefinite & \\
\hline Stresses above those listed under "Absolute Maximum Ratings" and functional operation of the device at these or any other conditic tions is not implied. Exposure to absolute maximum rating cond & permanent damage to the device. These are stress ratings only ove those indicated in the operational sections of the specificaextended periods may affect device reliability. \\
\hline
\end{tabular}

OPERATING CHARACTERISTICS: Test Conditions: \(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), Test Circuit (unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OS }}\)} & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & \(\pm 0.7\) & \(\pm 5\) & \multirow[t]{2}{*}{\(\mu \mathrm{V}\)} \\
\hline & & Over Operating Temperature Range (Note 1) & & \(\pm 1.0\) & & \\
\hline Average Temperature Coefficient of Input Offset Voltage & \[
\frac{\Delta V_{\mathrm{OS}}}{\Delta \mathrm{~T}}
\] & Operating Temperature Range (Note 1) & & 0.01 & 0.05 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Input Bias Current \\
(Doubles every \(10^{\circ} \mathrm{C}\) above about \(60^{\circ} \mathrm{C}\) )
\end{tabular}} & \multirow[t]{3}{*}{\(\mathrm{I}_{\text {BIAS }}\)} & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & 15 & 30 & \multirow{3}{*}{pA} \\
\hline & & \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}\) & & 35 & & \\
\hline & & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}\) & & 100 & & \\
\hline Input Offset Current & Ios & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & & 25 & 60 & pA \\
\hline Input Resistance & \(\mathrm{R}_{\text {IN }}\) & & & \(10^{12}\) & & \(\Omega\) \\
\hline Large Signal Voltage Gain & \(\mathrm{A}_{\text {vol }}\) & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 4 \mathrm{~V}\) & 120 & 150 & & dB \\
\hline \multirow[t]{2}{*}{Output Voltage Swing (Note 3)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OUT }}\)} & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(\pm 4.7\) & \(\pm 4.85\) & & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) & & \(\pm 4.95\) & & \\
\hline Common-Mode Voltage Range & CMVR & & -4.3 & -4.8 to +4.0 & 3.5 & V \\
\hline Common-Mode Rejection Ratio & CMRR & CMVR \(=-4.3 \mathrm{~V}\) to +3.5 V & 110 & 130 & & dB \\
\hline Power Supply Rejection Ratio & PSRR & \(\pm 3 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\) & 110 & 130 & & dB \\
\hline \multirow[t]{2}{*}{Input Noise Voltage} & \multirow[t]{2}{*}{\(e_{n_{p-p}}\)} & \(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{DC}\) to 1 Hz & & 0.2 & & \multirow[t]{2}{*}{\(\mu \mathrm{Vp}\)-p} \\
\hline & & DC to 10 Hz & & 0.7 & & \\
\hline Input Noise Current & \(\mathrm{i}_{n}\) & \(f=10 \mathrm{~Hz}\) & & 0.01 & & \(\mathrm{pA} / \sqrt{ } \mathrm{Hz}\) \\
\hline Unity-Gain Bandwidth & GBW & & & 0.45 & & MHz \\
\hline Slew Rate & SR & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & & 0.5 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{r}}\) & & & 0.8 & & \(\mu \mathrm{S}\) \\
\hline Overshoot & & & & 20 & & \% \\
\hline Operating Supply Range & \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) & & 5.0 & & 16 & V \\
\hline Supply Current & ISUPP & No Load & & 2.0 & 3.5 & mA \\
\hline Internal Chopping Frequency & \(\mathrm{f}_{\mathrm{ch}}\) & Pins 12-14 Open (DIP) & & 400 & & Hz \\
\hline Clamp ON Current (Note 2) & & \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) & 25 & 100 & & \(\mu \mathrm{A}\) \\
\hline Clamp OFF Current (Note 2) & & \(-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}\) & & 1 & & pA \\
\hline Offset Voltage vs Time & & & & 100 & & \(n \mathrm{~V} / \sqrt{\text { month }}\) \\
\hline
\end{tabular}

Note 1: Operating temperature range for 1 series parts is \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), for C series is \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
Note 2: See OUTPUT CLAMP under detailed description.
Note 3: OUTPUT CLAMP not connected. See typical characteristics curves for output swing vs clamp current characteristics.
Note 4: Limiting input current to \(100 \mu \mathrm{~A}\) is recommended to avoid latch-up problems. Typically 1 mA is safe, however this is not guaranteed.

TYPICAL OPERATING CHARACTERISTICS


Common-Mode Input Voltage Range vs Supply Voltage


Clock Ripple Referred to the Input vs Temperature


Supply Current vs Ambient Temperature


Input Offset Voltage vs Chopping Frequency

\% parameter is EXT CLK in duty cycle

Broadband Noise Balanced
Source Impedance \(=1 \mathrm{k} \Omega\)
Gain \(=1000\)
\(C_{\text {EXT }}=0.1 \mu \mathrm{~F}\)


Maximum Output Current vs Supply Voltage


10Hz P.P Noise Voltage Voltage vs Chopping Frequency


CHOPPING FREQUENCY (CLOCK OUT)

Broadband Noise Balanced
Source Impedance \(=\mathbf{1 k} \Omega\) Gain \(=1000\)
\(C_{\text {EXT }}=1.0 \mu \mathrm{~F}\)



Open-Loop Gain and Phase Shift vs Frequency

*The two different responses correspond to the two phases of the clock.

N-Channel Clamp Current vs Output Voltage


P-Channel Clamp Current vs Output Voltage


Input Offset Voltage Change vs Supply Voltage


\section*{TEST CIRCUIT}


\section*{DETAILED DESCRIPTION}

\section*{Amplifier}

The Block Diagram shows the major elements of the ICL7652. There are two amplifiers, the main amplifier, and the nulling amplifier; both have offset-null capability. The main amplifier is connected full-time from the input to the output, while the nulling amplifier, under the control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET back gates, are inherently high-impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol-

Careful balancing of the input switches, together with the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals, and also the feedforward-type injection into the compensation capacitor, which is the main cause of output spikes in this type of circuit.

\section*{Intermodulation}

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7652 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite \(A C\) gain. Since that is the major error contribution to the ICL7652, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

\section*{Capacitor Connection}

The null-storage capacitors should be connected to the \(\mathrm{C}_{\text {EXTA }}\) and \(\mathrm{C}_{\text {EXTB }}\) pins, with a common connection to the \(\mathrm{C}_{\text {RETN }}\) pin (in the case of 14 -pin devices) or the \(\mathrm{V}^{-}\)pin (in the case of 8 -pin devices). This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to \(\mathrm{C}_{\text {RETN }}\) (or \(\mathrm{V}^{-}\)).

\section*{Output Clamp}

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled input differential inputs are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

\section*{Clock}

The ICL7652 has an internal oscillator, giving a chopping frequency of 400 Hz , available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to \(\mathrm{V}^{-}\)to disable the internal clock. The external clock signal may then be applied to the EXT CLOCK IN pin. An internal divide-by-two provides the desired \(50 \%\) input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a \(50 \%-80 \%\) positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between \(\mathrm{V}^{+}\)and. \(\mathrm{V}^{-}\). The logic threshold will be at about 2.5 V below \(\mathrm{V}^{+}\). Note also that a signal of about 800 Hz , with a \(70 \%\) duty cycle, will be present at the EXT CLOCK IN pin with INT/EXT high or open. This is the internal clock signal before the divider.
In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than \(10 \mu \mathrm{~V} / \mathrm{sec}\), and relatively long measurements can be made with little change in offset.

\section*{BRIEF APPLICATION NOTES}

\section*{Component Selection}

The required capacitors, \(\mathrm{C}_{\text {EXTA }}\) and \(\mathrm{C}_{\text {EXTB }}\), are normally in the range of \(0.1 \mu \mathrm{~F}\) to \(1.0 \mu \mathrm{~F}\). A \(1.0 \mu \mathrm{~F}\) capacitor should be used in broad bandwidth circuits if minimum clock ripple noise is desired. For limited bandwidth applications where clock ripple is filtered out, using a \(0.1 \mu \mathrm{~F}\) capacitor results in slightly lower offset voltage. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorption capacitors (such as poly-propylene) should be used. With ceramic capacitors, several seconds may be required to settle to \(1 \mu \mathrm{~V}\).

\section*{Static Protection}

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics which may result in increased input-leakage currents.

\section*{Latch-Up Avoidance}

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be trigerred into a low-impedance state, resulting in excessive supply current. To avoid this condition no voltage
greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latch-up, even under fault conditions.

\section*{Output Stage/Load Driving}

The output circuit is a high-impedance stage (approximately \(18 \mathrm{k} \Omega\) ), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a \(1 \mathrm{k} \Omega\) load than with a \(10 \mathrm{k} \Omega\) load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a \(1 \mathrm{k} \Omega\) load. However, for wideband applications, the best frequency response will be achieved with a load resistor of \(10 \mathrm{k} \Omega\) or higher. This will result in a smooth 6dB/octave response from 0.1 Hz to 2 MHz , with phase shifts of less than \(2^{\circ}\) in the transition region where the main amplifier takes over from the null amplifier.

\section*{Thermo-Electric Effects}

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around \(0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), but up to tens of \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be
enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermo-electric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heatdissipating elements is advisable.

\section*{Guarding}

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7652. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 lead TO-99 package is accomplished by using a 10 lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14 -pin dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

\section*{CONNECTION OF INPUT GUARDS}


Non-Inverting Amplifier


Follower


BOTtOM VIEW

Board Layout for Input Guarding with TO-99 Package
*Use R3 to compensate for large source resistances, or for clamp operation (see Figure 2)

\section*{PIN COMPATIBILITY}

The basic pinout of the 8 -pin device corresponds, where possible, to that of the industry-standard 8-pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , usually used for offset-null or compensation capacitors, or simply not connected. The outputclamp pin (5) is similarly used. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and \(V^{+}\), by two capacitors from those pins to \(\mathrm{V}^{-}\), will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to \(\mathrm{V}^{-}\)is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, \(\mu \mathrm{A} 748\), and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICL7652.

\section*{TYPICAL APPLICATIONS}

Clearly the applications of the ICL7652 will mirror those of o'her op-amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of inputoffset voltage and bias current, the ICL7652 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 2 and 3. Both circuits can use the output
clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other opamps by the ICL7652 are the supply voltage ( \(\pm 8 \mathrm{~V}\) max) and the output drive capability ( \(10 \mathrm{k} \Omega\) load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 4, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7652. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.
Figure 5 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper-stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current \(\approx \mathrm{V}_{\text {IN }} / \mathrm{R}\) without disturbing other portions of the system.
It is possible to use the ICL7652 to offset-null such high slew rate and bandwidth amplifiers as the HA2500 and HA2600 series, as shown in Figure 6. The same basic idea can be used with low-noise bipolar devices, such as the OP-05, and also with the ICL8048 logarithmic amplifier, to achieve a voltageinput dynamic range of close to 6 decades. Note that these circuits will also have their DC gains, CMRR and PSRR enhanced. More details on these and other ideas are explained in application note A053.
Mixing the ICL7652 with circuits operating at \(\pm 15 \mathrm{~V}\) supplies requires the provision of a lower voltage. Although this can be done fairly easily, a highly efficient voltage divider can be built using the ICL7660 voltage converter circuit "backwards". A suitable connection is shown in Figure 7.


Note: \(R_{1} / / R_{2}\) indicates the parallel combination of \(R_{1}\) and \(R_{2}\)


Figure 2. Non-Inverting Amplifier with (Optional) Clamp
Figure 3. Inverting Amplifier with (Optional) Clamp


Figure 4. Using 741 to Boost Output Drive Capability


Figure 6. HA2500 or \(\mathbf{2 6 0 0}\) Offset-Nulled by ICL7652

\section*{TYPICAL APPLICATIONS (Continued)}


Figure 7. Splitting +15V with ICL7660 at >95\% efficiency. Same for - 15V

For further applications assistance, see A053 and R017

\section*{CHIP TOPOGRAPHY}


\section*{FEATURES}
- Simple Conversion of +5 V Logic Supply to \(\pm 5 \mathrm{~V}\) Supplies
- Simple Voltage Multiplication (Vout \(=(-) \mathbf{n V}\) IN \()\)
- 99.9\% Typical Open Circuit Voltage Conversion Efficiency
- 98\% Typical Power Efficiency
- Wide Operating Voltage Range 1.5V to 10.0 V
- Easy to use - Requires only 2 External NonCritical Passive Components

\section*{APPLICATIONS}
- On Board Negative Supply for up to 64 Dynamic RAMs.
- Localized \(\mu\)-Processor (8080 type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

\section*{PIN CONFIGURATIONS}

(outline dwg PA)

(outline dwg TV)

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & TEMP. RANGE & \multicolumn{1}{|c|}{ PACKAGE } \\
\hline ICL7660CTV & \(-20^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & TO-99 \\
\hline ICL7660CPA & \(-20^{\circ}\) to \(+70^{\circ} \mathrm{C}\) & 8 PIN MINI DIP \\
\hline\(I C L 7660 \mathrm{MTV}\) & \(-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\) & TO-99 \\
\hline\(I C L 7660 / D\) & & DICE \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The Intersil ICL7660 is a monolithic MAXCMOSTM power supply circuit which offers unique performance advantages over previously available devices. The ICL7660 performs the complete supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V , resulting in complementary output voltages of -1.5 to -10.0 V with the addition of only 2 non-critical external capacitors needed for the charge pump and charge reservoir functions. Note that an additional diode is required for Vsupply \(>6.5 \mathrm{~V}\).
Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, four output power MOS switches, and a unique logic element which senses the most negative voltage in the device and ensures that the output N -channel switches are not forward biased. This assures latch-up free operation.
The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.
The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages ( +3.5 to +10.0 volts), the LV pin is left floating to prevent device latchup.

Typical applications for the ICL7660 will be data acquisition and microprocessor based systems where there is a +5 volt supply available for the digital functions and an additional - 5 volt supply is required for the analog functions. The ICL7660 is also ideally suited for providing low current, -5 V body bias supply for dynamic RAMs.

\section*{BLOCK DIAGRAM}


\section*{ABSOLUTE MAXIMUM RATINGS}


LV and OSC Input Voltage
\(\left(V^{+}-5.5 V\right)\) to \(\left(V^{+}+0.3 V\right)\) for \(V^{+}>5.5 V\)
Current into LV (Note 1) ............. \(20 \mu \mathrm{~A}\) for \(\mathrm{V}^{+}>3.5 \mathrm{~V}\)
Output Short Duration (VSUPPLY \(\leq 5.5 \mathrm{~V}\) ) .... Continuous
Power Dissipation (Note 2)
```

CL7600CPA
..................................... 500mW

```

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{COSC}=0\), Test Circuit Figure 1 (unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} & \multirow[b]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN. & TYP. & MAX. & & \\
\hline \(1^{+}\) & Supply Current & & 170 & 500 & \(\mu \mathrm{A}\) & \(\mathrm{R}_{\mathrm{L}}=\infty\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}^{+} \mathrm{H}^{\prime}\)} & \multirow[t]{2}{*}{Supply Voltage Range - Hi (Dx out of circuit) (Note 3)} & 3.0 & & 6.5 & V & \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), LV Open \\
\hline & & 3.0 & & 5.0 & V & \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), LV Open \\
\hline \(\mathrm{V}^{+} \mathrm{L} 1\) & Supply Voltage Range - Lo (Dx out of circuit) & 1.5 & & 3.5 & V & \(\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), LV to GROUND \\
\hline \(\mathrm{V}^{+} \mathrm{H}^{2}\) & Supply Voltage Range - Hi (Dx in circuit) & 3.0 & & 10.0 & V & \(M I N \leq T_{A} \leq M A X, R_{L}=10 k \Omega, L V\) Open \\
\hline \(\mathrm{V}^{+} \mathrm{L}\) & Supply Voltage Range - Lo (Dx in circuit) & 1.5 & & 3.5 & V & \(\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}\) to GROUND \\
\hline \multirow{5}{*}{Rout} & \multirow[t]{5}{*}{Output Source Resistance} & & 55 & 100 & \(\Omega\) & IOUT \(=20 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}\) \\
\hline & & & & 120 & \(\Omega\) & lout \(=20 \mathrm{~mA},-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\) \\
\hline & & & & 150 & \(\Omega\) & lout \(=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) (Note 3) \\
\hline & & & & 300 & \(\Omega\) & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \text { Iout }=3 \mathrm{~mA}, \mathrm{LV} \text { to GROUND } \\
& -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline & & & & 400 & \(\Omega\) & \[
\begin{aligned}
& V^{+}=2 \mathrm{~V}, \text { IouT }=3 \mathrm{~mA}, \text { LV to GROUND, }-55^{\circ} \mathrm{C} \leq \\
& \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \text {, Dx in circuit (Note 3) } \\
& \hline
\end{aligned}
\] \\
\hline fosc & Oscillator Frequency & & 10 & & kHz & \\
\hline PEf & Power Efficiency & 95 & 98 & & \% & \(\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega\) \\
\hline Vout Ef & Voltage Conversion Efficiency & 97 & 99.9 & & \% & \(\mathrm{R}_{\mathrm{L}}=\infty\) \\
\hline \multirow[t]{2}{*}{Zosc} & \multirow[t]{2}{*}{Oscillator Impedance} & & 1.0 & & \(\mathrm{M} \Omega\) & \(\mathrm{V}^{+}=2\) Volts \\
\hline & & & 100 & & \(\mathrm{k} \Omega\) & \(V=5\) Volts \\
\hline
\end{tabular}

Notes: 1. Connecting any input terminal to voltages greater than \(\mathrm{V}+\) or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the ICL7660.
2. Derate linearly above \(50^{\circ} \mathrm{C}\) by \(5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).
3. ICL7660M only.

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 1)

OPERATING VOLTAGE AS A FUNCTION OF TEMPERATURE


OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE


POWER CONVERSION EFFICIENCY AS A FUNCTION OF OSC. FREQUENCY


OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT
 LOAD CURRENT IL(mA)

OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT


UNLOADED OSCILLATOR FREQUENCY


NOTE 4.
Note that the curves on the right include in the supply current that current fed directly into the load ( \(R_{L}\) ) from \(\mathrm{V}^{+}\)(see Figure 1). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7660, to the negative side of the load. Ideally, \(\mathrm{V}_{\text {OUT }} \simeq 2 \mathrm{~V} \mathrm{IN}\), Is \(\simeq 2 \mathrm{IL}\), so VIN * IS \(\simeq\) VOUT * \(I\) L

AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT \& POWER CONVERSION
EFFICIENCY AS A FUNCTION OF


SUPPLY CURRENT POWER CONVERSION EFFICIENCY AS A FUNCTION OF




LOAD CURRENT


NOTES: 1. For large value of \(\operatorname{Cosc}(>1000 \mathrm{pF})\) the values of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) should be increased to \(100 \mu \mathrm{~F}\). 2. Dx is required for supply voltages greater than 6.5 V
\(@-55^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\); refer to performance curves @ \(-55^{\circ} \leq T_{A} \leq+70^{\circ} \mathrm{C}\); refer to performance curves for additional information.

Figure 1: ICL7660 Test Circuit


Figure 2: Chip Topography

\section*{CIRCUIT DESCRIPTION}

The ICL7660 contains all the necessary circuitry to complete a voltage doubler, with the exception of 2 external capacitors which may be inexpensive \(10 \mu \mathrm{~F}\) polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 3, which shows an idealized voltage doubler. Capacitor \(\mathrm{C}_{1}\) is charged to a voltage, \(\mathrm{V}^{+}\), for the half cycle when switches \(\mathrm{S}_{1}\) and \(\mathrm{S}_{3}\) are closed. (Note: Switches \(S_{2}\) and \(S_{4}\) are open during this half cycle.) During the second half cycle of operation, switches \(S_{2}\) and \(S_{4}\) are closed, with \(S_{1}\) and \(S_{3}\) open, thereby shifting capacitor \(\mathrm{C}_{1}\) negatively by \(\mathrm{V}^{+}\)volts. Charge is then transferred from \(\mathrm{C}_{1}\) to \(\mathrm{C}_{2}\) such that the voltage on \(\mathrm{C}_{2}\) is exactly \(\mathrm{V}^{+}\), assuming ideal switches and no load on \(\mathrm{C}_{2}\). The ICL7660 approaches this ideal situation more closely than existing non-mechanical circuits.
In the ICL7660, the 4 switches in Figure 3 are MOS power switches; \(S_{1}\) is a P-channel device and \(S_{2}, S_{3} \& S_{4}\) are \(N\) channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of \(S_{3} \& S_{4}\) must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions (VOUT \(=\mathrm{V}^{+}\)), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.


Figure 3. Idealized Voltage Doubler

This problem is eliminated in the ICL7660 by a logic network which senses the output voltage (VOUT) together with the level translators and switches the substrates or \(\mathrm{S}_{3} \& \mathrm{~S}_{4}\) to the correct level to maintain necessary reverse bias.
The voltage regulator portion of the ICL7660 is an integral part of the anti-latchup circuitry, however it's inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

\section*{THEORETICAL POWER EFFICIENCY CONSIDERATIONS}

In theory a voltage multiplier can approach \(100 \%\) efficiency if certain conditions are met:

A The drive circuitry consumes minimal power
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7660 approaches these conditions for negative voltage multiplication if large values of \(C_{1}\) and \(C_{2}\) are used.
ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:
\[
E=1 / 2 C_{1}\left(V_{1} 2-V_{2} 2\right)
\]
where \(V_{1}\) and \(V_{2}\) are the voltages on \(C_{1}\) during the pump and transfer cycles. If the impedances of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) are relatively high at the pump frequency (refer to Fig. 3) compared to the value of \(R_{L}\), there will be a substantial difference in the voltages \(V_{1}\) and \(V_{2}\). Therefore it is not only desirable to make \(\mathrm{C}_{2}\) as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for \(\mathrm{C}_{1}\) in order to achieve maximum efficiency of operation.

\section*{DO'S AND DON'TS}

1 Do not exceed maximum supply voltages.
2 Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.
3 Do not short circuit the output to \(\mathrm{V}^{+}\)supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
4 When using polarized capacitors, the + terminal of \(\mathrm{C}_{1}\) must be connected to pin 2 of the ICL7660 and the + terminal of \(\mathrm{C}_{2}\) must be connected to GROUND.
5 Add diode Dx as shown in Fig. 1 for hi-voltage, elevated temperature applications.

\section*{CONSIDERATIONS FOR HI VOLTAGE \& ELEVATED TEMPERATURE}

The ICL7660 will operate efficiently over its specified temperature range with only 2 external passive components (storage \& pump capacitors), provided the operating supply voltage does not exceed 6.5 volts at \(+70^{\circ} \mathrm{C}\) and 5.0 volts at \(+125^{\circ} \mathrm{C}\). Exceeding these maximums at the temperatures indicated may result in destructive latch-up of the ICL7660. (Ref: Graph "Operating Voltage Vs. Temperature")
Operation at supply voltages of up to 10.0 volts over the full temperature range without danger of latch-up can be achieved by adding a general purpose diode in series with the ICL7660 output, as shown by "Dx" in the circuit diagrams. The effect of this diode on overall circuit performance is the reduction of output voltage by one diode drop (approximately 0.6 volts).

\section*{TYPICAL APPLICATIONS}

\section*{1. Simple Negative Voltage Converter}

The majority of applications will undoubtedly utilize the ICL7660 for generation of negative supply voltages. Figure 4 shows typical connections to provide a negative supply where a positive supply is available. A similar scheme may be employed for supply voltages anywhere in the operating range of +1.5 V to +10.0 volts, keeping in mind that pin 6 (LV) is tied to the supply negative (GND) only for supply voltages below 3.5 volts, and that diode Dx must be included for proper operation at higher voltages and/or elevated temperatures.

The output characteristics of the circuit in Figure 4 are those of a nearly ideal voltage source in series with 70 ohms. Thus for a load current of -10 mA and a supply voltage of +5 volts, the output voltage will be -4.3 volts. The dynamic output impedance due to the capacitor impedances is approximately \(1 / \omega \mathrm{C}\) where
\[
\begin{gathered}
C=C_{1}=C_{2} \\
\text { giving } \quad \frac{1}{\omega C}=\frac{1}{2 \pi \text { fosc } \times 10^{-5}}=3 \text { ohms }
\end{gathered}
\]
for \(C=10 \mu \mathrm{~F}\) and fosc \(=5 \mathrm{kHz}\) (1/2 of oscillator frequency)


Figure 4: Simple Negative Converter

\section*{2. Paralleling Devices}

Any number of ICL7660 voltage convertors may be paralleled to reduce output resistance. The reservoir capacitor, \(\mathrm{C}_{2}\), serves all devices while each device requires
its own pump capacitor, \(\mathrm{C}_{1}\). The resultant output resistance would be approximately
\[
\text { Rout }=\frac{\text { Rout (of ICL7660) }}{n \text { (number of devices) }}
\]


Figure 5: Paralleling Devices

\section*{3. Cascading Devices}

The ICL7660 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage, however, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is


Figure 6: Cascading Devices for Increased Output Voltage

\section*{4. Changing the ICL7660 Oscillator Frequency}

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 7. In order to prevent possible device latchup, a \(1 \mathrm{k} \Omega\) resistor must be used in series with the clock output. In the situation where the designer has generated the external clock frequency using TTL logic, the addition of a \(10 \mathrm{k} \Omega\) pullup resistor to \(\mathrm{V}^{+}\)supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be \(1 / 2\) of the clock frequency. Output transitions occur on the positive-going edge of the clock.


Figure 7: External Clocking

It is also possible to increase the conversion efficiency of the ICL7660 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is achieved by connecting an additional capacitor, \(\mathrm{C}_{\text {osc }}\), as shown in Figure 8. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump \(\left(C_{1}\right)\) and reservoir \(\left(C_{2}\right)\) capacitors; this is overcome by increasing the values of \(C_{1}\) and \(C_{2}\) by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and \(\mathrm{V}^{+}\)will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10 ), and thereby necessitate a corresponding increase in the value of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) (from \(10 \mu \mathrm{~F}\) to \(100 \mu \mathrm{~F}\) ).


Figure 8: Lowering Oscillator Frequency

\section*{5. Positive Voltage Multiplication}

The ICL7660 may be employed to achieve positive voltage multiplication using the circuit shown in Figure 9. In this application, the pump inverter switches of the ICL7660 are used to charge \(\mathrm{C}_{1}\) to a voltage level of \(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}\) (where \(\mathrm{V}^{+}\)is the supply voltage and \(V_{F}\) is the forward voltage drop of diode \(D_{1}\) ). On the transfer cycle, the voltage on \(C_{1}\) plus the supply voltage \(\left(\mathrm{V}^{+}\right)\)is applied through diode \(\mathrm{D}_{2}\) to capacitor \(\mathrm{C}_{2}\). The voltage thus created on \(\mathrm{C}_{2}\) becomes \(\left(2 \mathrm{~V}^{+}\right)-\left(2 \mathrm{~V}_{\mathrm{F}}\right)\) or twice the supply voltage minus the combined forward voltage drops of diodes \(D_{1}\) and \(D_{2}\).
The source impedance of the output (VOUT) will depend on the output current, but for \(\mathrm{V}^{+}=5\) volts and an output current of 10 mA it will be approximately 60 ohms.


Figure 9: Positive Voltage Multiplier

\section*{6. Combined Negative Voltage Conversion and Positive Supply Multiplication}

Figure 10 combines the functions shown in Figures 4 and 9 to provide negative voltage conversion and positive voltage multiplication simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors \(C_{1}\) and \(C_{3}\) perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors \(\mathrm{C}_{2}\) and \(\mathrm{C}_{4}\) are pump and reservoir respectively for the multiplied positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.


Figure 10: Combined Negative Converter and Positive Multiplier

\section*{ICL7660}

\section*{7. Voltage Splitting}

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 11. The combined load will be evenly shared between the two sides. Once again, a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure \(6,+15 \mathrm{~V}\) can be converted (via +7.5 , and -7.5 ) to a nominal -15 V , though with rather high series resistance ( \(250 \Omega\) ).


Figure 11: Splitting a Supply in Half.

ICL7660's output does not respond instantaneously to a change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7660, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than \(5 \Omega\) to a load of 10 mA .


Figure 12: Regulating the Output Voltage


Figure 13: RS232 Levels from a Single 5V Supply
8. Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7660 can be a problem, particularly if the load current varies substantially. The circuit of Figure 12 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the

\section*{OTHER APPLICATIONS}

Further information on the operation and use of the ICL7660 may be found in A051 "Principals and Applications of the ICL7660 CMOS Voltage Converter" by Peter Bradshaw and Dave Bingham.

\section*{FEATURES}
- Ideal for battery-operated systems: less than \(4 \mu \mathrm{~A}\) typical current drain
- Will handle input voltages from 1.6 V to \(\mathbf{1 6 V}\)
- Very low input-output differential voltage
- 1.3V bandgap voltage reference
- Up to 40 mA output current
- Output shutdown via current-limit sensing or external logic signal
- Output voltages programmable from 1.3 V to 16 V
- Output voltages with programmable negative temperature coefficients (ICL7663 only)

\section*{GENERAL DESCRIPTION}

The ICL7663 (positive) and ICL7664 (negative) series regulators are low-power, high-efficiency devices which accept inputs from 1.6 V to 16 V and provide adjustable outputs over the same range at currents up to 40 mA . Operating current is typically less than \(4 \mu \mathrm{~A}\), regardless of load.
Output current sensing and remote shutdown are available on both devices, thereby providing protection for the regulators and the circuits they power. A unique feature, on the ICL7663 only, is a negative temperature coefficient output. This can be used, for example, to efficiently tailor the voltage applied to a multiplexed LCD through the driver (e.g., ICM7231/2/3/4) so as to extend the display operating temperature range many times.

The ICL7663 and ICL7664 are available in either an 8-pin plastic minidip package or a TO-99 can.

PIN CONFIGURATIONS (outline dwgs PA, TV)

\section*{ICL7683 Positive Regulator}


ICL7864 Negative Regulator


\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Positive Regulator } \\
\hline ICL7663CPA & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 8 -pin minidip \\
ICL7663CTV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & TO-99 \\
ICL7663/D & & DICE \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Nogative Regulator } \\
\hline ICL7664CPA & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 8 -pin minidip \\
ICL7664CTV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & TO-99 \\
ICL7664/D & & DICE \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS, ICL7663 POSITIVE REGULATOR}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Input Supply Voltage .} \\
\hline \begin{tabular}{l}
Any Input or Output Voltage (Note 1) \\
(Terminals 1, 2, 3,5,6,7).
\end{tabular} & \[
\begin{aligned}
& (G N D-0.3 V) \text { to } \\
& \cdots\left(V V_{\text {IN }}^{+}+0.3 V\right)
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Output Source Current} \\
\hline (Terminal 2 ) & 50m \\
\hline (Terminal 3 ) & 25m \\
\hline
\end{tabular}
Output Sinking Current (Terminal 7) . . . . . . . . . . . . . . - 10mA
Power Dissipation (Note 2)
Minidip
. 200 mW
TO-99 Can
.300 mW

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS \(\mathrm{v}_{\mathrm{IN}}^{+}=9 \mathrm{~V}, \mathrm{v}_{\mathrm{OUT}}=5 \mathrm{~V}, \mathrm{r}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), test circuit unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & \\
\hline Input Voltage & \(\mathrm{V}_{\text {IN }}^{+}\) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& 20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.6
\end{aligned}
\] & & \[
\begin{aligned}
& 16.0 \\
& 16.0
\end{aligned}
\] & V \\
\hline Quiescent Current & \(\mathrm{I}_{0}\) & \[
\left\{\begin{array}{c}
\mathrm{R}_{\mathrm{L}}=\infty \\
1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 8.5 \mathrm{~V}
\end{array}\right\} \quad \begin{aligned}
& \mathrm{V}_{\text {IN }}^{+}=16 \mathrm{~V} \\
& \mathrm{~V}_{\text {IN }}^{+}=9 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 10
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Reference Voltage & : \(\mathrm{V}_{\text {SET }}\) & & 1.2 & 1.3 & 1.4 & V \\
\hline Temperature Coefficient & \(\frac{\Delta V_{\text {SET }}}{\Delta T}\) & \(8.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}^{+}<9 \mathrm{~V}\) & & \(\pm 200\) & & ppm \\
\hline Line Regulation & \(\frac{\Delta V_{\text {SET }}}{\mathrm{V}_{\text {SET }} \Delta \mathrm{V}_{\text {IN }}}\) & \(2 \mathrm{~V}<\mathrm{V}_{\text {IN }}^{+}<15 \mathrm{~V}\) & & 0.03 & & \%/V \\
\hline \(\mathrm{V}_{\text {SET }}\) Input Current & \(\mathrm{I}_{\text {SET }}\) & & & \(\pm 0.01\) & 10 & nA \\
\hline Shutdown Input Current & \(\mathrm{I}_{\text {SHDN }}\) & & & \(\pm 0.01\) & 10 & nA \\
\hline Shutdown Input Voltage & \(\mathrm{V}_{\text {SHDN }}\) & \begin{tabular}{l}
\(\mathrm{V}_{\text {SHDN }} \mathrm{HI}\) : Both \(\mathrm{V}_{\text {OUT }}\) Disabled \\
\(\mathrm{V}_{\text {SHDNL }}\) LO: Both \(\mathrm{V}_{\text {OUT }}\) Enabled
\end{tabular} & 1.4 & & 0.3 & V \\
\hline Sense Pin Input Current & \(\mathrm{I}_{\text {SENSE }}\) & & & 0.01 & 10 & nA \\
\hline Sense Pin Input Threshold Voltage & \(\mathrm{V}_{\mathrm{CL}}\) & \(V_{C L}=V_{\text {OUT2 }}-V_{\text {SENSE }}\) (Current-Limit Threshold) & & 0.7 & & V \\
\hline Input-Output Saturation Resistance (Note 3) & \(\mathrm{R}_{\text {SAT }}\) & \[
\begin{aligned}
& \mathrm{V}_{1 N}^{+}=2 \mathrm{~V} \\
& \mathrm{~V}_{1 N}^{+}=9 \mathrm{~V} \\
& \mathrm{~V}_{\text {IN }}^{+}=15 \mathrm{~V} \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 200 \\
& 70 \\
& 50 \\
& \hline
\end{aligned}
\] & & \(\Omega\) \\
\hline Load Regulation & \[
\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{l}_{\text {OUT }}}
\] & \[
\begin{aligned}
& \Delta \mathrm{I}_{\text {OUT } 1}=100 \mu \mathrm{~A} @ \mathrm{~V}_{\text {OUT } 1}=5 \mathrm{~V} \\
& \Delta \mathrm{I}_{\text {OUT } 2}=10 \mathrm{~mA} @ \mathrm{~V}_{\text {OUT } 2}=5 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 2.0 \\
& 1.0
\end{aligned}
\] & & \(\Omega\) \\
\hline Available Output Current (V \(\mathrm{V}_{\text {OUT2 }}\) ) & lout2 & \[
\begin{array}{ll}
\mathrm{V}_{\text {IN }}^{+}=3 \mathrm{~V} & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {SET }} \\
\mathrm{V}_{\text {IN }}^{+}=9 \mathrm{~V} & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\
\mathrm{~V}_{\text {IN }}^{+}=15 \mathrm{~V} & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}
\end{array}
\] & \[
\begin{aligned}
& 10 \\
& 25 \\
& 40 \\
& \hline
\end{aligned}
\] & & & mA \\
\hline \multirow[t]{2}{*}{Negative-Tempco Output (Note 4)} & \(\mathrm{V}_{\text {TC }}\) & Open-Circuit Voltage & & 0.9 & & V \\
\hline & \(\mathrm{I}_{\text {TC }}\) & Maximum Sink Current & 0 & 8 & 2.0 & mA \\
\hline Temperature Coefficient & \(\frac{\Delta V_{T C}{ }^{\text {c }}}{\Delta T}\) & Open Circuit & & + 2.5 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Minimum Load Current & \(L_{L(\text { min })}\) & (Includes \(\mathrm{V}_{\text {SET }}\) Divider) & & & 1.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Note 1: Connecting any terminal to voltages greater than ( \(\mathrm{V}_{\mathrm{IN}}^{+}+0.3 \mathrm{~V}\) ) or less than (GND -0.3 V ) may cause destructive device latch-up. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663 power-up.
Note 2: Derate linearly above \(50^{\circ} \mathrm{C}\) at \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for minidip and \(7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for TO-99 can.
Note 3: This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5 mA ), can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.
Note 4: This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at \(V_{\text {SET }}\), a negative coefficient results in the output voltage. See Figure 3 for details. Pin will not source current.

\section*{ABSOLUTE MAXIMUM RATINGS, ICL7664 NEGATIVE REGULATOR}

Input Supply Voltage \(\qquad\)
Any Input or Output Voltage (Note 1)
\((G N D+0.3 V)\) to
(Terminals \(1,2,3,5,6,7\) ) . . . . . . . . . . . . . . . . . . . (VIN -0.3 V )
Output Sink Current
(Terminals 1,7) \(\qquad\)

Power Dissipation (Note 2)
Minidip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mW
TO-99 Can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS \(\mathrm{V}_{\mathrm{IN}}=-9 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), test circuit unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & \\
\hline Input Voltage & VIN & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& -1.5 \\
& -1.6
\end{aligned}
\] & & \[
\begin{array}{r}
-16.0 \\
-16.0
\end{array}
\] & V \\
\hline Quiescent Current & \(\mathrm{I}_{0}\) & \(\left\{\begin{array}{l}\mathrm{R}_{\mathrm{L}}=\infty \\ -1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq-8.5 \mathrm{~V}\end{array}\right\} \quad \begin{aligned} & \mathrm{V}_{\text {IN }}^{-}=16 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}^{-}=9 \mathrm{~V}\end{aligned}\) & & 4.0
3.5 & \[
\begin{aligned}
& 12 \\
& 10
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Reference Voltage & \(V_{\text {SET }}\) & & -1.2 & -1.3 & -1.4 & V \\
\hline Temperature Coefficient & \(\frac{\Delta V_{\text {SET }}}{\Delta T}\) & \(-8.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<-9 \mathrm{~V}\) & & \(\pm 200\) & & ppm \\
\hline Line Regulation & \(\frac{\Delta V_{\text {SET }}}{\mathrm{V}_{\text {SET }} \Delta \mathrm{V}_{\text {IN }}}\) & \(-2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<-15 \mathrm{~V}\) & & 0.03 & & \%/V \\
\hline \(\mathrm{V}_{\text {SET }}\) Input Current & \(\mathrm{I}_{\text {SET }}\) & & & \(\pm 0.01\) & 10 & nA \\
\hline Shutdown Input Current & ISHDN & & & \(\pm 0.01\) & 10 & nA \\
\hline Shutdown Input Voltage & \(V_{\text {SHON }}\) & \(\mathrm{V}_{\text {SHDN }} \mathrm{HI}\) : Both \(\mathrm{V}_{\text {OUT }}\) Enabled \(V_{\text {SHDN }}\) LO: Both Vout Disabled & -0.3 & & -1.4 & V \\
\hline Sense Pin Input Current & \(\mathrm{I}_{\text {SENSE }}\) & & & 0.01 & 10 & nA \\
\hline Sense Pin Input Threshold Voltage & \(\mathrm{V}_{\mathrm{CL}}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CL}}=\mathrm{V}_{\text {OUT2 }}-\mathrm{V}_{\mathrm{SENSE}} \\
& \text { (Current-Limit Threshold) }
\end{aligned}
\] & & -0.35 & & V \\
\hline Input-Output Saturation Resistance (Note 3) & \(\mathrm{R}_{\text {SAT }}\) & \[
\begin{aligned}
& V_{\mathbb{I N}}^{-}=2 V \\
& V_{\overline{I N}}=9 \mathrm{~V} \\
& V_{\overline{I N}}=15 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 150 \\
& 40 \\
& 30
\end{aligned}
\] & & \(\Omega\) \\
\hline Load Regulation & \[
\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{I}_{\text {OUT }}}
\] & \[
\begin{aligned}
& \Delta l_{\text {OUT }}=100 \mu \mathrm{~A} @ \\
& \mathrm{~V}_{\text {OUT }}=-5 \mathrm{~V}
\end{aligned}
\] & & 2.0 & & \(\Omega\) \\
\hline Output Current, \(\mathrm{V}_{\text {OUT1 }}\) or \(\mathrm{V}_{\text {OUT2 }}\) & lout & \begin{tabular}{ll}
\(V_{\text {IN }}^{-}=3 V\) & \(V_{\text {OUT }}=V_{\text {SET }}\) \\
\(V_{\text {IN }}=9 \mathrm{~V}\) & \(V_{\text {OUT }}=-5 \mathrm{~V}\) \\
\(V_{\text {IN }}=15 \mathrm{~V}\) & \(V_{\text {OUT }}=-5 \mathrm{~V}\)
\end{tabular} & \(\cdot\) & \[
\begin{gathered}
\hline-2 \\
-20 \\
-40 \\
\hline
\end{gathered}
\] & & mA \\
\hline Minimum Load Current (Includes \(\mathrm{V}_{\text {SET }}\) Divider) & \(\mathrm{I}_{\mathrm{L}(\text { min })}\) & & & & 1.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Note 1: Connecting any terminal to voltages greater than (GND +0.3 V ) or less than ( \(\mathrm{V} \overline{\mathbb{N}}-0.3 \mathrm{~V}\) ) may cause destructive device latch-up. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7664 power-up.
Note 2: Derate linearly above \(50^{\circ} \mathrm{C}\) at \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for minidip and \(7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for TO-99 can.
Note 3: This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.

\section*{TYPICAL CHARACTERISTICS}


TEST CIRCUIT


Note 1: \(\mathrm{S}_{1}\) when clased, disables output current limiting
Note 2: For ICL7664, exchange \(V_{\text {OUT1 }}\) and \(V_{\text {OUT2 }} . S_{2}\) action differs, as follows:
\begin{tabular}{|c|l|c|}
\hline Device & \(\mathbf{S}_{\mathbf{2}}\) Closed & \(\mathbf{s}_{\mathbf{2}}\) Open \\
\hline ICL7663 & \(\mathrm{V}_{\text {OUT1 }}\) & \(\mathrm{V}_{\text {OUT2 }}\) \\
\hline ICL7664 & \(\mathrm{V}_{\text {OUT1 }}+\mathrm{V}_{\text {OUT2 }}\) & \(\mathrm{V}_{\text {OUT1 }}\) \\
\hline
\end{tabular}

Note 3: \(\mathrm{V}_{\mathrm{OUT}}=\frac{\mathrm{R}_{2}+\mathrm{R}_{1}}{\mathrm{R}_{1}} \mathrm{~V}_{\text {SET }}\)
Note 4: \(I_{Q}\) quiescent current is measured at GND pin by meter \(M\) Note 5: \(\mathrm{S}_{3}\) when ON, permits normal operation, when OFF, shuts down both \(V_{\text {OUT1 }}\) and \(V_{\text {OUT2 }}\)

Test Circuit for ICL7663/64 (Polarities shown are for ICL7663. Reverse for ICL7664)

\section*{DETAILED DESCRIPTION}

The ICL7663 and ICL7664 are CMOS integrated circuits which contain all the functions of a voltage regulator plus protection circuitry on a single monolithic chip. Referring to the block diagrams (Figures 1 and 2), each contains a bandgaptype voltage reference of 1.3 Volts; this voltage, therefore, is the lowest output voltage the regulators can control ( -1.3 V for the ICL7664). Error amplifier A drives either a P-channel (ICL7663) or an N-channel (ICL7664) pass transistor which is sufficient for low (under about 5 mA ) currents; this transistor is augmented by a duplicate in the ICL7664, which permits higher current outputs. In the ICL7663, the high current output is formed by an NPN transistor connected as a follower. This configuration gives more gain and lower output impedance.

Logic-controlled shutdown is implemented via an MOS transistor of the appropriate polarity. Current-sensing is achieved with comparator C , which functions with the \(\mathrm{V}_{\text {OUT2 }}\) line on each chip. Finally, the positive regulator (ICL7663 only) has an output ( \(\mathrm{V}_{\mathrm{TC}}\) ) from a buffer amplifier ( B ), which can be used to generate programmable-temperaturecoefficient output voltages.


Figure 1. Block Diagram of the ICL7663

The amplifiers, reference and comparator circuitry all operate at bias levels well below \(1 \mu \mathrm{~A}\) to achieve the extremely low quiescent current. This does limit the dynamic response of the circuits, however, and transients are best dealt with outside the regulator loop.

\section*{BASIC OPERATION}

The ICL7663 and ICL7664 are designed to regulate battery voltages in the 5 V to 15 V region at maximum load currents of about 5 mA to 30 mA . Although intended as low power devices, power dissipation limits must be observed. For example, the power dissipation in the case of a 15 V supply regulated down to 5 V with a load current of 30 mA clearly exceeds the power dissipation rating of the minidip: (15-5) (30) \(\left(10^{-3}\right)=300 \mathrm{~mW}\). The test circuit illustrates proper use of the devices. Although the following discussion refers to the ICL7663, it applies as well to the parallel features of the ICL7664 as long as the appropriate polarities are reversed. Individual features and precautions will be discussed where appropriate.


Figure 2. Block Diagram of the ICL7664

CMOS devices generally require two precautions: every input pin must go somewhere, and maximum values of applied voltages and current limits must be rigorously observed. Neglecting these precautions may lead to, at the least, incorrect or non-operation, and at worst, destructive device failure. To avoid the problem of latchup, do not apply inputs to any pins before supply voltage is applied.

Input Voltages - These regulators accept working inputs of about 1.4 V to 16 V . When power is applied, the rate-of-rise of the input may be hundreds of volts per microsecond. This is potentially harmful to the regulators, where internal operating currents are in the nanoampere range. The \(0.047 \mu \mathrm{~F}\) capacitor on the device side of the switch will limit inputs to a safe level around \(2 \mathrm{~V} / \mu \mathrm{s}\). Use of this capacitor is suggested in all applications. In severe rate-of-rise cases, it may be advisable to use an RC network on the SHutDowN pin to delay output turn-on. Battery charging surges, transients, and assorted noise signals should be kept from the regulators by RC filtering, zener protection, or even fusing.

Output Voltages - The resistor divider \(R_{2} / R_{1}\) is used to scale the reference voltage, \(\mathrm{V}_{\mathrm{SET}}\), to the desired output using the formula \(V_{\text {OUT }}=\left(1+R_{2} / R_{1}\right) V_{\text {SET }}\). In the ICL7664, \(V_{\text {IN }}\) and \(V_{\text {SET }}\) are negative, so \(V_{\text {Out }}\) will be also. Suitable arrangements of these resistors, using a potentiometer, enables exact values for \(V_{\text {OUT }}\) to be obtained. Because of the low leakage current of the \(\mathrm{V}_{\text {SET }}\) terminal, these resistors can be tens of megohms for minimum additional quiescent drain current. However, some load current is required for proper operation, so for extremely low-drain applications it is necessary to draw at least \(1 \mu \mathrm{~A}\). This can include the current for \(R_{2}\) and \(R_{1}\).

Output voltages up to nearly the \(\mathrm{V}_{\mathbb{I N}}\) supply may be obtained at low load currents, while the low limit is the reference voltage. The minimum input-output differential in each regulator is obtained using the \(V_{\text {OUT1 }}\) terminal.

Output Currents - For the ICL7663, low output currents of less than 5 mA are obtained with the least input-output differential from the \(\mathrm{V}_{\text {OUT1 }}\) terminal (connect \(\mathrm{V}_{\text {OUT2 }}\) to \(\mathrm{V}_{\text {OUT1 }}\) ). Either output may be used on the ICL7664, with the unused output connected to \(\mathrm{V}_{\text {IN }}^{-}\). Where higher currents are needed, use \(\mathrm{V}_{\text {OUT2 }}\) on the ICL7663 ( \(\mathrm{V}_{\text {OUT1 }}\) should be left open in this case) and parallel \(\mathrm{V}_{\text {OUT1 }}\) and \(\mathrm{V}_{\text {OUT2 }}\) on the ICL7664.

High output currents can be obtained only as far as package dissipation allows. It is strongly recommended that output current-limit sensing be used in such cases.


Current-Limit Sensing - The on-chip comparator ( \(C\) in the block diagrams) permits shutdown of the regulator output in the event of excessive current drain. As the test circuits show, a current-limiting resistor, \(\mathrm{R}_{\mathrm{CL}}\), is placed in series with \(V_{\text {OUT2 }}\), and the SENSE terminal is connected to the load side of \(\mathrm{R}_{\mathrm{CL}}\). When the current through \(\mathrm{R}_{\mathrm{CL}}\) is high enough to produce a voltage drop equal to \(\mathrm{V}_{\mathrm{CL}}(0.7 \mathrm{~V}\) for ICL7663, 0.35 V for ICL7664) the voltage feedback is bypassed and the regulator output will be limited to this current. Therefore, when the maximum load current (load) is determined, simply divide \(V_{C L}\) by \(l_{\text {LOAD }}\) to obtain the value for \(\mathrm{R}_{\mathrm{CL}}\).
Logic-Controllable Shutdown-When equipment is not needed continuously (e.g., in remote data-acquisition systems), it is desirable to eliminate its drain on the system until it is required. This usually means switches, with their unreliable contacts. Instead, the ICL7663 and ICL7664 can be shut down by a logic signal, leaving only \(\mathrm{I}_{\mathrm{Q}}\) (under \(4 \mu \mathrm{~A}\) ) as a drain on the power source. Since this pin must not be left open, it should be tied to ground if not needed. A voltage of less than 0.3 V for the ICL7663, and greater than -0.3 V for the ICL7664 will keep the regulator ON, and a voltage level of more than 1.4 V but less than \(\mathrm{V}_{\text {iN }}^{+}\)for the ICL7663, and less than -1.4 V but not less than V in for the ICL7664 control will turn the outputs OFF. If there is a possibility that the control signal could exceed the regulator input ( \(\mathrm{V}_{\text {IN }}^{+}\)or \(\mathrm{V}_{\mathrm{IN}}\) ), the current from this signal should be limited to \(100 \mu \mathrm{~A}\) maximum by a high-value ( \(1 \mathrm{M} \Omega\) ) series resistor. This situation may occur when the logic signal originates from a separately-powered system from that of the regulator.
Additional Circuit Precautions - These regulators have poor rejection of voltage fluctuations from AC sources above 10 Hz or so. To prevent the output from responding (where this might be a problem), a reservoir capacitor across the load is advised. The value of this capacitor is chosen so that the regulated output voltage reaches \(90 \%\) of its final value in 20 ms . From
\[
\mathrm{I}=\mathrm{C} \frac{\Delta \mathrm{~V}}{\Delta \mathrm{t}}, \mathrm{C}=\mathrm{I}_{\text {OUT }} \frac{\left(20 \times 10^{-3}\right)}{0.9 \mathrm{~V}_{\text {OUT }}}=0.022 \frac{\mathrm{I}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }}} .
\]

In addition, where such a capacitor is used, a current-limiting resistor is also suggested (see "Current-Limit Sensing").

Producing Output Voltages With Negative Temperature Coefficients - The ICL7663 has an additional output (not present on the ICL7664) which is 0.9 V relative to GND and has a tempco of \(+2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). By applying this voltage to the inverting input of amplifier \(A\) (i.e., the \(V_{\text {SET }}\) pin), output voltages having negative TC may be produced. The TC of the output voltage is controlled by the \(R_{2} / R_{3}\) ratio (see Figure 3 and its design equations).

EQ. 1: \(\quad V_{\text {OUT }}=V_{S E T}\left(1+\frac{R_{2}}{R_{1}}\right)+\frac{R_{2}}{R_{3}}\left(V_{S E T}-V_{T C}\right)\)
EQ. 2: \(\quad\) TC VOUT \(=-\frac{R_{2}}{R_{3}}\left(T C V_{T C}\right)\) in \(m V /{ }^{\circ} \mathrm{C}\)

WHERE: \(\mathrm{V}_{\mathrm{SET}}=1.3 \mathrm{~V}\)
\(V_{T C}=0.9 \mathrm{~V}\)
\(\mathrm{TCV}_{\mathrm{TC}}=+2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}\)

Figure 3. Generating Negative Temperature Coefficients

\section*{APPLICATIONS}


Figure 4. Basic Application of ICL7663 as Positive Regulator with Current Limit


Figure 5. Basic Application of ICL7664 as Negative Regulator with Current Limit


Figure 6. Generating regulated split supplies from a single supply. The oscillation frequency of the ICL7660 is reduced by the external oscillator capacitor, so that it inverts the battery voltage more efficiently.


Figure 7. Driving a Multiplexed LCD Display. The negative temperature coefficient drive voltage to the displays allows consistent operation over more than \(40^{\circ} \mathrm{C}\) temperature span, as opposed to about \(10^{\circ} \mathrm{C}\) with a fixed drive voltage. Values based on EPSON LDB-728 display or similar.

APPLICATIONS (Continued)


Figure 8. Once a Day System. This circuit will turn on a regulated supply to a system for one minut very day, via the SHUTDOWN pin on the ICL7664, and under control of the ICM7223A Alarm Clock circuit. If the system decidf it needs another one minute activation, pulling the REPEAT line to \(\mathrm{V}^{+}\)(GND) during one activation will trigger a subsequent activation after a snooze interval set by the choice of SN pins ( 2 mins shown). Alternatively, activation of the Sleep timer, without pause, can be achieved. See ICM7223A data sheet for details.

\section*{CHIP TOPOGRAPHIES}


\section*{ICL7663B/4B ADDENDUM TO THE ICL7663/4 DATASHEET}

This Addendum to the standard ICL7663/4 datasheet describes changes and/or modifications to the DC Operating characteristics applicable to the ICL7663B/ICL7664B devices. The following table indicates those limits to which the ICL7663B/ ICL7664B is tested and/or guaranteed operational.

ICL7663B POSITIVE REGULATOR ORDERING INFORMATION
\begin{tabular}{|lll|}
\hline \multicolumn{3}{c|}{ Positive Regulator } \\
\hline ICL76648CPA & 0 to \(+70^{\circ} \mathrm{C}\) & 8 -pin MiniDIP \\
ICL7664BCTV & 0 to \(+70^{\circ} \mathrm{C}\) & To-99 \\
ICL7664BC/D & 0 to \(+70^{\circ} \mathrm{C}\) & DICE \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Input Supply & V \\
\hline Any Input or Output Voltage (Note 1) (Terminals 1, 2, 3, 5, 6, 7 ). & \[
\begin{array}{r}
\text { (GND - } 0.3 V \text { ) to } \\
\ldots \ldots\left(V_{\text {N }}^{+}+0.3 V\right)
\end{array}
\] \\
\hline Output Source Current & \\
\hline (Terminal 2). & 50 mA \\
\hline (Terminal 3). & 25 mA \\
\hline
\end{tabular}
Output Sinking Current (Terminal 7) ..... \(-10 \mathrm{~mA}\)
Power Dissipation (Note 2)
MiniDIP ..... 200 mW
T0-99 Can 300 mW

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ICL7663B OPERATING CHARACTERISTICS \(\mathrm{V}_{\text {IN }}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), test circuit unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{PARAMETER} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline Input Voltage & \(\mathrm{V}_{\mathbf{I N}}^{+}\) & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& 20^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.6
\end{aligned}
\] & & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & V \\
\hline Quiescent Current & 10 & \[
\left\{\begin{array}{l}
R_{L}=\infty \\
1.4 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant 8.5 \mathrm{~V}
\end{array}\right\}
\] & & 3.5 & 10 & \(\mu \mathrm{A}\) \\
\hline Reference Voltage & \(V_{\text {SET }}\) & & 1.2 & 1.3 & 1.4 & V \\
\hline Temperature Coefficient & \(\frac{\Delta V_{\text {SET }}}{\Delta T}\) & \(8.5 \mathrm{~V}<\mathrm{V}_{\text {© }}^{+}<9 \mathrm{~V}\) & & \(\pm 200\) & & ppm \\
\hline Line Regulation & \[
\frac{\Delta V_{S E T}}{V_{\text {SET }} \Delta V_{I N}}
\] & \(2 \mathrm{~V}<\mathrm{V}_{\text {IN }}^{+}<9 \mathrm{~V}\) & & 0.03 & & \%/V \\
\hline \(\mathrm{V}_{\text {SET }}\) Input Current & \(I_{\text {SET }}\) & & & \(\pm 0.01\) & 10 & nA \\
\hline Shutdown Input Current & \(I_{\text {SHDN }}\) & & & \(\pm 0.01\) & 10 & nA \\
\hline Shutdown Input Voltage & \(V_{\text {SHDN }}\) & \(\mathrm{V}_{\text {SHDN }} H I\) : Both Vout Disabled \(\mathrm{V}_{\text {SHDNL }}\) : Both Vout Enabled & 1.4 & & 0.3 & V \\
\hline Sense Pin Input Current & Isense & & & 0.01 & 10 & nA \\
\hline Sense Pin Input Threshold Voltage & \(\mathrm{V}_{\mathrm{CL}}\) & \(V_{C L}=V_{O U T 2}-V_{\text {SENSE }}\) (Current-Limit Threshold) & & 0.7 & & V \\
\hline Input-Output Saturation Resistance (Note 3) & \(\mathrm{R}_{\text {SAT }}\) & \[
\begin{aligned}
& V_{1 N}^{+}=2 V \\
& V_{1 N}^{ \pm}=9 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
200 \\
70 \\
\hline
\end{gathered}
\] & & , \\
\hline Load Regulation & \(\Delta V_{\text {OUT }}\) \(\Delta\) lout & \[
\begin{aligned}
& \Delta l_{\text {OuT } 1}=100 \mu \mathrm{~A} @ V_{\text {out } 1}=5 \mathrm{~V} \\
& \Delta l_{\text {OUT2 }}=10 \mathrm{~mA} @ V_{\text {out } 2}=5 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 2 \\
& 1
\end{aligned}
\] & & \(\Omega\) \\
\hline Available Output Current (Vout2) & lout2 & \[
\begin{array}{ll}
V_{\text {IN }}^{+}=3 V & V_{\text {OUT }}=V_{\text {SET }} \\
V_{\text {IN }}^{ \pm}=9 \mathrm{~V} & V_{\text {OUT }}=5 \mathrm{~V}
\end{array}
\] & \[
\begin{aligned}
& 10 \\
& 25
\end{aligned}
\] & & & mA \\
\hline \multirow[t]{2}{*}{Negative-Tempco Output (Note 4)} & \(V_{\text {TC }}\) & Open-Circuit Voltage & & 0.9 & & V \\
\hline & \(l_{\text {TC }}\) & Maximum Sink Current & 0 & 8 & 2 & mA \\
\hline Temperature Coefficient & \(\frac{\Delta V_{\text {TC }}}{\Delta T}\) & Open Circuit & & +2.5 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Minimum Load Current & \(L_{L(\text { min })}\) & (Includes \(\mathrm{V}_{\text {SET }}\) Divider) & & & 1 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Note 1: Connecting any terminal to voltages greater than ( \(\mathrm{V}_{1 \mathrm{~N}}^{+}+0.3 \mathrm{~V}\) ) or less than ( \(G N D-0.3 \mathrm{~V}\) ) may cause destructive device latch-up. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663B power-up.
Note 2: Derate linearly above \(50^{\circ} \mathrm{C}\) at \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for minidip and \(7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for \(\mathrm{TO}-99\) can.
Note 3: This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5 mA ), can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.
Note 4: This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at \(\mathrm{V}_{\text {SET }}\), a negative coefficient results in the output voltage. See Figure 3 for details. Pin will not source current.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Negative Regulator } \\
\hline ICL7664BCPA & 0 to \(+70^{\circ} \mathrm{C}\) & 8-pin MiniDIP \\
ICL7664BCTV & 0 to \(+70^{\circ} \mathrm{C}\) & TO-99 \\
ICL7664BC/D & 0 to \(+70^{\circ} \mathrm{C}\) & DICE \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS
Input Supply Voltage . . . . . . . . . . . . . . . . . . . . . . -12V
Any Input or Output Voltage (Note 1): (GND +0.3V) to
(Terminals \(1,2,3,5,6,7\) ) . . . . . . . . . . . . . . . . (ViN -0.3 V )
Output Source Current
(Terminal 1, 7) . . . . . . . . . . . . . . . . . . . . . . . . . - 25 mA
Power Dissipation (Note 2)
MiniDIP
200 mW
TO-99 Can . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 mW

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ICL7664B OPERATING CHARACTERISTICS \(V_{I N}=9 \mathrm{~V}, \mathrm{~V}_{O U T}=-5 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\), test circuit unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline Input Voltage & VIN & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& 0 \leqslant T_{A} \leqslant+70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& -1.5 \\
& -1.6
\end{aligned}
\] & & \[
\begin{aligned}
& -10 \\
& -10
\end{aligned}
\] & V \\
\hline Quiescent Current & 10 & \(\left\{\begin{array}{l}R_{L}=\infty \\ -1.4 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant-8.5 \mathrm{~V}\end{array}\right\}\) & & 3.5 & 10 & \(\mu \mathrm{A}\) \\
\hline Reference Voltage & \(\mathrm{V}_{\text {SET }}\) & & -1.2 & -1.3 & -1.4 & V \\
\hline Temperature Coefficient & \(\frac{\Delta V_{\text {SET }}}{\Delta T}\) & \(-8.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<-9 \mathrm{~V}\) & & \(\pm 200\) & & ppm \\
\hline Line Regulation & \[
\frac{\Delta V_{S E T}}{V_{S E T} \Delta V_{I N}}
\] & \(-2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<-9 \mathrm{~V}\) & & 0.03 & & \%/V \\
\hline \(\mathrm{V}_{\text {SET }}\) Input Current & \(I_{\text {SET }}\) & & & \(\pm 0.01\) & 10 & nA \\
\hline Shutdown Input Current & \(\mathrm{I}_{\text {SHDN }}\) & & & \(\pm 0.01\) & 10 & nA \\
\hline Shutdown Input Voltage & \(V_{\text {SHDN }}\) & \(\mathrm{V}_{\text {SHDN }} H\) : Both \(\mathrm{V}_{\text {OUT }}\) Disabled \(\mathrm{V}_{\text {SHDN }}\) LO: Both Vout Enabled & -0.3 & & -1.4 & V \\
\hline Sense Pin Input Current & \(I_{\text {SENSE }}\) & & & 0.01 & 10 & nA \\
\hline Sense Pin Input Threshold Voltage & \(\mathrm{V}_{\mathrm{CL}}\) & \begin{tabular}{l}
\[
V_{C L}=V_{O U T 2}-V_{\text {SENSE }}
\] \\
(Current-Limit Threshold)
\end{tabular} & & -0.35 & : & V \\
\hline Input-Output Saturation Resistance (Note 3) & \(\mathrm{R}_{\text {SAT }}\) & \[
\begin{aligned}
& V_{i N}^{-}=2 V \\
& V_{\text {IN }}^{-}=9 V
\end{aligned}
\] & : & \[
\begin{gathered}
150 \\
40 \\
\hline
\end{gathered}
\] & & \(\Omega\) \\
\hline Load Regulation & \(\frac{\Delta V_{\text {OUT }}}{\Delta I_{\text {OUT }}}\) & \[
\begin{aligned}
& \Delta l_{\text {OUT } 1}=100 \mu \mathrm{~A} @ \\
& \Delta l_{\text {OUT }}=-5 \mathrm{~V}
\end{aligned}
\] & & 2 & & Q \\
\hline Output Current \(\mathrm{V}_{\text {Out1 }}\) or \(\mathrm{V}_{\text {OUT2 }}\) & Iout & \[
\begin{array}{ll}
V_{\text {IN }}=3 V & V_{\text {OUT }}=V_{\text {SET }} \\
V_{\text {IN }}=9 V & V_{\text {OUT }}=-5 V
\end{array}
\] & & \[
\begin{gathered}
-2 \\
-20 \\
\hline
\end{gathered}
\] & & mA \\
\hline Minimum Load Current (Includes \(\mathrm{V}_{\text {SET }}\) Divider) & \(L_{L(\text { min })}\) & \(\cdots\) & & & 1 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Note 1: Connecting any terminal to voltages greater than (GND +0.3 V ) or less than ( \(\mathrm{V} \overline{\mathrm{IN}}-0.3 \mathrm{~V}\) ) may cause destructive device latch-up. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7664B power-up.
Note 2: Derate linearly above \(50^{\circ} \mathrm{C}\) at \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for minidip and \(7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for \(\mathrm{TO}-99\) can.
Note 3: This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.

\section*{FEATURES}
- Exceptionally low supply current ( \(<3 \mu \mathrm{~A}\) typ)
- Individually programmable upper and lower trip voltages and hysteresis levels
- Accurate on-chip bandgap reference, used by both detectors
- Up to 20 mA output current sinking ability
- Wide supply voltage range

\section*{GENERAL DESCRIPTION}

The ICL7665 contains two individually programmable voltage detectors on a single chip. Requiring only \(\sim 3 \mu \mathrm{~A}\) for operation, the device is intended for battery-operated systems and instruments which require high or low voltage warnings, settable trip points, or fault monitoring and correction. Typical applications are battery-backup computer memories, battery-operated medical devices, radiation dosimeters, pocket pagers, portable calibrators and test instruments, and charging systems.


\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to +18 V
Output Voltages OUT1 and OUT2
(with respect to GND) (Note 2) . . . . . . . . . . . -0.3 V to +18 V
Output Voltages HYST1 and HYST2
(with respect to \(\mathrm{V}^{+}\))(Note 2) . . . . . . . . . . . +0.3 V to -18 V Input Voltages SET1 and SET2
(Note 2).
. (GND - 0.3V) to \(\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)\)

Maximum Sink Output Current OUT1 and OUT2 . . . . . . 25 mA
Maximum Source Output Current HYST1 and HYST2.
- 25mA

Power Dissipation (Note 1). . . . . . . . . . . . . . . . . . . . . . 200mW
Operating Temperature Range. . . . . . . . . . . \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature Range. . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

Note 1: Derate above \(+25^{\circ} \mathrm{C}\) ambient temperature at \(4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).
Note 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than ( \(\mathrm{V}^{+}+0.3 \mathrm{~V}\) ) or less than ( \(G N D-0.3 \mathrm{~V}\) ) may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICL7665 be turned on first. If this is not possible, currents into inputs and/or outputs must be limited to \(\pm 0.5 \mathrm{~mA}\) and voltages must not exceed those defined above.
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC OPERATING CHARACTERISTICS \(\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.\), test circuit unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{PARAMETER} & \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline Operating Supply Voltage & \(\mathrm{v}^{+}\) & \[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.8
\end{aligned}
\] & & \[
\begin{aligned}
& 16.0 \\
& 16.0
\end{aligned}
\] & V \\
\hline Supply Current & \(1+\) & \begin{tabular}{l}
\[
\text { GND } \leq \mathrm{V}_{\text {SET } 1}, \mathrm{~V}_{\text {SET } 2} \leq \mathrm{V}^{+}
\] \\
All Outputs Open Circuit
\[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V} \\
& \mathrm{~V}^{+}=9 \mathrm{~V} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}
\end{aligned}
\]
\end{tabular} & & \[
\begin{aligned}
& 2.5 \\
& 2.6 \\
& 2.9
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& 15
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Trip Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{SET} 1} \\
& \mathrm{~V}_{\mathrm{SET} 2}
\end{aligned}
\] & & \[
\begin{gathered}
1.15 \\
1.2
\end{gathered}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.3
\end{aligned}
\] & \[
\begin{array}{r}
1.45 \\
1.4
\end{array}
\] & V \\
\hline Temperature Coefficient of \(V_{\text {SET }}\) & \[
\frac{\Delta V_{\text {SET }}}{\Delta T}
\] & & & 200 & & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline Supply Voltage Sensitivity of \(\mathrm{V}_{\text {SET } 1}, \mathrm{~V}_{\text {SET } 2}\) & \[
\frac{\Delta \mathrm{V}_{\text {SET }}}{\Delta \mathrm{V}_{\mathrm{S}}}
\] & \(\mathrm{R}_{\text {OUT } 1}, \mathrm{R}_{\text {OUT } 2}, \mathrm{R}_{\text {HYST1 }}, \mathrm{R}_{\text {HYST } 2}=1 \mathrm{M} \Omega\) & & 0.004 & & \%/V \\
\hline \multirow[t]{2}{*}{Output Leakage Currents on OUT and HYST} & \[
\begin{aligned}
& \text { IOLK } \\
& I_{\text {HLK }} \\
& \hline
\end{aligned}
\] & \(\mathrm{V}_{\text {SET }}=0 \mathrm{~V}\) or \(\mathrm{V}_{\text {SET }} \geq 2 \mathrm{~V}\) & & \[
\begin{array}{r}
10 \\
-10
\end{array}
\] & \[
\begin{array}{r}
200 \\
-100
\end{array}
\] & \multirow[b]{2}{*}{nA} \\
\hline & lolk \(I_{\text {HLK }}\) & \[
\begin{aligned}
& V^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}
\end{aligned}
\] & & & \[
\begin{array}{r}
2000 \\
-500
\end{array}
\] & \\
\hline \multirow[t]{4}{*}{Output Saturation Voltages} & \begin{tabular}{l}
\(V_{\text {OUT1 }}\) \\
\(V_{\text {OUT1 }}\) \\
\(V_{\text {OUT1 }}\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{l}_{\text {OUT } 1}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{l}_{\text {OUT1 }}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \mathrm{l}_{\text {OUT } 1}=2 \mathrm{~mA}
\end{aligned}
\] & & \[
\begin{gathered}
0.2 \\
0.1 \\
0.06
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.3 \\
& 0.2
\end{aligned}
\] & \multirow{4}{*}{V} \\
\hline & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{HYST}}\) \\
\(V_{\text {HYST1 }}\) \\
\(\mathrm{V}_{\text {HYST1 }}\)
\end{tabular} & \[
\begin{array}{|l|}
\hline \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\
\mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\
\mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\
\hline
\end{array}
\] & \(\checkmark\) & \[
\begin{aligned}
& -0.15 \\
& -0.05 \\
& -0.02
\end{aligned}
\] & \[
\begin{gathered}
-0.3 \\
-0.15 \\
-0.10 \\
\hline
\end{gathered}
\] & \\
\hline & \begin{tabular}{l}
\(V_{\text {OUT2 }}\) \\
\(V_{\text {OUT2 }}\) \\
\(V_{\text {OUT2 }}\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET } 2}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT } 2}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \mathrm{l}_{\text {OUT } 2}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {SET } 2}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT } 2}=2 \mathrm{~mA}
\end{aligned}
\] & & \[
\begin{gathered}
0.2 \\
0.15 \\
0.11
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.3 \\
& 0.25
\end{aligned}
\] & \\
\hline & \[
\begin{aligned}
& \hline \mathrm{V}_{\text {HYST2 }} \\
& \mathrm{V}_{\mathrm{HYST} 2} \\
& \mathrm{~V}_{\text {HYST2 }}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 2}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 2}=-0.2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 2}=-0.5 \mathrm{~mA} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 2}=-0.5 \mathrm{~mA}
\end{aligned}
\] & & \[
\begin{aligned}
& -0.25 \\
& -0.43 \\
& -0.35
\end{aligned}
\] & \[
\begin{aligned}
& \hline-0.8 \\
& -1.0 \\
& -0.8 \\
& \hline
\end{aligned}
\] & \\
\hline \(V_{\text {SET }}\) Input Leakage Current & \(I_{\text {SET }}\) & GND \(\leq \mathrm{V}_{\text {SET }} \leq \mathrm{V}^{+}\) & & 0.01 & 10 & nA \\
\hline \(\Delta V_{\text {SET }}\) Input for Complete Output Change & \(\Delta V_{\text {SET }}\) & \[
\begin{aligned}
& R_{\text {OUT }}=4.7 \mathrm{k} \Omega, R_{\text {HYSTT }}=20 \mathrm{k} \Omega \\
& V_{\text {OUT }} L O=1 \% \mathrm{~V}^{+}, \mathrm{V}_{\text {OUT }} \mathrm{HI}=99 \% \mathrm{~V}^{+}
\end{aligned}
\] & & 1 & & \multirow{3}{*}{mV} \\
\hline Difference in Trip Voltages & \(\mathrm{V}_{\text {SET } 1}-\mathrm{V}_{\text {SET } 2}\) & \(\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega\) & & \(\pm 5\) & \(\pm 50\) & \\
\hline Output/Hysteresis Difference & & \(\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega\) & & \(\pm 1\) & & \\
\hline
\end{tabular}

ICL7665
AC OPERATING CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Delay Times Input Going HI \\
Input Going LO
\end{tabular}} & \begin{tabular}{l}
\({ }^{\text {tsO1d }}\) \\
\(t_{\text {sH1d }}\) \\
\(t_{\text {sO2d }}\) \\
\(t_{\text {SH2d }}\)
\end{tabular} & \(\mathrm{V}_{\text {SET }}\) Switched from 1.0 V to 1.6 V
\[
\begin{aligned}
& R_{\text {OUT }}=4.7 \mathrm{k} \Omega, C_{\mathrm{L}}=12 \mathrm{pF} \\
& \mathrm{R}_{\text {HYST }}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}
\end{aligned}
\] & & \[
\begin{gathered}
70 \\
80 \\
120 \\
230
\end{gathered}
\] & & \(\mu \mathrm{S}\) \\
\hline & \begin{tabular}{l}
\({ }^{\text {tsiold }}\) \\
\({ }^{\text {tisen }}\) H1d \\
tsio2d \\
\({ }^{\text {tsin }} \mathrm{H} 2 \mathrm{~d}\)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\text {SET }}\) Switched from 1.6 V to 1.0 V \\
\(R_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}\) \\
\(R_{\text {HYST }}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}\)
\end{tabular} & & \[
\begin{gathered}
1040 \\
610 \\
70 \\
30
\end{gathered}
\] & & \(\mu \mathrm{S}\) \\
\hline Output Rise Times & \begin{tabular}{l}
\(\mathrm{t}_{01 \mathrm{r}}\) \\
\(\mathrm{t}_{\mathrm{O} 2 \mathrm{r}}\) \\
\(t_{\mathrm{H} 1 \mathrm{r}}\) \\
\(t_{\mathrm{H} 2 \mathrm{r}}\)
\end{tabular} & \(\mathrm{V}_{\text {SET }}\) Switched between 1.0 V and 1.6 V
\[
\begin{aligned}
& R_{\text {OUT }}=4.7 \mathrm{k} \Omega, C_{L}=12 \mathrm{pF} \\
& R_{\text {HYST }}=20 \mathrm{k} \Omega, C_{L}=12 \mathrm{pF}
\end{aligned}
\] & & \[
\begin{gathered}
120 \\
80 \\
330 \\
25
\end{gathered}
\] & & \(\mu \mathrm{S}\) \\
\hline Output Fall Times & \[
\begin{aligned}
& t_{01 f} \\
& t_{02 t} \\
& t_{\mathrm{H} 1 \mathrm{f}} \\
& t_{\mathrm{H} 2 \mathrm{f}}
\end{aligned}
\] & \(\mathrm{V}_{\text {SET }}\) Switched between 1.0 V and 1.6 V
\[
\begin{aligned}
& R_{\text {OUT }}=4.7 \mathrm{k} \Omega, C_{L}=12 \mathrm{pF} \\
& R_{\text {HYST }}=20 \mathrm{k} \Omega, C_{\mathrm{L}}=12 \mathrm{pF}
\end{aligned}
\] & & \[
\begin{gathered}
30 \\
60 \\
180 \\
30
\end{gathered}
\] & & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

\section*{SWITCHING WAVEFORMS}


TEST CIRCUIT (Switching Response)


\section*{TYPICAL OPERATING CHARACTERISTICS}

OUT1 Saturation Voltage as a Function of Output Current


OUT2 Saturation Voltage as a Function of Output Current


Supply Current as a Function of Supply Voltage


Supply Current as a Function of Ambient Temperature


HYST1 Output Saturation Voltage vs HYST1 Output Current


HYST1 OUTPUT CURRENT (mA)

HYST2 Output Saturation Voltage vs HYST2 Output Current


HYST2 OUTPUT CURRENT (mA)

\section*{DESCRIPTION}

As shown in the Block Diagram, the ICL7665 consists of two comparators which compare input voltages on the SET1 and SET2 terminals to an internal 1.3V band-gap reference. The outputs from the two comparators drive open-drain N -channel transistors for OUT1 and OUT2, and open-drain P-channel transistors for HYST1 and HYST2 outputs. Each section, the Under-Voltage Detector and the Over-Voltage Detector, is independent of the other, although both use the internal 1.3 V reference. The offset voltages of the two comparators will normally be unequal, so \(\mathrm{V}_{\mathrm{SET} 1}\) will generally not quite equal \(\mathrm{V}_{\mathrm{SET} 2}\).

The input impedances of the SET1 and SET2 pins are extremely high, and for most practical applications can be ignored. The four outputs are open-drain MOS transistors, and when ON behave as low resistance switches to their respective supply rails. This minimizes errors in setting-up the hysteresis, and maximizes the output flexibility. The operating currents of the bandgap reference and the comparators are around 100 nA each.

\section*{PRECAUTIONS}

Junction-isolated CMOS devices like the ICL7665 have an inherent SCR or 4-layer PNPN structure distributed throughout the die. Under certain circumstances, this can be triggered into a potentially destructive high-current mode. This latchup can be triggered by forward-biasing an input or output with respect to the power supply, or by applying excessive supply voltages. In very-low-current analog circuits, such as the ICL7665, this SCR can also be triggered by applying the input power supply extremely rapidly ("instantaneously"), e.g. through a low impedance battery and an ON/OFF switch with short lead lengths. The rate-of-rise of the supply voltage can exceed \(100 \mathrm{~V} / \mu \mathrm{s}\) in such a circuit. A low-impedance capacitor (e.g. \(0.05 \mu \mathrm{~F}\) disc ceramic) between the \(\mathrm{V}^{+}\)and GrouND pins of the ICL7665 can be used to reduce the rate-of-rise of the supply voltage in battery applications. In line-operated systems, the rate-of-rise of the supply is limited by other considerations, and is normally not a problem.
If the SET voltages must be applied before the supply voltage \(\mathrm{V}^{+}\), the input current should be limited to less than 0.5 mA by appropriate external resistors, usually required for voltage setting anyway. A similar precaution should be taken with the outputs if it is likely that they will be driven by other circuits to levels outside the supplies at any time. See M011 for some other protection ideas.

\section*{APPLICATIONS}

(a) Circuit Configuration

(b) Transfer Characteristics

Figure 1. Simple Threshold Detector

Figure 1 shows the simplest connection of the ICL7665 for threshold detection. From the graph (b), it can be seen that at low input voltages OUT1 is OFF, or high, while OUT2 is ON, or low. As the input rises (e.g. at power-on) toward \(\mathrm{V}_{\text {NOM }}\) (usually the eventual operating voltage), OUT2 goes high on reaching \(V_{T R 2}\). If the voltage rises above \(V_{N O M}\) as much as \(\mathrm{V}_{\text {TR1 }}\), OUT1 goes low. The equations giving \(\mathrm{V}_{\mathrm{SET} 1}\) and \(\mathrm{V}_{\mathrm{SET} 2}\) are, from Figure 1(a):
\[
V_{S E T 1}=V_{I N} \frac{R_{11}}{\left(R_{11}+R_{21}\right)} \quad V_{S E T 2}=V_{I N} \frac{R_{12}}{\left(R_{12}+R_{22}\right)}
\]

Since the voltage to trip each comparator is nominally 1.3 V , the value of \(\mathrm{V}_{\mathbb{N}}\) for each trip point can be found from
\[
\begin{aligned}
& V_{T R 1}=V_{S E T 1} \frac{\left(R_{11}+R_{21}\right)}{R_{11}}=1.3 \frac{\left(R_{11}+R_{21}\right)}{R_{11}} \text { for detector } 1 \text { and } \\
& V_{T R 2}=V_{S E T 2} \frac{\left(R_{12}+R_{22}\right)}{R_{12}}=1.3 \frac{\left(R_{12}+R_{22}\right)}{R_{12}} \text { for detector } 2 .
\end{aligned}
\]

Either detector may be used alone, as well as both together, in any of the circuits shown here.

When \(\mathrm{V}_{I N}\) is very close to one of the trip voltages, normal variations and noise may cause it to wander back and forth across this level, leading to erratic output ON and OFF condi-

(a) Circuit Configuration
tions. The addition of hysteresis, making the trip points slightly different for rising and falling inputs, will avoid this condition.

Figure 2(a) shows how to set up such hysteresis, while Figure 2(b) shows how the hysteresis around each trip point produces switching action at different points depending on whether \(\mathrm{V}_{\mathrm{IN}}\) is rising or falling (the arrows indicate direction of change). The HYST outputs are basically switches which short out \(R_{31}\) or \(R_{32}\) when \(V_{I N}\) is above the respective trip point. Thus if the input voltage rises from a low value, the trip point will be controlled by \(R_{1 n}, R_{2 n}\) and \(R_{3 n}\), until the trip point is reached. As this value is passed, the detector changes state, \(R_{3 n}\) is shorted out, and the trip point becomes controlled by only \(R_{1 n}\) and \(R_{2 n}\), a lower value. The input will then have to fall to this new point to restore the initial comparator state, but as soon as this occurs, the trip point will be raised again.
An alternative circuit for obtaining hysteresis is shown in Figure 3. In this configuration, the HYST pins put the extra resistor in parallel with the upper setting resistor. The values of the resistors differ, but the action is essentially the same. The governing equations are given in Table 1. These ignore the effects of the resistance of the HYST outputs, but these can normally be neglected if the resistor values are above about \(100 \mathrm{k} \Omega\).

(b) Transfer Characteristics

Figure 2. Threshold Detector with Hysteresis

APPLICATIONS (Continued)


Figure 3. An Alternative Hysteresis Circuit

\section*{CHIP TOPOGRAPHY}


Table 1. Set-Point Equations

\section*{a) NO HYSTERESIS}

Over-Voltage \(\quad V_{T R I P}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{S E T 1}\)
Under-Voltage \(V_{\text {TRIP }}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\text {SET2 }}\)
b) HYSTERESIS PER FIGURE 2A
\[
\begin{aligned}
& V_{\mathrm{U} 1}=\frac{R_{11}+R_{21}+R_{31}}{R_{11}} \times V_{\mathrm{SET} 1} \\
& V_{\mathrm{L} 1}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\mathrm{SET} 1} \\
& V_{\mathrm{U} 2}=\frac{R_{12}+R_{22}+R_{32}}{R_{12}} \times V_{\mathrm{SET} 2} \\
& V_{\mathrm{L} 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\mathrm{SET} 2}
\end{aligned}
\]
c) HYSTERESIS PER FIGURE 3
\[
\begin{aligned}
& V_{U 1}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{S E T 1} \\
& \text { Over-Voltage } V_{T R I P} \\
& V_{L 1}=\frac{R_{11}+\frac{R_{21} R_{31}}{R_{21}+R_{31}}}{R_{11}} \times V_{S E T 1} \\
& V_{U 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{S E T 2} \\
& \text { Under-Voltage } V_{T R I P} \\
& V_{L 1}=\frac{R_{12}+\frac{R_{22} R_{32}}{R_{22}+R_{32}}}{R_{12}} \times V_{S E T 2}
\end{aligned}
\]

ORDERING INFORMATION
This Addendum to the standard ICL7665 datasheet describes changes and/or modifications to the DC Operating characteristics applicable to the ICL7665B device. The following table indicates those limits to which the ICL7665B is tested and/or guaranteed operational.
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMPERATURE \\
RANGE
\end{tabular} & PACKAGE \\
\hline ICL7665BCPA & 0 to \(+70^{\circ} \mathrm{C}\) & 8 Lead MiniDIP \\
ICL7665BCTV & 0 to \(+70^{\circ} \mathrm{C}\) & 8 Lead TO-99 \\
ICL7665BCID & 0 to \(+70^{\circ} \mathrm{C}\) & DICE Only \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS, ICL7665B}

Maximum Sink Output Current OUT1 and OUT2
Maximum Source Output Current HYST1 and HYST2 \(\qquad\) -25mA Power Dissipation(Note 1) . . . . . . . . . . . . . . . . . . . . . . 200 mW
Operating Temperature Range . . . . . . . . . . . . . . 0 to \(+70^{\circ} \mathrm{C}\)
Storage Temperature Range . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC OPERATING CHARACTERISTICS \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), test circuit unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline Operating Supply Voltage & \(\mathrm{V}^{+}\) & \[
\begin{aligned}
& \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\
& 0 \leqslant \mathrm{~T}_{A} \leqslant+70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 1.8
\end{aligned}
\] & & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & V \\
\hline Supply Current & \(1^{+}\) & GND \(\leqslant \mathrm{V}_{\text {SET1 }}, \mathrm{V}_{\text {SET2 }} \leqslant \mathrm{V}^{+}\) All Outputs Open Circuit
\[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V} \\
& \mathrm{~V}^{+}=9 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 2.5 \\
& 2.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Trip Voltage & \(V_{\text {SET } 1}\)
\[
V_{\mathrm{SET} 2}
\] & & \[
\begin{gathered}
1.15 \\
1.2 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.3 \\
& 1.3
\end{aligned}
\] & \[
\begin{gathered}
1.45 \\
1.4 \\
\hline
\end{gathered}
\] & V \\
\hline Temperature Coefficient of \(\mathrm{V}_{\text {SET }}\) & \(\frac{\Delta V_{\text {SET }}}{\Delta T}\) & & & \(\pm 200\) & & pprn/ \({ }^{\circ} \mathrm{C}\) \\
\hline Supply Voltage Sensitivity of \(\mathrm{V}_{\mathrm{SET}}, \mathrm{V}_{\mathrm{SET}}\) & \[
\frac{\Delta V_{S E T}}{\Delta V_{S}}
\] & \(\mathrm{R}_{\text {OUT } 1}, \mathrm{R}_{\text {OUT } 2}, \mathrm{R}_{\text {HYST1 }}, \mathrm{R}_{\mathrm{HYST} 2}=1 \mathrm{M} \mathbf{Q}\) & & 0.004 & & \% N \\
\hline \multirow[t]{2}{*}{Output Leakage Currents on OUT and HYST} & lolk h hLK & \(\mathrm{V}_{\text {SET }}=0 \mathrm{~V}\) or \(\mathrm{V}_{\text {SET }} \geqslant 2 \mathrm{~V}\) & & \[
\begin{array}{r}
10 \\
-10
\end{array}
\] & \[
\begin{array}{r}
200 \\
-100
\end{array}
\] & \multirow[t]{2}{*}{nA} \\
\hline & lolk IHLK & \[
\begin{aligned}
& \mathrm{V}^{+}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\
& \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}
\end{aligned}
\] & & & \[
\begin{aligned}
& 2000 \\
& -500
\end{aligned}
\] & \\
\hline \multirow[t]{4}{*}{Output Saturation Voltages} & \begin{tabular}{l}
Vout1 \\
Vout1 \\
\(V_{\text {OUT1 }}\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET } 1}=2 \mathrm{~V}, \mathrm{I}_{\text {OUT } 1}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET1 }}=2 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET1 }}=2 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=2 \mathrm{~mA}
\end{aligned}
\] & & \[
\begin{gathered}
0.2 \\
0.1 \\
0.06
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.5 \\
0.3 \\
0.25
\end{gathered}
\] & \multirow{4}{*}{V} \\
\hline & \[
\begin{aligned}
& \mathrm{V}_{\text {HYST1 }} \\
& \mathrm{V}_{\text {HYST1 }} \\
& \mathrm{V}_{\text {HYST1 }} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, I_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\
& \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, I_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA} \\
& \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SET} 1}=2 \mathrm{~V}, I_{\mathrm{HYST} 1}=-0.5 \mathrm{~mA}
\end{aligned}
\] & & \[
\begin{array}{r}
-0.15 \\
-0.05 \\
-0.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
-0.3 \\
-0.15 \\
-0.15 \\
\hline
\end{array}
\] & \\
\hline & \begin{tabular}{l}
\(\mathrm{V}_{\text {OUT2 }}\) \\
Vout2 \\
\(V_{\text {OUT2 }}\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=2 \mathrm{~mA}
\end{aligned}
\] & & \[
\begin{gathered}
\hline 0.2 \\
0.15 \\
0.11 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 0.5 \\
& 0.3 \\
& 0.3 \\
& \hline
\end{aligned}
\] & \\
\hline & \begin{tabular}{l}
\(\mathrm{V}_{\text {HYST2 }}\) \\
\(V_{\text {HYST2 }}\) \\
\(V_{\text {HYST2 }}\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}^{+}=2 \mathrm{~V}, \mathrm{~V}_{\text {SET } 2}=2 \mathrm{~V}, I_{\text {HYST2 }}=-0.2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, I_{\text {HYST2 }}=-0.5 \mathrm{~mA} \\
& \mathrm{~V}^{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {SET2 }}=2 \mathrm{~V}, I_{\text {HYST2 }}=-0.5 \mathrm{~mA}
\end{aligned}
\] & & \[
\begin{aligned}
& -0.25 \\
& -0.43 \\
& -0.35
\end{aligned}
\] & \[
\begin{gathered}
-0.8 \\
-1 \\
-1
\end{gathered}
\] & \\
\hline \(\mathrm{V}_{\text {SET }}\) Input Leakage Current & \(\mathrm{I}_{\text {SET }}\) & \(\mathrm{GND} \leqslant \mathrm{V}_{\text {SET }} \leqslant \mathrm{V}^{+}\) & & 0.01 & 10 & nA \\
\hline \(\Delta \mathrm{V}_{\text {SET }}\) Input for Complete Output Change & \(\Delta V_{\text {SET }}\) & \[
\begin{aligned}
& \mathrm{R}_{\text {OUT }}=4.7 \mathrm{kQ}, \mathrm{R}_{\text {HYST }}=20 \mathrm{kS} \\
& \mathrm{~V}_{\text {OUT }} \mathrm{LO}=1 \% \mathrm{~V}^{+}, \mathrm{V}_{\text {OUT }} \mathrm{HI}=99 \% \mathrm{~V}^{+}
\end{aligned}
\] & & 1 & & \multirow[t]{3}{*}{mV} \\
\hline Difference in Trip Voltages & \(\mathrm{V}_{\text {SET1 }}-\mathrm{V}_{\text {SET2 }}\) & \(\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{MQ}\) & & \(\pm 5\) & \(\pm 50\) & \\
\hline Output/Hysteresis Difference & & \(\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{MQ}\) & & \(\pm 1\) & & \\
\hline
\end{tabular}

\footnotetext{
Note 1: Derate above \(+25^{\circ} \mathrm{C}\) ambient temperature at \(4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).
Note 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than ( \(\mathrm{V}^{+}+0.3 \mathrm{~V}\) ) or less than (GND - 0.3V) may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is establshed, and that in multipe supply systems, the supply to the ICL7665 be turned on first. If this is not possible, currents into inputs and/or outputs must be limited to \(\pm 0.5 \mathrm{~mA}\) and voltages must not exceed those defined above.
}

\section*{Dual Power MOS Driver}

\section*{FEATURES}
- 1.5A Peak Output Current
- Fast Rise and Fall Times - 40 ns with 1000 pF load
- Wide Supply Voltage Range \(-\mathrm{V}_{\mathrm{CC}}=4.5\) to 20 V
- Low Power Consumption
-4 mW with inputs low
-120 mW with inputs high
- TTLCMOS Input Compatible Power Driver
- Rout \(=6 \Omega\)
- Direct Interface with Common Switching Regulators
- Pin Equivalent to DS0026/DS0056

\section*{TYPICAL APPLICATIONS}
- Switching Power Supplies
- DC/DC Converters
- Motor Controllers

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Temperature \\
Range
\end{tabular}} & Package & \multicolumn{1}{|c|}{\begin{tabular}{l} 
Order \\
Number
\end{tabular}} \\
\hline\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
TO-99 Can \\
8-Pin Cerdip
\end{tabular} & ICL7667MTV \\
ICL7667MJA
\end{tabular}\(|\)\begin{tabular}{lll|}
\hline & 8-Pin Plastic & ICL7667CPA \\
0 to \(+70^{\circ} \mathrm{C}\) & 8-Pin Cerdip & ICL7667CJA \\
& TO-99 Can & ICL7667CJA \\
\hline 0 to \(+70^{\circ} \mathrm{C}\) & Dice & ICL7667C/D \\
\hline
\end{tabular}
(pin configuration for TV and PA packages also on this page)

\section*{BLOCK DIAGRAM}


\section*{GENERAL DESCRIPTION}

The ICL7667 is a dual monolithic high-speed driver designed to convert TTL level signals into high current outputs at voltages up to 20 V . Its high speed and 1.5 A peak current output enable it to drive large capacitive loads with high slew rates and low propagation delays. With an output voltage swing only millivolts less than the supply voltage and a maximum supply voltage of 20 V , the ICL7667 is well suited for driving power MOSFETs in high frequency switching regulators. The ICL7667's high current (1.5A peak) outputs minimize power losses in the power MOSFETs by rapidly charging and discharging the gate capacitances, while the ICL7667's inputs are TTL compatible and can be directly driven by common switching regulator IC's.

PIN CONFIGURATION


\section*{ICL7667}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|c|}
\hline Supply Voltage & & 22 V \\
\hline Input Voltage & & V to \(\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)\) \\
\hline Peak Output Curren & & 1.5A \\
\hline Package Dissipation & n, \(T_{A}=25^{\circ} \mathrm{C}\) & 500 mW \\
\hline Linear Derating F & Factors & \\
\hline TO-99 & Plastic & Cerdip \\
\hline \(7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & . \(6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline above \(50^{\circ} \mathrm{C}\) & above \(36^{\circ} \mathrm{C}\) & above \(50^{\circ} \mathrm{C}\) \\
\hline Temper & & \(-65^{\circ} \mathrm{C}\) to \\
\hline
\end{tabular}

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{DC OPERATING CHARACTERISTICS}

Test Conditions: \(\mathrm{V}_{\mathrm{CC}}=4.5\) to \(20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline Logic 1 Input Voltage & \(\mathrm{V}_{\text {IH }}\) & & 2.4 & 2.0 & & V \\
\hline Logic 0 Input Voltage & \(\mathrm{V}_{\text {IL }}\) & & & 1.5 & 0.8 & V \\
\hline Input Current & IL & \(0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}\) & -1 & 0 & 1 & \(\mu \mathrm{A}\) \\
\hline Output Voltage High & \(\mathrm{V}_{\mathrm{OH}}\) & No Load & \[
\begin{gathered}
V_{C C} \\
-0.05
\end{gathered}
\] & \(\mathrm{V}_{\mathrm{CC}}\) & & V \\
\hline Output Voltage Low & \(\mathrm{V}_{\mathrm{OL}}\) & No Load & & 0 & 0.05 & V \\
\hline Output Resistance & ROUT & \[
\begin{gathered}
V_{I N}=V_{I L} \\
\mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA} \\
V_{C C}=20 \mathrm{~V}
\end{gathered}
\] & & 6 & 20 & \(\Omega\) \\
\hline Output Resistance & ROUT & \[
\begin{gathered}
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\
\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}
\end{gathered}
\] & & 6 & 20 & \(\Omega\) \\
\hline Power Supply Current & Icc & \begin{tabular}{l}
\[
V_{I N}=3 V
\] \\
(both inputs)
\end{tabular} & & 4 & 6 & mA \\
\hline Power Supply Current & Icc & \begin{tabular}{l}
\[
V_{I N}=0 V
\] \\
(both inputs)
\end{tabular} & & 150 & 400 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{AC OPERATING CHARACTERISTICS}

Test Conditions: \(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), unless otherwise noted.
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ PARAMETER } & \multirow{2}{*}{ SYMBOL } & \multirow{2}{|c|}{ TEST CONDITIONS } & \multicolumn{2}{|c|}{ LIMITS } & \multirow{2}{*}{ UNITS } \\
\cline { 3 - 6 } & & & MIN & TYP & MAX & \\
\hline Delay Time & \(\mathrm{T}_{\mathrm{D} 2}\) & Figure 1 & & 50 & 75 & ns \\
\hline Delay Time & \(\mathrm{T}_{\mathrm{D} 2}\) & Figure 2 & & 50 & 75 & ns \\
\hline Rise Time & \(\mathrm{T}_{\mathrm{R}}\) & Figure 1 & & 25 & 35 & ns \\
\hline Rise Time & \(\mathrm{T}_{\mathrm{R}}\) & Figure 2 & & 35 & 50 & ns \\
\hline Fall Time & \(\mathrm{T}_{\mathrm{F}}\) & Figure 1 & & 30 & 40 & ns \\
\hline Fall Time & \(\mathrm{T}_{\mathrm{F}}\) & Figure 2 & & 40 & 55 & ns \\
\hline Delay Time & \(\mathrm{T}_{\mathrm{D} 1}\) & Figure 1 & & 20 & 35 & ns \\
\hline Delay Time & \(\mathrm{T}_{\mathrm{D} 1}\) & Figure 2 & & 20 & 35 & ns \\
\hline
\end{tabular}


Figure 1. Test Circuit


Figure 2. Test Circuit

\section*{TYPICAL CHARACTERISTICS}


Cc vs \(\mathrm{C}_{\mathrm{L}}\)

\(\mathrm{VCC}=20 \mathrm{~V}\)


ICC vs Frequency



No Load ICC vs Frequency


\section*{TYPICAL CHARACTERISTICS (Cont'd)}


\section*{DETAILED DESCRIPTION}

The ICL7667 is a dual high-power CMOS inverter whose inputs respond to TTL levels while the outputs can swing as high as 20 V . Its 1.5 A peak output current enables it to rapidly charge and discharge the gate capacitance of power MOSFETs, minimizing the switching losses in switchmode power supplies. Since the output stage is CMOS, the output will swing to within millivolts of both ground and \(\mathrm{V}_{\mathrm{CC}}\), without any external parts or extra power supplies as required by the DS0026/56 family. Although most specifications are at \(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\), the propagation delays and specifications are almost independent of \(V_{\mathrm{CC}}\).

In addition to power MOS drivers, the ICL7667 is well suited for other applications such as bus, control signal, and clock drivers on large memory of microprocessor boards, where the load capacitance is large and low propagation delays are required. Other potential applications include peripheral power drivers and charge pump voltage inverters.

\section*{INPUT STAGE}

The input stage is a large N-channel FET with a P-channel constant-current source. This circuit has a threshold of about 1.5 V , relatively independent of the \(\mathrm{V}_{C C}\) voltage. This means that the inputs will be directly compatible with TTL over the entire \(4.5-20 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}\) range. Being CMOS, the inputs draw less than \(1 \mu \mathrm{~A}\) of current over the entire input voltage range of ground to \(\mathrm{V}_{\mathrm{CC}}\). The quiescent current or no load supply current of the ICL7667 is affected by the input voltage, going to nearly zero when the inputs are at the 0 logic level and rising to 6 mA maximum when both inputs are the 1 logic level. A small amount of hysteresis, about \(50-100 \mathrm{mV}\) at the input, is generated by positive feedback around the second stage.

\section*{OUTPUT STAGE}

The ICL7667 output is a high-power CMOS inverter, swinging between ground and \(\mathrm{V}_{\mathrm{CC}}\). At \(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}\), the output impedance of the inverter is typically \(6 \Omega\), with a peak current output of typically 1.5 A . It is this high peak current capability that enables the ICL7667 to drive a 1000 pF load with a rise time of only 40 ns . Because the output stage impedance is very low, up to 300 mA will flow through the series N - and P-channel output devices (from \(\mathrm{V}_{\mathrm{CC}}\) to ground) during output transitions. This "crowbar" current is a significant portion of the internal power

dissipation of the ICL7667 at high frequencies. It can be minimized by keeping the rise and fall times of the input to the ICL7667 below \(1 \mu \mathrm{~s}\).

\section*{APPLICATION NOTES}

Although the ICL7667 is simply a dual level-shifting inverter, there are several areas to which careful attention must be paid.

\section*{GROUNDING}

Since the input and the high current output current paths both include the ground pin, it is very important to minimize any common impedance in the ground return. Since the ICL7667 is an inverter, any common impedance will be negative feedback, degrading the delay, rise and fall times. Use a ground plane if possible, or use separate ground returns for the input and output circuits. To minimize any common inductance in the ground return, separate the input and output circuit ground returns as close to the ICL7667 as is possible.

\section*{BYPASSING}

The rapid charging and discharging of the load capacitance requires very high current spikes from the power supplies. A parallel combination of capacitors that has a low impedance over a wide frequency range should be used. A \(4.7 \mu \mathrm{~F}\) capacitor in parallel with a low inductance \(0.1 \mu \mathrm{~F}\) capacitor is usually sufficient bypassing.

\section*{OUTPUT DAMPING}

Ringing is a common problem in any circuit with very fast rise or fall times. Such ringing will be aggravated by long inductive lines with capacitive loads. Techniques to reduce ringing include:
1) Reduce inductance by making printed circuit board traces as short as possible.
2) Reduce inductance by using a ground plane or by closely coupling the output lines to their return paths.
3) Use a 10 to \(30 \Omega\) resistor in series with the output of the ICL7667. Although this reduces ringing, it will also slightly increase the rise and fall times.
4) Use good bypassing techniques to prevent ringing caused by supply voltage ringing.

\section*{POWER MOS DRIVER CIRCUITS}

\section*{POWER DISSIPATION}

The power dissipation of the ICL7667 has three main components:
1) Input inverter current
2) Output stage crowbar current
3) Output stage \(I^{2} R\) power

The sum of the above must stay within the specified limits for reliable operation.

As noted above, the input inverter current is input voltage dependent, with an \(I_{C C}\) of 0.2 mA maximum with a logic 0 input and 6 mA maximum with a logic 1 input.

The output stage crowbar current is the current that flows through the series N - and P -channel devices that form the output. This current, about 300 mA , occurs only during output transitions. Caution: The inputs should never be allowed to remain between \(\mathrm{V}_{I L}\) and \(\mathrm{V}_{I H}\) since this could leave the output stage in a high current mode, rapidly leading to destruction of the device. If only one of the drivers is being used, be sure to tie the unused input to a ground. NEVER leave an input floating. To reduce the average power dissipation in the output stage due to transitions, the input signal rise time should be less than \(1 \mu \mathrm{~s}\). The average supply current drawn by the output stage is frequency dependent, as can be seen in \(\mathrm{I}_{\mathrm{Cc}}\) vs. Frequency graph in the Typical Characteristics Graphs.

The output stage \(I^{2} R\) power dissipation is nothing more than the product of the output current times the voltage drop across the output device. In addition to the current drawn by any resistive load, there will be an output current due to the charging and discharging of the load capacitance. In most high frequency circuits the current used to charge and discharge capacitance dominates, and the power dissipation is approximately
\[
\begin{aligned}
& \mathrm{P}_{\mathrm{AC}}=\mathrm{CV} \mathrm{CC}^{2} \mathrm{~F} \\
& \text { Where } \mathrm{C}=\text { Load Capacitance } \\
& \mathrm{F}=\text { Frequency }
\end{aligned}
\]

In cases where the load is a power MOSFET and the gate drive requirements are described in terms of gate charge, the ICL7667 power dissipation will be
\[
P_{A C}=Q_{G} V_{C C} F
\]

Where \(Q_{G}=\) Charge required to switch the gate, in Coulombs.
F = Frequency

\section*{POWER MOS DRIVER REQUIREMENTS}

Because it has very high peak current output, the ICL7667 excels at driving the gate of power MOS devices. The high current output is important since it minimizes the time the power MOS device is in the linear region. Figure 3 is a typical curve of charge vs. gate voltage for a power MOSFET. The flat region is caused by the Miller capacitance, where the drain-to-gate capacitance is multiplied by the voltage gain of the FET. This increase in capacitance occurs while the power MOSFET is in the linear region and is dissipating significant amounts of power. The very high current output of the ICL7667 is able to rapidly overcome this high capacitance and quickly turns the MOSFET fully on or off.


Figure 3. MOSFET Gate Dynamic Characteristics

\section*{DIRECT DRIVE OF MOSFETs}

Figure 4 shows interfaces between the ICL7667 and typical switching regulator ICs. Note that unlike the DS0026, the ICL7667 does not need a dropping resistor and speed-up capacitor between it and the regulator IC. The ICL7667, with its high slew rate and high voltage drive can directly drive the gate of the MOSFET. The 1527 IC is the same as the 1525 IC, except that the outputs are inverted. This inversion is needed since ICL7667 is an inverting buffer.


Figure 4a. Direct Drive of MOSFET Gates


Figure 4b. Direct Drive of MOSFET Gates

\section*{TRANSFORMER COUPLED DRIVE OF MOSFETS}

Transformers are often used for isolation between the logic and control section and the power section of a switching regulator. The high output drive capability of the ICL7667 enables it to directly drive such transformers. Figure 5 shows a typical transformer coupled drive circuit. PWM ICs with either active high or active low outputs can be used in this circuit, since any inversion required can be obtained by reversing the windings on the secondaries.

In this circuit, the transformer is driven with a symmetrical waveform, so the secondary voltage outputs are determined only by the turns ratio and the power supply voltage to the ICL7667. If the transformer drive is not symmetrical, the voltage output will be affected by the duty cycle, being highest for low duty cycles.

\section*{BUFFERED DRIVERS FOR MULTIPLE MOSFETs}

In very high power applications which use a group of MOSFETs in parallel, the input capacitance may be very large and it can be difficult to charge and discharge quickly. Figure 6 shows a circuit which works very well with very large capacitance loads. When the input of the driver is zero, Q1 is held in conduction by the lower half of the ICL7667 and Q2 is clamped off by Q1. When the input goes positive, Q1 is turned off and a current pulse is applied to the gate of Q2 by the upper half of the ICL7667 through the transformer, T1. After about 20ns, T1 saturates and Q2 is held on by its own \(\mathrm{C}_{\mathrm{gs}}\) and the bootstrap circuit of C1, D1 and R1. This bootstrap circuit may not be needed at frequencies greater than 10 kHz since the input capacitance of Q2 discharges slowly.


Figure 5. Transformer Coupled Drive


Figure 6. Very High-Speed Driver

\section*{OTHER APPLICATIONS}

\section*{RELAY AND LAMP DRIVERS}

The ICL7667 is suitable for converting low power TTL or CMOS signals to high current, high voltage outputs for relays, lamps and other loads. Unlike many other level translator/driver ICs, the ICL7667 will both source and sink current. The continuous output current is limited to 200 mA by the \(I^{2} R\) power dissipation in the output FETs.

\section*{CHARGE PUMP OR VOLTAGEINVERTERS AND DOUBLERS}

The low output impedance and wide \(\mathrm{V}_{\mathrm{cc}}\) range of the ICL7667 make it well suited for charge pump circuits. Figure 7 shows a typical charge pump voltage inverter circuit and a typical performance curve. A common use of this circuit is to provide a low current negative supply for analog circuitry or RS232 drivers. With an input voltage of +15 V , this circuit will deliver 20 mA at -12.6 V . By increasing the size of the capacitors, the current capability can be increased and the voltage loss decreased. The practical range of the input frequency is 500 Hz to 250 kHz . As the frequency goes up, the charge pump capacitors can be made smaller, but the internal losses in the JCL7667 will rise, reducing the circuit efficiency.


Figure 7a. Voltage Inverter


Figure 7b. Voltage Inverter

Figure 8, a voltage doubler, is very similar in both circuitry and performance. A potential use of Figure 8 would be to supply the higher voltage needed for EEPROM or EPROM programming.

\section*{CLOCK DRIVER}

Some microprocessors (such as the 68XX and 65XX families) use a clock signal to the various LSI peripherals of the family. The ICL7667's combination of low propagation delay, high current drive capability and wide voltage swing make it attractive for this application. Although the ICL7667 is primarily intended for driving power MOSFET gates at 15 or 20V, the ICL7667 also works well as a 5V high-speed buffer. Unlike standard 4000 series CMOS, the ICL7667 uses short channel length FETs and the ICL7667 is only slightly slower at 5 V than at 15 V .


Figure 8. Voltage Doubler

CHIP TOPOGRAPHY


\section*{Precision Comparator}

\section*{FEATURES}
- Low Input Current \(\leq 250 n A\)
- Low Power Consumption 30 mW
- Large Input Voltage Range \(\geq \pm 10 \mathrm{~V}\)
- Low Offset Voltage Drift \(3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\)
- Output Swing Compatible with Bipolar Logic

\section*{GENERAL DESCRIPTION}

The Intersil 8001 integrated circuit is a monolithic volt age comparator featuring low input currents, low power consumption, and 250 ns response time. A versatile output stage enables the designer to control the output voltage swing. The use of thin film resistors ensures excellent long term stability and the device is particularly suitable for low power space and airborne applications.

\section*{SCHEMATIC DIAGRAM}


\section*{ORDERING INFORMATION}


\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 18 \mathrm{~V}\)
Input Voltage (Note 2) . . . . . . . . . . . . . . . . . . . . . . . \(\pm 18 \mathrm{~V}\)
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . \(\pm 15 \mathrm{~V}\)
Internal Power Dissipation (Note 1) . . . . . . . . . . . . 500 mW
Peak Output Current . . . . . . . . . . . . . . . . . . . . . . . 15 mA
Storage Temperature Range. . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Temperature Range
(8001C). . . . . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
(8001M) . . . . . . . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 60 sec ) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)

\section*{EQUIVALENT CIRCUIT}


\section*{PIN CONFIGURATION}

(outline dwg TO-100)
NOTE: Pin 5 connected to case.

For notes and additional electrical characteristics, see next page.

ELECTRICAL CHARACTERISTICS \(\quad\left(\mathrm{V}^{++}=15 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right.\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & \[
\begin{aligned}
& \text { 8001M } \\
& \text { TYP }
\end{aligned}
\] & MAX & MIN & \[
\begin{gathered}
\text { 8001C } \\
\text { TYP }
\end{gathered}
\] & MAX & UNITS \\
\hline The following specifications apply for \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) : & & & & & , & & & \\
\hline Input Offset Voltage & \(\mathrm{R}_{\mathbf{S}} \leq 10 \mathrm{k} \Omega\) & & 0.5 & 3.0 & & 1.0 & 5.0 & mV \\
\hline Input Offset Current & & & 2 & 20 & & 10 & 50 & nA \\
\hline Input Bias Current & & & 40 & 100 & & 50 & 250 & nA \\
\hline Input Resistance & & & 10 & & & 10 & & MS 2 \\
\hline Power Consumption & \(V_{\text {OUT }}=2.5 \mathrm{~V}\) & & 30 & 60 & & 30 & 60 & mW \\
\hline The following specifications apply for \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}(8001 \mathrm{M})\)
\(0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}(8001 \mathrm{C})\) & & & & & & & & \\
\hline Input Offset Voltage & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & & & 4.0 & & & 6.0 & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage & & & 2.0 & 20 & & 3.0 & 30 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & & & 7 & 100 & & 15 & 100 & \(n \mathrm{~A}\) \\
\hline Average Temperature Coefficient of Input Offset Current & & & 35 & & & 35 & , & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & & & & 250 & & & 300 & \(n \mathrm{~A}\) \\
\hline Input Voltage Range & & \(\pm 10\) & \(\pm 12\) & & \(\pm 10\) & \(\pm 12\) & & \(\checkmark\) \\
\hline Common Mode Rejection Ratio & & 70 & 90 & & 70 & 90 & & dB \\
\hline Supply Voltage Rejection Ratio & & & & 300 & & & 300 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Differential Input Voltage Range & & & & \(\pm 15\) & & & \(\pm 15\) & \(V\) \\
\hline Voltage Gain & & 15,000 & 60,000 & & 15,000 & 60,000 & & V/V \\
\hline Positive Output Level Max (Note 3) & \(\mathrm{V}^{+}=+15 \mathrm{~V}\) & 7.0 & 9.0 & & 7.0 & 9.0 & & \(V\) \\
\hline Negative Output Level & At 2 mA Sink Current & & 200 & 500 & & 200 & 400 & mV \\
\hline Response Time (Note 4) & & & 250 & & & 250 & & ns \\
\hline
\end{tabular}

NOTE 1: Rating applies for ambient temperatures to \(+70^{\circ} \mathrm{C}\).
NOTE 2: For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Positive output level can be adjusted below 9 V by changing \(\mathrm{V}^{+}\). See circuit.
NOTE 4: The response time specified is for a 100 mV input step with 5 mV overdrive.
NOTE 5: Input bias current is independent of \(\mathrm{V}^{-}\).

\section*{CIRCUIT NOTES:}


VOLTAGE OFFSET
NULL CIRCUIT


OUTPUT LEVEL COMPATIBLE WITH TTL, DTL, ETC.

NOTE: As with all high gain comparators, care must be taken to avoid feedback between output and input. Where possible, hysteresis should be used to provide a small deadband.

\section*{TYPICAL PERFORMANCE CURVES}


POWER CONSUMPTION AS A FUNCTION OF
AMBIENT TEMPERATURE


VOLTAGE TRANSFER CHARACTERISTICS


INPUT BIAS CURRENT AS A FUNCTION OF \(\mathrm{V}^{++}\)(NOTE 5)


COMMON MODE RANGE
AS A FUNCTION OF
SUPPLY VOLTAGE


RESPONSE TIME FOR
VARIOUS INPUT
OVERDRIVES


POSITIVE OUTPUT SWING
AS A FUNCTION OF \(\mathrm{V}^{+}\)


RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES


\section*{CIRCUIT AND APPLICATION NOTES}


SIMPLE VOLTAGE LEVEL DETECTOR


CONNECTION TO PROVIDE LOGICAL OR OF TWO COMPARATOR OUTPUTS


WINDOW DETECTOR


COMPARATOR WITH HYSTERESIS


USE OF EXTERNAL NAND GATES TO PROVIDE OUTPUT STORAGE


A TO D CONVERTER

FET Input Operational Amplifier

\section*{GENERAL DESCRIPTION}

The Intersil 8007 integrated circuit is a low input current FET input operational amplifier. The 8007A is selected for 4 pA max input current.

The devices are designed for use in very high input impedance applications. Because of their high slew rate, high common mode voltage range and absence of "latch-up". they are ideal for use as a voltage follower.

The Intersil 8007 and 8007A are short circuit protected. They require no external components for frequency compensation because the internal \(6 \mathrm{~dB} /\) roll-off insures stability in closed loop applications. A unique bootstrap circuit insures unusually good commonmode rejection for an FET input amp and prevents large input currents as seen in some amplifiers at high common mode voltage.

\section*{EQUIVALENT CIRCUIT}


\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage
\(\pm 18 \mathrm{~V}\)
Internal Power Dissipation (Note 1)
Differential Input Voltage
500 mW

Input Voltage (Note 2) \(\pm 30 \mathrm{~V}\)

Storage Temperature Range
Operating Temperature Range
8007M, 8007AM
8007C, 8007AC
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(300^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec .)
Indefinite
Output Short-Circuit Duration (Note 3)
\(\pm 15 \mathrm{~V}\)
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)

NOTES:
1. Rating applies for case temperatures to \(125^{\circ} \mathrm{C}\); derate linearly at \(6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(+75^{\circ} \mathrm{C}\).
2. For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to \(+125^{\circ} \mathrm{C}\) case temperature or \(+75^{\circ} \mathrm{C}\) ambient temperature.

\section*{TRANSIENT RESPONSE TEST CIRCUIT}


PIN CONFIGURATION (outline dwg TV, TY)*
 *ICL8007M/C pin 4 connected to case (TY package)
ICL8007AM/C, pin 8 connected to case (TV package)

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Part \\
Number
\end{tabular}} & \begin{tabular}{c} 
Temperature \\
Range
\end{tabular} & \multicolumn{1}{c|}{ dice } & \multicolumn{1}{c|}{\begin{tabular}{c} 
To-99 \\
Can
\end{tabular}} \\
\hline \begin{tabular}{l} 
ICL8007C \\
ICL8007AC
\end{tabular} & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
ICL8007C/D \\
ICL8007AC/D
\end{tabular} & \begin{tabular}{l} 
ICL8007CTY \\
ICL8007ACTV
\end{tabular} \\
\hline \begin{tabular}{l} 
ICL8007M \\
ICL8007AM
\end{tabular} & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
ICL8007M/D \\
ICL8007AM/D
\end{tabular} & \begin{tabular}{l} 
ICL8007MTY \\
ICL8007AMTV
\end{tabular} \\
\hline
\end{tabular}
* Add \(/ 883 B\) to order number if \(883 B\) processing is desired.

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.\) unless otherwise specified)


\section*{TYPICAL PERFORMANCE CURVES}

OPEN LOOP VOLTAGE GAIN


VOLTAGE FOLLOWER LARGESIGNAL PULSE RESPONSE


OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY



OPEN LOOP VOLTAGE GAIN
AS A FUNCTION OF SUPPLY VOLTAGE


QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE


INPUT CURRENT AS A FUNCTION OF TEMPERATURE


INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE


INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY


OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE


QUIESCENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE


For additional information, see Application Bulletin A005.

\section*{Low Input Current Operational Amplifier}

\section*{FEATURES}
- Low Input Current
- No Frequency Compensation Required
- Offset Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch up

\section*{SCHEMATIC DIAGRAM}


PIN CONFIGURATIONS

(outline dwg TY)

Plastic DIP

(outline dwg PA)

NOTE: Pin 4 CONNECTED TO CASE

\section*{GENERAL DESCRIPTION}

The 8008 is a high performance monolithic operational amplifier with very low input currents. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the 8008 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The 8008 is short-circuit protected, has the same pin configuration as the popular 741 operational amplifier, and requires no external components for frequency compensation. The internal 6 dB /octave roll-off insures stability in closed loop applications.

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{lr} 
Supply Voltage & \(\pm 18 \mathrm{~V}\) \\
Internal Power Dissipation (Note 1) & 500 mW \\
Differential Input Voltage & \(\pm 30 \mathrm{~V}\) \\
Input Voltage (Note 2) & \(\pm 15 \mathrm{~V}\) \\
Voltage between Offset Null and \(\mathrm{V}^{-}\) & \(\pm 0.5 \mathrm{~V}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \\
\multicolumn{1}{c}{8008 M} & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
8008 C & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Lead Temperature (Soldering, 60 sec.) & \(300^{\circ} \mathrm{C}\) \\
Output Short-Circuit Duration (Note 3) & Indefinite
\end{tabular}

NOTE 1: Rating applies for case temperatures to \(125^{\circ} \mathrm{C}\); derate linearly at \(6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(+75^{\circ} \mathrm{C}\).
NOTE 2: For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Short circuit may be to ground or either supply. Rating applies to \(+125^{\circ} \mathrm{C}\) case temperature or \(+75^{\circ} \mathrm{C}\) ambient temperature.

\section*{ORDERING INFORMATION}


\section*{CL8008}

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{8008M} & \multicolumn{3}{|c|}{8008C} & \multirow[t]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|l|}{The following specifications apply for \(\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}\) :} \\
\hline Input Offset Voltage & \(R_{\text {S }} \leq 10 \mathrm{k} \Omega\) & & 1.0 & 5 & & 1.0 & 6.0 & mV \\
\hline Input Offset Current & & & 1.0 & 5 & & 2.0 & 20 & nA \\
\hline Input Bias Current & & & 2 & 10 & & 5 & 25 & nA \\
\hline Input Resistance & & 5 & 25 & & 5 & 25 & & \(\mathrm{M} \Omega\) \\
\hline Input Capacitance & & & 1.5 & & & 1.5 & & pF \\
\hline Offset Voltage Adjustment Range & & & \(\pm 15\) & & & \(\pm 15\) & & mV \\
\hline Large-Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}\) & 20,000 & 200,000 & & 20,000 & 200,000 & & V/V \\
\hline Output Resistance & & & 75 & & & 75 & & \[
\Omega
\] \\
\hline Output Short-Circuit Current & & & 25 & & & 25 & & mA \\
\hline Supply Current & & & 1.7 & 2.8 & & 1.7 & 2.8 & mA \\
\hline Power Consumption & & & 50 & 85 & & 50 & 85 & mW \\
\hline Transient Response (unity gain) & \(V_{\text {IN }}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\), & & & & & & & \\
\hline Risetime & \(C_{L} \leq 100 \mathrm{pF}\) & & 0.3 & & & 0.3 & & \(\mu \mathrm{s}\) \\
\hline Overshoot & & & 5.0 & & & 5.0 & & \% \\
\hline Slew Rate (unity gain) & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) & & 0.5 & * & & 0.5 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \multicolumn{9}{|l|}{The following specifications apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\) (8008C), \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) (8008M):} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Input Offset Voltage Input Offset Voltage Average \\
Temperature Coefficient Input Offset Current
\end{tabular}} & \(\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega\) & & 1.5 & 6 & & 1.5 & 7.5 & mV \\
\hline & \[
R_{S} \leq 10 \mathrm{k} \Omega
\] & & 7 & & & 15 & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline & & & & 30 & & & 30 & \(n \mathrm{nA}\) \\
\hline Input Bias Current & & & & 50 & & & 50 & nA \\
\hline Input Voltage Range & & \(\pm 10\) & \(\pm 12\) & & \(\pm 12\) & \(\pm 13\) & & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{Common Mode Rejection Ratio Supply Voltage Rejection Ratio} & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & 70 & 90 & & 70 & 90 & & dB \\
\hline & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & & 30 & 150 & & 30 & 150 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline \multirow[t]{3}{*}{Large Signal Voltage Gain
Output Voltage Swing} & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}\) & 15,000 & & & 15,000 & & & V/V \\
\hline & \(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\) & \(\pm 12\) & \(\pm 14\) & & \(\pm 12\) & \(\pm 14\) & & V \\
\hline & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) & \(\pm 10\) & \(\pm 13\) & & \(\pm 10\) & \(\pm 13\) & & V \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CURVES}


TRANSIENT RESPONSE
TEST CIRCUIT


ICL8013 Four Quadrant Analog Multiplier

\section*{FEATURES}
- Accuracy of \(\pm 0.5 \%\) (" \(A\) " version)
- Full \(\pm 10 \mathrm{~V}\) I/O voltage range
- 1 MHz bandwidth
- Uses standard \(\pm 15 \mathrm{~V}\) supplies
- Built in op amp provides level shifting, division and square root functions.

\section*{GENERAL DESCRIPTION}

The ICL8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the ICL8013 makes it ideal for all multiplier applications in control and instrumentation systems. Applications include RMS measuring equipment, frequency doublers, balanced modulators and demodulators, function generators, and systems process controls.

\section*{BLOCK DIAGRAM (MULTIPLIER)}


\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE & TEMPERATURE RANGE & \multicolumn{2}{|l|}{MULTIPLICATION
ERROR} & ORDER PART NUMBER \\
\hline ICL8013AM & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \(\pm .5 \%\) & & ICL8013AM TZ \\
\hline ICL8013B & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \(\pm 1 \%\) & MAX & ICL8013BM TZ \\
\hline ICL8013CM & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \(\pm 2 \%\) & & ICL8013CM TZ \\
\hline ICL8013AC & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(\pm .5 \%\) & & ICL8013AC TZ \\
\hline ICL8013BC & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(\pm 1 \%\) & MAX & ICL8013BC TZ \\
\hline ICL8013CC & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(\pm 2 \%\) & & ICL8013CC TZ \\
\hline DICE & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(\pm 2\) & & ICL8013C/D \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION}

(outline dwg TO-100)

ABSOLUTE MAXIMUM RATINGS
Supply Voltage ............................................ \(\pm 18 \mathrm{~V}\)
Power Dissipation (Note 1) ........................ 500 mW
Input Voltages (X, Y, Z, \(\mathrm{X}_{\mathrm{O}}, \mathrm{Y}_{\mathrm{O}}, \mathrm{Z}_{\mathrm{O}}\) )
Vsupp
Lead Temperature (soldering, 10 sec ) .............. \(300^{\circ} \mathrm{C}\)
Storage Temperature Range ............ \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)

NOTE 1: Derate at \(6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for operation at ambient temperature above \(75^{\circ} \mathrm{C}\).
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS}
(Unless otherwise specified \(T_{A}=25^{\circ} \mathrm{C}\), VSUPP \(= \pm 15 \mathrm{~V}\), Gain and Offset Potentiometers Externally Trimmed)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{ICL8013A} & \multicolumn{3}{|c|}{ICL8013B} & \multicolumn{3}{|c|}{ICL8013C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Multiplier Function & & & \[
\frac{X Y}{10}
\] & & & \[
\frac{X Y}{10}
\] & & & \(\frac{X Y}{10}\) & & \\
\hline Multiplication Error & \[
\begin{aligned}
& -10<X<10 \\
& -10<Y<10 \\
& \hline
\end{aligned}
\] & & & . 5 & & & 1.0 & & 2.0* & 2.0 & \% Full Scale \\
\hline Divider Function & & & \(\frac{102}{X}\) & & & \(\frac{102}{x}\) & & & \(\frac{10 Z}{X}\) & & \\
\hline Division Error & \[
\begin{aligned}
& x=-10 \\
& X=-1
\end{aligned}
\] & & \[
\begin{aligned}
& 0.3 \\
& 1.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.3 \\
& 1.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{|r|}
\hline 0.3 \\
\hline 1.5 \\
\hline
\end{array}
\] & & \% Full Scale \% Full Scale \\
\hline Feedthrough & \[
\begin{aligned}
& X=0 Y=20 V_{p-p} f=50 \mathrm{~Hz} \\
& Y=0 X=20 V_{p-p} f=50 \mathrm{~Hz}
\end{aligned}
\] & & & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & & & \[
\begin{aligned}
& 100 \\
& 100
\end{aligned}
\] & & \[
\begin{aligned}
& 200^{*} \\
& 150^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& m V_{p-p} \\
& m V_{p-p}
\end{aligned}
\] \\
\hline Nonlinearity X Input & \[
\begin{aligned}
& X=20 V_{p-p} \\
& Y= \pm 10 \mathrm{Vdc}
\end{aligned}
\] & & \(\pm 0.5\) & & & \(\pm 0.5\) & & & \(\pm 0.8\) & & \% \\
\hline Y Input & \[
\begin{aligned}
& Y=20 V_{p-p} \\
& X= \pm 10 V d c
\end{aligned}
\] & & \(\pm 0.2\) & & & \(\pm 0.2\) & & & \(\pm 0.3\) & & \% \\
\hline Frequency Response Small Signal Bandwidth ( -3 dB ) & & & 1.0 & & & 1.0 & & & 1.0 & & MHz \\
\hline Full Power Bandwidth & & & 750 & & & 750 & & & 750 & & kHz \\
\hline Slew Rate & & & 45 & & & 45 & & & 45 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline 1\% Amplitude Error & & & 75 & & & 75 & & & 75 & & kHz \\
\hline 1\% Vector Error
( \(0.5^{\circ}\) Phase Shift) & & & 5 & & & 5 & & & 5 & & kHz \\
\hline \[
\begin{aligned}
& \text { Settling Time } \\
& \text { (to } \pm 2 \% \text { of Final Value) }
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}\) & & 1 & & & 1 & & & 1 & & \(\mu \mathrm{S}\) \\
\hline Overload Recovery (to \(\pm 2 \%\) of Final Value) & & & 1 & & & 1 & & & 1 & & \(\mu \mathrm{s}\) \\
\hline Output Noise & \[
\begin{aligned}
& 5 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\
& 5 \mathrm{~Hz} \text { to } 5 \mathrm{MHz} \\
& \hline
\end{aligned}
\] & & \[
\begin{gathered}
0.6 \\
3 \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
0.6 \\
3 \\
\hline
\end{gathered}
\] & & & \[
\begin{gathered}
0.6 \\
3 \\
\hline
\end{gathered}
\] & & mV rms mV rms \\
\hline Input Resistance \(X\) Input & & & 10 & & & 10 & & & 10 & & \(\mathrm{M} \Omega\) \\
\hline Y Input & & & 6 & & & 6 & & & 6 & & \(\mathrm{M} \Omega\) \\
\hline \(Z\) Input & & & 36 & & & 36 & & & 36 & & \(\mathrm{k} \Omega\) \\
\hline Input Bias Current \(X\) or \(Y\) Input & & & 2 & 5 & & & 7.5 & & & 10 & \(\mu \mathrm{A}\) \\
\hline \(Z\) Input & & & 25 & & & 25 & & & 25 & & \(\mu \mathrm{A}\) \\
\hline Power Supply Variation Multiplication Error & & & 0.2 & & & 0.2 & & & 0.2 & & \%/\% \\
\hline Output Offset & & & & 50 & & & 75 & & & 100 & \(\mathrm{mV} / \mathrm{V}\) \\
\hline Scale Factor & & & 0.1 & & & 0.1 & & & 0.1 & & \%/\% \\
\hline Quiescent Current & & & 3.5 & 6.0 & & 3.5 & 6.0 & & 3.5 & 6.0 & mA \\
\hline
\end{tabular}

THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Multiplication Error & \[
\begin{aligned}
& -10<X<10, \\
& -10<Y<10
\end{aligned}
\] & 1.5 & & 2 & & 3 & & \% Full Scale \\
\hline Average Temperature Coefficient of Accuracy & & 0.06 & & 0.06 & & 0.06 & & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Output Offset & & 0.2 & & 0.2 & & 0.2 & & \(\mathrm{mV} i^{\circ} \mathrm{C}\) \\
\hline Scale Factor & & 0.04 & & 0.04 & & 0.04 & & \(\% /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current \(X\) or \(Y\) Input & & & 5 & & 5 & & 10 & \(\mu \mathrm{A}\) \\
\hline \(Z\) Input & & & 25 & & 25 & & 35 & \(\mu \mathrm{A}\) \\
\hline Input Voltage (X, Y, or Z) & & & \(\pm 10\) & & \(\pm 10\) & & \(\pm 10\) & V \\
\hline Output Voltage Swing & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \\
& \mathrm{CL}_{\mathrm{L}}<1000 \mathrm{pF}
\end{aligned}
\] & \(\pm 10\) & & \(\pm 10\) & & \(\pm 10\) & & V \\
\hline
\end{tabular}
*Dice only

\section*{ICL8013}

\section*{CIRCUIT DESCRIPTION}

The fundamental element of the ICL8013 multiplier is the bipolar differential amplifier of Figure 1.


Figure 1: Differential Amplifier
The small signal differential voltage gain of this circuit is given by
\[
A V=\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R_{L}}{r_{e}}
\]

Substituting \(r_{e}=\frac{1}{g_{m}}=\frac{k T}{q l_{E}}\)
\[
V_{\text {OUT }}=V_{I N} \frac{R_{L}}{r_{e}}=V_{I N} \bullet \frac{q_{E} R_{L}}{k T}
\]

The output voltage is thus proportional to the product of the input voltage \(\mathrm{V}_{\mathrm{IN}}\) and the emitter current IE. In the simple transconductance multiplier of Figure 2, a current source comprising \(Q_{3}, D_{1}\), and \(R_{Y}\) is used. If \(V_{Y}\) is large compared with the drop across \(D_{1}\), then
\[
\begin{aligned}
I_{D} & \simeq \frac{V_{Y}}{R_{Y}}=2 I_{E} \text { and } \\
V_{\text {OUT }} & =\frac{q R_{L}}{k T R_{Y}}\left(V_{X} \cdot V_{Y}\right)
\end{aligned}
\]


Figure 2: Transconductance Multiplier
There are several difficulties with this simple modulator:
1: \(V_{Y}\) must be positive and greater than \(V_{D}\)
2: Some portion of the signal at \(\mathrm{V}_{\mathrm{X}}\) will appear at the output unless \(I E=0\).
3: \(\mathrm{V}_{\mathrm{X}}\) must be a small signal for the differential pair to be linear.
4: The output voltage is not centered around ground.

The first problem relates to the method of convertinty the \(\mathrm{V}_{Y}\) voltage to a current to vary the gain of the \(V_{x}\) differential pair. A better method, Figure 3, uses another differential pair but with considerable emitter degeneration. In this circuit the differential input voltage appears across the common emitter resistor, producing a current which adds or subtracts from the quiescent current in either collector. This type of voltage to current converter handles signals from 0 volts to \(\pm 10\) volts with excellent linearity.


Figure 3: Voltage to Current Converter

The second problem is called feedthrough; i.e. the product of zero and some finite input signal does not produce zero output voltage. The circuit whose operation is illustrated by Figures 4A, B, and C overcomes this problem and forms the heart of many multiplier circuits in use today.
This circuit is basically two matched differential pairs with cross coupled collectors. Consider the case shown in 4A of exactly equal current sources biasing the two pairs. With a small positive signal at \(\mathrm{V}_{\mathbb{N}}\), the collector current of \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{4}\) will increase but the collector currents of \(Q_{2}\) and \(Q_{3}\) will decrease by the same amount. Since the collectors are cross coupled the current through the load, resistors remains unchanged and independent of the \(\mathrm{V}_{\mathrm{IN}}\) input voltage.


Figure 4A: Input Signal with Balanced Current Sources \(\Delta V\) OUT \(=0 \mathrm{~V}\)


Figure 4B: No Input Signal with Unbalanced Current Sources
\[
\Delta V_{\text {OUT }}=O V
\]

In Figure 4B, notice that with \(\mathrm{V}_{\mathrm{IN}}=0\) any variation in the ratio of biasing current sources will produce a common mode voltage across the load resistors. The differential output voltage will remain zero. In Figure 4C we apply a differential input voltage with unbalanced current sources. If \(\mathrm{I}_{\mathrm{E}}\) is twice \(l_{E 2}\), the gain of differential pair \(Q_{1}\) and \(Q_{2}\) is twice the gain of pair \(Q_{3}\) and \(Q_{4}\). Therefore, the change in cross coupled collector currents will be unequal and a differential output voltage will result. By replacing the separate biasing current sources with the voltage to current converter of Figure 3 we have a balanced multiplier circuit capable of four quadrant operation (Figure 5).


Figure 4C: Input Signal with Unbalanced Current Sources, Differential Output Voltage

This circuit of Fig. 5 still has the problem that the input voltage \(\mathrm{V}_{\mathbb{N}}\) must be small to keep the differential amplifier in the linear region. To be able to handle large signals, we need an amplitude compression circuit.


Figure 5: Typical Four Quadrant Multiplier-Modulator
Figure 3 showed a current source formed by relying on the matching characteristics of a diode and the emitter base junction of a transistor. Extension of this idea to a differential circuit is shown in Fig. 6A. In a differential pair, the input voltage splits the biasing current in a logarithmic ratio. (The usual assumption of linearity is useful only for small signals.) Since the input to the differential pair in Figure 6A is the

Figure 6A: Current Gain Cell


Figure 6B: Voltage Gain with Signal Compression
difference in voltage across the two diodes, which in turn is proportional to the log of the ratio of drive currents, it follows that the ratio of diode currents and the ratio of collector currents are linearly related and independent of amplitude. If we combine this circuit with the voltage to current converter of Fig. 3, we have Fig. 6B. The output of the differential amplifier is now proportional to the input voltage over a large dynamic range, thereby improving linearity while minimizing drift and noise factors.

The complete schematic is shown in Figure 7. The differential pair \(Q_{3}\) and \(Q_{4}\) form a voltage to current converter whose output is compressed in collector diodes \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\). These diodes drive the balanced cross-coupled differential amplifier \(Q_{7} / Q_{8} Q_{14} / Q_{15}\). The gain of these amplifiers is modulated by the voltage to current converter \(Q_{9}\) and \(Q_{10}\). Transistors \(Q_{5}, Q_{6}, Q_{11}\), and \(Q_{12}\) are constant current sources which bias the voltage to current converter. The output amplifier comprises transistors \(Q_{16}\) through \(Q_{27}\).


Figure 7: ICL8013 Schematic

\section*{MULTIPLICATION}

In the standard multiplier connection, the \(\mathbf{Z}\) terminal is connected to the op amp output. All of the modulator output current thus flows through the feedback resistor R27 and produces a proportional output voltage.


Figure 8A: Multiplier Block Diagram


Figure 8B: Actual Circuit Connection

\section*{MULTIPLIER Trimming Procedure}
1. Set \(X_{I N}=Y_{I N}=O V\) and adjust Zos for zero Output.
2. Apply a \(\pm 10 \mathrm{~V}\) low frequency ( \(\leq 100 \mathrm{~Hz}\) ) sweep (sine or triangle) to \(\mathrm{Y}_{1 \mathrm{~N}}\) with \(\mathrm{X}_{\mathrm{IN}}=0 \mathrm{~V}\), and adjust XO for minimum output.
3. Apply the sweep signal of Step 2 to \(X_{I N}\) with \(Y \mathbb{I N}=O V\) and adjust Yos for minimum Output.
4. Readjust \(Z_{O S}\) as in Step 1, if necessary.
5. With \(X_{I N}=10.0 \mathrm{~V} D C\) and the sweep signal of Step 2 applied to \(\mathrm{Y}_{\mathrm{IN}}\), adjust the Gain potentiometer for Output = Yin. This is easily accomplished with a differential scope plug-in \((A+B)\) by inverting one signal and adjusting Gain control for (Output \(-Y_{I N}\) ) = Zero.

\section*{DIVISION}

If the \(Z\) terminal is used as an input, and the output of the opamp connected to the \(Y\) input, the device functions as a divider. Since the input to the op-amp is at virtual ground, and requires negligible bias current, the overall feedback forces the modulator output current to equal the current produced by \(Z\).
\[
\begin{aligned}
& \text { Therefore } I_{0}=X \bullet Y=\frac{Z}{R}=10 Z \\
& \text { Since } Y=\text { EOUT, EOUT }=\frac{10 Z}{X}
\end{aligned}
\]

Note that when connected as a divider, the X input must be a negative voltage to maintain overall negative feedback.


Figure 9A: Division Block Diagram


Figure 9B: Actual Circuit Connection

\section*{DIVIDER Trimming Procedure}
1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and 10 (Xos, YOS, Zos) for zero volts.
2. With \(Z_{I N}=O V\), trim \(Z_{O S}\) to hold the Output constant, as \(X_{I N}\) is varied from -10 V through -1 V .
3. With \(\mathrm{Z}_{1 \mathrm{~N}}=0 \mathrm{~V}\) and \(\mathrm{X}_{\mathrm{IN}}=-10.0 \mathrm{~V}\) adjust \(\mathrm{Y}_{\mathrm{OS}}\) for zero Output voltage.
4. With \(Z_{\mathbb{I N}}=X_{\mathbb{I N}}\left(\right.\) and/or \(\left.Z_{\mathbb{I N}}=-X_{\mathbb{I N}}\right)\) adjust \(X_{O S}\) for minimum worst-case variation of Output, as \(\mathrm{XIN}_{\mathrm{IN}}\) is varied from -10 V to -1 V .
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With \(Z_{I N}=X_{I N}\) (and/or \(\left.Z_{I N}=-X_{I N}\right)\) adjust the gain control until the output is the closest average around +10.0 V \(\left(-10 \mathrm{~V}\right.\) for \(\left.\mathrm{Z}_{\mathrm{IN}}=-\mathrm{X}_{\mathrm{IN}}\right)\) as \(\mathrm{X}_{\mathrm{IN}}\) is varied from -10 V to -3 V .

\section*{SQUARING}

The squaring function is achieved by simply multiplying with the two inputs tied together. The squaring circuit may also be used as the basis for a frequency doubler since \(\cos ^{2} \omega=1 / 2\) \((\cos 2 \omega+1)\).


Figure 10A: Squarer Block Diagram


Figure 10B: Actual Circuit Connection

\section*{SQUARE ROOT}

Tying the \(X\) and \(Y\) inputs together and using overall feedback from the Op Amp results in the square root function. The output of the modulator is again forced to equal the current produced by the \(Z\) input.
\[
\begin{aligned}
& \mathrm{IO}=X \cdot Y=(- \text { EOUT })^{2}=10 Z \\
& \text { EOUT }=-\sqrt{10 Z}
\end{aligned}
\]

The output is a negative voltage which maintains overall negative feedback. A diode in series with the Op Amp output prevents the latchup that would otherwise occur for negative input voltages.



Figure 11B: Actual Circuit Connection

\section*{SQUARE ROOT Trimming Procedure}
1. Connect the ICL8013 in the Divider configuration.
2. Adjust Zos, Yos, XOS and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3. Convert to the Square Root configuration by connecting XIN to the Output and inserting a diode between Pin 4 and the Output node.
4. With \(Z_{\mathbb{N}}=0 V\) adjust \(Z o s\) for zero Output voltage.

\section*{ICL8013}

\section*{VARIABLE GAIN AMPLIFIER}

Most applications for the ICL8013 are straight forward variations of the simple arithmetic functions described above. Although the circuit description frequently disguises the fact, it has already been shown that the frequency doubler is nothing more than a squaring circuit. Similarly the variable gain amplifier is nothing more than a multiplier, with the input signal applied at the \(X\) input and the control voltage applied at the Y input.


Figure 12: Variable Gain Amplifier

TYPICAL APPLICATIONS


TYPICAL PERFORMANCE CURVES

AMPLITUDE AND PHASE AS
A FUNCTION OF FREQUENCY


NONLINEARITY AS A FUNCTION OF FREQUENCY


FEEDTHROUGH AS A FUNCTION OF FREQUENCY


\section*{DEFINITION OF TERMS}

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.
Feedthrough: With either input at zero, the output of an ideal multiplier should be zero regardless of the signal applied to
the other input. The output seen in a non-ideal multiplier is known as the feedthrough.
Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

\section*{FEATURES}
- \(130 \mathrm{~V} / \mu \mathrm{s}\) Slew Rate
- Fast Settling Time
- 50 nA Input Current
- 10 MHz Bandwidth
- Simple Frequency Compensation
- Short Circuit Protection

\section*{GENERAL DESCRIPTION}

The 8017 integrated circuit is a high speed inverting .amplifier combining excellent input characteristics with wide bandwidth and high slew rate. Frequency compensation is achieved with the minimum number of external components. The high slew rate and fast settling time ensure exceptional performance in high speed data acquisition circuits. Full power bandwidth of \(2 \mathrm{MHz}^{\text {makes the }}\) 8017 amplifier suitable for all applications where large amplitude, high frequency signals are encountered.

The 8017 is available in the military version, 8017 M , with a temperature range from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) and in the commercial version, 8017 C , from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).

\section*{SCHEMATIC DIAGRAM}


\section*{APPLICATIONS}
- High Speed Inverting Amplifier
- D/A Converter
- A/D Converter
- Pulse Amplifier
- Active Filter
- Sample and Hold Circuit
- Peak Detector

\section*{VOLTAGE OFFSET NULL CIRCUIT}


PIN CONFIGURATION


ORDERING INFORMATION


\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Operating Temperature Range
ICL8017M
ICL8017C
Storage Temperature Range
Lead Temperature ( 60 secs)
\(\pm 18 \mathrm{~V}\)
500 mW
\(\pm 30 \mathrm{~V}\)
\(\pm 15 \mathrm{~V}\)
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(300^{\circ} \mathrm{C}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ELECTRICAL CHARACTERISTICS \(\left(V_{S}= \pm 15 \mathrm{~V}\right)\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & \[
\begin{aligned}
& \text { 8017M } \\
& \text { TYP }
\end{aligned}
\] & MAX & MIN & \[
\begin{gathered}
\text { 8017C } \\
\text { TYP }
\end{gathered}
\] & MAX & UNITS \\
\hline \multicolumn{9}{|l|}{The following specifications apply for \(\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\) :} \\
\hline Input Offset Voltage & & & 2.0 & 5.0 & & 2.0 & 7.0 & \(m V\) \\
\hline Input Current & & & 50 & 200 & & 50 & 200 & nA \\
\hline Input Noise Voltage (rms) & 10 Hz to 1 MHz & & 20 & & & 20 & & \(\mu \mathrm{V}\) \\
\hline Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & 25 & 1000 & & 25 & 1000 & & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Resistance & & & 75 & & & 75 & & \(\Omega\) \\
\hline Output Short-Circuit Current & & & 25 & & & 25 & & mA \\
\hline Supply Current & \(V_{\text {OUT }}=0 \mathrm{~V}\) & & 5.0 & 7.0 & & 5.0 & 8.0 & mA \\
\hline Power Consumption & \(V_{\text {OUT }}=0 \mathrm{~V}\) & & 150 & 210 & & \(150^{\circ}\) & 240 & mW \\
\hline Slew Rate & \(\mathrm{R}_{\text {BW }}=20 \mathrm{k} \Omega\) & & 130 & & & 130 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Unity Gain Bandwidth (Note 3) & \(R_{B W}=20 \mathrm{k} \Omega\) & & 10 & & & 10 & & MHz \\
\hline Transient Response (Note 3) & Unity Gain, \(\mathrm{R}_{\text {BW }}=20 \mathrm{k} \Omega\) & & & & & & & \\
\hline Risetime & & & 30 & & & - 30 & & ns \\
\hline Overshoot & & & 5 & & & 5 & & \% \\
\hline Settling Time (0.1\%) (Note 3) & & & - 1.0 & & & 1.0 & & \(\mu \mathrm{s}\) \\
\hline (.01\%) (Note 3) & Unity Gain, \(\mathrm{R}_{\mathrm{BW}}=20 \mathrm{k} \Omega\) & & 3.5 & & & 3.5 & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

The following specifications apply for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+\mathbf{7 0 ^ { \circ }} \mathrm{C}\) (8017C), \(\mathbf{- 5 5 ^ { \circ }} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) (8017M):
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Input Offset Voltage & & & 6.0 & & 7.5 & mV \\
\hline Input Current & & & 500 & & 500 & \(n \mathrm{~A}\) \\
\hline Average Temperature Coefficient of Input Offset Voltage & \[
\begin{aligned}
& -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}
\end{aligned}
\] & & & & & \[
\begin{aligned}
& \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\
& \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline Large Signal Voltage Gain & & 15 & & 15 & & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing & \(R_{L}=2 \mathrm{k} \Omega\) & \(\pm 10\) & & \(\pm 10\) & & V \\
\hline Supply Voltage Rejection Ratio & & & 300 & & 300 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Supply Current & \(V_{\text {OUT }}=0 \mathrm{~V}\) & & 9.0 & & 9.0 & mA \\
\hline
\end{tabular}

NOTE 1: The maximum junction temperature of the 8017 M is \(150^{\circ} \mathrm{C}\), while that of the 8017 C is \(100^{\circ} \mathrm{C}\). For operating at elevared temperatures the package must be derated based on à thermal resistance of \(150^{\circ} \mathrm{C} / \mathrm{W}\), junction to ambient, or \(45^{\circ} \mathrm{C} / \mathrm{W}\), junction to case. Above \(100^{\circ} \mathrm{C}\) it may be necessary to use a heatsink with the 8017 M to avoid exceeding the maximum chip temperature.
NOTE 2: For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal, to the supply voltage.
NOTE 3: Circuit and compensation as in Figure 1.

TYPICAL PERFORMANCE CURVES*

\(\cdot 8017 \mathrm{C}\) only guaranteed for \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\)

\section*{DEFINITION OF TERMS}

Input Offset. Voltage: Voltage which must be applied to input terminal to obtain zero output voltage.
Input Current: Current into input terminal when at ground potential.
Large Signal Voltage Gain: The ratio of maximum output swing with load to the required change in input drive voltage.
Slew Rate: The maximum rate of change of output voltage in response to a large amplitude input pulse.

Unity Gain Bandwidth: The frequency at which the small signal gain is 3 dB below its low frequency value.

Transient Response: The \(10 \%\) to \(90 \%\) closed loop stepfunction response of the amplifier under small signal conditions.

Settling Time: The elapsed time between the application of a fast input pulse and the time at which the output has settled to its final value within a specified limit of accuracy.

\section*{APPLICATIONS INFORMATION}

Figure 1. Inverting Voltage Amplifier

\begin{tabular}{|c|c|c|c|c|c|}
\hline GAIN & R \(_{\mathbf{s}}\) & R \(_{\mathbf{t}}\) & R \(_{\text {BW }}\) & \begin{tabular}{c} 
BAND. \\
WIDTH
\end{tabular} & \begin{tabular}{c} 
SLEW \\
RATE
\end{tabular} \\
\hline \begin{tabular}{r}
\(1 \times\) \\
10 x \\
100 x
\end{tabular} & \begin{tabular}{r}
\(10 \mathrm{k} \Omega\) \\
\(10 \mathrm{k} \Omega\) \\
\(1 \mathrm{k} \Omega\)
\end{tabular} & \begin{tabular}{c}
\(10 \mathrm{k} \Omega\) \\
\(100 \mathrm{k} \Omega\) \\
\(100 \mathrm{k} \Omega\)
\end{tabular} & \begin{tabular}{r}
\(20 \mathrm{k} \Omega\) \\
\(2 \mathrm{k} \Omega\) \\
short
\end{tabular} & \begin{tabular}{r}
10 MHz \\
6 MHz \\
800 kHz
\end{tabular} & \begin{tabular}{c}
\(130 \mathrm{~V} / \mu \mathrm{s}\) \\
\(100 \mathrm{~V} / \mu \mathrm{s}\) \\
\(50 \mathrm{~V} / \mu \mathrm{s}\)
\end{tabular} \\
\hline
\end{tabular}

NOTE: If no bandwidth control resistor ( \(R_{B W}\) ) is connected between pins 3 and 4, the amplifier is unconditionally stable for normal feedback configurations. Some improvement in frequency performance can be realized by setting \(\mathbf{R}_{\mathrm{BW}}=20 \mathrm{k} \Omega\) the amplifier will still be unconditionally stable. However, for optimum frequency response, R \(\mathrm{BW}_{\mathrm{BW}}\) should be selected from the curve on page 3, based on the closed loop gain of the circuit. Additional control of the bandwidth/stability trade-off is possible by bypassing \(R_{f}\) with a low value capacitor. It is not necessary to alter the value of \(C_{1}, C_{2}\) or \(C_{3}\).

Figure 2. Current Summing Amplifier


NOTE: The analog output current of the 8018 Series D/A current switches can be converted to voltage using the 8017 as shown. Input compensation of approximately \(10 \mathrm{k} \Omega\) and 30 pF helps improve settling time.

Figure 3. Settling Time Measurement


NOTE: Settling time is measured by creating a dummy summing junction and observing the error voltage waveform on a scope. The junction is clamped with high speed diodes to avoid overdriving the scope preamp.

Figure 4. Isolation of Capacitive Loads


NOTE: Excess phase shift caused by heavy capacitive loading (above 200 to \(\mathbf{3 0 0} \mathrm{pF}\) ) can cause stability problems. By providing the amplifier with a minimum real load impedance ( \(51 \Omega\) ), these difficulties can be overcome. Note that at high output currents, maximum voltage swing will be reduced.

\section*{FEATURES}
- \(\Delta \mathrm{Vos}=3 \mathrm{mV}\) max (adjustable to zero).
- \(\pm 1 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\) Power Supply Operation.
- Power Consumption - \(20 \mu \mathrm{~W} @ \pm 1 \mathrm{~V}\).
- Input Bias Current - 30 nA max.
- Internal Compensation.
- Pin-For-Pin Compatible With 741.
- Short Circuit Protected.

\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage . . . . . . . . . . . . . . . . . . . . \(\pm 18 \mathrm{~V}\) Differential Input Voltage (Note 1). . . . . . . . . \(\pm 15 \mathrm{~V}\) Common Mode Input Voltage (Note 1) . . . . . . \(\pm 15 \mathrm{~V}\) Output Short Circuit Duration . . . . . . . . . Indefinite Power Dissipation (Note 2) . . . . . . . . . . . . 300 mW Operating Temperature Range


NOTE 1: For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Rating applies for case temperatures to \(+125^{\circ} \mathrm{C}\); derate linearly at \(5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(+95^{\circ} \mathrm{C}\).

\section*{SCHEMATIC DIAGRAM}


\section*{VOLTAGE OFFSET NULL CIRCUIT}


ORDERING INFORMATION


\section*{Operational Amplifiers}

\section*{GENERAL DESCRIPTION}

The Intersil 8021 integrated circuitis a low power operational amplifier specifically designed for applications requiring very low standby power consumption over a wide range of supply voltages. The electrical characteristics of the 8021 can be tailored to a particular application by adjusting an external resistor, \(\mathrm{R}_{\text {SET }}\), which controls the quiescent current. This is advantageous because \(I_{Q}\) can be made independent of the supply voltages: it can be set to an extremely low value where power is critical, or to a larger value for high slew rate or wideband applications.

Other features of the 8021 include low input current that remains constant with temperature, low noise, high input impedance, internal compensation and pin-for-pin compatibility with the 741.

The Intersil 8022 (8023) consists of two (three) low power operational amplifiers in a single 14 -pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, \(\mathrm{R}_{\mathrm{SET}}\), which controls the quiescent current of that amplifier.

\section*{PIN CONFIGURATIONS}


(outline dwg PA)
(outline dwg TY)
NOTE: Pin 4 connected to case.

(outline dwg JD, PD)

(outline dwg JE, PE)

ELECTRICAL CHARACTERISTICS \(\left(\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}\right.\), unless otherwise specified.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTICS} & \multirow{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{8021M} & \multicolumn{3}{|c|}{8021C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|l|}{The following specifications apply for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) :} \\
\hline Input Offset Voltage & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\) & & 2 & 3 & & 2 & 6 & mV \\
\hline Input Offset Current & & & . 5 & 7.5 & & . 7 & 10 & nA \\
\hline Input Bias Current & & & 5 & 20 & & 7 & 30 & nA \\
\hline Input Resistance & & 3 & 10 & & 3 & 10 & & \(\mathrm{M} \Omega\) \\
\hline Input Voltage Range & \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\) & \(\pm 12\) & \(\pm 13\) & & \(\pm 12\) & \(\pm 13\) & & \(\checkmark\) \\
\hline Common Mode Rejection Ratio & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & 70 & 80 & & 70 & 80 & & dB \\
\hline Supply Voltage Rejection Ratio & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & & 30 & 150 & & 30 & 150 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Output Resistance & Open Loop & & 2 & & & 2 & & \(k \Omega\) \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \(\mathrm{R}_{\mathrm{L}} \geq 20 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\) & \(\pm 12\) & \(\pm 14\) & & \(\pm 12\) & \(\pm 14\) & & V \\
\hline & \(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\) & \(\pm 11\) & \(\pm 13\) & & \(\pm 11\) & \(\pm 13\) & & V \\
\hline Output Short-Circuit Current & & & \(\pm 13\) & & & \(\pm 13\) & & mA \\
\hline Power Consumption & \(V_{\text {OUT }}=0\) & & 360 & 480 & & 360 & 600 & \(\mu \mathrm{W}\) \\
\hline Slew Rate (Unity Gain) & & & 0.16 & & & 0.16 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Unity Gain Bandwidth & \(\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=20 \mathrm{mV}\) & & 270 & & & 270 & & kHz \\
\hline \multicolumn{9}{|l|}{Transient Response (Unity} \\
\hline Gain) & \(\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=20 \mathrm{mV}\) & & & & & & & \\
\hline Risetime & & & 1.3 & & & 1.3 & & \(\mu \mathrm{s}\) \\
\hline Overshoot & & & 10 & & & 10 & & \% \\
\hline
\end{tabular}

The following specifications apply for \(0 \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\) (8021C) \(-55^{\circ} \mathrm{C}<+125 \mathrm{C}\) (8021M)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Input Offset Voltage & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & & 2.0 & 4.0 & & 2.0 & 7.5 & mV \\
\hline Input Offset Current & & & 1.0 & 11 & & 1.5 & 15 & nA \\
\hline Input Bias Current & & & 10 & 32 & & 15 & 50 & nA \\
\hline Average Temperature Coefficient of Input Offset Voltage & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & & 5 & & & 5 & & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Average Temperature Coefficient of Input Offset Current & & & 1.7 & & & 0.8 & & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 50 & 200 & & 50 & 200 & & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Output Voltage Swing & \(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\) & \(\pm 10\) & \(\pm 13\) & & \(\pm 10\) & \(\pm 13\) & & V \\
\hline
\end{tabular}

\section*{QUIESCENT CURRENT ADJUSTMENT}

QUIESCENT CURRENT SETTING RESISTOR
(PIN 8 TO \(\mathrm{V}^{-}\))
\begin{tabular}{|c|c|c|c|c|}
\hline\(V_{S}\) & 10 & \(10 \mu \mathrm{~A}\) & \(30 \mu \mathrm{~A}\) & \(100 \mu \mathrm{~A}\) \\
\hline\(\pm 1.5\) & 1.5 MS 2 & \(470 \mathrm{k} \Omega 2\) & \(150 \mathrm{k} \Omega\) & \\
\hline\(\pm 3\) & \(3.3 \mathrm{M} \Omega 2\) & \(1.1 \mathrm{M} \Omega 2\) & \(330 \mathrm{k} \Omega 2\) & \(100 \mathrm{k} \Omega 2\) \\
\hline\(\pm 6\) & \(7.5 \mathrm{M} \Omega\) & \(2.7 \mathrm{M} \Omega\) & \(750 \mathrm{k} \Omega\) & \(220 \mathrm{k} \Omega 2\) \\
\hline\(\pm 9\) & \(13 \mathrm{M} \Omega\) & \(4 \mathrm{M} \Omega\) & 13 MS 2 & \(350 \mathrm{ks} \Omega\) \\
\hline\(\pm 12\) & \(18 \mathrm{M} \Omega\) & 5.6 MS 2 & \(1.5 \mathrm{M} \Omega 2\) & \(510 \mathrm{ks} \Omega\) \\
\hline\(\pm 15\) & \(22 \mathrm{M} \Omega\) & \(7.5 \mathrm{MS} \Omega\) & \(2.2 \mathrm{M} \Omega\) & \(620 \mathrm{k} \Omega 2\) \\
\hline
\end{tabular}

QUIESCENT CURRENT
SETTING RESISTOR
(PIN 8 TO V-)

TYPICAL PERFORMANCE CURVES* ( \(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}\), unless otherwise specified.)


SLEW RATE VS
QUIESCENT CURRENT


OPEN-LOOP FREQUENCY RESPONSE

VS SUPPLY VOLTAGE


INPUT BIAS CURRENT VS AMBIENT TEMPERATURE


FREQUENCY RESPONSE VS QUIESCENT CURRENT


TRANSIENT RESPONSE


EQUIVALENT INPUT NOISE VOLTAGE VS FREQUENCY


DIFFERENTIAL INPUT MPEDANCE VS QUIESCENT CURRENT


PHASE MARGIN VS QUIESCENT CURRENT


MAXIMUM LOAD VS QUIESCENT CURRENT


EQUIVALENT INPUT NOISE CURRENT VS FREQUENCY


\section*{Precision Waveform Generator/Voltage Controlled Oscillator}

\section*{FEATURES}
- Low frequency drift with temperature - 50ppm/ \({ }^{\circ} \mathrm{C}\)
- Simultaneous sine, square, and triangle wave outputs
- Low distortion - 1\% (sine wave output)
- High linearity - 0.1\% (triangle wave output)
- Wide operating frequency range -0.001 Hz to 0.3 MHz
- Variable duty cycle - \(\mathbf{2 \%}\) to \(\mathbf{9 8 \%}\)
- High level outputs - TTL to \(\mathbf{2 8 V}\)
- Easy to use - just a handful of external components required

\section*{GENERAL DESCRIPTION}

The ICL8038 Waveform Generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from .001 Hz to more than 300 kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage. The ICL8038 is fabricated with advanced monolithic technology, using Schottky-barrier diodes and thin film resistors, and the output is stable over a wide range of temperature and supply variations. These devices may be interfaced with phase locked loop circuitry to reduce temperature drift to less than \(50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).


\section*{MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Supply Voltage & - or 36V Total \\
\hline Power Dissipation \({ }^{(1)}\) & 750 mW \\
\hline Input Voltage (any pin) & Not To Exceed Supply Voltages \\
\hline Input Current (Pins 4 and 5) & 25 mA \\
\hline Output Sink Current (Pins 3 and 9) & 25 mA \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range: & \\
\hline 8038AM, 8038BM & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline 8038AC, 8038BC, 8038CC & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 sec.\()\) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: Derate ceramic package at \(12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(100^{\circ} \mathrm{C}\).

\section*{ELECTRICAL CHARACTERISTICS}
(VSUPP \(= \pm 10 \mathrm{~V}\) or \(+20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), Test Circuit Unless Otherwise Specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{GENERAL CHARACTERISTICS} & \multicolumn{3}{|c|}{8038CC} & \multicolumn{3}{|c|}{8038BC(BM)} & \multicolumn{3}{|c|}{8038AC(AM)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline VSUPP & Supply Voltage Operating Range & & & & & & & & & & \\
\hline \(\mathrm{V}^{+}\) & Single Supply & +10 & & +30 & +10 & & 30 & +10 & & 30 & V \\
\hline \(\mathrm{V}^{+}, \mathrm{V}^{-}\) & Dual Supplies & \(\pm 5\) & & \(\pm 15\) & \(\pm 5\) & & \(\pm 15\) & \(\pm 5\) & & \(\pm 15\) & V \\
\hline ISUPP & Supply Current (VSUPP \(= \pm 10 \mathrm{~V})^{(2)}\) & & & & & & & & & & \\
\hline & 8038AM, 8038BM & & & & & 12 & 15 & & 12 & 15 & mA \\
\hline & 8038AC, 8038BC, 8038CC & & 12 & 20 & & 12 & 20 & & 12 & 20 & mA \\
\hline \multicolumn{12}{|l|}{FREQUENCY CHARACTERISTICS (all waveforms)} \\
\hline \(f_{\text {max }}\) & Maximum Frequency of Oscillation & 100,000 & & & 100,000 & & & 100,000 & & & Hz \\
\hline \multirow[t]{3}{*}{\(\mathrm{f}_{\text {sweep }}\)} & Sweep Frequency of FM & & 10 & & & 10 & & & 10 & & kHz \\
\hline & Sweep FM Range \({ }^{(3)}\) & & 35:1 & & & 35:1 & & & 35:1 & & \\
\hline & FM Linearity 10:1 Ratio & & 0.5 & & & 0.2 & & & 0.2 & & \% \\
\hline \multirow[t]{2}{*}{\(\Delta f / \Delta T\)} & Frequency Drift With Temperature \({ }^{(5)}\)
\[
+25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(+125^{\circ} \mathrm{C}\right)
\] & & 250 & & & & 150 & & & 80 & \multirow[b]{2}{*}{ppm \(/{ }^{\circ} \mathrm{C}\)} \\
\hline & \(0^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{C}\right)\) to \(+25^{\circ} \mathrm{C}\) & & 250 & & & & 200 & & & 120 & \\
\hline \(\Delta \mathrm{f} / \Delta \mathrm{V}\) & Frequency Drift With Supply Voltage (Over Supply Voltage Range) & & 0.05 & & & 0.05 & & & 0.05 & & \%/VSUPP \\
\hline & Recommended Programming Resistors ( \(R_{A}\) and \(R_{B}\) ) & 1000 & & 1M & 1000 & & 1M & 1000 & & 1M & \(\Omega\) \\
\hline \multicolumn{12}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline lolk & \begin{tabular}{l}
Square-Wave \\
Leakage Current ( \(\mathrm{V}_{9}=30 \mathrm{~V}\) )
\end{tabular} & & & 1 & & & 1 & & & 1 & \(\mu \mathrm{A}\) \\
\hline VSAT & Saturation Voltage ( \(\mathrm{ISINK}^{\text {a }}=2 \mathrm{~mA}\) ) & & 0.2 & 0.5 & & 0.2 & 0.4 & & 0.2 & 0.4 & V \\
\hline \(\mathrm{tr}_{r}\) & Rise Time ( \(\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega\) ) & & 180 & & & 180 & & & 180 & & ns \\
\hline \multirow[t]{4}{*}{\(\mathrm{t}_{\mathrm{f}}\)} & Fall Time ( \(\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega\) ) & & 40 & & & 40 & & & 40 & & ns \\
\hline & Duty Cycle Adjust & 2 & & 98 & 2 & & 98 & 2 & & 98 & \% \\
\hline & Triangle/Sawtooth/Ramp Amplitude \(\left(\mathrm{RTRI}^{\prime}=100 \mathrm{k} \Omega\right.\) ) & 0.30 & 0.33 & & 0.30 & 0.33 & & 0.30 & 0.33 & & xVSUPP \\
\hline & Linearity & & 0.1 & & & 0.05 & & & 0.05 & & \% \\
\hline \multirow[t]{4}{*}{Zout} & Output Impedance (lout \(=5 \mathrm{~mA}\) ) & & 200 & & & 200 & & & 200 & & \(\Omega\) \\
\hline & \begin{tabular}{l}
Sine-Wave \\
Amplitude (RsINE \(=100 \mathrm{k} \Omega\) )
\end{tabular} & 0.2 & 0.22 & & 0.2 & 0.22 & & 0.2 & 0.22 & & xVSUPP \\
\hline & THD (RS \(=1 \mathrm{M} \Omega)^{(4)}\) & & 2.0 & 5 & & 1.5 & 3 & & 1.0 & 1.5 & \% \\
\hline & THD Adjusted (Use Fig. 8b) & & 1.5 & & & 1.0 & & & 0.8 & & \% \\
\hline
\end{tabular}

TEST CONDITIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & \(\mathrm{R}_{\mathrm{A}}\) & \(\mathrm{R}_{\mathrm{B}}\) & \(\mathbf{R}_{\mathrm{L}}\) & \(\mathrm{C}_{1}\) & SW 1 & MEASURE \\
\hline Supply Current & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Current into Pin 6 \\
\hline Maximum Frequency of Oscillation & \(1 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega\) & \(4.7 \mathrm{k} \Omega\) & 100pf & Closed & Frequency at Pin 9 \\
\hline Sweep FM Range (1) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3nF & Open & Frequency at Pin 9 \\
\hline Frequency Drift with Temperature & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Frequency at Pin 9 \\
\hline Frequency Drift with Supply Voltage \({ }^{(2)}\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Frequency at Pin 9 \\
\hline Output Amplitude: Sine & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Pk-Pk Output at Pin 2 \\
\hline Triangle & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Pk-Pk output at Pin 3 \\
\hline Leakage Current (off)(3) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & & 3.3 nF & Closed & Current into Pin 9 \\
\hline Saturation Voltage (on) \({ }^{(3)}\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Output (low) at Pin 9 \\
\hline Rise and Fall Times & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(4.7 \mathrm{k} \Omega\) & 3.3 nF & Closed & Waveform at Pin 9 \\
\hline Duty Cycle Adjust: MAX & \(50 \mathrm{k} \Omega\) & \(\sim 1.6 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Waveform at Pin 9 \\
\hline \(\overline{\text { MIN }}\) & \(-25 \mathrm{k} \Omega\) & \(50 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3nF & Closed & Waveform at Pin 9 \\
\hline Triangle Waveform Linearity & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Waveform at Pin 3 \\
\hline Total Harmonic Distortion & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Waveform at Pin 2 \\
\hline
\end{tabular}

NOTE 1: The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 ( \(f_{h i}\) ) and then connecting pin 8 to pin 6 (flo). Otherwise apply Sweep Voltage at pin \(8\left(2 / 3 V_{\text {SUPP }}+2 \mathrm{~V}\right) \leq \mathrm{V}_{\text {SWEEP }} \leq \mathrm{V}_{\text {SUPP }}\) where \(\mathrm{V}_{\text {SUPP }}\) is the total supply voltage. In Fig. 2 , pin 8 should vary between 5.3 V and 10 V with respect to ground.
NOTE 2: \(10 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}\), or \(\pm 5 \mathrm{~V} \leq \mathrm{V}_{\text {SuPP }} \leq \pm 15 \mathrm{~V}\).
NOTE 3: Oscillation can be halted by forcing pin 10 to +5 volts or -5 volts.

\section*{DEFINITION OF TERMS:}

Supply Voltage (VSUPP): The total supply voltage from \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) Supply Current. The supply current required trom the power supply to operate the device, excluding load currents and the currents through \(R_{A}\) and \(R_{B}\).
Frequency Range. The frequency range at the square wave output through which circuit operation is guaranteed.
Sweep FM Range. The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to pin 8. For correct operation, the sweep voltage should be within the range
\[
\left(2 / 3 V_{\text {SUPP }}+2 V^{\prime}\right)<V_{\text {SWEEP }}-V_{\text {SUPP }}
\]

FM Linearity. The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve.
Output Amplitude. The peak-to-peak signal amplitude appearing at the outputs.
Saturation Voltage. The output voltage at the collector of \(Q_{23}\) when this transistor is turned on. It is measured for a sink current of 2 mA .
Rise and Fall Times. The time required for the square wave output to change from \(10 \%\) to \(90 \%\), or \(90 \%\) to \(10 \%\), of its final value.
Triangle Waveform Linearity. The percentage deviation from the best-fit straight line on the rising and falling triangle waveform.
Total Harmonic Distortion. The total harmonic distortion at the sinewave output.

\section*{TEST CIRCUIT}


TYPICAL PERFORMANCE CHARACTERISTICS




\section*{THEORY OF OPERATION (see block diagram, first page)}

An external capacitor \(C\) is charged and discharged by two current sources. Current source \#2 is switched on and off by a flip-flop, while current source \#1 is on continuously. Assuming that the flip-flop is in a state such that current source \#2 is off, and the capacitor is charged with a current \(I\), the voltage across the capacitor rises linearily with time. When this voltage reaches the level of comparator \#1 (set at \(2 / 3\) of the supply voltage), the flip-flop is triggered, changes states, and releases current source \#2. This current source normally carries a current 21 , thus the capacitor is discharged with a net-current I and the voltage across it drops linearly with time. When it has reached the level of comparator \#2 (set at \(1 / 3\) of the supply voltage), the flip-flop is triggered into its original state and the cycle starts again.

Four waveforms are readily obtainable from this basic generator circuit. With the current sources set at I and 21 respectively, the charge and discharge times are equal. Thus a triangle waveform is created across the capacitor and the flip-flop produces a square-wave. Both waveforms are fed to buffer stages and are available at pins 3 and 9 .
The levels of the current sources can, however, be selected over a wide range with two external resistors. Therefore, with the two currents set at values different from I and 21, an asymmetrical sawtooth appears at terminal 3 and pulses with a duty cycle from less than \(1 \%\) to greater than \(99 \%\) are available at terminal 9.
The sine-wave is created by feeding the triangle-wave into a non-linear network (sine-converter). This network provides a decreasing shunt-impedance as the potential of the triangle moves toward the two extremes.

Performance of the Square-Wave Output



Performance of Triangle-Wave Output



Performance of Sine-Wave Output



Square-Wave Duty Cycle - 50\%


Square-Wave Duty Cycle - 80\%

Phase Relationship of Waveforms

\section*{WAVEFORM TIMING}

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 1. Best results are obtained by keeping the timing resistors \(R_{A}\) and \(R_{B}\), separate (a). \(R_{A}\) controls the rising portion of the triangle and sine-wave and the 1 state of the square-wave.
The magnitude of the triangle-waveform is set at \(1 / 3\) VSUPP; therefore the rising portion of the triangle is,
\[
t_{1}=\frac{C \times V}{I}=\frac{C \times 1 / 3 \times V^{+} \times R_{A}}{1 / 5 \times V^{+}}=\frac{5}{3} R_{A} \times C
\]

The falling portion of the triangle and sine-wave and the 0 state of the square-wave is:
\[
t_{2}=\frac{C \times V}{1}=\frac{C \times 1 / 3 V^{+}}{\frac{2}{5} \times \frac{V_{\text {SUPP }}}{R_{B}}-\frac{1}{5} \times \frac{V_{S U P P}}{R_{A}}}=\frac{5}{3} \times \frac{R_{A} R_{B} C}{2 R_{A}-R_{B}}
\]

Thus a \(50 \%\) duty cycle is achieved when \(R_{A}=R_{B}\).
If the duty-cycle is to be varied over a small range about \(50 \%\) only, the connection shown in Figure 1b is slightly more convenient. If no adjustment of the duty cycle is desired, terminals 4 and 5 can be shorted together, as shown in Figure 1c. This connection, however, causes an inherently larger variation of the duty-cycle, frequency, etc.

With two separate timing resistors, the frequency is given by
\[
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{5}{3} R_{A} C\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}
\]
or, if \(R_{A}=R_{B}=R\)
\[
f=\frac{0.3}{R C}(\text { for Figure } 1 \mathrm{a})
\]

If a single timing resistor is used (Figure ic only), the frequency is
\[
f=\frac{0.15}{R C}
\]

Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the fact that both currents and thresholds are direct, linear functions of the supply voltage and thus their effects cancel.
To minimize sine-wave distortion the \(82 \mathrm{k} \Omega\) resistor between pins 11 and 12 is best made variable. With this arrangement distortion of less than \(1 \%\) is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 2; this configuration allows a typical reduction of sine-wave distortion close to \(0.5 \%\).
(a)

(b)

(c)


Figure 1: Possible Connections for the External Timing Resistors.


Figure 2: Connection to Achieve Minimum Sine-Wave Distortion.

\section*{SELECTING RA, RB AND C}

For any given output frequency, there is a wide range of \(R C\) combinations that will work, however certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than \(1 \mu \mathrm{~A}\) are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents (I \(>5 \mathrm{~mA}\) ), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will, therefore, be obtained with charging currents of \(10 \mu \mathrm{~A}\) to 1 mA . If pins 7 and 8 are shorted together, the magnitude of the charging current due to RA can be calculated from:
\[
I=\frac{R_{1} \times V_{\text {SUPP }}}{\left(R_{1}+R_{2}\right)} \times \frac{1}{R_{A}}=\frac{V_{\text {SUPP }}}{5 R_{A}}
\]

A similar calculation holds for \(R_{B}\).
The capacitor value should be chosen at the upper end of its possible range.

\section*{WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES}

The waveform generator can be operated either from a single power-supply ( 10 to 30 Volts) or a dual power-supply ( \(\pm 5\) to \(\pm 15\) Volts). With a single power-supply the average levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square-wave alternates between \(\mathrm{V}^{+}\) and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.
The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capability of the waveform generator ( 30 V ). In this way, the square-wave output can be made TTL compatible (load resistor connected to +5 Volts) while the waveform generator itself is powered from a much higher voltage.

\section*{FREQUENCY MODULATION AND SWEEPING}

The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from \(\mathrm{V}^{+}\)). By altering this voltage, frequency modulation is performed.
For small deviations (e.g. \(\pm 10 \%\) ) the modulating signal can be applied directly to pin 8, merely providing DC decoupling with a capacitor as shown in Figure 3a. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance from about \(8 \mathrm{k} \Omega\) (pins 7 and 8 connected together), to about ( \(\mathrm{R}+8 \mathrm{k} \Omega\) ).
For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 3b). In this way the entire bias for the current sources is created by the modulating signal, and a very large (e.g. 1000:1) sweep range is created ( \(f=0\) at \(\mathrm{V}_{\text {sweep }}=0\) ). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept down from \(\mathrm{V}^{+}\)by ( \(1 / 3 \mathrm{~V}\) SUPP -2 V ).
(a)

(b)


Figure 3: Connections for Frequency Modulation (a) and Sweep (b)

\section*{APPLICATIONS}


Figure 4: Sine Wave Output Buffer Amplifiers.
The sine wave output has a relatively high output impedance ( \(1 \mathrm{k} \Omega\) Typ). The circuit of Figure 4 provides buffering, gain and amplitude adjustment. A simple op amp follower could also be used.


Figure 5: Strobe-Tone Burst Generator.
With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the 8038 oscillation. Figure 5 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.


Figure 6: Variable Audio Oscillator, 20 Hz to 20 kHz .
To obtain a 1000:1 Sweep Range on the 8038 the voltage across external resistors \(R_{A}\) and \(R_{B}\) must decrease to nearly zero. This requires that the highest voltage on control Pin 8 exceed the voltage at the top of \(R_{A}\) and \(R_{B}\) by a few hundred millivolts.
The Circuit of Figure 6 achieves this by using a diode to lower the effective supply voltage on the 8038 . The large resistor on pin 5 helps reduce duty cycle variations with sweep.


Figure 7: Linear Voltage Controlled Osciilator
The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 7.

\section*{ICL8038}

\section*{USE IN PHASE-LOCKED LOOPS}

Its high frequency stability makes the ICL8038 an ideal building block for a phase-locked loop. In this application the remaining functional blocks, the phase-detector and the amplifier, can be formed by a number of available IC's (e.g. MC 4344, NE 562, HA 2800, HA 2820).
In order to match these building blocks to each other, two steps must be taken. First, two different supply voltages are used and the square wave output is returned to the supply of the phase detector. This assures that the VCO input voltage will not exceed the capabilities of the phase detector. If a smaller VCO signal is required, a simple resistive voltage divider is connected between pin 9 of the waveform generator and the VCO input of the phase-detector.

Second, the DC output level of the amplifier must be made compatible to the DC level required at the FM input of the waveform generator ( \(\operatorname{pin} 8,0.8 \times \mathrm{V}^{+}\)). The simplest solution here is to provide a voltage divider to \(\mathrm{V}^{+}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.\) as shown) if the amplifier has a lower output level, or to ground if its level is higher. The divider can be made part of the low-pass filter.
This application not only provides for a free-running frequency with very low temperature drift, but it also has the unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input.
For further information, see Intersil Application Bulletin A013, "Everything You Always Wanted to Know About The 8038."


Figure 8: Waveform Generator Used as Stable VCO in a Phase-Locked Loop

\section*{DETAILED SCHEMATIC}


FEATURES
- Very low input current - 2pA typ
- High slew rate - \(\mathbf{6 V} / \mu \mathrm{s}\)
- Internal frequency compensation
- Low power dissipation - 135mW typ
- Monolithic construction

\section*{GENERAL DESCRIPTION}

The ICL8043 contains two FET input op amps, each similar in performance to the ICL8007. The inputs and outputs are fully short circuit protected, and no latch-up problems exist. Offset nulling is accomplished by using a single pot (for each amplifier) connected to the positive supply voltage. The devices have excellent common mode rejection.

EQUIVALENT CIRCUIT (One Side)


OFFSET VOLTAGE NULL CIRCUIT


\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline TYPE & \begin{tabular}{c} 
ORDER \\
PART NUMBER
\end{tabular} & PACKAGE & \begin{tabular}{c} 
TEMPERATURE \\
RANGE
\end{tabular} \\
\hline 8043 M & ICL8043MJE & \begin{tabular}{c} 
Ceramic \\
16 Pin DIP
\end{tabular} & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline 8043 C & ICL8043CPE & \begin{tabular}{c} 
Plastic \\
16 Pin DIP
\end{tabular} & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline 8043 C & ICL8043CJE & \begin{tabular}{c} 
Ceramic \\
16 Pin DIP
\end{tabular} & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION}

16 PIN DIP (TOP VIEW)


ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline Supply Voltage & \(\pm 18 \mathrm{~V}\) \\
\hline Internal Power Dissipation (Note 1) & 500miN \\
\hline Differential Input Voltage & \(\pm 30 \mathrm{~V}\) \\
\hline Input Voltage (Note 2) & \(\pm 15 \mathrm{~V}\) \\
\hline Voltage between Offset Null and \(\mathrm{V}^{+}\) & \(\pm 0.5 \mathrm{~V}\) \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Operating Temperature Range & \\
\hline 8043M & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline 8043C & \(\ldots 0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 60 sec.\()\) & \(300^{\circ} \mathrm{C}\) \\
\hline Output Short-Circuit Duration & Indefinite \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTES:
1. Rating applies for case temperatures to \(125^{\circ} \mathrm{C}\); derate linearly at \(9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(+95^{\circ} \mathrm{C}\).
2. For supply voltages less than \(\pm 15 \mathrm{~V}\), the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS (Vsupp \(= \pm 15 \mathrm{~V}\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{8043M} & \multicolumn{3}{|c|}{8043C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & TYP. & MAX. & MIN. & TYP. & MAX. & \\
\hline \multicolumn{10}{|l|}{The following specifications apply for \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) :} \\
\hline Vos & Input Offset Voltage & RS \(<100 \mathrm{k} \Omega\) & & 10 & 20 & & 20 & 50 & mV \\
\hline los & Input Offset Current & & & 0.5 & & & 0.5 & & pA \\
\hline lin & Input Current (either input) & & & 2.0 & 20 & & 3.0 & 50 & pA \\
\hline Rin & Input Resistance & & & 106 & & & 106 & & \(\mathrm{M} \Omega\) \\
\hline Cin & Input Capacitance & & & 2.0 & & & 2.0 & & pF \\
\hline Av & Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}\) & 50,000 & & & 20,000 & & & V/V \\
\hline Ro & Output Resistance & & & 75 & & & 75 & & \(\Omega\) \\
\hline & Output Short-Circuit Current & & & 25 & & & 25 & & mA \\
\hline Isupp & Supply Current (Total) & & & 4.5 & 6 & & 4.5 & 6.8 & mA \\
\hline Pd & Power Consumption & & & 135 & 180 & & 135 & 204 & mW \\
\hline SR & Slew Rate & & & 6.0 & & & 6.0 & & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline GBW & Unity Gain Bandwidth & & & 1.0 & & & 1.0 & & MHz \\
\hline \(\mathrm{tr}_{r}\) & Transient Response (Unity Gain) & \(\mathrm{C}_{\mathrm{L}}<100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & & & & & & & \\
\hline & Risetime & & & 300 & & & 300 & & ns \\
\hline & Overshoot & & & 10 & & & 10 & & \% \\
\hline The follow & ng specifications apply for \(0^{\circ} \mathrm{C}<T\) & \(\mathrm{A}<+70^{\circ} \mathrm{C}(8043 \mathrm{C}),-55^{\circ}\) & \({ }^{\circ} \mathrm{C}\) - \(\mathrm{T}_{\text {A }}\) & \(+125^{\circ} \mathrm{C}\) & 043M) & & & & \\
\hline \(\Delta \mathrm{V}_{\text {IN }}\) & Input Voltage Range & & \(\pm 10\) & \(\pm 12\) & & \(\pm 10\) & \(\pm 12\) & & V \\
\hline CMRR & Common Mode Rejection Ratio & & 70 & 90 & & 70 & 90 & & dB \\
\hline PSRR & Supply Voltage Rejection Ratio & & & 70 & 300 & & 70 & 600 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Av & Large Signal Voltage Gain & & 25;000 & & & 15,000 & & & \(\mathrm{V} / \mathrm{v}\) \\
\hline \(\pm \mathrm{V}_{0}\) & Output Voltage Swing & \(\mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega\) & \(\pm 12\) & \(\pm 14\) & & \(\pm 12\) & \(\pm 14\) & & V \\
\hline & & \(\mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega\) & \(\pm 10\) & \(\pm 13\) & & \(\pm 10\) & \(\pm 13\) & & V \\
\hline Vos & Input Offset Voltage & & & 15 & 30 & & 30 & 60 & mV \\
\hline lin & Input Current (either input) & \(T_{\text {A }}=+125^{\circ} \mathrm{C}\) & & 2.0 & 15 & & & & nA \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\) & & & & & 50 & 175 & pA \\
\hline \(\Delta \mathrm{Vos} / \Delta T\) & Average Temperature Coefficient of Input Offset Voltage & & & & 75 & & & 75 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CURVES}

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY


TRANSIENT RESPONSE


OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE


TOTAL QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE


OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY


INPUT CURRENT AS A FUNCTION OF TEMPERATURE


INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE


INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY


VOLTAGE FOLLOWER LARGESIGNAL PULSE RESPONSE


OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE


QUIESCENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE


\section*{ICL8043}

\section*{CHANNEL SEPARATION}

Channel separation or crosstalk is measured using the circuit of Figure 1. One amplifier is driven so that its output swings \(\pm 10 \mathrm{~V}\); the signal amplitude seen in the other amplifier (referred to the input) is then measured. Typical performance is shown in Figure 2.
\[
\text { Channel Separation }=20 \log \left(\frac{V_{\mathrm{OUT}}(\mathrm{~A})}{\mathrm{V}_{\operatorname{IN}}(\mathrm{B})}\right)
\]


Figure 1


Figure 2

\section*{APPLICATIONS}

Applications for any dual amplifier fall into two categories. There are those which use the two-in-one package concept simply to save circuit-board space and cost, but more interesting are those circuits where the two sides of the dual are used to complement one another in a subsystem application. The circuits which follow have been selected on this basis.

\section*{AUTOMATIC OFFSET SUPPRESSION CIRCUIT}

The circuit shown in Figure 3 uses one amplifier ( \(\mathrm{A}_{1}\) ) as a normal gain stage, while the other ( \(\mathrm{A}_{2}\) ) forms part of an offset voltage zeroing loop. There are two modes of operation which occur sequentially; first, an offset null correction mode during which the offset voltage of \(A_{1}\) is nulled out.

Following this nulling operation, \(A_{1}\) is used as a normal amplifier while the voltage necessary to zero its offset voltage is stored on the integrator comprised of \(\mathrm{A}_{2}\) and \(\mathrm{C}_{1}\). The advantage of this circuit is that it allows chopper amplifier performance to be achieved at one-tenth the cost. The only limitation is that during the offset nulling mode, \(A_{1}\) is disconnected from the input. However, in most data acquisition systems, many inputs are scanned sequentially. It is fairly simple to synchronize the offset nulling operation so that it does not occur when that particular amplifier is being "looked at". For the component values shown in Figure 3, and assuming a total leakage of 50pA at the inverting input of \(A_{2}\), the offset voltage referred to the input of \(A_{1}\) will drift away from zero at only \(40 \mu \mathrm{~V} / \mathrm{sec}\). Thus, the offset nulling information stored on \(\mathrm{C}_{1}\) can be "refreshed" relatively infrequently. The measured offset voltage of \(A_{1}\) during the amplification mode was \(11 \mu \mathrm{~V}\); offset voltage drift with temperature was less than \(0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\).


Figure 3A. \({ }^{\text { }}\)

\section*{STAIRCASE GENERATOR}

The circuit shown in Figure 4 is a high input impedance version of the so-called "diode pump" or staircase generator. Note that charge transfer takes place at the negative-going edge of the input-signal.

The most common application for staircase generators is in low cost counters. By resetting the capacitor when the output reaches a predetermined level, the circuit may be made to count reliably up to a maximum of about 10. A straightforward circuit using a LM311 for the level detector, and a CMOS analog gate to discharge the capacitor, is shown in Figure 5. An important property of this type of
counter is the ease with which the count can be changed; it is only necessary to change the voltage at which the comparator trips. A low cost A-D converter can also be designed using the same principle since the digital count between reset periods is directly proportional to the analog voltage used as a reference for the comparator.
A considerable amount of hysteresis is used in the comparator shown in Figure 5. This ensures that the capacitor is completely discharged during the reset period. In a more sophisticated circuit, a dual comparator "window detector" could be used, the lower trip point set close to ground to assure complete discharge. The upper trip point could then be adjusted independently to determine the pulse count.


Figure 4


Figure 5

\section*{SAMPLE \& HOLD CIRCUIT}

Two important properties of the 8043 are used to advantage in this circuit. The low input bias currents give rise to slow output decay rates ("droop") in the hold mode, while the high slew rate \((6 \mathrm{~V} / \mu \mathrm{S})\) improves the tracking speed and the response time of the circuit. See Figure 6.
The ability of the circuit to track fast moving inputs is shown in Figure 7A. The upper waveform is the input ( \(10 \mathrm{~V} / \mathrm{div}\) ), the lower waveform the output ( \(5 \mathrm{~V} / \mathrm{div}\) ). The logic input is high.

Actual sample and hold waveforms are shown in-Figure 7B. The center waveform is the analog input, a ramp moving at about \(67 \mathrm{~V} / \mathrm{ms}\), the lower waveform is the logic input to the sample \& hold; a logic " 1 " initiates the sample mode. The upper waveform is the output, displaced by about 1 scope division (2V) from the input to avoid superimposing traces. The hold mode, during which the output remains canstant, is clearly visible. At the beginning of a sample period, the output takes about \(8 \mu \mathrm{sec}\) to catch up with the input, after which it tracks until the next hold period.


Figure 6


TOP: INPUT (10V/DIV)
BOTTOM: OUTPUT (5V/DIV)
HORIZONTAL: \(10 \mu \mathrm{~s} /\) DIV


TOP: 2V/DIV
CENTER: 2V/DIV
CENTER: 2 /DIV
BOTTOM: \(10 \mathrm{~V} / \mathrm{DIV}\)
HORIZONTAL: \(10 \mu \mathrm{~s} / \mathrm{DIV}\)

\section*{ICL8043}

INSTRUMENTATION AMPLIFIER

A dual FET input operational amplifier is an attractive component around which to build an instrumentation amplifier because of the high input resistance. The circuit shown in Figure 8 uses the popular triple op-amp approach. The output amplifier is a High Speed 741 ( 741 HS, slew rate guaranteed \(\geq 0.7 \mathrm{~V} / \mu \mathrm{s}\) ) so as to utilize the high slew rate of the 8043 to the maximum extent. Input resistance of the circuit (either input, regardless of gain configuration) is in excess of 1012 ohms.
For the component values shown, the overall amplifier gain is 200 (front end gain \(=\frac{2 R_{1}+R_{2}}{R_{2}}\), back end gain, \(=R_{6} / R_{4}\) ).

Common mode rejection is largely determined by the matching between \(R_{4}\) and \(R_{5}\), and \(R_{6}\) and \(R_{7}\). In applications where offset nulling is required, a single potentiometer can be connected as shown in Figure 9.

Another popular circuit is given in Figure 10. In this case the gain is \(1+R_{1} / R_{2}\), and the CMRR determined by the match between \(R_{1}\) and \(R_{4}, R_{2}\) and \(R_{3}\).

For more information on FET input operational amplifiers, see Intersil Application Bulletin A005 "The 8007: A High Performance FET-input Operational Amplifier."


Figure 8


Figure 10


Figure 9

\section*{CHIP TOPOGRAPHY}


ICL8048/8049 Monolithic Log Amplifierl Monolithic Antilog Amplifier

\section*{FEATURES}
- 1/2\% Full Scale Accuracy
- Temperature Compensated \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
- Scale Factor 1V/Decade, Adjustable
- 120 dB Dynamic Current Range (8048)
- 60 dB Dynamic Voltage Range (8048 \& 8049)
- Dual FET-Input Op-Amps

\section*{GENERAL DESCRIPTION}

The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature compensated and is nominally designed to provide 1 volt of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable.
The 8049 is the antilogarithmic counterpart of the 8048 ; it nominally generates one decade of output voltage for each 1 volt change at the input.

SCHEMATIC DIAGRAM (8048)


SCHEMATIC DIAGRAM (8049)


PIN CONFIGURATION
(outline dwgs JE, PE)


ABSOLUTE MAXIMUM RATINGS (8048) See note under 8049 Absolute Maximum Ratings.


\section*{OPERATING CHARACTERISTICS (8048)}
\(V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, I_{\text {REF }}=1 \mathrm{~mA}\), scale factor adjusted for \(1 \mathrm{~V} /\) decade unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{CONDITION} & \multicolumn{3}{|c|}{8048BC} & \multicolumn{3}{|c|}{8048CC} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN. & TYP. & MAX. & MIN. & TYP. & MAX. & \\
\hline \multicolumn{9}{|l|}{Dynamic Range} \\
\hline \(\operatorname{liN}(1 n A-1 m A)\) & & 120 & & & 120 & & & dB \\
\hline \(V_{\text {IN }}(10 \mathrm{mV}-10 \mathrm{~V})\) & \(R_{1 N}=10 \mathrm{k} \Omega\) & 60 & & & 60 & & & dB \\
\hline Error, \% of Full Scale & \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{1 \mathrm{~N}}=1 \mathrm{nA}\) to 1 mA & & . 20 & 0.5 & & . 25 & 1.0 & \% \\
\hline Error, \% of Full Scale & \[
\begin{aligned}
& \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\
& I_{\mathrm{IN}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA}
\end{aligned}
\] & & . 60 & 1.25 & & . 80 & 2.5 & \% \\
\hline Error, Absolute Value & \(T_{A}=25^{\circ} \mathrm{C}, I_{1 N}=1 \mathrm{nA}\) to 1 mA & & 12 & 30 & & 14 & 60 & mV \\
\hline Error, Absolute Value & \[
\begin{aligned}
& T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\
& I_{\mathrm{IN}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA}
\end{aligned}
\] & & 36 & 75 & & 50 & 150 & \(m V\) \\
\hline Temperature Coefficient of VOUT & \(1 \mathrm{IN}=1 \mathrm{nA}\) to 1 mA & & 0.8 & & & 0.8 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Power Supply Rejection Ratio & Referred to Output & & 2.5 & & & 2.5 & & \(m V / V\) \\
\hline Offset Voltage ( \(\mathrm{A}_{1}\) \& \(\mathrm{A}_{2}\) ) & Before Nulling & & 15 & 25 & & 15 & 50 & mV \\
\hline Wideband Noise & At Output, for \(I_{\text {IN }}=100 \mu \mathrm{~A}\) & & 250 & & & 250 & & \(\mu \vee\) (RMS) \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \(R_{L}=10 \mathrm{k} \Omega\) & \(\pm 12\) & \(\pm 14\) & & \(\pm 12\) & \(\pm 14\) & & \(v\) \\
\hline & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & \(\pm 10\) & \(\pm 13\) & & \(\pm 10\) & \(\pm 13\) & & V \\
\hline Power Consumption , & & & 150 & 200 & & 150 & 200 & mW \\
\hline Supply Current & & & 5 & 6.7 & & 5 & 6.7 & mA \\
\hline
\end{tabular}


ABSOLUTE MAXIMUM RATINGS (8049)
Supply Voltage . . . . . . . . . . . . . . . . . . . . . \(\pm 18 \mathrm{~V}\)
VIN (Input Voltage) . . . . . . . . . . . . . . . . . . \(\pm 15 \mathrm{~V}\)
IREF (Reference Current) . . . . . . . . . . . . . . 2 mA
Voltage between Offset Null and \(\mathrm{V}^{+}\). . . . . . . . \(\pm 0.5 \mathrm{~V}\)
Power Dissipation. . . . . . . . . . . . . . . . . . . 750 mW

Operating Temperature Range. . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) Output Short Circuit Duration . . . . . . . . . . Indefinite Storage Temperature Range . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) Lead Temperature (Soldering, 60 sec .) \(300^{\circ} \mathrm{C}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS (8049)
\(V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, 1_{\text {REF }}=1 \mathrm{~mA}\), scale factor adjusted for 1 decade (out) per volt (in), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PARAMETER & CONDITION & MIN. & \[
\begin{gathered}
\text { 8049BC } \\
\text { TYP. }
\end{gathered}
\] & MAX. & MIN. & \[
\begin{gathered}
\text { 8049CC } \\
\text { TYP. }
\end{gathered}
\] & MAX. & UNITS \\
\hline Dynamic Range ( \(\mathrm{V}_{\text {OUT }}\) ) & \(V_{\text {OUT }}=10 \mathrm{mV}\) to 10 V & 60 & & & 60 & & & dB \\
\hline Error, Absolute Value & \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}, 0 \mathrm{~V} \leq \mathrm{V}_{1 N} \leq 3 \mathrm{~V}\) & & 3 & 10 & & 5 & 25 & \(m V\) \\
\hline Error, Absolute Value & \[
\begin{aligned}
& T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\
& O V \leq V_{I N} \leq 3 V
\end{aligned}
\] & & 20 & 75 & & 30 & 150 & \(m V\) \\
\hline Temperature Coefficient, Referred to \(\mathrm{V}_{\text {IN }}\) & \(V_{\text {IN }}=3 \mathrm{~V}\) & & 0.38 & & & 0.55 & & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Power Supply Rejection Ratio & Referred to Input, for
\[
V_{I N}=0 V
\] & & 2.0 & & & 2.0 & & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Offset Voltage ( \(A_{1}\) \& \(\left.A_{2}\right)\) & Before Nulling & & 15 & 25 & & 15 & 50 & \(m V\) \\
\hline Wideband Noise & Referred to Input, for \(V_{\text {IN }}=O V\) & & 26 & & & 26 & & \(\mu \vee\) (RMS) \\
\hline Output Voltage Swing & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(\pm 12\) & \(\pm 14\) & & \(\pm 12\) & \(\pm 14\) & & V \\
\hline & \(R_{L}=2 \mathrm{k} \Omega\) & \(\pm 10\) & \(\pm 13\) & & \(\pm 10\) & \(\pm 13\) & & \(V\) \\
\hline Power Consumption & & & 150 & 200 & & 150 & 200 & mW \\
\hline Supply Current & & & 5 & 6.7 & & 5 & 6.7 & mA \\
\hline
\end{tabular}


\section*{THEORY OF OPERATION}

The 8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor:
\[
\begin{equation*}
I C=I S\left[e^{q V_{B E} / k T}-1\right] \tag{1}
\end{equation*}
\]

For base-emitter voltages greater than 100 mV , Eq. (1) becomes
\[
\begin{equation*}
I_{C}=I_{S} e^{q V_{B E} / k T} \tag{2}
\end{equation*}
\]

From Eq. (2), it can be'shown that for two identical transistors operating at different collector currents, the \(V_{B E}\) difference ( \(\triangle V_{B E}\) ) is given by:
\[
\begin{equation*}
\Delta V_{B E}=-2.303 \times \frac{k T}{q} \log 10\left[\mathrm{I}_{\mathrm{C} 1} / \mathrm{I}_{\mathrm{C} 2}\right] \tag{3}
\end{equation*}
\]

Referring to Fig. 1, it is clear that the potential at the collector of \(\mathrm{Q}_{2}\) is equal to the \(\Delta \mathrm{V}_{\mathrm{BE}}\) between \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\). The output voltage is \(\Delta V_{B E}\) multiplied by the gain of \(A_{2}\) :
\[
\begin{equation*}
V_{\text {OUT }}=-2.303\left(\frac{R_{1}+R_{2}}{R_{2}}\right)\left(\frac{k T}{q}\right) \log 10\left[I_{\text {IN }} / I_{R E F}\right](4 \tag{4}
\end{equation*}
\]

The expression \(2.303 \times \frac{\mathrm{kT}}{\mathrm{q}}\) has a numerical value of 59 mV at \(25^{\circ} \mathrm{C}\); thus in order to generate 1 volt/decade at the output, the ratio ( \(R_{1}+R_{2}\) )/R2 is chosen to be 16.9. For this scale factor to hold constant as a function of temperature, the \(\left(R_{1}+R_{2}\right) / R_{2}\) term must have a \(1 / T\) characteristic to compensate for \(\mathrm{kT} / \mathrm{q}\).

In the 8048 this is achieved by making \(\mathrm{R}_{1}\) a thin film resistor, deposited on the monolithic chip. It has a nominal value of \(15.9 \mathrm{k} \Omega\) at \(25^{\circ} \mathrm{C}\), and its temperature coefficient is
carefully designed to provide the necessary compensation. Resistor \(\mathbf{R}_{\mathbf{2}}\) is external and should be a low T.C. type; it should have a nominal value of \(1 \mathrm{k} \Omega\) to provide 1 volt/ decade, and must have an adjustment range of \(\pm 20 \%\) to allow for production variations in the absolute value of \(\mathbf{R}_{\mathbf{1}}\).

\section*{OFFSET AND SCALE FACTOR ADJUSTMENT*}

A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves \(\mathrm{Q}_{1}\) of collector current and open the feedback loop around \(A_{1}\). Instead, it is necessary to zero the offset voltage of \(A_{1}\) and \(A_{2}\) separately, and then to adjust the scale factor. Referring to Fig. 1, this is done as follows:
1) Temporarily connect a \(10 \mathrm{k} \Omega\) resistor ( \(\mathrm{R}_{0}\) ) between pins 2 and 7. With no input voltage, adjust \(R_{4}\) until the output of \(\mathbf{A}_{1}\) (pin 7) is zero. Remove \(\mathbf{R}_{\mathbf{0}}\).
Note that for a current input, this adjustment is not necessary since the offset voltage of \(A_{1}\) does not cause any error for current-source inputs.
2) Set \(I_{I N}=I_{\text {REF }}=1 \mathrm{~mA}\). Adjust \(R_{5}\) such that the output of \(A_{2}(\operatorname{pin} 10)\) is zero.
3) Set \(\operatorname{IIN}=1 \mu \mathrm{~A}\), IREF \(=1 \mathrm{~mA}\). Adjust \(R_{2}\) for \(V_{\text {OUT }}=3\) volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor).
Step \#3 determines the scale factor. Setting \(I_{I N}=1 \mu \mathrm{~A}\) optimizes the scale factor adjustment over a fairly wide dynamic range, from 1 mA to 1 nA . Clearly, if the 8048 is to be used for inputs which only span the range \(100 \mu \mathrm{~A}\) to 1 mA , it would be better to set \(I_{I N}=100 \mu \mathrm{~A}\) in Step \#3. Similarly, adjustment for other scale factors would require different IIN and VOUT values.
*See A053 for an automatic offset nulling circuit.


FIGURE 1. ICL8048 OFFSET AND SCALE FACTOR ADJUSTMENT

\section*{THEORY OF OPERATION}

The 8049 relies on the same logarithmic properties of the transistor as the 8048 . The input voltage forces a specific \(\Delta V_{B E}\) between \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\) (Fig. 2). This \(\mathrm{V}_{\mathrm{BE}}\) difference is converted into a difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on Page 3 and is as follows:
\[
\begin{equation*}
{ }^{1} C_{1} / I_{C_{2}}=\exp \left[q \Delta V_{B E} / k T\right] \tag{5}
\end{equation*}
\]

When numerical values for \(q / k T\) are put into this equation, it is found that a \(\Delta V_{B E}\) of 59 mV (at \(25^{\circ} \mathrm{C}\) ) is required to change the collector current ratio by a factor of ten. But for ease of application, it is desirable that a 1 volt change at the input generate a tenfold change at the output. The required input attenuation is achieved by the network comprising \(\mathbf{R}_{\mathbf{1}}\) and \(\mathbf{R}_{\mathbf{2}}\). In order that scale factors other than one decade per volt may be selected, \(\mathbf{R}_{\mathbf{2}}\) is external to the chip. It should have a value of \(1 \mathrm{k} \Omega\), adjustable \(\pm 20 \%\), for one decade per volt. \(R_{1}\) is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5, as explained on Page 3.

The overall transfer function is as follows:
\[
\begin{equation*}
\text { IOUT } / I_{\text {REF }}=\exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right] \tag{6}
\end{equation*}
\]

Substituting VOUT \(=\) IOUT \(\times\) ROUT gives:
\(V_{\text {OUT }}=\) ROUT \(^{\prime} I_{\text {REF }} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right]\)

For voltage references equation 7 becomes
\[
\begin{equation*}
V_{\text {OUT }}=V_{\text {REF }} \times \frac{R_{\text {OUT }}}{R_{\text {REF }}} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right.} \times \frac{q V_{I N}}{k T}\right] \tag{8}
\end{equation*}
\]

\section*{OFFSET AND SCALE FACTOR ADJUSTMENT*}

As with the log amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of \(A_{2}\). This is accomplished by reverse biasing the base-emitter of \(\mathbf{O}_{2} . A_{2}\) then operates as a unity gain buffer with a grounded input. The second step forces \(\mathrm{V}_{\mathrm{IN}}=0\); the output is adjusted for VOUT \(=10 \mathrm{~V}\). This step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Fig. 2, the exact procedure for 1 decade/volt is as follows:
1) Connect the input (pin \#16) to +15V. This reverse biases the base-emitter of \(\mathbf{Q}_{2}\). Adjust \(\mathrm{R}_{7}\) for \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\). Disconnect the input from +15 V .
2) Connect the input to Ground. Adjust R4 for \(V_{\text {OUT }}=10 \mathrm{~V}\). Disconnect the input from Ground.
3) Connect the input to a precise 2 V supply and adjust \(R_{2}\) for \(V_{\text {OUT }}=100 \mathrm{mV}\).

The procedure outlined above optimizes the performance over a 3 decade range at the output (i. e., VOUT fromf 10 mV to 10 V ). For a more limited range of output voltages, for example 1 V to 10 V , it would be better to use a precise 1 volt supply and adjust for VOUT \(=1 \mathrm{~V}\). For other scale factors and/or starting points, different values for \(\mathrm{R}_{2}\) and RREF will be needed, but the same basic procedure applies.
*See A053 for an automatic offset nulling circuit.


FIGURE 2. ICL8049 OFFSET AND SCALE FACTOR ADJUSTMENT

\section*{APPLICATIONS INFORMATION}

\section*{Scale Factor Adjustment}

The scale factor adjustment procedures outlined on Page 3 (8048) and Page 5 (8049) are primarily directed towards setting up 1 volt ( \(\Delta V_{\text {OUT }}\) ) per decade ( \(\Delta_{I} \mathrm{IN}\) or \(\Delta V_{I N}\) ) for the log amp, or one decade ( \(\Delta V_{O U T}\) ) per volt \(\left(\Delta V_{\text {IN }}\right)\) for the antilog amp.

This corresponds to \(K=1\) in the respective transfer functions:


Antilog Amp: VOUT \(=\) ROUT IREF \(10^{-\mathrm{V}}\) IN \(/ \mathrm{K}\)

By adjusting \(R_{2}\) (Fig. 1 and Fig. 2) the scale factor " \(K\) " in equation 9 and 10 can be varied. The effect of changing \(K\) is shown graphically in Fig. 3 for the log amp, and Fig. 4 for the antilog amp. The nominal value of \(R_{2}\) required to give a specific value of \(K\) can be determined from equation 11. It should be remembered that \(R_{1}\) has a \(\pm 20 \%\) tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of \(\mathbf{R}_{\mathbf{2}}\) by \(\pm 20 \%\).
\[
\begin{equation*}
R_{2}=\frac{941}{(K-.059)} \Omega \tag{11}
\end{equation*}
\]

figure 3

\section*{EFFECT OF VARYING "K" ON} THE ANTILOG AMPLIFIER


FIGURE 4

\section*{Frequency Compensation}

Although the op-amps in both the 8048 and the 8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the 8048, 150 pF should be connected between Pins 2 and 7 (Fig. 1). In the 8049, 200 pF between Pins 3 and 7 is recommended (Fig. 2).

\section*{Error Analysis}

Performing a meaningful error analysis of a circuit containing \(\log\) and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/ antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given on Pages 2 and 4.

The various error terms in the log amplifier, the 8048, are Referred To the Output (RTO) of the device. The error terms in the antilog amplifier, the 8049, are Referred To the Input (RTI) of the device. The errors are expressed in this way because in the majority of systems a number of \(\log\) amps interface with an antilog amp, as shown in Fig. 5.


FIGURE 5

It is very straightforward to estimate the system error at node ( \(A\) ) by taking the square root of the sum-of-the squares of the errors of each contributing block.
\[
\text { Total Error }=\sqrt{x^{2}+y^{2}+z^{2}} \text { at }(A)
\]

If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain plot on Page 4.

The numerical values of \(x, y\), and \(z\) in the above equation are obtained from the maximum error voltage plots given on Pages 2 and 4. For example, with the \(8048 B C\), the maximum error at the output is 30 mV at \(25^{\circ} \mathrm{C}\). This means that the measured output will be within 30 mV of the theoretical transfer function, provided the unit has been adjusted per the procedures on Page 3. Fig. 6 illustrates this point.

To determine the maximum error over the operating temperature range, the 0 to \(70^{\circ} \mathrm{C}\) absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the \(25^{\circ} \mathrm{C}\) value and the \(70^{\circ} \mathrm{C}\) value.

For the antilog amplifier, the only difference is that the error refers to the input, i. e., the horizontal axis. It will be noticed that the maximum error voltage of the 8049 , over the temperature range, is strongly dependent on the input voltage. This is because the output amplifier, \(A_{2}\), has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At VIN \(=3 \mathrm{~V}\), for example, errors at the output are multiplied by \(1 / .023(=43.5)\) when referred to the input.

It is important to note that both the 8048 and the 8049 require positive values of \(\mathrm{I}_{\text {REF }}\), and the input (8048) or output (8049) currents (or voltages) respectively must also be positive. Application of negative \(\mathrm{I}_{\mathrm{N}}\) to the 8048 or negative \(I_{\text {REF }}\) to either circuit will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.


\section*{SETTING UP THE REFERENCE CURRENT}

In both the 8048 and the 8049 the input current reference pin (IREF) is not a true virtual ground. For the 8048, a fraction of the output voltage is seen on Pin 16 (Fig. 1). This does not constitute an appreciable error provided \(V_{\text {REF }}\) is much greater than this voltage. A 10 V or 15 V reference satisfies this condition. For the 8049, a fraction of the input voltage appears on Pin 3 (Fig. 2), placing a similar restraint on the value of \(V_{\text {REF }}\).
Alternatively, IREF can be provided from a true current source. One method of implementing such a current source is shown in Fig. 7.

\section*{LOG OF RATIO CIRCUIT, DIVISION}

The 8048 may be used to generate the log of a ratio by modulating the IREF input. The transfer function remains the same, as defined by equation 9 :
\[
\begin{equation*}
V_{\text {OUT }}=-K \log _{10}\left[I / N / I_{\text {REF }}\right] \tag{9}
\end{equation*}
\]

Clearly it is possible to perform division using just one 8048, followed by an 8049. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp.
To avoid the problems caused by the IREF input not being a true virtual ground (discussed in the previous section), the circuit of Fig. 7 is again recommended if the IREF input is to be modulated.

\section*{APPLICATION NOTES}

For further applications assistance, see
A007 "The ICL8048/8049 Monolithic Log-Antilog Amplifiers", by Ray Hendry


FIGURE 7

\section*{ICL8048/8049}

\section*{DEFINITION OF TERMS}

In the definitions which follow, it will be noted that the various error terms are referred to the output of the log

DYNAMIC RANGE The dynamic range of the 8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the 8049 the dynamic range refers to the range of output voltages over which the device is guaranteed to operate.
ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined on Pages 3 (8048) or 5 (8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the 8048, it is a measure of the deviation from the theoretical output voltage for a given input current or voltage. For the 8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage.

The absolute error specification is guaranteed over the dynamic range.

ERROR, \% OF FULLSCALE The error as a percentage of full scale can be obtained from the following relationship:
\[
\text { Error, } \% \text { of Full Scale }=\frac{100 \times \text { Error, absolute value }}{\text { Full Scale Output Voltage }}
\]
amp, and to the input of the antilog amp. The reason for this is explained on Page 6.
temperature coefficient of Vout or Vin for the 8048 the temperature coefficient refers to the drift with temperature of VOUT for a constant input current.

For the 8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT.

POWER SUPPLY REJECTION RATIO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the 8048, VIN for the 8049) to the change in the supply voltage, assuming that the log axis is held constant.

WIDEBAND NOISE For the 8048, this is the noise occurring at the output under the specified conditions. In the case of the 8049, the noise is referred to the input.

SCALE FACTOR For the log amp, the scale factor \((K)\) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10.

ORDERING INFORMATION
\begin{tabular}{|llccc|}
\hline TYPE & PACKAGE & \begin{tabular}{c} 
MAX. ABSOLUTE \\
ERROR \(\left(255^{\circ} \mathrm{C}\right)\)
\end{tabular} & TEMPERATURE RANGE & ORDER PART NUMBER \\
\hline 8048 BC & 16 Pin CERDIP & 30 mV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL 8048 BC JE \\
8048 BC & 16 Pin Plastic DIP & 30 mV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL 8048 BC PE \\
8048 CC & 16 Pin CERDIP & 60 mV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL 8048 CC JE \\
8048 CC & 16 Pin Plastic DIP & 60 mV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL 8048 CC PE \\
8049 BC & 16 Pin CERDIP & 10 mV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL 8049 BC JE \\
8049 BC & 16 Pin Plastic DIP & 10 mV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL 8049 BC PE \\
8049 CC & 16 Pin CERDIP & 25 mV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL 8049 CC JE \\
8049 CC & 16 Pin Plastic DIP & 25 mV & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL 8049 CC PE \\
\hline
\end{tabular}

\section*{FEATURES:}
- Converts \(\pm 12 \mathrm{~V}\) Outputs from Op Amps and other linear functions to \(\pm 30 \mathrm{~V}\) levels
- When used in conjunction with general-purpose op amps and external complementary power. transistors, system can deliver > \(\mathbf{5 0}\) Watts to external loads
- Has built-in Safe Area Protection and short-circuit protection
- Produces 25mA quiescent current in power amp configuration while delivering \(\pm 2\) Amps output current
- Has built in \(\pm 13 \mathrm{~V}\) Regulators to power op amps or other external functions
\(500 \mathrm{k} \Omega\) input impedance with RBIAS \(=1 \mathrm{M} \Omega\)

\section*{GENERAL DESCRIPTION}

The ICL8063 is a unique monolithic power transistor driver and amplifier that allows construction of minimum chip power amplifier systems, complete with built in safe operating area circuitry, short circuit protection and voltage regulators. It is primarily intended for complementary symmetrical outputs.

Designed to operate with all varieties of operational amplifiers and other functions, two external power transistors of any construction technique, and 8 to 10 passive components, the ICL8063 is ideal for use in such applications as linear and rotary actuator drivers, stepper motor drivers, servo motor drivers, power supplies, power DACs and electronically controlled orifices.

The ICL8063 takes the outpi ievels (typically \(\pm 11 \mathrm{~V}\) ) from an op amp and boosts them to \(\pm 30 \mathrm{~V}\) to drive power transistors, (e.g. 2N3055 (NPN) and 2N3789 (PNP)). The outputs from the ICL8063 supply up to 100 mA to the base leads of the external power transistors.

This amplifier-driver contains internal positive and negative regulators, to drive an op amp or numerous other functions; thus, only \(\pm 30 \mathrm{~V}\) supplies are needed for a complete power amp.

The ICL8063 provides built-in power supplies and will operate from inputs generated by most of the op amps in use today-regardless of technology-as well as many other linear functions, such as timers, comparators and waveform generators. And it will drive almost all power transistors with breakdown voltages up to 70 volts.

\section*{PIN CONFIGURATION}


ORDERING INFORMATION
\begin{tabular}{|l|l|}
\hline ICL8063MJE & - CERDIP, \(-55^{\circ} \mathrm{C} \mathrm{TO} 125^{\circ} \mathrm{C}\) \\
\hline ICL8063CJE & - CERDIP, \(0^{\circ} \mathrm{C} \mathrm{TO}+70^{\circ} \mathrm{C}\) \\
\hline ICL8063CPE & - PLASTIC DIP, \(0^{\circ} \mathrm{C} \mathrm{TO} 70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{SCHEMATIC DIAGRAM}


ABSOLUTE MAXIMUM RATINGS \(@ T_{A}=25^{\circ} \mathrm{C}\)
Supply Voltage .......................................................................... \(\pm 35 \mathrm{~V}\)
Power Dissipation 500 mW
Input Voltage (Note 1) \(\pm 30 \mathrm{~V}\)
Operating Temperature Range ...................... ICL8063MJE \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) ICL8063CPE \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) ICL8063CJE \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10 sec ) \(300^{\circ} \mathrm{C}\)
Regulator Output Currents 10 mA

Note 1: For supply voltages less than \(\pm 30 \mathrm{~V}\) the absolute maximum input voltage is equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}\); VSupp \(= \pm 30 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{SYMBOL} & \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|c|}{MIN/MAX LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{ICL8063M} & \multicolumn{3}{|c|}{ICL8063C} & \\
\hline & & & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+70^{\circ} \mathrm{C}\) & \\
\hline Vos & Max. Offset Voltage & See Figure 1 & 150 & 50 & 50 & 150 & 75 & 75 & mV \\
\hline IOH & Min. Positive Drive Current & See Figure 2 & 50 & 50 & 50 & 40 & 40 & 40 & mA \\
\hline 100 & Max. Positive Output Quiescent Current & See Figure 3 & 500 & 250 & 250 & 600 & 300 & 300 & \(\mu \mathrm{A}\) \\
\hline loL & Min. Negative Drive Current & See Figure 2 & 25 & 25 & 25 & 20 & 20 & 20 & mA \\
\hline IQL & Max. Negative Output Quiescent Current & See Figure 4 & 500 & 250 & 250 & 600 & 300 & 300 & \(\mu \mathrm{A}\) \\
\hline \(V_{ \pm \text {REG }}\) & Regulator Output Voltages Range & See Figure 5 & \[
\begin{aligned}
& \pm 13.7 \\
& \pm 1.2 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.7 \\
& \pm 1.0 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.7 \\
& \pm 1.5 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.7 \\
& \pm 1.0 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.7 \\
& \pm 1.0 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 13.7 \\
& \pm 1.0 \mathrm{~V}
\end{aligned}
\] & v \\
\hline ZIN & A.C. Input Impedance & See Figure 6 & 400 & 400 & 400 & 400 & 400 & 400 & k \(\Omega\) \\
\hline V Supp & Power Supply Range & & & & \(\pm 5\) to & \(\pm 35 \mathrm{~V}\) & & & V \\
\hline 10 & Power Supply Quiescent Currents & & 10 & 6 & 6 & 12 & 7 & 7 & mA \\
\hline Av & Range of Voltage Gain & See Figure 7
\[
V_{I N}=8 V p-p
\] & \(6 \pm 2\) & \(6 \pm 2\) & \(6 \pm 2\) & \(6 \pm 2\) & \(6 \pm 2\) & \(6 \pm 2\) & v/v \\
\hline Vout(min) & Minimum Output Swing & See Figure 7; Increase VIN until Vout flattens & \(\pm 27\) & \(\pm 27\) & \(\pm 27\) & \(\pm 27\) & \(\pm 27\) & \(\pm 27\) & v \\
\hline IIN & Input Bias Current & See Figure 8 & 100 & 100 & 100 & 100 & 100 & 100 & \(\mu \mathrm{A}\) \\
\hline Ireg & Regulator Output Current & (See Note 2) & 10 & 10 & 7 & 10 & 10 & 7 & mA \\
\hline
\end{tabular}

Note 2: Care should be taken to ensure that maximum power dissipation is not exceeded.


Figure 3: Positive Output Quiescent Current


Figure 4: Negative Output Quiescent Current


Figure 5: On Chip Regulator Measurement Figure 6: A.C. Input Impedance Measurement


Figure 7: Gain and Output Voltage Swing Measurement


Figure 8: Input Bias Current Measurement

\section*{APPLICATION}

One problem faced almost every day by circuit designers is how to interface low voltage, low current output world of standard linear and digital devices to that of power transistors and darlingtons-higher by several orders of magnitude.

For example, a low level op amp has a typical voltage range of \(\pm 6\) to \(\pm 12 \mathrm{~V}\), and output current usually on the order of about 5 milliamperes. A power transistor with a \(\pm 35\) volt supply, a collector current of 5 amperes, and a beta, or gain of 100 needs at least 50 milliamperes of drive.

In the past, connecting two transistors with widely dissimilar requirements meant that a rather ornate discrete circuit had to be built to convert the weak output signals from the first into levels large enough to drive the second. However, in addition to converting voltage and current, it was also necessary to include a number of protection circuits to guard against damage from shorts, for example, and all this design work was both tedious and expensive.

The ICL8063 provides a solution to these problems. It's a monolithic power transistor driver and power transistor amplifier circuit on the same chip, has all the necessary safe operating area circuitry and short circuit protection, and has on-chip \(\pm 13 \mathrm{~V}\) voltage regulators to eliminate the need for extra external power supplies.

\section*{1. Using the ICL8063 to make a complete Power Amplifier}

As Figure 9 shows, using the ICL8063 allows the circuit designer to build a power amplifier block capable of delivering \(\pm 2\) amperes at \(\pm 25\) volts ( 50 watts) to any load, with only three additional discrete devices and 8 passive components. Moreover, the circuit draws only about \(\pm 30\) milliamperes of quiescent current from either of the \(\pm 30 \mathrm{~V}\) power supplies. A similar design using discrete components would require anywhere from 50 to 100 components.
Slew rate is about the same as that of a 741 op amp, except that the output current can slew up to 2 amps at roughly \(1 \mathrm{~V} / \mu \mathrm{s}\) (that's a 10 ohm load to ground and 420 V output across this resistance). Input current, voltage offset, CMRR and PSRR are also the same. Use of 1,000 picofarad

\section*{ICL8063}
compensation capacitors (three in this configuration) allows good stability down to unity gain non-inverting (the worst case). This circuit will drive a \(1000 \mathrm{pF} \mathrm{C}_{\mathrm{L}}\) to Gnd ; or in other words, the circuit can drive 30 feet of RG-58 coaxial cable for line driver applications with no problems.
As Figure 10 indicates, setting up a current limiting (safe area) protection circuit is straightforward. The 0.4 ohm, 5 watt resistors set the maximum current one can get out of the output. The equation this SOA circuit follows is: for Vout positive,
\[
\begin{gathered}
\text { Vose }=I_{L R_{3}}-\frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {OUT }}+I_{L R}-0.7 \mathrm{~V}\right) \\
\approx I_{\text {LR }}-\frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {OUT }}\right)
\end{gathered}
\]
for Vout negative,
\[
V_{b e}=I_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}+R_{4}}\left(V_{\text {OUT }}+I_{2} R_{3}+0.7\right)
\]
\[
\approx \|_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}+R_{4}}\left(V_{\text {OUT }}\right)
\]


Figure 9: Standard Circuit Diagram


Figure 10: Current Limiting (Safe Area) Protection Circuit (one side shown)


Solving these equations we get the following:
\begin{tabular}{|c|c|c|c|}
\hline Vout & I & IL @ \(25^{\circ} \mathbf{C}\) & L @ \(125^{\circ} \mathbf{C}\) \\
\hline 24 V & \(1 \mathrm{~m} \overline{\mathrm{~A}}\) & 3 amps & 2.4 amps \\
20 V & \(830 \mu \mathrm{~A}\) & 2.8 amps & \\
16 V & \(670 \mu \mathrm{~A}\) & 2.6 amps & \\
12 V & \(500 \mu \mathrm{~A}\) & 2.4 amps & 1.8 amps \\
8 V & \(333 \mu \mathrm{~A}\) & 2.1 amps & \\
4 V & \(167 \mu \mathrm{~A}\) & 1.9 amps & \\
0 V & \(0 \mu \mathrm{~A}\) & 1.7 amps & 1.1 amps \\
\hline
\end{tabular}

As these equations indicate, maximum power delivered to a load is obtained when Vout \(\geq 24 \mathrm{~V}\).
Often design requirements necessitate an unsymmetrical output current capability. In that case, instead of the 0.4 ohm resistors protecting the npn and pnp output stages, as shown in Figure 9, simply substitute any other value. For example, if up to 3 amps are required when Vout \(\geq+24 \mathrm{~V}\) and only 1 amp out when Vour \(\geq-24 \mathrm{~V}\), use a 0.4 ohm resistor between pin 8 and pin 9 on the ICL8063 and a 1 ohm, 2 watt resistor between pin 7 and pin 8. Maximum output current versus Vout for varying values of protection resistors are as follows:
\begin{tabular}{|c|c|c|c|}
\hline VOUT & \(\mathbf{0 . 4 \Omega @ 2 5 ^ { \circ } \mathbf { C }} \mathbf{0 . 6 8 \Omega @ 2 5 ^ { \circ } \mathbf { C }}\) & \(\mathbf{1} \Omega @ 25^{\circ} \mathbf{C}\) \\
\hline 24 V & 3 amps & 1.7 amps & 1.2 amps \\
12 V & 2.4 amps & 1.4 amps & 0.9 amps \\
0 V & 1.7 amps & 1.0 amps & 0.7 amps \\
\hline
\end{tabular}

The biasing resistors located between pin 13 and pin 14 and between pin 2 and pin 4 are typically 1 M -ohm for Vsupp \(=\) \(\pm 30 \mathrm{~V}\), which guarantees adequate performance in such applications as DC motor drivers, power DACs, programmable power supplies and line drivers (with \(\pm 30\) volt supplies). The table that follows shows the proper value for RBIAS for optimum output current capability with supply voltages between \(\pm 5 \mathrm{~V}\) and \(\pm 30 \mathrm{~V}\).
\begin{tabular}{|c|c|}
\hline\(\pm \mathbf{V}_{\text {CC }}\) & R \\
\hline 30 V & 1 MS \\
25 V & \(680 \mathrm{k} \Omega\) \\
20 V & \(500 \mathrm{k} \Omega\) \\
15 V & \(300 \mathrm{k} \Omega\) \\
10 V & \(150 \mathrm{k} \Omega\) \\
5 V & \(62 \mathrm{k} \Omega\) \\
\hline
\end{tabular}

If 30 V and 1 meg ohms are used, performance curves appear as shown in Figure 11.


Figure 11: Typical Performance Curve of Max. Output Current Vs. VSUPP For Fixed RBIAS \(=1 \mathrm{M} \Omega\)

When buying external power transistors, careful attention should be paid to beta values. For 2N3055 and 2N3789 transistors used in this circuit, beta should be no more than 150 max at \(\mathrm{IC}=20 \mathrm{~mA}\) and \(\mathrm{V}_{C E}=30 \mathrm{~V}\). This beta value sets the quiescent current at less than 30 mA when not delivering power to a load.
The design in Figure 9 will tolerate a short to ground indefinitely, provided adequate heat sinking is used.


However if VOUT is shunted to \(\pm 30 \mathrm{~V}\) the output transistors (2N3055 and 2N3789) will be destroyed, but since the safe operating area for these devices is 4 amps at 30 volts, the problem does not occur for \(\mathrm{V}_{\text {SUPP }}= \pm 15 \mathrm{~V}\).
A typical bode plot of the power amplifier system is shown in Figure 12. Referring to Figure 6, the schematic for this bode plot is shown below:


Figure 12: Bode Plot of Open Loop Gain of Above Schematic



Figure 13: Typical Performance of Rout vs. Frequency of Power Amplifier System

\section*{2. Designing A Simple Function Generator}

Using a variation of the fundamental power amplifier building block described in the previous section, the ICL8063 can be implemented in the design of a simple, low cost function generator (Figure 14). It will supply sine waves, triangular waves and square waves from 2 hertz to 20 kilohertz. This complete test instrùment can be plugged into a standard 110VAC line for power. VOUT will be up to \(\pm 25 \mathrm{~V}\) ( \(50 \mathrm{~V} \mathrm{p}-\mathrm{p}\) ) across loads as small as 10 ohms (about 2.5 amps maximum output current).

Capacitor working voltages should be greater than 50V DC and all resistors should be \(1 / 2 \mathrm{~W}\), unless otherwise indicated. The interconnecting leads from the 741 pins 2 and 3 to their respective resistors should be kept short, less than 2 inches if possible; longer leads may result in oscillation.
Full output swing is possible to about 5 KHz ; after that the output begins to taper off due to the slew rate of the 741 , until at 20 KHz the output swing will be about \(20 \mathrm{~V}_{\mathrm{pp}}( \pm 10 \mathrm{~V})\). This problem can be remedied by simply using an op amp with a higher slew rate, such as the LF156.

\section*{ICL8063}


Figure 14: Power Function Generator

\section*{3. Building a Constant Current Motor Drive Circuit}

The constant current motor drive configuration shown in Figure 15 is an extremely simple circuit to construct using the ICL8063. This minimum device circuit can be used to drive DC motors where there is some likelihood of stalling or lock up; if the motor locks, the current drive remains constant and the system does not destroy itself. Using this approach two 6 V batteries are sufficient for decent performance. A 10 volt input will produce one amp of output current to drive the motor, and if the motor is stalled, lout remains at 1 amp .

For example, suppose it's necessary to drive a 24 V DC motor with 1 amp of drive current. First make VSUPP at least 6 volts more than the motor being driven (in this case 30 volts). Next select RBIAS according to VSUPP from the data sheet, which indicates \(R_{B I A S}=1 M \Omega\). Then choose \(R_{1}, R_{2}\), and \(R_{a}\) for optimum sensitivity. That means making \(R_{a}=1 \Omega\) to minimize the voltage drop across \(R_{a}\) (the drop will be \(1 \mathrm{amp} \times 1\) ohm or 1 volt). If \(1 \mathrm{amp} /\) volt sensitivity is desirable let \(R_{2}=R_{1}=10 \mathrm{k} \Omega\) to minimize feedback current error. Then \(\mathrm{a} \pm 1 \mathrm{~V}\) input voltage will produce a \(\pm 1 \mathrm{amp}\) current through the motor.

Capacitors should be at least 50 volts working voltage and all resistors \(1 / 2 \mathrm{~W}\), except for those valued at 0.4 ohms, and \(\mathrm{R}_{\mathrm{a}}\). Power across \(R_{a}=I \times V=1 \mathrm{amp} \times 1\) volt \(=1\) watt, so at least a 2 watt value should be used. Use large heat sinks for the 2N3055 and 2N3791 power transistors. A Delta NC-641 or the equivalent is appropriate. Use a thermal compound when mounting the transistor to the heat sink. (See Intersil ICH8510 data sheet).


Figure 15: Constant Current Motor Drive

\section*{4. Building A Low Cost 8 ohm per channel Hi-fi Amplifier.}

For about \(\$ 20\) per channel, it's possible to build a high fidelity amplifier using the ICL8063 to drive 8 ohm speakers. A channel is defined here as all amplification between turntable or tape output and power out. (Figure 16)
The input 741 stage is a preamplifier with R.I.A.A. equalization for records. Following the first 741 stage is a \(10 \mathrm{k} \Omega\) control pot, whose wiper arm feeds into the power amplifier stage consisting of a second 741, the ICL8063 and
the power transistors. To achieve good listening results, selection of proper resistance values in the power amplifier stage is important. Best listening is to be found at a gain value of \(6[(5 \mathrm{k} \Omega+1 \mathrm{k} \Omega / 1 \mathrm{k} \Omega=6)]\) ' 3 is a practical minimum, since the first stage 741 preamp puts out only \(\pm 10\) volt maximum signals, and if maximum power is necessary this value must be multiplied by 3 to get \(\pm 30\) volt levels at the output of the power amp stage.
Each channel delivers about 56 volts p-p across an 8 ohm speaker and this converts to 50 watts RMS power. This is derived as follows:
Power \(=\frac{\mathrm{V}_{\mathrm{rms}}{ }^{2}}{8 \mathrm{ohms}}, \quad \mathrm{V}_{\mathrm{rms}}=\frac{56 \mathrm{~V} \text { p-p }}{2.82}=20 \mathrm{~V}, 20 \mathrm{~V} 2=400 \mathrm{~V} 2\)


Figure 17: Typical Performance Curve of \(\overline{\overline{E_{\text {OUT }}}}\) vs. Frequency For Typical Circuit Shown


Figure 18: Typical Performance Curve of Input Impedance Versus Frequency for Typical Circuit Shown


Note: Intersil offers a hybrid power amplifier similar to that shown in fig. 9. See ICH8510/8520/8530 data sheet for details.

FEATURES
- Temperature Coefficient guaranteed to \(10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) max.
- Low Bias Current . . . \(50 \mu \mathrm{~A}\) min
- Low Dynamic Impedance
- Low Reverse Voltage
- Low Cost

\section*{GENERAL DESCRIPTION}

The ICL8069 is a 1.2 V temperature compensated voltage reference. It uses the band-gap principle to achieve excellent stability and low noise at reverse currents down to \(50 \mu \mathrm{~A}\). Applications include analog-to-digital converters, digital-toanalog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

TYPICAL CONNECTION DIAGRAMS

(a) Simple Reference ( 1.2 volts or less)

(b) Buffered 10V Reference using a single supply.

(c) Double regulated 100 mV reference for ICL7107 one-chip DPM circuit.

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline Max. Temp. Coeff. of \(V_{\text {REF }}\) & Temp. Range & \[
\begin{aligned}
& \text { Order P/N } \\
& \text { TO-92 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Order P/N } \\
& \text { TO-52 }
\end{aligned}
\] \\
\hline 0.001\%/ \({ }^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & & ICL8069ACSQ \\
\hline 0.0025\%/ \({ }^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & & ICL8069BCSQ \\
\hline 0.005\%/ \({ }^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL8069CCZR & ICL8069CCSQ \\
\hline 0.005\%/ \({ }^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & - & ICL8069CMSQ \\
\hline 0.01\%/ \({ }^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & ICL8069DCZR & ICL8069DCSQ \\
\hline 0.01\%/ \({ }^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & - & ICL8069DMSQ \\
\hline
\end{tabular}

PACKAGE DIMENSIONS


PIN CONFIGURATION


CHIP TOPOGRAPHY


TO-52

\section*{ICL8069 Series}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|}
\hline \multirow[b]{9}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS (@ \(25^{\circ} \mathrm{C}\) unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTICS & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Reverse breakdown Voltage & \(I_{R}=500 \mu \mathrm{~A}\) & 1.20 & 1.23 & 1.25 & V \\
\hline Reverse breakdown Voltage change & \(50 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 5 \mathrm{~mA}\) & & 15 & 20 & mV \\
\hline Reverse dynamic Impedance & \[
\begin{aligned}
& I_{R}=50 \mu A \\
& I_{R}=500 \mu A
\end{aligned}
\] & & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 2
\end{aligned}
\] & \(\Omega\) \\
\hline Forward Voltage Drop & \(\mathrm{IF}=500 \mu \mathrm{~A}\) & & . 7 & 1 & V \\
\hline RMS Noise Voltage & \[
\begin{aligned}
& 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz} \\
& \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}
\end{aligned}
\] & & 5 & & \(\mu \mathrm{V}\) \\
\hline Breakdown voltage Temperature coefficient: ICL8069A ICL8069B ICL8069C ICL8069D & \[
\left\{\begin{array}{l}
I_{R}=500 \mu \mathrm{~A} \\
\mathrm{~T}_{\mathrm{A}}=\text { operating } \\
\text { temperature range } \\
\text { (Note 3) }
\end{array}\right.
\] & & & \[
\begin{aligned}
& .001 \\
& .0025 \\
& .005 \\
& .01
\end{aligned}
\] & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Reverse Current Range & & . 050 & & 5 & mA \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

\section*{vOLTAGE CHANGE AS A FUNCTION OF REVERSE CURRENT}

REVERSE VOLTAGE AS A FUNCTION OF CURRENT

reverse voltage as A FUNCTION OF TEMPERATURE

\section*{Notes:}
1) If circuit strays in excess of 200 pF are anticipated, a \(4.7 \mu \mathrm{~F}\) shunt capacitor will ensure stability under all operating conditions.
2) In normal use, the reverse voltage cannot exceed the reference voltage. However when plugging units into a powered-up test fixture, an instantaneous voltage equal to the compliance of the test circuit will be seen. This should not exceed 20 V .
3) For the military part, measurements are made at \(25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}\), and \(+125^{\circ} \mathrm{C}\). The unit is then classified as a function of the worst case T.C. from \(25^{\circ} \mathrm{C}\) to \(-55^{\circ} \mathrm{C}\), or \(25^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).

Ultra Rrecision Temperature

\section*{FEATURES}
- Laser-trimmed to precise voltage
- Extremely low temperature coefficient (typ<1ppm/ \({ }^{\circ} \mathrm{C}\) )
- Short-circuit protected
- Thermally isolated die for minimum power consumption
- Separate heater supply for good noise rejection, application flexibility
- Wide range of end-use oriented output voltages
- Wide operating voltage range on both reference and heater
- Heater control system operates correctly at low voltage, avoiding thermal latchup problems

\section*{GENERAL DESCRIPTION}

The ICL8075-9 are a family of precision laser-trimmed volt. age references that incorporate a substrate heater to produce extremely low overall voltage temperature coefficients.

The series of devices is produced by adjusting basic parts with various metal masks so that exact voltages are available for the most popular A/D and D/A converters. This avoids the necessity to perform adjustments in most cases, and reduces the problems with trim range and temperature coefficient loss in all others.

This series is divided into two basic groups, those with outputs less than the band-gap voltage (ICL8075/6), and those with higher outputs (ICL8077/8/9). The nominal reference voltage (cardinal value) is coded in the second part of the number, with two digits and a " \(D\) " for a decimal value or a " \(B\) " for a binary value, at the decimal point location.

Each device is packaged in a standard 8-pin TO-99 package, but the die is mounted on an insulating ceramic substrate to ensure a high thermal resistance from the die to the case. This usually undesirable condition is beneficial in this case, since it reduces the power consumption of the heater as far as possible, and facilitates maintaining the die temperature at about \(85^{\circ} \mathrm{C}\), even in cold ambient conditions.


\section*{ICL8075-9}

\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage \(\mathrm{V}_{1}{ }^{+}\)to \(\mathrm{V}_{1}{ }^{-}\). . . . . . . . . . . . . . . . . . . . . . . . . 36 V
Heater Supply \(\mathrm{V}_{2}{ }^{+}\)to \(\mathrm{V}_{2}{ }^{-}\). . . . . . . . . . . . . . . . . . . . . . . . . . 36 V
Supply Differential \(\mathrm{V}_{1}{ }^{-}\)to \(\mathrm{V}_{2}{ }^{-}\). . . . . . . . . . . . . . . . . . . \(0 \mathrm{~V}-36 \mathrm{~V}\)
Operating Temperature. \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
Storage Temperature \(\qquad\) \(65^{\circ} \mathrm{C} \mathrm{to}+60^{\circ} \mathrm{C}\)
Power Dissipation (@ \(25^{\circ} \mathrm{C}\) ) .450 mW
derate @ other temperatures @ 4mWNTC
Heater Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 mA
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35mA
Lead Temperature (Soldering, 10 sec ) . . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS
\(\mathrm{V}_{1}^{+}=15 \mathrm{~V}, \mathrm{~V}_{2}^{+}=15 \mathrm{~V}, \mathrm{~V}_{1}^{-}=\mathrm{V}_{2}^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \begin{tabular}{l}
Supply Voltage Ranges Reference Supply \\
Heater Supply
\end{tabular} & \[
\begin{aligned}
& v_{1}+ \\
& v_{2}+ \\
& \hline
\end{aligned}
\] & \(\left(V_{\text {REF }}>1.2\right)\) & \[
\begin{gathered}
3.2 \\
\mathrm{~V}_{\text {OUT }}+2 \\
8
\end{gathered}
\] & & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30
\end{aligned}
\] & V \\
\hline Absolute Accuracy of \(\mathrm{V}_{\text {OUT }}\) & & \begin{tabular}{ll} 
Heater Settled & \begin{tabular}{l} 
J Grade \\
L Grade
\end{tabular}
\end{tabular} & & \[
\begin{gathered}
0.1 \\
0.02
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
0.03
\end{gathered}
\] & \% \\
\hline Line Regulation & & \(\mathrm{V}_{1}^{+}\)to \(\mathrm{V}_{1}{ }^{-}=15 \mathrm{~V}\) to 30 V & & 0.002 & 0.005 & \%/V \\
\hline Load Regulation of \(\mathrm{V}_{\text {OUT }}\) (ICL8077/8/9 Only) & & \(\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}\) to 5 mA & & 0.03 & 0.05 & \%/mA \\
\hline  & \(I_{\text {sc }}\) & (Note 1) & & \[
\begin{gathered}
1 \\
20 \\
20 \\
1
\end{gathered}
\] & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & mA \\
\hline Output Drive Capability \(V_{\text {OUT }}\) \(V_{B G}\) & & ICL8077/8/9 Only (Note 2) ICL8075/6 Only & \[
\begin{aligned}
& 5 \\
& 0
\end{aligned}
\] & 7 & & mA \\
\hline Maximum Heater Current & \(\mathrm{I}_{\text {HTR }}\) & & & 90 & 130 & mA \\
\hline Supply Current Reference Section Heater Section & \[
\begin{aligned}
& \mathbf{I}_{1}+ \\
& 1_{2}^{+}
\end{aligned}
\] & Device Warmed Up (Still Air) & 10 & \[
\begin{gathered}
250 \\
15
\end{gathered}
\] & \[
\begin{array}{r}
450 \\
20
\end{array}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Temperature Coefficient of \(\mathrm{V}_{\text {OUT }}\) & & \[
\begin{aligned}
& \mathrm{V}_{2}^{+}>8 \mathrm{~V},-55^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \\
& +85^{\circ} \mathrm{C}<\mathrm{T}_{A}<+125^{\circ} \mathrm{C}\left(\text { or }^{2} \mathrm{~V}_{2}^{+}=0\right)
\end{aligned}
\] & & \[
\begin{gathered}
1 \\
20
\end{gathered}
\] & & \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\hline Settling Time, Heater Power-Up & & To 0.03\% of Final Value & & 10 & 30 & sec \\
\hline
\end{tabular}

Note 1. This will cause the output voltage to rise to approximately \(\mathrm{V}_{1}{ }^{+}\), potentially hazardous to the load.
Note 2. The output impedance of \(V_{O U T}\) on the ICL8075/6 and of \(V_{B G}\) on the ICL8077/8/9 is about \(5 \mathrm{k} \Omega\). Loading either of these points can lead to serious errors.

TYPICAL CHARACTERISTICS


EQUIVALENT SCHEMATIC DIAGRAM (ICL807718i9 Shown)


\section*{DETAILED DESCRIPTION}

The ICL8075-9 family consists of two semi-independent circuits within one die. One of these is a band-gap reference circuit with several possible mask options, each of which can be laser-trimmed to a specific value of output voltage. The circuit configuration depends on whether this voltage is less than or greater than the actual band-gap voltage (1.25V) itself. The laser-trimming is also used to reduce as far as possible the intrinsic temperature coefficient of the basic band-gap circuit. For devices whose output is lower than 1.2 V , the bandgap voltage is divided by a pair of resistors to provide the required output, with the ratio of these resistors being adjusted to achieve the desired result. The higher output devices divide down the output of the internal amplifier to the band-gap value, again adjusting the resistor ratio to the requisite value.

The other section of the circuit is a constant temperature heater system, which takes another band-gap type voltage
and compares it to the voltage drop across a string of diodes. The result of the comparison is used to drive a pair of large heater transistor/resistor elements. The inherent feedback of this combination causes the die to be heated until the diode drop matches the band-gap-derived reference level, thus ensuring an almost constant temperature on the die. Care has been taken in the die layout to ensure that the large currents and temperature gradients associated with the heater do not degrade the accuracy and consistency of the bandgap reference output of the other section. Also, the die has been mounted on a thermally isolating substrate to reduce the required heater power and the temperature gradients across the die. The result is that the reference circuit sees only about \(1 / 100\) of the ambient temperature change, allowing a \(1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) temperature coefficient to be achieved in monolithic form.

The coexistence of two circuits on one die has some implications, however. The high currents that flow in the heater section need to be isolated from the reference section, so separate supply pins are provided for the two sections. Although these are fairly independent, there is only one substrate for the die, which must be attached to one of the supplies, and therefore restrict the "freedom" of the other. In the ICL8075 family, the substrate is tied to the negative terminal of the heater supply \(\left(\mathrm{V}_{2}-\right)\), and the negative supply of the reference section (the \(\mathrm{V}_{1}{ }^{-} \mathrm{pin}\) ) must not be allowed to be negative with respect to this point.

The heater will take some time to heat the die up to its operating temperature. During this time, the output voltage will change at a rate determined by the intrinsic temperature coefficient of the reference, leading to some appreciable "warm-up" drift. The time required for this drift is given as the settling time for the heater, although the heater dissipation
settling time is substantially longer, owing to the longer thermal time constants of the package. Further, the choice of the die operating temperature leads to some compromises also. Clearly, the higher the operating temperature, the more power needed to sustain it at any given ambient temperature, and also the poorer the reliability of the device. On the other hand, if too low a temperature is chosen, the point at which temperature stabilization breaks down will be within the desirable operating range, leading to a degraded temperature coefficient. The ICL8075 family is laser-trimmed to stabilize at about \(+85^{\circ} \mathrm{C}\), so that the temperature coefficient break point is outside the commercial and industrial temperature ranges.

The trim pads on the ICL8075/6 and ICL8077/8/9 can be used to adjust the output voltage, in either direction, to finer precision than is available in the part itself. Figures 1 and 2 show two methods of adjustment, suitable for either type of device.


Figure 1. Fine Trim Circuit


Figure 2. Alternative Trim Circuit

\section*{APPLICATIONS}

There are many possible applications of reference circuits, of course. One typical use is in A/D converters, such as the \(41 / 2\)-digit integrating converter shown in Figure 3. This schematic is roughly that of the ICL7135EV/Kit evaluation kit, on which provision has been made to accept an ICL8076-1D0 as a 1.000 V reference. The PC board includes space for a potentiometer for fine adjustment of the voltage, since the accuracy of the ICL7135 is higher than that of the best grade of ICL8076.

Another common requirement is for references for D/A converters, such as the ICL7134 shown in Figure 4. This device offers 14 -bit accuracy, without laser-irimming, by the expedient of using a CMOS PROM on the die to correct for the errors of the analog section. The circuit shown is that with a bipolar output, using a chopper-stabilized op amp, the ICL7650, to achieve high accuracy without adjustments and at low cost. A "binary" type of reference here will lead to a decimal value for the LSB; thus a 10.24 V reference gives an LSB of \(1 / 16 \mathrm{mV}\).


Figure 4. 14-Bit D/A Converter Without Adjustments

\section*{ICL8075-9}

APPLICATIONS (Continued)

Other applications are in accurate power supply circuits, such as that shown in Figure5, which uses an ICH8530 power amplifier and a standard AD7541 DAC to set the output value.

Up to 3 A at up to \(\pm 30 \mathrm{~V}\) can be controlled by this circuit, with errors well under \(0.1 \%\). The circuit is based on the same principle as Figure 4, but with a power output buffer.


Figure 5. Accurate Power Supply Circuit

\section*{FEATURES}
- High accuracy voltage sensing and generation: internal reference 1.15 volts typical
- Low sensitivity to supply voltage and temperature variations
- Wide supply voltage range: Typ. 1.8 to \(\mathbf{3 0}\) volts
- Essentially constant supply current over full supply voltage range
- Easy to set hysteresis voltage range
- Defined output current limit - ICL8211

High output current capability - ICL8212

\section*{GENERAL DESCRIPTION}

The Intersil ICL8211/12 are micropower bipolar monolithic integrated circuits intended primarily for precise voltage detection and generation. These circuits consist of an accurate voltage reference, a comparator and a pair of output buffer/drivers.
Specifically, the ICL8211 provides a 7 mA current limited output sink when the voltage applied to the 'THRESHOLD' terminal is less than 1.15 volts (the internal reference). The ICL8212 requires a voltage in excess of 1.15 volts to switch its output on (no current limit). Both devices have a low current output (HYSTERESIS) which is switched on for input voltages in excess of 1.15 V . The HYSTERESIS output may be used to provide positive and noise free output switching using a simple feedback network.
Applications include:
1. Low voltage sensor/indicator
2. High voltage sensor/indicator
3. Non volatile out-of-voltage range sensor/indicator
4. Programmable voltage reference or zener diode
5. Series or shunt power supply regulator
6. Fixed value constant current source


ABSOLUTE MAXIMUM RATINGS (Note 1)


Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: Rating applies for case temperatures to \(125^{\circ} \mathrm{C}\) to \(\operatorname{ICL} 8211 \mathrm{MTY} / 12 \mathrm{MTY}\) products. Derate linearly at \(-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ambient temperatures above \(100^{\circ} \mathrm{C}\)
NOTE 2: Derate linearly above \(50^{\circ} \mathrm{C}\) by \(-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) for ICL8211C/12C products. The threshold input voltage may exceed +7 volts for short periods of time. However for continuous operation this voltage must be maintained at a value less than 7 volts.

TYPICAL OPERATING CHARACTERISTICS \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{CONDITIONS} & \multicolumn{3}{|c|}{[CL8211} & \multicolumn{3}{|c|}{\(1 C^{\prime} 8212\)} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Supply Current & \(1^{+}\) & \[
\begin{aligned}
& 2.0<\mathrm{V}^{+}<30 \\
& V_{T}=1.3 \mathrm{~V} \\
& V_{T}=0.9 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 50
\end{aligned}
\] & \[
\begin{gathered}
22 \\
140 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
40 \\
250 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 50 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
110 \\
20 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
250 \\
40 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Threshold Trip Voltage & VTH & \[
\begin{array}{ll}
\text { lOUT }=4 \mathrm{~mA} & \mathrm{~V}^{+}=5 \mathrm{~V} \\
\text { VOUT }=2 \mathrm{~V} & \mathrm{~V}^{+}=2 \mathrm{~V} \\
& \mathrm{~V}^{+}=30 \mathrm{~V}
\end{array}
\] & \[
\begin{aligned}
& 0.98 \\
& 0.98 \\
& 1.00 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline 1.15 \\
1.145 \\
1.165
\end{gathered}
\] & \[
\begin{aligned}
& 1.19 \\
& 1.19 \\
& 1.20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.00 \\
& 1.00 \\
& 1.05
\end{aligned}
\] & \[
\begin{gathered}
\hline 1.15 \\
1.145 \\
1.165 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.19 \\
& 1.19 \\
& 1.20
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Threshold Voltage Disparity Between Output \& Hysteresis Output & VTHP & \[
\begin{array}{ll}
\text { loUT }=4 \mathrm{~mA} & \text { VOUT }=2 \mathrm{~V} \\
\text { l } \mathrm{HYST}=7 \mu \mathrm{~A} & \mathrm{~V}_{\mathrm{HYST}}=3 \mathrm{~V}
\end{array}
\] & & -8.0 & & & -0.5 & & mV \\
\hline Guaranteed Operating Supply Voltage Range & - VSUPP & \[
\begin{aligned}
& +25^{\circ} \mathrm{C} \\
& 0 \text { to }+70^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.2 \\
& 2.8 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.2 \\
& 2.8 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& V \\
& V \\
& V
\end{aligned}
\] \\
\hline Typical Operating Supply Voltage Range & V Supp & \[
\begin{aligned}
& +25^{\circ} \mathrm{C} \\
& +125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 1.4 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 1.8 \\
& 1.4 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Threshold Voltage Temperature Coefficient & \(\Delta \mathrm{V}_{\mathrm{TH}} / \Delta \mathrm{T}\) & \[
\begin{aligned}
& \text { lout }=4 \mathrm{~mA} \\
& \text { VOUT }=2 \mathrm{~V}
\end{aligned}
\] & & +200 & & & +200 & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Variation of Threshold Voltage with Supply Voltage & \(\Delta \mathrm{V}_{\mathrm{TH}} / \Delta \mathrm{V}^{+}\) & \(\Delta \mathrm{V}^{+}=10 \%\) at \(\mathrm{V}^{+}=5 \mathrm{~V}\) & & 1.0 & & & 1.0 & & mV \\
\hline Threshold Input Current & ITH & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}=1.15 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{TH}}=1.00 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
100 \\
5 \\
\hline
\end{gathered}
\] & 250 & . & \[
\begin{gathered}
100 \\
5 \\
\hline
\end{gathered}
\] & 250 & \[
\begin{aligned}
& \mathrm{nA} \\
& \mathrm{nA} \\
& \hline
\end{aligned}
\] \\
\hline Output Leakage Current & IOLK & \[
\begin{array}{ll}
\text { VOUT }=30 \mathrm{~V} & \mathrm{~V}_{T H}=1.0 \mathrm{~V} \\
V_{\text {OUT }}=30 \mathrm{~V} & \mathrm{~V}_{T H}=1.3 \mathrm{~V} \\
V_{\text {OUT }}=5 \mathrm{~V} & \mathrm{~V}_{T H}=1.0 \mathrm{~V} \\
V_{\text {OUT }}=5 \mathrm{~V} & \mathrm{~V}_{T H}=1.3 \mathrm{~V}
\end{array}
\] & & & \begin{tabular}{l}
10 \\
1
\end{tabular} & & & \[
\begin{gathered}
10 \\
1
\end{gathered}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Output Saturation Voltage & VSAT & \[
\begin{array}{ll}
\text { IOUT }=4 \mathrm{~mA} & \mathrm{~V}_{T H}=1.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V}
\end{array}
\] & & 0.17 & 0.4 & & 0.17 & 0.4 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Max Available Output Current & IOH & \[
\begin{aligned}
& \text { (Note } 3 \& 4) \quad V_{T H}=1.0 \mathrm{~V} \\
& V_{o u T}=5 \mathrm{~V} \\
& -55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C} V_{T H}=1.0 \mathrm{~V}
\end{aligned}
\] & 4 & 7.0 & \[
\begin{aligned}
& 12 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 12 \\
& \hline
\end{aligned}
\] & 35 & mA & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Hysteresis Leakage Current & ILHYS & \[
\begin{aligned}
& \mathrm{V}^{+}=10 \mathrm{~V} \mathrm{~V}_{\mathrm{TH}}=1.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{HYST}}=\mathrm{V}^{-}
\end{aligned}
\] & & & 0.1 & & & 0:1 & \(\mu \mathrm{A}\) \\
\hline Hysteresis Sat Voltage & \(\mathrm{V}_{\text {HYS (max) }}\) & \(I_{H Y S T}=-7 \mu \mathrm{~A} V_{T H}=1.3 \mathrm{~V}\) measured with respect to \(\mathrm{V}^{+}\) & & -0.1 & -0.2 & & -0.1 & -0.2 & V \\
\hline Max Available Hysteresis Current & IHYS (max) & \(V_{T H}=1.3 \mathrm{~V}\) & -15 & -21 & & -15 & -21 & & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTE 3: The maximum output current of the ICL8211 is limited by design to 15 ma under any operating conditions. The output voltage may be sustained at any voltage up to +30 as long as the maximum power dissipation of the device is not exceeded.
NOTE 4: The maximum output current of the ICL8212 is not defined, and systems using the ICL8212 must therefore ensure that the output current does not exceed 30 ma and that the maximum power dissipation of the device is not exceeded.

\section*{TYPICAL OPERATING CHARACTERISTICS}

THRESHOLD INPUT CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE

(IRREGULAR SCALE)

Characteristics common to both the ICL8211 and the ICL8212

\section*{Characteristics ICL8211}

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT SATURATION CURRENTS
AS A FUNCTION OF
THRESHOLD VOLTAGE


OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE


SUPPLY CURRENT AS A
FUNCTION OF THRESHOLD VOLTAGE


THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE


OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE


THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE


HYSTERESIS OUTPUT CURRENT AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE


OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE


\section*{TYPICAL OPERATING CHARACTERISTICS}

\section*{Characteristics ICL8212}

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT SATURATION CURRENTS
AS A FUNCTION OF
THRESHOLD VOLTAGE


OUTPUT SATURATION VOLTAGE
AND CURRENT AS A
FUNCTION OF TEMPERATURE


SUPPLY CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE


THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE


OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE


THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON"
AS A FUNCTION OF SUPPLY VOLTAGE


HYSTERESIS OUTPUT CURRENT
AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE


\section*{CIRCUIT DESCRIPTION}

The ICL8211 and ICL8212 use standard linear bipolar integrated circuit technology with high value thin film resistors which define extremely low value currents.
Components \(Q_{1}\) thru \(Q_{10}\) and \(R_{1}, R_{2}\) and \(R_{3}\) set up an accurate voltage reference of 1.15 volts. This reference voltage is close to the value of the bandgap voltage for silicon and is highly stable with respect to both temperature and
supply voltage. The deviation from the bandgap voltage is necessary due to the negative temperature coefficient of the thin film resistors ( -5000 ppm per \({ }^{\circ} \mathrm{C}\) ).
Components \(Q_{2}\) thru \(Q_{9}\) and \(R_{2}\) make up a constant current source; \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{3}\) are identical and form a current mirror. \(\mathrm{Q}_{8}\) has 7 times the emitter area of \(Q_{9}\), and due to the current mirror, the collector currents of \(\mathrm{Q}_{8}\) and \(\mathrm{Q}_{9}\) are forced to be equal and it can be shown that the collector current in \(Q_{8}\) and
\(\mathrm{Q}_{9}\) is
\[
\text { Ic }\left(Q_{8} \text { or } Q_{9}\right)=\frac{1}{R_{2}} \times \frac{k T}{q} \ln 7
\]
or approximately \(1 \mu \mathrm{~A}\) at \(25^{\circ} \mathrm{C}\)
Where \(k=\) Boltzman's constant
\(\mathrm{q}=\) charge on an electron
and \(\mathrm{T}=\) absolute temperature in \({ }^{\circ} \mathrm{K}\)

Transistors \(Q_{5}, Q_{6}\), and \(Q_{7}\) assure that the \(V_{C E}\) of \(Q_{3}, Q_{4}\), and Q9 remain constant with supply voltage variations. This ensures a constant current supply free from variations.

The base current of \(Q_{1}\) provides sufficient start up current for the constant current source; there being two stable states for this type of circuit - either ON as defined above, or OFF if no start up current is provided. Leakage current in the transistors is not sufficient in itself to guarantee reliable startup.
\(Q_{4}\) is matched to \(Q_{3}\) and \(Q_{2} ; Q_{10}\) is matched to \(Q_{9}\). Thus the IC and \(V_{B E}\) of \(Q_{10}\) are identical to that of \(Q_{9}\) or \(Q_{8}\). To generate the bandgap voltage, it is necessary to sum a voltage equal to the base emitter voltage of \(Q_{9}\) to a voltage proportional to the difference of the base emitter voltages of two transistors Q \(_{8}\) and \(\mathrm{Q}_{9}\) operating at two current densities.

Thus \(1.15=V_{B E}\left(Q_{9}\right.\) or \(\left.Q_{10}\right)+\frac{R_{3}}{R_{2}} \times \frac{k T}{q} \ln 7\)
\[
\text { which provides } \frac{R_{3}}{R_{2}}=12 \text { (approx.) }
\]

The total supply current consumed by the voltage reference section is approximately \(6 \mu \mathrm{~A}\) at room temperature. A voltage at the THRESHOLD input is compared to the reference 1.15 volts by the comparator consisting of transistors \(\mathrm{Q}_{11}\) thru Q17. The outputs from the comparator are limited to two diode drops less than \(\mathrm{V}^{+}\)or approximately 1.1 volts. Thus the base current into the hysteresis output transistor is limited to about 500 nA and the collector current of \(\mathrm{Q}_{19}\) to \(100 \mu \mathrm{~A}\).

In the case of the ICL8211, \(Q_{21}\) is proportioned to have 70 times the emitter area of \(Q_{20}\) thereby limiting the output current to approximaely 7 mA , whereas for the ICL8212 almost all the collector current of \(\mathrm{Q}_{19}\) is available for base drive to \(Q_{21}\), resulting in a maximum available collector current of the order of 30 mA . It is advisable to externally limit this current to 25 mA or less.

\section*{APPLICATIONS}

The ICL8211 and ICL8212 are similar in many respects, especially with regard to the setup of the input trip conditions and hysteresis circuitry. The following discussion describes both devices, and where differences occur they are clearly noted.

\section*{1. GENERAL INFORMATION}

\section*{THRESHOLD INPUT CONSIDERATIONS}

Although any voltage between -5 V and \(\mathrm{V}^{+}\)may be applied to the THRESHOLD terminal, it is recommended that the THRESHOLD voltage does not exceed about +6 volts since above that voltage the threshold input current increases sharply. Also, prolonged operation above this voltage will lead to degradation of device characteristics.


Figure 1: Voltage Level Detection
The outputs change states with an input THRESHOLD voltage of approximately 1.15 volts. Input and output waveforms are shown in Figure 1 for a simple 1.15 volt level detector.

The HYSTERESIS output is a low current output and is intended primarily for input threshold voltage hysteresis applications. If this output is used for other applications it is suggested that output currents be limited to \(10 \mu \mathrm{~A}\) or less.

The regular OUTPUT's from either the ICL8211 or ICL8212 may be used to drive most of the common logic families such as TTL or C-MOS using a single pullup resistor. There is a guaranteed TTL fanout of 2 for the ICL8211 and 4 for the ICL8212.


Figure 2: Output Logic Interface

\section*{ICL8211/ICL8212}

A principal application of the ICL8211 is voltage level detection, and for that reason the OUTPUT current has been limited to typically 7 mA to permit direct drive of an LED connected to the positive supply without a series current limiting resistor.

On the other hand the ICL8212 is intended for applications such as programmable zener references, and voltage regulators where outpur currents well in excess of 7 mA are desirable. Therefore, the output of the ICL8212 is not current limited, and if the output is used to drive an LED, a series current limiting resistor must be used.

In most applications an input resistor divider network may be used to generate the 1.15 V required for \(V_{T H}\). For thigh accuracy, currents as large as \(50 \mu \mathrm{~A}\) may be used, however for those applications where current limiting may be desirable, (such as when operating from a battery) currents as low as \(6 \mu \mathrm{~A}\) may be considered without a great loss of accuracy. \(6 \mu \mathrm{~A}\) represents a practical minimum, since it is about this level where the device's own input current becomes a significant percentage of that flowing in the divider network.


Figure 3: Input Resistor Network Considerations

Case 1. High accuracy required, current in resistor network unimportant Set \(\mathrm{I}=50 \mu \mathrm{~A}\) for \(\mathrm{V}_{\mathrm{TH}}=1.15\) volts \(\therefore \mathrm{R}_{1} \rightarrow\) 20k ohms.

Case 2. Good accuracy required, current in resistor network important Set \(\mathrm{I}=7.5 \mu \mathrm{~A}\) for \(\mathrm{V}_{\mathrm{TH}}=1.15\) volts \(\therefore \mathrm{R}_{1} \rightarrow\) 150k ohms.

\section*{SETUP PROCEDURES FOR VOLTAGE LEVEL DETECTION}

Case 1. Simple voltage detection - no hysteresis
Unless an input voltage of approximately 1.15 volts is to be detected, resistor networks will be used to divide or multiply the unknown voltage to be sensed. Figure 4 shows procedures on how to set up resistor networks to detect INPUT. VOLTAGES of any magnitude and polarity.

a) Range of input voltage greater than +1.15 volts.

Input voltage to change the output states
\(=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \times 1.15\) volts

b) Range of input voltage less than +1.15 volts.

Input voltage to change the output states
\[
=\frac{\left(R_{1}+R_{2}\right) \times 1.15}{R_{1}}-\frac{R_{2} V_{R E F}}{R_{1}}
\]

Figure 4: Input Resistor Network Setup Procedures
For supply voltage level detection applications the input resistor network is connected across the supply terminals as shown in Figure 5.


Figure 5: Combined Input and Supply Voltages
Conditions for correct operation of OUTPUT (terminal \#4).
1. ICL8211
\(1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}\)
2. ICL8212
\(0 \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}\)

\section*{Case 2. Use of the HYSTERESIS function}

The disadvantage of the simple detection circuits is that there is a small but finite input range where the outputs are neither totally 'ON' nor totally 'OFF'. The principle behind hysteresis is to provide positive feedback to the input trip point such that there is a voltage difference between the input voltage necessary to turn the outputs ON and OFF.

The advantage of hysteresis is especially apparent in electrically noisy environments where simple but positive voltage detection is required. Hysteresis circuitry, however, is not limited to applications requiring better noise performance but may be expanded into highly complex systems with multiple voltage level detection and memory applications - refer to specific applications section.
There are two simple methods to apply hysteresis to a circuit for use in supply voltage level detection. These are shown in Figure 6.

a) Low trip voltage
\[
V_{T R 1}=\left[\frac{\left(R_{1}+R_{2}\right) \times 1.15}{R_{1}}+0.1\right] \text { volts }
\]

High trip voltage


b) Low trip voltage
\[
V_{T R 1}=\left[\frac{R_{Q} R_{S}}{\left(R_{Q}+R_{S}\right)}+R_{P}\right] \times \frac{1}{R_{P}} \times 1.15 \text { volts }
\]

High trip voltage
\(V_{T R 2}=\frac{\left(R_{P}+R_{Q}\right)}{R_{P}} \times 1.15\) volts


Figure 6: Two alternative voltage detection circuits employing hysteresis to provide pairs of well defined trip voltages.

Circuit (a) requires that the full current flowing in the resistor network be sourced by the HYSTERESIS output whereas for circuit (b) the current to be sourced by the HYSTERESIS output will be a function of the ratio of the two trip points and their values. For low values of hysteresis circuit (b) is to be preferred due to the offset voltage of the hysteresis output transistor.
A third way to obtain hysteresis (ICL8211 only) is to connect a resistor between the OUTPUT and the THRESHOLD terminals thereby reducing the total external resistance between the THRESHOLD and GROUND when the OUTPUT is switched on.

\section*{3. PRACTICAL APPLICATIONS}
a) Low Voltage Battery Indicator


Figure 7: Low Voltage Battery Indicator
This application is particularly suitable for portable or remote operated equipment which requires an indication of a depleted or discharged battery. The quiescent current taken by the system will be typically \(35 \mu \mathrm{~A}\) which will increase to 7 mA when the lamp is turned on. \(\mathrm{R}_{3}\) will provide hysteresis if required.
b) |Non-Volatile| Low Voltage Detector


Figure 8: Low Voltage Detector and Memory
In this application the high trip voltage \(V_{T R 2}\) is set to be above the normal supply voltage range. On power up the initial condition is \(A\). On momentarily closing switch \(S_{1}\) the operating point changes to \(B\) and will remain at \(B\) until the

\section*{ICL8211/ICL8212}
supply voltage drops below VTR1, at which time the output will revert to condition \(A\). Note that state \(A\) is always retained if the supply voltage is reduced below \(\mathrm{V}_{\text {TR1 }}\) (even to zero volts) and then raised back to \(\mathrm{V}_{\text {NOM }}\).
c) (Non-volatile) Power Supply Malfunction Recorder

In many systems a transient or an extended abnormal (or absence of a) supply voltage will cause a system failure. This failure may take the form of information lost in a volatile semiconductor memory stack, a loss of time in a timer or even possible irreversible damage to components if a supply voltage exceeds a certain value.
It is, therefore, necessary to be able to detect and store the fact that an out-of-operating range supply voltage condition has occurred, even in the case where a supply voltage may have dropped to zero. Upon power up to the normal operating voltage this record must have been retained and easily interrogated. This could be important in the case of a transient power failure due to a faulty component or intermittent power supply, open circuit, etc., where direct observation of the failure is difficult.
A simple circuit to record an out of range voltage excursion may be constructed using an ICL8211, an ICL8212 plus a few resistors. This circuit will operate to 30 volts without exceeding the maximum ratings of the I.C.'s. The two voltage limits defining the in range supply voltage may be set to any value between 2.0 and 30 volts.


Figure 9: Schematic of Recorder


Figure 10: Output States of the ICL8211 and ICL8212 as a Function of the Supply Voltage

Referring to Figure 9, the ICL8212 is used to detect a voltage, \(V_{2}\), which is the upper voltage limit to the operating voltage range. The ICL8211 detects the lower voltage limit of the operating voltage range, \(\mathrm{V}_{1}\). Hysteresis is used with the ICL8211 so that the output can be stable in either state over the operating voltage range \(V_{1}\) to \(V_{2}\) by making \(V_{3}\) - the upper trip point of the ICL8211 much higher in voltage than \(\mathrm{V}_{2}\).
The output of the ICL8212 is used to force the output of the CL8211 into the ON state above \(\mathrm{V}_{2}\). Thus there is no value of
the supply voltage that will result in the output of the ICL8211 changing from the ON state to the OFF state. This may be achieved only by shorting out \(R_{3}\) for values of supply voltage between \(\mathrm{V}_{1}\) and \(\mathrm{V}_{2}\).
d) Constant Current Sources

The ICL8212 may be used as a constant current source of value of approximately \(25 \mu \mathrm{~A}\) by connecting the THRESHOLD terminal to GROUND. Similarly the ICL8211 will provide a \(130 \mu \mathrm{~A}\) constant current source. The equivalent parallel resistance is in the tens of megohms over the supply voltage range of 2 to 30 volts. These constant current sources may be used to provide biasing for various circuitry including differential amplifiers and comparators. See Typical Operating Characteristics for complete information.


Figure 11: Constant Current Source Applications
e) Zener or Precision Voltage Reference


Figure 12: Programmable Zener or Voltage Reference

The ICL8212 may be used to simulate a zener diode by connecting the OUTPUT terminal to the \(\mathrm{V}_{\mathrm{Z}}\) output and using a resistor network connected to the THRESHOLD terminal to program the zener voltage
\[
\left(V_{\text {zener }}=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \times 1.15 \text { volts }\right)
\]

Since there is no internal compensation in the ICL8212 it is necessary to use a large capacitor across the output to prevent oscillation.
Zener voltages from 2 to 30 volts may be programmed and typical impedance values between \(300 \mu \mathrm{~A}\) and 25 mA will range from 4 to \(7 \Omega\). The knee is sharper and occurs at a significantly lower current than other similar devices available.
f) Precision Voltage Regulators


Figure 13: Simple Voltage Regulator

The ICL8212 may be used as the controller for a highly stable series voltage regulator. The output voltage is simply programmed, using a resistor divider network \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\). Two capacitors \(C_{1}\) and \(C_{2}\) are required to ensure stability since the ICL8212 is uncompensated internally.
This regulator may be used with lower input voltages than most other commercially available regulators and also consumes less power for a given output control current than any commercial regulator. Applications would therefore include battery operated equipment especially those operating at low voltages.
f) High supply voltage dump circuit

In many circuit applications it is desirable to remove the power supply in the case of high voltage overload. For circuits consuming less than 5 mA this may be achieved using an ICL8211 driving the load directly. For higher load currents it is necessary to use an external pnp transistor or darlington pair driven by the output of the ICL8211. Resistors \(R_{1}\) and \(R_{2}\) set up the disconnect voltage and \(R_{3}\) provides optional voltage hysteresis if so desired.


Figure 14: High Voltage Dump Circuits

\section*{g) Frequency limit detectors}

Simple frequency limit detectors providing a GO/NO-GO output for use with varying amplitude input signals may be conveniently implemented with the ICL8211/12. In the application shown, the first ICL8212 is used as a zero crossing detector. The output circuit consisting of \(R_{3}, R_{4}\) and \(\mathrm{C}_{2}\) results in a slow output positive ramp. The negative range is much faster than the positive range. \(R_{5}\) and \(R_{6}\) provide hysteresis so that under all circumstances the second ICL8212 is turned on for sufficient time to discharge \(\mathrm{C}_{3}\). The time constant of \(R_{7} C_{3}\) is much greater than \(R_{4} C_{2}\). Depending upon the desired output polarities for low and high input frequencies, either an ICL8211 or an ICL8212 may be used as the output driver.


Figure 15: Frequency Limit Detector

This circuit is sensitive to supply voltage variations and should be used with a stabilized power supply. At very low frequencies the output will switch at the input frequency.
h) Switch bounce filter

Single pole single throw (SPST) switches are less costly and more available than single pole double throw (SPDT) switches. SPST switches range from push button and slide types to calculator keyboards. A major problem with the use of switches is the mechanical bounce of the elctrical contacts on closure. Contact bounce times can range from a fraction of a millisecond to several tens of milliseconds depending upon the switch type. During this contact bounce time the switch may make and break contact several times. The circuit shown in Figure 16 provides a rapid charge up of \(\mathrm{C}_{1}\) to close to the positive supply voltage \(\left(\mathrm{V}^{+}\right)\)on a switch closure and a corresponding slow discharge of \(C_{1}\) on a switch break. By proportioning the time constant of \(R_{1} C_{1}\) to approximately the manufacturer's bounce time the output as terminal \#4 of the ICL8211/12 will be a single transition of state per desired switch closure.


Figure 16: Switch Bounce Filter

\section*{j) Low voltage power disconnector}

There are some classes of circuits that require the power supply to be disconnected if the power supply voltage falls below a certain value. As an example, the National LM199 precision reference has an on chip heater which malfunctions with supply voltages below 9 volts causing an excessive device temperature. The ICL8212 may be used to detect a power supply voltage of 9 volts and turn the power supply off to the LM199 heater section below that voltage.

Figure 17: Low Voltage Power Supply Disconnect


For further applications, see A027 "Power Supply Design using the ICL8211 and ICL8212" by D. Watson.

\section*{CUSTOM OPTIONS}

The ICL8211/12 have been designed with more on chip components than are used, in anticipation of more dedicated high volume system usage. The trigger voltage and hysteresis resistor network is integrated on chip but not connected. Consult the factory for more information on custom options.

\section*{CHIP TOPOGRAPHY}


DIE IS PASSIVATED WITH A DEPOSITED OXIDE. BONDING PAD OXIDE WINDOWS ARE \(3.6 \times 3.6\) MILS SQUARE.

\section*{FEATURES}
- Input diode protection
- Input bias current less than 0.01 pA at all operating temperatures
- No frequency compensation required
- Offset voltage null capability
- Short circuit protection
- Low power consumption

\section*{APPLICATIONS}
- Femto Ammeter
- Electrometers
- Long time integrators
- Flame detectors
- pH meter
- Proximity detector
- Sample and Hold Circuits


\section*{GENERAL DESCRIPTION}

The ICM8500 and ICH8500A are hybrid circuits designed for ultra low input bias current operational amplifier applications. They are ideally suited for analog and electrometer applications where high input resistance and low input current are of prime importance.

Functionally, they are pin for pin identical to the popular 741 monolithic amplifier. These amplifiers are unconditionally stable and the input offset voltage can be adjusted to zero with an external 20k potentiometer. The input bias current for the inverting and noninverting inputs is 0.1 pA maximum for the ICH 8500 , and 0.01 pA maximum for the 1 CH 8500 A and are constant over the operating temperature range of \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).

Pin 8 is connected to the case. This permits the designer to operate the case at any desired potential, the key to achieving the ultra low input currents associated with these two amplifiers. Forcing the case to the same potential as the inputs eliminates current flow between the case and the input pins, and leakage currents that may have otherwise existed between any of the other pins and the inputs are intercepted by the case.

\section*{ORDERING INFORMATION}


\section*{PIN CONFIGURATION (outline dwg TV)}


\section*{ICH8500/A}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Supply Voltage & 8 V \\
\hline Internal Power Dissipation \({ }^{1]}\) & 500 mW \\
\hline Differential Voltage & \(\pm 0.5 \mathrm{~V}\) \\
\hline Storage Temperature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Operating Temperature & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Solderi & \(300^{\circ} \mathrm{C}\) \\
\hline Output Short Circuit Durat & ndefin \\
\hline
\end{tabular}

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\) unless otherwise specified, V SUPP \(= \pm 15 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{3}{|c|}{ICH8500} & \multicolumn{3}{|c|}{ICH8500A} & \multirow[b]{2}{*}{UNITS} & \multirow[t]{2}{*}{TEST CONDITIONS} \\
\hline & & MIN & TYP. & MAX & MIN & TYP & MAX & & \\
\hline Input Leakage Current (Inverting and Non-Inverting) & lilk & & & 0.1 & & & 0.01 & pA & Case at same potential as inputs \\
\hline Input Offset Voltage & Vos & & & 50 & & & 50 & mV & \\
\hline Offset Voltage Adjustment Range & \(\pm \mathrm{V}_{\text {OS }}\) & & & \(\pm 50\) & & & \(\pm 50\) & mV & \(20 \mathrm{k} \Omega\) Potentiometer \\
\hline Change in Input Offset Voltage Over Temperature & \[
\left.\Delta \operatorname{Vos}\right|_{\Delta T}
\] & & & & & & \[
\begin{aligned}
& \pm 5.0 \\
& \pm 5.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mV} \\
& \mathrm{mV}
\end{aligned}
\] & \[
\begin{aligned}
& +25 \text { to }+85^{\circ} \mathrm{C} \\
& -25 \text { to }+25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline Common Mode Rejection Ratio & CMRR & 60 & 75 & & 60 & 75 & & dB & \(\pm 5\) volts common mode voltage \\
\hline Output Voltage Swing & \(\pm \mathrm{V}_{0}\) & \(\pm 11\) & & & \(\pm 11\) & & & V & \(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\) \\
\hline Common Mode Voltage Range & CMVR & \(\pm 10\) & & & \(\pm 10\) & & & V & \\
\hline Large Signal Voltage Gain & Avol & 20,000 & 105 & & 20,000 & 105 & & - & \\
\hline Feedback Capacitance & \(\mathrm{C}_{\text {fb }}\) & & & 0.1 & & & 0.1 & pF & Case guarded \\
\hline Long Term Input Offset Voltage Stability & \(\Delta V_{\text {os }} / \Delta t\) & & & \(\pm 3.0\) & & & \(\pm 3.0\) & mV & At \(25^{\circ} \mathrm{C}\) \\
\hline Slew Rate & SR & & 0.5 & & & 0.5 & & \(\mathrm{V} / \mu \mathrm{s}\) & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) \\
\hline Input Capacitance & CIN & & 0.7 & & & 0.7 & & pF & Case guarded \\
\hline Input Capacitance & CIN & & 1.5 & & & 1.5 & & pF & Case grounded \\
\hline
\end{tabular}

\section*{CIRCUIT NOTES}

\section*{VOLTAGE OFFSET}

NULL CIRCUIT


VOLTAGE FOLLOWER


LOW LEVEL CURRENT MEASURING CIRCUIT


NOTE: Adjust input offset voltage to \(0 V \pm 10 \mu \mathrm{~V}\) "before measuring leakage.

TYPICAL PERFORMANCE CURVES


INPUT OFFSET VOLTAGE vs. SUPPLY VOLTAGE

\(\pm\) QUIESCENT SUPPLY CURRENT vs. SUPPLY VOLTAGE


INPUT VOLTAGE RANGE vs. SUPPLY VOLTAGE

£POWER SUPPLY REJECTION RATIO vs. SUPPLY VOLTAGE


INPUT REFERRED NOISE VOLTAGE


COMMON MODE REJECTION RATIO vS. SUPPLY VOLTAGE


OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE


POWER CONSUMPTION vs. SUPPLY VOLTAGE


\section*{APPLICATIONS}

\section*{The Pico Ammeter}

A very sensitive pico ammeter can be constructed with the ICH8500. The basic circuit (illustrated in Figure 1) employs the amplifier in the inverting or current summing mode.
Care must be taken to eliminate any stray currents from flowing into the current summing node. This can be accomplished by forcing all points surrounding the input to the same potential as the input. In this case the potential of the input is at virtual ground, or OV, therefore, the case of the device is grounded to intercept any stray leakage currents that may otherwise exist between the \(\pm 15 \mathrm{~V}\) input terminals and the inverting input summing junctions. Feedback capacitance* should be kept to a minimum in order to maximize the response time of the circuit to step function input currents. The time constant of the
circuit is approximately the product of the feedback capacitance \(\mathrm{C}_{\mathrm{fb}}\) times the feedback resistor \(\mathrm{R}_{\mathrm{fb}}\). For instance, the time constant of the circuit in Figure 1 is 1 sec if \(\mathrm{C}_{\mathrm{fb}}=1 \mathrm{pF}\). Thus, it takes approximately 5 sec ( 5 time constants) for the circuit to stabilize to within 1\% of its final output voltage after a step function of input current has been applied. \(\mathrm{C}_{\mathrm{fb}}\) of less than 0.2 to 0.3 pF can be achieved with proper circuit layout. A practical pico ammeter circuit is illustrated in Figure 2.
The internal diodes CR1 and CR2 together with external resistor R1 protect the input stage of the amplifier from voltage transients. The two diodes contribute no error currents, since under normal operating conditions there is no voltage across them.
*Feedback capacitance is the capacitance between the output and the inverting input terminal of the amplifier.


Figure 1. Basic Pico Ammeter Circuit


Figure 2. Pico Ammeter Circuit

\section*{Sample and Hold Circuit (Figure 3)}

The basic principle of this circuit is to rapidly charge a capacitor CSto to a voltage equal to an input signal. The input signal is then electrically disconnected from the capacitor with the charge still remaining on Csto. Since Csto is in the negative feedback loop of the operational amplifier, the output voltage of the amplifier is equal to the voltage across the capacitor. Ideally, the voltage across Csto will remain constant, thus the output of the amplifier will also be constant, however, the voltage across Csto will decay at a rate proportional to the current being injected or taken out of the current summing node of the amplifier. This current can come from four sources: leakage resistance of Csto, leakage current due to the solid state switch SW2, currents due to high resistance paths on the circuit fixture, 'and most important, bias current of the operational amplifier. If the ICH8500A operational amplifier is employed, this bias current is almost non-existant ( \(<0.01 \mathrm{pA}\) ). Note that the voltages on the source, drain and gate of switch SW2 are zero or near zero when the circuit is in the hold mode. Careful construction will eliminate stray resistance paths and capacitor resistance can be eliminated if a quality capacitor is selected. The net result is a quality sample and hold circuit.

As an example, suppose the leakage current due to all sources flowing into the current summing node of the sample and hold circuit is 100 pA . The rate of change of the voltage across the \(0.01 \mu \mathrm{~F}\) storage capacitor is then \(10 \mathrm{mV} / \mathrm{sec}\). In contrast, if an operational amplifier which exhibited an input bias current of 1 nA were employed, the rate of change of the voltage across Csto would be \(0.1 \mathrm{~V} / \mathrm{sec}\). An error build up such as this could not be tolerated in most applications.
Wave forms illustrating the operation of the sample and hold circuit are shown in Figure 4.

\section*{The Gated Integrator}

The circuit in Figure 3 can double as an integrator. In this application the input voltage is applied to the integrator input terminal. The time constant of the circuit is the product of R1 and Csto. Because of the low leakage current associated with the ICH8500 and ICH8500A, very large values of R1 (Up to 1012 ohms) can be employed; this permits the use of small values of integrating capacitor (Csto) in applications that require long time delays. Waveforms for the integrator circuit are illustrated in Figure 5.


Figure 3. Sample and Hold Circuit or Integrator Circuit

\section*{ICH8500/A}

\section*{WAVEFORMS}


Figure 4. Sample and Hold Circuit Waveforms


Figure 5. Gated Integrator Waveforms

\section*{ICH8510/8520/8530 Power Amplifier/ Motor \& Actuator Driver}

\section*{KEY FEATURES:}
- Delivers up to 2.7 amps @ 24-28V DC (30V supplies)
- Protected against inductive kick back with internal power limiting
- Programmable current limiting (short circuit protection)
- Package is electrically isolated (allowing easy heat sinking)
- DC gain > 100dB
- 20mA typical standy quiescent current
- Popular 8 pin TO-3 package
- Internal frequency compensation
- Can drive up to 0.1 horsepower motors.

\section*{DESCRIPTION:}

The ICH8510/8520/8530 is a family of hybrid power amplifiers that have been specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC \& AC motors.

There are three models available for up to +30 V power supply operation: 2.7 amps @ 24 volt output levels, 2 amps @ 24V and 1 amp @ 24V. All amplifiers are protected against shorts to ground by the addition of 2 external protection resistors. For a devi operating at lower voltages, see the ICH8515.
The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN \& PNP power transistors, and internal frequency compensating capacitors. The chips are mounted on a beryllium oxide substrate for optimum heat transfer to the metal package; this substrate provides electrical isolation between amplifiers and metal package.
The I.C. power driver chip has built-in regulators to drive the 741 @ typically \(\pm 13 \mathrm{~V}\) supply voltages.


\section*{ORDERING INFORMATION}


PIN CONFIGURATION (outline dwg KA)
(TOP VIEW)


ABSOLUTE MAXIMUM RATINGS @ \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Power Dissipation, Safe Operating Area .................................... See Curves} \\
\hline \multicolumn{2}{|l|}{Differential Input Voltage} \\
\hline \multicolumn{2}{|l|}{Input Voltage} \\
\hline \multicolumn{2}{|l|}{Peak Output Current .......................................... See Curve} \\
\hline \multicolumn{2}{|l|}{Output Short Circuit Duration (to ground) ..................... Continuous (Note 2)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{2}{|l|}{Lead Temperature (Soldering, 10 seconds) ................................ \(300^{\circ} \mathrm{C}\)} \\
\hline Max Case Temperature & \(150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Rating applies to supply voltages of \(\pm 15 \mathrm{~V}\). For lower supply voltages, \(\mathrm{V}_{\text {INmAX }}=\mathrm{V}\) SUPP.
Note 2: Ratings apply as long as package dissipation is not exceeded. Device must be mounted on heat sink, see Figures 8 and 12. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL SPECIFICATIONS \(T_{A}=+25^{\circ} \mathrm{C} . \mathrm{V}_{\text {Supp }}= \pm 30 \mathrm{~V}\) (unless otherwise stated)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DESCRIPTION} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{CONDITIONS} & \multicolumn{2}{|r|}{ICH85101} & \multicolumn{2}{|l|}{ICH8510M} & \multicolumn{2}{|l|}{ICH85201} & \multicolumn{2}{|l|}{ICH8520M} & \multicolumn{2}{|l|}{ICH85301} & \multicolumn{2}{|l|}{ICH8530M} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & - MIN. & MAX. & MIN. & MAX. & MIN. & MAX. & MIN. & MAX & MIN. & MAX. & \\
\hline Input Offset Voltage Change with Power Dissipation & \(\Delta \mathrm{VOS}^{\prime} / \triangle \mathrm{Pd}\) & Mtd. on Wakefield 403 Heat Sink & & 4 & & 2 & & 4 & & 2 & & 4 & & 2 & \(\mathrm{mV} / \mathrm{W}\) \\
\hline Input Offset Voltage & Vos & \[
\begin{aligned}
& \mathrm{RS} \leqslant 10 \mathrm{k} \Omega \\
& \mathrm{Pd}<1 \mathrm{~W}
\end{aligned}
\] & -6 & +6 & -3 & +3 & -6 & +6 & -3 & +3 & -6 & +6 & -3 & +3 & mV \\
\hline Input Bias Current & IBIAS & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{s}} \leqslant 10 \mathrm{k} \Omega \\
& \mathrm{Pd}<1 \mathrm{~W} \\
& \hline
\end{aligned}
\] & & 500 & & 250 & & 500 & & 250 & & 500 & & 250 & nA \\
\hline Input Offset Current & los & \[
\begin{aligned}
& \mathrm{Rs} \leqslant 10 \mathrm{k} \Omega \\
& \mathrm{Pd}<1 \mathrm{~W}
\end{aligned}
\] & * & 200 & & 100 & & 200 & & 100 & - & 200 & & 100 & nA \\
\hline Large Signal Voltage Gain & Avol & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=20 \Omega 2 \\
& \mathrm{~V}_{\mathrm{O}}>2 / 3 \mathrm{~V}_{\text {SUPP }}
\end{aligned}
\] & 100 & & 100 & & 100 & & 100 & & 100 & & 100 & & dB \\
\hline Input Voltage Range & VCMR & & -10 & +10 & -10 & +10 & -10 & +10 & \(-10\) & +10 & -10 & +10 & -10 & +10 & V \\
\hline Common Mode Rejection Ratio & CMRR & \(R \mathrm{~S}=10 \mathrm{ks}\) & 70 & & 70 & & 70 & & 70 & & 70 & & 70 & & dB \\
\hline Power Supply Rejection Ratio & PSRR & \(R \mathrm{~S}=10 \mathrm{k} \Omega\) & 77 & & 77 & & 77 & & 77 & & 77 & & 77 & & dB \\
\hline Slew Rate & SR & \[
\begin{aligned}
& C_{L}=3 p F, A_{V}=1 \\
& R_{L}=10 \Omega \\
& V_{O} \geqslant 2 / 3 V_{\text {SUPP }}
\end{aligned}
\] & 0.5 & & 0.5 & & 0.5 & & 0.5 & & 0.5 & & 0.5 & & \(V \mu \mathrm{~s}\) \\
\hline Output Voltage Swing & Vomax & \[
\begin{aligned}
& R_{L}=20 \Omega \\
& A_{V}=10
\end{aligned}
\] & \[
\begin{aligned}
\left(R_{\mathrm{L}}\right. & =30 \Omega) \\
& \pm 26 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
\left(\mathrm{R}_{\mathrm{L}}\right. & =30 \Omega) \\
& \pm 26 \mathrm{~V}
\end{aligned}
\] & & \(\pm 26 \mathrm{~V}\) & & \(\pm 26 \mathrm{~V}\) & & \(\pm 25 \mathrm{~V}\) & & \(\pm 25 \mathrm{~V}\) & & V \\
\hline Output Current (3) & Imax & \[
\begin{aligned}
& R_{L}=8 \Omega \\
& A_{V}=10
\end{aligned}
\] & 1.0 & & 1.0 & & 2.0 & & 2.0 & & 2.7 & & 2.7 & & A \\
\hline Power Supply Quiescent Current & IQ & \[
\begin{aligned}
& R_{L}=x \\
& V_{I N}=0 V
\end{aligned}
\] & & 125 & & 100 & & 125 & . & 100 & & 125 & & 100 & mA \\
\hline
\end{tabular}

Note 3: See Figure \#9 if Power Supplies are less than \(\pm 30 \mathrm{~V}\).

ELECTRICAL SPECIFICATIONS (continued) \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\). to \(+125^{\circ} \mathrm{C}\). (M) or \(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\). to \(+85^{\circ} \mathrm{C}\).(1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input Offset Voltage & Vos & \(\mathrm{Pd}<1 \mathrm{~W}\) & -10 & \(+10\) & -9 & +9 & \(-10\) & +10 & -9 & +9 & -10 & +10 & -9 & +9 & MV \\
\hline Input Bias Current & IBIAS & \(\mathrm{Pd}<1 W\) & & 1500 & & 750 & & 1500 & & 750 & & 1500 & & 750 & nA \\
\hline Input Offset Current & los & & & 500 & & 200 & & 500 & & 200 & & 500 & & 200 & nA \\
\hline Large Signal Voltage Gain & Avol & \[
\begin{aligned}
& R_{\mathrm{L}}=20 \Omega \\
& \Delta V_{\mathrm{O}}=2 / 3 V_{\mathrm{SUPP}}
\end{aligned}
\] & 90 & & 90 & & 90 & & 90 & & 90 & & 90 & & dB \\
\hline Output Voltage Swing & Vomax & \(\mathrm{R}_{\mathrm{L}}=20 \Omega, A_{V}=10\) & \(\pm 24\) & & \(\pm 24\) & & \(\pm 24\) & & \(\pm 24\) & & \(\pm 24\) & & \(\pm 24\) & & V \\
\hline Thermal Resistance Junction to Ambient & \(\mathrm{R}_{\text {OJA }}\) & Without Heat Sink & & 40 & & 40 & & 40 & & 40 & & 40 & & 40 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance Junction to Case & \(\mathrm{R}_{\text {tJC }}\) & & & 2.5 & . & 2.5 & & 2.5 & & 2.5 & & 2.5 & & 2.5 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance Junction to Ambient & \(\mathrm{R}_{\text {HJA }}\) & Mtd. on Wakefield 403 Heat Sink & & \[
\begin{array}{r}
\text { (Typ.) } \\
4.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
\text { (Typ.) } \\
4.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
\text { (Typ.) } \\
4.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
\text { (Typ.) } \\
4.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
\hline \text { (Typ.) } \\
4.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
\text { (Typ.) } \\
4.0 \\
\hline
\end{array}
\] & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Supply Voltage Range & Vsupp & & \(\pm 18\) & \(\pm 30\) & \(\pm 18\) & \(\pm 30\) & \(\pm 18\) & \(\pm 30\) & \(\pm 18\) & \(\pm 30\) & \(\pm 18\) & \(\pm 30\) & \(\pm 18\) & \(\pm 30\) & V \\
\hline
\end{tabular}

\section*{ICH8510/8520/8530}

How To Set The Externally Programmable, Current Limiting Resistors:
The maximum output current is set by the addition of two external resistors, \(R_{S C}^{+}\)and \(R_{S}^{-} C\). Because of the current power limiting circuitry, the maximum output current is available only when \(V_{o}\) is close to either power supply. As Vo moves away from VSUPP, the maximum output current decreases in proportion to output voltage. The curve below shows maximum output current versus output voltage.


Figure 1: Maximum Output Current for Given Rsc
In general, for a given \(\mathrm{V}_{\mathrm{O}}\), Isc limit, and case temperature \(T_{\mathrm{C}}\), Rsc can be calculated from the equation below for \(\mathrm{V}_{\mathrm{O}}\) positive, lout positive.
\[
\mathrm{RSC}_{\mathrm{SC}}=\frac{\left(20.6 \mathrm{~V}_{\mathrm{O}}\right)^{*}+680-2.2\left(\mathrm{~T}_{\mathrm{C}}-25^{\circ} \mathrm{C}\right)}{\mathrm{I}_{\mathrm{SC}(\mathrm{LIMIT})}}
\]
*For \(V_{o}\) negative, replace this term with 10.3 ( \(\mathrm{V}_{\mathrm{O}}-1.2\) )
For example, for \(\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A} @ \mathrm{~V}_{\mathrm{O}}=25 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\),
\[
\mathrm{R}_{\mathrm{SC}}=\frac{1195}{1500}=0.797
\]

Therefore for this application, \(\mathrm{R}_{\mathrm{SC}}=.82 \Omega\) (closest standard value)

When \(0.82 \Omega\) is used, Isc @ \(V_{O}=O V\) will be reduced to about 1A. Except for small changes in the " \(\pm \mathrm{V}_{\mathrm{O}(\max )}\) Limit" area, the effects of changing Rsc on the lout vs VOUT characteristics can be determined by merely changing the lour scale on Fig. 1 to correspond to the new value. Changes in Tc move the limit curve bodily up and down.
This internal power limiting circuitry however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 1. Clearly, as Vo decreases, the lo requirement falls also, more steeply than the lo available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:


Capacitive Load


Inductive Load (Note catch diode)

Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any 24-28VDC motor/actuator, the R \(\mathrm{R}_{S C}\) resistors must be calculated to get proper power delivered to the motor (up to a maximum of 2.7 A ) and \(\mathrm{V}_{\text {SUPP }}\) set at \(\pm 30 \mathrm{~V}\). For lower supply and/ or output voltages, the maximum output current will follow graphs of Figures 1 and 5.

\section*{NOTE ON AMPLIFIER POWER DISSIPATION}

The steady state power dissipation limit is given by
\[
P_{D}=\frac{T_{J(M A X)}-T_{A}}{R_{A J C}+R_{A C H}+R_{\theta H A}}
\]
where
\(T_{J}=\) Maximum junction temperature
\(T_{A}=\) Ambient temperature
\(\mathrm{R}_{\text {GJC }}=\) Thermal resistance from transistor junction to case of package
\(\mathrm{R}_{\mathrm{ACH}}=\quad\) Thermal resistance from case to heat sink
\(\mathrm{R}_{\theta H A}=\quad\) Thermal resistance from heat sink to ambient air

\section*{And since}
\(T_{J}=\quad 200^{\circ} \mathrm{C}\) for silicon transistors
\(\mathrm{R}_{\text {AJC }} \cong\) 2.0C/WATT for a steel bottom TO-3 package with die attachment to beryllia substrate to header
\(\mathrm{R}_{\theta \mathrm{CH}}=.045^{\circ} \mathrm{C} / \mathrm{W}\) for 1 mil thickness of Wakefield type 120 thermal joint compound
\(.09^{\circ} \mathrm{C} / \mathrm{W}\) for 2 mil thickness of type 120
\(.13^{\circ} \mathrm{C} / \mathrm{W}\) for 3 mil thickness of type 120
\(.17^{\circ} \mathrm{C} / \mathrm{W}\) for 4 mil thickness for type 120
\(.21^{\circ} \mathrm{C} / \mathrm{W}\) for 5 mil thickness of type 120
\(.24^{\circ} \mathrm{C} / \mathrm{W}\) for 6 mil thickness of type 120
\(\mathrm{R}_{\theta \mathrm{HA}}=\quad\) The choice of heat sink that a user selects depends upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). \(R_{\theta H A} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}\). Using 4 mil joint compound,
\[
P_{D}=\frac{200^{\circ} \mathrm{C}-T_{\mathrm{A}}}{2.0^{\circ}+0.17^{\circ}+2.0}=\frac{200^{\circ} \mathrm{C}-T_{\mathrm{A}}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}
\]
or \(@ T_{A}=25^{\circ} \mathrm{C}\),
\[
\frac{200^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=42 \mathrm{~W}
\]
and \(@ T_{A}=125^{\circ} \mathrm{C}\),
\[
\frac{200^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=18 \mathrm{~W}
\]

From Fig. 2 the worst case steady state power dissipation for an IH8520 ( \(\mathrm{R}_{\mathrm{SC}}=0.62 \Omega\) ) is about 30W and 18 W respectively. Thus this heat sink is adequate.

TYPICAL PERFORMANCE CURVES


Figure 2: Safe Operating Area; Iout vs Vout vs Tc



Figure 3: Input Offset Voltage vs Power Dissipation


Figure 4: Input Impedance vs Gain vs Frequency

\(\pm \mathbf{V}_{\mathrm{CC}}\) IVOLTS


Figure 5: Quiescent Current vs Power Supply Voltage

\section*{TYPICAL PERFORMANCE CURVES, CONTINUED.}



Figure 6: Large Signal Power Band Width


Figure 7: Small Signal Frequency Response


Figure 8: Maximum Output Current vs. Case Temperature


Figure 9: Maximum Output Current
vs. \(V_{\text {SUPP }}\)

\section*{BRIEF APPLICATION NOTES}

The maximum input voltage range, for \(\mathrm{V}_{\text {Sup }}< \pm 15 \mathrm{~V}\), is substantially less than the available output voltage swing. Thus non-inverting amplifiers, as in Figure 10, should always be set up with a gain greater than about 2.5, (with \(\pm 30 \mathrm{~V}\) supplies), so that the full output swing is available without hazard to the input. At first sight, it would seem that no restrictions would apply to inverting amplifiers, since the inputs are virtual ground and ground. However, under fault (output short-circuited) or high slew conditions, the input can be substantially removed from ground. Thus for inverting amplifiers with gains less than about 5 , some protection should be provided at this input. A suitable resistor from the input to ground will provide protection, but also increases the effect of input offset voltage at the output. A pair of diodes, as shown in Figure 12, has no effect on normal operation, but gives excellent protection.


Figure 10:
Non-Inverting Amplifier


Figure 11:
Inverting Amplifier

\section*{TYPICAL APPLICATIONS}

\section*{I. Actuator Driving Circuit ( \(24 \rightarrow 28\) VDC rated)}


Figure 13: Power Amp Driving Actuator

The gain of the circuit is set to +10 , so a \(\mathrm{V}_{\mathbb{N}}=+2.4 \mathrm{~V}\) will produce a +24 V output (and deliver up to 2.7 amps output current). To reverse the piston travel, invert \(\mathrm{V}_{\text {IN }}\) to -2.4 V and \(V_{\text {OUt }}\) will go to -24 V . Diodes D1 and D2 absorb the inductive kick of the motor during transients (turn-on or turn-off); their breakdown should exceed 60V.

Power dissipation is another important parameter to consider. The current protection circuit protects the device against short circuits to ground, (but only for transients to the opposite supply) provided the device has adequate heat sink. A curve of power dissipation vs \(V_{0}\) under short circuit conditions is given in Figure 12. The limiting circuit is more closely dependent on case temperature than (output transistor) junction temperatures. Although these operating conditions are unlikely to be attained in actual use, they do represent the limiting case a heat sink must cope with. For fully safe design, the anticipated range of \(V_{0}\) values that could occur, (steady state, including faults) should be examined for the highest power dissipation, and the device provided with a heat sink that will keep the junction temperature below \(200^{\circ} \mathrm{C}\) and the case temperature below \(150^{\circ} \mathrm{C}\) with the worst case ambient temperature expected.


Figure 12: Power Dissipation under Short Circuit Conditions

\section*{II. Obtaining Up To 5 Amps Output Current Capability By Paralleling Amplifiers}


Figure 14: Paralleling Power Amps for Increased Current Capability

This paralleling procedure can be repeated to get any desired output current. However, care must be taken to provide sufficient load to avoid the amplifiers pulling against each other.
III. Driving A 48VDC Motor


Figure 15: Power Amp Driving 48 VDC Motor

\section*{IV. Precise Rate Control of an Electronic Valve}

There are two methods to get very fine control of the opening of an orifice driven by an electronic valve.
1. Keep the voltage constant, i.e.; 24 VDC or 12 VDC , and vary the time the voltage is applied, i.e., if it takes five seconds to completely open an orifice at 24 VDC , then applying 24 V for only \(21 / 2\) seconds opens it only \(50 \%\).
2. Simply vary the DC driving voltage to valve. Most valves obtain full opening as an inverse of applied voltage, i.e., valves open \(100 \%\) in five seconds at 24VDC and in 10 seconds at 12VDC.
A circuit to perform the second method is shown below; the advantage of this is that digit switches can precisely set driving voltage to \(0.2 \%\) accuracy ( 8 -bit DAC), thereby controlling the rate at which the valve opens.

electronic valve

Figure 16: Digitally Controlled Electronic Value
V. The circuit presented in Fig. 16 is also an excellent way to get a precise power supply voltage; in fact, it is possible to


Figure 17: Digitally Programmable Power Supply
build a precision variable power supply using a BCD coded DAC with BCD Thumbwheel switches.
\begin{tabular}{llllllllll}
20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & \(\emptyset\) BIT & Vout \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \(+25 V D C\) \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \(-25 V D C\) \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & \(+15 V D C\) \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & \(-15 V D C\) \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & +0.098 VDC \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(-0.098 V D C\)
\end{tabular} Etc.

The power supply can be set to \(\pm 0.1 \mathrm{VDC}\).

\section*{ICH8510/8520/8530}
VI. There is great power available in the sub-systems shown in IV and V; there the D/A converter is shown being set manually (via digit switches) to get a precise analog output (binary \(\# \times\) full scale voltage), then the driver amplifier multiplies this voltage to produce the final output voltage. It seems obvious that the next logical step is to let a micro-
processor (local) or C.P.U. program the D/A converter. Then total, pre-programmable, electronic control of an actuator, electronic valve, motor, etc., is obtained. This would be used in conjunction with a transducer/multiplex system for electronic monitoring and control of any electromechanical function.

\section*{ELECTRONIC CONTROL SYSTEM:}


MUX = INTERSIL IH5060 (1/16) or IH5070 (2/16)
S/H (SAMPLE \& HOLD) \(=\) INTERSIL IH5111
D/A CONVERTER \(=\) INTERSIL 7520 or INTERSIL 7105
POWER AMP \(=1 H 8510\) (1 AMP) or 1 H8520 (2 AMP) or IH8530 (2.7 AMP)
A/D CONVERTER \(=\) ICL8052/7103 or ICL8052/7104 \(\mu\) COMPUTER \(=\) IM6100 family:

mating connector is also available. Order part number 29-

0306 (\$4.50 ea.).

HEAT SINK INFORMATION
Heat sinks are available from Intersil. Order part number 290305 ( \(\$ 10.00\) ea.) with a \(R_{\theta H A}=1.3^{\circ} \mathrm{C} /\) watt. A convenient

NOTE: This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

\section*{APPLICATION NOTES}

For Futher Applications Assistance, See:
A021 "Power D/A Converters Using The ICH8510/20/30," by Dick Wilenken
A026 "DC Servo Motor Systems Using The ICH8510/20/30," by Ken McAllister
A029 "Power Op Amp Heat Sink Kit," by Skip Osgood

\section*{ICH8515} Power Amplifier Motor \& Actuator Driver

\section*{KEY FEATURES:}
- Delivers up to \(1.5 \mathrm{amps} @+12 \mathrm{VDC}\) ( \(\pm 15 \mathrm{VDC}\) supplies)
- Protected against inductive kick back by internal power limiting
- Programmable current limiting (short circuit protection)
- Package is electrically isolated (allowing easy heat sinking)
- DC gain > 100dB
- Popular 8 pin TO-3 package
- Internal frequency compensation
- Can drive up to 0.033 horsepower motors
- Pin equivalent to ICH8510/20/30 family

\section*{DESCRIPTION:}

The ICH8515 is a hybrid power amplifier specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC \& AC motors.
The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN \& PNP power transistors, and an internal frequency compensating capacitor. The chips are mounted on a beryllium oxide substrate, for optimum heat transfer to the metal package; this substrate provides electrical isolation between the amplifier and the metal package.

The 8515 has special SOA (safe operating area) circuitry which allows it to withstand a direct short to ground or to either supply indefinitely. It has been designed to operate with \(\pm 12\) or \(\pm 15\) VDC supplies and will deliver typically 1.5 to \(1.8 \mathrm{~A} @ 13 \mathrm{~V}\) out using +15 V supplies.
Internal frequency compensation provides stability down to unity gain (either inverting or noninverting) even when using inductive loads.

SCHEMATIC DIAGRAM


\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline DEVICE & TEMPERATURE & OUTPUT \\
\hline ICH8515MKA & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 1.5 A \\
\hline ICH8515IKA & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 1.25 A \\
\hline
\end{tabular}

PIN CONFIGURATION (OUTLINE DWG. KA)
(TOP VIEW)

ABSOLUTE MAXIMUM RATINGS @ \(T_{A}=25^{\circ} \mathrm{C}\)
Supply Voltage ....................................................................... \(\pm 18 \mathrm{~V}\)
Power Dissipation, Safe Operating Area ..................................... See Curves
Differential Input Voltage ................................................................... \(\pm 30 \mathrm{~V}\)
Input Voltage .................................................................. \(\pm 15 \mathrm{~V}\) (Note 1\()\)
Peak Output Current .............................................. See Curves (Note 2)
Output Short Circuit Duration (to ground) ....................... Continuous (Note 2)
Operating Temperature Range M .................................. \(-55^{\circ} \mathrm{C} \rightarrow+125^{\circ} \mathrm{C}\)
................................... \(-20^{\circ} \mathrm{C} \rightarrow+85^{\circ} \mathrm{C}\)
Storage Temperature Range ................................
Lead Temperature (Soldering, 10 seconds) ...................................... \(300^{\circ} \mathrm{C}\)
Max Case Temperature ................................................................. \(150^{\circ} \mathrm{C}\)

Note 1: Rating applies to supply voltages of \(\pm 15 \mathrm{~V}\). For lower supply voltages, \(\mathrm{V}_{\text {INMAX }}=\) V Supp
Note 2: Rating applies as long as package dissipation is not exceeded for heat sink attached.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS \(T_{A}=+25^{\circ} \mathrm{C} . \mathrm{V}_{\text {SUPP }}= \pm 15 \mathrm{~V}\) (unless otherwise stated)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{ICH85151} & \multicolumn{3}{|c|}{ICH8515M} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & TYP. & MAX. & MIN. & TYP. & MAX. & \\
\hline Input Offset Voltage Change with Power Dissipation & \(\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{Pd}\) & Mtd. on Wakefield 403 Heat Sink & & & 4 & & & 2 & \(\mathrm{mV} / \mathrm{W}\) \\
\hline Input Offset Voltage & Vos & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}\) & -6 & 1 & 6 & -3 & 0.7 & 3 & mV \\
\hline Input Bias Current & IBIAS & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}\) & & & 500 & & & 250 & nA \\
\hline Input Offset Current & los & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}\) & & & 200 & & & 100 & nA \\
\hline Large Signal Voltage Gain & Avol & \[
\begin{aligned}
& R_{L}=10 \Omega \\
& V_{O}>2 / 3 V_{\text {SUPP }}
\end{aligned}
\] & 100 & & & 100 & & & dB \\
\hline Input Voltage Range & \(V_{\text {CMR }}\) & & -10 & & +10 & -10 & & +10 & V \\
\hline Common Mode Rejection Ratio & CMRR & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega\) & 70 & & & 70 & & & dB \\
\hline Power Supply Rejection Ratio & PSRR & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega\) & 77. & & & 77 & & & dB \\
\hline Slew Rate & SR & \[
\begin{aligned}
& C_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{AV}_{\mathrm{V}}=1, \\
& \mathrm{R}_{\mathrm{L}}=10 \Omega \\
& \mathrm{~V}_{\mathrm{O}} \geqslant 2 / 3 \mathrm{~V}_{\text {SUPP }} \\
& \hline
\end{aligned}
\] & 0.5 & & & 0.5 & & & \(\mathrm{V} / \mu \mathrm{S}\) \\
\hline Output Voltage Swing & Vomax & \(R_{L}=10 \Omega, A_{V}=10\) & \(\pm 12\) & & & \(\pm 12\) & & & V \\
\hline Output Current & Imax & \(\mathrm{R}_{\mathrm{L}}=5 \Omega, \mathrm{~A}_{\mathrm{V}}=10\) & \(\pm 1.25\) & 1.4 & & \(\pm 1.5\) & 1.8 & & A \\
\hline Power Supply Quiescent Current & 10 & \(\mathrm{R}_{\mathrm{L}}=\propto, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) & & 80 & 125 & & 70 & 100 & mA \\
\hline
\end{tabular}

OPERATING CHARACTERISTICS (continued) \(T_{A}=-55^{\circ} \mathrm{C}\). to \(+125^{\circ} \mathrm{C}(\mathrm{M})\) or \(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\). to \(+85^{\circ} \mathrm{C}\). (I)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Input Offset Voltage & Vos & Pd<1W & -10 & & +10 & -9 & & +9 & mV \\
\hline Input Bias Current & IBIAS & \(\mathrm{Pd}<1 \mathrm{~W}\) & & & 1500 & ) & & 750 & nA \\
\hline Input Offset Current & los & & & & 500 & & & 200 & nA \\
\hline Large Signal Voltage Gain & Avol & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=10 \Omega, \\
& \Delta \mathrm{~V}_{\mathrm{O}}=2 / 3 \mathrm{~V}_{\text {SUPP }}
\end{aligned}
\] & 90 & & & 90 & & & dB \\
\hline Output Voltage Swing & Vomax & \(\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{~A}_{\mathrm{V}}=10\) & \(\pm 10\) & & & \(\pm 10\) & & & V \\
\hline Thermal Resistance Junction to Ambient & \(\mathrm{R}_{\text {AJA }}\) & Without Heat Sink & & & 40 & & & 40 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance Junction to Case & \(\mathrm{R}_{\text {AJC }}\) & & & & 3.0 & & & 3.0 & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Thermal Resistance Junction to Ambient & \(\mathrm{R}_{\text {AJA }}\) & Mtd. on Wakefield 403 Heat Sink & & 4.5 & & & 4.5 & & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Supply Voltage Range & VSUPP & & \(\pm 11\) & & \(\pm 17\) & \(\pm 11\) & & \(\pm 17\) & V \\
\hline
\end{tabular}

How To Set The Externally Programmable, Current Limiting Resistors:
The maximum output current is set by the addition of two external resistors. \(R{ }_{S C}^{+}\)and \(R \overline{s c}\). Because of the internal power limiting circuitry, the maximum output current is available only when \(V_{O}\) is close to either power supply. As \(V_{0}\) moves away from \(V_{\text {SUPP, }}\) the maximum output current decreases in proportion to output voltage. The curve below shows maximum output current versus output voltage.



Figure 1: Maximum Output Current for Given Rsc
In general, for a given \(\mathrm{V}_{\mathrm{O}}\), Isc limit, and case temperature Tc. RSc can be calculated from the equation below for \(\mathrm{V}_{\mathrm{O}}\) positive, lout positive.
\[
\mathrm{RsC}=\frac{\left(20.6 \mathrm{~V}_{\mathrm{O}}\right)^{*}+680-2.2\left(\mathrm{~T} \mathrm{C}-25^{\circ} \mathrm{C}\right)}{\operatorname{ISC} \text { (limit) in } \mathrm{mA}}
\]
*For \(V_{O}\) negative, replace this term with \(10.3\left(\mathrm{~V}_{\mathrm{O}}-1.2\right)\)
For example, for \(\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A} @ \mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V}\) and \(\mathrm{Tc}=25^{\circ} \mathrm{C}\),
\[
R \mathrm{SC}=\frac{(20.6)(12)+680}{1500}=\frac{927.2}{1500}=.618
\]

Therefore for this application, RSC \(=.62 \Omega\) (closest standard value)

When \(0.62 \Omega\) is used, Isc @ \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) will be reduced to about 1A. Except for small changes in the " \(\pm \mathrm{V}_{\mathrm{O}(\max )}\) Limit" area, the effects of changing Rsc on the lout vs. VOUT characteristics can be determined by merely changing the lout scale on Fig. 1 to correspond to the new value. Changes in Tc move the limit curve bodily up and down.
This internal power limiting circuitry however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 1. Clearly, as Vo decreases, the lo requirement falls also, more steeply than the lo available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:


Capacitive Load


Inductive Load (Note catch diode)

Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any 12VDC motor/actuator, the Rsc resistors must be calculated to get proper power delivered to the motor (up to a maximum of 1.5 amps ) and VSUPP set at \(\pm 15 \mathrm{~V}\). For lower supply and/or output voltages, the maximum output current will follow graphs of Figures 1 and 9 .

\section*{NOTE ON AMPLIFIER POWER DISSIPATION}

The steady state power dissipation limit is given by
\[
P_{D}=\frac{T_{J(M A X)}-T_{A}}{R_{\theta J C}+R_{\theta C H}+R_{\theta H A}}
\]
where
\(T_{J}=\) Maximum junction temperature
\(T_{A}=\) Ambient temperature
\(R_{\theta J C}=\) Thermal resistance from transistor junction to case of package
\(\mathrm{R}_{\theta \mathrm{CH}}=\quad\) Thermal resistance from case to heat sink
\(\mathrm{R}_{\theta H A}=\) Thermal resistance from heat sink to ambient air
And since
\(T_{J}=\quad 150^{\circ} \mathrm{C}\) for silicon transistors
\(\mathrm{R}_{\text {AJC }} \cong\) 2.0C/WATT for a steel bottom TO-3 package with die attachment to beryllia substrate to header
\(\mathrm{R}_{\theta \mathrm{CH}}=\quad .045^{\circ} \mathrm{C} / \mathrm{W}\) for 1 mil thickness of Wakefield type 120 thermal joint compound
\(.09^{\circ} \mathrm{C} / \mathrm{W}\) for 2 mil thickness of type 120
\(.13^{\circ} \mathrm{C} / \mathrm{W}\) for 3 mil thickness of type 120
\(.17^{\circ} \mathrm{C} / \mathrm{W}\) for 4 mil thickness for type 120
\(.21^{\circ} \mathrm{C} / \mathrm{W}\) for 5 mil thickness of type 120
\(.24^{\circ} \mathrm{C} / \mathrm{W}\) for 6 mil thickness of type 120
\(\mathrm{R}_{\theta H \mathrm{H}}=\) The choice of heat sink that a user selects depends upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). \(\mathrm{R}_{\theta H A} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}\). Using 4 mil joint compound,
\[
P_{D}=\frac{150^{\circ} \mathrm{C}-\mathrm{T}_{A}}{2.0^{\circ}+0.17^{\circ}+2.0}=\frac{150^{\circ} \mathrm{C}-\mathrm{T}_{A}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}
\]
or \(@ T_{A}=25^{\circ} \mathrm{C}\),
\[
\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=30 \mathrm{~W}
\]
and \(@ T_{A}=125^{\circ} \mathrm{C}\),
\[
\frac{150^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=6 \mathrm{~W}
\]

From Fig. 2 the worst case steady state power dissipation for the IH 8515 ( \(\mathrm{RsC}=0.62 \Omega\) ) is about 15 W and 11 W respectively. Thus this heat sink is adequate.


Figure 2: Iout vs. Vout

\section*{TYPICAL PERFORMANCE CURVES}



Figure 3: Input Offset Voltage vs Power Dissipation


Figure 4: Input Impedance vs Gain vs Frequency



Figure 5: Quiescent Current vs Power Supply Voltage

\section*{ICH8515}



Figure 6: Large Signal Power Band Width


Figure 7: Small Signal Frequency Response


Figure 8: Maximum Output Current vs. Case Temperature


Figure 9: Maximum Output Current vs. VSUPP

\section*{ICH8515}

\section*{TYPICAL APPLICATIONS}

\section*{I. CONSTANT VOLTAGE DRIVE FOR D.C. MOTORS}

Here \(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\mathrm{IN}}=4\), and if \(\mathrm{V}_{\text {IN }}=-3 \mathrm{~V}\), \(\mathrm{V}_{\text {OUT }}=+12 \mathrm{~V}\), and vice versa for \(V_{\mathbb{N}}=+3 V\). Diodes D1, D2 should be 1N4001 types: these absorb the inductive kickbacks of the motor. The 2000pF Miller capacitor is used to prevent system oscillation, by providing gain rolloff @ approx. 20 kHz ( -3 dB ).


\section*{II. CONSTANT CURRENT DRIVE FOR D.C. MOTORS}


This circuit allows precisely set motor drive current with op. amp. feedback accuracy. If \(R_{\mathbb{I N}}=R_{F}=1 k \Omega\), and \(R_{L}=10 \Omega\), then \(\frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{V}_{\mathrm{IN}}}=-0.1 \mathrm{Amps} /\) Volt, and if \(R_{L}=1 \Omega\) (use 4 W or more) and \(R_{F}=R_{\mathbb{N}}=1 \mathrm{k} \Omega, \frac{L_{L}}{V_{I N}}=-1 \times 1=\frac{1 \mathrm{Amp}}{\text { Volt }}\). Thus if \(V_{\mathbb{I N}}=1.5 \mathrm{~V}\), 1.5 amps will flow thru the motor. Since one side of the motor will have a 1.5 V drop (with respect to GND), the Vo point will go to 13.5 V and develop 12 V across motor.

\section*{HEAT SINK INFORMATION}

Heat sinks are available from Intersil. Order part number 290305 ( \(\$ 10.00\) ea.) with a \(R_{\theta H A}=1.3^{\circ} \mathrm{C} /\) watt. A convenient
mating connector is also available. Order part number 290306 (\$4.50 ea.).

NOTE: This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

\section*{Timers, Counters, and Display Drivers}

Timers

ICM7240/50/60 ICM7242
ICM7555
ICM7556

\section*{Counters}
\begin{tabular}{lr} 
ICM7208 & \(6-7\) \\
ICM7216 & \(6-24\) \\
ICM7217/27 & \(6-39\) \\
ICM7224/25 & \(6-64\) \\
ICM7226 & \(6-72\) \\
ICM7236 & \(6-110\)
\end{tabular}

Counter Timebase
ICM7207/A 6-3

Display Drivers
ICM7211/12 6-14
ICM7218
6-55
ICM7231-34 6-84
ICM7235 6-104
ICM7243 6-133
ICM7281 6-143

Counters, Timers and Display Drivers
\begin{tabular}{|c|c|c|c|c|}
\hline Part Number & Circuit Doseription & Package & Crystal Frequency & Output \\
\hline \[
\begin{aligned}
& \text { ICM7207 } \\
& \text { ICM7207A }
\end{aligned}
\] & Frequency counter timebase. & \[
\begin{aligned}
& \text { 14-Pin DIP } \\
& \text { 14-Pin DIP }
\end{aligned}
\] & \[
\begin{aligned}
& 6.5536 \mathrm{MHz} \\
& 5.2488 \mathrm{MHz}
\end{aligned}
\] & 0.01 . 0.1 , or 1 -second count window plus store. reset and MUX. \\
\hline ICM7208 & 7-digit unit counter. With addition of 7207 the circuit becomes a complete timer-frequency counter: & 28-Pin DIP & - & LED display drive \\
\hline \[
\begin{aligned}
& \text { ICM7211 } \\
& \text { ICM7212 }
\end{aligned}
\] & Four-digit display decoder drivers: ICM7211 is LCD: ICM7212 is LED: Non-multiplexed for low noise. BCD input. decoded display drive output. & 40-Pin DIP (plastic) & - & Four-digit. seven-segment direct display drive: LED or LCD \\
\hline ICM7216 ICM7226 & Eight-digit universal counter measures frequency. period, frequency ratio, time interval, units; on-board time base. & \[
\begin{aligned}
& 28 \text {-Pin DIP } \\
& 40 \text {-Pin DIP } \\
& \text { (Cerdip or plastic) }
\end{aligned}
\] & 1 or 10 MHz & Eight-digit-common anode or common cathode direct LED drive: BCD output \\
\hline \[
\begin{aligned}
& \text { ICM7217 } \\
& \text { ICM7227 }
\end{aligned}
\] & Four-digit CMOS up/down counter: presettable start/count and compare register: for hardwired or microprocessor control applications: cascadable. & 28-Pin Cerdip or plastic & - & Four-digit, seven-segment common anode or common cathode direct LED display drive: equal. zero. carry/borrow \\
\hline \[
\begin{aligned}
& \text { ICM7218A/O } \\
& \text { ICM7218E }
\end{aligned}
\] & LED display driver system with \(8 \times 8\) memory: numeric or dot (1 of 64) decoding: microprocessor compatible. & \[
\begin{aligned}
& \text { 28-Pin DIP } \\
& \text { 40-Pin OIP } \\
& \text { (Cerdip or plastic) }
\end{aligned}
\] & - . & Eight-digit. seven-segment plus decimal point: common cathode or common anode \\
\hline \[
\begin{aligned}
& \text { ICM7224 } \\
& \text { ICM7225 }
\end{aligned}
\] & 4 \(1 / 2\)-digit high speed counter/decoder/driver: 25 MHz typ: ICM7224 is LCD. ICM7225 is LED: direct display drive. cascadable. & 40-Pin DIP (plastic) & - . & 4! /2-digit seven-segment direct display driver: LED or LCD \\
\hline ICM7231 & 8 -digit CMOS multiplexed LCD driver. Parallel input. & 40-Pin DIP (plastic) & - & Eight-digit. seven-segment plus two flags per digit \\
\hline ICM7232 & \(101 / 2\)-digit CMOS multiplexed LCD driver. Serial input. & 40-Pin DIP (plastic) & - & \(101 / 2\)-digit. seven-segment plus two flags per digit \\
\hline ICM7233 & 4-character CMOS multiplexed LCD driver. Parallel alphanumeric ( 6 -bit ASCII) input. & 40-Pin DIP (plastic) & - & Four-character, 16-segment plus colon \\
\hline ICM7234 & 5-character CMOS multiplexed LCD driver. Serial alphanumeric (6-bit ASCII) input. & 40-Pin DIP (plastic) & - & Five-character. 16-segment plus colon \\
\hline ICM7235/A
ICM7235M/AM & 4-digit CMOS decoder/driver for direct drive vacuum fluorescent displays. BCD input. Same as above but microprocessor compatible. & 40-Pin DIP (plastic) & - & Four-digit. seven-segment. vacuum fluorescent display drive: either HEX or CODE B \\
\hline ICM7236 & \(44^{*} / 2\)-digit high speed CMOS counter/decoder/driver for vacuum fluorescent displays: 25 MHz typ. counting speed. & 40-Pin DIP (plastic) & - & 4 \(1 / 2\)-digit. seven-segment. vacuum fluorescent display drive \\
\hline ICM7236A & Same as above but counting to 15959. & 40-Pin DIP (plastic) & - & 41/2-digit. seven-segment. vacuum fluorescent display drive \\
\hline \[
\begin{aligned}
& \text { ICM7240 } \\
& \text { ICM7250 } \\
& \text { ICM7260 }
\end{aligned}
\] & Programmable CMOS counter/timers using external RC time base. Programmable from \(\mu \mathrm{S}\) to years. & 16-Pin DIP & External & Timed output \\
\hline ICM7242 & Fixed CMOS counter/timer. Uses external RC time base: sequence timing from \(\mu \mathrm{S}\) to minutes. & 8-Pin DIP & External & Timed output \\
\hline ICM7243 & 8-character multiplexed LED display driver with alphanumeric (6-bit ASCII) input. & 40-Pin Cerdip & - & Eight-character, 14/16-segment common cathode alphanumeric LED display drive \\
\hline ICM7281 & LCD Dot Matrix Column Driver & 40-Pin DIP & - & Up to \(256 \times 256\) dots \\
\hline ICM7555 ICM7556 & Single or dual CMOS version of industry-standard 555 timer: \(80 \mu \mathrm{~A}\) typ. supply current: 500 kHz guaranteed: \(2-18 \mathrm{~V}\) power supply. & \begin{tabular}{l}
8-Pin DIP \\
14-Pin DIP
\end{tabular} & - & \\
\hline
\end{tabular}

\section*{FEATURES}
- Stable HF oscillator
- Low power dissipation \(\leq 5 \mathrm{~mW}\) with 5 volt supply
- Counter chain has outputs at \(\div \mathbf{2 1 2}^{12}\) and \(\div \mathbf{2}^{\text {n }}\) or \(\div\left(2^{\mathrm{n}} \times 10\right)\); \(\mathrm{n}=17\) for 7207, and 20 for 7207A
- Low impedance output drivers \(\leq \mathbf{1 0 0}\) ohms
- Count windows of \(10 / 100 \mathrm{~ms}(7207\) with 6.5536 MHz crystal) or \(0.1 / 1 \mathrm{sec}\). (7207A with 5.24288 MHz crystal)

\section*{APPLICATIONS}
- System timebases
- Oscilloscope calibration generators
- Marker generator strobes
- Frequency counter controllers

\section*{DESCRIPTION}

The ICM7207/A consist of a high stability oscillator and frequency divider providing 4 control outputs suitable for frequency counter timebases. Specifically, when used as a frequency counter timebase in conjunction with the ICM7208 frequency counter, the four outputs provide the gating signals for the count window, store function, reset function and multiplex frequency reference. Additionally, the duration of the count window may be changed by a factor of 10 to provide a 2 decade range counting system.
The normal operating voltage of the ICM7207/A is 5 volts at which the typical dissipation is less than 2 mW using an oscillator frequency of \(6.5536 \mathrm{MHz}(5.24288 \mathrm{MHz})\).
In the 7207/A the GATING output, \(\overline{R E S E T}\), and the MULTIPLEX output provide both pull up and pull down, eliminating the need for 3 external resistors; although, buffering must be provided if interfacing with \(\mathrm{T}^{2} \mathrm{~L}\) is required.


ORDERING INFORMATION
\begin{tabular}{|c|l|l|}
\hline PART & PACKAGE & ORDER NUMBER \\
\hline ICM7207 & 14-Pin DIP & ICM7207IPD \\
& DICE & ICM7207/D \\
& EV/Kit* & ICM7207EV/Kit \\
\hline ICM7207A & 14-Pin DIP & ICM7207AIPD \\
& DICE & ICM7207A/D \\
& EV/Kit* & ICM7207AEV/Kit \\
\hline
\end{tabular}

Temperature Range on packaged parts is \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
*These EV/Kits contain just the IC and the corresponding crystal. The ICM7207A is also used in the \(41 / 2\)-Digit Counter/Driver kits, the ICM7224 EV/Kit, ICM7225 EV/Kit, and ICM7236 EV/Kit, which include several ICs, a crystal, PC board, and some passive components.

PIN CONFIGURATION


\section*{ICM7207/A}

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
.................................... 6.0V
Input Voltages \(\qquad\) Equal to or less than supply voltage
Output Voltages (7207). . . . Not more positive than +6 V with respect to GROUND
\((7207 \mathrm{~A})\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\) (7207A) \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)
Output Currents ..........................................................................25mA
Power Dissipation @ \(25^{\circ} \mathrm{C}\) Note 1 .............................................. 200 mW
Operating Temperature Range ...................................... \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range .................................... \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
NOTE 1: Derate by \(2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\).

\section*{TYPICAL OPERATING CHARACTERISTICS}

TEST CONDITIONS: fosc \(=6.5536 \mathrm{MHz}(7207), 5.24288 \mathrm{MHz}(7207 \mathrm{~A}), \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), test circuit unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN. & TYP. & MAX. & UNIT \\
\hline Operating Voltage Range & V+ & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 4 & & 5.5 & V \\
\hline Supply Current & \(1+\) & All outputs open circuit & & 260 & 1000 & \(\mu \mathrm{A}\) \\
\hline Output on Resistances & \(\mathrm{r}_{\text {ds }}(\mathrm{on})\) & Output current \(=5 \mathrm{~mA}\) All outputs & & 50 & 120 & \(\Omega\) \\
\hline Output Leakage Currents & IOLK & All outputs (STORE only) & & & 50 & \(\mu \mathrm{A}\) \\
\hline (Output Resistance Terminals 12,13,14) & (Rout) & \[
\text { Output current }=50 \mu \mathrm{~A}, 7207 \mathrm{~A}
\]
only & & & 33K & \(\Omega\) \\
\hline Input Pulldown Current & lpd & Terminal 11 connected to \(\mathrm{V}^{+}\) & & 50 & 200 & \(\mu \mathrm{A}\) \\
\hline Input Noise Immunity & & & 25 & & & \% supply voltage \\
\hline Oscillator Frequency Range & fosc & Note 2 & 2 & & 10 & MHz \\
\hline Oscillator Stability & fstab & \(\mathrm{Cin}_{\text {I }}=\mathrm{C}_{\text {OUT }}=22 \mathrm{pF}\) & & 0.2 & 1.0 & ppm/V \\
\hline Oscillator Feedback Resistance & rosc & Quartz crystal open circuit Note 3 & 3 & & & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

NOTE 2: Dynamic dividers are used in the initial stages of the divider chain. These dividers have a lower frequency of operation determined by transistor sizes, threshold voltages and leakage currents.
NOTE 3: The feedback resistor has a non-linear value determined by the oscillator instantaneous input and output voltage voltages and the supply voltage.

SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY


OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT SATURATION RESISTANCES AS A FUNCTION OF SUPPLY VOLTAGE


\section*{SUPPLY CURRENT AS A FUNCTION} OF SUPPLY VOLTAGE



Referring to the test circuit, the crystal oscillator frequency is divided by \(2^{12}\) to provide both the multiplex frequency and generate the output pulse widths. The GATING OUTPUT
provides a 50\% duty cycle signal whose period depends upon whether the RANGECONTROL terminal is connected to \(\mathrm{V}^{+}\)or GROUND (open circuit).

\section*{TEST CIRCUIT}


SWITCHES \(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}\) OPEN CIRCUIT FOR SUPPLY CURRENT MEASUREMENT.
SWITCH \(S_{5}\) OPEN CIRCUIT FOR SLOW GATING PERIOD.
\(\dagger\) SWITCHES \(\mathbf{S}_{\mathbf{2}}, \mathbf{S}_{\mathbf{3}}, \mathbf{S}_{\mathbf{4}}\) and 50 k RESISTORS ARE NOT NEEDED WHEN USING THE ICM7207A.

\section*{APPLICATION NOTES}

\section*{OSCILLATOR CONSIDERATIONS}

The oscillator consists of a CMOS inverter with a non-linear resistor connected between the input and output terminals to provide biasing. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt change are achievable at a supply voltage of 5 volts, using low cost crystals. The crystal specifications are shown in the TEST CIRCUIT.
It is recommended that the crystal load capacitance ( \(\mathrm{C}_{\mathrm{L}}\) ) be no greater than 15 pF for a crystal having a series resistance equal to or less than \(75 \Omega\), otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.
If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance \(\pm 10 \mathrm{ppm}\), a low series resistance (less than \(25 \Omega\) ), a low motional capacitance of 5 mpF and a load capacitance of 20 pF . The fixed capacitor \(\mathrm{CIN}_{\mathrm{N}}\) should be 39 pF and the oscillator tuning capacitor should range between approximately 8 and 60 pF .
Use of a high quality crystal will result in typical oscillator stabilities of 0.05 ppm per 0.1 volt change of supply voltage.

\section*{FREQUENCY LIMITATIONS}

The ICM7207/A uses dynamic frequency counters in the initial divider sections. Dynamic frequency counters are faster and consume less power than static dividers but suffer from the disadvantage that there is a minimum operating frequency at a given supply voltage.


For example, if instead of 6.5 MHz , a 1 MHz oscillator is required, it is recommended that the supply voltage be reduced to between 2 and 2.5 volts. This may be realized by using a series resistor in series with the 5 V positive supply line plus a decoupling capacitor. The quartz crystal parameters, etc., will determine the value of this resistor. NOTE: Except for the output open drain n-channel transistors no other terminal is permitted to exceed the supply voltage limits.

\section*{PRACTICAL FREQUENCY COUNTER}

A complete frequency counter using the ICM7207/A together with the ICM7208 Frequency Counter is described in the ICM7208 data sheet.
A complete frequency counter using the ICM7207/A together with the ICM7208 Frequency Counter is described in the ICM7208 data sheet, and app note A015. Other frequency counters using the ICM7207/A can be constructed using the ICM7224, ICM7225, and ICM7236, for LCD, LED and VF displays. The latter are available as EV/Kits also.

The ICM7207/A uses dynamic frequency counters in the initial divider sections. Dynamic frequency counters are faster and consume less power than static dividers but suffer from the disadvantage that there is a minimum operating frequency at a given supply voltage.

\section*{QUARTZ CRYSTAL MANUFACTURERS}

The following list of possible suppliers is intended to be of assistance in putting a design into production. It should not be interpreted as a comprehensive list of suppliers, nor does it constitute an endorsement by Intersil.
a) CTS Knights, Sandwich, Illinois, (815) 786-8411
b) Motorola Inc., Franklin Park, Illinois (312) 451-1000
c) Sentry Manufacturing Co., Chickasaw, Oklahoma (405) \(224-6780\)
d) Tyco Filters Division, Phoenix, Arizona (602) 272-7945
e) M-Tron Inds., Yankton, South Dakota (605) 665-9321
f) Saronix, Palo Alto, California (415) 856-6900

\section*{CHIP TOPOGRAPHY}


Chip may be die attached using conventional eutectic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.

\section*{ICM7208 CMOS}

\section*{7 Decade Counter}

\section*{FEATURES}
- Low operating power dissipation \(<10 \mathrm{~mW}\)
- Low quiescent power dissipation \(<5 \mathrm{~mW}\)
- Counts and displays 7 decades
- Wide operating supply voltage range
\[
\mathbf{2 V} \leq \mathbf{V}^{+} \leq \mathbf{6} \mathbf{V}
\]
- Drives directly 7 decade multiplexed common cathode LED display
- Internal store capability
- Internal inhibit to counter input
- Test speedup point
- All terminals protected against státic discharge

\section*{DESCRIPTION}

The ICM7208 is a fully integrated seven decade counter-decoder-driver and is manufactured using Intersil's low voltage metal gate C-MOS process.
Specifically the ICM7208 provides the following on chip functions: a 7 decade counter, multiplexer, 7 segment decoder, digit \& segment driver, plus additional logic for display blanking, reset, input inhibit, and display on/off. For unit counter applications the only additional components are a 7 digit common cathode display, 3 resistors and a capacitor to generate the multiplex frequency reference, and the control switches.
The ICM7208 is intended to operate over a supply voltage of 2 to 6 volts as a medium speed counter, or over a more restricted voltage range for high frequency applications.
As a frequency counter it is recommended that the ICM7208 be used in conjunction with the ICM7207 Oscillator Controller, which provides a stable HF oscillator, and output signal gating.


\section*{ABSOLUTE MAXIMUM RATINGS}
Power Dissipation (Note 1) ..... 1 W
Supply voltage (Note 2) ..... 6 V
Output digit drive current (Note 3) ..... 150 mA
Output segment drive current ..... 30 mA
Input voltage range (any input terminal) (Note 2) ... Not to exceed the supply voltage
Operating temperature range ..... \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage temperature range \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)Lead temperature (soldering, 10 seconds)\(300^{\circ} \mathrm{C}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{TYPICAL OPERATION CHARACTERISTICS}

TEST CONDITIONS: ( \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), TEST CIRCUIT, display off, unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Quiescent Current & 10 & All controls plus terminal 19 connected to \(\mathrm{V}^{+}\)No multiplex oscillator & & 30 & 300 & \multirow{4}{*}{\(\mu \mathrm{A}\)} \\
\hline Quiescent Current & 10 & All control inputs plus terminal 19 connected to \(\mathrm{V}^{+}\)except STORE which is connected to GROUND & & 70 & 350 & \\
\hline Operating Supply Current & \(1^{+}\) & All inputs connected to \(\mathrm{V}^{+}, \mathrm{RC}\) multiplexer osc operating \(\mathrm{f}_{\text {in }}<25 \mathrm{KHz}\) & & 210 & 500 & \\
\hline Operating Supply Current & \(1^{+}\) & \(\mathrm{fin}=2 \mathrm{MHz}\) & & & 700 & \\
\hline Supply Voltage Range & \(\mathrm{V}^{+}\) & \(\mathrm{fin} \leq 2 \mathrm{MHz}\) & 3.5 & & 5.5 & V \\
\hline Digit Driver On Resistance & rDIG & & & 4 & 12 & \(\Omega\) \\
\hline Digit Driver Leakage Current & IDIG & \(\cdots\) & & & 500 & \(\mu \mathrm{A}\) \\
\hline Segment Driver On Resistance & rseg & & & 40 & & \(\Omega\) \\
\hline Segment Driver Leakage. Current & IsLK & & & & 500 & \(\mu \mathrm{A}\) \\
\hline Pullup Resistance of RESET or STORE Inputs & \(\mathrm{R}_{\mathrm{p}}\) & & 100 & 400 & & k \(\Omega\) \\
\hline COUNTER INPUT Resistance & RIN & Terminal 12 either at \(\mathrm{V}^{+}\)or GROUND & & & 100 & \\
\hline COUNTER INPUT Hysteresis Voltage & \(\mathrm{V}_{\mathrm{HIN}}\) & & , & 25 & 50 & mV \\
\hline
\end{tabular}

NOTE 1: This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.
NOTE 2: The supply voltage must be applied before or at the same time as any input voltage. This poses no problems with a single power supply system. If a multiple power supply system is used, it is mandatory that the supply for the ICM7208 is switched on before the other supplies otherwise the device may be permanently damaged.
NOTE 3: The output digit drive current must be limited to 150 mA or less under steady state conditions. (Short term transients up to 250 mA will not damage the device.) Therefore, depending upon the LED display and the supply voltage to be used it may be necessary to include additional segment series resistors to limit the digit currents.

TYPICAL PERFORMANCE CHARACTERISTICS

MAXIMUM COUNTER INPUT FREQUENCY
as a function of supply voltage


SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


SEGMENT OUTPUT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


SUPPLY CURRENT AS A FUNCTION
OF COUNTER INPUT FREQUENCY


\section*{TEST CIRCUIT}


\section*{TEST PROCEDURES}

The ICM7208 is provided with three input terminals 7, 23, 27 which may be used to accelerate testing. The least two significant decade counters may be tested by applying an input to the 'COUNTER INPUT' terminal 12. 'TEST POINT' terminal 23 provides an input which bypasses the 2 least significant decade counters and permits an injection of a signal into the third decade counter. Similarly terminals 7 and 27 permit rapid counter advancing at two points further along the string of decade counters.

CONTROL INPUT DEFINITIONS
\(\left.\begin{array}{|c|c|c|c|}\hline \text { INPUT } & \text { TERMINAL } & \text { VOLTAGE } & \text { FUNCTION } \\
\hline \text { 1. DISPLAY } & 9 & \begin{array}{c}\mathrm{V}^{+} \\
\text {Ground }\end{array} & \begin{array}{l}\text { Display On } \\
\text { Display Off }\end{array} \\
\hline \text { 2. STORE } & 11 & \mathrm{~V}^{+} & \begin{array}{l}\text { Counter } \\
\text { Information } \\
\text { Latched }\end{array} \\
\text { Counter } \\
\text { Information } \\
\text { Transferring }\end{array}\right]\)\begin{tabular}{|c|c|c|}
\hline Ground & \begin{tabular}{l} 
Input to Counter \\
Blocked \\
Ground
\end{tabular} \\
\hline Normal Operation
\end{tabular}\(|\)\begin{tabular}{l} 
ENABLE \\
\hline 4. RESET \\
\hline
\end{tabular}

\section*{COUNTER INPUT DEFINITION}

The internal counters of the ICM7208 index on the negative edge of the input signal at terminal \#12.

\section*{BLOCK DIAGRAM}


\section*{ICM7208}

\section*{APPLICATION NOTES}

\section*{1. Format of Signal to be Counted}

The noise immunity of the COUNTER INPUT Terminal is approximately \(1 / 3\) the supply voltage. Consequently, the input signal should be at least \(50 \%\) of the supply in peak to peak amplitude and preferably equal to the supply. NOTE: The amplitude of the input signal should not exceed the supply; otherwise, damage may be done to the circuit.
The optimum input signal is a \(50 \%\) duty cycle square wave equal in amplitude to the supply. However, as long as the rate of change of voltage is not less than approximately \(10-4 \mathrm{~V} / \mu \mathrm{sec}\) at \(50 \%\) of the power supply voltage, the input waveshape can be sinusoidal, triangular, etc.
When driving the input of the ICM7208 from TTL, a \(1 k-5 k\) ohm pull-up resistor to the positive supply must be used to increase peak to peak input signal amplitude.

\section*{2. Display Considerations}

Any common cathode multiplexable LED display may be used. However, if the peak digit current exceed 150 mA for any prolonged time, it is recommended that resistors be included in series with the segment outputs to limit digit current to 150 mA .
The ICM7208 is specified with \(500 \mu \mathrm{~A}\) of possible digit leakage current. With certain new LED displays that are extremely efficient at low currents, it may be necessary to include resistors between the cathode outputs and the positive supply to bleed off this leakage current.

\section*{3. Display Multiplex Rate}

The ICM7208 has approximately \(0.5 \mu\) s overlap between output drive signals. Therefore, if the multiplex rate is very fast, digit ghosting will occur. The ghosting determines the upper limit for the multiplex frequency. At very low multiplex rates flicker becomes visible.


Figure 1: Schematic Unit Counter

\section*{ICM7208}

\section*{5. Frequency Counter}

The ICM7208 may be used as a frequency counter when used with an external frequency reference and gating logic. This can be achieved using the ICM7207 Oscillator Controller (Figure 2). The ICM7207 uses a crystal controlled oscillator to provide the store and reset pulses together with the counting window. Figure 3 shows the recommended input gating waveforms to the ICM7208. At the end of a counting period ( \(50 \%\) duty cycle) the counter input is inhibited. The counter information is then transferred and stored in latches, and can be displayed. Immediately after
this information is stored, the counters are cleared and are ready to start a new count when the counter input is enabled. Using a 6.5536 mHz quartz crystal and the ICM7207 driving the ICM7208, two ranges of counting may be obtained, using either 0.01 sec or 0.1 sec counter enable windows.

Previous comments on leading zero blanking, etc., apply as per the unit counter.

The ICM7207 provides the multiplex frequency reference of 1.6 kHz .


Figure 2: Frequency Counter

Note: For a 1 sec count window which allows all 7 digits to be used with a resolution of 1 Hz , the ICM7207 can be replaced with the ICM7207A. Circuit details are given on the 7207A data sheet.


Figure 3: Frequency Counter Input Waveforms

\section*{6. Period Counter}

For this application, as opposed to the frequency counter, the gating and the input signal to be measured are reversed to the frequency counter. The input period is multiplied by two to produce a single polarity signal ( \(50 \%\) duty cycle) equal to the input period, which is used to gate into the counter the frequency reference ( 1 MHz in this case). Figure 5 shows a
block schematic of the input waveform generator. The 1 MHz frequency reference is generated by the ICM7209 Clock Generator using an 8 MHz oscillator frequency and internally dividing this frequency by 8 . Alternatively, a 1 MHz signal could be applied directly to COUNTER INPUT. Waveforms are shown in Figure 4.


Figure 4: Period Counter Input Waveforms


Figure 5: Period Counter Input Generator


\section*{ICM7211 (LCD) FEATURES}
- Four digit non-multiplexed 7 segment LCD display outputs with backplane driver
- Complete onboard RC oscillator to generate backplane frequency
- Backplane input/output allows simple synchronization of slave-device segment outputs to a master backplane signal
- ICM7211 devices provide separate Digit Select inputs to accept multiplexed BCD input (Pinout and functionally compatible with Siliconix DF411)
- ICM7211M devices provide data and digit select code input latches controlled by Chip Select inputs to provide a direct high speed processor interface
- ICM7211 decodes binary hexadecimal; ICM7211A decodes binary to Code B (0-9, dash, E, H, L, P, blank)

\section*{ICM7212 (LED) FEATURES}
- 28 current-limited segment outputs provide 4-digit non-multiplexed direct LED drive at \(>5 \mathrm{~mA}\) per segment.
- Brightness input allows direct control of LED segment current with a single potentiometer. Can function digitally as a display enable.
- ICM7212M and ICM7212A devices provide same input configuration and output decoding options as the ICM7211.

\section*{DESCRIPTION}

The ICM7211 (LCD) and ICM7212 (LED) devices constitute a family of non-multiplexed four-digit seven-segment CMOS display decoder-drivers.
The ICM7211 devices are configured to drive conventional LCD displays by providing a complete RC oscillator, divider chain, backplane driver, and 28 segment outputs. These outputs provide the zero d.c. component signals necessary for long display life.
The ICM7212 devices are configured to drive common-anode LED displays, providing 28 current-controlled low leakage open-drain \(n\)-channel outputs. These devices provide a BRighTness input, which may be used at normal logic levels as a display enable, or with a potentiometer as a continuous display brightness control.
Both the LCD and LED devices are available with two input configurations. The basic devices provide four data-Bit inputs and four Digit Select inputs. This configuration is suitable for interfacing with multiplexed \(B C D\) or binary output devices, such as the ICM7217, ICM7226 and ICL71C03. The microprocessor interface (suffix M) devices provide data input latches and Digit Select code latches under control of high-speed Chip Select inputs. These devices simplify the task of implementing a cost-effective alphanumeric sevensegment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating.
The standard devices will provide two different decoder configurations. The basic device will decode the four bit binary input into a seven-segment alphanumeric hexadecimal output. The " \(A\) " versions will provide the "Code B" output code, i.e., 0-9, dash, E, H, L, P, blank. Either device will correctly decode true BCD to seven-segment decimal outputs.
Devices in the ICM7211/7212 family are packaged in a standard 40 pin plastic dual-in-line package and all inputs are fully protected against static discharge.

PIN CONFIGURATIONS (OUTLINE DRAWING PL)


ABSOLUTE MAXIMUM RATINGS
Power Dissipation (Note 1)
\(0.5 \mathrm{~W} @ 70^{\circ} \mathrm{C}\)
Supply Voltage 6.5 V
Input Voltage (Any
Terminal) (Note 2) .......................................... \(\mathrm{V}^{+}+0.3 \mathrm{~V}\), GROUND -0.3 V
Operating Temperature Range ......................................... \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature Range . ........................................... \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Lead Temperature (Soldering 10 sec .) ............................................. \(300^{\circ} \mathrm{C}\)

NOTE 1: This limit refers to that of the package and will not be realized during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any, terminal to voltages greater than \(\mathrm{V}^{+}\)or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7211/ICM7212 be turned on first.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{OPERATING CHARACTERISTICS}

TEST CONDITIONS: All parameters measured with \(\mathrm{V}^{+}=5 \mathrm{~V}\) unless otherwise specified.

\section*{ICM7211 CHARACTERISTICS (LCD)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Operating Supply Voltage Range & V SUPP & & 3 & 5 & 6 & V \\
\hline Operating Current & lop & Test circuit, Display blank & & 10 & 50 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline Oscillator Input Current & loscl & Pin 36 & & \(\pm 2\) & \(\pm 10\) & \\
\hline Segment Rise/Fall Time & \(\mathrm{t}_{\text {rf }}\) & \(\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}\) & & 0.5 & & \multirow[b]{2}{*}{\(\mu \mathrm{S}\)} \\
\hline Backplane Rise/Fall Time & trfb & \(\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}\) & & 1.5 & & \\
\hline Oscillator Frequency & fosc & Pin 36 Floating & & 19 & & kHz \\
\hline Backplane Frequency & \(\mathrm{fbp}^{\text {b }}\) & Pin 36 Floating & & 150 & & Hz \\
\hline
\end{tabular}

ICM7212 CHARACTERISTICS (COMMON ANODE LED)
\begin{tabular}{|l|c|l|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Operating Supply Voltage Range & VSUPP & & 4 & 5 & 6 & V \\
\hline \begin{tabular}{l} 
Operating Current \\
Display Off
\end{tabular} & Iop & \begin{tabular}{l} 
Pin 5 (Brightness), \\
Pins 27-34 - GROUND
\end{tabular} & & 10 & 50 & \(\mu \mathrm{~A}\) \\
\hline Operating Current & \(\mathrm{I}_{\text {Op }}\) & Pin5 5at V \({ }^{+}\), Display all 8's & & 200 & & mA \\
\hline Segment Leakage Current & ISLK & Segment Off & & \(\pm 0.01\) & \(\pm 1\) & \(\mu \mathrm{~A}\) \\
\hline Segment On Current & ISEG & Segment On, VO \(=+3 \mathrm{~V}\) & 5 & 8 & & mA \\
\hline
\end{tabular}

\section*{INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Logical "1" input voltage & \(\mathrm{V}_{\mathrm{IH}}\) & & 3 & & & \multirow[b]{2}{*}{V} \\
\hline Logical "0" input voltage & \(\mathrm{V}_{\text {IL }}\) & & & & 2 & \\
\hline Input leakage current & IILK & Pins 27-34 & & \(\pm .01\) & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline Input capacitance & CIN & Pins 27-34 & & 5 & & pF \\
\hline BP/Brightness input leakage & IBPLK & Measured at Pin 5 with Pin 36 at GND & & \(\pm .01\) & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline BP/Brightness input capacitance & CBPI & All Devices & & 200 & & pF \\
\hline
\end{tabular}

AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION
\begin{tabular}{|l|c|l|c|c|c|}
\hline Digit Select Active Pulse Width & \(\mathrm{t}_{\mathrm{sa}}\) & Refer to Timing Diagrams & 1 & & \\
\hline Data Setup Time & \(\mathrm{t}_{\mathrm{ds}}\) & & \(\mu \mathrm{s}\) \\
\hline Data Hold Time & \(\mathrm{t}_{\mathrm{d}}\) & & 500 & & \\
\hline Inter-Digit Select Time & \(\mathrm{t}_{\mathrm{ids}}\) & & 200 & & ns \\
\hline
\end{tabular}

AC CHARACTERISTICS - MICROPROCESSOR INTERFACE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\overline{\text { Chip }}\) Select Active Pulse Width & \(\mathrm{t}_{\mathrm{cs}}\) & other \(\overline{\text { Cuhip }}\) Select either held active, or both driven together & 200 & & \multirow[t]{3}{*}{ns} \\
\hline Data Setup Time & tds & & 100 & & \\
\hline Data Hold Time & \(\mathrm{t}_{\mathrm{dh}}\) & & 10 & 0 & \\
\hline Inter-C̄hip Select Time & tics & & 2 & & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

\section*{TYPICAL CHARACTERISTICS}


ICM7212 LED SEGMENT CURRENT
AS A FUNCTION OF OUTPUT VOLTAGE


ICM7212 LED SEGMENT CURRENT
AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE


ICM7212 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE


\section*{BLOCK DIAGRAMS}

ICM7211 (A)


ICM7212 (A)


ICM7211(A)M


ICM7212(A)M


\section*{ICM7211/ICM7212}

INPUT DEFINITIONS
In this table, \(\mathrm{V}^{+}\)and GROUND are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.
\begin{tabular}{|c|c|c|c|c|}
\hline INPUT & TERMINAL & CONDITION & FUNCTION & \\
\hline B0 & 27 & \[
\begin{aligned}
& \mathrm{V}^{+}=\text {Logical One } \\
& \text { GND }=\text { Logical Zero }
\end{aligned}
\] & Ones (Least Significant) & \multirow{4}{*}{Data Input Bits} \\
\hline B1 & 28 & \[
\begin{aligned}
& \mathrm{V}^{+}=\text {Logical One } \\
& \text { GND = Logical Zero }
\end{aligned}
\] & Twos & \\
\hline B2 & 29 & \[
\begin{aligned}
& \mathrm{V}^{+}=\text {Logical One } \\
& \text { GND = Logical Zero }
\end{aligned}
\] & Fours & \\
\hline B3 & 30 & \[
\begin{aligned}
& \mathrm{V}^{+}=\text {Logical One } \\
& \text { GND = Logical Zero } \\
& \hline
\end{aligned}
\] & Eights (Most significant) & \\
\hline \begin{tabular}{l}
OSC \\
(LCD Devices Only)
\end{tabular} & 36 & Floating or with external capacitor to \(\mathrm{V}^{+}\) GROUND & \multicolumn{2}{|l|}{\begin{tabular}{l}
Oscillator input \\
Disables BP output devices, allowing segments to be synced to an external signal input at the BP terminal (Pin 5)
\end{tabular}} \\
\hline
\end{tabular}

\section*{ICM7211/ICM7212}

MULTIPLEXED-BINARY INPUT CONFIGURATION
\begin{tabular}{|c|c|c|c|}
\hline INPUT & TERMINAL & CONDITION & FUNCTION \\
\hline D1 & 31 & \multirow{4}{*}{\[
\begin{aligned}
& \mathbf{v}^{+}=\text {Active } \\
& \text { GND = Inactive }
\end{aligned}
\]} & D1 (Least significant) Digit Select \\
\hline D2 & 32 & & D2 Digit Select \\
\hline D3 & 33 & & D3 Digit Select \\
\hline D4 & 34 & & D4 (Most significant) Digit Select \\
\hline
\end{tabular}

ICM7211M/ICM7212M
MICROPROCESSOR INTERFACE INPUT CONFIGURATION
\begin{tabular}{|c|c|c|c|c|}
\hline INPUT & DESCRIPTION & TERMINAL & CONDITION & FUNCTION \\
\hline DS1 & Digit Select Code Bit 1 (LSB) & 31 & \multirow[b]{2}{*}{\begin{tabular}{l}
\(\mathrm{V}^{+}=\)Logical One \\
GND = Logical Zero
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
DS1 \& DS2 serve as a two bit Digit Select Code Input \\
DS2, DS1 \(=00\) selects D4 \\
DS2, DS1 = 01 selects D3 \\
DS2, DS1 \(=10\) selects D2 \\
DS2, DS1 = 11 selects D1
\end{tabular}} \\
\hline DS2 & Digit Select Code Bit 2 (MSB) & 32 & & \\
\hline \(\overline{\text { CS1 }}\) & Chip Select 1 & 33 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}^{+}=\text {Inactive } \\
& \text { GND = Active }
\end{aligned}
\]} & \multirow[t]{2}{*}{When both \(\overline{\mathrm{CS}}\) and \(\overline{\mathrm{CS} 2}\) are taken low, the data at the Data and Digit Select code inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches.} \\
\hline CS2 & Chip Select 2 & 34 & & \\
\hline
\end{tabular}

\section*{TEST CIRCUIT}



Figure 1: Multiplexed Input Timing Diagram


Figure 2: Microprocessor Interface Input Timing Diagram

\section*{DESCRIPTION OF OPERATION}

\section*{LCD DEVICES}

The LCD devices in the family (ICM7211, 7211A, 7211M, 7211AM) provide outputs suitable for driving conventional four-digit by seven-segment LCD displays, including 28 individual segment drivers, backplane driver, and a selfcontained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the \(n\) - and \(p\)-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component, which could arise from differing rise and fall times, and ensures maximum display life.
The backplane output devices can be disabled by connecting the OSCillator input (pin 36) to GrouND. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device, or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device represents a load of approximately 200 pF (comparable to one additional segment), thus the limitation of the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits; and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane output driver should handle the backplane to a display of 16 one-half-inch characters (rise and fall times not exceeding \(5 \mu \mathrm{~s}\). ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7211 devices be slaved to it. This external signal should be capable of driving very


\section*{Display Waveforms}
large capacitive loads with short ( \(1-2 \mu \mathrm{~s}\) ) rise and fall times. The maximum frequency for a backplane signal should be about 150 Hz although this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 19 KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 150 Hz with the oscillator free-running; the oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal and \(\mathrm{V}^{+}\).
The oscillator may also be overdriven if desired, although care must be taken to ensure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the OSCillator input between the positive supply and a level out of the range where the backplane disable is sensed (about one fifth of the supply voltage above GrouND). Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

\section*{LED DEVICES}

The LED devices in the family (ICM7212, 7212A, 7212M, 7212AM) provide outputs suitable for directly driving fourdigit by seven-segment common-anode LED displays, including 28 individual segment drivers, each consisting of a low-leakage, current-controlled, open-drain n-channel transistor.
The drain current of these transistors can be controlled by varying the voltage at the BRighTness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value ( \(100 \mathrm{~K} \Omega\) to \(1 \mathrm{M} \Omega\) ) to minimize I2R power consumption, which can be significant when the display is off.
The BRighTness input may also be operated digitally as a display enable; when high, the display is fully on, and low fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two voltages at the BRighTness input.
Note that the LED devices have two connections for GrouND; both of these pins should be connected. The
double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible. When operating LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at \(25^{\circ} \mathrm{C}\), derated linearly above \(35^{\circ} \mathrm{C}\) to 500 mW at \(70^{\circ} \mathrm{C}\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.\) above \(35^{\circ} \mathrm{C}\) ). Power dissipation for the device is given by:
\[
P=\left(V+-V_{F L E D}\right)(I S E G)\left(\mathrm{nsEG}^{\prime}\right)
\]
where \(V_{F L E D}\) is the LED forward voltage drop, ISEG is segment current, and nSEG is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above.


Figure 3: Brightness control

\section*{INPUT CONFIGURATIONS AND OUTPUT CODES}

The standard devices in the ICM7211/12 family accept a four-bit true binary (ie, positive level = logical one) input at pins 27 thru 30 , least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7211, ICM7211M, ICM7212, and ICM7212M devices decode this binary input into a seven-segment alphanumeric hexadecimal output, while the ICM7211A, ICM7211AM, ICM7212A, and ICM7212AM decode the binary input into the same sevensegment output as in the ICM7218 "Code B", ie 0-9, dash, E. H, L, P, blank. These codes are shown explicitly in Table 1. Either decoder option will correctly decode true BCD to a seven-segment decimal output.
These devices are actually mask-programmable to provide any 16 combinations of the seven segment outputs decoded from the four input bits. For larger quantity orders, (10K pcs. minimum) custom decoder options can be arranged. Contact the factory for details.
The ICM7211, ICM7211A, ICM7212, and ICM7212A devices are designed to accept multiplexed binary or BCD input. These devices provide four separate digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30 . More than one digit select may be activated simultaneously (which will write the same character into all selected digits), although the timing requirements shown in Fig (1) and under Operating Characteristics for data setup, hold, and inter-digit select times must be met to ensure correct output.
The ICM7211M, ICM7211AM, ICM7212M, and ICM7212AM devices are intended to accept data from a data bus under processor control.
In these devices, the four data input bits and the two-bit digit select code (DS1 pin 31, DS2 pin 32) are written into input buffer latches when both chip select inputs ( \(\overline{\mathrm{CS} 1}\) pin 33, \(\overline{\mathrm{CS} 2}\) pin 34) are taken low. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the digit select code latches.

A select code of 00 writes into D4, DS2 \(=0, \mathrm{DS} 1=1\) writes into D3, DS2 = 1, DS1 = 0 writes into D2, and 11 writes into D1. The timing relationships for inputting data are shown in Fig (2), and the chip select pulse widths and data setup and hold times are specified under Operating Characteristics.

Table 1: Output Codes
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{BINARY} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { HEXADECIMAL } \\
& \text { ICM7211(M) } \\
& \text { ICM7212(M) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CODE B } \\
\text { ICM7211A(M) } \\
\text { ICM7212A(M) }
\end{gathered}
\]} \\
\hline B3 & B2 & B1 & B0 & & \\
\hline 0 & 0 & 0 & 0 & İ1 & ¢'1 \\
\hline 0 & 0 & 0 & 1 & ' & i \\
\hline 0 & 0 & 1 & 0 & \(\square\) & I' \\
\hline 0 & 0 & 1 & 1 & -i' & \(\underline{1}\) \\
\hline 0 & 1 & 0 & 0 & -1 & -1 \\
\hline 0 & 1 & 0 & 1 & 5 & E \\
\hline 0 & 1 & 1 & 0 & E- & E \\
\hline 0 & 1 & 1 & 1 & - & 7 \\
\hline 1 & 0 & 0 & 0 & -1 & 云 \\
\hline 1 & 0 & 0 & 1 & -1 & 9 \\
\hline 1 & 0 & 1 & 0 & F10 & - \\
\hline 1 & 0 & 1 & 1 & - & E \\
\hline 1 & 1 & 0 & 0 & \(\mathrm{S}_{-}^{-}\) & 'i \\
\hline 1 & 1 & 0 & 1 & -1 & i- \\
\hline 1 & 1 & 1 & 0 & E & i \\
\hline 1 & 1 & 1 & 1 & :- & (BLANK) \\
\hline
\end{tabular}

\section*{SEGMENT ASSIGNMENT}

\section*{APPLICATIONS}

\section*{1. Ganged ICM7211's Driving 8-Digit LCD Display.}


\section*{ICM7211/ICM7212}
2. \(41 / 2\) Digit LCD DPM with Digit Blanking on Overrange.


NOTE: See also ICL8052/ICL8068/ICL71C03 and ICL7135 Data Sheets for similar circuits with fewer features.
3. 8048/8748/IM80C48 Microprocessor Interface.


\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ ORDER PART NUMBER } & OUTPUT CODE & INPUT CONFIGURATIONS \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
LCD \\
DISPLAY
\end{tabular}} & \begin{tabular}{l} 
ICM7211 IPL \\
ICM7211A IPL
\end{tabular} & \begin{tabular}{l} 
HEXADECIMAL \\
CODE B
\end{tabular} & MULTIPLEXED 4-BIT \\
\cline { 2 - 4 } & \begin{tabular}{l} 
ICM7211M IPL \\
ICM7211AM IPL
\end{tabular} & \begin{tabular}{l} 
HEXADECIMAL \\
CODE B
\end{tabular} & MICROPROCESSOR INTERFACE \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
LED \\
DISPLAY
\end{tabular}} & \begin{tabular}{l} 
ICM7212 IPL \\
ICM7212A IPL
\end{tabular} & \begin{tabular}{l} 
HEXADECIMAL \\
CODE B
\end{tabular} & MULTIPLEXED 4-BIT \\
\cline { 2 - 5 } & \begin{tabular}{l} 
ICM7212M IPL \\
ICM7212AM IPL
\end{tabular} & \begin{tabular}{l} 
HEXADECIMAL \\
CODE B
\end{tabular} & MICROPROCESSOR INTERFACE \\
\hline
\end{tabular}

Evaluation Kits are also available. Order ICM7211 EV/Kit or ICM7212 EV/Kit.

\title{
ICM7216A/B/C/D 10 MHz Universal/ Frequency Counters
}

\section*{FEATURES}

\section*{ALL VERSIONS:}
- Functions as a frequency counter. Measures frequencies from DC to \(10 \mathbf{~ M H z}\)
- Four internal gate times: \(0.01 \mathrm{sec}, 0.1 \mathrm{sec}, 1 \mathrm{sec}, 10 \mathrm{sec}\) in frequency counter mode
- Output directly drives digits and segments of large multiplexed LED displays. Common anode and common cathode versions
- Single nominal 5V supply required
- Stable high frequency oscillator, uses either \(1 \mathbf{M H z}\) or \(10 \mathbf{~ M H z}\) crystal
- Internally generated decimal points, interdigit blanking, leading zero blanking and overflow indication
- Display Off mode turns off display and puts chip into low power mode
- Hold and Reset inputs for additional flexibility ICM7216A AND B
- Functions also as a period counter, unit counter, frequency ratio counter or time interval counter
- \(\mathbf{1}\) cycle, 10 cycles, 100 cycles, 1000 cycles in period, frequency ratio and time interval modes
- Measures period from \(0.5 \mu \mathrm{~s}\) to 10 s

\section*{ICM7216C AND D}
- Decimal point and leading zero blanking may be externally selected

\section*{GENERAL DESCRIPTION}

The ICM7216A and B are fully integrated Universal Counters with LED display drivers. They combine a high frequency oscillator, a decade timebase counter, an 8-decade data counter and latches, a 7-segment decoder, digit multiplexers and 8 segment and 8 digit drivers which directly drive large multiplexed LED displays. The counter inputs have a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.
The ICM7216A and \(B\) can function as a frequency counter, period counter, frequency ratio ( \(\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}\) ) counter, time interval counter or as a totalizing counter. The counter uses either a 10 MHz or 1 MHz quartz crystal timebase. For period and time interval, the 10 MHz timebase gives a \(0.1 \mu \mathrm{sec}\) resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation times of \(0.01 \mathrm{sec}, 0.1 \mathrm{sec}, 1 \mathrm{sec}\) and 10 sec . With a 10 sec accumulation time, the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit. There is 0.2 seconds between measurements in all ranges.

The ICM7216C and D function as frequency counters only, as described above.
All versions of the ICM7216 incorporate leading zero blanking. Frequency is displayed in kHz . In the iCM7216A and B, time is displayed in \(\mu \mathrm{sec}\). The display is multiplexed at 500 Hz with a \(12.2 \%\) duty cycle for each digit. The ICM7216A and C are designed for common anode display with typical peak segment currents of 25 mA . The ICM7216B and D are designed for common cathode displays with typical peak segment currents of 12 mA . In the display off mode, both digit and segment drivers are turned off, enabling the display to be used for other functions.

\section*{ORDERING INFORMATION}

Universal Counter; Common Anode LED
Universal Counter; Common Cathode LED
Frequency Counter; Common Anode LED
Frequency Counter; Common Cathode LED
Evaluation Kit:
Use ICM7226 EV/Kit

ICM 7216 A IJI
ICM 7216 B IPI
ICM 7216 C IJI
ICM 7216 D IPI
Type

Package \(-\left[\begin{array}{l}\mathrm{JI}-28 \text { pin CERDIP } \\ \mathrm{PI}-28 \text { pin PLASTIC DIP }\end{array}\right.\)

PIN CONFIGURATIONS (outline dwgs JI, PI)


\section*{EVALUATION KIT}

The ICM7226 Universal Counter System has all of the features of the ICM7216 plus a number of additional features. The ICM7226 Evaluation Kit consists of the ICM7226AIJL (Common Anode LED Display), a 10 MHz quartz crystal, eight 7 segment \(0.3^{\prime \prime}\) LED's, P.C. board, resistors, capacitors, diodes, switches, socket: everything needed to quickly assemble a functioning ICM7226 Universal Counter System.

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Maximum Sup & \[
6.5 \mathrm{~V}
\] \\
\hline Maximum Digit Output Current & 400 mA \\
\hline Maximum Segment Output Curren & ent......... . 60mA \\
\hline Voltage On Any Input or & \\
\hline Output Terminal[1] .......... . V & -0.3V \\
\hline Maximum Power Dissipation at & \\
\hline \(70^{\circ} \mathrm{C}\). . . . . . . . . . . . . . . . 1.0 & 1.0W (ICM7216A \& C) \\
\hline & 0.5W (ICM7216B \& D) \\
\hline Lead Temperature (Soldering, 10 sec ) & sec) . . . . . . . \(300^{\circ} \mathrm{C}\) \\
\hline Maximum Operating Temper & \\
\hline Range & \(-20^{\circ}\) \\
\hline Maximum Storage Temperature & \\
\hline Range & \(-55^{\circ} \mathrm{C}\) to \\
\hline
\end{tabular}



Note:
1. The ICM7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding \(\mathrm{V}^{+}\)to GND by more than 0.3 volts.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: \(\mathrm{V}^{+}=5.0 \mathrm{~V}\), Test Circuit, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITION & MIN. & TYP. & MAX. & UNITS \\
\hline \begin{tabular}{l}
ICM7216A/R \\
Operating Supply Current
\end{tabular} & \(1^{+}\) & Display Off, Unused Inputs to GND & & 2 & 5 & mA \\
\hline Supply Voltage Range & \(\mathrm{V}^{+}\) & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}\), INPUT A, INPUT B Frequency at \(f_{\text {max }}\) & 4.75 & & 6.0 & V \\
\hline Maximum Frequency INPUT A. Pin 28 & \(f^{\prime}(\max )\) & \[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\
& 4.75<\mathrm{V}+\leq 6.0 \mathrm{~V}, \text { Figure } 1, \\
& \text { Function = Frequency, Ratio, Unit } \\
& \text { Counter } \\
& \text { Function }=\text { Period, Time Interval } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 2.5
\end{aligned}
\] & & & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline Maximum Frequency INPUT B, Pin 2 & \(\mathrm{f}_{\mathrm{B}}(\mathrm{max})\) & \begin{tabular}{l}
\[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\
& 4.75<\mathrm{V}^{+} \leq 6.0 \mathrm{~V},
\end{aligned}
\] \\
Figure 2
\end{tabular} & 2.5 & & & MHz \\
\hline Minimum Separation INPUT A to INPUT B Time Interval Function & & \begin{tabular}{l}
\[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\tau_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\
& 4.75<\mathrm{V}^{+} \leq 6.0 \mathrm{~V},
\end{aligned}
\] \\
Figure 3
\end{tabular} & 250 & & ; & ns \\
\hline Maximum Osc. Freq. and Ext. Osc. Frequency & fosc & \[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \\
& 4.75<\mathrm{V}^{+} \leq 6.0 \mathrm{~V}
\end{aligned}
\] & 10 & & & MHz \\
\hline Minimum Ext. Osc. Freq. & fosc & & & & 100 & kHz \\
\hline Oscillator Transconductance & gm & \(\mathrm{V}^{+}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\) & 2000 & & & \(\mu \mathrm{mhos}\) \\
\hline Multiplex Frequency & \(f_{\text {mux }}\) & \(\mathrm{fosc}=10 \mathrm{MHz}\) & & 500 & & Hz \\
\hline Time Between Measurements & & \(\mathrm{fosc}=10 \mathrm{MHz}\) & & 200 & & ms \\
\hline \begin{tabular}{l}
Input Voltages: \\
Pins 2,13,25,27,28 \\
Input Low Voltage Input High Voltage
\end{tabular} & VINL Vinh & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\text {A }}<+85^{\circ} \mathrm{C}\) & 3.5 & & 1.0 & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] \\
\hline Input Resistance to \(\mathrm{V}^{+}\) Pins 13,24 & \(\mathrm{R}_{\text {IN }}\) & \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}\) & 100 & 400 & & k \(\Omega\) \\
\hline Input Leakage Pin 27,28,2 & IILK & , & & & 20 & \(\mu \mathrm{A}\) \\
\hline Minimum Input Rate of Change & \(\mathrm{dV}_{1 \mathrm{~N}} / \mathrm{dt}\) & Supplies Well Bypassed & & 15 & & \(\mathrm{mV} / \mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
ICM7216A \\
Digit Driver: \\
Pins 15,16,17,19,20,21,22,23 \\
High Output Current \\
Low Output Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOH} \\
& \text { loL }
\end{aligned}
\] & \[
\begin{aligned}
& \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\
& \text { VOUT }=+1.0 \mathrm{~V}
\end{aligned}
\] & -140 & \[
\begin{aligned}
& -180 \\
& +0.3
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
SEGment Driver: \\
Pins \(4,5,6,7,9,10,11,12\) \\
Low Output Current High Output Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOL} \\
& \mathrm{IOH} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { VOUT }=+1.5 \mathrm{~V} \\
& \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V}
\end{aligned}
\] & 20 & \[
\begin{array}{r}
35 \\
-100 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A} \\
& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Multiplex Inputs: \\
Pins 1,3,14 \\
Input Low Voltage Input High Voltage Input Resistance to GROUND
\end{tabular} & \begin{tabular}{l}
VINL \\
Vinh \\
Rin
\end{tabular} & \(\mathrm{V}_{\mathrm{IN}}=+1.0 \mathrm{~V}\) & \[
\begin{array}{r}
2.0 \\
50 \\
\hline
\end{array}
\] & 100 & 0.8 & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{k} \Omega \\
\hline
\end{gathered}
\] \\
\hline \begin{tabular}{l}
ICM7216B \\
Digit Driver: Pins 4,5,6,7,9,10,11,12 Low Output Current High Output Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOL} \\
& \mathrm{IOH}
\end{aligned}
\] & \[
\begin{aligned}
& \text { VOUT }=+1.3 \mathrm{~V} \\
& \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V}
\end{aligned}
\] & 50 & \[
\begin{array}{r}
75 \\
-100 \\
\hline
\end{array}
\] & & \[
{ }_{\mu \mathrm{A}}^{\mathrm{A}}
\] \\
\hline \begin{tabular}{l}
SEGment Driver: \\
Pins 15,16,17,19,20,21,22,23 \\
High Output Current \\
Leakage Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOH} \\
& \text { ISLK }
\end{aligned}
\] & \[
\begin{aligned}
& \text { VOUT }=V^{+}-2.0 \mathrm{~V} \\
& \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V}
\end{aligned}
\] & -10 & & 10 & \[
{ }_{\mu \mathrm{A}}^{\mathrm{m}}
\] \\
\hline \begin{tabular}{l}
Multiplex Inputs: \\
Pins 1,3,14 \\
Input Low Voltage Input High Voltage Input Resistance to \(\mathrm{V}^{+}\)
\end{tabular} & \begin{tabular}{l}
VINL \\
Vinh \\
RiN
\end{tabular} & \(\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.0 \mathrm{~V}\) & \[
\left|\begin{array}{c}
\mathrm{v}^{+}-0.8 \\
200
\end{array}\right|
\] & 360 & \(\mathrm{v}^{+}-2.0\) & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{v} \\
\mathrm{k} \Omega
\end{gathered}
\] \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: \(\mathrm{V}^{+}=5.0 \mathrm{~V}\), Test Circuit, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITION & MIN. & TYP & MAX. & UNITS \\
\hline \begin{tabular}{l}
ICM7216C/D \\
Operating Supply Current
\end{tabular} & \(1^{+}\) & Display Off, Unused Inputs to GND & & 2 & 5 & mA \\
\hline Supply Voltage Range & & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}\), INPUT A Frequency at \(f_{\text {max }}\) & 4.75 & & 6.0 & V \\
\hline Maximum Frequency INPUT A, Pin 28 & \(\mathrm{f}_{\mathrm{A}(\text { max })}\) & \[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \\
& 4.75<\mathrm{V}^{+}<6.0 \mathrm{~V} \text {, Figure } 1
\end{aligned}
\] & 10 & & & MHz \\
\hline Maximum Osc. Freq and Ext. Osc. Frequency & fosc & \[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \\
& 4.75<\mathrm{V}^{+}<6.0 \mathrm{~V}
\end{aligned}
\] & 10 & & & MHz \\
\hline Minimum Ext. Osc. Fireq. & fosc & & & & 100 & kHz \\
\hline Oscillator Transconductance & gm & \(\mathrm{V}+=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\) & 2000 & & & \(\mu\) mhos \\
\hline Multiplex Frequency & \(f_{\text {mux }}\) & \(\mathrm{f}_{\text {ose }}=10 \mathrm{MHz}\) & & 500 & & Hz \\
\hline Time Between Measurements & & \(\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}\) & & 200 & & ms \\
\hline \begin{tabular}{l}
Input Voltages: \\
Pins 12,27,28 \\
Input Low Voltage Input High Voltage
\end{tabular} & VINL Vinh & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}\) & 3.5 & & 1.0 & \[
\begin{aligned}
& v \\
& v
\end{aligned}
\] \\
\hline Input Resistance to \(\mathrm{V}^{+}\) Pins 12,24 & \(\mathrm{R}_{\text {IN }}\) & \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}\) & 100 & 400 & & \(\mathrm{k} \Omega\) \\
\hline Input Leakage Pin 27, Pin 28 & lluk & & & & 20 & \(\mu \mathrm{A}\) \\
\hline Output Current & IOL & \(\mathrm{VOL}=+.4 \mathrm{~V}\) & 0.36 & & & m! \\
\hline Pin 2 & IOH & \(\mathrm{VOH}=\mathrm{V}^{+}-.8 \mathrm{~V}\) & 265 & & & \(\mu \mathrm{A}\) \\
\hline Minimum Input Rate of Change & \(\mathrm{dV}_{1 \mathrm{~N}} / \mathrm{dt}\) & Supplies Well Bypassed & & 15 & & \(\mathrm{mV} / \mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
ICM7216C \\
Digit Driver: \\
Pins 15,16,17,19,20,21,22,23 \\
High Output Current Low Output Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOH} \\
& \mathrm{IOL} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Vout }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\
& \text { Vout }=1.0 \mathrm{~V}
\end{aligned}
\] & -140 & \[
\begin{array}{r}
-180 \\
0.3 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA} \\
& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
SEGment Driver: \\
Pins \(3,4,5,6,8,9,10,11\) \\
Low Output Current High Output Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOL} \\
& \mathrm{IOH} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { VOUT }=+1.5 \mathrm{~V} \\
& \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V}
\end{aligned}
\] & 20 & \[
\begin{array}{r}
30 \\
-100 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A} \\
& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Multiplex Inputs: \\
Pins 1,13,14 \\
Input Low Voltage Input High Voltage Input Resistance to GROUND
\end{tabular} & VINL Vinh RIN & \[
V_{I N}=+1.0 \mathrm{~V}
\] & \[
\begin{aligned}
& 2.0 \\
& 50
\end{aligned}
\] & 100 & 0.8 & \[
\begin{gathered}
\mathrm{v} \\
\mathrm{~V} \\
\mathrm{k} \Omega
\end{gathered}
\] \\
\hline \begin{tabular}{l}
ICM7216D \\
Digit Driver: \\
Pins 3.4.5,6, 8,9, 10, 11 \\
Low Output Current High Output Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{IOL} \\
& \mathrm{IOH} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { VOUT }=+1.3 \mathrm{~V} \\
& \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V}
\end{aligned}
\] & 50 & \[
\begin{gathered}
75 \\
100 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{mA} \\
& \mu \mathrm{~A} \\
& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
SEGment Driver: \\
Pins 15,16,17,19,20,21,22,23 \\
High Output Current \\
Leakage Current
\end{tabular} & \[
\begin{aligned}
& \text { IOH } \\
& \text { ISLK } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\
& \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V}
\end{aligned}
\] & 10 & 15 & 10 & \[
\mathrm{mA}_{\mu \mathrm{A}}
\] \\
\hline \begin{tabular}{l}
Multiplex Inputs: \\
F: : \(1,13,14\) \\
Input Low Voltage Input High Voltage Input Resistance to \(\mathrm{V}^{+}\)
\end{tabular} & \begin{tabular}{l}
VINL \\
Vinh \\
RIN
\end{tabular} & \(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}\) & \[
\begin{gathered}
\mathrm{v}^{+}-0.8 \\
200
\end{gathered}
\] & 360 & \(v^{+}-2.0\) & \[
\begin{gathered}
\mathrm{V} \\
\mathrm{~V} \\
\mathrm{k} \Omega
\end{gathered}
\] \\
\hline
\end{tabular}


FIGURE 1. Waveform for Guaranteed Minimum \(f_{A}(\max )\) Function = Frequency, Frequency Ratio, Unit Counter.

INPUT A OR INPUT B


FIGURE 2. Waveform for Guaranteed Mínimum \(f_{B}(\max )\) and \(f_{A}(\max )\) for Function \(=\) Period and Time Interval.

TIME INTERVAL MEASUREMENT
The ICM7216A/B can be used to accurately measure the time interval between two events. With a 10 MHz time-base crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100 ns .
The feature operates with Channel A going low at the start of the event to be measured, followed by Channel \(B\) going low at the end of the event.
When in the time interval mode and measuring a single event, the ICM7216A/B must first be "primed" prior to measuring the event of interest. This is done by first generating a negative going edge on Channel A followed by a negative going edge on Channel B to start the "measurement interval." The inputs are then primed ready for the measurement. Positive going edges on \(A\) and \(B\), before or after the priming, will be needed to restore the original condition.

This can be easily accomplished with the following circuit: (Figure 3b).


FIGURE 3b. Priming Circuit, Signal A\&B High or Low.
Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event.
When timing repetitive signals, it is not necessary to "prime" the ICM7216A/B as the first alternating signal states automatically prime the device. See Figure 3b.
During any time interval measurement cycle, the ICM7216A/B requires 200ms following \(B\) going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.


NOTE: IF RANGE IS SET TO 1 EVENT, FIRST AND LAST MEASURED INTERVAL WILL COINCIDE.
FIGURE 3a. Waveforms for Time Interval Measurement (others are similar, but without priming phase).

\section*{BLOCK DIAGRAM}


TEST CIRCUIT (7216A shown; others similar)


\section*{SEGMENT IDENTIFICATION AND DISPLAY FONT}

Overflow will be indicated on the decimal point output of digit 8.

A separate LED overflow indicator can be connected as follows:
\begin{tabular}{ccc} 
& CATHODE & ANODE \\
ICM7216A/C & DEC. PT. & \(D_{8}\) \\
ICM7216B/D & \(D_{8}\) & DEC. PT.
\end{tabular}

\section*{APPLICATION NOTES}

GENERAL

\section*{INPUTS A and B}

INPUTS A and B are digital inputs with a typical switching threshold of 2.0 V at \(\mathrm{V}^{+}=5.0 \mathrm{~V}\). For optimum performance the peak-to-peak input signal should be at least \(50 \%\) of the supply voltage and centered about the switching voltage. When these inputs are being driven from T2L logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs. (INPUT B is available only on ICM7216A/B).
Note: The amplitude of the input should not exceed the supply, otherwise, the circuit may be damaged.

\section*{Multiplexed Inputs}

The FUNCTION, RANGE, CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate Digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically \(125 \mu \mathrm{sec}\) ). The multiplex inputs are active high for the common anode ICM7216A and C and active low for the common cathode ICM7216B and D.
Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a \(10 \mathrm{k} \Omega\) resistor should be placed in series with the multiplex inputs as shown in the application circuits.
Table 1 shows the functions selected by each digit for these inputs.

\section*{CONTROL INPUT Functions}

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Blank Display is selected at the same time.
Blank Display - To disable the drivers, it is necessary to tie \(\mathrm{D}_{4}\) to the CONTROLINPUT and have the HOLD input at \(\mathrm{V}^{+}\). The chip will remain in this "Display Off" mode until HOLD is switched back to GND. While in the "Display Off" mode, the segment and digit driver outputs are open, the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal, and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect.A new measurement is initiated when the HOLD input is switched to GND. Segment and Digit Drive outputs may thus be bussed to drive a common display (up to 6 circuits).
1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in \(\mu\) second increments rather than \(0.1 \mu \mathrm{sec}\) increments.
External Oscillator Enable - In this mode the EXTERNAL OSCILLATOR INPUT is used instead of the on-chip oscillator for Timebase input and Main Counter input in period and time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected. The external oscillator input frequency must be greater

\section*{TABLE 1. Multiplexed Input Functions}
\begin{tabular}{|c|c|c|}
\hline & FUNCTION & DIGIT \\
\hline \begin{tabular}{l}
FUNCTION INPUT \\
Pin 3 (ICM7216A \& B Only)
\end{tabular} & \begin{tabular}{l}
Frequency \\
Period \\
Frequency Ratio \\
Time Interval \\
Unit Counter \\
Oscillator \\
Frequency
\end{tabular} & \[
\begin{aligned}
& \mathrm{D}_{1} \\
& \mathrm{D}_{8} \\
& \mathrm{D}_{2} \\
& \mathrm{D}_{5} \\
& \mathrm{D}_{4} \\
& \mathrm{D}_{3}
\end{aligned}
\] \\
\hline RANGE INPUT Pin 14 & \begin{tabular}{l}
\(.01 \mathrm{sec} / 1\) Cycle \\
\(.1 \mathrm{sec} / 10\) Cycles \\
\(1 \mathrm{sec} / 100\) Cycles \\
\(10 \mathrm{sec} / 1 \mathrm{~K}\) Cycles
\end{tabular} & \[
\begin{aligned}
& \mathrm{D}_{1} \\
& \mathrm{D}_{2} \\
& \mathrm{D}_{3} \\
& \mathrm{D}_{4}
\end{aligned}
\] \\
\hline CONTROL INPUT Pin 1 & \begin{tabular}{l}
Blank Display \\
Display Test \\
1 MHz Select \\
External Oscillator \\
Enable \\
External Decimal Point Enable \\
(Test
\end{tabular} & \begin{tabular}{l}
\(\mathrm{D}_{4}\) and Hold \\
\(\mathrm{D}_{8}\) \\
\(\mathrm{D}_{2}\) \\
\(D_{1}\) \\
\(\mathrm{D}_{3}\) \\
\(D_{5}\) )
\end{tabular} \\
\hline \begin{tabular}{l}
EXT. D.P. INPUT \\
Pin 13, ICM7216C \\
\& D Only
\end{tabular} & \multicolumn{2}{|l|}{Decimal point is output for same digit that is connected to this input} \\
\hline
\end{tabular}
than 100 kHz or the chip will reset itself to enable the on-chip oscillator. OSCillator INPUT (pin 25) must also be connected to EXT. OSC. input when using EXT. OSC. input.
External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to EXTERNAL DECIMAL POINT input is active. Leading Zero Blanking will be disabled for all digits following the decimal point ( \(7216 \mathrm{C} / \mathrm{D}\) only).
Test Mode - This is a special mode for testing purposes only. Contact factory for details.

\section*{RANGE INPUT}

The RANGE INPUT selects whether the measurement is made for \(1,10,100,1000\) counts of the reference counter. In all functional modes except unit counter a change in the RANGE INPUT will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the RANGE INPUT is changed.

\section*{FUNCTION INPUT}

The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency. This Input is available on the ICM7216A and B only.

These functions select which signal is counted into the Main Counter and which signal is counted by the Reference Counter, as shown in Table 2. In all cases, only \(1 \rightarrow 0\) transitions are counted or timed. In time interval, a flipflop is toggled first by a \(1 \rightarrow 0\) transition of INPUT A and then by a \(1 \rightarrow 0\) transition of INPUT B. The oscillator is gated into the Main Counter from the time INPUT A toggles the flip-flop until INPUT B toggles it. In unit counter mode, the main counter contents are continuously displayed. A change in the FUNCTION INPUT wili stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the FUNCTION INPUT is changed.

TABLE 2. 7216A/B Input Routing
\begin{tabular}{|c|c|c|}
\hline DESCRIPTION & MAIN COUNTER & REFERENCE COUNTER \\
\hline Frequency ( \(\mathrm{f}_{\mathrm{A}}\) ) & Input A & \[
\begin{aligned}
& 100 \mathrm{~Hz} \text { (Oscillaṭor } \\
& \div 105 \text { or } 104)
\end{aligned}
\] \\
\hline Period ( \(\mathrm{ta}_{\mathrm{A}}\) ) & Oscillator & Input A \\
\hline Ratio ( \(\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}\) ) & Input A & Input B \\
\hline Time Interval
\[
(A \rightarrow B)
\] & Osce(Time Interval FF) & Time Interval FF \\
\hline Unit Counter (Count A) & Input A & Not Applicable \\
\hline Osc. Freq. (fosc) & Oscillator & \[
\left\lvert\, \begin{aligned}
& 100 \mathrm{~Hz} \text { (Oscillator } \\
& \div 10^{5} \text { or } 10^{4} \text { ) }
\end{aligned}\right.
\] \\
\hline
\end{tabular}

\section*{EXTernal DECimal Point INput}

When the external decimal point is selected this input is active. Any of the digits, except \(D_{8}\), can be connected to this point. \(D_{8}\) should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point. This input is available on the ICM7216C and D only.
HOLD Input - Except in unit counter mode, when the HOLD input is at \(\mathrm{V}^{+}\)any measurement in progress (before the "store time", see Figure 3a) is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated so the last complete measurement is displayed. When HOLD is changed to GND a new measurement is immediately initiated. In unit counter mode, the counter is not reset; the count is frozen but will continue if HOLD goes low again.
RESET Input - The RESET input is the same as an inverted HOLD Input, except the latches for the Main Counter are enabled, resulting in an output of all zeros, and the pin has a pull-up.

\section*{DISPLAY CONSIDERATIONS}

The display is multiplexed at a 500 Hz rate with a digit time of \(244 \mu \mathrm{sec}\). An interdigit blanking time of \(6 \mu \mathrm{sec}\) is used to prevent ghosting between digits. The decimal point and leading zero blanking assume right hand decimal point displays, and zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled when the Main Counter overflows. Overflow is indicated by the decimal point on digit 7 turning on.

The ICM7216A and C are designed to drive common anode LED displays at peak current of \(25 \mathrm{~mA} /\) segment, using displays with \(\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}\) at 25 mA . The average DC current will be over 3mA under these conditions. The ICM7216B and D are designed to drive common cathode displays at peak current of \(15 \mathrm{~mA} /\) segment using displays with \(\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}\) at 15 mA . Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if required. Figures \(4,5,6\) and 7 show the digit and segment currents as a function of output voltage.
To get additional brightness out of the displays, \(\mathrm{V}^{+}\)may be increased up to 6.0V. However, care should be taken to see that maximum power and current ratings are not exceeded.


FIGURE 4. ICM7216A \& C Typical I \({ }_{\text {DIG }}\) vs. \(\mathrm{V}^{+}-\mathrm{V}_{\text {OUT }}\), \(4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 6.0 \mathrm{~V}\)


FIGURE 5. ICM7216A \& C Typlcal ISEG \(v\). \(\mathbf{V}_{\text {out }}\)

(a)

(b)

FIGURE 6. ICM7216B \& D Typical I DIGIT vs. \(V_{\text {OUT }}\)


FIGURE 7. ICM7216B \& D Typical \(\mathrm{I}_{\text {SEG }}\) vs. \(\mathbf{V}^{+}-\mathrm{V}_{\text {OUT }}\), \(4.5 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}\)

The segment and digit outputs in ICM7216's are not directly compatible with either TTL or CMOS logic when driving LEDs. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

\section*{ACCURACY}

In a Universal Counter crystal drift and quantization effects cause errors. In frequency, period and time interval modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) will cause a measurement error of \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).
In addition, there is a quantization error inherent in any digital measurement of \(\pm 1\) count. Clearly this error is reduced by displaying more digits. In the frequency mode the maximum accuracy is obtained with high frequency inputs and in period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 8, the least accuracy will be obtained at 10 kHz . In time interval measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 9. In frequency ratio measurement can be more accurately obtained by averaging over more cycles of INPUT B as shown in Figure 10.


FIGURE 8. Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors


FIGURE 9. Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors


FIGURE 10. Maximum Accuracy for Frequency Ratio Measurement Due to Limitation of Quantization Errors

\section*{CIRCUIT APPLICATIONS}

The ICM7216 has been designed for use in a wide range of Universal and Frequency counters. In many cases, prescalers will be required to reduce the input frequencies to under 10 MHz . Because INPUT A and INPUT B are digital inputs, additional circuitry is often required for input buffering, amplification, hysterisis, and level shifting to obtain a good digital signal.
The ICM7216A or B can be used as a minimum component complete Universal Counter as shown in Figure 11. This circuit can use input frequencies up to 10 MHz at INPUT A and 2 MHz at INPUT B. If the signal at INPUT A has a very low duty cycle it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse width to be able to guarantee that it is at least 50 ns in duration.
To measure frequencies up to 40 MHz the circuit of Figure 12 can be used. To obtain the correct measured value, it is necessary to divide the oscillator frequency by four as well as the input frequency. In doing this the time between measurements is also lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz .


FIGURE 11. 10MHz Universal Counter


FIGURE 12. 40MHz Frequency Counter

If the input frequency is prescaled by ten, then the oscillator can remain at 10 or 1 MHz , but the decimal point must be moved one digit to the right. Figure 13 shows a frequency counter with a \(\div 10\) prescaler and an ICM7216C. Since there is no external decimal point control with the ICM7216A or B, the decimal point may be controlled externally with additional drivers as shown in Figure 14. Alternatively, if separate anodes are available for the decimal points, they can be wired up to the adjacent digit anodes. Note that there can be one zero to the left of the decimal point since the internal leading zero blanking cannot be changed. In Figure 15 additional logic has been added to count the input directly in period mode for maximum accuracy. In Figures 13 through 15, INPUT A comes from \(Q_{C}\) of the prescaler rather than \(Q_{D}\) to obtain an input duty cycle of \(40 \%\).


FIGURE 13. 100MHz Frequency Counter


FIGURE 14. 100MHz Multifunction Counter


FIGURE 15. 100MHz Frequency, 2MHz Period Counter

\section*{OSCILLATOR CONSIDERATIONS}

The oscillator is a high gain complementary FET inverter. An external resistor of \(10 \mathrm{M} \Omega\) to \(22 \mathrm{M} \Omega\) should be connected between the OSCillator INPUT and OUTPUT to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22 pF and a series resistance of less than 35 ohms.

For a specific crystal and load capacitance, the required \(\mathrm{gm}_{\mathrm{m}}\) can be calculated as follows:
\[
\begin{aligned}
& g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{s}\left(1+\frac{C_{o}}{C_{L}}\right)^{2} \\
& \text { where } C_{L}=\left(\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{o u t}}\right) \\
& C_{o}=\text { Crystal Static Capacitance } \\
& R_{s}=\text { Crystal Series Resistance } \\
& C_{\text {in }}=\text { Input Capacitance } \\
& C_{o u t}=\text { Output Capacitance } \\
& \omega=2 \pi f
\end{aligned}
\]

The required \(g_{m}\) should not exceed \(50 \%\) of the \(g_{m}\) specified for the ICM7216 to insure reliable startup. The OSCillator INPUT and OUTPUT pins each contribute about 5 pF to \(\mathrm{C}_{\mathrm{in}}\) and \(\mathrm{C}_{\text {out }}\). For maximum stability of frequency, \(\mathrm{C}_{\text {in }}\) and \(\mathrm{C}_{\text {out }}\) should be approximately twice the specified crystal static capacitance.
In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz or 1 MHz . In that case both the multiplex rate and time between measurements will be different. The multiplex rate is \(f_{\text {mux }}=\) \(\frac{f_{\text {osc }}}{2 \times 10^{4}}\) for 10 MHz mode and \(f_{\text {mux }}=\frac{f_{\text {osc }}}{2 \times 10^{3}}\) for the 1 MHz mode. The time between measurements is \(\frac{2 \times 10^{6}}{f_{\text {osc }}}\) in the 10 MHz mode and \(\frac{2 \times 10^{5}}{f_{\text {osc }}}\) in the 1 MHz mode.
The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the EXTERNAL OSCILLATOR INPUT to the OSCILLATOR OUTPUT or INPUT can cause undesirable shifts in oscillator frequency.

\(f_{A}(\max ), f_{B}(\max )\) as a Function of \(\mathbf{V}+\)
FIGURE 16. Typical Operating Characteristics

\section*{CHIP TOPOGRAPHIES}


\section*{ICM7217 Series} ICM7227 Series 4-Digit CMOS Up/Down Counter/ Display Driver

\section*{FEATURES}
- Four decade, presettable up-down counter with parallel zero detect
- Settable register with contents continuously compared to counter
- Directly drives multiplexed 7 segment common anode or common cathode LED displays
- On-board multiplex scan oscillator
- Schmitt trigger on count input
- TTL compatible BCD I/O port, carry/borrow, equal, and zero outputs
- Display blank control for lower power operation; quiescent power dissipation \(<5 \mathrm{~mW}\)
- All terminals fully protected against static discharge
- Single 5V supply operation

\section*{DESCRIPTION}

The ICM7217 and ICM7227 are four digit, presettable up/ down counters, each with an onboard presettable register continuously compared to the counter. The ICM7217 versions are intended for use in hardwired applications where thumbwheel switches are used for loading data, and simple SPDT switches are used for chip control. The ICM7227 versions are for use in processor-based systems, where presetting and control functions are performed under processor control.

\section*{PIN CONFIGURATIONS (outline dwgs JI, PI)}


These circuits provide multiplexed 7 segment LED display outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to directly drive displays of up to \(.8^{\prime \prime}\) character height (common anode) at a \(25 \%\) duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeroes can be blanked. The data appearing at the 7 segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin.
The ICM7217/7227 (common anode) and ICM7217A/7227A (common cathode) versions are decade counters, providing a maximum count of 9999, while the ICM7217B, 7227B (common anode) and ICM7217C/7227C (common cathode) are intended for timing purposes, providing a maximum count of 5959.

These circuits provide 3 main outputs; a CARRY/BORROW output, which allows for direct cascading of counters, a \(\overline{Z E R O}\) output, which indicates when the count is zero, and an EQUAL output, which indicates when the count is equal to the value contained in the register. Data is multiplexed to and from the device by means of a three-state BCD I/O port. The CARRY/BORROW, \(\overline{E Q U A L}, \overline{Z E R O}\) outputs, and the BCD port will each drive one standard TTL load.
To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.
Input frequency is guaranteed to 2 MHz , although the device will typically run with \(\mathrm{f}_{\mathrm{in}}\) as high as 5 MHz . Counting and comparing ( (EQUAL output) will typically run 750 kHz maximum.

ORDERING INFORMATION
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Display Option } & \begin{tabular}{l} 
Count Option \\
Max Count
\end{tabular} & \begin{tabular}{l} 
28-LEAD \\
Package
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{l} 
Order \\
Part Number
\end{tabular}} \\
\hline Common Anode & Decade/9999 & CERDIP & ICM7217IJI \\
Common Cathode & Decade/9999 & PLASTIC & ICM7217AIPI \\
Common Anode & Timer/5959 & CERDIP & ICM7217BIJI \\
Common Cathode & Timer/5959 & PLASTIC & ICM7217CIPI \\
\hline Common Anode & Decade/9999 & CERDIP & ICM7227IJI \\
Common Cathode & Decade/9999 & PLASTIC & ICM7227AIPI \\
Common Anode & Timer/5959 & CERDIP & ICM7227BIJI \\
Common Cathode & Timer/5959 & PLASTIC & ICM7227CIPI \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (common anode/Cerdip) ..... 1W Note 1
Power Dissipation (common cathode/Plastic) ...0.5W Note 1
Supply Voltage \(\mathrm{V}^{+}\)- \(\mathrm{V}^{-}\)
.6V
Input Voltage
(any terminal) \(\ldots \ldots . . . . . . \mathrm{V}^{+}+0.3 \mathrm{~V}\), Ground -0.3 V Note 2
Operating temperature range . ................ \(20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage temperature range................. \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

\section*{OPERATING CHARACTERISTICS}
\(\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Test Circuit, Display Diode Drop 1.7V, unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Supply current (Lowest power mode) & \[
\begin{aligned}
& \hline \mathbf{l}^{+} \\
& \text {(7217) }
\end{aligned}
\] & Display Off, LC, DC, UP/DN, ST, RS, BCD I/O Floating or at \(\mathrm{V}^{+}\)(Note 3) & & 350 & 500 & \(\mu \mathrm{A}\) \\
\hline Supply current (Lowest power mode) & (7227) & Display off (Note 3) & & 300 & 500 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Supply current OPERATING} & \multirow[t]{2}{*}{\({ }_{\text {IOPP}}\)} & Common Anode, Display On, all " 8 's" & 175 & 200 & & mA \\
\hline & & Common Cathode, Display On, all "8's" & 85 & 100 & & mA \\
\hline Supply Voltage & \(\mathrm{V}^{+}\) & & 4.5 & 5 & 5.5 & V \\
\hline Digit Driver output current & Idig & Common anode, \(\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-\mathbf{2 . 0 V}\) & 140 & 200 & & mA peak \\
\hline SEGment driver output curreni & IsEG & Common anode, Vout \(=+1.3 \mathrm{~V}\) & -25 & -40 & & \[
\begin{aligned}
& \mathrm{mA} \\
& \text { peak }
\end{aligned}
\] \\
\hline Digit Driver output current & IDIG & Common cathode, VOUT \(=+1.3 \mathrm{~V}\) & -75 & -100 & & \[
\begin{aligned}
& \mathrm{mA} \\
& \text { peak }
\end{aligned}
\] \\
\hline SEGment driver output current & ISEG & Common cathode Vout \(=\mathrm{V}^{+}-2 \mathrm{~V}\) & 10 & 12.5 & & \[
\begin{aligned}
& \mathrm{mA} \\
& \text { peak }
\end{aligned}
\] \\
\hline \(\overline{\mathrm{ST}}, \overline{\mathrm{RS}}, \mathrm{UP} / \overline{\mathrm{DN}}\) input pullup current & IP & Vout \(=\mathrm{V}^{+}-2 \mathrm{~V}\) (See Note 3) & 5 & 25 & & \(\mu \mathrm{A}\) \\
\hline 3 level input impedance & ZIN & & & 100 & & k \(\Omega\) \\
\hline \multirow[t]{3}{*}{BCD I/O input high voltage} & \multirow[t]{3}{*}{\(\mathrm{V}_{\text {BIH }}\)} & ICM7217 common anode (Note 4) ( \(\mathbf{V}^{+}=5.0 \mathrm{~V}\) ) & 1.3 & & & V \\
\hline & & ICM7217 common cathode (Note 4) & \(\mathrm{V}^{+}-0.6\) & & & V \\
\hline & & ICM7227 with 50pF effective load & 3 & & & V \\
\hline \multirow[t]{3}{*}{BCD I/O input low voltage} & \multirow[t]{3}{*}{V BIL} & ICM7217 common anode ( Note 4) ( \(\mathrm{V}^{+}=5.0 \mathrm{~V}\) ) & & & 0.8 & V \\
\hline & & ICM7217 common cathode (Note 4) & & & \(\mathrm{V}^{+}-1.8\) & V \\
\hline & & ICM7227 with 50pF effective load & & & 1.5 & V \\
\hline BCD I/O input pullup current & IbPU & ICM7217 common cathode \(\mathrm{V}^{\prime} \mathrm{N}=\mathrm{V}^{+}-2 \mathrm{~V}\) (Note 3) & 5 & 25 & & \(\mu \mathrm{A}\) \\
\hline BCD I/O input pulldown current & IBPD & ICM7217 common anode \(\mathrm{V}_{\mathrm{IN}}=+1.3 \mathrm{~V}\) ( Note 3) & 5 & 25 & & \(\mu \mathrm{A}\) \\
\hline BCD I/O, CARRY/BORROW, \(\overline{Z E R O}, \overline{E Q U A L}\) Outputs output high current & IBOH & \(\mathrm{VOH}=\mathrm{V}^{+}-1.5 \mathrm{~V}\) & 100 & . & & \(\mu \mathrm{A}\) \\
\hline BCD I/O, CARRY/BORROW, ZERO, EQUAL Outputs output low current & IBOL & \(\mathrm{VOL}=+0.4 \mathrm{~V}\) & -2 & & & mA \\
\hline Count input frequency (Guaranteed) & \(\mathrm{f}_{\text {in }}\) & \(\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%,-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}\) & 0 & 5 & 2 & MHz \\
\hline Count input threshold & \(\mathrm{V}_{\text {TH }}\) & \(\mathrm{V}^{+}=5 \mathrm{~V}\) & & 2 & & V \\
\hline Count input hysteresis & \(\mathrm{V}_{\text {HYS }}\) & \(\mathrm{V}^{+}=5 \mathrm{~V}\) & & 0.5 & & V \\
\hline Display scan oscillator frequency & \(\mathrm{f}_{\mathrm{ds}}\) & Free-running (SCAN terminal open circuit) & & 2.5 & & kHz \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & Industrial temperature range & -20 & & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE 1 These limits refer to the package and will not be obtained during normal operation.
NOTE 2 Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than \(\mathrm{V}^{+}\)or less than \(\mathrm{V}^{-}\)may cause destructive device latchup. For this reason it is recommended that the power supply to the device be established before any inputs are applied and that in multiple systems the supply to the ICM7217/7227 be turned on first.
NOTE 3 In the ICM7217 the UP/DOWN, STORE, \(\overline{R E S E T}\) and the BCD I/O as inputs have pullup or pulldown devices which consume power when connected to the opposite supply. Under these conditions, with the display off, the device will consume typically \(750 \mu \mathrm{~A}\). The ICM7227 devices do not have these pullups or pulldowns and thus are not subject to this condition.
NOTE 4 These voltages are adjusted to allow the use of thumbwheel switches for the ICM7217 versions. Note that a positive level is taken as an input logic zero for ICM7217 common-cathode versions.


Figure 1: Test Circuits, showing the ICM7217 in the Common-Anode Version and the ICM7227 in the Common-Cathode Version


Figure 2: ICM7217 Functional Block Diagram


Figure 3: ICM7227 Functional Block Diagram


Figure 4: Multiplex Timing

\section*{DESCRIPTION OF OPERATION}

\section*{OUTPUTS}

The CARRY/BORROW output is a positive going pulse occurring typically 500 ns after the positive going edge of the COUNT INPUT. It occurs when the counter is clocked from 9999 to 0000 when counting up and from 0000 to 9999 when counting down. This output allows direct cascading of counters.

The EQUAL output assumes a negative level when the contents of the counter and register are equal.

The Z̄ERO output assumes a negative level when the content of the counter is 0000 .
The CARRY/BORROW, \(\overline{E Q U A L}\) and \(\overline{Z E R O}\) outputs will drive a single TTL load over the full range of supply voltage and ambient temperature; for a logic zero, these outputs will sink \(2 \mathrm{~mA} @ 0.4 \mathrm{~V}\) (on resistance 200 ohms), and for a logic one, the outputs will source \(>60 \mu \mathrm{~A}\). A \(10 \mathrm{k} \Omega\) pull-up resistor to \(\mathrm{V}+\) on the \(\overline{E Q U A L}\) or \(\overline{Z E R O}\) outputs is recommended for highest speed operation, and on the CARRY/BORROW output when it is being used for cascading.

\begin{tabular}{|l|l|c|c|c|c|}
\hline SYMBOL & DESCRIPTION & MUX & TYP & MAX & UNITS \\
\hline tucs & UP/ \(\overline{\text { DOWN }}\) setup time (min) & & 300 & & \\
tuch & UP/DOWN hold time (min) & & 0 & & \\
tcun & COUNT pulse high (min) & & 100 & 250 & ns \\
tcul & COUNT pulse low (min) & & 100 & 250 & \\
tcB & COUNT to CARRY/ & & 750 & & \\
\multirow{4}{*}{ tBw } & BORROW delay & & & & \\
& CARRY/BORROW pulse & & & & \\
tcel & width & & & \\
tcZi & COUNT to EQUAL delay & & 500 & & \\
\hline
\end{tabular}

Figure 5: ICM7217/27 COUNT and Output Timing

The Digit and SEGment drivers provide a decoded 7 segment display system, capable of directly driving common anode LED displays at typical peak currents of \(40 \mathrm{~mA} / \mathrm{seg}\). This corresponds to average currents of \(10 \mathrm{~mA} / \mathrm{seg}\) at a \(25 \%\) multiplex duty cycle. For the common cathode versions, peak segment currents are 12.5 mA , corresponding to average segment currents of 3.1 mA . Figure 4 shows the multiplex timing, while Figure 5 shows the Output Timing. Figures 6 through 9 show the output characteristics of the Digit and

SEGment drivers. The DISPLAY pin controls the display output using three level logic. The pin is self-biased to a voltage approximately \(1 / 2\left(\mathrm{~V}^{+}\right)\); this corresponds to normal operation. When this pin is connected to \(\mathrm{V}^{+}\), the segments are inhibited, and when connected to \(\mathrm{V}^{-}\), the leading zero blanking feature is inhibited. Cor normal operation (display on with leading zero blanking the pin may be left open. The display may be controlled with a 3 position SPDT switch; see Figure 1.


Figure 7: Typical IsEg vs. VOut


Figure 8: Typical ldigit vs. Vout


Figure 9: Typical ISEG vs. \(\mathrm{V}^{+}\)- Vout, \(4.5 \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}\)

\section*{CONTROL OF ICM7217} Multiplex SCAN Oscillator
The on-board multiplex scan oscillator has a nominal freerunning frequency of 2.5 kHz . This may be reduced by the addition of a single capacitor between the SCAN pin and the positive supply. Capacitor values and corresponding nominal oscillator frequencies, digit repetition rates, and loading times (for ICM7217 versions) are shown in Table 1 below.

The internal oscillator output has a duty cycle of approximately 25:1, providing a short pulse occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse width is used to delay the digit driver outputs, thereby providing inter-digit blanking which prevents ghosting. The digits are scanned from MSD (D4) to LSD (D1). See Figure 4 for the display digit multiplex timing.

Table 1: ICM7217 Multiplex Rate Control
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Scan \\
Capacitor
\end{tabular} & \begin{tabular}{c} 
Nominal \\
Oscillator \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Digit \\
Repetition \\
Rate
\end{tabular} & \begin{tabular}{c} 
Scan Cycle \\
Time \\
(4 digits)
\end{tabular} \\
\hline None & 2.5 kHz & 625 Hz & 1.6 ms \\
20 pF & 1.25 kHz & 300 Hz & 3.2 ms \\
90 pF & 600 Hz & 150 Hz & 8 ms \\
\hline
\end{tabular}

During load counter and load register operations, the multiplex oscillator is disconnected from the SCAN input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven to about 20 kHz , however the internal oscillator signal will be of the same duty cycle and phase as the overdriving signal, and the digits are blanked during the time the external signal is at a positive level. To insure proper leading zero blanking, the interdigit blanking time should not be less than about \(2 \mu \mathrm{~s}\). Overdriving the oscillator at less than 200 Hz may cause display flickering.
The display brightness may be altered by varying the duty cycle. Figure 10 shows several variable-duty-cycle oscillators suitable for brightness control at the ICM7217 SCAN input. The inverters should be CMOS CD4000 series and the diodes may be any inexpensive device such as IN914.


Figure 10: Brightness Control Circuits

\section*{Counting Control}

As shown in Figure 5, the counter is incremented by the rising edge of the COUNT INPUT signal when UP/ \(\overline{D O W N}\) is high. It is decremented when UP/DOWN is low. A Schmitt trigger on the COUNT INPUT provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments. The COUNT INPUT is inhibited during reset and load counter operations.
The STORE pin controls the internal latches and consequently the signals appearing at the 7 -segment and BCD outputs. Bringing the STORE pin low transfers the contents of the counter into the latches.
The counter is asynchronously reset to 0000 by bringing the RESET pin low. The circuit performs the reset operation by forcing the BCD input lines to zero, and "presetting" all four decades of counter in parallel. This affects register loading; if LOAD REGISTER is activated when the RESET input is low, the register will also be set to zero. The STORE, \(\overline{\operatorname{RESET}}\) and UP/ \(\overline{D O W N}\) pins are provided with pullup resistors of approximately \(75 \mathrm{k} \Omega\).

\section*{BCD I/O Pins}

The BCD I/O port provides a means of transferring data to and from the device. The ICM7217 versions can multiplex data into the counter or register via thumbwheel switches, depending on inputs to the LOAD COUNTER or LOAD REGISTER pins; (see below). When functioning as outputs, the BCD I/O pins will drive one standard TTL load. Common anode versions have internal pull down resistors and common cathode versions have internal pull up resistors on the four BCD I/O lines as inputs.

\section*{LOADing the COUNTER and REGISTER}

The BCD I/O pins, the LOAD COUNTER (LC), and LOAD REGISTER (LR) pins combine to provide presetting and compare functions. LC and LR are three-level inputs, being self-biased at approximately \(1 / 2 \mathrm{~V}^{+}\)for normal operation. With both LC and LR open, the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD to LSD by the display multiplex.

When either the LOAD COUNTER (Pin 12) or LOAD REGISTER (Pin 11) is taken high, the drivers are turned off and the BCD pins become high-impedance inputs. When LC is connected to \(\mathrm{V}^{+}\), the count input is inhibited and the levels at the \(B C D\) pins are multiplexed into the counter. When LR is connected to \(\mathrm{V}^{+}\), the levels at the BCD pins are multiplexed into the register without disturbing the counter. When both are connected to \(\mathrm{V}^{+}\), the count is inhibited and both register and counter will be loaded.
The LOAD COUNTER and LOAD REGISTER inputs are edgetriggered, and pulsing them high for 500 ns at room temperature will initiate a full sequence of data entry cycle operations (see Figure 11). When the circuit recognizes that either or both of the LC or LR pins input is high, the multiplex oscillator and counter are reset (to D4). The internal oscillator is then disconnected from the SCAN pin and the preset circuitry is enabled. The oscillator starts and runs with a frequency determined by its internal capacitor, (which may vary from chip to chip). When the chip finishes a full 4 digit multiplex cycle (loading each digit from D4 to D3 to D2 to D1 in turn), it again samples the LOAD REGISTER and LOAD COUNTER inputs. If either or both is still high, it repeats the load cycle, if both are floating or low, the oscillator is reconnected to the SCAN pin and the chip returns to normal operation. Total load time is digit "on" time multiplied by 4. If the Digit outputs are used to strobe the BCD data into the BCD

I/O inputs, the input will be automatically synchronized to the appropriate digit (Figure 12). Input data must be valid at the trailing edge of the digit output.
When LR is connected to GROUND, the oscillator is inhibited, the BCD I/O pins go to the high impedance state, and the segment and digit drivers are turned off. This allows the display to be used for other purposes and minimizes power consumption. In this display off condition, the circuit will continue to count, and the CARRY/BORROW, \(\overline{\text { EQUAL }}, \overline{Z E R O}\), UP/ \(\overline{\mathrm{DOWN}}, \overline{\mathrm{RESET}}\) and \(\overline{\text { STORE }}\) functions operate as normal. When LC is connected to ground, the BCD I/O pins are forced to the high impedance state without disturbing the counter or register. See "Control Input Definitions" (Table 2) for a list of the pins that function as three-state self-biased inputs and their respective operations.
Note that the ICM7217 and 7217B have been designed to drive common anode displays. The BCD inputs are high true, as are the BCD outputs.
The ICM7217A and the 7217C are used to drive common cathode displays, and the BCD inputs are low true. BCD outputs are high true.

\section*{Notes on Thumbwheel Switches \& Multiplexing}

The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000 . Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits. See Fig. 12. In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops (IN914). Similarly, if the BCD outputs are to be used, resistors should be inserted in the Digit lines to avoid loading problems.

\section*{Output and Input Restrictions}

The CARRY/BORROW output is not valid during load counter and reset operations.
The EQUAL output is not valid during load counter or load register operations.

The \(\overline{Z E R O}\) output is not valid during a load counter operation.
The \(\overline{\operatorname{RESET}}\) input may be susceptible to noise if its input rise time (coming out of reset) is greater than about \(500 \mu \mathrm{~s}\). This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any capacitance to the \(\overline{\text { RESET }}\) input can cause trouble. A simple circuit which provides a reliable power-up reset and a fast rise time on the RESET input is shown below.


When using the circuit as a programmable divider \((\div\) by n with equal outputs) a short time delay (about \(1 \mu \mathrm{~s}\) ) is needed from the EQUAL output to the RESET input to establish a pulse of adequate duration.


When the circuit is configured to reload the counter or register with a new value from the BCD lines (upon reaching EQUAL), loading time will be digit "on" time multiplied by four. If this load time is longer than one period of the input count, a count can be lost. Since the circuit will retain data in the register, the register need only be updated when a new value is to be entered. \(\overline{\text { RESET will not clear the register. }}\)


Figure 11: ICM7217 BCD I/O and LOADING TIMING

Note: If the BCD pins are to be used for outputs a \(10 \mathrm{k} \Omega\) resistor should be placed in series with each digit line to avoid loading problems through the switches.


Figure 12: Thumbwheel switch/diode connections

Table 2: Control Input Definitions ICM7217
\begin{tabular}{|c|c|c|c|}
\hline INPUT & TERMINAL & VOLTAGE & FUNCTION \\
\hline STORE & 9 & \[
\begin{aligned}
& \mathrm{V}^{+} \text {(or floating) } \\
& \text { Ground }
\end{aligned}
\] & Output latches not updated Output latches updated \\
\hline UP/DOWN & 10 & \(\mathrm{V}^{+}\)(or floating) Ground & Counter counts up Counter counts down \\
\hline \(\overline{\text { RESET }}\) & 14 & \(\mathrm{V}^{+}\)(or floating) Ground & Normal Operation Counter Reset \\
\hline \[
\begin{aligned}
& \text { LOAD COUNTER/ } \\
& \text { l/O OFF }
\end{aligned}
\] & 12 & Unconnected \(\mathrm{V}^{+}\) Ground & Normal operation Counter loaded with BCD data BCD port forced to Hi Z condition \\
\hline LOAD REGISTER/ \(\overline{\text { OFF }}\) & 11 & Unconnected \(\mathrm{V}^{+}\) Ground & \begin{tabular}{l}
Normal operation \\
Register loaded with BCD data Display drivers disabled; BCD port forced to Hi Z condition, mpx counter reset to D4; mpx oscillator inhibited
\end{tabular} \\
\hline DISPLAY CONTrol (DC) & \begin{tabular}{l}
23 Common Anode \\
20 Common Cathode
\end{tabular} & Unconnected \(\mathrm{V}^{+}\) Ground & Normal operation Segment drivers disabled Leading zero blanking inhibited \\
\hline
\end{tabular}

Table 3: Control Input Definitions ICM7227
\begin{tabular}{|c|c|c|c|c|}
\hline & INPUT & TERMINAL & VOLTAGE & FUNCTION \\
\hline \multicolumn{2}{|r|}{DATA TRANSFER} & 13 & \begin{tabular}{l}
V+ \\
Ground
\end{tabular} & Normal Operation Causes transfer of data as directed by select code \\
\hline \multirow[t]{3}{*}{Control Word Port} & STORE & 9 & \(\mathrm{V}^{+}\)(During \(\overline{\mathrm{CWS}}\) Pulse) Ground & Output latches updated Output latches not updated \\
\hline & UP/DOWN & 10 & \(\mathrm{V}^{+}\)(During \(\overline{\mathrm{CWS}}\) Pulse) Ground & Counter counts up Counter counts down \\
\hline & Select Code Bit 1 (SC1)
Select Code Bit 2 (SC2) & \[
\begin{aligned}
& 11 \\
& 12
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}^{+}=" 1 " \\
& \text { Ground }=" 0 "
\end{aligned}
\] & SC1, SC2 control:00 Change store and up/down latches. No data transfer. 01 Output latch data active 10 Counter to be preset 11 Register to be preset \\
\hline \multicolumn{2}{|r|}{\(\overline{\text { Control Word Strobe ( } \overline{\text { CWS }} \text { ) }}\)} & 14 & \begin{tabular}{l}
\[
\mathrm{v}^{+}
\] \\
Ground
\end{tabular} & Normal operation Causes control word to be written into control latches \\
\hline & DISPLAY CONTrol (DC) & \begin{tabular}{l}
23 Common Anode \\
20 Common Cathode
\end{tabular} & \begin{tabular}{l}
Unconnected \(\mathrm{V}^{+}\) \\
Ground
\end{tabular} & Normal operation Display drivers disabled Leading zero blanking inhibited \\
\hline
\end{tabular}

= DONT CARE
*: CONTROL WORD INPUTS

Figure 13: ICM7227 I/O Timing (see Table 4)

\section*{CONTROL OF ICM7227 VERSIONS}

The ICM7227 series has been designed to permit microprocessor control of the inputs. BCD inputs and outputs are active high.
In these versions, the STORE, UP/ \(\overline{\text { DOWN }}, \mathrm{SC} 1\) and SC2 (Select Code bits 1 and 2) pins form a four-bit control word input. A negative-going pulse on the \(\overline{\text { CWS }}\) (Control Word Strobe) pin writes the data on these pins into four internal control latches, and resets the multiplex counter in preparation for sequencing a data transfer operation. The select code 00 is reserved for changing the state of the Store and/or Up/Down latches without initiating a data transfer. Writing a one into the Store latch sets the latch and causes the data in the counter to be transferred into the output latches, while writing a zero resets the latches causing them to retain data and not be updated. Similarly, writing a one into the Up/Down !atch causes the counter to count up and writing a zero causes the counter to count down. The state of the Store and Up/ \(\overline{\text { Down }}\) latches may also be changed with a non-zero select code.

Writing a nonzero select code initiates a data transfer operation. Writing select code of 01 (SC1, SC2) indicates that the data in the output latches will be active and enables the BCD I/O port to output the data. Writing a select code of 11 indicates that the register will be preset, and a 10 indicates that the counter will be preset.
When a nonzero select code is read, the clock of the four-state multiplex counter is switched to the DATA TRANSFER pin. Negative-going pulses at this pin then sequence a digit-bydigit data transfer, either outputting data or presetting the counter or register as determined by the select code. The output drivers of the BCD I/O port will be enabled only while \(\overline{\mathrm{DT}}\) is low during a data transfer initiated with a 01 select code. The sequence of digits will be D4-D3-D2-D1, i.e. when outputting, the data from D4 will be valid during the first \(\overline{D T}\) pulse, then D3 will be valid during the second pulse, etc. When presetting, the data for D4 must be valid at the positive-going transition (trailing edge) of the first \(\overline{D T}\) pulse, the data for D3 must be valid during the second \(\overline{\mathrm{DT}}\) pulse, etc.

At the end of a data transfer operation, on the positive going transition of the fourth \(\overline{D T}\) pulse, the SC1 and SC2 control latches will automatically reset, terminating the data transfer and reconnecting the multiplex counter clock to the oscillator. In the ICM7227 versions, the multiplex oscillator is always freerunning, except during a data transfer operation when it is disabled.
Fig. 13 shows the timing of data transfers initiated with a 11 select code (writing into the register) and a 01 select code (reading out of the output latches). Typical times during which data must be valid at the control word and BCD I/O ports are indicated in Table 4.

Table 4: ICM7227 I/O Timing Requirements
\begin{tabular}{|c|l|c|c|c|c|}
\hline SYMBOL & DESCRIPTION & MIN & TYP & MAX & UNITS \\
\hline t \(\overline{\text { CWS }}\) & \begin{tabular}{l} 
Control Word Strobe Width \\
(min)
\end{tabular} & & 275 & & ns \\
tICs & Internal Control Set-up (min) & & 2.5 & 3 & us \\
t \(\overline{\text { DTw } w ~}\) & DATA TRANSFER pulse & & 300 & & ns \\
& width (min) & & & \\
tsCs & Control to Strobe setup (min) & & 300 & & ns \\
tsch & Control to Strobe hold (min) & & 300 & & ns \\
tIDs & Input Data setup (min) & & 300 & & ns \\
tIDh & Input Data hold (min) & & 300 & & ns \\
tTDacc & Output Data access & & 300 & & ns \\
tTDf & Output Transfer to Data float & & 300 & & ns \\
\hline
\end{tabular}

\section*{APPLICATIONS}

\section*{FIXED DECIMAL POINT}

In the common anode versions, a fixed decimal point may be activated by connecting the D.P. segment lead from the appropriate digit (with separate digit displays) through a \(39 \Omega\) series resistor to Ground. With common cathode devices, the D.P. segment lead should be connected through a \(75 \Omega\) series resistor to \(\mathrm{V}^{+}\).
To force the device to display leading zeroes after a fixed decimal point, use a bipolar transistor and base resistor in a configuration like that shown below with the resistor connected to the digit output driving the D.P. for left hand D.P. displays, and to the next least significant digit output for right hand D.P. display. See Figure 9 for a similarly operating multi-digit connection.


Figure 14: Forcing Leading Zero Display

\section*{DRIVING LARGER DISPLAYS}

For displays requiring more current than the ICL7217/7227 can provide, the circuits of Figure 15 can be used.


Figure 15: Driving High Current Displays

\section*{LCD DISPLAY INTERFACE (Figure 16)}

The low-power operation of the ICM7217 makes an LCD interface desirable. The Intersil ICM7211 4 digit BCD to LCD display driver easily interfaces to the ICM7217. Total system power consumption is less than 5 mW . System timing margins can be improved by using capacitance to ground to slow down the BCD lines. A similar circuit can be used to drive Vacuum Fluorescent displays, with the ICM7235.

The \(10-20 \mathrm{k} \Omega\) resistors on the switch BCD lines serve to isolate the switches during BCD output.


Figure 16: LCD Display Interface (with Thumbwheel Switches)

\section*{UNIT COUNTER WITH BCD OUTPUT (Figure 17)}

The simplest application of the ICM7217 is a 4 digit unit counter. All that is required is an ICM7217, a power supply and a 4 digit display. Add a momentary switch for reset, an SPDT center-off switch to blank the display or view leading zeroes, and one more SPDT switch for up/down control. Using an ICM7217A and a common-cathode calculator-type display, results in the least expensive digital counter/display system available.


Figure 17: Unit Counter

INEXPENSIVE FREQUENCY COUNTER/
TACHOMETER (Figure 18)
This circuit uses the low power ICM7555 (CMOS 555) to generate the gating, \(\overline{\text { STORE }}\) and \(\overline{R E S E T}\) signals. To provide the gating signal, the timer is configured as an astable multivibrator, using \(R_{A}, R_{B}\) and \(C\) to provide an output that is positive for approximately one second and negative for approximately
\(300-500 \mu \mathrm{~s}\). The positive waveform time is given by \(t_{w p}=0.693\) \(\left(R_{A}+R_{B}\right) C_{i}\) while the negative waveform is given by \(t_{N n}=0.693\) \(R_{B} C\). The system is calibrated by using a \(5 \mathrm{M} \Omega\) potentiometer for \(R_{A}\) as a "coarse" control and a 1 k potentiometer for \(R_{B}\) as a "fine" control. CD40106B's are used as a monostable multivibrator and reset time delay.


Figure 18: Inexpensive Frequency Counter

\section*{TAPE RECORDER POSITION INDICATOR/ CONTROLLER (Figure 19)}

This circuit shows an application which uses the up/down counting feature of the ICM7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position. For example, an ICM7227 as a peripheral to a processor can monitor the position of a lathe bed or digitizing head, transfer the data to the processor, drive interrupts to the processor using the \(\overline{E Q U A L}\) or \(\overline{Z E R O}\) outputs, and serve as a numerical display for the processor.
In the tape recorder application, the LOAD REGISTER, \(\overline{E Q U A L}\) and \(\overline{Z E R O}\) outputs are used to control the recorder To make the recorder stop at a particular point on the tape,
the register can be set with the stop point and the EQUAL output used to stop the recorder either on fast forward, play or rewind.
To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the tape, a few feet from the end of the leader, allows the ZERO output to be used to stop the recorder on rewind, leaving the leader on the reel.

The \(1 \mathrm{M} \Omega\) resistor and \(.0047 \mu \mathrm{~F}\) capacitor on the COUNT INPUT provide a time constant of about 5 ms to debounce the reel switch. The Schmitt trigger on the COUNT INPUT of the ICM7217 squares up the signal before applying it to the counter. This technique may be used to debounce, switchclosure inputs in other applications.


Figure 19: Recorder Indicator

\section*{PRECISION ELAPSED TIME/COUNTDOWN}

TIMER (Figure 20)
This circuit uses an ICM7213 precision one minute/one second timebase generator using a 4.1943 MHz crystal for generating pulses counted by an ICM7217B. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare functions. For instance, to make a 24-hour clock with BCD output the register can be preset with 2400 and the \(\overline{E Q U A L}\) output used to reset the counter. Note the 10k resistor connected between the LOAD

COUNTER terminal and Ground. This resistor pulls the LOAD COUNTER input low when not loading, thereby inhibiting the BCD output drivers. This resistor should be eliminated and SW4 replaced with an SPDT center-off switch if the BCD outputs are to be used. This technique may be used on any 3 -level input. The 100k pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213. For a less expensive (and less accurate) timebase, an ICM7555 timer may be used in a configuration like that shown in Figure 18 to generate a 1 Hz reference.


Figure 20: Precision Timer

MICROPROCESSOR INTERFACE-ICM7227
(Figure 21)


Figure 21: IM6100

This circuit shows the hardware necessary to interface the ICM7227 to an Intersil IM6100 CMOS microprocessor. Using an IM6101 Parallel Interface Element (PIE) allows the addition of one or more ICM7227 devices as generalized peripherals to any IM6100 system, using a minimum of external components.

A similar configuration may be used with the MC6800 using the corresponding PIE, while an 8255 can be used to interface 8080 based systems.

The ICM7227 can perform many "accessory" functions that are inefficient or impossible for the processor to perform. For example, by adding a timebase such as an ICM7213, and using an ICM7227C or D, an inexpensive real-time clock/display, directly accessible by the processor, can be constructed.

\section*{ICM7217/7227}

\section*{8-DIGIT UP/DOWN COUNTER (Figure 22)}

This circuit shows how to cascade counters and retain correct leading zero blanking. The NAND gate detects whether a digit is active since one of the two segments \(\bar{a}\) or \(\bar{b}\) is active on any unblanked number. The flip flop is clocked by the least significant digit of the high order counter, and if this digit is not blanked, the Q output of the flip flop goes high and turns on the NPN transistor, thereby inhibiting leading zero blanking on the low order counter.

It is possible to use separate thumbwheel switches for presetting, but since the devices load data with the oscillator free-running, the multiplexing of the two devices is difficult to synchronize. This presents no problems with the ICM7227 devices, since the two devices are operated as peripherals to a processor.


Figure 22: 8 Digit Up/Down Counter


Figure 23: Precision Frequency Counter ( \(\sim 1 \mathrm{MHz}\) Maximum)

\section*{PRECISION FREQUENCY COUNTER/}

TACHOMETER (Figure 23)

This circuit is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the STORE and RESET signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7027A connected to \(\mathrm{V}^{+}\), the gating time will be 0.1 second; this will display tens of hertz as the least significant digit. For shorter gating times, an ICM7207 may be used (with a 6.5536 MHz crystal), giving a 0.01 second gating with Pin 11 connected to \(\mathrm{V}^{+}\), and a 0.1 second gating with Pin 11 open.
To implement a four digit tachometer, the ICM7207A with one second gating should be used. To get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60. This can be done electronically using a phase-locked loop, or mechanically by using a disc rotating with the object with the appropriate
number of holes drilled around its edge to interrupt the light from an LED to a photo-dector. For faster updating, use 0.1 second gating, and multiply the rotational frequency by 600.
For more "intelligent" instrumentation, the ICM7227 interfaced to a microprocessor may be more convenient (see Figure 21 ). For example, an ICM7207A can be used with two ICM7227's to provide an 8 digit, 2 MHz frequency counter. Since the ICM7207A gating output has a \(50 \%\) duty cycle, there is 1 second for the processor to respond to an interrupt, generated by the negative going edge of this signal while it inhibits the count. The processor can respond to the interrupt using ROM based subroutines, to store the data, reset the counter, and read the data into main memory. To add simultaneous period display, the processor inverts the data and an ICM7218 Universal Display Driver stores and displays it.

\section*{AUTO-TARE SYSTEM}

This circuit uses the count-up and count-down functions of the ICM7217, controlled via the \(\overline{E Q U A L}\) and \(\overline{Z E R O}\) outputs, to count in SYNC with an ICL7109 A/D Converter. By RESETing the ICM7217 on a "tare" value conversion, and STORE-ing the result of a true value conversion, an auto-
matic tare subtraction occurs in the result.
The ICM7217 stays in step with the ICL7019 by counting up and down between 0 and 4095 , for 8192 total counts, the same number as the ICL7109 cycle. See A047 for more details.


Figure 24: Auto-Tare System for A/D Converter

\section*{CHIP TOPOGRAPHY}


ICM7217/B (ICM7227/B)


ICM7217A/C (ICM7227A/C)

\section*{ICM7218 Series cmos Universal 8 Digit LED Driver System}

\section*{FEATURES}
- Total circuit integration on chip includes:
a) Digit and segment drivers
b) All multiplex scan circuitry
c) \(8 \times 8\) static memory
d) 7 segment Hexadecimal and Code B decoders
- Output drive suitable for large LED displays
- Both common anode and common cathode LED drive versions
- Single 5 volt supply required
- Data retention to 2 volts supply
- Shutdown feature - turns off display and puts chip into very low power dissipation mode
- Pin selectable choice of 2 seven segment decoders Hexa or Code B - or no decode
- Microprocessor compatible
- Serial and random access versions
- Decimal point drive on each digit

\section*{GENERAL DESCRIPTION}

The ICM7218 series of universal LED driver systems provide, in a single package, all the circuitry necessary to interface most common microprocessors or digital systems and an LED display. Included on chip is an \(8 \times 8\) static memory array providing storage for the displayed information, 2 types of 7 segment decoders, all the multiplex scan circuitry and the high power digit and segment drivers.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Typical \\
App.
\end{tabular} & \begin{tabular}{l} 
Order \\
Part Number
\end{tabular} & \begin{tabular}{l} 
Display \\
Option
\end{tabular} & Package \\
\hline Serial Access & \begin{tabular}{l} 
ICM7218A IJI \\
ICM7218B IPI
\end{tabular} & \begin{tabular}{l} 
Common Anode \\
Common Cathode
\end{tabular} & \begin{tabular}{l} 
28 Lead CERDIP \\
28 Lead Plastic
\end{tabular} \\
\hline Random Access & \begin{tabular}{l} 
ICM7218C IJI \\
ICM7218D IPI \\
ICM7218E IDL
\end{tabular} & \begin{tabular}{l} 
Common Anode \\
Common Cathode \\
Common Anode
\end{tabular} & \begin{tabular}{l} 
28 Lead CERDIP \\
28 Lead Plastic \\
40 Lead Ceramic
\end{tabular} \\
\hline
\end{tabular}

\section*{CHIP TOPOGRAPHY ICM7218A}


The ICM7218A and ICM7218B are intended to be used primarily in microprocessor systems. Data is read directly from the I/O bus line from the microprocessor. 2 Control lines (Write, and Mode) define chip select, which reads either 4 bits of control information (Data Coming, Shutdown, Decode, Hexa or Code B Decoding) or 8 bits of Display Input Data. Display Input Data ( 8 words, 8 bits each) is automatically sequenced into the memory on successive positive going Write pulses. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The ICM7218A drives a common anode display while the ICM7218B drives a common cathode display. (See Block Diagram 1)
The ICM7218C and ICM7218D feature 2 lines for control information ( \(\overline{\text { Write, }}\), Three Level Input; Hexa, Code B, Shutdown), 4 lines for Input Data and 3 lines for Data Addressing of each of eight data memory locations.
Data is written into memory by setting up a Data Address memory location, defining 4 lines of Input Data and then strobe the Write line Iow. The Three Level Control Input is independent of the Write instruction. Only Hexadecimal and Code B decoding are available for the Display Outputs. The ICM7218C drives a common anode display, the ICM7218D a common cathode display. (See Block Diagram 2)
The ICM7218E provides 4 separate lines for control information (Write, Hexa-Code B, Decode, Shutdown), 8 lines for input data, and 3 lines for digit address. Data is written into the memory by setting up a Data Address memory location, defining 8 lines of Input Data, and then strobe the Write line low. Control information is on separate lines and is independent of the Write instruction. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The ICM7218E drives a common anode display. (See Block Diagram 3)

PIN CONFIGURATION (OUTLINE DRAWING JI)


Note: Pins 5, 6, 7, 10 are under control of Mode pin 9. See page 6-60.

See page 6 -57 for other device configurations.

\section*{ICM7218 SERIES}

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline Supply Voltage & 6 V \\
\hline Digit Output Current & 300 mA \\
\hline Segment Output Current & 50 mA \\
\hline Input Voltage (any terminal) & \(\mathrm{V}^{+}+0.3 \mathrm{~V}\) to \(\mathrm{V}^{-}-0.3 \mathrm{~V}\) \\
\hline & NOTE 1 \\
\hline Power Dissipation (28 Pin CERDIP) & 1 W NOTE 2 \\
\hline Power Dissipation (28 Pin Plastic) & 0.5 W NOTE 2 \\
\hline Power Dissipation (40 Pin Ceramic) & 1 W NOTE 2 \\
\hline Operating Temperature Range & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline Storaqe Temperature Range & . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than \(\mathrm{V}^{+}\)or less than GROUND may cause destructive device latchup. For this reason it is recommended that no inputs from sources operating on a different power supply be applied to the device before its own supply is established, and when using multiple supply systems the supply to the ICM7218 should be turned on first.
NOTE 2: These limits refer to the package and will not be obtained during normal operation. Derate above \(50^{\circ} \mathrm{C}\) by 25 mW per \({ }^{\circ} \mathrm{C}\).
SYSTEM ELECTRICAL CHARACTERISTICS \(\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Test Circuit, Display Diode Drop 1.7 V
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Operating Voltage & \(\mathrm{V}^{+}\) & Power Down Mode & \[
\begin{aligned}
& 4 \\
& 2
\end{aligned}
\] & & \[
\begin{aligned}
& 6 \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Quiescent Supply Current & 10 & Shutdown (Note 3) & 6 & 10 & 300 & \(\mu \mathrm{A}\) \\
\hline Operating Supply Current & lop & Decoder On, Outpưts Open Ckt No Decode, Outputs Open Ckt & \[
\begin{aligned}
& 250 \\
& 200
\end{aligned}
\] & & \[
\begin{aligned}
& 950 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Digit Drive Current & İIG & Common Anode Vout \(=\mathrm{V}^{+}-2.0\) Common Cathode Vout \(=\mathrm{V}^{-}+1 \mathrm{~V}\) & \[
\begin{gathered}
-170 \\
50 \\
\hline
\end{gathered}
\] & & & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Digit Leakage Current & IDLK & & & & 100 & \(\mu \mathrm{A}\) \\
\hline Peak Segment Drive Current & Iseg & Common Anode Vout \(=\bar{V}+1.5 \mathrm{~V}\) Common Cathode Vout \(=\mathrm{V}^{+}-2.0 \mathrm{~V}\) & \[
\begin{gathered}
20 \\
-10
\end{gathered}
\] & 25 & & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA}
\end{aligned}
\] \\
\hline Segment Leakage Current & ISLK & & & & 50 & \(\mu \mathrm{A}\) \\
\hline Display Scan Rate & fmux & Per Digit & & 250 & & Hz \\
\hline \begin{tabular}{l}
Three Level Input \\
Logical " 1 " Input Voltage \\
Floating Input Logical "0" Input Voltage
\end{tabular} & \begin{tabular}{l}
Vinh \\
Vinf \\
VINL
\end{tabular} & Hexidecimal ICM7218C, D (Pin 9) Code B ICM7218C, D (Pin 9) Shutdown ICM7218C, D (Pin 9) & \[
\begin{aligned}
& 4.0 \\
& 2.0
\end{aligned}
\] & & \[
\begin{gathered}
3.0 \\
1.75
\end{gathered}
\] & \[
\begin{aligned}
& v \\
& v \\
& v
\end{aligned}
\] \\
\hline Three Level Input Impedance & \(\mathrm{Z}_{\text {IN }}\) & Note 3 & & 100 & & \(\mathrm{k} \Omega\) \\
\hline Logical " 1 " Input Voltage Logical " 0 " Input Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IH}} \\
& \mathrm{~V}_{\mathrm{IL}}
\end{aligned}
\] & & 3.5 & & . 8 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Write Pulse Width (Negative) Write Pulse Width (Positive) & \[
\begin{aligned}
& t w \\
& t \bar{w}
\end{aligned}
\] & 7218A, B & \[
\begin{aligned}
& 550 \\
& 550
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & & \[
\begin{aligned}
& \hline \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Write Pulse Width (Negative) Write Pulse Width (Positive) & \[
\begin{aligned}
& t w \\
& t \bar{w}
\end{aligned}
\] & \}7218C, D, E & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 250 \\
& 250
\end{aligned}
\] & & \[
\mathrm{ns}
\] \\
\hline Mode Hold Time & \(\mathrm{t}_{\mathrm{mh}}\) & 7218A, B & & 150 & & ns \\
\hline Mode Pulse Width & im & 7218A, B & 500 & & & ns \\
\hline Data Set Up Time & tds & & 500 & & & ns \\
\hline Data Hold Time & tah & & 25 & & & ns \\
\hline Digit Address Set Up Time Digit Address Hold Time & tdas
\[
t_{\text {dah }}
\] & ICM7218C, D, E ICM7218C, D, E & \[
\begin{aligned}
& 500 \\
& 100
\end{aligned}
\] & & & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns}
\end{aligned}
\] \\
\hline Data Input Impedance & ZiN & 5-10 pF Gate Capacitance & & 1010 & & Ohms \\
\hline
\end{tabular}

NOTE 3: In the ICM7218C and D (random access versions) the Hexa/Code B/Shutdown Input (Pin 9) has internal biasing resistors to hold it at \(\mathrm{V}^{+} / 2\) when Pin 9 is open circuited These resistors consume power and result in a Quiescent Supply Current (IQ) of typically \(50 \mu \mathrm{~A}\). The ICM7218A, B, and E devices do not have these biasing resistors and thus are not subject to this condition.

BLOCK DIAGRAMS

ICM7218A, ICM7218B

(1)

ICM7218C, ICM7218D

(2)

ICM7218E

(3)

PIN CONFIGURATIONS (See page 6-65 for ICM7218A)

ICM7218B* (OUTLINE DRAWING PI)
COMMON CATHODE

*Note: Pins 5, 6, 7, 10 are under control of Mode pin 9. See page 6.60.

ICM7218D (OUTLINE DRAWING PI)
COMMON CATHODE


ICM7218C (OUTLINE DRAWING JI)


ICM7218E (OUTLINE DRAWING DL)


INPUT DEFINITIONS ICM7218A and B
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{INPUT} & TERMINAL & VOLTAGE & FUNCTION \\
\hline \multicolumn{2}{|l|}{\(\overline{\text { WRITE }}\)} & 8 & High Low & Input Not Loaded Into Memory Input Loaded Into Memory \\
\hline \multicolumn{2}{|l|}{MODE} & 9 & High Low & Load Control Word on Write Pulse Load Input Data on Write Pulse \\
\hline ID4 SHUTDOWN & \multirow{4}{*}{MODE High} & 10 & High Low & \begin{tabular}{l}
Normal Operation \\
Shutdown (Oscillator, Decóder, and Displays Disabled)
\end{tabular} \\
\hline ID5 (DECODE/No Decode) & & 6 & High Low & No Decode Decode \\
\hline ID6 (HEXAdecimal/CODE B) & & 5 & High Low & Hexadecimal Decoding Code B Decoding \\
\hline ID7 (DATA COMING Control Word) & & 7 & High Low & Data Coming
No Data Coming \(\}\) Control Word \\
\hline Input Data ID0-ID7* & MODE Low & \[
\begin{gathered}
\hline 11,12,13 \\
14,5,6 \\
10,7
\end{gathered}
\] & \begin{tabular}{l}
High \\
Low
\end{tabular} & \begin{tabular}{l}
Loads "One" (Note 2) \\
Loads "Zero" (Note 2)
\end{tabular} \\
\hline
\end{tabular}
*ID0-ID3 = Don't care when writing control word
ID4-ID7 = Don't care when writing Hex/Code B
(The display blanks on ICM7218A/B versions when writing in Data)

\section*{INPUT DEFINITIONS ICM7218C and D}
\begin{tabular}{|l|c|c|l|}
\hline INPUT & TERMINAL & VOLTAGE & FUNCTION \\
\hline\(\overline{\text { WRITE }}\) & 8 & \begin{tabular}{c} 
High \\
Low
\end{tabular} & \begin{tabular}{l} 
Inputs Not Loaded Into Memory \\
Inputs Loaded Into Memory
\end{tabular} \\
\hline Three Level Input (Note 1) & \begin{tabular}{l} 
High \\
Floating \\
Low
\end{tabular} & \begin{tabular}{l} 
Hexadecimal Decode \\
Code B Decode \\
Shutdown (Oscillator, Decoder and Displays \\
Disabled)
\end{tabular} \\
\hline Digit Address \\
DA2 (MSB)-DA0 (LSB) & \(10,6,5\) & \begin{tabular}{l} 
High \\
Low
\end{tabular} & \begin{tabular}{l} 
Loads "Ones" \\
Loads "Zeros"
\end{tabular} \\
\hline Input Data ID3 (MSB) - ID0 = Data & \(14,13,11,12\) & High & Loads "Ones" (Note 2) \\
ID7 = \(\overline{\text { D.P. }}\) & 7 & Low & Loads "Zeros" (Note 2) \\
\hline
\end{tabular}

\section*{INPUT DEFINITIONS ICM7218E}
\begin{tabular}{|l|c|c|l|}
\hline INPUT & TERMINAL & VOLTAGE & FUNCTION \\
\hline\(\overline{\text { WRITE }}\) & 9 & \begin{tabular}{l} 
High \\
Low
\end{tabular} & \begin{tabular}{l} 
Input Latches Not Updated \\
Input Latches Updated
\end{tabular} \\
\hline\(\overline{\text { SHUTDOWN }}\) & 10 & \begin{tabular}{l} 
High \\
Low
\end{tabular} & \begin{tabular}{l} 
Normal Operation \\
Shutdown (Oscillator, Decoder and Displays \\
Disabled)
\end{tabular} \\
\hline \begin{tabular}{l} 
Digit Address (0,1,2) \\
DA0-DA2
\end{tabular} & \(13,14,12\) & \begin{tabular}{l} 
High \\
Low
\end{tabular} & \begin{tabular}{l} 
Loads "Ones" \\
Loads "Zeros"
\end{tabular} \\
\hline\(\overline{\text { DECODE/No Decode }}\) & 33 & \begin{tabular}{l} 
High \\
Low
\end{tabular} & \begin{tabular}{l} 
No Decode \\
Decode
\end{tabular} \\
\hline HEXAdecimal/CODE B & 32 & \begin{tabular}{l} 
High \\
Low
\end{tabular} & \begin{tabular}{l} 
Code B Decoding \\
Hexadecimal Decoding
\end{tabular} \\
\hline Input Data & \begin{tabular}{c}
\(16,17,18,19\) \\
6
\end{tabular} & \begin{tabular}{l} 
High
\end{tabular} & \begin{tabular}{l} 
Loads "Ones" (Note 2)
\end{tabular} \\
IDO-ID7 & \(7,11,8\) & Low & Loads "Zeros" (Note 2) \\
\hline
\end{tabular}

NOTE 1 In the ICM7218C and ICM7218D versions, Hexadecimal, Code B anu urutdown are controlled with a three level input on Pin 9 . Pulling Pin 9 high decodes Hexadecimal. Floating Pin 9 decodes Code B and pulling Pin 9 low puts the ICM7218 in a Shutdown mode.
NOTE 2 In the No Decode format, "Ones" represents "on" segments for all inputs except for the Decimal Point, where "Zero" represents "on" segments, (i.e. segments are positive true, decimal point is negative true).


Figure 1: Multiplex Timing


Figure 2: Segment Assignments

\section*{DECODE/No Decode}

For the ICM7218A/B/E products, there are 3 input data formats possible; either direct segment and decimal point information ( 8 bits per digit) or 2 Binary codes plus decimal point ( 5 bits per digit). The 7 segment decoder on chip may be disabled if direct segment information is inputted.
In the No Decode format, the inputs directly control the outputs as follows:

Input Data:
ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Output Segments: \(\overline{D . P} . \quad\) a b c e g f d
In this format, "Ones" represents on segments for all inputs except for the Decimal Point, where "zero' represents on segments.

\section*{HEXA decimal or CODE B Decoding}

For all products, a choice of either HEXA or Code B decoding may be made, HEXA decoding provides 7 segment numeric plus six alpha characters while Code B provides a negative sign (一), a blank (for leading zero blanking), certain useful alpha characters and all numeric formats.
The four bit binary code is set up on induts ID3-IDO.


\section*{SHUTDOWN}

SHUTDOWN performs several functions: it puts the device into a very low dissipation mode (typically \(10 \mu \mathrm{~A}\) at \(\mathrm{V}^{+}=5\) ), turns off both the digit and segment drivers, stops the multiplex scan oscillator (this is the only way the scan oscillator can be disabled). However, it is still possible to input data to the memory during shutdown - only the output and read sections of the device are disabled.

\section*{Powerdown}

In a Shutdown Mode, the supply voltage may be reduced to 2 volts without data being lost in memory. However, data should not be written into memory if the supply voltage is less than 4 volts.

\section*{Output Drive}

The common anode output drive is approximately 200 mA per digit at a \(12 \%\) duty cycle. With 5 segments being driven, this is equal to about 40 mA per segment peak drive or 5 mA average drive. The common cathode drive is approximately one half that of the common anode drive. If high impedance LED displays are used, the drive will be correspondingly less.

\section*{Inter Digit Blanking}

A blankirig time of approximately \(10 \mu\) s occurs between digit strobes to ensure that segment information is correct before the next digit drive thereby avoiding ghosting.

\section*{Leading Zero Blanking}

This may be programmed into chip memory in the nodecode operation (each segment programmed for a zero for the blanked digits) or by using the 16th state (binary 15) with the Code B decoder.

\section*{Driving Larger Displays}

If a higher average drive current per digit is required, it is possible to parallel connect digit drives together. For example, by paralleling pairs of digit drives together to drive a 4 digit display 10 mA average segment drive can be obtained.

\section*{APPLICATIONS, continued}

\section*{Power Dissipation Considerations}

Assuming common anode drive at \(\mathrm{V} \pm=5\) volts and all digits on with an average of 5 segments driven per digit, the average current would be approximately 200 mA . Assuming a 1.8 volt drop across the LED display, there will be a 3.2 volt drop across the ICM7218. The device power dissipation will, therefore, be 640 mW rising to about 900 mW for all ' 8 "s displayed. Caution: Position device in system such that air can flow freely to provide maximum cooling. The common cathode dissipation is approximately one half that of the common anode dissipation.

\section*{Serial Input Drive Considerations (ICM7218A/B)}

The control instructions are read from the input bus lines if MODE is high and WRITE low. The instructions occur on 4 lines and are-Decode/no Decode, type of Decode (if desired), \(\overline{\text { SHUTDOWN }}\) /no Shutdown and DATA COMING/not Coming. After the control instructions have been read (with Data Coming instruction) display data can be written into memory with each following negative going pulse of WRITE, MODE being low. After all 8 words or digit memory locations have been written, additional transitions of the state of WRITE are
ignored. It is not possible to change one individual digit without refreshing the data for all the other digits: (This can, however, be achieved with the ICM7218C/D/E where the digits are individually addressed.)

\section*{Random Access Input Drive Considerations \\ (ICM7218C/D/E)}

Control instructions are provided to the ICM7218C/D by a single three level input terminal (Pin 9), which operates independently of the WRITE pulse. The ICM7218E control instructions are also independent but are on three separate pins (10, 32, 33).
Data can be written into memory on the ICM7218C/D/E by setting up a 3 bit binary code (one of eight) on the digit address inputs (which define the digit where the data is to be written into the memory) and apply a negative going WRITE pulse. For example, it is possible to change only digit 7 without refreshing the data for all the other digits. (However, this cannot be achieved with the ICM7218A/B.)

\section*{Supply Capacitor}

A \(0.1 \mu \mathrm{~F}\) capacitor is recommended between \(\mathrm{V}^{+}\)and GROUND to bypass multiplex noise.

\section*{SWITCHING WAVEFORMS ICM7218}


Figure 3

\section*{CHIP ADDRESS SEQUENCE ICM7218A and B}


Figure 4
CHIP ADDRESS SEQUENCE EXAMPLE ICM7218C/D/E


TEST CIRCUITS
TEST CIRCUIT 1


\section*{TYPICAL CHARACTERISTICS}

\section*{COMMON ANODE}

\section*{SEG. DRIVER}

IsEG vs. Vout
AT \(25^{\circ} \mathrm{C}\)


\section*{COMMON ANODE}

SEG. DRIVER
ISEG. vs. Vout


COMMON ANODE DIGIT DRIVER
IDIG vs. ( \(\mathbf{V}^{+}\)-VOUT)


TYPICAL CHARACTERISTICS, CONTINUED COMMON CATHODE

DIGIT DRIVER
IDIG vs. Vout
AT \(25^{\circ} \mathrm{C}\)


COMMON CATHODE DIGIT DRIVER IDIG ve. Vout


\section*{APPLICATION EXAMPLES}

\section*{8 DIGIT MICROPROCESSOR DISPLAY APPLICATION}

The display interface (ICM7218) is shown with an MCS-48 family microprocessor. The 8 bit data bus DB0/DB7-ID0/ID7 transfers control and data information to the 7218 display interface on successive \(\overline{\text { WRITE }}\) pulses. When MODE is high a control word is transferred. MODE low allows datatransfer on a WRITE pulse. Eight memory address locations in the \(8 \times 8\) static memory are automatically sequenced on each succes-
sive \(\overline{\text { WRITE }}\) pulse. After eight \(\overline{\text { WRITE }}\) pulses have occurred, further pulses are ignored and the display interface returns to normal display operation until a new control word is transferred. See Figure 4. This also allows writing to other peripheral devices without disturbing the ICM7218 A/B.

Decoding of the stored data in memory is defined by the control word and may be decoded in Hexadecimal, Code B, or No-Decode formats.


Figure 6: 8 Digit Microprocessor Display

\section*{16 DIGIT MICROPROCESSOR DISPLAY APPLICATION}

Both ICM7218's are addressed simultaneously with a 3 bit word, DA2-DA0.
Display data from the MCS-48 I/O bus (DB7-DB0) is transferred to both ICM7218 (ID3-ID0) simultaneously, 4 bits +4 bits on WRITE enable.

Display digits from both ICM7218's are interleaved to allow adjacent pairs of digits to be loaded sequentially on a single 8 bit data bus, ie D0 D1, D2 D3, D4 D5, etc..

Decimal point information (from the processor, P26-P27) is supplied to the ICM7218 on bus lines ID7 to both devices.

Choice of decoding is available in either Hexadecimal or Code-B format by hardwiring or decoding to a Three Level format on Pin 9 of the ICM7218.

Multiplexing is asynchronous with respect to the microprocessor and is completely performed by the ICM7218.


Figure 7: 16 Digit Display

\section*{NO DECODE APPLICATION}

The ICM7218 can be used as a microprocessor based LED status panel driver. The microprocessor selected control word would include "No Decode" and "Data Coming". The computer then outputs word oriented "Ones" and "Zeroes" to indicate on-off states. This data is read into the ICM7218 which in turn directly drives appropriate discrete LEDs. LED indicators can be red or green ( 8 "segments" \(\times 8\) digits \(=64\) dots \(\div 2\) per red or green \(=32\) channels). With red, yellow and green, 21 channels can be accommodated.

Additional ICM7218's may be bussed and addressed (see Figures 6 and 7) to expand the status panel capacity. Note per figure 4 that after the ICM7218A/B has been read in its data ( 8 \(\overline{\text { WRITE }}\) pulses), it ignores additional information on the data lines. A new control word must be received before the next write sequence can be accommodated. Consequently, by address decoding and WRITE pulse enabling, numerous ICM7218's can be bussed together to allow a large number of indicator channels.

\title{
NNIER
}

\section*{FEATURES}
- High frequency counting-guaranteed 15 MHz , typically 25 MHz at 5 V
- Low power operation-less than \(100 \mu \mathrm{~W}\) quiescent
- STORE and RESET inputs permit operation as frequency or period counter
- True COUNT INHIBIT disables first counter stage
- CARRY output for cascading four-digit blocks
- Schmitt-trigger on the COUNT input allows operation in noisy environments or with slowly changing inputs
- Leading Zero Blanking INput and OUTput for correct leading zero blanking with cascaded devices
- LCD devices provide complete onboard oscillator and divider chain to generate backplane frequency, or backplane driver may be disabled allowing segments to be slaved to a master backplane signal
- LED devices provide BRighTness input which can function digitally as a display enable or with a single potentiometer as a continuous display brightness control

\section*{GENERAL DESCRIPTION}

The ICM7224 and ICM7225 devices constitute a family of high-performance CMOS 4 1/2-digit counters, including decoders, output latches, display drivers, count inhibit, leading zero blanking, and reset circuitry.
The counter section provides direct static counting, guaranteed from DC to 15 MHz , using a \(5 \mathrm{~V} \pm 10 \%\) supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz . The COUNT input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry, which allow a direct interface with the ICM7207/A to implement a low cost, low power frequency counter with a minimum component count.
These devices also incorporate several features intended to simplify cascading four-digit blocks. The CARRY output allows the counter to be cascaded, while the Leading Zero Blanking INput and OUTput allows correct Leading Zero Blanking between four-decade blocks. The BackPlane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, necessary when using an eight or twelve digit, single backplane display. In LED systems, the BRighTness input to several ICM7225 devices may be ganged to one potentiometer.
The ICM7224/ICM7225 family are packaged in a standard 40-pin dual-in-line plastic package.

TYPICAL APPLICATION (UNIT COUNTER)


\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|c|}
\hline & ORDER PART NUMBER & COUNT OPTION \\
\hline LCD & ICM7224 IPL & 19999 \\
DISPLAY & ICM7224A IPL & 15959 \\
\hline LED & ICM7225 IPL & 19999 \\
DISPLAY & ICM7225A IPL & 15959 \\
\hline
\end{tabular}

Evaluation Kits, order ICM7224 EV/Kit or ICM7225 EV/Kit

PIN CONFIGURATION (outline dwg PL)


\section*{ICM7224/ICM7225}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Power Dissipation (Note 1) & 0.5 W @ \(70^{\circ} \mathrm{C}\) \\
\hline Supply Voltage ( \(\mathrm{V}^{+}\)) & 6.5 V \\
\hline Input Voltage (Any & \\
\hline Terminal) (Note 2) & \(\mathrm{V}++0.3 \mathrm{~V},-0.3 \mathrm{~V}\) \\
\hline Operating Temperature Range Storage Temperature Range & \[
\begin{aligned}
& -20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation. NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than \(\mathrm{V}^{+}\)or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from sources operating on a different power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7224/ICM7225 be turned on first.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{OPERATING CHARACTERISTICS}
(All Parameters measured with \(\mathrm{V}^{+}=5 \mathrm{~V}\) unless otherwise indicated)
ICM7224 CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Operating current & lop & Test circuit, Display blank & & 10 & 50 & \(\mu \mathrm{A}\) \\
\hline Operating supply voltage range & V+ & & 3 & 5 & 6 & V \\
\hline OSCILLATOR input current & loscl & Pin 36 & & \(\pm 2\) & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline Segment rise/fall time & \(\mathrm{trfs}^{\text {f }}\) & \(\mathrm{Cl}_{\text {load }}=200 \mathrm{pF}\) & & 0.5 & & \multirow[b]{2}{*}{\(\mu \mathrm{S}\)} \\
\hline BackPlane rise/fall time & \(t_{\text {rfb }}\) & \(\mathrm{Cl}_{\text {load }}=5000 \mathrm{pF}\) & & 1.5 & & \\
\hline Oscillator frequency & \(\mathrm{f}_{\text {osc }}\) & Pin 36 Floating & & 19 & & KHz \\
\hline Backplane frequency & fbp & Pin 36 Floating & & 150 & & Hz \\
\hline
\end{tabular}

\section*{ICM7225 CHARACTERISTICS}
\begin{tabular}{|l|c|l|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Operating current display off & IOPQ & \begin{tabular}{l} 
Pin 5 (BRighTness) at GROUND \\
Pins 29, 31-34 at \(\mathrm{V}^{+}\)
\end{tabular} & & 10 & 50 & \(\mu \mathrm{~A}\) \\
\hline Operating supply voltage range & \(\mathrm{V}+\) & & 4 & 5 & 6 & V \\
\hline Operating current & IOP & Pin 5 at \(\mathrm{V}^{+}\), Display 18888 & & 200 & & mA \\
\hline Segment leakage current & ISLK & Segment Off & \(\pm 0.01\) & \(\pm 1\) & \(\mu \mathrm{~A}\) \\
\hline Segment on current & ISEG & Segment On, Vout \(=+3 \mathrm{~V}\) & 5 & 8 & & \multirow{2}{*}{mA} \\
\hline Half-digit on current & IH & Half-digit on, Vout \(=+3 \mathrm{~V}\) & 10 & 16 & & \\
\hline
\end{tabular}

FAMILY CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \begin{tabular}{l}
Input \\
Pullup Currents
\end{tabular} & Ip & Pins 29, 31, 33, 34 Vout \(=\mathrm{V}^{+}-3 \mathrm{~V}\) & & 10 & & \(\mu \mathrm{A}\) \\
\hline Input High Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & Pins 29, 31, 33, 34 & 3 & & & \multirow{4}{*}{V} \\
\hline Input Low Voltage & \(\mathrm{V}_{\text {IL }}\) & Pins 29, 31, 33, 34 & & & 1 & \\
\hline COUNT Input Threshold & \(\mathrm{V}_{\text {CT }}\) & & & 2 & & \\
\hline COUNT Input Hysteresis & \(\mathrm{V}_{\mathrm{CH}}\) & & & 0.5 & & \\
\hline Output High Current & IOH & \begin{tabular}{l}
\(\overline{\text { CARRY Pin } 28}\) \\
Leading Zero Blanking OUT Pin 30
\[
\text { Vout }=\mathrm{V}^{+}-3 \mathrm{~V}
\]
\end{tabular} & 350 & 500 & & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline Output Low Current & IOL & \begin{tabular}{l}
\(\overline{\text { CARRY }}\) Pin 28 \\
Leading Zero Blanking OUT Pin 30 \\
Vout \(=+3 \mathrm{~V}\)
\end{tabular} & 350 & 500 & & \\
\hline Count Frequency & \(\mathrm{f}_{\text {count }}\) & \(4.5 \mathrm{~V}<\mathrm{V}+<6 \mathrm{~V}\) & 0 & DC-25 & 15 & MHz \\
\hline \(\overline{\text { STORE, }} \overline{\text { RESET }}\) Minimum Pulse Width & ts, \(\mathrm{t}_{\mathrm{R}}\) & & 3 & & & \(\mu \mathrm{S}\) \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS
7224 OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


7224 BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE


7224 BACKPLANE FREQUENCY AS A FUNCTION OF OSCILLATOR CAPACITOR COSC


7225 LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


7225 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE


7225 LED SEGMENT CURRENT AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE


MAXIMUM COUNT FREQUENCY (TYPICAL) AS A FUNCTION OF SUPPLY VOLTAGE


SUPPLY CURRENT AS A FUNCTION OF COUNT FREQUENCY


BLOCK DIAGRAMS


\section*{CONTROL INPUT DEFINITIONS}

In this table, \(\mathrm{V}^{+}\)and GROUND are considered to be normal operating input logic levels. Actual input low and high levels are specified in the Operating Characteristics. For lowest
power consumption, input signals should swing over the full supply.
\begin{tabular}{|l|c|l|l|}
\hline INPUT & TERMINAL & VOLTAGE & FUNCTION \\
\hline \begin{tabular}{l} 
Leading Zero Blanking \\
INput
\end{tabular} & 29 & \begin{tabular}{l}
\(\mathrm{V}^{+}\)or Floating \\
GROUND
\end{tabular} & \begin{tabular}{l} 
Leading Zero Blanking Enabled \\
Leading Zeroes Displayed
\end{tabular} \\
\hline\(\overline{\text { COUNT INHIBIT }}\) & 31 & \begin{tabular}{l}
\(\mathrm{V}^{+}\)or Floating \\
GROUND
\end{tabular} & \begin{tabular}{l} 
Counter Enabled \\
Counter Disabled
\end{tabular} \\
\hline\(\overline{\text { RESET }}\) & 33 & \begin{tabular}{l}
\(\mathrm{V}^{+}\)or Floating \\
GROUND
\end{tabular} & \begin{tabular}{l} 
Inactive \\
Counter Reset to 0000
\end{tabular} \\
\hline\(\overline{\text { STORE }}\) & 34 & \begin{tabular}{l}
\(\mathrm{V}^{+}\)or Floating \\
GROUND
\end{tabular} & \begin{tabular}{l} 
Output Latches not Updated \\
Output Latches Updated
\end{tabular} \\
\hline
\end{tabular}

\section*{DESCRIPTION OF OPERATION}

\section*{LCD Devices}

The LCD devices in the family (ICM7224 and ICM7224A) provide outputs suitable for driving conventional \(41 / 2\)-digit by seven segment LCD displays, including 29 individual segmént drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.

The segment and backplane drivers each consist of a CMOS inverter, with the \(n\)-and \(p\)-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from differing rise and fall times, and ensures maximum display life.

The backplane output devices can be disabled by connecting the OSCILLATOR input (pin 36) to GROUND. This synchronizes the 29 segment outputs directly with a signal input at the BP terminal (pin5) and allows cascading of several slave devices to the backplane output of one master device. The backplane may also be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200 pF (comparable to one additional segment). The limitation on the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding \(5 \mu \mathrm{~s}\) (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7224 devices be slaved to it.
This external signal should be capable of driving very large capacitive loads with short ( \(1-2 \mu \mathrm{~s}\) ) rise and fall times. The maximum frequency for a backplane signal should be about 150 Hz , although this may be too fast for optimum display response at lower displaytemperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 19 KHz , at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane fre-
quency, which will be approximately 150 Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal (pin 36) and \(\mathrm{V}^{+}\); see the plot of oscillator/backplane frequency in "Typical Characteristics" for detailed information.
The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the OSCILLATOR input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

\section*{LED Devices}

The LED devices in the family (ICM7225, ICM7225A) provide outputs suitable for directly driving \(41 / 2\)-digit by seven segment common-anode LED displays, including 28 individual segment drivers and one half-digit driver, each consisting of a low-leakage current-controlled open-drain \(n\)-channel transistor.
The drain current of these transistors can be controlled by varying the voltage at the BRighTness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Figure 3. The potentiometer should be a high value ( \(100 \mathrm{k} \Omega\) to \(1 \mathrm{M} \Omega\) ) to minimize I2R power consumption, which can be significant when the display is off.
The BRighTness input may also be operated digitally as a display enable; when at \(\mathrm{V}^{+}\), the display is fully on, and at ground, fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the BRighTness input.
Note that the LED devices have two connections for ground; both should be connected. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.

\section*{ICM7224/ICM7225}
w
When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at \(25^{\circ} \mathrm{C}\), derated linearly above \(35^{\circ} \mathrm{C}\) to 500 mW at \(70^{\circ} \mathrm{C}\) \(\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.\) above \(\left.35^{\circ} \mathrm{C}\right)\). Power dissipation for the device is given by:
\[
P=\left(V^{+}-V_{F L E D}\right) \times(\text { ISEG }) \times\left(n_{S E G}\right)
\]
where VFLED is the LED forward voltage drop, ISEG is segment current, and nSEG is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above.


Figure 3: Brightness Control

\section*{COUNTER SECTION}

The devices in the ICM7224/ICM7225 family implement a four-digit ripple carry resettable counter, including a Schmitt trigger on the COUNT input and a CARRY output. Also included is an extra D-type flip-flop, clocked by the \(\overline{\text { CARRY }}\) signal and outputting to the half-digit segment driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negative-going edge of the signal at the COUNT input, while the \(\overline{\text { CARRY }}\) output provides a negative-going edge following the count which indexes the counter from 9999 (or 5959) to 10000. Once the halfdigit flip-flop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the \(\overline{\operatorname{RESET}}\) terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half-digit is set, and subsequent \(\overline{\text { CARRY outputs will not be affected. }}\)

A negative level at the COUNT INHIBIT input disables the first divide-by-two in the counter chain without affecting its clock. This provides a true inhibit, not sensitive to the state of the COUNT input, which prevents false counts that can result from using a normal logic gate to prevent counting.
Each decade of counter drives directly into a four-to-seven decoder which develops the seven-segment output code. The output data is latched at the driver; when the STORE pin is low, these latches are updated, and when high or floating, the latches hold their contents.
The decoders also include zero detect and blanking logic to provide leading zero blanking. When the Leading Zero Blanking INput is floating or at a positive levei, this circuitry is enabled and the device will blank leading zeroes; when low, or the half-digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The Leading Zero Blanking OUTput is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked; this can only occur when the Leading Zero Blanking INput is at a positive level and the half-digit is not set.

For example, in an eight-decade counter with overflow using two ICM7224/ICM7225 devices, the Leading Zero Blanking OUTput of the high order digit device would be connected to the Leading Zero Blanking INput of the low order digit device. This will assure correct leading zero blanking for all eight digits.

The \(\overline{\text { STORE, }} \overline{\text { RESET, }} \overline{\text { COUNT INHIBIT, and Leading Zero }}\) Blanking INputs are provided with pullup devices, so that they may be left open when a positive level is desired. The \(\overline{\text { CARRY }}\) and Leading Zero Blanking OUTputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7224 or ICM7225 devices in four-digit blocks.

\section*{DISPLAY WAVEFORMS}


\section*{TEST CIRCUIT}


\section*{SEGMENT ASSIGNMENT AND DISPLAY FONT}

(BLANK)

\section*{APPLICATIONS}

\section*{1. Two-Hour Precision Timer}


\section*{2. Eight-Digit Precision Frequency Counter}


\section*{ICM7224/ICM7225}

\section*{KiNIERSIL}

\section*{CHIP TOPOGRAPHIES}



ICM7225

\section*{ICM7226A/B}

\title{
10MHz Universal Counter System for LED Displays
}

\section*{FEATURES}
- CMOS design for very low power
- Output drivers directly drive both digits and segments of large 8 digit LED displays. Both common anode and common cathode versions are available
- Measures frequencies from DC to 10 MHz ; periods from \(0.5 \mu\) s to 10 s
- Stable high frequency oscillator uses either 1 MHz or 10 MHz crystal
- Control signals available for external systems operation
- Multiplexed BCD outputs

\section*{APPLICATIONS}
- Frequency Counter
- Period Counter
- Unit Counter
- Frequency Ratio Counter
- Time Interval Counter

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{1}{|c|}{ DISPLAY } & \multirow{2}{*}{ DEVICE } & PACKAGE & \begin{tabular}{c} 
ORDER \\
NUMBER
\end{tabular} \\
\hline \multirow{2}{*}{ Common Anode } & \multirow{2}{*}{ ICM7226A } & CERDIP & ICM7226AIJL \\
\cline { 3 - 4 } & DICE & ICM7226A/D \\
\hline \multirow{2}{*}{ Common Cathode } & \multirow{2}{*}{ ICM7226B } & Plastic & ICM7226BIPL \\
\cline { 3 - 4 } & & DICE & ICM7226B/D \\
\hline
\end{tabular}

ISOTE: An evaluation kit is available for these devices - order
ICM7226AEV/KIT.

\section*{GENERAL DESCRIPTION}

The ICM7226 is a fully integrated Universal Counter and LED display driver. It combines a high frequency oscillator, a decade timebase counter, an 8 decade data counter and latches, a 7 segment decoder, digit multiplexer, and segment and digit drivers which can directly drive large LED displays. The counter inputs accept a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.
The ICM7226 can function as a frequency counter, period counter, frequency ratio ( \(f_{A} / f_{B}\) ) counter, time interval counter or a totalizing counter. The devices require either a 10 MHz or 1 MHz crystal timebase, or if desired an external timebase can also be used. For period and time interval, the 10 MHz timebase gives a \(0.1 \mu \mathrm{sec}\) resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation time of \(10 \mathrm{~ms}, 100 \mathrm{~ms}\), 1 s and 10 s . With a 10 s accumulation time, the frequency can be displayed to a resolution of 0.1 Hz . There is a 0.2 s interval between measurements in all ranges. Control signals are provided to enable gáting and storing of prescaler data.
Leading zero blanking has been incorporated with frequency display in kHz and time in \(\mu \mathrm{s}\). The display is multiplexed at a 500 Hz rate with a \(12.2 \%\) duty cycle for each digit. The ICM7226A is designed for common anode display with typical peak segment currents of 25 mA , and the ICM7226B is designed for common cathode displays with typical segment currents of 12 mA . In the display off mode, both digit drivers \& segment drivers are tưrned off, allowing the display to be used for other functions.


ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5V} \\
\hline \multicolumn{2}{|l|}{Maximum Digit Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400mA} \\
\hline \multicolumn{2}{|l|}{Maximum Segment Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60mA} \\
\hline \multicolumn{2}{|l|}{*Voltage on any Input or} \\
\hline \multicolumn{2}{|l|}{Output Terminal (Note1)} \\
\hline & by more than 0.3 V \\
\hline \multicolumn{2}{|l|}{Maximum Power Dissipation at \(70^{\circ} \mathrm{C}\) (Note 2 )} \\
\hline ICM7226A & 1.0W \\
\hline ICM7226B & 0.5W \\
\hline \multicolumn{2}{|l|}{Maximum Operating Temperature Range . . . . . . . . . . . . . . . . . . . - \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{2}{|l|}{Maximum Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{2}{|l|}{Lead Temperature (soldering, 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300\({ }^{\circ} \mathrm{C}\)} \\
\hline Stresses above those listed under Absolute Max the device. These are stress ratings only, and fu other conditions above those indicated in the implied. Exposure to absolute maximum rating co reliability. & cause permanent damage to of the device at these or any of the specifications is not ed periods may affect device \\
\hline
\end{tabular}
* Note 1: Destructive latchup may occur if input signals are applied before the power supply is established or if inputs or outputs are forced to voltages exceeding \(\mathrm{V}^{+}\)or GROUND by 0.3V.

Note 2: Assumes all leads soldered or welded to PC board and free air flow.

\section*{ELECTRICAL CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}^{+}=5.0 \mathrm{~V}\), Test Circuit, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITION & MIN & TYP & MAX & UNITS \\
\hline Operating Supply Current & \(\mathrm{I}^{+}{ }^{+}\) & \begin{tabular}{l}
Display Off \\
Unused inputs to GROUND
\end{tabular} & & 2 & 5 & mA \\
\hline Supply Voltage Range & VSUPP & \begin{tabular}{l}
\[
-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}
\] \\
Input A, Input B \\
Frequency at \(f_{\text {MAX }}\)
\end{tabular} & 4.75 & & 6.0 & V \\
\hline Maximum Guaranteed Frequency Input A, Pin 40 & \(\mathrm{f}_{\text {( } \text { (max }}\) & \[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V}<\mathrm{V}+<6.0 \mathrm{~V} \text { Figure } 1 \\
& \text { Function = Frequency, } \\
& \text { Ratio, Unit Counter } \\
& \text { Function = Period, Time Interval } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10 \\
2.5 \\
\hline
\end{array}
\] & 14 & & MHz \\
\hline Maximum Frequency Input B, Pin 2 & \(f_{B(\max )}\) & \[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V}<\mathrm{V}+<6.0 \mathrm{~V} \\
& \text { Figure } 2
\end{aligned}
\] & 2.5 & & & \\
\hline Minimum Separation Input A to Input B Time Interval Function & & \[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V}<\mathrm{V}^{+}<6.0 \mathrm{~V} \\
& \text { Figure } 3
\end{aligned}
\] & 250 & & & ns \\
\hline Maximum osc. freq. and ext. osc. freq. (minimum ext. osc. freq.) & fosc & \[
\begin{aligned}
& -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V}<\mathrm{V}+<6.0 \mathrm{~V}
\end{aligned}
\] & (0.1) & 10 & & MHz \\
\hline Oscillator Transconductance & gm & \[
\begin{gathered}
\mathrm{V}^{+}=4.75 \mathrm{~V} \\
\mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}
\end{gathered}
\] & 2000 & & & \(\mu \mathrm{s}\) \\
\hline Multiplex Frequency & \(\mathrm{f}_{\text {mux }}\) & \(\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}\) & & 500 & & Hz \\
\hline Time Between Measurements & & \(\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}\) & & 200 & & ms \\
\hline Minimum Input Rate of Charge & \(\mathrm{dV}_{\text {in }} / \mathrm{dt}\) & Inputs A, B & & 15 & & \(\mathrm{mV} / \mathrm{ms}\) \\
\hline
\end{tabular}

\section*{SEGMENT IDENTIFICATION AND DISPLAY FONT}


0123456789

LED overflow indicator connections:
Overflow will be indicated on the decimal point output of digit 8.
\begin{tabular}{cc} 
CATHODE & ANODE \\
d.p. & \(D_{8}\) \\
\(D_{8}\) & d.p.
\end{tabular}

ELECTRICAL CHARACTERISTICS
(Continued)
TEST CONDITIONS: \(\mathrm{V}^{+}=5.0 \mathrm{~V}\), test circuit, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITION & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{2}{*}{INFUT VOLTAGES PINS 2,19,33,39,40,35 input low voltage input high voltage} & \(\mathrm{V}_{\text {IL }}\) & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C}\) & 1.0 & & & \multirow[t]{2}{*}{V} \\
\hline & \(\mathrm{V}_{\text {IH }}\) & & & & 3.5 & \\
\hline PIN 2. 39, 40 INPUT LEAKAGE, A, B & ILLK & & & & 20 & \(\mu \mathrm{A}\) \\
\hline Input resistance to \(\mathrm{V}^{+}\) PINS 19,33 & RIN & \(\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.0 \mathrm{~V}\). & 100 & 400 & & \multirow[t]{2}{*}{k \(\Omega\)} \\
\hline Input resistance to GROUND PIN 31 & RIN & \(\mathrm{VIN}_{\text {I }}=+1.0 \mathrm{~V}\) & 50 & 100 & & \\
\hline Output Current PINS 3,5,6,7,17,18,32,38 & lOL & \(\mathrm{VOL}=+0,4 \mathrm{~V}\) & 400 & & & \(\mu \mathrm{A}\) \\
\hline PINS 5,6,7,17,18,32 & IOH & \(\mathrm{V}_{\mathrm{OH}}=+2.4 \mathrm{~V}\) & 100 & & & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline PINS 3,38 & IOH & \(\mathrm{VOH}=\mathrm{V}+-0.8 \mathrm{~V}\) & 265 & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
ICM7226A \\
PINS 22,23,24,26,27,28,29,30 \\
DIGIT DRIVER \\
high output current low output current
\end{tabular}} & IOH & \(V_{0}=V^{+}-2.0 \mathrm{~V}\) & 150 & 180 & & \multirow[t]{2}{*}{mA} \\
\hline & IOL & \(\mathrm{V}_{\mathrm{O}}=+1.0 \mathrm{~V}\) & & -0.3 & & \\
\hline SEGMENT DRIVER ruivS 8,9,10,11,13,14,15,16 low output current & 106 & \(V_{0}=+1.5 \mathrm{~V}\) & 25 & 35 & & mA \\
\hline high output current & IOH & \(\mathrm{V}_{\mathrm{O}}=\mathrm{V}+-1.0 \mathrm{~V}\) & & 100 & & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
MULTIPLEX INPUTS \\
PINS 1,4,20,21 \\
input low voltage \\
input high voltage \\
input resistance to GROUND
\end{tabular}} & \(\mathrm{V}_{\text {IL }}\) & & & & 0.8 & \multirow[t]{2}{*}{V} \\
\hline & VIH & & 2.0 & & & \\
\hline & RIN & \(\mathrm{V}_{\text {IN }}=+1.0 \mathrm{~V}\) & 50 & 100 & & k \(\Omega\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
ICM7226B \\
DIGIT DRIVER \\
PINS 8,9,10,11,13,14,15,16 \\
low output current high output current
\end{tabular}} & lol & \(\mathrm{V}_{\mathrm{O}}=+1.0 \mathrm{~V}\) & 50 & 75 & & mA \\
\hline & IOH & \(\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+}-2.5 \mathrm{~V}\) & & 100 & & \(\mu \mathrm{A}\) \\
\hline SEGMENT DRIVER PINS 22,23,24,26,27,28,29,30 high output current & IOH & \(V_{0}=V^{+}-2.0 \mathrm{~V}\) & 10 & 15 & & mA \\
\hline leakage current & IL & \(V_{0}=\) GROUND & & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{MULTIPLEX INPUTS PINS 1,4,20,21 input low voltage input high voltage input resistance to \(\mathrm{V}^{+}\)} & VIL
\(\mathrm{V}_{\text {IH }}\) & & \(\mathrm{V}^{+}-0.8\) & & \(\mathrm{v}^{+}-2.0\) & V \\
\hline & RIN & \(\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.0 \mathrm{~V}\) & 200 & 360 & & k \(\Omega\) \\
\hline
\end{tabular}

\section*{EVALUATION KIT}

An evaluation kit is available for the ICM7226. It includes all the components necessary to assemble and evaluate a universal frequency/period counter based on the ICM7226. With the help of this kit, an engineer or technician can have the ICM7226 "up-and-running" in less than an hour. Specifically, the kit contains an ICM7226AIJL, a 10 MHz quartz crystal, eight each 7 -segment \(0.3^{\prime \prime}\) LEDs, PC board, resistors, capacitors, diodes, switches and IC socket. Order Number ICM7226AEV/Kit.

BLOCK DIAGRAM


\section*{TEST CIRCUIT}


INPUT A


FIGURE 1. Waveform for Guaranteed Minimum \(f_{A(\max )}\) Function = Frequency, Frequency Ratio, Unit Counter.


FIGURE 2. Waveform for Guaranteed Minimum \(\mathrm{f}_{\mathrm{B}}\) (max) and \(f_{A}(\max )\) for Function \(=\) Period and Time Interval.

\section*{TIME INTERVAL MEASUREMENT}

The ICM7226A/B can be used to accurately measure the time interval between two events. With a 10 MHz time-base crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100 ns .

The feature operates with Channel A going low at the start of the event to be measured, followed by Channel \(B\) going low at the end of the event.
When in the time interval mode and measuring a single event, the ICM7226A/B must first be "primed" prior to measuring the event of interest. This is done by first generating a negative going edge on Channel A followed by a negative going edge on Channel B to start the "measurement interval." The inputs are then primed ready for the measurement. Positive going edges on A and B , before or after the priming, will be needed to restore the original condition.

This can be easily accomplished with the following circuit: (Figure 3b).

figure 3b. Priming Circuit, Signal A\&B High or Low.
Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event.
When timing repetitive signals, it is not necessary to "prime" the ICM7226A/B as the first alternating signal states automatically prime the device. See Figure 3a.
During any time interval measurement cycle, the ICM7226A/B requires 200ms following B going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.


NOTE: IF RANGE IS SET TO 1 EVENT, FIRST AND LAST MEASURED INTERVAL WILL COINCIDE.
FIGURE 3a. Waveforms for Time Interval Measurement (Others are similar, without priming phase)

\section*{APPLICATION NOTES \\ GENERAL \\ INPUTS A \＆B}

The signal to be measured is applied to INPUT \(A\) in frequency period，unit counter，frequency ratio and time interval modes． The other input signal to be measured is applied to INPUT B in frequency ratio and time interval．\(f_{A}\) should be higher than \(f_{B}\) during frequency ratio．

Both inputs are digital inputs with a typical switching threshold of 2.0 V at \(\mathrm{V}^{+}=5.0 \mathrm{~V}\) and input impedance of \(250 \mathrm{k} \Omega\) ． For optimum performance，the peak to peak input signal should be at least \(50 \%\) of the supply voltage and centered about the switching voltage．When these inputs are being driven from TTL logic，it is desirable to use a pullup resistor． The circuit counts high to low transitions at both inputs．
Note：The amplitude of the input should not exceed the supply by more than 0.3 V otherwise，the circuit may be damaged．

\section*{MULTIPLEXED INPUTS}

The FUNCTION，RANGE，CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired．This is achieved by connecting the ap－ propriate digit driver output to the inputs．The input function， range and control inputs must be stable during the last half of each digit output，（typically \(125 \mu \mathrm{sec}\) ）．The multiplex inputs are active high for the common anode ICM7226A，and active low for the common cathode ICM7226B．

Noise on the multiplex inputs can cause improper operation． This is particularly true when the unit counter mode of opera－ tion is selected，since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs．For maximum noise immunity，a \(10 \mathrm{k} \Omega\) resistor should be placed in series with the multiplex inputs as shown in the application notes．
Table 1 shows the functions selected by each digit for these inputs．

TABLE 1．Multiplexed Input Control
\begin{tabular}{|l|l|l|}
\hline & FUNCTION & DIGIT \\
\hline FUNCTION INPUT & Frequency & \(D_{1}\) \\
PIN 4 & Period & \(D_{8}\) \\
& Frequency Ratio & \(D_{2}\) \\
& Time Interval & \(D_{5}\) \\
& Unit Counter & \(D_{4}\) \\
& Oscillator Frequency & \(D_{3}\) \\
\hline RANGE INPUT & 0.01 Sec／1 Cycle & \(D_{1}\) \\
PIN 21 & 0.1 Sec／10 Cycles & \(D_{2}\) \\
& 1 Sec／100 Cycles & \(D_{3}\) \\
& 10 Sec／1k Cycles & \(D_{4}\) \\
PIN 31 & Enable External Range & \(D_{5}\) \\
& Input & \\
\hline CONTROL INPUT & Blank Display & \(D_{4} \& H o l d\) \\
PIN 1 & Display Test & \(D_{8}\) \\
& 1MHz Select & \(D_{2}\) \\
& External Oscillator Enable & \(D_{1}\) \\
& External Decimal Point & \\
& Enable & \(D_{3}\) \\
& Test & \(D_{5}\) \\
\hline
\end{tabular}

\section*{CONTROL INPUTS}

Display Test－All segments are enabled continuously，giving a display of all 8＇s with decimal points．The display will be blanked if display off is selected at the same time．

Display Off－To enable the display off mode it is necessary to tie \(D_{4}\) to the CONTROL input and have the HOLD input at \(V^{+}\)． The chip will remain in this mode until HOLD is switched low． While in the display off mode，the segment and digit driver outputs are open and the oscillator continues to run（with a typical supply current of 1.5 mA with a 10 MHz crystal）but no measurements are made．In addition，signals applied to the multiplexed inputs have no effect．A new measurement is in－ itiated after the HOLD input goes low．（This mode does not operate when functioning as a unit counter．）

1 MHz Select－The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as a 10 MHz crystal．The internal decimal point is also shifted one digit to the right in period and time in－ terval，since the least significant digit will be in \(1 \mu \mathrm{~s}\) incre－ ments rather than \(0.1 \mu \mathrm{~s}\) ．

External Oscillator Enable－In this mode，the EXTernal OSCillator INput is used，rather than the on－chip oscillator， for the Timebase and Main Counter inputs in period and time interval modes．The on－chip oscillator will continue to func－ tion when the external oscillator is selected，but have no effect on circuit operation．The external oscillator input fre－ quency must be greater than 100 kHz or the chip will reset itself and enable the on－chip oscillator．Connect external oscillator to both OSC IN（pin 35）and EXT OSC IN（pin 33），or provide crystal for＂default＂oscillation，to avoid hang－up problems．

External Decimal Point Enable－When external decimal point is enabled，a decimal point will be displayed whenever the digit driver connected to the EXTERNAL DECIMAL POINT pin is active．Leading Zero Blanking will be disabled for all digits following the decimal point．

Test Mode－This is a special mode used only in high speed production testing，and serves no other purpose．

\section*{RANGE INPUT}

The range input selects whether the measurement is made for \(1,10,100\) or 1000 counts of the reference counter，or if the EXTernal RANGE INput determines the measurement time． In all functional modes except unit counter，a change in the RANGE input will stop the measurement in progress，without updating the display，and initiate a new measurement．This prevents an erroneous first reading after the RANGE input is changed．

\section*{FUNCTION INPUT}

Six functions can be selected．They are：Frequency，Period， Time Interval，Unit Counter，Frequency Ratio and Oscillator Frequency．
These functions select which signal is counted into the main counter and which signal is counted by the reference counter， as shown in Table 2．In time interval，a flip flop is set first by a \(1 \rightarrow 0\) transition at INPUT A and then reset by a \(1 \rightarrow 0\) transition at INPUT B．The oscillator is gated into the Main Counter dur－ ing the time the flip flop is set．A change in the FUNCTION in－ put will stop the measurement in progress without updating the display and then initiate a new measurement．This prevents an erroneous first reading after the FUNCTION input is changed．If the main counter overflows，an overflow indication is output on the Decimal Point Output during \(D_{8}\) ．

TABLE 2. Input Routing
\begin{tabular}{|l|l|l|}
\hline DESCRIPTION & MAIN COUNTER & \begin{tabular}{l} 
REFERENCE \\
COUNTER
\end{tabular} \\
\hline Frequency \(\left(\mathrm{f}_{\mathrm{A}}\right)\) & Input A & \begin{tabular}{l}
100 Hz (Oscillator \(\div\) \\
105 or 104)
\end{tabular} \\
\hline Period \(\left(\mathrm{t}_{\mathrm{A}}\right)\) & Oscillator & Input A \\
\hline Ratio \(\left(\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}\right)\) & Input A & Input B \\
\hline Time Interval \((\mathrm{A} \rightarrow \mathrm{B})\) & Osc ON Gate & Osc OFF Gate \\
\hline Unit Counter(Count A) & Input A & Not Applicable \\
\hline Osc. Freq. (fosc) & Oscillator & \begin{tabular}{l}
100 Hz (Osc \(\div 105\) or \\
\(104)\)
\end{tabular} \\
\hline
\end{tabular}

\section*{EXTERNAL DECIMAL POINT INPUT}

When the external decimal point is selected, this input is active. Any of the digits, except \(D_{8}\), can be connected to this point. \(D_{8}\) should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point.
HOLD Input - Except in the unit counter mode, when the HOLD Input is at \(V^{+}\), any measurement in progress (before STORE goes low) is stopped, the main counter is reset and the chip is held ready to initiate a new measurement as soon as HOLD goes low. The latches which hold the main counter data are not updated, so the last complete measurement is displayed. In unit counter mode when HOLD Input is at \(\mathrm{V}^{+}\), the counter is not stopped or reset, but the display is frozen at that instantaneous value. When HOLD goes low the count continues from the new value in the counter.
\(\overline{\text { RESET }}\) Input - The \(\overline{\text { RESET }}\) Input resets the main counter, stops any measurement in progress, and enables the main counter latches, resulting in an all zero output. A capacitor to ground will prevent any hang-ups on power-up.
EXTernal RANGE Input - The EXTernal RANGE Input is used to select other ranges than those provided on the chip. Figure 4 shows the relationship between MEASurement IN PROGRESS and EXTernal RANGE Input.


Figure 4: External Range Input to End of Measurement in Progress.
MEASUREMENT IN PROGRESS, STORE AND RESET Outputs - These Outputs are provided to facilitate external interfacing. Figure 5 shows the relationship between these signals during the time between measurements. All three outputs can drive a low power Schottky TTL load. The MEASUREMENTIN PROGRESS output can directly drive one ECL load, if the ECL device is powered from the same power supply as the ICM7226.


Figure 5: RESET OUT, \(\overline{\text { STORE, and MEASUREMENT IN }}\) PROGRESS Outputs Between Measurements.

BCD Outputs - The BCD representation of each digit output is available at the BCD outputs; see Table 3 for Truth Table. The positive going (ICM7226A - Common Anode) or negative going (ICM7226B - Common Cathode) digit drivers lag the \(B C D\) data by 2 to 6 microseconds; the leading edge of the digit drive signal should be used to externally latch the BCD data. Each BCD output will drive one low power Schottky TTL load and when interfacing low power Schottky TTL latches, it is necessary to use \(1 \mathrm{k} \Omega\) pull down resistors on the TTL inputs for optimum results. The display is multiplexed from MSD to LSD. Leading zero blanking has no effect on the BCD outputs.

TABLE 3 Truth Table BCD Outputs
\begin{tabular}{|c|c|c|c|c|}
\hline NUMBER & \begin{tabular}{c} 
BCD 8 \\
PIN 7
\end{tabular} & \begin{tabular}{c} 
BCD 4 \\
PIN 6
\end{tabular} & \begin{tabular}{c} 
BCD 2 \\
PIN 17
\end{tabular} & \begin{tabular}{c} 
BCD 1 \\
PIN 18
\end{tabular} \\
\hline 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1 & 1 \\
4 & 0 & 1 & 0 & 0 \\
5 & 0 & 1 & 0 & 1 \\
6 & 0 & 1 & 1 & 0 \\
7 & 0 & 1 & 1 & 1 \\
8 & 1 & 0 & 0 & 0 \\
9 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

BUFFered OSCillator OUTput - The BUFFered OSCillator OUTput has been provided to enable use of the on chip oscillator signal without loading the oscillator itself. This output will drive one low power Schottky TTL load. Care should be taken to minimize capacitive loading on this pin.

\section*{DISPLAY CONSIDERATIONS}

The display is multiplexed at a 500 Hz rate with a digit time of \(244 \mu \mathrm{~s}\), and an interdigit blanking time of \(6 \mu \mathrm{~s}\) to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays; zeros following the decimal point will not be blanked. Leading zero blanking will also be disabled if the Main Counter overflows. The internal decimal point control displays frequency in kHz and time in \(\mu \mathrm{s}\).
The ICM7226A is designed to drive common anode LED displays at a peak current of \(25 \mathrm{~mA} /\) segment, using displays with \(\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}\) at 25 mA . The average DC current will be greater than 3 mA under these conditions. The ICM7226B is designed to drive common cathode displays at a peak current of \(15 \mathrm{~mA} /\) segment, using displays with \(\mathrm{V}_{F}=1.8 \mathrm{~V}\) at 15 mA . Resistors can be added in series with the segment drivers to limit the display current, if required. Figures 6, 7, 8 and 9 show the digit and segment currents as a function of output voltage for common anode and common cathode drivers.


Figure 6: ICM7226A Typical IDIG vs. \(\mathrm{V}^{+}-\mathrm{VO}_{0} 4.5 \leq \mathrm{V}^{+} \leq 6.0 \mathrm{~V}\)

(a)

(b)

Figure 7: ICM7226A Typical ISEG vs. Vo


Figure 8: ICM7226B Typical IDIG vs. Vo


Figure 9: ICM7226B Typical ISEG vs. \(\left(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{O}}\right) 4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 6.0 \mathrm{~V}\)

To increase the light output from the displays, \(\mathrm{V}^{+}\)may be increased to 6.0 V , however care should be taken to see that maximum power and current ratings are not exceeded.

The SEGment and Digit outputs in both the 7226A and B are not directly compatible with either TTL or CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals. External latching should be done on the leading edge of the digit signal.

\section*{ACCURACY}

In a Universal Counter, crystal drift and quantization errors cause errors. In frequency, period and time interval modes, a signal derived from the oscillator is used either in the Reference Counter or Main Counter, and in these modes, an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) will cause a measurement error of \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

In addition, there is a quantization error inherent in any digital measurement of \(\pm 1\) count. Clearly this error is reduced by displaying more digits. In the frequency mode, maximum accuracy is obtained with high frequency inputs, and in period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 10, the least accuracy will be obtained at 10 kHz . In time interval measurements there is a maximum error of 1 count per interval. As a result there is the same inherent accuracy in all ranges, as shown in Figure 11. In frequency ratio measurement more accuracy can be obtained by averaging over more cycles of INPUT \(B\) as shown in Figure 12.


Figure 10: Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors.


Figure 11: Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors.


Figure 12: Maximum Accuracy for Frequency Ratio Measurement Due to Limitations of Quantization Errors.

\section*{CIRCUIT APPLICATIONS}

The ICM7226 has been designed as a complete stand alone Universal Counter, or used with prescalers and other circuitry in a variety of applications. Since A \(I N\) and \(B I N\) are digital inputs, additional circuitry will be required in many applications, for input buffering, amplification, hysteresis, and level shifting to obtain the required digital voltages. For many applications an FET source follower can be used for input buffering, and an ECL 10116 line receiver can be used for amplification and

\section*{ICM7226A/B}
hysteresis to obtain high impedance input, sensitivity and bandwidth. However, cost and complexity of this circuitry can vary widely, depending upon the sensitivity and bandwidth required. When TTL prescalers or input buffers are used, pull up resistors to \(\mathrm{V}^{+}\)should be used to obtain optimal voltage swing at A IN and B IN.
If prescalers aren't required, the ICM7226 can be used to implement a minimum component Universal counter as shown in figure 13.
For input frequencies up to 40 MHz , the circuit shown in figure 14 can be used to implement a frequency and period counter. To obtain the correct value when measuring frequency and period, it is necessary to divide the 10 MHz oscillator frequency down to 2.5 MHz . In doing this the time
between measurements is lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz .

If the input frequency is prescaled by ten, the oscillator frequency can remain at either 10 MHz or 1 MHz , but the decimal point must be moved. Figure 15 shows use of a \(\div 10\) prescaler in frequency counter mode. Additional logic has been added to enable the 7226 to count the input directly in period mode for maximum accuracy. Note that A IN comes from \(Q_{C}\) rather than \(Q_{D}\), to obtain an input duty cycle of \(40 \%\). If an output with a duty cycle not near \(50 \%\) must be used then it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse to guarantee a 50 ns minimum pulse width.


Figure 13: 10 MHz Universal Counter


Notes: 1) If a 2.5 MHz crystal is used, diode D1 and I.C.'s 1 and 2 can be eliminated.
Figure 14: 40 MHz Frequency, Period Counter

Figure 16 shows the use of a CD4016 analog multiplexer to multiplex the digital outputs back to the FUNCTION Input. Since the CD4016 is a digitally controlled analog transmission gate, no level shifting of the digit output is required. CD4051's or CD4052's could also be used to select the proper inputs for the multiplexed input on the ICM7226 from 2 or 3 bit digital inputs. These analog multiplexers may also
be used in systems in which the mode of operation is controlled by a microprocessor rather than directly from front panel switches. TTL multiplexers such as the 74153 or 74251 may also be used, but some additional circuitry will be required to convert the digit output to TTL compatible logic levels.
DISPLAY DISPLAY OXT.

6
Figure 15: 100 MHz Multi Function Counter


Figure 16: 100 MHz Frequency Period Counter

The circuit shown in figure 17 can be used in any of the circuit applications shown to implement a single measurement mode of operation. This circuit uses the STORE output to put the ICM7226 into a hold mode. The HOLD input can also be used to reduce the time between measurements. The circuit shown in figure 18 puts a short pulse into the HOLD input a short time after STORE goes low. A new measurement will be initiated at the end of the pulse on the HOLD Input. This circuit reduces the time between measurements to less than 40 ms from 200 ms ; use of the circuit shown in Figure 18 on the circuit shown in Figure 14 will reduce the time between measurements from 1600 ms to 800 ms .


Figure 17: Single Measurement Circuit for Use With ICM7226


Figure 18: Circuit for Reducing Time Between Measurements

famax, fBmax AS FUNCTION OF \(\mathbf{v}+\)
Figure 19: Typical Operating Characteristics
Figure 20 shows the ICM7226 being interfaced to LCD displays, by using its BCD outputs and 8 digit lines to drive 2 ICM7211 display drivers. The ICM7226 EV/Kit may easily be interfaced to 2 ICM7211 EV/Kits in this way. A similar arrangement can be used for driving vacuum fluorescent displays with the ICM7235.

\section*{OSCILLATOR CONSIDERATIONS}

The oscillator is a high gain complementary FET inverter. An external resistor of \(10 \mathrm{M} \Omega\) or \(22 \mathrm{M} \Omega\) should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a load capacitańce of 22 pF and a series resistance of less than \(35 \Omega\). Among suitable crystals is the 10 MHz CTS KNIGHTS ISI-002.

For a specific crystal and load capacitance, the required \(g_{m}\) can be calculated as follows:
\[
\begin{aligned}
& g_{m}=\omega^{2} C_{I N} C_{\text {Out R }}\left(1+\frac{C_{0}}{C_{L}}\right)^{2} \\
& \text { where } C_{L}=\left(\frac{\text { CinCout }}{\text { Cin+Cout }}\right) \\
& C_{O}=\text { Crystal static capacitance } \\
& R_{S}=\text { Crystal Series Resistance } \\
& C i n=\text { Input Capacitance } \\
& \text { Cout }=\text { Output Capacitance } \\
& \omega=2 \pi f
\end{aligned}
\]

The required \(g_{m}\) should not exceed \(50 \%\) of the \(g_{m}\) specified for the ICM7226 to insure reliable startup. The oscillator input and output pins each contribute about 4 pF to \(\mathrm{C}_{\text {IN }}\) and \(\mathrm{C}_{\text {OUT }}\). For maximum frequ icy stability, \(\mathrm{C}_{\mathrm{IN}}\) and \(\mathrm{C}_{\text {OUT }}\) should be approximately twice the specified crystal load capacitance.

In cases where nondecade prescalers are used, it may be desirable to use a crystal which is neither 10 MHz nor 1 MHz . In this case both the multiplex rate and the time between measurements will be different. The multiplex rate is \(f_{\text {mux }}=\frac{f_{\text {osc }}}{2 \times 10^{4}}\) for 10 MHz mode and \(f_{\text {mux }}=\frac{f_{\text {osc }}}{2 \times 10^{3}}\) for the 1 MHz mode. The time between measurements is \(\frac{2 \times 10^{6}}{f_{\text {osc }}}\) in the 10 MHz mode and \(\frac{2 \times 10^{5}}{f_{\text {osc }}}\) in the 1 MHz mode. The buffered oscillator output should be used as an oscillator test point or to drive additional logic; this output will drive one low power Schottky TTL load. When the buffered oscillator output is used to drive CMOS or the external oscillator input, a \(10 \mathrm{k} \Omega\) resistor should be added from the buffered oscillator output to \(\mathrm{V}^{+}\).

The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. In particular, coupling from the BUFfered OSCillator OUTput and EXTernal OSCillator INput to the OSCillator OUTput or OSCillator iNput can cause undesirable shifts in oscillator frequency. To minimize this coupling, pins 34 and 37 should be connected to \(\mathrm{V}^{+}\)or GROUND and these two signals should be kept away from the oscillator circuit.

TYPICAL LCD DISPLAY


Figure 20: 10 MHz Universa! Counter System with LCD Display


ICM7226A


ICM7226B

\section*{ICM7231/32/33/34 Display Decoder/Drivers for Triplexed Liquid Crystal Displays}

\section*{FEATURES}
- ICM7231: Drives 8 digits of 7 segments with two Independent annunciators per digit. Address and data input in parallel format.
- ICM7232: Drives 10 digits of 7 segments with two independent annunciators per digit. Address and data input in serial format.
- ICM7233: Drives 4 characters of 18 segments. Address and data input in parallel format.
- ICM7234: Drives 5 characters of 18 segments. Address and data input in serial format.
- Chips provide all signals required to drive rows and columns of triplexed LCD display.
- Display voltage independent of power supply, allows user control of display operating voltage and temperature compensation if desired.
- On-chip oscillator provides all display timing.
- Total power consumption typically \(200 \mu \mathrm{~W}\), maximum \(500 \mu \mathrm{~W}\) at 5 V .
- Low-power shutdown mode retains data with \(5 \mu \mathrm{~W}\) typical power consumption at \(5 \mathrm{~V}, 1 \mu \mathrm{~W}\) at 2 V .
- Direct interfacing to high-speed microprocessors and microcomputers.

\section*{GENERAL DESCRIPTION}

The ICM7231/7234 family of integrated circuits are designed to generate the voltage levels and switching waveforms required to drive triplexed liquid-crystal displays. These chips also include input buffer and digit address decoding circuitry and contain a maskprogrammed ROM allowing six bits of input data to be decoded into 64 independent combinations of the output segments of the selected digit.

The family is designed to interface to modern high performance microprocessors and microcomputers and ease system requirements for ROM space and CPU time needed to service a display.
The ICM7231 drives displays with 8 seven-segment digits with two independent annunciators per digit, accepting six data bits and three digit address bits from parallel inputs controlled by a chip select input. The data bits are subdivided into four binary code bits and two annunciator control bits. The ICM7232 drives 10 seven-segment digits with two independent annunciators per digit. To write into the display, six bits of data and four bits of digit address are clocked serially into a shift register, then decoded and written to the display.

The ICM7233 has a parallel input structure similar to the ICM7231, but the decoding and the outputs are organized to drive four 18 -segment alphanumeric characters. The six data bits represent a 6-bit ASCII code.

The ICM7234 uses a serial input structure like that of the ICM7232, and drives five 18-segment characters. Again, the input bits represent a 6-bit ASCII code.

Input levels are TTL compatible, and the DATA ACCEPTED output on the serial input devices will drive one LSTTL load. The intermediate voltage levels necessary to drive the display properly are generated by an on-chip resistor string, and the output of a totally self-contained on-chip oscillator is used to generate all display timing. All devices in this family have been fabricated using Intersil's MAXCMOS® process and all inputs are protected against static discharge. Devices are packaged in a 40 pin plastic DIP.

PIN CONFIGURATIONS (outline dwg PL)

\begin{tabular}{|c|c|c|}
\hline DATA CLOCK input & \(1 \sim 40\) & \(\mathrm{v}^{+}\) \\
\hline \(\mathrm{v}_{\text {DISP }}\) & 2 39 & \(\square\) WRITE INPUT \\
\hline com1 & 3 38 & \(\square\) data input \\
\hline сом2 & 437 & \(\square\) data accepted \\
\hline сомз & 5 - 36 & \(\square \mathrm{GND}\) \\
\hline 12 & \(6 \quad 35\) & P 10x 62 \\
\hline 12 & 7ICM723234 & 10Y 6 Y \\
\hline \(1 \times\) &  & \(1026 x\) \\
\hline 22 - & CR 32 & 99x 72 \\
\hline 2 r & \(10 \quad 31\) & Q9y \\
\hline \(2 \times\) & \(11 \quad 30\) & 9z 7x \\
\hline 32 & \(12 \quad 29\) & 8x 8z \\
\hline 3 r & \(13 \quad 28\) & [8y 8 y \\
\hline \(3 \times\) & \(14 \quad 27\) & 82 8x \\
\hline 42 & \(15 \quad 26\) & -7x92 \\
\hline 4 Y & \(16 \quad 25\) & 日749y \\
\hline \(4 \times\) & \(17 \quad 24\) & 729x \\
\hline 52 & \(18 \quad 23\) & 6x 102 \\
\hline \(5 \times\) & 19 22 & P6y 10Y \\
\hline \(5 \times\) & \(20 \quad 21\) & 62 10x \\
\hline
\end{tabular}

DATACLOCK
IPUT
voIsp
COM1
COM2
COM3
12

OPTION TABLE AND ORDERING INFORMATION

- Dice versions also available (ICM7231AF/D, ICM7233AF/D, etc.) Introductory parts may be available only in CERDIP package. Change suffix to IJL if necessary.

\section*{ABSOLUTE MAXIMUM RATINGS}

Power Dissipation \({ }^{[1]}\)................. \(0.5 \mathrm{~W} @ 70^{\circ} \mathrm{C}\)
Supply Voltage ( \(\mathrm{V}^{+}\)) .............................. 6.5 V
Input Voltage \({ }^{|2|} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{ }^{-0.3} \leq \mathrm{V}_{\text {IN }} \leq 6.5\)

Operating Temperature Range ..... \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range \(\ldots . .-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:
1. This limit refers to that of the package and will not be obtained during normal operation.
2. Due to the SCR structure inherent in these devices, connecting any display terminal or the display voltage terminal to a voltage outside the power supply to the chip may cause destructive device latchup. The digital inputs should never be connected to a voltage less than --0.3 volts below ground, but may be connected to voltages above \(V^{+}\)but not more than 6.5 volts above GND.

ELECTRICAL CHARACTERISTICS \(\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS/DESCRIPTION & MIN & TYP & MAX & UNITS \\
\hline Power Supply Voltage & \(\mathrm{V}^{+}\) & & 4.5 & >4 & 5.5 & V \\
\hline Data Retention Supply Voltage & \(\mathrm{V}^{+}\) & Guaranteed Retention at 2V & 2 & 1.6 & & V \\
\hline Logic Supply Current & \(1^{+}\) & ```
Current from V+ to Ground excluding
Display. V
``` & & 30 & 100 & \(\mu \mathrm{A}\) \\
\hline Shutdown Total Current & Is & VoIsp Pin 2 Open & & 1 & 10 & \(\mu \mathrm{A}\) \\
\hline Display Voltage Range & V DISP & Ground \(\leq \mathrm{V}_{\text {DISP }} \leq \mathrm{V}^{+}\) & 0 & & \(\mathrm{V}^{+}\) & V \\
\hline Display Voltage Setup Current & IDISP & \[
\begin{aligned}
& \mathrm{V}_{\text {DISP }}=2 \mathrm{~V} \text { Current from } \mathrm{V}^{+} \text {to } \\
& \mathrm{V}_{\text {DISP }} \text { On-Chip }
\end{aligned}
\] & & 15 & 25 & \(\mu \mathrm{A}\) \\
\hline Display Voltage Setup Resistor Value & RDISP & One of Three Identical Resistors in String & 40 & 75 & & k \(\Omega\) \\
\hline DC Component of Display Signals & & (Sample Test only) & & 1/4 & 1 & \(\%\left(\mathbf{V}^{+}-\mathrm{V}_{\text {dISP }}\right)\) \\
\hline Display Frame Rate & foISP & See Figure 2 & 60 & 90 & 120 & Hz \\
\hline Input Low Level & \(\mathrm{V}_{\mathrm{IL}}\) & ICM7231, ICM7233 & . & & 0.8 & V \\
\hline Input High Level & \(\mathrm{V}_{\text {IH }}\) & Pins 30-35, 37-39, 1 & 2.0 & & & V \\
\hline Input Leakage & IILK & ICM7232, ICM7234 & & 0.1 & 1 & \(\mu \mathrm{A}\) \\
\hline Input Capacitance & CIN & Pins 1, 38, 39 & & 5 & & pF \\
\hline Output Low Level & VOL & Pin 37, ICM7232, ICM7234, IOL \(=1 \mathrm{~mA}\), & & & 0.4 & V \\
\hline Output High Level & VOH & \(\mathrm{V}^{+}=4.5 \mathrm{~V}, 1 \mathrm{loH}=-500 \mu \mathrm{~A}\) & 4.1 & & & V \\
\hline Operating Temperature Range & TOP & Industrial Range & -20 & & +85 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{ICM7231/32/33/34}

AC CHARACTERISTICS \(\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%,-20^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}\)
PARALLEL INPUT (ICM7231, ICM7233) See Figure 12
\begin{tabular}{|l|l|l|l|l|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS/DESCRIPTION & MIN & TYP & MAX & UNITS \\
\hline \begin{tabular}{l}
Chip Select \\
Pulse Width
\end{tabular} & \(\mathrm{t}_{\text {cs }}\) & & 500 & 350 & & ns \\
\hline \begin{tabular}{l}
Address/Data \\
Setup Time
\end{tabular} & \(\mathrm{t}_{\mathrm{ls}}\) & & 200 & & & ns \\
\hline \begin{tabular}{l}
Address/Data \\
Hold Time
\end{tabular} & \(\mathrm{t}_{\mathrm{th}}\) & & 0 & -20 & & ns \\
\hline \begin{tabular}{l}
Inter-Chip \\
Select Time
\end{tabular} & tics & & 3 & & & \(\mu \mathrm{~s}\) \\
\hline
\end{tabular}

SERIAL INPUT (ICM7232, ICM7234) See Figures 15, 16, 17
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS/DESCRIPTION & MIN & TYP & MAX & UNITS \\
\hline Data Clock Low Time & tcı & & 350 & & & ns \\
\hline Data Clock High Time & tcl & & 350 & & & ns \\
\hline Data Setup Time & tds & & 200 & & & ns \\
\hline Data Hold Time & tah & & 0 & -20 & & ns \\
\hline \(\overline{\text { Write }}\) Pulse Width & twp & & 500 & 350 & & ns \\
\hline \(\overline{\text { Write }}\) Pulse to Clock at Initialization & twill & & 1.5 & & & \[
\mu \mathrm{S}
\] \\
\hline Data Accepted Low Output Delay & tod & & & 200 & 400 & ns \\
\hline Data Accepted High Output Delay & todn & & & 1.5 & 3 & \(\mu \mathrm{S}\) \\
\hline Write Delay After Last Clock & tows & & 350 & & & ns \\
\hline
\end{tabular}

\section*{TERMINAL DEFINITIONS}

ICM7231 PARALLEL INPUT NUMERIC DISPLAY
\begin{tabular}{|l|c|l|l|l|}
\hline TERMINAL & \begin{tabular}{c}
PIN \\
NO.
\end{tabular} & DESCRIPTION & FUNCTION \\
\hline AN1 & 30 & Annunciator 1 Control Bit & \begin{tabular}{l}
High \(=\) ON \\
AN2
\end{tabular} & 31
\end{tabular}

\section*{Note:}
3. \(\overline{\mathrm{CS}}\) has a special "mid-level" sense circuit that establishes a test mode if it is held near 3 V for several msec. Inadvertent triggering of this mode can be avoided by pulling it high when inactive. or ensuring frequent activity.

ICM7233 PARALLEL INPUT ALPHA DISPLAY
\begin{tabular}{|c|c|c|c|c|}
\hline TERMINAL & \[
\begin{aligned}
& \text { PIN } \\
& \text { NO. }
\end{aligned}
\] & DESCRIPTION & FUNCTIO & \\
\hline D0 & 30 & \multirow[t]{5}{*}{} & & \multirow{6}{*}{\begin{tabular}{l}
HIGH = Logical One (1 \\
LOW = Logical Zero (0)
\end{tabular}} \\
\hline D1 & 31 & & Input Data & \\
\hline D3 & 33 & & & \\
\hline D4 & 34 & & Table 4 & \\
\hline D5 & 35 & & & \\
\hline \[
\begin{aligned}
& \text { A0 } \\
& \text { A1 }
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 38
\end{aligned}
\] & Least Significant - Address Inputs & Input Add. See Table 5 & \\
\hline \multirow[t]{5}{*}{\(\frac{\mathrm{CS} 1}{\text { CS2 }}\)} & \multirow[t]{5}{*}{39
1} & \multirow[t]{5}{*}{Chip Select Inputs (Note 3)} & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{Both inputs LOW load data into input latches. Rising edge of either input causes data to be latched, decoded and sent out to addressed character.}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Note:
3. \(\overline{\text { CS1 }}\) has a special "mid-level" sense circuit that establishes a test mode if it is held near 3 V for several msec. Inadvertent triggering of this mode can be avoided either by pulling it high when inactive, or ensuring frequent activity.

ICM7232 and ICM7234 SERIAL DATA AND ADDRESS INPUT
\(\left.\begin{array}{|l|c|l|l|}\hline \text { TERMINAL } & \begin{array}{l}\text { PIN } \\ \text { NO. }\end{array} & \text { DESCRIPTION } & \begin{array}{l}\text { FUNCTION }\end{array} \\ \hline \text { Data Input } & 38 & \text { Data + Address Shift Register Input } & \begin{array}{l}\text { HIGH = Logical One (1) } \\ \text { LOW = Logical Zero (0) }\end{array} \\ \hline \text { WRITE Input } & 39 & \text { Decode, Output, and Reset Strobe } & \begin{array}{l}\text { When DATA ACCEPTED Output } \\ \text { is LOW, positive going edge of WRITE } \\ \text { causes data in shift register to } \\ \text { be decoded and sent to addressed } \\ \text { digit, then shift register and } \\ \text { control logic to be reset. }\end{array} \\ \hline \begin{array}{l}\text { When DATA ACCEPTED Output } \\ \text { is HIGH, positive going edge of }\end{array} \\ \hline \begin{array}{lll}\text { Data Clock } \\ \text { Input }\end{array} & 1 & \begin{array}{l}\text { Data Shift Register and Control } \\ \text { Logic Clock }\end{array} & \begin{array}{l}\text { Wositive going edge advances } \\ \text { data in shift register. }\end{array} \\ \text { ICM7232: Eleventh edge resets } \\ \text { shift register and control logic. } \\ \text { ICM7234: Tenth edge resets shift } \\ \text { register and control logic. }\end{array}\right]\)

\section*{ALL DEVICES}
\begin{tabular}{|l|c|l|l|}
\hline TERMINAL & \begin{tabular}{l}
PIN \\
NO.
\end{tabular} & DESCRIPTION & FUNCTION \\
\hline \begin{tabular}{l}
Display \\
Voltage VDISP
\end{tabular} & 2 & \begin{tabular}{l}
Negative end of on-chip resistor \\
string used to generate intermediate \\
voltage levels for display. \\
Shutdown Input.
\end{tabular} & \begin{tabular}{l}
Display voltage control. When \\
open (or less than 1 V from \(\mathrm{V}^{+}\)) \\
chip is shutdown; oscillator stops, \\
all display pins to \(\mathrm{V}^{+}\).
\end{tabular} \\
\hline \begin{tabular}{l}
Common \\
Line Driver \\
Outputs
\end{tabular} & \(3,4,5\) & & Drive display commons, or rows. \\
\hline \begin{tabular}{l}
Segment \\
Line Driver \\
Outputs
\end{tabular} & \(6-29\) & \begin{tabular}{l}
(On ICM7231/33) \\
(On ICM7232/34)
\end{tabular} & \begin{tabular}{l}
Drive display segments, or \\
columns.
\end{tabular} \\
\hline \(\mathrm{V}^{+}\) & \(6-35\) & Chip Positive Supply & \\
\hline GND & 36 & Chip Ground & \\
\hline
\end{tabular}

\section*{ICM7231/32/33/34}

\section*{TRIPLEXING (1/3 MULTIPLEXING) LIQUID CRYSTAL DISPLAYS}

Figure 1 shows the connection diagram for a typical 7-segment display font with two annunciators such as would be used with an ICM7231 or ICM7232 numeric display driver. Figure 2 shows the voltage waveforms of the common lines and one segment line, chosen for this example to be the " \(Y\) " segment line. This line intersects with COM1 to form the "a" segment, COM2 to form the " \(g\) " segment and COM3 to form the " \(d\) " segment. Figure 2 also shows the waveform of the " \(Y\) " segment line for four different ON/OFF combinations of the " \(a\) ", " \(g\) " and " \(d\) " segments. Each intersection (segment or annunicator) acts as a capacitance from segment line to common line, shown schematically in Figure 3. Figure 4 shows the voltage across the " \(g\) " segment for the same four combinations of ON/OFF segments in Figure 2.
The degree of polarization of the liquid crystal material and thus the contrast of any intersection depends on the RMS voltage across the intersection capacitance. Note from Figure 4 that the RMS OFF voltage is always \(\mathrm{V}_{\mathrm{p}} / 3\) and that the RMS ON voltage is always \(1.92 \mathrm{Vp} / 3\).
For a \(1 / 3\) multiplexed LCD, the ratio of RMS ON to OFF voltages is fixed at 1.92, achieving adequate display contrast with this ratio of applied RMS voltage makes some demands on the liquid crystal material used.
Figure 5 shows the curve of contrast versus applied RMS voltage for a liquid crystal material tailored for \(V_{P}\) \(=3.1 \mathrm{~V}\), a typical value for \(1 / 3\)-multiplexed displays in calculators. Note that the RMS OFF voltage \(V_{p} / 3 \approx 1 \mathrm{~V}\) is just below the "threshold" voltage where contrast begins to increase. This places the RMS ON voltage at 2.1 V , which provides about \(85 \%\) contrast when viewed straight on.

All members of the ICM7231/ICM7234 family use an internal resistor string of three equal value resistors to generate the voltages used to drive the display. One end of the string is connected on the chip to \(\mathrm{V}^{+}\)and the other end (user input) is available at pin 2 (VDISP) on each chip. This allows the display voltage input (VDISP) to be optimized for the particular liquid crystal material used. Remember that \(\mathrm{V}_{\mathrm{P}}=\mathrm{V}^{+}-\)VDISP and should be three times the threshold voltage of the liquid crystal material used. Also it is very important that pin 2 never be driven below ground. This can cause device latchup and destruction of the chip.

SEGMENT LINE CONNECTION

COMMON LINE CONNECTION

NOTE: \(\phi_{1}, \phi_{2}, \phi_{3}\) - COMMON HIGH WITH RESPECT TO SEGMENT.
\(\phi_{1}, \phi_{2}^{\prime}, \phi_{3}\) - COMMON LOW WITH RESPECT TO SEGMENT.
COM 1 ACTIVE DURING \(\phi_{1}\) AND \(\phi_{1}{ }^{\circ}\)
COM 2 ACTIVE DURING \(\phi_{2}\) AND \(\phi_{2}\).
COM 3 ACTIVE DURING \(\phi_{3}\) AND \(\phi_{3}{ }^{\text {. }}\)
Figure 2. Display Voltage Waveforms

Figure 3. Display Schematic

Figure 1. Connection Diagrams for Typical 7-Segment Displays

NOTE: \(\phi_{1}, \phi_{2}, \varphi_{3}\) - COMMON HIGH WITH RESPECT TO SEGMENT.

COM 1 ACTIVE DURING \(\varphi_{1}\) AND \(\phi_{1}{ }^{\prime}\)
COM 2 ACTIVE DURING \(\varphi_{2}\) AND \(\varphi_{2}{ }^{\prime}\)
COM 3 ACTIVE DURING \(\varphi_{3}\) AND \(\phi_{3}{ }^{\prime}\)
Figure 4. Voltage Waveforms on Segment \(g\left(\mathrm{~V}_{\mathrm{g}}\right)\)

\section*{TEMPERATURE EFFECTS AND TEMPERATURE COMPENSATION}

The performance of the IC material is affected by temperature in two ways. The response time of the display to changes in applied RMS voltage gets longer as the display temperature drops. At very low temperatures \(\left(-20^{\circ} \mathrm{C}\right)\) some displays may take several seconds to change to a new character after the new information appears at the outputs. However, for most applications above \(0^{\circ} \mathrm{C}\) this will not be a problem with available multiplexed LCD materials, and for lowtemperature applications, high-speed liquid crystal materials are available. One high temperature effect to consider deals with plastic materials used to make the polarizer. Some polarizers become soft at high temperatures and permanently lose their polarizing ability, thereby seriously degrading display contrast. Some displays also use sealing materials unsuitable for high temperature use. Thus, when specifying displays the following must be kept in mind: liquid crystal material, polarizer, and seal materials.

Figure 5. Contrast vs. Applied RMS Voltage

Figure 6. Temperature Dependence of LC Threshold

A more important effect of temperature is the variation of threshold voltage. For typical liquid crystal materials suitable for multiplexing, the peak voltage has a temperature coefficient of -7 to \(-14 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). This means that as temperature rises, the threshold voltage goes down. Assuming a fixed value for \(\mathrm{V}_{\mathrm{P}}\), when the threshold voltage drops below Vp/3 OFF segments begin to be visible. Figure 6 shows the temperature dependence of peak voltage for the same liquid crystal material of Figure 5.
For applications where the display temperature does not vary widely, Vp may be set at a fixed voltage chosen to make the RMS OFF voltage, \(\mathrm{VP} / 3\), just below the threshold voltage at the highest temperature expected. This will prevent OFF segments turning ON at high temperature (this at the cost of reduced contrast for ON segments at low temperatures).
For applications where the display temperature may vary to wider extremes, the display voltage VDISP (and thus \(\mathrm{V}_{\mathrm{P}}\)) may require temperature compensation to maintain sufficient contrast without OFF segments becoming visible.

\section*{ICM7231/32/33/34}

\section*{DISPLAY VOLTAGE AND TEMPERATURE COMPENSATION}

These circuits allow control of the display peak voltage by bringing the bottom of the voltage divider resistor string out at pin 2. The simplest means for generating a display voltage suitable to a particular display is to connect a potentiometer from pin 2 to GND as shown in Figure 7. A potentiometer with a maximum value of \(200 \mathrm{k} \Omega\) should give sufficient range of adjustment to suit most displays. This method for generating display voltage should be used only in applications where the temperature of the chip and display won't vary more than \(\pm 5^{\circ} \mathrm{C}\left(\pm 9^{\circ} \mathrm{F}\right)\), as the resistors on the chip have a positive temperature coefficient, which will tend to increase the display peak voltage with an increase in temperature. The display voltage also depends on the power supply voltage, leading to tighter tolerances for wider temperature ranges.
Figure 8(a) shows another method of setting up a display voltage using five silicon diodes in series. These diodes, 1 N914 or equivalent, will each have a forward drop of approximately 0.65 V , with approximately \(20 \mu \mathrm{~A}\) flowing through them at room temperature. Thus, 5 diodes will give 3.25 V , suitable for a 3 V display using the material properties shown in Figures 5 and 6. For higher voltage displays, more diodes may be added. This circuit provides reasonable temperature compensation, as each diode has a negative temperature coefficient of \(-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\); five in series gives \(-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\), not far from optimum for the material described.
The disadvantage of the diodes in series is that only integral multiples of the diode voltage can be achieved. The diode voltage multiplier circuit shown in Figure 8(b) allows fine-tuning the display voltage by means of the potentiometer; it likewise provides temperature compensation since the temperature coefficient of the transistor base-emitter junction (about \(-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\)) is also multiplied. The transistor should have a beta of at least 100 with a collector current of \(10 \mu \mathrm{~A}\). The inexpensive 2 N 2222 shown in the figure is a suitable device.
For battery operation, where the display voltage is generally the same as the battery voltage (usually \(3-4.5 \mathrm{~V}\)), the chip may be operated at the display voltage, with VDISP connected to GND. The inputs of the chip are designed such that they may be driven above \(\mathrm{V}^{+}\)without damaging the chip. This allows, for example, the chip and display to operate at a regulated 3 V , and a microprocessor driving its inputs to operate with a less well controlled 5 V supply. (The inputs should not be driven more than 6.5 V above GND under any circumstances.) This also allows temperature compensation with the ICL7663, as shown in Figure 9. This circuit allows independent adjustment of both voltage and temperature compensation.

Figure 7 Simple Display Voltage Adjustment

Figure 8(a) String of Diodes

Figure 8(b) Transistor-Multiplier
Figure 8 Diode-based Temperature Compensation

Figure 9 Flexible Temperature Compensation

DESCRIPTION OF OPERATION

PARALLEL INPUT OF DATA
AND ADDRESS (ICM7231, ICM7233)
The parallel input structure of the ICM7231 and ICM7233 devices is organized to allow simple, direct interfacing to all microprocessors, see block diagrams Figures 10 and 11. In the ICM7231, address and data bits are written into the input latches on the rising edge of the Chip Select input. In the ICM7233, the two Chip Selects are equivalent; when both are low, the latches are transparent and the data is latched on the rising edge of either Chip Select.

The rising edge of the Chip Select also triggers an onchip pulse which enables the address decoder and latches the decoded data into the addressed digit/ character outputs. The timing requirements for the parallel input devices are shown in Figure 12, with the values for setup, hold, and pulse width times shown in AC Characteristics on page 3. Note that there is a minimum time between Chip Select pulses; this is to allow sufficient time for the on-chip enable pulse to decay, and ensures that new data doesn't appear at the decoder inputs before the decoded data is written to the outputs.

Figure 10. ICM7231 Block Diagram

Figure 11. ICM7233 Block Diagram

Figure 12. Parallel Input Timing

\section*{SERIAL INPUT OF DATA AN"D \\ ADDRESS (ICM7232, ICM7234)}

The ICM7232 and ICM7234 trade six pins used as data inputs on the ICM7231 and ICM7233 for six more segment lines, allowing two more 9 -segment digits (ICM7232) or one more 18 -segment character (ICM7234). This is done at the cost of ease in interfacing, and requires that data and address information be entered serially. Refer to block diagrams, Figures 13 and 14 and timing diagrams, Figures 15, 16, and 17. The interface consists of four pins: DATA Input, DATA CLOCK Input, WRITE Input and DATA ACCEPTED Output. The data present at the DATA Input is clocked into a shift register on the rising edge of the DATA CLOCK

Input signal, and when the correct number of bits has been shifted into the shift register (8 in the ICM7232, 9 in the ICM7234), the DATA ACCEPTED Output goes low. Following this, a low-going pulse at the WRITE input will trigger the chip to decode the data and store it in the output latches of the addressed digit/character. After the data is latched at the outputs, the shift register and the control logic are reset, returning the DATA ACCEPTED Output high. After this occurs, a puise at the WRITE input will not change the outputs, but will reset the control logic and shift register, assuring that each data bit will be entered into the correct position in the shift register depending on subsequent DATA CLOCK inputs.

Figure 13. ICM7232 Block Diagram

The shift register and control logic will also be reset if too many DATA CLOCK INPUT edges are received; this prevents incorrect data from being decoded. In the ICM7232, the eleventh clock resets the shift register and control logic, while in the ICM7234 it is the tenth.
The recommended procedure for entering data is shown in the serial input timing diagram, Figure 15. First, when DATA ACCEPTED is high, send a WRITE pulse. This resets the shift register and control logic and initializes the chip for the data input sequence. Next clock in the appropriate number of correct data and address bits. The DATA ACCEPTED Output may be monitored if desired, to determine when the chip is ready to output the decoded data. When the correct number of bits has been entered, and the DATA ACCEPTED Output is low, a pulse at WRITE will cause the data to be decoded and stored in the latches of the addressed digit/character. The shift register and control logic are reset, causing DATA ACCEPTED to return high, and leaving the chip ready to accept data for the next digit/character.

Note that for the ICM7232 the eleventh clock resets the shift register and control logic, but the DATA ACCEPTED Output goes low after the eighth clock. This allows the user to abbreviate the data to eight bits, which will write the correct character to the 7-segment display, but will leave the annunicators off, as shown in Figure 16.
If only AN2 is to be turned on, nine bits are clocked in; if AN1 is to be turned on, all ten bits are used.
In the ICM7234, nine bits are always required; the control logic is similar, but allows only a WRITE (DATA ACCEPTED Low) with nine bits entered in the shift register, as shown in Figure 17.
The DATA ACCEPTED Output will drive one lowpower Schottky TTL input, and has equal current drive capability pulling high or low.
Note that in the serial input devices, it is possible to address digits/characters which don't exist. As shown in Tables 2 and 5, when an incorrect address is applied together with a WRITE pulse, none of the outputs will be changed.

Figure 14. ICM7234 Block Diagram

Figure 15. ICM7232 One Digit Input Timing Diagram, Writing Both Annunicators
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
AN1 \\
ENTER \\
FIRST
\end{tabular} & AN2 & BD0 & BD1 & BD2 & BD3 & \(A_{0}\) & \(A_{1}\) & \(A_{2}\) & \begin{tabular}{c}
\(A_{3}\) \\
ENTER \\
LAST
\end{tabular} \\
\hline
\end{tabular}

ICM7232 WRITE ORDER

Figure 16. ICM7232 Input Timing Diagram, Leaving Both Annunciators OFF

Figure 17. ICM7234 One Character Input Timing Diagram

\section*{DISPLAY FONTS AND OUTPUT CODES}

The standard versions of the ICM7231 and ICM7232 chips are programmed to drive a 7 -segment display plus two annunciators per digit. See Table 3 for annunciator input controls.
The " \(A\) " and " \(B\) " suffix chips place both annunciators on COM3. The display connections for one digit of this display are shown in Figure 18. The " A " devices decode the input data into a hexadecimal 7 -segment output, while the " \(B\) " devices supply Code B outputs (see Table 1).
The " \(C\) " devices place the left hand annunciator on COM1 (AN2) and the right hand annunciator (usually a decimal point) on COM3 (AN1) (see Figure 19). The "C" devices provide only a "Code B" output for the

SEGMENT LINE CONNECTIONS

COMMON LINE CONNECTIONS
BOTH ANNUNCIATORS ON COMMON \#3
(AT BOTTOM OF CHARACTER)
("A" AND "B" SUFFIX VERSIONS)

Figure 18. ICM7231 and ICM7232 Display Fonts ("A" and "B" Suffix Versions)

\section*{7-segments.}

The ICM7233 and ICM7234 are supplied in "A" and "B" versions. Both versions decode an ASCII 6-bit subset to an 18 -segment display, with 16 "flag" segments and two "dots". The " \(A\) " devices have numbers which are half width and the " \(B\) " devices have full width numbers. The layout for a single character is shown in Figure 20 with output decoding shown in Table 4.
The data decoder is a mask programmable ROM. For large quantity orders custom decoder programs can be arranged. Contact the factory for details.

segment line conner:tions

LH ANNUNCIATOR ON COMMON \# 1 (TOP) (AN 2)
RH ANNUNCIATOR ON COMMON \#3 (BOTTOM) (AN 1) "C" SUFFIX DEVICES
*anNunciators can be: STOP, GO , \(\triangle, \uparrow\)-ARrows THAT POINT TO INFORMATION PRINTED AROUND THE DISPLAY OPENING, ETC., WHATEVER THE DESIGNER CHOOSES TO INCORPORATE IN THE LIQUID CRYSTAL DISPLAY.

Figure 19. ICM7231 and ICM7232 Display Fonts ("C" Suffix Versions)

\section*{ICM7231/32/33/34}

SEGMENT LINE CONNECTIONS

COMMON LINE CONNECTIONS

Figure 20. ICM7233 and ICM7234 Display Font (18-Segment Alphanumeric)

Table 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { CODE } \\
& \text { INPUT }
\end{aligned}
\]} & \multicolumn{2}{|l|}{DISPLAY OUTPUT} \\
\hline \[
\begin{gathered}
B D \\
3
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { BD } \\
2
\end{array}
\] & \[
\begin{array}{|c|}
\hline B D \\
1
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { BD } \\
0
\end{array}
\] & HEX & CODE \\
\hline 0 & 0 & 0 & 0 & & [1 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 1 & 0 & \(\mathrm{E}_{-1}\) & \(\underline{11}\) \\
\hline 0 & 0 & 1 & 1 & I & -1 \\
\hline 0 & 1 & 0 & 0 & '-1 & -1 \\
\hline 0 & 1 & 0 & 1 & E' & \(I_{1}\) \\
\hline 0 & 1 & 1 & 0 & E & E1 \\
\hline 0 & 1 & 1 & 1 & -1 & -1 \\
\hline 1 & 0 & 0 & 0 & E1 & İ \\
\hline 1 & 0 & 0 & 1 & I & I'1 \\
\hline 1 & 0 & 1 & 0 & FI & - \\
\hline 1 & 0 & 1 & 1 & İ & E \\
\hline 1 & 1 & 0 & 0 & \(1-\) & 1-1 \\
\hline 1 & 1 & 0 & 1 & -1 & 1 \\
\hline 1 & 1 & 1 & 0 & E & I' \\
\hline 1 & 1 & 1 & 1 & I & BLANK \\
\hline \multicolumn{6}{|c|}{BINARY DATA DECODING (ICM7231/32)} \\
\hline
\end{tabular}

\section*{EVALUATION KITS}

After purchasing a sample of the ICM7231/32/33/34, the majority of users will want to build a sample display. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of additional components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of these unique circuits, Intersil is offering kits which contain all the necessary components to build 8 character or 8 digit displays. With the help of such a kit, an engineer or technician can have the system "up and running" in about half an hour.
Two kits are offered, the ICM7231EV/KIT and the ICM7233 EV/KIT. Both contain the appropriate ICs, a circuit board, a

Table 2
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ CODE INPUT } & \begin{tabular}{c}
DISPLAY \\
OUTPUT
\end{tabular} \\
\hline \begin{tabular}{c}
ICM \\
O232 \\
ONLY
\end{tabular} & & & & \\
A3 & A2 & A1 & AO & SELECTED \\
\hline 0 & 0 & 0 & 0 & D1 \\
\hline 0 & 0 & 0 & 1 & D2 \\
\hline 0 & 0 & 1 & 0 & D3 \\
\hline 0 & 0 & 1 & 1 & D4 \\
\hline 0 & 1 & 0 & 0 & D5 \\
\hline 0 & 1 & 0 & 1 & D6 \\
\hline 0 & 1 & 1 & 0 & D7 \\
\hline 0 & 1 & 1 & 1 & D8 \\
\hline 1 & 0 & 0 & 0 & D9 \\
\hline 1 & 0 & 0 & 1 & D10 \\
\hline 1 & 0 & 1 & 0 & NONE \\
\hline 1 & 0 & 1 & 1 & NONE \\
\hline 1 & 1 & 0 & 0 & NONE \\
\hline 1 & 1 & 0 & 1 & NONE \\
\hline 1 & 1 & 1 & 0 & NONE \\
\hline 1 & 1 & 1 & 1 & NONE \\
\hline ADDRESS DECODING (ICM7231/32) \\
\hline & & & \\
\hline
\end{tabular}

Table 3

Multiplexed LCD display (7/9 segment for 7231 EV/KIT, 16/18 segment for ICM7233EV/KIT), passive components, and miscellaneous hardware.

\section*{COMPATIBLE DISPLAYS}

Compatible displays are manufactured by:

\section*{G.E. Displays Inc., Beechwood, Ohio (216) 831-8100 (\#356E3R99HJ)}

Epson America Inc., Torrance, CA
(Model Numbers LDB726/7/8).
Seiko Instruments USA Inc., Torrance CA
(Custom Displays)
Crystaloid, Hudson, OH

Table 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{CODE INPUT} & \multicolumn{5}{|c|}{DISPLAY OUTPUT} \\
\hline \multicolumn{4}{|l|}{.} & \multicolumn{3}{|r|}{D5, D4} & A & 8 \\
\hline D3 & D2 & D1 & DO & 0,0 & 0.1 & 1.0 & \multicolumn{2}{|r|}{1.1} \\
\hline 0 & 0 & 0 & 0 & \(\square\) & \(\square\) & & \(\square\) & \(\square\) \\
\hline 0 & 0 & 0 & 1 & F & \(\square\) & \(!\) & 1 & 1 \\
\hline 0 & 0 & 1 & 0 & H & \(\square\) & 11 & \(\stackrel{\square}{\square}\) & \(\square\) \\
\hline 0 & 0 & 1 & 1 & L & \(\square\) & I & \(J\) & \(\exists\) \\
\hline 0 & 1 & 0 & 0 & I] & \(T\) & 5 & 4 & 4 \\
\hline 0 & 1 & 0 & 1 & - & \(\square\) & 7 & 5 & 5 \\
\hline 0 & 1 & 1 & 0 & \(F\) & 17 & \(\square\) & \(\square\) & 5 \\
\hline 0 & 1 & 1 & 1 & \(\square\) & \(W\) & 1 & 7 & 7 \\
\hline 1 & 0 & 0 & 0 & H & \(X\) & \(<\) & \(\theta\) & \(\theta\) \\
\hline 1 & 0 & 0 & 1 & 1 & \(Y\) & \(\rangle\) & \(\square\) & 9 \\
\hline 1 & 0 & 1 & 0 & U & 7 & 米 & & \\
\hline 1 & 0 & 1 & 1 & \(H\) & [& + & & ; \\
\hline 1 & 1 & 0 & 0 & & \(\backslash\) & / & & \(\angle\) \\
\hline 1 & 1 & 0 & 1 & \(M\) & I & - & & 二 \\
\hline 1 & 1 & 1 & 0 & \(N\) & \[
7
\] & . & & 1 \\
\hline 1 & 1 & 1 & 1 & \[
\square
\] & \(\leqslant\) & 1 & & \(\Gamma\) \\
\hline
\end{tabular}
data decoding 6 - BIT ASCII \(\rightarrow 18\) SEGMENT (ICM7233/34)

Table 5
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{c}
CODE \\
INPUT
\end{tabular}} & \begin{tabular}{c}
DIGIT \\
SELECTED
\end{tabular} \\
\cline { 1 - 3 } \begin{tabular}{c}
ICM \\
7234 \\
ONLY
\end{tabular} & & & \\
\cline { 1 - 3 } A2 & A1 & AO & \\
\hline 0 & 0 & 0 & D1 \\
\hline 0 & 0 & 1 & D2 \\
\hline 0 & 1 & 0 & D3 \\
\hline 0 & 1 & 1 & D4 \\
\hline 1 & 0 & 0 & D5 \\
\hline 1 & 0 & 1 & NONE \\
\hline 1 & 1 & 0 & NONE \\
\hline 1 & 1 & 1 & NONE \\
\hline
\end{tabular}

ADDRESS
DECODING
(ICM7233/34)

\section*{TYPICAL APPLICATIONS}

Figure 21. 8048/IM80C48 Microcomputer with 8 Character 16 Segment ASCII Triplex Liquid Crystal Display. The two bit character address is merged with the data and written to the display driver under the control of the WR line. Port lines are used to either select the target driver, or deselect all of them for other bus operations.

6

Figure 22. MC6802 Microprocessor with 16 Character 16 Segment ASCII Liquid Crystal Display. The peripheral device provides ROM and Timer functions in addition to port line control of the display bank. Individual character locations are addressed via the address bus. Note that VMA is not decoded on these lines, which could cause problems with the TST instruction.

Figure 23. EPROM-Coded Message System. This circuit cycles through a message coded in the EPROM; pausing at the end of each line, or whenever coded on \(\mathrm{Q}_{6}\).

Figure 24. 10 MHz Frequency/Period Pointer with LCD Display. The annunciators show function and the decimal points indicate the range of the current operation. The system can be efficiently battery operated.

Figure 25. "Forward" Pin Orientation and Display Connections.

Figure 26. "Reverse" Pin Orientation and Display Connections

Figure 27. "Forward" Die, Pad Orientation and Typical Triplex Alphanumeric Display Connections

CHIP TOPOGRAPHY
\(\sum \underset{\aleph}{\sim} \sim N \vec{E} \vec{\Sigma} \vec{x} \vec{N}\)

ICM7235

\title{
Non-Multiplexed Vacuum \\ Fluorescent Display Decoder/Drivers
}

\section*{FEATURES}
- 28 high voltage segment drivers provide four 7-segment digits
- Multiplexed BCD input (7235)
- High speed processor interface (7235M)
- 7-segment hex (0-9, A-F) or Code-B (0-9, dash, E, H, L, P, blank) output versions available
- Display blanking input
- All devices fabricated using high density MAX-CMOS \({ }^{\text {TM }}\) LSI technology for very low-power, high-performance operation
- All inputs fully protected against static discharge

\section*{DESCRIPTION}

The ICM7235 family of display driver circuits provides the user with a single chip interface between digital logic or microprocessors to non-multiplexed 7 -segment vacuum fluorescent displays.
The chips provide 28 high voltage open drain P-channel transistor outputs organized as four 7 -segment digits.
The devices are available with two input configurations. The basic devices provide four data-bit inputs and four digit select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices, such as the Intersil ICM7217, ICM7226 and ICL7135. The microprocessor interface devices (suffix M) provide data input latches and digit select code latches under control of high-speed chip select inputs. These devices simplify the task of implementing a cost-effective alphanumeric 7-segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating.

The standard devices available will provide two different decoder configurations. The basic device will decode the four bit binary input into a seven-segment alphanumeric hexadecimal output (\(0-9, A-F\)). The " \(A\) " versions provide the same output code as the ICM7218 Code " \(B\) " (\(0-9\), dash, \(E, H\), L, P, blank). Either device will correctly decode true BCD to seven-segment decimal outputs.
All devices in the ICM7235 family are packaged in a standard 40-pin plastic dual-in-line package.

The ordering information shows the four standard devices of the ICM7235 family and their markings, which serve as part numbers for ordering purposes.

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|}
\hline Order Part Number & Output Code & Input Configuration \\
\hline ICM7235 IPL & Hexadecimal & Multiplexed 4-Bit \\
\hline ICM7235A IPL & Code B & Multiplexed 4-Bit \\
\hline ICM7235M IPL & Hexadecimal & Microprocessor Interface \\
\hline ICM7235AM IPL & Code B & Microprocessor Interface \\
\hline
\end{tabular}

An Evaluation Kit is available for this part.
Order number ICM7235 EV/Kit.

\section*{ICM7235}

\section*{ABSOLUTE MAXIMUM RATINGS}

Power Dissipation (Note 1) \(0.5 \mathrm{~W} @+70^{\circ} \mathrm{C}\)
Supply Voltage (\(\mathrm{V}^{+}\)-Ground) 6.5 Volts
Input Voltage (Note 2) \(\mathrm{V}^{+}+0.3 \mathrm{~V}\), Ground -0.3V
Output Voltage (Note 3) . V \({ }^{+}-35 \mathrm{~V}\)
Operating Temperature Range \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{OPERATING CHARACTERISTICS}

All parameters measured with \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|l|c|l|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Operating Supply Voltage Range & \(\mathrm{V}_{\text {SUPP }}\) & & 4 & 5 & 6 & V \\
\hline Supply Current & \(\mathrm{I}^{+}\) & \begin{tabular}{l}
Measured \(\mathrm{V}^{+}\)to Ground \\
Test circuit; display blank or OFF
\end{tabular} & & 10 & 50 & \(\mu \mathrm{~A}\) \\
\hline Supply Current & \(\mathrm{I}^{+}\) & Measured \(\mathrm{V}^{+}\)to Display & & & 100 & mA \\
\hline Segment OFF Output Voltage & \(\mathrm{V}_{\text {SEG }}\) & \(\mathrm{I}_{\text {SLK }}=10 \mu \mathrm{~A}\) & 30 & & & V \\
\hline Segment OFF Leakage Current & \(\mathrm{I}_{\text {LS }}\) & \(\mathrm{V}_{\text {SEG }}=\mathrm{V}^{+}-30 \mathrm{~V}\) & & 0.1 & 10 & \(\mu \mathrm{~A}\) \\
\hline Segment ON Current & \(\mathrm{I}_{\text {SEG }}\) & \(\mathrm{V}_{\text {SEG }}=\mathrm{V}^{+}-2 \mathrm{~V}\) & 1.5 & 2.5 & & mA \\
\hline
\end{tabular}

\section*{INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline Logical "1" Input Voltage & \(\mathrm{V}_{1 \mathrm{H}}\) & Referred to Ground & 3 & & & V \\
\hline Logical "0" Input Voltage & \(\mathrm{V}_{\mathrm{IL}}\) & Referred to Ground & & & 1.5 & V \\
\hline Input Leakage Current & IILK & Pins 27-34 & & \(\pm 0.1\) & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline Input Capacitance & \(\mathrm{C}_{\mathrm{IN}}\) & Pins 27-34 & & 5 & & pF \\
\hline \(\overline{\text { ON/OFF Input Leakage }}\) & \(\mathrm{I}_{\text {ILK (} \overline{O N} / \text { OFF }}\) & All Devices & & \(\pm 0.1\) & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline \(\overline{\text { ON/OFF Input Capacitance }}\) & \(\mathrm{C}_{\text {IN(} \overline{O N} / \mathrm{OFF})}\) & All Devices & & 200 & & pF \\
\hline
\end{tabular}

\section*{AC CHARACTERISTICS - MULTIPLEXERD INPUT CONFIGURATION}
\begin{tabular}{|l|c|c|c|c|c|}
\hline Digit Select Active Pulse Width & \(\mathrm{t}_{\mathrm{sa}}\) & Refer to Timing Diagrams & 1 & & \\
\hline Data Setup Time & \(\mathrm{t}_{\mathrm{ds}}\) & & 500 & & \\
\hline Data Hold Time & \(\mathrm{t}_{\mathrm{dh}}\) & & 200 & & ns \\
\hline Inter-Digit Select Time & \(\mathrm{t}_{\text {ids }}\) & & 2 & ns \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ AC CHARACTERISTICS - MICROPROCESSOR INTERFACE } \\
\hline C̄hip Select Active Pulse Width & \(\mathrm{t}_{\mathrm{csa}}\) & \begin{tabular}{l}
Other C̄hip S̄elect either held active, \\
or both driven together
\end{tabular} & 200 & & & ns \\
\hline Data Setup Time & \(\mathrm{t}_{\mathrm{dsm}}\) & & 100 & & & ns \\
\hline Data Hold Time & \(\mathrm{t}_{\mathrm{dhm}}\) & & 10 & 0 & & ns \\
\hline Inter-C̄hip Select Time & \(\mathrm{t}_{\mathrm{ics}}\) & & 2 & & \(\mu \mathrm{~s}\) \\
\hline
\end{tabular}

NOTE 1: This limit refers to that of the package and will not be realized during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any input terminal to a voltage in excess of \(\mathrm{V}^{+}\)or ground may cause destructive device latch-up. For this reason, it is recommended that inputs from external sources operating on a different power supply be applied only after the device's own power supply has been established, and that on multiple supply systems the supply to the ICM7235 be turned on first.
NOTE 3: This value refers to the display outputs only.

\section*{ICM7235}

\section*{INPUT DEFINITIONS}

In this table, \(\mathrm{V}^{+}\)and ground are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.
\begin{tabular}{|l|c|l|l|c|}
\hline INPUT & TERMINAL & CONDITION & FUNCTION & \\
\hline B0 & 27 & \begin{tabular}{l}
\(V^{+}=\)Logical One \\
Ground = Logical Zero
\end{tabular} & Ones (Least Significant) & \\
\hline B1 & 28 & \begin{tabular}{l}
\(V^{+}=\)Logical One \\
Ground = Logical Zero
\end{tabular} & Twos & \multirow{2}{*}{ Data Input Bits } \\
\hline B2 & 29 & \begin{tabular}{l}
\(V^{+}=\)Logical One \\
Ground = Logical Zero
\end{tabular} & Fours & \\
\hline B3 & 30 & \begin{tabular}{l}
\(V^{+}=\)Logical One \\
Ground = Logical Zero
\end{tabular} & Eights (Most Significant) & \\
\hline\(\overline{\text { ON/OFF }}\) & 5 & \begin{tabular}{l}
\(V^{+}=\)OFF, \\
Ground =ON
\end{tabular} & & Display ON/OFF Input \\
\hline
\end{tabular}

ICM7235, ICM7235A
MULTIPLEXED-BINARY INPUT CONFIGURATION
\begin{tabular}{|c|c|c|c|}
\hline INPUT & TERMINAL & CONDITION & FUNCTION \\
\hline D1 & 31 & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{V}^{+}=\text {Active } \\
& \text { Ground = Inactive }
\end{aligned}
\]} & D1 (Least Significant) Digit Select \\
\hline D2 & 32 & & D2 Digit Select \\
\hline D3 & 33 & & D3 Digit Select \\
\hline D4 & 34 & & D4 (Most Significant) Digit Select \\
\hline
\end{tabular}

ICM7235M, ICM7235AM
MICROPROCESSOR INTERFACE INPUT CONFIGURATION
\begin{tabular}{|c|c|c|c|c|}
\hline INPUT & DESCRIPTION & TERMINAL & CONDITION & FUNCTION \\
\hline DS1 & \begin{tabular}{l}
Digit Select \\
Code Bit 1 (LSB)
\end{tabular} & 31 & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{V}^{+}=\text {Logical One } \\
\text { Ground = Logical } \\
\text { Zero }
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
DS2 \& DS1 serve as a two-bit Digit Select Code Input DS2, DS1 \(=00\) selects D4 \\
DS2, DS1 \(=01\) selects D3 \\
DS2, DS1 \(=10\) selects D2 \\
DS2, DS1 \(=11\) selects D1
\end{tabular}} \\
\hline DS2 & Digit Select Code Bit 2 (MSB) & 32 & & \\
\hline \(\overline{\text { CS1 }}\) & Chip Select 1 & 33 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}^{+}=\text {Inactive } \\
& \text { Ground = Active }
\end{aligned}
\]} & \multirow[t]{2}{*}{When both \(\overline{\mathrm{CS} 1}\) and \(\overline{\mathrm{CS} 2}\) are taken to ground, the data at the Data and Digit Select code inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches.} \\
\hline CS2 & Chip Select 2 & 34 & & \\
\hline
\end{tabular}

ICM 7235 TYPICAL DC VACUUM FLUORESCENT DISPLAY CONNECTION

\section*{VACUUM FLUORESCENT DISPLAYS (4 DIGIT)}
N.E.C. Electronics, Inc.

Models FIP4F8S and FIP5F8S

\section*{ICM7235M/35AM}

\section*{ICM7235}

\section*{CIRCUIT DESCRIPTION}

Each device in the ICM7235 family provides signals for directly driving the anode terminals of a four-digit, 7 -segment non-multiplexed vacuum fluorescent display. The outputs are taken from the drains of high-voltage, low-leakage P-channel FETs, each capable of withstanding \(>-35 \mathrm{~V}\) with respect to \(\mathrm{V}^{+}\). In addition, the inclusion of an ON/OFF input allows the user to disable all segments by connecting pin 5 to \(\mathrm{V}^{+}\); this same input may also be used as a brightness control by applying a signal swinging between \(\mathrm{V}^{+}\)and ground and varying its duty cycle.
The ICM7235 may also be used to drive nonmultiplexed common cathode LED displays by connecting each segment output to its corresponding display input, and tying the common cathode to ground. Using a power supply of 5 V and an LED with a forward drop of 1.7 V results in an "CN" segment current of about 3mA, enough to provide sufficient brightness for displays of up to \(0.3^{\prime \prime}\) character height.
Note that these devices have two \(\mathrm{V}^{+}\)terminals; each should be connected to the positive supply voltage. This double connection is necessary to minimize the effects of bond wire resistance, which could be a problem due to the high display currents.

\section*{Input Configurations and Output Codes}

The standard devices in the ICM7235 family accept a four-bit true binary (i.e., positive level = logical one) input at pins 27 through 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7235 and ICM7235M decode this binary input into a 7 segment alphanumeric hexadecimal output, while the ICM7235A and ICM7235AM decode the binary input into the same 7 -segment output as the ICM7218 "Code B," i.e., 0-9, dash, E, H, L, P. blank. I nese coaes are shown explicitly in Table 1 Either decoder option will correctly decode true BCD to a 7 -segment decimal output.
These devices are actually mask-programmable to provide any 16 combinations of the 7 -segment outputs decoded from the four input bits. For larger quantity orders, (10 K pcs. minimum) custom decoder options can be arranged. Contact your Intersil Sales Office for details.
The ICM7235 and ICM7235A devices are intended to accept multiplexed binary or BCD output. These devices provide four separate Digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30 . More than one Digit select may be activated simultaneously (which will write the same character into all selected digits), although the timing requirements shown in Figure 2 and under Operating

Characteristics for data setup, hold, and interdigit select times must be met to ensure correct output.
The ICM7235M and AM devices are intended to accept data from a data bus under processor control.
In these devices, the four data input bits and the 2-bit Digit Select code (DS1 pin 31, DS2 pin 32) are written into input buffer latches when both Chip Select inputs (\(\overline{C S 1}\) pin 33, CS2 pin 34) are taken to ground. On the rising edge of either Chip Select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the select code latches. A select code of 00 writes into D4, 01 writes into D3, 10 writes into D2 and 11 writes into D1. The timing relationships for inputting data are shown in Figure 3, and the chip select pulse widths and data setup and hold times are specified under Operating Characteristics.

\section*{TEST CIRCUIT}

TYPICAL OUTPUT CHARACTERISTICS

Figure 2. Multiplexed Input Timing Diagram

Figure 3. Microprocessor Interface Input Timing Diagram

Table 1: Output Codes
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{BINARY} & \multirow[t]{2}{*}{HEXADECIMAL
ICM7235
ICM7235M} & \multirow[t]{2}{*}{CODE B ICM7235A ICM7235AM} \\
\hline B3 & B2 & B1 & B0 & & \\
\hline 0 & 0 & 0 & 0 & i-1 & '-' \\
\hline 0 & 0 & 0 & 1 & ' & i \\
\hline 0 & 0 & 1 & 0 & 2 & - \\
\hline 0 & 0 & 1 & 1 & \(\bar{J}\) & 3 \\
\hline 0 & 1 & 0 & 0 & 4 & -1 \\
\hline 0 & 1 & 0 & 1 & 5 & 5 \\
\hline 0 & 1 & 1 & 0 & E & E \\
\hline 0 & 1 & 1 & 1 & - & 7 \\
\hline 1 & 0 & 0 & 0 & 8 & \(\theta\) \\
\hline 1 & 0 & 0 & 1 & 9 & 9 \\
\hline 1 & 0 & 1 & 0 & P & - \\
\hline 1 & 0 & 1 & 1 & 6 & \(E\) \\
\hline 1 & 1. & 0 & 0 & :- & H \\
\hline 1 & 1 & 0 & 1 & - & i \\
\hline 1 & 1 & 1 & 0 & \(E\) & \(1 \cdot\) \\
\hline 1 & 1 & 1 & 1 & : & (BLANK) \\
\hline
\end{tabular}

SEGMENT ASSIGNMENT

6

\section*{FEATURES}
- High frequency counting-guaranteed 15 MHz , typically 25 MHz at 5 V
- Low power operation—less than \(100 \mu \mathrm{~W}\) quiescent
- Direct \(41 / 2\)-digit seven-segment display drive for non-multiplexed Vacuum Fluorescent displays
- STORE and RESET inputs permit operation as frequency or period counter
- True COUNT INHIBIT disables first counter stage
- CARRY output for cascading four-digit blocks
- Schmitt-trigger on COUNT input allows operation in noisy environments or with slowly changing inputs
- Leading Zero Blanking INput and OUTput for correct leading zero blanking with cascaded devices
- All inputs fully protected against static dis-charge-no special handling precautions necessary
- Devices fabricated using MAXCMOS \({ }^{\text {TM }}\) process for high-performance, low power operation

\section*{DESCRIPTION}

The ICM7236 and ICM7236A devices are high-performance CMOS \(41 / 2\)-digit counters, including decoders, output latches, count inhibit, reset, and leading zero blanking circuitry, and twenty-nine high-voltage open drain P-channel transistor outputs suitable for driving non-multiplexed (static) vacuum fluorescent displays.
The ICM7236 is a decade counter, providing a maximum count of 19999, while the ICM7236A is intended for timing purposes, providing a maximum count of 15959.

The counter section of the two devices in the ICM7236 family provides direct static counting from DC to 15 MHz guaranteed (with a \(5 \mathrm{~V} \pm 10 \%\) supply) over the operating temperature range. At normal room temperatures, the device will typically count up to 25 MHz . The COUNT input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry which allows a direct interface with the ICM7207 devices to implement a low cost, low power frequency counter with a minimum component count.
These devices also incorporate features intended to simplify cascading in four-digit blocks. The CARRY output allows the counter to be cascaded, while the Leading Zero Blanking INput and OUTput allow correct leading zero blanking between four-decade blocks.

The ICM7236 and ICM7236A are packaged in a standard 40-pin dual-in-line plastic package.

ABSOLUTE MAXIMUM RATINGS
Power Dissipation (Note 1) \(0.5 \mathrm{~W} @+70^{\circ} \mathrm{C}\)
Supply Voltage (\(\mathrm{V}^{+}\)) . 6.5 V
Display Voltage (Note 3) . V \({ }^{+}-35 \mathrm{~V}\)
Operating Temperature Range \(\quad-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{OPERATING CHARACTERISTICS}
(All parameters measured with \(\mathrm{V}^{+}=5 \mathrm{~V}\) unless otherwise indicated.)

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than \(\mathrm{V}^{+}\)or less than ground may cause destructive device latch-up. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7236/7236A be turned on first.
NOTE 3: This limit refers to the display output terminals only.

\section*{DESCRIPTION OF OPERATION}

All of the chips in the ICM7236 family provide twenty-nine outputs suitable for directly driving the anode terminals of \(41 / 2\) digit seven-segment non-multiplexed (static) vacuumfluorescent displays. Each display output is the drain of a high-voltage low-leakage P-channel transistor, capable of withstanding typically greater than -35 volts with respect to \(\mathrm{V}^{+}\). The output characteristics are shown graphically under "Typical Characteristics."
These chips also provide a dislay \(\overline{O N} / O F F\) input which may be used to disable all the segment outputs and thus blank the display. This input may also be used to control the display brightness by varying the duty cycle of a signal at the input swinging between \(\mathrm{V}^{+}\)and ground.

NOTE that these circuits have two terminals for \(\mathrm{V}^{+}\); both of these pins should be connected to the power supply positive terminal. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.
These chips may also be used to directly drive nonmultiplexed common-cathode LED displays, where each segment of the display is driven by one ICM7236 output, and the common cathode is connected to ground. With a 5 V power supply and a 1.7 V LED diode forward voltage drop, the current in an "ON" segment will be typically 3 mA . This should provide sufficient brightness in displays up to about \(0.3^{\prime \prime}\) character height.

\section*{TYPICAL CHARACTERISTICS}

\section*{Output Characteristics}

Maximum Count Frequency (Typical) as a Function of Supply Voltage

Supply Current as a Function of Count Frequency

\section*{TEST CIRCUIT}

SEGMENT ASSIGNMENT

DISPLAY FONT

\section*{ICM7 236}

\section*{COUNTER SECTION}

The devices in the ICM7236 family implement a four-digit ripple-carry resettable counter, including a Schmitt trigger on the COUNT input and a \(\overline{\text { CARRY }}\) output. Also included is an extra D-type flip-flop, clocked by the carry signal and outputting to the half-digit segment driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negative-going edge of the signal at the COUNT input, and the \(\overline{\text { CARRY }}\) output will provide a negativegoing edge following the count which indexes the counter from 9999 (or 5959) to 10000. Once half-digit flip-flop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the RESET terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half-digit is set, and subsequent \(\overline{\mathrm{CARRY}}\) outputs will not be affected.

A negative level at the COUNT INHIBIT disables the first divide-by-two in the counter chain without affecting its clock. This provides a true count inhibit which is not sensitive to the state of the COUNT input, preventing false counts which can result from using a normal logic gate forcing the state of the clock to prevent counting.

Each decade drives directly into a four-to-seven decoder which derives the seven-segment output code. Each decoder output corresponds to the one-segment terminal of the device. The output data is latched at the driver; when the
\(\overline{\text { STORE }}\) pin is at a negative level, these latches are updated, and when the pin is left open or at a positive level, the latches hold their contents.

The decoders also include zero detect and blanking logic to provide leading zero blanking. When the Leading Zero Blanking INput is floating, or at a positive level, this circuitry is enabled and the device will blank leading zeroes. When the Leading Zero Blanking INput is at a negative level, or the half-digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The Leading Zero Blanking OUTput is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked, which can only occur when the Leading Zero Blanking INput is at a positive level and the half-digit is not set.

For example, on an eight-decade counter with overflow using two ICM7236 devices, the Leading Zero Blanking OUTput of the high-order digit device would be connected to the Leading Zero Blanking INput of the low-order digit device. This will assure correct leading zero blanking for all eight digits.
The \(\overline{\text { STORE, }} \overline{\text { RESET, }} \overline{\text { COUNT INHIBIT, and Leading Zero }}\) Blanking INputs are provided with pullup devices, so that they may be left open when a positive level is desired. The \(\overline{\text { CARRY }}\) and Leading Zero OUTputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7236 devices in four-digit blocks.

\section*{CONTROL INPUT DEFINITIONS}

In this table, \(\mathrm{V}^{+}\)and ground are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.

\section*{OPERATING CHARACTERISTICS}
\begin{tabular}{|l|c|l|l|}
\hline INPUT & TERMINAL & VOLTAGE & FUNCTION \\
\hline \begin{tabular}{l}
Leading Zero Blanking Input \\
(LZB IN)
\end{tabular} & 29 & \begin{tabular}{l}
\(\mathrm{V}^{+}\)or Floating \\
Ground
\end{tabular} & \begin{tabular}{l}
Leading Zero Blanking Enabled \\
Leading Zeroes Displayed
\end{tabular} \\
\hline\(\overline{\text { COUNT INHIBIT }}\) & 31 & \begin{tabular}{l}
\(\mathrm{V}^{+}\)or Floating \\
Ground
\end{tabular} & \begin{tabular}{l}
Counter Enabled \\
Counter Disabled
\end{tabular} \\
\hline\(\overline{\text { RESET }}\) & 33 & \begin{tabular}{l}
\(\mathrm{V}^{+}\)or Floating \\
Ground
\end{tabular} & \begin{tabular}{l}
Inactive \\
Counter Reset to 0000
\end{tabular} \\
\hline\(\overline{\text { STORE }}\) & 34 & \begin{tabular}{l}
\(\mathrm{V}^{+}\)or Floating \\
Ground
\end{tabular} & \begin{tabular}{l}
Output Latches Not Updated \\
Output Latches Updated
\end{tabular} \\
\hline Display \(\overline{\text { ON/OFF }}\) & 5 & \begin{tabular}{l}
\(\mathrm{V}^{+}\) \\
Ground
\end{tabular} & \begin{tabular}{l}
Display Outputs Disabled \\
Display Outputs Enabled
\end{tabular} \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM}

\section*{TYPICAL DC VACUUM FLUORESCENT DISPLAY CONNECTION}

OPEN.DRAIN HIGH:VOLTAGE P.CHANNEL TRANSISTOR OUTPUTS

VACUUM FLUORESCENT DISPLAYS (\(4^{1 ⁄ 2} 2\)-DIGIT):
N.E.C. Electronics, Inc.

Model FIP5F8S

\section*{ICM7240/50/60 CMOS Programmable Timers/Counters}

\section*{FEATURES}
- Replaces 8240/50/60, 2240 in most applications
- Timing from microseconds to days
- May be used as fixed or programmable counter
- Programmable with standard thumbwheel switches
- Select output count from

1RC to 255RC (ICM7240)
1RC to 99RC (ICM7250)
1RC to 59RC (ICM7260)
- Monostable or astable operation
- Low supply current: \(115 \mu \mathrm{~A}\) @ 5 volts
- Wide supply voltage range: 2-16 volts
- Cascadeable

\section*{GENERAL DESCRIPTION}

The ICM7240/50/60 is a family of CMOS Timer/Counter circuits intended to replace Intersil's ICL 8240/50/60 and the 2240 in most applications. Together with the ICM7555/56 (CMOS versions of the SE/NE 555/6), they provide a complete line of RC oscillators/timers/ counters offering lower supply currents, wider supply
voltage ranges, higher operating frequencies, lower component counts and a wider range of timing components. They are intended to simplify the selection of various time delays or frequency outputs from a fixed RC oscillator circuit.

Each device consists of a counter section, control circuitry, and an RC oscillator requiring an external resistor and capacitor. For counter/divider applications, the oscillator may be inhibited and an input clock applied to the TB terminal. The ICM7240 is intended for straight binary counting or timing, whereas the ICM7250 is optimized for decimal counting or timing. The ICM7260 is specifically designed for time delays in seconds, minutes and hours. All three devices use open drain output transistors, thereby allowing wire AND-ing. Manual programming is easily accomplished by the use of standard thumbwheel switches or hardwired connections. The ICM7240/50/60 are packaged in 16 pin CERDIP packages.

Applications include programmable timing, long delay generation, cascadeable counters, programmable counters, low frequency oscillators, and sequence timing.

\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage
18 V
Input Voltage \({ }^{[1]}\)
Terminals \(10,11,12,13,14 \ldots \ldots\). . . . GND \(-0.3 V\) to \(\mathrm{V}^{+}+0.3 \mathrm{~V}\)
Maximum continuous output
current (each output) 50 mA
Power Dissipation \({ }^{[2]}\). 200 mW
Operating Temperature Range \(\ldots . . .-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

\section*{NOTES:}
1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than \(\mathrm{V}+\) or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7240/50/60 be turned on first.
2. Derate at \(-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\).

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{BLOCK DIAGRAM}

\section*{ICM7240/50/60}

\section*{ELECTRICAL CHARACTERISTICS}

Each of the three devices utilizes an identical timebase, control flip-flops, and basic counters, with the outputs consisting of open drain n-channel transistors. Only the ICM7250/60 have CARRY outputs.

Test Conditions: Test circuit, \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Guaranteed Supply Voltage & \(\mathrm{V}^{+}\) & & 2 & & 16 & V \\
\hline Supply Current & \(\mathrm{I}^{+}\) & \begin{tabular}{l}
Reset \\
Operating, \(\mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}\) \\
Operating, \(R=1 \mathrm{M} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}\) \\
TB Inhibited, RC Connected to GND
\end{tabular} & & \[
\begin{aligned}
& 125 \\
& 300 \\
& 120 \\
& 125
\end{aligned}
\] & \[
\begin{aligned}
& 700 \\
& 500
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Timing Accuracy & & & & 5 & & \% \\
\hline RC Oscillator Frequency Temperature Drift & \(\Delta f / \Delta T\) & (Exclusive of RC Drift) & & 250 & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Time Base Output Voltage & Votb & \[
\begin{aligned}
& \text { ISOURCE }=1 \mathrm{~mA} \\
& \text { ISINK }=3.2 \mathrm{~mA}
\end{aligned}
\] & 3.5 & \[
\begin{gathered}
4.2 \\
0.25
\end{gathered}
\] & 0.6 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline Time Base Output Leakage Current & Itblk & \(\mathrm{RC}=\) Ground & & & 25 & \(\mu \mathrm{A}\) \\
\hline Mod Voltage Level & VMOD & \[
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{gathered}
\hline 3.5 \\
11.0 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Trigger Input Voltage & Vtrig & \[
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 1.6 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Reset Input Voltage & VRST & \[
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 1.3 \\
& 2.7
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Max Count Toggle Rate 7240 & \(\mathrm{ft}_{\mathrm{t}}\) & \begin{tabular}{l}
\[
\left.\begin{array}{l}
\mathrm{V}^{+}=2 \mathrm{~V} \\
\mathrm{~V}^{+}=5 \mathrm{~V} \\
\mathrm{~V}^{+}=15 \mathrm{~V}
\end{array}\right] \text {-Counter/Divider Mode }
\] \\
50\% Duty Cycle Input with Peak to Peak Voltages Equal to \(\mathrm{V}^{+}\)and GND
\end{tabular} & 2 & \[
\begin{gathered}
1 \\
6 \\
13
\end{gathered}
\] & . & \begin{tabular}{l}
MHz \\
MHz \\
MHz
\end{tabular} \\
\hline Max Counter Toggle Rate 7250, 7260 & \(\mathrm{ft}_{\mathrm{t}}\) & \[
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \\
& \text { (Counter/Divider Mode) }
\end{aligned}
\] & 1.5 & 5 & & MHz \\
\hline Max Count Toggle Rate 7240, 7250, 7260 & \(\mathrm{ft}_{\mathrm{t}}\) & Programmed Timer - Divider Mode & & & 100 & KHz \\
\hline Output Saturation Voltage & VSAT & All Outputs except TB Output \(\mathrm{V}^{+}=5 \mathrm{~V}\), IOUT \(=3.2 \mathrm{~mA}\) & & 0.22 & 0.4 & V \\
\hline Output Leakage Current & IOLK & \(\mathrm{V}^{+}=5 \mathrm{~V}\), per Output & & & 1 & \(\mu \mathrm{A}\) \\
\hline MIN Timing Capacitor & \(\mathrm{C}_{\mathrm{t}}\) & & 10 & & & pF \\
\hline Timing Resistor Range & \(\mathrm{R}_{\mathrm{t}}\) & \[
\begin{aligned}
& \mathrm{V}^{+} \leq 5.5 \mathrm{~V} \\
& \mathrm{~V}^{+} \leq 16 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{~K} \\
& 1 \mathrm{~K}
\end{aligned}
\] & & \[
\begin{aligned}
& \hline 22 \mathrm{M} \\
& 22 \mathrm{M}
\end{aligned}
\] & \[
\begin{aligned}
& \Omega \\
& \Omega
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{TEST CIRCUIT}

S1-A = RC RUN \(B=T\). B. INPUT RUN

S3-A = INACTIVE \(B=\) RESET

NOTE: S1-B INHIBITS THE TIMEBASE SECTION, ALLOWING TERMINAL 14 TO BECOME THE COUNTER INPUT.
* TERMINAL 15 IS CARRY OUTPUT FOR 7250/60 DEVICES.
* TERMINAL 8 IS OPEN CIRCUIT FOR 7260.

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF R AND C

MINIMUM RESET PULSE WIDTH AS A FUNCTION OF RESET AMPLITUDE

RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING

MINIMUM TRIGGER PULSE WIDTH AS A FUNCTION OF TRIGGER AMPLITUDE
 STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

TYPICAL PERFORMANCE CHARACTERISTICS

\section*{NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE}

\section*{DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE}

discharge saturation voltage (v)

MAXIMUM DIVIDER FREQUENCY vs. SUPPLY VOLTAGE*

OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE

RESET AND TRIGGER INPUTS (PINS 10 AND 11)
The circuits are reset or triggered by positive going control pulses applied to pins 10 and 11, and once triggered they ignore additional trigger inputs until either the timing cycle is completed or a reset signal is applied. If both reset and trigger are applied simultaneously trigger overrides reset. Minimum input pulse widths are shown in the typical performance characteristics. Note that all devices feature power ON reset.

\section*{MODULATION AND SYNC INPUT (PIN 12)}

The period t of the time base oscillator can be modulated by applying a DC voltage to this terminal. The time base oscillator can be synchronized to an external clock by applying a sync pulse to pin 12.

\section*{ICM7240/50/60}

TIMEBASE INPUT/OUTPUT PIN (TERMINAL 14)
While this pin can be used as either a time base input or output terminal, it should only be used as an input terminal if terminal \(13(R C)\) is connected to GND.
If the counter is to be externally driven, care should be taken to ensure that fall times are fast (see Operating Limits section).
Under no conditions is a 300 pF capacitor on this terminal useful and should be removed if a 7240/50/60 is used to replace an 8240/50/60 or 2240.

CARRY OUTPUT (TERMINAL 15, ICM7250/60 ONLY) This pin will go HI for the last 10 counts of a 59 or 99 count, and can be used to drive another 7250 or 7260 counter stage while still using all the counter outputs of the first. Thus, by cascading several 7250's a large BCD countdown can be achieved.

The basic timing diagrams for the ICM7240/50/60 are shown in Figure 1. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive signal on the RESET terminal (if TRIGGER is low), a positive edge on the trigger input signal will initiate norma! operation. The discharge transistor turns on, discharging the timing capacitor C , and all the flip-flops in the counter chain change states.
Note that for straight binary counting the outputs are symmetrical; that is, a \(50 \%\) duty cycle \(\mathrm{HI}-\mathrm{LO}\). This is not the case when using BCD counting. See Figure 3.

Figure 1. Timing Diagram for ICM7240/50/60

\section*{CIRCUIT DESCRIPTION}

The timing cycle is initiated by applying a positivegoing trigger pulse to pin 11. This pulse enables the counter section, sets all counter outputs to the LOW or ON state, and starts the time base oscillator. Then, external C is charged through external R from \(20 \%\) to \(70 \%\) of \(V^{+}\), generating a timing waveform with period \(t\), equal to 1RC. A short negative clock or time base pulse occurs during the capacitor discharge portion of the waveform. These clock pulses are counted by the binary counter of the 7240 or by two cascaded Binary Coded Decimal (BCD) Counters in the 7250/60. The timing cycle terminates when a positive-going reset
pulse is applied to pin 10. When the circuit is at reset, both the time base and the counter sections are disabled and all the counter outputs are at a HIGH or OFF state. The carrry-out is also HIGH.
In most timing applications, one or more of the counter outputs are connected back to the reset terminal; the circuit will start timing when a trigger is applied and will automatically reset itself to complete the timing cycle when a programmed count is completed. If none of the counter outputs are connected back to the reset terminal (switch \(\mathrm{S}_{1}\) open), the circuit operates in its astable, or free-running mode, after initial triggering.

\section*{PROGRAMMING CAPABILITY}

The counter outputs, pins 1 through 8, are open-drain N -channel FETs, and can be shorted together to a common pull-up resistor to form a "wired-AND" connection. The combined output will be LOW as long as any one of the outputs is low. Each output is capable of sinking \(\approx 5 \mathrm{~mA}\). In this manner, the time delays associated with each counter output can be summed by simply shorting them together to a common output. For example, if only pin 6 is connected to the output and the rest left open, the total duration of the timing cycle (monostable mode) \(t_{0}\) would be \(32 t\) for a 7240 and 20 t for a \(7250 / 60\). Similarly, if pins 1,5 , and 6 were shorted to the output bus, the total time delay would be \(t_{0}=(1+16+32) t\) for the 7240 or \((1+10+20) t\) for the \(7250 / 60\). Thus, by selecting the number of counter terminals connected to the output bus, the timing cycle can be programmed from:
\[
\begin{aligned}
& 1 \mathrm{t} \leq \mathrm{t}_{0} \leq 255 \mathrm{t}(7240) \\
& 1 \mathrm{t} \leq \mathrm{t}_{0} \leq 99 \mathrm{t}(7250) \\
& 1 \mathrm{t} \leq \mathrm{t}_{0} \leq 59 \mathrm{t}(7260)
\end{aligned}
\]

Note that for the 7250 and 7260, invalid count states (\(B C D\) values \(\geq 10\)) will not be recognized and the counter will not stop.
The 7240/50/60 can be configured to initiate a controlled timing cycle upon power up, and also reset internally; see figure 2. Applications for this could include lawn watering sprinkler timing, pump operation, etc.

\section*{BINARY OR DECIMAL PATTERN GENERATION}

In astable operation, as shown in Figure 2, the output of the 7240/50 appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 1, which shows the phase relations between the counter outputs. Figure 3 shows some of these complex pulse patterns. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output.

\section*{THUMBWHEEL SWITCHES}

While the ICM7240 is frequently hard wired for a particular function, the ICM7250 and ICM7260 can easily be programmed using thumbwheel switches. Standard BCD thumbwheel switches have one common and four inputs (\(1,2,4\) and 8) which are connected eccording to the binary equivalent to the digits 0 through 9.

\section*{ICM7240/50/60}

For a single ICM7250 two such switches would select a time of 1'Rc to 99RC. Cascading two ICM7250's (using the carry out gate) would expand selection to \(9999_{\text {RC. }}\). For a ICM7260, there are standard BCD thumbwheel switches for the 0 through 5 digit (twelve position 0 to 5 repeated).

Figure 2. Generalized Circuit for Timing Applications (Switch \(\mathrm{S}_{1}\) operation)

Figure 3. Pulse Patterns Obtained by Shorting Various Counter Outputs

\section*{NOTES ON THE COUNTER SECTION}

Used as a straight binary counter (ICM7240), as a \(\div 100\) (ICM7250), or \(\div 60\) (ICM7260) all devices are significantly faster than their bipolar equivalents. However, when using these devices as programmable counters the maximum frequency of operation is reduced by more than an order of magnitude. For any division ratio other than 256 (ICM7240), 100 (ICM7250), or 60 (ICM7260) the maximum input frequency must be limited to approximately 100 KHz or less (with \(\mathrm{V}^{+}\)equal to +5 volts). The reason for this is two-fold:
a. Since Ripple counters are used, there is a propagation delay between each individual \(\div 2\) counter (8 counters for the ICM7240/50 and 7 for the ICM7260). Outputs from the individual \(\div 2\) counters are AND'ed together to provide the output signal and the Reset/Trigger signal.
b. There must be a delay of the positive going output to the Reset terminal, (pin 10) and the Trigger terminal (pin 11). The Reset signal must therefore be generated first, and from this signal another signal is obtained through a delay network. The trigger overrides Reset.

The delay between Trigger and Reset is generated by the signal RC network consisting of the \(56 \mathrm{k} \Omega\) resistor and the 330 pF capacitor.

The delay caused by the counter Ripple delays can be as long as \(2 \mu \mathrm{~s}\) (5 volt supply), and the delay between Reset and Trigger should be at least \(2 \mu \mathrm{~s}\). The sum of these two delays cannot be greater than one-half of the input clock period for reliable operation. See Figure 4 and 5.

Figure 4. Programming the Counter Section of the ICM7240/50/60

Figure 5. Waveforms for Programming the Counter Section for a Division Ratio of \(7\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\right.\) Closed)

\section*{APPLICATIONS}

\section*{GENERAL CONSIDERATIONS}

Shorting the RC terminal or output terminals to \(\mathrm{V}^{+}\)may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages).
There is a limit of 50 pF maximum loading on the TB I/O terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount.

For greatest accuracy, use timing component values shown in the graph under Typical Performance Characteristics. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200 KHz .

When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amp'itude equal to supply voltage. If the clock is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform (rise/fall time \(\leq\) \(1 \mu \mathrm{~s}\)); this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM 7240/50/60.

By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, automatic lubrication systems, etc.
By selection of \(R\) and \(C\), a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows:

Figure 6.

CMOS PRECISION PROGRAMMABLE 0-99 SECONDS/MINUTES LABORATORY TIMER

The ICM7250 is well suited as a laboratory timer to alert personnel of the expiration of a preselected interval of time.
When connected as shown, the timer can accurately measure preselected time intervals of 0-99 seconds or 0-99 minutes. A 5 volt buzzer alerts the operator when the preselected time interval is over.

The circuit operates as follows:

The time base is first selected with S1 (seconds or minutes), then units \(0-99\) are selected on the two thumbwheel switches S4 and S5. Finally, switch S2 is depressed to start the timer. Simultaneously the quartz crystal controlled divider circuits are reset, the ICM7250 is triggered and counting begins. The ICM7250 counts until the pre-programmed value is reached, whereupon it is reset, pin 10 of the CD4082B is enabled and the buzzer is turned on. Pressing S3 turns the buzzer off.

Figure 7.

\section*{ICM7240/50/60}

\section*{LOW POWER MICROPROCESSOR PROGRAMMABLE INTERVAL TIMER}

The ICM7240 CMOS programmable binary timer can be configured as a low cost microprocessor controlled interval timer with the addition of a few inexpensive CD4000 series devices.

With the devices connected as shown, the sequence of operation is as follows:
The microprocessor sends out an 8 bit binary code on its 8 bit I/O bus (the binary value needed to program the ICM7240), followed by four WRITE pulses into the CD4017B decade counter. The first pulse resets the 8 bit latch, the second strobes the binary value into the 8
bit latch, the third triggers the ICM7240 to begin its timing cycle and the fourth resets the decade counter.

The ICM7240 then counts the interval of time determined by the R-C value on pin 13, and the programmed binary count on pins 1 through 8 . At the end of the programmed time interval, the interrupt oneshot is triggered, informing the microprocessor that the programmed time interval is over.

With a resistor of approximately \(10 \mathrm{M} \Omega\) and capacitor of \(0.1 \mu \mathrm{~F}\), the time base of the ICM7240 is one second. Thus, a time of 1-255 seconds can be programmed by the microprocessor, and by varying R or C , longer or shorter time bases can be selected.

Figure 8.

\section*{ICM7240/50/60}

\section*{CHIP TOPOGRAPHY}

\(\begin{array}{llllll}\text { OUT }_{1} & \text { OUT }_{2} & \text { OUT }_{3} & \text { OUT }_{4} & \text { OUT }_{5} & \text { OUT }_{6}\end{array}\)
ICM7260

\section*{Fixed Timer/Counter}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Supply Voltage} \\
\hline \multicolumn{2}{|l|}{Input Voltage \({ }^{[1]}\)} \\
\hline Terminals (Pins 5, 6, 7, 8) & GND -0.3V to
\(\mathrm{V}^{+}+0.3 \mathrm{~V}\) \\
\hline Maximum continuous output current (each output) & mA \\
\hline Power Dissipation \({ }^{(2]}\) & 200 mW \\
\hline Operating Temperature Range & C to \(+85^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \({ }^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES:
1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than \(\mathrm{V}+\) or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same supply by applied to the device before its supply is established and, that in multiple supply systems, the supply to the ICM7242 be turned on first.
2. Derate at \(-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\).

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

\section*{FEATURES}
- Replaces the 2242 in most applications
- Timing from microseconds to days
- Cascadeable
- Monostable or astable operation
- Wide supply voltage range: 2-16 volts
- Low supply current: \(115 \mu \mathrm{~A}\) @ 5 volts
- Extended temperature range: \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)

\section*{GENERAL DESCRIPTION}

The ICM7242 is a CMOS timer/counter circuit consisting of an RC oscillator followed by an 8-bit binary counter. It will replace the 2242 in \(95 \%\) of the applications, with a significant reduction in the number of external components.

Three outputs are provided. They are, the oscillator output, and buffered outputs from the first and eighth counters.
The ICM7242 is packaged in an 8-pin CERDIP.

ELECTRICAL CHARACTERISTICS

Test Conditions: Test circuit, \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}\), unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Guaranteed Supply Voltage & \(\mathrm{V}^{+}\) & & 2 & & 16 & V \\
\hline Supply Current & \(1^{+}\) & \begin{tabular}{l}
Reset \\
Operating, \(R=10 \mathrm{~K} \Omega, C=0.1 \mu \mathrm{~F}\) \\
Operating, \(R=1 \mathrm{M} \Omega, C=0.1 \mu \mathrm{~F}\) \\
TB Inhibited, RC Connected to GND
\end{tabular} & & \[
\begin{aligned}
& 125 \\
& 340 \\
& 220 \\
& 225
\end{aligned}
\] & \[
\begin{aligned}
& 800 \\
& 600
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Timing Accuracy & & & & 5 & & \% \\
\hline RC Oscillator Frequency Temperature Drift & \(\Delta f / \Delta T\) & i Independent of RC Components & & 250 & & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Time Base Output Voltage & Votb & \[
\begin{aligned}
& \text { ISOURCE }=1 \mathrm{~mA} \\
& I_{\text {SINK }}=3.2 \mathrm{~mA}
\end{aligned}
\] & 3.5 & \[
\begin{gathered}
4.2 \\
0.25
\end{gathered}
\] & 0.6 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline Time Base Output Leakage Current & Itblk & RC = Ground & & & 25 & \(\mu \mathrm{A}\) \\
\hline Trigger Input Voltage & Vtrig & \[
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 1.6 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{v} \\
& \mathrm{v}
\end{aligned}
\] \\
\hline Reset Input Voltage & \(V_{\text {RST }}\) & \[
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \\
& \mathrm{~V}^{+}=15 \mathrm{~V}
\end{aligned}
\] & & \[
\begin{aligned}
& 1.3 \\
& 2.7
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline Trigger/Reset Input Current & Itrig. IRST & & & 10 & & \(\mu \mathrm{A}\) \\
\hline Max Count Toggle Rate & ft & \begin{tabular}{l}
\(\left.\begin{array}{l}V^{+}=2 \mathrm{~V} \\ \mathrm{~V}^{+}=5 \mathrm{~V} \\ \mathrm{~V}^{+}=15 \mathrm{~V}\end{array}\right]\)-Counter/Divider Mode \\
50\% Duty Cycle Input with Peak to \\
Peak Voltages Equal to \(\mathrm{V}^{+}\)and GND
\end{tabular} & 2 & \[
\begin{gathered}
1 \\
6 \\
13
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] \\
\hline Output Saturation Voltage & \(V_{\text {SAT }}\) & All Outputs except TB Output \(\mathrm{V}^{+}=5 \mathrm{~V}\), IOUT \(=3.2 \mathrm{~mA}\) & & 0.22 & 0.4 & V \\
\hline Output Sourcing Current 7242 & ISOURCE & \[
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \\
& \text { Terminals } 2 \& 3, \mathrm{~V} \text { OUT }=1 \mathrm{~V}
\end{aligned}
\] & & 300 & & \(\mu \mathrm{A}\) \\
\hline MIN Timing Capacitor & \(\mathrm{C}_{t}\) & & 10 & & & pF \\
\hline Timing Resistor Range & \(\mathrm{R}_{\mathrm{t}}\) & \(\mathrm{V}^{+}=2.16 \mathrm{~V}\) & 1K & & 22M & \(\Omega\) \\
\hline
\end{tabular}

\section*{TEST CIRCUIT}

\(\Omega \quad \Omega\)
- TIMEBASE PERIOD \(=1.0\) RC;
\(1 \mathrm{SEC} .=1 \mathrm{M} \Omega \times 1 \mu \mathrm{~F}\)

NOTE: OUTPUTS \(\div 2^{1}\) AND \(\div 2^{8}\) ARE INVERTERS AND HAVE ACTIVE PULLUPS.

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

\section*{SUPPLY CURRENT AS A FUNCTION} OF SUPPLY VOLTAGE

TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF R AND C

MINIMUM RESET PULSE WIDTH AS A FUNCTION OF RESET AMPLITUDE

RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING

DIMENSIONS IN INCHES AND MILLIMETERS

MINIMUM TRIGGER PULSE WIDTH AS A FUNCTION OF TRIGGER AMPLITUDE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE

\section*{APPLICATIONS}

\section*{GENERAL CONSIDERATIONS}

Shorting the RC terminal or output terminals to \(\mathrm{V}^{+}\)may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages).

\section*{OPERATING LIMITS}

There is a limitation of 50 pF maximum loading on the TB I/O terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount.
For greatest accuracy, use timing component values shown in the graph under typical performance characteristics. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200 KHz .
When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amplitude equal to supply voltage. If the clock

\section*{MAXIMUM DIVIDER FREQUENCY} vs. SUPPLY VOLTAGE

OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE

is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform; this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM7242.
The ICM7242 is a non-programmable timer whose principal applications will be very low frequency oscillators and long range timers; it makes a much better low frequency oscillator/timer than a 555 or ICM7555, because of the on-chip 8-bit counter. Also, devices can be cascaded to produce extremely low frequency signals.
Because outputs will not be AND'd, output inverters are used instead of open drain N -channel transistors, and the external resistors used for the 2242 will not be required for the ICM7242. The ICM7242 will, however, plug into a socket for the 2242 having these resistors.
The timing diagram for the ICM7242 is shown in Figure 1. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive signal on the RESET terminal (if TRIGGER is low), a positive edge

\section*{ICM7242}
on the trigger input signal will initiate normal operation. The discharge transistor turns on, discharging the timing capacitor C , and all the flip-flops in the counter chain change states. Thus, the outputs on terminals 2 and 3 change from high to low states. After 128 negative timebase edges, the \(\div 2^{8}\) output returns to the high state.

Figure 1. Timing Diagrams of Output Waveforms for the ICM7242. (Compare with Figure 5)

To use the 8-bit counter without the timebase, terminal 7 (RC) should be connected to ground and the outputs taken from terminals 2 and 3.

Figure 2. Using the ICM7242 as a Ripple Counter (Divider)

The ICM7242 may be used for a very low frequency square wave reference. For this application the timing components are more convenient than those that would be required by a 555 timer. For very low frequencies, devices may be cascaded (see Figure 3).

Figure 3. Low Frequency Reference (Oscillator)

For monostable operation the \(\div 2^{8}\) output is connected to the RESET terminal. A positive edge on TRIGGER initiates the cycle (NOTE: TRIGGER overrides RESET).
The ICM7242 is superior in all respects to the 2242 except for initial accuracy and oscillator stability. This is primarily due to the fact that high value \(p^{-r}\) resistors have been used on the ICM7242 to provide the comparator timing points.

Figure 4. Monostable Operation
COMPARING THE ICM7242 WITH THE 2242
\begin{tabular}{|c|c|c|c|}
\hline & & ICM7242 & 2242 \\
\hline \multirow[t]{3}{*}{a.} & Operating Voltage & 2-16V & 4-15V \\
\hline & Commercial Temp. & & \\
\hline & Range & \(-20^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{c.} & Supply Current & & \\
\hline & \(\mathrm{V}^{+}=5 \mathrm{~V}\) & 0.7 mA Max. & 7 mA Max. \\
\hline \multirow[t]{4}{*}{d.} & Pullup Resistors & & \\
\hline & TB Output & No & Yes \\
\hline & \(\div 2\) Output & No & Yes \\
\hline & \(\div 256\) Output & No & Yes \\
\hline \multirow[t]{3}{*}{e.} & Toggle Rate & 3.0 MHz & 0.5 MHz \\
\hline & Resistor to Inhibit & & \\
\hline & Oscillator & No & Yes \\
\hline \multirow[t]{2}{*}{g .} & Resistor in Series with Reset for & & \\
\hline & Monostable Operation & No & Yes \\
\hline \multirow[t]{2}{*}{h.} & Capacitor TB & & \\
\hline & Terminal for HF Operation & No & Sometimes \\
\hline
\end{tabular}

By selection of \(R\) and \(C\), a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows:

Figure 5.
By cascading devices, use of low cost CMOS AND/ OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, autoatic lubrication systems, etc.

\section*{ICM7242}

\section*{SEQUENCE TIMING}
- Process Control
- Machine Automation
- Electro-pneumatic Drivers
- Multi-operation (Serial or Parallel controlling)

\section*{SEQUENCE TIMER:}

Figure 6.
CHIP TOPOGRAPHY (.068" \(\times .069\) ")

\title{
8-Character 14-/16-Segment Alphanumeric LED Display Driver
}

\section*{FEATURES}
- 14- and 16 -segment fonts with decimal point
- Mask programmable for other font-sets up to 64 characters
- Microprocessor compatible
- Directly drives small common cathode displays
- Cascadable without additional hardware
- Standby feature turns display off; puts chip in low power mode
- Serial entry or random entry of data into display
- Single +5V operation
- Character and segment drivers, all MUX scan circuitry, \(8 \times 6\) static memory and 64-character ASCII font generator included on-chip

\section*{GENERAL DESCRIPTION}

The ICM7243 is an 8-character alphanumeric display driver and controller which provides all the circuitry required to interface a microprocessor or digital system to a 14 - or 16 -segment display. It is primarily intended for use in microprocessor systems, where it offloads the processor and minimizes hardware and software overhead. Incorporated on-chip are a 64-character ASCII decoder, an \(8 \times 6\) memory, the high power character and segment drivers, and the multiplex scan circuitry.

Six-bit ASCII data to be displayed is written into the memory directly from the microprocessor data bus. Data location depends upon the selection of either Serial (MODE \(=1\)) or Random (MODE \(=0\)). In the Serial Access mode the first entry is stored in the lowest location and displayed in the "leftmost" character position. Each subsequent entry is automatically stored in the next higher location and displayed to the immediate "right" of the previous entry. A DISPlay FULL signal is provided after 8 entries; this signal can be used for cascading. A \(\overline{C L e a R}\) pin is provided to clear the memory and reset the location counter. The Random Access mode allows the processor to select the memory address and display digit for each input word.

The character multiplex scan runs whenever data is not being entered. It scans the memory and CHARacter drivers, and ensures that the decoding from memory to display is done in the proper sequence. Intercharacter blanking is provided to avoid display ghosting.

ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Part \\
Number
\end{tabular} & \begin{tabular}{c}
Display \\
Segments
\end{tabular} & Package & \begin{tabular}{c}
Order \\
Number
\end{tabular} \\
\hline ICM7243A & 16 + d.p. & 40 Pin CERDIP & ICM7243AIJL \\
\hline ICM7243B & 14 + d.p. & 40 Pin CERDIP & ICM7243BIJL \\
\hline ICM7243B EV/KIT & Kit with Display & ICM7243B EV/KIT \\
\hline
\end{tabular}

\section*{PIN CONFIGURATIONS}
SEG

\section*{ABSOLUTE MAXIMUM RATINGS}

Supply Voltage 6 V
CHARacter Output Current. 300 mA
SEGment Output Current . 30mA
Input Voltage (Any Terminal) (V \(\left.{ }^{+}+0.3 \mathrm{~V}\right)\) to -0.3 V

Power Dissipation... 1 W
Operating Temperature Range \(. \ldots \ldots-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{OPERATING CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & \\
\hline Supply Voltage & \(\mathrm{V}^{+}\) & & 4.75 & 5.0 & 5.25 & V \\
\hline Operating Supply Current & \(\mathrm{I}^{+} \mathrm{OP}^{\text {+ }}\) & \(\mathrm{V}^{+}=5.25 \mathrm{~V}, 10\) Segments ON, All 8 Characters & & 180 & , & mA \\
\hline Quiescent Supply Current & \(1_{Q}{ }^{+}\) & \(\mathrm{V}^{+}=5.25 \mathrm{~V}, \mathrm{OSC} / \overline{\mathrm{OFF}}\) Pin <1V & & 30 & 250 & \(\mu \mathrm{A}\) \\
\hline Input High Voltage & \(\mathrm{V}_{\mathrm{IH}}\) & & 2 & & & V \\
\hline Input Low Voltage & \(\mathrm{V}_{\text {IL }}\) & & & & 0.8 & V \\
\hline Input Current & \(\mathrm{I}_{\text {IN }}\) & \[
\begin{aligned}
\mathrm{V}^{+}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}} & =5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{IL}} & =0 \mathrm{~V}
\end{aligned}
\] & -1 & & +1 & \(\mu \mathrm{A}\) \\
\hline CHARacter Drive Current & \(\mathrm{I}_{\text {CHAR }}\) & \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=i^{\top} \mathrm{V}\) & 140 & 190 & & mA \\
\hline CHARacter Leakage Current & \(\mathrm{I}_{\text {CHLK }}\) & & & & & \(\mu \mathrm{A}\) \\
\hline SEGment Drive Current & \(\mathrm{I}_{\text {SEG }}\) & \(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}\) & 14 & 19 & & mA \\
\hline SEGment Leakage Current & \(\mathrm{I}_{\text {SLK }}\) & & & 0.01 & & \({ }_{\mu} \mathrm{A}\) \\
\hline DISPlay FULL Output Low & \(\mathrm{V}_{\mathrm{OL}}\) & \(\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}\) & & & 0.4 & V \\
\hline DISP.lay FULL Output High & \(\mathrm{V}_{\mathrm{OH}}\) & \(\mathrm{I}_{\mathrm{IH}}=100 \mu \mathrm{~A}\) & 2.4 & & & V \\
\hline Display Scan Rate & \(f_{\text {ds }}\) & & & 400 & & Hz \\
\hline
\end{tabular}

AC CHARACTERISTICS (Drive levels 0.4 V and 2.4 V , timing measured at 0.8 V and 2.0 V)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\overline{\mathrm{WR}}\), \(\overline{\mathrm{CLeaR}}\) Pulse Width Low & tWPI & & 250 & & & \multirow{8}{*}{ns} \\
\hline \(\overline{\text { WR, }}\) CLeaR Pulse Width High & twPh & & 250 & & & \\
\hline Data Hold Time & ton & & 0 & -20 & & \\
\hline Data Setup Time & tDs & & 250 & 150 & & \\
\hline Address, SEN, MODE Hold Time & \({ }^{\text {t }}\) A & & 125 & 80 & & \\
\hline Address, SEN, MODE Setup Time & \({ }^{\text {t As }}\) & & -20 & & & \\
\hline CS, \(\overline{C S}\) Setup Time & \({ }^{\text {c }}\) cs & & 0 & & & \\
\hline Pulse Transition Time & \({ }_{t}\) & & & & 100 & \\
\hline
\end{tabular}

\section*{CAPACITANCE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & TEST & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance & & & & pF \\
\hline \(\mathrm{C}_{\mathrm{O}}\) & Output Capacitance & & & & pF \\
\hline
\end{tabular}

\section*{TYPICAL PERFORMANCE CURVES}

SEGment Current vs Output Voltage

CHARacter Current vs Output Voltage

ICM7243A/B DISPLAY FONT, SEGMENT ASSIGNMENTS Note: Some display manufacturers use different designations for some of the segments. Check data sheets carefully.

ICM7243A
16-Segment Character Font with Decimal Point
\&

NOTE: Segments a and d appear as 2 segments each, but both halves are driven together.
ICM7243B
14-Segment Character Font with Decimal Point

Data Entry Timing
\begin{tabular}{|c|c|c|c|c|c|}
\hline SIGNAL & PIN & FUNCTION & SIGNAL & PIN & FUNCTION \\
\hline \(\mathrm{D}_{0}-\mathrm{D}_{5}\) & \[
\begin{aligned}
& 10-15 \\
& (8-13)
\end{aligned}
\] & Six-Bit ASCII Data input pins (active high). & \multirow[t]{3}{*}{\(\mathrm{A}_{1} / \overline{\text { CleaR }}\)} & \multirow[t]{3}{*}{29} & In RA mode this is the second bit of the address. In SA \\
\hline CS, \(\overline{C S}\) & \[
\begin{gathered}
16 \\
(14-16)
\end{gathered}
\] & Chip Select for decoding from \(\mu \mathrm{P}\) address bus, etc. & & & mode, a low input will CLeaR the Serial Address Counter, \\
\hline \multirow[t]{2}{*}{\(\overline{W R}\)} & \multirow[t]{2}{*}{17} & WRite pulse input pin (active low). For an active high write & & & the Data Memory and the display. \\
\hline & & pulse, CS can be used, and \(\overline{W R}\) can be used as \(\overline{C S}\). & A \(_{2} /\) DISPlay FULL & 28 & In RA mode this is the MSB of the Address. In SA mode, \\
\hline \multirow[t]{2}{*}{MODE} & \multirow[t]{2}{*}{31} & Selects data entry MODE. High selects Serial Access (SA) mode where first entry is & & & the output goes high after eight entries, indicating DIS Play FULL. \\
\hline & & displayed in "leftmost" character and subsequent entries appear to the "right". Low selects the Random Access (RA) mode where data is displayed on the character addressed via \(A_{0}-A_{2}\) Address pins. & OSC/OFF & 27 & OSCillator input pin. Adding capacitance to \(\mathrm{V}^{+}\)will lower the internal oscillator frequency. An external oscillator is also applied to this pin. A low puts the display controller/driver into a quiescent mode, shutting OFF \\
\hline \multirow[t]{3}{*}{\(A_{0} /\) SEN} & \multirow[t]{3}{*}{30} & In RA mode it is the LSB of the character Address. In SA mode it is used for cascad- & & & the display and oscillator but retaining data stored in memory. \\
\hline & & ing display driver/controllers for displays of more than 8 & SEG \({ }_{\text {a }}\)-SEGm, D.P. & \[
\begin{gathered}
2-9(7), \\
32-40
\end{gathered}
\] & SEGment driver outputs. \\
\hline & & characters (active high enables driver controller). & CHARacter 1-8 & \[
\begin{aligned}
& 18-21, \\
& 23-26
\end{aligned}
\] & CHARacter driver outputs. \\
\hline
\end{tabular}

\section*{BLOCK DIAGRAM}

\section*{DETAILED DESCRIPTION OF OPERATION}

WR, CS, CS. These pins are immediately functionally ANDed, so all actions described as occurring on an edge of \(\overline{W R}\), with CS and \(\overline{C S}\) enabled, will occur on the equivalent (last) enabling or (first) disabling edge of any of these inputs. The delays from CS pins are slightly (about 5nsecs) greater than from \(\overline{W R}\) or \(\overline{\mathrm{CS}}\) due to the additional inverter required on the former.

MODE. The MODE pin input is latched on the falling edge of \(\overline{W R}\) (or its equivalent, see above). The location in Data Memory where incoming data will be placed is determined either from the Address pins or the Serial Address Counter, under control of this latch, which also controls the function of \(A_{0} /\) SEN, \(A_{1} / \overline{C L R}\), and \(A_{2} /\) DISPlay FULL.

Random Access Mode. When the internal mode latch is set for Random Access (RA) (MODE latched low), the Address input on \(A_{0}, A_{1}\), and \(A_{2}\) will be latched by the falling edge of \(\overline{W R}\) (or its equivalent). Subsequent changes on the Address lines
will not affect device operation. This allows use of a multiplexed 6 -bit bus controlling both address and data, with timing controlled by WR.

Serial Access Mode. If the internal latch is set for Serial Access (SA), (MODE latched high), the Serial ENable input on SEN will be latched on the falling edge of \(\overline{W R}\) (or its equivalent). The \(\overline{C L R}\) input is asynchronous, and will force-clear the Serial Address Counter to address 000 (CHARacter 1), and set all Data Memory contents to 100000 (blank) at any time. The DISPlay FULL output is always active in SA mode also, and indicates the overflow status of the Serial Address Counter. If this output is low, and SEN is (latched as) high, the contents of the Counter will be used to establish the Data Memory location for the Data input. The Counter is then incremented on the rising edge of WR. If SEN is low, or DISPlay FULL is high, no action will occur. This allows easy "daisychaining" of display drivers for multiple character displays in a Serial Access mode.

\section*{TEST CIRCUIT (ICM7243A SHOWN)}

Changing Modes. Care must be exercised in any application involving changing from one mode to another. The change will occur only on a falling edge of \(\overline{W R}\) (or its equivalent). When changing mode from Serial Access to Random Access, note that \(A_{2} /\) DISPlay FULL will be an output until WR has fallen low, and an Address drive here could cause a conflict. When changing from Random Access to Serial Access, \(A_{1} / \overline{\mathrm{CLR}}\) should be high to avoid inadvertent clearing of the Data Memory and Serial Address Counter. DISPlay FULL will become active immediately after the falling edge of \(\overline{W R}\).
Data Entry. The input Data is latched on the rising edge of \(\overline{W R}\) (or its equivalent) and then stored in the Data Memory location determined as described above. The six Data bits can be multiplexed with the Address information on the same lines in Random Access mode. Timing is controlled by the \(\overline{\mathrm{WR}}\) input.
OSCIOFF. The device includes a one-pin relaxation oscillator with an internal capacitor and a nominal frequency of 200 kHz . By adding external capacitance to \(\mathrm{V}^{+}\)at the OSC/OFF pin, this frequency can be reduced as far as desired. Alternatively, an external signal can be injected on this pin. The oscillator (or external) frequency is pre-divided by 64, and then further divided by 8 in the Multiplex Counter, to drive the CHARacter strobe lines (see Display Output). An intercharacter blanking signal is derived from the pre-divider. An additional comparator on the OSC/OFF input detects a level lower than the relaxation osciliator's range, and blanks the display, disables the DISPlay FULL output (if active), and
clears the pre-divider and Multiplex Counter. This puts the circuit in a low-power-dissipation passive condition in which all outputs are effectively open circuits, except for parasitic diodes to the supply lines. Thus a display connected to the output may be driven by another circuit (including another ICM7243) without driver conflicts.

Display Output. The address output of the Multiplex Counter is multiplexed into the address input of the Data Memory, except during \(\overline{W R}\) operations (in Serial Access mode, with SEN high and DISPlay FULL low), to control display operations. The address decoder also drives the CHARacter outputs, except during the inter-character blanking interval (nominally about \(5 \mu \mathrm{sec}\)). Each CHARacter output lasts nominally about \(300 \mu \mathrm{sec}\), and is repeated nominally every 2.5 msec , i.e., at a 400 Hz rate (times are based on internal oscillator without external capacitor).

The 6 bits read from the Data Memory are decoded in the ROM to the 17 (15 for ICM7243B) segment signals, which drive the SEGment outputs. Both CHARacter and SEGment outputs are disabled during \(\overline{W R}\) operations (with SEN high and DISPlay FULL low for Serial Access mode). The outputs may also be disabled by pulling OSC/ \(\overline{O F F}\) low.

The decode pattern from 6 bits to 17 (15) segments is done by a ROM pattern according to the ASCII font shown. Custom decode patterns can be arranged, within these limitations, by consultation with the factory.

\section*{APPLICATIONS}

Figure 1. Multicharacter Display using Serial Access Mode

\section*{APPLICATIONS (Continued)}

Figure 2. Driving Two Rows of Characters from a Serial Input. UART converts data stream to parallel bytes. Bit 7 of each word sets which row data will be entered into. Bit 8 will blank and reset whole display if low. Each MODE pin should be tied high. ICM7243A can also be used, with inverter on RBR7 for one row.

Figure 3. Random Access 32-Character Display in MCS-48 system. One port line controls \(A_{2}\), other two are CS lines. 8 -bit data bus drives 6 data and 2 address lines. MODE should be GrouNDed on each part.

APPLICATIONS (Continued)

Figure 4. A 48-Character Random Access Display. 12 -bit bus split into 6 bits data, 3 bits address within chip, and 3 bits chip address. Inverting one of these chip address lines allows selection of one of 6 chips without decode, using CS and \(\overline{\text { CS }}\) lines on ICM7243B. Standard 1-of-8 decoder can select 64-character array using ICM7243A/B. WRITE 2 can be used for another row in either case.

\section*{APPLICATIONS \\ (Continued)}

(5a.) Common Cathode Displays

(5b.) Common Anode Displays

Figure 5. Driving Large Displays. The circuits of Figures \(5 a\) and \(5 b\) can be used to drive 0.5 " or larger alphanumeric displays, either common cathode (5a) or common anode (5b).

\section*{COMPONENT SELECTION}

Displays suitable for use with the ICM7243 may be obtained from the following manufacturers; among others:
Hewlett Packard Components, Palo Alto, California (415) 857-6620 (part \#HDSP6508, HDSP6300)

General Instruments Inc., Palo Alto, California (415) 493-0400 (part \#MAN2815)

Texas Instruments Inc., Dallas, Texas (214) 995-6611 (part \#HDSP6508) A.N.D., Burlingame, California (415) 347-9916 (part \#AND370R)

IEE Inc., Van Nuys, California
(213) 787-0311 (part \#LR3784R)

\section*{ICM7243A}

'ICM7243B

\title{
INIMERIL
}

\section*{FEATURES}
- LCD Dot Matrix Column Driver
- 40 High Voltage LCD Column Drive Outputs For Up to \(8 \mathbf{5 x N}\) Characters per IC
- Easy Interface
-Serial Input Shift Register With parallel latch and carry outputs
- Directly Compatible with ICM7280 Row Driver -Up to 10 ICM7281's can be driven by an ICM7280 with no external components
- Low Resistance Outputs
-Can drive both columns and rows of LCD graphics displays
- Will Drive 1.5V Threshold LCDs with Only. Single 5V Supply
-Can drive up to 4.5 V threshold LCDs with 15V V DISP

\section*{GENERAL DESCRIPTION}

The ICM7281 LCD Dot Matrix Column Driver is designed to convert a serial data stream into drive signals for a multiplexed dot matrix LCD. Easily cascadable, up to 10 ICM7281's can be driven by one ICM7280 Intelligent Row Driver to make an 80 character dot matrix display. The ICM7281 also serves as both a Row Driver and Column Driver in LCD dot matrix graphics displays. The low output resistance and the 15 V drive capability make it well suited for graphics displays with up to \(256 \times 256\) dots (with 10pF/dot capacitance).

The ICM7281 consists of a 40 bit shift register, a 40 bit latch and 40 level-shifters/drivers. The 4 display drive voltages are generated externally, usually by a Row Driver. A serial data interface is used to minimize the number of pins needed for digital interfacing. Two data Carry Outputs are included for cascading several ICM728's to drive large LCD displays.

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline No. Of Columns & Package & Order Number \\
\hline 30 & 40 Pin Plastic & ICM7281IPL \\
40 & Dice & ICM72811/D \\
40 & \begin{tabular}{c}
\(52-64\) Pin Plastic \\
Flatpack
\end{tabular} & - \\
\hline
\end{tabular}

\section*{TYPICAL APPLICATIONS}
- Column Drivers for Dot Matrix Alphanumeric Displays using ICM7280 Row Driver
- Row and Column Drivers for LCD Dot Matrix Graphics Displays
- Segment Driver for LCD Bargraphs and Annunciators
- Serial Input I/O Expander
PIN CONFIGURATIONS (Outline dwg. PL)

\section*{ICM7281}

\section*{ABSOLUTE MAXIMUM RATINGS}

Display Voltage (\(\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DISP}}\right) \ldots \ldots18 \mathrm{~V}\)
Input Voltage (Note 1) \(\ldots \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\)
Power Dissipation (Note 2) 0.3W @ \(+85^{\circ} \mathrm{C}\)
Operating Temperature Range \(\ldots-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range....\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(\mathrm{V}_{2}, \mathrm{~V}_{3}\)
\(V_{\text {DISP }}\) to \(V_{C C}\)

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: Due to the SCR structure inherent in any junction isolated CMOS device, connecting an input to any voltage greater than \(\mathrm{V}_{\mathrm{CC}}\) or less than ground may cause destructive device latch-up. If the input voltage can exceed the recommended range, the input should be limited to less than 1 mA to avoid latch-up.
NOTE 2: This limit refers to that of the package and will not occur during normal operation.

\section*{OPERATING CHARACTERISTICS}
\(\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {DISP }}=-10 \mathrm{~V}, \mathrm{~V}_{2}=1 / 3\left(\mathrm{~V}_{C C}-\mathrm{V}_{\mathrm{DISP}}\right) . \mathrm{V}_{3}=2 / 3\left(\mathrm{~V}_{C C}-\mathrm{V}_{\mathrm{DISP}}\right), \mathrm{V}_{S S}=0 \mathrm{~V}\right.\),
\(T_{A}=-20\) to \(+85^{\circ} \mathrm{C}\)) Unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Conditions & Min. & Typ. & Max. & Units \\
\hline \multicolumn{7}{|c|}{SUPPLY CHARACTERISTICS} \\
\hline Operating Supply Range & V SUPP & \(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}\) & 4.5 & 5.0 & 5.5 & V \\
\hline Display Voltage & \(\mathrm{V}_{\text {DISP }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{DISP}}<(\mathrm{V} 2, \mathrm{~V} 3)<\mathrm{V}_{\mathrm{CC}}
\end{aligned}
\] & - 10 & & \(\mathrm{V}_{\mathrm{Cc}}\) & V \\
\hline Supply Current Quiescent Dynamic & \[
\begin{aligned}
& \text { Icc } \\
& \text { Ic }
\end{aligned}
\] & \[
\begin{aligned}
& F_{C L K}=0 \\
& F_{C L K}=500 \mathrm{KHz}
\end{aligned}
\] & & \[
\begin{gathered}
.1 \\
450
\end{gathered}
\] & \[
\begin{gathered}
10 \\
1000
\end{gathered}
\] & uA \\
\hline \multicolumn{7}{|c|}{INPUT CHARACTERISTICS} \\
\hline Logic 1 Input Range & \(\mathrm{V}_{\mathrm{IH}}\) & DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL & \(0.7 \mathrm{~V}_{\mathrm{CC}}\) & : & \(\mathrm{V}_{\mathrm{Cc}}\) & V \\
\hline Logic 0 Input Voltage & \(\mathrm{V}_{\text {IL }}\) & DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL & 0 & & \({ }^{0.3 V_{C C}}\) & V \\
\hline Input Current & IN & DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL
\[
0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}
\] & -5 & 0.01 & 5 & uA \\
\hline Input Capacitance & \(\mathrm{C}_{\text {IN }}\) & DATA INPUT, DATA LATCH, CLOCK and DISPLAY CONTROL Dice Plastic Packaged Parts & & \[
\begin{aligned}
& 3 \\
& 5
\end{aligned}
\] & & pF \\
\hline \multicolumn{7}{|c|}{OUTPUT CHARACTERISTICS, CARRY OUTPUTS} \\
\hline Output High Voltage & \(\mathrm{V}_{\mathrm{OH}}\) & No Load
\[
\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}
\] & \[
\begin{gathered}
v_{c c}- \\
0.05 \\
2.4
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}} \\
4.9
\end{gathered}
\] & & \\
\hline Output Low Voltage & \(\mathrm{V}_{\text {OL }}\) & No Load \(\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}\) & & \[
\begin{gathered}
0 \\
0.16
\end{gathered}
\] & \[
\begin{gathered}
0.05 \\
0.4 \\
\hline
\end{gathered}
\] & V \\
\hline
\end{tabular}

\section*{ICM7281}

\section*{OPERATING CHARACTERISTICS (continued)}
\(\left(\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DISP}}=-10 \mathrm{~V}, \mathrm{~V}_{2}=1 / 3\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DISP}}\right), \mathrm{V}_{3}=2 / 3\left(\mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{V}_{\mathrm{DISP}}\right), \mathrm{V}_{S S}=0 \mathrm{~V}\right.\),
\(\mathrm{T}_{\mathrm{A}}=-20\) to \(+85^{\circ} \mathrm{C}\)) Unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Conditions & Min. & Typ. & Max. & Units \\
\hline \multicolumn{7}{|c|}{OUTPUT CHARACTERISTICS, COLUMN OUTPUTS} \\
\hline Output Resistance & Rout1 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {DISP }}=10 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{OUT}}=0.1 \mathrm{~mA}, \\
& \mathrm{~V}_{\mathrm{COL}}=0 \mathrm{~V}, 1 \text { Column } \mathrm{ON}
\end{aligned}
\] & & 1 & 2 & K Ohm \\
\hline Output Resistance & Rout2 & \begin{tabular}{l}
\[
V_{C C}-V_{D I S P}=10 \mathrm{~V}, \quad V_{C O L}=0 \mathrm{~V}
\] \\
IOUT \(=0.05 \mathrm{~mA}\) per Column \\
All Columns ON
\end{tabular} & & 150 & 250 & Ohm \\
\hline Column Rise Time & \(T_{R}\) & \(V_{C C}-V_{D I S P}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}\) per Column, \(0-63 \% \mathrm{~V} 3\) to \(\mathrm{V}_{\mathrm{CC}}\) or \(0.63 \%\) V2 to \(V_{\text {DISP }}\) One Column ON All Columns ON & & \[
\begin{aligned}
& 0.3 \\
& 1.5
\end{aligned}
\] & & \(\mu \mathrm{S}\) \\
\hline Column Fall Time & \(\mathrm{T}_{\mathrm{F}}\) & \(V_{C C}-V_{\text {DISP }}=10 \mathrm{~V}, C_{L}=150 \mathrm{pF}\) per Column, \(0-63 \% \mathrm{~V}_{\mathrm{CC}}\) to V 3 or \(0.63 \% V_{\text {DISP }}\) to V 2 One Column ON All Columns ON & & \[
\begin{aligned}
& 0.3 \\
& 1.5
\end{aligned}
\] & & \(\mu \mathrm{S}\) \\
\hline \multicolumn{7}{|c|}{AC CHARACTERISTICS (See Timing Diagram)} \\
\hline Data Setup & \(\mathrm{T}_{\mathrm{ds}}\) & & 150 & 90 & & ns \\
\hline Data Hold & \(\mathrm{T}_{\mathrm{dh}}\) & & 0 & -20 & & ns \\
\hline Data Latch Width & \(\mathrm{T}_{\text {Iw }}\) & & 250 & 100 & & ns \\
\hline Data Latch Setup & \(T_{\text {Is }}\) & & 625 & 250 & & ns \\
\hline Data Latch Hold & \(\mathrm{T}_{\text {lh }}\) & & 100 & & & ns \\
\hline Clock Frequency & \(\mathrm{F}_{\mathrm{clk}}\) & & 0 & 2 & 1 & MHz \\
\hline Clock High Period & \(\mathrm{T}_{\mathrm{ch}}\) & & 500 & & & ns \\
\hline Clock Low Period & \(\mathrm{T}_{\mathrm{cl}}\) & & 500 & & & ns \\
\hline Carry Prop Delay & \(\mathrm{T}_{\mathrm{pd}}\) & \(C_{L}=15 \mathrm{pF}\) & & 200 & 350 & ns \\
\hline
\end{tabular}

\section*{ICM7281}

TYPICAL PERFORMANCE CURVES, \(25^{\circ} \mathrm{C}\)

OUTPUT RESISTANCE vs. VISPLAY

ICM7281 COLUMN DRIVER BLOCK DIAGRAM

\section*{ICM7281}

\section*{DETAILED DESCRIPTION}

\section*{Data Interface}

To reduce the pincount, the data interface is serial. The data on DATA INPUT is shifted into the shift register with each falling edge of CLOCK. The data in the shift register is also shifted one bit with each falling edge of CLOCK. The data in the 20th and 40th registers is available as COL 20 OUTPUT and COL 40 OUTPUT on the ICM7281 dice. The packaged part has only one CARRY OUTPUT, which is the 30th column. These outputs are normally used as the DATA INPUT for an adjacent ICM7281.

The DATA LATCH input is used to transfer data from the shift register to the 40 bit latch, which consists of 40 negative edge-triggered D flip-flops. The data in the shift register is stored by the falling edge of DATA LATCH and this latched data will be held until the next falling edge of DATA LATCH.

The DISPLAY CONTROL pin is used to convey multiplex timing information to the Column Drivers.

This input is used as one of the two control inputs to the 1 of 4 analog multiplexer that drives each column output.

Figure 1 shows a typical interface between an array of ICM7281's and the ICM7280 Intelligent Row Driver. The Column Driver also readily interfaces with microprocessors, as shown in the block diagram of a graphics display, Figure 2.

\section*{LCD Interface}

The ICM7281 uses a modified Alt and Pleshko multiplexing scheme, in which the Column Driver uses 4 voltages: \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{2}, \mathrm{~V} 3\), and \(\mathrm{V}_{\text {DISP }}\). These drive voltages are generated externally, usually by the ICM7280 Intelligent Row Driver. Each column output is driven by an analog multiplexer. The truth table and a schematic of this multiplexer are shown in Figure 3. The column data is the data that is serially loaded into the shift register, then parallel loaded into the data latch. The DISPLAY CONTROL signal, generated by the ICM7280 Row Driver, tells the ICM7281 which half of the mux cycle is occuring.

Figure 1. Alphanumeric LCD Display System

Figure 2. ICM7281 Column Driver Used in a Graphics Application

COLUMN OUTPUT MULTIPLEXER AND TRUTH TABLE

Figure 3. Column Output Multiplexer and Truth Table

\section*{LCD MULTIPLEXING}

\section*{Multiplexing Schemes}

The goal in LCD multiplexing is to increase the number of segments a given number of column lines can drive, while not unacceptably degrading the viewability of the LCD display. Increasing the number of rows driven by a column decreases the ratio between the voltage across an ON segment and the voltage across an OFF segment. This ON/OFF voltage ratio is critical since the contrast of an LCD segment is determined by the RMS voltage across that segment. Figure 4 shows a typical curve of RMS voltage vs. contrast. For an acceptable display, the RMS OFF voltage must be below the \(10 \%\) contrast point and the RMS ON voltage must be above the \(50 \%\) contrast point. The RMS on voltages for different multiplex ratios are also shown in figure 4. Note that as the number of rows or backplanes goes up, the RMS on voltage decreases.

The ICM7281 can drive either columns or rows using the modified Alt and Pleshko waveforms as shown in figure 5. The ON/OFF voltage ratio formula and the
calculated values for common multiplex ratios are shown in table 1 . Table II shows the optimum voltages for V1 to V5 for different multiplex ratios.

\section*{Temperature Effects and Temperature Compensation of \(V_{\text {DISP }}\)}

The performance of LCD fluids is affected by temperature in two ways. The response time of the display to changes in applied RMS voltage gets longer as the display temperature drops. At very low temperatures some displays may take several seconds to change to a new character after the new information appears at the LCD driver outputs. However, for most applications above \(0^{\circ} \mathrm{C}\) this will not be a problem, and for low temperature applications, high-speed liquid crystal materials are available. High temperature operation is generally limited by long term degradation of the polarizer and the sealing materials above \(70^{\circ} \mathrm{C}\) or \(85^{\circ} \mathrm{C}\).

Table 1. OPTIMUM MULTIPLEX DRIVE
\begin{tabular}{|c|c|c|c|}
\hline Rows & VoN/OFF & \begin{tabular}{c}
Alt and Pleshko \\
\(\mathbf{V}_{\text {CCV }}-V_{\text {Display/V }}\)
\end{tabular} & \begin{tabular}{c}
ICM7280/ICM7281 \\
\(\mathbf{V}_{\text {CC }}-V_{\text {Display/V }}\)
\end{tabular} \\
\hline 4 & 1.73 & 4 & 3 \\
7 & 1.488 & 4.74 & 3.27 \\
8 & 1.447 & 4.97 & 3.37 \\
9 & 1.414 & 5.20 & 3.46 \\
10 & 1.387 & 5.41 & 3.56 \\
12 & 1.346 & 5.81 & 3.74 \\
16 & 1.315 & 6.18 & 3.917 \\
32 & 1.290 & 6.532 & 4.08 \\
64 & 1.196 & 8.817 & 5.19 \\
\hline 1.134 & 12.01 & 6.804 \\
\hline
\end{tabular}

Figure 5.

Table II. Optimum Drive Voltages
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathbf{N}\) & V1 & V2 & V3 & V4 & V5 & \begin{tabular}{c}
ON/OFF \\
VOLTAGE \\
RATIO
\end{tabular} \\
\hline 4 & 1.000 & 2.000 & 1.000 & 2.000 & 3.000 & 1.732 \\
5 & 0.951 & 1.902 & 1.176 & 2.127 & 3.078 & 1.618 \\
6 & 0.919 & 1.838 & 1.332 & 2.252 & 3.171 & 1.543 \\
7 & 0.897 & 1.793 & 1.476 & 2.372 & 3.269 & 1.488 \\
8 & 0.879 & 1.759 & 1.608 & 2.488 & 3.367 & 1.447 \\
9 & 0.866 & 1.732 & 1.732 & 2.598 & 3.464 & 1.414 \\
10 & 0.855 & 1.710 & 1.849 & 2.704 & 3.559 & 1.387 \\
11 & 0.846 & 1.692 & 1.960 & 2.806 & 3.652 & 1.365 \\
12 & 0.838 & 1.677 & 2.066 & 2.904 & 3.743 & 1.346 \\
16 & 0.816 & 1.633 & 2.449 & 3.266 & 4.082 & 1.291 \\
20 & 0.802 & 1.605 & 2.786 & 3.589 & 4.391 & 1.255 \\
24 & 0.793 & 1.585 & 3.090 & 3.883 & 4.676 & 1.23 \\
30 & 0.782 & 1.564 & 3.502 & 4.284 & 5.066 & 1.203 \\
32 & 0.779 & 1.559 & 3.629 & 4.409 & 5.188 & 1.196 \\
40 & 0.771 & 1.541 & 4.103 & 4.874 & 5.645 & 1.173 \\
48 & 0.764 & 1.529 & 4.332 & 5.296 & 6.061 & 1.156 \\
54 & 0.761 & 1.522 & 4.830 & 5.590 & 6.351 & 1.147 \\
64 & 0.756 & 1.512 & 5.292 & 6.047 & 6.803 & 1.134 \\
\hline
\end{tabular}

The temperature effect most important in the \(0.70^{\circ} \mathrm{C}\) range is the variation of threshold voltage with temperature. For typical liquid crystal materials, the threshold voltage, \(\mathrm{V}_{\text {THRESH }}\), has temperature coefficient of -7 to \(-14 \mathrm{mV} /{ }^{\circ} \mathrm{C}\). Since the \(\mathrm{V}_{\text {DISP }}\) is 3.27 times \(\mathrm{V}_{\text {THRESH }}\) (for 7 row multiplex, see Table 1), the \(V_{\text {DISP }}\) has a tempco of about -25 to \(-50 \mathrm{mV} /{ }^{\circ} \mathrm{C}\), depending on LCD fluid tempco. As can be seen in Figure 4, for optimum viewability and contrast ratio, the driving voltage must be accurately matched to the LCD threshold voltage. If a significant variation is temperature is expected, a method of adjusting the \(V_{\text {DISP }}\) must be provided. Figure 6 uses the ICL7663 voltage regulator to independently set \(\mathrm{V}_{\text {DISP }}\) and the tempco of \(\mathrm{V}_{\text {DISp. }}\). The Vbe multiplier circuit of Figure 7 can be used with some displays. Since the Vbe multiplier's voltage and tempco cannot be independently adjusted, the Vbe multiplier is suitable only for use over a limited temperature range or with a display whose \(V_{\text {DISP }}\) tempco matches the Vbe multiplier tempco.

With the fluids now available for 32 and 64 multiplex operation it is quite common to have a "Contrast" adjustment accessible to the user. This "Contrast" adjustment varies the \(\mathrm{V}_{\text {DISP }}\) to compensate for both temperature variations and for variations in the viewing angle.

\section*{Multiplex Rate and Maximum Drive Capability}

The minimum multiplex rate is determined by the response time of the LCD. To avoid flicker, the mux rate should be above 30 Hz . The maximum multiplex rate is determined by power dissipation limits and the drive capability of the ICM7281.

The drive capability of the ICM7281 indirectly sets the upper limit of the mux rate. The absolute maximum limit of DC voltage across an LCD is usually specified as 50 mV . As the multiplex rate increases, any asymmetry in the rise and fall times will cause a DC offset, in addition to any offset caused by V2 and V3 not being exactly symmetrical with respect to \(\mathrm{V}_{\text {DISP }}\) and \(V_{\text {CC. }}\). The ICM7281 was designed to have equal rise and fall times, as well as low resistance drivers which make the rise and fall times short. This allows the ICM7281 to drive over 2000pF at mux rate of 100 Hz . Normally an LCD dot matrix display will have less than 1000 pF capacitance per 40 columns (each ICM7281 drive 40 columns).

Figure 6. \(\mathrm{V}_{\mathrm{DISP}}\) Generator

Figure 7. \(\mathrm{V}_{\mathrm{BE}}\) Multiplier

\section*{POWER DISSIPATION}

The power dissipation of a display system driven by the ICM7281 has several components:
1) Quiescent or DC power dissipation of the ICM7281
2) Dynamic or AC power dissipation of the ICM7281
3) Power consumed in driving the LCD display.

\section*{ICM7281 Power Dissipation}

The quiescent current of the ICM7281 is very low, typically less than \(1 \mu \mathrm{~A}\), and can generally be ignored. The dynamic current is proportional to the clock frequency, with a typical value of 1.0 mA per MHz . This means that at a 500 KHz clock the dynamic current will be 0.5 mA .

\section*{LCD Display Drive Dissipation}

Since the LCD has very low leakage currents, most of the power used to drive the LCD is used to charge and discharge the LCD capacitance. The power is
\[
P_{L C D}=C V^{2} F_{E F F}
\]

Where:
\(P_{\text {LCD }}\) is the power dissipated in driving the display
C is the display capacitance
\(V\) is Voltage across the display
\(F\) is the effective multiplex frequency
The effective multiplex frequency ranges from \(F_{\text {MUX }}\) to \(N \times F_{\text {MUX }}\), where \(\mathrm{F}_{\text {MUX }}\) is the multiplex rate and N is the number of rows. The actual effective multiplex frequency is dependent on which characters or bit pattern is being displayed and is typically about \(N / 3 x\) \(\mathrm{F}_{\text {MUX }}\)

\section*{Low Power Shutdown}

If the data clock is stopped and the voltages across the LCD are not changing, the power consumption will drop to the 5 to 50 microwatt range. Set \(\mathrm{V}_{\text {DISP }}\), V2 and V 3 equal to \(\mathrm{V}_{\mathrm{CC}}\) to prevent permanent damage to the LCD display by a DC bias. An easy way to shutdown the display voltages is to use the SHUTDOWN pin of an ICL? 663, as shown in Figure 6.

\section*{APPLICATIONS}

\section*{Alphanumeric Display Using ICM7280 Intelligent Row Driver}

The ICM7280 Intelligent Row Driver is specifically designed to drive multiple ICM7281 LCD Column Drivers. Figure 1 shows a typical 80 character display. The ICM7280 and ICM7281's will drive either 7, 8, 9 or 10 row displays, with the characters having either 5 or 6 columns. The Row Driver receives ASCII data, converts that data to bit-by-bit column data for the ICM7281's and serially shifts data into the ICM7281's.

This process is repeated for each phase of the multiplex cycle. The ICL7663 provides a temperature compensated \(\mathrm{V}_{\text {DISP }}\) to the ICM7280 voltage divider, which generates the other voltage needed to drive the LCD display. For further details refer to the ICM7280 Intelligent LCD Row Driver data sheet.

\section*{LCD Graphics Display}

In this circuit, 'ICM7281's are used to drive both the rows and columns of the LCD dot matrix. An external controller is used to generate the row and column data that is serially transferred into the ICM7281's.

The display drive voltages are generated in a resistor divider network, with the ICL7663 providing the temperature compensated \(\mathrm{V}_{\text {DISP }}\). The optimum voltages for V1 through V5 can be calculated using the equations of figure 5 . Optimum voltages for common multiplex ratios are shown in Table II.

The LCD shown in Figure 2 is a 32 row display, divided into two sections of 16 rows to increase the ON/OFF RMS voltage ratio, thereby improving the contrast of the display. As LCD fluids improve it will become practical to use 32 or 64 row multiplexing, reducing the number of column drivers by a factor of 2 or 4.

As the number of rows increases, the \(\mathrm{V}_{\text {DISP }}\) required by the ICM7281's modified Alt and Pleshko multiplex scheme increases less than the VDISP required by a classic Alt and Pleshko multiplex scheme. For example: a 64 row display with a 1.45 V threshold would require +5 V and -12.4 V supplies using standard Alt and Pleshko multiplexing. The ICM7281 would require only +5 V and -4.9 V to drive this same display with 64 row multiplexing. This means that the negative voltage could easily be generated using a charge pump such as the ICL7660 or the onboard charge pump of the ICM7280.

\section*{Serial Input I/O Expander}

In addition to driving LCD's, the ICM7281 can be used as an I/O expander as shown in Figure 8. In this case, the data can be serially entered into the ICM7281 shift register using the 80C51 serial port. The 80C51 then transfers the data to the output latch by pulsing the DATA LATCH input with an I/O port line. Note that multiple ICM7281's can be cascaded to get more than 30 output lines. This cascading does not require any additional logic since the ICM7281 CARRY OUTPUTs are used.

DISPLAY CONTROL is tied to \(\mathrm{V}+\) so that the data on the column outputs is the same as the data that was entered. If DISPLAY CONTROL is grounded, the column outputs will be inverted data. With \(\mathrm{V}_{3}\) grounded, the logic level at the column outputs will be CMOS compatible, swinging from ground to \(\mathrm{V}+\). The output resistance of the column outputs is about 2 K ohms.

Figure 8. Serial I/O Expander 7281
PACKAGE OUTLINES All dimensions given in inches and (millimeters).

40 LEAD PLASTIC (PL)

DIE
CHIP TOPOGRAPHY

ICM7555/7556 CMOS

\section*{General Purpose Timers}

\section*{FEATURES}
- Exact equivalent in most cases for SE/NE555/ 556 or the 355.
- Low Supply Current - \(\quad 80 \mu\) A Typ. (ICM7555) 160 А Тур. (ICM7556)
- Extremely low trigger, threshold and reset currents - 20pA Typical
- High speed operation - \(\mathbf{5 0 0} \mathbf{~ k H z}\) guaranteed
- Wide operation supply voltage range guaranteed 2 to 18 volts
- Normal Reset function - No crowbarring of supply during output transition.
- Can be used with higherimpedance timing elements than regular 555/6 for longer RC time constants.
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- High output source/sink driver can drive TTL/CMOS
- Typical temperature stability of \(\mathbf{0 . 0 0 5} \%\) per \({ }^{\circ} \mathrm{C}\) at \(25^{\circ} \mathrm{C}\)
- Outputs have very low offsets, HI and LO

\section*{GENERAL DESCRIPTION}

The ICM7555/6 are CMOS RC timers providing significantly improved performance over the standard SE/NE555/6 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.
Specifically, the ICM7555/6 are stable controllers capable of producing accurate time delays or frequencies. The ICM7556 is a dual ICM7555, with the two timers operating independently of each other, sharing only \(\mathrm{V}^{+}\)and GND. In the one shot mode, the pulse width of each circuit is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor. Unlike the regular bipolar 555/6 devices, the CONTROL VOLTAGE terminal need not be decoupled with a capacitor. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink currents large enough to drive TTL loads, or provide minimal offsets to drive CMOS loads.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
APPLICATIONS \\
- Precision Timing \\
- Pulse Generation \\
- Sequential Timing \\
- Time Delay Generation \\
- Pulse Width Modulation \\
- Pulse Position Modulation \\
- Missing Pulse Detector
\end{tabular}}} & \multirow[t]{2}{*}{\begin{tabular}{l}
PIN CONFIGURATIONS (Top View) \\
(OUTLINE DRAWING TV)
\end{tabular}} \\
\hline & & & \\
\hline & & & \\
\hline ORDERING IN & NFORMATION & & \\
\hline ORDER
PART NUMBER & TEMPERATURE RANGE & PACKAGE & \\
\hline ICM7555IPA ICM7555ITV ICM7555MTV ICM7556IPD ICM7556MJD & \[
\begin{aligned}
& -20 \text { to }+85^{\circ} \mathrm{C} \\
& -20 \text { to }+85^{\circ} \mathrm{C} \\
& -55 \text { to }+125^{\circ} \mathrm{C} * \\
& -20 \text { to }+85^{\circ} \mathrm{C} \\
& -55 \text { to }+125^{\circ} \mathrm{C} *
\end{aligned}
\] & \[
\begin{aligned}
& 8 \text { Lead MiniDip } \\
& \text { TO-99 Can } \\
& \text { TO-99 Can } \\
& 14 \text { Lead Plastic DIP } \\
& 14 \text { Lead CERDIP } \\
& \hline
\end{aligned}
\] & \\
\hline ICM7555/D ICM7556/D & & DICE DICE & and 7 \(\square\) trigger (OUTLINE DRAWING JD, PD) \\
\hline
\end{tabular}

\footnotetext{
*Add \(/ 883 \mathrm{~B}\) to order number if 883 B processing is desired.
}

ABSOLUTE MAXIMUM RATINGS (NOTE 1)
Supply Voltage \(\frac{\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots}{\text { Trigger }}+18\) Volts
Input Voltage
Control Voltage \(\left.\frac{\text { Threshold }}{\text { Reset }}\right] \ldots \ldots \leq \mathrm{V}^{+}+0.3 \mathrm{~V}\) to \(\geq \mathrm{V}^{-}-0.3 \mathrm{~V}\)
\begin{tabular}{|c|c|}
\hline Output Current & 00mA \\
\hline Power Dissipation \({ }^{\text {i2 }}\) & ICM7556 300mW \\
\hline & ICM7555 200m \\
\hline
\end{tabular}

Operating Temperature Range \({ }^{12}\)
\begin{tabular}{|c|c|}
\hline ICM7555IPA & \(0^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline ICM7555ITV & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline ICM7556IPD & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline ICM7555MTV & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline ICM7556MJD & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline ature & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Solder & \\
\hline
\end{tabular}

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS \(\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+2\right.\) to +15 Voits unless other specified)

\section*{NOTES:}
1. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than \(\mathrm{V}+\) +0.3 V or less than \(\mathrm{V}^{-}-0.3 \mathrm{~V}\) may cause destructive latchup. For this reasen it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its power supply is established. In multiple systems, the supply of the ICM7555/6 must be turned on first.
2. Junction temperatures should not exceed \(135^{\circ} \mathrm{C}\) and the power dissipation must be limited to 20 mW at \(125^{\circ} \mathrm{C}\). Below \(125^{\circ} \mathrm{C}\) power dissipation may be increased to 300 mW at \(25^{\circ} \mathrm{C}\). Derating factor is approximately \(3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(7556)\) or \(2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(7555)\).
3. The supply current value is essentially independent of the TRIGGER, THRESHOLD and RESET voltages.
4. Parameter is not \(100 \%\) tested, Majority of all units meet this specification.

TYPICAL CHARACTERISTICS

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A
FUNCTION OF SUPPLY VOLTAGE

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

DISCHARGE OUTPUT CURRENT
AS A FUNCTION OF
DISCHARGE OUIPUT VOLTAGE

FREE RUNNING FREQUENCY AS A FUNCTION OF \(R_{A}, R_{B}\) and \(C\)

OUTPUT SOURCE CURRENT AS A FUNCTION OF OUTPUT VOLTAGE output voltage referenced to v-

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

PROPAGATION DELAY AS A FUNCTION OF
VOLTAGE LEVEL OF TRIGGER PULSE

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE (\% V)
time delay in the monostable MODE AS A FUNCTION OF RA AND C

\section*{APPLICATION NOTES}

\section*{general}

The ICM7555/6 devices are, in most instances, direct replacements for the NE/SE 555/6 devices. However, it is possible to effect economies in the external component count using the ICM7555/6. Because the bipolar 555/6 devices produce large crowbar currents in the output driver, it is necessary to decouple the power supply lines with a good capacitor close to the device. The 7555/6 devices produce no such transients. See Figure 2.

Figure 2. Supply Current Transient Compared with a Standard Bipolar 555 During an Output Transition

The ICM7555/6 produces supply current spikes of only 2-3 mA instead of \(300-400 \mathrm{~mA}\) and supply decoupling is normally not necessary. Secondly, in most instances, the CONTROL VOLTAGE decoupling capacitors are not required since the input impedance of the CMOS comparators on chip are very high. Thus, for many applications 2 capacitors can be saved using an ICM7555, and 3 capacitors with an ICM7556.

\section*{POWER SUPPLY CONSIDERATIONS}

Although the supply current consumed by the ICM7555/6 devices is very low, the total system supply can be high unless the timing components are high impedance. Therefore, use high values for \(R\) and low values for \(C\) in Figures 3 and 4.

\section*{OUTPUT DRIVE CAPABILITY}

The output driver consists of a CMOS inverter capable of driving most logic families including CMOS and TTL. As such, if driving CMOS, the output swing at all supply voltages will equal the supply voltage. At a supply voltage of 4.5 volts or more the ICM7555/6 will drive at least 2 standard TTL loads.

\section*{ASTABLE OPERATION}

The circuit can be connected to trigger itself and free run as a multivibrator, see Figure 3. The output swings from rail to rail, and is a true \(50 \%\) duty cycle square wave. (Trip points and output swings are symmetrical). Less than a \(1 \%\) frequency variation is observed, over a voltage range of +5 to +15 V .
\[
f=\frac{1}{1.4 R C}
\]

Figure 3: Astable Operation

\section*{MONOSTABLE OPERATION}

In this mode of operation, the timer functions as a one-shot. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative TRIGGER pulse to pin 2, the internal flip flop is set which releases the short circuit across the external capacitor and drives the OUTPUT high. The voltage across the capacitor now increases exponentially with a time constant \(t=R_{A} C\). When the voltage across the capacitor equals \(2 / 3 \mathrm{~V}^{+}\), the comparator resets the flip flop, which in turn discharges the capacitor rapidly and also drives the OUTPUT to its low state. TRIGGER must return to a high state before the OUTPUT can return to a low state.

Figure 4: Monostable Operation

\section*{CONTROL VOLTAGE}

The CONTROL VOLTAGE terminal permits the two trip voltages for the THRESHOLD and TRIGGER internal comparators to be controlled. This provides the possibility of oscillation frequency modulation in the astable mode or even inhibition of oscillation, depending on the applied voltage. In the monostable mode, delay times can be changed by varying the applied voltage to the CONTROL VOLTAGE pin.

\section*{RESET}

The RESET terminal is designed to have essentially the same trip voltage as the standard bipolar \(555 / 6\), i.e. 0.6 to 0.7 volts. At all supply voltages it represents an extremely high input impedance. The mode of operation of the RESET function is, however, much improved over the standard bipolar \(555 / 6\) in that it controls only the internal flip flop, which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins. This avoids the multiple threshold problems sometimes encountered with slow falling edges in the bipolar devices.

\section*{EQUIVALENT CIRCUIT}

\section*{BLOCK DIAGRAM}

This block diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs.
\(R=100 \mathrm{k} \Omega, \pm 20 \%\) typ.

\section*{TRUTH TABLE}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
THRESHOLD \\
VOLTAGE
\end{tabular} & \begin{tabular}{c}
TRIGGER \\
VOLTAGE
\end{tabular} & RESET & OUTPUT & \begin{tabular}{c}
DISCHARGE \\
SWITCH
\end{tabular} \\
\hline DONT CARE & DON'T CARE & LOW & LOW & ON \\
\hline\(>2 / 3\left(V^{+}\right)\) & \(>1 / 3\left(\mathrm{~V}^{+}\right)\) & HIGH & LOW & ON \\
\hline \(\mathrm{V}_{\text {TH }}<2 / 3\) & \(\mathrm{~V}_{\text {TR }}>1 / 3\) & HIGH & STABLE & STABLE \\
\hline DON'T CARE & \(<1 / 3\left(\mathrm{~V}^{+}\right)\) & HIGH & HIGH & OFF \\
\hline
\end{tabular}

NOTE: \(\overline{\operatorname{RESET}}\) will dominate all other inputs: TRIGGER will dominate over THRESHOLD.

\section*{ICM7555/ICM7556}

CHIP TOPOGRAPHIES

ICM7555

ICM7556

\title{
Timekeeping, DTMF Circuits
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Stopwatches} & \multicolumn{2}{|l|}{Clock Generators} \\
\hline & Page & ICM7209 & 7-39 \\
\hline ICM7045 & 7-10 & ICM7213 & 7-42 \\
\hline ICM7215 & 7-47 & & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Display Watches/Clocks}} & \multicolumn{2}{|l|}{Frequency Divider} \\
\hline & & ICM7241 & 7.75 \\
\hline ICM7223 & 7.53 & & \\
\hline ICM7223A & 7.59 & & \\
\hline ICM7223VF & 7.67 & Encoder & \\
\hline & & ICM7206 & 7-31 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Analog Watches/Clocks}} & & \\
\hline & & & \\
\hline ICM1115 & 7-19 & & \\
\hline ICM7038 & 7.5 & & \\
\hline ICM7050 & 7-19 & & \\
\hline ICM7051 & \(7-23\) & & \\
\hline ICM7070 & \(7-27\) & & \\
\hline ICM7245 & 7.77 & & \\
\hline
\end{tabular}

\section*{Watches}
\begin{tabular}{ll}
Part Number & Circuit Description \\
\hline \begin{tabular}{l}
ICM7245B/D/E/F \\
ICM7245U
\end{tabular} & \begin{tabular}{c}
Analog quartz watch/clock circuit. ICM7245B/D/E/F for bipolar stepper motors. ICM7245U for unipolar, \\
stepper motors. Ultra high accuracy: 0.1 ppm.
\end{tabular} \\
\hline
\end{tabular}

Nates: All intersil watch circuits are designed for use with a 32.768 Hz quartz crystal. All provide a rapid advance setting
Watch circuits are normally sold in die form. The ICM7245B/D/E/F and ICM7245U are available in either an 8 pin plastic DIP or mini-flatpack as well as dice. All Intersil watch circuits have a fixed on-chip oscillator capacitor. The above circuits show typical current at 155 Volts LCD units in doubler mode.

\section*{Dual Tone (Touch Tone) Encoders}
\begin{tabular}{|c|c|c|c|c|}
\hline Part Number & Circuit Description & Package & Crystal Frequency & Output \\
\hline ICM7206 & Touch-tone encoder; requires single contact per key. & 16-Pin DIP & 3.57954 MHZ & 2-0f-8 sine wave for tone dialing \\
\hline ICM7206A & Touch-tone encoder; requires one contact per key with common line connected to + supply. & 16-Pin DIP & 3.57954 MHz & 2-0f-8 sine wave for tone dialing \\
\hline ICM7206B & Touch-tone encoder; requires 2 contacts per key with common line connected to negative supply: oscillator enabled when key is pressed. & 16-Pin DIP & 357954 MHz & 2-of-8 sine wave for tone dialing \\
\hline ICM7206C & Touch-tone encoder requires single contact per key: oscillator enabled only when key is depressed. Disable line tied to \(\mathrm{V}^{-}\) & 16-Pin DIP & 3.57954 MHz & 2-0f-8 sine wave for tone dialing \\
\hline ICM7206D & Touch tone encoder: requires single contact per key; oscillator enabled only when key is depressed. DISABLE line tied to \(\mathrm{V}+\). & 16-Pin DIP & 3.57954 MHz & 2-0f-8 sine wave for tone dialing \\
\hline
\end{tabular}

\section*{Clock and Timing Signal Generators}
\begin{tabular}{lllll}
ICM7209 & High-frequency clock-generator for 5-volt systems & 8 -Pin DIP & to 10 MHz & Crystal frequency. plus 8 divider stage \\
ICM7213 & 0scillator and frequency divider & 14 -Pin DIP (plastic) & to 10 MHz & 1 pps .1 ppm .10 Hz . composite
\end{tabular}

\section*{Clocks}
\begin{tabular}{|c|c|c|c|}
\hline Part Mumber & Circuit Description & Typical Operating Vollage & Package \\
\hline \begin{tabular}{l}
ICM1115 \\
ICM1115A \\
ICM1115B
\end{tabular} & Analog quartz clock circuit with simple alarm. For bipolar stepper motors: 1 Hz square wave output \(f_{\text {osc }}=4.19 \mathrm{MHz}\) Analog quartz clock circuit with simple alarm. For bipolar stepper motors: 1 Hz square wave output \(\mathrm{f}_{\text {osc }}=4.19 \mathrm{MHz}\) Analog quartz clock circuit with simple alarm. For bipolar stepper motors: 1 Hz square wave output. \(f_{\text {osc }}=4.19 \mathrm{MHz}\) & 1.5 V & 8 pIn DIP \\
\hline ICM7038A & Analog quartz clock circuit with simple alarm. For synchronous motors. & 3.0 V & 8 pin DIP \\
\hline ICM70388 & Analog quartz clock circuit with simple alarm. For synchronous motors. & 1.5 V & 8 pin DIP \\
\hline ICM7050 & Analog quartz clock circuit with complex alarm. For bipolar stepper motors. 47 ms pulse width. iHz rate. \(\mathrm{t}_{\mathrm{osc}}=4.19 \mathrm{MHz}\) & 15 V & 8 pin DIP \\
\hline ICM7051A ICM7051B & Analog quartz clock circuit for automotive applications-synchronous motors. 64 Hz square wave. Analog quartz clock circuit for automotive applications-bipolar stepper motors. 31 ms pulse width. 1 Hz rate & 12.0 V & 8 pin DIP \\
\hline ICM7070L & Analog quartz clock circuit with complex alarm. For bipolar stepper motors, 31 ms pulse width @ \(0.5 \mathrm{~Hz} \mathrm{f}_{\text {osc }}=32 \mathrm{kHz}\) & 1.5 & 8 pin DIP \\
\hline \[
\begin{aligned}
& \text { ICM7223 } \\
& \text { ICM72230 }
\end{aligned}
\] & \begin{tabular}{l}
4 Digit LCD Alarm Clock with Snooze. \\
Direct drive Cricket alarm. 24 hour format by bond option. For 32.768 kHz quartz crystal.
\end{tabular} & 15 V & 40 pin DIP \\
\hline - ICM7223A & 4 Digit LCD Clock Radio circuit with Sleep Timer. Snooze and Alarm. Low battery indicator. Radio Enable. For 32.768 kHz quartz crystal. & 9.0 V & 40 pin DIP \\
\hline ICM7223VF & 4 Digit Vacuum Fluorescent Clock Radio/Auto Clock.circuit with Sleep Timer. Alarm. Snooze. and Radio Erable For 32.768 kHz quartz crystal. & 12.0 V & 40 pin DIP \\
\hline
\end{tabular}

Notes: All Analog clock circuits are designed for use with a 4.19 MHz quartz crystal. with the exception of the ICM7223 series which uses a 32.768 kHz crystal . Clock circuits are normally purchased in package form: each is also available as dice.
All Analog clock circuits are mask programmable for oscillator frequency output frequency and pulse width. and alarm frequency. Consult the factory for details.

\section*{Stopwatches}
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Circuit Description & Crystal Frequency & Package \\
\hline ICM7045 & 8 Digit 4 Function LED stopwatch circuit. Features Hours:Minutes Seconds: 100ths. Provides Time Out. Taylor. Split and Rally modes. Direct drive for LEDs May be used as 24 -hour clock. & 6. 55 MHz & 28 pin DIP \\
\hline ICM7215 & 6 Digit 4 Function LED stopwatch circuit. Features Minutes Seconds 100ths. Provides Time out. Taylor and Split modes. Direct drive for LEDs. & 3.28 MHz & 24 pin DIP \\
\hline
\end{tabular}

Notes: All stopwatches may be purchased as an Evaluation Kit (EV KIT) which includes the IC and the appropriate quartz crystal All operate at 2.5 to 4.5 volts. and source 15 mA current to the segments of the LEDs.

\section*{CMOS \\ OSCILLATOR/DIVIDER/DRIVERS SELECTION GUIDE}
(Includes circuits used in quartz analog clock and watch applications)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PRODUCT NUMBER & MASK VARIANT & \begin{tabular}{l}
CRYSTAL FREQUENCY \\
(MHz)
\end{tabular} & MOTOR DRIVE OUTPUT & \begin{tabular}{l}
OUTPU \\
CHARAC \\
Width \\
(ms)
\end{tabular} & \begin{tabular}{l}
UT PULSE CTERISTICS \\
Freq. (pulses per sec)
\end{tabular} & \begin{tabular}{l}
ALARM FREQUENCY \\
(Hz)
\end{tabular} & \begin{tabular}{l}
NOMINAL VOLTAGE \\
(V)
\end{tabular} & \begin{tabular}{l}
TYPICAL CURRENT \\
(\(\mu \mathrm{A}\))
\end{tabular} & PACKAGE \({ }^{[4]}\) \\
\hline ICM7038A & - & 4.19 & Synchronous & \(7.8{ }^{1}\) & 64 & 512 & 3.0 & 90 & 8-pin DIP \\
\hline ICM7038B & - & 4.19 & Synchronous & \(7.8{ }^{1}\) & 64 & 512 & 1.5 & 40 & 8-pin DIP \\
\hline ICM7213 & - & 4.19 & Multiple & \(\left\{\begin{array}{c}7.8 \\ 31.2 \\ 125 .\end{array}\right.\) & \(\left.\begin{array}{c}1 \\ 16 \\ 1 \text { per min. }\end{array}\right]\) & \(]-1024+16+2\) & 3.0 & 100 & 14-pin DIP \\
\hline ICM7050A & ITS9044-1 & 4.19 & Unipolar & 15.6 & 1 & 1024 & 1.5 & 40 & 8-pin DIP \\
\hline ICM7050 & - & 4.19 & Bipolar & 46.9 & 0.5 & \(2048+8+1\) & 1.5 & 40 & 8-pin DIP \\
\hline ICM7051A & ITS9042-1 & 4.19 & Bipolar & \(7.8{ }^{11}\) & 64 & - & 4.5-13.5 & 500 & 8-pin DIP \\
\hline ICM7051B & - & 4.19 & Bipolar & 31.2 & 0.5 & - & 4.5-13.5 & 500 & 8 -pin DIP \\
\hline ICM7070L|2| & - & 32 kHz & Bipolar & 31.2 & 0.5 & \(2048+8+1\) & 1.5 & 3 & 8 -pin DIP \\
\hline ICM7245A \({ }^{\text {| } 21}\) & - & 32 kHz & Bipoiar & 9.7 & 0.5 & - & 1.5 & 0.4 & 8-pin DIP \\
\hline ICM7245B \({ }^{\text {21 }}\) & - & 32 kHz & Bipolar & 7.8 & 0.5 & - & 1.5 & 0.4 & 8-pin DIP \\
\hline & - & 32 kHz & Bipolar & 7.8 & 1 per 10 sec & c & 1.5 & 0.4 & 8 -pin DIP \\
\hline ICM7245E \({ }^{\text {| }}\) | & - & 32 kHz & Bipolar & 7.8 & 1 per 12 sec & & 1.5 & 0.4 & 8-pin DIP \\
\hline ICM7245F|2] & - & 32 kHz & Bipolar & 7.8 & 1 per 20 sec & & 1.5 & 0.4 & 8 -pin DIP \\
\hline ICM7.245U \({ }^{[2]}\) & - & 32 kHz & Unipolar & 3.9 & 1 & - & 1.5 & 0.4 & 8-pin DIP \\
\hline ICM1115A & - & 4.19 & Bipolar & \(1000^{11}\) & 0.5 & 64 & 1.5 & 80 & 8 -pin DIP \\
\hline ICM1115B & - & 4.19 & Bipolar & \(1000^{11}\) & 0.5 & 64 & 1.5 & 40 & 8 -pin DIP \\
\hline
\end{tabular}

All Intersil analog quartz products are mask programmable. Options include:
- Crystal frequency \(32 \mathrm{kHz}, 1 \mathrm{MHz}\), etc. ;
- Pulse width 500 msec to 3.9 msec)
- Pulse frequency 64 Hz to 0.5 Hz
- Alarm frequency 64 Hz to 4096 Hz , including complex
- Motor drive characteristics
- Oscillator characteristics, including fixed capacitors ! ICM7050

Notes: |1| Square Wave.
12| Includes a fixed value capacitor on oscillator input.
|3| Includes snooze.
14| All Intersil analog quartz products may be ordered in die form.

\section*{FEATURES}
- Battery operation: 1.2 to 3.6 V devices
- Very low power: \(30 \mu \mathrm{~A}\) typical (1.5V parts)
- High output current drive: 1 mA minimum
- Zero output bridge DC component (50\% duty cycle square wave)
- All inputs fully protected - no special handling precautions required
- Wide operating temperature range: \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)

\section*{ICM7038 Family CMOS Analog Quartz Clock Circuit}

\section*{Synchronous Motor Applications}

\section*{GENERAL DESCRIPTION}

The ICM7038 family of synchronous motor drivers is designed to operate from a 1.5 V battery, and performs the functions of oscillator, frequency divider and output driver. In addition a power driver is tapped off from the thirteenth divider for use as an alarm driver.

Specifically the ICM7038 family uses an inverter oscillator having all biasing components on chip. Binary dividers permit frequency division from 4 MHz down to 64 Hz . The output from the divider network drives a bridge output circuit which provides a \(50 \%\) duty cycle \(A C\) square wave having virtually zero DC component for driving a synchronous single phase motor. The total output drivers saturation is typically 200 ohms providing efficient operation of synchronous motors. The alarm output will drive a transducer (piezoelectric or speaker).

\section*{TABLE OF OPTIONS}

The ICM7038 may be modified with alternative metal masks to provide any number of binary divider stages up to a maximum of 19 and supply voltages from 1.2 V to over 3.6 V together with various output options. Consult your Intersil representative or the factory for further information. The alarm output can be tapped off from any of the latter divider stages.
(See table for standard options).
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Part \\
Number
\end{tabular} & \begin{tabular}{c}
Binary \\
Dividers
\end{tabular} & \begin{tabular}{c}
Nominal \\
Output \\
Frequency
\end{tabular} & \begin{tabular}{c}
Nominal \\
Supply \\
Voltage
\end{tabular} \\
\hline ICM7038A & 16 & 64 Hz & 3.0 V \\
ICM7038B & 16 & 64 Hz & 1.5 V \\
\hline
\end{tabular}

PIN CONFIGURATION
(OUTLINE DRAWING PA)

PIN 1 IS DESIGNATED BY EITHER A DOT OR A NOTCH.

ORDERING INFORMATION

ORDER DEVICES BY FOLLOWING PART NUMBERICM7038B I PA

\section*{ABSOLUTE MAXIMUM RATINGS}

Power Dissipation Output Short Circuit \({ }^{(1)}\). . . . 300mW
Supply Voltage:
ICM7038A ... 5 V
ICM7038B ... 3 .
Output Voltage (2) . \(\mathrm{V}^{-}\)to \(\mathrm{V}^{+}\)
Input Voltage (2) V- to \(V^{+}\)
Storage Temperature \(-30^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Temperature \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

\section*{TEST CIRCUIT}

QUARTZ CRYSTAL PARAMETERS
\(f=4,194,304 \mathrm{~Hz}\)
\(\mathbf{R}_{\mathbf{S}}=35 \Omega\)
\(C_{m}=10 \mathrm{mpF}\)
\(C_{0}=3.5 \mathrm{pF}\)

\section*{NOTES:}
1. This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.
2. Except for instantaneous static discharges all terminals may exceed the supply voltage (2.0 V max) by \(\pm 0.5\) volt provided that the currents in these terminals are limited to 2 mA each.

\section*{OPERATING CHARACTERISTICS}
\(\left(V^{+}=3.0 \mathrm{~V}\right.\) (ICM7038A) or 1.5 V (ICM7038B), \(\mathrm{f}_{\text {osc }}=4,194,304 \mathrm{~Hz}\), test circuit \(1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specifed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Conditions} & \multicolumn{3}{|c|}{7038A/C/F} & \multicolumn{4}{|c|}{7038B/D/E/G} \\
\hline & & & Min. & Typ. & Max. & Min. & Typ. & Max. & Unit \\
\hline Supply Current & \(1+\) & & & 90 & 150 & & 30 & 60 & \(\mu \mathrm{A}\) \\
\hline Guaranteed Operating Voltage Range & \(\mathrm{V}^{+}\) & \(-20^{\circ} \mathrm{C} \leq\) to \(\leq 70^{\circ} \mathrm{C}\) & 2.2 & & 3.6 & 1.2 & & 1.8 & V \\
\hline Total Output Saturation Resistance & \(\mathrm{R}_{\text {SAT }}\) & \(\mathrm{p}+\mathrm{n}\) Output Transistors, \(\mathrm{l}_{\mathrm{OUT}}=0.5 \mathrm{~mA}\) & & 230 & 400 & & 200 & 700 & \(\Omega\) \\
\hline Alarm Output Saturation Resistance & \(\mathrm{R}_{\text {AL }}\) & \(\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}\) & & 200 & 400 & & 300 & 800 & \(\boldsymbol{\Omega}\) \\
\hline Oscillator Stability & \({ }_{\text {f }}\) StAB & Over \(\mathrm{V}^{+}\)range
\[
\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=15 \mathrm{pF}
\] & & 1 & & & 1 & & ppm \\
\hline Oscillator Start-Up Time & tstart & \(\mathrm{V}^{+}=\mathrm{min}\). & & & 1.0 & & & 1.0 & sec \\
\hline
\end{tabular}

\section*{SCHEMATIC DIAGRAM (ICM7038B)}

\section*{TYPICAL OPERATING CHARACTERISTICS (ICM7038A)}

 RIDGE OUTPUT CURRENT VS BRIDGE OUTPUT VOLTAGE

MINIMUM OPERATING SUPPLY VOLTAGE VS. TEMPERATURE

OUTPUT CURRENT VS OUTPUT SATURATION VOLTAGE

TYPICAL OPERATING CHARACTERISTICS (ICM7038B)

SUPPLY CURRENT VS. SUPPLY VOLTAGE

OUTPUT CURRENT (SOURCE) VS. OUTPUT SATURATION VOLTAGE

BRIDGE OUTPUT CURRENT VS. BRIDGE OUTPUT VOLTAGE

ALARM OUTPUT CURRENT (SOURCE) VS. OUTPUT SATURATION VOLTAGE

OSCILLATOR STABILITY VS. SUPPLY VOLTAGE

MINIMUM OPERATING SUPPLY VOLTAGE VS. TEMPERATURE

\section*{ICM7038 Family}

\section*{APPLICATION NOTES}

\section*{GENERAL DESCRIPTION}

The ICM7038 Family has been designed primarily for quartz clock and timer applications using oscillator frequencies between 2.0 and 10 MHz . The design objectives were exceptional oscillator frequency stability, very low power, wide supply voltage range and wide temperature range. The oscillator contains all components except the tuning components and quartz crystal. Three outputs are provided. The two principal outputs are intended to be used to drive a single phase synchronous motor in a bridge configuration. As such, because of the matching of the transistors in the two outputs, the output DC component is extremely small. Stepper motors may also be used by placing a capacitor in series with the motor and using either a single output or the bridge output.

Alternatively outputs 3 and 4 may be used to drive TTL logic directly for timer applications.
The alarm output is taken from the output of the thirteenth divider and can source 1 mA at a low saturation voltage.

The ICM7038 may be used as a straight divider by driving directly into the oscillator output (pin no. 7) with a low impedance square wave drive. As such it may be used over the frequency range 1 MHz to 10 MHz .

\section*{OSCILLATOR CONSIDERATIONS}

The oscillator of the ICM7038 is designed to operate with crystals having a load capacitance of 10 to 12 pF . This allows nominal capacitor values of \(15 / 15 \mathrm{pF}\) or \(20 / 20\) pF. Increasing the load capacitance of the crystal requires larger oscillator device sizes, which causes the supply current to increase. Modifications to the oscillator can be made on a custom basis. The tuning range can be increased by using crystals with lower load capacitances, however, the stability may decrease somewhat. This can be counteracted by reducing the motional capacitance of the crystal. A non-linear
feedback resistor is provided on chip, which has a maximum value at start up. Oscillator tuning should be done at the oscillator output.
The following expressions can be used to arrive at a crystal specification:
Tuning Range
\(\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} \quad C_{L}=\frac{C_{\text {IN }} C_{O U T}}{C_{\text {IN }}+C_{O U T}}\)
\(g_{m}\) required for startup
\(g_{m}=\omega^{2} C_{\text {IN }}\) COUT \(R_{S}\left(1+\frac{C_{0}}{C_{L}}\right)^{2}\)
Rs = series resistance of the crystal
\(f \quad\). frequency of the crystal
\(\Delta f=\) frequency shift from series resonance frequency
\(\mathrm{C}_{\mathrm{O}}=\) static capacitance of the crystal
\(\mathrm{C}_{\mathrm{IN}}=\) input capacitance
Cout = output capacitance
\(C_{L} \quad\) load capacitance
\(\mathrm{C}_{\mathrm{m}}=\) motional capacitance
\(\omega \quad=2 \pi f\)
The resulting \(g_{m}\) should not exceed \(50 \mu \mathrm{mhos}\)

\section*{FEATURES}
- Total integration: includes oscillator, divider, decoder driver on chip
- Wide operating supply range: \(2.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4.5 \mathrm{~V}\)
- Low operating power consumption: 0.9 mW @ 3.6V supply with display off
- High output current drive: 18 mA peak current per segment with \(\mathbf{1 2 . 5 \%}\) duty cycle.
- Leading zero suppression: timer stopwatch applications
- Fractional second suppression: 24-hour clock application
- Short duration short circuit protection on all inputs and outputs at 3.6 V supply
- Versatility of applications: precision timer, 4 mode stopwatch, 24-hour clock
- Uses 6.5536 MHz quartz crystal for high accuracy

\section*{GENERAL DESCRIPTION}

The ICM7045 is a fully integrated precision decade timer fabricated using Intersil's low voltage metal gate C-MOS technology. The oscillator, frequency divider, multiplexer, decoder, segment and digit output buffers are all included on-chip. The circuits are designed to interface directly with fully multiplexed 8 -digit 7 -segment common cathode LED displays. The normal supply voltage is 3.6 V , equivalent to a stack of three nickel cadmium batteries.
This circuit is designed for use as a digital timer, 4 -function stopwatch and 24 hour clock; the only external components required are the display, batteries, 6.5536 MHz crystai, turning capacitor and 4 switches.
The ICM7045 divides the oscillator frequency in sixteen binary stages to a frequency of 100 Hz ; some of these intermediate outputs are used to generate the multiplex waveforms at a \(12.5 \%\) duty cycle/ 800 Hz rate. The 100 Hz signal is then processed in the counters and multiplexed in the decoders.

PIN CONFIGURATION (outline dwg DI)

ABSOLUTE MAXIMUM RATINGS

> Power Dissipation (1) .
> Supply Voltage . 5.5 F
> Input Voltage Equal to, but never in excess of the supply voltages Output VoltageEqual to, but never in excess of the supply voltages Digit Drive Output Current 150mA/digit
> Storage Temperatures . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
> Operating Temperatures . \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
> Lead Temperature (Soldering, 10 sec) . \(300^{\circ} \mathrm{C}\)

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.

\section*{TYPICAL OPERATING CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) Parameters listed are absolute value
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Supply Current & \(1+\) & \begin{tabular}{l}
Display Off \\
7 Segments Lit
\[
V_{F}=1.8 \mathrm{~V}
\] \\
2 Segments Lit
\[
V_{F}=1.8 \mathrm{~V}
\]
\end{tabular} & \begin{tabular}{l}
70 \\
28
\end{tabular} & \[
\begin{aligned}
& 180 \\
& 105 \\
& 42
\end{aligned}
\] & 2000 & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA \\
mA
\end{tabular} \\
\hline \begin{tabular}{l}
Operating Voltage Segment Current Drive \\
Instantaneous \\
Average \\
Segment Current Drive \\
Instantaneous \\
Average
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}^{+} \\
& \mathrm{I}_{\mathrm{SEG}}
\end{aligned}
\] & \[
\begin{gathered}
-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\
7 \text { Segments I.T., } \mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}, \\
12.5 \% \text { Duty Cycle } \\
\\
2 \text { Segments Lit, } \\
\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V} \\
12.5 \% \text { Duty Cycle }
\end{gathered}
\] & \[
\begin{gathered}
\hline 2.5 \\
\\
10 \\
1.25 \\
\\
14 \\
1.75
\end{gathered}
\] & \begin{tabular}{l}
15 \\
1.825 \\
21 \\
2.625
\end{tabular} & 4.5 & \begin{tabular}{l}
V \\
mA \\
mA \\
mA \\
mA
\end{tabular} \\
\hline Min. Switch Actuation Current, Any Switch & \(I_{\text {SW }}\) & & 50 & & & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Digit Driver Leakage Current Segment Driver Leakage Current Typical Oscillator Stability Oscillator Start Up Time \\
Oscillator Input Capacitance
\end{tabular} & \begin{tabular}{l}
IDLK \\
\(I_{\text {SLK }}\) \\
\(f_{\text {STAB }}\) \\
\(t_{\text {start }}\) \\
\(\mathrm{C}_{\mathrm{IN}}\)
\end{tabular} & \[
\begin{aligned}
& 3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4 \mathrm{~V}, \mathrm{C}_{\text {TUNING }}=15 \mathrm{pF} \\
& \mathrm{~V}^{+}=3.6 \mathrm{~V} \\
& \mathrm{~V}^{+}=2.5 \mathrm{~V}
\end{aligned}
\] & & 1.0
\[
17
\] & \[
\begin{array}{r}
200 \\
200 \\
\\
0.1 \\
1.0
\end{array}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
ppm \\
sec \\
sec \\
pF
\end{tabular} \\
\hline
\end{tabular}

TYPICAL PERFORMANCE CURVES

OSCILLATOR STABILITY VS. SUPPLY VOLTAGE FOR 3 DIFFERENT QUARTZ CRYSTALS

\section*{ICM7045}

Quartz Crystal Parameters
\(f=6.5536 \mathrm{MHz}\)
\(\mathrm{R}_{\mathrm{s}}=40 \Omega\)
\(\mathrm{C}_{1}=15 \mathrm{mpF}\)
\(\mathrm{C}_{\mathrm{O}}=3.5 \mathrm{pF}\)

NOTE: Specify quartz crystal to have nominal frequency value when tuned by a total parallel capacitance value of 12 pF or less.

Figure 1: Four Stopwatch Modes

\section*{FUNCTIONAL OPERATION}

\section*{STOPWATCH/TIMER OPERATION}

The control inputs used in the complete stopwatch application are: (refer to fig. 1)
\begin{tabular}{lll}
START/STOP & RESET & SPLIT \\
DISPLAY & STANDARD & RALLY
\end{tabular}

START/STOP and DISPLAY are designed for connection to single pole double throw switches to insure operation free of contact bounce.

The switch connected to RESET can be normally open single pole single throw. STANDARD, SPLIT and RALLY are control points with internal pull down resistors to V -. These are designed to be connected to a rotary function switch which will connect no more than one of these points to \(\mathrm{V}^{+}\). If STANDARD (SPLIT, RALLY) is connected to \(\mathrm{V}+\) the stopwatch is said to be in the STANDARD (SPLIT, RALLY) mode. If all three are left open, the stopwatch is in the SEQUENTIAL mode.

\section*{RESET FUNCTION}

When the stopwatch is turned on, the RESET will normally be activated. This puts the stopwatch in a ready condition by:
1. Resetting all circuitry
2. Blanking seconds, minutes, hours
3. Showing 00 in the two least significant digits.
4. Turning on the display if it was previously turned off

The display of just two zeros in the two least significant digits gives the complete assurance that the stopwatch is "ready to go".

\section*{STANDARD MODE}

In the STANDARD mode, after a reset has taken place, STARTISTOP is activated at time \(t_{0}\). The clock and display are moving simultaneously. A second activation of START/STOP stops the clock and holds the display at time \(t_{\text {total }}\). This completes an event. For timing a second event there are two options. One is to activate START/STOP at the start of the second event. This will momentarily reset the counter and display so that the timing of the second event proceeds from zero. Another activation of START/STOP stops the counter and display at time \(t_{\text {total }}\) to end the second event. The other option is to activate RESET after the first event is over. Then the second event proceeeds similarly to the first event. As is clear from this description, RESET can be used at any time to reset the stopwatch, including when a timing is in progress. The DISPLAY input can be activated to turn the display off and on. If the display is off when RESET is activated, it will reset and turn on. Turning off the display for timing long events will result in a very substantial power saving.

\section*{SEQUENTIAL MODE}

The sequential mode of the stopwatch is designed for timing events consisting of more than one leg (such as relays, multilap races, etc.). After the initial reset the START/STOP is activated at \(t_{0}\) to start the event. A second activation of START/STOP at time \(t_{1}\) stops the display and allows \(t_{1}\) to be read out, while the clock resets and starts counting again instantaneously. At time \(t_{2}\) an activation of START/STOP enters \(t_{2}\) (the time of leg 2) into the display. This sequence can continue indefinitely. Assuming the total event has \(n\) legs, the total elapsed time is then equal
to the sum of the n times read out:
\[
t_{\text {total }}=t_{1}+t_{2} \ldots+t_{n}
\]

If it is desired to see the moving clock after a time has been recorded, the DISPLAY switch can be activated to release the display hold and catch up with the moving clock. The display cannot be turned off in the sequential mode. RESET can be activated at any time to reset clock and display.

\section*{SPLIT MODE}

The split mode is another mode for timing multileg events. In contrast to the sequential mode, the timing in the split mode is cumulative. From a reset condition, the START/STOP switch is activated at \(t_{0}\) to start the counter and display running. A second activation at \(t_{1}\) stops the display and allows \(t_{1}\) to be read out while counter continues timing. A third activation at \(\mathrm{t}_{2}\) advances the display
with the total elapsed time from \(t_{0}\) to \(t_{2}\) showing. Finally, at time \(t_{n}\) the total elapsed time of the event is entered in the display. The time of one leg of the event can be obtained by subtraction. The display can be synchronized to the counter (catch-up function) at any time by activating the display switch. To reset the timer, activate reset. The display cannot be turned off in the SPLIT mode.

\section*{RALLY MODE}

The rally mode is designed for timing of events with interruptions. Consider an \(n\) leg event where the legs may be separated by intervals which should not be timed. The rally mode starts with a RESET. At time \(t_{0}\) the stopwatch is started by activating START/STOP. After this point the RESET function is disabled to prevent accidental resets
during long timing intervals. At time \(\mathrm{t}_{1}\) a START/STOP pulse stops counter and display. From here on each leg time is added to the total by a START/STOP pulse at the beginning of the leg and at the end. The individual leg times are determined by subtraction. The display can be turned on and off with the display switch.

\section*{ICM7 045}

\section*{CLOCK OPERATION}

The control inputs used in a possible 24 -hour clock configuration are (refer to fig. 2):

\author{
START/STOP \\ MINUTES ADVANCE \\ HOURS ADVANCE RALLY
}

START/STOP, MINUTES ADVANCE and HOURS ADVANCE are designed for connection to single pole double throw switches; this assures contact bounce elimination on these inputs. To avoid an additional switch for the DISPLAY input, the RALLY input should be connected to \(\mathrm{V}^{+}\)through a 20 k resistor and to \(\mathrm{V}^{-}\)through a \(0.01 \mu \mathrm{~F}\) capacitor. These components insure that the display is on when power is applied to the circuit. The most convenient setting procedure is:
1. If clock is not running when power is applied activate START/STOP switch.
2. Depress MINUTES ADVANCE switch to obtain correct minutes setting, one minute count per activation.
3. Depress HOURS ADVANCE switch to obtain correct HOURS setting, one hour count per activation. It is possible to set the clock more accurately or to correct small time errors by using START/STOP in combination with MINUTES ADVANCE. If the clock is, for instance, 20 seconds slow, activate the MINUTES ADVANCE once, then activate the START/STOP, wait 40 seconds and activate the START/STOP again. If the clock is 20 seconds fast, the START/STOP switch should be activated to stop the clock, then after 20 seconds activated again to restart the clock. Other clock configurations are possible (see Application Notes).

Figure 2: Clock Mode

\section*{APPLICATION NOTES}

The ICM7045 have been designed with versatility of applications in the digital timer/stopwatch/24-hour clock field as the major objective. The simplicity of operating modes allow for an extremely practical, easy to use stopwatch, at
the same time permit the design of a variety of simple lapse timer, stopwatch and clock circuits; a few of these will be shown and discussed briefly here.

\section*{TIMER CIRCUIT I}

This simple circuit (display connections not shown) allows interval timing up to 24 hours with a resolution of 0.01 second. Each interval is timed by one start and one stop pulse on the start/stop line. The start pulse for the next interval to be timed automatically resets the timer. Leading zero suppression is automatic.

\section*{TIMER CIRCUIT II}

This circuit allows cumulative timing of intervals. Each iñterval is timed by one start and one stop pulse on the start/stop line. Each subsequent interval timed adds to the total line displayed. The reset switch allows the timer to be reset to zero to start another sequence of intervals. Note that the time between the end of one interval and the start of the reset is not recorded nor added to the total.

\section*{TIMER CIRCUIT III}

This circuit allows interval timing with a single pulse on the start/stop line. Each pulse enters the time elapsed since the previous pulse into the display, resets the timer and starts the timer for the next interval.

\section*{CLOCK CIRCUIT I}

The standard clock circuit is shown and described in fig. 2. The clock accuracy with a stable voltage supply will depend mostly on the temperature and aging characteristics of the crystal.

The power supply can be modified to give battery standby power.

The standby circuit should be designed to provide the specified minimum voltage to the ICM7045.

\section*{OTHER CLOCK CIRCUITS}

The basic clock circuit can be modified for various special applications. If it is desired to turn the display on and off, then connect the display input to an additional SPDT switch, while omitting the capacitor/resistor combination on the STANDARD Input.
This input can then be wired directly to \(\mathrm{V}^{+}\). This 24 -hour clock version might be applicable to vehicles, boats, etc. where a battery is available to supply the display off clock current, while the display can be turned on with the ignition. Another possible configuration would connect a special circuit to the DISPLAY input which generates a double pulse about 3 seconds apart:

This means depressing the switch will turn on the clock's display for 3 seconds. This allows design of a battery operated "on demand" digital 24-clock.

\section*{STOPWATCH EXTERNAL SYNC CIRCUIT}

If the stopwatch is connected as shown in fig.1, a few additional components will allow external synchronization of the stopwatch in any mode:

NOTE: Be sure to minimize the distance between the transistor and the ICM7045 to prevent noise from being generated along this connection. Noise spikes absolutely must not exceed the supply voltages.

The external sync signal source must supply a positive pulse to activate the START/STOP input. The minimum voltage of this pulse is about 1.2 V in the circuit as shown, but the triggering level can be changed by modifying the input resistor ratio. The output impedance of the external sync signal source should be no greater than 4 k ohms.

\section*{OSCILLATOR CONSIDERATIONS}

The oscillator is a high gain complementary MOS inverter with on-chip feedback resistors and an on-chip fixed input capacitor of 22 pF . For the 6.5536 MHz crystal needed for normal timing using the ICM7045, it is suggested that the nominal load capacitance be kept under 12 pF to keep total loading on the oscillator to a reasonable level. The actual trimmer range and the nominal load capacitance needed will have to be determined from the total stray capacitance of the particular circuit (including ICM7045 with package, PC board, etc.) and the tuning tolerance of the chosen crystal.
The series resistance of the crystal should also be kept to a low value (typically less than 50 ohms) to achieve adequate low voltage operation.
Oscillator tune up can be most easily performed using a pull-up resistor of 10 k ohms on the fractional seconds digit, using period average tune for \(1.25 \mathrm{~ms}(800 \mathrm{~Hz})\).

\section*{CHIP TOPOGRAPHY}
 Bipolar Stepper Motor Applications

\section*{FEATURES}
- Single battery operation
- Very low current - typically \(\mathbf{4 0} \mu \mathrm{A}\) at \(\mathbf{4 . 1 9 \mathrm { MHz }}\)
- Reset or stop function, inhibited during output
- Extremely low output saturation resistance: less than 100 ohms
- Complex direct drive alarm: \(1 \mathrm{~Hz}+\mathbf{8 H z}+2048 \mathrm{~Hz}\)
- Custom options available

\section*{ORDERING INFORMATION}
\begin{tabular}{|l|l|l|}
\hline DEVICE & MOTOR OUTPUT & ALARM OUTPUT \\
\hline ICM 7050 & \(47 \mathrm{~ms} \mathrm{@} \mathrm{0.5} \mathrm{~Hz}\) & Complex \\
ICM1115 & 0.5 Hz Square Wave & 64 Hz Tone \\
\hline
\end{tabular}

Note: These devices require a crystal frequency of 4.19 MHz . Consult ICM7070 data sheet for 32.768 kHz devices.
*See PART NUMBER CHANGES below.

\section*{GENERAL DESCRIPTION}

The ICM7050/ICM1115 are single battery analog quartz clock circuits intended for use with bipolar stepper motors and fabricated using Intersil's low voltage metal gate CMOS process. The circuits consist of a divider chain, output gating, output buffers and an oscillator which, when using the specified 4.19 MHz crystal and capacitors, provides excellent stability. The high frequency portion of the divider chain consists of dynamic dividers, while the remainder are static. The dynamic dividers feature low power consumption and operating voltage, but limit low frequency operation. The 223 divider chain is tapped at the 211,219 , and 222 points to provide a complex alarm of \(1 \mathrm{~Hz}, 8 \mathrm{~Hz}\), and 2048 Hz driving an output inverter. Several standard motor drive waveforms are available, and the large output inverters provide the low impedance necessary to drive the motor. A reset inhibit function is provided so that if the RESET occurs during an output pulse, resetting will not take place until the pulse is completed. RESET may also be used as a stop for synchronization to a time signal or tester. Motor drive will continue 1 sec . after RESET is released.

\title{
ICM7050/ICM1115
}

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Power Dissipation Output Short Circuit (Note 1) & 300 mW \\
\hline Supply Voltage & \\
\hline Output Voltage (Note 2) & Equal to but never \\
\hline Input Voltage (Note 2) & the supply voltage \\
\hline Storage Temperature & \(-30^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Operating Temperature & \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (soldering, 10s) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: This value of power dissipation refers to that of the package and will not normally be obtained under normal operating conditions. NOTE 2: Due to the inherent SCR structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied. If only inputs are affected, latchup can also be prevented by limiting the current into the input terminal to less than 1 mA .

\section*{ELECTRICAL CHARACTERISTICS}
(V+ \(=1.5 \mathrm{~V}, \mathrm{f}_{\mathrm{osc}}=4,194,304 \mathrm{~Hz}\) test circuit, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Supply Current(Note 3) except ICM1115A ICM1115A Only & \({ }^{+}\) & No Load & \multirow{5}{*}{1.2} & 40
80 & 60
120 & \(\mu \mathrm{A}\) \\
\hline Operating Voltage & V + & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}\) & & & 1.8 & V \\
\hline Total Output Saturation Resistance & Rout & \(\mathrm{IL}=4 \mathrm{~mA}\) & & 70 & 100 & \(\Omega\) \\
\hline Alarm Saturation Resistance & RaL(on) & \(\mathrm{P}, \mathrm{L}=1 \mathrm{~mA}\) & & 400 & 700 & \(\Omega\) \\
\hline & & \(\mathrm{N}, \mathrm{LL}=2 \mathrm{~mA}\) & & 100 & 400 & \(\Omega\) \\
\hline Oscillator Stability & \(\mathrm{f}_{\text {stab }}\) & \(1.2 \leq \mathrm{V}^{+} \leq 1.6\) & & 1 & \multirow{5}{*}{1.0} & ppm \\
\hline Oscillator Start-up Time & \(\mathrm{t}_{\text {start }}\) & \(\mathrm{V}+=1.2 \mathrm{~V}\) & & & & sec \\
\hline Oscillator Transconductance (Note 3) & gm & ICM7050 & 75 & 200 & & \\
\hline & & ICM1115A & 150 & 400 & & \(\mu \mathrm{mho}\) \\
\hline & & . ICM1115B & 75 & 200 & & \\
\hline
\end{tabular}

NOTE 3: Two options are available with the ICM1115. The ICM1115B is designed to be used with crystals whose load capacitance is 12 pF or less. Using input and output capacitors of 15 to 20 pF , this device will provide stable operation at very low supply current. For applications with larger load capacitance (15 to 20 pF), the ICM1115A ensures that an increased oscillator current is available to guarantee startup and operation over the voltage range. Using input and output capacitors of 30 to 40 pF , the ICM1115A will offer good stability at a supply current approximately twice that of the ICM1115B.

\section*{TYPICAL APPLICATION (also TEST CIRCUIT)}

Notes:
RESET/STOP: If pin 4 is not used, it should be tied to \(V\)-. OUTPUT FREQUENCIES: Crystal frequencies from 1 to 10 MHz may be used to obtain different output frequencies. See Oscillator Considerations for suitable crystal parameters.

\section*{ICM7050/ICM1115}

TYPICAL OPERATION CHARACTERISTICS

OUTPUT CURRENT vs OUTPUT LOAD VOLTAGE

OUTPUT LOAD VOLTAGE

OSCILLATOR STABILITY vs. SUPPLY VOLTAGE

ALARM OUTPUT CURRENT vs SATURATION VOLTAGE
P CHANNEL SATURATION VOLTAGE

N CHANNEL SATURATION VOLTAGE

OUTPUT WAVEFORMS (ICM7050)

n = \(\mathbf{4 7} \mathbf{~ m s e c}\) for ICM7050

\section*{OUTPUT WAVEFORMS (ICM1115)}

*Shown during OUTput 1; exchange OUTput 1 and OUTput 2 for opposite case.

\section*{ICM7050/ICM1115}

\section*{APPLICATION NOTES OSCILLATOR CONSIDERATIONS}

The oscillator of the ICM7050 has been designed to operate with crystals having a load capacitance of 10 to 12 pF . This allows nominal capacitor values of \(15 / 15 \mathrm{pF}\) or \(20 / 20 \mathrm{pF}\). Increasing the load capacitance of the crystal requires larger oscillator device sizes, which causes the supply current to increase. Modifications to the oscillator can be made on a custom basis. The tuning range can be increased by using crystals with lower load capacitances, however the stability may decrease somewhat. This can be counteracted by reducing the motional capacitance of the crystal. A nonlinear feedback resistor having a maximum value at start up is provided on chip. Oscillator tuning should be done at the OSCillator OUTput.
The following expressions can be used to arrive at a crystal specification:
Tuning Range
\(\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{o}+C_{L}\right)} \quad C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}\)
gm required for startup
\(g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{S} \quad\left(1+\frac{C_{0}}{C_{L}}\right)^{2}\)
Rs = series resistance of the crystal
\(f=\) frequency of the crystal
\(\Delta f=\) frequency shift from series resonance frequency
\(\mathrm{C}_{\mathrm{O}}=\) static capacitance of the crystal
\(\mathrm{C}_{\text {in }}=\) input capacitance
\(\mathrm{C}_{\text {out }}=\) output capacitance
\(\mathrm{C}_{\mathrm{m}}=\) motional capacitance
\(\omega=2 \pi \mathrm{f}\)
The resulting \(\mathrm{gm}_{\mathrm{m}}\) should not exceed \(50 \mu \mathrm{mhos}\).

\section*{OSCILLATOR TUNING METHODS}

When tuning the oscillator two methods can be used. The first method would be to monitor the output pulse at either OUT 1 or OUT2 with a counter set to measure the period. The oscillator trimmer would then be adjusted for a reading of 2.000000 secs. A second method would be to put the device in the reset mode by pulling the RESET pin to \(\mathrm{V}_{+}\)and then monitor the ALARM output with a counter set to measure average period. The ALARM output is a continuous 2048 Hz when in the reset mode, which gives a period of \(488.28125 \mu \mathrm{~s}\).

The trimmer capacitor used for tuning should be connected to the OSCillator OUTput. Otherwise, if tuned at the input,the stability will vary with tuning, and the current drain may become excessive when the input capacitance is much less than the output capacitance. Refer to the Supply Current vs. Supply Voltage and Oscillator Stability vs. Supply Voltage characteristic curves on the preceding page.

\section*{TEST MODE OPERATION}

Pulling the RESET/TEST input to - 7 V switches the device into the test mode to speedup automatic testing. When in the test mode the output rate is increased 16 times, from 1 Hz to 16 Hz , with a corresponding reduction in pulse width. The ALARM output changes to a composite waveform of 16 Hz and 128 Hz . The circuit can be reset while in the test mode by shorting the ALARM output to \(\mathrm{V}^{-}\).

\section*{ALARM CONSIDERATIONS}

The ALARM output inverter is large enough to directly drive transducers requiring up to 2 mA of current. If more current is needed, a PNP buffer should be used*. A slight flutuation in the supply current of \(0.5 \mu \mathrm{~A}\) to \(1.0 \mu \mathrm{~A}\) will be seen; this is a result of 2048 Hz driving the relatively large gate capacitance of the alarm output transistors.
*See Intersil Application Bulletin A031 for details.

\section*{CHIP TOPOGRAPHY}

\author{
ICM7051 CMOS Auto Clock Circuit
}

\section*{FEATURES}
- Wide operating supply voltage and temperature ranges
- Excellent oscillator stability
- Short circuit protected bridge output with low ON resistance
- Oscillator feedback resistor on-chip
- All inputs fully protected
- Nominal 12.6 volt zener on chip
- 64 Hz output for synchronous motor applications (ICM7051A)
- 1 Hz output with 31.2 ms output pulse width for stepper motor applications (ICM7051B)
- Typical power dissipation \(<4 \mathrm{~mW}\) at 12 volts

\section*{GENERAL DESCRIPTION}

The ICM7051A/B is an auto clock circuit fabricated using Intersil's standard metal gate CMOS process.

Included on-chip are the oscillator, dividers, output drivers and over-voltage protection circuitry. The oscillator of the ICM7051A/B has the feedback component on-chip, and when used with the specified crystal parameters will give excellent stability. The binary dividers of the ICM7051 allow division from 4.19 MHz and drive a bridge output which provides an alternating 31.2 ms output pulse at 1 Hz for the ICM7051B \((0.5 \mathrm{~Hz}\) each side) or a 64 Hz square wave output for the ICM7051A. The bridge output consists of two large inverters with the output ON resistance of the \(N\) and \(P\) channel devices together being less than 100 ohms with \(V_{\text {batt }}\) equal to 13.5 volts and load current equal to 10 mA .
The ICM7051 series contains an on-chip zener which, when used with an external resistor and capacitor, will provide protection against over-voltage transients that may occur in an automobile environment.

\section*{SCHEMATIC DIAGRAM}

ORDERING INFORMATION

Order dice by following part numbers: ICM7501A/D, ICM7051B/D Note: The ICM7051A was formerly known as ITS 9042-1.

PIN CONFIGURATION (outline dwg PA)

ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|c|}
\hline Supply Voltage (VBATt, - 12 see TEST CIRCUIT) & \[
\begin{gathered}
2 \text { to }+25 \mathrm{~V}(\text { Note } 1) \\
\cdots-0.5 \text { to }+13.5 \mathrm{~V}
\end{gathered}
\] \\
\hline Output Voltage and T.P. Input & Not to exceed \\
\hline & supply voltage \\
\hline Storage Temperature & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Operating Temperature & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, 10 sec) & \(300^{\circ} \mathrm{C}\) \\
\hline Power Dissipation (Note 2) & 0.5 Watt \\
\hline Latch up holding current (N & \\
\hline
\end{tabular}

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Stress duration not to exceed 2 min.
Note 2: This value of power dissipation refers to that of the package and will not be normally obtained under normal operating conditions.
Note 3: A destructive latch up mode is possible if an input or output is forward biased with respect to either the positive or negative supplies. The ICM7051 has an absolute maximum latch up holding current of 100 mA . This means the device, when operated at ambient temperature, will return to its normal operating state after an inadvertant input transient, if the supply current is limited to less than the absolute maximum latch up holding current of the device.

\section*{OPERATING CHARACTERISTICS}
\(V_{B A T T}=13.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), fosc \(=4.194304 \mathrm{MHz}, R_{\mathrm{L}}=1.2 \mathrm{k} \Omega\), unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & MIN. & TYP. & MAX. & \\
\hline \multirow[t]{2}{*}{Supply Current} & \multirow[t]{2}{*}{\(1+\)} & \multirow[t]{2}{*}{No Load} & \(\mathrm{V}_{\text {BATT }}=13.5 \mathrm{~V}\) & & & 7 & \multirow[t]{2}{*}{mA} \\
\hline & & & \(\mathrm{V}^{+}=7.0 \mathrm{~V}\) & & & 1 & \\
\hline \multirow[t]{2}{*}{Supply Voltage Range (Note 4)} & \multirow[t]{2}{*}{V batt} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} & 4.5 & \(>3.5\) & 22 & \multirow[t]{2}{*}{V} \\
\hline & & \multicolumn{2}{|l|}{\(-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\)} & 7.0 & & 17 & \\
\hline \multirow[b]{2}{*}{Output Resistance (\(n+p\))} & \multirow[b]{2}{*}{Rout} & \multicolumn{2}{|l|}{\(10=10 \mathrm{~mA}\)} & & & 100 & \multirow[b]{2}{*}{\(\Omega\)} \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}+=5 \mathrm{~V}, 10=5 \mathrm{~mA}\)} & & 130 & & \\
\hline Zener Voltage & \(\mathrm{V}_{z}\) & \multicolumn{2}{|l|}{\(1 \mathrm{z}=5 \mathrm{~mA}\)} & 11 & & 14 & V \\
\hline Oscillator Stability & fstab & \multicolumn{2}{|l|}{\(6 \mathrm{~V} \leq \mathrm{V}^{+} \leq \mathrm{V}_{\mathrm{z}}\)} & & & 2 & ppm \\
\hline Oscillator Start Up Time & tstart & \multicolumn{2}{|l|}{\(6 \mathrm{~V} \leq \mathrm{V}^{+} \leq \mathrm{V}_{\mathrm{z}}\)} & & & 1 & sec \\
\hline Output Leakage Current & lolk & \multicolumn{2}{|l|}{All Outputs} & & & 100 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Oscillator Transconductance} & \multirow[b]{2}{*}{gm} & \multicolumn{2}{|l|}{\(\mathrm{V}+\geq 6.0 \mathrm{~V}\)} & & 250 & & \multirow[t]{2}{*}{\(\mu \mathrm{mho}\)} \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}+\geq 3.0 \mathrm{~V}\)} & 25 & 100 & & \\
\hline
\end{tabular}

Note 4: In Test Circuit only. \(\mathrm{V}^{+}\)should not exceed V .

\section*{TEST CIRCUIT}

\section*{TYPICAL AUTO CLOCK}

Quartz Crystal Parameters
\(\mathrm{R}_{\mathrm{S}}=100 \Omega\)
\(\mathrm{C}_{\mathrm{m}}=0.012 \mathrm{pF}\)
\(\mathrm{C}_{\mathrm{o}}=5 \mathrm{pF}\)
\(f=4.194,304 \mathrm{~Hz}\)

\section*{TYPICAL OPERATING CHARACTERISTICS}

Oscillator Stability as a Function of Supply Voltage

\section*{OUTPUT WAVEFORMS}

Zener Voltage as a Function of Temperature

The ICM7051 uses a TEST point to facilitate testing. This pin has an on-chip pulldown resistor, and for normal operation is at \(\mathrm{V}^{-}\). Connecting this pin to \(\mathrm{V}^{+}\)will give a 32 times speed-up of the outputs.

\section*{CUSTOM VERSIONS}

The ICM7051 may be modified with alternative metal masks to provide a different number of dividers, various pulse widths, increased oscillator transistors or optional \(V\) zener pad for use with an external zener diode. The ICM7051 can be adapted for use with different synchronous motors as well as a variety of stepping motors. Consult factory for details.

\section*{ICM7 051}

\section*{APPLICATION NOTES}

\section*{OSCILLATOR CONSIDERATIONS}

The oscillator of the ICM7051 has been designed to operate with crystals having a load capacitance of 10 to 12 pF . This allows nominal capacitor values of \(15 / 15 \mathrm{pF}\) or \(20 / 20 \mathrm{pF}\). Increasing the load capacitance of the crystal requires larger oscillator device sizes, which causes the supply current to increase. Modifications to the oscillator can be made on a custom basis. The tuning range can be increased by using crystals with lower load capacitances, however the stability may decrease somewhat. This can be counteracted by reducing the motional capacitance of the crystal. A nonlinear feedback resistor having a maximum value at start up is provided on chip.
The trimmer capacitor used for tuning should be connected to the OSCillator OUTput. Otherwise, if tuned at the input, the stability will vary with tuning, and the current drain may become excessive when the input capacitance is much less than the output capacitance. Refer to the Supply Current vs. Supply Voltage and Oscillator Stability vs. Supply Voltage characteristic curves on the preceding page.
To tune the oscillator, the best method is to monitor the output pulse at either OUT1 or OUT2 with a counter set to measure the period. The oscillator trimmer is then adjusted for a reading of 15.625 msec for the ICM7051A, or 2.0000 secs for the ICM7051B. Note that different output frequencies can be obtained by varying the crystal frequency over a range of 1 to 10 MHz . In particular, a 60 Hz output will result if a 3.93216 MHz crystal is used with the ICM7051A.

\section*{CHIP TYPOGRAPHY}

The follwing expressions can be used to arrive at a crystal specification:
Tuning Range
\[
\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{o}+C_{l}\right)} \quad C_{L}=\frac{C_{\text {in }} C_{o u t}}{C_{i n}+C_{o u t}}
\]
gm required for startup
\(g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{S} \quad\left(1+\frac{C_{0}}{C_{L}}\right)^{2}\)
\(\mathrm{R}_{\mathrm{S}}=\) series resistance of the crystal
\(\mathrm{f}=\) frequency of the crystal
\(\Delta f=\) frequency shift from series resonance frequency
\(\mathrm{C}_{\circ}=\) static capacitance of the crystal
\(\mathrm{C}_{\text {in }}=\) input capacitance
Cout \(=\) output capacitance
\(\mathrm{C}_{\mathrm{m}}=\) motional capacitance
\(\omega=2 \pi \mathrm{f}\)
The resulting \(g_{m}\) should not exceed about \(1 / 2\) the value of the oscillator at the relevant supply voltage.

\section*{Quartz Clock Circuits Bipolar Stepper Motor Applications}

\section*{FEATURES}
- Single battery operation
- Very low current - typically \(3 \mu \mathbf{A}\)
- Reset or stop function, inhibited during output
- Extremely low output saturation resistance: less than 100 ohms
- Complex direct drive alarm: \(1 \mathrm{~Hz}+8 \mathrm{~Hz}+2048 \mathrm{~Hz}\)
- On chip oscillator input capacitor
- Custom options available
\begin{tabular}{|l|l|}
\hline DEVICE & MOTOR OUTPUT \\
\hline ICM7070L & \(31 \mathrm{~ms} @ 0.5 \mathrm{~Hz}\) \\
\hline
\end{tabular}

Note: These devices require a crystal frequency of 32.768 kHz . Consult ICM7050 family data sheet for 4.19 MHz devices.

\section*{GENERAL DESCRIPTION}

The ICM7070 is a single battery analog quartz clock circuits intended for use with bipolar stepper motors and fabricated using Intersil's low voltage metal gate CMOS process. The circuit consists of a divider chain, control gating, output buffers and an oscillator which, when using the specified 32 kHz crystal and capacitors, will provide excellent stability. The \(2^{15}\) divider chain is tapped at the \(2^{15}, 2^{12}\), and \(2^{4}\) points to provide a complex alarm of \(1 \mathrm{~Hz}, 8 \mathrm{~Hz}\), and 2048 Hz driving an output inverter. Several standard motor drive waveforms are available, and the large output inverters provide the low impedance necessary to drive the motor. A reset inhibit function is provided so that if the RESET occurs during a (non-square wave) output pulse, resetting will not take place until the pulse is completed. RESET may also be used as a stop for synchronization to a time signal or tester. Output will begin 1 sec . after RESET goes low again, and in the correct sequence.

\section*{ABSOLUTE MAXIMUM RATINGS}

> Power Dissipation Output Short Circuit (Note 1) 300mW
> Supply Voltage Equal to but never Input Voltage (Note 2) the supply voltage Storage Temperature \(-30^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
> Operating Temperature . \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
> Lead Temperature (soldering, 10s) ... \(300^{\circ} \mathrm{C}\)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: This value of power dissipation refers to that of the package and will not normally be obtained under normal operating conditions.
NOTE 2: Due to the inherent SCR structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied. If only inputs are affected, latchup can also be prevented by limiting the current into the input terminal to less than 1 mA .

\section*{ELECTRICAL CHARACTERISTICS}
\(\left(\mathrm{V}+=1.5 \mathrm{~V}\right.\), fos \(\mathrm{C}=32,768 \mathrm{~Hz}\) test circuit, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified)
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Supply Current & \(\mathrm{I}^{+}\) & No Load & & 3 & 6 & \(\mu \mathrm{~A}\) \\
Operating Voltage & \(\mathrm{V}+\) & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}\) & 1.2 & & 1.8 & V \\
Total Output Saturation Resistance & RouT & \(\mathrm{IL}=4 \mathrm{~mA}\) & & 70 & 100 & \(\Omega\) \\
Alarm Saturation Resistance & \(\mathrm{RAL}(\mathrm{on})\) & \(\mathrm{P}, \mathrm{IL}=1 \mathrm{~mA}\) & & 400 & 700 & \(\Omega\) \\
Oscillator Stability & & \(\mathrm{N}, \mathrm{IL}=2 \mathrm{~mA}\) & & 100 & 400 & \(\Omega\) \\
Oscillator Start-up Time & \(\mathrm{f}_{\text {stab }}\) & \(1.2 \leq \mathrm{V}+\leq 1.6\) & & 1 & & ppm \\
Oscillator Input Capacitance & \(\mathrm{t}_{\text {start }}\) & \(\mathrm{V}+=1.2 \mathrm{~V}\) & & & 1.0 & sec \\
Oscillator Transconductance & CIN & & 16 & 20 & 24 & pF \\
& gm & & 2 & 7 & & \(\mu \mathrm{mho}\) \\
\hline
\end{tabular}

\section*{TYPICAL APPLICATION}

TYPICAL OPERATION CHARACTERISTICS

SUPPLY CURRENT vs SUPPLY VOLTAGE

OUTPUT CURRENT vs OUTPUT LOAD VOLTAGE

OSCILLATOR STABILITY vs. SUPPLY VOLTAGE

ALARM OUTPUT CURRENT vs SATURATION VOLTAGE P CHANNEL SATURATION VOLTAGE

\section*{OUTPUT WAVEFORMS (ICM7070L)}

\section*{ICM7070L}

\section*{APPLICATION NOTES}

\section*{OSCILLATOR CONSIDERATIONS}

The oscillator of the ICM7070 has been designed to operate with crystals having a load capacitance of 10 to 12 pF . This allows nominal capacitor values of 15 pF or 20 pF. Increasing the load capacitance of the crystal requires larger oscillator device sizes, which causes the supply current to increase. Modifications to the oscillator can be made on a custom basis. The tuning range can be increased by using crystals with lower load capacitances, however the stability may decrease somewhat. This can be counteracted by reducing the motional capacitance of the crystal. A non-linear feedback resistor having a maximum value at start up is provided on chip. Oscillator tuning should be done at the oscillator output.

The following expressions can be used to arrive at a crystal specification:
Tuning Range
\(\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{o}+C_{L}\right)} \quad C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}\)
gm required for startup
\(g_{m}=\omega^{2} C_{i n} C_{\text {out }} R\left(1+\frac{C_{0}}{C_{L}}\right)^{2}\)
Rs = series resistance of the crystal
\(f=\) frequency of the crystal
\(\Delta f=\) frequency shift from series resonance frequency
\(\mathrm{C}_{0}=\) static capacitance of the crystal
\(\mathrm{C}_{\text {in }}=\) input capacitance
\(\mathrm{C}_{\text {out }}=\) output capacitance
\(\mathrm{C}_{\mathrm{m}}=\) motional capacitance
\(\omega=2 \pi f\)
The resulting \(\mathrm{gm}_{\mathrm{m}}\) should not exceed \(20 \mu\) mhos.

\section*{OSCILLATOR TUNING METHODS}

When tuning the oscillator two methods can be used. The first method would be to monitor the output pulse at either OUT 1 or OUT 2 with a counter set to measure the period. The oscillator trimmer would then be adjusted for a reading of 2.000000 secs. A second method would be to put the device in the reset mode by pulling the RESET pin to \(\mathrm{V}^{+}\) and then monitor the ALARM output with a counter set to measure average period. The ALARM output is a continuous 2048 Hz when in the reset mode, which gives a period of \(488.28125 \mu \mathrm{~s}\).

The trimmer capacitor used for tuning should be connected to the OSCillator OUTput. Otherwise, if tuned at the input, the stability will vary with tuning, and the current drain may become excessive when the input capacitance is much less than the output capacitance. Refer to the Supply Current vs. the Supply Voltage and Oscillator Stability vs. Supply Voltage characteristic curves on the preceding page.

\section*{TEST MODE OPERATION}

Pulling the RESET/TEST input to - 7 V switches the device into the test mode to speed up automatic testing. When in the test mode the output rate is increased 4 times, from 0.5 Hz to 2 Hz , with a corresponding reduction in pulse width. The ALARM output changes to a composite waveform of 4 Hz and 32 Hz . The circuit can be reset while in the test mode by shorting the ALARM output to \(\mathrm{V}^{-}\).

\section*{ALARM CONSIDERATIONS}

The ALARM output inverter is large enough to directly drive transducers requiring up to 2 mA of current. If more current is needed, a PNP buffer should be used*. A slight fluctuation in the supply current of \(0.5 \mu \mathrm{~A}\) to \(1.0 \mu \mathrm{~A}\) will be seen; this is a result of the 2048 Hz drive to the relatively large gate capacitance of the alarm output transistors.

\section*{CHIP TOPOGRAPHY}

\title{
ICM7206 CMOS Touch Tone" Encoder
}

\section*{FEATURES}
- Low cost system with minimum component count
- Fully integrated oscillator uses 3.58 MHz color TV crystal
- High current bipolar output driver
- Low output harmonic distortion
- Wide operating supply voltage range: 3 to 6 volts
- Uses inexpensive single contact per key calculator type keyboard (ICM7206/C/D)
- Extremely low power \(\leq 5.5 \mathrm{~mW}\) with a 5.5 V supply
- Single and dual tone capabilities
- Multiple key lockout
- Disable output: provides output switch function whenever a key is pressed
- Custom options available

\section*{GENERAL DESCRIPTION}

The Intersil ICM7206/A/B/C/D are 2 -of- 8 sine wave tone encoders for use in telephone dialing systems. Each circuit contains a high frequency oscillator, two separate programmable dividers, a D/A converter, and a high level output driver.
The reference frequency is generated from a fully integrated oscillator requiring only a 3.58 MHz color TV crystal. This frequency is divided by 8 and is then gated into two divide by N counters (possible division ratios 1 through 128) which provide the correct division ratios for the upper and lower band of frequencies. The outputs from these two divide by N counters are further divided by 8 to provide the time sequencing for a 4 voltage level synthesis of each sinewave. Both sinewaves are added and buffered to a high current output driver, with provisions made for up to two external capacitors for low pass filtering, if desired. Typically, the total output harmonic distortion is \(20 \%\) with no L.P. filtering and it may be reduced to typically less than \(5 \%\) with filtering. The output drive level of the tone pairs will be approximately

PIN CONFIGURATION (OUTLINE dRAWING PE)

Pin 1 is designated either by a dot or a notch.
-3 dBV into a 900 ohm termination. The skew between the high and low groups is typically 2.5 dB without low pass filtering.

The 7206 uses either a \(3 \times 4\) or \(4 \times 4\) single contact keyboard; the oscillator will run whenever the power is applied, and the DISABLE output consists of a p-channel open drain FET whose source is connected to \(\mathrm{V}^{+}\).
The 7206A can also use a \(3 \times 4\) or \(4 \times 4\) keyboard, but requires a double contact type with the common line tied to \(\mathrm{V}^{+}\). The oscillator will be on whenever power is applied; the DISABLE output consists of a p-channel open drain FET; its' source is connected to \(\mathrm{V}^{+}\).
The 7206 B requires a \(4 \times 4\) double contact keyboard with the common line tied to \(\mathrm{V}^{-}\). The oscillator will be on only during the time that a ROW is enabled, and the DISABLE output consists of an n-channel open drain FET with its' source tied to \(\mathrm{V}^{-}\).

The 7206C uses either a \(3 \times 4\) or \(4 \times 4\) single contact keyboard; the oscillator will be on only during the time that a key is depressed. The DISABLE output consists of an n-channel open drain FET with its source tied to \(\mathrm{V}^{-}\).
The 7206D uses a single contact \(3 \times 4\) or \(4 \times 4\) keyboard. The oscillator will be on only during the time that a key is depressed. DISABLE output consists of a p-channel open drain FET with its source tied to \(\mathrm{V}^{+}\).

ICM7206 Oscillator

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c}
TEMPERATURE \\
RANGE
\end{tabular} & PACKAGE \\
\hline ICM7206 JPE & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic \\
\hline ICM7206A JPE & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic \\
\hline ICM7206B JPE & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic \\
\hline ICM7206C JPE & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic \\
\hline ICM7206D JPE & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Plastic \\
\hline ICM7206/D & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & DICE \\
\hline ICM7206A/D & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & DICE \\
\hline ICM7206B/D & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & DICE \\
\hline ICM7206C/D & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & DICE \\
\hline ICM7206D/D & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & DICE \\
\hline
\end{tabular}

\section*{ICM7206 Family}

\section*{ABSOLUTE MAXIMUM RATINGS (Note 1)}

Supply Voltage (Note 2) ... 6.0V
Supply Current \(\mathrm{V}^{-}\)(terminal 8) \(\ldots .25 \mathrm{~mA}\)
Supply Current \(\mathrm{V}^{+}\)(terminal 16) 40mA
Disable Output Volt. (term. 7) .. Not more pos. than \(\mathrm{V}^{+}\)nor more neg. than -6 V with respect to \(\mathrm{V}^{+}\)

Output Volt. (term. 15). Not more pos, than +5 V with respect to \(\mathrm{V}^{+}\), nor more neg. than -1.0 with respect to \(\mathrm{V}^{-}\)
Output Current (terminal 15) 25 mA Power Dissipation .. 300 mW Operating Temperature Range \(\ldots \ldots \ldots \ldots \ldots \ldots-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) Storage Temperature Range \(. \ldots \ldots \ldots \ldots \ldots . . .\).

NOTE 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 2. The ICM7206 family has a zener diode connected between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)having a breakdown voltage between 6.2 and 7.0 volts. If the currents into terminals 8 and 16 are limited to 25 and 40 mA maximum respectively, the supply voltage may be increased above 6 volts to zener voltage. With no such current limiting, the supply voltage must not exceed 6 volts.

\section*{TYPICAL OPERATING CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}^{+}=5.5 \mathrm{~V}\), Test Circuit, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & \multicolumn{2}{|l|}{CONDITIONS} & MIN. & TYP. & MAX. & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { UNITS } \\
\hline \mu \mathrm{A} \\
\hline
\end{gathered}
\]} \\
\hline Supply Current & \(\mathrm{I}^{+}\) & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}\) disconnected} & & 450 & 1000 & \\
\hline Guaranteed Operating Supply Voltage Range (Note 3) & \(V_{\text {OP }}\) & \multicolumn{2}{|l|}{\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\)} & 3.0 & & 6.0 & \multirow{3}{*}{V} \\
\hline \multirow[b]{2}{*}{Peak to Peak Output Voltage} & \multirow{8}{*}{Vout} & \multicolumn{2}{|l|}{\(\mathrm{C}_{1}, \mathrm{C}_{2}\) disconnected - Low Band} & 0.90 & 1.15 & 1.45 & \\
\hline & & \multicolumn{2}{|l|}{\(R_{L}=1 \mathrm{k} \Omega\), no filtering - High Band} & 1.10 & 1.40 & 1.70 & \\
\hline \multirow[t]{6}{*}{RMS Output Voltage} & & \multirow[t]{3}{*}{\(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\), fout \(=697 \mathrm{~Hz}\)} & \(\mathrm{C}_{2}\) Only & & 480 & & \multirow{6}{*}{mV} \\
\hline & & & \(\mathrm{C}_{1}\) to \(\mathrm{C}_{2}\) & & 480 & & \\
\hline & & & No filtering & & 490 & & \\
\hline & & \multirow[t]{3}{*}{\(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\), fout \(=1633 \mathrm{~Hz}\)} & z C \({ }_{1}\) & & 490 & & \\
\hline & & & \(\mathrm{C}_{1}\) to \(\mathrm{C}_{2}\) & & 580 & & \\
\hline & & & Nofiltering & & 655 & & \\
\hline Skew Between High and Low Band Output Voltages & & \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{1}, \mathrm{C}_{2}\) discon & nected & & 2.5 & 3.0 & dB \\
\hline Output Impedance & \(\mathrm{Z}_{0}\) & \(R_{L}=1 \mathrm{k} \Omega\) & Operating & & 90 & 200 & \(\Omega\) \\
\hline Output mpedance & \(z_{0}\) & \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\) & Quiescent & & 25 & & K \(\Omega\) \\
\hline & THD1 & Either Hi or Low Bands & & & 20 & 25 & \\
\hline & THD1 & No Low Pass Filtering & & & 20 & 25 & \\
\hline Total Outp & THD2 & \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=.002 \mu \mathrm{~F}\) & fout \(=697 \mathrm{~Hz}\) & & 2.3 & 10 & \% \\
\hline Totar Outp & THD2 & \(\mathrm{C}_{2}=0.02 \mu \mathrm{~F}\) & fout \(=1633 \mathrm{~Hz}\) & & 1.0 & 10 & \\
\hline Maximum Output Voltage Level & VOH & \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\) & & & & 4.6 & V \\
\hline Minimum Output Voltage Level & VOL & \(R_{L}=1 \mathrm{k} \Omega\) & & 0.5 & & & \\
\hline Keyboard Input Pullup Resistors & \(\mathrm{R}_{\text {IN }}\) & Terminals \(3,4,5,6,11,12\), & ,13,14 & 35 & 100 & 150 & \(\mathrm{K} \Omega\) \\
\hline Keyboard Input Capacitance & \(\mathrm{Cl}_{\text {IN }}\) & Terminals \(3,4,5,6,11,12\), & ,13,14 & & & 5 & pF \\
\hline Guaranteed Oscillator Frequency Range (Note 4) & fosc & \(3 \leq\left(V^{+}-\mathrm{V}^{-}\right) \leq 6 \mathrm{~V}\) & & 2.0 & & 4.5 & MHz \\
\hline Guaranteed Oscillator Frequency Range & & \(\left.4 \mathrm{~V} \leq{ }_{6} \mathrm{~V}^{+}-\mathrm{V}^{-}\right) \leq 6 \mathrm{~V}\) & & 2.0 & & 7 & \\
\hline System Startup Time on Application of Power & ton & ICM7206, ICM7206A & & & 10 & & \\
\hline System Startup Time on Application of Power and Key Depressed Simultaneously & & ICM7206B, ICM7206C, & ICM7206D & & & 7 & ms \\
\hline DISABLE Output Saturation Resistance (ON STATE) & \(\mathrm{R}_{\mathrm{D}}\) & See Logic Table for Inp Current \(=4 \mathrm{~mA}\) & ut Conditions & & 330 & 700 & \(\Omega\) \\
\hline DISABLE Output Leakage (OFF STATE) & Iolk & See Logic Table for Inpu & ut Conditions & & & 10 & \(\mu \mathrm{A}\) \\
\hline Oscillator Load Capacitance & Cosc & Measured between term no supply voltage applie \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}\) & minals 9 \& 10, ed to circuit & & 7 & & pF \\
\hline Guaranteed Output Frequency Tolerance & fo & Any output frequency Crystal tolerance \(\pm 60\) pp Crystal load capacitanc & \[
\begin{aligned}
& \mathrm{pm} \\
& \mathrm{ceCL}=30 \mathrm{pF}
\end{aligned}
\] & & & \(\pm 0.75\) & \% \\
\hline Oscillator Startup Time ICM7206B, C, D & \(\mathrm{t}_{\text {start }}\) & \(\mathrm{V}^{+}=3 \mathrm{~V}\) (Note 5) & & & & 7 & ms \\
\hline
\end{tabular}

NOTE 3: Operation above 6 volts must employ supply current limiting. Refer to 'ABSOLUTE MAXIMUM RATINGS' and the Application Notes for further information.
NOTE 4: The ICM7206 family uses dynamic high frequency circuitry in the initial 23 divider resulting in low power dissipation and excellent performance over a restricted frequency range. Thus, for reliable operation with a 6 volt supply an oscillator frequency of not less than 2 MHz must be used.
NOTE 5: After row input is enabled.

\section*{TRUTH TABLE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline LINE & ROWS (1) ACTIVATED & COLS (2) ACTIVATED & OUTPUT
(TERMINAL \#15) & DISABLE
(TERMINAL \#7) & COMMENTS \\
\hline 1 & 0 & 0 & Off & Off & Quiescent State \\
\hline 2 & 1 & 1 & \(\mathrm{frow}+\mathrm{f}_{\text {col }}\) & On & Dual Tone \\
\hline 3 & 1 & 2 or 3 (incl. col \#4) & frow & On & Single Tone \\
\hline 4 & 2 or 3 & 1 & \(\mathrm{f}_{\mathrm{col}}\) & On & Single Tone \\
\hline 5 & 2 or 3 & 2 or 3 (excl. col \#3) & D.C. Level & On & No Tone \\
\hline 6 & 1 & 4 or 3 (must excl. col \#4) & frow, 50\% Duty Cycle & frow, 50\% Duty Cycle & frow Test \\
\hline 7 & 4 & 1 & \(\mathrm{f}_{\text {col }}\), 50\% Duty Cycle & fcol, 50\% Duty Cycle & \(\mathrm{f}_{\mathrm{col}}\) Test \\
\hline 8 & 0 & 1 or 2 or 3 or 4 & Off & Off & \(\mathrm{n} / \mathrm{a}^{*}\) \\
\hline 9 & 1 & 0 & \(902 \mathrm{~Hz}+\) frow & On & \(\mathrm{n} / \mathrm{a}^{*}\) \\
\hline 10 & 2 or 3 & 0 & 902 Hz & On & \(\mathrm{n} / \mathrm{a}^{*}\) \\
\hline 11 & 4 & 0 & 902Hz, 50\% Duty Cycle & 902Hz, 50\% Duty Cycle & \(\mathrm{n} / \mathrm{a}^{*}\) \\
\hline 12 & 2 or 3 or 4 & 4 & D.C. Level & Indeterminate & Multiple Key Lockout \\
\hline 13 & 4 & 2 or 3 or 4 & D.C. Level & Indeterminate & Multiple Key Lockout \\
\hline
\end{tabular}
*n/a - not applicable to telephone calling.
Note 1: Rows are activated forthe ICM7206/C by connecting to a negative supply voltage with respect to \(\mathrm{V}^{+}\)(terminal 16) at least \(33 \%\) of the value of the supply voltage \(\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\). For the ICM7206A rows (and columns) are activated by connecting to a positive supply voltage with respect to \(\mathrm{V}^{-}\)(terminal 8) at least \(33 \%\) of the value of the supply voltage \(\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\). The rows and columns of the ICM7206B are activated by connecting to a negative supply voltage.
Note 2: Columns (ICM7206) are activated by being connected to a positive supply voltage with respect to \(\mathrm{V}^{-}\)(terminal 8) at least \(33 \%\) of the value of the supply voltage \(\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\).

\section*{COMMENTS}

All combinations of row and column activations are given in the truth table. Lines 1 thru 7 and 12, 13 represent conditions obtainable with a matrix keyboard. Lines 8 thru 11 are given only for completeness and are not pertinent to telephone dialing.
Lines 6 and 7 show conditions for generating \(50 \%\) duty cycle full amplitude signals useful for rapid testing of the row and column frequencies on automatic test equipment. In all other cases, output frequencies on terminal 15 are single or dual 4 level synthesized sine waves.

A 'DC LEVEL' on terminal 15 may be any voltage level between approximately 1.2 and 4.3 volts with respect to \(\mathrm{V}^{-}\) (terminal 8) for a 5.5 volt supply voltage.
The impedance of the OUTPUT (terminal 15) is approximately 20 K ohms in the OFF state. The 'DISABLE OUT-OUT' ON and OFF conditions are defined in the TYPICAL OPERATING CHARACTERISTICS.

\section*{SCHEMATIC DIAGRAM}

\section*{ICM7206 Family}

TEST CIRCUIT (single contact keyboard devices shown)

TYPICAL OPERATING CHARACTERISTICS
SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OSCILLATOR FREQUENCY DEVIATION AS A FUNCTION OF SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION
AS A FUNCTION OF LOAD RESISTANCE

PEAK TO PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE

\begin{tabular}{|c|c|c|}
\hline KEY & \begin{tabular}{c}
LOW BAND \\
FREQ. Hz
\end{tabular} & \begin{tabular}{c}
HI BAND \\
FREQ. Hz
\end{tabular} \\
\hline 1 & 697 & 1209 \\
\hline 2 & 697 & 1336 \\
\hline 3 & 697 & 1477 \\
\hline 4 & 770 & 1209 \\
\hline 5 & 770 & 1336 \\
\hline 6 & 770 & 1477 \\
\hline 7 & 852 & 1209 \\
\hline 8 & 852 & 1336 \\
\hline 9 & 852 & 1477 \\
\hline\(*\) & 941 & 1209 \\
\hline 0 & 941 & 1336 \\
\hline\(\#\) & 941 & 1477 \\
\hline A & 697 & 1633 \\
\hline B & 770 & 1633 \\
\hline C & 852 & 1633 \\
\hline D & 941 & 1633 \\
\hline
\end{tabular}

FIGURE 1: Keyboard Frequencies

FIGURE 2
Figure 2 shows individual currents of a low band and high band frequency pair into the summing node A (see Figure 3) and the resultant voltage waveform.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
DESIRED \\
FREQUENCY \\
\(\mathbf{H z}\)
\end{tabular} & \begin{tabular}{c}
ACTUAL \\
FREQUENCY \\
\(\mathbf{H z}\)
\end{tabular} & \begin{tabular}{c}
FREQUENCY \\
DEVIATION \\
\(\%\)
\end{tabular} & \begin{tabular}{c}
DIVIDE BY N \\
RATIO
\end{tabular} \\
\hline 697 & 699.13 & +0.30 & 80 \\
\hline 770 & 766.17 & -0.50 & 73 \\
\hline 852 & 847.43 & -0.54 & 66 \\
\hline 941 & 947.97 & +0.74 & 59 \\
\hline 1209 & 1215.88 & +0.57 & 46 \\
\hline 1336 & 1331.68 & -0.32 & 42 \\
\hline 1477 & 1471.85 & -0.35 & 38 \\
\hline 1633 & 1645.01 & +0.74 & 34 \\
\hline
\end{tabular}

\section*{ICM7206 Family}

\section*{APPLICATION NOTES}

\section*{1. Device Description}

The ICM7206 family is manufactured with a standard metal gate C-MOS technology having proven reliability and excellent reproducability resulting in extremely high yields. The techniques used in the design have been developed over many years and are characterized by wide operating supply voltage ranges and low power dissipation.

To minimize chip size, all diffusions used to define sourcedrain regions and field regions are butted up together. This results in approximately 6.3 volt zener breakdown between the supply terminals, and between all components on chip. As a consequence, the usual C-MOS static charge problems and handling problems are not experienced with the ICM7206.

The oscillator consists of a medium size C-MOS inverter having on chip a feedback resistor and two capacitors of 14 pF each, one at the oscillator input and the other at the oscillator output. The oscillator is followed by a dynamic \(\div 23\) circuit which divides the oscillator frequency to \(447,443 \mathrm{~Hz}\). This is applied to two programmable dividers each capable of division ratios of any integer between 1 and 128, and each counter is controlled by a ROM. The outputs from the programmable counters drive sequencers (divide by 8) which generate the eight time slots necessary to synthesize the 4level sine waves.

FIGURE 3: D to A Converter and Output Buffer

The control logic block recognizes signals on the row and column inputs that are only a small fraction of the supply voltage, thereby permitting the use of a simple matrix single contact per key keyboard, rather than the more usual two contacts per key type having a common line. The row and column pullup resistors are equal in value and connected to the opposite supply terminals. (ICM7206/C only; for the ICM7206A all pullup resistors are connected to the \(\mathrm{V}^{-}\) terminal and for the ICM7206B they are tied to the \(\mathrm{V}^{+}\). Therefore, connecting a row input to a column input generates a voltage on those inputs which is one half of the supply voltage.

The ICM7206 family employs a unique but extremely simple digital to analog (\(D\) to \(A\)) converter. This \(D\) to \(A\) converter produces a 4 level synthesized sine wave having an intrinsic total harmonic distortion level of approximately \(20 \%\). Figure 3 shows a single channel \(D\) to \(A\) converter. The current sources \(\mathrm{Q}_{2}\) and \(\mathrm{Q}_{3}\) are proportioned in the ratio of \(1: 1.414\). During time slots 1 and 8 both \(S_{1}\) and \(S_{2}\) are off, during time slots 2 and 7 only \(\mathrm{S}_{1}\) is on, during time slots 3 and 6 only \(\mathrm{S}_{2}\) is on, and during time slots 4 and 5 both \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\) are on. The resultant currents are summed at node \(A\), buffered by \(Q_{4}\) and further buffered by \(R_{3}, R_{4}\) and \(Q_{5}\). Switch \(\mathrm{S}_{3}\) allows the output to go into a high impedance mode under quiescent conditions.

Node A is the common summing point for both the high and low band frequencies although this is not shown in Figure 3.

The synthesized sine wave has negligible even harmonic distortion and very low values of third and fifth harmonic distortion thereby minimizing the filtering problems necessary to reduce the total harmonic distortion to well below the \(10 \%\) level required for touch tone telephone encoding. Figure 4 shows the low pass filter characteristic of the output buffer for \(\mathrm{C}_{1}=0.0022 \mu \mathrm{~F}\) and \(\mathrm{C}_{2}=0.022 \mu \mathrm{~F}\). A small peak of 0.4 dB occurs at 1100 Hz with sharp attention (12dB per octave) above 2500 Hz . This type of active filter produces a sharper and more desirable knee characteristic than would two simple cascaded RC networks.

FIGURE 4: Frequency Attentuation Characteristics of the Output Buffer

\section*{ICM7206 Family}

\section*{2. Latchup Considerations}

Most junction isolated C-MOS integrated circuits, especially those of moderate or high complexity, exhibit latchup phenomena whereby they can be triggered into an uncontrollable low impedance mode between the supply terminals. This can be due to gross forward biasing of inputs or outputs (with respect to the supply terminals), high voltage supply transients, or more rarely by exceptional fast rate of rise of supply voltages.

The ICM7206 family is no exception, and precautions must be taken to limit the supply current to those values shown in the ABSOLUTE MAXIMUM RATINGS. For an example, do not use a 6 volt very low impedance supply source in an electrically extremely noisy environment unless a 500 ohm current limiting resistor is included in series with the \(\mathrm{V}^{-}\) terminal. For normal telephone encoding applications no problems are envisioned, even with low impedance transients of 100 volts or more, if circuitry similar to that shown in the next section is used.

\section*{3. Typical Application (Telephone Handset)}

A typical encoder for telephone handsets is shown in Figure 5. This encoder uses a single contact per key keyboard and provides all other switching functions electronically. The diode connected between terminals 8 and 15 prevents the
output going more than 1 volt negative with respect to the negative supply \(\mathrm{V}^{-}\)and the circuit operates over the supply voltage range from 3.5 volts to 15 volts on the device side of the bridge rectifier. Transients as high as 100 volts will not cause system failure, although the encoder will not operate correctly under these conditions. Correct operation will resume immediately after the transient is removed.
The output voltage of the synthesized sine wave is almost directly proportional to the supply voltage \(\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\)and will increase with increase of supply voltage until zener breakdown occurs (approximately 6.3 volts between terminals 8 and 16) after which the output voltage remains constant.

\section*{4. Portable Tone Generator}

The ICM7206A/B require a two contact key keyboard with the common line connected to the positive supply (neg for ICM7206B) (terminal 16). A simple diode matrix may be used with this keyboard to provide power to the system whenever a key is depressed, thus avoiding the need for an on/off switch. In Figure 6 the tone generator is shown using a 9 volt battery. However, if instead, a 6 volt battery is used, the diode \(D_{4}\) is not required. It is recommended that a 470 ohm resistor still be included in series with a negative (positive) supply to prevent accidental triggering of latchup.

NOTE: If dual contact keyboard is used, common should be left floating.

FIGURE 5: Telephone Handset Touch Tone Encoder

FIGURE 6: Portable Tone Generator

\section*{OPTIONS}

\section*{(For additional information consult the factory)}

Options can be achieved using metal mask additions to provide the following.
1) The sequence or position of either the row or column terminals can be interchanged i.e., row 1 terminal 3 could become terminal 11, etc.
2) Any frequency oscillator from approximately 0.5 MHz to 7 MHz can be chosen. Note that the accuracy of the output frequencies will depend on the exact oscillator frequency.

For instance, a 1 MHz crystal could be used with worst case output frequency error of \(0.8 \%\). Or, if high accuracy is required, \(\pm 0.25 \%\), oscillator frequencies of \(5,117,376 \mathrm{~Hz}\) or \(2,558,688 \mathrm{~Hz}\) could be selected. ROM's are used to program the dividers.
3) The 'DISABLE' output may be changed to an inverter or an uncommitted drain n-channel transistor.
4) The oscillator may be disabled until a key is depressed.

\section*{CHIP TOPOGRAPHY}

\section*{Chip Dimensions}
\(0.60^{\prime \prime}\) (1.524mm)x0.101"
(2.565 mm)
Chip may be die attached using conventional eutictic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.

\section*{}

\section*{FEATURES}
- High frequency operation - 10 MHz guaranteed
- Easy to use oscillator - requires only a quartz crystal and two capacitors
- Bipolar, MOS and CMOS compatibility
- High output drive capability \(-5 \times\) TTL fanout with 10 ns rise and fall times
- Low power - 50 mW at 10 MHz
- Choice of two output frequencies - osc., and osc. \(\div 8\) frequencies
- Disable control for both outputs
- Wide industrial temperature range \(-\mathbf{- 2 0}{ }^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- All inputs fully protected - circuits may be handled without any special precautions

\section*{GENERAL DESCRIPTION}

The Intersil ICM7209 is a versatile CMOS clock generator capable of driving a number of 5 volt systems with a variety of input requirements. When used to drive up to 5 TTL gates, the typical rise and fall times are 10 ns .
The ICM7209 consists of an oscillator, a buffered output equal to the oscillator frequency and a second buffered output having an output frequency one-eighth that of the oscillator. The guaranteed maximum oscillator frequency is 10 MHz . Connecting the DISABLE terminal to the negative supply forces the \(\div 8\) output into the ' 0 ' state and the output 1 into the ' 1 ' state.

\section*{ABSOLUTE MAXIMUM RATINGS}
\begin{tabular}{|c|c|}
\hline Power Dissipation (\(25^{\circ} \mathrm{C}\)) & 300 mW \\
\hline Supply Voltage & 6 V \\
\hline Output Voltages & Equal to or less than supply \\
\hline Input Voltages & Equal to or less than supply \\
\hline Storage Temp. & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Operating Temp. Range & . \(.20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline Lead Temp. (Soldering, 10 seconds) & . \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{TYPICAL OPERATING CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%\), test circuit, fosc \(=10 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP. & MAX & UNITS \\
\hline Supply Current & \({ }^{+}\) & Note 1 No Load & & 11 & 20 & mA \\
\hline Disable Input Capacitance & \(\mathrm{CD}_{\text {D }}\) & & & & 5 & pF \\
\hline Disable Input Leakage & IILK & Either '1' or '0' state & & & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline Output Low State & VOL & Either OUT 1 or OUT \(\div 8\) simulated \(5 \times\) TTL loads & & & 0.4 & \multirow[b]{2}{*}{V} \\
\hline Output High State & VOH & Either OUT 1 or OUT \(\div 8\) simulated \(5 \times\) TTL loads & 4.0 & 4.9 & & \\
\hline Output Rise Time (Note 3) & \(\mathrm{tr}_{r}\) & Either OUT 1 or OUT \(\div 8\) simulated \(5 \times\) TTL loads & & \[
10
\] & 25 & \multirow[t]{2}{*}{ns} \\
\hline Output Fall Time (Note 3) & \({ }_{\text {t }}\) & Either OUT 1 or OUT \(\div 8\) simulated \(5 \times\) TTL loads & & 10 & 25 & \\
\hline Minimum OSC Frequency for \(\div 8\) Output & fosc & Note 2 & 2 & & & \multirow[t]{2}{*}{MHz} \\
\hline Output \(\div 8\) duty cycle & & Any operating frequency Low state : High state & & 7:9 & & \\
\hline Oscillator Transconductance & gm & & 80 & 200 & & \(\mu \mathrm{mho}\) \\
\hline
\end{tabular}

NOTE 1: The power dissipation is a function of the oscillator frequency (1st ORDER EFFECT see curve) but is also effected to a small extent by the oscillator tank components.
NOTE 2: The \(\div 8\) circuitry uses a dynamic scheme. As with any dynamic.system, information or data is stored on very small nodal capacitances instead of latches (static systems) and there is a lower cutoff frequency of operation. Dynamic dividers are used in the ICM7209 to significantly improve high frequency performance and to decrease power consumption.

NOTE 3: Rise and fall times are defined between the output levels of 0.5 and 2.4 volts.

\section*{TEST CIRCUIT}

\section*{TYPICAL OPERATING CHARACTERISTICS}

\section*{SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY}

TYPICAL OUT 1 RISE AND FALL TIMES

Rise and fall times of OUT \(\div 8\) are similar to those of OUT 1.

\section*{SUPPLY VOLTAGE RANGE FOR CORRECT OPERATION OF \(\div 8\) COUNTER AS A FUNCTION OF OSCILLATOR FREQUENCY}

\section*{APPLICATION NOTES}

\section*{OSCILLATOR CONSIDERATIONS}

The oscillator consists of a C-MOS inverter with a non-linear resistor connected between the oscillator input and output to provide D.C. biasing. Using commercially obtainable quartz crystals the oscillator will operate from low frequencies (10 KHz) to 10 MHz .
The oscillator circuit consumes about \(500 \mu \mathrm{~A}\) of current using a 10 MHz crystal with a 5 volt supply, and is designed to operate with a high impedance tank circuit. It is therefore necessary that the quartz crystal be specified with a load capacitance (\(\mathrm{CL}_{\mathrm{L}}\)) of 10pF instead of the standard 30 pF . To maximize the stability of the oscillator as a function of supply voltage and temperature, the motional capacitance of the crystal should be low (5 mpF or less). Using a fixed input capacitor of 18 pF and a variable capacitor of nominal value of 18 pF on the output will result in oscillator stabilities of typically 1 ppm per volt change in supply voltage.

\section*{THE \(\div 8\) OUTPUT}

A dynamic divider is used to divide the oscillator frequency by 8. Dynamic dividers use small nodal capacitances to store voltage levels instead of latches (which are used in static
dividers). The dynamic divider has advantages in high speed operation and low power but suffers from limited low frequency operation. This results in a window of operation for any oscillator frequency (see graph under TYPICAL OPERATING CHARACTERISTICS).

\section*{OUTPUT DRIVERS}

The output drivers consist of C-MOS inverters having active pullups and pulldowns. Thus the outputs can be used to directly drive TTL gates, other C-MOS gates operating with a 5 volt supply, or TTL compatible MOS gates.
The guaranteed fanout is 5 TTL loads although typical fanout capability is at least 10 TTL loads with slightly increased output rise and fall times.

\section*{COMMENTS ON THE DEVICE POWER CONSUMPTION}

At low frequencies the principal component of the power consumption is the oscillator. At high oscillator frequencies the major portion of the power is consumed by the output drivers, thus by disabling the outputs (activating the DISABLE INPUT) the device power consumption can be dramatically reduced.

\section*{FEATURES}
- Guaranteed 2 volts operation
- Very low current consumption: Typ. 100 \(\mu \mathrm{A}\) @ 3V
- All outputs TTL compatible
- On chip oscillator feedback resistor
- Oscillator requires only 3 external components: fixed capacitor, trim capacitor, and a quartz crystal
- Output inhibit function
- 4 simultaneous outputs: one pulse/sec, one pulse/ \(\min , 15 \mathrm{~Hz}\) and composite \(1024+16+2 \mathrm{~Hz}\) outputs
- Test speed-up provides other frequency outputs
- Input static protection - no special handling required

\section*{GENERAL DESCRIPTION}

The ICM7213 is a fully integrated micropower oscillator and frequency divider with four buffered outputs suitable for interfacing with most logic families. The power supply may be either a two battery stack (Ni-cad, alkaline, etc.) or a regular power supply greater than 2 volts. Depending upon the state of the WIDTH, INHIBIT, and TEST inputs, using a 4.194304 MHz crystal will produce a variety of output frequencies including \(2048 \mathrm{~Hz}, 1024 \mathrm{~Hz}, 34.133 \mathrm{~Hz}, 16 \mathrm{~Hz}, 1\) Hz , and \(1 / 60 \mathrm{~Hz}\) (plus composites).
The ICM7213 utilizes a very high speed low power metal gate C-MOS technology which uses 6.4 volt zeners between the drains and sources of each transistor and also across the supply terminals. Consequently, the ICM7213 is limited to a 6 volt maximum supply voltage, although a simple dropping network can be used to extend the supply voltage range well above 6 volts (see Figure 2).

\section*{BLOCK DIAGRAM}

\section*{ORDERING INFORMATION}

Order Devices by Following Part Number ICM7213IPD
Order Dice by Following Part Number ICM7213D

PIN CONFIGURATION (OUTLINE DRAWINGPD)

\section*{ABSOLUTE MAXIMUM RATINGS}
\(\qquad\)
Output Current（Any output）．．20mA
All Input and Oscillator Voltages（Note 1）．．．．．．．．．．．．．．．．．．Equal to but not greater than the supply voltage
All Output Voltages（Note 1）．． \(0 \leq\) V \(_{0} \leq+6\)
Operating Temperature Range ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Power Dissipation（Note 2）．． 200 mW
Lead Temperature（Soldering 10 sec．）．．． \(300^{\circ} \mathrm{C}\)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．
NOTE 1：The ICM7213 like most C－MOS devices，may enter a destructive latchup mode if an input or output voltage is applied in excess of those defined and there is no supply current limiting．
NOTE 2：Derate linearly power rating of 200 mW at \(25^{\circ} \mathrm{C}\) to 50 mW at \(70^{\circ} \mathrm{C}\) ．

\section*{OPERATING CHARACTERISTICS}

TEST CONDITIONS： \(\mathrm{V}+=3.0 \mathrm{~V}\) ， \(\mathrm{f}_{\mathrm{osc}}=4.194304 \mathrm{MHz}\) ，Test Circuit， \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Supply Current & \(1+\) & & & 100 & 140 & \(\mu \mathrm{A}\) \\
\hline Guaranteed Operating Supply Voltage Range & Vop & \(-20^{\circ} \mathrm{C}<\mathrm{T}_{\text {A }}<85^{\circ} \mathrm{C}\) & 2 & & 4 & V \\
\hline Output Leakage Current & Iolk & Any output，VOUT \(=6\) Volts & & & 10 & \(\mu \mathrm{A}\) \\
\hline Output Sat．Resistance & Rout & Any output，lolk \(=2.5 \mathrm{~mA}\) & & 120 & 200 & \(\Omega\) \\
\hline Inhibit Input Current & \(1 /\) & Inhibit terminal connected to \(\mathrm{V}^{+}\) & & 10 & 40 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline Test Point Input Current & ITP & Test point terminal connected to \(\mathrm{V}^{+}\) & & 10 & 40 & \\
\hline Width Input Current & IW & Width terminal connected to \(\mathrm{V}^{+}\) & & 10 & 40 & \\
\hline Oscillator \(\mathrm{gm}_{\text {m }}\) & gm & \(\mathrm{V}+=2 \mathrm{~V}\) & 100 & & & umho \\
\hline Oscillator Frequency Range（Note 3） & fosc & & 1 & & 10 & MHz \\
\hline Oscillator Stability & fStab & \(2 \mathrm{~V}<\mathrm{V}+<4 \mathrm{~V}\) & & 1.0 & & ppm \\
\hline \multirow[t]{2}{*}{Oscillator Start Time} & \multirow[t]{2}{*}{ts} & \(\mathrm{V}^{+}=3.0\) volts & & 0.1 & & \multirow[t]{2}{*}{sec} \\
\hline & & \(\mathrm{V}+=2.0\) volts & & 0.2 & & \\
\hline
\end{tabular}

NOTE 3：The ICM7213 uses dynamic dividers for high frequency division．As with any dynamic system，information is stored on very small nodal capacitances instead of latches（static system），therefore there is a lower frequency of operation．Dynamic dividers are used to improve the high frequency performance while at the same time significantly decreasing power consumption．At low supply voltages，operation at less than 1 MHz is possible．See application notes．

OUTPUT CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

TEST CIRCUIT

OUTPUT DEFINITIONS
TABLE I.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{INPUT STATES*} & \multirow[t]{2}{*}{PIN 12 OUT 1} & \multirow[t]{2}{*}{PIN 13 OUT 2} & \multirow[t]{2}{*}{PIN 2 OUT 3} & \multirow[t]{2}{*}{PIN 14 OUT. 4} \\
\hline TEST & INHIBIT & WIDTH & & & & \\
\hline L & L & L & \[
\begin{array}{r}
16 \mathrm{~Hz} \\
\cdot \div 218
\end{array}
\] & \[
\begin{aligned}
& \overline{1024+16+2 \mathrm{~Hz}} \\
& (\div 212 \div 218 \div 221) \text { composite }
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{~Hz}, 7.8 \mathrm{mS} \\
& \div 222
\end{aligned}
\] & \[
\begin{aligned}
& 1 / 60 \mathrm{~Hz}, 1 \mathrm{Sec} . \\
& \div\left(2^{24} \times 3 \times 5\right)
\end{aligned}
\] \\
\hline L & \(L\) & H & \[
\begin{gathered}
16 \mathrm{~Hz} \\
\div 218
\end{gathered}
\] & \[
\begin{aligned}
& \hline 1024+16+2 \mathrm{~Hz} \\
& (\div 212 \div 218 \div 221) \text { composite }
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{~Hz}, 7.8 \mathrm{mS} \\
& \div 222
\end{aligned}
\] & \(1 / 60 \mathrm{~Hz}, 125 \mathrm{~ms}\) \\
\hline L & H & L & \[
\begin{aligned}
& 16 \mathrm{~Hz} \\
& \div 218
\end{aligned}
\] & \[
\begin{aligned}
& \overline{1024+16} \mathrm{~Hz} \\
& (\div 212 \div 218) \text { composite }
\end{aligned}
\] & OFF & OFF \\
\hline L & H & H & \[
\begin{gathered}
16 \mathrm{~Hz} \\
\div 218
\end{gathered}
\] & \[
\begin{aligned}
& 1024+16 \mathrm{~Hz} \\
& (\div 212 \div 218) \text { composite }
\end{aligned}
\] & OFF & \begin{tabular}{l}
SEE \\
WAVEFORMS
\end{tabular} \\
\hline H & L & L & ON & \[
\begin{aligned}
& 4096+1024 \mathrm{~Hz} \\
& (\div 210 \div 212) \text { composite }
\end{aligned}
\] & \[
\begin{aligned}
& 2048 \mathrm{~Hz} \\
& \div 211
\end{aligned}
\] & \[
\begin{aligned}
& 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\
& \div(213 \times 5 \times 3)
\end{aligned}
\] \\
\hline H & L & H & ON & \[
\begin{aligned}
& \overline{4096+1024} \mathrm{~Hz} \\
& (\div 210 \div 212) \text { composite }
\end{aligned}
\] & \[
\begin{aligned}
& 2048 \mathrm{~Hz} \\
& \div 211 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\
& \div(213 \times 5 \times 3)
\end{aligned}
\] \\
\hline H & H & L & ON & \[
\begin{aligned}
& 1024 \mathrm{~Hz} \\
& \div 212
\end{aligned}
\] & ON & OFF \\
\hline H & H & H & ON & \[
\begin{aligned}
& 1024 \mathrm{~Hz} \\
& \div 212
\end{aligned}
\] & ON & OFF \\
\hline
\end{tabular}

NOTE: When TEST and RESET are connected to ground, or left open, all outputs except for OUT 3 and OUT 4 have a 50\% duty cycle.

\section*{OUTPUT WAVEFORMS}

EFFECT OF INHIBIT INPUT TEST connected to ground or left open.

All time scales are arbitrary, and in the case of OUT 3 only the pulses coinciding with the negative edge of OUT 4 are
shown. Where time intervals are relevant they are clearly shown.

\section*{APPLICATIONS}

\section*{1. Supply Voltage Considerations}

The ICM7213 may be used to provide various precision outputs with frequencies from 2048 Hz to \(1 / 60 \mathrm{~Hz}\) using a \(4,194,304 \mathrm{~Hz}\) quartz oscillator, and other output frequencies may be obtained using other quartz crystal frequencies. Since the ICM7213 uses dynamic high frequency dividers for the initial frequency division there are limitations on the supply voltage range depending on the oscillator frequency. If, for example, a low frequency quartz crystal is selected, the supply voltage should be selected in the center of the operating window, or approximately 1.7 volts.

FIGURE 1: Window of Correct Operation
The supply voltage to the ICM7213 may be derived from a high voltage supply by using a simple resistor divider (if power is of no concern), by using a series resistor for minimum current consumption, or by means of a regulator.

\section*{EXAMPLE:}
\(f=4.2 \mathrm{MHz}\)
\(8 V \leqslant V \leqslant 12 V(10\) nom.)
\(l_{1} \approx 100 \mu \mathrm{~A}\)
\(l_{2} \approx 1 \mathrm{~mA}\)
\(\mathbf{R}_{2} \approx 3 \mathrm{~K}\) OHMS
\(\mathrm{R}_{1} \approx 6.8 \mathrm{~K}\) OHMS

EXAMPLE:
\(\mathrm{f}_{\mathrm{OSC}}=4.2 \mathrm{MHz}\)
\(8 \mathrm{~V} \leqslant \mathrm{~V} \leqslant 12 \mathrm{~V}\) (10V nom)
\(I_{1} \approx 100 \mu \mathrm{~A}\)
\(R_{3}=\left(10^{-3}\right) K\) OHMS
\(\approx 68 \mathrm{~K}\) OHMS

FIGURE 2: Biasing Schemes with High Voltage Supplies

\section*{2. Logic Family Compatability}

Pull up resistors will generally be required to interface with other logic families. These resistors must be connected between the various outputs and the positive power supply.

\section*{3. Oscillator Considerations}

The oscillator consists of a C-MOS inverter and a feedback resistor whose value is dependent on the voltage at the oscillator input and output terminals and the supply voltage. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt variation are achievable with a nominal supply voltage of 5 volts and a single voltage dropping resistor. The crystal specifications are shown in the TEST CIRCUIT.
It is recommended that the crystal load capacitance (CL) be no greater than 22pF for a crystal having a series resistance equal to or less than 75 ohms, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.
If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance \(\pm 10 \mathrm{ppm}\), a low series resistance (less than 25 ohms), a low motional capacitance of 5 mpF and a load capacitance of 20 pF . The fixed capacitor CIN should be 30 pF and the oscillator tuning capacitor should range between approximately 16 and 60 pF .
Use of a high quality crystal will result in typical stabilities of 0.05 ppm per 0.1 volt change of supply voltage.

\section*{4. Control Inputs}

The TEST input inhibits the 218 output and applies the \(2^{9}\) output to the 221 divider, thereby permitting a speedup of the testing of the \(\div 60\) section by a factor of 2048 times. This also results in alternative output frequencies (see table).

The WIDTH input may be used to change the pulse width of OUT 4 from 125 ms to 1 sec , or to change the state of OUT 4 from ON to OFF during INHIBIT.

\section*{CHIP TOPOGRAPHY}

\section*{FEATURES}
- Four functions: start/stop/reset, split, taylor, time out
- Six digit display: ranges up to 59 minutes 59.99 seconds
- High LED drive current: 13mA peak per segment at \(16.7 \%\) duty cycle with 4.0 volt supply
- Requires only three low cost SPST switches without loss of accuracy: start/stop, reset, display unlock
- Chip enable pin turns off both segment and digit outputs; can be used for multiple circuits driving one display
- Low battery indicator
- Digit blanking on seconds and minutes
- Wide operating range: 2.0 to \(\mathbf{5 . 0}\) volts
- 1 KHz multiplex rate prevents flickering display
- Can be used easily in four different single function stopwatches or two two-function stopwatches: start/stop/reset with time-out, split with taylor. The component count for a three- or four-function stopwatch will be slightly greater.
- Retrofit to ICM7205 for split and/or taylor applications

\section*{GENERAL DESCRIPTION}

The ICM7215 is a fully integrated six digit LED stopwatch circuit fabricated with Intersil's low threshold metal gate CMOS process. The circuit interfaces directly with a six digit/seven segment common cathode LED display. The low battery indicator can be connected to the decimal point anode or to a separate LED. The only components required for a complete stopwatch are the display, three SPST switches, a 3.2768 MHz crystal, a trimming capacitor, three AA batteries and an on-off switch. For a two function stopwatch, or to add a display off feature, one additional slide switch is required. The circuit divides the oscillator frequency by 215 to obtain 100 Hz , which is fed to the fractional seconds, seconds and minutes counters, while an intermediate frequency is used to obtain the \(1 / 6\) duty cycle 1.07 KHz multiplex waveforms. The blanking logic provides leading zero blanking for seconds and minutes independently of the clock. The ICM7215 is packaged in a 24 -lead plastic DIP.

ABSOLUTE MAXIMUM RATINGS

\begin{abstract}
Supply Voltage .. 5.5 V
Power Dissipation (Note 1) .. W
Operating Temperature .. . \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature ... \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Input and Output Voltage equal to but never exceeding the supply voltage
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
\end{abstract}

OPERATING CHARACTERISTICS:
TEST CONDITIONS: \(T_{A}=+25^{\circ} \mathrm{C}\), stopwatch circuit, \(\mathrm{V}+=4.0 \mathrm{~V}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYM & CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Supply Voltage & V+ & \(-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\) & 2.0 & & 5.0 & V \\
\hline Supply Current & I+ & Display off & & 0.6 & 1.5 & \multirow[b]{2}{*}{mA} \\
\hline \begin{tabular}{l}
Segment Current \\
Peak \\
Average
\end{tabular} & ISEG & \begin{tabular}{l}
5 segments lit \\
1.8 Volts across display
\end{tabular} & 9.0 & \[
\begin{gathered}
13.2 \\
2.2 \\
\hline
\end{gathered}
\] & & \\
\hline Switch Actuation Current & \multirow{2}{*}{Isw} & All inputs except chip enable & & 20 & 50 & \multirow{4}{*}{\(\mu \mathrm{A}\)} \\
\hline Switch Actuation Current & & Chip enable & & 50 & 200 & \\
\hline Digit Leakage Current & IDLK & \(\mathrm{V}_{\text {DIG }}=2.0 \mathrm{~V}\) & & & 50 & \\
\hline Segment Leakage Current & ISLK & \(\mathrm{V}_{\text {SEG }}=2.0 \mathrm{~V}\) & & & 100 & \\
\hline Low Battery Indicator Trigger Voltage & VLBI & & 2.2 & & 2.8 & V \\
\hline LBI Output Current & ILBI & \(\mathrm{V}^{+}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.6 \mathrm{~V}\) & & 2.0 & & mA \\
\hline Oscillator Stability & \(\mathrm{f}_{\text {StAB }}\) & \(\mathrm{V}^{+}=2.0 \mathrm{~V}\) to \(\mathrm{V}^{+}=5.0 \mathrm{~V}\) & & 6 & & PPM \\
\hline Oscillator Transconductance & gm & \(\mathrm{V}^{+}=2.0 \mathrm{~V}\) & 120 & & & \(\mu \mathrm{mho}\) \\
\hline Oscillator Input Capacitance & Cosci & & 24 & 30 & 36 & pF \\
\hline
\end{tabular}

NOTE 1: The output devices on the ICM7215 have very low impedance characteristics, especially the digit cathode drivers. If these devices are shorted to a low impedance power supply, the current could be as high as 300 mA . This will not damage the device momentarily, but if the short circuit condition is not removed immediately probable device failure will occur.

\section*{STOPWATCH CIRCUIT}

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT VS VOLTAGE

OSC. STABILITY VS SUPPLY VOLTAGE

SEGMENT CURRENT VS SUPPLY VOLTAGE

LOW BATTERY INDICATOR (LBI) TRIGGER VOLTAGE VS TEMPERATURE

TEMPERATURE (\({ }^{\circ} \mathrm{C}\))

\section*{FUNCTIONAL OPERATION}

Turning on the stopwatch will bring up the reset state with the fractional seconds displaying 00 and the other digits blanked. This display always indicates that the stopwatch is ready to go.
The display can be turned off in any mode by connecting the chip enable input to \(\mathrm{V}^{+}\).

\section*{START/STOP/RESET MODE}

When the mode input is floating and the display input is floating or connected to \(\mathrm{V}^{+}\)the circuit is in the start/stop/reset mode.

The start/stop/reset mode can be used for single event timing in a one-button stopwatch; an additional switch can be used to provide an instant reset. To time another event, the display must be reset before the start of the event. Seconds will be displayed after one second, minutes after
one minute. The range of the stopwatch is 59 minutes 59.99 seconds, and if an event exceeds one hour, the number of hours must be remembered by the user. Leading zeroes are not blanked after one hour.

\section*{TAYLOR OR SEQUENTIAL MODE}

When the mode input is connected to \(V\)-, the stopwatch is in the taylor or sequential mode.

Each split time is measured from zero in the taylor mode; i.e., after stopping the watch, the counters reset momentarily and start counting the next interval. The time displayed is that elapsed since the last activation of start/stop. The display is
stationary after the first interval unless the display unlock is used to show the running clock. Reset can be used at any time.

\section*{SPLIT MODE}

When the mode input is connected to \(\mathrm{V}^{+}\)the stopwatch is in the split mode.

PRESS
RESET

The split mode differs from the taylor in that the lap times are cumulative in the split mode. The counters do not reset or stop after the first start until reset is activated. Time
displayed is the cumulative time elapsed since the first start after reset. Display unlock can be used to let the display 'catch up' with the clock, and reset can be used at any time.

\section*{TIME OUT MODE}

When the mode input is floating and the display input is tied to \(V\)-, the stopwatch is in the time-out mode.

In the time-out mode the clock and display alternately start and stop with activations of the start/stop switch. Reset can
be used at any time. The display unlock button is bypassed in this mode.

\section*{APPLICATION NOTES}

\section*{LOW BATTERY INDICATOR}

The on-chip low battery indicator is intended for use with a small LED or the decimal points on a standard LED display. The output is the drain of a p-channel transistor two-thirds the size of the segment drivers, and designed to provide a trigger voltage of approximately 2.5 volts at room temperature. Normal AA type batteries will provide many hours of accurate timekeeping after the indicator comes on, however the wide voltage spread between the LBI voltage and minimum operating voltage is required to guarantee low battery indication under worst case conditions.

\section*{CHIP ENABLE}

The chip enable input is used to disable both segment and digit drivers without affecting any of the functions of the device. When the chip enable input is floating or connected to V -, the display is enabled, and when the tied to \(\mathrm{V}^{+}\)the display is turned off. One example of the many possible uses of this feature is driving one display from two ICM7215 devices, one in the split mode and the other in the taylor mode. The circuit below indicates how the user can obtain lap and cumulative readings of the same event.

ALL OTHER SWITCHES COMMON TO BOTH DEVICES

\section*{SWITCH CHARACTERISTICS}

The ICM7215 is designed for use with SPST switches throughout. On the display unlock and reset inputs the characteristics of the switches are unimportant, since the circuit responds to a logic level held for any length of time however short. Switch bounce on these inputs does not need to be specified. The start/stop input, however, responds to an edge and so requires a switch with less than 15 ms of switch bounce. The bounce protection circuitry has been specifically designed to let the circuit respond to the first edge of the signal, so as to preserve the full accuracy of the system.

\section*{LATCHUP CONSIDERATIONS}

Due to the inherent structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied to the 7215. If only inputs are affected, latchup can also be prevented by limiting the current into the input terminal to less than 1 mA .

\section*{OSCILLATOR DESIGN}

The oscillator of the ICM7215 includes all components on chip except the 3.2768 MHz crystal and the trimming capacitor. The oscillator input capacitance has a nominal value of 30 pF , and the circuit is designed to work with a crystal with a load capacitance of approximately 15 pF . If the crystal has characteristics as shown on page 3, an 8-40pF trimming capacitor will be adequate for a tuning tolerance of \(\pm 30\) PPM on the crystal. If the crystal's static capacitance is significantly lower, a narrower trimming range may be selected.
After deciding on a crystal and a nominal load capacitance, take the worst case values of \(\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\text {out }}\) and \(\mathrm{Rs}_{\mathrm{s}}\) and calculate the \(\mathrm{gm}_{\mathrm{m}}\) required by:
\(g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{s} \quad\left\{1+\frac{C_{0}\left(C_{\text {in }}+C_{\text {out }}\right)}{C_{\text {in }} C_{\text {out }}}\right\}^{2}\)
\(C_{o}=\) static capacitance
Rs = series resistance
\(\mathrm{C}_{\text {in }}=\) input capacitance
Cout \(=\) output capacitance
\(\omega \quad=2 \pi \times\) crystal frequency
The resulting \(g_{m}\) should be less than half the \(g_{m}\) specified for the device. If it is not, a lower value of crystal series resistance and/or load capacitance should be specified.

\section*{OSCILLATOR TUNING}

Tuning can be accomplished by using the 10th or 100th seconds with the device reset. The frequency on the cathode should be tuned to 1066.667 Hz , which is equivalent to a period of 937.5 microseconds. Note that a frequency counter cannot be connected directly to the oscillator because of possible loading.

\section*{TEST POINT}

The test point input is used for high speed testing of the device. When the input is pulsed low, a latch is set which speeds up counting by a factor of 32 ; each pulse on the test point rapidly advances both minutes and seconds in a parallel mode. To accurately rapid advance the signal applied to the test point must be free of switch bounce. The circuit is taken out of the test mode by using either reset or start/stor

\section*{REPLACING THE ICM7205 WITH THE ICM7215}

The ICM7215 is designed to be compatible with circuits using the ICM7205. If the 7205 is used only in the split mode no changes are required. If the 7205 is used in the taylor mode and the split taylor input (pin 21) is left open, a jumper from pin 21 to \(V\)-must be added when converting to the 7215. A jumper may also be needed if the 7205 is used with a split/ taylor switch. Once the jumper has been added the board can be used with either device.

\section*{CHIP TOPOGRAPHY}

W

\section*{FEATURES}
- 3-1/2 or 4 digit display with AM/PM and alarm flags
- 12/24 hour user selectable formats
- Direct alarm drive @ 3V p-p, with complex (cricket) alarm tone
- 8 minute snooze (Dice programmable from 2 to 14 minutes in two minute increments)
- Single battery operation (1.5V)
- Low current - \(6 \mu \mathrm{~A}\) maximum
- On-chip fixed oscillator input capacitor
- \(32 \mathbf{k H z}\) oscillator requires only quartz crystal and trimming capacitor
- Voltage tripler for large displays

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c}
TEMPERATURE \\
RANGE
\end{tabular} & PACKAGE \\
\hline ICM7223IPL & \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & 40 Pin Plastic DIP \\
\hline ICM7223D \(/ \mathrm{D}\) & \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & DICE \\
\hline
\end{tabular}

\title{
Snooze Alarm
}

\section*{GENERAL DESCRIPTION}

The ICM7223 is a fully integrated 4-digit LCD clock circuit with 24 hour alarm and 8 minute snooze timer. For high accuracy and low power consumption a 32.768 KHz quartz watch crystal is used as the time base, and the number of external components has been reduced to a minimum.
The time keeping and alarm time counters are split during setting, allowing hours and minutes to be set independently, each at a 2 Hz rate. A 'time hold' mode is entered when setting minutes; seconds are automatically reset to zero. The clock starts when the RUN mode is entered, thereby permitting synchronization of the clock to the nearest second. Seconds are not displayed.
The ICM7223 is fabricated using Intersil's low threshold metal gate CMOS process for minimum cost and long battery life.

\section*{ABSOLUTE MAXIMUM RATINGS}

Storage Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Temperature \(\ldots \ldots . . .-10^{\circ} \mathrm{C}\) to \(+60^{\circ} \mathrm{C}\)
Power Dissipation \({ }^{111}\).......................... 100 mW
Supply Voltage \({ }^{21}\)
\(\mathrm{V}^{+}-\mathrm{V}_{1}^{-}\) 2.0 V
\(\mathrm{V}^{+}-\mathrm{V}_{3}\)... 5.5 V
Input Voltage (Osc. In, Test,
Set, Display) \(\ldots V^{-} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}\)
Output Voltage (Osc. Out, 512) \(\ldots . . \mathrm{V}_{1}^{-} \leq \mathrm{Vout} \leq \mathrm{V}^{+}\)
(All Other Pins) \(\mathrm{V}^{\overline{3}} \leq \mathrm{V}_{\text {Out }} \leq \mathrm{V}^{+}\)

\section*{OPERATING CHARACTERISTICS}

TEST CONDITIONS: \(\mathrm{V}^{+}-\mathrm{V}^{-}=1.55 \mathrm{~V}\), voltage tripler sonnected, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Test Circuit, unless otherwise specified, voltages and currents are shown as absolute values.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & CONDITIONS & MIN. & TYP. & MAX. & UNITS \\
\hline Supply Voltage & \(\mathrm{V}^{+}\) & \(\mathrm{V}^{-}=0 \mathrm{~V}-10^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<60^{\circ} \mathrm{C}\) & 1.2 & & 1.8 & Volts \\
\hline Supply Current & \(1+\) & Display Disconnected & & 4 & 6 & \(\mu \mathrm{A}\) \\
\hline Tripler Output Voltage & \(V^{-}\) & \[
\begin{aligned}
& I_{3}=0.0 \mu \mathrm{~A} \\
& \mathrm{I}_{3}=1.0 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& 4.2 \\
& 4.1
\end{aligned}
\] & & & V \\
\hline Segment Drive Current & Iseg & \(\mathrm{V}_{\text {SAT }}=0.2 \mathrm{~V}\) (Both Directions) & 5 & & & \(\mu \mathrm{A}\) \\
\hline Backplane Drive Current & IBP & \(\mathrm{V}_{\text {SAT }}=0.1 \mathrm{~V}\) (Both Directions) & 20 & & & \(\mu \mathrm{A}\) \\
\hline Switch Actuation Current & Isw & \(\mathrm{Vsw}=\mathrm{V}^{+}\)or \(\mathrm{V}_{\text {sw }}=\mathrm{V}_{3}^{-}\) & & 3 & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow{2}{*}{Alarm Saturation Resistance} & \multirow[b]{2}{*}{Ral(on)} & \(\mathrm{P}-\mathrm{CH}\) at \(1 \mathrm{~mA} \quad \mathrm{P}-\mathrm{CH}\) & & 350 & 500 & \multirow{2}{*}{\(\Omega\)} \\
\hline & & \(\mathrm{N}-\mathrm{CH}\) at \(0.5 \mathrm{~mA} \quad \mathrm{~N}-\mathrm{CH}\) & & 1500 & 1800 & \\
\hline Oscillator Stability & fstab & \[
\begin{aligned}
& \mathrm{V}^{-}=0 \mathrm{~V}, 1.20 \mathrm{~V} \leq \mathrm{V}^{+} \leq 1.55 \mathrm{~V}, \\
& \text { Cout }=25 \mathrm{pF}
\end{aligned}
\] & & 2 & & PPM \\
\hline Oscillator Input Current \({ }^{(3 \mid}\) & loscl & \begin{tabular}{l}
'OSC IN' Connected to \(\mathrm{V}^{+}\) \\
'OSC OUT' Open Circuit
\end{tabular} & & 0.2 & & \(\mu \mathrm{A}\) \\
\hline Oscillator Input Capacitance & Cin & & 20 & 25 & 30 & pF \\
\hline Oscillator Transconductance & gm & & 10 & 15 & & \(\mu \mathrm{mho}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. The ICM7223 is fully short circuit protected on all inputs and outputs. However, if by forward biasing an input or output the device is put into a latchup condition, power dissipation must be limited to 100 mW to prevent destruction of the device.
2. The ICM7223 is intended for use with two power supplies, one of which is derived from an external battery \(\mathrm{V}_{1}^{-}\)and the other is generated internally by the voltage multiplier \(\left(V_{3}\right.\) The common point of the two supplies is the most positive, \(\mathrm{V}+\). If desired the
circuit can be supplied with an external \(\mathrm{V}_{3}^{-}\)by disconnecting the multiplier capacitors, or \(V_{\overline{3}}^{-}\)and \(\mathrm{V}_{1}^{-}\)can be tied together (for a 1.5 volt display for instance).
3. The integrated oscillator biasing components have a nonlinear characteristic depending on the instantaneous values of the input and output voltages of the oscillator and the supply. Under oscillator startup conditions this component has a maximum value.

\section*{TYPICAL APPLICATION}

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

SUPPLY CURRENT VS. SUPPLY VOLTAGE

VOLTAGE MULTIPLIER OUTPUT VOLTAGE VS. OUTPUT CURRENT

OSCILLATOR STABILITY VS. SUPPLY VOLTAGE

\section*{ALARM DRIVER OUTPUT CURRENT}

VS. OUTPUT VOLTAGE
P ChanNel output voltage

NORMAL CLOCK OPERATION

In normal operation, hours and minutes are displayed with the colon flashing at a 1 Hz rate. An AM and a PM indicator flag is provided in the 12 hour mode, while in the 24 hour mode, the pads used for the AM/PM flags are utilized to drive the segments which produce the numeral " 2 " in the tens of hours digit. The alarm flag will be on if the alarm is enabled, and off if the alarm is not enabled; (Alarm Off input at \(\mathrm{V}^{+}\)).

TIME SETTING

NOTE: When the HRS/MIN Advance input is activated there will be a pause of less than one second before the counters start advancing at a 2 Hz rate.

\section*{TIME SETTING}

To set the time, the RUN/SET switch is placed in the Time Set position, and the HRS/MIN advance input is used to advance the hours or minutes. The seconds are reset to zero and counting is stopped whenever the minutes are set. The clock will start when the RUN/SET switch is put back into the RUN position, and while in the RUN position, inputs from the HRS/MIN advance switch are disabled to prevent accidental setting.

\section*{ALARM OPERATION}

The alarm comparator provides a 24 hour alarm in both 12 and 24 hour modes. When the time of day and alarm times are equal, the alarm outputs are enabled, providing that the ALARM OFF input is at \(\mathrm{V}_{\overline{1}}\) : If the ALARM OFF input is at \(\mathrm{V}^{+}\), the alarm outputs will not be enabled. The alarm outputs provide a push-pull, or bridge, configuration for direct drive of a piezoelectric transducer, and if increased drive (loudness) is desired, a coil and external NPN transistor may be used. The external transistor should be driven by the ALARM 1 output. The coil DC resistance should be \(100 \Omega\) or greater, to limit the peak current to less than 13 mA .

The alarm signal is a complex waveform that generates the Intersil Cricket sound. The alarm output will automatically stop after one minute unless either the ALARM OFF or the SNOOZE input is used. The alarm transducer should be selected to provide maximum output (loudness) at 4 kHz , that is, it should be resonant at 4 kHz .

\section*{SNOOZE OPERATION}

A momentary closure of the SNOOZE switch to \(\mathrm{V}^{+}\)will silence the alarm and start the snooze timer. The Snooze input must be activated during the one minute the alarm is sounding in order to start a Snooze cycle.

After 8 minutes the alarm will again sound, and will continue for 2 minutes and stop unless ALARM OFF is used or another Snooze cycle is activated. The Snooze may be repeated as many times as desired.

NOTE: In die form, all the SNOOZE input pads are available, allowing the manufacturer or user to select snooze times from 2 to 14 minutes in 2 minute steps. These pads are identified as SN1, SN2 and SN3. See the following table for the selection of Snooze times:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ INPUT CODE \(\left(1=\mathbf{V}^{+}\right)\)} & \multirow{2}{c|}{\begin{tabular}{c}
SNOOZE \\
TIME
\end{tabular}} \\
\hline SN3 & SN2 & SN1 & TIM \\
\hline 0 & 0 & 0 & None \\
0 & 0 & 1 & 2 minutes \\
0 & 1 & 0 & 4 minutes \\
0 & 1 & 1 & 6 minutes \\
1 & 0 & 0 & 8 minutes \\
1 & 0 & 1 & 10 minutes \\
1 & 1 & 0 & 12 minutes \\
1 & 1 & 1 & 14 minutes \\
\hline
\end{tabular}

\section*{ALARM SETTING}

The alarm time is set by switching to Alarm Set, then using the HRS/MIN ADVANCE input to set hours and minutes. The alarm time is displayed only when the RUN/SET switch is in the Alarm. Set position.

SNOOZE OPERATION

NOTE: IF ALARM OFF IS LEFT AT \(\mathrm{V}^{+}\)THE ALARM WILL NOT SOUND 24 HOURS LATER.

\section*{APPLICATION NOTES}

\section*{ALARM DRIVE}

The ICM7223 alarm output transistors are capable of directly driving a piezoelectric ceramic transducer at 3 volts peak-to-peak. Any transducer that does not require more than 1 mA of peak current may also be used. The transducer should generate maximum output at 4 kHz . If a louder sound is desired, buffering (using an NPN transistor and 5 mho coil) or sound enhancement techniques such as a resonant cavity or diaphragm will be required. See Application Bulletin A031 for details.

\section*{TEST MODE}

The high speed test mode for automatic testing is entered by pulling the ALARM OFF/TEST Input to - 7 volts referenced to \(V_{\overline{1}}\). In this state the HRS/MIN ADVANCE input will advance the appropriate counters at the rate that the input is toggled. The colon will appear to stop flashing as it is changing state more rapidly than the display can respond. In the run mode the minutes will change at a 4.27 Hz rate, as the clock has been speeded up by a factor of 256 Hz . The backplane frequency will be 512 Hz . The voltage tripler drive frequencies remain the same as in normal modes.

\section*{ALARM AND DISPLAY TEST}

If the ALARM OFF and SNOOZE buttons are pushed simultaneously, all segments of the display will be turned on and the alarm will sound, while none of the time counter contents are disturbed.

\section*{VOLTAGE MULTIPLIER}

The ICM7223 voltage multiplier may be utilized only in a tripler configuration; only four pins, and three external capacitors are required. The connection of the capacitors differs from that used in standard watch circuit type voltage multiplers, therefore close attention should be paid to substrate design to ensure the proper connection of the capacitors.

\section*{OSCILLATOR}

The oscillator of the ICM7223 is designed for low frequency operation at very low currents from a 1.55
volt supply. The oscillator is of the inverter type with a nonlinear feedback resistor included on chip, which has a maximum resistance under startup conditions. The nominal load capacitance of the crystal should be less than 15 pF , typically 12 pF . In specifying the crystal, the motional capacitance, series resistance and tuning tolerance have to be compatible with the characteristics of the circuit to insure startup and operation over a wide voltage range under worst case conditions.
The following expressions can be used to arrive at a crystal specification:
Tuning range
\[
\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{\text {IN }} \text { COUT }^{C I N}+C_{O U T}}{}
\]
gm required for startup
\[
\mathrm{g}_{\mathrm{m}}=4 \pi^{2 \dagger^{2}} \mathrm{C}_{\text {IN }} \text { Cout } \operatorname{Rs}\left(1+\frac{\mathrm{C}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{L}}}\right)^{2}
\]
where
Rs = Series Resistance of Crystal
f = Frequency of the Crystal
\(\Delta f=\) Frequency Shift from Series Resonance Frequency
Co = Static Capacitance of Crystal
\(\mathrm{C}_{\mathrm{IN}}=\) Input Capacitance
Cout \(=\) Output Capacitance
\(C_{L}=\) Load Capacitance of Crystal
\(\mathrm{C}_{\mathrm{m}}=\) Motional Capacitance of Crystal
The \(\mathrm{gm}_{\mathrm{m}}\) required for startup calculated should not exceed \(50 \%\) of the gm guaranteed for the device.

\section*{POWER UP RESET}

An on chip circuit is provided that will reset all counters and flip-flops to a known state when power is first applied. The alarm and timekeeping counters will be reset to 1:00 am in the 12 hr . mode and 0:00 in the 24 hr . mode. This function is not tested during automatic testing, as it does not affect normal circuit operation.

\section*{DISPLAY}

MOTOROLA MLC406 BECKMAN 737-01 LADCOR LAD-001 HAMLIN 3411 TIMEX COCKROFT Cll202

DISPLAY FONT NUMBERS

\section*{: 2 3 456 78 \\ 9}

COCKROFT Cll201

\section*{CHIP TOPOGRAPHY}

CHIP DIMENSIONS: \(116 \times 147\) mils (\(2.95 \times 3.73 \mathrm{~mm}\))

\section*{FEATURES}
- Single 9V transistor battery operation
- 3-1/2 digit display with AM/PM, SLEEP and ALARM flags
- Direct alarm drive with complex (cricket) alarm tone
- Programmable snooze
- Programmable sleep timer with RADIO ENABLE OUTPUT
- Wide operating voltage range \(\mathbf{- 4}\) to 15 volts
- Low current - \(15 \mu \mathrm{~A}\) @ 9V
- On-chip fixed oscillator input capacitor
- Uses standard 32.768 KHz crystal
- Low battery indicator (display flashes at \(1 \mathbf{H z}\))
- Display and alarm test

ORDERING INFORMATION
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c}
TEMPERATURE \\
RANGE
\end{tabular} & PACKAGE \\
\hline ICM7223AIPL & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 40 Pin Plastic DIP \\
\hline ICM7223A/D & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & DICE \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The ICM7223A is a fully integrated \(3-1 / 2\) digit LCD clock circuit with 24 hour alarm, and sleep and snooze
timers. For high accuracy and low power consumption a 32.768 kHz quartz watch crystal is used as the time base, while the number of external components has been reduced to a minimum. This circuit is intended for use in 9V clock-radio systems where both the clock and the radio operate from the same battery.
The time keeping and alarm time counters are split during setting, allowing hours and minutes to be set independently, each at a 2 Hz rate. A 'time hold' mode is entered when setting minutes; seconds are automatically reset to zero. The clock starts when the RUN mode is entered; this permits synchronization of the clock to the nearest second. Seconds are not displayed.
The alarm employs a snooze timer that may be programmed from 2 to 14 minutes in two minute increments; the sleep timer may be set from 8 to 56 minutes in 8 minute increments. The alarm outputs consist of a complex (cricket) alarm tone to directly drive a speaker of piezoelectric transducer, and a radio enable output which allows control of a clock radio. Low battery voltage is indicated by the display flashing at a 1 Hz rate whenever the battery voltage falls below about 5.6 V .
The ICM7223A is fabricated using Intersil's low threshold metal gate CMOS process for minimum cost and long battery life. Current drain at 9 volts is typically \(15 \mu \mathrm{~A}\) with a maximum of \(25 \mu \mathrm{~A}\).

\section*{PIN CONFIGURATION (outline dwg PL)}

NOTE: CONSULT FACTORY IF 24 HOUR TIME DISPLAY IS DESIRED.

ABSOLUTE MAXIMUM RATINGS

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{OPERATING CHARACTERISTICS}

All testing at \(25^{\circ} \mathrm{C}\); All numbers stated in absolute value; \(\mathrm{V}^{+}=9 \mathrm{~V}\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN. & TYP. & MAX. & \\
\hline Supply Voltage Range Timekeeping Accurate & \(\mathrm{v}^{+}\) & & 4 & & 18 & V \\
\hline Supply Current & \(1^{+}\) & \(\mathrm{V}^{+}=9 \mathrm{~V}\) & & 15 & 25 & \(\mu \mathrm{A}\) \\
\hline Oscillator Input Current(3) & loscl & 'OSC IN' Connected to \({ }^{\text {W }}\) 'OSC OUT' Open Circuit & & 0.2 & & \(\mu \mathrm{A}\) \\
\hline Oscillator Input Capacitance & \(\mathrm{C}_{\mathrm{IN}}\) & & 20 & 25 & 30 & pF \\
\hline Oscillator Transconductance & \(\mathrm{gm}_{\mathrm{m}}\) & & 10 & 15 & & \(\mu \mathrm{mho}\) \\
\hline Oscillator Stability & \(\mathrm{f}_{\text {Stab }}\) & \(5 \mathrm{~V} \leq \mathrm{V}_{\text {SUPPL }} \leq \leq 15 \mathrm{~V}\) & & 0.7 & 1.0 & ppm \\
\hline \multirow[t]{2}{*}{Alarm Saturation Resistance} & \multirow[b]{2}{*}{\(\mathrm{R}_{\text {AL(on) }}\)} & P-ch at 10 mA & & 220 & 300 & \(\Omega\) \\
\hline & & N -ch at 10 mA & & 100 & 150 & \(\Omega\) \\
\hline Segment Drive Current & \({ }_{\text {ISEG }}\) & \(\mathrm{V}_{\text {SAT }}=0.2 \mathrm{~V}\) (Both Directions) & 5 & & & \(\mu \mathrm{A}\) \\
\hline Backplane Drive Current & IBP & \(\mathrm{V}_{\text {SAT }}=0.1 \mathrm{~V}\) (Both Directions) & 20 & & & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Switch Actuation Current} & \multirow[t]{2}{*}{Isw} & \(\mathrm{V}_{\text {SW }}=\mathrm{V}^{+}\) & & 10 & 30 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\mathrm{sw}}=\mathrm{V}^{-}\) & & 10 & 30 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 1. This value of power dissipation is that of the package and will not be obtained under normal operating conditions.

\section*{TYPICAL CLOCK RADIO APPLICATION}

SUPPLY CURRENT vs. SUPPLY VOLTAGE

VOLTAGE REGULATOR OUTPUT vs. SUPPLY VOLTAGE

OSCILLATOR STABILITY vs. SUPPLY VOLTAGE

ALARM DRIVER OUTPUT CURRENT vs. OUTPUT VOLTAGE

P-CHANNEL OUTPUT VOLTAGE - \(V\)

\section*{NORMAL CLOCK OPERATION}

In normal operation hours and minutes are displayed with the colon flashing at a 1 Hz rate. AM and PM indicators are provided. The alarm flag will be on if the ALARM OFF input is at \(\mathrm{V}^{-}\), and off with the ALARM OFF input at \(\mathrm{V}^{+}\). Time is displayed in a 12 hour format with AM/PM annunciators.

\section*{TIME SETTING}

To set the time, the RUN/SET switch is placed in the Time Set position, and the HRS/MIN advance input is used to advance the hours or minutes. The seconds are reset to zero and counting is stopped whenever the minutes are set. The clock will start when the RUN/SET switch is put back into the RUN position, and while in the RUN position, inputs from the HRS/MIN advance switch are disabled to prevent accidental setting.

NOTE: When the HRS/MIN Advance input is activated there will be a pause of less than one second before the counters start advancing at a 2 Hz rate.

\section*{ALARM OPERATION}

The alarm comparator provides a 24 hour alarm by taking into account AM and PM. When the time of day and alarm times agree, and the ALARM OFF input is floating, the ALARM and RADIO ENABLE outputs are activated; the alarm sounds and the RADIO ENABLE line goes to \(\mathrm{V}^{+}\). Momentarily tying the ALARM OFF input to \(\mathrm{V}^{+}\)will silence both the alarm and the radio. The alarm will automatically shut off after one minute if ALARM OFF is not used; the RADIO ENABLE will stay HIGH until either the ALARM OFF or SNOOZE inputs are used. The SNOOZE input must be applied within one minute in order to begin a snooze, cycle.

\section*{ALARM SET•TING}

The alarm time is set by switching to Alarm Set, then using the HRS/MIN ADVANCE input to set hours and minutes. The alarm time is displayed only when the RUN/SET switch is in the Alarm Set position.

\section*{SNOOZE OPERATION}

To begin a snooze cycle, the SNOOZE input must be momentarily shorted to \(\mathrm{V}^{+}\)during the one minute that the alarm is sounding or the RADIO ENABLE line is high. When this is done the alarm will be silenced and the snooze timer started; the alarm will sound again after the selected snooze time. Unless the ALARM OFF input is used, the alarm will automatically shut off after two

\section*{SNOOZE OPERATION}

minutes. The RADIO ENABLE will remain on until the ALARM OFF line is activated, however, a second snooze cycle can be initiated with the SNOOZE switch. This can only be done if the SNOOZE is activated while the alarm is sounding.
The snooze times are programmable in 7 steps from 2 to 14 minutes. Programming is accomplished with binary coding on the three SNOOZE inputs, as shown in the following table:
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ INPUT CODE \(\left(\mathbf{1}=\mathbf{V}^{+}\right)\)} & \multirow{2}{c|}{\begin{tabular}{c}
SNOOZE \\
TIME
\end{tabular}} & \begin{tabular}{c}
SLEEP \\
TIME
\end{tabular} \\
\hline SN3 & SN2 & SN1 & & \\
\hline 0 & 0 & 0 & None & None \\
0 & 0 & 1 & 2 minutes & 8 minutes \\
0 & 1 & 0 & 4 minutes & 16 minutes \\
0 & 1 & 1 & 6 minutes & 24 minutes \\
1 & 0 & 0 & 8 minutes & 32 minutes \\
1 & 0 & 1 & 10 minutes & 40 minutes \\
1 & 1 & 0 & 12 minutes & 48 minutes \\
1 & 1 & 1 & 14 minutes & 56 minutes \\
\hline
\end{tabular}

\section*{SLEEP TIMER OPERATION}

The sleep timer may be activated at any time except during a snooze cycle or when the alarm is sounding. The sleep timer is started by setting the RUN/SET switch in the SET position and momentarily activating the SNOOZE switch. Sleep times are programmed with the snooze inputs; see table on previous page.
Another method for sleep timer activation is to use a single DPST pushbutton switch, with one pole connected to the RUN/SET switch and the other to the common side of the SNOOZE programming switch. The other side of the switches is tied to \(\mathrm{V}^{+}\). (See typical application, page 3). This method allows the use of a "dedicated" sleep button, which may be recessed to prevent accidental activation.
When the sleep timer is activated the RADIO ENABLE output is set high to turn on a radio and the sleep flag appears on the display. At the end of the programmed sleep time the RADIO ENABLE output is returned to \(\mathrm{V}^{-}\) and the sleep flag disappears.

ICM7223A 12HR LCD SNOOZE ALARM CLOCK RADIO CIRCUIT WITH SLEEP TIMER.
(9 volt single battery operation)

\section*{LOW BATTERY INDICATION}

The ICM7223A is provided with a completely integrated low battery indicator. When the supply voltage drops below about 5.6 V the display will begin flashing at a 1 Hz rate. Actual trigger points vary from chip to chip, but will usually be in the range of 5.2 V to 6 V . Time keeping will not be affected.

\section*{CHIP RESET}

Power up reset is not provided on the 7223A, as interaction between the \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)inputs and the voltage regulator in noisy environments could cause spurious resetting. Resetting the circuit to a known state, 1:00 AM, can be accomplished by momentarily connecting the ALARM OUT output to \(\mathrm{V}^{+}\); this can be done with a NO SPST switch. This same method may be employed to clear the 7223A in the event that it powers up in an illegal state. The switch should be made accessible to the user for use when changing batteries.

\section*{TEST MODE OPERATION}

This mode, provided for high speed automatic testing, is entered by shorting ALARM OFF to \(\mathrm{V}^{-}\). The minutes will then advance at a 4.27 Hz rate and setting can be accomplished by the application of a digital input to the hrs - mins advance input. The counter will then advance once per pulse. Note that in the test mode there is no debounce protection on the HRS/MINS ADVANCE input.

\section*{ALARM AND DISPLAY TEST}

If the ALARM OFF and SNOOZE buttons are pushed simultaneously, all segments of the display will be turned on and the alarm will sound, while none of the time counter contents are disturbed.

\section*{OSCILLATOR}

The oscillator of the ICM7223A is designed for low frequency operation at very low currents from a 9 volt supply. The oscillator is of the inverter type with a nonlinear feedback resistor included on chip, which has a maximum resistance under startup conditions. The nominal load capacitance of the crystal should be less than 15 pF , typically 12 pF . In specifying the crystal, the motional capacitance, series resistance and tuning tolerance have to be compatible with the characteristics of the circuit to insure startup and on?ration over a wide voltage range under worst case cunditions.

The following expressions can be used to arrive at a crystal specification:
Tuning range
\[
\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{\text {IN }} C_{O U T}}{C_{I N}+C_{O U T}}
\]
gm required for startup
\(g_{m}=4 \pi^{2 f 2}\) Cin Cout Rs \(\left(1+\frac{\mathrm{Co}_{\mathrm{o}}}{\mathrm{CL}_{\mathrm{L}}}\right)^{2}\)
where
Rs = Series Resistance of Crystal
\(f=\) Frequency of the Crystal
\(\Delta f=\) Frequency Shift from Series Resonance Frequency
Co = Static Capacitance of Crystal
\(\mathrm{C}_{\text {IN }}=\) Input Capacitance
Cout \(=\) Output Capacitance
\(C_{L} \quad=\) Load Capacitance of Crystal
\(\mathrm{C}_{\mathrm{m}}=\) Motional Capacitance of Crystal

The (calculated) \(g_{m}\) required for startup should not exceed \(50 \%\) of the \(g_{m}\) guaranteed for the device.
ALARM DRIVE
The ICM7223A will directly drive any suitable audio transducer (piezoelectric ceramic, or magnetic speaker) with a peak frequency response of 4 kHz with \(\mathrm{V}^{+}=9 \mathrm{~V}\) and a peak current of 10 mA . The volume should be more than adequate; no buffering should be required.

\section*{POWER SUPPLY CONSIDERATIONS}

The ICM7223A contains an on-chip CMOS voltage regulator which operates all timing and counting logic circuitry at about 1.8 to 2.0 V below \(\mathrm{V}^{+}\). This provides low current operation over a voltage range of \(4-15 \mathrm{~V}\) and also improves oscillator stability. The LCD maximum operating voltage will be the limiting factor in most cases, therefore the supply voltage will rarely exceed 12 V .

For applications which involve power supplies with high noise levels or transients, it will be necessary to provide supply filtering. The voltage regulator output (\(\mathrm{V}^{-}\)REG) should be decoupled to \(\mathrm{V}^{+}\)with a \(0.22 \mu \mathrm{~F}\) to \(0.47 \mu \mathrm{~F}\) capacitor, and the \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)lines should be low-pass-filtered using a \(300 \Omega\) resistor and \(100 \mu \mathrm{~F}\) capacitor. Note that a zener diode in parallel with the filter cap will limit voltage spikes to 15 V , and should be included if the common " 24 V survival" required for automotive use is desired.

\section*{DISPLAY FONT} NUMBERS

\title{
1234557890
}

COCKROFT CII201

\section*{CHIP TOPOGRAPHY}

\section*{ICM7223A}

CHIP DIMENSIONS: \(112 \times 143\) mils \((2.84 \times 3.63 \mathrm{~mm})\)

\section*{FEATURES}
- 3-1/2 digit display with AM/PM, sleep timer, and alarm flags
- Direct alarm drive with complex (cricket) alarm tone plus radio enable for clock radio applications
- 8 minute repeatable programmable snooze
- Programmable sleep timer
- Wide operating voltage range -4 to 15 volts
- Low current - 12 \(\mu \mathrm{A}\) @ 12V with display off
- On-chip fixed osciliator input capacitor
- Uses standard 32.768 kHz crystal
- Display control blanks display for auto and travel clock applications

\section*{ORDERING INFORMATION}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Part \\
Number
\end{tabular} & \begin{tabular}{c}
Temperature \\
Range
\end{tabular} & Package \\
\hline ICM7223VFIPL & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 40 Pin Plastic DIP \\
\hline ICM7223VF/D & \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & Dice \\
\hline
\end{tabular}

\section*{general description}

The ICM7223VF is a fully integrated 3-1/2 digit Vacuum Fluorescent clock circuit with 24 hour alarm, and sleep and snooze timers. For high accuracy and low power consumption a 32.768 kHz quartz watch crystal is used as the time base, while the number of external components has been reduced to a minimum. The vacuum fluorescent display outputs are static, or nonmultiplexed, thereby eliminating radio frequency interference (RFI).
The time keeping and alarm time counters are split during setting, allowing hours and minutes to be set independently, each at a 2 Hz rate. A 'time hold' mode is entered when setting minutes; seconds are automatically reset to zero. The clock starts when the RUN mode is entered; this permits synchronization of the clock to the nearest second. Seconds are not displayed.
The alarm employs a snooze timer that may be programmed from 2 to 14 minutes in two minute increments; the sleep timer may be set from 8 to 56 minutes in 8 minute increments. The alarm outputs consist of a complex (cricket) alarm tone to directly drive a speaker or piezoelectric transducer and a radio enable output which allows control of a clock radio.
The ICM7223VF is fabricated using Intersils low threshold metal gate CMOS process for minimum cost and long battery life. Current drain at 12 volts is typically \(12 \mu \mathrm{~A}\) with a maximum of \(25 \mu \mathrm{~A}\) (display off).

PIN CONFIGURATION (OUTLINE DRAWING PL)

NOTE: CONSULT FACTORY IF 24 HOUR TIME DISPLAY IS DESIRED.

ABSOLUTE MAXIMUM RATINGS
Storage Temperature \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) Operating Temperature \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) Power Dissipation \({ }^{[1]}\). 500 mW
Supply Voltage (\(\mathrm{V}^{+}-\mathrm{V}^{-}\)) . 18V Input Voltage
(OSC IN, SN \(1, S_{2}, \mathrm{SN}_{3}\)) \(\ldots . .-2 \mathrm{~V} \leq \mathrm{ViN}_{\mathrm{IN}} \leq \mathrm{V}^{+}+0.3 \mathrm{~V}\) (RUN/SET, HRS/MIN ADV,
AL OFF/TEST \() \ldots . . V^{-}-0.3 V \leq V_{I N} \leq V^{+}+0.3 V\) Output Voltage

OSC OUT \(-2 V \leq\) VOUT \(\leq V^{+}\)
AL OUT, RADIO ENABLE \(\mathrm{V}^{-} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}\)
All Segment Drivers \(\ldots \ldots . V^{+}-35 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}\)

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS All testing at \(25^{\circ} \mathrm{C}\); All numbers stated in absolute value
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN. & TYP. & MAX. & \\
\hline Supply Voltage Range Timekeeping Accurate & \(\mathrm{v}^{+}\) & & 4 & & 15 & V \\
\hline Supply Current & \multirow[b]{2}{*}{\(1^{+}\)} & Display OFF \(\mathrm{V}^{+}-\mathrm{V}^{-}=12 \mathrm{~V}\) & & 12 & 25 & \(\mu \mathrm{A}\) \\
\hline Supply Current Display ON \({ }^{[2]}\) & & \[
\begin{aligned}
& \mathrm{V}^{+}-\mathrm{V}^{-}=12 \mathrm{~V} \text {, Display } \\
& \text { Test, NEC LD8164 }
\end{aligned}
\] & & 3 & & mA \\
\hline Segment Output Saturation Resistance & Rseg & \(\mathrm{IDS}=1 \mathrm{~mA} \mathrm{P-ch}\) & & 1000 & 1500 & \(\Omega\) \\
\hline Oscillator Input Capacitance & CIN & & 20 & 25 & 30 & pF \\
\hline Oscillator Stability & fstab & \(5 \mathrm{~V} \leq \mathrm{V}_{\text {SUPPL }} \leq 15 \mathrm{~V}\) & & 0.7 & 1.0 & ppm \\
\hline \multirow[t]{2}{*}{Alarm Saturation Resistance} & \multirow[t]{2}{*}{Ral(on)} & P-ch at 10 mA & & 220 & 300 & \(\Omega\) \\
\hline & & N -ch at 10 mA & & 100 & 150 & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Switch Actuation Current} & \multirow[t]{2}{*}{Isw} & ' \(\mathrm{sw}=\mathrm{V}^{+}\) & & 10 & 30 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\text {sw }}=\mathrm{V}^{-}\) & & 10 & 30 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTES: 1. This value of power dissipation is that of the package and will not be obtained under normal operating conditions.
2. Chip current plus display anode current only; does not include display filament or grid currents.

\section*{ICM7223VF}

TYPICAL CLOCK RADIO APPLICATION

SUPPLY CURRENT vs. SUPPLY VOLTAGE

SEGMENT DRIVER OUTPUT CURRENT vs. DRAIN VOLTAGE

OSCILLATOR STABILITY vs. SUPPLY VOLTAGE

ALARM DRIVER OUTPUT CURRENT vs. OUTPUT VOLTAGE

P-CHANNEL OUTPUT VOLTAGE \(-V\)

\section*{ICM7223VF}

\section*{NORMAL CLOCK OPERATION}

In normal operation hours and minutes are displayed with the colon flashing at a 1 Hz rate. AM and PM indicators are provided. The alarm flag will be on if the ALARM OFF input is floating, and off with the ALARM OFF input at \(\mathrm{V}^{+}\). Time is displayed in a 12 hour format with AM/PM annunciators.

\section*{ALARM OPERATION}

The alarm comparator provides a 24 hour alarm by taking into account AM and PM. When the time of day and alarm times agree, and the ALARM OFF input is floating, the ALARM and RADIO ENABLE outputs are activated; the alarm sounds and the RADIO ENABLE line goes to \(\mathrm{V}^{+}\). Momentarily tying the ALARM OFF input to \(\mathrm{V}^{+}\)will silence both the alarm and the radio. The alarm will automatically shut off after one minute if the ALARM OFF is not used; the RADIO ENABLE will stay HIGH until either the ALARM OFF or SNOOZE inputs are used. The SNOOZE input must be applied within one minute in order to begin a snooze cycle.

ALARM SETTING

The alarm time is set by switching to Alarm Set, then using the HRS/MIN ADVANCE input to set hours and minutes. The alarm time is displayed only when the RUN/SET switch is in the Alarm Set position.

\section*{SNOOZE OPERATION}

To begin a snooze cycle, the SNOOZE input must be momentarily shorted to \(\mathrm{V}^{+}\)during the one minute that the alarm is sounding or the RADIO ENABLE line is high. When this is done the alarm will be silenced and the snooze timer started; the alarm will sound again after the selected snooze time. Unless the ALARM OFF input is used, the alarm will automatically shut off after two minutes. The RADIO ENABLE will remain on until the ALARM OFF line is activated, however, a second snooze cycle can be initiated with the SNOOZE switch. This can only be done if the SNOOZE is activated while the alarm is sounding.

The snooze times are programmable in 7 steps from 2 to 14 minutes. Programming is accomplished with binary coding on the three SNOOZE inputs, as shown in the following table:
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ INPUT CODE \(\left(\mathbf{1}=\mathbf{V}^{+}\right)\)} & \multirow{2}{*}{\begin{tabular}{c}
SNOOZE \\
TIME
\end{tabular}} & \begin{tabular}{c}
SLEEP \\
TIME
\end{tabular} \\
\hline SN3 & SN2 & SN1 & & \\
\hline 0 & 0 & 0 & None & None \\
0 & 0 & 1 & 2 minutes & 8 minutes \\
0 & 1 & 0 & 4 minutes & 16 minutes \\
0 & 1 & 1 & 6 minutes & 24 minutes \\
1 & 0 & 0 & 8 minutes & 32 minutes \\
1 & 0 & 1 & 10 minutes & 40 minutes \\
1 & 1 & 0 & 12 minutes & 48 minutes \\
1 & 1 & 1 & 14 minutes & 56 minutes \\
\hline
\end{tabular}

\section*{SLEEP OPERATION}

The sleep timer may be activated at any time except during a snooze cycle or when the alarm is sounding. The sleep timer is started by setting the RUN/SET switch in the SET position and momentarily activating the SNOOZE switch. Sleep times are programmed with the snooze inputs; see table on previous page.
Another method for sleep timer activation is to use a single DPST pushbutton switch, with one pole connected to the RUN/SET switch and the other to the common side of the SNOOZE programming switch. The other side of the switches is tied to \(\mathrm{V}^{+}\). (See typical application, page 3). This method allows the use of a "dedicated" sleep button, which may be recessed to prevent accidental activation.

SNOOZE OPERATION

\section*{ICM7223VF}

When the sleep timer is activated the RADIO ENABLE output is set high to turn on a radio. At end of the programmed sleep time the RADIO ENABLE output is returned to \(\mathrm{V}^{-}\).

\section*{TIME SETTING}

To set the time, the RUN/SET switch is placed in the Time Set position, and the HRS/MIN advance input is used to advance the hours or minutes. The seconds are reset to zero and counting is stopped whenever the

minutes are set. The clock will start when the RUN/SET switch is put back into the RUN position, and while in the RUN position, inputs from the HRS/MIN advance switch are disabled to prevent accidental setting.

NOTE: When the HRS/MIN Advance input is activated there will be a pause of less than one second before the counters start advancing at a 2 Hz rate.

\section*{DISPLAY}

The ICM7223VF is designed for use only with 12 V direct drive (non-multiplexed) \(31 / 2\) digit vacuum fluorescent displays such as the NEC LD8164 or equivalent. (But see "LED Display Driving" under DESIGN CONSIDERATIONS.)

\section*{DESIGN CONSIDERATIONS}

\section*{DISPLAY CONTROL}

This input allows the display to be blanked (turned off) when low current operation is desirable, such as when an auto clock is being used with the engine turned off. For normal operation connect DISPLAY CONTROL to \(\mathrm{V}^{+}\); to turn off display allow the input to float. A SPST switch can be used for those times when it is desired to turn on the display with the engine off.

\section*{LED DISPLAY DRIVE}

It is possible to drive high efficiency common cathode LED displays with the 7223VF as long as the total display current does not exceed 100 mA (or 4 mA per segment), as excessive on-chip heating may occur. Operation is not guaranteed for extended periods, since the package power dissipation limits are likely to be exceeded. When driving LED displays with the 7223VF, use of the DISPLAY CONTROL as a "time demand" is highly recommended.

\section*{CHIP RESET}

Power up reset is not provided on the 7223VF, as interaction between the \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)inputs and the voltage regulator in noisy environments could cause spurious resetting. Resetting the circuit to a known state, 1:00 AM, can be accomplished by momentarily connecting the ALARM OUT output to \(\mathrm{V}^{+}\); this can be done with a NO SPST switch. This same method may be employed to clear the 7223VF in the event that it powers up in an illegal state.

\section*{TEST MODE OPERATION}

This mode, provided for high speed automatic testing, is entered by shorting ALARM OFF to \(\mathrm{V}^{-}\). The minutes will then advance at a 4.27 Hz rate and setting can be accomplished by the application of a digital input to the hrs - mins advance input. The counter will then advance once per pulse. Note that in the test mode there is no debounce protection on the HRS/MINS ADVANCE input.

\section*{ALARM AND DISPLAY TEST}

If the ALARM OFF and SNOOZE buttons are pushed simultaneously, all segments of the display will be turned on and the alarm will sound, while none of the time counter contents are disturbed.

\section*{OSCILLATOR}

The oscillator of the ICM7223VF is designed for low frequency operation at very low currents from a 12 volt supply. The oscillator is of the inverter type with a nonlinear feedback resistor included on chip, which has a maximum resistance under startup conditions. The nominal load capacitance of the crystal should be less than 15 pF , typically 12 pF . In specifying the crystal, the motional capacitance, series resistance and tuning tolerance have to be compatible with the characteristics of the circuit to insure startup and operation over a wide voltage range under worst case conditions.

The following expressions can be used to arrive at a crystal specification:
Tuning range
\[
\begin{aligned}
& \frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{I N} C_{O U T}}{C_{I N}+C_{O U T}} \\
& g_{m} \text { required for startup } \\
& g_{m}=4 \pi^{2 f 2} C_{I N} C_{O U T} R_{S}\left(1+\frac{C_{O}}{C_{L}}\right)^{2}
\end{aligned}
\]
where
Rs = Series Resistance of Crystal
\(f \quad=\) Frequency of the Crystal
\(\Delta f \quad=\) Frequency Shift from Series Resonance Frequency
Co = Static Capacitance of Crystal
\(\mathrm{C}_{\mathrm{IN}}=\) Input Capacitance
Cout = Output Capacitance
\(C_{L}=\) Load Capacitance of Crystal
\(\mathrm{C}_{\mathrm{m}}=\) Motional Capacitance of Crystal
The (calculated) \(g_{m}\) required for startup should not exceed \(50 \%\) of the \(g_{m}\) guaranteed for the device.
ALARM DRIVE
The ICM7223VF will directly drive any suitable audio transducer (piezoelectric ceramic, or magnetic speaker) with a peak frequency response of 4 kHz with \(\mathrm{V}^{+}=12 \mathrm{~V}\) and a peak current of 10 mA . The volume should be more than adequate; no buffering should be required.
POWER SUPPLY CONSIDERATIONS
The ICM7223VF contains an on-chip CMOS voltage regulator which operates all timing and counting logic circuitry at about 1.8 to 2.0 V below \(\mathrm{V}^{+}\). This provides low current operation over a voltage range of \(4-15 \mathrm{~V}\) and also improves oscillator stability.
For applications which involve power supplies with high noise levels or transients, it will be necessary to provide supply filtering. The voltage regulator output (\(\mathrm{V}^{-}\)REG) should be decoupled to \(\mathrm{V}^{+}\)with a \(0.22 \mu \mathrm{~F}\) to \(0.47 \mu \mathrm{~F}\) capacitor, and the \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)lines should be low-pass-filtered using a \(300 \Omega\) resistor and \(100 \mu \mathrm{~F}\) capacitor. Note that a zener diode in parallel with the filter cap will limit voltage spikes to 15 V , and should be included if the common " 24 V survival" required for automotive use is desired.

TYPICAL CLOCK RADIO APPLICATION

7

\section*{ICM7223VF}

\section*{TYPICAL DISPLAY (FIP5E15S)}

Other displays (by NEC):
FIP 5B8S
LD 8196
LD 8164
\[
848: 80
\]

\section*{DISPLAY FONT}

NUMBEFS

\title{
1234557890
}

\section*{CHIP TOPOGRAPHY}

CHIP DIMENSIONS: \(116 \times 147\) mils (\(2.95 \times 3.73 \mathrm{~mm}\))

\section*{Frequency Divider 4.19 MHz to 32 kHz}

\section*{FEATURES}
- Single battery operation (1.2-1.8V)
- Low power consumption - typ. \(40 \mu \mathrm{~A} @ 1.5 \mathrm{~V}\)
- Oscillator biasing resistor included on-chip

\section*{GENERAL DESCRIPTION}

The ICM7241 is a fully integrated oscillator, 2 divider and output driver which efficiency converts 4.194304 MHz to 32.768 kHz using a minimum of power. Only three external components are necessary for complete oscillator operation; a 4.194304 MHz crystal, a fixed input capacitor, and an output trimmer capacitor. The output has a low enough impedance to satisfy most drive requirements.

\section*{ABSOLUTE MAXIMUM RATINGS}

Power Dissipation Output Short Circuit \({ }^{[2]}\). 300 mW
Supply Voltage
Output Voltage \({ }^{[1]}\)
Input Voltage \({ }^{11]}\)
Storage Temperature \(-30^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Temperature \(-20^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)

\section*{NOTES:}
1. Except for instantaneous static discharges all terminals may exceed the supply voltage (2.0 V max) by \(\pm 0.5\) volt provided that the currents in these terminals are limited to 2 mA each.
2. This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.

TYPICAL CONNECTION

PIN CONFIGURATION (outline dwg PA)

PIN 1 IS DESIGNATED BY EITHER A DOT OR A NOTCH.

\section*{ORDERING INFORMATION}

Order devices by following part number: ICM7241

TYPICAL OPERATING CHARACTERISTICS
\(\mathrm{V}^{+}=1.5 \mathrm{~V}\), fosc \(=4,194,304 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise specified. All numbers in absolute values.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symbol & Conditions & Min. & Typ. & Max. & Unit \\
\hline Supply Current & \(1^{+}\) & & & 40 & 70 & \(\mu \mathrm{A}\) \\
\hline Guaranteed Operating Voltage Range & \(\mathrm{V}^{+}\) & \(-20^{\circ} \mathrm{C} \leq\) to \(\leq 70^{\circ} \mathrm{C}\) & 1.2 & & 1.8 & V \\
\hline P-Ch Output Saturation Resistance & RSAT & IOUT \(=.5 \mathrm{~mA}\) & & 680 & 2 & \(\mathrm{k} \Omega\) \\
\hline N -Ch Output Saturation Resistance & RSAT & IOUT \(=.5 \mathrm{~mA}\) & & 240 & 1 & \(\mathrm{k} \Omega\) \\
\hline Oscillator Stability & \(\mathrm{f}_{\text {Stab }}\) & \[
\begin{aligned}
& 1.2 \mathrm{~V}<\mathrm{V}^{+}<1.6 \mathrm{~V} \\
& \mathrm{C}_{\text {IN }}=\mathrm{Cout}^{2}=15 \mathrm{pF}
\end{aligned}
\] & & 1 & & ppm \\
\hline Oscillator Start-Up Time & tstart & \(\mathrm{V}^{+}=1.2 \mathrm{~V}\) & & & 1.0 & sec \\
\hline
\end{tabular}

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the

SUPPLY CURRENT vs. SUPPLY VOLTAGE

\section*{OUTPUT CURRENT (SOURCE) vs.} OUTPUT SATURATION VOLTAGE

operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OSCILLATOR STABILITY vs. SUPPLY VOLTAGE

\section*{FEATURES}
- Very low current consumption: \(0.4 \mu \mathrm{~A}\) at 1.55 volt typical
- \(\mathbf{3 2} \mathbf{~ k H z}\) oscillator requires only quartz crystal and trimming capacitor
- Bipolar stepper drive with low output ON resistance: 200 ohms maximum (7245 A/B/D/E/F)
- Unipolar stepper drive with very low output ON resistance: \(\mathbf{5 0}\) ohms maximum (7245U)
- Extremely accurate: oscillator stability typically 0.1 ppm
- STOP function for easy time synchronization
- TEST input for highspeed testing
- Wide temperature range: \(-20^{\circ} \mathrm{C}\) to \(+\mathbf{7 0}{ }^{\circ} \mathrm{C}\)
- On chip fixed oscillator capacitor: \(20 \mathrm{pF} \pm \mathbf{2 0 \%}\)

\section*{TABLE OF OPTIONS}
\begin{tabular}{|c|c|c|c|c|}
\hline Device Number & \begin{tabular}{l}
Bipolar/ \\
Unipolar
\end{tabular} & \begin{tabular}{l}
Pulse \\
Width (ms)
\end{tabular} & Pulse Frequency & Oscillator Capacitor \\
\hline ICM7245A & B & 9.7 & 1 Hz & Cout \\
\hline ICM7245B & B & 7.8 & 1 Hz & CIN \\
\hline ICM7245D & B & 7.8 & \begin{tabular}{l}
0.1 Hz \\
(1 pulse/ 10 seconds)
\end{tabular} & Cout \\
\hline ICM7245E & B & 7.8 & \begin{tabular}{l}
0.0833 Hz \\
(1 pulse/ 12 seconds)
\end{tabular} & Cin \\
\hline ICM7245F & B & 7.8 & \begin{tabular}{l}
0.05 Hz \\
(1 pulse) 20 seconds)
\end{tabular} & Cin \\
\hline ICM7245U & U & 3.9 & 1 Hz & CIN \\
\hline
\end{tabular}

\section*{GENERAL DESCRIPTION}

The ICM7245 is a very low current, low voltage microcircuit for use in analog watches. It consists of an oscillator, dividers, logic and drivers necessary to provide either bipolar or unipolar drive for minimumcomponent count watches. The oscillator is extremely stable over wide ranges of voltage and temperature, and thus combines high accuracy with low system power. The ICM7245 is fabricated using Intersil's low threshold metal-gate CMOS process.
The inverter oscillator contains all components onchip except for the tuning capacitor and quartz crystal. The binary divider consists of 15 stages, the last 5 of which may be reset. If a reset (stop) occurs during an output pulse, the duration of the pulse is not affected. When the reset is released, the first output occurs approximately 1 second later. For the bipolar version, memory reset logic is included to make sure the first pulse after a "stop" occurs on the opposite output from the one just before the "stop".
The bipolar bridge output consists of two large inverters, normally high. The output ON resistance of the \(P\) and \(N\) channel devices in series is \(200 \Omega\) maximum @ 1 mA . In unipolar operation, the output is made up of a single normally high inverter. The ON resistance of the \(N\)-channel device is \(50 \Omega\) maximum @ 3 mA .

PIN CONFIGURATION (OUTLINE DRAWING BA)

\section*{ORDERING INFORMATION}

ORDER DICE BY FOLLOWING PART NUMBER: ICM7245A/D
\(L_{\text {SELECT OPTION }}\)

\section*{ABSOLUTE MAXIMUM RATINGS}

Storage Temperature \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Temperature \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Power Dissipation (Note 1) 25 mW
Supply Voltage (\(\mathrm{V}^{+}\)- \(\mathrm{V}^{-}\)) 3.0 volts
Lead Temperature (Soldering, 10 sec) \(300^{\circ} \mathrm{C}\)
Input Voltages \(\mathrm{V}^{-}-0.3<\mathrm{VIN}^{-}<\mathrm{V}^{+}+0.3\)

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

Note 1.: This value of power dissipation refers to that of the package and will not normally be obtained under normal operating conditions.

\section*{TYPICAL OPERATING CHARACTERISTICS}
\(\mathrm{V}^{+}-\mathrm{V}^{-}=1.55 \mathrm{~V}\), \(\mathrm{f}_{\text {osc }}=32,768 \mathrm{~Hz}\), circuit in Figure \(1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), unless otherwise stated.
Numbers are in absolute values.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN. & TYP. & MAX. & UNITS \\
\hline Supply Current & \(1+\) & No Load & & 0.4 & 0.8 & \(\mu \mathrm{A}\) \\
\hline Operating Voltage & \(\mathrm{V}^{+}-\mathrm{V}^{-}\) & \(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<50^{\circ} \mathrm{C}\) & 1.2 & & 1.8 & V \\
\hline Oscillator Transconductance & gm & Start-up & 15 & & & \(\mu \mathrm{mho}\) \\
\hline Oscillator Capacitance & Cosc & & 16 & 20 & 24 & pF \\
\hline STOP Input Current & Istop & & & & 0.3 & \(\mu \mathrm{A}\) \\
\hline TEST Input Current & Itest & & & & 10 & \(\mu \mathrm{A}\) \\
\hline Oscillator Stability & fStab & \(\Delta\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)=0.6 \mathrm{~V}\) & & 0.1 & & ppm \\
\hline Supply Current During Stop & \(1^{+}\) & 'STOP' Connected to \(\mathrm{V}^{+}\) & & & 1.0 & \(\mu \mathrm{A}\) \\
\hline Output Saturation Resistance & Ro & Bipolar (\(\mathrm{N}-\mathrm{CH} .+\mathrm{P}-\mathrm{CH}\)) \(\mathrm{IL}=1 \mathrm{~mA}\) & & & 200 & \(\Omega\) \\
\hline Output Saturation Resistance P-CH & Ro-p & Unipolar \(\mathrm{IL}_{\mathrm{L}}=3 \mathrm{~mA}\) & & & 200 & \(\Omega\) \\
\hline Output Saturation Resistance N-CH & Ro-N & Unipolar \(\mathrm{IL}^{\prime}=3 \mathrm{~mA}\) & & & 50 & \(\Omega\) \\
\hline
\end{tabular}

TYPICAL WATCH CIRCUIT

CRYSTAL
PARAMETERS
\(\mathrm{f}=32768 \mathrm{~Hz}\)
\(C_{L}=10 \mathrm{pF}\)
\(\mathrm{C}_{\mathrm{M}}=2.5 \mathrm{mpF}\)
\(\mathrm{R}_{\mathrm{S}}=20 \mathrm{~K} \Omega\)

Figure 1.

WAVEFORMS
(ICM7245U)

(ICM7245B)

TYPICAL OPERATING CHARACTERISTICS

SUPPLY CURRENT AS
A FUNCTION OF SUPPLY VOLTAGE

BRIDGE OUTPUT CURRENT AS A FUNCTION OF LOAD VOLTAGE

OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

\section*{ICM7245}

\section*{APPLICATION NOTES}

\section*{OSCILLATOR}

The oscillator of the ICM7245 is designed for low frequency operation at very low current from a 1.55 volt supply. The oscillator is of the inverter type, using a non-linear feedback resistor having maximum resistance under start-up conditions. The nominal load capacitance of the crystal should be less than 12 pF , with a preferred range of 7-10 pF. In specifying the crystal, the motional capacitance, series resistance and tuning tolerance must be compatible with the characteristics of the circuit to insure start-up and operation over a wide voltage range under worst case conditions.

The following expressions can be used to arrive at a crystal specification:

Tuning Range
\(\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{I N} C_{O U T}}{C_{I N}+C_{O U T}}\)
\(g_{m}\) required for start-up
\(g_{m}=4 \pi^{2 f 2} C_{\text {IN }}\) Cout \(R_{S}\left(1+\frac{C_{O}}{C_{L}}\right)^{2}\)
where
Rs \(=\) Series Resistance of Crystal
\(\mathrm{f}=\) Frequency of the Crystal
\(\Delta f \quad=\) Frequency Shift from Series Resonance Frequency
Co = Static Capacitance of Crystal
\(\mathrm{C}_{\mathrm{IN}}=\) Input Capacitance
Cout = Output Capacitance
\(C_{L}=\) Load Capacitance
\(\mathrm{C}_{\mathrm{m}}=\) Motional Capacitance of Crystal
The \(g_{m}\) required for start-up calculated should not exceed \(50 \%\) of the \(\mathrm{gm}_{\mathrm{m}}\) guaranteed for the device.

\section*{TEST POINT}

The TEST input, when connected to \(\mathrm{V}^{-}\), causes the ICM7245B/U to speed-up the outputs by 16 times. On long period output versions (\(12,20,60 \mathrm{sec}\)) the speedup factor will be larger. This allows easy testing of the finished watch module. The pulse width is not affected by the speed-up of the pulse frequency.

\section*{CUSTOM VERSIONS}

The ICM7245 may be modified with alternative metal masks to provide different number of dividers, various pulse widths, and different output configurations.
In addition, MOS capacitors on-chip up to a total of 50 pF may be connected to either the input and/or the output of the oscillator. Consult your Intersil representative or the factory for further information.

\section*{CHIP TOPOGRAPHY}

\section*{Appendix}
Packaging Dimensions
Page B-2
Thermal Resistance B-11
High Reliability Processing B-12
Application Note Summary B-20
Evaluation (EV) Kit Information B-22
Chip Ordering Information B-23
Intersil Part Numbering System B-29
Sales Offices, Distributors, and Representatives B-31

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

B

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

B

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

PACKAGE OUTLINES
All dimensions given in inches and (millimeters).

PACKAGE OUTLINES
All dimensions given in inches and (millimeters).

PACKAGE OUTLINES All dimensions given in inches and (millimeters).

\section*{THERMAL RESISTANCE \(\theta\) JA}

The junction-to-ambient thermal resistance values of dual in-line packaging systems used in GE Intersil CMOS integrated circuits are graphically illustrated in Figure 1. Each envelope represents the typical range of values for plastic, CERDIP or ceramic sidebraze package types as a function of size. The values were obtained while operating in a "still-air" environment and inserted into low-cost sockets mounted on printed circuit cards.

Thermal resistance is influenced by a number of factors including die size, cavity size and die bonding.

In order to present a comprehensive characterization of these variables, a range of values is provided rather than a single point.

Since most CMOS devices dissipate insignificant power, it is not likely that thermal resistance will be a critical design factor. In those situations where high dc currents or high-speed operation is required, the junction temperatures should be estimated through the use of this data and by knowing the actual power being dissipated by the device.

Figure 1 - THERMAL RESISTANCE OF DIP PACKAGES

\section*{HIGH RELIABILITY}

\section*{100\% INTEGRATED CIRCUIT PROCESSING}

Intersil is committed to build and process integrated circuits for the Military/High-Rel market segments in conformance with MIL-STD-883 and MIL-M-38510. Any customer drawing which specifies testing as set forth in these documents will be automatically processed to the latest revisions of MIL-STD-883 and MIL-M-38510, unless specific requests are made to the contrary.

\section*{100\% DISCRETE DEVICE PROCESSING}

Intersil also offers several QPL-approved discrete products carrying the JANTX designation, which are screened and qualified to the latest revisions of MIL-STD-750 and MIL-S-19500.

\section*{MIL-STD-883B SCREENING AND QUALITY CONFORMANCE PROGRAMS, METHODS 5004 AND 5005}

The following flow chart details screening activities as carried out by Intersil for Class S, B and C requirements.

Method 2017, Hybrid

\section*{HIGH RELIABILITY PROCESSING}

\section*{QUALITY CONFORMANCE INSPECTION, CLASSES B AND C}

The following diagram presents quality conformance inspection methods for Classes B and C as performed at Intersil.

*Sample must have had temp/time exposure specified for burn-in. LTPD of 15 applies to number of leads inspected except that in no case shall less than 3 devices be used.
**Required only when a package contains a dessicant.

\section*{NOTES:}
1. Group \(A\) and \(B\) inspections are required on individual inspection lots as a condition for acceptance for delivery.
2. Samples shall be randomly selected from the assembled inspection lot in accordance with appendix B of MIL-M-38510. Specified screen requirements of method 5004 are not required to have been completed for Intersil's standard generic data program, but will be performed when required by customer drawing. Where use of electrical rejects is permitted, and unless otherwise specified, they need not have been subjected to the temperature/time exposure of burn-in.
3. Group C (chip-related test) shall be performed periodically at 3 month intervals.
4. Group D (package related tests) shall be performed periodically at 6 month intervals.
5. Where end point measurements are required but no parameters have been identified, the critical final electrical parameters specified for \(100 \%\) screening shall be used as end point measurements.
6. Subgroups within a group may be performed in any order but individual tests within a subgroup shall be performed in the sequence indicated.

HIGH RELIABILITY PROCESSING

\section*{QUALITY CONFORMANCE}

The following steps are carried out when quality conformance testing is performed on a lot from which samples are taken.

QUALITY CONFORMANCE - CLASSES B \& C
\begin{tabular}{|lccc|}
\hline & \begin{tabular}{c}
STANDARD \\
SAMPLE \\
SIZE
\end{tabular} & \begin{tabular}{c}
ALLOWABLE \\
REJECTS
\end{tabular} & \begin{tabular}{c}
TIME \\
ALLOWANCE
\end{tabular} \\
\hline \begin{tabular}{l}
Group A \\
(Electrical \\
Acceptance)
\end{tabular} & 45 & 0 & \(3-5\) \\
\hline \begin{tabular}{l}
Group B \\
(Package \\
Related)
\end{tabular} & \begin{tabular}{c}
14 \\
Electrical \\
Rejects
\end{tabular} & 0 & d week \\
\hline \begin{tabular}{l}
Group C \\
(Die Related)
\end{tabular} & \begin{tabular}{c}
102 Good \\
Electrical \\
(Note 1)
\end{tabular} & \begin{tabular}{c}
1 from \\
1 fubgroup 1 \\
Subgroup 2
\end{tabular} & 8-10 \\
\hline \begin{tabular}{l}
Group D \\
(Package \\
Related)
\end{tabular} & \begin{tabular}{c}
50 Good \\
Electrical \\
(Note 2) \\
75 Electrical \\
Rejects
\end{tabular} & \begin{tabular}{c}
1 from each \\
of
\end{tabular} & 5 Subgroups
\end{tabular}

NOTE 1: Non-destructive, shippable samples (102 units).
NOTE 2: Destructive tests:
Moisture resistance. Subgroup 3 sample size 25 units
Variable-frequency vibration. Subgroup 4 sample size
\[
\text { Total Destroyed } 50 \text { units }
\]

\section*{QUALIFICATION TESTING}

When qualification testing is required, it will be equivalent to quality conformance testing, with the exception that Group A must be read and recorded on all applicable subgroups for the number of electrically-good units which will be required for samples for Groups C and D.

QUALIFICATION TESTING - GROUPS B \& C
\begin{tabular}{|c|c|c|c|}
\hline \(\therefore\) & STANDARD SAMPLE SIZE & Allowable REJECTS & TIME ALLOWANCE \\
\hline Group A (Electrical Acceptance) & \begin{tabular}{l}
\[
184
\] \\
(Read \& Record)
\end{tabular} & 5 & 5 days \\
\hline Group B (Package Related) & & 0 & 1 week \\
\hline \begin{tabular}{l}
Group C \\
(Die Related)
\end{tabular} & \begin{tabular}{l}
102 \\
Good Electrical (Note 1)
\end{tabular} & \begin{tabular}{l}
1 from \\
Subgroup 1 \\
1 from \\
Subgroup 2
\end{tabular} & \begin{tabular}{l}
\[
10-12
\] \\
weeks
\end{tabular} \\
\hline Group D (Package Related) & 50 Good Electrical (Note 2) 75 Electrical Rejects & 1 from each of 5 Subgroups & 4 weeks \\
\hline
\end{tabular}

NOTE 1: Shippable samples.
NOTE 2: 50 destroyed samples, subgroups 3 and 4.

\section*{LIMITED USAGE QUALIFICATION}

A customer may elect to take advantage of a "Limited Usage", qualification per MIL-M-38510, in order to reduce the number of samples required. The following conditions must be met for eligibility for the "Limited Usage" qualification:
1. A maximum quantity of 500 microcircuits is included in a single order.
2. A maximum quantity of \(\mathbf{2 0 0 0}\) microcircuits is included in a given equipment-acquisition contract or program.
3. A maximum quantity of \(\mathbf{2 0 0 0}\) microcircuits is to be procured during a 12-month period for a given circuit type and vendor.

Microcircuits which qualify for limited usage cannot be assigned a JAN part number. Variable data will be taken only when specified in a customer drawing.

LIMITED USAGE QUALIFICATION - CLASS B \({ }^{(1)}\)
\begin{tabular}{|lccc|}
\hline & \begin{tabular}{c}
SAMPLE \\
SIZE
\end{tabular} & \begin{tabular}{c}
ALLOWABLE \\
REJECTS
\end{tabular} & \begin{tabular}{c}
TIME \\
ALLOWANCE
\end{tabular} \\
\hline \begin{tabular}{l}
Group A \\
(Electrical \\
Acceptance)
\end{tabular} & 45 & 0 & 5 days \\
\hline \begin{tabular}{l}
Group B \\
(Package \\
Related)
\end{tabular} & \begin{tabular}{c}
Electrical \\
Rejects
\end{tabular} & 0 & 1 week \\
\hline \begin{tabular}{l}
Group C \\
(Die Related, \\
Non-Destruc- \\
tive)
\end{tabular} & \begin{tabular}{c}
10 Glood \\
Electrical \\
Parts
\end{tabular} & 0 & \begin{tabular}{l}
\(8-10\) \\
weeks
\end{tabular} \\
\hline \begin{tabular}{l}
Group D \\
(Package \\
Related, \\
Destructive)
\end{tabular} & \begin{tabular}{c}
25 \\
(15 Good, \\
10 Electrical \\
Rejects)
\end{tabular} & 0 & 4 weeks \\
\hline
\end{tabular}
(1) Mil-M-38510, Paragraph 4.4.4; MIL-STD-883, Method 5005.

\section*{GLOSSARY OF MILITARY/AEROSPACE HIGHREL DEFINITIONS/TERMINOLOGY}

ACCELERATED BURN-IN - Same as "Burn-In", except that testing is carried out at an increased temperature (nominally \(150^{\circ} \mathrm{C}\)) for reduced dwell time. Accelerated testing is not permissible for Class \(S\) devices.

ATTRIBUTES DATA - Go-No-Go data. Strictly pass/ fail and number of rejects recorded. A typical requirement for post burn-in electrical tests on Class B devices.

BASELINE - Technique used to define manufacturing and test processes at time of order placement. Baselining usually involves development of a Program Plan and an Acceptance Test Plan which include flow charts, specification identification/revision letters, QA procedures, and actual specimens of certain important specifications. During subsequent manufacture and testing of parts, it is not permissible to make revisions or changes to any of the identified specificatíons, unless prior notification and possible customer approval occurs. Other terminology associated with baselining include "Critical Process Changes","Minor Process Changes", and "Major Process Changes".

BURN-IN - A screening operation. Devices are subjected to high temperature (typically \(125^{\circ} \mathrm{C}\)) and normal power/ operation for 160 hours (Class B devices) or 240 hours (Class S devices).

CLASS S, B AND C INTEGRATED CIRCUITS - These classes set forth the screening, sampling and document control requirements for IC testing. Terminology is defined in MIL-M-38510 and in Test Methods 5004 and 5005 of MIL-M-38510. Classes, S, B and C are sometimes referred to as "Levels S, B and C." The Classes cover:

CLASS S - For space and satellite programs. Includes Condition A Precap, SEM, 240 hour burn-in, PIND test and elaborate qualification and quality conformance testing. Normally requires extensive data, documentation, and program planning. Formerly referred to as Class \(A\). Class \(S\) devices are quite expensive.

CLASS B - For manned flight, and includes most fre-quently-procured military integrated circuits. Used for all but highest reliability requirements. Class \(B\) uses burn-in, pre-cap visual, etc.

CLASS C - For ground support equipment. Contains only environmental screening requirements with pre-cap visual. No burn-in required.

In all classes, LTPD (Lot Tolerance Percent Defective) is the sampling plan measurement criteria.

CORRECTIVE ACTION - Those actions which a given supplier (or user) agrees to perform so that a detected problem does not reoccur.

DESC - Defense Electronic Supply Center, located in Dayton, Ohio. The command includes two major subgroups, with functions as follows:

DESC-ECS - This group performs specification engineering work. After the original specifications are created at RADC, DESC-ECS implements and monitors the specifications. DESC-ECS is the industry's main interface on existing specifications.

DESC-EQM - The group which supervises supplier certifications and qualifications per MIL-M-38510. The group to which the industry submits applications when desiring to have devices qualified (QPL'd) on an existing JAN slash sheet. DESC-EQM surveys supplier facilities and grants line certification as various requirements are met. Also reviews manufacturer's qualification test data and issues JAN OPL's accordingly.

DESC-EQT - Same as EQM, except handles transistors per MIL-S-19500.

DESC LINE CERTIFICATION - The document which approves a supplier's facilities as an appropriate site to manufacture JAN parts.

DIE SHEAR TESTS - A sample test. Mounted chips are exercised to destruction. Degree of die adherence to lead frame is observed. Corrective action taken if required.

DPA - Destructive Physical Analysis. Finished products are opened and analyzed, in accordance with customer or MIL Spec criteria.

GENERIC DATA - Data pertaining to a device family; not necessarily the specific part number ordered by the customer, but representative of parts in the family. Group B, \(C\) and \(D\) generic data is frequently requested in lieu of the performance of special qual tests on a given order.

GROUP A - Sample electrical tests which are performed on each lot. Group A is defined in Test Method 5005 for integrated circuits and in MIL-S-19500 for diodes and transistors.

GROUP B - A collection of package-related environmental and "wear-and-tear" tests. Defined in Test Method 5005 for integrated circuits. For Class S screening, additional life tests are required, and are performed on every lot per MIL-\(\mathrm{M}-38510\). For diodes and transistors, Group B consists of both environmental and life tests, as defined in MIL-S-19500.

GROUP C - For Class B and C integrated circuits, only Group C includes life testing and temperature cycling/constant acceleration die-related sample tests. Defined in Test Method 5005 and performed every three months per MIL-M-38510.

GROUP D - A collection of additional environmental package-related sample tests as defined in Test Method 5005. Performed every six months per MIL-M-38510. For classes S, B, \& C.

JAN - "Joint Army Navy", a registered trademark of the U.S. Government. The JAN marking denotes a device which is in full compliance to MIL-M-38510 or MI L-S-19500.

JAN TX - A JAN-qualified diode or transistor which has been subjected to additional screening (burn-in) tests. MIL-S-19500 only.

JAN TXV - A JAN-qualified diode or transistor which, in additional to burn-in testing, has been subjected to additional screening including pre-cap visual inspection, as witnessed by a government source inspector. Equivalent to Class B screening for integrated circuits. MIL-S-19500 only.
"M38510" CIRCUITS - Until a recent revision to MIL-M38510, it was a common practice for users and suppliers alike to specify or offer integrated circuits marked "M38510/ XXX" without a J or JAN prefix. This part numbering system indicated a device which was"near-JAN","quasi-JAN" or "non-JAN". The practice tended to cause confusion between these devices and parts in full conformance to JAN levels. MIL-M- 38510 now prohibits such marking with the exception of two special instances:
- When JAN QPL supplier for a given product does not exist, the government will permit "M38510/XXX" marking. While a customer may specify such marking, the supplier must furnish the government with evidence that the parts meet all applicable requirements.
- For certain parts destined for use in some programs, "M38510/XXX" marking is permissible, but orders for such parts must be accompanied by appropriate DESC certification letter.

M38510/XXX - Detail specifications (or "slash sheets") for integrated circuits. For example, the 101 specification covers Operational Amplifiers, with electrical requirements for the 741, LM101, 108, 747 types, etc.

MIL-M-38510 - The general military specification for integrated circuits.

MIL-S-19500 - The general military specifications for diodes and transistors.

MIL-S-19500/XXX - Detail specifications (or "slash sheets" for diodes and transistors.

MIL-STD-750 - Specifies Test Methods for diodes and transistors, such as burn-in, pre-cap, temperature cycling, etc.

MIL-STD-883 - Specifies Test Methods for integrated circuits, such as pre-cap, burn-in, . hermeticity, storage life, etc.
NPFC - Naval Publications and Forms Center, Philadelphia. Printing and distribution source for military specifications.

NON-STANDARD PARTS - In government terminology, refers to non-JAN devices. Non-standard parts are typically covered by user Source Control Drawings (SCD).

NON-STANDARD PARTS APPROVAL - Approval by the government (frequently RADC) of non-JAN parts, typically on source control drawings, for use in a military system or program. This approval is essentially a waiver which permits non-JAN 38510 parts in a system which otherwise mandatorially requires JAN parts only.

OPERATING LIFE TEST - Same conditions as burn-in, but duration is usually 1000 hours. This is a sample test (Qualification and Quality Conformance).

PCA - Parts Configuration Analysis. A new term which has much the same meaning as "Baseline".

PDA - Percent Defective Allowable. Criteria sometimes applied to burn-in screening. A 10\% PDA (the most common type) means that if more than \(10 \%\) of that lot fails as a result of burn-in (as determined by pre- and post-burn-in electrical tests) the entire lot is considered to have failed.

PDS - Parameter Drift Screening. Measures the changes \((\Delta s)\) in electrical parameters through burn-in. Common for Class \(S\) devices.

PIND - Particle Impact Noise Detection. This is an audio screening test to locate and elminate those parts which have loose internal particles. The test can isolate a high percentage of defectives, even in otherwise good lots. Repeatability of the tests is questionable. This test is one of the screening items for Class S integrated circuits.

PREPARING ACTIVITY - The organizational element of the government which writes specifications, frequently RADC.

PRESEAL VISUAL - A screening inspection which involves observation of a die through a microscope.

PROCURING ACTIVITY - Per MIL-M-38510, this is the organizational element in the government which contracts for articles or services. The Procuring Activity can be a subcontractor (OEM), providing that the government delegates this responsibility. In such a case, the subcontractor does not have the power to grant waivers, unless this authority has been approved by the government.

PRODUCT RELIABLIITY - Pertains to the level of quality of a product over a period of time. Reliability is usually meqasured or expressed in terms of Failure Rate (such as " \(0.002 \%\) per 1000 hours at a \(60 \%\) confidence level at \(25^{\circ} \mathrm{C}\) ") or MTBF (mean time between failure in hours). MTBF is the reciprocal of Failure Rate.

QPL - Qualified Products List. In the case of JAN products, OPLs are identified as QPL-38510 for integrated circuits and QPL-19500 for diodes and transistors. QPL38510 revisions occur approximately quarterly and QPL19500 revisions occur approximately annually. In the interim, the government will notify suppliers via letter of any new device qualifications which may have been granted. Two types of OPLs exist for MIL-M-38510:

\section*{HIGH RELIABILITY PROCESSING}

PART II QPL - This is an interim or temporary QPL which is granted on the basis of having obtained line certification and approval of an Application to Conduct Qualification Testing. A PART II QPL is automatically voided after 90 days whenever any one supplier is granted a PART I QPL.
PART I QPL - A "permanent" QPL, granted after all qualification testing is completed and test data is approved by the government.

QPLTT - Qualified Product List Throughput Time. That period which required to obtain device qualification. QPLTT is a function of (1) whether a JAN slash sheet exists; (2) whether a competitor already holds a Part I QPL; and (3) whether the applicant's production line is certified by DESC.

Following is a worst-case example, where a JAN slash sheet does not exist and government line certification has not been granted. OPLTT will be approximately 39.5 months, if the JAN slash sheet already exists, QPLTT will be cut to about 10.5 months. If the applicant already has line certification, QPLTT will be about 2 months to obtain Part II status.

Total time required to obtain a Part I QPL adds about 7 months to QPLTT; in a worst-case example, about 46 months will be required.

QUALIFYING ACTIVITY - Per MIL-M-38510, the organizational element in the government which designates certification (i.e., DESC).

QUALIFICATION TESTING - Initial one-time sample tests which are performed to determine whether device types and processes are good. For integrated circuits, this usually means testing to Groups A, B, C and D. For diodes and transistors, this usually means testing to Groups \(\mathrm{A}, \mathrm{B}\) and C .

QUALITY CONFORMANCE TESTING - These are sample tests which must be performed at prescribed intervals per MIL-M-38510 or MIL-S-19500, assuring that processes remain in control and that individual lots are passed.

RADC - Rome Air Development Command, Griffiss AFB, New York. This is the government organization which created semiconductor specifications; MIL-M-38510 and MIL-STD-883 were developed at RADC. This Air Force unit develops specifications for all U.S. military services. RADC is frequently involved in granting waivers for non-standard parts for Air Force systems.

READ AND RECORD DATA - Same as variable data.

REWORK PROVISION - For semiconductor devices, permissible rework of parts is usually limited to re-testing (screening), lead straightening or bending, re-marking, and cleaning.

S \& V - Survivability and Vulnerability. Pertains to the ability of a device to resist radiation dosage.

SCREENING - Operations which are performed on devices on a \(100 \%\) basis (not sampling). Examples include pre-cap visual, burn-in hermeticity, \(100 \%\) electrical test, etc. For integrated circuits, Test Method 5004 defines screening flow.

SEM INSPECTION - Inspection by Scanning Electron Microscope. Die samples are examined at very high magnification for metallization defects. A common inspection for Class S devices.

SERIALIZATION - The marking of a unique part number on each part, with assigned numbers marked sequentially/ consecutively.

SCDs - Source Control Drawings. Typically user-generated drawings which require development of internal IC vendor sheets. Although each drawing may be slightly different, all will be modelled around MIL-M-38510, MIL-S-19500, MIL-S'TD-883, or MIL-STD-750.

SOURCE INSPECTION - Can be either Customer Source Inspection (CSI) or Government Source Inspection (GSI). Source Inspection is initiated via purchase order, and can occur at one or more of the following points:
- Pre-cap Visual. Expensive and adds to throughput time.
- Final Inspection. Simple and inexpensive; little delivery impact.
- Throughout. Very expensive and time-consuming.

STANDARD PARTS - In government terminology, JAN parts.

TRACEABILITY - A production and manufacturing control system which includes:
- Wafer run identification number.
- Date pre-cap visual inspection was performed, identity of inspector, and specification number and revision.
- Lot number and inspection history.
- QA Group A electrical results.

VARIABLE DATA - Read and recorded electrical measurements (parametric values). Usually required for pre- and post-burn-in electrical tests. Also common for Group C and \(D\) testing.

WIRE PULL TESTS - Bond wire pull tests will be specified in two modes:

DESTRUCTIVE WIRE PULL - Generally performed periodically in assembly on a sample basis. Wires are pulled to destruction and the break point force is recorded. Corrective action is taken as required.

NON-DESTRUCTIVE WIRE PULL - Option for class 5 microcircuits, wire bonds are pulled to a max of \(70 \%\) of the preseal minimum bond strengths for the applicable material on \(100 \%\) of the lot.

\title{
Ordering Information for MIL-STD-883B Processed Devices
}

The following Intersil devices are available as a standard with Class B screening per method 5004 of MIL-STD-883B. To order, add 833B after the device number as shown below.
\begin{tabular}{|c|c|}
\hline Part Number & Part Number \\
\hline AD532SD/883B & DG112AL/883B \\
\hline AD532SH/883B & DG116AK/883B \\
\hline AD550M-12/883B & DG116AL/883B \\
\hline AD550S/883B & DG118AK/883B \\
\hline AD550T/883B & DG118AL/883B \\
\hline AD550U/883B & DG120AK/883B \\
\hline AD590JH/883B & DG120AL/883B \\
\hline AD590KH/883B & DG121AK/883B \\
\hline AD590LH/883B & DG123AK/883B \\
\hline AD590MH/883B & DG123AL/883B \\
\hline AD7520SD/883B & DG125AK/883B \\
\hline AD7520TD/883B & DG125AL/883B \\
\hline AD7520UD/883B & DG126AK/883B \\
\hline AD7521SD/883B & DG126AL/883B \\
\hline AD7521TD/883B & DG129AK/883B \\
\hline AD7521UD/883B & DG129AL/883B \\
\hline AD7523SD/883B & DG133AK/883B \\
\hline AD7523TD/883B & DG133AL/883B \\
\hline AD7523UD/883B & DG134AK/883B \\
\hline AD7533SD/883B & DG134AL/883B \\
\hline AD7533TD/883B & DG139AK/883B \\
\hline AD7533UD/883B & DG139AL/883B \\
\hline AD7541SD/883B & DG140AK/883B \\
\hline AD7541TD/883B & DG140AL/883B \\
\hline ADC0801LD/883B & DG141AK/883B \\
\hline ADC0802LD/883B & DG141AL/883B \\
\hline ADC0803LD/883B & DG142AK/883B \\
\hline & DG142AL/883B \\
\hline D112AK/883B & DG143AK/883B \\
\hline D112AL/883B & DG143AL/883B \\
\hline D113AK/883B & DG144AK/883B \\
\hline D113AL/883B & DG144AL/883B \\
\hline D120AK/883B & DG145AK/883B \\
\hline D120AL/883B & DG145AL/883B \\
\hline D121AK/883B & DG146AK/883B \\
\hline D121AL/883B & DG146AL/883B \\
\hline D123AK/883B & DG151AK/883B \\
\hline D123AL/883B & DG151AL/883B \\
\hline D125AK/883B & DG152AK/883B \\
\hline D125AL/883B & DG152AL/883B \\
\hline D129AK/883B & DG153AK/883B \\
\hline D129AL/883B & DG153AL/883B \\
\hline & DG154AK/883B \\
\hline DG111AK/883B & DG154AL/883B \\
\hline DG111AL/883B & DG161AK/883B \\
\hline DG112AK/883B & DG161AL/883B \\
\hline
\end{tabular}
\begin{tabular}{l}
Part Number \\
DG162AK/883B \\
DG162AL/883B \\
DG163AK/883B \\
DG163AL/883B \\
DG164AK/883B \\
DG164AL/883B \\
DG180AA/883B \\
DG180AK/883B \\
DG180AL/883B \\
DG181AA/883B \\
DG181AK/883B \\
DG181AL/883B \\
DG182AA/883B \\
DG182AK/883B \\
DG182AL/883B \\
DG183AK/883B \\
DG183AL/883B \\
DG184AK/883B \\
DG184AL/883B \\
DG185AK/883B \\
DG185AL/883B \\
DG186AA/883B \\
DG186AK/883B \\
DG186AL/883B \\
DG187AA/883B \\
DG187AK/883B \\
DG187AL/883B \\
DG188AA/883B \\
DG188AK/883B \\
DG188AL/883B \\
DG189AK/883B \\
DG189AL/883B \\
DG190AK/883B \\
DG190AL/883B \\
DG191AK/883B \\
DG191AL/883B \\
DG200AA/883B \\
DG200AK/883B \\
DG200AL/883B \\
DG201AK/883B \\
DGM182AA/883B \\
DGM182AK/883B \\
DGM182AL/883B \\
DGM184AK/883B \\
DGM184AL/883B \\
\hline
\end{tabular}

Part Number
DGM185AL/883B
DGM187AA/883B
DC 1187AK/883B
DGM187AL/883B
DGM188AA/883B
DGM188AK/883B
DGM188AL/883B
DGM190AK/883B
DGM190AL/883B
DGM191AK/883B
DGM191AL/883B

G115AK/883B
G115AL/883B
G116AK/883B
G116AL/883B
G117AK/883B
G117AL/883B
G118AK/883B
G118AL/883B
G119AK/883B
G119AL/883B
G123AK/883B
G123AL/883B
G125AK/883B
G125AL/883B
G126AK/883B
G126AL/883B
G127AK/883B
G127AL/883B
G128AK/883B
G128AL/883B
G129AK/883B
G129AL/883B
G130AK/883B
G130AL/883B
G131AK/883B
G131AL/883B
G132AK/883B
G132AL/883B

ICL7109MDL/883B
ICL7650MJD/883B
ICL7650MTV/883B
ICL7660MTV/883B
ICL8007AMTV/883B

\section*{Part Number}

ICL8007MTY/883B
ICL8013AMTZ/883B
ICL8013BMTZ/883B
ICL8013CMTZ/883B
ICL8018AMJD/883B
ICL8018MJD/883B ICL8019AMJD/883B ICL8019MJD/883B ICL8020AMJD/883B ICL8020MJD/883B ICL8021MTY/883B ICL8022MFD/883B ICL8022MJD/883B ICL8023MJE/883B ICL8038AMJD/883B ICL8038BMJD/883B ICL8049BCJE/883B ICL8069ACSQ/883B ICL8069BCSQ/883B ICL8069CMSQ/883B ICL8069DMSQ/883B ICL8211MTY/883B ICL8212MTY/883B

ICM7555MTV/883B ICM7556MJD/883B

IH181MFD/883B IH181MJD/883B IH181MTW/883B IH182MFD/883B IH182MJD/883B IH182MTW/883B IH184MFD/883B IH184MJE/883B IH185MFD/883B IH185MJE/883B IH187MFD/883B IH187MJD/883B IH187MTW/883B IH188MFD/883B IH188MJD/883B IH200AK/883B IH200AL/883B IH200MJE/883B IH201MJE/883B IH202MJE/883B IH5003MFD/883B IH5003MJD/883B IH5004MFD/883B IH5004MJD/883B IH5005MFD/883B IH5005MJD/883B IH5006MFD/883B IH5006MJD/883B IH5007MFD/883B IH5007MJD/883B

\section*{Part Number}

IH5009MJD/883B IH5010MJD/883B IH5011MJE/883B IH5012MJE/883B IH5013MJD/883B IH5014MJD/883B IH5015MJE/883B IH5016MJE/883B IH5017MJD/883B IH5018MJD/883B IH5019MJE/883B IH5020MJE/883B IH5021MJD/883B IH5022MJD/883B IH5023MJE/883B IH5024MJE/883B IH5025MJD/883B IH5026MJD/883B IH5027MJE/883B IH5028MJE/883B IH5029MJD/883B IH5030MJD/883B IH5031MJE/883B IH188MTW/883B IH190MFD/883B IH190MJE/883B IH191MFD/883B IH191MJE/883B IH200AA/883B IH5032MJE/883B IH5033MJD/883B IH5034MJD/883B IH5035MJE/883B IH5036MJE/883B IH5037MJD/883B IH5038MJD/883B IH5040MFD/883B IH5040MJE/883B IH5041MFD/883B IH5041MJE/883B IH5041MTW/883B IH5042MFD/883B IH5042MJE/883B IH5042MTW/883B IH5043MFD/883B IH5043MJE/883B IH5044MFD/883B IH5044MJE/883B IH5044MTW/883B IH5045MFD/883B IH5045MJE/883B IH5046MFD/883B IH5046MJE/883B IH5047MFD/883B IH5047MJE/883B IH5048MFD/883B IH5048MJE/883B

Part Number
IH5048MTW/883B
IH5049MFD/883B IH5049MJE/883B IH5050MFD/883B IH5050MJE/883B IH5050MTW/883B IH5051MFD/883B IH5051MJE/883B IH5052MJE/883B IH5053MJE/883B IH5108MJE/883B IH5140MFD/883B IH5140MJE/883B IH5141MFD/883B IH5141MJE/883B IH5141MTW/883B IH5142MFD/883B IH5142MJE/883B IH5142MTW/883B IH5143MFD/883B IH5143MJE/883B IH5144MFD/883B IH5144MJE/883B IH5144MTW/883B IH5145MFD/883B IH5145MJE/883B IH5148MFD/883B IH5148MJE/883B IH5148MTW/883B IH5149MFD/883B IH5149MJE/883B IH5150MFD/883B IH5150MJE/883B IH5150MTW/883B IH5151MFD/883B IH5151MJE/883B IH5200MFD/883B IH5200MJD/883B IH5200MTW/883B IH5201MJE/883B IH5208MJE/883B IH6108MJE/883B IH6116MJI/883B IH6201MJE/883B IH6208MJE/883B IH6216MJI/883B

IM5603AMFE/883B IM5624MFE/883B IM6100-1MJL/883B IM6100AMJL/883B IM6101-1MJL/883B IM6101AMJL/883B IM6102-1MJL/883B IM6102AMJL/883B IM6103-1MJL/883B IM6103AMJL/883B

Part Number
IM6402-1MJL/883B
IM6402AMJL/883B
IM6403-1MJL/883B
IM6403AMJL/883B

IM6512AMFN/883B
IM6512AMJN/883B
IM6512MFN/883B
IM6512MJN/883B
IM65X08AMFE/883B
IM65X08AMJE/883B
IM65X08MFE/883B
IM65X08MJE/883B
IM65X18AMFN/883B
IM65X18AMJN/883B
IM65X18MFN/883B
IM65X18MJN/883B IM65X51AMJF/883B IM65X51MJF/883B IM65X61AMFN/883B IM65X61AMJN/883B IM65X61MFN/883B IM65X61MJN/883B IM6653AMJG/883B IM6653MJG/883B IM6654AMJG/883B IM6654MJG/883B

LM100H/883B
LM101AF/883B
LM101AH/883B
LM101H/883B
LM105H/883B
LM107F/883B
LM107H/883B
LM107J-14/883B
LM108AH/883B
LM108AJ/883B
LM108H/883B
LM110F/883B
LM110H/883B
LM111H/883B
LM111J/883B
LM4250H/883B

OP-05AJ/883B
OP-05AY/883B
OP-05AZ/883B
OP-05J/883B
OP-05Y/883B
OP-05Z/883B
OP-07AJ/883B
OP-07AY/883B
OP-07AZ/883B
OP-07J/883B
OP-07Y/883B
OP-07Z/883B

The following are brief descriptions of current Intersil Application notes.

A003 UNDERSTANDING AND APPLYING THE ANALOG SWITCH
Introduces analog switches and compares them to relays. Describes CMOS, hybrid (FET + driver), J-FET "virtual ground" and J-FET "positive signal" types. Application information included.

A004 IH5009 LOW COST ANALOG SWITCH SERIES Compares the members of the IH5009 "virtual ground". analog switches and provides suggested applications.

A005 THE 8007-A HIGH PERFORMANCE FET INPUT OP AMP
Compares the 8007 with the 741, which is pin compatible and suggests applications such as logantilog amplifier, sample and hold circuit, photometer, peak detector, etc.

A007 USING THE 8048/8049 MONOLITHIC LOGANTILOG AMPLIFIER
Describes in detail the operation of the 8048 logarithmetic amplifier, and its counterpart, the 8049 antilog amp.

A PRECISION FOUR QUADRANT MULTI-PLIER-THE 8013
Describes, in detail, the operation of the 8013 analog multiplier. Included are multiplication, division, and square root applications.

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT THE 8038

This note includes 17 of the most asked questions regarding the use of the 8038 .

DESIGN FOR A BATTERY OPERATED FREQUENCY COUNTER

Describes a low cost battery operated frequency/ period counter using the 7207A and 7208. Includes specifications, schematics, PC layout, etc.

\section*{SELECTING A/D CONVERTERS}

Describes the differences between integrating converters and successive approximation converters. Includes a checklist for decision making, and a note on multiplexed data systems.

A027

\section*{THE INTEGRATING A/D CONVERTER}

Provides an explanation of integrating \(A / D\) con. verters, together with a detailed error analysis.

\section*{DO'S AND DONT'S OF APPLYING A/D CONVERTERS}

An analysis of proper design techniques using D/A converters.

\section*{4½ DIGIT PANEL METER DEMONSTRATION/ INSTRUMENTATION BOARDS}

Describes two typical PC board layouts using the 8052A/7103A 41/2 digit A/D pair. Includes schematics, parts layout, list of materials, etc. Also see A028.

\section*{A COOKBOOK APPROACH TO HIGH SPEED DATA ACQUISITION AND MICROPROCESSOR INTERFACING}

Uses the building block approach to design a complete 12 volt system. Explains the significance of each component and demonstrates methods for microprocessor interfacing, including the use of control signals.

POWER D/A CONVERTERS USING THE ICH 8510
Detailed analysis of the 8510. Included are a section describing the linearity of the device and application notes for driving servo motors, linear and rotary actuators, etc. Also see A026.

\section*{A NEW J-FET STRUCTURE-THE VARAFET}

Describes in detail the operation of the varafet, a standard J-FET with the analog gate interfacing components monolithically built-in.

LOW COST DIGITAL PANEL METER DESIGNS
Provides a detailed explanation of the 7106 and 7107 3 \(1 / 2\) digit panel meter IC's, and describes two of the evaluation kits available from Intersil.

DC SERVO MOTOR SYSTEMS USING THE ICH8510
This companion note to A021 explains the design techniques utilized in using the ICH8510 family to drive closed loop servo motor systems.

POWER SUPPLY DESIGN USING THE ICL8211 AND ICL8212
Explains the operation of the ICL8211/12 and describes various power supply configurations. Included are positive and negative voltage regulators, constant current source, programmable current source, current limiting, voltage crowbarring, power supply window detector, etc.
A029 POWER OP AMP HEAT SINK KIT
Describes the heat sinks for the ICH8510 family.

A030 THE ICL7104: A BINARY OUTPUT A/D CONVERTER FOR MICROPROCESSORS
Describes in detail the operation of the 7104. Includes in digital interfacing, handshake mode, buffer gain, auto-zero and external zero. Appendix includes detailed discussion of auto-zero loop residual errors in dual slope A/D conversion.

A031 COIL DRIVE ALARM DESIGN CONSIDERATIONS
Explains the procedure used when using watch ;circuits to drive piezoelectric transducers.

A032 UNDERSTANDING THE AUTO-ZERO AND COMMON MODE PERFORMANCE OF THE ICL7106/ 7107/7109 FAMILY
Explains in detail the operation of the ICL7106/ 7/9 family of \(A / D\) Converters.
BUILDING AN AUTO RANGING DMM WITH THE ICL7103A/8052A CONVERTER PAIR
This companion app note to A019 explains the use of the 8052A/7103A converter pair to build a \(\pm 4 \frac{1}{2}\) digit auto ranging digital multimeter. Included are schematics, circuit descriptions, tips and hints, etc.

Describes the heat sinks for the ICH8510 family. These heat sinks may be ordered from the factory.

BUILDING A BATTERY OPERATED AUTO RANGING DVM WITH THE ICL7106
Explains principles of auto ranging, problems and solutions. Includes clock circuits, power supply requirements, design hints, schematics, etc.

GAMES PEOPLE PLAY WITH A/D CONVERTERS

Describes 25 different integrating A/D converter applications. Input circuits, conversion modifications, display and microprocessor interfaces are shown in detail.

USING THE IT500 FAMILY TO IMPROVE THE INPUT BIAS CURRENT OF BIFET OP AMPS
A brief description of a preamplifier for BIFET OP AMPS.

PRINCIPLES AND APPLICATIONS OF THE ICL7660 CMOS VOLTAGE CONVERTER
Describes internal operation of the ICL7660. Includes a wide range of possible applications.

\section*{TIPS FOR USING SINGLE CHIP \(3 ½\) DIGIT A/D CONVERTERS}

Answers frequently asked questions regarding the operation of \(31 / 2\) digit single chip A/D converters. Included are sections on power supplies, displays, timing and component selection.

THE ICL7650 A NEW ERA IN GLITCH-FREE CHOPPER STABILIZER AMPLIFIERS
A brief discussion of the internal operation of the ICL7650, followed by an extensive applications section including amplifiers, comparators, logamps, pre-amps, etc.

DISPLAY DRIVER FAMILY COMBINES CONVENIENCE OF USE WITH MICROPROCESSOR INTERFACABILITY

Compares and describes the various display drivers. Includes design examples for 7 segment, Alpha-numeric, and bargraph systems.

AVOIDING PROBLEMS IN CMOS MEMORY OPERATION
Discusses input overvoltage and SCR latch-up and the multiple address access problem in CMOS RAMs.

\section*{EVALUATION KITS AVAILABLE FROM INTERSIL}

PRODUCT DESCRIPTION
31⁄2 Digit LCD Panel Meter Kit
31/2 Digit LED Panel Meter Kit
3 \(1 / 2\) Digit Low Power
LCD Panel Meter Kit
4 \(1 / 2\) Digit A/D Converter Kit
41⁄2 Digit LCD Display Driver Kit
41⁄2 Digit LED Display Driver Kit
4½ Digit VF Display Driver Kit
8 Character Multiplexed LCD
Display Driver Kit
8 Character Multiplexed LED

Display Driver Kit
41⁄2 Digit LCD Display Counter Kit

4½ Digit LED Display Counter Kit
41/2 Digit VF Display Counter Kit

\section*{8 Digit Stopwatches}

Hour Decade Timer Minute Decade Timer 4 Function/24 Hour Clock

6 Digit Stopwatches
4 Function

\section*{Touch Tone Encoder}

One contact per key
Two contacts per key, common to positive supply
Common to negative supply, oscillator enabled when key depressed
8 Digit Frequency/Period Counter 5 Function

Oscillator Controller
For application as freq. counter with ICM7208

Power Amplifier Kits

PART NUMBER
ICL7106EV/KIT
ICL7107EV/KIT
ICL7136EV/KIT

ICL7135EV/KIT

ICM7211EV/KIT

ICM7212EV/KIT

ICM7235EV/KIT

ICM7233 EV/KIT

ICM7243BEV/KIT

ICL7224EV/KIT

ICM7225EV/KIT

ICM7236EV/KIT

ICM7045AEV/KIT,H. ICM7045AEV/KIT , M ICM7045EV/KIT

ICM7215EV/KIT

ICM7206EV/KIT
ICM7206AEV/KIT
ICM7206BEV/KIT

ICM7226AEV/KIT

ICM7207EV/KIT ICM7207AEV/KIT

ICH8510IEV/KIT ICH8510MEV/KIT ICH8520IEV/KIT ICH8520MEV/KIT ICH8530IEV/KIT ICH8530MEV/KIT

\section*{CONTENTS}

ICL7106 + PC Card + All Passive Components
ICL7107 + PC Card + All Passive Components
ICL7136 + PC Card + All Passive Components

ICL7135 + ICL7660 + ICL8069 + PC Card + Active, Passive Components
ICM7211 + 4½ Digit LCD Display + PC Card + Active, Passive Components

ICM7212 + 4½ Digit LED Display + PC Card + Active, Passive Components
ICM7235 + 4½ Digit VF Display + PC Card + Active, Passive Components
2 of ICM7233 + PC Card + 8 Character Triplexed LCD Display
ICM7243B + PC Card + 8 Character LED

ICM7224 + ICM7207A + 5.24288 MHz Crystal + \(41 / 2\). Digit LCD Display + PC Card + Passive Components
ICM7225 + ICM7207A + 5.24288 MHz Crystal + \(41 / 2\) Digit LED Display + PC Card + Passive Components
ICM7236 + ICM7207A + 5.24288 MHz Crystal + \(41 / 2\) Digit VF Display + PC Card + Passive Components

ICM7045A +3.640889 MHz Crystal
ICM7045A +2.184533 MHz Crystal
ICM7045 +6.5536 MHz Crystal

ICM7215 +3.2768 MHz Crystal

ICM7206 + 3.579545 MHz Crystal
ICM7206A +3.579545 MHz Crystal
ICM7206B + 3.579545 MHz Crystal

ICM7226A + 10 MHz Crystal + PC Card + LEDs + All Passive Components

ICM7207 + 6.5536 MHz Crystal ICM7207A + 5.24288 MHz Crystal

ICH8510I + Socket + Heat Sink ICH8510M + Socket + Heat Sink ICH85201 + Socket + Heat Sink ICH8520M + Socket + Heat Sink ICH85301 + Socket + Heat Sink ICH8530M + Socket + Heat Sink

\section*{FET, MOSFET, AND DUAL TRANSISTOR CHIPS}

\section*{INTRODUCTION}

Intersil recognizes the increasing need for transistors and FETs in die form. To fulfill this need, Intersil offers a full line of JFETs, MOSFETs, and dual transistors in die form.

Die sales do, however, present some unique problems. In many cases the chips cannot be guaranteed to the same electrical specifications as the packaged part. This is due to the fact that leakage, noise, AC parameters and temperature testing cannot be tested to the same degree of accuracy for dice as it can for packaged devices. This is due to equipment limitations and handling problems.

\section*{PURCHASE OPTIONS}

Intersil offers dice which are delivered in a number of forms:
- Chips which have been electrically probed, inked, visually inspected and diced.
- Wafers which have been electrically probed, inked, visually inspected and scribed only.
- Wafers which have been electrically probed, inked, and visually inspected only.

\section*{GENERAL PHYSICAL INFORMATION}
- Consult individual product information sheets for dimensions. Except for the aluminum bonding pads, the chips are completely covered with vapox (silicon dioxide). This minimizes damage to the chip caused by handling problems.
- Dice are \(100 \%\) tested to electrical specifications, then visually inspected. When wafers are ordered, dice which fail the electrical test are inked out.
- Generally the minimum size of the die-attaching pad metallization should be at least 5 mils larger (on every edge) than the chip dimensions. For example, a 15 mil chip should be attached on at least a 25 mil pad.

\section*{Small Signal Devices}
- Chips are available with exact length \(X\) width dimensions plus tolerance (see individual data sheets). Chip height ranges from \(.003^{\prime \prime}\) to \(.006^{\prime \prime}\).
- To facilitate die attaching, chips are gold backed. Approximate thickness is 1000 angstroms. In general, dice should be attached to gold, platinum, or palladium metallization. Thin-film gold, moly-gold and most of the thick-film metallization materials are compatible.
- All chips have aluminum metallization and aluminum bonding pads. Typical aluminum thickness is 12,000 angstroms.

\section*{Power FETs}
- Chip height ranges from \(.007^{\prime \prime}\) to \(.020^{\prime \prime}\).
- To facilitate die attaching, chips have gold or silver backing.
- Top side metal is aluminum with a thickness of 10,000 . 30,000 angstroms.

CHIP AND WAFER PROCESSING FLOW CHART

\section*{DIE \& WAFER ORDERING INFORMATION}

\section*{RECOMMENDED DICE ASSEMBLY PROCEDURE}

\section*{CLEANING}

Dice supplied in die form do not require cleaning prior to assembly. Dice supplied in wafer form should be cleaned after scribing and breaking. Freon TF in a vapor degreaser is the preferred cleaning method. However, an alternative is to boil the die in TCE for five minutes with a rinse in isopropyl alcohol for 1-2 minutes.

\section*{DIE ATTACH:}

The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidation. A preform should be used if the mounting surface has less than 50 microinches of gold and the die should be handled on the edges with tweezers. Die attach temperature should be between \(385^{\circ} \mathrm{C}\) and \(400^{\circ} \mathrm{C}\) with eutectic visible on three sides of the die after attachment.

\section*{BONDING:}

Thermocompression gold ball or aluminum ultrasonic bonding may be used. The gold ball should be about 3 times the diameter of the gold wire. The ball should cover the bonding pad, but not excessively, or it may short out surrounding metallization. 1-mil aluminum wire may be used on most dice, but should not be used if the assembled unit will be plastic encapsulated.

\section*{HANDLING OF DICE:}

All dice shown in this catalog are passivated devices and \(\operatorname{In}\) tersil warrants that they will meet or exceed published specifications when handled with the following precautions:
- Dice should be stored in a dry inert-gas atmosphere.
- Dice should be assembled using normal semiconductor techniques.
- Dice should be attached in a gaseous nitrogen spray at a temperature less than \(430^{\circ} \mathrm{C}\).

\section*{ELECTRICAL TEST LIMITATIONS}

\section*{DUAL BIPOLAR TRANSISTORS}
\begin{tabular}{|c|c|}
\hline \(L^{\text {LEEO }}\) & 100 V max. @ \(\leqslant 1 \mathrm{~mA}\) \\
\hline \(\mathrm{BV}^{\text {CBO }}\) & 100 V max. @ \(\geqslant 1 \mu \mathrm{~A}\) \\
\hline \(B V_{\text {EBO }}\) & 100 V max. @ \(\leqslant 10 \mathrm{~mA}\) \\
\hline \(h_{\text {FE }}\) & \(\leqslant 1000\) @ \(\geqslant 10 \mu \mathrm{~A}\) \\
\hline \(V_{\text {CE(sat) }}\) & \(\geqslant 10 \mathrm{mV}\) @ \(\leqslant 10 \mathrm{~mA}\) \\
\hline \({ }^{\text {CBO }}\) & \(\geqslant 100 \mathrm{pA} @ \leqslant 100 \mathrm{~V}\) \\
\hline \({ }^{\prime} \mathrm{BE} 1^{-V_{B E 2}}\) & \(\geqslant 1 \mathrm{mV}\) @ \(\geqslant 10 \mu \mathrm{~A}\) \\
\hline \(\mathrm{Bi}^{-1} \mathrm{~B} 2\) & \(\geqslant 2 \mathrm{nA}\) \\
\hline
\end{tabular}

FETS
\begin{tabular}{|c|c|}
\hline Breakdown voltage & 100 V max. @ \(1 \mu \mathrm{~A}\) \\
\hline Pinch-off voltage & \(0-20 \mathrm{~V} @ \geqslant 1 \mathrm{nA}\) \\
\hline \(\mathrm{V}_{\mathrm{GS}}\) (th) & \(0-20 \mathrm{~V} @ \geqslant 10 \mu \mathrm{~A}\) \\
\hline \({ }^{\text {r }}\) DS(on) & \(20 \Omega \mathrm{~min} . @ \mathrm{~V}_{\mathrm{GS}}=0\left(\mathrm{~V}_{\mathrm{GS}}=30 \mathrm{MOSFETs}\right)\) \\
\hline \({ }^{1}\) DSS \({ }^{*} \mathrm{I}_{\text {DSS }}\) & 100 mA max. \\
\hline \(\mathrm{g}_{\mathrm{fs}}\) & \(10,000 \mu \mathrm{MHOS}\) max. @ \(\mathrm{I}_{\mathrm{D}} \leqslant 10 \mathrm{~mA}\) \\
\hline \({ }^{\text {I }}\) (off), \({ }^{\text {I S }}\) (off), 'GSS & 100 pA min . \\
\hline \(\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\) (Duals) & 10 mV min . \\
\hline
\end{tabular}

Electrical testing is guaranteed to a \(10 \%\) LTPD. AC parameters such as capacitance and switching time cannot be tested in wafer or dice form.

\section*{STANDARD DIE CARRIER PACKAGE}
- Easy to handle, store and inventory.
- \(100 \%\) electrically probed dice with electrical rejects removed.
- \(100 \%\) visually sorted with mechanical and visual rejects removed.
- Easy visual inspection - dice in carriers, geometry side up.
- Individual compartment for each die.
- Carriers usuable in customer production area.
- Carrier may be storage container for unused dice.
- Carriers hold 25,100 , or 400 dice, depending on die size and quantity ordered.
- Part numbers shown in this catalog are for carrier packaging.

CLEAR AMBER COVER

\section*{DIE \& WAFER ORDERING INFORMATION}

\section*{OPTIONAL VIAL PACKAGE}
- \(100 \%\) electrically probed dice with rejects inked but included in vial. Bulk shipment.
- 10\% extra good dice included (no charge) to cover possible breakage and/or visual rejects.
- Preferred for production quantities.
- Lower cost.
- For vial package - replace "D" in catalog number with "V", e.g.: 2N4416/D (2N4416 dice in carrier) becomes 2N4416/V (2N4416 dice in vial).

\section*{OPTIONAL WAFER PACKAGE}
- \(100 \%\) electrically probed - rejects inked.
- 10\% extra good dice included (no charge) to cover possible breakage and/or visual rejects.
- Preferred for production quantities.
- Lowest cost.
- Wafer is supplied unscribed.
- For wafer package - replace " \(D\) " in catalog number with "W", e.g.: 2N4416/D (2N4416 dice in carrier) becomes 2N4416/W (2N4416 dice in wafer).

\section*{NOTE:}

Intersil reserves the right to improve device geometries and manufacturing processes as required. These improvements may result in slight geometry changes. However, they will not affect the electrical limits, basic pad layouts or maximum die sizes in this catalog.

\section*{ELECTRICAL TEST CAPABILITY}

As an example of how to use the capability chart to see what Intersil actually guarantees and tests for, on a \(100 \%\) basis, compare the 2 N 4391 in a TO-18 package to the 2N4391 delivered as a chip.
\begin{tabular}{|c|c|c|}
\hline Electrical Test Spec. & 2N4391 in a TO-18 & 2N4391 Chip \\
\hline \({ }^{\prime}\) GSS \({ }^{\text {@ 25C }}\) & 100 pA max. & 100 pA max. \\
\hline \(B V_{\text {GSS }}\) & 40 V min. & 40 V min. \\
\hline \({ }^{1}\) D(off) \({ }^{\text {@ 25C }}\) & 100 pA max. & 100 pA max. \\
\hline \(V_{\text {GS (forward) }}\) & 1 V max. & See note 1 \\
\hline \(\mathrm{V}_{\text {GS(off) }}\) or \(\mathrm{V}_{\mathrm{P}}\) & 4 V to 10 V & 4 V to 10 V \\
\hline 'DSS & 50 to 150 mA & 50 to 100 mA \\
\hline \(V_{\text {DS(on) }}\) & 0.4 V max. & 0.4 V max. \\
\hline \({ }^{r}\) DS \((0, n)\) & \(30 \Omega\) max. & \(30 \Omega\) max. \\
\hline \(\mathrm{C}_{\text {iss }}\) & 14 pF max. & Guaranteed by Design \\
\hline \(\mathrm{C}_{\text {rss }}\) & 3.5 pF max. & Guaranteed by Design \\
\hline \({ }^{\text {d }}\) & 15ns max. & Guaranteed by Design \\
\hline \({ }^{\text {r }}\) & 5 ns max. & Guaranteed by Design \\
\hline \(t_{\text {off }}\) & 20ns max. & Guaranteed by Design \\
\hline \(t_{f}\) & 15 ns max. & Guaranteed by Design \\
\hline
\end{tabular}

NOTE 1: This parameter is very dependent upon quality of metallization surface to which chip is attached.

\section*{SUMMARY}

Of the 14 items specified for the package part, only 7 can be tested and guaranteed in die form. It is to be noted that those specifications which cannot be tested in die form can be sample tested in package form as an indicator of lot performance. Many of the tests, however, such as capacitance tests, are design parameters.

The above electrical testing is guaranteed to a 10\% LTPD. However, there are occasions where customer requirements cannot be satisfied by wafer sort testing alone. While the previously described tests will be done on a \(100 \%\) basis, Intersil recognizes the need for additional testing to obtain confidence that a particular customer's needs can be met with a reasonably high yield. Toward this end Intersil has instituted a dice sampling plan which is two-fold. First, random samples of the dice are packaged and tested to assure adherence to the electrical specification. When required, wafers are identified and wafer identity is tied to the samples. This tests both the electrical character of the die and its ability to perform electrically after going through the high temperature dice attachment stage. Second, more severe testing can be performed on the packaged devices per individual customer needs. When testing is required other than that called out in the data sheet, Intersil issues an ITS number to describe the part. Examples of tighter testing which can be performed on packaged samples is shown as follows:

\section*{DIE \& WAFER ORDERING INFORMATION}

\section*{FET \& DUAL FET PAIRS}
1. Leakages to 1 pA (\({ }_{\mathrm{GSS}}\))
2. rDS (on) to as low as 4 ohms
3. ID (off) to 10 pA
4. IDSs to 1 amp (pulsed)
5. \(\mathrm{g}_{\mathrm{f}}\) to \(10,000 \mu \mathrm{mho}\)
6. \(\mathrm{g}_{\mathrm{os}}\) to \(1 \mu \mathrm{mho}\)
7. \(e_{n}\) noise to \(5 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) at frequencies of 10 Hz to 100 Hz
8. CMRR to 100 dB
9. \(\Delta\left(\mathrm{V}_{\mathrm{GS} 1}{ }^{-} \mathrm{V}_{\mathrm{GS} 2}\right) / \Delta \mathrm{T}\) down to \(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) to an LTPD of \(20 \%\)
10. \(\mathrm{g}_{\mathrm{m}}\) match to \(5 \%\)
11. IDss match to \(5 \%\)

\section*{TRANSISTOR PAIRS}
1. Leakages to as low as 1 pA
2. Beta with collector current up to 50 mA and as low as 100 n ,
3. \(f_{\mathrm{T}}\) up to 500 MHz with collector currents in the range of \(10 \mu \mathrm{~A}\) to 10 mA
4. Noise measurements as low as \(5 \mathrm{nV} / \sqrt{\mathrm{Hz}}\) from 10 Hz to 100 k
5. \(\Delta\left(\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right) / \Delta \mathrm{T}\) to \(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) to an LTPD of \(20 \%\)

\section*{VISUAL INSPECTION}

Individual chips are \(100 \%\) inspected to MIL-STD-750, Method 2072 or, as an option, MIL-STD-883, Level B. Inspection is done to an LTPD of \(20 \%\). As an option, Intersil offers S.E.M. capability on all wafers.

\section*{DIE \& WAFER ORDERING INFORMATION}

\section*{CMOS INTEGRATED CIRCUIT CHIPS}

\section*{INTRODUCTION}

In addition to discrete device chips, Intersil also offers a full line of metal gate CMOS integrated circuits in die form. Die sales, however, present some unique problems. In many cases, chips cannot be guaranteed to the same electrical specifications as can the packaged parts. This is because leakage, noise, AC parameters and temperature testing cannot be guaranteed to the same degree of accuracy for dice as for packaged devices.

\section*{GENERAL PHYSICAL INFORMATION}
- Chips are available with precise length and width dimensions, \(\pm 2\) mils in either dimension.
- Chip thickness is 15 mils \(\pm 1\) mil.
- Bonding pad and interconnect material is aluminum, 10 K to \(15 \mathrm{~K} \AA\) thick.
- Each die surface is protected by planar passivation and additional surface glassivation except for bonding pads and scribe lines. The surface passivation is removed from the bonding pad areas by an HF etchant; bonding pads may appear discolored at low magnification due to surface roughness of the aluminum caused by the etchant.
- Dice are \(100 \%\) inspected to electrical specifications, then visually inspected according to MIL-STD-883, Method 2010.2, Condition B, with modifications reflecting CMOS requirements.
- Bonding pad dimensions are \(4.0 \times 4.0\) mils minimum.
- Storage temperature is \(-40^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\).
- Operating temperature is \(-20^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
- Guaranteed AQL Levels:
\begin{tabular}{lr}
Visual & \(2.0 \%\) \\
Functional electrical testing & \(1.0 \%\) \\
Parametric DC testing & \(4.0 \%\) \\
Untested parameters & \(10.0 \%\)
\end{tabular}

CMOS INTEGRATED CIRCUIT CHIP PROCESSING FLOW CHART

\section*{DIE \& WAFER ORDERING INFORMATION}

\section*{RECOMMENDED DICE ASSEMBLY PROCEDURES}

\section*{CLEANING}

Dice supplied in die form do not require cleaning prior to assembly. However, if cleaning is desired, dice should be subjected to freon TF in a vapor degreaser and then vapordried.

\section*{RECOMMENDED HANDLING}

Intersil recommends that dice be stored in the vacuumsealed plastic bags which hold the dice carriers. Once removed from the sealed bags, the dice should be stored in a dry, inert-gas atmosphere.

Extreme care should be used when handling dice. Both electrical and visual damage can occur as the result of an unclean environment or harsh handling techniques.

\section*{DIE ATTACH}

The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidization. If a eutectic die attach is used, it is recommended that a \(98 \%\) gold \(/ 2 \%\) silicon preform be used at a die attach temperature between \(385^{\circ} \mathrm{C}\) and \(435^{\circ} \mathrm{C}\). If an epoxy die attach is used, the epoxy cure temperature should not exceed \(150^{\circ} \mathrm{C}\). If hermetic packages are used, epoxy die attach should be carried out with caution so that there will be no "outgassing" of the epoxy.

\section*{BONDING}

Thermocompression gold ball or aluminum ultrasonic bonding may be used. The wire should be \(99.99 \%\) pure gold and the aluminum wire should be \(99 \%\) aluminum \(/ 1 \%\) silicon. In either case, it is recommended that 1.0 mil wire be used for normal power circuits.

\section*{STANDARD DIE CARRIER PACKAGE}
- Easy to handle, store and inventory.
- \(100 \%\) electrically probed with electrical rejects removed.
- \(100 \%\) visually sorted with mechanical and visual rejects removed.
- Easy visual inspection - dice are in carriers, geometry side up.
- Individual compartment for each die.
- Carriers usable in customer production area.
- Carrier may be used as storage contained for unused dice.
- Carriers hold 25,100 or 400 dice, depending on die size and quantity ordered.
- Packaging of integrated circuit dice in carriers is identical to illustration shown earlier for discrete device, except that IC chips are not available in vial packs or in wafer form.

\section*{CHANGES}

Intersil reserves the right in improve device geometries and manufacturing processes without prior notice. Although these improvements may result in slight geometry changes, they will not affect dice electrical limits, pad layouts, or maximum die sizes.

\section*{USER RESPONSIBILITY}

Written notification of any non-conformance by Intersil of Intersil's dice specifications must be made within 75 days of the shipment date of the die to the user. Intersil assumes no responsibility for the dice after 75 days or after further user processing such as, but not limited to, chip mounting or wire bonding.

\section*{PART NUMBERING SYSTEM}

Examples of Intersil Part Numbers
\begin{tabular}{lccccc}
BASIC & \begin{tabular}{c}
ELECTRICAL \\
OPTION
\end{tabular} & TEMP & PKG & PIN & ORDER \# \\
ICH8500 & A & C & T & V & ICH8500ACTV \\
ICL8038 & C & C & P & D & ICL8038CCPD \\
IH5040 & & \(M\) & \(D\) & \(E\) & IH5040MDE
\end{tabular}

ON ALL INTERSIL IC PART NUMBERS. THE LAST THREE LETTERS ARE TEMPERATURE, PACKAGE, AND NUMBER OF PINS, RESPECTIVELY.

PACKAGE:

NUMBER OF PINS:
\begin{tabular}{|c|c|c|c|}
\hline A & 8 & P & 20 \\
\hline B & 10 & Q & 2 \\
\hline C & 12 & R & 3 \\
\hline D & 14 & S & 4 \\
\hline E & 16 & T & 6 \\
\hline F & 22 & U & 7 \\
\hline G & 24 & V & 8 (0.200' pin circle, \\
\hline H & 42 & & isolated case) \\
\hline I & 28 & W & 10 (0.230" pin circle, \\
\hline J & 32 & & isolated case) \\
\hline K & 35 & Y & 8 (0.200" pin circle, \\
\hline L & 40 & & case to pin 4) \\
\hline M & 48 & Z & 10 (0.230' pin circle, \\
\hline N & 18 & & case to pin 5) \\
\hline
\end{tabular}

\section*{LINEAR:}

\section*{HYBRIDS:}

\(\mathrm{A}--55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(\mathrm{B}--20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\(\mathrm{C}-\quad 0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
- Device Chip Type

Device Family
DG - Drivers
D - Drivers
G - Multi-channel FET

WATCH AND CLOCK:

\section*{PART NUMBERS AND ORDERING INFORMATION}

C/MOS MEMORY:

Intersil Memory Circuit

\section*{MOS MEMORY:}

\section*{Honkininclu}

\section*{DOMESTIC SALES OFFICES}

\author{
CALIFORNIA \\ 1272 Forgewood Avenue Sunnyvale, California 94089 Tel: (408) 996-5285
}

ILLINOIS
85 W. Algonquin Rd., Suite \#380
Arlington Heights, IL 60005
Tel: (312) 364-6670
TWX: 910-687-3782
MASSACHUSETTS
2 Militia Drive, Suite 12
Lexington, Massachusetts 02173
Tel: (617) 861-6220
TWX: 710-326-0887

\section*{MINNESOTA}

6550 York Avenue, South. Suite \#416 Minneapolis. Minnesota 55435
Tel: (612) \(925-1844\)
TWX: 910-576-2780
NEW JERSEY
560 Sylvan Avenue
Englewood Cliffs. New Jersey 07632
Tel: (201) 567.5585
TWX: 710-991-9730

\section*{DOMESTIC SALES REPRESENTATIVES}

\section*{ARIZONA}

CSR Electronics
727－E2 Arcadia Circle．NW
Huntsville．AL 3580
Tel：（205）533－2444
TWX：810－726－2170

\section*{ARIZONA}

Shefler－Kahn
2017 N．7th St．
Phoenix．AZ 85006
Tel：（602） 257.9015
TWX：910．951．0659

\section*{CALIFORNIA}

ADDEM S．D．
923 Daisey Ave
Carlsbad．CA 92008
Tel：（619） 695.2050
TWX：910－335－1272
Elrepcolnc．
4962 El Camino Real．Suite 217
Los Altos．CA 94022－3968
Tel：（415） 962.0660
TWX：910．370－6005
Interstate Marketing Assoc．
P．O．Box 487
Woodland Hills．CA 91365
Tel：（213）883．7606
TWX：910－494－1239

COLORADO
Thorson Rocky Mountain．Inc． 7076 S．Alton Way
Bldg．D
Englewood．CO 80112
Tel：（303） 779.0666
TWX：910．935－0117

\section*{CONNECTICUT}

COM－SALE
633 Williams Road
Wallingford，CT 06492
Tel：（203）269－7964
TWX：910－324－7708

\section*{FLORIDA}

EIR．Inc．
176 Jaffa Drive
Fern Park，FL 32730.0057
Tel：（305）830．9600
TWX：810．853－9213
EIR．Inc．
6541 Harbour Road
N．Lauderdale．FL 33068
Tel：（305） 975.8712

\section*{GEORGIA}

CSR Electronics
1530 Dunwoody Village Pkwy． Suite 110
Tel：（404）396－3720
TWX： 810.751 .0337

\section*{ILLINOIS}

D．Dolin Sales Co． 6232 N．Pulaski Rd．
Chicago．IL 60646
Tel：（312）286－6200
TWX：910－221－5018

\section*{INDIANA}

Giesting Associates 4407 DeRome Drive Fort Wayne，IN 46815 Tel：（219）486－1912

Giesting Associates
5825 Somers Drive
Indianapolis．IN 46227
Tel：（317）263．0005

\section*{MARYLAND}

New Era Sales．Inc 678 Ritchie Hwy
Severna Pk．MD 21146
Tel：（301） 544.4100
TWX：710－867－6405

\section*{MASSACHUSETTS}

COM－SALE
60 Hickory Drive
Waltham．MA 02154
Tel：（617）890．0011
TWX：710－324－7708

MICHIGAN
Giesting \＆Associates
5654 Wendzel Dr
Colma．MI 49038
Tel：（616）468－4200
Giesting \＆Associates
22765 Heslip Dr．\＃103
Novi，MI 48050
Tel：（313）348－3811

\section*{MINNESOTA}

PSI
7732 West 78th Street
Minneapolis．MN 55435
Tel：（612） 944.8545
TWX：910－576－3483

\section*{NEW HAMPSHIRE}

COM－SALE
102 Maple St
Manchester．NH 03103
Tel：（603）668－1440

\section*{NEW JERSEY}

Comtek，Inc．
Plaza Office Center
Suite 404 East
Route 73 and Fellowship Rd．
Mt．Laurel，NJ 08054
Tel：（609）235－8505
TWX：710－897－0150
NEW MEXICO
Shefler－Kahn
10200 Menaul NE
Albuquerque，NM 87112
Tel：（505）296．0749

\section*{NEW YORK}

Ossmann Component Sales Corp．
280 Metro Park
Rochester．NY 14623
Tel：（716）424－4460
TWX：510－253－7685
Ossmann Component Sales Corp
154 Pickard BId
Syracuse，NY 13211
Tel：（315）455－6611
TWX：710－541－1522

\section*{NEW YORK（cont．）}

S．J Associates
148－05 Archer Ave．
Jamaica，NY 11435
Tel：（212）291－3232
TWX：710－582－2635
NORTH CAROLINA
CSR Electronics
580 Faringdon Place
Suite 2
Raleigh，NC 27609
Tel：（919）878－9200
TWX：510－928－1845

\section*{OHIO}

Giesting \＆Associates
7712 Hamilton Avenue
Cincinnati，OH 45231
Tel：（513）521－8800
TLX：214－283
Giesting \＆Associates
8843 Washington Colony Dr．
Dayton，OH 45459
Tel：（513）293－4044
Giesting \＆Associates
6455 Southgrove
Mentor， OH 44060
Tel：（216）946－3407
OKLAHOMA
Bonser－Philhower Sales
6644 South Victor
Tulsa，OK 74136
Tel：（918）496－3236

\section*{OREGON}

LD Electronics
P．O．Box 626
Beaverton，OR 97075
Tel：（503）649－8556
（503）649－6177
TWX：910－467－8713

\section*{PENNSYLVANIA}

Giesting \＆Associates
471 Walnut Street
Pittsburgh，PA 15238
Tel：（412）963－0727

\section*{TEXAS}

Bonser－Philhower Sales
689 West Renner Road
Suite C
Richardson，TX 75080
Tel：（214）234－8438
TWX：910－867－4752
Bonser－Philhower Sales
11700 Southwest Freeway
Suite 110
Houston，TX 77031
Tel：（713）531－4144
Bonser－Philhower Sales
8200 Mopac，Suite 120
Austin，TX 78759
Tel：（512）346－9186

\section*{UTAH}

Thorson Rocky Mountain，Inc． Bank of Utah，Suite A
2309 S．Redwood Rd．
West Valley City，UT 84119
West Valley City，（801） 973.7969
Tel：（801） 973.7969
TWX： \(910-925-5826\)

\section*{WASHINGTON}

LD Electronics
East 12607 Guthrie Dr．
Spokane，WA 99216
Tel：（509）922－4883
LD Electronics
7410 77th Ave．，S．E．
Snohomish，WA 98290
Tel：（206）568－0511

\section*{WISCONSIN}

D．Dolin Sales Co．
131 W．Layton Ave Milwaukee，WI 53207
Tel：（414）482－1111
TWX：910－262－1139

\section*{CANADA}

Gidden－Morton Assoc．，Inc．
7528 Bath Rd．
Mississauga，Ontario
Canada L4T 1L2
Tel：（416）671－2225
（416） \(671-8111\)
Gidden－Morton
P．O．Box 15766
Station F
Ottawa，Ontario
Canada，K2C 357
Tel：（613）593－8873
Gidden－Morton Assoc．，Inc．
605 Rue Filiatault
St．Laurent，Quebec
Canada H4L 3V3
Tel：（514）747．1770
Woodberry Electronic Sales LTD
Discovery Park
107A－3700 Gilmore Way
Burnaby，B．C．
Canada V5G 4M1
Tel：（604）430－3302
TLX： 04356595

\section*{Kinngis ll}

INTERSIL FRANCHISED DISTRIBUTORS

ALABAMA
Hamilton/Avnet Electronics 4692 Commercial Drive Huntsville. AL 35805 Tel: (205) 837.7210

Schweber Electronics 2227 Drake Ave. SW
Suite 14
Huntsville, AL 35805
Tel: (205) 882-2200

\section*{ARIZONA}

Arrow Electronics 2127 West 5 th Place Tempe. AZ 85281 Tel: (602) 968 -4800

Hamilton/Avnet Electronics 505 S . Madison Dr
Tempe. AZ 85381
Tel: (602) 275.785

Kierulff Electronics
4134 E. Wood St
Phoenix. AZ 85040
Tel: (602) 243.4101
TWX: 910.951-1550
Schweber Electronics
11049 N. 23rd Drive
Phoenix, AZ 85062 Tel: (602) 997.4874

Wyle Distribution Group
8155 N. 24th Ave.
Phoenix. AZ 85021
Tel: (602) 249-2232
CALIFORNIA
4125 Sorrento Valley BIvd.
San Diego. CA 92121
\begin{tabular}{l}
Tel: (612) \\
TWX: \(910.335-9005\) \\
\hline
\end{tabular}
Anthem Electronics
174 Component Dr.
San Jose. CA 95131
Tel: (408) 946.8000
TWX: 910.338-2038
Arrow Electronics
4029 Westly Place
Suite 113
Newport Beach. CA 92660
Tel: (714) 851.8961
TWX: 910.595-2860
Arrow Electronics
521 Weddel Ave.
Sunnyvale. CA 94086
Tel: (408) 745.6600
Arrow Electronics
9511 Ridgehaven Ct .
San Diego. CA 92123
Tel: (619) 565.4800
TWX: 910.335-1195
Arrow Electronics
19748 Dearborn St Chatsworth. CA 91311 Fel: (213) 701.7500
TWX: 910-483-2086
Avnet Electronics 350 McCormick Avenue Cost Mesa. CA 92626
Hamilton Electro Sales 10950 Washington Blvd Culver City, CA 90230

Hamilton Electro Sales Orange County 3170 Pullman Street
Tel: (714) 641.4100
Hamilton/Avnet 4545 Viewridge Avenue San Diego. CA 92123 Sales: (714) 571.7510

Hamilton/Avnet Electronics 1175 Bordeaux Drive Tel: (408) 743.3355

CALIFORNIA (cont.)
Kierulff Electronics 2585 Commerce Way Los Angeles, CA 90040 TWX:910.580-3106

Kierulff Electronics
3969 East Bayshore Rd.
3969 East Bayshore Rd
Tel: (415) 968-6292
TWX: 910-379.6430
Kierulff Electronics
14101 Franklin Ave
Tustin. CA 92680
Tel: (714) 731-5711 TWX: 910.595-2599

Schweber Electronics 17822 Gillette Ave. Irvine, CA 92714 Tel: (714) 863-9953 TWX: 910-595-1720

Schweber Electronics 1771 Tribune Rd. Suite B
Sacramento, CA 95815 Tel: (916) 929-9732

Schweber Electronics 3110 Patrick Henry Dr. Santa Clara, CA 95050 Tel: (408) 748-4700
Wyle Distribution G
3000 Bowers Ave
Santa Clara, CA 95051
Tel: (408) 727-2500
TWX:910-338-0296
Wyle Distribution Group 124 Maryland St. EI Segundo, CA 90245 Tel: (213) 322-8100
TWX:910-348.7140

Wyle Distribution Group
17872 Cowan Ave.
Irvine, CA 92714
Tel: (714) 641-1600
TWX: 910-595-1572
Wyle Distribution Group
9525 Chesapeake Dr.
San Diego, CA 92123
Tel: (714) 565-9171
TWX: 910-335-1590
Wyle Military
18910 Teller Ave.
Irvine, CA 92715
Tel: (714) 851-9953
TWX: \(910-595-2642\)
COLORADO
Bell Industries
8155 W. 48th Ave.
Wheatridge, CO 80033
Tel: (303) 424.1985
Tel: (303) 424.1985
TWX: 910.938-0393
Hamilton Avnet Electronics
8765 E. Orchard Road
Suite *708
Englewood, CO 80111 Admin: (303) 779.9998
Sales: (303) 740-1000
Kierulff Electronics
7060 S. Tucson Way
Englewood, CO 80112
rel: (303) 371.6500
Wyle Laboratories
451 E. 124th Ave.
Thornton, CO 80241
Tel: (303) 457.9953
TWX: \(910-931-2626\)

\section*{CONNECTICUT}

Arrow Electronics
12 Beaumont Rd.
Wallingford, CT 06492
Tel: (203) 265.7741
TWX: 710-476-0162
Hamilton/Avnet Electronics
Commerce Industrial Park
Commerce Drive
Del: (203) 797-2800

CONNECTICUT (cont.)
Kierulff Electronics
65 Norghplais Rd
Tel: (203) 265-1115
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, CT 06810
Danbury, CT (203) 792-3742
TWX: 710-456-9405
FLORIDA
Arrow Electronics
1001 NW 62 nd St.
Suite 108
Ft. Lauderdate, FL 33309
Tel: (305) 776-7790
TWX: 510-955-9456
Arrow Electronics
50 Woodlake Dr. West
Bldg. \(B\).
Paim Bay, FL 32905
Tel: (305) 725.1480
TWX: 510-959-6337
Hamilton/Avnet Electronics
6801 N.W. 15th Way
Ft. Lauderdale, FL 33309
Tel: (305) 979-2900
Hamilton/Avnet Electronics
3197 Tech Drive North
St. Petersburg, FL 33702
Tel: (813) 576-3930
Kierulff Electronics
4850 N. State Rd. \#7
Suite E
Ft. Lauderdale, FL 33319
Tel: (305) \(955-9601\)
TWX•510.955.9801
Kierulff Electronics
3247 Tech Dr.
St. Petersburg, FL 33702
Tel: (813) 576-1966
TWX: 810-863-5625
Schweber Electronics
181 Whooping Loop
Altamonte Springs, FL 32701
Tel: (305) 331.7555
Schweber Electronics
2830 N. 28th Terrace
Hollywood, FL 33020
Tel: (305) 921.0301
TWX: 510-954-0304

\section*{GEORGIA}

Arrow Electronics
2979 Pacific Dr.
Norcross, GA 30071
Tel: (404) 449.8252
TWX: 810.757-4213
Hamilton/Avnet Electronics
5825 D. Peachtree Corners East
Norcross, GA 30092
Tel: (404) 447.7507
Schweber Electronics
303 Research Drive
Norcross, GA 30092
Tel: (404) 962.3405
TWX: \(810.766-1592\)

\section*{ILLINOIS}

Arrow Electronics
200 Algonquin
Schaumburg, IL 60195
TWX: 910-291-3544
Hamilton/Avnet Electronics
130 Throndale Ave
Tel: (312) 860.7700

Kierulff Electronics
1530 Landmeier Rd. 60007
Elk Grove Village, IL 60007
Tel: (312) \(640-0200\)
TWX: 910-222-0351
Newark Electronics
500 North Pulaski Road
Chicago, IL 60624
Tel: (312) 638.4411

ILLINOIS (cont.)
Schweber Electronics
904 Cambridge Drive
Elk Grove Village, IL 60007
Tel: (312) 364-3774

\section*{INDIANA}

Advent Electronics
8446 Moller Rd.
Indianapolis, IN 46268
Tel: (317) 872.4910
TWX: 810-341-3228
Arrow Electronics
2718 Rand Road
Indianapolis, IN 46241
Tel: (317) 243-9353
TWX: 810-341-3119
Hamilton/Avnet Electronics
485 Gradle Dr.
Carmel, Indianna 46032
Tel: (317) 844.9333

\section*{IOWA}

Advent Electronics
682 58th Avenue Courth S.W
Cedar Rapids, IA 52404
Tel: (319) 363-0221
TWX:910-525-1377
Arrow Electronics
1930 St. Andrews Dr., N.E.
Cedar Rapids, IA 52402
Tel: (319) 373-7230
Schweber Electronics
5720 N. Park Place N.E
Cedar Rapids, IA 52402
Tel: (319) 373-1417

\section*{KANSAS}

Hamilton/Avnet Electronics
9219 Quivira Road
Overland Park, KS 66215
Tel: (913) 888:8900
Schweber Electronics
10300 W. 103rd
Suite \#103
Overland Park, KS 66214
Tel: (913) 492-2922

\section*{MARYLAND}

Arrow Electronics
4801 Benson Ave. Baltimore, MD 21227 Tel: (301) \(247-5200\) TWX: 710-236-9005
Hamilton/Avnet Electronics 6822 Oak Hall
Columbia, MD 2104
Balt. Sales: 501-995-3500 \({ }^{\text {B }}\) Wash. Sales: 301-621-5410

Kierulff Electronics 202 Azar Court Baltimore, MD 21227 Tel: (301) 247-5020 TWX: 710-234-1971
Schweber Electronics
9218 Gaither Rd.
Gaithersdurg, MD
Tel: (301) 840.5900
TWX: 710-828-9749

\section*{MASSACHUSETTS}

Arrow Electronics
Arrow Drive
Woburn, MA 01801
Tel: (617) \(933-8130\)
TWX: 710-393-6770
Gerber Electronics
128 Carnegie Row
Norwood, MA 02062
TWX: 710.336-1987
Hamilton/Avnet Electronics
50 Tower Office Park
Tel: (617) 273-7500
Kierulff Electronics
13 Forturn Dr.
Billerica, MA 01821
Tel: (617) 667.8331
TWX: \(710-390-1449\)

MASSACHUSETTS (cont.)
Schweber Electronics
25 Wiggins Ave.
Bedford, MA 01730
Tel: (617) 275-5100

\section*{MICHIGAN}

Arrow Electronics
3801 Varsity Dr.
Ann Arbor, MI 48104 Tel: (313) 971 -8220
TWX: 810-
Arrow Electronics
3510 Roger Chaffee BIvd.
Grand Rapids, M1 49508 Tel: (616) 243-0912

Hamilton/Avnet Electronics
32487 Schoolcraft Road
Livonia, MI 48150
Schweber Electronics
12060 Hub
Livonia, MI 46150
Tel: (313) 525.8100
TWX: 810-242-2983

\section*{MINNESOTA}

Arrow Electronics
5230 W. 73rd Street
Edina, MA 55435
Tel: (612) 830-1800
Hamilton/Avnet Electronics
10300 Bren Rd.
Minnetonka, MA 55435
Tel: (513) 433-0610
Kierulff Electronics
7667 Cahill Road
Edina, MN 55435
Tel: (612) \(941-7500\)
TWX: 910-576-2721
MISSOURI
Arrow Electronics
2380 Schuetz Rd.
St. Louis, MO 63416
Tel: (314) \(567-6888\)
TWX: 910-764-0882
Hamilton/Avnet Electronics
13743 Shoreline Court
Earth City, MO 63045
Tel: (314) 344-1200
LCOMP
2550 Harley Dr.
Maryland Heights, MO 63043
Tel: (314) 291-6200
TWX• \(910-762-0632\)
TWX: 910-762-0632

\section*{LCOMP}

2211 River Front Dr.
Kansas City, MO 64120
Tel: (816) 221-2400
TWX• \(910-771.3148\)

NEW JERSEY (cont.)
Hamilton/Avnet Electronics 1 Keystone Ave.
Bldg. \#36
Cherry Hill, N.J. 08003
Tel: (609) 424-0100
Hamilton/Avnet Electronics 10 Industrial Rd. Tel: (201) 575.3490 (201) \(575 \cdot 3390\)

Schweber Electronics
18 Madison
Fairfield, NJ 07006
Tel: (201) 227-7880

\section*{NEW MEXICO}

Alliance Electronics 11030 Cochiti S.E. Tel: (505) 292-3360 TWX: 910-989-1151

Arrow Electronics 2460 Alamo Avenue, S.E. Albuquerque, NM 87106 Tel: (505) 243-4566 TWX: 910-989-1679

Bell industries
Albuquerque, NM 87123
Tel: (505) 292-2700
TWX: 910-989-0625
Hamilton/Avnet E
Albuquerque, NM 87106 Tel: (505) 765-1500

\section*{NEW YORK}

Arrow Electronics
25 Hub St.
Melville, NY 11747
Tel: (516) 391-1609
Arrow Electronics
20 Oser Ave.
Hauppauge, NY 11787
Tel: (516) 231-1000
TWX: 510-227-66231
Arrow Electronics 3000 South Winton Rd. Rochester, NY 14623 Tel: (716) 275-0300

Hamilton/Avnet Electronics
16 Corporate Circle
East Syracuse, NY 13057
Tel: (315) 437-2641
Hamilton/Avnet Electronics
5 Hub Drive
Melvilie, NY 11746
Tel: (516) 454-6060
Hamilton/Avnet Electronics
333 Metro Park
Rochester, NY 14623
Tel: (716) 475-9130
Pioneer/Harvey Electronics 640 Fairport Park
Fairport, NY 14450
Tel: (716) 381.7070
TWX: 510-253-7001
Pioneer/Harvey Electronics
1806 Vestal Parkway East
Vestal, NY 13850
Tel: (607) 748-8211
TWX: 510-252-0893
Schweber Electronics
Jericho Turnpike
Westbury, NY 11590 Tel: (607) 48.8211

Schweber Electronics
4 Townline Circle Rochester, NY 1462 Tel: (716) 424-2222
Summit Distributors Inc
916 Main St.
Buffalo, NY 14202
TWX:710.522.
TWX: 710-522-1692

NORTH CAROLINA
Arrow Electronics
3117 Poplarwood Court
.O. Box 95163 Suite 123
Rel: (919) 8763132
WX• 510-928-1856
Arrow Electronics
Arrow Electro
Winston-Salem, NC 27102
Tel: (919) \(725-8711\) TWX.510-928-0590

Hamilton/Avnet Electronics 2803 Industrial Drive
Raleigh, NC 27609
Schweber Electronics
Commerce Center
5285 North Blvd.
Raleigh NC 27604
Tel: (919) 876-0000

\section*{OHIO}

Arrow Electronics
7620 McEwen Road
centerville, OH 4545
el: (513) \(435-5563\)
TWX• 810.427 .9409

Hamilton/Avnet Electronics 4588 Emery Industrial Parkway Cleveland, OH 44.128
Tel: (216) 831-3500
Hamilton/Avnet Electronics
954 Senate Drive
Dayton, OH 45459
Tel: (513) 433-0610
Kierulff Electronics
23060 Miles Rd.
Bedford Heights, OH 44128
Tel: (216) 587.6558
TWX: 810-427-2282
Shweber Electronics
23060 Miles Rd.
Bedford Heights, OH 44128
el: (216) 587-6558
TWX: 810-427-2282
Schweber Electronics
865 Paragon Road
Suite 210
Centerville, OH 45459
Tel: (513) 439-1800

\section*{OKLAHOMA}

Arrow Electronics
4719 S. Memorial
ulsa, OK 74145
Tel: (918) 665-7700
Kierulff Electronics
12318 E. 670th St.
Tulsa, OK 74145
Tel: (918) 252.7535
TWX: 910-845-2150
Schweber Electronics
4815 S. Sheridan Road
Suite \#109
ulsa, OK 74145
Tel: (918) 622-0000
OREGON
Hamilton/Avnet Electronics
024 S.W. Jean Rd
Bldg. C, Suite 10
Lake Oswego, OR 97034
Tel: (503) 635.8157
Kierulff Electronics
14273 N.W. Science Park Dr.
ortland, OR 97229
TWX:
Moore Elect. Inc
15824 S.W. Upper Boones
Ferry Rd.
Lake Oswego, OR 97034
Tel: (503) 641-3131
TWX:910-455-8183
Wyle Distribution
5289 N.E. Elam Young Pkwy.
Bidg. E100
Hillsboro, OR 97123
Tel: (503) 640-6000
TWX: \(910-460-2203\)

PENNSYLVANIA
Arrow Electronics
650 Seco Rd.
Monroeville, PA 15146
Tel: (412) 856.7000
TWX: 710.797-3894
Schweber Electronics Prudential Business Campus 231 Gibraltal Road Horsham PA 19044 Tel: (215) 441-0600

Schweber Electronics 1000 RIDC Plaza Suite \#203 Pittsburg, PA 15238
Tel: (412) 782-1600

\section*{TEXAS}

Arrow Electronics 10125 Metropolitan Drive Austin, TX 78758 Tel: (512) 835.4 .180
TWX: 910-874-1348
Arrow Electronics
13715 Gamma Rd
Dallas, TX 75234
Tel: (214) 386.7500
TWX: 910-860-5377
Arrow Electronics
10700 Corporate Dr.
Stafford. TX 77477
Tel: (713) 491.4100
TWX: 910-880-4439
Hamilton/Avnet Electronics
2401 Rutland Dr.
Austin, TX 78757
Tel: (512) 837.8911
Hamilton/Avnet Electronics
8750 Westpark Dr.
Houston, TX 77063
Tel: (713) 780-1771
Hamilton/Avnet Electronics
111 West Wainut Hill Lane
Irving, TX 75062
Tel: (214) 659.411.
Kierulff Electronics
3007 Longhorn Blvd.
Suite 105
Austin, TX 78758
Tel: (512) 835-2090
TWX: 910-873-1359
Kierulff Electronics
9610 Skillman Ave.
Dallas, TX 75243
el: (214) 343-2400
TWX: 910.861-2150
Kierulff Electronics 10415 Landsbury Dr
Houston, TX 77099
Tel: (713) 530-7030
TWX: 910-880-4057
Schweber Electronics
111 W. Anderson Lane
Suite 209
Austin, TX 78752
Tel: (512) 458.8253
Schweber Electronics
4202 Beltway
Dallas, TX 75234
Tel: (214)661-5010
TWX: 910-860-5493
Schweber Electronics
0625 Richmond Ave.
Suite \#100
Houston, TX 77042
Tel: (713) 784-3600
TWX: 910-881-4036

\section*{UTAH}

Bell Industries
3639 West 2150 South
Salt Lake City, UT 84120
TWX:
Hamilton/Avnet Electronics
1585 West 2199 South
1585 West 2199 South
Salt Lake City, UT 84119
801) 972.2800

UTAH (cont.)
Wyle Distribution Group Salt S. 4130 West, Unit Salt Lake City, UT 84104

\section*{WASHINGTON}

Hamilton/Avnet Electronics
14212 N.E. 21 st St Bellvue, WA 98005
Tel: (206) 643-3950
Kierulff Electronics
1053 Andover Park East
Tel: (206) 575.4420
TWX:910-444-2034
Wyle Distribution Group
1750 132nd Ave NE
Bellevue, WA 98005
Tel: (206) 453.8300
TWX: 910-443-2526
WISCONSIN
Arrow Electronics
430 W. Rawson Ave
Oak Creek. WI 53154
Tel: (414) 764-6600
TWX: 910-262-1193
Hamilton/Avnet Electronics
2975 Moorland Rd
New Berlin, WI 53151
Tel: (414) 784-4510
Kierulff Electronics
2236 W. Bluemound Rd.
Waukesha, WI 53186
Tel: (414) 784.8160
TWX: 910-265-3653
Schweber Electronics
150 Sunnyslope Road
Suite 120
Brookfield, WI 53005
Tel: (414) 784-9020

\section*{CANADA}

Canadian GE.ECO
189 Dufferin St.
Toronto. Ontario
Canada M6K 1 Y9
Tel: (418) 530-2700
TLX: 06-23238
Cardinal Industrial Electronics
P.O. Box 12000

Edmonton, Alberta
Canada T5J 2P4
Tel: (403) 483-6266
TLX: 037-2372
Cardinal Industrial Electronics
10, 5920 11 th Street SE
Calgary. Alberta
Canada T2H 2M4
Tel: (403) 259-6817
CESCO Elect. Ltd
66 Colonnade Rd.
Nepean. Ont.
Canada K2E 7K7
Tel: (613) 226-6903
CESCO Elect. Ltd.
4050 Jean Talon St. W
Montreal, Quebec
Canada H4P 1W1
TWX: 610-421-3302
CESCO Elect. Ltd.
24 Martin Ross Ave
Canada M3J 2k9
Canada M3 2 L
TLX:06-218213
CESCO Elect. Ltd
909Boul. Charest Quest
Quebec City. Quebec
Tel (418) 687.4231
TLX:051-3388
Electro Sonic
1100 Gordon Baker Rd.
Willowdale, Cntario
Canada M2H SB2
Tel: (416) 499-15

CANADA (cont.)
R.A.E. Ind. Elect. Itd
A.A.E. Ind. Elect.

3455 Gardner Ct.
Burnaby. British Columbia
Tel: (604) 291.8866
TwX. 610929.3065
R.A.E. Ind. Elect. Ltd

Edmonton Alberta
Edmonton. Alberta
Canada. T5S 1 J 7
Canada. T5S \(1 \mathrm{J7}\)
Tel: \((403) 451.4001\)
TLX: 037-2653
Zentronics
\(3300-14\) Ave N.E
Calgary. Alberta
Calgary. ARberta
Tel: (403) 272-1021
Zentronics
8 Tilbury Court
Brampton, Ontario
Canada L5T3T4
Tel: (416) 451.9600
TLX: 06.97678
Zentronics
564/10 Weber St. N
Waterloo. Ontario
Canada N2L 4C6
Tel: (519) 884-5700
Zentronics
505 Locke Street
St. Laurent. Quebec
Canada. H4T \(1 \times 7\)
Tel: (514) 735-5361
TLX: 05-827535
Zentronics
141 Catherine St.
Ottawa. Ontario
Canada K2P 1C3
Tel: (613) \(238-6411\)
TLX: 053-3636
Zentronics
108.11400 Bridgeport Road

Richmond. BC
Canada V6X 1 T2
Tel: (604) 273.5575
Zentronics
590 Berry Street
Winnipeg. Manitoba
Canada R3H OS 1
Tel: (204) 775.8661

\section*{ㅈNNNETR}

\section*{INTERNATIONAL SALES OFFICES}

\section*{U.S. AND CANADIAN CORPORATE HEADQUARTERS}

Intersil, Inc.
10710 N. Tantau Avenue
Cupertino, California 95014
Tel: (408) 996-5000
TWX: 910-338-2014

CENTRAL EUROPEAN
HEADQUARTERS
Intersil Datel GmbH
Bavariaring 8, Concordiahaus
8000 Muenchen 2
West Germany
Tel: 89/530741
TLX: 5212855 IDL D

\section*{NORTHERN EUROPEAN \\ HEADQUARTERS}

Intersil Datel (U.K.) Ltd.
Belgrave House
Basing View
Basingstoke, Hants., RG21 2 YS
England
Tel: 0256-57361
TLX: 858041 INTRSL G

\section*{FAR EAST HDQTRS.}

HONG KONG
Intersil Datel Hong Kong Ltd.
Room 1603
Perfect Commercial BIdg.
20 Austin Ave., Tsimshatsui
Kowloon, Hong Kong
Tel: 3-7214286-7
TLX: 39979 INTDL HX

\section*{SOUTHERN EUROPEAN HEADQUARTERS}

Intersil, Inc.
217, Bureaux de la Colline
Bat. D (2 EME ETAGE)
92213 Saint-Cloud Cedex
France
Tel: (1) 602.58 .98
TLX: INTEDAT 204280F

FAR EAST HDQTRS. JAPAN
Intersil Datel KK
Suyama Building
1-1-1 Ebisu Minami
Shibuya-Ku
Tokyo 150
Japan
Tel: (03) 793-1031 TLX: 2468205 (DACADC J)

\title{
INTERNATIONAL DISTRIBUTORS
}

\section*{AUSTRALIA}

R \& D Electronics Pty. Ltd
P.O. Box 206

Burwood, Victoria 3125
Australia
Tel: 288-8232/8262
TLX: RADET AA 33288
R \& D Electronics Pty. Ltd
133 Alexander St.
P.O. Box 57

Crows Nest NSW 2065
Sydney, Australia
Tel: 439-5488
TLX: SECCO AA25468

\section*{AUSTRIA}

Transistor Vertriebsges m.b.H.
Auhofstrasse 41 A
A. 1130 Vienna

\section*{Austria}

Tel: (02 22) 8294 51/82 9404
TLX: 133738 TVGWN A

\section*{BELGIUM}

Simac Electronics SPRL
Rue Du Progres 52, Boite 3
B-1000 Brussels
Belgium
Tel: 02-2192453
TLX: 23662 SIME-IP.B

\section*{DENMARK}
E.V. Johanssen Elektronik A.S

15, Titangade
DK-2200 Copenhagen \(N\)
Denmark
Tel: 45-1-839022
TLX: 16522 EVICAS DK

\section*{FINLAND}

Nabla Elektroniikka Oy
P.O. Box 3

SF-02101 Espoo 10
Finland
Tel: 90-46 2829
TLX: 124270 NABLA SF

\section*{FRANCE}

Tekelec-Airtronic
B.P. No. 2

Cite des Bruyeres
Rue Carle-Vernet
92310 Sevres
France
Tel: (1) 534.75.35
TLX: TKLEC A 204552F
C.C.I.

Zone Industrielle
5, Rue Marcelin Berthelot
92160 Antony
France
Tel: (1) 666.21 .82
TLX: 203881 F
C.C.I.

67, Rue Bataille
69008 Lyon
France

\section*{HONG KONG}

Conmos Products Ltd.
11th Fir., Hay-Nien Building \#1 Tai Yip St.
\#1 Tai Yip St.
Kwun Tong, Kowloon
Kwun Tong,
Hong Kong
Hong Kong
Tel: \(3-7560103-8\)
TLX: 85448 CMOS HX
Electrocon Products, Ltd.
Rm. 603, 6th Floor
Perfect Commercial BIdg.
20 Austin Avenue, Tsimshatsui
Kowloon
Hong Kong
Tel: 3-687214-6
TLX: 39916 EPLET HX

\section*{INDIA}

Zenith Electronics
541, Panchratna
Mama Parmanand Marg.
Bombay 400004
India
Tel: 384214
TLX: 011-3152 ZENITH
INDIA-U.S. OFFICE
Fegu Electronics 2584 Wyandotte St.
Mountain View, California 94043 U.S.A.

Tel: (415) 961-2380
TLX: 176572 FEGU ELEC MNTV

\section*{ISRAEL}

Vectronics Ltd.
60 Medinat Hayehudim St.
P.O. Box 2024

Herzlia B 46120
Israel
Tel: (052) 56070/56071
TLX: 342579 VECO IL

\section*{ITALY}

Metroelettronica
Viale Cirene, 18
20135 Milano
Italy
Tel: 546.26.41/546.59.41
TLX: 312168 METRON
TLX: 315802 METRON I
Metroelettronica
Via C. Lorenzini, 12
00137 Roma, Italy
Tel: 827.28 .41
Metroelettronica
Via Beaumont, 15
10138 Torino, Italy
Tel: 54.64.36
Eledra 3 S.P.A.
Viale Elvezia, 18
20154 Milano
Italy
Tel: (2) 349751
TLX: 332332

\section*{JAPAN}
internix, Inc.
Shinjuku Hamada BIdg. (7th Floor)
7.4.7 Nishi Shinjuku

Shinjuku-Ku
Tokyo 160,
Japan
Tel: (03) 369.1101
TLX: INTERNIX J26733

\section*{nternix, Inc.}

Arai Bldg.
5-3-36 Tokiwagi
Uedashi, Nagano 386
Japan
Tel: (0268) 25-1610
Internix, Inc.
Takahashi Bldg. (Nishikan)
4-4-13 Nishi-tenma, Kita-ku
Osaka 530
Japan
Tel: 06-364-5971
KOREA
Duksung Trading Co.
Room 301 Jinwon Bidg.
507-30 Sinrim 4-Dong
Gwanak-Ku, Seoul
Republic of Korea
Tel: 856-9764
TLX: DUKSUNG K23459

\section*{NETHERLANDS}

Auriema Nederland B.V.
Doornakkersweg 26
5642 MP Eindhoven
Netherlands, Holland
Tel: 040-816565
TLX: 51992 AURI NL
NEW ZEALAND
Delphi Industries Ltd.
27 Ben Lomond Crescent
Pakuranga, Auckland
New Zealand
Tel: 563-259
TLX: DELPHIC NZ21992

\section*{NORWAY}

Hans H. Schive A/S
P.O. Box 15

Holmengt, 28
N - 1360 Nesbru
Norway
Tel: (02) 78.51.60
TLX: 19124 SKIVE N

\section*{PORTUGAL}

Decada Espectral
Equipamentos de Electronica
e Cientificos, SARL
Av. Bombeiros Voluntarios, Lote 102B
Miraflores/Alges
1495 Lisboa
Portugal
Tel: 2-103420
TLX: 15515 ESPEC P

\section*{SOUTH AFRICA}

Electronic Bldg. Elements Pty. Ltd.
P.O. Box 4609

Pretoria 0001
Republic of South Africa
Tel: 46-9221/7
TLX: 30181 SA

\section*{SOUTH AMERICA- \\ U.S. OFFICE}

Intectra
2629 Terminal BIvd.
Mountain View, California 94043
U.S.A.

Tel: (415) 967-8818
TLX: 345-545 INTECTRA MNTV

\section*{SPAIN}

Amitron
C/Loeches, 6 - Bajo D
Madrid 8
Spain
Tel: (01) 248.58.63
TLX: 45550

\section*{SWEDEN}

Svensk Teleimport AB
Box 5071
S-162 05 Vallingby
Sweden
Tel: 08-890265
TLX: 15372 PANTEL S

\section*{SWITZERLAND}

Laser \& Electronic Equipment
Eierbrechtstrasse 47
8053 Zurich
Switzerland
Tel: 01553330
TLX: 52124 LASEQ CH
Laser \& Electronic Equipment
1227 Carouge - Geneve
Bureau Suisse Romande
1227 Carouge-Geneve
Switzerland
Tel: 022425677
TLX: 421343

\section*{TAIWAN}

Galaxy Far East Corp.
Room 4, 2nd FI. No. 312
Sec. 4 Chung Hsaio East Rd.
P.O. Box \(36-12\) Taipei

Taiwan, R.O.C.
Tel: (02) 7811895-7
Cable: GALAXYER
TLX: 26110 GALAXYER
THAILAND
Science, Engineering, \& Education Co., Ltd.
800/43-45 Asoke-Dindang Rd.
Samsennai, Huaykwang
Bangkok 10400
Thailand
Tel: 245-0390 or 245-9216
TLX: TH 81023 TVS

\section*{TURKEY}

Turkelek Elektronik Ltd
Hatay Sokak \#8
Ankara, Turkey
Tel: 189483
TLX: 42120 TRKL TR

\section*{UNITED KINGDOM}

Farnel Electronic Components Ltd.
Canal Road
Leeds. LS12 2TU
England
Tel: (0532) 636311
TLX: 55147 FEC G
Hawke Elect. Ltd.
Amotex House
45, Hanworth Rd.
Sunbury on Thames
Middx
Tel: (01979) 7799
TLX: 923592
Quarndon Electronics
Semiconductor Ltd.
Slack Lane
Derby DE3 3ED
England
Tel: (0332) 32651
TLX: 37163 QRNDON G
Macro-Marketing Ltd.
Burnham Lane.
Slough, Berks SL1 6LN
England
Tel: (06286) 4422
TLX: 847945 MACRO G
Tranchant Electronics Ltd.
Tranchant House
53 Ormside Way
Redhill, Surrey RH1 2LS
England
Tel: (0737) 69217
TWX: 8953230 TRELEC G

\section*{WEST GERMANY}

Spezial-Electronic KG
Hermann-Linggstr. 16
8000 Muenchen 2
West Germany
Tel: 89/530387
TLX: 5212176 SPEZ D
Spezial-Electronic KG
Kreuzbreite 14
3062 Bueckeburg
West Germany
Tel: 057222030
TLX: 971624 SPEZ D
Spezial-Electronic KG
Magdeburgerstrasse 15
7090 Ellwangen
West Germany
Tel: (07961) 4047
TLX: 74712 SPEZ D
Spezial-Electronic KG
Hanauer Str. 4
6360 Friedberg
West Germany
Tel: 06031/4634
TLX: 4184025 SPEZ D

\section*{EXPLANATION OF TERMS, INDICES AND SPECIAL SUBSECTIONS}

\section*{PRODUCTION DATA SHEET}

This is a full, final data sheet, and describes a mature product in full production. Although Intersil reserves the right to make changes in specifications contained in these data sheets at any time without notice, such changes are not common and are usually minor, generally relating to yield and processing improvements. These data sheets are not marked; others are marked preliminary.

\section*{PRELIMINARY DATA SHEET}

A preliminary data sheet is issued in advance of the availability of production samples and generally indicates that at the time of printing, the device had not been fully characterized. In the case of a secondsource part, the specifications are already determined, and a "preliminary" designation indicates the anticipated availability of the device.

\section*{ALPHANUMERIC INDEX}

This part number index is arranged first by alpha sequence, (ie: ADCxxxx, DGxxx, Gxxx, ICLxxxx, ICMxxxx, etc.) then by numeric sequence (ie: LM100, LM101A, LM102, LM105, etc.) and ignoring package/temperature/ pin number suffixes. The basic numbering sequence, is sorted by reading the part number characters from left to right. Reading the left character first (which is usually an alpha character), then the next character to the right and so forth.

\section*{BASE NUMBER INDEX}

If only the basic part number is known, use the Base Number Index as a locator aid. The Base Number Index is organized in numeric sequence (with alpha prefixes appearing in bold type and numeric characters set in medium type). Devices are arranged in this index according to the numeric value of the first digit on the left, then the value of the second digit, then the third, and so on. For example, device number ICM7218 precedes ICL741, no package/temperature/pin number suffixes are included, but these may be obtained from the specific product data sheet.

\section*{FUNCTION INDEX}

This is an index of Intersil device types categorized by product grouping and function. The first major subsection, DISCRETES, is further subdivided into categories for JFETs and Special Function devices.

All remaining major subsections (ANALOG SWITCHES/MULTIPLEXERS, DATA ACQUISITION, LINEAR, TIMERS/COUNTERS, TIMEKEEPING/DTMF, MEMORIES and MICROPROCESSORS/PERIPHERALS)
are organized alphabetically by function. The Functional Index appears in its entirety in section A, and an appropriate subindex appears at the beginning of each major product section.

\section*{CROSS-REFERENCE GUIDES}

Two cross-reference guides are provided: one for Discrete Devices and one for Integrated Circuits.

The Discrete Cross-Reference Guide indicates whether Intersil can provide the industry-standard type, or an Intersil preferred part instead.
The IC Alternate Source Cross-Reference Guide lists competitive manufacturer device types for which Intersil makes pin-for-pin replacements. In the left-hand column, the competitive device part number is organized alphabetically by manufacturer. The Intersil pin-for-pin replacement appears in the right hand column.

\section*{SELECTOR GUIDES}

Selector guide tables appear at the front of each major product category subsection and provides a quick reference of key parameters for devices contained in that section.

\section*{DEVICE FUNCTION/PACKAGE CODES}

Package dimensions and diagrams explaining device prefix and suffix codes appear in Appendix B.

\section*{DIE SELECTION CRITERIA}

Many of Intersil's semiconductor products are available in die form. This subsection of Appendix B contains general information on criteria for transistor and integrated circuit die selection, including physical parameters, packaging for shipment, assembly, testing and purchase options.

\section*{HIGH-RELIABILITY PROCESSING}

This subsection of Appendix B defines Intersil's commitment to 100 percent compliance with MIL-STD-883, MIL-STD-750, MIL-M-38510 and MIL-S-19500 specifications. It also outlines Intersil's programs for quality conformance, quality testing and limited use qualification and includes a glossary of military/aerospace Hi Rel terms.

Intersil reserves the right to make changes in circuitry or specifications contained herein at any time without notice.

Intersil assumes no responsibility for the use of any circuits described herein and makes no representations that they are free patent infringement.

\footnotetext{
LIFE SUPPORT POLICY. INTERSIL'S PRODUCTS ARE NOT AUTHORIZED, NOR WARRANTED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES AND/OR SYSTEMS WITHOUT,THE EXPRESS WRITTEN APPROVAL OF INTERSIL, INC.
For the purposes of this policy, critical components in life support systems and/or devices are defined as:
}
1. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
2. Life support devices or systems are devices or systems which, (a) are in tended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

\section*{TABLE OF CONTENTS}

See complete list of U.S. and international offices inside.

NORTHERN EUROPEAN HEADOUARTERS intersil Datel (U K) Ltd Belgrave House Beigrave hiow
Basingstoke RG21 2 YS Hants. England
el (0256) 57361
TLX 858057 INTRSL G

SOUTHERN EUROPEAN HEADOUARTERS ntersil Datel SAR 337. Bureaux de la Colline Bat \(F\) 2213 Saint-Cloud Cedex France Tel (1) 6025898 TLX INTEDAT 204280 F

CENTRAL EUROPEAN FAR EAST HEADOUABTERS GEADOUARTERS intersil Datel GmbH Bavariaring 8 Bavariaring 8
Concordiahaus 3000 Munchen 2 vest Germany Test Germany TLX 5212855 IDL D```

[^0]: AND/OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF INTERSIL, INC.
 For the purposes of this policy, critical components in life support systems and/or devices are defined as:

[^1]: ** Obsolete product, refer to page A-9.

[^2]: **Obsolete product, refer to page A-9.

[^3]: * * Obsolete product, refer to page A-9.

[^4]: **Obsolete product, refer to page A-9.

[^5]: **Obsolete product, refer to page A-9.

[^6]: NOTE 1: These parameters are measured during a 2 msec interval 100 msec after DC power is applied.

[^7]: SAMPLING SCOPE
 RISE TIME 0.4 ns INPUT RESISTANCE 10 M INPUT CAPACITANCE 1.5 pF

[^8]: Note 1. Device must not be tested at $\pm 125 \mathrm{~V}$ more than once or longer than 300 ms .

[^9]: NOTE: 1. Pulse test duration $=2 \mathrm{~ms}$.

[^10]: 1. Per transistor.
 2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
 3. Lower of two $h_{F E}$ readings is defined as $h_{F E_{1}}$.
[^11]: 145Ω (2N5432) $R_{L}=143 \Omega$ (2N5433) 140Ω (2N5434)

[^12]: Pulse test required. PW $\leqslant 630 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$

[^13]: NOTE 1: Per transistor.

