

ABOUT OUR COVER

We, at Intersil, believe in using the wisdom of the past to help turn today's ideals into tomorrow's realities. This policy is retlected in our advertising posters, each of which shows one of history's great thinkers.

A copy of one or all of the posters is yours for the asking. See the back of this Product Guide for offer details.

Intersil reserves the right to make changes in the circuitry or specifications contained herein at any time without notice.
Intersil assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Intersil, Inc.
10710 N. Tantau Avenue
Cupertino, California 95014
U.S.A.

Tel: (408) 996-5000
TWX: 910-338-0171 (INTRSLINT CPTO)

Intersil is ranked among the ten largest independent manufacturers of semiconductors in the United States. The present Intersil is the result of a 1976 merger between Intersil, Inc., a major supplier of semiconductor devices, and Advanced Memory Systems (AMS), a leading source of add-on and add-in memories for computers and computer-related equipment. This strength was further augmented in 1979 by the acquisition of Datel Systems, İnc., a company widely known for superior data acquisition products and systems.

Intersil employs over 4000 people in its three operating divisions (Semiconductor, Memory Systems and Datel-Intersil) and carries out product development and manufacturing activities at plants in Cupertino, Santa Clara and Sunnyvale, California; Mansfield, Massachusetts; Bombay, India; and Singapore. The company produces analog and digital integrated circuits, using CMOS/LSI, MOS/LSI, low-power CMOS, and bipolar LSI technologies. Applications and markets include data acquisition and processing, industrial process control, portable and fixed instrumentation, RF and telecommunications, data conversion, and horological equipment.

Intersil's Systems Division is a major manufacturer of add-on memories for upgrading IBMs 370, 360 and 303XX series of computer mainframes, and to date has shipped and installed more than five billion bytes of semiconductor memory. The group also manufactures a line of standard and custom microsystems and memory expansion boards for numerous micro and minicomputer applications.

Significant new semiconductor products introduced in 1980 include:
\square IVN6000K Series Vertical Power FETs—A proprietary double-diffusion planar process yields vertical power MOS FETs with breakdown voltage ratings as high as 450 V . Unique geometry of the IVN6000 series provides for low ON resistance and high current density. Devices can switch in 10 ns , ten times faster than other DMOS power transistors on the market.
\square ICL7660 Voltage Converter-A unique CMOS chip which converts positive voltage to negative voltage with 99.9% accuracy ($R_{L}=55 \Omega$). Power conversion efficiency is 98% and $\mathrm{I}_{\text {OUT }}$ is greater than 40 mA . Solves the problem of providing a second power supply, and can be cascaded or paralleled for greater negative voltages or more current.
\square ICL7650 Ultra-Stable Op Amp-Very nearly the "universal" op amp, in terms of error-free operation, low power consumption, DC stability and input offset voltage. Long-term drift with temperature is only $0.01 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ over the full temperature range. DC input bias current is only 10 pA , and gain, CMRR and PSRR are extremely high-in excess of 130 dB . High slew rate is $2.5 \mathrm{~V} / \mu \mathrm{s}$. Gainbandwidth product is 2 MHz . Needs no trimming potentiometer to maintain stability. Phase error is less than 10°.
\square 82HM Series High-Speed ROMs-An attractive alternative to the hard-to-get bipolar 82 S series

PROMs; pin-for-pin replacements, but with better delivery time and better prices. HMOS process provides high reliability and cost effectiveness.
Available ROMs include:
82HM137 ($1 \mathrm{~K} \times 4$) Access times are 60 ns 82HM141 (512×8) for the 137 and 141, 70 ns
82HM181 ($1 \mathrm{~K} \times 8$) for the 181 and 185, and
$82 \mathrm{HM} 185(2 \mathrm{~K} \mathrm{x} \mathrm{4)} \quad 80 \mathrm{~ns}$ for the 191.
82HM191 (2K x 8)
\square ICM7240/50/60 CMOS Programmable Timer/ Counters-A family of RC oscillators/timers/ counters with selectable output counts from RC to 255 RC . High frequency operation to 13 MHz . Timing may be programmed from microseconds to days, and counting modes can be straight binary or decimal.
\square ICL7126 Micropower 3½-Digit A/D ConverterA CMOS chip which includes all active devices needed for direct LCD interface, including seven segment decoders, direct display drivers, reference and clock. Capable of operation for as long as 9000 hours-nearly a year-on a single 9 V battery. High-accuracy features include auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max, and rollover error of less than one count.

- ICM7236 4½-Digit VF Counter-Driver-New Iowpower CMOS up-counter with static drivers for vacuum fluorescent displays. High-performance device includes decoders, output latches, count inhibit, reset and leading-zero blanking on a single chip. For fast counting, 15 MHz is guaranteed and 25 MHz is typical. Maximum count to 19999. Typical power consumption is $10 \mu \mathrm{~A}$.
\square IM80C48/IM80C35 CMOS Microprocessor-An 8-bit single-chip microprocessor which is pin and function compatible with the NMOS 8048/8035 while. offering the inherent low power dissipation and excellent noise immunity typical of CMOS. Power dissipation with a 6 MHz crystal (3 MHz internal clock) is less than 55 mW . The devices also feature a power-down mode which retains RAM data integrity.
ICM7235 4½-Digit VF Display Decoder/DriverA single-chip interface between microprocessors and non-multiplexed 7 -segment vacuum fluorescent displays. Available with multiplexed BCD input for digital logic interface, or with high-speed $\mu \mathrm{P}$ interface, and in hexadecimal ($0-9$, A-F) or Code B ($0-9$, dash, E, H, L, P, blank) outputs. The CMOS device features display blanking, static discharge protection, brightness control and low power consumption.
Intersil's full range of quality integrated circuits and discrete devices is available through a world-wide network of stocking distributors. Field sales offices are located in all major market areas of the United States and Canada to provide a high level of product support. A complete listing of these distributors, Sales Representatives and Company Sales Offices is included at the end of this publication.
TABLE OF CONTENTIS
A GENERAL INFORMATION
Introduction A-2
How to Use This Publication A-4
Base Number Index A-5
Functional Index A-8
IC Alternate Source Index A-10
Discrete Alternate Source Index A-14
1 DISCRETES 1-1
VERTICAL POWER MOSFETs 2-1
ANALOG SWITCHES AND MULTIPLEXERS 3-1
4DATA ACQUISITION4-15 LINEAR
\qquad5-1
6 TIMERS, COUNTERS, AND DISPLAY DRIVERS 6-1
7 CONSUMER CIRCUITS 7-1
8 DIGITAL8-1
APPENDIX
Package Dimensions B-2
High Reliability Processing B-11
Application Note Summary B-19
Chip Ordering Information B-21
Intersil Part Numbering System B-27
Sales Offices, Distributors and Representatives B-29

HOW TO USE THIS PUBLICATION

If only the basic part number is known, use the Base Number Index, as a locator aid. The Base Number Index is organized in alpha-numeric sequence, with prefix letters appearing in bold type. Devices are arranged in this index according to the numeric value of the first digit on the left, then the value of the second digit, then the third, and so on. For example, device number ICM7218 precedes ICL741. No package/temperature/pin number suffixes are included, but may be obtained from the specific product data sheet.

FUNCTIONAL INDEX

This is an index of Intersil device types categorized by product grouping and function. The first major subsection, DISCRETES, is further subdivided into categories for JFETs, MOSFETs, and special function devices. VMOS, the next major subsection, is arranged according to device characteristics for $r_{\text {DSION }}$. All remaining major subsections (ANALOG SWLTCHES/ MULTIPLEXERS, DATA ACQUISITION, LINEAR, TIMERS/COUNTERS, CONSUMER CIRCUITS, MEMORIES, MICROPROCESSORS/PERIPHERALS and DEVELOPMENT SYSTEMS) are organized alphabetically by function within easy grouping. The Functional Index appears in its entirety in the front matter section of this publication, and an appropriate sub-index appears at the beginning of each major product subsection.

CROSS-REFERENCE GUIDES

Two cross-reference guides are provided, including one for discrete devices and one for integrated circuits.

The discrete device cross reference indicates whether Intersil can provide the industry-standard type, or an Intersil-preferred part instead.

The IC alternate source cross-reference lists competitive manufacturer device types for which Intersil makes pin-for-pin replacements. In the left-hand column, the competitive device part number is organized alphabetically by manufacturer. The Intersil pin-for-pin replacement appears in the right-hand column.

SELECTOR GUIDES

Selector guide tables appear at the front of each major product category subsection, and provide a quick reference of key parameters for the devices contained in that section.

DEVICE FUNCTION/PACKAGE CODES

Diagrams which provide decoding information for device prefix and suffix codes are provided as rear matter material, as are package dimensions.

DIE SELECTION CRITERIA

Many of Intersil's semiconductor products are available in die form. This section contains general information on criteria for transistor and integrated circuit die selection, including physical parameters, packaging for shipment, assembly, testing, and purchase options.
HIGH-RELIABILITY PROCESSING
Defines Intersil's commitment to 100 percent compliance with MIL-STD-883, MIL-STD-750, MIL-M-38510 and MIL-S-19500 specifications. Also outlines Intersil's programs for quality conformance, quality testing and limited use qualification, and includes a glossary of military/aerospace Hi -Rel terms.

NOTE:
In this publication, PRELIMINARY is used to indicate that at the time of printing the device was not fully characterized. ADVANCE INFORMATION means that the device is in the pre-production stages.

TYPE \#	PAGE	TYPE \#	PAGE
LH 0042	5-6	D 129	3-35
ADC 0801	4-9	DG 129	3-31
ADC 0802	4-9	G. 129	3-29
ADC 0803	4-9	IT 129	1-20
ADC 0804	4-9	G 130	3-29
VN 10KM	2-3	IT 130	1-21
ID 100	1-11	G 131	3-29
IT 100	1-13	IT 131	1-21
LM 100	5-11	G 132	3-29
ICL 101ALN	5-75	IT 132	1-21
ID 101	1-11	DG 133	3-31
IT 101	1-13	G 1330	3-29
LM 101A	5-15	DG 134	3-31
LM 102	5-17	G 1340	3-29
J 105	1-14	G 1350	3-29
LM 105	5-23	IT 136	1-22
J 106	1-14	G 1360	3-29
J 107	1-14	IT 137	1-22
LM 107	5-27	IT 138	1-22
ICL 108ALN	5-75	IT 139	1-22
LM 108	5-32	DG 139	3-37
LD 110	4-4	LM 139	5-41
LM 110	5-19	DG 140	3-31
DG 111	3-6	IT 140	1-24
J 111	1-13	DG 141	3-31
LD 111	4 -4	DG 142	3-37
LM 111	$5-33$	ICM 1424	7-5
ICM 1115	7-4	DG 143	3-37
D 112	3-9	DG 144	3-37
DG 112	3-6	DG 145	3-37
J 112	1-13	DG 146	3-37
D 113	3-9	DG 151	3-31
J 113	1-13	DG 152	3-31
LD 114	4-4	DG 153	3-31
LM 114	1-16	DG 154	3-31
G 115	3-13	3N 161	1-25
DG 116	3-15	DG 161	3-37
G 116	3-18	DG 162	3-37
M. 116	1-17	3N 163	1-26
G 117	3-18	DG 163	3-37
DG 118	3-15	3N 164	1-26
G 118	3-18	DG 164	3-37
G 119	3-18	3N 165	1-27
D 120	3-9	3N 166	1-27
DG 120	3-21	3N 170	1-28
IT 120	1-18	IT 1700	1-48
D 121	3-9	3N 171	1-28
DG 121	3-21	3N 172	1-29
IT 121	1-18	3N 173	1-29
IT 122	1-18	J 174	1-30
D 123	3-25	J 175	1-30
DG 123	3-15	IT 1750	1-49
G 123	3-13	J 176	1-30
IT 124	1-19	J 177	1-30
LM 124	5-36	DG 180	3-41
D 125	3-25	DG 181	3-41
DG 125	3-15	DGM 181	3-45
G 125	3-29	IH 181	3-50
DG 126	3.31	DG 182	3-41
G 126	3-29	DGM 182	3-45
IT 126	1-20	IH 182	3-50
G 127	3-29	DG 183	3-41
IT 127	1-20	DG 184	3-41
G 128	3-29	DGM 184	3-45
IT 128	1-20	IH 184	3-50

TYPE \#	PAGE
DG 185	3-41
DGM 185	3-45
IH 185	3-50
DG 186	3-41
DG 187	3-41
DGM 187	3-45
IH 187	3-50
3N 188	1-31
DG 188	3-41
DGM 188	3-45
IH 188	3-50
3N 189	1-31
DG 189	3-41
U 1897	1-50
U 1898	1-50
U 1899	1-50
3N 190	1-31
DG 190	3-41
DGM 190	3-45
IH 190	3-50
3N 191	1-31
DG 191	3-41
DGM 191	3-45
IH 191	3-50
VCR 2 N	1-9
DG 200	3-55
IH 200	3-59
U 200	1-32
DG 201	3-61
IH 201	3-65
J 201	1-33
U 201	1-32
IH 202	3-65
J 202	1-33
U 202	1-32
J 203	$1-33$
J 204	$1-33$
LH 2101A	5-91
LH 2108	5.93
LH 2110	5-95
LH 2111	5-97
2114	8-5
M 2114L	8-9
2147	8-13
M 2147	8-16
2148	8-20
M 2148	8-24
LH 2301A	5-91
LH 2308	5-93
U 231	1-35
LH 2310	5-95
LH 2311	5-97
U 232	1-35
U 233	1-35
U 234	1-35
U 235	$1-35$
HA 2500	5-99
AM 25L02	4-11
AM 2502	4-11
HA 2502	5-99
AM 25L03	4-11
AM 2503	4-11
AM 25L04	4-11
AM 2504	4-11
HA 2505	5-99

TYPE	\#	PAGE
	2507	5-104
HA	2510	5-99
HA	2512	5-99
HA	2515	5-99
HA	2517	5-104
HA	2520	5-99
HA	2522	5-99
HA	2525	5-99
HA	2527	5-104
U	257	1-36
HA	2600	5-106
HA	2602	5-106
HA	2605	5-106
2N	2607	$1-51$
HA	2607	5-107
2N	2608	1.51
2N	2609	1-51
	2620	5-106
HA	2622	5-106
HA	2625	5-106
HA	2627	5-109
VCR	3 P	$1-9$
VN	30AB	2-5
LM	300	5-11
LM	301A	5-15
ICL	301ALN	5.75
LM	302	5-19
U	304	1-37
LM	305	5-23
U	305	1-37
U	306	1-37
LM	307	5-27
ICL	308LN	5-75
J	308	1-38
LM	308	5-32
U	308	1-39
J	309	1-38
U	309	$1-39$
J	310	1-38
LM	310	5-19
	310	1-39
	311	5-33
	324	5-78
	339	5-41
VN	35AB	2-5
VN	35AK	2-7
	3684	1-52
	3685	1-52
	3686	1-52
2N	3687	1-52
	$3810{ }^{\circ}$	1-53
	3811	1-53
2N	3821	1-55
2N	3822	1-55
2N	3823	1-56
	3824	1-57
	3921	1-58
2N	3922	1-58
2N	3954	1-59
	3955	1-59
	3956	1-59
	3957	1-59
	3958	1-59
	3970	1-60
	3971	1-60

TYPE \#-	PAGE
2N 3972	1-60
2N 3993	1-61
2N 3994	1-61
VCR 4N	1-9
VN 40AF	2-9
IH 401	3-68
U 401	1-41
U 402	1-41
MK 4027	8-212
U 403	1-41
U 404	1-41
2N 4044	1-62
2N 4045	1-62
U 405	1-41.
U 406	1-41
2N 4091	1-64
ITE 4091	1-64
2N 4092	1-64
ITE 4092	1-64
2N 4093	1-64
ITE 4093	1-64
U 410	1-42
2N 4100	1-62
U 411.	1-42
2N 4117	1-65
2N 4118	1-65
2N 4119	1-65
U 412	1-42
U 421	1-43
U 422	1-43
2N 4220	1-66
2N 4221	1-66
2N 4222	1-66
2N 4223	1-67
2N 4224	1-67
U 423	$1-43$
U 424	$1-43$
U 425	$1-43$
LM 4250	5-111
DG 426A	3-73
U 426	1-43
DG 429A	3-73
DG 433A	3-73
2N 4338	1-68
2N 4339	1-68
DG 434A	3-73
2N 4340	1-68
2N 4341	1-68
2N 4351	1-69
DG 439A	3-77
2N 4391	1-70
ITE 4391	1-70
2N 4392	1-70
ITE 4392	1-70
2N 4393	1-70
ITE 4393	1-70
DG 440A	3-73
U 440	1-44
DG 441A	3-73
U 441	1-44
2N 4416	1-71
ITE 4416	1-71
DG 442A	3-77
DG 443A	3-77
DG 444A	3-77

TYPE \#	PAGE
DG 445A	3-77
DG 446A	3-77
MM 450	3-81
MM 451	3-81
DG 451A	3-73
MM 452	3-81
DG 452A	3-73
DG 453A	3-73
DG 454A	3-73
MM 455	3-81
VN 46AF	2-11
DG 461A	3-77
DG 462A	3-77
DG 463A	3-77
DG 464A	3-77
2N 4856	1-72
2N 4857	1-72
2N 4858	1-72
2N 4859	1-72
2N 4860	1-72
2N 4861	1-72
2N 4867	1-73
2N 4868	1-73
2N 4869	1-73
2N 4878	1-62
2N 4879	1-62
2N 4880	1-62
VCR 5P	1-9
IT 500	1-45
IVN 5000AN	2-13
IVN 5000AZ	2-21
IVN 5000B	2-15
IVN 5000S	2-17
IVN 5000T	2-19
IH 5001	3-83
IVN 5001A	2-13
IVN 5001B	2-15
IVN 5001S	2-17
IVN 5001T	2-19
IH 5002	3-83
IH 5003	3-85
IH 5004	3-85
IH 5005	3-87
IH 5006	3-87
IH 5007	3-87
IH 5009	3-91
IT 501	1-45
IH 5010	3-91
IH 5011	3-91
IH 5012	3-91
IH 5013	3-91
IH 5014	3-91
IH 5015	3-91
IH 5016	3-91
IH 5017	3-91
2N 5018	1-74
IH 5018	3-91
2N 5019	1-74
IH 5019	3-91
IT 502	1-45
IH 5020	3-91
IH 5021	3-91
IH 5022	3-91
IH 5023	3-91
IH 5024	3-91

TYPE \#	PAGE
IH 5025	3-96
IH 5026	3-96
IH 5027	3-96
IH 5028	3-96
IH 5029	3-96
AD 503	5-49
IT 503	1-45
IH 5030	3-96
IH 5031	3-96
IH 5032	3-96
IH 5034	3-96
IH 5035	3-96
IH 5036	3-96
IH 5037	3-96
IH 5038	3-96
IT 504	1-45
IH 5040	3-103
IH 5041	3-103
IH 5042	3-103
IH 5043	3-103
IH 5044	3-103.
IH 5045	3-103
IH 5046	3-103
IH 5047	3-103
IH 5048	3-103
IH 5049	3-103
IT 505	1-45
IH 5050	3-103
IH 5051	3-103
IH 5052	3-111
IH 5053	3-111
IH 5101	5-113
IH 5108	3-118
IH 5110	5-115
IH 5111	5-115
IH 5112	5-115
IH 5113	5-115
2N 5114	5-115
IH 5114	$1-75$
2N 5115	$1-75$
IH 5115	5-115
2N 5116	1.75
2N 5117	$1-77$
2N 5118	$1-77$
2N 5119	$1-77$
IH. 5140	3-127
IH 5141	3-127
IH 5142	3-127
IH 5143	3-127
IH 5144	3-127
IH 5145	3-127
2N 5196	1-78
2N 5197	1-78
2N 5198	1-78
2N 5199	1-78
IH 5200	3-55
IM 5200	8-28
IVN 5200H	2-23
IVN 5200K	2-25
IVN 5200T	2-27
IH 5201	3-61
IVN 5201C	2-29
IVN 5201H	2-23
IVN 5201K	2-25
IVN 5201T	2-27
IH 5208	3-135
SU 536	5-52

TYP	P \#	PAGE	TYPE \#	PAGE
IM	6101	8-77	ICM 7045A	7-15
IM	6102	8-97	ICM 7049A	7-4
IM	6103	8-120	ICM 7050	7-24
IH	6108	3-143	ICM 7051	7-4
	6116	3-149	ICL 7101	4-96
IH	6201	3-155	ICL 71C03	4-104
IH	6208	3-159	ICL 7104	4-118
IH	6216	3-165	ICL 7106	4-17
	6312	8-132	ICL 7107	4-17
IM	6316	8-139	ICL 7109	4-26
IM	6402	8-144	ICL 7116	4-42
IM	6403	8-144	ICL 7117	4-42
2N	6483	1-91	ICL 7126	4-50
2N	6484	1-91	ICL 7135	4-58
2N	6485	1-91	IM 7141	8-219
IMF	6485	1-93	IM 7141M	8-223
IM	6504	8-152	ICM 7201	6-9
IM	65X08	8-157	ICM 7206	7-28
IM	6512	8-163	ICM 7207	6-11
IM	6514	8-169	ICM 7207A	6-11
IM	65X18	8-157	ICM 7208	6-15
IM	65X51	8-174	ICM 7209	6-22
IM	65X61	8-174	ICM 7210	7-2
VN	66AF	2-11	ICM 7211	6-25
VN	66AK	2-7	ICM 7212	6-25
	6653	8-180	ICM 7213	6-35
IM	6654	8-180	ICM 7214A	7-2
IVN	6660	2-37	ICM 7215	7-36
2N	6660	2-39	ICM 7216	6-40
IVN	6661	2-37	ICM 7217	6-55
2N	6661	2-39	ICM 7218	6-67
VN	67AB	2-5	ICM 7220A	7-2
VN	67AF	2-9	ICM 7220FA	7-2
VN	67AK	2-7	ICM 7220MA	7-2
	6801	8-187	ICM 7220MFA	7-2
	6901	8-191	ICM 7223	7-42
	6910	8-192	ICM 7223A	7-3
	6912	8-196	ICM 7223VF	7-48
	6914	8-197	ICM 7224	6-76
	6915	8-198	ICM 7225	6-76
	6920	8-200	ICM 7226	6-83
	6941	8-201	ICM 7227	6-55
	6942	8-201	$\mu \mathrm{A} 723$	5.57
	6950	8-205	ICM 7231	6-94
	6970-IFDOS	8-211	ICM 7232	6-94
VCR	7 N	1-9	ICM 7233	6-94
IM	7027	8-212	ICM 7234	6-94
ICM	7038A	7-4	ICM 7235	6-112
ICM	7038B/D/E/G	7-11	ICM 7236	6-118
ICM	7045	7-15	ICM 7240	6-123

TYPE \#	PAGE	TYPE \#	PAGE
ICM 7242	6-134	ICL 8018A	4-88
ICM 7245	7-56	ICL 8019A	$4-88$
ICM 7250	6-123	ICL 8020A	4-88
ICM 7260	6-123	ICL 8021	5-187
ICM 7270	7-2	ICL 8022	5-187
ICM 7271	7-60	ICL 8023	5-187
ICM 7272	7-66	ICL 8038	5-190
ICM 7273	7-2	ICL 8043	5-198
ICM 7307	7-4	ICL 8048	5-205
$\mu \mathrm{A} 733$	5-63	ICL 8049	5-205
IM 7332	8-227	ICL 8052	4-104
IM 7364	8-230	ICL 8053	4-135
$\mu \mathrm{A} 740$	5-66	ICL 8063	5-213
$\mu \mathrm{A} 741$	5-70	ICL 8068	4-104
AD 741 K	5.74	ICL 8069	5-221
ICL 741HS	5-72	IM 82C43	8-233
ICL 741LN	5.75	$82 \mathrm{HM137}$	8-237
$\mu \mathrm{A} 748$	5-78	82 HM 141	8-240
AD 7520	4-68	82HM181	8-243
AD 7521	4-68	82HM185	8-247
AD 7523	4-74	82HM191	8-251
AD 7530	4-68	ICL 8211	5-223
AD 7531	4-68	ICL 8212	5-223
AD 7533	4-78	MFE 823	1-47
AD 7541	4-82	ICH 8500	5-233
ICM 7555	6-140	ICH 8510	5-239
ICM 7556	6-140	ICH 8515	5-247
ICL 7600	5-121	ICH 8520	5-239
ICL 7601	5-121	ICH 8530	5-239
ICL 7605	5-130	VN 88AF	2-11
ICL 7606	5-130	VN 89AB	2-5
ICL 7611	5-140	VN 89AF	2-9
ICL 7612	5-140	VN 90AB	2-5
ICL 7613	5-140	VN 98AK	2-7
ICL 7614	5-140	VN 99AK	2-7
ICL 7615	5-140		
ICL 7621	5-140		
ICL 7622	5-140		
ICL 7631	5-140		
ICL 7632	5-140		
ICL 7641	5-140		
ICL 7642	5-140		
ICL 7650	5-155	,	
ICL 7660	5-161		
$\mu \mathbf{~} 777$	5-85	.	
ICL 8001	5-167		
ICL 8007	5-171		
ICL 8008	5-172		
ICL 8013	5-176		
ICL 8017	5-183		

DISCRETES

JFET Single	
Switches	
N-Channel	Page
J105-7	$1-14$
J111-13	$1-15$
U200-2	$1-32$
U1897-99	$1-50$
2N3970-72	$1-60$
2N4091-93	$1-64$
ITE4091-93	$1-64$
2N4391-93	$1-70$
ITE4391-93	$1-70$
2N4856-61	$1-72$
2N5432-34	$1-80$
2N5638-40	$1-88$
P.Channel	
IT100/1	$1-13$
J174-77	$1-30$
2N3993/4	$1-61$
2N5018/19	$1-74$
2N5114-16	$1-75$

JFET Dual Switches

N-Channel
 2N5564-66

$1-87$
JFET Single
Amplifiers

N.Channel		NPN Devices LM114	1-16
N-Channel	$1-33$	IT120-22	$1-18$
J308-10	1-38	IT124	$1-19$
U308-10	1-39	IT126/27	1-20
2N3684-87	$1-52$	IT140	1-24
2N3821/22	1.55	2N4044/45	1-62
2N3823	$1-56$	2N4100	$1-62$
2N3824	1-57	2N4878-80	1-62
2N4117-19	$1-65$	PNP Devices	
2N4220-22	$1-66$	IT130-32	1-21
2N4223/24	1-67	IT136-39	1-22
2N4338-41	1-68	2N3810/11	1-53
2N4416	$1-71$	2N5117-19	1-77
ITE4416	$1-71$	Special Function	
2N4867-69	$1-73$		
2N5397/98	1-79		
2N5457-59	1.82	High Speed Dual Diodes	
2N5484-86	1.84	ID100/1	1-11
P.Channel		Voltage Cont	
U304-6	$1-37$	Resistors	
2N2607-9	$1-51$	VCR2-7	
2N5460-65	$1-83$		
JFET Dual			
Amplifiers		VERTICAL POWER	
N-Channel		MOSFETS	
	$1-35$		
U401-6	$1-36$	BVDSS $>350 \mathrm{~V}$,	
U421-26	$1-43$	rDS(on) < 5	
U440/41	1-44		
IT500-5	$1-45$	IVN6000KN S	2-31

2N3921/22	$1-58$
2N3954-58	$1-59$
2N5196-99	$1-78$
2N5452-54	$1-81$
2N5515-24	$1-85$
2N5902-9	$1-89$
2N5911/12	$1-90$
IT5911/12	$1-90$
2N6483-85	$1-91$
IMF6485	$1-93$

MOSFET Switches/ Amplifiers

N-Channel	
M116	$1-17$
3N170/71	$1-28$
IT1750	$1-49$
2N4351	$1-69$
P-Channel	
3N161	$1-25$
3N163/64	$1-26$
3N172/73	$1-29$
IT1700	$1-48$
MFE823	$1-47$
Dual P-Channel	
3N165/66	$1-27$
3N188-91	$1-31$

Bipolar Dual

 Amplifiers
Special Function

High Speed Dual Diodes
ID100/1 1-11
Voltage Controlled
Resistors
VCR2-7
$1-9$
DG116/118/123/125 3-16
3-6
DG120/121
$\begin{array}{ll}\text { DG126A Family } & 3-31 \\ \text { DG139A Family } & 3-37\end{array}$
DG180 Family
DGM181 Family
IH181 Family $3-50$
3-41

DG200 $3-55$
IH200 - 3-59
DG201 3-61
IH201/202 3-65
IH401 3-68
IH5001/2 3-83
IH5003/4 3-85
IH5005/6/7 3-87
IH5009-24 3-91

IH5025-38	$3-9$
lH5040-51	$3-10$
IH5052/3	$3-11$
IH5140-45	$3-12$
IH5200	$3-5$
IH5201	$3-6$

Analog Switches
 without Drivers

G115/123	$3-1$
G116-19	$3-1$
G125-32,	$3-2$
G1330/40/50/60	
MM450/550,	$3-8$
MM451/551,	
MM452/552/MM455/555	

Digital Translatorl Analog Driver

TTL or CMOS to Higher Levels IH6201
$3-15$

DATA
 ACQUISITION

A/D Converters

LD110/111/114	$4-2$
ICL7109	$4-26$
ICL7126	$4-5$
ICL7135	$4-58$
ICL8052/3	$4-13$
ICL8068/8052A/7104	$4-118$

DIA Converters

ADC0801-4 4-
AD7520/21/30/31
4-6
AD7523
4.7

AD7533
4-78
AD7541
4-8:

DVM Circuits

ICL7106/7	$4-1$
ICL7116/17	
ICL8052/7101	$4-4$
ICL8052/71C03	$4-9$
ICL8068/71C03	$4-10$

Successive
Approximation
Registers
AM25(L)02/3/4
$4-1$
D/A Current Switches

ICL8018/19/20
$4-8$

INEAR

mplifiers

strumentation,
ommutating Auto-Zero
L7605/6
2g-Antilog
L8048/49
5-130
5-205
perational,
hopper Stabilized
L7650
5-155
perational,
ommutating Auto-Zero
L7600/1
5-121
perational, FET Input

perational, High Speed
A2500 Family
5-99
A2507/17/27
5-104
perational, Low Power

142
de

L76XX Series $\quad 5 \cdot 140$
L8021-23 5-187
deo
1733 5-63
omparators
ual
-111/2311 5-97

Followers	
LM102/302	$5-19$
LM110/310	$5-19$
LH2110/2310	$5-95$
Low Power	
ICL8001	$5-167$
Precision	
LM111/311	$5-33$
Quad	
LM139/339	$5-41$
Sample and Hold	$5-115$
IH5110-15	
Temperature Sensor	$5-55$
AD590	
Voltage Reference	
lCL8069	$5-221$
ICL8211/12	$5-223$
Voltage Regulators	
LM100/300	$5-11$
LM105/305	$5-23$
μ A723	$5-57$

Special Function

Multiplier ICL8013	,
Voltage Converter ICL7660	5-16
Waveform Generato ICL8038	5-19

TIMERS,
COUNTERS AND DISPLAY DRIVERS

Timers

	$6-3$
NE/SE555	$6-3$
NE/SE556	$6-7$
ICM7240/50/60	$6-123$
ICM7242	$6-134$
ICM7555	$6-140$
ICM7556	$6-140$
Counters	
ICM7208	
ICM7216	$6-15$
ICM721727	$6-40$
ICM7224/25	$6-55$
ICM7226	$6-76$
ICM7236	$6-83$
	$6-118$

Counter Timebase

ICM7207/A 6-11
Display Drivers

ICM7211/12	$6-25$
ICM72188	666
ICM7231-34	$6-94$
ICM7235	$6-112$

Oscillator/Clock Generator

ICM7209 6-22
ICM7213 6-35
Low Battery
Indicator
ICM7201
CONSUMER
CIRCUITS
Watches

ICM1424C/MC	$7-5$
ICM7245	$7-56$
ICM7271	$7-60$
ICM7272	$7-66$

Clocks

ICM7038	$7-11$
ICM7050	$7-24$
ICM7223 .	$7-42$
ICM7223VF	$7-48$

Stopwatches

ICM7045	
ICM7045A	
ICM7215	$7-15$
	7.36

Touch Tone
Encoders
ICM7206 7-28
DIGITAL
Memory
NMOS Static RAMs

2114

M2114L
2147
M2147
2148
M2148
7141
8-5
8-9
8-13
8-16
8-20
8-24
7141M
$8-219$
$8-223$
CMOS Static RAMs

IM6504	$8-152$
IM65X08	$8-157$
IM652	8.163
IM6514	$8-169$
IM6518	$8-157$
IM65X51	$8-174$
IM65X61	$8-174$
I	

NMOS Dynamic RAM
IM7027/4027
8-212

NMOS ROMs

NMOS ROMs	$8-227$
IM7332	$8-230$
IM7364	$82-237$
82HM137	8240
82HM141	$8-240$
82HM181	$8-243$
82HM185	$8-247$
82HM191	$8-251$
CMOS ROMs	$8-132$
IM6322	$8-139$
IM6316	$8-180$
CMOS EPROMs	8663
IM663	$8-180$
IM654	8920 EPROM

82HM141 8-240
$\begin{array}{lr}\text { CMOS ROMs } & \\ \text { IM6312 } & 8-132 \\ \text { IM6316 } & 8-139 \\ \text { CMOS EPROMs } & 8-180 \\ \text { IM6653 } & 8-180 \\ \text { IM6654 } & 8920 \text { EPROM } \\ \text { 69-200 }\end{array}$
Programmer
Bipolar PROMs
IM5200FPLA
IM5600

IM5600/10	$8-39$
IM5603/23	$8-42$

IM5604/24 8-48

Bipolar PROM
Programming
Specifications

Microprocessor

IM6100	$8-55$
6801Sampler Kit	$8-187$

Peripherals

IM6101	$8-77$
IM6102	$8-97$
IM6103	$8-120$
IM6402/3	$8-144$
82C43	$8-233$

Development
Systems

Intercept Jr.	8-205
Intercept II Intercept CPU with Dual	
Serial l/O	8-196
Double Density	
Flexible Disc	
Controller	8-197
Concept-48	8-201
$4 \mathrm{~K} \times 12 \mathrm{CMOS}$	
Memory Module	8-191
$32 \mathrm{~K} \times 12 \mathrm{RAM}$	
Board	8-198
6970 Disc Operating	
System	8-211

amd	Intersil	AD7520kn	AD7520kn	${ }^{\text {A202 }}$	LM202
${ }^{\text {AM } 2502}$	${ }^{\text {AM2502 }}$	${ }^{\text {ADP7520LD }}$	${ }^{\text {ADOT5202L }}$	${ }^{\mu}{ }_{\mu \text { A2020 }}$	
${ }^{\text {AMM2054 }}$	${ }^{\text {AM2 } 2504}$	${ }^{\text {ADOL } 520350}$	${ }^{\text {ADOT5203PD }}$		${ }_{\text {LM208 }}^{\text {LM20 }}$
		${ }^{\text {ADD }}$ A520UD	${ }_{\text {ADP7521]OD }}$	$\underset{\substack{\mu A 211 \\ \mu \text { A224 }}}{ }$	${ }_{\text {L }}^{\text {L M }}$
-	-	${ }^{\text {ADO7521/NO }}$	${ }^{\text {ADOT521/2N }}$	${ }_{\mu}^{\text {ma302 }}$	${ }_{\text {A }}^{\text {A }}$
-	-	${ }^{\text {ADP } 52151 \mathrm{KN}}$		$\underset{\sim}{\mu \text { ma335 }}$	${ }_{\text {Lim305 }}^{\text {Lu307 }}$
-	-		${ }_{\text {AD7 } 521}$	${ }_{\substack{\mu 43310}}^{\text {masio }}$	L-M3308
	Litur301	${ }^{\text {ADD } 5217270}$	${ }^{\text {ADO } 5292100}$		${ }_{\text {L }}^{\text {L }}$
	${ }_{\text {ADO }}$	${ }_{\text {ADI } 52338 \mathrm{D}}$	${ }_{\text {AD7 } 52323 \mathrm{D}}$	$\underset{\sim}{\mu \text { atas5 }}$	Mcessi
LMM105	LM105		${ }_{\text {AD7 }}^{\text {A } 5232300}$	${ }_{\mu}^{\mu \text { uAST23 }}$	
LM108	LM108	${ }^{\text {ADI } 52323 \mathrm{KN}}$	${ }_{\text {AD7 } 5233 \mathrm{SN}}$	${ }_{\substack{\mu A 7733}}^{\mu A 73}$	
LMM111	LMIT1	${ }^{\text {ADI7523sD }}$	${ }_{\text {AD75235] }}$	${ }_{\mu}^{\mu A 7474}$	
${ }^{\text {LTM }}$		${ }^{\text {ADOL } 5333000}$	${ }_{\text {AD7 } 5 \text { 5330] }}$	${ }_{\text {a }}^{4 \times 4721}$	
- ${ }^{\text {Lu202 }}$	- ${ }^{\text {L/M2025 }}$	${ }^{\text {ADIT } 533000}$	${ }_{\text {ADT } 533000}$		
- ${ }_{\text {LM207 }}$		${ }^{\text {ADD } 5 \text { 5330KN }}$	${ }_{\text {ADT } 530 \mathrm{cos}}$	-	${ }^{1 / 2563}$
cicke	(imen		${ }^{\text {ADP7530LIN }}$	- ${ }_{\text {933466 }}^{\text {9346 }}$	
L-1324			${ }^{\text {ADOT5331/N }}$	Fulltsu	Intersil
L-M3025	${ }^{\text {Lum30 }}$	${ }_{\text {ADI }}^{\text {A } 531 \mathrm{KND}}$	${ }_{\text {ADD } 5331 \mathrm{~N}}$	M ${ }^{\text {M }}$ 40044	$1{ }^{1 / 7614}$
Leme8	(imuch		${ }_{\text {ADOT } 5333 \mathrm{La}}$. ${ }^{1 / 2560}$
Lemio	-im310	${ }^{\text {ADD7533380 }}$	${ }_{\text {AD7 } 53338 \mathrm{Cb}}$	M ${ }_{\text {M }}$	
			${ }_{\text {AD7 }}^{\text {c3333NN }}$	M M7058	
${ }_{\text {N/23 }}$	Ne556	${ }_{\text {ADPI } 5335 \mathrm{LV}}$	${ }_{\text {AD7 } 53335 \mathrm{~N}}$	M M88147	
${ }_{748}^{741}$		${ }^{\text {ADD } 5 \text { frs3idi }}$	${ }^{\text {ADIF53350 }}$	${ }_{\text {M }}^{\text {M } 884011}$	
		${ }^{\text {ADO754AAD }}$		Harris	Intersı
	${ }^{1265508}$				(taz500
Analog Devices	Intersil	Datel	Intersil	HA5510	${ }_{\text {HAR } 25}$
${ }_{\text {ADP10 }}^{\text {ADO }}$	Ami01	M5402	${ }_{\text {HA2505 }}$	- ${ }_{\text {HA2515 }}$	
		Emm/SEmI	Intersil		${ }_{\text {HAR }}$
		2114	2114	${ }_{\text {c }}$	${ }_{\text {HAR }}{ }^{\text {a }}$
		${ }_{\text {Exar }}^{\text {ER240 }}$	-	-	
	(1H66116MD	XR4741	L-M148	$\underset{\substack{\text { HAR } 6202020}}{\text { Heze }}$	
${ }^{\text {ADD } 5 \text { 500bin }}$	${ }_{\text {a }}$			${ }_{\text {HAR202 }}$	$\stackrel{\text { HAR625 }}{\text { Haber }}$
${ }^{\text {ADO }}$ A $5066 \mathrm{KDD} \mathrm{D}_{1883 \mathrm{~B}}$		XRRL556	${ }_{1} 1$ CLC75556	${ }_{\text {HA }}^{\text {H26202 }}$	${ }^{10} 1068021$
	${ }_{\text {\% }}$	Farrchlld	Intersal		
				¢	(146616culife
			-		
${ }^{\text {ADIT507 } 507 \mathrm{~J} / 8883 \mathrm{~B}}$	${ }^{146621664}$		${ }_{\text {L }}^{\text {LiF257 }}$		
AD7507JN					
		${ }_{\substack{\mu A A 102}}^{\mu}$	- LM102	H11-0200-2	$\xrightarrow{1+22008}$
			- ${ }_{\text {LM107 }}$	${ }^{\text {H11-2000-4 }}$	${ }^{1 H 20085}$
AD7507200D AD5 AD20 N				- ${ }_{\text {H11-0200-5 }}$	1 1H200AK/88
AD7520kD	AD7520KD				20Ак

IC Alternate Source Index (continued)

IC Alternate Source Index (continued)

INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT
100S	2N5458	2N2606	2N2607	2N3331	2N5270	2N3814	IT132
100 U	2N3684	2N2607	2N2607	2N3332	2N5268	2N3815	IT132
102 M	2N5686	2N2608	2N2608	2N3333	IT132	2N3816	IT130
102 S	2N5457	2N2609	2 N 2609	2N3334	IT132	2N3816A	IT130A
103M	2N5457	2N2609JAN	2N2609JAN	2N3335	IT132	2N3817	IT130
103 S	2N5459	2N2639	IT120	2N3336	IT132	2N3817A	IT130A
104M	2N5458	2N2640	IT122	2N3347	IT137	2N3819	2N5484
105M	$2 N 5459$	2N2641	IT122	2N3348	IT138	2N3820	2N2608
105 U	$2 N 4340$	2N2642	IT120	$2 N 3349$	IT139	2N3821	2N3821
106M	2N5485	2N2643	IT122	2N3350	IT137	2N3821JAN	2N3821JAN
107 M	2N5485	2N2644	IT122	2N3351	IT138	2N3821JANTX	2N3821JANTX
1104	2N3685	2N2652	IT120	2N3352	IT139	2N3821JTXV	2N3821JTXV
120 U	$2 N 3686$	2N2652A	IT120	2N3365	2N4340	2N3822	2 N 3822
125 U	2N4339	2N2720	IT120	2N3366	2 N 4338	2 N 3823	2 N 3823
1277A	2N3822	2N2721	IT122	2N3367	2N4338	2N3823JAN	2N3823JAN
1278A	2N3821	2N2722	IT120	2N3368	2N4341	2N3823JANTX	2N3823JANTX
1279A	2N3821	2N2802	IT139	2N3369	2N4339	2N3823JANTXV	2N3823JANTXV
1280A	2N4224	2N2803	IT139	2N3370	2 N 4338	2 N 3824	2N3824
1281A	2N3822	2N2804	IT139	2N3376	2N2608	2N3907	IT120
1282A	2N4341	2N2805	IT139	2N3378	2N2608	2N3908	IT120
1283A	2N4340	2N2806	IT. 139	2N3380	2N2609	2N3909	2N2609
1284A	2N4222	2N2807	IT139	2N3382	2N3994	2N3909A	2N2609
1285A	$2 N 3821$	2N2841	2N2607	2N3384	2 N 3993	2N3921	2 N 3921
1286A	2N4220	2N2842	2N2607	2N3386	2N5114	2N3922	2N3922
130 U	2N3687	2N2843	2N2607	2N3409	IT122	2N3949	IT132
1325A	2N4222	2N2844	2N2607	2N3410	IT122	2N3950	IT132
135 U	2 N 4339	2N2903 ${ }^{\text {, }}$	IT122	2N3411	IT122	2N3954	2N3954
14 T	2N4224	2N2903A	IT120	2N3423	IT122	2N3954A	2N3954A
155 U	2 N 4416	2 N 2910	IT122	2 N 3424	IT122	2N3955	2N3955
1714A	2N4340.	2N2913	IT122	2N3425	IT122	2N3955A	2N3955A
182 S	2N4391	2N2914	IT120	2N3436	2 N 4341	2N3956	2N3956
1835	$2 N 3823$	2 N 2915	IT120	2N3437	2 N 4340	2N3957	2 N 3957
1975	2N4338	2N2915A	IT120	2N3438	2 N 4338	2N3966	2N4416
1985	2N4340	2N2916	IT120	2N3452	2N4220	2N3967	2N4221
1995	2N4341	2N2916A	IT120	2N3453	2 N 4338	2N3967A	2N4221
2000M	2 N 3823	2N2917	IT122	2N3454	2 N 4338	2N3968	2N3685
2001M	2 N 3823	2N2918	IT122	2N3455	2N4340	2N3968A	2N3685
2005	2N4392	2N2919	IT120	2N3456	2 N 4338	2N3969	2N3686
2004	2N3824	2N2919A	IT120	2N3457	2N4338	2N3969A	2N3686
2015	2N4391	2N2920	2N2920	2N3458	2N4341	2N3970	2N3970
202 S	2N4392	2N2920A	2N2920	2N3459	2N4339	2N3971	2N3971
2035	2N3821	2N2936	IT120	2N3460	2N4338	2N3972	2N3972
2045	2N3821	2N2937	IT120	2N3513	IT122	2N3993	2N3993
2078A	2N3955	2N2972	IT122	2N3514	IT122	2N3993A	2 N 3993
2079A	2N3955	2N2973	IT122	2N3515	IT122	2N3994	2N3994
2080A	2N3955A	2N2974	IT120	2N3516	IT122	2N3994A	2N3994
2081A	2N3955A	2N2975	IT120	2N3517	IT122	2N4009	IT132
2093M	2 N3687	2N2976	IT120	2N3521	$1 T 122$	2N4O10	IT132
2094M	2N3686	2N2977	IT120	- 2N3522	IT122	2N4011	IT132
2095M	2N3686	2N2978	IT120	2N3574	2N2607	2N4015	IT139
2098A	2N3954	2N2979	IT120	2N3575	2N2607	2N4016	IT137
2099A	2N3955A	2N2980	IT121	2N3578	2N2608	2 N 4017	IT139
210 U	2 N 4416	2N2981	IT122	2 N 3587	IT122	2 N 4018	IT139
2130 U	2N5452	2N2982	IT122	2N3608	3N172	2N4019	IT139
2132 U	2N3955	2N3043	IT121	2N3680	IT120	2N4020	IT139
2134 U	2N3956	2N3044	IT122	2N3684	2N3684	2N4021	IT139
2136 U	2N3957	2N3045	IT122	2N3684A	2N3684	2N4022	IT139
21384	2N3958	2N3046	IT121	2N3685	2N3685	2N4023	IT137
2139 U	2N3958	2N3047	IT122	2N3685A	2N3685	2 N 4024	IT137
2147 U	2N3958	2N3048	IT122	2N3686	2N3686	2N4025	IT137
21480	2N3958	2N3049	IT139	2N3686A	2N3686	2N4026	3N163
21490	2N3958	2N3050	IT139	2N3687	2N3687	2N4038	2N4351
2315	2N3954	2N3051	IT139	2N3687A	2N3687	2N4039	2N4351
2325	2N3955	2N3052	IT129	2N3726	IT131	2N4065	3N163
2335	2N3956	2N3059	IT139	2N3727	IT130	2N4066	3N166
2345	2N3957	2N3066	2N4340	2N3728	IT122	2 N 4067	3N166
2355	2N3958	2N3067	2N4338	2N3729	IT121	2 N 4082	2N3954
2410	2N4869	2N3068	2N4338	2N3800	IT132	2 N 4083	2N3955
250 U	2N4091	2N3069	2N4341	2N3801	IT132	2N4084	2N3954
251 U	2N4392	2N3070	2N4339	2N3802	IT132	2N4085	2N3955
2N2060	IT120	2N3071	2N4338	2 N 3803	IT132	2 N 4091	2N4091
2N2060A	IT121	2N3084	2N4339	2N3804	IT130	2N4091A	2N4091
2N2060B	IT121	2N3085	2N4339	2N3804A	IT130A	2N4091JAN	2N4091JAN
2N2223	IT122	2N3086	2N4339	2N3805	IT130	2N4091JANTX	2N4091JANTX
2N2223A	IT121	2N3087	2N4339	2N3805A	IT130A	2N4091 JANTXV	2N4091JANTXV
2N2386	2N2608	2N3088	2N4339	2N3806	IT122	2 N 4092	2N4092
2N2386A	2N2608	2N3088A	2N4339	2N3807	IT122	2N4092A	2N4092
2N2453	IT122	2 N 3089	2N4339	2N3808	IT122	2N4092JAN	2N4092JAN
2N2453A	IT121	2N3089A	2N4339	2N3809	IT122	2N4092JANTX	2N4092JANTX
2N2480	IT122	2N3113	2N2607	2N3810	2N3810	2N4092 JANTXV	2N4092JANTXV
2N2480A	IT121	2N3277	2N2606	2N3810A	2N3810A	2N4093	2N4093
2 N 2497	2N2608	2N3278	2N2607	2N3811	2N3811	2N4093A	2N4093
2N2498	2N2608	2N3328	2N5265	2N3811A	2N3811A	$2 N 4093 \mathrm{JAN}$	2N4093JAN
2N2499	2N2609	2N3329	2N5267	2N3812	IT132	2N4093JANTX	2N4093JANTX
2N2500	2N2608	2N3330	2N5268	2N3813	IT132	2N4093JANTXV	2N4093JANTXV

[NIERPSUL

$\begin{aligned} & \text { INDUSTRY } \\ & \text { STANDARD } \end{aligned}$	$\begin{aligned} & \text { NEAREST } \\ & \text { NNERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { MTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	MEAREST INTERSIL ECUIVALENT
2N4100	2 N 4100	2N4979	2 N 4859	2N5471	2N5265	2N6448	IT121
2 N 4117	2 N 4117	2 N 5018	2N5018	2N5472	2N5265	2N6451	4310
2N4117A	2 N 4117 A	2 N 5019	2 N 5019	2N5473	2 N 5265	2N6452	U310
2 N 4118	2 N 4118	2 N 5020	2N2843	2N5474	2N5265	2N6453	U310
2N4118A	2N4118A	2N5021	2N2607	2N5475	2N5265	2N6454	4310
2 N 4119	2 N 4119	2 N 5033	2 N 5460	2N5476	2N5266	2 N 6483	2 N 6483
2N4119A	2N4119A	2 N 5045	2 N 5453	2N5484	2 N 5484	2N6484	2N6484
2N4120	3N163	2 N 5046	2N5454	2N5485	2N5485	2N6485	2 N 6485
2 N 4139	2 N 3822	${ }^{2} \mathrm{~N} 5047$	2 N 5454	$2 N 5486$	$2 N 5486$	2 N 6502	IT122
2N4220	2N4220	2N5078	2N5397	2N5515	2N5515	2N6503	IT122
2N4220A	2 N 4220	2N5090	IT122	2N5516	2N5516	2N6550	2N4868A
2N4221	2N4221	2 N 103	2N4416	2N5517	$2 N 5517$	2N6568	2 N 432
2N4221A	2N4221	2 N 5104	2 N 4416	2N5518	$2 N 5518$	2 N 6656	IVN6657
2 N 4222	2 N 4222	2 N 5105	2 N 4416	2N5519	$2 N 5519$	2 N6657	2 N 6657
2N4222A	2N4222	2N5114	2N5114	2N5520	2N5520	2N6658	2N6658
2 N 4223	2 N 4223	2N5114JAN	2 N 5114 JAN	2N5521	2 N 5521	2N6659	IVN6658
2N4224	2 N 4224	2N5114JANTX	2N5114JANTX	2N5522	2 N 5522	2N6660	2 N 6660
2N4267	3N163	2N5114JANTXV	2N5114JANTXV	2N5523	2N5523	2N6661	2N6661
2N4268	$3 N 161$	2N5115	2N5115	2N5524	2 N 5524	${ }^{2} \mathrm{SC} 294$	IT122
2N4302	2N4302	2N5115JAN	2N5115JAN	2N5545	2N3954	2SJ11	2N2607
2N4303	2N5459	2N5115JANTX	2N5115JANTX	2N5546	2N3955A	2SJ12	2N2607
2N4304	2N5458	2N5115JANTXV	2N5115JANTXV	$2 N 5547$	2N3955	$2 \mathrm{SJ13}$	2N5270
$2 N 4338$ $2 N 4339$	2N4338	$2 N 5116$	2 N 5116	2N5549	2 N 4093	${ }_{2}^{2 S J 15}$	2N2607
2N4339	2N4339	2N5116JAN	2N5116JAN	2 N 5555	$J 310$	2SJ16	2N2607
2N4340	2N4340	2N5116JANTX	2N5116JANTX	2N5556	2N3685	2SJ47	**
2 N 4341	2 N 4341	2N5116JANTXV	2N5116JANTXV	2N5557	2 N 3684	2SJ48	*
2N4342	2 N 5461	${ }^{2} \mathrm{~N} 5117$	2 N 5117	2N5558	2 N 3684	$2 \mathrm{SJ49}$	**
2 N 4343	$2 N 5462$	2NS118	2N5118	2N5561	U401	2 SJ 50	\because
2 N 4351	2 N 4351	${ }^{2} \mathrm{~N} 5119$	2N5119	2N5562	U402	$2 \mathrm{SJ78}$	**
2N4352	3N163	2N5120	IT131	2N5563	U404	2SJ79	**
2 N 4353	3N172	2N5121	17132	2N5564	2N5564	2 SJ 80	N5
2 N 4360	$2 N 5460$	2 N 5122	IT132	2N5565	2N5565	$2 \mathrm{SK11}$	2N5457
2 N 4381	2N2609	2 N 5123	IT131	2N5566	2 N 5566	${ }_{2}{ }^{\text {SK12 }}$	2N5457
2 N 4382	2 N 5115	2N5124	IT132	2N5592	2 N 3822	$2 \mathrm{SK13}$	2N5457
2N4391	2N4391	2N5125	IT132	2N5593	2N3822	2SK132	.*
2N4392	2 N 4392	2 N 5158	2N5434	2N5594	2N3822	2SK133	**
2N4393	2 N 4393	2N5159	2N5433	2N5638	2N5638	2SK134	\cdots
${ }^{2} \mathrm{~N} 4416$	2 N 4416	2 N 5163	2 N 3822	2 N 5639	2 N 5639	${ }^{2 S K 135}$	**
2N4416A	2 N 4416 A	${ }^{2} \mathrm{~N} 5196$	2N5196	2N5640	2 N 5640	$2 \mathrm{SK15}$	2 N 4868
2N4417	2N4416	2N5197	2N5197	2N5647	2N4117A	2SK17	2N5484
2N4445	2N5432	2N5198	2N5198	2N5648	2N4117A	2SK178	**
2 N 4446	2 N 5434	2 N 5199	2 N 5199	$2 N 5649$	2 N 4117 A	${ }^{2 S K} 179$	*
2 N 4447	2 N 5432	2N5245	ITE4416	2N5653	2 N 5638	${ }_{2}{ }^{\text {SK1 }} 18$	2N3821
2N4448	2N5434	2N5246	2N5484	2N5654	$2 N 5639$	${ }^{2 S K 180}$	**
2N4856	2N4856	2N5247	2N5486	2N5668	2N5484	2SK19	ITE4416
2N4856A	2 N 4856	2N5248	$2 N 5486$	2N5669	2N5485	$2 \mathrm{SK23}$	2 N 4599
2N4856JAN	2 N 4856 JAN	2 N 5254	$1{ }^{1} 132$	2N5670	2N5486	$25 K 30$	2N5458
2N4856JANTX	2N4856JANTX	2N5255	IT132	2N5793	IT129	2 SK32	2 N 3822
2N4856JANTXV	2N4856JANTXV	2 N 5256	IT130	2N5794	IT129	2 SK 33	2 N 5397
2N4857	2N4857	2N5257	2N5457	2N5795	IT139	2 SK34	2N3822
2N4857A	2N4857	2N5258	2N5458	2N5796	IT139	2 SK 37	2N5484
2N4857JAN	2N4857JAN	2N5259	2N5459	2N5797	2N2608	2SK41	2 N 5459
2N4857JANTX	2N4857JANTX	2N5265	2N2607	2N5798	2N2608	$2 \mathrm{SK42}$	2 N 3822
2N4857JANTXV	2N4857JANTXV	2 N 5266	2N2607	2N5799	2N2608	2SK43	ITE4092
2N4858	2N4858	2N5267	2N2608	2N5800	2N2608	-25K44	ITE4416
2N4858A	2 N 4858	2N5268	2N2608	2N5801	2 N 4393	2SK46	2N5459
2N4858JAN	2N4858JAN	2 N 5269	2 N 2609	2N5802	2 N 4393	2SK48	2 N 3821
2N4858JANTX	2N4858JANTX	2 N 5270	2 N 2609	2 N 5803	2 N 4392	$2 \mathrm{SK49}$	2 N 5484
2N4858JANTXV	2N4858JANTXV	2 N 5277	2 N 4341	2N5843	IT130.	2SK50	ITE4416
2N4859	2N4859	2N5278	2N4341	2N5844	IT130	2SK54	2N3822
2N4859A	2N4859	2 N 5358	2 N 4220	2N5902	2 N 5902	2SK55	2N3822
2N4859JAN	2N4856JAN	2N5359	2N4220	2N5903	2N5903	2 SK 56	2N5459
2N4859JANTX	2 N4856JANTX	2N5360	2 N 4221	2N5904	2N5904	${ }_{2} 25661$	2 N 5397
2 N 4860	2 N 4860	2N5361	2 N 4221	2N5905	2 N 5905	${ }_{2} 25665$	J201
2N4860A	2N4860	2N5362	2N4222	2N5906	2N5906	$25 K 66$	2N3821
2N4860JAN	2 2N4857JAN	2 N 5363	2 N 4222	2N5907	2 N 5907.	$25 \mathrm{S6} 68$	2 N 3822
2N4860JANTX	2 2N4857JANTX	2 N 5364	2 N 4222	2N5908	2N5908	2SK72	2N5196
2 N 4861	2 N 4861	2 N 5391	2N4867A	2N5909	2 N 5909	3 GS	2 N 3821
2N4861A	2 N 4861	2N5392	2N4868A	2N5911	2N5911	3N145	3N163
2N4861JAN	2N4858JAN	2N5393	2N4869A	2N5912	2N5912	3N146	3N163
2N4861JANTX	2N4858JANTX	2N5394	2 N 4869 A	2N5949	$2 N 5486$	3N147	3N189
2 N 4867	2 N 4867	2 N 5395	2N4869A	2 N 5950	$2 N 5486$	3N148	3N189
2N4867A	2N4867A	2N5396	2 N 4869 A	2 N 5951	$2 N 5486$	3N149	3N161
2N4868	2 N 4868	2 N 5397	2 N 5397	2N5952	2N5484	3N150	3N163
2N4868A	2N4868A	2N5398	2N5398	2N5953	2N5484	3N151	3N190
${ }^{2} \mathrm{~N} 4869$	2 N 4869	2 N 5432	2 N 5432	2 N 6085	IT122	3N155	3N163
2N4869A	2N4869A	2N5433	2 N 5433	2 N 6086	IT122	3N155A	3N163
2N4878	2N4878	2N5434	2N5434	2N6087	IT121	3N156	3N163
2N4879	2 N 4879	2 N 5452	2 N 5452	2 N 6088	IT121	$3 N 156 A$	3N163
2N4880	2N4880	2N5453	2N5453	2N6089	IT122	3N157	3N163
2N4937	IT131	2N5454	2N5454	2N6090	IT121	3N157A	3N163
2N4938	$1 T 132$	2 N 5457	$2 N 5457$	2 N 6091	IT121	$3 N 158$	3N163
2N4939	IT132	2N5458	2 N 5458	2N6092	IT121	3N158A	3N163
2N4940	IT132	2N5459	2N5459	2N6441	IT122	3N160	3N161
2N4941	IT131	2N5460	2N5460	2N6442	IT122	3N161	3N161
2N4942	IT132	2N5461	$2 N 5461$	2N6443	IT122	3N163	3N163
2 N 4955	IT122	2 N 5462	2 N 5462	2N6444	IT122	3N164	3N164
2N4956	IT122	2 N 5463	2 N 463	2N6445	17121	3N165	3N165
2 N 4977	2N5433	2N5464	2N5464	2 N 6446	IT121	3N166	3N166
2N4978	2N5433	2N5465	2N5465	2N6447	IT121	3N167	3N161

ONIERPSUL

INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$
E100	2N5458	FE5459	2N5459	IRF 132	\cdots	1 17C3806	IT132
E101	J204	FE5484	2 N 5484	IRF 133	**	ITC3807	IT132
E102	2N5457	FE5485	2 N 5485	IRF150	\because	ITC3808	IT132
E103	2 N 5459	FE5486	2 N 5486	IRF 151	**	ITC3809	IT132
E105	J105	FF400	2N5457	IRF152	**	ITC3810	IT130
E106	$J 106$	FM1100	$2 N 3954 A$	IRF 153	*	ITC3811	IT130.
E107	J107	FM1100A	2 N 5906	IRF300	*	ITC4017	IT139
E108	$J 105$	FM1101A	2N5906	IRF301	*	ITC4018	IT139
E109	$J 106$	FM1102	2 N 3954	IRF305	*	ITC4019	IT139
E110	$J 107$	FM1102A	2N5906	IRF306	**	ITC4020	IT139
E111	$J 111$	FM1103	2N3955	IRF330	\because	ITC4021	IT139
E111A	$J 111$	FM1103A	2 N 5908	IRF331	\because	ITC4022	IT139
E112	$J 112$	FM1104	2 N 3957	IRF332	\because	ITC4023	IT137
E112A	$J 112$	FM1104A	2 N 5909	IRF333	**	ITC4023	IT137
E113	J113	FM1105	2N3954A	IRF350	**	ITC4025	IT137
E113A	$J 113$	FM1105A	IT500	IRF351	"	ITE2453	IT120
E114	J204	FM1106	2 N 3954 A	IRF352	"	ITE2639	IT120
E174	J174	FM1106A	IT500	IRF353	**	ITE2.640	IT122
E175	$J 175$	FM1107	2 N 3954	IRF530	**	ITE2641	IT122
E176	$J 176$	FM1107A	IT500	IRF531	**	ITE2642	IT120
E177	$J 177$	FM1108	2N3955	IRF532	\because	ITE2643	$1 T 122$
E201	J201	FM1108A	11502	IRF533	\because	ITE2644	IT122
E202	J202	FM1109	2 N 3957	IRF730	\because	ITE2720	IT120
E203	J203	FM1109A	IT503	IRF731	-	ITE2721	IT122
E204	J204	FM1110	2N3955	IRF732	.	ITE2722	IT120
E210	2 N 5397	FM1110A	2 N 5908	IRF733	***	ITE2903	IT122
E211	2 N 5397	FM1111	2 N 3957	IT100	IT100	ITE2913	IT122
E212	2 N 5397	FM1111A	2 N 5909	IT101	IT101	ITE2914	IT122
E230	2 N 4867	FM1112	$2 \mathrm{2N5196}$	IT108	IT108	ITE2915	IT120
E231	2N4868	FM1200	2N3954	IT109	IT109	ITE2916	IT120
E232	2 N 4869	FM1201	2 N 3954	IT110	IT110	ITE2917	IT122
E270	$J 270$	FM1202	2 N 3954	IT111	IT111	ITE2918	IT122
E271	J271	FM1203	$2 N 3955 A$	IT120	IT120	ITE2919	IT120
E300	$2 N 5397$	FM1204	2 N 3955	IT120A	IT120A	ITE2920	IT120
E304	2N5486	FM1205	2N3954	IT121	IT121	ITE2936	IT120
E305	2N5484	FM1206	2 N 3954	IT122	IT122	ITE2937	IT120
E308	J308	FM1207	2 N 3954	IT124	IT124	1 TE2972	IT122
E309	$J 309$	FM1208	2N3955A	IT124A	IT124A	ITE2973	IT122
E310	J310	FM1209	2 N 3955	IT124B	IT1248	ITE2974	IT120
E311	J310	FM1210	2N3955A	IT125	IT125	ITE2975	IT120
E312	2 N 5397	FM1211	IT5911	IT126	$1{ }^{1} 126$	ITE2976	IT120
E400	2N3955	FM3954	2 N 3954	IT127	IT127	ITE2977	IT120
E401	2 N 3955	FM3954A	$2 N 3954 \mathrm{~A}$	IT128	IT128	ITE2978	IT120
E402	$2 N 3957$	FM3955	2 N 3955	IT129	IT129	ITE2979	IT120
E410	2N3955	FM3955A	2N3955A	IT130	IT130	ITE3066	2N3685
E411	IT5911	FM3956	2N3956	IT130A		ITE3067	2N3686
E412	IT5911	FM3957	2 N 3957	IT131	IT131	ITE3068	2 N 3687
E413	2N5454	FM3958	IT5911	IT132	IT132	ITE3347	IT137
E414	2 N 3956	FP4339	2 N 4339	IT136	IT136	ITE3348	IT138
E415	2N3957	FP4340	2N4340	IT137	IT137	ITE3349	IT139
E420	IT5911	FT0654A	2N5486	IT138	IT138	ITE3350	IT137
E421	IT5912	FTO654B	2 N 486	IT139	IT139	ITE3351	IT138.
E430	J309 ($\times 2$)	FT0654C	$2 N 4221$.	IT140	IT140	ITE3680	IT120
E431	J310(X2)	FT0654D	2 N 4221	IT1700	IT1700	ITE3800	IT132
ESM25	$U 401$	FT3820	2N5460	IT 1701	3N172	ITE3802	IT132
ESM25A	4401	FT3820	2 N 5019	IT1702	3N163	ITE3804	IT130
ESM4091	2N4091	FT3909	2N5019	IT1750	IT1750	ITE3806	IT132
ESM4092	2 N 4092	FT703	3N161	IT2700	3N165	ITE3807	IT132
ESM4093	2 N 4093	FT704	3N163	IT2701	3N165	ITE3808	IT132
ESM4302	2N5457	FVN2	VN67AK	IT400	2N4392	ITE3809	IT132
ESM4303	2N5459	FVP2	***	IT404	IT404	ITE3810	11130
ESM4304	2N5458	GET5457	2 N 5457	IT500	IT500	ITE3811	IT130
ESM4445	2 N 5432	GET5458	2 N 458	IT500P	IT500	ITE3907	IT120
ESM4446	2 N 5434	GET5459	2 N 5459	IT501	11501	ITE3908	IT120
ESM4447	2N5432	HA7807	IT132	IT501P	IT501	ITE4017	IT139
ESM4448	2 N 5434	HA7809	IT132	17502.	$1 T 502$	ITE4018	IT139
FE0654A	2 N 4386	HDIG1030	3N163	IT502P	IT502	ITE4019	IT139
FE0654B	2N5485	HEP801	2 N 3822	IT503	IT503	ITE4020	IT139
FE100	2 N 3821	HEP802	2 N 5484	IT503P	IT503	ITE4021	IT139
FE100A	2N3821	HEP803	2N5019	IT504	IT504	ITE4022	IT139
FE102	2 N 4119	HEPF0021	2N5484	IT5911	IT5911	ITE4023	IT137
FE102A	2 N 4119	HEPF 1035	J176	IT5911	IT5911	ITE4024	IT137
FE104	2N4118	HEPF2004	2N5484	IT5912	IT5912	ITE4025	IT137
FE104A	2N4118	HEPF2005	2 N 5459	ITC2972	IT122	ITE4091	ITE4091
FE1600	2N4092	ID100	ID100	ITC2973	IT122	ITE4092	ITE4092
FE200	2N3821	ID101	ID101	ITC2974	IT120	ITE4093	ITE4093
FE202	2 N 3821	IMF3954	2 N 3954	ITC2975	IT120	ITE4117	2 N 4117
FE204	2N3821	ImF3954A	2 N 3954 A	ITC2976	IT120	ITE4118	2N4118
FE300	2 N 3822	IMF 3955	2 N 3955	ITC2977	IT120	ITE4119	2 N 4119
FE302	2N3821	IMF3955	2N3955A	ITC2978	IT120	ITE4338	2N4338
FE304	2 N 3821	IMF3956	2N3956	ITC2979	IT120	ITE4339	$2 \mathrm{~N} 4339{ }^{\text {' }}$
FE3819	$2 N 5484$	IMF3957	$2 N 3957$	ITC3347	IT137	ITE4340	2 N 4340
FE4302	2 N 5457	IMF3958	2N3958	ITC3348	IT138	ITE4341	2 N 4341
FE4303.	2N5459	IMF5911	IMF5911	ITC3349.	IT139	ITE4391	ITE4391
FE4304	2N5458	IMF5912	IMF5912	ITC3350	IT137	ITE4392	ITE4392
FE5245	2 N 4416	IMF6485	IMF6485	ITC3351	IT138	ITE4393	ITE4393
FE5246	2 N 5484	IRF 100	**	ITC3352	IT139	ITE4416	ITE4416
FE5247	2 N 5486	IRF 101	*	ITC3800	IT132	ITE4867	2 N 4867
FE5457	2 2N5457	IRF 130	**	ITC3802	IT132	ITE4868	2 N 4868
FE5458	2N5458	IRF 131		ITC3804	IT130	ITE4869	2N4869

ONIERESUL

INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT
IVN5000AND	IVN5000AND	$J 203$	J203	KE3823	2 N 3823	LS5359	J204
IVN5000ANE	IVN5000ANE	J203-18	J203	KE3970	ITE4391	LS5360	J202
IVN5000ANF	IVN5000ANF	J204	J204	KE3971	ITE4392	LS5361	J202
IVN50008ND	IVN5000BND	J204-18	J204	KE3972	ITE4393	LS5362	J203
IVN50008NE	IVN5000BND	J210	2N5397	KE4091	ITE4091	LS5363	J203
IVN50008NF	IVN50008NF	$J 211$	2 N 5397	KE4092	ITE4092	LS5364	J203
IVN5000SND	IVN5000SND	J212	2 N 5397	KE4093	ITE4093	LS5391	2N4867A
IVN5000SNE	IVN5000SNE	J230	2 N 4867	KE4220	2N5457	LS5392	2 N 4868 A
IVN5000SNF	IVN5000SNF	J231	2 N 4868	KE4221	2 N 5459	LS5393	2 N 4869 A
IVN5001AND	IVN5001AND	J232	2N4869	KE4222	2N5459	LS5394	2N4869A
IVN5001ANE	IVN5001ANE	$J 270$	J270	KE4223	J204	LS5395	2 N 4869 A
IVN5001ANF	IVN5001ANF	J270-18	J270	KE4391	ITE4391	LS5396	2 N 4869 A
IVN5001BND	IVN5001BND	J271	J271	KE4392	ITE4392	LS5457	2 N 5457
IVN50018NE	IVN50018NE	J271-18	J271	KE4393	ITE4393	LS5458	2N5458
IVN50018NF	IVN5001BNF	J300	2N5397	KE4416	ITE4416	LS5459	2N5459
IVN5001SND	IVN5001SND	J304	2N5486	KE4856	ITE4391	LS5484	2N5484
IVN5001SNE	IVN5001SNE	J305	2N5484	KE4857	ITE4392	LS5485	2 N 485
IVN5001SNF.	IVN5001SNF	J308	J308	KE4858	ITE4393	LS5486	2N5486
IVN5200HND	IVN5200HND	J309	J309	KE4859	ITE4391	LS5556	2N3685
IVN5200HNE	IVN5200HNE	J310	J310	KE4860	ITE4392	LS5557	2N3684
IVN5200HNF	IVN5200HNF	J315	2N5397	KE4861	ITE4393	LS5558	2N3684
IVN5200KND	IVN5200KND	J316	U309	KE510	ITE4393	LS5638	2 N 5638
IVN5200kNE	IVN5200KNE	J317	U310	KE5103	J204	LS5639	2 N 5639
IVN5200KNF	IVN5200KNF	J3970	ITE4391	KE5104	ITE4416	LS5640	2N5640
IVN5200TND	IVN5200TND	J3971	ITE4392	KE5105	ITE4416	M103	3N161
IVN5200TNE	IVN5200TNE	J3972	ITE4393	KE511	ITE4392	M104	3N161
IVN5200TNF	IVN5200TNF	$J 401$	IT501	KH5196	2N5196	M106	3N166
IVN5201CND	IVN5201CND	J402	IT502	KH5197	2N5197	M107	3N189
IVN5201CNE	IVN5201CNE	J403	$1 T 503$	KH5198	2N5198	M108	3N191
IVN5201CNF	IVN5201CNF	J404	IT503	KH5199	2N5199	M113	3N161
IVN5201HND	IVN52014ND	J405	IT504	LDF603	2 N 4221	M114	3N161
IVN5201HNE	IVN5201HNE	J406	IT505	LDF604	2 N 4221	M116	M116
IVN5201HNF	IVN5201HNF	J4091	ITE4091	LDF605	2 N 4221	M117	2 N 4351
- IVN5201KND	IVN5201KND	$J 4092$	ITE4092	LM114	IT120	M119	3N161
IVN5201KNE	IVN5201KNE	J4093	ITE4093	LM114A	IT120A	M163	3N163
IVN5201KNF	IVN5201KNF	$J 410$	IT502	LM114AH	IT120A	M164	3N164
IVN5201TND	IVN5201TND	$J 411$	IT503	LM114H	IT120	M511	3N172
IVN5201TNE	IVN5201TNE	J412	$1 T 503$	LM115	IT120	M511A	3N172
IVN5201TNF	IVN5201TNF	J420	IT5911	LM115A	IT120A	M517	3N163
IVN6657	IVN6657	J421	IT5912	LM115AH	IT120A	MA7807	IT, 132
IVN6658	IVN6658	J4220	J204	LM115H	IT120	MA7809	IT132
IVN6660	IVN6660	J4221	J202	LM194	IT120A	MAT-01AH	IT140
IVN6661	IVN6661	$J 4222$	J203	LM394	IT120A	MAT-01FH	IT140
J100	2N5458	$J 4223$	$J 202$	LS3069	2N5458	MAT-O1GH	IT140
$J 101$	2N4338	J4224	J202	LS3070	2N5458	MAT-01H	IT140
$J 102$	2N5457	J430	J309 ($\times 2$)	LS3071	2 N 5458	MDI 120	IT122
$J 103$	2N5459	J4302	2 N 4302	LS3458	J204	MD1120F	..
J105	J105	$J 4303$	2 N 5459	LS3459	J204	MD1121	IT122
J105-18	$J 105$	$J 4304$	2 N 5458	LS3460	J204	MD1122	IT122
$J 106$	J106	J431	J310(X2)	LS3684	2N3684	MD1123	IT139
J106-18	$J 106$	J433	2N5457	LS3685	2N3685	MD1 129	IT129
$J 107$	$J 107$	$J 4338$	2 N 5457	LS3686	2N3686	MD1129F	
J107-18	$J 107$	433939	2 N 5457	LS3687	2N3687	MD1130	IT139
J108	$J 105$	$J 4391$	ITE4391	LS3819	2 N 5484	MD1130F	\cdots
J108-18	$J 105$	$J 4392$	ITE4392	LS3821	2N5457	MD2218	IT129
$J 109$	$J 106$	$J 4393$	ITE4393	LS3822	2N5458	MD2218A	IT129
J109-18	$J 106$	J4416	ITE4416	LS3823	2 N 5458	MD2218AF	
1110	$J 107$	$J 4856$	ITE4856	LS3921	$2 N 3921$	MD2218F	*
J110-18	$J 107$	$J 4857$	ITE4857	LS3922	2 N 3922	MD2219	IT129
J111	J111	J4858	ITE4858	LS3966	ITE4416	MD2219A	IT129
J111-18	J111	J4859	ITE4859	LS3967	ITE4416	mD2219AF	.
J111A	$J 111$	J4860	ITE4860	LS3968	ITE4416	M02219F	\cdots
J111A-18	$J 111$	J4861	ITE4861	LS3969	ITE4416	MD2369	IT129
$J 112$	$J 112$	$J 4867$	2 N 4867	LS4220	J204	MD2369A	IT129
J112-18	J112	J4867A	2N4867A	LS4221	J202	MD2369AF	
$J 112 \mathrm{~A}$	$J 112$	$J 4867 \mathrm{RR}$	2 N 4867	LS4222	J203	MD2369B	IT122
J112A-18	$J 112$	J4868	2 N 4868	LS4223	J202	MD2369BF	.
${ }^{J 113}$	$J 113$	J4868A	2 N 4868 A	LS4224	J202	MD2369F	**
J113-18	$J 113$	J4868RR	2 N 4868	LS4338	$2 N 5457$	MD2904	IT139
J113A	J113	J4869	2N4869	LS4339	2N5457	MD2904A	IT139
J113A-18	J113	J4869A	2 N 4869 A	LS4340	2 N 5457	MD2904AF	\cdots
$J 114$	$2 N 5555$	J4869RR	2N4869	LS4341	2 N 5458	MD2904F	.
$J 1401$	15501	J5103	2 N 5484	LS4391	ITE4391	MD2905	IT139
$J 1402$	11502	J5104	2 N 5485.	LS4392	ITE4392	MD2905A	IT139
J1403	IT503	J5105	2N5486	LS4393	ITE4393	MD2905AF	
J1404	11503	$J 5163$	2N5486	LS4416	ITE4416	MD2905F	$\stackrel{\square}{ }$
$J 1405$	IT504	K114-18	2N5555	LS4856	ITE4091	MD2974	IT120
$J 1406$	11505	K210-18	$2 N 5397$	LS4857	ITE4092	MD2975	IT120
J174	$J 174$	K211-18	2 N 5397	LS4858	ITE4093	MD2978	IT120
J174-18	J174	K212-18	2N5397	LS4859	ITE4091	MD2979	IT120
$J 175$	$J 175$	K300-18	2 N 5397	LS4860	ITE4092	MD3008	IT120
J175-18	$J 175$	K304-18	2 N 4886	LS4861	ITE4093	MD3250	IT132
$J 176$	$J 176$	K305-18	2N5484	LS5103	2N5484	MD3250A	IT131
J176-18	$J 176$	K308-18	J308	LS5104	2N5485	MD3250AF	**
J177	J177	K309-18	J309	LS5105	2N5486	MD3250F	**
J177-18	$J 177$	K310-18	$J 310$	LS5245	ITE4416	MD3251	11132
$J 201$	J201	KE3684	2N3684	LS5246	2N5484	MD3251A	IT131
J201-18	J201	KE3685	2N3685	LS5247	2 N 5486	MD3251AF	\because
J202	$J 202$	KE3686	2N3686	LS5248	2N5486	MD3251F	.
J202-18		KE3687	2N3687	LS5358	J204	MD3409	IT129

NNIERㄹSㄴ

INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { NTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$
MD3410	IT129	MEF5563	4403	MH06100	**	MPQ6100A	"
MD3467	IT139	MEM511	3N172	MH06100A	**	MPQ6501	**
M03467F		MEM511A	3N172	MK10	2N4416	MPQ6502	*
MO3725	IT129	MEM511C	3N172	MMF 1	2 N 5197	MPQ6600	:
MD3725F		MEM517	3N172	MMF2	2N3921	MPQ6600A	**
MD3762	IT139	MEM517A	3N172	MMF 3	2N5198	MPQ6700	\because
M03762F		MEM5178	3 N 172	MMF4.	2 N 3922	MPQ918	**
MD4957	IT132	MEM517C	3N172	MMF5	2 N 5199	MQ1120	\#*
MD5000	IT132	MEMS50 MEM550C	$3 N 189$ 3N189	MMF6 MMT3823	${ }_{2}^{2 N 39553}$	MQ1129 MQ2218	**
MD50008	IT132	MEM550F	3N189	MP301	IT124B	MQ2218A	**
MD7000	IT129	MEM551	3N190	MP302	IT125	MQ2219	**
MD7001	IT139	MEM551C	3N189	MP303	IT124B	MQ2219A	**
MD7001F		MEM556	3N172	MP310	2 N 4045	MQ2369	**
MD7002	IT122	MEM556C	3N172	MP311	2N4045	MQ2484	*
MD7002A	IT122	MEM560	3N161	MP312	2 N 4044	MQ2904	\because
MD7002 ${ }^{\text {B }}$	IT122	MEM560C	3N161	MP318	IT120A	MQ2905	**
MD7003	IT132	MEM561	3N163	MP350	IT132	MQ3251	*
MD7003A	IT132	MEM561C	3N163	MP351	IT130	MQ3467	\because
MD7003AF		MEM562	2N4351	MP352	IT130	MQ3725	.
M070038	IT132	MEM562C	2 N 4351	MP358	IT130A	MQ3762	\because
M 27003 F		MEM563	2 N 4351	MP3954	$2 N 3954$	MQ3798	\cdots
MD7004	IT129	MEM563C	2 N 4351	MP3954A	2 N3954A	MQ3799	**
$\begin{aligned} & \text { MD7004F } \\ & \text { MD7007 } \end{aligned}$	IT129	MEM711	M116 M116	MP3955 MP3956	$2 N 3955$ 2N3956	MQ3799A MQ7001	\because
MD7007A		MEM712A		MP3957	2N3957	M07003	
MD7007B	IT129	MEM713	3N170	MP3958	2 N 3958	MQ7004	\because
mD7007BF		MEM806	3N163	MP5905	2N5905	MQ7007	*
MD7007F	.	MEM806A	3N163	MP5906	2N5906	MQ930	**
M0708	IT129	MEM807	3N172	MP5907	2 N 5907	MQ982	*
MD708A	IT129	MEM807A	3N172	MP5908	2 N 5908	MTF101	$2 N 5484$
MD708AF		MEM814	3N161	MP5909	2 N 5909	MTF 102	2N5484
MD708B	IT129	MEM816	3N172	MP5911	2 N 5911	MTF103	2 N 5457
MD708BF		MEM817	3N172	MP5912	2 N5912	MTF104	2N5459
MD708F	.	MEM823	MFE823	MP804	2N5520	ND5700	IT120A
MD8001	IT120	MEM954	3N188	MP830	2 N 5520	ND5701	IT120A
MD8002	IT120	MEM954A	3N188	MP831	2 N 5221	ND5702	IT120
MD8003	IT122	MEM954B	3N188	MP832	2 N 5522	NDF9401	IT500
MD9 18	\because	MEM955	3N190	MP833	2 N 5523	NDF9402	IT501
MD918A	-	MEM955A	3N190	MP835	2N3954	NDF9403	IT502
MD9 18AF	\because	MEM955B	3N190	MP836	2N3955	NDF9404	IT503
MD9188	\cdots	MF510	2 N 4092	MP837	2N3955	NDF9405	IT504
M0918F	\because	MF803	2 N 4338	MP838	2N3956	NDF9406	IT500
MD918F	\cdots	MF818	2 N 4858	MP839	2 N 3957	NDF9407	IT501
M0982	IT139	MFE2000	2N4416	MP841	2N5521	NDF9408	IT502
MD982F	\cdots	MFE2001	2 N 4416	MP842	2 N 5523	NDF9409	IT503
MD984	IT139	MFE2004	2 N 4093	MPF 102	2 N 5486	NDF9410	IT504
MEF 103	2 N 5457	MFE2005	2 N 4092	MPF 103	2N5457	NF3819	2N5484
MEF 104	2N5459	MFE2006	2N4091	MPF 104	2N5458	NF4302	2 N 5457
MEF 3069	2N4341	MFE2007	2N4860	MPF 105	2N5459	NF4303	2N5459
MEF 3070	2N4339	MFE2008	2N4859	MPF 106	2 N 5485	NF4304	2N5458
MEF3458	2 N 4341	MFE2009	2 N 4859	MPF 107	2 N 486	NF4445	2 N 5432
MEF3459	2 N 4339	MFE2010.	2 N 4859	MPF 108	2 N 5486	NF4446	2 N 5433
MEF3460	2 N 4338	MFE2011	2 N 5433	MPF 109	2 N 5484	NF4447	2 N 5433
MEF 3684	2N3684	MFE2012	2N5434	MPF 111	2N5458	NF4448	2N5433
MEF 3685	2N3685	MFE2012	$2 N 5433$	MPF 112	2 N 5458	NF500	2N4224
MEF3686	$2 N 3686$	MFE2093	2 N 4338	MPF 161	2 N 5398	NF501	2 N 4224
MEF3687	2 N 3687	MFE2094	2 N 4339	-MPF208	2 N 3821	NF506	$2 \mathrm{2N4416}$
MEF3821	2 N 3821	MFE2095	2 N 4340	MPF209	2 N 3821	NF5101	2 N 4867
MEF3822	2N3822	MFE2133	2N4860	MPF256	ITE4416	NF5102	2N4867
MEF 3823	2 N 3823	MFE2912	2 N 5433	MPF4391	ITE4391	NF5103	2 N 4867
MEF3954	2N3954	MFE3002	3N170	MPF4392	ITE4392	NF511	2 N 4860
MEF3955	2N3955	MFE3003	3N164	MPF4393	ITE4393	NF5163	2 N 4341
MEF3956	2 N 3956	MFE 3020	3N166	MPF 820	J310	NF520	2N3684
MEF3957	2N3957	MFE3021	3N166	MPF970	J175	NF521	2N3685
MEF 3958	2N3958	MFE4007	2N3686	MPF971	$J 175$	NF522	2N3686
MEF4223	2 N 4223	MFE4008	2 N 3686	MPQ1000		NF523	$2 N 3865$
MEF4224	2 N 424	MFE4009	2 N 3685	MPQ1050	\because	NF530	2 N 4341
MEF4391	ITE4391	MFE4010	2 N 2608	MPQ2221	\cdots	NF531	2 N 4339
MEF4392	ITE4392	MFE4011	2N2608	MPQ2222	-	NF532	2N4341
MEF4393	ITE4393	MFE4012	2N2609	MPQ2369	\because	NF533	2 N 4339
MEF4416	ITE4416	MFE5000	..	MPQ2483	\because	NF5457	$2 N 5457$
MEF4856	2 N 4856	MFE823	MFE823	MPQ2484	*	NF5458	2N5458
MEF4857	2 N 4857	MHQ2221	*	MPQ2606	\because	NF5459	2 N 5459
MEF4858	2N4858	MHQ2222	**.	MPQ2607	*	NF5484	2N5484
MEF4859	2 N 4859	MHQ2369	*	MPQ3303	\because	NF5485	2 N 5485
MEF4860	2N4860	MHO2483	**	MPQ3467	\because	NF5486	2 N 5486
MEF4861	2 N 4861	MHQ2484	*	MPQ3546	\because	NF5555	2 N 5484
MEF5103	ITE4416	MHQ2906	\because	MPQ3725	"	NF5638	2 N 5638
MEF5104	ITE4416,	MHQ2907	*	MPQ3725A	*	NF5639	2N5639
MEF5105	ITE4416	MHQ3467	**	MPQ3762		NF5640	2 N 5640
MEF5245	ITE4416	MH03546	\because	MPQ3798	\because	NF5653	2 N 4860
MEF5246	2 N 5484	MHQ3798	\%	MPQ3799	\because	NF5654	2 N 4861
MEF5247	$2 N 5486$	MH03799	\because	MPG3904	\cdots	NF580	2N5432
MEF5248	2N5486	MH04001A	**	MPQ3906	.	NF581	2N5432
MEF5284	2 N 5484	MH04002A	\because	MPQ4003	\because	NF582	2 N 5433
MEF5285	2 N 485	MHQ4013	\cdots	MPQ4004	\because	NF583	2 N 5434
MEF5286	2 N 5486	MHO4014	\because	MPQ6001	\because	NF584	2 N 5433
MEF5561	4401	MH06001	**	MPQ6002	**	NF585	2 N 4859
MEF5562	4402	MH06002	*	MPQ6100	-*	NF6451	U310

代

INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { 'NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$
NF6452	U310	S75V01	**	SU2075	2N3954	T0520	IT139
NF6453	4310	S75V02	**	SU2076	2 N 3954	T0521	IT139
NF6454	U310	S75V03	IVN5000BNF	SU2076	2 N 3954	TD522	IT139
NKT80111	2 N 422 O	S75V11	**	SU2077	2N3955	TD523	IT139
NKT80112	2N4220	S75V12	**	SU2077	2N3954	TD524	IT139
NKT80113	2N3821	S75V21	**	SU2078	2 N 3955	T0525	IT132
NKT80211	2N4339	S75V22	**	SU2079	2 N 3955	TD526	IT132
NKT80212	2 N 4339	SA2253	IT122	SU2080	4404	T0527	IT131
NKT80213	2 N 4339	SA2254	IT122	SU2080	U404 !	T0528	IT131
NKT80214	2N4339	SA2255	IT122	SU2081	U404	TD5432	2N5432
NKT80215	2 N 4339	SA2644	IT120	SU2081	U404	TD5433	2 N 5433
NKT80216	2 N 4339	SA2648	IT120	SU2098	2 N 5197.	T05434	2 N 5434
NKT80421	2 N 4220	SA2710	IT120	SU2098A	$2 \mathrm{NS197}$	T0550	1 I 129
NKT80422	2 N 4220	SA2711	IT120	SU20988	2 N 5196	TD5902	2 N 5902
NKT80423	2N4220	SA2712	IT121	SU2099	2N5197	TD5902A	2N5902
NKT80424	2 N 422 O	SA2713	IT121	SU2099A	2 N 5197	T05903	2 N 5903
NPC108	2N5484	SA2714	IT122	SU2365	2N3954	TD5903A	2 N 5903
NPC211N	2 N 4338	SA2715	IT120	SU2365A	2 N 3954	T05904	2 N 5904
NPC212N	2 N 4338	SA2716	IT120	SU2366	2N3955	TD5904A	2 N 5904
NPC213N	2N4338	SA2717	IT121	SU2366A	2N3955	TD5905	2N5905
NPC214N	2 N 4339	SA2718	IT122	SU2367	2N3955	TD5905A	2N5905
NPC215N	2 N 4339	SA2719	IT120	SU2367A	2 N 3955	T05906	2 N 5906
NPC216N	2 N 4339	SA2720	IT121	SU2368	2 N 3956	TD5906A	2 N 5906
NPD5564	2N5564	SA2721	IT122	SU2368A	2 N 3956	TD5907	2 N 5907
NPD5565	2N5565	SA2722	IT120	SU2369	2N3957	TD5907A	2N5907
NPD5566	2 N 5566	SA2723	$1 T 121$	SU2369A	2 N 3957	TD5908	2 N 5908
NPD8301	2N3954	SA2724	IT122	SU2410	2 N 5907	TD5908A	2N5908
NPD8302	2N3955	SA2726	IT122	SU2411	2 N 5908	TD5909	2 N 5909
NPD8303	2N3956	SA2727	IT122	SU2412	2 N 5909	TD5909A	2 N 5909
NV0109N1	VN99AJ	SA2738	IT120A	SU2652	4401	TD5911	IT5911
OT3	2N4338	SA2739	IT120	SU2652M	4401	TD5911A	IT5911
P1004	2N5116	SDF 1001	2 N 5432	SU2653	U401	T05912	IT5912
P1005	$2 N 5115$	SDF1002	2 N 5433	SU2653M	U401	TD5912A	IT5912
P1027	$2 N 5267$	SDF 1003	2 N 5434	SU2654	U401	T0700	IT. 122
P1028	2N5270	SDF500	2N5520	SU2654M	$\cup 401$	ro701	IT122
P1029	2N5270	SDF501	2N5520	SU2655	4402	TD709	17122
P1069E	2N2609	SDF502	2 N 5220	SU2655M	4402	TD710	IT122
P1086E	2N5115	SDF503	2 N 520	SU2656	4404	TD711	IT122
P1087E	2N5516	SDF504	2N5520	SU2656M	0404	TD713	IT122
P1117E	2N5640	SDF505	2N5520	5×3819	2N5484	TIS14	2N4340
P1118E	2N5641	SDF506	2N5520	5×3820	2N2608	TIS25	2N3954
P1119E	$2 N 5640$	SDF507	2 N 5520	TD100	IT129	TIS26	$2 N 3954$
PF510	2 N 5115	SDF508	2N5520	T0101	IT129	TIS27	2N3955
PF5101	2 N 4867	SDF509	2 N 5220	TD102	IT129	TIS34	2N5486
PF5102	2N4867	SDF510	2N3954	T0200	IT129	TIS41	2N4859
PF5103	2 N 4867	SDF512	2N3954	TD201	IT129	TIS42	2 N 4393
PF511	2N5114	SDF513	2N3954	TD202	IT129	TIS58	2N5484
PL1091	2 N 3823	SDF514	2N3954	T02219	IT129	TIS59	2 N 5486
PL1092	2 N 3823	SDF661	IT122	TD224	IT122	TIS68	$2 N 3955$ A
PL1093	2N3823	SDF662	IT122	TD225	IT122	TIS69	2N3955A
PL1094	2N3823	SDF663	IT122	TD226	IT122	TIS70	2N3956
PN3684	2N3684	SES3819	2 N 5484	T0227	IT122	TIS73	2 N 4391
PN3685	2N3685	SFT601	2 N 4338.	TD228	1 IT 122	TIS74	2 N 4392
PN3686	2 N 3686	SFT602	2 N 4338	TD229	IT122	TIS75	2 N 4393
PN3687	2N3687	SFT603	2N4339	TD230	IT121	TIS88	2N4416
PN4091	ITE4091	SFT604	2N4339	T0231	IT121	TIS88A	2N4416
PN4092	ITE4092	SL301AT	IT129	TD232	1 T 122	TIXS33	2 N 4392
PN4093	ITE4093	SL3018T	IT129	TD233	IT122	TIXS35	2 N 4857
PN4220	J204	SL301CT	IT129	TD234	11122	TIXS36	2 N 4391
PN4221	J202	SL301ET	IT129	T0235	$1 T 122$	TIXS41	2N4859
PN4222	J203	SL360C	IT129	T0236	IT122	TIXS42	2N5639
PN4223	J204	SL362C	IT129	T0237	IT122	TIXS59	2N5459
PN4224	J202	SU2000	2 N 4340	TD238	IT122	TIXS78	$2{ }^{2} 4341$
PN4342	2N5461	SU2020	2N3954	T0239	IT122	TIXS79	2 N 4341
PN4360	2N5460	SU2021	2N3954	T0240	IT121	TN4117	2N4117
PN4391	ITE4391	SU2022	2N3954	T0241	${ }_{1 T 121}$	TN4117A	2N4117A
PN4392	ITE4392	SU2023	2N3954	T0242	IT120A	TN4118	2N4118
PN4416	ITE4416	SU2024	2 N 3954	T0243	IT120A	TN4118A	2N4118A
PN4856	2 N 4856	SU2025	2 N 3954	T0244	IT129	TN4119	2 N 4119
PN4857	2N4857	SU2026	2N3954	T0245	IT129	TN4119A	2N4119A
PN4858	2N4858	SU2027	2N3954	TD246	IT129	TN4338	2N4338
PN4859	2N4859	SU2028	2N3954	TD247	IT129	TN4339	2N4339
PN4860	2N4860	SU2028	$2 N 3954$	T0248	IT129	TN4340	2 N 4340
PN4861	2 N 4861	SU2029	$2 N 5197$	T0250	IT120A	TN4341	2 N 4341
PN5033	2N5460	SU2029	2N3954	TD2905	IT139	TN5277	2N4341
PTC151	2 N 5484	SU2030	2 N 3955			TN5278	2 N 4341
PTC152	2N5485	SU2030	2 N 3954	TD401	IT139	TP5114	2 N 5114
PV210	VN35AK	SU2031	2 N 5198	T0402	IT139	TP5115	2 N 5115
PV211	VN67AK	SU2031	2N3954	10500	IT139	TP5116	2 N 5116
PV212	VN99AK	SU2032	2N3954	T0501	IT139	U110	2N2608
Q2T2222	\cdots	SU2032	2N3954	TD502	IT139	4111	2N2608
Q2T2905	\because	SU2033	2N3954	TD509	IT132	U112	2 N 2608
Q2T3244	*	SU2033	2N3954	TDS10	, IT132	U113	2 N 2608
Q2T3725	**	SU2034	2 N 3955	T0511	IT132	U114	2N2608
S55V01	**	SU2034	2N3954	TOS 12	IT132	01177	2N4220
S55V02	\because	SU2035	2 N 3955	T0513	IT132	41178	2 N 3821
S55V11	\because	SU2035	$2 N 3954$	T0514	IT132	41179	2 N 3821
S55V12	*	SU2074	2 N 3954	T0517	17132	41180	2 N 4221
S5SV21 S5sv22	**	SU2074	$2 N 3954$ 2N3954	T0518	IT132	41181 41182	2 N 422 O
S55V22	*	SU2075	2N3954	TD519	IT132	41182	2N3821

[NIERPSUL

INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL. } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { MTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$
41277	2 N 3684	4301	2N5115	UC714E	2N4341	VN1308N2	*
41278	2 N 3685	43010	2 N 4341	UC734	2N4416	VN1308N3	*
41279	2 N 3686	U3011	2 N 4340	UC734E	2 N 4416	VN1308N6	*
41280	2 N 3684	U3012	2 N 4338	UC751	2N4340	VN1308ND	-
U1281	2N3822	U304	U304	UC752	2N4340	VN1309N2	.
41282	2 N 4341	4305	4305	UC753	2 N 4341	VN1309N3	\because
41283	2 N 4340	4306	4306	UC754	2 N 4340	VN1309N6	\because
U1284	2 N 4341	U308	4308	UC755	2 N 4341	VN1309ND	\cdots
41285	2 N 4220	U309	U309	UC756	2 N 4340	VN1A	VN89AA
$\cup 1286$	2N4341	4310	4310	UC805	2N5270	VN1B	VN67AJ
41287	2 N 4092	4311	4310	UC807	2 N 5115	VN2	VN67AK
U1321	2 N 4860	U312	2 N 5397	UC814	2N5270	VN2A	VN89AB
41322	2 N 3822	U314	2N5555	UC851	2 N 2608	VN2B	VN67AK
41323	2 N 3822	U315	2 N 5397	UC853	2 N 2608	VN3	IVN5000ANE
$\cup 1324$	2 N 3687	4316	4309	UC854	2N2608	VN30AA	VN30AA
U1325	2 N 3686	4317	4310	UC855	2 N 2609	VN30AB	vn30ab
4133	2 N 2608	4320	2 N 5433	UT 100	2 N 5397	VN33AJ	VN35AJ
41420	2 N 3821	U321	2 N 5434	UT101	2 N 5397	VN33AK	VN35AK
41421	2 N 3822	4322	2N5433	UXC2910	IT126	VN35AA	VN35AA
41422	2N3822	4328		VCR1ON	2N4869	VN35AB	vN35AB
U146	2 N 2608	4329	*	VCR11N	VNR11N	VN35AJ	VN35AJ
U147	2 N 2608	U330	*	VCR12N	2 N 3958	VN35AK	VN35AK
U148	2 N 2608	4331	$\because *$	VCR13N	2 N 3958	VN35JA	**
U149	2 N 2609	4350	$\cdots{ }^{*}$	VCR2ON	2 N 4341	VN3A	IVN5000ANF
U168	2N2609	4401	4401	VCR2N	VCR2N	VN3B	IVN5000AND
U1714	2 N 4340	4402	4402	VCR3P	VCR2P	VN4	IVN50008NE
41715	2 N 4340	U 403	$\cup 403$	VCRAN	VCR4N	VN4DAF	VN40AF
U182	2 N 4857	U 404	U404	VCR5P	VCR5P	VN45JA	
$\cup 183$	2N3824	U405	$\cup 405$	VCR6P	VCR6P	VN46AF	VN46AF
U1837E	2N5486	4406	$\cup 406$	VCA7N	VCR7N	VN4A	IVN50008NF
4184	2 N 5397	4410	2 N 3955	VF28	2 N 4392	VN4B	IVN5000BND
$\cup 1897 \mathrm{E}$	41897	U411	2 N 3956	VF811	2 N 4858	VN5	
$\cup 1898 \mathrm{E}$	41898	4412	2N3958	VF815	2 N 4858	VN5A	\#
U1899E	41899	$\mathrm{U}^{4} 21$	4421	VFW40	IT122	VN5B	*
$\cup 197$	2N4338	4422	4422	VFW40A	IT120	VN64GA	,
4198	2 N 4340	4423	4423	VMP1	IVN6657	VN66AF	VN66AF
4199	2 N 4341	4424	4424	VMP11	IVN6657	VN66AJ	VN66'AJ
$\cup 1994 \mathrm{E}$	2 N 4416	$\cup 425$	4425	VMP12	IVN6658	VN66AK	VN66AK
U200	2 N 4861	4426	$\cup 426$	VMP2	IVN6660	VN67AA	VN67AA
U201	2N4860	4430	J309(X2)	VMP21	IVN6660	VN67AB	vN67AB
U202	2 N 4859	U431.	J310(X2)	VMP22	IVN6661	VN67AF	VN67AF
U2047E	2 N 4416	4440	$\cup 440$	VMP4	**	VN67AJ	vN67AJ
4221	2 N 4391	4441	4441	VNO104N1	VN67AJ	VN67AK	VN67AK
U222	$2 \mathrm{N4391}$	UC100	2 N 3684	VNO104N2	VN67AK	VN84GA	..
U231	U231	UC110	2N3685	VNO104N3	IVN5000AND	VN86HF	IVN5000VNF
U232	U232	UC115	2 N 4340	VN0104N5	\because	VN88AF	VN88AF
U233	U233	UC120	$2 N 3686$	VNO104ND	*	VN89AA	VN89AA
U234	4234	UC130	$2 N 3687$	VNO106N1	VN67AJ	VN89AB	VN89AB
U235	U235	UC155	2 N 4416	VN0106N2	VN67AK	VN89AF	VN89AF
U 240	2N5432	UC1700	3N163	VNO106N3	IVN5000ANE	VN90AA	VN90AA
U241	2 N 5433	UC1764	3N163	VN0106N5	**	Vn90ab	Vn90ab
U242	2 N 5432	UC20	2 N 3686	VN0106N6	**	VN98AJ	VN98AJ
U243	$2 N 5433$	UC200	2 N 3824	VNO106ND	*	VN98AK	VN98AK
U244	2 N 5433	UC201	2N3824	VNO108N1	VN99AJ	vN99AJ	vN99AJ
U248	2N5902	UC21	2N3687	VNO108N2	vN99AK	VN99AK	vN99AK
U248A	2N5906	UC210	2N4416	VNO108N3	IVN5000ANF	VND	\cdots
U249	$2 N 5903$	UC2130	2 N 5452	VNO108N5		VNDA	**
U249A	$2 N 5907$	UC2132	2 N 5453	VNO108N6	-	VNDB	*
$\cup 250$	2N5904	UC2134	2N5454	VNOIO8ND	\cdots	VP0104N1	
U250A	2N5908	UC2136	2N5454	VNO109N2	vN99AK	VPO104N2	*
U251	2 N 5905	UC2138	2 N 5454	VNO109N3	\because	VP0104N3	*
$\cup 2514$	2 N 5909	UC2139	2 N 3958	VN0109N5	\%	VPO104N5	\because
U252	IT5911	UC2147	2 N 3958	VNO109ND	**	VP0104N6	\because
U 253	IT5912	UC2148	2 N 3958	VN1	vN67AJ	VPO104ND	*
U254	2N4859	UC2149	2N3958	VN1014N6	. *	VPO106N1	*
4255	2N4860	UC220	2N3822	VN10kM	IVN5000ANE	VP0106N2	**
4256	2 N 4861	UC240	2 N 4869	VN1204N1	IVN5200kND	VPO106N3	\because
0257	4257	UC241	2N4869	VN1204N2	IVN5200TND	VP0106N5	-
U257/T0-71	U257/TO-71	UC250	2 N 4091	VN1204N5	IVN5201CND	VP0106N6	
U266	2N4856	UC251	2N4392	VN1204ND	..	VPO106ND	*
4273	2N4118A	UC2766	3N166	VN1206N1	IVN5200KNE	VP0108N1	*
U273A	2N4118A	UC300	2 N 2608	VN1206N2	IVN5200TNE	VP0108N2	:
1274	2N4119A	UC310	2 N 2607	VN1206N5	IVN5201CNE	VP0108N3	*
U274A	2N4119A	UC320	2N2607	VN1206ND	**	VP0108N5	**
U275	2N4119A	UC330	2N2607	VN1208N1	IVN5200kNF	VPO108N6	\cdots
U275A	2N4119A	UC340	2N2607	VN1208N2	IVN5200tnf	VP0108ND	\cdots
U 280	2 N 5452	UC40	2 N 2608	VN1208N5	IVN5201CNF	VPO109N1	\because
U281	2 N 5453	UC400	2N5270	VN1208ND	.	VPO109N2	\cdots
U282	2 N 5453	UC401	2 N 5116	VN1209N1	IVN5200knf	vPO109N3	-
U283	2N5453	UC41	2N2608	VN1209N2	IVN5200TNF	VP0109N5	.
U284	$2 N 5454$	UC410	2N5268	VN1209N5	IVN5201CNF	VP0109N6	\because
U285	2 N 5454	UC420	2 N 5267	VN1209ND	\cdots	VPO109ND	\because
4290	2 N 5432	UC450	2N5114	VN1304N2	*	VP1	-
U291	2 N 5434	UC451	2 N5116	VN1304N3	\cdots	VP1A	\cdots
U295	2N5432	UC588	2N4416	VN1304N6	.	VP1B	.
U296	2 N 5434	UC703	2N4220	VN1304ND	\cdots	VP2	\cdots
4300	2 N 5114	UC704	2 N 4220	VN1306N2	\because	VP2A	\because
43000	2 N 4341	UC705	2 N 4224	VN1306N3	.	VP2B	\because
43001	2 N 4339	UC707	2 N 4860	VN1306N6	\because	VP3	
U3002	2N4338	UC714	2N3822.	VN1306ND	-	VP3A	.

QNIEPR
A

Discretes

Switches - Junction FET

Switches and Amplifiers - MOSFET

Amplifiers - N-Channel Junction FET continued

2N5484	T0-92	3000	1.0	5.0	-0.3	-0.3	-1 nA	-25	5	1.0	120 @ 1 kHz
2N5485	T0.92	3500	4.0	10.0	-0.5	-4.0	-1 nA	-25	5	1.0	120 @ 1kHz
2N5486	T0-92	4000	8.0	20.0	-2.0	-6.0	-1 nA	-30	5	1.0	120 @ 1 kHz
ITE4416	T0-92	4500	5.0	15.0		-6.0	-100	-30	4	2.0	
J201	T0-92	500	0.2	1.0	-0.3	-1.5	-100	-40	4	1.0	$5 @ 1 \mathrm{kHz}$
J202	T0-92	1000	0.9	4.5	-0.8	-4.0	-100	-40	4	1.0	5 @ 1 kHz
J203	T0-92	1500	4.0	20	-2.0	-10.0	-100	-40	4	1.0	$5 @ 1 \mathrm{kHz}$
J204	T0.92	1500	1.2	typ	-0.5	-2.0	-100	. -25	4	1.0	10 @ 1 kHz
J308	T0-92	8000	12.0	60.0	-1.0		-1 nA	-25	-	-	10 @ 100 Hz
J309	T0-92	10,000	12.0	30.0	-1.0		-1 nA	-25	$\stackrel{-}{-}$	-	10 @ 100 Hz
J310	T0-92	8000	24.0	60.0	-2.0		-1 nA	-25	-	-	10 @ 100 Hz
U308	T0-52	10,000	12.0	60.0	-1.0	-6.0	-150	-25	7 typ.	4.0 typ.	10 @ 10 Hz typ.
U309	T0-52	10,000	12.0	30.0	-1.0	-4.0	-150	-25	7 typ.	4.0 typ.	10 @ 10 Hz typ.
U310	T0-52	10,000	24.0	60.0	-2.5	-6.0	-150	-25	7 typ.	4.0 typ.	10 @ 10 Hz typ.

Amplifiers - P-Channel Junction FET

Differential Amplifiers - Dual Monolithic N-Channel Junction FETs

Ordering Prelerred Part Number	mation Package	$\mathbf{V}_{\text {GSI-2 }}$ max mV	$\Delta V_{G S}$ max $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	I_{G} max pA	$\begin{gathered} \mathrm{BV}_{\mathrm{GSS}} \\ \min \\ \mathrm{~V} \end{gathered}$	$\underset{\min / \max }{V}$		g_{fs} min/max μ mho		IDSS min/max mA		$\begin{gathered} \mathrm{e}_{\mathrm{n}} \\ \max _{\mathrm{nV}} / \sqrt{ } \mathrm{Hz} \end{gathered}$
2N3921	T0-71	5	10	-250	-50	-	-3.0	1500	7500	1.0	10.0	-
2N3922	T0-71	5	25	-250	-50	-	-3.0	1500	7500	1.0	10.0	-
2N3954	T0-71	5	10	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3954A	T0-71	5	5	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3955	T0-71	10	25	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3955A	T0-71	10	10	-50	-50	-1.0	-4.5	1.	3	0.5	5.0	160 @ 100 Hz
2N3956	T0-71	15	50	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3957	T0-71	20	75	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N3958	T0-71	25	100	-50	-50	-1.0	-4.5	1	3	0.5	5.0	160 @ 100 Hz
2N5196	T0-71	5	5	-15	-50	-0.7	-4.0	700 @ 2	200 μ	0.7	7.0	20.@ 1 kHz
2N5197	T0-71	5	10	-15	-50	-0.7	-4.0	700 @ 2	200 A	0.7	7.0	20 @ 1 kHz
2N5198	T0-71	10	20	-15	-50	-0.7	-4.0	700 @ 2	$00 \mu \mathrm{~A}$	0.7	7.0	20 @ 1 kHz
2N5199	T0-71	15	40	-15	-50	-0.7	-4.0	700 @ 2	00 $\mu \mathrm{A}$	0.7	7.0	20 @ 1 kHz
2N5452	r0-71	5	5	. IGSS-100	-50	-1.0	-4.5	1	4	0.5	5.0	20 @ 1 kHz
2N5453	T0-71	10	10	IGSS-100	-50	-1.0	-4.5	1	4	0.5	5.0	20 @ 1 kHz
2N5454	T0.71	15	25	IGSS-100	-50	-1.0	-4.5	1	4	0.5	5.0	20 @ 1 kHz
2N5515	T0-71	5	5	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10 Hz
2N5516	T0-71	5	10	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10 Hz
2N5517	T0-71	10	20	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10 Hz
2N5518	T0-71	15	40	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10 Hz
2N5519	T0-71	15	80	-100	-40	-0.7	-4.0	1	4	0.5	7.5	30 @ 10 Hz
2N5520	T0-71	5	5	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10 Hz
2N5521	T0-71	5	10	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10 Hz
2N5522	T0-71	10	20	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10 Hz
2N5523	T0-71	15	40	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10 Hz
2N5524	T0-71	15	80	-100	-40	-0.7	-4.0	1	4	0.5	7.5	15 @ 10 Hz
2N5564	T0-71	5	10	-	-40	-0.5	-3.0	7.5	12.5	5.0	30.0	10 @ 10 Hz
2N5565	T0-71	10	25	-	-40	-0.5	-3.0	7.5	12.5	5.0	30.0	10 @ 10 Hz
2N5566	T0-71	20	50	-	-40	-0.5	-3.0	7.5	12.5	5.0	30.0	10 @ 10 Hz
2N5902	T0-99	5	5	-3	-40	-0.6	-4.5	70	250	0.3	0.5	100 @ 1 kHz
2N5903	T0-99	5	10	-3	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1 kHz
2N5904	T0-99	10	20	-3	-40	-0.6	-4.5.	70	250	0.03	. 05	100 @ 1 kHz
2N5905	T0-99	15	40	-3	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1 kHz
2N5906	T0-99	5	5	-1	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1 kHz
2N5907	T0-99	5	10	-1	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1 kHz
2N5908	T0-99	10	20	-1	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1 kHz
2N5909	T0-99	15	40	-1	-40	-0.6	-4.5	70	250	0.03	. 05	100 @ 1 kHz
2N5911	T0-99	10	20	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10 kHz
2N5912	T0-99	15	40	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10 kHz
2N6483	T0-71	5	5	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	10 @ 10 Hz
2N6484	T0-71	15	10	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	10 @ 10 Hz
2N6485	T0-71	15	25	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	10 @ 10 Hz
IMF5911	T0-99	10	20	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10 kHz
IMF5912	T0-99	15	40	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10 kHz
IMF6485	T0-71	25	40	-100	-50	-0.7	-4.0	1000	4000	0.5	7.5	15 @ 10 Hz
17500	T0-52	5	5	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10 Hz
17501	T0-52	5	10	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10 Hz
17502	T0-52	10	20	-5	-50	-0.7	-4.0	700	1600	0.7	7:0	35 @ 10 Hz
IT503	T0-52	15	40	-5	-50	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10 Hz
IT504	T0-52	25	100	-5	-25	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10 Hz
17505	T0-52	50	200	-5	-25	-0.7	-4.0	700	1600	0.7	7.0	35 @ 10 Hz
!T5911	T0-52	10	20	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10 kHz
IT5912	T0-52	15	40.	-100	-25	-1.0	-5.0	5/10@	5 mA	7.0	40.0	20 @ 10 kHz
U257	T0-99	100	-	-100	-25	-1.0	-5.0	5000	10000	5.0	40.0	30 @ 10 kHz
U401	T0-71	5	10	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10 Hz
U402	T0-71	10	10	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10 Hz
U403	T0-71	10	25	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10 Hz
U404	T0-71	15	25	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10 Hz
U405	T0-71	20	40	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10 Hz
U406	T0-71	40	80	-15	-50	-0.5	-2.5	2000	7000	0.5	10.0	20 @ 10 Hz
U421	10-99	10	10	0.1	-60	-0.4	-2.0	300	800		\% $\mu \mathrm{A}$	20 @ 10 Hz
U422	T0-99	15	25	0.1	-60	-0.4	-2.0	300	800		O $\mu \mathrm{A}$	20 @ 10 Hz
U423	T0-99	25	40	0.1	-60	-0.4	-2.0	300	800		O $\mu \mathrm{A}$	20 @ 10 Hz
U424	T0-99	10	10	0.5	-60	-0.4	-3.0	300	1000		O $\mu \mathrm{A}$	20 @ 10 Hz
U425	T0-99	15	25	0.5	-60	-0.4	-3.0	300	1000		\% A	20 @ 10 Hz
U426	T0-99	25	40	0.5	-60	-0.4	-3.0	300	1000		$0{ }_{\mu} \mathrm{A}$	20 @ 10 Hz

Differential Amplifiers - Dual Monolithic P-Channel MOSFETS (Enhancement)

Orderin Preferred Part Number	mation Package	$V_{G S(T H)}$ min/max V		BV Oss min/max V	IDss max pA	$\begin{gathered} \mathrm{I}_{\mathrm{GSS}} \\ \max _{\mathrm{pA}} \end{gathered}$	g_{fs} min $\mu \mathrm{mho}$	$I_{D(o n)}$ min/max mA		$r_{\text {DS(on) }}$ max Ω		$V_{G S}^{1-2}$ max mV
3N165	T0-99	-2	-5	-40	-200	-10	1500	-5.0	-30.	300	100	
3N166	T0-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300		
3N188	T0-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	100	Zener Protected
3N189	T0-99	-2	-5	-40	-200	-200	- 1500	-5.0	-30	300		Zener Protected
3N190	T0-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300		
3N191	T0-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300		

Differential Amplifiers - Dual NPN Bipolar Transistors

Orde Preferred Part Number	Package		$V_{B E 1-2}$ mV max	$\Delta V_{B E}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ \max	$\begin{gathered} \mathrm{h}_{\mathrm{FE}}{ }^{\circledR} \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \mathrm{~min} \end{gathered}$	$\begin{gathered} I_{B 1-2} @ \\ I_{C}=10 \mu \mathrm{~A} \\ V_{C E}=5 \mathrm{~V} \\ n A \\ \max ^{2} \end{gathered}$	$\mathrm{BV}_{\text {CEO }}$ V min		$\begin{gathered} \mathrm{I}_{\text {CBO }} \\ \mathrm{nA} \\ \max \end{gathered}$	Noise dB max	$\begin{gathered} \mathrm{f}_{\mathrm{t}} \\ \mathrm{MHz} @ \mathrm{I}_{\mathrm{C}} \\ \min \\ \hline \end{gathered}$	$C_{\text {obo }}$ pF max	Structure
2N4044	T0-78		3	3	200	5	60		. 1	2	200 @ 1 mA	0.8	Dielec. Isol.
2N4045	T0-78		5	10	80	25	45		. 1	3	150 @ 1 mA	0.8	Dielec. Isol.
2N4100	T0-78		5	5	150	10	55		. 1	3	150 @ 1 mA	0.8	Dielec. Isol.
2N4878	T0-71		3	3	200	5	60		. 1	2	200 @ 1 mA	0.8	Dielec. Isol.
2N4879	T0-71		5	5	150	10	55		. 1	3	150 @ 1 mA	0.8	Dielec. Isol.
2N4880	T0-71		5	10	80	25	45		. 1	3	150 @ 1 mA	0.8	Dielec. Isol.
IT120	T0-78	T0-71	2	5	200	5	45		1	2 typ.	150 @ 1 mA	2	Junc. Isol.
IT120A	T0-78	T0-71	1	3	200	2.5	45		1	2 typ.	150 @ 1 mA	2	Junc. Isol.
IT121	- T0-78	T0-71	3	10	80	25	45		1	2 typ.	180 @ 1 mA	2	Junc. Isol.
IT122	T0-78	T0-71	5	20	80	25	45		1	2 typ.	180 @ 1 mA	2	Junc. Isol.
IT124	T0-78		5	10	1500	$0.6 \mathrm{~A} \mathrm{~V}_{C E}=1 \mathrm{~V}$	2	1	. 1	3	100 @ $200 \mu \mathrm{~A}$	0.8	Dielec. Isol.
IT126	T0-78	T0-71	1	3	200	2.5	60		. 1	1 typ.	250 @ 10 mA	4	Dielec. Isol:
IT127	T0-78	T0-71	2	5	200	5	45		. 1	1 typ.	250 @ 10 mA	4	Dielec. Isol.
IT128	T0-78	T0-71	5	10	100	10	45		. 5	1 typ.	250 @ 10 mA	4	Dielec. Isol.
IT129	T0-78	T0-71	10	20	100	25	45		. 5	1 typ.	250 @ 10 mA	4	Dielec. Isol.
IT140	T0-71		1	3	300	2.5	22	-	1	2 typ.	250 @ 10 mA	2	Junc. Isol.

Note: Intersil offers the following military qualified devices:*		
N-channel switches	N-channel amplifiers	P-channel switches
2N4091 JAN, JANTX, JANTXV	2N3821 JAN, JANTX, JANTXV	2N5114 JAN, JANTX, JANTXV
2N4092 JAN, JANTX, JANTXV	2N3823 JAN, JANTX, JANTXV	2N5115 JAN, JANTX, JANTXV
2N4093 JAN, JANTX, JANTXV		
2N5116 JAN, JANTX, JANTXV		
2N456 JAN, JANTX, JANTXV		
2N485 JAN, JANTX, JANTXV		2N2609 JAN

[^0]DISCRETE SELECTOR GUIDE

	Detailed Application	Important Parameters	Recommended Part Numbers							
			Single N -Channel JFET	$\begin{gathered} \text { Single } \\ \text { P-Channel } \\ \hline \text { JFET } \\ \hline \end{gathered}$	Dual N-Channel JFET	Single N-Channel MOSFET	Single P-Channel MOSFET	Dual P-Channel MOSFET	$\begin{aligned} & \text { Dual } \\ & \text { NPN } \end{aligned}$	Dual Bipolar
Amplifiers	Audio	low noise	$\begin{aligned} & \hline \text { 2N4220, } \\ & \text { 2N3821 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2607 } \\ & \text { 2N5460 } \end{aligned}$	$\begin{aligned} & \text { 2N3958 } \\ & \text { IT500-5 } \end{aligned}$	2N4351 3N170-1 M116 IT1750	3N163 3N164 3N172 IT1700	3N165	2N4044	IT130
	Buffer	low leakage, high gain	2N4221	$\begin{aligned} & \hline \text { 2N2609 } \\ & \text { 2N5462 } \end{aligned}$	$\begin{aligned} & \text { 2N5905 } \\ & \text { U426 } \end{aligned}$				IT120	IT136
	Differential	good matching \& drift	$-$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \text { 2N3954 } \\ & \text { U401 } \\ & \text { 2N5515 } \end{aligned}$	-	-		$\begin{aligned} & \text { IT126 } \end{aligned}$	2N3810
	Fet Input Op Amp					-	-		-	-
	High Impedance	low leakage	2N4117A	$\begin{aligned} & \hline \text { IT100 } \\ & \text { J176 } \\ & \text { 2N5116 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5905 } \\ & \text { IT503 } \\ & \text { U426 } \\ & \hline \end{aligned}$	IT1750 2N4351 3N170-1 M116	$\begin{gathered} \text { IT1700 } \\ \text { 3N163 } \\ \text { 3N164 } \\ \text { 3N172 } \end{gathered}$		-	-
	High Frequency	high gain, low. capacitance	$\begin{array}{\|l\|} \hline \text { U308 } \\ \text { 2N5397 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N5114 } \\ \text { J176 } \\ \hline \end{array}$	$\begin{aligned} & \text { 2N5912 } \\ & \text { IT5912 } \\ & \hline \end{aligned}$			3N188	$\begin{aligned} & \hline \text { 2N4044 } \\ & \text { IT120 } \end{aligned}$	$\begin{aligned} & \text { IT130 } \\ & \text { IT136 } \end{aligned}$
	Low Supply Voltage	low pinch-off voltage	$\begin{array}{\|l\|} \hline \text { 2N4338 } \\ \text { 2N3687 } \end{array}$	$\begin{aligned} & \hline \text { 2N5265 } \\ & \text { J177 } \end{aligned}$	$\begin{aligned} & \hline \text { U406 } \\ & \text { 2N3958 } \end{aligned}$				$\begin{aligned} & \text { IT126 } \\ & \text { IT140 } \end{aligned}$	2N3810
	Low Noise	low noise	2N4867A	$\begin{aligned} & \hline \text { 2N5116 } \\ & \text { J176 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 2N5519 } \\ \text { 2N5199 } \end{array}$				-	-
	Preamplifier	high gain	2N5397U3102N4393ITE4393	$\begin{aligned} & \text { 2N5116 } \\ & \text { J176 } \\ & \text { IT100 } \end{aligned}$	2N5566 U406 IT5912 2N5912				$\begin{gathered} \text { 2N4044 } \\ \text { IT120 } \end{gathered}$	$\begin{aligned} & \hline \text { IT130 } \\ & \text { IT136 } \end{aligned}$
	Video	high gain, low capacitance							$\begin{aligned} & \text { IT126 } \\ & \text { IT140 } \end{aligned}$	2N3810
Mixers	VHF UHF	RF parameters, high gfs $/ \mathrm{C}_{\text {iss }}$	U310 2N5397 J310 2N5484 $2 N 4392$	$\begin{aligned} & \hline \text { IT100 } \\ & \text { J174 } \\ & \text { 2N5114 } \end{aligned}$	2N6485 IT5912 2N5912	-	-	-	-	-
Switches	Commutators Sample and Hold	Iow Crss	$\begin{aligned} & \hline \text { 2N4392 } \\ & \text { ITE4391 } \end{aligned}$	$\begin{aligned} & \hline \text { 2N3993-4 } \\ & \text { 2N5114-6 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N5564-6 } \\ & \text { 2N5912 } \end{aligned}$	IT1750 3N170-1	$\begin{aligned} & \hline \text { IT1700 } \\ & 3 N 163 \\ & \\ & 3 N 164 \\ & \text { 3N172 } \end{aligned}$	3N165 3N188	-	.
	Analog Gates	fast switching,	2N4091-3 2N4391-3 ITE4391-3 2N5432-4 $J 111-3$ $J 105-7$	$\begin{aligned} & \text { 2N5114-6 } \\ & \text { J174-7 } \\ & \text { IT100-1 } \end{aligned}$						
	Digital	Iow rDS(on)								
	Chopper									
	Integrator Reset	$\begin{aligned} & \text { low rDS(on), high } \\ & \text { loss } \\ & \hline \end{aligned}$								
Voltage Control Resistors	Gain Control Amplitude Stability Attenuators	high VGS(off)	$\begin{aligned} & \text { VCR2N } \\ & \text { VCR4N } \\ & \text { VCR7N } \\ & \hline \end{aligned}$	VCR3P VCR5P	VCR11N	-	-	-	-	-
$\begin{array}{\|c} \text { Protection } \\ \text { Diodes } \\ \hline \end{array}$	Signal Clipping and Clamping	low leakage current	-	-	-	-	-	-	ID100-1	-

VCR2N/3PI4N/5PI7N Voltage-Controlled Resistors

APPLICATIONS

- Small Signal Attenuators
- Filters
- Amplifier Gain Control
- Oscillator Amplitude Control

ABSOLUTE MAXIMUM RATING $\left(25^{\circ} \mathrm{C}\right)$
 Gate-Drain or Gate-Source Voltage . 15 V
 Gate Current 10 mA
 Total Device Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 (Derate at $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $\left.175^{\circ} \mathrm{C}\right) \ldots . .300 \mathrm{~mW}$
 Storage Temperature Range $\ldots \ldots-55$ to $+175^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted) N-Channel VCR FETs

Characteristic				VCR2N		VCR4N		VCR7N		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max			
1	SAATC	IGSS	Gate Reverse Current		-5		-0.2		-0.1	nA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2		BVGSS	Gate-Source Breakdown Voltage	-15		-15		-15		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
3		V_{GS} (off)	Gate-Source Cutoff Voltage	-3.5	-7	-3.5	-7	-2.5	-5		$\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{VDS}=10 \mathrm{~V}$	
4		rds(on)	Drain Source ON Resistance	20	60	200	600	4,000	8,000	Ω	$V_{G S}=0, l_{D}=0$	$\mathrm{t}=1 \mathrm{kHz}$
5	D	Cdgo	Drain-Gate Capacitance		7.5		3		1.5	pF	$\mathrm{V}_{\mathrm{GD}}=-10 \mathrm{~V}, \mathrm{IS}=0$	$\mathrm{f}=1 \mathrm{MHz}$
6	Y	Csgo	Source-Gate Capacitance		7.5		3		1.5		$\mathrm{VGS}=-10 \mathrm{~V}, \mathrm{ID}=0$	

P-Channel VCR FETs

			Characteristic					Unit	Test Condition	
1	S	IGss	Gate Reverse Current		20		10	nA	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2	A	BVGSS	Gate-Source Breakdown Voltage	15		15		v	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
3		VGS(off)	Gate-Source Cutoff Voltage	3.5	7	3.5	7		$\mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}$	
4	C	rds(on)	Drain-Source ON Resistance	70	200	300	900	Ω	$V_{G S}=0, \mathrm{lD}=0$	$\mathrm{f}=1 \mathrm{kHz}$
5	D	Cdgo	Drain-Gate Capacitance		6		3		$\mathrm{VGD}^{\text {a }}=10 \mathrm{~V}$, IS $=0$	
6	Y	$\mathrm{C}_{\text {sgo }}$	Source-Gate Capacitance		6		3		$\mathrm{VGS}=10 \mathrm{~V}, \mathrm{ld}=0$	

Intersil cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Intersil product. No other circuit patent licenses are implied. Intersil reserves the right to change the circuitry and specifications without notice at any time.

JFETS AS VOLTAGE CONTROLLED RESISTORS

The voltage controlled resistor is a junction field effect transistor whose drain to source ON resistance is controlled by gate to source voltage.
The gate control terminal is high impedance thereby allowing negligible control current. The gate voltage is zero for minimum resistance, and increases as the gate voltage approaches the pinch-off voltage.
This VCR is intended for use on applications using low level AC signals. Figure 1 shows the output characteristics, with an enlarged graph of VDS $=0$ for AC signals with no DC component. Operation is in the first and third quadrants; the device will operate in the first quadrant only if a constant current is applied to the drain and the input signal level is kept low.

Figure 1 also shows that certain combinations of gate control voltage and signal levels will cause resistance modulation. This distortion may be improved by introducing local feedback as shown in figure 2 for best frequency response and impedance levels; eliminating the feedback capacitor will require the gate control voltage to be double for the same ON resistance. The resistor values should be equal, and about 100k .
Best gate control voltage for best linearity is up to about 0.8 V PK; ON resistance increases rapidly beyond this point.

FIGURE 1

FIGURE 2

FEATURES

- $I_{R}=0.1 \mathrm{pA}$ (typical)
- $\mathrm{BV}_{\mathrm{R}}>30 \mathrm{~V}$
- $\mathrm{C}_{\mathrm{r}}=0.75 \mathrm{pF}$ (typical)

GENERAL DESCRIPTION

The ID100 and ID101 are monolithic dual diodes intended for use in applications requiring extremely low leakage currents. Applications include interstage coupling with reverse isolation, signal clipping and clamping and protection of ultra low leakage FET differential dual and operational amplifiers.

ABSOLUTE MAXIMUM RATINGS

(@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

Maximum Temperatures	
Storage Temperature $\quad-65^{\circ}$	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec. time lim	melimit) $+300^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	ature $\quad 300 \mathrm{~mW}$
Linear Derating	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Currents	
V_{R} Reverse Voltage	30 V
$\mathrm{V}_{\mathrm{D}_{1} \mathrm{D}_{2}}$ Diode to Diode Voltage	$\pm 50 \mathrm{~V}$
I_{F} Forward Current	20 mA
I_{R} Reverse Current	$100 \mu \mathrm{~A}$

PIN
 CONFIGURATIONS

T0.71
T0.78

* These leads are not to be tied together nor connected to the circuit in any way.

CHIP
 TOPOGRAPHY

ORDERING INFORMATION

TO78	TO71	WAFER	CHIP
ID100	ID101	ID100/W	ID101/D

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

TYPICAL CHARACTERISTICS OF ID100/ID101

FEATURES

- Interfaces Directly with T2L Logic Elements so that No Extra Driver Stage is Required.
- rDS(on) < 75Ω for 5V Logic Drive
- $\mathrm{I}_{\mathrm{D} \text { (off) }}<\mathbf{1 0 0} \mathbf{~ p A}$

GENERAL DESCRIPTION

This P-channel JFET has been designed to directly interface with $T^{2} L$ logic, thus eliminating the need for costly drivers, in analog gate circuitry. Bipolar inputs of $\pm 15 \mathrm{~V}$ can be switched. The FET is OFF for hi level inputs (+5 V or $+15 \mathrm{~V})$ and ON for low level inputs $(<0.5 \mathrm{~V}$ for IT100 $<$ 1.5 V for IT101.

ABSOLUTE MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature . -65°	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	
10 sec time limit)	$+300^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	ture $\quad 300 \mathrm{~mW}$
Linear Derating	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current	
$\mathrm{V}_{\text {GS }}$ Gate to Source Voltage	35 V
$\mathrm{V}_{\text {GD }}$ Gate to Drain Voltage	35 V
$\mathrm{I}_{\mathrm{G}} \quad$ Gate Current	50 mA

PIN CONFIGURATION

T0.18

CHIP TOPOGRAPHY

ORDERING INFORMATION

TO-18	WAFER	DICE
IT100	IT100/W	IT100/D
IT101	IT101/W	IT101/D

ELECTRIC CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

	CHARACTERISTIC	IT100		IT101		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
IDSS	Max Drain Current	-10	-	-20	-	mA	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}$
V	Pinch Off Voltage	2	4.5	4	10	V	$I_{D}=1 n A, V_{D S}=-15 \mathrm{~V}$
BVGSS	Gate-Source Breakdown Voltage	35		35		V	$I_{G}=1 \mu \mathrm{~A}, V_{D S}=0$
IGSS	Gate Leakage Current		200		200	pA	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$
g_{fs}	Transconductance	-8		-8		mmho	$V_{G S}=0, V_{D S}=-15 \mathrm{~V}$
$\mathrm{g}_{\text {OS }}$	Output Conductance		-1		-1	mmho	$V_{G S}=0, V_{D S}=-15 \mathrm{~V}$
ID (off)	Drain (OFF) Leakage		-100		-100	pA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$
rdS(on)	Drain-Source "ON" Resistance		75		60	Ω	$V_{G S}=0, V_{D S}=-0.1 \mathrm{~V}$
$\mathrm{C}_{\text {iss }}$	Input Capacity		35		35	pF	VDG $=-20 \mathrm{~V}, \mathrm{VGS}^{\prime}=0$
Crss	Reverse Transfer Capacity		12		12	pF	$V_{\text {DG }}=-10 \mathrm{~V}, \mathrm{IS}=0$

J105-J107 N-Channel JFET

APPLICATIONS

Analog Switches, Choppers, Commutators

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage -25 V
Gate Current . 50mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$).
. 360 mW
Operating Temperature Range -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. -55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
($1 / 16^{\prime \prime}$ from case for 10 seconds). $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

PIN CONFIGURATION

TO-92

ORDERING INFORMATION

J105	TO-92 only
J106	TO-92 only
J107	TO-92 only

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.

J111-J113 N-Channel JFET

APPLICATIONS

- Analog Switches
- Choppers
- Commutators

FEATURES

- Low Cost
- Automated Insertion Package
- Low Insertion Loss
$r_{\text {DS(on) }}<30 \Omega$ (J111)
- No Offset or Error Voltage Generated by Closed Switch

Purely Resistive

High Isolation Resistance from Driver

- Fast Switching
$t_{\mathrm{D} \text { (on) }}+\mathbf{t}_{\mathrm{r}}=13 \mathrm{~ns}$ Typical
- Short Sample and Hold Aperture Time
$\mathrm{C}_{\mathrm{gd}(\mathrm{off})}<5 \mathrm{pF}$
Cgs(off) $<5 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS (@ $\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage 35 V
Gate Current ... 50 mA
Total Device Dissipation (TLEAD $=25^{\circ} \mathrm{C}$) 625 mW
Power Derating (to $+135^{\circ} \mathrm{C}$) \ldots.
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Operating Temperature Range.............$-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds) $\ldots+300^{\circ} \mathrm{C}$

ORDERING INFORMATION

TO-92	WAFER	DICE
J 111	$\mathrm{~J} 111 / \mathrm{W}$	J111/D
J 112	$\mathrm{~J} 112 / \mathrm{W}$	$\mathrm{J} 112 / \mathrm{D}$
J 113	$\mathrm{~J} 113 / \mathrm{W}$	$\mathrm{J} 113 / \mathrm{D}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

NOTES:

1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse Test duration $300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.

LM114/H, LM114A/AH Dual NPN Monolithic Transistor

GENERAL DESCRIPTION

These devices contain a pair of junction-isolated NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible extremely tight parameter matching at low cost. Further, advanced processing techniques yield exceptionally high current gains at low collector currents, virtual elimination of "popcorn noise," low leakages and improved long-term stability.

Although designed primarily for high breakdown voltage and exceptional DC characteristics, these transistors have surprisingly good high-frequency performance. The gain-bandwidth product is 300 MHz with 1 mA collector current and 5 V col-lector-base voltage and 22 MHz with $10 \mu \mathrm{~A}$ collector current. Collector-base capacitance is only $\approx 100 \mathrm{pF}$ at 5 V .

ABSOLUTE MAXIMUM RATINGS

Collector-Base Voltage ($\mathrm{BV}_{\mathrm{CBO}}$) 45 V
Collector-Emitter Voltage (BVCER). 45 V
Collector-Collector Voltage 45 V
Emitter-Base Voltage ($B V_{E B O}$) 6 V
Collector Current 20 mA
Total Power Dissipation (Note 1) 0.8W
perating Junction Temperature $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $+300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Note 2)

FEATURES

- Low offset voltage -0.5 mV maximum
- Low drift $-2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- High current gain -500 minimum at $10 \mu \mathrm{~A}$
- Tight beta match -10% maximum
- High breakdown voltage - to 60V
- Matching guaranteed over a 0 V to 45 V collector - base voltage range
- CMRR $>100 \mathrm{~dB}$

Note 1: The maximum dissipation given is for a $+25^{\circ} \mathrm{C}$ case temperature. For operation under other conditions, the device must be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+70^{\circ} \mathrm{C} / \mathrm{W}$ junction to case of $+230^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: These specifications apply for $T_{A}=+25^{\circ} \mathrm{C}$ and $0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CB}} \leqslant \mathrm{V}_{\mathrm{MAX}}$, unless otherwise specified. For the LM114 and LM114A, $\mathrm{V}_{\mathrm{MAX}}=$ 30 V .

M116

Diode Protected N-Channel Enhancement Mode MOS FET

GENERAL DESCRIPTION

- Low IGSS
- Integrated Zener Clamp Protects the Gate

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Drain-to-Source Voltage
Gate-to-Drain Voltage.
Drain Current
Gate Zener Current
Storage Temperature
Operating Junction Temperature
Total Device Dissipation (Derate
$2.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$)
225 mW

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		M116		UNITS	TEST CONDITIONS
		MIN	MAX		
${ }^{\text {r }}$ DS $(0 n)$	Drain Source ON Resistance		$\begin{aligned} & 100 \\ & 200 \end{aligned}$	Ω	$\begin{aligned} & V_{G S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0 \end{aligned}$
$\mathrm{V}_{\text {GS }}$ (th)	Gate Threshold Voltage	1	5	V	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0$
BVDSS	Drain-Source Breakdown Voltage	30		V	$\mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$
BVSDS	Source-Drain Breakdown Voltage	30		V	$\mathrm{I}_{\mathrm{S}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0$
BVGBS	Gate-Body Breakdown Voltage	30	60	V	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {SB }}=\mathrm{V}_{\text {DB }}=0$
ID(OFF)	Drain Cutoff Current		10	nA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$
IS(OFF)	Source Cutoff Current		10	nA	$\mathrm{V}_{\mathrm{SD}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0$
${ }^{\text {G GSS }}$	Gate-Body Leakage		100	pA	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=V_{\text {BS }}=0$
$\begin{aligned} & \mathrm{C}_{\mathrm{gs}} \text { or } \\ & \mathrm{C}_{\mathrm{gd}} \end{aligned}$	Gate-Source or Gate-Drain Capacitance		2.5	pF	$V_{G B}=V_{D B}=V_{S B}=0, f=1 \mathrm{MHz}$ Body Guarded
C_{db}	Drain-Body Capacitance		7	pF	$\mathrm{V}_{\mathrm{GB}}=0, \mathrm{~V}_{\mathrm{DB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Input Capacitance		10	pF	$\begin{aligned} & V_{G B}=0, V_{D B}=10 \mathrm{~V}, V_{B S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$

FEATURES

- High $h_{\text {FE }}$ at Low Current $>200 @ 10 \mu \mathrm{~A}$
- Low Output Capacitance <2.0̀ pf
- $\mathrm{I}_{\mathrm{B}_{1}}-\mathrm{I}_{\mathrm{B}_{2}}<2.5 \mathrm{nA}$
- Tight V_{BE} Tracking $<3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Maximum Voltage \& Current for Each Transistor		
$V_{\text {CBO }}$	Collector to Base Voltage	45 V
$\mathrm{V}_{\text {CEO }}$	Collector to Emitter Voltage	45 V
$V_{\text {EBO }}$	Emitter to Base Voltage	7.0 V
$\mathrm{V}_{\text {CCO }}$	Collector to Collector Voltage	60 V
${ }^{1}$	Collector Current	50 mA

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		IT120A		IT120		IT121		1 T 122		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
hFE	DC Current Gain	200		200		80		80			${ }^{1} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$
$h_{\text {FE }}$	DC Current Gain	225		225		100		100			$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$
$\mathrm{h}_{\mathrm{FE}}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	75		75		30		30			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base On Voltage		0.7		0.7		0.7		0.7	V	$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {CE }}$ (SAT)	Collector Saturation Voltage		0.5		0.5		0.5		0.5	V	$\mathrm{I}^{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~mA}$
${ }^{\text {I CBO }}$	Collector Cutoff Current		1.0		1.0		1.0		1.0	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=45 \mathrm{~V}$
$\left.{ }^{1} \mathrm{CBO}{ }^{(+150}{ }^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		10		10.		10		10	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=45 \mathrm{~V}$
IEBO	Emitter Cutoff Current		1.0		1.0		1.0		1.0	nA	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$
COB	Output Capaçitance		2.0		2.0		2.0		2.0	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {TE }}$	Emitter Transition Capacitance		2.5		2.5		2.5		2.5	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\text {EB }}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C}_{1}}, \mathrm{C}_{2}$	Collector to Collector Capacitance		4.0		4.0		4.0		4.0	pF	$\mathrm{V}_{\text {CC }}=0$
${ }^{\mathrm{I}} \mathrm{C}_{1} \cdot \mathrm{C}_{2}$	Collector to Collector Leakage Current		10		10		10		10	nA	$\mathrm{V}_{\text {CC }}= \pm 60 \mathrm{~V}$
$\mathrm{V}_{\text {CEO }}$ (SUST)	Collector to Emitter Sustaining Voltage	45		45		45		45		V	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
GBW	Current Gain Bandwidth Product	$\begin{array}{r} 10 \\ 220 \end{array}$		$\begin{array}{r} 10 \\ 220 \end{array}$		$\begin{array}{r} 7 \\ 180 \end{array}$		$\begin{array}{r} 7 \\ 180 \end{array}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & I_{C}=10 \mu \mathrm{~A}, V_{C E}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \end{aligned}$
$\left\|V_{B_{E}}-V_{B E_{2}}\right\|$	Base Emitter Voltage Differential		1		2		3		5	mV	$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$
$\left\|I_{B_{1}}{ }^{-1} \mathrm{~B}_{2}\right\|$	Base Current Differential		2.5		5		25.		25	nA	$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$
$\left.\mid \triangle\left(V_{B E^{1}}-V_{B^{\prime}}\right)_{2}\right) \mid$	Base-Emitter Voltage Differential Change with Temperature		3		5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \end{aligned}$

NOTES: (1) These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
(2) The lowest of two $\dot{r}-\mathrm{c}$ readings is taken as h_{FE} for purposes of this ratio.

Super-Beta Dual Monolithic NPN Transistor

FEATURES

- Very High Gain - hfe $\geq 1500 @ 1$ and $10 \mu \mathrm{~A}$
- Low Output Capacitance - $\mathrm{C}_{\text {obo }} \leq 0.8 \mathrm{pF}$
- Tight $V_{B E}$ Matching - $\left|V_{B E 1}-V_{B E 2}\right|-2 \mathbf{m V}$ TYP.
- High fT - 100 MHz

ABSOLUTE MAXIMUM RATINGS (Note 1)
@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature $+200^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 second time limit) $+260^{\circ} \mathrm{C}$
Maximum Power Dissipation ONE SIDE BOTH SIDES Device Dissipation @ Free Air 400 mW 750 mW Linear Derating Factor $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Maximum .Voltage and Current for Each Transistor
Vсbo Collector to Base Voltage 2 V
VCEO Collector to Emitter Voltage 2 V
VEBO Emitter to Base Voltage (Note 2) 7V
Vcco Collector to Collector Voltage 100V
Ic Collector Current 10 mA

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN	MAX	UNITS	CONDITIONS
hFE	DC Current Gain	1500			$\mathrm{IC}=1 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$
hFE	DC Current Gain	1500			$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\mathrm{hFE}^{\left(-55^{\circ} \mathrm{C}\right)}$	DC Current Gain	600			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base "ON" Voltage		0.7	V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\mathrm{V}_{\text {CE }}(S A T)$	Collector Saturation Voltage		0.5	V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$
ICBO	Collector Cutoff Current		100	pA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
$\mathrm{ICBO}\left(+150^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		100	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
Iebo	Emitter Cutoff Current		100	pA	$\mathrm{IC}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}$
Cobo	Output Capacitance		0.8	pF	$\mathrm{IE}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
CTE	Emitter Transition Capacitance		1.0	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C} 1 \mathrm{C} 2}$	Collector to Collector Capacitance		0.8	pF	$V_{C c}=0$
$\mathrm{IC1C2}$	Collector to Collector Leakage Current		250	pA	$\mathrm{V}_{\text {cc }}= \pm 50 \mathrm{~V}$
f_{T}	Current Gain Bandwidth Product	10		MHz	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
f_{T}	Current Gain Bandwidth Product	100		MHz	$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$
NF	Narrow Band Noise Figure.		3	dB	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{KHz}, \mathrm{RG}_{\mathrm{G}}=10 \mathrm{Kohms}, \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$
BVCBO	Collector-Base Breakdown Voltage	2		V	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
BVEbo	- Emitter-Base Breakdown Voltage	7		V	$\mathrm{IE}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{IC}=0$
VCEO(SUST)	Collector-Emitter Sustaining Voltage	2		V	$\mathrm{IC}^{\prime}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$

MATCHING CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTICS	TYP	MAX	UNITS	CONDITIONS
$\left\|\mathrm{V}_{\text {BE1 }}-\mathrm{V}_{\text {BE2 }}\right\|$	Base Emitter Voltage Differential	2	5	mV	$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\left\|\left(V_{B E 1}-\mathrm{V}_{\text {BE }}\right)\right\| /{ }^{\circ} \mathrm{C}$	Base Emitter Voltage Differential Change with Temperature	5	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{VCE}=1 \mathrm{~V} \\ & \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\left\|\left\|\mathrm{B}_{1}-\mathrm{I}_{\mathrm{B} 2}\right\|\right.$	Base Current Differential		. 6	nA	TC $=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$

NOTES:

1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{Amps}$.

FEATURES

- High Gain at Low Current - $h_{\text {FE }} \geq \mathbf{2 3 0}$ at 10 mA , $V_{C E}=5 \mathrm{~V}$
- Low Output Capacitance - Cobo ≤ 3 pF
- Tight I_{B} Match $-\mathrm{I}_{\mathrm{B}_{1.2}}<.25 \mu \mathrm{~A}$ at 1 mA , $V_{C E}=5 V$
- Tight V_{BE} Tracking $-\triangle\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right) \leq 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Dielectrically isolated matched pairs for differential amplifiers

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Storage Temperature	$+200^{\circ} \mathrm{C}$

	T071			TO78	
Maximum Power Dissipation	ONE SIDE	BOT	DES	ONE SIDE B	BOTH SIDES
Total Dissipation at $25^{\circ} \mathrm{C}$					
Case Temperature	0.3 Watt			0.4 Watt	0.75 Watt
Derating Factor	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$			$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltage and Current for Each Transistor			IT126,7	IT128	IT129
$V_{\text {CBO }}$ Collector to Base V			60 V	55 V	45 V
$V_{\text {CEO }}$ Collector to Emitte	oltage.		60 V	55 V	45 V
VEBO Emitter to Base Vol	(Note 2)		7 V	7 V	7 V
$V_{\text {CCO }}$ Collector to Collect	Voltage		70 V	70 V	70 V
IC Collector Current			100 mA	100 mA	A . 100 mA

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

IT130-IT132 Dual Monolithic PNP Transistor

FEATURES

- High hre at Low Current > 200 @ $10 \mu \mathrm{~A}$
- Low Output Capacitance <2.0 pF
- $\mathrm{I}_{\mathrm{B}_{1}} \cdot \mathrm{I}_{\mathrm{B} 2}<2.5 \mathrm{nA}$
- Tight $\mathrm{V}_{\mathbf{B E}}$ Tracking $<3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS (Note 1)

 @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)| Maximum Temperatures | $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Storage Temperature | |
| Operating Junction Temperature | $+200^{\circ} \mathrm{C}$ |

Maximum Power Dissipation
TO. 78
TO. 71
ONE SIDE BOTH SIDES ONE SIDE BOTHSIDES

| Total Dissipation at $25^{\circ} \mathrm{C}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Case Temperature | 0.4 Watt | 0.75 Watt | 0.3 Watt | 0.5 Watt |
| Derating Factor | $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ | $2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |

Maximum Voltage \& Current for Each Transistor

$V_{\text {CBO }}$ Collector to Base Voltage	45 V
V $_{\text {CEO }}$ Collector to Emitter Voltage	45 V
V EBO $^{\text {Emitter to Base Voltage }}$	7.0 V
V CCO Collector to Collector Voltage $^{\text {C Collector Current }}$	60 V
C	50 mA

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		IT130A		IT130		IT131		IT132		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
hFE	DC Current Gain	200		200		80		80			${ }^{1} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}$ CE $=5.0 \mathrm{~V}$	
hFE	DC Current Gain	225		225		100		100			$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
$h_{\text {FE }}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	75		75		30		30			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base On Voltage		0.7		0.7		0.7		0.7	V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
$\mathrm{V}_{\text {CE }}(\mathrm{SAT})$	Collector Saturation Voltage		0.5		0.5		0.5		0.5	V	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~mA}$	
${ }^{\text {I CBO }}$	Collector Cutoff Current		-1.0		-1.0		-1.0		-1.0	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=45 \mathrm{~V}$	
$\left.{ }^{1} \mathrm{CBO}{ }^{(+150}{ }^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		-10		-10		-10		-10	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}$	
IEBO	Emitter Cutoff Current		-1.0		-1.0		-1.0		-1.0	nA	$\mathrm{I}^{\prime}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {ob }}$	Output Capacitance		2.0		2.0		2.0		2:0	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {te }}$	Emitter Transition Capacitance		2.5		2.5		2.5		2.5	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$	
$\mathrm{C}_{\mathrm{C}_{1}-\mathrm{C}_{2}}$	Collector to Collector Capacitance		4.0		4.0		4.0		4.0	pF	$V_{C C}=0$	
${ }^{1} \mathrm{C}_{1}-\mathrm{C}_{2}$	Collector to Collector Leakage Current		10		10		10		10	nA	$V_{C C}= \pm 60 \mathrm{~V}$	
$\mathrm{V}_{\text {CEO }}$ (SUST)	Collector to Emitter Sustaining Voltage	-45		-45		-45		-45		V	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	
GBW	Current Gain Bandwidth Product	$\begin{array}{\|r} \hline 5 \\ 110 \\ \hline \end{array}$		$\begin{array}{r} 5 \\ 110 \\ \hline \end{array}$		$\begin{array}{r} 4 \\ 90 \end{array}$		$\begin{array}{r} 4 \\ 90 \end{array}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	
$\left\|V_{B^{\prime}}-V_{B^{\prime}}\right\|$	Base Emitter Voltage Differential		1		2		3		5	mV	$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
$\\|_{\mathrm{B}_{1}{ }^{-1} \mathrm{~B}_{2} \mid}$	Base Current Differential		2.5		5		25		25	nA	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
$\left\|\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right)\right\|$	Base-Emitter Voltage Differential Change with Temperature		3		5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \end{aligned}$	

NOTES: (1) These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
(2) The lowest of two $h_{F E}$ readings is taken as $h_{F E_{1}}$ for purposes of this ratio.

IT136-IT139 Dual Monolithic PNP Transistor

FEATURES

- High Gain at Low Current $-h_{\text {FE }} \geqslant 200 @ 1 m A$
- Low Output Capacitance $-\mathrm{C}_{\mathrm{obo}}<3 \mathrm{pF}$
- Tight I_{B} Match $-\mathrm{I}_{\mathrm{B}_{1-2}}<.25 \mu \mathrm{~A} @ 1 \mathrm{~mA}-5 \mathrm{~V}$
- Tight V_{BE} Tracking $-\Delta\left(\mathrm{V}_{\mathrm{BE}}^{1} 10-\mathrm{V}_{\mathrm{BE}_{2}}\right) \leqslant 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Dielectrically isolated matched pairs for differential amplifiers.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures			$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	
Storage Temperature				
Operating Junction Temperature			. $+200^{\circ} \mathrm{C}$	
Maximum Power Dissipation TO71			TO78	
	ONE SIDE	BOTH SIDES	ONE SIDE	BOTH
Total Dissipation @ $25^{\circ} \mathrm{C}$				
Case Temperature	0.3 Watt	0.5 Watt	0.4 Watt	0.75
Derating Factor	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	4.3 mW

Maximum Voltage and Current for Each Transistor

	IT136,7	IT138	$1 T 139$	
$\mathrm{~V}_{\text {CBO }}$	Collector to Base Voltage	60 V	55 V	45 V
$\mathrm{~V}_{\text {CEO }}$	Collector to Emitter Voltage	60 V	55 V	45 V
$\mathrm{~V}_{\text {EBO }}$	Emitter, to Base Voltage	7 V	7 V	7 V
$\mathrm{~V}_{\text {CCO }}$	Collector to Collector Voltage	70 V	70 V	70 V
I_{C}	Collector Current	100 mA	100 mA	100 mA

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

.	PARAMETERS	IT136		$1 T 137$		IT138		IT139		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{BV}_{\mathrm{C}_{1} \mathrm{C}_{2}}$	Collector to Collector Breakdown Voltage	100		100		100		100		V	${ }^{\prime} \mathrm{C}= \pm 1 \mu \mathrm{~A}$
$\mathrm{V}_{\text {CEO }}$ (sust)	Collector to Emitter Sustaining Voltage	60		60	-	55		45		V	${ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
$\mathrm{BV}_{\mathrm{CBO}}$	Collector Base Breakdown Voltage	60		60		55		45		V	${ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
$B V_{\text {EBO }}$	Emitter Base Breakdown Voltage	7		7		7		7		V	$I_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$

MATCHING CHARACTERISTICS @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ (unless otherwise noted)

PARAMETERS	IT136		IT137		17138		1 T 139		UNITS	CONDITIONS
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$\left\|V_{B E_{1}}-V_{B E_{2}}\right\| \quad$ Base Emitter Voltage Differential		1		2		3		5	mV	$\mathrm{I}_{C}=1 \mathrm{ma}, \mathrm{V}_{C E}=5 \mathrm{~V}$
$\left\|\Delta\left(V_{B E_{1}}-V_{B E_{2}}\right)\right\| /^{\circ} \mathrm{C}$ Base Emitter Voltage Differential Change with Temperature		3		5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & { }^{\prime} C=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\left.\cdot\right\|_{B_{1}}-{ }^{\prime} \mathrm{B}_{2} \mid \quad$ Base Current Differential		2.5		5		10		20	nA	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$
		. 25		. 5		1.0		2.0	$\mu \mathrm{A}$	$\mathrm{I}^{\prime}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$

Dual Matched NPN Transistor

FEATURES

- Excellent Conformance
- Tight $V_{B E}$ Match $<1.0 \mathrm{mV}$
- Tight V_{BE} Tracking $<3.0 \mu \mathrm{~V} /^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS (Note 1)	
$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)	
Maximum Temperatures	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Maximum Power Dissipation	

TO.71

	ONE SIDE	BOTH SIDES
Total Dissipation at $25^{\circ} \mathrm{C}$,		
Case Temperature	0.3 Watt	0.5 Watt
Derating Factor	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltage \& Current for Each Transistor		
$\mathrm{V}_{\text {CBO }}$ Collector to Ba	e Voltage	20 V
$V_{\text {CEO }}$ Collector to Em	tter Voltage	20
$V_{\text {EBO }}$ Emitter to Base	Voltage	7.0 V
$V_{\text {cco }}$ Collector to Co	lector, Voltage	45 V
Ic Collector Curre		

PIN
 CONFIGURATION

T0. 71

CHIP TOPOGRAPHY 4003S

ORDERING INFORMATION

TO.71	WAFER	DICE
IT140	IT140/W	IT140/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
$\mathrm{h}_{\text {FE }}$	DC Current Gain	200			$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{h}_{\text {FE }}$	DC Current Gain	100			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$
$\mathrm{h}_{\text {FE }}$	DC Current Gain	250			$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=5.0 \mathrm{~V}$
$h_{\text {FE }}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	30			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base On Voltage		0.7	V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {CE }}$ (SAT)	Collector Saturation Voltage		0.3	V	$I_{C}=0.5 \mathrm{~mA}, I_{B}=0.05 \mathrm{~mA}$
ICBO	Collector Cutoff Current		200	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}$
$\mathrm{I}^{\text {CBO }}\left(+150^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		1.0	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}$
IEbo	Emitter Cutoff Current		400	nA	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$
$\mathrm{CoB}^{\text {O }}$	Output Capacitance		2.0	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {TE }}$	Emitter Transition Capacitance		2.5	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Capacitance		4.0	pF	$\mathrm{V}_{\mathrm{CC}}=0$
${ }^{I_{1}, C_{2}}$	Collector to Collector Leakage Current		10	nA	$\mathrm{V}_{\mathrm{CC}}= \pm 60 \mathrm{~V}$
$\mathrm{V}_{\text {CEO }}(\mathrm{SUST}$)	Collector to Emitter Sustaining Voltage	20		V	$I_{C}=1.0 \mathrm{~mA}, I_{B}=0$
f_{T}	Current Gain Bandwidth Product	400		$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & I_{C}=10 \mu \mathrm{~A}, V_{C E}=5 \mathrm{~V} \\ & I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}$	Base Emitter Voltage Differential		1	mV	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$
	Base Current Differential		2.5	nA	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$
$\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}} \cdot \mathrm{~V}_{\mathrm{B}_{2}}\right)$	Base-Emitter Voltage Differential Change with Temperature		3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{T}_{A}=-55^{\circ} \mathrm{C} .10+125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \end{aligned}$
$\frac{h_{\mathrm{FE}_{1}-h_{\mathrm{FE}_{2}}}}{\mathrm{~h}_{\mathrm{FE}_{2}}}$	Current Gain Match		5\%		$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
r_{e}	Emitter Resistance		1.5	Ω	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$ to $1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$

NOTES: (1) These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
(2) The lowest of two $h_{F E}$ readings is taken as $h_{F_{E}}$ for purposes of this ratio.

3N161

Diode Protected P.Channel Enhancement Mode MOS FET

GENERAL DESCRIPTION

DIODE-PROTECTED ENHANCEMENT-TYPE METAL-OXIDE-SEMICONDUCTOR TRANSISTOR

For applications requiring very high input impedance, such as series and shunt choppers, multiplexers, and commutators.

FEATURES

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
- Internally Connected Diode Protects Gate from Damage due to Overvoltage

DESCRIPTION

These devices are designed for applications requiring very high input impedance, such as choppers, commutators, and logic switches. Each device is protected from excessive input voltage by a shunting diode connected from the gate to the substrate. This eliminates the need for most precautionary handling procedures associated with unprotected MOS devices.

PIN
 CONFIGURATION

TO.72

CHIP TOPOGRAPHY

1503-Z
(2 per package)

ORDERING INFORMATION

TO.72	WAFER	DICE
3N161	3N161/W	3N161/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ free-air temperature unless otherwise noted)

PARAMETER		MIN	TYP MAX	UNIT	TEST CONDITIONS	
IGSSF	Forward Gate-Terminal Current		-0.1	nA	$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-1	nA	$V_{G S}=-25 V_{i} \cdot V_{D S}=0$,	$\mathrm{T}^{\prime} \mathrm{A}=100^{\circ} \mathrm{C}$
B VGSS	Forward Gate-Source Breakdown Voltage	--25		V	$\mathrm{I}_{\mathrm{G}}-0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$,	
IDSS	Zero-Gate-Voltage Drain Current		-10	nA	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate-Source Threshold Voltage	-1.5	-5	V	$V_{D S}=-15 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A}$	
VGS	Gate-Source Voltage	-4.5	-8	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~mA}$	
ID(on)	On-State Drain Current	-40	-120	mA	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$	
$\|\mathrm{yfs}\|$	Small-Signal Common-Source Forward Transfer Admittance	3500	6500	$\mu \mathrm{mho}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$
\mid Yos \mid	Small-Signal Common-Source Output Admittance		250	$\mu \mathrm{mho}$		
Ciss	Common-Source Short-Circuit Input Capacitance		10	pF		
- Crss	Common-Source Short-Circuit Reverse Transfer Capacitance		4	pF		.

FEATURES

- Very High Input Impedance
- High Gate Breakdown
- Fast Switching
- Low Capacitance

MAXIMUM RATINGS (@ $25^{\circ} \mathrm{C}$ ámbient unless noted)

		3N163	3N164
$V_{\text {GSS }}$	Static Gate to Source Voltage	$\pm 40 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\mathrm{V}_{\text {Gss }}{ }^{(1)}$	Transmit Gate to Source Voltage	$\pm 125 \mathrm{~V}$	$\pm 125 \mathrm{~V}$
$V_{\text {DSS }}$	Drain to Source Voltage	-40V	-30V
$V_{\text {SOS }}$	Source to Drain Voltage	-40V	-30V
$V_{\text {DGO }}$	Drain to Gate Voltage	$-40 \mathrm{~V}$	-30V
Io	Drain Current	-50 mA	-50 mA
$P_{\text {D }}$	Power Dissipation	375 mW	
	Derating Factor	$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
T_{J}	Operating Junction Temperature	-55 to $+150^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {sto }}$	Storage Temperature	-65 to $+200^{\circ} \mathrm{C}$	
T ${ }_{\text {L }}$	Lead Temperature $1 / 16^{\prime \prime}$ from	$+265^{\circ} \mathrm{C}$	
	Case for 10 sec max		
(1) Devices must not be tested at +125 V more than once or for langer than 300 ms			

NOTE: See handling precautions on 3N170 data sheet.
ELECTRICAL CHARACTERISTICS ($025^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {BS }}=0$ unless noted)

SWITCHING CHARACTERISTICS ($@ 25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {BS }}=0$)

$\mathrm{t}_{\mathrm{on}} \quad$ Turn-On Delay Time	12	12	ns	$\mathrm{~V}_{\mathrm{DD}}=-15 \mathrm{~V}$	
t_{t}	Rise Time	24	24	ns	$\mathrm{I}_{\mathrm{D}(\mathrm{on})}=10 \mathrm{~mA}$
t_{oH}	Turn-Off Time	50	50	ns	$R_{\mathrm{G}}=\mathrm{R}_{\mathrm{L}}=1.4 \mathrm{k} \Omega \Omega$

SWITCHING TIME CIRCUIT

SWITCHING WAVEFORM

3N165, 3N166 Dual P-Channel Enhancement Mode MOS FET

FEÀTURES

- Very High Input Impedance
- High Gate Breakdown
- Low Capacitance

MAXIMUM RATINGS (@ $25^{\circ} \mathrm{C}$ ambient unless noted)

$V_{\text {Gss }}$	Static Gate to Source Voltage	$\pm 40 \mathrm{~V}$
$V_{\text {GSS }}{ }^{(1)}$	Transient Gate to Source Vottage	$\pm 125 \mathrm{~V}$
$V_{\text {DSS }}$	Drain to Source Voltage	-40V
$V_{\text {GDS }}$	Source to Drain Voltage	-40V
$V_{G G}$	Gate to Gate	$\pm 80 \mathrm{~V}$
V_{G}	Any Lead to Case	$\pm 40 \mathrm{~V}$
I_{D}	Drain Current	50 mA
$P_{\text {D }}$	Power Dissipation (each side)	300 mW
	(both sides)	525 mW
	Total Derating Factor	$4.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\boldsymbol{J}}$	Operating Junction Temperature	-55 to $+150^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to $+200^{\circ} \mathrm{C}$
TL	Lead Temperature $1 / 16^{\prime \prime}$ from	$+300^{\circ} \mathrm{C}$

(1) Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once or for longer than 300 ms .

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

		MIN	MAX	UNITS	TEST CONDITIONS
IGss	Gate Reverse Leakage Current		10	pA	$\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}$
$\mathrm{I}_{\mathrm{G}(\mathrm{f})}$	Gate Forward Leakage Current		-10	pA	$\mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}$
$\mathrm{IG}_{(1)}$	Gate Forward Leakage Current (+ $125^{\circ} \mathrm{C}$)		-25	pA	$\mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}$
loss	Drain to Source Leakage Current		-200	pA	$V_{D S}=-20 \mathrm{~V}$
ISDS	Source to Drain Leakage Current		-400	pA	$V_{S D}=-20, V_{D B}=0$
${ }^{\text {ID (on) }}$	On Drain Current	-5	-30	mA	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate Soürce Threshold Voltage	-2	-5	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
VGS(th)	Gate Source Threshold Voltage	-2	-5	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
$\mathrm{rfs}_{\text {fi }}(\mathrm{on})$	Drain Source On Resistance		300	ohms	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$
9fs	Forward Transconductance	1500	3000	$\mu \mathrm{mhos}$	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$
gos	Output Admittance		300	$\mu \mathrm{mhos}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Input Capacitance		3.0	pF	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$
Crss	Reverse Transfer Capacitance		0.7	pF	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance Input Shorted		3.0	pF	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{R}_{\mathrm{E}}\left(\mathrm{Y}_{\mathrm{fS}}\right)$	Real Part Forward Transconductance		1200	$\mu \mathrm{mhos}$	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$

MATCHING CHARACTERISTICS 3N165

	MIN	MAX	UNITS	TEST CONDITIONS
$\mathrm{Y}_{\mathrm{fs} 1} / \mathrm{Y}_{\mathrm{fs} 2}$ Forward Transconductance Ratio	0.90	1.0		$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz}$
$V_{\text {GS1-2 }}$ $\begin{array}{c}\text { Gate-Source Threshold Voltage } \\ \text { Differential }\end{array}$		100	mV	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$
$\Delta V_{G S 1-2}$ Gate Source Threshold Voltage Differential Change with Temperature		8	mV	$\begin{aligned} V_{D S} & =-15 \mathrm{~V}, I_{\mathrm{D}}=-500 \mu \mathrm{~A} \\ \mathrm{~T} & =-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{GS} 1-2}$ Gate-Source Threshold Voltage Differential Change with Temperature	.	10	mV	$\begin{aligned} \mathrm{V}_{\mathrm{DS}} & =-15 \mathrm{~V}, \mathrm{ID}=-500 \mu \mathrm{~A} \\ \mathrm{~T} & =+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$

3N170, 3N171 N-Channel Enhancement Mode MOS FET

FEATURES

- Low Switching Voltages- $\mathrm{V}_{\mathrm{GS}(\mathrm{th})} \leq 3.0 \mathrm{~V}$
- Fast Switching Times $-\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}$
- Low Drain-Source Resistance $\mathrm{r}_{\mathrm{ds}(\mathrm{on})}=200 \Omega$ (Max)
- Low Reverse Transfer Capacitance $\mathrm{C}_{\mathrm{rss}}=1.3 \mathrm{pF}$ (Max)

HANDLING PRECAUTIONS

MOS field-effect transistors have extremely high input resistance. They can be damaged by the accumulation of excess static charge. Avoid possible damage to the device while wiring, testing, or in actual operation, by following the procedures outlined below:

1. To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on as transient voltages may cause permanant damage to the devices.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted) Substrate connected to source.

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
OFF CHARACTERISTICS					
V (BR)DSS IGSS IDSS	Drain-Source Breakdown Voltage Gate Leakage Current Zero-Gate-Voltage Drain Current	25	$\begin{gathered} 10 \\ 100 \\ 10 \\ 1.0 \end{gathered}$	V pA nA $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{ID}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & V_{\mathrm{GS}}=-35 \mathrm{~V}, V_{\mathrm{DS}}=0 \\ & V_{G S}=-35 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ & V_{D S}=10 \mathrm{~V}, V_{G S}=0 \\ & V_{\mathrm{DS}}=10 \mathrm{~V}, V_{G S}=0, T_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
ON CHARACTERISTICS					
$\begin{aligned} & V_{G S}(\text { th) } \\ & \text { ID(on) } \\ & V_{D S(o n)} \end{aligned}$	Gate-Source Threshold Voltage "ON" Drain Current Drain-Source "ON" Voltage	$\begin{array}{r} 1.0 \\ 1.5 \\ 10 \end{array}$	$\begin{gathered} 2.0 \\ 3.0 \\ 2.0 \end{gathered}$	V mA V	$\begin{array}{ll} V_{D S}=10 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A} & 3 \mathrm{~N} 170 \\ & 3 \mathrm{~N} 171 \\ V_{G S}=10 \mathrm{~V}, V_{D S}=10 \mathrm{~V} & \\ I_{D}=10 \mathrm{~mA}, V_{G S}=10 \mathrm{~V} & \\ \hline \end{array}$
SMALL SIGNAL CHARACTERISTICS					
rds(on) $\left\|Y_{f s}\right\|$ Crss Ciss $\mathrm{C}_{\mathrm{d} \text { (sub) }}$	Drain-Source Resistance Forward Transfer Admittance Reverse Transfer Capacitance Input Capacitance Drain-Substrate Capacitance	'1000	$\begin{gathered} 200 \\ \\ 1.3 \\ 5.0 \\ 5.0 \end{gathered}$	Ω μ mhos pF pF pF	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=0, f=1.0 \mathrm{kHz} \\ & V_{D S}=10 \mathrm{~V}, I_{D}=2.0 \mathrm{~mA}, \\ & f=1.0 \mathrm{kHz} \\ & V_{D S}=0, V_{G S}=0, f=1.0 \mathrm{MHz} \\ & V_{D S}=10 \mathrm{~V}, V_{G S}=0, f=1.0 \mathrm{MHz} \\ & V_{D}(S \cup B)=10 \mathrm{~V}, f=1.0 \mathrm{MHz} \end{aligned}$
SWITCHING CHARACTERISTICS					
$t_{d}(o n)$ t_{r} t_{d} (off) tf	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	,	$\begin{gathered} 3.0 \\ 10 \\ 3.0 \\ 15 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & V_{D D}=10 \mathrm{~V}, \mathrm{I}(\text { on })=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{GS}(\text { on })}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\text { off })}=0, \\ & R_{G}=50 \Omega \end{aligned}$

FEATURES

- High Input Impedance
- Diode Protected Gate

MAXIMUM RATINGS (@ $25^{\circ} \mathrm{C}$ ambient unless noted)

		3 N 172	3 N 173
$\mathrm{~V}_{\mathrm{GSS}}$	Gate to Source Voltage	-40 V	-30 V
$\mathrm{~V}_{\mathrm{DSS}}$	Drain to Source Voltage	-40 V	-30 V
$\mathrm{~V}_{\mathrm{SDS}}$	Source to Drain Voltage	-40 V	-30 V
$\mathrm{~V}_{\mathrm{DGO}}$	Drain to Gate Voltage	-40 V	-30 V
I_{D}	Drain Current	-50 mA	-50 mA
$\mathrm{I}_{\mathrm{G}(\mathrm{f})}$	Gate Forward Current	$10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{G}(\mathrm{r})}$	Gate Reverse Current	1.0 mA	1.0 mA
P_{D}	Power Dissipation	375 mW	
	Derating Factor	$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
T_{J}	Operating Junction Temperature	-55 to $+150^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to $+200^{\circ} \mathrm{C}$	
T_{L}	Lead Temperature $1 / 16^{\prime \prime}$ from	$+256^{\circ} \mathrm{C}$	
	Case for 10 sec max		

Mode MOS FET

ELECTRICAL CHARACTERISTICS ($@ 5^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {BS }}=0$ unless noted)

	PARAMETER	3N172		3N173		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
$\mathrm{I}_{\text {Gss }}$	Gate Reverse Current		-200		-500	pA	$\mathrm{V}_{\text {GS }}=-20 \mathrm{~V}$
IGss	Gate Reverse Current ($+125^{\circ} \mathrm{C}$)		-0.5		-1.0	$\mu \mathrm{A}$	$\mathrm{V}_{G S}=-20 \mathrm{~V}$
$B V_{\text {Gss }}$	Gate Breakdown Voltage	-40	-125	-30	-125	V	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
$B V_{\text {DSS }}$	Drain-Source Breakdown Voltage	-40		-30		V	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
$B V_{\text {SDS }}$	Source-Drain Breakdown Voltage	-40		-30		V	$\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DB}}=0$
$V_{\text {GS(th) }}$	Threshold Voltage	-2.0	-5.0	-2.0	-5.0	V	$V_{D S}=V_{G S}, I_{D}=-10 \mu \mathrm{~A}$
$V_{\text {GS(}}$ (t)	Threshold Voltage	-2.0	-5.0	-2.0	-5.0	V	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
$V_{\text {GS }}$	Gate Source Voltage	-3.0	-6.5	-2.5	-6.5	V	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$
Ioss	Zero Gate Voltage Drain Current		-0.4		-10	nA.	$V_{D S}=-15 \mathrm{~V}$
Isos	Zero Gate Voltage Source Current		-0.4		-10	nA	$\mathrm{V}_{S D}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0$
$\mathrm{r}_{\text {ds(}}$ (${ }^{\text {a }}$)	Drain Source On Resistance		250		350	ohms	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$
$I_{D(t h)}$	On Drain Current	-5.0	-30	-5.0	-30	mA	$\mathrm{V}_{\mathrm{OS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$

APPLICATIONS

- Analog Switches
- Choppers
- Commutators

FEATURES

- Low Insertion Loss
${ }^{1}$ ds (on) < 85 Ω (J174)
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive

High Isolation Resistance from Driver

- Short Sample and Hold Aperture Time
$\mathrm{C}_{\mathrm{sg}(\mathrm{fff})}<5.5 \mathrm{pF}$
$\mathbf{C d g}_{\mathrm{d} \text { (off) }}<\mathbf{5 . 5} \mathrm{pF}$
- Fast Switching $\mathbf{t}_{\mathrm{d}}(\mathrm{on})+\mathrm{t}_{\mathrm{r}}=\mathbf{7} \mathrm{ns}$ Typical

ORDERING INFORMATION

TO.92	WAFER	DICE
J17X	J17X/W	J17XID

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage (Note 1) 30 V
Gate Current .. 50 mA
Total Device Dissipation ($25^{\circ} \mathrm{C}$ Free-Air Temperature) 350 mW

Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETERS				$J 174$			$J 175$			J176			$J 177$			UNIT	TEST CONDITIONS				
				MIN	TYP	MAX															
1	S	IGSS	Gate Reverse Current (Nate 2)			1			1	,		1			1	nA	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=20 \mathrm{~V}$				
2		VGS(off)	Gate-Source Cutoff Voltage	5		10	3		6	1		4	0.8		2.25	V	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{ld}=-10 \mathrm{nA}$				
3	T	BVGSS	Gate-Source Breakdown Voltage	30			30			30			30				$\mathrm{V} D S=0, \mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}$				
4	A	IDSs	Saturation Drain Current (Note 3)	-20		-100	-7		-60	-2		-25	-1.5		-20	mA	VDS $=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				
5	$\begin{aligned} & 1 \\ & \mathrm{C} \end{aligned}$	ID(off)	Drain Cutoff Current (Note 2)			-1			-1			-1			-1	nA	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$				
6		ros(on)	Drain-Source ON Resistance		-	85			125			250			300	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=-0.1 \mathrm{~V}$				
7	$\left.\begin{aligned} & D \\ & \mathrm{Y} \\ & \mathrm{~N} \\ & \mathrm{~A} \\ & \mathrm{M} \end{aligned} \right\rvert\,$	Cdg(off)	Drain-Gate OFF Capacitance		5.5			5.5			5.5			5.5		pF	$V_{D S}=0, V_{G S}=10 \mathrm{~V}$			$f=1 \mathrm{MHz}$	
8		$\mathrm{C}_{\text {sg(off) }}$	Source-Gate OFF Capacitance		5.5			5.5			5.5			5.5							
9		$\begin{gathered} \hline \mathrm{C}_{\mathrm{dg}(\mathrm{on})} \\ + \\ \mathrm{C}_{\mathrm{sg}(\mathrm{on})} \\ \hline \end{gathered}$	Drain-Gate Plus Source Gate ON Capacitance		40			40			40			40	'		$V_{D S}=$	$\mathrm{GS}=0$	-		
10		$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn On Delay Time		2			5	.		15			20		ns	Switching Time Test Conditions				
11	M	tr_{r}	Rise Time		5			10			20			25			VDD	J174 -10 V	J175	J176 -6 V	$\begin{aligned} & \mathrm{J} 177 \\ & -6 \mathrm{~V} \end{aligned}$
12	C	$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn Off Delay Time		5			10			15			20			VGS(off)	12 V	8V	6 V	3 V
13		tf_{f}	Fall Time		10			20	\cdot		20			25			R_{L} VGS(on)	560Ω $0 \mathrm{~V}$	12KJ OV	$\begin{aligned} & 5 \mathrm{~K} \Omega \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \mathrm{~K} \Omega \\ 0 \mathrm{~V} \end{gathered}$

NOTES:

1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged.
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
3. Pulse test duration $-300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.

FEATURES

- Very High Input Impedance - Low Capacitance
- High Gate Breakdown 3N190-3N191 V_{g} \& (TH) Matched
- Zener Protected gate 3N188-3N189 $\bullet \mathrm{V}_{\mathrm{g}}$ \& (TH) Tracking

MAXIMUM RATINGS(@ $25^{\circ} \mathrm{C}$ ambient unless noted)
$\left.\begin{array}{llcc} & & \begin{array}{c}3 N 188 \\ 3 N 189\end{array} & \begin{array}{c}3 N 190 \\ 3 N 191\end{array} \\ V_{\text {GSS }} & \begin{array}{c}\text { Static Gate to Source } \\ \text { Voltage }\end{array} & \pm 40 \mathrm{~V} & -40 \mathrm{~V}\end{array}\right)$
(1) Device must not be tested at $\pm 125 \mathrm{~V}$ more than once or for longer than 300 ms .

$\stackrel{\text { PIN }}{\text { CONFIGURATION }}$

CHIP
 TOPOGRAPHY
 2506C

ORDERING INFORMATION

TO-99	WAFER	DICE
3N188		
3N189		
3N190	3N190/W	3N190/D
3N191	3N191/W	3N191/D

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

		3N188 3N189		3N190 3N191			TEST CONDITIONS
		MIN	MAX	MIN	MAX	UNITS	
IGSS	Gate Reverse Current				10	pA	$V_{G S}=40 \mathrm{~V}$
${ }^{\prime} \mathrm{G}(\mathrm{f})$	Gate Forward Current		-200		-10	pA	$V_{G S}=-40 \mathrm{~V}$
$\mathrm{I}_{\mathrm{G}}(\mathrm{f})$	Gate Forward Current @ $125^{\circ} \mathrm{C}$ '		-200		-25	pA	$V_{G S}=-40 \mathrm{~V}$
$B V_{\text {DSS }}$	Drain-Source Breakdown Voltage	-40		-40		V	$I^{\prime} \mathrm{D}=-10 \mu \mathrm{~A}$
$B V_{\text {SDS }}$	Source-Drain Breakdown Voltage	-40		-40		V	$\mathrm{I}^{\text {S }}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BD}}=0$
$V_{\text {GS(th }}$	Threshold Voltage	-2.0	-5.0	-2.0	-5.0	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
$\mathrm{V}_{\text {GS }}(\mathrm{th})$	Threshold Voltage	-2.0	-5.0	-2.0	-5.0	V	$V_{\text {DS }}=V_{G S,} I_{\text {D }}=-10 \mu \mathrm{~A}$
$\mathrm{V}_{\text {GS }}$	Gate Source Voltage	-3.0	-6.5	-3.0	-6.5	\checkmark	$V_{D S}=-15 V_{D}=-500 \mu \mathrm{~A}$
I DSS	Zero Gate Voltage Drain Current		-200		-200		$V_{D S}=-15 \mathrm{~V}$,
ISDS	Source Drain Current		-400		-400	pA	$V_{\text {SD }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DB }}=0$
rds(on)	Drain-Source on Resistance		300		300	ohms	$V_{D S}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{~A}$
ID(on)	On Drain Current	-5.0	-30.0		-30.0	mA	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$
g_{fs}	Forward Transconductance	1500 ${ }^{\circ}$	4000	1500	4000	μ mhos	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$
YOS	Output Admittance		300		300	μ mhos	$V_{D S}=-15 \mathrm{~V}, I_{D}=-5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Input Capacitance Output Shorted		4.5		4.5	pF	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{Crss}^{\text {r }}$	Reverse Transfer Capacitance		1.5		1.0	pF	$V_{D S}=-15 \mathrm{~V}, I_{D}=-5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$
Coss	Output Capacitance Input Shorted		3.0		3.0	pF	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5 \mathrm{~mA}, f=1 \mathrm{MHz}$

SWITCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

$\begin{aligned} & { }^{{ }^{t} \text { D(on) }} \\ & { }^{t_{r}}{ }^{\text {offl }} \end{aligned}$	Turn On Delay Time Rise Time Turn Off Time	MIN	$\begin{gathered} \text { MAX } \\ 15 \\ 30 \\ 50 \end{gathered}$	$\begin{aligned} & \hline \text { UNITS } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & \text { TEST CONDITIONS } \\ & V_{D D}=-15 \mathrm{~V}, I_{D}=-5 \mathrm{~mA} \\ & R_{G}=R_{L}=1.4 \mathrm{k} \Omega . \end{aligned}$

MATCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted) 3 N 188 and 3N190

$\mathrm{Y}_{\mathrm{fs} 1} / \mathrm{Y}_{\mathrm{fs} 2} \quad$ Forward Transconductance Ratio $V_{\text {GS1-2 }}$ Gate Source Threshold Voltage Differential $\Delta V_{\text {GS1-2 }}$ Gate Source Threshold Voltage Differential Change with Temperature Δ VGS1-2 Gate Source Threshold Voltage Differential Change ΔT with Temperature			MIN	MAX	UNITS	
			0.85	1.0		$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$,
				100	mV	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mu \mathrm{~A}$
				8	mV	$\begin{aligned} & V_{D S}=-15 V, 1_{D}=-500 \mu \mathrm{~A}, \\ & T=-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$
				10	$m V$	$\begin{array}{r} V_{D S}=-15 \mathrm{~V}, I_{\mathrm{B}}=-500 \mu \mathrm{~A}, \\ \mathrm{~T}=+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}$

U200-U202 N-Channel JFET

Applications

- Analog Switches
- Commutators
- Choppers

FEATURES

- Low Insertion Loss
- $r_{\text {ds }}$ (on) $<50 \Omega$ (U202)
- Good Off-Isolation ID(off) <1 nA

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage . - 30 V
Gate Current. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature
(Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
1.8 W

Storage Temperature Range . -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
Temperature. -55 to $+150^{\circ} \mathrm{C}$
(1/16" from case for 10 seconds)
$.300^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic			U200		U201		U202		Unit	Test Conditions	
			Min	Max	Min	Max	Min	Max			
S	IGSS	Gate Reverse Current		-1		-1		-1	ni	$\mathrm{V}_{\mathrm{GSS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
				-1		-1		-1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
T	BVGSS	Gate-Source Breakdown Voltage	-30		-30		-30		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
A	V_{GS} (off)	Gate-Source Cutoff Voltage	-0.5	-3	-1.5	-5	-3.5	-10		$V_{D S}=20 \mathrm{~V}, I_{D}=10 \mathrm{nA}$	
T	1 D (off)	Drain Cutoff Current		1		1		1	nA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$	
1				1		1		1	$\mu \mathrm{A}$		$-150^{\circ} \mathrm{C}$
C	IDSS	Saturation Drain Current (Note 1)	3	25	15	75	30	150	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
	rds(on)	Drain-Source ON Resistance		150		75		50	ohm	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
D Y	Ciss	Common-Source Input Capacitance (Note 1)		30		30		30	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$=1 \mathrm{MHz}$
N	$\mathrm{Crs}^{\text {r }}$	Common Source Reverse Transfer Capacitance		3		8		8		$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$	

NOTE 1: Pulse test required, pulsewidth $=300 \mu \mathrm{sec}$, duty cycle $\leq 3 \%$.

FEATURES

- High Input Impedance (IG = 35pA Typ.)
- Low IGSS (IGSS = 100pA max)

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage. - 40V
Gate Current....................................... . 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Ambient
(Derate $3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 360 mW
Operating Temperature Range - -55 to $135^{\circ} \mathrm{C}$
Storage Temperature Range. -55 to $150^{\circ} \mathrm{C}$
Lead Temperature Range
(1/16' from case for 10 seconds)
$.300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETERS			J201			J202			J203			UNIT	TEST CONDITIONS	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
T	'GSS	Gate Reverse Current (Note 2)			-100			-100			- 100	pA	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{G S}=-20 \mathrm{~V}$	
	$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage	-0.3		-1.5	-0.8		-4.0	-2.0		-10.0	V	$V_{D S}=20 \mathrm{~V}, I_{D}=10 \mathrm{nA}$	
	$\mathrm{BV}_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage	-40			-40			-40	${ }^{\circ}$			$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	
	IDSS	Saturation Drain Current (Note 3)	0.2		1.0	0.9		4.5	4.0		20	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
	${ }^{\prime} \mathrm{G}$	Gate Current (Note 1)		-3.5			-3.5			-3.5		PA	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$	
DYNAMIC	$\mathrm{g}_{\text {fs }}$	Common-Source Forward Transconductance(Note 2)	500		.	1,000			1,500		-			
	$\mathrm{g}_{\text {OS }}$	Common Source Output Conductance		1			3.5			10			$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$
	Ciss	Common-Source Input Capacitance		4			4			4		pF		$f=1 \mathrm{MHz}$
	$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		1			1	.		1				$f=1 \mathrm{MHz}^{2}$
	\bar{e}_{n}	Equivalent Short-Circuit Input Noise Voltage		5			5			5		$\frac{n V}{\sqrt{H z}}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse test duration $=2 \mathrm{~ms}$.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{PARAMETERS}} \& \multicolumn{3}{|c|}{J204} \& \multirow[b]{2}{*}{UNIT} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}}

\hline \& \& \& MIN \& TYP \& MAX \& \& \&

\hline \multirow{5}{*}{S
T
A
T
I
C} \& ${ }^{\prime}$ GSS \& Gate Reverse Current (Note 2) \& \& \& -100 \& pA \& \multicolumn{2}{|l|}{$V_{D S}=0, V_{G S}=-20 V$}

\hline \& $\mathrm{V}_{\text {GS(off }}$ \& Gate-Source Cutoff Voltage \& -0.5 \& \& -2.0 \& \multirow[t]{2}{*}{V} \& \multicolumn{2}{|l|}{$V_{D S}=20 \mathrm{~V}, 1 \mathrm{D}=10 \mathrm{nA}$}

\hline \& $B V_{\text {GSS }}$ \& Gate-Source Breakdown Voltage \& -25 \& \& \& \& \multicolumn{2}{|l|}{$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=-\mu \mathrm{A}$}

\hline \& IDS'S \& `Saturation Drain Current (Note 3) \& \& 1.2 \& \& mA \& \multicolumn{2}{|l|}{$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$}

\hline \& ${ }^{1} \mathrm{G}$ \& Gate Current (Note 1) \& \& -3.5 \& \& pA \& \multicolumn{2}{|l|}{$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$}

\hline \multirow{5}{*}{$$
\begin{gathered}
D \\
Y \\
N \\
A \\
M \\
\text { I }
\end{gathered}
$$
C} \& g_{fs} \& Common-Source Forward Transconductance(Note 2) \& - \& 1500. \& \& \multirow{2}{*}{$\mu \mathrm{mho}$} \& \multirow{4}{*}{$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$} \& \multirow[t]{2}{*}{$\mathrm{f}=1 \mathrm{kHz}$}

\hline \& gos \& | Common Source Output |
| :--- |
| Conductance | \& \& 2.5 \& \& \& \&

\hline \& $c_{\text {iss }}$ \& Common-Source Input Capacitance \& \& 4 \& \& \multirow[t]{2}{*}{pF} \& \& \multirow[t]{2}{*}{$\mathrm{f}=1 \mathrm{MHz}$}

\hline \& Crss \& | Common-Source Reverse |
| :--- |
| Transfer Capacitance | \& , \& 1 \& \& \& \&

\hline \& e_{n} \& Equivalent Short-Circuit Input Noise Voltage \& , \& 10 \& \& $\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$ \& $$
V_{D S}=10 \mathrm{~V}, V_{G S}=0
$$ \& $\mathrm{f}=1 \mathrm{kHz}$

\hline
\end{tabular}

APPLICATIONS

- Differential Amplifiers
- Low and Maximum Frequency Amplifiers

FEATURES

- Good Matching Characteristics

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted.

ORDERING INFORMATION

TO.71	WAER	DICE
U23X	U23XIW	U23XID

			Characteristic	$\begin{array}{\|l\|} \hline \text { U231 } \\ \text { Max } \\ \hline \end{array}$	$\begin{aligned} & \text { U232 } \\ & \text { Max } \end{aligned}$	$\begin{aligned} & \text { U233 } \\ & \text { Max } \end{aligned}$	$\begin{aligned} & \text { U234 } \\ & \text { Max } \end{aligned}$	$\begin{aligned} & \text { U235 } \\ & \text { Max } \end{aligned}$	Unit	Test Conditions		
15	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~A} \end{aligned}$	\| ${ }^{\text {G }}$ 1-IG2\|	Differential Gate Current	10	10	10	10	10	nA	$\mathrm{V}_{\text {DG }}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	$125^{\circ} \mathrm{C}$	
16		$\frac{(\text { IDSS1-IDSS2) }}{\text { IDSS1 }}$	Saturation Drain Current Match (Note 1)	5	5	5	10	15	\%	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
17		\|VGS1-VGS2		Differential Gate-Source Voltage	5	10	15	20	25	mV	$V \mathrm{DG}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	
18	CHI	$\Delta \mid \mathrm{VGS1}^{\text {- }}$ - VGS 2	Gate-Source Voltage	10	25	50	75	100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$	
19		ΔT	Differential Drift (Note 2)	10	25	50	75	100			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \end{aligned}$	
20	$\begin{aligned} & \mathrm{N} \\ & \mathrm{G} \end{aligned}$	$\frac{\left(\mathrm{g}_{\mathrm{f} 1} 1-\mathrm{g}_{\mathrm{fs} 2}\right)}{\mathrm{g}_{\mathrm{fs} 1}}$	Transconductance Match (Note 1)	3	5	5	10	15	\%		$\mathrm{f}=1 \mathrm{kHz}$	
21		\|Gos1-Gos2		Differential Output Conductance	5	5	5	5	5	$\mu \mathrm{mho}$		

[^1]
FEATURES

- $\mathrm{g}_{\mathrm{fs}}>5000 \mu \mathrm{mho}$ from dc to 100 MHz
- Matched $\mathrm{V}_{\mathrm{GS}}{ }^{\prime} \mathrm{g}_{\mathrm{fs}}$ and g_{OS}

ABSOLUTE MAXIMUM RATINGS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Gate-Drain or Gate-Source Voltage
Gate Current
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Total Device Dissipation, $T_{A}=85^{\circ} \mathrm{C}$
(Derate $7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ORDERING INFORMATION

TO-99	WAFER	DICE
U257	U257/W	U257/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS	
IGSS	Gate Reverse Current		-100	pA	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
	Gate Reverse Current		-250	nA		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-25		\checkmark	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage	-1	-5		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
IDSS	Saturation Drain Current (Note 1)	5	40	mA	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	
gfs	Common-Source Forward Transconductance	5000	10,000	$\mu \mathrm{mho}$	$V_{D S}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$
gfs	Common-Source Forward Transconductance	5000	10,000		$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, 1 \mathrm{D}=5 \mathrm{~mA}$	$\mathrm{f}=100 \mathrm{MHz}$
gos	Common-Source Output Conductance		150		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance		150		V DG $=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$	$\mathrm{f}=100 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		5	pF		
Crss	Common-Source Reverse Transfer Capacitance		1.2			$f=1 \mathrm{MHz}$
$\overline{e_{n}}$	Equivalent Input. Noise Voltage		30	$\frac{n V}{\sqrt{\mathrm{~Hz}}}$		$f=10 \mathrm{kHz}$
$\frac{\mathrm{IDSS} 1}{\mathrm{IDSS} 2}$	Drain Current Ratio at Zero Gate Voltage (Note 1)	0.85	1		$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage		100	mV	$V \mathrm{DG}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$	
$\frac{\mathrm{gfs} 1}{9 \mathrm{gfs} 2}$	Transconductance Ratio	0.85	1			$\mathrm{f}=1 \mathrm{kHz}$
$\mid g_{\text {os } 1-g_{o s} 2 \mid}$	Differential Output Conductance		20	$\mu \mathrm{mho}$		

NOTE:

1. Pulse test required, pulse width $=300 \mu$ s, duty cycle $\leqslant 30 \%$.

U304-U306
P-Channel JFET

APPLICATIONS

- Analog Switches
- Commutators
- Choppers

FEATURES

- ON Resistance <85 ohms (U304)
- $\mathrm{ID}_{\mathrm{D}(\mathrm{off})}<500 \mathrm{pA}$
- Switches directly from T2L Logic (U306)
ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)
Reverse Gate-Drain or Gate-Source Voltage (Note 1) ... 30VGate Current50 mA
Total Device Dissipation, Free-Air

\qquad
on, Free-Air

(Derate $2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)350 mW
Storage Temperature Range -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 60 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted.

NOTES:

1. Due to symmetrical geometry these units may be operated with source and drain leads interchanged.
2. Pulse test pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

APPLICATIONS

- VHF/UHF Amplifiers
- Oscillators
- Mixers

FEATURES

- Industry Standard Part In Low Cost Plastic Package
- High Power Gain

11 dB Typical at 450 MHz
Common-Gate

- Low Noise - 2.7 dB Typical at 450 MHz
- Wide Dynamic Range Greater than 100 dB
- Easily Matches to 75Ω Input

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Drain-Gate Voltage
Source-Gate Voltage ..25V 25
Forward Gate Current 10 mA
Total Device Dissipation (TLEAD $=25^{\circ} \mathrm{C}$) $\ldots \ldots . .625 \mathrm{~mW}$
Derate above $25^{\circ} \mathrm{C} \ldots5 .68 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature Range $\ldots . .-55$ to $+135^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETERS				J308			J309			J310			UNIT	TEST CONDITIONS	
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
1		BVGSS	Gate-Source Breakdown Voltage	-25			-25			-25			V	$\mathrm{IG}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$.	
2	S	IGSS	Gate Reverse .Current			-1.0			-1.0			-1.0	nA	$V_{G S}=-15 \mathrm{~V}$,	
3	T					-1.0			-1.0			-1.0	$\mu \mathrm{A}$	$V_{D S}=0$	$\mathrm{T}=+125^{\circ} \mathrm{C}$
4	A	VGS(off)	Gate-Squrce Cutoff Voltage	-1.0	.	-6.5	-1.0		-4.0	-2.0		-6.5	V	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{lD}=1 \mathrm{nA}$	
5		loss	Saturation Drain Current (Note 1)	12	'	60	12		30	24		60	mA	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
6		VGS(f)	Gate-Source Forward Voltage			1.0	'		1.0			1.0	V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{IG}_{\mathrm{G}}=1 \mathrm{~mA}$	
7		g g	Common-Source Forward Transconductance	8,000		20,000	10,000		20,000	8,000		18,000	$\mu \mathrm{mhos}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
8	D	gos	Common-Source Output Conductance			200			200			200			
9		gig	Common-Gate Forward Transconductance		13,000			13,000			12,000				
10		gog	Common Gate-Output Conductance		150			150			150				
11		Cgd	Gate-Drain Capacitance		1.8	2.5		1.8	2.5		1.8	2.5	pF	$\begin{aligned} & V_{D S}=0 \\ & V_{G S}=-10 V \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$
12		Cgs	Gate-Source Capacitance		4.3	5.0		4.3	5.0		4.3	5.0			
13		en_{n}	Equivalent Short-Circuit Input Noise Voltage		10			10			10		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$	$\begin{array}{\|l} V_{D S}=10 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ \hline \end{array}$	$\mathrm{f}=100 \mathrm{~Hz}$
14	$\left\lvert\, \begin{gathered} \mathrm{H} \\ 1 \end{gathered}\right.$	Re(vis)	Common-Source Forward Transconductance		, 12			12	.		12		mmho	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=105 \mathrm{MHz}$
15		$\mathrm{Re}_{(\mathrm{Vfg})}$	Common-Gate Input Conductance		14			14			14				
16		Re(Vis)	Common-Source Input Conductance		0.4			0.4			0.4				
17	F	Re(Vos)	Common-Source Output Conductance		0.15			0.15			0.15	.			
18	$\begin{aligned} & R \\ & E \end{aligned}$	$\mathrm{Gpg}_{\mathrm{pg}}$	Common-Gate Power Gain at Noise Match		16			16			16		dB		
19	Q	NF	Noise Figure		1.5			1.5			1.5				
20		G_{pg}	Common-Gate Power Gain at Noise Match		11			11			11				$\mathrm{f}=450 \mathrm{MHz}$
21		NF	Noise Figure		2.7			2.7			2.7				

NOTE: 1. Pulse test PW $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

FEATURES

- High Power Gain

15 dB Typical at 100 MHz , Common Gate
10 dB Typical at 450 MHz , Common Gate

- Low Single Sideband Noise Figure
1.5 dB Typical at 100 MHz , Common Gate
3.2 dB Typical at 450 MHz , Common Gate
- Wide Dynamic Range - Greater than 100 dB
- Offered in Wide Variety of Packages for Most Any Circuit Configuration.

GENERAL DESCRIPTION

This family of N -channel Junction FETs are designed and characterized for VHF and UHF applications requiring high gain and low noise figure. The forward transconductance
is relatively flat out to 1000 MHz . Applications for these devices in military, commercial and consumer communications equipment include low noise, high gain RF amplifiers, low noise mixers with c̣onversion gain, and low noise, ultra stable RF oscillators.

*See J308-310 data sheet for TO-92 package.

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage
Gate Current
Total Power Dissipation
Power Derating (to maximum operating temperature)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (1/16" from case for 10 sec)

TO-52	$\mathrm{TO}-92$
-25 V	-25 V
20 mA	10 mA
500 mW	300 mW
$4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
-65 to $150^{\circ} \mathrm{C}$	-55 to $+125^{\circ} \mathrm{C}$
-65 to $200^{\circ} \mathrm{C}$	-55 to $+125^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTIC		U308			U309			U310			UNIT	TEST CONDITIONS	
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{\text {'GSS }}$	Gate Reverse Current			-150			-150			-150	pA	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
				-150			-150	,		-150	nA		$\mathrm{T}=125^{\circ} \mathrm{C}$
$\mathrm{BV}_{\text {GSS }}$	Gate-Source Breakdown Voltage	-25			-25			-25			V	${ }^{\prime} \mathrm{G}^{\prime}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
$V_{\text {GS(off) }}$	Gate-Source Cutoff Voltage	-1.0		-6.0	-1.0		-4.0	-2.5		-6.0		$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
${ }^{\text {I }}$ DSS	Saturation Drain Current (Note 1)	12		60	12		30	24		60	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Forward Voltage			1.0			1.0			1.0	V	$\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$	
g_{fg}	Common-Gate Forward Transconductance (Note 1)	10		20	10		20	10		18	mmho	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{g}_{\text {ogs }}$	Common-Gate Output Conductance			150			150		،	150	$\mu \mathrm{mho}$		
C_{gd}	Drain-Gate Capacitance			2.5			2.5			2.5	pF	$\begin{aligned} & V_{G S}=-10 \mathrm{~V}, \\ & V_{D S}=10 \mathrm{~V} \end{aligned}$	$f=1 \mathrm{MHz}$
C_{gs}	Gate-Source Capacitance			5.0			5.0			5.0			
\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage		10			10			10		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=100 \mathrm{~Hz}$
	Common-Gate Forward		12			12	-		12		mmho	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \end{aligned}$	$f=100 \mathrm{MHz}$
g_{fg}	Transconductance		11			11			11				$f=450 \mathrm{MHz}$
	Common-Gate Output		0.18 .			0.18			0.18				$\mathrm{f}=100 \mathrm{MHz}$
	Conductance		0.7			0.7			0.7				$\mathrm{f}=450 \mathrm{MHz}$
G_{pg}	Common-Gate Power Gain		15			15			15		dB		$\mathrm{f}=100 \mathrm{MHz}$
			10			10			10				$\mathrm{f}=450 \mathrm{MHz}$
NF	Noise Figure		1.5			1.5			1.5				$f=100 \mathrm{MHz}$
			3.2			3.2			3.2				$f=450 \mathrm{MHz}$

NOTE: Pulse test duration $=2 \mathrm{~ms}$.

FEATURES

- Minimum System Error and Calibration - 5mV Offset Maximum (U401), 95dB Minimum CMRR (U401-04)
- Low Drift with Temperature - $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Maximum $(401,02)$
- Operates from Low Power Supply Voltages VGS(off) $<2.5 \mathrm{~V}$
- Simplifies Amplifier Design - Output Impedance $>500 \mathrm{~K} \Omega$

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage 50 V
Forward Gate Current 10 mA
Device Dissipation (each side)
@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ derate $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
300 mW
Total Device Dissipation
@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ (derate $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) $\ldots \ldots$.
Storage Temperature Range -65 to $200^{\circ} \mathrm{C}$

ORDERING INFORMATION

TO-71	WAFER	DICE
U40X	U40XIW	U40XID

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: 25° unless otherwise noted.

Characteristic				U401		U402		U403		U404		U405		U406		Unit	Test Conditions	
				Min	Max													
1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$	BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50		-50		-50		V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{IG}=-1 \mu \mathrm{~A}$	
2		lass	Gate Reverse Current (Note 1)		-25		-25		-25		-25		-25		-25	pA	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-30 \mathrm{~V}$	
3		VGS(off)	Gate-Source Cutoff Voltage	-5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	V	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
4	$\begin{array}{r} \mathrm{A} \\ T \end{array}$	VGS(on)	Gate-Source Voltage (on)		-2.3		-2.3		-2.3		-2.3		-2.3		-2.3		$V_{D G}=15 \mathrm{~V}, I_{\text {d }}=200 \mu \mathrm{~A}$	
5	$\begin{aligned} & 1 \\ & c \end{aligned}$	Idss	Saturation Drain Current (Note 2)	0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
6					-15		-15		-15		-15		-15		-15	pA	$\begin{aligned} & V_{D G}=15 \mathrm{~V}, \\ & \mathrm{ID}_{\mathrm{D}}=200 \mu \mathrm{~A} \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ & V_{D S}=0, V_{G S}=0, \mathrm{I}_{G}= \pm 1 \mu \mathrm{~A} \end{aligned}$	
7		IG	Gate Current (Note 1)		-10		-10		-10		-10		-10		-10	nA		
8		BVG1-G2	Gate-Gate Breakdown Voltage	± 50		V												
9		g fs	Common-Source Forward Transconductance (Note 2)	2000	7000	2000	7000	2000	7000	2000	7000	2000	7000	2000	7000	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & V_{G S}=0 \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
10		gos	Common-Source Output Conductance		20		20		20		20		20		20			
11	D	gfs	Common-Source Forward Transconductance	1000	1600	1000	1600	1000	1600	1000	1600	1000	1600	1000	1600		$\begin{aligned} & V D G=15 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
12	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~A} \end{aligned}$	gos	Common-Source Output Conductance		2.0		2.0		2.0		2.0		2.0		2.0			
13	$\begin{gathered} M \\ 1 \end{gathered}$	Ciss	Common-Source Input Capacitance		8.0		8.0		8.0		8.0		8.0		8.0	pF		$\mathrm{f}=1 \mathrm{MHz}$
14	c	Crss	Common-Source Reverse Transfer Capacitance		3.0		3.0		3.0		3.0		3.0		3.0			
15		eN	Equivalent Short-Circuit Input Noise Voltage		20		20		20		20		20		20	$\frac{n V}{\sqrt{H z}}$	$\begin{aligned} & \mathrm{VDS}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \hline \end{aligned}$	$f=10 \mathrm{~Hz}$
16	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~A} \end{aligned}$	CMRR	Common-Mode Rejection Ratio (Note 3)	95		95		95		95		90				dB	$V_{D G}=10$ to $20 \mathrm{~V}, \mathrm{ID}^{\text {a }}=200 \mu \mathrm{~A}$	
17	$\begin{aligned} & \mathrm{T} \\ & \mathrm{C} \end{aligned}$	$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage		5		10		10		15		20		40	mV	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}^{2}=200 \mu \mathrm{~A}$	
18	$\begin{gathered} \mathrm{H} \\ 1 \\ \mathrm{~N} \\ \mathrm{G} \end{gathered}$	$\frac{\Delta\left\|V_{\mathrm{GS} 1}-\mathrm{VGS}_{2}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift (Note 4)		10	.	10		25		25		40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{VDG}=10 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{B}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{ID}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{aligned}$

[^2]
U410-U412 Monolithic Dual N-Channel JFET

APPLICATIONS

\author{

- FET Input Amplifiers
 - Low and Medium Frequency Amplifiers
 - Impedance Converters
 - Precision Instrumentation Amplifiers
 - Comparators
}

FEATURES

- Minimum System Error and Calibration 10 mV Offset Maximum (U410) 70 dB Minimum CMRR (U410)
- Low Drift with Temperature $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Maximum (U410)
- Simplifies Amplifier Design Low Output Conductance

ABSOLUTE MAXIMUM RATINGS ($\mathbf{2 5}^{\circ}$)

Gate-To-Gate Voltage $\ldots \pm 40 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage. $50-40 \mathrm{~V}$
Gate Current \qquad . 50 mA
Total Package Dissipation ($25^{\circ} \mathrm{C}$ Free-Air) .375 mW
Power Derating . . Storage Temperature Range -65 to $+150^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 10 seconds) \qquad $.300^{\circ} \mathrm{C}$

ORDERING INFORMATION

TO.71	WAFER	DICE
U410	U410/W	U410/D
U411	U411/W	U411/D
U412	U412/W	U412/D

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

. Characteristic			U410			U411			U412			Unit	Test Conditions		
			Min	TYP	Max	Min	TYP	Max	Min	TYP	Max				
STATIC	IGSS :	Gate Reverse (Note 1)			-200			-200			-200	pA	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-30 \mathrm{~V}$		
	V_{GS} (off)	Gate-Source Cutoff Voltage	-1.0		-3.5	-1.0		-3.5	-1.0		-3.5	V	$V_{D S}=20 \mathrm{~V}, I_{D}=1 \mathrm{nA}$		
	$\mathrm{BV}_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage	-40			-40		-	-40				$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$		
	IDSS	Saturation Drain Current (Note 2)	0.5		5.0	0.5		5.0	0.5		5.0	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		
	I_{G}	Gate Current (Note 1)			-200			-200			-200	pA	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		
	V_{GS}	Gate-Source Voltage	-0.2		-3.0	-0.2		-3.0	-0.2		-3.0	V			
	$\mathrm{g}_{\mathrm{fs}} \quad \mathrm{T}$	Common-Source Forward Transconductance	1,000		4,000	1,000		4,000	1,000.		4,000	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{KHz}$	
Y			600	.	1,200	600		1,200	600		1,200		$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		
N	g_{os}	Common-Source Output			20			20			20		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		
A		Conductance :			5			5			5		$\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		
M	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		4.5			4.5			4.5		pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	
C	$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		1.2			1.2	-		1.2					
M	$\overline{\mathbf{e}}_{\mathrm{n}}$	Equivalent Short-Circuit Input Noise Voltage			50			50			50	.	$V_{D S}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$	$\mathrm{f}=100 \mathrm{~Hz}$	
T	$\left\|\mathrm{V}_{\mathrm{GS}_{1}}-\mathrm{V}_{\mathrm{GS}}{ }^{2}\right\|$	Differential Gate-Source Voltage			10			20			40	mV	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		
H 1 N	$\frac{\Delta \mathrm{V}_{\mathrm{GS}_{1}-} \mathrm{V}_{\mathrm{GS}_{2}}}{\Delta \mathrm{~T}}$	Gate-Source Differential Drift (Note 3)			10			25			80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\mathrm{B}}=85^{\circ} \mathrm{C} \end{aligned}$		
G	CMRR	Common-Mode Rejection Ratio (Note 4)		80			80		-	70		dB	$\begin{aligned} & V_{D D}=10 \mathrm{~V} \text { to } \mathrm{V}_{D D}=20 \mathrm{~V} \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$		

Note 1: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}. Note 2: Pulse test duration $=300 \mu \mathrm{sec}$; duty cycle $\leq 3 \%$.
Note 3: Measured at end points, T_{A} and T_{B}.
Note 4: $C M R R=20 \log _{10}\left[\frac{\Delta V_{D D}}{\Delta 1 V_{G S I} \cdot V_{G S 2} 1}\right] \Delta V_{D D}=10 \mathrm{~V}$.

U421-U426 Monolitic Dual N-Channel JFET

APPLICATIONS

- Very High Input Impedance

Differential Amplifiers

- Electrometers
- Impedance Converters

FEATURES

- High Input Impedance $\mathrm{IG}_{\mathrm{G}}=0.1 \mathrm{pA}$ Maximum (U421-3)
- High Gain $\mathrm{gfs}_{\mathrm{s}}=140 \mu \mathrm{mho}$ $\mathrm{ID}=30 \mu \mathrm{~A}$ (U421-3)
- Low Power Supply Operation
$V_{G S}($ off $)=2 V$ Maximum (U421-3)
- Minimum System Error and Calibration 10 mV Maximum Offset
90 dB Minimum CMRR (U421, U424)

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

Characteristic				U421-3			U424-6			Unit	Test Conditions	
				Min	Typ	Max	Min	Typ	Max			
1	S	BVGSS	Gate-Source Breakdown Voltage	-40	-60		-40	-60		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
2		BVG1G2	Gate-Gate Breakdown Voltage	± 40			± 40				$\mathrm{IG}=-1 \mu \mathrm{~A}, \mathrm{ID}=0, \mathrm{IS}=0$	
3		Igss Gate Reverse Current (Note 1)				0.5			1.0	nA		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
4	A	IG \quad Gate Operating Current (Note 1)				0.1 -100			$\frac{0.5}{-500}$	pA		$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=30 \mu \mathrm{~A}$
5						-100			-500		$\mathrm{T}=+125^{\circ} \mathrm{C}$	
	,	VG(Gate-Source Cutorn Voltage	-0.4		-2.0	-0.4		-3.0	V	$V_{D S}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{nA}$	
7		VGS	Gate-Source Voltage			-1.8			-2.9		$V_{D G}=10 \mathrm{~V}, ~ I D=30 \mu \mathrm{~A}$	
		IDSS	Saturation Drain Current	60°		1000	60		1800	$\mu \mathrm{A}$	$V_{\text {DS }}=10 \mathrm{~V}, . \mathrm{VGS}=0$	
9	V	gis	Common-Source Forward Transconductance	300		800	300		$\frac{1000}{5.0}$	$\mu \%$	$\mathrm{VDS} \doteq 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$
10		Ciss	Common-Source Input Capacitance			3.0			3.0	pF		
11		Crss	Common-Source Reverse Transfer Capacitance			1.5			1.5			$\mathrm{f}=1 \mathrm{MHz}$
12	N	gfs	Common-Source Forward Transconductance	140		250	135		300	$\mu \mathrm{mho}$	$\begin{aligned} & V D G=10 \mathrm{~V}, \\ & I_{D}=30 \mu \mathrm{~A} \end{aligned}$	
13	A	gos	Common-Source Output Conductance			0.5			1.0			$\mathrm{f}=1 \mathrm{kHz}$
14	$\begin{gathered} M \\ 1 \\ C \end{gathered}$	e_{n}	Equivalent Short Circuit Input		20	50		20	70	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$		$t=10 \mathrm{~Hz}$
			Noise Voltage.		10			10	50			$\mathrm{f}=1 \mathrm{kHz}$
15		NF	Noise Figure			1.0			1.0	dB	$\mathrm{f}=10 \mathrm{~Hz}$	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega$

Characteristic				U421,4			U422,5			U423,6			Unit	Test Conditions	
				Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
16	M	\|VGS1-VGS2		Differential Gate-Source Voltage			10			15			25	mV	$V_{D G}=10 \mathrm{~V}, I_{D}=30 \mu \mathrm{~A}$
17	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~T} \end{aligned}$	$\frac{\left\|V_{G S 1}-V_{G S 2}\right\|}{\Delta T}$	Differential Gate-Source Voltage Change With Temperature (Note 2			10			25			40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=30 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}, \mathrm{~T}_{B}=25^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$	
18	$\begin{aligned} & \mathrm{C} \\ & \mathrm{H} \end{aligned}$	CMRR	Common Mode Rejection Ratio (Note 3)	90	95		80	90		80	90		dB	$\mathrm{ID}_{\mathrm{D}}=30 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DG}}=10$ to 20 V	

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Measured at end points T_{A}, T_{B} and T_{C}.
3. $C M R R=\log _{10}\left[\frac{\Delta V_{D D}}{\Delta\left|V_{G S 1}-V_{G S 2}\right|}\right], \Delta V_{D D}=10 \mathrm{~V}$

Features

- High Gain
$\mathbf{g}_{\text {fs }}=\mathbf{4 5 0 0} \mu \mathrm{mho}$ Minimum

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Gate-To-Gate Voltage . $\pm 50 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage. .. 25 - 25
Gate Current 50 mA
Total Package Dissipation
($25^{\circ} \mathrm{C}$ Free-Air Temperature) . 350 mW
Power Derating . $2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range . -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds)
$300^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

NOTE 1: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
NOTE 2: Pulse test duration $=300 \mu \mathrm{sec}$; duty cycle $<3 \%$.

FEATURES

- $C_{\text {mRR }}>120 \mathrm{~dB}$
- IG >5 PA @ $50 V_{\text {DG }}$
- Low Miller Capacitance (Crss)
- Low gos > . $025 \mu \mathrm{mhos}$

GENERAL DESCRIPTION

A low noise, low leakage FET that employs a cascode structure to accomplish very low I_{G} at high voltage levels, while giving high transconductance and very high common mode rejection ratio.

ABSOLUTE MAXIMUM RATINGS

(@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

Maximum Temperatures
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $. \ldots \ldots \ldots \ldots \ldots \ldots . . .+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec time limit) . $+300^{\circ} \mathrm{C}$

Maximum Power Dissipation

Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature
One Side
250 mW
Both Sides 500 mW

Linear Derating

One Side
$3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Both Sides
$7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Currents
$V_{D S}$ Drain to Source Voltage . 60 V
$V_{\text {GS }}$ Gate to Source Voltage . 60 V
V_{GD} Gate to Drain Voltage . 60 V
$\mathrm{V}_{\mathrm{G} 1 \mathrm{G} 2}$ Gate to Gate Voltage . 60 V
I_{G} Gate Current 50 mA

PIN
 CONFIGURATION

TO. 71
low profile

CHIP TOPOGRAPHY

ORDERING INFORMATION

TO.78	WAFER	DICE
IT500	IT500/W	IT500/D
IT501	IT501/W	IT501/D
IT502	IT502/W	IT502/D
IT503	IT503/W	IT503/D
IT504	IT504/W	IT504/D
IT505	IT505/W	IT505/D

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

$$
* C_{M R R}=20 \log _{10} \Delta V_{D D^{\prime}} \Delta\left[V_{\mathrm{gs} 1} \cdot \mathrm{~V}_{\mathrm{gs} 2}\right] \cdot \Delta \mathrm{V}_{\mathrm{DD}}=10 / \cdot 20 \mathrm{~V}
$$

NOTES: 1. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$. 2. Measured at end points, T_{A} and T_{B}.
3. With case guarded $\mathrm{C}_{\text {RSS }}$ is typically $<.15 \mathrm{pF}$

TYPICAL PERFORMANCE CURVES

GATE LEAK AGE

OUTPUT
CHARACTERISTICS

TYPICAL CAPACITANCE VS.
GATE-SOURCE VOLTAGE

MFE823 Enhancement Mode
P-Channel MOSFET

APPLICATIONS

- High-Input Impedance Amplifiers
- Smoke Detectors
- Electrometers
- pH Meters

FEATURES

- High Input Impedance IGSS = $\mathbf{3 0}$ Femto Amp Typical
- High Gain
$\mathbf{g i s}_{\mathrm{f}}=1000 \mu \mathrm{mho}$ Minimum
ABSOLUTE MAXIMUM RATINGS $\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$Drain-Source Voltage.25 V
Gate-Source Voltage $\pm 10 \mathrm{~V}$
Drain Current 30 mATotal Device Dissipation at (Or Below) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$).375 mW
Operating Junction Temperature 55 to $+150^{\circ} \mathrm{C}$
Storage Temperature -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds) $265^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right)$

Characteristic			Min	Max	Unit	Test Conditions
S T A	IGSS	Gate-Source Leakage Current		- 1.0	pA	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
	BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	-25		V	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$
	$\mathrm{V}_{\text {GS }}$	Gate-Source Voltage	-2.0	-6.0	V	$V_{D S}=-10 \mathrm{~V}, \mathrm{ID}=-10 \mu \mathrm{~A}$
	IDSS	Drain Cutoff Current		-20	nA	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
C	ID(on)	ON Drain Current	-3.0		mA	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$
DYNAMIC	Gfs	Common-Source Forward Transconductance	1000		$\mu \mathrm{mhos}$	$V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$
	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6.0	pF	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
	Crss	Common-Source Reverse Transfer Capacitance		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		

P-Channel Enhancement Mode MOS FET

FEATURES

```
- Low On-Resistance - \(r_{\text {DS(on) }} \leqslant 400\) ohms - High Input Impedance - \(10^{15}\) ohms
- High Gate Breakdown Voltage - \(\mathrm{V}_{\mathrm{GSS}} \pm 125 \mathrm{~V} \quad\) - Low Leakage - \({ }^{\text {I DSS }} \leqslant 200 \rho \mathrm{~A}\)
- High Gain - \(\mathbf{g}_{\mathrm{fs}} \geqslant 2000 \mu\) mhos
- Low Noise Voltage - \(e_{n} 150 \mathrm{nV} / \sqrt{ } \mathrm{Hz}\) typical @ 100 Hz
```


ABSOLUTE MAXIMUM RATINGS (Note 1)

 $@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)

Storage Temperature
Operating Junction Temperature Lead Temperature (soldering, 10 second time limit)

Maximum Power Dissipation Total Dissipation at $25^{\circ} \mathrm{C}$ Ambient Temperature

$$
0.375 \text { W }
$$

Linear Derating Factor at $25^{\circ} \mathrm{C}$ Ambient Temperature

$$
3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}
$$ Total Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature

$$
1.25 \mathrm{~W}
$$ Linear Derating Factor at $25^{\circ} \mathrm{C}$ Case Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+200^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
+300^{\circ} \mathrm{C}
\end{array}
$$

$$
10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}
$$

Maximum Voltages and Current $V_{\text {DSS }}$ Drain to Source and Body Voltage $V_{\text {SDS }}$ Source to Drain and Body Voltage $V_{\text {GSS }}$ Transient Gate to Source Voltage (Note 2)
$V_{\text {GSS }}$ Gate to Source Voltage -40 V ID(on) Drain Current $\quad 50 \mathrm{~mA}$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
BV DSS	Drain to Source Breakdown Voltage	-40		V	$V_{G S}=0, I D=-10 \mu \mathrm{~A}$
$B \vee$ SDS	Source to Drain Breakdown Voltage	-40		V	$V_{G S}=0, I_{D}=-10 \mu \mathrm{~A}$
IGSS	Gate Leakage Current				(See Note 2)
IDSS	Drain to Source Leakage Current		200	pA	$V_{G S}=0, V_{D S}=-20 \mathrm{~V}$
IDSS ($150^{\circ} \mathrm{C}$)	Drain to Source Leakage Current		0.4	$\mu \mathrm{A}$	$V_{G S}=0, V_{\text {DS }}=-20 \mathrm{~V}$
ISDS	Source to Drain Leakage Current		400	pA	$V_{G S}=0, V_{D S}=-20 \mathrm{~V}$
I SDS ($150^{\circ} \mathrm{C}$)	Source to Drain Leakage Current		0.8	$\mu \mathrm{A}$	$V_{G S}=0, V_{D S}=-20 \mathrm{~V}$
VGS(th)	Gate Threshold Voltage	-2	-5	V	$V_{G S}=V_{D S}, I_{D}=-10 \mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
$\begin{aligned} & \text { rDS (on) } \\ & \text { IDS (on) } \end{aligned}$	Static Drain to Source "on" Resistance Drain to Source "on" Current	2		400	$\begin{gathered} \hline \text { ohms } \\ \mathrm{mA} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V} \end{aligned}$
g_{fS}	Forward Transconductance Common Source	2000		4000	$\mu \mathrm{mhos}$	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
$\mathrm{C}_{\text {iss }}$	Small Signal, Short Circuit, Common Source, Input Capacitance			5	pF	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{ID}=-10 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {rss }}$	Small Signal, Short Circuit, Common Source, Reverse Transfer Capacitance			1.2	pF	$\begin{aligned} & V_{D G}=-15 \mathrm{~V}, \mathrm{ID}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Small Signal, Short Circuit, Common Source, Output Capacitance			3.5	pF	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$
$\overline{e_{n}}$	Equivalent Input Noise Voltage		150		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{D}=-1 \mathrm{~mA} \\ & f=100 \mathrm{~Hz} ; B W=1 \mathrm{~Hz} \end{aligned}$

NOTE: 1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of $<10 \mathrm{pA}$. External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.

IT1750

N-Channel Enhancement Mode MOS FET

FEATURES

- Low On-Resistance - 50Ω
- Low Capacitance - 1.7 pF
- High Gain - 3,000 μ mhos
- High Gate Breakdown Voltage $- \pm 125 \mathrm{~V}$
- Low Threshold Voltage - 3 V

ABSOLUTE MAXIMUM RATINGS (Note 1)

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Operating Junction Temperature $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Maximum Power Dissipation	
Total Dissipation at $25^{\circ} \mathrm{C}$ Ambient Temp.	375 mW
Linear Derating Factor at $25^{\circ} \mathrm{C}$	
Ambient Temp.	$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages and Current	
$V_{\text {DSS }}$ Drain to Source and Body Voltage	25 V
$V_{\text {GSS }}$ Transient Gate to Source Voltage	$\pm 125 \mathrm{~V}$
${ }^{\prime}$ D(on) Drain Current	100 mA

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$, Body connected to Source unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
VGS(TH)	Gate to Source Threshold Voltage	0.50	1.5	3.0	V	$V_{D S}=V_{G S}, I_{D}=10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{BS}}=0$
IDSS	Drain Leakage Current		0.1	10	nA	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=V_{B S}=0$
IGSS	Gate Leakage Current (Note 2)					(See Note 2)
BVDSS	Drain Breakdown Voltage	25			V	$I^{\text {D }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$
${ }^{\text {r DSS }}$ (on)	Drain To Source on Resistance		25	50	ohms	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=0$
ID(on)	Drain Current	10	50		mA	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=0$
Y_{fs}	Forward Transadmittance	3,000			$\mu \mathrm{mhos}$	$\begin{aligned} & \mathrm{VDS}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \\ & f=1 \mathrm{KHz}, V_{B S}=0 \end{aligned}$
$\mathrm{C}_{\text {iss }}$	Total Gate Input Capacitance		5.0	6.0	pF	$\begin{aligned} & I_{D}=10 \mathrm{~mA}, V_{D S}=10 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, V_{B S}=0 \end{aligned}$
$\mathrm{C}_{\text {dg }}$	Gate to Drain Capacitance		1.3	1.6	pF	$V_{D G}=10 \mathrm{~V}, \mathrm{~V}_{\text {BS }}=0$

Note: 1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired:
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of <10pA. External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.

U1897-U1899 N-Channel JFET

FEATURES

- Low insertion Loss
$r_{\text {DS(on) }}<30 \Omega$ (U1897)
- No Error or Offset Voltage Generated by Closed Switch

APPLICATIONS

Analog, Switches, Choppers, Communicators

ABSOLUTE MAXIMUM RATINGS (25°)
Gate-Drain or Gate-Source Voltage......... 40 V
Forward Gate Current . 10 mA
Total Continuous Device Dissipation
at (or Below) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$) 350 mW
Storage Temperature Range....... -55 to $+125^{\circ} \mathrm{C}$
Operating Temperature Range..... - 55 to $+125^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 10 seconds. $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

PIN
 CONFIGURATION

CHIP
 TOPOGRAPHY

TO-92

5001B

ORDERING INFORMATION

TO-92	WAFER	DICE
U1897	U1897/W	U1897ID
U1898	U1898/W	U1898/D
U1899	U1899/W	U1899/D

PARAMETERS			U1897		U1898		U1899		UNIT	TEST CONDITIONS			
			MIN	MAX	MIN	MAX	MIN	MAX.					
	$\mathrm{BV}_{\text {GSS }}$	Gate-Source Breakdown Voltage	-40		-40		-40		v	$\mathrm{IG}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$			
	BVIGO	Drain-Gate Breakdown Voltage	40		40		40			$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{S}}=0$			
	BVSGO	Source-Gate Breakdown Voltage	40		40		40			$\mathrm{I}_{\mathrm{G}}=-1{ }_{\mu} \mathrm{A}, \mathrm{I}_{\mathrm{D}}=0$			
	IGSS.	Gate Reverse Current		-400		-400		-400	pA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			
S	IDGO	Drain-Gate Leakage Current		200		200		200		$\mathrm{V}_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$			
T	ISGO	Source-Gate Leakage Current		200		200		200		$\mathrm{V}_{S G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$			
A	${ }^{1} \mathrm{D}$ (off)	Drain Cutoff Current		200		200		200		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}$ (U1897)			
T				10		10		10	nA	$\begin{aligned} & V_{G S}=-8 V(U 1898) \\ & V_{G S}=-6 \mathrm{~V} \text { (U1899) } T_{A}=85^{\circ} \mathrm{C} \end{aligned}$			
1	$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-5.0	-10	-2.0	-7.0	-1.0	-5.0	V	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{na}$			
c	Toss	Saturation Drain Current (Note 1)	30		15		8.0		mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			
	$\mathrm{V}_{\text {DS(on) }}$	Drain-Source ON Voltage		0.2		0.2		0.2	\checkmark	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA}(\mathrm{U} 1897) \\ & \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~mA} \text { (U1898) } \\ & \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA} \text { (U1899) } \\ & \hline \end{aligned}$			
	${ }^{\text {r DS }}$ (on)	Static Drain-Source ON Resistance		30		50		80	Ω	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$			
	${ }^{\text {c }}$ DG	Drain-Gate Capacitance		5		5		5	pF	$\begin{aligned} & \hline V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0 \\ & \hline \mathrm{~V}_{\mathrm{SG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \\ & \hline \end{aligned}$		$\mathrm{f}=1 \mathrm{MHz}$	
	${ }^{\mathrm{C}_{\text {SG }}}$	Source-Gate Capacitance		5		5		5					
D	$\mathrm{C}_{\text {ISS }}$	Common-Source Input Capacitance		16		16		16		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			
Y	Crss	Common-Source Reverse Transfer Capacitance		3.5		3.5		3.5					
A	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn ON Delay Time		15		15		20	ns	Switching Time Test Conditions			
M	t_{r}	Rise Time		10		20		40			U1897	U1898	U1899
I	${ }^{\text {toff }}$	Turn OFF Time		40		60		80		$V_{D D}$ $\mathrm{V}_{\mathrm{GS}(\mathrm{on})}$ $V_{G S(0 f f)}$ R_{L} ${ }^{\prime} \mathrm{D}$ (on)	$\begin{array}{r} 3 V \\ 0 \\ -12 \mathrm{~V} \\ 4308 \\ 6.6 \mathrm{~mA} \end{array}$	$\begin{array}{r} 3 \mathrm{~V} \\ 0 \\ -8 \mathrm{~V} \\ 700 \mathrm{~B} \\ 4 \mathrm{~mA} \end{array}$	$\begin{array}{r} 3 \mathrm{~V} \\ 0 \\ -6 \mathrm{~V} \\ 1100 \Omega \\ 2.5 \mathrm{~mA} \end{array}$

NOTE: 1. Pulse test pulsewidth $=300 \mu$ s; duty cycle $<3 \%$

2N2607-2N2609 2N2609 JAN P-Channel JFET

APPLICATIONS

- Low-level Choppers
- Data Switches
- Commutators

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$+260^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	300 mW
Linear Derating	$2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current	
V DG Drain to Gate Voltage	30 V
V Source to Gate Voltage	30 V
IG Gate Current	50 mA

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	Characteristic	Test Conditions		2N2607		2N2608		2N2609		Unit
				Min	Max	Min	Max	Min	Max	
${ }^{\text {IGSS }}$	Gate-Source Cutoff Current	$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			3		10		30	nA
		$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			3		10		30	$\mu \mathrm{A}$
$B V_{\text {GDS }}$	Gate-Drain Breakdown Voltage	${ }^{1} \mathrm{G}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		30		30		30		V
V_{P}	Gate-Source Pinch-Off Voltage	$V_{D S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$		1	4	1	4	1	4	V
I DSS	Drain Current at Zero Gate Voltage	$V_{D S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		-0.30	-1.50	-0.90	-4.50	-2	-10	mA
g_{fs}.	Small-Signal Common-Source Forward Transconductance	$V_{D S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{kHz}$		330		1000		2500		$\mu \mathrm{mho}$
$\mathrm{C}_{\text {iss }}$	- Gate-Source Input Capacitance	$\begin{gathered} V_{D S}=-5 \mathrm{~V}, V_{G S}=1 \mathrm{~V}, \\ f=140 \mathrm{kHz} \end{gathered}$			10		17		30	pF
NF	Noise Figure	$\begin{aligned} & V_{D S}=-5 \mathrm{~V}, \\ & V_{G S}=0, \\ & f=1 \cdot \mathrm{kHz} \end{aligned}$	$R_{G}=10 \mathrm{M} \Omega$		3				,	dB
			$\mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$	-			3		3	

FEATURES

- $\mathrm{C}_{\mathrm{GSS}}<1.2 \mathrm{pF}$
- Exceptionally high figure of merit
- Radiation Immunity
- Symmetrical devices for low-level choppers, data switches, multiplexers and low noise amplifiers
- Extremely low noise and capacitance
- High input impedance
- Zero offset
- High reliability silicon epitaxial planar construction

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	$+260^{\circ} \mathrm{C}$

Maximum Power Dissipation
Device Dissipation @ Free Air Temperature
300 mW Linear Derating
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current

$V_{\text {GS }}$ Gate to Source Voltage	-50 V
$\mathrm{~V}_{\text {GD }}$ Gate to Drain Voltage	-50 V
I G $_{\mathrm{G}}$. Gate Current	50 mA

PIN CONFIGURATION

TO.72

CHIP TOPOGRAPHY 5010

ORDERING INFORMATION

TO-72	WAFER	DICE
2N3684	2N3684/W	2N3684/D
2N3685	2N3685/W	2N3685/D
2N3686	2N3686/W	2N3686/D
2N3687	2N3687/W	2N3687/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER		2N3684		2N3685		2N3686		2 N 3687		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
BVGSS	Gate to Source Breakdown Voltage	-50		-50		-50		-50		V	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=1.0 \mu \mathrm{~A}$
V P	Pinch-Off Voltage	2.0	5.0	1.0	3.5	0.6	2.0	0.3	1.2	V	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.001 \mu \mathrm{~A}$
IGSS	Total Gate Leakage Current		-0.1		-0.1		-0.1		-0.1	nA	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
IGSS	Total Gate Leakage Current ($150{ }^{\circ} \mathrm{C}$)		-0.5		-0.5		-0.5		-0.5	$\mu \mathrm{A}$	VGS $=-30 \mathrm{~V}, \mathrm{VDS}=0 @ 150^{\circ} \mathrm{C}$
IDSS	Saturation Current, Drain-to-Source	2.5	7.5	1.0	3.0	0.4	1.2	0.1	0.5	mA	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=20 \mathrm{~V}$
\|Y fs	Forward Transadmittance	2000	3000	1500	2500	1000	2000	5	1500	$\mu \mathrm{mhos}$	$\begin{aligned} & \text { VDS }=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
$C_{\text {iss }}$	Common Source Input Capacitance (Output Shorted)		4.0		4.0		4.0		4.0	pF	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{G S}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$
$\mathrm{G}_{\text {OS }}$	Small Signal, Common Source Output Conductance (input shorted)		50		25		10		5	μ mhos	$\begin{aligned} & \text { VDS }=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
$\mathrm{C}_{\text {rss }}$	Small Signal, Common Source Short Circuit Reverse Transfer Capacitance		1.2		1.2		1.2		1.2	pF	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$
' ${ }^{\text {DS }}$ (on)	On Resistance		600		800		1200		2400	Ohms	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{VGS}^{=}=0$
NF	Noise Figure (Spot)		0.5		0.5		0.5		0.5	dB	$\begin{aligned} & f=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \\ & \mathrm{NBW}=6 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS	
Maximum Temperatures	
Lead Temperature (10 seconds)	$230^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Total Dissipation at	One Side Both Sides
$25^{\circ} \mathrm{C}$ Ambient Temperature	$500 \mathrm{~mW} \quad 600 \mathrm{~mW}$
Linear Derating Factor	$2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 3.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltage and Current (One side)	
Vebo Emitter to Base Voltage	-5.0V
Vcbo Collector to Base Voltage	-60V
Vceo Collector to Emitter Voltage	$-60 \mathrm{~V}$
Ic DC Collector Current	50 mA

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ Ambient Temperature unless otherwise noted

SYMBOL	CHARACTERISTIC	2N3810		2N3811		UNITS	TEST CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
ICbo	Collector Cutoff Current		10		10	nA	$V_{C B}=-50 \mathrm{~V}, \mathrm{lC}=0$
			10		10	$\mu \mathrm{A}$	$V_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
lebo	Emitter Cutoff Current		20		20	nA	$\mathrm{V}_{\mathrm{EB}}=-4.0 \mathrm{~V}$
BVEBO	Emitter to Base Breakdown Voltage	-5.0		-5.0		V	$I_{C}=0, I_{E}=10 \mu \mathrm{~A}$
BVCBO	Collector to Base Breakdown Voltage	-60		-60		V	$\mathrm{I}_{\mathrm{E}}=0, I_{C}=10 \mu \mathrm{~A}$
BVCEO	Collector to Emitter Breakdown Voltage	-60		-60		V	$\mathrm{lc}=10 \mathrm{~mA}$
hFE	DC Current Gain	100		225			$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		150	450	300	900		$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}$
		150	450	300	900		$I_{C}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		150	450	300	900		$\mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		125		250			$\mathrm{I} \mathrm{l}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		75		150			$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Base to Emitter "On" Voltage		-0.7		-0.7	V	IC $=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
VCE(sat)	Collector to Emitter Saturation Voltage		-0.2		-0.2	V	$I_{C}=100 \mu A, I_{B}=10 \mu \mathrm{~A}$
			-0.25		-0.25	V	$I_{C}=1.0 \mathrm{~mA}, I_{B}=100 \mu \mathrm{~A}$
VBE(sat)	Base to Emitter Saturation Voltage		-0.7		-0.7	V	$I_{C}=100 \mu A, I_{B}=10 \mu \mathrm{~A}$
			-0.8		-0.8	V	$I_{C}=1.0 \mathrm{~mA}, I_{B}=100 \mu \mathrm{~A}$
$\frac{\mathrm{h}_{\mathrm{FE} 1}}{\mathrm{~h}_{\mathrm{FE} 2}}$	DC Current Gain Ratio	0.9	1.0	0.9	1.0		$\mathrm{V}_{C E}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$
$\left\|V_{B E 1}-V_{B E 2}\right\|$	Base to Emitter Voltage Differential		-5.0		-5.0	mV	VCE $=-5.0 \mathrm{~V}, \mathrm{IC}=10 \mu \mathrm{~A}$ to 10 mA
			-3.0		-3.0	mV	$\mathrm{V}_{C E}=-5.0 \mathrm{~V}, \mathrm{IC}=100 \mu \mathrm{~A}$
$\left\|\Delta\left(\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right)\right\|$	Base to Emitter Voltage Differential Gradient		-1.0		-1.0	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$
							$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
			-0.8		-0.8	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$
							$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$
Cob	Output Capacitance		4.0		4.0	pF	$\mathrm{V}_{\mathrm{CB}}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=100 \mathrm{kHz}$
C_{ib}	Input Capacitance		8.0		8.0	pF	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{l} C=0, f=100 \mathrm{kHz}$
\|hfel	Magnitude of Common Emitter Small Signal Current Gain	1.0		1.0			$I_{C}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{f}=30 \mathrm{MHz}$
		1.0	5.0	1.0	5.0		$\mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$
$\mathrm{h}_{\text {ie }}$	Input Impedance	3.0	30	10	40	k Ω	$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
hre	Reverse Voltage Feedback Ratio		25		25	$\times 10^{-4}$	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{l}$ C $=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
hoe	Output Conductance	5.0	60	5.0	60	μ mho	$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
$h_{\text {fe }}$	Small Signal Current Gain	150	600	300	900		$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
RE($\mathrm{hie}_{\text {ie }}$)	Real Part of Common Emitter Small Signal Input Impedance	3.0	30	10	40	k Ω	$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
NF	Noise Figure		3.0		1.5	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{VCE}=-10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \\ & \mathrm{PBW}=200 \mathrm{~Hz}, \mathrm{RG}_{\mathrm{G}}=3.0 \mathrm{k} \Omega \end{aligned}$
			2.5		1.5	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{VCE}_{\mathrm{C}}=-10 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{PBW}=2.0 \mathrm{kHz}, \mathrm{RG}_{\mathrm{G}}=3.0 \mathrm{k} \Omega \end{aligned}$
			7.0		4.0	dB	$\begin{aligned} & \text { IC }=100 \mu \mathrm{~A}, \mathrm{VCE}=-10 \mathrm{~V}, \mathrm{f}=100 \mathrm{~Hz}, \\ & \mathrm{PBW}=20 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=3.0 \mathrm{k} \Omega \end{aligned}$
			3.5		2.5	dB	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=3.0 \mathrm{k} \Omega$ 3.0 dB down at 10 Hz and 10 kHz $\text { PBW }=15.7 \mathrm{kHz}$

PIN CONFIGURATION

T0.78

ORDERING INFORMATION

TO.78	WAFER	DICE
2N3810	2N3810/W	2N3810/D
2N3810A	2N3810A/W	2N3810A/D
2N3811	2N3811/W	2N3811/D
2N3811A	2N3811A/W	2N3811A/D

ELECTRICAL CONDITIONS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ Ambient Temperature unless otherwise noted

SYMBOL	CHARACTERISTIC	2N3810A		2N3811A		UNITS	TEST CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
Icbo	Collector Cutoff Current		10		10	nA	$\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{IC}^{\text {c }}=0$
			10		10	$\mu \mathrm{A}$	$\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
IEBO	Emitter Cutoff Current		20		20	nA	$\mathrm{V}_{\mathrm{EB}}=-4.0 \mathrm{~V}$
BVEBO	Emitter to Base Breakdown Voltage	-5.0		-5.0		V	$I_{C}=0, I_{E}=10 \mu \mathrm{~A}$
BVcbo	Collector to Base Breakdown Voltage	-60		-60		V	$\mathrm{IE}=0, \mathrm{IC}=10 \mu \mathrm{~A}$
BVceo	Collector to Emitter Breakdown Voltage	-60		-60		V	$\mathrm{IC}=10 \mathrm{~mA}$
hFE	DC Current Gain	100		225			$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		150	450	300	900		$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		150	450	300	900		$\mathrm{IC}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		150	450	300	900		$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		125		250			$\mathrm{IC}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		75		150			$\mathrm{I}^{\text {c }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {BEION }}$	Base to Emitter "On" Voltage		-0.7		-0.7	V	$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
VCE(sat)	Collector to Emitter Saturation Voltage		-0.2		-0.2	V	$I_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$
			-0.25		-0.25	V	$\mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$
VBE(sat)	Base to Emitter Saturation Voltage		-0.7		-0.7	V	$\mathrm{IC}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$
			-0.8		-0.8	V	$\mathrm{IC}^{\prime}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$
hFE1	DC Current Gain Ratio	0.95	1.0	0.95	1.0		$\mathrm{V}_{C E}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}$
hFE2		0.85	1.0	0.85	1.0		$\mathrm{V}_{C E}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$,
							$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\|VBE1-V ${ }^{\text {be2 }}$ \|	Base to Emitter Voltage Differential		-5.0		-5.0	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{IC}=10 \mu \mathrm{~A}$ to 10 mA
			-1.5		-1.5	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{IC}=100 \mu \mathrm{~A}$
$\left\|\Delta\left(\mathrm{V}_{\mathrm{BE}} 1-\mathrm{V}_{\mathrm{BE} 2}\right)\right\|$	Base to Emitter Voltage Differential Gradient		-0.5		-0.5	mV	$\mathrm{V}_{C E}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$
							$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
			-0.4		-0.4	mV	$\mathrm{V}_{C E}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}$
							$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$
Cob	Output Capacitance		4.0		4.0	pF	$\mathrm{V}_{C B}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=100 \mathrm{kHz}$
$\mathrm{C}_{\text {ib }}$	Input Capacitance		8.0		8.0	pF	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{IC}=0, \mathrm{f}=100 \mathrm{kHz}$
$\left\|h_{\text {fe }}\right\|$	Magnitude of Common Emitter Small Signal Current Gain	1.0		1.0			$\mathrm{IC}^{\text {c }}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{f}=30 \mathrm{mHz}$
		1.0	5.0	1.0	5.0		$\mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$
$\mathrm{hie}^{\text {ie }}$	Input Impedance	3.0	30	10	40	$\mathrm{k} \Omega$	$\mathrm{V}_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
hre	Reverse Voltage Feedback Ratio		25		25	$\times 10-4$	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
hoe	Output Conductance	5.0	60	5.0	60	$\mu \mathrm{mho}$	$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
$\mathrm{hfe}^{\text {fe }}$	Small Signal Current Gain	150	600	300	900		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
$\mathrm{RE}\left(\mathrm{h}_{\mathrm{ie}}\right)$	Real Part of Common Emitter Small Signal Input Impedance	3.0	30	10	40	k Ω	VCE $=-10 \mathrm{~V}, \mathrm{lc}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
NF	Noise Figure		3.0		1.5	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{VCE}=-10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \\ & \mathrm{PBW}=200 \mathrm{~Hz}, \mathrm{RG}_{\mathrm{G}}=3.0 \mathrm{k} \Omega \\ & \hline \end{aligned}$
			2.5		1.5	dB	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{VCE}=-10 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{PBW}=2.0 \mathrm{kHz}, \mathrm{RG}_{\mathrm{G}}=3.0 \mathrm{k} \Omega \\ & \hline \end{aligned}$
			7.0		4.0	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{VCE}=-10 \mathrm{~V}, \mathrm{f}=100 \mathrm{~Hz}, \\ & \mathrm{PBW}=20 \mathrm{~Hz}, \mathrm{RG}_{\mathrm{G}}=3.0 \mathrm{k} \Omega \end{aligned}$
		,	3.5		2.5	dB	$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=3.0 \mathrm{k} \Omega \text {, }$ 3 dB down at 10 Hz and 10 kHz $\text { PBW }=15.7 \mathrm{kHz}$

FEATURES

- Low Capacitance
- Up to 6500μ mho Transconductance

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)	
Maximum Temperatures	
Storage Temperature $\quad-65^{\circ}$	$65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	
10 sec time limit).	$+260^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	ure . $\quad 300 \mathrm{~mW}$
Linear Derating	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current	
$V_{\text {GS }}$ Gate to Source Voltage	-50 V
$V_{\text {GD }}$ Gate to Drain Voltage	-50 V
${ }^{\prime} \mathrm{G}$ Gate Current	10 mA

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		2N3821		2N3822		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
IGSS	Gate Reverse Current		-0.1		-0.1	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-0.1		-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-50		-50		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-4		-6		$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{nA}$	
VGS	Gate-Source Voltage	-0.5	-2				$V_{\text {DS }}=15 \mathrm{~V}, 1 \mathrm{D}=50 \mu \mathrm{~A}$	
				-1	-4		VDS $=15 \mathrm{~V}, 1 \mathrm{D}=200 \mu \mathrm{~A}$	
IDSS	Saturation Drain Current	0.5	2.5	2	10	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 3)	
g_{fs}	Common-Source Forward Transconductance (Note 1)	1500	4500	3000	6500	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
$\left\|y_{f_{s}}\right\|$	Common-Source Forward Transadmittance	1500	-	3000				$\mathrm{f}=100 \mathrm{MHz}$
$\mathrm{g}_{\text {OS }}$	Common-Source Output Conductance (Note 1)		10		20			$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6		6	pF		$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		3.		3			
NF	Noise Figure		5		5	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & R_{\mathrm{gen}}=1 \mathrm{meg}, \mathrm{BW}=5 \mathrm{~Hz} \end{aligned}$	$f=10 \mathrm{~Hz}$
$\overline{e_{n}}$	Equivalent Input Noise Voltage		200		200	$\frac{n V}{\sqrt{H z}}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{BW}=5 \mathrm{~Hz}$	f=10 Hz

NOTE: 1. These parameters are measured during a 2 msec interval 100 msec after $\mathrm{d}-\mathrm{c}$ power is applied.

2N3823

N-Channel JFET

FOR VHF AMPLIFIER OSCILLATOR MIXER APPLICATIONS

- Noise Figure $<\mathbf{2 . 5} \mathbf{~ d B}$ at 100 MHz
- Low Capacitance
- Transconductance up to $6500 \mu \mathrm{mho}$

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Source Voltage -30V
Gate-Drain Voltage ... -30 V
Gate Current 10 mA
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$
Free-Air Temperature 300 mW
Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$ Lead Temperature $1 / 16^{\prime \prime}$ From Case to 10 Sec $300^{\circ} \mathrm{C}$

PIN
 CONFIGURATION

CHIP TOPOGRAPHY

ORDERING INFORMATION

TO.72	WAFER	DICE
2N3823	2N3823/W	2N3823/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right)$

	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS	
			-0.5	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
IGSS	Gate Reverse Current		-0.5	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-30		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	\checkmark
VGS(off)	Gate-Source Cutoff Voltage		-8		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{nA}$	
VGS	Gate-Source Voltage	-1.0	-7.5		$V_{D S}=15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=400 \mu \mathrm{~A}$	
IDSS	Saturation Drain Current	4	20	mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0($ Note 3)	
gis	Common-Source Forward Transconductance	3,500	6,500	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$ (Note 1)
$\mid \mathrm{Vfs}^{\text {s }}$	Common-Source Forward Transadmittance	3,200				$\mathrm{f}=100 \mathrm{MHz}$.
gos	Common-Source Output Transconductance		35			$\mathrm{f}=1 \mathrm{kHz}$ (Note 1)
giss	Common-Source Input Conductance		800			$f=200 \mathrm{MHz}$
goss	Common-Source Output Conductance		200			
Ciss	Common-Source Input Capacitance		6	pF		
Crss	Common-Source Reverse Transfer Capacitance		2			$\mathrm{f}=1 \mathrm{MHz}$
NF	Noise Figure		2.5	dB	$\begin{aligned} & \mathrm{V}_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \\ & R_{G}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{f}=100 \mathrm{MHz}$

NOTE 1: These parameters are measured during a 2 msec interval 100 msec after $\mathrm{d}-\mathrm{c}$ power is applied.

FOR HIGH SPEED COMMUTATORS AND CHOPPERS

- $\mathbf{r d s}_{\text {d }}<250$ ohms
- $I_{D(o f f)}<0.1$ nA
ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)
Gate-Source Voltage $-50 \mathrm{~V}$
Gate-Drain Voltage $-50 \mathrm{~V}$
Gate Current 10 mATotal Device Dissipation at (or below) $25^{\circ} \mathrm{C}$Free-Air Temperature300 mW
Storage Temperature Range

\qquad
65 to $+200^{\circ} \mathrm{C}$

ORDERING INFORMATION

TO-72	WAFER	DICE
2N3824	2N3824/W	2N3824/D

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS	
IGss	Gate Reverse Current		-0.1	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
			-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGss	Gate-Source Breakdown Voltage	-50		V	$\mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
ld(off)	Drain Cutoff Current		0.1	nA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$	
			0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
rds(on)	Drain-Source ON Resistance		250	Ω	$V_{G S}=0 \mathrm{~V}, \mathrm{ID}=0$	$\mathrm{f}=1 \mathrm{kHz}$
Ciss	Common-Source Input Capacitance		6	pF	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		3	pF	$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	

2N3921, 2N3922 Dual Monolithic N-Channel JFET

MATCHED FET PAIRS FOR DIFFERENTIAL AMPLIFIERS

- IG < $\mathbf{2 5 0} \mathrm{pA}$ (25 nA at $\mathbf{1 0 0 ^ { \circ }} \mathrm{C}$)
- goss $^{<20} \mu$ mhos ($\mathrm{ID}=\mathbf{7 0 0} \mu \mathrm{A}$)
- Matched $V_{\mathrm{GS}}, \Delta \mathbf{V}_{\mathrm{GS}}$, and gfs^{\prime}

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage
Gate Current .. 50 mA
Total Device Dissipation (Derate $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$) ... 300 mW
Storage Temperature.Range -65 to $+200^{\circ} \mathrm{C}$

ORDERING INFORMATION

TO,71	WAFER	DICE
2N3921.	2N3921/W	2N3921/D
2N3922	2N3922/W	2N3922/D

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

.	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS	
IGSs	Gate Reverse Current		-1	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
			-1	$\mu \mathrm{A}$		$100^{\circ} \mathrm{C}$
BVDGO	Drain-Gate Breakdown Voltage	50			$\mathrm{ID}_{\mathrm{D}}=1 \mu \mathrm{~A}, \mathrm{IS}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-3	V	$V_{D S}=10 \mathrm{~V}, \mathrm{ID}=1 \mathrm{nA}$	
VGS	Gate-Source Voltage	-0.2	-2.7		$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	
IG	Gate Operating Current		-250	pA	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=700 \mu \mathrm{~A}$	
			-25	nA		$100^{\circ} \mathrm{C}$
IDSS	Saturation Drain Current (Note 1)	1.	10	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
gis	Common-Source Forward Transconductance (Note 1)	1500	7500	$\mu \mathrm{mho}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
gos	Common-Source Output Conductance		35			
Ciss	Common-Source Input Capacitance		18	pF		
Crss	Common-Source Reverse Transfer Capacitance		6			
g_{fs}	Common-Source Forward Transconductance	1500		$\mu \mathrm{mho}$	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=700 \mu \mathrm{~A}$	$\mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance		20			
NF	Spot Noise Figure		2	dB	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\begin{aligned} & f=1 \mathrm{kHz}, \\ & R_{G}=1 \mathrm{meg} \end{aligned}$

CHARACTERISTIC		2N3921		2N3922		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
$\left\|\mathrm{V}_{\mathrm{GS1}}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	Differential Gate-Source Voltage		5		5	mV	$\begin{aligned} & \mathrm{VDG}=10 \mathrm{~V}, \\ & \mathrm{ID}_{\mathrm{D}}=700 \mu \mathrm{~A} \end{aligned}$	
$\frac{\Delta\left\|V_{\text {GS1 }}-V_{\text {GS2 } 2}\right\|}{\Delta T}$	Gate-Source Differential Voltage Change with Temperature		10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \\ t_{B} & =100^{\circ} \mathrm{C} \end{aligned}$
Gfs1/ Gfs2	Transconductance Ratio	0.95	1.0	0.95	1.0	-		$\mathrm{f}=1 \mathrm{kHz}$

NOTE: 1. Pulse test duration $=2 \mathrm{~ms}$.

GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers. This family of general purpose FETs is characterized for low and medium frequency differential amplifiers requiring low offset voltage, drift, noise, and capacitance.

FEATURES

- Offset Voltage $<5 \mathrm{mV}$ - Drift $<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Capacitance - $\mathrm{C}_{\text {iss }}=4 \mathrm{pF}$ Max
- Spot Noise Figure $=0.5 \mathrm{~dB}$ Max
- Superior Tracking Ability
- Low Output Conductance $-\mathrm{g}_{\mathrm{OS}}=35 \mu \mathrm{mho}$ Max

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Any Case-To-Lead Voltage	$\pm 100 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage	-50 V
Gate-To-Gate Voltage	$\pm 100 \mathrm{~V}$
Gate Current	50 mA
Total Device Dissipation $85^{\circ} \mathrm{C}$ (Each Side)	250 mW
\quad Case Temperature	(Both Sides)
Power Derating (Each Side)	500 mW
	$2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
\quad (Both Sides)	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature	

ead Temperature
(1/16" from case for 10 seconds)

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N3954		2N3954A		2N3955		2N3955A		2N3956		2N3957		2N3958		UNIT	TEST CONDITIONS	
		MIN	MAX															
IGSS	Gate Reverse Current		-100		-100		-100		-100		-100		-100		-100	pA	$\begin{aligned} & V_{G S}=-30 \mathrm{~V}, \\ & V_{D S}=0 \end{aligned}$	
			-500		-500		-500		-500		-500		-500		-500	nA		$T_{A}=125^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50	,	-50		-50		-50		v	$\begin{aligned} & V_{D S}=0 \\ & I_{G}=1 \mu \mathrm{~A} \\ & \hline \end{aligned}$	
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5		$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & I_{D}=1 \mathrm{nA} \end{aligned}$	
$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Forward Voltage		2.0		2.0		2.0		2.0		2.0		2.0		2.0		$\begin{aligned} & \mathrm{VDS}=0 \\ & \mathrm{IG}=1 \mathrm{~mA} \end{aligned}$	
VGS	Gate-Source Voltage		-4.2		-4.2		-4.2		-4.2		-4.2		-4.2		-4.2		$V_{\text {DS }}=20 \mathrm{~V}$	$\mathrm{I}^{\text {D }}=50 \mu \mathrm{~A}$
		-0.5	-4.0	-0.5	-4.0	-0.5	-4.0	-0.4	-4.0	-0.5	-4.0	-0.5	-4.0	-0.5	-4.0			$1 \mathrm{D}=200 \mu \mathrm{~A}$
IG	Gate Operating Current		-50		-50		-50		-50		-50		-50		-50	nA	$\begin{aligned} & V_{D S}=20 \mathrm{~V} \\ & 1 \mathrm{D}=200 \mu \mathrm{~A} \end{aligned}$	
			-250		-250		-250		-250		-250		-250		-250	nA		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$
IDSS	Saturation Drain Current	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	mA	$\begin{aligned} & V_{\mathrm{DS}}=20 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{GS}}=0 \end{aligned}$	
	Common-Source Forward	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
9fs	Transconductance	1000		1000		1000		1000		1000		1000		1000				$\mathrm{f}=200 \mathrm{MHz}$
gos	Common-Source Output Conductance		35		35		35		35		35		35		35			$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$.	Common-Source Input Capacitance		4.0		4.0		4.0		4.0		4.0		4.0		4.0	pF		$\mathrm{f}=1 \mathrm{MHz}$
Crss	Common Source Reverse Transfer Capacitance		1.2		1.2		1.2		1.2		1.2		1.2		1.2			
$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance		1.5		1.5		1.5		1.5		1.5		1.5		1.5		$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & I_{S}=0 \end{aligned}$	
NF	Common-Source Spot Noise Figure		0.5		0.5		0.5		0.5		0.5		0.5		0.5	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \\ & \hline \end{aligned}$	$\mathrm{f}=100 \mathrm{~Hz}$
\| $\mathrm{G} 1-\mathrm{IG2}$	Differential Gate Current		10		10		10		10		10		10		10	nA	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$T=125^{\circ} \mathrm{C}$
IDSS1/IDSS2	Drain Saturation Current Ratio	0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	0.90	1.0	0.85	1.0		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{GS}}=0 . \end{aligned}$	
$\mathrm{IVGS1}^{-\mathrm{V}_{\mathrm{GS}}{ }^{1}}$	Differential Gate-Source Voltage		5.0		5.0		10.0		5.0		15		20		25	mV	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & I_{\mathrm{D}}=200 \mu \mathrm{~A} \end{aligned}$	
	Gate-Source Differential		0.8		0.4		2.0		1.2		4.0		6.0		8.0			$\mathrm{T}=25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$
$\mathrm{AV}_{\text {GS1 }} \mathrm{V}_{\text {GS2 }}$	Temperature		1.0		0.5		2.5		1.5		5.0		7.5		10.0			$\mathrm{T}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9fs $1 / \mathrm{gfs}^{2}$	Transconductance Ratio	0.97	1.0	0.97	1.0	0.97	1.0	0.95	1.0	0.95	1.0	0.90	1.0	0.85	1.0			$\mathrm{f}=1 \mathrm{kHz}$

FEATURES

- rDS(on) < 30 ohms (2N3970)
- $\mathrm{ID}_{\mathrm{D}(\mathrm{off})}<250 \mathrm{pA}$
- Fast Switching

ABSOLUTE MAXIMUM RATINGS ($\mathbf{2 5}^{\circ} \mathrm{C}$)

Reverse Gate-Drain Voltage - 40 V
Gate-Source Voltage .. . -40 V
Gate Current .. . 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature ... 1.8 W
Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 60 seconds) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

INPUT PULSE
RISE TIME 0.25 ns FALL TIME 0.75 ns PULSE WIDTH 200 ns PULSE RATE 550 pps

SAMPLING SCOPE

RISE TIME 0.4 ns

INPUT RESISTANCE 10 M
INPUT CAPACITANCE 1.5 pF

FEATURES

- Low r ${ }_{\text {DS(on) }}$ - 150Ω Max (2N3993)
- High $\mathrm{Y}_{\mathrm{fs}} / \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure-of-Merit)

APPLICATIONS

Used in high-speed commutator and chopper applications. Also ideal for "Virtual Gnd" switching; needs no ext. translator circuit to switch $\pm 10 \mathrm{VAC}$. Can be driven direct from $\mathrm{T}^{2} \mathrm{~L}$ or CMOS logic.

MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Drain-Gate Voltage	-25V
Drain-Source Voltage	25 V
Reverse Gate-Source Voltage	+25 V
Continuous Forward Gate Current	-10 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1	300 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds	300

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		2N3993		2N3994		UNIT		
		MIN	MAX	MIN	MAX					
$\mathrm{BV}_{\text {GSS }}$	Gate-Source Breakdown Voltage			$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}$,	$\mathrm{V}_{\text {DS }}=0$	25		25		V
'DGO	Drain Reverse Current	$V_{\text {DG }}=-15$	$\mathrm{I}_{\mathrm{s}}=0$		-1.2		-1.2	nA		
		$\mathrm{V}_{\mathrm{DG}}=-15$	$\begin{aligned} & I_{S}=0 \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$		-1.2		-1.2	$\mu \mathrm{A}$		
${ }^{\text {I DSS }}$	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$	$\begin{aligned} & V_{G S}=0, \\ & \text { See Note } 2 \end{aligned}$	-10		-2		mA		
${ }^{1}$ D(off)	Drain Cutoff Current	$V_{\text {DS }}=-10 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V}$				-1.2	nA		
		$\mathrm{V}_{\text {DS }}=-10 \mathrm{~V}$	$\begin{aligned} & \mathrm{VGS}=6 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$				-1	$\mu \mathrm{A}$		
		$V_{\text {DS }}=-10 \mathrm{~V}$	VGS $=10 \mathrm{~V}$		-1.2			nA		
		$\mathrm{V}_{\text {DS }}=-10 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=1.50^{\circ} \mathrm{C} \end{aligned}$		-1			$\mu \mathrm{A}$		
$\mathrm{V}_{\text {GS(0ff) }}$	Gate-Source Voltage	$V_{D S}=-10 \mathrm{~V}$	ID $=-1 \mu \mathrm{~A}$	4	9.5	1	5.5	V		
$\mathrm{r}_{\mathrm{ds}}(\mathrm{on})$	Small-Signal Drain-Source On-State Resistance	$\begin{aligned} & V_{G S}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \hline \end{aligned}$	$I_{D}=0,$		150		300	Ω		
$\left\|y_{\text {fs }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & \text { VDS }=-10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz}, \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=0$ See Note 2	6	12	" 4	10	mmho		
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=-10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0, \\ & \text { See Note } 3 \\ & \hline \end{aligned}$		16		16	pF		
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance \therefore	$\begin{aligned} & V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=6 \mathrm{~V},$				5	pF		
		$\begin{aligned} & V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$	$V_{G S}=10 \cdot \mathrm{~V},$		4.5		4.5	pF		

NOTES: 2. These parameters must be measured using pulse techniques. $t_{p}=100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
3. This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating.
${ }^{\dagger}$ The fourth lead (case) is connected to the source for all measurements.

FEATURES

- High Gain At Low Current $h_{F E} \geqslant 200 @ 10 \mu \mathrm{~A}$
- Low Output Capacitance $\mathrm{C}_{\text {obo }} \leqslant 0.8 \mathrm{pF}$
- $h_{\text {FE }}$ Match $h_{F_{1}} / h_{F_{2}} \leqslant 10 \%$
- Tight V_{BE} Tracking
$\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right) \leqslant 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Dielectrically isolated matched pairs for differential amplifiers.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature
Operating Junction Temperature
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
$+200^{\circ} \mathrm{C}$
Maximum Power Dissipation
0.78

	ONE SIDE	BOTH SIDES	ONE SIDE	BOTH SIDES
Total Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature	0.3 Watt	0.5 Watt	0.4 Watt	0.75 Watt
Derating Factor	$1.7 \mathrm{~mW} / /^{\circ}$	$2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

2N4044 2N4100 2N4045 2N4878 2N4879 2N4880

$V_{\text {CBO }}$	Collector to Base Voltage	60 V	55 V	45 V
$\mathrm{~V}_{\text {CEO }}$	Collector to Emitter Voltage	$60, \mathrm{~V}$	55 V	45 V
$\mathrm{~V}_{\text {EE }}$	Emitter to Base Voltage (Note 2)	7 V	7 V	7 V
$\mathrm{~V}_{\text {EBO }}$	Collector to Collector Voltage	100 V	100 V	100 V
I CO $^{\text {C }}$	Collector Current	$10,11 \mathrm{~A}$	10 mA	10 mA

2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 Dual Monolithic Matched NPN Silicon Planar Transistors

PIN
 CONFIGURATION

T0.71
T0.78

CHIP TOPOGRAPHY

 4000

ORDERING INFORMATION

TO.78	TO.71	WAFER	DICE
2N4044		2N4044/W	2N4044/D
2N4045		2N4045/W	2N4045/D
2N4100		2N4100/W	2N4100/D
	2N4878		
	2N4879		
	2N4880		

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{aligned} & \text { 2N4100 } \\ & \text { 2N4879 } \end{aligned}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \end{aligned}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
hFE	DC Current Gain	200	600	150	600	80	800		$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
hFE	DC Current Gain	225		175		-100			$\mathrm{I}^{\prime} \mathrm{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}$
$h_{\text {FE }}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	75		50		30			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{V}_{\text {BE }}$ (on)	Emitter-Base On Voltage		0.7		0.7		0.7	V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
$V_{C E}$ (sat)	Collector Saturation Voltage		0.35		0.35		0.35	V	$I_{C}=1.0 \mathrm{~mA}, I_{B}=0.1 \mathrm{~mA}$
ICBO	Collector Cutoff Current	.	0.1		0.1		0.1	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V}$
${ }^{\text {I }} \mathrm{CBO}\left(+150^{\circ} \mathrm{C}\right)$	Collector Cutoff Current	.	0.1		0.1		0.1	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=45 \mathrm{~V}, 30 \mathrm{~V} *$
I ebo	Emitter Cutoff Current		0.1		0.1		0.1	nA	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}$
Cobo	Output Capacitance		0.8	,	0.8		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

\cdot	PARAMETER	$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{aligned} & \text { 2N4100, } \\ & \text { 2N4879 } \end{aligned}$		$\begin{array}{r} \text { 2N4045 } \\ \text { 2N4880 } \\ \hline \end{array}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{C}_{\text {TE }}$	Emitter Transition Capacitance		1		1		1	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Capacitance		0.8		0.8		0.8	pF	$\mathrm{V}_{\mathrm{Cc}}=0$
$\mathrm{I}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Leakage Current		5		5		5	pA	$V_{C C}= \pm 100 \mathrm{~V}$
$\mathrm{V}_{\text {CEO(sust) }}$	Collector to Emitter Sustaining Voltage	60		55		45	.	V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
${ }_{\text {f }}$	Current Gain Bandwidth Product	200		150		150		MHz	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$
f_{T}	Current Gain Bandwidth Product	20		15		15		MHz	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$
NF	Narrow Band Noise Figure		2		3		3	dB	$\begin{array}{l\|l} \hline \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} & \mathrm{f}=1 \mathrm{kHz} \\ \mathrm{R}_{\mathrm{G}}=10 \mathrm{kohms} & \mathrm{BW}=200 \mathrm{~Hz} \end{array}$
$\mathrm{BV}_{\mathrm{CBO}}$	Collector Base Breakdown Voltage	60		55		45		V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
$B V_{\text {Ebo }}$	Emitter Base Breakdown Voltage	7		7		7		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

$\mathrm{h}_{\mathrm{FE}_{1}} / \mathrm{h}_{\mathrm{FE}_{2}}$	DC Current Gain Ratio (Note 3)	0.9	1	0.85		0.8	1		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	
$\left\|\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right\|$	Base Emitter Voltage Differential		3		5		5	mV	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	
$\left\|I_{B_{1}}{ }^{-1} \mathrm{~B}_{2}\right\|$	Base Current Differential		5		10		25	nA	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	
$\left\|\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right)\right\| /^{\circ} \mathrm{C}$	Base Current Differential Voltage Differential Change with Temperature		3		5		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\left\|\Delta\left(I_{\mathrm{B}_{1}}-\mathrm{I}_{\mathrm{B}_{2}}\right)\right\| /^{\circ} \mathrm{C}$	Base Current Differential Change with Temperature		0.3		0.5		1	$n A /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & T_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$

SMALL SIGNAL CHARACTERISTICS

	PARAMETER	TYPICAL VALUE	UNIT

NOTES:

1. These ratings are limiting values above which the serviceablity of any semiconductor device may be impaired.
2. The reverse base-to-enter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10μ amps.
3. The lowest of two $h_{F E}$ readings is taken as $h_{\mathrm{FE}_{1}}$ for purposes of this ratio.

ITE4091-ITE4093 2N4091-2N4093, JANTX* N-Channel JFET

FEATURES

- $r_{D S(O N)}<30$ ohms (2N4091)
- I_{D} (OFF) <100 pA (JAN TX Types)

- Fast Switching

ABSOLUTE MAXIMUM RATINGS

(6) $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures

Storage Temperatures	$-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	-55 to $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$+300^{\circ} \mathrm{C}$

Maximum Power Dissipation
Device Dissipation © Free Air Temperature $\quad 360 \mathrm{~mW}$

Linear Derating TO 18
TO 92
$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Current
$V_{G S}$ Gate to Source Voltage
$-40 \mathrm{~V}$
$V_{G D}$ Drain to Drain Voltage

- 40 V
$V_{\text {DG }}$ Drain to Gate Voltage 40 V
I_{G} Gate Current

PIN CONFIGURATIONS

CHIP TOPOGRAPHY

5001B

ORDERING INFORMATION

TO-92	TO-18*	WAFER	DICE
ITE 4091	2N4091	2N4091/W	2N4091/D
ITE 4092	2N4092	2N4092/W	2N4092/D
ITE 4093	2N4093	2N4093/W	2N4093/D

* add JANTX to these part numbers if JANTX processing is desired.

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		4091		4092		4093		Unit	Test Conditions		
		Min.	Max.	Min.	Max.	Min.	Max.				
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$I_{G}=-1 \mu \mathrm{~A}, V_{D S}=0$		
'DGO	Drain Reverse Current (Not JANTX Specified)	.	200		200		200	pA	$V_{G D}=-20 \mathrm{~V}, \mathrm{I}_{S}=0$		25 C
			400		400		400	nA			150 C
${ }^{\prime} \mathrm{GSS}$	Gate Reverse Current		-100		-100		-100	pA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		25 C
	(JANTX, ITE devices only)		-200		-200		-200	nA			150 C
							100	pA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	$v_{G S}=-6 V$	25 C
							200	nA			150 C
					100		\because	pA		$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}$	25 C
					200			nA			150 C
			100					pA		$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	$25^{\prime} \mathrm{C}$
			200					nA			150 C
							200	pA		$V_{G S}=-6 \mathrm{~V}$	$25^{\circ} \mathrm{C}$
							400	nA			150 C
					200	,		pA		$V_{G S}=-8 V$	25 C
					400			$n \mathrm{~A}$			$150^{\prime} \mathrm{C}$
			200					pA		$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	25 C
			400		,			nA			$150^{\prime \prime} \mathrm{C}$
V_{p}	Gate-Source Pinch-Off Voltage	-5	-10	-2	-7	-1	-5	V	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		
${ }^{\prime}$ DSS	Drain Current at Zero Gate Voltage	30		15		8		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \text { Pulse-Test Duration }=2 \mathrm{~ms} \end{aligned}$		
$V_{\text {DS(ON) }}$	Drain-Source ON Voltage						0.2	V	$v_{\text {GS }}=0$	$\mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~mA}$	
					0.2					${ }^{-1}{ }^{1}=4 \mathrm{~mA}$	
			0.2				-			$\mathrm{T}_{\mathrm{D}}=6.6 \mathrm{~mA}$	
${ }^{\text {r DS }}$ (ON)	Static Drain-Source ON Resistance,		30		50		80	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		
$r^{\text {ds }}$ (on)	Small-Signal Drain-Source ON Resistánce		30		50		80	S2	$V_{G S}=0,1_{D}=0, f=1 \mathrm{kHz}$		
$\mathrm{C}_{\text {iss }}$: Common-Source Input Capacitance		16		16		16	pF	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$		
C $_{\text {rss }}$ Common-Source Reverse Transfer Capacitance			5		5		5	pF			
			5		5	.	5	pF	$V_{D S}=0, V_{G S}=-20 \mathrm{~V}, f=1 \mathrm{MHz}$		

2N4117-19, 2N4117A-19A N-Channel JFET

FEATURES

- Low Leakage $-I_{\mathrm{GSS}}<1 \mathrm{pA}$
- Low Capacitance $-\mathrm{C}_{\mathrm{rss}}<1.5 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	
10 sec time limit)	$300^{\circ} \mathrm{C}$

Maximum Power Dissipation

Device Dissipation @ Free Air Temperature
300 mW $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current
$V_{\text {GS }}$ Gate to Source Voltage
${ }^{\prime}$ GD Gate to Drain Voltage
$-40 \mathrm{~V}$
$I_{G} \quad$ Gate Current
$-40 \mathrm{~V}$
50 mA

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{array}{r} \text { 2N4117 } \\ \text { 2N4117A } \\ \hline \end{array}$		$\begin{array}{r} 2 \mathrm{~N} 4118 \\ \text { 2N4118A } \\ \hline \end{array}$		$\begin{array}{r} \text { 2N4119 } \\ \text { 2N4119A } \\ \hline \end{array}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$
IGSS	Gate Reverse Current		-10		-10		-10	pA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
IGSS ($+100^{\circ} \mathrm{C}$)	Gate Reverse Current		-25		-25		-25	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
VGS (off)	Gate-Source Pinch-Off Voltage	-0.6	-1.8	-1	-3	-2	-6	V	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$
IDSS	Drain Current at Zero Gate Voltage (Note 1)	0.02	0.09	0.08	0.24	0.20	0.60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$
g_{fS}	Common-Source Forward Transconductance (Note 1)	70	$210{ }^{\circ}$	80	250	100	330	$\mu \mathrm{mho}$	$\begin{aligned} & \text { VDS }=10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
g_{fs}	Common-Source Forward Transconductance	60		70		90		$\mu \mathrm{mho}$	VGS $=0, f=30 \mathrm{MHz}$
gos	Common-Source Output Conductance		3		5		10	$\mu \mathrm{mho}$	$\begin{aligned} & \text { VDS }=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		3		3		3	pF	$\begin{aligned} & \text { VDS }=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
Crss	Common-Source Reverse Transfer Capacitance		1.5		1.5		1.5	pF	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$

NOTE: 1. Pulse test: Pulse duration of 2 ms used during test.

FEATURES

- $\mathrm{C}_{\mathrm{rss}}<2 \mathrm{pF}$
- Moderately High Forward Transconductance

ABSOLUTE MAXIMUM RATINGS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)	
Maximum Temperatures	
Storage Temperature - 65	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit)	
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperatur	ature $\quad 300 \mathrm{~mW}$
Linear Derating	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current	
$\mathrm{V}_{\text {GS }}$ Gate to Source Voltage	-30 V
$\mathrm{V}_{\text {GD }}$ Gate to Drain Voltage	-30 V
$\mathrm{I}_{\mathrm{G}} \quad$ Gate Current	10

PIN CONFIGURATION

тס. 72

CHIP TOPOGRAPHY

5010

ORDERING INFORMATION

TO.72	WAFER	DICE
2N4220	2N4220/W	2N4220/D
2N4221	2N4221/W	2N4221/D
2N4222	2N4222/W	2N4222/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N4220		2N4221		2N4222		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX			
IGSS	Gate Reverse Current		$\begin{aligned} & -0.1 \\ & -0.1 \\ & \hline \end{aligned}$		$\begin{aligned} & -0.1 \\ & -0.1 \\ & \hline \end{aligned}$		$\begin{aligned} & -0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-30		-30		-30		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-4		-6	-8			$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{nA}$	
VGS	Gate-Source Voltage	-0.5	-2.5	-1	-5	-2	-6	V	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=()$	
		(50)	(50)	(200)	(200)	(500)	(500)	($\mu \mathrm{A}$)		
IDSS	Saturation Drain Current (Note 3)	0.5	3	2	6	5	15	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0$	
9fs	Common-Source Forward Transconductance (Note 3)	1000	4000	2000	5000	2500	6000	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
$\left\|Y_{f s}\right\|$	Common-Source Forward Transadmittance	750		750		750				$f=100 \dot{M H z}$
gos	Common-Source Output Conductance (Note 3)		10		20		- 40			$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6		6		6	pF		$f=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		2		2		2			

FEATURES

- $N F=3 \mathrm{~dB}$ Typical at 200 MHz
- $\mathrm{C}_{\mathrm{rss}}<2 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Gate-Drain or Gate-Source Voltage	-30 V
Gate Current	10 mA
Drain Current	20 mA
Total Device Dissipation at (or below)	$25^{\circ} \mathrm{C}$
\quad Free-Air Temperature	300 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case for 10 seconds) $300^{\circ} \mathrm{C}$,	

TO.72	WAFER	DICE
2N4223	2N4223/W	2N4223/D
2N4224	2N4224/W	2N4224/D

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		2N4223		2N4224		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
IGSS	Gate Reverse Current		-0.25		-0.5	nA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-0.25		-0.5	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-30		-30		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage	-0.1	-8	-0.1	-8	V	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=(\mathrm{l}$	
		(0.25)	(0.25)	(0.5)	(0.5)	(nA)		
VGS	Gate-Source Voltage	-1.0	-7.0	-1.0	-7.5	V		
		(0.3)	(0.3)	(0.2)	(0.2)	(mA)		
IDSS	Saturation Drain Current	3	18	2	20	mA	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
gfs	Common-Source Forward Transconductance	3000	7000	2000	7500	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Output Shorted)		6		6	pF		$\mathrm{f}=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		2		2		1	
$\left\|y_{f s}\right\|$	Common-Source Forward Transadmittance	2700		1700		$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=200 \mathrm{MHz}$
$\mathrm{g}_{\text {iss }}$	Common-Source Input Conductance (Output Shorted)		800		800			
$g_{\text {oss }}$	Common-Source Output Conductance (Input Shorted)		200		200			
G_{ps}	Small Signal Power Gain	10				dB		
NF	Noise Figure		5				$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{R}_{\mathrm{gen}}=1 \mathrm{~K} \end{aligned}$	

FEATURES

- Exceptionally high figure of merit
- Radiation Immunity
- Symmetrical devices for low-level choppers, data switches, multiplexers and low noise amplifiers
- Extremely low noise and capacitance
- High input impedance
- Zero offset
- High reliability silicon epitaxial planar construction

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	$+260^{\circ} \mathrm{C}$
$\quad 10$ sec time limit)	
Maximum Power Dissipation	300 mW
Device Dissipation @ Free Air Temperature	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Linear Derating	
Maximum Voltages \& Current	-50 V
V_{GS} Gate to Source Voltage	-50 V
V $_{\mathrm{GD}}$ Gate to Drain Voltage	50 mA
IG Gate Current	

PIN CONFIGURATION

CHIP TOPOGRAPHY 5010

ORDERING INFORMATION

TO-18	WAFER	DICE
2N4338	2N4338/W	2N4338/D
2N4339	2N4339/W	2N4339/D
2N4340	2N4340/W	2N4340/D
2N4341	2N4341/W	2N4341/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER		2N4338		2N4339		2N4340		2N4341		UNITS	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
'GSS	Gate Reverse Current		-0.1		-0.1		-0.1		-0.1	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-0.1		-0.1		-0.1		-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage	-0.3	-1	-0.6	-1.8	-1	-3	-2	-6		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, 1 \mathrm{D}=0.1 \mu \mathrm{~A}$	
${ }^{1} \mathrm{D}$ (off)	Drain Cutoff Current		$\begin{aligned} & 0.05 \\ & (-5) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$		$\begin{aligned} & 0.05 \\ & (-5) \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.07 \\ & (-10) \\ & \hline \end{aligned}$	nA (V)	$\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & V_{G S}=1 . \\ & \hline \end{aligned}$	
I DSs	Saturation Drain Current	0.2	0.6	0.5	1.5	1.2	3.6	3	9	mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
9fs	Common-Source Forward Transconductance	600	1800	800	2400	1300	3000	2000	4000	$\mu \mathrm{mho}{ }^{\text { }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
gos	Common-Source Output Conductance		5		15		30		60			
$r^{\text {d }}$ s	Drain-Source ON Resistance		2500		1700		1500		800	ohm	$V_{\text {DS }}=0, \mathrm{~V}_{\mathrm{GS}}=0$	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		7		7.		7		7	pF	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{MHz}$
$\mathrm{Crsss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		3		3		3		3			
NF	Noise Figure		1		1		1		1	dB	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & R_{\text {gen }}=1 \mathrm{meg}, \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$

FEATURES

- Low ON-Resistance - 50Ω
- Low Capacitance - 1.7 pF
- High Gain - 3,000 μ mhos
- High Gate Breakdown Voltage $- \pm 125 \mathrm{~V}$
- Low Threshold Voltage - 3 V

ABSOLUTE MAXIMUM RATINGS (Note 1)
@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Operating Junction Temperature $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation
Total Dissipation at $25^{\circ} \mathrm{C}$ Ambient Temp . 375 mW
Linear Derating Factor at $25^{\circ} \mathrm{C}$ Ambient Temp. $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages and Current
$V_{\text {DSS }}$ Drain to Source and Body Voltage . 25 V
$\dot{V}_{\text {GSS }}$ Transient Gate to Source Voltage $\pm 125 \mathrm{~V}$
${ }^{\prime}$ D(on) Drain Current 100 mA

Mode MOS FET

PIN CONFIGURATION то.72

CHIP TOPOGRAPHY

ORDERING INFORMATION

TO.72	WAFER	DICE
2N4351	2N4351/W	2N4351/D

ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Substrate connected to source.

	PARAMETER.	MIN	MAX	UNITS	TEST CONDITIONS
OFF CHARACTERISTICS					
$\begin{aligned} & \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}} \\ & \text { IGSS } \\ & \text { IDSS } \end{aligned}$	Drain-Source Breakdown Voltage Gate Leakage Current Zero-Gate-Voltage Drain Current	25	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	V pA nA	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$
ON CHARACTERISTICS					
$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$ ID(on) VDS(on)	Gate-Source Threshold Voltage "ON" Drain Current' Drain-Source "ON" Voltage	$\begin{gathered} 1.0 \\ 3 \end{gathered}$	$\begin{array}{r} 5 \\ 1.0 \end{array}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A} \\ & V_{G S}=10 \mathrm{~V}, V_{D S}=10 \mathrm{~V} \\ & I_{D}=2 \mathrm{~mA}, V_{G S}=10 \mathrm{~V} \end{aligned}$
SMALL SIGNAL CHARACTERISTICS					
$r_{\text {ds }}(o n)$ $\left\|y_{f s}\right\|$ Crss Ciss $\mathrm{C}_{\mathrm{d} \text { (sub) }}$	Drain-Source Resistance Forward Transfer Admittance Reverse Transfer Capacitance Input Capacitance Drain-Substrate Capacitance	1000	$\begin{aligned} & 300 \\ & 1.3 \\ & 5.0 \\ & 5.0 \end{aligned}$	ohms $\mu \mathrm{mho}$ pF pF pF	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=0, f=1 \mathrm{kHz} \\ & V_{D S}=10 \mathrm{~V}, I_{D}=2 \mathrm{~mA}, f=1 \mathrm{kHz} \\ & V_{D S}=0, V_{G S}=0, f=140 \mathrm{kHz} \\ & V_{D S}=10 \mathrm{~V}, V_{G S}=0, f=140 \mathrm{kHz} \\ & V_{D}(S U B)=10 \mathrm{~V}, \mathrm{f}=140 \mathrm{kHz} \end{aligned}$
SWITCHING CHARACTERISTICS					
$\begin{aligned} & t_{d}(o n) \\ & t_{r} \\ & t_{d(o f f)} \\ & t_{f} \end{aligned}$	Turn-On Delay Rise Time Turn-Off Delay Fall Time		$\begin{gathered} 45 \\ 65 \\ 60 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	

FEATURES

- $\mathbf{r d s}_{\text {ds(on) }}<\mathbf{3 0}$ ohms (2N4391)
- $\mathrm{I}_{\mathrm{D}(\mathrm{ff})}<100 \mathrm{pA}$
- Switches ± 10 VAC with $\pm 15 \mathrm{~V}$ Supplies (2N4392, 2N4393)

ABSOLUTE MAXIMUM RATINGS
($25^{\circ} \mathrm{C}$ unless otherwise noted)

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)		
Maximum Temperatures		
Storage Temperatures	$-65^{\circ} \mathrm{C}$ to	$+200^{\circ} \mathrm{C}$
Operating Junction Temperature TO 18	$+200^{\circ} \mathrm{C}$	
TO 92	$+125^{\circ}$	
Lead Temperature (Soldering, 10 sec)	$+300^{\circ} \mathrm{C}$	

Maximum Power Dissipation
Device Dissipation @ Free Air Temperature $\quad 300 \mathrm{~mW}$
Linear Derating TO $18 \quad 1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ TO $92 \quad 3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Current
V_{GS} Gate to Source Voltage - -40 V
$V_{G D}$ Gate to Drain Voltage
$-40 \mathrm{~V}$
I_{G} Gate Current 50 mA

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC		4391		4392		4393		UNIT.	TEST CONDDITIONS		
		MIN	MAX	MIN	MAX	MIN	MAX				
IGSS	Gate Reverse Current	.	-100		-100		-100	pA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$		
			-200		-200		-200	nA			$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{VDS}=0$		
! ${ }^{\text {(off }}$)	Drain Cutoff Current						100	pA	$V_{D S}=20 \mathrm{~V}$	$V_{G S}=-5 \mathrm{~V}$	
							200	nA			$150^{\circ} \mathrm{C}$
					100			pA		$\mathrm{VGS}_{\text {G }}=-7 \mathrm{~V}$	
					200			nA			$150^{\circ} \mathrm{C}$
			100	\checkmark				pA		$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	
			200					nA			$150^{\circ} \mathrm{C}$
VGS(f)	Gate-Source Forward Voltage		1		1		1	V	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$		
VGS(off)	Gate-Source Cutoff Voltage	-4	-10	-2	-5	-0.5	-3		$V_{D S}=20 \mathrm{~V}, I_{D}=1 \mathrm{nA}$		
IDSS	Saturation Drain Current. (Note 1)	50	150	25	75	5	30	mA	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
VDS(on)	Drain Source ON Voltage						0.4	V	$V_{G S}=0$	$I_{D}=3 \mathrm{~mA}$	
					0.4					$I_{D}=6 \mathrm{~mA}$	
			0.4							$\mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA}$	
rDS(on)	Static Drain-Source ON Resistance		30		60		100	Ω	$\mathrm{V}_{\mathrm{GS}}=0,1 \mathrm{D}=1 \mathrm{~mA}$		
$r_{\text {ds }}$ (on)	Drain-Source ON Resistance		30		60		100	Ω	$V_{G S}=0,1 D=0$		$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance		14.		14		14	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$f=1 \mathrm{MHz}$
Crss							3.5		$V_{D S}=0$	$\mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}$	
					3.5					$\mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}$	
			3.5							$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	
t_{d}	Turn-ON Delay Time		15		15		15	ns	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}(\mathrm{on})=0$		
t_{r}	Rise Time		5		5		5			ID(on)	$V_{\text {GS }}$ (off)
$t_{\text {off }}$	Turn-OFF Delay Time		20		35		50		4391	12 mA	-12 V
tf_{f}	Fall Time		15	.	20		30		4392 4393	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & -7 \\ & -5 \\ & \hline \end{aligned}$

NOTE:

1. Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$

SAMPLING SCOPE
RISE TIME 0.4 ns INPUT RESISTANCE 50 ?

RISE TIME $<0.5 \mathrm{~ns}$ FALL TIME < 0.5 ns PULSE DUTY CYCLE 1\%

ITE4416, 2N4416/A N-Channel JFET

FEATURES

- Silicon Planar Epitaxial Construction
- Low Noise - NF $=2.0 \mathrm{~dB}$ max. © 100 MHz

$$
\mathrm{NF}=4.0 \mathrm{~dB} \text { max. © } 400 \mathrm{MHz}
$$

- Low Feedback Capacitancef- $\mathrm{C}_{\text {rss }}=0.8 \mathrm{pF}$ max.
- Low Output Capacitance - $\mathrm{C}_{\text {oss }}=2.0 \mathrm{pF}$ max.
- High Transconductance $-\mathrm{g}_{\mathrm{fs}}=4000 \mu \mathrm{mho} \mathrm{min}$.
- High Power Gain $-\mathrm{G}_{\mathrm{ps}}=18 \mathrm{~dB} \mathrm{~min}$. © 100 MHz

$$
\mathrm{G}_{\mathrm{ps}}=10 \mathrm{~dB} \min . @ 400 \mathrm{MHz}
$$

ABSOLUTE MAXIMUM RATINGS

(a) $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures

Storage Temperature TO72	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
TO92	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Junction Temperature TO72	$+200^{\circ} \mathrm{C}$
TO92	$+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec	$+300^{\circ} \mathrm{C}$
time limit)	
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	300 mW
Linear Derating TO 72	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
TO 92	$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Current
2N4416
(ITE 4116) 2N4416A
$V_{G S}$ Gate to Source Voltage
$V_{G D}$ Drain to Drain Voltage
$-30 \mathrm{~V}-35 \mathrm{~V}$
I_{G} Gate Current

$$
\begin{array}{rr}
-30 \mathrm{~V} & -35 \mathrm{~V} \\
10 \mathrm{~V} & 10 \mathrm{~mA}
\end{array}
$$

CHIP TOPOGRAPHY

ORDERING INFORMATION

TO-92	TO-72	WAFER	DICE
ITE 4416	2N4416	2N4416/W	2N4416/D
	2N4416A	2N4416A/W	2N4416A/D

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

2N4856-2N4861 2N4856-2N4858 JAN, JTX, JTXV* N-Channel JFET

FEATURES

- $r_{\text {DS(ON) }}<25 \Omega$ (2N4856, 2N4859)
- $I_{\text {D(off) }}<250 \mathrm{pA}$
- Switches $\pm 10 \mathrm{~V}$ Signals with $\pm 15 \mathrm{~V}$ Supplies (2N4858, 2N4861)

ABSOLUTE MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature TO18 $\quad-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature TO18 $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit) $+300^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ Free Air Temperature
$1.8 w$
Linear Derating TO18
$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current

		2N4856-58	2N4859-61
$V_{\text {GS }}$	Gate to Source	. -40 V	-30V
	Voltage		,
$\mathrm{V}_{\text {GD }}$	Gate to Drain	-40 V	-30 V
	Voltage		
${ }^{1} \mathrm{G}$	Gate Current	50 mA	50 mA

ELECTRICAL CHARACTERISTICS $\quad\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

ORDERING INFORMATION

TO. 18	WAFER	DICE
2B4856 *	2N4856/W	2N4856/D
2N4857 *	2N4857/W	2N4857/D
2N4858*	2N4858/W	2N4858/D
2N4859	2N4859/W	2N4859/D
2N4860	2N4860/W	2N4860/D
2N4861	2N4861/W	2N4861/D

*add JAN, JTX, JTXV, to basic part number to specify these devices.

CHARACTERISTIC			2N4856,59	2N4857,60	2N4858,61	UNIT	TEST CONDITIONS		
			MIN MAX	MIN MAX	MIN MAX				
BVGSS	Gate-Source Breakdown Voltage	2N4856.58	-40	-40	-40	V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
		2N4859-61	-30	-30	-30				
IGSS	Gate Reverse Current	2N4856-58	-250	-250	-250	pA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
		2N4859-61	-500	-500	-500	nA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$150^{\circ} \mathrm{C}$	
ID(off)	Drain Cutoff Current		250	250	250	pA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$		
			500	500	500	nA		$150^{\circ} \mathrm{C}$	
VGS(off)	Gate-Source Cutoff Voltage		-4 -10	-2 -6	-0.8 - -4	V	$V_{D S}=15 \mathrm{~V}, 1 \mathrm{D}=0.5 \mathrm{nA}$		
I DSS	Saturation Drain Current (Note 1)		50	20100	880	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
VDS(on)	Drain-Source ON Voltage		$\begin{aligned} & 0.75 \\ & (20) \end{aligned}$	0.50 (10)	$\begin{aligned} & 0.50 \\ & (5) \end{aligned}$	$\begin{gathered} V \\ (\mathrm{~mA}) \end{gathered}$	$V_{G S}=0,1 D=\left({ }^{\prime}\right)$		
$r_{\text {ds }}(0 n)$	Drain-Source ON Resistance		25	40	60	ohm	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	
Ciss	Common-Source Input Capacitance		18	18	18	pF	$V_{D S}=0, V_{G S}=-10 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	
Crss	Common-Source Reverse Transfer Capacitance		8	8	8				
t_{d}.	Turn-ON Delay Time		$\begin{array}{r} 6 \\ (20) \\ {[-10]} \\ \hline \end{array}$	$\begin{array}{r} 6 \\ (10) \\ {[-6]} \\ \hline \end{array}$	$\begin{array}{r} 10 \\ \quad(5) \\ {[-4]} \\ \hline \end{array}$	$\begin{gathered} \mathrm{ns} \\ (\mathrm{~mA}) \\ {[\mathrm{V}]} \\ \hline \end{gathered}$	$V_{D D}=10 \mathrm{~V}, R_{L}=\begin{array}{r} 464 \Omega 2 \mathrm{~N} 4856,59 \\ 953 \Omega 2 \mathrm{~N} 4857,60 \\ 1910 \Omega 2 \mathrm{~N} 4858,61 \end{array}$		
t_{r}	Rise Time		$\begin{array}{r} 3 \\ (20) \\ {[-10]} \\ \hline \end{array}$		10 (5) $[-4]$	$\begin{gathered} \mathrm{ns} \\ (\mathrm{~mA}) \\ {[\mathrm{V}]} \\ \hline \end{gathered}$	$\begin{aligned} & V_{G S}(o n)=0 \\ & I_{D}(o n)=(1), \end{aligned}$		
$t_{\text {off }}$.	Turn-OFF Time		$\begin{array}{r} 25 \\ (20) \\ {[-10]} \\ \hline \end{array}$	$\begin{array}{r} 50 \\ (10) \\ {[-6]} \\ \hline \end{array}$	$\begin{array}{r} 100 \\ (5) \\ {[-4]} \\ \hline \end{array}$	$\begin{gathered} \mathrm{ns} \\ (\mathrm{~mA}) \\ {[\mathrm{V}]} \\ \hline \end{gathered}$	$V_{G S}(o f f)=()$		
NOTE:				VDD					
1. Pulse test required, pulsewidth $=100 \mu \mathrm{~s}$, duty cycle $\leqslant 10 \%$.					$=\frac{V_{D D}-V_{D S(O N)}}{I D(O N)}$				
					VOUT \quad INPUT PULSE RISE TIME 0.25 ns FALL TIME 0.75 PULSE WIDTH 100 ns PULSE DUTY CYCLE $<10 \%$				

2N4867/A-2N4869/A N-Channel JFET

FEATURES

- Low Noise Voltage $-e_{n} \leqslant 5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
- Low Leakage - $I_{\text {GSS }} \leqslant 0.25 \mathrm{nA}$
- High Gain $-Y_{f s} \geqslant 1300 \leqslant 4000 \mu \mathrm{mho}$

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures

Storage Temperature
Operating Junction Temperature
Lead Temperature (Soldering, 10 sec time limit)
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ $+200^{\circ} \mathrm{C}$
$+260^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ Free Air Temperature
Linear Derating
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current

$V_{\text {GS }}$ Gate to Source Voltage	-40 V
$\mathrm{~V}_{\mathrm{GD}}$ Gate to Drain Voltage	-40 V
I G $_{\text {G }}$ Gate Current	50 mA

ORDERING INFORMATION

TO-72	WAFER	DICE
2N4867	2N4867/W	2N4867/D
2N4867A	2N4867A/W	2N4867A/D
2N4868	2N4868/W	2N4868/D
2N4868A	2N4868A/W	2N4868A/D
2N4869	2N4869/W	2N4869/D
2N4869A	2N4869A/W	2N4869A/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{gathered} \text { 2N4867 } \\ \text { 2N4867A } \end{gathered}$		$\begin{gathered} \text { 2N4868 } \\ \text { 2N4868A } \end{gathered}$		$\begin{gathered} \text { 2N4869 } \\ \text { 2N4869A } \end{gathered}$		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX	MIN	MAX				
IGSS	Gate Reverse Current		$\begin{aligned} & -0.25 \\ & -0.25 \end{aligned}$		$\begin{aligned} & -0.25 \\ & -0.25 \end{aligned}$		$\begin{aligned} & -0.25 \\ & -0.25 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$V_{G S}=-30 \mathrm{~V}, V_{D S}=0$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
$V_{G S}(\mathrm{off})$	Gate-Source Cutoff Voltage	-0.7	-2	-1	-3	-1.8	-5		$V_{D S}=20 \mathrm{~V}, \mathrm{ID}=1 \mu \mathrm{~A}$		
IDSS	Saturation Drain Current (Note 1)	0.4	1.2	1	3	2.5	7.5	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
$\mathrm{g}_{\mathrm{fs}}{ }^{\text {S }}$	Common-Source Forward Transconductance (Note 1)	700	2000	1000	3000	1300	4000	$\mu \mathrm{mho}$	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{g}_{\text {OS }}$	Common-Source Output Conductance		1.5		4		10				
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		5		5		5	pF			$f=1 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		25		25		25				
\bar{e}_{n}	Short Circuit Equivalent Input Noise Voltage		20		20		20	$\frac{n V}{\sqrt{H z}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	2N4867 Series	$f=10 \mathrm{~Hz}$
			10		10		10			2N4867A Series	
			10		10		10			2N4867 Series	$f=1 \mathrm{kHz}$
			5		5		5			2N4867A Series	
NF	Spot Noise Figure		1		1		1	dB	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & 20 \mathrm{~K}, 2 N 4867 \text { Series } \\ & \mathrm{R}_{\text {gen }}= \\ & 5 \mathrm{~K}, 2 N 4867 \mathrm{~A} \text { Series } \end{aligned}$		$f=1 \mathrm{kHz}$

NOTE: 1. Pulse test duration 2 ms .

2N5018,2N5019 P-Channel JFET

APPLICATIONS

- Analog Switches
- Commutators
- Choppers

FEATURES

- Low Insertion Loss rds(oñ) < 75Ω (2N5018)
- No Offset or Error Voltages Generated by Closed Switch
- Purely Resistive

ABSOLUTE MAXIMUM RATINGS

Reverse Gate-Drain or Gate-Source Voltage
\qquad
Gate Current............................... . 50 mA
Total Device Dissipation, Free-Air
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 500 mW
Storage Temperature Range. ... - 65 to $+200^{\circ} \mathrm{C}$ Lead Temperature
(1/16" from case for 60 seconds) \qquad

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic			2N5018		2N5019		Unit	Test Conditions	
			Min	Max	Min	Max			
STATIC	BVGSS	Gate-Source Breakdown Voltage	30		30		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
	IGSS	Gate Reverse Current		2		2	nA	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
	${ }^{\prime} \mathrm{D}$ (off)	Drain Cutoff Current		-10		-10		$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(2 \mathrm{~N} 5018)$	
				-10		-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}$ (2N5019)	$150^{\circ} \mathrm{C}$
	IDGO	Drain Reverse Current		-2		-2	nA	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{S}=0$	
				-3		-3	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
	$\mathrm{B}_{\text {GS(off) }}$	Gate-Source Cutoff Voltage		10		5	\checkmark	$V_{D S}=-15 \mathrm{~V}, I_{D}=-1 \mu \mathrm{~A}$	
	IDSS	Saturation Drain Current	- 10		-5		mA	$\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
	$V_{\text {DS }}(0 n)$	Drain-Source ON Voltage		-0.5		-0.5	V	$\begin{aligned} & V_{G S}=0, I_{D}=-6 \mathrm{~mA}(2 \mathrm{~N} 5018), \\ & I_{D}=-3 \mathrm{~mA}(2 \mathrm{~N} 5019) \end{aligned}$	
	「DS(on)	Static Drain-Source ON Resistance		75		150	Ω	$I_{D}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	
	$\mathrm{r}_{\mathrm{ds}}(\mathrm{on}$)	Drain-Source. ON Resistance		75		150	Ω	$\mathrm{I}_{\mathrm{D}}=0, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$
D Y	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		45		45	pF	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$
N A M	$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		10		10		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}(2 \mathrm{~N} 5018), \\ & \mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}(2 \mathrm{~N} 5019) \end{aligned}$	
1	t_{d} (on)	Turn-ON Delay Time		15		15	ns	$V_{D D}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS} \text { (on) }}=0$	
C	t_{r}	Rise Time		20		75			
	t_{d} (off)	Turn-Off Delay Time	,	15		25		$V_{G S \text { (off) }}$ $\mathrm{I}_{\mathrm{D} \text { (on) }}$ R_{L} 2N5018 12 V -6 mA 910Ω 2N5019 iV -3 mA $1.8 \mathrm{~K} \Omega$	
	t_{f}.	Fall Time		50		100			

NOTE 1: Due to symmetrical geometry these units may be operated with source and drain leads interchanged.

INPUT PULSE
RISE TIME < 1 ns
FALL TIME < 1 ns PULSE WIDTH 100 ns REPLETION RATE $1 \mathbf{M H z}$

SAMPLING SCOPE

RISE TIME 0.4 ns

 INPUT RESISTANCE 10 M Ω INPUT CAPACITANCE 1.5 pF
2N5114-2N5116 JAN, JTX P-Channel JFET

FEATURES

- ON Resistance <75 ohms (2N5114)
- ${ }^{D}{ }_{D(\text { off })}<500 \mathrm{pA}$
- Switches directly from $\mathrm{T}^{2} \mathrm{~L}$ Logic (2N5116)

GENERAL DESCRIPTION

Ideal for inverting switching or "Virtual Gnd" switching into inverting input of Op. Amp. No driver is required and ± 10 VAC signals can be handled using only +5 V logic ($\mathrm{T}^{2} \mathrm{~L}$ or CMOS).

ABSOLUTE MAXIMUM RATINGS $@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)	
Maximum Temperatures	
Storage Temperature $\quad-65^{\circ}$	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit)	$+260^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	ture 500 mW
Linear Derating	$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current	
$\mathrm{V}_{\text {GS }}$ Gate to Source Voltage	30 V
$\mathrm{V}_{\text {GD }}$ Gate to Drain Voltage	30 V
$\mathrm{I}_{\mathrm{G}} \quad$ Gate Current	50 mA

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTIC		2N5114		2N5115		2N5116		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX			
BVGSS	Gate-Source Breakdown Voltage	30		30		30		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
IGSS	Gate Reverse Current,		500		500		500	pA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$25^{\circ} \mathrm{C}$
			1.0		1.0		1.0	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
${ }^{1} \mathrm{D}(\mathrm{OFF})$	Drain Cutoff Current		-500		-500		-500	pA	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\begin{array}{r} 2 \mathrm{~N} 5114=12 \mathrm{~V} \\ 2 \mathrm{~N} 5115=7 \mathrm{~V} \\ 2 \mathrm{~N} 5116=5 \mathrm{~V} \end{array}$	$25^{\circ} \mathrm{C}$
			-1.0		-1.0		-1.0	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
V_{P}	Gate-Source Pinch-Off Voltage	5	10	3	6	1	4	V	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{ID}=-1 \mathrm{nA}$	
${ }^{\prime}$ DSS	Drain Current at Zero Gate Voltage	-30	-90	-15	-60	-5	-25	mA	$\begin{aligned} & 2 N 5114=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}= 2 \mathrm{~N} 5115=-15 \mathrm{~V} \\ & 2 \mathrm{~N} 5116=-15 \mathrm{~V} \end{aligned}$	
VGSSF	Forward Gate-Source Voltage		-1		-1		-1	V	Pulse Test Duration $=2 \mathrm{~ms}$$I_{G}=-1 \mathrm{~mA}, V_{D S}=0$	
VDS(ON)	Drain-Source, ON Voltage		-1.3		-0.8		-0.6	V	$2 N 5114$ $=-15 \mathrm{~mA}$ $=2 N 5115$ $=-7 \mathrm{~mA}$ $2 N 5116$ $=-3 \mathrm{~mA}$	
r DS(on)	Static Drain-Source ON Resistance Small-Signal Drain-Source ON		$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{G S}=0, I_{D}=-1 \mathrm{~mA} \\ & V_{G S}=0, I_{D}=0, f=1 \mathrm{kHz} \end{aligned}$	
$\mathrm{r}_{\mathrm{ds} \text { (on) }}$	Resistance . Jan TX only		75		100		175	Ω		
$\mathrm{C}_{\text {iss }}$	Common-Source Input		25		25		25	pF	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$	
	Capacitance Jan TX only		25		25		27	pF		
Crss	Common-Source Reverse Transfer Capacitance		7		7		7	pF	 $V_{D S}=0, V_{G S}$ $f=1 \mathrm{MHz}$ $=2 N 5114=12 \mathrm{~V}$ $2 N 5116=7 \mathrm{~V}$ 2	

SWITCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTIC				JAN TX	JAN TX	JAN TX		
	2N5114	2N5115	2N5116	2N5114	2N55115	2N5116	UNIT	
		MAX	MAX	MAX	MAX	MAX	MAX	
t_{d}	Turn-ON Delay Time	6	10	12	6	10	25	ns
t_{r}	Rise Time	10	20	30	10	20	35	ns
$\mathrm{t}_{\text {off }}$ Turn-OFF Delay Time	6	8	19	6	8	29	ns	
t_{f}	Fall Time	15	30	50	(not JAN TX specified)		ns	

TEST CONDITIONS			
	$2 N 5114$	2 N 5115	2 N 5116
$\mathrm{~V}_{\mathrm{DD}}$	-10 V	-6 V	-6 V
$\mathrm{~V}_{\mathrm{GG}}$	20 V	12 V	8 V
R_{L}	430Ω	910Ω	$2 \mathrm{~K} \Omega$
R_{G}	100Ω	220Ω	390Ω
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	-15 mA	-7 mA	-3 mA
$\mathrm{~V}_{\mathrm{IN}}$	-12 V	-7 V	-5 V

output

'OS(ON) (0hms)

JAN TX and JAN TX V Processing

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Note 1)

Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature

Each side (Note 1)
Both sides
Derating Factor
Each side
Both sides
Voltage
Collector to Base
Collector to Emitter
Emitter to Base (Note 2)
Collector to Collector
Collector Current
Storage Temperature
Lead Temperature for 10 Seconds
0.4W
0.75W
$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

45V

45V
7.0V

100 V
10 mA
-65 to $+200^{\circ} \mathrm{C}$
$+300^{\circ} \mathrm{C}$

2N5117-2N5119 Dual Monolithic PNP Transistor

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{aligned} & \text { 2N5117 } \\ & \text { 2N5118 } \end{aligned}$		2N5119		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
hFE	DC Current Gain	100	300	50			$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
hFE	DC Current Gain	100		50			$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
hFE	DC Current Gain ($-55^{\circ} \mathrm{C}$)	30		20			$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	
ICBO	Collector Cutoff Current		0.1		0.1	nA	$I_{E}=0, V_{C B}=30 \mathrm{~V}$	
ICBO	Collector Cutoff Current ($150^{\circ} \mathrm{C}$)		0.1		0.1	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=30 \mathrm{~V}$	
IEBO	Emitter Cutoff Current		0.1		0.1	nA	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$	
${ }^{\mathrm{C}_{1}-\mathrm{C}_{2}}$	Collector-Collector Leakage		5.0		5.0	pA	$V_{C C}=100 \mathrm{~V}$	
GBW	Current Gain Bandwith Product	100		100		MHz	$\mathrm{I}^{\text {C }}=500 \mu \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	
$\mathrm{C}_{\text {ob }}$	Output Capacitance		0.8		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {te }}$	Emitter Transition Capacitance		1.0		1.0	pF	$\mathrm{I}^{\prime}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$	
$\mathrm{C}_{\mathrm{C}_{1} \cdot \mathrm{C}_{2}}$	Collector-Collector Capacitance		0.8		0.8	pF	$V_{C C}=0$	
$\mathrm{V}_{\text {CEO }}$ (sust)	Collector-Emitter Sustaining Voltage	45		45		V	$I_{C}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	
NF	Narrow Band Noise Figure		4.0		4.0	dB	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$	$f=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{~K} \Omega$
$V_{\text {(BR) }}$ CBO	Collector Base Breakdown Voltage,	45		45		V	$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	
$V_{\text {(BR)EBO }}$	Emitter Base Breakdown Voltage	7.0		7.0		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5117		2N5118		2N5119		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX			
$\mathrm{hFE}_{1} / \mathrm{hFE}_{2}$	DC Current Gain Ratio (Note 3)	0.9	1.0	0.85	1.0	0.8	1.0		$\begin{aligned} & I^{\prime} C=10 \mu \mathrm{~A} \text { to } 500 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \end{aligned}$	
$V_{B E}{ }_{1}-V_{B E}$	Base-Emitter Voltage Differential		3.0		5.0		5.0	mV	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \text { to } 500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \end{aligned}$	
$\mathrm{I}_{\mathrm{B}_{1}{ }^{-1} \mathrm{~B}_{2}}$	Base Current Differential		10.0		15		40	nA	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	
$\Delta\left(V_{B E_{1}}-V_{B_{B E}}\right)$	Base Voltage Differential Change with Temperature		3.0		5.0		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	${ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\Delta\left(\mathrm{B}_{1}{ }^{-1} \mathrm{~B}_{2}\right)$	Base-Current Differential Change with Temperature		0.3		0.5		1.0	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^3]2N5196-2N5199 Monolithic Dual N-Channel JFET

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Temperatures
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec. time limit)
$+300^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature

One Side	250 mW
Both Sides	500 mW
Linear Derating	
One Side	$2.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Both Sides	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Currents
$V_{\text {GS }}$ Gate to Source Voltage
$-50 \mathrm{~V}$
$V_{G D}$ Gate to Drain Voltage $-50 \mathrm{~V}$ 50 mA
ORDERING INFORMATION

TO.71	WAFER	DICE
2N5196	2N5196/W	2N5196/D
2N5197	2N5197/W	2N5197/D
2N5198	2N5198/W	2N5198/D
2N5199	2N5199/W	2N5199/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

NOTE: 1. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$.
2. Measured at end points, T_{A} and T_{B}.

2N5397, 2N5398 N-Channel JFET

FEATURES

- $\mathrm{G}_{\mathrm{ps}}=10 \mathrm{~dB}$ Typical (Common Gate) at 450 MHz
- $\mathrm{NF}=3.5 \mathrm{~dB}$ Typical at 450 MHz
- $\mathrm{C}_{\mathrm{rss}}=1 \mathrm{pF}$ Typical

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Storage Temperature	$+200^{\circ} \mathrm{C}$
Operating Junction Temperature	
Lead Temperature (Soldering, 10 sec time limit) $300^{\circ} \mathrm{C}$	

Maximum Power Dissipation

Device Dissipation @ Free Air Temperature	300 mW
Linear Derating	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Current

$V_{G S}$ Gate to Source Voltage	-25 V
$\mathrm{~V}_{\mathrm{GD}}$ Gate to Drain Voltage	-25 V
I_{G} Gate Current	10 mA

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5397		2N5398		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
IGSS	Gate Reverse Current		-0.1		-0.1	nA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-0.1		-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-25		-25		V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	
VGS(off)	Gate-Source Cutoff Voltage	-1.0	-6.0	-1.0	-6.0		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
IDSS	Saturation Drain Current	10	30	5	40	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(f)	Gate-Source Forward Voltage		1		1	V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$	
g_{fs}	Common-Source Forward Transconductance (Note 1)	6000	10,000	5500	10,000	μ mho	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$f=1 \mathrm{kHz}$
$\mathrm{g}_{\text {Oss }}$	Common-Source Output Conductance		200		400		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
Crss	Common-Source Reverse Transfer Capacitance		1.2		1.3	pF	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$f=1 \mathrm{MHz}$
Ciss	Common-Source Input Capacitance		5.0		5.5		$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
giss	Common-Source Input Conductance		2000		3000	$\mu \mathrm{m} h o$	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA} \\ & V_{D G}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$f=450 \mathrm{MHz}$
goss	Common-Source Output Conductance		400		500		$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \hline \end{aligned}$	
9fs	Common-Source Forward Transconductance (Note 1)	5500	9000	5000	10,000		$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
G_{ps}	Common-Source Power Gain (neutralized)	15				dB	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	
NF	Common-Source, Spot Noise Figure (neutralized)		3.5					

Note 1: Pulse test duration $=2 \mathrm{~ms}$

2N5432-2N5434 N-Channel JFET

FEATURES

- $\mathbf{r d s}_{\text {(}}$ (on) <5 ohms
- Excellent Switching - $\mathbf{t}_{\text {on }}<4 \mathbf{n s}$ $\mathbf{t}_{\text {off }}<6$ ns
- Low Cutoff Current - ID(off) < 200 pA

ABSOLUTE MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit)	$+260^{\circ} \mathrm{C}$

Maximum Power Dissipation
Device Dissipation @ Free Air Temperature
300 mW Linear Derating $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Current

V $_{\text {GS }}$	Gate to Source Voltage
V $_{\text {GD }}$ Gate to Drain Voltage	-25 V
IG $_{\text {G }}$	-25 Vate Current
ID	-25
Drain Current	100 mA
	400 mA

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

NOTE: 1. Pulse test required pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$.

FEATURES

- Offset Voltage 5 mV
- Drift $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Capacitance
- Low Output Conductance - 1μ mho Max

GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers. This family of general purpose FETs is characterized for low and medium frequency differential amplifier applications requiring low drift and low offset voltage.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature
Operating Junction Temperature $\quad+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec. time limit)
$+300^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature

One Side	250 mW
Both Sides	500 mW
Linear Derating	
One Side	$2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Both Sides	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Currents
$\begin{array}{ll}\mathrm{V}_{\mathrm{GS}} \text { Gate to Source Voltage } & -50 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GD}} \text { Gate to Drain Voltage } & -50 \mathrm{~V}\end{array}$

PIN
 CONFIGURATION

TO.71

CHIP
TOPOGRAPHY
6017

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

$V_{\text {DS }}$	Drain-Source Voltage 25.25
$V_{\text {DG }}$	Drain-Gate Voltage . 25 V
$\mathrm{V}_{\mathrm{GS}(\mathrm{r})}$	Reverse Gate-Source Voltage . 25 V
I_{G}	Gate Current . 10mA
	Total Device Dissipation @. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \ldots3 .310 \mathrm{~mW}$
PD	Derate above $25^{\circ} \mathrm{C}$. $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
TJ	Operating Junction Temperature $135{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range - 65 to $+150^{\circ} \mathrm{C}$

Drain-Gate Voltage
25 V
Gate Current 10 mA
PD Derate above $25^{\circ} \mathrm{C}$
$135^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$ Storage Temperature Range -65 to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
OFF CHARACTERISTICS							
BVGSS	Gate-Source Breakdown Voltage	-25	-60		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
IGSS	Gate Reverse Current		. 05	$\begin{array}{r} -1.0 \\ -200 \end{array}$	nA	$\begin{aligned} & V_{G S}=-15 \mathrm{~V}, V_{D S}=0 \\ & V_{G S}=-15 \mathrm{~V}, V_{D S}=0, T_{A}=10 \end{aligned}$	
VGS(off)	Gate-Saurce Cutoff Voltage	$\begin{aligned} & -0.5 \\ & -1.0 \\ & -2.0 \end{aligned}$		$\begin{aligned} & -6.0 \\ & -7.0 \\ & -8.0 \end{aligned}$	V	$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=10 \mathrm{nA}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \end{aligned}$
VGS	Gate-Source Voltage		$\begin{aligned} & 2.5 \\ & 3.5 \\ & 4.5 \end{aligned}$		V	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, I_{D}=100 \mu \mathrm{~A} \\ & V_{D S}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & V_{D S}=15 \mathrm{~V}, I_{D}=400 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \end{aligned}$
ON CHARACTERISTICS							
IDSS	Zero-Gate-Voltage Drain Current	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 9.0 \\ & 16 \\ & \hline \end{aligned}$	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \hline \end{aligned}$
DYNAMIC CHARACTERISTICS							
$\left\|y f_{s}\right\|$	Forward Transfer Admittance	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 3000 \\ & 4000 \\ & 4500 \end{aligned}$	$\begin{aligned} & 5000 \\ & 5500 \\ & 6000 \end{aligned}$	$\mu \mathrm{mho}$	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \end{aligned}$
\|Yos ${ }^{\text {a }}$	Output Admittance		10	50	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz}$	
$\mathrm{C}_{\text {iss }}$	Input Capacitance		4.5	7.0	pF	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$	
Crss	Reverse Transfer Capacitance		1.5	3.0	pF	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$	

MAXIMUM RATINGS

RATING	SYMBOL	2N5460 2N5461 2N5462	2N5463 2N5464 2N5465	UNITS
Drain-Gate Voltage	VDG	40	60	Vdc
Reverse Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{r})$	40	60	Vdc
Forward Gate Current	IG(f)	10		mAdc
Total Device Dissipation @ $T_{A}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 310 \\ & 2.82 \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150		C
Operating Junction Temperature Range	TJ	-65 to +135		C

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
$V_{\text {(BR) }}$ GSS \quad Gate-Source Breakdown Voltage	$\begin{aligned} & 40 \\ & 60 \end{aligned}$			Vdc	$\mathrm{IG}=10 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{DS}}=0$	$\begin{aligned} & \text { 2N5460, 2N5461, } 2 N 5462 \\ & \text { 2N5463, 2N5464, 2N5465. } \\ & \hline \end{aligned}$
$V_{\text {GS }}($ off $) \quad$ Gate-Source Cutoff Voltage	$\begin{gathered} \hline 0.75 \\ 1.0 \\ 1.8 \end{gathered}$		$\begin{aligned} & 6.0 \\ & 7.5 \\ & 9.0 \end{aligned}$	Vdc	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{ID}=1.0 \mu \mathrm{Adc}$	$\begin{aligned} & \text { 2N5460, 2N5463 } \\ & \text { 2N5461, 2N5464 } \\ & \text { 2N5462, 2N5465 } \\ & \hline \end{aligned}$
IGSS Gate Reverse Current			$\begin{aligned} & 5.0 \\ & 5.0 \\ & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	na na $\mu \mathrm{Adc}$ na	$\begin{aligned} & V_{G S}=20 \mathrm{Vdc}, V_{\text {DS }}=0 \\ & V_{G S}=30 \mathrm{Vdc}, V_{\text {DS }}=0 \\ & V_{G S}=20 \mathrm{Vdc}, V_{D S}=0, T_{A}=100^{\circ} \mathrm{C} \\ & V_{\mathrm{GS}}=30 \mathrm{Vdc}, V_{D S}=0, T_{A}=100^{\circ} \mathrm{C} \end{aligned}$	2N5460, 2N5461, 2N5462 2N5463, 2N5464, 2N5465 2N5460, 2N5461, 2N5462 2N5463, 2N5464, 2N5465
ON CHARACTERISTICS						
IDSS Zero-Gate Voltage Drain Current	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 9.0 \\ & 16 \\ & \hline \end{aligned}$	mAdc	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0$	$\begin{aligned} & \text { 2N5460, 2N5463 } \\ & \text { 2N5461, 2N5464 } \\ & \text { 2N5462, 2N5465 } \end{aligned}$
. VGS Gate-Source Voltage	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Vdc	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=0.1 \mathrm{mAdc}$ $V_{D S}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{mAdc}$ $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{ID}=0.4 \mathrm{mAdc}$	2N5460, 2N5463 2N5461, 2N5464 2N5462, 2N5465
SMALL-SIGNAL CHARACTERISTICS						
$\mathbf{g}_{\mathrm{fs}} \quad$ Forward Transadmittance	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \\ & \hline \end{aligned}$		$\begin{aligned} & 4000 \\ & 5000 \\ & 6000 \end{aligned}$	$\mu \mathrm{mhos}$	$V_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{kHz}$	2N5460, 2N5463 2N5461, 2N5464 2N5462, 2N5465
$\mathrm{g}_{\text {OS }} \quad$ Output Admittance			75	$\mu \mathrm{mhos}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{kHz}$	
$\mathrm{C}_{\text {iss }}$ Ind Input Capacitance		5.0	7	pF	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	
$\mathrm{C}_{\text {rss }} \quad$ Reverse Transfer Capacitance		1.0	2.0	pF	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	
NF Common-Source Noise Figure		1.0	2.5	dB	$V_{D S}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1.0 \mathrm{Megohm}, \mathrm{f}=100 \mathrm{~Hz}, \mathrm{BW}=1.0 \mathrm{~Hz}$	
$\overline{\mathrm{e}}_{\mathrm{n}} \quad$Equivalent Short-Circuit Input Noise Voltage		60	115	$\begin{aligned} & \mathrm{nV} /{ }^{\prime} \\ & \sqrt{\mathrm{Hz}} \end{aligned}$	$V_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=100 \mathrm{~Hz}, \mathrm{BW}=1.0 \mathrm{~Hz}$	

2N5484-2N5486
N-Channel JFET

FEATURES

- Specified for 400 MHz Operation
- Can Be Used as a Low Capacitance Switch
- Economy Packaging
- $\mathrm{C}_{\mathrm{rss}}<1.0 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS

Drain-Gate Voltage . 25 V
Source Gate Voltage
25 V
Drain Current
Forward Gate Current
Total Device Dissipation @ $25^{\circ} \mathrm{C}$
Derate above $25^{\circ} \mathrm{C}$
Operating Junction Temperature Range
Storage Temperature Range

30 mA
10 mA
310 mW
$2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5484		2N5485		2N5486		UNITS	TEST CONDITIONS		
		MIN	MAX	MIN	MAX	MIN	MAX				
IGSS	Gate Reverse Current		-1.0		-1.0		-1.0	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$		
			-200		-200		-200			$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	
BVGSS	Gate-Source Breakdown Voltage .	-25		-25		-25		\checkmark	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
VGS(off)	Gate-Source Cutoff Voltage	-0.3	-3.0	-0.5	-4.0	-2.0	-6.0		$V_{\text {DS }}=15 \mathrm{~V}, 1 \mathrm{D}=10 \mathrm{nA}$		
IDSS	Saturation Drain Current	1.0	5.0	4.0	10	8.0	20	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)		
9fs.	Common-Source Forward Transconductance	3000	6000	3500	7000	4000	8000	μ mhos	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$.	$f=1 \mathrm{kHz}$	
gos	Common-Source Output Conductance		50		60		75				
Re (yfs)	Common-Source Forward Transconductance	2500								$f=100 \mathrm{MHz}$	
				3000		3500				$f=400 \mathrm{MHz}$	
Re (yos)	Common-Source Output Conductance		75							$\mathrm{f}=100 \mathrm{MHz}$	
					100		100			$f=400 \mathrm{MHz}$	
$R e\left(y_{\text {is }}\right)$	Common-Source Input Conductance		100							$f=100 \mathrm{MHz}$	
					1000		1000			$f=400 \mathrm{MHz}$	1
Ciss ${ }^{\text {- }}$	Common-Source Input Capacitance		5.0		5.0		5.0	pF			
Crss	Common-Source Reverse Transfer Capacitance		1.0	-	1.0		1.0			$f=1 \mathrm{MHz}$	
Coss	Common-Source Output Capacitance		2.0		2.0		2.0				
NF	Noise Figure		2.5		2.5		2.5	dB	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{MS}$	$\mathrm{f}=1 \mathrm{kHz}$	
			3.0						$V_{\text {DS }}=15 \mathrm{~V}, 1 \mathrm{l}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$	$f=100 \mathrm{MHz}$	
					4.0		4.0		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$	$f=400 \mathrm{MHz}$	
G_{ps}	. Common-Source Power Gain	16	25						$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=1 \mathrm{~mA}$	$f=100 \mathrm{MHz}$	
				18	30	18	30		$V_{D S}=15 \mathrm{~V}, 1 \mathrm{D}=4 \mathrm{~mA}$		
				10	20	10	20			$f=400 \mathrm{MHz}$	

2N5515-2N5524 Monolithic Dual N-Channel JFET

ABSOLUTE MAXIMUM RATINGS (Note 1) @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature
Maximum Power Dissipation
Device Dissipation
@ Free Air Temperature Linear Derating

ONE SIDE BOTH SIDES $250 \mathrm{~mW} \quad 500 \mathrm{~mW}$ $85^{\circ} \mathrm{C} \quad 85^{\circ} \mathrm{C}$ $3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

Maximum Voltages \& Current

$V_{G S}$ Gate to Source Voltage	-40 V
$\mathrm{~V}_{\text {GD }}$ Gate to Drain Voltage	-40 V
I_{G} Gate Current	50 mA

'FEATURES

- Tight Temperature Tracking $-\Delta \mathrm{V}_{\mathrm{GS}}<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Tight Matching -
$V_{G S}<5 \mathrm{mV}$
$\mathrm{I}_{\mathrm{G}}<10 \mathrm{nA} @ 125^{\circ} \mathrm{C}$
$\mathrm{g}_{\mathrm{fs}}<3 \%$
$\mathrm{g}_{\mathrm{oss}}<.1 \mu \mathrm{mho}$
- High Common Mode-Rejection - CMRR $<100 \mathrm{db}$
- Low Noise - $e_{n}<15 \mathrm{nV} / \sqrt{ } \mathrm{Hz} @ 10 \mathrm{~Hz}$

TO-72	WAFER	DICE
2N5515	2N5515/W	2N5515/D
2N5516	2N5516/W	2N5516/D
2N5517	2N5517/W	2N5517/D
2N5518	2N5518/W	2N5518/D
2N5519	2N5519/W	2N5519/D
2N5520	2N5520/W	2N5520/D
2N5521	2N5521/W	2N5521/D
2N5522	2N5522/W	2N5522/D
2N5523	2N5523/W	2N5523/D
2N5524	2N5524/W	2N5524/D
2N5525	2N5525/W	2N5525/d

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS	
IGSS	Gate Reverse Current $\begin{aligned} & \left(+25^{\circ} \mathrm{C}\right) \\ & \left(+150^{\circ} \mathrm{C}\right)\end{aligned}$		$\begin{aligned} & -250 \\ & -250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
BVGSS	Gate-Source Breakdown Voltage	-40		V	$\mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
Vp	Gate-Source Pinch-Off Voltage	-0.7	-4	V	$V_{D S}=20 \mathrm{~V}, \mathrm{D}=1 \mathrm{nA}$	
IDSS	Drain Current at Zero Gate Voltage (Note 2)	0.5	7.5	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
9fs	Common-Source Forward Transconductance (Note 2)	1000	4000	$\mu \mathrm{mho}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance		10	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
Crss	Common-Source Reverse Transfer Capacitance		5	pF	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		25	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$
\bar{e}_{n}	2N5515-19 Equivalent Input Noise Voltage 2N5520-24 2N5515-24	1	$\begin{aligned} & 30 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & n V / \sqrt{H z} \\ & n V / \sqrt{H z} \\ & n V / \sqrt{H z} \end{aligned}$	$\begin{aligned} & \text { VDG }=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & V D G=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & V D G=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=10 \mathrm{~Hz} \\ & f=1 \mathrm{kz} \end{aligned}$
I_{G}	Gate Current.$\left(+25^{\circ} \mathrm{C}\right)$ $\left(+125^{\circ} \mathrm{C}\right)$		$\begin{array}{r} -100 \\ -100 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$V_{D G}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	
VGS	Gate Source Voltage	-0.2	-3.8	V	VDG $=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
9fs	Common-Source Forward Transconductance (Note 2)	500	1000	$\mu \mathrm{mho}$.	$V_{\text {DG }}=20 \cdot \mathrm{~V}, I_{\text {d }}=200 \mu \mathrm{~A}$	$\mathrm{f}=1 \mathrm{kHz}$
goss ${ }^{\text {P }}$	Common-Source Output Conductance		1	$\mu \mathrm{mho}$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5515,20		2N5516,21		2N5517,22		2N5518,23		2N5519,24		UNIT	TEST CONDITIONS
		MIN	MAX										
IDSS1	Drain Current Ratio at	0.95	1	0.95	1	0.95	1	0.95	1	0.90	1		$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
IDSS2	Zero Gate Voltage (Note 2)												
\|IG1-IG21	Differential Gate Current $\left(+125^{\circ} \mathrm{C}\right)$		10		10		10		10		10	nA	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}^{\text {d }}=200 \mu \mathrm{~A}$
gfs1	Transconductance Ratio	0.97	1	0.97	1	0.95	1	0.95	1	0.90	1		$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
9 fs 2	(Note 2)												$\mathrm{f}=1 \mathrm{KHz}$
\| goss^{1} - $\mathrm{gosss}^{1} 1$	Differential Output Conductance		0.1		0.1		0.1		0.1		0.1	$\mu \mathrm{mho}$	$\begin{aligned} & \text { VDG }=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A} \\ & f=1 \mathrm{KHz} \end{aligned}$
	Differential Gate-Source Voltage		5		5		10		15		15	mV	$V_{D G}=20 \mathrm{~V}, \mathrm{ID}^{\text {a }}=200 \mu \mathrm{~A}$
$\frac{\Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2} 1}{\Delta \mathrm{~T}}$	Gate-Source Voltage Differential Drift ($T_{A}=+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)		5.		10		20		40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V_{D G}=20 \mathrm{~V}, \mathrm{I}^{\text {d }}=200 \mu \mathrm{~A}$
$\frac{\Delta\left\|V_{\mathrm{GS} 1}-V_{\mathrm{GS} 2}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift ($T_{A}=+25$ to $-55^{\circ} \mathrm{C}$)		5		10		20		40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}^{\text {d }}=200 \mu \mathrm{~A}$
CMRR	Common Mode Rejection Ratio (Note 3)	100		100		90					,	dB	$V_{D D}=10$ to $20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$

NOTES:

1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of 28 mS used during test.
3. $\mathrm{CMRR}=20 \log _{10} \Delta \mathrm{~V}_{\mathrm{DD}} / \Delta\left|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right|,\left(\Delta \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\right)$

FEATURES

- Specified Matching Characteristics
- High Gain - 7500μ mho Minimum
- Low "ON" Resistance - 100Ω Maximum

ABSOLUTE MAXIMUM RATINGS

($25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Gate Voltage.. . . $\pm 80 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage 40 V
Gate Current. 50mA
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $2.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
325 mW
Total Device Dissipation, TA $=25^{\circ} \mathrm{C}$
(Derate $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$). 650 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature
(1/16". from case for 10 seconds)
$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

	SYMBOL	PARAMETERS	CONDITIONS		MIN.	MAX.	UNIT
S T A T	IGSS	Gate-Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-100	pA
				$150^{\circ} \mathrm{C}$		-200	nA
	BV ${ }_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		V
	$\mathrm{V}_{\text {GS(off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.5	-3	
	$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Voltage	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=2 \mathrm{~mA}$			1.0	
	IDSS	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		5	30	mA
	r DS(on)	Static Drain Source ON Resistance	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$			100	Ω
DYNAMIC	g_{fs}	Common-Source Forward Transconductance (Note 1)	$V_{D G}=15 \mathrm{~V}, I_{D}=2 \mathrm{~mA}$	$f=1 \mathrm{kHz}$	7500	12,500	
				$\mathrm{f}=100 \mathrm{MHz}$	7000		$\mu \mathrm{mho}$
	$\mathrm{gos}^{\text {g }}$	Common-Source Output Conductance		$\mathrm{f}=1 \mathrm{kHz}$		45	
	$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		$\mathrm{f}=1 \mathrm{MHz}$		3	pF
	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance				12	
	NF	Spot Noise Figure		$\mathrm{f}=10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{g}}=1 \mathrm{M}$		1.0	dB
	$\overline{e_{n}}$	Equivalent Short Circuit Input Noise Voltage		$\mathrm{f}=10 \mathrm{~Hz}$.	50	$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$

SYMBOL		PARAMETERS	CONDITIONS		2N5564		2N5565		2N5566		UNIT	
		MIN.			MAX.	MIN.	MAX.	MIN.	MAX.			
$\begin{gathered} \mathrm{M} \\ \mathrm{~A} \\ \mathrm{~T} \\ \mathrm{C} \\ \mathrm{H} \\ \mathrm{I} \\ \mathrm{~N} \\ \mathrm{G} \end{gathered}$	$\frac{10 .}{\text { DSS } 1}$		Saturation Drain Current Ratio (Notes 1 and 2)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}{ }^{\prime}=0$	\because	0.95	1	0.95	1	0.95	1	-
	$\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|$	Differential Gate-Source Voltage		.		5	t	10		20	mV	
	$\Delta \underline{\underline{\mid} \underline{V}_{\text {GS1 }}-\mathrm{V}_{\mathrm{GS} 2} \mid}$	Gate-Source Voltage	$5 \mathrm{~V}, \mathrm{ID}=2 \mathrm{~mA}$	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{B}=125^{\circ} \mathrm{C} \end{aligned}$		10		25	-	50	$\mathrm{V} /{ }^{\circ} \mathrm{C}$	
		Differential Drift (Note 3)		$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$		10		25		50		
	$\frac{g_{f s 1}}{g_{f s 2}}$	Transconductance Ratio (Notes 1 and 2)	$V_{D S}=15 \mathrm{~V}, I_{D}=2 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	0.95	1	0.90	1	0.90	1	-	

NOTES:

1. Pulse test required, pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. Assumes smaller value in numerator.
3. Measured at end points, T_{A} and T_{B}.

2N5638-2N5640 N-Channel JFET

FEATURES

- Economy Packaging
- Fast Switching $-\mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}$ (2N5638)
- Low Drain-Source 'ON' Resistance $<30 \Omega$ (2N5638)

ABSOLUTE MAXIMUM RATINGS

Drain-Source Breakdown Voltage	30 V
Drain-Gate Breakdown Voltage	30 V
Source-Gate Breakdown Voltage	30 V
Forward Gate Current	10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$	310 mW
\quad Derate above $25^{\circ} \mathrm{C}$	$2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	-65 to $+135^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC		2N5638		2N5639		2N5640		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX	MIN	MAX				
BVGSS	Gate Reverse Breakdown Voltage	-30		-30		-30		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$		
	Gate Reverse Current		-1.0		-1.0		-1.0	nA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$		
IGSS	Gate Reverse Current		-1.0		-1.0		-1.0	$\mu \mathrm{A}$			$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$
${ }^{1}$ D(off)	Drain Cutoff Current		1.0		1.0		1.0	nA	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{VGS}_{\mathrm{GS}}=-12 \mathrm{~V}(2 \mathrm{~N} 5638) \\ & \left.\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}(2 \mathrm{~N} 539), \mathrm{V}_{\mathrm{GS}}=-6 \mathrm{~V}(2 \mathrm{~N} 540)\right) \end{aligned}$		
			1.0		1.0		1.0	$\mu \mathrm{A}$			$T_{A}=+100^{\circ} \mathrm{C}$
IDSS	Saturation Drain Current	50		25		5.0		mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)		
VDS(on)	Drain-Source ON Voltage		0.5		0.5		0.5	V	$\begin{aligned} & V_{G S}=0, I_{D}=12 \mathrm{~mA}(2 \mathrm{~N} 5638), \\ & I_{D}=6 \mathrm{~mA}(2 \mathrm{~N} 5639), I_{D}=3 \mathrm{~mA}(2 \mathrm{~N} 5640) \end{aligned}$		
rDS(on)	Static Drain-Source ON Resistance		30		60		100	Ω	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$		
rds(on)	Drain-Source ON Resistance		30		60		100		$V_{G S}=0, I D=0$		$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		10		10		10	pF	$V_{G S}=-12 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$		$\mathrm{f}=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		4.0		4.0		4.0				
$t_{\text {d }}$ (on)	Turn-On Delay Time		4.0		6.0		8.0	ns	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \quad \mathrm{I}$ (on) $=12 \mathrm{~mA}(2 \mathrm{~N} 5638)$		
$\mathrm{tr}_{\text {r }}$	Rise Time	.	5.0		8.0		10		$V_{G S}($ on $)=0$	$I_{D(o n)}=3 \mathrm{~mA}(2 \mathrm{~N} 5640)$	
t_{d}	Turn-OFF Delay Time		5.0		10		15		$\begin{aligned} & V_{G S(\text { off })}=-10 \mathrm{~V} \\ & R_{G}=50 \Omega \end{aligned}$		
$\mathrm{tf}^{\text {f }}$	Fall Time		10		20		30				

NOTE: 1. Pulse test $P W \leqslant 300 \mu$ s, duty cycle $\leqslant 3.0 \%$.

2N5902-2N5909 Dual Monolithic N-Channel JFET

FEATURES

- Tracking $<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ - $\mathrm{I}_{\mathrm{G}}<1 \mathrm{pa}$
- Matched $\mathrm{V}_{\mathrm{GS}} . \Delta \mathrm{V}_{\mathrm{GS}} / \Delta \mathrm{T}, \mathrm{g}_{\mathrm{fs}^{\prime}} \& \mathrm{~g}_{\mathrm{oss}}$

ABSOLUTE MAXIMUM,RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Gate-Drain or Gate-Source Voltage
Gate Current
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ORDERING INFORMATION

TO.99	WAFER	DICE	TO.99	WAFER	DICE
2N5902	2N5902/W	2N5902/D	2N5906	2N5906/W	2N5906/D
2N5903	2N5903/W	2N5903/D	2N5907	2N5907/W	2N5907ID
2N5904	2N5904/W	2N5904/D	2N5908	2N5908/W	2N5908/D
2N5905	2N5905/W	2N5905/D	2N5909	2N5905/W	2N5909/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

FEATURES

- Tracking $<20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- $\mathrm{g}_{\mathrm{fs}}<5000 \mu \mathrm{mho}, 0-100 \mathrm{MHz}$
- Matched $\mathrm{V}_{\mathrm{GS}}{ }^{\prime} \Delta \mathrm{V}_{\mathrm{GS}} / \Delta \mathrm{T}, \mathrm{I}_{\mathrm{G}}, \mathrm{g}_{\mathrm{fs}}{ }^{\prime}$

ABSOLUTE MAXIMUM RATINGS
@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Gate-Drain or Gate-Source Voltage	-25 V
Gate Current	50 mA
Device Dissipation (Each Side),	367 mW
\quad Linear Derating	$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Total Device Dissipation,	500 mW
\quad Linear Derating	$4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

2N5911, 2N5912 IT5911, IT5912 Dual Monolithic N-Channel JFET

-

ORDERING INFORMATION

TO-71	TO-99	WAFER	DICE
IT5911	2N5911	2N5911/W	2N5911/D
IT5912	2N5912	2N5912/W	2N5912/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		MIN	MAX			TEST CONDITIONS		
IGSS Gate Reverse Current				-100	pA	$\mathrm{V}_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$150^{\circ} \mathrm{C}$	
				-250	nA			
Gate Reverse Breakdown Voltage		-25			V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
Gate-Source Cutoff Voltage		-1		-5		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{ID}=1 \mathrm{nA}$		
Gate-Source Voltage		-0.3		-4		$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$		
Gate Operating Current				$\begin{aligned} & \hline-100 \\ & -100 \end{aligned}$	pA		$125^{\circ} \mathrm{C}$	
Saturation Drain Current (Pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$)		7		40	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		
Common-Source Forward Transconductance		5000		10,000	$\mu \mathrm{mho}$	$V \mathrm{DG}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$.	$\mathrm{f}=1 \mathrm{kHz}$	
Common-Source Forward Transconductance		5000		10,000			$\mathrm{f}=100 \mathrm{MHz}$	
Common-Source Output Conductance				100			$\mathrm{f}=1 \mathrm{kHz}$	
Common-Source Output Conductance				150			$\mathrm{f}=100 \mathrm{MHz}$	
Common-Source Input Capacitance				5	pF			
Common-Source Reverse Transfer Capacitance				1.2			$f=1 \mathrm{MHz}$	
Equivalent Short Circuit Input Noise Voltage				20	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$		$\mathrm{f}=10 \mathrm{kHz}$	
Spot Noise Figure				1	dB		$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \Omega \end{aligned}$	
PARAMETER	IT, 2N5911		IT, 2N5912		UNIT	TEST CONDITIONS		
	MIN	MAX	MIN	- MAX				
$\|\mid \mathrm{G} 1$ - G 2$\|$ Differential Gate Current		20		20	nA	$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$	$125^{\circ} \mathrm{C}$	
$\frac{\text { IDSS1 }}{\text { IDSS2 }} \quad$ Saturation Drain Current Ratio	0.95	1	0.95	51		$\begin{aligned} & \text { V } \mathrm{DS}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Pulsewidth } 300 \mu \mathrm{~s} \text {, duty cycle } \leqslant 3 \% \text {) } \end{aligned}$		
\|VGS1-VGS2	Differential Gate-Source Voltage		10		15	mV	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$	
Gate-Source Voltage Differential Drift (Measured at end points, T_{A} and T_{B})		20		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$	
		20		40			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \end{aligned}$	
$\frac{\mathrm{gfs}^{\text {g }}}{\mathrm{gfs} 2} \quad$ Transconductance Ratio	0.95	1	0.95	5			$\mathrm{f}=1 \mathrm{kHz}$	

FEATURES

- Ultra Low Noise

$$
\overline{\mathrm{e}}_{\mathrm{n}}<10 \mathrm{nV} / \sqrt{\mathrm{Hz}} \text { at } 10 \mathrm{~Hz}
$$

- High CMRR $>100 \mathrm{~dB}$
- Low Offset

$$
\Delta\left|V_{\mathrm{GS} 1}-v_{\mathrm{GS} 2}\right|<5 \mathrm{mV}
$$

- Tight Tracking

$$
\Delta\left|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right| / \Delta \mathrm{T}<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
$$

ABSOLUTE MAXIMUM RATINGS (Note 1)

(@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

PIN
 CONFIGURATION

CHIP TOPOGRAPHY

ORDERING INFORMATION

TO-71	WAFER	DICE
2N6483	2N6483/W	2N6483/D
2N6484	2N6484/W	2N6484/D
2N6485	2N6485/W	2N6485/D

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	MIN.	MAX	UNIT.	TEST CONDITIONS
${ }^{1}$ GSS	Gate Reverse Current		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { १A } \\ & \text { nA } \end{aligned}$	$\begin{aligned} & V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, T_{\mathrm{A}}=+25 \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GS}}=-30 \mathrm{~V} \cdot \mathrm{~V}_{\mathrm{DS}}=0, T_{\mathrm{A}}=+150 \mathrm{C} \end{aligned}$
$B V_{\text {GSS }}$	Gate-Source Breakdown Voltage	50		V	${ }^{\prime} G=1 \mu \mathrm{~A}, V_{D S}=0$
V_{p}	Gate Source Pinch Off Voltage	0.7	. 4.0	V	$V_{D S}=20 \mathrm{~V},{ }^{\prime} \mathrm{D}=1 \mathrm{nA}$.
${ }^{1}$ DSS	Drain Current at Zero Gate Voltage	0.5	7.5	$m A$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0($ Note 2$)$
g_{fs}	Common-Source Forward Transconductance	1000	4000	$\mu \mathrm{mho}$	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{KHz}$ (Note 2)
$\mathrm{g}_{\text {Oss }}$	Common-Source Output Conductance		10	$\mu \mathrm{mho}$	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{KHz}$
$\mathrm{C}_{\text {iss }}$	Common Source Input Capacitance		20	pF	$V_{D S}=20 \mathrm{~V} \cdot \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		3.5	pF	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$
${ }^{1} \mathrm{G}$	Gate Current		100 100	nA	$\begin{aligned} & V_{G D}-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{~T}_{A}=+25{ }^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{~T}_{A}=+150{ }^{\circ} \mathrm{C} \end{aligned}$
V_{GS}	Gate-Source Voltage ,	0.2	3.8	V	$V_{\text {DG }}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$
$\mathrm{g}_{\text {f }}$	Common Source Forward Transconductance	500	1500	$\mu \mathrm{mho}$	$\mathrm{V}_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz}$ (Note 2)
g_{os}	Common Source Output Conductance	-	1	$\mu \mathrm{mho}$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
$\overline{\mathbf{e}}_{n}$	Equivalent Input Noise Voltage		10 5	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}-10 \mathrm{~Hz} \\ & V_{D S}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \mathrm{f}-1 \mathrm{KHz} \end{aligned}$

MATCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	CHARACTERISTIC	2N6483		2N6484		2N6485		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
$\frac{1}{} \frac{\text { DSS } 1}{\text { 'DSS2 }}$	Drain Current Ratio at Zero Gate Voltage	0.95	1	0.95	1	0.95	1	-	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 2)
$\left.{ }^{\prime}{ }^{\text {G1 }}{ }^{-I_{G 2}}\right\|^{\prime}$	-Differential Gate Current		- 10		10		10	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$
$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{gs} 2}}$	Transconductance Ratio	0.97	1	0.97	1	0.95	1	-	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{KHz}(\text { Note } 2) \end{aligned}$
$\left\|g_{\text {OS } 1}-g_{\text {Os2 }}\right\|$	Differential Output Conductance		0.1		0.1		0.1	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage		5		10		15	mV	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
$\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	Gate-Source Voltage Differential Drift	.	5		10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\left.\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}} \right\rvert\,$	Gate-Source Voltage Differential Drift		: 5		10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$
CMRR	Common Mode Rejection Ratio	100		100		90		dB	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V} \\ & I_{D}=200 \mu \mathrm{~A}(\text { Note } 3) \end{aligned}$

NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of 2 ms used during test.
3. $\mathrm{CMRR}=20 \log _{10} \Delta \mathrm{~V}_{\mathrm{DD}} / \Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2} \mathrm{I},\left(\Delta \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\right)$, not included in JEDEC registration

TYPICAL OPERATING CHARACTERISTICS

IMF6485

Low Noise Dual Monolithic N-Channel JFET

FEATURES

- $\bar{e}_{\mathrm{n}}<10 \mathrm{nV} / \sqrt{\mathrm{Hz} \text { (G) }} 10 \mathrm{~Hz}$
- CMRR $>90 \mathrm{~dB}$
- $\Delta\left|\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}\right|<25 \mathrm{mV}$
- $\Delta\left|\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}\right|<40 \mu \mathrm{~V} /^{\circ} \mathrm{C}$.

ABSOLUTE MAXIMUM RATINGS(Note 1)
($\mathbf{~} 25^{\circ} \mathrm{C}$ unless otherwise noted)

GENERAL DESCRIPTION

This N-Channel Junction FET is characterized for ultra low noise applications requiring tightly controlled and specified noise parameters at 10 Hz and 1000 Hz . Tight matching specifications make this device ideal as the input stage for low frequency differential instrumentation amplifiers.

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	MIN.	MAX	UNIT	TEST CONDITIONS
${ }^{\prime}$ GSS	Gate Reverse Current		$\begin{aligned} & -200 \\ & -200 \end{aligned}$	pA nA	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, T_{\mathrm{A}}=+150^{\circ} \mathrm{C} \end{aligned}$
$B V_{\text {GSS }}$	Gate-Source Breakdown Voltage	-50		V	${ }^{\prime} \mathrm{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$
V_{p}	Gate-Source Pinch-Off Voltage	-0.7	-4.0	V	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$
${ }^{\text {I DSS }}$	Drain Current at Zero Gate Voltage	0.5	7.5	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 2)
g_{fs}	Common-Source Forward Transconductance	1000	4000	$\mu \mathrm{mho}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0, f=1 \mathrm{KHz}$ (Note 2)
$\mathrm{g}_{\text {oss }}$	Common-Source Output Conductance		10	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{KHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		20	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {rss }}$	Common:Source Reverse Transfer Capacitance		3.5	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$
${ }^{\prime} \mathrm{G}$	Gate Current		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$\begin{aligned} & V_{G D}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+150^{\circ} \mathrm{C} \end{aligned}$
V_{GS}	Gate-Source Voltage	0.2	-3.8	V	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$
g_{fS}	Common-Source Forward Transconductance	500	1500	$\mu \mathrm{mho}$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz}$ (Note 2)
g_{os}	Common Source Output Conductance		1.	$\mu \mathrm{mho}$	$V_{\text {DG }}=20 \mathrm{~V} \cdot{ }^{\prime}{ }_{\text {D }}=200 \mu \mathrm{~A}$
\bar{e}_{n}	Equivalent Input Noise Voltage		$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & n \mathrm{~V} / \sqrt{\mathrm{Hz}} \\ & n \mathrm{~V} / \sqrt{\mathrm{Hz}} \end{aligned}$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \mathrm{f}=10 \mathrm{~Hz} \\ & V_{D S}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz} \end{aligned}$

MATCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN.	MAX.	UNIT	CONDITIONS
$\frac{I_{\text {DSS1 }}}{I_{\text {DSS2 }}}$	Drain Current Ratio at Zero Gate Voltage	0.95	1	-	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 2)
${ }^{\prime}{ }^{\prime}{ }_{\mathrm{G} 1}-I_{\mathrm{G} 2}$ \|	Differential Gate Current		10	nA	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$
$\frac{g_{f s 1}}{g_{g s 2}}$	Transconductance Ratio	0.95	1	-	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{KHz}(\text { Note } 2) \end{aligned}$
$\mathrm{Ig}_{\mathrm{os} 1}-\mathrm{g}_{\mathrm{os} 2} \mid$	Differential Output Conductance		0.1	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \\ & \mathrm{f}=1 \mathrm{KHz} \end{aligned}$
$1 \mathrm{~V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}{ }^{1}$	Differential Gate-Source Voltage	.	25	$m V$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
$\frac{\Delta V_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}{ }^{1}}{\Delta \mathrm{~T}}$	Gate-Source Voltage Differential Drift		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{C G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\frac{\Delta \mathrm{V}_{\mathrm{GS} 1}{ }^{-V_{\mathrm{GS} 2}}{ }^{1}}{\Delta \mathrm{~T}}$	Gate-Source Voltage Differential Drift		40	$\mu \vee \rho C$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$
CMRR .	Common Mode Rejection Ratio	90		dB	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A}(\text { Note } 3) \end{aligned}$

NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of 2 ms used during test.
3. $C M R R=20 \log _{10} \Delta V_{D D} / \Delta I V_{G S 1}-V_{G S 2} 1,\left(\Delta V_{D D}=10 \mathrm{~V}\right)$

TYPICAL OPERATING CHARACTERISTICS

TYPICAL CAPACITANCE vs. $V_{D S}$

$v_{D S}(V)$

Vertical Power MOSFETs

BV $V_{D S S}>350 V$,	
rDS(on) $<5 \Omega$	
IVN6000KN Series	Page $2-31$
BVDSS $<100 V$,	
rDS(on) $<0.5 \Omega$	
IVN5200/1HN Series	$2-23$
IVN5200/1KN Series	$2-25$
IVN5200/1TN Series	$2-27$
IVN5201CN Series	$2-29$

$B V_{\text {DSS }}<100 \mathrm{~V}$,
$r_{\text {DS(on) }}<5 \Omega$
VN10KM 2-3
VN30AB Series $\quad 2-5$
VN35AK Series $\quad 2-7$
VN40AF Series $\quad 2.9$
VN46AF Series $\quad 2-11$
IVN5000/1AN Series $2-13$
IVN5000/1BN Series $2-15$
IVN5000/1SN Series 2-17
IVN5000/1TN Series $2-19$ IVN5001AZ Series 2.21
IVN6660/61 Series $\quad 2-37$
2N6660/61 Series $\quad 2-39$

${ }^{\prime}$ DS(on) OHMS	$\begin{aligned} & \left.I_{D(o n)}\right) \\ & \text { AMPS } \end{aligned}$		$V_{G S(t h)}$ VOLTS		P_{D} WATTS$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	BV ${ }_{\text {DSS }}$ - DRAIN-SOURCE BREAKDOWN VOLTAGE												
			35 V MIN	40V MIN		60V MIN		80V MIN		90 V MIN								
MAX	STEADY	PEAK			MIN	MAX		ZENER	NON-ZENER	ZENER	NON-ZENER	ZENER	NON-ZENER	ZENER	NON-ZENER		ZENER	NON-ZENER
$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	5.0 5.0	12 12	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	2.0 3.6		$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$				IVN5200KND IVN5201KND		IVN5200KNE IVN5201KNE		IVN5200KNF IVN5201KNF			TO-3	
0.5 0.5 2.5 2.5 3.0 3.5 3.5 4.0 4.5 4.5 5.0	4.0 4.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	$\begin{aligned} & 10 \\ & 10 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$	2.0 3.6 2.0 - 2.0 2.0 - 2.0 2.0 - -	$\begin{aligned} & 12.5 \\ & 12.5 \\ & 6.25 \\ & 6.25 \\ & 6.25 \\ & 6.25 \\ & 6.25 \\ & 6.25 \\ & 6.25 \\ & 6.25 \\ & 6.25 \end{aligned}$	VN35AB VN30AB	VN35AK	'	IVN5200TND IVN5201TND IVN5000TND IVN5001TND	IVN6660 VN67AB	IVN5200TNE IVN5201TNE IVN5000TNE IVN5001TNE VN66AK VN67AK	VN89AB	IVN5200TNF IVN5201TNF IVN5000TNF IVN5001TNF	IVN6661 VN90AB	IVN5000TNG IVN5001TNG VN98AK VN99AK	то-39		
$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	0.9 0.9	3.0 3.0	0.8 0.8	2.0 3.6	$\begin{array}{r} 3.13 \\ 3.13 \\ \hline \end{array}$				IVN5000SND IVN5001SND		IVN5000SNE IVN5001SNE	.	IVN5000SNF IVN5001SNF		,	TO-52		
$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	5.0 5.0	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	2.0 3.6	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$				IVN5200HND IVN5201HND		IVN5200HNE IVN5201HNE		IVN5200HNF IVN5201HNF			TO-66		
$\begin{aligned} & 3.0 \\ & 3.5 \\ & 4.0 \\ & 4.5 \\ & 5.0 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \\ & 1.7 \\ & 1.7 \\ & 1.7 \\ & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$	- - - - - 2.0 3.6	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$.	VN46AF VN40AF	IVN5000BND IVN5001BND	VN66AF VN67AF	IVN5000BNE IVN5001BNE	VN88AF VN89AF	IVN5000BNF IVN5001BNF	-	,	TO-202 (PLASTIC)		
0.5	5.0	12	0.8	3.6	30			,	IVN5201CND		IVN5201CNE		IVN5201CNF		.	$\begin{array}{\|c\|} \hline \text { TO-220 } \\ \text { (PLASTIC) } \\ \hline \end{array}$		
$\begin{gathered} 2.5 \\ 2.5 \\ - \\ 3.0 \end{gathered}$	0.7 0.7 0.5 0.5	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.3 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.6 \\ & 2.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 1.0 \\ & 2.0 \end{aligned}$,		.	IVN5000AND IVN5001AND	VN10KM IVN5001AZE	IVN5000ANE IVN5001ANE	IVN5001AZF	IVN5000ANF IVN5001ANF		.	TO-237 (PLASTIC)		
$\mathrm{R}_{\mathrm{DS}(\mathrm{On})}$ OHMS	$i_{D(0)}$ AMF				P_{D} WATTS $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		\%		-			.						
MAX	STEADY	PEAK	MIN	MAX	MIN		350 V				OVV			450V				
3.0	2.25	7.5	2.0	5.0	36		- IVN6000K			IVN6	00KNS			6000KNT				

FEATURES

- Directly drives inductive loads
- High speed, high peak current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Inherent protection from thermal runaway

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage 60 V
Drain-gate Voltage 60V
Continuous Drain Current (see note 1) 0.5A
Peak Drain Current (see note 2) 1.0 V
Gate-source Forward Voltage $+15 \mathrm{~V}$
Gate-source Reverse Voltage 0.3 V
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature 1.0W
Linear Derating Factor $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating JunctionTemperature Range-40 to $+150^{\circ} \mathrm{C}$Storage Temperature Range $\ldots \ldots \ldots$. . . -40 to $+150^{\circ} \mathrm{C}$Lead Temperature
($1 / 16$ in. from case for 10 sec) $+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{Tc}=25^{\circ} \mathrm{C}$; controlled by typical $\mathrm{rDS}(o n)$ and maximum power dissipation.
Note 2. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- LED and lamp drivers
- TTL and CMOS to high current interface
- High speed switches
- Line drivers
- Relay drivers
- Transformer drivers

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic				Min	Typ	Max	Unit	Test Conditions	
1	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \\ & \mathbf{I} \\ & \mathbf{C} \end{aligned}$	BVDSS	Drain-Source Breakdown	60			V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=100 \mu \mathrm{~A}$	
2		$\mathrm{V}_{\mathrm{GS}}(\mathrm{th}$)	Gate Threshold Voltage	0.3		2.5	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{~mA}$	
3		IGSS	Gate-Body Leakage			10	nA	$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
4		loss	Zero Gate Voltage Drain Current	,	.	10	$\mu \mathrm{A}$	$V_{D S}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	Note 2
5		ID (on) ${ }^{\text {a }}$	ON-State Drain Current	0.25			A	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$	Note 1
6				0.50				$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	
7		$\mathrm{V}_{\mathrm{DS}}(\mathrm{on}$)	Drain-Source ON Voltage		\cdot	2.5	v	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ld}=0.5 \mathrm{~A}$	
8	$\begin{aligned} & \mathrm{D} \\ & \mathbf{Y} \\ & \mathrm{~N} \\ & \mathbf{A} \\ & \mathbf{M} \\ & \mathbf{I} \\ & \mathbf{C} \end{aligned}$	gis	Forward Transconductance	100	200		mmho	$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{~A}$	
9		Ciss	Input Capacitance		48		pF	$V_{D S}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Note 2
10		Coss	Output Capacitance		16				
11		Crss	Feedback Capacitance		2				
12		ton	Turn-ON Time		5		ns	See Switching Times Test Circuit, page 2-42	
13		toff	Turn-OFF Time		5				

NOTES: 1. Pulse test -80μ s pulse, ${ }^{1} \%$ duty cycle.
2. Sample Test.

THERMAL RESPONSE

Note: For other 5000 family characteristic curves, see page 2-41.

DC SAFE OPERATING REGION

$\mathrm{TC}=25^{\circ} \mathrm{C}$

$V_{\text {DS }}$ DRAIN - SOURCE VOLTAGE (VOLTS)

POWER DISSIPATION DERATING

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- Simple DC biasing
- Extended safe operating area
- Inherently temperature stable

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
VN30AB, VN35AB 35 V
VN67AB .. 60V
VN89AB ... 80 V
VN90AB ... 90V
Drain-gate Voltage VN30AB, VN35AB 35 V
VN67AB .. 60V
VN89AB ... 80 V
VN90AB .. . 90V
Continuous Drain Current (see note 1) 1.2A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current2.0mA
Peak-gate Forward Current 100mA
Peak-gate Reverse Current 100 mA
Gate-source Forward (Zener) Voltage +15 V
Gate-source Reverse (Zener) Voltage -0.3V
Thermal Resistance, Junction to Case $20^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature 6.25W

Linear Derating Factor $50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Rang -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots$. . -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec)
$+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{TC}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.

Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers

Body internally connected to source.
Drain common to case.

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC				VN30AB			VN35AB			VN67AB			VN89AB			VN90AB			UNIT	TEST CONDITIONS
				MIN	TYP	MAX														
1	S	BVDSs	Drain Source Breakdown	35			35	,		60	.		80			90			V	$I_{D}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$
2		VGS(th)	Gate Threshold Voltage	0.8	1.2		0.8	1.2		0.8	1.2		0.8	1.2		0.8	1.2			$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$
3		lass	Gate-Body Leakage		0.01	0.5		0.01	0.5		0.01	0.5		0.01	0.5		0.01	0.5	$\mu \mathrm{A}$	$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$
4	$\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \\ & \mathbf{I} \\ & \mathbf{C} \end{aligned}$	Idss	Zero Gate Voltage Drain Current			10			10			10			10			10		$V_{D S}=25 \mathrm{~V}, V_{G S}=0$
5			Drain-Source ON-State			6.0			4.5			5.1			5.1			6.0	Ω	VGS $=5 \mathrm{~V}, \mathrm{ID}=300 \mathrm{~mA}$
5			Resistance (Note 1) ${ }^{\text {- }}$		2.2	5.0		2.2	2.5		2.2	3.5		2.2	4.5	.	2.2	5.0		VGS $=10 \mathrm{~V}, \mathrm{ld}=1.0 \mathrm{~A}$
6		ID (on)	ON-State Drain Current (Note 1)	1.0	2.0		1.0	2.0		1.0	2.0		1.0	2.0		1.0	2.0		A	$V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
7		gts	Forward Transconductance		250			250			250			250			250		$\mathrm{m} \Omega$	$V_{D S}=25 \mathrm{~V}, 1 \mathrm{l}=0.5 \mathrm{~A}$
8	D	Ciss	Input Capacitance (Note 2)			50			50			50			50			50	pF	$\begin{aligned} & V_{G S}=0, V_{D S}=24 \mathrm{~V} \\ & f=1.0 \mathrm{MHz} \end{aligned}$
9	Y \mathbf{N} \mathbf{A}	Crss	Reverse Transfer Capacitance (Note 2)			10			10			10			10			10		
10	$\left\{\begin{array}{c} A \\ M \\ 1 \\ C \end{array}\right.$	Coss	Common Source Output Capacitance (Note 2)			40			40			40			40			40		
11		ton	Turn-ON Time (Note 2)	-	4	10		4	10		4	10		4	10		4	10	ns	
12		toff	Turn-OFF Time (Note 2)		4	10		4	10		4	10		4	10		4	10		

Note 1. Pulse Test $-80 \mu \mathrm{~s}, 1 \%$ duty cycle.
Note 2. Sample Test.

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

BREAKDOWN VOLTAGE VARIATION WITH TEMPERATURE

VN35AK, VN66AK, VN67AK, VN98AK, VN99AK n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- High speed, high current switching
- High gain-bandwidth product
- Inherently temperature stable
- Extended safe operating area
- Simple DC biasing
- Requires almost zero current drive

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
VN35AK 35 V
VN66AK, VN67AK 60V
VN98AK, VN99AK 90 V
Drain-gate Voltage VN35AK 35 V
VN66AK, VN67AK 60 V
VN98AK. VN99AK 90 V
Continuous Drain Current (see note 1) 1.2A
Peak Drain Current (see note 2) 3.0A
Gate-source Forward Voltage $+30 \mathrm{~V}$
Gate-source Reverse Voltage 30V
Thermal Resistance, Junction to Case $20^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature 6.25W
Linear Derating Factor $50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) $+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{TC}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.

Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- High current analog switches
- RF power amplifiers
- Laser diode pulsers
- Line drivers
- Logic buffers
- Pulse amplifiers

SCHEMATIC DIAGRAM (OUTLINE DWG. TO-39)

Body internally connected to source. Drain common to case.

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC					VN35AK			VN66AK VN67AK			VN98AK VN99AK			UNIT	TEST CONDITIONS	
					MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
1		BVoss	Drain-Source Breakdown		35			60			90			V	$V_{G S}=0, I D=10 \mu \mathrm{~A}$	
2		VGS(th)	Gate-Threshold Voltage		0.8		2.0	0.8		2.0	0.8		2.0		$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	
3		IGss	Gate-Body Leakage			0.5	100		0.5	100		0.5	100	nA	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
4							500			500			500		$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{D S}=0, T_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
5	\mathbf{S}		Zero Gate Voltage Drain Current				10			10			10	$\mu \mathrm{A}$	$V_{D S}=$ Max. Rating, $V_{G S}=0$	
6	\mathbf{A}	Idss					500			500			500		$V_{D S}=0.8$ Max. Rating, $V_{G S}=0, T_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
7	1					100			100			100	-	nA	$V_{D S}=25 \mathrm{~V}, V_{G S}=10 \mathrm{~V}$	
8	C	ID (on)	ON-State Drain Current		1.0	2.0		1.0	2.0		1.0	2.0		A		
9		VDŚ(on)	Drain-Source Saturation Voltage	VN66AK					1.0			1.1		V	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{ld}=0.3 \mathrm{~A}$	(Note 1)
10				VN98AK					2.2	3.0		2.2	4.0		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$	
11				VN35AK VN67AK		1.0			1.1.			1.2			$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{ID}=0.3 \mathrm{~A}$	
12				VN99AK		2.2	2.5		2.2	3.5		2.2	4.5		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$	
13	D\mathbf{Y}NAMMC	gfs	Forward Transconductance		170	250		170	250		170	250		$\mathrm{m} \Omega$	$V_{D S}=24 \mathrm{~V}, 1 \mathrm{l}=0.5 \mathrm{~A}, f=1 \mathrm{KHz}$	
14		Ciss	Input Capacitance			40	50	.	40	50		40	50	pF	$V_{G S}=0, V_{D S}=24 \mathrm{~V}, f=1 \mathrm{MHz}$	(Note 2)
15		Coss	Common Source Output Capacitance			38	45		35	40		32	40			
16		Crss	Reverse Transfer Capacitance			7	10		6	10		5	10			
17		ton	Turn ON Time			3	8		3	8		3	8	ns		
18		toff	Turn OFF Time			3	8		3	8		3	8			

Note 1. Pulse test -80μ s pulse, 1% duty cycle. Note 2. Sample test.

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$
$V_{\text {DS }}$ - DRAIN-TO-SOURCE VOLTAGE (VOLTS)

BREAKDOWN VOLTAGE VARIATION WITH TEMPERATURE

VN40AF, VN67AF, VN89AF n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- Simple DC biasing
- Extended safe operating area
- Inherently temperature stable
- Reliable, low cost plastic package

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
\qquad40V

VN67AFVN89AF80 V
Drain-gate Voltage
VN40AF 40 V
VN67AF 60 V
VN89AF. 80V
Continuous Drain Current (see note 1) 1.7A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current 2.0 mA
Peak-gate Forward Current 100 mA
Peak-gate Reverse Current 100 mA
Gate-source Forward (Zener) Voltage $+15 \mathrm{~V}$
Gate-source Reverse (Zener) Voltage -0.3V
Thermal Resistance, Junction to Case $10.4^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature 12W
Linear Derating Factor $96 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) $+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical $\mathrm{rDS}(\mathrm{on})$ and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers
- DC motor controllers

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC				VN40AF			VN67AF			VN89AF			UNIT	TEST CONDITIONS	
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
1	S A T I C	BVoss	Drain-Source Breakdown	40			60			80			V	$V_{G S}=0, I D=10 \mu \mathrm{~A}$	
2				40			60			80				$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}=2.5 \mathrm{~mA}$	
3		VGS(th)	Gate-Threshold Voltage	0.6	1.2		0.8	1.2		0.8	1.2			$V_{\text {DS }}=V_{G S}, I_{D}=1 \mathrm{~mA}$	
4		IGss	Gate-Body Leakage		0.01	10		0.01	10	.	0.01	10	$\mu \mathrm{A}$	$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
5						100			100			100		$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{D S}=0, \mathrm{~T}_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
6		IDSS	Zero Gate Voltage Drain Current			10			10.			10		$\mathrm{V}_{\text {DS }}=$ Max. Rating, $\mathrm{V}_{\text {GS }}=0$	
7						100			100			100		$V_{D S}=0.8$ Max. Rating, $V_{G S}=0, T_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
8					100			100			100		nA	$\mathrm{V}_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	
9		ID(on)	ON-State Drain Current	1.0	2		1.0	2		1.0	2		A	$V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	(Note 1)
10		Vos(on)	Drain-Source Saturation Voltage		0.3			0.3			0.4		V	$V_{G S}=5 \mathrm{~V}, I_{D}=0.1 \mathrm{~A}$	
11					1.0	2.0		1.0	1.7		1.4	1.9		$V_{G S}=5 \mathrm{~V}, \mathrm{ID}=0.3 \mathrm{~A}$	
12					1.0			1.0			1.3			$V_{G S}=10 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{~A}$	
13					2.2	5.0		2.2	3.5		2.2	4.5		$V_{G S}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$	
14		gm	Forward Transconductance		250			250			250		mv	$V_{D S}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz}$	
15		Ciss	Input Capacitance			50			50			50	pF	$V_{G S}=0, V_{D S}=25 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	(Note 2)
16	Y	Crss	Reverse Transfer Capacitance			10			10			10			
17	$\begin{aligned} & \mathbf{N} \\ & \mathbf{A} \end{aligned}$	Coss	Common-Source Output Capacitance			50			50			50			
18	M	td (on)	Turn-ON Delay Time		2	5		2	5		2	5	ns	-	
19	\mathbf{c}	tr_{r}	Rise Time		2	5		2	5		2	5			
20		td (off)	Turn-OFF Delay Time		2	5		2	5		2	5			
21		${ }_{\text {t }}{ }^{\text {f }}$	Fall Time		2	5		2	5		2	5			

Note 1. Pulse test - $80 \mu \mathrm{~s}$ pulse, 1% duty cycle.
Note 2. Sample test.

POWER DISSIPATION vs CASE TEMPERATURE

DC SAFE OPERATING REGION
$\mathrm{TC}=25^{\circ} \mathrm{C}$

BREAKDOWN VOLTAGE VARIATION WITH TEMPERATURE

VN46AF, VN66AF, VN88AF n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- Simple DC biasing
- Extended safe operating area
- Inherently temperature stable

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
VN46AF.. 40 V
VN66AF.. . 60V
VN88AF.. . 80 V
Drain-gate Voltage
VN46AF... . 40V
VN66AF... 60V
VN88AF.. . 80V
Continuous Drain Current (see note 1) 1.7A
Peak Drain Current (see note 2) 3.0A
Continuious Forward Gate Current2.0mA
Peak-gate Forward Current 100mA
Peak-gate Reverse Current 100mA
Gate-source Forward (Zener) Voltage +15V
Gate-source Reverse (Zener) Voltage............ -0.3V
Thermal Resistance, Junction to Case $10.4^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)

Linear Derating Factor $96 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range $\ldots \ldots \ldots$.
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) $300^{\circ} \mathrm{C}$

Note 1. $T_{C}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Note 1. Pulse test -80μ s pulse, 1% duty cycle. Note 2. Sample test.
THERMAL RESPONSE

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

BREAKDOWN VOLTAGE VARIATION WITH TEMPERATURE
 Vertical Power MOSFET

FEATURES

- High speed, high peak current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Inherent protection from thermal runaway
- Reliable, low cost plastic package

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5000AND, IVN5001AND 40 V
IVN5000ANE, IVN5001ANE . 60V
IVN5000ANF, IVN5001ANF . 80V
Drain-gate Voltage
IVN5000AND, IVN5001AND 40V
IVN5000ANE, IVN5001ANE . 60V
IVN5000ANF, IVN5001ANF 80V
Continuous Drain Current (see note 1) 0.7A
Peak Drain Current (see note 2) 2.0A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage - 30 V
Thermal Resistance, Junction to Case $62.5^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature 2.0W

Linear Derating Factor . $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16$ in. from case for 10 sec) $\ldots+300^{\circ} \mathrm{C}$
Note'1. $\mathrm{TC}=25^{\circ} \mathrm{C}$; controlled by typical $\mathrm{rDS}(\mathrm{on})$ and maximum . power dissipation.
Note 2. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- LED and lamp drivers
- High gain, wide-band amplifiers
- High speed switches
- Line drivers
- Logic buffers
- Pulse amplifiers

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $\mathrm{V}_{B S}=0$

Note 1. Pulse test $-80 \mu \mathrm{sec}, 1 \%$ duty cycle:
Note 2. Sample test.

THERMAL RESPONSE

Note: For other 5000 family characteristic curves, see page 2-41.

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

V_{DS} DRAIN - SOURCE VOLTAGE (VOLTS)

POWER DISSIPATION DERATING

IVN5000/1 BN Series n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- High speed, high peak current switching
- Inherent current sharing capability when paralleled
- Interfaces directly with CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Inherent protection from thermal runaway
- Reliable, low cost plastic package

These devices are Non-Zener equivalents of the VN40AF Series.

Original Type No. Zener Protected	Equiv. Type No. Non-Zener
VN40AF	
VN46AF	IVN5001BND
VN66AF	IVN5001BND
VN67AF	IVN5001BNE
VN88AF	IVN501BNE
VN89AF	IVN5001BNF
	IVN5001BNF

IVN5000BND, IVN5001BND 40 V
IVN5000BNE, IVN5001BNE 60V
IVN5000BNF, IVN5001BNF 80V
Drain-gate Voltage
IVN5000BND, IVN5001BND 40 V
IVN5000BNE, IVN5001BNE 60V
IVN5000BNF, IVN5001BNF 80V
Continuous Drain Current (see note 1) 1.7A
Peak Drain Current (see note 2) 3.0A
Gate-source Forward Voltage $+30 \mathrm{~V}$
Gate-source Reverse Voltage $-30 \mathrm{~V}$
Thermal Resistance, Junction to Case $10.4^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature 12W
Linear Derating Factor $96 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$Lead Temperature(1/16 in. from case for 10 sec)$+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{Tc}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.
Note 2. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- High gain, broad-band VHF/UHF Amplifiers
- Line drivers
- Logic buffers
- Pulse amplifiers

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$

Note 1. Pulse test - $80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

THERMAL RESPONSE

Note: For other 5000 family characteristic curves, see page 2-41.

DC SAFE OPERATING REGION
$\mathrm{TC}=25^{\circ} \mathrm{C}$

POWER DISSIPATION vs CASE

 OR AMBIENT TEMPERATURE

IVN5000/1 SN Series n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES.

- High speed, high current switching
- High gain-bandwidth product
- Inherently temperature stable
- Extended Safe Operating Area
- Simple DC biasing
- Requires almost zero current drive
- Small hermetic package

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5000SND, IVN5001SND . 40V
IVN5000SNE, IVN5001SNE . 60V
IVN5000SNF, IVN5001SNF . 80V
Drain-gate Voltáge
IVN5000SND, IVN5001SND . 40V
IVN5000SNE, IVN5001SNE . 60V
IVN5000SNF, IVN5001SNF . 80V
Continuous Drain Current (see note 1) 0.9A
Peak Drain Current (see note 2) 3.0A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage -30
Thermal Resistance, Junction to Case $40^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature
3.13W

Linear Derating Factor . $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec)
$+300^{\circ} \mathrm{C}$
Note 1. $\mathrm{Tc}=25^{\circ} \mathrm{C}$; controlled by typical $\mathrm{rDS}(o n)$ and maximum power dissipation.

Note 2. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSTET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- High gain, broad-band VHF/UHF Amplifiers
- Line drivers
- Logic buffers
- Pulse amplifiers .
- Motor Controls

SCHEMATIC DIAGRAM

Body internally connected to source
Drain common to case

CHIP TOPOGRAPHY

IVN5000／1 SN Series

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted）， $\mathrm{V}_{\mathrm{BS}}=0$

Note 1．Pulse test－ $80 \mu \mathrm{sec}, 1 \%$ duty cycle．
Note 2．Sample test．

THERMAL RESPONSE

Note：For other 5000 family characteristic curves，see page 2－41．
dC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

VDS DRAIN－SOURCE VOLTAGE（VOLTS）
POWER DISSIPATION DERATING

IVN5000/1 TN Series n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- High speed, high current switching
- High gain-bandwidth product
- Inherently temperature stable
- Extended safe operating area
- Simple DC Biasing
- Requires almost zero current drive

APPLICATIONS

- High current analog switches
- RF power amplifiers
- Laser diode pulsers
- Line drivers
- Logic buffers
- Pulse amplifiers
ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise noted)

Drain-source Voltage

IVN5000TND, IVN5001TND 40V

IVN5000TNE, IVN5001TNE 60V
IVN5000TNF, IVN5001TNF 80 V
IVN5000TNG, IVN5001TNG90V
Drain-gate Voltage
IVN50007ND, IVN5001TND 40V
IVN5000TNE, IVN5001TNE 60V
IVN5000TNF, IVN5001TNF 80V
IVN5000TNG, IVN5001TNG 90V
Continuous Drain Current (see note 1) 1.2A
Peak Drain Current (see note 2).................. 3.0A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage 30 V
Thermal Resistance, Junction to Case $20^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature 6.25W
Linear Derating Factor...................... $50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range $\ldots \ldots \ldots \ldots . .$.
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) $+300^{\circ} \mathrm{C}$
Note 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.
Note 2. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

These devices are non-zener improved equivalents of the following series.

Original Type No. Zener Protected	Original Type No. No Zener Protection	Intersil Equivalent Type No. Non-Zener or Preferred Replacement
VN30ABVN35AB		IVN5001TND
	1	IVN5001TND
	VN35AK	IVN5000TND
	VN66AK	IVN5000TNE
VN67AB		IVN5001TNE
	VN67AK	IVN5000TNE
VN89AB		IVN5001TNF
VN90AB		IVN5001TNG
	VN98AK	IVN5000TNG
	vN99AK	IVN5000TNG
2N6659		IVN5000TND
2N6660		IVN5000TNE
2N6661		IVN5000TNG

Body internally connected to source.
Drain common to case.
CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$

	CHARACTERISTICS		IVN5000TND INV5001TND			IVN5000TNE IVN5001TNE			IVN5000TNF IVN5001TNF			IVN5000TNG IVN5001TNG			UNIT	TEST CONDITIONS
			MIN	TYP	MAX											
STATIC																
BV ${ }^{\text {DSS }}$	Drain-Source Breakdown Voltage-		40		.	60	.		80			90			v	$V_{G S}=0,10=10 \mu \mathrm{~A}$
$V_{G S}(\mathrm{th})$	Gate Threshold Voltage	IVN5000 Series	0.8		2.0	0.8		2.0	0.8		2.0	0.8			$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	
		IVN5001 Series	0.8		3.6	0.8		3.6	0.8		3.6	0.8	2.0			
Igss	Gate-Body Leakage			0.1	10		0.1	10		0.1	10		0.1	10	nA	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$
					50			50			50			50		$\begin{aligned} & V_{G S}=15 \mathrm{~V}, V_{D S}=0, \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$
Ioss	Zero Gate Voltage Drain Current				10			10			10			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=$ Max. Ratung, $\mathrm{V}_{\mathrm{GS}}=0$
				\cdots	500			500			500			500		$\begin{aligned} & \text { VDS }=0.80 \text { Max. Rating }, \\ & \text { VGS }=0, T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$
				20			20			20			20		nA	$\mathrm{V}_{\text {DS }}=24 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$
ID(on)	ON-State Drain Current	IVN5000 Series	1.0	1.9		1.0	1.9		1.0	1.9		1.0	1.9		A	$\mathrm{V}_{\text {DS }}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}^{[1]}$
		IVN5001 Series	1.0	1.9		1.0	1.9		1.0	1.9		1.0	1.9			$\mathrm{V}_{\text {DS }}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V} \mid 11$
VDS(on)	Drain-Source Saturation Voltage	IVN5000 Series		1.5			1.5			1.5			1.5		V	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{Al1]}$
				2.0	2.5		2.0	2.5		2.0	2.5		2.0	2.5		$V_{G S}=10 \mathrm{~V}, 1 \mathrm{D}=1.0 \mathrm{~A}\|1\|$
		IVN5001 Series		1.2			1.2			1.2			1.2			$\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.3 \mathrm{Al1\mid}$
				1.9	2.5		1.9	2.5		1.9	2.5		1.9	2.5		$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}^{\|1\|}$
ros(on)	Static DrainSource ON Resistance	IVN5000 Series		2.0	2.5		2.0	2.5		2.0	2.5		2.0	2.5	Ω	$V_{G S}=10 \mathrm{~V} \quad I^{\prime}=1.0 \mathrm{~A}^{111}$
		IVN5001 Series		1.9	2.5		1.9	2.5		1.9	2.5		1.9	2.5		$V_{G S}=12 \mathrm{~V}$
DYNAMIC																
rDS(on)	Small-Signal Drain-Source ON Resistance	IVN5000 Series		2.0	2.5		2.0	2.5		2.0	2.5		2.0	2.5	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \quad \mathrm{I}^{0}=1.0 \mathrm{~A}^{\|1\|}$
		IVN5001 Series		1.9	2.5		1.9	2.5		1.9	2.5		1.9	2.5		$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$
gts	Forward Transconductance		170	280		170	280		170	280		170	280		$\mathrm{m} \Omega$	$V_{D S}=24 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{~A}, \mathrm{t}=1 \mathrm{KHz}{ }^{111}$
$\mathrm{C}_{\text {Iss }}$	Input Capacitance			40	50		40	50		40	50		40	50	pF	$\begin{aligned} & V_{D S}=24 \mathrm{~V}, V_{G S}=0 \\ & f=1 \mathrm{MHz} \\ & \text { (see note 2) } \end{aligned}$
Coss	Output Capacitance			27	40		27	40		27	40		27	40		
Crss	Reverse Transfer Capacitance			6	10		6	10		6	10		6	10		
tolon)	Turn-ON Delay Time			2	5		2	5		2	5		2	5	ns	See Switching Times Test Circuit, page 2-42 (see note 2)
tr_{r}	Rise Time			2	5		2	5		2	5		2	5		
totoff)	Turn-OFF Delay Time			2	5		2	5		2	5		2	5		
	Fall Time			2	5		2	5		2	5		2	5		

Note 1. Pulse test $-80 \mu \mathrm{sec}, 1 \%$ duty cycle;
Note 2. Sample test.

THERMAL RESPONSE

$t_{1}-$ TIME (msec)

DC SAFE OPERATING REGION
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

Note: For other 5000 family characteristic curves, see page 2-41.

IVN5001 AZ Series n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- High speed, high peak current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL Logic
- Simple, straight-forward DC biasing
- Inherent protection from thermal runaway
- Reliable, low cost plastic package
ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5001 AZE . 60V
IVN5001 AZF . 80 V
Drain-gate Voltage
IVN5001 AZE . 60V
IVN5001 AZF . 80 V
Continuous Drain Current (see note 1) 0.5A
Peak Drain Current (see note 2) 2.0A
Gate-source Forward Voltage +15 V
Gate-source Reverse Voltage -0.3 V
Thermal Resistance, Junction to Case $62.5^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature . 2.0W
Linear Derating Factor . $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec)
$+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{Tc}^{\prime}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.

Note 2. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0% :
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- LED and lamp drivers
- High gain, wide-band amplifiers
- High speed switches
- Line drivers
- Logic buffers
- Pulse amplifiers

Drain common to tab

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$

NOTES: 1. Pulse test $-80 \mu \mathrm{~s}$ pulse, 1% duty cycle. 2. Sample Test.

THERMAL RESPONSE

Note: For other 5000 family characteristic curves, see page 2-41.

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

POWER DISSIPATION DERATING

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Extended safe operating area
- Inherently temperature stable

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5200HND, IVN5201HND
40 V
IVN5200HNE, IVN5201HNE
60V
IVN5200HNF, IVN5201HNF 80 V
Drain-gate Voltage
IV.N5200HND, IVN52Q1HND 40V

IVN5200HNE, IVN5201HNE 60V
IVN5200HNF, IVN5201HNF 80 V
Continuous Drain Current . 5.0A
Peak Drain Current (see note 1) 12A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage - 30 V
Thermal Resistance, Junction to Case $4.17^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature .30W
Linear Derating Factor $240 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range. -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) $\ldots \ldots+300^{\circ} \mathrm{C}$
Note 1. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%
Note 2. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- Logic buffers
- Line drivers
- Motor controllers
- Power amplifiers

SCHEMATIC DIAGRAM
(OUTLINE DWG. TO-66)

Body internally connected to source. Drain common to case.

CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$

	CHARACTERISTICS				IVN5200HND IVN5201HND			IVN5200HNE IVN5201HNE			IVN5200HNF INV5201HNF			UNIT	TEST CONDITIONS			
					MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
1		$\begin{array}{\|ll} \hline \text { BVDSS } & \begin{array}{l} \text { Drain-Source Breakdown } \\ \text { Voltage } \end{array} \\ \hline \end{array}$			40			60			80			V	$V_{G S}=0, I D=100 \mu \mathrm{~A}$			
2		VGs(th)		IVN5200 Series	0.8		2.0.	0.8		2.0	0.8		2.0		$V_{D S}=V_{G S}, I_{D}=5 \mathrm{~mA}$			
3			Voltage	IVN5201 Series	0.8		3.6	0.8		3.6	0.8		3.6					
4		IGSS	Gate-Body Leakage			0.2	20		0.2	20		0.2	20	nA	$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			
5							100			100			100		$V_{G S}=12 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{\text {A }}=+125^{\circ} \mathrm{C}$			
6	s	Idss	Zero Gate Voltage Drain Current				100			100			100	$\mu \mathrm{A}$	$V_{D S}=$ Max. Rating, $\mathrm{V}_{\mathrm{GS}}=0$			
7	$\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \end{aligned}$						5.0			5.0			5.0	mA	$\mathrm{V}_{\text {DS }}=0.80$ Max. Rating, $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			
8	$\begin{aligned} & \mathbf{A} \\ & \mathbf{T} \end{aligned}$					100			100			100		nA	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			
9	1	ID(on)	ON-State	IVN5200 Series	5.0	10		5.0	10		5.0	- 10		A	$V_{D S}=24 \mathrm{~V}, V_{G S}=10 \mathrm{~V}$		(Note 1)	
10			Drain Current	IVN5201 Series	5.0	10		5.0	10		5.0	10			$V_{D S}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}$			
11		VDS(on)	Drain-Source Saturation Voltage	$\begin{aligned} & \text { IVN5200HND } \\ & \text { IVN5200HNE } \\ & \text { IVN5200HN } \end{aligned}$		1.5			1.5			1.5		V	VGS $=.5 \mathrm{~V}, \mathrm{ID}=2.0 \mathrm{~A}$			
12						1.9	2.5		1.9	2.5		1.9	2.5		$V_{G S}=10 \mathrm{~V}, \mathrm{ID}=5.0 \mathrm{~A}$			
13				$\begin{aligned} & \text { IVN5201HND } \\ & \text { NV5201HNE } \\ & \text { IVN5201HNF } \\ & \hline \end{aligned}$		1.2			1.2			1.2			$\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}, \mathrm{ld}=2.0 \mathrm{~A}$			
14						1.8	2.5		1.8	2.5		1.8	2.5		$\mathrm{VGS}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{ld}=5.0 \mathrm{~A}$			
15		ros(on)	Static Drain- Source ON Resistance	IVN5200 Series		0.38	0.50		0.38	0.50		0.38	0.50	Ω	$V_{G S}=10 \mathrm{~V}$.	$\mathrm{ld}=5.0 \mathrm{~A}$		
16				IVN5201 Series		0.36	0.50		0.36	0.50		0.36	0.50		$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$			
17		rds(on)	Small-Signal Drain-Source ON Resistance	IVN5200 Series		0.38	0.50		0.38	0.50		0.38	0.50		$\mathrm{VGS}_{\mathrm{GS}}=10 \mathrm{~V}$	$\left\{\begin{array}{l} 10=5.0 \mathrm{~A} \\ f=1 \mathrm{KHz} \end{array}\right.$		
18				IVN5201 Series		0.36	0.50		0.36	0.50		0.36	0.50		$\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$			
19	Y	gis	Forward Transconductance		1.0	1.8		1.0	1.8		1.0	1.8		mho	$V_{D S}=24 \mathrm{~V}, \mathrm{ID}=5.0 \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz}$			
20	N	Ciss	Input Capacitance			210	250		210	250		210	250	pF	$\begin{gathered} V_{D S}=24 \mathrm{~V}, V_{G S}=0 \\ f=1 \mathrm{MHz} \end{gathered}$		(Note 2)	
21	A	Coss	Output Capacitance			160	200		160	200		160	200					
22	M	Crss	Reverse Transfer Capacitance			45	60		45	60		45	60					
'23	1	td (on)	Turn-ON Delay Time			4	20		4	20		4	20	ns	$\mathrm{ID}=4.0 \mathrm{~A}$ See Switching Times Test Circuit, page 2-44.		(Note 2)	
24	C	tr	Rise Time			4	20		4	20		4	20					
25		td (off)	Turn-OFF Delay Time			4	20		4	20		4	20					
26		tf	Fall Time			4	20		4	20	,	4	20					

Note 1. Pulse test $-80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

Note: For other 5200 family characteristic curves, see page 2-43.

POWER DISSIPATION vs CASE TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

IVN5200/1 KN Series n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Extremely low drive currents
- Simple, straight-forward DC biasing
- Extended safe operating area
- Inherently temperature stable

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5200KND, IVN5201KND....................... . . 40V
IVN5200KNE, IVN5201KNE . 60V
IVN5200KNF, IVN5201KNF 80V
Drain-gate Voltage
IVN5200KND, IVN5201KND 40V
IVN5200KNE, IVN5201KNE . 60V
IVN5200KNF, IVN5201KNF 80V
Continuous Drain Current . 5.0A
Peak Drain Current (see note 1) 12A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage 30 V
Thermal Resistance, Junction to Case $2.5^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature

50W
Linear Derating Factor $400 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) $+300^{\circ} \mathrm{C}$
Note 1. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%
Note 2. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current logic
- High current line drivers
- Motor controllers
- Power amplifiers

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted); $\mathrm{V}_{\mathrm{BS}}=0$

Note 1. Pulse test $-80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

THERMAL RESPONSE

Note: For other 5200 family characteristic curves, see page 2-43.

POWER DISSIPATION vs CASE TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

V_{DS} - DRAIN.SOURCE VOLTAGE (VOLTS)

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Extended safe operating area
- Inherently temperature stable
- Low ON resistance in small package
ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5200TND, IVN5201TND . 40V
IVN5200TNE, IVN5201TNE 60V
IVN5200TNF, IVN5201TNF......................... . . 80V
Drain-gate Voltage
IVN5200TND, IVN5201TND . 40V
IVN5200TNE, IVN5201TNE 60V
IVN5200TNF, IVN5201TNF........................ . . 80V
Continuous Drain Current (see note 1) 4.0A
Peak Drain Current (see note 2) 10A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage 30 V
Thermal Resistance, Junction to Case $10^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $.25^{\circ} \mathrm{C}$ Case Temperature . 12.5 W
Linear Derating Factor . \ldots................... $100 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range $\ldots \ldots \ldots \ldots$.
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec)
$+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- High efficiency switching power supplies
- Off-line switching regulators
- High speed, high current switches
- Line drivers
- Logic buffers
- High peak current pulse amplifiers
- DC motor controllers

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$

Note 1. Pulse test $-80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

Note: For other 5200 family characteristic curves, see page 2-43.

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

$V_{D S}$ - DRAIN-SOURCE VOLTAGE (VOLTS)

IVN5201 CN Series n-Channel Enhancement-mode Vertical Power MOSFET

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Extended safe operating area
- Reliable, low cost plastic package

APPLICATIONS

- Deflection coil drivers
- Off-line switching regulators
- Power amplifiers
- DC to DC inverters
- Motor controllers
- High current line drivers

Body internally connected to source.
Drain common to tab.
CHIP TOPOGRAPHY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$

Note 1. Pulse test - $80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

Note: For other 5200 family characteristic curves, see page 2-43.

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

IVN6000 KN Series 450 V -Channel Enhancement-mode Vertical Power MOS FETs

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS logic
- Simple, straight-forward DC biasing
- Extended safe operating area
- Inherently temperature stable

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN6000KNR 350V
IVN6000KNS 400 V
IVN6000KNT :.................................. 450V
Drain-gate Voltage.
IVN6000KNR :................................. 350 V
IVN6000KNS 400 V
IVN6000KNT 450 V
Continuous Drain Current . 2.5A
Peak Drain Current (see note 1). 7.5A
Gate-source Voltage. $\pm 30 \mathrm{~V}$
Thermal Resistance, Junction to Case $3.0^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature. 41.7W
Linear Derating Factor. $333 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range................ . 55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
Body-drain Diode Continuous Forward Current 3A
Body-drain Diode Peak Forward Current 10A
Note 1. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%
Note 2. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- Motor controllers
- Power amplifiers
- RF amplifiers

SCHEMATIC DIAGRAM

Body internally connected to source. Drain common to case.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN.	TYP.	MAX.	
Drain-Source Breakdown Voltage IVN6000KNR	$B V_{D S}$	$\begin{aligned} & V_{G S}=0 \mathrm{~V} \\ & I_{D}=100 \mu \mathrm{~A} \end{aligned}$	350	,		V
IVN6000KNS			400			
IVN6000KNT			450			
Gate-Threshold Voltage	VGS'(th)	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	1.5		5	
Gate-Body Leakage Current	IGSS	$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}$		10	100	nA
Zero Gate Voltage Drain Current	Idss	$\begin{aligned} & V_{\mathrm{DS}}=\text { Maximum Rating, } \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$	-	0.2	2	mA
ON Drain Current ${ }^{111}$	ID(on)	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=15 \mathrm{~V}$	5	7		A
Static-Drain Source ON Resistance ${ }^{[1]}$	rDS(on)	$V_{G S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}$		2.5	3.0	Ω
Forward Transconductance ${ }^{[1]}$	gfs	$\mathrm{V}_{\mathrm{DS}}=200 \mathrm{~V}, \mathrm{ID}=1.5 \mathrm{~A}$	0.8	1.0		mho
Input Capacitance	Ciss	$V_{D S}=100 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		220	300	pF
Output Capacitance	Coss			22	30	
Reverse Transfer Capacitance	Crss			6	10	
Rise Time	tr	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=200 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1.0 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=15 \mathrm{~V}, \text { R }_{\text {gen }}=6 \Omega \end{aligned}$		5	10	ns
Fall Time	t_{f}			5	10	ns
Drain-Source Voltage Rate of Rise	dV/dt	$V_{D S}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		100		V/ns

Note: 1. Pulse Test: $80 \mu \mathrm{~s}, 1 \%$ duty cycle.

BODY-DRAIN DIODE CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN.	TYP.	MAX.	
Forward Voltage Drop	V_{f}	Peak Forward Current $=2 \mathrm{~A}$		0.95	1.1	V
Reverse Recovery Time	trr	$\mathrm{I}_{\mathrm{fwd}(\mathrm{pk})}=I_{\text {rev }}(\mathrm{pk})$ Recovery to 50\%		100		ns
Recovered Charge	Qrr	$\mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{fwd}(\mathrm{pk})}=2 \mathrm{~A}$		200		nC

Note: In the following curves, $\mathrm{V}_{\mathrm{GS}}^{\prime}$ is defined as the gate-source voltage minus the threshold voltage.

$$
\mathbf{V}_{\mathbf{G S}}^{\prime}=\mathbf{V}_{\mathbf{G S}}-\mathbf{V}_{\mathbf{t h}}
$$

TRANSCONDUCTANCE CHARACTERISTIC

OUTPUT CONDUCTANCE

TRANSFER CHARACTERISTICS

DRAIN-SOURCE LEAKAGE CURRENT

CAPACITANCE vs. DRAIN-SOURCE VOLTAGE

THRESHOLD VOLTAGE VS. TEMPERATURE

GATE LEAKAGE CURRENT

BODY-DRAIN DIODE FORWARD VOLTAGE CHARACTERISTIC

DRAIN-SOURCE BREAKDOWN VOLTAGE VARIATION WITH TEMPERATURE

GATE DYNAMIC CHARACTERISTICS

LARGE SIGNAL TRANSFER CHARACTERISTICS

ON RESISTANCE vs. V'Gs*
AS A FUNCTION OF TEMPERATURE

ON RESISTANCE vs. JUNCTION TEMPERATURE

ON RESISTANCE vs. V'Gs* AS A FUNCTION OF IO

[^4]

TRANSIENT THERMAL IMPEDANCE

POWER DISSIPATION vs. TEMPERATURE DERATING

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- Simple DC biasing
- Extended safe operating area
- Inherently temperature stable
- Typical $\mathrm{t}_{\text {on }}$ and $\mathrm{t}_{\text {off }}<\mathbf{5 n s}$

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers
- High frequency linear amplifiers

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN6660 60V
IVN6661... . 90V
Drain-gate Voltage
IVN6660 60V
IVN6661 90V
Continuous Drain Current (see note 1) 1.2A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current $\ldots2 .0 \mathrm{~mA}$
Peak-gate Forward Current 100 mA
Peak-gate Reverse Current 100 mA
Gate-source Forward (Zener) Voltage +15V
Gate-source Reverse (Zener) Voltage -0.3V
Thermal Resistance, Junction to Case $20^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature . 6.25W
Linear Derating Factor $50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range.$\ldots \ldots \ldots \ldots \ldots$. 55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec)
$+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

SCHEMATIC DIAGRAM (OUTLINE DWG. TO-39)

Body internally connected to source.

CHIP TOPOGRAPHY

UNIIERSUL
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC				IVN6660			IVN6661			UNIT	TEST CONDITIONS			
				MIN	TYP	MAX	MIN	TYP	MAX					
1	S A T	BVoss	Drain Source Breakdown	60			90		2.0	V	$V_{G S}=0, I D=10 \mu \mathrm{~A}$			
2				60			90				$V_{G S}=0, I D=2.5 \mathrm{~mA}$			
3		VGS(th)	Gate Threshold Voltage	0.8		2.0	0.8				$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$			
4		IGSS	Gate-Body Leakage		0.5	100		0.5	100	nA				
5						500			500		$V_{G S}=15 \mathrm{~V}, V_{D S}=0, \mathrm{~T}_{\text {A }}=125^{\circ} \mathrm{C} \mid$ (Note 2)			
6		Ioss	Zero Gate Voltage Drain Current			10			10	$\mu \mathrm{A}$,	$V_{\text {DS }}=$ Max. Rating, VGS $=0$			
7						500			500		$V_{D S}=0.80$ Max. Rating, $V_{G S}=0, T_{A}=125^{\circ} \mathrm{C}$ (Note 2)			
8					100			100		nA	$\mathrm{V}_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$			
9		ID(on)	ON-State Drain Current	1.0	2		1.0	2		A	$\mathrm{V}_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		(Note 1)	
10		VDS(on)	Drain-Source Saturation Voltage		0.3			0.4		V	$V_{G S}=5 \mathrm{~V}, \mathrm{ID}=0.1 \mathrm{~A}$			
11					1.0	1.5		1.1	1.6		$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{ID}=0.3 \mathrm{~A}$			
12					0.9			1.3			$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{~A}$			
13					2.2	3.0		2.2	4.0		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$			
14		ros(on)	Static Drain-Source ON-State Resistance		2.2	3.0		2.2	4.0	Ω	VGS $=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1.0 \mathrm{~A}$			
15	$\begin{gathered} \mathbf{D} \\ \mathbf{Y} \\ \mathbf{N} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{I} \\ \mathbf{C} \end{gathered}$	rds(on)	Small-Signal Drain-Source ON-State Resistance		2.2	3.0	.	2.2	4.0		$V \mathrm{GS}=10 \mathrm{~V}, \mathrm{ld}=1.0 \mathrm{~A}$	$\begin{aligned} & f= \\ & 1 \mathrm{KHz} \end{aligned}$		
16		gfs	Forward Transconductance	170	250		170	250		$\mathrm{m} \Omega$	$V_{D S}=24 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{~A}$			
17		Ciss	Input Capacitance			50		,	50	pF	$V_{G S}=0, V_{\text {DS }}=25 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$		(Note 2)	
18		Cds .	Drain-Source Capacitance			40			40					
19		Crss	Reverse Transfer Capacitance			10			10		$V_{G S}=0, V_{D S}=24 \mathrm{~V}, \mathrm{f}$	1.0 MHz		
20						35			35		$V_{G S}=0, V_{D S}=0, f=1$. 0 MHz		
21		tdon)	Turn-ON Delay Time		2	5		2	5	ns	\cdots			
22		tr_{r}.	Rise Time		2	5		2	5					
23		td (off)	Turn-OFF Delay Time		2	5		2	5					
24		t_{f}	Fall Time		2	5		2	5					

Note 1. Pulse test $-80 \mu \mathrm{sec}$ pulse, 1% duty cycle.
Note 2. Sample test.
THERMAL RESPONSE

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

BREAKDOWN
VOLTAGE VARIATION
WITH TEMPERATURE

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- Simple DC biasing
- Extended safe operating area
- Inherently temperature stable
- Typical $t_{o n}$ and $t_{\text {off }}<\mathbf{5 n s}$

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN6660 60V
IVN6661 . 90V
Drain-gate Voltage
IVN6660 . 60 V
IVN6661 . 90V
Continuous Drain Current (see note 1) 2.0A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current 2.0 mA
Peak-gate Forward Current 100mA
Peak-gate Reverse Current 100mA
Gate-source Forward (Zener) Voltage +15V
Gate-source Reverse (Zener) Voltage -0.3V
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature . 8.33W
Linear Derating Factor . $67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec)
$+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical rDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.
Note 3. The Drain-source diode is an integral part of the MOSFET structure.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers
- High frequency linear amplifiers
\|NTMTR
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC				IVN6660			IVN6661			UNIT	TEST CONDITIONS			
				MIN	TYP	MAX	MIN	TYP	MAX					
1	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \\ & \mathbf{I} \\ & \mathbf{C} \end{aligned}$	BVoss	Drain Source Breakdown	60			90			V	$V_{G S}=0,10=10 \mu \mathrm{~A}$			
2				60			90				$V_{G S}=0, \mathrm{ID}=2.5 \mathrm{~mA}$			
3		$V_{G S}(t h)$	Gate Threshold Voltage	0.8		2.0	0.8		2.0		$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$			
4		IGSs	Gate-Body Leakage		0.5	100		0.5	100	nA	$V_{G S}=15 \mathrm{~V}, V_{D S}=0$			
5						500			500		$V_{G S}=15 \mathrm{~V}, V_{D S}=0, T_{A}=125^{\circ} \mathrm{C}$ ((Note 2)			
6		Ioss	Zero Gate Voltage Drain Current		,	10			10	$\mu \mathrm{A}$	$V_{\text {DS }}=$ Max. Rating, VGS $=0$			
7				.		500	.		500		$V_{D S}=0.80$ Max. Rating, $V_{G S}=0, T_{A}=125^{\circ} \mathrm{C}$ (Note 2)			
8					100			100		nA	$V_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$$V_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=10 \mathrm{~V}$			
9		IDion)	ON-State Drain Current	1.0	2		1.0	2		A			(Note 1)	
10		Vosion)	Drain-Source Sapturation Voltage		0.3			0.4		V	$V_{G S}=5 \mathrm{~V}, 1 \mathrm{l}=0.1 \mathrm{~A}$			
11					1.0	1.5		1.1	1.6		$\mathrm{VGS}^{\text {a }}=5 \mathrm{~V}, \mathrm{ID}=0.3 \mathrm{~A}$			
12					0.9			1.3			$V_{G S}=10 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{~A}$			
13					2.2	3.0		2.2	4.0		$V_{G S}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$			
14		rosion)	Static Drain-Source ON-State Resistance		2.2	3.0		2.2	4.0	,	$V G S=10 \mathrm{~V}, I_{D}=1.0 \mathrm{~A}$			
15	NA\mathbf{M}	rasion)	Small-Signal Drain-Source ON-State Resistance		2.2	3.0		2.2	4.0		$V G S=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$	$\begin{aligned} & f= \\ & 1 \mathrm{KHz} \end{aligned}$		
16		gfs	Forward Transconductance	170	250		170	250		$\mathrm{m} \Omega$	$V_{D S}=24 \mathrm{~V}, \mathrm{ID}^{2}=0.5 \mathrm{~A}$			
17		Ciss	Input Capacitance			50			50	pF	$V_{G S}=0, V_{\text {DS }}=25 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$		(Note 2)	
18		Cds	Drain-Source Capacitance			40			40					
19		Crss	Reverse Transfer Capacitance			10			10		$V_{G S}=0, V_{D S}=24 \mathrm{~V}, \mathrm{f}$	$=1.0 \mathrm{MHz}$		
20						35			35		$V_{G S}=0, V_{D S}=0, f=1$. 0 MHz		
21		talon)	Turn-ON Delay Time		2	5		2	5	ns	-			
22		t_{r}	Rise Time		2	5		2	5					
23		tdioffi	Turn-OFF Delay Time		2	5		2	5					
24		t_{1}	Fall Time		2	5		2	5					

Note 1. Pulse test $-80 \mu \mathrm{sec}$ pulse, 1% duty cycle.
Note 2. Sample test.

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {DS }}$ - DRAIN-TO-SOURCE VOLTAGE (VOLTS) 2-40

BREAKDOWN VOLTAGE VARIATION WITH TEMPERATURE

5000 Family Typical Performance Curves ($25^{\circ} \mathrm{C}$. unless otherwise stated)

OUTPUT CHARACTERISTICS

TRANSFER CHARACTERISTIC

CAPACITANCE vs DRAIN-SOURCE VOLTAGE

SATURATION CHARACTERISTICS

NORMALIZED DRAINSOURCE ON RESISTANCE vs TEMPERATURE

OUTPUT CONDUCTANCE vs DRAIN CURRENT

5000 Family Typical Performance Curves ($25^{\circ} \mathrm{C}$. unless otherwise stated)

TRANSCONDUCTANCE vs DRAIN CURRENT

TRANSCONDUCTANCE vs

GATE-SOURCE VOLTAGE

SWITCHING TIME TEST WAVEFORMS

BREAKDOWN VOLTAGE VARIATION WITH TEMPERATURE

SWITCHING TIME TEST CIRCUIT

OUTPUT CHARACTERISTICS

V_{DS} - DRAIN-SOURCE VOLTAGE (VOLTS)

TRANSFER CHARACTERISTIC

V_{GS} - GATE-SOURCE VOLTAGE (VOLTS)

CAPACITANCE vs DRAIN-SOURCE VOLTAGE

SATURATION CHARACTERISTICS

$V_{D S}$ - DRAIN-SOURCE VOLTAGE (VOLTS)

NORMALIZED DRAINSOURCE ON RESISTANCE vs TEMPERATURE

OUTPUT CONDUCTANCE vs DRAIN CURRENT

5200 Family Typical Performance Curves ($25^{\circ} \mathrm{C}$. unless otherwise stated)

SWITCHING TIME TEST CIRCUIT

Analog Switches and Multiplexers

Multiplexers

	Page
IH5108	$3-118$
IH5208	$3-135$
IH6108	$3-143$
IH6116	$3-149$
IH6208	$3-159$
IH6216	$3-165$

Analog Switch Drivers

D112/113/120/121	$3-9$
D123/125	$3-25$
D129	$3-35$

3.35

Analog Switches

 with Drivers| DG111/112 | $3-6$ |
| :--- | ---: |
| DG116/118/123/125 | $3-16$ |
| DG120/121 | $3-22$ |
| DG126A Family | $3-31$ |
| DG139A Family | $3-37$ |
| DG180 Family | $3-41$ |
| DGM181Family | $3-45$ |
| IH181Family | $3-50$ |
| DG200 | $3-55$ |
| IH200 | $3-59$ |
| DG201 | $3-61$ |

IH201/202	$3-65$
IH401	$3-68$
IH5001/2	$3-83$
IH5003/4	$3-85$
IH5005/6/7	$3-87$
IH5009-24	$3-91$
IH5025-38	$3-96$
IH5040-51	$3-103$
IH5052/3	$3-111$
IH5140-45	$3-127$
IH5200	$3-55$
IH5201	$3-61$

Analog Switches without Drivers

G115/123 3-13
G116-19 3.19
G125-32 3-29
G1330/40/50/60MM450/550,3-81
MM451/551,
MM452/552/MM455/555Digital TranslatorlAnalog DriverTTL or CMOS toHigher Levels
IH6201 3-155

ANALOG SWITCHES \& MULTIPLEXERS

Analog Switches with Driver

Analog Switches with Driver continued

Multiplexers

Type	No. of Channels	Device No.	Switch Technology	$\begin{gathered} \mathrm{r}_{\mathrm{DS}(\mathrm{on})} \\ \Omega \\ \max (1) \\ \hline \end{gathered}$	$I_{D(0 f f)}$ nA $\max ^{x}$	$\begin{gathered} \mathrm{f}_{\mathrm{on}} \\ \mu \mathrm{~S} \\ \mathrm{max} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t}_{\text {off }} \\ \mu \mathrm{S} \end{gathered}$ \max			Logic input Logic Level	$\begin{gathered} \text { Input } \\ \operatorname{Typ}(2) \\ \hline \end{gathered}$	
	1 of 8	1H6108	CMOS	300	0.1	1.5	1.0	.DTL, TTL,	RTL,	CMOS	hi	4.5
	1 of 16	IH6116	CMOS	600	0.2	1.5	1.0	DTL, TTL,	RTL,	CMOS	hi	4.5
	2 of 8	IH6208	CMOS	300	0.1	1.5	1.0	DTL, TTL,	RTL,	CMOS	hi	4.5
	2 of 16	IH6216	CMOS	600	0.2	1.5	1.0	DTL, TTL,	RTL,	CMOS	hi	4.5
Fault	1 of 8	IH5108	CMOS	700	0.1	1.5	1.0	DTL, TTL,	RTL,	CMOS	hi	4.5
Protected	2 of 8	IH5208	CMOS	700	0.1	1.5	1.0	DTL, TTL,	RTL,	CMOS	hi	4.5

Multi-Channel FET Switches

Electrical Characteristics @ $+25^{\circ} \mathrm{C}$-Military Temperature Devices										
Type	No of Channels	Device No.	Switch Technology	ohms$\max (4)$	ohms $\max (1)$	$\begin{gathered} \mathrm{I}_{\mathrm{D} \text { (off) }} \\ \text { na } \\ \max \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t}_{\text {on }} \\ \text { ns } \\ \text { max }^{*} \end{gathered}$	$\begin{aligned} & \mathbf{t}_{\text {off }} \\ & \text { ns } \end{aligned}$$\max ^{*}$	Logic input	
									Logic Level	Type
SPST	3	MM-455	P-MOS		600	0.2	50	50	P-MOS	10
		MM-555	P-M0S	200	600	20.0	50	50	P-MOS	10
		G-124	P-MOS	100	450	2.0	100	100	P-MOS	hi
		G-125	N-JFET	500	500	0.05	30	50	- 5V PMOS	hi
		G-126	N -JFET	250	250	0.05	30	50	-10V PMOS	hi
		G-127	N-JFET	90	90	0.1	30	50	- 5V PMOS	hi
		G-128	N-JFET	45	45	0.1	30	50	-10V PMOS	hi
		G-129	N-JFET	500	500	0.05	30	50	- 5V PMOS	hi
		G-130	N-JFET	250	250	-0.05	30	50	-10V PMOS	hi
		G-131	N-JFET	90	90	0.1	30	50	- 5V PMOS	hi
SPST	4	G-132	N-JFET	45	45	0.1	30	50	-10V PMOS	hi
		G-1330	N-JFET	20	20	0.5	30	50	- 5V PMOS	hi
		G-1340	$\mathrm{N}-\mathrm{JFET}$	10	10	0.5	30	50	-10V PMOS	hi
		G-1350	N-JFET	20	20	0.5	30	50	- 5V PMOS	hi
		G-1360	N-JFET	10	10	0.5	30	50	-10V PMOS	hi
		MM-451	P-MOS	200	600	0.2	50	50	P-MOS	110
		MM-452	P-MOS	200	600	0.2	50	50	P-MOS	10
		MM-551	P-MOS	200	600	20.0	50	50	P-MOS	10
		MM-552	P-MOS	200	600	20.0	50	50	P-MOS	10
SPST	5	G-116	P-MOS	100	450	- 2.5	100	100	P-MOS	10
		G-117	P-MOS	. 100	450	-0.5	100	100	P-MOS	10
SPST	6	G-115	P-MOS	100	450	-10.0	100	100	P-MOS	10
		G-118	P-MOS	100	450	- 3.0	100	100	P-MOS	10
		G-123	P-MOS	125	500	-10.0	100	100	P-MOS	10
Diff	2	MM-450	P-MOS	200	600	0.2	50	50	P-MOS	10
		MM-550	P-MOS	200	600	20.0	50	50	P-MOS	10
SPST	3	G-119	P-MOS	100	450	-1.5	100	100	P-MOS	10

*These times are dependent on the driver used.

Drivers for FET Switches

Electrical Characteristics @ $+25^{\circ} \mathrm{C}$-Military Temperature Devices

Notes:

1. Switch Resistance under worst case analog voltage.
2. Positive logic LO (" 0 ") or HI (" 1 ") voltage at driver input necessary to turn switch on.
3. Logic " 0 " or " 1 " can be arbitrarily assigned for double-throw switches.
4. Switch resistance under best case analog voltage.

VARAFET

Type	$\begin{gathered} \mathrm{r}_{\mathrm{DS}(\mathrm{On})} \\ \Omega \\ \max \\ \hline \end{gathered}$	$\underset{\max }{v_{p}}$	$\mathrm{I}_{\text {s(oft) }}$ pA max	Ioss mA min	$\begin{gathered} \mathrm{t}_{\text {on }} \\ \text { ns } \\ \text { max } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{t}_{\mathrm{off}} \\ & \mathrm{~ns} \\ & \text { max } \end{aligned}$	$\begin{gathered} \text { Package } \\ 4 \text { FETS/Pkg } \end{gathered}$	$V_{\text {añalog }}$ V_{p-p} min	$\begin{aligned} & V_{\text {inject }} \\ & V_{\text {p-p }} \\ & \max \end{aligned}$
1H401	30	7.5	200	45 min	50	150	16 Pin Dip	15	10
IH401A	50	5.0	200	35 min	50	150	16 Pin Dip	20	10

Lowest Quie	cent Current \square	Highest Speed	Lowest ${ }^{\text {dSS(on) }}$		For switches whose outputs go into the input of an OP Amp.	For switching positive signals only:
IH5040 Family and IH200 Family Monolithic CMOS driver gate conbination	IH5140 Family Monolithic CMOS driver gate conbination.	IH181 Family CMOS driver and Varafet gate.	OG180 Family Bipolar/MOS drive with N-JFET gate.	OG126. DG126A Family and IH5001 Family Bipolar driver with N -JFET gate.	5009 Family VIRTUAL GROUND SWITCH	5025 Family POSITIVE SIGNAL SWITCH
Features 1. Very low quiescent current resulting in very low power consumption. 2. Low cost.	Features 1. High speed switch. 2. Low quiescent current resulting in low power consumption.	Features 1. Low charge injection. 2. Almost as fast as 5140 and DG180 Families.	Features 1. Low ros(on) 2. As fast as the IH5140 Family. 3. Moderate leakage.	Features 1. Low ras(on) 2. Only switch with true chip enable pin. 3. Low cost.	Output of switch mus go into the virtual ground point of an Op Amp (unless signal is $<0.7 \mathrm{~V}$). Features	st Can switch positve signals only unless a translator driver is used. Features
3. Good speed with moderate $\mathrm{r}_{\mathrm{DS}(o n)}$ and leakage.	3. Low leakage resulting in low error term.	3. Very low quiescent current resulting in low power		4. Moderate leakage \& quiescent current specifications.	1. Very low quiescent current. 2. Does not need	1. Very low quiescent current. 2. Does not need
4. Over voltage protection to $\pm 25 \mathrm{~V}$.	4. Lower cost than the comparable speed	consumption. 4. Ultra low leakage.			driver; can be driven directly by	driver; can be driven directly by
5. Can switch up to	DG180 Family.				TTL.	TTL.
$\pm 13 \mathrm{~V}$ signals with $\pm 15 \mathrm{~V}$ supplies.	5. Can switch signals almost to the supply rails.				3. Low cost.	3. Low cost.

DG111/112 2-Channel Drivers with MOS-FET Switches
(Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

FEATURES

- Each Channel Completely Isolated
- 20V P-P Switching Capability
- Zener Diode Protected Gates
- MOS-FET Current-Source Pull-Up

GENERAL DESCRIPTION

This driver-switch series provides two completely isolated switches per package. The collector supply (V_{cc}) may be operated at different voltages for each switch. Two driver input configurations are available for inverting and noninverting applications. For minimum propagation delay as well as optimum speed and power, a terminal is supplied for biasing the constant-current MOS-FET pull-up.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

ORDERING INFORMATION

TRUTH TABLE

DG112		DG111		Switch Cond.
$V_{\text {IN }}$	$V_{E N}$	$V_{\text {IN }}$	$\mathrm{V}_{\text {INH }}$	
L	L	L	L	OFF
H	L	L	H	ON
L	H	H	L	OFF
H	H	H	H	OFF

$L=O V, H=V^{+}$

ABSOLUTE MAXIMUM RATINGS

Collector to Emitter (V^{+}- V^{-}) 33V
Collector to Pull-Up ($\mathrm{V}^{+}-\mathrm{V}_{\mathrm{P}}$) 33 V
Drain to Emitter ($\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}$) 32 V
Drain to Source ($V_{D}-V_{S}$) 28 V
Source to Drain ($V_{S}-V_{D}$) 28 V
Source to Emitter ($\mathrm{V}_{\mathrm{S}} \mathrm{V}^{-}$) 32V
Enable to Emitter (VEN V^{-}) 33 V
Inhibit to Emitter (VINH $-\mathrm{V}^{-}$) 31V
Inhibit to Input ($\mathrm{V}_{\text {INH }}-\mathrm{V}_{\text {IN }}$) +6 V
Enable to Input ($\mathrm{V}_{\mathrm{EN}}-\mathrm{V}_{\mathrm{IN}}$) $\pm 6 \mathrm{~V}$
Current (Any Terminal) . 30mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dissipation (Note) . 750mW
Lead Temperature (Soldering, 10 sec.) $300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $+70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating. conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test conditions unless otherwise specified are as follows: $\mathrm{V}_{\mathrm{INH}}=0, \mathrm{~V}_{\mathrm{EN}}=4.5 \mathrm{~V}, \mathrm{~V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-20 \mathrm{~V}$, and $\mathrm{P}=-20 \mathrm{~V}$. Input ON and OFF test conditions are used for output and power supply specifications.

		PARAMETER (NOTE)	MAX LIMIT				CONDITIONS	
		$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	UNITS			
$\begin{aligned} & 5 \\ & \frac{2}{2} \\ & \underline{2} \end{aligned}$	DG111		I IN(OFF)	10	10	20	$\mu \mathrm{A}$	$V_{\text {IN }}=4.1 \mathrm{~V}$
		I IN (ON)	-0.7	-0.7	-0.7	mA	. $V_{\text {IN }}=0.5 \mathrm{~V}$	
	DG112	I'in(off)	1	1	100	$\mu \mathrm{A}$	$V_{\text {iN }}=0.4 \mathrm{~V}$	
		$V_{\text {INION }}$	1.3	1.0	0.8	V	$\mathrm{I}_{\text {IN }}=1 \mathrm{~mA}$	
$\begin{aligned} & 5 \\ & 2 \\ & \frac{2}{5} \\ & 0 \end{aligned}$	DG111 DG112	rosion)	100	100	125	Ω	$\mathrm{I}_{\mathrm{S}}=-100 \mu \mathrm{~A}$	
			200	200	250	Ω		
			450	450	600	Ω		
		IDION)		1	1000	nA	$V_{D}=10 \mathrm{~V}, \mathrm{I}_{S}=0$	
		Io(off)	,	-1	-1000	nA	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$	
		$I_{\text {S (OFF) }}$.	-1	-1000	nA	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$	
	DG111	$I_{\text {LION }}$		3	1	mA	One Channel ON	
	DG112	$\mathrm{I}_{\text {RION) }}$		-0.5				
	DG111	ICC(ON)		3				
	DG112	$\mathrm{I}_{\text {EE(ON) }}$		-6				
	DG111 DG112	ICC(off)		10		$\mu \mathrm{A}$	All Channels OFF	
		ILIOFF)		10				
		$I_{\text {R (OFF })}$.		-15				
		$\mathrm{I}_{\text {EE(OFF) }}$		-20				
	DG111 DG112	${ }^{\text {ton }}$		300		ns	See Switching Times	
		toff		1		$\mu \mathrm{s}$		

NOTE: (OFF) and (ON) subscripts refer to the conduction state of the MOS-FET switch.

TYPICAL CHARACTERISTICS

APPLICATION TIPS

The recommended resistor values for interfacing with RTL, DTL, and T^{2} L Logic is shown in figs. 1 and 2.

Figure 1. DG111 Interface

Figure 2. DG112 Interface

Enable Control

The V_{EN} and $\mathrm{V}_{\text {INH }}$ terminals can be used as a strobe or an enable control. The requirements for sinking current at V_{EN} or sourcing current at $V_{I N H}$ are: $I_{L(O N)} \times$ no. of channels used, for DG111, and $I_{R(O N)} \times$ no. of channels used, for the DG112. The voltage at $\mathrm{V}_{I N H}$ must be greater than V_{IN} for $\mathrm{V}_{\mathrm{IN}}<4 \mathrm{~V}$. $\mathrm{V}_{\mathrm{INH}}$ must be at least +4 V for $\mathrm{V}_{\text {IN }}>4 \mathrm{~V}$.

SWITCHING TIMES

DG111.

DG112

D112/113/120/121 2-Channel FET Switch Drivers (Military Series $-55^{\circ} \mathrm{C}$ to + $125^{\circ} \mathrm{C}$)

FEATURES

- Two separate channels
- J-FET Collector Pull-up
- Interfaces 5V Logic
- Two switching speeds to choose from

GENERAL DESCRIPTION

This series contains 2 separate channels each with J-FET collector pull-up, in one package. Two switching speeds are provided for speed-power ratio selection.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

ORDERING INFORMATION

Pos. Supply to Emitter ($\mathbf{V}^{+}-\mathrm{V}^{-}$)	33V
Output to Emitter ($\mathrm{V}_{\text {OUT }}-\mathrm{V}^{-}$)	33V
Logic Supply to Emitter ($\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$)	30V
Ref. to Emitter ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}$)	31 V
Input to Ref. ($\left.V_{1 N}-V_{R}\right)$	2V
Ref. to Input ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{IN}}$)	6 V
Logic Supply to Input ($\left.\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{IN}}\right)$	$\pm 6 \mathrm{~V}$
Current (any pin)	30 mA

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dissipation (Note) . 750mW
Lead Temperature (soldering, 10 sec.) $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below +70 C . For higher temperatures, derate $10 \mathrm{~mW} / \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel)

Test conditions unless otherwise specified are as follows: $\mathrm{V}^{-}=-20 \mathrm{~V}, \mathrm{~V}^{+}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$. Output and power supply measurements based on specified input conditions.

NOTE: (OFF) and (ON) subscripts refer to the conduction state of the driver.

OUTPUT RISE TIME VS TEMPERATURE AND LO. CAPACITANCE (D.120, D12.

APPLICATION TIPS

The recommended resistors for interfacing with RTL, DTL, and $T^{2} L$ Logic is shown in figures 1 and $2 .$.

Figure 1. D112 and D120
Interface

Enable Control

The V_{R} and V_{L} pins can be used as a STROBE or an ENABLE control. The requirements for the enable driver are as follows: $I_{L}(O N) X$ no. of channels used for the D112 \& D120 and $I_{R}(O N) X$ no. of channels used for the D113 \& D121. The voltage at V_{L} must be greater than the voltage at $V_{I N}$ by at least +4 V .

SWITCHING TIMES

D112, D120

D113, D121

Circuit Diagrams

G115/G123 4 and 6-Channel MOS FET Switches Industrial Series
$20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

FEATURES

- Integrated MOS-FET Constant-Current Sources for Active Driver-Collector Pull-up
- Integrated Zener Diode Protection for Both Positive and Negative Spike Protection
- P-Channel Enhancement-Type Switches

GENERAL DESCRIPTION

These switches may be connected directly to the INTERSIL switch-driver D123 series without the need of any interfacing components, and are internally protected by a Zener diode integrated on the silicon chip. A MOS-FET used as a current source provides an active pull-up for faster switching capability. The active pull-up FET can be disabled without sacrificing the Zener protection of the gates.

SCHEMATICS AND PIN CONFIGURATIONS (Outline Dwgs DD, FD-2, JD, PD)

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Source Current (I_{S})	100 mA	Body to Drain ($\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}$) -2 V to +25V
Drain Current (ID)	100mA	Body to Gate ($\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{G}}$) +35 V
Gate Current (I_{G})	5 mA	Body to Pull-up ($\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{P}}$) +35 V
Pull-up Control Current (I_{P})	$100 \mu \mathrm{~A}$	Power Dissipation (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$. . 750 mW
Body to Source ($\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{S}$)	to +25 V	Lead Temperature (soldering, 10 sec.$)$. 300°

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel unless noted)

	PARAMETER	LIMITS					CONDITIONS
		$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$\begin{aligned} & \text { MIN/ } \\ & \text { MAX } \end{aligned}$	UNITS	
G115 and G123	rosion	125	125	150	Max	Ω	$V_{B D}=0, V_{G D}=-30 \mathrm{~V} \quad \mathrm{I}_{\mathrm{S}}=$
		250	250	300			$\mathrm{V}_{B D}=+10 \mathrm{~V}, \mathrm{~V}_{G D}=-20 \mathrm{~V} 1 \mathrm{~mA}$
		500	500	600			$\mathrm{V}_{B D}=+20 \mathrm{~V}, \mathrm{~V}_{G D}=-10 \mathrm{~V}$
	Idioff)		-10	-500	Max	nA	$V_{\text {DS }}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{PS}}=0$
	$\mathrm{I}_{\text {S (OFF) }}$		-5	-100	Max	nA	$V_{S D}=-20 \mathrm{~V}, V_{B D}=V_{G D}=V_{P D}=0$
	$\mathrm{I}_{\mathrm{GBS}}$		-5	-100	Max	$n \mathrm{~A}$	$V_{G B}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{S B}=\mathrm{V}_{\mathrm{PB}}=0$
	IG(ON)		-0.8		Min	mA	$V_{G B}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{PB}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0$
			-2.4		Max		
	$V_{\text {GS(th) }}$	-2	-2	-2	Min	V	$\begin{aligned} & I_{S}=-10 \mu A, V_{D G}=0, \\ & V_{B S}=V_{P S}=0 \end{aligned}$
		-6	-6	-6	Max		
	$B V_{\text {DSS }}$	-25	-25	-25	Min	V	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{G B}=\mathrm{V}_{B S}=\mathrm{V}_{P S}=0$
	$B V_{\text {SDS }}$	-25	-25	-25	Min	V	$\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=\mathrm{V}_{P D}=0$
	$B V_{G B S}$	-35	-35	-35	Min	V	$\mathrm{I}_{G}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{S B}=\mathrm{V}_{P B}=0$
		-90	-90	-90	Max	V	
	$B V_{\text {PBS }}$	-35	-35	-35	Min	V	$\mathrm{I}_{P}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DB }}=\mathrm{V}_{S B}=V_{G B}=0$
		-90	-90	-90	Max	V	
	$\mathrm{C}_{\text {GS }}, \mathrm{C}_{\text {GD }}$		3(TYP)		Typ	pF	$\begin{aligned} & V_{\mathrm{GB}}=0, V_{S B}=0, V_{D B}=0, V_{P B}=0 \\ & f=1 \mathrm{mHz}, \text { Body Guarded } \end{aligned}$
	$\mathrm{C}_{\text {DS }}$		0.4(TYP)		Typ	pF	
G115	$\mathrm{C}_{\text {DB }}$		18 (TYP)		Typ	pF	$\begin{aligned} & V_{D B}=-5 V, V_{S B}=V_{G B}=V_{P B}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$
G123			9 (TYP)		Typ	pF	
Both	$\mathrm{C}_{\text {SB }}$		3.5(TYP)		Typ	pF	$\begin{aligned} & V_{S B}=-5 V, V_{D B}=0, V_{G B}=V_{P B}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$

TYPICAL CHARACTERISTICS

ros-DRAIN SOURCE RESISTANCE (ohms)

 Switch Combinations (Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)

FEATURES

- Available With and Without Programmable Constant Current pull-up
- Zener Protection on All Gates
- P-Channel Enhancement-Type MOS-FET Switches
- Each Switch Summed to One Common Point

GENERAL DESCRIPTION

This series includes devices with four and five channel switching capability. Each channel is composed of a driver and a MOS-FET switch. Two driver versions are supplied for inverting and noninverting applications. A MOS-FET, used as a current source provides an active pull-up for faster switching.

An external biasing connection is brought out for biasing the current source for optimization of speed and power.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

ORDERING INFORMATION

TRUTH TABLE

DG116, DG123		DG118, DG125		Switch Cond.
V IN	V_{R}	$V_{\text {IN }}$	V_{L}	
L	L	L	L	OFF
H	L	L	H	ON
L	H	H	L	OFF
H	H	H	H	OFF

$L=O V, H=+V$

ABSOLUTE MAXIMUM RATINGS

Collector to Emitter ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 33V
Collector to Pull-up ($\mathrm{V}^{+}-\mathrm{V}_{\mathrm{P}}$) 33V
Drain to Emitter ($\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}$) 32V
Source to Emitter ($\mathrm{V}_{\mathrm{S}}-\mathrm{V}^{-}$) 32V
Drain to Source ($V_{D}-V_{S}$) 28V
Source to Drain ($V_{S}-V_{D}$) 28V
Logic to Emitter ($\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$) 33V
Reference to Emitter ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}$) 31V
Reference to Input ($V_{R}-V_{I N}$) 6 V
Logic to Input ($\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{IN}}$) $\pm 6 \mathrm{~V}$

Input to Emitter ($\mathrm{V}_{\mathrm{IN}}-\mathrm{V}^{-}$) 33V
Current (any terminal) . 30mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dissipation (Note) . 750 mW
Lead Temperature (soldering, 10 sec.) $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all.leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test conditions unless specified otherwise are as follows: $\mathrm{V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}^{-}=-20 \mathrm{~V}$, and $\mathrm{P}=-20 \mathrm{~V}$. Input ON and OFF test conditions used for output and power supply specifications.

[^5]
TYPICAL CHARACTERISTICS

APPLICATION TIPS

The recommended resistor values for interfacing RTL, DTL, and $\mathrm{T}^{2} \mathrm{~L}$ Logic are shown in Figures 1 and 2.

Figure 2. DG116 and DG123
Interface

Enable Control

The V_{R} and V_{L} terminals can be used as either a Strobe or an Enable control. The requirements for sinking current at V_{R} or sourcing current at V_{L} are: $I_{L(O N)} \times$ No. of channels used, for DG118 and DG125, and $I_{R(O N)} \times N o$. of channels used, for the DG116 and DG123 devices. The voltage at V_{L} must be greater than the voltage at V_{IN} by at least +4 V .

SWITCHING TIMES

 G116 - G119 5 and 6-Channel MOS-FET Switches
Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

FEATURES

- P-Channel Enhancement-type MOS-FET Switches
- Zener Protection on All Gates
- With and Without Constant Current Source Pull-up

GENERAL DESCRIPTION

These switches may be connected directly to the INTERSIL switch-driver D123 series without need of any interfacing components. These MOS-FET switches are internally protected by a Zener diode integrated on the silicon chip. A MOS-FET used as a current source provides an active pullup for faster switching. The active pull-up FET can be disabled without sacrificing the Zener protection of the gates.

LOGIC DIAGRAMS (Outline Dwgs PD, JD, FD-2, DD)

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Source Current (I_{S}) Drain Current (ID) Control Gate Current I_{G} Pull-Up Gate Current I_{p} Body Voltage (V_{B}) to Any Terminal Power Dissipation (Note) Storage Temperature
100 mA
100 mA
5 mA
$100 \mu \mathrm{~A}$
-2 to +30 V
750 mW

750 mW $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature
$-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec .) $300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel unless noted)
References to pull-up gate P do not apply to G118.

NOTE 1: For the G117 this is the resistance from each of the source terminals (5 terminals) and the one drain terminal to the internal junction of the output MOS-FETs.

NOTE 2: Not applicable to G118.

TYPICAL CHARACTERISTICS

APPLICATION TIPS

Description of Analog Switch
Single Channel

G-Terminal - This is the control terminal of the switch; the voltage at this terminal determines the conduction state of Q_{2}. To insure conduction of Q_{2} when voltages between $\pm 10 \mathrm{~V}$ are switched, the gate voltage $\left(\mathrm{V}_{\mathrm{G}}\right)$ should be at least 10 V more negative than the most negative voltage to be switched $(-10 \mathrm{~V})$. Therefore, V_{G} should go to -20 V . To insure turn-off V_{G} should not be less than the most positive voltage to be switched, +10 V . For convenience the same potential as the body could be used.
B-Terminal - This terminal is connected to the body (substrate) of the chip and must be maintained at a voltage that is equal to or greater than the most positive voltage to be switched. This is to insure that the drain-to-body or the source-to-body junctions do not become forward biased.
P-Terminal - The potential, with respect to the body, at this terminal determines the gate-to-source voltage of Q_{1} which determines the amount of drain current available for driver-collector pull-up. Shorting terminal \mathbf{P} to B prevents Q_{1} and Q_{3} from conducting, but still allows the body-to-drain junction of Q_{1} to act as a forward biased diode for positive gate voltages, and to act as a Zener diode for negative voltages which exceed $B V_{\text {DSS }}(-30$ to $-90 \mathrm{~V})$ for protecting the gate of Q_{2}.
D-Terminal - The common point of the MOS-FET switches (summing point).
S-Terminal - This is the normally-open terminal of the MOS-FET switch and is normally used as the input.

APPLICATIONS

3-Channel Differential Multiplexer

DG120/DG121 3-Channel Drivers with Differential Switches Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

FEATURES

- 3-Channel With Normally-Off

MOS-FET Switches in One Package

- $\Delta r_{\mathrm{DS}(\mathrm{ON})}$ Matched to Better Than 30Ω.

GENERAL DESCRIPTION

This series is composed of three channels in one package. Each channel is composed of two matched MOS-FET switches for differential input requirements. Two driver configurations are available for inverting and noninverting applications. A. MOS-FET used as a current source provides an active pull-up load for faster switching.

SCHEMATIC AND LOGIC DIAGRAM (Outline Dwgs DD, FD-2, JD)

ORDERING INFORMATION

TRUTH TABLE

DG120		DG121		Switch Cond.
$\mathrm{V}_{\text {IN }}$	V_{R}	$\mathrm{V}_{\text {IN }}$	V_{L}	
L	L	L	L	OFF
H	L	L	H	ON
L	H	H	L	OFF
H	H	H	H	OFF

$L=O V, H=+V$

ABSOLUTE MAXIMUM RATINGS

Collector to Emitter ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 33V
Collector to Pull-Up ($\mathrm{V}^{+}-\mathrm{V}_{\mathrm{p}}$) 33V
Drain to Emitter ($\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}$) 32V
Source to Emitter ($V_{S}-V^{-}$) 32V
Drain to Source ($V_{D}-V_{S}$) 28V
Source to Drain ($V_{S}-V_{D}$) 28V
Logic Emitter ($\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$) . 33V
Ref. to Emitter ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}$) 31V
Ref. to Input ($V_{R}-V_{\text {IN }}$) . $+6 V$
Logic to Input ($\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\text {IN }}$) $\pm 6 \mathrm{~V}$

Current (Any Terminal) . 30mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dissipation (Note) . 750 mW
Lead Temperature (Soldering, 10 sec.) $300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test conditions unless otherwise specified are as follows: $\mathrm{V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{~V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-20 \mathrm{~V}$. Input ON and OFF test conditions are used for output and power supply specifications.

NOTE 1: (OFF) and (ON) subscripts refer to the conduction state of the MOS-FET switch.
NOTE 2: $\Delta r_{\text {DS }}(O N)$ is the resistance difference between differential switches.

SWITCHING TIMES

APPLICATION TIPS

The recommended resistor values for interfacing RTL, DTL, and $T^{2} L$ Logic are shown in Figures 1 and 2.

Enable Control

The V_{R} and V_{L} terminals can be used as a strobe or an enable control. The requirements for sinking current at V_{R} or sourcing current at V_{L} are: $I_{\text {L(ON })} \times$ No. of channels used, for DG121 and $I_{\text {R(ON) }} \times$ No. of channels used, for DG120. The voltage at V_{L} must be greater than V_{IN} for $\mathrm{V}_{\mathrm{IN}}<4 \mathrm{~V}$. V_{L} must be at least +4 V for $\mathrm{V}_{\mathrm{IN}}>4 \mathrm{~V}$.

APPLICATIONS

3-Channel Differential Multiplexer

TYPICAL CHARACTERISTICS

6-Channel FET Switch Drivers Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

FEATURES

Provides DC level shifting between low-level Logic and MOS-FET or J-FET switches

- External Collector Pull-ups required
- Direct interface with G116, G117, G119, G115, and G123 MOS-FET switches

GENERAL DESCRIPTION

The D123 and D125 monolithic bi-polar drivers convert low-level positive signals $(0 \&+5 \mathrm{~V})$ to the high level positive and negative voltages necessary to drive FET switches. One lead can be used to provide an enabling capability.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Input-to-Emitter Voltage $\left(V_{I N}-V_{E E}\right)$	33 V
Output-to-Emitter Voltage $\left(V_{O}-V_{E E}\right)$	33 V
Logic Supply-to-Emitter Voltage $\left(V_{L}-V_{E E}\right)$	27 V
Input-to-Reference Voltage $\left(V_{I N}-V_{R}\right)$	2 V
Input-to-Logic Supply Voltage $\left(V_{I N}-V_{L}\right)$	+6 V
Reference-to-Emitter Voltage $\left(V_{R}-V_{E E}\right)$	31 V
Maximum Dissipation (Note)	750 mW
Current (any pin)	30 mA

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test conditions unless otherwise specified are as follows: $\mathrm{V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0, \mathrm{~V}_{\mathrm{R}}=0$. Output and power supply measurements based on specified input conditions.

		PARAMETER	MAX LIMIT				CONDITIONS
			$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$	UNITS	
$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{n}{2} \end{aligned}$	$\stackrel{N}{\sim}$	IIN(OFF) VIN(ON)	$\begin{aligned} & 1 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 100 \\ 0.8 \end{array}$	$\begin{aligned} & \mu A^{\prime} \\ & V \end{aligned}$	$\begin{aligned} & V_{I N}=0.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA} \end{aligned}$
	$\stackrel{\sim}{\sim}$	IIN(OFF) IIN(ON)	$\begin{aligned} & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.5 \end{aligned}$	$\begin{gathered} 20 \\ 1.2 \end{gathered}$	$\mu \mathrm{A}$ mA	$\begin{aligned} & V_{I N}=4.1 \mathrm{~V} \\ & V_{I N}=0.5 \mathrm{~V} \end{aligned}$
$\begin{aligned} & 5 \\ & \frac{5}{2} \\ & 5 \\ & 0 \end{aligned}$		Iout(off) Voution) Vout(on)	$\begin{array}{r} 0.1 \\ -19.7 \\ -19.2 \end{array}$	$\begin{array}{r} 0.1 \\ -19.7 \\ -19.2 \end{array}$	$\begin{gathered} 10 \\ -19.5 \\ -19.0 \end{gathered}$	$\mu \mathrm{A}$ V V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=+10 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=4 \mathrm{~mA} \end{aligned}$
	$\stackrel{\sim}{N}$	$\begin{aligned} & I_{R(O N)^{(1)}} \\ & I_{R(O F F)^{(2)}} \\ & I_{E E(O N)^{(1)}} \\ & I_{E E(O F F)^{(2)}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 0.5 \\ 150 \\ 1 \\ 200 \end{gathered}$	mA $\mu \mathrm{A}$ mA $\mu \mathrm{A}$	$I_{\text {OUT }}=0$ for ON measurements. $\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$ for OFF measurements.
	$\stackrel{\sim}{\sim}$	$\begin{aligned} & I_{L(O N)}{ }^{(1)} \\ & I_{L(O F F)^{(2)}} \\ & I_{E E(O N)^{(1)}} \\ & I_{E E(O F F)^{(2)}} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 1.9 \\ 100 \\ 1.9 \\ 200 \end{gathered}$	mA $\mu \mathrm{A}$ mA $\mu \mathrm{A}$	
	$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{1}{\infty} \\ & \stackrel{1}{N} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & t_{(\text {on) }} \\ & t_{\text {(off) }}(4) \end{aligned}$		$\begin{aligned} & 250 \\ & 800 \end{aligned}$.	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$I_{\text {OUT }}=1 \mathrm{~mA} C_{O U T}{ }^{(3)}=10 \mathrm{pF}$ (See Switching Times)
		$\begin{aligned} & t_{\text {(on) }} \\ & t_{\text {(off) }}(5) \end{aligned}$		$\begin{aligned} & 250 \\ & 600 \end{aligned}$		ns ns	$I_{\text {OUT }}=4 \mathrm{~mA} C_{\text {OUT }}{ }^{(3)}=10 \mathrm{pF}$ (See Switching Times)

NOTES: (1) One channel ON, 5 channels OFF.
(2) All channels OFF.
(3) Add 30 ns per pF for 1 mA and add 8 ns per pF for 4 mA for additional capacitive loading.
(4) For Dual-In-Line package add 120 ns to t (off).
(5) For Dual-In-Line package add 30 ns to (off).

SWITCHING TIMES

TYPICAL CHARACTERISTICS

$I_{I N}$ VS VIN D123

SWITCHING TIMES VS TEMPERATURE D 123 AND D125 (SEE NOTES 4 AND 5)

$V_{\text {SAT }}$ VS TEMPERATURE D123 AND D125

VIN(ON) VS
TEMPERATURE D123

APPLICATION TIPS

Interfacing the D123 and D125

In order to meet all the specifications on this data sheet, certain requirements must be met by the drive circuitry.
The D125 can be turned ON easily, but care must be exercised to insure turn-off. Keeping $V_{L}-V_{I N} \leq 0.4 \mathrm{~V}$ is a must to insure turn-off. To accomplish this a shunt resistor must be added to supply the leakage current ($I_{\text {CES }}$) for DTL devices. Since $I_{\text {CES }}=50 \mu \mathrm{~A}$, a $0.4 \mathrm{~V} / 0.05 \mathrm{~mA}=8 \mathrm{k}$ or less should be used. For $\mathrm{T}^{2} \mathrm{~L}$ devices using a 2 k resister will insure turn-off with up to $200 \mu \mathrm{~A}$ of leakage current.

Using the ENABLE Control

Device pins V_{R} or V_{L}, can be used to enable the D123 or D125 drivers. For the D123 the enabling driver must sink $I_{R(O N)} X$ no. of channels used. For the $D 125, I_{L(O N)} X$ no. of channels used must be sourced with a voltage at least +4 V greater than $V_{I N}$.

APPLICATIONS

Using INTERSIL'S MOS-FET SWITCH G117 with either the D123 or D125 drivers provides a reliable means of providing up to 5 channels with a series block for multiplexing applications.

G125-G132 G1330/40/50/60 4-Channel Junction FET Switches

FEATURES

- $r_{\text {DS(ON) }}<10$ ohms: G1340 and G1360
- $I_{\text {D(OFF) }}<50 \mathrm{pA}: ~ G 125, ~ G 126, ~ G 129$ and G130
- $\mathrm{C}_{\mathrm{DG}}, \mathrm{C}_{\mathrm{SG}}<2 \mathrm{pF}: \mathrm{G} 125, \mathrm{G} 126, \mathrm{G} 129$ and G130

GENERAL DESCRIPTION

These switches consist of four N-Channel Junction FETS in a single package. In the G129, G130, G131, G132, G1350 and G1360 the drains are common to assist the designer in applications such as multiplexing.

PIN CONFIGURATIONS (Outline dwgs DD, FD-2, JD)

ELECTRICAL CHARACTERISTICS per channel $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC		TEST CONDITIONS		$\begin{aligned} & \text { G125 } \\ & \text { G129 } \end{aligned}$	$\begin{aligned} & \text { G126 } \\ & \text { G130 } \end{aligned}$	$\begin{aligned} & \text { G127 } \\ & \text { G131 } \end{aligned}$	$\begin{aligned} & \text { G128 } \\ & \text { G132 } \end{aligned}$	$\begin{aligned} & \text { G1330 } \\ & \text { G1350 } \end{aligned}$	$\begin{aligned} & \text { G } 1340 \\ & \text { G } 1360 \end{aligned}$	UNIT	LIMIT
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$25^{\circ} \mathrm{C}$	-0.1	-0.1	-0.2	-0.2	-5.0	-5.0	nA	Max
			$125^{\circ} \mathrm{C}$	-0.1	-0.1	-0.2	-0.2	-5.0	-5.0	$\mu \mathrm{A}$	
$B V_{\text {Gss }}$	Gate-Source Break. down Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40	-40	-40	-40	-30	-30	V	Min
V_{p}	Gate-Source Pinch. Off Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$		-5	-10	-5	-10	-5	-10	V	Max
Idoff)	Drain Cutoff Current	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & V_{G S}=-10 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$	0.05	0.05	0.1	0.1	0.5	0.5	nA	Max
			$125^{\circ} \mathrm{C}$	0.05	0.05	0.1	0.1	0.5	0.5	$\mu \mathrm{A}$	
ISIOFF)	Source Cutoff Current	$\begin{aligned} & V_{S D}=10 \mathrm{~V} \\ & V_{G D}=-10 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$	0.05	0.05	0.1	0.1	0.5	0.5	nA	Max
			$125^{\circ} \mathrm{C}$	0.05	0.05	0.1	0.1	0.5	0.5	$\mu \mathrm{A}$	
I DSS	Drain Current at Zero Gate Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Pulsed) } \end{aligned}$		0.5	2	5	10	15	30	mA	Min
${ }^{\text {r S }}$	Drain-Source ON Resistance	$V_{G S}=0, I_{\text {D }}=0, f=1 \mathrm{kHz}$		500	250	90	45	20	10	Ω	Max
$\mathrm{C}_{\mathrm{DG}}+\mathrm{C}_{\text {SG }}$	Gate-Source plus GateDrain ON Capacitance	$V_{G S}=0, V_{D S}=0, f=1 \mathrm{MHz}$		10	10	40	40	300	300	pF	Max
$\mathrm{C}_{\text {DG }}$	Drain-Gate OFF Capacitance	$\begin{aligned} & V_{G S}=-10 \mathrm{~V}, V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$		2	2	7	7	16	16	pF	Max
$\mathrm{C}_{\text {SG }}$	Source-Gate OFF Capacitance			2	2	7	7	16	16	pF	Max

ABSOLUTE MAXIMUM RATINGS

Gate-Drain or Gate-Source Voltage Gate Current
Total Device Dissipation Free Air (Note)
Storage Temperature Range
Operating Temperature
Lead Temperature (Soldering, 10 sec)
-40 V
50 mA
500 mW
-65 to $+150^{\circ} \mathrm{C}$
-65 to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperatures, derate the device at the rate of $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

NOTE: Ceramic DIP available for military temperature range only.

TYPICAL CHARACTERISTICS

APPLICATION

4-Channel Commutator Circuit

INPUT RANGE: -10 to +10 V
GATE: LOGIC " 1 ". FOR SWITCH ON
LOGIC "0" FOR SWITCH OFF DG126, DG129, DG133,
DG134, DG140, DG141,
DG151, DG152, DG153; DG154
2-Channel Drivers with
SPST and DPST FET Switches

FEATURES

- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, 1 mW
- Switches analog signals up to 20 volts peak-to-peak
- Low ros(on), 10 ohms max on DG140/A and DG141/A
- Switching times improved 100% - ' A^{\prime} Versions.

GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST or DPST junction FET switch. The driver interfaces DTL, TTL or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and logic " 0 " turns it OFF.

ABSOLUTE MAXIMUM RATINGS

Analog Signal Voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}^{-}\right.$or $\left.\mathrm{V}^{+}-\mathrm{V}_{\mathrm{A}}\right) \ldots \ldots \mathrm{C}$
Total Supply Voltage (V^{+}- V^{-}). 36 V
Pos. Supply Voltage to Ref. Voltage $\left(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{R}}\right)$. 25 V
Ref. Voltage to Neg. Supply Voltage ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}$) 22 V
Power Dissipation (Note) 750 mW
Current (any terminal) 30 mA

Storage Temperature -65 to $+150^{\circ} \mathrm{C}$
Operating Temperature -55 to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS PER CHANNEL

Applied voltages for all test: DG126, DG129, DG133, DG134, DG140, DG141 ($\left.\mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0\right)$ and DG151, DG152, DG153, DG154 ($\left.\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0\right)$. Input test condition which guarantees FET switch ON and OFF as specified is used for output and power supply specifications.

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS
				-55°	25°	125°		
$\begin{aligned} & 1 \\ & N \\ & P \\ & U \\ & T \\ & \hline \end{aligned}$	$V_{\text {In }}$ (on)	Input Voitage-On	All Circuits	2.9 min	2.5 min	2.0 min	Volts	$\mathrm{V}_{2}=-12 \mathrm{~V}$
	Vinioffi	Input Voltage-Off		1.4	1.0	0.6	Volts	$\mathrm{V}_{2}=-12 \mathrm{~V}$
	I'NIONI	Input Current		120	60	60	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{IN}}=2.5 \mathrm{~V}$
	IINIOFFI	Input Leakage Current		0.1	0.1	2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
$\begin{gathered} S \\ W \\ 1 \\ T \\ T \\ C \\ H \end{gathered}$	'DSion)	Drain-Source On Resistance	$\begin{aligned} & \hline \text { DG } 126 \\ & \text { DG } 134 \end{aligned}$	80	80	150	Ω	
			$\begin{aligned} & \hline \text { DG } 129 \\ & \text { DG } 133 \end{aligned}$	30	30	50	52	$V_{D}=T O V, I_{s}=1 \mathrm{~mA}$
			$\begin{aligned} & \hline \text { DG140 } \\ & \text { DG } 141 \end{aligned}$	10	10	20	52	$V_{D}=10 \mathrm{~V}, I_{S}=-10 \mathrm{~mA}$
			$\begin{aligned} & \hline \text { DG } 151 \\ & \text { DG } 153 . \end{aligned}$	15	15	30	Ω	$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$
			$\begin{aligned} & \hline \text { DG } 152 \\ & \text { DG } 154 \end{aligned}$	50	50	100	S2	
	IDIONI + ISIONI	Drive Leak age Current	$\begin{aligned} & \text { DG } 126 \\ & \text { DG } 129 \\ & \text { DG } 133 \\ & \text { DG } 134 \end{aligned}$		2	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$
$\begin{aligned} & \mathrm{O} \\ & U \\ & T \\ & \mathrm{P} \\ & U \\ & \mathrm{~T} \end{aligned}$	ISIOFFI	Source Leakage Current			1	100	nA	$V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	'doff)	Drain Leakage Current			1	100	nA	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$
	IDIONI + Is ${ }^{\text {don }}$	Drive Leakage Current	$\begin{aligned} & \text { DG } 140 \\ & \text { DG } 141 \\ & \hline \end{aligned}$		2	100	nA	$V_{D}=V_{S}=-10 \mathrm{~V}$
	's SOFFI	Source Leakage Current			10	1000	nA	$V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	(DIOFF)	Drain Leakage Current			10	1000	nA	$V_{D}=10 \mathrm{~V} . \mathrm{V}_{S}=-10 \mathrm{~V}$
	IDIONI + ISION)	Drive Leakage Current	$\begin{aligned} & \text { DG } 151 \\ & \text { DG } 153 \end{aligned}$		2	500	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
	'stoffi	Source Leakage Current			10	1000	nA	$\mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$
	Idofa)	Drain Leakage Current			10	1000	nA	$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
	IDIONI ${ }^{\text {+ I S OON }}$	Drive Leakage Current	$\begin{aligned} & \text { DG } 152 \\ & \text { DG } 154 \end{aligned}$		2	500	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
	\|SIOFF)	Source Leakage Current			2	200	nA	$\mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$
	lotoffi	Drain Leakage Current			2	200	nA	$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
$\begin{aligned} & \text { P } \\ & \text { O } \\ & \mathbf{W} \\ & \mathbf{E} \\ & \mathbf{R} \end{aligned}$	1/ON)	Positive Power Supply Drain Current	All Circuits		3		mA	One Driver $\mathrm{ON}, \mathrm{V}_{1 \times}=2.5 \mathrm{~V}$
	Izion)	Negative Power Supply Drain Current			-1.8		mA	
	IRIONI	Reference Power Supply Drain Current			-1.4		mA	
S U	1/(OFF)	Positive Power Supply Leakage Current			25		$\mu \mathrm{A}$	
P	l2(0FF)	Negative Power Supply Leak age Current			-25		$\mu \mathrm{A}$	Both Drivers OFF, $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
L_{Y}	If(offi	Reference Power Supply Leakage Current			-25	.	$\mu \mathrm{A}$	

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS
				-55 ${ }^{\circ}$	25°	125°		
$\begin{gathered} \text { S } \\ \text { W } \\ 1 \\ \text { T } \\ C \\ H \\ \text { } \\ \mathrm{N} \\ \mathrm{G} \end{gathered}$	ton	Turn-On Time	$\begin{aligned} & \text { DG 126, DG } 129 \\ & \text { DG133, DG } 134 \\ & \text { DG152, DG } 154 \end{aligned}$		600		ns	See Below
			$\begin{aligned} & \hline \text { DG126. DG129 } \\ & \text { DG133, DG134 } \\ & \text { DG152, DG154 } \end{aligned}$		300	500	ns	
	toff	Turn-Off Time	$\begin{aligned} & \text { DG 126, DG } 129 \\ & \text { DG 133, DG } 134 \\ & \text { DG } 152, \text { DG } 154 \end{aligned}$		1.6		$\mu \mathrm{s}$	See Below
			$\begin{aligned} & \text { DG126, DG129 } \\ & \text { DG133, DG134 } \\ & \text { DG152, DG154 } \end{aligned}$,	0.8	1.2 .	$\mu \mathrm{s}$	
	ton	Turn-On Time	$\begin{aligned} & \hline \text { DG140, DG141 } \\ & \text { DG151, DG153 } \end{aligned}$		1.0		$\mu \mathrm{s}$	See Below
			$\begin{aligned} & \text { DG140, DG141 } \\ & \text { DG151, DG153 } \end{aligned}$		0.5	0.8	$\mu \mathrm{s}$	
	toff	Turn-Off Time	$\begin{aligned} & \text { DG 140, DG } 141 \\ & \text { DG 151. DG } 153 \end{aligned}$		2.5		$\mu \mathrm{s}$	See Below
			$\begin{aligned} & \text { DG140, DG141 } \\ & \text { DG151, DG153 } \end{aligned}$		1.25	1.8	$\mu \mathrm{s}$	
P O W	Pon	ON Driver Power	All Circuits		175		mW	Both Inputs $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
$\begin{aligned} & \ddot{E} \\ & \mathrm{R} \end{aligned}$	Poff	OFF Driver Power			1		mW	Both Inputs $\mathrm{V}_{\mathbf{I N}}=1 \mathrm{~V}$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES (at $25^{\circ} \mathrm{C}$)

DG126, 129, 133, 134,
140, 141

OFF MODEL

ON MODEL

DG151, 152, 153, 154

OFF MODEL

ON MODEL

TYPICAL CHARACTERISTICS (per channel)

ALL CIRCUITS

OFF SUPPLY CURRENT vs TEMPERATURE

FEATURES

- Quad Three-Input Gates Decode Binary Counter to Four Lines
- Inputs Compatible with Low Power TTL and DTL, $I_{F}=200 \mu \mathrm{~A}$ Max
- Output Current Sinking Capability 10 mA
- External Pull-Up Elements Required
- Compatible with G115 and G123 Series Multichannel MOS FET Switches which include Current-Limiter PullUp FETs

GENERAL DESCRIPTION

The D129 is a 4 channel driver with binary decode input. It has been designed to provide the DC level-shifting required to interface low-level logic outputs (0.7 to 2.2 V) to fieldeffect transistor inputs (up to 50 V peak-to-peak). For a 5 V input logic supply, the V^{-}terminal can be set at any voltage between -5 V and -30 V . The output transistor is capable of sinking 10 mA and will stand-off up to 50 V above V^{-} in the off-state.

The ON state of the driver is controlled by a logic " 1 " (open) on all three input logic lines, while the OFF state of the driver is achieved by pulling any one of the three inputs to a logic " 0 " (ground).

The 4-channel driver is internally connected such that each one can be controlled independently or decoded from a binary counter.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{O}}-\mathrm{V}^{-}$ 50 V
GND - V^{-} 33 V
V^{+}- GND 8V
VIN - GND $\pm 6 \mathrm{~V}$
Current (any terminal) 30 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation (note) 750 mW
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Note: Dissipation rating assumes device mounted with all leads welded or soldered to pc board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient termperatures.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS Test conditions unless otherwise specified $\mathrm{V}^{-}=-20 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}$

* Per gate Input

SWITCHING TIME AND TEST CIRCUIT

Drivers with Differentially Driven N.O. and N.C. FET Switches

FEATURES

- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, 1 mW
- Switches analog signals up to 20 volts peak-to-peak
- Low $r_{\text {DS(ON) }} 10$ ohms max on DG145 and DG146

GENERAL DESCRIPTION

Each package contains a monolithic driver with differential input and 2 or 4 discrete FET switches. The driver may be treated as a special purpose differential amplifier which controls the conduction state of the FET switches. The differential output of the driver sets the switches in opposition, one pair open and the other pair closed. All switches may be opened by applying a positive control signal to the V_{R} terminal.

SCHEMATIC AND LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, jD)

ORDERING INFORMATION

ABSOLUTE MAXIMUM.RATINGS

$\mathrm{V}^{+}-\mathrm{V}^{-}$. 36V	$\mathrm{V}^{+}-\mathrm{V}_{\mathrm{R}} \ldots \ldots . . .17 \mathrm{~V}$
$V_{S}-V^{-} \ldots \ldots 30 \mathrm{~V}$	$\mathrm{V}^{+}-\mathrm{V}_{\text {IN1 }}$ or $\mathrm{V}_{\mathrm{IN} 2}$. 14 V
$\mathrm{V}^{+}-\mathrm{V}_{\mathrm{S}} \ldots330 \mathrm{~V}$	$\mathrm{V}_{\text {IN1 }}-\mathrm{V}_{\text {IN2 }} \ldots \ldots \pm 6 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-} \ldots21 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN} 2}-\mathrm{V}_{\mathrm{R}} \ldots \pm 6 \mathrm{~V}$
Power Dissipation (Note)	750 mW
Current (any terminal)	. 30 mA

Storage Temperature -65 to $+150^{\circ} \mathrm{C}$
Operating Temperature -55 to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient 'temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Applied voltages for all tests: DG139, DG142, DG143, DG144, DG145, DG146 ($\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$, $\left.V_{I N 2}=2.5 \mathrm{~V}\right)$ and $D G 161, D G 162, D G 163, D G 164\left(V^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathrm{IN} 2}=2.5 \mathrm{~V}\right)$. Input test condition that guarantees FET switch ON or OFF as specified is used for output specifications.

	SYMBOL (NOTE)	CHARACTERISTIC.	TYPE	Absolute max. limit			UNITS	TEST CONDITIONS
				-55 ${ }^{\circ}$	25°	125°		
$\begin{aligned} & 1 \\ & N \\ & P \\ & \text { P } \\ & \mathbf{U} \end{aligned}$	$V_{\text {INION }}$	Input Voltage-On	All Circuits	2.9 min	2.5 mm	2.0 min	Volts	At Pin 9 and 13 See Figure 1 and 2. Pg. 4
	Vinioffi	Input Voltage-Off		1.4	1.0	0.6	Volts	At Pin 9 and 13 See Figure i and 2, Pg. 4
	$\left\|\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{13}\right\|$	Differential Voltage		0.5 min	0.5 min	0.5 min	Volts	See Note 1, Pg. 4
	I'Nion)	Input Current		120	60	60	$\mu \mathrm{A}$	$\mathrm{V}_{\text {int }} 30 \mathrm{~V}$
	I'inzioni			120	60	60	$\mu \mathrm{A}$	$\mathrm{V}_{\text {心2 }} 20 \mathrm{~V}$
	linitoffi	Input Leak age Current		01	01	2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{N},} 20 \mathrm{~V}$
	I inzioff)			01	01	2	$\mu \mathrm{A}$	$\mathrm{V}_{1 \times 2} 30 \mathrm{~V}$
	rosion).	Drain-Source On Resistance	$\begin{aligned} & \hline \text { DG142 } \\ & \text { DG143 } \end{aligned}$	80	80	150	!	$V_{D}=10 \mathrm{~V}, \mathrm{I}=-1 \mathrm{~mA}$
			$\begin{aligned} & \hline \text { DG139 } \\ & \text { DG144 } \end{aligned}$	30	30	60	!	
			$\begin{aligned} & \text { DG145 } \\ & \text { DG146 } \end{aligned}$	10	10	20	!	$V_{D}=10 \mathrm{~V}, \mathrm{IS}^{\prime}=-1 \mathrm{~mA}$
s			$\begin{aligned} & \hline \text { DG161 } \\ & \text { DG163 } \end{aligned}$	15	15	30	! 2	${ }_{5}^{5}$
1			$\begin{aligned} & \text { DG162 } \\ & \text { DG } 164 \end{aligned}$	50	50	100	!	$\mathrm{V}_{\mathrm{O}} \cdot 75 \mathrm{~V} . \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA}$
C	$\mathrm{I}_{\text {IONI }}+\mathrm{I}_{\text {SION }}$	Drive Leakage Current	$\begin{array}{\|l\|} \hline \text { DG139 } \\ \text { DG142 } \\ \text { DG143 } \\ \text { DG144 } \\ \hline \end{array}$		2	100	nA	$\mathrm{V}_{0} \cdot \mathrm{~V}_{\text {s }}-10 \mathrm{~V}$
	$\mathrm{I}_{\text {sioff }}$	Source Leakage Current			1	100	nA	$\mathrm{v}_{5} \cdot 10 \mathrm{~V}, \mathrm{v}_{0} \cdot-10 \mathrm{~V}$
0 U T P U	Idioffi	Drain Leakage Current			1	100	nA	$\mathrm{V}_{0} \cdot 10 \mathrm{~V} . \mathrm{V}_{\mathrm{s}}=-10 \mathrm{~V}$
	IoIoni ${ }^{\text {ISIONI }}$	Drive Leak age Current	DG145 DG146		2	100	$n \mathrm{~A}$	$\mathrm{V}_{0} \mathrm{~V}_{\mathrm{s}}-10 \mathrm{~V}$
	$1{ }_{\text {Sioffi }}$	Source Leakage Current			10	1000	nA	$\mathrm{V}_{S} \cdot 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}-10 \mathrm{~V}$
	Idioffi	Drain Leakage Current			10	1000	nA	$\mathrm{v}_{0} \cdot 10 \mathrm{~V} . \mathrm{v}_{5}-10 \mathrm{~V}$
	IOIONI $+I_{\text {SIONI }}$	Drive Leakage Current	$\begin{aligned} & \text { DG } 161 \\ & \text { DG } 163 \end{aligned}$		2	500	nA	$\mathrm{V}_{0}=\mathrm{V}_{5} \cdot-7.5 \mathrm{~V}$
	$\mathrm{I}_{\text {Sioffl }}$	Source Leakage Current			10	1000	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{S}} \cdot 75 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$
	Idioffi	Drain Leskape Current			10	1000	$n \mathrm{~A}$	$\mathrm{V}_{0} \cdot 75 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}} \cdot-7.5 \mathrm{~V}$
	$I_{\text {OIONI }}+I_{\text {SIONI }}$	Drive Leakage Current	$\begin{aligned} & \text { DG } 162 \\ & \text { DG } 164 \end{aligned}$		2	500	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{s}}=-7.5 \mathrm{~V}$
	- $\mathrm{I}_{\text {Sioffi }}$	Source Leakage Current			2	200	$n \mathrm{~A}$	$\mathrm{V}_{5} \cdot 7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$
	lotoff)	Drain Leakape Current			2	200	nA	$\mathrm{V}_{\mathrm{D}}=75 \mathrm{~V} . \mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
$\begin{aligned} & \mathrm{P} \\ & 0 \end{aligned}$	$1_{1 / 10 N 1}$	Positive Power Supply Drain Current	All Circuits		40		mA	$v_{\text {INI }} \cdot 3 v$ or $v_{1 N 1}-2 v$
$\begin{gathered} \mathbf{w} \\ E \end{gathered}$	$\mathrm{I}_{210 \mathrm{~N}}$	Negative Power Supply Drain Current			-20		mA	
R	'riont	Reference Power Supply Drain Current			-2.0		mA	
U	I'Ioff	Positive Power Supply Leakage Current			25		$\mu \mathrm{A}$	$V_{1 N 1}=V_{1 N 2}=0.8 \mathrm{~V}$
P	'210ff)	Negative Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
Y	'rioff	Reference Power Supply Leakage Current			-25		$\mu \mathrm{A}$	

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS
				$-55^{\circ} \mathrm{C}$	25°	125°		
,	ton	Turn-On Time	$\begin{aligned} & \text { DG139, DG } 142 \\ & \text { DG143. DG } 144 \\ & \text { DG } 162 \text {, DG } 164 \end{aligned}$		0.8		$\mu \mathrm{s}$.	See Below
			$\begin{aligned} & \text { DG139, DG } 142 \\ & \text { DG143, DG } 144 \\ & \text { DG162. DG } 164 \end{aligned}$		0.4	0.7	$\mu \mathrm{s}$	
S	toff	Turn-Off Time	$\begin{aligned} & \text { DG } 139, \text { DG } 142 \\ & \text { DG143, DG } 144 \\ & \text { DG162, DG } 164 \end{aligned}$		1.6		μs	See Below
W 1 T C			$\begin{aligned} & \text { DG 139. DG } 142 \\ & \text { DG143, DG144 } \\ & \text { DG162, DG164 } \end{aligned}$		0.8	1.2	$\mu \mathrm{s}$	
H 1	ton	Turn-On Time	DG145, DG146 DG161. DG163		$1.0{ }^{\text {b }}$		$\mu \mathrm{s}$	See Below
$\begin{aligned} & \mathrm{N} \\ & \mathrm{G} \end{aligned}$			DG145, DG146 DGi61. DG 163		0.5	0.8	, $\mu \mathrm{s}$	
	CoFF	Turn-Off Time	DG145, DG146 DG:161. DG163		2.5		$\mu \mathrm{s}$	See Below
			$\begin{aligned} & \text { DG145, DG } 146 \\ & \text { DG161. DG } 163 \end{aligned}$.	1.25	1.8	$\mu \mathrm{s}$	
P O W	$P_{\text {ON }}$	ON Driver Power	All Circuits	\sim	175		mW	Both Inputs $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
$\begin{aligned} & E \\ & R \end{aligned}$	$\mathrm{P}_{\text {OFF }}$	OFF Driver Powei			1		mW	Boith inputs $V_{\text {IN }}-1.0 \mathrm{~V}$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES $\left(25^{\circ} \mathrm{C}\right)$

DG $139,142,143,144,145,146$

OFF MODEL

ON MODEL

DG161, 162, 163, 164

OFF MODEL

ON MODEL

Figure 1

FIGURE 2

NOTE1: An example of Absolute Minimum Differential Voltage, $\left|V_{9}-V_{13}\right|$, is when $V_{9}=3 \mathrm{~V}$ and $V_{13}=2.5 \mathrm{~V}$, the V_{9}, side of the switch is $O N$ and the V_{13} side of the switch is OFF at $25^{\circ} \mathrm{C}$. Conversely, when $\mathrm{V}_{9}=2 \mathrm{~V}$ and $\mathrm{V}_{13}=2.5 \mathrm{~V}$, the V_{9} side of the switch is OFF and the V_{13} side of the switch is ON at $25^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS (per channel)

DG139, 142, 144, 145, 146

DG161, 162, 163, 164

IS(OFF) vS TEMPERATURE

FEATURES

- Constant ON-resistance for signals to $\pm 10 \mathrm{~V}$ (DG182, $185,188,191$), to $\pm 7.5 \mathrm{~V}$ (all devices)
- $\pm 15 \mathrm{~V}$ power supplies
- <2nA leakage from signal channel in both ON and OFF states
- TTL, DTL, RTL direct drive compatibility.
- ton, $t_{\text {off }}<150 \mathrm{~ns}$, break-before-make action
- Cross-talk and open switch isolation $>50 \mathrm{~dB}$ at 10 MHz (75Ω load)

GENERAL DESCRIPTION

The DG180 thru DG191 series of analog gates consists of 2 or 4 N -channel junction-type field-effect transistors (J-FET) designed to function as electronic switches. Level-shifting drivers enable low-level inputs (0.8 to 2 V) to control the ONOFF state of each switch. The driver is designed to provide a turn-off speed which is faster than turn-on speed, so that break-before-make action is achieved when switching from one channel to another. In the ON state, each switch conducts current equally well in both directions. In the OFF condition, the switches will block voltages up to 20 V peak-topeak. Switch-OFF input-output feedthrough is $>50 \mathrm{~dB}$ down at 10 MHz , because of the low output impedance of the FETgate driving circuit.

SCHEMATIC DIAGRAM (Typical Channel)

ONE AND TWO CHANNEL SPDT AND SPST CIRCUIT CONFIGURATION

ORDERING INFORMATION

PART NUMBER	TYPE	rDS(on) (MAX)
DG180	Dual SPST	10
DG181	Dual SPST	30
DG182	Dual SPST	75
DG183	Dual DPST	10
DG184	Dual DPST	30
DG185	Dual DPST	75
DG186	SPDT	10
DG187	\vdots SPDT	30
DG188	SPDT	75
DG189	Dual SPDT	10
DG190	Dual SPDT	30
DG191	Dual SPDT	75

MAXIMUM RATINGS
V+-V- 36 V
$V+-V_{D} \ldots33 \mathrm{~V}$
VD-V-.................. 33V
$V_{D}-V_{S} \ldots$.
VL-V- 36V
$V_{L}-V_{I N}$.
8 V
VL-GND $8 \mathrm{8V}$
VIN-GND. 8 V
GND-V- 27 V
GND-VIN 2V

Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Current (S or D) See Note 3
200 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation* 450 (TW), 750 (FLAT),
825 (DIP) mW
*Device mounted with all leads welded or soldered to PC board.
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TW); $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (FLAT); $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (DIP) above $75^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}\right.$, Unless Noted)

$\begin{aligned} & \text { S } \\ & \text { W } \\ & \mathbf{I} \\ & \mathbf{T} \\ & \mathbf{C} \\ & \mathbf{H} \end{aligned}$	PARAMETER	DEVICE	A SERIES			B SERIES			UNITS	TEST CONDITIONS (Note 1)	
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$.	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$			
	Is(off)	$\begin{aligned} & \text { DG181, 182, 184, } 185 \\ & 187,188,190,191 \\ & \text { (DG180, 183, 186, } 189 \text {) } \end{aligned}$	-	$\begin{array}{r} 1 \\ (10) \\ \hline \end{array}$	$\begin{gathered} 100 \\ (1000) \\ \hline \end{gathered}$		$\begin{gathered} 5 \\ (15) \end{gathered}$	$\begin{array}{r} 100 \\ (300) \end{array}$	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}^{+}=10 \mathrm{~V} \\ & \mathrm{~V}^{-}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=" O \mathrm{FF} \text { " } \end{aligned}$	
		$\begin{aligned} & \text { DG181, 184, 187, } 190 \\ & \text { (DG180, 183, 186, } 189 \text {) } \end{aligned}$		$\begin{gathered} 1 \\ (10) \end{gathered}$	$\begin{gathered} 100 \\ (1000) \end{gathered}$		$\begin{gathered} 5 \\ (15) \end{gathered}$	$\begin{gathered} 100 \\ (300) \\ \hline \end{gathered}$	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" } \end{aligned}$	
		DG182, 185, 188, 191		1	100		5	100	nA	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" } \end{aligned}$	
	$1 \mathrm{ID}_{\text {(off }}$	DG181, 182, 184, 185 187, 188, 190, 191 (DG180, 183, 186, 189)	*	$\begin{gathered} 1 \\ (10) \end{gathered}$	$\begin{gathered} 100 \\ (1000) \end{gathered}$		5 (15)	$\begin{gathered} 100 \\ (300) \\ \hline \end{gathered}$	$n \mathrm{~A}$	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}^{+}=10 \mathrm{~V} \\ & \mathrm{~V}-=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=" O \mathrm{OF} " \end{aligned}$	
		DG181, 184, 187, 190 (DG180, 183, 186, 189)		$\begin{gathered} 1 \\ (10) \end{gathered}$	$\begin{gathered} 100 \\ (1000) \end{gathered}$		$\begin{gathered} 5 \\ (15) \end{gathered}$	$\begin{gathered} 100 \\ 1300) \end{gathered}$	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" } \end{aligned}$	
		DG182, 185, 188, 191		1	100		5	100	nA	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{VIN}_{\mathrm{IN}}=\text { "OFF" } \end{aligned}$	
	$\mathrm{ID}(\mathrm{on})+\mathrm{Is}$ (on)	$\begin{aligned} & \text { DG180, 181, 183, } 184 \\ & 186,187,189,190 \end{aligned}$.	-2	-200		-10	-200	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ "ON"	
		DG182, 185, 188, 191		-2	-200		-10	-200	nA	$\mathrm{V}_{\mathrm{D}} \doteq \mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ "ON"	
$\begin{aligned} & \mathbf{1} \\ & \mathbf{N} \end{aligned}$	linl	ALL	-250	-250	-250	-250	-250	-250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	
	liNH	ALL		10	20		10	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	
$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \\ & \mathbf{A} \\ & \mathbf{M} \\ & \mathbf{1} \\ & \mathbf{C} \end{aligned}$	ton	10ת Switches		300			350		ns	See switching time test circuit	
		30ת Switches		150			180				
		75』 Switches		250			300				
	toft :	10ת Switches		250			300				
		30Ω and 75』 Switches		130			150				
	Cs(off)	$\begin{aligned} & \text { DG 181, 182, 184, 185, } \\ & \text { 187, 188, 190, 191 } \\ & \text { (DG180, 183, 186, 189) } \end{aligned}$	9 typical (21 typical)						pF	$V_{S}=-5 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=0, f=1 \mathrm{MHz}$	
	CD(off)		6 typical (17 typical) 14 typical (17 typical)							$V_{D}=+5 \mathrm{~V}, \mathrm{I}^{\prime}=0, \mathrm{f}=1 \mathrm{MHz}$	
	$\mathrm{CD}_{\text {(on) }}+\mathrm{CS}_{\text {(on) }}$								$V_{D}=V_{S}=0, f=1 \mathrm{MHz}$.		
	OFF Isolation		Typically $>50 \mathrm{~dB}$ at 10 MHz (See Note 2)								$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$
$\begin{aligned} & \mathbf{S} \\ & \mathbf{U} \\ & \mathbf{P} \\ & \mathbf{P} \\ & \mathbf{L} \end{aligned}$	$1+$	$\begin{aligned} & \text { DG180, 181, 182, } 189 \\ & 190,191 \\ & \hline \end{aligned}$		1.5		\because	1.5		mA	$V_{I N}=5 \mathrm{~V}$	
		DG183, 184, 185		0.1			0.1				
		DG186, 187, 188	,	0.8			0.8				
	1^{-}	$\begin{aligned} & \text { DG180, 181, 182, 189, } \\ & \text { 190, } 191 \\ & \hline \end{aligned}$.	-5.0			-5.0				
		DG183, 184, 185		-4.0			-4.0				
		DG186, 187, 188		-3.0			-3.0				
	IL	$\begin{aligned} & \text { DG } 180,181,182,183 \\ & 184,185,189,190,191 \end{aligned}$		4.5	-		4.5				
		DG186, 187, 188		3.2			3.2				
	IGND	ALL	.	-2.0			-2.0	.			
	$1+$	$\begin{aligned} & \text { DG180, 181, 182, 189, } \\ & \text { 190, } 191 \end{aligned}$		1.5			1.5			$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	
		DG183, 184, 185		3.0			3.0				
		DG186, 187, 188		0.8			0.8				
	1^{-}	$\begin{aligned} & \text { DG180, 181, 182, 189, } \\ & \text { 190, } 191 \text {, } \end{aligned}$		-5.0			-5.0				
		DG183, 184, 185		-5.5			-5.5				
		DG186, 187, 188		-3.0			-3.0				
	L	DG180, 181, 182, 183, 184, 185, 189, 190, 191		4.5			4.5	-			
		DG186, 187, 188		3.2			3.2				
	IGND	ALL		-2.0	,		-2.0				

Note 1: See Switching State Diagrams for VIN "ON" and VIN "OFF" Test Conditions.
Note 2: Off Isolation typically >55dB at 1 MHz for DG180, 183, 186, 189
Note 3: Saturation Drain Current for DG180, 183, 186, 189 only, typically 300mA (2 msec Pulse Duration). Maximum Current on all other devices (any terminal) 30 mA .

ELECTRICAL CHARACTERISTICS (CONT'D)
MAXIMUM RESISTANCES (rDS(ON) MAX)

DEVICE NUMBER	MILITARY TEMPERATURE			INDUSTRIAL TEMPERATURE			UNITS	CONDITIONS (Note 1)$V^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}$	
	$-55^{\circ} \mathrm{C}$	$\underline{+25^{\circ} \mathrm{C}}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$			
DG180	10	10	20	15	15	25	Ω	$\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}$	
DG181	30	30	60	50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DG182	75	75	100	100	100	150	Ω	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$	
DG183	10	10	20	15	15	25	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DG184	30	30	60	50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DG185	75	75	150	100	100	150	Ω	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$	$\mathrm{Is}=-10 \mathrm{~mA}$
DG186	10	10	20	15	15	25	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DG187	30	30	60	50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=$ "ON"
DG188	75	75	150	100	100	150	Ω	$V_{D}=-10 \mathrm{~V}$	
DG189	10	10	20	15	15	25	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DG190	30	30	60	50	50	50	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DG191	75	75	150	100	100	150	Ω	$V_{D}=-10 \mathrm{~V}$	

APPLICATION HINT (for design only): Normally the minimum signal handling capability of the DG180 through DG191 family is 20 V peak-topeak for the 75Ω switches and 15 V peak-to-peak for the 10Ω and 30Ω switches (refer I_{D} and I_{S} tests above). For other Analog Signals, the following guidelines can be used: proper switch turn-off requires that $\mathrm{V}^{-} \leq \mathrm{V}_{\text {ANALOG }}$ (peak) $-\mathrm{V}_{\mathrm{p}}$ where $\mathrm{V}_{\mathrm{p}}=7.5 \mathrm{~V}$ for the 10Ω and 30Ω switches and $V_{p}=5.0 \mathrm{~V}$ for 75Ω switches e.g., -10 V minimum (-peak) analog signal and a 75Ω switch $\left(V_{p}=5 \mathrm{~V}\right)$, requires that $V-\leq-10 \mathrm{~V}$ $-5 \mathrm{~V}=-15 \mathrm{~V}$.

SWITCHING TIME TEST CIRCUIT

Switch output waveform shown for $V_{S}=$ constant with logic input waveform as shown. Note that V_{S} may be + or - as per
switching time test circuit. V_{O} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

LOGIC INPUT FOR "OFF" TO "ON" CONDITION (DG180/181/182 SHOWN)

DUAL SPST
 DG180/181/182

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT $=2.0 \mathrm{~V}$

DUAL DPST

DG183/184/185

SPDT
DG186/187/188

TEST CONDITIONS

DG186/187/188	
$V_{I N}$ "ON" $=2.0 \mathrm{~V}$	Channel 1
$\mathrm{V}_{\text {IN }}$ "ON" $=0.8 \mathrm{~V}$	Channel 2
$\mathrm{V}_{\text {IN }}$ "OFF" $=2.0 \mathrm{~V}$	Channel 2
$\mathrm{V}_{\text {IN }}$ "OFF" $=0.8 \mathrm{~V}$	Channel 1

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT = 2.0V
TEST CONDITIONS

DG183/184/185	
VIn "ON" $=2.0 \mathrm{~V}$	All Channels
Vin "OFF' $=0.8 \mathrm{~V}$	All Channels

$$
\rfloor
$$

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT $=2.0 \mathrm{~V}$

VIN "OFF" $=0.8 \mathrm{~V}$	Channel 1

DUAL SPDT
DG189/190/191

TEST CONDITIONS

VIN "ON" $=2.0 \mathrm{~V}$	Channels 1 \& 2
$\mathrm{VIN}_{\mathrm{IN}}$ "ON" $=0.8 \mathrm{~V}$	Channels 3 \& 4
VIN "OFF" $=2.0 \mathrm{~V}$	Channels 3 \& 4
VIN^{\prime} "OFF" $=0.8 \mathrm{~V}$	

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT $=\mathbf{2 . 0 V}$

PIN CONFIGURATIONS AND SWITCHING STATE DIAGRAM (See previous page for logic input)

Metal Can Package

(OUTLINE DWG TO-100)
DUAL SPST (DG180, 181, 182)

(OUṪLINE DWG FD-2)

CERDIP*

(OUTLINE DWG JD)

DUAL DPST (DG183, 184, 185)

Flat Package

(OUTLINE DWG FD-2)

CERDIP*

(OUTLINE DWG TO-100)

(OUTLINE DWG FD-2)

CERDIP*

DUAL SPDT (DG189, 190, 191)

DGM181-191
 High-Speed

CMOS Analog Switches

FEATURES

- Pin and Function Replacement for DG181 Family
- Meets or exceeds all DG181 family specifications with monolithic reliabiliity
- Low power consumption
- InA leakage from signal channel in both ON and OFF states
- TTL, DTL, RTL direct drive capability
- $t_{\text {on }}, t_{\text {off }}<150 \mathrm{~ns}$, break-before-make action
- Crosstalk and open load switch isolation $>50 \mathrm{~dB}$ at 10MHz (75 Ω load)

GENERAL DESCRIPTION

The DGM181 family of CMOS monolithic switches utilizes Intersil's latch-free junction isolated processing to combine the speed of the hybrid DG181 family with the reliability and low power consumption of a monolithic CMOS construction. These devices, therefore, are an ideal replacement for the DG181 family.

The DGM181 family has a high state threshold of 2.4 V ; devices which have a threshold of 2.0V (the DG181 specification) can be selected and are available as the DGMS series - see ordering information.
Both series meet or exceed all other specifications of the DG181 family.
No quiescent power is dissipated in either the ON or OFF state of the switch. Maximum power supply current is $10 \mu \mathrm{~A}$ from any supply, and typical quiescent currents are in the $10 n A$ range. OFF leakages are guaranteed to be less than 200 pA at $25^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM (Typical Channel)

ORDERING INFORMATION

TYPE	STANDARD PART NUMBER	SELECTED PART NUMBER	$\mathbf{r}_{\text {DS(on) }}$ MAX AT $25^{\circ} \mathrm{C}$
Dual SPST	DGM181BX		
	DGM182AX	DGMS181BX	50
DGMS182AX	50		
Dual DPST	DGM182BX	DGMS182BX	75
	DGM184BX	DGMS184BX	50
	DGM185AX	DGMS185AX	50
	DGM185BX	DGMS185BX	75
SPDT	DGM187BX	DGMS187BX	50
	DGM188AX	DGMS188AX	50
	DGM188BX	DGMS188BX	75
	DGM190BX	DGMS190BX	50
	DGM191AX	DGMS191AX	50
	DGM191BX	DGMS191BX	75

MAXIMUM RATINGS

$\mathrm{V}^{+} \mathrm{V}^{-} . \ldots$. . 36 V
$V^{+}-V_{D} \ldots \ldots{ }^{33 V}$
$V_{D-V}-\ldots \ldots \ldots33 \mathrm{~V}$
$V_{D}-V_{s} \ldots \ldots . \ldots . . \pm 22 V$
$\mathrm{V}_{\mathrm{L}} \mathrm{V}^{-}$.............. 36 V
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{IN}}$
30 V
VL-VGND 20V
VIN-VGND 20V
GND-V- 27V
GND-VIN 20V
Current (Any Terminal) . 30mA
Storage Temperature $\ldots \ldots \ldots \ldots \ldots . \quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots \ldots \ldots .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation* $\ldots \ldots \ldots \ldots .45($ TW), 750 (FLAT),
825 (DIP) mW
*Device mounted with all leads weided or soldered to PC board. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TW); $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (FLAT); $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (DIP) above $75^{\circ} \mathrm{C}$. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}\right.$, unless noted)

$\begin{aligned} & S \\ & \mathbf{W} \\ & \mathbf{I} \\ & \mathbf{T} \\ & \mathbf{C} \\ & \mathbf{H} \end{aligned}$	PARAMETER	DEVICE	A SERIES			B SERIES			UNITS	TEST CONDITIONS(Note 1)	
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$			
	IS(off)	DGM181, 184, 187, 190			,		2.0	100	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" } \end{aligned}$	
		DGM182, 185, 188, 191		0.2	50		0.5	50	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=\text { "OFF" } \end{aligned}$	
	ID(off)	DGM181, 184, 187, 190					2.0	100	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\text { "OFF" } \end{aligned}$	
		DGM182, 185, 188, 191		0.2	50		0.5	50	nA	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{VIN}^{2}=\text { "OFF" } \end{aligned}$	
	ID(on) + IS(on)	DGM181, 184, 187, 190					5.0	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ "ON"	
		DGM182, 185, 188, 191		0.5	50		2.0	50	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=$ "ON"	
\mathbf{I}	IINL	ALL		1.0	20		10	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	
	linh	ALL.		1.0	20		10	20	$\mu \mathrm{A}$	VIN $=5 \mathrm{~V}$	
D	ton	$\begin{aligned} & \text { DGM181, 184, 187, } 190 \\ & \text { DGM182, 185, 188, } 191 \\ & \hline \end{aligned}$		250			$\begin{aligned} & 180 \\ & 300 \end{aligned}$		ns	See switching time test circuit	
N	toff	ALL		130			150				
$\begin{aligned} & \mathbf{A} \\ & \mathbf{M} \end{aligned}$	$\mathrm{C}_{\text {S(off) }}$	DGM181, 182, 184, 185, 187, 188, 190, 191	5pF typical						pF	$\mathrm{V}_{S}=-5 \mathrm{~V}, \mathrm{lD}=0, \mathrm{f}=1 \mathrm{MHz}$	
M	CD(off)		$\begin{aligned} & \text { 6pF typical } \\ & \hline 11 \mathrm{pF} \text { typical } \end{aligned}$							$V_{D}=+5 \mathrm{~V}, \mathrm{IS}=0, \mathrm{f}=1 \mathrm{MHz}$	
C	$\mathrm{CD}_{\text {(on) }}+\mathrm{C}_{\text {S(on) }}$								$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=0, \mathrm{f}=1 \mathrm{MHz}$		
	OFF Isolation		Typically $>50 \mathrm{~dB}$ at 10 MHz							$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$	
$\begin{aligned} & \mathbf{S} \\ & \mathbf{U} \\ & \mathbf{P} \\ & \mathbf{P} \\ & \mathbf{U} \end{aligned}$	1^{+}	ALL		10	100		100			$\mu \mathrm{A}$	$V_{I N}=5 \mathrm{~V}$
	1^{-}	ALL		10	100		100	,			
	IL	ALL		10	100		100				
	IGND	ALL		10	100		100				
	1^{+}	ALL		10	100		100		$V_{I N}=0 V$		
	1^{-}	ALL	\cdot	10	100		100				
	IL	ALL		10	100		100				
	IGND	ALL		10	100		100				

NOTE 1: See Switching State Diagrams for V_{IN} " ON " and V_{IN} "OFF" Test Conditions.

ELECTRICAL CHARACTERISTICS
 MAXIMUM RESISTANCES (rDS(ON) MAX)

DEVICE NUMBER	MILITARY TEMPERATURE			INDUSTRIAL TEMPERATURE			UNITS	CONDITIONS (Note 1)$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}$	
	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$			
DGM181				50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DGM182	50	50	75	75	75	100	Ω	$V_{D}=-10 \mathrm{~V}$	
DGM184				50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DGM185	50	50	75	75	75	100	Ω	$V_{D}=-10 \mathrm{~V}$	Is $=-10 \mathrm{~mA}$
DGM187				50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=$ "ON"
DGM188	50	50	75	75	75	100	Ω	$V_{D}=-10 \mathrm{~V}$	
DGM190				50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$	
DGM191	50	50	75	75	75	100	Ω	$V_{D}=-10 \mathrm{~V}$	

APPLICATION COMMENT: The charge injection in these switches is of opposite polarity to that of the standard DG180 family, but considerably smaller.

PIN CONFIGURATIONS \& SWITCHING STATE DIAGRAM

Metal Can Package

(OUTLINE DWG TO-100)

SPDT (DGM187, 188)
Flat Package (FD-2)

SWITCH STATES ARE FOR LOGIC " 1 " INPUT

Dual-In-Line Package

DUAL SPDT (DGM190, 191)

Dual-In-Line Package

SWITCHING TIME TEST CIRCUIT

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note that V_{s} may be + or - as per
switching time test circuit. V_{0} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

LOGIC INPUT FOR "OFF" TO "ON" CONDITION (DG180/181/182 SHOWN)

SWITCH STATES

DUAL SPST DGM181/182

DUAL DPST DGM184/185

SPDT DGM1871188

DUAL SPDT
DGM190/191
TEST CONDITIONS

| DGM181/182 | |
| :--- | :---: | :---: |
| $V_{\text {IN "ON" }}=0.8 \mathrm{~V}$ | All Channels |
| $\mathrm{V}_{\text {IN }}$ "OFF" $=2.4 \mathrm{~V}+$ | All Channels |

DGM184/185	
$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {IN }} \text { "ON" }=2.4 \mathrm{~V}+ \\ \mathrm{V}_{\text {IN }} \text { "OFF" }=0.8 \mathrm{~V} \end{array}$	All Channels All Channels

DGM187/188	
$\mathrm{V}_{\text {IN }} \mathrm{V}^{\text {a }}$ " $=2.4 \mathrm{~V}+$	Channel 1
$\mathrm{V}_{1 \text { IN }}$ "ON" $=0.8 \mathrm{~V}$	Channel ${ }^{\text {2 }}$
$\mathrm{V}_{\text {IN }}$ "OFF" $=2.4 \mathrm{~V}+$	Channel 2.
$\mathrm{VIN}^{\prime \prime} \mathrm{OFF}$ " $=0.8 \mathrm{~V}$	Channel 1

DGM190/191	
$\mathrm{V}_{1 \mathrm{~N}} \mathrm{CON}^{\prime \prime}=2.4 \mathrm{~V}^{+}$	Channels 1 \& 2
$\mathrm{V}_{1 \mathrm{~N}}$ "ON': $=0.8 \mathrm{~V}$	Channels 3 \& 4
$\mathrm{V}_{1 \times}$ "OFF" $=2.4 \mathrm{~V}+$	Channels 3 \& 4
$\mathrm{V}_{\text {IS }}$ "OFF" $=0.8 \mathrm{~V}$	Channels 1 \& 2

CHIP TOPOGRAPHIES

CONSULT FACTORY

DGM188
91×53

NOTE: BACKSIDE OF CHIP IS COMMON TO V+.

FEATURES

- Switches 20 Vpp Signals
- Quiescent Current Less than $100 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching $t_{\text {off }} 130 n s$ Max, $t_{\text {on }}$ 250ns Max.
- T^{2} L, HTL, CMOS, PMOS Compatible
- Low rds (ON)-30
- Construction includes CMOS high level driver circuitry combined with unique "VARAFET" switches.

GENERAL DESCRIPTION

The INTERSIL IH181/191 series is a low power version of the standard DG181/191 series. They meet or exceed the standard DG181/191 series specifications with the following exceptions:
1.) $\mathrm{V}_{\mathrm{INH}}=2.4$ volts minimum.
2.) Break-before-make switching requires $t_{o n}$ to be 250 ns maximum.
See also IH5040, IH5140 series.

The actual switching element is a unique new Intersil design, called the Varafet. The Varafet is a monolithic combination of a varactor J-Fet diode driving a conventional J-Fet. Strobing the solid state switch is accomplished by the TTL levels of a " 1 " being 2.4 V or greater; a " 0 " is 0.8 V or lower. The translator input circuitry will draw virtually no source or sinking current (typical pa of input
current) from the TTL logic output element; thus the effective fanout, if one were to drive only solid state switches, approaches millions.

The family of analog gates is guaranteed to be "break-before-make" switching; The "off" time is faster than the "on" time. Typical turn-off times are 80 ns and typical turn-on times are 200 ns.

SCHEMATIC DIAGRAM

 (Typical Channel)

MAXIMUM ON RESISTANCES - rDS(ON) MAX
$\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{IS}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}\right)$

	DEVICE NUMBER	MILITARY TEMPERATURE			INDUSTRIAL TEMPERATURE			UNITS	CONDITIONS
		$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$		
Dual SPST	IH 181	30	30	60	50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$
	IH 182	75	75	100	100	100	150	Ω	$V_{D}=-10 \mathrm{~V}$
Dual DPST	IH 184	30	30	60	50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$
	IH 185	75	75	150	100	100	150	Ω	$V_{D}=-10 \mathrm{~V}$
SPDT	IH 187	30	30	60	50	50	75	Ω	$V_{D}=-7.5 \mathrm{~V}$
	IH 188	75	75	150	100	100	150	Ω	$V_{D}=-10 \mathrm{~V}$
Dual SPDT	IH 190	30	30	60	50	$50-$	75	Ω	$V_{D}=-7.5 \mathrm{~V}$
	IH 191	75	75	150	100	100	150	Ω	$V_{D}=-10 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS,

$V^{+}-V^{-}$	$36 V$	$V_{L}-V_{I N}$	$8 V$
$V^{+}-V_{D}$	$33 V$	$V_{L}-G N D$	$8 V$
$V_{D}-V^{-}$	$33 V$	$V_{I N}-G N D$	$8 V$
$V_{D}-V_{S}$	$\pm 22 V$	$G N D-V^{-}$	$36 V$
$V_{L}-V^{-}$	$36 V$	$V_{R}-V_{I N}$	$2 V$

Current (Any Terminal)
Storage Temperature
Operating Temperature Power Dissipation*

30 mA
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
450 mW
*Device mounted with all leads welded or soldered to PC board. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^6]
SWITCHING TIME TEST CIRCUIT

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note that V_{S} may be $\dot{+}$ or - as per switching time test circuit. V_{O} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

LOGIC COMPATIBILITY

The IH 181/191 family can be used with almost any logic family. It has been designed to directly interface with the popular TTL, HTL, and CMOS families. The fact that the solid state switch input current approaches zero (specification has $1 \mu \mathrm{~A}$ maximum for either high or low input states)

FIGURE 1. CIRCUIT ANALYSIS AND CHARACTERISTICS OF SERIES 54/74

FIGURE 3. FOR INTERFACING WITH TTL LOGIC

FIGURE 5. FOR USE WITH CMOS LOGIC

means that one is operating along the zero load current, or zero source current line for the TTL output voltage vs. $I_{\text {load }}$ or $I_{\text {source }}$ current. Thus the maximum output is obtained from the TTL gate. Figures 1 and 2 show the expected (typical) output of a TTL gate vs. load and source currents and plotted as a function of temperature and power supply.

IH181 FAMILY LOAD LINE

FIGURE 2.

FIGURE 4. FOR INTERFACING WITH HTL OPEN COLLECTOR LOGIC

Note:
When using HTL or CMOS logic, you will note that a Zener diode has been added between the V_{L} supply (normally plus 5 V) and the V^{+}supply (normally plus 15 V). This zener is not critical and, in fact, any value between 2 V and 10V will work fine. No biasing resistor is needed to establish a curreñt through the zener. In cases where the TTL logic level may go below 2.4 V , a pull-up resistor should be added between the TTL output and the plus 5 V power supply.

THEORY OF OPERATION

Voltage Translator or Driver Circuit

The translator part of the IH181 family takes the low level strobe input and converts it to plus and minus 15 V swing. These voltage swings are necessary to drive the output Varafets so they can switch the maximum analog input signal. As shown in Figures 6 and 7, this translation is performed without drawing any power supply quiescent current. Typical quiescent current is only the I^{D} (off) leakage of the fet - this is usually in the less than 1 nA range. Whether the input strobe logic is in the " 1 " state or
the " 0 " state makes no difference; the quiescent current remains leakage of FET in the off condition.
The currents previously discussed are dc currents and the obvious result is that the circuit power consumption is going to be low. For example, with plus and minus 15 V power supplies, the specified maximum power consumption is 3 mW . The typical power consumption will be 30 nW . When strobing from a particular duty cycle square wave, ac currents will be drawn and the magnitude of these is dependent upon the duty cycle and the pulse repetition rate. Figure 8 shows typical ac current draw as a function of pulse repetition rate.

FIGURE 6. DRIVER STATES WITH
$T^{2} L$ " 1 " INPUT

FIGURE 7. DRIVER STATES WITH
$T^{2} \mathrm{~L}$ " $0^{\prime \prime}$ INPUT

FIGURE 8. POWER SUPPLY QUIESCENT CURRENT VS. LOGIC FREQUENCY RATE

FIGURE 9. OUTPUT VARAFET

THEORY OF OPERATION (CONTINUED)

Output J-Fet or Varafet

The output J-Fet is, of course, the actual solid state switch. The translator circuit is merely a means to interface the low level• TTL strobing logic into higher levels to drive the output Fet. The varafet is a monolithicially constructed combination of a varactor diode in series with the gate of an N-channel J-Fet. The driver diode (varactor diode) is needed to prevent forward biasing the output Fet during normal switching applications. Figure 9 shows a schematic of the complete varafet.

Notice that the polarity of the driver diode is such that it forms a back-to-back diode combination with the source-to-gate or drain-to-gate junctions of the FET. This makes it impossible to forward bias a source-to-gate junction during switching. The driver diode is a voltage variable capacitor whose C (capacity) vs. V (voltage across diode) plot is much greater than the C vs. V plot for either the source-to-gate or drain-to-gate FET junctions. In fact, the criteria for proper operation of the varafet is that the integral of the diode's C vs. V plot is at least equal to the sum of the C vs. V plots for the source-to-gate and drain-to-gate FET junctions. The integral of C vs. V is charge $Q . C=Q / V$ and $Q=C \times V$. Thus the varafet is really a charge transfer device.

SWITCHING STATE DIAGRAMS

DUAL SPDT
IH190/IH191

DG200/IH5200 CMOS Dual SPST Analog Switches

FEATURES

- Switches Greater Than 28Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $100 \mu \mathrm{~A}$
- Break-Before-Make Switching toff 100nsec, ton 500nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG200)
- Improved Performance Version (IH5200)

GENERAL DESCRIPTION

The DG200/IH5200 solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. They provide ease-of-use and performance advantages not previously available from solid state switches. Destructive latch-up of solid state analog gates has been eliminated by INTERSIL's CMOS technology.

Key performance advantages of these devices are TTL compatibility, low-power operation (quiescent current less than $100 \mu \mathrm{~A})$, and guaranteed Break-Before-Make switching.

The DG200 is completely spec and pin-out compatible with the industry standard device, while the IH5200 offers significantly enhanced specifications with respect to ON and OFF leakage currents, switching times, and supply current.

SCHEMATIC DIAGRAM (1⁄2 DG200/IH5200)

ORDERING INFORMATION

INDUSTRY STANDARD PART	IMPROVED SPEC DEVICE	PACKAGE	TEMPERATURE RANGE
DG200AA	IH5200MTW	$10-$ Pin Metal Can	-55 to $+125^{\circ} \mathrm{C}$
DG200AK	IH5200MJD	14-Pin CERDIP	-55 to $+125^{\circ} \mathrm{C}$
DG200AL	IH5200MFD	14-Pin Flat Pak	-55 to $+125^{\circ} \mathrm{C}$
DG200BA	IH5200ITW	$10-$ Pin Metal Can	-25 to $+85^{\circ} \mathrm{C}$
DG200BK	IH5200IJD	14-Pin CERDIP	-25 to $+85^{\circ} \mathrm{C}$
DG200BL	IH5200IFD	14-Pin Flat Pak	-25 to $+85^{\circ} \mathrm{C}$
DG200CJ	IH5200CPD	14-Pin Epoxy DIP	0 to $+70^{\circ} \mathrm{C}$

PIN CONFIGURATIONS

CERDIP \& EPOXY DUAL-IN-LINE PACKAGE

(OUTLINE DWGS JD, PD)

FLAT PACKAGE

(OUTLINE DWG FD-2)

ABSOLUTE MAXIMUM RATINGS

Abstract

Current (Any Terminal) . >30mA Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Power Dissipation 450 mW

(All Leads Soldered to a P.C. Board.) Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $75^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DG200

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$)

PER CHANNEL		MIN.IMAX. LIMITS						UNITS	TEST CONDITIONS
		MILITARY			COMMERCIALINDUSTRIAL				
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$01-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$		
IIN(ON)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$
IIN(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$
rDS(on)	Drain-Source On Resistance	70	70	100	80	80	100	Ω	$\begin{aligned} & \mathrm{Is}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {ANALOG }}= \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$
ros(on)	Channel-to-Channel RoS(on) Match	25	25	25	30	30	30	Ω	Is (Each Channel) $=1 \mathrm{~mA}$
$\mathrm{V}_{\text {ANALOG }}$	Min. Analog Signal Handling Capability	± 14	V	$\mathrm{IS}=10 \mathrm{~mA}$					
Idofa	Swltch OFF Leakage Current	2	2	100	5	5	100	nA	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$
Is(off)	Switch OFF Leakage Current	2	2	100	5	5	100	nA	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$
Idon) $+I_{S(O N)}$	Switch ON Leakage Current	2	2	200	10	10	200	nA	$\begin{aligned} & V_{D}=V_{S}=-14 V \text { to } \\ & +14 V \end{aligned}$
ton	Switch "ON" Time		1.0			1.0		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \\ & \hline \end{aligned}$
toff	Switch "OFF" Time		0.5			0.5		$\mu \mathrm{S}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
$\mathrm{Q}_{(1 \mathrm{NJ} .)}$	Charge Injection		15			20		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & C_{\mathrm{L}} \leq 5 \mathrm{pF} \\ & \text { See Fig. } \mathrm{C} \\ & \hline \end{aligned}$
Ivi	+ Power Supply Quiescent Current	1000	1000	2000	1000	1000	2000	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=0 \mathrm{~V} \text { or } \\ & V_{\text {IN }}=5 \mathrm{~V} \end{aligned}$
Iv2	- Power Supply Quiescent Current	1000	1000	2000	: 1000	1000	2000	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	- '	54	,		50	-	dB	One Channel Off

INTMESML

TEST CIRCUITS

Figure A

Figure B

Figure C

IH5200

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}$ open)

PER CHANNEL		MIN./MAX. LIMITS						UNITS	TEST CONDITIONS
		MILITARY			COMMERCIALINDUSTRIAL				
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0/-25 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$		
IIN(ON)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$
Inf(off)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$
ros(on)	Drain-Source On Resistance	70	70	100	80	80	100	Ω	$\begin{aligned} & \text { Is }=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {ANALOG }}= \pm 10 \mathrm{~V} \end{aligned}$
ros(on)	Channel-to-Channel RDS(on) Match	25	25	25	30	30	30	Ω	Is (Each Channel) $=1 \mathrm{~mA}$
Vanalog	Min. Analog Signal Handling Capability	± 14	V	$\mathrm{IS}=10 \mathrm{~mA}$					
Idofa	Switch OFF Leakage Current	0.2	0.2	50	1	1	50	nA	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$
Is(off)	Switch OFF Leakage Current	0.2	0.2	50	1	1	50	nA	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ $+\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	Switch ON Leakage Current	0.5	0.5	100	1	1	100	nA	$\begin{aligned} & V_{D}=V_{S}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$
ton	Switch "ON" Time		0.7			0.8		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
$\mathrm{t}_{\text {off }}$	Switch "OFF" Time		0.25			0.4	.	$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
Q(INJ.)	Charge Injection		5			10		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54			50	,	dB	$\begin{aligned} & \hline f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 p F \\ & \text { See Fig. C } \\ & \hline \end{aligned}$
Iv1	+ Power Supply Quiescent Current	250	200	150	300	250	200	$\mu \mathrm{A}$	$\begin{aligned} & V_{\text {IN }}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }}=5 \mathrm{~V} \end{aligned}$
Iv2	- Power Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio					50	.	dB	One Channel Off

TYPICAL CHARACTERISTICS

ros(on) vs VD and Power Supply Voltage

Is(off) or ID(off) vs Temperature*

CHIP TOPOGRAPHY

NOTE: Backside of chip of common to $\mathrm{V}+$.

APPLICATIONS

Application Hints

V + Positive Supply Voltage (V)	Negative Supply Voltage (V)	VREF Reference Pin Connection (V)	VIN Logic Input Voltage VINH Min/ VINL. Max (V)	VS or V
+15	-15	Open Analog Voltage Range (V)		
+12	-12	Open or 1.4 V	$2.4 / 0.8$	-15 to +15
+10	-10	1.4 V	$2.4 / 0.8$	-12 to +12
$+8^{*}$	-8	1.4 V	$2.4 / 0.8$	-10 to +10

*Operation below $\pm 8 \mathrm{~V}$ is not recommended.

Logic Inputs

Logic input circuitry protects the input MOS gate from transients. A series MOS device shuts off when $V_{\mathbb{I}}$ exceeds the positive power supply; negative transients are clamped to ground by a diode clamp.

The input voltage chàracteristics have a current spike occurring at the transition voltage when the logic goes from $\mathrm{V}_{\text {INH }}$ to $\mathrm{V}_{\text {INL }}$. If a series resistor is used for additional static protection it should be limited to less than $4.7 \mathrm{k} \Omega$ to ensure switching with worst case current spikes.

The Function of VREF

$V_{\text {REF }}$ is an internal connection which allows the user to establish the logic threshold voltage at which the switch changes state. The actual threshold voltage is equal to the voltage on the VREF pin; Vref is internally connected for a 1.4 V threshold at $\mathrm{V}^{+}=+15 \mathrm{~V}$. For other thresholds and/or supply voltages, VREF may be connected to a voltage source or resistive divider whose output voltage is equal to the desired threshold. The internal impedance of $V_{\text {REF }}$ is $21 \mathrm{k} \Omega$ $\pm 30 \%$.
Additionally, to adjust Vref, a single pullup resistor can be used from the VREF pin to a positive supply voltage to shunt the upper internal divider resistor. The equation below shows the calculation of the shunt resistor for the desired logic threshold voltage - this calculation is based on nominal internal resistor values, which are $\pm 30 \%$ in absolute magnitude. The adjusted trip point voltage (VREF) should be limited to an upper level of 5 V to avoid input logic switching transition hysteresis.
$R_{\text {SHUNT }}=\frac{\mathrm{R} 1 \times \mathrm{R} 2\left(\frac{\mathrm{~V}^{+}}{\mathrm{V}_{\mathrm{tr}}}-1\right)}{\mathrm{R} 1-\mathrm{R} 2\left(\frac{\mathrm{~V}^{+}}{\mathrm{V}_{\mathrm{tr}}}-1\right)}$
Calculation of Rshunt
Where $\quad R 1 \cong 220 \mathrm{k} \Omega$: nominal values,

$$
R 2 \cong 23 \mathrm{k} \Omega \quad \pm 30 \% \text { run-to-run }
$$

Example: for $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {TRIP }}=5 \mathrm{~V}$, using nominal R1, R2 calculation RSHUNT $=58 \mathrm{k} \Omega$.

FEATURES

- Switches Greater Than 20Vpp Signals With $\pm \mathbf{1 5 V}$ Supplies
- Quiescent Current Less Than $10 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching: toff 200 nsec, toN 400nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction

ORDERING INFORMATION

FUNCTIONAL DIAGRAM

GENERAL DESCRIPTION

The IH200 solid state analog gate is designed using an improved, high voltage CMOS monolithic technology. This improved CMOS technology provides input overvoltage capability to ± 25 volts without damage to the device, and destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has eliminated this serious systems problem.

Key performance advantages of the 1 H 200 are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $10 \mu \mathrm{~A}$. Also designed into the IH 200 is guaranteed Break-Before-Make switching. This is logically accomplished by extending the ton time (400 nsec TYP.) such that it exceeds toff time (200 nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. This eliminates the need for external logic required to avoid channel to channel shorting during switching.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS ($@ 25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

PER CHANNEL		MIN./MAX. LIMITS						UNITS	TEST CONDITIONS
		MILITARY			COMMERCIAL				
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
IIN(ON)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
lin(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$
	Drain-Source On Resistance	75	75	100	80	80	100	Ω	$\begin{aligned} & \text { Is }=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to } \\ & \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$
PDS(ON)	Channel to Channel RDS(ON) Match	25	25	25	30	30	30	Ω	$\begin{aligned} & \text { Is (Each Channel) } \\ & =1 \mathrm{~mA} \\ & \hline \end{aligned}$
Vanalog	Min. Analog Signal Handling Capability	± 11	± 11	± 11	± 10	± 10	± 10	V	$\mathrm{Is}=10 \mathrm{~mA}$
ldoff)	Switch OFF Leakage Current	1	1	100	5	5	250	nA	$\begin{aligned} & V_{\text {ANALOG }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { IDON } \\ & +\mathrm{IS}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	Switch On Leakage Current	2	2	200	10	10	250	$n{ }^{\prime}$	$\begin{aligned} & V_{D}=V_{S}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
ton	Switch "ON" Time		1.0			1.0		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \\ & \hline \end{aligned}$
toff	Switch "OFF" Time		0.5			0.5		$\mu \mathrm{S}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
Q(INJ.)	Charge Injection		15			20		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54	-		50	.	dB	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{RL}_{\mathrm{L}}= \\ & 100 \Omega, \mathrm{CL}^{\prime} \leq 5 \mathrm{pF} \\ & \text { See Fig. } \mathrm{C} \end{aligned}$
${ }^{1+}{ }_{Q}$	+ Power Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	
$1-0$	-Power Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}= \\ & -15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$
ILva	$\begin{array}{\|l} +5 \text { V Supply } \\ \text { Quiescent Current } \end{array}$	10	10	100	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle $<10 \%$
IGnd	Gnd Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54	\cdots		50		dB	One Channel Off

DG201/IH5201
 Quad SPST CMOS Analog Switches

FEATURES

- Switches Greater Than $\mathbf{2 8 V}_{\mathrm{p}-\mathrm{p}}$ Signals With $\pm \mathbf{1 5 V}$ Supplies
- Quiescent Current Less Than $100 \mu \mathrm{~A}$
- Break-Before-Make Switching $t_{\text {off }}=100 \mathrm{nsec}, \mathrm{t}_{\mathrm{on}}=$ Typically 500nsec
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG201)
- Improved Performance Version IH5201

GENERAL DESCRIPTION

The DG201/IH5201 solid-state analog gates are designed using an improved, high-voltage CMOS monolithic technology. They provide ease-of-use and performance advantages not previously available from solid-state switches. Destructive latch-up of solid-state analog gates has been eliminated by INTERSIL's CMOS technology.
Key performance advantages of these devices are TTL compatibility, low-power operation (quiescent current less than $100 \mu \mathrm{~A}$), and guaranteed break-before-make switching.
The DG201 is completely spec and pin-out compatible with the industry standard device, while the IH5201 offers significantly enhanced specifications with respect to ON and OFF leakage currents, switching times, and supply current.
SCHEMATIC DIAGRAM (1/4 DG201/IH5201)

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS $\left(\mathbb{O} 25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right)$

PER CHANNEL		MIN./MAX. LIMITS						UNITS	TEST CONDITIONS
		MILITARY			COMMERCIAL				
SYMBOL	CHARACTERISTIC	$-55{ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
lin(on)	Input Logic Cứrent	1	1	1	1	1	1	$\mu \mathrm{A}$	V IN $=0.8 \mathrm{~V}$.
IIN(OFF)	Input Logic Current	1	1	1	. 1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$
ros(on)	Drain-Source On Resistance	80	80	125	100	100	125	Ω	$\begin{aligned} & \text { Is }=1 \mathrm{~mA}, \\ & V_{\text {ANALOG }}= \pm 10 \mathrm{~V} \end{aligned}$
rDS(ON)	Channel to Channel rDS(ON) Match	25	25	25	30	30	30	Ω	Is (Each Chiannel) $=1 \mathrm{~mA}$
VANALOG	Analog Signal Handling Capability	± 14	V	$\mathrm{Is}=10 \mathrm{~mA}$					
Idofa	Switch OFF Leakage Current	1	1	100	5	5	100	nA	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$
IS(OFF)	Switch OFF Leakage Current	1	1	100	5	5	100	nA	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{D}(\mathrm{ON})} \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	Switch On Leakage Current	2	2	200	5	5	200	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}= \pm 14 \mathrm{~V}$
ton	Switch "ON" Time		1.0	'		1.0		$\mu \mathrm{S}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
toff	Switch "OFF" Time	-	0.5			0.5		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
Q(INJ.)	Charge Injection		15			20		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio	.	54	.		50		dB	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L L} \leq 5 p F \\ & \text { See Fig. C } \end{aligned}$
${ }^{+}$	+ Power Supply Quiescent Current	2000	1000	2000	2000	1000	2000	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V
$1 \bar{\square}$	- Power Supply Quiescent Current	2000	1000	2000	2000	1000	2000	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54	.	:	50	\cdots	dB	One Channel Off

TEST CIRCUITS

Figure A

Figure B

Figure C

IH5201

ELECTRICAL CHARACTERISTICS ($@_{2} 25^{\circ} \mathrm{C}, \mathrm{v}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$)

PER CHANNEL		MIN./MAX. LIMITS						UNITS	TEST CONDITIONS
		MILITARY			COMMERCIAL				
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
lin(on)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$
IIn(off)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$
ros(ON)	Drain-Source On Resistance	75	75	100	100	100	125	Ω	$\begin{aligned} & \text { Is }=1 \mathrm{~mA}, \\ & V_{\text {ANALOG }}= \pm 10 \mathrm{~V} \end{aligned}$
ros(ON)	Channel to Channel rDS(ON) Match	25	25	25	30	30	30	Ω	Is (Each Channel) $=1 \mathrm{~mA}$
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Handling Capability	± 14	V	$\mathrm{I} \mathrm{s}=10 \mathrm{~mA}$					
ldoffl Is(OFF)	Switch OFF Leakage Current	0.2	0.2	50	1	1	50	nA	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V} \text { to } \\ & +14 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{OXON}} \\ & \left.+\mathrm{I}_{\mathrm{SON}}\right) \\ & \hline \end{aligned}$	Switch ON Leakage Current	0.5	0.5	100	1	1	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 14 \mathrm{~V}$
ton	Switch "ON" Time	。	0.5			0.75		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
toff	Switch "OFF" Time		0.25			0.3		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
$\mathrm{Q}_{\text {(INJ.) }}$	Charge Injection		5			10		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 \mathrm{pF} \\ & \text { See Fig. } \mathrm{C} \\ & \hline \end{aligned}$
$1{ }^{+}$	+ Power Supply Quiescent Current	1000	750	600	1500	1000	1000	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5 V
10	- Power Supply Quiescent Current	10	10	100	20	20	200	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54			50		dB	One Channel Off

DG201/IH5201

APPLICATIONS

Application Hints

V + Positive Supply Voltage (V)	V Negative Supply Voltage (V)	VREF Reference Pin Connection (V)	VIN Logic Input Voltage VINH Min/	VS or VINL Max (V)
+15	-15	Open	Analog Voltage Range (V)	
+12	-12	Open or 1.4 V	$2.4 / 0.8$	-15 to +15
+10	-10	1.4 V	$2.4 / 0.8$	-12 to +12
$+8^{*}$	-8	1.4 V	$2.4 / 0.8$	-10 to +10

*Operation below $\pm 8 \mathrm{~V}$ is not recommended.

Logic Inputs

Logic input circuitry protects the input MOS gate from transients. Aseries MOS device shuts off when VIN exceeds the positive power supply; negative transients are clamped to ground by a diode clamp.
The input voltage characteristics have a current spike occurring at the transition voltage when the logic goes from $\mathrm{V}_{\text {INH }}$ to Vinl. If a series resistor is used for additional static protection it should be limited to less than $4.7 \mathrm{k} \Omega$ to ensure switching with worst case current spikes.

The Function of VREF

VREF is an internal connection which allows the user to establish the logic threshold voltage at which the switch changes state. The actual threshold voltage is equal to the voltage on the $\mathrm{V}_{\text {ref }}$ pin; $\mathrm{V}_{\text {ref }}$ is internally connected for a 1.4 V threshold at $\mathrm{V}^{+}=+15 \mathrm{~V}$. For other thresholds and/or supply voltages, $\mathrm{V}_{\text {REF }}$ may be connected to a voltage source or resistive divider whose output voltage is equal to the desired threshold. The internal impedance of Vref is $21 \mathrm{k} \Omega$ $\pm 30 \%$.
Additionally, to adjust $V_{\text {REF, }}$ a single pullup resistor can be used from the $V_{\text {REF }}$ pin to a positive supply voltage to shunt the upper internal divider resistor. The equation below shows the calculation of the shunt resistor for the desired logic threshold voltage - this calculation is based on nominal internal resistor values, which are $\pm 30 \%$ in absolute magnitude. The adjusted trip point voltage (Vref) should be limited to an upper level of 5 V to avoid input logic switching transition hysteresis.

RSHUNT $=\frac{R 1 \times R 2\left(\frac{V^{+}}{V_{t r}}-1\right)}{R 1-R 2\left(\frac{V^{+}}{V_{\mathrm{tr}}}-1\right)}$
Calculation of Rshunt
Where $\mathrm{R} 1 \cong 220 \mathrm{k} \Omega$: nominal values,

$$
\mathrm{R} 2 \cong 23 \mathrm{k} \Omega \quad \pm 30 \% \text { run-to-run }
$$

Example: for $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{TRIP}}=5 \mathrm{~V}$, using nominal R1, R2 calculation RSHUNT $=58 \mathrm{k} \Omega$.

IH201/IH202 CMOS Analog Gate

FEATURES

- Switches Greater Than 20V ${ }_{\text {p.p }}$ Signals With $\pm 15 \mathrm{~V}$ Supplies
- Qulescent Current Less Than $10 \mu \mathrm{~A}$
- Overvoltage Protection to $\mathbf{\pm 2 5 V}$
- Break-Before-Make Switching toff 200nsec, ton 400 nsec Typical
- T²L, DTL, DMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- IH201 Four Normally Closed Switches
- IH202 Four Normally Open Switches
- Low Leakage Typical <100pA

GENERAL DESCRIPTION

The IH201/2 Solid State Analog Gate is designed using an improved, high voltage CMOS technology. This improved

CMOS technology provides input overvoltage capability to ± 25 volts without damage to the device and the destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has eliminated this serious systems problem.
Key performance of the IH201 are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $10 \mu \mathrm{~A}$. Also designed into the $\mathrm{IH} 201 / 2$ is guaranteed Break-Before-Make switching. This is logically accomplished by extending the t_{ON} time (400nsec Typical) such that it exceeds toff time (200nsec Typical). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. This eliminates the need for external logic required to avoid channel-to-channel shorting during switching.

PIN CONFIGURATION

ORDER NUMBERS: IH201MDE OR IH201CDE

ORDER NUMBERS: IH202MDE OR IH202CDE

ORDERING INFORMATION

MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS

V+-V- ... $<$.... $33 V$
Current (Any Terminal) . $<30 \mathrm{~mA}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation . 450mW
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$

$V^{+}-V^{-}$	<33V
$V^{+}-V_{D}$	<30V
$\mathrm{V}_{\mathrm{D}} \mathrm{V}^{-}$	<30V
$\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{s}}$	$< \pm 22 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}-$	<33V
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}$ IN	<30V
VL-GND	<20V
VIN-GND	<20V

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@25 ${ }^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$.)

PER CHANNEL		MIN:/MAX. LIMITS						UNITS	$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \end{aligned}$
		MILITARY			COMMERCIAL				
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
IIN(ON)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=0.8 \mathrm{~V}(\mathrm{IH} 201), \\ & V_{\text {IN }}=2.4 \mathrm{~V} \text { (IH2O2) } \end{aligned}$
IIN(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VIN}_{\mathrm{IN}}=2.4 \mathrm{~V}(\mathrm{IH} 201), \\ & \mathrm{VIN}^{2}=0.8 \mathrm{~V}(\mathrm{IH} 202) \\ & \hline \end{aligned}$
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Drain-Source On Resistance	100	100	200	150	150	200	Ω	$\begin{aligned} & \text { Is }=1 \mathrm{~mA}, \\ & \text { VANALOG }^{2}= \pm 10 \mathrm{~V} \end{aligned}$
$\mathrm{r}_{\text {dS(ON) }}$	Channel to Channel RDS(ON) Match	25	25	25	30	30	30	Ω	$\begin{aligned} & \text { Is (Each Channel) } \\ & =1 \mathrm{~mA} \end{aligned}$
Vanalog	Min. Analog Signal Handling Capability	± 11	± 11	± 11	± 10	± 10	± 10	V	$\mathrm{Is}=10 \mathrm{~mA}$
Idoff)	Switch OFF Leakage Current	1	1	200	2	2	250	nA	$\begin{aligned} & \text { VANALOG }=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \hline \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{IS}(\mathrm{ON}) \\ & \hline \end{aligned}$	Switch On Leakage Current	2	2	200	2	2	250	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{s}}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
ton	Switch "ON" Time		1.0			1.0		$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
toff	Switch "OFF" Time		0.5			0.5		$\mu \mathrm{s}$	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \text { VANALOG } \\ =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ \text { See Fig. } \mathrm{A} \\ \hline \end{array}$
Q(INJ.)	Charge Injection		15			20		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=$ 100Ω, CL $\leq 5 \mathrm{pF}$ See Fig. C
$1^{+}{ }_{Q}$	+ Power Supply Quiescent Current	20	20	100	30	30	100	$\mu \mathrm{A}$	
$1{ }^{-} \mathrm{a}$	-Power Supply Quiescent Current	20	20	100	30	30	100	$\mu \mathrm{A}$	$\left\lvert\, \begin{aligned} & \mathbf{v}^{+}=+15 \mathrm{v}, \mathrm{v}^{-}= \\ & -15 \mathrm{v}, \mathrm{v}_{\mathrm{L}}=+5 \mathrm{v} \end{aligned}\right.$
Iva	+5 V Supply Quiescent Current	20	20	100	30	30	100	$\mu \mathrm{A}$	Switch Duty Cycle < 10\%
IGND	Gnd Supply Quiescent Current	20	20	100	20	20	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54			50		dB	One Channel Off

Figure A

Figure B

Figure \mathbf{C}

IH401/IH401A VARAFET Switch

FEATURES

- $\mathrm{r}_{\mathrm{DS}(o n)}=\mathbf{2 5}$ ohms Typlcal ($\mathbf{(H 4 0 1)}$
- ID(off) of 10pA Typical
- Switching Times of $\mathbf{2 5 n s}$ for ton and $\mathbf{7 5 n s}$ for toff ($R_{L}=1 \mathrm{k} \Omega$)
- Built-In Overvoltage Protection to Plus or Minus 25V
- Charge Injection of 3 mV Typical into $0.01 \mu \mathrm{~F}$ Capacitor
- Ciss $_{\text {<1pF Typical }}$
- Can Be Used for Hybrid Construction

GENERAL DESCRIPTION

The IH401 is made up of 4 monolithically constructed combinations of a varactor type diode and an N-channel Junction FET. The FET itself is very similar to the popular 2N4391, and the driver diode is a specially designed diode, such that
its capacity is a strong function of the voltage across it. The driver diode is electrically in series with the gate of the N channel FET and simulates a back-to-back diode structure; this structure is needed to prevent forward biasing the source-to-gate or drain-to-gate junctions of the FET when used in switching applications.
Previous applications of Junction FETs required the addition of diodes, in series with the gate, and then perhaps a gate-tosource referral resistor or a capacitor in parallel with the diode; therefore, at least 3 components were required to perform the switch function. The 1 H 401 does this same job in one component (with a great deal better performance characteristics).

Like a standard FET, to practically perform a solid state switch function a translator should be added to drive the diode. This translator takes the $T^{2} \mathrm{~L}$ levels and converts them to voltages required to drive the diode/FET system (typically a OV to -15 V translation and a 3 V to +15 V shift). With $\pm 15 \mathrm{~V}$ power supplies, the IH401 will typically switch 18p-p at any frequency from $D C$ to 20 MHz , with less than 30 ohms ros r_{D} (on). The IH401A will typically switch 22 V p-p with less than 50 ohms rosion).
TOPOGRAPHY

ORDERING INFORMATION

CERDIP Package: IH401JE
IH401AJE

V^{-}.. 35V
V^{+}to V_{IN}
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS AT $25^{\circ} \mathbf{C}$ (unless otherwise specified)

SYMBOL	CHARACTERISTIC	CONDITIONS	IH401			UNIT
			MIN	TYP	MAX	
rDS(on)	Switch "on" Resistance	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DRAIN }}=-7.5 \mathrm{~V} \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$		20	30	Ω
Vp	Pinch-Off Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	4	6	7.5	V
ID(off)	Switch "off" Current or "off" Leakage	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, V_{\text {SOUR.CE }}=-7.5 \mathrm{~V}, \\ & V_{\text {DRAIN }}=+7.5 \mathrm{~V} \end{aligned}$		10	200	, pa
ID(off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	Same as Above		0.25	50	na
'S(off)	Switch "off" Current	$\begin{aligned} & \text { VDRIVE }=-15 \mathrm{~V}, \mathrm{~V}_{\text {DRAIN }}=-7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {SOURCE }}=+7.5 \mathrm{~V} \end{aligned}$		10	200	pa
IS(off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	Same as Above		0.3	50	na
$\begin{aligned} & \text { ID(on) } \\ & \text { IS(on) } \end{aligned}$	Switch Leakage when Turned "on"	$\begin{aligned} & V_{D}=V_{S}=-7.5 \mathrm{~V}, \\ & V_{\text {DRIVE }}=+15 \mathrm{~V} \end{aligned}$		0.02	2	na
$V_{\text {analog }}$	AC Input Voltage Range without Distortion	See Figure B	15	18		V_{p-p}
$\mathrm{V}_{\text {inject }}$	Charge Injection Amplitude	See Figure C		3	10	$m V_{p-p}$
$\mathrm{B} V_{\text {diode }}$	Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection	$\begin{aligned} & V_{D}^{\prime}=V_{S}=-V, I_{\text {DRIVE }}=1 \mu A ; \\ & V_{\text {DRIVE }}=0 V \end{aligned}$	-30	-45		V
$\mathrm{BV}_{\text {GSS }}$	Gate to Source or Gate to Drain Reverse Breakdown Voltage	$\begin{aligned} & V_{\text {DRIVE }}=-\mathrm{V}, V_{D}=V_{S}=0 \mathrm{~V}, \\ & \text { IDRIVE }=1 \mu \mathrm{~A} \end{aligned}$	30	41		V
IDSS	Maximum Current Switch can Deliver (Pulsed)	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \dot{V}_{\mathrm{S}}=0 \mathrm{~V}, \\ & V_{D}=+10 \mathrm{~V} \end{aligned}$	45	70		mA
t_{t}	Switch "on" time (Note 1)	See Figure A		25	50	ns
${ }_{\text {toff }}$	Switch "off" time (Note 1)	See Figure A		75	150	ns

NOTE 1: Driving waveform must be $>100 n$ rise and fall time.

FIGURE A

ADDED NOTE:
The IH401A lends itself very well to hybrid construction i.e.; chip requirement.

ELECTRICAL CHARACTERISTICS AT $25^{\circ} \mathrm{C}$ (unless otherwise specified)

SYMBOL	CHARACTERISTIC	CONDITIONS	IH401A			UNIT
			MIN	TYP	MAX	
rDS(on)	Switch "on" Resistance	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, V_{\text {DRAIN }}=-10 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$		35	50	Ω
V_{P}	Pinch-Off Voltage	$I_{D}=1 \mathrm{nA}, V_{D S}=10 \mathrm{~V}$	3	4	5	V
${ }^{\prime} \mathrm{D}$ (off)	Switch "off" Current or "off" Leakage	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, V_{\text {SOURCE }}=-10 \mathrm{~V}, \\ & V_{\text {DRAIN }}=+10 \mathrm{~V} \end{aligned}$		10	200	pa
${ }^{\prime} \mathrm{D}$ (off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	Same as Above		0.25	50	na
'S(off)	Switch 'off' Current	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DRAIN }}=-10 \mathrm{~V} \\ & V_{\text {SOURCE }}=+10 \mathrm{~V} \end{aligned}$		10	200	pa
IS(off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	Same as Above		0.3	50	na
$\begin{aligned} & \mathrm{I}(\text { (on })^{+} \\ & \operatorname{IS}(\text { on) } \end{aligned}$	Switch Leakage when Turned "on"	$\begin{aligned} & V_{D}=V_{S}=-10 \mathrm{~V}, \\ & V_{\text {DRIVE }}=+15 \mathrm{~V} \end{aligned}$		0.02	2	na
Vanalog	AC Input Voltage Range without Distortion	See Figure B	20	22		V_{p-p}
$V_{\text {inject }}$	Charge Injection Amplitude	See Figure C	.	3	10	$m V_{p-p}$
$B V_{\text {diode }}$	Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection.	$\begin{aligned} & V_{D}=V_{S}=-V, \text { IDRIVE }=1 \mu \mathrm{~A}, \\ & V_{\text {DRIVE }}=0 V \end{aligned}$	-30	-45		V
$B V_{G S S}$	Gate to Source or Gate to Drain Reverse Breakdown Voltage	$\begin{aligned} & V_{\text {DRIVE }}=-V, V_{D}=V_{S}=0 V, \\ & \text { IDRIVE }=1 \mu A \end{aligned}$	30	41		V
IDSS	Maximum Current Switch can Deliver (Pulsed)	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, V_{S}=0 \mathrm{~V}, \\ & V_{D}=+10 \mathrm{~V} \end{aligned}$	35	55		mA
$\mathrm{t}_{\text {on }}$	Switch "on" time (Note 1)	See Figure A		25	50	ns
$\mathrm{t}_{\text {off }}$	Switch "off" time (Note 1)	See Figure A		75	150	ns

NOTE: Driving waveform must be $>100 \mathrm{~ns}$ rise and fall time.

APPLICATIONS

IH401 FAMILY

In general, the IH401 family can be used in any application formally using a JFET/isolation diode combination (2N4391 or similar). Like standard FET circuits, the IH401 requires a translator for normal analog switch function. The translator is used to boost the TTL input signals to the $\pm 15 \mathrm{~V}$ analog supply levels which allow the IH 401 to handle $\pm 7.5 \mathrm{~V}$ analog signals (or IH401A to handle $\pm 10 \mathrm{~V}$ analog signals). A typical simple PNP translator is shown in Figure 1.

FIGURE 1

Although this simple PNP circuit represents a minimum of components, it requires open collector TTL input and ${ }^{t}$ (off) is limited by the collector load resistor (approximately $1.5 \mu \mathrm{~s}$ for $10 \mathrm{k} \Omega$). Improved switching speed can be obtained by increasing the complexity of the translator stage.

A translator which overcomes the problems of the simple PNP stage is the Intersil IH6201.* This translator driving an IH401 varafet produces the following typical features:

- $t_{\text {on }}$ time of approx. 200ns
$-t_{\text {off }}$ time of approx. 80 ns
break before make switch
- TTL compatible strobing levels of

$-I_{D(o n)}+I_{S}(o n)$ typically 20 pA up to $\pm 10 \mathrm{~V}$ analog signals
- ID(off) or IS(off) typically 20pA
- Quiescent current drain of approx. 100nA in either "on" or "off" case
*The IH6201 is a dual translator (two independent translators per package) constructed from monolithic CMOS technology. The schematic of one-half IH6201, driving one-fourth of an IH401, is shown in Figure 2.

A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See III.)
I. DUAL SPST ANALOG SWITCH

NOTE: Either switch is turned on when strobe input goes high.
II. DPDT ANALOG SWITCH

III. DUAL SPOT

IV. DUAL DPST

DG426/A, DG429/A, DG433/A,
 DG434/A, DG440/A, DG441/A, DG451/A, DG452/A, DG453/A, DG454/A 2-Channel Drivers with SPST and DPST FET Switches

FEATURES

- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, - 1 mW
- Switches analog signals up to 16 volts peak-to-peak
- Low ros(on), 15 ohms max on DG440/A and DG441/A
- Switching times improved $100 \%-{ }^{\prime \prime} \mathrm{A}^{\prime \prime}$ versions

GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST or DPST junction FET switch. The driver interfaces DTL, TTL or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and logic " 0 " turns it' OFF.

SCHEMATIC \& LOGIC DIAGRAMS (Outline Dwgs DD., FD-2)

DUAL SPST
$D G 433 / A($ RDS $(O N)=35 \Omega)$ DG434/A(rDS(ON) $=80 \Omega$) $D G 441 / A\left(r_{D S}(O N)=15 \Omega\right)$ DG451/A(rDS(ON) $=20 \Omega)$ DG452/A(rDS (ON) $=100 \Omega)$

DUAL DPST

$D G 426 / A(r D S(O N)=80 \Omega)$
DG429/A(rDS(ON) $=35 \Omega$)
DG440/A(rDS(ON) $=15 \Omega$)
$D G 453 / A\left(r_{D S}(O N)=20 \Omega\right)$
DG454/A(RDS(ON) $=100 \Omega)$

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS
Analog Signal Voltage ($\mathrm{V}_{\mathrm{A}}-\mathrm{V}^{-}$or $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{A}}$) 28 V
Total Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 32V
Pos. Supply Voltage to Ref. Voltage ($\mathrm{V}^{+}-\mathrm{V}_{\mathrm{R}}$) 18 V
Ref. Voltage to Neg. Supply Voltage ($\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}$) 21V
Power Dissipation (Note): 750 mW
Current (any terminal)
30 mA

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device rellability.

ELECTRICAL CHARACTERISTICS PER CHANNEL

Applied voltages for all tests: DG426, DG429, DG433, DG434, DG440, DG441, ($\left.\mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0\right)$ and $\mathrm{DG451}$, DG452, DG453, DG454 ($\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$). Input test condition which guarantees FET switch ON and OFF as specified is used for output and power supply specifications.

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test:

ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow[b]{2}{*}{SYMBOL (NOTE)} \& \multirow{2}{*}{CHARACTERISTIC} \& \multirow{2}{*}{TYPE} \& \multicolumn{3}{|l|}{ABSOLUTE MAX. LIMIT} \& \multirow{2}{*}{UNITS} \& \multirow{2}{*}{TEST CONDITIONS} \& \multirow[t]{2}{*}{}

\hline \& \& \& \& 0° \& - 25° \& 70° \& \& \&

\hline \& \multirow[b]{2}{*}{Ton} \& \multirow[b]{2}{*}{Turn-On Time} \& $$
\begin{aligned}
& \text { DG426, DG429 } \\
& \text { DG433, DG434. } \\
& \text { DG452, DG454 }
\end{aligned}
$$ \& \& 1.0 \& \& $\mu \mathrm{s}$ \& \multirow[t]{2}{*}{See Below} \&

\hline \& \& \& DG426A, DG429A DG433A, DG434A DG452A, DG454A \& . \& 0.5 \& 0.7 \& $\mu \mathrm{s}$ \& \&

\hline S
w
1 \& \multirow[b]{2}{*}{toff} \& \multirow[b]{2}{*}{Turn-Off Time} \& $$
\begin{aligned}
& \text { DG426, DG429 } \\
& \text { DG433, DG434 } \\
& \text { DG452, DG454 }
\end{aligned}
$$ \& \& 2.0 \& \& $\mu \mathrm{s}$ \& \multirow[t]{2}{*}{See Below} \&

\hline T
C

H \& \& \& $$
\begin{aligned}
& \text { DG426A, DG429A } \\
& \text { DG433A, DG434A } \\
& \text { DG452A, DG454A }
\end{aligned}
$$ \& \& 1.0 \& 1.3 \& $\mu \mathrm{s}$ \& \&

\hline $$
\begin{aligned}
& \mathrm{N} \\
& \mathrm{G}
\end{aligned}
$$ \& \multirow[b]{2}{*}{ton} \& \multirow[t]{2}{*}{Turn-On Time} \& \[

$$
\begin{aligned}
& \text { DG440, DG441 } \\
& \text { DG451, DG453 }
\end{aligned}
$$
\] \& \& 1.5 \& \& $\mu \mathrm{s}$ \& \multirow[t]{2}{*}{See Below} \&

\hline \& \& \& $$
\begin{aligned}
& \text { DG440A, DG441A } \\
& \text { DG451A, DG453A }
\end{aligned}
$$ \& \& . 75 \& 1.3 \& $\stackrel{\mu}{\text { s }}$ \& \&

\hline \& \multirow[b]{2}{*}{toff} \& \multirow[t]{2}{*}{Turn-Off Time} \& $$
\begin{aligned}
& \text { DG440, DG441 } \\
& \text { DG451, DG453 }
\end{aligned}
$$ \& \& 2.5 \& \& $\mu \mathrm{s}$ \& \multirow[t]{2}{*}{See Below} \&

\hline \& \& \& | DG440A, DG441A |
| :--- |
| DG451A, DG453A | \& \& 1.25 \& 1.8 \& $\mu \mathrm{s}$ \& \&

\hline P \& Pon \& ON Drive Power \& \multirow[b]{2}{*}{All Circuits} \& \& 175 \& \& mW \& Both Inputs $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ \&

\hline E
R
R \& Poff \& OFF Driver Power \& \& \& 1 ' \& \& mW \& Both Inputs $\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}$ \& -

\hline
\end{tabular}

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES (at $25^{\circ} \mathrm{C}$)

DG426/A, 429/A, 433/A, 434/A,
440/A, $441 / A^{\circ}$

OFF MODEL

ON MODEL

DG451/A, 452/A, 453/A, 454/A

OFF MODEL

ON MODEL

TYPICAL CHARACTERISTICS (per channel)

DG426/A, 429/A, 433/A, 434/A, 440/A, 441/A

DG451/A, 452/A, 453/A, 454/A

ALL CIRCUITS

DG439/A, DG442/A - DG446/A, DG461/A - DG464/A Drivers with Differentially Driven N.O. and N.C. FET Switches

FEATURES

- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, -1 mW
- Switches analog signals up to 16 volts peak-to-peak
- Low rDS(ON), 15 ohms max on DG445/A and DG446/A
- Switching times improved $100 \%-$ " $\mathrm{A}^{\prime \prime}$ circuits

GENERAL DESCRIPTION

Each package contains a monolithic driver with differential input and 2 or 4 discrete FET switches. The driver may be treated as a special purpose differential amplifier which controls the conduction state of the FET switches. The differential output of the driver sets the switches in opposition, one pair open and the other pair closed. All switches may be opened by applying a positive control signal to the V_{R} terminal.

SCHEMATIC \& LOGIC DIAGRAMS (Outline Dwgs DD, FD-2, JD)

SPDT

DG443/A(rDS(ON) $=80 \Omega$) DG444/A(rDs $(O N)=35 \Omega)$ DG446/A(rDS(ON) $=15 \Omega$) DG461/A(rDS $(O N)=20 \Omega)$ $D G 462 / A(\mathrm{DDS}(\mathrm{ON})=100 \Omega$)

DPDT
DG439/A(rDS(ON) $=35 \Omega)$
DG442/A(rDS(ON) $=80 \Omega)$
DG445/A/(rDS(ON) $=15 \Omega)$
DG463/AADS(ON) $=20 \Omega)$
DG464/A(rDST(ON) $=100 \Omega$)

ORDERING INFORMATION

$V_{S}-V^{-} \ldots \ldots . .28 \mathrm{~V} \quad \mathrm{~V}^{+}-\mathrm{V}_{\mathrm{IN} 1}$ or $\mathrm{V}_{\mathrm{IN} 2} \ldots 14 \mathrm{~V}$
$\mathrm{V}^{+}-\mathrm{V}_{\mathrm{S}} \ldots \ldots . \mathrm{V}_{2} \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IN} 1}-\mathrm{V}_{\mathrm{IN} 2} \ldots \ldots . \mathrm{V}^{2} \mathrm{~V}$
$V_{S}-V_{D} \ldots \ldots \pm \pm 21 \mathrm{~V} \quad V_{I N 1}-V_{R} \ldots \ldots . . \pm 5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-} \ldots \ldots . .20 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IN} 2}-\mathrm{V}_{\mathrm{R}} \ldots . \ldots . \mathrm{V}_{\mathrm{V}}$
Power Dissipation (Note) 750 mW
Current (any terminal) 30 mA
Operating Temperature -55 to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Applied voltages for all tests: DG439/A, DG442/A, DG443/A, DG444/A, DG445/A, DG446/A, ($\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}$, $\left.\mathrm{V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathbb{I N} 2}=2.5 \mathrm{~V}\right)$ and DG461A, DG462/A, DG463/A, DG464/A $\left(\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathrm{IN} 2}=2.5 \mathrm{~V}\right)$. Input test condition that guarantees FET switch ON or OFF as specified is used for output specifications.

	SYMBOL (NOTE)	- CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT.			UNITS	TEST CONDITIONS
				-55°	25°	125°		
$\begin{aligned} & 1 \\ & N \\ & P \\ & U \\ & T \end{aligned}$	$V_{\text {INION }}$	Input Voltage-On	All Circuits	2.9 min	2.5 min	2.0 min	Volts	At Pin 9 and 13 See Figure 1 and 2, Pg. 4
	$V_{\text {INIOF'F) }}$	Input Voltage-Off		1.4	1.0	0.8	Volts	At Pin 9 and 13 See Figure 1 and 2, Pg. 4
	$\left\|V_{9}-V_{13}\right\|$	Differential Voltage		0.5 min	0.5 min	0.5 min	Volts	See Note 1, Pg. 4
	I'NIIONI	Input Current		150	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN, }} 3.0 \mathrm{~V}$
	I inzioni			150	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN2 }} \cdot 2.0 \mathrm{~V}$
	I'NIOFF)	Input Leakage Current		4	4	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN1 }} \cdot 2.0 \mathrm{~V}$
	I in 2(off)			4	4	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN2 }} \cdot 3.0 \mathrm{~V}$
:		Drain-Source On Resistance	$\begin{aligned} & \text { DG442/A } \\ & \text { DG443/A } \end{aligned}$	80	80	130	\$2	$V_{D}=10 \mathrm{~V}, I_{S}=1 \mathrm{~mA}$
			$\begin{aligned} & \text { DG439/A } \\ & \text { DG444/A } \end{aligned}$	35	35	50	$!2$	
	rosion)		$\begin{aligned} & \text { DG445/A } \\ & \text { DG446/A } \end{aligned}$	15	15	25	92	
$\begin{aligned} & S \\ & W \\ & 1 \\ & T \\ & C \\ & H \end{aligned}$			$\begin{aligned} & \text { DG461/A } \\ & \text { DG463/A } \end{aligned}$	20	20	30	Ω	$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V} . \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA}$
			$\begin{aligned} & \text { DG462/A } \\ & \text { DG464/A } \end{aligned}$	100	100	140	S2	
	IDION) $^{+}$ISION)	Drive Leakage Current	DG439/A DG442/A DG443/A DG444/A		5	160	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-8 \mathrm{~V}$
	ISIOFFI	Source Leakage Current			5	160	nA	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-8 \mathrm{~V}$
	Idioff)	Drain Leakage Current			5	160	nA	$V_{D}=8 \mathrm{~V}, V_{S}=-8 \mathrm{~V}$
	$\mathrm{I}_{\text {OION }}+\mathrm{I}_{\text {SION }}$	Drive Leakage Current	$\begin{aligned} & \text { DG445/A } \\ & \text { DG446/A } \end{aligned}$		5	160	nA	$V_{D}=V_{S}=-8 \mathrm{~V}$
	IS(OFF)	Source Leakage Current			15	500	nA	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-8 \mathrm{~V}$
	Idioffi	Drain Leakage Current			15	500	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-8 \mathrm{~V}$
	$I_{\text {DIONI }}+I_{\text {SION }}$	Drive Leakage Current	$\begin{aligned} & \text { DG461/A } \\ & \text { DG463/A } \end{aligned}$		5	100	nA	$V_{D}=V_{S}=-5.5 \mathrm{~V}$
	ISIOFFI	Source Leakage Current			15	300	nA	$\mathrm{V}_{\mathrm{S}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-5.5 \mathrm{~V}$
	Idoff)	Drain Leakage Current			15	300	nA	$\mathrm{V}_{\mathrm{D}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-5.5 \mathrm{~V}$
	$I_{\text {DIONI }}+I_{\text {SIONI }}$	Drive Leakage Current	$\begin{aligned} & \text { DG462/A } \\ & \text { DG464/A } \end{aligned}$		5	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-5.5 \mathrm{~V}$
	ISIOFFI	Source Leakage Current			5	100	$n \mathrm{~A}$	$V_{D}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-5.5 \mathrm{~V}$
	Idoff)	Drain Leakage Current			5	100	. $n \mathrm{~A}$	$\mathrm{V}_{\mathrm{D}}=5.5 \mathrm{~V}, \mathrm{~V}_{S}=-5.5 \mathrm{~V}$
$\begin{aligned} & P \\ & O \\ & W \\ & E \\ & R \\ & S \\ & U \\ & P \\ & P \\ & L \\ & Y \end{aligned}$	I'ON)	Positive Power Supply Drain Current	All Circuits	,	3.5	.	mA	$V_{1 N 1}=3 V$ or $V_{i N 1}=2 V$
	$\mathrm{I}_{\text {(1ON }}$	Negative Power Supply Drain Current			-2.0		mA	
	'rion)	Reference Power Supply Drain Current		-	-1.5	,	mA	
	I(10FF)	Positive Power Süpply Leakage Current			25		$\mu \mathrm{A}$	
	$\mathrm{I}_{\text {20FF) }}$.	Negative Power Supply Leakage Current			-25	-	$\mu \mathrm{A}$	$V_{1 N 1}=V_{1 N 2}=0.8 \mathrm{~V}$
	Ifoff)	Reference Power Supply Leakage Current			-25 ${ }^{\circ}$		$\mu \mathrm{A}$	

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS
.				$-55^{\circ} \mathrm{C}$	25°	125°		
SWITCHING	TON	Turn-On Time	$\begin{aligned} & \text { DG439, DG442 } \\ & \text { DG443, DG444 } \\ & \text { DG462, DG464 } \end{aligned}$		1.0		$\mu \mathrm{s}$	See Below
			$\begin{aligned} & \text { DG439A, DG442A } \\ & \text { DG443A, DG444A } \\ & \text { DG462A, DG464A } \end{aligned}$		0.5	0.7	$\mu \mathrm{s}$	
	toff	Turn-Off Time	$\begin{aligned} & \text { DG439, DG442 } \\ & \text { DG443, DG444 } \\ & \text { DG462, DG464 } \end{aligned}$,	2.0		μs	See Below
			DG439A, DG442A DG443A, DG444A DG462A, DG464A	,	1.0	1.3	$\mu \mathrm{s}$	
	ION	Turn-On Time	DG445, DG446 DG461, DG463		1.5		μs	See Beplow
			$\begin{aligned} & \text { DG445A, DG446A } \\ & \text { DG461A, DG463A } \end{aligned}$. 75	1.3	μs	
	toff	Turn-Off Time	$\begin{aligned} & \text { DG445, DG446 } \\ & \text { DG461, DG463 } \end{aligned}$		2.5		$\mu \mathrm{s}$	See Below
			DG445A, DG446A DG461A, DG463A		1.25	1.8	$\mu \mathrm{s}$	
$\begin{gathered} \hline P \\ O \\ W \\ E \\ R \end{gathered}$	Pon	ON Driver Power	All Circuits		175		mW	Both Inputs $\mathrm{V}_{\text {IN }}=\mathbf{2 , 5 V}$
	Poff	OFF Driver Power			1		mW	Both inputs $V_{\text {iN }}=1.0 \mathrm{~V}$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

SWITCHING TIMES $\left(25^{\circ} \mathrm{C}\right)$

DG439/A, 442/A, 443/A, 444/A, 445/A, 446/A

OFF MODEL

ON MODEL

DG461/A, 462/A, 463/A, 464/A

OFF MODEL

ON MODEL

FIGURE 1

FIGURE 2

NOTE1: An example of Absolute Minimum Differential Voltage, $\left|V_{9}-V_{13}\right|$, is when $V_{9}=3 V$ and $V_{13}=2.5 \mathrm{~V}$, the V_{9}, side of the switch is ON and the V_{13} side of the switch is OFF at $25^{\circ} \mathrm{C}$. Conversely, when $V_{9}=2 \mathrm{~V}$ and $\mathrm{V}_{13}=2.5 \mathrm{~V}$, the V_{9}, side of the switch is OFF and the V_{13} side of the switch is ON at $25^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS (per channel)

DG439/A, 442/A, 443/A, 444/A, 445/A, 446/A

DG461/A, 462/A, 463/A, 464/A

ID(OFF) vs TEMPERATURE

MM450/MM550, MM451/MM551 MM452/MM552, MM455/MM555 MOS-FET Switches

FEATURES

- Large Analog Input- $\pm 10 \mathrm{~V}$
- Low Supply Voltage $-\mathrm{V}_{\text {BULK }}=+10 \mathrm{~V}$
$V_{G G}=-20 \mathrm{~V}$
- Typical ON Resistance $-\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}, 150 \Omega$ $V_{I N}=+10 \mathrm{~V}, 75 \Omega$
- Low Leakage Current-200 pA.@ $25^{\circ} \mathrm{C}$
- Input Gate Protection

GENERAL DESCRIPTION

The MM450, and MM550 series each contain p channel MOS enhancement mode transistors. These devices are useful in airborne and ground support systems requiring multiplexing, analog transmission, and numerous signal routing applications. The use of low threshold transistors ($\mathrm{V}_{\mathrm{TH}}=2$ volts) permits operations with large analog input swings (± 10 volts) at low gate voltages (-20 volts).

Each gate input is protected from static charge build-up by the incorporation of zener diode protective devices connected between the gate input and device bulk.

CONNECTION DIAGRAMS

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS (Note 1)
Gate Voltage (V_{GG})
Bulk Voltage ($\mathrm{V}_{\text {BULK }}$)
Analog Input ($\mathrm{V}_{\text {IN }}$)
Power Dissipation
Operating Temperature
MM450, MM451, MM452, MM455 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

MM550, MM551, MM552, MM555
Storage Temperature Lead Tempertature (soldering, 10 sec .)

NOTE 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for FD package and $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TW package.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel unless noted)

SYMBOL	CHARACTERISTICS	TYPE	LIMITS						CONDITIONS		
			25°	70°	85°	125°	$\frac{\text { MIN }}{\text { MAX }}$	UNITS			
$V_{\text {IN }}$	Analog Input Voltage	All	± 10				Max	V	-		
$\mathrm{V}_{\text {GS }}(\mathrm{Th})$	Threshold Voltage	All	1.5				Min	V	$\begin{aligned} & V_{D G}=0 \\ & I_{D}=10 \mu \mathrm{~A} \end{aligned}$		
			3.0				Max				
rosion)	Drain-Source On Resistance	All	600		600	-	Max	Ω	$V_{1 N}=-10 \mathrm{~V}$	$\begin{aligned} & I_{D}=1 \mathrm{~mA} \\ & V_{B}=10 \mathrm{~V} \\ & V_{G S}=-20 \mathrm{~V} \end{aligned}$	
			200		200		Max	Ω	$V_{\text {IN }}=+10 \mathrm{~V}$		
$i_{\text {GBS }}$	Gate Leakage Current	All	5			100	Max	nA	$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{DS}}=0$		
IDIOFF)	Drain Leakage Current	MM450, MM451 MM452, MM455	0.2		40	200	Max	nA	$\left\{\begin{array}{l} V_{D B}=-25 V \\ V_{G B}=V_{S B}=0 \end{array}\right.$		
		MM550, MM551 MM552, MM555	20	100			Max	nA			
$I_{\text {S }}$ (OFF)	Source Leakage Current	MM450, MM451 MM452, MM455	0.4		40	400	Max	nA	$\begin{aligned} & V_{S B}=-25 V \\ & V_{D B}=V_{G B}=0 \end{aligned}$		
		$\begin{aligned} & \text { MM550, MM551 } \\ & \text { MM552, MM555 } \end{aligned}$		100			Max	nA			
C_{DB}	Drain-Body Capacitance	All	10				pF	Max	$V_{D B}=V_{G B}=V_{S B}=0$		
$\mathrm{C}_{\text {se }}$	Source-Body Capacitance	MM450, MM550	14				pF	Max			
		MM451, MM551	24				pF	Max			
		MM452, MM552	11				pF	Max			
		MM455, MM555	11				pF	Max			
C_{GB}	Gate-Body Capacitance	MM450, MM550	13				pF	Max	$\begin{gathered} V_{D B}=V_{G B}=V_{S B}=0 \\ f=1 \mathrm{MHZ} \end{gathered}$		
		MM451, MM551	8				pF	Max	. . .		
		MM452, MM552	9				pF	Max			
		MM455, MM555	9				pF	Max			
$\mathrm{C}_{\text {Gs }}$	Gate-Source Capacitance	All	5				pF	Max			

TYPICAL PERFORMANCE CURVES

FEATURES

- Gate Lead Available for Nulling Charge Injection Voltage
- Channel Complete-Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, -1 mW
- Low rid(on), 30Ω Max on IH5001
- Switches Analog Signals up to 16 Volts Peak-to-Peak

GENERAL DESCRIPTION

These switching circuits contain one channel in one package, the channel consisting of a driver circuit controlling a SPST junction FET switch. The driver interfaces DTL, TTL, or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and logic " 0 " turns it OFF. The gate lead of the FET has been brought out to enable the application of a referral resistor for nulling offset voltage due to charge injection.

SCHEMATIC \& LOGIC DIAGRAM (Outline Dwg PA)

$$
\begin{aligned}
& \text { IH5001 }\left(r_{\text {DS }(o n)}=30 \Omega\right) \\
& \text { IH5002 }\left(r_{\text {DS }(o n)}=50 \Omega\right)
\end{aligned}
$$

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Analog Signal Voltage $\left(V_{A}-V^{-}\right.$or $\left.V^{ \pm} V_{A}\right)$ 28 V
Total Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Pos. Supply Voltage to Ref. Voltage ($\mathrm{V}^{+}-\mathrm{V}_{\mathrm{R}}$)
Ref. Voltage to Neg. Supply Voltage $\left(V_{R}-V^{-}\right)$
Power Dissipation (Note)
Current (Any Terminal)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Applied voltages for all tests: $\mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}$. Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications.

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX LIMIT			UNITS	TEST CONDITIONS
				0°	25°	70°		
$\begin{aligned} & 1 \\ & \mathrm{~N} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \hline \end{aligned}$	$V_{\text {IN(ON }}$	Input Voltage-ON	Both Circuits	2.9 min	2.5 min	2.0 min	Volts	$\mathrm{V}-=-12 \mathrm{~V}$
	$\mathrm{V}_{\text {In(OFF) }}$	Input Voltage-OFF		1.4	1.0	0.8	Volts	$\mathrm{V}-=-12 \mathrm{~V}$
	Infon)	Input Current		150	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	I'N(OFF)	Input Leakage Current		4	4	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
	VDS(ON)	Drain-Source ON Resistance	1H5001	30	30	50	Ω	$\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$
			IH5002	50	50	85	Ω	
	IDONO^{+1} IS(ON)	Drive Leakage Current	Both Circuits		5	160	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-8 \mathrm{~V}$
	IS(off)	Source Leakage Current			5	160	nA	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-8 \mathrm{~V}$
	$\mathrm{I}_{\text {dioff }}$	Drain Leakage Current			5	160	nA.	$\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-8 \mathrm{~V}$
$\begin{aligned} & \mathrm{P} \\ & \mathrm{O} \\ & \mathrm{~W} \\ & \mathrm{E} \\ & \mathrm{R} \\ & \mathrm{~S} \\ & \mathrm{U} \\ & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~L} \end{aligned}$	$1+$	Positive Power Supply Drain Current	Both Circuits		3.5		mA	Driver ON, $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	$1-$	Negative Power Supply Drain Current			-2.0		mA	
	Ifef	Reference Power Supply Drain Current			-1.5		mA	
	${ }^{1+}$ LK	Positive Power Supply Leakage Current			25		$\mu \mathrm{A}$	Driver OFF, $\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$
	${ }^{1-}{ }_{\text {LK }}$	Negative Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
	$\mathrm{I}_{\text {RLK }}$	Reference Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
s	ton	Turn-On Time	Both Circuits		0.5	0.7	$\mu \mathrm{s}$	See Below
	toff	Turn-Off Time			1.0	1.3	$\mu \mathrm{s}$	
Pr	Pon	ON Driver Power	Both Circuits		175		mW	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	Poff	OFF Driver Power			1		mW	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}$
F E T	VGSSF	Gate Source Forward Voltage	Both Circuits		1.5		Volts	$\mathrm{I}_{\mathrm{G}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

SWITCHING TIMES (at $25^{\circ} \mathrm{C}$)

OFF MODEL

ON MODEL

FEATURES

- Gate Lead Available for Nulling Charge Injection Voltage
- Each Channel Complete-Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, -1 mW
- Switches Analog Signals up to 20 Volts Peak-to-Peak
- Low rDS(ON), 30 Max on IH5003

GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST junction FET switch. The driver interfaces DTL, TTL, or RTL logic signals for multiplexing, commutating,

IH5003/IH5004 2-Channel Drivers with SPST FET Switches AND Gate Available directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and logic " 0 " turns it OFF. The gate lead of the FETs has been brought out to enable the application of a referral resistor for nulling out offset voltage due to charge injection.

PIN CONFIGURATIONS

OUTLINE DWGS JD, DD, PD

OUTLINE DWG FD-2

SCHEMATIC AND LOGIC DIAGRAMS

IH5003 ($\left.\mathrm{r}_{\mathrm{DS}(\text { on })}=30 \Omega\right)$
IH5004 ($r_{\text {DS(on }}=50 \Omega$)

ORDERING INFORMATION

NOTE: Military temperature range not available in plastic package.

ABSOLUTE MAXIMUM RATINGS

$\begin{array}{lr}\text { Analog Signal Voltage }\left(V_{A}-V^{-} \text {or } \mathrm{V}^{+}-\mathrm{V}_{\mathrm{A}}\right) & 30 \mathrm{~V} \\ \text { Total Supply Voltage }\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) & 36 \mathrm{~V} \\ \text { Pos. Supply Voltage to Ref. Voltage }\left(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{R}}\right) & 25 \mathrm{~V} \\ \text { Ref. Voltage to Neg. Supply Voltage }\left(\mathrm{V}_{\mathrm{R}}-\mathrm{V}^{-}\right) & 22 \mathrm{~V} \\ \text { Power Dissipation (Note) } & 750 \mathrm{~mW} \\ \text { Current (Any Terminal) } & 30 \mathrm{~mA} \\ \text { Storage Temperature } & -65 \text { to }+150^{\circ} \mathrm{C} \\ \text { Operating Temperature } & -55 \text { to }+125^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } 10 \mathrm{sec}) & 300^{\circ} \mathrm{C}\end{array}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Applied Voltages for all tests: $\mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}, \mathrm{GND}=0$. Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications.

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX LIMIT			UNITS	TEST CONDITIONS
				-55 ${ }^{\circ}$	25°	125°		
$\begin{aligned} & \mathbf{1} \\ & \mathbf{N} \\ & \mathbf{P} \\ & \mathbf{U} \end{aligned}$	VINIONI	Input Voltage-ON	Both Circuits	2.9 min	2.5 min	2.0 min	Volts	$V^{-}=-12 \mathrm{~V}$
	Vinioff)	Input Voltage-OFF		1.4	1.0	0.6	Volts	$\mathrm{V}^{-}=-12 \mathrm{~V}$
	I INION)	Input Current		120	60	60	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	linioff)	Input Leakage Current		0.1	0.1	2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
	rDSION)	Drain-Source ON Resistance	IH5003	30	30	50	Ω	$V_{D}=10 \mathrm{~V}, \mathrm{I}_{S}=1 \mathrm{~mA}$
			, 1H5004	50	50	85	Ω	
	$I_{\text {I }}$ (ON) ${ }^{\text {I }}$ S(ON)	Drive Leakage Current	Both Circuits		2	100	nA	$V_{D}=V_{S}=-10 \mathrm{~V}$
	's(OFF)	Source Leakage Current			1	100	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	Idoff)	Drain Leakage Current			1	100	nA	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$
	1^{+}	Positive Power Supply Drain Current	Both Circuits		3		mA	One Driver ON, $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	1^{-}	Negative Power Supply Drain Current			-1.8		mA	
	I REF	Reference Power Supply Drain Current			-1.4		mA	
	1^{+}LK	Positive Power Supply Leakage Current			25	,	$\mu \mathrm{A}$	Both Drivers OFF$V_{I N}=0.8 \mathrm{~V}$
	I^{-}LK	Negative Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
	IRLK	Reference Power Supply Lèakage Current			-25		$\mu \mathrm{A}$	
$\stackrel{5}{4}$	${ }^{\text {on }}$	Turn-ON Time	Both Circuits		0.3	0.5	$\mu \mathrm{s}$	See Below,
¢	$t_{\text {off }}$	Turn-OFF Time			0.8	1.2	$\mu \mathrm{s}$	
$\begin{aligned} & \hline \mathrm{P} \\ & \text { o } \\ & \mathbf{w} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\mathrm{P}_{\text {ON }}{ }^{\text { }}$	ON Driver Power	Both Circuits		175		mW	Both Inputs $\mathrm{V}_{\text {IN }}=2.5$
	PofF	OFF Driver Power			1		mW	Both Inputs $\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$
F E T	$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate Source Forward Voltage	Both Circuits		1.5		Volts	$\mathrm{I}_{\mathrm{G}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES (at $25^{\circ} \mathrm{C}$)

OFF MODEL

FEATURES

- Gate Lead Available for Nulling Charge Injection Voltage
- Expansion Capability Available
- Each Channel Complete-Interfaces With Most Integrated Logic
- Low OFF power dissipation, 1 mW
- Low rds(on), 10Ω Max on IH5005

GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST junction FET switch. The driver interfaces DTL, TTL, or RTL logic signals for multiplexing, commutating, and D/A converter applications, whịh permits logic design
directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and Logic " 0 " turns it OFF. The gate lead of the FETs has been brought out to enable the application of a referral resistor for nulling offset voltage due to charge injection. Driver points are brought out to provide for the addition of external FETs for expansion capability.

PIN CONFIGURATIONS

OUTLINE DWG
DD, PD, JD

OUTLINE DWG
FD-2

SCHEMATIC AND LOGIC DIAGRAMS

IH5005 $\left(r_{\text {DS }(\text { on })}=10 \Omega\right)$
1H5006 $\left(r_{\text {DS }(o n)}=30 \Omega\right)$
$1 \mathrm{H} 5007\left(\mathrm{r}_{\mathrm{DS}(\mathrm{on})}=80 \Omega\right)$

ORDERING INFORMATION

NOTE: Military temperature range not available in plastic package.

ABSOLUTE MAXIMUM RATINGS
Analog Signal Voltage $\left(V_{A}-V^{-}\right.$or $\left.\mathrm{V}^{+}-\mathrm{V}_{\mathrm{A}}\right) \quad 30 \mathrm{~V}$
Total Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 36V
Pos. Supply Voltage to Ref. Voltage $\left(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{R}}\right)$ 25V
Ref. Voltage to Neg. Supply Voltage $\left(V_{R}-V^{-}\right)$
22V
Power Dissipation (Note)
Current (Any Terminal)
Storage Temperature
Operating Temperature
Lead Temperature (soldering, 10 sec .)

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Applied Voltages for all tests $\mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$. Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications.

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS
				-55°	25°	125°		
$\begin{aligned} & 5 \\ & \underline{2} \\ & \underline{2} \end{aligned}$	$V_{\text {INION }}$	Input Voltage-ON	All Circuits	2.9 min	2.5 min	2.4 min	Volts	$V^{-}=-12 \mathrm{~V}$
	$V_{\text {IN (OFF) }}$	Input Voltage-OFF		1.4	1.0	0.6	Volts	$V^{-}=-12 \mathrm{~V}$
	I'INION)	Input Current		120	60	60	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	I inioff)	Input Leakage Current		0.1	0.1	2	$\mu \mathrm{A}$	$V_{\text {IN }}=0.8 \mathrm{~V}$
5 0 \vdots 0 0 \vdots \vdots \vdots	rosion)	Drain-Source On Resistance	1H5007	80	80	150	Ω	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$
			IH5006	30	30	50	Ω	
			IH5005	10	10	20	Ω	
	$I_{\text {DION }}+I_{\text {SION }}$	Drive Leakage Current	iH5006 IH5007		2	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$
	$\mathrm{I}_{\text {S }}$ (OFF)	Source Leakage Current			1	100	nA	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	ID(OFF)	Drain Leakage Current			1	100	$n \mathrm{~A}$	$V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V}$
	$I_{\text {DION }}+I_{\text {SION }}$	Drive Leakage Current	IH5005		2	100	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$
	$\mathrm{I}_{\text {S(OFF) }}$	Source Leakage Current			10	1000	nA	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	Idioff)	Drain Leakage Current			10	1000	nA	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$
$\begin{aligned} & \lambda \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & \underset{\sim}{u} \\ & 3 \\ & 0 \\ & 0 \end{aligned}$	1^{+}	Positive Power Supply Drain Current	All Circuits		3		mA	One Driver ON, $\mathrm{V}_{1 N}=2.5 \mathrm{~V}$
	1^{-}	Negative Power Supply Drain Current			-1.8		mA	
	IREF	Reference Power Supply Drain Current			-1.4		mA	
	$\mathrm{I}^{+} \mathrm{LK}$	Positive Power Supply Leakage Current			25		$\mu \mathrm{A}$	Both Drivers OFF, $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
	$\mathrm{I}^{-} \mathrm{LK}$	Negative Power Supply Leakage Current		.	-25		$\mu \mathrm{A}$	
	IRLK	Reference Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
	${ }^{\text {on }}$	Turn-ON Time	$\begin{aligned} & \text { IH5005 } \\ & \text { IH5006 } \\ & \text { IH5007 } \end{aligned}$		1.0	1.5	$\mu \mathrm{s}$	See Page 3
	$t_{\text {off }}$	Turn-OFF Time			2.5	3.7	$\mu \mathrm{s}$	
	$t_{\text {on }}$	Turn-ON Time			0.5	0.8	$\mu \mathrm{s}$	
	$t_{\text {off }}$	Turn-OFF Time		.	1.0	1.5	$\mu \mathrm{s}$	
$\begin{aligned} & \text { व } \\ & \text { 3 } \\ & \text { O } \\ & 0 \end{aligned}$	Pon	ON Driver Power	All Circuits		175		mW	Both Inputs $\mathrm{V}_{\mathrm{IN}}=2.5$
	Poff	OFF Driver Power		.	1		mW	Both Inputs $\mathrm{V}_{\text {IN }}=1.0$
尔	$\mathrm{V}_{\text {GSSF }}$	Gate Source Forward Voltage	All Circuits	,	1.5		Volts	$\mathrm{I}_{\mathrm{G}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$
Q 2 d ¢ ¢	$V_{P P}$	Peak-Peak Voltage at Expansion Outputs	All Circuits	\checkmark	30	.	Volts	$\begin{aligned} & +3 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}{ }^{+} \\ & \mathrm{V}^{+}=+18 \mathrm{~V}, \mathrm{~V}^{-}=-18 \mathrm{~V} \\ & R_{\mathrm{L}} \geqslant 10 \Omega \end{aligned}$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

SWITCHING TIMES (at $25^{\circ} \mathrm{C}$)

OFF MODEL

-ON MODEL

TYPICAL CHARACTERISTICS (per channel)

${ }^{r}$ DS(ON) vs
TEMPERATURE
(Normalized to $25^{\circ} \mathrm{C}$ Value)

ON SUPPLY CURRENT vs TEMPERATURE

OFF SUPPLY CURRENT vs TEMPERATURE

杫

APPLICATION

Expansion Capability 1H5005

FEATURES

- Switches Analog Signals up to 20 Volts Peak-toPeak
- Each Channel Complete - Interfaces with Most Integrated Logic
- Switching Speeds Less than $0.5 \mu \mathrm{~S}$
- ID(OFF) Less than 500 pA Typical at $70^{\circ} \mathrm{C}$
- Effective $\mathrm{r}_{\mathrm{ds}(0 \mathrm{~N})}-5 \Omega$ to 50Ω
- Commercial and Military Temperature Range Operation

IH5009 - IH5024 Virtual Ground Analog Switches

GENERAL DESCRIPTION

The IH5009 series of analog switches were designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed.

Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver. The odd numbered devices are designed to be driven directly from $\mathrm{T}^{2} \mathrm{~L}$ open collector logic (15 volts) while the even numbered devices are driven directly from low level $T^{2} L$ logic (5 volts). Each channel simulates a SPDT switch. SPST switch action is obtained by leaving the diode cathode unconnected; for SPDT action, the cathode should be grounded (OV). The parts are intended for high performance multiplexing and commutating usage. A logic " 0 " turns the channel ON and a logic " 1 " turns the channel OFF.

ABSOLUTE MAXIMUM RATINGS

Positive Analog Signal Voltage........................ 30V
Negative Analog Signal Voltage..................... -15 V
Diode Current 10mA
Power Dissipation (Note) . 500 mW
Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

```
Operating Temperature
    5009C Series.......................... . 0 0 C to +70 % C
    .5009M Series................... - 55 % C to + 125 % C
Lead Temperature (Soldering, 10 sec) ............. 300 }\mp@subsup{}{}{\circ}\textrm{C
```

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum' Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel)

SYMBOL (Note 1)	CHARACTERISTIC	TYPE (Note 4)	TEST CONDITIONS (Note 2)	SPECIFICATION LIMIT				UNITS
				$\begin{gathered} -55^{\circ} \mathrm{C}(\mathrm{M}) \\ 0^{\circ} \mathrm{C}(\mathrm{C}) \end{gathered}$	$25^{\circ} \mathrm{C}$		$\begin{aligned} & +125^{\circ} \mathrm{C}(\mathrm{M}) \\ & +70^{\circ} \mathrm{C}(\mathrm{C}) \\ & \text { MIN/MAX } \end{aligned}$	
				MINIMAX	-TYP.	MIN/MAX		
IIN(ON)	Input Current-ON	All	$V_{1 N}=O V, I_{D}=2 \mathrm{~mA}$	0.1	. 01	0.1	100	$\mu \dot{A}$
IIN(OFF)	Input Current-OFF	5V Logic Ckts	$V_{1 N}=+4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$	0.2	. 04	0.1	10	nA
IIN(OFF)	Input Current-OFF	15V Logic Ckts	$\mathrm{V}_{1 N}=+11 \mathrm{~V}, \mathrm{~V}_{A}= \pm 10 \mathrm{~V}$	0.2	. 04	0.2	10	nA
$\mathrm{V}_{\text {IN }}(\mathrm{ON})$	Channel Control Voltage-ON	5V Logic Ckts	See Figure 5, Note 3	. 0.5		0.5	0.5	V
$V_{\text {IN }}$ (ON)	Channèl Control Voltage-ON'	15V Logic Ckts	See Figure 6, Note 3	, 1.5		1.5	1.5	V
$V_{\text {IN }}(\mathrm{OFF})$	Channel Control Voltage-OFF	5V Logic Ckts	See Figure 5, Note 3	4.5		4.5	4.5	V
$V_{\text {IN }}(\mathrm{OFF})$	Channel Control Voltage-OFF	15V Logic Ckts	See Figure 6, Note 3	11.0		11.0	11.0	V
ID(OFF)	Leakage Current-OFF	5V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$	0.2	. 02	0.2	10	nA
ID(OFF)	Leakage Current.OFF	15V Logic Ckts	$\mathrm{V}_{1 N}=+11 \mathrm{~V}, \mathrm{~V}_{A}= \pm 10 \mathrm{~V}$	0.2	. 02	0.2	10	nA
${ }^{\text {I }}$ (ON)	Leakage Current-ON	5V Logic Ckts	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$.	1.0	0.30	1.0	$\begin{aligned} & 1000(\mathrm{M}) \\ & 200(\mathrm{C}) \\ & \hline \end{aligned}$	$n A$
${ }^{\text {I }}$ (ON)	Leakage Current-ON	15V Logic Ckts	$V_{I N}=0 \mathrm{~V}, I_{S}=1 \mathrm{~mA}$	0.5	0.10	0.5	$\begin{aligned} & 500(\mathrm{M}) \\ & 100(\mathrm{C}) \end{aligned}$	nA
ID(ON)	Leakage Current-ON	5V Logic Ckts	$V_{I N}=0 \mathrm{~V}, I_{S}=2 \mathrm{~mA}$	1.0		1.0	10	${ }_{\mu} \mathrm{A}$
ID(ON)	Leakage Current-ON	15V Logic Ckts	$V_{I N}=0 V, I_{S}=2 \mathrm{~mA}$	2.0		2.0	1000	nA
'DS(ON)	Drain-Source ON-Resistance	5V Logic Ckts	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0.5 \mathrm{~V}$	150	90	150.	$\begin{aligned} & 385 \text { (M) } \\ & 240 \text { (C) } \end{aligned}$	Ω
'DS(ON)	Drain-Source ON-Resistance	15V Logic Ckts	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=1.5 \mathrm{~V}$	100	60	100	$\begin{aligned} & 250(\mathrm{M}) \\ & 160(\mathrm{C}) \end{aligned}$	Ω
ton)	Turn-ON Time	All	See Figures 3 \& 4	,	150	500		ns
(0ff)	Turn-OFF Time	All	See Figures 3 \& 4		300	500		ns
CT	Cross Talk	All	$\mathrm{f}=100 \mathrm{~Hz}$		120		.	dB

NOTE 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
NOTE 2: Refer to Figure 2 for definition of terms.
NOTE 3: $V_{I N(O N)}$ and $V_{\text {IN(OFF }}$ are test conditions guaranteed by the tests of respectively $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ and $\mathrm{I}_{\mathrm{DOFFF}}$.
NOTE 4: "5V Logic CKTS" applies to even-numbered devices.
"15V Logic C̣KTS" applies to odd-numbered devices.

ORDERING INFORMATION

BASIC PART NUMBER	CHANNELS	LOGIC LEVEL	PACKAGES
1H5009	4	+15	JD, DD,PD
IH5010	4	+ 5	JD,DD,PD
IH5011	4	+15	JE,DE,PE
1H5012	4	$+5$	JE,DE, PE
1H5013	3	+15	JD,DD,PD
IH5014	3	+ 5	JD,DD,PD
IH5015	3	+15	JE,DE,PE
1H5016	3	+ 5	JE,DE,PE
1H5017	2	+15	JD,DD,PA
1H5018	2	+ 5	JD,DD,PA
1H5019	2	+15	JE,DE,PA
IH5020	2	$+5$	JE,DE,PA
1H5021	1	+15	JD,DD,PA
1H5022	1	$+5$	JD, DD,PA
IH5023	1	+15	JE, DE, PA
1H5024	1	+ 5	JE,DE,PA

NOTE: Mil-Temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ available

TYPICAL ELECTRICAL CHARACTERISTICS (per channel)

CROSSTALK MEASUREMENT CIRCUIT

DEVICE SCHEMATICS AND PIN CONNECTIONS

FOUR CHANNEL

1H5009 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \mathrm{~S}$)
IH5010 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \mathrm{~S}$) 14 PIN DIP

IH5011 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \mathrm{\Omega}$) IH5012 (ros(ON) $\leq 150 \Omega$) 16 PIN DIP

TWO CHANNEL
$1 \mathrm{H} 5017\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega\right.$) IH5018 (r $\left.\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega\right)$ 8 PIN DIP

1H5019 (ros(ON) $\leq 100 \Omega 2)$ IH5020 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega$) 8 PIN DIP

THREE CHANNEL

THEORY OF OPERATION

The signals seen at the drain of a junction FET type analog switch can be arbitrarily divided into two categories; those which are less than $\pm 200 \mathrm{mV}$, and those which are greater than $\pm 200 \mathrm{mV}$. The former category includes all those circuits where switching is performed at the virtual ground point of an op-amp, and it is primarily towards these applications that the IH5009 family of circuits is directed.
By limiting the analog signal at the switching pointto $\pm 200 \mathrm{mV}$, no external driver is required and the need for additional power supplies is eliminated.
Devices are available with both common drains and with uncommitted drains.
Those devices which feature common drains have another FET in addition to the channel switches. This FET, which has gate and source connected such that $V_{G S}=0$, is intended to compensate for the onresistance of the switch. When placed in series with the feedback resistor (Figure 1) the gain is given by

$$
\mathrm{GAIN}=\frac{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \text { (compensator) }}{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}}(\text { switch })}
$$

Figure 1. Use of Compensation FET

Clearly, the gain error caused by the switch is dependent on the match between the FETs rather than the absolute value of the FET on-resistance. For the standard product, all the FETs in a given package are guaranteed to match within 50s. Selections down to 5Ω are available however. Contact factory for details. Since the absolute value of $r_{D S(O N)}$ is guaranteed only to be less than 100s2 or 150 2, a substantial improvement in gain accuracy can be obtained by using the compensating FET.

DEFINITION OF TERMS

. Figure 2.

NOISE IMMUNITY

The advantage of SPDT switching is high noise immunity when the series elements is OFF. For example, if a $\pm 10 \mathrm{~V}$ analog input is being switched by $T^{2} \mathrm{~L}$ open collector logic, the series switch is OFF when the logic level is at +15 volts. At this time, the diode conducts and holds the source at approximately +0.7 volts with an AC impedance to ground of 25 ohms. Thus random noise superimposed on the +10 volt analog input will not falsely trigger the FET since the noise voltage will be shunted to ground.
When switching a negative voltage, the input further increases the OFF voltage beyond pinch-off, so there is no danger of the FET turning on.

SWITCHING CHARACTERISTICS

Figure 3. High Level Logic

Figure 4. Standard DTL, TTL, RTL

LOGIC INTERFACE CIRCUITS

Figure 5. Interfacing with +5 V Logic

Figure 6. Interfacing with +15 V Open Collector Logic.

APPLICATIONS (Note)

NOTE: Additional applications information is given in Application Bulletins A003 "Understanding and Applying the Analog Switch" and A004 "The 5009 Series of Low Cost Analog Switches". See also September ' 79 issue of Product Engineering "Analog Switching" by Paresh Maniar.

IH5025 - IH5038
 Positive Signal Analog Switches

FEATURES

- Switches up to +20 V into High Impedance Loads (i.e. Non-Inverting Input of Operational Amp.)
- Driven from TTL Open Collector Logic
- $I_{D(O F F)}<50 \mathrm{pA}$
- $r_{D S(O N)}<150 \Omega$
- rDS(ON) Match < 50Ω Channel to Channel
- Switching Speeds $<100 n s$

GENERAL DESCRIPTION

The IH5025 series of analog switches was designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective, performance and versatility have not been sacrificed.

Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver.

The entire family is designed to be driven from TTL open collector logic (15V), but can be driven from 5 V logic if signal input is less than 1V. Alternatively, 20 V switching is readily obtainable if TTL supply voltage is +25 V . Normally, only positive signals can be switched; however, up to $\pm 10 \mathrm{~V}$ can be handled by the addition of a PNP stage (Figure 11) or by capacitor isolation (Figure 10). Each channel is a SPST switch. A logic " 0 " turns the channel ON and a logic "1" turns the channel OFF.

PIN CONNECTIONS

IH5025 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega$) $1 \mathrm{H} 5026\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega\right)$ 14 PIN DIP

IH5027 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega$)
1 H 5028 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega$) 16 PIN DIP

> IH5029 $\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega\right)$
> IH5030 $\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega\right)$ 14 PIN DIP

IH5035 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega$)
IH5036 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega$)
8 PIN DIP

IH5031 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega$)
lH5032 ($\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega$) 16 PIN DIP

IH5037 ($\left.\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega\right)$
$1 \mathrm{H} 5038\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega\right)$ 8 PIN DIP

[^7]
ABSOLUTE MAXIMUM RATINGS

Positive Analog Signal Voltage. 25 V
Negative Analog Signal Voltage 0.5 VDC

Drain Current
25 mA
Power Dissipation (Note). 500mW
Storage Temperature $\ldots \ldots \ldots \ldots \ldots . . \quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature
5025 C Series. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
5025 M Series........................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (per channel)

SYMBUL (Note 1)	CHARACTERISTIC	TYPE	TEST CONDITIONS	SPECIFICATION LIMIT				UNITS MIN/MAX
				$\begin{gathered} -55^{\circ} \mathrm{C}(\mathrm{M}) \\ 0^{\circ} \mathrm{C}(\mathrm{C}) \end{gathered}$	$25^{\circ} \mathrm{C}$		$\begin{aligned} & +125^{\circ} \mathrm{C}(\mathrm{M}) \\ & +70^{\circ} \mathrm{C}(\mathrm{C}) \end{aligned}$	
					TYP.	min/max		
IIN(ON)	Input Current-ON	All	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$.	0.30	1.0	$\begin{aligned} & 100 \text { (M) } \\ & 25 \text { (C) } \end{aligned}$	nA (max)
IIN(OFF)	Input Current-OFF	All	V IN $=15 \mathrm{~V}$		0.20	1.0	$\begin{aligned} & 50 \text { (M) } \\ & 10 \text { (C) } \end{aligned}$	nA (max)
$V_{\text {IN(ON }}$	Channel Control Voltage.ON	All	See Figure 1	1.5		1.5	1.5	$V(\max)$
$\mathrm{V}_{\text {IN(OFF }}$	Channel Control Voltage-OFF	All	See Figure 1	14.0		14.0	14.0	V (min)
${ }^{\text {I D OFF }}$)	Leakage Current-OFF	All	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$		0.06	0.5	$\begin{aligned} & 100 \text { (M) } \\ & 10 \text { (C) } \end{aligned}$	nA (max)
${ }^{\text {d }}$ (ON)	Leakage Current-ON	Odd Nos.	$\mathrm{V}_{\text {I }}=0 \mathrm{~V}$		1.00	10.0	$\begin{array}{r} 5000 \text { (M) } \\ 250 \text { (C) } \\ \hline \end{array}$	nA (max)
ID(ON)	Leakage Current.ON	Even Nos.	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		0.10	1.0	$\begin{array}{r} 500 \text { (M) } \\ 25 \text { (C) } \end{array}$	nA (max)
ros(On)	Drain-Source ON-Resistance	Odd Nos.	$\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		60.00	100.0	$\begin{aligned} & 250 \text { (M) } \\ & 150 \text { (C) } \end{aligned}$	Ω (max)
${ }^{\text {r }}$ (${ }^{(O N}$)	Drain-Source ON-Resistance	Even Nos.	$\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V} \cdot 1 \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		90.00	150.0	$\begin{aligned} & 385 \text { (M) } \\ & 240 \text { (C) } \end{aligned}$	Ω (max)
'DS(ON)	Drain-Source ON-Resistance	Odd Nos.	$\mathrm{V}_{1 \mathrm{~N}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		85.00	160.0	$\begin{aligned} & 420 \text { (M) } \\ & 250 \text { (C) } \end{aligned}$	Ω (max)
'DS(ON)	Drain-Source ON-Resistance	Even Nos.	$\mathrm{V}_{1 \mathrm{~N}}=1.0 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{~mA}$,	110.00	200.0	$\begin{aligned} & 400 \text { (M) } \\ & 250 \text { (C) } \end{aligned}$	Ω (max)
ton)	Turn-ON Time	All	See Figure 2		0.10	0.2	0.4	$\mu \mathrm{S}$ (max)
(off)	Turn-OFF Time	All	See Figure 2		0.10	0.2	0.4	$\mu \mathrm{s}$ (max)
$Q_{(\text {INJ })}$	Charge Injection	All	See Figure 3	,	7.00	20.0		$m V_{p-p \text { (max }}$
$\mathrm{V}_{\text {A }}$ (OFF)	Cross Coupling Rejection	All	See Figure 4		0.10	1.0		$m V_{p-p}(\mathrm{max})$
دros(on)	Channel to Channel $\mathrm{r} \mathrm{DS}(\mathrm{ON}$) Match	All	$\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		25.00	50.0	50	Ω (max)

NOTE 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

ORDERING INFORMATION

BASIC PART NUMBER	CHANNELS	LOGIC LEVEL	PACKAGES
IH5025	4	+15	JD,DD,PD
IH5026	4	+5	JD,DD,PD
IH5027	4	+15	JE,DE,PE
IH5028	4	+5	JE,DE,PE
IH5029	3	+15	JD,DD,PD
IH5030	3	+5	JD,DD,PD
IH5031	3	+15	JE,DE,PE
IH5032	2	+5	JE,DE,PE
IH5033	2	+5	JD,DD,PA
IH5034	2	+15	JE,DE,PA
IH5035	2	+5	JE,DE,PA
IH5036	1	+15	JD,DD,PA
IH5037	1	+5	JD,DD,PA
IH5038			

NOTE: Mil-Temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) available in ceramic packages only.

TYPICAL ELECTRICAL CHARACTERISTICS (per channel)

Idoff) VS. TEMPERATURE

CROSS COUPLING
REJECTION VS. FREQUENCY

TEST CIRCUITS

FET "ON" FOR $V_{I N}<1.5 \mathrm{~V}$ FET "OFF' FOR VIN $>14.0 \mathrm{~V}$

Figure 1

ID(ON) VS. TEMPERATURE

$R_{\text {DS(ON })}$ VS. $V_{\text {IN }}$

FOUR CHANNEL

THREE CHANNEL

SINGLE CHANNEL
$1 \mathrm{H} 5037\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 100 \Omega\right)$ $1 \mathrm{H} 5038\left(\mathrm{r}_{\mathrm{DS}(\mathrm{ON})} \leq 150 \Omega\right)$ 8 PIN DIP

[^8]
THEORY OF OPERATION

The IH5025 series differs from the IH5009 series in that they may be driven by floating outputs. This family is generally used when operating into the-non-inverting input of an operational amplifier, while the IH5009 series is used in operations where the output feeds into the inverting (virtual ground) input.

The IH5025 model is a basic charge area switching device, in that proper gating action depends upon the capacity vs. voltage relationship for the diode junctions. This C vs. V, when integrated, produces total charge Q. It is Q total which is switched between the series diode and the gate to source and gate to drain junctions. The charge area (C vs. V) for the diode has been chosen to be a minimum of four (4) times the area of the gate to source junction, thus providing adequate safety margins to insure proper switching action.
If normal logical voltage levels of ground to +15 V (open collector TTL) are used, only signals which are between OV and +10 V can be switched. The pinch-off range of the P-Channel FET has been selected between 2:0V and 3.9 V ; thus with +15 V at the logical input, and a +10 V signal in-
put, 1.1V of margin exists for turn-off. When the IH5025 is used with 5 V TTL logic, a maximum of +1 V can be switched. The gate of each FET has been brought out so that a "referral resistor" can be placed between gate and source. This is used to minimize charge injection effects. The connection is shown below:

For switching levels $>+10 \mathrm{~V}$, the +15 V power supply must be increased so that there is a minimum of 5 V of difference between supply and signal. For example, to switch +15 V level, +20 V TTL supply is required. Up to +20 V levels can be gated.

LOGIC INTERFACE CIRCUITS

When operating with TTL logic it is necessary to use pull-up resistors as shown in Figures 6 and 7. This ensures the necessary positive voltages for proper gating action.

Figure 5. Interfacing with +5 V Logic

Figure 6. Interfacing with +15 V Open Collector Logic

APPLICATIONS

Figure 7. Multiplexer from Positive Output Transducers

Figure 9. Switching up to +20 V Signals with T²L Logic

NOTE: TO SWITCH : 10 VAC $(20 \mathrm{VPP})$: (1) INCREASE $\pm 5 \mathrm{~V}$ SUPPLY TO +10 V . (2) INCREASE TTL SUPPLY FROM +15 V TO +25 V .

Figure 10. Switching Bipolar Signals with T^{2} L Logic

APPLICATIONS (Cont.)

Figure 11. Switching Bipolar Signals with T^{2} L Logic (Alternate Method)

Figure 13. Gain Control with High Input Impedance

IH5040-IH5051 Family High Level CMOS Analog Gates

FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $1 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching $\mathrm{t}_{\text {off }} 200$ nsec, $\mathrm{t}_{\mathrm{on}} 300$ nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Low rDS(on) - 35Ω
- New DPDT \& 4PST Configurations
- Complete Monolithic Construction IH5040 through IH5047

FUNCTIONAL DIAGRAM

FIGURE 1. TYPICAL DRIVER, GATE - IH5042

ORDERING INFORMATION

GENERAL DESCRIPTION

The IH5040 family of solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. These devices provide ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS technology provides input overvoltage capability to ± 25 volts without damage to the device, and destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The IH5040 CMOS technology has eliminated this serious systems problem.
Key performance advantages of the 5040 series are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $1 \mu \mathrm{~A}$. Also designed into the 5040 is guaranteed Break-Before-Make switching, which is accomplished by extending the $t_{\text {on }}$ time (300 nsec TYP.) so that it exceeds $t_{\text {off }}$ time (200 nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. This eliminates the need for external logic required to avoid channel to channel shorting during switching.
Many of the 5040 series improve upon and are pin-for-pin and electrical replacements for other solid state switches.

FUNCTIONAL DESCRIPTION

INTERSIL PART NO.	TYPE		rDS(ón)	PIN/FUNCTIONAL EQUIVALENT (Note 1)
1H5040		SPST	75Ω	
IH5041	Dual	SPST	75Ω	
IH5042		SPDT	75Ω	DG 188AA/BA
1H5043	Dual	SPDT	75Ω	DG 191 AP/BP
IH5044		DPST	75Ω	
1H5045	Dual	.DPST	75Ω	DG 185AP/BP
1H5046		DPDT	75Ω	
IH5047		4PST	75Ω	
IH5048 Dual		SPST	35Ω	
IH5049 Dual		DPST	35Ω	DG 184AP/BP
IH5050		SPDT	35Ω	DG 187AA/BA
IH5051 Dual		SPDT	35Ω	DG 190AP/BP

NOTE 1. See Switching State diagrams for applicable package equivalency.

Pin and functional equivalent monolithic versions of the DG181, DG182, DG187 and DG188 are available. See data sheet for this and also IH 181 to IH 191.

ABSOLUTE MAXIMUM RATINGS

Current (Any Terminal)	30 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation	450 mW
(All Leads Soldered to a P.C. Board) Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$	

Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

$\mathrm{V}^{+}-\mathrm{V}^{-}$	$<33 \mathrm{~V}$
$\mathrm{~V}^{+}-\mathrm{V}_{\mathrm{D}}$	$<30 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{D}^{-}-\mathrm{V}^{-}}$	$<30 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}}$	$< \pm 22 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{L}}-\mathrm{V}^{-}$	$<33 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{IN}}$	$<30 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{L}}-\mathrm{GND}$	$<20 \mathrm{~V}$
$\mathrm{~V}_{\text {IN }}-\mathrm{GND}$	$<20 \mathrm{~V}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

PER CHANNEL		MIN./MAX. LIMITS							-
		MILITARY		:	COMMERCIAL			UNITS	
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	+25 ${ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	+25 ${ }^{\circ} \mathrm{C}$	+70 ${ }^{\circ} \mathrm{C}$		TEST CONDITIONS
I'NION)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$V_{1 N}=2.4 \mathrm{~V}$ Note 1
I'N(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$V_{1 N}=0.8 \mathrm{~V}$ Note 1
rDS(on)	Drain-Source On Resistance	75135)	75135)	150(60)	$80(45)$	$80(45)$	130 (45)	32	(1 H 5048 Thru 1 H 5051) $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$. $V_{\text {ANALOG }}=-10 \mathrm{~V} 10+10 \mathrm{~V}$
$\Delta{ }^{\text {d }}$ DS(ON)	Channel to Channel $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Match	25(15)	25 (15)	25(15)	30(15)	$30(15)$	$30(15)$	32	(1H5048 thru IH5051) $\mathrm{I}_{\mathrm{S}}($ Each Channel $)=1 \mathrm{~mA}$,
$v_{\text {analog }}$	Min. Analog Signal Handling Capability	$\pm 11(\pm 10)$	$\pm 11(\pm 10)$	$\pm 11(\pm 10)$	$\pm 10(\pm 10)$	$\pm 10(\pm 10)$	-101:10)	v	IS $=10 \mathrm{~mA}$ (1H5048 thru th5051)
'dofel	Switch OFF Leakage Current	(1)	$1(1)$	100(100)	5(5)	5(5)	100(100).	nA	$V_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V (IH5048 thru IH5051.
id ${ }^{2}$) ${ }^{+1}$ SION)	Switch On Leakage Current	2(2)	2(2)	200(200)	10(10)	$10(10)$	100(200)	nA	$\begin{aligned} & V_{D}=V_{S}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { (1H5048 thru 1H5051) } \end{aligned}$
ton	Switch "QN" Time		500(250)		-	500(300)		ns	$\begin{aligned} & R_{L}=1 \mathrm{ks} 2, V_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. A } \end{aligned}$
$t_{\text {off }}$	Switch "OFF" Time .		250(150)			250(150)	.	ns	$\begin{aligned} & R_{L}=1 \mathrm{kSI}, V_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See FIg. A } \\ & \text { (1H5048 thru IH5051) } \end{aligned}$
$\mathrm{o}_{\text {(INJ.) }}$	Charge Injection		15 (10)			20 (10).	.	mV	See Fig. B (IH5048 thru IH5051)
OIRE	Min. Off Isolation Rejectión Ratio		54.	-		50		dB	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~S}, \mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF} \\ & \text { See Fig. } \mathrm{C} \end{aligned}$
$1^{+} \mathrm{Q}$	+ Power. Supply Quiescent Current	1	1	10	10	10	100	$\mu \mathrm{A}$	- i
${ }^{-} 0$	- Power Supply Quiescent Current	1	1	10	10	10	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{v}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$
${ }^{-} \mathrm{LO}$	+5 V Supply Quiescent Current	1	1	10	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle \$ 10%
${ }^{\prime}$ GND	Gnd Supply Quiescent Current	1	1	10	10	10	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54			50		dB	One Channel Off: Any Other Channel Switches as per Fig. E

TEST CIRCUITS

FIG. A

FIG. B

FIG. C

NOTE 1: Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF". state.

TYPICAL ELECTRICAL CHARACTERISTICS (Per Channel)

rDS(on) vs POWER SUPPLY VOLTAGE

CHARGE INJECTION vs $V_{\text {ANALOG }}$ (SEE FIG. B) $C_{L}=10,000 \mathrm{pF}$

FIGURE D

FIGURE F

FIGURE G

FOR INTERFACING WITH TZL OPEN COLLECTOR LOGIC.

TYP. EXAMPLE FOR + 15 V CASE SHOWN

FOR USE WITH CMOS LOGIC.

LOGIC INTERFACING

A. FLOATING BODY CMOS STRUCTURE

In a conventional C-MOS structure, the body of the " n " channel device is tied to the negative supply, thus forming a reverse biased diode between the drain/source and the body (Fig. J). Under certain conditions this diode can become forward biased; for example, if the supplies are off (at ground) and a negative input is applied to the drain. This can have serious consequences for two reasons. Fịstly, the diode has no current limiting and if excessive current flows, the circuit may be permanently damaged. Secondly, this diode forms part of a parasitic SCR in the conventional C-MOS structure. Forward biasing the diode causes the SCR to turn on, giving rise to a "latch-up" condition.
Intersil's improved C-MOS process incorporates an additional diode in series with the body (Fig. K). The cathode of this diode is then tied to $. \mathrm{V}+$, thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path, but also prevents the SCR from turning on. 1

B. OVERVOLTAGE PROTECTION

The floating body construction inherently provides overvoltage protection. In the conventional C-MOS process, the body of all N -channel FETs is tied to the most negative power supply and the body of all P-channel devices to the most positive supply (i. e., $\pm 15 \mathrm{~V}$). Thus, for an overvoltage spike of $> \pm 15 \mathrm{~V}$, a forward bias condition exists between drain and body of the MOSFET. For example, in Fig. J if the analog signal input is more negative than -15 V , the drain to body of the N -channel FET is forward biased and destruction of the device can result. Now by floating the body, using diode D1, the drain to body of the MOSFET is still forward biased, but D1 is reversed biased so no current flows (up to the breakdown of D1 which is $\geqslant 40 \mathrm{~V}$). Thus, negative excursions of the analog signal can go up to a maximum of -25 V . When the signal goes positive $\geqslant+15 \mathrm{~V}$, D1 is forward biased, but now the drain to body junction is reversed for the N -channel FET; this allows the signal to go to a maximum of +25 V with no appreciable current flow. While the explanation above has been restricted to N -channel devices, the same applies to P-channel FETs and the construction is as shown in Fig. L. Fig. L describes an output stage showing the paralleling of an N and P channel to linearize the rDS(ON) with signal input. The presence of diodes D1 and D2 effectively floats the bodies and provides over voltage protection to a maximum of $\pm 25 \mathrm{~V}$.

FIGURE J

FIGURE L

APPLICATIONS

EXAMPLE: If $-\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between $\pm 10 \mathrm{VDC}$, depending upon state of Logic Strobe.

DIGITALLY TUNED LOW POWER ACTIVE FILTER

Constant gain, constant Q, variable frequency filter which provides simultaneous Lowpass, Bandpass, and Highpass outputs. With the component values shown, center frequency will be 235 Hz and 23.5 Hz for high and low logic inputs respectively, $Q=100$, and Gain $=100$.
$f_{n}=$ Center Frequency $=\frac{1}{2 \pi R C}$

SWITCHING STATE DIAGRAMS
SWITCH STATES
(OUTLINE DWG
FE-2)
(OUTLINE DWGS
DE, JE, PE)
(OUTLINE DWG TO-100)

SPST
IH5040 (rDS(on) < 75)

DUAL SPST
IH5041 (${ }^{\text {DS }}$ (on) $<75 \Omega$)

SPDT
IH5042 (rDS(on) < 75 $)$

(DG188 EQUIVALENT)

DUAL SPDT
IH5043 (rDS(on) < 75 ${ }^{\text {(}}$)

(DG191 EQUIVALENT)

DPST
IH5044 (rDS(on) < 75)

(DG185 EQUIVALENT)

DUAL DPST

IH5045 (rDS(on) $<75 \Omega$)

SWITCHING STATE DIAGRAMS (Cont.) -
SWITCH STATES
ARE FOR LOGIC " 1 " INPUT
FLATPACKAGE (FD)
DIP (DE) PACKAGE
TO-100

DPDT
IH5046 (rDS (ON) <75 $)$

4PST
IH5047 (rDS (ON) <75S)

DUAL SPST
IH5048 (rDS (ON) <35)

DUAL DPST

IH5049 (rDS (ON) <35 $)$

(DG184 EQUIVALENT)

SPDT
IH5050 (rDS (ON) <35)

(DG187 EQUIVALENT)

(DG190 EQUIVALENT)

DUAL SPDT

IH5051 (rDS (ON) <35)

IH5052/IH5053 CMOS Analog Gates

FEATURES

- Switches Greater Than 20Vpp Signals With $\pm \mathbf{1 5 V}$ Supplies
- Quiescent Current Less Than $10 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm \mathbf{2 5 V}$
- Break-Before-Make Switching toff 100nsec, ton 250nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- IH5052 4 Normally Closed Switches
- IH5053 4 Normally Open Switches

GENERAL DESCRIPTION

The IH5052/3 solid state analog gates are designed using an improved, high voltage CMOS technology. This provides ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS
technology provides input overvoltage capability to ± 25 volts without damage to the device, and the destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has eliminated this serious systems problem. Key performance advantages are TTL compatible and ultra low-power operation. The quiescent current requirement is less than $10 \mu \mathrm{~A}$. Also designed into the IH5052/3 is guaranteed Break-Before-Make switching. This is logically accomplished by extending the ton time (400nsec TYP.) such that it exceeds toff time (200nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON and eliminates the need for external logic required to avoid channel to channel shorting during switching. The IH5052 is designed to have switch closure with Logic " 0 " (0.8 V or less) and the IH5053 is designed to close switches with a Logical " 1 " (2.4V or more).

ORDERING INFORMATION

MAXIMUM RATINGS

Current (Any Terminal) $<30 \mathrm{~mA}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation 450mW
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

$V^{+}-V_{D} \ldots .$.
$V_{D-V}-\ldots .$.
$V_{D}-V_{s} .$.

VL-GND ... <20V
VIN-GND .. <20V

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$, $\mathrm{GND}=0 \mathrm{~V}$)

PER CHANNEL		MIN./MAX. LIMITS							TEST CONDITIONS
		MILITARY			COMMERCIAL			UNITS	
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
IIN(ON)	Input Logic Current	1	1	1	1	1	1.	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}(1 \mathrm{H} 5053)=0.8 \mathrm{~V}(1 \mathrm{H} 5052)$
IIN(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}(1 \mathrm{H} 5053)=2.4 \mathrm{~V}(1 \mathrm{H} 5052)$
${ }^{\text {r DS }}$ (ON)	Drain-Source On Resistance	75	75	100	80	80	100	Ω	$\begin{aligned} & I_{S}=1 \mathrm{~mA}, V_{\text {analog }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
$\Delta^{\text {r }}$ (SS(ON)	Channel to Channel RDS(ON) Match	25	25	25	30	30	30	Ω	Is (Each Channel) $=1 \mathrm{~mA}$
Vanalog	Min. Analog Signal Handling Capability	± 11	± 11	± 11	± 10	± 10	± 10	V	Is $=10 \mathrm{~mA}$
Id(OFF)	Switch OFF Leakage Current	1	1	100	5	5	100	nA	$V_{\text {ANALO }}=-10 \mathrm{~V}$ to +10 V
ID(ON) + Is(ON)	Switch On Leakage Current	2	2	200	10	10	100	nA	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V
ton	Switch "ON" Time		500			500		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {analog }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \text { See Fig. } \end{aligned}$
toff	Switch "OFF" Time		250			250		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \mathrm{\Omega}, \mathrm{~V}_{\text {analog }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \text { See Flg. } \mathrm{A} \end{aligned}$
$Q_{\text {(INJ.) }}$	Charge Injection		15			20		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54			. 50		dB	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, C_{L} \leq 5 p F \\ & \text { See Fig. } C \end{aligned}$
1^{+}	+ Power Supply Quiescent Curent	10	10	100	10	10	100	$\mu \mathrm{A}$	$\cdots{ }^{\text {V }}$, ${ }^{\text {a }}$
1^{-}	- Power Supply Quiescent Current	10	10.	100	10	10	100	$\mu \mathrm{A}$	$\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$ with GND
IVL	$\begin{aligned} & +5 \mathrm{~V} \text { Supply } \\ & \text { Quiescent Current } \end{aligned}$	10	10	100	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle $\leq 10 \%$
IGND	Gnd Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	- .
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	\cdot	54			50		dB	One Channel Off; Any Other Channel Switches as per Fig. E.

TEST CIRCUITS

FIG. B

FIG. C

TYPICAL ELECTRICAL CHARACTERISTICS (Per Channel)

FIGURE D

OFF ISOLATION vs FREQUENCY

FIGURE F

POWER SUPPLY QUIESCENT CURRENT
vs LOGIC FREQUENCY RATE

T2L Level

FIGURE G

THEORY OF OPERATION

A. Floating Body CMOS Structure

In a conventional C-MOS structure, the body of the " n " channel device is tied to the negative supply, thus forming a reverse biased diode between the drain/source and the body (Fig. H). Under certain conditions this diode can become forward biased; for example, if the supplies are off (at ground) and a negative input is applied to the drain. This can have serious consequences for two reasons. Firstly, the diode has no current limiting and if excessive current flows, the circuit may be permanently damaged. Secondly, this diode forms part of a parasitic SCR in the conventional C-MOS structure. Forward biasing the diode causes the SCR to turn on, giving rise to a "latch-up" condition.
Intersil's improved C-MOS process incorporates an additional diode in series with the body (Fig. I). The cathode of this diode is then tied to $\mathrm{V}+$, thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path, but also prevents the SCR from turning on.

B. Overvoltage Protection

The floating body construction inherently provides overvoltage protection. In the conventional C-MOS process, the body of all N-channel FETs is tied to the most negative power supply and the body of all P-channel devices to the most positive supply (i.e., $\pm 15 \mathrm{~V}$). Thus, for an overvoltage spike of $> \pm 15 \mathrm{~V}$, a forward bias condition exists between drain and body of the MOSFET. For example, in Fig. H if the analog signal input is more negative than -15 V , the drain to body of the N -channel FET is forward biased and destruction of the device can result. Now by floating the body, using diode D1, the drain to body of the MOSFET is still forward biased, but D1 is reversed biased so no current flows (up to the breakdown of $D 1$ which is $\geq 40 \mathrm{~V}$). Thus, negative excursions of the analog signal can go up to a maximum of -25 V . When the signal goes positive ($\geq+15 \mathrm{~V}$, D1 is forward biased, but now the drain to body junction is reversed for the N -channel FET ; this allows the signal to go to a maximum of +25 V with no appreciable current flow. While the explanation above has been restricted to N -channel devices, the same applies to P-channel FETs and the construction is as shown in Fig. J. Fig. J describes an output stage showing the paralleling of an N and P -channel to linearize the rDs(on) with signal input. The presence of diodes D1 and D2 effectively floats the bodies and provides overvoltage protection to a maximum of $\pm 25 \mathrm{~V}$.

FIGURE H

FIGURE I

FOR INTERFACING WITH TZL OPEN COLLECTOR LOGIC.

TYP. EXAMPLE FOR + 15V CASE SHOWN

FOR USE WITH CMOS LOGIC.

APPLICATIONS

PROGRAMMABLE GAIN NON-INVERTING AMPLIFIER WITH SELECTABLE INPUTS

APPLICATIONS (Continued)

Truth Table (IH5052)

ENABLE	MUX SEQUENCE RATE	SEQUENCER OUTPUT		SWITCH STATES (- DENOTES OFF)			
		20	21	SW1	SW2	SW3	SW4
0	0	0	0	-	-	-	-
1	0	0	0	ON	-	-	-
1	1 pulse	1	0	--	ON	-	-
1	2 pulses	0	1	-	-	-	-
1	3 pulses	1	1	-	-	-	ON
1	4 pulses	0	0	ON	-	-	-

A Latching DPDT

The latch feature insures positive switching action in response to non-repetitive or erratic commands. The A_{1} and A_{2} inputs are normally low. A HIGH input to A_{2} turns S_{1} and $S_{2} O N$, a HIGH to A_{1} turns S_{3} and S_{4} ON. Desirable for use with limit detectors, peak detectors, or mechanical contact closures.

Truth Table (IH5052)

COMMAND		STATE OF SWITCHES AFTER COMMAND	
A_{2}	$\mathrm{~A}_{1}$	$\mathrm{~S}_{3} \& \mathrm{~S}_{4}$	$\mathrm{~S}_{1} \& \mathrm{~S}_{2}$
0	0	same	same
0	1	on	off
1	0	off	on
1	1	INDETERMINATE	

8-Channel Fault Protected CMOS Analog Multiplexer

FEATURES

- Ultra low leakage- $I_{D(\text { off })} \leq 100 \mathrm{pA}$
- Power supply quiescent current less than 1 mA
- $\pm 13 \mathrm{~V}$ analog signal range
- No SCR latchup
- Break-before-make switching
- Pin compatible with DG508, HI508 and AD7508
- All channels OFF (ILK $\leq 100 \mathrm{nA}$) when power OFF, for analog signals up to $\pm 25 \mathrm{~V}$
- Any channel turns OFF ($\mathrm{ILLK}_{\mathrm{LK}} \leq 100 \mathrm{nA}$) if input exceeds supply rails by up to $\pm \mathbf{2 5 V}$. Throughput always $< \pm 14 \mathrm{~V}$ ($\pm 15 \mathrm{~V}$ supplies)
- TTL and CMOS compatible binary address and enable inputs

GENERAL DESCRIPTION

The IH5108 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the DG508 and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc. Cross talk onto "good" channels is also prevented.

A binary 3-bit address code together with the ENable input allows selection of any one channel or none at all. These 4 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading.

FUNCTIONAL DIAGRAM

3 LINE BINARY ADDRESS INPUTS
(10 1) AND EN HI
ABOVE EXAMPLE SHOWS CHANNEL 6 TURNED ON

DECODE TRUTH TABLE

A_{2}	A_{1}	A_{0}	EN	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

$A_{0}, A_{1}, A_{2}, E N$
Logic "1" $=V_{A H} \geq 2.4 \mathrm{~V}$
Logic " 0 " $=V_{A L} \leq 0.8 \mathrm{~V}$
PIN CONFIGURATION (Outline drawing JE, PE)

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH5108MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 pin CERDIP
IH5108CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin CERDIP
IH5108CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin plastic DIP

ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }}(A, E N)$ to Ground . -15 V to 15 V
V_{S} or V_{D} to V^{+}. + + $25 \mathrm{~V},-40 \mathrm{~V}$

V+ to Ground . 16 V
V- to Ground . 16 V
Current (Any Terminal)
.20 mA

Operating Temperature -55 to $125^{\circ} \mathrm{C}$
Storage.Temperature . 65 to $150^{\circ} \mathrm{C}$
Power Dissipaton (Package)* 1200mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{v}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified.

CHARACTERISTIC			MEASURED TERMINAL	NO TESTS PER TEMP	$\begin{aligned} & \text { TYP } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	MAX LIMITS						UNIT	TEST CONDITIONS								
			M SUFFIX			C SUFFIX															
			$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$											
	${ }^{\text {r DS(on) }}$			S to D	8	700	1000	1000	1500	1200	1200.	1800	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA} \end{aligned}$	Sequence each switch on						
			8		500	1000	1000	1500	1200	1200	1800	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$							
$\begin{aligned} & S \\ & W \\ & 1 \\ & T \\ & T \\ & C \\ & H \end{aligned}$	$\Delta r_{\text {DS(on) }}$					5							\%	$\Delta r_{\mathrm{DS}(\mathrm{On})}=\frac{r_{\mathrm{DS}(\mathrm{On}) \max }-\mathrm{r}_{\mathrm{DS}(\mathrm{On}) \min }}{r_{\mathrm{DS}(\mathrm{on}) \text { avg. }}} \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$							
	IS(off)		S	8	0.002		0.05	50		0.1	50	nA	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	$V_{E N}=0$							
			8	0.002		0.05	50		0.1	50	$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$										
	${ }^{\text {O (off) }}$			D	1	0.03		0.1	100		0.2		100		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$						
			1		0.03		0.1	100		0.2	100		$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}$								
	${ }^{1}{ }^{\text {(on) }}$		D	8	0.1		0.2	100		0.4	100		$\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$	Sequence each switch on							
			8	0.1		0.2	100		0.4	100	$\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		$\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$								
$\begin{aligned} & F \\ & A \\ & U \end{aligned}$	Is with Power OFF			S	8	1	10	10	1000	50	50	5000	nA	$\begin{aligned} & V_{\text {SUPP }}=0 \mathrm{~V}, V_{I N}= \pm 25 \mathrm{~V}, \\ & V_{E N}=V_{O}=0 V, A_{0}, A_{1}, A_{2}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$							
L	IS with Overvoltage		S	8	1	10	10	1000	50	50	5000	$\mathrm{V}_{\mathrm{IN}}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$									
$\begin{aligned} & 1 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{EN}(\mathrm{on})} \cdot{ }^{\prime} \mathrm{A}(\mathrm{on}) \\ & \text { or } \\ & \mathrm{I}_{\mathrm{EN}(\mathrm{off})} \mathrm{I}_{\mathrm{A}(\mathrm{off})} \end{aligned}$		$A_{0}, A_{1}, A_{2},$ or EN	4	. 01		-10	-30		-10	-30	$\mu \mathrm{A}$		$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 0 V							
			4	. 01		10	30		10	30	$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$ or 0 V ,										
$D$$Y$$N$$A$$M$$M1C$	$\mathrm{t}_{\text {transition }}$			D		0.3		1						$\mu \mathrm{S}$	See Figure 1						
	$t_{\text {open }}$		D		0.2							See Figure 2									
	$\mathrm{t}_{\text {On(EN) }}$		D		0.6		1.5					See Figure 3									
	$\mathrm{t}_{\text {off(EN) }}$		D		0.4		1					-									
	$t_{\text {on }} t_{\text {off }}$ Break-Before-Make Delay Settling Time		D	8	50		25			10		ns	$\begin{aligned} & V_{E N}=+5 V, A_{0}, A_{1}, A_{2} \text { Strobed } \\ & V_{I N}= \pm 10 \mathrm{~V}, \text { Figure } 4 \end{aligned}$								
	"OFF" Isolation		D		60		.					dB	$\begin{aligned} & V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 p F, V_{S}=3 V R M S, \\ & f=500 \mathrm{KHz} \end{aligned}$								
														$\mathrm{V}_{\mathrm{S}}=0$	$\begin{aligned} & V_{E N}=O V \\ & f=140 \mathrm{KHz} \\ & \text { to } 1 \mathrm{MHz} \end{aligned}$						
														$V_{D}=0$							
														$\mathrm{V}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{D}}=0$							
														$\text { All } V_{A}, V_{E N}=0.15 V$							

Figure 1. $\mathrm{t}_{\text {transition }}$ Switching Test

Figure 2. $\mathrm{t}_{\text {open }}$ (Break-Before-Make) Switching Test

Figure 3. t_{on} and $\mathrm{t}_{\text {off }}$ Switching Test

Figure 4. Break-Before-Make Delay Test

DETAILED DESCRIPTION

The IH5108, like all Intersil's multiplexers, contains a set of CMOS switches forming the channels, and driver and decoder circuitry to control which channel turns ON , if any. In addition, the IH5108 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special treatment that many multiplexer enable inputs require for proper logic swings. This identical circuit treatment of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section).

Another, and more important, difference lies in the switching channel. Previous devices have used parallel n - and p-channel MOSFET switches, and while this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals, it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the input goes outside the supply rails, and even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in cases of input overrange. The IH5108 uses a novel series arrangement of the p - and n -channel switches (Figure5) combined with a dielectrically isolated process to obviate these problems.

Figure 5. Series Connection of Channel Switches

Within the normal analog signal band, the inherent variation of switch ON resistance will balance out almost as well as the customary parallel configuration, but as the analog signal approaches either supply rail, even for an ON channel, either the p - or the n -channel will become a source follower, disconnecting the channel (Figure 6). Thus protection is provided to any input or output channel against overvoltage on any (or several) input or output channels even in the absence of multiplexer supply voltages, and applies up to the breakdown voltage of the respective switches, drawing only leakage currents. Figure 7 shows a more detailed schematic of the channel switches, including the back-gate driver devices which ensure optimum channel ON resistances and breakdown voltage under the various conditions.

Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 8).
(a) OVERVOLTAGE WITH MUX POWER OFF

(b) OVERVOLTAGE WITH MUX POWER ON

Figure 6. Overvoltage Protection

Figure 7. Detailed Channel Switch Schematic

Figure 8. Protection Against Logic Input

MAXIMUM SIGNAL HANDLING CAPABILITY

The IH5108 is designed to handle signals in the $\pm 10 \mathrm{~V}$ range, with a typical $\mathrm{r}_{\mathrm{DS}(\mathrm{On})}$ of 600Ω; it can successfully handle signals up to $\pm 13 \mathrm{~V}$, however, $\mathrm{r}_{\mathrm{DS}(\text { on) }}$ will increase to about 1.8 K . Beyond $\pm 13 \mathrm{~V}$ the device approaches an open circuit, and thus $\pm 12 \mathrm{~V}$ is about the practical limit, see Figure 9.

Figure 10 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detailed Description), while Figure 11 gives the ON resistance variation with temperature.

Figure 9. $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ vs Signal Input Voltage @ $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathrm{C}$

Figure 10. MUX Output Voltage vs Input Voltage Channel 1 Shown; All Channels Similar

Figure 11. Typical $\mathrm{r}_{\mathrm{DS}(o n)}$ vs Temperature

USING THE IH5108 WITH SUPPLIES OTHER THAN $\pm 15 \mathrm{~V}$

The IH5108 will operate successfully with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V} ; r_{\mathrm{DS}(o n)}$ increases as supply voltage decreases, see Figure 12. Leakage currents, however, decrease with a lowering of supply voltage, and therefore the error term product of $r_{D S(o n)}$ and leakage current remains reasonably constant. $r_{\mathrm{DS}(o n)}$ also decreases as signal levels decrease. For high system accuracy [acceptable levels of $\left.r_{\mathrm{DS}(\mathrm{on})}\right]$ the maximum input signal should be 3 V less than the supply voltages. The logic levels will remain TTL compatible.

Figure 12. $\mathbf{r}_{\mathrm{DS}(\mathrm{on})}$ vs Supply Voltages

IH5108 APPLICATIONS INFORMATION

DECODE TRUTH TABLE

A_{3}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	ON SWITCH
0	0	0	0	S 1
0	0	0	1	S 2
0	0	1	0	S 3
0	0	1	1	S 4
0	1	0	0	S 5
0	1	0	1	S 6
0	1	1	0	S 7
0	1	1	1	S 8
1	0	0	0	S 9
1	0	0	1	S 10
1	0	1	0	S 11
1	0	1	1	S 12
1	1	0	0	S 13
1	1	0	1	S 14
1	1	1	0	S 15
1	1	1	1	S 16

Figure 13. 1 of 16 channel multiplexer using two IH5108s. Overvoltage protection is maintained between all channels, as is break-before-make switching.

IH5108 APPLICATIONS INFORMATION (Cont.)

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	$\mathbf{A}_{\mathbf{2}}$	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	ON SWITCH
1	0	0	0	0	S17
1	0	0	0	1	S18
1	0	0	1	0	S19
1	0	0	1	1	S20
1	0	1	0	0	S21.
1	0	1	0	1	S22
1	0	1	1	0	S23
1	0	1	1	1	S24
1	1	0	0	0	S25
1	1	0	0	1	S26
1	1	0	1	0	S27
1	1	0	1	1	S28
1	1	1	0	0	S29
1	1	1	0	1	S30
1	1	1	1	0	S31
1	1	1	1	1	S32

Figure 14. 1 of 32 multiplexer using 4 IH5108s and an IH5053 as a submultiplexer. Note that the IH5053 is protected against overvoltages by the IH5108s. Submultiplexing reduces output leakage and capacitance.

IH5140 Family High Level CMOS Analog Gates

FEATURES

- Super fast break before make switching $\mathrm{t}_{\text {on }} 80 \mathrm{~ns}$ typ, $\mathrm{t}_{\text {off }} 50 \mathrm{~ns}$ typ (SPST switches)
- Power supply currents less than $1 \mu \mathrm{~A}$
- OFF leakages less than 100pA @ $25^{\circ} \mathrm{C}$ guaranteed
- Non-latching with supply turn-off
- Single monolithic CMOS chip
- Plug-in replacements for IH5040 family and part of the DG180 family to upgrade speed and leakage
- Greater than 1 MHz toggle rate
- Switches greater than 20Vp-p signals with $\pm 15 \mathrm{~V}$ supplies
- $\mathbf{T}^{\mathbf{2}} \mathrm{L}, \mathrm{CMOS}$ direct compatibility

GENERAL DESCRIPTION

The IH5140 Family of CMOS monolithic switches utilizes Intersil's latch-free junction isolated processing to build the fastest switches now available. These switches can be toggled at a rate of greater than 1 MHz with super fast $t_{\text {on }}$ times (80ns typical) and faster $t_{\text {off }}$ times (50ns typical), guaranteeing break before make switching. This family of switches therefore combines the speed of the hybrid FET DG 180 Family with the reliability and low power consumption of a monolithic CMOS construction.
OFF leakages are guaranteed to be less than 100pA at $25^{\circ} \mathrm{C}$. No quiescent power is dissipated in either the ON or the OFF state of the switch. Maximum power supply current is $1 \mu \mathrm{~A}$ from any supply and typical quiescent currents are in the $10 n A$ range which makes these devices ideal for portable equipment and military applications.

The IH5140 Family is completely compatible with TTL (5V) logic, TTL open collector logic and CMOS logic gates. It is pin compatible with Intersil's IH5040 Family and part of the DG180/190 Family as shown in the switching state diagrams.

ORDERING INFORMATION

Order Part Number			
	Function	Package	Temperature
Range			

FIGURE 1. Typical Driver/Gate - IH5142

ABSOLUTE MAXIMUM RATINGS	$\mathrm{V}^{+}-\mathrm{V}^{-}$	<33V
Current (Any Terminal) < 30 mA	$V^{+}-V_{D}$	<30V
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{D}}-\mathrm{V}^{-}$	<30V
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$V_{D}-V_{S}$	$< \pm 22 \mathrm{~V}$
Power Dissipation 450 mW	$\mathrm{V}_{\mathrm{L}}-\mathrm{V}^{-}$	<33V
(All Leads Soldered to a P.C. Board)	V_{L} - $\mathrm{V}_{\text {IN }}$	$<30 \mathrm{~V}$
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$	V_{L}	<20V
Lead Temperature (Soldering 10 sec .) . . $300^{\circ} \mathrm{C}$	V IN	<20V

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operatignal sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$)

PER CHANNEL		MIN./MAX. LIMITS							
		MILITARY			COMMERCIAL			UNITS	
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		TEST CONDITIONS
l_{NH}	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$ Note 1
IINL	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	V IN $=0.8 \mathrm{~V}$ Note 1
$\mathrm{r}_{\mathrm{DS} \text { (on) }}$	Drain-Source On Resistance	50 '	50	75	75	75	100	Ω	$\begin{aligned} & \text { Is }=-10 \mathrm{~mA} \\ & \text { V }_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$
$\Delta r_{\text {DS }}$ (on)	Channel to Channel $r_{\text {DS(on) }}$ Match	25	- 25	25	30	30	30	Ω	Is (Each Channel) $=\mathbf{- 1 0} \mathrm{mA}$
Vanalog	Min. Analog Signal Handling Capability	± 11	± 1.1	± 11	± 10	± 10	± 10	V	$\mathrm{Is}=10 \mathrm{~mA}$
$\begin{aligned} & I_{D(\text { off })^{+}} \\ & I_{\text {(off) }} \end{aligned}$	Switch OFF Leakage Current	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	20 20	nA	$\begin{aligned} & V_{D}=+10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{D}=-10 \mathrm{~V}, V_{S}=+10 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{D}(\mathrm{on})^{+}}$ $I_{S(o n)}$	Switch On Leakage Current	0.2	0.2	40	1	1	40	nA	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V
ton $t_{\text {off }}$	Switch "ON" Time Switch "OFF" Time	See pages 4 \& 5 for switching time specifications and timing diagrams.							
$Q_{\text {(}}$ (NJ.).	Charge Injection		100			150		PC	See Fig. 4, Note 2
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$ See Fig. 5, Note 2
1^{+}	+ Power Supply Quiescent Current	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$	
$1-$	- Power Supply Quiescent Current	1.0	1.0	10.0	10	10	100	, A	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$
L_{L}	+5 V Supply Quiescent Current	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle < 10\% See Fig. 6
IGND	Gnd Supply Quiescent Current	1.0	1.0	10.0	10	, 10	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection. Ratio	.	54			50		dB	One Channel Off; Any Other Channel Switches See Fig. 7, Note 2

Note: 1. Some channels are turned on by high (1) logic inputs and other channels are turned on by low (0) inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce ON or OFF state.
2. Charge injection, OFF isolation, and Channel to Channel isolation are only sample tested in production.

IH5140-IH5145 Family

FIGURE 2. rods(on) vs. Temp., @ $\pm 15 \mathrm{~V},+5 \mathrm{~V}$ Supplies.

FIGURE 4. Charge Injection vs. Analog Signal.

FIGURE 6. Power Supply Currents vs. Logic Strobe Rate.

FIGURE 3. $r_{\text {DS(on) }}$ vs. Power Supplies.

FIGURE 5. "OFF" Isolation vs. Frequency.

FIGURE 7. Channel to Channel Cross Coupling Rejection vs. Frequency.

SWITCHING TIME SPECIFICATIONS
(ton, toff are maximum specifications and ton-toff is minimum specifications)

Part Number	Symbol	Characteristics	MILITARY			COMMERCIAL			Units	Test Conditions
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
$\begin{gathered} \text { IH5140- } \\ 5141 \end{gathered}$	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 100 \\ 75 \\ 10 \end{gathered}$			$\begin{gathered} 150 \\ 125 \\ 5 \end{gathered}$		ns	Figure 8
	t_{0} $t_{\text {off }}$ ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 150 \\ 125 \\ 10 \end{gathered}$			$\begin{aligned} & 175 \\ & 150 \\ & 5 \end{aligned}$		$\cdots \mathrm{ns}$	Figure 9
$\begin{gathered} \text { IH5142- } \\ 5143 \end{gathered}$	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} \hline 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns	Figure 8
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 200 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{array}{r} 300 \\ .150 \\ 5 \\ \hline \end{array}$		ns	Figure 9
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$	\cdots		$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns	Figure 10
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 200 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns	Figure 11
$\begin{gathered} \text { IH5144- } \\ 5145 \end{gathered}$	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns	Figure 8
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 200 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns	Figure 9

NOTE: SWITCHING TIMES ARE MEASURED @ 90\% PTS.

FIGURE 8.

FIGURE 9.

FIGURE 10.

FIGURE 11.

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 8)

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 9)

$-55^{\circ} \mathrm{C}$

$+25^{\circ} \mathrm{C}$

$+125^{\circ} \mathrm{C}$

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 10)

$+25^{\circ} \mathrm{C}$

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 11)

$+25^{\circ} \mathrm{C}$

APPLICATION NOTE

To maximize switching speed on the IH 5140 family use TTL open collector logic (15 V with a $1 \mathrm{k} \Omega$ or less collector resistor). This configuration will result in (SPST) $\mathrm{t}_{\text {on }}$ and $\mathrm{t}_{\text {off }}$ times of 80 ns and 50 ns , for signals between -10 V and +10 V . The SPDT and DPST switches are approximately 30 ns slower in both $\mathrm{t}_{\text {on }}$ and $\mathrm{t}_{\text {off }}$ with the same drive configuration. 15V CMOS logic levels can be used (0 V to +15 V), but propagation delays in the CMOS logic will slow down the switching (typical $50 \mathrm{~ns} \rightarrow 100 \mathrm{~ns}$ delays).
When driving the IH5140 Family from either +5V TTL or CMOS logic, switching times run 20ns slower than if they were driven from +15 V logic levels. Thus ton is about 105 ns , and toff 75 ns for SPST switches, and 135 ns and 105 ns (ton, $t_{\text {off }}$) for SPDT or DPST switches. The low level drive can be made as fast as the high level drive if $\pm 5 \mathrm{~V}$ strobe levels are used instead of the usual $0 \mathrm{~V} \rightarrow+3.0 \mathrm{~V}$ drive. Pin 13 is taken to -5 V instead of the usual GND and strobe input is taken from +5 V to -5 V levels as shown in Figure 12.
The typical channel of the IH5140 family consists of both P and N -channel MOS-FETs. The N -channel MOS-FET uses a "Body Puller" FET to drive the body to $-15 \mathrm{~V}(\pm 15 \mathrm{~V}$ supplies) to get good breakdown voltages when the switch is in the off state (See Fig. 13). This "Body Puller"' FET also allows the N -channel body to electrically float when the switch is in the on state producing a fairly constant Ros(ON) with different signal voltages: While this "Body Puller" FET improves switch performance, it can cause a problem when analog input signals are present (negative signals only) and power supplies are off. This fault condition is shown in Figure 14.
Current will flow from-10V analog voltage through the drain to body junction of Q1, then through the drain to body junction of Q3 to GND. This means that there is 10 V across two forward-biased silicon diodes and current will go to whatever value the input signal source is capable of supplying. If the analog input signal is derived from the same supplies as the switch this fault condition cannot occur. Turning off the supplies would turn off the analog signal at the same time.
This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 15. Now when the power supplies are off and a negative input signal is present this diode is reverse biased and no current can flow.

FIGURE 12.

FIGURE 13.

FIGURE 14.

FIGURE 15.

APPLICATIONS

FIGURE 16. Improved Sample and Hoid Using IH5143

EXAMPLE: If $-V_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between $\pm 10 \mathrm{VDC}$, depending upon state of Logic Strobe.

FIGURE 17. Using the CMOS Switch to Drive an R/2R Ladder Network (2 Legs)

CONSTANT GAIN, CONSTANT Q, VARIABLE FREQUENCY FILTER WHICH
PROVIDES SIMULTANEOUS LOWPASS, BANDPASS, AND HIGHPASS
OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY
WILL BE 235 Hz AND 23.5 Hz FOR HIGH AND LOW LOGIC INPUTS
WILL BE 235 Hz AND 23.5 Hz FOR HIGH AND
RESPECTIVELY, $\mathbf{Q}=100$, AND GAIN $=100$.

$$
f_{n}=\text { CENTER FREQUENCY }=\frac{1}{2 \pi R C}
$$

SWITCHING STATE DIAGRAMS switch States are for logic " 1 " input

FLATPACK (FD-2)

SPST. DIP (JE, PE)

SPST.

IH5140 (rDS(on) $<75 \Omega$)

1H5141 (rDS(on) $<75 \Omega$)

TO-100

3
DIP (JE, PE)

4-Channel Differential Fault Protected CMOS Analog Multiplexer

FEATURES

- Ultra low leakage-I $I_{D(o f f)} \leq 100 \mathrm{pA}$
- Power supply quiescent current less than 1 mA
- $\pm 13 \mathrm{~V}$ analog signal range
- No SCR latchup
- Break-before-make switching
- TTL and CMOS compatible strobe control
- Pin compatible with HI509, DG509 and AD7509
- All channels OFF ($\mathrm{I}_{\mathrm{LK}} \leq 100 \mathrm{nA}$) when power OFF, for analog signals up to $\pm \mathbf{2 5 V}$
- Any channel turns OFF (llik $\leq 100 \mathrm{nA}$) if input exceeds supply rails by up to $\pm 25 \mathrm{~V}$. Throughput always $< \pm 14 \mathrm{~V}$ ($\pm 15 \mathrm{~V}$ supplies)
- TTL and CMOS compatible binary address and enable inputs

GENERAL DESCRIPTION

The IH5208 is a dielectrically isolated CMOS monolithic analog multiplexer, designed as a plug-in replacement for the DG509 and similar devices, but adding fault protection to the standard performance. A unique serial MOSFET switch ensures that an OFF channel will remain OFF when the input exceeds the supply rails by up to $\pm 25 \mathrm{~V}$, even with the supply voltage at zero. Further, an ON channel will be limited to a throughput of about 1.5 V less than the supply rails, thus affording protection to any following circuitry such as op amps, D/A converters, etc. Cross talk onto "good" channels is also prevented.

A binary 2-bit address code together with the ENable input allows selection of any channel pair or none at all. These 3 inputs are all TTL compatible for easy logic interface; the ENable input also facilitates MUX expansion and cascading.

FUNCTIONAL DIAGRAM

2 LINE BINARY STROBE INPUTS
(0 0) AND EN = 1
ABOVE EXAMPLE SHOWS CHANNELS 1 a and ib ON

DECODE TRUTH TABLE

A_{1}	A_{0}	EN	ON SWITCH PAIR
X	X	0	NONE
0	0	1	$1 \mathrm{a}, 1 \mathrm{~b}$
0	1	1	$2 \mathrm{a}, 2 \mathrm{~b}$
1	0	1	$3 \mathrm{a}, 3 \mathrm{~b}$
1	1	1	$4 \mathrm{a}, 4 \mathrm{~b}$

$A_{0}, A_{1}, E N$
Logic " 1 " $=V_{A H} \geq 2.4 \mathrm{~V}$
Logic " 0 " $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$
PIN CONFIGURATION (Outline drawing JE, PE)

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH5208MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 pin CERDIP
IH 5208 CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin CERDIP
IH 5208 CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin plastic DIP

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {IN }}(\mathrm{A}, \mathrm{EN})$ to Ground	$-15 \mathrm{~V},+15 \mathrm{~V}$
V_{S} or V_{D} to V^{+}	+25V, -40 V
V_{S} or V_{D} to V^{-}	$-25 \mathrm{~V},+40 \mathrm{~V}$
$\mathrm{V}+$ to Ground	. 16 V
V - to Ground	-16V
Current (Any Termina	20 mA

Operating Temperature - 55 to $125^{\circ} \mathrm{C}$
Storage Temperature . 65 to $150^{\circ} \mathrm{C}$
Power Dissipaton (Package)* 1200mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{v}^{+}=15 \mathrm{~V}, \mathrm{v}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, unless otherwise specified.

Figure 1. $t_{\text {trans }}$ Switching Test

Figure 2. $\mathrm{t}_{\text {open }}$ (Break-Before-Make) Switching Test

Figure 3. $t_{\text {on }}$ and $t_{\text {off }}$ Switching Test.

Figure 4. Break-Before-Make Delay Test

DETAILED DESCRIPTION

The IH5208, like all Intersil's multiplexers, contains a set of CMOS switches forming the channels, and driver and decoder circuitry to control which channel turns ON, if any. In addition, the IH5208 contains an internal regulator which provides a fully TTL compatible ENable input that is identical in operation to the Address inputs. This does away with the special treatments that many multiplexer enable inputs require for proper logic swings. This identical circuit treatment of the ENable and Address lines also helps ensure the extension of break-before-make switching to wider multiplexer systems (see applications section).

Another, and more important, difference lies in the switching channel. Previous devices have used parallel n - and p-channel MOSFET switches, and while this scheme yields reasonably good ON resistance characteristics and allows the switching of rail-to-rail input signals, it also has a number of drawbacks. The sources and drains of the switch transistors will conduct to the substrate if the inpout goes outside the supply rails, and even careful use of diodes cannot avoid channel-to-output and channel-to-channel coupling in cases of input overrange. The IH 5208 uses a novel series arrangement of the p-and n-channel switches (Figure 5) combined with the dielectrically isolated process to obviate these problems.

Figure 5. Series Connection of Channel Switches

Within the normal analog signal band, the inherent variation of switch ON resistance will balance out almost as well as the customary parallel configuration; but as the analog signal approaches either supply rail, even for an ON channel, either the p - or the n-channel will become a source follower, disconnecting the channel (Figure 6). Thus protection is provided to any input or output channel against overvoltage on any (or several) input or output channels even in the absence of multiplexer supply voltages, and applies up to the breakdown voltage of the respective switches, drawing only leakage currents. Figure 7 shows a more detailed schematic of the channel switches,' including the back-gate driver devices which ensure optimum channel ON resistances and breakdown voltage under the various conditions.

Under some circumstances, if the logic inputs are present but the multiplexer supplies are not, the circuit will use the logic inputs as a sort of phantom supply; this could result in an output up to that logic level. To prevent this from occurring, simply ensure that the ENable pin is LOW any time the multiplexer supply voltages are missing (Figure 8).
(a) OVERVOLTAGE WITH MUX POWER OFF

(b) OVERVOLTAGE WITH MUX POWER ON

Figure 6. Overvoltage Protection

Figure 7. Detailed Channel Switch Schematic

Figure 8. Protection Against Logic Input

MAXIMUM SIGNAL HANDLING CAPABILITY

The IH5208 is designed to handle signals in the $\pm 10 \mathrm{~V}$ range, with a typical $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ of 600Ω; it can successfully handle signals up to $\pm 13 \mathrm{~V}$, however, $\mathrm{r}_{\mathrm{DS}(\text { on })}$ will increase to about 1.8 K . Beyond $\pm 13 \mathrm{~V}$ the device approaches an open circuit, and thus $\pm 12 \mathrm{~V}$ is about the practical limit, see Figure 9 .

Figure 10 shows the input/output characteristics of an ON channel, illustrating the inherent limiting action of the series switch connection (see Detailed Description), while Figure 11 gives the ON resistance variation with temperature.

Figure 9. $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ vs Signal Input Voltage @ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Figure 10. MUX Output Voltage vs Input Voltage Channel 1 Shown; All Channels Similar

Figure 11. Typical $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ vs Temperature

USING THE IH5208 WITH SUPPLIES OTHER
 THAN $\pm 15 \mathrm{~V}$

The IH5208 will operate successfully with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$; $r_{\mathrm{DS}(\mathrm{on})}$ increases as supply voltage decreases, see Figure 12. Leakage currents, however, decrease with a lowering of supply voltage, and therefore the error term product of $\mathrm{r}_{\mathrm{DS}(o n)}$ and leakage current remains reasonably constant. r $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ also decreases as signal levels decrease. For high system accuracy [acceptable levels of $r_{\mathrm{DS}(o n)}$] the maximum input signal should be 3 V less than the supply voltages. The logic thresholds will remain TTL compatible.

Figure 12. $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ vs Supply Voltages

IH5208 APPLICATIONS INFORMATION

DECODE TRUTH TABLE

\mathbf{A}_{2}	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	ON SWITCH PAIR
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

Figure 13. 2 of 16 channel multiplexer using two IH5208s. Overvoltage protection and break-before-make switching are extended to all channels.

IH5208 APPLICATIONS INFORMATION (Cont.)

DECODE TRUTH TABLE

A_{3}	A_{2}	A_{1}	A_{0}	ON SWITCH		ON SWITCH	
0	0	0	0	S1a		S1b	
0	0	0	1	S2a		S2b	
0	0	1	0	S3a		S3b	
0	0	1	1	S4a		S4b	
0	1	0	0	S5a		S5b	
0	1	0	1	S6a		S6b	
0	1	1	0	S7a		S7b	
0	1	1	1	S8a	$\mathrm{V}_{\text {OUTa }}$	S8b	$\mathrm{V}_{\text {OUTb }}$
1	0	0	0	S9a		S9b	
1	0	0	1	S10a		S10b	
1	0	1	0	S11a		S11b	
1	0	1	1	S12a		S12b	
1	1	0	0	S13a		S13b	
1	1	0	1	S14a		S14b	
1	1	1	0	S15a		S15b	
1	1	1	1	S16a		S16b	

Figure 14. Submultiplexed 2 of 32 system. The two IH5043s are overvoltage protected by the IH5208s. Submultiplexing reduces output capacitance and leakage currents.

8 Channel CMOS Analog Multiplexer

FEATURES

- Ultra Low Leakage - $I_{D(\text { off })} \leq 100 p A$
- rDS(on) < $\mathbf{4 0 0}$ ohms over full signal and temperature range
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ analog signal range
- No SCR latchup
- Break before make switching
- Binary strobe control (3 strobe inputs control 8 channels)
- TTL and CMOS compatible strobe control
- Pin compatible with DG508, HI-508 \& AD7508

GENERAL DESCRIPTION

The IH6108 is a CMOS monolithic, one of 8 multiplexer. The part is a plug-in replacement for the DG508. Three line binary decoding is used so that the 8 channels can be controlled by 3 strobe inputs; additionally a fourth input is provided to use as a system enable. When the enable input is high (5 V) the channels are sequenced by the 3 line strobe inputs, and when low (0 V) all charinels are off. The 3 strobe inputs are controlled by TTL logic or CMOS logic elements, a " 0 " corresponding to any voltage greater than 2.4 V . Note that the enable input (EN) must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

ABSOLUTE MAXIMUM RATINGS

VIN (A, EN) to Ground -15 V to 15 V
V_{s} or V_{D} to V^{+}... $0,-32 V$
V_{S} or V_{D} to V^{-}.. $0,32 \mathrm{~V}$
V^{+}to Ground 16 V
V^{-}to Ground
$-16 \mathrm{~V}$
Current (Any Terminal)
30 mA

Current (Analog Drain) 20 mA
Current (Analog Source) 20 mA
Operating Temperature -55 to $125^{\circ} \mathrm{C}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$
Power Dissipation (Package)* 1200 mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{E N}=+5 \mathrm{~V} 1$, Ground $=0 \mathrm{~V}$, unless otherwise specified.

CHARACTERISTIC			MEASURED TERMINAL	$\begin{array}{\|c\|} \hline \text { NO } \\ \text { TESTS } \\ \text { PER } \\ \text { TEMP } \\ \hline \end{array}$	$\begin{aligned} & \text { TYP } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	MAX LIMITS						UNIT	TEST CONDITIONS		
			M SUFFIX			C SUFFIX									
			$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$					
ros(ON)				S to D	8	180	300	300.	400	350	350	450	Ω	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{IS}=-1.0 \mathrm{~mA}$	Sequence each switch on
			8		150	300	300	400	350	350	450	$\mathrm{V}_{D}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$	
S	دros(on).					20							\%	$\Delta \mathrm{rDS}(\mathrm{on})=\frac{\mathrm{rDS}(\mathrm{on}) \max -\mathrm{rDS}(\mathrm{on}) \min }{\mathrm{rDS}(\mathrm{on}) \mathrm{avg}} \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$	
1	IS(OFF)		S	8	0.002		0.05	50		0.1	50	NA	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	$V_{E N}=0$	
T			8	0.002		0.05	50		0.1	50	$\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$				
C	ld(OFF)			D	1	0.03		0.1	100		0.2		100		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$
			1		0.03		0.1	100		0.2	100		$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}$		
	ID(ON)		D	8	0.1		0.2	100		0.4	100		$V_{S(A I I)}=V_{D}=10 \mathrm{~V}$	Sequence each switch on$V_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$	
			8	0.1		0.2	100		0.4	100	$\begin{array}{l\|l} V_{S(A I I)}= & V_{D}=-10 \mathrm{~V} \\ \hline \end{array}$				
N	$I_{A N(O N)} \text { or } I_{A(O n)}$			$\begin{gathered} A_{0}, A_{1} \text { or } A_{2} \\ \text { Inputs } \\ A_{0} A_{1} \\ A_{2} \\ \hline \end{gathered}$	3	. 01		-10	-30		-10	-30	$\mu \mathrm{A}$	$V_{A}=2.4 \mathrm{~V} \text { or } 0 \mathrm{~V}$	
			3		. 01	.	10	30		10	30	$\mathrm{V}_{A}=15 \mathrm{~V}$ or 0 V			
	IA		3				-10	-30		-10	-30	$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$		All $\mathrm{V}_{\mathrm{A}}=0$ (Strobe pins)	
			En	1		1	-10	-30		-10	-30	$V_{E N}=0$			
	transition		D		0.3		1					$\mu \mathrm{S}$		See Fig. 1	
D	topen		D		0.2								See Fig. 2		
Y	ton(En)		D		0.6		1.5						See Fig. 3		
N	toff(En)		D		0.4		1								
A	"OFF" Isolation		D		60		:	.				dB	$\begin{aligned} & V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 \mathrm{pF}, V_{S}=3 \mathrm{VRMS}, \\ & f=500 \mathrm{kHz} \end{aligned}$		
1	$\mathrm{C}_{\mathrm{s} \text { (off) }}$		S		5							pF	$\mathrm{V}_{\mathrm{S}}=0$	$\begin{aligned} & V_{E N}=0 \mathrm{~V} . \mathrm{f}=140 \mathrm{kHz} \text { to } \\ & 1 \mathrm{MHz} \end{aligned}$	
C	Cd(off)		D		25		\cdot						$V_{D}=0$		
	CDS(off)		D to S		1								$V_{S}=0, V_{D}=0$		
S P 	Supply Current	+	$1+$	1	40		200			1000		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$	All $V_{A}=0$ OR 5 V	
		-	$1{ }^{-}$	1	2		100			1000					
	Standby Current	+	$\mathrm{I}^{+} \mathrm{SB}$	$1{ }^{\prime}$	1		100			1000			$\mathrm{V}_{\mathrm{EN}}=0$		
		-	-1'sB	1.	1		100			1000					

NOTE 1: See Enable Input Strobing Levels, Şection 1.

Figure 2. topen Break-Before-Make Switching Test

Figure 3. $t_{o n}$ and $t_{\text {off }}$ Switching Test

IH6108 APPLICATION INFORMATION

I. Enable Input Strobing Levels

The enable input on the IH 6108 requires a minimum of +4.5 V to trigger to the " 1 " state and a maximum of +0.8 V to trigger to the " 0 " state. If the enable input is being driven from TTL
logic, a pull-up resistor of 1 k to $3 \mathrm{k} \Omega$ is required from the gate output to +5 V supply. (See Figure 4)

Figure 4. Enable Input Strobing from TTL Logic

IH6108 APPLICATION INFORMATION (CONT.)

When the EN input is driven from CMOS logic, no pullup is necessary, see Fig. 5.

Figure 5. Enable Input Strobing from CMOS Logic

The supply voltage of the CD4009 affects the switching speed of the IH6108; the same is true for TTL supply voltage levels. The chart below shows the effect, on trans for a supply varying from +4.5 V to +5.5 V .

CMOS OR TTL SUPPLY VOLTAGE

$+4.5 \mathrm{~V}$
$+4.75 \mathrm{~V}$
$+5.00 \mathrm{~V}$
$+5.25 \mathrm{~V}$
$+5.50 \mathrm{~V}$

TYPICAL trans @ $\mathbf{2 5}^{\circ} \mathrm{C}$
400ns
300ns
250 ns
200ns
175ns

The throughput rate can therefore be maximized by using a +5 V to +5.5 V supply for the Enable Strobe Logic.

The examples shown in Figures 4 and 5 deal with enable strobing when expanding to more than eight channels is required; in these cases the EN terminal acts as a fourth binary input. If eight channels or less are being multiplexed, the EN terminal can be directly connected to +5 V logic supply to enable the IH 6108 at all times.

IH6108 APPLICATION INFORMATION (CONT.)

APPLICATIONS

II. Using the IH6108 with supplies other than $\pm 15 \mathrm{~V}$

The IH6108 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch rDS(on) will increase as the supply voltages decrease, however the multiplexer error term (the product of leakage times rDS(on)) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the enable (EN) voltage is at least 0.7 V below V^{+}at all times. If this is not done the binary input strobing levels will not function properly. This may be achieved quite simply by connecting EN (pin 2) to V^{+} (pin 13) via a silicon diode as shown in Figure 6. When using this type of configuration, a further requirement must be met - the strobe levels at A 0 and A 1 must be within 2.5 V of the EN
voltage in order to define a binary " 1 " state. For the case shown in Figure 6 the EN voltage is 11.3 V which means that logic high at AO and A 1 is $=+8.8 \mathrm{~V}$ (logic low continues to be $=$ 0.8 V). In this configuration the IH 6108 cannot be driven by TTL (+5 V) or CMOS (+5 V) logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the IH6108 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7 V differential voltage required between V^{+}and EN . (See Figure 7) A $1 \mu \mathrm{~F}$ capacitor can be placed across the diode to minimize switching glitches.

Figure 6. IH6108 Connection Diagram for less than ± 15 V Supply Operation.

IH6108 APPLICATION INFORMATION (CONT.)

Figure 7. IH6108 Connection Diagram with Enable Input Strobing for less than $\pm 15 \mathrm{~V}$ Supply Operation.
III. Peak-to-Peak Signal Handling Capability

The IH6108 can handle input signals up to $\pm 14 \mathrm{~V}$ (actually -15 V to +14.3 V because of the input protection diode) when using $\pm 15 \mathrm{~V}$ supplies.

The electrical specifications of the IH6108 are guaranteed for $\pm 10 \mathrm{~V}$ signals, but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes are slightly lower rDS(on) and slightly higher leakages.

IH6116 16 Channel CMOS Analog Multiplexer (One out of 16)

FEATURES

- Pin compatible with DG506, HI-506 \& AD7506
- Ultra Low Leakage - $\mathrm{ID}_{\text {(off) }} \leq 100 \mathrm{pA}$
- ± 11 analog signal range
- rDS(on) $<\mathbf{7 0 0}$ ohms over full signal and temperature range
- Break before make switching
- TTL and CMOS compatible strobe control
- Binary strobe control (4 strobe inputs control 16 channels)
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- No SCR latchup

GENERAL DESCRIPTION

The IH6116 is a CMOS monolithic, one of 16 multiplexer. The part is a plug-in replacement for the DG506. Four line binary decoding is used so that the 16 channels can be controlled by 4 strobe inputs; additionally a fifth input is provided to use as a system enable. When the enable input is high (5 V) the channels are sequenced by the 4 line strobe inputs, and when low (0 V), all channels are off. The 4 strobe inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less than 0.8 V and a "1" corresponding to any voltage greater than 3.0V. Note that the enable input (EN) must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

ABSOLUTE MAXIMUM RATINGS

VIN (A, EN) to Ground . -15 V to 15 V

V^{+}to Ground 16V
V^{-}to Ground $-16 \mathrm{~V}$
Current (Any Terminal)
30 mA

Current (Analog Drain) 20 mA
Current (Analog Source) 20 mA
Óperating Temperature -55 to $125^{\circ} \mathrm{C}$
Storage Temperature -65 to $150^{\circ} \mathrm{C}$
Power Dissipation (Package)* 1200 mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{E N}=+5 \mathrm{~V} 1$, Ground $=0 \mathrm{~V}$, unless otherwise specified.

CHARACTERISTIC			MEASURED TERMINAL	NOTESTSPERTEMP	$\begin{aligned} & \text { TYP } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	MAX LIMITS						UNIT	TEST CONDITIONS			
			M SUFFIX			C SUFFIX										
			$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$						
$\left\|\begin{array}{l} \mathrm{r} \\ \mathrm{~s} \\ \mathrm{w} \end{array}\right\|^{-}$	ros(ON)			S to D	16	480	600	600	700	650	650	750	Ω	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{IS}=-10 \mathrm{~mA}$	Sequence each switch on	
			16		300	600	600	700	650	650	750	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{Is}=10 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}$ AH $=3 \mathrm{~V}$		
	$\Delta \mathrm{DDS}(\mathrm{ON})$					20	.						\%	$\Delta \mathrm{rDS}(o n)=\frac{\mathrm{rDS}(o n) \max -\mathrm{rDS}(o n) \min }{\mathrm{rDS}_{(0 n)}} \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$		
T	Is(off)			16	0.01		0.1	50		0.2	50	nA	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	$V_{E N}=0$		
T			S	16	0.01		0.1	50		0.2	50		$\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$			
C	ID(OFF)		D	1	0.1		0.2	100		0.4	100		$V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V}$			
			1	0.1		0.2	100		0.4	100	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}$					
	ID(ON)			D	16	0.1		0.2	100		0.4		100	$\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$	Sequence each switch on$V_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3 \mathrm{~V}$	
			16		0.1		0.2	100		0.4	100		$\mathrm{V}_{\mathrm{S}(\mathrm{AlI}}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$			
$\begin{array}{\|c\|} \hline 1 \\ N \\ P \\ U \\ T \end{array}$	la(on) or la(off)		$\mathrm{A}_{2} \mathrm{~A}_{3}$	4	. 01		-10	-30		-10	-30	$\mu \mathrm{A}$	$V_{A}=3.0 \mathrm{~V}$			
			4	. 01		10	30		10	30	$V_{A}=15 \mathrm{~V}$					
	IA			4		,	-10	-30		-10	-30		$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$	All $V_{\text {A }}=0$		
			EN	1			-10	-30		-10	-30		$V_{E N}=0$			
	trans			D		0.6		1						$\mu \mathrm{S}$	See Fig. 1.	
	topen		D		0.2							See Fig. 2				
Y	teN(on)		D		0.8		1.5					See Fig. 3				
	ten(off)		D		0.3		1									
N	"OFF" Isolation		D		60.		'					dB	$\begin{aligned} & V_{E N}=0, R_{L}=200 \Omega, C_{L}=3 p F, V_{S}=3 \mathrm{VRMS}, \\ & f=500 \mathrm{kHz} \end{aligned}$			
M	$\mathrm{C}_{\text {s }}$ (OFF)		S		5							pF	$\mathrm{V}_{\mathrm{S}}=0$	$\begin{aligned} & V_{E N}=0, f=140 \mathrm{kHz} \text { to } \\ & 1 \mathrm{MHz} . \end{aligned}$		
c	Cd(OFF)		D		40		.						$V_{D}=0$			
	$\mathrm{C}_{\text {ds }}$ (OFF)		D to S		1								$V_{S}=0, V_{D}=0$			
	Supply Current	+	1^{+}	1	55		200			1000		$\mu \mathrm{A}$	$\mathrm{VEN}_{\mathrm{EN}}=5 \mathrm{~V}$	All $V_{A}=0$ OR 3 V		
		-	I^{-}	1	2		100			1000						
	Standby Current	+	$\mathrm{I}^{+} \mathrm{SB}$	1	1		100			1000			$\mathrm{V}_{\mathrm{EN}}=0$			
		-	$1-5 B$	1	1		100	\cdots		1000						

NOTE 1: See Section V. Enable Input Strobing Levels.

Figure 1

IH6116 APPLICATIONS

I. 1 out of 32 channel multiplexer using 2 I H 6116 s .

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH
0	0	0	0	0	S1
0	0	0	0	1	S2
0	0	0	1	0	S3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	$\mathbf{O N}$ SWITCH
1	0	0	0	0	S 17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S 31
1	1	1	1	1	S 32

S32

Figure 4

INTEPRSUL

IH6116 APPLICATIONS

II. 1 out of 32 channel multiplexer using 2 IH6116s; using an IH 5041 for submultiplexing.

*TTL gate must have resistor pullup to $+5 V$ to drive "EN" input.

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

\mathbf{A}_{4}	\mathbf{A}_{3}	\mathbf{A}_{2}	\mathbf{A}_{1}	\mathbf{A}_{0}	ON SWITCH
1	0	0	0	0	S 17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S 31
1	1	1	1	1	S 32

Figure 5

IH6116 APPLICATIONS

III. 1 out of 64 multiplexer using $41 / 16$ s and IH5053 as submultiplexer.

Figure 6

IV. GENERAL NOTE ON EXPANDABILITY OF IH6116

The IH6116 is a two tier multiplexer, where sixteen input channels are routed to a common output in blocks of 4 . Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied together. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this is lower output capacity and leakage that would be possible using a system with all 16 channels tied to one common output. Also the expandability into $32,64,128$, etc. is facilitated. Figures 4,5, and 6 show how the IH6116 is expanded.
Figure 4 shows a 1 of 32 multiplexer, using 2 IH 6116 s . Since the 6116 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. The four output channels of each 6116 are tied together so that 8 channels are tied to the Vout common point. Since only one channel of information is on at a time, the common output will consist of 7 OFF channels and 1 ON channel. Thus the output leakage will correspond to $7 \mathrm{ID}($ offs) and $1 \mathrm{ID}(o n)$, or about 1.0 nA of typical leakage at room temperature. Thruput speed will be typically $0.8 \mu \mathrm{~s}$ for $t_{\text {on }}$ and 0.3μ s for toff. Thruput channel resistance will be in the 500Ω area.
Figure 5 shows the 1 of 32 MUX of Figure 4, with a third tier of submultiplexing added to further reduce leakage and output capacity. The IH 5041 has typical ON resistances of 50Ω (max. is 75Ω) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5.

Thruput channel speed is a littie slower by about 0.5μ s for both ON and OFF time, and output leakage is about 0.2 nA . Figure 6 shows a 1 of 64 MUX using 3 tier MUXing (similar to Figure 5). The Intersil IH5053 is used to get the third tier of MUXing. The Vout point will see 3 OFF channels and 1 ON channel at any one time, so that the typical leakages will be about 0.4 nA . Thruput channel resistance will be in the 550 ohm area with thruput switching speeds about 1.3μ s for ON time and $0.8 \mu \mathrm{~s}$ for OFF time.
The IH5053 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6116 (typically plus and minus 15 V) and uses break before make switching. Also power supply quiescent currents are on the order of 1$2 \mu \mathrm{~A}$ so that no excessive system power is generated. Note that the logic of the 5053 is such that it can be tied directly to the enable input (as shown in the figures) with no extra logic being required.

V. ENABLE INPUT STROBING LEVELS

The enable input (EN) acts as an enabling or disabling pin for the IH6116 when used as a 16 channel MUX, however when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 4 and 5 show the EN pin used as the A4 input.
For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up resistor of $1 \mathrm{k} \Omega$ or less should be used to pull the output voltage up to 5 V . When using CMOS logic, the high state goes to the power supply so no pull-up is required.

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the $\operatorname{rDS}(O N)$ of the switch is maintained at specified values.

IH6201 Dual CMOS Driver/ Voltage Translator

FEATURES

- Driven direct from TTL or CMOS logic
- Translates logic levels up to 30V levels
- Switches 20V ACPP signals when used in conjunction with Intersil IH401A Varafet (as an analog gate)
- ton $\leq \mathbf{3 0 0 n S}$ \& toff $\leq \mathbf{2 0 0 n S}$ for $\mathbf{3 0 V}$ level shifts
- Quiescent supply current $\leq 100 \mu$ a for any state (d.c.)
- Provides both normal \& inverted outputs

GENERAL DESCRIPTION

The IH6201 is a CMOS, Monolithic, Dual Voltage Translator; it takes the low level TTL or CMOS logic level and converts them to higher levels (i.e. to $\pm 15 \mathrm{~V}$ swings). This translator is typically used in making solid state switches, 'or analog gates.

When used in conjunction with the Intersil IH401 family Varafets, the combination makes a complete solid state switch capable of switching signals up to 22 Vpp and up to 20 MHz in frequency. This switch is a "break-before-make" type (i.e. toff time $<t_{\text {on }}$ time). The combination has typical toff $\approx 80 \mathrm{nS}$ and typ. ton $\approx 200 \mathrm{nS}$ for signals up to 20 Vpp in amplitude.
A TTL " 1 " input strobe will force the θ driver output up to V^{+}level; the $\bar{\theta}$ output will be driven down to the $-\mathrm{V}^{-}$level. When the TTL input goes to " 0 ", the θ output goes to V^{-}and $\bar{\theta}$ goes to V^{+}; thus θ and $\bar{\theta}$ are 180° out of phase with each other. These complementary outputs can be used to create a wide variety of functions such as SPDT and DPDT switches, etc.; alternatively the complementary outputs can be used to drive an N and P channel Mosfet, to make a complete Mosfet analog gate.
The driver typically uses +5 V and $\pm 15 \mathrm{~V}$ power supplies; however a wide range of V^{+}and V^{-}is possible, however $\mathrm{V}^{+}>5 \mathrm{~V}$ is necessary for the driver to work properly.

ABSOLUTE MAXIMUM RATINGS

V＋．．． 35 V
V－．．．35V
V^{+}to $\mathrm{V}_{\text {IN }}$ ．．． 40 V

Operating Temperature $\ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ．．．．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering 10 sec ）．．．．．．．．．．．．．． $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ELECTRICAL SPECIFICATIONS $\mathrm{v}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$

ITEM	CONDITIONS	IH6201CDE			IH6201MDE			UNITS
		$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
θ or $\bar{\theta}$ driver output swing		28	28	28	28	28	28	Vpp
VIN ṣtrobe level（＂1＂）for proper translation	$\begin{aligned} & \theta \geq 14 \mathrm{~V} \\ & \bar{\theta} \geq-14 \mathrm{~V} \end{aligned}$	3.0	3.0	3.0	2.4	2.4	2.4	VD．C．
VIN strobe level（＂ 0 ＂）for proper translation	$\begin{aligned} & \theta \geq-14 \mathrm{~V} \\ & \bar{\theta} \geq 14 \mathrm{~V} \end{aligned}$	0.4	0.4	0.4	0.8	0.8	0.8	V．C．
IN input strobe current draw （for $\mathrm{OV} \rightarrow 5 \mathrm{~V}$ range）	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V	1	1	1	1	1	1	$\mu \mathrm{A}$
ton time	$V_{i N}=0 v \sqrt{\frac{3 V}{4} / C_{L}} \quad C L=30 \mathrm{pf}$ switching turn－on time fig．2B	400	400	400	300	300	300	nS
toff time	$V_{\text {IN }}=0 v \sqrt{4} 4 \mu \mathrm{~V} L \quad C_{L}=30 \mathrm{pf}$ switching turn－off time fig． $2 B$	300	300	300	200	200	200	nS
1＋（ V^{+}）power supply quiescent current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$
1－（V－）power supply quiescent current	$V_{\text {IN }}=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{L}}\left(\mathrm{V}_{\mathrm{L}}\right)$ power supply quiescent current	V IN $=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$

APPLICATIONS

I．INPUT DRIVE CAPABILITY

The strobe input lines are designed to be driven from TTL logic levels；this means $0.8 \mathrm{~V} \rightarrow 2.4 \mathrm{~V}$ levels max．and min． respectively．For those users who require 0.8 V to 2.0 V operation，a pull－up resistor is recommended from the TTL output to +5 V line．This resistor is not critical and can be in the $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ range．
When using 4000 series CMOS logic，the input strobe is connected direct to the 4000 series gate output and no pull． up resistors，or any other interface，is necessary．

When the input strobe voltage level goes below Gnd（i．e．to -15 V ）circuit is unaffected as long as V^{+}to V IN does not exceed absolute maximum rating．

II．OUTPUT DRIVE CAPABILITY

The translator output is designed to drive the Intersil IH401 family of Varafets；these are N－channel J－FETS with built－in driver diodes．Driver diodes are necessary to isolate the signal source from the driver／translator output；this prevents forward biasing between the signal input and the＋VCC supply．The IH6201 will drive any J－FET provided some sort of isolation is added i．e．

Figure 1
You will notice in Figure 1 that a＂referral＂resistor has been added from 2N4391 gatte to its source．This resistor is needed to compensate for inadequate charge area curve for isolation diode（i．e．if C vs．V plot for diode ≤ 2［C vs．V plot for output J－ FET］switch won＇t function；then adding this resistor overcomes this condition．The＂referral＂resistor is normally in the $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ range and is not too critical．

III．MAKING A COMPLETE SOLID STATE SWITCH THAT CAN HANDLE 20Vpp SIGNALS

The limitation on signal handling capability comes from the output gating device．When a J－FET is used，it＇s the pinch－off of the J－FET acting with the V^{-}supply that does the

APPLICATIONS, CONTINUED

limiting. In fact max. signal handling capability $=2(V p+$ (V^{-}) Vpp where $\mathrm{Vp}=$ pinch-off voltage of J-FET chosen. i.e. $\mathrm{Vp}=7 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \therefore$ max. signal handling $=2(7 \mathrm{~V}+$ $(-15 \mathrm{~V})) \mathrm{Vpp}=2(7 \mathrm{~V}-15) \mathrm{pp}=2(-8 \mathrm{Vpp})=16 \mathrm{Vpp}$. Obviously to get $\geq 20 \mathrm{Vpp}, \mathrm{Vp} \geq 5 \mathrm{~V}$ with $\mathrm{V}^{-}=-15 \mathrm{~V}$. Another simple way to get 20 Vpp with $\mathrm{Vp}=7 \mathrm{~V}$, is to increase V^{-}to -17 V . In fact using $\mathrm{V}^{+}=+12 \mathrm{~V}$ or +15 V and setting $\mathrm{V}^{-}=-18 \mathrm{~V}$ allows one to switch 20Vpp with any member of IH401 family. The
advantage of using the $\mathrm{Vp}=7 \mathrm{~V}$ pinch-off (along with unsymmetrical supplies) over the $\mathrm{Vp}=5 \mathrm{~V}$ pinch-off (and $\pm 15 \mathrm{~V}$ supplies) is that you will have a much lower RDS(ON) resistance for the $\mathrm{Vp}=7 \mathrm{~V}$ fet.(i.e. for the 2 N 4391 fet $\operatorname{rDS}(0 \mathrm{O}) \approx 22 \Omega, \mathrm{rDS}(\mathrm{ON}) \approx 35 \Omega$)
$V_{p}=7 \mathrm{~V} \quad V_{p}=5 \mathrm{~V}$

The IH6201 is a dual translator, each containing 4 CMOS FETs. The schematic of one-half IH6201, driving one-fourth of an IH401, is shown in Figure 2A.

Figure 2A

Figure 2B

NOTE: Each translator output has a θ and $\bar{\theta}$ output. θ is just the inverse of $\bar{\theta}$.

A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See III.)
I. Dual SPST Analog Switch

II. DPDT Analog Switch

NOTE: Either switch is turned on when strobe input goes high.

APPLICATIONS, CONTINUED

IV. Dual DPST

IH6208

4-Channel Differential CMOS Analog Multiplexer

FEATURES

- Ultra low leakage - $\mathrm{ID}_{\mathrm{D} \text { (off) }} \leq 100 \mathrm{pA}$
- rDS(on) < $\mathbf{4 0 0}$ ohms over full signal and temperature range
- Power supply quiescent current less than $\mathbf{1 0 0} \mu \mathrm{A}$
- $\pm 14 \mathrm{~V}$ analog signal range
- No SCR latch up
- Break before make switching
- Binary strobe control (2 strobe inputs controls 2 out of 8 channels).
- TTL and CMOS compatible strobe control
- Pin compatible with HI509, DG509 \& AD7509

GENERAL DESCRIPTION

The IH6208 is a monolithic 2 of 8 CMOS multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable. When the enable input is high (5 V) the channels are sequenced by the 2 line binary inputs, and when low (0 V) all channels are off. The 2 strobe inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less' than 0.8 V and a " 1 " corresponding to any voltage greater than 2.4 V . Note that the enable input (EN) must be taken to 5 V to enable the system, and less than 0.8 V to disable the system.

FUNCTIONAL DIAGRAM

2 LINE BINARY STROBE INPUTS
(00) AND EN = $5 V(E N=" 1 "$ FOR +5V, "0" FOR OV) ABOVE EXAMPLE SHOWS CHANNELS 1a \& 1b ON.

DECODE TRUTH TABLE

A_{i}	A_{0}	EN	ON SWITCH PAIR
X	X	0	NONE
0	0	1	$1 a, 1 b$
0	1	1	$2 a, 2 b$
1	0	1	$3 a, 3 b$
1	1	1	$4 a, 4 b$

A_{0}, A_{1}
LOGIC " 1 " $=V_{\text {AH }} \geq 2.4 \mathrm{~V} \quad V_{E N H} \geq 4.5 \mathrm{~V}$
LOGIC " 0 " $=V_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$

PIN CONFIGURATION (Outline drawings DE, PE)

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH6208MDE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 pin Ceramic DIP
IH 6208 CDE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin Ceramic DIP
IH 6208 CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin Plastic DIP

ABSOLUTE MAXIMUM RATINGS

VIN (A, EN) to Ground -15 V , V_{1}

V_{S} or V_{D} to V^{-}... $0,32 \mathrm{~V}$
V^{+}to Ground .. 16 V
V^{-}to Ground ... -16 V
Current (Any Terminal) 30 mA

Current (Analog Drain) 20 mA
Current (Analog Source) 20 mA
Operating Temperature -55 to $125^{\circ} \mathrm{C}$
Storage Temperature - 65 to $150^{\circ} \mathrm{C}$
Power Dissipation (Package)* 1200 mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional'operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V} 1$, Ground $=0 \mathrm{~V}$, unless otherwise specified.

NOTE 1: See Section I Enable Input Strobing Levels.
SWITCHING INFORMATION

Figure 1. $\mathrm{t}_{\text {trans }}$ Switching Test

Figure 2. topen $^{\text {(Break-Before-Make। Switching Test }}$

Figure 3. $t_{o n}$ and $\mathbf{t}_{\text {off }}$ Switching Test

IH6208 APPLICATION INFORMATION

I. Enable Input Strobing Levels

The enable input on the IH 6208 requires a minimum of +4.5 V to trigger it into the " 1 " state and a maximum of +0.8 V to trigger it into the " 0 " state. If the enable input is being driven
from TTL logic, a pull-up resistor of 1 k to $3 \mathrm{k} \Omega$ is required from the gate output to +5 V supply. (See Figure 4).

Figure 4. Enable Input Strobing from TTL Logic

IH6208 APPLICATION INFORMATION (CONT.)

When the EN input is driven from CMOS logic, no pullup is necessary. (See Fig. 5)

Figure 5

The supply voltage of the CD4009 affects the switching speed of the IH6208; the same is true for TTL supply voltage levels. The chart below shows the effect on trans for a supply varying from +4.5 V to +5.5 V .

CMOS OR TTL SUPPLY	TYPICAL trans @ $\mathbf{2 5}^{\circ} \mathbf{C}$
+4.5 V	$\mathbf{4 0 0 \mathrm { ns }}$
+4.75 V	300 ns
+5.0 V	250 ns
+5.25 V	200 ns
+5.50 V	175 ns

The throughput rate can therefore be maximized by using a +5 V to +5.5 V supply for the Enable Strobe Logic.

The examples shown in Figures 4 and 5 deal with enable strobing when expanding to more than four differential channels is required; in these cases the EN terminal acts as a third binary input. If four channel pairs or less are being multiplexed, the EN terminal can be directly connected to +5 V to enable the IH 6208 at all times.

IH6208 APPLICATION INFORMATION (CONT.)

APPLICATIONS

II. Using the IH6208 with supplies other than $\pm 15 \mathrm{~V}$

The IH6208 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch rDS(on) will increase as the supply voltages decrease, however the multiplexer error term (the product of leakage times rDS(on)) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the enable (EN) voltage is at least 0.7 V below V^{+}at all times. If this is not done the binary input strobing levels will not function properly. This may be achieved quite simply by connecting $\mathrm{EN}\left(\right.$ pin 2) to V^{+} (pin 14) via a silicon diode as shown in Figure 6. A further requirement must be met when using this type of configuration; the strobe levels at A0 and A1 must be within
2.5V of the EN voltage in order to define a binary " 1 " state. For the case shown in Figure 6 the EN voltage is 11.3 V , which means that logic high at A0 and A1 is $=+8.8 \mathrm{~V}$ (logic low continues to be $=0.8 \mathrm{~V}$). In this configuration the IH6208 cannot be driven by TTL $(+5 \mathrm{~V})$ or $\mathrm{CMOS}(+5 \mathrm{~V})$ logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the IH6208 have common supplies, the EN pin should again be connected to the supply through a silicon diode. In this case, tying EN to the logic supply directly will not work since it violates the 0.7 V differential voltage required between V^{+}and EN (See Figure 7). A $1 \mu \mathrm{~F}$ capacitor can be placed across the diode to minimize switching glitches.

Figure 6. IH6208 Connection Diagram for less than $\pm 15 \mathrm{~V}$ Supply Operation.

IH6208 APPLICATION INFORMATION

Figure 7. IH6208 Connection Diagram with Enable Input Strobing for less than $\pm 15 \mathrm{~V}$ Supply Operation.

III. Peak-to-Peak Signal Handling Capability

The IH 6208 can handle input signals up to $\pm 14 \mathrm{~V}$ (actually -15 V to +14.3 V because of the input protection diode) when using $\pm 15 \mathrm{~V}$ supplies.

The electrical specifications of the IH6208 are guaranteed for $\pm 10 \mathrm{~V}$ signals, but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes are slightly lower. rDS(on) and slightly higher leakages.

IH6216

8-Channel Differential CMOS Analog Multiplexer

FEATURES

- Pin compatible with HI507, DG507 \& AD7507
- $\pm 11 \mathrm{~V}$ analog signal range
- rDS(on) < $\mathbf{7 0 0}$ ohms over full signal and temperature range
- Break before make switching
- TTL and CMOS compatible strobe control
- Binary strobe control (3 strobe inputs controls 2 out of 16 channels).
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- No SCR latch up
- Very low leakage $\mathrm{ID}_{\mathrm{D}(\mathrm{off})} \leq 100 \mathrm{pA}$

GENERAL DESCRIPTION

The IH6216 is a CMOS monolithic 2 of 16 multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable. When the enable input is high (5 V) the channels are sequenced by the 3 line binary inputs, and when low ($O \mathrm{~V}$) all channels are off. The 3 strobe inputs are controlled by TTL logic or CMOS logic elements with a " 0 " corresponding to any voltage less than 0.8 V and a " 1 " corresponding to any voltage greater than 3.0 V . Note that the enable input (EN) must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

FUNCTIONAL DIAGRAM

TO DECODE LOGIC
CONTROLLING BOTH
TIERS OF MUXING

3 LINE BINARY STROBE INPUTS
$\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ AND EN $=5 \mathrm{~V}$
ABOVE EXAMPLE SHOWS CHANNELS $1 \mathrm{a} \& \mathrm{ib}$ ON.

DECODE TRUTH TABLE

\mathbf{A}_{2}	\mathbf{A}_{1}	A $_{0}$	EN	ON SWITCH PAIR
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

LQGIC " 1 " $=V_{A H}>3 \mathrm{~V} \quad V_{E N H}>4.5 \mathrm{~V}$
LOGIC " 0 " $=V_{\text {AL }}<0.8 \mathrm{~V}$

PIN CONFIGURATION (Outline drawings DI, PI)

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH 6216 MDI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 pin Ceramic DIP
I 6216 CDI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin Ceramic DIP
IH 6216 CPI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin Plastic DIP

ABSOLUTE MAXIMUM RATINGS

V_{S} or V_{D} to V^{-}
$0,32 \mathrm{~V}$
V^{+}to Ground
16 V
V^{-}to Ground ... -16 V
Current (Any Terminal) . 30 mA
Current (Analog Drain)
............................... 20 mA the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=+5 \mathrm{~V} 1$, Ground $=0 \mathrm{~V}$, unless otherwise specified.

NOTE 1: See Section V. Enable Input Strobing Levels.

SWITCHING INFORMATION

SWITCH OUTPUT V_{0} (SEE FIG. 2)

Figure 2

Figure 3

IH62 APPLICATIONS

I. 2 out of 32 channel multiplexer using 2 IH 6216 s .

*TTL gate must have pullup to drive EN
Figure 4

DECODE TRUTH TABLE

A_{3}	A_{2}	A_{1}	A_{0}	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	1	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	S8a	VouT1
1	0	0	0	S9a	
1	0	0	1	S10a	
1	0	1	0	S1aa	
1	0	1	1	S12a	
1	1	0	0	S13a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

DECODE TRUTH TABLE

\mathbf{A}_{3}	A_{2}	A_{1}	A_{0}	ON SWITCH	
0	0	0	0	S1b	
0	0	0	1	S2b	
0	0	1	0	S3b	
0	0	1	1	S4b	
0	1	0	0	S5b	
0	1	0	1	S6b	
0	1	1	0	S7b	
0	1	1	1	S8b	VouT2
1	0	0	0	S9b	
1	0	0	1	S10b	
1	0	1	0	S11b	
1	0	1	1	S12b	
1	1	0	0	S13b	
1	1	0	1	S14b	
1	1	1	0	S15b	
1	1	1	1	S16b	

II. 2 out of 32 channel multiplexer using 2 IH6216s; with an IH5043 for submultiplexing.

Figure 5

IH6216 APPLICATIONS
III. 2 out of 64 , using 4 IH 6216 s and 2 IH 5043 s as submultiplexers.

TTL/"CMOS" INVERTER

TTL/CMOS NOR GATE
(TTL gate must have resistor pullup to drive EN)

Figure 6

IH6216

IV. GENERAL NOTE ON EXPANDABILITY OF IH6216

The IH6216 is a two tier multiplexer where 8 pairs of input channels are routed to a pair of outputs in blocks of 4 . Each block of 4 input channels is routed to one common output channel, and thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs with the 4 outputs tied in pairs. Thus 20 switches are needed to handle the 16 channels of information. The advantages of this are lower output capacity and leakage than would be possible using a system with all 8 channels tied to one common output. Also the expandability into 2 out of $32,64,128$, etc. is facilitated. Figures 4, 5, and 6 show how the 1 H 6216 is expanded.
Figure 4 shows a 2 of 32 multiplexer using 2 IH 6216 s . Since the 6216 is itself a 2 tier MUX, the system as shown is basically a 2 tier system. Corresponding output points of each of the 6216 are connected together, and the enable input strobe is used as the A_{3} input. Since each output (pins 2 and 28) corresponds to an "ON" FET and an "OFF" FET, the overall system looks like 1 "ON" FET and 3 "OFF" FETs for each of the $V_{\text {out1 }}$ and $V_{\text {out2 outputs. Thus the output leakage }}$ will be $1 \mathrm{ID}(o n)$ plus $3 \mathrm{ID}(\mathrm{off}) \mathrm{s}$ or about 0.4 nA at room temperature. Thruput speed will be typically $0.8 \mu \mathrm{~s}$ for ton and $0.3 \mu \mathrm{~s}$ for toff, with thruput channel resistance in the 500Ω area.
Figure 5 shows the 2 of 32 MUX of Figure 4, with a third tier of submultiplexing added to further reduce leakage and output capacity. The IH5043 has typical ON resistance of 50Ω (max. is 75Ω) so it only increases thruput channel resistance from
the 500 ohms of Figure 4 to about 550 ohms for Figure 5. Thruput channel speed is a little slower by about $0.5 \mu \mathrm{~s}$ for both ON and OFF time, and output leakage is about 0.2 nA . Figure 6 shows a 2 of 64 MUX using 3 tier MUXing (similar to Figure 5). The Intersil 1 H 5043 is used for the third tier of MUXing. Each Vout point will see 3 OFF channels and 1 ON channel at any time, so that the typical leakages will be about 0.4 nA . Thruput channel resistance will be in the 550Ω area and thruput switching speeds will be about 1.3μ s for ON time and 0.8μ s for OFF time.
The IH5043 was chosen as the third tier of the MUX because it will switch the same AC signals as the IH6216 (typically plus and minus 15 V) and uses break before make switching. Also power supply quiescent currents are typically $1-2 \mu \mathrm{~A}$ so that no excessive system power is generated. Note that the logic of the 5043 is such that it can be tied directly to the enable input (as shown in the figures) with no extra logic being required.

V. ENABLE INPUT STROBING LEVELS

The enable input (EN) acts as an enabling or disabling pin for the IH6216 when used as a 2 out of 16 channel MUX, however when expanding the MUX to more than 16 channels, the EN pin acts as another address input. Figures 4 and 5 show the EN pin used as the A_{3} input.
For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up of $1 \mathrm{k} \Omega$ or less resistor should be used to pull the output voltage up to 5 V . When using CMOS logic, the high state goes up to the power supply so no pull-up is required.

NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of this fact, the rDS(ON) of the switch is maintained at specified values.

Data Acquisition

A/D Converters
LD110/111/114
ICL7109
ICL7126
ICL7135
ICL8052/3
ICL8068/8052A/7104

D/A Converters
ADC0801-4
AD7520/21/30/31
AD7523
AD7533
AD7541

4-9
Page
4-26 4-50 4-58 4-135 4-118

4-68
4-74
$4-78$
$4-82$

DVM Circuits

ICL7106/7	$4-17$
ICL7116/17	$4-42$
ICL8052/7101	$4-96$
ICL852/71C03	$4-104$
ICL8068/71C03	$4-104$
Successive	
Approximation	
Registers	
AM25(L)02/3/4	$4-11$
D/A Current	
Switches	
ICL8018/19/20	$4-88$

DATA ACQUISITION

Integrating Analog-to-Digital Converters for Display
Maximum Electrical Specification at $25^{\circ} \mathrm{C}$ unless otherwise noted.

	Single Chip					Two Chip System*	
Model	New ICL7126	New ICL7135	ICL7106/ICL7116	ICL7107/ICL7117	$\begin{aligned} & \text { ICL8052/ } \\ & \text { ICL8053 } \end{aligned}$	$\begin{aligned} & \text { ICL8068A/ } \\ & 71 C 03 A \end{aligned}$	$\begin{aligned} & \text { ICL8052A/ } \\ & \text { 7IC03A } \end{aligned}$
Resolution	$\pm 31 / 2$ digit	$\pm 4^{1 / 2}$ digit	$\pm 31 / 2$ digit	$\pm 31 / 2$ digit	Depends on counter used	$\pm 41 / 2$ digit	$\pm 41 / 2$ digit
Accuracy							
Nonlinearity	± 1 count	± 1 count	± 1 count	± 1 count	$\pm 0.002 \%$	± 1 count	± 1 count
Zero Input Reading	± 0.000	± 0.0000	± 0.0000				
Ratiometric Reading	± 1.000	± 1.0000	± 1.0000				
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}$	± 1 count						
Rollover Error	± 1 count						
Stability							
Offset vs							
Temperature	$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$			
Gain vs	:						
Temperature	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$			
Conversion	0.1 to 3	0.1 to 15	0.1 to 15	0.1 to 15	0.1 to 30	0.1 to 30	0.1 to 30
Time	conv/sec						
Analog Input							
Voltage Range	$\pm 200 \mathrm{mV}$ to $\pm 2 \mathrm{~V}$	$\pm 2 \mathrm{~V}$	$\pm 200 \mathrm{mV}$ to $\pm 2 \mathrm{~V}$	$\pm 200 \mathrm{mV}$ to $\pm 2 \mathrm{~V}$	$\pm 2 \mathrm{~V}$	$\pm 200 \mathrm{mV}$ to $\pm 2 \mathrm{~V}$	$\pm 2 \mathrm{~V}$
Impedance	$10^{12} \Omega$	$10^{12} \Omega$	$10^{12} \Omega$	$10^{12} \Omega$	$10^{9} \Omega$	$10^{9} \Omega$	$10^{9} \Omega$
Leakage Current	2 pA	3 pA	2pA	3pA	30pA	200pA	10pA
Noise (peak-to-peak)	$15 \mu \mathrm{~V}$ typ	$20 \mu \mathrm{~V}$ typ	$2 \mu \mathrm{~V}$ typ	$20 \mu \mathrm{~V}$ typ			
Bigital Input			Display Hold (7116)	Display Hold (7117)			
Digital Outputs Multiplex Direct							
Format	Direct	Multiplex	Direct	Direct	Depends on	Multiplex	Multiplex
	7 segment	BCD	7 segment	7 segment	counter used	BCD	BCD
Logic Level	LCD display		LCD display	LED display			
	AC: 4.5 V down from $V+$	TTL/CMOS	AC: 4.5 V down from $V+$	Comm Anode DTL/TTL/CMOS	Depends on counter used	TTL/CMOS	TTL/CM0S
Power Supply							
Voltage	+9V	$\pm 5 \mathrm{~V}$	+9V	$\pm 5 \mathrm{~V}$	$\pm 15 \mathrm{~V} ;+5 \mathrm{~V}$	$\pm 15 \mathrm{~V} ;+5 \mathrm{~V}$	$\pm 15 \mathrm{~V} ;+5 \mathrm{~V}$
Current	$100 \mu \mathrm{~A}$	' 1.8 mA	1.8 mA	1.8 mA	12 mA	$20 \mathrm{~mA} ; 30 \mathrm{~mA}$	18mA; 3mA
Package	40 pin DIP	28 pin DIP	40 pin DIP	40 pin DIP	(2). 14 pin DIP	14 pin DIP	14 pin DIP
						28 pin DIP	28 pin

*Also available LD110/111/114 and 8052/7101 (not recommended for new designs).

Integrating Analog-to-Digital Converters for Data Acquisition

Type	Single Chip	Two Chip System***		
Model	ADC0801-4 ICL7109	ICLB052/8068** ICL8052A/8068 ICL7104-12 ICL710414	$\begin{aligned} & \text { ICL8052A/8068 } \\ & \text { ICL7104-16 } \end{aligned}$	ICL8052A/8068 ICL71C03
Resolution	8-bit ± 12-Bit Binary	± 12-Bit ± 14-Bit	± 16-Bit	$\pm 41 / 2$-(31/2) Digit BCD
Accuracy	$\pm 1 / 411 / 211 / 2 / 1$ LSB $\quad \pm 1$ Count	± 1 Count ± 1 Count	± 1 Count	± 1 Count
Microprocessor Compatible	Yes Yes	Yes Yes	Yes	Yes
Output	Programmable: Programmable: 1. Latched parallel 1. Latched parallel 3 state Binary 3 state Binary 2. One 8 -bit byte 2. Controlled $2-8$ bit bytes	Programmable: 1. Latched parallel 3 state Binary 2. Controlled 2-8 Bit Byte for ICL7104-12/14 -3-8 Bit Byte for ICL7104-16		Multiplexed BCD
Control Lines	Run/Hold, Busy, Byte Enables, Mode, Load	, Send Enable, Out of Range		Run/Hold, Busy, Strobe, OR, UR
Conversion Time		2 ms 8 ms	33 ms	3 ms
UART Compatible	Yes Yes	Yes ${ }^{\text {a }}$, Yes	Yes	Yes
Noise [Typical]	$15 \mu \mathrm{~V}$	$3 \mu \mathrm{~V}$ (8068) $\quad 2 \mu \mathrm{~V}$ (8068)	$2 \mu \mathrm{~V}$ (8068)	$2 \mu \mathrm{~V}$ (8068)
Input Current	10 pA .	$30 \mathrm{pA}(8052) \quad 30 \mathrm{pA}$ (8052)	30pA (8052)	10 pA (8052A)
Input Voltage Range	5 V span $\quad$$\pm 400 \mathrm{mV}$ to $\pm 4.1 \mathrm{~V}$	$\pm 50 \mathrm{mV}$ to $\pm 100 \mathrm{mV}$ to $\pm 10 \mathrm{~V}$ $\pm 10 \mathrm{~V}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \\ & \pm 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \\ & \pm 2 \mathrm{~V} \end{aligned}$

[^9]
Digital-to-Analog Converters*

Maximum Electrical Specification at $25^{\circ} \mathrm{C}$ unless otherwise noted.

Model	AD7523	AD7533	AD7520 (7530)	A07521 (7531)	AD7541
Resolution	8 bit	10 bit	10 bit	12 bit	12 bit
Accuracy	J/K/L	J/K/L	J/K/L	J/K/L	J/K/L
Linearity	0.2\%/0.1\%/0.05\%.	0.2\%/0.1\%/0.05\%	0.2\%/0.1\%/0.05\%	0.2\%/0.1\%/0.05\%	0.2\%/0.01\%/0.01\%
Zero Offset	$50 \mu \mathrm{~A}$	200 nA	$200 \mathrm{nA}(300 \mathrm{nA})$	$200 \mathrm{nA}(300 \mathrm{nA})$	50 nA
Full Scale Reading	1.5\% max	1.4\%	0.3\% typ	0.3\% typ	0.3\%
Stability					
Gain vs. Temp	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$				
Linearity vs. Temp	$2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$				
Setting Time to $\pm 0.05 \%$ F.S.	150ns	600 ns typ	500 ns typ	500 ns typ	$1 \mu \mathrm{~S}$
Input Code	DTL/TTL/CMOS	DTL/TTL/CMOS	DTL/TTL/CMOS	DTL/TTL/CMOS	DTL/TTL/CMOS
Logic Compat-	Binary	Binary	Binary	Binary	Binary
ibility option	Offset Binary				
Power Supply					
Voltage	+5 to + 16 V	+5 to +15 V	+5 to +15 V	+5 to + 15 V	+5 to +16 V
Current	$100 \mu \mathrm{~A}$	2 mA	2 mA	2 mA	2 mA
Package	16 pin DIP	16 pin DIP	16 pin DIP	18 pin DIP	18 pin DIP

*R2R Ladder Multiplying Type

Successive Approximation Registers AM25(L)02/25(L)03/25(L)04

$8(2502 / 2503)$ and 12 bit (2504) successive approximation registers can be used as serial to parallel counter or ring counter. Contains storage and control for SAR A to D converters.

Quad Current Switches ICL8018/8019/8020

High speed precision current switches for use in current summing D/A converters. Can be purchased individually or in matched sets with accuracies of 0.01% (ICL8018), 0.1% (ICL8019), or 1.0% (ICL8020)

Sample and Hold

**Csto $=0.01 \mu \mathrm{~F}$

Monolithic Voltage Converter-The ICL7660

Converts positive voltage into negative over a range of +1.5 V through +10 V . May be cascaded for higher negative output voltages, paralleled for greater output current, used as a positive voltage multiplier, or any combination of the above. Typical supply current is $170 \mu \mathrm{~A}$, and output source resistance is 55Ω at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{I}_{0}=20 \mathrm{~mA}$.

FEATURES

- Accuracy 0.05% Of Reading ± 1 Count
- Two Voltage Ranges - 1.999 V and 199.9 mV
- Sampling Rates up to 12 Samples/Second
- FET Input for $Z_{i n}>1000 \mathrm{M} \Omega$
- Auto-Zero Minimizes Effects of Offset, Drift and Temperature
- Auto-Polarity
- Multiplexed Parallel BCD or Serial BCD Output (LD114)
- Active High or Active Low Logic Outputs (LD114)
- Overrange and Underrange Signals Available for AutoRanging Capability.
- $\div 512$ Output Available for Phase Locked Loop Clock (LD114)
- TTL Compatible Outputs

GENERAL DESCRIPTION

The monolithic LD111 analog processor contains a bipolar comparator, a bipolar integrating amplifier, two MOS-FET input unity gain amplifiers, several P-channel enhancement
mode analog switches and the necessary level shifting drivers to allow the analog and digital processors to be directly interfaced. A wide range of conversion rates (1/3 to 12 samples per second) as well as two voltage ranges can. be accommodated using externally determined RC time constants. All amplifiers are internally compensated.
The PMOS LD110/LD114 synchronous digital processor combines the counting, storage and data multiplexing functions with the random logic necessary to control the quantized charge-balancing function of the analog processor. Seventeen static latches store the $31 / 2$ digits of BCD data as well as overrange, underrange and polarity information.
In the LD110, nine push-pull output buffers (capable of driving one standard TTL load each) provide the sign, digit strobe and multiplexed BCD data outputs, all of which are active high. The digit scan is an interlaced format of digits $1,3,2$, and 4.
In the LD114, ten push-pull output buffers (capable of driving one standard TTL load) provide the clock frequency $\div 512$, sign, digit strobe and multiplexed BCD data. Four data output format options allow the user to tailor the BCD output to his circuit requirements.

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{++}=12 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=8.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
$\begin{aligned} & \mathbf{I} \\ & \mathbf{N} \\ & \mathbf{P} \\ & \mathbf{U} \\ & \mathbf{T} \end{aligned}$	Clock Frequency	f IN	50\% Duty Cycle		30.7		kHz
	Input Bias Current	IIN	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		
			$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		40		pA
	Normal Mode Rejection	NMR	$\mathrm{f}_{\mathrm{L}}=60 \mathrm{~Hz}$		40		dB
	Clock Input Current, Low	${ }^{\text {ICL }}$	$V_{\text {CLOCK }}$ in $=0.4 \mathrm{~V}$			-500	
	Comparator	IINL	$\mathrm{V}_{\text {INL }}=-12 \mathrm{~V}$			-100	
	Latch Inhibit	IINL	$\mathrm{V}_{\text {INL }}=-12 \mathrm{~V}$		180	-600	$\mu \mathrm{A}$
	Format Option Inputs	IINH	$\mathrm{V}_{\text {INH }}=\mathrm{V}_{\text {SS }}$		25	400	
O$U$$T$$P$$U$$T$	Measure/Zero Voltage, Low	VOL1	$\mathrm{IOL}=150 \mu \mathrm{~A}$			0.4	V
	Measure/Zero Voltage, High	VOH1	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	2.4			
	Up/Down Logic Voltage, Low	VOL2	IOL $=250 \mu \mathrm{~A}$			0.4	
	Up/Down Logic Voltage, High	VOH2	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$	2.4			
	Digits, Bits, Sign Voltage,$\div 512^{*}$	VOL3	$1 \mathrm{OL}=1.6 \mathrm{~mA}$			0.4	
	Analog Comparator Voltage	V_{OH}	$!\mathrm{OH}=-100 \mu \mathrm{~A}$	2.4			
	Data Bit Voltage, High	VOH	$1 \mathrm{OH}=-200 \mu \mathrm{~A}$	2.4			
	Digits, Sign Voltage, $\div 512^{*}$	VOH5	$1 \mathrm{OH}=-800 \mu \mathrm{~A}$	2.4			
$\begin{aligned} & \mathrm{S} \\ & \mathrm{~W} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{C} \\ & \mathrm{H} \\ & \hline \end{aligned}$	ON Resistance, Auto Zero Switch	rDS(on)	$\mathrm{V}_{\mathrm{AZ} \text { (in) }}=-4.0 \mathrm{~V}, \mathrm{IS}=-50 \mu \mathrm{~A}$		11	50	k Ω
	ON Resistance, Up/Down Switch	rDS(on)	$\mathrm{I}^{\text {S }}=1 \mathrm{~mA}$		650	3000	Ω
	Up/Down Switch Temperature Coefficient	TC	. .		0.20	0.50	\%/ ${ }^{\circ} \mathrm{C}$
$S$$U$$P$$P$$L$$Y$	Supply Current, LD111	1^{++}			2.2	3.5	mA
	Supply Current, LD111	$\mathrm{I}_{\mathrm{A}}^{-}$			-1.8	-3.0	
	Supply Current, LD110/114	${ }^{\text {I }}$			-17	-23	
	Supply Current, LD110/114	1^{+}			17.4	24	
	Power Supply Rejection Ratio, V^{++}	PSRR1		80	85		dB
	Power Supply Rejection Ratio, V^{-}	PSRR2		60	65		
	Reference Current Rejection Ratio		$\mathrm{R}_{\text {REF }}=\mathrm{R}_{2}=100 \mathrm{~K} \Omega, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$	35	41		nA/LSB

* $\div 512$ output applicable to LD114 only

INPUT/OUTPUT SCHEMATICS

OUTPUT BUFFERS
(Digits, Bits, Sign, 512, M/Z, U/D)

COMPARATOR, CLOCK, LATCH INHIBIT INPUTS

FORMAT OPTION INPUTS (Bit Phase, Digit Phase, Scan, Serial Bits)

DESCRIPTION OF PIN FUNCTIONS (LD110/LD114)

\mathbf{V}^{+}- Positive Supply Voltage. Recommended level is +5 volts $\pm 10 \%$.

V $^{-}$- Negative Supply Voltage. Recommended level is -12 volts $\pm 10 \%$.

CLOCK IN - This input accepts a TTL or MOS level clock to drive the synchronous digital circuitry. Acceptable duty cycles on the external clock range from 30% high, 70% low to 70% high, 30% low for clock frequencies from 2 kHz to 75 kHz . Although any clock frequency between 2 kHz and 75 kHz may be used, clock frequencies that are integer divisions of $2048 F_{L}\left(F_{I N}=2084 F_{L} / n, n=2,3,4,51, F_{L}=\right.$ Line Frequency) provide measure and zero periods that are integer multiples of the line frequency period ($T_{\text {zero }}=n / F_{L}$. $T_{\text {measure }}=2 n / F_{L}$). Line frequency interference is minimized by the selection of one of these 50 frequencies.

This input has an active pull-up to V^{+}.

M/Z - Measure/Zero Logic Output. This 0 to 5 volt logic output successively provides Autozero and Measurement intervals of 2048 and 4096 clock periods respectively. This output is compatible with CMOS logic and directly interfaces with the LD111 analog processor.
$\div 512$ (LD114) - This TTL compatible output (1 standard load) provides the necessary clock frequency division for a phase locked loop digital clock. The line frequency rejection will be held at the maximum level $(>80 \mathrm{~dB})$ when locked to the line frequency.

U/D - Up/Down Logic Output. This output has logic levels of 0 to +5 volts to provide pulse-width modulation of the reference current when used with the LD111 analog processor. This output is CMOS compatible.

COMP - Analog Comparator Input. This input has an active pull-up to V^{+}for a comparator "high" state. This pin must be pulled down to V^{-}for a "low" comparator state.

An End-of-Conversion Signal can be decoded from the three interconnecting logic lines ($M / Z, U / D$, Comp) using the following CMOS logic.
$\overline{M / Z+U / D+C o m p}=E . O . C$.

SIGN - Sign of Analog Input Polarity. This TTL level output is a static signal which is either 0 or V^{+}for a negative or positive input polarity respectively.

BIT PHASE (*LD114) - The bit outputs will be active high (positive) logic if this pin is left open or connected to V^{-}. The application of V^{+}to this pin will give a complemented output (negative logic).

DIGIT PHASE (*LD114) - The Digit Strobe outputs will be of positive logic if this pin is left open or connected to V^{-} (an active pull-down is internally connected to V^{-}). Applying V^{+}to this pin will complement the outputs to give negative logic. Negative logic may simplify interfacing with Common Anode LED, Gas Discharge and Liquid Crystal Displays.
$B_{1}, B_{2}, B_{3}, B_{4}-B C D$ Data Bit Output. B4 represents the most significant bit and B_{1} the least significant bit of the BCD output. Bit 4 of digit 4 goes high for an underrange condition (less than 100 counts). These outputs are compatible with 1 standard TTL load.

MUX Underrange $=B_{4} \cdot D_{4}$ (5\% of full scale)
$D_{1}, D_{2}, D_{3}, D_{4}$ - Digit Strobe Outputs. D_{4} is the most significant and D_{1} the least significant digit of the $31 / 2$ digit output. The digit strobes are each selected in turn when the BCD data bits for that digit appear at the bit outputs.

MUX Overrange $=\overline{D_{1}+D_{2}+D_{3}+D_{4}}$ (100\% of full scale, count $\geqslant 2000$).

SCAN (*LD114) - Sequential/Interlace Digit Scan. The digit strobe format will be an interlaced format of digits 1 , 3,2 and 4 if this pin is left open or is connected to V^{-}. This format is useful for display digits packaged two to an envelope and which require an interdigit blanking period eg. (Beckman Displays). By alternating from envelope, an interdigit blanking period is effectively provided.

The application of V^{+}to this pin will give a sequencial scan of digits 1,2,3 and 4. This format may be more useful in interfacing with data acquisition equipment.

LATCH INHIBIT (*LD114) - Connecting this pin to V_{2} will prevent updating of the internal static latches, thus providing a "hold" function. Leaving this pin disconnected will allow the latches to be updated once each sampling period.

DESCRIPTION OF PIN FUNCTIONS (LD110/LD114) Cont.

SERIAL BITS (*LD114)—Parallel/Serial Bit Output Format. The BCD data bits for each digit will appear simultaneously with the digit strobe if the parallel bit option is selected.

This format is useful for driving multiplexed displays. The parallel bit format is available when this pin is left open or connected to V^{-}.

The application of V^{+}to this pin will put all of the BCD data bits in a serial order at the bit 4 output.

Bit outputs 1, 2, and 3 contain time markers to identify the data. The most significant bit of the last digit (D_{4}) is identified by a marker at the bit 2 output. The least significant bit of the first Digit $\left(D_{1}\right)$ is identified by a marker at bit 3. Bit 1 shows a marker for the least significant bit of each digit.

All output format options are independent of one another (i.e., the serial bit output can have either sequential or interlace scan, Positive or Negative logic).
(*For LD110, action is described for "pin left open".)

DESCRIPTION OF PIN FUNCTIONS - LD111

BUF OUT - The output of this unity gain input buffer amplifier is applied to the integrator summing node through a scaling resistor R_{2}. The value of this resistor is typically $10 \mathrm{~K} \Omega$ for a 200.0 mV full-scale and $100 \mathrm{~K} \Omega$ for a 2.000 V full-scale. The digital output is inversely proportional to the value of this resistor,

$$
\text { Count }=\frac{V_{\text {IN }}}{V_{\text {REF }}} \frac{R_{1}}{R_{2}} 8192
$$

HI-QUALITY GND - This pin, typically connected to a High Quality Ground point for single ended inputs CAN BE USED AS THE INVERTING INPUT FOR DIFFERENTIAL SIGNALS. The digital output will be VIN - VHI-Q. When using this differential mode, it is important that resistor R_{3} equal Resistor R_{2} for proper operation.

M/Z - Measure/Zero Logic Input. Internal level shifting drivers operate the PMOS switches in response to this digital signal.

U/D - Up/Down Logic Input. The logic signal applied to this pin operates a SPDT switch to provide Quantized pulses of charge to the integrator.

COMP - This analog comparator output is an open collector configuration which goes to V^{-}when "low."

V $^{-}$- Negative Supply Voltage. Recommended level is $-12 \mathrm{~V} \pm 10 \%$.

GND - Analog Processor Ground.

REF ${ }_{\text {out }}$ - This voltage output of the SPDT U/D switch, converted to a current by resistor \mathbf{R}_{1}, supplies the reference current to the integrator.

INT. IN - Integrator Summing Node.

VREF - A stable positive reference voltage (5 to 11 V) applied to this pin is the standard to which the input voltage VIN is measured. Ratio measurements can be made by applying a variable to this input (1.0 to 11 V).

INT. OUT - The output of the integrating amplifier is made available for application to the Auto-Zero amplifier by means of resistor R4.

AZ OUT - The output of the unity gain Auto-Zero Amplifier provides a second negative reference current to the integrator through resistor R3.

AZ FILTER - The RC filter (R_{5} and CSTRG) connected to this pin stores. D.C. voltage components to balance amplifier offset and drift components.

AZ IN - This input is switched into the $A Z$ filter during the Zeroing interval.

VIN - Analog Voltage Input. The A/D System digitizes the voltage appearing at this input.
V^{++}- Positive Supply Voltage. The recommended level is +12 volts $\pm 10 \%$.

APPLICATIONS LD111/LD114

APPLICATIONS LD110/LD111

FEATURES

- MCS-48 and MCS-80/85 bus compatible-no interfacing logic required
- Conversion time $<100 \mu \mathrm{~S}$
- Easy interface to all microprocessors
- Will operate "stand alone"
- Differential analog voltage inputs
- Bandgap voltage references
- TTL compatible inputs and outputs
- ON-chip clock generator
- OV to 5 V analog voltage input range (single +5 V supply)
- No zero adjust required

ADC0801-ADC0804
 8-Bit Microprocessor Compatible A/D Converters

GENERAL DESCRIPTION
The ADC0801 family are CMOS 8 -bit successive approximation A/D converters which use a modified potentiometric ladder, and are designed to operate with the 8080A control bus via three-state outputs. These converters appear to the processor as memory locations or I/O ports, hence no interfacing is required.

A differential analog voltage input allows increasing the common-mode-rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.
The ADC0801 family is available in the industry standard 20 pin CERDIP packages.

ORDERING INFORMATION

PART	ERROR	TEMPERATURE RANGE	PACKAGE	ORDER NUMBER
ADC0801	$\pm 1 / 4$ bit adjusted full scale	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0801LCN
		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0801LCD
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0801LD
ADC0802	$\pm 1 / 2$ bit no adjust	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0802LCN
		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0802LCD
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0802LD
ADC0803	$\pm 1 / 2$ bit adjusted full scale	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0803LCN
		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0803LCD
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0803LD
ADC0804	± 1 bit no adjust	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0804LCN
		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 pin CERDIP	ADC0804LCD

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ...6.5V
Voltage at Any Input -0.3 V to $(\mathrm{V}++0.3 \mathrm{~V})$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$. 875 mW
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

OPERATING RATINGS

Temperature-Range	
ADC0801/02/03LD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADC0801/02/03/04LCD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0801/02/03/04LCN	$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage Range	4.5 V to 6.5 V

ELECTRICAL CHARACTERISTICS

Converter Specifications: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }} / 2=2.500 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$ unless otherwise stated.

Timing Specifications: $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
$\mathrm{f}_{\mathrm{c}} \quad$ Clock Frequency	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 640 \\ & 640 \end{aligned}$	$\begin{array}{r} 1280 \\ 800 \end{array}$	kHz	$\begin{aligned} & \mathrm{V}^{+}=6 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$
$\mathrm{t}_{\text {conv }}$ Conversion Time	66		73	ns	
CR Conversion Rate In Free-Running Mode			8770	Conv/S	INTR tied to $\overline{W R}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}, \mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$
$\mathrm{t}_{\text {W(} \overline{W R}) \mathrm{L}}$ Width of $\overline{W R}$ Input (Start Pulse Width)	100			ns	$\overline{\mathrm{CS}}=0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{Acc}} \quad$ Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)		135	200	ns	$\begin{aligned} & C_{L}=100 \mathrm{pF} \text { (Use Bus Driver IC } \\ & \text { for Larger } C_{L} \text {) } \end{aligned}$
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$ 3-State Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{Hi}-\mathrm{Z}$ State)		125	250	ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$
$t_{\text {WI }} \quad \begin{aligned} & \text { Delay from Falling Edge of } \overline{W R} \text { to } \\ & \text { Reset of } \overline{\text { INTR }}\end{aligned}$		300	450	ns	
$\mathrm{C}_{\mathrm{IN}} \quad$ Input Capacitance of Logic Control Inputs		5	7.5	pF	
COUt 3-State Output Capacitance (Data Buffers)		5	7.5	pF	

FEATURES

- Contains all the storage and control for successive approximation A to D converters.
- Provision for register extension or truncation.
- Can be operated in START-STOP or continuous conversion mode.
- 100% reliability assurance testing in compliance with MIL-STD-883.
- Can be used as serial-to-parallel counter or ring counters.
- Electrically tested and optically inspected dice for the assemblers of hybrid products.

GENERAL DESCRIPTION

The AM2502/3/4 are 8 -bit and 12 -bit TTL Successive Approximation Registers. They contain all the digital control and storage necessary for successive approximation analog to digital conversion and can also be used in digital
systems as the control and storage element in recursive digital routines.
The registers consist of a set of master latches which act as the control elements and change state when the input clock is LOW, and a set of slave latches that hold the register data and change on the input clock LOW to HIGH transition. Externally the device acts as a special purchase serial to parallel converter which accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the 2502 and 2504 when the clock goes from LOW to HIGH. There are no restrictions on the data input; it can change state at any time except during the set-up time just prior to the clock transition. At the same time data enters the register bit the next less significant bit is set to a LOW, ready for the next iteration.
The AM25L02/L03/L04 are low power equivalents of the AM2502/03/04.

LOGIC DIAGRAM

NOTES

1. CELL LOGIC IS REPEATED FOR

REGISTER STAGES.
a_{5} TO a_{1} 2502/3
Q9 TO a 2504
2. NUMBERS IN PARENTHESES ARE FOR 2504

PIN CONFIGURATIONS'AND LOGIC SYMBOLS

AM2502/3/4, AM25L02/3/4

ABSOLUTE MAXIMUM RATINGS

ly Voltage	7 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to V^{+}
DC Input Voltage	-0.5 V to +5.5 V
Output Current, Into Outputs	30 mA
DC Input Current	-30 mA to +5.0 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperatures	
M devices	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
C devices	... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$300^{\circ} \mathrm{C}$

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS $\mathrm{v}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range unless otherwise specified

PARAMETER	SYMBOL	TEST CONDITIONS			LIMITS			UNIT
					MIN.	TYP. ${ }^{(1)}$	MAX.	
Output high voltage	VOH	$\begin{aligned} & \mathrm{V}^{+}=\min , \mathrm{IOH}=-0.48 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$			2.4	3.6		V
Output low voltage	VOL	$\begin{aligned} & \mathrm{V}^{+}=\min , \mathrm{IOH}=0.96 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$				0.2	0.4	V
Input high voltage	V_{IH}	Guaranteed input logic HIGH voltage for all inputs			2.0			V
Input low voltage	VIL	Guaranteed input logic LOW voltage for all inputs					0.8	V
Unit load input low current (2)	IIL	$\mathrm{V}^{+}=\mathrm{max}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$				-1.0	-1.6	mA
						-0.25	-0.4	
Unit load input high current (2)	IIH	$\mathrm{V}^{+}=\max , \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$				6.0	40	$\mu \mathrm{A}$
						2.0	20	
Input high current	IIH	$\mathrm{V}^{+}=$max, $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$. 1.0	mA
Output short circuit current	Isc	$\mathrm{V}^{+}=\max , \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		02/3/4	-10	-25	-45	mA
				L02/3/4	-3	-7	-16	
Power Supply Current	1^{+}	$\mathrm{V}^{+}=\max$	AM2502/3	C		65	95	mA
				M		65	85	
			AM25L02/3	C		25	35	mA
				M		25	33	
			AM2504	C		90	124	mA
				M		90	110	
			AM25L04	C		30	45	mA
				M		30	42	

NOTES: 1. Typical limits are with $\mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and maximum loading.
2. Actual input currents are obtained by multiplying unit load current by input load factor (see Loading Rules).

SWITCHING CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETERS	DESCRIPTION	AM2502/3/4			AM25L02/3/4			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
$t_{\text {pd }+}$	Turn Off Delay CP to Output HIGH	10	26	38	20	75	110*	ns
$t_{\text {pd- }}$	Turn On Delay CP to Output LOW	10	18	28	20	75	100	ns
t_{s} (D)	Set-up Time Data Input	-10	4	8	-15	8	20	ns
$\mathrm{t}_{\mathrm{t}}(\overline{\mathrm{S}})$	Set-up Time Start Input	0	9	16	0	20	25	ns
$\mathrm{t}_{\mathrm{pd}}+(\mathrm{E})$	Turn Off Delay E to Q7(11) ${ }^{\text {(AM25(L)03/4) }}$		13	19		50	75	ns
tpd_(E)	Turn On Delay E to $\mathrm{Q}_{7(11)}$ LOW $\mathrm{CP}_{\mathrm{p}}=\mathrm{H}, \overline{\mathrm{S}}=\mathrm{L}$		16	24		60	75	ns
$t_{p w L}(C P)$	Minimum LOW Clock Pulse Width		28	46		100	150	ns
$t_{\text {pwh }}(\mathrm{CP})$	Minimum HIGH Clock Pulse Width		12	20		70	100	ns
$f_{\text {max }}$	Maximum Clock Frequency	15	25		3.5	5.0		MHz

${ }^{*} Q_{11}, Q_{11} 30 \mathrm{~ns}$ slower

25(L)02/3 LOADING RULES (IN UNIT LOADS)

INPUT/ OUTPUT	$\begin{gathered} \text { PIN } \\ \text { NO.'s } \end{gathered}$	INPUT UNIT LOAD		FANOUT	
				$\begin{aligned} & \hline \text { OUTPUT } \\ & \text { HIGH } \end{aligned}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { LOW } \end{aligned}$
		LOW	HIGH		
$\overline{\mathrm{E}}$ (2503)	1	2	2	-	-
DO (2502)	1	-	-	12	6
$\overline{C C}$	2	-	-	12	6
Q_{0}	3	-	-	12	6
Q1	4	-	-	12	6
Q_{2}	5	-	-	12	6
Q3	6	-	-	12	6
D	7	2	2	-	-
GND	8	-	-	-	-
CP	9	1	1	-	-
$\overline{\mathrm{S}}$	10	1	2	-	-
Q4	11	-	-	12	6
Q5	12	-	-	12	6
Q6	13	-	-	12	6
$\overline{\mathrm{Q}_{7}}$	14	-	-	12	6
Q7	15	-	-	12	6
V^{+}	16	-	-	-	-

25(L)04 LOADING RULES (IN UNIT LOADS)

INPUT/ OUTPUT	$\begin{aligned} & \text { PIN } \\ & \text { NO.'s } \end{aligned}$	$\begin{gathered} \text { INPUT } \\ \text { UNIT LOAD } \end{gathered}$		FANOUT	
				OUTPUT HIGH	OUTPUT LOW
		LOW	HIGH		
\bar{E}	1	2	2	-	-
DO	2	-	-	12	6
$\overline{\mathrm{CC}}$	3	-	-	12	6
Q0	4	-	-	12	6
Q1	5	-	-	12	6
Q_{2}	6	-	-	12	6
Q3	7	-	-	12	6
Q_{4}	8	-	-	12	6
Q5	9	-	-	12	6
NC	10	-	-	-	-
D	11	2	2	-	-
GND	12	-	-	-	-
CP	13	1	1	-	-
$\overline{\mathrm{S}}$	14	1	2	-	-
NC	15	-	-	-	-
Q6	16	-	-	12	6
Q7	17	-	-	12	6
Q8	18	-	-	12	6
Q9	19	-	-	12	6
Q10	20	-	-	12	6
$\overline{\mathrm{Q}_{11}}$	21	-	-	12	6
NC	22	-	-	-	-
Q11	23	-	-	12	6
V^{+}	24	-	-	-	-

INPUT/OUTPUT INTERFACE CONDITIONS

CURRENT INTERFACE CONDITIONS - LOW

CURRENT INTERFACE CONDITIONS - HIGH

SWITCHING TIME WAVEFORMS

ENABLE TO $Q_{7}(11)$
CP = H WHEN ENABLE CHANGES

APPLIES ONLY WHEN START-SIGNAL APPLIED DURING PREVIOUS CLOCK PERIOD.

DEFINITION OF TERMS

SUBSCRIPT TERMS:

H-HIGH, applying to a HIGH logic level or when used with $V_{C C}$ to indicate high $V_{C C}$ value.
I-Input.
L-LOW, applying to LOW logic level or when used with $V_{C C}$ to indicate low Vcc value.
O-Output.

FUNCTIONAL TERMS:

Fan-Out - The logic HIGH or LOW output drive capability in terms of Input Unit Loads.
Input Unit Load One T2L gate input load. In the HIGH state it is equal to $\mathrm{IIH}_{\mathrm{H}}$ and in the LOW state it is equal to IIL: $\mathbf{C P}$ - The clock input of the register.
$\overline{\mathbf{C C}}$ - The conversion complete output. This output remains HIGH during a conversion and goes LOW when a conversion is complete.
D - The serial datá input of the register.
\bar{E}-The register enable. This input is used to expand the length of the register and when HIGH forces the $Q_{7}(11)$ register output HIGH and inhibits conversion. When not used for expansion the enable is held at a LOW logic level (Ground).
Q $_{7}(11)$ - The true output of the MSB of the register.
$\overline{\mathbf{Q}}_{7}(11)$-The complement output of the MSB of the register.
$Q_{i}, i=7(11)$ to 0 -The outputs of the register.
$\overline{\mathbf{S}}$ - The start input. If the start input is held LOW for at least a clock period the register will be reset to $Q_{7}(11)$ LOW and all the remaining outputs HIGH. A start pulse that is LOW for a shorter period of time can be used if it meets the set-up time requirements of the \bar{S} input.
DO - The serial data output. (The D input delayed one bit.) OPERATIONAL TERMS:
IIL-Forward input load current.

IOH-Output HIGH current, forced out of output $\mathrm{VOH}_{\mathrm{OH}}$ test. IoL-Output LOW current, forced into the output in VoL test.
\mathbf{l}_{IH}-Reverse input load current.
Negative Current-Current flowing out of the device.
Positive Current-Current flowing into the device.
\mathbf{V}_{IH}-Minimum logic HIGH input voltage.
$V_{\text {IL }}$ - Maximum logic LOW input voltage.
VOH- Minimum logic HIGH output voltage with output HIGH current lOH flowing out of output.
VOL—Maximum logic LOW output voltage with output LOW current lol flowing into output.
SWITCHING TERMS: (Measured at the 1.5V logic level.)
$t_{\text {pd- }}$-The propagation delay from the clock. signal LOWHIGH transition to an output signal HIGH-LOW transition. $t_{\text {pd }}+$ - The propagation delay from the clock signal LOWHIGH transition to an output signal LOW-HIGH transition. $t_{p d-}(\overline{\mathbf{E}})$ - The propagation delay from the Enable signal HIGH-LOW transition to the Q7(11) output signal HiGH-LOW transition.
$t_{\text {pd }}(\dot{\bar{E}})$-The propagation delay from the Enable signal LOW-HIGH transition to $Q_{7}(11)$ output signal LOW-HIGH transition.
$\mathbf{t}_{\mathbf{S}}(\mathrm{D})$-Set-up time required for the logic level to be present at the data input prior to the clock transition from LOW to HIGH in order for the register to respond. The data input should remain steady between $\mathrm{t}_{\mathrm{s}} \mathrm{max}$, and $\mathrm{t}_{\mathrm{s}} \mathrm{min}$. before the clock.
$\mathbf{t}_{\mathbf{s}}(\overline{\mathbf{S}})$ - Set-up time required for a LOW level to be present at the $\overline{\mathrm{S}}$ input prior to the clock transition from LOW to HIGH in order for the register to be reset, or time required for a HIGH level to be present on $\overline{\mathrm{S}}$ before the HIGH to LOW clock transition to prevent resetting.
$t_{\text {pw }}$ (CP) - The minimum clock pulse width (LOW or HIGH) required for proper register operation.

AM25(L)02/3 TRUTH TABLE

TIME	INPUTS			OUTPUTS									
t_{n}	D	S	E	D_{0}	Q_{7}	\mathbf{Q}_{6}	Q	Q_{4}	Q_{3}	\mathbf{Q}_{2}	\mathbf{Q}_{1}	\mathbf{Q}_{0}	CC
0	X	L	L	X	X	X	X	X	X	X	X	X	X
1	D7	H	L	X	L	H	H	H	H	H	H	H	H
2	D_{6}	H	L	D_{7}	D_{7}	L	H	H	H	H	H	H	H
3	D5	H	L	D_{6}	D_{7}	D_{6}	L	H	H	H	H	H	H
4	D_{4}	H	L	D_{5}	D_{7}	D_{6}	D_{5}	L	H	H	H	H	H
5	D	H	L	D_{4}	D_{7}	D_{6}	D5	D4	L	H	H	H	H
6	D_{2}	H	L	D_{3}	D_{7}	D_{6}	D5	D_{4}	D_{3}	L	H	H	H
7	D_{1}	H	L	D_{2}	D_{7}	D_{6}	D5	D_{4}	D_{3}	D_{2}	L	H	H
8	D_{0}	H	L	D_{1}	D_{7}	D_{6}	D5	D_{4}	D_{3}	D_{2}	D_{1}	L	H
9	X	H	L	D_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	Do	L
10	X	X	L	X	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	Do	L
	X	X	H	X	H	NC							

H = HIGH Voltage Level
L = LOW Voltage Level
X $=$ Don't Care
NC = No Change
Note: Truth Table for 25(L)04 is extended to include 12 outputs.

USER NOTES FOR A/D CONVERSION

1. The register can be used with current switches which are either active high or active low. If active low current switches are used, the resulting digital output from the register is active LOW. That is, a logic " 1 " is represented as a low voltage level. If active high current switches are used then the digital output is active.HIGH; a logic " 1 " is represented as a high voltage level.
2. For a maximum digital error of $\pm 1 / 2$ LSB the comparator must be biased. If active high current switches are used, the comparator should be biased $+1 / 2$ LSB and if the current switches are active low, the comparator must be biased -1/2 LSB.
3. The register, by suitable selection of resistor ladder network, can be used to perform either binary or BCD conversion.
4. The register can also be used to perform 2's complement conversion by offsetting the comparator $1 / 2$ full range $+1 / 2$ LSB and using the complement of the MSB Q7(11) as the sign bit.
5. If the register is truncated and operated in the continuous conversion mode a lock-up condition may occur on power-on. This situation can be overcome by making the START input the OR function of $\overline{C C}$ and the appropriate register output.

AM25(L)02/3 TIMING CHART

Note: Arbitrary Conversion shown. Timing chart for AM25(L)04 is extended to include 12 outputs, starting with Q_{11}.

ORDERING INFORMATION

PART	16 PIN CERDIP	16 PLN PLASTIC DIP	DICE	
AM2502C	AM2502DC	AM2502PC	AM2502XC	
AM2502M	AM2502DM		AM2502XM	
AM2503C	AM2503DC	AM2503PC	AM2503XC	
AM2503M	AM2503DM		AM2503XM	
	24 pin CERDIP	24 pin plastic DIP	24 pin Flatpak	Dice
AM2504C	AM2504DC	AM2504PC		AM2504XC
AM2504M	AM2504DM		AM2504FM	AM2504XM

To order " L " devices, insert " L " following"25"; e.g., AM25L02DM
NOTES: C- Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ M - Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

CIRCUIT DESCRIPTION

The register is reset by holding the $\overline{\mathrm{S}}$ (Start) signal LOW during the clock LOW-to-HIGH transition. The register synchronously resets to the state $Q_{7}(11)$ LOW, (Note 2) and all the remaining register outputs HIGH. The $\overline{\mathrm{CC}}$ (Conversion Complete) signal is also set HIGH at this time. The $\overline{\mathrm{S}}$ signal should not be brought back HIGH until after the

MODERATE COST A/D CONVERTER
clock LOW-to-HIGH transition in order to guarantee correct resetting. After the clock has gone HIGH resetting the register, the $\overline{\mathrm{S}}$ signal is removed. On the next clock LOW-toHIGH transition the data on the D input is set into the $Q_{7}(11)$ register bit and the $\mathrm{Q}_{6}(10)$ register bit is set to a LOW ready for the next clock cycle. On the next clock LOW-to-HIGH transition data enters the $\mathrm{Q}_{6}(10)$ register bit and $\mathrm{Q}_{5}(9)$ is set to a LOW. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into Q_{0}, the $\overline{C C}$ signal goes LOW, and the register is inhibited from further change until reset by a START signal.
To allow two's complement conversion the complementary output of the most significant register bit is made available. An active LOW enable input, \bar{E}, on the 2503 and 2504 allows devices to be connected together to form a longer register by connecting the clock, D , and $\overline{\mathrm{S}}$ inputs together and connecting the $\overline{\mathrm{CC}}$ output of one device to the $\overline{\mathrm{E}}$ input of the next less significant device. When the START signal resets the register, the \bar{E} signal goes HIGH , forcing the $\mathrm{Q}_{7}(11)$ bit HIGH and inhibiting the device from accepting data until the previous device is full and its $\overline{\mathrm{CC}}$ goes LOW. If only one device is used the \bar{E} input should be held at a LOW logic level (Ground). If all the bits are not required, the register may be truncated and conversion time saved by using a register output going LOW rather than the $\overline{\mathrm{CC}}$ signal to indicate the end of conversion.

CHIP TOPOGRAPHY

FEATURES

- Guaranteed zero reading for 0 volts input on all scales.
- True polarity at zero for precise null detection.
- 1 pA typical input current.
- True differential input and reference.
- Direct display drive - no external components required. - LCD ICL7106
- LED ICL7107
- Low noise - less than $15 \mu \mathrm{~V}$ p-p.
- On-chip clock and reference.
- Low power dissipation - typically less than 10 mW .
- No additional active circuits required.
- Evaluation Kit available.

GENERAL DESCRIPTION

The Intersil ICL7106 and 7107 are high performance, low power $3-1 / 2$ digit A/D converters containing all the necessary active devices on a single CMOS I.C. Included are seven-segment decoders, display drivers, reference, and a clock. The 7106 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7107 will directly drive an instrument-size light emitting diode (LED) display.
The 7106 and 7107 bring together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy like auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation (7106), enabling a high performance panel meter to be built with the addition of only 7 passive components and a display.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{+})

ICL7106 . 15V
ICL7107... $+6 V$
Supply Voltage (V-)
ICL7106 15 V
ICL7107.. . . . 9 - 9 V

Analog Input Voltage (either input) (Note 1) V^{+}to V^{-}
Reference Input Voltage (either input) V+ to V^{-}
Clock Input
ICL7106 Test to V^{+}
ICL7107

Power Dissipation (ICL7106 Note 2; ICL7107 Note 1) Ceramic Package

1000 mW
Plastic Package 800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings mày cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
ELECTRICAL CHARACTERISTICS (Note 3)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading	$\begin{aligned} & \mathrm{Vin}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\begin{array}{\|l} \hline V_{I N}=V_{\text {REF }} \\ V_{\text {REF }}=100 \mathrm{mV} \end{array}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \simeq 200.0 \mathrm{mV}$	-1	$\pm .2$	+1	Counts
Linearity (Max. deviation from best straight line fit)	$\begin{aligned} & \text { Full scale }=200 \mathrm{mV} \\ & \text { or full scale }=2.000 \mathrm{~V} \end{aligned}$	-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk-Pk value not exceeded 95\% of time)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current \| Input	$\mathrm{V}_{\text {IN }}=0$		1	10	pA
Zero Reading Drift	$\begin{aligned} & V_{I N}=0 \\ & 0^{\circ}<T_{A}<70^{\circ} \mathrm{C} \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{IN}}=199.0 \mathrm{mV} \\ \mathrm{O}^{\circ}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ \text { (Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \\ \hline \end{array}$.	1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
V+ Supply Current (Does not include LED current for 7107)	$\mathrm{V}_{\text {IN }}=0$	-	0.8	1.8	mA
V-Supply Current (7107 only)	,		0.6	1.8	. mA
Analog Common Voltage (With respect to Pos: Supply)	$25 \mathrm{k} \Omega$ between Common \& Pos. Supply	2.4	2.8	3.2	- V
Temp. Coeff. of Analog Common (With respect to Pos. Supply)	25k Ω between Common \& Pos. Supply		80	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
7106 ONLY Pk-Pk Segment Drive Voltage, Pk-Pk Backplane Drive Voltage (Note 5)	V^{+}to $\mathrm{V}^{-}=9 \mathrm{~V}$	4	5	6	V
7107 ONLY Segment Sinking Current (Except Pin 19) (Pin 19 only)	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \text { Segment voltage }=3 \mathrm{~V} \end{aligned}$	5 10	8.0 16	-	$\begin{aligned} & m A \\ & m A \end{aligned}$

Note 3: Unless otherwise noted, specifications apply to both the 7106 and 7107 at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clock}}=48 \mathrm{kHz} .7106$ is tested in the circuit of Figure 1.7107 is tested in the circuit of Figure 2.

Note 4: Refer to "Differential Input" discussion below.
Note 5: Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .

TEST CIRCUITS

Figure 1: 7106

DETAILED DESCRIPTION

ANALOG SECTION

Figure 3 shows the Block Diagram of the Analog Section for the ICL 7106 and 7107. Each measurement cycle is divided

Figure 2: 7107
into three phases. They are (1) auto-zero (A-Z); (2) signal integrate (INT) and (3) deintegrate (DE).

Figure 3: Analog Section of 7106/7107.

1. Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

2. Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and

IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

3. De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)$.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity. See A032 for a discussion of the effects of stray capacitance.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for $(+)$ or $(-)$ input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition. (See Component Values Selection below).

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation (7106) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6V. However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient $(.001 \% / \%)$, low output impedance $(\sim 15 \Omega)$, and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on-chip reference should also be recognized, however. With the 7107, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from 25 $\mu \mathrm{V}$ to $80 \mu \mathrm{Vp}-\mathrm{p}$. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111 (8 segments on) can suffer by a count or more. Devices with a positive ȚC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC maý cycle between overload and a nonoverload count as the die alternately heats and cools. All
these problems are of course eliminated if an external reference is used.

The 7106, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Fig. 4.

Figure 4: Using an External Reference

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently referenced to analog COMMON, it should be since this removes the common mode voltage from the reference system.
Within the IC, analog COMMON is tied to an N channeI FET that can sink 30 mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

TEST

The TEST pin serves two functions. On the 7106 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

Figure 5: Simple Inverter for Fixed Decimal Point

Figure 6: Exclusive 'OR' Gate for Decimal Point Drive

The second function is a "lamp test". When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read -1888. The TEST pin will sink about 10 mA under these conditions.

Caution: on the 7106, in the lamp test mode, the segments have a constant d-c voltage (no square-wave) and may burn the LCD display if left in this mode for several minutes.

DIGITAL SECTION

Figures 7 and 8 show the digital section for the 7106 and 7107, respectively. In the 7106, an internal digital ground is generated from a 6 volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases neglible d-c voltage exists across the segments.
Figure 8 is the Digital Section of the 7107 . It is identical to the 7106 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .
In both devices, the polarity indication is "on" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

Figure 7: Digital Section 7106

Figure 8: Digital Section 7107

System Timing

Figure 9 shows the clocking arrangement used in the 7106 and 7107. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

Figure 9: Clock Circuits
The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/. second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}$, $662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that

40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

COMPONENT VALUE SELECTION

1. Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, $470 \mathrm{~K} \Omega$ isnear optimum and similarly a $47 \mathrm{~K} \Omega$ for a 200.0 mV scale.

2. Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7106 or the 7107 , when the analog COMMON is used as a reference, a nominal ± 2 volt full scale integrator swing is fine. For the 7107 with ± 5 volt supplies and analog COMMON tied to supply ground, a ± 3.5 to ± 4 volt swing is nominal. For three readings/ second (48 kHz clock) nominal values for Cint are $0.22 \mu \mathrm{~F}$ and $0.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise

ICL7106/ICL7107

is very important, $\mathrm{a} 0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 volt scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on. this scale.

4. Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent rollover error. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

5. Oscillator Components

For all ranges of frequency a $100 \mathrm{~K} \Omega$ resistor is recommended and the capacitor is selected from the equation $f=\frac{45}{\mathrm{RC}}$. For 48 kHz clock (3 readings/second), C $=100 \mathrm{pF}$.

6. Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and 2.000 volt scale, Vref should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select VREF $=.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{~K} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The 7107 with $\pm 5 \mathrm{~V}$ supplies can accept input signals up to $\pm 4 \mathrm{~V}$. Another advantage of this sytem occurs when a digital reading of zero is desired for $V_{\mathbb{N}} \neq 0$. Temperature
and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

7. 7107 Power Supplies

The 7107 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application. See ICL7660 data sheet for an alternative.

Figure 10: Generating Negative Supply from $+5 v$

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts.
3. An external reference is used.

TYPICAL APPLICATIONS

The 7106 and 7107 may be used in a wide variety of configurations. The circuits which follow show some of the

Figure 11: 7106 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9V battery).
possibilities, and serve to illustrate the exceptional versatility of these A / D converters.

Figure 12: 7107 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON.)

ICL7106/ICL7107

TYYPICAL APPLICATIONS (Contd.)

Figure 13:7107 with an external band-gap reference (1.2V type). IN LO is tied to COMMON, thus establishing the correct common mode voltage. If COMMON is not shorted to GND, the input voltage may float with respect to the power supply and COMMON acts as a preregulator for the reference. If COMMON is shorted to GND, the input is single ended (referred to supply ground) and the pre-regulator is over-ridden.

Figure 15: 7106/7107: Recommended component values for 2.000 V full scale.

Figure 17: 7107 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

Figure 14: 7107 with Żener diode reference. Since low T.C. zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10V). As in the case of Figure 12, IN LO may be tied to either COMMON or GND.

Figure 16: 7107 operated from single +5 V supply. An external reference must be used in this application, since the voltage between V^{+}and V^{-}is insufficient for correct operation of the internal reference.

Figure 18: 7106 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

TYPICAL APPLICATIONS (Contd.)

Figure 19: Circuit for developing Underrange and Overrange signals from 7106 outputs.

Figure 20: Circuit for developing Underrange and Overrange signals from 7107 outputs. The LM339 is required to ensure logic compatibility with heavy display loading.

Figure 21: AC to DC Converter with 7106. TEST is used as a common mode reference level to ensure compatibility with most opamps.

Figure 22: Display Buffering for increased drive current. Requires four DM7407 Hex Buffers. Each buffer is capable of sinking 40 mA .

FEATURES

- 12 bit binary (plus polarity and overrange) dual slope integrating analog-to-digital converter.
- Byte-organized TTL-compatible three-state outputs and UART handshake mode for simple parallel or serial interfacing to microprocessor systems.
- RUN/HOLD input and STATUS output can be used to monitor and control conversion timing.
- True differential input and differential reference.
- Low noise - typically $15 \mu \mathrm{~V}$ p-p.
- 1pA typical input current.
- Operates at up to $\mathbf{3 0}$ conversions per second.
- On-chip oscillator operates with inexpensive 3.58 MHz TV crystal giving 7.5 conversions per second for 60 Hz rejection. May also be operated as RC oscillator for other clock frequencies.
- Fabricated using MAX-CMOS ${ }^{\text {™ }}$ technology combining analog and digital functions on a single Iow power LSI CMOS chip.
- All inputs fully protected against static discharge; no special handling precautions necessary.

GENERAL DESCRIPTION

The ICL7109 is a high performance, low power integrating A/D converter designed to easily interface with microprocessors.

The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inputs and a chịp select input for a simple parallel bus interface. A UART handshake mode is provided to allow the ICL7109 to work with industry-standard UARTs in providing serial data transmission; ideal for remote data logging applications. The RUN/HOLD input and STATUS output allow monitoring and control of conversion timing.

The ICL7109 provides the user with the high accuracy, low noise, low drift; versatility and economy of the dual-slope integrating A / D converter. Features like true differential input and reference, drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, maximum input bias current of 10 pA , and typical power consumption of 20 mW make the ICL7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications.

PIN CONFIGURATION AND TEST CIRCUIT:

(See Figure 1 for typical connection to a UART or Microcomputer)

ORDERING INFORMATION

Part	Temp. Range	Package	Order Number
7109	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP	ICL7109MDL
7109	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin Ceramic DIP	ICL7109IDL
7109	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 -Pin CERDIP	ICL7109IJL
7109	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}{ }^{\circ}$	40 -Pin Plastic DIP	ICL7109CPL

ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (GND to V^{+})	6.2V
Negative Supply Voltage (GND to V^{-})	-9V
Analog Input Voltage (Lo or Hi) (Note 1)	V^{+}to V^{-}
Reference Input Voltage (Lo or Hi) (Note 1)	V^{+}to V^{-}
Digital Input Voltage	$\mathrm{V}^{+}+0.3 \mathrm{~V}$
(Pins 2-27) (Note 2)	GND - 0.3V
Power Dissipation (Note 3)	
Ceramic Package	1W@ +85 ${ }^{\circ} \mathrm{C}$
Plastic Package	$500 \mathrm{~mW} @+70^{\circ} \mathrm{C}$
Operating Temperature	
Ceramic Package (MDL)	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
(IDL)	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$
Plastic Package (CPL)	... $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 sec.$)$	$+300^{\circ} \mathrm{C}$

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TABLE I OPERATING CHARACTERISTICS

All parameters with $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise indicated.
Test circuit as shown on page 1.

ANALOG SECTION

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading		$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=409.6 \mathrm{~mW} \end{aligned}$	-00008	± 00008	+00008	Octal Reading
Ratiometric Reading		$\begin{aligned} & \hline V_{I N}=V_{R E F} \\ & V_{\text {REF }}=204.8 \mathrm{mV} \end{aligned}$	37778	$\begin{aligned} & 37778 \\ & 40008 \end{aligned}$	40008	Octal Reading
Non-Linearity (Max deviation from best straight line fit)		Full Scale $=409.6 \mathrm{mV}$ to 4.096 V Over full operating temperature range.	-1	$\pm .2$	+1	Counts
Roll-over Error (difference in reading for equal pos. and neg. inputs near full scale)		Full Scale $=409.6 \mathrm{mV}$ to 4.096 V Over full operating temperature range.	-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio	CMRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V} \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		50		${ }_{\mu} \mathrm{V} / \mathrm{V}$
Input Common Mode Range	VCMR	Input Hi, Input Lo, Common	V-+1.5		$\mathrm{V}+$-1.0	V
Noise ($\mathrm{p}-\mathrm{p}$ value not exceeded 95\% of time)	e_{n}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { Full Scale }-409.6 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage current at Input	IILK	$\begin{aligned} & \text { VIN }=0 \text { All devices } 25^{\circ} \mathrm{C} \\ & \text { ICL7109CPL } 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & \text { ICL7109IDC }-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \text { ICL7109MDL }-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 1 \\ 20 \\ 100 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 100 \\ 250 \\ 5 \\ \hline \end{gathered}$	pA pA pA nA
Zero Reading Drift		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient		$\begin{aligned} & \mathrm{V} / \mathrm{N}=408.9 \mathrm{mV}=>7770_{8} \\ & \text { reading } \\ & \text { Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$		1	5	ppm $/{ }^{\circ} \mathrm{C}$
Supply Current V^{+}to GND	1^{+}	$\mathrm{V}_{\mathrm{IN}}=0$, Crystal Osc. 3.58 MHz test circuit		700	1500	$\mu \mathrm{A}$
Supply Current V^{+}to V^{-}	ISUPP	Pins 2-21, 25, 26, 27, 29, open		700	1500	$\mu \mathrm{A}$
Ref Out Voltage	VREF	Referred to $\mathrm{V}^{+}, 25 \mathrm{k} \Omega$ between V^{+}and REF OUT	-2.4	-2.8	-3.2	V
Ref Out Temp. Coefficient		$25 \mathrm{k} \Omega$ between V^{+}and REF OUT		80		ppm $/{ }^{\circ} \mathrm{C}$
Input Common Mode Range	Vсм	IN HI, IN LO, COMMON	$v^{-}+1.5$	$\begin{aligned} & \mathrm{V}+\mathrm{to}-0.5 \\ & \mathrm{v}-+1.0 \end{aligned}$	$\mathrm{V}+$-1.0	V

DIGITAL SECTION

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	VOH	$\begin{aligned} & \text { lout }=100 \mu \mathrm{~A} \\ & \text { Pins } 2-16,18,19,20 \\ & \hline \end{aligned}$	3.5	4.3		V
Output Low Voltage	VOL	IOUT $=1.6 \mathrm{~mA}$		0.2	0.4	V
Output Leakage Current		Pins 3-16 high impedance		$\pm .01$	± 1	$\mu \mathrm{A}$
Control I/O Pullup Current		Pins 18, 19, 20 VOUT $=\mathrm{V}^{+}-3 \mathrm{~V}$ MODE input at GND	,	5		$\mu \mathrm{A}$
Control I/O Loading					50	pF
Input High Voltage	V_{IH}	Pins 18-21, 26, 27 referred to GND	2.5	.		V
Input Low Voltage	VIL	Pins 18-21, 26, 27 referred to GND		-	1	V
Input Pull-up Current		Pins 26, 27 Vout $=\mathrm{V}^{+}-3 \mathrm{~V}$		5		$\mu \mathrm{A}$
Input Pull-up Current		Pins 17, 24 Vout $=\mathrm{V}^{+}-3 \mathrm{~V}$		25		$\mu \mathrm{A}$
Input Pull-down Current		Pin 21 Vout $=$ GND +3V		5		$\mu \mathrm{A}$
Oscillator Output \quad High	OOH	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		1		mA
Current	OOL	VOUT $=2.5 \mathrm{~V}$		1.5		mA
Buffered Oscillator High	BOOH	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		2		mA
Output Current Low	BOOL	VOUT $=2.5 \mathrm{~V}$		5		mA
MODE Input Pulse Width	tw		50			ns

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$
Note 2: Due to the SCR structure inherent in the process used to fabricate these devices, connecting any digital inputs or outputs to voltages greater than V^{+}or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources other than the same power supply be applied to the ICL7109 before its power supply is established, and that in multiple supply systems the supply to the ICL7109 be activated first.
Note 3: This limit refers to that of the package and will not be obtained during normal operation.

Figure 1A. Typical Connection Diagram UART Interface - To transmit latest result, send any word to UART

Figure 1B: Typical Connection Diagram Parallel Interface With MCS-48 Microcomputer

TABLE 2 - Pin Assignment and Function Description

PIN	SYMBOL	DESCRIPTION
1	GND	Digital Ground, OV, Ground return for all digital logic
2	STATUS	Output High during integrate and deintegrate until data is latched. Output Low when analog section is in Auto-Zero configuration.
3	POL	Polarity - HI for Positive Input.
4	OR	Overrange - HI if Overranged.
5	B12	Bit 12 (Most Significant Bit)
6	B11	Bit 11
7	B10	Bit 10 All
8	B9	Bit 9 a $\quad \therefore \quad \begin{aligned} & \text { three } \\ & \text { state }\end{aligned}$
9.	B8	Bit 8
10	B7	Bit $7 \mathrm{HI}=$ true . ${ }^{\text {data }}$
11	B6	Bit 6
12	B5	Bit 5
13	B4	Bit 4
14	B3	Bit 3
15	B2	Bit 2
16	B1	Bit 1 (Least Significant Bit)
17	TEST	Input High - Normal Operation. Input Low - Forces all bit outputs high. Note: This input is used for test purposes only.
18	LBEN	Low Byte Enable - With Mode (Pin 21) low, and CE/LOAD (Pin 20) low, taking this pin low activates low order byte outputs B1-B8. - With Mode (Pin 21) high, this pin.serves as a low byte flag output used in handshake mode. See Figures 7, 8, 9.
19	HBEN	High Byte Enable - With Mode (Pin 21) low, and CE/LOAD (Pin 20) low, taking this pin low activates high order byte outputs B9B12, POL, OR. - With Mode (Pin 21) high, this pin serves as a high byte flag output used in handshake mode. See Figures 7, 8, 9 .
20	CE/LOAD	Chip Enable Load - With Mode (Pin 21) low, $\overline{C E / L O A D}$ serves as a master output enable. When high, B1-B12, POL, OR outputs are disabled. - With Mode (Pin 21) high, this pin serves as a load strobe used in handshake mode. See Figures 7, 8, 9.

Note: All digital levels are positive true.

DETAILED DESCRIPTION

Analog Section

Figure 2 shows the equivalent circuit of the Analog Section of the ICL7109. When the RUN/HOLD input is left open or connected to V^{+}, the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 3. They are (1) Auto-Zero (AZ), (2) Signal Integrate (INT) and (3) Deintegrate (DE).

1. Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the autozero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in

PIN	SYMBOL	DESCRIPTION
21	MODE	Input Low - Direct output mode where CE/LOAD (Pin 20), FBEN (Pin 19) and LBEN (Pin 18) act as inputs directly controlling byte outputs. Input Pulsed High - Causes immediate entry into handshake mode and output of data as in Figure 9. Input High - Enables CE/LOAD (Pin 20), HBEN (Pin 19), and LBEN (Pin 18) as outputs, handshake mode will be entered and data output as in Figures 7 and 8 at conversion completion.
22	OSC IN	Oscillator Input
23	OSC OUT	Oscillator Output
24	OSC SEL	Oscillator Select - Input high configures OSC IN, OSC OUT, BUF OSC OUT as RC oscillator - clock will be same phase and duty cycle as BUF OSC OUT. - Input low configures OSC IN, OSC OUT for crystal oscillator - clock frequency will be $1 / 58$ of frequency at BUF OSC OUT.
25	BUF OSC OUT	Buffered Oscillator Output
26	RUN/HOLD	Input High - Conversions continuously performed every 8192 clock pulses. Input Low - Conversion in progress completed, converter will stop in Auto-Zero 7 counts before integrate.
27	SEND	Input - Used in handshake mode to indicate ability of an external device to accept data.
28	V^{-}	Analóg Negative Supply - Nominally - 5 V with respect to GND (Pin 1).
29	REF OUT	Reference Voltage Output - Nominally 2.8 V down from V^{+}(Pin 40).
30	BUFFER	Buffer Amplifier Output
31	AUTO-ZERO	Auto-Zero Node - Inside foil of CAZ
32	INTEGRATOR	Integrator Output - Outside foil of Cint
33	COMMON	Analog Common - System is Auto-Zeroed to COMMON
34	INPUT LO	Differential Input Low Side
35	INPUT HI	Differential Input High Side
36	REF IN +	Differential Reference Input Positive
37	REF CAP +	Reference Capacitor Positive
38	REF CAP -	Reference Capacitor Negative
39	REF IN.-	Differential Reference Input Negative
40	V^{+}	Positive Supply Voltage - Nominally +5 V with respect to GND (Pin 1):

2. Signal Integrate Phase

During signal integrate the auto-zero loop is opened, the internal short is removed and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time of 2048 clock periods. Note that this differential voltage can be within the common mode range of the inputs. At the end of this phase, the polarity of the integrated signal is determined.

Figure 2: Analog Section

Figure 3: Conversion Timing (RUN/ $\overline{\mathrm{HOLD}}$ Pin High)

3. De-integrate Phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged (during, auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to return to zero (represented by the number of clock periods counted) is proportional to the input signal.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 1.0 volts below the positive supply to 1.5 volts above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator
positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.
The ICL7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of +5 V and -5 V , this allows a 4 V full scale integrator swing positive or negative maximizing the performance of the analog section.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) 'when called up to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for (+) or $(-)$ input voltage will give a roll-over error. However; by
selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection below).
The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog COMMON.

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.
The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with $\pm 5 \mathrm{~V}$ supplies and COMMON connected to GND, the nominal integrator output swing at full scale is $\pm 4 \mathrm{~V}$. Since the integrator output can go to 0.3 V from either supply without significantly affecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With $\pm 5 \mathrm{~V}$ supplies and a common mode range of $\pm 1 \mathrm{~V}$ required, the component values should be selected to provide $\pm 3 \mathrm{~V}$ integrator output swing. Noise and rollover errors will be slightly worse than in the $\pm 4 \mathrm{~V}$ case. For larger common mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and rollover errors. To improve the performance, supplies of $\pm 6 \mathrm{~V}$ may be used.

1. Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 4.096 volt full scale, $200 \mathrm{k} \Omega$ is near optimum and similarly a $20 \mathrm{k} \Omega$ for a 409.6 mV scale. For other values of full scale voltage, Rint should be chosen by the relation

$$
\text { RINT }=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
$$

2. Integrating Capacitor

The integrating capacitor CINT should be selected to give the maximum integrator output voltage swing without saturating the integrator (approximately 0.3 volt from either supply). For the ICL7109 with ± 5 volt supplies and analog common connected to GND, a ± 3.5 to ± 4 volt integrator output swing is nominal. For 7-1/2 conversions per second $(61.72 \mathrm{KHz}$ clock frequency) as provided by the crystal oscillator, nominal values for CINT and CAZ are $0.15 \mu \mathrm{~F}$ and $0.33 \mu \mathrm{~F}$, respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output voltage swing. In general, the value of CINT is given by

$$
\mathrm{C}_{\text {INT }}=\frac{(2048 \times \text { clock period })(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
$$

An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost up to $85^{\circ} \mathrm{C}$. For the military temperature range, Teflon ${ }^{\circledR}$ capacitors are recommen-
ded. While their dielectric absorption characteristics vary somewhat from unit to unit, selected devices should give less than 0.5 count of error due to dielectric absorption.

3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system; a big capacitor, giving less noise. However, it cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and more important the error that exists at the end of an auto-zero cycle. For 409.6 mv full scale where noise is very important and the integrating resistor small, a value of $C_{A Z}$ twice $\mathrm{C}_{\text {INT }}$ is optimum. Similarly for 4.096V full scale where recovery is more important than noise, a value of $\mathrm{C}_{A Z}$ equal to half of CINT is recommended.
For optimal rejection of stray pickup, the outer foil of $\mathrm{C}_{A Z}$ should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of CINT should be connected to pin 32 and the inner foil to the R-C summing junction. Teflon ${ }^{\circledR}$, or equivalent, capacitors are recommended above $85^{\circ} \mathrm{C}$ for their low leakage characteristics.

4. Reference Capacitor

A $1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the reference low is not at analog common) and a 409.6 mV scale is used, a larger value is required to prevent roll-over error. Generally $10 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance. Again, Teflon ${ }^{\circledR}$, or equivalent capacitors should be used for temperatures above $85^{\circ} \mathrm{C}$ for their low leakage characteristics.

5. Reference Voltage

The analog input required to generate a full scale output of 4096 counts is $\mathrm{V}_{I N}=2 \mathrm{~V}_{\text {REF }}$. Thus for a normalized scale, a reference of 2.048 V should be used for a 4.096 V full scale, and 204.8 mV should be used for a 0.4096 V full scale. However, in many applications where the A/D is sensing the output of a transducer, there will exist a scale. factor other than unity between the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 409.6 mV , the input voltage should be measured directly and a reference voltage of 0.341 V should be used. Suitable values for integrating resistor and capacitor are 34 k and $0.15 \mu \mathrm{~F}$. This avoids a divider on the input. Another advantage of this system occurs when a zero reading is desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing polarities carefully. However, in proces-sor-based systems using the ICL7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software.

6. Reference Sources

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7109 at 12 bits is one part in 4096, or 244 ppm . Thus if the reference has a temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (onboard reference) a temperature difference of $3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error.

For this reason, it is recommended that an external highquality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.
The ICL7109 provides a REFerence OUTput (pin 29) which may be used with a resistive divider to generate a suitable reference voltage. This output will sink up to about 20 mA without significant variation in output voltage, and is provided with a pullup bias device which sources about $10 \mu \mathrm{~A}$. The output voltage is nominally 2.8 V below V^{+}, and has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. When using the onboard reference, REF OUT (Pin 29) should be connected to REF - (pin 39), and REF + should be connected to the wiper of a precision potentiometer between REF OUT and V^{+}. The circuit for a 204.8 mV reference is shown in the test. circuit. For a 2.048 mV reference, the fixed resistor should be removed, and a $25 \mathrm{k} \Omega$ precision potentiometer between REF OUT and V^{+}should be used.
Note that if pins 29 and 39 are tied together and pins 39 and 40 accidentally shorted (e.g., during testing), the reference supply will sink enough current to destroy the device. This can be avoided by placing a $1 \mathrm{k} \Omega$ resistor in series with pin 39.

DETAILED DESCRIPTION

Digital Selection

The digital section includes the clock oscillator and scaling circuit, a 12 -bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic, and UART handshake logic, as shown in the Block Diagram, Figure 4.
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined in Table 1 "Operating Characteristics". For minimum power consumption, all inputs should swing from GND (low) to V^{+} (high). Inputs driven from TTL gates should have $3-5 \mathrm{k} \Omega$ pullup resistors added for maximum noise immunity.
MODE Input
The MODE input is used to control the output mode of the
converter. When the MODE pin is low or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct". output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 3 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter.

RUN/HOLD Input

When the RUN/HOLD input is high, or left open, the circuit will continuously perform conversion cycles, updating the output latches after zero crossing during the Deintegrate (Phase III) portion of the conversion cycle (See Figure 3). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value.
If RUN/ $\overline{H O L D}$ goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to AutoZero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If-RUN/ $\overline{H O L D}$ stays or goes low, the converter will ensure minimum Auto-Zero time, and then wait in Auto-Zero until the RUN/ $\overline{H O L D}$ input goes high. The converter will begin the Integrate (Phase II) portion' of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at RUN/HOLD. See Figure 5 for details.

Figure 4: Digital Section

Figure 5：Run／Hold Operation

Using the RUN／HOLD input in this manner allows an easy ＂convert on demand＂interface to be used．The converter may be held at idle in auto－zero with RUN／$\overline{H O L D}$ low．When RUN／FOLD goes high the conversion is started，and when the STATUS output goes low the new data is valid（or trans－ ferred to the UART－see Handshake Mode）．RUN／HOLD may now go low terminating Deintegrate and ensuring a minimum Auto－Zero time before stopping to wait for the next conversion．
Alternately，RUN／$\overline{H O L D}$ can be used to minimize conversion time by ensuring that it goes low during Deintegrate，after zero crossing，and goes high after the hold point is reached． The required activity on the RUN／$\overline{H O L D}$ input can be provided by connecting it to the Buffered Oscillator Output． In this mode the conversion time is dependent on the input value measured．Also refer to Intersil Application Bulletin A032 for a discussion of the effects this will have on Auto－ Zero performance．
If the RUN／$\overline{H O L D}$ input goes low and stays low during Auto－ Zero（Phase I），the converter will simply stop at the end of Auto－Zero and wait for RUN／HOLD to go high．As above， Integrate（Phase II）begins seven clock periods after the high level is detected．

Direct Mode

When the MODE pin is left at a low level，the data outputs （bits 1 through 8 low order byte，bits 9 through 12，polarity and over－range high order byte）are accessible under control of the byte and chip enable terminals as inputs．These three inputs are all active low，and are provided with pullup resistors to ensure an inactive high level when left open． When the chip enable input is low，taking a byte enable input low will allow the outputs of that byte to become active （three－stated on）．This allows a variety of parallel data accessing techniques to be used，as shown in the section entitled＂Interfacing．＂The timing requirements for these outputs are shown in Figure 6 and Table 3.

Table 3 －Direct Mode Timing Requirements

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
tBEA	Byte Enable Width	350	220		ns
tDAB	Data Access Time from Byte Enable		210	350	ns
tDHB	Data Hold Time from Byte Enable		150	300	ns
tcEA	Chip Enable Width	400	260		ns
tDAC	Data Access Time from Chip Enable	.	260	400	ns
tDHC	Data Hold Time from Chip Enable		240	400	ns

ーーーー＝HIGH IMPEDANCE
Figure 6：Direct Mode Output Timing
It should be noted that these control inputs are asynchronous with respect to the converter clock－the data may be accessed at any time．Thus it is possible to access the data while it is being updated，which could lead to scrambled data．Synchronizing the access of data with the conversion cycle by monitoring the STATUS output will prevent this． Data is never updated while STATUS is low．

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7109 to digital systems，where the A／D converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs．This mode is specifically designed to allow a direct interface between the ICL7109 and industry－standard UARTs（such as the Intersil CMOS UARTs，IM6402／3）with no external logic required．When triggered into the handshake mode，the ICL7109 provides all the control and flag signals necessary to sequence the two bytes of data into the UART and initiate their transmission in serial form．This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor．
Entry into the handshake mode is controlled by the MODE pin．When the MODE terminal is held high，the ICL7109 will enter the handshake mode after new data has been stored in the output latches at the end of every conversion performed （See Figures 7 and 8）．The MODE terminal may also be used to trigger entry into the handshake mode on demand．At any time during the conversion cycle，the low to high transition of a short pulse at the MODE input will cause immediate entry

Figure 7: Handshake With Send Held Positive

Figure 8: Handshake - Typical UART Interface Timing
into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 9) until the converter completes the output cycle and clears the handshake mode.
When the converter enters the handshake mode, or when the MODE input is high, the chip and byte enable terminals become TTL-compatible outputs which provide the control signals for the output cycle (See Figures 7, 8, and 9).
In handshake mode, the SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data.
Figure 7 shows the sequence of the output cycle with SEND held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the $\overline{C E / L O A D}, \overline{L B E N}$ and $\overline{H B E N}$ terminals are active as outputs). The high level at the SEND input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the $\overline{\mathrm{CE} / L O A D}$ and the $\overline{\mathrm{HBEN}}$ outputs assume a low level, and the high-order byte (bits 9 through 12, POL, and OR) outputs are enabled. The CE/LOAD output remains low for one full internal clock period only, the data outputs remain active for $1-1 / 2$ internal clock periods, and the high byte enable remains low for two clock periods. Thus the $\overline{C E / L O A D}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the
byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using $\overline{C E / L O A D}$ and $\overline{\mathrm{LBEN}}$ while the low order byte outputs (bits 1 through 8) are activated. The handshake mode is terminated when both bytes are sent.
Figure 8 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEND input to the ICL7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the $\overline{C E / L O A D}$ terminal of the ICL7109 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs.
Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake mode is entered after new data is stored. The $\overline{C E / L O A D}$ and $\overline{H B E N}$ terminals will go low after SEND is sensed, and the high order byte outputs become active. When CE/LOAD goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7109

Figure 9: Handshake Triggered By Mode
internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the $\overline{C E / L O A D}$ and LBEN outputs go low, and the low order byte outputs become active. Similarly, when the $\overline{C E / L O A D}$ returns high at the end of one clock period, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the $\overline{\mathrm{CE} / \mathrm{LOAD}}, \overline{\mathrm{HBEN}}$, and $\overline{\mathrm{LBEN}}$ terminals return high and stay active (as long as MODE stays high).
With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEND input, and the sequence for the first (high order) byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/ $\overline{H O L D}$ input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

Oscillator

The ICL7109 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation.
When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 10. The circuit will oscillate at a frequency given by $f=.45 / R C$. A $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60 Hz period.

Figure 10: RC Oscillator
When the OSCILLATOR SELECT input is low a feedback device and output and input capacitors are added to the oscillator. In this configuration, as shown in Figure 11, the

Figure 11: Crystal Oscillator oscillator will operate with most crystals in the 1 to 5 MHz range with no external components. Taking the OSCILLATOR SELECT input low also inserts a fixed $\div 58$ divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58 MHz TV crystal, this division ratio provides an integration time given by:

$$
T=(2048 \text { clock periods }) \times\left(\frac{58}{3.58 \mathrm{MHz}}\right)=33.18 \mathrm{~ms}
$$

This time is very close to two 60 Hz periods or 33.33 ms . The error is less than one percent, which will give better than 40 dB 60 Hz rejection. The converter will operate reliably at conversion rates of up to 30 per second, which corresponds to a clock frequency of 245.8 kHz .
If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency.
When using the ICL7.109 with the IM6403 UART, it is possible to use one 3.58 MHz crystal for both devices. The BUFFERED OSCILLATOR OUTPUT of the ICL7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive, and when driving more than one slave device, external buffering should be used.

Test Input

When the TEST input is taken to a level halfway between V^{+} and GND, the counter output latches are enabled, allowing the counter contents to be examined anytime.
When the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the input returns to the $1 / 2\left(V^{+}-G N D\right)$ voltage (or to V^{+}) and one clock is applied, all the counter outputs will be clocked to the low state. This allows easy testing of the counter and its outputs.

INTERFACING

Direct Mode

Figure 12 shows some of the combinations of chip enable and byte enable control signals which may be used when interfacing the ICL7109 to parallel data lines. The $\overline{C E / L O A D}$ input may be tied low, allowing either byte to be controlled by its own enable as in Figure 12A. Figure 12B shows a configuration where the two byte enables are connected together. In this configuration, the $\overline{C E / L O A D}$ serves as a chip enable, and the HBEN and LBEN may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Figure 12C shows the $\overline{H B E N}$ and $\overline{\text { LBEN }}$ as flag inputs, and $\overline{C E / L O A D}$ as a master enable, which could be the READ strobe available from most microprocessors.

Figure 12: Direct Mode Chip and Byte Enable Combinations

Figure 13 shows an approach to interfacing several ICL7109s to a bus, ganging the $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ signals to several converters together, and using the $\overline{C E / L O A D}$ inputs (perhaps decoded from an address) to select the desired converter.

Some practical circuits utilizing the parallel three-state output capabilities of the ICL7109 are shown in Figures 14 through 19. Figure 14 shows a straightforward application to the Intel MCS-48, -80 and -85 systems via an 8255PPI, where the ICL7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be used in a read-anytime mode, although a read performed while the data latches are being updated will lead to scrambled data. This will occur very rarely, in the proportion of setup-skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than $1 / 2$ converter clock period. If STATUS is now low, the second reading is correct, and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read-after-update sequence, as shown in Figure 15. Here the high to low transition of the STATUS output drives an interrupt to the microprocessor causing it to
access the data. This application also shows the RUN/ $\overline{\text { HOLD }}$ input being used to initiate conversions under software control.

A similar interface to Motorola MC6800 or MOS Technology MCS650X systems is shown in Figure 16. The high to low transition of the STATUS output generates an interrupt via the Control Register B CB1 line. Note that CB2 controls the RUN/FOLD pin through Control Register B, allowing software-controlled initiation of conversions in this system also.
Figure 17 shows an interface to the Intersil IM6100 CMOS microprocessor family using the IM6101 PIE to control the data transfers. Here the data is read by the microprocessor in an 8-bit and a 6-bit word, directly from the ICL7109 to the microprocessor data bus. Again, the high to low transition of the STATUS output generates an interrupt leading to a software routine controlling the two read operations. As before, the RUN/HOLD input to the ICL7109 is shown as being under software control.

The three-state output capability of the ICL7109 allows direct interfacing to most microprocessor busses. Examples of this are shown in Figures 1, 18 and 19. It is necessary to

Figure 13: Three-stating Several 7.109's to a Small Bus
carefully consider the system timing in this type of interface, to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long busses. Generally this type of interface is only favored if the memory peripheral address density is low so
that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case.

Figure 14: Full-time Parallel Interface to MCS-48, -80, -85 Microcomputer Systems

Figure 15: Full-time Parallel Interface to MCS-48, -80, -85 Microcomputers With Interrupt

Figure 16: Full-time Parallel Interface to MC680X or MCS650X Microprocessors

Figure 17: ICL7109-IM6100 Interface Using IM6101 PIE

Figure 18: Direct Interface - ICL7109 to 8080/8085

Figure 19: Direct ICL7109-MC680X Bus Interface

Handshake Mode

The handshake mode allows ready interface with a wide variety of external devices. For instance, external latches may be clocked by the rising edge of $\overline{C E / L O A D}$, and the byte enables may be used as byte identification flags or as load enables.

Figure 20 shows a handshake interface to Intel microprocessors again using an 8255PPI. The handshake operation with the 8255 is controlled by inverting its Input Buffer Full (IBF) flag to drive the SEND input to the ICL7109, and using the $\overline{\mathrm{CE} / \mathrm{LOAD}}$ to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 7109 is in handshake mode and the 8255 IBF flag is low, the next word will be strobed into the port. The strobe will cause IBF to go high (SEND goes low), which will keep the enabled byte outputs active. The PPI will generate an interrupt which when executed will result in the data being read. When the byte is read, the IBF will be reset low, which causes the ICL7109 to sequence into the next byte. This figure shows the MODE input to the ICL7109 connected to a control line on the PPI. If this output is left high, or tied high
separately, the data from every conversion (provided the data access takes less time than a conversion) will be sequenced in two bytes into the system.

If this output is made to go from low to high, the output sequence can be obtained on demand, and the interrupt may be used to reset the MODE bit. Note that the RUN/HOLD input to the ICL7109 may also be driven by a bit of the 8255 so that conversions may be obtained on command under software control. Note that one port of the 8255 is not used, and can service another peripheral device. The same arrangement can also be used with the 8155.

Figure 21 shows a similar arrangement with the MC6800 or MCS650X microprocessors, except that both MODE and RUN/ $\overline{H O L D}$ are tied high to save port outputs.

The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the Intersil IM6402/6403 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown on page 3. In this circuit, any word received by the UART causes

Figure 20: Handshake Interface - ICL7109 to MCS-48, -80, 85

Figure 21: Handshake Interface - ICL7109 to MC6800; MCS650X
the UART DR (Data Ready) output to go high. This drives the MODE input to the ICL7109 high, triggering the ICL7109 into handshake mode. The high order byte is output to the UART first, and when the UART has transferred the data to the Transmitter Register, TBRE (SEND) goes high and the second byte is output. When TBRE (SEND) goes high again, LBEN will go high, driving the UART DRR (Data Ready Reset) which will signal the end of the transfer of data from the ICL7109 to the UART.

Figure 22 shows an extension of the one converter - one UART scheme of the Typical Connection to several ICL7109s with one UART. In this circuit, the word received by the UART (available at the RBR outputs when DR is high)
is used to select which converter will handshake with the UART. With no external components, this scheme will allow up to eight ICL7.109s to interface with one UART. Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line.

The applications of the ICL7109 are not limited to those shown here. The purpose of these examples is to provide a starting point for users to develop useful systems, and to show some of the variety of interfaces and uses of the ICL7109. Many of the ideas suggested here may be used in combination; in particular the uses of the STATUS, RUN/ $\overline{H O L D}$, and MODE signals may be mixed.

Figure 22: Multiplexing Converters with Mode Input

APPLICATION NOTES

A016 'Selecting A/D Converters," by David Fullagar
A017 "The Integrating A/D Converters," by Lee Evans
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood

A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors," by Peter Bradshaw
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family," by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

3½ Digit Single Chip A/D Converter with Display Hold

FEATURES

- HOLD Reading Input allows indefinite display hold
- Guaranteed zero reading for 0 volts input on all scales.
- True polarity at zero for precise null detection.
- 1 pA input current typical.
- True differential input
- Direct display drive - no external components required. - LCD ICL7116
- LED ICL7117
- Low noise - less than $15 \mu \mathrm{~V}$ pk-pk typical.
- On-chip clock and reference.
- Low power dissipation - typically less than 10 mW .
- No additional active circuits required.

GENERAL DESCRIPTION

The Intersil ICL7116 and 7117 are high performance, low power 3-1/2 digit A/D converters. All the necessary active devices are contained on a single CMOS I.C., including
seven segment decoders, display drivers, reference, and a clock. The 7116 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7117 will directly drive an instrument-size light emitting diode (LED) display.
The 7116 and 7117 have almost all of the features of the 7106 and 7107 with the addition of a HOLD Reading input. With this input, it is possible to make a measurement and then retain the value on the display indefinitely. To make room for this feature the reference input has been referenced to Common rather than being fully differential. These circuits retain the accuracy, versatility, and true economy of the 7106 and 7107. High accuracy like auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA maximum, and roll over error of less than one count. The versatility of true differential input is of particular advantage when measuring load cells, strain gauges and other bridgetype transducers. And finally the true economy of single power supply operation (7116), enabling a high performance panel meter to be built with the addition of only seven passive components and a display.

ABSOLUTE MAXIMUM RATINGS ICL7116

Supply Voltage (V^{+}to V^{-}) . 15 V
Analog Input Voltage (either input) (Note 1) $\ldots \ldots . \mathrm{V}^{+}$to V^{-}
Reference Input Voltage (either input)
Reference Input Voltage (either input) V^{+}to V^{-}
Clock Input Test to V^{+}
Power Dissipation (Note 2)
Ceramic Package 1000 mW
Plastic Package 800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$

ICL7117
Supply Voltage V^{+}. .. +6 V
Analog Input Voltage (either input) (Note 1) $V^{2} \ldots \ldots V^{+}{ }^{-9} V^{-}$
Reference Input Voltage (either input) V^{+}to V^{-}
Clock Input .. Gnd to V^{+}
Power Dissipation (Note 2)
Ceramic Package . 1000 mW
Plastic Package . 800mW
Operating Temperature................ $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $300^{\circ} \mathrm{C}$
put current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
ELECTRICAL CHARACTERISTICS (Note 3)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading	$\begin{aligned} & \mathrm{V} \operatorname{IN}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Readińg
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$-V_{I N}=+V_{I N} \cong 200.0 \mathrm{mV}$	-1	$\pm .2$	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full Scale $=200 \mathrm{mV}$ or Full Scale $=2.000 \mathrm{~V}$	-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, V_{I N}=0 \mathrm{~V}, \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk - Pk value not exceeded 95\% of time)	$\begin{aligned} & \text { Vin }=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$.	15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{VIN}=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift	$\begin{aligned} & V_{I N}=0 \\ & 0^{\circ}<T_{A}<70^{\circ} \mathrm{C} \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \text { VIN }=199.0 \mathrm{mV} \\ & 0<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \end{aligned}$		1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
V^{+}Supply Current (Does not include LED current for 7117)	$\mathrm{V}_{\mathrm{IN}}=0$		0.8	1.8	mA
V^{-}Supply Current (7117 only)			0.6	1.8	mA
Analog Common Voltage (With respect to pos. supply)	$25 \mathrm{k} \Omega$ between COMMON \& pos. Supply	2.4	2.8	3.2	V'
Temp. Coeff. of Analog Common (with respect to pos. Supply)	$25 \mathrm{k} \Omega$ between COMMON \& pos. Supply		80		ppm/ ${ }^{\circ} \mathrm{C}$
Input Resistance, Pin 1 (Note 6)		30	70		$\mathrm{k} \Omega$
$V_{\text {IL, }}$, Pin 1 (7116 only)				TEST +1.5	V
$\mathrm{V}_{\text {IL, }}$, Pin 1 (7.117 only)				GND +1.5	V
$\mathrm{V}_{\text {IH, }}$ Pin 1 (Both)	,	$\mathrm{V}+-1.5$	\cdots		V
7116 ONLY Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage. (Note 5)	$V^{+}-V^{-}=9 V$	4 4	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	V
7117 ONLY Segment Sinking Current (Except Pin 19) (Pin 19 only)	$\begin{aligned} & \mathrm{V}^{+}=5.0 \mathrm{~V} \\ & \text { Segment Voltage }=3 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 16 \\ & \hline \end{aligned}$		mA

Note 3: Unless otherwise noted, specifications apply to both the 7116 and 7117 at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clock}}=48 \mathrm{kHz} .7116$ is tested in the circuit of Figure 1. 7117 is tested in the circuit of Figure 2.

Note 4: Refer to "Differential Input" discussion below.
Note 5: Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
Note 6: The 7116 logic input has an internal pull-down resistor connected from HLDR, pin 1, to TEST, pin 37. The 7117 logic input has an internal pull-down resistor connected from HLDR, pin 1 to GROUND, pin 21.

TEST CIRCUITS

Figure 1: 7116

Figure 2: 7117

DETAILED DESCRIPTION

ANALOG SECTION

Figure 3 shows the Block Diagram of the Analog Section for the ICL7116 and 7117. Each measurement cycle is divided into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) deintegrate (DE).

Figure 3: Analog Section of $7116 / 7117$

1. Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally. shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $C_{A Z}$ to cómpensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

2. Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI
and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

3. De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{\mathrm{~V} \text { in }}{\text { Vref }}\right)$.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worse case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity. See A032 for a discussion of the effects of stray capacitance.

Reference

The reference input must be generated as a positive voltage with respect to COMMON. Note that current flowing in the COMMON pins' internal resistance causes a slight shift in the effective reference voltage, disturbing ratiometric readings at low reference inputs. If possible, do not let this current vary.

Analog COMMON

This pin is included primarily to set the common modt voltage for battery operation (7116) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON volta'ge will have a low voltage coefficient (. $001 \% / \%$), low output impedance ($\sim 15 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on-chip reference should also be recognized, however. With the 7117, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from 25 $\mu \mathrm{V}$ to $80 \mu \mathrm{Vpk}$-pk. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111 (8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.
The 7116, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Fig. 4.
Analog COMMON is also the voltage that input low returns to during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be
set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter.

Figure 4: Using an External Reference
Within the IC, analog COMMON is tied to an N channel FET that can sink 30 mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

TEST

The TEST pin serves two functions. On the 7116 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

Figure 5: Simple Inverter for Fixed Decimal Point

Figure 6: Exclusive 'OR' Gate for Decimal Point Drive
The second function is a "lamp test". When TEST is pulled to high (to V^{+}) all segments will be turned on and the display should read - 1888. [Caution: on the 7116, in the lamp test mode, the segments have a constant d-c voltage (no squarewave) and will burn the LCD display if left in this mode for several minutes.]

DIGITAL SECTION

Figures 7 and 8 show the digital section for the 7116 and 7117 , respectively. In the 7116, an internal digital ground is generated from a 6 volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases neglible d-c voltage exists across the segments.

Figure 8 is the Digital Section of the 7117. It is identical except the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2
to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .
In both devices the polarity indicator is ON for negative analog inputs. This can be reversed by simply reversing IN LO and IN HI.

HOLD Reading Input

The HLDR input will prevent the latch from being updated when this input is at a logic " HI ". The chip will continue to make A / D conversions, however, the results will not be updated to the internal latches until this input goes low. This input can be left open or connected to TEST (7116) or GROUND (7117) to continuously update the display. This input is CMOS compatible, and has a 70k typical resistance to either TEST (7116) or GROUND (7117).

Figura 7: Digital Section 7116

Figure 8: Digital Section 7117

System Timing

Figure 9 shows the clocking arrangement used in the 7116 and 7117. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A' crystal between pins 39 and 40 .
3. An R-C oscillator using all three pins.

Figure 9: Clock Circuits
The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/ second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}$, $662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that

40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

COMPONENT VALUE SELECTION

1. Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, $470 \mathrm{k} \Omega$ is near optimum and similarly a $47 \mathrm{k} \Omega$ for a 200.0 mV scale.

2. Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7116 or the 7117 , when the analog COMMON is used as a reference, a nominal ± 2 volt full scale integrator swing is fine. For the 7117 with ± 5 volt supplies and analog common tied to supply ground, a ± 3.5 to ± 4 volt swing is nominal. For three readings/ second (48 kHz clock), nominal values for $\mathrm{C}_{\mathrm{INT}}$ are 0.22 and $0.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise
is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 volt scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

4. Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. If rollover errors occur a larger value, up to $1.0 \mu \mathrm{~F}$ may be required.

5. Oscillator Components

For all ranges of frequency a $100 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation $f=\frac{.45}{R C}$. For 48 kHz clock (3 readings/second), C $=100 \mathrm{pF}$.

6. Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200.0 mV and 2.000 volt scale, VREF should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the AID is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=$ 0.341 V . Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The 7117 with ± 5 volts supplies can accept input signals up to ± 4 volts. Another advantage of this system occurs when a digital reading of zero is desired
for $V_{I N} \neq 0$. Temperature and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

7. 7117 Power Supplies

The 7117 is designed to work from ± 5 volt supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application. See ICL7660 data sheet for an alternative.

Figure 10: Generating Negative Supply from $+5 v$

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts.
3. An external reference is used.

TYPICAL APPLICATIONS

The 7116 and 7117 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

Figure 12: 7117 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog Common.)

Figure 11: 7116 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9V battery).

Figure 13: 7116/7117: Recommended component values for 2.000 V full scale.

Figure 15: 7117 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

Figure 14: 7117 operated from single +5 V supply. An external reference must be used in this application, since the voltage between V^{+}and V^{-}is insufficient for correct operation of the internal reference.

Figure 16: 7116 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

For additional information see the following Application Bulletins:
A016 "Selecting A/D Converters," by David Fullagar
A017 "The Integrating A/D Converters," by Lee Evans
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A019 " $41 / 2$-Digit Panel Meter Demonstrator/Instrumentation Boards," by Michael Dufort.
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family," by Peter Bradshaw
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff

FEATURES

- Guaranteed zero reading for 0 Volts input on all scales
- True polarity at zero for precise null detection
- 1pA typical input current
- True differential input and reference
- Direct LCD display drive - no external components required
- Pin compatible with the ICL7106
- Low noise - less than $15 \mu \mathrm{~V}$ p-p
- On-chip clock and reference
- Low power dissipation guaranteed less than 1 mW
- No additional active circuits required
- Evaluation Kit available (ICL7126EV/KIT)
- 8,000 hours typical 9 Volt battery life

ICL7126

 Low-Power A/D Converter

 Low-Power A/D Converter}

GENERAL DESCRIPTION

The Intersil ICL7126 is a high performance, very low power $31 / 2$ digit A/D converter. All the necessary active devices are contained on a single CMOS IC, including seven segment decoders, display drivers, reference, and clock. The 7126 is designed to. interface with a liquid crystal display (LCD) and includes a backplane drive. The supply current is $100 \mu \mathrm{~A}$, ideally suited for 9 V battery operation.
The 7126 brings together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy, like auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation allows a high performance panel meter to be built with the addition of only 7 passive components and a display.
The ICL7126 can be used as a plug-in replacement for the ICL7106 in a wide variety of applications, changing only the passive components.

ABSOLUTE MAXIMUM RATINGS

Analog Input Voltage (either input) (Note 1) V^{+}to V^{-}
Reference Input Voltage (either input) V^{+}to V^{-}
Clock Input...................................... TEST to V^{+}

Power Dissipation (Note 2)
Ceramic Package
1000 mW
Plastic Package . 800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature. $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)................. . $300^{\circ} \mathrm{C}$

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
 (Note 3)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading	$\begin{aligned} & \mathrm{VIN}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \simeq 200.0 \mathrm{mV}$	-1	$\pm .2$	+1	Counts
Linearity (Max. deviation from best straight line fit)	$\begin{aligned} & \text { Full scale }=200 \mathrm{mV} \\ & \text { or full scale }=2.000 \mathrm{~V} \end{aligned}$	-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$.	50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk - Pk value not exceeded 95\% of time)	$\begin{aligned} & \mathrm{VIN}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift	$\begin{aligned} & V_{I N}=0 \\ & 0^{\circ}<T_{A}<70^{\circ} \mathrm{C} \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \text { VIN }=199.0 \mathrm{mV} \\ & 0<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \end{aligned}$		1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Supply Current (Does not include COMMON current)	$\begin{aligned} & V_{I N}=0 \\ & \text { (Note 6) } \end{aligned}$		50	100	$\mu \mathrm{A}$
Analog COMMON Voltage (With respect to pos. supply)	250K Ω between Common \& pos. Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog COMMON (with respect to pos. Supply)	250K Ω between Common \& pos. Supply		80		ppm $/{ }^{\circ} \mathrm{C}$
Pk-Pk Segment Drive Voltage (Note 5)	$\mathrm{V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4	5	6	V
Pk-Pk Backplane Drive Voltage (Note 5)	$\mathrm{V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4	5	6	V
Power Dissipation Capacitance	vs. Clock Freq.		40		pF

Note 3: Unless otherwise noted, specifications apply at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clock}}=16 \mathrm{kHZ}$ and are tested in the circuit of Figure 1.
Note 4: Refer to "Differential Input" discussion on page 4.
Note 5: Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less then 50 mV .
Note 6: During auto zero phase, current is $10-20 \mu \mathrm{~A}$ higher. 48 kHz oscillator, Figure 2, increases current by $8 \mu \mathrm{~A}$ (typ).,

TEST CIRCUITS

Figure 1: 7126 Clock Frequency 16 kHz . (1 reading/sec)

Figure 2: Clock Frequency 48 kHZ . (3 readings/sec)

DETAILED DESCRIPTION
 ANALOG SECTION

Figure 3 shows the Block Diagram of the Analog Section for the ICL7126. Each measurement cycle is divided into three
phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) deintegrate (DE).

Figure 3: Analog Section of 7126

1. Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less then $10 \mu \mathrm{~V}$.

2. Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be
within a wide common mode range; within one Volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

3. De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)$.

Differential Input

The input can accept differential voltages anywhere within the common mode rante of the input amplifier; or specifically from 0.5 Volts below the positive supply to 1.0 Volt above the negative supply. In this range the system has a CMRR of 86 db typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common-mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 Volts of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for (+) or $(-)$ input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition. (See Component Values Selection below.)

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 Volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, the analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($<7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient ($0.001 \% / \%$), low

Figure 4: Using an External Reference
output impedance ($\sim 15 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on-chip reference should also be recognized, however. The reference temperature coefficient (TC) can cause some degradation in performance. Temperature changes of 2 to $8^{\circ} \mathrm{C}$, typical for instruments, can give a scale factor error of a count or more. Also the common voltage will have a poor voltage coefficient when the total supply voltage is less than that which will cause the zener to regulate ($<7 \mathrm{~V}$). These problems are eliminated if an external reference is used, as shown in Figure 4.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN. LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently referenced to analog COMMON, it should be since this removes the common mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET that can sink $100 \mu \mathrm{~A}$ or more of current to hold the voltage 2.8 Volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $1 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus over-riding the internal reference.

Test

The TEST pin serves two functions. It is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally

Figure 5: Simple Inverter for Fixed Decimal Point
generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

Figure 6: Exclusive 'OR' Gate for Decimal Point Drive

The second function is a "lamp test." When TEST is pulled high (to V^{+}) all segments will be turned on and the display should read - 1888. The TEST pin will sink about 10 mA under these conditions.
Caution: In the lamp test mode, the segments have a constant D-C voltage (no square-wave) and may burn the LCD display if left in this mode for extended periods.

DIGITAL SECTION

Figure 7 shows the digital section for the 7126. An internal digital ground is generated from a 6 Volt Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 Volts. The segments are driven at the same frequency and amplitude and are in phase with BP. when OFF, but out of phase when ON. In all cases neglible d-c voltage exists across the segments. The polarity indication is "ON" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

Figure 8: Clock Circuits

System Timing

Figure 8 shows the clocking arrangement used in the 7126 . Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000

SEGMENT ASSIGNMENT

counts), reference de-integrate (0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/ second, an oscillator frequency of 48 kHZ would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $60 \mathrm{kHz}, 48 \mathrm{kHz}, 40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of 66 $2 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz).

COMPONENT VALUE SELECTION

1. Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $6 \mu \mathrm{~A}$ of quiescent current. They can supply $\sim 1 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 Volt full scale, $1.8 \mathrm{M} \Omega$ is near optimum and similarly $180 \mathrm{k} \Omega$ for à 200.0 mV scale.

2. Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 Volt from either supply). When the analog COMMON is used as a reference, a nominal ± 2 Volt full scale integrator swing is fine. For three readings/second (48 kHz clock) nominal values for $\mathrm{C}_{\mathrm{INT}}$ are $0.047 \mu \mathrm{~F}$, for $1 / \mathrm{sec}(16 \mathrm{kHz})$ $0.15 \mu \mathrm{~F}$. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
The integrating capacitor should have low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.
At three readings $/ \mathrm{sec}$., a 750Ω resistor should be placed in series with the integrating capacitor, to compensate for comparator delay. See App. Note A017 for a description of the need and effects of this resistor.

3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise is very important, a $0.32 \mu \mathrm{~F}$ capacitor is recommended. On the 2 Volt scale, a $0.033 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

4. Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e., the REF LO pin is not analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally $1.0 \mu \mathrm{~F}$ will "hold the foll-over error to 0.5 count in this instance.

5. Oscillator Components

For all ranges of frequency a 50 pF capacitor is recommended and the resistor is selected from the approximate equation $f \sim \frac{45}{R C}$. For 48 kHz clock (3 readings/second), $R=180 \mathrm{k} \Omega$.

6. Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: VIN $=2 V_{\text {ref }}$. Thus, for the 200.0 mV and 2.000 Volt scale, VREF should equal 100.0 mV and 1.000 Volt, respectively. However, in many applications where the A / D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select $V_{\text {REF }}=0.341 \mathrm{~V}$. A suitable value for integrating resistor would be $330 \mathrm{k} \Omega$. This makes the system slightly quieter and also avoids the necessity of a divider network on the input. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathrm{IN}} \neq 0$. Temperature and weighting systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

TYPICAL APPLICATIONS

The 7126 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities,

Figure 9: 7126 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9V battery).
and serve to illustrate the exceptional versatility of these A/D converters.

Figure 10: 7126 with an external band-gap reference (1.2V type). IN LO is tied to COMMON, thus establishing the correct common mode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading per second.

TYPICAL APPLICATIONS (Contd.)

Figure 11: Recommended component values for 2.000 V full scale, 3 readings per second. For 1 reading per second, delete 750Ω resistor, change Cint, Rosc to values of Fig. 10.

Figure 13: 7126 operated from single +5 V supply. An external reference must be used in this application, since the voltage between V^{+}and V^{-}is insufficient for correct operation of the internal reference.

Figure 15: 7126 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

Figure 12: 7126 with Zener diode reference. Since low T.C. zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be placed across the total supply (10V). As in the case of Figure 11, IN LO may be tied to COMMON.

Figure 14: 7126 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.

Figure 16: Circuit for developing Underrange and Overrange signals from 7126 outputs.

[^10]
TYPICAL APPLICATIONS (Contd.)

Figure 17: AC to DC Converter with 7126. Test is used as a common mode reference level to ensure compatibility with most op-amps.

APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar
A017 "The Integrating AID Converter," by Lee Evans
A018 "Do's and Don'ts of Applying AID Converters," by Peter Bradshaw and Skip Osgood
A019 " $41 ⁄ 2$-Digit Panel Meter Demonstrator/Instrumentation Boards," by Michael Dufort.
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort.
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family," by Peter Bradshaw
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106," by Larry Goff

7126 EVALUATION KITS

After purchasing a sample of the 7126 , the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application.
To facilitate evaluation of this unique circuit, Intersil is offering a kit which contains all the necessary components
to build a $31 / 2$ digit panel meter. With the ICL7126EV/KIT and the small number of additional components required, an engineer or technician can have the system "up and running" in about half an hour. The kit contains a circuit board, a display (LCD), passive components, and miscellaneous hardware.

FEATURES

- Accuracy guaranteed to ± 1 count over entire $\pm 20,000$ counts (2.0000 volts full scale)
- Guaranteed zero reading for 0 volts input
- 1 pA typical input current
- True differential input
- True polarity at zero count for precise null detection
- Single reference voltage required
- Over-range and under-range signals available for auto-ranging capability
- All outputs TTL compatible
- Blinking display gives visual indication of overrange
- Six auxillary inputs/outputs are available for interfacing to UARTs, microprocessors or other complex circuitry
- Multiplexed BCD output versatility

GENERAL DESCRIPTION

The Intersil ICL7135 precision A/D converter, with its multiplexed BCD output and digit drivers, combines dualslope conversion reliability with ± 1 in 20,000 count accuracy and is ideally suited for the visual display DVM/DPM market. The 2.0000V full scale capability, auto-zero and auto-polarity are combined with true ratiometric operation, almost ideal differential linearity and true differential input. All necessary active devices are contained on a single CMOS I.C., with the exception of display drivers, reference, and a clock.
The Intersil ICL7135 brings together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy like auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of multiplexed BCD outputs is increased by the addition of several pins which allow it to operate in more sophisticated systems. These include STROBE, OVERRANGE, UNDERRANGE, RUN/HOLD and BUSY lines, making it possible to interface the circuit to a microprocessor or UART.

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 2)
Ceramic Package 1000 mW
Plastic Package 800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $+100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ICL7135 ELECTRICAL CHARACTERISTICS (Note 1)
$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Clock Frequency Set for 3 Reading/Sec

Note 1: Tested in 4-1/2 digit (20,000 count) circuit shown in Fig. 1, clock frequency 120 kHz .
Note 2: Tested with a low dielectric absorption integrating capacitor. See Component Selection Section.
Note 3: The temperature range can be extended to $+70^{\circ} \mathrm{C}$ and b yond as long as the auto-zero and reference capacitors are increased to absorb the higher leakage of the ICL7135.
Note 4: This specification relates to the clock frequency range over which the ICL7135 will correctly perform its various functions. See "Max Clock Frequency" below for limitations on the clock frequency range in a system.

TEST CIRCUIT

Figure 1: 7135 Test Circuit

DETAILED DESCRIPTION

Analog Section

Figure 3 shows the Block Diagram of the Analog Section for the ICL7135. Each measurement cycle is divided into four phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT), (3) deintegrate (DE) and (4) zero integrator (ZI).

1. Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.
2. Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and

Figure 2: 7135 Digital Logic Input

Figure 3: Analog Section of ICL7135

4. Zero Integrator phase

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal condition, this phase lasts from 100 to 200 clock pulses, but after an overrange conversion, it is extended to 6200. clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale swing with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

Analog COMMON

Analog COMMON is used as the input low return during autozero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in most applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode. voltage from the converter. The reference voltage is referenced to analog COMMON.

Reference

The reference input must be generated as a positive voltage with respect to COMMON, as shown in Fig. 4.

DETAILED DESCRIPTION

Digital Section

Figure 5 is the Digital Section of the 7135. It is identical to the 71C03 except that the $4-1 / 2 / \sqrt{3-1 / 2}$ digit pin has been eliminated '(mask-option; consult factory). The 7135 includes several pins which allow it to operate conveniently in more sophisticated systems. These include:

1. RUN/FOLD (Pin 25). When high (or open) the A/D will freerun with equally spaced measurement cycles every 40,002 clock pulses. If taken low, the converter will continue the full measurement cycle that it is doing and then hold this reading as long as R / \bar{H} is held low. A short positive pulse (greater than 300 ns) will now initiate a new measurement cycle, beginning with between 9,001 and 10,001 counts of auto zero. If the pulse occurs before the full measurement cycle (40,002 counts) is completed, it will not be recognized and the converter will simply complete the measurement it is doing. An external indication that a full measurement cycle has been completed is that the first strobe pulse (see below) will occur 101 counts after the end of this cycle. Thus, if Run//Hold is low and has been low for at least 101 counts, the converter is holding and ready to start a new measurement when pulsed high.
2. $\overline{\text { STROBE }}$ (Pin 26). This is a negative going output pulse that aids in transferring the BCD data to external latches, UARTs or microprocessors. There are 5 negative going STROBE pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 101 pules after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 201 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first STROBE pulse goes negative for $1 / 2$ clock pulse width. Similarly, after digit 5, digit 4 goes high (for 200 clock pulses) and 100 pulses later the STROBE goes negative for the second time. This continues through digit 1 (LSD) when the fifth and last STROBE pulse is sent. The digit drive will continue to scan (unless the previous signal was overrange) but no additional STROBE pulses will be sent until a new measurement is available.

Figure 4: Using an External Reference
3. BUSY (Pin 21). BUSY goes high at the beginning of signal integrate and stays high until the first clock pulse after zerocrossing (or after end of measurement in the case of an overrange). The internal latches are enabled (i.e., loaded) during the first clock pulse after busy and are latched at the end of this clock pulse. The circuit automatically reverts to auto-zero when not BUSY, so it may also be considered a $(\overline{Z I}+A Z)$ signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with clock and subtract 10,001 counts from the number of pulses received - as mentioned previously there is one "NO-count" pulse in each reference integrate cycle.
4. OVER-RANGE (Pin 27). This pin goes positive when the input signal exceeds the range $(20,000)$ of the converter. The output F-F is set at the end of BUSY and is reset to zero at the beginning of Reference integrate in the next measurement cycle.
5. UNDER-RANGE (Pin 28). This pin goes positive when the reading is 9% of range or less. The output $F-F$ is set at the end of BUSY.(if the new reading is 1800 or less) and is reset at the beginning of signal integrate of the next reading.
6. POLARITY (Pin 23). This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be used as a null detector by forcing equal frequency of $(+)$ and $(-)$ readings. The null at this point should be less than 0.1 LSB. This output becomes valid at the beginning of reference integrate and remains correct until it is re-validated for the next measurement.
7. Digit Drives (Pins 12, 17, 18, 19 and 20). Each digit drive is a positive going signal that lasts for 200 clock pulses. The scan sequence is D_{5} (MSD), D_{4}, D_{3}, D_{2} and D_{1} (LSD). All five digits are scanned and this scan is continuous unless an over-range occurs. Then all digit drives are blanked from the end of the strobe sequence until the beginning of Reference Integrate when D_{5} will start the scan again. This can give a blinking display as a visual indication of over-range.
8. BCD (Pins 13, 14, 15 and 16). The Binary coded Decimal bits B_{8}, B_{4}, B_{2} and B_{1} are positive logic signals that go on . simultaneously with the digit driver signal.

COMPONENT VALUE SELECTION

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. Values of 5 to $40 \mu \mathrm{~A}$ give good results, with a nominal of $20 \mu \mathrm{~A}$, and the exact value of integrating resistor may be chosen by

Integrating Capacitor

The product of integrating resistor and capacitor should be selected to give the maximum voltage swing which ensures that the tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). For ± 5 volt supplies and analog COMMON tied to supply ground, $\mathrm{a} \pm 3.5$ to ± 4 volt full scale integrator swing is fine, and $0.10 \mu \mathrm{~F}$ is nominal. In general, the value of CINT^{2} is given by

$$
\mathrm{C}_{\mathrm{INT}}=\frac{[10,000 \times \text { clock period }] \times l_{\mathrm{l} N T}}{\text { integrator output voltage swing }}=
$$

A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.
This ratiometric condition should read half scale 0.9999 , and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

$$
\text { RINT }=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
$$

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.
The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full-scale output is $V_{I N}=2 V_{\text {REF }}$.
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high quality reference be used where high-accuracy absolute measurements are being made.

Rollover Resistor and Diode

A small rollover error occurs in the 7135, but this can be easily corrected by adding a diode and resistor in series between the INTegrator OUTput and analog COMMON or ground. The value shown in the schematics is optimum for the recommended conditions, but if integrator swing or clock frequency is modified adjustment may be needed. The diode can be any silicon diode, such as a 1N914. These components can be eliminated if rollover error is not important, and may be altered in value to correct other (small) sources of rollover as needed.

Max Clock Frequency

The maximum conversion rate of most dual-slope A/D converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a 3μ s delay, and at a clock frequency of 160 kHz ($6 \mu \mathrm{~s}$ period) half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}, 2$ to 3 at $250 \mu \mathrm{~V}$, etc. This transition at mid-point is considered desirable by most users; however, if the clock frequency is increased appreciably above 160 kHz , the instrument will flash " 1 " on noise peaks even when the input is shorted.
For many-dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, clock rates of up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally.
The clock frequency may be extended above 160 kHz without this error, however, by using a low value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage on to the integrator output at the beginning of the reference integrate phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3 . At higher frequencies, ringing and second order breaks will cause significant nonlinearities in the first few counts of the instrument - see Application Note A017.
The minimum clock frequency is established by leakage on the auto-zero and reference caps. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $300 \mathrm{kHz}, 200 \mathrm{kHz}, 150 \mathrm{kHz}, 120 \mathrm{kHz}, 100 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $250 \mathrm{kHz}, 1662 / 3 \mathrm{kHz}, 125 \mathrm{kHz}$, 100 kHz , etc. would be suitable. Note that $100 \mathrm{kHz}(2.5$ readings/second) will reject both 50 and 60 Hz .
The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in the Applications section. The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

Zero-Crossing Flip-Flop

The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have died down. False zero-crossings caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by up to one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore, the counter is disabled for one clock pulse at the beginning of phase 3 . This one-count delay compensates for the delay of the zero-crossing flip-flop, and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001. No delay occurs during phase 2 , so that true ratiometric readings result.

EVALUATING THE ERROR SOURCES

Errors from the "ideal" cycle are caused by:

1. Capacitor droop due to leakage.
2. Capacitor voltage change due to charge "suck-out" (the reverse of charge injection) when the switches turn off.
3. Non-linearity of buffer and integrator.
4. High-frequency limitations of buffer, integrator and comparator.
5. Integrating capacitor non-linearity (dielectric absorption.)
6. Charge lost by $\mathrm{C}_{\text {REF }}$ in charging $\mathrm{C}_{\text {stray }}$.
7. Charge lost by $\mathrm{C}_{A Z}$ and $\mathrm{C}_{I N T}$ to charge $\mathrm{C}_{\text {stray }}$.

Each of these errors is analyzed for its error contribution to the converter in application notes listed on the back page, specifically A017 and A032.

NOISE

The peak-to-peak noise around zero is approximately. $15 \mu \mathrm{~V}$ (pk-to-pk value not exceeded 95% of the time). Near full scale, this value increases to approximately $30 \mu \mathrm{~V}$. Much of the noise originates in the auto-zero loop, and is proportional to the ratio of the input signal to the reference.

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of ICL7135 circuits, especially in high-sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line.

POWER SUPPLIES

The 7135 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than ± 1.5 volts.

See "differential input" for a discussion of the effects this will have on the integrator swing without loss of linearity.

TYPICAL APPLICATIONS

The circuits which follow show some of the wide variety of possibilities, and serve to illustrate the exceptional versatility of this A/D converter.
Figure 7 shows the complete circuit for a 4-1/2 digit ($\pm 2.000 \mathrm{~V}$) full scale) A/D with LED readout using the ICL8069 as a 1.2 V temperature compensated voltage reference. It uses the band-gap principal to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. The circuit also shows a typical R-C input filter. Depending on the application, the time-constant of this filter can be made faster, slower, or the filter deleted completely. The $1 / 2$ digit

LED is driven from the 7 segment decoder, with a zero reading blanked by connecting a D5 signal to RBI input of the decoder. The 2-gate clock circuit should use CMOS gates to maintain good power supply rejection.
Figure 8 is similar except the output drives a multiplexed common cathode LED Display with the 7-Common Emitter Transistor Array, for the digit driver transistors, making a lower component count possible. Both versions of the complete circuit will give a blinking display as a visual indication of overrange. A clock oscillator circuit using the ICM7555 CMOS timer is shown.

Figure 7: 4-1/2 Digit A-D Converter with a multiplexed common anode LED display

Figure 8: Driving multiplexed common cathode LED displays

A suitable circuit for driving a plasma-type display is shown in Fig. 9. The high voltage anode driver buffer is made by Dionics. The 3 AND gates and caps driving 'BI' are needed for interdigit blanking of multiple-digit display elements, and can be omitted if not needed. The 2.5 k \& 3k resistors set the current levels in the display. A similar arrangement can be used with Nixie ${ }^{\text {® }}$ tubes.
The popular LCD displays can be interfaced to the O/P of the ICL7135 with suitable display drivers, such as the ICM7211A as shown in Figure 11. A standard CMOS 4000 series LCD driver circuit is used for displaying the $1 / 2$ digit, the polarity,
(1) Nixie is a registered trademark of Burroughs Corporation.

Figure 9: ICL7135 Plasma Display Circuit
and an 'overrange' flag. A similar circuit can be used with the ICL7212A LED driver and the ICM7235A vacuum fluorescent driver with appropriate arrangements made for the 'extra' outputs. Of course, another full driver circuit could be ganged to the one shown if required. This would be useful if additional annunciators were needed. The Figure shows the complete circuit for a $4-1 / 2$ digit $(\pm 2.000 \mathrm{~V}) \mathrm{A} / \mathrm{D}$.
Figure 10 shows a more complicated circuit for driving LCD displays. Here the data is latched into the ICM7211 by the STROBE signal and 'Overrange' is indicated by blanking the 4 full digits.

Figure 10: LCD Display with Digit Blanking on Overrange

Figure 11: Driving LCD Displays

TYPICAL APPLICATIONS (Contd.)

A problem sometimes encountered with both LED \& plasmatype display driving is that of clock source supply line variations. Since the supply is shared with the display, any variation in voltage due to the display reading may cause clock supply voltage modulation. When in overrange the display alternates between a blank display and the 0000 overrange indication. This shift occurs during the reference integrate phase of conversion causing a low display reading just after overrange recovery. Both of the above circuits have considerable current flowing in the digital supply from drivers, etc. A clock source using Intersil's LM311 voltage comparator in positive feedback mode (Figure 12) could minimize any clock frequency shift problem.
The 7135 is designed to work from ± 5 volt supplies. However,

Figure 12: LM311 Clock Source

Figure 14: ICL7135 to UART Interface
if a negative supply is not available, it can be generated from 2 capacitors, and an inexpensive I.C. (Figure 13).

INTERFACING WITH UARTS AND MICROPROCESSORS

Figure 14 shows a very simple interface between a freerunning ICL7135 and a UART. The five STROBE pulses start the transmission of the five data words. The digit 5 word is $0000 \times X X X$, digit 4 is $1000 \times X X X$, digit 3 is 0100 XXXX , etc. Also the polarity is transmitted indirectly by using it to drive the Even Parity Enable Pin (EPE). If EPE of the receiver is held low, a parity flag at the receiver can be decoded as a positive signal, no flag as negative. A complex arrangement is shown in Figure 15. Here the UART can instruct the A/D to begin a measurement sequence by a word on RRI. The BUSY signal resets the Data Ready Reset (DRR). Again STROBE starts the

Figure 13: Generating Negative Supply from +5 V

Figure 15: Complex ICL7135 to.UART Interface

Figure 16: IM6100 to ICL7135 Interface

Figure 17: ICL7135 to MC6800, MCS650X Interface
transmit sequence. A quad 2 input multiplexer is used to superimpose polarity, over-range, and under-range onto the D_{5} word since in this instance it is known that $B_{2}=B_{4}=B_{8}=$ 0.

For correct operation it is important that the UART clock be fast enough that each, word is transmitted before the next STROBE pulse arrives. Parity is locked into the UART at load time but does not change in this connection during an output stream.

Figure 18: ICL7135 to MCS-48, -80, 85 Interface
Circuits to interface the ICL7135 directly with three popular microprocessors are shown in Figures 16, 17 and 18. The main differences in the circuits are that the IM6100 with its 12 bit word capability can accept polarity, over-range, underrange, 4 bits of BCD and 5 digits simultaneously where the 8080/8048 and the MC6800 groups with 8 bit words need to have polarity, over-range and under-range multiplexed onto the Digit 5 word - as in the UART circuit. In each case the microprocessor can instruct the A / D when to begin a measurement and when to hold this measurement.

APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar
A017 "The Integrating A/D Converters," by Lee Evans
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A019 "4-1/2 Digit Panel Meter Demonstrator/Instrumentation Boards," by Michael Dufort
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar and Michael Dufort

A028 "Búilding an Auto-Ranging DMM Using the 8052A/7103A A/D Converter Pair," by Larry Goff
A030 "The ICL7104 - A Binary Output A/D Converter for Microprocessors", by Peter Bradshaw
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family", by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976

FEATURES

- AD7520/AD7530: 10 Bit Resolution; 8, 9 and 10 Bit Linearity
- AD7521/AD7531: 12 Bit Resolution; 8, 9 and 10 Bit Linearity
- Low Power Dissipation: 20 mW (Max)
- Low Nonlinearity Tempco: 2 PPM of FSR/ ${ }^{\circ}$ C (Max)
- Current Settling Time: $\mathbf{5 0 0}$ ns to $\mathbf{0 . 0 5 \%}$ of FSR
- Supply Voltage Range: +5 V to +15 V
- DTL/TTL/CMOS Compatible
- Full Input Static Protection
- 883B Processed Versions Available

GENERAL DESCRIPTION

The AD7520/AD7530 and AD7521/AD7531 are monolithic, high accuracy, low cost 10-bit and 12-bit resolution, multiplying digital-to-analog converters (DAC). INTERSIL thin-film on CMOS processing gives up to 10bit accuracy with DTL/TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by diodes to ground and positive supply.
Typical applications include digital/analog interfacing, multiplication and division, programmable power supplies, CRT character generation, digitally controlled gain circuits, integrators and attenuators, etc.
The AD7530 and AD7531 are identical to the AD7520 and AD7521, respectively, with the exception of output leakage current and feedthrough specifications.

FUNCTIONAL DIAGRAM

(Switches shown for Digital Inputs "High")
(Resistor values are nominal)

ORDERING INFORMATION

Nonlinearity	Temperature Range,		
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	AD7520JN	AD7520JD	AD7520SD
	AD7530JN	AD7530JD	
	AD7521JN	AD7521JD	AD7521SD
	AD7531JN	AD7531JD	
0.1% (9-Bit)	AD7520KN	AD7520KD	AD7520TD
	AD7530KN	AD7530KD	
	AD7521KN	AD7521KD	AD7521TD
	AD7531KN	AD7531KD	
0.05% (10-Bit)	AD7520LN	AD7520LD	AD7520UD
	AD7530LN	AD7530LD	
	AD7521LN	AD7521LD	AD7521UD
	AD7531LN	AD7531LD	

CHIP TOPOGRAPHY

PIN CONFIGURATION (Outline dwgs DE, PE)

TOP VIEW AD7520 (AD7530)	
lour2 2	15. $\mathrm{V}_{\text {ReF }}$
GND ${ }^{3}$	$1{ }^{16} \mathrm{v}^{+}$
Bit 1 (mse) ${ }^{\text {d }}$	13 BIT 10 (LSB)
Bit 25	112 BIT 9
Віт 36	Ti18it ${ }^{\text {a }}$
BIT 48	1088197
BIT $5 \cdot 8$	可 bit 6

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

V+	+17V	Operating Temperatures	
Vref	$\pm 25 \mathrm{~V}$	JN, KN, LN Versions	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Digital Input Voltage Range	V^{+}to GND	JD, KD, LD Versions	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Output Voltage Compliance	-100 mV to V^{+}	SD, TD, UD Versions	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation (package)		Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$

up to $+75^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .450 \mathrm{~mW}$
derate above $+75^{\circ} \mathrm{C} @ \ldots \ldots \ldots \ldots . .6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

CAUTION: 1) The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2) Do not apply voltages higher than $V_{D D}$ or less than GND potential on any terminal except $V_{\text {REF }}$ and $R_{f b}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
SPECIFICATIONS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	$\begin{gathered} \text { AD7520 } \\ \text { (AD7530) } \end{gathered}$	AD7521 (AD7531)	UNITS	LIMIT	TEST CONDITIONS	FIG.
$\begin{aligned} & \hline \text { DC ACCURACY (Note 1) } \\ & \text { Resolution } \end{aligned}$	10	12	Bits.			
Nonlinearity $\quad \mathrm{J}$	0.2 (8-Bit)		\% of FSR	Max	S, T, U: over $-55^{\circ} \mathrm{C}$ to $=125^{\circ} \mathrm{C}$$-10 V \leq V_{\text {REF }} \leq=10 V$	1
$\begin{gathered} \hline K \\ T \end{gathered}$	0.1 (9-Bit)		\% of FSR	Max		1
$\begin{aligned} & \mathrm{L} \\ & \mathrm{U} \end{aligned}$	0.05 (10-Bit)		\% of FSR	Max		1
Nonlinearity Tempco	2		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$	
Gain Error (Note 2)	0.3		\% of FSR	Typ		
Gain Error Tempco (Note 2)	10		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max		
Output Leakage Current (either output)	$\begin{aligned} & \hline 200 \\ & (300) \end{aligned}$		nA	Max	Over the specified temperature range	
Power Supply Rejection	± 0.005		\% of FSR/\%	Typ		2
$\begin{aligned} & \text { AC ACCURACY } \\ & \text { Output Current Settling } \\ & \text { Time } \end{aligned}$	500		nS	Typ	To 0.05% of FSR (All digital inputs low to high and high to low)	6
Feedthrough Error	10		$\mathrm{mV} p \mathrm{p}$	Max	$\mathrm{V}_{\text {REF }}=20 \mathrm{~V} p, 100 \mathrm{kHz}$ (50 kHz) All digital inputs low	5
$\begin{aligned} & \text { REFERENCE INPUT } \\ & \text { Input Resistance (Note 3) } \end{aligned}$	$\begin{gathered} \hline 5 \mathrm{k} \\ 10 \mathrm{k} \\ 20 \mathrm{k} \\ \hline \end{gathered}$		Ω	$\begin{aligned} & \text { Min } \\ & \text { Typ } \\ & \text { Max } \end{aligned}$	All digital inputs high. lout1 at ground.	
ANALOG OUTPUT Voltage Compliance (both outputs)	See absolute max. ratings			\because	\cdots	
Output Capacitance	$\begin{aligned} & \text { louti } 120 \\ & \text { lout2 } 37 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \end{aligned}$	All digital inputs high	4
	$\begin{aligned} & \text { lout1 } 37 \\ & \text { lout2 } 120 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \end{aligned}$	All digital inputs low	4
Output Noise (both outputs)	Equivalent to $10 \mathrm{k} \Omega$ Johnson noise			Typ		3
$\frac{\text { DIGITAL INPUTS }}{\text { Low State Threshold }}$	0.8		V	Max	Over the specified temp range	
High State Threshold	2.4		V	Min		
Input Current (low to high state)	\cdots		$\mu \mathrm{A}$	Typ		
Input Coding	Binary/Offset Binary				See Tables 1 \& 2 on pages 4 and 5	
POWER REQUIREMENTS Power Supply Voltage Range	+5 to +15		V			
1^{+}	5		nA	Typ	All digital inputs at GND	
	2		mA	Max	All digital inputs high or low	
Total Power Dissipation (Including the ladder)	20		mW	Typ		

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Ladder and feedback resistor Tempco is approximately $-150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

TEST CIRCUITS

NOTE: The following test circuits apply for the AD7520. Similar circuits can be used for the AD7530, AD7521 and AD7531.

Figure 1. Nonlinearity

Figure 3. Noise

Figure 5. Feedthrough Error

Figure 2. Power Supply Rejection

Figure 4. Output Capacitance

Figure 6. Output Current Settling Time

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{R E F}\right)$. A bipolar converter of n bits has a resolution of [$2^{-(n-1)}$] [$V_{\text {REF }}$]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full.Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from VPEF to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from loutı and lout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

GENERAL CIRCUIT INFORMATION

The AD7520 (AD7530) and AD7521 (AD7531) are monolithic, multiplying D/A converters. Highly stable thin film R-2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit, CMOS level shifters permit low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS SPDT switches steer the ladder leg currents between lout1 and lout2 busses which must be held either at ground or virtual ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")
Figure 7. 7520/7521 Functional Diagram

Converter errors are further reduced by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 8). This configuration results in DTL/ TTL/CMOS compatible operation over the full military temperature range. With the ladder SPDT switches driven by the level shifter, each switch is binarily weighted for an ON resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors and highly accurate leg currents.

Figure 8. CMOS Switch

APPLICATIONS

UNIPOLAR BINARY OPERATION

The circuit configuration for operating the AD7520 (AD7530) and AD7521 (AD7531) in unipolar mode is shown in Figure 9. With positive and negative $V_{\text {REF }}$ values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.

Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at Vout.

Gain Adjustment

1. Connect all AD7520 (AD7530) or AD7521 (AD7531) digital inputs to V^{+}.
2. Monitor Vout for a $-\operatorname{VREF}\left(1-2^{-n}\right)$ reading. ($n=10$ for AD7520 (AD7530) and $n=12$ for AD7521 (AD7531)).
3. To decrease Vout, connect a series resistor (0 to 500 ohms) between the reference voltage and the VREF terminal.
4. To increase $\mathrm{V}_{\text {OUT }}$, connect a series resistor (0 to 500) ohms) in the lout l $_{1}$ amplifier feedback loop.

TABLE 1
CODE TABLE - UNIPOLAR BINARY OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-n}\right)$
1000000001	$-V_{\text {REF }}\left(1 / 2+2^{-n}\right)$
1000000000	$-V_{\text {REF }} / 2$
0111111111	$-V_{\text {REF }}\left(1 / 2-2^{-n}\right)$
0000000001	$-V_{\text {REF }}\left(2^{-n}\right)$
0000000000	0

NOTE: 1.LSB $=2^{-n} V_{\text {REF }}$
2. $\mathrm{n}=10$ for 7520,7521
$n=12$ for 7530,7531

(APPLICATIONS, Cont'd.)
 BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the AD7520 (AD7530) or AD7521 (AD7531) in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values 4Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

Figure 10. Bipolar Operation (4-Quadant Multiplication)
A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to lout1 bus. A "Logic 0" input forces the bit current to lout2 bus. For any code the lout1 and lout2 bus currents are complements of one another. The current amplifier at lout2 changes the polarity of lout2 current and the transconductance amplifier at lout1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0 "), is corrected by using an external resistor, (10 Megohm), from VREF to lout2.

Offset Adjustment

1. Adjust VREF to approximately +10 V .
2. Connect all digital inputs to "Logic 1".
3. Adjust lout2 amplifier offset zero adjust trimpot for OV $\pm 1 \mathrm{mV}$ at lout2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
5. Adjust lout1 amplifier offset zero adjust trimpot for 0 V $\pm 1 \mathrm{mV}$ at Vout.'
Gain Adjustment
6. Connect all digital inputs to V^{+}.
7. Monitor Vout for a $-\operatorname{VREF}(1-2-(n-1))$ volts reading. ($n=$ 10 for AD7520 and AD7530, and $n=12$ for AD7521 and AD7531).
8. To increase Vout, connect a series resistor of up to 500Ω between Vout and R_{fb}.
9. To decrease Vout, connect a series resistor of up to 500Ω between the reference voltage and the VREF terminal.

TABLE 2
CODE TABLE - BIPOLAR (OFFSET BINARY) OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-(n-1)}\right)$
1000000001	$-V_{\text {REF }}\left(2^{-(n-1)}\right)$
1000000000 ..	0
0111111111	$V_{\text {REF }}\left(2^{-(n-1)}\right)$
0000000001	$V_{\text {REF }}\left(1-2^{-(n-1)}\right)$
0000000000	VREF
NOTE: 1.LSB $=2^{-(\mathrm{n}-1)} \mathrm{V}_{\text {REF }}$.	2. $\begin{aligned} & n=10 \text { for } 7520 \text { and } 7521 \\ & n=12 \text { for } 7530 \text { and } 7531 \end{aligned}$

POWER DAC DESIGN USING AD7520

Figure 11. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 11. An INTERSIL IH8510 power amplifier (1 Amp continuous output at up to $\pm 25 \mathrm{~V}$) is driven by the AD7520.
A summing amplifier between the AD7520 and the IH8510 is used to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise the AD7520 can be directly connected to the IH 8510 , by using a 25 V reference for the DAC.

An important note on the AD7520/101A interface concerns the connection of pin 1 of the DAC and pin 2 of the 101A. Since this point is the summing junction of an amplifier with an AC gain of 50,000 or better, stray capacitance should be minimized; otherwise instabilities and poor noise performance will result. Note that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information see: INTERSIL Application Bulletin A021-Power D/A Converters Using The IH8510 by Dick Wilenken.)

(APPLICATIONS, Cont'd.)

ANALOG/DIGITAL DIVISION

With the AD7520 connected in its normal multiplying configuration as shown in figure 15, the transfer function is
$V_{O}=-V_{I N}\left(\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \frac{A_{n}}{2^{n}}\right)$
where the coefficients A_{x} assume a value of 1 for an ON bit and 0 for an OFF bit.
By connecting the DAC in the feedback of an operational amplifier, as shown in Figure 12, the transfer function becomes
$V_{O}=\left(\frac{-V_{I N}}{\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \frac{A_{n}}{2^{n}}}\right)$

This is division of an analog variable (V IN) by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1023 . With all bits ON, the gain is $1(\pm 1$ LSB).

Figure 12. Analog/Digital Divider

AD7523
8 Bit Monolithic

Multiplying D/A Converters

FEATURES

- 8,9 and 10 bit linearity
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Fast settling time: 100 ns
- Four quadrant multiplication
- 883B Processed versions available

GENERAL DESCRIPTION

The Intersil AD7523 is a monolithic, low cost, high performance, 10 bit accurate, multiplying digital-to-analog converter (DAC), in a 16-pin DIP.
Intersil's thin-film resistors on CMOS circuitry provide 8-bit resolution (8, 9 and 10-bit accuracy), with DTL/TTL/CMOS compatible operation.
Intersil AD7523's accurate four quadrant multiplication, full military temperature range operation, full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and GND and very low power dissipation make it a very versatile converter.
Low noise audio gain control, motor speed control, digitally controlled gain and attenuators are a few of the wide number of applications of the 7523.

ABSOLUTE MAXIMUM RATINGS

($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
$\mathrm{V}+$	+17V
$V_{\text {REF }}$	$\pm 25 \mathrm{~V}$
Digital Input Voltage Range	-0.3 to VDD
Output Voltage Compliance	-0:3 to VDD
Power Dissipation (package)	
Plastic	
up to $+70^{\circ} \mathrm{C}$	670 mW
derates above $+70^{\circ} \mathrm{C}$ by	8.3mW/ ${ }^{\circ} \mathrm{C}$

Ceramic

up to $75^{\circ} \mathrm{C}$.. . . 450 mW
derates above $75^{\circ} \mathrm{C}$ by
$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperatures
JN, KN, LN Versions . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
AD, BD, CD Versions $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SD, TD, UD Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) $+300^{\circ} \mathrm{C}$

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than VDD and lower than GND to any terminal except $V_{\text {REF }}+$ RFB .

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}\right.$ unless otherwise specified)

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

APPLICATIONS
 UNIPOLAR OPERATION

Figure 1. Unipolar Binary Operation (2-Quadrant Multiplication)

DIGITAL INPUT
MSB
LSB

11111111	$-V_{\text {REF }}$	$\left(\frac{255}{256}\right)$
10000001	$-V_{\text {REF }}$	$\left(\frac{129}{256}\right)$
10000000	$-V_{\text {REF }}$	$\left(\frac{128}{256}\right)=-\frac{V_{R E F}}{2}$
01111111	$-V_{\text {REF }}$	$\left(\frac{127}{256}\right)$
00000001	$-V_{\text {REF }}$	$\left(\frac{1}{256}\right)$
00000000	$-V_{\text {REF }}$	$\left(\frac{0}{256}\right)=0$

Note: $1 \mathrm{LSB}=\left(2^{-8}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{256}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)$
Table 1. Unipolar Binary Code Table

BIPOLAR OPERATION

Figure 2. Bipolar (4-Quadrant) Operation

DIGITAL INPUT MSB	ANALOG OUTPUT	
11111111	- VREF 2	$\left(\frac{127}{128}\right)$
10000001	$-V_{\text {REF }}$	$\left(\frac{1}{128}\right)$
10000000	0	
01111111	$+V_{\text {REF }}$	$\left(\frac{1}{128}\right)$
00000001	$+V_{\text {REF }}$	$\left(\frac{127}{128}\right)$
00000000	$+V_{\text {REF }}$	$\left(\frac{128}{128}\right)$

Note: $1 \mathrm{LSB}=\left(2^{-7}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{128}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)$
Table 2. Bipolar (Offset Binary) Code Table

POWER DAC DESIGN USING AD7523

Figure 3. The Basic Power DAC

A typical power DAC designed for 10 bit accuracy and 8 bit resolution is shown in Figure 3. INTERSIL IH8510 power amplifier (1 Amp continuous output with up to +25 V) is driven by the AD7523.

A summing amplifier between the AD7523 and the IH8510 is used to separate the gain block containing the AD7520 on-
chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise AD7523 can be directly connected to the IH8510, by using a 25 volts reference for the DAC.

APPLICATIONS (continued)

DIVIDER (DIGITALLY CONTROLLED GAIN)

MODIFIED SCALE FACTOR AND OFFSET

VoUT $=-\mathrm{V}_{\text {IN }} / \mathrm{D}$ WHERE: $D=\frac{B I T 1}{21}+\frac{B I T 2}{22}+\cdots \frac{B I T 8}{2^{8}}$

$$
\left(0 \leq \mathrm{D} \leq \frac{255}{256}\right)
$$

$V_{\text {OUT }}=V_{\text {REF }}\left[\left(\frac{R_{2}}{R_{1}+R_{2}}\right)-\left(\frac{R_{1} D}{R_{1}+R_{2}}\right)\right]$ WHERE: $\quad D=\frac{\text { BIT 1 }}{2^{1}}+\frac{\text { BIT } 2}{2^{2}}+\cdots \frac{\text { BIT } 8}{2^{8}}$

$$
\left(0 \leq \mathrm{D} \leq \frac{255}{256}\right)
$$

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of n bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{R E F}^{\downarrow}{ }_{4}\right.$. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from Vref to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from Iout1 and IOUT2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

For further information on the use of this device, see the following Application Bulletins:
A016 "Selecting AID Converters," by David Fullagar
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A020 "A Cookbook Approach to High-Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger
A021 "Power D/A Converters Using the IH8510," by Dick Wilenken
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al., Electronics, Dec. 9, 1976

FEATURES

- Lowest cost 10-bit DAC
- 8,9 and 10 bit linearity
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS direct interface
- +5 to +15 volts supply range
- Low power dissipation
- Fast settling time
- Four quadrant multiplication
- Direct AD7520 equivalent
- 883B Processed versions available

GENERAL DESCRIPTION

The Intersil AD7533 is a low cost, monolithic 10-bit, fourquadrant multiplying digital-to-analog converter (DAC).
Intersil's thin-film resistors on CMOS circuitry provide 10, 9 and 8 bit accuracy, full temperature range operation, +5 V to +15 V power range, full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and ground and very low power dissipation.
Pin and function equivalent to Industry Standard AD7520, the AD7533 is recommended as a lower cost alternative for old or new 10-bit DAC designs.
Application of AD7533 includes programmable gain amplifiers, digitally controlled attenuators, function generators and control systems.

FUNCTIONAL DIAGRAM

(Switches shown for Digital Inputs "High")

PIN CONFIGURATION

(Outline dwg DE, PE)

ORDERING INFORMATION

	Temperature Range		
Nonlinearity	$0^{\circ} \mathbf{C}$ to $+\mathbf{7 0 ^ { \circ }} \mathbf{C}$	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-\mathbf{5 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$
$\pm 0.2 \%$ (8-bit)	AD7533JN	AD7533AD	AD7533SD
$\pm 0.1 \%$	AD7533KN	AD7533BD	AD7533TD
\pm-bit)	,		
$\pm 0.05 \%$ $(10-$ bit)	AD7533LN	AD7533CD	AD7533UD

PACKAGE IDENTIFICATION

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

V^{+}	-0.3V, +17V
$V_{\text {REF }}$	$\pm 25 \mathrm{~V}$

Digital Input Voltage Range . -0.3 V to V^{+}
Output Voltage Compliance -0.3 to V^{+}
Power Dissipation (package)
Ceramic
up to $+75^{\circ} \mathrm{C}$.. . 450 mW
derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Plastic

up to $70^{\circ} \mathrm{C}$. derates above $70^{\circ} \mathrm{C}$ by	$\begin{array}{r} \ldots 670 \mathrm{~mW} \\ 8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{array}$
Operating Temperatures	
JN, KN, LN Versions.	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$A D, B D, C D$ Versions	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SD, TD, UD Versions	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (sold	$\ldots . . .+300^{\circ} \mathrm{C}$

derates above $70^{\circ} \mathrm{C}$ by $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperatures
JN, KN, LN Versions......................... . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD, BD, CD Versions . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SD, TD, UD Versions $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Lead Temperature (soldering, 10 seconds) $+300^{\circ} \mathrm{C}$

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages lower than ground or higher than V^{+}to any pin except $\mathrm{V}_{\text {REF }}$ and R_{FB}.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT} 1}=\mathrm{V}_{\text {OUT } 2}=0\right.$ unless otherwise specified. $)$.

PARAMETER	$\begin{array}{r} \mathrm{T}_{\mathrm{A}} \\ +25^{\circ} \mathrm{C} \\ \hline \end{array}$	$\mathrm{T}_{\mathrm{A}}^{\prime}$ MIN-MAX	UNITS	LIMIT	TEST CONDITIONS
DC ACCURACY (Note 1)					
Resolution	10	10	Bits	Min	
Nonlinearity (Note 2)	± 0.2	± 0.2	\% of FSR	Max	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V} \\ & \text { VOUT1 }=\mathrm{V}_{\text {OUT } 2}=0 \mathrm{~V} \end{aligned}$
	± 0.1	± 0.1	\% of FSR	Max	
	± 0.05	± 0.05	\% of FSR	Max	
Gain Error (Note 2 and 5)	± 1.4	± 1.5	\% of FS	Max	Digital Inputs $=\mathrm{V}_{\text {INH }}$
Output Leakage Current (either output)	± 50	± 200	nA	Max	$\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$
AC ACCURACY Power Supply Rejection (Note 2 and 3)	0.005	0.008	\% of FSR/\%	Max	$\mathrm{V}^{+}=14.0$ to 17.0 V
Output Current Settling Time	$\begin{gathered} 600 \\ \text { (Note 6) } \end{gathered}$	$\begin{gathered} 800 \\ (\text { Note 3) } \end{gathered}$	nS	Max	To 0.05% of FSR, RL $=100 \Omega$
Feedthrough Error (Note 3)	± 0.05	± 0.1	\% FSR	Max	$V_{\text {REF }}= \pm 10 \mathrm{~V}, 100 \mathrm{kHz}$ sine wave. Digital inputs low.
REFERENCE INPUT Input Resistance (Pin 15)	5 K		Ω	Min	
	20 K			Max	All digital inputs high.
Temperature Coefficient	-300		ppm/ ${ }^{\circ} \mathrm{C}$	Typ	
ANALOG OUTPUT Voltage Compliance (Note 4)	-100 mV to V^{+}				Both outputs. See maximum ratings.
Output Capacitance (Note 3)	100		pF	Max	All digital inputs high ($\mathrm{V}_{1 / \mathrm{NH}}$)
	35		pF	Max	
	35		pF	Max	All digital inputs low (VINL)
	100		pF	Max	
DIGITAL INPUTS Low State Threshold (VINL)	0.8		V	Max	
High State Threshold (VINH)	2.4		V	Min	-
Input Current (lin)	± 1		$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ and V^{+}
Input Coding	Binary/Offset Binary				See Tables 1 \& 2
Input Capacitance (Note 3)	5		pF	Max	
POWER REQUIREMENTS VDD	+15 $\pm 10 \%$		V		Rated Accuracy
Power Supply Voltage Range	+5 to +16		V		
1^{+}	2		mA	Max	Digital Inputs = VINL to VINH
	100	150	$\mu \mathrm{A}$	Max	Digital Inputs = 0 V or V^{+}

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.
5. Full scale $(F S)=-\left(V_{\text {REF }}\right) \cdot(1023 / 1024)$
6. Sample tested to ensure specification compliance.
7. 100% screened to MIL-STD-883, method 5004, para. 3.1.1. through 3.1 .12 for class B device. Final electrical tests are: Nonlinearity, Gain Error, Output Leakage Current, $\mathrm{V}_{\mathrm{INH}}, \mathrm{V}_{\mathrm{INL}}$, I_{IN} and I^{+}@ $+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ (SD, TD, UD) or $+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}(\mathrm{AD}, \mathrm{BD}, \mathrm{CD})$.

GENERAL CIRCUIT INFORMATION

The Intersil AD7533 is a 10 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external völtage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 1. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")
APPLICATIONS UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

NOTES:

1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
2. SCHOTTKY DIODE CR1 (HP5082-2811 OR EQUIV) PROTECTS OUT1 TERMINAL AGAINST NEGATIVE TRANSIENTS.

Figure 3. Unipolar Binary Operation (2-Quadrant Multiplication)

DIGITAL'INPUT MSB LSB	NOMINAL ANALOG OUTPUT (Vout as shown in Figure 3)		
1111111111	-Vref	$\left(\frac{1023}{1024}\right)$	
1000000001	-Vref	$\left(\frac{513}{1024}\right)$	
1000000000	-Vref	$\left(\frac{512}{1024}\right)=-$	$\frac{V_{\text {REF }}}{2}$
0111111111	-Vref	$\left(\frac{511}{1024}\right)$	
0000000001	-Vref	$\left(\frac{1}{1024}\right)$	
0000000000	- Vref	$\left(\frac{0}{1024}\right)=0$	

NOTES:

1. Nominal Full Scale for the circuit of Figure 3 is given by

$$
F S=-V_{R E F}\left(\frac{1023}{1024}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 3 is given by

LSB $=V_{\text {REF }}\left(\frac{1}{1024}\right)$
Table 1. Unipolar Binary Code

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 2). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors resulting in accurate leg currents.

Figure 2

BIPOLAR OPERATION

 (4-QUADRANT MULTIPLICATION)

Figure 4. Bipolar Operation (4-Quadrant Multiplication)

DIGITAL INPUT MSB	LSB	NOMINAL ANALOG OUTPUT IVOUT as Shown in Figure 4i
1111111111	- V $_{\text {REF }}$	$\left(\frac{511}{512}\right)$
1000000001	- V $_{\text {REF }}$	$\left(\frac{1}{512}\right)$
1000000000	0	\vdots
0111111111	+ V $_{\text {REF }}$	$\left(\frac{1}{512}\right)$
0000000001	+ V $_{\text {REF }}$	$\left(\frac{511}{511}\right)$
000000000	+ V $_{\text {REF }}$	$\left(\frac{512}{512}\right)$

NOTES:

1. Nominal Full Scale Range for the circuit of Figure 4 is given by

$$
F S R=V_{\text {REF }}\left(\frac{1023}{512}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 4 is given by $L S B=V_{R E F}\left(\frac{1}{512}\right)$
Table 2. Bipolar (Offset Binary) Code Table

POWER DAC DESIGN USING AD7533

Figure 5. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 5. INTERSIL IH8510 power amplifier (1 Amp continuous output with up to +25 V) is driven by the AD7533.
A summing amplifier between the AD7533 and the IH8510 is used to separate the gain block containing the AD7533 onchip resistors from the power amplifier gain stage whose gain is set only by the external resistors., This approach

10-BIT AND SIGN MULTIPLYING DAC

minimizes drift since the resistor pairs will track properly. Otherwise AD7533 can be directly connected to the IH8510, by using a 25 volts reference for the DAC. Notice that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information write for: INTERSIL Application Bulletin A021-Power D/A Converters Using The

PROGRAMMABLE FUNCTION GENERATOR

INPUT SIGNAL WARNING

Because of the input protection diodes on the logic inputs, it is important that no voltage greater than 4 V outside the logic supply rails be applied to these inputs at any time, including power-up and other transients. To do so could cause destructive SCR latch-up.

FEATURES

- 12 bit linearity (0.01%)
- Pretrimmed gain.
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTTL/CMOS compatible
- +5 to +15 volts supply range
- Low power dissipation (20 mW)
- Current settling time: $\mathbf{1} \mu \mathrm{s}$ to $\mathbf{0 . 0 1 \%}$ of FSR
- Four quadrant multiplication
- 883B Processed versions available

GENERAL DESCRIPTION

The Intersil AD7541 is a monolithic, low cost, high performance, 12-bit accurate, multiplying digital-to-analog converter (DAC).
Intersil's wafer level laser-trimmed thin-film resistors on CMOS circuitry provide true 12-bit linearity with DTL/TTL/ CMOS compatible operation.
Special tabbed-resistor geometries (improving time stability), full input protection from damage due to static discharge by diode clamps to V+ and ground, large lout1 and lout2 bus lines (improving superposition errors) are some of the features offered by Intersil AD7541.
Pin compatible with AD7521, this new DAC provides accurate four quadrant multiplication over the full military temperature range.

FUNCTIONAL DIAGRAM

(Switches shown for Digital Inputs "High")

PIN CONFIGURATION

(Outline dwg DN, PN)

ORDERING INFORMATION

Nonlinearity	Temperature Range		
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\begin{gathered} \hline 0.02 \% \\ (11-\text { bit) } \end{gathered}$	AD7541JN	AD7541AD	AD7541SD
$\begin{gathered} \hline 0.01 \% \\ (12-\text {-bit) } \end{gathered}$	AD7541KN	AD7541BD	AD7541TD
$\begin{gathered} 0.01 \% \\ \text { (12-bit) } \end{gathered}$ Guaranteed Monotonic	AD7541LN	-	$\begin{aligned} & - \\ & 1 . \\ & \hline \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
V ${ }^{+}$.. +17 V
VREF .. 25 V ,
Digital Input Voltage Range ${ }^{+}$to GND
Output Voltage Compliance -100 mV to V^{+}
Power Dissipation (package)
up to $+75^{\circ} \mathrm{C}$ \qquad 450mW
derates above $+75^{\circ} \mathrm{C}$ by \qquad

CAUTION 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than VDD or less than GND potential on any terminal except Vfef and Rfb.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.
SPECIFICATIONS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

Figure 1. Nonlinearity

Figure 3. Noise

Figure 5. Feedthrough Error

Figure 2. Power Supply Rejection

Figure 4. Output Capacitance

Figure 6. Output Current Settling Time

DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For examplé, a unipolar converter with n bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of n bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{\text {REF }}\right]$. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout1 and lout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lOUT1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

GENERAL CIRCUIT INFORMATION

The Intersil AD7541 is a 12 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.
Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

(Switches shown for Digital Inputs "High")
Figure 7. AD7541 Functiona! Diagram

Each circuit is laser-trimmed, at the wafer level, to better than 12 bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.
The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first (Figure 8). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch,' creating equipotential terminations for the 2R ladder resistors, resulting in accurate leg currents.

APPLICATIONS

General Recommendations

Static performance. of the AD7541 depends on louT1 and lout2 (pin 1 and pin 2) potentials being exactly equal to GND (pin 3).

The output amplifier should be selected to have a low input bias current (typically less than $75 n \mathrm{~A}$), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than $\pm 200 \mu \mathrm{~V}$).

The bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Noninverting input should be connected to GND with a low resistance wire.

Ground-loops must be avoided by taking all pins going to GND to a common point, using separate connections.

The V^{+}(pin 18) power supply should have a low noise level and should not have any transients exceeding +17 volts.

Unused digital inputs must be connected to GND or VDD for proper operation.

A high value resistor ($\sim 1 \mathrm{M} \Omega$) can be used to prevent static charge accumulation, when the inputs are open-circuited for any reason.

When gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors or trim-pots should be selected.

APPLICATIONS, Continued

UNIPOLAR BINARY OPERATION

The circuit configuration for operating the AD7541 in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1. Schottky diode (HP 5082-2811 or equivalent) prevents lout1 from negative excursions which could damage the device. This precaution is only necessary with certain high speed amplifiers.

Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 0.5 \mathrm{mV}$ (max) at VOUT.
Gain Adjustment
3. Connect all digital inputs to VDD.
4. Monitor VOUT for a -VREF (1-1/212) reading.
5. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
6. To decrease VOUT, connect a series resistor, 0 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 1
Code Table - Unipolar Binary Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-V_{\text {REF }}(1-1 / 212)$
100000000001	$-V_{\text {REF }}(1 / 2+1 / 212)$
100000000000	$-V_{\text {REF }} / 2$
011111111111.	$-V_{\text {REF }}(1 / 2-1 / 212)$
000000000001	$-V_{\text {REF }}(1 / 212)$
000000000000	0

BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the AD7541 in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

Note: R1 and R2 should be 0.01%, low-TCR resistors.
Figure 10. Bipolar Operation (4-Quadrant Multiplication)
A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0 "), is corrected by using an external resistive divider, from VREF to IOUT2.

Offset Adjustment

1. Adjust $\mathrm{V}_{\mathrm{REF}}$ to approximately +10 V .
2. Set R4 to zero.
3. Connect all digital inputs to "Logic 1".
4. Adjust lout2 amplifier offset zero adjust trimpot for OV $\pm 0.1 \mathrm{mV}$ at lout2 amplifier output. ${ }^{`}$
5. Connect a short circuit across R2.
6. Connect all digital inputs to "Logic 0 ".
7. Adjust lout2 amplifier offset zero adjust trimpot for OV $\pm 0.1 \mathrm{mV}$ at louti amplifier output.
8. Remove short circuit across R2.
9. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
10. Adjust R4 for $0 \mathrm{~V} \pm 0.2 \mathrm{mV}$ at Vout.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF ($1-1 / 211$) volts reading.
3. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, $(0$ to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 2
Code Table - Bipolar (Offset Binary) Operation

DIGITAL INPUT	ANALOG OUTPUT
11111111111	$-V_{\text {REF }}(1-1 / 211)$
100000000001	$-V_{\text {REF }}(1 / 211)$
100000000000	0
011111111111	V REF $^{(1 / 211)}$
000000000001	V REF $^{(1-1 / 211)}$
000000000000	V REF

Figure 11. General DAC Circuit with Compensation Capacitor, Cc.

Figure 12. AD7541 Response with: $A=$ Intersil 741HS

Figure 13. AD7541 Response with: $A=$ Intersil 2515

$$
\mathrm{C}_{\mathrm{C}}=15 \mathrm{pF}
$$

Figure 14. AD7541 Response with: $A=$ Intersil 2520

DYNAMIC PERFORMANCE -

The dynamic performance of the DAC, alsodepends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.
The output impedance of the AD7541 looking into lout1 varies between $10 \mathrm{k} \Omega$ (RFeedback alone) and $5 \mathrm{k} \Omega$ (RFeedback in parallel with the ladder resistance).
Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.
A capacitor in parallel with the feedback resistor provides the necessary phase compensation to critically damp the output.
A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.
Three typical circuits and the resultant waveforms are shownin Figures 11 to 14. A low-cost general purpose (Intersil 741 HS), a low-cost high-speed (Intersil 2515) and a highspeed fast-settling (Intersil 2520) amplifier cover the principal application areas.

INPUT SIGNAL WARNING

Because of the input protection diodes on the logic inputs, it is important that no voltage greater than 4 V outside the logic supply rails be applied to these inputs at any time, including power-up and other transients. To do so could cause destructive SCR latch-up.

ICL8018A/8019A/8020A
 Quad Current Switch for
 D/A Conversion

FEATURES

- TTL Compatible: LOW—0.8V

HIGH-2.0V

- 12 Bit Accuracy
- 40 nsec, Switching Speed
- Wide Power Supply Range
- Low Temperature Coefficient

APPLICATIONS:

- D/A-A/D Converters
- Digital Threshold Control
- Programmable Voltage Source
- Meter Drive
- X-Y Plotters

GENERAL DESCRIPTION

The Intersil ICL8018A family are high speed precision current switches for use in current summing digital-toanalog converters. They consist of four logically controlled current switches and a reference device on a single monolithic silicon chip. The reference transistor, combined with precision resistors and an external source, determines the magnitude of the currents to be summed. By weighting the currents in proportion to the binary bit which controls them, the total output current will be proportional to the binary number represented by the input logic levels.
The performance and economy of this family make them ideal for use in digital-to-analog converters for industrial process control and instrumentation systems.

\dot{S} Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 20 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} @ \operatorname{pin} 6=-5 \mathrm{~V}\right)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Absolute Error ICL8018A ICL8019A ICL8020A	$\begin{aligned} & V_{\text {INHI }}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {INLO }}=0.0 \mathrm{~V} \end{aligned}$,		$\begin{gathered} \pm .01 \\ \pm 0.1 \\ \pm 1 \end{gathered}$	\%
```Error Temperature Coefficient ICL8018A ICL8019A ICL8020A```			$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 25 \\ \pm 50 \\ \hline \end{gathered}$	jppm $/{ }^{\circ} \mathrm{C}$
Switching Time To Turn On LSB			40		ns
Output Current (Nominal)   BIT 1 (MSB)   BIT 2   BIT 3   BIT 4 (LSB)	"		$\begin{gathered} 1.0 \\ 0.5 \\ 0.25 \\ 0.125 \\ \hline \end{gathered}$		mA
Zero Output Current	V IN $=5.0 \mathrm{~V}$		10	50	nA
Output Voltage Range		VBASELINE +1V		+10	V
```Input Coding-Complimentary Binary (See Truth Table) Logic Input Voltage "0" (Switch ON) "1" (Switch OFF)```	$\Delta$ IOUT $<400 \mathrm{nA}$	2.0		0.8	V
Logic Input Current "0" " 1 " (into device)	$\begin{aligned} & V_{I N}=0 \mathrm{~V} \\ & V_{I N}=5 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -1.0 \\ 0.01 \\ \hline \end{array}$	$\begin{aligned} & -2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Power Supply Rejection $\begin{aligned} & \mathrm{V}^{+} \\ & \mathrm{V}^{-} \end{aligned}$.		$\begin{gathered} .005 \\ .0005 \end{gathered}$	-	\%/V
Supply Voltage Range V^{+} V^{-}		$\begin{array}{r} 4.5 \\ -10 \\ \hline \end{array}$	$\begin{gathered} 5 \\ -15 \\ \hline \end{gathered}$	$\begin{array}{r} 20 \\ -20 \\ \hline \end{array}$	V
Supply Current (VSUPP. $= \pm 20 \mathrm{~V}$) 1^{+} I^{-}			$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 10 \\ 3 . \\ \hline \end{array}$	mA

BASIC D/A THEORY

The majority of digital to analog* converters contain the elements shown in Figure 1. The heart of the D/A converter is the logic controlled switching network, whose output is an analog current or voltage proportional to the digital number on the logic inputs. The magnitude of the analog output is determined by the reference supply and the array of precision resistors, see fig. 2 . If the switching network has a current output, often a transconductance amplifier is used to provide a voltage output.

Figure 1: Elements of a D/A Converter

Logic Input	Nominal Ottput Current (mA)
0000	1.875
0001	1.750
0010	1.625
0011	1.500
0100	1.375
0101	1.250
0110	1.125
0111	1.000
1000	0.825
1001	0.750
1010	0.625
1011	0.500
1100	0.375
1101	0.250
1110	0.125
1111	0.000

Figure 2: Truth Table

DEFINITION OF TERMS

The resolution of a D/A converter refers to the number of logic inputs used to control the analog output. For example, a D/A converter using two quad current sources would be an 8 bit converter. If three quads were used, a 12 bit converter would be formed. Resolution is often stated in terms of one part in, e.g., 256 since the number of controlling bits is related to total number of identifiable levels by the power of 2. The four bit quad has sixteen different levels (see Truth Table) each output corresponding to a particular logic input word.
Note that maximum output of the quad switch is $1+1 / 2+1 / 4$ $+1 / 8=1-7 / 8=1.875 \mathrm{~mA}$. If this series of bits were continued as $1 / 16+1 / 32+1 / 64 \ldots \ldots 1 / 2^{(n-1)}$, the maximum output limit would approach 2.0 mA . This limiting value is called full scale output. The maximum output is always less than the full scale output by one least significant bit, LSB. For a twelve bit system (resolution 1 part in 4096) with a full scale output of
10.0 volts the maximum output would be $\frac{4095}{4096} \times 10 \mathrm{~V}$. Since the numbers are extremely close for high resolution systems, the terms are often used interchangeably.
The accuracy of a D/A converter is generally taken to mean the largest error of any output level from its nominal value. The accuracy or absolute error is often expressed as a percentage of the full scale output.
Linearity relates the maximum error in terms of the deviation from the best straight line drawn through all the possible output levels. Linearity is related to accuracy by the scale factor and output offset. If the scale factor is exactly the nominal value and offset is adjusted to zero, then accuracy and linearity are identical. Linearity is usually specified as being within $\pm 1 / 2$ LSB of the best straight line.
Another desirable property of D/A converter is that it be monotonic. This simply implies that each successive output level is greater than the preceding one. A possible worst case condition would be when the output changes from most significant bit (MSB) OFF, all other bits ON to the next level which has the MSB ON and all other bits OFF, e.g., 10000 . . to 01111.
In applications where a quad current switch drives a transconductance amplifier (current to voltage converter), transient response is almost exclusively determined by the output amplifier itself. Where the quad output current drives a resistor to ground, switching time and settling time are useful paŕameters.
Switching time is the familiar 10% to 90% rise time type of measurement. Low capacitance scope probes must be used to avoid masking the high speeds that current source switching affords. The settling time is the elapsed time between the application of a fast input pulse and the time at which the output voltage has settled to or approached its final value within a specified limit of accuracy. This limit of accuracy should be commensurate with the resolution of the DAC to be used.
Typically, the settling time specification describes how soon after an input pulse the output can be relied upon as accurate to within $\pm 1 / 2$ LSB of an N bit converter. Since the 8018A family has been desiged with all the collectors of the current switching transistors tied together, the output capacitance is constant. The transient response is, therefore, a simple exponential relationship, and from this the settling time can be calculated and related to the measured rise time as shown in Figure 3.

Bits of Resolution	$\pm \mathbf{1 / 2}$ LSB Error $\%$ $\%$ Full Scale	Number of Time Constants	Number of Rise Times
8	$.2 \%$	6.2	2.8
10	$.05 \%$	7.6	3.4
12	$.01 \%$	9.2	4.2
Rise Time $(10 \%-90 \%)=2.2$ RL Ceff			

Figure 3: Settling Time vs. Rise Time Resistor Load

CIRCUIT OPERATION

An example of a practical circuit for the ICL8018A quad current switch is shown in Figure 4. The circuit can be analyzed in two sections; the first generates very accurate currents and the second causes these currents to be switched according to input logic signals. A reference current of $125 \mu \mathrm{~A}$ is generated by a stable reference supply and a precision resistor. An op-amp with low offset voltage

Figure 4: Typical Circuit
and low input bias current, such as the ICL8008, is used in conjunction with the internal reference transistor, Q_{6}, to force the voltage on the common base line, so that the collector current of Q_{6} is equal to the reference current. The emitter current of Q_{6} will be the sum of the reference current and a small base current causing a drop of slightly greater than 10 volts across the 80 k resistor in the emitter of Q_{6}. Since this resistor is connected to -15 V , this puts the emitter of Q_{6} at nearly -5 V and the common base line at one $V_{B E}$ more positive at -4.35 V typically.
Also connected to the common base line are the switched current source transistors Q_{7} through Q_{10}. The emitters of these transistors are also connected through weighted precision resistors to -15 V and their collector currents summed at pin 8 . Since all these transistors, Q_{6} through Q_{10}, are designed to have equal emitter-base voltages, it follows that all the emitter resistors will have equal voltage drops across them. It is this constant voltage and the precision resistors at the emitter that determine the exact value of switched output current. The emitter resistor of Q_{7} is equal to that of Q_{6}, therefore, Q7's collector current will be IREF or $125 \mu \mathrm{~A}$. Q8 has 40 k in the emitter so that its collector current will be twice IREF or $250 \mu \mathrm{~A}$. In the same way, the 20 k and 10 k in the emitters of Q_{9} and Q_{10} contribute .5 mA and 1 mA to the total collector current.
The reference transistor and four current switching transistors are designed for equal emitter current density by making the number of emitters proportional to the current switched.
The remaining circuitry provides switching signals from the logic inputs. In the switch ON mode, zener diodes D_{5} through D_{8}, connected to the emitter of each current switch transistor Q_{7} thru Q_{10}, are reverse biased allowing the transistors to operate, producing precision currents summed in the collectors. The transistors are turned off by
raising the voltage on the zeners high enough to turn on the zeners and raise the emitters of the switching transistor. This reverse biases the emitter base diode thereby shutting off that transistor's collector current.
The analog output current can be used to drive one load directly, ($1 \mathrm{k} \Omega$ to ground for $\mathrm{FS}=1.875 \mathrm{~V}$ for example) or can be used to drive a transconductance amplifier to give larger output voltages.

EXPANDING THE QUAD SWITCH

While there are few requirements for only 4 bit D to A converters, the 8018A is readily expanded to 8 and 12 bits with the addition of other quads and resistor dividers as shown in Figure 5.
To maintain the progression of binary weighted bit currents, the current output of the first quad drives the input of the transconductance amplifier directly, while a resistor divider network divides the output current of the second quad by 16 and the output current of the third by 256.
e.g., ITotal $=1 \times(1+1 / 2+1 / 4+1 / 8)+1 / 16(1+1 / 2+1 / 4+1 / 8)$

$$
\begin{aligned}
& +1 / 256(1+1 / 2+1 / 4+1 / 8)=1+1 / 2+1 / 4+1 / 8+ \\
& 1 / 16+1 / 32+1 / 64+1 / 128+1 / 256+1 / 512+ \\
& 1 / 1024+1 / 2048
\end{aligned}
$$

Note that each current switch is operating at the same high speed current levels so that standard 10k, 20k, 40k and 80k resistor networks can be used. Another advantage of this technique is that since the current outputs of the second and third quad are attenuated, so are the errors they contribute. This allows the use of less accurate switches and resistor networks in these positions; hence, the three accuracy grades of $.01 \%, 0.1 \%$, and 1% for the 8018A, 8019A and 8020A, respectively. It should be noted that only the reference transistor on the most significant quad is required to set up the voltage on the common base line joining the three sets of switching transistors (Pin 9).

Figure 5: Expanding the Quad Switch

GENERATING REFERENCE CURRENTS ZENER REFERENCE

As mentioned above, the 8018A switches currents determined by a constant voltage across the external precision resistors in the emitter of each switch. There are several ways of generating this constant voltage. One of the simplest is shown in Figure 6. Here an external zener diode is driven by the same current source line used to bias internal Zener D11.

Figure 6: Simple Zener Reference
The zener current will be typically 1 mA per quad. The compensation transistor Q_{6} is connected as a diode in series with the external zener. The VBE of this transistor will approximately match the $\mathrm{V}_{B E}$'s of the current switching transistors, thereby forcing the external zener voltage across each of the external resistors. The temperature coefficient of
the external zener will dominate the temperature dependence of this scheme, however using a temperature compensated zener minimizes this problem. Since Q_{6} is operating at a higher current density than the other switching transistors, the temperature matching of $V_{B E}$'s is not optimum, but should be adequate for a simple 8 or 10 bit converter.
The 8018A series is tested for accuracy with 10 V reference voltage across the precision resistors, implying use of a 10 volt zener. Using a different external zener voltage will only slightly degrade accuracy if the zener voltage is above 5 or 6 volts.
When using other than 10 volt reference, the effects on logic thresholds should also be noted (see logic levels below). Full scale adjustment can be made at the output amplifier.

PNP REFERENCE

Another simple reference scheme is shown in Figure 7. Here an external PNP transistor is used to buffer a resistor divider. In this case, the -15 volt supply is used as a reference. Holding the V^{-}supply constant is not too difficult since the 8018A is essentially a constant current load. In this scheme, the internal compensation transistor is not necessary, since the $V_{B E}$ matching is provided by the emitter-base junction of the external transistor. A small pot in series with the divider facilitates full scale output adjustment. A capacitor from base to collector of the external PNP will lower output impedance and minimize transient effects.

FULL COMPENSATION REFERENCE

For high accuracy, low drift applications, the reference scheme of Figure 4, offers excellent performance. In this circuit, a high gain op-amp compares two currents. The first is a reference current generated in Rs by the temperature compensated zener and the virtual ground at the non-inverting opamp input. The second is the collector current of the reference transistor Q_{6}, provided on the quad switch. The output of the op-amp drives the base of Q_{6} keeping its collector current exactly equal to the reference current. Since the switching transistor's emitter current densities are equal and since the precision resistors are proportional, all of the switched collector currents will have the proper value.

Figure 7: PNP Reference

NOTE: ALL RESISTORS RATIO TO R 1 UNLESS OTHERWISE NOTED.

RATIO TO R 10 1 $\%$
RATIO TO R10 1%
1\% ABS
1\% ABS
RATIO TO R15 1\%
RATIO TO R14 0.1\%

Figure 8

The op-amp feedback loop using the internal reference transistor will maintain proper currents in spite of VBE drift, beta drift, resistor drift and changes in V^{-}. Using this circuit, temperature drifts of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ are typical. A discrete diode connected as shown will keep Q_{6} from saturating and prevent latch up if V^{-}is disconnected.
In any reference scheme, it is advisable to capacitively decouple the common base line to minimize transient effects. A capacitor, $.001 \mu \mathrm{~F}$ to $.1 \mu \mathrm{~F}$ from Pin 9 to analog ground is usually sufficient.

IMPROVED ACCURACY

As a final note on the subject of setting up reference levels, it should be pointed out that the largest contributor of error is the mismatch of $V_{B E}$'s of the current switching transistors. That is, if all the VBE's were identical, then all precision resistors would have exactly the same reference voltage across them. A one millivolt mismatch compared with ten volt reference across the precision resistors will cause a . 01% error. While decreasing the reference voltage will decrease the accuracy, the voltage can be increased to achieve better than $.01 \%$ accuracies. The voltage across the emitter resistors can be doubled or tripled with a proportional increase in resistor values resulting in improved absolute accuracy as well as improved temperature drift performance. This technique has been used successfully to implement up to 16 bit D/A converters.

PRACTICAL D/A CONVERTERS

The complete circuit for a high performance 12 bit D/A converter is shown in Figure 8. This circuit uses the "full compensation reference" described above to set the base line drive at the proper level, the temperature compensated zener is stabilized using an op-amp as a regulated supply, and the circuit provides a very stable, precise voltage reference for the D/A converter. The 16:1 and 256:1 resistor divider values are shown for a straight binary system; for a binary coded decimal system the dividers would be 10:1 and 100:1 (BCD is frequently encountered in building programmable voltage sources).
The analog output current of the 8018A current switches is converted to an output voltage using the 8017 as shown. The output amplifier must have low input bias current (smal! compared with the LSB current), low offset voltage and offset voltage drift, high slew rate and fast settling time. The input compensation shown helps improve pulse response by providing a finite impedance at high frequencies for a point that is virtual ground at DC.
An alternative bias scheme is shown in Figure 9. In this case, the bias at the common base line is fixed by inverting op-amp A4, the gain of which is adjusted to give -5.0 volts at the emitter of the reference transistor. With the bias at the common base line fixed, the regular circuit of A_{1} uses the internal reference transistor and drives the bus connecting all the precision resistors. This isolates the precision resistors from V^{-}fluctuations. Zener D_{3} and constant current source Q_{1} keep the regulating $8008 \mathrm{op}-\mathrm{amp}$ in mid-range. There are several alternative bias schemes depending on power supplies available. If -20 volts is used for V^{-}, the bottom of the precision resistor will be at -15 and operation will be the same as the standard circuit. If only -15 V is available for V^{-} the gain of the output transconductance amplifier can be increased by 30% to allow use of a smaller switching currents with 7 volts across the procision resistors.

MULTIPLYING DAC

The circuit of Figure 9 is also convenient to use as a one quadrant multiplying D/A converter. In a multiplying DAC, the analog output is proportional to the product of a digital number and an analog signal. The digital number drives the logic inputs, while the analog signal replaces the constant reference voltage, and produces a current to set up the regulating $8008 \mathrm{op}-\mathrm{amp}$. To vary the magnitude of currents being switched, the voltage across all the 10k, 20k, 40k and 80k resistors must be modulated according to the analog input. An analog input of 0 to +10 volts and an 80 k resistor at the input to the 8008 will fulfill this requirement.

CALIBRATING THE 12 BIT D/A CONVERTER

1. With all logic inputs high (ones) adjust the output amplifier offset for zero volts out.
2. Put in the word 000011111111 (Quad 1 maximum output Quad 2 and 3 off) and adjust full scale pot for V_{O} of 15/16 (10V) where full scale output is to be 10 volts.
3. Put in the word 111100001111 and trim the Quad 2 divider for V_{o} of $15 / 256$ (10V). This adjustment compensates for $V_{B E}$ mismatches between quads although matched sets are available (see data sheet).
4. Put in the word 111111110000 and trim the Quad 3 divider for V_{O} of $15 / 4096$ (10 V).
5. Finally, with all bits ON (all O's) readjust the full scale factor pot for

$$
V_{O}=4095 / 4096(10 \mathrm{~V})
$$

SYSTEM INTERFACE REQUIREMENTS

Using the 8018A series in practical circuits requires consideration of the following interface requirements.
Logic Levels: The 8018A is designed to be compatible with TTL, DTL and RTL logic drive systems. The one constraint imposed on the external voltage levels is that the emitters of the conducting current switch transistors be in the vicinity of -5 V ; this will be the same as the voltage on Pin 6 if the reference transistor is used. When using other than -5 V at Pin 6, the direct bearing on logic threshold should be considered.
Power Supplies: One advantage of the ICL8018A is its tolerance of a wide range of supply voltage. The positive supply voltage need only be large enough (greater than +4.5 V) to keep Q11 out of saturation, and the negative supply needs to be more negative than -10 V to ensure constant current operation of Q_{12}. The maximum supply voltage of $\pm 20 \mathrm{~V}$ is dictated by transistor breakdown voltages. It is often convenient to use $\pm 15 \mathrm{~V}$ supplies in systems with op-amps and other I.C.'s. These supplies tend to be better regulated and free from high current transients found on supplies used to power TTL Logic. As with any high speed circuit, attention to layout and adequate power supply decoupling will minimize switching effects.
Ground: High resolution D/A, e.g., 12 bits require fairly large logic drive currents. The change from all bits ON to all bits OFF is a'considerable change in supply current being returned to ground. Because of this, it is usually advisable to maintain separate ground points for the analog and digita! sections.
Resistors: Each quad current switch requires 'a set of matched resistors scaled proportional to their binary currents as R, 2R, 4R and 8R. For a 10 V resistor voltage drop and " 2 mA " full scale output current, resistor values of 10 k , $20 \mathrm{k}, 40 \mathrm{k}$ and 80 k are convenient. Other resistor values can be used, for example, to increase total output current. The
individual switched currents can be increased up to 100% of their nominal values. The overall accuracy of the complete D/A converter depends on the accuracy of the reference, the accuracy of the quad current switch and tolerance of resistor matching. Because of the binary progression of switched currents, the tolerance of $80 \mathrm{k} / 10 \mathrm{k}$ match can be twice that of the $40 \mathrm{k} / 10 \mathrm{k}$ which, in turn, can be twice the tolerance of the $20 \mathrm{k} / 10 \mathrm{k}$ ratio and still have equal output current errors. The current dividers between quads allows use of less well matched sets of resistors further along in the D/A just as it allows use of $.01 \%, 0.1 \%$, and 1% accurate quad current switches. There are several manufacturers producing the complete precision resistor networks required to implement up to 12 bit D/A converters. Contact Intersil for additional information.*

Figure 9
For further information see the following Applications Bulletins.
A016 "Selecting A/D Converters" by Dave Fullagar.
A018 "Do's and Don'ts of Applying A/D Converters" by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing" by Ed Sliger.

ICL8052/ICL7101 31122 Digit A/D Pair

FEATURES

- Guaranteed zero reading for 0 volts input
- Auto-zero; auto polarity
- 5pA input current typical
- Single reference voltage
- Latched parallel (full-time) BCD output for LCDs or data busing
- True polarity at zero count for precise null detection
- On-board clock and reference

ORDERING INFORMATION

Part	Temp. Range	Package	Order Number
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052CPD
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052CDD
7101	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin plastic DIP	ICL7101CPL
7.101	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin ceramic DIP	ICL7101CDL

GENERAL DESCRIPTION

The 8052/7101 A/D Pair, with its parallel BCD outputs, is ideally suited for data processing applications or interfacing with 312 -digit Liquid Crystal Displays. No external circuitry is required to demultiplex the information. In addition, it has a "start/reset" input and "busy" output that allows easy synchronization to system requirements. The 8052/7101 provides $4 \frac{1}{2}$-digit accuracy in a $31 / 2$-digit format with typical system performance like 5 pA input leakage, auto-zero to $10 \mu \mathrm{~V}$ with less than $1 \mu \mathrm{~V} \rho \mathrm{C}$ drift and Linearity to 0.002%.

The $8052 / 7101$ A/D pair.also features conversion rates from 10 seconds to 30 per second, making them ideally suited for a wide variety of applications.

CONNECTION DIAGRAM

8052 Analog Signal Conditioner

CONNECTION DIAGRAM
7101 Digital Processor

ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Lead Temperature (Soldering, 60 Sec .)
7101 ONLY

Source Current $\left(I_{S}\right)$	100 mA
Drain Current $\left(I_{D}\right)$	100 mA
Digital Inputs	5 mA
$\mathrm{~V}^{+}$to V^{-}	25 V
Digital Input	V^{-}to V^{+}

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
100 mA
100 mA
V^{-}to V^{+}

Power Dissipation (Note 1)
Storage Temperature

500 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

8052 ONLY

Supply Voltage
Differential Input Voltage

$$
\pm 18 \mathrm{~V}
$$

Input Voltage (Note 2)
Output Short Circuit Duration,
All Outputs (Note 3)
$\pm 15 \mathrm{~V}$

Indefinite

Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.

7101 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	7101			UNITS
			MIN	TYP	MAX	
Clock Frequency	f_{IN}	$\mathrm{C}=1500 \mathrm{pF}$		20		kHz
External Clock In	IINL	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		0.35	1.0	mA
External Clock In	! INH	$\mathrm{V}_{\text {IN }}=+5.0 \mathrm{~V}$		0.35	1.0	mA
Reset/Start	IINL	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		0.8	2.0	mA
Internal Counter Overridè External Counter Input	IINH	$\mathrm{V}_{\text {IN }}=+5.0 \mathrm{~V}$		0.35	1.0	mA
BCD	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.25	0.4	V
BCD	V_{OH}	$\mathrm{l}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4	4.5		V
Out-of-Range	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$		0.25	0.4	v
Out-of-Range	V_{OH}	$\mathrm{l}_{\mathrm{OH}}=400 \mu \mathrm{~A}$	2.4.	4.5		v
Polarity, Apex, Busy, $\overline{1000}$	$\mathrm{V}_{\text {OL }}$	$\mathrm{l}^{\mathrm{OL}}=0.8 \mathrm{~mA}$		0.25	0.4	
Polarity, Apex, Busy, $\overline{1000}$	$\mathrm{V}_{\text {OH }}$	$\mathrm{l}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4	4.5		v
Gated Clockout	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=0.3 \mathrm{~mA}$		0.25	0.4	v
Gated Clockout	$\mathrm{V}_{\text {OH }}$	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4	4.5		v
Switches 1, 3, 4, 5, 6	R ${ }_{\text {DS(ON }}$			400		Ω
Switch 2	R DSION)			2500		Ω
+5.0 V Supply Current	${ }^{\text {cc }}{ }^{+}$			15	25	mA
-15 V Supply Current	ICC^{-}			3.0	5.0	mA

Output

External Counter Input Internal Counter Override

Start/Reset

8052 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8052			UNITS
		MIN	TYP	MAX	
OPERATIONAL AMPLIFIER					
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$		20	50	mV
Input Current (either input)	$V_{C M}=0 \mathrm{~V}$		5	50	pA
Common-Mode Rejection Ratio	$V_{C M}= \pm 10 \mathrm{~V}$	70	90		dB
Non-Linear Component of Common-Mode Rejection Ratio*	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$		110		dB
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \end{aligned}$	20,000			V/V
Slew Rate			6		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth			. 1		MHz
Output Short-Circuit Current			20	50	mA
COMPARATOR AMPLIFIER					
Small-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000		V/V
Positive Output Voltage Swing		+12	+13		V
Negative Output Voltage Swing	,	-2.0	-2.6	,	V
VOLTAGE REFERENCE					
Output Voltage	,	1.5	1.75	2.0	V
Output Resistance			5		ohms
Temperature Coefficient			50		ppm
Supply Current Total	1		6	12	mA

*This is the only component that causes error in dual-slope converter.

SYSTEM ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5.0 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, Clock Frequency Set for 3 Reading $/ \mathrm{Sec}$)

CHARACTERISTICS	CONDITIONS	8052/7101 (1)			UNITS
		MIN	TYP	MAX	
Zero Input Reading	$\mathrm{V}_{\text {in }}=0.0 \mathrm{~V}$	-0.000	± 0.000	+0.000	Digital Reading
Ratiometric Reading	$\mathrm{V}_{\text {in }} \equiv \mathrm{V}_{\text {Ref }}$.	+0.998	+1.000	+1.001	Digital Reading
Linearity over \pm Full Scale (error off reading from best straight line)	$-2 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant+2 \mathrm{~V}$		0.1	1	Digital Count Error
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{\text {in }} \equiv+V_{\text {in }} \approx 2 \mathrm{~V}$		0.1	1	Digital Count Error
Noise (P-P value not exceeded 95% of time)	$\begin{aligned} & V_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=200.0 \mathrm{mV} \\ & \text { Full scale }=2.000 \mathrm{~V} \end{aligned}$		0.2 0.05		Digital Count
Leakage Current into Input	$\therefore V_{\text {in }}=0 \mathrm{~V}$		5	30	pA
Zero Reading Drift	$V_{\text {in }}=0 \mathrm{~V}$ $0^{\circ} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$		- 1	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & V_{\text {in }}=+2 V \\ & 0^{\circ} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C} \\ & \text { (ext. ref. } 0 \mathrm{ppm} / P \mathrm{C} \text {) } \end{aligned}$		3	15	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

[^11]
CIRCUIT DESCRIPTION

Figure 1 shows a typical circuit for a DVM. A minimum of external components is required since the chips have an onboard clock and a medium-quality ($40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) internal reference. The circuit also shows the switching required for two scale factors: 2.000 V and 200.0 mV full scale.

The system uses the time-proven dual-slope integration with all of its advantages; non-critical components, high rejection of noise and AC signals, non-critical clock frequency and true ratiometric readings. At the same time, it eliminates one of the basic disadvantages of dual-slope conversion: separate positive and negative reference sources. In this system, the negative reference is generated by charging the reference capacitor to the positive reference potential and then switching it into the circuit inverted when a negative reference is required. Due to the very low leakage and charge injection of the FET switches, the positive and negative references track each other to $10 \mu \mathrm{~V}$ over a wide temperature range. This assures a very small error between positive and negative scale factor and, thus, excellent linearity from (+) full-scale to (-) full-scale (.002\% typical).

The measurement cycle for the 8052/7101 has three phases. These are auto-zero, integrate input, and integrate reference. At the end of a measurement the system automatically reverts to the auto-zero mode until a new measurement is initiated. If an over-load has not occurred in the previous measurement, 10 milliseconds of auto-zero is sufficient to null any offsets to $10 \mu \mathrm{~V}$. At power on, or after an overload, 100 milliseconds is required to assure the auto-zero capacitor has charged to the correct value.

Start Conversion

Prior to conversion, the reset-start input must be held low to inhibit conversion (during auto-zero). Conversion is
initiated by a positive transition on the start-reset line. (It must therefore return to the low state prior to completion of conversion in order to allow proper auto-zero function.) The positive transition generates a clear pulse which resets all internal logic (counters, etc.) and sets the clock enable, thus initiating the conversion sequence.

Integrate Input

During the first period, switch \#4 is closed, (all others open), applying the input potential to the buffer. Since the amplifier offsets are stored on the auto-zero capacitor, the integrator's slope is determined solely by the input voltage. The input voltage is integrated for exactly 1000 counts, thus reaching an integrator output proportional to the integral of the input for a fixed time.

Integrate Reference

At the end of 1000 counts, switch \#4 is opened, the polarity flip-flop is set, and the integrate reference period begins. Depending on the polarity, switch \#5 or \#6 is closed, connecting the buffer input to ground or $2 \mathrm{~V}_{\text {ref }}$. This causes the integrator to ramp towards its quiescent (auto-zero) point with a slope proportional to $+\mathrm{V}_{\text {ref }}$ or $-\mathrm{V}_{\text {ref }}$. When the integrator crosses its quiescent auto-zero point, the comparator changes state, causing the zero crossing detector to generate a conversion complete signal which inhibits the clock and loads the logic information into the output latches. Switch \#5 (or \#6) is opened, switches \#1, \#2, and \#3 are closed, and the system returns to a quiescent autozero mode, awaiting the next initiate conversion signal. If 2000 counts are received prior to zero crossing, an out-ofrange signal is generated which sets the "out-of-range" output and resets the system.

Note 1: Internal reference out $\simeq 1.8 \mathrm{~V}$, reference input $=1,000$ volts for 1.999 volt scale and 100 mV for 199.9 mV scale.
Note 2: External components shown are suggested for 3 readings/sec.
Note 3: Parallel BCD outputs and other latched outputs are strobed at end of conversion and retain data until completion of next conversion.
Note 4: Start/Reset should remain Low during Auto-Zero. Conversion is initiated by a positive pulse on start pin. (minimum width 100nsec). Note 5: Component values $\pm \mathbf{2 0 \%}$ typ.

FIGURE 1. $3 ½$ DIGIT A/D CONVERTER FUNCTIONAL DIAGRAM

7101 Digital Processor Controls

Two pins are included on the 7101 that allow the user to externally control the gain of the converter. The first pin, "Internal Counter Override", if held high, will inhibit the carry pulse from the internal counter that switches the converter from signal integrate to reference integrate. As long as this input is high, the converter will remain in the signal integrate mode. At the same time, it enables the other pin, External Counter Input, to supply this transition pulse from external sources. One technique for changing the gain of the system would be to hold "Internal Counter Override" high through the first N carry pulses. This would increase the signal integrate time by a factor of $\mathrm{N}+1$ and, thus, the sensitivity of the system by $N+1$. Since the number of suppressed pulses could be controlled digitally, the system could accomodate signals from $\pm 2.000 \mathrm{~V}$ to $\pm 200.0 \mathrm{mV}$ (or lower, if time permits) without changing the external analog scale factor components. By using more complex external logic and both inputs, the user could digitally set offset (tare) and scale factor to convert voltages to physical units such as "degrees centigrade", "pounds", or "feet".
A "BUSY" pin is provided which permits interrogating the $8052 / 7101$ to determine the status of the conversion: During the signal integrate and reference integrate periods, the "'busy" line is high until the conversion is complete; at which time "busy" line goes low. This transition can be used to signal "'new data available".
The "Apex" pin provides a digital signal which goes high during the reference integrate period.
"OUT-OF-RANGE" is indicated by a latched "low" on pin. 23 for counts over 2000. The BCD digital values are "high" (true), except $\overline{1000}$ which is "low".
A positive polarity of the analog input signal is indicated by a "high" state at the output of the "polarity" latch on pin 22.

FIGURE 2.
The 7101 has an internal clock which requires a single capacitor between Pins 25 and 28 to operate. Figure 2 shows the typical capacitor value required to give the desired frequency.
During auto-zero, the clock is internally gated-off with Pin 28 high and Pin 25 low. When "start-reset" goes high, starting a measurement cycle, the clock start's counting with Pins 25 and 28 immediately changing phase. The counting continues until the end of the measurement cycle, at which time the clock is returned to its auto-zero condition.

In a typical application where visual readings are required, three readings per second is near the optimum speed. Faster readings make it difficult to resolve individual readings, while at slower rates the reader has to wait too long between measurements. In this application, 40% of the time (133 mS) could be allocated to auto-zero and $60 \%(200 \mathrm{mS})$ to signal and reference integrate. Since a measurement cycle consists of 3,000 clock pulses maximum, this dictates a clock frequency of 15 kHz . Also, since the dual-slope technique of A / D conversion is not first-order dependent on clock frequency, the $\pm 20 \%$ variation of clock frequency from unit-to-unit would result in no measurable error. However, in some applications, a more precise clock frequency would be desired. For instance, if precise rejection of 60 Hz is required, the signal integrate phase (1,000 counts) would have to contain an integral number of 60 Hz periods. For these applications, an ex́ternal clock can be used by deleting the capacitor and connecting the external clock to Pin 25. However, if the clock is run asynchronously with start/reset, there will be one clock pulse of uncertainty in the integrate signal time, depending on where in the clock pulse period the start/reset went high. This will show up as one count of noise for signal near full-scale: This noise or jitter can be avoided by synchronizing the start/reset pulse to the negative-going edge of the external clock. Pin 33, Gated Clock Out; is a buffered output of the clock (internal or external) that is off (low) during auto-zero and in phase with Pin 25 during measurement.

Component Selection

Except for the reference voltage, none of the component values are first order important in determining the accuracy of the instrument. While this is undoubtedly an advantage of this approach, it does make the selection of nominal component values arbitrary at best. For instance, the reference capacitor and auto-zero capacitor are each shown as $1.0 \mu \mathrm{fd}$. These relatively large values are selected to give greater immunity to PC board leakage since much smaller capacitors are adequate for charge injection errors or leakage errors from the 8052/7101.
The ratio of integrating resistor and capacitor is selected to give 9 -volt swing for full-scale inputs. This is a compromise between possibly saturating the integrator (at $\pm 14 \mathrm{~V}$) due to tolerance build-up between the resistor, capacitor, and clock and the errors a lower voltage swing could induce due to offsets referred to the outpuit of the comparator. Again, the $.22 \mu \mathrm{fd}$ value for, the integrating capacitor is selected for PC board considerations alone since the very small leakage at the integrator input is nulled at auto-zero. A very important characteristic of the integrating capacitor is low dielectric absorption. A polypropylene capacitor gave excellent results. In fact, a good test for dielectric absorption is to use the capacitor in this circuit with the input tied to reference. This ratiometric condition should read 1.000 and any deviation is probably due to dielectric absorption. In this ratiometric condition, a polycarbonate capacitor contributed an error of approximately 0.8 digit, polystyrene about 0.3 digit, and polypropylene less than 0.05 digit. The increased T.C. of polypropylene is of no consequence in this circuit. The dielectric absorption of the reference capacitor and auto-zero capacitor are only important at power on or when the circuit is recovering from an overload. Thus, smaller or cheaper capacitors can be used here if accurate readings are not required for the first few seconds of recovery.

The back-to-back diodes on the comparator output are recommended in the 200.0 mV range to reduce the noise effects. In the normal operating mode, they offer a high impedance and long integrating time constant to any noise pulses charging the auto-zero capacitor. At start-up or recovery from an overload, their impedance is low to large signals so the capacitor can be charged in one auto-zero cycle. If only the 2.000 V range is used, a 100 k resistor in place of the back-to-back diodes is adequate for noise effects.

Maximum Clock Frequency

The maximum conversion rate of most dual-slope A / D converters is limited by the frequency response of the comparator. Even though the comparator in this circuit is all NPN with an open loop gain-bandwidth product of 300 MHz , it is no exception. The comparator output follows the integrator ramp with a $3 \mu \mathrm{~S}$ delay. At a clock frequency of 160 kHz ($6 \mu \mathrm{~S}$ period), half of the first reference integrate period is lost in delay. This means that the
meter reading will change from 0 to 1 with $50 \mu \mathrm{~V}$ in, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at midpoint is considered desirable by most users. However, if the clock frequency is increased appreciably above this, the instrument will flash 1 on noise peaks even when the input is shorted.

Some circuits use positive feedback or a latch to solve the delay problem. However, unless the comparator voltage swing, the comparator gain, and the integrator gain are carefully controlled, this circuit can generate anticipation errors that greatly exceed the $3 \mu \mathrm{~S}$ delay error. Also, it is very susceptible to noise spikes. A more controlled approach for extending the conversion rate is the use of a small resistor in the integrator feedback loop. This feeds a small pulse to the comparator to get it moving quickly and partially compensate for its delay.
The minimum clock frequency is established by leakage on the auto-zero and reference capacitor. With most devices, measurement cycles as long as 10 seconds gave no measurable leakage error.

APPLICATIONS

8052/7101 3½ Digit LCD. DPM/DVM

Figure 3 illustrates an application where the 8052/7101 interfaces with a Liquid Crystal Display. The CD4054 and CD4055s are Liquid Crystal Display Drivers (4-segment and 7-segment, respectively) which provide the level shifting (up to $30 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}}$ at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}$) necessary to drive the LCD. Overrange is indicated by a special character. If blanking of any part of the display is required on overload,

Pin 23 (7101) can be used to drive Pin 7 on those display drivers via an inverter and level shift such as CD4009 or 74C903 or another CD4054. Display applications requiring a plus sign rather than a blank indication for positive analog input levels (i.e., +1.999 versus 1.999) need to invert the "polarity" logic output level which is normally high for positive analog input signals.

FIGURE 3. 8052/7101 3½ D $\overline{\bar{I} G}$ IT LCD DPM/DVM

8052/7101/6100/6101 Set

The circuit in Figure 4 interfaces the 8052/7101 A-to-D converter chip set to an IM6100* microprocessor, using the 6101*. Parallel Interface Element. Hex Tri-state Buffers (e.g., MM80C95*) are used to control bus access from the 7101 during read operations.
Conversion is initiated by activating the WRITE 1 line (positive going). The converter pair will then convert the analog input to digital form, and latch the data in the 7101. The busy line will go low as the conversion ends, and this transition is sensed by the SENSE 1 line, triggering an interrupt. The interrupt routine should read the 12 -line data word, and then the polarity, $\overline{1000}$ and out-of-range lines.
Sufficient time must be allowed for the auto-zero loop to settle before retriggering a conversion. Ten milliseconds of
auto-zero is sufficient to null any offsets to 10 microvolts. At power-on or after an overload, 100 milliseconds is required to assure the auto-zero capacitor has charged to the correct value. This time delay may be implemented conveniently using the IM6102 (Memory Extender/Time Delay Device).
Some skeletal service routines for this connection are given on page 7 and 8.
*References:
Intersil IM6100 CMOS 12 -bit Microprocessor
Intersil IM6101 Parallel Interface Element
National MM80C95 Hex.CMOS Tri-State Buffers

FIGURE 4. $3 ½$ DIGIT PARALLEL BCD DATA ACQUISITION SYSTEM

8052/7101/6100/6101 APPLICATION PROGRAM

A possible set-up and service routine for the connection is given below.
/ASSUME PIE SELECT IS SET TO 54; INTERRUPT VECTOR TO 2000
(OCTAL)
/INITIALIZE ROUTINE: SET-UP FOR NO INTERRUPT

1200	7200		CLA	
1201	1240		TAD SSCRA	
1202	6545		WCRA 54	/SET-UP CONTROL REGISTER A
1203	7200		CLA	
1204	1241		TAD SSCRB	-
1205	6555	*	WCRB 54	/SET-UP CONTROL REGISTER B
1206	7200		CLA	
1207	1242		TAD SSVV	
1210	6556		WVR 54	/SET-UP VECTOR REGISTER
1220	0000	CONVERT,	\emptyset	/INITIATE CONVERSION SUBROUTINE
1221	1243		TAD SSCRAI	

1222	6545		WCRA 54	/SET-UP CONTROL REGISTER A
1223	6541		WRITE1 54	/THE WRITE PULSE STARTS CONVERSION
1224	5620		JMP I CONVERT	/RETURN
1240	0040	SSCRA,	0040	WP 1 SET HI, IE1 SET LO
1241	0000	SCRRB,	0000	/SL1, SP1 SET LP, NEGATIVE EDGE SENSE
1242	2000	SSVV,	2000	/VECTOR ADDRESS
1243	0041	SSCRAI,	0041	WPI SET HI, IE1 SET HI
0000	0000	INTRPT,	0	$\cdots / E N T R Y$ POINT FOR INTERRUPT
0001	6002		IOF	/DISABLE INTERRUPT, JUMP TO VECTOR ADDRESS
0140	0000	AD1,	0	/FIRST WORD OF DATA
0141	0000	AD2,	0	/SECOND WORD OF DATA
0160	0000	TEMP1,	0	/TEMPORARY STORAGE
2000	5210	VV,	JMP ATOD	/JUMP TO SERVICE POINT
2010	3160	ATOD,	DCA TEMP1	/SAVE AC
2011	6540		READ1 54	/READ BCD LINES
2012	3140		DCA AD1	/AND STORE
2013	6550		READ2 54	/READ POLARITY, 1000, AND OVERRANGE
2014	7040		CMA	/COMPLEMENT TO THE TRUE
2015	3141		DCA AD2	/AND STORE
1	--	---	----	/ANY OTHER WORK
2020	1160		TAD TEMP1	/RESTORE AC
2021	6001		- ION	/RESTORE INTERRUPT
2022	5400		JMP I INTRPT	/RETURN

ICL8052/ICL71C03 Pair
 and
 .ICL8068/ICL71C03 Pair
 Precision 4½ Digit A/D Converter

FEATURES

- Typically less than $\mathbf{2 \mu} \mathbf{V}$ p-p noise (200.00mv full scale, ICL8068)
- Accuracy guaranteed to ± 1 count over entire $\pm 20,000$ counts (2.0000 volts full scale)
- Guaranteed zero reading for 0 volts input
- True polarity at zero count for precise null detection
- Single reference voltage required
- Over-range and under-range signals available for auto-ranging capability
- All outputs TTL compatible
- Medium quality reference (40ppm typical) on board
- Blinking display gives visual indication of overrange
- Six auxillary inputs/outputs are available for interfacing to UARTs, Microprocessors or other complex circuitry
- 5pA input current typical (8052A)
- Pin compatible with the ICL7103

GENERAL DESCRIPTION

The ICL8052 or ICL8068/ICL71C03 chip pairs with their multiplexed BCD output and digit drivers are ideally suited for the visual display D.VM/DPM market. The outstanding 4$1 / 2$ digit accuracy, 200.00 mV to 2.0000 V full scale capability, auto-zero and auto-polarity combine with true ratiometric operation, almost ideal differential linearity and time-proven dual slope conversion. Use of these chip pairs eliminates clock feedthrough problems, and avoids the critical board layout usually required to minimize charge injection.
When only 2000 counts of resolution are required the 71C03 can be wired for $3-1 / 2$ digits and give up to 30 readings/ second making it ideally. suited for a wide variety of applications.
The ICL71C03 is an improved CMOS plug-in replacement for the ICL7103 and should be used in all new designs.

PIN CONFIGURATION

(Outline dwg DI,JI,PI)

ORDERING INFORMATION

Part	Temp. Range	Package	Order Number
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052CPD
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052CDD
8052 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052ACPD
8052 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052ACDD
8068	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8068CDD
8068 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8068ACDD

Part	Temp. Range	Package	Order Number
71 C 03	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28-Pin Plastic DIP	ICL71C03CPI
71 C 03	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28-Pin Ceramic DIP	ICL71CO3CDI
71 C 03	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28-Pin CERDIP	ICL71C03CJI
71 C 03 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28-Pin CERDIP	ICL71C03ACJI
71 C 03 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28-Pin Plastic DIP	ICL71C03ACPI
71 C 03 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28-Pin Ceramic DIP	ICL71A03ACDI

ABSOLUTE MAXIMUM RATINGS*
Power Dissipation (Note 1) 500mW
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 8052, 8068
Supply Voltage ... $\pm 18 \mathrm{~V}$
Differential Input Voltage (8068) $\pm 30 \mathrm{~V}$
(8052) $\pm 6 \mathrm{~V}$

Input Voltage (Note 2) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration,
All Outputs (Note 3) \qquad Indefinite
Operating Temperature \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 Sec .)
Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.
Note 4: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 5: Connecting any digital inputs or outputs to voltages greater than V^{+}or less than GND may cause destructive device latchup. For this reason it is recommended that the power supply to the 71 C 03 be established before any inputs from sources not on that supply are applied.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

71C03 AND 71C03A ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5.0, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I N P	Clock In, Run/ $/$ Hold, 4-1/2/3-1/2	IINL linh	$\begin{gathered} \mathrm{VIN}=0 \\ \mathrm{VIN}_{\mathrm{IN}}=+5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & .2 \\ & .1 \end{aligned}$	$\begin{gathered} .6 \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \end{gathered}$
T	Comp. In Current Threshold	IINL IINH VINTH	$\begin{gathered} V_{I N}=0 \\ V_{I N}=+5 \mathrm{~V} \end{gathered}$		$\begin{array}{r} .1 \\ .1 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \mathrm{~V} \\ \hline \end{gathered}$
0	All Outputs	VOL	$\mathrm{lOL}=1.6 \mathrm{ma}$. 25	. 40	V
U	$\begin{aligned} & \mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{4}, \mathrm{~B}_{8} \\ & \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5} \end{aligned}$	VOH	$1 \mathrm{OH}=-1 \mathrm{~mA}$	2.4	4.2		V
$\begin{aligned} & P \\ & U \\ & T \\ & S \end{aligned}$	Busy, Strobe, Over-range, Under-range Polarity	VOH	$\mathrm{IOH}=-10 \mu \mathrm{~A}$	4.9	4.99	,	V
$\begin{aligned} & \mathrm{S} \\ & \mathrm{~W} \end{aligned}$	Switches 1, 3, 4, 5, 6	rDS(on)			400		Ω
1	Switch 2 ,	rDS(on)			1200		Ω
$\begin{aligned} & \mathrm{T} \\ & \mathrm{C} \\ & \mathrm{H} \end{aligned}$	Switch Leakage (AII)	ID OfF:			2		pA
S	+5V Supply Range			+4	+5	+6	V
U	-15V Supply Range			-5	-15	-18	V
P	+5V Supply Current	1^{+}	fclk $=0$		1.1	3.0	mA
P	-15V Supply Current	1^{-}	fclk $=0$		0.8	3.0	
Y	Power Dissipation Capacitance	CPD	vs. Clock Freq		40		pF
Clock	Clock Freq. (Note 1)			DC.	2000	1200	kHz

Note 1: This specification relates to the clock frequency range over which the ICL71C03(A) will correctly perform its various functions. See "Max Clock Frequency" below for limitations on the clock frequency range in a system.

8068 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{++}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8068			8068A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER								
Input Offset Voltage	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		20	65		20	65	mV
Input Current (either input) (Note 1)	$\mathrm{V}_{\text {cm }}=0 \mathrm{~V}$		175	250		80	150	pA
Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{V}_{\text {cM }}= \pm 2 \mathrm{~V}$		110			110		
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20,000			20,000			V/V
Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth			2			2		MHz
Output Short-Circuit Current			5	10		5.	10	mA
COMPARATOR AMPLIFIER								
Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
Positive Output Voltage Swing		+12	+13		+12	+13		V
Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE								
Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
Output Resistance			5			5		Ω
Temperature Coefficient			50			40		ppm/ ${ }^{\circ} \mathrm{C}$
Supply Voltage Range		± 10	.	± 18	± 10		± 18	V
Supply Current Total			.	14		8	14	mA

8052 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{++}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8052			8052A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER								
Input Offset Voltage	$\mathrm{V}^{\prime} \mathrm{CM}=0 \mathrm{~V}$		20	50		20	50	mV
Input Current (either input) (Note 1)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		5	50		2	10	pA
Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{V}_{\text {CM }}= \pm 2 \mathrm{~V}$		110			110		
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	20,000			20,000			V/V
Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth			1			1		MHz
Outpit Short-Circuit Current			20	100		20	100	mA
COMPARATOR AMPLIFIER								
Small-signal Voltage Gain	$\mathrm{RL}=30 \mathrm{k} \Omega$.		4000					V/V
Positive Output Voltage Swing		+12	+13		+12	+13		V
Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE								
Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
Output Resistance			5			5		Ω
Temperature Coefficient			50			40		ppm $/{ }^{\circ} \mathrm{C}$
Supply Voltage Range		± 10		± 18	± 10		± 18	V
Supply Current Total	-		6	12		6	12	mA

Note 1: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}$ $+\Theta \mathrm{j} A \mathrm{Pd}$ where $\Theta \mathrm{jA}$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 2: This is the only component that causes error in dual-slope converter.

SYSTEM ELECTRICAL CHARACTERISTICS: 8068/71C03
$\left(\mathrm{V}^{++}=+15 \mathrm{~V}, \mathrm{~V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Clock Frequency Set for 3 Reading/Sec)

CHARACTERISTICS	CONDITIONS	8068/71C03(1)			8068A/71C03A(2)			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{gathered} \mathrm{VIN}=0.0 \mathrm{~V} \\ \text { Full Scale }=200.00 \mathrm{mV} \end{gathered}$	-00.00	± 00.00	+00.00	-00.00	± 00.00	+00.00	Digital Reading
Ratiometric Reading(3)	$\begin{gathered} V_{I N}=V_{\text {REF }} \\ \text { Full Scale }=2.000 \mathrm{~V} \end{gathered}$	+0.999	+1.000	+1.001	+0.9999	+1.0000	+1.0001	Digital Reading
Linearity over $\underset{\ddagger}{\ddagger}$ Full Scale (error of reading from best straight line)	$-2 \mathrm{~V} \leq \mathrm{V}$ IN $\leq+2 \mathrm{~V}$		0.2	1		0.5	1	Digital Count Error
Differential Linearity (difference between worse case step of adjacent counts and ideal step)	$-2 \mathrm{~V} \leq \mathrm{V}$ IN $\leq+2 \mathrm{~V}$. 01	:		. 01		LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{1 N} \equiv+V_{1 N} \approx 2 V$,	0.2	1	.	0.5	1	Digital Count Error
Noise (P-P value not exceeded 95\% of time)	$\begin{aligned} \mathrm{VIN} & =0 \mathrm{~V} \\ \text { Full scale } & =200.0 \mathrm{mV} \end{aligned}$		3			2		$\mu \mathrm{V}$
Leakage Current at Input	V IN $=0 \mathrm{~V}$		200	300		100	200	pA
Zero Reading Drift	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ 0^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C} \end{gathered}$		1	5		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{gathered} V_{I N}=+2 \mathrm{~V} \\ 0 \leq \mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C}(4) \\ \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \end{gathered}$		3	15		2	5	ppm/ ${ }^{\circ} \mathrm{C}$

SYSTEM ELECTRICAL CHARACTERISTICS: 8052/71C03

$\left(\mathrm{V}^{++}=+15 \mathrm{~V}, \mathrm{~V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Clock Frequency Set for 3 Reading/Sec)

CHARACTERISTICS	CONDITIONS	8052/71C03(1)			8052A/71C03A(2)			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{gathered} \mathrm{VIN}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ \text { Full Scale }=2.000 \mathrm{~V} \end{gathered}$	-0.000	± 0.000	+0.000	-0.0000	± 0.0000	+0.0000	Digital Reading
Ratiometric Reading (3)	$\begin{gathered} V_{I N} \equiv V_{R E F} \\ \text { Full Scale }=2.000 \mathrm{~V} \end{gathered}$	+0.999	+1.000	+1.001	+0.9999	+1.0000	+1.0001	Digital Reading
Linearity over \pm Full Scale (error of reading from best straight line)	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+2 \mathrm{~V}$		0.2	1		0.5	1	Digital Count Error
Differential Linearity (difference between worse case step of adjacent counts and ideal step)	$-2 \mathrm{~V} \leq \mathrm{V} \mathrm{IN} \leq+2 \mathrm{~V}$. 01			. 01		LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{I N} \equiv+V_{I N} \approx 2 V$		0.2	1		0.5	1	Digital Count Error
Noise (P-P value not exceeded 95% of time)	$\begin{gathered} \mathrm{VIN}_{\mathrm{I}}=0 \mathrm{~V} \\ \text { Full scale }=200.0 \mathrm{mV} \\ \text { Full scale }=2.000 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{aligned} & 20 \\ & 50 \end{aligned}$			30	:	$\mu \mathrm{V}$
Leakage Current at Input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		5	30	,	3	10	pA
Zero Reading Drift	$\begin{gathered} \mathrm{VIN}_{\mathrm{IN}}=0 \mathrm{~V} \\ 0^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{gathered}$		1	5		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{gathered} \mathrm{V}_{1 \mathrm{~N}}=+2 \mathrm{~V} \\ 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \end{gathered}$		3	15		2	5	ppm $/{ }^{\circ} \mathrm{C}$

Note 1: Tested in 3-1/2 digit (2,000 count) circuit shown in Fig. 7, clock frequency 12 kHz . Pin 271 C 03 connected to Gnd.
Note 2: Tested in 4-1/2 digit (20,000 count) circuit shown in Fig 7, clock frequency 120 kHz . Pin 271 C 03 A open.
Note 3: Tested with a low dielectric absorption integrating capacitor. See Component Selection Section.
Note 4: The temperature range can be extended to $+70^{\circ} \mathrm{C}$ and beyond as long as the auto-zero and reference capacitors are increased to absorb the higher leakage of the 8068 .

Figure 1. Functional Block Diagram

DETAILED DESCRIPTION

Analog Section

Figure 2 shows the equivalent Circuit of the Analog Section o both the ICL71C03/8052 and the ICL71C03/8068 in the 3 different phases of operation. If the RUN/ $\overline{H O L D}$ pin is left open or tied to $\mathrm{V}+$, the system will perform conversions at a rate determined by the clock frequency: 40,002 at 4-1/2 digit and 4002 at $3-1 / 2$ digit clock periods per cycle (see Figure 3 for details of conversion timing).

Figure 2A: Phase I Auto-Zero

Figure 2B: Phase II Integrate Input

1. Auto-Zero Phase I Fig. 2A.

During Auto-Zero, the input of the circuit is'shorted to ANALOG GROUND through switch 1, and switch 3 closes a loop around the integrator and comparator, the purpose of which is to charge the auto-zero capacitor until the integrator output does not change with time. Also, switches 1 and 2 recharge the reference capacitor to $V_{\text {REF }}$.

Figure 2C: Phase III + Deintegrate

Figure 2D: Phase III - Deintegrate

8052/71C03 8068/71C03

2. Input Integrate Phase II Fig. 2B.

During Input Integrate the auto-zero loop is opened and the ANALOG INPUT is connected to the BUFFER INPUT through switch 4. If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus, the integrator output will not change but will remain stationary during the entire Input Integrate cycle. If V_{IN} is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to $\mathrm{V}_{1 \mathrm{~N}}$. At the end of this phase, the sign of the ramp is latched into the polarity F/F.
3. Deintegrate Phase III Fig. 2C\&D.

During the Deintegrate phase, the switch drive logic uses the output of the polarity F/F in determining whether to close switch 6 or 5 . If the input signal is positive, switch 6 is closed and a voltage which is Vref more negative than during Auto-Zero is impressed on the BUFFER INPUT. Negative Inputs will cause $\pm V_{\text {REF }}$ to be applied to the BUFFER INPUT via switch 5 . Thus, the reference capacitor generates the equivalent of a (+) or (-) reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to the zero-crossing point established in Phase I. The time, or number of counts, required to do this is proportiona! to the input voltage. Since the Deintegrate phase can be twice as long as the Input Integrate phase, the input voltage required to give a full scale reading $=2 \mathrm{~V}_{\text {REF }}$.

Figure 3: Conversion Timing

Zero-Crossing Flip Flop

Fig. 4 shows the problem that the zero-crossing F / F is designed to solve.

Figure 4: Integrator Output Near Zero-Crossing

The integrator output is approaching the zero-crossing point where the count will be latched and the reading displayed. For a 20,000 count instrument, the ramp is changing approximately 0.50 mV per clock pulse (10 volt max integrator output divided by 20,000 counts). The clock pulse feedthrough superimposed upon this ramp would have to be less than $100 \mu \mathrm{~V}$ peak to avoid causing significant errors.
The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have died down. False zero-crossings caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore the counter is disabled for one clock pulse at the beginning of phase 3. This one count delay compensates for the delay of the zero-crossing flip-flop, and allows the correct number to be latched into the display. Similarly, a one count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001 . No delay occurs during phase 2 , so that true ratiometric readings result

DETAILED DESCRIPTION

Digital Section

The 71C03 includes several pins which allow it to operate conveniently in more sophisticated systems. These include:

1، $4-1 / 2 / \overline{3-1 / 2}$ (Pin 2). When high (or open) the internal counter operates as a full 4-1/2 decade counter, with a complete measurement cycle requiring 40,002 counts. When held low, the least significant decade is cleared and the clock is fed directly into the next decade. A measurement cycle now requires only 4,002 clock pulses. All 5 digit drivers are active in either case, with each digit lasting 200 counts with Pin 2 high (4-1/2 digit) and 20 counts for Pin 2 low (3-1/2 digit).
2. RUN/ $\overline{H O L D}$ (Pin 4). When high (or open) the A/D will free-run with equally spaced measurement cycles every 40,002/4,002 clock pulses. If taken low, the converter will continue the full measurement cycle that it is doing and then hold this reading as long as Pin 4 is held low. A short positive pulse (greater than 300 ns) will now initiate a new measurement cycle beginning with up to 10,001/1,001 counts of auto zero. Of course if the pulse occurs before the full measurement cycle $(40,002 / 4,002$ counts) is completed, it will not be recognized and the converter will simply complete the measurement it is doing. An external indication that a full measurement cycle has been completed is that the first STROBE pulse (see below) will occur 101/11 counts after the end of this cycle. Thus, if RUN/ $\overline{H O L D}$ is low and has been low for at least 101/11 counts, the converter is holding and ready to start a new measurement when pulsed high.
3. $\overline{\text { STROBE (Pin 18). This is a negative-going output pulse }}$ that aids in transferring the BCD data to external latches, UARTs or microprocessors. There are 5 negative-going STROBE pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 101/11 pulses after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 201/21 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first STROBE pulse goes negative for $1 / 2$ clock pulse width. Similarly, after Digit 5, Digit 4 goes high (for 200/20 clock pulses) and 100/10 pulses later the STROBE goes negative for the second time. This continues through Digit 1 (LSD) when the fifth and last STROBE pulse is sent. The digit drive will continue to scan (unless the previous signal was over-range) but no additional STROBE pulses will be sent until a new measurement is available.
4. BUSY (Pin 28). BUSY goes high at the beginning of signal integrate and stays high until the first clock pulse after zero-crossing (or after end of measurement in the case of an OVER-RANGE). The internal latches are enabled (i.e., loaded) during the first clock pulse after BUSY and are latched at the end of this clock pulse. The circuit automatically reverts to auto-zero when not BUSY so it may also be considered an $\bar{A}-\bar{Z}$ signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with clock and subtract $10,001 / 1,001$ counts from the number of pulses received - as mentioned previously there is one "NO-count" pulse in each Reference Integrate cycle.
5. OVER-RANGE (Pin 4). This pin goes positive when the input signal exceeds the range $(20,000 / 2,000)$ of the con-
verter. The oútput F-F is set at the end of BUSY and is reset to zero at the beginning of Reference Integrate in the next measurement cycle.
6. UNDER-RANGE (Pin 13). This pin goes positive when the reading is 9% of range or less. The output F-F is set at the end of BUSY (if the new reading is $1800 / 180$ or less) and is reset at the beginning of Signal Integrate of the next reading.
7. POLARITY (Pin 3). This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be used as a null detector by forcing equal (+) and (-) readings. The null at this point should be less than 0.1 LSB. This output becomes valid at the beginning of Reference Integrate and remains correct until it is revalidated for the next measurement.
8. Digit Drives (Pins 19, 24, 25, 26 and 27). Each digit drive is a positive-going signal which lasts for 200/20 clock pulses. The scan sequence is D_{5} (MSD), D_{4}, D_{3}, D_{2} and D_{1} (LSD). All five digits are scanned even when operating in the $3-1 / 2$ digit mode, and this scan is continuous unless an OVER-RANGE occurs. Then all Digit drives are blanked from the end of the STROBE sequence until the beginning of Reference Integrate, at which time D_{5} will start the scan again. This gives a blinking display as a visual indication of OVER-RANGE.
9. BCD (Pins 20, 21, 22 and 23). The Binary coded decimal bits B_{8}, B_{4}, B_{2} and B_{1} are positive logic signals that go on simultaneously with the Digit driver.

Figure 5: Timing Diagram for Outputs

COMPONENT VALUE SELECTION

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage,. and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to $40 \mu \mathrm{~A}$ give good results with a nominal of $20 \mu \mathrm{~A}$. The exact value may be chosen by

$$
\text { RINT }=\frac{\text { full scale voltage }}{}{ }^{*}
$$

*Note: If gain is used in the buffer amplifier then -

$$
\text { RINT }=\frac{\text { (Buffer gain) (full scale voltage) }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at +14 volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. In general, the value of $\mathrm{C}_{\text {INT }}$ is given by

$$
\mathrm{C}_{\text {INT }}=\frac{\left[\begin{array}{l}
10,000(4-1 / 2 \text { digit }) \\
1000(3-1 / 2 \text { digit })
\end{array} \text { (ntock period) }\right] \times(20 \mu \mathrm{~A})}{\text { Integrator output voltage swing }}
$$

A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.
This ratiometric condition should read half scale 1.0000, and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.
Note: When gain is used in the buffer amplifier the reference capacitor should be substantially larger than the auto-zero capacitor. As a rule of thumb, the reference capacitor should be approximately the gain times the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}$.
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that an external high quality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

Buffer Gain

At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracted from the input voltage while adding to the reference voltage during the next cycle. The result of this is that the noise voltage is effectively somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the autozero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system. The circuit recommended for doing this with the ICL8068/ICL71C03 is shown in Figure 6.

Figure 6: Adding Buffer Gain to ICL8068

ICL8052 vs ICL8068

The ICL8052 offers significantly lower input leakage currents than the ICL8068, and may be found preferable in systems with high input impedances. However, the ICL8068 has substantially lower noise voltage, and is the device of choice for systems where noise is a limiting factor, particularly in low signal level conditions.

Max Clock Frequency

The maximum conversion rate of most dual-slope A/D converters is limited by the frequency response of the comparator. The comparator in this circuit is no exception, even though it is entirely NPN, with an open-loop gainbandwidth product of 300 MHz . The comparator output follows the integrator ramp with a 3μ s delay, and at a clock frequency of 160 kHz ($6 \mu \mathrm{~s}$ period) half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at mid-point is considered desirable by most users. However, if the clock frequency is increased appreciably above 160 kHz , the instrument will flash " 1 " on noise peaks even when the input is shorted.
For many dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, clock rates of up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally.
The minimum clock frequency is established by leakage on the auto-zero and reference caps. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $300 \mathrm{kHz}, 200 \mathrm{kHz}, 150 \mathrm{kHz}, 120 \mathrm{kHz}, 100 \mathrm{kHz}$, $40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $250 \mathrm{kHz}, 166-2 / 3 \mathrm{kHz}$, $125 \mathrm{kHz}, 100 \mathrm{kHz}$, etc. would be suitable. Note that 100 kHz (2.5 readings/second) will reject both 50 and 60 Hz .
The clock used should be free from significant phase or frequency jitter. A simple two-gate oscillator and one based on a CMOS 7555 timer are shown in the Applications section. The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

APPLICATIONS

Specific Circuits Using the 8068/71C03 8052/71C03

Figure 7 shows the complete circuit for a $\pm 4-1 / 2$ digit $(\pm 200.0 \mathrm{mV}$ full scale) A/D with LED readout using the internal reference of the $8068 / 52$. If an external reference is used, the reference supply (pin 7) should be connected to ground and the 300 pF reference cap deleted. The circuit also shows a typical R-C input filter. Depending on the application, the time-constant of this filter can be made faster, slower, or the filter deleted completely. The $1 / 2$ digit LED is driven from the 7 segment decoder, with a zero reading blanked by connecting a D5 signal to RBI input of the decoder.
A voltage translation network is connected between the comparator output of the 8068/52 and the auto-zero input of the $71 \mathrm{C03}$. The purpose of this network is to assure that, during auto-zero, the output of the comparator is at or near the threshold of the 71 C 03 logic $(+2.5 \mathrm{~V})$ while the auto-zero capacitor is being charged to $V_{\text {REF }}(+100.0 \mathrm{mV}$ for a 200.0 mV instrument). Otherwise, even with zero volts in, some reference integrate period would be required to drive the comparator output to the threshold level. This would show up as an equivalent offset error. Once the divider network has been selected, the unit-to-unit variation should contribute less than a tenth of a count error. A second feature
is the back-to-back diodes, used to lower the noise. In the normal operating mode they offer a high impedance and long integrating time constant to any noise pulses charging the auto-zero cap. At startup or recovery from an overload, their impedance is low to large signals so that the cap can be charged up in one auto-zero cycle. The buffer gain does not have to be set precisely at 10 since the gain is used in both the integrate and deintegrate phase. For scale factors other than 200.00 mV the gain of the buffer should be changed to give a $\pm 2 \mathrm{~V}$ buffer output. For 2.0000 V full scale this means unity gain and for $20,000 \mathrm{mV}$ ($1 \mu \mathrm{~V}$ resolution) a gain of 100 is necessary. * Not all 8068As can operate properly at a gain of 100 since their offset should be less than 10 mV in order to accommodate the auto-zero circuitry. However, for devices selected with less than 10 mV offset, the noise performance is reasonable with approximately $1.5 \mu \mathrm{~V}$ near full scale. On all scales less than 200.00 mV , the voltage translation network should be made adjustable as an offset trim.
The auto-zero cap should be $1 \mu \mathrm{~F}$ for all scales and the reference capacitor should be $1 \mu \mathrm{~F}$ times the gain of the buffer amplifier. At this value if the input leakages of the 8052/8068 are equal, the droop effects will cancel giving zero offset. This is especially important at high temperature. Some typical component values are shown in the table below. For $3-1 / 2$ digit conversion use 12 kHz clock.
$\mathrm{V}^{++}=+15 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$, Clock Freq $=120 \mathrm{kHz}(4-1 / 2$ digit $)$

ICL8052/8068 with	ICL71C03A			UNITS
Full scale ViN	20	200	2000	mV
Buffer Gain $\frac{\text { RB1 + RB2) }}{\text { RB2 }}$	100^{*}	10	1	
RINT	100	100	100	$\mathrm{k} \Omega$
$\mathrm{CIINT}^{\mathrm{CAZ}_{\mathrm{AZ}}}$	0.22	0.22	0.22	$\mu \mathrm{~F}$
CREF	1.0	1.0	1.0	$\mu \mathrm{~F}$
VREF	10	10	1.0	$\mu \mathrm{~F}$
Resolution (4-1/2 digit)	10	100	1000	mV

*Note comment on offset limitations above. Buffer gain does not improve ICL8052 noise performance adequately.

Figure 7: 8052A (8068A)/71C03A 4-1/2 Digit A-D Converter

A suitable circuit for driving a plasma-type display is shown in Fig. 8. The high voltage anode driver buffer is made by Dionics. The 3 AND gates and caps driving 'BI' are needed for interdigit blanking of multiple-digit display elements, and can be omitted if not needed. The $2 \mathrm{~K} \& 3 \mathrm{~K}$ resistors set the current levels in the display. A similar arrangement can be used with 'Nixie'ब tubes.
© Nixie is a registered trademark of Burroughs Corporation.

Figure 8: ICL8052-8068/71C03A Plasma Display Circuit

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of 8068 or 8052/71C03A circuits, especially in high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. Both of the above circuits have considerable current flowing in the digital ground returns from drivers, etc. A recommended connection sequence for the ground lines is shown in Figure 9.

Other Circuits for Display Applications

The popular'LCD displays can be interfaced to the O/P of the' ICL71C03 with suitable display drivers, such as the ICM7211A as shown in Figure 10. A standard CMOS 4000 series LCD driver circuit is used for displaying the $1 / 2$ digit, the polarity, and an 'overange' flag. A similar circuit can be used with the ICM7212A LED driver and the ICM7235A vacuum fluorescent driver with appropriate arrangements made for the 'extra' outputs. Of course, another full driver circuit could be ganged to the one shown if required. This would be useful if additional annunciators were needed.

The Figure shows the complete circuit for a 4-1/2 digit $(\pm 2.000 \mathrm{~V}) \mathrm{A} / \mathrm{D}$ again using the internal reference of the 8052A/8068A.

Figure 11 shows a more complicated circuit for driving LCD displays. Here the data is latched into the ICM7211 by the Strobe signal and 'Overange' is indicated by blanking the 4 digits. A clock oscillator circuit using the ICM7555 CMOS timer is shown. Some other suitable clock circuits are suggested in Figs. $12 \& 13$. The 2-gate circuit should use CMOS gates to maintain good power supply rejection.

A problem sometimes encountered with the 8052/68/71C03 A/D is that of gross over-voltage applied to the input. Voltage in excess of ± 2.000 volts may cause the integrator output to saturate. When this occurs, the integrator can no longer source (or sink) the current required to hold the summing junction (Pin 11) at the voltage stored on the auto zero capacitor. As a result, the voltage across the integrator capacitor decreases sufficiently to give a false voltage reading. This problem can also show up as large-signal instability on overange conditions. A simple solution to this problem is to use junction FET transistors across the integrator capacitor to source (or sink) current into the summing junction and prevent the integrator amplifier from saturating, as shown in Figure 14.

Figure 9: Grounding Sequence

Figure 10: Driving LCD Displays

Figure 11: 4-1/2 Digit LCD DPM with Digit Blanking on Overrange.

Figure 12

Figure 14: Gross Overvoltage Protection Circuit

Figure. 13: Clock Circuits

INTERFACING WITH UARTS AND MICROPROCESSORS

Figure 15 shows a very simple interface between freerunning 8068/8052/71C03A and a UART. The five $\overline{\text { Strobe }}$ pulses start the transmission of the five data words.. The digit 5 word is 0000XXXX, digit 4 is 1000XXXX, digit 3 is 0100 XXXX , etc. Also the polarity is transmitted indirectly by using it to drive the Even Parity Enable Pin (EPE). If EPE of the receiver is held low, a parity flag at the receiver can be decoded as a positive signal, no flag as negative. A complex arrangement is shown in Figure 16. Here the UART can instruct the A/D to begin a measurement sequence by a word on RRI. The Busy signal resets the Data Ready Reset (DRR). Again Strobe starts the transmit sequence. A quad 2 input multiplexer is used to superimpose polarity, over-range, and under-range onto the D_{5} word since in this instance it is known that $\mathrm{B}_{2}=$ $B_{4}=B_{8}=0$.

For correct operation it is important that the UART clock be fast enough that each word is transmitted before the next STROBE pulse arrives. Parity is locked into the UART at load time but does not change in this connection during an output stream.

Circuits to interface the 71C03(A) directly with three popular microprocessors are shown in Figures 17, 18 and 19. The main differences in the circuits are that IM6100 with its 12 bit word capability can accept polarity, over-range, underrange, 4 bits of BCD and 5 digits simultaneously where the 8080/8048 and the MD6800 groups with 8 bit words need to have polarity, over-range and under-range multiplexed onto the Digit 5 word - as in the UART circuits. In each case the microprocessor can instruct the A / D when to begin a measurement and when to hold this measurement.

APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar
A017 "The Integrating A/D Converters," by Lee Evans
A018 "Do's and Don'ts of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A019 "4-1/2 Digit Panel Meter Demonstrator/Instrumentation Boards," by Michiael Dufort
A023 "Low Cost Digital Pane! Meter Designs," by David Fullagar and Michael Dufort
A028 "Building an Auto-Ranging DMM Using the 8052A/7103A A/D Converter Pair," by Larry Goff
R005 "Interfacing Data Converters \& Microprocessors," by Peter Bradshaw et al, Electronics, Dec. 9, 1976

Figure 16: Complex 71C03/7103A to UART Interface

Figure 17: IM6100 to 71C03/71C03A Interface

Figure 18: ICL71C03 to MC6800, MCS650X Interface

Figure 19: ICLं71C03 to MCS-48, -80, 85 Interface

ICL8052/ICL7104 and ICL8068/ICL7104 Converter Pairs for μ Processors

FEATURES

- 16 bit binary three-state l̀atched outputs plus polarity and overrange. Also 14 and 12 bit versions.
- Ideally suited for interface to UARTs, microprocessors, or other complex circuitry.
- Conversion on demand or continuously.
- Handshake byte-serial transmission synchronously or on demand.
- Guaranteed zero reading for zero volts input.
- True polarity at zero count for precise null detection.
- Single reference voltage for true ratiometric operation.
- Onboard clock and reference.
- Auto-Zero; Auto-Polarity
- Accuracy guaranteed to 1 count.
- All outputs TTL compatible.
- $\pm 10 \mathrm{~V}$ analog input range
- Status signal available for external sync, A / Z in preamp, etc.

GENERAL DESCRIPTION

The ICL7104, combined with the ICL8052 or ICL8068, forms a member of Intersil's high performance A/D converter family. The 16 -bit version, the ICL7104-16, performs the analog switching and digital function for a 16-bit binary A/D converter, with full three-state output, UART handshake capability, and other outputs for a wide range of output interfacing. The ICL7014-14 and ICL7104-12 are 14 and 12bit versions. The analog section, as with all Intersil's integrating converters, provides fully precise Auto-Zero, Auto-Polarity (including ± 0 null indication), single reference operation, very high input impedance, true input integration over a constant period for maximum EMI rejection, fully ratiometric operation, over-range indication, and a medium quality built-in reference. The chip pair also offers optional input buffer gain for high sensitivity applications, a built-in clock oscillator, and output signals for providing an external Auto-Zero capability in preconditioning circuitry, synchronizing external multiplexers, etc.

PIN CONFIGURATIONS

(OUTLINE DWGS DD,JD,PD)
(OUTLINE DWGS DL,JL,PL)

ORDERING INFORMATION

Part	Temp. Range	Package	Order Number
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14-Pin Plastic DIP	ICL8052CPD
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14-Pin Ceramic DIP	ICL8052CDD
8052 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14-Pin Plastic DIP	ICL8052ACPD
8052 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14-Pin Ceramic DIP	ICL8052ACDD
8068	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14-Pin CERDIP	ICL8068CJD
8068 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14-Pin CERDIP	ICL8066ACJD

Part	Temp. Range	Package	Order Number
7104 12-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin CERDIP	ICL7104-12CJL
7104 12-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin Plastic DIP	ICL7104-12CPL
7104 12-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin Ceramic DIP	ICL7104-12CDL
7104 14-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin CERDIP	ICL7104-14CJL
7104 14-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin Plastic DIP	ICL7104-14CPL
7104 14-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin Ceramic DIP	ICL7104-14CDL
7104 16-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin CERDIP	ICL7104-16CJL
7104 16-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin Plastic DIP	ICL7104-16CPL
7104 16-Bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40-Pin Ceramic DIP	ICL7104-16CDL

ABSOLUTE MAXIMUM ${ }^{\prime}$ RATINGS

Power Dissipation ${ }^{1}$. 500 50 W
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
8052, 8068
Supply Voltage . $\pm 18 \mathrm{~V}$
Differential Input Voltage(8068) $\pm 30 \mathrm{~V}$
(8052) $\pm 6 \mathrm{~V}$

Input Voltage 2 .. $\pm 15 \mathrm{~V}$
Output Short Circuit Duration,
All Outputs 3 ... Indefinite
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 Sec .)
$300^{\circ} \mathrm{C}$

Notes:

1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.
4: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
5: Connecting any digital inputs or outputs to voltages greater than V+ or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ICL7104 before its power supply is established.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7104 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}++=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

CHARACTERISTICS		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Clock Input	CLOCK 1	lin	$\mathrm{Vin}=+5 \mathrm{~V}$ to 0 V	± 2	$\pm 7^{\circ}$	± 30	$\mu \mathrm{A}$
Comparator I/P	COMP IN (Note 1)	lin	$\mathrm{Vin}=0 \mathrm{~V}$ to +5 V	-10	± 0.001	+10	$\mu \mathrm{A}$
Inputs with Pulldown	- MODE	1 H	Vin $=+5 \mathrm{~V}$	+1	+5	+30	$\mu \mathrm{A}$
		IIL	$\mathrm{Vin}=0 \mathrm{~V}$	-10	± 0.01	+10	$\mu \mathrm{A}$
Inputs with Pullups	$\left.\begin{array}{l} \frac{\text { SEN, R/R }}{\overline{\text { LBEN }}, \overline{M B E N},} \\ \overline{\mathrm{HBEN}}, \overline{\mathrm{CE} / L D} \end{array}\right\} \text { (Note } 2 \text {) }$	IH	$\mathrm{Vin}=+5 \mathrm{~V}$	-10	± 0.01	+10	$\mu \mathrm{A}$
		ILL	$\mathrm{Vin}=0 \mathrm{~V}$	-30	-5	-1	$\mu \mathrm{A}$
Input High Voltage	All Digital Inputs	$\mathrm{V}_{\text {IH }}$		2.5	2.0	-	V
Input Low Voltage	All Digital Inputs	VIL	,		1.5	1.0	V
Digital Outputs Three-Stated On	$\left.\begin{array}{l}\overline{\overline{L B E N}} \begin{array}{l}\overline{M B E N} \\ \overline{\mathrm{HBEN}} \\ \overline{\mathrm{CE} / \mathrm{LD}} \\ \mathrm{BIT} \mathrm{n}, \mathrm{POL}, \mathrm{OR}\end{array}\end{array}\right\}$ (Note 3).	VOL	$\mathrm{lOL}=1.6 \mathrm{~mA}$	-	. 27	. 4	V
		VOH	$1 \mathrm{OH}=-10 \mu \mathrm{~A}$		4.5	-	V
		VOH	$1 \mathrm{OH}=-240 \mu \mathrm{~A}$	2.4	3.5	-	V
Digital Outputs Three-Stated Off	BIT n, POL, OR	loL	$0 \leq$ Vout \leq V +	-10	$\pm .001$	+10	$\mu \mathrm{A}$
Non-Three-State Digital Output	STTS	VOL	$1 \mathrm{OL}=3.2 \mathrm{~mA}$	-	. 3	4	V
		VOH	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4	3.3	-	V
	CLOCK 2	VOL	$1 \mathrm{OL}=320 \mu \mathrm{~A}$		0.5		V
		VOH	IOH. $=-320 \mu \mathrm{~A}$		4.5		V
	CLOCK 3 (-12, -14 ONLY)	Voi	$\mathrm{IOL}=1.6 \mathrm{~mA}$. 27	. 4	V
		VOH	$1 \mathrm{OH}=-320 \mu \mathrm{~A}$	2.4	3.5		V
Switch	Switch1	rDS(on)		-	25k		Ω
	Switches 2,3	ros(on)		-	4k	20k	Ω
	Switches 4,5,6,7,8,9	rDS(on)		-	2k	10k	Ω
	Switch Leakage	ld(off)		-	15		pA
Clock	Clock Freq. (Note 4)			DC	200	400	kHz
Supply Currents	+5V Supply Current All outputs high impedance	I+	Freq. $=200 \mathrm{kHz}$		200	$\begin{array}{r} 600 \\ \hline \\ \hline \end{array}$	$\mu \mathrm{A}$
	+15V Supply Current	$1++$	Freq. $=200 \mathrm{kHz}$. 3	1.0	mA
	-15V Supply Current	$1-$	Freq. $=200 \mathrm{kHz}$		25	200	$\mu \mathrm{A}$
Supply Voltage Range	Logic Supply	V+	Note 5	4.0		+11.0	V
	Positive Supply	V++		+10.0		+16.0	V
	Negative Supply	V-		-16.0		-10.0	V

Note 1: This spec applies when not in Auto-Zero phase.
Note 2: Apply only when these pins are inputs, i.e., the mode pin is low, and the 7104 is not in handshake mode.
Note 3: Apply only when these pins are outputs, i.e., the mode pin is high or the 7104 is in handshake mode.
Note 4: Clock circuit shown in Figs. 10 and 11.
Note 5: V+ must not be more positive than $\mathrm{V}++$.

8068 ELECTRICAL CHARACTERISTICS (Vsupp $= \pm 15 \mathrm{~V}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	CONDITIONS	8068			8068A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER									
Vos	Input Offset Voltage	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		20	65		20	65	mV
IIN	Input Current (either input) (Note 1)	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		175	250		80	150	pA
CMRR	Common-Mode Rejection Ratio	V CM $= \pm 10 \mathrm{~V}$	70	90		70	90		dB
	Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$		110			110		
Av	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20,000			20,000			V/V
SR	Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			2			2		MHz
IsC	Output Short-Circuit Current			5	10		5	10	mA
COMPARATOR AMPLIFIER									
Avol	Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
+Vo	Positive Output Voltage Swing		+12	+13.		+12	+13		V
- V_{0}	Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE									
Vo	Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
Ro	Output Resistance			5			5		ohms
TC	Temperature Coefficient			50			40		ppm $/{ }^{\circ} \mathrm{C}$
VSUPP	Supply Voltage Range		± 10		± 16	± 10		± 16	V
ISUPP.	Supply Current Total				14		8	14	mA

8052 ELECTRICAL CHARACTERISTICS
(VSUPP $= \pm 15 \mathrm{~V}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	CONDITIONS	8052			8052A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER									
Vos	Input Offset Voltage	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		20	50		20	50	mV
lin	Input Current (either input) (Note 1)	$\mathrm{V}_{C M}=0 \mathrm{~V}$		5	50		2	10	pA
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
	Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$		110	,		110		
Av	Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	20,000			20,000			V/V
SR	Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			1			1.		MHz
ISC	Output Short-Circuit Current			20	100		20.	100	mA
COMPARATOR AMPLIFIER									
Avol	Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
+Vo	Positive Output Voltage Swing		+12	+13		+12	+13		V
- V_{0}	Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE									
Vo	Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
Ro	Output Resistance			5			5		Ohms
TC	Temperature Coefficient			50			40		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
VSUPP	Supply Voltage Range		± 10		± 16	± 10		± 16	V
ISUPP	Supply Current Total			6	12		6	12	mA

Note 1: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, TJ. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\theta \mathrm{j} \mathrm{APd}$ where $\theta \mathrm{j} \mathrm{A}$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 2: This is the only component that causes error in dual-slope converter.

SYSTEM ELECTRICAL CHARACTERISTICS: 8068/7104
$\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}\right.$ Clock Frequency $=200 \mathrm{KHz}$

CHARACTERISTICS	CONDITIONS	8068A/7104-12			8068A/7104-14			8068A/7104-16			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{array}{\|l\|} \mathrm{V}_{\text {in }}=0.0 \mathrm{~V} \\ \text { Full Scale }=4.000 \mathrm{~V} \end{array}$	-. 000	$\pm .000$,	+. 000	-0.0000	± 0.0000	+0.0000	-0.0000	± 0.0000	+0.0000	Hexadecimal Reading
Ratiometric Reading (1)	$\begin{array}{\|l\|} \hline V_{\text {in }}=V_{\text {Ref. }} \\ \text { Full Scale }=4.000 \mathrm{~V} \\ \hline \end{array}$	7FF	800	801	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over \pm Full Scale (error of reading from best straight line)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$.		0.2	1		0.5	1		0.5	1	LSB
Differential Linearity (difference between worse case step of adjacent counts and ideal step	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$. 01		.	. 01	.		. 01	- .	LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{\text {in }} \equiv+V_{\text {in }} \approx 4 \mathrm{~V}$.	0.2	1		0.5	1		0.5	1	LSB
Noise (P-P value not exceeded 95% of time)	$\begin{array}{\|l\|} \hline V_{\text {in }}=0 \mathrm{~V} \\ \text { Full scale }=4.000 \mathrm{~V} \end{array}$		3			2			2		$\mu \mathrm{V}$
Leakage Current at Input (2)	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		200	265		100	165		100	165	pA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=0 V \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		1	5	.	0.5	2		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature (3) Coefficient	$\begin{array}{\|l\|} \hline V_{\text {in }}=+4 \mathrm{~V} \\ 0 \leq \mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C} \\ \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \\ \hline \end{array}$		2	5		2	5	,	2	5	ppm $/{ }^{\circ} \mathrm{C}$

SYSTEM ELECTRICAL CHARACTERISTICS: 8052/7104

$\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}\right.$ Clock Frequency $=200 \mathrm{KHz}$

CHARACTERISTICS	CONDITIONS	8052/7104-12			8052A/7104-14			8052A/7104-16			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading ,	$\begin{aligned} & V_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	-. 000	$\pm .000$	+.000	-0.0000	± 0.0000	+0.0000	-0.0000	± 0.0000	+0.0000	Hexadecimal Reading
Ratiometric Reading (3)	$\begin{aligned} & V_{\text {in }}=V_{\text {Ref. }} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	7FF	800	801	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over \pm Full Scale (error of reading from best straight line)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		0.2	1		0.5	1		0.5	1	LSB. ${ }^{\prime}$
Differential Linearity (difference between worse case step of adjacent counts and ideal step).	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$. 01	,		. 01	.		. 01	.	LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-\mathrm{V}_{\text {in }} \equiv+\mathrm{V}_{\text {in }} \approx 4 \mathrm{~V}$		0.2	11		0.5	1		0.5	1	LSB
Noise (P-P value not exceeded 95% of time)	$V_{\mathrm{in}}=0 \mathrm{~V}$ Full scale $=4.000 \mathrm{~V}$	\cdots	$\begin{array}{r} 20 \\ 50 \\ \hline \end{array}$			30	-	.	30		$\mu \mathrm{V}$
Leakage Current at Input (2)	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		30	80		20	30		20	30	pA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=0 V \\ & 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		1	5.		0.5	2	.	0.5	. 2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{array}{\|l\|} \hline V_{\text {in }}=+4 \mathrm{~V} \\ 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text {) } \\ \hline \end{array}$		3	15		2	5	\cdots	2	5	ppm $/{ }^{\circ} \mathrm{C}$

Note 1: Tested with low dielectric absorption integrating capacitor.
Note 2: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\theta \mathrm{j} \mathrm{A} P d$ where $\theta \mathrm{j} A$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 3: The temperature range can be extended to $70^{\circ} \mathrm{C}$ and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high temperature leakage of the 8068 . See note 2 above.

AC CHARACTERISTICS $(\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=+5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V})$

——————— = HIGH IMPEDANCE
TABLE 1: Direct Mode Timing Requirements

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
$t_{\text {bea }}$	XBEN Min. Pulse Width		500		
$t_{\text {dab }}$	Data Access Time from XBEN		200		
$t_{\text {dhb }}$	Data Hold Time from $\overline{\text { XBEN }}$		200		
$t_{\text {cea }}$	$\overline{\text { CE/LD Min. Pulse Width }}$		500		
$t_{\text {dac }}$	Data Access Time from $\overline{\text { CE/LD }}$		\vdots		
$t_{\text {dhc }}$	Data Hold Time from $\overline{\text { CE/LD }}$		200		
$t_{\text {cwh }}$	CLOCK 1 High Time	1250	1000		

TABLE 2: Handshake Timing Requirements

NAME	DESCRIPTION	MIN	TYP	MAX	UNITS
$t_{\text {mw }}$	MODE Pulse (minimum)		20		ns
$\mathrm{t}_{\text {sm }}$	MODE pin set-up time		-150		
$t_{\text {me }}$	MODE pin high to low $Z \overline{C E / L D}$ high delay		200		
$t_{\text {mb }}$	MODE pin high to XBEN low Z (high) delay		200		
$\mathrm{t}_{\text {cel }}$	CLOCK 1 high to CE/LD low delay		700		
$\mathrm{t}_{\text {ceh }}$	CLOCK 1 high to $\overline{C E / L D}$ high delay		600		
t_{cb}	CLOCK 1 high to XBEN low delay		900		
tcbh	CLOCK 1 high to XBEN high delay		700		
tcdh	CLOCK 1 high to data enabled delay		1100		
$t_{\text {cdl }}$	CLOCK 1 low to data disabled delay		1100		
$\mathrm{t}_{\text {ss }}$	Send ENable set-up time	-	-350		
tcbz	CLOCK 1 high to $\overline{\text { XBEN }}$ disabled delay		2000		
$t_{\text {cez }}$	CLOCK 1 high to $\overline{C E / L D}$ disabled delay		2000		
$\mathrm{t}_{\text {cwh }}$	CLOCK 1 High Time	1250	1000		. .

CLOCK 1 (PIN 25) EITHER:
MODE PIN
OR:
INTERNAL LATCH
PULSE IF MODE "HI" INTERNAL MODE

BITS 1-5
-14, -12 BIT VERSION SHOWN
THREE-STATE \rightarrow
THREE-STATE W PULLUP

16 HAS EXTRA (MBEN) PHAS

TABLE 3: Pin Assignment and Function Description

PIN	SYMBOL	OPTION	DESCRIPTION
1	V(++)		Positive Supply Voltage Nominally +15 V
2	GND		Digital Ground . OV, ground return
3	STTS		STaTuS output .HI during Integrate and Deintegrate until data is latched .LO when analog section is in Auto-Zero configuration.
4	POL		POLarity. Three-state output. HI for positive input.
5	OR		OverRange. Three-state output.
6	$\begin{aligned} & \hline \text { BIT } 16 \\ & \text { BIT } 14 \\ & \text { BIT } 12 \\ & \hline \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \\ & -12 \end{aligned}$	(Most significant bit)
7	$\begin{aligned} & \text { BIT } 15 \\ & \text { BIT } 13 \\ & \text { BIT } 11 \end{aligned}$	$\begin{aligned} & -16 \\ & -14 \\ & -12 \end{aligned}$	
8	BIT 14 BIT 12 BIT 10	$\begin{aligned} & \hline-16 \\ & -14 \\ & -12 \end{aligned}$	
9	$\begin{aligned} & \text { BIT } 13 \\ & \text { BIT } 11 \\ & \text { BIT } 9 \end{aligned}$	$\begin{aligned} & \hline-16 \\ & -14 \\ & -12 \end{aligned}$	
10	BIT 12 BIT 10 nc	$\begin{aligned} & \hline-16 \\ & -14 \\ & -12 \end{aligned}$	Data Bits, Three-state outputs. See Table 4 for
11	BIT 11 BIT 9 nc	$\begin{aligned} & -16 \\ & -14 \\ & -12 \end{aligned}$	bytes. $\mathrm{HIGH}=\text { true }$
12	BIT 10 nc nc	$\begin{array}{r} \hline-16 \\ -14 \\ -12 \\ \hline \end{array}$	
. 13	BIT 9 nc nc	$\begin{array}{r} -16 \\ -14 \\ -12 \\ \hline \end{array}$	
14	- BIT 8		
15	BIT 7		
16	BIT 6		
17	BIT 5		
18	BIT 4.		
19	BIT 3		
20	BIT 2		
21	BIT 1		Least significant bit
22	LBEN	,	Low B̄yte ENable. If not in handshake mode (see pin 27) when LO (with $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$, pin 30) activates low-order byte outputs, BITS 1-8 When in handshake mode (see pin 27), serves as a low-byte flag output. See Figures 8, 9 and 10.
23	MBEN	$\begin{aligned} & -16 \\ & -14 \\ & -12 \end{aligned}$	$\bar{M} i d \bar{B} y t e ~ \overline{E N} a b l e . ~ A c t i v a t e s ~$ BITS 9-16, see LBEN (pin 22) Tigh Byte ENable. Activates BITS 9-14, POL, OR, see $\overline{\text { LBEN }}$ (pin 22)
24	HBEN CLOCK3	$\begin{aligned} & -16 \\ & \\ & -14 \\ & -12 \end{aligned}$	High Byyte ENable. Activates POL, OR, see LBEN (pin 22). RC oscillator pin. Can be used as clock output.

PIN	SYMBOL	DESCRIPTION
25	CLOCK1	Clock input. External clock or oscillator.
26	CLOCK2	Clock output. Crystal or RC oscillator.
27	MODE	Input LO;Direct output mode where $\overline{\mathrm{CE}} / \overline{\mathrm{DD}}, \overline{\mathrm{HBEN}}, \overline{\mathrm{MBEN}}$, and $\overline{\mathrm{LBEN}}$ act as inputs directly controlling byte outputs. If pulsed HI causes immediate entry into handshake mode (see Figure 9). If HI , enables $\overline{\mathrm{CE} / \mathrm{LD}}, \overline{\mathrm{HBEN}}, \overline{M B E N}$, and $\overline{\text { LBEN }}$ as outputs. Handshake mode will be entered and data output as in Figures 7 \& 8 at conversion completion.
28	R// \bar{H}	Run//̄old; Input HI-conversions continuously performed every 217 (-16) $215(-14)$ or $213(-12)$ clock pulses. Input LO-conversion in progress completed, converter will stop in Auto-Zero 7 counts before input integrate.
29	SEN	Send-ENable: Input controls timing of byte transmission in handshake mode. HI' indicates 'send'.
30	$\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$	$\overline{\text { C̄hip-Ennable/Loā. With MODE (pin 27) }}$ LO, $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ serves as a master output enable; when HI , the bit outputs and POL, OR are disabled. With MODE HI, pin serves as a $\overline{\text { Loa }} \overline{\text {. strobe }}$ (-ve going) used in handshake mode. See Figures 7 \& 8 .
31	$\mathrm{V}(+)$	Positive Logic Supply Voltage. Nominally +5 V .
32	AN.IN	ANalog INput. High side.
33	BUF'IN	BUFfer INput to analog chip (ICL8052 or ICL8068)
34	REFCAP2	REFerence CAPacitor (negative side)
35	AN.GND.	ANalog GrouND: Input low side and reference low side.
36	A-Z	Auto-Zero node.
37	VREF	Voltage REFerence input (positive side)
38	REFCAP1	REFerence CAPacitor (positive side)
39	COMP-IN	COMParator INput from 8052/8068
40	$\mathrm{V}(-)$	Negative Supply Voltage. Nominally -15 V .

7104-16	$\overline{\text { CE/LD }}$																	
	HBE		MBEN								LBEN							
	POL.	O/R	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
			HBEN								LBEN							
7104-14			POL	O/R	B14	B13	B12	B11	810	B9	B8	B7	B6	B5	B4	B3	B2	B1
7104-12			POL	0/R			B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1

TABLE 4: Three-State Byte Formats and ENable Pins.

Fig. 1 shows the functional block diagram of the operating system. For a detailed explanation, refer to fig. 2 below.

Figure 1: $8052 \mathrm{~A}(8068 \mathrm{~A}) / 7104$ 16/14/12 Bit A/D Converter Functional Block Diagram

DETAILED DESCRIPTION

Analog Section

Figure 2 shows the equivalent Circuit of the Analog Section of both the ICL7104/8052 and the ICL7.104/8068 in the 3 different phases of operation. If the Run/Hold'pin is left open or tied to $\mathrm{V}+$, the system will perform conversions at a rate
determined by the clock frequency: 131,072 for $-16 ; 32,368$ for - 14; and 8092 for -12 clock periods per cycle (see Figure conversion timing).

Figure 2A: Phase I Auto-Zero

1. Auto-Zero Phase I Fig. 2A

During Auto-Zero, the input of the buffer is shorted to analog ground thru switch 2, and switch 1 closes a loop around the integrator and comparator. The purpose of
the loop is to charge the Auto-Zero capacitor until the integrator output no longer changes with time. Also, switches 4 and 9 recharge the reference capacitor to $V_{\text {REF }}$.

Figure 2B: Phase II Integrate Input

2. Input Integrate Phase II Fig. 2B

During input integrate the Auto-Zero loop is opened and the analog input is connected to the buffer input thru switch 3 . (The reference capacitor is still being charged to $V_{\text {REF }}$ during this time.) If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus the
integrator output will not change but will remain stationary during the entire Input Integrate cycle. If V_{IN} is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to ViN. At the end of this phase, the sign of the ramp is latched into the polarity F/F.

Figure 2C: Phase III + Deintegrate

Deintegrate Phase III Fig. 2C \& D
During the Deintegrate phase, the switch drive logic uses the output of the polarity F/F in determining whether to close switches 6 and 9 or 7 and 8 . If the input signal was positive, switches 7 and 8 are closed and a voltage which is VREF more negative than during Auto-Zero is impressed on the buffer input. Negative inputs will cause $+V_{\text {REF }}$ to be applied to the buffer input via switches 6 and 9. Thus, the reference capacitor generates the equivalent of a $(+)$ reference or a $(-)$ reference from the single reference voltage with negligible
error. The reference voltage returns the output of the integrator to the zero-crossing point established in Phase I. The time, or number of counts, required to do this is proportional to the input voltage. Since the Deintegrate phase can be twice as long as the Input integrate phase, the input voltage required to give a full scale reading $=2 V_{\text {REF }}$.
Note: Once a zero crossing is detected, the system automatically reverts to Auto-Zero phase for the leftover Deintegrate time (unless Run/Hold is manipulated, see Run/ Hold Input in detailed description, digital section).

Figure 2D: Phase III - Deintegrate

Figure 3: Conversion Timing

COMPONENT VALUE SELECTION

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to $40 \mu \mathrm{~A}$ give good results with a nominal of $20 \mu \mathrm{~A}$. The exact value may be chosen by

$$
\text { RINT }=\frac{\text { full scale voltage }{ }^{*}}{20 \mu \mathrm{~A}}
$$

*Note: If gain is used in the buffer amplifier then -

$$
\text { RINT }=\frac{\text { (Buffer gain) (full scale voltage) }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at +14 volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output. of the comparator. In general, the value of $\mathrm{C}_{\mathbf{I N T}}$ is give by

$$
\mathrm{C}_{\text {INT }}=\frac{\left[\begin{array}{l}
(32768 \text { for }-16 \\
(8192 \text { for }-14 \times \text { clock period }) \\
(2048 \text { for }-12
\end{array}\right] \times(20 \mu \mathrm{~A})}{\text { Integrator output voltage swing }}
$$

A very important characteristic of the integrating capacitor is that it have low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.

This ratiometric condition should read half scale (100 ...000) and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

Note: When gain is used in the buffer amplifier the reference capacitor should be substantially larger than the auto-zero capacitor. As a rule of thumb, the reference capacitor should be approximately the gain times the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}$.
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7104 at 16 bits is one part in 65536, or 15.26 ppm . Thus, if the reference has a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (on board reference) a temperature change of $1 / 3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. For this reason, it is recommended that an external high quality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

Buffer Gain

At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the autozero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system. The circuit recommended for doing this with the ICL8068/ICL7104 is shown in Figure 4. With careful layout, the circuit shown can achieve effective input noise voltages on the order of $1-2 \mu \mathrm{~V}$, allowing full 16 -bit use with full scale inputs of as low as 150 mV . Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome. For further. discussion, see App. Note A030.

Figure 4: Adding Buffer Gain, to ICL8068

Table 5: Typical Component Values
$\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Clock Freq $=200 \mathrm{kHz}$

ICL8052/8068 with	ICL7104-16			ICL7104-14		ICL7104-12		UNITS
Full scale VIN	200	800	4000	100	4000	50	4000	mV
Buffer Gain	10	1	1	10	1	10	1	
RINT $^{\text {CINT }^{C_{\text {AZ }}}} \quad 100$	43	200	47	180	27	200	$\mathrm{k} \Omega$	
Cref $^{V_{\text {REF }}}$.33	.33	.33	0.1	0.1	.022	.022	$\mu \mathrm{~F}$
Resolution	1.0	1.0	1.0	1.0	1.0	.47	.47	$\mu \mathrm{~F}$
	10	1.0	1.0	10	1.0	4.7	4.7	$\mu \mathrm{~F}$

ICL8052 vs ICL8068

The ICL8052 offers significantly lower input leakage currents than the ICL8068, and may be found preferable in systems with high input impedances. However, the ICL8068 has substantially lower noise voltage, and for systems where system noise is a limiting factor, particularly in low signal level conditions, will give better performance.

DETAILED DESCRIPTION

Digital Section

The digital section includes the clock oscillator circuit, a 16, 14 or 12 bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic and UART handshake logic, as shown in the Block Diagram Figure 5 (16 bit version shown).
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined under "ICL7104 Electrical Characteristics". For minimum power consumption, all inputs should swing from GND (low) to V^{+} (high). Inputs driven from TTL gates should have $3-5 \mathrm{k} \Omega$ pullup resistors added for maximum noise immunity.

MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in three bytes for the 7104-16 or two bytes for the 7104-14 and 7104-12, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STaTuS Output

During a conversion cycle, the STaTuS output goes high at the beginning of Input Integrate. (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 3 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STaTuS is low) to drive interrupts, or for monitoring the status of the converter.

Run/Hold Input

When the Run/Fold input is connected to $V+$ or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 3). (See under "Handshake Mode" for exception.) In this mode of operation, the conversion cycle will be performed in 131,072 for 7104-16, 32768 for 7104-14 and 8192 for $7104-2$ clock periods, regardless of the resulting value.
If Run//̄old goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If Run/Hold stays or goes low, the converter will ensure a minimum Auto-Zero time, and then wait in Auto-Zero until the Run/Fold input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at Run/Hold. See Figure 6 for details.
Using the Run/Hold input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in Auto-Zero with Run/Hold low. When Run/Hold goes high the conversion is started, and when the STaTuS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). Run/Hold may now go low terminating Deintegrate and ensuring a minimum AutoZero time before stopping to wait for the next conversion. Alternately, Run/Hold can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the Run/Hold input can be provided by connecting it to the CLOCK3 $(-12,-14)$, CLOCK2 (-16) Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on Auto-Zero performance.

Figure 5: Digital Section

Figure 6: Run/Hold Operation

If the Run/Hold input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for Run/Hold to go high. As above, Integrate (Phase II) begin's seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs[bits 1 through 8 low order byte, see Table 4 for format of middle (-16) and high order byteslare accessible under control of the byte and chip ENable terminals as inputs. These ENable inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip ENable input is low, taking a byte $\overline{E N}$ able
input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used. The timing requirements for these outputs are shown under AC Characteristics and Table 1.

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STaTuS output will prevent this. Data is never updated while STaTuS is low. Also note the potential bus conflict described under "Initial Clear Circuitry".

- - - = THREE-STATE HIGH IMPEDANCE
- $\boldsymbol{- 1}=$ THREE-STATE WITH PULLUP

Figure 7: Handshake With SEN Held Positive

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7104 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte ENable inputs. This mode is specifically designed to allow a direct interface between the ICL7104 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7104 provides all the control and flag signals necessary to sequence the three (ICL7106-16) or two (ICL7104-14, -12) bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.
Entry into the handshake mode will occur if either of two conditions are fulfilled; first, if new data is latched (i.e. a conversion is completed) while MODE pin (pin 27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handshake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion (other than those completed during handshake operations) will start a new
handshake operation, while if the MODE pin is pulsed high, handshake operations can be obtained "on demand."
When the converter enters the handshake mode, or when the MODE input is high, the chip and byte ENable terminals become TTL-compatible outputs which provide the control signals for the output cycle. The Send ENable pin (SEN) (pin 29) is used as an indication. of the ability of the external device to receive data. The condition of the line is sensed once every clock pulse, and if it is high, the'next (or first) byte is enabled on the next rising CLOCK 1 (pin 25) clock edge, the corresponding byte ENable line goes low, and the Chip ENable/LoaD line (pin 30) (CE/LD) goes low for one full clock pulse only, returning high.
On the next falling CLOCK 1 clock pulse edge, if SEN remains high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated off). One half pulse later, the byte ENable pin will be cleared high, and (unless finished) the $\overline{C E} / \overline{L D}$ and the next byte $\overline{E N}$ able pin will go low. This will continue until all three (2 in the case of 12 and 14 bit devices) bytes have been sent. The bytes are individually put into the low impedance state i.e.: threestated on during most of the time that their byte $\overline{E N}$ able pin is (active) low. When receipt of the last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The byte and chip ENable will be three-stated off, if MODE is low, but held high by their (weak) pullups.:These timing relationships are illustrated in Figure 7, 8, and 9, and Table 2.

Figure 8: Handshake - Typical UART Interface Timing

Figure 7 shows the sequence of the output cycle with SEN held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the $\overline{C E} / \overline{L D}, \overline{L B E N}, \overline{M B E N}$ and $\overline{\text { HBEN }}$ terminals are active as outputs). The high level at the SEN input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and the $\overline{\mathrm{HBEN}}$ outputs assume a low level and the high-order byte (POL and OR, and except for -16 , Bis $9-14$) outputs are enabled. The $\overline{C E} / \overline{L D}$ output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte ENable remains low for two clock periods. Thus the $\overline{C E} / \overline{L D}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte ENable as an output may be used as a byte identification flag. With SEN remaining high the converter completes the output cycle using $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}, \overline{\mathrm{MBEN}}$ and $\overline{\mathrm{LBEN}}$ while the remaining byte outputs (see Table 4) are activated. The handshake mode is terminated when all bytes are sent (3 for 16, 2 for $-14,-12$).
Figure 8 shows an output sequence where the SENinput is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEN input to the ICL7104 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the $\overline{C E} /[D$ terminal of the ICL7104 drives the TBRL (Transmitter Buffer Register Load) input to the UART.

The data outputs are paralleled into the eight Transmitter Buffer Register inputs.
Assuming the UART Transmitter Buffer Register is empty, the SEN input will be high when the handshake mode is entered after new data is stored. The $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and $\overline{\mathrm{HBEN}}$ terminals will go low after SEN is sensed, and the high order byte outputs become active. When $\overline{C E} / \overline{L D}$ goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7104 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the HBEN output returns high. At the same time, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and $\overline{\text { MBEN }}(-16)$ or $\overline{\text { LBEN }}$ outputs go low, and the corresponding byte outputs become active. Similarly, when the $\overline{C E} / \overline{L D}$ returns high at the end of one clock period, the enabled data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7104 internal clock high to low edge, disabling the data outputs. For the 16 bit device, the sequence is repeated for LBEN. One-half internal clock later, the handshake mode will be cleared, and the chip and byte ENable terminals return high and stay active (as long as MODE stays high). With the MODE input remaining high as in these examples, the converter will output the results of every conversion

Figure 9: Handshake Triggered By Mode
except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 11 shows a handshake output sequence triggered by such an edge. In addition, the SEN input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEN input, and the sequence for the first (high order) byte is similar to the sequence for the other bytes. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STaTuS output and Run/ $/$ Hold input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

Initial Clear Circuitry

The internal logic of the 7104 is supplied by an internal regulator between $\mathrm{V}++$ and Digital Ground. The regulator includes a low-voltage detector that will clear various registers. This is intended to ensure that on initial power-up, the control logic comes up in Auto-Zero, with the 2nd, 3rd, and 4th MSB bits cleared, and the "mode" FF cleared (i.e. in "direct" mode). This, however, will also clear these registers if the supply voltage "glitches" to a low enough value. Additionally, if the supply voltage comes up too fast, this clear pulse may be too narrow for reliable clearing. In general, this is not a problem, but if the UART internal "MODE" FF should come up set, the byte and chip ENable lines will become active outputs. In many systems this could lead to buss conflicts, especially in non-handshake systems. In any case, SEN should be high (held high for nonhandshake systems) to ensure that the MODE FF will be cleared as fast as possible (see Fig. 7 for timing). For these and other reasons, adequate supply bypass is recommended.

Oscillator

The ICL7104-14 and -12 are provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator.
Figure 10 shows the oscillator configured for RC operation. The internal clock will be of the same frequency and phase as the voltage on the CLOCK 3 pin. The resistor and capacitor should be connected as shown. The circuit will oscillate at a frequency given by $f=.45 /$ RC. A $50-100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that $32768(-16), 8192(-14), 2048(-12)$ clock periods is close to an integral multiple of the 60 Hz period.

Figure 10: RC Oscillator
Note that CLOCK 3 has the same output drive as the bit outputs.

As a result of pin count limitations, the ICL7104-16 has only CEOCK 1 and CLOCK 2 available, and cannot be used as an RC oscillator. The internal clock will correspond to the inverse of the signal on CLOCK 2. Figure 11 shows a crystal oscillator circuit, which can be used with all 7104 versions. If an external clock is to be used, it should be applied to CLOCK 1. The internal clock will correspond to the signal applied to this pin.

Figure 11: Crystal Oscillator

POWER SUPPLY SEQUENCING

Because of the nature of the CMOS process used to fabricate the ICL7104, and the multiple power supplies used, there are certain conditions of these supplies under which a disabling and potentially damaging SCR action can occur. All of these conditions involve the V+ supply (nom. +5 V) being more positive than the V++supply. If there is any possibility of this occuring during start-up, shut down, under transient conditions during operation, or when inserting a PC board into a "hot" socket, etc., a diode should be placed between V^{+} and $\mathrm{V}++$ to prevent it. A germanium or Schottky rectifier diode would be best, but in most cases a silicon rectifier diode is adequate.

ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of 8068 or $8052 / 7104$ circuits, especially in 16-bit and high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. A recommended connection sequence for the ground lines is shown in Figure 12.

APPLICATIONS INFORMATION

Some applications bulletins that may be found useful are listed here:

A016 "Selecting A/D Converters", by Dave Fullagar
A017 "The Integrating A/D Converter", by Lee Evans
A018 "Do's and Dont's of Applying A/D Converters", by Peter Bradshaw and Skip Osgood
A025 "Building a Remote Data Logging Station", by Peter Bradshaw
A030 "The ICL7104-A Binary Output A/D Converter for Microprocessors", by Peter Bradshaw
R005 "!nterfacing Data Converters \& Microprocessors", by Peter Bradshaw et al, Electronics, Dec. 9, 1976.

Figure 12: Grounding Sequence

ICL8052/8053(31⁄2 Digit) ICL8052A/8053A(41⁄2 Digit) Precision Chip Pairs for A/D Conversion

FEATURES

- Accuracy high enough for $\pm 40,000$ count instruments
- Priced low enough to compete with 3-1/2 digit DPM/DVM pairs
- One basic circuit for an entire family of DVMs
- Auto-Zero; Auto-Polarity
- 5pA typical input current
- Single reference voltage
- True ratiometric (scale factor of 1)

GENERAL DESCRIPTION

The ICL8052/8053 pair has been designed to "lock-in" the accuracy of a DVM and at the same time give the designer the freedom of using any output format his system requires. With reasonable care, the 0.001% linearity capability of the pair can be maintained in production instruments. The system uses time-proven dual-slope integration with all of its advantages: i.e., non-critical components, high rejection of noise and a-c signals, non-critical clock frequency and true ratiometric readings. At the same time it has reduced or eliminated many of the sources of error that have limited dual-slope accuracy. With the ICL8052/8053 pairs, critical board layout is no longer required to give low charge injection by the switches, and elaborate ground planes are not necessary to keep clock pulse transients out of the comparator circuitry. A further feature of these devices is that the DVM/DPM manufacturer can generate an entire family of instruments using only one basic p-c board with 2 or 3 jumper points. The family could include:

```
\pm200.0 mV Full Scale
\pm2.000 Volts
\pm400.0 mV
\pm4.000 Volts
\pm800.0 mV
\pm2.0000 Volts
\pm4.0000 Volts
` }\ddagger3.2768\mathrm{ Volts (16 bits in 0.1 mV increments)
```


ORDERING INFORMATION

Part	Temp. Range	Package	Order Number
8052	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052CPD
8052	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052CDD
8052 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052ACPD
8052 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052ACDD
8053	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8053CPD
8053	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8053CDD
8053 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8053ACPD
8053 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8053ACDD

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1) $\ldots \ldots \ldots \ldots \ldots \ldots . .500 \mathrm{~mW} \quad$ Operating Temperature $\ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots \ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad$ Lead Temperature (Soldering, 60 sec.) $\ldots \ldots . \ldots .300^{\circ} \mathrm{C}$

ICL8052 ONLY	
Supply Voltage	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration, All Outputs (Note 3)	. Indefinite

Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

ICL8053 ONLY

Source Current (Is) 100 mA
Drain Current (ID) .. . 100 mA
Digital Inputs .. 5 mA
V^{+}to V^{-}... . . 25 V
Digital Input .. V^{-}to V^{+}
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ICL8053 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right.$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	ICL8053			ICL8053A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Ron Switch 1, 3 (each Switch)	$\begin{gathered} V_{7}=+4.5 \mathrm{~V} \\ V_{6}=V_{9}=V_{10}=+0.5 \mathrm{~V} \end{gathered}$		1000	2500		1000	2500	Ω
Ron Switch 2	Same as Switch 1, 2		2000	5000		2000	5000	Ω
Ron Switch 4	$\begin{gathered} V_{9}=+4.5 \mathrm{~V} \\ V_{6}=V_{7}=V_{10}=+0.5 \mathrm{~V} \end{gathered}$		1000	2500		1000	2500	Ω
Ron Switch 5	$\begin{gathered} \mathrm{V}_{10}=+4.5 \mathrm{~V} \\ \mathrm{~V}_{6}=\mathrm{V}_{7}=\mathrm{V}_{9}=+0.5 \mathrm{~V} \end{gathered}$		1000	2500		1000	2500	Ω
Ron Switch 6	$\begin{gathered} V_{6}=+4.5 \mathrm{~V} \\ V_{7}=V_{9}=V_{10}=+0.5 \mathrm{~V} \end{gathered}$		1000	2500		1000	2500	Ω
Total Leakage Sw 1, 2, 5 \& 6 $\mathrm{I}_{1}+\mathrm{I}_{3}$ @ most positive Voltage	$\begin{gathered} \mathrm{V}_{6}=\mathrm{V}_{7}=\mathrm{V}_{9}=\mathrm{V}_{10}=+0.5 \mathrm{~V} \\ \mathrm{~V}_{4}=-4 \mathrm{~V}, \mathrm{~V}_{2}=0 \mathrm{~V} \\ \mathrm{~V}_{1}=\mathrm{V}_{3}=+4 \mathrm{~V} \end{gathered}$		10	50		5	20	pA
Total Leakage Sw 1, 2, 5 \& 6 $I_{1}+I_{3} @$ most negative Voltage	$\begin{gathered} V_{6}=V_{7}=V_{9}=V_{10}=+0.5 \mathrm{~V} \\ V_{4}=+4 \mathrm{~V}, \mathrm{~V}_{2}=0 \mathrm{~V} \\ \mathrm{~V}_{1}=\mathrm{V}_{3}=-4 \mathrm{~V} \end{gathered}$		10	50		5	20	pA
Total Leakage Sw 3 \& 4 $\mathrm{I}_{12}+\mathrm{I}_{13} @$ most positive Volt.	$\begin{aligned} V_{6}=V_{7} & =V_{9}=V_{10}=+0.5 \mathrm{~V} \\ V_{1} & =V_{11}=-4 V \\ V_{12} & =V_{13}=+4 V \end{aligned}$		10	50		5	20	pA
Total Leakage Sw 3 \& 4 $I_{12}+I_{13} @$ most negative Volt.	$\begin{aligned} V_{6}=V_{7} & =V_{9}=V_{10}=+0.5 V \\ V_{1} & =V_{11}=+4 V \\ V_{12} & =V_{13}=-4 V \end{aligned}$		10	50		5	20	pA
Supply Current (V^{+}or V^{-})	$V_{6,7,9}$ or $10=0.5 \mathrm{~V}$ (each of 4 drivers)		150	300		150	300	$\mu \mathrm{A}$
	$\mathrm{V}_{6}, 7,9$ and $10=4.5 \mathrm{~V}$ (all drivers)		1	10		1	10	$\mu \mathrm{A}$
Supply Voltage Range $\begin{aligned} & \mathrm{V}+ \\ & \mathrm{V}-\end{aligned}$		4 -12	$\begin{gathered} 5 \\ -15 \end{gathered}$	$\begin{gathered} 8 \\ -16 \end{gathered}$	4 -12	5 -15	$\begin{gathered} 8 \\ -16 \end{gathered}$	V
Switching Time ton toff	See Figure 1 See Figure 1		$\begin{gathered} 75 \\ 150 \end{gathered}$			$\begin{aligned} & 75 \\ & 150 \end{aligned}$		nsec nsec

8052 ELECTRICAL CHARACTERISTICS (Vsupp $= \pm 15 \mathrm{~V}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	CONDITIONS	8052			8052A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER									
Vos	Input Offset Voltage	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		20	50		20	50	mV
lin	Input Current (either input) (Note 1)	$\mathrm{V}_{C M}=0 \mathrm{~V}$		5	50		2	10	PA
CMRR	Common-Mode Rejection Ratio	$V_{\text {CM }}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
	Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$		110			110		
Av	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	20,000			20,000			V/V
SR	Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
GBW	Unity Gain Bandwidth			1			1		MHz
Isc	Output Short-Circuit Current			20	100		20	100	mA
COMPARATOR AMPLIFIER									
Avol	Small-signal Voltage Gain	$\mathrm{RL}=30 \mathrm{k} \Omega$		4000					V/V
+Vo	Positive Output Voltage Swing		+12	+13		+12	+13		V
- V_{0}	Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE									
Vo	Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
Ro	Outpuit Resistance			5			5		Ohms
TC	Temperature Coefficient			50			40		ppm $/{ }^{\circ} \mathrm{C}$
VSUPP	Supply Voltage Range		± 10		± 16	± 10		± 16	V
ISUPP	Supply Current Total			6	12		6	12	mA

Note 1: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\theta \mathrm{j} A \mathrm{Pd}$ where $\theta \mathrm{j} A$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 2: This is the only component that causes error in dual-slope converter.

SYSTEM ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{++}=+15 \mathrm{~V}, \mathrm{~V}^{+}+5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right.$; Clock Frequency Setfor 3 Reading/Sec)

CHARACTERISTICS	CONDITIONS	ICL8052/8053(3)			ICL8052A/8053A ${ }^{(4)}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input'Reading	$\mathrm{V}_{\text {in }}=0.0 \mathrm{~V}$	-0.000	± 0.000	+0.000	-0.0000	± 0.0000	+0.0000	Digital Reading
Ratiometric Reading	$V_{\text {in }}=V_{\text {Ref }}$.	+0.999	+1.000	+1.001	+0.9999	+1.0000	+1.0001	Digital Reading
Linearity over \pm Full Scale (error of reading from best straight line)	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+2 \mathrm{~V}$		0.2	1		0.5	1	Digital Count Error
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-\mathrm{V}_{\text {in }} \equiv+\mathrm{V}_{\text {in }} \approx 2 \mathrm{~V}$	\cdots	0.2	1		0.5	1	Digital Count Error
Noise (P-P value not exceeded 95% of time).	$\begin{aligned} V_{\text {in }} & =0 \mathrm{~V} \\ \text { Full scale } & =200.0 \mathrm{mV} \end{aligned}$		0.2				-	Digital Count
	Full scale $=2.000 \mathrm{~V}$		0.05			0.3		
Leakage Current into Input	$V_{\text {in }}=0 \mathrm{~V}$		5	30		3	10	pA
Zero Reading Drift .	$\begin{gathered} V_{\text {in }}=0 V \\ 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{gathered}$		1	5		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{gathered} V_{\text {in }}=+2 V \\ 0 \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{gathered}$ (ext. ref. $0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)		3	15		2	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Notes:

(3) Tested in 3-1/2 digit (2,000 count) circuit shown in Fig. 5 clock frequency 12 kHz .
(4) Tested in 4-1/2 digit (20,000 count) circuit shown in Fig. 5 clock frequency 120 kHz .

THEORY OF OPERATION

Figure 4 shows a function diagram for an A-D converter using the ICL8052/8053 pair. In this circuit, each measurement cycle is divided into four equal parts by the state F/F. The first part, state 00 , is the auto-zero cycle. The switch driver decoder recognizes this state and turns on hex switches number 1, 2, and 3. Switches 1 and 2 impress a voltage equal to VREF across the reference capacitor. Switch 3 closes a loop around the integrator and comparator. The purpose of this loop is to charge up the auto-zero capacitor until the integrator output no longer changes with time. During the second state, 01, switches 1,2 and 3 are opened and switch 4 is closed. If the input voltage is zero, the buffer, integrator and comparator will see the same voltages that existed in the previous state. Thus, the integrator output will not change but will remain stationary during the entire signal-integrate cycle. If V_{IN} is not equal to zero, an unbalanced condition exists compared to the auto-zero cycle and the integrator will generate a ramp whose slope is proportional to V_{IN}. At the end of this cycle, the sign of the ramp is latched into the polarity F / F. The final cycle, reference integrate, includes states 10 and 11. The switch driver decoder uses the output of the polarity F/F in deciding whether to close switch 5 or 6 . If the input signal was positive, switch 6 is closed and a voltage which is VREF more negative• than during auto-zero is impressed on the buffer input. If the input signal was negative switch 5 is closed and a voltage which is VREF more positive than during auto-zero is impressed on the buffer input. Thus, the reference capacitor generates the equivalent of a $(+)$ reference of a $(-)$ reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to zero. The time, or number of counts, required to do this is proportional to the input voltage. Since the reference cycle can be twice as long as the signal integrate cycle, the input voltage required to give a full scale reading $\equiv 2$ VREF. The circuit, as described to this point, is not new to this application. It has been used successfully for several years. However, this system makes three major contributions to the accuracy of this circuit. These are: (1) low charge injection, (2) junction FET op amp, and (3) zero-crossing flip-flop.

1. Low Charge Injection.

During auto-zero, there is no problem in charging the capacitors to the correct voltage. The problem is getting the switches off without changing this voltage. As the gate is driven off, the gate-to-drain capacitance of the switch injects a charge on the reference or auto-zero capacitor, changing its voltage. The designer, using discrete components, is forced into critical board layouts, where charges of opposite polarity are injected to compensate or neutralize the driver injection. This balance will be upset by any unit-to-unit variation of switch capacitance so at best the final design is a compromise. In the ICL8052/8053 the critical layout has been done on the semiconductor chip and need not concern the user. Also, since a silicon-gate process is used for the switches, the unit-to-unit variation is extremely low. The net result is to give an error due to charge injection that is so low it is difficult to measure; but certainly less than $5 \mu \mathrm{~V}$ referred to the input.
2. Junction FET Op Amps.

Both the buffer and integrator use junction FET inputs in a guarded circuit that reduces the voltage across the FET to 3 or 4 volts. At this voltage level, input leakage currents of 2 pA are typical. For typical component values 2 pA
leakage contributes less than $2 \mu \mathrm{~V}$ of error to the circuit. In theory, MOS FET's would contribute less leakage but their increased noise would swamp out any improvement by orders of magnitude.
3. Zero-Crossing Flip Flop.

The problem that the zero-crossing flip-flop is designed to solve is shown in figure 2.

Figure 2: Integrator Output Near Zero-Crossing
The integrator output is approaching the zero-crossing point where the clock will be stopped and the reading displayed. The clock pulse feedthrough superimposed upon this ramp will cause a false reading by stopping the count prematurely. For a 40,000 count instrument, the ramp is changing approximately 0.25 mV per clock pulse (10 volt max integrator output divided by 40,000 counts). The clock pulses have to be less than $100 \mu \mathrm{~V}$ peak to avoid causing significant errors. The circuit layout to achieve this can be time consuming at best and impossible at worst. The suggested circuit gets around this problem by feeding the zerocrossing information into a J-K flip-flop instead of using it directly. The flip-flop interrogates the data once every clock pulse after the transients" of the previous clock pulse and half-clock pulse have died down. Any false zero-crossing caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by one count in every instance. If a correction was not made, the display would always be one count too high. The correction is to change the four states of the converter one count early. In other words, instead of changing states at the beginning of count 0000, the states are changed at the beginning of caunt 9999. Since this pulse is always available as "carry" from a synchronous counter, no extra decoding is required. A bonus feature of this circuit is that latching the counter output becomes very simple with no potential race condition existing. The designer has one complete clock pulse to transfer the counter data to the latches and decouple them before a false reading will occur. The timing diagram for a signal ≈ 0 is shown in figure 3.

Figure 4: Functional Diagram for A/D Converter

ICL8052/8053 8052A/8053A

APPLICATIONS

Specific Circuits Using the ICL8052/8053

Figure 5 shows the complete circuit for a 4-1/2 digit $(\pm 2.000 \mathrm{~V}$ full scale) A-D with LED readout and parallel BCD data lines. In addition to the ICL8052/8053, this circuit uses 6 low-cost CMOS packages for control and 5 TIL 306 as a combination LED readout, synchronous counter, and BCD latch. In this circuit, the clock runs continuously driving the 5 decade counters in the TIL 306's. The carry from the fourth decade is used to trigger the state F-F. Thus, each of the four states lasts for 10,000 counts. At the beginning of state 10 , the 5 th decade is cleared. None of the other counters need to be cleared since they automatically roll to 0000 at this point. When the zero-crossing F-F detects the end of the measurement, a latch pulse is initiated. The R-C time constant of this pulse is selected long enough (50 nsec) to assure the latches turn on, but short enough ($3 \mu \mathrm{sec}$) to
assure that the latches are decoupled before the next clock pulse. Selecting a typical time constant of 400 nsec assures proper latching with wide variance in component value.
In order to give a visual indication of overload, the LED displays are blanked during state 00 if an overload exists. If overloaded, the instrument will blink a reading of 19999. A non-blinking reading 19999 is a valid reading for the instrument.
By-tying the clear terminals of the state flip-flop and the four decade counters to a common bus, the instrument can be synchronized to external events. If the bus is low, the instrument is held in auto-zero with the last measurement cycle at the beginning of state 00 . The data valid pulse indicates the end of measurement cycle. For free-running condition, the bus is held high at +5 volts.

Generating a Family of A-D Converters

In figure 5, the lines marked (MSB) and (MSB-1) are connected to Q_{B} and Q_{A} of the 4-bit state flip-flop respectively. This forces a change in state for each carry pulse (10,000 counts) from the decade counters. If the lines were moved to Q_{c} and Q_{B} respectively, two carry pulses (20,000 counts) would be required to change states. Since full-scale is two states long, the max count now becomes 40,000 ; (actually 39,999). Similarly if QD and Qc are used the max count is now 7,999 (one less decade counter would be used in this case). The ability to easily change max count (full scale) is most useful where the A-D converter is measuring physical constants such as temperature, distances, weight, etc. It allows designer to match the digital reading of the instrument to the analog range of the transducer. Since the analog input required to generate full scale output is $2 V_{\text {REF }}$ in every case, an almost endless variety of scale factors can be generated easily from one basic design. Table I summarizes how the family of DVM's is generated.
Specific circuits demonstrating this principle are shown in figures 5 and 6 . An 800.0 mV full scale A-D can be obtained from the 2.0000 V instrument shown in figure 5 with the three following modifications:

1. Delete middle LED counter.
2. State decode moved to QD and Qc.
3. Reference voltage adjusted to 0.4000 V .

Figure 6 is the specific circuit for a 16-bit binary A-D. Here the decade counters and displays have been replaced by
synchronous 4-bit counters and latches. To give a full scale reading of ± 3.2768 volts the reference is adjusted to 1.6384 . volts.
Figure 7 shows the circuit for a 40,000 count instrument. This circuit conforms to all of the "family" rules with the exception that it uses a -2.0000 volt reference. If a positive reference was used, pin 3 of the 8053 would have to swing to $+6 \mathrm{~V}(+4$ volt input +2 volt reference). Since this exceeds the +5 volt supply, the switch would forward bias into the substrate. It can easily accommodate the +2 to -6 volt swing required of a negative reference. A few changes are required when using a negative reference. The drive to pin 6 (+Reference driver) and pin 10 (-Reference driver) must be interchanged, no connections are made to pins 3,6 and 7 of the ICL8052, and the resistor divider between COMP OUT to AZ switch must be adjusted.

		Total Number Of Decade Counters	Connect MSB-1 to	Connect MSB to
$\pm 200.0 \mathrm{mV}$	+.1000 V	4	Q_{A}	Q_{B}
$\pm 2.000 \mathrm{~V}$	+1.000 V	4	Q_{A}	Q_{B}
$\pm 400.0 \mathrm{mV}$	+.2000 V	4	Q_{B}	Q_{C}
$\pm 4.000 \mathrm{~V}$	-2.000 V	4	Q_{B}	Q_{C}
$\pm 800.0 \mathrm{mV}$	+.4000 V	4	Q_{C}	Q_{D}
$\pm 2.0000 \mathrm{~V}$	+1.0000 V	5	Q_{A}	Q_{B}
$\pm 4.0000 \mathrm{~V}$	-2.0000 V	5	Q_{B}	Q_{C}
$\pm 3.2768 \mathrm{~V}$	+1.6384 V	4^{\star}	Q_{C}	Q_{D}

*Number of 4-bit binary counters
Table I

Alternate Circuits

In a 4-1/2 digit (20,000 count) instrument where the family generating capabilities of the four bit counter is not required, a dual D flip-flop can be substituted for this function with some reduction in parts costs. Also a " ± 1 " LED, driven by a dual D flip-flop, can replace the fifth TIL306. Figure 8 shows a circuit with these two substitutions made.
If the Parallel BCD capabilities of the TIL306 are not required, a further reduction in parts cost can be achieved by using the circuit of figure 9. In this circuit the MM74C926 performs the counting, latch and 7 segment decode function of the TIL306 such that it can be used with any LED displays. Some modification of the clock and latch circuit is required since the 74C926 uses a ripple counter with a carry at 0000
instead of a synchronous carry at 9999. When a zerocrossing signal is detected and the latch-enable is initiated, a signal is simultaneously fed to the clock drive circuitry to delay the clock and therefore the count until the previous count can be latched. The latch time-constant is shorter than the clock-delay time-constant to assure that the latch is transferred and disabled before the clock resumes clocking. A 1μ s time delay in the output of the clock driver assures that the slight delay (100ns) between the clock pulse and the clock-delay pulse does not clock the counter. Blanking is provided to give a visual indication of overload. However, the display will flash . 0000 instead of 1.9999 due to the nature of the ripple counter.

Component Selection

Except for the Reference Voltage, none of the component values are first-order important in determining the accuracy of the instrument. While this is undoubtedly an advantage of this approach, it does make the selection of nominal component values arbitrary at best. For instance the reference capacitor and auto-zero capacitor are each shown as $1.0 \mu \mathrm{~F}$. These relative large values are selected to give greater immunity to PC board leakage since much smaller capacitors are adequate for charge injection errors or leakage errors from the ICL8052/8053. The ratio of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at ± 14 volts) due to tolerance build-up between the resistor, capacitor a and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. Again the .22 value
for integrating cap is selected for PC considerations alone since the very small leakage at the integrator input is nulled at auto-zero. A very important characteristic of the integrating cap is low dielectric absorption. A polypropylene cap (made by TRW) gave excellent results in the application. In fact a good test for dielectric absorption is to test the subject cap in this circuit with the input tied to reference. This ratiometric condition should read 1.0000 and any deviation is probably due to dielectric absorption. In this test poly-carbonate caps typically read .9992, polystyrene, . 9997 and polypropylene, 1.0000. The increased temperature coefficient of polypropylene is of no consequence in this circuit. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Figure 5: General Circuit for a Family of DVM's.

The output of the comparator is clamped to the +5 volts supply to prevent the positive swing of the comparator from forward biasing the auto-zero switch to its substrate and injecting minority carriers that would be collected as leakage currents. In addition, a voltage translation network connects the output of the comparator to the auto-zero switch. The purpose of this network is to assure that, during auto-zero, the output of the comparator is at or near the threshold of the CMOS logic (+2.5 V) while the auto-zero cap is being charged to $V_{\text {REF }}(+1 \mathrm{~V}$ in the case of 2.0000 instrument). Otherwise even with zero signal in, some reference integrate period would be required to drive the comparator output to the
threshold region. This would show up as an equivalent offset error. Once the divider chain has been selected; the unit-tounit variation should contribute less than a few tenths-of-acount error in the worse case (40,000 count instrument) and proportionately less in other instruments. For a 3-1/2 digit instrument, the error is unmeasurable.
Finally, the back-to-back diodes are used to lower noise. In the normal operating mode they offer a high impedance and long integrating time constant to any noise pulses charging the auto-zero cap. At start-up or recovery from an overload, their impedance is low to large signals so the cap can be charged in one auto-zero cycle.

Figura 6: 16-Bit Binary Converter

Max Clock Frequency

The maximum conversion rate of most dual-slope A-D converters is limited by the frequency response of the comparator. Even though the comparator in this circuit is all NPN with an open-loop gain-bandwidth product of 300 MHz , it is no exception. The comparator output follows the integrator ramp with a $3 \mu \mathrm{~s}$ delay. At a clock frequency of $160 \mathrm{kHz}(6 \mu \mathrm{~s}$ period) half of the first reference integrate period is lost in delay. This means that the meter reading will change from 0 to 1 with $50 \mu \mathrm{~V}$ in, 1 to 2 with $150 \mu \mathrm{~V}, 2$ to 3 at $250 \mu \mathrm{~V}$, etc. This transition at midpoint is considered desirable by most users. However, if the clock frequency is increased appreciably above this, the instrument will flash " 1 " on noise peaks even when the input is shorted.

Some circuits use positive feedback or a latch to solve the delay problem. However, unless the comparator voltage swing, the comparator gain, and the integrator gain are carefully controlled, this circuit can generate anticipation errors that greatly exceed the $3 \mu \mathrm{~s}$ delay error. Also it is very susceptible to noise spikes. A more controlled approach for extending the conversion rate is the use of a small resistor in the integrator feedback loop. This feeds a small pulse to the comparator to get it moving quickly, and partially compensate for its delay.
The minimum clock frequency is established by leakage on the auto-zero and reference cap. With most devices, measurement cycles as long as 10 seconds gave no measurable leakage error.

Figure 7: 4-3/4 Digit DVM

ICL8052/8053 8052A/8053A

3-CD4025 - TRIPLE 3-INPUT NOR GATE
3-CD4073 - TRIPLE 3-INPUT AND GATE
4-CD4070 - QUAD EXCLUSIVE OR GATE
5-74L04-HEX INVERTER
6-74L74 - DUAL 'D' FLIP-FLOP
7-74L74 - DUAL 'D' FLIP-FLOP
8-MM74C926-4 DIGIT COUNTER WITH MULTIPLEXED 7-SEGMENT OUTPUT DRIVERS

Figure 9: 4-1/2 Digit DVM (20,000 Count Multiplexed Display)

ICL8052 vs. ICL8068

An alternative to the 8052 is the 8068.

While the ICL8052 offers significantly lower input leakage currents than the ICL8068, and may be found preferable in systems with high input impedances, the ICL8068 has sub-
stantially lower noise voltage and will give better performance in systems where noise is a limiting factor, such as low signal level conditions. Specifications may be found in the ICL8068/ICL8052/ICL71C03 and ICL8068/ICL8052/ ICL7104 data sheets.

Linear

Amplifiers		μ A741	$5-70$	
		ICL741HS	5.72	
Driver Amplifier for		AD741K	5.74	
Power Transistors	Page	ICL741LN	5.75	
ICL8063	5-213	μ A748	5-78	
Driver Amplifier for Actuators, Motors		μ A777	5.85	
		LH2101/2301	5-91	
ICH8510/20/30	5-239	LH2108/2308	5-93	
ICH8515	5-247	IH5101	5-113	
Instrumentation, Commutating Auto-Zero		ICL8008	5-174	
		Operational, High Impedance		
ICL7605/6	5-130			
Log-Antilog ICL8048/49		HA2607/27	$\begin{aligned} & 5-106 \\ & 5-109 \end{aligned}$	
	Operational, Chopper Stabilized		Operational, High Speed	
			HA2500 Family	5-99
			HA2507/17/27	5-104
	5-155	ICL8017	5-183	
Operational, Commutating Auto-Zero ICL7600/1 5-121		Operational, Low Power		
		LM4250	5-111	
		ICL76XX Series	5-140	
'Operational, FET Input		ICL8021-23	5-187	
LH0042	5-6	Video $\mu \mathrm{A} 733$		
AD503	5-49		5.63	
SU/NE536	5-52			
$\mu \mathrm{A} 740$	5-66			
ICL8007	5-171			
ICL8043	5-198	Comparators		
ICH8500	5-233			
Operational, General				
Purpose		LH2111/2311	5-97	
LM101/301	5-15	Followers		
LM107/307	5-27	LM102/302	5-19	
LM108/308	$5 \cdot 32$	LM110/310	5-19	
LM124/324	5-38	LH2110/231	5.95	

Low Power ICL8001	5-167
Precision	
LM111/311	5-33
Quad	
LM139/339	5-41
Sample and Hold IH5110-15	5-115
Temperature Sensor AD590	5-55
Voltage Reference	
ICL8069	5-221
ICL8211/12	5-223
Voltage Regulators	
LM100/300	5-11
LM105/305	5-23
μ A723	5.57
Special Function	

Operational Amplifiers-General Purpose

Operational Amplifiers-Low Power Programmable

Video Amplifiers

Type	Description	Gains (typ) (V/V).	Bandwidths (typ) (MHz)		Output Offset (V)	ISUPP (mA)	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages*
733M	Gain selectable video amp.	400, 100, 10	40, 90, 120	. 12	1.5	24	. $-55,+125$	T
733C	Gain selectable video amp.	400, 100, 10	40, 90, 120	12	1.5	24	$0,+70$	T

[^12]| Type | Description | $\begin{aligned} & V_{O S} \\ & (m V) \end{aligned}$ | $\begin{gathered} \mathrm{I}_{\mathrm{b}} \\ (\mathrm{nA}) \end{gathered}$ | Avol (V/V) | GBW (typ) (MHz) | $\begin{aligned} & \text { Slew } \\ & \text { Rate } \\ & (\mathrm{V} / \mu \mathrm{S}) \end{aligned}$ | $\begin{gathered} \mathrm{I}_{\text {Supp }} \\ (\mathrm{mA}) \end{gathered}$ | $\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$ | Packages* | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LH0042 | General Purpose | 5.0 | 10 | 50,000 | | 6 | 2.3 | -55 to 125 | T | |
| AD503 | High accuracy, low offset | 20 | 10 | 50,000 | | 3 | 7 max | $0,+70$ | T | |
| SU536 | General'Purpose | 30 | 30 | 50,000 | | 6 | 6 | -55, to 125 | T | |
| 740M | General Purpose | 20 | 200 | 50,000 | 3 | 6 | 5.2 | -55, +125 | T | |
| 740 C | General Purpose | 110 | 2000 | 20,000 | 1 | 6 | 8.0 | $0,+70$ | T | |
| 8007M | General Purpose, Compensated | 20 | 20 | 50,000 | 1.0 | 6 | 5.2 | $-55,+125$ | T | All BIFET amplifiers offer low noise - |
| 8007AM | 8007M, Low lb | 30 | 1.0 | 20,000 | 1.0 | 2.5 | 6 | $-55,+125$ | T | see data sheets. |
| 8007C | General Purpose, Compensated | 50 | 50 | 20,000 | 1.0 | 6 | 6 | $0,+70$ | T | |
| 8007AC | 8007 C , Low lb | 30 | 1.0 | 20,000 | 1.0 | 2.5 | 6 | $0,+70$ | T | |
| 8043M | Dual 8007M | 20 | - 20 | -50,000 | 1.0 | 6.0 | 6 | $-55,+125$ | J J | |
| 8043C | Dual 8007C . | 50 | 50 | 20,000 | 1.0 | 6.0 | 6.8 | -55, +. 125 | J,P | |
| 8500 | MOSFET Input, Compensated | 50 | 0.1 | 20,000 | 0.7 | 0.5 | 2.7 | -25, +85 | T | |
| 8500A | MOSFET Input, Super Low lb | 50 | 0.01 | 20,000 | 0.7 | 0.5 | 2.7 | -25, +85 | T | |

Operational Amplifièrs-High Speed

Type ${ }^{\text {e }}$	Description	$\begin{aligned} & V_{o s} \\ & (m V) \end{aligned}$	$\begin{gathered} I_{\mathrm{b}} \\ (\mathrm{PA}) \end{gathered}$	Avol (V/V)	$\begin{gathered} \text { GBW } \\ \text { (MHz) } \end{gathered}$	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ (\mathrm{V} / \mu \mathrm{S}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {SUPP }} \\ \text { (mA } \end{gathered}$	$\begin{aligned} & \left.\mathbf{1}^{\circ} \mathrm{C}\right) \end{aligned}$	Packages*	-
HA2500	High slew rate, Compensated	5.0	200	20,000	12	25	6.0	$-55,+125$	F,T,J	
HA2502	High slew rate, Compensated	8.0	250	15,000	12	20	6.0	-55, + 125	F,T,J	
HA2505	High slew rate, Compensated	8.0	250	15,000	12	20	6.0	$0,+75$	F,T	
HA2507	High slew rate, Compensated	5.0	125	15,000	12	30	4.0	0 to 75	F,T	
HA2510	High slew rate, Compensated	8.0	200	10,000	12	50	6.0	-55, + 125	F,T	
HA2512	High slew rate, Compensated	10.0	250	7,500	12	40	6.0	-55, + 125	F,T	
HA2515	High slew rate, Compensated	10.0	250	7.500	12	40	6.0	$0,+75$	F,T	
HA2517	High slew rate, Compensated	5.0	125	7,500	12	60	4.0	0 to 75	F,T	
HA2520	Compensated for $A_{v} \geqslant 3$	8.0	200	10,000	30	100	6.0	-55, + 125	F,T,J	
HA2522	Compensated for $A_{v} \geqslant 3$	10.0	250	7,500	30	80	6.0	$-55,+125$	F,T,J	
	Compensated for $A_{v} \geqslant 3$	10.0	250	7,500	30	80	6.0	$0,+75$	F.T, J	
HA2527	High slew rate, Compensated for $A_{v} \geqslant 3$	5.0	125	7,500	20	120	4.0	-65 to 150	F,T	
8017M	High speed, 'inverting	5.0	200	25,000	10	130^{*}	7.0	$-55+125$	T,F	
8017C	High speed, inverting	7.0	200	25,000	10	130*	8.0	0+70	T,F	

Operational Amplifiers-High Impedance

Type	Description	$\begin{aligned} & V_{O S} \\ & (m V) \end{aligned}$	$\begin{gathered} I_{b} \\ (n A) \end{gathered}$	$\begin{aligned} & \text { Avol } \\ & \text { (V/V) } \end{aligned}$	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ (\mathrm{V} / \mu \mathrm{S}) \end{gathered}$	$\underset{\substack{\text { Isupp } \\ \text { (mA) }}}{ }$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages*
HA2600	High impedance, Compensated	4.0	10	100,000	4	3.7	-55, + 125	F,J,T
HA2602	High impedance, Compensated	5.0	25	80,000	4	4.0	-55, + 125	F,J,T
HA2605	High impedance, Compensated	5.0	25	80,000	4	4.0	$0,+75$	F,J,T
HA2607	High impedance, Compensated	4.0	5	70,000	7	3.0	0 to 75	
HA.2620	2600 Compensated for $A_{v} \geqslant 5$	4.0	15	100,000	25	3.7	$-55,+125$	F,J,T
HA2622	2602 Compensated for $A_{v} \geqslant 5$	5.0	25	80,000	20	4.0	$-55,+125$	F,J,T
HA2625	2605 Compensated for $A_{v} \geqslant 5$	5.0	25	80,000	20	4.0	$0,+75$	F, J, T
HA2627	2607 Compensated for $A_{v} \geqslant 5$	4.0	5	70,000	35	3.0	0 to 75	P

See package key, page 5-5.

Voltage Followers

Type	Description	$\begin{aligned} & V_{\mathrm{OS}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} l_{\mathbb{N}} \\ (n A) \end{gathered}$	$\begin{gathered} A_{V}(M / N) \\ (V / V) \end{gathered}$	3 db B/W (MHz)	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ (\mathrm{V} / \mu \mathrm{S}) \end{gathered}$	Output Swing (V)			$\begin{gathered} T_{A} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	
102	Voltage Follower	5	10	0.999	-	-	± 10	4.0		$-55,+125$	F,T
110	Voltage Follower	4	3 .	0.999	-	-	± 10	-		$-55,+125$	J,F,T
302	Voltage Follower	15	30	0.9985	15	30	± 10	4.0		$0,+70$	T
310	Voltage Follower	7.5	7	0.999	15	30	± 10	-		$0,+70$	J, P, T
LH2110	Dual Voltage Follower	4.0	3	0.999	-	-	± 10	4.0		$-55,+125$	D
LH2310	Dual Voltage Follower	7.5	7	0.999	-	-	± 10	4.0		0 to 70	D

Comparators

Type	Description	$\begin{aligned} & V_{\mathrm{OS}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} I_{b} \\ (\mathrm{nA}) \end{gathered}$	$\begin{gathered} A_{V} \\ (V / m V) \end{gathered}$	$\underset{(\mathrm{ns})(\mathrm{typ})}{\mathrm{t}_{\mathrm{pd}}}$	Isupp (mA)	$\begin{aligned} & \mathbf{v O L}_{\mathrm{OL}} \\ & \left(V^{2}\right. \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages*
111	Precision Comparator	3	100	200	200	6	0.4	8	$-55,+125$	J,F,T
311	Precision Comparator	7.5	250	200	200	7.5	0.4	8	$0,+70$	J,F,P,T
8001M	Low Power Comparator	3	100	15	250	2	0.5	2	$-55,+125$	T
8001C	Low Power Comparator	5	250	15	250	2	0.4	2	0, + 70	T
LM139	Quad. Comparator	5	100	200	1300	2	0.7	4	$-55,+125$	J.
LM239	Quad. Comparator	5	250	200	1300	2	0.7	4	-25, + 85	J
LM339	Quad. Comparator	5	250	200	1300	2	0.7	4	$0,+70$	J,P
LH2111	Dual Precision Comparator	3	100	200	200	6	0.4	8	$-55,+125$	J
LH2311.	Dual Precision Comparator	7.5	250	200	200	7.5	0.4	8	0 , to 70	J

Notes: $t_{p d}$ measured for 100 mV step with 5 mV overdrive
ISUPP measured for $V_{\text {SUPP }}+ \pm 15 \mathrm{~V}$

Power Amplifiers

Type ${ }^{\circ}$	Description	Use	Output Current (A)	Output Swing (V)	$\begin{aligned} & V_{O S} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} l_{b} \\ (n A) \end{gathered}$	Avol (V/V)		Quiescent ISUPP (mA)	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
ICH8510M	Hybrid Power Amp.	Servo	1.0	± 26	3.0	250	100,000	0.5	40	$-55,+125$
ICH8510C	Hybrid Power Amp.	and	1.0	± 26	6.0	- 500	- 100,000	0.5	50	$-25,+85$
ICH8520M	Hybrid Power Amp.	Actuator	2.0	± 26	3.0	250	100,000	0.5	40	$-55+125$
ICH8520C	Hybrid Power Amp.		2.0	± 26.	6.0	500	100,000	0.5	50	-25, + 85
ICH8530M	Hybrid Power Amp.	-	2.7	± 25	3.0	250	100,000	0.5	40	$-55,+125$
ICH8530C	Hybrid Power Amp.		2.7	± 25	6.0	500	100,000	0.5	$\therefore 50$	$-25,+85$
ICL8063C	Monolithic Power Amp.	Power	2.0	± 27	50		6		250	0 + 70
ICL8063M	Monolithic Power Amp.	Transistors	2.0	± 27	75		6		300	$-55,+125$

Note 1. Specifications apply at $\pm 30 \mathrm{~V}$ supplies.
2. All units packaged in 8 lead TO3 can.
3. Fully protected against inductive current flow.
4. Externally settable output current limiting.

Voltage Regulators

Type	Input Voltage (V)		Output Voltage (V)		Input/Output Differential (V)		Load Current (mA)		Load Regulation (\%)	$\begin{gathered} \text { Line } \\ \text { Regulation } \\ (\% / V) \end{gathered}$	$\begin{aligned} & \text { Avg. } \\ & \text { Temp. } \\ & \text { Coeff. } \\ & \left(\% /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Pd at $25^{\circ} \mathrm{C}$ (mW)	$\begin{gathered} \mathrm{T}_{i} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages*
	min	max	min	max	min	max	min	max						
100	8.5	40	2.0	30	2.0	30	3.0	12	0.5	0.2	0.005	500	$-55,+150$	F, T
105	8.5	50	4.5	40	3.0	30	0	12	0.05	0.06	0.005	500	$-55,+150$	F,T
300	8.0	30	2.0	20	3.0	20	3.0	12	0.5	0.2	0.03	300	$0,+70$	T
305	8.0	40	4.5	30	3.0	30	0	12	0.05	0.06	0.03	500	$0,+70$	T
723	- 9.5	40	2.0	37	3.0	38	0	50	0.15	0.03	0.015	800	$-55,+125$	T, J
723C	9.5	40	2.0	37	3.0	38	0	50	000.2	0.03	0.015	660	0, + 70	P,T

*See package key, page 5-5".

Monolithic Voltage Converter-The ICL7660

[^13]| Type | | | Accuracy | $\mathbf{V}_{\text {SUPP }}$ | (${ }^{\mathrm{T}} \mathrm{Cf}_{\text {¢ }}$ | Packages* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AD590 | Temperature transducer-output linear at $1 \mu \mathrm{~A}^{\circ} \mathrm{K}$ Four quadrant multiplier. Output proportional to algebraic products of two input signals. Features $\pm 0.5 \%$ accuracy; internal op-amp for level shift, division and square root functions; full $\pm 10 \mathrm{~V}$ input/output range; 1 MHz bandwidth. | | $\pm 1^{\circ} \mathrm{C}$ | 4 to 30 | -55 to 150 | F, H |
| 8013AM | | | $\pm 0.5 \%$ | ± 15 | $-55 .+125$ | T |
| 8013BM | | | $\pm 1.0 \%$ | ± 15 | $-55,+125$ | T |
| 8013CM | | | $\pm 2.0 \%$ | ± 15 | $-55 .+125$ | T |
| 8013AC | | | $\pm 0.5 \%$ | ± 15 | $0 .+70$ | T |
| 8013BC | | | $\pm 1.0 \%$ | ± 15 | $0 .+70$ | T |
| 8013CC | | | $\pm 2.0 \%$ | ± 15 | 0, + 70 | T |
| 8038AM | Simultaneous Sine, Square, and Triangle wave outputs $T^{2} \mathrm{~L}$ compatible to 28 V over frequency range from 0.01 Hx to 1.0 MHz . Low distortion ($<1 \%$); high linearity (0.1%); low frequency drift with temperature ($50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.), variable duty cycle ($2 \%-98 \%$). | | 1.5\% | ± 5 to ± 15 | $-55,+125$ | J |
| 8038AC | | | 1.5\% | ± 5 to ± 15 | 0, + 70 | J |
| 8038BM | | | 3.0\% | ± 5 to ± 15 | -55.125 | J |
| 8038BC | External frequency modulation.
 Log amp. 1V/decade (Adjustable). 120 db range with current input. Error referred to output. Antilog amp. adjustable scale factor. | | 3.0\% | ± 5 to ± 15 | $0,+70$ | P |
| 8038CC | | - | 5.0\% | ± 5 to ± 15 | $0,+70$ | P |
| 8048BC | | | $\pm 30 \mathrm{mV}$ | ± 15 | $0,+70$ | J, P |
| 8048CC | | | $\pm 60 \mathrm{mV}$ | ± 15 | $0,+70$ | J, P |
| 8049BC | | | $\pm 10 \mathrm{mV}$ | ± 15 | $0,+70$ | J.P |
| $\begin{aligned} & 8049 C \mathrm{C} \\ & 8069 \end{aligned}$ | Error referred to input
 1.2 V temperature compensated voltage reference Micropower voltage detector/indicator/voltage regulator/ programmable zener. Contains 1.15 V micropower reference plus comparator and hysteresis output. Main output inverting (8212) or non-inverting (8211). | | $\pm 30 \mathrm{mV}$ | $\begin{gathered} \pm 15 \\ 5 \text { to } 15 \end{gathered}$ | $\begin{gathered} 0+70 \\ -55+125 \end{gathered}$ | $\begin{gathered} \text { J, P } \\ \text { TO-52, T0-92 } \end{gathered}$ |
| 8211M | | | 2 to 30 | $-55 .+125$ | T | |
| 8211C | | | 2 to 30 | 0, +70 | P.T | |
| 8212M | | | 2 to 30 | $-55+125$ | T | |
| 8212C | | | 2 to 30 | $0 .+70$ | P.T | |

Note: All parameters are specified at $\mathrm{V}_{\text {Supp }}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted.
Package Key: D-Solder lid side brazed ceramic dual in line. F-Ceramic flat pack. J-Glass frit seal ceramic dual in line. P-Plastic dual in line. T-Metal can.

Operational Amplifiers-CMOS

Type	Description		Compensation	Offset Null	$\mathrm{V}_{\text {OS }}$ Selection	l OS	I_{B}	Output Swing	Input CMR	Packages*
7611	Single, Selectable Io		Internal	Yes	2. 5.15 mV	0.5 pA	1 pA	$V_{\text {SUPP }}-100 \mathrm{mV}$	$V_{\text {Supp }}-100 \mathrm{mV}$	P.T
7612	Single, Selectable I_{a}. Extended CMVR		Internal	Yes A	2. 5.15 mV	0.5 pA	1 pA	$V_{\text {SUPP }}+300 \mathrm{mV}$	$V_{\text {SUPP }}-100 \mathrm{mV}$	P.T
7613	Single. Selectable I_{0}. Input Protected		Internal	Yes	2. 5.15 mV	0.5 pA	1 pA	$V_{\text {SUPP }}-100 \mathrm{mV}$	VSUPP - 100 mV	P.T
7614	Single. Fixed lo		External	Yes	2. 5.15 mV	0.5 pA	1 pA	$V_{\text {SUPP }}-100 \mathrm{mV}$	$V_{\text {SUPP }}-100 \mathrm{mV}$	P.T
7615	Single. Fixed Io Input Protected		External	Yes	2. 5.15 mV	0.5 pA	1 pA	$V_{\text {SUPP }}-100 \mathrm{mV}$	VSUPP - 100 mV	P.T
7621	Dual, Fixed Io		Internal	No	2. 5.15 mV	0.5 pA	1 pA	$V_{\text {Supp }}-100 \mathrm{mV}$	$V_{\text {SUPP }}-100 \mathrm{mV}$	P.T
7622	Dual. Fixed Io		Internal	Yes	2. 5.15 mV	0.5 pA	1 pA	$V_{\text {Supp }}-100 \mathrm{mV}$	$V_{\text {SUPP }}-100 \mathrm{mV}$	P.J
7631	Triple. Selectable I_{0}		Internal	No	5. 10.20 mV	0.5 pA	1 pA	$V_{\text {SUPP }}-100 \mathrm{mV}$	$V_{\text {SUPP }}-100 \mathrm{mV}$	P.J
7632	Triple. Selectable I_{0}	.	None	No	5. 10.20 mV	0.5 pA	1 pA	$V_{\text {SUPP }}-100 \mathrm{mV}$	$V_{\text {SUPP }}-100 \mathrm{mV}$	P, J
7641	Quad. Fixed to.		Internal	No	5. 10.20 mV	0.5 pA	1 pA	$V_{\text {SUPP }}-100 \mathrm{mV}$	V SUPP - 100 mV	P.J
7642	Quad, Fixed I_{0}		Internal	No	5. 10.20 mV	0.5 pA	1 pA	$V_{\text {SUPP }}-100 \mathrm{mV}$	VSUPP - 100 mV	P.J

Precision Operational Amplifiers, $V_{\text {SUPP }}= \pm 2 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$

Type	Description	$\begin{aligned} & V_{\mathrm{OS}} \\ & (\mu V) \end{aligned}$	$\begin{gathered} \Delta V_{O S} \\ \left(\mu V /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\perp V_{O S}$ ($\mu \mathrm{V} /$ year)	Isupp (mA)	$\begin{gathered} A_{V} \\ (\mathrm{~dB}, \mathrm{~min}) \end{gathered}$	Packages*	$\mathrm{T}_{\mathrm{A}}{ }^{\circ} \mathrm{C}$
ICL 7600C	Compensated	± 2	± 0.01	0.2	1.7	90	J.P	0 to 70
ICL 76001	Compensated	± 2	± 0.01	0.2	1.7	90	J.P	-25 to 85
ICL 7600 M	Compensated	± 2	± 0.05	0.2	1.7	90	J.P	-55 to 125
ICL 7601C	Uncompensated	± 2	± 0.01	0.2	1.7	90	J.P	0 to 70
ICL 76011	Uncompenşated	± 2	± 0.01	0.2	1.7	90	J.P	-25 to 85
ICL 7601M	Uncompensated	± 2	± 0.05	0.2	1.7	90	J.P	-55 to 125

Precision Inștrumentation Amplifiers, $V_{\text {SUPP }}= \pm 2 \mathrm{~V}$ to $\pm 5 \mathrm{~V}, I_{\text {SUPP }}=1.7 \mathrm{~mA}$

Type	Description	$\begin{aligned} & V_{\mathrm{OS}} \\ & (\mu V) \end{aligned}$	$\begin{gathered} \Delta V_{O S} \\ \left(\mu V /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \pm V_{\mathrm{OS}} \\ (\mu V / \text { year }) \end{gathered}$	$\begin{gathered} A_{V} \\ (d B, \min) \end{gathered}$	$\begin{gathered} \text { Slew } \\ \text { Rate }(\mathrm{V} / \mu \mathrm{S}) \end{gathered}$	IBIAS (pA)	Packages*	$\mathrm{T}_{\mathrm{A}}{ }^{\circ} \mathrm{C}$
ICL 7605C	Compensated	± 2	± 0.01	0.5	90	0.5	± 300	J.P	0 to 70
ICL. 76051	Compensated	± 2	± 0.01	0.5	90	0.5	± 300	J.P	-25 to 85
ICL 7605M	Compensated	± 2	± 0.05	0.5	90	0.5	± 300	J.P ,	-55 to 125
ICL 7606C	Uncompensated	± 2	± 0.01	0.5	90	0.5	± 300	J.P	0 to 70
ICL. 76061	Uncompensated	± 2	± 0.01	0.5	90	0.5	± 300	J.P	-25 to 85
ICL 7606M	Uncompensated	± 2	± 0.05	0.5	90	0.5	± 300	J.P	-55 to 125
ICL 7650C	$V_{\text {SUPP }}= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	± 1	± 0.01	$100 \mathrm{nV} / \sqrt{\text { manth }}$	126	2.5	± 1.5	J.P.T	0 to 70
ICL 76501	$V_{\text {SUPP }}= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	± 1	± 0.01	$100 \mathrm{nV} / \sqrt{\text { month }}$	126	2.5	± 1.5	J.P.T	-25 to 85

[^14]
FEATURES

- Low input offset voltage-5mV-typ.
- High open loop gain-100 dB typ.
- Excellent slew rate-3.0 V/ $\mu \mathrm{s}$ typ.
- Internal $6 \mathrm{~dB} /$ octave frequency compensation
- Pin compatible with standard IC op amps (TO-5 package)

GENERAL DESCRIPTION

The LH0042 is a FET input operational amplifier with very closely matched input characteristics, very high input impedance, and ultra-low input current, with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. Devices are internally compensated and
free of latch-úp and unusual oscillation problems, and may be offset nulled with a single 10K trimpot with negligible effect in CMRR.

The LH0042 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0042C is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The LH0042 IC op amp is intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents and tightly matched input offsets. The LH0042 provides low cost high performance for such applications as electrometer and photocell amplification, pico-ammeters, and high input impedance buffers.

PIN CONFIGURATION (outline dwg TO-99)

TOP VIEW

ORDERING INFORMATION

EQUIVALENT CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 22 \mathrm{~V}$
Power Dissipation (see graph) 500 mW
Input Voltage (Note 1) $\pm 15 \mathrm{~V}$
Differential Input Voltage (Note 2) $\pm 30 \mathrm{~V}$
Voltage Between Offset Null and $\mathrm{V}^{-} \ldots \pm 0.5 \mathrm{~V}$
Short Circuit Duration Continuous
Operating Temperature Range
LH0042 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0042C $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $\ldots300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS for LH0042/LH0042C
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0042			LH0042C			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage	Rs $\leqslant 100 \mathrm{k} \Omega$		5.0	20		6.0	20	mV
Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega$		5			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time	.		7.	.		10		$\mu \mathrm{V} /$ week
Input Offset Current			1	5		2	10	pA
Temperature Coefficient of Input Offset Current		Doubles every $10^{\circ} \mathrm{C}$			Doubles every $10^{\circ} \mathrm{C}$			
Offset Current Drift with Time		0.1			0.1			pA/week
Input Bias Current			10	25		15	50	pA
Temperature Coefficient of Input Bias Current		Doubles every $10^{\circ} \mathrm{C}$			Doubles every $10^{\circ} \mathrm{C}$			
Differential Input Resistance		10^{12}			10^{12}			Ω
Common Mode Input Resistance		10^{12}			10^{12}			Ω
Input Capacitance		4.0			4.0			pF
Input Voltage Range		$\pm 12 \pm 13.5$			$\pm 12 \pm 13.5$			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	7086			7080			dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 15 \mathrm{~V}$	$70 \quad 86$			$70 \quad 80$			dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	$50 \quad 150$			$25 \quad 100$			V / mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\pm 10 \pm 12.5$			$\pm 10 \pm 12$			V
Output Current Swing	VOUT $= \pm 10 \mathrm{~V}$	$\pm 10 \pm 15$			$\pm 10 \pm 15$			mA
Output Resistance		75			75			Ω
Output Short Circuit Current	.	20			20			mA
Supply Current	.	2.5		3.5	2.8		4.0	mA
Power Consumption				105			120	mW

LH0042/LH0042C

AC ELECTRICAL CHARACTERISTICS For all amplifiers ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$)

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0042			LH0042C			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Slew Rate	Voltage Follower	1.5	3.0		1.0	3.0		$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	Voltage Follower		40			40		kHz
Small Signal Bandwidth			1.0			1.0		MHz
Rise Time			0.3	1.5		0.3	1.5	$\mu \mathrm{s}$
Overshoot	,		10	30		15	40	\%
Settling Time (0.1 \%)	$\Delta \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$		4.5			4.5		$\mu \mathrm{s}$
Overload Recovery			4.0			4.0		$\mu \mathrm{s}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=100 \mathrm{~Hz}$		55			55		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise, Voltage	$\mathrm{R}_{\mathrm{s}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{RS}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{kHz}$		30			30		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{BW}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{Rs}=10 \mathrm{k} \Omega$		12			12		$\mu \mathrm{Vrms}$
Input Noise Current	$B W=10 \mathrm{~Hz}$ to 10 kHz		<. 1		.	<. 1	,	pArms

Notes:

1. For'supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. Rating applies for minimum source resistance of $10 \mathrm{k} \Omega$, for source resistances less than $10 \mathrm{k} \Omega$, maximum differential input voltage is $\pm 5 \mathrm{~V}$.
3. Unless otherwise specified, these specifications apply for $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \pm 125^{\circ} \mathrm{C}$ for the LH0042 and $-25^{\circ} \mathrm{C}$ $\leqslant T_{A}+85^{\circ} \mathrm{C}$ for the LH0042C. Typical values are given for $T_{A}=25^{\circ} \mathrm{C}$.

AUXILIARY CIRCUITS (shown for TO-5 pin out)

OFFSET NULL

BOOSTING OUTPUT DRIVE TO $\pm 100 \mathrm{~mA}$

NOTE: ALL DIODES ARE ULTRA LOW LEAKAGE
PROTECTING INPUTS FROM $\pm 150 \mathrm{~V}$ TRANSIENTS

TYPICAL APPLICATIONS

TYPICAL PERFORMANCE CHARACTERISTICS (CON'T.)

FREQUENCY CHARACTERISTICS VS AMBIENT TEMPERATURE

OUTPUT RESISTANCE VS

FREQUENCY

FREQUENCY CHARACTERISTICS VS
SUPPLY VOLTAGE

SUPPLY VOLTAGE ($\pm \mathrm{V}$)

OPEN LOOP TRANSFER CHARACTERISTICS.VS FREQUENCY

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE VS TEMPERATURE

TOTAL INPUT NOISE VOLTAGE* VS FREQUENCY

CHANGE IN INPUT OFFSET VOLTAGE DUE TO THERMAL SHOCK VS TIME

INPUT OFFSET CURRENT VS TEMPERATURE

OFFSET ERROR (WITHOUT Vos NULL)

COMMON MODE INPUT VOLTAGE VS SUPPLY VOLTAGE

SUPPLY VOLTAGE VS SUPPLY CURRENT

INPUT BIAS CURRENT VS TEMPERATURE

TOTAL INPUT NOISE VOLTAGE* VS SOURCE RESISTANCE

STABILIZATION TIME OF INPUT OFFSET VOLTAGE FROM POWER TURN-ON

VOLTAGE GAIN

FEATURES

- Output voltage adjustable from 2 V to 30 V
- One percent load and line regulation
- One percent stability over full military temperature range

The Intersil 100/300 monolithic integrated circuit is a voltage regulator. It is designed for use in applications that range from digital power supplies to precision regulators.

The output voltage is adjustable from 2 V to 30 V with a 1% load and line regulation. Short circuit current limiting is also adjustable. By adding external transistors, output currents in excess of $5 A$ are possible.

The device can be used as either a linear or high-efficiency switching regulator, and will start on any load within rating. switching regulator, and will start on any load within rating.
It responds quickly to both load and line transients and features small standby power dissipation, and freedom from oscillations with varying resistive and reactive loads.

GENERAL DESCRIPTION

SCHEMATIC DIAGRAM

ORDERING INFORMATION

Part number	To 99 Can	10-Pin Flatpak	Dice		
LM100	LM100H				
LM300	LM300H			\quad LM100F \quad	LM100/D
:---:					
LM300/D					

* Add $/ 883 \mathrm{~B}$ to order if 883 B processing is desired.
- Adjustable short circuit current limiting
- Output currents in excess of 5A possible by adding external transistors
- Can be used as either a linear or high-efficiency switching regulator

ABSOLUTE MAXIMUM RATINGS

	LM100	LM300
Input Voltage	40 V	35 V
Input-Output Voltage Differential	40 V	30 V
Power Dissipation (Note 1)	500 mW	300 mW
Operating Junction Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Note 2)

PARAMETER	CONDITIONS	MIN	LM100 TYP	MAX	MIN	M300 TYP	MAX	UNITS
Input Voltage Range		8.5		40	8.0		30	V
Output Voltage Range		2.0		30	2.0		20	V
Output-Input Voltage Differential		3.0		30	3.0		20	V
Load Regulation (Note 3)	$\mathrm{R}_{\text {SC }}=0, \mathrm{I}_{0}<12 \mathrm{~mA}$		0.1	0.5		0.1	0.5	\%
Line Regulation	$V_{\text {IN }}-V_{\text {OUT }} \leq 5 V$		0.1	0.2		0.1	0.2	\%/V
	$V_{\text {IN }}-V_{\text {OUT }}>55$		0.05	0.1		0.05 .	0.1	\%/V
Temperature Stability	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		0.3	1.0		0.3	2.0	$\begin{aligned} & \% \\ & \% \end{aligned}$
Feedback Sense Voltage			1.8			1.8		V
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{C}_{\text {REF }}=0 \\ & \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$			$\begin{aligned} & 0.005 \\ & 0.002 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
Long Term Stability			0.1	1.0		0.1	1.0	\%
Standby Current Drain	$\begin{aligned} & V_{\text {IN }}=40 \mathrm{~V} \\ & V_{\text {IN }}=30 \mathrm{~V} \end{aligned}$		1.0	3.0		1.0	- 3.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
- Minimum Load Current	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=30 \mathrm{~V} \\ & V_{\text {IN }}-V_{\text {OUT }}=20 \mathrm{~V} \end{aligned}$			3.0		1.5	- 3.0	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$

NOTE 1: The maximum junction temperature of the 100 is $150^{\prime \prime} \mathrm{C}$, while that of the 300 is $100^{\prime \prime} \mathrm{C}$. For operating at elevated temperatures devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\prime \prime} \mathrm{C} / \mathrm{W}$, junction to case: For the flat package, the derating is based on thermal resistance of $185^{\prime \prime} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2-ounce copper conductors. Peak dissipations to 1 W are allowable providing the dissipation rating is not exceeded with the power averaged over a five second interval.
NOTE 2: These specifications apply for a junction temperature between $-55^{\prime \prime} \mathrm{C}$ and $+150^{\circ} \mathrm{C},(100) 0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$, (300) for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of $2 \mathrm{k} \Omega$, unless otherwise specified. The load and line regulation specifications áre for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
NOTE 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

INInEREIL
TYPICAL PERFORMANCE CHARACTERISTICS FOR 100, 300*

REGULATION
CHARACTERISTICS
WITHOUT CURRENT
LIMITING

CURRENT LIMIT SENSE
VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

MINIMUM INPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

MINIMUM LOAD CURRENT
AS A FUNCTION OF INPUT.
OUTPUT VOLTAGE
DIFFERENTIAL

REGULATION
CHARACTERISTICS
WITH CURRENT
LIMITING

SHORT CIRCUIT CURRENT AS A FUNCTION OF JUNCTION TEMPERATURE

REGULATOR DROPOUT VOLTAGE AS A FUNCTIÓN OF JUNCTION TEMPERATURE

JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

LOAD TRANSIENT RESPONSE

CURRENT LIMITING CHARACTERISTICS

OPTIMUM DIVIDER
RESISTANCE VALUES AS A FUNCTION OF OUTPUT voltage

SUPPLY VOLTAGE
REJECTION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

INPUT-OUTPUT VOLTAGE DIFFERENTIAL (V)

LINE TRANSIENT

RESPONSE

[^15]
DEFINITION OF TERMS

INPUT VOLTAGE RANGE: The range of DC input voltages over which the regulator will operate within spécifications.

OUTPUT VOLTAGE RANGE: The range of regulated output voltages over which the specifications apply.

OUTPUT-INPUT VOLTAGE DIFFERENTIAL: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.

LINE REGULATION: The percentage change in regulated output voltage for a change in input voltage.

LOAD REGULATION: The percentage change in regulated output voltage for a change in load from the minimum load to the maximum load current specified.

TYPICAL APPLICATIONS

2A Regulator With Foldback Current Limiting

CURRENT-LIMIT SENSE VOLTAGE: The voltage across the current limit terminals required to cause the regulator to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.
TEMPERATURE STABILITY: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.
FEEDBACK SENSE VOLTAGE: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.
OUTPUT NOISE VOLTAGE: The average AC voltage at the output with constant load and no input ripple.
STANDBY CURRENT DRAIN: That part of the operating current of the regulator which does not contribute to the load current.

200 mA Regulator

4A Switching Regulator

General Purpose Operational Amplifier

GENERAL DESCRIPTION

The Intersil 101A and 301A are general purpose operational amplifiers. These high performance op amps are improved versions of the standard 101/301.

This general purpose op amp has many outstanding features; overload protection on the input and output, no latch-up when the common mode range is exceeded, and freedom from oscillations. The 101A also features better accuracy and lower noise in high impedance circuitry, and low input currents. Frequency compensation is achieved with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensa: tion can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

The Intersil 101A operates over a temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while that of the 301 A is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

ABSOLUTE.MAXIMUM RATINGS	
Supply Voltage 101A	$\pm 22 \mathrm{~V}$
301A	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Operating Temperature Range 101A	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
301A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

NOTE 1: The maximum junction temperature of the 101 A is $150^{\circ} \mathrm{C}$, while that of the 301 A is $100^{\circ} \mathrm{C}$: For operating at elevated temperatures devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

ORDERING INFORMATION

Part Number	8 lead TO-99	8 pin Plastic DIP	10 lead Flatpak	14 pin CER DIP	14 pin Plastic DIP	Dice
101A	LM101AH *		LM101AF. *	LM101AJ-14		LM101A/D
301A	LM301AH	LM301AN	LM301AF	LM301AJ	LM301AN-14	LM301A/D

* Add/883B to ordering number if 883 B processing is desired.

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS (Note)

PARAMETER	CONDITIONS	MIN	$\begin{aligned} & \text { 101A } \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{aligned} & \text { 301A, } \\ & \text { TYP } \end{aligned}$	MAX	UNITS
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	10		3	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75		70	250	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	4		0.5	2		$\mathrm{M} \Omega$
Supply Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{S}= \pm 15 \mathrm{~V} \end{aligned}$		1.8	3.0		1.8	3.0	mA $m A$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		25	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				20			70	nA
Average Temperature	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		0.01	0.1				$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Coefficient of Input	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$					0.01	0.3	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Offset Current	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$		0.02	0.2		0.02	0.6	$\begin{aligned} & \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \mathrm{nA} /{ }^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current				- 100			300	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		1.2	2.5				mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		v
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	± 15			± 12			$\begin{aligned} & v \\ & v \end{aligned}$
Common Mode Rejection Ratio		80	96		70	90		
Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	80	96		70	9		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{s}} \leq 50 \mathrm{k} \Omega$	80	96		70	96		dB

NOTE: For the 101A, these specifications apply for $\pm 5 \mathrm{~V}<\mathrm{V}_{S}< \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ unless otherwise specified. For the 301 A , these specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified.

GUARANTEED PERFORMANCE *

TYPICAL PERFORMANCE *

EQUIVALENT SCHEMATIC DIAGRAM

TYPICAL APPLICATIONS

High Performance Voltage Followers

FEATURES

Low Input Current - 7 to 30 nA Max

- High Slew Rate - 10 to $30 \mathrm{~V} / \mu \mathrm{s}$.
- Wide Bandwidth - 20 MHz (LM110/LM310)
- Internal Frequency Compensation
- Interchangeable with 741 in Follower Applications

EQUIVALENT CIRCUIT

ORDERING INFORMATION

Part number	TO-99 Can	10 pin Flatpak	14 pin CER DIP	8 pin Plastic DIP	Dice
LM102	LM102H	LM102F			-
LM110	LM110H*	LM110F* LM102/D LM302	LM110J		LM302H

GENERAL DESCRIPTION

The LM102/LM302 and LM110/LM310 are monolithic high performance voltage followers. In buffer applications they offer substantial advantages compared with general purpose operational amplifiers: input current, bandwidth, and slew rate are all significantly improved. Applications include high speed sample and hold circuits, instrumentation amplifiers, active filters, as well as general purpose buffers.
For new designs the LM110/LM310 is recommended.

PIN CONFIGURATIONS
 (outline dwg TO-99)

NOTE: Pin 4 connected to case
top view
(outline dwg FB)

NOTE: Pin 5 connected to bottom of package TOP VIEW

NOTE: Pin 6 connected to bottom of package

[^16]ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$	Operating Temperature Range:	102, 110	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Power Dissipation (Note 1)	500 mW		202, 210	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$		302, 310	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Output Short Circuit Duration (Note 3)	Indefinite	Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
		Lead Temperature (Soldering,	sec)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS 102/202/302 (Note 4)

PARAMETER	CONDITIONS	LM102			LM202			LM302			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Offset Voltage			2	5		3	10		5	15	mV
Average Temperature Coefficient of Offset Voltage			6		,	15			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Current	-		3	10		7	15		10.	30	nA
Input Resistance		10^{10}	10^{12}		10^{10}	10^{12}		10^{9}	10^{12}		Ω
Voltage Gain	$R_{L} \geq 10 \mathrm{k} \Omega$	0.999	0.9996		0.999	0.9995	1.000	0.9985	0.9995	1.000	
Output Resistance			0.8	2.5		0.8	2.5		0.8	2.5	Ω
Output Voltage Swing (Note 6)	$\mathrm{R}_{\mathrm{L}} \geq 8 \mathrm{k} \Omega$	± 10	± 13	.	± 10	.		± 10	$!$		V
Supply Current			3.5	5.5		3.5	5.5		3.5	5.5	mA
Positive Supply Rejection ${ }^{\text {- }}$	- .	60			60			60			dB
Negative Supply Rejection		70			70			70			dB
Input Capacitance				3.0		3.0			3.0		pF
Offset Voltage	$T_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$			7.5			15			20	mV
Input Current	$T_{A}=T_{\text {MAX }}$			10		1.5	5.0		3.0	15	nA
	$T_{A}=T_{M I N}$		30	100		30	50		20	50	$n \mathrm{~A}$
Voltage Gain	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C} \\ & R_{L} \geq 10 \mathrm{k} \Omega \end{aligned}$	0.999						,			
Supply Current	$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$		2.6	4.0				${ }^{\circ}$			mA

ELECTRICAL CHARACTERISTICS 110/210/310 (Note 5)

PARAMETER	CONDITIONS	LM110			LM210			LM310			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	4.0		1.5	4.0		2.5	7.5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	3.0		2.0	7.0	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{10}	10^{12}		10^{10}	10^{12}		10^{10}	10^{12}		Ω
Input Capacitance			1.5			1.5			1.5		pF
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega . \end{aligned}$	0.999	0.9999		0.999	0.9999		0.999	0.9999		V/V
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	2.5		0.75	2.5		0.75	2.5	Ω
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.9	5.5		3.9	5.5		3.9	5.5	mA
Input Offset Voltage				6.0			6.0			10	$m V$.
Offset Voltage Temperature Drift	,		10			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current				10	-		10			10	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999			0.999			0.999	-		V/v
Output Voltage Swing (Note 6)	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 10			± 10			± 10			v
Supply Current	$T_{A}=T_{\text {MAX }}$		2.0	4.0		2.0	4.0				mA
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$	70	80		70	80		70	80		dB

NOTE 1: The maximum junction temperature of the 102 and 110 is $150^{\circ} \mathrm{C}$, that of the 202 and 210 is 100 C , while that of the 302 and 310 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO- 5 package must be derated based on a thermal resistance of $150^{\prime \prime} \mathrm{C} / \mathrm{W}$. junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$. junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16-\mathrm{Inch}$ thick epoxy glass board with ten, 0.03 -nch-wide. 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$. junction to ambient.
NOTE 2: For supply voltages less than $\mathbf{1} 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\prime \prime} \mathrm{C}$. It is necessary to insert a resistor greater than 2 kS in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted. NOTE 4: These specifications apply for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=.15 \mathrm{~V}$ and $\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$ unless otherwise noted.
NOTE 5: These specifications apply for $: 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq: 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\prime \prime} \mathrm{C}$, unless otherwise specified With the 210 , however, all tem. perature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$, while for the 310 the limits are $0^{\circ} \mathrm{C}<\mathrm{T}_{A}<70^{\circ} \mathrm{C}$.
NOTE 6: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals. See curve

LM102, LM302, LM110, LM310

TYPICAL PERFORMANCE

SYMMETRICAL OUTPUT

*Note that optimum stability is obtained for a source resistance of $10 \mathrm{k} \Omega$. For source resistances lower than $10 \mathrm{k} \Omega$, it is advisable to put additional resistance in series with the input to ensure adequate stability margin.

OFFSET BALANCING

INCREASING NEGATIVE SWING UNDER LOAD

APPLICATIONS

SAMPLE AND HOLD

i

DEFINITION OF TERMS

OFFSET VOLTAGE: The voltage at the output of the amplifier with the input at zero.

OFFSET VOLTAGE TEMPERATURE DRIFT: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
INPUT CURRENT: The current into the input of the amplifier with the input at zero.

INPUT RESISTANCE: The ratio of the rated output voltage swing to the change in input current required to drive the output from zero to this voltage.
LARGE SIGNAL VOLTAGE GAIN: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

OUTPUT RESISTANCE: The ratio of the change in out-

INSTRUMENTATION AMPLIFIER

put voltage to the change in output current with constant input voltage.

OUTPUT VOLTAGE SWING: The peak output voltage swing, referred to zero, that can be obtained without the large-signal voltage gain falling below the minimum specified value.
SUPPLY CURRENT: The current required from the power supply to operate the amplifier, with no load, anywhere within its linear range.

POWER SUPPLY REJECTION: The ratio of the change in input offset voltage to the change in power supply voltage producing it.

SLEW RATE: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

FEATURES

- Output voltage adjustable from 4.5 V to 40 V (105)
- DC line regulation guaranteed at $0.03 \% / \mathrm{V}$
- Load regulation better than 0.1%

GENERAL DESCRIPTION

The Intersil 105/305 monolithic integrated circuit is a positive voltage regulator. It is a direct replacement for the $100 / 300$ with an extra gain stage added for improved regulation. In contrast to the 100/300, the 105/305 requires no minimum load current while permitting higher voltage operation by reducing standby current drain.

SCHEMATIC DIAGRAM

- Output current in excess of 10A possible by adding external resistor
- Direct, plug-in replacement for $100 / 300$ giving improved regulation

The Intersil 105/305 can be used as either a linear or switching regulator circuit with output voltages greater than 4.5 V . It features fast response to both load and line transients, and freedom from oscillations with varying resistive and reactive loads.

PIN CONFIGURATIONS

NOTE: Pin 4 connected to case
Flat Package

NOTE: Pin 4 connected to bottom of package

ORDERING INFORMATION

Part number	TO-99 Can	10 pin Flatpak	Dice
LM105	LM105H		
LM305	LM105F	LM105/D	
	LM305H		LM305/D

[^17]
ABSOLUTE MAXIMUM RATINGS

	105	305
Input Voltage	50 V	40 V
Input-Output Voltage Differential	40 V	40 V
Power Dissipation (Note 1)	500 mW	500 mW
Operating Junction Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS (Note 2)

PARAMETER	CONDITIONS	MIN	$\begin{aligned} & 105 \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{gathered} 305 \\ \text { TYP } \end{gathered}$	MAX	UNITS
Input Voltage Range		8.5		50	8.0		40	V
Output Voltage Range		4.5		40	4.5		30	V
Output-Input Voltage Differential		3.0		30	3.0		30	V
Load Regulation (Note 3)	$0 \leq \mathrm{I}_{0}<12 \mathrm{~mA}$							
	$R_{S C}=18 \Omega, T_{A}=25^{\circ} \mathrm{C}$		0.02	0.05		0.02	0.05	\%
	$R_{S C}=10 \Omega, T_{A}=125^{\circ} \mathrm{C}$		0.03	. 0.1			:	\%
	$R_{S C}=18 \Omega, T_{A}=-55^{\circ} \mathrm{C}$		0.03	0.1				\%
	$R_{\text {SC }}=15 \Omega, T_{A}=70^{\circ} \mathrm{C}$					0.03	0.1	\%
	$\mathrm{R}_{\text {SC }}=18 \Omega, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}$					0.03	0.1	\%
Line Regulation	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}$		0.025	0.06		0.025	0.06	\%/V
	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}>5 \mathrm{~V}$		0.015	0.03		0.05	0.03	\%/V
Temperature Stability	$\left\{\begin{array}{l} -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \end{array}\right.$		0.3	1.0		0.3	1.0	\%
Feedback Sense Voltage			1.8			1.8	1	V
Output Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$				-			
;	$C_{\text {REF }}=0$		0.005			0.005		\%
	$\mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}$		0.002			0.002		\%
Long Term Stability		-	0.1	1.0		0.1	1.0	\%
Standby Current Drain	$V_{\text {IN }}=50 \mathrm{~V}$		0.8	2.0				mA
	$\mathrm{V}_{\text {IN }}=40 \mathrm{~V}$					0.8	2.0	mA
Ripple Rejection	$C_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$		0.003	'0.01		0.003	0.01	\%/V

NOTE 1: The maximum junction temperature of the 105 is $150^{\circ} \mathrm{C}$, while that of the 305 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2 -ounce copper conductors. Peak dissipations to 1 W are allowable providing the dissipation rating is not exceeded with the power averaged over a five second interval.
NOTE 2: These specifications apply for a junction temperature between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$, (105) $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$, (305) for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of $2 \mathrm{k} \Omega$, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature. drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
NOTE 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

TYPICAL PERFORMANCE CHARACTERISTICS FOR 105,305*

CURRENT LIMIT SENSE

MINIMUM INPUT VOLTAGE

MINIMUM OUTPUT
VOLTAGE

* 305 only guaranteed $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}, V_{I N}=40 \mathrm{~V}$ max, $V_{O U T}=30 \mathrm{~V}$ max.

TYPICAL APPLICATIONS*

10A Regulator with Foldback Current Limiting

Switching Regulator

- Pin connections shown are for TO-5

DEFINITION OF TERMS

INPUT VOLTAGE RANGE: The range of DC input voltages over which the regulator will operate within specifications.

OUTPUT VOLTAGE RANGE: The range of regulated output voltages over which the specifications apply.

OUTPUT-INPUT VOLTAGE DIFFERENTIAL: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.

LINE REGULATION: The percentage change in regulated output voltage for a change in input voltage.

LOAD REGULATION: The percentage change in regulated output voltage for a change in load from the minimum load. to the maximum load current specified.

CURRENT-LIMIT SENSE VOLTAGE: The voltage across the current limit terminals required to cause the regulator

Shunt Regulator

to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.
TEMPERATURE STABILITY: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

FEEDBACK SENSE VOLTAGE: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.
OUTPUT NOISE VOLTAGE: The average AC voltage at the output with constant load and no input ripple.
STANDBY CURRENT DRAIN: That part of the operating current of the regulator which does not contribute to the load current.
RIPPLE REJECTION: The line regulation for ac input signals at or above a given frequency with a specified value of bypass capacitor on the reference bypass terminal.

FEATURES

- Offset voltage 3 mV maximum over temperature (107)
- Input c̣urrent 100 nA maximum over temperature (107)
- Offset current 20 nA maximum over temperature (107)
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode range

GENERAL DESCRIPTION

The 107 series amplifiers are complete, general purpose operational amplifiers, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards like the 709. Yet, they are a direct, plug-in replacement for the 709, LM101, LM101A and 741.
The 107 series provides better accuracy and lower noise than its predecessors in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators of timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at reduced cost.
The 307 has somewhat different specifications, and operates from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

EQUIVALENT SCHEMATIC

ORDERING INFORMATION

Part number	TO-99 Can	10 pin Flatpak	14 pin CERDIP	8 pin DIP	Dice
LM107	LM107H *	LM107F *	LM107J-14*		LM107/D
LM307	LM307H	LM307F	LM307J-14	LM307N	LM307/D

* Add /883B to ordering number if 883B processing desired.

PIN CONFIGURATIONS

(outline dwg TO-99)

(outline dwg JD)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 107 307
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
$\pm 18 \mathrm{~V}$
500 mW $\pm 30 \mathrm{~V}$ $\pm 15 \mathrm{~V}$
Indefinite
$\pm 22 \mathrm{~V}$ Operating Temperature Range 107
307
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SWITCHING CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	$\begin{aligned} & 107 \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{aligned} & 307 \\ & \text { TYP } \end{aligned}$	MAX	UNITS
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$		1.5	10		3	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75		70	250	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	4		0.5	2		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$.	1.8	3.0				mA
	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$					1.8	3.0	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	50	160		25	160		V / mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$			3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	+		3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				20			70	nA
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \leqslant \mathrm{~T}_{A} \leqslant 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$n A /^{\circ} \mathrm{C}$ $n A{ }^{\circ} \mathrm{C}$ $n A{ }^{\circ} \mathrm{C}$ $n A /{ }^{\circ} \mathrm{C}$
Input Bias Current				100			300	mA
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$		1.2	2.5				mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{O U T}= \pm 10 \mathrm{~V} \\ & R_{L} \geqslant 2 \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing	$\begin{array}{ll} V_{S}= \pm 15 \mathrm{~V}, \quad R_{\mathrm{L}} & =10 \mathrm{k} \Omega \\ R_{\mathrm{L}} & =2 \mathrm{k} \Omega \end{array}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & v \\ & v \end{aligned}$
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	± 15			± 12			v
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	80	96		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega$	80	96	*	70	96		dB

Note 1: The maximum junction temperature of the 107 is $150^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $70^{\circ} \mathrm{C}$ and ambient temperatures to $55^{\circ} \mathrm{C}$.
Note 4: These specifications apply for $\pm 5 \mathrm{~V}<\mathrm{V}_{S}< \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the 107 , unless otherwise specified. For the 307, the specifications. apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$, unless otherwise specified.

LM108/A, LM308/A Low Level Operational Amplifiers

FEATURES

- Input Bias Current - 2 nA max to 7 nA max
- Input Offset Current - 0.2 nA max to 1 nA max
- Input Offset Voltage -0.5 mV max to 7.5 mV max
- $\Delta \mathrm{Vos} / \Delta \mathrm{T}-5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- $\Delta \mathrm{los} / \Delta \mathrm{T}-2.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ to $10 \mathrm{pA} /{ }^{\circ} \mathrm{C}$
- Pin for Pin Replacement for 101A/301A

GENERAL DESCRIPTION

These differential input, precision amplifiers provide low input currents and offset voltages competitive with FET and chopper stabilized amplifiers. They feature low power consumption over a supply voltage range of $>2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. The amplifiers may be frequency compensated with a single external capacitor. The LM108A and LM308A are high performance selections from the 108/308 amplifier family.

PIN CONFIGURATIONS

ORDERING INFORMATION

Part number	TO-99 Can	8 pin MiniDIP	14 pin CERDIP	10 pin Flatpak	Dice
LM108A	LM108AH *	LM308AN	LM108AJ LM308AJ	LM108AF LM308AF	LM108A/D LM308A/D
LM308A	LM308AH	LM3			

*If 883B processing is desired add /883B to order number.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 108, 108A	$\pm 20 \mathrm{~V}$	Output Short-CircuitDuration Operating TemperatureRange	Indefinite
108, 108A	$\pm 20 \mathrm{~V}$ $\pm 18 \mathrm{~V}$	$108,108 \mathrm{~A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Internal PowerDissipation (Note 1)		308, 308A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Metal Can (TO-99	500 mW	Storage TemperatureRange	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
DIP	500 mW	Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$		
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$		

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Note 4)

PARAMETER	CONDITIONS	MIN	$\begin{aligned} & 308 \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{aligned} & \text { 308A } \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{aligned} & 108 \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{aligned} & \text { 108A } \\ & \text { TYP } \end{aligned}$	MAX	UNITS
Input Offset Voltage			2.0	7.5		0.3	0.5		0.7	2.0		0.3	0.5	mV
Input Offset Current			' 0.2	1.0		0.2	- 1.0		0.05	0.2		0.05	0.2	$n A$
Input Bias Current	,		1.5	7		1.5	7		0.8	2.0	-		2.0	nA
Input Resistance		10	40		10	40		30	70		30	70		$\mathrm{M} \Omega$
Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		0.3	0.8		0.3	0.8		0.3	0.6	-	0.3	0.6	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25	300		80	300		50	300		80	300		V / mV

THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES

NOTE 1: Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the Dual In -Line package at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.
NOTE 2: The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voitage in excess of IV is applied between the inputs unless some limiting restistance is used.
NOTE 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
NOTE 4: Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the 108 , and 108A and $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the 308 and 308A.

INInEREIL
TYPICAL PERFORMANCE CURVES

OUTPUTं CURRENT ($\pm \mathrm{mA}$)

LARGE SIGNAL.
FREQUENCY RESPONSE

GUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 108 amplifier. Boards must be thoroughly cleaned with' TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble at $125^{\circ} \mathrm{C}$, particularly. since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99
package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage at the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.
The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration).

ALTERNATE CIRCUIT: IMPROVES REJECTION OF POWER SUPPLY NOISE BY A FACTOR OF TEN.

Precision Voltage Comparators

FEATURES

- Differential Input Voltage Range $- \pm 30 \mathrm{~V}$
- Input Common Mode Voltage Range $- \pm 14 \mathrm{~V}$
- Operating Power Supplies +5 V to $\pm 18 \mathrm{~V}$
- Input Offset Current - 20 nA max
- Input Offset Voltage -3 mV max .
- Output Flexibility - 35V; 50 mA ;
$\mathrm{T}^{2} \mathrm{~L}$ Compatible
- Strobed Output \& Input Offset Adjustable

GENERAL DESCRIPTION

The LM111 Series comparators are designed for precision applications where the input and output characteristics of 710 and 106 high speed comparators are not adequate for low level signal detection and high level output drive capability. They are designed to operate from supplies up to $\pm 18 \mathrm{~V}$ and single supplies down to +5 V . The output is capable of driving TTL, RTL, DTL as well as MOS and lamps or relays. Input offset voltage balancing and TTL. strobe capability are provided. Outputs can be wire OR'ed.
Switching speeds to TTL logic levels are typically 250 ns.

PIN CONFIGURATIONS

ORDERING INFORMATION

Part number	TO-99 Can	10 pin Flatpak	14 pin CER DIP	8 pin Plastic DIP	14 pin Plastic DIP	Dice
LM111	LM111H *	LM111F	LM111J*		LM311N-14	LM111/D
LM311	LM311H	LM311F	LM311J	LM311N		LM311/D

* Add /883B to order number if 883B processing is desired.

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage	36 V	
Output to Negative Supply Voltage	LM111,	50 V
	LM 311	40 V
Ground to Negative Supply Voltage		30 V
Differential Input Voltage	$\pm 30 \mathrm{~V}$	
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	
Power Dissipation (Note 2)	500 mW	
Output Short Circuit Duration	10 seC	
Operating Temperature Range LM111.		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM311	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Storage Temperature Range		$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Note 3)

PARAMETER	CONDITIONS	MIN	LM111 TYP	MAX	MIN	LM311 TYP	MAX	UNITS
Input Offset Voltage (Note, 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \cdots$		0.7	3.0		2.0	7.5	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0	10		6.0	50	$n \mathrm{~A}$
Input Bias Current	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		60	100		100	250	nA
Voltage Gain	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		200			200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		200			200		ns
Saturation Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							(
	$\begin{aligned} & V_{\text {IN }} \leq-5 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \\ & V_{\text {IN }}<-10 \mathrm{mV}, \text { I OUT }=50 \mathrm{~mA} \end{aligned}$		0.75	1.5		0.75	1.5	V
Strobe on Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0			3.0		mA
Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.	
, -	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & V_{\text {IN }} \geq 10 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \end{aligned}$		0.2	10		0.2	50	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			4.0			10	mV
Input Offset Current (Note 4)				20			70	nA
Input Bias Current				150			300	nA
Input Voltage Range		± 14				± 14		V
Saturation Voltage ${ }^{\text {' }}$	$\mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0$,	\because		'.
	$\mathrm{V}_{\text {IN }} \leq-6 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 8 \mathrm{~mA}$		0:23	0.4				
	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \mathrm{I}_{\text {SINK }} \leq 8 \mathrm{~mA}$					0.23	0.4	V
Output Leakage Current (Note 6)	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5				$\mu \mathrm{A}$
Positive Supply Current	$T_{A}=25^{\circ} \mathrm{C}$.	5.1	6.0		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0		4.1	5.0	mA

NOTE 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
NOTE 2: The maximum junction temperature of the 111 is $150^{\circ} \mathrm{C}$, while that of the 311 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{CW}$, junction to ambient, or $45^{\circ} \mathrm{CW}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{CW}$, when mounted on a $1 / 16$-inch-thick epoxy glass board with ten, 0.03 -inch-wide, 2 -ounce copper conductor. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C}, \mathrm{W}$, junction to ambient.
NOTE 3: These specifications apply for $\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$ and over the operating temperature range, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to ± 15 supplies.
NOTE 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
NOTE 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
NOTE 6: This specification applies for Pin $1-15 \mathrm{~V}$, Pin $7+20 \mathrm{~V}$.

INPUT BIAS CURRENT 111

INPUT OFFSET
CURRENT 111

COMMON MODE LIMITS

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

OUTPUT SATURATION VOLTAGE

TYPICAL PERFORMANCE (Cont)

DEFINITION OF TERMS

INPUT OFFSET VOLTAGE: The voltage between the input terminals required to make the output voltage greater than or less than specified voltages.
INPUT OFFSET CURRENT: The difference between the two input currents for which the output will be driven higher than or lower than specified voltages.
INPUT BIAS CURRENT: The average of the two input currents.
INPUT VOLTAGE RANGE: The range of voltage on the input terminals (common mode) over which the offset specifications apply.

VOLTAGE GAIN: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.

RESPONSE TIME: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.
SATURATION VOLTAGE: The low output voltage level with the input drive equal to or greater than a specified value.

STROBE ON CURRENT: The current that must be drawn out of the strobe terminal to disable the comparator.
OUTPUT LEAKAGE CURRENT: The current into the output terminal with a specified output voltage relative to the ground pin and the input drive equal to or greater than a given value.
SUPPLY CURRENT:, The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.

TYPICAL APPLICATIONS

TTL COMPATIBLE OUTPUT SWING

USING CLAMP DIODES TO IMPROVE RESPONSE

INCREASING INPUT STAGE SLEW RATE*

- INCREASES TYPICAL COMMON MODE SLEW FROM $7.0 \mathrm{~V} / \mu \mathrm{s}$ TO $18 \mathrm{~V} / \mu \mathrm{s}$

FEATURES

- Internally frequency compensated for unity gain
- Large DC voltage gain

100 dB

- Wide bandwidth (unity gain)

1 MHz (temperature compensated)

- Wide power supply range:

Single supply
$3 V$ to 30 V
or dual supplies $\pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

- Very low supply. current drain $(800 \mu \mathrm{~A})$ - essentially independent of supply voltage ($1 \mathrm{~mW} / \mathrm{op}$ amp at +5 V)
- Low input biasing current

45nA (temperature compensated)

- Low input offset $2 m V$ and offset current 5nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing oV to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

GENERAL DESCRIPTION

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5 V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}$ power supplies.

In the linear mode the input common-mode voltage range includes ground, and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

The unity gain cross frequency is temperature compensated, as is the input bias current.
PIN CONFIGURATION (outline dwgs JD, PD)

CHIP CONFIGURATION

CHIP DIMENSION 56×61 MILS

* Add $/ 883 \mathrm{~B}$ to order number if 883 B processing is desired.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Plastic
CERDIP
Output Short-Circuit to GND (One Amplifier) (Note 2)
$\mathrm{V}^{+} \leq 15$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

32 V or $\pm 16 \mathrm{~V}$
32V
$-0.3 V$ to $+32 V$
570 mW
900 mW
Continuous

Input Current ($\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{OL}}$), (Note 3)
Operating Temperatúre Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM324 $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM124 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) ' $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5.0 \mathrm{~V}\right.$, Note 4)

PARAMETER	CONDITIONS	MIN	LM12 TYP	MAX	MIN	LM32 TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		± 2	± 5		± 2	± 7	mV
Input Bias Current (Note 6)	$\mathrm{I}_{\mathrm{IN(+)}}$ or $\mathrm{I}_{\text {IN(-) }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		45	150		45	250	nA
Input Offset Current	$\mathrm{I}_{\mathrm{IN(+)}}-I_{\text {IN(-) }}, T_{A}=25^{\circ} \mathrm{C}$		± 3	± 30		± 5	± 50	nA
Input Common-Mode Voltage Range (Note 7)	$\mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		$\mathrm{V}^{+}-1.5$	0		V+-1.5	V
Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=x \mathrm{~V}_{\mathrm{cc}}=30 \mathrm{~V},\left(\mathrm{LM} 2902 \mathrm{~V}_{c c}=26 \mathrm{C}\right) \\ & \mathrm{R}_{\mathrm{L}}=x \text { On All Op Amps } \end{aligned}$ Over Full Temperature Range $T_{A}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} \hline 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \text { (For Large } \mathrm{V}_{O} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	50	100		25	100		V / mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(\mathrm{LM} 2902 \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right)$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	V
Common-Mode Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	70	85		65	70		dB
Power Supply Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	65	100		65	100		dB
Amplifier-to-Amplifier Coupling (Note 8)	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred) } \end{aligned}$		-120			-120		dB
Output Current Source Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}} 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}-}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN+}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	20 10 12	40 20 50		20 10 12	40 20 50		mA mA $\mu \mathrm{A}$
Short Circuit to Ground	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)		40	60		40	60	mA
Short Circuit to ${ }^{+}$			20	40		20	40	,
Input Offset Voltage	(Note 5)			± 7			± 9	mV
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{s}}=0 \Omega$		7	-		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{I}_{\mathbf{N (+)}}-\mathrm{I}_{\text {IN(}-1}$			± 100			± 150	nA
Input Offset Current Drift			10			10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{I}_{\text {IN(+) }}$ or $\mathrm{I}_{\text {IN(-) }}$		40	500		40	500	nA
Input Common-Mode Voltage Range (Note 7)	$\mathrm{V}^{+}=30 \mathrm{~V}$	0	,	$\mathrm{V}^{+}-2$	0		V+-2	V
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V} \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing V_{OH} V_{OL}	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{t}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \leq 10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 28 \\ 5 \end{gathered}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 28 \\ 5 \end{gathered}$	20	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{mV} \end{gathered}$
$\begin{aligned} & \hline \text { Output Current } \\ & \text { Source } \\ & \text { Sink } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{array}{r} 20 \\ 8 \\ \hline \end{array}$		$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 8 \\ \hline \end{gathered}$		$\begin{array}{r} \mathrm{mA} \\ \mathrm{~mA} \\ \hline \end{array}$
Differential Input Voltage	(Note 7)		;	V^{+}	.		V^{+}	V

Note 1: For operating at high temperatures, the LM324 must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM124 can be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature. The dissipation is the total of all four amplifiers-use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

Note 2: Intersil's LM124 series is protected against shorts to either V^{+}or V^{-}. No more than one output at a time should be shorted. At $\mathrm{V}_{\text {supp }}>15 \mathrm{~V}$, continuous shorts can exceed the power dissipation ratings and cause eventual destruction.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parsitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative again returns to a value greater than -0.3 V .
Note 4: These specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LM 124 , and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ for the LM 324 .
Note 5: $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V , and over the full input common-mode range (0 V to $\mathrm{V}^{+}=1.5 \mathrm{~V}$).
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 7: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.

Note 8: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitive coupling increases at higher frequencies.

TYPICAL PERFORMANCE CHARACTERISTICS

OPEN LOOP FREQUENCY RESPONSE

VOLTAGE FOLLOWER PULSE RESPONSE (SMALL SIGNAL)

INPUT CURRENT

. COMMON MODE REJECTION RATIO

OUTPUT CHARACTERISTICS CURRENT SOURCING

SUPPLY CURRENT

VOLTAGE FOLLOWER PULSE RESPONSE

OUTPUT CHARACTERISTICS CURBENT SINKING

FEATURES

- Wide single supply voltage range or dual supplies
- Very low supply current drain (0.8 mA)independent of supply voltage ($2 \mathrm{~mW} /$ comparator at +5 V)
- Low input biasing current 25 nA
- Low' input offset current $\pm 5 \mathrm{nA}$ and offset voltage $\pm 3 \mathrm{mV}$
- Input common-mode voltage range includes gnd
- Differential input voltage range equal to the power supply voltage
- Low output 250 mV at 4 mA saturation voltage
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

GENERAL DESCRIPTION

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic -where the low power drain of the LM339 is a distinct advantage over standard comparators.

ORDERING INFORMATION

Part Number	Temperature Range	Dice	14 pin CCR DIP	14 pin Plastic	14 pin Flatpak
LM139 LM339	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM139/D LM339/D	LM139J* LM339J	LM339N	LM139F LM339F

[^18]PIN CONFIGURATION

(outline dwgs JD, PD)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, ${ }^{\text {V }}$
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Flat Pack
Output Short-Circuit to GND, (Note 2).
Input Current ($\mathrm{V}_{\mathbb{N}}<-0.3 \mathrm{~V}$), (Note 3)
Operating Temperature Range
LM339

LM139.
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

36 V or $\pm 18 \mathrm{~V}$ 36 V
-0.3 V to +36 V
570 mW
900 mW
800 mW
Continuous 50 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+} .=5 \mathrm{~V}\right.$, Note 4) ${ }^{\text {² }}$

PARAMETER	CONDITIONS	LM139			UNITS
		MIN.	TYP.	MAX.	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 9)		± 2.0	± 5.0	mV
Input Bias Current	$\mathrm{I}_{\mathrm{IN}_{(+)}}$or $\mathrm{I}_{\text {iN(-) }}$ with Output in Linear Range, $T_{A}=25^{\circ} \mathrm{C}$, (Note 5)		25	100	nA
Input Offset Current	$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN(-)},}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 3.0	± 25	nA
Input Common-Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)	0		V+-1.5	V
Supply Current	$\begin{aligned} & R_{L}=\infty \text { on all Comparators, } T_{A}=25^{\circ} \mathrm{C} \\ & R_{L}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.8	2.0	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}\left(\mathrm{To}_{0}\right. \\ & \text { Support Large } \mathrm{V}_{\mathrm{O}} \text { Swing), } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=T \mathrm{~L} \text { Logic Swing, } \mathrm{V}_{\mathrm{REF}}= \end{aligned}$		200		V / mV
Large Signal Response Time	$\begin{aligned} & 1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 7) \end{aligned}$,	1.3		$\mu \mathrm{S}$
Output Sink Current	$\begin{aligned} & V_{i(N-)} \geqslant 1 \mathrm{~V} ; V_{i N(+)}=0, \\ & V_{0} \leqslant 1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6.0	16		mA
Saturation Voltage	$\begin{aligned} & V_{\mathbb{N (-)}} \geqslant 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}_{\mathrm{N}()}}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leqslant 4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		250	500	mV
Output Leakage Current	$\begin{aligned} & V_{1 N(+)} \geqslant 1 \mathrm{~V}, V_{I N(-)}=0, \\ & V_{0}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.1		nA
Input Offset Voltage	(Note 9)		.	9.0	mV
Input Offset Current	$\mathrm{I}_{\mathrm{IN}_{(+)}}$- $\mathrm{I}_{\mathrm{IN}(-)}$			± 100	nA
Input Bias Current	$\mathrm{I}_{\mathrm{N}(+)}$ or $\mathrm{I}_{\mathrm{IN}_{(-)} \text {, }}$ with Output in Linear Range			300	nA
Input Common-Mode Voltage Range		0		$\mathrm{V}^{+}-2: 0$	V
Saturation Voltage	$\begin{aligned} & V_{V_{I(-)} \geqslant i V, V_{I N(+)}=0,} \\ & I_{\mathrm{SINK}} \leqslant 4 \mathrm{~mA} \end{aligned}$			700	mV
Output Leakage Current	$\begin{aligned} & V_{1(t)+)} \geqslant 1 \mathrm{~V}, V_{I N(-)}=0, \\ & V_{0}=30 \mathrm{~V} \end{aligned}$			1.0	$\mu \mathrm{A}$
Differential Input Voltage	Keep all $\mathrm{V}_{\text {IN }}$ ' $\geqslant 0 \mathrm{~V}$ (or V^{-}, if used), (Note 8)			36	V

ELECTRICAL CHARACTERISTICS (CON'T) (${ }^{+}=5 \mathrm{~V}$

PARAMETER	CONDITIONS	LM339			UNITS
		MIN.	TYP.	MAX.	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 9)		± 2.0	± 5.0	mV
Input Bias Current -	$\mathrm{I}_{\mathrm{IN(+)}}$ or $\mathrm{I}_{\mathrm{IN(木)}}$ with Output in Linear Range, $T_{A}=25^{\circ} \mathrm{C}$, (Note 5)		25	250	nA
Input Offset Current	$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN(T)} \text {, }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 5.0	± 50	nA
Input Common-Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 6$)$	0		V ${ }^{+}$-1.5	V
Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on all Comparators, } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.8	2.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Voltage Gain	$\begin{aligned} & R_{L} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}\left(\mathrm{To}_{0}\right. \\ & \text { Support Large } \mathrm{V}_{\mathrm{O}} \text { Swing), } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=T \mathrm{~L} \text { Logic Swing, } \mathrm{V}_{\text {REF }}= \end{aligned}$		200		V / mV
Large Signal Response Time	$\begin{aligned} & 1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 7) \end{aligned}$		1.3		$\mu \mathrm{S}$
Output Sink Current	$\begin{aligned} & V_{V(-)} \geqslant 1 \mathrm{~V}, V_{1 N(+)}=0, \\ & V_{0} \leqslant 1.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	6.0	16		mA
Saturation Voltage	$\begin{aligned} & V_{I N(-)} \geqslant 1 \mathrm{~V}, \mathrm{~V}_{1(\mathbb{I + 1}}=0, \\ & I_{\mathrm{SINK}} \leqslant 4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		250	500	mV
Output Leakage Current	$\begin{aligned} & V_{\left.V_{(N)}\right)} \geqslant 1 \mathrm{~V}, \mathrm{~V}_{1 N(-)}=0, \\ & V_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.1		nA
Input Offset Voltage	(Note 9)			9.0	mV
Input Offset Current	$\mathrm{I}_{\mathrm{IN}_{(+)}}-\mathrm{I}_{\mathrm{IN}(-)}$,		± 150	nA
Input Bias Current	$\mathrm{I}_{\mathrm{IN}_{(+)}}$or $\mathrm{I}_{\mathrm{N}(-)}$ with Output in Linear Range			400	nA
Input Common-Mode Voltage Range		0		$\mathrm{V}^{+}-2.0$	V
Saturation Voltage	$\begin{aligned} & V_{V_{(I-)} \geqslant 1 V, V_{I N(+)}=0,} \\ & I_{S I N K} \leqslant 4 \mathrm{~mA} \end{aligned}$			700	mV
Output Leakage Current	$\begin{aligned} & V_{1(t)+)} \geqslant 1 \mathrm{~V}, V_{\operatorname{IN(-)}}=0, \\ & V_{0}=30 \mathrm{~V} \end{aligned}$			1.0	$\mu \mathrm{A}$.
Differential Input Voltage	Keep all V_{IN} 's $\geqslant 0 \mathrm{~V}$ (or V^{-}, if used), (Note 8)			36	V

Note:

1. For operating at high temperatures, the LM339 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM139 must be derated based . on a $150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ($P_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
2. Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V^{+}.
3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V^{+} voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will reestablish when the input voltage, which was negative; again returns to a value greater than $-0.3 V$.
4. These specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, for the LM 139 . The LM 339 temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
5. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
6. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to +30 V without damage.
7. The response time specified is for a 100 mV input step with 5 mV overdrive signals 300 ns can be obtained, see typical performance characteristics section.
8. Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than - 0.3 V (or 0.3 V below the magnitude of the negative power supply, if used).
9. At output switch point, $\mathrm{V}_{0}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega$ with V^{+}from 5 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$).
10. For input signals that exceed V^{+}, only the overdriven comparator is affected. With a 5 V supply V_{iN} should be limited to 25 V max, and a limiting resistor should be used on all inputs that might exceed the positive supply.

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES-NEGATIVE TRANSITION

RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVES-POSITIVE TRANSITION

TYPICAL PERFORMANCE CHARACTERISTICS LM2901

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES-NEGATIVE TRANSITION

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES-POSITIVE TRANSITION

APPLICATION HINTS

The LM139/339 are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.
All pins of any unused comparators should be grounded.
The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2 V to 30 V .
It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$. An input clamp diode can be used as shown in the applications section.

The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+}terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega r_{\text {sat }}$ of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.

TYPICAL APPLICATIONS $\left(\mathrm{V}^{+}=15 \mathrm{~V}\right)$

BASIC COMPARATOR

DRIVING CMOS

DRIVING TTL

TYPICAL APPLICATIONS (CON'T) $\left(\mathrm{V}^{+}=15 \mathrm{~V}\right)$

ONE-SHOT MULTIVIBRATOR

BI-STABLE MULTIVIBRATOR

ONE-SHOT MULTIVIBRATOR WITH INPUT LOCK OUT

LARGE FAN-IN AND GATE

SQUAREWAVE OSCILLATOR

PULSE GENERATOR

NON-INVERTING COMPARATOR WITH HYSTERESIS

INVERTING COMPARATOR WITH HYSTERESIS

COMPARING INPUT VOLTAGES OF OPPOSITE POLARITY

BASIC COMPARATOR

*OR LOGIC GATE WITHOUT PULL-UP RESISTOR

OUTPUT STROBING

LOW FREQUENCY OP AMP

CRYSTAL CONTROLLED OSCILLATOR

LOW FREQUENCY OP AMP $\left(V_{O}=O V F O R V_{I N}=O V\right)$

TRANSDUCER AMPLIFIER

ZERO CROSSING DETECTOR (SINGLE POWER SUPPLY)

SPLIT-SUPPLY APPLICATIONS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}\right.$ and $\left.\mathrm{V}-=-15 \mathrm{~V}\right)$

ZERO CROSSING DETECTOR

AD503 High Accuracy Low Offset Op Amp

FEATURES

- Low IBIAS: 15pA MAX
- Low Drift: $25 \mu{ }^{\circ}{ }^{\circ} \mathrm{C}$ MAX

GENERAL DESCRIPTION

The AD503 is an IC FET input op amp which provides the user with input currents of a few pA, high overall performance, low cost, and accurately specified, predictable operation. The device achieves maximum bias currents as low as 5 pA, minimum gain of 75,000 , CMRR of 80 dB , and a minimum slew rate of $3 \mathrm{~V} / \mu \mathrm{s}$. It is free from latch-up and is short circuit protected, and no external compensation is required, as the internal $6 \mathrm{~dB} /$ octave rolloff provides stability in closed loop applications.

The AD503 is suggested for all general purpose FET input amplifier requirements where low cost is of prime importance.

The circuits are supplied in the TO-99 package; the AD503J, K are specified for 0 to $+70^{\circ} \mathrm{C}$ temperature
range operation; the AD503S for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

It provides performance comparable to modular FET op amps, but because of its monolithic construction, however, its cost is significantly below that of modules, and becomes even lower in large quantities.

The AD503 is especially designed for applications involving the measurement of low level currents or small voltages from high impedance sources, in which bias current can be a primary source of error. Input bias current contributes to error in two ways: (1) in current measuring configurations, the bias current limits the resolution of a current signal; (2) the bias current produces a voltage offset which is proportional to the value of input resistance (in the case of an inverting configuration) or source impedance (when the noninverting "buffer" connection is used). The AD503, therefore, is of use where small currents are to be measured or where relatively low voltage drift is necessary despite large values of source resistance.

SPECIFICATIONS (Typical @ $+25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{Vdc}$, unless otherwise noted)

PARAMETER	AD503J	AD503K	AD503S		
$\begin{aligned} & \text { OPEN LOOP GAIN1 } \\ & \text { Vout }= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\min \text { to } \max \end{aligned}$	$\begin{aligned} & 20,000 \min (50,000 \text { typ }) \\ & 15,000 \text { min } \end{aligned}$	$\begin{aligned} & 50,000 \min (120,000 \text { typ }) \\ & 40,000 \min \end{aligned}$	$25,000 \mathrm{~min}$		
OUTPUT CHARACTERISTICS Voltage @ $R_{L}=2 k \Omega, T_{A}=\min$ to max Voltage @ RL=10k $\Omega, T_{A}=$ min to \max Load Capacitance2 Short Circuit Current	$\begin{aligned} & \pm 10 \mathrm{~V} \cdot \min (\pm 13 \mathrm{~V} \text { typ }) \\ & \pm 12 \mathrm{~V} \min (\pm 14 \mathrm{~V} \text { typ }) \\ & 750 \mathrm{pF} \\ & 25 \mathrm{~mA} \end{aligned}$	$*$ $*$ $*$			
FREQUENCY RESPONSE Unity Gain, Small Signal Full Power Response Slew Rate, Unity Gain Settling Time, Unity Gain (to 0.1\%)	$\begin{aligned} & 1.0 \mathrm{MHz} \\ & 100 \mathrm{kHz} \\ & 3.0 \mathrm{~V} / \mu \mathrm{s} \min (6.0 \mathrm{~V} / \mu \mathrm{s} \text { typ }) \\ & 10 \mu \mathrm{~s} \end{aligned}$				
INPUT OFSET VOLTAGE ${ }^{3}$ vs Temperature, $T_{A}=\min$ to \max vs Supply, $\mathrm{T}_{\mathrm{A}}=$ min to \max	50 mV max $(20 \mathrm{mV}$ typ $)$ $75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ $)$ $400 \mu \mathrm{~V} / \mathrm{V} \max (200 \mu \mathrm{~V} / \mathrm{V}$ typ $)$	$\begin{array}{\|l\|} \hline 20 \mathrm{mV} \max (8 \mathrm{mV} \text { typ }) \\ 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { typ }\right) \\ 200 \mu \mathrm{~V} / \mathrm{V} \max (100 \mu \mathrm{~V} / \mathrm{V} \text { typ }) \\ \hline \end{array}$	$50 \mu \mathrm{~V}^{\circ} \mathrm{C} \max \left(20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { typ }\right)$		
INPUT BIAS CURRENT Either Input4	15pA max (5pA typ)	10pA max (2.5pA typ)	**		
INPUT IMPEDANCE Differential Common Mode	$\begin{aligned} & 1011 \Omega \\| 2 p F \\ & 1012 \Omega \\| 2 \mathrm{pF} \\ & \hline \end{aligned}$				
INPUT NOISE Voltage, 0.1 Hz to 10 Hz 5 Hz to 50 kHz $\mathrm{f}=1 \mathrm{kHz}$ (spot noise)	$\begin{aligned} & 15 \mu \mathrm{~V}(\mathrm{p}-\mathrm{p}) \\ & 5.0 \mu \mathrm{~V}(\mathrm{rms}) \\ & 30.0 \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$	* ${ }^{*}$			
INPUT VOLTAGE RANGE Differential 5 Common Mode, $\mathrm{T}_{\mathrm{A}}=\min$ to \max Common Mode Rejection, $\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	$\begin{aligned} & \pm 3.0 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \min (\pm 12 \mathrm{~V} \text { typ }) \\ & 70 \mathrm{~dB} \min (90 \mathrm{~dB} \text { typ }) \end{aligned}$	$80 \mathrm{~dB} \min (90 \mathrm{~dB} \text { typ) }$			
POWER SUPPLY Rated Performance Operating Quiescent Current	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm(5 \text { to } 18) \mathrm{V} \\ & 7 \mathrm{~mA} \max (3 \mathrm{~mA} \text { typ) } \end{aligned}$	$*$ $*$ $*$ $*$	$\pm(5 \text { to } 22) \mathrm{V}$		
TEMPERATURE Operating, Rated Performance Storage	$\begin{aligned} & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$	**	$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$		

Note 1. Open Loop-Gain is specified with Vos both nulled and unnulled.
Note 2. A conservative design would not exceed 500 pF of load capacitance.
Note 3. Input offset voltage 'specifications are guaranteed after 5 minutes of operation at $T_{A}=+25^{\circ} \mathrm{C}$.
Note 4. Bias current specifications are guaranteed after 5 minutes of operation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. For higher temperatures, the current doubles every $10^{\circ} \mathrm{C}$.

Note 5. See comments in linput Considerations section.
*Specifications same as for AD503J.
**Specifications same as for AD503K.
Specifications subject to change without notice.

APPLICATIONS CONSIDĖRATIONS

Bias Current

Most IC FET op amp manufacturers specify maximum bias currents as the value immediately after turn-on. Since FET bias currents double every $10^{\circ} \mathrm{C}$ and since most FET op amps have case temperature increases of $15^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ above ambient, initial "maximum" readings
may be only $1 / 4$ of the true warmed up value. Furthermore, most IC FET op amp manufacturers specify lb as the average of both input currents, sometimes resulting in twice the "maximum" bias current appearing at the input being used. The total result is that 8 X the expected bias current may appear at either input terminal in a warmed up operating unit.

The AD503 specifies maximum bias currents at either input after warmup, thus giving the user the values he expected.

Improving Bias Current Beyond Guaranteed Values

Bias currents can be substantially reduced by decreasing the junction temperature of the device. One technique to accomplish this is to redüce the operating supply voltage. This procedure will decrease the power dissipation of the device, which will in turn result in a lower junction temperature and lower bias currents. The supply voltage effect on bias current is shown in Figure 1.

Figure 1. Normalized Bias Current vs Supply Voltage
Operation of the AD503K at $\pm 5 \mathrm{~V}$ reduces the warmed up bias current by 70% to a typical value of 0.75 pA .

A second technique is the use of a suitable. heat sink. Wakefield Engineering Series 200 heat sinks were selected to demonstrate this effect. The characteristic bias current vs case temperature above ambient is shown in Figure 2. Bias current has been normalized with unity representing the $25^{\circ} \mathrm{C}$ free air reading.

Figure 2. Normalized Bias Current vs Case Temperature

Note that the use of the model 209 heat sink reduces warmed up bias current by 60% to 1.0 pA in the AD503K.

Both of these techniques may be used together for obtaining lower bias currents. Remember that loading the output can also affect the power dissipation.

Figure 3. Input Bias Current vs Temperature

Input Considerations

The common mode input characteristic is shown in Figure 4. Note that positive common mode inputs up to +13.5 Volts and negative common mode inputs to $-V /$ are permissible, without incurring excessive bias currents. To prevent possible damage to the unit, do not exceed $\mathrm{V}_{\mathrm{cm}}=\mathrm{V}_{\mathrm{s}}$.

Figure 4. Input Bias Current vs Common Mode Voltage
Like most other FET input op amps, the AD503 displays a degraded bias current specification when operated at moderate differential input voltages. It maintains its specified bias current up to a differential input voltage of $\pm 3 \mathrm{~V}$ typically. Above $\pm 3 \mathrm{~V}$, the bias current will increase to approximately $400 \mu \mathrm{~A}$. This is not a failure mode. Above $\pm 10 \mathrm{~V}$ differential input voltage, the bias current will increase $100 \mu \mathrm{~A} / \mathrm{V}_{\text {diff }}$ (in volts), and other parameters may suffer degradation.

FET Input Operational Amplifier

FEATURES

- 5pA input bias current
- Input and output protection
- Offset null capability
- Internally compensated
- 6V/ μ sec slew rate
- Standard pìnout
- 1MHz unity gain bandwidth

PIN CONFIGURATION

(outline dwg TO-99)

DESCRIPTION

The 536 is a special purpose high performance operational amplifier utilizing a FET input stage for extremely high input impedance and low input current.
The device features internal compensation, standard pinout, wide differential and common mode input voltage ranges, high slew rate and high output drive capability.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 22 \mathrm{~V}$
Differential Input Voltage Range $\pm 30 \mathrm{~V}$
Common Mode Input Voltage Range $\pm \mathrm{V}_{\mathrm{S}}$
Power Dissipation ${ }^{1} . ~ 500 m W ~$
Operating Temperature Range SU536 $\ldots-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ NE536 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range -65° to $+150^{\circ} \mathrm{C}$
Lead Temperature (Solder, 60 sec) $300^{\circ} \mathrm{C}$
Output Short Circuit Duration ${ }^{2}$................ indefinite
Notes:

1. Rating applies for case temperature to $+25^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $75^{\circ} \mathrm{C}$.
2. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

ORDERING INFORMATION

TEMPERATURE RANGE	DICE	TO-99 CAN
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	NE536/D	NE536T
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SU536/D	SU536T

DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}$ SUPP $\pm 15 \mathrm{~V}$ unless otherwise specified. ${ }^{1}$

PARAMETER		TEST CONDITIONS	NE536			UNIT	
		MIN:	TYP.	MAX.			
, Vos	Offset Voltage		$\begin{gathered} \mathrm{Rs} \leqslant 10 \mathrm{k} \Omega \\ \text { Over Temp., } \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega \end{gathered}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	90	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \end{gathered}$
$\Delta \mathrm{Vos} / \Delta \mathrm{T}$	Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$, Over Temp.		30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
los	Offset Current			5		pA	
IBIAS	Input Current ${ }^{2}$			30	100	pA	
VCM	Common Mode Voltage Range		± 10	± 11		V	
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	64	80		dB	
RIN	Input Resistance	,		100		$\mathrm{M} \Omega$	
Vout.	Output Voltage Swing	$R_{L} \geqslant 2 k \Omega$, Over Temp. $R_{L} \geqslant 10 k \Omega$, Over Temp.	$\begin{aligned} & \pm 10 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & \pm 11 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Icc	Supply Current	Vout $=$ OV		6.0	8.0	mA	
PSRR	Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \pm 6 \leqslant \mathrm{~V}_{\mathrm{S}} \pm 15$		100	300 -	$\mu \mathrm{V} / \mathrm{V}$	
Àvol	Large Signal Voltage Gain	$\begin{gathered} V_{0}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} 2 \mathrm{k} \Omega \\ V_{0}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \text {, Over Temp. } \end{gathered}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$	
Vsupp	Power Supply Range	-	± 6	± 18		V	

Notes:

1. Input current typically doubles every $10^{\circ} \mathrm{C}$.

DC ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \pm 6 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$ unless otherwise specified. ${ }^{2}$

PARAMETER		TEST CONDITIONS	SU536			UNIT	
		MIN.	TYP.	MAX.			
Vos	Offset Voltage ${ }^{2}$		$R_{s} \leqslant 10 \mathrm{k} \Omega$ Over Temp. Range, $\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \end{gathered}$
$\Delta \mathrm{VOS} / \Delta \mathrm{T}$	Drift	$R \mathrm{~S} \leqslant 10 \mathrm{k} \Omega$		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
los	Offset Current			5		pA	
IBIAS	Input Current ${ }^{1,2}$	Over Temp. Range, $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k}$ Over Temp. Range, $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k}$		$\begin{gathered} 5 \\ 250 \end{gathered}$	$\begin{gathered} 30 \\ 3000 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$	
VCM	Common Mode Voltage Range	VSUPP $= \pm 15 \mathrm{~V}$	± 10	± 11		V	
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	70	80		dB	
Rin	Input Resistance			100		$\mathrm{M} \Omega$	
Vout	Output Voltage Swing ${ }^{2}$	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega, V_{\text {SUPP }}= \pm 15 \mathrm{~V} \\ & R_{L} \geq 10 \mathrm{k} \Omega, V_{\text {SUPP }}= \pm 15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
I+	Supply Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SUPP }}= \pm 20 \mathrm{~V}$		4.5	5.5	mA	
PSRR	Supply Voltage Rejection Ratio	Rs $\leqslant 10 \mathrm{k} \Omega$		50	150	$\mu \mathrm{V} / \mathrm{V}$	
Avol	Large Signal Voltage Gain ${ }^{2}$	V SUPP $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	50			V / mV	
VSUPP	Power Supply Range	.	± 6	1	± 20	V	

Notes:

1. Input current typically doubles every $10^{\circ} \mathrm{C}$.
2. Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. ${ }^{1,2}$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Cdiff	Differential Capacitance	.		6		pF
e_{n}	Input Noise Voltage	$0.1 \mathrm{~Hz}-100 \mathrm{kHz}$		20		$\mu \mathrm{Vrms}$
Z_{0}	Output Impedance	,		100		Ω
$\overline{G_{B W}}$	Unity Gain Frequency Full Power Bandwidth	$\begin{aligned} & \text { VSUPP }= \pm 15 \mathrm{~V} \\ & \text { V SUPP }= \pm 15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1 \\ 100 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{KHz} \end{aligned}$
SR	Slew Rate, Inverter Slew Rate, Follower	$\begin{aligned} & \text { VSUPP }= \pm 15 \mathrm{~V}, \mathrm{~A}=-1 \mathrm{~V} \\ & \mathrm{~V} \text { SUPP }= \pm 15 \mathrm{~V}, \mathrm{~A}=+1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$

Notes:

1. Temperature range is $-55 \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}$
2. $\pm 6 \mathrm{~V} \leq \mathrm{V}_{\text {SUPP }} \pm 20 \mathrm{~V}$

TEST CIRCUITS

VOLTAGE FOLLOWER CIRCUIT

OFFSEET NULL CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

LARGE SIGNAL VOLTAGE FOLLOWER PULSE RESPONSE

OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY

VOLTAGE FOLLOWER TRANSIENT RESPONSE

INPUT CURRENTS AS A FUNCTION OF AMBIENT TEMPERATURE

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

Temperature Transducer

FEATURES

- Linear current output: $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
- Wide range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Two-terminal device: Voltage in/current out
- Laser trimmed to $\pm 0.5^{\circ} \mathrm{C}$ calibration accuracy (AD590M)
- Excellent linearity: $\pm 0.5^{\circ} \mathrm{C}$ over full range (AD590M)
- Wide power supply range: +4 V to +30 V
- Sensor isolation from case
- Low cost

GENERAL DESCRIPTION

The AD590 is a two-terminal integrated circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance constant current regulator, passing $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$ for supply voltages between +4 V and +30 V . Laser trimming of the chip's thin film resistors is used to calibrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right)$.

The AD590 should be used in any temperature sensing application between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$ in which conventional
electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistance-measuring circuitry and cold junction compensation are not needed in applying the AD590. In the simplest application, a resistor, a power source and any voltmeter can be used to measure temperature.

In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature. The AD590 is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments.
The AD590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high impedance current output. Any wellinsulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590 easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Forward Voltage (V+ to ${ }^{-}$) . +44 V
Reverse Voltage (V^{+}to V^{-}) . - 20 V
Breakdown Voltage (Case to ${ }^{+}$or ${ }^{-}$-) $\pm 200 \mathrm{~V}$

Rated Performance Temperature Range . . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$

SPECIFICATIONS (Typical values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise noted)

CHARACTERISTICS	AD5901	AD590J	AD590K	AD590L	AD590M	UNITS
Output Nominal Output Current @ $+25^{\circ} \mathrm{C}\left(298.2^{\circ} \mathrm{K}\right)$	298.2	298.2	298.2	298.2	298.2	$\mu \mathrm{A}$
Nominal Temperature Coefficient	1.0	1.0	1.0	1.0	1.0	$\mu \mathrm{A}{ }^{\circ} \mathrm{K}$
Calibration Error @ $+25^{\circ} \mathrm{C}$ (Notes)	± 10.0 max	± 5.0 max	± 2.5 max	± 1.0 max	± 0.5 max	${ }^{\circ} \mathrm{C}$
Absolute Error $\left(-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}\right)$ Without External Calibration Adjustment With External Calibration Adjustment	$\begin{aligned} & \pm 20.0 \mathrm{max} \\ & \pm 5.8 \mathrm{max} \end{aligned}$	$\pm 10.0 \max$ $\pm 3.0 \text { max }$	$\begin{aligned} & \pm 5.5 \mathrm{max} \\ & \pm 2.0 \mathrm{max} \end{aligned}$	$\begin{aligned} & \pm 3.0 \mathrm{max} \\ & \pm 1.6 \mathrm{max} \end{aligned}$	$\begin{aligned} & \pm 1.7 \text { max } \\ & \pm 1.0 \mathrm{max} \end{aligned}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
Non-Linearity	± 3.0 max	± 1.5 max	± 0.8 max	± 0.4 max	± 0.3 max	${ }^{\circ} \mathrm{C}$
Repeatability (Note 2)	± 0.1 max	${ }^{\circ} \mathrm{C}$				
Long Term Drift (Note 3)	± 0.1 max	± 0.1 max	. ± 0.1 max	± 0.1 max	± 0.1 max	${ }^{\circ} \mathrm{C} /$ month
Current Noise	40	40	40	40	40	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Power Supply Rejection $\begin{aligned} & +4<V^{+}<+5 V \\ & +5<V^{+}<+15 V \\ & +15 V<V^{+}<+30 V \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$
Case Isolation to Either Lead	10^{10}	10^{10}	10^{10}	10^{10}	10^{10}	Ω
Effective Shunt Capacitance	100	100	100	100	100	pF
Electrical Turn-On Time (Note 1)	20	20	20	20	20	$\mu \mathrm{S}$
Reverse Bias Leakage Current (Note 4)	10	10	10	10	10	pA
Power Supply Range	+4 to +30	V				

Notes 1. Does not include self heating effects.
2. Maximum deviation between $+25^{\circ} \mathrm{C}$ reading after temperature cycling between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$.
3. Conditions: Constant +5 V , constant $+125^{\circ} \mathrm{C}$.
4. Leakage current doubles every $+10^{\circ} \mathrm{C}$.

TYPICAL APPLICATIONS

Typical Connection
$\mu \mathrm{A} 723$

Voltage Regulator

FEATURES

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding external transistors
- Input voltage 40V max
- Output voltage adjustable from 2 V to 37 V
- Can be used as either a linear or a switching regulator.

GENERAL DESCRIPTION

The 723 is a voltage regulator designed primarily for series regulator, applications. By itself, it will supply output currents up to 120 mA , but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting.

The 723 is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature-controller.
The 723C is identical to the 723M except that the 723C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

ORDERING INFORMATION

Part Number	$\begin{gathered} \text { TO-99 } \\ \text { Can } \end{gathered}$	$\begin{aligned} & 14 \mathrm{Pin} \\ & \text { CERDIP } \end{aligned}$	$\begin{gathered} 14 \text { Pin } \\ \text { Plastic DIP } \end{gathered}$	Dice
μ A723C $\mu A 723 M$	$\mu \mathrm{A} 723 \mathrm{HC}$ $\mu \mathrm{A} 723 \mathrm{HM}^{*}$	$\begin{aligned} & \mu A 723 D C \\ & \mu \text { A723DM }^{*} \end{aligned}$	$\mu \mathrm{A} 723 \mathrm{PC}$	$\mu \mathrm{A} 723 \mathrm{C} / \mathrm{D}$ $\mu \mathrm{A} 723 \mathrm{M} / \mathrm{D}$ $\mu A 723 M / D$

* Add QB to order number if 883B processing is desired.

PIN CONFIGURATIONS

(outline dwgs JD, PD)

NOTE: Pin 5 connected to case.
(outline dwg TO-100)

ABSOLUTE MAXIMUM RATINGS
Pulse Voltage from V^{+}to V - (50 ms) 50 V
Continuous Voltage from $\mathrm{V}+$ to V - 40 V
Input-Output Voltage Differential 40 V
Maximum Amplifier Input Voltage (Either Input) 7.5 V
Maximum Amplifier Input Voltage (Differential) 5V
Current from Vz 25 mA
Current from VREF 15 mA
Internal Power Dissipation Metal Can (Note 1) 800 mW
Cavity DIP (Note 1) 900 mW
Molded DIP (Note 1) 660 mW
Operating Temperature Range $\mu \mathrm{A} 723$:.............................. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$$\mu A 723 \mathrm{C}$................................ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range Metal Can $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$DIP $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may. affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 2)

Note 1: See derating curves for maximum power rating above $25^{\circ} \mathrm{C}$.
Note 2: Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{N}}=\mathrm{V}^{+}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}, \mathrm{~V}-=0$, $\mathrm{VOUT}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{IL}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{RsC}^{2}=0, \mathrm{C}_{1}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{REF}}=0$ and divider impedance as seen by error amplifier $\leq 10 \mathrm{~K} \Omega$ connected as shown in Figure 1. Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.
Note 3: L_{1} is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in . air gap.
Note 4: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.
Note 5: Replace R1/R2 in figures with divider shown in Figure 13.
Note 6: $\mathrm{V}+$ must be connected to a +3 V or greater supply.
Note 7: For metal can applications where V_{Z} is required, an external 6.2 volt zener diode should be connected in series with Vout.

TYPICAL PERFORMANCE CHARACTERISTICS

LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

CURRENT LIMITING CHARACTERISTICS

LINE TRANSIENT RESPONSE

LOAD \& LINE REGULATION VS INPUT-OUTPUT VOLTAGE DIFFERENTIAL

STANDBY CURRENT DRAIN VS INPUT VOLTAGE

OUTPUT IMPEDANCE VS FREQUENCY

MAXIMUM POWER RATINGS

μ A723
POWER DISSIPATION VS AMBIENT TEMPERATURE

μ A723C
POWER DISSIPATION VS AMBIENT TEMPERATURE

TABLE I: RESISTOR VALUES (k Ω) FOR STANDARD OUTPUT VOLTAGE

POSITIVE OUTPUT VOLTAGE	APPLICABLE FIGURES	$\begin{aligned} & \text { FIXED } \\ & \text { OUTPUT } \\ & \pm 5 \% \end{aligned}$		OUTPUT ADJUSTABLE $\pm 10 \%$ (Note 5)			NEGATIVE OUTPUT VOLTAGE	APPLICABLE FIGURES	$\begin{gathered} \text { FIXED } \\ \text { OUTPUT } \\ \pm 5 \% \\ \hline \end{gathered}$		5\% OUTPUT ADJUSTABLE $\pm 10 \%$		
	(Note 4)	R1	R2	R1	P1	R2			R1	R2	R1	P1	R2
+3.0	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91
+3.6	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
+5.0	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	2.15	4.99	. 75	0.5	2.2	-6 (Note 6)	3, (10)	3.57	2.43	1.2	0.5	. 75
+6.0	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	1.15	6.04	0.5	0.5	2.7	-9	3,10	3.48	5.36	1.2	0.5	2.0
+9.0	$\begin{aligned} & 2,4 ;(5,6, \\ & 12,9) \end{aligned}$	1.87	7.15	. 75	1.0	2.7	-12	3,10	3.57	8.45	1.2	0.5	3.3
+12	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	4.87	7.15	2.0	1.0	3.0	-15	3, 10	3.65	11.5	1.2	0.5	4.3
+15	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
+28	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	21.0	7.15	5.6	1.0	2.0	-45	8 -	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	97.6	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE II: FORMULAE FOR INTERMEDIATE OUTPUT VOLTAGES

Outputs from +2 to +7 volts (Figures 1, 5, 6, 9, 12, (4)). $V_{\text {OUT }}=\left[V_{\text {REF }} \times \frac{R 2}{R 1+R 2}\right]$	Outputs from $+\mathbf{4}$ to $+\mathbf{2 5 0}$ volts (Figure 7) $\text { VOUT }=\left[\frac{V_{\text {REF }}}{2} \times \frac{R 2-R 1}{R 1}\right] ; R 3=R 4$	Current Limiting $\text { ILIMIT }=\frac{V_{\text {SENSE }}}{R_{S C}}$
Outputs from +7 to +37 volts (Figures 2, 4, (5, 6, 9, 12)) $V_{\text {OUT }}=\left[V_{R E F} \times \frac{R 1+R 2}{R 2}\right]$	Outputs from -6 to - $\mathbf{2 5 0}$ volts (Figures 3, 8, 10) $\text { VOUT }=\left[\frac{V_{\text {REF }}}{2} \times \frac{R 1+R 2}{R 1}\right]^{;} R 3=R 4$	Foldback Current Limiting $\begin{gathered} \text { IKNEE }=\left[\frac{V_{\text {OUTR }} 3}{R S C}+\frac{V_{\text {SENSE }}(R 3+R 4)}{R S C R 4}\right] \\ \text { ISHORT CKT }=\left[\frac{V_{\text {SENSE }}}{R_{S C}} \times \frac{R 3+R 4}{R 4}\right] \end{gathered}$

TYPICAL APPLICATIONS

TYPICAL PERFORMANCE
Regulated Ouput Voltage
$\begin{array}{lr}5 \mathrm{~V} \\ \text { Line Regulation }(\Delta \mathrm{V} / \mathrm{N}=3 \mathrm{~V}) & 0.5 \mathrm{mV}\end{array}$
$\begin{array}{ll}\text { Load Regulation }(\Delta I L=50 \mathrm{~mA}) & 1.5 \mathrm{mV}\end{array}$
NOTE: $R_{3}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$ for minimum temperature drift.

FIGURE 1:
Basic Low Voltage Regulator
(Vout $=2$ to 7 Volts)

TYPICAL PERFORMANCE
Regulated Ouput Voltage
Line Regulation (Δ VIN $=3 \mathrm{~V}$)
Load Regulation ($\Delta / \mathrm{L}=100 \mathrm{~mA}$)
FIGURE 3:
Negative Voltage Regulator

TYPICAL PERFORMANCE
Regulated Output Voltage
Line Regulation ($\Delta V_{I N}=3 \mathrm{~V}$) $\quad 0.5 \mathrm{mV}$
Load Regulation $\left(\Delta I_{\mathrm{L}}=1 \mathrm{~A}\right) \quad 5 \mathrm{mV}$
FIGURE 5:
Positive Voltage Regulator (External PNP Pass Transistor)

TYPICAL PERFORMANCE
Regulated Ouput Voltage
Line Regulation ($\Delta V_{I N}=3 \mathrm{~V}$)
Load Regulation ($\triangle I_{\mathrm{L}}=50 \mathrm{~mA}$) $\quad 1.5 \mathrm{mV}$
NOTE: $\mathbf{R}_{\mathbf{3}}=\frac{\mathbf{R}_{1} \mathbf{R}_{\mathbf{2}}}{\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}}$ for minimum temperature drift.
$\mathrm{R}_{\mathbf{3}}$ may be eliminated for minimum component count.
FIGURE 2:
Basic High Voltage Regulator (Vout $=7$ to 37 Volts)

5V

$$
.5 \mathrm{mv}
$$

FIGURE 6: Foldback Current Limiting

TYPICAL' APPLICATIONS (CON'T.)

FIGURE 7:
Positive Floating Regulator

FIGURE 9:
Positive Switching Regulator

FIGURE 8:
Negative Floating Regulator

FIGURE 10:
Negative Switching Regulator

FIGURE 13:
Output Voltage Adjust (See Note 5)

Differential Video Amplifier Linear Integrated Circuits

FEATURES

- 120 MHz Bandwidth
- $250 \mathrm{k} \Omega$ Input Resistance
- Selectable Gains of 10, 100, and 400
- No Frequency Compensation Required

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 8 \mathrm{~V}$
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Common Mode Input Voltage	$\pm 6 \mathrm{~V}$
Output Current	10 mA
Internal Power Dissipation	500 mW
\quad Metal Can	570 mW
Flatpak	670 mW
DIP	
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
\quad Commercial	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
Lead Temperature (Soldering, 60 second time limit) $300^{\circ} \mathrm{C}$	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATIONS

(outline dwg TO-100)

GENERAL DESCRIPTION

The 733 is a monolithic two-stage Differential Input, Differential Output Video Amplifier. Internal series-shunt feedback is used to obtain wide bandwidth, low phase distortion, and excellent gain stability. Emitter follower outputs enable the device to drive capacitive loads and all stages are current-source biased to obtain high power supply and common mode rejection ratios. It offers fixed gains of 10,100 or 400 without external components, and adjustable gains from 10 to 400 by the use of a single external resistor, No external frequency compensation components are required for any gain option. The device is particularly useful in magnetic tape or disc file systems using phase or NRZ encoding and in high speed thin film or plated wire memories.
CHIP TOPOGRAPHY

EQUIVALENT CIRCUIT

ORDERING INFORMATION

Temp Range	Paçkage	Order Number
Commercial	Dice	μ A733C/D
Military	TO-99	μ A733HC
	Dice	$\mu 733 \mathrm{M} / \mathrm{D}$
	TO-99	$\mu 733 \mathrm{HM}$

733M ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$ unless otherwise specified)

PARAMETER (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Differential Voltage Gain Gain 1 (Note 1) Gain 2 (Note 2) Gain 3 (Note 3)	"	$\begin{array}{r} 300 \\ 90 \\ 9.0 \end{array}$	$\begin{array}{r} 400 \\ 100 \\ 10 \end{array}$	$\begin{array}{r} 500 \\ 110 \\ 11 \end{array}$	
Bandwidth Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		$\begin{array}{r} 40 \\ 90 \\ 120 \end{array}$		MHz MHz MHz
Risetime Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\text {p-p }}$		$\begin{array}{r} 10.5 \\ 4.5 \\ 2.5 \\ \hline \end{array}$	${ }^{10}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
Propagation Delay Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \end{aligned}$	10	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Input Resistance Gain 1 Gain 2 Gain 3	.	20	$\begin{array}{r} 4.0 \\ 30 \\ 250 \end{array}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Input Capacitance.	Gain 2		2.0		pF
Input Offset Current			0.4	3.0	$\mu \mathrm{A}$
Input Bias Current			9.0	20	$\mu \mathrm{A}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12		$\mu \mathrm{V}$ rms
Input Voltage Range		± 1.0			V
Common Mode Rejection Ratio Gain 2 Gain 2	$\begin{aligned} & V_{\text {CM }}= \pm 1 \mathrm{~V}, f \leqslant 100 \mathrm{kHz} \\ & V_{C M}= \pm 1 \mathrm{~V} ; f=5 \mathrm{MHz} \end{aligned}$	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$.	$\begin{aligned} & d B \\ & d B \end{aligned}$
Supply Voltage Rejection Ratio Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3			$\begin{array}{r} 0.6 \\ 0.35 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Output Common Mode Voltage		2.4	2.9	3.4	V
Output Voltage Swing		3.0	4.0		V_{p-p}
Output Sink Current		2.5	3.6		mA
Output Resistance			20		S2
Power Supply Current			18	24	mA
The following specifications apply for $-55^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$					
Differential Voltage Gain Gain 1 (Note 1) Gain 2 (Note 2) Gain 3 (Note 3)	\cdots	$\begin{array}{r} 200 \\ 80 \\ 8.0 \end{array}$	-	$\begin{array}{r} 600 \\ 120 \\ 12 \\ \hline \end{array}$.
Input Resistance					
Input Offset Current				5.0	$\mu \mathrm{A}$
Input Bias Current				40	$\mu \mathrm{A}$
Input Voltage Range		± 1.0			V
Common Mode Rejection Ratio		50			dB
Supply Voltage Rejection Ratio		50			dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3				$\begin{aligned} & 1.5 \\ & 1.2 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Output Swing		2.5			V_{p-p}
Output Sink Current		2.2			mA
Positive Supply Current				27	mA

Notes: 1. Pins G1A and G1B connected together.
2. Pins G2A and G2B connected together.
3. Gain select pins left open.

733C ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$ unless otherwise specified)

PARAMETER (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Differential Voltage Gain Gain 1 (Note 1). Gain 2 (Note 2) Gain 3 (Note 3)		$\begin{array}{r} 250 \\ 80 \\ 8.0 \\ \hline \end{array}$	$\begin{array}{r} 400 \\ 100 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 600 \\ 120 \\ 12 \\ \hline \end{array}$	
Bandwidth Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		$\begin{array}{r} 40 \\ 90 \\ 120 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Risetime Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\text {S }}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-p }}$		$\begin{array}{r} 10.5 \\ 4.5 \\ 2.5 \end{array}$	12	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \text { ns } \\ & \hline \end{aligned}$
Propagation Delay Gain 1 Gain 2 Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \end{aligned}$	10	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Input Resistance Gain 1 Gain 2 Gain 3		10	$\begin{array}{r} 4.0 \\ 30 \\ 250 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Input Capacitance	Gain 2.		2.0		pF
Input Offset Current			0.4	5.0	$\mu \mathrm{A}$
Input Bias Current			9.0	30	$\mu \mathrm{A}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=5 \mathrm{QS}, \mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12		$\mu \mathrm{V}_{\text {rms }}$
Input Voltage Range		± 1.0			V
Common Mode Rejection Ratio Gain 2 Gain 2	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, f \leqslant 100 \mathrm{kHz} \\ & V_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	60	$\begin{aligned} & 86 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply Voltage Rejection Ratio Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50.	70	-	dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3			$\begin{array}{r} 0.6 \\ 0.35 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \\ & \hline \end{aligned}$
Output Common Mode Voltage		2.4	2.9	3.4	V
Output Voltage Swing		3.0	4.0		$\mathrm{V}_{\mathrm{p} \text {-p }}$
Output Sink Current		2.5	3.6		mA
Output Resistance			20		Ω
Power Supply Current			18	24	mA
The following specifications apply	$\leqslant T_{A} \leqslant \pm 70^{\circ} \mathrm{C}$				
Differential Voltage Gain Gain 1 (Note 1) Gain 2 (Note 2) Gain 3 (Note 3)	-	$\begin{array}{r} 250 \\ 80 \\ 8.0 \\ \hline \end{array}$		$\begin{array}{r} 600 \\ 120 \\ 12 \\ \hline \end{array}$	-
Input Resistance-Gain 2		8.0			k Ω
Input Offset Current				6.0	$\mu \mathrm{A}$
Input Bias Current				40	$\mu \mathrm{A}$
Input Voltage Range		± 1.0			V
Common Mode Rejection Ratio Gain 2	$V_{C M}= \pm 1 \mathrm{~V}, f \leqslant 100 \mathrm{kHz}$	50			dB
Supply Voltage Rejection Ratio Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50			dB
Output Offset Voltage (All Gain)				1.5	V
Output Voltage Swing	.	2.8			V_{p-p}
Output Sink Current		2.5			mA
Power Supply Current				27	mA

Notes: 1. Pins G1A and G1B connected together.
2. Pins G2A and G2B connected together.
3. Gain select pins left open.

HA740 FET Input Operational Amplifier

FEATURES

- High input impedance. . . $1 \mathrm{M} \Omega$
- No frequency compensation required
- Short-circuit protection
- Offset voltage null capability
- Large common-mode and differential voltage ranges
- No latch up

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Voltage between Offset Null and V+	$\pm 0.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
\quad Military (740)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial (740C)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 3)	Indefinite

ORDERING INFORMATION

Temperature Range	Package	Order number
Commercial,	Dice	$\mu \mathrm{A} 740 \mathrm{C} / \mathrm{D}$
Military	Dice	$\mu \mathrm{A} 740 \mathrm{M} / \mathrm{D}$
Commercial	TO-99 Can Military	$\mu \mathrm{A} 740 \mathrm{HC}$
TO-99	$\mu 740 \mathrm{HM}$	

GENERAL DESCRIPTION

The. 740 is a high performance monolithic FET-Input Operational Amplifier epitaxial process. It is intended for a wide range of analog applications where very high input impedance is required and features very low input offset current and very low input bias current. High slew rate, high common mode voltage range and absence of "latch up" make the 740 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in active filters, integrators, summing amplifiers, sample and holds, transducer amplifiers, and other general feedback applications. The 740 is short circuit protected and has the same pin configuration as the 741 operational amplifier. No external components for frequency compensation are required as the internal $6 \mathrm{~dB} /$ octave roll-off insures stability in closed loop applications.

PIN CONFIGURATIONS

(outline dwg TO-99)

NOTE: Pin 4 Connected to Case.

EQUIVALENT CIRCUIT

740M

ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER		CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		$R_{S} \leqslant 100 \mathrm{k} \Omega$		10	20	mV
Input Offset Current (Note 4)				40	150	pA
Input Current (either input) (Note 4)				100	200	pA
Input Resistance		.		1		$\mathrm{M} \Omega$
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50,000	1		
Output Resistance -				75		Ω
Output Short-Circuit Current				20		mA
Common Mode Rejection Ratio			64	80		dB
Supply Voltage Rejection Ratio		.		70	300	$\mu \mathrm{V} / \mathrm{V}$
Supply Current				4.2	5.2	mA
Power Consumption				126	156	mW
Slew Rate		-		6.0	,	$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth				3.0		MHz
Transient Response (Unity Gain)	Risetime	$C_{L} \leqslant 100 p F, R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}}=100 \mathrm{mV}$		110		ns
	Overshoot			10	20	\%

The following specifications apply for $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$:

Input Voltage Range	\cdot	± 10		± 12	V
Large Signal Voltage Gain		25,000			
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$	± 12	± 14		V
	$R_{L} \geqslant 2 \mathrm{k} \Omega$	± 10	± 13		V
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega$		15	30	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		30		pA
	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		185		pA
Input Current (either input)	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			200	$p A$
	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$.		2.5	4.0	nA

VOLTAGE OFFSET
NULL CIRCUIT

TRANSIENT RESPONSE TEST CIRCUIT

740C

ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified）

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega$		30.	110	mV
Input Offset Current（Note 4）				60	300	pA
Input Current（either input）（Note 4）				0.1	2.0	$n \mathrm{~A}$
Input Resistance				1		$\mathrm{M} \Omega$
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$ ．	20，000	1		
Output Resistance				75		Ω
Output Short－Circuit Current				20		mA
Supply Current				4.2	8.0	mA
Pówer Consumption				126	240	mW
Slew Rate				6.0		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth		－${ }^{\text {a }}$		1.0		MHz
Transient Response （Unity Gain）	Risetime	$C_{L} \leqslant 100 p F, R_{L}=2 k \Omega, V_{I N}=100 \mathrm{mV}$	．	300		1 ns
	Overshoot			10	，	\％

The following specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ ：

Input Voltage Range		± 10	± 12	．	V
Common Mode Rejection Ratio		． 55	80		dB
Supply Voltage Rejection Ratio			70	500	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	．．		500，000		
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$	± 12	± 14		V
	$R_{L} \geqslant 2 k \Omega$	± 10	± 13		V
Input Offset Voltage	．		30		mV
Input Offset Current			60		pA
Input Current（either input）			1.1	10	nA

NOTE 1：Rating applies for ambient temperature to $+70^{\circ} \mathrm{C}$ ；derate linearly at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+70^{\circ} \mathrm{C}$ ．
NOTE 2：For supply voltages less than $\pm 15 \mathrm{~V}$ ，the absolute maximum input voltage is equal to the supply voltage．
NOTE 3：Short circuit may be to ground or either supply．Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature．
NOTE 4：Typically doubles for every $10^{\circ} \mathrm{C}$ increase in ambient temperature．

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

Voltage follower large SIGNAL PULSE RESPONSE

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY

Operational Amplifier

GENERAL DESCRIPTION

The 741 and 741 C are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.
The offset voltage and offset current are guaranteed over the entire common mode range. The amplifiers also offer
many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.
The 741 C is identical to the 741 except that the 741 C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

PIN CONFIGURATIONS

METAL CAN
(outline dwg TO-99)

TOP VIEW
NOTE: PIN 4 CONNECTED TO CASE

10 PIN FLATPACK
(outline dwg FB)

8 PIN MINIDIP
(outline dwg PA)

NOTE: PIN 4 CONNECTED TO BOTTOM OF PACKAGE

14 PIN. DIP (outline dwg, JD, PD)

ORDERING INFORMATION

\because	TO-99 CAN	8-PIN MINIDIP	$\begin{aligned} & 14 \text { PIN } \\ & \text { PLASTIC } \end{aligned}$	$\begin{aligned} & 14 \text { PIN } \\ & \text { CERDIP } \end{aligned}$	$\begin{gathered} 10 \text { PIN } \\ \text { FLATPACK } \end{gathered}$
LM741 LM741C	LM741H LM741CH	LM741CN	LM741CN-14	LM741J LM741CJ	LM741C ${ }^{\text {d }}$
$\mu \mathrm{A} 741$ $\mu A 741 C$	$\mu \mathrm{A} 741 \mathrm{HM}$ $\mu \mathrm{A} 741 \mathrm{HC}$	$\mu \mathrm{A} 411 \mathrm{C}$	μ A741PC	μ A741DM μ A741DC	$\mu \mathrm{A} 741 \mathrm{FM}$
$\begin{aligned} & \text { AD741 } \\ & \text { AD741C } \end{aligned}$	$\begin{aligned} & \text { AD741H } \\ & \text { AD741CH } \end{aligned}$	AD741CN	.		
$\begin{aligned} & \text { ICL741 } \\ & \text { ICL741C } \end{aligned}$	ICL741MTY ICL741CTY	ICL741CPA	ICL741CPD	ICL741MJD ICL741CJD	ICL741MFB

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 741 741C	$\begin{aligned} & \pm 22 \mathrm{~V} \\ & \pm 18 \mathrm{~V} \end{aligned}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Indefinite
Operating Temperature Range 741 741C	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{array}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS (Note 3)

PARAMETER	CONDITIONS	741			741C			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Rs}<10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	200		30	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200	500		200	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0		$M \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		1.7	2.8		1.7	2.8	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{S}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	50	160		25	160		v / mV
Input Offset Voltage	Rs $<10 \mathrm{k} \Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	$\mu \mathrm{A}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing	$\begin{aligned} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}} & =2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm \pm 15 \mathrm{~V}$	± 12			± 12			V
Common Mode Rejection Ratio	RS $<10 \mathrm{k} \Omega$	70	90		70	90	.	dB
Supply Voltage Rejection Ratio	RS $<10 \mathrm{k} \Omega$	77	96		77	96		dB

Note 1: The maximum junction temperature of the 741 if $150^{\circ} \mathrm{C}$, while that of the 741 C is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \mathrm{~K} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the 741 C , however, all specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.

EQUIVALENT SCHEMATIC

High Speed 741 Operational Amplifier

FEATURES

- Pin For Pin and Electrically Equivalent to $\mu \mathrm{A} 741$
- Guaranteed Slew Rate $-0.7 \mathrm{~V} / \mu \mathrm{s}$ Min.
- Low Cost
- Short Circuit Protection

GENERAL DESCRIPTION

The 741 HS .high slew rate version of the 741 general purpose operational amplifier is intended for applications where slew rate performance greater than $0.3 \mathrm{~V} / \mu \mathrm{sec}$ is required. Typical applications are oscillators, active filters, sample and hold and other large signal applications. This device has a guaranteed minimum slew rate of $0.7 \mathrm{~V} / \mu \mathrm{sec}$ and is identical and equivalent to the standard 741 operational amplifier. It will fill the application void between the 741 and 101 A type amplifiers (slew rate $=0.3 \mathrm{~V} / \mu \mathrm{sec}$) and the more costly high-speed amplifiers (slew rate $=30 \mathrm{~V} / \mu \mathrm{sec}$).

HIGH-SPEED 741 OPERATIONAL AMPLIFIER

- Large Common-Mode Input Range
- Guaranteed Drift Characteristics
- No Latch Up
- Internal Frequency Compensation

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)
500 mW
Differential Input Voltage $\pm 30 \mathrm{~V}$
'Input Voltage (Note 2) $\pm 15 \mathrm{~V}$
Operating Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering at 60 sec .)
Output Short-Circuit Duration (Note 3)
$300^{\circ} \mathrm{C}$

NOTE 1: The maximum junction temperature of the 741 HS is $150^{\circ} \mathrm{C}$, while that of the 741 CHS is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$. junction to ambient.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.
NOTE 3: Short circuit may be to ground or either supply.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS

DEFINITION OF TERMS

INPUT OFFSET VOLTAGE: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
INPUT OFFSET CURRENT: The difference in the currents into the two input terminals when the output is at zero.
INPUT VOLTAGE RANGE: The range of voltages on the input terminals for which the offset specifications apply.
INPUT BIAS CURRENT: The average of the two input currents.
COMMON MODE REJECTION RATIO: The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.
INPUT RESISTANCE: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

SLEW RATE: A measure of the large signal capability of amplifier output to follow the amplifier input. Slew Rate $=2 \pi \mathrm{BW}_{\text {Large Signal }} \mathrm{V}_{\text {O.Peak }} \cdot$
SUPPLY CURRENT: The current required from the power supply to operate the amplifier with no load and the output at zero.

OUTPUT VOLTAGE SWING: The peak output voltage swing, referred to zero, that can be obtained without clipping.
LARGE-SIGNAL VOLTAGE GAIN: The ratio of the output voltage swing to the change in input voltage required to drive the output from zerio to this voltage.
POWER SUPPLY REJECTION: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

TEST CIRCUITS

AD741K

General Purpose Operational Amplifier High Accuracy

GENERAL DESCRIPTION

The AD741K is a high accuracy version of the popular 741 op amp. By setting maximum limits on voltage drift, and significantly reducing errors due to offset voltage, bias and offset currents, gain, PSRR, and CMRR, improvements in accuracy on the order of five times can be achieved over that delivered by a standard 741.

SPECIFICATIONS

(Typical @ $+25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{VDC}$, unless otherwise specified)

Model	AD741K
Open Loop Gain $R_{L}=2 k \Omega, V_{O}= \pm 10 \mathrm{~V}$ Over Temp Range, $T_{\text {min/max }}$, same loads as above Output Characteristics Voltage @ $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\text {min } / \text { max }}$ Short Circuit Current	$\begin{gathered} 50,000 \mathrm{~min} \\ 25,000 \mathrm{~min} \\ \pm 10 \mathrm{~V} \text { min } \\ 25 \mathrm{~mA} \end{gathered}$
Frequency Response Unity Gain, Small. Signal Full Power Response Slew Rate, Unity Gain	$\begin{gathered} 1 \mathrm{MHz} \\ 10 \mathrm{kHz} \\ 0.5 \mathrm{~V} / \mu \mathrm{sec} \end{gathered}$
Input Offset Voltage Initial, $\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{~K} \Omega$ $T_{\text {min/max }}$ Avg vs Temperature (untrim.) vs Supply, $T_{\text {min/max }}$ Input Offset Current Initial $T_{\text {min/max }}$ Avg vs Temperature Input Bias Current Initial $\mathrm{T}_{\text {min/max }}$ Avg vs Temperature Input Impedance Differential Input Voltage Range (Note 1) Differential, max safe Common Mode, max safe Common Mode Rejection $T_{\text {min/max }}$	2 mV max 3 mV max $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max $15 \mu \mathrm{~V} / \mathrm{V}$ max 10nA max 15nA max $0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ max 75nA max 120nA max $1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ max 2M Ω $\begin{aligned} & \pm 30 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$ 90 dB min
Power Supply Rated Performance Operating Current, Quiescent	$\begin{gathered} \quad \pm 15 \mathrm{~V} \\ \pm(5 \text { to } 22) \mathrm{V} \\ 2.8 \mathrm{~mA} \text { max } \end{gathered}$
Temperature Range Operating, Rated Performance Storage	$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{gathered}$

ORDERING

INFORMATION

TO-99	AD741KH
8 Pin Plastic DIP	AD741KN

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation	500 mW
Differential Voltage	$\pm 30 \mathrm{~V}$
Input Voltage	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	indefinite
Operating Temp Range	$0-70^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$

NOTE:Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.

PIN CONFIGURATIONS

NOTE: PIN 4 CONNECTED TO CASE (outline dwg TO-99)

(outline dwg PA)

ICL741LN, ICL741CLN, ICL101ALN ICL301ALN, ICL108LN, ICL308LN
 Low Noise Operational Amplifiers

FEATURES

- Guaranteed Noise Specifications
- Complete Electrical Specifications

GENERAL DESCRIPTION

These low noise amplifiers are suitable for all applications where low level signals are encountered. The three important noise parameters, input referred voltage noise, input referred current noise, and popcorn noise, are all 100\% screened and guaranteed.

PIN CONFIGURATIONS

(outline dwg TO-99)
NOTE: PIN 4 CONNECTED TO CASE.

108/308

(outline dwg TO-99) NOTE: PIN 4 CONNECTED TO CASE.

(outline dwg JD)
741

(outline dwg TO-99)
NOTE: PIN 4 CONNECTED TO CASE.

- Topvew

101 A/301A

GUARANTEED NOISE SPECIFICATIONS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

	741	741 C	101 A	301 A	108	308	UNITS
Input Referred Voltage Noise @ 10 Hz (Max)	50	50	50	50	70	70	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise @ 10 Hz (Max)	0.4	0.4	0.7	0.7	0.2	0.2	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Popcorn Noise Transition Amplitude for R$=100 \mathrm{k}$ (Max)							

For other electrical specifications see standard data sheets.

ORDERING INFORMATION

PART NUMBER	TYPE	PACKAGE	TEMPERATURE RANGE	ORDER NUMBER
741-LN	MIL	TO.99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL741L
741C-LN	COM	T0.99	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL741CLNTY
741.LN	MIL	14 Lead DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL741LNJD
741 C -LN	COM	8 Lead DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL741CLNPA
741. LN	MIL	FLAT PACK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL741LNFB
101A-LN	MIL	тO.99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL101ALNTY
301A-LN	COM	T0.99	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL301ALNTY
101A-LN	MiL	14 Lead DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL101ALNJD
301A.LN	COM	8 Lead DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL301ALNPA
101A.LN	MIL	FLAT PACK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL101ALNFB
108.LN	MIL	T0.99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL108LNTY
308-LN	COM	TO.99	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL308LNTY

NOISE IN OPERATIONAL AMPLIFIERS

VOLTAGE NOISE: The noise due to the equivalent input voltage generator is measured using the circuit shown in Figure 1. It is expressed in $n \mathrm{~V} / \sqrt{\mathrm{Hz}}$.
CURRENT NOISE: The noise due to the equivalent input current generator is measured using the circuit in Figure 2. It is expressed in $\mathrm{pA} / \sqrt{\mathrm{Hz}}$. Popcorn noise cannot be effectively screened using this test due to its erratic nature and very low frequency.
POPCORN NOISE: Popcorn noise, sometimes referred to as burst noise, is a low frequency noise phenomenon in which the output of the amplifier appears to jump erratically between two or more stable states. It is most noticeable when operating at high source impedances and is expressed as a transition amplitude, in $\mu \mathrm{V}$, for a given source resistance. The test circuit of Figure 3 is used.

The noise of an amplifier may be expressed in terms of an input referred voltage generator $\left(e_{n}\right)$ and an input referred current generator (i_{n}), see Figure 4. The total noise of an amplifier in a typical application contains contributions from both these generators, together with a contribution from the source resistance. The total mean square noise for a bandwidth of 1 Hz is given by:

$$
\begin{equation*}
e^{2}{ }_{T}=e_{n}^{2}+i_{n}^{2} R_{S}^{2}+4 k T R_{S} \tag{1}
\end{equation*}
$$

Since both e_{n} and i_{n} are frequency dependent, the total mean square noise for a given bandwidth $\Delta f=f_{2}-f_{1}$ is given by:

$$
\begin{equation*}
e^{2}{ }_{T}=\int_{f_{1}}^{f_{2}} e_{n}^{2} d f+R^{2} \int_{f_{1}}^{f_{2}} i^{2} d f+4 k T R_{S} \Delta f \tag{2}
\end{equation*}
$$

With most amplifiers, the voltage noise term dominates for low source impedances. The current noise term is dominant at higher source impedances.

To specify operational amplifier noise performance one of two methods is used. One is to specify the total input referred noise for a given bandwidth and source impedance. This is defined as e_{T} from equation 1 above. The test circuit in Figure 5 is used. The typical broadband noise of the 741 and 101A type amplifier is shown in Figure 5.

The second method is to guarantee specific values of e_{n} and i_{n} (in equation 2) at various frequencies. A Noise Analyzer is used for this measurement (Figure 3). The values of e_{n} and i_{n} (for $\Delta f=1 \mathrm{~Hz}$) are measured at 10 Hz , $100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$ and 100 kHz . The recorded values may be plotted graphically, as shown on page 1. The noise information obtained from these measurements is considerably more general than that obtained from the first method, since the noise for any source impedance and bandwidth may be calculated from equation 2. (Graphical integration can determine the area under each curve.)

Figure 1.

FIGURE 2.

figure 4.

FIGURE 5.

Operational Amplifier

FEATURES

- Short-circuit protection
- Offset voltage null capability
- Large common-mode and differential voltage ranges
- Low power consumption
- No latch up

GENERAL DESCRIPTION

The 748 is a High Performance Monolithic Operational Amplifier and is intended for a high wide range of analog applications where tailoring of frequency characteristics is desirable. High common mode voltage range and absence of latch-up make the 748 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The 748 is short-circuit protected and has the same pin configuration as the popular 741 operational amplifier. Unity gain frequency compensation is achieved by means of a single 30 pF capacitor. For superior performance, see 777 data sheet.
ABSOLUTE MAXIMUM RATINGS
Supply Voltage $\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)
Metal Can 500 mW
DIP ... 670 mW
Mini DIP 310 mW
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) $\pm 15 \mathrm{~V}$
Storage Temperature Range
Metal Can, DIP.................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Mini DIP $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range
Military (748) $\ldots \ldots . \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial (748 C) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 Seconds)
Metal Can....................................... . $300^{\circ} \mathrm{C}$
Molded DIPs $260^{\circ} \mathrm{C}$
Output Short Circuit Duration (Note 3) Indefinite

NOTES:

1. Rating applies to ambient temperatures up to $70^{\circ} \mathrm{C}$. Above $70^{\circ} \mathrm{C}$ ambient derate linearly at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for metal can, $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the DIP and $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the mini DIP.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

PIN CONFIGURATIONS

8-LEAD METAL CAN (outline dwg TO-99)

NOTE: Pin 4 connected to case

ORDERING INFORMATION

Part Number	Temperature Range	Package	Order Number
$\mu \mathrm{A} 748 \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice TO-99 can 8 pin minidip Dice	$\mu \mathrm{A} 748 \mathrm{C} / \mathrm{D}$ $\mu \mathrm{A} 748 \mathrm{HC}$ $\mu \mathrm{A} 748 \mathrm{C}$ $\mu \mathrm{A} 748 \mathrm{C} / \mathrm{D}$ $\mu \mathrm{A} 748 \mathrm{HM}$

748 ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}$ unless otherwise specified)

.PARAMETERS (see definitions)		CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		Rs $\leqslant 10 \mathrm{k} \Omega$		1.0	5.0	mV
Input Offset Current		.		20	200	nA
Input Bias Current			.	80	500	nA
Input Resistance			0.3	2.0		$\mathrm{M} \Omega$
Input Capacitance				2.0		pF
Offset Voltage Adjustment Range				± 15		mV
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50,000	150,000		V/V
Output Resistance				75		Ω
Output Short-Circuit Current				25		mA
Supply Current				1.9	2.8	mA
Power Consumption				60	85	mW
Transient Response (Voltage Follower, Gain of 1)	Rise Time	$V_{\mathbb{I}}=20 \mathrm{mV}, C_{c}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$		0.3		$\mu \mathrm{S}$
	Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 1)		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$		0.5		$\mathrm{V} / \mu \mathrm{s}$
Transient Response (Voltage Follower, Gain of 10)	Rise Time	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{C}}=3.5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 . \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$		- 0.2		$\mu \mathrm{S}$
	Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 10)		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{Cc}=3.5 \mathrm{pF}$		5.5		$\mathrm{V} / \mu \mathrm{s}$
The following specifications apply for $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$:						

Input Offset Voltage	RS $\leqslant 10 \mathrm{k} \Omega$		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		10	200	nA
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		50	500	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		0.03	0.5	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		0.3	1.5	$\mu \mathrm{A}$
Input Voltage Range		± 12	± 13		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{Rs} \leqslant 10 \mathrm{k} \Omega$		30	150	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$, V OUT $= \pm 10 \mathrm{~V}$	25,000			V/V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$	± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	± 10	± 13		V
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		1.5	2.5	mA
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		2.0	3.3	mA
Power Consumption	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		45	75	mW
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		60	100	mW

VOLTAGE OFFSET NULL CIRCUIT

SUGGESTED

alternate

748C ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}$ unless otherwise specified)

PARAMETERS		CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		2.0	6.0	mV
Input Offset Current				20	200	nA
Input Bias Current				80	500	nA
Input Resistance			0.3	2.0		$\mathrm{M} \Omega$
Input Capacitance				2.0		pF
Offset Voltage Adjustment Range				± 15		mV
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$, $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	20,000	150,000		V/V
Output Resistance				75		Ω
Output Short-Circuit Current				25		mA
Supply Current				1.9	2.8	mA
Power Consumption		,		60	85	mW
Transient Response (Voltage Follower, Gain of 1)	Rise Time	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV}, \mathrm{Cc}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$.	0.3		$\mu \mathrm{S}$
	Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 1)		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$		0.5		$\mathrm{V} / \mu \mathrm{s}$
Transient Response (Voltage Follower, Gain of 10)	Rise Time	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV}, \mathrm{Cc}=3.5 \mathrm{pF}, \mathrm{l}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$		0.2	.	$\mu \mathrm{S}$
	Overshoot		.	5.0		\%
Slew Rate (Voltage Follower, Gain of 10)		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{c}}=3.5 \mathrm{pF}$		5.5		$\mathrm{V} / \mu \mathrm{s}$
The following specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$:						
Input Offset Voltage		RS $\leqslant 10 \mathrm{k} \Omega$			7.5	mV
Input Offset Current					300	nA
Input Bias Current				,	800	nA
Input Voltage Range		,	± 12	± 13		V
Common Mode Rejection Ratio		$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70	90		dB
Supply Voltage Rejection Ratio		$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		30	150	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain		$R_{L} \geqslant 2 \mathrm{k} \Omega$, V ${ }_{\text {OUT }}= \pm 10 \mathrm{~V}$	15,000			V/V
Output Voltage Swing Power Consumption		$\mathrm{R}_{\mathrm{L}} \leqslant 10 \mathrm{k} \Omega$	± 12	± 14		V
		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	± 10	± 13		V
				60	100	mW

EQUIVALENT CIRCUIT

TYPICAL PERFORMANCE CURVES FOR 748

INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY VOLTAGE - , V

INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET CURRENT
AS A FUNCTION OF AMBIENT TEMPERATURE

TYPICAL PERFORMANCE CURVES FOR 748C

INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

temperature - " \mathbf{C}

INPUT RESISTANCE
AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET CURRENT
AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT FEMPERATURE

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

POWER CONSUMPTION
AS A FUNCTION OF AMBIENT TEMPERATURE

TYPICAL PERFORMANCE CURVES FOR 748 AND 748C

POWER CONSUMPTION
AS A FUNCTION OF
SUPPLY VOLTAGE

SUPPLY VOLTAGE $- \pm V$

INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING
AS A FUNCTION OF
LOAD RESISTANCE

FREQUENCY CHARACTERISTICS AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY VOLTAGE $- \pm V$
INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

748 FREQUENCY
CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY

748C FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE

BROAD BAND NOISE FOR VARIOUS BANDWIDTHS

TYPICAL PERFORMANCE CURVES FOR 748 AND 748C

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF
FREQUENCY FOR VARIOUS GAIN/COMPENSATION OPTIONS

VOLTAGE FOLLOWER TRANSIENT RESPONSE (GAIN OF 1)

OPEN LOOP PHASE RESPONSE
AS A FUNCTION OF FREQUENCY

FREQUENCY RESPONSE FOR VARIOUS CLOSED LOOP GAINS

OUTPUT RESISTANCE
AS A FUNCTION OF FREQUENCY

TRANSIENT RESPONSE TEST CIRCUIT

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

COMPENSATION CAPACITANCE AS A FUNCTION OF CLOSED LOOP VOLTAGE GAIN

5

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY

frequency - Hz
 LARGE-SIGNAL PULSE RESPONSE

TYPICAL PERFORMANCE CURVES

FEED FORWARD COMPENSATION

LARGE SIGNAL FEED FORWARD TRANSIENT RESPONSE

TYPICAL APPLICATIONS

PULSE WIDTH MODULATOR

$$
\begin{aligned}
f_{c} & =\frac{1}{2 \pi R_{2} C 1} \\
f_{n} & =\frac{1}{2 \pi R_{1} C 1} \\
& =\frac{1}{2 \pi R_{2} C 2} \\
f_{c} & <f_{n}<f_{\text {unity gain }}
\end{aligned}
$$

PRACTICAL DIFFERENTIATOR

CIRCUIT FOR OPERATING THE 748 WITHOUT A NEGATIVE SUPPLY

FEATURES

- Low offset voltage and offset current
- Low offset voltage and current drift
- Low input bias current
- Low input noise voltage
- Large common mode and differential voltage ranges

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	
\quad Metal Can	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range (HC)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
	(HM) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)	$260^{\circ} \mathrm{C}$
Output Short Circuit Duration (Note 3)	Indefinite

Note 1: Rating applies to ambient temperatures up to $70^{\circ} \mathrm{C}$. Above $70^{\circ} \mathrm{C}$ ambient derate linearly at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for Metal Can, $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the DIP, and $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the Mini DIP.

Note 2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3. Short Circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature for ISET $\leq 30 \mu \mathrm{~A}$.

GENERAL DESCRIPTION

The $\mu A 777$ is a monolithic Precision Operational Amplifier. It is an excellent choice when performance versus cost trade-offs are possible between super beta or FET input operational amplifiers and low cost general purpose operational amplifiers. Low offset and bias currents improve system accuracy when used in applications such as long term integrators, sample and hold circuits and high source impedance summing amplifiers. Even though the input bias current is extremely low, the $\mu \mathrm{A} 777$ maintains full $\pm 30 \mathrm{~V}$ differential voltage range. High common mode input voltage range, latch-up protection, short circuit protection and simple frequency compensation make the device versatile and easily used.

PIN CONFIGURATION

8-LEAD METAL CAN (TOP VIEW)

(outline dwg TO-99)

ORDERING INFORMATION

	Dice	To-99 Can
μ A777C μ A777M	μ A777C/D μ A777M/D	$\mu A 777 H C$ μ A777MC

ELECTRICAL CHARACTERISTICS FOR μ A777 ($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}$ unless otherwise specified)

PARAMETERS		CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage		RS $\leq 50 \mathrm{k} \Omega$		0.7	5.0	mV
Input Offset Current				0.7	20.0	nA
Input Bias Current				25	100	nA
Input Resistance			1.0	2.0		$\mathrm{M} \Omega$
Input Capacitance				3.0		pF
Offset Voltage Adjustment Range				± 25		mV
Large Signal Voltage Gain		RL $\geq 2 \mathrm{k} \Omega$, VOUT $= \pm 10 \mathrm{~V}$	25,000	250,000		V/V
Output Resistance				100		Ω
Output Short Circuit Current				± 25		mA
Supply Current				1.9	2.8	mA
Power Consumption				60	85	mW
Transient Response (Voltage Follower, Gain of 1)	Rise Time	$\mathrm{VIN}=20 \mathrm{mV}, \mathrm{Cc}=30 \mathrm{pF}$		0.3		$\mu \mathrm{S}$
	Overshoot			5.0		\%
Slew Rate(Voltage Follower, Gain of 1)		$\mathrm{RL} \geq 2 \mathrm{k} \Omega$		0.5	,	$\mathrm{V} / \mu \mathrm{s}$
Transient Response (Voltage Follower, Gain of 10)	Rise Timé	$\begin{aligned} & \mathrm{VN}=20 \mathrm{mV}, \mathrm{Cc}_{\mathrm{c}}=3.5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{CL} \leq 100 \mathrm{pF} \end{aligned}$		0.3		$\mu \mathrm{S}$
	Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 10)		$\mathrm{RL} \leq 2 \mathrm{k} \Omega$, Cc $=3.5 \mathrm{pF}$		5.5		$\mathrm{V} / \mu \mathrm{s}$
The' following specifications apply over operating temperature range.						
Input Offset Voltage		Rs $\leq 50 \mathrm{k} \Omega$		0.8	5.0	mV
Average Input Offset Voltage Drift		RS $\leq 50 \mathrm{k} \Omega$		4.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current					40	nA
Average Input Offset Current Drift		$\begin{aligned} & 25^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \hline 0.01 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10.3 \\ 0.6 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} /^{\circ} \mathrm{C} \\ & \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Input Bias Current					200	nA
Input Voltage Range			± 12	± 13		V
Common Mode Rejection Ratio		RS $\leq 50 \mathrm{k} \Omega$	70	95		dB
Supply Voltage Rejection Ratio		Rs $\leq 50 \mathrm{k} \Omega$		15	150	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$, VOUT $= \pm 10 \mathrm{~V}$	15,000			V/V
Output Voltage Swing		$\mathrm{RL} \geq 10 \mathrm{k} \Omega$	± 12	± 14		V
		$\mathrm{R} \mathrm{L} \geq 2 \mathrm{k} \Omega$	± 10	± 13		V
Power Consumption				60	100	mW

EQUIVALENT CIRCUIT

TYPICAL PERFORMANCE CURVES

POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE

INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION

OF AMBIENT
TEMPERATURE

OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE

INPUT CURRENT AS
A FUNCTION OF AMBIENT TEMPERATURE

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY | VOLTAGE

INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE

ÓUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

INPUT NOISE VOLTAGE AND CURRENT AS A FUNCTION OF FREQUENCY

TYPICAL PERFORMANCE CURVES

FREQUENCY RESPONSE FOR VARIOUS CLOSED-LOOP GAINS

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY

TRANSIENT RESPONSE TEST CIRCUIT

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

COMPENSATION
CAPACITANCE AS A FUNCTION OF CLOSED LOOP VOLTAGE GAIN

INPUT OFFSET VOLTAGE DRIFT AS A FUNCTION OF TIME

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

TYPICAL PERFORMANCE CURVES

THERMAL RESPONSE OF INPUT OFFSET VOLTAGE to step change of Case temperature

STABILIZATION TIME OF INPUT OFF-SET VOLTAGE FROM POWER TURN-ON

TIME FROM POWER APPLICATION • MIN.

FEED FORWARD COMPENSATION

VOLTAGE OFFSET
NULL CIRCUIT

GAIN TEST CIRCUIT

TYPICAL APPLICATIONS

BIAS COMPENSATED LONG TIME INTEGRATOR

*ADJUST R B_{3} FOR MINIMUM INTEGRATOR DRIFT

CAPACITANCE MULTIPLIER

BILATERAL CURRENT SOURCE

$$
I_{\text {OUT }}=\frac{R_{3} V_{I N}}{R_{1} R_{5}} ; R_{1}=R_{2} ; R_{3}=R_{4}+R_{5}
$$

$\pm 100 \mathrm{~V}$ COMMON MODE RANGE INSTRUMENTATION AMPLIFIER
$\frac{R_{1}}{R_{7}} \equiv \frac{R_{3}}{R_{4}}$ for best CMRR
$R_{3}=R_{4}$
$R_{1}=R_{6}=10 R_{3}$
Gain $=\frac{R_{7}}{R_{6}}$.

SAMPLE AND HOLD

AMPLIFIER FOR CAPACITANCE TRANSDUCERS •

LOW FREQUENCY CUTOFF $R_{1} \times C_{1}$

HIGH SLEW RATE POWER AMPLIFIER

INSTRUMENTATION AMPLIFIER WITH HIGH COMMON MODE REJECTION

LH2101A/LH2301A Dual High Performance Op Amp

FEATURES

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$

GENERAL DESCRIPTION

The LH2101A series of dual operational amplifiers consist of two LM101A type op amps in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, and reduced insertion cost.
The LH2101A is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range, while the LH2301A is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

CONNECTION DIAGRAM

ORDER NUMBER LH2101AD, LH2301AD

PIN CONFIGURATION

(outline dwg DE)

AUXILIARY CIRCUITS

INVERTING AMPLIFIER WITH BALANCING CIRCUIT

†May be zero or equal to parallel combination of R_{1} and R_{2} for minimum offset.

ALTERNATE BALANCING CIRCUIT

SINGLE POLE COMPENSATION

TWO POLE COMPENSATION

FEEDFORWARD COMPENSATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 22 \mathrm{~V}$
Power Dissipation (Note 1) 500 mW
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) $\pm 15 \mathrm{~V}$
Output Short-Circuit Duration Continuous
Operating Temperature RangeLH2101A $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LH2301A $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Rańge $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Each side (Note 3)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2101A	LH2301A	
Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Rs} \leq 50 \mathrm{k} \Omega$	2.0	7.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	50	
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	75	250	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	0.5	$\mathrm{M} \Omega$ Min
Súpply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	3.0	3.0	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \text { VOUT }= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	25	V/mV Min
Input Offset Voltage Average Temperature	Rs $\leq 50 \mathrm{k} \Omega$	3.0	10	mV Max
Coefficient of Input Offset Voltage		15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		20	70	nA Max
Average Temperature	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$	0.1	0.3	
Coefficient of Input Offset Current	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	0.2	0.6	nA $/{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		100	300	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	2.5		mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \text { VOUT }= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25	15	V/mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 12	$V \mathrm{Min}$
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 10	
Input Voltage Range Common Mode	$\mathrm{Vs}= \pm 20 \mathrm{~V}$	± 15	± 12	
Rejection Ratio Supply Voltage	$\mathrm{Rs} \leq 50 \mathrm{k} \Omega$	80	70	dB Min
Rejection Ratio	Rs $\leq 50 \mathrm{k} \Omega$	80	70	

Note 1: The maximum junction temperature of the LH2101A is $150^{\circ} \mathrm{C}$, and the thermal resistance is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. For the LH2301A these specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \pm 5 \mathrm{~V}$ and $\leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$. Supply current and input voltage range are specified as $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LH2301A. $\mathrm{C}_{1}=30 \mathrm{pF}$ unless otherwise specified.

LH2108/2308 Dual Super Beta Op Amp

FEATURES

- Low offset current - 50 pA
- Low offset voltage - 0.7 mV
- Low offset voltage - LH2108A: 0.3 mV

LH2108: 0.7 mV

- Wide input voltage range $- \pm 15 \mathrm{~V}$
- Wide operating supply range $- \pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

GENERAL DESCRIPTION

The LH2108A/LH2308A and LH2108/LH2308 series of dual operational amplifiers consist of two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, and reduced insertion cost.
The LH2108A/LH2108 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range, and the LH2308A/LH2308 is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

CONNECTION DIAGRAM

ORDER NUMBER LH2108AD, LH2408AD, LH2108D, OR LH2408D

PIN CONFIGURATION

AUXILIARY CIRCUITS

STANDARD COMPENSATION CIRCUIT

ALTERNATE* FREQUENCY COMPENSATION

FEEDFORWARD COMPENSATION

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS Each side (Note 4)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2108	LH2308	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	7.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	1.0	
Input Bias Current	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	2.0	7.0	nA Max
Input Resistance	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	30	10	$\mathrm{M} \Omega$ Min
Supply Current	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{VS}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{VOUT}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	50	25	V/mV Min
Input Offset Voltage		3.0	10	mV Max
Average Temperature Coefficient of Input Offset Voltage		15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		3.0	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	0.4	-	mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \text { VOUT }= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25	15	V/mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13	
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5	± 14	\checkmark Min
Common Mode Rejection Ratio		85	80	dB Min
Supply Voltage Rejection Ratio		80	80	dB Min

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2108A	LH2308A	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5	0.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	1.0	
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	7.0	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	10	$\mathrm{M} \Omega$ Min
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	80	80	V / mV Min
Input Offset Voltage		1.0	0.73	mV Max
Average Temperature Coefficient of Input Offset Voltage		5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current .		0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		3.0	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	0.4	-	mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	40	60	V / mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13	
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5	± 14	V Min
Common Mode Rejection Ratio		96	96	dB Min
Supply Voltage Rejection Ratio		96	96	dB, Min

[^19]
FEATURES

- Low input current - 1 nA
- High input resistance - $\mathbf{1 0} \mathbf{~ M} \Omega$
- High slew rate $-30 \mathrm{~V} / \mu \mathrm{s}$
- Wide bandwidth - 20 MHz
- Wide operating supply range $- \pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Output short circuit protected.

GENERAL DESCRIPTION

The LH2110 series of dual voltage followers consist of two LM110 type followers in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, and reduced insertion cost.
The LH2110 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range, and the LH2310 is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

CONNECTION DIAGRAM

ORDER NUMBER LH2110D or LH2310D

PIN CONFIGURATION

AUXILIARY CIRCUITS

INCREASING NEGATIVE SWING UNDER LOAD

OFFSET BALANCING CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. $\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) .. 500 mW
Input Voltage (Note 2) ... $\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3) Continuous

LH2310.......................... $.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Each side (Note 4)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2110	LH2310	
Input Offset Voltage	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	4.0	7.5	mV Max
Input Bias Current	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	3.0	7.0	nA Max
Input Resistance	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	10M	10M	Ω Min
Input Capacitance		1.5	1.5	pF Typ
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VS}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega \end{aligned}$. 999	. 999	V/V Min
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.5	2.5	Ω Max
Supply Current (Each Amplifier)	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	5.5	5.5	mA Max
Input Offset Voltage		6.0	10	mV Max
Offset Voltage	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C}$	6	10	${ }_{\mu} \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ
Temperature Drift	$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$	12	-	$\mu \mathrm{C} / \mathrm{C}^{\text {Typ }}$
Input Bias Current		10	10	nA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$. 999	. 999	V/V Min
Output Voltage Swing (Note 5)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} 10 \mathrm{k} \Omega$	± 10	± 10	V Min
Supply Current (Each Amplifier)	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	4.0	-	- mA Max
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq \pm 18 \mathrm{~V}$	70	70	dB Min

Note 1: The maximum junction temperature of the LH2110 is $150^{\circ} \mathrm{C}$, while that of the LH 2310 is $85^{\circ} \mathrm{C}$. The thermal resistance of the package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$. It is necessary to insert a resistor greater than $2 \mathrm{~K} \Omega$ in series with the inut when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified, and for the LH2310, all temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V - terminals.

LH2111, LH2311
Dual Voltage Comparator

FEATURES

- Wide operating range $- \pm 15 \mathrm{~V}$ to a single +5 V
- Low input currents - 6 nA
- High sensitivity - $\mathbf{1 0} \mu \mathrm{V}$
- Wide differential input range - $\pm 30 \mathrm{~V}$
- High output drive - 50V, 50 mA

GENERAL DESCRIPTION

The LH2111 series of dual voltage comparators consist of two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, and reduced insertion cost.
The LH 2111 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range, and the LH2311 is specified for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

AUXILIARY CIRCUITS

OFFSET BALANCING

DRIVING GROUNDREFERRED LOAD

STROBING

INCREASING INPUT STAGE CURRENT*

COMPARATOR AND SOLENOID DRIVER

STROBING OFF BOTH INPUT* AND OUTPUT STAGES

TTL INTERFACE WITH HIGH LEVEL LOGIC

ORDER NUMBER LH2111D OR LH2311D

ABSOLUṪE MAXIMUM RATINGS
Total Supply Voltage .. 36 V
Output to Negative Supply Voltage (Vout - V-) 50 V
Ground to Negative Supply Voltage (GND - V-) 30V
Differential Input Voltage .. $\pm 30 \mathrm{~V}$
Input Voltage (Note 1) ... $\pm 15 \mathrm{~V}$
Power Dissipation (Note 2) :.. 500 mW
Output Short Circuit Duration .. 10 sec
Operating Temperature Range LH2111 - $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LH2311 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) ... $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Each side (Note 3)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2111	LH2311	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RS} \leq 50 \mathrm{k}$	3.0	7.5	mV Max
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	50	
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	250	nA Max
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	200	200	V/mV Typ
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	200	200	ns Typ
Saturation Voltage	$\begin{aligned} & \mathrm{V} \text { IN } \leq-5 \mathrm{mV}, \text { lout }=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.5	1.5	\checkmark Max
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.0	3.0	mA Typ
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \text { VOUT }=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	50	nA Max
Input Offset Voltage (Note 4)	Rs $\leq 50 \mathrm{k}$	4.0	10	mV Max
Input Offset Current (Note 4)		20	70	
Input Bias Current		150	300	nA Max
Input Voltage Range.		± 14	± 14	\checkmark Typ
Saturation Voltage	$\begin{aligned} & \mathrm{V}+\geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \mathrm{I} \operatorname{ISNK} \leq 8 \mathrm{~mA} \end{aligned}$	0.4	0.4	\checkmark Max
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	7.5	
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.0	5.0	mA Max

Note: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature is $150^{\circ} \mathrm{C}$. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. Note 3: These specifications apply for $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}$ for the LH2111, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$ for the LH2311, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. For the LH2311, $\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

HA 2500/02/05/10/12/15/20/22/25 High Slew Rate Operational Amplifiers

FEATURES

- Slew Rate - Up to $120 \mathrm{~V} / \mu \mathrm{s}$
- Settling Time - 200 ns to 0.1%
- Bias Current - 100 nA
- Gain Bandwidth Product - $\mathbf{3 0} \mathbf{M H z}$
- Internal Frequency Compensation
- Radiation Hardened
- Meets MIL-STD-883

GENERAL DESCRIPTION

The 2500 series of high slew rate operational amplifiers are monolithic integrated circuits fabricated using dielectric isolation and thin film resistors. These internally compensated amplifiers feature excellent input parameters, high gain and wide bandwidth. They are ideally suited for D / A and A / D converter circuits, pulse amplifiers and high frequency buffer amplifiers.

2500 through 2515 are compensated for unity gain. 2520 through 2525 are intended for closed loop gains of 3 or greater, and feature increased slew rates and gain-bandwidth products.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE TYPE	ORDER NUMBER
HA2500	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Flat Pack	$\begin{aligned} & \text { HA2-2500-2 * } \\ & \text { HA9-2500-2 * } \end{aligned}$
HA2502	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Flat Pack	$\begin{aligned} & \text { HA2-2502-2 * } \\ & \text { HA9-2502-2 * } \end{aligned}$
HA2505	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\begin{gathered} \text { TO-99 } \\ \text { Flat Pack } \end{gathered}$	$\begin{aligned} & \text { HA2-2505-5 } \\ & \text { HA9-2505-5 } \end{aligned}$
HA2510	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} \text { TO-99 } \\ \text { Flat Pack } \\ \hline \end{gathered}$	$\begin{aligned} & \text { HA2-2510-2 * } \\ & \text { HA9-2510-2 * } \end{aligned}$
HA2512	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Flat Pack	$\begin{aligned} & \text { HA2-2512-2 * } \\ & \text { HA9-2512-2 * } \end{aligned}$
HA2515	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	TO-99 Flat Pack	$\begin{aligned} & \text { HA2-2515-5 } \\ & \text { HA9-2515-5 } \end{aligned}$
HA2520	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Flat Pack	$\begin{aligned} & \text { HA2-2520-2 * } \\ & \text { HAG-5500-2 * } \end{aligned}$
HA2522	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Flat Pack	$\begin{aligned} & \text { HA2-2522-2 * } \\ & \text { HA9-2522-2 * } \end{aligned}$
HA2525	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$\begin{gathered} \text { TO-99 } \\ \text { Flat Pack } \end{gathered}$	$\begin{aligned} & \text { HA2-2525-5 } \\ & \text { HA9-2525-5 } \end{aligned}$

*883 processing is available for these devices.
Order -8 instead of -2.

PIN CONFIGURATIONS

(TOP VIEW)
(outline dwg TO-99)

(outline dwg FD)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 20 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Peak Output Current	$\pm 50 \mathrm{~mA}$
Internal Power Dissipation (Note 2)	300 mW
Lead Temperature (Soldering, 60 sec)	$300{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(2500,2502)$
	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (2505)

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}\right.$ unless otherwise specified)

PARAMETER	CONDITIONS	2500			2502			2505			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP'	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$, 2	5		4	8		4	8	mV
Input Offset Current		.	10	25		20	50		20	50	nA
- Input Resistance		25	50		20	50		20	50		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	20k	30k		15k	25k.		15k	25k		V / V
Gain Bandwidth	$\mathrm{A}_{\mathrm{V}}>10$.	-	12			12		,	12		MHz
Full Power Bandwidth .	$R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp} \cdot \mathrm{p}$	350	500		300	500		300	500		kHz
Rise Time (Notes 3,4)	$R_{L}=2 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$,		25	50		25	50		25	50	ns
Overshoot (Notes 3,4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	40		25	50		25	50	\%
Slew Rate (Note 3)	$R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$	± 25	± 30		± 20	± 30		± 20	± 30		$\mathrm{V} / \mu \mathrm{s}$
Settling Time (to 0.1\% of Final Value) (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$		330			330			330	-	ns
Output Current	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	± 10			± 10			± 10			mA
Supply Current	.		4	6		4	6		4	6	mA

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			8			10			10	mV
Input Offset Current				50			100			100	nA
Input Bias Current	$\begin{aligned} & +25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	nA nA nA nA
Offset Voltage Average Drift	$R_{S} \leqslant 10 \mathrm{k} \Omega$		20			20		-	20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Current Average Drift			0.1			0.1			0.1		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB
Common Mode Range		± 10			± 10			± 10			V
Supply Voltage Rejection Ratio	$\Delta V= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	7.5k			5 k			10k			V/V
Output Voltage Swing	$R_{L}=2 \mathrm{k} \Omega$	± 10	± 12		± 10	± 12		± 10	± 12		V

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO-86 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate TO-99 at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: $A_{V}=1$.
NOTE 4: $\mathrm{V}_{\mathrm{O}}=400 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$.

 TRANSIENT RESPONSE

SUGGESTED OFFSET ZERO ADJUST HOOK-UP

NOTE: Measured on both positive and negative transitions.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 20 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Peak Output Current	$\pm 50 \mathrm{~mA}$
Internal Power Dissipation (Note 2)	300 mW
Lead Temperature (Soldering, 60 sec).	$300{ }^{\circ} \mathrm{C}$
Storage Temperature Range	${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(2510,2512)$
	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (2515)

ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

PARAMETER	CONDITIONS	2510			2512			2515			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		4	8		5	10		5	10	mV
Input Offset Current			10	25		20	50		20	50	nA
Input Resistance		50	100	.	40	100		40	100		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	10k	15k		7.5k	15k		7.5k	15k		V/V
Gain Bandwidth	$\mathrm{A}_{\mathrm{V}}>10$		12			12			12		MHz
Full Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}$-p	750	1000		600	1000		600	1000		kHz
Rise Time (Notes 3,4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	50		25	50		25	50	n's
Overshoot (Notes 3,4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	40		25	50		25	50	\%
Slew Rate (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$	± 50	± 65		± 40	± 60		± 40	± 60		$\mathrm{V} / \mu_{\mathrm{s}}$
Settling Time (to 0.1\% of Final Value) (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$		250		,	250			250		ns
Output Current	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	± 10			± 10			± 10			mA
Supply Current			4	6		4	6		4	6	

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			11			. 14			14	mV
Input Offset Current				50			100			100	nA
Input Bias Current	$+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$,	100	200		125	250				nA
	$-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$		200	400		250	500				nA
	$+25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$								125	250	nA
	$0^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$								250	500	nA
Offset Voltage Average Drift	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		20			30			30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Current Average Drift			0.1			0.1			0.1		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB
Common Mode Range		± 10			± 10			± 10			\checkmark
Supply Voltage Rejection Ratio	$\Delta \mathrm{V}= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	7.5k			5 k			5 k			V / V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 12		± 10	± 12		± 10	± 12		V

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO-86 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate TO-99 at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: $A V=1$.
NOTE 4: $\mathrm{V}_{\mathrm{O}}=400 \mathrm{mV} \mathrm{V}_{\mathrm{p}}$.

NOTE: Measured on both positive and negative transitions.

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$ unless otherwise specified)

	CONDITIONS	2520			2522			2525			UNITS
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$,	4	8		5	10		5	10	mV
Input Offset Current			10	25		20	50		20	50	nA
Input Resistance		50	100	- .	40	100	.	40	100		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	10k	15k		7.5k	15k		7.5k	15k		V/V
Gain Bandwidth	$A_{V}>10$.	30			30			30		MHz
Full Power Bandwidth	$R_{L}=2 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}$	1500	2000	-	1200	1600	\therefore	1200	1600		kHz
Rise Time (Notes 3,4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	50		15	50		15	50	ns
Overshoot (Notes 3,4) ,	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	40	-	25	50		25	50	\%
Slew Rate (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$	± 100	± 120	,	± 80	± 120		± 80	± 120	.	$\mathrm{V} / \mu \mathrm{s}$
$\begin{aligned} & \hline \text { Settling Time (to } 0.1 \% \\ & \text { of Final Value) (Note 3) } \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$		200	-		200		-	200		ns
Output Current	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	± 10			± 10			± 10			mA
Supply Current	.		4	6		4	6		4	6	mA

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			11			14			14	mV
Input Offset Current	-			50			100			100	nA
Input Bias Current	$\begin{aligned} & +25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{array}{r} \mathrm{nA} \\ \mathrm{nA} \\ \mathrm{nA} \\ \mathrm{nA} \end{array}$
Offset Voltage Average Drift	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		20			30			30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Current Average Drift			0.1		,	0.1			0.1		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB
Common Mode Range		± 10			± 10			± 10			V
Supply Voltage Rejection Ratio	$\Delta V= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega_{,} \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	7.5k			5 k			5 k			V/V
Output Voltage Swing	$R_{L}=2 \mathrm{k} \Omega$	± 10	± 12	-	± 10	± 12		± 10	± 12		V

NOTE 1: For supply voltage less than $\pm 15 \mathrm{~V}$, the absolute maximum input'voltage is equal to the supply voltage.
NOTE 2: Derate $\mathrm{TO}-86$ at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate $\mathrm{TO}-99$ at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: $A_{V}=3$.
NOTE 4: $V_{O}=600 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$.

 AND TRANSIENT RESPONSE

SUGGESTED OFFSET
ZERO ADJUST AND BANDWIDTH CONTROL HOOK-UP

NOTE: Measured on both positive and negative transitions.

SCHEMATIC DIAGRAM

 High Slew Rate Operational Amplifier Series

FEATURES

	HA2507	HA2517	HA2527	
- High Slew Rate	30	60	120	$\mathrm{V} / \mu \mathrm{s}$
- Fast Settling	330	250	200	ns
- Wide Power Bandwidth	0.5	1.0	1.6	MHz
- High Gain Bandwidth	12	12	20	MHz
- High Input Impedance	50	100	100	M Ω

ORDERING INFORMATION

НАЗ-2507-5	
НАЗ-2517-5	8 pin minidip
НАЗ-2527-5	

SCHEMATIC

DESCRIPTION

HA2507/2517/2527 operational amplifiers are a series of high-performance, epoxy-packaged monolithic IC's designed to deliver excellent slew rate, bandwidth and settling time specifications. Typical slew rate specifications for HA2507, HA2517 and HA2527 are 30V $/ \mu \mathrm{sec}$, $60 \mathrm{~V} / \mu$ sec and $120 \mathrm{~V} / \mu \mathrm{sec}$ respectively. Corresponding settling times (10 V step to 0.1%) are $330 \mathrm{~ns}, 250 \mathrm{~ns}$ and 200ns for HA2507, HA2517 and HA2527 respectively. Bandwidths range from 12 MHz to 20 MHz . HA2507/ 2517/2527 are internally compensated; HA2507 and HA2517 are stable for closed loop gains (A_{v}) greater than or equal to unity. HA2527 is stable for $A_{V}>3$.
This series of op amps affords an economical means of designing high performance equipment for industrial and commercial use. Their slew rate and settling time performance makes them ideally suited for high speed D/A, A/D and pulse amplification designs. The wide bandwidth offered by these devices also makes them valuable components in RF and video applications. HA2507/2517/2527 also deliver offset current, bias current and offset voltage specifications compatible with the requirements of accurate signal conditioning systems.

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V^{-}Terminals 40.0V
Differential Input Voltage...................
Peak Output Current 50mA
Internal Power Dissipation 300mW
Operating Temperature Range-
HA-2507/HA-2517/HA-2527 $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}$
Storage Temperature Range .. $-65^{\circ} \leqslant T_{A} \leqslant+150^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+15$ V D.C., $\mathrm{V}^{-}=-15 \mathrm{~V}$ D.C.

PARAMETER	TEMP.	$\begin{gathered} \text { HA-2507 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2517 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2527 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		LIMITS			LIMITS			LIMITS			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS											
Offset Voltage 'r	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \end{gathered}$
Offset Voltage Average Drift	Full		25			30			30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		125	250		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	20	$\begin{gathered} 50 \\ 100 \end{gathered}$		20	$\begin{array}{r} 50 \\ 100 \end{array}$		20	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{gathered} 20 \\ \pm 10.0 \end{gathered}$	50		$\begin{gathered} 40 \\ \pm 10.0 \end{gathered}$	100		$\begin{gathered} 40 \\ \pm 10.0 \end{gathered}$	100		$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{~V} \end{gathered}$
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 1, 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 15 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$	25K		$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	15K		$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	15K		$\begin{aligned} & \text { V/V } \\ & \text { V/V } \end{aligned}$
Common Mode Rejection Ratio (Note 2)	Full	74	90		74	90		74	90		dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$		12			12			20		MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0		± 10.0	± 12.0		± 10.0	± 12.0		V
Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 10	± 20		± 10	± 20		± 10	± 20		mA
Full Power Ba'ndwidth (Note 4)	$+25^{\circ} \mathrm{C}$	220	500		450	1000		750	1600		kHz
TRANSIENT RESPONSE											
Rise Times (Notes 1, 5, 6 \& 8)	$+25^{\circ} \mathrm{C}$		25	50		25	50		25	50	ns
Overshoot (Notes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$		25	50		25	50		25	50	\%
Slew Rate (Notes 1, 4, 5 \& 8)	$+25^{\circ} \mathrm{C}$	± 15	± 30		± 30	± 60		± 60	± 120		$\mathrm{V} / \mu \mathrm{s}$
Settling Time to 0.1\% (Notes 1, 4, 5 \& 8)	$+25^{\circ} \mathrm{C}$		0.33			0.25			0.20		$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS											
Supply Current	$+25^{\circ} \mathrm{C}$		4	6		4	6		4	6	mA
Power Supply Rejection Ratio (Note 9)	Full	74	90		74	90		74	90		dB

Notes:

1. $R_{L}=2 K$
2. $\mathrm{V}_{\mathrm{CM}}=+5.0 \mathrm{~V}$
3. $A_{V}>10$
4. $V_{0}=+10.0 \mathrm{~V}$
5. $C_{L}=50 \mathrm{pF}$
6. $\mathrm{V}_{\mathrm{o}}=+400 \mathrm{mV}$ for HA-2507 and HA-2517; $\mathrm{V}_{\mathrm{o}}=+200 \mathrm{mV}$ for HA-2527
7. $\mathrm{Vo}_{\mathrm{o}}=+600 \mathrm{mV}$
8. For HA-2507 and HA-2517, $A_{v}=1$; For HA-2527, $A_{v}=3$
9. $\Delta \mathrm{V}=++5.0 \mathrm{~V}$

HA2600, HA2605, HA2622, HA2602, HA2620, HA2625
 High Impedance Operational Amplifiers

FEATURES

- Input Impédance - $500 \mathrm{M} \Omega$
- Offset Current - 1nA
- Bias Current - 1nA
- Gain Bandwidth Product - 100 MHz
- High Gain - 150K
- Output Short Circuit Protection
- Meets MIL-STD-883

GENERAL DESCRIPTION

The 2600 series of high impedance operational amplifiers are monolithic integrated circuits fabbricated using dielectric isolation. These internally compensated amplifiers feature excellent input parameters, low input bias and wide bandwidth. They are ideally suited for general purpose use in instrumentation and signal processing applications.

2600 through 2605 are compensated for unity gain. 2620 through 2625 are intended for closed loop gains of 5 or greater and feature increased slew rated and gain-bandwidth products.

PIN CONFIGURATIONS, TOP VIEWS

(outline dwg TO-99)

Pin 4 Connected to case
(outline dwg FB)

(outline dwg JD)

ORDERING INFORMATION

[^20]ÁBSOLUTE MAXIMUM RATINGS

Supply Voltage
Input Voltage (Note 1)
Differential Input Voltage
Peak Output Current
Internal Power Dissipation (Note 2)
Lead Temperature (Soldering, 60 sec .)
Storage Temperature Range
Operating Temperature Range
$\pm 22.5 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
$\pm 12 \mathrm{~V}$
Full Short Circuit Protection
300 mW
$+300^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(2600,2602)$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (2605)

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}= \pm 15 \mathrm{~V}\right.$, unless otherwise specified)

PARAMETER	CONDITIONS	2600			2602			2605			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$R_{S} \leqslant 10 k s 2$		0.5	4.		3	5	,	3	5	mV
Input Offset Current			1	10		5	25		5	25	nA
Input Bias Current			1	10.		5	25		5	25	nA
Input Resistance		100	500 '		40	300		40	300		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$R_{L}=2 k \Omega, V_{O}= \pm 10 \mathrm{~V}$	100K	150K		80K	150K		80K	150K		V/V
Unity Gain Bandwidth	$V_{O}<90 \mathrm{mV}$		12			12		',	12		MHz
Full Power Bandwidth	$R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}$ p-p	50	75		50	75		50	75		KHz
Rise Time (Note 3)	$R_{L}=2 \mathrm{kS}, C_{L}=100 \mathrm{pF}$		30	60		30	60		30	60	ns
Overshoot (Note 4)	$R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$		25	40		25	50		25	50	\%
Slew Rate	$R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	4	7		4	7		4	7		$\mathrm{V} / \mu \mathrm{s}$
Setting Time	$R_{L}=2 \mathrm{k} 22, C_{L}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$.		1.5			1.5			1.5		ns
(to 10 mV of Final Value)											
Output Current	$V_{O}= \pm 10 \mathrm{~V}$	± 15	± 22		± 10	± 18		± 10	± 18		mA
Supply Current			3	3.7		3	4		3	4	mA

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega 2$,	2	6			7.			7	mV
Input Offset Current				5	30			60			40	nA
Input Bias Current				10	30			60			. 40	nA
Offset Voltage Average Drift	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			5								$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	$V_{\text {CM }}=+5 \mathrm{~V}$		80	100		74	100		74	100		dB
Common Mode Range			± 11			± 11			± 11			\checkmark
Supply Voltage Rejection Ratio	V_{S}. 9 V To +15 V		80	90		74	90		74	90		dB
Large Signal Voltage Gain ${ }^{-}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=.10 \mathrm{~V}$		70k			60k			70k			V/V
Output Voltage Swing	$R_{L}=2 k \Omega$		-10	± 12		± 10	± 12		± 10	± 12		v

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO.91 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate TO-99 at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: $\mathrm{V}_{\mathrm{O}}=400 \mathrm{mV} \mathrm{V}_{\mathrm{p}}$
NOTE 4: $\mathrm{V}_{\mathrm{O}}=800 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Input Voltage. (Note 1)
Differential Input Voltage
Peak Output Current
Internal Power Dissipation (Note 2)
Lead Temperature (Soldering, 60 sec .)
Storage Temperature Range
Operating Temperature Range
$\pm 22.5 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
$\pm 12 \mathrm{~V}$
Full Short Circuit Protection
300 mW
$300^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(2620,2622)$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}(2625)$
$\pm 22.5 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
$\pm 12 \mathrm{~V}$
Full Short Circuit Protection
300 mW
$300^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(2620,2622)$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (2625)

ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified)

PARAMETER	CONDITIONS	2620			2622			2625			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage (Note 3)	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		0.5	4		3	5		3	5	mV
Input Offset Current			1	15		5	25		5	25	nA
Input Bias Current			1	15		5	25		5	25	nA
Input Resistance		65	500		40	300		40	300		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \mathrm{V}^{2} \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.100K	150K		80K	150K		80K	150K		V/v
Gain Bandwidth (Notes 4 and 5)	$R_{L}=2 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$		100			100			100		MHz
Full Power Bandwidth	$R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V} \cdot \mathrm{p}$	400	600		320	600		320	600		KHz
Rise Time (N ote 6)	$R_{L}=2 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$		17	45.		17	45		17	45	ns
Slew Rate (Note 6)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=+5.0 \mathrm{~V}$	± 25	± 35		± 20	± 35	\%	± 20	± 35	.	$\mathrm{V} / \mu \mathrm{s}$
Output Current	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	± 15	± 22		± 10	± 18		± 10	± 18		mA
Supply Current			3	3.7		3	4	.	3	4	mA

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			6			7			7	mV
Input Offset Current			5	35			60			40.	nA
Input Bias Current			10	35			60			40	nA
Common Mode Rejection Ratio	$V_{C M}= \pm 5 \mathrm{~V}$	80	100		74	100		74	100		dB
Common Mode Range		± 11			± 11			± 11			V
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {Supply }}= \pm 9 \mathrm{~V}$ To $\leq 15 \mathrm{~V}$	80	90		74	90		74	90		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{ks} 2, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	70k			60k			70k			V/V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{ks}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	± 10	± 12		± 10	± 12		± 10	± 12		V

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO-91 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate $\mathrm{TO}-99$ at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: May be externally adjusted to zero.
NOTE 4: $\mathrm{V}_{\mathrm{O}}<90 \mathrm{mV}$.
NOTE 5: 40dB gain.
NOTE 6: $A V=5.0 \mathrm{~V}$.

NOTE: MEASURED ON BOTH POSITIVE AND NEGATIVE TRANSITIONS.

HA2607/2627

Wide Band Operational Amplifier Series

FEATURES

HA-2607 HA-2627

| - Wide gain-bandwidth | 12 | 100 | MHz |
| :--- | :---: | ---: | :--- | :--- |
| - High slew rate | 7 | 35 | $\mathrm{~V} / \mu \mathrm{s}$ |
| - Wide power bandwidth | 75 | 600 | KHz |
| - High gain | $150 \mathrm{KV} / \mathrm{V}$ | | |
| - High input impedance | $500 \mathrm{M} \Omega$ | | |
| - | | | |

- Output short circuit protection

ORDERING INFORMATION

HA3-2607-5	8 pin minidip
HA3-2627-5	8 pin minidip

DESCRIPTION

HA-2607/2627 bipolar operational amplifiers are high performance, epoxy-packaged monolithic IC's designed to deliver outstanding wideband AC performance. HA-2607 has a specified bandwidth of 12 MHz while HA-2627 has a typical gain-bandwidth of 100 MHz ! $^{*} \mathrm{HA}-2607$ and HA-2627 also offer correspondingly high slew rates of $7 \mathrm{~V} / \mu \mathrm{Sec}$ and $35 \mathrm{~V} / \mu \mathrm{Sec}$ respectively. These dynamic characteristics, coupled with $150,000 \mathrm{~V} / \mathrm{V}$ open-loop gain enables HA-2607/2627 to perform high-gain amplification of very fast, wideband signals.
The HA-2607 and HA-2627 op amps afford an economical means of designing high performance equipment for industrial and commercial use. These amplifiers are ideally suited to pulse amplification designs as well as high frequency (e.g. RF, video) applications. The frequency response of both amplifiers can be tailored to exact design requirements by means of an external bandwidth control capacitor.
*HA-2607/2627 are internally compensated-HA-2607 is stable for $A_{V} \geqslant 1,-H A-2627$ is stable for $A_{V} \geqslant 5$.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V^{-}Terminals 45.0V
Differential Input Voltage $\pm 12.0 \mathrm{~V}$
Peak Output Current Full Short Circuit Protection Internal Power Dissipation (Note 10) 300mW
Operating Temperature Range-
HA-2607/HA-2627................ $0^{\circ} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots-65^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}}{ }^{\circ} \leqslant+150^{\circ} \mathrm{C}$ -

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to, absolute: maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+15 \mathrm{VDC}, \mathrm{V}^{-}=-15 \mathrm{VDC}$

Notes:

1. $R_{\mathrm{L}}=2 \mathrm{~K}$
2. $V_{O}=+400 \mathrm{mV}$
3. $V_{C M}=+5.0 \mathrm{~V}$
4. For HA-2607, $A_{v}=1$; For HA-2627, $A_{v}=5$
5. $\mathrm{V}_{\mathrm{o}}<90 \mathrm{mV}$
6. $\mathrm{V}_{\mathrm{S}}=+9.0 \mathrm{~V}$ to +15 V
7. $V_{O}=+10 \mathrm{~V}$
8. Derate by $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$
9. $C_{L}=100 \mathrm{pF}$
10. 40 dB gain setting used to measure Gain-Band width for HA-2627
11. $V_{\mathrm{L}}=+200 \mathrm{mV}$

FEATURES

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. power supply operation
- 3 nA input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programable electrical characteristics
- Offset Voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection

GENERAL DESCRIPTION

The 4250 is an extremely versatile programable monolithic operational amplifier. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product.
The 4250 C is guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

ORDERING INFORMATION

Dice	8 Pin Minidip	TO-99 Can
LM4250C/D	LM4250CN	LM4250CH

RESISTOR BIASING

Set Current Setting Resistor to \mathbf{V}^{-}

I $\mathrm{I}_{\mathrm{SET}}$					
V_{S}	$0.1 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$11.5 \mathrm{Ni} \Omega$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm 12.0 \mathrm{~V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	4.69 MS 2	$2.34 \mathrm{M} \Omega$
$\pm 15.0 \mathrm{~V}$	$296 \mathrm{M} \Omega$	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$

PIN CONFIGURATIONS

(outline dwg TO-99)

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
ISET Current

500 mW $\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
$150 \mu \mathrm{~A}$

Output Short Circuit Duration	Indefinite
Operating Temperature Range	$0^{\circ} \mathrm{C} \leqslant \mathrm{T} \leqslant \leqslant 70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $10^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified)

FEATURES

- Input Noise Current $\leq 1.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- 10MHz Bandwidth
- 40dB Gain
- $\pm 15 \mathrm{~V}$ Supply

GENERAL DESCRIPTION

The IH5101 is specifically designed for transresistance amplifier applications. Its ultra low noise and high frequency capabilities make it ideal for vidicon head tube amplification; the low level current output of a vidicon head tube can be readily converted to a voltage level for system processing. For example, a 100nA tube output current will be transformed into 75 mV of output voltage.

TYPICAL APPLICATIONS

VIDICON HEAD AMPLIFIER

ORDERING INFORMATION

VIDEO AMPLIFIER WITH 40dB VOLTAGE GAIN

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	V
Input Current	1 mA
Peak Output Current	10 mA
Power Dissipation (Note)	1W
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature (M)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(I)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
ELECTRICAL CHARACTERISTICS $V_{S}= \pm 15 \mathrm{~V}$, $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

SYMBOL	PARAMETER	CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{l}_{\mathrm{IN}}$	Transresistance ($\mathrm{V}_{\text {OUT }} / \mathrm{I}_{\mathbb{N}}$)			0.75		$\mathrm{mV} / \mathrm{nA}$
l_{Q}	Power Supply Current (Quiescent) (Pins 3 and 15)	$\mathrm{I}_{\mathrm{N}}=0$			15	mA
Z_{0}	Output Impedance	. $\mathrm{f}=1 \mathrm{MHz}$			10	Ω
ΔV_{0}	Output Swing	$\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=1 \mathrm{MHz}$		1.0		V_{p-p}
BW	Bandwidth (3dB)	$\mathrm{R}_{\mathrm{L}}=75 \Omega$	10^{2}		10^{7}	Hz
	Transient Response (Step Response)	$\begin{aligned} & \dot{R}_{L}=75 \Omega \\ & 10 \% \text { to } 90 \% \end{aligned}$			100	ns
	t(OFF)	90\% to 10%			100	ns
	Output Wide Band Noise	100 Hz to $10 \mathrm{MHz}, \mathrm{I}_{\mathrm{N}}=0$			3.0	mVrms
i_{n}	Input Current Noise				1.5	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

NOISE TESTING

OUTPUT WIDE BAND NOISE

BANDWIDTH FOR NOISE TEST

SCHEMATIC DIAGRAM

FEATURES

- Low cost
- Military and industrial temperature ranges
- $\pm 10 \mathrm{~V}$ input voltage range
- $0.5 \mathrm{mV} /$ sec drift typical @ Cs $=0.01 \mu \mathrm{~F}$
- TTL, DTL and CMOS compatible
- Short circuit protected
- Input offset voltage adjustable to $<\mathbf{1 0 0} \mu \mathrm{V}$ using a 20k potentiometer
- 0.1% guaranteed sample accuracy with 10 V signals and $\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}$
- Sample to hold offset is $\mathbf{5 m V}$ max

SCHEMATIC DIAGRAM

GENERAL DESCRIPTION

Each of the 5110 family is a complete Sample and Hold circuit, (except for sampling capacitor) including input buffer amplifier, output buffer amplifier and CMOS logic switching. The devices are designed to operate from $\pm 15 \mathrm{~V}$ and +5 V supplies. The input logic is designed to "Sample" and "Hold" from standard TTL logic levels.
The design is such that the input and output buffering is performed by only one operational amplifier, by switching the sampling capacitor from the output back to input. Switches Q_{1}, Q_{2}, and Q_{3} (see Fig. 1) accomplish this switching. In the sampling mode Q_{1} and Q_{3} are shorted and Q_{2} is open; thus the op. amp. charges up the sampling capacitor. In the hold mode Q_{1} and Q_{3} are open and Q_{2} is shorted; thus the sampling cap. is switched back to the noninverting input of the op. amp.
This structure provides a very accurate d.c. gain of 1 with very fast settling times (i.e. $5 \mu \mathrm{~s}$); additionally the design has internal feedback to cancel charge injection effects (sample to hold offsets). Q_{1} and Q_{2} are driven 180 degrees out of phase to accomplish this charge nulling.

FIGURE 1
ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltages $\pm 16 \mathrm{~V}$
Power Dissipation 500mW
Operating Temperature
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec) . $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Pin $7=5 \mathrm{~V}$, $\operatorname{Pin} 8=$ GND, $\operatorname{Pin} 9=-15 \mathrm{~V}$, $\operatorname{Pin} 11=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) Note 3

SYMBOL	CHARACTERISTIC	IH5110, 5112, 5114			IH5111, 5113, 5115			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Close	Aperature Time		120	200		120	200	ns
tacq.	Acquisition Time for Max Analog Voltage Step $\mathrm{Cs}=0.1 \mu \mathrm{~F}$ (0.1% Accur.) $\mathrm{C}_{\mathrm{s}}=0.01 \mu \mathrm{~F}(0.1 \%$ Accur.) $\mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F}(0.1 \%$ Accur. $) \quad$ See fig. 4		25 4 4	35 6 6		25 4 4	$\begin{gathered} 35 \\ 6 \\ 6 \end{gathered}$	$\mu \mathrm{S}$
$V_{\text {drift }}$	Drift Rate $\begin{align*} & \mathrm{CS}=0.1 \mu \mathrm{~F} \\ & \mathrm{CS}=0.01 \mu \mathrm{~F} \\ & \mathrm{CS}=0.001 \mu \mathrm{~F} \end{align*}$		$\begin{aligned} & 0.3 \\ & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 2.5 \\ 5 \\ 10 \\ \hline \end{gathered}$		$\begin{aligned} & 0.3 \\ & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 2.5 \\ 5 \\ 10 \\ \hline \end{gathered}$	$\mathrm{mV} / \mathrm{sec}$
$V_{\text {inject }}$	Charge Injection or Sample to Hold Offsets $\begin{aligned} & \mathrm{C}_{\mathrm{s}}=0.1 \mu \mathrm{~F} \\ & \mathrm{Cs}=0.01 \mu \mathrm{~F} \\ & \mathrm{Cs}=0.001 \mu \mathrm{~F} \end{aligned}$ See Note 1 \& fig. 3		$\begin{aligned} & <1 \\ & <1 \\ & 12 \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 25 \end{gathered}$		$\begin{aligned} & <1 \\ & <1 \\ & 12 \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 25 \end{gathered}$	$m V_{p-p}$
$V_{\text {switch }}$	Switching Transients'or Spikes (Duration Less than $2 \mu \mathrm{~s}$) $\begin{aligned} & \mathrm{Cs}=0.1 \mu \mathrm{~F} \\ & \mathrm{Cs}=0.01 \mu \mathrm{~F} \end{aligned}$ $\mathrm{Cs}_{\mathrm{s}}=0.001 \mu \mathrm{~F}$ See fig. 3		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V_{p}
$\mathrm{V}_{\text {couple }}$	A.C. Feedthrough Coupled to Output			5			5	$m V_{p-p}$
$V_{\text {offset }}$	D.C. Offset When in . 5110 Sample Mode (Trimmable 5111			40	\checkmark		40	mV
	to $0 \mathrm{~m} V$ With Ext. $20 \mathrm{k} \Omega$Potentiometer \quad5112 5113			10			10	
	5113 See fig. $2 \quad 5115$			5	.		5	
Rin	Input Impedance in Hold or Sample Mode ($f \leq 10 \mathrm{~Hz}$)		100			100	,	Megs).
$1 \pm 15 \mathrm{~V}$	Plus or Minus 15V Supply Quiescent Current		3.4	6		3.4	6	mA
Isv	5V Supply Quiescent Current		0.3	10	,	0.3	10	A
Vanalog	D.C. Input Voltage Range			± 7.5	-		± 10	
$V_{\text {A.C. range }}$	A.C. Input Voltage Range See Note 2 \& fig. 5	15			20			V
Istrobe	TTL Logic Strobe Input Current in Either Hold or Sample Mode	\cdot	0.1	10		0.1	10	$\mu \mathrm{A}$

NOTES: 1. Offset voltage of op. amp. must be adjusted to 0 mV (using $20 \mathrm{k} \Omega$ potentiometer) before charge injection is measured.
2. The A.C. input voltage range differs from the D.C. input voltage range. All versions will handle any analog input within the range of plus 10 V to minus 10 V ; however the $\mathrm{IH} 5110,5112,5114$ has the added restriction that the peak to peak swing should be less than $15 \mathrm{~V}_{\text {p-p }}$ i.e. $\pm 7.5 \mathrm{Vac}$.
3. All of the electrical characteristics specs, are guaranteed with $\mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}$ in series with 100Ω as per Fig. $2, \mathrm{Cs}=0.1 \mu \mathrm{~F}$ \& $\mathrm{C}_{\mathrm{S}}=0.001 \mu \mathrm{~F}$ are for design aid only.
4. If supplies are reduced to $\pm 12 \mathrm{VDC}$, analog signal range will be reduced to $\pm 7 \mathrm{Vp}$-p.

APPLICATIONS INFORMATION

I. Typical Connection Diagram

NOTES: 1. To trim output offset to 0 mV , set strobe input to sample mode (3V), set analog input to GND, adjust potentiometer until S \& H output is 0 mV .
2. Use a low dielec', bsorption capacitor such as polystyrene.

SAMPLE MODE occurs when logic input is greater than 2.4 V .
HOLD MODE occurs when logic input is less than 0.8 V .
FIGURE 2
II. Charge Injection (sample to hold offset) measurement circuit; also switching transients test circuit.

Adjust offset to 0 mV before testing for charge injection. See note 1.

CHARGE INJECTION

SWITCHING TRANSIENTS

FIGURE 3
5-117
III. Typical Circuit for measurement of A.C. signal handling cäpability.

NOTE: The acquisition time is actually a settling time spec. since the reading is only taken when the output has settled within 1% of its final value. The $6 \mu \mathrm{~s}$ spec. (1H5111, 5113 \& 5115 is the worst reading of the ton or toff settling time shown above. The above test can be performed with a 0 to +7.5 V or 0 to -7.5 V step for the $\mathrm{IH} 5110,51.12,5114$.

FIGURE 4
IV. Typical Circuit for measurement of A.C. peak to peak signal handling capability.

To test this parameter, increase the amplitude of the signal generator until the output starts to distort (it will always show up on the positive excursion of the sine wave first); then back off until all distortion is gone. The resultant peak to peak swing must be greater than 15Vpp for the IH5110,5112,5114 and greater than 20Vpp for the $\mathrm{IH} 5111,5113,5115$.
A.C. PEAK TO PEAK

TYP. IH5111

LOGIC INPUT $=+3 V$ $\mathbf{C}_{S}=0.01 \mu \mathrm{~F} \quad \mathrm{f}=\mathrm{kHz}$

UPPER \&
LOWER TRACE $=10 \mathrm{~V} /$ DIV .
LOWER TRACE
TIME $=0.5 \mathrm{~ms} / \mathrm{cm}$

V. Application Tips:

If you are undecided as to which sample and hold to use within the family, the following will give you a pretty good idea of the outstanding differences between the six models. First, determine the voltage range you need to sample and hold.
The even numbered parts are designed to switch smaller a.c. signal amplitudes with the goal being to minimize the charge injection effects (sample to hold offsets). This charge injection error.is shown in Fig. 3. Once the voltage offset is zeroed, the 5110 has typical error amplitudes of 1 to 2 mVp -p (corresponds to 10 pc to 20 pc of charge). Thus one could sample very low level d.c. signals with extreme accuracy. If very low level a.c. signals are being sampled, voltage offset potentiometer can be adjusted for a zero charge injection effect. Once the potentiometer has been adjusted, there will be a zero error going from sample to hold; however there will be a d.c. error caused by adjusting the potentiometer for zero charge injection and not for zero voltage offset. In general, this d.c. error will be in the area of 2 mV to 5 mV .
The odd numbered parts are primarily designed to handle any input in the plus or minus 10 V range, regardless of whether it is a.c. or d.c.; to obtain this, the charge injection is about a factor of 2 higher than the even numbered parts.
The use of Varafet switching elements similar to Intersil's IH401/401A leads to a trade-off between AC signal swing and charge injection.

After the voltage range and charge injection requirements have been determined, all that remains is to determine the input offset voltage the system can tolerate. By using the higher numbered parts, it is possible to eliminate the offset potentiometer if system accuracy will allow 5 mV (5114 , $5115)$ or $10 \mathrm{mV}(5112,5113)$ due to the low input offset voltage on these devices.

The drift rate is specified at $10 \mathrm{mV} / \mathrm{sec}$. Max. for all models: this corresponds to approximately 100pA total leakage into a $0.01 \mu \mathrm{~F}$ sampling capacitor (Cs). While the $10 \mathrm{mV} / \mathrm{sec}$. is the Max. encountered, a more typical reading is less than
$1 \mathrm{mV} / \mathrm{sec}$. (true for any input between -10 V and +10 V); thus the IH5110 family is ideal for applications requiring very low drift or droop rates.

The aperture time is spec'd at 200ns Max. for all models, but a more typical value is 150 ns ; this is basically the off time of switch Q_{1}. The way this aperture time affects system accuracy is shown below:

Assume the input signal to the Sample and Hold is an a.c. signal of peak amplitude A (peak to peak swing is 2A) and frequency $2 \pi f=w$, then $V_{\text {input }}=A e_{j w t}$ then $d V / d t=A e_{j w t}$. This means the slope of input signal $=\mathrm{dV} / \mathrm{dt}$; this slope is a maximum at t (time) $=0$, this maximum value is wA (in amplitude). (i.e.) input frequency is 10 kc , therefore $\mathrm{dV} / \mathrm{dt}=$ $\mathrm{wA}=6.28 \times 104 \times 10 \mathrm{~V}=6.3 \times 105 \mathrm{~V} / \mathrm{sec} . \mathrm{A}=10 \mathrm{~V}$, then slope or $\mathrm{dV} / \mathrm{dt}=0.63 \mathrm{~V} / \mu \mathrm{s}$. Now if we wish error to be a Max. of say 1% of full scale 10 V , we see that 100 mV (1% /aperture time $=$ $0.63 \mathrm{~V} / \mu \mathrm{s}$. Solving this equation we see that aperture time must be 160 ns or less to get 1% holding accuracy. Since our aperture time is 150 ns typical, we have 1% accuracy in holding 10 kHz varying signals; for signal frequencies 1 kHz and less, Max. error is 0.1%. The simple interpretation of just how the off time of the switch causes this system error is due to the fact a finite time is required for the switch to react to a hold command; this reaction time manifests itself with a system voltage error because the time varying input signal is changing to a new value before the switch has actually turned off. (i.e.) in the above example off $=10 \mathrm{kHz}$ and $\mathrm{A}=$ 10 V , suppose we gave the hold command (thru TTL logic) at t $=0$ (a.c. signal goes thru zero pt.) At this point we have calculated the slope to be a Max. and equal to $0.63 \mathrm{~V} / \mu \mathrm{s}$. If there were no aperture time error, we would read OV at output of Sample and Hold; however because of finite time for switch to respond to hold command, 150 ns passes before switch goes off. During this 150 ns , the input signal has gone to 100 mV above or below 0 V , thus the stored value of signal will be 100 mV and that is the reading at the output of the Sample and Hold. If the input frequency were 1 kHz , the "error voltage" would be 10 mV .
VI. Connection for Hi-Speed Sample and Hold with following typical performance: w/Cs=0.001
a. $2 \mu \mathrm{~s}$ settling time (acquisition time) to 1% accuracy
b. 25 mV charge injection amplitude
c. $10 \mathrm{mV} / \mathrm{sec}$ drift rate

NOTE: Typical times for the Sample and Hold to acquire the input are $2 \mu \mathrm{~s}$ for turn on (output) goes to +10 V and $3 \mu \mathrm{~s}$ for turn off (output goes down to OV). As a general note, all the electrical specifications are guaranteed with a sampling capacitor equal to $0.01 \mu \mathrm{f}$. As the above application (Fig. 6) shows, other values of sampling capacitors can be used but the best combinations of S \& H specs may not result with values other than $0.01 \mu \mathrm{~F}$. The only advantage of using a $0.001 \mu \mathrm{~F}$ for Cs is the acquisition time is $2 \mu \mathrm{~S}$ typical instead of $5 \mu \mathrm{~s}$ typical (with $0.01 \mu \mathrm{~F}$; however the drift rate would be worse and charge injection would be affected). To minimize drift rate, use a $0.1 \mu \mathrm{~F}$ capacitor; this should produce a $0.1 \mathrm{mV} / \mathrm{sec}$ rate of change and a charge injection amplitude of $0.2 \mathrm{mVp}-\mathrm{p}$. Of course the acquisition time will be slowed down to the $\overline{25} \mu \mathrm{~s}$ area. Also use a $0.1 \mu \mathrm{~s}$ system for slow speed changes (i.e., input frequency is less than 1 kHz . The series resistor should be about $100 \Omega-200 \Omega$ to stabilize the system.

FIGURE 6

DEFINITION OF TERMS

Aperture Time: The time it takes to switch from sample mode to hold mode and the actual opening of switch.
Charge Injection: The amount of charge coupled across the switch with no input voltage.
Drift Rate: The amount of drift of output voltage at a rate caused by current flow through the storage capacitor.
$\left(\frac{d V}{d t}=\frac{i}{c}\right) \begin{aligned} & \text { This current is the leakage across the } \\ & \text { switch and the amplifier's bias current. }\end{aligned}$

Feed Through: The amount of input signal that appears at the output when in the hold mode. Normally caused by capacitance across the switch.
Offset Voltage: Voltage measured at output with no input voltage and circuit in sample mode.
Acquisition Time: The time it takes amplifier to reach full scale output either plus or minus.

ICL7600/ICL7601 Commutating Auto-Zero (CAZ) Operational Amplifier

FEATURES

- Exceptionally low input offset voltage -- $2 \mu \mathrm{~V}$
- Low long-term input offset voltage drift -$0.2 \mu \mathrm{~V} /$ year
- Low input offset voltage temperature drift -$0.005 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low DC input bias current -- $\mathbf{3 0 0}$ pA
- Low DC input offset bias current -- 150 pA
- Wide common mode and differential input voltage ranges
- Excellent low supply voltage operation -- Down to $\pm 2 \mathrm{~V}$
- Static-protected inputs -- no special handling required
- Fabricated using proprietary MAXCMOS ${ }^{\text {TM }}$ technology
- Compensated (ICL7600) or uncompensated (ICL7601) versions

SYMBOL

GENERAL DESCRIPTION

The ICL7600/ICL7601 commutating auto-zero (CAZ) operational amplifiers are designed to replace almost any of today's hybrid or monolithic ultra-low offset op amps, and will provide almost three orders of magnitude reduction in input offset voltage compared with conventional device designs. This is achieved through Intersil's CAZ amp principle, an entirely new approach to low-frequency operational amplifier design.
The key feature of the CAZ principle is automatic compensation for long-term drift phenomena and temperature effects. Two internal op amps are connected so that when one amplifier is processing an input signal the other is maintained in an "auto-zero" mode. The ICL7600/ICL7601 contains all of the circuitry required for system operation, including an oscillator, a counter, level translators, analog switches and operational amplifiers. Only two auto-zero capacitors are needed for complete operational amplifier function. Control of the oscillator and counter section is provided through the OSC and DR (division ratio) terminals. Internal biasing of the two on-chip op amps is programmable through a three-voltage-level terminal designated BIAS.
The ICL7600 is internally-compensated and is intended for applications which require voltage gains from unity through 20. The uncompensated ICL7601 is intended for those situations which require voltage gains of greater than 20. Major advantage of the ICL7601 over the ICL7600 at high gain settings is the redulction in commutation noise and subsequent greater accuracy.
Minimum periodic adjustments and extremely low offset voltage and temperature coefficients make the CAZ operational amplifiers very desirable for operation in adverse environments (temperature, humidity, toxic or radioactive) where equipment service is difficult. Since the device will auto-zero its internal offset errors, no adjustment is required other than that of gain, which is established by the external resistors.

ABSOLUTE MAXIMUM RATINGS

（ ${ }^{\text {a }}$

Operating Temperature Range （ICL7600／ICL7601／MJD）．．．．．．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range （ICL7600／ICL7601／IJD）．．．．．．．．．．．．．．．．．．$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range （ICL7600／ICL7601／CPD）．．．．．．．．．．．．．．．．．．．．． 0 to $+70^{\circ} \mathrm{C}$
Storage Temperature Range ．．．．．．．．．．．．．．．-55 to $+150^{\circ} \mathrm{C}$
Lead Temperature（soldering， 60 seconds）$\ldots \ldots . .+300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

Note 1：An SCR structure is inherent in the CMOS process used in the fabrication of these devices．If voltages in excess of $\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3\right)$ volts are connected to either inputs or outputs，destructive latchup can occur．For this reason it is recommended that no inputs from sources not on the same power supply or supplies be applied before the ICL7600／ICL7601 supplies are established，and that if multiple supplies are used the ICL7600／ICL7601 supplies be activated first．No restrictions are placed on the differential input voltages on either the inverting or non－inverting inputs，so long as these voltages do not exceed the power supply voltages by more than 0.3 V ．

Note 2：Outputs may be shorted to ground（GND）or to either supply（ $\mathrm{V}^{+}, \mathrm{V}^{-}$）．Temperature and／or supply voltages must be limited to insure that the dissipation rating is not exceeded．

Note 3：For operation above $25^{\circ} \mathrm{C}$ free－air temperature，derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW for CERDIP and $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 375 mW for plastic．

BLOCK DIAGRAM

OPERATING CHARACTERISTICS:

Test Conditions: $\mathrm{V}^{+}=+5$ volts, $\mathrm{V}^{-}=-5$ volts, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to V^{+}($\mathrm{f}_{\mathrm{COM}} \cong 160 \mathrm{~Hz}$), $\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}$, Test Circuit 1 , unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS		MIN	VALUE TYP	MAX	UNIT
Input Offset Voltage	Vos	$\begin{aligned} & \mathrm{Rs}_{5} \leq 1 \mathrm{k} \Omega \\ & \mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F} \end{aligned}$ MIL version over temp.	Low Bias Setting Med Bias Setting High Bias Setting Med Bias Setting		$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 7 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Long Term Input Offset Voltage Stability	Vos/Time	Low or Med Bias Settin			0.2		$\mu \mathrm{V} / \mathrm{year}$
Average Input Offset Voltage Temperature Coefficient	TCVos	Low or Med Bias Settin	$\begin{aligned} & 5^{\circ} \mathrm{C}>\mathrm{T}_{A}>+25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C}>\mathrm{T}_{A}>+85^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C}>\mathrm{T}_{A}>+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.005 \\ & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.15 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Noise Voltage (RMS)	e_{n}	Band Width 0.1 to 10 Hz $\mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$	Low Bias Med Bias High Bias		$\begin{aligned} & 0.8 \\ & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$.	$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Equivalent Input Noise Voltage Peak-to-peak	enp-p	Band Width 0.1 to 10 Hz $\mathrm{R}_{\mathrm{S}} \leq 1 \mathrm{k} \Omega$	Low Bias Med Bias High Bias		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Spot equivalent Noise voltage	$e_{n 10}$	$\mathrm{f}=10 \mathrm{~Hz} \quad$ Band Widt				700	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Spot equivalent Noise Current	in 10	$\mathrm{f}=10 \mathrm{~Hz} \quad \text { Band Wic }$				0.1	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Differential Input Voltage Range	DIF VIN			$\mathrm{V}^{-}-0.3$	to	$\mathrm{V}^{+}+0.3$	V
Common Mode Input Range	CMVR	Low Bias Med Bias High Bias		$\begin{aligned} & -4.2 \\ & -4.0 \\ & -3.5 \end{aligned}$		$\begin{array}{r} +4.2 \\ +4.0 \\ +3.5 \\ \hline \end{array}$	$\begin{aligned} & \hline V \\ & v \\ & v \end{aligned}$
Common Mode Rejection Ratio	CMRR	Any Bias Setting			88		dB
Power Supply Rejection Ratio	PSRR	Any Bias Setting			110		dB
Non Inverting Input Bias Current	$\mathrm{I}_{\text {NiB }}$	Any Bias Setting, Includes charge inject	rents)		0.300	3	nA
Inverting Input Bias Current	${ }_{1 / 8}$	Any Bias Setting, Includes charge inject	rrents)		0.150	1.5	nA
Voltage Gain	Av	$R_{L}=100 \mathrm{k} \Omega$	Low Bias Med Bias High Bias	$\begin{aligned} & 90 \\ & 90 \\ & 80 \\ & \hline \end{aligned}$	105 105 100		
Maximum Output Voltage Swing	Vout	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	Positive Swing Negative Swing	+4.4	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \end{aligned}$	-4.5	V V V V V V
Large Signal Slew Rate	SR	Unity Gain ICL7600	High Bias Setting Med Bias Setting Low Bias Setting		$\begin{aligned} & 1.8 \\ & 0.5 \\ & 0.2 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \hline \end{aligned}$
Unity Gain Band Width	GBW	ICL7600 Test Circuit 2	High Bias Setting Med Bias Setting Low Bias Setting	,	$\begin{gathered} 1.2 \\ 0.3 \\ 0.12 \\ \hline \end{gathered}$		MHz MHz MHz
Extrapolated Unity Gain Band Width	GBW	ICL7601	High Bias Setting Med Bias Setting Low Bias Setting		$\begin{aligned} & \hline 1.8 \\ & 0.4 \\ & 0.2 \\ & \hline \end{aligned}$		MHz MHz MHz
BIAS Terminal Input Current	IBIAS	$\mathrm{V}^{-}-0.3 \leq \mathrm{V}_{\text {BIAS }} \leq \mathrm{V}^{+}+0.3$			± 30 -		pA
BIAS Voltage to Define Current Modes	VBH VBM VBL	Low Bias Setting Med Bias Setting High Bias Setting		$\begin{aligned} & \mathrm{V}^{+}-0.3 \\ & \mathrm{~V}^{-}+1.4 \\ & \mathrm{~V}^{-}-0.3 \end{aligned}$	$\begin{gathered} \mathrm{V}^{+} \\ \text {GND } \\ \mathrm{V}^{-} \end{gathered}$	$\begin{aligned} & \mathrm{V}^{+}+0.3 \\ & \mathrm{~V}^{+}-1.4 \\ & \mathrm{~V}^{-}+0.3 \end{aligned}$	V $\begin{aligned} & V \\ & V \end{aligned}$
DR (Division Ratio) Input Current	IDR	$\mathrm{V}^{+}-8.0 \mathrm{~V} \leq \mathrm{VDR} \leq \mathrm{V}^{+}+0$			± 30		pA
DR Voltage to define oscillator division ratio	VDRH VDRL	Internal oscillator divis Internal oscillator divis	tio 32 tio 2	$\begin{gathered} \mathrm{V}^{+}-0.3 \\ \mathrm{~V}^{+}-8 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V}^{+}+0.3 \\ & \mathrm{~V}^{+}-1.4 \end{aligned}$	V V
Nominal Commutation Frequency	fCOM	$\operatorname{Cosc}=0 \mathrm{pF}$	Connected to V^{+} Connected to GND		$\begin{gathered} 160 \\ 2560 \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
Supply Current	Is	High Bias Setting Medium Bias Setting Low Bias Setting			$\begin{gathered} \hline 7 \\ 1.7 \\ 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 1.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Supply Voltage Range	$\mathrm{V}^{+}-\mathrm{V}^{-}$	High Bias Setting Medium or Low Bias S		$\begin{aligned} & 5 \\ & 4 \end{aligned}$.	$\begin{aligned} & \hline 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

TEST CIRCUITS

Test Circuit 1: Voltage Gain $=1000$

Test Circuit 3: Voltage Gain $=10$

Test Circuit 2: Unity Voltage Gain

Test Circuit 4: DC to 10 Hz Unity Gain Low Pass Filter

TYPICAL CHARACTERISTICS

INPUT OFFSET VOLTAGE AS A FUNÇTION OF AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND PK TO PK NOISE
VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

INPUT OFFSET VOLTAGE AND PK TO PK NOISE
VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY
$\left(C_{1}, C_{2}=0.1 \mu \mathrm{~F}\right)$

INPUT OFFSET VOLTAGE AND PK TO PK NOISE
VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY
($\mathbf{C}_{1}, \mathbf{C}_{2}=\mathbf{1} \mu \mathbf{F}$)

INPUT OFFSET VOLTAGE AND
PK TO PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

fCOM - COMMUTATION FREQUENCY - Hz

RL - LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING

FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 4).

TOTALEQUIVALENT INPUT OFFSET VOLTAGE AS A FUNCTION OF SOURCE IMPEDANCE - +INPUT

TOTAL EQUIVALENT INPUT OFFSET VOLTAGE AS A FUNCTION OF SOURCE IMPEDANCE - -INPUT

DETAILED DESCRIPTION

CAZ Operational Amplifier Operation

The CAZ operational amplifier functions on principles which are very different from those encountered in conventional op amp types. An important advantage of the ICL7600/ICL7601 devices is the ability to self-compensate for internal error voltages, whether they are steady-state, related to temperature or supply voltage, or variable in nature over a long term.
Operation of the ICL7600/ICL7601 CAZ operational amplifier is demonstrated in Figure 1. The basic amplifier configuration represented by the large triangles has one more input than does a regular op amp--the AZ, or auto-zero input. The voltage at the $A Z$ input is that to which eaçh of the internal op amps will be auto-żeroed. In Mode A, op amp \#2 is connected into a unity gain mode through on-chip analog switches, and charges the external capacitor C_{2} to a voltage equal to the DC offset voltage of that amplifier and the instantaneous low frequeney noise voltage. A short time later, the analog switches reconnect the on-chip op amps in the configuration shown in Mode B. In this mode, op amp \#2 has capacitor C_{2} (which was charged to a voltage equal to its offset and noise voltage) connected in series to its noninverting (+) input and nulls out the input offset and noise voltage of the amplifier. While one of the op amps is processing the input signal, the other is placed in the auto-zero mode and charges its capacitor to a voltage equal to its equivalent DC and
low-frequency error voltage. The internal op amps are reconnected at a rate designated as the commutation frequency, fCOM.

The CAZ amp concept offers a number of other advantages to the designer, as compared to standard bipolar or FETinput op amps:

- Effective input offset voltages can be made between $1000 x$ and $10,000 x$ less without trimming.
- Long-term drift phenomena are compensated for and dramatically reduced.
- Temperature effects are compensated for over a wide range. Reductions can be as high as 100 times or higher.
- Supply voltage sensitivity is reduced.

The on-chip op amps are connected internally to the external input and output terminals via CMOS analog switches, as shown in Figure 2. The analog switch structure shown in Figure 2 is arranged so that at any time three switches are open and three switches are conducting. Each analog switch includes a P-channel transistor in parallel with an N -channel transistor.

Figure 1: Diagramatic representation of the 2 half cycles of operation of the CAZ OP AMP.

Figure 2: Schematic of analog switches connecting each internal OP AMP to the external inputs and output.

APPLICATIONS

The ICL7600/ICL7601 CAZ op amp is ideal for use as a frontend preamplifier for dual-slope A/D converters which require high sensitivity for single-ended input sources such as thermocouples.
A typical high-sensitivity A/D converter system is shown in Figure 3. The system uses an Intersil ICL7109 12-bit monolithic A/D binary converter, and is intended for direct interface with microprocessors. Both the ICL7600/ICL7601 and the ICL7109 use power supply voltages of $\pm 5 \mathrm{~V}$, and the entire system consumes typically 2.5 mA of current.
The input signal is applied through a low-pass filter (150 Hz) to the CAZ op amp, which is connected in a non-inverting gain configuration of either 10 or 100 . The internal oscillator of the CAZ amp is allowed to run free at about $5,200 \mathrm{~Hz}$, resulting in a commutation frequency of 160 Hz , with the DR terminal connected to V^{+}. The error-storage capacitors C_{1} and C_{2} are each $1 \mu \mathrm{~F}$ value, and provide a good compromise between the minimum equivalent input offset voltage and the lowest value of low-frequency noise.
The output signal is then passed through a low-pass filter ($1 \mathrm{M} \Omega$ and $0.1 \mu \mathrm{~F}$), with a bandwidth of 1.5 Hz . This results in an equivalent DC offset voltage of 1 to $2 \mu \mathrm{~V}$, and a peak-topeak noise voltage of $1.7 \mu \mathrm{~V}$, referred to the input of the CAZ amp. The output from the low-pass filter feeds directly into the input of the ICL7109.

In a system such as that shown in Figure 3 there is a degree of flexibility possible in assigning various gains to the ICL7600/ ICL7601 pre-amplifier, and to various sensitivities for the ICL7109. For optimum performance, the CAZ op amp must amplify the input signal so that the equivalent $15 \mu \mathrm{~V}$ input noise voltage of the A / D converter is masked. This implies a gain of at least 10 for the CAZ op amp preamplifier.
On the other hand, if the gain of the CAZ op amp is increased too much, its output swing will be limited by the $\pm 5 \mathrm{~V}$ supplies. This condition imposes a maximum gain of 200 to produce an output of ± 0.000005 times 4,096 times 200 , or $\pm 4.096 \mathrm{~V}$, for a $5 \mu \mathrm{~V}$ per count sensitivity. Use of an ICL7600 is recommended for low gains (<20) and the ICL7601 for gains of more than 20.
The values of the integrating resistor and the reference voltage must be chosen to suit the overall sensitivity of the system. For example, in a system requiring a sensitivity of $5 \mu \mathrm{~V}$ per count, use a CAZ amp in a gain configuration of 50 (with ICL7601). Thus for a full scale count of 4096 (12 bits), the input voltage to the ICL 7109 would be $5 \mu \mathrm{~V}$ times 50 times 4096 or 1.024 volts. Since the ratio of input to reference is $2: 1$, the value of the reference voltage becomes 0.512 and a $50 \mathrm{k} \Omega$ integrating resistor is recommended. A system such as that shown in Figure 3 will allow a resolution of $1^{\circ} \mathrm{C}$ for low sensitivity platinum/rhodium junctions. For $0.1^{\circ} \mathrm{C}$ resolution, use high sensitivity thermocouples having copper/ constantan junctions.

Figure 3: A/D system with $5 \mu \mathrm{~V}$ resolution using an ICL7600/ICL7601 CAZ AMP preamplifier and an ICL7109 dual slope A/D converter.

The low-pass filter between the output of the CAZ op amp and the input of the ICL7109 A/D converter can be used to improve the signal-to-noise ratio of the system by reducing bandwidth. A 10 Hz filter will result in an equivalent peak-topeak noise voltage figure of $4 \mu \mathrm{~V}$. If the bandwidth is reduced
to 1.5 Hz , the peak-to-peak noise voltage will be reduced to about $1.7 \mu \mathrm{~V}$, a reduction by a factor of three. The penalty for this reduction will be a longer system response time; however in most cases this will not be a major consideration, because of the large thermal inertia of many thermocouple probes.

SOME HELPFUL HINTS

Testing the ICL7600/ICL7601 CAZ Operational Amplifier

A simple and relatively accurate means of testing the CAZ op amp is to use a Tektronix Type 577 curve tracer, with the CAZ op amp inserted in a special 14-lead socket which plugs into a Tektronix 178, and which contains two soldered-in autozero capacitors of $1 \mu \mathrm{~F}$ each. This simple and convenient tester will provide most of the information needed for lowfrequency parameters. The test setup will allow resolution of input offset voltages to about $10 \mu \mathrm{~V}$.
For greater accuracy, it is suggested that a breadboard be built which minimizes thermoelectric effects and which includes an output low-pass filter of the type shown in Test Circuit \#4. The output from the CAZ amp can be connected to a dual-slope A/D converter as shown in Figure 3. The lowfrequency noise can then be displayed on a storage scope or on a strip chart recorder.

Bias Control

The on-chip op amps consume over 90% of the power required for the ICL7600/ICL7601. Three externallyprogrammable bias levels are provided. These levels are set by connecting the BIAS terminal to V^{+}, GND or V^{-}, for LOW, MED or HIGH BIAS levels, respectively. The difference between each bias setting is approximately a factor of three, which allows a $9: 1$ ratio between supply current and the bias setting. The reason for this current programmability is to provide the user with a choice of device power dissipation levels, slew rate values (the higher the slew rate the better the recovery from commutation spikes), and offset errors due to chip "voltage drop" and thermoelectric effects (the higher the power dissipation the higher the input offset error). In most cases, the medium (MED BIAS) setting will be the best choice.

Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load the output swing can cover nearly the entire supply voltage range, and the device can be used with loads as low as $2 \mathrm{k} \Omega$. However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps become transconductance amplifiers, since their output impedances are about $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 \mathrm{k} \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. For high gain configurations requiring high accuracy, output loads of $100 \mathrm{k} \Omega$ or more are suggested.
Another consideration which must not be overlooked is the additional power dissipation of the chip which results from a large output swing into a low value load. This added variable can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output to reduce high-frequency noise outside the signal passband of interest. With conventional op amps, the obvious solution would be to place a capacitor across the external feedback resistor to provide the low pass filter.
However, with the CAZ op amp, this is not feasible because of the nature of commutation voltage spikes. The voltage spikes show a low impedance characteristic in the direction of the auto-zero voltage, and a high impedance on the recovery edge, as shown in Figure 4. It can be seen that the effect of a large load capacitor is to produce an area error in the output waveform, and hence an effective gain error. The output low pass filter must be a high impedance type to avoid output voltage area errors. For example, a 1.5 Hz filter should use a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1.0 \mathrm{M} \Omega$ resistor and an $0.1 \mu \mathrm{~F}$ capacitor. This effect also causes problems with integrator circuits.

Oscillator and Digital Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open-circuited. If the full divider network is used, this will result in a commutation frequency of about 160 Hz nominal. The commutation frequency is the frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents approximately the optimum frequency, at which the input offsét voltage is close to minimum, where the low-frequency noise is acceptable, and where errors derived from noise spikes will be low. Other commutation frequencies may provide optimization of other parameters, but always to the detriment of major characteristics.

The oscillator is of a high impedance type, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the desired frequency of the oscillation is 5.2 kHz , the terminal should be left unattached and open. In other instances, it may be desirable to lock the oscillator to a clock or to run it at another frequency. The ICL7600/ICL7601 provides two degrees of flexibility. First, the DR (division ratio) terminal permits the user to choose between dividing the oscillator by 32 (DR terminal to V^{+}) or by 2 (DR terminal to GND), to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and V^{+}, or system ground terminals. For situations which require the commutation frequency to be locked onto a master clock, the OSC terminal can be driven from TTL logic

Figure 4: Effect of a load capacitor on output voltage waveforms.
(with resistive pull-up) or from CMOS logic, provided that the V^{+}supply (with respect to ground) is $+5 \mathrm{~V}(\pm 10 \%)$ and the logic driver also operates from a similar supply voltage. This is because the logic section -- including the oscillator -operates from an internal -5 V supply referenced to V^{+} generated on-chip, and is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-precision DC amplifiers are thermoelectric, Peltier or thermocouple effects in junctions consisting of various metals, alloys, silicon, etc. Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.
In order to realize the extremely low offset voltages which the CAZ op amp can provide, it is essential to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply voltages and power dissipation should be kept to a minimum. Use the medium bias mode as well as a high impedance load, and keep well away from heat dissipated by surrounding equipment.

Component Selection

The two required auto-zero capacitors, C_{1} and C_{2}, should each be of $1.0 \mu \mathrm{~F}$ value. These are large values for nonelectrolytic capacitors, but since the voltages impressed on them do not change ssignificantly, problems of dielectric absorption and the like are not important.
Excellent results have been obtained in operation at commercial temperature ranges using several of the smallersize and more economical capacitors, since the absolute values of the capacitors is not critical. Even polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F} / 50 \mathrm{~V}$, though not recommended, have been used with success.

Commutating Voltage Transient Effects

While in most respects the CAZ op amp behaves like a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 100 Hz . This is because of the finite switching transients which occur in the input and output terminals due to commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and include all of the higher harmonics. If the commutation frequency is higher than the highest in-band frequency, these transients can be effectively blanked with a low-pass filter.
The input commutation transients arise when each of the onchip op amps experiences a shift in voltage equal to the input offset voltage about ($5-10 \mathrm{mV}$) which occurs during the transition to the signal processing mode from the autozero mode. Since the input capacitances of the on-chip op

amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors C_{1} and C_{2} must be at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each.

Figure 5: Output waveform from Test Circuit 1.
The charge "which is injected into the op amp when it is switched into the signal-processing mode produces a rapidly-decaying voltage spike at the input, in addition to an equivalent DC bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically. about 1.0 pA at ambient temperature of $25^{\circ} \mathrm{C}$.
The output waveform of Test Circuit \#1 (with no input) is shown in Figure 5. Note that the equivalent noise voltage shown is amplified 1000 times, and that because of the finite slew rate of the on-chip op amps the 7 mV input transients are not amplified by 1000 .
The output transient voltage effects (as distinct from the input effects which are propagated through the on-chip op amps) will occur if there is a difference in the output voltage of the internal op amps between the auto-zero modes and the signal-processing modes. The output stage of the on-chip op amp must slew from its auto-zero output voltage to the desired signal-processing output voltage. This is shown in Figure 6, where the system is auto-zeroed to ground.
The duration of the output transients is greatly affected by the gain configuration and the bias setting, since these two parameters have an effect on system slew rate. At low gains and high bias settings, the output transient durations are very short. For this reason there are two versions of the CAZ op amp, the ICL7600 which is compensated for unity gain and which can be used for gain configurations up to 20 , and the ICL7601, which is uncompensated and recommeñed for operation in gain configurations greater than 20 . Thus, when a signal is being processed in a high gain configuration, the effective output signal error is greater for the ICL7600 than it is for the ICL7601.

Non-Amplifier Applications

In principle, this is one of the few "chopper-stabilized" type amplifiers that could be used as a comparator; the transient effects on the output will normally require careful synchronism of output strobes with oscillator drive.

Figure 6: Simple CAZ OP AMP circuit and the output voltage waveform.

Commutating Auto-Zero (CAZ) Instrumentation Amplifier

FEATURES

- Exceptionally low input offset voltage $-2 \mu \mathrm{~V}$
- Low long term input offset voltage drift $0.2 \mu \mathrm{~V} / \mathrm{year}$
- Low input offset voltage temperature drift $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Wide common mode input voltage range - $\mathbf{0 . 3 V}$ above supply rail
- High common mode rejection ratio - $\mathbf{1 0 0} \mathbf{d B}$
- Operates at supply voltages as low as $\pm 2 \mathrm{~V}$
- Short circuit protection on outputs for $\pm 5 \mathrm{~V}$ operation
- Static-protected inputs - no special handling required
- Fabricated using proprietary MAXCMOS ${ }^{\text {™ }}$ process technology
- Compensated (ICL7605) or uncompensated (ICL7606) versions

SYMBOL

GENERAL DESCRIPTION

The ICL7605/ICL7606 commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace most of today's hybrid or monolithic instrumentation amplifiers, for low frequency applications from DC to 10 Hz . This is made possible by the unique construction of this new Intersil device, which takes an entirely new design approach to low frequency amplifiers.
Unlike conventional amplifier designs, which employ three op amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key features of the CAZ principle involve automatic compensation for long term drift phenomena and temperature effects, and a flying capacitor input.
The ICL7605/ICL7606 is a monolithic CMOS chip which consists of two analog sections - a unity gain differential to single-ended voltage converter and a CAZ op amp. The first section senses the differential input and applies it to the CAZ amp section. This section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift.
The ICL7605/ICL7606 is intended for low-frequency operation in applications such as strain gauges, which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz . Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. The no-adjustment feature, combined with extremely low offset and temperature coefficient figures', makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.

PIN CONFIGURATION

ORDERING INFORMATION

Order parts by the following part numbers:

Compensated	Uncompensated	Package	Temperature Range
ICL7605CJN	ICL7606CJN	CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7605IJN	ICL7606iJN	CERDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7605MJN	ICL7606MJN	CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Order dice by the following part numbers:

> ICL7605/D ICL7606/D

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (sum of both positive and negative supply voltages V^{+}to V^{-}) 18 Volts
DR Input Voltage $\ldots . . \ldots\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{+}-8\right)$ Volts
Input Voltage $\left(C_{1}, C_{2}, C_{3}, C_{4}+\right.$ DIFF IN, -DIFF IN, -INPUT, BIAS, OSC)
(Note 1) ($\mathrm{V}^{+}+0.3$) to ($\mathrm{V}^{-}-0.3$) Volts
Differential Input Voltage (+DIFF IN to -DIFF IN)
(Note 2) $\ldots+\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3\right)$ Volts
Duration of Output Short Circuit (Note 3) Unlimited

Continuous Total Power Dissipation (at or below $25^{\circ} \mathrm{C}$ free-air temperature) (Note 4) 500 mW
Operating Temperature Range:
ICL7605/ICL7606CJN 0 to $+70^{\circ} \mathrm{C}$
ICL7605/ICL7606IJN $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7605/ICL7606MJN $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 60 seconds) $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Due to the SCR structure inherent in all CMOS devices, exceeding these limits may cause destructive latchup. For this reason, it is recommended that no inputs from sources operating on a separate power supply be applied to the $7605 / 6$ before its own power supply is established, and that when using multiple supplies, the supply for the $7605 / 6$ should be turned on first.
Note 2: No restrictions are placed on the differential input voltages on either the +DIFF IN or -DIFF IN inputs so long as these voltages do not exceed the power supply voltages by more than 0.3 V .
Note 3: The outputs may be shorted to ground (GND) or to either supply (V^{+}or V^{-}). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded.
Note 4: For óperation above $25^{\circ} \mathrm{C}$ free-air temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW above $25^{\circ} \mathrm{C}$.

BLOCK DIAGRAM

OPERATING CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5$ volts, $\mathrm{V}^{-}=-5$ volts, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to V^{+}(fcom $\cong 160 \mathrm{~Hz}$, fcom $\cong 80 \mathrm{~Hz}$), $C_{1}=C_{2}=C_{3}=C_{4}=1 \mu F$, Test Circuit 1 unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	VALUE			UNIT
			MIN	TYP	MAX	
Input Offset Voltage	Vos	Rs $\leq 1 \mathrm{k} \Omega \mathbf{2}$ Low Bias Setting Med Bias Setting High Bias Setting MIL version over temp. Med Bias Setting		$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 7 \end{aligned}$	$\begin{array}{r} \pm 5 \\ \pm 20 \\ \hline \end{array}$	$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Average Input Offset Voltage Temperature Coefficient	$\Delta \mathrm{Vos} / \Delta \mathrm{T}$	$\begin{aligned} & \text { Low or Med Bias Settings }-55^{\circ} \mathrm{C}>\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C} \\ &+25^{\circ} \mathrm{C}>\mathrm{T}_{\mathrm{A}}>+85^{\circ} \mathrm{C} \\ &+25^{\circ} \mathrm{C}>T_{A}>+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	0.1 0.1 0.15	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Long Term Input Offset Voltage Stability	$\Delta \mathrm{VOS} / \Delta \mathrm{t}$	Low or Med Bias Settings		0.5		$\mu \mathrm{V} / \mathrm{Y}$ ear
Common Mode Input Range	CMVR		-5.3		+5.3	V
Common Mode Rejection Ratio	CMRR	$\begin{aligned} & \text { Cosc }=0, \text { DR connected to } \mathrm{V}^{+}, \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\ & \text { Cosc }=1 \mu \mathrm{~F}, \text { DR connected to GND, } \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\ & \text { Cosc }=1 \mu \mathrm{~F}, \text { DR connected to GND, } \mathrm{C}_{3}=\mathrm{C}_{4}=10 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & \hline 94 \\ & \\ & 100 \\ & 104 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Power Supply Rejection Ratio	PSRR			110		dB
-INPUT Bias Current	- $_{\text {BIAS }}$	Any bias setting, $\mathrm{fc}=160 \mathrm{~Hz}$ (Includes charge injection currents)		0.15	1.5	nA
Equivalent Input Noise Voltage peak-to-peak	$\bar{e}_{\text {np-p }}$	Low Bias Mode Band Width Med Bias Mode 0.1 to 10 Hz High Bias Mode		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Equivalent Input Noise Voltage	$\overline{\mathrm{e}}_{\mathrm{n}}$	Band Width 0.1 to $1.0 \mathrm{~Hz} \quad$ All Bias Modes		1.7		$\mu \mathrm{V}$
Voltage Gain	Av	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ Low Bias Setting Hed Biash Bias Setting	$\begin{aligned} & 90 \\ & 90 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Maximum Output Voltage Swing	$\pm \mathrm{V}_{0}$	$\begin{array}{ll} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega & \\ \mathrm{RL}_{\mathrm{L}}=100 \mathrm{k} \Omega & \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega & \text { Positive Swing } \\ & \text { Negative Swing } \\ \hline \end{array}$	+4.4	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \end{aligned}$	-4.5	$\begin{array}{r} V \\ V \\ V \\ V \\ \hline \end{array}$
Band Width of Input Voltage Translator	GBW	$\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \quad$ All Bias Modes		10		Hz
Nominal Commutation Frequency	fCOM	Cosc $=0 \mathrm{pF}$ DR Connected to V^{+} DR Connected to GND		$\begin{aligned} & \hline 160 \\ & 2560 \end{aligned}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
Nominal Input Converter Commutation Frequency	fсом1	Cosc $=0 \mathrm{pF}$ DR Connected to V^{+} DR Connected to GND		$\begin{gathered} 80 \\ 1280 \\ \hline \end{gathered}$		$\begin{aligned} & \hline \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
Bias Voltage to define Current Modes	$\begin{array}{\|l\|} \hline V_{B A} \\ V_{B M} \\ V_{B L} \\ \hline \end{array}$	Low Bias Setting Med Bias Setting High Bias Setting	$\begin{array}{\|l} \hline \mathrm{V}^{+}-0.3 \\ \mathrm{~V}^{-}+1.4 \\ \mathrm{~V}^{-}-0.3 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}^{+} \\ & \text {GND } \end{aligned}$ v^{-}	$\begin{gathered} \mathrm{V}^{+}+0.3 \\ \mathrm{~V}^{+}-1.4 \\ \mathrm{~V}^{-}+0.3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Bias (Pin 8) Input Current	IBIAS			± 30		pA
Division Ratio Input Current	IDR	$\mathrm{V}^{+}-8.0 \leq \mathrm{V}_{\mathrm{DR}} \leq \mathrm{V}^{+}+0.3$ volt		- ± 30		pA
DR Voltage to define Oscillator division ratio	VDRH VDRL	Internal oscillator division ratio 32. Internal oscillator division ratio 2	$\begin{array}{\|c\|} \hline \mathrm{V}^{+}-0.3 \\ \mathrm{~V}^{+}-8 \\ \hline \end{array}$		$\begin{aligned} & \hline \mathrm{V}^{+}+0.3 \\ & \mathrm{v}^{+}-1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
Effective Impedance of Voltage Translator Analog Switches	Ras	Hen		30		k Ω
Supply Current	ISUPP	High Bias Setting Med Bias Setting Low Bias Setting	$\stackrel{\square}{ }$	$\begin{gathered} \hline 7 \\ 1.7 \\ 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 1.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Supply Voltage Range	$\mathrm{V}^{+}-\mathrm{V}^{-}$	High Bias Setting Med or Low Bias Setting	$\begin{aligned} & \hline 5 \\ & 4 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND. PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY ($\mathrm{C}_{1}, \mathrm{C}_{2}=1 \mu \mathrm{~F}$)

POSITIVE POWER SUPPLY VOLTAGE

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE ($\mathbf{V}^{+}-\mathbf{V}^{-}$)

COMMON MODE REJECTION RATIO AS A FUNCTION OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER

CAPACITORS

INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

fСOm - COMMUTATION FREQUENCY - Hz

RL-LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING

AMPLITUDE RESPONSE OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER

FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2).

TEST CIRCUIT 1: USE TO MEASURE:
a) INPUT OFFSET VOLTAGE $\left(\frac{\text { VOUT }}{1000}\right)$
b) INPUT EQUIV NOISE VOLTAGE
c) SUPPLY CURRENT
d). CMRR
e) PSRR

DETAILED DESCRIPTION

CAZ Instrumentation Amp Overview

The CAZ instrumentation amplifier operates on principles which are very different from those of the conventional three op amp designs, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the ICL7605/ICL7606 CAZ instrumentation amp is the provision for self-compensation for internal error voltages, whether they are derived from steady-state conditions, temperature, supply voltage fluctuations, or are variable over a long term.
The CAZ instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input signal. The analog switches are driven from a self-contained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the ICL7605/ICL7606 is shown in Figure 1.

Figure 1: Simplified Block Diagram
The ICL7605/ICL7606 have approximately constant equivalent input noise voltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100 .
The only major limitation of the ICL7605/ICL7606 is its lowfrequency operation (10 to 20 Hz maximum). However in many applications speed is not the most important parameter.

CAZ Op Amp Section

Operation of the CAZ amp section of the ICL7605/ICL7606 instrumentation amplifier is best illustrated by referring to Figure 2. The basic amplifier configuration, represented by the large triangles, has one more input than does a regular op amp - the AZ, or auto-zero terminal. The voltage on the AZ input is that level at which each of the internal op amps will be auto-zeroed. In Mode A, op amp \#2 is connected in a unity gain mode through on-chip analog switches. It charges external capacitor C_{2} to a voltage equal to the $D C$ input offset voltage of the amplifier plus the instantaneous lowfrequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp \#2 has capacitor C_{2} (which is charged to a voltage equal to the offset and noise voltage of op amp \#2) connected in series to its non-inverting $(+)$ input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input signal, the second op amp is in an auto-zero mode, charging a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The onchip amplifiers are connected and reconnected at a rate designated as the commutation frequency (fсом), so that at all times one or the other of the on-chip op amps is processing the input signal, while the voltages on capacitors C_{1} and C_{2} are being updated to compensate for variables such as low frequency noise voltage and input offset voltage changes due to temperature, drift or supply voltages effects.

Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important advantages:

* Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming.
* Long-term offset voltage drift phenomena can be compensated and dramatically reduced.
* Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better.
* Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and

Figure 2: Diagrammatic representation of, the 2 half cycles of operation of the CAZ OP AMP.

Figure 3: Schematic of analog switches connecting each internal OP AMP to its inputs and output.

The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 3. Here, one op amp and its associated analog switches are required to connect each on-chip op amp, so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N -channel transistor.

DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER

An idealized schematic of a voltage converter block is shown in Figure 4. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input, and the other from a ground or reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 5, where the voltage steps equal the differential voltage $\left(V_{A}-V_{B}\right)$ at commutation times a, b, c, etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, commutation and noise voltages are added. Sampling theory states that to preserve the integrity of the information to be processed, at least two samples must be taken within a period (1/f) of the highest frequency of the signal being

Figure 4: Schematic of the differential to single ended voltage converter

Figure 5: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended yoltage converter graph on page 5.
sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation frequency, the input signal is transferred to a lower frequency. This phenomenon is known as aliasing. Although the output responds above the commutation frequency, the frequencies of the output responses have been aliased down to frequencies below the commutation frequency.
The voltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P-channel and N -channel transistors. The switches have finite ON impedances of $30 \mathrm{k} \Omega$, plus parasitic capacitances to the substrate. Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors C_{0} and C_{0} must be about $1 \mu \mathrm{~F}$ to preserve signal translation accuracies to 0.01%. The $1 \mu \mathrm{~F}$ capacitors, coupled with the $30 \mathrm{k} \Omega$ equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is approximately 3 dB at 10 Hz .

APPLICATIONS

USING THE ICL7605/ICL7606 TO BUILD A DIGITAL READOUT TORQUE WRENCH

A typical application for the ICL7605/ICL7606 is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure 6. In this application, the CAZ instrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting this voltage to a single-ended voltage reference to ground. The signal is then amplified by the CAZ instrumentation amplifier and applied to the input of a 3-1/2 digit dual-slope A/D converter chip for LCD panel meter display. The A/D converter device used in this instance is the Intersil ICL7106.
In the digital readout torque wrench circuit, the reference voltage for the ICL7106 is derived from the stimulus applied to the strain gauge, to utilize the ratiometric capabilities of the A / D. In order to set the full-scale reading, it is required
that, given a certain strain gauge bridge with a defined pressure voltage sensitivity, a value of gain for the ICL7605/ ICL7606 instrumentation CAZ amp be selected along with an appropriate value for the reference voltage. The gain should be set so that at full scale the output will swing about 0.5 V . The reference voltage required is about one-half the maximum output swing, or approximately 0.25 V .

In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage must be varied for full-scale adjustment. Total current consumption of all circuitry, less the current through the strain gauge bridge, is typically 2 mA . The accuracy is limited only by resistor ratios and the transducer.

Figure 6: 3-1/2 Digit Digital Readout Torque Wrench

SOME HELPFUL HINTS

Testing the ICL7605/ICL7606 CAZ Instrumentation Amplifier

Test Circuits \#1 and \#2 provide convenient means of measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscilloscope after being fed through a low-pass filter. It is recommended that for most applications, a low-pass filter of about 1.0 to 1.5 Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage.
The output low-pass filter must be of a high-input impedance type-(not simply a capacitor across the feedback resistor R_{2}) at about $100 \mathrm{k} \Omega$ and $1.0 \mu \mathrm{~F}$ so that the output dynamic loading on the CAZ instrumentation is about $100 \mathrm{k} \Omega$.

Bias Control

The on-chip op amps consume over 90% of the power required by the ICL7605/ICL7606 instrumentation op amp. For this reason, the internal op amps have externallyprogrammable bias levels. These levels are set by connecting the BIAS terminal to either V^{+}, GND, or V^{-}for LOW, MED or HIGHBIAS levels, respectively. The difference between each bias setting is about a factor of 3 , allowing a $9: 1$ ratio of power supply versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the better the recovery from commutation spikes), and offset errors due to "IR" voltage drops and thermoelectric effects (the higher the power dissipation, the higher the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice.

Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with loads as low as $2 \mathrm{k} \Omega$.
However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 k \Omega$ load than it would be with a $20 k \Omega$ load. Therefore, for high gain configurations requiring high accuracy, an output load of $100 \mathrm{k} \Omega$ or more is suggested.
There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked, and that is the additional power dissipation of the chip which will result from a large output voltage swing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op amp to reduce high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter.
However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteristic in the direction of the auto-zero voltage and a high-impedance characteristic on the recovery edge, as shown in Figure 7. It can be seen that the effect of a large load capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a highimpedance type to avoid these area errors. For example, a 1.5 Hz filter will require a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1 \mathrm{M} \Omega$ resistor and an $0.1 \mu \mathrm{~F}$ capacitor.

Oscillator and Digital Cirċuitry Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160 Hz . The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others.
The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired (5.2 kHz) the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The ICL7605/ ICL7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratio) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to V^{+}) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and the V^{+}or system GND terminals. For situations which require that the commutation frequency be synchronized with a master clock, (Figure 8) the OSC terminal may be driven from TTL logic (with resistive pull-up) or by CMOS logic, provided that the V^{+} supply (with respect to ground) is $+5 \mathrm{~V}(\pm 10 \%)$ and the logic driver also operates from a similar voltage supply. The

Figure 7: Effect of a load capacitor on output voltage waveforms.

Figure 8: ICL7605 being clocked from external logic into the oscillator terminal.
reason for this requirement is that the logic section (including the oscillator) operates from an internal -5 V supply, referenced to V^{+}supply, which is not accessible externally.

Thermoelectric Effects

The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects in electrical junctions consisting of various metals (alloys, silicon, etc.) Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.
In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply voltages and power dissipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep well away from equipment which dissipates heat.

Component Selection

The four capacitors (C_{1} thru C_{4}) should each be about $1.0 \mu \mathrm{~F}$. These are relatively large values for non-electrolytic capacitors, but'since the voltages stored on them change significantly, problems of dielectric absorption, charge bleed-off and the like are as significant as they would be for integrating dual-slope A/D converter applications. Polypropylene are the best for C_{3} and C_{4}, though Mylar may be adequate for C_{1} and C_{2}.
Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, smaller-size capacitors, since the absolute values of the capacitors are not critical. Even polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F}$ and 50 V have been used successfully at room temperature, although no recommendations are made concerning the use of such capacitors.

Commutation Voltage Transient Effects

Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 10 Hz . The is due to the finite switching transients which occur at both the input and
output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest in-band frequency, then the commutation transients can be filtered out with a low-pass filter.
The input commutation transients arise when each of the onchip op amps experiences a shift in voltage which is equal to the input offset voltages (about $5-10 \mathrm{mV}$), usually occurring during the transition between the signal processing mode, and the auto-zero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors C_{1} and C_{2} must have values of at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{Feach}$.
The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent DC input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0 pA at an ambient temperature of $25^{\circ} \mathrm{C}$.
The output waveform in Test Circuit \#1 (with no input signal) is shown in Figure 9. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the onchip op amps, the input transients of approximately 7 mV are not amplified by 1000.

Figure 9: Output waveform from Test Circuit 1.

Layout Considerations

Care should be exercised in positioning components on the PC board, particularly the capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}, all of which must be shielded from the OSC terminal. Also, parasitic PC board leakage capacitances associated with these four capacitors should be kept as low as possible to minimize charge injection effects.

FEATURES

- Wide operating voltage range $\pm 0.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- Single Ni-cad battery operation
- High input impedance - $10^{12} \Omega$
- Programmable power consumption - as low as $10 \mu \mathrm{~W}$
- Input current lower than BIFETs - typ 1pA
- Available as singles, duals, triples, and quads
- Output voltage swing ranges to within millivolts of V- to V^{+}
- Low power replacement for many standard op amps
- Compensated and uncompensated versions

APPLICATIONS

- Portable instruments
- Telephone headsets - Medical instruments
- Hearing aid/microphone - High impedance buffers amplifiers

A number of special options are available. They include:

- Single, dual, triple, and quad configurations
- Internally compensated and uncompensated versions
- Inputs protected to ± 200 (ICL7613/15)
- Input common mode voltage range greater than supply rails (ICL7612)
Note: See page 2 for table of options.

SCHEMATIC

NOTES:

ICL- 7613 AND 7615. FOR ALL OTHER DEVICES, THEY ARE REPLACED BY DIRECT CONNECTIONS.
2. OFFSET NULLING PINS ARE NOT AVAILABLE ON TRIPLE (ICL-763X) AND QUAD (ICL-764X) VERSIONS.
3. Io AND COMP TERMINALS ARE METAL. MASK OPTIONS OF THE SAME BONDING PAD; ONLY ONE OF THESE FUNCTIONS IS AVAILABLE IN A GIVEN DEVICE
4. FOR INTERNALLY COMPENSATED VERSIONS ONLY. THIS

CAPACITOR IS ABSENT FOR ALL OTHER DEVICES.

ICL761X/762X/763X/764X

GENERAL DESCRIPTION

The ICL761X/762X/763X/764X series is a family of monolithic CMOS op amps, fabricated using Intersils' proven MAXCMOS ${ }^{\text {TM }}$ process. These amplifiers provide the designer with high performance operation at low supply voltages and selectablequiescent currents, and are an ideal design tool when ultra low input current and low power drain are essential.
The basic amplifier will operate at supply voltages ranging from ± 0.5 to $\pm 8 \mathrm{~V}$, and may be operated from a single Ni-Cad battery.
A unique quiescent current programming pin allows setting of standby current to $1 \mathrm{~mA}, 100 \mu \mathrm{~A}$, or $10 \mu \mathrm{~A}$, with no external components. This results in power drain as low as $10 \mu \mathrm{~W}$. Output swings range to within a few millivolts of the supply voltages.

Of particular significance is the extremely low (1 pA) input current, input noise current of $.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and 1012Ω input impedance. These features optimize performance in very high source impedance applications.
The inputs are internally protected and require no special handling procedures. Outputs are fully protected against shorts to ground or to either supply.
AC performance is excellent, with a slew rate of $1.6 \mathrm{~V} / \mu \mathrm{s}$, and unity gain bandwidth of 1 MHz at $\mathrm{lQ}=$ 1 mA .
Because of the low power dissipation, operating temperatures and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

SELECTION GUIDE

BASIC TYPE

OFFSET
NULL CAPABILITY
$Y=Y E S$
$N=N O$
I_{Q} SETTING $L=10 \mu A$ FIXED $M=100 \mu \mathrm{~A}$ FIXED $H=1 \mathrm{~mA}$ FIXED $P=P R O G R A M M A B L E$

$$
\begin{aligned}
& \text { ORDERING } \\
& \text { INFORMATION }
\end{aligned}
$$

TEMP. RANGE

$\mathrm{C}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$

PACKAGE CODE
TY - TO-99, 8 PIN
PA - PLASTIC 8 PIN MINIDIP
PD - 14 PIN PLASTIC
PE - 16 PIN PLASTIC
JD - 14 PIN CERDIP
JE - 16 PIN CERDIP

NOTES: 1. Duals and quads are available in 14 pin DIP packages, triples in 16 pin only.
2. Ordering code must consist of basic device and order suffix, e.g., ICL7611BCPA.
3. ICL7632 is not compensatable. Recommended for use in high gain circuits only.

PIN CONFIGURATIONS

DEVICE	DESCRIPTION	\cdots PIN ASSIGNMENTS
ICL7611XCPA ICL7611XCTY ICL7611XMTY ICL7612XCPA ICL7612XCTY ICL7612XMTY ICL7613XCPA ICL7613XCTY ICL7613XMTY	Internal compensation, plus offset null capability and extérnal I_{Q} control.	8 PIN DIP (TOP VIEW) (outline dwg PA) *Pin 7 connected to case.
ICL7614XCPA ICL7614XCTY ICL7614XMTY ICL7615XCPA ICL7615XCTY ICL7615XMTY	Fixed $\mathrm{I}_{\mathrm{Q}}(100 \mu \mathrm{~A})$, external compensation, and offset null capability.	TO-99 (TOP VIEW) (outline dwg TO-99) * Pin 7 connected to case. 8 PIN DIP (TOP VIEW) (outline dwg PA)
ICL7621XCPA ICL7621XCTY ICL7621XMTY	Dual op amps with internal compensation; IQ fixed at $100 \mu \mathrm{~A}$ Pin compatible with Texas Inst. TL082 Motorola MC1458 Raytheon RC4558	TO.99 (TOP VIEW) (outline dwg TO-99) 8 PIN DIP (TOP VIEW) (outline dwg PA) * Pin 8 connected to case.
ICL7622XCPD	Dual op amps with internal compensation and offset null capability; I_{Q} fixed at $100 \mu \mathrm{~A}$ Pin compatible with Texas Inst. TL083 Fairchild $\mu \mathrm{A} 747$	14 PIN DIP (TOP VIEW) (outline dwgs JD, PD) Note: Pins 9 and 13 are internally connected.

PIN CONFIGURATIONS (Cont.)

GENERAL INFORMATION

STATIC PROTECTION

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

LATCHUP AVOIDANCE

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4 -layer ($p-n-p-n$) structure. The 4-layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails may be applied to any pin. (An exception to this rule concerns the inputs of the ICL7613 and ICL7615, which are protected to $\pm 200 \mathrm{~V}$.) In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2 mA to prevent latchup.

CHOOSING THE PROPER IQ

Each device in the ICL76XX family has a similar lQ set-up scheme, which allows the amplifier to be set to nominal quiescent currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ or 1 mA .

These current settings change only very slightly over the entire supply voltage range. The ICL7611/12/13 and ICL7631/32 have an external lo control terminal, permitting user selection of each amplifiers' quiescent current. (The ICL7614/15, 7621/22, and 7641/42 have fixed lo settings - refer to selector guide for details.) To set the lQ of programmable versions, connect the la terminal as follows:
$\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}-\mathrm{lQ}$ pin to V^{+}
$\mathrm{IQ}=100 \mu \mathrm{~A}-\mathrm{lQ}$ pin to ground. If this is not possible, any voltage from $\mathrm{V}^{+}-0.8$ to $\mathrm{V}^{-}+0.8$ can be used.
$\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}-\mathrm{I}_{\mathrm{Q}}$ pin to V^{-}
NOTE: The negative output current available is a function of the quiescent current setting. For maximum p-p output voltage swings into low impedance loads, IQ of 1 mA should be selected.

OUTPUT STAGE AND LOAD DRIVING CONSIDERATIONS

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the la settings. This allows output swings to almost the supply rails for output loads of $1 \mathrm{M}, 100 \mathrm{~K}$, and 10 K , using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB, which can supply
higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.
A special feature of the output stage is that it approximates a transconductance amplifier, and its gain is directly proportional to load impedance. Approximately the same open loop gains are obtained at each of the lQ settings if corresponding loads of 10 K , 100 K , and 1 M are used.

INPUT OFFSET NULLING

For those models provided with OFFSET NULLING pins, nulling may be achieved by connecting a 25 K pot between the OFFSET terminals with the wiper connected to V^{+}. At quiescent currents of 1 mA and $100 \mu \mathrm{~A}$, the nulling range provided is adequate for all Vos selections; however with $\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}$, nulling may not be possible with higher values of Vos.

FREQUENCY COMPENSATION

The ICL7611/12/13, 7621/22, 7631, 7641/42 are internally compensated, and are stable for closed loop gains as low as unity for capacitive loads up to 100pF.
The ICL7614 and 15 are externally compensated by connecting a capacitor between the COMP and OUT pins. A 39pF capacitor is required for unity gain compensation; for greater than unity gain applications, increased bandwidth and slew rate can be obtained by reducing the value of the compensating capacitor.
Since the g_{m} of the first stage is proportional to $\sqrt{I_{Q}}$, greatest compensation is required when $l_{Q}=1 \mathrm{~mA}$. The ICL7632 is not compensated internally, nor can it be compensated externally. The device is stable when used as follows:
lQ of 1 mA for gains ≥ 20
lQ of $100 \mu \mathrm{~A}$ for gains ≥ 10
IQ of $10 \mu \mathrm{~A}$ for gains ≥ 5

HIGH VOLTAGE INPUT PROTECTION

The ICL7613 and 7615 include on-chip thin film resistors and clamping diodes which allow voltages of up to ± 200 to be applied to either input for an indefinite time without device failure. These devices will be useful where high common mode voltages, differential mode voltages, or high transients may be experienced: Such conditions may be found when interfacing separate systems with separate supplies. Unity gain stability is somewhat degraded with capacitive loads because of the high value of input resistors.

EXTENDED COMMON MODE INPUT.RANGE

The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 volt for applications where $V_{\text {SUPP }} \geq$ $\pm 1.5 \mathrm{~V}$. For those applications where $\mathrm{V}_{\text {SUPP }} \leq \pm 1.5 \mathrm{~V}$, the input CMVR is limited in the positive direction, but may exceed the negative supply rail by 0.1 volt in the negative direction (e.g., for $\mathrm{V}_{\text {SUPP }}= \pm 0.5 \mathrm{~V}$, the input CMVR would be +0.1 volts to -0.6 volts).

OPERATION AT VSUPP $= \pm 0.5$ VOLTS

Operation at $V_{\text {SUPP }}= \pm 0.5 \mathrm{~V}$ is guaranteed at $I_{Q}=10 \mu \mathrm{~A}$ only. This applies to these devices with selectable I_{Q}, and those devices are set internally to $I_{Q}=10 \mu \mathrm{~A}$ (i.e., ICL7611, 7612, 7613, 7631, 7632, 7642).

Output swings to within a few millivolts of the supply rails are achievable for $R_{L} \geq 1 \mathrm{Meg} \Omega$. Guaranteed input CMVR is $\pm 0.1 \mathrm{~V}$ minimum and typically +0.4 V to -0.2 at $V_{\text {SUPP }}= \pm 0.5 \mathrm{~V}$. For applications where greater common mode range is desirable, refer to description of ICL7612 above.

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.

ABSOLUTE MAXIMUM RATINGS ${ }^{[1]}$

Total Supply Voltage V^{+}to V^{-}......................... 18 V
Input Voltage $\mathrm{V}^{+}+0.3$ to $\mathrm{V}^{-}-0.3 \mathrm{~V}$
Input Voltage ICL7613/15 Only $\mathrm{V}^{+}+200$ to $\mathrm{V}^{-}-200 \mathrm{~V}$
Differential Input Voltage $\left.{ }^{[2]} \ldots \quad \pm\left(\mathrm{V}^{+}+0.3\right)-\left(\mathrm{V}^{-}-0.3\right)\right] \mathrm{V}$
Differential Input Voltage ${ }^{|2|}$
ICL7613/15 Only $\pm\left|\left(V^{+}+200\right)-\left(V^{-}-200\right)\right| V$
Duration of Output Short Circuit ${ }^{|3|}$............ Unlimited
Continuous Power Dissipation @ $25^{\circ} \mathrm{C}$ Above $25^{\circ} \mathrm{C}$
derate as follows:

TO-99	250 mW	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
8 Lead Minidip	250 mW	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
14 Lead Plastic	375 mW	$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
14 Lead Cerdip	500 mW	$4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
16 Lead Plastic	375 mW	$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
16 Lead Cerdip	500 mW	$4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ge Temperature Range \ldots.	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Operating Temperature Range
M Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
C Series $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$ Notes:

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
3. The outputs may be shorted to ground or to either supply, for VSUPP $\leq 10 \mathrm{~V}$. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS $V_{\text {SUPP }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS	76XXA			76XXB			76XXD			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage	Vos	$\begin{gathered} \text { RS } \leq 100 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{gathered}$			$\begin{aligned} & 2 \\ & 3 \end{aligned}$			5 7			$\begin{aligned} & 15 \\ & 20 \end{aligned}$	mV
Temperature Coefficient of Vos	$\Delta \mathrm{Vos} / \Delta T$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$		10			15			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	los	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C}^{[2]} \\ & \Delta \mathrm{T}_{\mathrm{A}}=\mathrm{M}^{[2]} \end{aligned}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \end{gathered}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \\ \hline \end{gathered}$		0.5	30 300 800	pA
Input Bias Current	IbIAS	$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \\ \hline \end{gathered}$		1.0	$\begin{gathered} 50 \\ 400 \\ 4000 \end{gathered}$		1.0	$\begin{gathered} 50 \\ 400 \\ 4000 \end{gathered}$		1.0	$\begin{gathered} 50 \\ 400 \\ 4000 \end{gathered}$	pA
Common Mode Voltage Range (Except ICL7612)	VCMR	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}[1] \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA} \mathrm{~A}^{[1]} \end{aligned}$	$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			$\begin{array}{r} \pm 4.4 \\ \pm 4.2 \\ \pm 3.7 \end{array}$			$\begin{array}{r} \pm 4.4 \\ \pm 4.2 \\ \pm 3.7 \end{array}$			V
Extended Common Mode Voltage Range (ICL7612 Only)	VCMR	$\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}$	± 5.3			± 5.3			± 5.3			V
		$\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	$\begin{array}{r} +5.3 \\ -5.1 \\ \hline \end{array}$			$\begin{aligned} & +5.3 \\ & -5.1 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline+5.3 \\ -5.1 \\ \hline \end{array}$			
		- $10=1 \mathrm{~mA}$	$\begin{aligned} & +5.3 \\ & -4.5 \end{aligned}$			$\begin{aligned} & +5.3 \\ & -4.5 \end{aligned}$		-	$\begin{array}{\|l\|} \hline+5.3 \\ -4.5 \end{array}$			
Output Voltage Swing	Vout	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C}, \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M}, \\ \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.6 \end{aligned}$	-		$\begin{array}{r} \pm 4.9 \\ \pm 4.8 \\ \pm 4.6 \\ \hline \end{array}$			$\begin{array}{r} \pm 4.9 \\ \pm 4.8 \\ \pm 4.6 \end{array}$			V
		$\begin{gathered} R_{L}=10 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C, \Delta T_{A}=M, \\ l_{Q}=1 \mathrm{~mA}, \end{gathered}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \\ & \hline \end{aligned}$.		
Large Signal Voltage Gain	Avol	$\begin{gathered} \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(11)}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{gathered}$	$\begin{aligned} & 86 \\ & 80 \\ & 74 \\ & \hline \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		dB
		$\begin{gathered} \mathrm{VO}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{gathered}$	$\begin{aligned} & 86 \\ & 80 \\ & 74 \\ & \hline \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	102	.	
		$\begin{gathered} \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{Q}=1 \mathrm{~mA} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{T}=\mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{gathered}$	$\begin{aligned} & 90 \\ & 85 \\ & 77 \\ & \hline \end{aligned}$	98		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	98		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	98		
Unity Gain Bandwidth	GBW	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A} \mathrm{~A}^{[1]} \\ & \mathrm{IQ}=100 \mu \mathrm{~A} \\ & \mathrm{IQ}=1 \mathrm{~mA} \mid 1] \end{aligned}$		$\begin{gathered} \hline 0.044 \\ 0.48 \\ 1.4 \end{gathered}$			$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$		MHz
Input Resistance	RIN			1012			1012			1012		Ω
Common Mode Rejection Ratio	CMRR	$\begin{gathered} \mathrm{R}_{S} \leq 100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{[1]} \\ \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{[1]} \end{gathered}$	$\begin{aligned} & 76 \\ & 76 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \\ & \hline \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		dB
Power Supply Rejection Ratio	PSRR	$\begin{gathered} \mathrm{RS} \leq 100 \mathrm{~K} \Omega, \mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{[1]} \\ \mathrm{RS} \leq 100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{a}}=100 \mu \mathrm{~A} \\ \mathrm{RS} \leq 100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA} \mathrm{~A}^{[1]} \\ \hline \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \\ & 70 \end{aligned}$	$\begin{array}{r} 94 \\ 86 \\ 77 \end{array}$		$\begin{array}{r} 80 \\ 80 \\ 70 \\ \hline \end{array}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		dB
Input Referred Noise Voltage	e_{n}	$\mathrm{RS}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		100		,	100			100		$n \mathrm{~V} / / \overline{\mathrm{Hz}}$
Input Referred Noise Current	in.	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Supply Current (Per Amplifier)	ISUPP	No Signal, No Load $\begin{gathered} \mathrm{IQ}=10 \mu \mathrm{~A} \mid 1] \\ \mathrm{IQ}=100 \mu \mathrm{~A} \\ \mathrm{IQ}=1 \mathrm{~mA} \mathrm{~A}^{\|1\|} \end{gathered}$.	$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \\ \hline \end{gathered}$		$\begin{aligned} & 0.01 \\ & 0.1 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \\ \hline \end{gathered}$		$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \end{gathered}$	mA
Channel Separation	$\mathrm{VO1/V} \mathrm{~V}^{2}$	Avol $=100$		120			120			120		dB
Slew Rate ${ }^{[3]}$	SR	$\begin{gathered} \text { AvoL }=1, C_{L}=100 \mathrm{pF} \\ V_{I N}=8 V_{p-p} \\ \mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A} \mid 11, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ \mathrm{IQ}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}{ }^{(1), R_{L}=10 \mathrm{~K} \Omega} \end{gathered}$		$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$			$\begin{array}{\|c\|} \hline 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{array}$			$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$		$\mathrm{V} / \mu \mathrm{s}$
Rise Time ${ }^{(3)}$	tr_{r}	$\begin{aligned} & \mathrm{VIN}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & I_{\mathrm{Q}}=10 \mu \mathrm{~A}[1], R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & \left.\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA} \mid 1\right], R_{\mathrm{L}}=10 \mathrm{~K} \Omega \end{aligned}$		$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$		$\mu \mathrm{S}$
Overshoot Factor ${ }^{[3]}$		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \left.\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A} \mid 1\right], R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & \left.\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA} \mid 1\right], R_{\mathrm{L}}=10 \mathrm{~K} \Omega \end{aligned}$		5 10 40			5 10 40			5 10 40		\%

2. $\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $\mathrm{M}=$ Military Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
3. ICL $7614 / 15 ; 39 \mathrm{pF}$ from pin 6 to pin 8.

ELECTRICAL CHARACTERISTICS $V_{S U P P}= \pm 0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Specs apply to ICL7611/7612/7613 only.

PARAMETER	SYMBOL	CONDITIONS	76XXA			76XXB			UNITS
			MIN.	TYP.	MAX.	MIN	TYP. ${ }^{\prime}$	MAX	
Input Offset Voltage	Vos	$\begin{gathered} R s \leq 100 K \Omega, T_{A}=25^{\circ} \mathrm{C} \\ T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{gathered}$			2 3			5 7	mV
Temperature Coefficient of Vos	$\Delta V_{\text {os }} / \Delta T$	Rs $\leq 100 \mathrm{~K} \Omega$		10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	los	$\begin{gathered} T_{A}=25^{\circ} C \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$.	0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \\ & \hline \end{aligned}$.	0.5	$\begin{gathered} 30 \\ 300 \\ 800 \\ \hline \end{gathered}$	pA
Input Bias Current	Ibias	$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 500 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{gathered} 50 \\ 500 \\ 4000 \end{gathered}$	pA
Common Mode Voltage Range (Except ICL7612)	VCMR		± 0.1			± 0.1			V
Extended Common Mode Voltage Range (ICL7612 Only)	VCmR	\cdots	$\begin{gathered} +0.1 \\ \text { to } \\ -0.6 \end{gathered}$:	$\begin{gathered} +0.1 \\ \text { to } \\ -0.6 \end{gathered}$			V
Output Voltage Swing	Vout	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{A}=\mathrm{C} \\ \Delta \mathrm{~T}_{A}=\mathrm{M} \end{gathered}$		$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \end{aligned}$			$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \end{aligned}$		V
Large Signal Voltage Gain	Avol	$\begin{gathered} V_{0}= \pm 0.1 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\ T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$		90 80 70		.	90 80 70		dB
Unity Gain Bandwidth	Gbw			0.044			0.044		MHz
Input Resistance	Rin	,		1012			1012		Ω
Common Mode Rejection Ratio	CMRR	R $s \leq 100 \mathrm{~K} \Omega$		80			80		dB
Power Supply Rejection Ratio	PSRR	$\mathrm{Rs} \leq 100 \mathrm{~K} \Omega$		80			80		dB
Input Referred Noise Voltage	e_{n}	Rs $=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Noise Current	in	Rs $=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Supply Current (Per Amplifier)	Isupp	No Signal, No Load		6	15		6	15	$\mu \mathrm{A}$
Slew Rate	SR	$\begin{gathered} \text { AvOL }=1, C_{L}=100 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{IN}}=0.2 \mathrm{Vp}-\mathrm{p} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{gathered}$		0.016			0.016		$\mathrm{V} / \mu \mathrm{s}$
Rise Time	tr	$\begin{gathered} V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ R_{L}=1 \mathrm{M} \Omega \end{gathered}$.	20			20		$\mu \mathrm{S}$
Overshoot Factor	- .	$\begin{gathered} V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ R_{L}=1 \mathrm{M} \Omega \end{gathered}$:	5			5		

Note: $\mathrm{C}=$ Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right) ; \mathrm{M}=$ Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

763X／764X

杖凸凸゚
ELECTRICAL CHARACTERISTICS $V_{\text {SUPP }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，unless otherwise specified．

Note：1．Does not apply to 7641.
2．Does not apply to 7642 ．
$\mathrm{C}=$ Commercial Temperature Range： $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{M}=$ Military Temperature Range：$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
3．ICL7631／32 only．
4．Does not apply to 7632 ．

ELECTRICAL CHARACTERISTICS $V_{S U P P}= \pm 0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Specs apply to ICL7631/7632/7642 only.

PARAMETER	SYMBOL	CONDITIONS	$\begin{array}{r\|} \\ \text { MINXXB } \\ \text { TYP. } \end{array}$		MAX.	76XXC			UNITS	
					MIN	TYP.	MAX			
Input Offset Voltage	Vos	$\begin{gathered} R s \leq 100 K \Omega, T_{A}=25^{\circ} \mathrm{C} \\ T_{\text {MIN }} \leq T_{A} \leq T_{M A X} \end{gathered}$				5 7			$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
Temperature Coefficient of Vos	$\Delta \mathrm{Vos} / \Delta \mathrm{T}$	$R \mathrm{~s} \leq 100 \mathrm{~K} \Omega$		15			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Offset Current	los	$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$.	0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \end{aligned}$		0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \end{aligned}$	pA	
Input Bias Current	IBIAS	$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{A}=\mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{gathered}$		1.0	$\begin{gathered} 50 \\ 500 \\ 4000 \end{gathered}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 500 \\ 4000 \end{array}$	pA	
Common Mode Voltage Range	VCmR		± 0.1			± 0.1			V	
Output Voltage Swing	Vout	$\begin{gathered} R_{L}=1 M \Omega, T_{A}=25^{\circ} C \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$;	$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \end{aligned}$		V	
Large Signal Voltage Gain	Avol	$\begin{gathered} V_{0}= \pm 0.1 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\ T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$.	$\begin{aligned} & 90 \\ & 80 \\ & 70 \end{aligned}$			$\begin{aligned} & 90 \\ & 80 \\ & 70 \end{aligned}$.	dB	
Unity Gain Bandwidth	Gbw			0.044			0.044		MHz	
Input Resistance	Rin			1012			1012		Ω	
Common Mode Rejection Ratio	CMRR	Rs $\leq 100 \mathrm{~K} \Omega$		80			80		dB	
Power Supply Rejection Ratio	PSRR			80			80		dB	
Input Referred Noise Voltage	en_{n}	RS $=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
Input Referred Noise Current	in	Rs $=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$	
Supply Current (Per Amplifier)	ISUPP	No Signal, No Load		6	15	-	6	15	$\mu \mathrm{A}$.	
Channel Separation	Vo1/VO2	AVol $=100$		120			120		dB	
Slew Rate	SR	$\begin{gathered} A v o L=1, C_{L}=100 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{IN}}=0.2 \mathrm{Vp}-\mathrm{p} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{gathered}$		0.016			0.016		$\mathrm{V} / \mu \mathrm{s}$	
Rise Time	tr	$\begin{gathered} \mathrm{V}_{1 \mathrm{~N}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{gathered}$		20		-	20		$\mu \mathrm{S}$	
Overshoot Factor		$\begin{gathered} \mathrm{V}_{1 \mathrm{~N}}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{gathered}$		5	,		5		\%	

Note: $\mathrm{C}=$ Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right) ; \mathrm{M}=$ Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

ICL761X/762X/763X/764X

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT PER AMPLIFIER

 AS A FUNCTION OF SUPPLY VOLTAGE

LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF FREE-AIR TEMPERATURE

POWER SUPPLY REJECTION
RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE

SUPPLY CURRENT PER
AMPLIFIER AS A FUNCTION OF FREE-AIR TEMPERATURE

LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY

INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE

PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

INNERRIL

TYPICAL'PERFORMANCE CHARACTERISTICS

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE

MAXIMUM OUTPUT SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

MAXIMUM PEAK-TO-PEAK VOLTAGE AS A FUNCTION OF FREE-AIR TEMPERATURE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

APPLICATIONS

Note that in no case is la shown. The value of la must be chosen by the designer with regard to frequency response and power dissipation.

SIMPLE FOLLOWER*

LEVEL DETECTOR*

*By using the ICL7612 in these applications, the circuits will follow rail to rail inputs.

PHOTOCURRENT INTEGRATOR

Low leakage currents allow integration times up to several hours.

PRECISE TRIANGLE/SQUARE WAVE GENERATOR Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.

AVERAGING AC TO DC CONVERTER FOR A/D CONVERTERS SUCH AS ICL7106, 7107, 7109, 7116, 7117.

MEDICAL INSTRUMENT PREAMP

Note that Avol $=25$; single Ni-cad battery operation. Input current (from sensors connected to patient) limited to $<5 \mu \mathrm{~A}$ under fault conditions.

ICL761X/762X/763X/764X

FIFTH ORDER CHEBYSHEV MULTIPLE FEEDBACK LOW PASS FILTER
The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff, $\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz}$, Avol $=4$, Passband ripple $=0.1 \mathrm{~dB}$.

*Note that small capacitors ($25-50 \mathrm{pF}$) may be needed for stability in some cases.

SECOND ORDER BIQUAD BANDPASS FILTER

Note that IQ on each amplifier may be different.
Avol $=10, Q=100, f_{o}=100 \mathrm{~Hz}$.

Vos NULL CIRCUIT

BURN-IN AND LIFE TEST CIRCUIT

NOTES:

1. FOR DEVICES WITH EXTERNAL COMPENSATION, USE 33pF.
2. FOR DEVICES WITH PROGRAMMABLE STANDBY CURRENT, CONNECT I I_{Q} PIN TO $V^{-}\left(I_{Q}=1 \mathrm{~mA}\right.$ MODE).

UNITY GAIN FREQUENCY COMPENSATION

CHIP TOPOGRAPHY (Cont.)

763X

764X
5-154

FEATURES

- Extremely low input offset voltage - $1 \mu \mathrm{~V}$ over temperature range
- Low long term and temperature drift of input offset voltage
- Low D.C. input bias current - 10pA
- Extremely high gain, CMRR and PSRR min 120dB
- High slew rate - $2.5 \mathrm{~V} / \mu \mathrm{S}$
- Wide bandwidth -2 MHz GBW product
- Internally compensated for unity gain operation
- Very low intermodulation effects (phase shift $<10^{\circ}$)
- Clamp circuit to avoid overload recovery problems, allow comparator use
- Extremely low chopping spikes at input and output

GENERAL DESCRIPTION

The ICL7650 chopper stabilized amplifier is a high performance device designed to be used in a wide variety of applications. This amplifier offers exceptionally low offset voltage and input bias parameters combined with excellent bandwidth and speed characteristics. Intersil's unique approach to chopper stabilized amplifier design, using Intersil's well established CMOS process, yields a versatile precision component which can replace more expensive hybrid or modular parts, while out-performing them and other monolithic devices:

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier that spends alternate clock phases nulling itself and the main amplifier. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs. These are the only external components necessary.
The clock oscillator and all of the other control circuitry is entirely self-contained. However, the 14-pin version includes a provision for the use of an external clock if required for a particular application. In addition, the ICL7650 is internally compensated for unity gain operation.

ORDERING INFORMATION

TEMP RANGE	PACKAGE	ORDER \#
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14pin plastic	ICL7650CPD
$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	14pin CERDIP	ICL7650IJD
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8pin TO-99	ICL7650CTY
$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	8pin TO-99	ICL7650ITY
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	14pin CERDIP	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	8pin TO-99	

FIG. 1 BLOCK DIAGRAM

PIN CONFIGURATION

(outline dwg TO-99)

ABSOLUTE MAXIMUM RATINGS


```
Cont. Total Power Dissipn ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) )
    CERDIP Package
    500 mW
    Plastic Package .............................. 375 mW
    TO-99 ........................................ . 250 mW
```

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS: Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Ckt
(unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	LIMITS TYP.	MAX.	UNIT
Input Offset Voltage	$\mathrm{V}_{\text {os }}$	$\begin{aligned} & \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { over operating temp. } \\ & \text { range (note 1) } \end{aligned}$		$\begin{aligned} & \pm 0.7 \\ & \pm 1.0 \end{aligned}$	± 5	$\mu \mathrm{V}$
Average Temp. Coefficient of Input Offset Voltage	$\Delta \mathrm{V}_{\text {os }} / \Delta \mathrm{T}$	over operating temp. range (note 1)		0.01		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (doubles every $10^{\circ} \mathrm{C}$)	$\mathrm{I}_{\text {BIAS }}$	$\begin{gathered} T_{A}=25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \\ -20^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 1.5 \\ 35 \\ 100 \\ \hline \end{gathered}$	10	pA
Input Offset Current	Ios	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5		pA
Input Resistance	$\mathrm{R}_{\text {IN }}$			10^{12}		Ω
Large Signal Voltage Gain	Avol	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	1	5		$\mathrm{V} / \mu \mathrm{V}$
Output Voltage Swing	$\mathrm{V}_{\text {out }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 4.8		V
Common Mode Voltage Range	CMVR		-5.0	-5.2 to +2.6	+2.3	V
Common Mode Rejection Ratio	CMRR	CMV $=-5 \mathrm{~V}$ to +2.3 V	120	130		dB
Power Supply Rejection Ratio	PSRR	$\pm 3 \mathrm{~V}$ to $\pm 7.5 \mathrm{~V}$	120	130		dB
Input Noise Voltage	e_{n}	$\begin{aligned} & R_{\mathrm{S}}=100 \Omega \\ & 0 \text { to } 10 \mathrm{~Hz} \end{aligned}$		2		$\mu \mathrm{Vp}$-p
Input Noise Current	i_{n}	$\mathrm{f}=10 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Unity Gain Bandwidth	GBW			2.0		MHz
Slew Rate	SR	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		2.5		$\mathrm{V} / \mu \mathrm{s}$
Rise Time,	$\mathrm{tr}_{\text {r }}$	-		0.2		$\mu \mathrm{S}$
Overshoot				20		\%
Operating Supply Range -	V^{+}to V^{-}		6.0		16	V
Supply Current	$\mathrm{I}_{\text {supp }}$	no load		2.0	3.5	mA
Internal Chopping Frequency	f_{ch}	pins 12-14 open (DIP)	120	200		Hz
Clamp ON Current (note 2)		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K}$		70		$\mu \mathrm{A}$
Clamp OFF Current (note 2)		$-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}$		1		pA
Offset Voltage vs Time				100		$\mathrm{nV} / \sqrt{ }$ mnth

NOTE 1: Operating temperature range for M series parts is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, for 1 series is $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, for C series is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
NOTE 2: See OUTPUT CLAMP under detailed description.

TEST CIRCUIT

DETAILED DESCRIPTION

AMPLIFIER

The block diagram shows the major elements of the ICL7650. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset null capability. The main amplifier is connected full time from the input to the output, while the nulling amplifier, under the control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET back gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials, and the necessary nulling loop time constants. The nulling arrangement operates over the full common mode and power supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.
Careful balancing of the input switches, and the inherent balance of the input circuit minimizes chopper frequency charge injection at the input terminals, and also the feedforward-type injection into the compensation capacitor, which is the main cause of output spikes in this type of circuit.
Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, and is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs. frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7650 by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7650, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.
The null-storage capacitors should be connected to the $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$ pins, with a common connection to
the $\mathrm{C}_{\text {Retn }} \operatorname{pin}$ (in the case of 14 pin devices) or the V^{-}pin (in the case of the 8 pin devices). This connection should be made directly to V^{-}by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry.
The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled input differential inputs are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

CLOCK

The ICL7650 has an internal oscillator giving a chopping frequency of 200 Hz , available at the CLOCK OUT pin on the 14 pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V^{-}to disable the internal clock. The external clock signal may then be applied to the EXT. CLOCK IN pin. At low frequencies the duty cycle of the external clock is not critical, since an internal divide-by-two provides the desired 50% switching duty cycle. However, since the capacitors are charged only when EXT CLK IN is HIGH, a $50-80 \%$ positive duty cycle is favored for frequencies above 500 Hz to ensure that any transients have time to settle before the capacitors are turned OFF. The external clock should swing between V^{+}and GROUND for power supplies up to $\pm 6 \mathrm{~V}$, and between V^{+}and $\mathrm{V}^{+}-6 \mathrm{~V}$ for higher supply voltages. Note that a signal of about 400 Hz will be present at the EXT CLK IN pin with INT/EXT high or open. This is the internal clock signal before the divider.
In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a STROBE signal is connected to EXT CLK IN during the time that the unknown signal is applied to the amplifier, neither capacitor will be charged as long as STROBE is low. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} /$ sec, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES

COMPONENT SELECTION

The two required capacitors, $\mathrm{C}_{\text {ExTA }}$ and $\mathrm{C}_{\text {Exts }}$ have optimum values depending on the clock or chopping frequency. For the preset internal clock, the correct value is $0.1 \mu \mathrm{~F}$, and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion. A high quality film type capacitor such as mylar is preferred, although a ceramic or other lower grade capacitor may prove suitable in many applications.

PIN COMPATIBILITY

The basic pinout of the 8 -pin device corresponds, where possible to that of the industry standard 8 -pin devices, the LM741, LM101, etc. The null storing external capacitors are connected to pins 1 and 8, usually used for offset null, compensation capacitors, or not connected. The output clamp pin (5) is similarly used. In the case of the OP-05 and OP-07 devices, the replacement of the offset null pot, connected between pins 1 and 8 and V^{+}, by two capacitors from those pins to V^{-}will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to V^{-}is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, $\mu \mathrm{A} 48$, and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of " $N C$ " pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICL7650.

TYPICAL APPLICATIONS

Clearly the applications of the ICL7650 will mirror those of other op. amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of input offset voltage and bias current, the ICL7650 is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figs. 2 and 3. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only
limitations on the replacement of other op. amps by the ICL7650 are the supply voltage ($\pm 8 \mathrm{~V}$ max.) and the output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Fig. 4, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7650.
Fig. 5 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\sim \mathrm{V}_{\mathrm{IN}} / \mathrm{R}$ without disturbing other portions of the system.
Normal logarithmic amplifiers are limited in dynamic range in the voltage input mode by their input offset voltage. The built-in temperature compensation and convenience features of the ICL8048 can be expanded to a voltage input dynamic range of close to 6 decades by using the ICL7650 to offset-null the ICL8048, as shown in Fig. 6. The same concept can also be used with such devices as the HA2500 or HA2600 families of op amps, to add very low offset voltage capability to their very high slew rates and bandwidths. Note that these circuits will also have their DC gains, CMRR, and PSRR enhanced.
Mixing the ICL7650 with circuits operating at $\pm 15 \mathrm{~V}$ supplies requires the provision of a lower voltage. Although this can be met fairly easily, a highly efficient voltage divider can be built using the ICL7660 voltage converter circuit 'backwards'. A suitable connection is shown in Fig. 7.

FIG. 2 NON INVERTING AMPLIFIER WITH (OPTIONAL) CLAMP

FIG. 4 USING 741 TO BOOST OUTPUT DRIVE CAPABILITY

FIG. 3 INVERTING AMPLIFIER WITH (OPTIONAL) CLAMP

FIG. 5 LOW OFFSET COMPARATOR

STATIC PROTECTION

All device pins are static protected by the use of input diodes. However strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics, which may result in increased input leakage currents.

LATCH-UP AVOIDANCE

Junction-isolated CMOS circuits inherently include a parasitic 4-layer ($p-n-p-n$) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a lowimpedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

OUTPUT STAGE/LOAD DRIVING

The output circuit is a high-impedance stage (approximately $18 \mathrm{k} \Omega$), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open loop gain is proportional to load resistance. For example the open loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for $D C$, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of 10 k or higher. This will result in a smooth $6 \mathrm{~dB} /$ octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 10° in the transition region where the main amplifier takes over from the null amplifier.

THERMO-ELECTRIC EFFECTS

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermo-couple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the
same temperature, thermoelectric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermo-electric coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High impedance loads are preferable, and good separation from surrounding heat-dissipating elements is advisable.

GUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage at the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.
The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

TYPICAL APPLICATIONS (Contd.)

FIG. 6 ICL8048 OFFSET NULLED BY ICL7650

FIG. 7 SPLITTING +15V WITH ICL7660. SAME FOR - 15V. $>95 \%$ EFF.

FEATURES

- Simple Conversion of +5 V Logic Supply to $\pm 5 \mathrm{~V}$ Supplies
- Simple Voltage Multiplication (Vout $=(-) \mathbf{n V i n})$
- 99.9\% Typical Open Circuir Voltage Conversion Efficiency
- 98\% Typical Power Efficiency
- Wide Operating Voltage Range 1.5 V to 10.0 V
- Easy to use - Requires only 2 External NonCritical Passive Components

APPLICATIONS

- On Board Negative Supply for up to 64 Dynamic RAMs.
- Localized μ-Processor (8080 type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

PIN CONFIGURATIONS

(outline dwg PA)

(outline dwg TO-99)

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ICL7660CTY	-20° to $+70^{\circ} \mathrm{C}$	TO-99
ICL7660CPA	-20° to $+70^{\circ} \mathrm{C}$	8 PIN MINI DIP
ICL7660MTY	-55° to $+125^{\circ} \mathrm{C}$	TO-99
ICL7660/D		DICE

GENERAL DESCRIPTION

The Intersil ICL7660 is a monolithic MAXCMOS© power supply circuit which offers unique performance advantages over previously available devices. The ICL7660 performs the complete supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V , resulting in complementary output voltages of -1.5 to -10.0 V with the addition of only 2 non-critical external capacitors needed for the charge pump and charge reservoir functions. Note that an additional diode is required for VSUPPLY $>6.5 \mathrm{~V}$.
Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, four output power MOS switches, and a unique logic element which senses the most negative voltage in the device and ensures that the output N -channel switches are not forward biased. This assures latch-up free operation.
The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.
The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (+3.5 to +10.0 volts), the LV pin is left floating to prevent device latchup.
Typical applications for the ICL7660 will be data acquisition and microprocessor based systems where there is a +5 volt supply available for the digital functions and an additional -5 volt supply is required for the analog functions. The ICL7660 is also ideally suited for providing low current, -5 V body bias supply for dynamic RAMs.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	10.5V
Oscillator Input Voltage (Note 1)	-0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}<5.5 \mathrm{~V}$
	$\left(\mathrm{V}^{+}-5.5 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}>5.5 \mathrm{~V}$
	-0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ for $\mathrm{V}^{+}<3.5 \mathrm{~V}$
LV (Note 1)	. No connection for $\mathrm{V}>3.5 \mathrm{~V}$
Output Short Duration (VSUPPLY $\leq 5.5 \mathrm{~V}$)	Continuous
Power Dissipation (Note 2)	
ICL7660CTY	500 mW
ICL7660CPA	300 mW
ICL7660MTY	. 500 mW

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\operatorname{Cosc}=0$, Test Circuit Figure 1 (unless otherwise specified)

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITIONS
		MIN.	TYP.	MAX.		
I^{+}	Supply Current		170	500	$\mu \mathrm{A}$	$\mathrm{R}_{\mathrm{L}}=\infty$
$\mathrm{V}^{+} \mathrm{H} 1$	Supply Voltage Range - Hi (Dx out of circuit)	3.0		6.5	V	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV $=$ No Connection.
		3.0		5.0	V	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, $\mathrm{LV}=\mathrm{Ground}$
$\mathrm{V}^{+} \mathrm{L} 1$	Supply Voltage Range - Lo (Dx out of circuit)	1.5		3.5	V	$\mathrm{MIN} \leq \mathrm{T}_{A} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=$ Ground
$\mathrm{V}^{+} \mathrm{H} 2$	Supply Voltage Range - Hi (Dx in circuit)	3.0		10.0	V	$\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, LV $=$ No Connection
$\mathrm{V}^{+} \mathrm{L}$ 2	Supply Voltage Range - Lo (D_{x} in circuit)	1.5		3.5	V	$\mathrm{MIN} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{MAX}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=$ Ground
Rout	Output Source Resistance		55	100	Ω	lout $=20 \mathrm{~mA}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$
				120	Ω	lout $=20 \mathrm{~mA},-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
				150	Ω	lout $=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
				300	Ω	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \text { Iout }=3 \mathrm{~mA}, \mathrm{LV}=\text { Ground, } \\ & -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$
				400	Ω	$\begin{aligned} & \mathrm{V}^{+}=2 \mathrm{~V}, \text { lout }=3 \mathrm{~mA}, \mathrm{LV}=\text { Ground, }-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \\ & +125^{\circ} \mathrm{C}, \mathrm{Dx}_{x} \text { in circuit } \end{aligned}$
fosc	Oscillator Frequency		10		kHz	
PEf	Power Efficiency	95	98		\% ,	$\mathrm{RL}_{\mathrm{L}}=5 \mathrm{k} \Omega$
Vout Ef	Voltage Conversion Efficiency	97	99.9		\%	$\mathrm{R}_{\mathrm{L}}=\infty$
Zosc	Oscillator Impedance		1.0		$\mathrm{M} \Omega$	$\mathrm{V}^{+}=2$ Volts
			100		$\mathrm{k} \Omega$	$\mathrm{V}^{+}=5$ Volts

Notes: 1. Connecting any terminal to voltages greater than V^{+}or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the ICL7660.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS

CIRCUIT DESCRIPTION

The ICL7660 contains all the necessary circuitry to complete a voltage doubler, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 3 , which shows an idealized voltage doubler. Capacitor C_{1} is charged to a voltage, V^{+}, for the half cycle when switches S_{1} and S_{3} are closed. (Note: Switches S_{2} and S_{4} are open during this half cycle.) During the second half cycle of operation, switches S_{2} and S_{4} are closed, with S_{1} and S_{3} open, thereby shifting capacitor C_{1} negatively by V^{+}volts. . Charge is then transferred from C_{1} to C_{2} such that the voltage on C_{2} is exactly V^{+}, assuming ideal switches and no load on C_{2}. The ICL7660 approaches this ideal situation more closely than existing non-mechanical circuits.
In the ICL7660, the 4 switches in Figure 3 are MOS power switches; S_{1} is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are N channel devices. The main difficulty with this approach is
that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions (VOUT $=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.
This problem is eliminated in the ICL7660 by a logic network which senses the output voltage (VOUT) together with the level translators and switches the substrates or S_{3} \& S_{4} to the correct level to maintain necessary reverse bias.
The voltage regulator portion of the ICL7660 is an integral part of the anti-latchup circuitry, however it's inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.

Figure 3: Idealized Voltage Doubler

THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage multiplier can approach 100% efficiency if certain conditions are met:

A The drive circuitry consumes minimal power
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7660 approaches these conditions for negative voltage multiplication if large values of C_{1} and C_{2} are used. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1} 2-V_{2}^{2}\right)
$$

Where V_{1} and V_{2} are the voltages on C_{1} during the pump and transfer cycles. If the impedances of C_{1} and C_{2} are relatively high at the pump frequency (refer to Fig. 3) compared to the value of R_{L}, there will be a substantial difference in the voltages V_{1} and V_{2}. Therefore it is not only desirable to make C_{2} as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C_{1} in order to achieve maximum efficiency of operation.

DO'S AND DON'TS

1 Do not exceed maximum supply voltages.
2 Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.

3 Do not short circuit the output to V^{+}supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
4 When using polarized capacitors, the + terminal of C_{14} must be connected to pin 2 of the ICL7660 and the + terminal of C_{2} must be connected to GROUND.
5 Add diode Dx as shown in Fig. 1 for hi-voltage, elevated temperature applications.

CONSIDERATIONS FOR HI VOLTAGE \& ELEVATED TEMPERATURE

The ICL7660 will operate efficiently over its specified temperature range with only 2 external passive components (storage \& pump capacitors), provided the operating supply voltage does not exceed 6.5 volts at $70^{\circ} \mathrm{C}$ and 5.0 volts at $+125^{\circ} \mathrm{C}$. Exceeding these maximums at the temperatures indicated may result in destructive latch-up of the ICL7660. (Ref: Graph "Operating Voltage Vs. Temperature")
Operation at supply voltages of up to 10.0 volts over the full temperature range without danger of latch-up can be achieved by adding a general purpose diode in series with the ICL7660 output, as shown by " $D x$ " in the circuit diagrams. The effect of this diode on overall circuit performance is the reduction of output voltage by one diode drop (approximately 0.6 volts).

ICL7660

TYPICAL APPLICATIONS

1. Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7660 for generation of negative supply voltages. Figure 4 shows typical connections to provide a negative supply where a positive supply is available. A similar scheme may be employed for supply voltages anywhere in the operating range of +1.5 V to +10.0 volts, keeping in mind that pin 6 (LV) is tied to the supply negative (GND) only for supply voltages below 3.5 volts, and that diode Dx must be included for proper operation at higher voltages and/or elevated temperatures.

The output characteristics of the circuit in Figure 4 are those of a nearly ideal voltage source in series with 70 ohms. Thus for a load current of -10 mA and a supply voltage of +5 volts, the output voltage will be -4.3 volts. The dynamic output impedance due to the capacitor impedances is $1 / \omega C$ where

$$
C=C_{1}=C_{2}
$$

giving

$$
\frac{1}{\omega \mathrm{C}}=\frac{1}{2 \pi \mathrm{fosc} \times 10^{-5}}=3 \mathrm{ohms}
$$

for $C=10 \mu \mathrm{~F}$ and fosc $=5 \mathrm{kHz}$ (1/2 of oscillator frequency)
*NOTE: 1. VOUT $=-n \mathbf{V}^{+}$FOR

Figure 4: Simple Negative Converter

2. Paralleling Devices

Any number of ICL7660 voltage convertors may be paralleled to reduce output resistance. The reservoir capacitor, C_{2}, serves all devices while each device requires
its own pump capacitor, C_{1}. The resultant output resistance would be approximately

Rout $=\frac{\text { Rout (of ICL7660) }}{\mathrm{n} \text { (number of devices) }}$

Figure 5: Paralleling Devices

3. Cascading Devices

The ICL7660 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage, however, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is
defined by:

$$
\text { VOUT }=-n\left(V_{\text {IN }}\right),
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7660 $R_{\text {out }}$ values.

Figure 6: Cascading Devices for Increased Output Voltage

4. Changing the ICL7660 Oscillator Frequency

 It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 7. In order to prevent possible device latchup, a $1 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In the situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to V^{+}supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ 'of the clock frequency. Output transitions occur on the positive-going edge of the clock.It is also possible to increase the conversion efficiency of the

Figure 7: External Clocking

ICL7660 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is achieved by connecting an additional capacitor, $\mathrm{C}_{\text {osc }}$, as shown in Figure 8. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of C_{1} and C_{2} by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and V^{+}will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of C_{1} and C_{2} (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$).

Figure 8: Lowering Oscillator Frequency

5. Positive Voltage Multiplication

The ICL7660 may be employed to achieve positive voltage multiplication using the circuit shown in Figure 9. In this application, the pump inverter switches of the ICL7660 are used to charge C_{1} to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where V^{+}is the supply voltage and V_{F} is the forward voltage drop of diode D_{1}). On the transfer cycle, the voltage on C_{1} plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode D_{2} to capacitor C_{2}. The voltage thus created on C_{2} becomes $\left(2 \mathrm{~V}^{+}\right)-\left(2 \mathrm{~V}_{\mathrm{F}}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes D_{1} and D_{2}.
The source impedance of the output (VOUT) will depend on the output current, but for $\mathrm{V}^{+}=5$ volts and an output current of 10 mA it will be approximately 60 ohms.

Figure 9: Positive Voltage Multiplier

6. Combined Negative Voltage Conversion and Positive Supply Multiplication

Figure 10 combines the functions shown in Figures 4 and 9 to provide negative voltage conversion and positive voltage multiplication simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors C_{1} and C_{3} perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C_{2} and C_{4} are pump and reservoir respectively for the multiplied positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.

Figure 10: Combined Negative Converter and Positive Multiplier

FEATURES

- Low Input Current $\leq 250 n A$
- Low Power Consumption 30 mW
- Large Input Voltage Range $\geq \pm 10 \mathrm{~V}$
- Low Offset Voltage Drift $3 \bar{\mu} \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Output Swing Compatible with Bipolar Logic

GENERAL DESCRIPTION

The Intersil 8001 integrated circuit is a monolithic voltage comparator featuring low input currents, low power consumption, and 250 ns response time. A versatile output stage enables the designer to control the output voltage swing. The use of thin film resistors ensures excellent long term stability and the device is particularly suitable for low power space and airborne applications.

SCHEMATIC DIAGRAM

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Peak Output Current	15 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
$(8001 \mathrm{C})$	
$(8001 \mathrm{M})$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec$)$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$300^{\circ} \mathrm{C}$

EQUIVALENT CIRCUIT

PIN CONFIGURATION

(outline dwg TO-100)
NOTE: Pin 5 connected to case.

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{++}=15 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right.$ unless otherwise specified)

PARAMETER	CONDITIONS	8001M			8001 C			UNITS
		MIN	T.YP	MAX	MIN	TYP	MAX	
The following specifications apply for $T_{A}=+25^{\circ} \mathrm{C}$:								,
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		0.5	3.0		1.0	5.0	mV
Input Offset Current			2	20		10	50	nA
Input Bias Current			40	100		50	250	nA
Input Resistance			10			10		$\mathrm{M} \Omega$
Power Consumption	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		30	60		30	60	mW
The following specifications apply for $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}(8001 \mathrm{M})$ $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}(8001 \mathrm{C})$,					
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			4.0			6.0	mV
Average Temperature Coefficient of Input Offset Voltage			2.0	20		3.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current			. 7	100		15	100	nA
Average Temperature Coefficient of Input Offset Current			35			35		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				250			300	nA
Input Voltage Range		± 10	± 12		± 10	± 12		V
Common Mode Rejection Ratio		70	90		70	90		dB
Supply Voltage Rejection Ratio				300			300 :	$\mu \mathrm{V} / \mathrm{V}$
Differential Input Voltage Range				± 15			± 15	V
Voltage Gain		15,000	60,000		15,000	60,000		v/v
Positive Output Level Max (Note 3)	$\mathrm{V}^{+}=+15 \mathrm{~V}$	7.0	9.0		7.0	9.0		v
Negative Output Level	At 2 mA Sink Current		200	500		200	400	mV
Response Time (Note 4)			250			250		ns

NOTE 1: Rating applies for ambient temperatures to $+70^{\circ} \mathrm{C}$.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Positive output level can be adjusted below 9 V by changing V^{+}. See circuit.
NOTE 4: The response time specified is for a 100 mV input step with 5 mV overdrive.
NOTE 5: Input bias current is independent of V^{-}.

CIRCUIT NOTES:

VOLTAGE OFFSET NULL CIRCUIT

OUTPUT LEVEL COMPATIBLE
WITH TTL, DTL, ETC.

NOTE: As with all high gain comparators, care must be taken to avoid feedback between output and input. Where possible, hysteresis should be used to provide a small deadband.

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

VOLTAGE TRANSFER
CHARACTERISTICS

INPUT BIAS CURRENT
AS A FUNCTION OF v^{++}(NOTE 5)

COMMON MODE RANGE
AS A FUNCTION OF
SUPPLY VOLTAGE

RESPONSE TIME FOR VARIOUS INPUT
OVERDRIVES

INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

POSITIVE OUTPUT SWING AS A FUNCTION OF V^{+}

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

CIRCUIT AND APPLICATION NOTES

SIMPLE VOLTAGE LEVEL DETECTOR

CONNECTION TO PROVIDE LOGICAL OR OF TWO COMPARATOR OUTPUTS

WINDOW DETECTOR

COMPARATOR WITH HYSTERESIS

USE OF EXTERNAL NAND GATES TO PROVIDE OUTPUT STORAGE

A TO D CONVERTER

GENERAL DESCRIPTION

The Intersil 8007 integrated circuit is a low input current FET input operational amplifier. The 8007A is selected for 1 pA max input current.

The devices are designed for use in very high input impedance applications. Because of their high slew rate, high common mode voltage range and absence of "latch-up", they are ideal for use as a voltage follower.

The Intersil 8007 and 8007 A are short circuit protected. They require no external components for frequency compensation because the internal $6 \mathrm{~dB} /$ roll-off insures stability in closed loop applications. A unique bootstrap circuit insures unusually good commonmode rejection for an FET input amp and prevents large input currents as seen in some amplifiers at high common mode voltage.

EQUIVALENT CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
$8007 \mathrm{M}, 8007 \mathrm{AM}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$8007 \mathrm{C}, 8007 \mathrm{AC}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 3)	Indefinite

NOTES:

1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+75^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

TRANSIENT RESPONSE TEST CIRCUIT

PIN CONFIGURATION (outline dwg TO-99)

ITOP VIEWI

ORDERING INFORMATION

Part Number	Temperature Range	dice	To-99 Can
ICL8007C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL8007C/D	ICL8007CTV
ICL8007AC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL8007AC/D ICL8007M/D ICL8007M ICL8007AM	ICL8007ACTV ICL8007MTV

[^21]NOTE: Pin 4 connected to case

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

, CHARACTERISTICS	CONDITIONS	MIN	$\begin{gathered} 3007 M \\ \text { TYP } \end{gathered}$	MAX	MIN	8007 C TYP	MAX	$\begin{gathered} 800 \\ \text { MIN } \end{gathered}$	TYP	7AC MAX	UNITS
The following specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$:											
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$.		10	20		20	50		15	30	mV
Input Offset Current			0.5			0.5			0.2		pA
Input Current (either input)			2.0	20		3.0	50		0.5	4.0	pA
Input Resistance			10^{6}			10^{6}			10^{6}		$\mathrm{M} \Omega$
Input Capacitance			2.0			2.0			2.0		pF
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50,000			20,000			20,000			V/V
Output Resistance			75			75			75		Ω
Output Short-Circuit Current			25			25			25		mA
Supply Current			3.4	5.2		3.4	6.0		3.4	6.0	mA
Power Consumption	.		102	156		102	180		102	180	mW
Slew Rate -			6.0			6.0		2.5	6.0		$\mathrm{V} / \mu_{\mathrm{s}}$
Unity Gain Bandwidth			1.0			1.0			1.0		MHz
Transient Response (Unity Gain) Risetime	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.		300				.		300		
Overshoot			10			10			10		\%

Input Voltage Range		± 10	± 12		± 10	± 12		± 10	± 12		V
Common Mode Rejection Ratio		70	90		70	90		86	95		dB
Supply Voltage Rejection Ratio			70	300		70	600		70	200	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain		25,000			15,000	.		15,000			V / V
Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		± 12	± 14		V
'	$R_{L} \geq 2 \mathrm{k} \Omega$	- ± 10	± 13		± 10	± 13		± 10	± 13		V
Input Current (either input)	$\begin{aligned} & T_{A}=+125^{\circ} \mathrm{C} \\ & T_{A}=+70^{\circ} \mathrm{C} \end{aligned}$		2.0			50			1.0 30		nA
Average Temperature Coefficient of Input Offset Voltage				75			75			50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

TYPICAL PERFORMANCE CURVES

OPEN LOOP VOLTAGE GAIN
AS A FUNCTION OF
SUPPLY VOLTAGE

QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

INPUT CURRENT AS A FUNCTION OF TEMPERATURE

INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTTAGE

INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY

OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE

QUIESCENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE

For additional information, see Application Bulletin A005.

Low Input Current Operational Amplifier

FEATURES

- Low Input Current
- No Frequency Compensation Required
- Offset Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch up.

SCHEMATIC DIAGRAM

PIN CONFIGURATIONS

то-5
Plastic DIP

(outline dwg PA)

NOTE: Pin 4 CONNECTED TO CASE

GENERAL DESCRIPTIÓN

The 8008 is a high performance monolithic operational amplifier with very low input currents. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the 8008 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The 8008 is short-circuit protected, has the same pin configuration as the popular 741 operational amplifier, and requires no external components for frequency compensation. The internal $6 \mathrm{~dB} /$ octave roll-off insures stability in closed loop applications.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$		
Internal Power Dissipation (Note 1)	500 mW		
Differential Input Voltage	$\pm 30 \mathrm{~V}$		
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$		
Voltage between Offset Null and V			
Storage Temperature Range	$\pm 0.5 \mathrm{~V}$		
Operating Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
8008 M			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8008 C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$		
Output Short-Circuit Duration (Note 3)	Indefinite		

NOTE 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+75^{\circ} \mathrm{C}$.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

ORDERING INFORMATION

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	800́8M			8008C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
The following specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$:								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5		1.0	6.0	mV
Input Offset Current			1.0	5		2.0	20	nA
Input Bias Current			2	10		5	25	nA
Input Resistance		5	25		5	25		$\mathrm{M} \Omega$
Input Capacitance			1.5			1.5		pF
Offset Voltage Adjustment Range			± 15			± 15		mV
Large-Signal Voltage Gain	$R_{L} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	20,000	200,000		20,000	200,000		V/V
Output Resistance			75			75		Ω
Output Short-Circuit Current			25			25		mA
Supply Current			1.7	2.8		1.7	2.8	mA .
Power Consumption			50	85		50	85	mW
Transient Response (unity gain)	$\mathrm{V}_{1 \mathrm{~N}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$,							
Risetime	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$		0.3			0.3		$\mu \mathrm{s}$
Overshoot			5.0			5.0		\%
Slew Rate (unity gain)	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$		0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (8008C), $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (8008M):								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.5	6		1.5	7.5	mV
Input Offset Voltage Average Temperature Coefficient	$R_{S} \leq 10 \mathrm{k} \Omega$		7			15		
Temperature Coefficient Input Offset Current	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		7	30		15	30	$n \mathrm{nA}$
Input Bias Current				50			50	nA
Input Voltage Range		± 10	± 12		± 12	± 13		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30.	150	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	15,000			15,000			V/V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$R_{L} \geq 2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V

TYPICAL PERFORMANCE CURVES

CIRCUIT NOTES:

Four Quadrant Analog Multiplier

FEATURES

- Accuracy of $\pm 0.5 \%$ (" A " version)
- Full $\pm 10 \mathrm{~V}$ I/O voltage range
- 1 MHz bandwidth
- Uses standard $\pm 15 \mathrm{~V}$ supplies
- Built in op amp provides level shifting, division and square root functions.

GENERAL DESCRIPTION

The ICL8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the ICL8013 makes it ideal for all multiplier applications in control and instrumentation systems. Applications include RMS measuring equipment, frequency doublers, balanced modulators and demodulators, function generators, and systems process controls.

BLOCK DIAGRAM (MULTIPLIER)

ORDERING INFORMATION

TYPE	TEMPERATURE RANGE	MULTIPLICATION ERROR	ORDER PART NUMBER
ICL8013AM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm .5$	ICL8013AM TZ
ICL8013BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \%$	ICL8013BM TZ
ICL8013CM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2 \%$	ICL8013CM TZ
ICL8013AC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm .5 \%$ MAX	ICL8013AC TZ
ICL8013BC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 \%$	ICL8013BC TZ
ICL8013CC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 2 \%$	ICL8013CC TZ
ICL8013C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 2 \%$ TYP	ICL8013C/D

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) 500 mW

Input Voltages (X, Y, Z, Xo, Yo, Zo)
Vsupp
Lead Temperature (soldering, 10 sec) $300^{\circ} \mathrm{C}$
Storage Temperature Range
ve $75^{\circ} \mathrm{C}$.
NOTE 1: Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperature above $75^{\circ} \mathrm{C}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPP }}= \pm 15 \mathrm{~V}$, Gain and Offset Potentiometers Externally Trimmed)

PARAMETER	CONDITIONS	ICL8013A			ICL8013B			ICL8013C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Multiplier Function			$\frac{X Y}{10}$			$\frac{X Y}{10}$			$\frac{X Y}{10}$		
Multiplication Error	$\begin{aligned} & -10<X<10 \\ & -10<Y<10 \end{aligned}$. 5			1.0		2.0*	2.0	\% Full Scale
Divider Function			$\frac{10 Z}{X}$			$\frac{10 Z}{X}$			$\frac{10 Z}{X}$		
Division Error	$\begin{aligned} & X=-10 \\ & X=-1 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.3 \\ & 1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.3 \\ & 1.5 \\ & \hline \end{aligned}$		\% Full Scale \% Full Scale
Feedthrough	$\begin{aligned} & X=0 Y=20 V_{p-p} f=50 \mathrm{~Hz} \\ & Y=0 X=20 V_{p-p} f=50 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 200^{*} \\ & 150^{*} \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & m V_{p-p} \\ & m V_{p-p} \end{aligned}$
Nonlinearity X input	$\begin{aligned} & X=20 V_{p-p} \\ & Y= \pm 10 \mathrm{Vdc} \end{aligned}$		± 0.5			± 0.5			± 0.8		\%
Y input	$\begin{aligned} & Y=20 V_{p-p} \\ & X= \pm 10 V d c \end{aligned}$		± 0.2			± 0.2			± 0.3		\%
Frequency Response Small Signal Bandwidth (-3 dB)			1.0			1.0			1.0		MHz
Full Power Bandwidth			750			750			750		kHz
Slew Rate			45			45			45		$\mathrm{V} / \mu \mathrm{s}$
1\% Amplitude Error			75			75			75		kHz
1\% Vector Error (0.5			5			5			5		kHz
Settling Time (to $\pm 2 \%$ of Final Value)	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$		1			1			1		$\mu \mathrm{S}$
Overload Recovery (to $\pm 2 \%$ of Final Value)			1			1			1		$\mu \mathrm{S}$
Output Noise	5 Hz to 10 kHz 5 Hz to 5 MHz		$\begin{gathered} 0.6 \\ 3 \\ \hline \end{gathered}$			$\begin{gathered} 0.6 \\ 3 \\ \hline \end{gathered}$			$\begin{array}{\|c} \hline 0.6 \\ 3 \\ \hline \end{array}$		mV rms mV rms
Input Resistance X Input			10			10			10		$\mathrm{M} \Omega$
Y Input			6			6			6		$\mathrm{M} \Omega$
\bar{Z} Input			36			36			36		k Ω
Input Bias Current X or Y Input			2	5			7.5			10	$\mu \mathrm{A}$
Z Input			25			25			25		$\mu \mathrm{A}$
Power Supply Variation Multiplication Error			0.2			0.2			0.2		\%/\%
Output Offset				50			75			100	mV / V
Scale Factor			0.1			0.1			0.1		\%/\%
Quiescent Current			3.5	6.0		3.5	6.0		3.5	6.0	mA

THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES

Multiplication Error	$\begin{aligned} & -10<X<10, \\ & -10<Y<10 \end{aligned}$	1.5		2		3		\% Full Scale
Average Temperature Coefficient of Accuracy		0.06		0.06		0.06		\%/ ${ }^{\circ} \mathrm{C}$
Output Offset		0.2		0.2		0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Scale Factor		0.04		0.04		0.04		\%/ ${ }^{\circ} \mathrm{C}$
Input Bias Current X or Y Input			5		$5{ }^{-}$		10	$\mu \mathrm{A}$
Z Input			25		25		35	$\mu \mathrm{A}$
Input Voltage (X, Y, or Z)			± 10		± 10		± 10	V
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 2 k \\ & C_{L}<1000 \mathrm{pF} \end{aligned}$	± 10		± 10		± 10		V

CIRCUIT DESCRIPTION

The fundamental element of the ICL8013 multiplier is the bipolar differential amplifier of Figure 1.

Figure 1: Differential Amplifier
The small signal differential voltage gain of this circuit is given by

$$
A V=\frac{V_{O U T}}{V_{I N}}=\frac{R_{L}}{r_{e}}
$$

Substituting $r_{e}=\frac{1}{g_{m}}=\frac{k T}{q I_{E}}$

$$
V_{\text {OUT }}=V_{I N} \frac{R_{L}}{r_{\mathrm{e}}}=V_{I N} \cdot \frac{\mathrm{qI}_{\mathrm{E}} R_{\mathrm{L}}}{\mathrm{kT}}
$$

The output voltage is thus proportional to the product of the input voltage V_{IN} and the emitter current IE. In the simple transconductance multiplier of Figure 2, a current source comprising Q_{3}, D_{1}, and R_{y} is used. If V_{Y} is large compared with the drop across D_{1}, then

$$
I_{D} \simeq \frac{V_{Y}}{R_{Y}}=2 I_{E} \text { and }
$$

$$
V_{\text {OUT }}=\frac{q R_{L}}{k T R_{Y}}\left(V_{X} \bullet V_{Y}\right)
$$

Figure 2: Transconductance Multiplier
There are several difficulties with this simple modulator:
1: V_{Y} must be positive and greater than V_{D}
2: Some portion of the signal at V_{X} will appear at the output unless $\mathrm{IE}=0$.
3: Vx must be a small signal for the differential pair to be linear.
4: The output voltage is not centered around ground.

The first problem relates to the method of converting the V_{Y} voltage to a current to vary the gain of the Vx differential pair. A better method, Figure 3, uses another differential pair but with considerable emitter degeneration. In this circuit the differential input voltage appears across the common emitter resistor, producing a current which adds or subtracts from the quiescent current in either collector. This type of voltage to current converter handles signals from 0 volts to ± 10 volts with excellent linearity.

Figure 3: Voltage to Current Converter

The second problem is called feedthrough; i.e. the product of zero and some finite input signal does not produce zero output voltage. The circuit whose operation is illustrated by Figures 4A, B, and C overcomes this problem and forms the heart of many multiplier circuits in use today.
This circuit is basically two matched differential pairs with cross coupled collectors. Consider the case shown in 4A of exactly equal current sources biasing the two pairs. With a small positive signal at V_{IN}, the collector current of Q_{1} and Q_{4} will increase but the collector currents of Q_{2} and Q_{3} will decrease by the same amount. Since the collectors are cross coupled the current through the load resistors remains unchanged and independent of the Vin input voltage.

Figure 4A: Input Signal with Balanced Current Sources $\Delta \mathrm{VOUT}=0 \mathrm{~V}$

Figure 4B: No Input Signal with Unbalanced Current Sources Δ VOUT $=0 \mathrm{~V}$

In Figure 4B, notice that with $\mathrm{V}_{\mathrm{IN}}=0$ any variation in the ratio of biasing current sources will produce a common mode voltage across the load resistors. The differential output voltage will remain zero. In Figure 4C we apply a differential input voltage with unbalanced current sources. If IE_{E} is twice $\mathrm{I}_{\mathrm{E} 2}$, the gain of differential pair Q_{1} and Q_{2} is twice the gain of pair Q_{3} and Q_{4}. Therefore, the change in cross coupled collector currents will be unequal and a differential output voltage will result. By replacing the separate biasing current sources with the voltage to current converter of Figure 3 we have a balanced multiplier circuit capable of four quadrant operation (Figure 5).

Figure 4C: Input Signal with Unbalanced Current Sources, Differential Output Voltage

This circuit of Fig. 5 still has the problem that the input voltage VIN must be small to keep the differential amplifier in the linear region. To be able to handle large signals, we need an amplitude compression circuit.

Figure 5: Typical Four Quadrant Multiplier-Modulator

Figure 3 showed a current source formed by relying on the matching characteristics of a diode and the emitter base junction of a transistor. Extension of this idea to a differential circuit is shown in Fig. 6A. In a differential pair, the input voltage splits the biasing current in a logarithmic ratio. (The usual assumption of linearity is useful only for small signals.) Since the input to the differential pair in Figure 6A is the

Figure 6A: Current Gain Cell

Figure 6B: Voltage Gain with Signal Compression
difference in voltage across the two diodes, which in turn is proportional to the log of the ratio of drive currents, it follows that the ratio of diode currents and the ratio of collector currents are linearly related and independent of amplitude. If we combine this circuit with the voltage to current converter of Fig. 3, we have Fig. 6B. The output of the differential amplifier is now proportional to the input voltage over a large dynamic range, thereby improving linearity while minimizing drift and noise factors.

The complete schematic is shown in Figure 7. The differential pair Q_{3} and Q_{4} form a voltage to current converter whose output is compressed in collector diodes Q_{1} and Q_{2}. These diodes drive the balanced cross-coupled differential amplifier $Q_{7} / Q_{8} Q_{14} / Q_{15}$. The gain of these amplifiers is modulated by the voltage to current converter Q_{9} and Q_{10}. Transistors Q_{5}, Q_{6}, Q_{11}, and Q_{12} are constant current sources which bias the voltage to current converter. The output amplifier comprises transistors Q_{16} through Q_{27}.

Figure 7: ICL8013 Schematic

MULTIPLICATION

In the standard multiplier connection, the Z terminal is connected to the op amp output. All of the modulator output current thus flows through the feedback resistor R27 and produces a proportional output voltage.

Figure 8A: Multiplier Block Diagram

Figure 8B: Actual Circuit Connection

MULTIPLIER Trimming Procedure

1. Set $X_{I N}=Y_{I N}=O V$ and adjust $Z_{O S}$ for zero Output.
2. Apply a $\pm 10 \mathrm{~V}$ low frequency $(\leq 100 \mathrm{~Hz})$ sweep (sine or triangle) to $\mathrm{Y}_{1 \mathrm{~N}}$ with $\mathrm{X}_{1 \mathrm{~N}}=0 \mathrm{~V}$, and adjust Xos for minimum output.
3. Apply the sweep signal of Step 2 to $X_{I N}$ with $Y_{i N}=O V$ and adjust Yos for minimum Output.
4. Readjust Zos as in Step 1, if necessary.
5. With $X_{I N}=10.0 \mathrm{~V} D C$ and the sweep signal of Step 2 applied to $Y_{i n}$, adjust the Gain potentiometer for Output = YIN. This is easily accomplished with a differential scope plug-in $(A+B)$ by inverting one signal and adjusting Gain control for (Output $-\mathrm{Y}_{\mathrm{IN}}$) $=$ Zero.

DIVISION

If the Z terminal is used as an input, and the output of the opamp connected to the Y input, the device functions as a divider. Since the input to the op-amp is at virtual ground, and requires negligible bias current, the overall feedback forces the modulator output current to equal the current produced by Z.

$$
\begin{aligned}
& \text { Therefore lo }=X \bullet Y=\frac{Z}{R}=10 Z \\
& \text { Since } Y=\text { EOUT, EOUT }=\frac{10 Z}{X}
\end{aligned}
$$

Note that when connected as a divider, the X input must be a negative voltage to maintain overall negative feedback.

Figure 9A: Division Block Diagram

Figure 9B: Actual Circuit Connection

DIVIDER Trimming Procedure

1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and 10 (Xos, Yos, Zos) for zero volts.
2. With $Z_{I N}=0 V$, trim Zos to hold the Output constant, as $X_{I N}$ is varied from -10 V through -1 V .
3. With $\mathrm{Z}_{\mathrm{IN}}=0 \mathrm{~V}$ and $\mathrm{X}_{\mathrm{IN}}=-10.0 \mathrm{~V}$ adjust Y Os for zero Output voltage.
4. With $Z_{\mathbb{N}}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust $X_{O \text { os }}$ for minimum worst-case variation of Output, as $\mathrm{XIN}_{\mathrm{IN}}$ is varied from -10V to -1V.
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With $Z_{I N}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust the gain control until the output is the closest average around +10.0 V $\left(-10 \mathrm{~V}\right.$ for $\left.\mathrm{Z}_{\mathbb{N}}=-\mathrm{X}_{\mathbb{I}}\right)$ as $\mathrm{X}_{\mathbb{N}}$ is varied from -10 V to -3 V .

SQUARING

The squaring function is achieved by simply multiplying with the two inputs tied together. The squaring circuit may also be used as the basis for a frequency doubler since $\cos ^{2} \omega=1 / 2$ $(\cos 2 \omega+1)$.

Figure 10A: Squarer Block Diagram

Figure 10B: Actual Circuit Connection

SQUARE ROOT

Tying the X and Y inputs together and using overall feedback from the Op Amp results in the square root function. The output of the modulator is again forced to equal the current produced by the Z input.

$$
\begin{aligned}
& \mathrm{IO}_{\mathrm{O}}=\mathrm{X} \bullet Y=(- \text { EOUT })^{2}=10 Z \\
& \text { EOUT }=-\sqrt{10 Z}
\end{aligned}
$$

The output is a negative voltage which maintains overall negative feedback. A diode in series with the Op Amp output prevents the latchup that would otherwise occur for negative input voltages.

Figure 11A: Square Root Block Diagram

Figure 11B: Actual Circuit Connection

SQUARE ROOT Trimming Procedure

1. Connect the ICL8013 in the Divider configuration.
2. Adjust Zos, Yos, Xos, and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3. Convert to the Square Root configuration by connecting XiN to the Output and inserting a diode between Pin 4 and the Output node.
4. With $Z_{I N}=O V$ adjust $Z_{O S}$ for zero Output voltage.

VARIABLE GAIN AMPLIFIER

Most applications for the ICL8013 are straight forward variations of the simple arithmetic functions described above. Although the circuit description frequently disguises the fact, it has aiready. been shown that the frequency doubler is nothing more than a squaring circuit. Similarly the variable gain amplifier is nothing more than a multiplier, with the input signal applied at the X input and the control voltage applied at the Y input.

Figure 12: Variable Gain Amplifier

TYPICAL APPLICATIONS

TYPICAL PERFORMANCE CURVES

NONLINEARITY AS A FUNCTION OF FREQUENCY

FEEDTHROUGH AS A FUNCTION OF FREQUENCY

DEFINITION OF TERMS

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.
Feedthrough: With either input at zero, the output of an ideal multiplier should be zero regardless of the signal applied to
the other input. The output seen in a non-ideal multiplier is known as the feedthrough.
Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

ICL 8017
High Speed
Inverting Amplifier

FEATURES

- $130 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
- Fast Settling Time
- 50 nA Input Current
- 10 MHz Bandwidth
- Simple Frequency Compensation
- Short Circuit Protection

GENERAL DESCRIPTION

The 8017 integrated circuit is a high speed inverting amplifier combining excellent input characteristics with wide bandwidth and high slew rate. Frequency compensation is achieved with the minimum number of external components. The high slew rate and fast settling time ensure exceptional performance in high speed data acquisition circuits. Full power bandwidth of 2 MHz makes the 8017 amplifier suitable for all applications where large amplitude, high frequency signals are encountered.

The 8017 is available in the military version, 8017 M , with a temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and in the commercial version, 8017 C , from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM

APPLICATIONS

- High Speed Inverting Amplifier
- D/A Converter
- A/D Converter
- Pulse Amplifier
- Active Filter
- Sample and Hold Circuit
- Peak Detector

VOLTAGE OFFSET NULL CIRCUIT

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Operating Temperature Range	
ICL8017M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICL8017C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (60 secs)	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}\right)$

PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { 8017M } \\ \text { TYP } \end{gathered}$	MAX	MIN	8017C TYP	MAX	UNITS
The following specifications apply for $\mathbf{T A}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$:								
Input Offset Voltage			2.0	5.0		2.0	7.0	mV
Input Current			50	200		50	200	nA
Input Noise Voltage (rms).	10 Hz to 1 MHz		20			20		$\mu \mathrm{V}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	1000		25	1000		V / mV
Output Resistance			75			75		Ω
Output Short-Circuit Current			25			25		mA
Supply Current	$V_{\text {OUT }}=0 V$		5.0	7.0		- 5.0	8.0	mA
Power Consumption	$V_{\text {OUT }}=0 \mathrm{~V}$		150	210		150	240	mW
Slew Rate	$\mathrm{R}_{\mathrm{BW}}=20 \mathrm{k} \Omega$		130			130		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth (Note 3)	$R_{\text {BW }}=20 \mathrm{k} \Omega$		10			10		MHz
Transient Response (Note 3)	Unity Gain, $\mathrm{R}_{\mathrm{BW}}=20 \mathrm{k} \Omega$							
, Risetime			30			30		ns
Overshoot			5			5		\%
Settling Time (0.1\%) (Note 3)			1.0			1.0		$\mu \mathrm{s}$
(.01\%) (Note 3)	Unity Gain, $\mathrm{R}_{\mathrm{BW}}=20 \mathrm{k} \Omega$		3.5			3.5		$\mu \mathrm{s}$

The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (8017C), $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (8017M):

NOTE 1: The maximum junction temperature of the 8017 M is $150^{\circ} \mathrm{C}$, while that of the 8017 C is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures the package must be derated based on à thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. Above $100^{\circ} \mathrm{C}$ it may be necessary to use a heatsink with the 8017 M to avoid exceeding the maximum chip temperature.

NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Circuit and compensation as in Figure 1.

TYPICAL PERFORMANCE CURVES*

DEFINITION OF TERMS

Input Offset Voltage: Voltage which must be applied to input terminal to obtain zero output vgltage.
Input Current: Current into input terminal when at ground potential.
Large Signal Voltage Gain: The ratio of maximum output swing with load to the required change in input drive voltage.
Slew Rate: The maximum rate of change of output voltage in response to a large amplitude input pulse.

Unity Gain Bandwidth: The frequency at which the small signal gain is 3 dB below its low frequency value.

Transient Response: The 10% to 90% closed loop stepfunction response of the amplifier under small signal conditions.

Settling Time: The elapsed time between the application of a fast input pulse and the time at which the output has settled to its final value within a specified limit of accuracy.

APPLICATIONS INFORMATION

Figure 1. Inverting Voltage Amplifier

GAIN	Rs	R_{1}	Raw	BAND. WIDTH	SLEW RATE
$1 \times$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$20 \mathrm{k} \Omega$	10 MHz	$130 \mathrm{~V} / \mathrm{\mu s}$
10x	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$	6 MHz	$100 \mathrm{~V} / \mu \mathrm{s}$
100x	$1 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	short	800 kHz	$50 \mathrm{~V} / \mathrm{\mu} \mathrm{~s}$

NOTE: If no bandwidth control resistor ($R_{B W}$) is connected between pins 3 and 4, the amplifier is unconditionally stable for normal feedback configurations. Some improvement in frequency performance can be realized by setting $R_{B W}=20 \mathrm{k} \Omega$; the amplifier will still be unconditionally stable. However, for optimum frequency response, R R_{BW} should be selected from the curve on page 3, based on the closed loop gain of the circuit. Additional control of the bandwidth/stability trade-off is possible by bypassing R_{f} with a low value capacitor. It is not necessary to alter the value of C_{1}, C_{2} or C_{3}.

Figure 2. Current Summing Amplifier

NOTE: The analog output current of the 8018 Series D/A current switches can be converted to voltage using the 8017 as shown. Input compensation of approximately $10 \mathrm{k} \Omega$ and 30 pF helps improve settling time.

Figure 3. Settling Time Measurement

NOTE: Settiing time is measured by creating a dummy summing junction and observing the error voltage waveform on a scope. The junction is clamped with high speed diodes to avoid overdriving the scope preamp.

Figure 4. Isolation of Capacitive Loads

NOTE: Excess phase shift caused by heavy capacitive loading (above 200 to $\mathbf{3 0 0} \mathrm{pF}$) can cause stability problems. By providing the amplifier with a minimum real load impedance (51Ω), these difficulties can be overcome. Note that at high output currents, maximum voltage swing will be reduced.

FEATURES

- $\Delta \mathrm{Vos}=3 \mathrm{mV}$ max (adjustable to zero).
- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Power Supply Operation.
- Power Consumption $-20 \mu \mathrm{~W}$ @ $\pm 1 \mathrm{~V}$.
- Input Bias Current - 30 nA max.
- Internal Compensation.
- Pin-For-Pin Compatible With 741.
- Short Circuit Protected.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$		
Differential Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$		
Common Mode Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$		
Output Short Circuit Duration	Indefinite		
Power Dissipation (Note 2)	300 mW		
Operating Temperature Range			
${ }^{8021 \mathrm{M}}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8021 C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Lead Temperature (Solidering, 10 sec)	$+300^{\circ} \mathrm{C}$		

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Rating applies for case temperatures to $+125^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM

VOLTAGE OFFSET NULL CIRCUIT

ORDERING INFORMATION

Operational Amplifiers

GENERAL DESCRIPTION

The Intersil 8021 integrated circuit is a low power operational amplifier specifically designed for applications requiring very low standby power consumption over a wide range of supply voltages. The electrical characteristics of the 8021 can be tailored to a particular application by adjusting an external resistor, $\mathrm{R}_{\mathrm{SET}}$, which controls the quiescent current. This is advantageous because l_{Q} can be made independent of the supply voltages: it can be set to an extremely low value where power is critical, or to a larger value for high slew rate or wideband applications.

Other features of the 8021. include low input current that remains constant with temperature, low noise, high input impedance, internal compensation and pin-for-pin compatibility with the 741.

The Intersil 8022 (8023) consists of two (three) low power operational amplifiers in a single 14-pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, $\mathrm{R}_{\text {SET }}$, which controls the quiescent current of that amplifier.

PIN CONFIGURATIONS

(outline dwg TO-99)
NOTE: Pin 4 connected to case.

(outline dwg JD, PD)

(outline dwg JE, PE)

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}\right.$, unless otherwise specified.)

The following specifications apply for $0 \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70 \mathrm{C}$ (8021C) $-55 \mathrm{C}<+125 \mathrm{C}$ (8021M)

TYPICAL PERFORMANCE CURVES* $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mu \mathrm{~A}\right.$, unless otherwise specified.)

INPUT BIAS CURRENT
VS QUIESCENT CURRENT

SLEW RATE VS
QUIESCENT CURRENTं

OPEN-LOOP FREQUENCY RESPONSE

 VS SUPPLY VOLTAGE

INPUT BIAS CURRENT VS AMBIENT TEMPERATURE

FREQUENCY RESPONSE VS QUIESCENT CURRENT

EQUIVALENT INPUT NOISE VOLTAGE VS FREQUENCY

DIFFERENTIAL INPUT IMPEDANCE VS QUIESCENT CURRENT

PHASE MARGIN VS QUIESCENT CURRENT

5

 CUR'RENT VS FREQUENCY

ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator

FEATURES

- Low frequency drift with temperature - $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Simultaneous sine, square, and triangle wave outputs
- Low distortion - 1\% (sine wave output)
- High linearity - 0.1\% (triangle wave output)
- Wide operating frequency range -0.001 Hz to 0.3 MHz
- Variable duty cycle - 2% to 98%
- High level outputs - TTL to 28V
- Easy to use - just a handful of external components required

GENERAL DESCRIPTION

The ICL8038 Waveform Generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from .001 Hz to more than 300 kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage. The ICL8038 is fabricated with advanced monolithic technology, using Schottky-barrier diodes and thin film resistors, and the output is stable over a wide range of temperature and supply variations. These devices may be interfaced with phase locked loop circuitry to reduce temperature drift to less than $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

BLOCK DIAGRAM

PIN CONFIGURATION (outline dwg JD)

ORDERING INFORMATION

TYPE	TEMPERATURE RANGE	STABILITY	PACKAGE	ORDER PART NUMBER
8038 CC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	CERDIP	ICL8038 CC JD
8038 BC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max	CERDIP	ICL8038 BC JD
8038 AC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max	CERDIP	ICL8038 AC JD
8038 BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \mathrm{max}$	CERDIP	ICL8038 BM JD
8038 AM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$	CERDIP	ICL8038 AM JD

MAXIMUM RATINGS

Supply Voltage ．．$\pm 18 \mathrm{~V}$ or 36 V Total	
Power Dissipation ${ }^{(1)}$ ．	750 mW
Input Voltage（any pin）	Not To Exceed Supply Voltages
Input Current（Pins 4 and 5）	25 mA
Output Sink Current（Pins 3 and 9）	25 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range：	
8038AM，8038BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8038AC，8038BC，8038CC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec.$)$	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

NOTE 1：Derate ceramic package at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$ ．

ELECTRICAL CHARACTERISTICS

（VSUPP $= \pm 10 \mathrm{~V}$ or $+20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ ，Test Circuit Unless Otherwise Specified）

SYMBOL	GENERAL CHARACTERISTICS	8038CC			8038BC／BM			8038AC／AM			UNITS
		㫛悬	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
VSUPP	Supply Voltage Operating Range										
V^{+}	Single Supply	＋10		＋30	＋10		30	＋10		30	V
$\mathrm{V}^{+}, \mathrm{V}^{-}$	Dual Supplies	± 5		± 15	± 5		± 15	± 5		± 15	V
ISUPP	Supply Current（VSUPP $= \pm 10 \mathrm{~V})^{(2)}$										
	8038AM，8038BM					12	15		12	15	mA
	8038AC，8038BC，8038CC		12	20		12	20		12	20	mA
FREQUENCY CHARACTERISTICS（all waveforms）											
$f_{\text {max }}$	Maximum Frequency of Oscillation	100，000			100，000			100，000			Hz
$\mathrm{f}_{\text {sweep }}$	Sweep Frequency of FM		10			10			10		kHz
	Sweep FM Range ${ }^{(3)}$		40：1			40：1			40：1		
	FM Linearity 10：1 Ratio		0.5			0.2			0.2		\％
$\Delta \mathrm{f} / \Delta \mathrm{T}$	Frequency Drift With Temperature ${ }^{(5)}$		50			50	100		20	50	ppm $/{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{f} / \Delta \mathrm{V}$	Frequency Drift With Supply Voltage （Over Supply Voltage Range）		0.05	．		0.05			0.05		\％／VSUPP
	Recommended Programming Resistors（ R_{A} and R_{B} ）	1000		1M	1000		1M	1000		1M	Ω
OUTPUT CHARACTERISTICS											
IoLk	Square－Wave Leakage Current（ $\mathrm{V}_{9}=30 \mathrm{~V}$ ）			1			1			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage（ $\mathrm{I}_{\text {SINK }}=2 \mathrm{~mA}$ ）		0.2	0.5		0.2	0.4		0.2	0.4	V
tr_{r}	Rise Time（ $\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$ ）		100			100			100		ns
$\mathrm{tf}_{\text {f }}$	Fall Time（ $\mathrm{RL}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$ ）		40			40			40		ns
	Duty Cycle Adjust	2		98	2		98	2		98	\％
	Triangle／Sawtooth／Ramp Amplitude（ $\mathrm{R}_{\text {TRI }}=100 \mathrm{k} \Omega$ ）	0.30	0.33		0.30	0.33		0.30	0.33		XVSUPP
	Linearity		0.1		．	0.05			0.05		\％
Zout	Output Impedance（ IOut $=5 \mathrm{~mA}$ ）		200			200			200		Ω
	Sine－Wave Amplitude（RSINE $=100 \mathrm{k} \Omega$ ）	0.2	0.22		0.2	0.22		0.2	0.22		xVSUPR
	THD（ $\left.\mathrm{RS}^{\text {＝}} 1 \mathrm{M}\right)^{(4)}$		0.8	5		0.7	3		0.7	1.5	\％
	THD Adjusted（Use Fig．8b）		0.5			0.5			0.5		\％

NOTE 2：R_{A} and R_{B} currents not included．
NOTE 3：$V_{\text {SUPP }}=20 \mathrm{~V}$ ；R_{A} and $R_{B}=10 \mathrm{k} \Omega, f \cong 9 \mathrm{kHz}$ ；Can be extended to 1000．1．See Figures 13 and 14.
NOTE 4： $82 \mathrm{k} \Omega$ connected between pins 11 and 12，Triangle Duty Cycle set at 50% ．（Use RA and RB．）
NOTE 5：Over operating temperature range，Fig．2，pins 7 and 8 connected，VSupp $= \pm 10 \mathrm{~V}$ ．See Fig． 6 c for T．C．vs Vsupp．

TEST CONDITIONS

PARAMETER	$\mathbf{R}_{\mathbf{A}}$	$\mathbf{R}_{\mathbf{B}}$	\mathbf{R}_{L}	\mathbf{C}_{1}	$\mathbf{S W}_{1}$	MEASURE
Supply Current	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Current into Pin 6
Maximum Frequency of Oscillation	$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	100 pf	Closed	Frequency at Pin 9
Sweep FM Range(1)	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Open	Frequency at Pin 9
Frequency Drift with Temperature	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 9
Frequency Drift with Supply Voltage(2)	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 9
Output Amplitude: Sine	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 2
Triangle	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 3
Leakage Current (off)(3)	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Current into Pin 9
Saturation Voltage (on)(3)	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Output (low) at Pin 9
Rise and Fall Times	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Duty Cycle Adjust: MAX	MIN	$50 \mathrm{k} \Omega$	$\sim 1.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed
	Waveform at Pin 9					
Triangle Waveform Linearity	$25 \mathrm{k} \Omega$	$50 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Total Harmonic Distortion	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 3

NOTE 1: The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 ($f_{h i}$) and then connecting pin 8 to pin 6 (f_{10}). Otherwise apply Sweep Voltage at pin $8\left(2 / 3 V_{\text {SUPP }}+2 \mathrm{~V}\right) \leq \mathrm{V}_{\text {SWEEP }} \leq \mathrm{V}_{\text {SUPP }}$ where $\mathrm{V}_{\text {SUPP }}$ is the total supply voltage. In Fig. 2, pin 8 should vary between 5.3 V and 10 V with respect to ground.
NOTE 2: $10 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$, or $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\text {SUPP }} \leq \pm 15 \mathrm{~V}$.
NOTE 3: Oscillation can be halted by forcing pin 10 to +5 volts or -5 volts.

DEFINITION OF TERMS:

Supply Voltage (VSUPP). The total supply voltage from V^{+}to V^{-}. Supply Current. The supply current required from the power supply to operate the device, excluding load currents and the currents through R_{A} and R_{B}.
Frequency Range. The frequency range at the square wave output through which circuit operation is guaranteed.
Sweep FM Range. The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to pin 8. For correct operation, the sweep voltage should be within the range

$$
\left(2 / 3 V_{\text {SUPP }}+2 V^{\prime}\right)<V_{\text {SWEEP }}<V_{\text {SUPP }}
$$

FM Linearity. The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve.
Output Amplitude. The peak-to-peak signal amplitude appearing at the outputs.
Saturation Voltage. The output voltage at the collector of Q23 when this transistor is turned on. It is measured for a sink current of 2 mA .
Rise and Fall Times. The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value.
Triangle Waveform Linearity. The percentage deviation from the best-fit straight line on the rising and falling triangle waveform.
Total Harmonic Distortion. The total harmonic distortion at the sinewave output.

TEST CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

THEORY OF OPERATION (see block diagram, first page)

An external capacitor C is charged and discharged by two current sources. Current source \#2 is switched on and off by a flip-flop, while current source \#1 is on continuously. Assuming that the flip-flop is in a state such that current source \#2 is off, and the capacitor is charged with a current I, the voltage across the capacitor rises linearily with time. When this voltage reaches the level of comparator \#1 (set at $2 / 3$ of the supply voltage), the flip-flop is triggered, changes states, and releases current source \#2. This current source normally carries a current 21 , thus the capacitor is discharged with a net-current I and the voltage across it drops linearly with time. When it has reached the level of comparator \#2 (set at $1 / 3$ of the supply voltage), the flip-flop is triggered into its original state and the cycle starts again.

Four waveforms are readily obtainable from this basic generator circuit. With the current sources set at I and 21 respectively, the charge and discharge times are equal. Thus a triangle waveform is created across the capacitor and the flip-flop produces a square-wave. Both waveforms are fed to buffer stages and are available at pins 3 and 9 .
The levels of the current sources can, however, be selected over a wide range with two external resistors. Therefore, with the two currents set at values different from I and 2 I , an asymmetrical sawtooth appears at terminal 3 and pulses with a duty cycle from less than 1% to greater than 99% are available at terminal 9.
The sine-wave is created by feeding the triangle-wave into a non-linear network (sine-converter). This network provides a decreasing shunt-impedance as the potential of the triangle moves toward the two extremes.

Performance of Sine-Wave Output

WAVEFORM TIMING

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 1. Best results are obtained by keeping the timing resistors R_{A} and R_{B} separate (a). R_{A} controls the rising portion of the triangle and sine-wave and the 1 state of the square-wave.
The magnitude of the triangle-waveform is set at $1 / 3 \mathrm{~V}$ SUPP; therefore the rising portion of the triangle is,

$$
t_{1}=\frac{C \times V}{1}=\frac{C \times 1 / 3 \times V^{+} \times R_{A}}{1 / 5 \times V^{+}}=\frac{5}{3} R_{A} \times C
$$

The falling portion of the triangle and sine-wave and the 0 state of the square-wave is:

$$
t_{2}=\frac{C \times V}{1}=\frac{C \times 1 / 3 \mathrm{~V}^{+}}{\frac{2}{5} \times \frac{V_{S U P P}}{R_{B}}-\frac{1}{5} \times \frac{V_{S U P P}}{R_{A}}}=\frac{5}{3} \times \frac{R_{A} R_{B} C}{2 R_{A}-R_{B}}
$$

Thus a 50% duty cycle is achieved when $R_{A}=R_{B}$.
If the duty-cycle is to be varied over a small range about 50% only, the connection shown in Figure 1b is slightly more convenient. If no adjustment of the duty cycle is desired, terminals 4 and 5 can be shorted together, as shown in Figure 1c. This connection; however, causes an inherently larger variation of the duty-cycle, frequency, etc.

With two separate timing resistors, the frequency is given by

$$
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{5}{3} R_{A} C\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}
$$

or, if $R_{A}=R_{B}=R$

$$
f=\frac{0.3}{R C}(\text { for Figure } 1 a)
$$

If a single timing resistor is used (Figure 1c only), the frequency is

$$
f=\frac{0.15}{R C}
$$

Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the fact that both currents and thresholds are direct, linear functions of the supply voltage and thus their effects cancel.
To minimize sine-wave distortion the $82 \mathrm{k} \Omega$ resistor between pins 11 and 12 is best made variable. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 2; this configuration allows a typical reduction of sine-wave distortion close to 0.5%.

Figure 1: Possible Connections for the External Timing Resistors.

Figure 2: Connection to Achieve Minimum Sine-Wave Distortion.

SELECTING RA, RB AND C

For any given output frequency, there is a wide range of RC combinations that will work, however certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than $1 \mu \mathrm{~A}$ are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents (I $>5 \mathrm{~mA}$), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will, therefore, be obtained with charging currents of $10 \mu \mathrm{~A}$ to 1 mA . If pins 7 and 8 are shorted together, the magnitude of the charging current due to R_{A} can be calculated from:

$$
I=\frac{R_{1} \times V_{\text {SUPP }}}{\left(R_{1}+R_{2}\right)} \times \frac{1}{R_{A}}=\frac{V_{\text {SUPP }}}{5 R_{A}}
$$

A similar calculation holds, for R_{B}.
The capacitor value should be chosen at the upper end of its possible range.

WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES

The waveform generator can be operated either from a single power-supply (10 to 30 Volts) or a dual power-supply (± 5 to ± 15 Volts). With a single power-supply the average levels of the triangle and sine-wave are at exactly one-half of the. supply voltage, while the square-wave alternates between V^{+} and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.
The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30V). In this way, the square-wave output can be made TTL compatible (load resistor connected to +5 Volts) while the waveform generator itself is powered from a much higher voltage.

FREQUENCY MODULATION AND SWEEPING

The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from V^{+}). By altering this voltage, frequency modulation is performed.
For small deviations (e.g. $\pm 10 \%$) the modulating signal can be applied directly to pin 8, merely providing DC decoupling with a capacitor as shown in Figure 3a.'An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance from about $8 \mathrm{k} \Omega$ (pins 7 and 8 connected together), to about ($\mathrm{R}+8 \mathrm{k} \Omega$).
For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply. voltage and pin 8 (Figure 3bf. In this way the entire bias for the current sources is created by the modulating signal, and a very large (e.g. 1000:1) sweep range is created ($f=0$ at $V_{\text {sweep }}=0$). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept down from V^{+}by ($1 / 3$ VSUPP -2 V).
(a)

(b)

Figure 3: Connections for Frequency Modulation (a) and Sweep (b)

Figure 5：Strobe－Tone Burst Generator．
With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the 8038 oscillation．Figure 5 shows a FET switch，diode ANDed with an input strobe signal to allow the output to always start on the same slope．

Figure 4：Sine Wave Output Buffer Amplifiers．
The sine wave output has a relatively high output impedance （ $1 \mathrm{k} \Omega$ Typ）．The circuit of Figure 4 provides buffering，gain and amplitude adjustment．A simple op amp follower could also be used． ．

Figure 6：Variable Audio Oscillator， 20 Hz to 20 kHz ．
To obtain a 1000：1 Sweep Range on the 8038 the voltage across external resistors R_{A} and R_{B} must decrease to nearly zero．This requires that the highest voltage on control Pin 8 exceed the voltage at the top of R_{A} and R_{B} by a few hundred millivolts．
The Circuit of Figure 6 achieves this by using a diode to lower the effective supply voltage on the 8038 ．The large resistor on pin 5 helps reduce duty cycle variations with sweep．

Figure 7：Linear Voltage Controlled Oscillator
The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 7.

USE IN PHASE-LOCKED LOOPS

Its high frequency stability makes the ICL8038 an ideal building block for a phase-locked loop. In this application the remaining functional blocks, the phase-detector and the amplifier, can be formed by a number of available IC's (e.g. MC 4344, NE 562, HA 2800, HA 2820).
In order to match these building blocks to each other, two steps must be taken. First, two different supply voltages are used and the square wave output is returned to the supply of the phase detector. This assures that the VCO input voltage will not exceed the capabilities of the phase detector. If a smaller VCO signal is required, a simple resistive voltage divider is connected between pin 9 of the waveform generator and the VCO input of the phase-detector.

Second, the DC output level of the amplifier must be madecompatible to the DC level'required at the FM input of the waveform generator ($\mathrm{pin} 8,0.8 \times \mathrm{V}^{+}$). The simplest solution here is to provide a voltage divider to $\mathrm{V}^{+}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$ as shown) if the amplifierhas a lower output level, or to ground if its level is higher. The divider can be made part of the low-pass filter.
This application not only provides for a free-running frequency with very low temperature drift, but it also has the unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input.
For further information, see Intersil Application Bulletin A013, "Everything You Always Wanted to Know About The 8038."

Figure 8: Waveform Generator Used as Stable VCO in a Phase-Locked Loop

ICL 8043
Dual Fet Input OpAmp

FEATURES

- Very low input current - 1pA
- High slew rate - $6 \mathrm{~V} / \mu \mathrm{s}$
- Internal frequency compensation
- Low power dissipation - 135mW typ
- Monolithic construction

GENERAL DESCRIPTION

The ICL8043 contains two FET input op amps, each similar in performance to the ICL8007. The inputs and outputs are fully short circuit protected, and no latch-up problems exist. Offset nulling is accomplished by using a single pot (for each amplifier) connected to the positive supply voltage. The devices have excellent common mode rejection.

EQUIVALENT CIRCUIT (One Side)

OFFSET VOLTAGE NULL CIRCUIT

ORDERING INFORMATION

TYPE	ORDER PART NUMBER	PACKAGE	TEMPERATURE RANGE
8043 M	ICL8043MJE	Ceramic 16 Pin DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
8043 C	ICL8043CPE	Plastic 16 Pin DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
8043 C	ICL8043CJE	Ceramic 16 Pin DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	8 V
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note. 2)	$\pm 15 \mathrm{~V}$
Voltage between Offset Null and V^{+}	$\pm 0.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
8043M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8043C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec .)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration	Indefinite

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTES:

1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS (Vsupp $= \pm 15 \mathrm{~V}$ unless otherwise specified)

TYPICAL PERFORMANCE CURVES

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY

TRANSIENT RESPONSE

OPEN LOOP VOLTAGE GAIN
AS A FUNCTION OF SUPPLY VOLTAGE

TOTAL QUIESCENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

INPUT CURRENT AS A FUNCTION OF TEMPERATURE

INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY

VOLTAGE FOLLOWER LARGESIGNAL PULSE RESPONSE

OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE

QUIESCENT SUPPLY CURRENT AS A FUNCTION OF SUPPLY

VOLTAGE

WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE

CHANNEL SEPARATION

Channel separation or crosstalk is measured using the circuit of Figure 1. One amplifier is driven so that its output swings $\pm 10 \mathrm{~V}$; the signal amplitude seen in the other amplifier (referred to the input) is then measured. Typical performance is shown in Figure 2.

$$
\text { Channel Separation }=20 \log \left(\frac{V_{\operatorname{OUT}}(A)}{V_{I N}(B)}\right)
$$

Figure 1

CHANNEL SEPARATION

Figure 2

APPLICATIONS

Applications for any dual amplifier fall into two categories. There are those which use the two-in-one package concept simply to save circuit-board space and cost, but more interesting are those circuits where the two sides of the dual are used to complement one another in a subsystem application. The circuits which follow have been selected on this basis.

AUTOMATIC OFFSETं SUPPRESSION CIRCUIT

The circuit shown in Figure 3 uses one amplifier $\left(A_{1}\right)$ as a normal gain stage, while the other (A_{2}) forms part of an offset voltage zeroing loop. There are two modes of operation which occur sequentially; first, an offset null correction mode during which the offset voltage of A_{1} is nulled out.

Following this nulling operation, A_{1} is used as a normal amplifier while the voltage necessary to zero its offset voltage is stored on the integrator comprised of A_{2} and C_{1}. The advantage of this circuit is that it allows chopper amplifier performance to be achieved at one-tenth the cost. The only limitation is that during the offset nulling mode, A_{1} is disconnected from the input. However, in most data acquisition systems, many inputs are scanned sequentially. It is fairly simple to synchronize the offset nulling operation so that it does not occur when that particular amplifier is being "looked at". For the component values shown in Figure 3 , and assuming a total leakage of 50 pA at the inverting input of A_{2}, the offset voltage referred to the input of A_{1} will drift away from zero at only $40 \mu \mathrm{~V} / \mathrm{sec}$. Thus, the offset nulling information stored on C_{1} can be "refreshed" relatively infrequently. The measured offset voltage of A_{1} during the amplification mode was $11 \mu \mathrm{~V}$; offset voltage drift with temperature was less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

Figure 3A.

STAIRCASE GENERATOR

The circuit shown in Figure 4 is a high input impedance version of the so-called "diode pump" or staircase generator. Note that charge transfer takes place at the negative-going edge of the input-signal.

The most common application for staircase generators is in low cost counters. By resetting the capacitor when the output reaches a predetermined level, the circuit may be made to count reliably up to a maximum of about 10. A straightforward circuit using a LM311 for the level detector, and a CMOS analog gate to discharge the capacitor, is shown in Figure 5. An important property of this type of
counter is the ease with which the count can be changed; it is only necessary to change the voltage at which the comparator trips. A low cost A-D converter can also be designed using the same principle since the digital count between reset periods is directly proportional to the analog voltage used as a reference for the comparator.
A considerable amount of hysteresis is used in the comparator shown in Figure 5. This ensures that the capacitor is completely discharged during the reset period. In a more sophisticated circuit, a dual comparator "window detector" could be used, the lower trip point set close to ground to assure complete discharge. The upper trip point could then be adjusted independently to determine the pulse count.

Figure 4

Figure 5

SAMPLE \& HOLD CIRCUIT

Two important properties of the 8043 are used to advantage in this circuit. The low input bias currents give rise to slow output decay rates ("droop") in the hold mode, while the high slew rate ($6 \mathrm{~V} / \mu \mathrm{S}$) improves the. tracking speed and the response time of the circuit. See Figure 6.
The ability of the circuit to track fast moving inputs is shown in Figure 7A. The upper waveform is the input ($10 \mathrm{~V} / \mathrm{div}$), the lower waveform the output ($5 \mathrm{~V} / \mathrm{div}$). The logic input is high.

Actual sample and hold waveforms are shown in Figure 7B. The center waveform is the analog input, a ramp moving at about $67 \mathrm{~V} / \mathrm{ms}$, the lower waveform is the logic input to the sample \& hold; a logic " 1 " initiates the sample mode. The upper waveform is the output, displaced by about 1 scope division (2V) from the input to avoid superimposing traces. The hold mode, during which the output remains constant, is clearly visible. At the beginning of a sample period, the output takes about $8 \mu \mathrm{sec}$ to catch up with the input, after which it tracks until the next hold period.

Figure 6

TOP: INPUT (10V/DIV)
BOTTOM: OUTPUT (5V/DIV)
HORIZONTAL: $10 \mu \mathrm{~S} / \mathrm{DIV}$

TOP: 2V/DIV
CENTER: 2V/DIV
BOTTOM: 10V/DIV
HORIZONTAL: $10 \mu \mathrm{~s} /$ DIV

INSTRUMENTATION AMPLIFIER

A dual FET input operational amplifier is an attractive component around which to build an instrumentation amplifier because of the high input resistance. The circuit shown in Figure 8 uses the popular triple op-amp approach. The output amplifier is a High Speed 741 (741 HS, slew rate guaranteed $\geq 0.7 \mathrm{~V} / \mu \mathrm{s}$) so as to utilize the high slew rate of the 8043 to the maximum extent. Input resistance of the circuit (either input, regardless of gain configuration) is in excess of 1012 ohms.
For the component values shown, the overall amplifier gain is 200 (front end gain $=\underline{2 R_{1}+R_{2}}$, back end gain, $=R_{6} / R_{4}$). R_{2}

Common mode rejection is largely determined by the matching between R_{4} and R_{5}, and R_{6} and R_{7}. In applications where offset nulling is required, a single potentiometer can be connected as shown in Figure 9.

Another popular circuit is given in Figure 10. In this case the gain is $1+R_{1} / R_{2}$, and the CMRR determined by the match between R_{1} and R_{4}, R_{2} and R_{3}.

For more information on FET input operational amplifiers, see Intersil Application Bulletin A005 "The 8007: A High Performance FET-input Operational Amplifier."

Figure 8

Figure 9

Figure 10

CHIP TOPOGRAPHY

ICL8048, ICL8049 Monolithic Log Amplifier
Monolithic Antilog Amplifier

FEATURES

- 1/2\% Full Scale Accuracy
- Temperature Compensated $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Scale Factor 1V/Decade, Adjustable
- 120 dB Dynamic Current Range (8048)
- 60dB Dynamic Voltage Range (8048 \& 8049)
- Dual FET-Input Op-Amps

GENERAL DESCRIPTION

The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature compensated and is nominally designed to provide 1 volt of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable.
The 8049 is the antilogarithmic counterpart of the 8048; it nominally generates one decade of output voltage for each 1 rolt change at the input.

8048 SCHEMATIC DIAGRAM

8049 SCHEMATIC DIAGRAM

MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Iin (Input Current)	2 mA
Iref (Reference Current)	2 mA
Voltage between Offset Null and V^{+}	$\pm 0.5 \mathrm{~V}$
Power Dissipation	750 mW

ELECTRICAL CHARACTERISTIC (Note 1)

PARAMETER	CONDITION	8048BC			8048CC			UNITS
		MIN.	TYP.	MAX	MIN.	TYP.	MAX	
Dynamic Range								
$\mathrm{l}_{\text {in }}(1 \mathrm{nA}-1 \mathrm{~mA})$		120			120			dB
$\mathrm{V}_{\text {in }}(10 \mathrm{mV}-10 \mathrm{~V})$	$\mathrm{R}_{\text {IN }}=10 \mathrm{k} \Omega$	60			60			dB
Error, \% of Full Scale	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}^{\prime} \mathrm{N}=1 \mathrm{nA}$ to 1 mA		. 20	0.5		. 25	1.0	\%
Error, \% of Full Scale	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & I_{\mathrm{N}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$. 60	1.25		. 80	2.5	\%
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1 / \mathrm{N}=1 \mathrm{nA}$ to 1 mA		12	30		14	60	mV
Error, Absolute Value	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & I_{\mathrm{IN}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$		36	75		50	150	mV
Temperature Coefficient of VOUT	$1 \mathrm{~N}=1 \mathrm{nA}$ to 1 mA		0.8			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Output		2.5			2.5		mV / V
Offset Voltage ($\mathrm{A}_{1} \& \mathrm{~A}_{2}$)	Before Nulling		15	25		15	50	mV
Wideband Noise	At Output, for $1 / \mathbb{N}=100 \mu \mathrm{~A}$		250			250		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.	± 12	± 14	,	± 12	± 14		V
	$R_{L}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		v
Power Consumption			150	200.		150	200	mW
Supply Current			5	6.7		5	6.7	mA

NOTE 1: Unless otherwise noted, specifications apply for $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$, scale factor adjusted for $1 \mathrm{~V} /$ decade.

MAXIMUM RATINGS

ELECTRICAL CHARACTERISTIC (Note 1)

PARAMETER	CONDITION	MIN.	$\begin{gathered} \text { 8049BC } \\ \text { TYP. } \end{gathered}$	MAX.	MIN.	$\begin{aligned} & \text { 8049CC } \\ & \text { TYP. } \end{aligned}$	MAX.	UNITS
Dynamic Range (VOUT)	$V_{\text {OUT }}=10 \mathrm{mV}$ to 10 V	60			60			dB
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 3 \mathrm{~V}$		3	10		5	25	mV
Error, Absolute Value	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & 0 V \leq V_{1 N} \leq 3 V \end{aligned}$		20	75		30	150	mV
Temperature Coefficient, Referred to $\mathrm{V}_{\text {IN }}$	$V_{\text {IN }}=3 \mathrm{~V}$		0.38			0.55		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Input, for $V_{I N}=0 V$		2.0			2.0		$\mu \mathrm{V} / \mathrm{V}$
Offset Voltage ($\left.\mathrm{A}_{1} \& \mathrm{~A}_{2}\right)$	Before Nulling		15	25		15	50	mV
Wideband Noise	Referred to Input, for		26			26		$\mu \mathrm{V}$ (RMS)
	$V_{\text {IN }}=0 \mathrm{~V}$		1					
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$R_{L}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Power Consumption	R .		150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

NOTE 1: Unless otherwise noted, specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{RFF}}=1 \mathrm{~mA}$, scale factor adjusted for 1 decade (out) per volt (in).

TRANSFER FUNCTION ($V_{\text {OUT }}$ AS A FUNCTION OF $V_{\text {IN }}$)

SMALL SIGNAL BANDWIDTH
AS A FUNCTION OF INPUT VOLTAGE

MAXIMUM ERROR VOLTAGE REFERRED TO THE INPUT AS A FUNCTION OF VIN

SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE

THEORY OF OPERATION

The 8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor:

$$
\begin{equation*}
I C=I S\left[e^{q V B E / k T}-i\right] \tag{1}
\end{equation*}
$$

For base-emitter voltages greater than 100 mV , Eq. (1) becomes

$$
\begin{equation*}
I_{C}=I_{S} e^{q V_{B E} / k T} \tag{2}
\end{equation*}
$$

From Eq. (2), it can be'shown that for two identical transistors operating at different collector currents, the $V_{B E}$ difference ($\triangle \mathrm{V}_{\mathrm{BE}}$) is given by:

$$
\begin{equation*}
\Delta V_{B E}=-2.303 \times \frac{k T}{q} \log 10\left[I_{C 1} / I_{C 2}\right] \tag{3}
\end{equation*}
$$

Referring to Fig. 1, it is clear that the potential at the collector of O_{2} is equal to the $\Delta V_{B E}$ between O_{1} and O_{2}. The output voltage is $\Delta V_{B E}$ multiplied by the gain of A_{2} :

$$
\begin{equation*}
V_{\text {OUT }}=-2.303\left(\frac{R_{1}+R_{2}}{R_{2}}\right)\left(\frac{k T}{q}\right) \log { }_{10}\left[I_{I N} / I_{\text {REF }}\right] \tag{4}
\end{equation*}
$$

The expression $2.303 \times \frac{\mathrm{kT}}{\mathrm{q}}$ has a numerical value of 59 mV at $25^{\circ} \mathrm{C}$; thus in order to generate 1 volt/decade at the output, the ratio $\left(R_{1}+R_{2}\right) / R_{2}$ is chosen to be 16.9. For this scale factor to hold constant as a function of temperature, the $\left(R_{1}+R_{2}\right) / R_{2}$ term must have a $1 / T$ characteristic to compensate for kT / q.
In the 8048 this is achieved by making R_{1} a thin film resistor, deposited on the monolithic chip. It has a nominal
value of $15.9 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, and its temperature coefficient is carefully designed to provide the necessary compensation. Resistor R_{2} is external and should be a low T.C. type; it should have a nominal value of $1 \mathrm{k} \Omega$ to provide 1 volt/ decade, and must have an adjustment range of $\pm 20 \%$ to allow for production variations in the absolute value of $\boldsymbol{R}_{\mathbf{1}}$.

OFFSET AND SCALE FACTOR ADJUSTMENT

A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves Q_{1} of collector current and open the feedback loop around A_{1}. Instead, it is necessary to zero the offset voltage of A_{1} and A_{2} separately, and then to adjust the scale factor. Referring to Fig. 1, this is done as follows:

1) Temporarily connect a $10 \mathrm{k} \Omega$ resistor (R_{0}) between pins 2 and 7. With no input voltage, adjust R_{4} until the output of A_{1} (pin 7) is zero. Remove R_{0}.
Note that for a current input, this adjustment is not necessary since the offset voltage of A_{1} does not cause any error for current-source inputs.
2) Set $I_{I N}=I_{\text {REF }}=1 \mathrm{~mA}$. Adjust R_{5} such that the output of A_{2} (pin 10) is zero.
3). Set $I_{N}=1 \mu \mathrm{~A}$, $\operatorname{IREF}^{2}=1 \mathrm{~mA}$. Adjust R_{2} for VOUT $=3$ volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor).
Step \#3 determines the scale factor. Setting $I_{\text {IN }}=1 \mu \mathrm{~A}$ optimizes the scale factor adjustment over a fairly wide dynamic range, from 1 mA to 1 nA . Clearly, if the 8048 is to be used for inputs which only span the range $100 \mu \mathrm{~A}$ to 1 mA , it would be better to set $I_{I N}=100 \mu \mathrm{~A}$ in Step \#3. Similarly, adjustment for other scale factors would require different I_{IN} and $\mathrm{V}_{\mathrm{OUT}}$ values.

FIGURE 1. 8048 OFFSET AND SCALE FACTOR ADJUSTMENT

THEORY OF OPERATION

The 8049 relies on the same logarithmic properties of the transistor as the 8048. The input voltage forces a specific $\Delta V_{B E}$ between Q_{1} and Q_{2} (Fig. 2). This $V_{B E}$ difference is converted into a difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on Page 3 and is as follows:

$$
\begin{equation*}
{ }^{\mathrm{I} \mathrm{C}_{1}} / \mathrm{IC}_{2}=\exp \left[\mathrm{q} \Delta \mathrm{~V}_{\mathrm{BE}} / \mathrm{kT}\right] \tag{5}
\end{equation*}
$$

When numerical values for q / kT are put into this equation, it is found that a $\triangle V_{B E}$ of 59 mV (at $25^{\circ} \mathrm{C}$) is required to change the collector current ratio by a factor of ten. But for ease of application, it is desirable that a 1 volt change at the input generate a tenfold change at the output. The required input attenuation is achieved by the network comprising R_{1} and R_{2}. In order that scale factors other than one decade per volt may be selected, R_{2} is external to the chip. It should have a value of $1 \mathrm{k} \Omega$, adjustable $\pm 20 \%$, for one decade per volt. R_{1} is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5, as explained on Page 3.
The overall transfer function is as follows:

$$
\begin{equation*}
\text { IOUT } / I_{\text {REF }}=\exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right] \tag{6}
\end{equation*}
$$

Substituting V̆OUT $=$ IOUT \times ROUT gives:

$$
\begin{equation*}
V_{O U T}=R_{\text {OUT }} I_{R E F} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right] \tag{7}
\end{equation*}
$$

For voltage references equation 7 becomes

$$
\begin{equation*}
V_{\text {OUT }}=V_{\text {REF }} \times \frac{R_{O U T}}{R_{R E F}} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right.} \times \frac{q V_{I N}}{k T}\right] \tag{8}
\end{equation*}
$$

OFFSET AND SCALE FACTOR ADJUSTMENT

As with the log amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of A_{2}. This is accomplished by reverse biasing the base-emitter of O_{2}. $\mathrm{A}_{\mathbf{2}}$ then operates as a unity gain buffer with a grounded input. The second step forces $\mathrm{V}_{\mathrm{IN}}=0$; the output is adjusted for VOUT $=10 \mathrm{~V}$. This step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Fig. 2, the exact procedure for 1 decade/volt is as follows:

1) Connect the input (pin $\# 16$) to +15 V . This reverse biases the base-emitter of O_{2}. Adjust R_{7} for $V_{\text {OUT }}=0 \mathrm{~V}$. Disconnect the input from +15 V .
2) Connect the input to Ground. Adjust R_{4} for $\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$. Disconnect the input from Ground.
3) Connect the input to a precise 2 V supply and adjust R_{2} for $V_{\text {OUT }}=100 \mathrm{mV}$.
The procedure outlined above optimizes the performance over a 3 decade range at the output (i. e., VOUT from 10 mV to 10 V). For a more limited range of output voltages, for example 1 V to 10 V , it would be better to use a precise 1 volt supply and adjust for $\mathrm{V}_{\mathrm{OUT}}=1 \mathrm{~V}$. For other scale factors and/or starting points, different values for R_{2} and RREF will be needed, but the same basic procedure applies.

8049

APPLICATIONS INFORMATION

Scale Factor Adjustment

The scale factor adjustment procedures outlined on Page 3 (8048) and Page 5 (8049) are primarily directed towards setting up 1 volt ($\Delta \mathrm{V}_{\mathrm{OUT}}$) per decade ($\Delta \mathrm{I}_{\mathrm{IN}}$ or $\Delta \mathrm{V}_{\mathrm{IN}}$) for the log amp, or one decade ($\Delta \mathrm{V}_{\text {OUT }}$) per volt ($\Delta \mathrm{V}_{\text {IN }}$) for the antilog amp.
This corresponds to $K=1$ in the respective transfer functions:

$$
\begin{equation*}
\text { Log Amp: VOUT }=-K \log 10\left[1 / \operatorname{IN} / I_{\text {REF }}\right] \tag{9}
\end{equation*}
$$

Antilog Amp: VOUT $=$ ROUT IREF $10^{-}-\mathrm{V}_{\text {IN }} / \mathrm{K}$
By adjusting R_{2} (Fig. 1 and Fig. 2) the scale factor " K " in equation 9 and 10 can be varied. The effect of changing K is shown graphically in Fig. 3 for the log amp, and Fig. 4 for the antilog amp. The nominal value of R_{2} required to give a specific value of K can be determined from equation 11. It should be remembered that R_{1} has a $\pm 20 \%$ tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of R_{2} by $\pm 20 \%$.

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{941}{(\mathrm{~K}-.059)} \Omega \tag{11}
\end{equation*}
$$

FIGURE 4

Frequency Compensation

Although the op-amps in both the 8048 and the 8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the 8048, 150 pF should be connected between Pins 2 and 7 (Fig. 1). In the $8049,200 \mathrm{pF}$ between Pins 3 and 7 is recommended (Fig. 2).

Error Analysis

Performing a meaningful error analysis of a circuit containing log and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/ antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given on Pages 2 and 4.

The various error terms in the log amplifier, the 8048, are referred to the output (RTO) of the device. The error terms in the antilog amplifier, the 8049, are referred to the input (RTI) of the device. The errors are expressed in this way because in the majority of systems a number of log amps interface with an antilog amp, as shown in Fig. 5.

FIGURE 5

It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the squares of the errors of each contributing block.

$$
\text { Total Error }=\sqrt{x^{2}+y^{2}+z^{2}} \text { at }(A)
$$

If required, this error can be referred to the system output 'through the voltage gain of the antilog circuit, using the voltage gain plot on Page 4.
The numerical values of x, y, and z in the above equation are obtained from the maximum error voltage plots given on Pages 2 and 4. For example; with the 8048 BC , the maximum error at the output is 30 mV at $25^{\circ} \mathrm{C}$. This means that the measured output will be within 30 mV of the theoretical transfer function, provided the unit has been adjusted per the procedures on Page 3. Fig. 6 illustrates this point.

To determine the maximum error over the operating temperature range, the 0 to $70^{\circ} \mathrm{C}$ absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the $25^{\circ} \mathrm{C}$ value and the $70^{\circ} \mathrm{C}$ value.

For the antilog amplifier, the only difference is that the error refers to the input, i. e., the horizontal axis. It will be noticed that the maximum error voltage of the 8049, over the temperature range, is strongly dependent on the input voltage. This is because the output amplifier, A_{2}, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At $V_{I N}=3 \mathrm{~V}$, for example, errors at the output are multiplied by $1 / .023$ (= 43.5) when referred to the input.
It is important to note that both the 8048 and the' 8049 require positive values of $\mathrm{I}_{\text {REF, }}$, and the input (8048) or output (8049) currents (or voltages) respectively must also be positive. Application of negative $\mathrm{I}_{\mathbb{N}}$ to the 8048
or negative $I_{\text {REF }}$ to either circuit will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.

SETTING UP THE REFERENCE CURRENT

In both the 8048 and the 8049 the input current reference pin (IREF) is not a true virtual ground. For the 8048 , a fraction of the output voltage is seen on Pin 16 (Fig. 1). This does not constitute an appreciable error provided VREF is much greater than this voltage. A 10 V or 15 V reference satisfies this condition. For the 8049, a fraction of the input voltage appears on Pin 3 (Fig. 2), placing a similar restraint on the value of $V_{R E F}$.
Alternatively, IREF can be provided from a true current source. One method of implementing such a current source is shown in Fig. 7.

LOG OF RATIO CIRCUIT, DIVISION

The 8048 may be used to generate the log of a ratio by modulating the $I_{\text {REF }}$ input. The transfer function remains the same, as defined by equation 9 :

$$
\begin{equation*}
V_{O U T}=-K \log _{10}\left[I I N / I_{\text {REF }}\right] \tag{9}
\end{equation*}
$$

Clearly it is possible to perform division using just one 8048, followed by an 8049. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp.
To avoid the problems caused by the I REF input not being a true virtual ground (discussed in the previous section), the circuit of Fig. 7 is again recommended if the IREF input is to be modulated.

DEFINITION OF TERMS

In the definitions which follow, it will be noted that the various error terms are referred to the output of the log

DYNAMIC RANGE The dynamic range of the 8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the 8049 the dynamic range refers to the range of output voltages over which the device is guaranteed to operate.

ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined on Pages 3 (8048) or 5 (8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the 8048, it is a measure of the deviation from the theoretical output voltage for a given input current or voltage. For the 8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage.
The absolute error specification is guaranteed over the dynamic range.
$E R R O R, \%$ OF FULL SCALE The error as a percentage of full scale can be obtained from the following relationship:

Error, \% of Full Scale $=\frac{100 \times \text { Error, absolute value }}{\text { Full Scale Output Voltage }}$
amp, and to the input of the antilog amp. The reason for this is explained on Page 6.
temperature coefficient of Vout or Vin For the 8048 the temperature coefficient refers to the drift with temperature of VOUT for a constant input current.

For the 8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT.

POWER SUPPLY REJECTION RATIO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the 8048, VIN for the 8049) to the change in the supply voltage, assuming that the log axis is held constant.

WIDEBAND NOISE For the 8048, this is the noise occurring at the output under the specified conditions. In the case of the 8049, the noise is referred to the input.

SCALE FACTOR For the log amp, the scale factor (K) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10.

ORDERING INFORMATION

TYPE	PACKAGE	MAX. ABSOLUTE ERROR $\left(25^{\circ} \mathrm{C}\right)$	TEMPERATURE RANGE	ORDER PART NUMBER
8048 BC	16 Pin Ceramic DIP	30 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8048 BC DE
8048 BC	16 Pin Plastic DIP	30 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8048 BC PE
8048 CC	16 Pin Ceramic DIP	60 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8048 CC DE
8048 CC	16 Pin Plastic DIP	60 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8048 CC PE
8049 BC	16 Pin Ceramic DIP	10 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8049 BC DE
8049 BC	16 Pin Plastic DIP	10 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8049 BC PE
8049 CC	16 Pin Ceramic DIP	25 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8049 CC DE
8049 CC	16 Pin Plastic DIP	25 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8049 CC PE

Power Transistor Driver-Amplifier

FEATURES:

- Converts $\pm 12 \mathrm{~V}$ Outputs from Op Amps and other linear functions to $\pm 30 \mathrm{~V}$ levels
- When used in conjunction with general-purpose op amps and external complementary power transistors, system can deliver > 50 Watts to external loads
- Has built-in Safe Area Protection and short-circuit protection
- Produces 25mA quiescent current in power amp configuration while delivering ± 2 Amps output current
- Has built in $\pm 13 \mathrm{~V}$ Regulators to power op amps or ' other external functions
$500 \mathrm{k} \Omega$ input impedance with $\mathrm{R}_{\mathrm{BIAS}}=1 \mathrm{M} \Omega$

GENERAL DESCRIPTION

The ICL8063 is a unique monolithic power transistor driver and amplifier that allows construction of minimum chip power amplifier systems, complete with built in safe operating area circuitry, short circuit protection and voltage regulators. It is primarily intended for complementary symmetrical outputs.

Designed to operate with all varieties of operational amplifiers and other functions, two external power transistors of any construction technique, and 8 to 10 passive components, the ICL8063 is ideal for use in such applications as linear and rotary actuator drivers, stepper motor drivers, servo motor drivers, power supplies, power DACs and electronically controlled orifices.

The ICL8063 takes the output levels (typically $\pm 11 \mathrm{~V}$) from an op amp and boosts them to $\pm 30 \mathrm{~V}$ to drive power transistors, (e.g. 2N3055 (NPN) and 2N3789 (PNP)). The outputs from the ICL8063 supply up to 100 mA to the base leads of the external power transistors.

This amplifier-driver contains internal positive and negative regulators, to drive an op amp or numerous other functions; thus, only $\pm 30 \mathrm{~V}$ supplies are needed for a complete power amp.

The ICL8063 provides built-in power supplies and will operate from inputs generated by most of the op amps in use today-regardless of technology-as well as many other linear functions, such as timers, comparators and waveform generators. And it will drive almost all power transistors with breakdown voltages up to 70 volts.

PIN CONFIGURATION

ORDERING INFORMATION

ICL8063MJE	- CERDIP, $-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$
ICL8063CJE	- CERDIP, $0^{\circ} \mathrm{C}$ TO $+70^{\circ} \mathrm{C}$
ICL8063CPE	- PLASTIC DIP, $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$

SCHEMATIC DIAGRAM

INTIER SIL
ABSOLUTE MAXIMUM RATINGS @ $T_{A}=25^{\circ} \mathrm{C}$

Note 1: For supply voltages less than $\pm 30 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C} ; \mathrm{V}_{\text {supp }}= \pm 30 \mathrm{~V}$)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN/MAX LIMITS						UNITS
			ICL8063M			ICL8063C			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
Vos	Max. Offset Voltàge	See Figure 1	150	50	50	150	75	75	mV
IOH	Min. Positive Drive Current	See Figure 2	50	50	50	40	40	40	mA
100	Max. Positive Output Quiescent Current	See Figure 3	500	250	250	600	300	300	$\mu \mathrm{A}$
IOL	Min. Negative Drive Current	See Figure 2	25	25	25	20	20	20	mA
loL	Max. Negative Output Quiescent Current	See Figure 4	500	250	250	600	300	300	$\mu \mathrm{A}$
V ¢REG	Regulator Output Voltages Range	See Figure 5	$\begin{aligned} & \pm 13.7 \\ & \pm 1.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 13.7 \\ \pm 1.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	V
ZIN	A.C. Input Impedance	See Figure 6	400	400	400	400	400	400	k Ω
VSUPP	Power Supply Range				± 5 to	$\pm 35 \mathrm{~V}$			V
la	Power Supply Quiescent Currents		10	6	6	12	7	7	mA
Av	Range of Voltage Gain	See Figure 7 $V_{I N}=8 V p-p$	6 ± 2	V/v					
Vout(min)	Minimum Output Swing	See Figure 7; Increase Vin until Vout flattens	± 27	V					
lin	Input Bias Current	See Figure 8	100	100	100	100	100	100	$\mu \mathrm{A}$
Ireg	Regulator Output Current	(See Note 2)	10	10	7	10	10	7	mA

Note 2: Care should be taken to ensure that maximum power dissipation is not exceeded.

Figure 1: Offset Voltage Measurement

FOR Iout: Vin IS POSITIVE: INCREASE VIN UNTIL Iout LIMITS FOR Iout: VIN IS NEGATIVE: INCREASE VIN UNTIL Iout LIMITS

Figure 2: Output Current Measurement

Figure 3: Positive Output Quiescent Current

Figure 4: Negative Output Quiescent Current

Figure 7: Gain and Output Voltage Swing Measurement

Figure 8: Input Bias Current Measurement

APPLICATION

One problem faced almost every day by circuit designers is how to interface low voltage, low current output world of standard linear and digital devices to that of power transistors and darlingtons-higher by several orders of magnitude.

For example, a low level op amp has a typical voltage range of ± 6 to $\pm 12 \mathrm{~V}$, and output current usually on the order of about 5 milliamperes. A power transistor with a ± 35 volt súpply, a collector current of 5 amperes, and a beta, or gain of 100 needs at least 50 milliamperes of drive.

In the past, connecting two transistors with widely dissimilar requirements meant that a rather ornate discrete circuit had to be built to convert the weak output signals from the first into levels large enough to drive the second. However, in addition to converting voltage and current, it was also necessary to include a number of protection circuits to guard against damage from shorts, for example, and all this design work was both tedious and expensive.

The ICL8063 provides a solution to these problems. It's a monolithic power transistor driver and power transistor amplifier circuit on the same chip, has all the necessary safe operating area circuitry and short circuit protection, and has ón-chip $\pm 13 \mathrm{~V}$ voltage regulators to eliminate the need for extra external power supplies.

1. Using the ICL8063 to make a complete Power Amplifier.

As Figure 9 shows, using the ICL8063 allows the circuit designer to build a power amplifier block capable of delivering ± 2 amperes at ± 25 volts (50 watts) to any load, with only three additional discrete devices and 8 passive components. Moreover, the circuit draws only about ± 30 milliamperes of quiescent current from either of the $\pm 30 \mathrm{~V}$ power supplies. A similar design using discrete components would require anywhere from 50 to 100 components.
Slew rate is about the same as that of a 741 op amp, except that the output current can slew up to 2 amps at roughly $1 \mathrm{~V} / \mu$ s (that's a 10 ohm load to ground and $\pm 20 \mathrm{~V}$ output across this resistance). Input current, voltage offset, CMRR and PSRR are also the same. Use of 1,000 picofarad

ICL8063

compensation capacitors (three in this configuration) allows good stability down to unity gain non-inverting (the worst case). This circuit will drive a $1000 \mathrm{pF} \mathrm{CL}_{\mathrm{L}}$ to Gnd, or in other words, the circuit can drive 30 feet of RG-58 coaxial cable for line driver applications with no problems.
As Figure 10 indicates; setting up a current limiting (safe area) protection circuit is straightforward. The 0.4 ohm, 5 watt resistors set the maximum current one can get out of the output. The equation this SOA circuit follows is:
for Vout positive,

$$
\begin{aligned}
& \begin{array}{l}
\text { positive, } \\
V_{\text {be }} \\
\text { L }
\end{array} \frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {OUT }}+I_{L} R_{3}-0.7 \mathrm{~V}\right) \\
& \\
& \approx I L R_{3}-\frac{R_{2}}{R_{1}+R_{2}}\left(V_{\text {OUT }}\right)
\end{aligned}
$$

for Vout negative,

$$
V_{\text {be }}=I_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}+R_{4}}\left(V_{\text {out }}+I_{2} R_{3}+0.7\right)
$$

$$
\approx L_{L} R_{3}-\frac{R_{2}}{R_{1}+R_{2}+R_{4}}(\text { VoUT })
$$

Figure 9: Standard Circuit Diagram

Figure 10: Current Limiting (Safe Area) Protection Circuit (one side shown)

Solving these equations we get the following:

Vout	I	IL @ $25^{\circ} \mathrm{C}$	IL @ $125^{\circ} \mathbf{C}$
24 V	1 mA	3 amps	2.4 amps
20 V	$830 \mu \mathrm{~A}$	2.8 amps	
16 V	$670 \mu \mathrm{~A}$	2.6 amps	
12 V	$500 \mu \mathrm{~A}$	2.4 amps	1.8 amps
8 V	$333 \mu \mathrm{~A}$	2.1 amps	
4 V	$167 \mu \mathrm{~A}$	1.9 amps	
0 V	$0 \mu \mathrm{~A}$	1.7 amps	1.1 amps

As these equations indicate, maximum power delivered to a load is obtained when Vout $\geq 24 \mathrm{~V}$.
Often design requirements necessitate an unsymmetrical output current capability. In that case, instead of the 0.4 ohm resistors protecting the npn and pnp output stages, as shown in Figure 9, simply substitute any other value. For example, if up to 3 amps are required when V out $\geq+24 \mathrm{~V}$ and only 1 amp out when Vout $\geq-24 \mathrm{~V}$, use a 0.4 ohm resistor between pin 8 and pin 9 on the ICL8063 and a 1 ohm, 2 watt resistor between pin 7 and pin 8 . Maximum output current versus Vout for varying values of protection resistors are as follows:

VOUT	$0.4 \Omega @ 25^{\circ} \mathbf{C}$	$0.68 \Omega @ 25^{\circ} \mathrm{C}$	$\mathbf{1 \Omega}$ @ $25^{\circ} \mathrm{C}$
24 V	3 amps	1.7 amps	1.2 amps
12 V	2.4 amps	1.4 amps	0.9 amps
0 V	1.7 amps	1.0 amps	0.7 amps

The biasing resistors located between pin 13 and pin 14 and between pin 2 and pin 4 are typically 1 M -ohm for $V_{\text {SUPP }}=$ $\pm 30 \mathrm{~V}$, which guarantees adequate performance in such applications as DC motor drivers, power DACs, programmable power supplies and line drivers (with ± 30 volt supplies): The table that follows shows the proper value for RBIAS for optimum output current capability with supply voltages between $\pm 5 \mathrm{~V}$ and $\pm 30 \mathrm{~V}$.

$\pm \mathrm{V}_{\mathrm{CC}}$	$\mathbf{R}_{\mathrm{BIAS}}$
30 V	$1 \mathrm{M} \Omega$
25 V	$680 \mathrm{k} \Omega$
20 V	$500 \mathrm{k} \Omega$
15 V	$300 \mathrm{k} \Omega$
10 V	$150 \mathrm{k} \Omega$
5 V	$62 \mathrm{k} \Omega$

If 30 V and 1 meg ohms are used, performance curves appear as shown in Figure 11.

Figure 11: Typical Performance Curve of Max. Output Current Vs. Vsupp For Fixed RBIAS $=1 \mathrm{M} \Omega$

When buying external power transistors, careful attention should be paid to beta values. For 2N3055 and 2N3789 transistors used in this circuit, beta should be no more than 150 max at $I_{C}=20 \mathrm{~mA}$ and $V_{C E}=30 \mathrm{~V}$. This beta value sets the quiescent current at less than 30 mA when not delivering power to a load.
The design in Figure 9 will tolerate a short to ground indefinitely, provided adequate heat sinking is used.

However if Vout is shunted to $\pm 30 \mathrm{~V}$ the output transistors (2N3055 and 2N3789) will be destroyed, but since the safe operating area for these devices is 4 amps at 30 volts, the problem does not occur for VSUPP $= \pm 15 \mathrm{~V}$.
A typical bode plot of the power amplifier system is shown in Figure 12. Referring to Figure 6, the schematic for this bode plot is shown below:

Figure 12: Bode Plot of Open Loop Gain of Above Schematic

Figure 13: Typical Performance of Rout vs. Frequency of Power Amplifier System

2. Designing A Simple Function Generator

Using a variation of the fundamental power amplifier building block described in the previous section, the ICL8063 can be implemented in the design of a simple, low cost function generator (Figure 14). It will supply sine waves, triangular waves and square waves from 2 hertz to 20 kilohertz. This complete test instrument can be plugged into a standard 110VAC line for power. Vout will be up to $\pm 25 \mathrm{~V}$ (50 V p-p) across loads as small as 10 ohms (about 2.5 amps maximum output current).

Capacitor working voltages should be greater than 50V DC and all resistors should be $1 / 2 \mathrm{~W}$, unless otherwise indicated. The interconnecting leads from the 741 pins 2 and 3 to their respective resistors should be kept short, less than 2 inches if possible; longer leads may result in oscillation.
Full output swing is possible to about 5 KHz ; after that the output begins to taper off due to the slew rate of the 741, until at 20 KHz the output. swing will be about $20 \mathrm{~V}_{\mathrm{pp}}(\pm 10 \mathrm{~V}$). This problem can be remedied by simply using an op amp with a higher slew rate, such as the LF156.

Figure 14: Power Function Generator

3. Building a Constant Current Motor Drive Circuit

The constant current motor drive configuration shown in Figure 15 is an extremely simple circuit to construct using the ICL8063. This minimum device circuit can be used to drive DC motors where there is some likelihood of stalling or lock up; if the motor locks, the current drive remains constant and the system does not destroy itself. Using this approach two 6 V batteries are sufficient for decent performance. A 10 volt input will produce one amp of output current to drive the motor, and if the motor is stalled, lout remains at 1 amp .

For example, suppose it's necessary to drive a 24 V DC motor with 1 amp of drive current. First make VSUPP at least 6 volts more than the motor being driven (in this case 30 volts). Next select RBIAS according to VsUpP from the data sheet, which indicates $R_{B I A S}=1 M \Omega$. Then choose R_{1}, R_{2}, and R_{a} for optimum sensitivity. That means making $R_{a}=1 \Omega$ to minimize the voltage drop across R_{a} (the drop will be $1 \mathrm{amp} \times 1$ ohm or 1 volt). If $1 \mathrm{amp} /$ volt sensitivity is desirable let $\mathrm{R}_{2}=\mathrm{R}_{1}=10 \mathrm{k} \Omega$ to minimize feedback current error. Then $\mathrm{a} \pm 1 \mathrm{~V}$ input voltage will produce a $\pm 1 \mathrm{amp}$ current through the motor.

Capacitors should be at least 50 volts working voltage and all resistors $1 / 2 \mathrm{~W}$, except for those valued at 0.4 ohms, and R_{a}. Power across $R_{a}=1 \times V=1 \mathrm{amp} \times 1$ volt $=1$ watt, so at least a 2 watt value should be used.. Use large heat sinks for the 2N3055 and 2N3791 power transistors. A Delta NC-641 or the equivalent is appropriate. Use a thermal compound when mounting the transistor to the heat sink. (See Intersil ICH8510 data sheet).

Figure 15: Constant Current Motor Drive

4. Building A Low Cost 8 ohm per channel Hi-fi Amplifier.

For about $\$ 20$ per channel, it's possible to build a high fidelity amplifier using the ICL8063 to drive 8 ohm speakers. A channel is defined here as all amplification between turntable or tape output and power out. (Figure 16)
The input 741 stage is a preamplifier with R.I.A.A. equalization for records. Following the first 741 stage is a $10 \mathrm{k} \Omega$ control pot, whose wiper arm feeds into the power amplifier stage consisting of a second 741, the ICL8063 and
the power transistors. To achieve good listening results, selection of proper resistance values in the power amplifier stage is important. Best listening is to be found at a gain value of $6[(5 \mathrm{k} \Omega+1 \mathrm{k} \Omega / 1 \mathrm{k} \Omega=6)]$. 3 is a practical minimum, since the first stage 741 preamp puts out only ± 10 volt maximum signals, and if maximum power is necessary this value must be multiplied by 3 to get ± 30 volt levels at the output of the power amp stage.
Each channel delivers about 56 volts p-p across an 8 ohm speaker and this converts to 50 watts RMS power. This is derived as follows:
Power $=\frac{\mathrm{V}_{\mathrm{rms}^{2}}}{80 \mathrm{hms}}, \mathrm{V}_{\mathrm{rms}}=\frac{56 \mathrm{~V} \text { p-p }}{2.82}=20 \mathrm{~V}, 20 \mathrm{~V} 2=400 \mathrm{~V} 2$
\therefore Power $=\frac{4002}{8 \text { ohms }}=50$ watts RMS Power.

Distortion will bè $<0.1 \%$ up to about 100 Hz , and then it increases as the frequency increases, reaching about 1% at 20kHz.

The ganged switch at the input is for either disc playing or FM, either from an FM tuner or a tape amplifier. Assuming DC coupling on the outputs, there is no need for a DC reference to ground (resistor) for FM position. To clear the signal in the FM position, place a $51 \mathrm{k} \Omega$ resistor to ground as shown in Figure 16 (from FM input position to ground).

Figure 17: Typical Performance Curve of $\frac{\text { EOUT }}{\text { VIN }}$ vs. Frequency For Typical Circuit Shown

Figure 18: Typical Performance Curve of Input Impedance Versus Frequency for Typical Circuit Shown

Note: Intersil offers a hybrid power amplifier similar to that shown in fig. 9. See ICH8510/8520/8530 data sheet for details.

FEATURES

- Temperature Coefficient guaranteed to $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
- Low Bias Current . . . 50 $\mu \mathrm{A}$ min
- Low Dynamic Impedance
- Low Reverse Voltage
- Low Cost

GENERAL DESCRIPTION

The ICL8069 is a 1.2 V temperature compensated voltage reference. It uses the band-gap principle to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. Applications include analog-to-digital converters, digital-toanalog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

TYPICAL CONNECTION DIAGRAMS

(a) Simple Reference (1.2 volts or less)

(b) Buffered 10 V Reference using a single supply.

(c) Double regulated 100 mV reference for ICL7107 one-chip DPM circuit.

ORDERING INFORMATION

MAX. TEMPERATURE COEFFICIENT OF V REF	TEMP RANGE	TO-92
ORDER PART \#		
$.005 \% /{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL8069CCA
$.005 \% /{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL8069DCA
$.01 \% /{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$.01 \% /{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

$\begin{array}{l}\text { MAX. TEMPERATURE } \\ \text { COEFFICIENT OF V }\end{array}$		TO-52
TEMP RANGE		

NOTE: ICL8069DC and ICL8069DM are also available as dice. Order ICL8069DC/D and ICL8069DM/D

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse breakdown Voltage	$\mathrm{IR}=500 \mu \mathrm{~A}$	1.20	1.23	1.25	V
Reverse breakdown Voltage change	$50 \mu \mathrm{~A} \leq \mathrm{IR} \leq 5 \mathrm{~mA}$		15	20	mV
Reverse dynamic Impedance	$\begin{aligned} & I_{R}=50 \mu \mathrm{~A} \\ & I_{R}=500 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\Omega{ }^{-}$
Forward Voltage Drop	$\mathrm{IF}=500 \mu \mathrm{~A}$. 7	1	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{IR}_{\mathrm{R}}=500 \mu \mathrm{~A} \end{aligned}$		${ }^{5}$		$\mu \mathrm{V}$
Breakdown voltage Temperature coefficient: ICL8069A ICL8069B ICL8069C ICL8069D	$\left\{\begin{array}{l} I_{\mathrm{R}}=500 \mu \mathrm{~A} \\ \mathrm{~T}_{\mathrm{A}}=\text { operating } \\ \text { temperature range } \\ \text { (Note 3) } \end{array}\right.$			$\begin{aligned} & .001 \\ & .0025 \\ & .005 \\ & \hline \end{aligned}$	\%/ ${ }^{\circ} \mathrm{C}$
Reverse,Current Range		. 050		5	mA

TYPICAL PERFORMANCE CHARACTERISTICS

VOLTAGE CHANGE AS A FUNCTION OF REVERSE CURRENT

REVERSE VOLTAGE AS A FUNCTION OF CURRENT

REVERSE VOLTAGE AS A FUNCTION OF TEMPERATURE

Notes:

1) The diode should not be operated with shunt capacitances between 200 pF and $0.22 \mu \mathrm{~F}$, as it may oscillate at some currents. If circuit strays in excess of 200 pF are anticipated, a $4.7 \mu \mathrm{~F}$ shunt capacitor will ensure stability under all operating conditions.
2) In normal use, the reverse voltage cannot exceed the reference, voltage. However when plugging units into a powered-up test fixture, an instantaneous voltage equal to the compliance of the test circuit will be seen. This should not exceed 20V.
3) For the military part, measurements are made at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$. The unit is then classified as a function of the worst case T . C . from $25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$, or $25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Programmable Voltage Reference

FEATURES

- High accuracy voltage sensing and generation: internal reference 1.15 volts typical
- Low sensitivity to supply voltage and temperature variations
- Wide supply voltage range: Typ. 1.8 to $\mathbf{3 0}$ volts
- Essentially constant supply current over full supply voltage range
- Easy to set hysteresis voltage range
- Defined output current limit - ICL8211

High output current capability - ICL8212

GENERAL DESCRIPTION

The Intersil ICL8211/12 are micropower bipolar monolithic integrated circuits intended primarily for precise voltage detection and generation. These circuits consist of an accurate voltage reference, a comparator and a pair of output buffer/drivers.
Specifically, the ICL8211 provides a 7 mA current limited output sink when the voltage applied to the 'THRESHOLD' terminal is less than 1.15 volts (the internal reference). The ICL8212 requires a voltage in excess of 1.15 volts to switch its output on (no current limit). Both devices have a low current output (HYSTERESIS) which is switched on for input voltages in excess of 1.15 V . The HYSTERESIS output may be used to provide positive and noise free output switching using a simple feedback network.
Applications include:

1. Low voltage sensor/indicator
2. High voltage sensor/indicator
3. Non volatile out-of-voltage range sensor/indicator
4. Programmable voltage reference or zener diode
5. Series or shunt power supply regulator
6. Fixed value constant current source

INTIERSUL

ABSOLUTE MAXIMUM RATINGS (Note 1)

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$ to $\mathrm{ICL} 8211 \mathrm{MTY} / 12 \mathrm{MTY}$ products. Derate linearly at $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
NOTE 2: Derate linearly above $50^{\circ} \mathrm{C}$ by $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ICL8211C/12C products. The threshold input voltage may exceed +7 volts for short periods of time. However for continuous operation this voltage must be maintained at a value less than 7 volts.

TYPICAL OPERATING CHARACTERISTICS $\left(\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	CL8211			ICL8212			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Supply Current	1^{+}	$\begin{aligned} & 2.0<\mathrm{V}^{+}<30 \\ & V_{\mathrm{T}}=1.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{T}}=0.9 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 10 \\ 50 \\ \hline \end{array}$	$\begin{gathered} 22 \\ 140 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 250 \end{gathered}$	$\begin{aligned} & 50 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 110 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Threshold Trip Voltage	$V_{\text {TH }}$	$\begin{array}{ll} \text { lout }=4 \mathrm{~mA} & \mathrm{~V}^{+}=5 \mathrm{~V} \\ \text { VOUT }=2 \mathrm{~V} & \mathrm{~V}^{+}=2 \mathrm{~V} \\ & \mathrm{~V}^{+}=30 \mathrm{~V} \end{array}$	10.98 0.98 1.00	$\begin{array}{\|c\|} \hline 1.15 \\ 1.145 \\ 1.165 \end{array}$	$\begin{aligned} & 1.19 \\ & 1.19 \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.05 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.15 \\ 1.145 \\ 1.165 \\ \hline \end{gathered}$	$\begin{aligned} & 1.19 \\ & 1.19 \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Threshold Voltage Disparity Between Output \& Hysteresis Output	$V_{\text {THP }}$	$\begin{aligned} & \text { lout }=4 \mathrm{~mA} \quad \text { VOUT }=2 \mathrm{~V} \\ & \text { IHYST }=7 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{HYST}}=3 \mathrm{~V} \end{aligned}$		-8.0		\cdots	-0.5		mV
Guaranteed Operating Supply Voltage Range	Vsupp	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.8 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.8 \\ & \hline \end{aligned}$		$\begin{aligned} & -30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{v} \end{aligned}$
Typical Operating Supply Voltage Range	VSUPP	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Threshold Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{TH}} / \Delta \mathrm{T}$	$\begin{aligned} & \text { lout }=4 \mathrm{~mA} \\ & \text { VOUT }=2 \mathrm{~V} \end{aligned}$		+200			+200		ppm/ ${ }^{\circ} \mathrm{C}$
Variation of Threshold Voltage with Supply. Voltage	$\Delta \mathrm{V}_{\mathrm{TH}} / \Delta \mathrm{V}^{+}$	$\Delta \mathrm{V}^{+}=10 \%$ at $\mathrm{V}^{+}=5 \mathrm{~V}$		1.0			1.0		mV
Threshold Input Current	ITH	$\begin{aligned} & \mathrm{V}_{T H}=1.15 \mathrm{~V} \\ & \mathrm{~V}_{T H}=1.00 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 100 \\ 5 \\ \hline \end{gathered}$	250		$\begin{gathered} 100 \\ 5 \\ \hline \end{gathered}$	250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
Output Leakage Current	IoLk	$\begin{array}{ll} \hline V_{\text {OUT }}=30 \mathrm{~V} & \mathrm{~V}_{\mathrm{TH}}=1.0 \mathrm{~V} \\ \mathrm{VOUT}=30 \mathrm{~V} & \mathrm{~V}_{\text {TH }}=1.3 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} & \mathrm{~V}_{\mathrm{TH}}=1.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} & \mathrm{~V}_{\text {TH }}=1.3 \mathrm{~V} \end{array}$			$\begin{gathered} 10 \\ 1 \end{gathered}$			$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \dot{\mathrm{~A}} \end{aligned}$
Output Saturation Voltage	VSAT	$\begin{array}{ll} \text { louT }=4 \mathrm{~mA} & V_{T H}=1.0 \mathrm{~V} \\ & V_{T H}=1.3 \mathrm{~V} \end{array}$		0.17	0.4		0.17	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Max Available Output Current	IOH	(Note 3 \& 4) $\quad \mathrm{V}_{\mathrm{TH}}=1.0 \mathrm{~V}$ $V_{\text {OUT }}=5 \mathrm{~V} \quad V_{\text {TH }}=1.3 \mathrm{~V}$ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} V_{T H}=1.0 \mathrm{~V}$	4	7.0	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	35	mA	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Hysteresis Leakage Current	ILHYS	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V} \mathrm{~V}_{T H}=1.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{HYST}}=\mathrm{V}^{-} \end{aligned}$			0.1			0.1	$\mu \mathrm{A}$
Hysteresis Sat Voltage	$\mathrm{V}_{\text {HYS }}$ (max)	$\mathrm{I}_{\mathrm{HYST}}=-7 \mu \mathrm{~A} \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V}$ measured with respect to V^{+}		-0.1	-0.2		-0.1	-0.2	V
Max Available Hysteresis Current	IHYS (max)	$\mathrm{V}_{\text {TH }}=1.3 \mathrm{~V}$	-15	-21		-15	-21		$\mu \mathrm{A}$

NOTE 3: The maximum output current of the ICL8211 is limited by design to 15 ma under any operating conditions. The output voltage may be sustained at any voltage up to +30 as long as the maximum power dissipation of the device is not exceeded.
NOTE 4: The maximum output current of the ICL8212 is not defined, and systems using the ICL8212 must therefore ensure that the output current does not exceed 30 ma and that the maximum power dissipation of the device is not exceeded.

TYPICAL OPERATING CHARACTERISTICS

THRESHOLD INPUT CURRENT AS A
FUNCTION OF THRESHOLD VOLTAGE

Characteristics common to both the ICL8211 and the ICL8212

SUPPLY CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE

THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE (IRREGULLAR SCALE)

HYSTERESIS
OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE

Characteristics ICL8211

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT SATURATION CURRENTS
AS A FUNCTION OF
THRESHOLD VOLTAGE

OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE

 THRESHOLD VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE

HYSTERESIS OUTPUT CURRENT
AS A FUNCTION OF
HYSTERESIS OUTPUT VOLTAGE

TYPICAL OPERATING CHARACTERISTICS

Characteristics ICL8212

SUPPLY CURRENT AS A FUNCTION

 OF SUPPLY VOLTAGE

OUTPUT SATURATION CURRENTS AS A FUNCTION OF THRESHOLD VOLTAGE

OUTPUT SATURATION VOLTAGE AND CURRENT AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE

THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE

CIRCUIT DESCRIPTION

The ICL8211 and ICL82.12 use standard linear bipolar integrated circuit technology with high value thin film resistors which define extremely low value currents.
Components Q_{1} thru Q_{10} and R_{1}, R_{2} and R_{3} set up an accurate voltage reference of 1.15 volts. This reference voltage is close to the value of the bandgap voltage for silicon and is highly stable with respect to both temperature and
supply voltage. The deviation from the bandgap voltage is necessary due to the negative temperature coefficient of the thin film resistors (-5000 ppm per ${ }^{\circ} \mathrm{C}$).
Components Q_{2} thru Q_{9} and R_{2} make up a constant current source; Q_{2} and Q_{3} are identical and form a current mirror. Q8 has 7 times the emitter area of Q_{9}, and due to the current mirror, the collector currents of Q_{8} and Q_{9} are forced to be equal and it can be shown that the collector current in Q8 and

Q9 is

$$
\operatorname{Ic}\left(Q_{8} \text { or } Q_{9}\right)=\frac{1}{R_{2}} \times \frac{k T}{q} \ln 7
$$

or approximately $1 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$
Where $\mathrm{k}=$ Boltzman's constant
$q=$ charge on an electron
and $\mathrm{T}=$ absolute temperature in ${ }^{\circ} \mathrm{K}$

Transistors Q_{5}, Q_{6}, and Q_{7} assure that the $V_{C E}$ of Q_{3}, Q_{4}, and Q_{9} remain constant ${ }^{\text {d }}$ with supply voltage variations. This ensures a constant current supply free from variations.

The base current of Q_{1} provides sufficient start up current for the constant current source; there being two stable states for this type of circuit - either ON as defined above, or OFF if no start up current is provided. Leakage current in the transistors is not sufficient in itself to guarantee reliable startup.
Q_{4} is matched to Q_{3} and $Q_{2} ; Q_{10}$ is matched to Q_{9}. Thus the Ic and $V_{B E}$ of Q_{10} are identical to that of Q_{9} or Q_{8}. To generate the bandgap voltage, it is necessary to sum a voltage equal to the base emitter voltage of Q_{9} to a voltage proportional to the difference of the base emitter voltages of two transistors Q $_{8}$ and Q_{9} operating at two current densities.

Thus $1.15=V_{B E}\left(Q_{9}\right.$ or $\left.Q_{10}\right)+\frac{R_{3}}{R_{2}} \times \frac{k T}{q} \ln 7$

$$
\text { which provides } \frac{\mathrm{R}_{3}}{\mathrm{R}_{2}}=12 \text { (approx.) }
$$

The total supply current consumed by the voltage reference section is approximately $6 \mu \mathrm{~A}$ at room temperature. A voltage at the THRESHOLD input is compared to the reference 1.15 volts by the comparator consisting of transistors Q_{11} thru Q17. The outputs from the comparator are limited to two diode drops less than V^{+}or approximately 1.1 volts. Thus the base current into the hysteresis output transistor is limited to about 500 nA and the collector current of Q_{19} to $100 \mu \mathrm{~A}$.

In the case of the ICL8211, Q_{21} is proportioned to have 70 times the emitter area of Q_{20} thereby limiting the output current to approximaely 7 mA , whereas for the ICL8212 almost all the collector current of Q_{19} is available for base drive to Q_{21}, resulting in a maximum available collector current of the order of 30 mA . It is advisable to externally limit this current to 25 mA or less.

APPLICATIONS

The ICL8211 and ICL8212 are similar in many respects, especially with regard to the setup of the input trip conditions and hysteresis circuitry. The following discussion describes both devices, and where differences occur they are clearly noted.

1. GENERAL INFORMATION

THRESHOLD INPUT CONSIDERATIONS

Although any voltage between -5 V and V^{+}may be applied to the THRESHOLD terminal, it is recommended that the THRESHOLD voltage does not exceed about +6 volts since above that voltage the threshold input current increases sharply. Also, prolonged operation above this voltage will lead to degradation of device characteristics.

Figure 1: Voltage Level Detection
The outputs change states with an input THRESHOLD voltage of approximately 1.15 volts. Input and output waveforms are shown in Figure 1 for a simple 1.15 volt level detector.

The HYSTERESIS output is a low current output and is intended primarily for input threshold voltage hysteresis applications. If this output is used for other applications it is suggested that output currents be limited to $10 \mu \mathrm{~A}$ or less.

The regular OUTPUT's from either the ICL8211 or ICL8212 may be used to drive most of the common logic families such as TTL or C-MOS using a single pullup resistor. There is a guaranteed TTL fanout of 2 for the ICL8211 and 4 for the ICL8212.

Figure 2: Output Logic Interface

A principal application of the ICL8211 is voltage level detection, and for that reason the OUTPUT current has been limited to typically 7 mA to permit direct drive of an LED connected to the positive supply without a series current limiting resistor.

On the other hand the ICL8212 is intended for applications such as programmable, zener references, and voltage regulators where outpur currents well in excess of 7 mA are desirable. Therefore, the output of the ICL8212 is not current limited, and if the output is used to drive an LED, a series current limiting resistor must be used.

In most applications an input resistor divider network may be used to generate the 1.15 V required for V_{TH}. For high accuracy, currents as large as $50 \mu \mathrm{~A}$ may be used, however for those applications where current limiting may be desirable, (such as when operating from a battery) currents as low as $6 \mu \mathrm{~A}$ may be considered without a great loss of accuracy. $6 \mu \mathrm{~A}$ represents a practical minimum, since it is about this level where the device's own input current becomes a significant percentage of that flowing in the divider network.

Figure 3: Input Resistor Network Considerations

Case 1. High accuracy required, current in resistor network unimportant Set $\mathrm{I}=50 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{TH}}=1.15$ volts $\therefore \mathrm{R}_{1} \rightarrow$ 20k ohms.

Case 2. Good accuracy required, current in resistor network important Set $\mathrm{I}=7.5 \mu \mathrm{~A}$ for $\mathrm{V}_{T H}=1.15$ volts $\therefore \mathrm{R}_{1} \rightarrow$ 150k ohms.

SETUP PROCEDURES FOR VOLTAGE LEVEL DETECTION

Case 1. Simple voltage detection - no hysteresis
Unless an input voltage of approximately 1.15 volts is to be detected, resistor networks will be used to divide or multiply the unknown voltage to be sensed. Figure 4 shows procedures on how to set up resistor networks to detect INPUT VOLTAGES of any magnitude and polarity.

a) Range of input voltage greater than +1.15 volts.

Input voltage to change the output states
$=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \quad \times 1.15$ volts

b) Range of input voltage less than +1.15 volts.

Input voltage to change the output states

$$
=\frac{\left(R_{1}+R_{2}\right) \times 1.15}{R_{1}}-\frac{R_{2} V_{R E F}}{R_{1}}
$$

Figure 4: Input Resistor Network Setup Procedures
For supply voltage level detection applications the input resistor network is connected across the supply terminals as shown in Figure 5.

Figure 5: Combined Input and Supply Voltages
Conditions for correct operation of OUTPUT (terminal \#4). 1. ICL8211

$$
1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}
$$

2. ICL8212
$0 \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}$
Case 2. Use of the HYSTERESIS function
The disadvantage of the simple detection circuits is that there is a small but finite input range where the outputs are neither totaily 'ON' nor totally 'OFF'. The principle behind hysteresis is to provide positive feedback to the input trip point such that there is a voltage difference between the input voltage necessary to turn the outputs ON and OFF.

The advantage of hysteresis is especially apparent in electrically noisy environments where simple but positive voltage detection is required. Hysteresis circuitry, however, is not limited to applications requiring better noise performance but may be expanded into highly complex systems with multiple voltage level detection and memory applications - refer to specific applications section.
There are two simple methods to apply hysteresis to a circuit for use in supply voltage level detection. These are shown in Figure 6.

a) Low trip voltage .

$$
V_{T R 1}=\left[\frac{\left(R_{1}+R_{2}\right) \times 1.15}{R_{1}}+0.1\right] \text { volts }
$$

High trip voltage

b) Low trip voltage

$$
V_{T R 1}=\left[\frac{R_{Q} R_{S}}{\left(R_{Q}+R_{S}\right)}+R_{P}\right] \times \frac{1}{R_{P}} \times 1.15 \text { volts }
$$

High trip voltage

Figure 6: Two alternative voltage detection circuits employing hysteresis to provide pairs of well defined trip voltages.

Circuit (a) requires that the full current flowing in the resistor network be sourced by the HYSTERESIS output whereas for circuit (b) the current to be sourced by the HYSTERESIS output will be a function of the ratio of the two trip points and their values. For low values of hysteresis circuit (b) is to be preferred due to the offset voltage of the hysteresis output transistor.
A third way to obtain hysteresis (ICL8211 only) is to connect a resistor between the OUTPUT and the THRESHOLD terminals thereby reducing the total external resistance between the THRESHOLD and GROUND when the OUTPUT is switched on.

3. PRACTICAL APPLICATIONS

a) Low Voltage Battery Indicator

Figure 7: Low Voltage Battery Indicator
This application is particularly suitable for portable or remote operated equipment which requires an indication of a depleted or discharged battery. The quiescent current taken by the system will be typically $35 \mu \mathrm{~A}$ which will increase to 7 mA when the lamp is turned on. R_{3} will provide hysteresis if required.
b) |Non-Volatile| Low Voltage Detector

Figure 8: Low Voltage Detector and Memory

In this application the high trip voltage $V_{T R 2}$ is set to be above the normal supply voltage range. On power up the initial condition is A. On momentarily closing switch S_{1} the operating point changes to B and will remain at B until the
supply voltage drops below $V_{T R 1}$, at which time the output will revert to condition A. Note that state A is always retained if the supply voltage is reduced below VTR1 (even to zero volts) and then raised back to $\mathrm{V}_{\text {NOM }}$.
c) (Non-volatile) Power Supply Malfunction Recorder

In many systems a transient or an extended abnormal (or absence of a) supply voltage will cause a system failure. This failure may take the form of information lost in a volatile semiconductor memory stack, a loss of time in a timer or even possible irreversible damage to components if a supply voltage exceeds a certain value.
It is, therefore, necessary to be able to detect and store the fact that an out-of-operating range supply voltage condition has occurred, even in the case where a supply voltage may have dropped to zero. Upon power up to the normal operating voltage this record must have been retained and easily interrogated. This could be important in the case of a transient power failure due to a faulty component or intermittent power supply, open circuit, etc., where direct observation of the failure is difficult.
A simple circuit to record an out of range voltage excursion may be constructed using an ICL8211, an ICL8212 plus a few resistors. This circuit will operate to 30 volts without exceeding the maximum ratings of the I.C.'s. The two voltage limits defining the in range supply voltage may be set to any value between 2.0 and 30 volts.

Figure 9: Schematic of Recorder

Figure 10: Output States of the ICL8211 and ICL8212 as a Function of the Supply Voltage

Referring to Figure 9, the ICL8212 is used to detect a voltage, V_{2}, which is the upper voltage limit to the operating voltage range. The ICL8211 detects the lower voltage limit of the operating voltage range, V_{1}. Hysteresis is used with the ICL8211 so that the output can be stable in either state over the operating voltage range V_{1} to V_{2} by making V_{3} - the upper trip point of the ICL8211 much higher in voltage than V_{2}.
The output of the ICL8212 is used to force the output of the ICL8211 into the ON state above V_{2}. Thus there is no value of
the supply voltage that will result in the output of the ICL8211 changing from the ON state to the OFF state. This may be achieved only by shorting out R_{3} for values of supply voltage between V_{1} and V_{2}.

d) Constant Current Sources

The ICL8212 may be used as a constant current source of value of approximately $25 \mu \mathrm{~A}$ by connecting the THRESHOLD terminal to GROUND. Similarly the ICL8211 will provide a $130 \mu \mathrm{~A}$ constant current source. The equivalent parallel resistance is in the tens of megohms over the supply voltage range of 2 to 30 volts. These constant current sources may be used to provide biasing for various circuitry including differential amplifiers and comparators. See Typical Operating Characteristics for complete information.

Figure 11: Constant Current Sourc̣e Applications
e) Zener or Precision Voltage Reference

Figure 12: Programmable Zener or Voltage Reference
The ICL8212 may be used to simulate a zener diode by connecting the OUTPUT terminal to the Vz output and using a resistor network connected to the THRESHOLD terminal to program the zener voltage $\left(\mathrm{V}_{\text {zener }}=\right.$
($R_{1}+R_{2}$) $\times 1.15$ volts).
R_{1}

Since there is no internal compensation in the ICL8212 it is necessary to use a large capacitor across the output to prevent oscillation.
Zener voltages from 2 to 30 volts may be programmed and typical impedance values between $300 \mu \mathrm{~A}$ and 25 mA will range from 4 to 7Ω. The knee is sharper and occurs at a significantly lower current than other similar devices available.
f) Precision Voltage Regulators

Figure 13: Simple Voltage Regulator

The ICL8212 may be used as the controller for a highly stable series voltage regulator. The output voltage is simply programmed, using a resistor divider network R_{1} and R_{2}. Two capacitors C_{1} and C_{2} are required to ensure stability since the ICL8212 is uncompensated internally.
This regulator may be used with lower input voltages than most other commercially available regulators and also consumes less power for a given output control current than any commercial regulator. Applications would therefore include battery operated equipment especially those operating at low voltages.

f) High supply voltage dump circuit

In many circuit applications it is desirable to remove the power supply in the case of high voltage overload. For circuits consuming less than 5 mA this may be achieved ${ }^{-}$ using an ICL8211 driving the load directly. For higher load currents it is necessary to use an external pnp transistor or darlington pair driven by the output of the ICL8211. Resistors R_{1} and R_{2} set up the disconnect voltage and R_{3} provides optional voltage hysteresis if so desired.

Figure 14: High Voltage Dump Circuits

g) Frequency limit detectors

Simple frequency limit detectors providing a GO/NO-GO output for use with varying amplitude input signals may be conveniently implemented with the ICL8211/12. In the application shown, the first ICL8212 is used as a zero crossing detector. The output circuit consisting of $\mathrm{R}_{3}, \mathrm{R}_{4}$ and C_{2} results in a slow output positive ramp. The negative range is much faster than the positive range. R_{5} and R_{6} provide hysteresis so that under all circumstances the second ICL8212 is turned on for sufficient time to discharge C_{3}. The time constant of $R_{7} C_{3}$ is much greater than $R_{4} C_{2}$. Depending upon the desired output polarities for low and high input frequencies, either an ICL8211 or an ICL8212 may be used as the output driver.

Figure 15: Frequency Limit Detector

This circuit is sensitive to supply voltage variations and should be used with a stabilized power supply. At very low frequencies the output will switch at the input frequency.
h) Switch bounce filter

Single pole single throw (SPST) switches are less costly and more available than single pole double throw (SPDT) switches. SPST switches range from push button and slide types to calculator keyboards. A major problem with the use of switches is the mechanical, bounce of the elctrical contacts on closure. Contact bounce times can range from a fraction of a millisecond to several tens of milliseconds depending upon the switch type. During this contact bounce time the switch may make and break contact several times. The circuit shown in Figure 16 provides a rapid charge up of C_{1} to close to the positive supply voltage $\left(\mathrm{V}^{+}\right)$on a switch closure and a corresponding slow discharge of C_{1} on a switch break. By proportioning the time constant of $\mathrm{R}_{1} \mathrm{C}_{1}$ to approximately the manufacturer's bounce time the output as terminal \#4 of the ICL8211/12 will be a single transition of state per desired switch closure.

Figure 16: Switch Bounce Filter

j) Low voltage power disconnector

There are some classes of circuits that require the power supply to be disconnected if the power supply voltage falls below a certain value. As an example, the National LM199 precision reference has an on chip heater which malfunctions with supply voltages below 9 volts causing an excessive dêvice temperature. The ICL8212 may be used to detect a power supply voltage of 9 volts and turn the power
supply off to the LM199 heater section below that voltage.

Figure 17: Low Voltage Power Supply Disconnect

Figure 17: Low Voltage Powiar Suply Disconnect

For further applications, see A027 "Power Supply Design using the ICL8211 and ICL8212" by D. Watson.

CUSTOM OPTIONS

The ICL8211/12 have been designed with more ón chip components than are used, in anticipation of more dedicated high volume system usage. The trigger voltage and hysteresis resistor network is integrated on chip but not connected. Consult the factory for more information on custom options.

CHIP TOPOGRAPHY

die is passivated with a deposited oxide. bonding PAD OXIDE WINDOWS ARE 3.6×3.6 MILS SQUARE.

ICH8500/A

Ultra Low Bias Current Operational Amplifier

FEATURES

- Input diode protection
- Input bias current less than 0.01 pA at all operating temperatures
- No frequency compensation required
- Offset voltage null capability
- Short circuit protection
- Low power consumption

APPLICATIONS

- Femto Ammeter
- Electrometers
- Long time integrators
- Flame detectors
- pH meter
- Proximity detector
- Sample and Hold Circuits

GENERAL DESCRIPTION

The ICM8500 and ICH8500A are hybrid circuits designed for ultra low input bias current operational amplifier applications. They are ideally suited for analog and electrometer applications where high input resistance and low input current are of prime importance.
Functionally, they are pin for pin identical to the popular 741 monolithic amplifier. These amplifiers are unconditionally stable and the input offset voltage can be adjusted to zero with an external 20 k potentiometer. The input bias current for the inverting and noninverting inputs is 0.1 pA maximum for the ICH 8500 , and 0.01 pA maximum for the 1 CH 8500 A and are constant over the operating temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Pin 8 is connected to the case. This permits the designer to operate the case at any desired potential, the key to achieving the ultra low input currents associated with these two amplifiers. Forcing the case to the same potential as the inputs eliminates current flow between the case and the input pins, and leakage currents that may have otherwise existed between any of the other pins and the inputs are intercepted by the case.

ORDERING INFORMATION

PIN CONFIGURATION (outline dwg TO-99)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 18 \mathrm{~V}$
Internal Power Dissipation ${ }^{[1]}$................ 500 mW
Differential Voltage $\pm 0.5 \mathrm{~V}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Lead Temperature (Soldering 10 sec) $\ldots . . .3 .300^{\circ} \mathrm{C}$ Output Short Circuit Duration Indefinite

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

Note: 1. Rating applies for ambient temperature to $+70^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified, $\mathrm{V}_{\text {SUPP }}= \pm 15 \mathrm{~V}$)

CHARACTERISTICS	SYMBOL	ICH8500			ICH8500A			UNITS	TEST CONDITIONS
		MIN	TYP.	MAX	MIN	TYP	MAX		
Input Leakage Current (Inverting and Non-Inverting)	IILK			0.1			0.01	pA	Case at same potential as inputs
Input Offset Voltage	Vos			50	.		50	mV	
Offset Voltage Adjustment Range	$\pm \mathrm{Vos}$			± 50			± 50	mV	20k Ω Potentiometer
Change in Input Offset Voltage Over Temperature	$\Delta \mathrm{Vos} / \Delta T$						$\begin{aligned} & \pm 5.0 \\ & \pm 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & +25 \text { to }+85^{\circ} \mathrm{C} \\ & -25 \text { to }+25^{\circ} \mathrm{C} \end{aligned}$
Common Mode Rejection Ratio	CMRR	60	75		60	75		dB	± 5 volts common mode voltage
Output Voltage Swing	$\pm \mathrm{V}_{0}$	± 11			± 11			V	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$
Common Mode Voltage Range	CMVR	± 10			± 10			V	
Large Signal Voltage Gain	Avol	20,000	105		20,000	105		-	
Feedback Capacitance	Cfb			0.1			0.1	pF	Case guarded
Long Term Input Offset Voltage Stability	$\Delta \mathrm{V}$ OS/ $\Delta \mathrm{t}$			± 3.0			± 3.0	mV	At $25^{\circ} \mathrm{C}$
Slew Rate	SR		0.5			0.5		$\mathrm{V} / \mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$
Input Capacitance	CIN		0.7			0.7		pF	Case guarded
Input Capacitance .	CIN		1.5			1.5		pF	Case grounded

CIRCUIT NOTES

VOLTAGE OFFSET
NULL CIRCUIT

VOLTAGE FOLLOWER

LOW LEVEL CURRENT MEASURING CIRCUIT

NOTE: Adjust input offset voltage to $0 \mathrm{mV} \pm 1 \mathrm{mV}$ before measuring leakage.

TYPICAL PERFORMANCE CURVES

INPUT OFFSET VOLTAGE vs. SUPPLY VOLTAGE

\pm QUIESCENT SUPPLY CURRENT vs. SUPPLY VOLTAGE

INPUT VOLTAGE RANGE vs. SUPPLY VOLTAGE

\pm POWER SUPPLY REJECTION RATIO vs. SUPPLY VOLTAGE

INPUT REFERRED NOISE VOLTAGE

COMMON MODE REJECTION RATIO vs. SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE

APPLICATIONS

The Pico Ammeter

A very sensitive pico ammeter can be constructed with the ICH8500. The basic circuit (illustrated in Figure 1)employs the amplifier in the inverting or current summing mode.
Care must be taken to eliminate any stray currents from flowing into the current summing node. This can be accomplished by forcing all points surrounding the input to the same potential as the input. In this case the potential of the input is at virtual ground, or OV, therefore, the case of the device is grounded to intercept any stray leakage currents that may otherwise exist between the $\pm 15 \mathrm{~V}$ input terminals and the inverting input summing junctions. Feedback capacitance* should be kept to a minimum in order to maximize the response time of the circuit to step function input currents. The time constant of the
circuit is approximately the product of the feedback capacitance C_{fb} times the feedback resistor R_{fb}. For instance, the time constant of the circuit in Figure 1 is 1 sec if $\mathrm{C}_{\mathrm{fb}}=1 \mathrm{pF}$. Thus, it takes approximately $5 \mathrm{sec}(5$ time constants) for the circuit to stabilize to within 1% of its final output voltage after a step function of input current has been applied. C_{fb} of less than 0.2 to 0.3 pF can be achieved with proper circuit layout. A practical pico ammeter circuit is illustrated in Figure 2.
The internal diodes CR1 and CR2 together with external resistor R1 protect the input stage of the amplifier from voltage transients. The two diodes contribute no error currents, since under normal operating conditions there is no voltage across them.
*Feedback capacitance is the capacitance between the output and the inverting input terminal of the amplifier.

Figure 1. Basic Pico Ammeter Circuit

Figure 2. Pico Ammeter Circuit

ICH8500/A

Sample and Hold Circuit (Figure 3)

The basic principle of this circuit is to rapidly charge a capacitor Csto to a voltage equal to an input signal. The input signal is then electrically disconnected from the capacitor with the charge still remaining on Csto. Since Csto is in the negative feedback loop of the operational amplifier, the output voltage of the amplifier is equal to the voltage across the capacitor. Ideally, the voltage across Csto will remain constant, thus the output of the amplifier will also be constant, however, the voltage across Csto will decay at a rate proportional to the current being injected or taken out of the current summing node of the amplifier. This current can come from four sources: leakage resistance of Csto, leakage current due to the solid state switch SW2, currents due to high resistance paths on the circuit fixture, and most important, bias current of the operational amplifier. If the ICH8500A operational amplifier is employed, this bias current is almost non-existant ($<0.01 \mathrm{pA}$). Note that the voltages on the source, drain and gate of switch SW2 are zero or near zero when the circuit is in the hold mode. Careful construction will eliminate stray resistance paths and capacitor resistance can be eliminated if a quality capacitor is selected. The net result is a quality sample and hold circuit.

As an example, suppose the leakage current due to all sources flowing into the current summing node of the sample and hold circuit is 100pA. The rate of change of the voltage across the $0.01 \mu \mathrm{~F}$ storage capacitor is then $10 \mathrm{mV} / \mathrm{sec}$. In contrast, if an operational amplifier which exhibited an input bias current of 1 nA were employed, the rate of change of the voltage across Csto would be $0.1 \mathrm{~V} / \mathrm{sec}$. An error build up such as this could not be tolerated in most applications.
Wave forms illustrating the operation of the sample and hold circuit are shown in Figure 4.

The Gated Integrator

The circuit in Figure 3 can double as an integrator. In this application the input voltage is applied to the integrator input terminal. The time constant of the circuit is the product of R1 and Csto. Because of the low leakage current associated with the ICH8500 and ICH8500A, very large values of R1 (Up to 1012 ohms) can be employed; this permits the use of small values of integrating capacitor (CsTO) in applications that require long time delays. Waveforms for the integrator circuit are illustrated in Figure 5.

Figure 3. Sample and Hold Circuit or Integrator Circuit

WAVEFORMS

Figure 4. Sample and Hold Circuit Waveforms

ICH8510/8520/8530 Power Amplifier/ Motor \& Actuator Driver

KEY FEATURES:

- Capable of delivering $2.7 \mathrm{amps} @ 24-28 \mathrm{~V}$ d.c. operation (30 V supplies)
- Protected against inductive kick back with internal power limiting
- Programmable current limiting (short circuit protection)
- Package is electrically isolated (allowing easy heat sinking)
- DC gain 100 dB
- 20 mA typical standy quiescent current
- Popular 8 pin TO-3 package
- Internal frequency compensation
- Can drive up to 0.1 horsepower motors.

DESCRIPTION:

The ICH8510/8520/8530 is a family of hybrid power amplifiers that have been specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC \& AC motors.
There are three models available for up to $\pm 30 \mathrm{~V}$ power supply operation, 2.7 amps @ 24 volt output levels, 2 amps @ 24 V , and 1 amp @ 24 V . All amplifiers are protected against shorts to ground by the addition of 2 external protection resistors.
The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN \& PNP power transistors, and internal frequency compensating capacitors. The chips are mounted on a beryllium oxide substrate for optimum heat transfer to the metal package; this substrate provides electrical isolation between amplifiers and metal package.
The I.C. power driver chip has built-in regulators to drive the 741 @ typically $\pm 13 \mathrm{v}$ supply voltages.

ABSOLUTE MAXIMUM RATINGS @ $T_{A}=25^{\circ} \mathrm{C}$

Supply Voltage $\pm 32 \mathrm{~V}$
Power Dissipation, Safe Operating Area See Curves
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage $\pm 15 \mathrm{~V}$ (Note 1)
Peak Output Current
See Curves (Note 2)Output Short Circuit Duration (to ground) Continuous (Note 2)Operating Temperature Range M $-55^{\circ} \mathrm{C} \rightarrow+125^{\circ} \mathrm{C}$
1 $-20^{\circ} \mathrm{C} \rightarrow+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 seconds) . $300^{\circ} \mathrm{C}$Max Case Temperature$150^{\circ} \mathrm{C}$

Note 1: Rating applies to supply voltages of $\pm 15 \mathrm{~V}$. For lower supply voltages, $\mathrm{V}_{\text {INMAX }}=\mathrm{V}_{\text {SUPP }}$.
Note 2: Rating applies as long as package dissipation is not exceeded for heat sink attached. (See Figure 8.)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL SPECIFICATIONS $. T_{A}=+25^{\circ} \mathrm{C} . \mathrm{V}_{\text {SUPP }}= \pm 30 \mathrm{~V}$ (unless otherwise stated)

DESCRIPTION	SYMBOL	CONDITIONS	ICH85101		ICH8510M		ICH8520I		ICH8520M		ICH85301		ICH8530M		UNITS
			MIN.	MAX.	MIN:	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX	MIN.	MAX.	
Input Offset Voltage Change with Power Dissipation	دVos/ PPd	Mtd. on Wakefield 403 Heat Sink	.	4		2	.	4		2		4		2	mV / W
Input Offset Voltage	Vos	$\begin{aligned} & \mathrm{Rs}-10 \mathrm{k} \Omega \\ & \mathrm{Pd}-1 \mathrm{~W} \\ & \hline \end{aligned}$	-6	+6	-3	+3	- -6	+6	-3	+3	. -6	+6	-3.	+3	mV
Input Bias Current	IBIAS	$\begin{aligned} & \mathrm{RS} \cdot 10 \mathrm{k} \Omega \\ & \mathrm{Pd} \cdot 1 \mathrm{~W} \\ & \hline \end{aligned}$		500		250		500		250		500		250	nA
Input Offset Current	los	$\begin{array}{\|l\|} \hline \text { Rs } \cdot 10 \mathrm{k} \Omega \\ \text { Pd } \cdot 1 \mathrm{~W} \\ \hline \end{array}$		200		100		200		100	.	200		100	nA
Large Signal Voltage Gain	Avol	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=20 \Omega \mathrm{n} \\ \mathrm{~V}_{\mathrm{O}} \cdot 2 / 3 \mathrm{~V} \text { Supp } \\ \hline \end{array}$	100		100		100		100		100		100		dB
Input Voltage Range	$V_{\text {CMR }}$		-10	+10	-10	+10	-10	+10	-10	+10	-10	+10	-10	+10	V
Common Mode Rejection Ratio	CMRR	RS $\quad 10 \mathrm{k} \Omega$	70		70		70	.	70		70		- 70		dB
Power Supply Rejection Ratio	PSRR	RS $10 \mathrm{k} \Omega$	77		77		77		77		77		77		dB
Slew Rate	SR	$\begin{array}{\|lll} \hline \mathrm{C}_{\mathrm{L}} & 3 \mathrm{pF} \mathrm{~A}_{\mathrm{V}}=1 \\ \mathrm{R}_{\mathrm{L}} & 10 \Omega 2 \\ \mathrm{~V}_{\mathrm{O}} & 2 / 3 \mathrm{~V}_{\text {SUPP }} \\ \hline \end{array}$	0.5		0.5		0.5		0.5		0.5		0.5		$\mathrm{V} \mu \mathrm{s}$
Output Voltage Swing	Vomax	$\begin{array}{lll} \hline R_{L} & 20 \Omega \\ A_{V} & 10 \\ \hline \end{array}$	$\pm 25 \mathrm{~V}$		$\pm 25 \mathrm{~V}$		$\pm 26 \mathrm{~V}$		$\pm 26 \mathrm{~V}$		$\begin{aligned} &\left(R_{L}=30 \Omega\right) \\ & \pm 26 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{array}{r} \left(R_{L}=30 \Omega\right) \\ \\ \pm 26 \mathrm{~V} \\ \hline \end{array}$,	V
Output Curreni (3)	$I_{\text {max }}$	$\begin{array}{\|l} \hline R_{L}=8 \Omega \\ A_{V}=10 \\ \hline \end{array}$	2.7		2.7		2.0		2.0		1.0		1.0		A
Power Supply Quiescent Current	10	$\begin{aligned} & R_{L} ; \\ & V_{\text {IN }}-O V \end{aligned}$		125		100		125		100		125	,	100	mA

Note 3: See Figure \# 9 if Power Supplies are less than $\pm 30 \mathrm{~V}$.

ELECTRICAL SPECIFICATIONS (continued) $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$.(M) or $\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$.(I)

Input Offset Voltage	Vos	Pd. 1W	-10	+10	-9	- +9	-10	+10	-9	+9	-10	+10	-9	+9	MV
Input Bias Current	IBIAS	Pd. 1W		1500		750		1500		750		1500		750	nA
Input Offset Current	los			500		200		500		200		500		200	nA
Large Signal Voltage Gain	Avol	$\begin{aligned} & R_{\mathrm{L}}=20 \Omega \\ & د V_{\mathrm{O}}=2 / 3 \mathrm{~V}_{\text {Sup }} \end{aligned}$	90		90		90		90		90		90		dB
Output Voltage Swing	Vomax	$\mathrm{R}_{\mathrm{L}}=20 \Omega 2, A_{V}=10$	± 24.		± 24		V								
Thermal Resistance Junction to Ambient	Raja	Without Heat Sink		40		40		40		40		40		40	${ }^{\text {C/ }}$ /W
Thermal Resistance Junction to Case	$\mathrm{R}_{\text {HJC }}$	-		2.5		2.5		2.5		2.5		2.5		2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\text {HJA }}$	Mtd. on Wakefield 403 Heat Sink		$\begin{array}{r} \text { (Typ.) } \\ 4.0 \\ \hline \end{array}$		$\begin{array}{r} \text { (Typ.) } \\ 4.0 \\ \hline \end{array}$		$\begin{array}{r} \text { (Typ.) } \\ 4.0 \\ \hline \end{array}$		$\begin{array}{r} \hline \text { (Typ.) } \\ 4.0 \\ \hline \end{array}$		$\begin{array}{r} \text { (Typ.) } \\ 4.0 \\ \hline \end{array}$		$\begin{array}{r} \text { (Typ.) } \\ \hline \end{array}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Supply Voltage Range	V SUPP		± 18	± 30	V										

How To Set The Externally Programmable, Current Limiting Resistors:
The maximum output current is set by the addition of two external resistors, $\mathrm{R}_{\mathrm{S}}^{+}$and $\mathrm{R} \overline{\mathrm{s}} \mathrm{C}$. Because of the current power limiting circuitry, the maximum output current is available only when V_{O} is close to either power supply. As Vo moves away from Vsupp, the maximum output current decreases in proportion to output voltage. The curve below shows maximum output current versus output voltage.

Figure 1: Maximum Output Current for Given Rsc

In general, for a given V_{0}, Isc limit, and case temperature Tc, Rsc can be calculated from the equation below for V_{o} positive, lout positive.

$$
\mathrm{RsC}=\frac{\left(20.6 \mathrm{~V}_{\mathrm{O}}\right)^{*}+680-2.2\left(\mathrm{TC}_{\mathrm{C}}-25^{\circ} \mathrm{C}\right)}{\mathrm{I}_{\mathrm{SC}(\mathrm{LIMIT})}}
$$

*For V_{O} negative, replace this term with $10.3\left(\mathrm{~V}_{\mathrm{O}}-1.2\right)$
For example, for $\mathrm{I}_{\mathrm{O}}=1.5 \mathrm{~A} @ \mathrm{~V}_{\mathrm{O}}=25 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$,

$$
R_{S C}=\frac{1195}{1500}=0.797
$$

Therefore for this application, $\mathrm{R}_{\mathrm{SC}}=.82 \Omega$ (closest standard value)

When 0.82Ω is used, Isc @ $\mathrm{V}_{0}=0 \mathrm{~V}$ will be reduced to about 1A.' Except for small changes in the " $\pm \mathrm{V}_{\mathrm{O}(\max)}$ Limit" area, the effects of changing RSC on the lout vs VOUT characteristics can be determined by merely changing the lout scale on Fig. 1 to correspond to the new value. Changes in Tc move the limit curve bodily up and down.
This internal power limiting circuitry however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 1. Clearly, as Vo decreases, the lo requirement falls also, more steeply than the lo available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:

Capacitive Load

Inductive Load (Note catch diode)

Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any 24-28VDC motor/actuator, the R_{SC} resistors must be calculated to get proper power delivered to the motor (up to a maximum of 2.7Á) and $V_{\text {SUPP }}$ set at $\pm 30 \mathrm{~V}$. For lower supply and/ or output voltages, the maximum output current will follow graphs of Figures 1 and 5.

NOTE ON AMPLIFIER POWER DISSIPATION

The steady state power dissipation limit is given by

$$
P_{D}=\frac{T_{J(M A X)}-T_{A}}{R_{\theta J C}+R_{\theta C H}+R_{\theta H A}}
$$

where
$T_{J}=\quad$ Maximum junction temperature
$T_{A}=\quad$ Ambient temperature
$\mathrm{R}_{\theta \mathrm{JC}}=$ Thermal resistance from transistor junction to - case of package
$R_{A C H}=\quad$ Thermal resistance from case to heat sink
$\mathrm{R}_{\theta H A}=$ Thermal resistance from heat sink to ambient air And since
$\mathrm{T}_{\mathrm{J}}=\quad 200^{\circ} \mathrm{C}$ for silicon transistors
$\mathrm{R}_{\text {AJC }} \cong 2.0 \mathrm{C} /$ WATT for a steel bottom TO-3 package with die attachment to beryllia substrate to header
$\mathrm{R}_{\theta \mathrm{CH}}=\quad .045^{\circ} \mathrm{C} / \mathrm{W}$ for 1 mil thickness of Wakefield type 120 thermal joint compound
$.09^{\circ} \mathrm{C} / \mathrm{W}$ for 2 mil thickness of type 120
$.13^{\circ} \mathrm{C} / \mathrm{W}$ for 3 mil thickness of type 120
$.17^{\circ} \mathrm{C} / \mathrm{W}$ for 4 mil thickness for type 120
$.21^{\circ} \mathrm{C} / \mathrm{W}$ for 5 mil thickness of type 120
$.24^{\circ} \mathrm{C} / \mathrm{W}$ for 6 mil thickness of type 120
$\mathrm{R}_{\theta H A}=\quad$ The choice of heat sink that a user selects depends upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). $R_{\theta H A} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}$. Using 4 mil joint compound,

$$
P_{D}=\frac{200^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{2.0^{\circ}+0.17^{\circ}+2.0}=\frac{200^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}
$$

or $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

$$
\frac{200^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=42 \mathrm{~W}
$$

and $@ T_{A}=125^{\circ} \mathrm{C}$,

$$
\frac{200^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=18 \mathrm{~W}
$$

From Fig. 2 the worst case steady state power dissipation for an IH8520 ($\mathrm{R}_{\mathrm{SC}}=0.62 \Omega$) is about 30W and 18 W respectively. Thus this heat sink is adequate.

Figure 2: Safe Operating Area; lout vs Vout vs TC

Figure 3: Input Offset Voltage vs Power Dissipation

Figure 4: Input Impedance vs Gain vs Frequency

Figure 5: Quiescent Current vs Power Supply Voltage

TYPICAL PERFORMANCE CURVES, CONTINUED.

Figure 6: Large Signal Power Band Width

Figure 7: Small Signal Frequency Response

Figure 8: Maximum Output Current vs. Case Temperature

Figure 9: Maximum Output Current vs. $V_{\text {SUPP }}$

BRIEF APPLICATION NOTES

The maximum input voltage range, for $V_{\text {SUPP }}< \pm 15 \mathrm{~V}$, is substantially less than the available output voltage swing. Thus non-inverting amplifiers, as in Figure 10, should always be set up with a gain greater than about 2.5 , (with $\pm 30 \mathrm{~V}$ supplies), so that the full output swing is available without hazard to the input. At first sight, it would seem that no restrictions would apply to inverting amplifiers, since the inputs are virtual ground and ground. However, under fault (output short-circuited) or high slew conditions, the input can be substantially removed from ground. Thus for inverting amplifiers with gains less than about 5, some protection should be provided at this input. A suitable resistor from the input to ground will provide protection, but also increases the effect of input offset voltage at the output. A pair of diodes, as shown in Figure 12, has no effect on normal operation, but gives excellent protection.

Figure 10:
Non-Inverting Amplifier

Figure 11:
Inverting Amplifier

TYPICAL APPLICATIONS

I. Actuator Driving Circuit ($24 \rightarrow 28$ VDC rated)

Figure 13: Power Amp Driving Actuator

The gain of the circuit is set to +10 , so a $\mathrm{V}_{\mathrm{IN}}=+2.4 \mathrm{~V}$ will produce a +24 V output (and deliver up to 2.7 amps output current). To reverse the piston travel, invert $\mathrm{V}_{1 N}$ to -2.4 V and $V_{\text {Out }}$ will go to -24V. Diodes D1 and D2 absorb the inductive kick of the motor during transients (turn-on or turn-off); their breakdown should exceed 60V.

Power dissipation is another important parameter to consider. The current protection circuit protects the device against short circuits to ground, (but only for transients to the opposite supply) provided the device has adequate heat sink. A curve of power dissipation vs V_{O} under short circuit conditions is given in Figure 12. The limiting circuit is more closely dependent on case temperature than loutput transistor) junction temperatures. Although these operating conditions are unlikely to be attained in actual use, they do represent the limiting case a heat sink must cope with. For fully safe design, the anticipated range of Vo values that could occur, (steady state, including faults) should be examined for the highest power dissipation, and the device provided with a heat sink that will keep the junction temperature below $200^{\circ} \mathrm{C}$ and the case temperature below $150^{\circ} \mathrm{C}$ with the worst case ambient temperature expected.

Figure 12: Power Dissipation under Short Circuit Conditions
II. Obtaining Up To 5 Amps Output Current Capability By Paralleling Amplifiers

Figure 14: Paralleling Power Amps for Increased Current Capability

This paralleling procedure can be repeated to get any desired output current. However, care must be taken to provide sufficient load to avoid the amplifiers pulling against each other.

Figure 15: Power Amp Driving 48 VDC Motor

IV. Precise Rate Control of an Electronic Valve

There are two methods to get very fine control of the opening of an orifice driven by an electronic valve.

1. Keep the voltage constant, i.e., 24 VDC or 12VDC, and vary the time the voltage is applied, i.e., if it takes five seconds to completely open an orifice at 24 VDC , then applying 24 V for only $21 / 2$ seconds opens it only 50%.
2. Simply vary the $D C$ driving voltage to valve. Most valves obtain full opening as an inverse of applied voltage, i.e., valves open 100% in five seconds at 24 VDC and in 10 seconds at 12VDC.
A circuit to perform the second method is shown below; the advantage of this is that digit switches can precisely set driving voltage to 0.2% accuracy (8 -bit DAC), thereby controlling the rate at which the valve opens.

Figure 16: Digitally Controlled Electronic Value
V. The circuit presented in Fig. 16 is also an excellent way to get a precise power supply voltage; in fact, it is possible to
$V_{\text {OUi }}= \pm 5 \mathrm{~V}\left(\frac{4 \mathrm{~K}+1 \mathrm{~K}}{1 \mathrm{~K}}\right) \times$ digital \# set by Sws. and can deliver up to 3 amps.
Figure 17: Digitally Programmable Power Supply

build a precision variable power supply using a BCD coded DAC with BCD Thumbwheel switches.

20	21	22	23	24	25	26	27	\emptyset BIT	Vout
1	1	1	1	1	1	1	1	1	$+25 V D C$
1	1	1	1	1	1	1	1	0	$-25 V D C$
0	1	0	1	1	0	0	1	1	$+15 V D C$
0	1	0	1	1	0	0	1	0	$-15 V D C$
1	0	0	0	0	0	0	0	1	$+0.098 V D C$
1	0	0	0	0	0	0	0	0	$-0.098 V D C$

The power supply can be set to $\pm 0.1 \mathrm{VDC}$.
VI. There is great power available in the sub-systems shown in IV and V; there the D/A converter is shown being set manually (via digit switches) to get à precise analog output (binary \# \times full scale voltage), then the driver amplifier multiplies this voltage to produce the final output voltage. It seems obvious that the next logical step is to let a micro-
processor (local) or C.P.U. program the D/A converter. Then total, pre-programmable, electronic control of an actuator, electronic valve, motor, etc., is obtained. This would be used in conjunction with a transducer/multiplex system for electronic monitoring and control of any electromechanical function.

MUX $=$ INTERSIL IH5060 (1/16) or IH5070 (2/16)
S/H (SAMPLE \& HOLD) $=$ INTERSIL IH5111
D/A CONVERTER $=$ INTERSIL 7520 or INTERSIL 7105
POWER AMP $=\mathrm{IH} 8510$ (1 AMP) or IH 8520 (2 AMP) or IH8530 (2.7 AMP)
A/D CONVERTER $=$ ICL8052/7103 or ICL8052/7104 μ COMPUTER $=$ IM6100 family:

HEAT SINK INFORMATION

Heat sinks are available from Intersil. Order part number 290305 ($\$ 10.00$ ea.) with a $R_{\theta H A}=1.3^{\circ} \mathrm{C} /$ watt. A convenient
mating connector is also available. Order part number 290306 (\$4.50 ea.).

NOTE: This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

KEY FEATURES:

- Delivers up to 1.5 amps @ +12VDC $(\pm 15 \mathrm{VDC}$ supplies)
- Protected against inductive kick back by internal power limiting
- Programmable current limiting (short circuit protection)
- Package is electrically isolated (allowing easy heat sinking)
- DC gain > 100dB
- Popular 8 pin TO-3 package
- Internal frequency compensation
- Can drive up to 0.033 horsepower motors
- Pin equivalent to ICH8510/20/30 family

DESCRIPTION:

The ICH8515 is a hybrid power amplifier specifically designed to drive linear and rotary actuators, electronic valves, push-pull solenoids, and DC \& AC motors.
The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN \& PNP power transistors, and an internal frequency compensating capacitor. The chips are mounted on a beryllium oxide substrate, for optimum heat transfer to the metal package; this substrate provides electrical isolation between the amplifier and the metal package.
The 8515 has special SOA (safe operating area) circuitry which allows it to withstand a direct short to ground or to either supply indefinitely. It has been designed to operate with ± 12 or ± 15 VDC supplies and will deliver typically 1.5 to $1.8 \mathrm{~A} @ 13 \mathrm{~V}$ out using +15 V supplies.
Internal frequency compensation provides stability down to unity gain (either inverting or noninverting) even when using inductive loads.

ABSOLUTE MAXIMUM RATINGS @ $\mathrm{T}_{A^{\prime}}=25^{\circ} \mathrm{C}$

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation, Safe Operating Area	See Curves
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage	$\pm 15 \mathrm{~V}$ (Note 1)
Peak Output Current	See Curves (Note 2)
Output Short Circuit Duration (to ground)	Continuous (Note 2)
Operating Temperature Range M	$-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$
1	$-20^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Max Case Temperature	$150^{\circ} \mathrm{C}$

Note 1: Rating applies to supply voltages of $\pm 15 \mathrm{~V}$. For lower supply voltages; $\mathrm{V}_{\text {INMAX }}=$ VSUPP.
Note 2: Rating applies as long as package dissipation is not exceeded for heat sink attached.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} . \mathrm{V}_{\text {SUPP }}= \pm 15 \mathrm{~V}$ (unless otherwise stated)

PARAMETER	SYMBOL	TEST CONDITIONS	ICH85151			ICH8515M			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	'MAX.	
Input Offset Voltage Change with Power Dissipation	$\Delta \mathrm{VOS}^{\prime} / \Delta \mathrm{Pd}$	Mtd. on Wakefield 403 Heat Sink	-	$!$	4			2	mV / W
Input Offset Voltage	Vos	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}$	-6	1	6	-3	0.7	3	mV
Input Bias Current	IBIAS	$\mathrm{Rs} \leqslant 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}$			500			250	nA
Input Offset Current	los	$\mathrm{Rs} \leqslant 10 \mathrm{k} \Omega, \mathrm{Pd}<1 \mathrm{~W}$			200			100	nA
Large Sigņal Voltage Gain	Avol	$\begin{aligned} & R_{L}=10 \Omega, \\ & V_{O}>2 / 3 V_{\text {SUPP }} \end{aligned}$	100		-	100			dB
Input Voltage Range	VCMR ${ }^{\text {a }}$		-10		+10	-10		+10	V
Common Mode Rejection Ratio	CMRR	$\mathrm{RS}_{\mathrm{S}}=10 \mathrm{k} \Omega$	70			70			dB
Power Supply Rejection Ratio	PSRR	$\mathrm{RS}=10 \mathrm{k} \Omega$	77			77			dB
Slew Rate	SR	$\begin{aligned} & C_{L}=30 p F, A v=1, \\ & R_{L}=10 \Omega \\ & V_{0} \geqslant 2 / 3 V_{\text {SUPP }} \end{aligned}$	0.5			0.5			$\mathrm{V} / \mu \mathrm{s}$
Output Voltage Swing	Vomax	$R_{L}=10 \Omega, A_{V}=10$	± 12			± 12			V
Output Current	$I_{\text {max }}$	$R_{L}=5 \Omega, A v=10$	± 1.25	1.4		± 1.5	1.8		A
Power Supply Quiescent Current	lQ	$\mathrm{R}_{\mathrm{L}}=\propto, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		80	125		70	100	mA

OPERATING CHARACTERISTICS (continued) $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. (M) or $\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. (I)

Input Offset Voltage	Vos	Pd<1W	-10		+10	-9		. +9	mV
Input Bias Current	IBIAS	Pd<1W			1500			750	nA
Input Offset Current	los				500			200	nA
Large Signal Voltage Gain	Avol	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \\ & \Delta \mathrm{~V}_{\mathrm{O}}=2 / 3 \mathrm{~V}_{\text {SUPP }} \end{aligned}$	90			90			dB
Output Voltage Swing	Vomax	$\mathrm{R}_{\mathrm{L}}=10 \Omega, A_{V}=10$	± 10			± 10			V
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	Without Heat Sink			40			40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	$\mathrm{R}_{\text {өJC }}$.			3.0			3.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\text {AJA }}$	Mtd. on Wakefield 403 Heat Sink		4.5	,		4.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Supply Voltage Range	V SUPP		± 11		± 17	± 11		± 17	V

How To Set The Externally Programmable, Current Limiting Resistors:

The maximum output current is set by the addition of two external resistors, $\mathrm{R}_{\mathrm{SC}}^{+}$and Rs̄c. Because of the current power limiting circuitry, the maximum output current is available only when V_{O} is close to either power supply. As Vo moves away from Vsupp, the maximum output current decreases in proportion to output voltage. The curve below shows maximum output current versus output voltage.

Figure 1: Maximum Output Current for Given Rsc

In general, for a given V_{0}, Isc limit, and case temperature Tc, Rsc can be calculated from the equation below for V_{o} positive, lout positive.

$$
\text { Rsc }=\frac{\left(20.6 \mathrm{~V}_{\mathrm{O}}\right)^{*}+680-2.2\left(\mathrm{TC}-25^{\circ} \mathrm{C}\right)}{\mathrm{ISC}_{\text {(limit) }} \text { in } \mathrm{mA}}
$$

*For V_{O} negative, replace this term with $10.3\left(\mathrm{~V}_{\mathrm{O}}-1.2\right)$
For example, for $\mathrm{l}_{\mathrm{O}}=1.5 \mathrm{~A} @ \mathrm{~V}_{\mathrm{O}}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$,

$$
\operatorname{RsC}=\frac{(20.6)(12)+680}{1500}=\frac{927.2}{1500}=.618
$$

Therefore for this application, Rsc $=.62 \Omega$ (closest standard value)

When 0.62Ω is used, Isc @ $\mathrm{V}_{\mathrm{O}}=\mathrm{OV}$ will be reduced to about 1A. Except for small changes in the. " $\pm \mathrm{V}_{\mathrm{O}(\max)}$ Limit" area, the effects of changing Rsc on the lout vs Vout characteristics can be determined by merely changing the Iout scale on Fig. 1 to correspond to the new value. Changes in Tc move the limit curve bodily up and down.
This internal power limiting circuitry however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 1. Clearly, as Vo decreases, the lo requirement falls also more steeply than the lo available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:

Capacitive Load

Inductive Load (Note catch diode)

Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any 12VDC motor/actuator, the Rsc resistors must be calculated to get proper power delivered to the motor (up to a maximum of 1.5 amps) and VSUPP set at $\pm 15 \mathrm{~V}$. For lower supply and/or output voltages, the maximum output current will follow graphs of Figures 1 and 9.

NOTE ON AMPLIFIER POWER DISSIPATION

The steady state power dissipation limit is given by

$$
P_{D}=\frac{T_{J(M A X)}-T_{A}}{R_{\theta J C}+R_{\theta C H}+R_{\theta H A}}
$$

where
$T_{J}=\quad$ Maximum junction temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature
$\mathrm{R}_{\theta \mathrm{JC}}=$ Thermal resistance from transistor junction to case of package
$\mathrm{R}_{\theta \mathrm{CH}}=$. Thermal resistance from case to heat sink
$\mathrm{R}_{\theta H A}=$ Thermal resistance from heat sink to ambient air And since
$T_{J}=150^{\circ} \mathrm{C}$ for silicoṇ transistors
$\mathrm{R}_{\theta \mathrm{JC}} \cong 2.0 \mathrm{C} / \mathrm{WATT}$ for a steel bottom TO-3 package with die attachment to beryllia substrate to header
$\mathrm{R}_{\theta \mathrm{CH}}=\quad .045^{\circ} \mathrm{C} / \mathrm{W}$ for 1 mil thickness of Wakefield type 120 thermal joint compound
$.09^{\circ} \mathrm{C} / \mathrm{W}$ for 2 mil thickness of type 120
$.13^{\circ} \mathrm{C} / \mathrm{W}$ for 3 mil thickness of type 120
$.17^{\circ} \mathrm{C} / \mathrm{W}$ for 4 mil thickness for type 120
$.21^{\circ} \mathrm{C} / \mathrm{W}$ for 5 mil thickness of type 120 ।
$.24^{\circ} \mathrm{C} / \mathrm{W}$ for 6 mil thickness of type 120
$\mathrm{R}_{\theta H A}=\quad$ The choice of heat sink that a user selects depends upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). $R_{\theta H A} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}$. Using 4 mil joint compound,

$$
P_{D}=\frac{150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{2.0^{\circ}+0.17^{\circ}+2.0}=\frac{150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}
$$

or $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,

$$
\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=30 \mathrm{~W}
$$

and $@ T_{A}=125^{\circ} \mathrm{C}$,

$$
\frac{150^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=6 \mathrm{~W}
$$

From Fig. 2 the worst case steady state power dissipation for the IH 8515 (Rsc $=0.62 \Omega$) is about 15 W and 11 W respectively. Thus this heat sink is adequate.

Figure 2: lout vs. Vout

TYPICAL PERFORMANCE CURVES

Figure 3: Input Offset Voltage vs Power Dissipation

Figure 4: Input Impedance vs Gain vs Frequency

Figure 5: Quiescent Current vs Power Supply Voltage

Figure 6: Large Signal Power Band Width

Figure 7: Small Signal Frequency Response

Figure 8: Maximum Output Current vs. Case Temperature

Figure 9: Maximum Output Current vs. Vsupp

TYPICAL APPLICATIONS

I. CONSTANT VOLTAGE DRIVE FOR D.C. MOTORS

Here $\mathrm{V}_{\text {Out }} / \mathrm{V}_{\text {IN }}=4$, and if $\mathrm{V}_{\text {IN }}=,-3 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=+12 \mathrm{~V}$, and vice versa for $V_{I N}=+3 V$. Diodes D1, D2 should be 1N4001 types; these absorb the inductive kickbacks of the motor. The 2000pF Miller capacitor is used to prevent system oscillation, by providing gain rolloff @-approx. 20 kHz (-3dB).

HEAT SINK INFORMATION

Heat sinks are available from.Intersil. Order part number 290305 ($\$ 10.00$ ea.) with a $R_{\theta H A}=1.3^{\circ} \mathrm{C} /$ watt. A convenient
II. CONSTANT CURRENT DRIVE FOR D.C. MOTORS

$$
\frac{I_{L}}{V_{I N}}=-\frac{R_{f}}{R_{I N}} \bullet \frac{1}{R_{L}}, \text { assuming } R_{f} \gg R_{L}
$$

This circuit allows precisely set motor drive current with op. amp. feedback accuracy. If $R_{\mathbb{N}}=R_{F}=1 k \Omega$, and $R_{L}=10 \Omega$, then $\frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{V}_{I N}}=-0.1 \mathrm{Amps} /$ Volt, and if $R_{L}=1 \Omega$ (use 4 W or more) and $R_{F}=R_{I N}=1 k \Omega, \frac{\mathrm{I}_{\mathrm{L}}}{\mathrm{V}_{I N}}=-1 \times 1=\frac{1 \mathrm{Amp}}{\mathrm{Volt}}$. Thus if $\mathrm{V}_{I N}=1.5 \mathrm{~V}$, 1.5 amps will flow thru the motor. Since one side of the motor will have a 1.5 V drop (with respect to GND), the Vo point will go to 13.5 V and develop 12 V across motor.

$$
6
$$

NOTE: This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

Timers, Counters, and Display Drivers

Counters, Timers and Display Drivers

Part Number	Circuit Description	Package	Crystal Frequency	Output
ICM7045A	Complete industrial stopwatch precision decade timer to count seconds, minutes or hours by selection of suitable oscillator frequencies.	28-Pin DIP	Seconds: 1.31 MHz Minutes: 2.18 MHz Hours: 3.64 MHz	Seven-digit common-cathode LED drive. Displays up to 240.000 seconds, 2,400 minutes. 24-hours.
ICM7201	Low battery voltage indicator	T0-72	Not applicable	Lights LED at voltage below 2.9 V .
ICM7206	Touch-tone encoder; requires single contact per key.	16-Pin DIP	3.57954 MHz	$2-0 f-8$ sine wave for tone dialing
ICM7206A	Touch-tone encoder; requires one contact per key with common line connected to + supply.	16-Pin DIP	3.57954 MHz	$2-0 f-8$ sine wave for tone dialing:
ICM7206B	Touch-tone encoder; requires 2 contacts per key with common line connected to negative supply: oscillator enabled when key is pressed.	16-Pin DIP	3.57954 MHz	2-0f-8 sine wave for tone dialing
ICM7206C	Touch-tone encoder requires single contact per key: oscillator enabled only when key is depressed.	16-Pin DIP	2.57954 MHz	2-of-8 sine wave for tone dialing
ICM7207 ICM7202A	Frequency counter timebase.	$\begin{aligned} & \text { 14-Pin DIP } \\ & \text { 14-Pin DIP } \end{aligned}$	$\begin{aligned} & 6.5536 \mathrm{MHz} \\ & 5.2488 \mathrm{MHz} \end{aligned}$	$0.01,0.1$, or 1 -second count window plus store. reset and MUX.
ICM7208	7-digit unit counter. With addition of 7207 the circuit becomes a complete timer-frequency counter.	28-Pin DIP	-. .	LED display drive
ICM7209	High-frequency clock-generator for 5-volt systems	8-Pin DIP	to 10 MHz	Crystal frequency, plus 8 divider stage
$\begin{aligned} & \text { ICM7211 } \\ & \text { ICM7212 } \end{aligned}$	'Four-digit display decoder drivers: ICM7211 is LCD; ICM7212 is LED; Non-multiplexed for low noise, BCD input, decoded display drive output,	40-Pin DIP (plastic)	-	Four-digit. seven-segment direct display drive: LED or LCD
ICM7213	Oscillator and frequency divider	14-Pin DIP (plastic)	to 10 MHz	1pps. 1ppm, 10 Hz , composite
ICM7216 ICM7226	Eight-digit universal counter measures frequency. period, frequency ratio. time interval. units: on-board time base.	$\begin{aligned} & 28-\text { Pin DIP } \\ & 40 \text {-Pin DIP } \\ & \text { (Cerdip or plastic) } \end{aligned}$	1 or 10 MHz	Eight-digit-common anode or common cathode direct LED drive; BCD output
ICM7217 ICM7227	Four-digit CMOS up/down counter: presettable start/count and compare register: for hardwired or microprocessor control applications: cascadable.	28-Pin Cerdip or plastic	- -	Four-digif, seven-segment common anode or common cathode direct LED display drive: equal, zero, carry/borrow
$\begin{aligned} & \text { ICM7218A/D } \\ & \text { ICM7218E } \end{aligned}$	L.ED display driver system with 8×8 memory: numeric or dot (1 of 64) decoding: microprocessor compatible.	$\begin{aligned} & \text { 28-Pin DIP } \\ & \text { 40-Pin DIP } \\ & \text { (Cerdip or plastic) } \end{aligned}$	- .	Eight-digit, seven-segment plus decimal point: common cathode or common anode
$\begin{aligned} & \text { ICM7224 } \\ & \text { ICM7225 } \end{aligned}$	412-digit high speed counter/decoder/driver: 25 MHz typ; ICM7224 is LCD, ICM7225 is LED: direct display drive, cascadable.	40-Pin DIP (plastic)	-	$4^{1 / 2}$-digit seven-segment direct display driver: LED or LCD
ICM7231	8-digit CMOS multiplexed LCD driver. Parallel input.	40-Pin DIP. (plastic)	- .	Eight-digit. seven-segment plus two flags per digit
ICM7232	$101 / 2$-digit CMOS multiplexed LCD driver. Serial input.	40-Pin DIP (plastic)	- .	$101 / 2$-digit. seven-segment plus two flags per digit
ICM7233	4-character CMOS multiplexed LCD driver. Parallel alphanumeric (6-bit ASCII) input.	40-Pin DIP (plastic)	-	Four-character, 16-segment plus colon
ICM7234	5-character CMOS multiplexed LCD driver. Serial alphanumeric (6 -bit ASCII) input.	40-Pin DIP (plastic)	-	Five-character. 16-segment plus colon
ICM7235/A	4-digit CMOS decoder/driver for direct drive vacuum fluorescent displays, BCD input.	40-Pin DIP (plastic)	-	Four-digit. seven-segment. vacuum fluorescent display drive; either HEX or CODE B
ICM7235M/AM	Same as above but microproces,sor compatible.		\cdots	
ICM7236	4 1 ²-digit high speed CMOS counter/decoder/driver for vacuum fluorescent displays: 25 MHz typ. counting speed.	40-Pin DIP (plastic)	-	4¹2-digit. seven-segment. vacuum fluorescent display drive
ICM7236A	Same as above but counting to 15959.	40-Pin DIP (plastic)	-	4¹2-digit. seven-segment. vacuum fluorescent display drive
ICM7240 [CM7250 ICM7260	Programmable CMOS counter/timers using external RC time base. Programmable from $\mu \mathrm{S}$ to years.	16-Pin DIP	External	Timed output
ICM7242	Fixed CMOS counter/timer..Uses external RC time base: sequence timing from $\mu \mathrm{s}$ to minutes.	8-Pin DIP	External	Timed output
ICM7243	8 -character multiplexed LED display driver with alphanumeric (6-bit ASCII) input.	40-Pin Cerdip	-	Eight-character, 14/16-segment common cathode alphanumeric LED display drive
UCM7555 ICM7556	Single or dual CMOS version of industry-standard 555 timer: $80 \mu \mathrm{~A}$ typ. supply current: 500 kHz guaranteed: 2-18V power supply.	$\begin{aligned} & \text { 8-Pin DIP } \\ & \text { 14-Pin DIP } \end{aligned}$	-	\cdots

FEATURES

- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- High current output can source or sink 200 mA
- Output can drive TTL
- Temperature stability of $0.005 \% /{ }^{\circ} \mathrm{C}$

APPLICATIONS

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Missing Pulse Detector

GENERAL DESCRIPTION

The NE/SE 555 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor; the circuit may be triggered and reset on falling waveforms, and the output structure can source or sink large currents or drive TTL circuits.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ... +18 V
Power Dissipation .. 600 mW
Operating Temperature Range.
NE555 . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
SE555 .. . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range . .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $+300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5 \mathrm{~V}$ to +15 unless otherwise specified.

PARAMETER	TEST CONDITIONS	SE555			NE555			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage		4.5		18	4.5		16	V
Supply Current	$\mathrm{V}^{+}=5 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=\infty$		3	5		3	6	mA
	$\mathrm{V}^{+}=15 \mathrm{VRL}=\infty$		10	12		10	15	
	Low State, Note 1							
Timing Error Initial Accuracy Drift with Temperature Drift with Supply Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega \text { to } 100 \mathrm{k} \Omega \\ & \mathrm{C}=0.1 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$		0.5	2	*	1		\%
			30	100		50		ppm $/{ }^{\circ} \mathrm{C}$
			0.005	0.02		0.01		\%/Volt
Threshold Voltage			2/3			2/3		X VCC
Trigger Voltage	$\mathrm{V}^{+}=15 \mathrm{~V}$	4.8	5	5.2		5		V
	$\mathrm{V}^{+}=5 \mathrm{~V}$.	1.45	1.67	1.9		1.67		
Trigger Current			0.5			0.5		$\mu \mathrm{A}$
Reset Voltage		0.4	0.7	1.0	0.4	0.7	1.0	V
Reset Current			0.1			0.1		mA
Threshold Current	Note 3		0.1	. 25		0.1	. 25	$\mu \mathrm{A}$
Control Voltage Level	$\mathrm{V}^{+}=15 \mathrm{~V}$	9.6	10	10.4	9.0	10	11	
	$\mathrm{V}^{+}=5 \mathrm{~V}$	2.9	3.33	3.8	2.6	3.33 .	4	
Output Voltage Drop (low)	$\mathrm{V}^{+}=15 \mathrm{~V}$							V
	ISINK $=10 \mathrm{~mA}$		0.1	0.15		0.1	. 25	
	ISINK $=50 \mathrm{~mA}$		0.4	0.5		0.4	. 75	
	I SINK $=100 \mathrm{~mA}$		2.0	2.2		2.0	2.5	
	ISINK $=200 \mathrm{~mA}$,	2.5			2.5		
	$\mathrm{V}^{+}=5 \mathrm{~V}$							
	I SINK $=8 \mathrm{~mA}$		0.1	0.25				
	$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$. 25	. 35	
Output Voltage Drop (high)	$\text { ISOURCE }=200 \mathrm{~mA}$		12.5	-		12.5		
	$\mathrm{V}^{+}=15 \mathrm{~V}$							
	ISOURCE $=100 \mathrm{~mA}$							
	$\mathrm{V}+=15 \mathrm{~V}$	13.0	13.3		12.75	13.3		
	$\mathrm{V}^{\prime}+=5 \mathrm{~V}$	3.0	3.3		2.75	3.3		
Rise Time of Output			100			100		nsec
Fall Time of Output			100			100		

NOTE 1: Supply Current when output high typically 1 mA less.
NOTE 2: Tested at $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{V}^{+}=15 \mathrm{~V}$.
NOTE 3: This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation. The maximum total $R=20 \mathrm{M} \Omega$.

TYPICAL CHARACTERISTICS

DELAY TIME vs. SUPPLY VOLTAGE

SUPPLY CURRENT vs. SUPPLY VOLTAGE

LOW OUTPUT VOLTAGE

 vs. OUTPUT SINK CURRENT

PROPAGATION DELAY vs. VOLTAGE LEVEL OF TRIGGER PULSE

APPLICATION INFORMATION

MONOSTABLE OPERATION

TIME DELAY vs. $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ AND C

output high. The voltage across the capacitor increases exponentially with the time constant $\tau R_{A} C$. When the voltage across the capacitor equals $2 / 3 \mathrm{~V}^{+}$, the comparator resets the flip-flop, which in turn discharges the capacitor rapidly and drives the output to its low state.

ASTABLE OPERATION

The circuit can also be connected to trigger itself and free run as a multivibrator. The external capacitor charges through R_{A} and R_{B} and discharges through R_{B} only. Thus the duty cycle may be precisely set by the ratio of these two resistors. In this mode of operation, the capacitor charges and discharges between $1 / 3 \mathrm{~V}^{+}$and $2 / 3 \mathrm{~V}^{+}$. As in the triggered mode,

FREE RUNNING FREQUENCY vs. RA, RB AND C

FREE RUNNING FREQUENCY -Hz
the charge and discharge times, and therefore the frequency are independent of the supply voltage.

The frequency of oscillation is given by: $f=\frac{1}{t}=\frac{1.46}{\left(R_{A}+2 R_{B}\right) C}$

Dual Precision Timer

FEATURES

- Timing from microseconds to hours
- Opérates in both astable and monostable time delay modes
- High output current
- Adjustable duty cycle
- TTL compatible
- Temperature stability of $0.005 \% /{ }^{\circ} \mathbf{C}$

APPLICATIONS

- Precision Timing
- Sequential Timing
- Pulse Shaping
- Pulse Generator
- Missing Pulse Detector
- Tone Burst Generator
- Pulse Width Modulation
- Time Delay Generator
- Frequency Division
- Industrial Controls
- Pulse Position Modulation
- Appliance Timing
- Traffic Light Control
- Touch Tone Encoder

GENERAL DESCRIPTION

The NE/SE556 Dual 555 Monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. Timing is provided by an external resistor and capacitor for each timing function; the two timers operate independently of each other sharing only V^{+}and ground. The circuits may be triggered and reṣet on falling waveforms. The output structures will sink or source 150 mA .

ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. +18 V
Power Dissipation* . 800 mW
Operating Temperature Range NE556 $\ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ SE556 .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range...........$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$
*Derate linearly at $6.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ above ambient temperature of $75^{\circ} \mathrm{C}$.

BLOCK DIAGRAM

PIN CONFIGURATION

(OUTLINE DRAWINGS JD, PD)
ORDERING INFORMATION

NE556/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
NE556F		14 pin CERDIP
NE556N		14 pin plastic DIP
SE556/D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Dice
SE556F**		14 pin CERDIP

*Add /883B to order number if 883 B processing is desired.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5 \mathrm{~V}$ to +15 unless otherwise specified.

PARAMETER	TEST CONDITIONS	SE556			NE556			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage		4.5		18	4.5		16	V
Supply Current (each device)	$\mathrm{V}^{+}=5 \mathrm{~V} \mathrm{RL}=\infty$		3	5		3	6	mA
	$\mathrm{V}^{+}=15 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=\infty$ Low State, Note 1		10	11		10	14	
Timing Error (Monostable) Initial Accuracy	$\begin{aligned} & \mathrm{R}_{\mathrm{A}}=2 \mathrm{~K} \Omega \text { to } 100 \mathrm{~K} \Omega \\ & \mathrm{C}=0.1 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$		0.5	1.5		0.75		\%
Drift with Temperature			30	100		50		ppm $/{ }^{\circ} \mathrm{C}$
Drift with Supply Voltage			0.05	0.2		0.1		\%/V
Timing Error (Astable) Initial Accuracy	$\begin{aligned} & \mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}=2 \mathrm{~K} \Omega \text { to } 100 \mathrm{~K} \Omega \\ & \mathrm{C}=0.1 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$		1.5			2.25		\%
Drift with Temperature			90			150	1	ppm/ ${ }^{\circ} \mathrm{C}$
Drift with Supply Voltage			0.15			0.3		\%/V
Threshold Voltage			2/3			2/3		V^{+}
Threshold Current	Note 3		30	100		30	100	nA
Trigger Voltage	$\mathrm{V}^{+}=15 \mathrm{~V}$	4.8	5	5.2		5		V
	$\mathrm{V}^{+}=5 \mathrm{~V}$	1.45	1.67	1.9		1.67		
Trigger Current			0.5			0.5		$\mu \mathrm{A}$
Reset Voltage		0.4	0.7	1.0	0.4	0.7	1.0	V
Reset Current			0.1			0.1		mA
Control Voltage Level	$\mathrm{V}^{+}=15 \mathrm{~V}$	9.6	10	10.4	9.0	10	11	
	$\mathrm{V}^{+}=5 \mathrm{~V}$	2.9	3.33	3.8	2.6	3.33	4	
Output Voltage (low)	$\mathrm{V}^{+}=15 \mathrm{~V}$							V
	ISINK $=10 \mathrm{~mA}$		0.1	0.15		0.1	. 25	
	IsINK $=50 \mathrm{~mA}$		0.4	0.5		0.4	. 75	
	ISINK $=100 \mathrm{~mA}$		2.0	2.25		2.0	2.75	
	ISINK $=200 \mathrm{~mA}$		2.5			2.5	.	
	$\mathrm{V}^{+}=5 \mathrm{~V}$							
	ISINK $=8 \mathrm{~mA}$		0.1	0.25				
	ISINK $=5 \mathrm{~mA}$. 25	. 35	
Output Voltage (high)	ISOURCE $=200 \mathrm{~mA}$		12.5			12.5		
	$\mathrm{V}^{+}=15 \mathrm{~V}$							
	ISOURCE $=100 \mathrm{~mA}$							
	$\mathrm{V}^{+}=15 \mathrm{~V}$	13.0	13.3		12.75	13.3		
	$\mathrm{V}^{+}=5 \mathrm{~V}$	3.0	3.3		2.75	3.3		
Rise Time of Output			100			100		ns
Fall Time of Output			100			100		
Discharge Leakage Current			20	100		20	100	nA
Matching Characteristics (Note 4) Initial Timing Accuracy			0.05	0.1		0.1	0.2	\%
Timing Drift with Temperature			± 10			± 10		ppm $/{ }^{\circ} \mathrm{C}$
Drift with Supply Voltage			0.1	0.2		0.2	0.5	\%/V

NOTES: 1. Supply current when output is high is typically 1.0 mA less.
2. Tested at $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{V}^{+}=15 \mathrm{~V}$.
3. This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation. The maximum total $R=20 \mathrm{M} \Omega$.
4. Matching characteristics refer to the difference between performance characteristics of each timer section.

ICM7201

Low Battery Voltage Indicator

FEATURES

- Accurate voltage indication: $2.9 \mathrm{~V} \leq \mathbf{V}_{\text {th }} \leq 3.3 \mathrm{~V}$
- Simple to use: requires only an additional LED lamp for complete system
- Low power consumption: 4.5 mW at $\mathrm{V}^{+}=3.6 \mathrm{~V}$
- Good noise rejection - 0.2 V of hysteresis for device threshold voltage

DESCRIPTION

The ICM7201 is designed for use in battery operated systems which require an indication when the battery stack has depleted to a fixed voltage. The LED will light at voltages below 2.9 volts; at voltages above 2.9 volts the LED may be lit by connecting the TEST terminal to GROUND.
The ICM7201 has hysteresis designed into its threshold voltage trigger point so that the LED will not flicker with supply voltage noise and will not be turned on gradually at the trigger voltage. Under all normal circumstances the LED will either be fully on or fully off.

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	100 mW
Maximum Supply Voltage	5V
Maximum Output Current ${ }^{11]}$	A
Operating Temperature	$+85^{\circ} \mathrm{C}$
Storage Temperature	125

TYPICAL OPERATING CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$, Test Circuit unless otherwise stated

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	I^{+}	LED off, $\mathrm{V}^{+}=+3.6 \mathrm{~V}$		1.2	2	mA
Trigger Voltage	VTRIG		2.9	3.1	3.3	V
Temperature Coefficient of Trigger Voltage	$\Delta V_{\text {TRIG }} / \Delta T$			-12		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Hysteresis Voltage	$V_{\text {th }}$			0.2	-	V
LED Current at Trigger Voltage	ILED	VF of LED approx. 1.7 V $\mathrm{V}^{+}=3.1 \mathrm{~V}$		15		mA
Test Current	ITEST	$\mathrm{V}^{+}=3.6 \mathrm{~V}$		0.5	1.5	mA

Note:

1. At high supply voltages (approaching 5 volts) it is necessary to include a current limiting resistor in series.with the LED to limit the output current to 100 mA maximum.

TEST CIRCUIT

Ni-Cd 3-CELL DISCHARGE

TYPICAL OPERATING CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OPTIONS

The ICM7201 can be supplied with maximum supply voltage options up to 15 volts and threshold voltage ranges starting from 1.8 volts. For further information contact the factory.

ICM7207/A CMOS Oscillator Controller

FEATURES

- Stable HF oscillator
- Low power dissipation $\leq 5 \mathrm{~mW}$ with 5 volt supply
- Counter chain has outputs at $\div 2^{12}$ and $\div 2^{n}$ or $\div\left(2^{n} \times 10\right) ; \mathbf{n}=17$ for 7207, and 20 for 7207A
- Low impedance output drivers ≤ 100 ohms
- Count windows of $\mathbf{2 0} / \mathbf{2 0 0 \mathrm { ms }}$ (7207 with 6.5536 MHz crystal) or $0.1 / 1 \mathrm{sec}$. (7207A with 5.24288 MHz crystal)

APPLICATIONS

- System timebases
- Oscilloscope calibration generators
- Marker generator strobes
- Frequency counter controllers

DESCRIPTION

The ICM7207/A consist of a high stability oscillator and frequency divider providing 4 control outputs suitable for frequency counter timebases. Specifically, when used as a frequency counter timebase in conjunction with the ICM7208 frequency counter, the four outputs provide the gating signals for the count window, store function, reset function and multiplex frequency reference. Additionally, the duration of the count window may be changed by a factor of 10 to provide a 2 decade range.counting system.
The normal operating voltage of the ICM7207/A is 5 volts at which the typical dissipation is less than 2 mW using an oscillator frequency of $6.5536 \mathrm{MHz}(5.24288 \mathrm{MHz})$.
In the 7207/A the GATING output, $\overline{R E S E T}$, and the MULTIPLEX output provide both pull up and pull down, eliminating the need for 3 external resistors; although, buffering must be provided if interfacing with $T^{2} L$ is required. RESET occurs $391 \mu \mathrm{~s}$ after STORE, eliminating any potential problems of overlap between STORE and $\overline{\text { RESET when using }}$ the ICM7208:

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
6.0 V

Input Voltages Equal to or less than supply voltage Output Voltages Not more positive than +6 V with respect to GROUND
Output Currents
Power Dissipation @ $25^{\circ} \mathrm{C}$ Note 1 200mW
Operating Temperature Range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
NOTE 1: Derate by $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

TYPICAL OPERATING CHARACTERISTICS

TEST CONDITIONS: fosc $=6.5536 \mathrm{MHz}(7207), 5.24288 \mathrm{MHz}(7207 \mathrm{~A}), \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, test circuit unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage Range	V+	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.	4		5.5	V
Supply Current	$1+$	All outputs open circuit		260	1000	$\mu \mathrm{A}$
Output on Resistances	$\mathrm{r}_{\text {ds }}(\mathrm{on}$)	Output current $=5 \mathrm{~mA}$ All outputs		50	120	Ω
Output Leakage Currents	IOLK	All outputs (STORE only)			50	$\mu \mathrm{A}$
(Output Resistance Terminals $12,13,14$)	(ROUT)	Output current $=50 \mu \mathrm{~A}, 7207 \mathrm{~A}$ only			33K	Ω
Input Pulldown Current	lp'd	Terminal 11 connected to V^{+}		50	200	$\mu \mathrm{A}$
Input Noise Immunity			25			\% supply voltage
Oscillator Frequency Range	fosc	Note 2	2		10	MHz
Oscillator Stability	fstab	$\mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=22 \mathrm{pF}$		0.2	1.0	ppm/V
Oscillator Feedback Resistance	rosc	Quartz crystal open circuit Note 3	3			$\mathrm{M} \Omega$

NOTE 2: Dynamic dividers are used in the initial stages of the divider chain. These dividers have a lower frequency of operation determined by transistor sizes, threshold voltages and leakage currents.
NOTE 3: The feedback resistor has a non-linear value determined by the oscillator instantaneous input and output voltage voltages and the supply voltage.

SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY

OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT SATURATION RESISTANCES AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

Referring to the test circuit, the crystal oscillator frequency is divided by 2^{12} to provide both the multiplex frequency and generate the output pulse widths. The GATING OUTPUT
provides a 50\% duty cycle signal whose period depends upon whether the RANGECONTROL terminal is connected to V^{+}or GROUND (open circuit).
*For ICM7207A this pulse is delayed 391رs.

TEST CIRCUIT

CRYSTAL PARAMETERS

SWITCHES $S_{1}, S_{2}, S_{3}, S_{4}$ OPEN CIRCUIT FOR SUPPLY CURRENT MEASUREMENT.
SWITCH S_{5} OPEN CIRCUIT FOR SLOW GATING PERIOD.

+ SWITCHES $\mathrm{S}_{2}, \mathrm{~S}_{\mathbf{3}}, \mathrm{S}_{\mathbf{4}}$ and 50k RESISTORS ARE NOT NEEDED WHEN USING, THE ICM7207A.

APPLICATION NOTES

OSCILLATOR CONSIDERATIONS

The oscillator consists of a CMOS inverter with a non-linear resistor connected between the input and output terminals to provide biasing. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt change are achievable at a supply voltage of 5 volts, using low cost crystals. The crystal specifications are shown in the TEST CIRCUIT.
It is recommended that the crystal load capacitance (C_{L}) be no greater than 15pF for a crystal having a series resistance equal to or less than 75s, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.
If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance $\pm 10 \mathrm{ppm}$, a low series resistance (less than 25Ω), a low motional capacitance of 5 mpF and a load capacitance of 20pF. The fixed capacitor $C_{\mathbb{N}}$ should be 39pF and the oscillator tuning capacitor should range between approximately 8 and 60pF.
Use of a high quality crystal will result in typical oscillator stabilities of 0.05 ppm per $0: 1$ volt change of supply voltage.

FREQUENCY LIMITATIONS

The ICM7207/A uses-dynamic frequency counters in the initial divider sections. Dynamic frequency counters are faster and consume less power than static dividers but suffer from the disadvantage that there is a minimum operating frequency at a given supply voltage.

CHIP TOPOGRAPHY

Chip may be die attached. using conventional
eutectic or epoxy procedures. Wire bonding may
either aluminum ultrasonic or gold compression.
Chip may be die attached using conventional
eutectic or epoxy procedures. Wire bonding may be
either aluminum ultrasonic or gold compression.
Chip may be die attached. using conventional
eutectic or epoxy procedures. Wire bonding may
either aluminum ultrasonic or gold compression.

For example, if instead of 6.5 MHz , a 1 MHz oscillator is required, it is recommended that the supply voltage be reduced to between 2 and 2.5 volts. This may be realized by using a series resistor in series with the 5 V positive supply line plus a decoupling capacitor. The quartz crystal parameters, etc., will determine the value of this resistor. NOTE: Except for the output open drain n-channel transistors no other terminal is permitted to exceed the supply voltage limits.

PRACTICAL FREQUENCY COUNTER

A complete frequency counter using the ICM7207/A together with the ICM7208 Frequency Counter is described in the ICM7208 data sheet.

FEATURES

- Low operating power dissipation $<10 \mathrm{~mW}$
- Low quiescent power dissipation $<5 \mathrm{~mW}$
- Counts and displays 7 decades
- Wide operating supply voltage range
$\mathbf{2 V} \leq \mathrm{V}^{+} \leq 6 \mathrm{~V}$
- Drives directly 7 decade multiplexed common cathode LED display
- Internal store capability
- Internal inhibit to counter input
- Test speedup point
- All terminals protected against static discharge

DESCRIPTION

The ICM7208 is a fully integrated seven decade counter-decoder-driver and is manufactured using Intersil's low voltage metal gate $\mathrm{C}-\mathrm{MOS}$ process.
Specifically the ICM7208 provides the following on chip functions: a 7 decade counter, multiplexer, 7 segment decoder, digit \& segment driver, plus additional logic for display blanking, reset, input inhibit, and display on/off.
For unit counter applications the only additional components are a 7 digit common cathode display, 3 resistors and a capacitor to generate the multiplex frequency reference, and the control switches.
The ICM7208 is intended to operate over a supply voltage of 2 to 6 volts as a medium speed counter, or over a more restricted voltage range for high frequency applications.
As a frequency counter it is recommended that the ICM7208 be used in conjunction with the ICM7207 Oscillator Controller, which provides a stable HF oscillator, and output signal gating.

\section*{ORDERING INFORMATION
 | ORDER
 PART NUMBER | TEMPERATURE
 RANGE | 28 LEAD
 PACKAGE |
| :---: | :---: | :---: |
| ICM7208IPI | $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | PLASTIC |
| ORDER DICE BY FOLLOWING PART NUMBER:
 ICM7208D | | |}

CHIP TOPOGRAPHY

Chip may be die attached using conventional eutectic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.

PIN CONFIGURATION (OUTLINE DRAWING PI)

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)	W
Supply voltage (Note 2)	6 V
Output digit drive current (Note 3)	150 mA
Output segment drive current	30 mA
Input voltage range (any input terminal) (Note 2)	e supply voltage
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead temperature (soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL OPERATION CHARACTERISTICS

TEST CONDITIONS: ($\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, TEST CIRCUIT, display off, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Quiescent Current	IQ	All controls plus terminal 19 connected to V^{+}. No multiplex oscillator		30	100	
Quiescent Current	IQ	All control inputs plus terminal 19 connected to V^{+}except STORE which is connected to GROUND		70	150	$\mu \mathrm{A}$
Operating Supply Current	- ${ }^{+}$	All inputs connected to V^{+}, RC multiplexer osc operating $\mathrm{f}_{\text {in }}<25 \mathrm{KHz}$		210	500	
Operating Supply Current	1^{+}	$\mathrm{f}_{\mathrm{in}}=2 \mathrm{MHz}$			700	
Supply Voltage'Range	V^{+}	$\mathrm{f}_{\text {in }} \leq 2 \mathrm{MHz}$	3.5		5.5	V
Digit Driver On Resistance	rDIG			4	12	Ω
Digit Driver Leakage Current	IDIG	\cdot	,		500	$\mu \mathrm{A}$
Segment Driver On Resistance	rseg			40	-	Ω
Segment Driver Leakage Current	ISLK	' .		-	500	$\mu \mathrm{A}$
Pullup Resistance of RESET or STORE Inputs	Rp	- :	100	400.		k Ω
COUNTER INPUT Resistance	RIN	Terminal 12 either at V^{+}or GROUND	,		100	
COUNTER INPUT Hysteresis Voltage	VHIN	\cdot		25	50	mV

NOTE 1: This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.
NOTE 2: The supply voltage must be applied before or at the same time as any input voltage. This poses no problems with a single power supply system. If a multiple power supply system is used, it is mandatory that the supply for the ICM7208 is switched on before the other supplies otherwise the device may be permanently damaged.
NOTE 3: The output digit drive current must be limited to 150 mA or less under steady state conditions. (Short term transients up to 250 mA will not damage the device.) Therefore, depending upon the LED display and the supply voltage to be used it may be necessary to include additional segment series resistors to limit the digit currents.

TYPICAL PERFORMANCE CHARACTERISTICS

MAXIMUM COUNTER INPUT FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION
OF SUPPLY VOLTAGE

SEGMENT OUTPUT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF COUNTER INPUT FREQUENCY

TEST CIRCUIT

TEST PROCEDURES

The ICM7208 is provided with three input terminals 7, 23, 27 which may be used to accelerate testing. The least two significant decade counters may be tested by applying an input to the 'COUNTER INPUT' terminal 12. 'TEST POINT' terminal 23 provides an input which bypasses the 2 least significant decade counters and permits an injection of a signal into the third decade counter. Similarly terminals 7 and 27 permit rapid counter advancing at two points further along the string of decade counters.

CONTROL INPUT DEFINITIONS

INPUT	TERMINAL	VOLTAGE	FUNCTION
1. DISPLAY	9	Ground	Display On Display Off
2. $\overline{\text { STORE }}$	11	Ground	Counter Information Latched Counter Information Transferring
3. ENABLE	13	Ground	Input to Counter Blocked Normal Operation
4. $\overline{\text { RESET }}$	14	Ground	Normal Operation Counters Reset

COUNTER INPUT DEFINITION

The internal counters of the ICM7208 index on the negative edge of the input signal at terminal \#12.

BLOCK DIAGRAM

APPLICATION NOTES

1. Format of Signal to be Counted

The noise immunity of the COUNTER INPUT Terminal is approximately $1 / 3$ the supply voltage. Consequently, the input signal should be at least 50% of the supply in peak to peak amplitude and preferably equal to the supply. NOTE: The amplitude of the input signal should not exceed the supply; otherwise, damage may be done to the circuit.
The optimum input signal is a 50% duty cycle square wave equal in amplitude to the supply. However, as long as the rate of change of voltage is not less than approximately $10-4 \mathrm{~V} / \mu \mathrm{sec}$ at 50% of the power supply voltage, the input waveshape can be sinusoidal, triangular, etc.
When driving the input of the ICM7208 from TTL, a $1 \mathrm{k}-5 \mathrm{k}$ ohm pull-up resistor to the positive supply must be used to increase peak to peak input signal amplitude.

2. Display Considerations

Any common cathode multiplexable LED display may be used. However, if the peak digit current exceed 150 mA for any prolonged time, it is recommended that resistors be included in series with the segment outputs to limit digit current to 150 mA .
The ICM7208 is specified with $500 \mu \mathrm{~A}$ of possible digit leakage current. With certain new LED displays that are extremely efficient at low currents, it may be necessary to include resistors between the cathode outputs and the positive supply to bleed off this leakage current.

3. Display Multiplex Rate

The ICM7208 has approximately $0.5 \mu \mathrm{~s}$ overlap between output drive signals. Therefore, if the multiplex rate is very fast, digit ghosting will occur. The ghosting determines the upper limit for the multiplex frequency. At very low multiplex rates flicker becomes visible.

Figure 1: Schematic Unit Counter

5. Frequency Counter

The ICM7208 may be used as a frequency counter when used with an external frequency reference and gating logic. This can be achieved using the ICM7207 Oscillator Controller (Figure 2). The ICM7207 uses a crystal controlled oscillator to provide the store and reset pulses together with the counting window. Figure 3 shows the recommended input gating waveforms to the ICM7208. At the end of a counting period (50% duty cycle) the counter input is inhibited. The counter information is then transferred and stored in latches, and can be displayed. Immediately after
this information is stored, the counters are cleared and are ready to start a new count when the counter input is enabled. Using a 6.5536 mHz quartz crystal and the ICM7207 driving the ICM7208, two ranges of counting may be obtained, using either 0.01 sec or 0.1 sec counter enable windows.

Previous comments on leading zero blanking, etc., apply as per the unit counter.
The ICM7207 provides the multiplex frequency reference of 1.6 kHz .

Figure 2: Frequency Counter

Note: For a 1 sec count window which allows all 7 digits to be used with a resolution of 1 Hz , the ICM7207 can be replaced with the ICM7207A. Circuit details are given on the 7207A data sheet.

Figure 3: Frequency Counter Input Waveforms

6. Period Counter

For this application, as opposed to the frequency counter, the gating and the input signal to be measured are reversed to the frequency counter. The input period is multiplied by two to produce a single polarity signal (50% duty cycle) equal to the input period, which is used to gate into the counter the frequency reference (1 MHz in this case). Figure 5 shows a
block schematic of the input waveform generator. The 1 MHz frequency reference is generated by the ICM7209 Clock Generator using an 8 MHz oscillator frequency and internally dividing this frequency by 8 . Alternatively, a 1 MHz signal could be applied directly to COUNTER INPUT. Waveforms are shown in Figure 4.

Figure 4: Period Counter Input Waveforms

Figure 5: Period Counter Input Generator

CMOS Clock Generator

FEATURES

- High frequency operation - 10 MHz guaranteed
- Easy to use oscillator - requires only a quartz crystal and two capacitors
- Bipolar, MOS and CMOS compatibility
- High output drive capability - $5 \times$ TTL fanout with 10ns rise and fall times
- Low power - 50 mW at 10 MHz
- Choice of two output frequencies - osc., and osc. $\div 8$ frequencies
- Disable control for both outputs
- Wide industrial temperature range $--20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- All inputs fully protected - circuits may be handled without any special precautions

GENERAL DESCRIPTION

The Intersil ICM7209 is a versatile CMOS clock generator capable of driving a number of 5 volt systems with a variety of input requirements. When used to drive up to 5 TTL gates, the typical rise and fall times are 10 ns .
The ICM7209 consists of an oscillator, a buffered output equal to the oscillator frequency and a second buffered output having an output frequency one-eighth that of the oscillator. The guaranteed maximum oscillator frequency is 10 MHz . Connecting the DISABLE terminal to the negative supply forces the $\div 8$ output into the ' 0 ' state and the output 1 into the ' 1 ' state.

ABSOLUTE MAXIMUM RATINGS

Power Dissipation ($25^{\circ} \mathrm{C}$)	300 mW
Supply Voltage	6 V
Output Voltages	Equal to or less than supply
Input Vo.ltages	Equal to or less than supply
Storage Temp.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temp. Range	.$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and function'al operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%$, test circuit, $\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP.	MAX	UNITS
Supply Current	${ }^{+}$	Note 1 No Load		11	20	mA
Disable Input Capacitance	C_{D}				5	pF
Disable Input Leakage	IILK	Either '1' or '0' state			± 10	$\mu \mathrm{A}$
Output Low State	Vol	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads			0.4	
Output High State	VOH	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads	4.0	4.9		,
Output Rise Time (Note 3)	t_{r}	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads		10	25	
Output Fall Time (Note 3)	tf_{f}	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads		10	25	
Minimum OSC Frequency for $\div 8$ Output	fosc	Note 2	2			
Output $\div 8$ duty cycle	,	Any operating frequency Low state : High state		7:9		

NOTE 1: The power dissipation is a function of the oscillator frequency (1st ORDER EFFECT see curve) but is also effected to a small extent by the oscillator tank components.
NOTE 2: The $\div 8$ circuitry uses a dynamic scheme. As with any dynamic system, information or data is stored on very small nodal capacitances instead of latches (static systems) and there is a lower cutoff frequency of operation. Dynamic dividers are used in the ICM7209 to significantly improve high frequency performance and to decrease power consumption.
NOTE 3: Rise and fall times are defined between the output levels of 0.5 and 2.4 volts.

TEST CIRCUIT

CRYSTAL PARAMETERS:
$C_{M}=5 \mathrm{mpF}$
$\mathrm{R}_{\mathrm{S}}=15$ ohms
$C_{O}=3 p F$
$\mathrm{f}=10 \mathrm{MHz}$

TYPICAL OPERATING CHARACTERISTICS

SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY

TYPICAL OUT 1 RISE AND FALL TIMES

Rise and fall times of OUT $\div 8$ are similar to those of OUT 1.

SUPPLY VOLTAGE RANGE FOR CORRECT OPERATION OF $\div 8$ COUNTER AS A FUNCTION OF OSCILLATOR FREQUENCY

APPLICATION NOTES

OSCILLATOR CONSIDERATIONS

The oscillator consists of a C-MOS inverter with a non-linear resistor connected between the oscillator input and output to provide D.C. biasing. Using commercially obtainable quartz crystals the oscillator will operate from low frequencies $(10 \mathrm{KHz}$) to 10 MHz .
The oscillator circuit consumes about $500 \mu \mathrm{~A}$ of current using a 10 MHz crystal with a 5 volt supply, and is designed to operate with a high impedance tank circuit. It is therefore necessary that the quartz crystal be specified with a load capacitance (C_{L}) of 10 pF instead of the standard 30 pF . To maximize the stability of the oscillator as a function of supply voltage and temperature, the motional capacitance of the crystal should be low (5mpF or less). Using a fixed input capacitor of 18 pF and a variable capacitor of nominal value of 18 pF on the output will result in oscillator stabilities of typically 1 ppm per volt change in supply voltage.

THE $\div 8$ OUTPUT

A dynamic divider is used to divide the oscillator frequency by 8 . Dynamic dividers use small nodal capacitances to store voltage levels instead of latches (which are used in static
dividers). The dynamic divider has advantages in high speed operation and low power but suffers from limited low frequency operation. This results in a window of operation for any oscillator frequency (see graph under TYPICAL OPERATING CHARACTERISTICS).

OUTPUT DRIVERS

The output drivers consist of C-MOS inverters having active pullups and pulldowns. Thus the outputs can be used to directly drive TTL gates, other C-MOS gates operating with a 5 volt supply, or TTL compatible MOS gates.
The guaranteed fanout is 5 TTL loads although typical fanout capability is at least 10 TTL loads with slightly increased output rise and fall times.

COMMENTS ON THE DEVICE POWER CONSUMPTION

At low frequencies the principal component of the power consumption is the oscillator. At high oscillator frequencies the major portion of the power is consumed by the output drivers, thus by disabling the outputs (activating the DISABLE INPUT) the device power consumption can be dramatically reduced.

Four Digit CMOS Display Decoder/Drivers

ICM7211 (LCD) FEATURES

- Four digit non-multiplexed 7 segment LCD display oututs with backplane driver
- Complete onboard RC oscillator to generate backplane frequency.
- Backplane input/output allows simple synchronization of slave-device segment outputs to a master backplane signal.
- ICM7211 devices provide separate digit select inputs to accept multiplexed BCD input (Pinout and functionally compatible with Siliconix DF411).
- ICM7211M devices provide data and digit select code input latches controlled by chip select inputs to provide a direct high speed processor interface.
- ICM7211 decodes binary to hexadecimal; ICM7211A decodes binary to Code B (0-9, dash, E, H, L, P, blank)

ICM7212 (LED) FEATURES

- 28 current-limited segment outputs provide 4-digit non-multiplexed direct LED drive at >5mA per segment.
- Brightness input allows direct control of LED segment current with a single potentiometer. Canfunction digitally as a display enable.
- ICM7212M and ICM7212A devices provide same input configuration and output decoding options as the ICM7211.

DESCRIPTION

The ICM7211 (LCD) and ICM7212 (LED) devices constitute a family of non-mültiplexed four-digit seven-segment CMOS display decoder-drivers.
The ICM7211 devices are configured to drive conventional LCD displays by providing a complete RC oscillator, divider chain, backplane driver, and 28 segment outputs. These outputs provide the zero d.c. component signals necessary for long display life.
The ICM7212 devices are configured to drive commonanode LED displays, providing 28 current-controlled low leakage open-drain n-channel outputs. These devices provide a BRIGHTNESS input, which may be used at normal logic levels as a display enable, or with a potentiometer as a continuous display brightness control.
Both the LCD and LED devices are available with two input configurations. The basic devices provide four data-bit inputs and four digit select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices, such as the ICM7217, ICM7226 and ICL7103. The microprocessor interface (suffix M) devices provide data input latches and digit select code latches under control of high-speed chip select inputs. These devices simplify the task of implementing a cost-effective alphanumeric 7-segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating.
The standard devices will provide two different decoder configurations. The basic device will decode the four bit binary input into a seven-segment alphanumeric hexa-decimal output. The " A " versions will provide the same output code as the ICM7218 "Code B", i.e., 0-9, dash, E, H, L, P, blank. Either device will correctly decode true BCD to seven segment decimal outputs.
Devices in the ICM7211/7212 family are packaged in a standard 40 pin plastic dual-in-line package and all inputs are fully protected against static discharge.

PIN CONFIGURATIONS (OUTLINE DRAWING PL)

ABSOLUTE MAXIMÚM RATINGS

Power Dissipation (Note 1)	0.5 W @ $70^{\circ} \mathrm{C}$
Supply Voltage	6.5 V
Input Voltage (Any	
Terminal) (Note 2)	GROUND -0.3 V

Operating Temperature Range .. $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) ... $300^{\circ} \mathrm{C}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: This limit refers to that of the package and will not be realized during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than V^{+}or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7211/ICM7212 be turned on first.

TABLE I: OPERATING CHARACTERISTICS

TEST CONDITIONS: All parameters measured with $\mathrm{V}^{+}=5 \mathrm{~V}$

ICM7211 CHARACTERISTICS (LCD)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	VSUPP		3	5	6	V
Operating Current	lop	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
Oscillator Input Current	Iosci	Pin 36		± 2	± 10	
Segment Rise/Fall Time	tris	$\mathrm{CLL}^{2}=200 \mathrm{pF}$		0.5		$\mu \mathrm{S}$
Backplane Rise/Fall Time	trfb	$\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$		1.5		
Oscillator Frequency	fosc	Pin 36 Floating		16		kHz
Backplane Frequency	f_{bp}	Pin 36 Floating		125		Hz

ICM7212 CHARACTERISTICS (COMMON ANODE LED)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	VSUPP		4	5	6	V
Operating Current Display Off	IOP	Pin 5 (Brightness), Pins 27-34 - GROUND		10	50	$\mu \mathrm{~A}$
Operating Current	IOP	Pin 5 at V ${ }^{+}$Display all 8's		200		mA
Segment Leakage Current	ISLK	Segment Off		± 0.01	± 1	$\mu \mathrm{~A}$
Segment On Current	ISEG	Segment On, VO $=+3 V$	5	8		mA

INPUT CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Logical "1" input voltage	V_{IH}		3			V
Logical " 0 " input voltage	$\mathrm{V}_{\text {IL }}$				1	
Input leakage current	IILK	Pins 27-34		$\pm .01$	± 1	$\mu \mathrm{A}$
Input capacitance	CIN	Pins 27-34		5	;	pF
$\mathrm{BP} / \mathrm{Brightness}$ input leakage	IBPLK	Measured at Pin 5 with Pin 36 at GND		$\pm .01$	± 1	$\mu \mathrm{A}$
BP/Brightness input capacitance	CBPI	All Devices		200		pF

AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION

Digit Select Active Pulse Width	$\mathrm{t}_{\mathrm{s} a}$	Refer to Timing Diagrams	1			$\mu \mathrm{~s}$
Data Setup Time	t_{d}			500		
Data Hold Time	t_{dh}		200			
Inter-Digit Select Time	$\mathrm{t}_{\mathrm{ids}}$		ns			

AC CHARACTERISTICS - MICROPROCESSOR INTERFACE

Chip Select Active Pulse Width	$t_{\text {csa }}$	other chip select either held active, or both driven together	200		

TYPICAL CHARACTERISTICS

ICM7212 LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

ICM7212 LED SEGMENT CURRENT
AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE

ICM7212 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE

BLOCK DIAGRAMS

ICM7211 (A)

ICM7212(A)M

INPUT DEFINITIONS

In this table, V^{+}and GROUND are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 1. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	CONDITION	FUNCTION	
B0	27	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \text { GND = Logical Zero } \\ & \hline \end{aligned}$	Ones (Least Significant)	Data Input Bits
B1	28	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \text { GND = Logical Zero } \end{aligned}$	Twos	
B2	29	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \mathrm{GND}=\text { Logical Zero } \end{aligned}$	Fours	
B3	30	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \text { GND = Logical Zero } \\ & \hline \end{aligned}$	Eights (Most significant)	
OSC (LCD Devices Only)	36	Floating or with external capacitor GROUND	Oscillator input Disables BP output devices, allowing segments to be synced to an external signal input at the BP terminal (Pin 5)	

ICM7211/ICM7212
MULTIPLEXED-BINARY INPUT CONFIGURATION

INPUT	TERMINAL	CONDITION	FUNCTION
D1	31		
D2	32		D1 (Least significant) Digit Select
	D2 Digit Select		
D3 $:$	33	GND $=$ Inactive	
D4	34		D3 Digit Select
			D4 (Most significant) Digit Select

ICM7211M/ICM7212M
MICROPROCESSOR INTERFACE INPUT CONFIGURATION

INPUT	DESCRIPTION	TERMINAL	CONDITION	FUNCTION
DS1	Digit Select Code Bit 1 (LSB)	31.	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \text { GND }=\text { Logical Zero } \end{aligned}$	DS1 \& DS2 serve as a two bit Digit Select Code Input DS2, DS1 $=00$ selects D4 DS2, DS1 = 01 selects D3 DS2, DS1 $=10$ selects D2 DS2, DS1 = 11 selects D1
DS2	Digit Select Code bit 2 (MSB)	32		
CS1	Chip Select 1	33	$\begin{aligned} & \mathrm{V}=\text { Inactive } \\ & \text { GND }=\text { Active } \end{aligned}$	When both $\overline{\mathrm{CS} 1}$ and $\overline{\mathrm{CS} 2}$ are taken low, the data at the Data and Digit Select code inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches.
$\overline{\text { CS2 }}$	Chip Select 2	34		

TEST CIRCUIT

Figure 1: Multiplexed Input Timing Diagram

Figure 2: Microprocessor Interface Input Timing Diagram

DESCRIPTION OF OPERATION

LCD DEVICES

The LCD devices in the family (ICM7211, 7211A, 7211M, 7211AM) provide outputs suitable for driving conventional four-digit by seven-segment LCD displays, inčluding 28 individual segment drivers, backplane driver, and a selfcontained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the n - and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component, which could arise from differing rise and fall times, and ensures maximum display life.
The backplane output devices can be disabled by connecting the OSCillator input (pin 36) to GROUND. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device, or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device represents a load of approximately 200pF (comparable to one additional segment), thus the limitation of the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits; and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane output driver should handle the backplane to a display of 16 one-half-inch characters (rise and fall times not exceeding $5 \mu \mathrm{~s}$. ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7211 devices be slaved to it. This external signal should be capable of driving very

Display Waveforms

large capacitive loads with short ($1-2 \mu \mathrm{~s}$) rise and fall times. The maximum frequency for a backplane signal should be about 125 Hz , although this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 16 KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125 Hz with the oscillator free-running; the oscillator frequency may be reduced by connecting an external capacitorto the OSCillator terminal.

The oscillator may also be overdriven if desired, although care must be taken to ensure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the OSCillator input between the positive supply and a level out of the range where the backplane disable is sensed (about one fifth of the supply voltage above GROUND). Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

LED DEVICES

The LED devices in the family (ICM7212, 7212A, 7212M, 7212AM) provide outputs suitable for directly driving fourdigit by seven-segment common-anode LED displays, including 28 individual segment drivers, each consisting of a low-leakage, current-controlled, open-drain n-channel transistor.
The drain current of these transistors can be controlled by varying the voltage at the BRIGHTNESS input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value ($100 \mathrm{~K} \Omega$ to $1 \mathrm{M} \Omega$) to minimize I2R power consumption, which can be significant when the display is off.
The BRIGHTNESS input may also be operated digitally as a display enable; when high, the display is fully on, and low fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two voltages at the Brightness input.
Note that the LED devices have two connections for GROUND; both of these pins should be connected. The
double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible. When operating LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $35^{\circ} \mathrm{C}$). Power dissipation for the device is given by:

$$
P=\left(V+-V_{F L E D}\right)(I S E G)(n S E G)
$$

where VFLED is the LED forward voltage drop, ISEG is segment current, and nSEG is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the Brightness input to keep power dissipation within the limits described above. :

Figure 3: Brightness control

INPUT CONFIGURATIONS AND OUTPUT CODES

The standard devices in the ICM7211/12 family accept a four-bit true binary (ie, positive level = logical one) input at pins 27 thru 30 , least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7211, ICM7211M, ICM7212, and ICM7212M devices decode this binary input into a seven-segment alphanumeric hexadecimal output, while the ICM7211A, ICM7211AM, ICM7212A, and ICM7212AM decode the binary input into the same sevensegment output as in the ICM7218 "Code B", ie 0-9, dash, E, H, L, P, blank. These codes are shown explicitly in Table 2. Either decoder option will correctly decode true BCD to a seven-segment decimal output.
These devices are actually mask-programmable to provide any 16 combinations of the seven segment outputs decoded from the four input bits. For larger quantity orders, (10K pcs. minimum) custom decoder options can be arranged. Contact the factory for details.
The ICM7211, ICM7211A, ICM7212, and ICM7212A devices are designed to accept multiplexed binary or BCD input. These devices provide four separate digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30 . More than one digit select may be activated simultaneously (which will write the same character into all selected digits), although the timing requirements shown in Fig (1) and Table 1 for data setup, hold, and inter-digit select times must be met to ensure correct output.
The ICM7211M, ICM7211AM, ICM7212M, and ICM7212AM devices are intended to accept data from a data bus under processor control.
In these devices, the four data input bits and the two-bit digit select code (DS1 pin 31, DS2 pin 32) are written into input buffer latches when both chip select inputs (CS1 pin 33, CS2 pin 34) are taken low. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the digit selec ${ }^{+}$code latches.

A select code of 00 writes into D4, SC2 $=0, S C 1=1$ writes into D3, SC2 $=1, S C 1=0$ writes into D2, and 11 writes into D1. The timing relationships for inputting data are shown in Fig (2), and the chip select pulse widths and data setup and hold times are specified in Table 1.

BINARY				HEXADECIMAL ICM7211(M)	$\begin{gathered} \text { CODE B } \\ \text { ICM7211A(M) } \end{gathered}$
B3	B2	B1	B0	ICM7212(M)	ICM7212A(M)
0	0	0	0	-1	?
0	0	0	1	1	I
0	0	1	0	J	\because
0	0	1	1	I	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	-1.	$0 \times$	E	E
0	1	1	1	1	7
1	0	0	0	8	8
1.	0	0	1	9	9
1	0	1	0	B	-
1	0	1	1	6	E
1	1	0	0	'-	H
1	1	0	1	-	$1-$
1	1	1	0	E	9
1	1	1	1	F-	(BLANK)

Table 2: Output Codes

SEGMENT ASSIGNMENT

APPLICATIONS

1. Ganged ICM7211's Driving 8-Digit LCD Display.

2. 4 1/2 Digit LCD DPM with Digit Blanking on Overrange.

NOTE: See also ICL8052/8068/ICL71C03 Data Sheet for a similar circuit with fewer features.
3. 8048/8748/IM87C48 Microprocessor Interface.

ORDER PART NUMBER		OUTPUT CODE	INPUT CONFIGURATIONS	DICE
$\left\lvert\, \begin{aligned} & \text { LCD } \\ & \text { DISPLAY } \end{aligned}\right.$	$\begin{aligned} & \text { ICM7211 IPL } \\ & \text { ICM7211A IPL } \\ & \hline \end{aligned}$	HEXADECIMAL CODE B	MULTIPLEXED 4-BIT	$\begin{aligned} & \text { ICM7211/D } \\ & \text { ICM7211A/D } \end{aligned}$
	ICM7211M IPL ICM7211AM IPL	$\begin{aligned} & \text { HEXADECIMAL } \\ & \text { CODE B } \end{aligned}$	MICROPROCESSOR INTERFACE	ICM7211M/D ICM7211AM/D
LED DISPLAY	$\begin{aligned} & \text { ICM7212 IPL } \\ & \text { ICM7212A IPL } \end{aligned}$	HEXADECIMAL CODE B	MULTIPLEXED 4-BIT	$\begin{aligned} & \text { ICM7212/D } \\ & \text { ICM7212A/D } \end{aligned}$
	ICM7212M IPL ICM7212AM IPL	HEXADECIMAL CODE B	MICROPROCESSOR INTERFACE	ICM7212M/D ICM7212AM/D

TABLE 3: Option Matrix and Ordering Information

FEATURES

- Guaranteed 2 volts operation
- Very low current consumption: Typ. $100 \mu \mathrm{~A} @ 3 \mathrm{~V}$
- All outputs TTL compatible
- On chip oscillator feedback resistor
- Oscillator requires only 3 external components: fixed capacitor, trim capacitor, and a quartz crystal
- Output inhibit function
- 4 simultaneous outputs: one pulse/sec, one pulse/ $\mathbf{m i n}, 16 \mathrm{~Hz}$ and composite $1024+16+2 \mathrm{~Hz}$ outputs
- Test speed-up provides other frequency outputs
- Input static protection - no special handling required

GENERAL DESCRIPTION

The ICM7213 is a fully integrated micropower oscillator and frequency divider with four buffered outputs suitable for interfacing with most logic families. The power supply may be either a two battery stack (Ni-cad, alkaline, etc.) or a regular power supply greater than 2 volts. Depending upon the state of the WIDTH, INHIBIT, and TEST inputs, using a 4.194304 MHz crystal will produce a variety of output frequencies including $2048 \mathrm{~Hz}, 1024 \mathrm{~Hz}, 34.133 \mathrm{~Hz}, 16 \mathrm{~Hz}, 1$ Hz , and $1 / 60 \mathrm{~Hz}$ (plus composites).
The ICM7213 utilizes a very high speed low power metal gate C-MOS technology which uses 6.4 volt zeners between the drains and sources of each transistor and also across the supply terminals. Consequently, the ICM7213 is limited to a 6 volt maximum supply voltage, although a simple dropping network can be used to extend the supply voltage range well above 6 volts (see Figure 2).

ABSOLUTE MAXIMUM RATINGS

Abstract

Supply Voltage .. 6.0 V Output Current (Any output) 20 mA All Input and Oscillator Voltages (Note 1) Equal to but not greater than the supply voltage All Output Voltáges (Note 1) .. $0 \leq$ V $_{0} \leq+6$ Storage Temperature Range................................ Power Dissipation (Note 2) ... 200mW Lead Temperature (Soldering 10 sec .) .. $300^{\circ} \mathrm{C}$ Stresses abovie those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. NOTE 1: The ICM7213 like most C-MOS devices, mayenter a destructive latchup mode if an input or output voltage is applied in excess of those defined and there is no supply current limiting. NOTE 2: Derate linearly power rating of 200 mW at $25^{\circ} \mathrm{C}$ to 50 mW at $70^{\circ} \mathrm{C}$.

OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}+=3.0 \mathrm{~V}$, fosc $=4.194304 \mathrm{MHz}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	${ }^{+}$			100	140	$\mu \mathrm{A}$
Guaranteed Operating Supply Voltage Range	Vop	$-20^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$	2		4	V
Typical Operating Supply Voltage Range	Vop	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	1.4		5	
Output Leakage Current	loLk	Any output, Vout $=6$ Volts			10	$\mu \mathrm{A}$
Output Sat. Resistance	Rout	Any output, lolk $=2.5 \mathrm{~mA}$		120	200	Ω
Inhibit Input Current	11	Inhibit terminal connected to V^{+}		10	40	$\mu \mathrm{A}$
Test Point Input Current	ITP	Test point terminal connected to V^{+}		10	40	
Width Input Current	Iw	Width terminal connected to V^{+}		10	40	
Oscillator gm	gm	$\mathrm{V}^{+}=2 \mathrm{~V}$	100			umho
Oscillator Frequency Range (Note 3)	fosc		1		10	MHz
Oscillator Stability	fstab	$2 \mathrm{~V}<\mathrm{V}+<4 \mathrm{~V}$		1.0		ppm
Oscillator Start Time	ts	$\mathrm{V}+=3.0$ volts		0.1		sec
		$\mathrm{V}+=2.0$ volts		0.2		

NOTE 3: The ICM7213 uses dynamic dividers for high frequency division. As with any dynamic system, information is stored on very small nodal capacitances instead of latches (static system), therefore there is a lower frequency of operation. Dynamic dividers are used to improve the high frequency performance while at the same time significantly decreasing power consumption. At low supply voltages, operation at less than 1 MHz is .possible. See application notes.

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

CUTPUT CURRENT AS A
FUNCTION OF OUTPUT SATURATION VOLTAGE

OSCILLATOR STABILITY
AS A FUNCTION OF DEVICE TEMPERATURE
OSCILLATOR FREQUENCY DEVIATION

OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

TEST CIRCUIT

OUTPUT DEFINITIONS

TABLE I.

INPUT STATES*			PIN 12 OUT 1	PIN 13 OUT 2	PIN 2 OUT 3	PIN 14 OUT 4
TEST	INHIBIT	WIDTH				
L	L	L	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 218 \end{aligned}$	$\begin{aligned} & \hline 1024+16+2 \mathrm{~Hz} \\ & (\div 212 \div 218 \div 221) \text { composite } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{~Hz}, 7.8 \mathrm{mS} \\ & \div 222 \end{aligned}$	$\begin{aligned} & 1 / 60 \mathrm{~Hz}, 1 \mathrm{Sec} . \\ & \div(226 \times 3 \times 5) \end{aligned}$
L	L	H	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 218 \end{aligned}$	$\begin{aligned} & \hline 1024+16+2 \mathrm{~Hz} \\ & (\div 212 \div 218 \div 221) \text { composite } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~Hz}, 7.8 \mathrm{mS} \\ & \div 224 \end{aligned}$	$1 / 60 \mathrm{~Hz}, 125 \mathrm{~ms}$
L	H	L	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 218 . \end{aligned}$	$\overline{1024+16} \mathrm{~Hz}$ $(\div 212 \div 218)$ composite	OFF	OFF
L	H	H	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 218 \end{aligned}$	$\begin{aligned} & \hline 1024+16 \mathrm{~Hz} \\ & (\div 212 \div 218) \text { composite } \end{aligned}$	OFF	SEE WAVEFORMS
H	L	L	ON	$\begin{aligned} & \hline \overline{4096+1024} \mathrm{~Hz} \\ & (\div 210 \div 212) \text { composite } \end{aligned}$	$\begin{aligned} & 2048 \mathrm{~Hz} \\ & \div 211 \end{aligned}$	$\begin{aligned} & 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\ & \div(213 \times 5 \times 3) \end{aligned}$
H	L	H	ON	$\begin{aligned} & \hline 4096+1024 \mathrm{~Hz} \\ & (\div 210 \div 212) \text { composite } \end{aligned}$	$\begin{aligned} & 2048 \mathrm{~Hz} \\ & \div 211 \end{aligned}$	$\begin{aligned} & 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\ & \div(213 \times 5 \times 3) \end{aligned}$
H	H	L	ON	$\begin{aligned} & 1024 \mathrm{~Hz} \\ & \div 212 \end{aligned}$	ON	ON
H	H	H	ON	$\begin{aligned} & 1024 \mathrm{~Hz} \\ & \div 212 \end{aligned}$	ON	ON

NOTE: When TEST and RESET are connected to ground, or left open, all outputs except for OUT 3 and OUT 4 have a 50% duty cycle.

OUTPUT WAVEFORMS

EFFECT OF INHIBIT INPUT TEST connected to ground or left open.

All time scales are arbitrary, and in the case of OUT 3 only the pulses coinciding with the negative edge of OUT 4 are
show. Where time intervals are relevant they are clearly shown.

APPLICATIONS

1. Supply Voltage Considerations

The ICM7213 may be used to provide various precision outputs with frequencies from 2048 Hz to $1 / 60 \mathrm{~Hz}$ using a $4,194,304 \mathrm{~Hz}$ quartz oscillator, and other output frequencies may be obtained using other quartz crystal frequencies. Since the ICM7213 uses dynamic high frequency dividers for the initial frequency division there are limitationsion the supply voltage range depending on the oscillator frequency. If, for example, a low frequency quartz crystal is selected, the supply voltage should be selected in the center of the operating window, or approximately 1.7 volts.

FIGURE 1: Window of Correct Operation

The supply voltage to the ICM7213 may be derived from a high voltage supply by using a simple resistor divider (if power is of no concern), by using a series resistor for minimum current consumption, or by means of a regulator.

FIGURE 2: Biasing Schemes with High Voltage Supplies

2. Logic Family Compatability

Pull up resistors will generally be required to interface with other logic families. These resistors must be connected between the various outputs and the positive power supply.

3. Oscillator Considerations

The oscillator consists of a C-MOS inverter and a feedback resistor whose value is dependent on the voltage at the oscillator input and output terminals and the supply voltage. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt variation are achievable with a nominal supply voltage of 5 volts and a single voltage dropping resistor. The crystal specifications are shown in the TEST CIRCUIT.
It is recommended that the crystal load capacitance (CL) be no greater than 22pF for a crystal having a series resistance equal to or less than 75 ohms, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.
If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance $\pm 10 \mathrm{ppm}$, a low series resistance (less than 25 ohms), a low motional capacitance of 5 mpF and a load capacitance of 20pF. The fixed capacitor CIN should be 30 pF and the oscillator tuning capacitor should range between approximately 16 and 60 pF .'
Use of a high quality crystal will result in typical stabilities of 0.05 ppm per 0.1 volt change of supply voltage.

4. Control Inputs

The TEST input inhibits the 218 output and applies the 2^{9} output to the 221 divider, thereby permitting a speedup of the testing of the $\div 60$ section by a factor of 2048 times. This also results in alternative output frequencies (see table).

The WIDTH input may be used to change the pulse width of OUT 4 from 125 ms to 1 sec , or to change the state of OUT 4 from ON to OFF during INHIBIT.

CHIP TOPOGRAPHY

ICM7216A／B／C／D 10 MHz Universal／ Frequency Counters

FEATURES

ALL VERSIONS：

－Functions as a frequency counter． Measures frequencies from DC to $10 \mathbf{~ M H z}$
－Four internal gate times： $0.01 \mathbf{~ s e c}, 0.1 \mathbf{~ s e c}, 1 \mathbf{~ s e c}, 10 \mathrm{sec}$ in frequency counter mode
－Output directly drives digits and segments of large multiplexed LED displays． Common anode and common cathode versions
－Single nominal 5 V supply required
－Stable high frequency oscillator，uses either 1 MHz or 10 MHz crystal
－Internally generated decimal points， interdigit blanking，leading zero blanking and overflow indication
－Display Off mode turns off display and puts chip into low power mode
－Hold and $\overline{\text { Reset inputs for additional flexibility }}$

ICM7216A AND B

－Functions also as a period counter， unit counter，frequency ratio counter or time interval counter
－ $\mathbf{1}$ cycle， $\mathbf{1 0}$ cycles， 100 cycles， 1000 cycles in period，frequency ratio and time interval modes
－Measures period from $0.5 \mu \mathrm{~s}$ to 10 s

ICM7216C AND D

－Decimal point and leading zero blanking may be externally selected

GENERAL DESCRIPTION

The ICM7216A and B are fully integrated Universal Counters with LED display drivers．They combine a high frequency oscillator，a decade timebase counter， an 8 －decade data counter and latches，a 7 －segment decoder，digit multiplexers and 8 segment and 8 digit drivers which directly drive large multiplexed LED dis－ plays．The counter inputs have a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes．Both inputs are digital inputs． In many applications，amplification and level shifting will be required to obtain proper digital signals for these inputs．
The ICM7216A and B can function as a frequency counter，period counter，frequency ratio（ $\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}$ ） counter，time interval counter or as a totalizing counter．The counter uses either a 10 MHz or 1 MHz quartz crystal timebase．For period and time interval， the 10 MHz timebase gives a $0.1 \mu \mathrm{sec}$ resolution．In period average and time interval average，the resolution can be in the nanosecond range．In the frequency mode，the user can select accumulation times of $0.01 \mathrm{sec}, 0.1 \mathrm{sec}, 1 \mathrm{sec}$ and 10 sec ．With a 10 sec accumulation time，the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit．There is 0.2 seconds between measurements in all ranges．
The ICM7216C and D function as frequency counters only，as described above．
All versions of the ICM7216 incorporate leading zero blanking．Frequency is displayed in kHz ．In the ICM7216A and B，time is displayed in $\mu \mathrm{sec}$ ．The display． is multiplexed at 500 Hz with a 12.2% duty cycle for each digit．The ICM7216A and C are designed for common anode display with typical peak segment cur－ rents of 25 mA ．The ICM7216B and D are designed for common cathode displays with typical peak segment currents of 12 mA ．In the display off mode，both digit and segment drivers are turned off，enabling the dis－ play to be used for other functions．

ORDERING INFORMATION

Universal Counter；Common Anode LED
Universal Counter；Common Cathode LED
Frequency Counter；Common Anode LED
Frequency Counter；Common Cathode LED
Evaluation Kit：
ICM7226 EV／Kit

ICM 7216 A \quad IJ
ICM 7216 B IPI
ICM 7216 C IJI
ICM 7216 D IPI
Type

PIN CONFIGURATIONS (OUTLINE DRAWINGS JI, PI)

EVALUATION KIT

The ICM7226 Universal Counter System has all of the features of the ICM7216 plus a number of additional features. The ICM7226 Evaluation Kit consists of the ICM7226AIDL (Common Anode LED Display), a 10 MHz quartz crystal, 8 each 7 segment . 3 " LED's, P.C. board, resistors, capacitors, diodes, switches, socket: everything needed to quickly assemble a functioning ICM7226 Universal Counter System.

ABSOLUTE MAXIMUM RATINGS

Maximum Digit Output Current	400mA
Maximum Segment Output Current	rent 60mA
Voltage On Any Input or	
Output Terminal[1] $\mathrm{V}^{+}+$	$\mathrm{V}^{+}+.3 \mathrm{~V}$ to $\mathrm{V}^{-}-.3 \mathrm{~V}$
Maximum Power Dissipation at	
	1.0 W (ICM7216A \& C)
	0.5 W (ICM7216B \& D)
Lead Temperature (Soldering, 10 sec	$10 \mathrm{sec}) \ldots3300^{\circ} \mathrm{C}$
Maximum Operating Temperature	
Range	20
aximum	

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

1. The ICM7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding V^{+}to V^{-}by more than 0.3 volts.

ICM7216

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}=5.0 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	- CONDITION	MIN.	TYP.	MAX.	UNITS
ICM7216A/B Operating Supply Current	$.1^{+}$	Display Off, Unused Inputs to GND	\cdots	2	5	mA
Supply Voltage Range	V^{+}	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, Input A , Input B Frequency at $\mathrm{F}_{\text {MAX }}$	$4: 75$		6.0	V
Maximum Frequency Input A, Pin 28	$\mathrm{f}_{\mathrm{A}(\text { max })}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+} \leq 6.0 \mathrm{~V}, \text { Figure } 1, \\ & \text { Function }=\text { Frequency, Ratio, Unit } \\ & \text { Counter } \\ & \text { Function }=\text { Period, Time Interval } \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 2.5 \end{aligned}$,		MHz MHz
Maximum Frequency Input B, Pin 2	$\mathrm{fB}_{\mathrm{B}}(\max)$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+} \leq 6.0 \mathrm{~V} ; \end{aligned}$ Figure 2	2.5			MHz
Minimum Separation Input A to Input B Time Interval Function		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+} \leq 6.0 \mathrm{~V}, \end{aligned}$ Figure 3	250	\cdots	.	n^{\prime}
Maximum Osc. Freq. and Ext. Osc. Frequency	fosc	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+} \leq 6.0 \mathrm{~V} \end{aligned}$	10			MHz
Minimum Ext. Osc. Freq.	fosc	.			100	kHz
Oscillator Transconductance	gm	$\mathrm{V}^{+}-\mathrm{V}^{-}=4.75 \mathrm{~V}, \mathrm{TA}^{+}=+85^{\circ} \mathrm{C}$	2000			$\mu \mathrm{mhos}$
Multiplex Frequency	$f_{\text {mux }}$	fosc $=10 \mathrm{MHz}$		500	'	Hz
Time Between Measurements		$\mathrm{fosc}=10 \mathrm{MHz}$.	-	200		ms
Input Voltages: Pins 2,13;25,27,28. Input Low Voltage Input High Voltage	Vini Vinh	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	3.5	\therefore	1.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Resistance to V^{+} Pins 13,24	$\mathrm{R}_{1 \times}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	100K	400K	.	Ω
Input Leakage Pin 27,28,2	IILK		.		20	$\mu \mathrm{A}{ }^{\text {' }}$
Minimum Input Rate of Change	$\mathrm{dV} \mathrm{V}^{\text {N }} / \mathrm{dt}$	Supplies Well Bypassed	25	15	.	$\mathrm{mV} / \mu \mathrm{s}$
ICM7216A Digit Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Low Output Current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }=+1.0 \mathrm{~V} \end{aligned}$	-140	$\begin{aligned} & -180 \\ & +0.3 \end{aligned}$.	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Segment Driver: Pins 4,5,6,7,9,10,11,12 Low Output Current High Output Current	IOL IOH	$\begin{aligned} & \text { VOUT }=+1.5 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 35 \\ -100 \\ \hline \end{array}$.	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Multiplex Inputs: Pins 1,3,14 Input Low Voltage Input High Voltage Input Resistance to GROUND	VINL Vinh RIN	$V_{I N}=+1.0 \mathrm{~V}$	$\begin{gathered} 2.0 \\ 50 \end{gathered}$	100	0.8	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$
ICM7216B Digit Driver: Pins 4,5,6,7,9,10,11,12 Low. Output Current High Output Current	IOL IOH	$\begin{aligned} & \text { VOUT }=+1.3 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{gathered} 75 \\ -100 \end{gathered}$.	$\begin{array}{r} \mathrm{mA} \\ \mu \mathrm{~A} \end{array}$
Segment Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Leakage Current		$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }^{+}=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	-10	\cdots	$\therefore 10$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Multiplex Inputs: Pins 1,3,14 Input Low Voltage Input High Voltage Input Resistance to V^{+}	$\begin{aligned} & \text { VINL } \\ & V_{\text {INH }} \\ & \text { RIN } \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	$\begin{gathered} \mathrm{V}^{+}-0.8 \\ .200 \end{gathered}$	360	$v^{+}-2.0$	$\begin{gathered} V \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: $\mathrm{V}^{+}=5.0 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN.	TYP	MAX.	UNITS
ICM7216C/D Operating Supply Current	1^{+}	Display Off, Unused Inputs to GND	,	2	5	mA.
Supply Voltage Range		$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, Input A Frequency at $f_{\text {max }}$	4.75		6.0	V
Maximum Frequency Input A, Pin 28	$\mathrm{f}_{\text {A (max })}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+}<6.0 \mathrm{~V} \text {, Figure } 1 \end{aligned}$	10	,		MHz
Maximum Osc. Freq and Ext. Osc. Frequency	fosc	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+}<6.0 \mathrm{~V} \end{aligned}$	10			MHz
Minimum Ext. Osc. Freq.	fosc				100	kHz
Oscillator Transconductance	gm	$\mathrm{V}^{+}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	2000			$\mu \mathrm{mhos}$
Multiplex Frequency	$\mathrm{f}_{\text {mux }}$	$\mathrm{fosc}^{\text {c }}=10 \mathrm{MHz}$		500		Hz
Time Between Measurements		. $\mathrm{fosc}=10 \mathrm{MHz}$		200		ms
Jnput Voltages: Pins 12,27,28 Input Low Voltage Input High Voltage	VINL Vinh	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	3.5		1.0	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input Resistance to V^{+} Pins 12,24	$\mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	100	400		$\mathrm{k} \Omega$
Input Leakage Pin 27, Pin 28	IILK				20	$\mu \mathrm{A}$
Output Current	loí	$\mathrm{V}_{\mathrm{OL}}=+.4 \mathrm{~V}$	0.36			mA
Pin 2	IOH	$\mathrm{VOH}_{\mathrm{OH}}=\mathrm{V}^{+}-.8 \mathrm{~V}$	265			$\mu \mathrm{A}$
Minimum Input Rate of Change	$d V_{\text {IN }} / \mathrm{dt}$	Supplies Well Bypassed	25	15		$\mathrm{mV} / \mu \mathrm{s}$
ICM7216C Digit Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Low Output Current	$\begin{aligned} & \mathrm{I} \mathrm{IOH} \\ & \text { IOL } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Vout }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { Vout }=1.0 \mathrm{~V} \end{aligned}$	-140	$\begin{gathered} -180 \\ 0.3 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Segment Driver: Pins 3,4,5,6,8,9,10,11 Low Output Current High Output Current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VOUT }=+1.5 \mathrm{~V} \\ & \text { Vout }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	20	$\begin{array}{r} 30 \\ -100 \\ \hline \end{array}$		$\begin{gathered} \mathrm{mA} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
Multiplex Inputs: Pins 1,13,14 Input Low Voltage Input High Voltage Input Resistance to GROUND	VINL Vinh Rin	$\mathrm{V}_{\text {IN }}=+1.0 \mathrm{~V}$	$\begin{gathered} 2.0 \\ 50 \end{gathered}$	100	0.8	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$
ICM7216D Digit Driver: Pins 3,4,5,6,8,9,10,11 Low Output Current High Output Current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \end{aligned}$	$\begin{aligned} & \text { Vout }=+1.3 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{gathered} 75 \\ 100 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Segment Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Leakage Current	$\begin{aligned} & \mathrm{IOH} \\ & \text { ISLK } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	10	15	10	$\mathrm{mA}_{\mu \mathrm{A}}$
Multiplex Inputs: Pins $1,13,14$ Input Low Voltage Input High Voltage Input Resistance to V^{+}	VINL VINH Rin	$\mathrm{VIN}_{\text {IN }}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	$\begin{gathered} \mathrm{V}^{+}-0.8 \\ 200 \end{gathered}$	360	$v^{+}-2.0$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{k} \Omega \end{gathered}$

INPUT A

FIGURE 1. Waveform for Guaranteed Minimum $f_{A}(\max)$ Function = Frequency, Frequency Ratio, Unit Counter.

INPUT A OR INPUT B

FIGURE 2. Waveform for Guaranteed Minimum f_{B} (max) and $f_{A}(\max)$ for Function $=$ Period and Time Interval.

TIME INTERVAL MEASUREMENT

The ICM7216 can be used to accurately measure the time interval between two events. With a 10 MHz timebase crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100 ns .

The feature operates with Channel A going.low at the start of the event to be measured, followed by Channel B going low at the end of the event.

When in the time interval mode and measuring a single event, the ICM7216 must first be "primed" prior to measuring the event of interest. This is done by first generating a negative going edge on channel A followed by a negative going edge on channel B to start the "measurement interval." The inputs are then primed ready for the measurement. Positive going edges on A and B, before or after the priming, will be needed to restore the original condition.

This can be easily accomplished with the following circuit: (Figure 3b).

Device	Type
1	CD4049B Inverting Buffer
2	CD4070B Exclusive-OR

FIGURE 3b. Priming Circuit, Signal A\&B High or Low.

Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event.

When timing repetitive signals, it is not necessary to "prime" the ICM7216 as the first alternating signal states automatically prime the device. See Figure 3b.
During any time interval measurement cycle, the ICM7216 requires 200ms following B going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.

NOTE: IF RANGE IS SET TO 1 EVENT, FIRST AND LAST MEASURED INTERVAL WILL COINCIDE.

FIGURE 3a. Waveforms for Time Interval Measurement.

TEST CIRCUIT

OVERFLOW WILL BE INDICATED ON THE DECIMAL POINT OUTPUT OF DIGIT 7.

LED OVERFLOW INDICATOR CONNECTIONS

ICM 7216A
$\frac{\text { CATHODE }}{\text { DEC. PT. }} \quad \frac{\text { ANODE }}{\mathrm{D}_{7}}$

ICM 7216B
D_{7}
DEC. PT.
ICM 7216C
DEC. PT.
D_{7}
ICM 7216D
D_{7}
DEC. PT.

APPLICATION NOTES

GENERAL

INPUTS A and B

INPUTS A and B are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}^{+}=5.0 \mathrm{~V}$. For optimum performance the peak-to-peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from T2L logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.
Note: The amplitude of the input should not exceed the supply, otherwise, the circuit may be damaged.

Multiplexed Inputs

The FUNCTION, RANGE, CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{sec}$). The multiplex inputs are active high for the common anode ICM7216A and C and active low for the common cathode ICM7216B and D.
Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a 10 K resistor should be placed in series with the multiplex inputs as shown in the application circuits.
Table. 1 shows the functions selected by each digit for these inputs.

CONTROL INPUT Functions

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Blank Display is selected at the same time.

Blank Display - To disable the drivers, it is necessary to tie D_{3} to the CONTROL INPUT and have the HOLD input at V^{+}. The chip will remain in this "Display Off" mode until HOLD. is switched back to GND. While in the "Display Off" mode, the segment and digit driver outputs are open, the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal, and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect.A new measurement is initiated when the HOLD input is switched to GND. Segment and Digit Drive outputs may thusly be bussed to drive a common display (up to 6 circuits).

1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the lease significant digit will be in μ second increments rather than $0.1 \mu \mathrm{sec}$ increments.
External Oscillator Enable - In this mode the EXTERNAL OSCILLATOR INPUT is used instead of the on-chip oscillator for Timebase input and Main Counter input in Period and Time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected. The external oscillator input frequency must be greater than 100 KHz or the chip will reset itself to enable the

TABLE 1

.	FUNCTION	DIGIT
FUNCTION INPUT Pin 3 (ICM7216A \& B Only)	Frequency Period Frequency Ratio Time Interval Unit Counter Oscillator Frequency	D_{0} D_{7} D_{1} D_{4} D3 D_{2}
RANGEINPUT Pin 14	$.01 \mathrm{sec} / 1$. Cycle . $1 \mathrm{sec} / 10$ Cycles $1 \mathrm{sec} / 100$ Cycles $10 \mathrm{sec} / 1 \mathrm{~K}$ Cycles	$\begin{aligned} & D_{0} \\ & D_{1} \\ & D_{2} \\ & D_{3} \end{aligned}$
CONTROL INPUT Pin 1	Blank Display Display Test 1 MHz Select External Oscillator Enable External Decimal Point Enable (Test	D_{3} and Hold D_{7} D_{1} Do D_{2} $\left.D_{4}\right)$
EXT..D.P. INPUT Pin 13, ICM7216C	Decimal point is output for same digit that is connected to this input	

on-chip oscillator. Oscillator input (pin 25) must also be connected to EXT. OSC. input when using EXT. OSC. input.

External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to EXTERNAL DECIMAL POINT. input is active. Leading Zero Blanking will be disabled for all digits following the decimal point.
Test Mode - This is a special mode for testing purposes only. Contact factory for details.

RANGE INPUT

The RANGE INPUT selects whether the measurement is made for $1,10,100,1000$ counts of the reference counter. In all functional modes except Unit Counter a change in the RANGE INPUT will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the RANGE INPUT is changed.

FUNCTION INPUT

The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency. This Input is available on the ICM7216A and B only.

These functions select which signal is counted into the Main Counter and which signal is counted by the Reference Counter, as shown in Table 2. In Time Interval, a flip flop is toggled first by a 1-0 transition of Input A and then by a 1-0 transition of Input B. The oscillator is gated into the Main Counter from the time Input A toggles the flip flop until Input B toggles it. A change in the FUNCTION INPUT will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the FUNCTION INPUT is changed.

TABLE 2

DESCRIPTION	MAIN COUNTER	REFERENCE COUNTER
Frequency ($\mathrm{fA}_{\text {A }}$)	Input A	$\begin{aligned} & 100 \mathrm{~Hz} \text { (Oscillator } \\ & \div 105 \text { or } 104 \text {) } \end{aligned}$
Period (t_{A})	Oscillator	Input A
Ratio ($\mathrm{f}_{\mathrm{A} / \mathrm{fB} \text {) }}$	Input A	Input B
Time Interval $(A \rightarrow B)$	Osce(Time Interval FF)	Time Interval FF
Unit Counter (Count A)	Input A	Not Applicable
Osc. Freq. (fosc)	Oscillator	$\begin{aligned} & 100 \mathrm{~Hz} \text { (Oscillator } \\ & \div 105 \text { or } 104 \text {) } \end{aligned}$

EXTeŕnal DECImal Point Input - When the external decimal point is selected this input is active. Any of the digits, except D_{7}, can be'connected to this point. D7 should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point. This input is available on the ICM7216C and D only.
HOLD Input - When the HOLD Input is at V^{+}, any measurement in progress is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated so the last complete measurement is displayed. When HOLD is changed to GND a new measurement is initiated.
RESET Input - The RESET Input is the same as an inverted HOLD Input, except the latches for the Main Counter are enabled, resulting in an output of all zeros, and the pin has a pull-up.

DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{sec}$. An interdigit blanking time of $6 \mu \mathrm{sec}$ is used to prevent ghosting between digits. The decimal point and leading zero blanking assume right hand decimal point displays, and zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled when the Main Counter overflows. Overflow is indicated by the decimal point on digit 7 turning on.
The ICM7216A and C are designed to drive common anode LED displays at peak current of 25 mA /segment, using displays with $V_{F}=1.8 \mathrm{~V}$ at 25 mA . The average $D C$ current will be over 3mA under these conditions. The ICM7216B and D are designed to drive common cathode displays at peak current of $15 \mathrm{~mA} /$ segment using displays with $V_{F}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if
required. Figures $4,5,6$ and 7 show the digit and segment currents as a function of output voltage.
To get additional brightness out of the displays, V^{+}may be increased up to 6.0 V . However, care should be taken to see that maximum power and current ratings are not exceeded.

FIGURE 4. ICM7216A \& C Typical $\mathrm{I}_{\text {DIG }}$ vs. $\mathrm{V}^{+}-\mathrm{V}_{\text {OUT }}$, $4.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 6.0 \mathrm{~V}$

FIGURE 5. ICM7216A \& C. Typical I ${ }_{\text {SEG }}$ vs. $V_{\text {OUT }}$

FIGURE 6. ICM7216B \& D Typical $I_{\text {DIGIT }}$ vs. $V_{\text {OUT }}$

FIGURE 7. ICM7216B \& D Typical $I_{\text {SEG }}$ vs. $\mathbf{V}^{+}-V_{\text {OUT }}$, $4.5 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}$

The segment and digit outputs in ICM7216's are not directly compatible with either TTL or CMOS logic when driving LEDs. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

ACCURACY

In a Universal Counter crystal drift and quantization errors cause errors. In Frequency, Period and Time Interval modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
In addition, there is a quantization error inherent in any digital measurement of ± 1 count. Clearly this error is reduced by displaying more digits. In the Frequency mode the maximum accuracy is obtained with high frequency inputs and in Period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 8, the least accuracy will be obtained at 10 KHz . In Time Interval measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 9. In Frequency Ratio measurement can be more accurately obtained by averaging over more cycles of INPUT B as shown in Figure 10.

FIGURE 8. Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors

FIGURE 9. Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors

FIGURE 10. Maximum Accuracy for Frequency Ratio Measurement Due to Limitation of Quantization Errors

CIRCUIT APPLICATIONS

The ICM72.16 has been designed for use in a wide range of Universal and Frequency counters. In many cases, prescalers will be required to reduce the input frequencies to under 10 MHz . Because INPUT A and INPUT B are digital inputs, additional circuitry is often required for input buffering, amplification, hysterisis, and level shifting to obtain a good digital signal.
The ICM7216A or B can be used as a minimum component complete Universal Counter as shown in Figure 11. This circuit can use input frequencies up to 10 MHz at INPUT A and 2 MHz at INPUT B. If the signal at INPUT A has a very low duty cycle it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse width to be able to guarantee that it is at least 50 ms in duration.
To measure frequencies up to 40 MHz the circuit of Figure 12 can be used. To obtain the correct measured value, it is necessary to divide the oscillator frequency by four as well as the input frequency. In doing this the time between measurements is also lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz .

FIGURE 11. 10MHz Universal Counter

FIGURE 12. 40MHz Frequency Counter

If the input frequency is prescaled by ten, then the oscillator can remain at 10 or 1 MHz , but the decimal point must be moved one digit to the right. Figure 13 shows a frequency counter with a $\div 10$ prescaler and an ICM7216C. Since there is no external decimal point with the ICM7216A or B, the decimal point may be controlled with additional drivers as shown in Figure 14. Alternatively, if separate anodes are available for the decimal points, they can be wired up to the adjacent digit anodes. Note that there can be one zero to the left of the decimal point since the internal leading zero blanking cannot be changed. In Figure 15 additional logic has been added to count the input directly in period mode for maximum accuracy. In Figures 13 through 15, INPUT A comes from Qc of the prescaler rather than Q_{D} to obtain an input duty cycle of 40%.

FIGURE 13. 100 MHz Frequency Counter

FIGURE 14. 100 MHz Multifunction Counter

FIGURE 15. 100 MHz Frequency, 2 MHz Period Counter

OSCILLATOR CONSIDERATIONS

The oscillator is a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ to $22 \mathrm{M} \Omega$ should be connected between the OSCillator INPUT and OUTPUT to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22 pF and a series resistance of less than 35 ohms.

For a specific crystal and load capacitance, the required gm_{m} can be calculated as follows:

$$
\begin{aligned}
& g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{s}\left(1+\frac{C_{o}}{C_{L}}\right)^{2} \\
& \text { where } C_{L}=\left(\frac{C_{\text {in }} C_{o u t}}{C_{\text {in }}+C_{o u t}}\right) \\
& C_{o}=\text { Crystal Static Capacitance } \\
& R_{s}=\text { Crýstal Series Resistance } \\
& C_{\text {in }}=\text { Input Capacitance } \\
& C_{o u t}=\text { Output Capacitance } \\
& \omega=2 \pi f
\end{aligned}
$$

The required gm_{m} should exceed the gm_{m} specified for the ICM7216 by at least 50% to insure reliable startup. The OSCillator INPUT and OUTPUT pins each contribute about 5 pF to C_{in} and $\mathrm{C}_{\text {out }}$. For maximum stability of frequency, C_{in} and Cout should be approximately twice the specified crystal static capacitance.

In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz or 1 MHz . In that case both the multiplex rate and time between measurements will be different. The multiplex rate is $f_{\max }=$ $\frac{f_{\text {osc }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\max }=\frac{\text { fosc }}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 10^{6}}{f_{\text {osc }}}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{f_{\text {osc }}}$ in the 1 MHz mode.
The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the EXTERNAL OSCILLATOR INPUT to the OSCILLATOR OUTPUT or INPUT can cause undesirable shifts in oscillator frequency.

$\mathrm{f}_{\mathrm{A}}(\max), \mathrm{f}_{\mathrm{B}}(\max)$ as a Function of V^{+}

FIGURE 16. 'Typical Operating Characteristics

CHIP TOPOGRAPHY

ICM7216B

ICM7217 Series ICM7227 Series 4 Digit CMOS Up/Down Counter/ Display Driver

FEATURES

- Four decade, presettable up-down counter with parallel zero detect
- Settable register with contents continuously compared to counter
- Directly drives multiplexed 7 segment common anode or common cathode LED displays
- On-board multiplex scan oscillator
- Schmitt trigger on count input
- TTL compatible BCD I/O port, carry/borrow, equal, and zero outputs
- Display blank control for lower power operation; quiescent power dissipation < 5 mW
- All terminals fully protected against static discharge
- Single 5V supply operation

DESCRIPTION

The ICM7217 and ICM7227 are four digit, presettable up/ down counters, each with an onboard presettable register continuously compared to the counter. The ICM7217 versions are intended for use in hardwired applications where thumbwheel switches are used for loading data, and simple SPDT switches are used for chip control. The ICM7227 versions are for use in processor-based systems, where presetting and control functions are performed under processor control.
These circuits provide multiplexed 7 segment LED display outputs, with common anode or common cathode con-
figurations available. Digit and segment drivers are provided to directly drive displays of up to $.8^{\prime \prime}$ character height (common anode) at a 25% duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeroes can be blanked. The data appearing at the 7 segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin.
The ICM7217/7227 (common anode) and ICM7217A/7227A (common cathode) versions are decade counters, providing a maximum count of 9999, while the ICM7217B, 7227B (common anode) and ICM7217C/7227C (common cathode) are intended for timing purposes, providing a maximum count of 5959.
These circuits provide 3 main outputs; a CARRY/BORROW output, which allows for direct cascading of counters, a $\overline{Z E R O}$ output, which indicates when the count is zero, and an EQUAL output, which indicates when the count is equal to the value contained in the register. Data is multiplexed to and from the device by means of a tri-state BCD I/O port. The CARRY/BORROW, $\overline{E Q U A L}, \overline{Z E R O}$ outputs, and the BCD port will each drive one standard TTL load.
To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.
Input frequency is guaranteed to 2 MHz , although the device will typically run with f_{in} as high as 5 MHz . Counting and comparing (EQUAL output) will typically run 750 kHz maximum.

ABSOLUTE MAXIMUM RATINGS

 Absolute maximum ratings define stress limitations which if exceeded may permanently damage the device. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

OPERATING CHARACTERISTICS

$\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit, Display Diode Drop 1.7V, unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply current (Lowest power mode)	${ }^{\text {I }} \mathrm{MIN}$, (7217)	Display Off, LC, DC, UP/DN, ST, RS, BCD I/O Floating or at V^{+}(Note 3)		350	500	$\mu \mathrm{A}$
Supply current (Lowest power mode)	$\stackrel{1}{M}^{+}$IN, (7227)	Display off (Note 3)		300	500	$\mu \mathrm{A}$
Supply current OPERATING	I'P	Common Anode, Display On, all "8's"	175	200		mA
		Common Cathode, Display On, all " 8 's"	85	100		mA
Supply Voltage	V^{+}	. .	4.5	5	5.5	V
Digit Driver output current	IJIG	Common anode, Vout $=\mathrm{V}^{+}-2.2 \mathrm{~V}$	175	200		mA peak
Segment driver output current	ISEG.	Common anode, VOUT $=+1.3 \mathrm{~V}$	-25	-40		mA peak
Digit Driver output current	IDIG	Common cathode, $\mathrm{V}_{\text {OUT }}=+1.3 \mathrm{~V}$	-75	-100		mA peak
Segment Driver output current	ISEG	Common cathode VOUT $=\mathrm{V}^{+}-2 \mathrm{~V}$	10	12.5		mA peak
$\overline{\mathrm{ST}}, \overline{\mathrm{RS}}, \mathrm{UP} / \mathrm{DN}$ input pullup current	Ip	Voút $=\mathrm{V}^{+}-2 \mathrm{~V}$ (See Note 3)	5	25	-	$\mu \mathrm{A}$
3 level input impedance	ZIN			100		k Ω
BCD I/O input high voltage	VBIH	ICM7217 common anode (Note 4)	1.3			V
		ICM7217 common cathode (Note 4)	4.1			V
		ICM7227 with 50pF effective load	3.			V
BCD I/O input low voltage	VBIL	ICM7217 common anode (Note 4)			0.8	V
		ICM7217 common cathode (Note 4)			3.7	V
		ICM7227 with 50 pF effective load			1.5	V
BCD I/O input pullup current	Ibpu	ICM7217 common anode $V_{\text {IN }}=\mathrm{V}^{+}-2 \mathrm{~V}$ (Note 3)	5	25		$\mu \mathrm{A}$
BCD I/O input pulldown current	IBPD	ICM7217 common cathode $\mathrm{V}_{\text {IN }}=+1.3 \mathrm{~V}$ (Note 3)	5	25		$\mu \mathrm{A}$
BCD I/O, Carry/borrow zero, equal outputs output high current	IBOH	$\mathrm{VOH}=\mathrm{V}^{+}-1.5 \mathrm{~V}$	100			$\mu \mathrm{A}$
BCD I/O, Carry/borrow zero, equal outputs output low current	IBOL	$\mathrm{VOL}=+0.4 \mathrm{~V}$	-2		-	mA
Count input frequency (Guaranteed)	$\mathrm{fin}^{\text {in }}$	$\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%,-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	0	5	2	MHz
Count input threshold	$V_{\text {TC }}$	$\mathrm{V}^{+}=5 \mathrm{~V}$		2		V
Count input hysteresis	V_{HC}	$\mathrm{V}^{+}=5 \mathrm{~V}$		0.5		V
Display scan oscillator frequency	f_{ds}	Free-running (SCAN terminal open circuit).		10		KHz
Operating Temperature Range	.$_{\text {, }}$	Industrial temperature range.	-20		85	${ }^{\circ} \mathrm{C}$

NOTE 1 These limits refer to the package and will not be obtained during normal operation.
NOTE 2 Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than V^{+}or less than V^{-}may cause destructive device latchup. For this reason it is recommended that the power supply to the device be established before any inputs are applied and that in multiple systems the supply to the ICM7217/7227 be turned on first.
NOTE 3 In the ICM7217 the Up/Down, Store, Reset and the BCD I/O as inputs have pullup devices which consume power when connected to the negative supply. When all these terminals are connected to the negative supply, with the display off, the device will consume typically $750 \mu \mathrm{~A}$. The ICM7227 devices do not have these pullups and thus are not subject to this condition
NOTE 4 these voltages are adjusted to allow the use of thumbwheel switches for the ICM7217 versions. Note that a positive level is taken as a logic zero for ICM7.217 common-cathode versions only.

TEST CIRCUITS

Figure 1

Figure 1 shows the ICM7217 in the common-anode version and the ICM7227 in the common-cathode version.

Figure 2: ICM7217 Functional Block Diagram

Figure 3: Multiplex Timing

Figure 4: Thumbwheel switch/diode connections

Figure 5: ICM7227 I/O Timing (See Table 2)

CONTROL INPUT DEFINITIONS ICM7217

INPUT	TERMINAL	VOLTAGE	FUNCTION
$\overline{\text { Store (}}$ ($\mathrm{ST}^{\text {) }}$	9	$\begin{aligned} & \mathrm{v}^{+} \text {(or floating) } \\ & \text { Ground } \end{aligned}$	Output latches not updated Output latches updated
Up/Down (U/D)	10	V^{+}(or floating) Ground	Counter counts up Counter counts down
$\overline{\text { Reset }}$ ($\overline{\mathrm{RST}}$)	14	V^{+}(or floating) Ground	Normal Operation Counter Reset
Load Counter LC///O OFF	12	Unconnected v^{+} Ground	Normal operation Counter loaded with BCD data BCD port forced to Hi Z condition
Load Register LR/OFF	11	$\begin{aligned} & \text { Unconnected } \\ & \mathrm{V}^{+} \\ & \text {Ground } \end{aligned}$	Normal operation Register loaded with BCD data Display drivers disabled; BCD port forced to Hi Z condition, mpx counter reset to D4; mpx oscillator inhibited
Display Control (DC)	23 Common Anode 20 Common Cathode	Unconnected. V^{+} Ground	Normal operation Segment drivers disabled Leading zero blanking inhibited

CONTROL INPUT DEFINITIONS ICM7227

INPUT		TERMINAL	VOLTAGE	FUNCTION
$\overline{\text { Data Transfer (}} \overline{\mathrm{DT}}$)		13	V^{+} Ground	Normal Operation Causes transfer of data as directed by select code
Control Word Port "	Store (ST)	9	V^{+}(During $\overline{\mathrm{CWS}}$ Pulse) Ground	Output latches updated Output latches not updated
	Up/ $\overline{\text { Down }}$ (U/D)	10	V^{+}(During $\overline{\mathrm{CWS}}$ Pulse) Ground	Counter counts up Counter counts down
	Select Code Bit 1 (SC1) Select Code Bit 2 (SC2)	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\mathrm{V}^{+}=1$ Ground	SC1, SC2 00 Change store and up/down latches. No data transfer. 01 Output latch data active 10 Counter to be preset 11 Register to be preset
Control Word Strobe ($\overline{\text { CWS }}$)		14	V^{+} Ground	Normal operation Causes control word to be written into control latches
'	Display Control (DC)	23 Common Anode 20 Common Cathode	Unconnected V^{+} Ground	Normal operation Display drivers disabled Leading zero blanking inhibited

DESCRIPTION OF OPERATION

OUTPUTS

The CARRY/BORROW output is a positive going pulse occurring typically 500 ns after the positive going edge of the COUNT INPUT. It occurs when the counter is clocked from 9999 to 0000 when counting up and from 0000 to 9999 when counting down. This output allows direct cascading of counters.
The EQUAL output assumes a negative level when the contents of the counter and register are equal.
The $\overline{\text { ZERO }}$ output assumes a negative level when the content of the counter is 0000 .
The CARRY/BORROW, $\overline{E Q U A L}$ and $\overline{Z E R O}$ outputs will drive a single TTL load over the full range of supply voltage and ambient temperature; for a logic zero, these outputs will sink $2 \mathrm{~mA} @ 0.4 \mathrm{~V}$ (on resistance 200 ohms), and for a logic one, the
outputs source $>60 \mu \mathrm{~A}$.
The digit and segment drivers provide a decoded 7 segment display system, capable of directly driving common anode LED displays at typical peak currents of $40 \mathrm{~mA} / \mathrm{seg}$. This corresponds to average currents of $10 \mathrm{~mA} / \mathrm{seg}$ at a 25% multiplex duty cycle. For the common cathode versions, peak segment currents are 12.5 mA , corresponding to average segment currents of 3.1 mA . The DISPLAY pin controls the display output using three level logic. The pin is self-biased to a voltage approximately $1 / 2$ (V^{-1}; this corresponds to normal operation. When this pin is connected to V^{+}, the segments are inhibited, and when connected to V^{-}, the leading zero blanking feature is inhibited. For normal operation (display on with leading zero blanking) the pin may be left open. The display may be controlled with a 3 position SPDT switch; see fig. 1.

The BCD I/O port provides a means of transferring data to and from the device. The ICM7217 versions multiplex data into the counter or register via thumbwheel switches, depending on inputs to the LOAD COUNTER or LOAD REGISTER pins; in the ICM7227 versions, input/output control and timing must be provided externally. When functioning as outputs, the BCD I/O pins will drive one standard TTL load. Common anode versions have internal pull down resistors and common cathode versions have internal pull up resistors on the four BCD I/O lines.
The onboard multiplex scan oscillator has a nominal freerunning frequency of 10 kHz . This may be reduced by the addition of a single capacitor between the SCAN pin and the positive supply, or the oscillator may be directly overdriven to about 20 kHz . Capacitor values and corresponding nominal oscillator frequencies, digit repetition rates, and loading times (for ICM7217 versions) are shown in Table 1 below.
The internal oscillator output has a duty cycle of approximately 25:1, providing a short pulse occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse width is used to delay the digit driver outputs, thereby providing inter-digit blanking which prevents ghosting. The digits are scanned from MSD (D4) to LSD (D1). See Fig. 3 for the display digit multiplex timing.

Table 1

Scan Capacitor	Nominal Oscillator Frequency	Digit Repetition Date	Scan Cycle Time
None	10 kHz	2.5 kHz	$400 \mu \mathrm{~s}$
20 pF	5 kHz	1.2 kHz	$800 \mu \mathrm{~s}$
90 pF	1 kHz	250 Hz	4 ms

CONTROL OF ICM7217

The counter is incremented by the rising edge of the count input signal when UP/ $\overline{D O W N}$ is high. It is decremented when UP/ $\overline{D O W N}$ is low. A Schmitt trigger on the COUNT INPUT provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments.
The STORE pin controls the internal latches and consequently the signals appearing at the 7 -segment and BCD outputs. Bringing'the $\overline{\text { STORE }}$ pin low transfers the contents of the counter into the latches.
The counter is asynchronously reset to 0000 by bringing the $\overline{R S T}$ pin low. The count input is inhibited during reset and load counter operations. The STO, $\overline{\text { RST }}$ and UP/DOWN pins are provided with pullup resistors of approximately $75 \mathrm{k} \Omega$.
The BCD I/O pins, the LOAD COUNTER ILCI, and LOAD REGISTER (LR) pins combine to provide presetting and compare functions. LC and LR are three-level inputs, being self-biased at approximately $1 / 2 \mathrm{~V}^{+}$for normal operation. With both LC and LR open, and thumbwheel switches (if used) set to "zero" (open), the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD to LSD by the display multiplex. In this mode of operation, the BCD pins will drive one TTL load. When either or both of the LC or LR pins is connected to V^{+}, the TTL driver devices are turned off and the BCD pins become high-impedance inputs. When LC is connected to V^{+}, the count input is inhibited and the levels at the BCD pins are multiplexed into the counter. When LR is connected to V^{+}, the levels at the $B C D$ pins are multiplexed into the register without disturbing the counter. When both are connected to V^{+}, the count is
inhibited and both register and counter are presettable. When LR is connected to GROUND, the oscillator is inhibited, the BCD I/O pins go to the high impedance state, and the segment and digit drivers are turned off. This allows the display to be used for other purposes and minimizes power consumption. In this display off condition, the circuit will continue to count, and the CARRY/BORROW, EQUAL, $\overline{\mathrm{ZERO}}, \mathrm{UP} / \overline{\mathrm{DOWN}}, \overline{\mathrm{RESET}}$ and $\overline{\text { STORE }}$ functions operate as normal. When LC is connected to ground, the BCD I/O pins are forced to the high impedance state without disturbing the counter or register. See "Control Input Definitions" (pg. 5) for a cataloging of the pins that function as three-state selfbiased inputs and their respective operations.
Note that the ICM7217 and 7217B have been designed to drive common anode displays. The BCD inputs are active high, as are the BCD outputs.
The ICM7217A and 7217 C are used to drive common cathode displays, and the BCD inputs are active low. BCD outputs are active high.

NOTES ON THUMBWHEEL SWITCHES \& MULTIPLEXING

The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000 .
Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits: See fig. 4.
In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops (IN914). During load counter and load register operations, the multiplex oscillator is disconnected from the SCAN input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven, however the internal oscillator signal will be of the same duty cycle and phase as the overdriving signal, and the digits are blanked during the time the external signal is at a positive level. To insure proper leading zero blanking, the blanking time should not be less than about $2 \mu \mathrm{~s}$, and by varying the duty cycle, the display brightness may be altered. Overdriving the oscillator at less than 200 Hz may cause display flickering. See fig. 6 for brightness control circuits.
These circuits are variable-duty-cycle os.cillators suitable for overdriving the multiplex oscillator at the SCAN input of an ICM7217. The inverters should be CMOS CD4000 series, and the diodes may be any inexpensive device such as IN914.
When either the LOAD COUNTER (Pin 12) or LOAD REGISTER (Pin 11) is taken high; the chip executes a sequence of operations that reads the thumbwheel switches. These inputs are edge-triggered, and pulsing them high for 500 ns at room temperature will initiate a full thumbwheel switch scan and data entry cycle.
When the circuit recognizes that a load input is high, the multiplex oscillator and counter are reset (to D4). The internal oscillator is then disconnected from the SCAN pin and the preset circuitry is enabled. The oscillator starts and runs with a frequency determined by its internal capacitor, (which may vary from chip to chip). When the chip finishes a full 4 digit multiplex cycle (loading each digit from D4 to D3 to D2 to D1 in turn), it again samples the LOAD REGISTER and LOAD COUNTER inputs. If either or both is still high, it repeats the load cycle, if both are floating or low, the oscillator is reconnected to the SCAN pin and the chip returns to normal operation. Total load time is digit "on" time multiplied by 4.

When using the digit outputs as strobes into the thumbwheel switches, the switched BCD data is inputted and automatically synchronized to the appropriate digit. When using the digit outputs to gate external logic, it must be remembered that input data must be valid at the trailing edge of the digit output.
The preset circuitry is used to perform the reset operation by forcing the BCD input lines to zero, and "presetting" all four decades of counter in parallel. This affects register loading; if LOAD REGISTER is activated when the RESET input is low, the register will be set to zero, since the input lines are forced to zero.
When using the circuit as a programmable divider (\div by N with equal outputs) a short time delay (about $1 \mu \mathrm{~s}$) is needed on the EQUAL output to allow the $\overline{\text { RESET }}$ input to establish a valid duration reset pulse.

When the circuit is configured to reload the counter or register with a new value from the BCD lines (upon reaching EQUAL), loading time will be digit "on" time multiplied by four. If this load time is longer than one period of the input count, a count can be lost. Since the circuit will retain data in the register, the register need only be updated when a new value is to be entered. $\overline{\text { RESET }}$ will not clear the register.

Figure 6: Brightness Circuits

OUTPUT AND INPUT RESTRICTIONS

The CARRY/BORROW output is not valid during load counter and reset operations.
The EQUAL output is not valid during load counter or load register operations.
The $\overline{Z E R O}$ output is not valid during a load counter operation.
The $\overline{\text { RESET }}$ input may be susceptible to noise if its input rise time (counting out of reset) is greater than about $500 \mu \mathrm{~s}$. This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any capacitance to the RESET input can
cause trouble. A simple circuit which provides a reliable power-up reset and a fast rise time on the $\overline{\text { RESET input is }}$ shown below.

CONTROL OF 7227 VERSIONS

The 7227 series has been designed to permit microprocessor control of the inputs. BCD inputs and outputs are active high.
In the IM7227 versions, the STORE, UP/ $\overline{D O W N}, ~ S C 1 ~ a n d ~ S C 2 ~ 2 ~$ (select code bits 1 and 2) pins form a four-bit control word input. A negative-going pulse on the $\overline{\mathrm{CWS}}$ (control word strobe) pin writes the data on these pins into four internal control latches, and resets the multiplex counter in preparation for sequencing a data transfer operation. The select code 00 is reserved for changing the state of the Store and/or Up/Down latches without initiating a data transfer. Writing a one into the Store latch sets the latch and causes the data in the counter to be transferred into the output latches, while writing a zero resets the latches causing them to retain data and not be updated. Similarly, writing a one into the Up/Down latch causes the counter to count up and writing a zero causes the counter to count down. The state of the Store and Up/Down latches may also be changed with a nonzero select code.
Writing a nonzero select code initiates a data transfer operation. Writing select code of 01 (SC1, SC2) indicates that the data in the output latches will be active and enables the BCD I/O port to output the data. Writing a select code of 11 indicates that the register will be preset, and a 10 indicates that the counter will be preset.
When a nonzero select code is read, the clock of the fourstate multiplex counter is switched to the $\overline{\mathrm{DT}}$ ($\overline{\text { DATA TRANS }}-$ $\overline{F E R}$) pin. Negative-going pulses at this pin then sequence a digit-by-digit data transfer, either outputting data or presetting the counter or register as determined by the select code. The output drivers of the BCD I/O port will be enabled only while $\overline{D T}$ is low during a data transfer initiated with a 01 select code.
The sequence of digits will be D4-D3-D2-D1, i.e. when outputting, the data from D4 will be valid during the first $\overline{\mathrm{DT}}$ pulse, then D3 will be valid during the second pulse, etc. When presetting, the data for D4 must be valid at the positivegoing transition (trailing edge) of the first $\overline{\mathrm{DT}}$ pulse, the data for D3 must be valid during the second $\overline{\mathrm{DT}}$ pulse, etc.
At the end of a data.transfer operation, on the positive going transition of the fourth $\overline{\mathrm{DT}}$ pulse, the SC1, and SC2 control latches will automatically reset, terminating the data transfer and reconnecting the multiplex counter clock to the oscillator. In the ICM7227 versions, the multiplex oscillator is always free-running, except during a data transfer operation when it is disabled.
Fig. 5 shows the timing of data transfers initiated with a 11 select code (writing into the register) and a 01 select code (reading out of the output latches). Typical times during which data must be valid at the control word and BCD I/O ports are indicated in Table 2.

Table 2

SYMBOL	DEFINITION	TIME, NS	SYMBOL	DEFINITION	TIME, NS
tows	CONTROL WORD STROBE WIDTH	275	$\mathrm{t}_{\mathrm{c}} \mathrm{dh}$	CONTROL DATA HOLD	300
tics	INTERNAL CONTROL SETUP	2-3 $\mu \mathrm{s}$	tids	$\begin{array}{\|l\|} \hline \text { INPUT } \\ \text { DATA } \\ \text { SETUP } \\ \hline \end{array}$	300
$t \overline{d t}$	DATA TRANSFER PULSE WIDTH	300	tidh	$\begin{array}{\|l\|} \hline \text { INPUT } \\ \text { DATA HOLD } \\ \hline \end{array}$	300
			toda	OUTPUT DATA ACCESS	300
$t_{\text {cds }}$	CONTROL DATA SETUP	300	todh	OUTPUT DATA HOLD	300

APPLICATIONS

1. FIXED DECIMAL POINT

In the common anode versions, a fixed decimal point may be activated by connecting the D.P. segment lead from the appropriate digit (with separate digit displays) through a 39Ω series resistor to Ground. With common cathode devices, the D.P. segment lead should be connected through a 75Ω series resistor to V^{+}.

To force the device to display leading zeroes after a fixed decimal point, use a bipolar transistor and base resistor in a configuration like that shown below with the resistor connected to the digit output driving the D.P. for left hand D.P. displays, and to the next least significant digit output for right hand D.P. display. See Figure 9 for a similarly operating multi-digit connection.

2. UNIT COUNTER WITH BCD OUTPUT (Figure 7)

The simplest application of the ICM7217 is a 4 digit unit counter. All that is required is an ICM7217, a power supply and a 4 digit display. Add a momentary switch for reset, an SPDT center-off switch to blank the display or view leading zeroes; and one more SPDT switch for up/down control. Using an ICM7217.A and a common-cathode calculator-type display, results in the least expensive digital counter/display system available.

Figure 7: Unit Counter

3. PRECISION ELAPSED TIME/COUNTDOWN TIMER (Figure 8)

This circuit uses an ICM7213 precision one minute/one second timebase generator using a 4.1943 MHz crystal for generating pulses counted by an ICM7217B. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare functions. For instance, to make a 24 -hour clock with BCD output the register can be preset with 2400 and the EQUAL output used to reset the counter. Note the 10 k resistor connected between the LOAD COUNTER terminal and Ground. This resistor pulls the LOAD COUNTER input low when not loading, thereby inhibiting the BCD output drivers. This resistor should be eliminated and SW4 replaced with an SPDT center-off switch if the $B C D$ outputs are to be used. This technique may be used on any 3 -level input. The 100 k pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213. For a less expensive (and less accurate) timebase, an ICM7555 timer may be used in a configuration like that shown in Figure 12 to generate a 1 Hz reference.

Figure 8: Precision Timer

4. 8-DIGIT UP/DOWN COUNTER (Figure 9)

This circuit shows how to cascade counters and retain correct leading zero blanking. The NAND gate detects whether a digit is active since one of the two segments \bar{a} or \bar{b} is active on any unblanked number. The flip flop is clocked by the least significant digit of the high order counter, and if this digit is not blanked, the Q output of the flip flop goes high
and turns on the NPN transistor, thereby inhibiting leading zero blanking on the low order counter.
It is possible to use separate thumbwheel switches for presetting, but since the devices load data with the oscillator free-running, the multiplexing of the two devices is difficult to synchronize. This presents no problems with the ICM7227 devices, since the two devices are operated as peripherals to a processor.

Figure 9: 8 Digit Up/Down Counter

5. TAPE RECORDER POSITION INDICATOR/ CONTROLLER (Figure 10)

This circuit shows an application which uses the up/down counting feature of the ICM7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position. For example, an ICM7227 as a peripheral to a processor can monitor the position of a lathe bed or digitizing head, transfer the data to the processor, drive interrupts to the processor using the EQUAL or $\overline{Z E R O}$ outputs, and serve as a numerical display for the processor.
In the tape recorder application, the LOAD REGISTER, $\overline{\overline{E Q U A L}}$ and $\overline{\mathrm{ZERO}}$ outputs are used to control the recorder. T.o make the recorder stop at a particular point on the tape,
the register can be set with the stop point and the EQUAL , output used to stop the recorder either on fast forward, play or rewind.
To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the tape, a few feet from the end of the leader, allows the $\overline{\text { ZERO }}$ output to be used to stop the recorder on rewind, leaving the leader on the reel.
The $1 \mathrm{M} \Omega$ resistor and $.0047 \mu \mathrm{~F}$ capacitor on the COUNT INPUT provide a time constant of about 5 ms to debounce the reel switch. The Schmitt trigger on the COUNT INPUT of the ICM7217 squares up the signal before applying it to the counter. This technique may be used to debounce switchclosure inputs in other applications.

Figure 10: Recorder Indicator

6. PRECISION FREQUENCY COUNTER/ TACHOMETER (Figure 11)

This circuit is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the STORE and RESET signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7027A connected to V^{+}, the gating time will be 0.1 second; this will display tens of hertz as the least significant digit. For shorter gating times, an ICM7207 may be used (with a
6.5536 MHz crystal), giving a 0.01 second gating with Pin 11 connected to V^{+}, and a 0.1 second gating with Pin 11 open.
To implement a four digit tachometer, the ICM7207A with one second gating should be used. To get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60 . This can be done electronically using a phase-locked loop, or mechanically by using a disc rotating with the object with the appropriate number of holes drilled around its edge to interrupt the light from an LED to a photo-dector. For faster updating, use 0.1 second gating, and multiply the rotational frequency by 600.

Figure 11: Precision Frequency Counter ($\sim 1 \mathrm{MHz}$ Maximum)

7. INEXPENSIVE FREQUENCY COUNTER/
 TACHOMETER (Figure 12)

This circuit uses the low power ICM7555 (CMOS 555) to generate the gating, $\overline{\text { STORE }}$ and $\overline{\operatorname{RESET}}$ signals. To provide the gating signal, the timer is configured as an astable multivibrator, using R_{A}, R_{B} and C to provide an output that is positive for approximately one second and negative for approximately
$300-500 \mu \mathrm{~s}$. The positive waveform time is given by $\mathrm{t}_{\mathrm{w} p}=0.693$ ($R_{A}+R_{B}$) C while the negative waveform is given by $t_{w n}=0.693$ $R_{B} C$. The system is calibrated by using a $5 \mathrm{M} \Omega$ potentiometer for R_{A} as a "coarse" control and a 1 k potentiometer for R_{B} as a "fine" control. CD40106B's are used as a monostable multivibrator and reset time delay.

Figure 12: Inexpensive Frequency Counter

8. LCD DISPLAY INTERFACE (Figure 13)

The low-power operation of the ICM7217 makes an LCD interface desirable. The Intersil ICM72114 digit BCD to LCD display driver easily interfaces to the ICM7217. Total system power consumption is less than 5 mW .

Figure 13: LCD Display Interface

9. MICROPROCESSOR INTERFACE-ICM7227

(Figure 14)

This circuit shows the hardware necessary to interface the ICM7227 to an Intersil IM6100 CMOS microprocessor. Using an IM6101 Parallel Interface Element (PIE) allows the addition of one or more ICM7227 devices as generalized peripherals to any IM6100 system, using a minimum of external components.

A similar configuration may be used with the MC6800 using the corresponding PIE, while an 8223 can be used to interface 8080 based systems.

The ICM7227 can perform many "accessory" functions that are inefficient or impossible for the processor to perform. For simple systems, the ICM7227 can provide a cost-effective display latch/decoder/driver. By adding a timebase such' as an ICM7213, and using an ICM7227C or D, an inexpensive real-time clock/display, directly accessible by the processor, can be constructed.

In the area of "intelligent" instrumentation, the ICM7227 can serve as a high speed (up to 750 kHz) counter/comparator. This is the element often used for converting time, frequency, and positional and occurence data into digital form. For example, an ICM7207A can be used with two ICM7227's to provide an 8 digit, 2 MHz frequency counter. Since the ICM7207A gating output has a 50% duty cycle, there is 1 second for the processor to respond to an interrupt, generated by the negative going edge of this signal while it inhibits the count. The processor can respond to the interrupt using ROM based subroutines, to store the data, reset the counter, and read the data into main memory. To add simultaneous period display, the processor inverts the data and an ICM7218 Universal Display Driver stores and displays it. Capacitance can be measured by counting the frequency of an oscillator, thereby allowing the measurement of fluid levels, proximity detectors, etc.
Future Application Notes and Bulletins will address the ICM7227 more fully, and users are welcome to submit any circuits or unique uses for review and possible publication in application information.

Figure 14: IM6100 Interface

OPTION MATRIX \& ORDERING INFORMATION

	Order Part Number	Display Option	Count Option Max Count	$\begin{aligned} & \text { 28-LEAD } \\ & \text { Package } \end{aligned}$
Hardwired Control Versions	ICM7217IJI ICM7217AIPI ICM7217BIJI ICM7217C	Common Anode Common Cathode Common Anode Common Cathode	Decade/9999 Decade/9999 Timer/5959 Timer/5959	CERDIP PLASTIC CERDIP PLASTIC
Processor Control Versions	ICM7227IJI ICM7227AIPI ICM7227BIJI ICM7227CIPI	Common Anode Common Cathode Common Anode Common Cathode	Decade/9999 Decade/9999 Timer/5959 Timer/5959	CERDIP PLASTIC CERDIP PLASTIC

ICM7218 Series CMOS Universal 8 Digit LED Driver System

FEATURES

- Total circuit integration on chip includes:
a) Digit and segment drivers
b) All multiplex scan circuitry
c) 8×8 static memory
d) $\mathbf{7}$ segment Hexadecimal and Code \mathbf{B} decoders
- Output drive suitable for large LED displays
- Both common anode and common cathode LED drive versions
- Single 5 volt supply required
- Data retention to 2 volts supply
- Shutdown feature - turns off display and puts chip into very low power dissipation mode
- Pin selectable choice of 2 seven segment decodersHexa or Code B - or no decode
- Microprocessor compatible
- Serial and random access versions
- Decimal point drive on each digit

GENERAL DESCRIPTION

The ICM7218 series of universal LED driver systems provide, in a single package, all the circuitry necessary to interface most common microprocessors or digital systems and an LED display. Included on chip is an 8×8 static memory array providing storage for the displayed information, 2 types of 7 segment decoders, all the multiplex scan circuitry and the high power digit and segment drivers.

ORDERING INFORMATION

Typical App.	Order Part Number	Display Option	Package
Serial Access	ICM7218A IJI	Common Anode	28 Lead CERDIP
	ICM7218B IPI	Common Cathode	28 Lead Plastic
Random Access	ICM7218C IJI	Common Anode	28 Lead CERDIP
	ICM7218D IPI		
ICM7218E IDL	Common Cathode Common Anode	28 Lead Plastic 40 Lead Ceramic	

CHIP TOPOGRAPHY ICM7218A

The ICM7218A and ICM7218B are intended to be used primarily in microprocessor systems. Data is read directly from the I/O bus line from the microprocessor. 2 Control lines ($\overline{\text { Write }}$, and Mode) define chip select, which reads either 4 bits of control information (Data Coming, Shutdown, Decode, Hexa or Code B Decoding) or 8 bits of Display Input Data. Display Input Data (8 words, 8 bits each) is automatically sequenced into the memory on successive positive going Write pulses. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The ICM7218A drives a common anode display while the ICM7218B drives a common cathode display. (See Block Diagram 1)
The ICM7218C and ICM7218D feature 2 lines for control information (Write, Three Level Input; Hexa, Code B, Shutdown), 4 lines for Input Data and 3 lines for Data Addressing of each of eight data memory locations.
Data is written into memory by setting up a Data Address memory location, defining 4 lines of Input Data and then strobe the Write line low. The Three Level Control Input is independent of the Write instruction. Only Hexadecimal and Code B decoding are available for the Display Outputs. The ICM7218C drives a common anode display, the ICM7218D a common cathode display. (See Block Diagram 2)
The ICM7218E provides 4 separate lines for control information (Write, Hexa-Code B, Decode, Shutdown), 8 lines for input data, and 3 lines for digit address. Data is written into the memory by setting up a Data Address memory location, defining 8 lines of Input Data, and then strobe the Write line low. Control information is on separate lines and is independent of the Write instruction. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The ICM7218E drives a common anode display. (See Block. Diagram 3)

PIN CONFIGURATION (OUTLINE dRAWING JI)

Note: Pins 5, 6, 7, 10 are under control
of Mode pin 9. See page 6-72.
See page 6.69 for other device configurations.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. 6 V
Digit Output Current . 300mA
Segment Output Current . 50mA
Input Voltage (any terminal) . $\mathrm{V}^{+}+0.3 \mathrm{~V}$ to $\mathrm{V}^{-}-0.3 \mathrm{~V}$ NOTE 1
Power Dissipation (28 Pin CERDIP) ... 1 W NOTE 2
Power Dissipation (28 Pin Plastic) ... 0.5 W NOTE 2
Power Dissipation (40 Pin Ceramic) 1 W NOTE 2
Operating Temperature Range . $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
NOTE 1: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than V^{+}or less than GROUND may cause destructive device latchup. For this reason it is recommended that no inputs from sources operating on a different power supply be applied to the device before its own supply is established, and when using multiple supply systems the supply to the ICM7218 should be turned on first.
NOTE 2: These limits refer to the package and will not be obtained during normal operation. Derate above $50^{\circ} \mathrm{C}$ by 25 mW per ${ }^{\circ} \mathrm{C}$.
SYSTEM ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit, Display Diode Drop 1.7V

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage	V^{+}	Power Down Mode	$\begin{aligned} & 4 \\ & 2 \\ & \hline \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	\bar{v}
Quiescent Supply Current	10	Shutdown (Note 3)	6	10	300	$\mu \mathrm{A}$
Operating Supply Current	Iop	Decoder On, Outputs Open Ckt No Decode, Outputs Open Ckt	$\begin{aligned} & \hline 250 \\ & 200 \\ & \hline \end{aligned}$		$\begin{aligned} & 950 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Digit Drive Current	${ }^{\text {IDIG }}$	Common Anode Vout $=\mathrm{V}^{+}-2.0$ Common Cathode Vout $=\mathrm{V}^{-}+1 \mathrm{~V}$	$\begin{gathered} \hline-170 \\ 50 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Digit Leakage.Current	IDLK				100	$\mu \mathrm{A}$
Peak Segment Drive Current	Iseg	Common Anode Vout $=\cdot=+1.5 \mathrm{~V}$ Common Cathode Vout $=\mathrm{V}^{+}-2.0 \mathrm{~V}$	$\begin{array}{r} \hline 20 \\ -10 \\ \hline \end{array}$	25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Segment Leakage Current	IsLK				50	$\mu \mathrm{A}$
Display Scan Rate	${ }_{\text {f mux }}$	Per Digit		250		Hz
Three Level Input Logical "1" Input Voltage Floating Input Logical "0" Input Voltage	Vinh Vinf VINL	Hexidecimal ICM7218C, D (Pin 9) Code B ICM7218C, D (Pin 9) Shutdown ICM7218C, D (Pin 9)	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 1.75 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Three Level Input Impedance	$\mathrm{Z}_{\text {IN }}$	Note 3		100		k Ω
Logical "1" Input Voltage Logical "0" Input Voltage	$\begin{aligned} & V_{\mathrm{VH}} \\ & V_{\mathrm{VL}} \end{aligned}$		3.5		. 8	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Write Pulse Width (Negative) Write Pulse Width (Positive)	$\begin{aligned} & t w \\ & t \bar{w} \\ & t \bar{w} \end{aligned}$	\}7218A, B	$\begin{aligned} & 550 \\ & 550 \end{aligned}$	$\begin{array}{r} 400 \\ 400 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Write Pulse Width (Negative) Write Pulse Width (Positive)	$\begin{aligned} & \overline{t w} \\ & \mathrm{tw} \end{aligned}$	7218C, D, E	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Mode Pulse Width	tm	7218A, B	500			ns
Data Set Up Time	tds		500			ns
Data Hold Time	tah		25			ns
- Digit Address Set Up Time Digit Address Hold Time	$\begin{aligned} & \mathrm{t}_{\text {das }} \\ & \mathrm{t}_{\text {dah }} \end{aligned}$	$\begin{aligned} & \text { ICM7218C, D, E } \\ & \text { ICM7218C, D, E } \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Data Input Impedance	ZIN	5-10. pF Gate Capacitance		'1010		Ohms

NOTE 3: In the ICM7218C and D (random access versions) the Hexa/Code B/Shutdown Input (Pin 9) has internal biasing resistors to hold it at $\mathrm{V}^{+} / 2$ when Pin 9 is open circuited. These resistors consume power and result in a Quiescent Supply Current (lQ) of typically $50 \mu \mathrm{~A}$. The ICM7218A, B, and E devices do not have these biasing resistors and thus are not subject to this condition:

ICM7218A, ICM7218B

(1)

ICM7218C, ICM7218D

(2)

ICM7218E

(3)

*Note: Pins 5, 6, 7, 10 are under control of Mode pin 9 . See page 6.

ICM7218C (OUTLINE DRAWING JI)

ICM7218E (OUTLINE DRAWING DL)

INPUT DEFINITIONS ICM7218A and B

INPUT		TERMINAL	VOLTAGE	FUNCTION
$\overline{\text { WRITE }}$		8	: High	Input Not Loáded Into Memory Input Loaded Into Memory
MODE		9	High Low	Load Control Word on Write Pulse Load Input Data on Write Pulse
ID4 SHUTDOWN	MODE High	10	$\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$	Normal Operation Shutdown (Oscillator, Decoder, and Displays Disabled)
ID5 ($\overline{\mathrm{DECODE}} / \mathrm{No}$ Decode)		6	High Low	No Decode Decode
ID6 (HEXAdecimal/CODE B)		5	$\begin{aligned} & \hline \text { High } \\ & \text { Low } \\ & \hline \end{aligned}$	Hexadecimal Decoding Code B Decoding
ID7 (DATA COMING Control Word)		7	$\begin{aligned} & \text { High } \\ & \text { Low } \\ & \hline \end{aligned}$	$\left.\begin{array}{l}\text { Data Coming } \\ \text { No Data Coming }\end{array}\right\}$ Control Word
Input Data IDO-ID7*	MODE	$\begin{gathered} 11,12,13, \\ 14,5,6 \\ 10,7 \end{gathered}$	$\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$	Loads "One" (Note 2) Loads "Zero" (Note 2)

*IDO-ID3 = Don't care when writing control word
ID4-ID7 = Don't care when writing Hex/Code B
(The display blanks on ICM7218A/B versions when writing in Data)

INPUT DEFINITIONS ICM7218C and D

INPUT	TERMINAL	VOLTAGE	FUNCTION
WRITE	8	High Low	Inputs Not Loaded Into Memory Inputs Loaded Into Memory
Three Level Input (Note 1)	9	High Floating Low	Hexadecimal Decode Code B Decode Shutdown (Oscillator, Decoder and Displays Disabled)
Digit Address DA2 (MSB)-DA0 (LSB)	$10,6,5$	High Low	Loads "Ones" Loads "Zeros"
Input Data ID3 (MSB) - ID0 = Data	$14,13,11,12$	High	Loads "Ones" (Note 2)
ID7 = $\overline{\text { D.P. }}$	7	Low	Loads "Zeros" (Note 2)

INPUT DEFINITIONS ICM7218E

INPUT	TERMINAL	VOLTAGE	FUNCTION
WRITE	9	High Low	Input Latches Not Updated Input Latches Updated
SHUTDOWN	10	High Low	Normal Operation Shutdown (Oscillator, Decoder and Displays Disabled)
$\begin{aligned} & \text { Digit Address }(0,1,2) \\ & \text { DA0-DA2 } \end{aligned}$	13,14,12	High Low	Loads "Ones" Loads "Zeros"
DECODE/No Decode	33	High Low	No Decode Decode
HEXA decimal/CODE B	32	High Low	Code B Decoding Hexadecimal Decoding
Input Data IDO-ID7'	$\begin{gathered} \hline 16,17,18,19 \\ 6 \\ 7,11,8 \\ \hline \end{gathered}$	High Low	Loads "Ones" (Note 2) Loads "Zeros" (Note 2)

NOTE 1 In the ICM7218C and ICM7218D versions, Hexadecimal, Code B anc vrutdown are controlled with a three level input on Pin 9. Pulling Pin 9 high decodes Hexadecimal. Floating. Pin 9 decodes Code B and pulling. Pin 9 low puts the ICM7218 in a Shutdown mode.
NOTE 2 In the No Decode format, "Ones" represents "on" segments for all inputs except for the Decimal Point, where "Zero" represents "on" segments, (i.e.segments are positive true, decimal point is negative true).

Figure 1: Multiplex Timing

Figure 2: Segment Åssignments

$\overline{\text { DECODE/No Decode }}$

For the ICM7218A/B/E products, there are 3 input data formats possible; either direct segment and decimal point information (8 bits per digit) or 2 Binary codes plus decimal point (5 bits per digit). The 7 segment decoder on chip may be disabled if direct segment information is inputted.
In the No Decode format, the inputs directly control the outputs as follows:
Input Data: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Output Segments: $\bar{D} . P$. a blached
In this format, "Ones" represents on segments for all inputs except for the Decimal Point, where "zero' represents on segments.

HEXA decimal or CODE B Decoding

For all products, a choice of either HEXA or Code B decoding may be made, HEXA decoding provides 7 segment numeric plus six alpha characters while Code B provides a negative sign (一), a blank (for leading zero blanking), certain useful alpha characters and all numeric formats.
The four bit binary code is set up on inputs ID3-IDO.

Binary Code	0	1	2	3	4	5	6	7	8	9	10	11	12

SHUTDOWN

SHUTDOWN performs several functions: it puts the device into a very low dissipation mode (typically $10 \mu \mathrm{~A}$ at $\mathrm{V}^{+}=5$), turns off both the digit and segment drivers, stops the multiplex scan oscillator (this is the only way the scan oscillator can be disabled). However, it is still possible to input data to the memory during shutdown - only the output and read sections of the device are disabled.

Powerdown

In a Shutdown Mode, the supply voltage may be reduced to 2 volts without data being lost in memory. However, data should not be written into memory if the supply voltage is less than 4 volts.

Output Drive

The common anode output drive is approximately 200 mA per digit at a 12% duty cycle. With 5 segments being driven, this is equal to about 40 mA per segment peak drive or 5 mA average drive. The common cathode drive is approximately one half that of the common anode drive. If high impedance LED displays are used, the drive will be correspondingly less.

Inter Digit Blanking

A blanking time of approximately $10 \mu \mathrm{~s}$ occurs between digit strobes to ensure that segment information is correct before the next digit drive thereby avoiding ghosting.

Leading Zero Blanking

This may be programmed into chip memory in the nodecode operation (each segment programmed for a zero for the blanked digits) or by using the 16th state (binary 15) with the Code B decoder.

Driving Larger Displays

If a higher average drive current per digit is required, it is possible to parallel connect digit drives together. For example, by paralleling pairs of digit drives together to drive a 4 digit display 10 mA average segment drive can be obtained.

APPLICATIONS, continued

Power Dissipation Considerations

Assuming common anode drive at $\mathrm{V}^{+}=5$ volts and all digits on with an average of 5 segments driven per digit, the average current would be approximately 200 mA . Assuming a 1.8 volt drop across the LED display, there will be a 3.2 volt drop across the ICM7218. The device power dissipation will, therefore, be 640 mW rising to about 900 mW for all ' 8 "s displayed. Caution: Position device in system such that air can flow freely to provide maximum cooling. The common cathode dissipation is approximateiy one half that of the common anode dissipation.

Serial Input Drive Considerations (ICM7218A/B)

The control instructions are read from the input bus lines if MODE is high and WRITE low. The instructions occur on 4 lines and are-Decode/no Decode, type of Decode (if desired), $\overline{\text { SHUTDOWN }}$ /no Shutdown and DATA COMING/not Coming. After the control instructions have been read (with Data Coming instruction) display data can be written into memory with each following negative going pulse of WRITE, MODE being low. After all 8 words or digit memory locations have been written, additional transitions of the state of WRITE are
ignored. It is not possible to change one individual digit without refreshing the data for all the other digits. (This can, however, be achieved with the ICM7218C/D/E where the digits are individually addressed.)

Random Access Input Drive Considerations (ICM7218C/D/E)

Control instructions are provided to the ICM7218C/D by a single three level input terminal (Pin 9), which operates independently of the WRITE pulse. The ICM7218E control instructions are also independent but are on three separate pins (10, 32, 33).
Data can be written into memory on the ICM7218C/D/E by setting up a 3 bit binary code (one of eight) on the digit address inputs (which define the digit where the data is to be written into the memory) and apply a negative going WRITE pulse. For example, it is possible to change only digit 7 without refreshing the data for all the other digits. (However, this cannot be achieved with the ICM7218A/B.)

Supply Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor is recommended between V^{+}and GROUND to bypass multiplex noise.

SWITCHING WAVEFORMS ICM7218

Figure 3

CHIP ADDRESS SEQUENCE ICM7218A and B'

Figure 4
CHIP ADDRESS SEQUENCE EXAMPLE ICM7218C/D/E

Figure 5

TEST CIRCUITS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS, CONTINUED
COMMON CATHODE

DIGIT DRIVER
Idig vs. Vout
AT $25^{\circ} \mathrm{C}$

COMMON CATHODE
SEG. DRIVER
Iseg vs. (\mathbf{V}^{+}-Vout)

COMMON CATHODE

 DIGIT DRIVERIdig vs. Vout

APPLICATION EXAMPLES

8 DIGIT MICROPROCESSOR DISPLAY APPLICATION

The display interface(ICM7218) is shown with an MCS-48 family microprocessor. The 8 bit data bus DB0/DB7-ID0/ID7 transfers control and data information to the 7218 display interface on successive $\overline{\text { WRITE }}$ pulses. When MODE is high a control word is transferred. MODE low allows datatransfer on a WRITE pulse. Eight memory address locations in the 8×8 static memory are automatically sequenced on each succes-
sive $\overline{\text { WRITE }}$ pulse. After eight $\overline{\text { WRITE }}$ pulses have occurred, further pulses are ignored and the display interface returns to normal display operation until a new control word is transferred. See Figure 4. This also allows writing to other peripheral devices without disturbing the ICM7218 A/B.

Decoding of the stored data in memory is defined by the control word and may be decoded in Hexadecimal, Code B, or No-Decode formats.

Figure 6: 8 Digit Microprocessor Display

16 DIGIT MICROPROCESSOR DISPLAY APPLICATION

Both ICM7218's are addressed simultaneously with a 3 bit word, DA2-DA0.
Display data from the MCS-48 I/O bus (DB7-DBO) is transferred to both ICM7218 (ID3-IDO) simultaneously, 4 bits + 4 bits on WRITE enable.
Display digits from both ICM7218's are interleaved to allow adjacent pairs of digits to be loaded sequentially on a single 8 bit data bus, ie D0 D1, D2 D3, D4 D5, etc..

Decimal point information (from the processor, P26-P27) is supplied to the ICM7218 on bus lines ID7 to both devices.
Choice of decoding is available in either Hexadecimal or Code-B format by hardwiring or decoding to a Three Level format on Pin 9 of the ICM7218.
Multiplexing is asynchronous with respect to the microprocessor and is completely performed by the ICM7218.

Figure 7: 16 Digit Display

NO DECODE APPLICATION

The ICM7218 can be used as a microprocessor based LED status panel driver. The microprocessor selected control word would include "No Decode" and "Data Coming". The computer then outputs word oriented "Ones" and "Zeroes" to indicate on-off states. This data is read into the ICM7218 which in turn directly drives appropriate discrete LEDs. LED indicators can be red or green (8 "segments" $\times 8$ digits $=64$ dots $\div 2$ per red or green $=32$ channels). With red, yellow and green, 21 channels can be accommodated.

Additional ICM7218's may be bussed and addressed (see Figures 6 and 7) to expand the status panel capacity. Note per figure 4 that after the ICM7218A/B has been read in its data (8 WRITE pulses), it ignores additional information on the data lines. A new control word must be received before the next write sequence can be accommodated. Consequently, by address decoding and WRITE pulse enabling, numerous ICM7218's can be bussed together to allow a large number of indicator channels.

FEATURES

- High frequency counting - guaranteed 15 MHz , typically 25 MHz at 5 V
- Low power operation - less than $100 \mu \mathrm{~W}$ quiescent
- Store and Reset inputs permit operation as frequency or period counter
- True count inhibit disables first counter stage
- Carry output for cascading four-digit blocks
- Schmitt-trigger on the count input allows operation in noisy environments or with slowly changing inputs
- Leading zero blanking input and output for correct leading zero blanking with cascaded devices
- LCD devices provide complete onboard oscillator and divider chain to generate backplane frequency, or backplane driver may be disabled allowing segments to be slaved to a master backplane signal
- LED devices provide Brightness input which can function digitally as a display enable or with a single potentiometer as a continuous display brightness control

GENERAL DESCRIPTION

The ICM7224 and ICM7225 devices constitute a family of high-performance CMOS 4 1/2-digit counters, including decoders, output latches, display drivers, count inhibit, leading zero blanking, and reset circuitry.
The counter section provides direct static counting, guaranteed from DC to 15 MHz , using a $5 \mathrm{~V} \pm 10 \%$ supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz . The count input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry, which allow a direct interface with the ICM7207/A to implement a low cost, low power frequency counter with a minimum component count.
These devices also incorporate several features intended to simplify cascading four-digit blocks. The carry output allows the counter to be cascaded, while the leading zero blanking input and output allows correct leading zero blanking between four-decade blocks. The backplane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, necessary when using an eight or twelve digit, single backplane display. In LED systems, the brightness input to several ICM7225 devices may be ganged to one potentiometer.
The ICM7224/ICM7225 family are packaged in a standard 40-pin dual-in-line plastic package.

TYPICAL APPLICATION (UNIT COUNTER)

ORDERING INFORMATION

	ORDER PART NUMBER	COUNT OPTION
LCD	ICM7224 IPL	19999
DISPLAY	ICM7224A IPL	15959
LED	ICM7225 IPL	19999
DISPLAY	ICM7225A IPL	15959

PIN CONFIGURATION

(OUTLINE DRAWING PL)

ABSOLUTE MAXIMUM RATINGS

Abstract

Power Dissipation (Note 1) ... $0.5 \mathrm{~W} @ 70^{\circ} \mathrm{C}$ Supply Voltage ($\mathrm{V}+$) 6.5 V

Input Voltage (Any Terminal) (Note 2) . V ${ }^{+}+0.3 \mathrm{~V},-0.3 \mathrm{~V}$ Operating Temperature Range . $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. NOTE 1: This limit refers to that of the package and will not be obtained during normal operation. NOTE 2: Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than V^{+}or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from sources operating on a different power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7224/ICM7225 be turned on first.

OPERATING CHARACTERISTICS TABLE 2

(All Parameters measured with $\mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise indicated)
ICM7224 CHARACTERISTICS

PARAMETER	SYMBOL.	CONDITIONS	MIN	TYP	MAX	UNITS
Operating current	lop	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
Operating supply voltage range	V^{+}		3	5	6	V
Oscillator input current	loscl	Pin 36		± 2	± 10	$\mu \mathrm{A}$
Segment rise/fall time	$\mathrm{t}_{\text {rf }}$	$\mathrm{Cl}_{\text {load }}=200 \mathrm{pF}$		0.5		$\mu \mathrm{S}$
Backplane rise/fall time	t_{ff}	$\mathrm{Cload}^{\text {lo }}$ 5000pF		1.5		
Oscillator frequency	fosc	Pin 36 Floating		16		KHz
Backplane frequency	fbp	Pin 36 Floating		125		Hz

ICM7225 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating current display off	lOPQ	Pin 5 (Brightness) at GROUND Pins 29, 31-34 at V^{+}		10	, 50	$\mu \mathrm{~A}$
Operating supply voltage range	$\mathrm{V}+$		4	5	6	V
Operating current	IOP	Pin 5 at V^{+}, Display 18888		200		mA
Segment leakage current	ISLK	Segment Off		± 0.01	± 1	$\mu \mathrm{~A}$
Segment on current	ISEG	Segment On, Vout $=+3 \mathrm{~V}$	5	8		mA
Half digit on current	IH	Half digit on, Vout $=+3 \mathrm{~V}$	10	16		

FAMILY CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Pullup Currents	Ip	Pins 29, 31, 33, 34 Vout $=V^{+}-3 \mathrm{~V}$	-		10		$\mu \mathrm{A}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Pins 29, 31, 33, 34		3			V
Input Low Voltage	VIL	Pins 29, 31, 33, 34				1	
Count Input Threshold	$V_{C T}$				2		
Count Input Hysteresis	VCH				0.5		
Output High Current	IOH	Carry Pin 28 Leading Zero Out Pin 30 Vout $=\mathrm{V}^{+}-3 \mathrm{~V}$		350	500		$\mu \mathrm{A}$
Output Low Current	IOL	Carry Pin 28 Leading Zero Out Pin 30 Vout $=+3 \mathrm{~V}$		350	500		
Count Frequency	$\mathrm{f}_{\text {count }}$	$4.5 \mathrm{~V}<\mathrm{V}+<6 \mathrm{~V}$		0	DC-25	15	MHz
$\overline{\text { Store, }} \overline{\text { Reset }}$ Minimum Pulse Width	ts, t_{R}			3		,	$\mu \mathrm{S}$

TYPICAL CHARACTERISTICS

7224 OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

7224 BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

7225 LED SEGMENT CURRENT AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE

7225 LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

7225 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE

BACKPLANE FREQUENCY
AS A FUNCTION OF OSCILLATOR CAPACITOR COSC

MAXIMUM COUNT FREQUENCY (TYPICAL) AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION
OF COUNT FREQUENCY

BLOCK DIAGRAMS

In this table, V and GROUND are considered to be normal operating input logic levels. Actual input low and high levels
are specified in Table 2. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	VOLTAGE	FUNCTION
LEADING ZERO INPUT	29	V^{+}or Floating GROUND	Leading Zero Blanking Enabled Leading Zeroes Displayed
Count Inhibit	31	V^{+}or Floating GROUND	Counter Enabled Counter Disabled
$\overline{\text { RESET }}$	33	V^{+}or Floating GROUND	Inactive Counter Reset to 0000
$\overline{\text { STORE }}$	34	V^{+}or Floating GROUND	Output Latches not Updated Output Latches Updated

DESCRIPTION OF OPERATION

LCD Devices

The LCD devices in the family (ICM7224 and ICM7224A) provide outputs suitable for driving conventional 4-1/2 digit by seven segment LCD displays, including 29 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the n - and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times, This eliminates any dc component which could arise from differing rise and fall times, and ensures maximum display life.
The backplane output devices can be disabled by connecting the OSCILLATOR input (pin 36) to GROUND. This synchronizes the 29 segment outputs directly with a signal input at the BP terminal (pin5) and allows cascading of several slave devices to the backplane output of one master device. The backplane may also be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200 pF (comparable to one additional segment). The limitation on the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding 5μ s (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7224 devices be slaved to it.

This external signal should be capable of driving very large capacitive loads with short ($1-2 \mu \mathrm{~s}$) rise and fall times. The maximum frequency for a backplane signal should be about 125 Hz , although this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 16 KHz , at microampere power levels. The oscillator frequency is divided by ${ }^{1} 28$ to provide the backnlane
frequency, which will be approximately 125 Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the OSCILLATOR terminal (pin 36); see the plot of oscillator/backplane frequency in "Typical Characteristics" for detailed information.
The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the OSCILLATOR input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

LED Devices

The LED devices in the family (ICM7225, ICM7225A) provide outputs suitable for directly driving 4-1/2 digit by seven segment common-anode LED displays, including 28 individual segment drivers and one half-digit driver, each consisting of a low-leakage current-controlled open-drain n-channel transistor.
The drain current of these transistors can be controlled by varying the voltage at the BRighTness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on". resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value ($100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$) to minimize I2R power consumption, which can be significant when the display is off.
The BRighTness input may also be operated digitally as a display enable; when at V^{+}, the display is fully on, and at GROUND, fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the BRighTness input.
Note that the LED devices have two connections for GROUND; both should be connected. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.

When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW ' at $70^{\circ} \mathrm{C}$ $\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $35^{\circ} \mathrm{C}$). Power dissipation for the device is given by:

$$
P=\left(V^{+}-V_{F L E D}\right) \times\left(I_{S E G}\right) \times\left(n_{S E G}\right)
$$

where VFLED is the LED forward voltage drop, ISEG is segment current, and nSEG is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above.

Figure 3: Brightness Control

COUNTER SECTION

The devices in the ICM7224/ICM7225 family implement a four digit ripple carry resetab!e counter, including a Schmitt trigger on the COUNTINPUT and a CARRY OUTPUT. Alsoincluded is an extra D-type flip-flop, clocked by the CARRY signal and outputting to the half-digit segment driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negative-going edge of the signal at the COUNT INPUT, while the CARRY OUTPUT provides a negative-going edge following the count which indexes the counter from 9999 (or 5959) to 10000. Once the halfdigit flip-flop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the RESET terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half digit is set, and subsequent CARRY outputs will not be affected.
A negative level at the COUNTENABLE input disables the first divide-by-two in the counter chain without affecting its clock. This provides a true inhibit, not sensitive to the state of the count input, which prevents false counts that can result from using a normal logic gate to prevent counting.
Each decade of counter drives directly into a four-to-seven decoder which develops the seven segment output code. The output data is latched at the driver; when the STORE pin is low, these latches are updated, and when high or floating, the latches hold their contents.
The decoders also include zero detect and blanking logic to provide leading zero blanking. When the LEADING ZERO INPUT is floating or at a positive level, this circuitry is enabled and the device will blank leading zeroes; when low, or the half digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The LEADING ZERO OUTPUT is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked; this can only occur when the LEADING ZERO INPUT is at a positive level and the half digit is not set.

For example, in an eight-decade counter with overflow using two ICM7224/ICM7225 devices, the LEADING ZERO OUTPUT of the high order digit device would be connected to the LEADING ZERO INPUT of the low order digit device. This will assure correct leading zero blanking for all eight digits.

The $\overline{\text { STORE, }} \overline{\text { RESET }}, \overline{\text { COUNTENABLE }}$, and LEADING ZERO INPUTS are provided with pullup devices, so that they may be left open when a positive level is desired. The CARRY and LEADING ZERO OUTPUTS are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7224 or ICM7225 devices in four digit blocks.

DISPLAY WAVEFORMS

TEST CIRCUIT

CHIP TOPOGRAPHY

APPLICATIONS

1. Two-Hour Precision Timer

2. Eight-Digit Precision Frequency Counter

FEATURES

- CMOS design for very low power
- Output drivers directly drive both digits and segments of large 8 digit LED displays. Both common anode and common cathode versions are available
- Measures frequencies from DC to $10 \mathbf{M H z}$; periods from 0.5μ s to 10 s
- Stable high frequency oscillator uses either 1 MHz or 10MHz crystal
- Control signals available for gating of prescalers and prescaler display logic
- Multiplexed BCD outputs

APPLICATIONS

- Frequency Counter
- Period Counter
- Unit Counter
- Frequency Ratio Counter
- Time Interval Counter

GENERAL DESCRIPTION

The ICM7226 is a fully integrated Universal Counter and LED display driver. It combines a high frequency oscillator, a decade timebase counter, an 8 decade data counter and latches, a 7 segment decoder, digit multiplexer, and segment and digit drivers which can directly drive large LED displays. The counter inputs accept a maximum frequency of 10 MHz in FREQUENCY and UNIT COUNTER modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.
The ICM7226 can function as a frequency counter, period counter, frequency ratio ($\mathrm{f}_{\mathrm{A}} / \mathrm{ff}_{\mathrm{B}}$) counter, time interval counter or a totalizing counter. The devices require either a 10 MHz or 1 MHz crystal timebase, or if desired an external timebase can also be used. For PERIOD and TIME INTERVAL; the 10 MHz timebase gives a $0.1 \mu \mathrm{sec}$ resolution. In PERIOD AVERAGE and TIME INTERVAL AVERAGE, the resolution can be in the nanosecond range. In the FREQUENCY mode, the user can select accumulation time of $10 \mathrm{~ms}, 100 \mathrm{~ms}$, 1s and 10 s . With a 10 s accumulation time, the frequency can be displayed to a resolution of 0.1 Hz . There is a 0.2 s interval between measurements in all ranges. Control signals are provided to enable gating and storing of prescaler data.
Leading zero blanking has been incorporated with frequency display in kHz and time in $\mu \mathrm{s}$. The display is multiplexed at a 500 Hz rate with a 12.5% duty cycle for each digit. The ICM7226A is designed for common anode display with typical peak segment currents of 25 mA , and the ICM7226B is designed for common cathode displays with typical segment currents of 12 mA . In the DISPLAY OFF mode, both digit drivers \& segment drivers are turned off, allowing the display to be used for other functions.

ABSOLUTE MAXIMUM RATINGS

Maximum Supply Voltage ... 6.5 V
Maximum Digit Output Current 400mA

*Voltage on any Input or Output Terminal Not to exceed V^{+}or GND by more than +0.3 volts
Maximum Power Dissipation at .. 1.0W (ICM7226A)
$70^{\circ} \mathrm{C}$ (Note 1) 0.5 W (ICM7226B)
Maximum Operating Temperature Range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Storage Temperature Range . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) .. $300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
*NOTE: Destructive latchup may occur if input signals are applied before the power supply is established or if inpüts or outputs are forced to voltages exceeding V^{+}or ground by 0.3 V .

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}=5.0 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Supply Current	$\mathrm{I}^{+}{ }^{+}$	Display Off Unused inputs to GROUND		2	5	mA
Supply Voltage Range	V SUPP	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ Input A, Input B Frequency at fmax	4.75		6.0	V
```Maximum Guaranteed Frequency Input A, Pin 40```	$\mathrm{f}_{\mathrm{A} \text { (max) }}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}+<6.0 \mathrm{~V} \text { Figure } 1 \\ & \text { Function = Frequency, } \\ & \text { Ratio, Unit Counter } \\ & \text { Function = Period, Time Interval } \end{aligned}$	$\begin{array}{r} 10 \\ 2.5 \\ \hline \end{array}$	14	.	MHz
Maximum Frequency Input B, Pin 2	$f_{B(\text { max })}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}<6.0 \mathrm{~V} \\ & \text { Figure } 2 \end{aligned}$	2.5			
Minimum Separation Input A to Input B Time Interval Function		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}+<6.0 \mathrm{~V} \\ & \text { Figure } 3 \\ & \hline \end{aligned}$	$250$			ns
Maximum osc. freq. and ext. osc. freq. (minimum ext. osc. freq.)	fosc	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}<6.0 \mathrm{~V} \end{aligned}$	(0.1)	10		MHz
Oscillator Transconductance	gm	$\begin{aligned} & \mathrm{V}+=4.75 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	2000			$\mu \mathrm{S}$
Multiplex Frequency	$f_{\text {mux }}$	$\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}$		500		Hz
Time Between Measurements		$\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}$		200		ms
Minimum Input Rate of Charge	$\mathrm{dV}_{\text {in }} / \mathrm{dt}$	Inputs A, B	25	15		$\mathrm{mV} / \mu \mathrm{s}$

## ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}=5.0 \mathrm{~V}$, test circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.


## EVALUATION KIT

An evaluation kit is available for the ICM7226. It includes all the components necessary to assemble and evaluate a universal frequency/period counter based on the ICM7226. With the help of this kit, an engineer or technician can have the ICM7226 "up-and-running" in less than an hour. Specifically, the kit contains an ICM7226AIDL, a 10 MHz quartz crystal, eight each 7-segment . $3^{\prime \prime}$ leds, PC board, resistors, capacitors, diodes, switches and IC socket. Order \# ICM7226AEVIKIT.

## TIME INTERVAL MEASUREMENT

The ICM7226 can be used to accurately measure the time interval between two events. With a 10 MHz timebase crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100 ns .
The feature operates with Channel A going low at the start of the event to be measured, followed by Channel B going low at the end of the event.


Figure 1: Waveform for Guaranteed Minimum Famax Function = Frequency, Frequency Ratio, Unit Counter.


Figure 2: Waveform for Guaranteed Minimum fBMAX and famax for Function = Period and Time Interval.

When in the time interval mode and measuring a single event, the ICM7226 must first be "primed" prior to measuring the event of interest. This is done by first generating a negative going edge on Channel $A$, followed by a negative going edge on Channel B to start the measurement interval. The inputs are then primed ready for the measurement. Positive going edges on $A$ and $B$, before or after the priming, will be needed to restore the original condition.

This can easily be accomplished with the following circuit, Figure 3b:


Device	Type
1	CD4049B Inverting Buffer
2	CD4070B Exclusive-OR

Figure 3b: Priming Circuit, Signal A \& B High or Low

Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event.
When timing repetitive signals, it is not necessary to "prime" the ICM7226, as it is done automatically the first time the input signal changes states:
During any time interval measurement cycle, the ICM7226 requires 200 ms following $B$ going low to update the internal logic. A new measurement cycle will not take place until completion of this internal update time.


NOTE: IF RANGE IS SET TO IEVENT, FIRST AND LAST MEASURED INTERVAL WILL COINCIDE.
Figure 3a: Waveforms in Time Interval Mode.


Figure 4: Block Diagram


Figure 5: Test Circuit

## ICM7226A/B

## APPLICATION NOTES

## GENERAL

## INPUTS A \& B

The signal to be measured is applied to Input $A$ in Frequency, Period, Unit Counter, Frequency Ratio and Time Interval modes. The other input signal to be measured is applied to Input B in Frequency Ratio and Time Interval. $f_{A}$ should be higher than $f_{B}$ during Frequency Ratio.
Both inputs are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}^{+}=5.0 \mathrm{~V}$. For optimum performance, the peak to peak input signal should be at least $50 \%$ of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.
Note: The amplitude of the input should not exceed the supply by more than 0.3 V otherwise, the circuit may be damaged.

## MULTIPLEXED INPUTS

The FUNCTION, RANGE, CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{sec}$ ). The multiplex inputs are active high for the common anode ICM7226A, and active low for the common cathode ICM7226B.
Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a 10k resistor should be placed in series with the multiplex inputs as shown in the application notes.
Table 1 shows the functions selected by each digit for these inputs.

TABLE 1

	FUNCTION	DIGIT
FUNCTION INPUT PIN 4	Frequency   Period   Frequency Ratio   Time Interval   Unit Counter Oscillator Frequency	$\begin{aligned} & D_{1} \\ & D_{8} \\ & D_{2} \\ & D_{5} \\ & D_{4} \\ & D_{3} \\ & \hline \end{aligned}$
RANGE INPUT PIN 21	$.01 \mathrm{Sec} / 1$ Cycle   . $1 \mathrm{Sec} / 10$ Cycles   1 Sec/100 Cycles   $10 \mathrm{Sec} / 1 \mathrm{k}$ Cyclés	$\begin{aligned} & D_{1} \\ & D_{2} \\ & D_{3} \\ & D_{4} \end{aligned}$
PIN 31	Enable External Range Input	D5
CONTROL INPUT PJN 1	Blank Display   Display Test   1 MHz Select   External Oscillator Enable   External Decimal Point   Enable   Test	$\begin{array}{\|c\|} \hline D_{4} \& \text { Hold } \\ D_{8} \\ D_{2} \\ D_{1} \\ D_{3} \\ D_{5} \\ \hline \end{array}$
EXTERNAL DECIMAL POINT INPUT, PIN 20	Decimal Point is Output for Same Digit That is Connected to This Input	

## CONTROL INPUTS

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Display Off is selected at the same time.

Display Off - To enable the Display Off mode it is necessary to tie $\mathrm{D}_{4}$ to the control input and have the HOLD input at $\mathrm{V}^{+}$. The chip will remain in the Display Off mode until HOLD is switched low. While in the Display Off mode, the segment and digit driver outputs are open. During Display Off, the oscillator continues to run, with a typical supply current of 1.5 mA with a 10 MHz crystal, and no measurements are made. In addition, signals applied to the multiplexed inputs have no effect. A new measurement is initiated when the HOLD input goes low.
$\mathbf{1 M H z}$ Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as a 10 MHz crystal. The internal decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in $1 \mu \mathrm{~s}$ increments rather than $0.1 \mu \mathrm{~s}$.

External Oscillator Enable - In this mode, the external oscillator input is used, rather than the on chip oscillator, for the Timebase and Main Counter inputs in Period and Time interval modes. The on chip oscillator will continue to function when the external oscillator is selected, but have no effect on circuit operation. The external oscillator input frequency must be greater than 100 kHz or the chip will reset itself and enable the on chip oscillator. Connect external oscillator to both OSC IN (pin 35) and EXT OSC IN (pin 33).

External Decimal Point Enable - When external decimal point is enabled, a decimal point will be displayed whenever the digit driver connected to the external decimal point is active. Leading Zero Blanking will be disabled for all digits following the decimal point.

Test Mode - This is a special mode used only in high speed production testing, and serves no other purpose.

## RANGE INPUT

The range input selects whether the measurement is made for $1,10,100$, or 1000 counts of the reference counter, or if the external range input determines the measurement time. In all functional modes except Unit Counter, a change in the range input will stop the measurement in progress, without updating the display, and initiate a new measurement. This prevents an erroneous first reading after the Range Input is changed.

## FUNCTION INPUT

Six functions can be selected. They are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency.

These functions select which signal is counted into the main counter and which signal is counted by the reference counter, as shown in Table 2. In Time Interval, a flip flop is set first by a $1 \rightarrow 0$ transition at INPUT $A$ and then reset by a $1 \rightarrow 0$ transition at INPUT B. The oscillator is gated into the Main Counter during the time the flip flop is set. A change in the FUNCTION input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the FUNCTION Input is changed. If the main counter overflows, an overflow indication is output on the decimal output during D8.

TABLE 2

DESCRIPTION	MAIN COUNTER	REFERENCE COUNTER
Frequency ( $\mathrm{f}_{\mathrm{A}}$ )	Input A	$\begin{array}{\|l} \hline 100 \mathrm{~Hz} \text { (Oscillator } \div \\ 105 \text { or 104) } \\ \hline \end{array}$
Period (tA)	Oscillator	Input A
Ratio ( $\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}$ )	Input A	Input B
Time Interval ( $A \rightarrow B$ )	Osc ON Gate	Osc OFF Gate
Unit Counter(Count A)	Input A	Not Applicable
Osc. Freq. (fosc)	Oscillator	$\begin{aligned} & 100 \mathrm{~Hz} \text { (Osc } \div 105 \text { or } \\ & 104) \end{aligned}$

## EXTERNAL DECIMAL POINT INPUT

When the EXTernal Decimal Point is selected, this input is active. Any of the digits, except D8, can be connected to this point. D8 should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point.

HOLD Input - Except in the unit counter mode, when the HOLD Input is at $\mathrm{V}^{+}$, any measurement in progress is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated, so the last complete measurement is displayed. In unit counter mode when HOLD Input is at $\mathrm{V}+$, the counter is not stopped or reset, but the display is frozen at that instantaneous value. When HOLD goes low the count continues from the new value in the counter.
RESET Input - The $\overline{\text { RESET }}$ Input also enables the main counter latches, resulting in an all zero output.
EXTernal RANGE Input - The EXTernal RANGE Input is used to select other ranges than those provided on the chip. Figure 4 shows the relationship between MEASurement IN PROGRESS and EXTernal RANGE Input.


Figure 4: External Range Input to End of Measurement in Progress.
MEASUREMENT IN PROGRESS, STORE AND RESET Out-
puts - These outputs are provided to enable display of prescaler digits. Figure 5 shows the relationship between these signals during the time between measurements. All three outputs can drive a low power Schottky TTL load. The MEASUREMENT IN PROGRESS Output can directly drive one ECL load, if the ECL device is powered from the same power supply as the ICM7226.


Figure 5: $\overline{\text { RESET OUT }}$ STORE, and MEASUREMENT IN PROGRESS Outputs Between Measurements.
BCD Outputs - The BCD representation of each digit output is available at the BCD outputs; see Table 3 for Truth Table. The positive going (ICM7226A - Common Anode) or negative
going (ICM7226B - Common Cathode) digit drivers lag the BCD data by 2 to 6 microseconds; the leading edge of the digit drive signal is used to externally latch the BCD data. Each BCD output will drive one low power Schottky TTL load and when interfacing low power Schottky TTL latches, it is necessary to use $1 \mathrm{k} \Omega$ pull down resistors on the TTL inputs for optimum results. The display is multiplexed from MSD to LSD. Leading zero blanking has no effect on the BCD outputs.

TABLE 3 Truth Table BCD Outputs

NUMBER	BCD 8   PIN 7	$\frac{\text { BCD 4 }}{\text { PIN 6 }}$	$\frac{\text { BCD 2 }}{\text { PIN 17 }}$	BCD 1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

BUFFered OSCillator OUTput - The BUFFered OSCillator OUTput has been provided to enable use of the on chip oscillator signal without loading the oscillator itself. This output will drive one. low power Schottky TTL load. Care should be taken to minimize capacitive loading on this pin.

## DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{~s}$, and an interdigit blanking time of $6 \mu \mathrm{~s}$ to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays; zeros following the decimal point will not be blanked. Leading zero blanking will also be disabled if the Main Counter overflows. The internal decimal point control displays frequency in kHz and time in $\mu \mathrm{s}$.
The ICM7226A is designed to drive common anode LED displays at a peak current of $25 \mathrm{~mA} /$ segment, using displays with $V_{F}=1.8 \mathrm{~V}$ at 25 mA . The average DC current will be greater than 3mA under these conditions. The ICM7226B.is designed to drive common cathode displays at a peak current of $15 \mathrm{~mA} /$ segment, using displays with $V_{F}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current, if required. Figures $6,7,8$ and 9 show the digit and segment currents as a function of output voltage for common anode and common cathode drivers.


Figure 6: ICM7226A Typical IDIG vs. $\mathrm{V}^{+}$-Vo
$4.5 \leq \mathrm{V}+\leq 6.0 \mathrm{~V}$

(a)

(b)

Figure 7: ICM7226A Typical IsEg vs. Vo



Figure 8: ICM7226B Typical IDIG vs. Vo


Figure 9: ICM7226B Typical Iseg vs. ( $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{O}}$ ) $4.5 \mathrm{~V} \leq \mathrm{V}+\leq 6.0 \mathrm{~V}$
To increase the light output from the displays, $\mathrm{V}^{+}$may be increased to 6.0 V , however care should be taken to see that maximum power and current ratings are not exceeded.
The segment and digit outputs in both the 7226A and B are not directly compatible with either TTL or CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

## Segment Identification



## ACCURACY

In a Universal Counter, crystal drift and quantization errors cause errors. In Frequency, Period and Time Interval Modes, a signal derived from the oscillator is used either in the Reference Counter or Main Counter, and in these modes, an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

In addition, there is a quantization error inherent in any digital measurement of $\pm 1$ count. Clearly this error is reduced by displaying more digits. In the Frequency Mode, maximum accuracy is obtained with high frequency inputs, and in Period Mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 10, the least accuracy will be obtained at 10 kHz . In Time Interval measurements there is a maximum error of 1 count per interval. As a result there is the same inherent accuracy in all ranges, as shown in Figure 11. In Frequency Ratio measurement more accuracy can be obtained by averaging over more cycles of Input B as shown in Figure 12.


Figure 10: Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors.


Figure 11: Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors.


Figure 12: Maximum Accuracy for Frequency Ratio Measurement Due to Limitations of Quantization Errors.

## CIRCUIT APPLICATIONS

The ICM7226 has been designed as a complete stanc alone Universal Counter, or used with prescalers and other circuitry in a variety of applications. Since A IN and B IN are digital inputs, additional circuitry will be required in many applications, for input buffering, amplification, hysteresis, and level shifting to obtain the required digital voltages. For many applications an FET source follower can be used for input buffering, and an ECL 10116 line receiver can be used for amplification and
hysteresis to obtain high impedance input, sensitivity and bandwidth. However, cost and complexity of this circuitry can vary widely, depending upon the sensitivity and bandwidth required. When TTL prescalers or input buffers are used, pull up resistors to $\mathrm{V}^{+}$should be used to obtain optimal voltage swing at A IN and B IN.
If prescalers aren't required, the ICM7226 can be used to implement a minimum component Universal counter as shown in figure 13.
For input frequencies up to 40 MHz , the circuit shown in figure 14 can be used to implement a Frequency and Period Counter. To obtain the correct value when measuring frequency and period, it is necessary to divide the 10 MHz oscillator frequency down to 2.5 MHz . In doing this the time
between measurements is lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz .
If the input frequency is prescaled by ten, the oscillator frequency can remain at either 10 MHz or 1 MHz , but the decimal point must be moved. Figure 15 shows use of $a \div 10$ prescaler in Frequency Counter mode. Additional logic has been added to enable the 7226 to count the input directly in Period mode for maximum accuracy. Note that A IN comes from Qc rather than Qd, to obtain an input duty cycle of $40 \%$. If an output with a duty cycle not near $50 \%$ must be used then it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse to guarantee a 50 ns minimum pulse width.


Figure 13: 10 MHz Universal Counter


Notes: 1) If a 2.5 MHz crystal is used, diode D1 and I.C.'s 1 and 2 can be eliminated.
Figure 14: ${ }^{40 \mathrm{MHz} \text { Frequency, Period Counter }}$

Figure 16 shows the use of a CD4016 analog multiplexer to multiplex the digital outputs back to the FUNCTION Input. Since the CD4016 is a digitally controlled analog transmission gate, no level shifting of the digit output is required. CD4051's or CD4052's could also be used to select the proper inputs for the multiplexed input on the ICM7226 from 2 or 3 bit digital inputs. These analog multiplexers may also
be used in systems in which the mode of operation is controlled by a microprocessor rather than directly from front panel switches. TTL multiplexers such as the 74153 or 74251 may also be used, but some additional circuitry will be required to convert the digit output to TTL compatible logic levels.


Figure 15: 100 MHz Multi Function Counter


Figure 16: 100 MHz Frequency Period Counter

The circuit shown in figure 17 can be used in any of the circuit applications shown to implement a single measurement mode of operation. This circuit uses the STORE output to put the ICM7226 into a hold mode. The HOLD input can also be used to reduce the time between measurements. The circuit shown in figure 18 puts a short pulse into the HOLD input a short time after STORE goes low. A new measurement will be initiated at the end of the pulse on the HOLD Input. This circuit reduces the time between measurements to less than 40 ms from 200 ms ; use of the circuit shown in Figure 18 on the circuit shown in Figure 14 will reduce the time between measurements from 1600 ms to 800 ms .


Figure 17: Single Measurement Circuit for Use With ICM7226


Figure 18: Circuit for Reducing Time Between Measurements

## OSCILLATOR CONSIDERATIONS

The oscillator is a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ or $22 \mathrm{M} \Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22 pF and a series resistance of less than $35 \Omega$.
For a specific crystal and load capacitance, the required $\mathrm{gm}_{\mathrm{m}}$ can be calculated as follows:

$$
\begin{aligned}
g_{m}=\omega^{2} & C_{I N} C_{O U T} R s\left(1+\frac{C_{O}}{C_{L}}\right)^{2} \\
\text { where } C_{L} & =\left(\frac{\text { CinCout }}{\text { Cin+Cout }}\right) \\
C_{0} & =\text { Crystal static capacitance } \\
R_{s} & =\text { Crystal Series Resistance } \\
C_{i n} & =\text { Input Capacitance } \\
C_{o u t} & =\text { Output Capacitance } \\
\omega & =2 \pi f
\end{aligned}
$$

The required $g_{m}$ should exceed the $g_{m}$ specified for the ICM7226 by at least $50 \%$ to insure reliable startup. The oscillator input and output pins each contribute about 4 pF to $\mathrm{C}_{\mathrm{IN}}$ and Cout. For maximum frequency stability, $\mathrm{C}_{\mathrm{IN}}$ and Cout should be approximately twice the specified crystal static capacitance.
In cases where nondecade prescalers are used, it may be desirable to replace the 10 MHz crystal with one of 1 MHz . When this is done, both the multiplex rate and the time between measurements will change. The multiplex rate is $f_{\text {max }}=\frac{f_{\text {osc }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\text {max }}=\frac{f_{\text {osc }}}{2 \times 10^{3}}$ for a different frequency mode, and the time between measurements is $\frac{2 \times 106}{f_{0 S C}}$ in the 10 MHz mode and fosc in the 1 MHz mode. The buffered oscillator output should be used as an oscillator test point or to drive additional logic; this output will drive one low power Schottky TTL load. When the buffered oscillator output is used to drive CMOS or the external oscillator input, a $10 \mathrm{k} \Omega$ resistor should be added from buffered oscillator output to $\mathrm{V}+$.
The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. In particular, coupling from the BUFfered OSCillator OUTput and EXTernal OSCillator INput to the OSCillator OUTput or OSCillator INput can cause undesirable shifts in oscillator frequency. To minimize this coupling, pins 34 and 37 should be connected to $\mathrm{V}^{+}$or GROUND and these two signals should be kept away from the oscillator circuit. A typical crystal is the 10 MHz CTS KNIGHTS ISI-002.

famax, fbmax AS FUNCTION OF v +

Figure 19: Typical Operating Characteristics

# Display Decoder/Drivers for Triplexed Liquid Crystal Displays 

## FEATURES

- ICM7231: Drives 8 digits of 7 segments with two independent annunciators per digit. Address and data input in parallel format.
- ICM7232: Drives 10 digits of 7 segments with two independent annunciators per digit. Address and data input in serial format.
- ICM7233: Drives $\mathbf{4}$ characters of 18 segments. Address and data input in parallel formát.
- ICM7234: Drives 5 characters of 18 segments. Address and data input in serial format.
- Chips provide all signals required to drive rows and columns of triplexed LCD display.
- Display voltage independent of power supply, allows user control of display operating voltage and temperature compensation if desired.
- On-chip oscillator provides all display timing.
- Total power consumption typically $200 \mu \mathrm{~W}$, maximum $500 \mu \mathrm{~W}$ at 5 V .
- Low-power shutdown mode retains datá with $5 \mu \mathrm{~W}$ typical power consumption at $5 \mathrm{~V}, 1 \mu \mathrm{~W}$ at 2 V .
- Direct interfacing to high-speed microprocessors and microcomputers.


## GENERAL DESCRIPTION

The ICM7231/7234 family of integrated circuits are designed to generate the voltage levels and switching waveforms required to drive triplexed liquid-crystal displays. These chips also include input buffer and digit address decoding circuitry and contain a maskprogrammed ROM allowing six bits of input data to be decoded into 64 independent combinations of the output segments of the selected digit.

The family is designed to interface to modern high performance microprocessors and microcomputers and ease system requirements for ROM space and CPU time needed to service a display.
The ICM7231 drives displays with 8 seven-segment digits with two independent annunciators per digit, accepting six data bits and three digit address bits from parallel inputs controlled by a chip select input. The data bits are subdivided into four binary code bits and two annunciator control bits. The ICM7232 drives 10 seven-segment digits with two independent annunciators per digit. To write into the display, six bits of data and four bits of digit address are clocked serially into a shift register, then decoded and written to the display.

The ICM7233 has a parallel input structure similar to the ICM7231, but the decoding and the outputs are organized to drive four 18 -segment alphanumeric characters. The six data bits represent a 6 -bit ASCII code.
The ICM7234 uses a serial input structure like that of the ICM7232, and drives five 18 -segment characters. Again, the input bits represent a 6-bit ASCII code.
Input levels are TTL compatible, and the DATA ACCEPTED output on the serial input devices will drive one LSTTL load. The intermediate voltage levels necessary to drive the display properly are generated by an on-chip resistor string, and the output of a totally self-contained on-chip oscillator is used to generate all display timing. All devices in this family have been fabricated using Intersil's MAXCMOS® process and all inputs are protected against static discharge. Devices are packaged in a 40 pin plastic DIP.

## PIN CONFIGURATIONS (OUTLINEDRAWING PL)



OPTION TABLE AND ORDERING INFORMATION

ORDER PART NUMBER	OUTPUT CODE	ANNUNCIATOR LOCATIONS	INPUT	OUTPUT
ICM7231AFIPL	Hexadecimal	Both Annunciators on COM3	Parallel Entry   4 bit Data   2 bit Annunciators   3 bit Address	Eight Digits
ICM7231BFIPL	Code B			
ICM7231CFIPL	Code B	1 Annunciator COM1   1. Annunciator COM3		
ICM7232AFIPL	Hexadecimal	Both Annunciators on COM3	Serial Entry   4 bit Data   2 bit Annunciators   4 bit Address	Ten Digits
ICM7232BFIPL	Code B			
ICM7232CRIPL	Code B	1 Annunciator COM1   1 Annunciator COM3		
ICM7233AFIPL	64 Character (ASCII)   18 Segment	No Independent Annunciators	Parallel Entry   6 bit (ASCII)   Data   2 bit Address	Four Characters
ICM7234AFIPL	64 Character (ASCII)   18 Segment	No Independent Annunciators	Serial Entry   6 bit (ASCII) Data   3 bit Address	Five Characters

Dice versions also available (ICM7231AF/D, ICM7233AF/D, etc.).

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation[1] ................ 0.5 W @ $70^{\circ} \mathrm{C}$
Supply Voltage ( $\mathrm{V}^{+}$).............................. 6.5 V

Display Voltage ${ }^{[2]} \ldots . . . . . . . . .-0.3 \leq V_{\text {DISP }} \leq+0.3$
Operating Temperature Range ..... $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Notes:

1. This limit refers to that of the package and will not be obtained during normal operation.
2. Due to the SCR structure inherent in these devices, connecting any display terminal or the display voltage terminal to a voltage outside the power supply to the chip may cause destructive device latchup. The digital inputs should never be connected to a voltage less than--0.3 volts below ground, but may be connected to voltages above $\mathrm{V}^{+}$but not more than 6.5 volts above GND.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN	TYP	MAX	ÚNITS
Power Supply Voltage	$\mathrm{V}^{+}$		4	5	5.5	V
Data Retention Supply Voltage	$\mathrm{V}^{+}$	Guaranteed Retention at 2V	2	1.6		V
Logic Supply Current	$1^{+}$	Current from $\mathrm{V}^{+}$to Ground excluding Display. $\mathrm{V}_{\text {DISP }}=2 \mathrm{~V}$		40	100	$\mu \mathrm{A}$
Shutdown Total Current	Is	$V_{\text {DISP }}$ Pin 2 Open		1	10	$\mu \mathrm{A}$
Display Voltage Range	VDISP.	Ground $\leq \mathrm{V}_{\text {DISP }} \leq \mathrm{V}^{+}$	0		$\mathrm{V}^{+}$	认
Display Voltage Setup Current	IDISP	$\mathrm{V}_{\text {DISP }}=2 \mathrm{~V}$ Current from $\mathrm{V}^{+}$to   $V_{\text {DISP }}$ On-Chip	.	15	25	$\mu \mathrm{A}$
Display Voltage Setup Resistor Value	RDISP	One of Three Identical Resistors in String		, 75		k $\Omega$
DC Component of Display Signals				1/2	1	$\%\left(V^{+}-V_{\text {DISP }}\right)$
Display Frame Rate	foISP	See Figure 2	80	120		Hz
Input Low Level	VIL	ICM7231, ICM7233			0.8	V
Input High Level	$\mathrm{V}_{\mathrm{IH}}$	Pins 30-35, 37-39, 1	2.0			V
Input Leakage	lilk	ICM7232, ICM7234		0.1	1	$\mu \mathrm{A}$
Input Capacitance	CIN	Pins 1, 38, 39		5		pF
Output Low Level	VOL	Pin 37, ICM7232, ICM7234			0.4	V
Output High Level	VOH	$\mathrm{V}^{+}=4.5 \mathrm{~V}$, IOUT $= \pm 400 \mu \mathrm{~A}$	4.1			V
Operating Temperature Range	TOP	Industrial Range	-20		+85	${ }^{\circ} \mathrm{C}$

## ICM7231/32/33/34

AC CHARACTERISTICS $\mathrm{V}^{+}=5 \mathrm{~V} \pm 10 \%,-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
PARALLEL INPUT (ICM7231, ICM7233) See Figure 12

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN	TYP	MAX	UNITS
Chip Select   Pulse Width	$\mathrm{t}_{\text {cs }}$		500		$\prime$	ns
Address/Data   Setup Time	$\mathrm{t}_{\mathrm{ds}}$		200			ns
Address/Data   Hold Time	$\mathrm{t}_{\mathrm{dh}}$	,		0	-20	
Inter-Chip   Select Time	$\mathrm{t}_{\text {ics }}$			2		ns

SERIAL INPUT (ICM7232, ICM7234) See Figures 15, 16, 17

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN	TYP	MAX	UNITS
Data Clock Low Time	tel		350			ns
Data Clock High Time	tcl		350			ns
Data Setup Time	$t_{\text {ds }}$		200			ns
Data Hold Time	tdh		0	-20		ns
$\overline{\text { Write }}$ Pulse Width	twp		350			ns
Write Pulse to Clock at Initialization	twll	.	1.5		.	$\mu \mathrm{S}$
Data Accepted Low Output Delay	todl			10	100	ns
Data Accepted High Output Delay	todh		,	1.5	3	$\mu \mathrm{S}$

## TERMINAL DEFINITIONS

ICM7231 PARALLEL INPUT NUMERIC DISPLAY

TERMINAL	PIN NO.	DESCRIPTION	FUNCTION	
AN1 AN2	$\begin{aligned} & 30 \\ & 31 \\ & \hline \end{aligned}$	Annunciator 1 Control Bit Annunciator 2 Control Bit	$\begin{aligned} & \text { High }=\text { ON } \\ & \text { Low }=\text { OFF } \end{aligned}$	See Table 3
$\begin{aligned} & \text { BD0 } \\ & \text { BD1 } \\ & \text { BD2 } \\ & \text { BD3 } \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$	$\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right]-$4 Bit Binary   Data Inputs	Input   Data   (See Table 1)	HIGH = Logical One (1)
$\begin{aligned} & \text { A0 } \\ & \text { A1 } \\ & \text { A2 } \end{aligned}$	$\begin{aligned} & 37 \\ & 38 \\ & 39 \\ & \hline \end{aligned}$	$\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right]$3 Bit Digit   Address Inputs	Input Address (See Table 2)	LOW = Logical Zero (0)
$\overline{\overline{C S}}$	1	Data Input Strobe/Chip Select	Trailing (Positive going) edge latches data, causes data input to be decoded and sent out to addressed digit	


TERMINAL	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	FUNCTION	
D0 D1 D2 D3 D4 D5	30 31 32 33 34 35	$\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right]$6 Bit (ASCII)   Data Inputs	Input   Data   See   Table 4	HIGH = Logical One (1)   LOW = Logical Zero (0)
$\begin{aligned} & \hline \text { A0 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 37 \\ & 38 \end{aligned}$	$\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right]$ Address Inputs	Input Add. See Table 5	
$\overline{\overline{\mathrm{CS} 1}}$	$\begin{gathered} 39 \\ 1 \end{gathered}$	Chip Select Inputs	Both inputs LOW load data into input latches. Rising edge of either input causes data to be latched, decoded and sent out to addressed character.	

ICM7232 and ICM7234 SERIAL DATA AND ADDRESS INPUT

TERMINAL	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	FUNCTION
Data Input	38	Data + Address Shift Register Input'	$\begin{aligned} & \text { HIGH = Logical One (1) } \\ & \text { LOW = Logical Zero (0) } \end{aligned}$
$\overline{\text { WRITE }}$ Input	39	Decode, Output, and Reset Strobe	When DATA ACCEPTED Output is LOW, positive going edge of WRITE causes data in shift register to be decoded and sent to addressed digit, then shift register and control logic to be reset.   When DATA ACCEPTED Output is HIGH, positive going edge of WRITE triggers reset only.
Data Clock Input	1.	Data Shift Register and Control Logic Clock	Positive going edge advances data in shift register. ICM7232: Eleventh edge resets shift register and control logic. ICM7234: Tenth edge resets shift register and control logic.
DATA   ACCEPTED   Output	37	Handshake Output	Output LOW when correct number of bits entered into shift register; ICM7232 8, 9 or 10 bits ICM7234 9 bits

## ALL DEVICES

TERMINAL	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	FUNCTION
Display   Voltage VDISP	2	Negative end of on-chip resistor string used to generate intermediate voltage levels for display. Shutdown Input.	Display voltage control. When open (or less than 1 V from $\mathrm{V}^{+}$) chip is shutdown; oscillator stops, all display pins to $\mathrm{V}^{+}$.
Common Line Driver Outputs	3,4,5		Drive display commons, or rows.
Segment Line Driver Outputs	$\begin{aligned} & 6-29 \\ & 6-35 \end{aligned}$	(On ICM7231/33)   (On ICM7232/34)	Drive display segments, or columns.
$\mathrm{V}^{+}$	40	Chip Positive Supply	
GND	36	Chip Ground	

## TRIPLEXING (1/3 MULTIPLEXING) LIQUID CRYSTAL DISPLAYS

Figure 1 shows the connection diagram for a typical 7-segment display font with two annunciators such as would be used with an ICM7231 or ICM7232 numeric display driver. Figure 2 shows the voltage waveforms of the common lines and one segment line, chosen for this example to be the " Y " segment line. This line intersects with COM1 to form the "a" segment, COM2 to form the " $g$ " segment and COM3 to form the " $d$ " segment. Figure 2 also shows the waveform of the " $\gamma$ " segment line for four different ON/OFF combinations of the "a", " $g$ " and "d" segments. Each intersection (segment or annunicator) acts as a capacitance from segment line to common line, shown schematically in Figure 3. Figure 4 shows the voltage across the " g " segment for the same four combinations of ON/OFF segments in Figure 2.
The degree of polarization of the liquid crystal material and thus the contrast of any intersection depends on the RMS voltage across the intersection capacitance. Note from Figure 4 that the RMS OFF voltage is always $\mathrm{V}_{\mathrm{P}} / 3$ and that the RMS ON voltage is always $1.92 \mathrm{~V} / 3$.
For a $1 / 3$ multiplexed LCD, the ratio of RMS ON to OFF voltages is fixed at 1.92, achieving adequate display contrast with this ratio of applied RMS voltage makes some demands on the liquid crystal material used.
Figure 5 shows the curve of contrast versus applied RMS voltage for a liquid crystal material tailored for $V_{p}$ $=3.1 \mathrm{~V}$, a typical value for $1 / 3$-multiplexed displays in calculators. Note that the RMS OFF voltage $V_{P} / 3 \approx 1 \mathrm{~V}$ is just below the "threshold" voltage where contrast begins to increase. This places the RMS ON voltage at 2.1 V , which provides about $85 \%$ contrast when viewed straight on.
All members of the ICM7231/ICM7234 family use an internal resistor string of three equal value resistors to generate the voltages used to drive the display. One end of the string is connected on the chip to $\mathrm{V}^{+}$and the other end (user input) is available at pin 2 (VDISP) on each chip. This allows the display voltage input (VDISP) to be optimized for the particular liquid crystal material used. Remember that $\mathrm{V}_{\mathrm{P}}=\mathrm{V}^{+}-\mathrm{V}_{\text {DISP }}$ and should be three times the threshold voltage of the liquid crystal material used. Also it is very important that pin 2 never be driven below ground. This can cause device latchup and destruction of the chip.


SEGMENT LINE CONNECTION



NOTE: $\phi_{1}, \phi_{2}, \phi_{3}$ - COMMON HIGH WITH RESPECT TO SEGMENT.
$\phi_{1}, \phi_{2}^{2}, \phi_{3}^{\prime}$ - COMMON LOW WITH RESPECT TO SEGMENT.
COM 1 ACTIVE DURING $\phi_{1}$ AND $\phi_{1}$.
COM 2 ACTIVE DURING $\phi_{2}$ AND $\phi_{2^{\prime}}$
COM 3 ACTIVE DURING $\phi_{3}$ AND $\phi_{3}{ }^{\text {B }}$
Figure 2. Display Voltage Waveforms


Figure 3. Display Schematic
$V_{g}=V_{B}-V_{C O M} 2$ (DIFFERENCE BETWEEN SEGMENT LINE b AND COM 2 VOLTAGES)


NOTE: $\phi_{1}, \phi_{2}, \phi_{3}$ - COMMON HIGH WITH RESPECT TO SEGMENT.
$\varphi_{1,} \phi_{2}^{\prime}, \phi_{3}^{\prime}$ - COMMON LOW WITH RESPECT TO SEGMENT.
COM 1 ACTIVE DURING $\phi_{1}$ AND $\varphi_{1}{ }^{\text {. }}$
COM 2 ACTIVE DURING $\phi_{2}$ AND $\phi_{2}$.
COM 3 ACTIVE DURING $\phi_{3}$ AND $\phi_{3}{ }^{\circ}$
Figure 4. Voltage Waveforms on Segment $g\left(V_{g}\right)$

## TEMPERATURE EFFECTS AND TEMPERATURE COMPENSATION

The performance of the IC material is affected by temperature in two ways. The response time of the display to changes in applied RMS voltage gets longer as the display temperature drops. At very low temperatures $\left(-20^{\circ} \mathrm{C}\right)$ some displays may take several seconds to change to a new character after the new information appears at the outputs. However, for most applications above $0^{\circ} \mathrm{C}$ this will not be a problem with available multiplexed LCD materials, and for lowtemperature applications, high-speed liquid crystal materials are available. One high temperature effect to consider deals with plastic materials used to make the polarizer. Some polarizers become soft at high temperatures and permanently lose their polarizing ability, thereby seriously degrading display contrast. Some displays also use sealing materials unsuitable for high temperature use. Thus, when specifying displays the following must be kept in mind: liquid crystal material, polarizer, and seal materials.



Figure 5. Contrast vs. Appólied RMS Voltage


Figure 6. Temperature Dependence of LC Threshold

A more important effect of temperature is the variation of threshold voltage. For typical liquid crystal materials suitable for multiplexing, the peak voltage has a temperature coefficient of -7 to $-14 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. This means that as temperature rises, the threshold voltage goes down. Assuming a fixed value for $V_{P}$, when the threshold voltage drops below $\mathrm{V}_{\mathrm{P}} / 3$ OFF segments begin to be visible. Figure 6 shows the temperature dependence of peak voltage for the same liquid crystal material of Figure 5.
For applications where the display temperature does not vary widely, Vp may be set at a fixed voltage chosen to make the RMS OFF voltage, Vp/3, just below the threshold voltage at the highest temperature expected. This will prevent OFF segments turning ON at high temperature (this at the cost of reduced contrast for ON segments at low temperatures).
For applications where the display temperature may vary to wider extremes, the display voltage VDISP (and thus $V_{P}$ ) may require temperature compensation to maintain sufficient contrast without OFF segments becoming visible.

## DISPLAY VOLTAGE AND <br> TEMPERATURE COMPENSATION

These circuits allow control of the display peak voltage by bringing the bottom of the voltage divider resistor string out at pin 2 . The simplest means for generating a display voltage suitable to a particular display is to connect a potentiometer from pin 2 to GND as shown in Figure 7.
A potentiometer with a maximum value of $200 \mathrm{k} \Omega$ should give sufficient range of adjustment to suit most displays. This method for generating display voltage should be used only in applications where the temperature of the chip and display won't vary more than $\pm 5^{\circ} \mathrm{C}\left( \pm 9^{\circ} \mathrm{F}\right)$, as the resistors on the chip have a positive temperature coefficient (this will tend to increase the display peak voltage with an increase in temperature). The display voltage also depends on the power supply voltage, and this will require tighter tolerances for wider temperature ranges. Figure 8 shows another method of setting up a display voltage using five silicon, diodes in series. These diodes, 1N914 or equivalent, will each have a forward drop of approximately 0.65 V , with approximately $20 \mu \mathrm{~A}$ flowing through them at room temperature: Thus, 5 diodes will give 3.25 V , suitable for a 3 V display using materials as shown in Figures 5 and 6. For higher voltage displays, more diodes may be added. This circuit has the additional advantage of reasonable temperature compensation, as each diode has a negative temperature coefficient of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; five in series gives $-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, not far from optimum for the material described.
The disadvantage of the diodes in series is that only integral multiples of the diode voltage can be achieved. The diode voltage multiplier circuit shown in Figure 9 allows fine-tuning the display voltage by means of the potentiometer; it likewise provides temperature compensation since the temperature coefficient of the transistor base-emitter junction (about $-2 . \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ) is also multiplied.
The transistor used in the circuit of Figure 9 must have a beta of at least 100 with a collector current of $10 \mu \mathrm{~A}$. The inexpensive 2 N 2222 shown in the figure is a suitable device, but any transistor with high beta at low current will function properly.
For battery operation, where the display voltage is generally the same as the battery voltage (usually 34.5 V ), the chip may be operated at the display voltage, with VDISP connected to GND.
The inputs of the chip are designed such that they may be driven above $\mathrm{V}^{+}$without damaging the chip. This allows, for example, the chip and display to operate at a regulated 3 V , and a microprocessor driving its inputs to operate with a less well controlled 5 V supply. The inputs should not be driven more than 6.5 V above GND under any circumstances.


Figure 7


Figure 8


Figure 9

DESCRIPTION OF OPERATION

PARALLEL INPUT OF DATA AND ADDRESS ICM7231, ICM7233

The parallel input structure of the ICM7231 and ICM7233 devices is organized to allow simple, direct interfacing to all microprocessors, see block diagrams Figures 10 and 11. In the ICM7231, address and data bits are written into the input latches on the rising edge of the chip select input. In the ICM7233, the two chip selects are equivalent; when both are low, the latches are transparent and the data is latched on the rising edge of either chip select.

The rising edge of the chip select also triggers an onchip pulse which enables the address decoder and latches the decoded data into the addressed digit outputs. The timing requirements for the parallel input devices are shown in Figure 12, with the values for sètup, hold, and pulse width times shown in AC Characteristics on page 3. Note that there is a minimum time between chip select pulses; this is to allow sufficient time for the on-chip enable pulse to decay, and ensures that new data doesn't appear at the decoder inputs before the decoded data is written to the outputs.


Figure 10. ICM7231 Block Diagram


Figure 11. ICM7233 Block Diagram


Figure 12. Parallel Input Timing

## SERIAL INPUT OF DATA AND ADDRESS ICM7232, ICM7234

The ICM7232 and ICM7234 trade six pins used as data inputs on the ICM7231 and ICM7233 for six more segment lines, allowing two more 9 -segment digits (ICM7232) or one more 18 -segment character (ICM7234). This is done at the cost of ease in interfacing, and requires that data and address information be entered serially. Refer to block diagrams, Figures 13 and 14 and timing diagrams, Figures 15, 16, and 17. The interface consists of four pins: DATA Input, DATA CLOCK Input, WRITE Input and DATA ACCEPTED Output. The data present at the DATA Input is clocked into a shift register on the rising edge of the DATA CLOCK

Input signal, and when the correct number of bits has been shifted into the shift register ( 8 in the ICM7232, 9 in the ICM7234), the DATA ACCEPTED Output goes low. Following this, a low-going pulse at the WRITE input will trigger the chip to decode the data and store it in the output latches of the addressed digit. After the data is latched at the outputs, the shift register and the control logic are reset, returning the DATA ACCEPTED Output high. After this occurs, a pulse at the WRITE input will not change the outputs, but will reset the control logic and shift register, assuring that each data bit will be entered into the correct position in the shift register depending on subsequent DATA CLOCK inputs.


Figure 13. ICM7232 Block Diagram

The shift register and control logic will also be reset if too many data clock input edges are received; this also prevents incorrect data from being decoded. In the ICM7232, the eleventh clock resets the shift register and control logic, while in the ICM7234 it is the tenth.
The recommended procedure for entering data is shown in the serial input timing diagram, Figure 15. First, when DATA ACCEPTED is high, send a WRITE pulse. This resets the shift register and control logic and initializes the chip for the data input sequence. Next clock in the appropriate number of correct data and address bits. The DATA ACCEPTED Output may be monitored if desired, to determine when the chip is read to output the decoded data. When the correct number of bits has been entered, and the DATA ACCEPTED Output is low, a pulse at WRITE will cause the data to be decoded and stored in the outputs of the addressed digit. The shift register and control logic are reset, causing DATA ACCEPTED to return high, and leaving the chip ready to accept data for the next digit.

Note that for the ICM7232 the eleventh clock resets the shift register and control logic, but the DATA ACCEPTED Output goes low after the eighth clock. This allows the user to abbreviate the data to eight bits, which will write the correct character to the 7-segment display, but will leave the annunicators off, as shown in Figure 16.
If only AN2 is to be turned on, nine bits are clocked in; if AN1 is to be turned on, all ten bits are used.
In the ICM7234, nine bits are always required; the control logic is similar, but allows only a WRITE (DATA ACCEPTED. Low) with nine bits entered in the shift register, as shown in Figure 17.
The DATA ACCEPTED Output will drive one lowpower Schottky TTL input, and has equal current drive capability pulling high or low.
Note that in the serial input devices, it is possible to address digits which don't exist. Tables 2 and 5 show that when an incorrect address is applied together with a WRITE pulse, none of the outputs will be changed:


Figure 14. ICM7234 Block Diagram


Figure 15. ICM7232 One Digit Input Timing Diagram, Writing Both Annunicators

AN1   ENTER   FIRST	AN2	BD0	BD1	BD2	BD3	$A_{0}$	$A_{1}$	$A_{2}$	$A_{3}$   ENTER   LAST

ICM7232 WRITE ORDER


Figure 16. ICM7232 Input Timing Diagram, Leaving Both Annunciators OFF


Figure 17. ICM7234 Ore Character Input Timing Diagram

## DISPLAY FONTS AND OUTPUT CODES

The standard versions of the ICM7231 and ICM7232 chips are programmed to drive a 7-segment display plus two annunciators per digit.
The "A" and "B" suffix chips place both annunciators on COM3. The display connections for one digit of this display are shown in Figure 18. The " $A$ " devices decode the input data into a hexadecimal 7-segment output, while the " $B$ " devices supply Code B outputs (see Table 1).
The "C" devices place the left hand annunciator on COM1 (AN2) and the right hand annunciator (usually a
decimal point) on COM3 (AN1) (see Figure 19). The "C" devices provide only a "Code B" output for the 7-segments.

See Table 3 for annunicator input controls. The ICM7233 and ICM7234 are supplied in an "A" version only. The layout for a single character is shown in Figure 20 with output decoding shown in Table 4.
The data decoder is mask programmable. For larger quantity orders (10,000 and up) custom decoder programs can be arranged. Contact the factory for details.


Figure 19. ICM7231 and ICM7232 Display Fonts ("C" Suffix Versions)

Figure 18. ICM7231 and ICM7232 Display Fonts ("A" and "B" Suffix Versions)


SEgMENT LINE CONNECTIONS


COMMON LINE CONNECTIONS

Figure 20. ICM7233 and ICM7234 Display Font , (18-Segment Alphanumeric)

Table 1

$\begin{aligned} & \text { CODE } \\ & \text { INPUT } \\ & \hline \end{aligned}$				DISPLAY OUTPUT	
$\begin{gathered} \mathrm{BD} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{BD} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{BD} \\ 1 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { BD } \\ 0 \end{array}$	HEX	$\underset{B}{\mathrm{CODE}}$
0	0	0	0	I_1	$\underline{1}$
0	0	0	1	1	1
0	0	1	0	ご	$\underline{\square 1}$
0	0	1	1	-1	-1
0	1	0	0	I-1	I-1
0	1	0	1	$\bar{\Xi}_{1}$	I-
0	1	1	0	$E$	E1
0	1	1	1	1	1
1	0	0	0	İI	I-1
1	0	0	1	I-1	E1
1	0	1	0	I-1	-
1	0	1	1	I-1	$E$
1	1.	0	0	1	1-1
1	1	0	1	E'	1
1.	1	1	0	I	E1
1	1	1	1	F	BLANK

BINARY DATA
DECODING
(ICM7231/32)

Table 2

CODE INPUT				DISPLAY OUTPUT
$\begin{gathered} \text { ICM } \\ 7232 \\ \text { ONLY } \\ \text { A3 } \end{gathered}$	A2	A1	A0	DIGIT SELECTED
0	0	0	0	D1
0	0	0	1	D2
0	0	1	0	D3
0	0	1	1	D4
0	1	0	0	D5
0	1	0	1	D6
0	1	1	0.	D7
0	1	1	1	D8
1	0	0	0	D9
1	0	0	1	D10
1	0	1	0	NONE
1	0	1	1	NONE
1	1	0	0	NONE
1	1	0	1	NONE
1	1	1	0	NONE
1	1	1	1	NONE

ADDRESS DECODING (ICM7231/32)

Table 3

CO		DISPLAY	OUTPUT
$\begin{gathered} \mathrm{AN} \\ 2 \end{gathered}$	$\left\|\begin{array}{c} \text { AN } \\ 1 \end{array}\right\|$	ICM7231 A/B   ICM7232 A/B BOTH ANNUNCIATORS ON COM 3	ICM7231C   ICM7232C LH   ANNUNCIATOR COM 1 RH   ANNUNCIATOR COM 3
0	0	-1	- II
0	1	I-I	I-1
1	0	I!	-1
1	1	- -	I-1
ANNUNCIATOR DECODING			

Table 4

CODE INPUT				DISPLAY OUTPUT D5, D4			
D3	D2	D1	D0	0,0	0, 1	1,0	1,1
0	0	'0	0	$\square$	$\square$		$\square$
0	0	0	1	F	$\square$	1	1
0	0	1	0	\#	$F$	11	$\square$
0	0	1	1.	-	$\square$	I	$\exists$
0	1	0	0	IT	T	5	4
0	1	0	1	$E$	$L$	6	5
0	1	1	0	$F$	$V$	LJ	$\square$
0	1	1	1	$\square$	$W$	1	7
1.	0	0	0	1	$X$	$<$	$\theta$
1	0	0	1	I	$Y$	)	$马$
1	0	1	0	J	$Z$	*	-
1	0	1	1	$K$	[	+	;
1	1	0	0		$\backslash$	1	$\angle$
1	1	0	1	$M$	]	-	-
1.	1	1	0	$N$	$\nearrow$	-	$\checkmark$
1	1	1	1	$\square$	$\leqslant$	1	$\Gamma$

DATA DECODING 6 - BIT ASCII $\rightarrow 18$ SEGMENT
(ICM7233/34)

## APPLICATIONS

Figures 21 and 22 show typical applications for the ICM7231-34 family.



Figure 22. MC6802 Microprocessor with 16 Character 16 Segment Full ASCII Liquid Crystal Display


Figure 23. "Forward" Pin Orientation and Display Connections.


Figure 24. "Reverse" Pin Orientation and Display Connections.


Figure 25. "Forward" Die Pad Orientation and Typical Triplex Alphanumeric Display Connections.




# Non-Multiplexed Vacuum Fluorescent Display Decoder-Drivers 

## FEATURES

- 28 high voltage segment drivers provide four 7-segment digits
- Multiplexed BCD input (7235)
- High speed processor interface (7235M)
- 7-segment hex (0-9, A-F) or Code-B (0.9, dash, E, H, L, P, blank) output versions available


## - Display blanking input

- All devices fabricated using high density MAX.CMOS ${ }^{\text {tm }}$ LSI technology for very low-power, high-performance operation
- All inputs fully protected against static discharge


## PIN CONFIGURATIONS (OUTLINE DRAWING PL)



## DESCRIPTION

The ICM7235 family of display driver circuits provides the user with a single chip interface between digital logic or microprocessors to non-multiplexed 7-segment vacuum fluorescent displays.
The chips provide 28 high voltage open drain P-channel transistor outputs organized as four 7 -segment digits.
The devices are available with two input configurations. The basic devices provide four data-bit inputs and four digit select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices, such as the Intersil ICM7217, ICM7226 and ICL7103. The microprocessor interface devices (suffix M) provide data input latches and digit select code latches under control of high-speed chip select inputs. These devices simplify the task of implementing a cost-effective alphanumeric 7-segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating.

The standard devices available will provide two different decoder configurations. The basic device will decode the four bit binary input into a seven-segment alphanumeric hexadecimal output ( $0-9, A-F$ ). The " $A$ " versions provide the same output code as the ICM7218 Code "B" (0-9, dash, E, H, L, P, blank). Either device will correctly decode true BCD to seven-segment decimal outputs.

All devices in the ICM7235 family are packaged in a standard 40-pin plastic dual-in-line package.

Table 1, the option matrix and ordering information, shows the four standard devices of the ICM7235 family and their e markings, which serve as part numbers for ordering purposes.

TABLE 1: OPTION MATRIX AND ORDERING INFORMATION

Order Part Number	Output Code	Input Configuration
ICM7235 IPL	Hexadecimal	Multiplexed 4-Bit
ICM7235A IPL	Code B	Multiplexed 4-Bit
ICM7235M IPL	Hexadecimal	Microprocessor Interface
ICM7235AM IPL	Code B	Microprocessor Interface

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1) . . . . . . . . . . . . . . $0.5 \mathrm{~W} @+70^{\circ} \mathrm{C}$ Supply Voltage ( ${ }^{+}$-Ground) . . . . . . . . . . . . . . . . . . 6.5 Volts Input Voltage (Note 2) . . . . . . . . . . V ${ }^{+}+0.3 \mathrm{~V}$, Ground -0.3 V Output Voltage (Note 3) . . . . . . . . . . . . . . . . . . . . . . . V ${ }^{+}-35 \mathrm{~V}$
O反erating Temperature Range . . . . . . . . . $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

TABLE 2: OPERATING CHARACTERISTICS
All parameters measured with $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	$V_{\text {SUPP }}$	.	4	5	6	V
Supply Current	$1^{+}$	Measured $\mathrm{V}^{+}$to Ground Test circuit; display blank or OFF		¢ 10	50	$\mu \mathrm{A}$
Supply Current	$1^{+}$	Measured $\mathrm{V}^{+}$to Display			100	mA
Segment OFF Output Voltage	$V_{\text {SEG }}$	$I_{\text {SLK }}=10 \mu \mathrm{~A}$	30	.		V
Segment OFF Leakage Current	$\mathrm{I}_{\text {LS }}$	$\mathrm{V}_{\text {SEG }}=\mathrm{V}^{+}-30 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
Segment ON Current	$I_{\text {SEG }}$	$\mathrm{V}_{\text {SEG }}=\mathrm{V}^{+}-2 \mathrm{~V}$	1.5	2.5		mA

## INPUT CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Logical "1" Input Voltage	$\mathrm{V}_{\text {IH }}$	Referred to Ground	3			V
Logical " 0 " Input Voltage	$\mathrm{V}_{\text {IL }}$	Referred to Ground'			1.5	V
Input Leakage Current	$\mathrm{I}_{\text {ILK }}$	Pins $27-34$		$\pm 0.1$	$\pm 1$	$\mu \mathrm{~A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$	Pins $27-34$		5		pF
ON/OFF Input Leakage	IILK(ON/OFF)	All Devices		$\pm 0.1$	$\pm 1$	$\mu \mathrm{~A}$
ON/OFF Input Capacitance	$\mathrm{C}_{\text {IN(ON/OFF) }}$	All Devices		200		pF

AC CHARACTERISTICS - MULTIPLEXERD INPUT CONFIGURATION

Digit Select Active Pulse Width	$\mathrm{t}_{\mathrm{sa}}$	Refer to Timing Diagrams	1		
Data Setup Time	$\mathrm{t}_{\mathrm{ds}}$		500		
Data Hold Time	$\mathrm{t}_{\mathrm{dh}}$		200		
Inter-Digit Select Time	$\mathrm{t}_{\mathrm{ids}}$		2	ns	

AC CHARACTERISTICS - MICROPROCESSOR INTERFACE

Chip Select Active Pulse Width	$\mathrm{t}_{\text {csa }}$	Other chip select either held active,   or both driven together	200			ns
Data Setup Time	$\mathrm{t}_{\text {dsm }}$		100			ns
Data Hold Time	$\mathrm{t}_{\text {dhm }}$		10	0		ns
Inter-Chip Select Time	$\mathrm{t}_{\text {ics }}$		2			$\mu \mathrm{~s}$

NOTE 1: This limit refers to that of the package and will not be realized during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any input terminal to a voltage in excess of $\mathrm{V}^{+}$or ground may cause destructive device latch-up. For this reason, it is recommended that inputs from external sources operating on a different power supply be applied only after the device's own power supply has been established, and that on multiple supply systems the supply to the ICM7235 be turned on first.
NOTE 3: This value refers to the display outputs only.

## INPUT DEFINITIONS

In this table, $\mathrm{V}^{+}$and ground are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 2. For lowest power consumption, input signals should swing over.the full supply.

INPUT	TERMINAL	CONDITION	FUNCTION	
B0	27	$\mathrm{V}^{+}=$Logical One   Ground = Logical Zero	Ones (Least Significant)	
B1	28	$\mathrm{V}^{+}=$Logical One   Ground = Logical Zero	Twos	Data Input Bits
B2	29	$\mathrm{V}^{+}=$Logical One   Ground = Logical Zero	Fours	
B3	30	$\mathrm{V}^{+}=$Logical One   Ground = Logical Zero	Eights (Most Significant)	
$\overline{\text { ON/OFF }}$	5	$\mathrm{V}^{+}=$OFF,   Ground =ON		Display ON/OFF Input

## ICM7235, ICM7235A

MULTIPLEXED-BINARY INPUT CONFIGURATION

INPUT	TERMINAL	CONDITION	FUNCTION
D1	31	$\begin{aligned} & \mathrm{V}^{+}=\text {Active } \\ & \text { Ground = Inactive } \end{aligned}$	D1 (Least Significant) Digit Select
D2	32		D2 Digit Select
D3	33		D3 Digit Select
D4	34		D4 (Most Significant) Digit Select

ICM7235M, ICM7235AM
MICROPROCESSOR INTERFACE INPUT CONFIGURATION

INPUT	DESCRIPTION	TERMINAL	CONDITION	FUNCTION
DS1	Digit Select Code Bit 1 (LSB)	31	$\begin{gathered} \mathrm{V}^{+}=\text {Logical One } \\ \text { Ground }=\text { Logical } \\ \text { Zero } \end{gathered}$	DS2 \& DS1 serve as a two-bit Digit Select Code Input DS2, DS1 $=00$ selects D4   DS2, DS1 $=01$ selects D3   DS2, DS1 $=10$ selects D2   DS2, DS1 = 11 selects D1
DS2	Digit Select Code Bit 2 (MSB)	32		
$\overline{\text { CS1 }}$	Chip Select 1	33	$\begin{aligned} & \mathrm{V}^{+}=\text {Inactive } \\ & \text { Ground = Active } \end{aligned}$	When both $\overline{\mathrm{CS1}}$ and $\overline{\mathrm{CS} 2}$ are taken to ground, the data at the Data and Digit Select code inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches.
$\overline{\text { CS2 }}$	Chip Select 2	34		

ICM 7235 TYPICAL DC VACUUM FLUORESCENT DISPLAY CONNECTION


## VACUUM FLUORESCENT DISPLAYS (4 DIGIT):

1. NEC Electron, Inc.

3120 Central Expressway
Santa Clara, CA 95051
Tel. (408) 241-8222
Model FIP 4F8S


## ICM7235M/35AM



## CIRCUIT DESCRIPTION

Each device in the ICM7235 family provides signals for directly driving the anode terminals of a four-digit, 7 -segment non-multiplexed vacuum fluorescent display. The outputs are taken from the drains of high-voltage, low-leakage $P$-channel FETs, each capable of withstanding $>-35 \mathrm{~V}$ with respect to $\mathrm{V}^{+}$. In addition, the inclusion of an ON/OFF input allows the user to disable all segments by connecting pin 5 to $\mathrm{V}^{+}$; this same input may also be used as a brightness control by applying a signal swinging between $\mathrm{V}^{+}$and ground and varying its duty cycle.
The ICM7235 may also be used to drive nonmultiplexed common cathode LED displays by connecting each segment output to its corresponding display input, and tying the common cathode to ground. Using a power supply of 5 V and an LED with a forward drop of 1.7 V results in an "ON" segment current of about 3mA, enough to provide sufficient brightness for displays of up to $0.3^{\prime \prime}$ character height.
Note that these devices have two $\mathrm{V}^{+}$terminals; each should be connected to the positive supply voltage. This double connection is necessary to minimize the effects of bond wire resistance, which could be a problem due to the high display currents.

## Input Configurations and Output Codes

The standard devices in the ICM7235 family accept a four-bit true binary (i.e., positive level = logical one) input at pins 27 through 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7235 and ICM7235M decode this binary input into a 7 segment alphanumeric hexadecimal output, while the ICM7235A and ICM7235AM decode the binary input into the same 7 -segment output as the ICM7218 "Code B," i.e., 0-9, dash, E, H, L, P. blank. These codes are shown explicitly in Table 3. Either decoder option will correctly decode true BCD to a 7 -segment decimal output.
These devices are actually mask-programmable to provide any 16 combinations of the 7 -segment outputs decoded from the four input bits. For larger quantity orders, ( 10 K pcs. minimum) custom decoder options can be arranged. Contact your Intersil Sales Office for details.
The ICM7235 and ICM7235A devices are intended to accept multiplexed binary or BCD output. These devices provide four separate digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30 . More than one digit select may be activated simultaneously (which will write the same character into all selected digits), although the timing requirements shown in Figure 2 and Table 2 for data
setup, hold, ánd inter-digit select times must be met to ensure correct output.
The ICM7235M and AM devices are intended to accept data from a data bus under processor control.
In these devices, the four data input bits and the 2-bit digit select code (DS1 pin 31, DS2 pin 32) are written into input buffer latches when both chip select inputs (CS1 pin 33, CS2 pin 34) are taken to ground. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the select code latches. A select code of 00 writes into D4, 01 writes into D3, 10 writes into D2 and 11 writes into D1. The timing relationships for inputting data are shown in Figure 3; and the chip select pulse widths and data setup and hold times are specified in Table 2.

## TEST CIRCUIT



## TYPICAL OUTPUT CHARACTERISTICS




Figure 3. Microprocessor Interface Input Timing Diagram

Table 3 Output Codes

| BINARY |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B3 | B2 B1 | BO | HEXADECIMAL <br> ICM7235 <br> ICM7235M | CODE B <br> ICM7235A |
| 0 | 0 | 0 | 0 | ICM7235AM |

## SEGMENT ASSIGNMENT



## FEATURES

- High frequency counting - guaranteed 15 MHz , typically 25 MHz at 5 V
- Low power operation - less than $100 \mu \mathrm{~W}$ quiescent
- Direct $41 / 2$ digit seven-segment display drive for non-multiplexed vacuum fluorescent displays
- Store and Reset inputs permit operation as frequency or period counter
- True count inhibit disables first counter stage
- Carry output for cascading four-digit blocks
- Schmitt-trigger on count input allows operation in noisy environments or with slowly changing inputs
- Leading zero blanking input and output for correct leading zero blanking with cascaded devices
- All inputs fully protected against static discharge - no special handling precautions necessary
- Devices fabricated using MAXCMOS ${ }^{\text {tm }}$ process for high-performance, low power operation



## DESCRIPTION

The ICM7236 and ICM7236A devices are high-performance CMOS $41 / 2$ digit counters, including decoders, output latches, count inhibit, reset, and leading zero blanking circuitry, and twenty-nine high-voltage open drain P-channel transistor outputs suitable for directly driving non-multiplexed (static) vacuum fluorescent displays.
The ICM7236 is a decade counter, providing a maximum count of 19999, while the ICM7236A is intended for timing purposes, providing a maximum count of 15959 .
The counter section of the two devices in the ICM7236 family provides direct static counting from DC to 15 MHz guaranteed (with a $5 \mathrm{~V} \pm 10 \%$ supply) over the operating temperature range. At normal room temperatures, the device will typically count up to 25 MHz . The count input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry which allows a direct interface with the ICM7207 devices to implement a low cost, low power frequency counter with a minimum component count.
These devices also incorporate features intended to simplify cascading in four-digit blocks.' The carry output allows the counter to be cascaded, while the leading zero blanking input and output allow correct leading zero blanking between four-decade blocks.
The ICM7236 and ICM7236A are packaged in a standard 40-pin dual-in-line plastic package.

TABLE 1: ORDERING INFORMATION

ORDER PART NUMBER	COUNT OPTION
ICM7236IPL	19999
ICM7236AIPL	15959

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1) . . . . . . . . . . . . . . $0.5 \mathrm{~W} @+70^{\circ} \mathrm{C}$
Supply Voltage ( ${ }^{+}$) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 V
Display Voltage (Note 3) ... . . . . . . . . . . . . . . . . . . . V ${ }^{+}-35 \mathrm{~V}$
Operating Temperature Range . . . . . . . . . $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

## TABLE 2: OPERATING CHARACTERISTICS

(All parameters measured with $\mathrm{V}^{+}=5 \mathrm{~V}$ unless otherwise indicated.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	$V_{\text {SUPP }}$	$\mathrm{V}^{+}$	3	5	6	V
Operating Current	$\mathrm{l}_{\mathrm{OP}}$	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
Display Voltage	$\mathrm{V}_{\text {DISP }}$				30	V
Display Output Leakage	IDLK	Output OFF, $\mathrm{V}=\mathrm{V}^{+}-30 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
Input Pullup Currents	$\mathrm{I}_{\mathrm{P}}$	Pins 29, 31, 33, $34 \quad \mathrm{~V}=\mathrm{V}^{+}-3 \mathrm{~V}$		10		$\mu \mathrm{A}$
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	Pins 29, 31, 33, 34	3			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Pins 29, 31, 33, 34		.	2	V
Count Input Threshold	$\mathrm{V}_{\mathrm{CT}}$			2		V
Count Input Hysteresis	$\mathrm{V}_{\mathrm{CH}}$			0.5		V
Output High Current	$\mathrm{l}_{\mathrm{OH}}$	Carry Pin 28, leading zero out Pin 30 $\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-3 \mathrm{~V}$.	350	500		$\mu \mathrm{A}$
Output Low Current	$\mathrm{l}_{\mathrm{OL}}$	Carry Pin 28, leading zero out Pin 30 $V_{\text {OUT }}=+3 V$.	350	500	$\cdots$.	$\mu \mathrm{A}$
Count Frequency	$\mathrm{f}_{\text {count }}$	$4.5 \mathrm{~V}<\mathrm{V}^{+}<6 \mathrm{~V}$	0	25	15	MHz
Store, Reset Minimum Puise Width	$\mathrm{t}_{\text {S }}, \mathrm{t}_{\mathrm{W}}$		3			$\mu \mathrm{S}$

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than $\mathrm{V}^{+}$or less than ground may cause destructive device latch-up. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7236/7236A be turned on first.
NOTE 3: This limit refers to the display output terminals only.

## DESCRIPTION OF OPERATION

All of the chips in the ICM7236 family provide twenty-nine outputs suitable for directly driving the anode terminals of $41 / 2$ digit seven-segment non-multiplexed (static) vacuumfluorescent displays. Each display output is the drain of a high-voltage low-leakage P-channel transistor, capable of withstanding typically greater than -35 volts with respect to $\mathrm{V}^{+}$. The output characteristics are shown graphically under "Typical Characteristics."
These chips also provide a dislay $\overline{O N} / O F F$ input which may be used to disable all the segment outputs and thus blank the display. This input may also be used to control the display brightness by varying the duty cycle of a signal at the input swinging between $\mathrm{V}^{+}$and ground.

NOTE that these circuits have two terminals for $\mathrm{V}^{+}$; both of these pins should be connected to the power supply positive terminal. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.
These chips may also be used to directly drive nonmultiplexed common-cathode LED displays, where each segment of the display is driven by one ICM7236 output, and the common cathode is connected to ground. With a 5 V power supply and a 1.7 V LED diode forward voltage drop, the current in an "ON" segment will be typically 3mA. This should provide sufficient brightness in displays up to about $0.3^{\prime \prime}$ character height.


## MAXIMUM COUNT FREQUENCY (TYPICAL) AS A FUNCTION OF SUPPLY VOLTAGE



SUPPLY CURRENT AS A FUNCTION OF COUNT FREQUENCY


## SEGMENT ASSIGNMENT

$\frac{a}{d / b}$


## COUNTER SECTION

The devices in the ICM7236 family implement a four-digit ripple-carry resetable counter, including a Schmitt trigger on the COUNT input and a CaRrY output. Also included is an extra D-type flip-flop, clocked by the carry signal and outputting to the half-digit segment driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negative-going edge of the signal at the COUNT input, and the CaRrY output will provide a negative-going edge following the count which indexes the counter from 9999 (or 5959) to 10000. Once the half-digit flipflop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the ReSet terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half-digit is set, and subsequent CaRry outputs will not be affected.
A negative level at the COUNT ENABLE disables the first divide-by-two in the counter chain without affecting its clock. This provides a true count inhibit which is not sensitive to the state of the count input, preventing false counts which can result from using a normal logic gate forcing the state of the clock to prevent counting.
Each decade drives directly into a four-to-seven decoder which derives the seven-segment output code. Each decoder output corresponds to the one-segment terminal of the device. The output data is latched at the driver; when the

STOre pin is at a negative level, these latches are updated, and when the STO pin is left open or at a poistive level, the latches hold their contents.
The decoders also include zero detect and blanking logic to provide leading zero blanking. When the Leading ZeroInput is floating, or at a positive level, this circuitry is enabled and the device will blank leading zeroes. When the Leading Zero Input is at a negative level, or the half-digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The Leading Zero Output is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked, which can only occur when the Leading Zerolnput is at a positive level and the half-digit is not set.
For example, on an eight-decade counter with overflow using two ICM7236 devices, the Leading Zero Output of the highorder digit device would be connected to the Leading Zero Input of the low-order digit device. This will assure correct leading zero blanking for all eight digits.
The STO, ReSeT, COUNT ENABLE, and Leading Zero Inputs are provided with pullup devices, so that they may be left open when a positive level is desired. The CaRrY and Leading Zero Outputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7236 devices in four-digit blocks.

## CONTROL INPUT DEFINITIONS

In this table, V+ and ground are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 2. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	VOLTAGE	FUNCTION
Leading Zero Input (LZI)	29	$\mathrm{V}^{+}$or Floating   Ground	Leading Zero Blanking Enabled   Leading Zeroes Displayed
Count Enable (CEN)	31	$\mathrm{V}^{+}$or Floating   Ground	Counter Enabled   Counter Disabled
Reset $\overline{(\mathrm{RST})}$	33	$\mathrm{V}^{+}$or Floating   Ground	Inactive   Counter Reset to 0000
Store $\overline{(\mathrm{STO})}$	34	$\mathrm{V}^{+}$or Floating   Ground	Output Latches Not Updated   Output Latches Updated
Display $\overline{\text { ON/OFF }}$	5	$\mathrm{V}^{+}$   Ground	Display Outputs Disabled   Display Outputs Enabled

## BLOCK DIAGRAM



## TYPICAL DC VACUUM FLUORESCENT DISPLAY CONNECTION



VACUUM FLUORESCENT DISPLAYS (4 1/2 DIGIT):

1. NEC Electron, Inc.

3120 Central Expressway
Santa Clara, CA 95051
Tel. (408) 241-8222
Model FIP 5F8S

# ICM7240/50/60 CMOS Programmable Timers/Counters 

## FEATURES

- Replaces 8240/50/60, 2240 in most applications
- Timing from microseconds to days
- May be used as fixed or programmable counter
- Programmable with standard thumbwheel switches
- Select output count from

1RC to 255RC (ICM7240)
1RC to 99RC (ICM7250)
1Rc to 59Rc (ICM7260)

- Monostable or astable operation
- Low supply current: $115 \mu \mathrm{~A}$ @ 5 volts
- Wide supply voltage range: 2-16 volts


## - Cascadeable

## GENERAL DESCRIPTION

The ICM7240/50/60 is a family of CMOS Timer/Counter circuits intended to replace Intersil's ICL 8240/50/60 and the 2240 in most applications. Together with the ICM7555/56 (CMOS versions of the SE/NE 555/6), they provide a complete line of RC oscillators/timers/ counters offering lower supply currents, wider supply
voltage ranges, higher operating frequencies, lower component counts and a wider range of timing components. They are intended to simplify the selection of various time delays or frequency outputs from a fixed RC oscillator circuit.

Each device consists of a counter section, control circuitry, and an RC oscillator requiring an external resistor and capacitor. For counter/divider applications, the oscillator may be inhibited and an input clock applied to the TB terminal. The ICM7240 is intended for straight binary counting or timing, whereas the ICM7250 is optimized for decimall counting or timing. The ICM7260 is specifically designed for time delays in seconds, minutes and hours. All three devices use open drain output transistors, thereby allowing wire AND-ing. Manual programming is easily accomplished by the use of standard thumbwheel switches or hardwired connections. The ICM7240/50/60 are packaged in 16 pin CERDIP packages.

Applications include programmable timing, long delay generation, cascadeable counters, programmable counters, low frequency oscillators, and sequence timing.

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7240IJE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICM7250IJE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICM7260IJE	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead CERDIP
ICM7240/D		Dice Only
ICM7250/D		Dice Only
ICM7260/D		Dice Only

## PIN CONFIGURATION (OUTLINE DRAWING JE)

ICM7240, 7250, 7260


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ..................................... 18V
Input Voltage [1]
Terminals $10,11,12,13,14 \ldots \ldots . . \ldots .$. GND $-0.3 V$ to
$V^{+}+0.3 \mathrm{~V}$
Maximum continuous output
current (each output) ......................... 50 mA
Power Dissipation ${ }^{[2]}$. .......................... 200 mW
Operating Temperature Range $\ldots \ldots . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ...... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

## NOTES:

1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than $\mathrm{V}+$ or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7240/50/60 be turned on first.
2. Derate at $-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratingș only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## BLOCK DIAGRAM

## ICM7240/50/60



## ELECTRICAL CHARACTERISTICS

Each of the three devices utilizes an identical timebase, control flip-flops, and basic counters, with the outputs consisting of open drain n-channel transistors. Only the ICM7250/60 have CARRY outputs.

Test Conditions: Test circuit, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Guaranteed Supply Voltage	V+		2		16	V
Supply Current	$\mathrm{I}^{+}$	Reset   Operating, $\mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$   Operating, $R=1 \mathrm{M} \Omega, C=0.1 \mu \mathrm{~F}$   TB Inhibited, RC Connected to GND		$\begin{aligned} & 125 \\ & 300 \\ & 120 \\ & 125 \end{aligned}$	$\begin{aligned} & 700 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
Timing Accuracy		.		5		\%
RC Oscillator Frequency Temperature Drift	$\Delta f / \Delta T$	(Exclusive of RC Drift)		250		ppm $/{ }^{\circ} \mathrm{C}$
Time Base Output Voltage	Vотв	$\begin{aligned} & \text { ISOURCE }=1 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA} \end{aligned}$	3.5	$\begin{gathered} 4.2 \\ 0.25 \end{gathered}$	0.6	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Time Base Output Leakage Current	Itblk	RC = Ground			25	$\mu \mathrm{A}$
Mod Voltage Level	VMOD	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 3.5 \\ 11.0 \end{gathered}$	,	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Trigger Input Voltage	$V_{\text {trig }}$	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.6 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reset Input Voltage	VRST	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.3 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Max Count Toggle Rate 7240	$\mathrm{ft}_{\mathrm{t}}$	50\% Duty Cycle Input with Peak to Peak Voltages Equal to $\mathrm{V}^{+}$and GND	2	$\begin{gathered} 1 \\ 6 \\ 13 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Max Counter Toggle Rate 7250, 7260	$\mathrm{ft}_{\mathrm{t}}$	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \text { (Counter/Divider Mode) } \end{aligned}$	1.5	5		MHz
Max Count Toggle Rate 7240, 7250, 7260	$\mathrm{f}_{\mathrm{t}}$	Programmed Timer - Divider Mode			100	KHz
Output Saturation Voltage	VSAT	All Outputs except TB Output $\mathrm{V}^{+}=5 \mathrm{~V}$, IOUT $=3.2 \mathrm{~mA}$		0.22	0.4	V
Qutput Leakage Current	Iolk	$\mathrm{V}^{+}=5 \mathrm{~V}$, per Output			1	$\mu \mathrm{A}$
MIN Timing Capacitor	$\mathrm{C}_{\mathrm{t}}$		10			pF
Timing Resistor Range	$\mathrm{R}_{\mathrm{t}}$	$\begin{aligned} & \mathrm{V}^{+} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}^{+} \leq 16 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~K} \\ & 1 \mathrm{~K} \end{aligned}$	$\because$	$\begin{aligned} & \hline 22 \mathrm{M} \\ & 22 \mathrm{M} \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

## TEST CIRCUIT



## SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE



TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF R AND C


MINIMUM RESET PUL̇SE WIDTH AS A FUNCTION OF RESET AMPLITUDE


RECOMMENDED RANGE OF TIMING COMPONENT. VALUES FOR ACCURATE TIMING


MINIMUM TRIGGER PULSE WIDTH AS A FUNCTION OF TRIGGER AMPLITUDE


NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE


NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE


DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE


## DESCRIPTION OF PIN FUNCTIONS

COUNTER OUTPUTS (PINS 1 THROUGH 8)
Each binary counter output is a buffered "open-drain" type. At reset condition, all the counter outputs are at a high, or non-conducting state. After a trigger input or when using the internal timebase, the outputs change state (see timing diagram, Figure 1). If an external clock input is used, the trigger input must overlap at least the first falling edge of the clock. The counter outputs can be used individually, or can be connected together in a wired-AND configuration, as described in the Programming section.
GROUND (PIN 9)
This is the return or most negative supply pin. It should have a very low impedance as the capacitor discharge and other switched currents could create transients.

MAXIMUM DIVIDER FREQUENCY
vs. SUPPLY VOLTAGE*


OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE


## RESET AND TRIGGER INPUTS (PINS 10 AND 11)

The circuits are reset or triggered by positive going control pulses applied to pins 10 and 11, and once triggered they ignore additional trigger inputs until either the timing cycle is completed or a reset signal is applied. If both reset and trigger are applied simultaneously trigger overrides reset. Minimum input pulse widths are shown in the typical performance characteristics. Note that all devices feature power ON reset.

## MODULATION AND SYNC INPUT (PIN 12)

The period $t$ of the time base oscillator can be modulated by applying a DC voltage to this terminal. The time base oscillator can be synchronized to an external clock by applying a sync pulse to pin 12.

TIMEBASE INPUT/OUTPUT PIN (TERMINAL 14)
While this pin can be used as either a time base input or output terminal, it should only be used as an input terminal if terminal 13 (RC) is connected to GND.
If the counter is to be externally driven, care should be taken to ensure that fall times are fast (see Operating Limits section).
Under no conditions is a 300 pF capacitor on this terminal useful and should be removed if a 7240/50/60 is used to replace an $8240 / 50 / 60$ or 2240.

CARRY OUTPUT (TERMINAL 15, ICM7250/60 ONLY)
This pin will go HI for the last 10 counts of a 59 or 99 count, and can be used to drive another 7250 or 7260 counter stage while still using all the counter outputs of the first. Thus, by cascading several 7250's a large BCD countdown can be achieved.

The basic timing diagrams for the ICM7240/50/60 are shown in Figure 1. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive signal on the RESET terminal (if TRIGGER is low), a positive edge on the trigger input signal will initiate normal operation. The discharge transistor turns on, discharging the timing capacitor $C$, and all the flip-flops in the counter chain change states.
Note that for straight binary counting the outputs are symmetrical; that is, a $50 \%$ duty cycle $\mathrm{HI}-\mathrm{LO}$. This is not the case when using BCD counting. See Figure 3.

6


Figure 1. Timing Diagram for ICM7240/50/60

## CIRCUIT DESCRIPTION

The timing cycle is initiated by applying a positivegoing trigger pulse to pin 11. This pulse enables the counter section, sets all counter outputs to the LOW or ON state, and starts the time base oscillator. Then, external C is charged through external $R$ from $20 \%$ to $70 \%$ of $V^{+}$, generating a timing waveform with period $t$, equal to 1RC. A short negative clock or time base pulse occurs during the capacitor discharge portion of the waveform. These clock pulses are counted by the binary counter of the 7240 or by two cascaded Binary Coded Decimal (BCD) Counters in the 7250/60. The timing cycle terminater when a positive-going reset
pulse is applied to pin 10. When the circuit is at reset, both the time base and the counter sections are disabled and all the counter outputs are at a HIGH or OFF state. The carrry-out is also HIGH.
In most timing applications, one or more of the counter outputs are connected back to the reset terminal; the circuit will start timing when a trigger is applied and will automatically reset itself to complete the timing cycle when a programmed count is completed. If none of the counter outputs are connected back to the reset terminal (switch $S_{1}$ open), the circuit operates in its astable, or free-running mode, after initial triggering.

## PROGRAMMING CAPABILITY

The counter outputs, pins 1 through 8, are open-drain N -channel FETs, and can be shorted together to a common pull-up resistor to form a "wired-AND" connection. The combined output will be LOW as long as any one of the outputs is low. Each output is capable of sinking $\approx 5 \mathrm{~mA}$. In this manner, the time delays associated with each counter output can be summed by simply shorting them together to a common output. For example, if only pin 6 is connected to the output and the rest left open, the total duration of the timing cycle (monostable mode) to would be 32t for a 7240 and 20 t for a 7250/60. Similarly, if pins 1,5 , and 6 were shorted to the output bus, the total time delay would be $t_{0}=(1+16+32) t$ for the 7240 or $(1+10+20) t$ for the $7250 / 60$. Thus, by selecting the number of counter terminals connected to the output bus, the timing cycle can be programmed from:

$$
\begin{aligned}
& 1 \mathrm{t} \leq \mathrm{t}_{0} \leq 255 \mathrm{t}(7240) \\
& 1 \mathrm{t} \leq \mathrm{t}_{\mathrm{o}} \leq 99 \mathrm{t}(7250) \\
& 1 \mathrm{t} \leq \mathrm{t}_{0} \leq 59 \mathrm{t}(7260)
\end{aligned}
$$

Note that for the 7250 and 7260, invalid count states ( $B C D$ values $\geq 10$ ) will not be recognized and the counter will not stop.
The 7240/50/60 can be configured to initiate a controlled timing cycle upon power up, and also reset internally; see figure 2. Applications for this could include lawn watering sprinkler timing, pump operation, etc.

## BINARY OR DECIMAL PATTERN GENERATION

In astable operation, as shown in Figure 2, the output of the 7240/50 appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 1, which shows the phase relations between the counter outputs. Figure 3 shows some of these complex pulse patterns. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output.

## THUMBWHEEL SWITCHES

While the ICM7240 is frequently hard wired for a particular function, the ICM7250 and ICM7260 can easily be programmed using thumbwheel switches. Standard BCD thumbwheel switches have one common and four inputs ( $1,2,4$ and 8 ) which are connected according to the binary equivalent to the digits 0 through 9.

## ICM7240/50/60

For a single ICM7250 two such switches would select a time of 1RC to 99RC. Cascading two ICM7250's (using the carry out gate) would expand selection to 9999RC. For a ICM7260, there are standard BCD thumbwheel switches for the 0 through 5 digit (twelve position 0 to 5 repeated).


Figure 2. Generalized Circuit for Timing Applications (Switch $\mathrm{S}_{1}$ open for astable operation, closed for monostable operation)


PINS 1, 3, 5, \& 7 SHORTED

## NOTES ON THE COUNTER SECTION

Used as a straight binary counter (ICM7240), as a $\div 100$ (ICM7250), or $\div 60$ (ICM7260) all devices are significantly faster than their bipolar equivalents. However, when using these devices as programmable counters the maximum frequency of operation is reduced by more than an order of magnitude. For any division ratio other than 256 (ICM7240), 100 (ICM7250), or 60 (ICM7260) the maximum input frequency must be limited to approximately 100 KHz or less (with $\mathrm{V}^{+}$equal to +5 volts). The reason for this is two-fold:
a. Since Ripple counters are used, there is a propagation delay between each individual $\div 2$ counter ( 8 counters for the ICM7240/50 and 7 for the ICM7260). Outputs from the individual $\div 2$ counters are AND'ed together to provide the output signal and the Reset/Trigger signal.
b. There must be a delay of the positive going output to the Reset terminal, (pin 10) and the Trigger terminal (pin 11). The Reset signal must therefore be generated first, and from this signal another signal is obtained through a delay network. The trigger overrides Reset.

The delay between Trigger and Reset is generated by the signal RC network consisting of the $56 \mathrm{k} \Omega$ resistor and the 330 pF capacitor.

The delay caused by the counter Ripple delays can be as long as $2 \mu \mathrm{~s}$ ( 5 volt supply), and the delay between Reset and Trigger should be at least $2 \mu \mathrm{~s}$. The sum of these two delays cannot be greater than one-half of the input clock period for reliable operation. See Figure 4 and 5.

Figure 4. Programming the Counter Section of the ICM7240/50/60


Figure 5. Waveforms for Programming the Counter Section for a Division Ratio of $7\left(S_{1}, S_{2}, S_{3}\right.$ Closed)

## APPLICATIONS

## GENERAL CONSIDERATIONS

Shorting the RC terminal or output terminals to $\mathrm{V}^{+}$may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages).
There is a limit of 50 pF maximum loading on the TB I/O terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount.

For greatest accuracy, use timing component values shown in the graph under Typical Performance Characteristics. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200 KHz .

When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amplitude equal to supply voltage. If the clock is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform (rise/fall time $\leq$ $1 \mu \mathrm{~s}$ ); this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM 7240/50/60.
By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, automatic lubrication systems, etc.
By selection of $R$ and $C$, a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows:


Figure 6.

## CMOS PRECISION PROGRAMMABLE 0-99

## SECONDS/MINUTES LABORATORY TIMER

The ICM7250 is well suited as a laboratory timer to alert personnel of the expiration of a preselected interval of time:
When connected as shown, the timer can accurately measure preselected time intervals of 0-99 seconds or 0-99 minutes. A 5 volt buzzer alerts the operator when the preselected time interval is over.

The circuit operates as follows:

The time base is first selected with S1 (seconds or minutes), then units 0-99 are selected on the two thumbwheel switches S4 and S5. Finally, switch S2 is depressed to start the timer. Simultaneously the quartz crystal controlled divider circuits are reset, the ICM7250 is triggered and counting begins. The ICM7250 counts until the pre-programmed value is reached, whereupon it is reset, pin 10 of the CD4082B is enabled and the buzzer is turned on. Pressing S3 turns the buzzer off.


Figure 7.

## ICM7240/50/60

## LOW POWER MICROPROCESSOR

 PROGRAMMABLE INTERVAL TIMERThe ICM7240 CMOS programmable binary timer can be configured as a low cost microprocessor controlled interval timer with the addition of a few inexpensive CD4000 series devices.

With the devices connected as shown, the sequence of operation is as follows:
The microprocessor sends out an 8 bit binary code on its 8 bit I/O bus (the binary value needed to program the ICM7240), followed by four WRITE pulses into the CD4017B decade counter. The first pulse resets the 8 bit latch, the second strobes the binary value into the 8
bit latch, the third triggers the ICM7240 to begin its timing cycle and the fourth resets the decade counter.

The ICM7240 then counts the interval of time determined by the R-C value on pin 13, and the programmed binary count on pins 1 through 8 . At the end of the programmed time interval, the interrupt oneshot is triggered, informing the microprocessor that the programmed time interval'is over.

With a resistor of approximately $10 \mathrm{M} \Omega$ and capacitor of $0.1 \mu \mathrm{~F}$, the time base of the ICM7240 is one second. Thus, a time of 1-255 seconds can be programmed by the microprocessor, and by varying R or C, longer or shorter time bases can be selected.


Figure 8.

## CHIP TOPOGRAPHY



## Fixed Timer/Counter

## FEATURES

- Replaces the 2242 in most applications
- Timing from microseconds to days
- Cascadeable
- Monostable or astable operation
- Wide supply voltage range: 2-16 volts
- Low supply current: $115 \mu \mathrm{~A}$ @ 5 volts
- Extended temperature range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$


## GENERAL DESCRIPTION

The ICM7242 is a CMOS timer/counter circuit consisting of an RC oscillator followed by an 8-bit binary counter. It will replace the 2242 in $95 \%$ of the applications, with a significant reduction in the number of external components.
Three outputs are provided. They are, the oscillator output, and buffered outputs from the first and eighth counters.
The ICM7242 is packaged in an 8 -pin CERDIP.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage .................................. 18 V
Input Voltage ${ }^{[1]}$
Terminals (Pins 5, 6, 7, 8) ............. GND -0.3V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Maximum continuious output
current (each output)
50 mA
Power Dissipation ${ }^{[2]}$
200 mW
Operating Temperature Range ...... $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range ...... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

## NOTES:

1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than $V+$ or less than GROUND may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same supply by applied to the device before its supply is established and, that in multiple supply systems, the supply to the ICM7242 be turned on first.
2. Derate at $-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.


## ELECTRICAL CHARACTERISTICS

Test Conditions: Test circuit, $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Guaranteed Supply Voltage	V+		2		16	V
Supply Current	$\mathrm{I}^{+}$	Reset   Operating, $\mathrm{R}=10 \mathrm{~K} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$   Operating, $\mathrm{R}=1 \mathrm{M} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$   TB Inhibited, RC Connected to GND	.	$\begin{aligned} & 125 \\ & 300 \\ & 120 \\ & 125 \end{aligned}$	$\begin{aligned} & 700 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
Timing Accuracy				5		\%
RC Oscillator Frequency Temperature Drift	. $\Delta \mathrm{f} / \Delta \mathrm{T}$	(Independent of RC Components)		250		ppm $/{ }^{\circ} \mathrm{C}$
Time Base Output Voltage	Votb	$\begin{aligned} & \text { ISOURCE }=1 \mathrm{~mA} \\ & \text { ISINK }=3.2 \mathrm{~mA} \end{aligned}$	3.5	$\begin{array}{c\|} \hline 4.2 \\ 0.25 \end{array}$	0.6	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Time Base Output Leakage Current	Itblk	RC $=$ Ground			25	$\mu \mathrm{A}$
Mod Voltage Level	VMOD	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 3.5 \\ 11.0 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
. Trigger Input Voltage	VTRIG	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	.	$\begin{aligned} & 1.6 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reset Input Voltage	VRST	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.3 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Trigger/Reset Input Resistors	Rtrig, Rrst	(Pull Downs)	.	50		k $\Omega$
Max Count Toggle Rate	$\overline{\mathrm{ft}}$	$\left.\begin{array}{l} \mathrm{V}^{+}=2 \mathrm{~V} \\ \mathrm{~V}^{+}=5 \mathrm{~V} \\ \mathrm{~V}^{+}=15 \mathrm{~V} \end{array}\right] \text {-Counter/Divider Mode }$   50\% Duty Cycle Input with Peak to Peak Voltages Equal to $\mathrm{V}^{+}$and GND	2	$\begin{gathered} 1 \\ 6 \\ 13 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Output Saturation Voltage	VSAT	All Outputs except TB Output $\mathrm{V}^{+}=5 \mathrm{~V}, \text { IOUT }=3.2 \mathrm{~mA}$		0.22	0.4	V
Output Sourcing   , Current 7242	Isource	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \text { Terminals } 2 \& 3, \mathrm{Vout}=1 \mathrm{~V} \end{aligned}$		300		$\mu \mathrm{A}$
MIN Timing Capacitor	$\mathrm{C}_{\mathrm{t}}$		10	.		pF
Timing Resistor Range	$\mathrm{R}_{\mathrm{t}}$	$\begin{aligned} & \mathrm{V}^{+} \leq 5.5 \mathrm{~V} \\ & \mathrm{~V}^{+} \leq 16 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \\ & 300 \end{aligned}$		$\begin{aligned} & 22 \mathrm{M} \\ & 22 \mathrm{M} \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

## TEST CIRCUIT



NOTE: OUTPUTS $\div 2^{1}$ AND $\div 2^{8}$ ARE INVERTERS AND HAVE ACTIVE PULLUPS.

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


TIMEBASE FREE RUNNING FREQUENCY AS A FUNCTION OF R AND C


MINIMUM RESET PULSE WIDTH AS A FUNCTION OF RESET AMPLITUDE


RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING


DIMENSIONS IN INCHES AND MILLIMETERS

## MINIMUM TRIGGER PULSE WIDTH AS A FUNCTION OF TRIGGER AMPLITUDE



NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE


## TYPICAL PERFORMANCE CHARACTERISTICS

## NORMALIZED FREQUENCY

 STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE


## APPLICATIONS

## GENERAL CONSIDERATIONS

Shorting the RC terminal or output terminals to $\mathrm{V}^{+}$may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages).

## OPERATING LIMITS

There is a limitation of 50 pF maximum loading on the TB I/O terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount.
For greatest accuracy, use timing component values shown in the graph under typical performance characteristics. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200 KHz .

When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amplitude equal to supply voltage. If the clock

MAXIMUM DIVIDER FREQUENCY vs. SUPPLY VOLTAGE


## OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE


is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform; this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM7242.
The ICM7242 is a non-programmable timer whose principal applications will be very low frequency oscillators and long range timers; it makes a much better low frequency oscillator/timer than a 555 or ICM7555, because of the on-chip 8-bit counter. Also, devices can be cascaded to produce extremely low frequency signals.
Because outputs will not be AND'd, output inverters are used instead of open drain N -channel transistors, and the external resistors used for the 2242 will not be required for the ICM7242. The ICM7242 will, however, plug into a socket for the 2242 having these resistors.
The timing diagram for the ICM7242 is shown in Figure 1. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive signal on the RESET terminal (if TRIGGER is low), a positive edge

## ICM7242

on the trigger input signal will initiate normal operation. The discharge transistor turns on, discharging the timing capacitor $C$, and all the flip-flops in the counter chain change states. Thus, the outputs on terminals 2 and 3 change from high to low states. After 128 negative timebase edges, the $\div 2^{8}$ output returns to the high state.


Figure 1. Timing Diagrams of Output Waveforms for the ICM7242. (Compare with Figure 5)

To use the 8-bit counter without the timebase, terminal 7 (TB I/O) should be connected to ground and the outputs taken from terminals 2 and 3.


Figure 2. Using the ICM7242 as a Ripple Counter (Divider)

The ICM7242 may be used for a very low frequency square wave reference. For this application the timing components are more convenient than those that would be required by a 555 timer. For very low frequencies, devices may be cascaded (see Figure 3).


Figure 3. Low Frequency Reference (Oscillator)

For monostable operation the $\div 2^{8}$ output is connected to the RESET terminal. A positive edge on TRIGGER initiates the cycle (NOTE: TRIGGER overrides RESET).
The ICM7242 is superior in all respects to the 2242 except for initial accuracy and oscillator stability. This is primarily due to the fact that high value $p^{-r}$ resistors have been used on the ICM7242 to provide the comparator timing points.


Figure 4. Monostable Operation

COMPARING THE ICM7242 WITH THE 2242

		ICM7242	2242
a.	Operating Voltage	2-16V	4-15V
b.	Commercial Temp. Range	$-20^{\circ} \mathrm{C}$ to $+75^{\circ}$	C to $+75^{\circ} \mathrm{C}$
c.	Supply Current $\mathrm{V}^{+}=5 \mathrm{~V}$	0.7 mA Max.	7 mA Max.
d.	Pullup Resistors   TB Output $\div 2$ Output $\div 256$ Output	No No No	Yes   Yes   Yes
e.	Toggle Rate	3.0 MHz	0.5 MHz
f.	Resistor to Inhibit Oscillator	No	Yes
g .	Resistor in Series with Reset for Monostable Operation	No	Yes
h.	Capacitor TB Terminal for HF Operation	No	Sometimes

By selection of $R$ and $C$, a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows:


Figure 5.

By cascading devices, use of low cost CMOS AND/ OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, autoatic lubrication systems, etc.

## ICM7242

## SEQUENCE TIMING

- Process Control
- Electro-pneumatic Drivers
- Machine Automation
- Multi-operation (Serial or Parallel controlling)


## SEQUENCE TIMER:



PUSH $S_{1}$ TO START SEQUENCE:


Figure 6.

## CHIP TOPOGRAPHY (.068" $\times .069$ ")



# General Purpose Timers 

## FEATURES

- Exact equivalent in most cases for SE/NE555/ 556 or the 355.
- Low Supply Current - $\quad 80 \mu$ A Typ. (ICM7555)
$160 \mu$ A Typ. (ICM7556)
- Extremely low trigger, threshoid and reset currents - 20pA Typical
- High speed operation - $500 \mathbf{k H z}$ guaranteed
- Wide operation supply voltage range guaranteed 2 to 18 volts
- Normal Reset function - No crowbarring of supply during output transition.
- Can be used with higher impedance timing elements than regular 555/6 for longer RC time constants.
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- High output source/sink driver can drive TTL/CMOS
- Typical temperature stability of $0.005 \%$ per ${ }^{\circ} \mathbf{C}$ at $25^{\circ} \mathrm{C}$
- Outputs have very low offsets, HI and LO


## GENERAL DESCRIPTION

The ICM7555/6 are CMOS RC timers providing significantly improved performance over the standard SE/NE555/6 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and $\overline{\text { RESET }}$ currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.
Specifically, the ICM7555/6 are stable controllers capable of producing accurate time delays or frequencies. The ICM7556 is a dual ICM7555, with the two timers operating independently of each other, sharing only $\mathrm{V}^{+}$and GND. In the one shot mode, the pulse width of each circuit is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor. Unlike the regular bipolar 555/6 devices, the CONTROL VOLTAGE terminal need not be decoupled with a capacitor. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink currents large enough to drive TTL loads, or provide minimal offsets to drive CMOS loads.


## ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Supply Voltage	
Input Voltage	
	$\left.\begin{array}{l}\text { Trigger } \\ \text { Threshold }\end{array}\right] \ldots \ldots \leq \mathrm{V}^{+}+0.3 \mathrm{~V}$ to $\geq \mathrm{V}^{-}-0.3 \mathrm{~V}$
$\frac{\text { Reset }}{}$	

Output Current Control Voltage ..................... 100mA
Power Dissipation ${ }^{[2]}$ ICM7556 ..................... 300 mW ICM7555 .................... 200mW
Operating Temperature Range ${ }^{[2]}$

ICM7555IPA	C
ICM7555ITY	.$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICM7556IPD	$.20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICM7555MTY	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICM7556MJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	s) $. \ldots . . . . .+300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+2\right.$ to +15 Volts unless other specified)


## NOTES:

1. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $\mathrm{V}^{+}$ +0.3 V or less than $\mathrm{V}^{-}-0.3 \mathrm{~V}$ may cause destructive latchup. For this reasen it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its power supply is established. In multiplesystems, the supply of the ICM7555/6 must be turned on first.
2. Junction temperatures should not exceed $135^{\circ} \mathrm{C}$ and the pow?r dissipation must be limited to 20 mW at $125^{\circ} \mathrm{C}$. Below $125^{\circ} \mathrm{C}$ power dissipation may be increased to 300 mW at $25^{\circ} \mathrm{C}$. Derating factor is approximately $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(7556)$ or $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(7555)$.
3. The supply current value is essentially independent of the TRIGGER, THRESHOLD and $\overline{\text { RESET }}$ voltages.
4. Parameter is not $100 \%$ tested, Majority of all units meet this specification.

TYPICAL CHARACTERISTICS


LOWEST VOLTAGE LEVEL of TRIGGER PULSE ( $\% \mathrm{~V}^{+}$)


NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE


NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE


SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE


FREE RUNNING FREQUENCY AS A FUNCTION OF RA, RB and C


OUTPUT SOURCE CURRENT AS A FUNCTION OF OUTPUT VOLTAGE OUTPUT VOLTAGE REFERENCED TO $V$ *

$-100$


PROPAGATION DELAY AS A FUNCTION OF VOLTAGE LEVEL OF TRIGGER PULSE


TIME DELAY IN THE MONOSTABLE MODE AS A FUNCTION OF RA AND C


## APPLICATION NOTES

## GENERAL

The ICM7555/6 devices are, in most instances, direct replacements for the NE/SE 555/6 devices. However, it is possible to effect economies in the external component count using the ICM7555/6. Because the bipolar 555/6 devices produce large crowbar currents in the output driver, it is necessary to decouple the power supply lines with a good capacitor close to the device. The 7555/6 devices produce no such transients. See Figure 2.


Figure 2. Supply Current Transient Compared with a Standard Bipolar 555 During an Output Transition

The ICM7555/6 produces supply current spikes of only 2-3 mA instead of $300-400 \mathrm{~mA}$ and supply decoupling is normally not necessary. Secondly, in most instances, the CONTROL VOLTAGE decoupling capacitors are not required since the input impedance of the CMOS comparators on chip are very high. Thus, for many applications 2 capacitors can be saved using an ICM7555, and 3 capacitors with an ICM7556.

## POWER SUPPLY CONSIDERATIONS

Although the supply current consumed by the ICM7555/6 devices is very low, the total system supply can be high unless the timing components are high impedance. Therefore, use high values for $R$ and low values for $C$ in Figures 3 and 4.

## OUTPUT DRIVE CAPABILITY

The output driver consists of a CMOS inverter capable of driving most logic families including CMOS and TTL. As such, if driving CMOS, the output swing at all supply voltages will equal the supply voltage. At a supply voltage of 4.5 volts or more the ICM7555/6 will drive at least 2 standard TTL loads.

## ASTABLE OPERATION

The circuit can be connected to trigger itself and free run as a multivibrator, see Figure 3. The output swings from rail to rail, and is a true $50 \%$ duty cycle square wave. (Trip points and output swings are symmetrical). Less than a $1 \%$ frequency variation is observed, over a voltage range of +5 to +15 V .

$$
f=\frac{1}{1.4 R C}
$$



Figure 3: Astable Operation

## MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative TRIGGER pulse to pin 2, the internal flip flop is set which releases the short circuit across the external capacitor and drives the OUTPUT high. The voltage across the capacitor now increases exponentially with a time constant $t=R_{A} C$. When the voltage across the capacitor equals $2 / 3 \mathrm{~V}^{+}$, the comparator resets the flip flop, which in turn discharges the capacitor rapidly and also drives the OUTPUT to its low state. TRIGGER must return to a high state before the OUTPUT can return to a low state.


Figure 4: Monostable Operation

## CONTROL VOLTAGE

The CONTROL VOLTAGE terminal permits the two trip voltages for the THRESHOLD and TRIGGER internal comparators to be controlled. This provides the possibility of oscillation frequency modulation in the astable mode or even inhibition of oscillation, depending on the applied voltage. In the monostable mode, delay times can be changed by varying the applied voltage to the CONTROL VOLTAGE pin.

## RESET

The $\overline{\text { RESET }}$ terminal is designed to have essentially the same trip voltage as the standard bipolar $555 / 6$, i.e. 0.6 to 0.7 volts. At all supply voltages it represents an extremely high input impedance. The mode of operation of the RESET function is, however,, much improved over the standard bipolar 555/6 in that it controls only the internal flip flop, which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins. This avoids the multiple threshold problems sometimes encountered with slow falling edges in the bipolar devices.

## EQUIVALENT CIRCUIT



## BLOCK DIAGRAM



This block diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs.
$R=100 \mathrm{k} \Omega, \pm 20 \%$ typ.

## TRUTH TABLE

THRESHOLD   VOLTAGE	$\overline{\text { TRIGGER }}$   VOLTAGE	$\overline{\text { RESET }}$	OUTPUT	DISCHARGE   SWITCH
DON'T CARE	DON'T CARE	LOW	LOW	ON
$>2 / 3\left(\mathrm{~V}^{+}\right)$	$>1 / 3\left(\mathrm{~V}^{+}\right)$	HIGH	LOW	ON
$1 / 3<V_{T H}<2 / 3$	$1 / 3<V_{T H}<2 / 3$	HIGH	STABLE	STABLE
DON'T CARE	$<1 / 3\left(\mathrm{~V}^{+}\right)$	HIGH	HIGH	OFF

NOTE: $\overline{\operatorname{RESET}}$ will dominate all other inputs: $\overline{\text { TRIGGER }}$ will dominate over THRESHOLD.

## Consumer Circuits

Watches	
	Page
ICM1424C/MC	$7-5$
CCM7245	$7-56$
ICM7271	$7-60$
ICM7272	$7-66$
Clocks	
ICM7038	
ICM7050	$7-11$
ICM7223	$7-24$
ICM7223VF	$7-42$

Stopwatches
ICM7045 ICM7045A 7-15

ICM7215 7-36
Touch Tone
Encoders
ICM7206 7-28

## CONSUMER CIIRCUITTS

Watches


Notes: All Intersil watch circuits are designed for use with a 32.768 Hz quartz crystal. All provide a rapid advance setting.
Watch circuits are normally sold in die form. The ICM1424C is also available in a 40 pin plastic DIP, and the ICM7245B/D/E/F and ICM7245U are available in either an 8 pin plastic DIP or mini-flatpack as well as dice.
All Intersil watch circuits have a-fixed on-chip oscillator capacitor. The above circuits show typical current at 1.55 Volts ( 3.1 for. the ICM7214A) LCD units in doubler mode.

## Clocks



Notes: All Analog clock circuits are designed for use with a 4.19 MHz quartz crystal, with the exception of the ICM7223 series which uses a 32.768 kHz crystal. Clock circuits are normally purchased in package form; each is also available as dice.
All Analog clock circuits are mask programmable for oscillator frequency. output frequency and pulse width, and alarm frequency. Consult the factory for details.

## Stopwatches

Part Number	Circuit Description	Crystal Frequency	Package
ICM7045	8 Digit 4 Function LED stopwatch circuit. Features Hours:Minutes:Seconds:100ths. Provides Time Out. Taylor, Split and Rally modes. Direct drive for LEDs. May be used as 24 -hour clock.	6.55 MHz	28 pin DIP
ICM7045A	8 Digit 4 Function LED industrial stopwatch circuit. precision decade timer. Counts seconds, minutes or hours by selection of suitable quartz crystal.	Seconds: 1.31 MHz Minutes: 2.18 MHz Hours: 3.64 MHz	$28^{\circ} \mathrm{pin}$ DIP
ICM7205	6 Digit 2 Function LED stopwatch circuit. Features Minutes:Seconds. 100ths. Provides Taylor and Split modes. Direct drive for LEDs.	3.28 MHz	24 pin DIP
ICM7215	6 Digit 4 Function LED stopwatch circuit. Features Minutes:Seconds:100ths. Provides Time out. Taylor and Split modes. Direct drive for LEDs.	3.28 MHz	24 pin DIP

Notes: All stopwatches may be purchased as an Evaluation Kit (EV KIT) which includes the IC and the appropriate quartz crystal. All operate at 2.5 to 4.5 volts, and source 15 mA current to the segments of the LEDs.

## 

## CMOS <br> ANALOG QUARTZ CLOCK(1) SELECTION GUIDE



All Intersil analog quartz products are mask programmable. Options include:

* Crystal frequency ( $32 \mathrm{kHz}, 1 \mathrm{MHz}$, etc. 1
* Pulse width (500 msec to 3.9 msec )
* Pulse frequency 64 Hz to 0.5 Hz )
* Alarm frequency ( 64 Hz to 4096 Hz , including complex)

Motor drive characteristics

* Oscillator characteristics, including fixed capacitors (ICM7049A, ICM7050)

Notes: (1) Square wave
(2) For automotive service
(3) Includes snooze
(4) All Intersil analog quartz products may be ordered in die form.

## FEATURES

- One chip system
- Very low current consumption: $1.5 \mu \mathrm{~A}$ at 1.55 volt typical
- Drives standard 3-1/2 digit display with time, month, date, and seconds
- Voltage doubler requires only two external capacitors
- 4-year perpetual calendar
- 32 kHz oscillator requires only quartz crystal and trimming capacitor
- Fully protected against short circuits on all inputs and outputs
- Display button calls up all functions:

NORMAL operation:
Run 1 (time only)
Press: To
DISPLAY once Display month/date
again Display seconds again Return to RUN 1
RUN 2 (time alternating with month/date)

Press:
SET
DISPLAY

To:
once Enter RUN 2 from RUN 1
once Display seconds again Return to RUN 2
SET operation: (begin with RUN 1 mode)
Press:
To:
SET
once Switch to RUN 2 again Set month* again Set date* again Set hours* again Set minutes* again Return to RUN 1
*Selected counter advances once with each push of the DISPLAY button or at a 1 Hz rate if it is held down.

## ORDERING INFORMATION



ORDER DICE BY FOLLOWING PART NUMBER: ICM1424C/D ICM1424MC/D ORDER DEVICES BY FOLLOWING PART NUMBERS: ICM1424CIPL

## GENERAL DESCRIPTION

The ICM1424C is a fully integrated 5 -function $3-1 / 2$ digit liquid crystal watch circuit, fabricated using Intersil's low threshold metal gate CMOS process, and designed to interface easily with readily available LCD watch displays. The oscillator, frequency divider, counters, decoder, voltage multiplier and 32 Hz display drivers are all included on chip. The only components required for a complete LCD watch in addition to the circuit are a battery, a 3 volt liquid crystal display, two $0.5 \mu \mathrm{~F}$ capacitors, a 32768 Hz quartz crystal, a trimming capacitor and two switches.
The circuit divides the oscillator frequency in 15 binary stages to a frequency of 1 Hz . Some of the dividersignals are used to drive the voltage multiplier $(512 \mathrm{~Hz})$ and the liquid crystal outputs ( 32 Hz ). The 1 Hz signal is counted down in the seconds, minutes, hours, date, day and month counters, which are selectively connected to the decoders based on the control logic. The decoder outputs determine the phase of the 32 Hz signal on the segment outputs, in order to turn the segments on and off. The SPST switches ( 60 ms maximum switch bounce) control normal operation and setting of the watch. The seconds in both RUN 1 and RUN 2 stay on until commanded off, while all other demand functions automatically revert to the normal display.

The ICM1424MC is identical to the ICM1424C with the exception that the ICM1424C is designed to mount on the top of the watch substrate, while the mirror image MC device mounts on the bottom.

## ABSOLUTE MAXIMUM RATINGS

Storage Temperature ............ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature.........$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Power Dissipation ${ }^{11!}$ (Dice Only) ........... 100 mW
Supply Voltage ${ }^{[2 \mid}$

$$
\begin{aligned}
& \mathrm{V}^{+}-\mathrm{V}^{-} \\
& 2.0 \mathrm{~V} \\
& \mathrm{~V}^{+}-\mathrm{V}_{2}{ }^{-} \text {...................................... } 5.5 \mathrm{~V}
\end{aligned}
$$

Input Voltage (Osc. In, Test,
Set, Display)..................... $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}$

Output Voltage (Osc. Out, 512). $\mathrm{V}^{-} \leq \mathrm{Vout}^{\mathrm{S}} \mathrm{V}^{+}$ (All Other.Pins) $\quad \ldots . . . . . . . . . . \quad V_{2}^{-} \leq$Vout $\leq \mathrm{V}^{+}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

Notes:

1. The ICM1424/MC is fully short circuit protected on all inputs and outputs. However, if by forward biasing an input or output the device is put into a latchup condition, power dissipation must be limited to 100 mW to prevent destruction of the device.
2. The ICM1424C/MC is intended for use with two power supplies, one of which is derived from an external battery ( $V^{-}$) and the other is generated internally by the voltage multiplier $\left(V_{2}\right)$. The common point of the two supplies is the most positive, $\mathrm{V}^{+}$. If desired the circuit can be supplied with an'external $V_{H}$ by disconnecting the multiplier capacitors.

## OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}=1.55 \mathrm{~V}$, voltage doubler connected, $\mathrm{TA}=25^{\circ} \mathrm{C}$, watch circuit, unless otherwise specified. All voltages are expressed in absolute value.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	$\mathrm{V}^{+}$	$\mathrm{V}^{+}=0 \mathrm{~V}-10^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<60^{\circ} \mathrm{C}$	1.2		1.8	V
Supply Current	${ }^{+}$	Display Disconnected		1.5	3.0	$\mu \mathrm{A}$
Doubler Output Voltage	$\mathrm{V}_{2}$	$\begin{gathered} \mathrm{V}^{-}=0 \mathrm{~V}_{\mathrm{H}}=0.0 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{H}}=1.0 \mu \mathrm{~A}^{\prime} \end{gathered}$		$\begin{aligned} & 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.8 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
512 Hz Drive Current	1512	$\mathrm{V}_{\text {SAT }}=0.2 \mathrm{~V}$ (Both Directions!	20		!	$\mu \mathrm{A}$
Segment Drive Current	ISEG	VSAT $\doteq 0.2 \mathrm{~V}$, Both Directions	10			$\mu \mathrm{A}$
Backplane Drive Current	IBP	$\mathrm{V}_{\text {SAT }}=0.1 \mathrm{~V}$ (Both Directions	20			$\mu \mathrm{A}$
Switch Actuation Çurrent	Isw	$V_{S W}=V_{D D}$	$\cdots$	15		$\mu \mathrm{A}$
Oscillator Stability ...	$\Delta f$	$\begin{aligned} & V_{D D}=0 \mathrm{~V}-1.55 \mathrm{~V} \leq \mathrm{V}_{S S} \leq-1.20 \mathrm{~V} \\ & C_{\text {IN }}=C \text { OUT }=25 \mathrm{pF} \end{aligned}$	-	1.5	.	PPM
- Oscillator Input Current ${ }^{3}$	losc in	'OSC IN' Connected to VDD 'OSC OUT' Open Circuit	-	0.2	.	$\mu \mathrm{A}$
Oscillator Input Capacitance	CIN	-	20	25	30	pF
Oscillator Transconductance	$\mathrm{gm}_{\mathrm{m}}$		10	15		$\mu \mathrm{mho}$

3. The integrated oscillator biasing component has a nonlinear characteristic depending on the instantaneous values of the input and output voltages of the oscillator and the supply. Under oscillator startup conditions thís component has a maximum value.
See Application Notes, page 7-9.

## BLOCK DIAGRAM



## WATCH CIRCUIT



## TYPICAL PERFORMANCE CHARACTERISTICS




VOLTAGE DOUBLER OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT


OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE


VOLTAGE DOUBLER EFFICIENCY AS A FUNCTION OF OUTPUT CURRENT


# 1234567890 

## DISPLAY CONNECTION



NORMAL OPERATION


Two modes are provided for normal operation, theRUN 1 and RUN 2 mode, selectable by the user using theSET switch. In either mode only the DISPLAY switch is used to address the watch.

RUN 1
The circuit is normally in the 'TIME' mode with the colon flashing.

Upon activating the DISPLAY switch, the circuit enters the 'MONTH/DATE' mode. The timer starts after release of the switch and 2 seconds later returns to the 'TIME' mode. If the DISPLAY switch is activated again during 'MONTH/DATE', the circuit enters the 'SECONDS' mode. It will stay in this mode until the DISPLAY switch is activated again. Seconds are displayed in the minutes position.

## RUN 2

This mode allows 'hands off' viewing of both time and month/date by cycling every 2 seconds between the 'TIME' mode (colon on) and 'MONTH/DATE'. Each display stays on for 2 seconds, therefore the user can always see the information he needs in less than 2 seconds. On the other hand this rate is slow enough to give a non-irritating display. If the DISPLAY switch is activated, the circuit will switch to the 'SECONDS' mode, which will remain on until turned off by the user. Note that in the 'SECONDS' mode RUN 1 AND 2 are indistinguishable. To return to RUN 1 from RUN 2 it is necessary to cycle through the SET modes. PressSET5 times.

## SETTING OPERATION


*Selected counter advances one with each push of the DISPLAY button or at a 1 Hz rate if DÍSPLAY held down.

Setting the ICM1424C/MC is carried out in a sequential manner. The SET input allows the user to cycle through two run modes and four set modes. In each set mode the DISPLAY input is used to advance the counter being set either by one count per push or'at a 1 Hz rate if the DISPLAY switch is held down continuously. All set operations are independent, i.e. the counters following the one being set are inhibited; this allows convenient time zone adjustment without affecting date or month.

## DATE SET

The perpetual calendar uses 28 days for February. In a leap year, on February 29, the watch will display March 1. To display February 29, change date to 29 first, then March to February.

## HOURS SET

The ICM1424C/MC is intended for use with a display without AM/PM flags and shows an A in the minutes units position for AM and a P for PM .

## MINUTES SET

The 'MINUTES SET' mode is used for exact synchronization of the watch as well as for setting the minutes. If the DISPLAY switch is not activated during 'MINUTES SET', neither seconds nor minutes will be affected and the next activation of the SET switch will return the circuit to the RUN 1 time mode with flashing colon. If the DISPLAY switch is used in the 'MINUTES SET' mode, the minutes will advance and the seconds counter is reset to 00 and put on hold. The user now advances to the next minute and pushes the SET switch once. The circuit is now in a TIME HOLD mode, showing hours, minutes and colon (not flashing), while the seconds are still held to 00. At the tone of the time signal push the DISPLAY switch. This will cause the watch to display month/date and back to time, while the seconds will start running at the time the switch is activated. Time setting accuracy is approximately 0.1 seconds.

## APPLICATION NOTES

## SYSTEM CONSIDERATIONS

The ICM1424C is designed to be mounted on the same side of the board substrate as the display; the ICM1424MC is designed to be mounted on the backside of the board. The switches used for the watch should be SPST connected to $\mathrm{V}^{+}$. The total system power consumption is sufficiently low that it is possible to replace the battery without loss of timekeeping. A
$100 \mu \mathrm{~F}$ low voltage capacitor should be connected across the battery terminals; this allows about 20 seconds for battery replacement.

## OSCILLATOR

The oscillator of the ICM1424C/MC is designed for low frequency operation at very low currents from a 1.3 to 1.8 volt supply. The oscillator is of the inverter type with a non-linear feedback resistor having a maximum resistance under startup conditions included on chip. The nominal load capacitance of the crystal should be less than 15 pF , typically 12 pF . In specifying the crystal, the motional capacitance, series resistance and tuning tolerance must be compatible with the characteristics of the circuit to insure startup and operation over a wide voltage range under worst case conditions. On chip oscillator capacitor $\approx 25 \mathrm{pF}$.

The following expressions can be used to arrive at a crystal specification: Tuning range

$$
\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{I N} C_{O U T}}{C_{I N}+C_{O U T}}
$$

$$
\begin{aligned}
& g_{m} \text { required for startup } \\
& \qquad g_{m}=4 \pi^{2} f^{2} C_{I N} \text { Cout Rs }\left[1+\frac{C_{O}}{C_{L}}\right]^{2}
\end{aligned}
$$

here

> Rs = Series Resistance of Crystal
$f=$ Frequency of the Crystal
$\Delta f=$ Frequency Shift from Series Resonance
Frequency
Co = Static Capacitance of Crystal
$\mathrm{CIN}_{\mathrm{IN}}=$ Input Capacitance
Cout $=$ Output Capacitance
$\mathrm{C}_{\mathrm{L}}=$ Load Capacitance
$\mathrm{C}_{\mathrm{m}}=$ Motional Capacitance of Crystal
The $g_{m}$ required for startup calculated should not exceed $50 \%$ of the $\mathrm{gm}_{\mathrm{m}}$ guaranteed for the device.

## TEST POINT AND DISPLAY TEST

The circuit is reset to a known state by connecting SET, DISPLAY and TEST to $\mathrm{V}^{+}$. This state is December 1, 12:00 a.m., in the RUN 1 mode. The TEST input, when connected to $\mathrm{V}^{+}$causes the circuit to speed up the seconds by 128 times, while inputs can then be applied at a rate of up to 500 Hz . The test point allows automatic testing of the device in a very short time.


ICM7038B/D/E/G CMOS Analog Quartz Clock Circuit

## Synchronous Motor Applications

## FEATURES

- Single battery operation: 1.2 to 1.8 volt operation
- Very low power: $30 \mu \mathrm{~A}$ typical
- High output current drive: 1 mA minimum
- Zero output bridge DC component (50\% duty cycle square wave)
- All inputs fully protected - no special handling precautions required
- Wide temperature range: $-\mathbf{2 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$


## GENERAL DESCRIPTION

The ICM7038 family of synchronous motor drivers is designed to operate from a 1.5 V battery, and performs the functions of oscillator, frequency divider and output driver. In addition a power driver is tapped off from the thirteenth divider for use as an alarm driver.
Specifically the ICM7038 family uses an inverter oscillator having all biasing components on chip. Binary dividers permit frequency division from 4 MHz down to 64 Hz (ICM7038B). The output from the divider network drives a bridge output circuit which provides a. 50\% duty cycle AC square wave having virtually zero DC component for driving a synchronous single phase motor. The total output driver saturation is typically 200 ohms providing efficient operation of synchronous motors. The alarm output will drive a transducer (piezoelectric or speaker).

## TABLE OF OPTIONS

The ICM7038 may be modified with alternative metal masks to provide any number of binary divider stages up to a maximum of 19 together with various output options. Consult your Intersil representative or the factory for further information. The alarm output can be tapped off from any of the latter divider stages.
(See table for,standard options).

Part Number	Binary Dividers	Output Frequency   (50\% Duty Cycle   Square Wave)
ICM7038B	16	64 Hz
ICM7038D	17	32 Hz
ICM7038E	18	16 Hz
ICM7038G	19	8 Hz

PIN CONFIGURATION (OUTLINE DRAWING PA)


PIN 1 IS DESIGNATED BY EITHER A DOT OR A NOTCH.

ORDERING INFORMATION


ORDER DEVICES BY FOLLOWING PART NUMBERicm7038BIPA
ORDER DICE BY FOLLOWING PART NUMBERICM7038C/D

ABSOLUTE MAXIMUM RATINGS
Power Dissipation Output Short Circuit ${ }^{[1]}$... 300 mW
Supply Voltage ....................................... 3V
Output Voltage ${ }^{[2]}$. ........................................ 3V
Input Voltage ${ }^{[2]}$....................................... 3V
Storage Temperature ............... $-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $\ldots \ldots . . . . . .-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## TEST CIRCUIT

QUARTZ CRYSTAL PARAMETERS
$f=4,194,304 \mathrm{~Hz}$
$\mathbf{R}_{\mathbf{S}}=35 \Omega$
$C_{m}=10 \mathrm{mpF}$
$\mathrm{C}_{\mathrm{O}}=3.5 \mathrm{pF}$


NOTES:

1. This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.
2. Except for instantaneous static discharges all terminals may exceed the supply voltage ( 2.0 V max) by $\pm 0.5$ volt provided that the currents in these terminals are limited to 2 mA each.

## TYPICAL OPERATING CHARACTERISTICS

( $\mathrm{V}^{+}=1.5 \mathrm{~V}$, fosc $=4,194,304 \mathrm{~Hz}$ test circuit $1, \mathrm{TA}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply Current	$1^{+}$			30	60	$\mu \mathrm{A}$
Guaranteed Operating Voltage Range	V+	$-20^{\circ} \mathrm{C} \leq$ to $\leq 70^{\circ} \mathrm{C}$	1.2		1.8.	V
Tȯtal Output Saturation Resistance	RSat	p+n Output Transistors, IOUT $=0.5 \mathrm{~mA}$		200	700	$\Omega$
Alarm Output Saturation Resistance	$\mathrm{R}_{\text {AL }}$	IOUT $=1 \mathrm{~mA}$		300	800	$\Omega$
Oscillator Stability	fstab.	$\begin{aligned} & 1.2 \mathrm{~V}<\mathrm{V}^{+}<1.6 \mathrm{~V} \\ & \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=15 \mathrm{pF} \end{aligned}$		1		ppm
Oscillator Start-Up Time	$\mathrm{t}_{\text {start }}$	$\mathrm{V}^{+}=1.2 \mathrm{~V}$			1.0	sec

## SCHEMATIC DIAGRAM (ICM7038B)



## TYPICAL OPERATING CHARACTERISTICS

SUPPLY CURRENT VS. SUPPLY VOLTAGE


OUTPUT CURRENT (SOURCE) VS.
OUTPUT SATURATION VOLTAGE


BRIDGE OUTPUT CURRENT VS. BRIDGE OUTPUT VOLTAGE


ALARM OUTPUT CURRENT (SOURCE) VS. OUTPUT SATURATION VOLTAGE


ALARM OUTPUT SATURATION VOLTAGE

OSCILLATOR STABILITY VS. SUPPLY VOLTAGE


SUPPLY VOLTAGE

MINIMUM OPERATING SUPPLY VOLTAGE VS. TEMPERATURE


## APPLICATION NOTES

## GENERAL DESCRIPTION

The ICM7038 Family has been designed primarily for quartz clock and timer applications using oscillator frequencies between 2.0 and 10 MHz . The design objectives were exceptional oscillator frequency stability, very low power, wide supply voltage range and wide temperature range. The oscillator contains all components except the tuning components and quartz crystal. Three outputs are provided. The two principal outputs are intended to be used to drive a single phase synchronous motor in a bridge configuration. As such, because of the matching of the transistors in the two outputs, the output DC component is extremely small. Stepper motors may also be used by placing a capacitor in series with the motor and using either a single output or the bridge output.


Alternatively outputs 3 and 4 may be used to drive TTL logic directly for timer applications.
The alarm output is taken from the output of the thirteenth divider and can source 1 mA at a low saturation voltage.


The ICM7038 may be used as a straight divider by driving directly into the oscillator output (pin no. 7) with a low impedance square wave drive: As such it may be used over the frequency range 1 MHz to 10 MHz .

## OSCILLATOR CONSIDERATIONS

The oscillator of the ICM7038 is designed to operate with crystals having a load capacitance of 10 to 12 pF . This allows nominal capacitor values of $15 / 15 \mathrm{pF}$ or -20/20 pF. Increasing the load capacitance of the crystal requires larger oscillator device sizes, which causes the supply current to increase. Modifications to the oscillator can be made on a custom basis. The tuning range can be increased by using crystals with lower load capacitances, however, the stability may decrease somewhat. This can be counteracted by reducing the motional capacitance of the crystal. A non-linear
feedback resistor is provided on chip, which has a maximum value at start up. Oscillator tuning should be done at the oscillator output.
The following expressions can be used to arrive at a crystal specification:
Tuning Range

$$
\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} \quad C_{L}=\frac{C_{\text {IN }} C_{O U T}}{C_{\text {IN }}+C_{O U T}}
$$

$\mathrm{gm}_{\mathrm{m}}$ required for startup
$g_{m}=\omega^{2} C_{\text {IN }} C_{\text {OUT }} R S\left(1+\frac{C_{O}}{C_{L}}\right)^{2}$
Rs = series resistance of the crystal
f = frequency of the crystal
$\Delta f=$ frequency shift from series resonance frequency
Co = static capacitance of the crystal
$\mathrm{C}_{\text {IN }}=$ input capacitance
Cout = output capacitance
$C_{L}=$ load capacitance
$\mathrm{C}_{\mathrm{m}}=$ motional capacitance
$\omega \quad=2 \pi \mathrm{f}$
The resulting $\mathrm{gm}_{\mathrm{m}}$ should not exceed $50 \mu \mathrm{mhos}$

# CMOS Precision <br> Decade Timers 

## FEATURES

- Total integration: includes oscillator, divider, decoder driver on chip
- Wide operating supply range: $2.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4.5 \mathrm{~V}$
- Low operating power consumption:
0.9 mW @ 3.6 V supply with display off
- High output current drive: 18 mA peak current per segment with $\mathbf{1 2 . 5 \%}$ duty cycle.
- Leading zero suppression: timer stopwatch applications
- Fractional second suppression: 24-hour clock application
- Short duration short circuit protection on all inputs and outputs at 3.6 V supply
ICM7045
- Versatility of applications: precision timer, 4 mode stopwatch, 24-hour clock
- Uses 6.5536 MHz quartz crystal for high accuracy
ICM7045/A
- May Be Used to Count
-Seconds (1.310772 MHz crystal)
-Minutes (2.184533 MHz crystal)
-Hours (3.640889 MHz crystal)


## GENERAL DESCRIPTION

The ICM7045/A are fully integrated precision decade timers fabricated using Intersil's low voltage metal gate C-MOS technology. The oscillator, frequency divider, multiplexer, decoder, segment and digit output buffers are all included on-chip. The circuits are designed to interface directly with fully multiplexed 8 -digit 7 -segment common cathode LED displays. The normal supply voltage is 3.6 V , equivalent to a stack of three nickel cadmium batteries.

## The ICM7045

The ICM7045 divides the oscillator frequency in sixteen binary stages to a frequency of 100 Hz ; some of these intermediate outputs are used to generate the multiplex waveforms at a $12.5 \%$ duty cycle/ 800 Hz rate. The 100 Hz signal is then processed in the counters and multiplexed in the decoders.
This circuit is designed for use as a digital timer, 4 -function stopwatch and 24 hour clock; the only external components required are the display, batteries, 6.5536 MHz crystal, turning capacitor and 4 switches.
The ICM7045A
The main difference between the 7045 and 7045A is that the divide by sixty counters of the 7045 are replaced by decade counters in the 7045A. Thus seconds, minutes or hours may be counted in a decade fashion, depending on the choice of oscillator frequency.
The two other differences are: the oscillator is divided by 217 in the 7045A, and CATH 8 (LSD) is not used.


## ABSOLUTE MAXIMUM RATINGS

Power Dissipation (1)
1W
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 5.5V
Input Voltage . . . . . . . . . . . . . . . Equal to, but never in excess of the supply voltages Output Voltage .Equal to, but never in excess of the supply voltages Digit Drive Output Current . $150 \mathrm{~mA} /$ digit Storage Temperatures $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.

## TYPICAL OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Parameters listed are absolute value

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	I+	Display Off   7 Segments Lit $V_{F}=1.8 \mathrm{~V}$   2 Segments Lit $V_{F}=1.8 \mathrm{~V}$	70 $28$	$\begin{aligned} & 180 \\ & 105 \\ & 42 \end{aligned}$	2000	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Voltage Segment Current Drive   Instantaneous   Average   Segment Current Drive   Instantaneous   Average	$\begin{aligned} & \mathrm{V}^{+} \\ & \mathrm{I}_{\mathrm{SEG}} \end{aligned}$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$   7 Segments I.T., $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$, 12.5\% Duty Cycle   2 Segments Lit, $V_{F}=1.8 \mathrm{~V}$   12.5\% Duty Cycle	$\begin{gathered} \hline 2.5 \\ \\ 10 \\ 1.25 \\ \\ \\ 14 \\ 1.75 \end{gathered}$	15   1.825   21   2.625	$4.5$	V   mA   mA   mA   mA
Min. Switch Actuation Current, Any Switch	Isw		50			$\mu \mathrm{A}$
Digit Driver Leakage Current Segment Driver Leakage Current Typical Oscillator Stability Oscillator Start Up Time   Oscillator Input Capacitance	IDLK   ISLK   $f_{\text {STAB }}$   $t_{\text {start }}$   $\mathrm{C}_{\mathrm{IN}}$	$\begin{aligned} & 3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 4 \mathrm{~V}, \mathrm{C}_{\text {TUNING }}=15 \mathrm{pF} \\ & \mathrm{~V}^{+}=3.6 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.5 \mathrm{~V} \end{aligned}$		$1.0$ $.17$	$\begin{gathered} 200 \\ 200 \\ 0.1 \\ 1.0 \end{gathered}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   ppm   sec   sec   pF

## TYPICAL PERFORMANCE CURVES



OSCILLATOR STABILITY VS. SUPPLY VOLTAGE FOR 3 DIFFERENT QUARTZ CRYSTALS (ICM7045A)


## ICM7045

Quartz Crystal Parameters
$f=6.5536 \mathrm{MHz}$
$\mathrm{R}_{\mathrm{s}}=40 \Omega$
$\mathrm{C}_{1}=15 \mathrm{mpF}$
$\mathrm{C}_{\mathrm{O}}=3.5 \mathrm{pF}$

*Shown for ICM7045. The same circuit may be used with the 7045A if a different crystal frequency is chosen.
NOTE: Specify quartz crystal to have nominal frequency value when tuned by a total parallel capacitance value of 12 pF or less.

Figure 1: Four Stopwatch Modes

## FUNCTIONAL OPERATION

## STOPWATCH/TIMER OPERATION

The control inputs used in the complete stopwatch application are: (refer to fig. 1)

START/STOP	RESET	SPLIT
DISPLAY	STANDARD	RALLY

START/STOP and DISPLAY are designed for connection to single pole double throw switches to insure operation free of contact bounce.

The switch connected to RESET can be normally open single pole single throw. STANDARD, SPLIT and RALLY are control points with internal pull down resistors to V -. These are designed to be connected to a rotary function switch which will connect no more than one of these points to $\mathrm{V}^{+}$. If STANDARD (SPLIT, RALLY) is connected to $\mathrm{V}+$ the stopwatch is said to be in the STANDARD (SPLIT, RALLY) mode. If all three are left open, the stopwatch is in the SEQUENTIAL mode.

## RESET FUNCTION

When the stopwatch is turned on, the RESET will normally be activated. This puts the stopwatch in a ready condition by:

1. Resetting all circuitry
2. Blanking seconds, minutes, hours
3. Showing 00 in the two least significant digits. (7045; least significant digit 7045A)
4. Turning on the display if it was previously turned off

The display of just two zeros in the two least significant digits (7045; least significant digit 7045A) gives the complete assurance that the stopwatch is "ready to go."

## STANDARD MODE

In the STANDARD mode, after a reset has taken place, START/STOP is activated at time $t_{0}$. The clock and display are moving simultaneously. A second activation of START/STOP stops the clock and holds the display at time $t_{\text {total }}$. This completes an event. For timing a second event there are two options. One is to activate START/STOP at the start of the second event. This will momentarily reset the counter and display so that the timing of the second event proceeds from zero. Another activation of START/STOP stops the counter and display at time $t_{\text {total }}$ to end the second event. The other option is to activate RESET after the first event is over. Then the second event proceeeds similarly to the first event. As is clear from this description, RESET can be used at any time to reset the stopwatch, including when a timing is in progress. The DISPLAY input can be activated to turn the display off and on. If the display is off when RESET is activated, it will reset and turn on. Turning off the display for timing long events will result in a very substantial power saving.


## SEQUENTIAL MODE

The sequential mode of the stopwatch is designed for timing events consisting of more than one leg (such as relays, multilap races, etc.). After the initial reset the START/STOP is activated at $t_{0}$ to start the event. A second activation of START/STOP at time $t_{1}$ stops the display and allows $t_{1}$ to be read out, while the clock resets and starts counting again instantaneously. At time $\mathrm{t}_{2}$ an activation of START/STOP enters $\mathrm{t}_{2}$ (the time of leg 2) into the display. This sequence can continue indefinitely. Assuming the total event has $n$ legs, the total elapsed time is then equal
to the sum of the $n$ times read out:

$$
t_{\text {total }}=t_{1}+t_{2} \ldots+t_{n}
$$

If it is desired to see the moving clock after a time has been recorded, the DISPLAY switch can be activated to release the display hold and catch up with the moving clock. The display cannot be turned off in the sequential mode. RESET can be activated at any time to reset clock and display.


## SPLIT MODE

The split mode is another mode for timing multileg events. In contrast to the sequential mode, the timing in the split mode is cumulative. From a reset condition, the START/STOP switch is activated at $t_{0}$ to start the counter and display running. A second activation at $t_{1}$ stops the display and allows $t_{1}$ to be read out while counter continues timing. A third activation at $\mathrm{t}_{2}$ advances the display
with the total elapsed time from $t_{0}$ to $t_{2}$ showing. Finally, at time $t_{n}$ the total elapsed time of the event is entered in the display. The time of one leg of the event can be obtained by subtraction. The display can be synchronized to the counter (catch-up function) at any time by activating the display switch. To reset the timer, activate reset. The display cannot be turned off in the SPLIT mode.


## RALLY MODE

The rally mode is designed for timing of events with interruptions. Consider an n leg event where the legs may be separated by intervals which should not be timed. The rally mode'starts with a RESET. At time $\mathrm{t}_{0}$ the stopwatch is started by activating START/STOP. After this point the RESET function is disabled to prevent accidental resets
during long timing intervals. At time $t_{1}$ a START/STOP pulse stops counter and display. From here on each leg time is added to the total by a START/STOP pulse at the beginning of the leg and at the end. The individual leg times are determined by subtraction. The display can be turned on and off with the display switch.


## CLOCK OPERATION

The control inputs used in a possible 24 -hour clock configuration are (refer to fig. 2):

START/STOP<br>MINUTES ADVANCE<br>HOURS ADVANCE RALLY

START/STOP, MINUTES ADVANCE and HOURS ADVANCE are designed for connection to single pole double throw switches; this assures contact bounce elimination on these inputs. To avoid an additional switch for the DISPLAY input, the RALLY input should be connected to $\mathrm{V}+$ through a 20 k resistor and to V - through a $0.01 \mu \mathrm{~F}$ capacitor. These components insure that the display is on when power is applied to the circuit. The most convenient setting procedure is:

1. If clock is not running when power is applied activate START/STOP switch.
2. Depress MINUTES ADVANCE switch to obtain correct minutes setting, one minute count per activation.
3. Depress HOURS ADVANCE switch to obtain correct HOURS setting, one hour count per activation.
It is possible to set the clock more accurately or to correct small time errors by using START/STOP in combination with MINUTES ADVANCE. If the clock is, for instance, 20 seconds slow, activate the MINUTES ADVANCE once, then activate the START/STOP, wait 40 seconds and activate the START/STOP again. If the clock is 20 seconds fast, the STARTISTOP switch should be activated to stop the clock, then after 20 seconds activated again to restart the clock. Other clock configurations are possible (see Application Notes).


Figure 2: Clock Mode

## APPLICATION NOTES

The ICM7045/A have been designed with versatility of applications in the digital timer/stopwatch/24-hour clock field as the major objective. The simplicity of operating modes allow for an extremely practical, easy to use stopwatch, at the same time permit the design of a variety of
simple lapse timer, stopwatch and clock circuits; a few of these will be shown and discussed briefly here. Note that circuits shown are identical for 7045 and 7045A. When using the 7045A, a different crystal frequency must be chosen.

## TIMER CIRCUIT I

This simple circuit (display connections not shown) allows interval timing up to 24 hours with a resolution of 0.01 second. Each interval is timed by one start and one stop pulse on the start/stop line. The start pulse for the next interval to be timed automatically resets the timer. Leading zero suppression is automatic.


## TIMER CIRCUIT II

This circuit allows cumulative timing of intervals. Each interval is timed by one start and one stop pulse on the start/stop line. Each subsequent interval timed adds to the total line displayed. The reset switch allows the timer to be reset to zero to start another sequence of intervals. Note that the time between the end of one interval and the start of the reset is not recorded nor added to the total.


## TIMER CIRCUIT III

This circuit allows interval timing with a single pulse on the start/stop line. Each pulse enters the time elapsed since the previous pulse into the display, resets the timer and starts the timer for the next interval.


## CLOCK CIRCUIT I

The standard clock circuit is shown and described in fig. 2. The clock accuracy with a stable voltage supply will depend mostly on the temperature and aging characteristics of the crystal.

The power supply can be modified to give battery standby power.


The standby circuit should be designed to provide the specified minimum voltage to the ICM7045.

## OTHER CLOCK CIRCUITS

The basic.clock circuit can be modified for various special applications. If it is desired to turn the display on and off, then connect the display input to an additional SPDT switch, while omitting the capacitor/resistor combination on the STANDARD Input.
This input can then be wired directly to $\mathrm{V}^{+}$. This 24 -hour clock version might be applicable to vehicles, boats, etc. where a battery is available to supply the display off clock current, while the display can be turned on with the ignition. Another possible configuration would connect a special circuit to the DISPLAY input which generates a double pulse about 3 seconds apart:


This means depressing the switch will turn on the clock's display for 3 seconds. This allows design of a battery operated "on demand" digital 24-clock.

## STOPWATCH EXTERNAL SYNC CIRCUIT

If the stopwatch is connected as shown in fig.1, a few additional components will allow external synchronization of the stopwatch in any mode:


NOTE: Be sure to minimize the distance between the transistor and the ICM7045 to prevent noise from being generated along this connection. Noise spikes absolutely must not exceed the supply voltages.

The external sync signal source must supply a positive pulse to activate the START/STOP input. The minimum voltage of this pulse is about 1.2 V in the circuit as shown, but the triggering level can be changed by modifying the input resistor ratio. The output impedance of the external sync signal source should be no greater than 4 k ohms.

## THE ICM7045A

The ICM7045A will count to a total of 2399999. The next count will show 0000000 . On appliction of RESET the display will show 0 on the least significant digit; all other digits will be blanked. Leading zero suppression blanking is performed on pairs of digits. For example, 9 will show as

9,10 will show as 010,999 will show as 999,1000 will show as 01000 and so forth.
The oscillator frequency alone determines whether the timer is to be used for second, minute or hour counting.
'SECONDS' TIMER Use a 1.31072 MHz quartz crystal
DIGIT \# ${ }^{1} \quad 2 \quad 3$
(100K Secs 10K Secs 1K Secs
$100 \stackrel{4}{\text { Secs }}$
5

6
Secs
7
10 Secs
$\mathrm{Sec} \div 10$
'MINUTES' TIMER Use a 2.184533 MHz quartz crystal

DIGIT \#	1	2	3
	1 K Mins	100 Mins	10 Mins


4	5	6
Mins	Min $_{4} \div 10$	Min $\div 100$

7. 

Min $\div 1000$
'HOURS' TIMER Use a 3.640889 MHz quartz crystal
DIGIT \# 102
. $10 \mathrm{Hrs} \quad \mathrm{Hrs} \quad \mathrm{Hrs} \div 10$

## OSCILLATOR CONSIDERATIONS

The oscillator is a high gain complementary MOS inverter with on-chip feedback resistors and an on-chip fixed input capacitor of 22 pF . For the 6.5536 MHz crystal needed for normal timing, it is suggested that the nominal load capacitance be kept under 12pF to keep total loading on the oscillator to a reasonable level. The actual trimmer range and the nominal load capacitance needed will have to be determined from the total stray capacitance of the particular circuit (including ICM7045 with package, PC board, etc.) and the tuning tolerance of the chosen crystal. The series resistance of the crystal should also be kept to a low value (typically less than 50 ohms) to achieve adequate low voltage operation.
Oscillator tune up can be most easily performed using a pull-up resistor of 10 k ohms on the fractional seconds digit, using period average tune for $1.25 \mathrm{~ms}(800 \mathrm{~Hz})$.
The oscillator of the ICM7045A is identical to that of the ICM7045, with the exception of the crystal frequency and load capacitance. Using similar value tuning capacitances with the lower frequency crystals $(1.31077 \mathrm{HHz}, 2.184 \mathrm{MHz}$ 3.64089 MHz ) the stability of the oscillator is significantly degraded. It is therefore recommended that the tuning capacitances be increased to a nominal total of 40 pF at both the oscillator input and output. Since there is an on chip input capacitance of $20-22 \mathrm{pF}$ the additional external input capacitance should be approximately 20 pF .
The ICM7045A is guaranteed to operate over the supply voltage range of 2.5 to 4.5 V using nominal input and output
tuning capacitances of 40 pF and with crystals having the following characteristics:

$$
\begin{aligned}
\mathrm{f}= & 1.310772 \mathrm{MHz} \\
& 2.184533 \mathrm{MHz} \\
& 3.64089 \mathrm{MHz}
\end{aligned}
$$

$R_{S} \leq 100 \Omega$ ( $150 \Omega$ for 1.310772 MHz )
$\mathrm{C}_{\mathrm{M}} \rightarrow 10-20 \mathrm{mpF}$
$\mathrm{C}_{\mathrm{O}} \leq 6 \mathrm{pF}$
$C_{L}=20 p F$ (parallel resonance mode)

## CHIP TOPOGRAPHY



## FEATURES

- Single battery operation
- Very low current - typically $30 \mu \mathrm{~A}$ at $\mathbf{4 . 1 9 \mathrm { MHz }}$
- Reset or stop function, inhibited during output
- Excellent drive with extremely low output saturation resistance: less than $\mathbf{1 0 0}$ ohms
- Complex direct drive alarm: $1 \mathrm{~Hz}+8 \mathrm{~Hz}+\mathbf{2 0 4 8} \mathrm{Hz}$
- Output pulse width 47 ms at 1 Hz rate
- Custom options available*
*Two customized versions of the ICM7050 are available as standard factory options. They are:
ITS9063 - Output pulse width is 31 ms at 1 Hz rate.
ITS9064-1 - Output pulse is a 1 Hz square wave.


## GENERAL DESCRIPTION

The ICM7050 is a single battery analog quartz clock circuit intended for use with bipolar stepper motors, and fabricated using Intersil's low voltage metal gate C-MOS process. The circuit consists of an oscillator, a divider chain, an output oneshot, and output buffers. The oscillator, when using the specified 4.19 MHz crystal and capacitors, provides excellent stability. The high frequency portion of the divider chain consists of dynamic dividers, while the remainder are static. The dynamic dividers provide for low power consumption and low operating voltage, but limit low frequency operation. The $2^{23}$ divider chain is tapped at the 211,219 , and 222 points to provide a complex alarm of 1 Hz , 8 Hz , and 2048 Hz driving an output inverter. The oneshot generates the 46.875 millisecond pulse width and the large output inverters provide the low impedance necessary to drive the motor. A reset inhibit function is provided so that if the RESET occurs during an output pulse resetting will not take place until the pulse is completed. RESET may also be used as a stop for synchronization to a time signal or tester.


## ABSOLUTE MAXIMUM RATINGS



Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: This value of power dissipation refers to that of the package and will not normally be obtained under normal operating conditions. NOTE 2: Due to the inherent SCR structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied. If only inputs are affected, latchup can also be prevented by limiting the current into the input terminal to less than 1 mA .

## ELECTRICAL CHARACTERISTICS

( $\mathrm{V}+=1.5 \mathrm{~V}, \mathrm{f}_{\mathrm{osc}}=4,194,304 \mathrm{~Hz}$ test circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	$\mathrm{I}^{+}$	No Load		30	60	$\mu \mathrm{~A}$
Operating Voltage	$\mathrm{V}+$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$	1.2		1.8	V
Total Output Saturation Resistance	Rout	$\mathrm{IL}=3 \mathrm{~mA}$		70	100	$\Omega$
Alarm Saturation Resistance	$\mathrm{R}_{\text {AL (on) }}$	$\mathrm{P}, \mathrm{IL}=1 \mathrm{~mA}$		400	700	$\Omega$
		$\mathrm{~N}, \mathrm{IL}=2 \mathrm{~mA}$		100	400	$\Omega$
Oscillator Stability	$1.2 \leq \mathrm{V}+\leq 1.6$		1		ppm	
Oscillator Start-up Time	$\mathrm{f}_{\text {stab }}$	$\mathrm{V}=1.2 \mathrm{~V}$			1.0	sec

## CLOCK CIRCUIT



## OUTPUT WAVEFORMS



TYPICAL OPERATION CHARACTERISTICS


OUTPUT CURRENT vs OUTPUT LOAD VOLTAGE


## CUSTOM OPTIONS

All Intersil analog quartz dock circuits are mask programmable for a variety of input and output configurations. The ICM7050 may be customized by varying the following. Parameters specified apply to an input frequency of 32 kHz .

- On chip oscillator capacitor - up to 50 pF at Coscl or Cosco
- Output pulse width - from 7.8 ms to $50 \%$ of output period
- Output pulse frequency - from 0.5 Hz to 64 Hz


OSCILLATOR STABILITY vs. SUPPLY VOLTAGE


ALARM OUTPUT CURRENT vs SATURATION VOLTAGE


- Alarm frequency - Any combination of-three binary frequencies up to and including 2048 Hz .

A mask programming charge and a minimum order are required for custom options. Consult factory for details.

## APPLICATION NOTES OSCILLATOR CONSIDERATIONS

The oscillator of the ICM7050 has been designed to operate with crystals having a load capacitance of 10 to 12 pF . This allows nominal capacitor values of $15 / 15$ pF or $20 / 20 \mathrm{pF}$. Increasing the load capacitance of the crystal requires larger oscillator device sizes, which causes the supply current to increase. Modifications to the oscillator can be made on a custom basis. The tuning range can be increased by using crystals with lower load capacitances, however the stability may decrease somewhat. This can be counteracted by reducing the motional capacitance of the crystal. A nonlinear feedback resistor having a maximum value at start up is provided on chip. Oscillator tuning should be done at the oscillator output.
The following expressions can be used to arrive at a crystal specification:
Tuning Range
$\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{o}+C_{L}\right)} \quad C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}$
$g_{m}$ required for startup
$g_{m}=\omega^{2} C_{i n} C_{o u t} R s \quad\left(1+\frac{C_{0}}{C_{L}}\right)^{2}$
$\mathrm{R}_{\mathrm{S}}=$ series resistance of the crystal
$f=$ frequency of the crystal
$\Delta f=$ frequency shift from series resonance frequency
$\mathrm{C}_{0}=$ static capacitance of the crystal
$\mathrm{C}_{\text {in }}=$ input capacitance
Cout = output capacitance
$\mathrm{C}_{\mathrm{L}}=$ motional capacitance
$\omega=2 \pi \mathrm{f}$
The resulting gm should not exceed $50 \mu$ mhos.

## OSCILLATOR TUNING METHODS

When tuning the oscillator two methods can be used. The first method would be to monitor the output pulse at either OUT 1 or OUT 2 with a counter set to measure the period. The oscillator trimmer would then be adjusted for a reading of 2.000000 secs. A second method would be to put the device in the reset mode by pulling the reset pin to $\mathrm{V}^{+}$and then monitor the ALARM output with a counter set to measure average period. The ALARM output is a continuous 2048 Hz when in the reset mode, which gives a period of $488.2815 \mu \mathrm{~s}$.
The trimmer capacitor used for tuning should be connected to the oscillator output. Otherwise, if tuned at the input, the stability will vary with tuning, and the current drain may become excessive when the input capacitance is'much less than the output capacitance. Refer to the $\mathrm{I}^{+}$vs $\mathrm{V}^{+}$and OSCILLATOR STABILITY vs $\mathrm{V}^{+}$characteristic curves on the preceding page.

## TEST MODE OPERATION

Pulling the RESET/TEST input to -7 V switches the device into the test mode to speedup automatic testing. When in the test mode the output rate is increased 16 times, from 1 Hz to 16 Hz , with a corresponding reduction in pulse width. The ALARM output changes to a composite waveform of 16 Hz and 128 Hz . The circuit can be reset while in the test mode by shorting the ALARM output to $\mathrm{V}^{-}$.

## ALARM CONSIDERATIONS

The ALARM output inverter is large enough to directly drive transducers requiring up to 2 mA of current. If more current is needed than a buffer should be used*. A slight fluctuation in the supply current of $0.5 \mu \mathrm{~A}$ to $1.0 \mu \mathrm{~A}$ will be seen; this is a result of 2048 Hz driving the relatively large gate capacitance of the alarm output transistors.
*See Intersil Application Bulletin A031 for details.


## FEATURES

- Low cost system with minimum component count
- Fully integrated oscillator uses $\mathbf{3 . 5 8} \mathbf{~ M H z}$ color TV crystal
- High current bipolar output driver
- Low output harmonic distortion
- Wide operating supply voltage range: 3 to 6 volts
- Uses inexpensive single contact per key calculator type keyboard (ICM7206/C/D)
- Extremely low power $\leq 5.5 \mathrm{~mW}$ with a 5.5 V supply
- Single and dual tone capabilities
- Multiple key lockout
- Disable output: provides output switch function whenever a key is pressed
- Custom options available


## GENERAL DESCRIPTION

The Intersil ICM7206/A/B/C/D are 2-of-8 sine wave tone encoders for use in telephone dialing systems. Each circuit contains a high frequency oscillator, two separate programmable dividers, a D/A converter, and a high level output driver.
The reference frequency is generated from a fully integrated oscillator requiring only a 3.58 MHz color TV crystal. This frequency is divided by 8 and is then gated into two divide by N counters (possible division ratios 1 through 128) which provide the correct division ratios for the upper and lower band of frequencies. The outputs from these two divide by N counters are further divided by 3 to provide the time. sequencing for a 4 voltage level synthesis of each sinewave. Both sinewaves are added and buffered to a high current output driver, with provisions made for up to two external capacitors for low pass filtering, if desired. Typically, the total output harmonic distortion is $20 \%$ with no L.P. filtering and it may be reduced to typically less than $5 \%$ with filtering. The output drive level of the tone pairs will be approximately.

## PIN CONFIGURATION (OUTLINE DRAWING PE)



Pin 1 is designated either by a dot or a notch.
-3 dBV into a 900 ohm termination. The skew between the high and low groups is typically 2.5 dB without low pass filtering.

The 7206 uses either a $3 \times 4$ or $4 \times 4$ single contact keyboard; the oscillator will run whenever the power is applied, and the DISABLE output consists of a p-channel open drain FET whose source is connected to $\mathrm{V}^{+}$.
The 7206 A can also use a $3 \times 4$ or $4 \times 4$ keyboard, but requires a double contact type with the common line tied to $\mathrm{V}^{+}$: The oscillator will be on whenever power is applied; the DISABLE output consists of a $p$-channel open drain FET; its' source is connected to $\mathrm{V}^{+}$.
The 7206 B requires a $4 \times 4$ double contact keyboard with the common line tied to $\mathrm{V}^{-}$. The oscillator will be on only during the time that a ROW is enabled, and the DISABLE output consists of an n-channel open drain FET with its' source tied to $\mathrm{V}^{-}$.
The 7206 C uses either a $3 \times 4$ or $4 \times 4$ single contact keyboard; the oscillator will be on only during the time that a key is depressed. The DISABLE output consists of an n-channel open drain FET with its source tied to $\mathrm{V}^{-}$.
The 7206 D uses a single contact $3 \times 4$ or $4 \times 4$ keyboard. The oscillator will be on only during the time that a key is depressed. DISABLE output consists of a p-channel open drain FET with its source tied to $\mathrm{V}^{+}$.


## ORDERING INFORMATION

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7206 JPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic
ICM7206A JPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic
ICM7206B JPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic
ICM7206C JPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic
ICM7206D JPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic
ICM7206/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206A/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206B/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206C/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206D/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE

## ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (Note 2) .......................................... 6.0 V Supply Current $\mathrm{V}^{-}$(terminal 8) ................................ 25 mA
Supply Current $\mathrm{V}^{+}$(terminal 16) ............................. 40 4 mA
Disable Output Volt. (term. 7) .. Not more pos. than $\mathrm{V}^{+}$nor more neg. than -6 V with respect to $\mathrm{V}^{+}$

Output Volt. (term. 15) . Not more pos. than +5 V with respect to $\mathrm{V}^{+}$, nor more neg. than -1.0 with respect to $\mathrm{V}^{-}$
Output Current (terminal 15)
. 25 mA
Power Dissipation ......................................... 300 mW Operating Temperature Range $\ldots \ldots \ldots \ldots \ldots \ldots . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots \ldots \ldots .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 2. The ICM7206 family has a zener diode connected between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$having a breakdown voltage between 6.2 and 7.0 volts. If the currents into terminals 8 and 16 are limited to 25 and 40 mA maximum respectively, the supply voltage may be increased above 6 volts to zener voltage. With no such current limiting, the supply voltage must not exceed 6 volts.

## TYPICAL OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}=5.5 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNITS
Supply Current	$1^{+}$	$\mathrm{R}_{\mathrm{L}}$ disconnected			450	1000	$\mu \mathrm{A}$
Guaranteed Operating Supply Voltage Range (Note 3)	Vop	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$		3.0		6.0	V
Peak to Peak Output Voltage	Vout	$\mathrm{C}_{1}, \mathrm{C}_{2}$ disconnected - Low Band		0.90	1.15	1.45	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, no filtering - High Band		1.10	1.40	1.70	
RMS Output Voltage		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, fout $=697 \mathrm{~Hz}$	$\mathrm{C}_{2}$ Only		480		mV
			$\mathrm{C}_{1}$ to $\mathrm{C}_{2}$		480		
			Nofiltering		490		
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}$ OUT $=1633 \mathrm{~Hz}$	$z \quad \mathrm{C}_{1}$		490		
			$\mathrm{C}_{1}$ to $\mathrm{C}_{2}$		580		
			Nofiltering		655		
Skew Between High and Low Band Output Voltages		$R_{L}=1 \mathrm{k} \Omega, \mathrm{C}_{1}, \mathrm{C}_{2}$ disconnected			2.5	3.0	dB
Output Impedance	$\mathrm{Z}_{0}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	Operating		90	200	,
			Quiescent		25		$\mathrm{K} \Omega$
Total Output Harmonic Distortion	THD1	Either Hi or Low Bands				25	\%
		No Low Pass Filtering			20	25	
Total Output Harmonic Distortion	THD2	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=.002 \mu \mathrm{~F}$	fout $=697 \mathrm{~Hz}$	-	2.3	10	
		$\mathrm{C}_{2}=0.02 \mu \mathrm{~F}$	$\mathrm{fOUT}=1633 \mathrm{~Hz}$		1.0	10	
Maximum Output Voltage Level	VOH	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$				4.6	V
Minimum Output Voltage Level	VOL	$R_{L}=1 \mathrm{k} \Omega$		0.5			
Keyboard Input Pullup Resistors	$\mathrm{R}_{\text {IN }}$	Terminals 3,4,5,6,11,12,13,14		35	100	150	K $\Omega$
Keyboard Input Capacitance	$\mathrm{C}_{\text {IN }}$	Terminals 3,4,5,6,11,12,13,14				5	pF
Guaranteed Oscillator Frequency Range (Note 4,	fosc	$3 \leq 1 V^{+}-V^{-} \leq 6 \mathrm{~V}$		2.0		4.5	MHz
Guaranteed Oscillator Frequency Range		$4 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6 \mathrm{~V}$		2.0		7	
System Startup Time on Application of Power	$\mathrm{t}_{\text {on }}$	ICM7206, ICM7206A			10		ms
System Startup Time on Application of Power and Key Depressed Simultaneously		ICM7206B, ICM7206C, ICM7206D				7	
DISABLE Output Gaturation Resistance ON STATE	$R_{D}$	See Logic Table for Input Conditions Current $=4 \mathrm{~mA}$			330	700	S
DISABLE Output Leakage OFF STATE.	Iolk	See Logic Table for Input Conditions				10	$\mu \mathrm{A}$
Oscillator Load Capacitance	Cosc	Measured between terminals 9 \& 10 , no supply voltage applied to circuit $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$			7		pF
Guaranteed Output Frequency Tolerance	fo	Any output frequency Crystal tolerance $\pm 60$ pp Crystal load capacitance	m $\mathrm{ee} \mathrm{CL}=30 \mathrm{pF}$			$\pm 0.75$	\%
Oscillator Startup Time ICM7206B, C, D	$\mathrm{t}_{\text {start }}$	$\mathrm{V}^{+}=3 \mathrm{~V}$ Note 5				7	ms

NOTE 3: Öperation above 6 volts must employ supply current limiting. Refer to 'ABSOLUTE MAXIMUM RATINGS' and the Application Notes for further information.
NOTE 4: The ICM7206 family uses dynamic high frequency circuitry in the initial $2^{3}$ divider resulting in low power dissipation and excellent performance over a restricted frequency range. Thus, for reliable operation with a 6 volt supply an oscillator frequency of not less than 2 MHz must be used.
NOTE 5: After row input is enabled.

## TRUTH TABLE

LINE	ROWS (1) ACTIVATED	COLS (2) ACTIVATED	OUTPUT   (TERMINAL \#15)	DISABLE   (TERMINAL \#7)	COMMENTS
1	0	0	Off	Off	Quiescent State
2	1	1	frow +fcol	On	Dual Tone
3	1	2 or 3 (incl. col \#4)	frow	On	Single Tone
4	2 or 3	1	$\mathrm{fcol}^{\text {col }}$	On	Single Tone
5	2 or 3	2 or 3 (excl. col \#3)	D.C. Level	On	No Tone.
6	1	4 or 3 (must excl. col \#4)	frow, 50\% Duty Cycle	frow, 50\% Duty Cycle	frow Test
7	4	1	fcol, 50\% Duty Cycle	$\mathrm{f}_{\text {col }}$, 50\% Duty Cycle	$\mathrm{f}_{\mathrm{col}}$ Test
8	0	1 or 2 or 3 or 4	Off -	Off	n/a*
9	1	0	$902 \mathrm{~Hz}+$ frow	On	n/a*
10	2 or 3	0	902 Hz	On	n/a*
11	4.	0	$902 \mathrm{~Hz}, 50 \%$ Duty Cycle	$902 \mathrm{~Hz}, 50 \%$ Duty Cycle	n/a*
12	2 or 3 or 4	4	D.C. Level	Indeterminate	Multiple Key Lockout
13	4	2 or 3 or 4	D.C. Level	Indeterminate	Multiple Key Lockout

*n/a - not applicable to telephone calling.
Note 1: Rows are activated for the ICM7206/C by connecting to a negative supply voltage with respect to $\mathrm{V}^{+}$, terminal 16 ) at least $33 \%$ of the value of the supply voltage $\left(\mathrm{V}^{-}-\mathrm{V}^{-}\right)$. For the ICM7206A rows (and columns) are activated by connecting to a positive supply voltage with respect to $\mathrm{V}^{-}$(terminal 8 ) at least $33 \%$ of the value of the supply voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$. The rows and columns of the ICM7206B are activated by connecting to a negative supply voltage.
Note 2: Columns (ICM7206) are activated by being connected to a positive supply voltage with respect to $\mathrm{V}^{-}$(terminal 8 ) at least $33 \%$ of the value of the supply voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$.

## COMMENTS

All combinations of row and column activations are given in the truth table. Lines 1 thru 7 and 12,13 represent conditions obtainable with a matrix keyboard. Lines 8 thru 11 are given only for completeness and are not pertinent to telephone dialing.
Lines 6 and 7 show conditions for generating 50\% duty cycle full amplitude signals useful for rapid testing of the row and column frequencies on automatic test equipment. In all other cases, output frequencies on terminal 15 are single or dual 4 level synthesized sine waves.

A 'DC LEVEL' on terminal 15 may be, any voltage level between approximately 1.2 and 4.3 volts with respect to $\mathrm{V}^{-}$ (terminal 8) for a 5.5 volt supply voltage.
The impedance of the OUTPUT (terminal 15) is approximately 20 K ohms in the OFF state. The 'DISABLE OUT-OUT' ON' and OFF conditions are defined in the TYPICAL OPERATING CHARACTERISTICS.

## SCHEMATIC DIAGRAM



## TEST CIRCUIT (single contact keyboard devices shown)



## TYPICAL OPERATING CHARACTERISTICS

## SUPPLY CURRENT AS A

FUNCTION OF SUPPLY VOLTAGE


OSCILLATOR FREQUENCY DEVIATION AS A FUNCTION OF SUPPLY VOLTAGE


TOTAL HARMONIC DISTORTION AS A FUNCTION OF LOAD RESISTANCE


PEAK TO PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE



KEY	LOW BAND   FREQ. Hz	HI BAND   FREQ. Hz
1	697	1209
2	697	1336
3	697	1477
4	770	1209
5	770	1336
6	770	1477
7	852	1209
8	852	1336
9	852	1477
$\star$	941	1209
0	941	1336
$\#$	941	1477
A	697	1633
B	770	1633
C	852	1633
D	941	1633

FIGURE 1: Keyboard Frequencies


FIGURE 2
Figure 2 shows individual currents of a low band and high band frequency pair into the summing node A (see Figure 3) and the resultant voltage waveform.

DESIRED   FREQUENCY   Hz	ACTUAL   FREQUENCY   Hz	FREQUENCY   DEVIATION   $\%$	$\ddots$   DIVIDE BY N   RATIO
697	699.13	+0.30	80
770	766.17	-0.50	73
852	847.43	-0.54	66
941	947.97	+0.74	59
1209	1215.88	+0.57	46
1336	1331.68	-0.32	42
1477	1471.85	-0.35	38
1633	1645.01	+0.74	34

## APPLICATION NOTES

## 1. Device Description

The ICM7206 family is manufactured with a standard metal gate C-MOS technology having proven reliability and excellent reproducability resulting in extremely high yields. The techniques used in the design have been developed over many years and are characterized by wide operating supply voltage ranges and low power dissipation.

To minimize chip size, all diffusions used to define sourcedrain regions and field regions are butted up together. This results in approximately 6.3 volt zener breakdown between the supply terminals, and between all components on chip. As a consequence, the usual C-MOS static charge problems and handling problems are not experienced with the ICM7206.

The oscillator consists of a medium size C-MOS inverter having on chip a feedback resistor and two capacitors of 14 pF each, one at the oscillator input and the other at the oscillator output. The oscillator is followed by a dynamic $\div 23$ circuit which divides the oscillator frequency to $447,443 \mathrm{~Hz}$. This is applied to two programmable dividers each capable. of division ratios of any integer between 1 and 128, and each counter is controlled by a ROM. The outputs from the programmable counters drive sequencers (divide by 8) which generate the eight time slots necessary to synthesize the 4level sine waves.


FIGURE 3: D to A Converter and Output Buffer


The control logic block recognizes signals on the row and column inputs that are only a small fraction of the supply voltage, thereby permitting the use of a simple matrix single contact per key keyboard, rather than the more usual two contacts per key type having a common line. The row and column pullup resistors are equal in value and connected to the opposite supply terminals (ICM7206/C only; for the ICM7206A all pullup resistors are connected to the $\mathrm{V}^{-}$ terminal and for the ICM7206B they are tied to the $\mathrm{V}^{+}$. Therefore, connecting a row input to a column input generates a voltage on those inputs which is one half of the supply voltage.
The ICM7206 family employs a unique but extremely simple digital to analog ( $D$ to $A$ ) converter. This $D$ to $A$ converter produces a 4 level synthesized sine wave having an intrinsic total harmonic distortion level of approximately $20 \%$. Figure 3 shows a single channel D to A converter. The current sources $\mathrm{Q}_{2}$ and $\mathrm{Q}_{3}$ are proportioned in the ratio of
1:1.414. During time slots 1 and 8 both $S_{1}$ and $S_{2}$ are off, during time slots 2 and 7 only $\mathrm{S}_{1}$ is on, during time slots 3 and 6 only $\mathrm{S}_{2}$ is on, and during time slots 4 and 5 both $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are on. The resultant currents are summed at node $A$, buffered by $Q_{4}$ and further buffered by $R_{3}, R_{4}$ and $Q_{5}$. Switch $S_{3}$ allows the output to go into a high impedance mode under quiescent conditions.

Node A is the common summing point for both the high and low, band frequencies although this is not shown in Figure 3.

The synthesized sine wave has negligible even harmonic distortion and very low values of third and fifth harmonic distortion thereby minimizing the filtering problems necessary to reduce the total harmonic distortion to well below the $10 \%$ level required for touch tone telephone encoding. Figure 4 shows the low pass filter characteristic of the output buffer for $\mathrm{C}_{1}=0.0022 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=0.022 \mu \mathrm{~F}$. A small peak of 0.4 dB occurs at 1100 Hz with sharp attention (12dB per octave) above 2500 Hz . This type of active filter produces a sharper and more desirable knee characteristic than would two simple cascaded RC networks.


FIGURE 4: Frequency Attentuation Characteristics of the Output Buffer

## 2. Latchup Considerations

Most junction isolated C-MOS integrated circuits, especially those of moderate or high complexity, exhibit latchup phenomena whereby they can be triggered into an uncontrollable low impedance mode between the supply terminals. , This can be due to gross forward biasing of inputs or outputs (with respect to the supply terminals), high voltage supply transients, or more rarely by exceptional fast rate of rise of supply voltages.
The ICM7206 family is no exception, and precautions must be taken to limit the supply current to those values shown in the ABSOLUTE MAXIMUM RATINGS. For an example, do not use a 6 volt very low impedance supply source in an electrically extremely noisy environment unless a 500 ohm current limiting resistor is included in series with the $\mathrm{V}^{-}$ terminal. For normal telephone encoding applications no problems are envisioned, even with low impedance transients of 100 volts or more, if circuitry similar to that shown in the next section is used.

## 3. Typical Application (Telephone Handset)

A typical encoder for telephone handsets is shown in Figure 5. This encoder uses a single contact per key keyboard and provides all other switching functions electronically. The diode connected between terminals 8 and 15 prevents the
output going more than 1 volt negative with respect to the negative supply $\mathrm{V}^{-}$and the circuit operates over the supply voltage range from 3.5 volts to 15 volts on the device side of the bridge rectifier. Transients as high as 100 volts will not cause system failure, although the encoder will not operate correctly under these conditions. Correct operation will resume immediately after the transient is removed.
The output voltage of the synthesized sine wave is almost directly proportional to the supply voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$and will increase with increase of supply voltage until zener breakdown occurs (approximately 6.3 volts between terminals 8 and 16) after which the output voltage remains constant.

## 4. Portable Tone Generator

The ICM7206A/B require a two contact key keyboard with the common line connected to the positive supply (neg for ICM7206B) (terminal 16). A simple diode matrix may be used with this keyboard to provide power to the system whenever a key is depressed, thus negating the need for an on/off switch. In Figure 6 the tone generator is shown using a 9 volt battery. However, if instead, a 6 volt battery is used, the diode $D_{4}$ is not required. It is recommended that a 470 ohm resistor still be included in series with a negative (positive) supply to prevent accidental triggering of latchup.


NOTE: If dual contact keyboard is used, common should be left floating.
FIGURE 5: Telephone Handset Touch Tone Encoder


FIGURE 6: Portable Tone Generator

## OPTIONS

## (For additional information consult the factory)

a) Selecting the least expensive and most reliable keyboard
b) Selecting the lowest cost and most available quartz crystal
c) Minimizing the number of external components
d) Minimizing supply current drain and maximizing operating supply voltage range
e) Providing the smallest and least expensive circuit possible in a 16 lead package
Options can be achieved using metal mask additions to provide the following.

1) The sequence or position of either the row or column terminals can be interchanged i.e., row 1 terminal 3 could become terminal 11, etc.
2) Any frequency oscillator from approximately 0.5 MHz to 7 MHz can be chosen. Note that the accuracy of the output frequencies will depend on the exact oscillator frequency. For instance, a 1 MHz crystal could be used with worst case output frequency error of $0.8 \%$. Or, if high accuracy is required, $\pm 0.25 \%$, oscillator frequencies of $5,117,376 \mathrm{~Hz}$ or $2,558,688 \mathrm{~Hz}$ could be selected. ROM's are used to program the dividers.
3) The 'DISABLE' output may be changed to an inverter or an uncommitted drain n-channel transistor.
4) The oscillator may be disabled until a key is depressed.

## CHIP TOPOGRAPHY

## Chip Dimensions

$0.060^{\prime \prime}(1.524 \mathrm{~mm}) \times 0.101^{\prime \prime}$ ( 2.565 mm )
Chip may be die attached using conventional eutectic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.


# 6-Digit 4-Function LED Stopwatch Circuit 

## FEATURES

- Four functions: start/stop/reset, split, taylor, time out
- Six digit display: ranges up to 59 minutes 59.99 seconds
- High LED drive current: 13́mA peak per segment at $16.7 \%$ duty cycle with 4.0 volt supply
- Requires only three low cost SPST switches without loss of accuracy: start/stop, reset, display unlock
- Chip enable pin turns off both segment and digit outputs; can be used for multiple circuits driving one display
- Low battery Indicator
- Digit blanking on seconds and minutes
- Wide operating range: 2.0 to 5.0 volts
- 1 KHz multiplex rate prevents flickering display
- Can be used easily in four different single function stopwatches or two two-function stopwatches: start/stop/reset with time-out, split with taylor. The component count for a three- or four-function stopwatch will be slightly greater.
- Retrofit to ICM7205 for split and/or taylor applications


## GENERAL DESCRIPTION

The ICM7215 is a fully integrated six digit LED stopwatch circuit fabricated with Intersil's low threshold metal gate CMOS process. The circuit interfaces directly with a six digit/seven segment common cathode LED display. The low battery indicator can be connected to the decimal point anode or to a separate LED. The only components required for a complete stopwatch are the display, three SPST switches, a 3.2768 MHz crystal, a trimming capacitor, three AA batteries and an on-off switch. For a two function stopwatch, or to add a display off feature, one additional slide switch is required. The circuit divides the oscillator frequency by 215 . to obtain 100 Hz , which is fed to the fractional seconds, seconds and minutes counters, while an intermediate frequency is used to obtain the $1 / 6$ duty cycle 1.07 KHz multiplex waveforms. The blanking logic provides leading zero blanking for seconds and minutes independently of the clock. The ICM7215 is packaged in a 24-lead plastic DIP.


ABSOLUTE MAXIMUM RATINGS


## OPERATING CHARACTERISTICS:

TEST CONDITIONS: $T_{A}=+25^{\circ} \mathrm{C}$, stopwatch circuit, $\mathrm{V}^{+}=4.0 \mathrm{~V}$ unless otherwise specified.

PARAMETER	SYM	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V+	$-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	2.0		5.0	V
Supply Current	${ }^{+}$	Display off		0.6	1.5	mA
Segment Current Peak Average	ISEG	5 segments lit   1.8 Volts across display	9.0	$\begin{gathered} 13.2 \\ 2.2 \\ \hline \end{gathered}$		
Switch Actuation Current	Isw	- All inputs except chip enable		20	50	$\mu \mathrm{A}$
Switch Actuation Current		Chip enable		50	200	
Digit Leakage Current	IDLK	$\mathrm{V}_{\text {DIG }}=2.0 \mathrm{~V}$			50	
Segment Leakage Current	ISLK	$\mathrm{V}_{\mathrm{SEG}}=2.0 \mathrm{~V}$			100	
Low Battery Indicator Trigger Voltage	VLBI	- -	2.2		2.8	V
LBI Output Current	ILBI	$\mathrm{V}^{+}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=1.6 \mathrm{~V}$		2.0		mA
Oscillator Stability	fStab	$\mathrm{V}^{+}=2.0 \mathrm{~V}$ to $\mathrm{V}^{+}=5.0 \mathrm{~V}$		6	,	PPM
Oscillator Transconductance	gm	$\mathrm{V}^{+}=2.0 \mathrm{~V}$	120	.		$\mu \mathrm{mho}$
Oscillator Input Capacitance	Coscl		24	30	36	pF

NOTE 1: The output devices on the ICM7215 have very low impedance characteristics, especially the digit cathode drivers. If these devices are shorted to a low impedance power supply, the current could be as high as 300 mA . This will not damage the device momentarily, but if the short c̣ircuit condition is not removed immediately probable device failure will occur.

STOPWATCH CIRCUIT


SUPPLY CURRENT VS VOLTAGE


OSC. STABILITY VS SUPPLY VOLTAGE


SEGMENT CURRENT VS SUPPLY VOLTAGE.


LOW BATTERY INDICATOR (LBI) TRIGGER VOLTAGE VS TEMPERATURE


## START/STOP/RESET MODE

When the mode input is floating and the display input is floating or connected to $\mathrm{V}^{+}$, the circuit is in the start/stop/reset mode.

## FUNCTIONAL OPERATION

Turning on the stopwatch will bring up the reset state with the fractional seconds displaying 00 and the other digits blanked. This display always indicates that the stopwatch is ready to go.
The display can be turned off in any mode by connecting the chip enable input to $\mathrm{V}^{+}$.


The start/stop/reset mode can be used for single event timing in a one-button stopwatch; an additional switch can be used to provide an instant reset. To time another event, the display must be reset before the start of the event. Seconds will be displayed after one second, minutes after
one minute. The range of the stopwatch is 59 minutes 59.99 seconds, and if an event exceeds one hour, the number of hours must be remembered by the user. Leading zeroes are not blanked after one hour.

## TAYLOR OR SEQUENTIAL MODE

When the mode input is connected to $V$-, the stopwatch is in the taylor or sequential mode.


Each split time is measured from zero in the taylor mode; i.e., after stopping the watch, the counters reset momentarily and start counting the next interval. The time displayed is that elapsed since the last activation of start/stop. The display is
stationary after the first interval unless the display unlock is used to show the running clock. Reset can be used at any time.

## SPLIT MODE

When the mode input is connected to $\mathrm{V}^{+}$the stopwatch is in
the split mode.


The split mode differs from the taylor in that the lap times are cumulative in the split mode. The counters do not reset or stop after the first start until reset is activated. Time
displayed is the cumulative time elapsed since the first ștart after reset. Display unlock can be used to let the display 'catch up' with the clock, and reset can be used at any time.

## TIME OUT MODE

When the mode input is floating and the display input is tied to V -, the stopwatch is in the time-out mode.


In the time-out mode the clock and display alternately start and stop with activations of the start/stop switch. Reset can
be used at any time. The display unlock button is bypassed in this mode.

## APPLICATION NOTES

## LOW BATTERY INDICATOR

The on-chip low battery indicator is intended for use with a small LED or the decimal points on a standard LED display. The output is the drain of a p-channel transistor two-thirds the size of the segment drivers, and designed to provide a trigger voltage of approximately 2.5 volts at room temperature. Normal AA type batteries will provide many hours of accurate timekeeping after the indicator comes on, however the wide voltage spread between the LBI voltage and minimum operating voltage is required to guarantee low battery indication under worst case conditions.

## CHIP ENABLE

The chip enable input is used to disable both segment and digit drivers without affecting any of the functions of the device. When the chip enable input is floating or connected to $V$-, the display is enabled, and when the tied to $V+$ the display is turned off. One example of the many possible uses of this feature is driving one display from two ICM7215 devices, one in the split mode and the other in the taylor mode. The circuit below indicates how the user can obtain lap and cumulative readings of the same event.


## SWITCH CHARACTERISTICS

The ICM7215 is designed for use with SPST switches throughout. On the display unlock and reset inputs the characteristics of the switches are unimportant, since the circuit responds to a logic level held for any length of time however short. Switch bounce on these inputs does not need to be specified. The start/stop input, however, responds to an edge and so requires a switch with less than 15 ms of switch bounce. The bounce protection circuitry has been specifically designed to let the circuit respond to the first edge of the signal, so as to preserve the full accuracy of the system.

## LATCHUP CONSIDERATIONS

Due to the inherent structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied to the 7.215. If only inputs are affected, latchup can also be prevented by limiting the current into the input terminal to less than 1 mA .

## OSCILLATOR DESIGN

The oscillator of the ICM7215 includes all components on chip except the 3.2768 MHz crystal and the trimming capacitor. The oscillator input capacitance has a nominal value of 30 pF , and the circuit is designed to work with a crystal with a load capacitance of approximately 15 pF . If the crystal has characteristics as shown on page 3, an 8-40pF trimming capacitor will be adequate for a tuning tolerance of $\pm 30$ PPM on the crystal. If the crystal's static capacitance is significantly lower, a narrower trimming range may be selected.
After deciding on a crystal and a nominal load capacitance, take the worst case values of $\mathrm{C}_{\mathrm{in}}$, $\mathrm{C}_{\text {out }}$ and $\mathrm{Rs}_{\mathrm{s}}$ and calculate the $\mathrm{gm}_{\mathrm{m}}$ required by:
$g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{s} \quad\left\{1+\frac{C_{0}\left(C_{\text {in }}+C_{\text {out }}\right)}{C_{\text {in }} C_{o u t}}\right\}^{2}$
Co = static capacitance
Rs $=$ series resistance
$\mathrm{C}_{\text {in }}=$ input capacitance
Cout $=$ output capacitance
$\omega \quad=2 \pi \times$ crystal frequency
The resulting $\mathrm{g}_{\mathrm{m}}$ should be less than half the $\mathrm{g}_{\mathrm{m}}$ specified for the device. If it is not, a lower value of crystal series resistance and/or load capacitance should be specified.

## OSCILLATOR TUNING

Tuning can be accomplished by using the 10th or 100th seconds with the device reset. The frequency on the cathode should be tuned to 1066.667 Hz , which is equivalent to a period of 937.5 microseconds. Note that a frequency counter cannot be connected directly to the oscillator because of possible loading.

## TEST POINT

The test point input is used for high speed testing of the device. When the input is pulsed low, a latch is set which speeds up counting by a factor of 32; each pulse on the test point rapidly advances both minutes and seconds in a parallel mode. To accurately rapid advance the signal applied to the test point must be free of switch bounce. The circuit is taken out of the test mode by using either reset or start/stor

## REPLACING THE ICM7205 WITH THE ICM7215

The ICM7215 is designed to be compatible with circuits using the ICM7205. If the 7205 is used only in the split mode no changes are required. If the 7205 is used in the taylor mode and the split taylor input (pin 21) is left open, a jumper from pin 21 to $V$-must be added when converting to the 7215. A jumper may also be needed if the 7205 is used with a split/ taylor switch. Once the jumper has been added the board can be used with either device.

CHIP TOPOGRAPHY


# 4-Digit LCD Clock Circuit with Snooze Alarm 

## FEATURES

- 3-1/2 or 4 digit display with AM/PM and alarm flags
- 12/24 hour user selectable formats
- Direct alarm drive @ 3V p-p, with complex (cricket) alarm tone
- 8 minute snooze (Dice programmable from 2 to 14 minutes in two minute increments)
- Single battery operation (1.5V)
- Low current - $6 \mu \mathrm{~A}$ maximum
- On-chip fixed oscillator input capacitor
- $32 \mathbf{k H z}$ oscillator requires only quartz crystal and trimming capacitor
- Voltage tripler for large displays

ORDERING INFORMATION

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7223IPL	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Pin Plastic DIP
ICM7223D/D	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DICE

## GENERAL DESCRIPTION

The ICM7223 is a fully integrated 4-digit LCD clock circuit with 24 hour alarm and 8 minute snooze timer. For high accuracy and low power consumption a 32.768 KHz quartz watch crystal is used as the time base, and the number of external components has been reduced to a minimum.
The time keeping and alarm time counters are split during setting, allowing hours and minutes to be set independently, each at a 2 Hz rate. A 'time hold' mode is entered when setting minutes; seconds are automatically reset to zero. The clock starts when the RUN mode is entered, thereby permitting synchronization of the clock to the nearest second: Seconds are not displayed.
The ICM7223 is fabricated using Intersil's low threshold metal gate CMOS process for minimum cost and long battery life.

## BLOCK DIAGRAM



## PIN CONFIGURATION

(OUTLINE DRAWING PL)
B1 C (C1)
F2
G2

PARENTHESES AND SOLD TYPE INDICATE 24 HOUR OPERATION

## ABSOLUTE MAXIMUM RATINGS

Storage Temperature ............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature ........... $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Power Dissipation ${ }^{[1]}$............................ 100 mW
Supply V.oltage ${ }^{(2)}$
$\mathrm{V}+-\mathrm{V}_{1}^{-}$
2.0V
$V^{+}-V_{3}^{-}$
5.5 V

Input Voltage (Osc. In, Test,
Set, Display) ......................... $\mathrm{V}^{-} \leq \mathrm{V}_{\mathbb{N}} \leq \mathrm{V}^{+}$
Output Voltage (Osc. Out, 512) ..... $\mathrm{V}_{1}^{-} \leq$Vout $\leq \mathrm{V}^{+}$
(All Other Pins) . . . ..................... $V^{-} \leq V_{\text {OUT }} \leq \mathrm{V}^{+}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}-\mathrm{V}^{-}=1.55 \mathrm{~V}$, voltage tripler connected, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit, unless otherwise specified, voltages and currents are shown as absolute values.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS ${ }^{\prime}$
Supply Voltage	$\mathrm{V}^{+}$	$\mathrm{V}^{-}=0 \mathrm{~V}-10^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<60^{\circ} \mathrm{C}$	1.2		1.8	Volts
Supply Current	${ }^{+}$	Display Disconnected		4	6	$\mu \mathrm{A}$
Tripler Output Voltage	V $\overline{3}$	$\begin{aligned} & I_{3}=0.0 \mu \mathrm{~A} \\ & \mathrm{I}_{3}=1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \end{aligned}$		.	V
Segment Drive Current	Iseg	$\mathrm{V}_{\text {SAT }}=0.2 \mathrm{~V}$ (Both Directions)	5			$\mu \mathrm{A}$
Backplane Drive Current	IBP	$\mathrm{V}_{\text {SAT }}=0.1 \mathrm{~V}$ (Both Directions)	20	$\cdots$		$\mu \mathrm{A}$
Switch Actuation Current	Isw	$\mathrm{V}_{\text {SW }}=\mathrm{V}^{+}$or $\mathrm{V}_{\text {SW }}=\mathrm{V}_{3}^{-}$		3	5	$\mu \mathrm{A}$
Alarm Saturation Resistance	Ral(on)	$\mathrm{P}-\mathrm{CH}$ at $1 \mathrm{~mA} \quad \mathrm{P}-\mathrm{CH}$		350	500	$\Omega$
		$\mathrm{N}-\mathrm{CH}$ at $0.5 \mathrm{~mA} \quad \mathrm{~N}-\mathrm{CH}$		1500	1800	
Oscillator Stability	fstab	$\begin{aligned} & \mathrm{V}^{-}=0 \mathrm{~V}, 1.20 \mathrm{~V} \leq \mathrm{V}^{+} \leq 1.55 \mathrm{~V} \\ & \text { COUT }=25 \mathrm{pF} \end{aligned}$		2		PPM
Oscillator Input Current ${ }^{(3)}$	loscı	'OSC IN' Connected to $\mathrm{V}^{+}$ 'OSC OUT' Open Circuit	.	0.2		$\mu \mathrm{A}$
Oscillator Input Capacitance	CIn		20	25	30	pF
Oscillator Transconductance	gm	.	10	15		$\mu \mathrm{mho}$

Notes:

1. The ICM7223 is fully short circuit protected on all inputs and outputs. However, if by forward biasing an input or output the device is put into a latchup condition, power dissipation must be limited to 100 mW to prevent destruction of the device.
2. The ICM7223 is intended for use with two power supplies, one of which is derived from an external battery $V_{1}^{-}$and the other is generated internally by the voltage multiplier ( $V_{\overline{3}}$ The common point of the two supplies is the most positive, $\mathrm{V}+$. If desired the
circuit can be supplied with an external $\mathrm{V}_{3}^{-}$by disconnecting the multiplier capacitors, or $\mathrm{V}_{3}$ and $\mathrm{V}_{1}^{-}$can be tied together (for a 1.5 volt display for instance).
3. The integrated oscillator biasing components have a nonlinear characteristic depending on the instantaneous values of the input and output voltages of the oscillator and the supply. Under oscillator startup conditions this component has a maximum value.

## TYPICAL APPLICATION



SUPPLY CURRENT VS. SUPPLY VOLTAGE


VOLTAGE MULTIPLIER OUTPUT VOLTAGE VS. OUTPUT CURRENT


## NORMAL CLOCK OPERATION

OSCILLATOR STABILITY VS. SUPPLY VOLTAGE


## ALARM DRIVER OUTPUT CURRENT

 VS. OUTPUT VOLTAGEP CHANNEL OUTPUT VOLTAGE


In normal operation, hours and minutes are displayed with the colon flashing at a 1 Hz rate. An AM and a PM indicator flag is provided in the 12 hour mode, while in the 24 hour mode, the pads used for the AM/PM flags are utilized to drive the segments which produce the numeral " 2 " in the tens of hours digit. The alarm flag will be on if the alarm is enabled, and off if the alarm is not enabled; (Alarm Off input at $\mathrm{V}^{+}$).

## TIME SETTING



NOTE: When the HRS/MIN Advance input is activated there will be a pause of less than one second before the counters start advancing at a 2 Hz rate.

## TIME SETTING

To set the time, the RUN/SET switch is placed in the Time Set position, and the HRS/MIN advance input is used to advance the hours or minutes. The seconds are reset to zero and counting is stopped whenever the minutes are set. The clock will start when the RUN/SET switch is put back into the RUN position, and while in the RUN position, inputs from the HRS/MIN advance switch are disabled to prevent accidental setting.

## ALARM OPERATION



The alarm comparator provides a 24 hour alarm in both 12 and 24 hour modes. When the time of day and alarm times are equal, the alarm outputs are enabled, providing that the ALARM OFF input is at $V_{\overline{1}}$. If the ALARM OFF input is at $\mathrm{V}^{+}$, the alarm outputs will not be enabled. The alarm outputs provide a push-pull, or bridge, configuration for direct drive of a piezoelectric transducer, and if increased drive (loudness) is desired, a coil and external NPN transistor may be used. The external transistor should be driven by the ALARM 1 output. The coil DC resistance should be $100 \Omega$ or greater, to limit the peak current to less than 13 mA .

The alarm signal is a complex waveform that generates the Intersil Cricket sound. The alarm output will automatically stop after one minute unless either the ALARM OFF or the SNOOZE input is used. The alarm transducer should be selected to provide maximum output (loudness) at 4 kHz , that is, it should be resonant at 4 kHz .

## SNOOZE OPERATION

A momentary closure of the SNOOZE switch to $\mathrm{V}^{+}$w'll silence the alarm and start the snooze timer. The Snooze input must be activated during the one minute the alarm is sounding in order to start a Snooze cycle.

After 8 minutes the alarm will again sound, and will continue for 2 minutes and stop unless ALARM OFF is used or another Snooze cycle is activated. The Snooze may be repeated as many times as desired.

NOTE: In die form, all the SNOOZE input pads are available, allowing the manufacturer or user to select snooze times from 2 to 14 minutes in 2 minute steps. These pads are identified as SN1, SN2 and SN3. See the following table for the selection of Snooze times:

INPUT CODE $\left(\mathbf{1}=\mathbf{V}^{+}\right)$		SNOOZE   TIME	
SN3	SN2	SN1	
0	0	0	None
0	0	1	2 minutes
0	1	0	4 minutes
0	1	1	6 minutes
1	0	0	8 minutes
1	0	1	10 minutes
1	1	0	12 minutes
1	1	1	14 minutes

ALARM SETTING


The alarm time is set by switching to Alarm Set, then using the HRS/MIN ADVANCE input to set hours and minutes. The alarm time is displayed only when the RUN/SET switch is in the Alarm Set position.

## SNOOZE OPERATION



NOTE: IF ALARM OFF IS LEFT AT $\mathrm{V}^{+}$THE ALARM WILL NOT SOUND 24 HOURS LATER.

## APPLICATION NOTES

## ALARM DRIVE

The ICM7223 alarm output transistors are capable of directly driving a piezoelectric ceramic transducer at 3 volts peak-to-peak. Any transducer that does not require more than 1 mA of peak current may also be used. The transducer should generate maximum output at 4 kHz . If a louder sound is desired, buffering (using an NPN transistor and 5 mho coil) or sound enhancement techniques such as a resonant cavity or diaphragm will be required. See Application Bulletin A031 for details.

## TEST MODE

The high speed test mode for automatic testing is entered by pulling the ALARM OFF/TEST Input to -7 volts referenced to $V_{\overline{1}}^{-}$. In this state the HRS/MIN ADVANCE input will advance the appropriate counters at the rate that the input is toggled. The colon will appear to stop flashing as it is changing state more rapidly than the display can respond. In the run mode the minutes will change at a $4: 27 \mathrm{~Hz}$ rate, as the clock has been speeded up by a factor of 256 Hz . The backplane frequency will be 512 Hz . The voltage tripler drive frequencies remain the same as in normal modes.

## ALARM AND DISPLAY TEST

If the ALARM OFF and SNOOZE buttons are pushed simultaneously, all segments of the display will be turned on and the alarm will sound, while none of the time counter contents are disturbed.

## VOLTAGE MULTIPLIER

The ICM7223 voltage multiplier may be utilized only in a tripler configuration; only four pins, and three external capacitors are required. The connection of the capacitors differs from that used in standard watch circuit type voltage multiplers, therefore close attention should be paid to substrate design to ensure the proper connection of the capacitors.

## OSCILLATOR

The oscillator of the ICM7223 is designed for low frequency operation at very low currents from a 1.55
volt supply. The oscillator is of the inverter type with a nonlinear feedback resistor included on chip; which has a maximum resistance under startup conditions. The nominal load capacitance of the crystal should be less than 15 pF , typically 12 pF . In specifying the crystal, the motional capacitance, series resistance and tuning tolerance have to be compatible with the characteristics of the circuit to insure startup and operation over a wide voltage range under worst case conditions.

The following expressions can be used to arrive at a crystal specification:
Tuning range

$$
\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{\text {IN COUT }}}{C_{I N}+C_{O U T}}
$$

gm required for startup

$$
g_{m}=4 \pi^{2 f 2} C_{\text {IN }} \text { Cout } R_{S}\left(1+\frac{C_{O}}{C_{L}}\right)^{2}
$$

where

$$
\begin{array}{ll}
\text { Rs } & =\text { Series Resistance of Crystal } \\
\mathbf{f} & =\text { Frequency of the Crystal } \\
\Delta f & =\text { Frequency Shift from Series Resonance } \\
& \text { Frequency } \\
C_{O}=\text { Static Capacitance of Crystal } \\
\mathrm{CIN}_{\mathrm{IN}}=\text { Input Capacitance } \\
\mathrm{COUT}^{\prime}=\text { Output Capacitance } \\
\mathrm{C}_{\mathrm{L}}=\text { Load Capacitance of Crystal } \\
\mathrm{C}_{\mathrm{m}}=\text { Motional Capacitance of Crystal }
\end{array}
$$

The $\mathrm{g}_{\mathrm{m}}$ required for startup calculated should not exceed $50 \%$ of the $g_{m}$ guaranteed for the device.

## POWER UP RESET

An on chip circuit is provided that will reset all counters and flip-flops to a known state when power is first applied. The alarm and timekeeping counters will be reset to 1:00 am in the 12 hr . mode and 0:00 in the 24 hr . mode. This function is not tested during automatic testing, as it does not affect normal circuit operation.

## DISPLAY



## DISPLAY FONT

 NUMBERS
# 1234557890 

## COCKROFT CII201



## CHIP TOPOGRAPHY



CHIP DIMENSIONS: $116 \times 147$ mils ( $2.95 \times 3.73 \mathrm{~mm}$ ) Fluorescent Clock Circuit With Snooze Timer and Sleep Timer

## FEATURES

- 3-1/2 digit display with AM/PM, sleep timer, and alarm flags
- Direct alarm drive with complex (cricket) alarm tone plus radio enable for clock radio applications
- 8 minute repeatable programmable snooze
- Programmable sleep timer
- Wide operating voltage range -4 to 15 volts
- Low current - $\mathbf{1 2 \mu} \mathrm{A} @ 12 \mathrm{~V}$ with display off
- On-chip fixed oscillator input capacitor
- Uses standard 32.768 kHz crystal
- Display control blanks display for auto and travel clock applications


## ORDERING INFORMATION

Part   Number	Temperature   Range	Package
ICM7223VFIPL	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin Plastic DIP
ICM7223VF/D	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Dice

## GENERAL DESCRIPTION

The ICM7223VF is a fully integrated $3-1 / 2$ digit Vacuum Fluorescent clock circuit with 24 hour alarm, and sleep and snooze timers. For high accuracy and low power consumption a 32.768 kHz quartz watch crystal is used as the time base, while the number of external components has been reduced to a minimum. The vacuum fluorescent display outputs are static, or nonmultiplexed, thereby eliminating radio frequency interference (RFI).
The time keeping and alarm time counters are split during setting, allowing hours and minutes to be set independently, each at a 2 Hz rate. A 'time hold' mode is entered when setting minutes; seconds are automatically reset to zero. The clock starts when the RUN mode is entered; this permits synchronization of the clock to the nearest second. Seconds are not displayed.
The alarm employs a snooze timer that may be programmed from 2 to 14 minutes in two minute increments; the sleep timer may be set from 8 to 56 minutes in 8 minute increments. The alarm outputs consist of a complex (cricket) alarm tone to directly drive a speaker or piezoelectric transducer and a radio enable output which allows control of a clock radio.
The ICM7223VF is fabricated using Intersil's low threshold metal gate CMOS process for minimum cost and long battery life. Current drain at 12 volts is typically $12 \mu \mathrm{~A}$ with a maximum of $25 \mu \mathrm{~A}$ (display off).


## PIN CONFIGURATION (OUTLINE DRAWING PL)



NOTE: CONSULT FACTORY IF 24 HOUR TIME DISPLAY IS DESIRED.

ABSOLUTE MAXIMUM RATINGS
Storage Temperature ............... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature, $\ldots \ldots \ldots \ldots . . .-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation ${ }^{[1]}$.......................... 500 mW
Supply Voltage ( $\mathrm{V}^{+}-\mathrm{V}^{-}$) ........................... 18V Input Voltage
( OSC IN, SN $1, \mathrm{SN}_{2}, \mathrm{SN}_{3}$ ) $\ldots . .-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}+0.3 \mathrm{~V}$ (RUN/SET, HRS/MIN ADV,
AL OFF/TEST) $\ldots \ldots . \mathrm{V}^{-}-0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}+0.3 \mathrm{~V}$

## Output Voltage

(OSC OUT)
$-2 \mathrm{~V} \leq$ Vout $\leq \mathrm{V}^{+}$
(AL OUT, RADIO ENABLE,
All Segment Drivers) $\ldots . . . . . . . . V^{-} \leq$Vout $\leq V^{+}$

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CHARACTERISTICS All testing at $25^{\circ} \mathrm{C}$; All numbers stated in absolute value

PARAMETER	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN.	TYP.	MAX.	
Supply Voltage Range Timekeeping Accurate	$\mathrm{v}^{+}$	,	4		15	V
Supply Current	$1^{+}$	Display OFF $\mathrm{V}^{+}-\mathrm{V}^{-}=12 \mathrm{~V}$		12	25	$\mu \mathrm{A}$
Supply Current Display ON ${ }^{[2]}$		$\begin{aligned} & \mathrm{V}^{+}-\mathrm{V}^{-}=12 \mathrm{~V} \text {, Display } \\ & \text { Test, NEC LD8164 } \end{aligned}$		3		mA
Segment Output Saturation Resistance	RSEG	$\mathrm{IDS}=1 \mathrm{~mA} \mathrm{P-ch}$		1000	1500	$\Omega$
Oscillator Input Capacitance	CIN	- '	20	25	30	pF
Oscillator Stability	fstab	$5 \mathrm{~V} \leq \mathrm{V}$ SUPPLY $\leq 15 \mathrm{~V}$		0.7	1.0	ppm
Alarm Saturation Resistance	RAL(on)	$P$-ch at 10 mA		220	300	$\Omega$
		N -ch at 10 mA		100	150	$\Omega$
Switch Actuation Current	Isw	! ${ }^{\text {sw }}$ w $=\mathrm{V}^{+}$		10	30	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {Sw }}=\mathrm{V}^{-}$		10	30	$\mu \mathrm{A}$

NOTES: 1. This value of power dissipation is that of the package and will not be obtained under normal operating conditions.
2. Chip current plus display anode current only; does not include display filament or grid currents.

听

## TYPICAL CLOCK RADIO APPLICATION



SUPPLY CURRENT vs. SUPPLY VOLTAGE


SUPPLY VOLTAGE - $V$

## SEGMENT DRIVER OUTPUT CURRENT

 vs. DRAIN VOLTAGE

OSCILLATOR STABILITY vs. SUPPLY VOLTAGE


ALARM DRIVER OUTPUT CURRENT vs. OUTPUT VOLTAGE

P-CHANNEL OUTPUT VOLTAGE - $V$


## NORMAL CLOCK OPERATION

In normal operation hours and minutes are displayed with the colon flashing at a 1 Hz rate. AM and PM indicators are provided. The alarm flag will be on if the ALARM OFF input is floating, and off with the ALARM OFF input at $\mathrm{V}^{+}$. Time is displayed in a 12 hour format with AM/PM annunciators.


## ALARM OPERATION

The alarm comparator provides a 24 hour alarm by taking into account AM and PM. When the time of day and alarm times agree, and the ALARM OFF input is floating, the ALARM and RADIO ENABLE outputs are activated; the alarm sounds and the RADIO ENABLE line goes to $\mathrm{V}^{+}$. Momentarily tying the ALARM OFF input to $\mathrm{V}^{+}$will silence both the alarm and the radio. The alarm will automatically shut off after one minute if the ALARM OFF is not used; the RADIO ENABLE will stay HIGH until either the ALARM OFF or SNOOZE inputs are used. The SNOOZE input must be applied within one minute in order to begin a snooze cycle.


ALARM SETTING


The alarm time is set by switching to Alarm Set, then using the HRS/MIN ADVANCE input to set hours and minutes. The alarm time is displayed only when the RUN/SET switch is in the Alarm Set position.

## SNOOZE OPERATION

To begin a snooze cycle, the SNOOZE input must be momentarily shorted to $\mathrm{V}^{+}$during the one minute that the alarm is sounding or the RADIO ENABLE line is high. When this is done the alarm will be silenced and the snooze timer started; the alarm will sound again after. the selected snooze time. Unless the ALARM OFF input is used, the alarm will automatically shut off after two minutes. The RADIO ENABLE will remain on until the ALARM OFF line is activated, however, a second snooze cycle can be initiated with the SNOOZE switch. This can only be done if the SNOOZE is activated while the alarm is sounding.
The snooze times are programmable in 7 steps from 2 to 14 minutes. Programming is accomplished with binary coding on the three SNOOZE inputs, as shown in the following table:

INPUT CODE $\left(1=\mathbf{V}^{+}\right)$		SNOOZE   TIME	SLEEP   TIME	
SN3	SN2			
0	0	0	None	None
0	0	1	2 minutes	8 minutes
0	1	0	4 minutes	16 minutes
0	1	1	6 minutes	24 minutes
1	0	0	8 minutes	32 minutes
1	0	1	10 minutes	40 minutes
1	1	0	12 minutes	48 minutes
1	1	1	14 minutes	56 minutes

## SLEEP OPERATION

The sleep timer may be activated at any time except during a snooze cycle or when the alarm is sounding. The sleep timer is started by setting the RUN/SET switch in the SET position and momentarily activating the SNOOZE switch. Sleep times are programmed with the snooze inputs; see table on previous page.
Another method for sleep timer activation is to use a single DPST pushbutton switch, with one pole connected to the RUN/SET switch and the other to the common side of the SNOOZE programming switch. The other side of the switches is tied to $\mathrm{V}^{+}$. (See typical application, page 3). This method allows the use of a "dedicated" sleep button, which may be recessed to prevent accidental activation.

SNOOZE OPERATION


## ICM7223VF

When the sleep timer is activated the RADIO ENABLE output is set high to turn on a radio. At end of the programmed sleep time the RADIO ENABLE output is returned to $\mathrm{V}^{-}$.


## TIME SETTING

To set the time, the RUN/SET. switch is placed in the Time Set position, and the HRS/MIN advance input is used to advance the hours or minutes. The seconds are reset to zero and counting is stopped whenever the

minutes are set. The clock will start when the RUN/SET switch is put back into the RUN position, and while in the RUN position, inputs from the HRS/MIN advance switch are disabled to prevent accidental setting.

NOTE: When the HRS/MIN Advance input is activated there will be a pause of less than one second before the counters start advancing at a 2 Hz rate.

## DISPLAY

The ICM7223VF is designed for use only with 12 V direct drive (non-multiplexed) $31 / 2$ digit vacuum fluorescent displays such as the NEC LD8164 or equivalent. (But see "LED Display Driving" under DESIGN CONSIDERATIONS.)

## DESIGN CONSIDERATIONS

## DISPLAY CONTROL

This input allows the display to be blanked (turned off) when low current operation is desirable, such as when an auto clock is being used with the engine turned off. For normal operation connect DISPLAY CONTROL to $\mathrm{V}^{+}$; to turn off display allow the input to float. A SPST switch can be used for those times when it is desired to turn on the display with the engine off.



## LED DISPLAY DRIVE

It is possible to drive high efficiency common cathode LED displays with the $7223 V F$ as long as the total display current does not exceed 100 mA (or 4 mA per segment), as excessive on-chip heating may occur. Operation is not guaranteed for extended periods, since the package power dissipation limits are likely to be exceeded. When driving LED displays with the 7223VF, use of the DISPLAY CONTROL as a "time demand" is highly recommended.

## CHIP RESET

Power up reset is not provided on the 7223VF, as interaction between the $\mathrm{V}^{+}$and $\mathrm{V}^{-}$inputs and the voltage regulator in noisy environments could cause spurious resetting. Resetting the circuit to a known state, 1:00 AM, can be accomplished by momentarily connecting the ALARM OUT output to $\mathrm{V}^{+}$; this can be done with a NO SPST switch. This same method may be employed to clear the 7223 VF in the event that it powers up in an illegal state.

## TEST MODE OPERATION

This mode, provided for high speed automatic testing, is entered by shorting ALARM OFF to $\mathrm{V}^{-}$. The minutes will then advance at a 4.27 Hz rate and setting can be accomplished by the application of a digital input to the hrs - mins advance input. The counter will then advance once per pulse. Note that in the test mode there is no debounce protection on the HRS/MINS ADVANCE input.

## ALARM AND DISPLAY TEST

If the ALARM OFF and SNOOZE buttons are pushed simultaneously, all segments of the display will be turned on and the alarm will sound, while none of the time counter contents are disturbed.

## OSCILLATOR

The oscillator of the ICM7223VF is designed for low frequency operation at very low currents from a 12 volt supply. The oscillator is of the inverter type with a nonlinear feedback resistor included on chip, which has a maximum resistance under startup conditions. The nominal load capacitance of the crystal should be less than 15 pF , typically 12 pF . In specifying the crystal, the motional capacitance, series resistance and tuning tolerance have to be compatible with the characteristics of the circuit to insure startup and operation over a wide voltage range under worst case conditions.

The following expressions can be used to arrive at a crystal specification:
Tuning range

$$
\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{\text {IN }} C_{O U T}}{C_{\text {IN }}+C_{O U T}}
$$

$g_{m}$ required for startup

$$
g_{m}=4 \pi^{2} 2 \text { Cin }^{\prime} \text { Cout R } R_{S}\left(1+\frac{C_{0}}{C_{L}}\right)^{2}
$$

where
Rs , = Series Resistance of Crystal
$\mathrm{f} \quad=$ Frequency of the Crystal
$\Delta f \quad=$ Frequency Shift from Series Resonance Frequency
Co = Static Capacitance of Crystal
CIN $=$ Input Capacitancé
Cout = Output Capacitance
$\mathrm{C}_{\mathrm{L}} \quad=$ Load Capacitance of Crystal
$\mathrm{C}_{\mathrm{m}}=$ Motional Capacitance of Crystal
The (calculated) $g_{m}$ required for startup should not exceed $50 \%$ of the $g_{m}$ guaranteed for the device.

## ALARM DRIVE

The ICM7223VF will directly drive any suitable audio transducer (piezoelectric ceramic, or magnetic speaker) with a peak frequency response of 4 kHz with $\mathrm{V}^{+}=12 \mathrm{~V}$ and a peak current of 10 mA . The volume should be more than adequate; no buffering should be required.

## POWER SUPPLY CONSIDERATIONS

The ICM7223VF contains an on-chip CMOS voltage regulator which operates all timing and counting logic circuitry at about 1.8 to 2.0 V below $\mathrm{V}^{+}$. This provides low current operation over a voltage range of $4-15 \mathrm{~V}$ and also improves oscillator stability.
For applications which involve power supplies with high noise levels or transients, it will be necessary to provide supply filtering. The voltage regulator output ( $\mathrm{V}^{-}$REG) should be decoupled to $\mathrm{V}^{+}$with a $0.22 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$ capacitor, and the $\mathrm{V}^{+}$and $\mathrm{V}^{-}$lines should be low-pass-filtered using a $300 \Omega$ resistor and $100 \mu \mathrm{~F}$ capacitor. Note that a zener diode in parallel with the filter cap will limit voltage spikes to 15 V , and should be included if the common " 24 V survival" required for automotive use is desired.



## ICM7223VF

## TYPICAL DISPLAY (FIP5E15S)

Other displays (by NEC):
FIP 5B8S
LD 8196
LD 8164
5le:

DISPLAY FONT

## NUMBERS

$$
9234557890
$$

## CHIP TOPOGRAPHY



CHIP DIMENSIONS: $116 \times 147$ mils $(2.95 \times 3.73$ mm)

## FEATURES

- Very low current consumption: $0.4 \mu \mathrm{~A}$ at 1.55 volt typical
- $32 \mathbf{k H z}$ oscillator requires only quartz crystal and trimming capacitor
- Bipolar stepper drive with low output ON resistance: 200 ohms maximum ( 7245 A/B/D/E/F)
- Unipolar stepper drive with very low output ON resistance: $\mathbf{5 0}$ ohms maximum (7245U)
- Extremely accurate: oscillator stability typically 0.1 ppm
- STOP function for easy time synchronization
- TEST input for highspeed testing
- Wide temperature range: $-\mathbf{2 0 ^ { \circ }} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- On chip fixed oscillator capacitor: $20 \mathrm{pF} \mathbf{\pm 2 0 \%}$

TABLE OF OPTIONS

Device Number	Bipolar/ Unipolar	Pulse Width (ms)	Pulse Frequency	Oscillator Capacitor
ICM7245A	B	9.7	1 Hz	Cout
ICM7245B	B	7.8	1 Hz	CIN
ICM7245D	B	7.8	0.1 Hz   (1 pulse) 10 seconds)	Cout
ICM7245E	B	7.8	$\begin{gathered} 0.0833 \mathrm{~Hz} \\ \text { (1 pulse/ } \\ 12 \text { seconds) } \end{gathered}$	Cin
ICM7245F	B	7.8.	0.05 Hz   (1 pulse/ 20 seconds)	Cin
ICM7245U	$\cup$	3.9	1 Hz	$\mathrm{CIN}_{1}$

## GENERAL DESCRIPTION

The ICM7245 is a very low current, low voltage microcircuit for use in analog watches. It consists of an oscillator, dividers; logic and drivers necessary to provide either bipolar or unipolar drive for minimumcomponent count watches. The oscillator is extremely stable over wide ranges of voltage and temperature, and thus combines high accuracy with low system power. The ICM7245 is fabricated using Intersil's low threshold metal-gate CMOS process.
The inverter oscillator contains all components onchip except for the tuning capacitor and quartz crystal. The binary divider consists of 15 stages, the last 5 of which may be reset. If a reset (stop) occurs during an output pulse, the duration of the pulse is not affected. When the reset is released, the first output occurs approximately 1 second later. For the bipolar version, memory reset logic is included to make sure the first pulse after a "stop" occurs on the opposite output from the one just before the "stop".
The bipolar bridge output consists of two large inverters, normally high. The output ON resistance of the $P$ and $N$ channel devices in series is $200 \Omega$ maximum @ 1 mA . In unipolar operation, the output is made up of a single normally high inverter. The ON resistance of the N -channel device, is $50 \Omega$ maximum @ 3 mA .

## PIN CONFIGURATION (OUTLINE DRAWING BA)



## ORDERING INFORMATION



ORDER DICE BY FOLLOWING PART NUMBER: ICM7245A/D
$L_{\text {select option }}$

## ABSOLUTE MAXIMUM RATINGS

Storage Temperature ............ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $\ldots . . . . . .$.
Power Dissipation (Note 1) ................... 25 mW
Supply Voltage ( $\mathrm{V}^{+}-\mathrm{V}^{-}$) ................ 3.0 volts
Lead Temperature (Soldering, 10 sec ) $\ldots . .300^{\circ} \mathrm{C}$
Input Voltages ........... $\mathrm{V}^{-}-0.3<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{+}+0.3$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

Note 1.: This value of power dissipation refers to that of the package and will not normally be obtained under normal operating conditions.

## TYPICAL OPERATING CHARACTERISTICS

$\mathrm{V}^{+}-\mathrm{V}^{-}=1.55 \mathrm{~V}$, fosc $=32,768 \mathrm{~Hz}$, circuit in Figure $1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.
Numbers are in absolute values.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Current	${ }^{+}$	No Load		0.4	0.8	$\mu \mathrm{A}$
Operating Voltage	$\mathrm{V}^{+}-\mathrm{v}^{-}$	$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<50^{\circ} \mathrm{C}$	1.2		1.8	V
Oscillator Transconductance	gm	Start-up	15			$\mu \mathrm{mho}$
Oscillator Capacitance	Cosc		16	20	24	pF
STOP Input Current	Istop				0.3	$\mu \mathrm{A}$
TEST Input Current	ITEST				10	$\mu \mathrm{A}$
Oscillator Stability	fstab	$\Delta\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)=0.6 \mathrm{~V}$		0.1		ppm
Supply Current During Stop	$1^{+}$	'STOP' Connected to $\mathrm{V}^{+}$			1.0	$\mu \mathrm{A}$
Output Saturation Resistance	Ro	Bipolar ( $\mathrm{N}-\mathrm{CH} .+\mathrm{P}-\mathrm{CH}$ ) $\mathrm{IL}=1 \mathrm{~mA}$			200	$\Omega$
Output Saturation Resistance P-CH	Ro-P	Unipolar $\mathrm{IL}=3 \mathrm{~mA}$			200	$\Omega$
Output Saturation Resistance $\mathrm{N}-\mathrm{CH}$	Ro-N	Unipolar $\mathrm{IL}=3 \mathrm{~mA}$			50	$\Omega$

## TYPICAL WATCH CIRCUIT



CRYSTAL
PARAMETERS
$f=32768 \mathrm{~Hz}$
$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
$\mathrm{C}_{\mathrm{M}}=2.5 \mathrm{mpF}$
$R_{S}=20 \mathrm{~K} \Omega$

Figure 1.

## WAVEFORMS

(ICM7245U)

(ICM7245B)


## TYPICAL OPERATING CHARACTERISTICS

SUPPLY CURRENT AS
A FUNCTION OF SUPPLY VOLTAGE


BRIDGE-OUTPUT CURRENT
AS A FUNCTION OF LOAD VOLTAGE


OSCILLATOR STABILITY AS
A FUNCTION OF SUPPLY VOLTAGE


## APPLICATION NOTES

## OSCILLATOR

The oscillator of the ICM7.245 is designed for low frequency operation at very low current from a 1.55 volt supply. The oscillator is of the inverter type, using a non-linear feedback resistor having maximum resistance under start-up conditions. The nominal load capacitance of the crystal should be less than 12 pF , with a preferred range of $7-10 \mathrm{pF}$. In specifying the crystal, the motional capacitance, series resistance and tuning tolerance must be compatible with the characteristics of the circuit to insure start-up and operation over a wide voltage range under worst case conditions.

The following expressions can be used to arrive at a crystal specification:

Tuning Range
$\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{\text {IN }} \text { COUT }^{C I N}}{C_{\text {IN }}+C_{O U T}}$
gm required for start-up
$g_{m}=4 \pi^{2 f 2} C_{\text {IN }}$ COUT Rs $\left(1+\frac{C_{O}}{C_{L}}\right)^{2}$
where
Rs $=$ Series Resistance of Crystal
1 f = Frequency of the Crystal
$\Delta f=$ Frequency Shift from Series Resonance Frequency
Co = Static Capacitance of Crystal
$\mathrm{C}_{\text {IN }}{ }^{\prime}=$ Input Capacitance
Cout = Output Capacitance
$C_{L}=$ Load Capacitance
$\mathrm{C}_{\mathrm{m}}=$ Motional Capacitance of Crystal
The $\mathrm{gm}_{\mathrm{m}}$ required for start-up calculated should not exceed $50 \%$ of the gm guaranteed for the device.

## TEST POINT

The TEST input, when connected to $\mathrm{V}^{-}$; causes the ICM7245B/U to speed-up the outputs by 16 times. On long period output versions ( $12,20,60 \mathrm{sec}$ ) the speedup factor will be larger. This allows easy testing of the finished watch module. The pulse width is not affected by the speed-up of the pulse frequency.

## CUSTOM VERSIONS

The ICM7245 may be modified with alternative metal masks to provide different number of dividers, various pulse widths, and different output configurations.
In addition, MOS capacitors on-chip up to a total of 50 pF may be connected to either the input and/or the output of the oscillator. Consult your Intersil representative or the factory for further information.

## CHIP TOPOGRAPHY



## FEATURES

- 4-digit duplexed display with time, day of week, and alarm flags
- 4-digit alarm
- Direct alarm drive @ 3 volts peak-to-peak with complex alarm tone. Alarm lasts for 1 minute unless silenced with DISPLAY button
- Repeatable 5 minute snooze
- 12/24 hr, month/date reversal bond option
- Power ON reset
- Display test: All segments ON when DISPLAY and SET are pushed at the same time
- For NORMAL operation: (All operations begin with RUN display - hours: minutes, day)
Press:
DISPLAY once Display month - date day
again Display seconds day
again Return to hours: minutes day display
- For ALARM operation:

Press:
To:
MODE once Display alarm time
SET once Set alarm hours*
again Set alarm 10 mins.* again Set alarm minutes*
DISPLAY once Enable alarm again Disable alarm

- For SET operation:

Press: To:
SET : once Set month*
again Set date*
again Set day*
again Set hours, AM/PM*
again Set minutes*
again RUN or HOLD (see page 7-64)
*Selected counter advances once with each push of the DISPLAY button or at a 1 Hz rate if it is held down.

ORDERING INFORMATION (Dice Only)

ICM7271/D


## GENERAL DESCRIPTION

The ICM7271 is a fully integrated 4-digit 6 function LCD watch circuit with 24 hour snooze alarm. It is fabricated using Intersil's low threshold metal gate CMOS process and designed to interface with a readily available 4-digit duplexed LCD display. The oscillator, frequency dividers, alarm register, segment decoders, voltage multiplier, alarm and segment drivers are all incorporated on chip. The only additional components required for a complete watch are a 32 KHz quartz crystal, a trimming capacitor, 2 multiplier capacitors, a 3 Volt, 2:1 Multiplexed Liquid Crystal Display, an alarm transducer, 3 SPST switches and a 1.5 V battery.
The circuit divides the oscillator frequency in 15 binary stages to 1 Hz . The intermediate frequencies are used to drive the voltage multiplier ( 512 Hz ) and to provide AC drive to the display ( 32 Hz ). The 1 Hz signal is divided down further in the seconds, minutes, hours, day, date and month counters. A four year perpetual calendar is provided.
In the SET modes, the counter being set is displayed and flashed at a 1 Hz rate. Advancing the counters occurs with each push of DISPLAY or at 1 Hz if DISPLAY is held down.
Alarm operation is very convenient. Activating the MODE button puts the circuit in the alarm mode. DISPLAY now enables or disables the alarm, indicated by the DISPLAY ALARM Flag. In the alarm mode, SET and DISPLAY control the setting of the alarm time in the same way as the other setting operations, MODE returns the circuit to normal time. Both alarm and set modes have a time-out function; if no buttons are activated, the circuit returns to Run after 24 seconds. Debounce up to 60 ms is provided on all switches.
When the alarm is enabled and the alarm and clock times agree, the alarm will sound for one minute unless silenced by the DISPLAY or MODE switch. During the time that the alarm is sounding, pushing the MODE switch activates the 5 minute snooze timer; if the MODE switch is pressed during this period the snooze time will be extended for another 5 minutes. This may be repeated as many times as desired. Pushing the DISPLAY button will terminate the snooze (or alarm sound) cycle and leave the alarm enabled; it will sound again 24 hours later.

The ICM7271 is designed to be mounted on the top of the substrate (same side as the DISPLAY).

## ABSOLUTE MAXIMUM RATINGS

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Power Dissipation ${ }^{[1]}$ (Dice Only)	100 mW
Supply Voltage ${ }^{(21)}$	
$\mathrm{V}^{+}-\mathrm{V}^{-}$	2.7 V
$\mathrm{V}^{+}-\mathrm{V}_{\mathrm{H}}$	5.5 V
Input Voltage (Osc. In, Test,	
Set, Display).	$\mathrm{V}^{-} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}^{+}$
Output Voltage (Osc Out) (All Other Pins)	$V \leq \text { VOUT } \leq \mathrm{V}+$

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

1. The ICM7271 is fully short circuit protected on all inputs and outputs. However, if by biasing an input or output the device is put into a latchup condition, power dissipation must be limited to 100 mW to prevent destruction of the device.
2. The ICM7271 is intended for use with two power supplies, one of which is derived from an external battery ( $\mathrm{V}^{-}$) and the other is generated internally by the voltage multiplier $\left(\mathrm{V}_{2}^{-}\right)$. The common point of the two supplies is the most positive, $\mathrm{V}^{+}$. If desired the circuit can be supplied with an external $\mathbb{V}_{2}^{\overline{2}}$ by disconnecting the multiplier capacitors.

## OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}-\mathrm{V}^{-}=1.55 \mathrm{~V}$, Voltage Doubler Connected, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Unless Otherwise Specified. Voltages Specified in Absolute Value.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	$\mathrm{V}^{+}$	$\mathrm{V}^{-}=0 \mathrm{~V}-10^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<60^{\circ} \mathrm{C}$	1.2		1.8	Volts
Supply Current	$\mathrm{I}^{+}$	Display Disconnected		1.5	3.0	$\mu \mathrm{A}$
Doubler Output Voltage	$\mathrm{V}_{2}^{-}$	$\begin{aligned} I_{H} & =0.0 \mu \mathrm{~A} \\ I_{H} & =1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.0 \end{aligned}$		Volts
Segment Drive Current	IsEG	$\mathrm{V}_{\text {SAT }}=0.2 \mathrm{~V}$ (Both Directions)	5			$\mu \mathrm{A}$
Backplane Drive Current	IBP	$\mathrm{V}_{\text {SAT }}=0.1 \mathrm{~V}$ (Both Directions)	10			$\mu \mathrm{A}$
Switch Actuation Current	Isw	$\mathrm{V}_{\text {SW }}=\mathrm{V}^{+}$		10	,	$\mu \mathrm{A}$
Alarm Saturation Resistance	RaL(on)	N -ch and P-ch (Series) at 1 mA			600	ohms
Oscillator Stability	fstab	$\begin{aligned} & \mathrm{V}^{-}=0 \mathrm{~V}, 1.20 \mathrm{~V} \leq \mathrm{V}^{+} \leq 1.55 \mathrm{~V}, \\ & \mathrm{C}_{\text {OUT }}=25 \mathrm{pF} \end{aligned}$		2	.	PPM
Oscillator Input Current ${ }^{[3]}$	loscı	'OSC IN' Connected to $\mathrm{V}^{+}$ 'OSC OUT' Open Circuit		0.2	.	$\mu \mathrm{A}$
Oscillator Input Capacitance	Cin		20	25	30	pF
Oscillator Transconductance	gm		10	15		$\mu \mathrm{mho}$

3. The integrated oscillator biasing component has a nonlinear characteristic depending on the instantaneous values of the input and output voltages of the oscillator and the supply. Under oscillator startup conditions this component has a maximum value.

## TYPICAL WATCH CIRCUIT



BLOCK DIAGRAM


## TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT VS. SUPPLY VOLTAGE


VOLTAGE MULTIPLIER OUTPUT VOLTAGE VS. OUTPUT CURRENT


OSCILLATOR STABILITY VS. SUPPLY VOLTAGE


ALARM DRIVER OUTPUT CURRENT VS. OUTPUT VOLTAGE

P-CH OUTPUT VOLTAGE (VOLTS)


## DUPLEXED 4 DIGIT LCD DISPLAY *



NORMAL WATCH OPERATION


In the TIME mode, the circuit displays hours, minutes and day, and the colon is flashing. Demand operation is actuated by depressing the DISPLAY switch once for month, date, and day. Seconds are displayed by
depressing the DISPLAY switch twice, and they will remain displayed until the DISPLAY switch is depressed a third time.

## ALARM OPERATION


*In all set modes, pressing the DISPLAY once will advance the flashing digit by one. If held down, the digits will increment at a 1 Hz rate.

The mode switch allows easy access to all alarm functions. Each push of MODE causes the circuit to switch from time to alarm or vice versa. When the watch time equals the alarm (including AM/PM for 12 hr mode) the alarm will sound. The alarm will silence itself after one minute, or can be silenced by pressing the DISPLAY button. In either case, the alarm will remain armed to sound again 24 hours later. If neither SET nor DISPLAY is used for 24 seconds after entering the alarm mode the circuit will return to time.

## SNOOZE OPERATION

While sounding, the alarm may be silenced for approximately five minutes by pressing the MODE button. This 'SNOOZE' may be repeated as often as desired. If the MODE button is pressed during the 'SNOOZE' time the alarm will be silenced for approximately five minutes from the second depression. The display will not be affected by activation of the 'SNOOZE' operation; depressing the DISPLAY button will terminate the snooze cycle.

SET OPERATION


Setting the ICM7271 is carried out in a sequential manner. The SET input allows the user to cycle through the five set modes. All set operations are independent, i.e. the counters following the one being set are inhibited; this allows, for instance, convenient time zone adjustment without affecting day, date or month. The setting sequence is graphically shown above: The counters being set are flashed at a 1 Hz rate for easy user ïdentification.

## DATE SET

The perpetual calendar uses 28 days for February. In a leap year, on February 29, the watch will display March 1. To display February 29 , change date to 29 first, then March to February.
*In all set modes, pressing the DISPLAY once will advance the flashing digit by one. If held down, the digits will increment at a $1 \mathbf{~ H z}$ rate.

## HOURS SET

In the 12 hour mode an A or P will appear in the right most digit to indicate AM/P.M. These characters are blanked in the 24 hour mode.

## MINUTES SET

The MINUTES SET mode is used for exact synchronization of the watch as well as for setting the minutes. If the DISPLAY switch is not activated during MINUTES SET, neither seconds nor minutes will be affected and the next activation of the SET switch will return the circuit to normal time. If DISPLAY is used in the

## ICM7271

MINUTES SET mode the minutes will advance and the seconds will reset to 00 and be put on hold. The user now advances to the next minute and pushes SET once. The circuit is now in TIME HOLD. The DISPLAY will show hours, minutes, day, and the colon will be on (not flashing). At the tone of the time signal; push DISPLAY: This will cause the watch to display month/date/day for 1.5 seconds and return to normal (running) (time) display. Time setting accuracy is approximately 0.1 seconds.
SET MODE TIME-OUT
If neither SET nor DISPLAY is used for 24 seconds the circuit will return to normal time.

## APPLICATION NOTES

## ALARM DRIVE

The ICM7271/M provides sufficient drive current for normal use with a 4 KHz piezoelectric transducer, provided the transducer is properly mounted. For increased drive, a 5 mH coil and an external NPN. transistor are required. Refer to the Application Note A031, "ICM7220A Coil Driven Alarm Design," for details.

## OSCILLATOR

The oscillator of the ICM7271/M is designed for low frequency operation from a 1.55 volt supply at.very low currents. The oscillator is of the inverter type with a non-linear feedback resistor which has a maximum resistance under startup conditions included on chip. The nominal load capacitance of the crystal should be less than 15 pF , typically 12 pF . In specifying the crystal, the motional capacitance, series resistance and tuning tolerance must be compatible with the characteristics of the circuit to insure startup and operation over a wide voltage range under worst case conditions.

The following expressions can be used to arrive at a crystal specification:
Tuning range
$\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L}\right)} ; C_{L}=\frac{C_{I N} \text { COUT }}{C_{I N}+C_{O U T}}$
$g_{m}$ required for startup
$g_{m}=4 \pi^{2 \dagger 2} C_{\text {IN }}$ COUT Rs $\left(1+\frac{C_{O}}{C_{L}}\right)^{2}$
where
Rs = Series Resistance of Crystal
$f \quad=$ Frequency of the Crystal
$\Delta f=$ Frequency Shift from Series Resonance Frequency
Co = Static Capacitance of Crystal
CIN = Input Capacitance
Cout = Output Capacitance
$C_{L}$ = Load Capacitance
$\mathrm{C}_{\mathrm{m}}=$ Motional Capacitance of Crystal
The $g_{m}$ required for startup calculated should not exceed $50 \%$ of the $\mathrm{gm}_{\mathrm{m}}$ guaranteed for the device.

## TEST POINT AND DISPLAY TEST

The circuit is reset to a known state by connecting SET, DISPLAY, and TEST to $\mathrm{V}^{+}$. This state is Saturday December 1, 12:00 am (or 00:00), with alarm at 12:00 am (or 00:00) and disabled. When powering up the device, it will also reset to this state. The TEST input, when connected to $\mathrm{V}^{+}$causes the circuit to speed up the seconds by 512 times. The date-month carry is not inhibited during
connecting SET and DISPLAY to $\mathrm{V}^{+}$the circuit will provide a DISPLAY TEST function, turning on all segments and indicators on the display as well as sounding the alarm.

## PIN CONFIGURATION

ICM7272 4-Digit Duplexed LCD Chronograph Watch Circuit

## FEATURES

- 4-digit duplexed display with time, day of week, date and chrono flags
- Full 30 minute chronograph: minutes, seconds, tenths. Tenths of seconds are displayed in dynamic bargraph
- MODE button allows switching between watch and chronograph without affecting chrono function
- 12/24 hour, month/date reversal bond option
- Display test: All segments and flags ON when DISP and SET are pushed at the same time
- Power ON reset
- For NORMAL operation: (All operations begin with RUN display - hours: minutes, day)

Press:	To:
DISPLAY	once
Display month - date day	

- For SET operation:

Press:		To:
SET	once	Set month*
	again	Set date*
	again	Set day*
	again	Set hours*
	again	Set minutes*
	again	RUN or HOLD

*Selected counter advances once with each push of the DISPLAY button or at a 1 Hz rate if it is held down.

- For chronograph operation

Press:		To:
MODE	once	Display minutes: seconds,tenths
DISPLAY	once	Start
	again   again	Stop   Start (time out function)
DISPLAY	hold   for	Reset
	1.5	

## ORDERING INFORMATION

Order dice by following part number: ICM7272D

[^22]
## GENERAL DESCRIPTION

The ICM7272 is a fully integrated 4-digit 6-function LCD watch circuit with a 30 minute, tenth second chronograph, and designed to interface with readily available 4-digit duplexed displays. The oscillator, frequency dividers, voltage multiplier, and segment drivers are all incorporated on chip. The only additional components required for a complete watch are a 32 kHz crystal, one trimming capacitor, two multiplier capacitors, a duplexed LCD display, three SPST switches and a 1.5 V battery.
Chronograph operation has been optimized for short as well as long interval timing. Tenths of seconds are displayed in a dynamic bargraph across the top of the display, while seconds and minutes are displayed in the 4-seven segment digits. 30 minutes is automatically converted to 00:00.0.
The MODE button allows alternating between watch and/chrono at any time; in the CHRONO mode, the DISPLAY switch acts as the START/STOP/RESET. In TIME SET mode, if no buttons are pushed for 24 seconds the circuit returns to RUN. 60 ms of switch debounce is provided on all switch inputs.
The ICM7272 is fabricated using Intersil's low threshold metal gate CMOS process, and is designed for mounting on the same side of the substrate as the display.

## PIN CONFIGURATION

## ABSOLUTE MAXIMUM RATINGS

Storage Temperature ............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ............ $=20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation ${ }^{[1]}$ (Dice Only) ............ 100 mW Supply Voltage ${ }^{\mid 2}$

$$
\begin{aligned}
& \mathrm{V}^{+}-\mathrm{V}^{-} \\
& 2.0 \mathrm{~V} \\
& V^{+}-V_{2}^{-} \\
& 5.5 \mathrm{~V}
\end{aligned}
$$

Input Voltage (Osc. In, Test;
Set, Display) ........................... $\mathrm{V}^{-} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}$
Output Voltage (Osc Out) $\quad . . . . . V^{-} \leq$Vout $\leq V^{+}$
(All Other Pins) ..................... $\mathrm{V}_{2}^{-} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}^{+}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Notes:

1. The ICM7272 is fully short circuit protected on all inputs and outputs. However, if by biasing an input or output the device is put into a latchup condition, power dissipation must be limited to 100 mW to prevent destruction of the device.
2. The ICM7272 is intended for use with two power supplies, one of which is derived from an external battery ( $\mathrm{V}^{-}$) and the other is generated internally by the voltage multiplier $\left(\mathrm{V}_{2}^{-}\right)$. The common point of the two supplies is the most positive, $\mathrm{V}^{+}$. If desired the circuit can be supplied with an external $\mathrm{V}_{2}^{-}$by disconnecting the multiplier capacitors.

## OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}-\mathrm{V}^{-}=1.55 \mathrm{~V}$, Voltage Doubler Connected, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated. Voltages Specified in Absolute Value.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	$\mathrm{V}^{+}$.	$\mathrm{V}^{-}=0 \mathrm{~V}-10^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<60^{\circ} \mathrm{C}$	1.2		1.8	Volts
Supply Current	$1^{+}$	Display Disconnected		1.5	3.0	$\mu \mathrm{A}$
Doubler Output Voltage	$\mathrm{V}_{2}^{-}$	$\begin{aligned} & I_{\mathrm{H}}=0.0 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{H}}=1.0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.0 \end{aligned}$		Volts
Segment Drive Current	ISEG	$\mathrm{V}_{\text {SAT }}=0.2 \mathrm{~V}$, Both Directions ,	5			$\mu \mathrm{A}$
Backplane Drive Cúrrent	IBP	$V_{\text {SAT }}=0.1 \mathrm{~V}$, Both Directions	10			$\mu \mathrm{A}$
Switch Actuation Current	Isw	$\mathrm{V}_{\text {SW }}=\mathrm{V}^{+}$		10		$\mu \mathrm{A}$
Alarm Saturation Resistance	$\mathrm{R}_{\text {AL(ON) }}$	N -ch and P-ch (Series) at 1 mA			600	ohms
Oscillator Stability	fstab	$\begin{aligned} & \mathrm{V}^{-}=0 \mathrm{~V}, 1.3 \mathrm{~V} \leq \mathrm{V}^{+} \leq 1.55 \mathrm{~V}, \\ & \mathrm{C}_{\text {OUT }}=25 \mathrm{pF} \end{aligned}$		0.1		PPM
Oscillator Input Current ${ }^{[3]}$	loscl	'OSC IN' Connected to $\mathrm{V}^{+}$ 'OSC OUT' Open Circuit		0.2		$\mu \mathrm{A}$
Oscillator Input Capacitance	CIN	' ${ }^{\text {a }}$	20	25	30	pF
Oscillator Transconductance	gm		10	15		$\mu \mathrm{mho}$

Notes:
3. The integrated oscillator biasing component has a nonlinear characteristic depending on the instantaneous values of the input and output voltages of the oscillator and the supply. Under oscillator startup conditions this component has a maximum value.

## TYPICAL WATCH CIRCUIT



INIIERSIL

## BLOCK DIAGRAM



## TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT VS. SUPPLY VOLTAGE


VOLTAGE DOUBLER OUTPUT VOLTAGE VS. OUTPUT CURRENT


OSCILLATOR STABILITY VS. SUPPLY VOLTAGE


VOLTAGE DOUBLER EFFICIENCY VS. OUTPUT CURRENT


## DUPLEXED CHRONO WATCH DISPLAY



NOTE: UPPER SEGMENTS CONTROLLED BY BP 2 . LOWER SEGMENTS CONTROLLED BY BP ${ }_{1}$.

DISPLAY FONT NUMBERS

# 1234567890 

DUPLEXED LCD DISPLAY WAVEFORMS



NÖRMAL WATCH OPERATION (12 Hr option)


The circuit displays hours, minutes and day with the colon flashing. Pressing DISPLAY switches the display
to the month, date, and day mode with the date flag on. 1.5 seconds later, the circuit returns to TIME.

NORMAL OPERATION ( $\mathbf{2 4} \mathbf{~ H r ~ o p t i o n ) ~}$


SET OPERATION
 digit by one. If held down, the digits will increment at a 1 Hz rate.

Setting the ICM7272 is carried out in a sequential manner. The SET input allows the user to cycle through the five set modes. All set operations are independent, i.e. the counters following the one being set are inhibited; this allows, for instance, convenient time zone adjustment without affecting day, date or month. The setting sequence is graphically shown above. The counters being set are flashed at a 1 Hz rate for easy user identification.

## DATE SET

The perpetual calendar uses 28 days for February. In a leap year, on February 29, the watch will display March 1. To display February 29, change date to 29 first, then March to February.

## HOURS SET

In the 12 hour mode an A or P will appear in the right most digit to indicate AM/PM. These characters are blanked in the 24 hour mode, with minutes continuously displayed.

## MINUTES SET

The MINUTES SET mode is used for exact synchronization of the watch as well as for setting the minutes. If the DISPLAY switch is not activated during MINUTES SET. neither seconds nor minutes will be affected and the next activation of the SET switch will return the circuit to normal time. If DISPLAY is used in the MINUTES SET mode the minutes will advance and the seconds will reset to 00 and be put on hold. The user now advances to the next minute and pushes SET once. The circuit is now in TIME HOLD. The DISPLAY will show hours, minutes, day, and the colon will be on (not flashing). At the time signal tone, push DISPLAY. This will cause the watch to display month/date/day for 1.5 seconds and return to normal (time) display. Seconds begin counting the moment the switch is pushed, and time setting accuracy is approximately 0.1 seconds.

## SET MODE TIME-OUT

If neither SET nor DISPLAY is used for 24 seconds the circuit will return to normal time.

## CHRONOGRAPH OPERATION



The MODE switch allows easy access to all chrono functions. Each push of MODE' causes the circuit to switch from time to chrono or vice versa. When the chrono time equals 29 min 59.9 sec the circuit will roll
over to 00:00. Chrono time can accumulate up to 29 min 59 sec and $9 / 10$ seconds.

## ICM7272

## APPLICATION NOTES

## ALARM DRIVE

The ICM7272 provides sufficient drive current for normal use with a 4 KHz piezoelectric transducer, provided the transducer is properly mounted. For increased drive, a 5 mH coil and an external NPN transistor are required. Refer to the Application Note A031, "ICM7220A Coil Driven Alarm Design," for details.

## OSCILLATOR

The oscillator of the ICM7272 is designed for low frequency operation from a 1.55 volt supply at very low currents. The oscillator is of the inverter type with a non-linear feedback resistor which has a maximum resistance under startup conditions included on chip. The nominal load capacitance of the crystal should be less than 15 pF , typically 12 pF . In specifying the crystal, the motional capacitance, series resistance and tuning tolerance must be compatible with the characteristics of the circuit to insure startup and operation over a wide voltage range under worst case conditions.

The following expressions can be used to arrive at a crystal specification:
Tuning range
$\frac{\Delta f}{f}=\frac{C_{m}}{2\left(C_{O}+C_{L)}\right.} ; C_{L}=\frac{C_{\text {IN COUT }}}{C_{\text {IN }}+\text { COUT }}$
$g_{m}$ requíred for startup
$g_{m}=4 \pi^{2 f 2} C_{\text {IN }}$ COUT RS $\left(1+\frac{C_{0}}{C_{L}}\right)^{2}$.
where
Rs = Series Resistance of Crystal
$f$ = Frequency of the Crystal
$\Delta f=$ Frequency Shift from Series Resonance Frequency
Co = Static Capacitance of Crystal
CIN = Input Capacitance
Cout = Output Capacitance
$C_{L} \quad=$ Load Capacitance
$\mathrm{Cm}_{\mathrm{m}}=$ Motional Capacitance of Crystal
The $\mathrm{gm}_{\mathrm{m}}$ required for startup calculated should not exceed $50 \%$ of the $g_{m}$ guaranteed for the device.

## TEST POINT AND DISPLAY TEST

The circuit is reset to a known state by connecting SET, DISPLAY, and TEST to $\mathrm{V}^{+}$. This state is Saturday December 1, 12:00 am (or 00:00), with alarm at 12:00 am (or 00:00) and disabled. When powering up the device, it will also reset to this state. The TEST input, when connected to $\mathrm{V}^{+}$causes the circuit to speed up the seconds by 512 times.The date-month carry is not inhibited during date set in the test mode. By connecting SET and DISPLAY to $\mathrm{V}^{+}$the circuit will provide a DISPLAY TEST function, turning on all segments and indicators on the display as well as sounding the alarm.

## CHIP TOPOGRAPHY

## Digital

Memory	
NMOS Static RAMs	Page
2114	$8-5$
M2114L	$8-9$
2147	$8-13$
M2147	$8-16$
2148	$8-20$
M2148	$8-24$
7141	$8-219$
7141M	$8-223$
CMOS Static RAMs	
IM6504	
IM65X08	$8-152$
IM6512	$8-157$
IM6514	$8-163$
IM65X18	$8-169$
IM65X51	$8-157$
IM65X61	$8-174$
NMOS Dynamic RAM	$8-174$
IM7027I4027	$8-212$
NMOS ROMs	
IM7332	$8-227$
IM7364	$8-230$
82HM137	$8-237$
82HM141	$8-240$
82HM181	$8-243$
82HM185	$8-247$
82HM191	$8-251$
CMOS ROMs	
IM6312	$8-132$
IM6316	$8-139$
CMOS EPROMs	
IM6653	$8-180$
IM6654	$8-180$
6920 EPROM	$8-200$
Programmer	


Bipolar PROMs	
IM5200FPLA	$8-28$
IM5600/10	$8-39$
IM5603/23	$8-42$
IM5604/24	$8-48$
Bipolar PROM	
Programming	$8-53$
Specifications	8
Microprocessor	
IM6100	$8-55$
6801Sampler Kit	$8-187$
Peripherals	
IM6101	
IM6102	$8-77$
IM6103	$8-97$
IM6402/3	$8-120$
82C43	$8-144$
I	$8-233$
Development	
Systems	
Intercept Jr.	$8-205$
Intercept II	$8-192$
Intercept CPU with Dual	
Serial I/O	$8-196$
Double Density	
Flexible Disc	$8-197$
Controller	$8-201$
Concept-48	$8-191$
4K $\times 12$ CMOS	
Memory Module	$8-1$
32K $\times 12$ RAM	$8-198$
Board	$8-211$
6970 Disc Operating	
System	

## NMOS

## Static RAMs



Dynamic RAMs

Organization	Max Access Time (ns)	Ido Max(mA)	No. Pins	Package*	Temp Range*
$4096 \times 1$					
7027-1	120	35	16	J	C
4027-2	150	35	16	J	C
4027-3	200	35	16	$J$	C
4027-4	250	35	16	J	C

## ROMs


*Package and Temperature Key

F-Flatpack	C-Commercial, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
J-Ceramic Dual In-Line	I-Industrial, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
P-Plastic Dual In-Line	M-Military, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
D-Ceramic Side Braized (Not Recommended for High Volume)	

Static RAMS


## ROMS

Organization		Max Access Time (ns)	$V_{C C}$   (V)	$\operatorname{lcc} \operatorname{Max}(\mathrm{mA})$ Operating	$\operatorname{Icc} \operatorname{Max}(\mu \mathrm{A})$ Standby	No. Pins	Package*	Temp Range
$1024 \times 12$						.		
IM6312-1		510	5	1.8	100	18	J,F	I,M
IM6312A		250	10.	2	500	18	J,F	I,M
$\begin{array}{r} 2048 \times 8 \\ \text { IM6316 } \end{array}$		550	5	20	200	18	J.	I,M

EPROMs

Organization		Max Access Time (ns)	Vcc   (V)	$\operatorname{Icc} \operatorname{Max}(\mathrm{mA})$ Operating		$\operatorname{Icc} \operatorname{Max}(\mu \mathrm{A})$ Standby	No. Pins	Package*	Temp Range
$1024 \times 4$									
IM6653		550	5	6		140	24	J	I,M
IM6653A		300	10	12		140	24	$J$	I,M
$512 \times 8$									
IM6654		550	5	6	,	140	24	J	I,M
IM6654A		300	10	12		140	24	$J$	I,M

Bipolar PROMS


[^23]
## MICROPROCESSOR

## IM6100 Microprocessor Family

IM6100 - CMOS Microprocessor
IM6101 - CMOS Programmable Interface Element (PIE)
IM6102 - CMOS Memory Extension/DMA/Interval Timer/Controller (MEDIC)
IM6103 - CMOS 20 bit Parallel Input-Output Port (PIO)

## UARTS

IM6402/IM6403
Development Support
6801 - IM6100 CMOS Family Sampler
6950 - Intercept Junior Tutorial System
6910 - Intercept II Microcomputer Prototype Development System
6940 - Intercept III Microcomputer Prototyping Development System
6975. - Intercept Dual Floppy Disk drive

## IM8048 Peripheral

## Development Sụpport

6942 - Concept 48-Single Board Development Tool

## SYSTEMS

LSI-8 , — LSI Based PDP8@ Computer System - see 6912, 6914, 6915
6920 - CMOS EPROM Programmer

# 4096 Bit (1024 x 4 ) NMOS Static RAM 

## FEATURES

- Cycle Time Equal to Access Time-
- Completely Static - No Clock Required
- Common Data Input and Output
- TTL Compatible Inputs and Outputs
- 883A Class B Processing Available
- Single + 5 Volt Power Supply
- Pin Compatible with industry standard 2114
- Maximum Access Time:
- 200 ns (-2)
-300 ns (-3)
- Maximum Power Dissipation:
-370 mW (2114L)
$-525 \mathrm{~mW}(2114)$
- 525 mW (2114)


## DESCRIPTION

The 2114 is a 4096-bit static Random Access Memory organized 1024 words $\times 4$ bits. The storage cells and decode and control circuitry are completely static, therefore no clocks or refresh operations are required. Memory access occurs within the specified access time after all address inputs are stable. A Chip Select input is provided for simple memory array expansion.

The 2114 is pin and performance compatible with the industry standard 2114 series, and the device is assembled in a standard 18-pin DIP for maximum system packing density.


(outline dwgs JN,PN)


PIN NAMES

$A_{0}-A_{9}$	ADDRESS INPUTS
$1 / O_{1}-1 / O_{4}$	DATA INPUT/OUTPUT
$\bar{W}$	WRITE ENABLE
$\overline{\mathrm{S}}$	CHIP SELECT

ORDERING INFORMATION

POWER	ACCESS TIME			
	200ns	300ns	450ns	
	D2114L2.	D2114L3	2114L	CERDIP
	P2114L2	P2114L3	P2114L	PLASTIC
525 mW	D2114-2	D2114-3	D2114	CERDIP
	P2114-2	P2114-3	P2114	PLASTIC

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature ................................................ . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature .................................................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to +7 V

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS
TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TEST CONDITIONS	2114L		2114		UNITS
			MIN	MAX	MIN	MAX	
Input Load Current	$\mathrm{I}_{\text {INLD }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V		10		10	$\mu \mathrm{A}$
Output Leakage Current	loLk	$\begin{array}{\|l\|} \hline \overline{\mathrm{S}}=2.4 \mathrm{~V}, \\ \mathrm{~V}_{1 / \mathrm{O}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{array}$		10		10	
Power Supply Current	${ }^{\text {cca }}$	$\begin{aligned} & V_{I N}=5.25 \mathrm{~V} \\ & \mathrm{I}_{I O}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		65		90	mA
Power Supply Current	${ }^{\mathrm{ccC}}$	$\begin{aligned} & \mathrm{V}_{I N}=+5.25 \mathrm{~V} \\ & \mathrm{I}_{I / O}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$		70		100	
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$		-0.5	0.8	-0.5	0.8	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	,	2.0	$\mathrm{V}_{\mathrm{cc}}$	2.0	$\mathrm{V}_{\mathrm{cc}}$	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$		0.4		0.4	
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}=-1 \mathrm{~mA}$	2.4	$\mathrm{V}_{\mathrm{cc}}$	2.4	$\mathrm{V}_{\mathrm{cc}}$	

## CAPACITANCE

PARAMETER	SYMBOL	TEST CONDITIONS	MAX	UNITS
Input/Output Capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{V}_{I / O}=0 \mathrm{~V}$	5	
Input Capacitance	$\mathrm{C}_{\mathrm{IN}}$	$\mathrm{V}_{I N}=0 \mathrm{~V}$	5	pF,

NOTE: These parameters are periodically sampled, not $100 \%$ tested.

## DEVICE OPERATION

When $\bar{W}$ is high, the data input buffers are inhibited to prevent erroneous data from getting into the array. As long as $\bar{W}$ remains high, the data stored cannot be changed by the addresses Chip Select, or data I/O voltage levels and timing transitions. The block diagram also shows data storage cannot be changed by $\bar{W}$, the addresses, or the input data as long as $\overline{\mathbf{S}}$ is high. Either $\overline{\mathrm{S}}$ or $\bar{W}$ by itself, or in conjunction with the other, can prevent the extraneous writing due to signal transitions.

A read occurs during the overlap of $\overline{\mathrm{S}}$ low and $\bar{W}$ high. Data within the array can only be changed during a Write time, defined as the overlap of $\bar{S}$ low and $\bar{W}$.low. To prevent the loss of data, the addresses must to properly established during the entire Write time plus $t_{w r}$.

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=+5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$, Output Load $=1 \mathrm{TTL}$ Gate and 100 pF Input and Output Timing Reference Level $=1.5 \mathrm{~V}$

READ CYCLE

PARAMETER	SYMBOL	2114-2   2114L2		$\begin{aligned} & 2114-3 \\ & 2114 \mathrm{~L} 3 \end{aligned}$		2114   21114L		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
Read Cycle Time	$\mathrm{t}_{\mathrm{rc}}$	200		300		450		ns
Access Time	$t_{\text {aa }}$		200		- 300		450	
$\overline{\mathrm{S}}$ to Output Valid	$\mathrm{t}_{\mathrm{co}}$		70		100		100	
$\overline{\mathrm{S}}$ to Output Active	$\mathrm{t}_{\mathrm{cx}}$	20		20		20		
Output Three-State from Deselect	$\mathrm{t}_{\text {otd }}$	0	- 50	0	80	0	100	
Output Hold from Address Change	$\mathrm{t}_{\text {oha }}$	50		50		50		

WRITE CYCLE

PARAMETER	SYMBOL	$\begin{aligned} & \hline 2114-2 \\ & 2114 \mathrm{~L} 2 \end{aligned}$		$\begin{aligned} & 2114-3 \\ & 2114 \mathrm{~L} 3 \end{aligned}$		$\begin{gathered} \hline 2114 \\ 2114 \mathrm{~L} \end{gathered}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
Write Cycle Time	$\mathrm{t}_{\mathrm{wc}}$	200		300		450		ns
Write Time	$t_{w}$	120		150		200		
Write Release Tiine	$\mathrm{t}_{\mathrm{wr}}$	0		0		0		
Output Three-State from Write	$\mathrm{t}_{\text {tow }}$	0	60	0	80	0	100	
Data to Write Time Overlap	$\mathrm{t}_{\mathrm{dw}}$	120		150		200		
Data Hold from Write Time	$\mathrm{t}_{\mathrm{dh}}$	0		0		0		
Address Setup. Time	$\mathrm{taw}_{\text {a }}$	0		0		0		
$\overline{\text { S Select Pulse Width }}$	$\mathrm{t}_{\mathrm{cw}}$	120		150		200		

TIMING DIAGRAMS


Note: $\bar{W}$ is high for a RÉAD cycle.

## WRITE CYCLE



## 2114 BIT MAP DIAGRAM



## 4096 Bit (1024 x 4 ) NMOS Static RAM

## FEATURES

- Cycle Time Equal to Access Time
- Completely Static-No Clock Required
- Common Data Input and Output
- TTL Compatible Inputs and Outputs
- 883A Class B Processing Available
- Single +5 Volt Power Supply
- Maximum Access Time:
- $200 \mathrm{~ns}(-2)$
-300 ns ( -3 )
- Maximum Power Dissipation: -495mW
- Pin Compatible with Intel M2114
- Military Temperature Operation:
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$


## DESCRIPTION

The M2114L is a 4096 -bit static Random Access Memory organized 1024 words $\times 4$ bits. The storage cells and decode and control circuitry are completely static therefore, no clocks or refresh operations are required. Memory access occurs within the specified access time after all address inputs are stable. A Chip Select input is provided for simple memory array expansion.
The M2114L is pin and functionally compatible with the Intel M2114 series, and operations at 90mA over a $5 \mathrm{~V} \pm 10 \%$ range. The worst-case access time is 450 ns with speeds of $300 \mathrm{~ns}(-3)$ and $200 \mathrm{~ns}(-2)$ available.
The device is assembled in a standard 18-pin DIP for maximum system packing density.


## ABSOLUTE MAXIMUM RATINGS

Operating Temperature .............................................. $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ................................................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin to Ground . ............................................... -0.5 V to +7 V
Power Dissipation ‘.......................................................................... . 1W
NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device 'at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS,
Input Load Current	IINLD	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.5 V		10	
Output Leakage Current	$\mid$ lolk	$\begin{aligned} & \overline{\mathrm{S}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{1 / O}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		10	$\mu \mathrm{A}$
Power Supply Current	ICC1	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{I / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$		65	
Power Supply Current	ICC2	$\begin{aligned} & \mathrm{V}_{I \mathrm{~N}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{I / O}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		90	m
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		-0.5	0.8	
Inpuit High Voltage	$\mathrm{V}_{\text {IH }}$		2.0	$\mathrm{V}_{\text {CC }}$	v
Output Low Voltage ,	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{IOL}=3.2 \mathrm{~mA}$		0.4	
Output High Voltage	- $\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	2.4	$V_{\text {cc }}$	

## CAPACITANCE

PARAMETER	SYMBOL	TEST CONDITIONS	MAX	UNITS
Input/Output Capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=\mathrm{OV}$	5	pF
Input Capacitance	$\mathrm{C}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	5	

NOTE: These parameters are periodically sampled, not $100 \%$ tested.

## DEVICE OPERATION

When $\bar{W}$ is high, the data input buffers are inhibited to prevent erroneous data from getting into the array. As long as $\bar{W}$ remains high, the data stored cannot be changed by the addresses, Chip Select, or data I/O voltage levels and timing transitions. The block diagram also shows data storage cannot be changed by $\bar{W}$, the addresses, or the input data as long as $\overline{\mathrm{S}}$ is high. Either $\overline{\mathrm{S}}$ or $\bar{W}$ by itself, or in conjuction with the other, can prevent the extraneous writing due to signal transitions.

A read occurs during the overlap of $\overline{\mathrm{S}}$ low and $\bar{W}$ high. Data within the array can only be changed during a Write time, defined as the overlap of $\bar{S}$ low and $\bar{W}$ low. To prevent the loss of data, the addresses must be properly established during the entire Write time plus $t_{w r}$.

AC CHARACTERISTICS
TEST CONDITIONS: $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$, Output Load $=1 \mathrm{TTL}$ Gate and 100 pF Input and Output Timing Reference Level $=1.5 \mathrm{~V}$

READ CYCLE


## WRITE CYCLE



## TIMING DIAGRAMS

READ CYCLE ${ }^{(1)}$


## WRITE CYCLE



Note: $1 . \bar{W}$ is high for a READ cycle.

2114 BIT MAP DIAGRAM


# 2147 4096 Bit (4096 x 1) HMOS Static RAM 

## FEATURES

- High speed - 55ns maximum access time
- Automatic low-power standby - 550 mW (2147L)
- Completely static - no clock required
- Single +5 V supply
- TTL compatible inputs and outputs
- Three-state output
- HMOS Process technology
- Industry standard 2147 pin compatible


## GENERAL DESCRIPTION

The Intersil 2147 is a low power, high-speed 4096-bit static RAM organized 4096 words by 1 bit. It is an advanced version of the industry standard 2147, fabricated using Intersil's HMOS single-layer poly selective-oxidation process. Innovative design techniques result in minimum cell area and optimum circuit performance.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

An automatic low-power standby mode is controlled by chip select ( $\overline{\mathrm{S}}$ ); less than one cycle time after $\overline{\mathrm{S}}$ goes high, power dissipation drops from a maximum of 160 mA to 20 mA (2147).

The basic device operates over the $5 \mathrm{~V} \pm 10 \%$ range with a worst-case access time of 70 ns . A " -3 " device is available with a worst-case access time of 55 ns .

The Intersil 2147 is supplied in an 18-pin package with industry standard pin configuration.


ORDERING INFORMATION

PART NO.	ACCESS TIME	ACTIVE CURRENT	STANDBY CURRENT	PACKAGE	TEMP. RANGE
D2147-3	55 ns	180 mA	30 mA	18 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D 2147 L	70 ns	140 mA	10 mA	18 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D 2147	70 ns	160 mA	20 mA	18 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS 1

SYMBOL	DESCRIPTION	MIN	MAX	UNITS	NOTES
$\mathrm{V}_{\text {IN }}$	Voltage on any Pin Relative to GND	-1.5	+7	V	2
$\mathrm{I}_{\text {OS }}$	D.C. Output Current		20	mA	
$\mathrm{t}_{\text {STORE }}$	Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {BIAS }}-$	Ambient Temperature Under Bias	-10	+85	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\mathrm{D}}$	Power Dissipation		1	W	

## NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.
2. This device contains internal circuitry to protect against damage due to static charge. Conventional precautions should be observed, however, during storage, handling, and use to avoid exposure to excessive voltages.
ELECTRICAL PARANETERS $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted

SYMBOL	DESCRIPTION	MIN	MAX	UNITS	TEST CONDITONS
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0	6.0	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	-1.0	0.8	V	
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	2.4		V	$\mathrm{IOH}=+4.0 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage		0.4	V	$\mathrm{IOL}=8 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{IL}}$	Input Leakage Current		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{GND} \leq \mathrm{VIN} \leq \mathrm{VCC}$
$I_{\mathrm{OLK}}$	Output Leakage Current		50	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~S}=\mathrm{VIH}, \mathrm{GND} \leq \mathrm{VO} \leq 4.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OS}}$	Output Short Circuit Current	-200	200	mA	$\mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$


SYMBOL	DESCRIPTION		MAXIMUM VALUES			
		$2147 \cdot 3$	2147 L	$\mathbf{2 1 4 7}$	UNITS	NOTES
ICCOP1	Operating Supply Current	170	135	150	mA	1,2
ICCOP2	Operating Supply Current	180	140	160	mA	2,3
ICCSB	Standby Supply Current	30	10	20	mA	4
ICCPON	Peak Power-On Supply Current	70	30	50	mA	5

NOTES:

1. $\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{~S}=\mathrm{VIL}, 1 \mathrm{O}=0 \quad$ 5. $\mathrm{VCC}=\mathrm{GND}$ to $4.5 \mathrm{~V}, \overline{\mathrm{~S}}=10$ wer of VCC or VIH min. A putlup resis-
2. $T A=25^{\circ} \mathrm{C}$
3. $\mathrm{TA}=0^{\circ} \mathrm{C}$
4. $\mathrm{VCC}=4.5$ to $5.5 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{VIH}$


#### Abstract

tor on $\overline{\mathrm{S}}$ is required during power-on in order to keep the device


 deselected; otherwise ICCPON approaches ICCOP. VCC slew $\geq 1 \mathrm{~V} / \mu \mathrm{s}$.TIMING PARAMETERS $\quad V C C=5 \mathrm{~V} \pm 10 \%, T A=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted 1,4

	DESCRIPTION	JEDEC SYMBOL	2147		2147-3		UNITS	NOTES
SYMBOL			MIN	MAX	MIN	MAX		
	READ CYCLE						ns	
$\mathrm{t}_{\mathrm{rc}}$	Read Cycle Time		70		55			
${ }^{\text {taa }}$	Address Access Time	TAVQV		70		55		
${ }_{\text {acs } 1}$	Chip Select Access Time	TSLQV		70		55		2
$\mathrm{t}_{\text {acs2 }}$	Chip Select Access Time	TSLQV		80		65		3
$\mathrm{t}_{\text {oh }}$	Output Hold from. Address Change	TAXQX	5		5			
$\mathrm{t}_{12}$	Chip Selection to Output Enabled	TSLQX	10		10			
$\mathrm{t}_{\mathrm{hz}}$	Chip Deselection to Output Disabled	TSHQZ	0	40	0	40		.
${ }^{\text {t }}$ ¢	Chip Selection to Power Up Time		0		0	.		
${ }_{\text {tpd }}$	Chip Deselection to Power Down Time			30		30		
	WRITE CYCLE							
${ }^{\text {t }}$ wc	Write Cycle Time		70	-	55			
$\mathrm{t}_{\mathrm{cw}}$	Chip Selection to End of Write	TSLWH	55		45.			
${ }_{\text {taw }}$	Address Valid to End of Write	TAVWH	55.		45			
$\mathrm{t}_{\text {as }}$	Address Setup Time	TAVWL	0		0			
${ }^{\text {wp }}$	Write Pulse Width	TWLWH	40		35			
${ }_{\text {t }}^{\text {wr }}$	Write Recovery Time	TWHAX	15		10			
${ }_{\text {d }}{ }_{\text {w }}$	Data Valid to End of Write	TDVWH.	30		25			
$t_{\text {dn }}$	Data Hold Time	TWHDX	10	.	10			
${ }^{\text {t }}$ wz	Write Enabled to Output Disabled	TWLQZ	0	35	0	30		
$\mathrm{t}_{\text {ow }}$	Output Active from End of Write	TWHQX	0		0			

## NOTES:

1. $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$. Input and output timing reference level $=1.5 \mathrm{~V}$.
2. Device deselected for 55 ns or more prior to selection.
3. Device deselected for a finite time less than 55 ns prior to selection.
4. Operating temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.

## TIMING DIAGRAMS

Read Cycle (Address)


Notes: 1. Device is continuously selected, $\overline{\mathrm{S}}=\mathrm{V}_{\mathrm{IL}}$.
2. Write Enable is high for read cycle, $\bar{W}=V_{I N}$.

Read Cycle (Chip Select)


Note: Address is valid prior to or coincident with $\overline{\mathrm{S}}$ transition low.

## Write Cycle ( $\overline{\mathrm{W}}$ Controlled)



M2147

## 4096 Bit (4096 x 1) HMOS Static RAM

## FEATURES

- High speed - 85ns maximum access time
- Automatic low-power standby - 30 mA maximum
- Full military temperature range
- 883A Class B processing available
- Completely static - no clock required
- Single +5 V supply
- TTL compatible inputs and outputs
- Three-state outputs
- HMOS process technology
- Intel M2147 compatible



## GENERAL DESCRIPTION

The Intersil M2147 is a high-speed 4096-bit static RAM organized 4096 words by 1 bit, fabricated with Intersil's HMOS single-layer poly selective-oxidation process. Innovative design techniques result in minimum cell area and optimum circuit performance.
'Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.
An automatic low-power standby mode is controlled by chip select ( $\overline{\mathbf{S}}$ ); less than one cycle time after $\overline{\mathbf{S}}$ goes high, power dissipation, drops from a maximum of 180 mA to 30 mA .

The device operates over the full military temperature range ( $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ) at $5 \mathrm{~V} \pm 10 \%$ with a worst-case access time of $85 n$ ns, and is supplied in an 18-pin package with industry standard pin configuration.

PIN CONFIGURATION   (outline dwg JN)	LOGIC SYMBOL

## PIN NAMES

A0-A11	ADDRESS INPUTS
$\bar{D}$	DATA INPUT
$Q$	DATA OUTPUT
$\bar{S}$	CHIP SELECT
$\bar{W}$	WRITE ENABLE

## TRUTH TABLE

$\overline{\mathbf{S}}$	$\overline{\mathbf{W}}$	MODE	OUTPUT	ICC
$H$	X	Not Selected	High Z	Standby
$L$	$L$	Write	High $Z$	Active
$L$	$H$	Read	Dout	Active

## ORDERING INFORMATION

PART NO.	ACCESS TIME	ACTIVE CURRENT	STANDBY CURRENT	PACKAGE	TEMP. RANGE
MD2147	85 ns	180 mA	30 mA	18 -pin CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

## ABSOLUTE MAXIMUM RATINGS

D.C. Output Current	20 mA
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	65 to $+135^{\circ} \mathrm{C}$
Power Dissipation	1W

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS $1 \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted

SYMBOL	DESCRIPTION	M2147			UNITS	NOTES
		MIN	TYP ${ }^{1}$	MAX		
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0		6.0	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-0.3		0.8	V	
ILL	Injut Leakage Current		0.01	10	$\mu \mathrm{A}$	2
$\mathrm{V}_{\mathrm{OH}}$	Output HIGH Voltage	2.4			V	3
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.45	V	4
loLk	Output Leakage Current		0.1	50	$\mu \mathrm{A}$	5
$\mathrm{I}_{\text {CCOP1 }}$	Operating Supply Current		120	160	mA	6,7
$\mathrm{I}_{\text {CCOP2 }}$	Operating Supply Current			180	mA	6, 8
$\mathrm{I}_{\text {CCSB }}$	Standby Supply Current		15	30	mA	9
${ }_{\text {CCPPON }}$	Peak Power-On Supply Current		35	70	mA	10
Ios	Output Short Circuit Current	-200		200	mA	

## NOTES:

1. Typical values are measured at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ and are not guaranteed.
2. $\mathrm{VCC}=5.5 \mathrm{~V}$, GND $\leq \mathrm{VIN} \leq \mathrm{VCC}$
3. $1 O H=-1.0 \mathrm{~mA}$
4. $1 O L=5 \mathrm{~mA}$
5. $\mathrm{VCC}=5.5 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{VIH}, \mathrm{GND} \leq \mathrm{VO} \leq 4.5 \mathrm{~V}$
6. $\mathrm{VCC}=5.5 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{VIL}, \mathrm{IO}=0$
7. $T A=25^{\circ} \mathrm{C}$
8. $\mathrm{TA}=-55^{\circ} \mathrm{C}$
9. $\mathrm{VCC}=4.5$ to $5.5 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{VIH}$
10. $\mathrm{VCC}=\mathrm{GND}$ to $4.5 \mathrm{~V}, \overline{\mathrm{~S}}=$ lower of VCC or VIH min . A pullup resistor on $\bar{S}$ is required during power-on in order to keep the device deselected; otherwise ICCPON approaches ICCOP. VCC slew rate $\geq 1 \mathrm{~V} / \mu \mathrm{S}$.

AC CHARACTERISTICS $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, T A=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted

	DESCRIPTION	JEDEC   SYMBOL	M2147		UNITS	TEST CONDITIONS
SYMBOL			MIN	MAX		
$\mathrm{t}_{\mathrm{rc}}$	READ CYCLE Read Cycle Time		85		ns	
$t_{\text {aa }}$	Address Access Time	TAVQV		85		
tacs1	Chip Select Access Time	TSLQV		85		Note 2
$\mathrm{tacs}_{2}$	Chip Select Access Time	TSLQV		100		Note 3
${ }^{\text {oh }}$	Output Hold from Address Change	TAXQX	5			
$\mathrm{t}_{12}$	Chip Selection to Output Enabled	TSLQX	10			
$\mathrm{t}_{\mathrm{hz}}$	Chip Deselection to Output Disabled	TSHQZ	0	40		
${ }_{\text {t }}$	Chip Selection to Power Up Time		0			
${ }^{\text {t }}$ d	Chip Deselection to Power Down Time			30		
$t_{\text {wc }}$	WRITE CYCLE Write Cycle Time		85			
${ }_{\text {c }}^{\text {cw }}$.	Chip Selection to End of Write	TSLWH	70			
$\mathrm{t}_{\text {aw }}$	Address Valid to End of Write	TAVWH	70			
${ }^{\text {a }}$ as	Address Setup Time	TAVWL	0			
${ }^{\text {twp }}$	Write Pulse Width	TWLWH	55			
${ }^{\text {t }}$ wr	Write Recovery Time	TWHAX	15			
$t_{\text {dw }}$	Data Valid to End of Write	TDVWH	35			
$\mathrm{t}_{\text {dh }}$	Data Hold Time	TWHDX	10			
$\mathrm{t}_{\mathrm{wz}}$	Write Enabled to Output Disabled	TWLQZ	0	50		
tow.	Output Active from End of Write	TWHQX	0			

## NOTES:

1. $t_{r}=t_{f}=10 n s$. Input and output timing reference level $=1.5 \mathrm{~V}$. AC test conditions on page 8-19.
2. Device deselected for 55 ns or more prior to selection.
3. Device deselected for a finite time less than 55 ns prior to selection.

杫
TIMING DIAGRAMS

## Read Cycle (Address)

ADDRESSES (A0-A11)

DATA OUT
(Q)


Notes: 1. Device is continuously selected, $\overline{\mathrm{S}}=\mathrm{V}_{\mathrm{IL}}$.
2. Write Enable is high for read cycle, $\bar{W}=V_{I H}$.

Read Cycle (Chip Select)


Note: Address is valid prior to or coincident with $\overline{\mathrm{S}}$ transition low.



## AC TEST CONDITIONS

## 4096 Bit (1024 X 4) HMOS Static RAM

## FEATURES

- High speed - 55ns maximum access time (2148-3)
- Automatic low-power standby - 165mW maximum
- Completely static - no clock required
- Single +5 V supply
- TTL compatible inputs and outputs
- Three-state outputs
- HMOS Technology
- Pin compatible with industry standard 2114 and 2148 devices


## BLOCK DIAGRAM



## PIN NAMES



## GENERAL DESCRIPTION

The Intersil 2148 is a high speed 4096 bit static RAM organized 1024 words by 4 bits. It is a single-layer poly HMOS version of the industry standard 2114, and pin compatible with both the 2114 and 2148. Innovative design techniques result in minimum cell area and optimum circuit performance.
Inputs and three-state outputs are TTL compatible and allow for direct interface with common system bus structures.
An automatic low-power standby mode is controlled by chip select $\overline{\mathrm{S}}$; less than one cycle time after $\overline{\mathrm{S}}$ goes high, operating current drops from a maximum of 140 mA to a standby current of 30 mA .
The basic device operates over the $5 \mathrm{~V} \pm 10 \%$ range with a worst-case access time of 70 ns. A " -3 " device is available with a worst-case access time of 55 ns .
The Intersil 2148 is supplied in an 18-pin package with industry standard pin configuration.

## PIN CONFIGURATION




## TRUTH TABLE

$\overline{\mathbf{S}}$	$\overline{\mathbf{W}}$	MODE	$\mathbf{I / O}$	POWER
$H$	$X$	Not Selected	High-Z	Standby
$L$	$L$	Write	DiN	Active
$L$	$H$	Read	Dout	Active

## ORDERING INFORMATION

PART NO.	ACCESS TIME	ACTIVE CURRENT	STANDBY CURRENT	PACKAGE	TEMP. RANGE
D2148	70 ns	140 mA	30 mA	18 pin CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D2148-3	55 ns	140 mA	30 mA	18 pin CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## ABSOLUTE MAXIMUM RATINGS

Voltage on any Pin Relative to GND1	-1.5 to +7 V
D.C. Output Current	20 mA
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-10 to $+85^{\circ} \mathrm{C}$
Power Dissipation	1.2W

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the devife. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## NOTES:

1. This device contains internal circuitry to protect against damage due to static charge. Conventional precaiutions should be observed, however, during storage, handling, and use to avoid exposure to excessive voltages.
ELECTRICAL PARAMETERS $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted

SYMBOL	DESCRIPTION	MIN	MAX	UNITS	NOTES
$\mathrm{V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0	6.0	V	
$\mathrm{V}_{\mathrm{IL}}$	Input LOW Voltage	-1.0	0.8	V	
VOH	Output HIGH Voltage	2.4		V	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$
VOL	Output LOW Voltage		0.4	V	$\mathrm{IOL}=8 \mathrm{~mA}$
ILLK	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$
loLk	Output Leakage Current		50	$\mu \mathrm{A}$	$\overline{\mathrm{S}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$
los	Output Short Circuit Current	-150	150	mA	$\mathrm{V}_{\text {OUT }}=$ GND to VCC


SYMBOL	DESCRIPTION	MAXIMUM VALUES		UNITS	NOTES
		2148-3	2148		
ICCOP1	Operating Supply Cuirrent	135	135	mA	1, 2
ICCOP2	Operating Supply Current	140	140	mA	1, 3
ICCsB	Standby Supply Current	30	30	mA	4
ICCPON	Peak Power-On Supply Current	50	50	mA	5

## NOTES:

4. $V_{C C}=4.5$ to $5.5 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{V}_{\mathrm{IH}}$
5. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{V}_{\mathrm{IL}}, 10=0 \mathrm{~mA}$
6. $T_{A}=25^{\circ} \mathrm{C}$
7. $V_{C C}=G N D$ to $4.5 \mathrm{~V}, \overline{\mathrm{~S}}=$ lower of $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{IH}} \mathrm{min}$. A pullup resistor on $\overline{\mathrm{S}}$ is required during power-on in order to keep the device deselected; other-
8. $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ wise Iccpon approaches Iccop. Vcc slew $\geq 1 \mathrm{~V} / \mu \mathrm{s}$.
TIMING PARAMETERS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless otherwise noted, 1,4

SYMBOL	DESCRIPTION	$\begin{aligned} & \text { JEDEC } \\ & \text { SYMBOL } \end{aligned}$	2148-3		2148		UNITS	NOTES
			MIN	MAX	MIN	MAX		
$t_{\text {rc }}$.	READ CYCLE Read Cycle Time		55		70		ns	
ta	Address Access Time	TAVQV		55		70		
tasc1	Chip Select Access Time	TSLQV		55		70		2
tasc2	Chip Select Access Time	TSLQV		65		80		3
$\mathrm{t}_{\text {oh }}$	Output Hold from Address Change	TAXQX	5		5			
$\mathrm{t}_{12}$	Chip Selection to Output Enabled	TSLQX	15		15			5
thz	Chip Deselection to Output Disabled	TSHQZ	0	25	0	25		5
tpu	Chip Selection to Power Up Time		0		0			
tpd	Chip Deselection to Power Down Time			30		30		
twc	WRITE CYCLE Write Cycle Time		55		70			
tcw	Chip Selection to End of Write	TSLWH	50		65			
taw	Address Valid to End of Write	TAVWH	50	,	65			
tas	Address Setup Time	TAVWL	0		0			
twp	Write Pulse Width	TWLWH	40		50			-
twr	Write Recovery Time	TWHAX	5		5			
tdw	Data Valid to End of Write	TDVWH	25		25			
tdh	Data Hold Time	TWHDX	5		5			
twz	Write Enabled to Output Disabled	TWLQZ	0	25	0	25		5
tow	Output Active from End of Write	TWHQX	5		5			

## NOTES:

1. $\mathrm{t}_{\mathrm{r}}=1_{\mathrm{f}}=10 \mathrm{~ns}$. Input and output timing reference level $=1.5 \mathrm{~V} . \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V}$.
2. Device deselected for 55 ns or more prior to selection.
3. Device deselected for less than $55 n$ prior to selection. For deselect time of Ons prior to select, read cycle (address) applies.
4. Operating temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
5. $t_{l z}$ and $t_{h z}$ are measured from 1.5 V level of $\bar{S}$ to $\pm 503 \mathrm{mV}$ from high impedance voltage of load circuit. $t_{l z}$ and $t_{h z}$ are sampled and not $100 \%$ tested.

CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{mHz}$

SYMBOL	PARAMETER	MAX	UNITS	CONDITIONS
$\mathrm{C}_{\mathrm{IN}}$	Input Capacitance	5	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
COUT 2	Output Capacitance	7	pF	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$

## TIMING DIAGRAMS

Read Cycle (Address)


Notes: 1. Device is continuously selected, $\overline{\mathrm{S}}=\mathrm{V}_{\mathrm{IL}}$.
2. Write enable is high for read cycle, $\bar{W}=V_{I H}$.


## Notes:

1. Address is valid prior to or coincident with $\bar{S}$ transition low.
2. Write enable is high for read cycle, $\overline{\mathrm{W}}=\mathrm{V}_{\mathrm{IH}}$.


Write Cycle ( $\overline{\mathbf{S}}$ Controlled)


Note: Outputs remain high-Z if $\overline{\mathrm{S}}, \overline{\mathrm{W}}$ go high simultaneously.

## TEST LOADS



AC PARAMETER LOAD CIRCUIT

$t_{t z}, t_{n z}$ LOAD CIRCUIT

## FEATURES

- High speed - 85ns maximum access time
- Automatic low-power standby - 165mW maximum
- Completely static - no clock required
- Single +5V supply
- TTL compatible inputs and outputs
- Three-state outputs
- HMOS Technology
- Pin compatible with industry standard 2114 M and M2148 devices


## BLOCK DIAGRAM



## PIN NAMES

PIN NAMES	
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs
$1 / 0_{1}-1 / 0_{4}$	Data Input/Output
$\overline{\mathrm{S}}$	Chip Select
$\overline{\mathrm{W}}$	Write Enable

## GENERAL DESCRIPTION

The Intersil M2148 is a high-speed 4096-bit static RAM organized : 1024 words by 4 bits. It is a single-layer poly HMOS version of the industry standard 2114 and pin compatible with both the 2114M and M2148. Innovative design techniques result in minimum cell area and optimum circuit performance.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.
An automatic low-power standby mode is controlled by chip select $\overline{\mathrm{S}}$; less than one cycle time after $\overline{\mathrm{S}}$ goes high, operating current drops from a maximum of 180 mA to a standby current of 30 mA .
The device operates over the $5 \mathrm{~V} \pm 10 \%$ range with a worstcase access time of 85 ns and is supplied in an 18 -pin package with industry standard pin configuration.



## TRUTH TABLE

$\overline{\mathbf{S}}$	$\overline{\mathbf{W}}$	MODE	I/O	POWER
$H$	$X$	Not Selected	High-Z	Standby
L	L	Write	DiN $_{\text {IN }}$	Active
L	H	Read	DOUT	Active

ORDERING INFORMATION

PART NO.	ACCESS TIME	ACTIVE CURRENT	STANDBY CURRENT	PACKAGE	TEMP. RANGE
MD2148	85 ns	180 mA	30 mA	18 pin CERDIP	$-55^{\circ}$ to $+125^{\circ} \mathrm{C}$

## ABSOLUTE MAXIMUM RATINGS

Voltage on any Pin Relative to GND1	-1.5 to +7 V
D.C. Output Current	20 mA
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature Under Bias	-65 to $+135^{\circ} \mathrm{C}$
Power Dissipation	1.2W

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## NOTES:

1. This device contains internal circuitry to protect against damage due to static charge. Conventional precautions should be observed, however, during storage, handling, and use to avoid exposure to excessive voltages.
ELECTRICAL PARAMETERS $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted

SYMBOL	DESCRIPTION	MIN	MAX	UNITS	NOTES
VIH	Input HIGH Voltage	2.0	6.0	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1.0	0.8	V	
VOH	Output HIGH Voltage	2.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$
VOL	Output LOW Voltage		0.45	V	$\mathrm{I}_{\mathrm{OL}}=5.0 \mathrm{~mA}$
liLk	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VCC}$
loLk	Output Leakage Current		50	$\mu \mathrm{A}$	$\overline{\mathrm{S}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$
los	Output Short Circuit Current	-200	200	mA	Vout $=$ GND to VCC


SYMBOL	DESCRIPTION.	MAXIMUM VALUES	UNITS	NOTES
		M2148		
$\mathrm{I}_{\mathrm{CCOP} 1}$	Operating Supply Current	160	mA	1, 2
$\mathrm{I}_{\text {CCOP2 }}$	Operating Supply Current	180	mA	1,3
ICCSB	Standby Supply Current	30	mA	4
$I_{\text {CCPON }}$	Peak Power-On Supply Current	70	mA	5

## NOTES:

1. $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{V}_{\mathrm{IL}}, 1 \mathrm{lo}=0 \mathrm{~mA}$
2. $T_{A}=25^{\circ} \mathrm{C}$
3. $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$
4. $\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~S}=\mathrm{V}_{\mathrm{IH}}$
5. $\mathrm{V}_{C C}=\mathrm{GND}$ to $4.5 \mathrm{~V}, \overline{\mathrm{~S}}=$ lower of VCC or $\mathrm{V}_{\mathrm{H}} \mathrm{min}$. A pullup resistor on $\overline{\mathrm{S}}$ is required during power-on in order to keep the device deselected; otherwise Iccpon approaches Iccop. Vcc slew $\geq 1 \mathrm{~V} / \mu \mathrm{s}$.

TIMING PARAMETERS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Unless otherwise noted, 1,4

SYMBOL	DESCRIPTION	$\begin{aligned} & \text { JEDEC } \\ & \text { SYMBOL } \end{aligned}$	M2148		UNITS	NOTES
			MIN	MAX		
	READ CYCLE					
$t_{\text {rc }}$	Read Cycle Time		85			
$\mathrm{t}_{\mathrm{aa}}$	Address Access Time	TAVQV		85		
tasc	Chip Select Access Time	TSLQV		85		2
$\mathrm{tasc}_{\mathrm{as}}$	Chip Select Access Time	TSLQV		100		3
$\mathrm{t}_{\mathrm{oh}}$	Output Hold from Address Change	TAXQX	5			
$t_{1 z}$	Chip Selection to Output Enabled	TSLQX	10			5
$t_{\text {hz }}$	Chip Deselection to Output Disabled	TSHQZ	0	40		5
$\mathrm{t}_{\mathrm{pu}}$	Chip Selection to Power Up Time		0			
${ }^{\prime} \mathrm{t}_{\text {pd }}$	Chip Deselection to Power Down Time			30	ns	
	WRITE CYCLE	-				
$t_{\text {wc }}$	Write Cycle Time		85			
$\mathrm{t}_{\mathrm{cw}}$	Chip Selection to End of Write	TSLWH	70	-	,	
$\mathrm{t}_{\text {aw }}$	Address Valid to End of Write ${ }^{\text {' }}$	TAVWH	70			
$\mathrm{t}_{\mathrm{as}}$	Address Setup Time	TAVWL	0			
$t_{\text {wp }}$	Write Pulse Width	TWLWH	55			
$t_{\text {wr }}$	Write Recovery Time	TWHAX	. 15			
$t_{\text {dw }}$	Data Valid to End of Write	TDVWH	35			
$t_{\text {dh }}$	Data Hold Time	TWHDX	10			
$t_{w z}$	Write Enabled to Output Disabled	TWLQZ	0	50		5
$\mathrm{t}_{\text {ow }}$	Output Active from End of Write	TWHQZ	10			

## NOTES:

1. $\mathrm{t}_{\mathrm{r}}=1 \mathrm{f} \doteq 10 \mathrm{~ns}$. Input and output timing reference level $=1.5 \mathrm{~V} . \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V}$.
2. Device deselected for 55 ns or more prior to selection.
3. Device deselected for less than 55 ns prior to selection. For deselect time of Ons prior to select, read cycle (address) applies.
4. Operating temperature range is guaranteed with transverse air flow exceeding 400 linear feet per minute.
5. $t_{l z}$ and $t_{h z}$ are measured from 1.5 V level of $\bar{S}$ to $\pm 500 \mathrm{mV}$ from high impedance voltage of load circuit. $t_{l z}$ and $t_{h z}$ are sampled and not $100 \%$ tested.

CAPACITANCE $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{mHz}$

SYMBOL	PARAMETER	MAX	UNITS	CONDITIONS
CIN $^{\text {IN }}$	Input Capacitance	5	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	7	pF	VOUT $=0 \mathrm{~V}$

## TIMING DIAGRAMS

Read Cycle (Address)


Notes: 1. Device is continuously selected, $\overline{\mathrm{S}}=\mathrm{V}_{\mathrm{IL}}$.
2. Write enable is high for read cycle, $\bar{W}=V_{I H}$.


## Notes:

1. Address is valid prior to or coincident with $\overline{\mathrm{S}}$ transition low.
2. Write enable is high for read cycle, $\bar{W}=V_{I H}$.

## Write Cycle ( $\bar{W}$ Controlled)



Write Cycle ( $\mathbf{\Sigma}$ Controlled)


Note: Outputs remain high-Z if $\overline{\mathrm{S}}, \overline{\mathrm{W}}$ go high simultaneously.


AC PARAMETER LOAD CIRCUIT

$t_{1 z}, t_{n z}$ LOAD CIRCUIT

IM5200 Field Programmable Logic Array (FPLA)

## FEATURES

- Avalanche Induced Migration (AIM) Programmability
- 48 Product Terms, 14 Inputs, 8 Outputs
- Output Active Level - High or Low
- Product Term Expandability
- Edit Flexibility
- DTL/TTL Compatible Inputs and Outputs
- tpd - typically 65 ns
- 5 Volt $\pm 5 \%$ Power Supply
- Passive Pullup Outpúts

APPLICATIONS

- Random Combinatorial Logic
- Code Conversion
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits, Counters, Registers, RAMs, etc.
- Character Generators
- \Decoders or Encoders



## GENERAL DESCRIPTION

The IM5200, field programmable logic array (FPLA), is useful in a wide variety of logic applications. The device has 14 inputs and 8 outputs. The FPLA may have up to 48 product terms. Each product term may have up to 14 variables and each one of the outputs provides a sum of the product terms. The FPLA is functionally equivalent to a collection of AND gates which may be OR'ed at any of its outputs. Since some functions are more easily represented in their inverted form, the output level is also programmable to either a high or low active level. The IM5200 is provided with passive pullup outputs: This output configuration is useful for product term expansion by wire-ANDing the outputs of different IM5200's.

## ORDERING INFORMATION

## MEMORY CIRCUIT MARKING AND PRODUCT

 CODE EXPLANATION

## MAXIMUM RATINGS

Supply Voltage Rating	-0.5 V to +7 V
Input Voltage	-1.5 V to +5.5 V
Output Voltage (Operating)	-0.5 V to +5.5 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\quad V_{C C}=5.0 \mathrm{~V}+5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} \quad$.

SYMBOL	PARAMETERS	MIN	TYP .	MAX	UNITS	CONDITIONS
IIL	Low level input current		-0.63	-1.0	mA	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$
${ }^{1} \mathrm{IH}$	High level input current		5	40	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{H}}=4.5 \mathrm{~V}$
$V_{\text {IL }}$	Input low threshold voltage			0.8	V	
$\mathrm{V}_{\text {IH }}$	Input high threshold voltage	2.0			V	
$\mathrm{V}_{\mathrm{C}}$	Input clamp voltage		-. 9	-1.5	V	$\mathrm{I}^{\prime} \mathrm{N}=-10 \mathrm{~mA}$
$B V_{\text {in }}$	Input breakdown voltage	5.5	6.5		V	${ }^{\prime}{ }^{\prime} \mathrm{N}=1.0 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output high voltage	2.4	3.25		V	${ }^{\prime} \mathrm{OH}=-250 \mu \mathrm{~A}$
${ }^{\text {ICEX }}$	Output leakage current		$<1$	50.	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$
${ }^{\text {ISC }}$	Output short circuit current	-0.7	-1.1	-1.7	mA	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}}$	Output low valtage		- 0.3	0.45	V	${ }^{\prime} \mathrm{OL}=12 \mathrm{~mA}$
${ }^{\text {cc }}$	Power Supply Current		135		mA	Inputs either open or at ground (see note 3).
$\mathrm{c}_{\text {in }}$	Input capacitance		5	10	pF	$\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {out }}$	Output capacitance		7	12	pF	$\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$
${ }^{t} \mathrm{pd}$	Input to output switching delay $\left(t_{+-}, t_{++}, t_{-+}, t_{--}\right)$	$20^{-}$	65	100	ns	See switching test circuit

NOTE 1: Cónditions for all typical values are $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: Conditions for all maximum and minimum specifications are the worst case for the complete range of $V_{C C}$ and $T_{A}$.
NOTE 3: Power consumption will increase after programming. The increase will be typically 0.75 mA per product term programmed.


## PRODUCT DESCRIPTION

## AVALANCHE INDUCED MIGRATION TECHNOLOGY

The AIM element is a minimum size, open base, NPN transistor. The emitter is contacted by an aluminum "column" line and the collector is common with the collectors of other elements and the "row" driver collector. A conventional gold doped TTL process is used to fabricate the AIM element and all other .transistors, diodes and resistors on the chip. The programming technique is to force a high current through the element from emitter to collector. This forces the emitter-base junction beyond normal avalanche and into a second breakdown mode. In the second breakdown, the current constricts to a narrow high temperature filament. Aluminum then migrates down the filament to the emitter-base-junction and causes a short of that junction. The drop in power dissipation, as soon as the emitter-base short is achieved, causes a decrease in temperature. Since temperature is a driving force in the programming action, further advance of migrating aluminum is inhibited after programming is achieved. The action is thus self-limiting. The AIM programming technique assures superior reliability since the element junction where the programming action occurs is inherently hermetic.

## GENERAL DESCRIPTION

The IM5200 Field Programmable Logic Array (FPLA) is a logic element designed to produce a sum of product terms, which may be programmed by the user, at each of eight outputs. The basic operating circuit is comprised of 56 input inverters, which generate the true and complement of the 14 inputs, 48 twenty-eight input AND gates, 8 forty-eight input NOR gates and 3 arrays of AIM programmable elements. Additional circuitry is dedicated to the functions of programming and testing before programming. All outputs have 4 K resistor pull-ups which
permit wire-ANDing. Inputs are DTL and TTL designs with $2 \cdot V_{B E}$ operating thresholds.

## Product Term Array

The Product Term Array, consisting of a $48 \times 28$ element AND array, allows the desired true or complement inputs to be connected by programming to the 48 AND gates which form the product terms. Only the input variables included in the product terms are programmed. New variables may always be added to a previously programmed product-term until all 14 variables have been used.

## Summing Array

A $48 \times 8$ element OR array allows any combination of as many as 48 product terms to be logically summed (OR'ed) at each output by programming.

## Output Active Level Array

The Output Active Level Array consists of eight elements, one per output, which provide for changing the active level of any output from LOW to HIGH. Active LOW is the necessary active state when expanding product terms by the parallel connections of two (2) or more IM5200s. The programmable active HIGH feature may be used to advantage in nonexpanded applications to save inverters and/or product terms when system considerations so require.

## LOGIC OPERATION

The operating logic and AIM programmable, element arrays are shown in Figure 1. In logic equation form each output can be expressed in the SUM OF PRODUCTS form.
> $\mathrm{F}_{\mathrm{i}}$ or $\overline{\mathrm{F}}_{\mathrm{i}}=$ logical sum of any user programmed combination of 48 available product terms ( $\mathrm{PT}_{\mathrm{j}}$ )
> where $\mathrm{PT}_{\mathrm{j}}=$ any user programmed combination of the true or complement of the 14 available inputs ( $I_{k}$ ).


Some examples of possible SUM-OF-PRODUCT-TERMS functions and individual PRODUCT TERMS are:
SUM OF PRODUCT TERMS

$$
\begin{aligned}
& \overline{\mathrm{F}}_{1}=\mathrm{PT}_{3}+\mathrm{PT} \mathrm{P}_{28}+\mathrm{PT}_{39}+\mathrm{PT}_{47} \\
& \mathrm{~F}_{3}=\mathrm{PT}_{1}+\mathrm{PT}_{33}+\mathrm{PT}_{39}+\mathrm{PT}_{45}+\mathrm{PT}_{46}+\mathrm{PT}_{47} \\
& \overline{\mathrm{~F}}_{7}=\mathrm{PT}_{2}
\end{aligned}
$$

PRODUCT TERMS

$$
\begin{aligned}
& \mathrm{PT}_{3}=\mathrm{I}_{0} \bar{T}_{2} \bar{T}_{8} \bar{\Gamma}_{13} \\
& \mathrm{PT}_{46}=\mathrm{I}_{1} \mathrm{I}_{6} \mathrm{I}_{9} \mathrm{I}_{11} \overline{1}_{12} \mathrm{I}_{13} \\
& \mathrm{PT}_{2}=\mathrm{I}_{4}
\end{aligned}
$$

A product term is not necessarily a minterm since a minterm contains all input variables. The unprogrammed inputs of a product term that is not a minterm are "don't care". For example, the product term $I_{1} I_{3} \Gamma_{13}$ will activate any output to which it is programmed whenever the $I_{1}$ input is HIGH, $I_{3}$ is HIGH, and $I_{13}$ is LOW, regardless of the logic state of the other inputs. A minterm expansion of $I_{1} I_{3} T_{13}$ would produce 211 miniterms which means there are 211 out of $2^{14}$ possible combinations of all 14 input variables that will activate any output to which the product term is programmed.
Any minterm condition applied to the IM5200 inputs will select (1) no product terms, (2) one product term, or (3) more than one product term.

In the case of no product term selection all the outputs will be in the inactive state (opposite to the levels specified in the ACTIVE LEVEL DATA for each output).
When only one product term is selected, the outputs assume the active levels specified by the SUMMING DATA TRUTH TABLE entry for the selected product term. The outputs not specified as active will assume the inactive state (opposite state to that specified in the ACTIVE LEVEL DATA).
To determine the output status for a case of multiple product term selection, first all of the product terms selected must be identified. Each output state can then be determined by examining the SUMMING DATA for all of the multiply selected product terms.

If any of the product terms has an active level specified for the output, the output will assume the active state as specified by the ACTIVE LEVEL DATA. If none of the product terms have an active level specified for the output, the outputs will assume the inactive state (opposite state to that specified by. the ACTIVE LEVEL DATA.

## TESTING

Some circuitry is built into the IM5200 for test purposes only. On an unprogrammed part it allows for:

## 1. Testing the output in the LOW state

2. Sampling the switching delay time through a maximum delay path
3. Checking the accuracy of programming circuitry decoding
4. Checking the integrity of programming paths under programming conditions
This test capability assures high programming yield and data sheet electrical performance after programming of parts.

## PRODUCT TERM MINIMIZATION TECHNIQUES

Standard two (2) level multi-output minimization techniques (e.g. Quine-McCluskey algorithm) can be used to realize a minimal sum of product terms. In certain cases, the number of product terms can be further reduced by sharing product terms and by inverting the output active level. These techniques are important in cases where the initial specification indicates a need for more than 48 product terms.

## APPLICATION OF BOOLEAN REDUCTION

REALIZE: $\quad F_{1}=T_{2} T_{1} \bar{I}_{0}+I_{2} I_{1} \bar{I}_{0}+I_{2} I_{1} I_{0}$
Applying the distributive law, product terms $I_{2} I_{1} I_{0}$ and $I_{2} I_{1} T_{0}$ can be expressed as $I_{2} I_{1}\left(I_{0}+\bar{I}_{0}\right)$. By the law of complement, $I_{0}+T_{0}=1$ and the entire expression is reduced to:

$$
F_{1}=T_{2} T_{1} T_{0}+I_{2} I_{1}
$$

## PRODUCT TERM SHARING

REALIZE: $\quad F_{1}=T_{2} T_{1} T_{0}+T_{2} I_{1} T_{0}$

$$
F_{2}=T_{2} I_{1} T_{0}+I_{2} T_{1} T_{0}
$$

Since $T_{2} I_{1} T_{0}$ is common to both $F_{1}$ and $F_{2}$, it may be shared so that only three product terms, rather than four, are required.

## ACTIVE LEVEL INVERSION

REALIZE: $\quad F_{1}=T_{2} T_{1} T_{0}+T_{2} I_{1} I_{0}+I_{2} T_{1} I_{0}+I_{2} I_{1}$
To achieve a reduction in product terms, in this case, $\mathrm{F}_{1}$ can be realized in its complement form using DeMorgan's Theorems. The true form required a HIGH active level and 4 product terms. The complement form requires a LOW active level and 3 product terms.

$$
\bar{F}_{1}=\bar{I}_{2} \bar{I}_{1} \prime_{0}+\bar{I}_{2} I_{1} \bar{I}_{0}+I_{2} \bar{I}_{1} \bar{I}_{0}
$$

## EDIT FLEXIBILITY

## PRODUCT TERM DEACTIVATION

The true or the complement of any input may be connected to the AND gates by programming. However, if both the true and the complement of any variable are programmed in a product term, that product term will never be selected since $I_{i} \cdot \bar{T}_{i}=0$. This feature may be used to deactivate permanently any previously programmed product term.

## ADDITION OF NEW INPUT VARIABLES TO EXISTING PRODUCT TERMS

In the AIM technology only the active inputs are pregrammed. Unprogrammed inputs are "don't care." Therefore, additional input variables can be added to the "old". product terms at any time. For example,
Old Product Term

$$
I_{0} I_{1} \bar{I}_{4}\left(I_{2}, I_{3}, I_{5} \cdots I_{13}=\text { don't care }\right)
$$

Adding input variable $\mathrm{I}_{2}$ (true or complement) to the product term would yield:

New Product Term

$$
I_{0} I_{1} I_{2} I_{4}\left(I_{3}, I_{5} \cdots I_{13}=\text { don't care }\right)
$$

## EXPANDING A SUM OF PRODUCT TERMS BY ADDING NEW PRODUCT TERMS

New product terms may be added to the sum of product terms at any output by programming the AIM element that connects the product term AND gate to the output thereby enabling activation of the output when the product term is activated. The product term may be one already used in another output sum of product terms or it may be one that has not previously been used.

## CHANGING AN OUTPUT ACTIVE LEVEL FROM LOW TO HIGH

Any outputs that are active LOW can be changed to active HIGH by programming the corresponding AIM element in the OUTPUT ACTIVE LEVEL ARRAY.

## PROGRAMMING

## GENERAL

Recommended Programmer is DATA I/O model 10. Programming an IM5200 requires:

1. Two input pins, $I_{0}$ and $I_{9}$ corresponding to pins 21 and 7, respectively, to be forced to a voltage above normal TTL operating levels to establish the programming mode.
2. One input pin, $\mathrm{I}_{3}$ corresponding to pin 1 , to be switched between a high level and ground to select between the Summing Array (OR Array) or the Product Term Array (AND Array), respectively.:

OUTPUT	PIN	SECTOR	LOCATION
$\mathrm{F}_{0}$	13	1	$0-15$Product Terms;   AND/OR Arrays   $\mathrm{F}_{1}$   $\mathrm{~F}_{2}$ 14
15	2	$16-31$Product Terms;   AND/OR Arrays   $\mathrm{F}_{3}$ 16	4

3. Four outputs, $F_{0}, F_{1}, F_{2}$, and $F_{3}$ corresponding to pins $13,14,15$, and 16 , respectively, for the routing of current into one of four sectors of the arrays.
4. Nine inputs, $I_{4}, I_{5}, I_{6}, I_{7}, I_{8}, I_{10}, I_{11}, I_{12}$, and $I_{13}$ corresponding to pins $2,3,4,5,6,8,9,10$, and 11 , respectively, to select a unique element within a sector.

Inputs $I_{1}$ and $I_{2}$, corresponding to pins 22 and 23 , are used to enable testing of propagation delay, programming circuitry decoding and output low level characteristics before programming.

Programming current pulses are forced into the output pin, corresponding to a particular sector and routed to the element selected for programming. The elements are sensed at a reduced current level after each programming pulse to determine if programming has occurred.

After all necessary elements are programmed, the array is reverified by scanning the array and resensing all elements directly. Finally, a logical verification is conducted forcing all $2^{14}$ input states and checking the eight outputs for the correct logic levels.

EFFECTS OF PROGRAMMING (P) OR NOT PROGRAMMING (NP)
AN ELEMENT IN EACH OF THE tHREE ARRAYS

Output Active Level Array

AL	EFFECT ON AN OUTPUT
NP	Output active level will be a LOW for all product   terms programmed to the output.
$P$	Output active level will be a HIGH for all product   terms programmed to the output.

## Product Term Array

$I_{k}$	$\bar{T}_{k}$	EFFECT ON A PRODUCT TERM
NP	NP	The logic state of the input cannot effect the   product term. It is a "don't care" input.
NP	$P$	Low input becomes an active variable in the   product term.
$P$	NP	High input becomes an active variable in the   product term.
$P$	$P$	Disables the product term, preventing the   product term from ever activating any out-   put.

址

## DATA FORMATS FOR PROGRAMMING

PT $_{\mathbf{j}}$	EFFECT ON AN OUTPUT
NP	Output is isolated from the product term unless   programmed. Therefore, activation of the pro-   duct term can not affect the output.
$P$	Activation of the product term will force the out-   put to its active level.

Intersil Inc. can program the IM5200 from data inputs consisting of a truth table, or paper tape. Format specifics follow. If TWX data inputting is used, TWX 910-338-0171. If mailing data input, mail to:

INTERSIL, INCORPORATED<br>ATTEN: ORDER ENTRY<br>10710 N. Tantau Avenue<br>Cupertino, CA 95014

FORMAT INFORMATION SUMMARY

	HAND ENTRY IN TRUTH TABLE FORM	TWX - RCVD AS HARD COPY OR PAPER TAPE	PAPER TAPE
Heading Information	Enter at top of the form as indicated	Enter as per example preceding start of data (STX). The asterisk (*) character may not be used in any heading information	Enter as per example preceding the start of data (STX). The asterisk (") character may not be used in any heading information
Start of Data :	Not required	STX (Control B)	STX (Control B)
Active Level Data Identifier	Not required	*A	*A
Active Level Data Entry	$\mathrm{H}=$ High active level   $\mathrm{L}=$ Low active level	$\mathrm{H}=$ High active tevel   $L=$ Low active level	$\mathrm{H}=$ High active level   $\mathrm{L}=$ Low active level
Product Term Number Identifier	Not required	*P	*P
Product Term Number Entry	Preprinted	$\begin{aligned} & \text { MSD }=\text { Decimal } 0.4 \\ & \text { LSD }=\text { Decimal } 0.9 \end{aligned}$	$\begin{aligned} & \text { MSD }=\text { Decimal } 0.4 \\ & \text { LSD }=\text { Decimal } 0.9 \end{aligned}$
Product Term Input Data Identifier	Not required	* 1	*1
Product Term Input Data Entry	H $=$ Active high input   L $=$ Active low input   BLANK $=$ Don't care input	$\mathrm{H}=$ Active high input   L = Active low input   - = Don't care input	$\begin{aligned} & H=\text { Active high input } \\ & L=\text { Active low input } \\ & -=\text { Don't care input } \end{aligned}$
Summing Data Identifier	Not required	* F	*F
Summing Data Entry	A $\quad=$Product term   is summed by      this output    BLANK $=$ Product term   is not summed   by this output	$A=$ Product term is summed by this output   $-=$ Product term is not summed by this output	$\left\{\begin{aligned} & A= \text { Product term is } \\ & \text { summed by this } \\ & \text { output } \\ &-= \text { Product term is } \\ & \text { not summed by } \\ & \text { this output } \end{aligned}\right.$
End of Data	Not required	ETX (Control C)	ETX (Control C)
Deactivating a Product Term	Enter D as any input entry for a product term to be deactivated	Enter $D$ as any input entry for a product term to be deactivated	Enter D as any input entry for a product term to be deactivated
Spacing, Carriage   Returns, Line Feeds	Not applicable	As needed to give an easily readable appearance in teletype printed form   See TWX description for recommended format	Not required unless examination by printout on a teletype is desirable   See Paper Tape description for recommended format
Rubouts	Not applicable	May be used to correct errors	May be used to correct errors

## TRUTH TABLES

Truth tables can be submitted to Intersil Inc. by mail or by TWX (910-338-0171). A truth table format for mailing is presented as a part of this data sheet. Additional copies of this format are available upon request. The customer should complete all heading information on the format in order to
assure that it will remain as a part of the purchase order which is entered.
When entering a truth table by TWX, the following format is recommended so that the data is compatible with the paper tape format. The TWX can, therefore, be received in punched paper tape form for direct processing by a programmer equipped with a paper tape reader input.

## TWX FORMAT

A TTEN ORDER ENTRY

PO NUMBEH 7-706574
EILL TO ERADY ELECTKONICS INC 1074 SIXIH ST SYKACUSE NY 13206

SHIF TF EFADY ELECTKONICS INC
764 EAST CAKLION
SYFACUSE NY - 13806
TELE.(315) 463-5870

TWX 910-377-6402

EUYEK HANK FENONE

SHIP AIF EXPFESS
ITEM 01 P/N 706475-001 12 FCS LELIVERY ASAF

TRUTH TABLE F/N 706475-001

START OF DATA


## EXPLANATION OF NUMBERS

(1) STX "CONTROL B" ON TELETYPEWRITER
(2) ${ }^{*} A=A C T I V E ~ L E V E L D A T A ~ I D E N T I F I E R ~$ CHARACTERS
(6) ${ }^{*}$ I = PRODUCT TERM INPUT DATA IDENTIFIER CHARACTERS
(7.) PRODUCT TERM INPUT DATA (H, L, D OR -)
(3) ACTIVE LEVEL DATA (H OR L)
(4) ${ }^{*} \mathrm{P}=\mathrm{PRODUCT}$ TERM NUMBER IDENTIFIER CHARACTERS
(5) PRODUCT TERM NUMBER
(8) ${ }^{*} F=$ SUMMING DATA IDENTIFIER CHARACTERS
(9) SUMMING DATA (A OR -)
(10) ETX = "CONTROL C"' ON TELETYPEWRITER

## TAPE FORMAT



## PAPER TAPE

Teletype 8 level TWX tape can be mailed to Intersil, Inc., Attention: Order Entry. Heading information similar to that used for the TWX truth table format presented above, should be punched on the tape.

The recommended format for the data portion of a paper tape is shown above. Deviations in spacing, carriage returns, line feeds and rubouts are allowed but the start and end characters, the data identifiers, the data characters and the order of data must be strictly followed.

## APPLICATIONS

## CODE CONVERSION

The IM5200 can be used efficiently in code conversion applications where all possible combinations of a particular code are not used. The conversion from 12 level Hollerith to 8 level ASCII provides such an example. In the standard solution to this problem, the 12 level Hollerith code is first reduced to 8 levels, with logic, before it is presented to a $256 \times 8$ ROM. All non-existing input combinations must be decoded as "don't care" output states in the ROM.

The IM5200 can selectively decode 14 input variables; no precoding of the inputs is necessary. With the proper selection of output active levels, an invalid input combination will also automatically produce a unique "don't care" or error code.

## MICROPROGRAMMIN̄G

In a microprogrammed computer, the microinstructions control the correct sequencing of the Central Processor Unit to execute appropriate macroinstructions. The microinstructions reside in the microprogram store. The addresses of the microroutine in the control store, which interpret external instructions, are the operation codes of the external instructions. Since the operation codes of various instructions in a processor may be of different lengths, some codes may have more bits than are necessary to address the control store. For example, a 16 -bit microprocessor may have operation codes up to 16 bits long. However, the microprocessor store may have only 256 words of memory.

The IM5200 can be conveniently used to translate an arbitrary operation code to obtain the proper control store address. The IM5200 can also be used in the control store to minimize the size of the microprogram memory by utilizing the unique capability of the device to cope with special address combinations - "don't care" bits in addresses, a single address for multiple words and multiple addresses for single words.

## SEQUENTIAL CONTROL

The IM5200 can be used effectively in sequencing applications to implement flow charts of state diagrams, condition driven look up tables or arbitrary state sequencers. The IM5200 input set could come from external control points ("qualifying inputs") or the IM5200 outputs coupled through feed-back latches ("current state inputs").

## PERIPHERAL DEVICE CONTROL

For a Central Processor Unit to communicate with a peripheral device, the CPU .must select the device and the mode of communication. During an Input-Output instruction, the CPU transmits the device address and control information to select a unique device in a specified mode. The IM5200 can be used to monitor the device address and control field bus to issue appropriate control signals to the devices.

## PRIORITY ENCODING

An interesting application of the IM5200 is the priority encoding of interrupt request lines to generate a unique vector address which corresponds to the highest priority request line. The CPU can then use the vector address as a JUMP address to service the highest priority device without going through a software "polling" routine.

## EXPANSION OF THE NUMBER PRODUCT TERMS BY WIRE-ANDING

The IM5200 can implement several simple functions by using only part of the structure for each function. Complex functions can be implemented by connecting several IM5200's in series or parallel.

The IM5200 has passive pull-up (4K) outputs. This output configuration is useful for product term expansion by wire-ANDing the outputs of different IM5200's. For EPLA applications, expansion by wire-ANDing is preferrable to the conventional chip select approach, since in many applications, it is difficult to generate the chip select signal, in view of the fact that "chip select" decision may itself be based on a random combination of the input variables.

Active LOW is the necessary active state for the outputs that must be wire-ANDed. It must be noted that the fan-out of the wire-ANDed outputs is reduced by approximately one standard TTL load for each IM5200 output that is tied together.

COMPANY   ADDRESS				DATE   CUSTOMER P.O. No.	Page	of		IM5200   TRUTH TABLE									
				CUSTOMER P.O. No.													
,					CUSTOMER PRINT OR I.D. No.												
PHONE					ACTIVE LEVEL DATA												
					$F_{7}$	$\mathrm{F}_{6}$	$\mathrm{F}_{5}$	$\mathrm{F}_{4}$	$F_{3}$	$F_{2}$	$F_{1}$	$\mathrm{F}_{0}$					
tive Level tive Level	PRODUCT TERM INPUT DATA	H = Active High Input   L = Active Low Input   Blank $=$ Don't Care Input	$\left\lvert\, \begin{gathered} \text { SUMMING } \\ \text { DATA } \end{gathered}\right.$	A = Product Term is Summed by This Output Blank - Product Term is Not Summed by this Output													


	PRODUCT TERM INPUT DATA														SUMMING DATA							
	113	112	111	110	19	18	17	16	15	14	13	12	11	$\mathrm{I}_{0}$	$F_{7}$	$\mathrm{F}_{6}$	F5	$\mathrm{F}_{4}$	F3	$F_{2}$	$\mathrm{F}_{1}$	$\mathrm{F}_{0}$
	1	P1N	PIN	PIN	$\xrightarrow{\text { PIN }}$	$\underset{\sim}{\text { PIN }}$	PIN	${ }_{\text {PIN }}$	${ }_{3}{ }_{3}$	PIN	1	P1N	P1N	PIN	P1N	P1N	P1N	PIN	PIN 16	P1N	PIN	$\underset{ }{\text { PIN }} 13$
0																						
1																						
2																						
3																						
4																-						
5																						-
6									.													
7	-														.							
8																						
9																						
10																						
11																						
12																						
13																				,		
14																						
15																						
16							-															
17																						
18		$\therefore$																				
19																						
20																						
21																						
22															"			$\cdot$				
23		,																				


															- ACTIVE LEVEL DATA							
															$F_{7}$	$\mathrm{F}_{6}$	$\mathrm{F}_{5}$	$\mathrm{F}_{4}$	$\mathrm{F}_{3}$	$F_{2}$	$\mathrm{F}_{1}{ }^{\text {. }}$	$\mathrm{F}_{0}$
active LEVEL DATA		H = High Active Leve!   L = Low Active Level			PRODUCT TERM INPUT DATA		H = Active High Input   L = Active Low Input   Blank $=$ Dan't Care Input			SUMMINGDATA		A = Product Term is Summed by This Output Blank - Product Term is Not Summed by this Output					.	-	$\cdots$			
	PRODUCT TERM INPUT DATA														SUMMING DATA							
	113	112	111	110	I9	18	17	${ }^{1} 6$	15	14	13	12	$l_{1}$	$\mathrm{I}_{0}$	$F_{7}$	$\mathrm{F}_{6}$	$\begin{gathered} \mathrm{F}_{5} \\ \hline \text { PIN } \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}_{4} \\ \mathrm{PIN} \\ 17 \end{gathered}$	$\begin{gathered} \mathrm{F}_{3} \\ \hline \text { PIN } \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} \hline F_{2} \\ \hline \text { PIN } \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}_{1} \\ \hline \text { PIN } \\ 14 \\ \hline \end{gathered}$	Fo   PIN   13
	PIN 11	PIN 10	$\begin{gathered} \hline \text { PIN } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { PIN } \\ 6 \end{gathered}$	$\begin{gathered} \text { PIN } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { PIN } \\ 4 \end{gathered}$	PIN 3	$\begin{gathered} \hline \text { PIN } \\ 2 \end{gathered}$	$\begin{gathered} \text { PIN } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 21 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { PIN } \\ 20 \\ \hline \end{array}$	$\begin{gathered} \hline \text { PIN } \\ 19 \\ \hline \end{gathered}$						
24														-								
25	.																					
26												.						.				
27						.																
28		,							,				-									
29																						
30								,									1					
31								.	.					,								
32													,							.		.
33									.												.	,
34				$\because$								.			.							
35	,			.																		
36									.													
37										-				,				.				
38																			-			
39												.		$\checkmark$	.							
40										.							-	$\cdot$				
41																						
42				.						.								.				
43							.						.									
44					,																	
45					.																	
46		.						,						-		,	1					
47							.				,											

## FEATURES

- Uses Patented AIM Programming Element for
- Superior Reliability
- High Programming Yield
- Fast'Programming Speed $<1$ sec
- TTL Processing Compatibility
- Low Power Consumption 1.5 mW/bit
- Operating Speed
- Address to Output - 50nS
- Chip Enable to Output - 40 ns
- Large Output Drive - $16 \mathrm{~mA} @ 0.45 \mathrm{~V}$
- TTL Compatible Inputs \& Outputs
- Two Output Designs
- 5600 Open Collector
- 5610 Active Pull-up
- Chip Enable Facilitates Memory Expansion and Use in Bus Organized Systems


## APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits
- Character Generation


## CONNECTION DIAGRAM


(outline dwgs JE, PE)
ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMPERATURE RANGE	ORDER   NUMBER
IM5600	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial   $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5600CFE IM5600MFE*
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$;	IM5600CPE
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial   $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5600CJE IM5600MJE*
IM5610	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial   $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5610CFE IM5610MFE*
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	IM5610CPE
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	$\begin{aligned} & \text { IM5610CJE } \\ & \text { IM5610MJE* } \end{aligned}$

[^24]ORD

## GENERAL DESCRIPTION

The Intersil IM5600 and IM5610 are high speed, electrically programmable, fully decoded, bipolar 256 bit read only memories organized as 32 words by 8 bits. On-chip address decoding, chip enable input and uncomitted collector or three-statte outputs provide for simplified memory expansion and use in bus organized systems.
Unprogrammed AIM elements are sensed as ZERO's or low logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's or high logic levels.
The following companies make programmers approved by Intersil:

1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash. 98009
2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR PROM PROGRAMMING SPECIFICATION Data Sheet.

## BLOCK DIAGRAM



## TRUTH TABLE

ADDRESS INPUTS   $\mathbf{A O}_{\mathbf{0}}-\mathbf{A}_{4}$	$\overline{\mathrm{CE}}$	ANY OUTPUT   $\mathrm{O}_{1}-\mathbf{O}_{8}$
Any one of 32   possible addresses.	L	H -if the bit uniquely associated with   this output and address has been   electrically programmed.   L-if it has not been programmed.
Any one of 32   possible addresses.	H	All outputs are forced to a high im-   pedance state regardless of the   address.

ロNInPR

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	7.0V
Input Voltage Applied	-1.5 V to +5.5 V
Output Voltage Applied	-0.5 V to +V cc
Output Voltage Applied (Programming Only)	28 V
Current Into Output (Programming Only)	210 mA
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range*	
(IM5600C and IM5610C) .	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
(IM5600M and IM5610M)	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*Operating temperature is defined as ambient temperature for the DIP and case temperature for the flatpack. Case temperature is measured directly below the die.

## DC CHARACTERISTICS

SYMBOL	CHARACTERISTICS	LIMITS$\begin{aligned} & \text { VCC }=\mathbf{5 . 0 V} \pm 5 \% \\ & \mathbf{T}=0^{\circ} \mathrm{C} \text { to }+\mathbf{7 5} 5^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \text { LIMITS } \\ \text { VCC }=5.0 \mathrm{~V} \pm 10 \% \\ T=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
Ifa	Address Input Load Current		-0.63	-1.0	-	-0.63	-1.0	$\mathrm{mA}$	$\mathrm{V}_{\mathrm{A}}=0.4 \mathrm{~V}$
Ife	Chip Enable Input Load Current		-0.63	-1.0		-0.63	-1.0		$\overline{\mathrm{VEE}}=0.4 \mathrm{~V}$
IRA	Address Input Leakage Current		5.0	40		5.0	60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{A}}=4.5 \mathrm{~V}$
Ire	Chip Enable Input Leakage Current	$\cdots$	5.0	40		5.0	60		$\overline{\mathrm{VEE}}=4.5 \mathrm{~V}$
VOL	Output Low Voltage		0.3	0.45		0.3	0.45	V	$\begin{aligned} & \mathrm{lOL}=16 \mathrm{~mA} \\ & \mathrm{VCE}=0.4 \mathrm{~V} \\ & \mathrm{O}^{\prime} \text { bit is addressed. } \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			0.8			0.8		
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0			2.0				
Vc	Input Clamp Voltage		-0.9	-1.5		-0.9	-1.5		IIN $=-10 \mathrm{~mA}$
BVIN	Input Breakdown Voltage	5.5	6.5		5.5	6.5			$\mathrm{IIN}=1.0 \mathrm{~mA}$
ICC	Power Supply Current		75	100		75	100	mA	Inputs Either Open or at Ground
lo (High R State)	Output Leakage Current		$<1.0$	40		$<1.0$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=2.4 \mathrm{~V}$
Io (High R State)	Output Leakage Current		$<-1.0$	-40		$<-1.0$	-100		$\mathrm{V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=2.4 \mathrm{~V}$
Cin	Input Capacitance		5.0			5.0			$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$
Cout	Output Capacitance		7.0			7.0		pF.	$\mathrm{V}_{0}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V}$

The following are guaranteed characteristics of the output high level state when the chip is enabled $(\overline{\mathrm{CE}}=0.4 \mathrm{~V})$ and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

lolk	Output Leakage Current		<1.0	100		$<1.0$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE}}=0.4 \mathrm{~V}$
VOH (IM5610)	Output High Voltage	2.4	3.2		2.4	3.2	-	V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$ (IM5610M) $\mathrm{IOH}=-2.4 \mathrm{~mA}$   (IM5610C)
Isc (IM5610)	Output Short Circuit	-15	-30	-60	-15	-30	-60	mA	$\mathrm{V}_{0}=0 \mathrm{~V}$

NOTE 1: Typical characteristics are for $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTIC	$\begin{gathered} \text { LIMITS } \\ V_{C C}=5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \end{gathered}$		LIMITSVCC $=5 \mathrm{~V} \pm 5 \%$$\mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		LIMITSVCC $^{2}=5 \mathrm{~V} \pm 10 \%$$\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{aa}}$	Address Access Time	20	50	20	65	20	75	ns
$\mathrm{t}_{\text {dis }}$	Output Disable Time*	10	40	10	50	10	60	
$\mathrm{t}_{\text {en }}$	Output Enable Time*	5	40	5	50	5	60	

* Output disable time is the time taken for the output to reach a high resistance state when the chip enable is taken high. Output enable time is the time taken for the output to become active when the chip enable is taken low. The high resistance state is defined as a point on the output waveform equal to a $\Delta \mathrm{V}$ of 0.5 V from the active output level.


## SWITCHING WAVEFORMS



FIGURE 1: Access Time Via Address Input


IM5600


IM5610


FIGURE 2: Output Disable And Enable Time

FIGURE 3: Output Stage Schematics

## SWITCHING TIME TEST CONDITIONS



FIGURE 4: Output Load Circuit

SWITCHING	IM5600			IM5610		
PARAMETER	$\mathbf{R}_{1}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C}_{\mathrm{L}}$	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C}_{\mathrm{L}}$
$\mathrm{t}_{\text {aa }}$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF
$\mathbf{t}_{\text {dis }}{ }^{\prime} \mathbf{1}^{\prime}$	$\infty$	$3.3 \mathrm{~K} \Omega$	10 pF	$\infty$	$600 \Omega$	10 pF
$\mathbf{t}_{\text {dis }} \mathbf{0}^{\prime}$	$300 \Omega$	$600 \Omega$	10 pF	$300 \Omega$	$600 \Omega$	10 pF
$\mathrm{t}_{\text {en }} \mathbf{' 1}^{\prime}$	$\infty$	$3.3 \mathrm{~K} \Omega$	30 pF	$\infty$	$600 \Omega \Omega$	30 pF
$\mathbf{t}_{\text {en }} \mathbf{0}^{\prime}$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF

## INPUT CONDITIONS

Amplitude - 0 V to 3 V
Rise and Fall Time - 5 ns From 1 V to 2 V
Frequency -1 MHz

# Electrically Programmable 1024 Bit Bipolar Read Only Memory 

## FEATURES

- Uses Patented AIM Programming Element for
- Superior Reliability
- High Programming Yield
- Fast Programming Speed < 1 sec
' - TTL Processing Compatibility
- Low Power Consumption $439 \mu \mathbf{W} /$ bit
- Operating Speed
- Address to Output - 60ns
- Chip Enable to Output - 35nS
- Large Output Drive - $16 \mathrm{~mA} @ 0.45 \mathrm{~V}$
- TTL Compatible Inputs \& Outputs
- Two Output Designs
- 5603 Open Collector
- 5623 Active Pull-up
- Chip Enables Facilitate Memory Expansion and Use in Bus Organized Systems


## APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits
- Character Generation


## GENERAL DESCRIPTION

The Intersil IM5603 and IM5623 are high speed, electrically programmable, fully decoded, bipolar 1024 bit read only memories organized as 256 words by 4 bits. On-chip address decoding, chip enable inputs and uncomitted collector or three-state outputs provide for simplified memory expansion and use in bus organized systems.
' Unprogrammed AIM elements are sensed as ZERO's or low logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's or high logic levels.
The following companies make programmers approved by Intersil:

1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash. 98009
2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR, PROM PROGRAMMING SPECIFICATION Data Sheet.

## PIN CONFIGURATION



TOP VIEW
(outline dwgs JE, PE, flatpak outline dwg FE)

## BLOCK DIAGRAM



## ORDERING INFORMATION

PART NUMBER	PACKAGE	TĖMPERATURE RANGE	ORDER NUMBER
IM5603	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5603CFE IM5603MFE*
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	IM5603CPE
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial   $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5603CJE IM5603MJE*
IM5623	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5623CFE IM5623MFE*
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	IM5623CPE
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	$\begin{aligned} & \text { IM5623CJE } \\ & \text { IM5623MJE* } \end{aligned}$

* If 883 B processing is desired add $/ 883 \mathrm{~B}$ to order number.


## TRUTH TABLE

ADDRESS INPUTS $\mathrm{A}_{0}-\mathrm{A}_{7}$	CHIP ENABLE INPUTS		$\begin{gathered} \text { ANY OUTPUT } \\ \mathrm{O}_{1}-\mathrm{O}_{4} \end{gathered}$
	$\overline{\mathrm{CE}} 1$.	$\overline{C E}{ }_{2}$	
Any one of 256 possible addresses	- L	L	H -if the bit uniquely associated with this output and address has been electrically programmed.   L -if it has not been programmed.
Any one of 256 possible addresses	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	All outputs are forced to a high impedance state regardless of address.
X = Don't Care			

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ............................................................................... +7.0 V
Input Voltage Applied -1.5 V to 5.5 V
Output Voltage Applied ......................................................... -0.5 V to + Vcc
Output Voltage Applied (Programming Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 V
Current Into Output (Programming Only) ............................................ 210 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range*
(IM5603C and IM5623C) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
(IM5603M and IM5623M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
*Operating temperature is defined as ambient temperature for the DIP and case temperature for flatpack. Case temperature is measured directly below the die.

## DC CHARACTERISTICS

SYMBOL	CHARACTERISTICS	LIMITS$\begin{aligned} & V C C=5.0 \mathrm{~V} \pm 5 \% \\ & \mathbf{T}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			LIMITS$\begin{gathered} \text { VCC }=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
Ifa	Address Input Load Current		0.63	-1.0		-0.63	-1.0	mA'	$\mathrm{V}_{\mathrm{A}}=0.4 \mathrm{~V}$
Ife	Chip Enable Input Load Current		-0.63	-1.0		-0.63	-1.0		$V_{C E}=0.4 \mathrm{~V}$
IRA	Address Input Leakage Current		5	40		5	60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{A}}=4.5 \mathrm{~V}$
Ire	Chip Enable Input Leakage Current		5	40		5	60		$V_{C E}=4.5 \mathrm{~V}$
VoL	Output Low Voltage	,	0.3	0.45		0.3	0.45	V	$\begin{aligned} & \mathrm{IOL}=16 \mathrm{~mA}, \\ & \mathrm{~V} \overline{\mathrm{CE} 1}=\mathrm{V} \overline{\mathrm{CE} 2}=0.4 \mathrm{~V} \\ & \mathrm{O}^{\prime} \text { bit is addressed. } \end{aligned}$
VIL	Input Low Voltage			0.8			0.8		
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0			2.0				
$\mathrm{V}_{\mathrm{C}}$	Input Clamp Voltage		-0.9	-1.5		-0.9	-1.5		$\mathrm{l}_{\mathrm{I}}=-10 \mathrm{~mA}$
BVIN	Input Breakdown Voltage	5.5	6.5		5.5	6.5			$\mathrm{IIN}_{\mathrm{N}}=1.0 \mathrm{~mA}$
Icc	Power Supply Current		90	130		90	130	mA	Inputs Either Open or at Ground
Io (High R State)	Output Leakage Current		$<1$	40		$<1$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}$, VCE1 or
Io (High R State)	Output Leakage Current		$<-1$	-40		<-1	-100		$\mathrm{V}_{0}=0.4 \mathrm{~V} \quad \mathrm{~V}_{\overline{\mathrm{CE} 2}}=2.4 \mathrm{~V}$
Cin	Input Capacitance		5			5		pF	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$
Cout	Output Capacitance		7			7			$\mathrm{V}_{0}=2.0 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$

The following are guaranteed characteristics of the output high level state when the chip is enabled ( $\overline{\mathrm{CE}} \mathbf{1}$ and $\overline{\mathrm{CE} 2}=0.4 \mathrm{~V}$ ) and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

IOLK	Output Leakage Current		$<1$	100		$<1$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}$
VOH (IM5603)	Output High Voltage	2.4	3.3		2.4	3.3			$\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOH (IM5623)	Output High .Voltage	2.4	3.2		2.4	3.2		V	$\begin{aligned} & \mathrm{IOH}=-2.4 \mathrm{~mA} \\ & \mathrm{I} \mathrm{M} 5623 \mathrm{C}) \\ & \mathrm{IOH}=-1.0 \mathrm{~mA} \\ & \mathrm{I} \mathrm{M} 5623 \mathrm{M}) \end{aligned}$
Isc ${ }_{i}$ (IM5603)	Output Short Circuit Current	-1.0	-3.0	-6.0	-1.0	-3.0	-6.0		$\mathrm{V}_{0}=0 \mathrm{~V}$
Isc (IM5623)	Output Short Circuit Current	-15	-30	-60	-.15	-30	-60		$\mathrm{V}_{0}=0 \mathrm{~V}$

NOTE: Typical characteristics are for $\mathrm{V}_{C C}=5.0 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTICS	$\begin{gathered} \text { LIMITS } \\ \mathbf{V C C}_{\mathrm{CC}}=\mathbf{5 . 0 V} \\ \mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { VCC }^{=}=\mathbf{5 . 0 V} \pm 5 \% \\ \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { V }_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{taa}^{\text {a }}$	Access Time (Via Address Inputs) (See Figure 1)	20	60	20	70	20	80	
$\mathrm{t}_{\text {dis }}$	Output Disable Time* (See Figure 2)	10	35	10.	50	10	60	ns
$\mathrm{t}_{\text {en }}$	Output Enable Time* (See Figure 2)	5	35	5	50	5	60	

*NOTE: Output disable time is the time taken for the output to reach a high resistance state when either chip enable is taken high. Output enable time is the time taken for the output to become active when both chip enables are taken low. The high resistance state is defined as a point on the output waveform equal to a $\Delta \mathrm{V}$ of 0.5 V from the active output level.

## SWITCHING WAVEFORMS



FIGURE 1: Access Time Via Address Inputs


FIGURE 2: Output Enable And Disable Times

SWITCHING TIME TEST CONDITIONS


SWITCHING	IM5603			IM5623		
PARAMETER	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C L}_{\mathrm{L}}$	$\mathbf{R}_{1}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{C}_{\mathrm{L}}$
$\mathrm{t}_{\mathbf{a a}}$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF
$\mathrm{t}_{\text {dis }}{ }^{\prime} \mathbf{1}^{\prime}$	$\infty$	$3.3 \mathrm{~K} \Omega$	10 pF	$\infty$	$600 \Omega$	10 pF
$\mathrm{t}_{\text {dis }} \mathbf{0}^{\prime}$	$300 \Omega$	$600 \Omega$	10 pF	$300 \Omega$	$600 \Omega$	10 pF
$\mathrm{t}_{\text {en }}{ }^{\prime} \mathbf{1}^{\prime}$	$\infty$	$3.3 \mathrm{~K} \Omega$	30 pF	$\infty$	$600 \Omega$	30 pF
$\mathrm{t}_{\text {en }} \mathbf{0}^{\prime}$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF

FIGURE 3: Output Load Circuit

## INPUT CONDITIONS

Amplitude - OV to 3 V
Rise and Fall Time - 5 ns From 1V to 2 V
Frequency - 1 MHz

## TYPICAL SWITCHING CHARACTERISTICS



IM5623 ADDRESS TO OUTPUT ACCESS DELAY ( $\mathrm{t}_{\mathrm{A} A}$ ) VS TEMPERATURE


TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ )


IM5623 CHIP ENABLE TO OUTPUT ACCESS DELAY (tEN) VS TEMPERATURE


- IM5603 CHIP ENABLE TO OUTPUT DISABLE TIME DELAY (tDIS) VS TEMPERATURE


IM5623 CHIP ENABLE TO OUTPUT DISABLE TIME DELAY (tDIS) VS TEMPERATURE


TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ )

## IM5603 DELAY <br> INCREASE WITH LOAD <br> CAPACITANCE

## IM5623 DELAY INCREASE WITH LOAD CAPACITANCE



LOAD CAPACITANCE (pF)


LOAD CAPACITANCE (pF)

IM5603 OUTPUT LOW CURRENT (Iol) VS OUTPUT LOW VOLTAGE (VOL)


OUTPUT LOW VOLTAGE (mV)

IM5603 OUTPUT HIGH CURRENT (IOH) VS OUTPUT HIGH VOLTAGE (VOH)


OUTPUT HIGH VOLTAGE (V)

IM5603 ÓR IM5623 CHIP ENABLE INPUT CURRENT VS INPUT VOLTAGE


IM5623 OUTPUT LOW' CURRENT (IOL) VS OUTPUT LOW VOLTAGE (Vol)


IM5623 OUTPUT HIGH CURRENT (IOH) VS OUTPUT HIGH VOLTAGE (VOH)


OUTPUT HIGH VOLTAGE (V)

IM5603 OR IM5623 ADDRESS INPUT CURRENT VS INPUT VOLTAGE


INPUT VOLTAGE (V)

OUTPUT STAGE SCHEMATICS


IM5623


## FEATURES

- Uses Patented AIM Programming Element for - Superior Reliability
- High Programming Yield
- Fast-Programming Speed $<1$ sec
- TTL Processing Compatibility
- Low Power Consumption $244 \mu \mathbf{W} /$ bit
- Operating Speed
- Address to Output - 70ns
- Chip Enable to Output - 35 ns
- Large Output'Drive - $16 \mathrm{~mA} @ 0.45 \mathrm{~V}$
- TTL Compatible Inputs \& Outputs,
- Two Output Designs
- 5604 Open Collector
- 5624 Active Pull-up
- Chip Enable Facilitates Memory Expansion and Use in Bus Organized Systems


## APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits
- Character Generation


# IM5604/IM5624 2048 Bit Bipolar <br> Programmable Read Only Memory 

## GENERAL DESCRIPTION

The intersil IM5604 and IM5624 are high speed, electrically programmable, fully decoded, bipolar 2048 bit read only memories organized as 512 words by 4 bits. On-chip address decoding, chip enable inputs and uncomitted collector or three-state outputs provide for simplified memory expansion and use in bus organized systems.
Unprogrammed AIM elements are sensed as ZERO's or low. logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's or high logic levels.
The following companies make programmers approved by Intersil:

1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash. 98009
2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR PROM PROGRAMMING SPECIFICATION DATA SHEET.

## CONNECTION DIAGRAM


TOP VIEW
(outline dwgs JE, PE)

## ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMPERATURE RANGE	ORDER   NUMBER
IM5604	16 Pin Flatpack	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { Military } \end{gathered}$	IM5604CFE IM5604MFE*
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5604CJE IM5604MJE*
'	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75{ }^{\circ} \mathrm{C}$	IM5604CPE
IM5624	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5624CFE IM5624MFE*
	16 Pin Plastic DIP	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { Military } \end{gathered}$	IM5624CJE IM5610MJE*
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	IM5624CPE

[^25]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	
Input Voltage Applied	-1.5 V to +5.5 V
Output Voltage Applied	-0.5 V to +Vcc
Output Voltage Applied (Programming Only)	28 V
Current Into Output (Programming Only)	210 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range*	
(IM5604C and IM5624C)	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
(IM5604M and IM5624M)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*Operating temperature is defined as ambient temperature for the DIP and case temperature for the flatpack. Case temperature is measured directly below the die.

## DC CHARACTERISTICS

SYMBOL	CHARACTERISTICS	LIMITS$\begin{aligned} & \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \% \\ & \mathbf{T}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \text { LIMITS } \\ \text { V }=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
Ifa	Address Input Load Current		-0.63	-1.0		-0.63	-1.0	$\mathrm{mA}$	$\mathrm{V}_{\mathrm{A}}=0.4 \mathrm{~V}$
Ife	Chip Enable Input Load Current		-0.63	-1.0		-0.63	-1.0		$\mathrm{V} \overline{\mathrm{CE}}=0.4 \mathrm{~V}$
IRA	Address Input Leakage Current		5.0	40		5.0	60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{A}}=4.5 \mathrm{~V}$
Ire	Chip Enable Input Leakage Current		5.0	40		5.0	60		$\mathrm{V} \overline{\mathrm{CE}}=4.5 \mathrm{~V}$
VoL	Output Low Voltage		0.3	0.45	1	0.3	0.45	V	$\begin{aligned} & \hline \mathrm{IOL}=16 \mathrm{~mA} \\ & \mathrm{~V} \overline{\mathrm{CE}}=0.4 \mathrm{~V} \\ & \text { ' } \mathrm{O} \text { ' bit is addressed. } \end{aligned}$
VIL	Input Low Voltage			0.8			0.8		
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0			2.0				
$\mathrm{V}_{\mathrm{C}}$	Input Clamp Voltage		-0.9	-1.5		-0.9	-1.5		$1 \mathrm{~N}=-10 \mathrm{~mA}$
BVIN	Input Breakdown Voltage	5.5	6.5		5.5	6.5			$\mathrm{l} \mathrm{IN}=1.0 \mathrm{~mA}$
Icc	Power Supply Current		100	140		100	1,40	mA	Inputs Either Open or at Ground
10 (High R State)	Output Leakage Current		<1.0	40		$<1.0$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE}}=2.4 \mathrm{~V}$
lo (High R State)	Output Leakage Current		$<-1.0$	-40		<-1.0	-100		$\mathrm{V}_{0}=0.4 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE}}=2.4 \mathrm{~V}$
Cin	Input Capacitance		5.0			5.0			$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$
Cout	Output Capacitance		7.0			7.0		pF	$\mathrm{V}_{0}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V}$

The following are guaranteed characteristics of the output high level state when the chip is enabled $(\overline{\mathrm{CE}}=0.4 \mathrm{~V})$ and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

IOLK	Output Leakage Current		<1.0	100		<1,0	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE}}=0.4 \mathrm{~V}$
VOH (IM5604)	Output High Voltage	2.4	3.3		2.4	3.3			$\mathrm{l}_{0}=-0.4 \mathrm{~mA}$
$\mathrm{VOH}^{\text {(IM5624) }}$	Output High Voltage	2.4	3.2		2.4	3.2		V	$\begin{aligned} & \mathrm{IO}_{0}=-1.0 \mathrm{~mA} \\ & (\mathrm{IM} 5624 \mathrm{M}) \\ & \mathrm{I}_{0}=-2.4 \mathrm{~mA} \\ & (\mathrm{IM} 5624 \mathrm{C}) \end{aligned}$
- Isc (IM5604)	Output Short Circuit Current	-1.0	-3.0	-6.0	-1.0	-3.0	-6.0		$\mathrm{V}_{0}=0 \mathrm{~V}$
Isc (IM5624)	Output Short Circuit Current	-15	-30	-60	-15	-30	-60	mA	$\mathrm{V}_{0}=0 \mathrm{~V}$

NOTE: Typical characteristics are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTICS	$\begin{gathered} \text { LIMITS } \\ \mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { V } C \mathrm{CC}=5 \mathrm{~V} \pm 5 \% \\ \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { V }_{\mathrm{CC}}=\mathbf{5 V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{taa}^{\text {a }}$	Access Time (Via Address Inputs) (See Figure 1)	20	70	20	80	20	90	
$\mathrm{t}_{\text {dis }}$	Output Disable Time* (See Figure 2)	10	35	10	50	10	60	ns
$\mathrm{t}_{\text {en }}$	Output Enable Time* (See Figure 2)	5	35	5	50	5	60	

*NOTE: Output disable time is the time for the output to reach a high resistance state when either chip enable is taken high. Output enable time is the time taken for the output to become active when both chip enables are taken low. The high resistance state is defined as a point on the output waveform equal to a $\Delta \mathrm{V}$ of 0.5 V from the active output level.

## SWITCHING WAVEFORMS



FIGURE 1: Access Time Via Address Inputs


FIGURE 2: Output Enable And Disable Times

## SWITCHING TIME TEST CONDITIONS



SWITCHING	IM5604			IM5624		
PARAMETER	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C L}_{\mathrm{L}}$	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C}_{\mathrm{L}}$
$\mathrm{t}_{\mathrm{aa}}$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF
$\mathrm{t}_{\text {dis }}{ }^{\prime} 1^{\prime}$	$\infty$	$3.3 \mathrm{~K} \Omega$	10 pF	$\infty$	$600 \Omega$	10 pF
$\mathrm{t}_{\text {dis }} 0^{\prime}$	$300 \Omega$	$600 \Omega$	10 pF	$300 \Omega$	$600 \Omega$	10 pF
$\mathrm{t}_{\text {en }}{ }^{\prime} 1^{\prime}$	$\infty$	$3.3 \mathrm{~K} \Omega$	30 pF	$\infty$	$600 \Omega$	30 pF
$\mathrm{t}_{\text {en }}{ }^{\prime} 0^{\prime}$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF

FIGURE 3: Output Load Circuit

## INPUT CONDITIONS

TYPICAL DC CHARACTERISTICS

## IM5604 OUTPUT LOW CURRENT (Iol) VS OUTPUT LOW VOLTAGE (Vol)



OUTPUT LOW VOLTAGE (mV)

IM5604 OUTPUT HIGH CURRENT (Іон) VS OUTPUT HIGH VOLTAGE (VOH)


IM5604 OR IM5624 CHIP ENABLE INPUT CURRENT VS INPUT VOLTAGE


INPUT VOLTAGE (V)

IM5624 OUTPUT LOW CURRENT (Iol) VS OUTPUT LOW VOLTAGE (Vol)


OUTPUT LOW VOLTAGE (mV)

IM5624 OUTPUT HIGH CURRENT (IOh) VS OUTPUT HIGH VOLTAGE (VOH)


OUTPUT HIGH VOLTAGE (V)

IM5604 OR IM5624 ADDRESS INPUT CURRENT VS INPUT VOLTAGE


INPUT VOLTAGE (V)

## OUTPUT STAGE SCHEMATICS

## IM5604



IM5624


## PROGRAMMING PROCEDURES

1. Prior to beginning a programming cycle, the part to be grammed must be searched for previously programmed bits. This must be done to eliminate the risk of programming a part that has some bits not conforming to the pattern desired.
2. Programming is begun by addressing-the first word in the sequence, normally address ZERO, although satisfactory programming is not dependent on the word sequence or bit order used.
3. Disable the device by applying a normal TTL high logic level to any active low CE pin. Disabling the device forces the normal output circuitry to a high impedance condition so that it will not be affected by programming pulses applied through the output pins to the programming element array.
4. Sense the bit status by forcing 20 mA into the associated output pin and comparing the resultant voltage to the SENSE VOLTAGE.
5. If the bit is to be programmed, increase the 20 mA to 200 mA at the proper ramṕ rate ańd maintain 200 mA for $7.5 \mu \mathrm{~s}$. The constant current source must be clamped at 28 V .
6. Reduce the current from 200 to 20 mA and after $1 \mu \mathrm{~s}$ compare the resultant 20 mA voltage level to the SENSE VOLTAGE.
7. If the voltage is greater than the SENSE VOLTAGE the. current should be increased again to 200 mA for another $7.5 \mu \mathrm{~s}$. Generally, programming occurs on the first pulse, but repeated attempts are allowed up to an elapsed time of 100 ms .

## PROGRAMMING PARAMETER SPECIFICATIONS

The following specification details the necessary requirements for the correct programming of the IM56XX Series of AIM PROMs. Intersil will not accept responsibility for any
device found to be defective if it was not programmed according to these specifications.

PARAMETER	LIMITS			UNITS	CONDITIONS
	MIN	NOM	MAX		
Programming Current Pulse Amplitude	190	200	210	mA	Constant current to be supplied over a 10 to 28 V voltage range. Set the nominal value with a 100 2, 6W load @ 20V.
Voltage Clamp	27.5	28	28.5	Volts	Constant voltage clamp when sinking 130 to 210 mA . Adjust nominal level when sinking 200 mA .
Ramp Rate $\frac{\mathrm{dv}}{\mathrm{dt}}$ of Program Current Source	50	60	70	$\mathrm{V} / \mu \mathrm{s}$	Voltage ramp rate is measured by switching from 20 to 200 mA into a 100 ohm, 6 W resistor with the maximum voltage clamped at 28 V .
Pulse Width	7.0	7.5	8.0	$\mu \mathrm{S}$	Measured at 10 V when switching between 20 and 200 mA into a 100 ohm, 6W load resistor.
Duty Cycle	70	75	80	\%	Measured at 10 V when switching between 20 and 200 mA into a 100 ohm, 6 W load resistor.
Sense Current Amplitude	19.5	20.0	20.5	mA	Constant current source amplitude is adjusted for a nominal value of 20 mA into a $12 \mathrm{~V}, 400 \mathrm{~mW}$ zener diode load.
Ramp Rate $\frac{d v}{d t}$   Sense Current Source	50	60	70	$\mathrm{V} / \mu \mathrm{s}$	Voltage ramp rate is measured by switching from 0 to 20 mA into a 1.5 k ohm, 1 W resistor with the maximum voltage clamped at 28 V .
Sense Voltage Analog Comparator Reference Voltage 5600/10 Only	$\begin{array}{r}6.9 \\ \\ \hline 12.4\end{array}$	7.0	7.1 12.6	Volts Volts	An element is considered programmed when the voltage sensed at the appropriate output pin with 20 mA forçed through the element is less than the analog comparator reference voltage.
Min. delay from trailing edge of programming pulse before sensing	0.9	1.0	1.1	$\mu \mathrm{S}$	Measured from the 10 V level of the voltage pulse when switching from 200 to 20 mA into a 100 ohm, 6 W load resistor.
VCC	4.9	5.0	5.5	Volts	100 to 200 mA current range.
Programming Time Allocation/Bit	-	100	-	ms	Maximum time allowed to program a bit.
Extra Programming Pulses	-	4	-	Pulse	Absolute number of programming pulses to be issued after the bit output is first sensed as a programmed 'l'. This occurs when the sensed voltage is less than the comparator reference voltage.

## Bipolar PROM Programming Specification

## PROGRAMMING PROCEDURES (Continued)

8. If the voltage after a programming current pulse is less than the SENSE VOLTAGE, four additional programming pulses are applied with a sense after each pulse.
9. After the fourth extra pulse and correct sense, programming is complete. The 20 mA current pulse then is shut off and the address is changed to program the next bit.
10. Repeat steps 4 thru 9 until a successful programming and sense operation is performed at all address locations to be programmed.
11. After the programming cycle is complete, a logical verification must be performed. This is done by
cycling through all address locations with the chip enabled and testing the voltage level at each output under the appropriate current forcing conditions ( 20 mA for a low level and $100 \mu \mathrm{~A}$ for a high level). This cycle should be completed at both low and high Vcc.

## POST PROGRAMMING LOGICAL VERIFICATION

Both high ( $\mathrm{VOH}_{\mathrm{OH}}$ ) and low ( $\mathrm{V}_{\mathrm{OL}}$ ) logic levels on all outputs should be tested. For all truth-table addresses two passes must be made, one with $V_{C c}$ high and one with $V_{c c}$ low. Forcing conditions and limits for level testing are specified in the, following tables.

## HIGH VCC TESTS $-V_{C C}=6.5 \pm .1 \mathrm{~V}$

PARAMETER	LIMIT		FORCING CONDITION	LEVEL TESTED
	MIN	MAX		
VOL	-	. 85	$\mathrm{lOL}=20 \mathrm{~mA} \pm 1 \mathrm{~mA}$	Zero
VOH	6.9	-	$\mathrm{IOL}=100 \mu \mathrm{~A} \pm 10 \mu \mathrm{~A}$	One

LOW V CC TESTS $-\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V} \pm .1 \mathrm{~V}$

PARAMETER	LIMIT		FORCING CONDITION	LEVEL TESTED
	MIN	MAX		IOL $=20 \mathrm{~mA} \pm 1 \mathrm{~mA}$
$V_{\mathrm{OL}}$	-	.85		Zero
$\mathrm{V}_{\mathrm{OH}}$	4.5	-	$\mathrm{IOL}=100 \mu \mathrm{~A} \pm 10 \mu \mathrm{~A}$	One

## PROGRAMMING CYCLE TIMING DIAGRAM




A - 20 mA CURRENT SOURCE TURNED ON IVOLTAGE OVERSHOOT MAY OCCUR)
B - VOLTAGE LEVEL IS SENSED AND COMPARED
C -180 mA CURRENT SOURCE IS TURNED ON $(180+20=200 \mathrm{~mA})$
D - VOLTAGE FALLS INDICATING PROGRAMMING

E - 180 mA CURRENT SOURCE IS TURNED OFF
F - VOLTAGE LEVEL IS SENSED AND COMPARED
G -180 mA CURRENT SOURCED IS TURNED ON
H - 20mA CURRENT SOURCE IS TURNED OFF
1 - ADDRESS IS CHANGED

## FEATURES

- Silicon Gate Complementary MOS
- Fully Static - 0 to 5.7 MHz
- Single Power Supply

IM6100 VCC $=\mathbf{5}$ volts
IM6100A VCC $=10$ volts

- Crystal Controlled On Chip Timing
- PDP ${ }^{\oplus-8 / e, ~ I n s t r u c t i o n ~ S e t ~ C o m p a t i b l e ~}$
- Low Power Dissipation
< 10 mW @ 3.3.MHz@ 5 volts
- TTL Compatible at 5 volts
- Excellent Noise Immunity
- Direct Memory Access (DMA)
- Interrupt
- PDP-8 is a registered trademark of Digital Electronics Corp.


## GENERAL DESCRIPTION

The IM6100 is a fixed word length, single word instruction, parallel transfer microprocessor using 12-bit, two's complement arithmetic which recognizes the instruction set of Digital Equipment Corporation's PDP-8/e minicomputer. The internal circuitry is completely static and designed to operate at any speed between DC and the maximum operating frequency. Two pins are available to allow for an external crystal, thereby eliminating the need for clock generators and level translators. The crystal can be removed and the processor clocked by an external clock generator. The device design is optimized to minimize the number of external components required for interfacing with standard memory and peripheral devices.
The IM6100 family includes IM6101 (Programmable Interfacing Element), IM6102 (Memory Extension/DMA Controller/Interval Timer), IM6103 (Parallel Input-Output Port), IM6512 ( $64 \times 12$ RAM), IM6312 ( $1 \mathrm{k} \times 12$ ROM), and IM6402/03 (UART), all featuring ultra low power-high noise immunity CMOS characteristics. The entire family is supported by the 6910 Intercept II Microcomputer Development System.


## IM6100

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6100 ......................... $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage.................... . 4.0 V to +11.0 V
Supply Voltage ....................................... +12.0 V
Voltage On Any Input or
Output Pin
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for 'extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		Vcc-2.0			V
2	VIL	Input Voltage Low				0.8	V
3	IIL.	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	V OH	Output Voltage High	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.4			V
5	VOL	Output Voltage Low	$\mathrm{IOL}=2.0 \mathrm{~mA}$			0.45	V
6	IoLk	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	ICC	Power Supply Current-Standby	$\mathrm{V}_{\mathrm{IN}}=$ GND or $\mathrm{V}_{\mathrm{CC}}$			800	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{fc}=2.5 \mathrm{MHz}$			1.8	mA
9	$\mathrm{CIN}_{\text {IN }}$	Input Capacitance			7.0	8.0	pF
10	Co	- Output Capacitance			8.0	10.0	pF

A.C. CHARACTERISTICS ${ }^{\text {( }}$ (see Figure 2 and 22)

TEST CONDITIONS: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fC}=2.5 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$\mathrm{f}_{\mathrm{op}}$	Operating Frequency			2.5	MHz
2	$\mathrm{t}_{5}$	Major State Time	800			ns
3	$t_{\text {lxmar }}$	LXMAR Pulse Width	335			ns
4	$\mathrm{t}_{\text {as }}$	Address Setup Time : DX-LXMAR ( $\downarrow$ )	120			ns
5	$\mathrm{t}_{\text {ah }}$	Address Hold Time: LXMAR ( $\downarrow$ )-DX .	175			ns
8	$\mathrm{t}_{\text {end }}$	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX			575	ns
6	$\mathrm{t}_{\mathrm{al}}$	Access Time from LXMAR			650	ns
7	$t_{\text {en }}$	Output Enable Time (MEM, CP, DEVSEL)			400	ns
9	$t_{\text {wp }}$	Pulse Width (MEMSEL, CPSEL)	320			ns
10	${ }_{\text {twpd }}$	Pulse Width (DEVSEL)	320			ns
11	$t_{\text {ds }}$	Data Setup Time (DX- $\uparrow$ MEMSEL/CPSEL)	240			ns
12	$t_{\text {dh }}$	Data Hold Time ( $\uparrow$ MEMSEL/CPSEL-DX)	175			ns
13	$\mathrm{t}_{\text {dsd }}$	Data Setup Time (DX-¢ DEVSEL)	275			ns
14	$\mathrm{t}_{\text {dhd }}$	Data Hold Time (4 DEVSEL-DX)	175			ns
15	$\mathrm{t}_{\mathrm{s} \text { I }}$	Logic Delay to MEM/DEV/CP/SWSEL	75		440	ns
16	$t_{\text {xt }}$	Logic Delay to LXMAR, XTA, XTB, XTC	65		380	ns
17	$t_{\text {st }}$	Logic Delay to DATAF, RUN, DMAGNT, INTGNT, LINK, IFETCH			475	ns
18	$\mathrm{t}_{\text {r }}$	Set up Time for CP/INT/DMAREQ	0			ns
19	$t_{\text {r }}$	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	300			ns
20	$\mathrm{t}_{\text {rhp }}$	RUN-HALT Pulse Width	110			ns
21	$\mathrm{t}_{\text {ws }}$	Set up Time for Wait	100			ns
22.	${ }^{\text {twh }}$	Hold Time for Wait	35			ns

Note: For capacitance greate than 50 pF , the AC paramete • will have a delay factor of $0.5 \mathrm{~ns} / \mathrm{pF}$.

## IM6100A <br> ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6100AI ...................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage...................+4.0 V to +11.0 V
Supply Voltage .......................................... +12.0 V
Voltage On Any Input or
Output Pin .......................... -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS <br> TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		70\% VCC			V
2	VIL	Input Voltage Low				20\% Vcc	V
3	ILL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=0.0 \mathrm{~mA}$	VCC -0.01			V
5	VOL	Output Voltage Low	$1 \mathrm{OL}=0.0 \mathrm{~mA}$			GND +0.01	V
6	IOLK	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{VIN}=\mathrm{GND}$ or VCC			900	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{fC}=5.71 \mathrm{MHz}$		,	4.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

A.C. CHARACTERISTICS (Ref: Figures 2 and 22)

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fc}=5.71 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$\mathrm{f}_{\text {op }}$	Operating Frequency			5.71	MHz
2	$\mathrm{t}_{\text {s }}$	Major State Time	350			ns
3	$t_{\text {Ixmar }}$	LXMAR Pulse Width	150			ns
4	$t$ as	Address Setup Time : DX-LXMAR ( $($ ) $=$	55			ns
5	$\mathrm{t}_{\text {ah }}$	Address Hold Time : LXMAR ( $\downarrow$ )-DX	60			ns
8	$\mathrm{t}_{\text {end }}$	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX			250	ns
6	$t_{\text {al }}$	Access Time from LXMAR			295	ns
7	$\mathrm{t}_{\text {en }}$	Output Enable Time (MEM, CP, DEVSEL)			185	ns
9	$t_{\text {wp }}$	Pulse Width (MEMSEL, CPSEL)	140			ns
10.	${ }_{\text {twpd }}$	Pulse Width (DEVSEL)	140			ns
11	$\mathrm{t}_{\mathrm{ds}}$	Data Setup Time (DX- $\uparrow$ MEMSEL/CPSEL)	115			ns
12	$\mathrm{t}_{\mathrm{dh}}$	Data Hold Time ( $\uparrow$ MEMSEL/CPSEL-DX)	60			ns
13	$\mathrm{t}_{\text {dsd }}$	Data Setup Time (DX- $\uparrow$ DEVSEL)	110			ns
14	$\mathrm{t}_{\text {dhd }}$	Data Hold Time ( $\uparrow$ DEVSEL-DX)	60			ns
15	$\mathrm{t}_{\mathrm{sl}}$	Logic Delay to MEM/DEV/CP/SWSEL	35		180	ns
16	$t_{x t}$	Logic Delay to LXMAR, XTA, XTB, XTC	35		155	ns
17	$t_{\text {st }}$	Logic Delay to DATAF, RUN, DMAGNT, INTGNT, LINK, IFETCH			190	ns
18	$\mathrm{t}_{\text {rs }}$	Set up Time for CP/INT/DMAREQ	0			ns
19	$t_{\text {r }}$	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	125			ns
20	$t_{\text {rnp }}$	RUN-HALT Pulse Width	45			ns
21	$t_{\text {ws }}$	Set up Time for Wait	45			ns
22	${ }^{\text {twh }}$	Hold Time for Wait	15			ns

Note: For capacitance greater than 50 pF , the AC parameters will have a delay factor of $0.5 \mathrm{~ns} / \mathrm{pF}$.

## IM6100AM (Military)

ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6100AM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage	+4.0 V to +11.0 V
Supply Voltage	+12.0V
Voltage On Any Input or	
Output Pin	.3V to Vcc +0.3 V

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may caluse device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{1 \mathrm{H}}$.	Input Voltage High		70\% VCC			V
2	$\mathrm{V}_{\mathrm{IL}}$	Input Voltage Low.			,	20\% Vcc	V
3	IIL	Input Leakage	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	V OH	Output Voltage High	$1 \mathrm{OH}=0.0 \mathrm{~mA}$	$V_{C C}-0.01$			V
5	VoL	Output Voltage Low	$\mathrm{lOL}=0.0 \mathrm{~mA}$			GND +0.01	V
6	IOLK	Output Leakage	$\mathrm{GND} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	IcC	Power Supply Current-Standby	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$			900	$\mu \mathrm{A}$
8	ICC	Power Supply Current-Dynamic	$\mathrm{fc}=5.0 \mathrm{MHz}$			4.0	mA
9	$\mathrm{CIN}_{1}$	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS (Ref.: Figures 2 and 22)

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, fc $=5.0 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	${ }_{\text {fop }}$	Operating Frequency			5.0	MHz
2	$\mathrm{t}_{\text {s }}$	Major State Time	400			ns
3	${ }_{\text {t }}^{\text {xmar }}$	LXMAR Pulse Width	170			ns
4	$\mathrm{t}_{\text {as }}$	Address Setup Time: DX-LMAR ( $\downarrow$ )	70			ns
5	tah	Address Hold Time : LXMAR ( $\downarrow$ )-DX	70			ns
8	$\mathrm{t}_{\text {end }}$	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX	.		290	ns
6	$\mathrm{tal}_{\mathrm{a}}$	Access Time from LXMAR			340	ns
7	$\mathrm{t}_{\text {en }}$	Output Enable Time (MEM, CP, DEVSEL)			220	ns
9	$\mathrm{t}_{\text {wp }}$	Pulse. Width (MEMSEL, CPSEL)	160			ns
10	$t_{\text {wpd }}$	Pulse Width (DEVSEL)	160			ns
11	$\mathrm{t}_{\mathrm{ds}}$	'Data Setup Time (DX-4 MEMSEL/CPSEL)	140			ns
12	$\mathrm{t}_{\mathrm{dh}}$	Data Hold Time (4 MEMSEL/CPSEL-DX)	70			ns
13	$\mathrm{t}_{\text {dsd }}$	Data Setup Time (DX- 4 DEVSEL)	140			ns
14	$t_{\text {dhd }}$	Data Hold Time ( 4 DEVSEL-DX)	70			ns
15	$\mathrm{t}_{\text {sl }}$	Logic Delay to MEM/DEV/CP/SWSEL ,	35		210	ns
16	$\mathrm{t}_{\mathrm{xt}}$	Logic Delay to LXMAR, XTA, XTB, XTC	35		170	ns
17	$\mathrm{t}_{\text {st }}$	Logic Delay to DATAF, RUN, DMAGNT, INTGNT; LINK, IFETCH			210	ns
18	$\mathrm{t}_{\text {rs }}$	Set up Time for CP/INT/DMAREQ	0			ns
19	$\mathrm{t}_{\mathrm{r}}$	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	140			ns
20	trhp	RUN-HALT Pulse Width	50			ns
21	${ }^{\text {w }}$ ¢	Set up Time for Wait	50			ns
22	$t_{\text {wh }}$	Hold Time for Wait	20			ns

Note: For capacitance of greater than 50 pF , the AC parameters will have a delay factor of $0.5 \mathrm{~ns} / \mathrm{pF}$.

## IM6100-1

## ABSOLUTE MAXIMUM RATINGS

```
Operating Temperature
 Industrial IM6100-1I - 40 . C to +85' C
Storage Temperature - 65 % to + }15\mp@subsup{0}{}{\circ}\textrm{C
Operating Voltage4.0V to +11.0V
```



```
Voltage On Any Input or
 Output Pin - 0.3V to Vcc_+0.3V
```

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1.	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		VCC -2.0			V
2	$\mathrm{V}_{\mathrm{IL}}$	Input Voltage Low	$\cdot$			0.8	V
3	ILL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{VCC}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.4			V
5	VoL	Output Voltage Low	$\mathrm{loL}=2.0 \mathrm{~mA}$			0.45	V
6	IOLK	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby.	$\mathrm{V}_{\mathrm{IN}}=$ GND or $\mathrm{V}_{\text {CC }}$			800	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{fC}=3.33 \mathrm{MHz}$	.		2.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS <br> (Ref. Fig. 2 and 22)

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, fC $=3.33 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$\mathrm{f}_{\mathrm{op}}$	Operating Frequency			3.33	MHz
2	$\mathrm{t}_{\mathrm{s}}$	Major State Time	600			ns
3	$\mathrm{t}_{\text {xmar }}$	LXMAR Pulse Width	260			ns
4	$\mathrm{t}_{\text {as }}$	Address Setup Time: DX-LXMAR ( $\downarrow$ )	85			ns
5	$\mathrm{t}_{\text {ah }}$	Address Hold Time : LXMAR ( $\downarrow$ )-DX	125			ns
8	$\mathrm{t}_{\text {end }}$	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX			470	ns
6	$\mathrm{tal}_{\text {a }}$	Access Time from LXMAR			520	ns
7	$\mathrm{t}_{\text {en }}$	Output Enable Time (MEM, CP, DEVSEL)			300	ns
9	$\mathrm{t}_{\text {wp }}$	Pulse Width (MEMSEL, CPSEL)	235			ns
10	$\mathrm{t}_{\text {wpd }}$	Pulse Width (DEVSEL)	235			ns
11	$t_{\text {ds }}$	Data Setup Time (DX-¢ MEMSEL/CPSEL)	135			ns
12	$\mathrm{t}_{\mathrm{dh}}$	Data Hold Time ( $\uparrow$ MEMSEL/CPSEL-DX)	125			ns
13	${ }_{\text {dsd }}$	Data Setup Time (DX-¢ DEVSEL)	225			ns
14	$\mathrm{t}_{\text {dhd }}$	Data Hold Time ( $\uparrow$ DEVSEL-DX)	125			ns
15	$\mathrm{t}_{\text {sl }}$	Logic Delay to MEM/DEV/CP/SWSEL	75.		380	ns
16	$t_{\text {xt }}$	Logic Delay to LXMAR, XTA, XTB, XTC	65		270	ns
17.	$\mathrm{t}_{\text {st }}$	Logic Delay to DATAF, RUN, DMAGNT, INTGNT, LINK, IFETCH			340	ns
18	$\mathrm{t}_{\mathrm{rs}}$	Set up Time for CP/INT/DMAREQ	0			ns
19	$t_{\text {r }}$	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	200		.	ns
20	$\mathrm{t}_{\text {rhp }}$	RUN-HALT Pulse Width	80			ns
21	$\mathrm{t}_{\text {ws }}$	Set up Time for Wait	100			ns
22	$\mathrm{t}_{\mathrm{wh}}$	Hold Time for Wait	20			ns

## IM6100-1M (Military) <br> ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6100-1M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage	+4.0 V to +11.0 V
Supply Voltage	+12.0V
Voltage On Any Input or	
Output Pin	-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

Operating Temperature
Industrial IM6100-1M ................. . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
rage Temperature

Supply Voltage ....................................... +12.0 V
Voltage On Any Input or
Output Pin
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{1}$	Input Voltage High		VCC -2.0			V
2	$\mathrm{V}_{\mathrm{IL}}$	Input Voltage Low				0.8	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
5	VOL	Output Voltage Low	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
6	IOLK	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	${ }_{\mu} \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or VCC			800	$\mu \mathrm{A}$
8	ICC	Power Supply Current-Dynamic	.fC $=2.5 \mathrm{MHz}$			2.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

A.C. CHARACTERISTICS
(Ref. Fig. 2 and 22)
TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{fC}=2.5 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	${ }_{\text {fop }}$	Operating Frequency			2.5	MHz
2	$t_{s}$	Major State Time	800			ns
3	${ }_{\text {I }}^{\text {xmar }}$	LXMAR Pulse Width	355			ns
4	$\mathrm{t}_{\text {as }}$	Address Setup Time : DX-LXMAR ( )	200			ns
5	$\mathrm{t}_{\text {ah }}$	Address Hold Time: LXMAR ( $\downarrow$ )-DX	175			ns
8	$\mathrm{t}_{\text {end }}$	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX			655	ns
6	$\mathrm{t}_{\mathrm{a}}$	Access Time from LXMAR			745	ns
7	$\mathrm{t}_{\text {en }}$	Output Enable Time (MEM, CP, DEVSEL)			470	ns
9	$t_{\text {wp }}$.	Pulse Width (MEMSEL, CPSEL)	330			ns
10	$t_{\text {wpd }}$	Pulse Width (DEVSEL)	330			ns
11	$\mathrm{t}_{\text {ds }}$	Data Setup Time (DX-4 MEMSEL/CPSEL)	250			ns
12	$\mathrm{t}_{\mathrm{d} h}$	Data Hold Time ( 4 MEMSEL/CPSEL-DX)	170			ns
13	${ }_{\text {d dsd }}$	Data Setup Time (DX-4 DEVSEL)	350			ns
14	$t_{\text {dhd }}$	Data Hold Time ( 4 DEVSEL-DX)	170			ns
15	$\mathrm{t}_{\text {si }}$	Logic Delay to MEM/DEV/CP/SWSEL	75		420	ns
16	$\mathrm{t}_{\mathrm{xt}}$	Logic Delay to LXMAR, XTA, XTB, XTC	65		300	ns
17	$t_{\text {st }}$	Log,c Delay to DATAF, RUN, DMAGNT, INTGNT, LINK, IFETCH			375	ns
18	$\mathrm{t}_{\text {rs }}$	Set up Time for CP/INT/DMAREQ	0			ns
19	$\mathrm{t}_{\mathrm{r}}$	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	220			ns
20	$t_{\text {rhp }}$	RUN-HÁLT Pulse Width	90			ns
21	tws	Set up Time for Wait	110			ns
22	${ }_{\text {twh }}$	Hold Time for Wait	20			ns

Note: Fọr capacitance of greater than 50 pF , the AC parameters all have delay factor of $0.5 \mathrm{~ns} / \mathrm{pF}$.


Figure 1: Functional Block Diagram

## FUNCTIONAL PIN DESCRIPTIONS

PIN	SYMBOL	DESCRIPTION
1	Vcc	Supply voltage.
2	RUN	The signal indicates the runstate of the CPU and may be used to power down the external circuitry
3	DMAGNT	Direct Memory Access Grant-DX lines are three-state.
4	DMAREQ	Direct Memory Access Request-DMA is granted at the end of the current instruction. Upon DMA grant, the CPU suspends program execution until the DMAREQ line is released.
5	$\overline{\text { CPREQ }}$	Control Panel Request-a dedicated interrupt which bypasses the normal device interrupt request structure.
6	$\overline{\text { RUN/HLT }}$	Pulsing the Run/Halt line causes the CPU to alternately run and halt by changing the state of the internal RUN/HLT flip flop.
7	$\overline{\text { RESET }}$	Clears the AC and loads $7777_{8}$ into the PC. CPU is halted.
8	$\overline{\text { INTREQ }}$	Peripheral device interrupt request.
9	XTA	External coded minor cycle timing-signifies input transfers to the IM6100.
10	LXMAR	The Load External Memory Address Register is used to store memory and peripheral addresses externally.
11	WAIT	Indicates that peripherals or external memory is not ready to transfer data. The CPU state gets extended as long as WAIT is active. The CPU is in the lowest power state with clocks running.
12	XTB	External coded minor cycle timing-signifies output transfers from the IM6100.
13	XTC	External coded minor cycle timing-used in conjunction with the Select Lines to specify read or write operations.
14	OSC OUT	Crystal input to generate the internal timing (also external clock input).
15	OSC IN	See Pin 14-OSC OUT (also external clock ground)
16	DX0	DataX-multiplexed data in, data out and address lines.
17	DX ${ }_{1}$	See Pin 16-DX ${ }_{0}$.


PIN	SYMBOL	DESCRIPTION
18	$\mathrm{DX}_{2}$	See Pin 16-DX ${ }_{0}$.
19	DX ${ }^{\text {d }}$	See Pin 16-DX0.
20	DX ${ }_{4}$	See Pin 16-DX ${ }_{\text {d }}$.
21	DX ${ }_{5}$	See Pin 16-DX0.
22	DX ${ }_{6}$	See Pin 16-DX0.
23	$\mathrm{DX}_{7}$	See Pin 16-DX0.
24	DX ${ }_{8}$	See Pin 16-DX0.
25	DX9	See Pin 16-DX0.
26	GND	Ground
27	DX ${ }_{10}$	See Pin 16-DX ${ }_{\text {O }}$.
28	DX ${ }_{11}$	See Pin 16-DX ${ }_{0}$.
29	LINK	Indicates state of link flip flop.
30	DEVSEL	Device Select for I/O transfers.
31	SWSEL	Switch Register Select for the OR THE SWITCH REGISTER INSTRUCTION (OSR). OSR is a Group 2 Operate Instruction which reads a 12 bit external switch register and OR's it with the contents of the AC.
32	$\overline{\mathrm{C}}$	Control line inputs from the peripheral device during an I/O transfer (Table VI).
33	$\overline{\mathrm{C}}$	See Pin 32- $\overline{\mathrm{C}_{0}}$.
34	$\overline{\mathrm{C}_{2}}$	
35	$\overline{\text { SKP }}$	Skips the next sequential instruction if active during an I/O instruction.
36	IFETCH	Instruction Fetch Cycle
37	MEMSEL	Memory Select for memory transfers.
38	CPSEL	The Control Panel Memory Select becomes active, instead of the MEMSEL, for control panel routines. Signal may be used to distinguish between control panel and main memories.
39	INTGNT	Peripheral device Interrupt Grant.
40	DATAF	Data Field pin indicates the execute phase of indirectly addressed AND, TAD, ISZ and DCA instructions so that the data transfers are controlled by the Data Field, DF, and not the Instruction Field, IF, if Extended Memory Control hardware is used to extend the addressing space from 4 K to 32 K words.

## IM6100

## MEMORY ORGANIZATION

The IM6100 has a basic addressing capacity of 4096 12-bit words which may be extended by Extended Memory Control hardware to 32 K . The memory system is organized in 4096 word blocks, called MEMORY FIELDS. The first 4096 words of memory are in Field 0 ; if a full 32 K of memory is installed, the uppermost Memory Field will be numbered 7. In any given Memory Field every location has a unique 4 digit octal (12 bit binary) address, 00008 to 77778 ( $0000_{10}$ to 409510 ). Each Memory Field is subdivided into 32 PAGES of 128 words each. Memory Pages are numbered sequentially from Page $00_{8}$, containing addresses 0000-01778, to Page 378, containing addresses 76008-77778. The first 5 bits of a 12-bit MEMORY ADDRESS denote the PAGE NUMBER and the low order 7 bits specify the PAGE ADDRESS of the memory location within the given Page.

During an instruction fetch cycle, the IM6100 fetches the instruction pointed to by the PC, the contents of the PC are trarisferred to the MAR, and the PC is incremented by 1. The PC now contains the address of the 'next' sequential instruction and the MAR contains the address of the 'current' instruction which must be fetched from memory. Bits 0-4 of the MAR identify the CURRENT PAGE, that is, the Page from which instructions are currently being fetched, and bits 5-11 of the MAR identify the location within the Current Page. (PAGE ZERO (0), by definition, denotes the first 128 words of memory, 00008-01778.)


## INSTRUCTION SET

The IM6100 instructions are 12-bit words stored in memory. The IM6100 makes no distinction between instructions and data; it can manipulate instructions as stored variables or execute data as instructions when it is programmed to do so. There are three general classes of IM6100 instructions. They are referred to as Memory Reference Instruction (MRI), Operate Instruction (OP.R)- and Inpüt/Output Transfer Instruction (IOT).
The notations used in the following instruction tables are defined in Table I below:

TABLE 1. Notation Definitions

1. ( ) denotes the contents of the register or location within parenthesis. (EA) is read as ". . . the contents of the Effective Address."
2. (()) denotes the contents of the location pointed to by the contents of the location within the double parenthesis. $((\mathrm{PA}))$ is read as ". . . the contents of the location pointed to by the contents of the Pointer Address."
3.     - denotes ". . . is replaced by . . ."
4. $\rightarrow$ denotes the interchange operation.
5. $\wedge$ denotes logical AND operation.
6. $v$ denotes logical OR operation.
7. EA denotes the Effective Address for Direct Addressing.
8. PA denotes the Pointer Address for Indirect Addressing. PA can be any address on the CURRENT PAGE or PA can be any address ( $0000{ }_{8}$ ) through ( 01778 ) on PAGE ZERO other than the addresses $(00108$ ) through (00178) which are reserved for autoindexing.
9. PAIX denotes the Pointer Address for autoindexing. It can be any address $(00108$ ) through (00178).
10. I represents bit 3 , the Indirect Addressing Bit, of the instruction.
11. EA, PA, or PAIX is specified by bit 4 through bit 11 of the memory reference instruction.
12. PC denotes the Program Counter.
13. SR denotes the Switch Register.
14. (AC)n denotes the nth bit of the AC contents.
15. DEV denotes a specific peripheral device and "dddddd" denotes the device address code. CMND is the command issued to the device during an I/O operation and "eee" is its three bit code.

## ARCHITECTURE

The IM6100 has 6 twelve bit registers, a programmable logic array, an arithmetic and logic unit and associated gating and timing circuitry. A block diagram of the IM6100 is shown in Figure 1.

## ACCUMULATOR (AC)

The AC is a 12-bit register in which arithmetic and logical operations are performed. Data words may be transferred from memory to the AC or transferred from the. AC into memory. Arithmetic and logical operations involve one or two operands, one held in the AC and the other fetched from the memory. The result of the operation is left in the AC which may be cleared, complemented, tested, incremented or rotated under program control. The AC also serves as an input-output register, as all programmed data transfers pass through the AC.

## LINK (L)

The Link is a 1-bit flip-flop that serves as a high-order extension of the AC. It is used as a carry flip-flop for 2's complement arithmetic. A carry out of the accumulator complements the Link. Link can be cleared, set, complemented and tested under program control and rotated as part of the AC.

## MQ REGISTER (MQ)

The MQ is a 12-bit temporary register which is program accessible. The contents of AC may be transferred to the MQ for temporary storage, or, MQ can be OR'ed with the AC and the result stored in the $A C$. The contents of the $A C$ and the MQ may also be exchanged.

## MEMORY ADDRESS REGISTER (MAR)

While accessing memory, the 12 -bit MAR register contains the address of the memory location that is currently selected for reading or writing. The MAR is also used as an internal register for microprogram control during data transfers to and from memory and peripherals.

## PROGRAM COUNTER (PC)

The 12-bit PC contains the address of the memory location from which the next instruction is fetched. During an instruction fetch, the PC is transferred to MAR and the PC is then incremented by 1 . When there is a branch to another address in memory, the branch address is set into the PC. Branching normally takes place under program control, however, during an input-output operation, a device may specify a branch address. A skip (SKP) instruction increments the PC by 1 , thus causing the next instruction to be skipped. The SKP instruction may be unconditional, or conditional on the state of the AC or the Link. During an input-output operation, a device can also cause the next sequential instruction to be skipped. Interrupts force the PC to 0000. Reset forces the PC to 77778 .

## ARITHMETIC AND LOGICAL UNIT (ALU)

The ALU performs both arithmetic and logical operations, -two's complement binary addition, AND, OR and complement. The ALU can perform a single position shift either to the left or to the right; a double rotate is implemented in two single bit shifts. The ALU can also shift by 3 positions to implement a byte swap in two steps. The AC is always one of the inputs to the ALU, however, under internal microprogram control, AC may be gated off and all one's or all zero's gated in. The second input may be any one of the other registers under internal microprogram control.

## TEMPORARY REGISTER (TEMP)

The-12-bit TEMP register latches the result of an ALU operation, before it is sent to the destination register, to avoid race conditions. The TEMP is also used as an internal register for microprogram control.

## INSTRUCTION REGISTER (IR)

During an instruction fetch, the 12-bit IR is loaded with the instruction that is to be executed by the CPU. The IR specifies the initial step of the microprogram sequence for each instruction, and is also used as an internal register to store temporary data for microprogram control.

## MULTIPLEXER (DX)

The 12-bit Input/Output Multiplexer handles data, address and instruction transfers into and out of the CPU, and to or from the main memory and peripheral devices on a timemultiplexed basis.

## MAJOR STATE GENERATOR.AND THE PROGRAMMED LOGIC ARRAY (PLA)

During an instruction fetch the instruction to be executed is loaded into the IR. The PLA is then used for the correct sequencing of the CPU for the appropriate instruction. After an instruction is completely sequenced, the major state generator scans the internal priority network, which decides whether the machine is going to fetch the next instruction in sequence, or service one of the external request lines.

## PLA OUTPUT LATCH

The PLA Output Latch permits the PLA to be pipelined; it fetches the next control sequence while the CPU is executing the current sequence.

## MEMORY AND DEVICE CONTROL, ALU AND REG TRANSFER LOGIC

The Memory and Device Control Unit provides external control signals to communicate with peripheral devices (DEVSEL), switch register (SWSEL), memory (MEMSEL) and/or control panel memory (CPSEL). During I/O instructions this unit also modifies the PLA outputs depending on the states of the four device control lines (SKP, $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$ ). The ALU and Register Transfer Logic provides, the control signals for the internal register transfers and ALU operation.

## ARCHITECTURE (CONTINUED)

## TIMING AND STATE CONTROL

The IM6100 internally generates all the timing and state signals. A crystal is used to control the CPU operating frequency, which is divided by two by the CPU. With a 4 MHz crystal, the internal states will be of 500 nsec duration. The major timing states are described in Figure 2.
$\mathbf{T}_{1}$. For memory reference instructions, a 12-bit address is sent on the DX lines. The Load External Memory Address Register, LXMAR, is used to clock an external register to store the address information externally, if required. When executing an InputOutput I/O instruction, the instruction being executed is sent on the DX lines to be stored externally. The external address register then contains the device address and control information. The LXMAR pulse occurs only if a valid address is present on the DX lines.
Various CPU request lines are priority sampled if the next cycle is an Instruction Fetch cycle. Current state of the CPU is available externally.

T2 Memory/Peripheral data is read for an input transfer (READ). WAIT controls the transfer duration. If WAIT is active during input transfers, the CPU waits in the $\mathrm{T}_{2}$ state. The wait duration is an integral multiple of the crystal frequency -250 nsec for 4 MHz .
For memory reference instructions, the Memory Select, MEMSEL, line is active. For I/O instructions the Device Select, DEVSEL, line is active. Control lines, therefore, distinguish the contents of the external register as memory or device address.
External device sense lines, $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and SKP, are sampled if the instruction being executed is an I/O instruction.
Control Panel Memory Select, CPSEL, and Switch Register Select, SWSEL, become active low for data transfers between the IM6100 and Control Panel Memory and the Switch Register, respectively.
$\mathrm{T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{5} \mathrm{ALU}$ operation and internal register transfers.
T6 This state is entered for an output transfer (WRITE). The address is defined during $\mathrm{T}_{1}$. WAIT controls the time for which the Write data must be maintained.


## INSTRUCTION SET (CONTINUED)

## MEMORY REFERENCE INSTRUCTION (MRI)

The Memory Reference Instructions operate on the contents of a memory location or use the contents of a memory location to operate on the AC or the PC. The first 3 bits of a Memory Reference Instruction specify the operation code, or OPCODE, and the low order 9 bits, the OPERAND address, as shown in Figure 3.


Figure 3: Memory Reference Instruction Format
Bits 5 through 11, the PAGE ADDRESS, identify the location of the OPERAND on a given page, but they do not identify the page itself. The page is specified by bit 4, called the CURRENT PAGE OR PAGE 0 BIT. If bit 4 is a 0 , the page address is interpreted as a location on Page 0 . If bit 4 is a 1 , the page address specified is interpreted to be on the Current Page.
For example, if bits 5 through 11 represent $123_{8}$ and bit 4 is a 0 , the location referenced is the absolute address $0123_{8}$. However, if bit 4 is a 1 and the current instruction is in a memory location whose absolute address is 46108 the page address 1238 designates the absolute address 47238, as shown below.
$4610_{8}=100110001000=$ PAGE 10011 = PAGE 238 Location 46108 is in PAGE 238. Location $123_{8}$ in PAGE 238, CURRENT PAGE, will be:
$10011,1010011_{1}=100111010011=4723_{8}$
LPAGE ADDRESS $1233^{\circ}$

By this method, 256 locations may be directly addressed, 128 on PAGE 0 and 128 on the CURRENTPAGE. Other locations are addressed indirectly by setting bit 3 . An INDIRECT ADDRESS (pointer address) identifies the location that contains the desired address (effective address). To address a location that is not directly addressable, not in PAGE 0 or in the CURRENT PAGE, the absolute address of the desired location is stored in one of the 256 directly addressable locations (pointer address). Upon execution, the MRI will operate on the contents of the location identified by the address contained in the pointer location.

It should be noted that locations $0010_{8}-0017_{8}$ in PAGE 0 are AUTOINDEXED. If these locations are addressed indirectly, the contents are incremented by 1 and restored before they are used as the operand address. These locations may, therefore, be used for indexing applications.

Table II lists the mnemonics for the six memory reference instructions, their OPCODEs, the operations they perform and the number of states required for execution.

It should be noted that the data is represented in Two's Complement Integer notation. In this system, the negative of a number is formed by complementing each bit in the data word and adding " 1 " to the complemented number. The sign is indicated by the most significant bit. In the 12 -bit word used by the IM6100, when bit 0 is a " 0 ", it denotes a positive number and when bit 0 is a " 1 ", it denotes a negative number. The maximum single precision number ranges for this system are $3777_{8}(+2047)$ and $4000_{8}(-2048)$.

Table II

MNEMONIC	OP CODE	IA	STATES	OPERATION		
AND EA	08	0	10	LOGICAL AND DIRECT   Operation: $(A C)-(A C)$ A (EA)   Description. Contents of the EA are logically AND'ed with the contents of the AC and the result is stored in AC		
AND I PA		1	15	LOGICAL AND INDIRECT ( $\mathrm{PA} \neq 0010-00178$ ) Operation: (AC) 1 (AC) $A$ (1)A		
AND PAIX		1	16	LOGICAL AND AUTOINDEX (PAIX $=0010-00178$ )  		
TAD EA	18	0	10	BINARY ADD DIRECT   Operation $(A C)=(A C)+(E A)$   coscription: Contents of the EA are ADDed with the contents of the AC and the result is stored in the AC, carry out complements the LINK. If AC is intially cleared, this instruction acts as LOAD trom Memory.		
TAD I PA		- 1	15	BINARY ADD INDIRECT (PA $\neq 0010-0017_{8}$ ) Operation $(A C)-1 / A C)+\\|P A\\|$		
TAD I PAIX		1	16	BINARY ADD AUTOINDEX (PAIX $=0010-00178$ ) Operation $(\mathrm{PA})=(\mathrm{PA})+1 .(\mathrm{AC})-\mathrm{AC})+(\mathrm{PA})$		
ISZ EA	28	0	16	INCREMENT AND SKIP IF ZERO DIRECT   Operation: $(E A) \longleftarrow(E A)+1$, if $(E A)=0000_{8} . P C-P C+1$   Description: Contents of the EA are incremented by 1 and restored. If the result is zero, the rext sequential instruction is skipped.		
ISZIPA		1	21	INCREMENT AND SKIP IF ZERO INDIRECT (PA $\neq 0010-00178$ ) Operation: $(\mathrm{PPA})-(\mathrm{PA}))+1$, if $(\mathrm{PPA})=00003, \mathrm{PC}-\mathrm{PC}+1$		
ISZ I PAIX		1	22	INCREMENT AND SKIP IF ZERO AUTOINDEX (PAIX $=0010-00178$ ) Operation $(P A)-(P A)+1_{1}\left([P A)-(\mid P A)+1\right.$ if $4(P A)=0000 s_{s} P C-P C+1$		
DCA EA	38	0	11	DEPOSIT AND CLEAR THE ACCUMULATOR DIRECT Operation (EA) $-A C)$, (AC) $40000^{\circ}$   Description: The contents of the AC are stored in EA and the AC is cleared.		
DCA IPA		1	16	DEPOSIT AND CLEAR THE ACCUMULATOR INDIRECT (PA $\neq 0010-00178$ ) Operation $(\mathrm{PA}) 4 \mathrm{AC}),(\mathrm{AC})-00003$		
DCA I PAIX		1	17	DEPOSIT AND CLEAR THE ACCUMULATOR AUTOINDEX (PAIX $=0010-00178$ ) Operation $(P A)-(P A)+1,(P A))-(A C),(A C) \leftarrow 00000^{8}$		
JMS EA	48	0	11	JUMP TO SUBROUTINE DIRECT   Operation: $(E A)-(P C),(P C)-E A+1$   Description: The contents of the PC are stored in the EA. The PC is incremented by 1 immediately atter every instruction   tetch. The contents of the EA now point to the next sequential instruction following the JMS ireturn addressl. The next instruction is taken from EA+1		
		1	16	JUMP TO SUBROUTINE INDIRECT (PA $\neq 0010-00178$ )   Operation (IPA) $-\mathrm{PC}(\mathrm{PC})-(\mathrm{PA})+1$		
JMS I PAIX		1	17	JUMP TO SUBROUTINE AUTOINDEX (PAIX $=0010-00178$ ) Operation $(P A) \leftarrow(P A)+1$. $(1 P A \\|) \leftarrow P C,(P C) \leftarrow P A)+1$		
JMP EA	58	0	- 10	JUMP DIRECT   Operation (PC) - EA   Description: The next instruction is taken from the EA.		
JMP I PA		1	15	$\mathrm{JUMP}_{\text {Operation (PC) }}$ INDIRET $(\mathrm{PA})(\mathrm{PA} \neq 0010-00178)$		
JMP I PAIX		1	16	JUMP AUTOINDEX (PAIX $=0010-00178$ ) Operation (PA) 1 1. (PCI $=$ - PA)		

## IM6100

## INSTRUCTION SET (CONTINUED)

## OPERATE INSTRUCTIONS

The Operate Instructions, which have an OPCODE of 78 (111), consist of 3 groups of microinstructions. Group 1, which is identified by the presence of the 0 in bit 3 , is used to perform logical operations on the contents of the accumulator and link. Group 2, which is identified by the presence of a 1 in bit 3 and a 0 in bit 11, is used primarily to test the contents of the Accumulator and/or Link and then conditionally skip the next sequential instruction. Group 3 has a 1 in bit 3 and a 1 in bit 11 and performs logical operations on the contents of the $A C$ and $M Q$.
The basic OPR instruction format is shown in Figure 4.


MICROINSTRUCTION	A	B
GROUP 1	0	$\frac{0}{1}$
GROUP 2	1	0
GROUP 3	1	1

Figure 4: Basic OPR Instruction Format
Operate microinstructions from any group may be microprogrammed with other operate microinstructions of the same group providing the instruction codes do not conflict. The actual code for a microprogrammed combination of two, or more, microinstructions is the bitwise logical OR of the octal codes for the individual microinstructions. When more than one operation is microprogrammed into a single instruction, the operations are performed in a prescribed sequence, with logical sequence number 1 performed first,
logical sequence number 2 performed second, logical sequence number 3 performed third and so on. Two operations with the same logical sequence number, within a given group of microinstructions, are performed simultaneously.

## GROUP MICRǪINSTRUCTIONS

Figure 5 shows the instruction format of a group 1 microinstruction. Any one of bits 4 to 11 may be set, loaded with a binary 1 , to indicate a specific group 1 microinstruction. If more than one of these bits is set, the instruction is a microprogrammed combination of group 1 microinstructions, which will be executed according to the logical sequence shown in Figure 5.


Figure 5: Group 1 Microinstruction Format

Table III lists commonly used group 1 microinstructions; their assigned mnemonics, octal code, logical sequence, the number of states, and the operation they perform: The same format is followed in Table IV and $V$ which lists group 2 and 3 microinstructions, respectively.

Table III: Group 1 Operate Microinstructions

MNEMONIC	$\begin{aligned} & \text { OCTAL } \\ & \text { CODE } \end{aligned}$	LOGICAL SEQUENCE	NUMBER OF STATES	OPERATION
NOP	7000	1	10	NO OPERATION-This instruction causes a 10 state delay in program execution, without affecting the state of the IM6100. It may be used for timing synchronization or as a convenient means of deieting an instruction from a program.
IAC	7001	3	10	INCREMENT ACCUMULATOR一The content of the AC is incremented by one (1) and carry out complements the Link (L).
RAL	7004	4	15	ROTATE ACCUMULATOR LEFT-The contents of the AC and L are rotated one binary position to the left. $A C$ ( 0 ) is shifted to $L$ and $L$ is shifted to $A C$ (11).
RTL	7006	4	15	ROTATE TWO LEFT-The contents of the $A C$ and $L$ are rotated two binary positions to the left. $A C$ (1) is shifted to $L$ and $L$ is shifted to $A C$ (10).
RAR	7010	4	15	ROTATE ACCUMULATOR RIGHT-The content of the AC and Lare rotated one binary position to the right. AC (11) is shifted to $L$ and $L$ is shifted to $A C$ ( 0 ).
RTR	7012	4	15	ROTATE TWO RIGHT-The contents of the $A C$ and $L$ are rotated two binary positions to the right. $\mathrm{AC}(10)$ is shifted to $L$ and $L$ is shifted to $A C$ (1).
BSW	7002	4	15	BYTE SWAP—The right six (6) bits of the AC are exchanged or SWAPPED with the left six bits. AC (0) is swapped with $A C$ (6), $A C$ (1) with $A C$ (7), etc. $L$ is not affected.
CML	7020	2	10	COMPLEMENT LINK-The content of the link is complemented.
CMA	7040	2	10	COMPLEMENT ACCUMULATOR一The content of each bit of the $A C$ is complemented having the effect of replacing the content of the $A C$ with its one's complement.
CIA	7041	2,3	10	COMPLEMENT AND INCREMENT ACCUMULATOR-The content of the $A C$ is replaced with its two's complement. Carry out complements the LINK.
CLL	7100	1	10	CLEAR LINK-The link is loaded with a binary 0.
CLL' RAL	7104	1,4	15	CLEAR LINK—ROTATE ACCUMULATOR LEFT:
CLL RTL	7106	1,4	15	CLEAR LINK-ROTATE TWO LEFT.
CLL RAR	7110	1,4	15	CLEAR LINK-ROTATE ACCUMULATOR RIGHT.
CLL RTR	7112	1,4	15	CLEAR LINK-ROTATE TWO RIGHT.
STL	7120	1,2	10	SET THE LINK-The LINK is loaded with a binary 1 corresponding with a microprogrammed combination of CLL and CML
CLA	7200	1	10	CLEAR ACCUMULATOR-The accumulato is loaded with binary 0 's.
CLA IAC	7201	1,3	10	CLEAR ACCUMULATOR-INCREMENT ACCUMULATOR.
GLT	7204	1,4	15	GET THE LINK-The $A C$ is cleared; the content of $L$ is shifted into $A C$ ( 11 ), $a$ is shifted into $L$. This is a microprogrammed combination of CLA and RAL.
CLA CLL	7300	1	10	CLEAR ACCUMULȦTOR-CLEAR LINK.
STA	7240	1,2	10.	SET THE ACCUMULATOR-Each bit of the AC is set to 1 corresponding to a microprogrammed com: bination of CLA and CMA..

## INSTRUCTION SET (CONTINUED)

## GROUP 2 MICROINSTRUCTIONS

Figure 6 shows the instruction format of group 2 microinstructions. Bits 4-10 may be set to indicate a specific group 2 microinstruction. If more than one of bits 4-7 or 9-10 is set, the instruction is a microprogrammed combination of group 2 microinstructions, which will be executed according to the logical sequence shown in Figure 6.
Skip microinstructions may be microprogrammed with CLA,

OSR, or HLT microinstructions. When two or more skip microinstructions are microprogrammed into a single instruction, the resulting condition on which the decision will be based is the logical OR of the individual conditions when bit 8 is 0 , or, when bit 8 is 1 , the decision will be based on the logical AND.
By combining skip instructions properly, all possible relational conditions can be tested (i.e., $=, \neq,<, \leq,>, \geq$ ). Skip microinstructions which have a 0 in'bits $5,6,7$, or 8 may not be microprogrammed with skip microihstructions which have a 1 in those same bits.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | CLA | $\frac{S M A}{S P A}$ | $\frac{S Z A}{S N A}$ | $\frac{S N L}{S Z L}$ | 0 | 0 | $O S R$ | $H L T$ | 0 |

LOGICAL SEQUENCES:
1 (BIT 8 IS ZERO)-SMA OR SZA OR SNL
(BIT 8 IS ONE) -SPA AND SNA AND SZL
2 -CLA
3 -OSR, HLT

Figure 6: Group 2 Microinstruction Format

Table IV: Group 2 Operate Microinstructions

|  | OCTAL |
| :--- | :---: | :---: | :---: | :--- | :--- |
| MNEMONIC |  | LODE

## INSTRUCTION SET (CONTINUED)


(1) INSTRUCTION ADDRESS (2.) INSTRUCTION $\rightarrow$ CPU (3) SWITCH REGISTER, $\rightarrow$ CPU DATA

Figure 7: OSR Instruction Timing

## GROUP 3 MICROINSTRUCTIONS

Figure 8 shows the instruction format of group 3 microinstructions which requires bits 3 and 11 to contain a 1. Bits 4,5 or 7 may be set to indicate a specific group 3 microinstruc-
tion. If more than one of the bits is set, the instruction is a microprogrammed combination of group 3 microinstructions following the logical sequence listed in Figure 8. All unused bits are "don't care".

*DON'T CARE

LOGICAL SEQUENCES:
1-CLA
2-MQA, MQL
3-ALL OTHERS

Figure 8: Group 3 Microinstruction Format

Table V: Group 3 Operate Microinstructions

MNEMONIC	OCTAL   CODE	LOGICAL   SEQUUENCE	NUMBER   OF	STATES

## INSTRUCTION SET (CONTINUED) INP:UT/OUTPUT (IOT) INSTRUCTIONS

The input/output transfer instructions, which have an OPCODE of $6_{8}$ are used to control the operation of peripheral devices and to transfer data between peripherals and the IM6100. Three types of data transfer may be used to receive or transmit information between the IM6100 and one or more peripheral I/O devices: PROGRAMMED DATA TRANSFER, which provides a straightforward means of communicating with relatively slow I/O devices, such as Teletypes, cassettes, card readers and CRT displays, INTERRUPT TRANSFERS which use the interrupt system to service several peripheral devices simultaneously, and DIRECT MEMORY ACCESS, DMA, which transfers variable-size blocks of data between high-speed peripherals and memory without IM6100 intervention.

## IOT INSTRUCTION FORMAT

The Input/Output Transfer Instruction format is represented in Figure 9. The instruction executes in 17 states.
The first three bits, $0-2$, are always set to $6_{8}(110)$ to specify an IOT instruction. The low order nine bits are used for device selection and control. PDP-8/e compatible interfaces use bits 3-8 for device selection and bits 9-11 for control of the selected device. The IM6101 PIE interface uses bits 3-7 for device selection and bits 8-11 for control. In user designed systems, the 512 possible IOT instructions may be alloted according to the user's needs. The nature of this operation for any given IOT instruction depends entirely upon the circuitry designed into the I/O device interface.

## PROGRAMMED DATA TRANSFER

Programmed Data Transfer is the easiest, simplest, most convenient and most, common means of performing data I/O. For microprocessor applications, it may also be the most cost effective approach. The data transfer begins when the IM6100 fetches an instruction from the memory and recognizes that the current instruction is an IOT (Figure 10). This is
referred to as IFETCH and consists of five (5) internal states. The IM6100 sequences the IOT instruction through a 2-cycle execute phase referred to as $I \mathrm{IT}_{A}$ and $I O T_{B}$. Bits 0-11 of the IOT instructions are available on DXO-11 at IOTA $\cdot$ LXMAR; these bits must be latched in an external address register. DEVSEL is active low to enable data transfers between the IM6100 and the peripheral device(s). The selected peripheral device communicates with the IM6100 through 4 control lines - $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$ and SKP. In the IM6100 the type of data transfer, during an IOT instruction, is specified by the peripheral device(s) by asserting the control lines as shown in Table VI.

The control line SKP, when low during an IOT, causes the IM6100 to skip the next sequential instruction. This feature is used to sense the status of various signals in the device interface. The $\mathrm{C}_{0}, \mathrm{C}_{1}$, and $\mathrm{C}_{2}$ lines are treated independently of the SKP line. In the case of a RELATIVE or ABSOLUTE JUMP, the skip operation is performed after the jump. The input signals to the IM6100, DX0-11, $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and SKP, are sampled at IOTA during DEVSEL • XTC and the data from the IM6100 is available to the device(s) during that time. IOT $_{B}$ is used by the IM6100 to perform the operations requested during $I O T_{A}$. Both $I O T_{A}$ and $I O T_{B}$ consist of six (6) internal states.

In summary, Programmed Data Transfer performs data I/O with a minimum of hardware support. The maximum rate at which programmed data transfers may take place is limited by the IM6100 instruction execution rate, however, the data rate of the most commonly used peripheral devices is much lower than the maximum rate at which programmed transfers can take place in the IM6100. The major drawback associated with Programmed Data Transfer is the IM6100 must hang up in a waiting loop while the I/O device completes the last transfer and prepares for the next transfer. On the other hand, this technique permits easy hardware implementation and simple, economical interface design. For this reason, almost all devices except mass storage units rely on programmed data transfer.


Figure 9: IOT Instruction Format


Figure 10: Input-Output Instruction Timing

INSTRUCTION SET (CONTINUED)

Table VI: Programmed I/O Control Lines

CONTROL LINES   $\mathbf{C}_{0}$ $\mathbf{C}_{1}$ $\mathbf{C}_{2}$			OPERATION	DESCRIPTION
H	H	H	DEV $\leftarrow \mathrm{AC}$	The content of the AC is sent to the device.
L	H	H	DEV $\leftarrow \mathrm{AC}$; CLA	The content of the AC is sent to a device and then the AC is cleared.
H	L	H	$A C \longleftarrow A C \vee D E V$	Data is received from a device, OR'ed with the data in the AC and the result is stored in the AC.
L	L	H	$\mathrm{AC} \leftarrow \mathrm{DEV}$	Data is received from a device and loaded into the AC.
*	H	L	$P C \leftarrow P C+D E V$	Data from the device is added to the contents of the PC. This is referred to as a RELATIVE JUMP.
	L	L	$\mathrm{PC} \leftarrow \mathrm{LEV}$	Data is received from a device and loaded into the PC. This is referred to as an ABSOLUTE JUMP.

*Don't Care

## INTERRUPT TRANSFER

## PROGRAM INTERRUPT TRANSFERS

The program interrupt system may be used to initiate programmed data transfers in such a way that the time spent waiting for device I/O is greatly reduced or eliminated altogether. This is accomplished by isolating the I/O handling routines from the mainline program and using the interrupt system to ensure that these routines are entered only when an I/O device status is set, indicating that the device is actually ready to perform a data transfer.

The interrupt system allows certain external conditions to interrupt the computer program by driving the INTREQ input Low. If no higher priority requests are outstanding and the interrupt system is enabled, the IM6100 grants the device interrupt at the end of the current instruction. After an interrupt has been granted, the Interrupt Enable Flip-Flop in the IM6100 is reset so that no more interrupts are acknowledged until the interrupt system is re-enabled under program control.


Figure 11: Device Interrupt Grant Timing

## DEVICE INTERRUPT GRANT TIMING

The current contents of the Program Counter, PC, are deposited in location 00008 of the memory and the program fetches the instruction from location 00018. The return address is available in location 00008 . This address must be saved in a software stack, before the interrupts are reenabled, if nested interrupts are permitted. The INTGNT signal, Figure 11, is activated by the IM6100 when a device interrupt is acknowledged; this signal is reset by executing any IOT instruction as shown in Figure 12. The INTGNT signal is necessary to implement an External Vectored Priority Interrupt network. The IM6101 PIE contains the logic necessary to implement both vectored and non-vectored interrupts.
The user program controls the interrupt mechanism of the IM6100 by executing the processor IOT instructions listed in Table VII. Several of these interrupt IOT instructions are also used if the memory is extended beyond 4 K words to save and restore extended memory status during interrupt servicing.


## INSTRUCTION SET (CONTINUED)

Table VII: Processor IOT Instructions

MNEMONIC	$\begin{aligned} & \text { OCTAL } \\ & \text { CODE } \end{aligned}$	OPERATION
SKON	6000	SKIP IF INTERRUPT ON - If interrupt system is enabled, the next sequential instruction is skipped. The Interrupt system is disabled.
'ION	6001	INTERRUPT TURN ON - The internal interrupt acknowledge system is enabled. The interrupt system is enabled after the CPU executes the next sequential instruction. The INTERRUPT ENABLE TIMING is shown in Figure 13.
IOF	6002	INTERRUPT TURN OFF - The interrupt system is disabled. Note that the interrupt system is automatically disabled when the CPU acknowledges an INT request.
SRQ	6003	SKIP IF INT REQUEST - The next sequential instruction is skipped if the INT request bus is low.
GTF	6004	GET FLAGS - The following machine states are read into the indicated bits of AC.   bit 0 - Link   bit 2 - INT request bus   bit 4 - Interrupt Enable FF   Other bits may be modified by external devices by controlling the C-lines, (ex. Extended memory control).
RTF	6005	RETURN FLAGS - Link is restored from AC ( 0 ). Interrupt system is enabled after the next sequential instruction is executed. All AC bits are available externally to restore external states. (ex. Extended memory control).
SGT	6006	Operation is determined by external devices, if any.
CAF	6007	CLEAR ALL FLAGS - AC and Link are cleared. Interrupt system is disabled.

## IFETCH

IFETCH


Figure 13: Interrupt Enable FF ON (ION)

## CONTROL PANEL INTERRUPT TRANSFER

The IM6100 supports a memory space completely separate from main memory, called control panel memory. Therefore, the IM6100 control panel and other supervisory functions are implemented in software. This implementation need not use any part of the main memory or change the processor state. This is an important feature, since the final version of the system may not have a control panel and the system designer would like to use the entire capacity of the main memory for the specific system application.
The control panel communicates with the IM6100 with the Control Panel Request, CPREQ, line. The CPREQ is functionally similar to the INTREQ with some important differences. The CPREQ is granted even when the machine is in the HALT state; the IM6100 is temporarily put in the RUN
state for the duration of the panel routine. The IM6100 reverts to its original processor state after the panel routine has been executed.
The CPREQ does not affect the interrupt enable system, and the processor IOT instruction, ION is redefined and IOF is ignored while the IM6100 is in the Control Panel Mode. Once a CPREQ is granted, the IM6100 will not recognize any DMAREQ or INTREQ until CPREQ has been fully serviced. When a CPREQ is granted, the PC is stored in location 00008 of the Panel Memory and the IM6100 resumes operation at location 77778. The Panel Memory would be organized with RAM's in the lower pages and PROM's in the higher pages. The control panel service routine would be stored in the higher pages in the nonvolatile PROM's, starting at 77778 .

CPINT IFETCH

(1) ADDRESS $0000_{8}$
(2) DON'T CARE READ
(3) PC WRITTEN IN LOC 0000 OF CP MEM
(4) ADDRESS 77778
(5) INSTRUCTION FETCHED FROM LOC 77778 OF CP MEM
(6) if CPU is halted, the run is true at ti of cpint

Figure 14: Control Panel Interrupt Grant Timing

## INSTRUCTION SET (CONTINUED)

A Control Panel Flip-Flop, CNTRL FF, internal to the IM6100, is set when the CPREQ is granted. The CNTRL FF prevents further CPREQ's from being granted.
When the CNTRL FF is set, the Control Panel Memory Select, CPSEL, is active rather than the Memory Select, MEMSEL, for memory references. The CPSEL signal may therefore be used to distinguish the Control Panel Memory from the Main Memory. However, during the Execute phase of indirectly addressed AND, TAD, ISZ or DCA instructions, the MEMSEL is made active. The instructions are always fetched from the control panel memory, and the operand address for indirectly address AND, TAD, ISZ or DCA refers first to the control panel memory for an effective address, which, in turn, refers to a location in the main memory. A main memory location may therefore be examined and changed by indirectly addressed TAD and DCA instructions, Figure 15, respectively. Every location in the main memory is accessible to the control panel routine.
Exiting from the control panel routine is achieved by executing the following sequence with reference made to Figure 16.

## ION

JMP I $0000_{8}$ (Loc 00008 in CPMEM)
The ION, 60018, instruction will reset the CP FF after executing the next sequential instruction, but will not affect
the interrupt system since the CNTRL FF is still active. Location 00008 of the CPMEM contains either the original return address, deposited by the IM6100 when the CP routine was entered, or a new starting address defined by the CP routine, for example, by activating the LOAD ADDRESS SWITCH. CPREQ's are normally generated by the manual actuation of the control switches. If the CPU registers must be displayed in real-time, the CPREQ's must be generated by a timer at fixed intervals.
The designer may also make use of the control panel features to implement Bootstrap loaders in the CP Memory so that the loader will be "transparent" to the main memory. Programs will be loaded by DCA I POINTER instruction, the pointer being developed in the CP RAM to point to the main memory location to be loaded.
Approximately $64 \mathrm{P} / \mathrm{ROM}$ locations are sufficient to implement all the functions of the PDP®-8/e Control Panel. The IM6100 provides for a 12-bit switch register which can be read by the IM6100 under program control with the SWITCH REGISTER, OSR, instruction even without a control panel. An RTF, 60058, instruction also resets the internal CNTRL FF. Exiting from a panel routine can be achieved by activating the RESET line since RESET has a higher priority than CPREQ, see Figure 18. If the RUN/HLT line is pulsed while the IM6100 is in the panel mode, it will 'remember' the pulses(s) but defer any action until the IM6100 exits from the panel mode.

(1) Instruction address
(5) OPERAND ADDRESS
(2) INSTRUCTION FROM CP MEMORY
(6) DON'T CARE MAIN MEM READ
(3) EFFECTIVE ADDRESS
(4) OPERAND ADDRESS
(7) AC WRItten into main memory

Figure 15: "DCA Indirect" In Control Panel Routine


Figure 16: "ION; JMP I 00008" In Control Panel Routine

## DIRECT MEMORY ACCESS (DMA)

Direct Memory Access, sometimes called data.break, is the preferred form of data transfer for use with high-speed storage devices such as magnetic disk or tape units. The DMA mechanism transfers data directly between memory and peripheral devices, and the IM6100 is involved only in setting up the transfer; the transfers take place on a "cycle stealing" basis. The DMA transfer rate is limited only by the bandwidth of the memory and the data transfer characteristics of the device.
The device generates a DMA Request when it is ready to transfer data. The IM6100 grants the DMAREQ by activating
the DMAGNT signal at the end of the current instruction as shown in Figure 17. The IM6100 suspends any further instruction fetches until the DMAREQ line is released. The DX lines are tri-stated, all SEL lines are high, and the external timing signals $X T_{A}, X T_{B}$, and $X T_{C}$ are active and $L X M A R$ remains low. The device which generated the DMAREQ must provide the address and the necessary control signals to the memory for data transfers. The DMAREQ line can also be used as a level sensitive "pause" line.
DMA may also be implemented in a transparent mode without stealing processor cycles by using the DX bus during idle periods. The IM6102 MEDIC operates in this manner.

(1) DMAREQ REMOVED AFTER DMAGNT

Figure 17: Direct Memory Access(DMA)

## INTERNAL PRIORITY STRUCTURE

After an instruction is completely sequenced, the major state generator scans the internal priority network as shown in Figure 18. The state of the priority network decides the next sequence of the IM6100.
The request lines, RESET, CPREQ, RUǸ/HLT, DMAREQ and INTREQ, are sampled in the last cycle of an instruction execution, at time T1. The worst case response time of the IM6100 to an external request is, therefore, the time required to execute the longest instruction preceded by any 6-state execution cycle. For the IM6100, this is an autoindexed ISZ, 22 states, preceded by any 6 -state execution cycle instruction.
When the IM6100 is initially powered up, the state of the timing generator is undefined. The generator is automatically initialized with a maximum of 34 clock pulses. The request inputs, as the IM6100 is powered on, must span at least 58 clock pulses to be recognized, 34 clocks for the counter to initialize and a maximum of two IM6100 cycles ( 20 to 24 clocks) for the state generator to sample the request lines. A positive transition on RUN/HALT should occur at least 10 clock pulses after RESET for it to be recognized.
The internal priority is RESET, CPREQ, 'RUN/HLT, DMAREQ, INTREQ, and IFETCH.

## IFETCH

If no external requests are pending, the IM6100 fetches the next instruction pointed to by the contents of the PC. The IFETCH line is active during the cycle in which the instruc-
tion is fetched. External devices can monitor DX, 0-2, during IFETCH-XTA to determine the functional class of the current instruction. For example, the external memory extension hardware must know when JMP or JMS instructions are fetched to implement the Extended Memory Control. The IM6102 does this to implement extended memory addressing
The Programmable Logic Array, PLA, in the IM6100 sequences the IM6100 to execute the fetched instruction. All INDIRECT and AUTOINDEX Memory Reference Instructions go through a common state sequence to generate the Effective Address, EA, of the operand. The subsequent sequence, referred to as the EXECUTE phase, is controlled by the functional class of the instruction. The EXECUTE phase of AND, TAD, DCA, JMS, JMP and OPR Group 3 Microinstructions consists of only one cycle. ISZ and IOT have a 2-cycle EXECUTE phase. OPR Group 1 and Group 2 Microinstructions have an optional second cycle, depending on the microcoding of the OPR instructions. An IM6100 cycle consists of 5 states, $T_{1}, T_{2}, T_{3}, T_{4}$ and $T_{5}$, with an optional sixth state, $\mathrm{T}_{6}$, for Output Transfers (WRITE).
The state sequence for internal (processor) and external IOT instructions are identical. The Device Address and Control bits are available in the External Address Register for internal IOT instructions. External hardware, for example Extended Memory Control, can control the C-lines for data transfers to implement Get Flags (GTF), Return Flags (RTF), and Clear All Flags (CAF) instructions. External Control of the C-lines is necessary to implement these internal IOT instructions since the flag bits may be distributed both inside and outside the IM6100.


Figure 18: Major Processor States and Number of Clock Cycles in Each State

## RESET

The Reset initializes all internal IM6100 flags and clears the AC and the LINK. The machine is halted.

As long as the RESET line is low, the IM6100 remains in the reset state and the DX lines are three stated. The IM6100
continues to provide the external timing signals $\mathrm{XT}_{\mathrm{A}}, \mathrm{X} T_{\mathrm{B}}$ and $\mathrm{XT} \mathrm{C}_{\mathrm{C}}$, all SEL lines are high, and the PC is set to 77778 . In most applications, the higher memory locations utilize P/ROM's or ROM's. Therefore, a power-up routine starting at the highest memory location can be used to initialize the system. It is also possible to force entry into control panel memory on power-up.

(1) requests sampled at T1 of the final execute phase
(2) EXECUTE MAY BE $5 / 6$ STATES
(3) PC IS SET TO ${ }^{7777}$ 8
(4) CPU HALTS

Figure 19: Reset Timing

## RUN/HALT

RUN/HLT changes the state of the IM6100's RUN/HLT flipflop. Pulsing the line low causes the IM6100 to alternately run and halt. The RUN/HLT line is normally high. The IM6100 recognizes the positive transition of the signal.
The RUN/HLT flip-flop can be put in the halt state under program control by executing the HLT, 74028, instruction. When the IM6100 is halted, RUN/HLT is functionally
identical to the CONTINUE switch of the PDP-8/e control panel and the RUN signal is low. The RUN signal can be used to power down external circuitry for a low power system. The RUN/HLT can also be used to make the IM6100 execute one instruction at a time as shown in Figure 21. The RUN/HLT combines the functional features of STOP, CONTINUE, and SINGLE INSTRUCTION as defined by the PDP-8/e Control Panel.


Figure 20: Run/Halt Timing


Figure 21: "Single Step" With Run/HIt

## WAIT

The IM6100 samples the WAIT line during input-output data transfers (Figure 22). The WAIT line, if low, controls the transfer duration. If WAIT is active during input transfers (READ), the CPU waits in the T2 state. For an output transfer (WRITE), WAIT controls the time for which the write data is maintained on the DX lines by extending the T6 state. The wait duration is an integral multiple of the oscillator time period - 250 nsec at 4 MHz .
The WAIT mechanism is an ideal way of providing for slower memory and peripheral devices in the system without significant degradation in system performance. For example, if one waits for all reads and writes for one delay unit ( 250 nsec at 4 MHz ), the system throughput is reduced by less than $3 \%$.


Figure 22: Wait Line Sampling Timing


Figure 23: Memory And Input Transfer Wait Circuit
The circuit shown in Figure 23 will make the IM6100 wait during main memory and device input (READ) transfers. MEMSEL or DEVSEL, being low, will assert WAIT low. When XTA becomes active high, the WAIT line is asserted high after a delay. The wait duration is controlled by the delay in the XTA-WAIT path ( $\mathrm{t}_{\mathrm{L} 1}$ ).
The following conditions must be satisfied to obtain $x$ units of delay during READ's:
$t_{s \mid(\max )}+t_{12(\max )}+t_{w s}<t_{s}$
$t_{x t(\text { min })}+t_{11(\text { min })}-t_{w h} \geq x \frac{t_{s}}{2}$
$t_{x t(\max )}+t_{11(\text { max })}+t_{w s}<(x+1) \frac{t_{s}}{2}$

For example, for an IM6100 I device operating at $4 \mathrm{MHz}, 5.0 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$, the constraints to be met to obtain 1 unit of delay (250nsec) are as follows:

```
ti2(max)}<\mp@subsup{t}{\mathrm{ s }}{}-\mp@subsup{t}{\mathrm{ sl(max) }}{}-\mp@subsup{t}{\mathrm{ ws}}{
```

$<500-300-30$
< 170nsec
$t_{11 \text { (min })} \geq \frac{t_{s}}{2}-t_{x t(\text { min })}+t_{w h}$
$\geq 250-100+30$
$\geq 180 \mathrm{nsec}$
$t_{11(\text { max })}<t_{s}-t_{x t(\text { max })}-t_{w s}$
$<500-250-30$
< 220nsec
Note that the delay circuit can be as simple as an R-C network in conjunction with CMOS logic. Note also that the WAIT can be made selective on main memory, device, control panel memory or switch register select line.


Figure 24: Write Transfer Wait Circuit
Figure 24 shows a logic implementation to wait during WRITE's only.
The rising edge of MEMSEL (or CPSEL or DEVSEL) during READ clocks in a zero on the WAIT line. XTB, after a delay, releases the WAIT line. Every WRITE pulse is preceded by a READ pulse, and if no write operation is performed in a cycle, the T6 state is noi entered and the WAIT line is not sampled. For $x$ units of delay, the following conditions must be met:
$t_{x t(\min )}+t_{13(\text { min })}-t_{w h} \geq x t_{2}$ and
$t_{x t(\text { max })}+t_{13(\text { max })}+t_{w s}<(x+1) \frac{t_{s}}{2}$

In the circuit shown in Figure 25, the WAIT signal is normally asserted low and it is released by XTA during READ's and XTB during WRITE's. Note that WAIT is active for all data transfers. Since XTA and XTB have identical timing relative to the WAIT sample point, the constraints to be satisfied are as follows:
$t_{x t(\text { min })}+t_{14(\text { min })}-t_{w h} \geq x t_{s}$ and
$t_{x t(\text { max })}+t_{14(\max )}+t_{w s}<(x+1) \frac{t_{s}}{2}$


Figure 25: Data Transfer Wait Circuit

IM6101

## Programmable Interface Element (PIE)

## FEATURES

- Compatible with IM6100 Microprocessor
- Four Separate SENSE Input Lines to Sense the Status of Peripheral Devices
- Four Programmable OPERATE Control Lines for READ/WRITE on Peripheral Devices
- Four General Purpose FLAGS each of which is Programmable
- Chained Vectored Priority Interrupt Structure Possible
- Low Power: Less than 1mW @ 5V
- TTL Compatible at +5V



## GENERAL DESCRIPTION

The IM6101 is a Programmable Interface Element (PIE) device designed for interfacing various peripheral chips such as UART's, FIFO's, Keyboard Scanner's to IM6100 Microprocessor. In this way, the IM6101 eliminates the need for additional external logic between $6100 \mu \mathrm{P}$ and its peripherals.

The IM6101 provides the control signals to peripheral devices for READING or WRITING on the DX bus by activating the WRITE CNTRL and READ CNTRL lines with IOT (Input Output Transfer) instructions.

Each IM6101 can sample 4 status lines from peripheral devices. It can also generate interrupt requests to the $\mu \mathrm{P}$ if the corresponding individual interrupt enable bits in the PIE are enabled and the respective status lines become active.

The four FLAG lines may be set or reset under program control to send control information to the peripheral devices or to send binary data.

PIN CONFIGURATION (outline dwg DL, PL)
VCC
INTGNT
PRIN

## IM6101

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6101I ................ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $\ldots . . . . .$. . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage :...................... 4.0 V to 7.0 V
Supply Voltage ................................. +8.0 V
Voltage On Any Input or
Output Pin $\ldots \ldots \ldots \ldots . . . . \begin{aligned} & -0.3 \mathrm{~V} \text { to } \mathrm{Vcc}+0.3 \mathrm{~V}\end{aligned}$

NOTE: Stresses above those listed, under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	VIH	Input Voltage High		Vcc-2.0			V
2	VIL	Input Voltage Low				0.8	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.4			V
5	Vol	Output Voltage Low	$\mathrm{IOL}=2.0 \mathrm{~mA}$			0.45	V
6	IOLK	Output Leakage.	GND $\leq$ VOUT $\leq V_{C C}$	-1.0		1.0	$\mu \mathrm{A}$
7	ICCSB	Power Supply Current-Standby	$V C C=5 V \pm 10 \%$		1.0	100	$\mu \mathrm{A}$
8	Iccop	Power Supply Current-Dynamic	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{f}=250 \mathrm{kHz} \end{aligned}$		$\therefore$	500	$\mu \mathrm{A}$
9	CIN	Input Capacitance	-		7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$\mathrm{t}_{\mathrm{dr}}$	Delay from DEVSEL to READ			375	ns
2	$\mathrm{t}_{\mathrm{dw}}$	Delay from DEVSEL to WRITE	100		375	ns
3	$\mathrm{t}_{\mathrm{df}}$	Delay from DEVSEL to FLAG			475	ns
4	$\mathrm{t}_{\mathrm{dc}}$	Delay from DEVSEL to C1, C2			560	ns
5	$\mathrm{t}_{\mathrm{di}}$	Delay from DEVSEL to SKP/INT			560	ns
6	$\mathrm{t}_{\mathrm{da}}$	Delay from DEVSEL to DX			560	ns
7	$\mathrm{t}_{\mathrm{lxmar}}$	LXMAR Pulse Width	300		$:$	ns
8	$\mathrm{t}_{\mathrm{as}}$	Address Setup Time	100			ns
9	$\mathrm{t}_{\mathrm{ah}}$	Address Hold Time	150			ns
10	$\mathrm{t}_{\mathrm{ds}}$	Data Setup Time	90			ns
11	$\mathrm{t}_{\mathrm{dh}}$	Data Hold Time	150			ns

Note: See Figure 2 for an A.C: Timing Diagram.

桃

## IM6101A

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6101A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	4.0V to 11.0V
Supply Voltage	+12.0V
Voltage On Any Input or	
Output Pin	-0.3V to Vcc +0.3 V

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{O}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		70\% Vcc			V
2	ViL	Input Voltage Low	. .			20\% VCc	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=0 \mathrm{~mA}$	Vcc-0.01			V
5	Vol	Output Voltage Low	$\mathrm{IOL}=0 \mathrm{~mA}$			GND +0.01	V
6	loLK	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	ICCSB	Power Supply Current-Standby	$\mathrm{VCC}=10 \mathrm{~V} \pm 5 \%$		1.0	500	$\mu \mathrm{A}$
8	Ícop	Power Supply Current-Dynamic	$\begin{aligned} & V \mathrm{VC}=10 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}=571 \mathrm{kHz} \end{aligned}$	-	-	2.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co.	Output Capacitance			8.0	10.0	pF

A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{VCC}_{\mathrm{C}}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{p} \mathrm{F}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$t_{\text {dr }}$	Delay from DEVSEL to READ			150	ns
2	$t_{d w}$	Delay from DEVSEL to WRITE	50		150	ns
3	$t_{\text {df }}$	Delay from DEVSEL to FLAG			200	ns
4	$t_{\text {dc }}$	Delay from DEVSEL to C1, C2			215	ns
5	$t_{\text {di }}$	Delay from DEVSEL to SKP/INT			215	ns.
6	$t_{\text {da }}$	Delay from DEVSEL to.DX			215	ns
7	$\mathrm{t}_{\text {x }}$ mar	LXMAR Pulse Width	120		.	ns
8	$t_{\text {as }}$	Address Setup Time	40			ns
9	$t_{\text {ah }}$	Address Hold Time	50			ns
10	$\mathrm{t}_{\text {ds }}$	Data Setup Time	65			ns
11	$t_{\text {dh }}$	Data Hold Time	50			ns

Note: See Figure 2 for an A.C. Timing Diagram.

IM6101AM

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Military IM6101AM ............... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ............. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage .................... 4.0 V to 11.0 V
Supply Voltage ................................ +12.0 V
Voltage On Any Input or
Output Pin
$\ldots \ldots . . . . . . . .$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings". may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1.	$\mathrm{V}_{\text {IH }}$	Input Voltage High		70\% Vcc			V
2	VIL	Input Voltage Low				20\% Vcc	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=0 \mathrm{~mA}$	Vcc-0.01		,	V
5	Vol	Output Voltage Low	$\mathrm{IOL}=0 \mathrm{~mA}$			GND +0.01	V
6	lolk	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
7	ICCSB	Power Supply Current-Standby	VCC $=10 \mathrm{~V} \pm 5 \%$		1.0	500	$\mu \mathrm{A}$
8	I'cop	Power Supply Current-Dynamic	$\begin{aligned} & V_{c C}=10 V \pm 5 \% \\ & f=571 \mathrm{kHz} \end{aligned}$			2.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{VCC}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$\mathrm{t}_{\mathrm{dr}}$	Delay from DEVSEL to READ			165	ns
2	$\mathrm{t}_{\mathrm{dw}}$	Delay from DEVSEL to WRITE	50		165	ns
3	$\mathrm{t}_{\mathrm{df}}$	Delay from DEVSEL to FLAG			220	ns
4	$\mathrm{t}_{\mathrm{dc}}$	Delay from DEVSEL to C1, C2			240	ns
5	$\mathrm{t}_{\mathrm{di}}$	Delay from DEVSEL to SKP/INT			240	ns
6	$\mathrm{t}_{\mathrm{da}}$	Delay from DEVSEL to DX			240	ns
7	$\mathrm{t}_{\mathrm{lxmar}}$	LXMAR Pulse Width	135			ns
8	$\mathrm{t}_{\mathrm{as}}$	Address Setup Time	45			ns
9	$\mathrm{t}_{\mathrm{ah}}$	Address Hold Time	55			ns
10	$\mathrm{t}_{\mathrm{ds}}$	Data Setup Time	70			ns
11	$\mathrm{t}_{\mathrm{dh}}$	Data Hold Time	55			ns

Note: See Figure 2 for an A.C. Timing Diagram.

## IM6101-1I

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6101-1I ............. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ............. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage ...................... 4.0 V to 7.0 V
Supply Voltage $+8.0 \mathrm{~V}$
Voltage On Any Input or
Output Pin .................... -0.3V to Vcc +0.3 V

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{1} \mathrm{H}$	Input Voltage High		Vcc-2.0			V
2	VIL	Input Voltage Low				0.8	V
3	IIL	Input Leakage	GND $\leq V_{\text {IN }} \leq V_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
5	Vol	Output Voltage Low	$1 \mathrm{LL}=2.0 \mathrm{~mA}$			0.45	V
6	IOLK	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Iccsb	Power Supply Current-Standby	$\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$		1.0	100	$\mu \mathrm{A}$
8	ICCOP	Power Supply Current-Dynamic	$\begin{aligned} & V_{c c}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{f}=330 \mathrm{kHz} \end{aligned}$			500	$\mu \mathrm{A}$
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$\mathrm{t}_{\mathrm{dr}}$	Delay from DEVSEL to READ			300	ns
2	$\mathrm{t}_{\mathrm{dw}}$	Delay from DEVSEL to WRITE	100		300	ns
3	$\mathrm{t}_{\mathrm{df}}$	Delay from DEVSEL to FLAG			375	ns
4	$\mathrm{t}_{\mathrm{dc}}$	Delay from DEVSEL to C1, C2			460	ns
5	$\mathrm{t}_{\mathrm{di}}$	Delay from DEVSEL to SKP/INT			460	ns
6	$\mathrm{t}_{\mathrm{da}}$	Delay from DEVSEL to DX		460	ns	
7	$\mathrm{t}_{\mathrm{lx} \mathrm{mar}}$	LXMAR Pulse Width	240			ns
8	$\mathrm{t}_{\mathrm{as}}$	Address Setup Time	80			ns
9	$\mathrm{t}_{\mathrm{ah}}$	Address Hold Time	125			ns
10	$\mathrm{t}_{\mathrm{ds}}$	Data Setup Time	80			ns
11	$\mathrm{t}_{\mathrm{dh}}$	Data Hold Time	100			ns

Note: See Figure 2 for an A.C. Timing Diagram.

## IM6101-1M

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Military IM6101-IM ............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ............. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage ..................... 4.0 V to 7.0 V
Supply Voltage .............................. +8.0 V
Voltage On Any Input or
Output Pin ................... -0.3 V to Vcc +0.3 V

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent 'device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		Vcc-2.0			V
2	$\mathrm{V}_{\text {IL }}$	Input Voltage Low				0.8	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {c }}$	-1.0		1.0	$\mu \mathrm{A}$
4	V OH	Output Voltage High	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
5	Vol	Output Voltage Low	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
6	IoLk	Output Leakage	GND $\leq$ Vout $\leq$ VCC	-1.0	.	1.0	$\mu \mathrm{A}$
7	ICCSB	Power Supply Current-Standby	V cc $=5 \mathrm{~V} \pm 10 \%$		1.0	100	$\mu \mathrm{A}$
8	ICCOP	Power Supply Current-Dynamic	$\begin{aligned} & \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{f}=330 \mathrm{kHz} \end{aligned}$			500	$\mu \mathrm{A}$
9	Cin	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$\mathrm{t}_{\mathrm{dr}}$	Delay from DEVSEL to READ			330	ns
2	$\mathrm{t}_{\mathrm{dw}}$	Delay from DEVSEL to WRITE	100		330	ns
3	$\mathrm{t}_{\mathrm{df}}$	Delay from DEVSEL to FLAG			415	ns
4	$\mathrm{t}_{\mathrm{dc}}$	Delay from DEVSEL to C1, C2			510	ns
5	$\mathrm{t}_{\mathrm{di}}$	Delay from DEVSEL to SKP/INT			510	ns
6	$\mathrm{t}_{\mathrm{da}}$	Delay from DEVSEL to DX			510	ns
7	$\mathrm{t}_{\mathrm{xmar}}$	LXMAR Pulse Width	265			ns
8	$\mathrm{t}_{\mathrm{as}}$	Address Setup Time	90			ns
9	$\mathrm{t}_{\mathrm{ah}}$	Address Hold Time	140			ns
10	$\mathrm{t}_{\mathrm{ds}}$	Data Setup Time	80			ns
11	$\mathrm{t}_{\mathrm{DH}}$	Data Hold Time	110			ns

[^26]IM6101
IM6101. FUNCTIONAL DESCRIPTION

Pin Number	Symbol	$\begin{aligned} & \text { Input/ } \\ & \text { Output } \end{aligned}$	Description
1	Vcc		+5 volts
2	INTGNT	I	A high level on INTERRUPT GRANT inhibits recognition of new interrupt requests and allows the priority chain time to uniquely specify a PIE.
3	PRIN	1	A high level ON PRIORITY IN and an interrupt request will select a PIE for vectored interrupt.
4	SENSE 4	1	The SENSE input is controlled by the SL (sense level) and SP (sense polarity) bits of control register B. A high SL level will cause the SKIP flip flop to be set by a level while a low SL level causes sense and interrupt flip flops to be set by an edge. A high SP level will cause the sense flip flop to set by a positive going edge or high level. A high IE (interrupt enable) level generates an interrupt request whenever the INT flip flop is set (by an edge).
5	SENSE 3	1	See pin 4 - SENSE 4
6	SENSE 2	1	See pin 4 - SENSE 4
7	SENSE 1	1	See pin 4 - SENSE 4
8	SEL 3	1	Matching SELECT(3-7) inputs with PIE addressing on DX(3-7) during IOTA selects a PIE for programmed input output transfers.
9	SEL 4	1	See pin 8 - SEL 3
10	LXMAR	1	A positive pulse on LOAD EXTERNAL ADDRESS REGISTER loads address and control data from DX(3-11) into the address register.
11	SEL 5	1	See Pin 8 - SEL 3
12	SEL 6	1	See Pin 8 - SEL 3
13	XTC	1	The XTC input is a timing signal produced by the microprocessor. When XTC is high a low going pulse on DEVSEL initiates a "read" operation. When XTC is low, a low going pulse on DEVSEL initiates a "write" operation.
14	SEL 7	1	See Pin 8 - SEL 3
15	DX 0	1/0	Data transfers between the microprocessor and PIE take place via these input/output pins.
16	DX 1	1/0	See Pin 15 - DX 0
17	DX 2	1/0	See Pin 15 - DX 0
18	DX 3	1/0	See Pin $15-\mathrm{DX} 0$
19	DX 4	1/0	See Pin $15-\mathrm{DX} 0$
20	DX 5	1/0	See Pin $15-\mathrm{DX} 0$
21	DX 6	1/0	See Pin $15-\mathrm{DX} 0$
22	DX 7	1/0	See Pin $15-$ DX 0
23	DX 8	1/0	See Pin $15-\mathrm{DX} 0$


Pin Number	Symbol	Input/ Output	Description
24	DX 9	1/O	See Pin $15-$ DX 0
25	DX 10	1/0	See Pin 15 - DX 0
26	DX 11	1/0	See Pin $15-\mathrm{DX} 0$
27	GND		
28	$\overline{\text { DEVSEL }}$	1	The DEVSEL input is a timing signal produced by the microprocessor during IOT instructions. It is used by the PIE to generate timing for controlling PIE registers and "read" and "write" operations.
29	FLAG 4	0	The FLAG outputs reflect the data stored in control register A. Flags (1-4) can be set or reset by changing data in CRA via a WRA (write control register A) command. FLAG1 and FLAG3 can be controlled directly by PIE commands SFLAG1, CFLAG1, SFLAG3 and CFLAG3.
30	FLAG 3	0	See Pin 29 - FLAG 4
31	FLAG 2	0	See Pin 29 - FLAG 4
32	FLAG 1	0	See Pin 29 - FLAG 4
33	$\overline{\mathrm{C} 1}$	0	The PIE decodes address, control and priority information and asserts outputs C1 and C2 during the IOTA cycle to control the type of data transfer. These outputs are open drain for bussing and require pullup resistors to Vcc.
	-		C1(L), C2(L)-vectored interrupt C1(L), C2(H) - READ1, READ3 or RRA commands $\mathrm{C} 1(\mathrm{H}), \mathrm{C} 2(\mathrm{H})$ - all other instructions
34	C 2	0	See Pin 33-C1
35	READ1	0	Outputs READ1 and READ2 are used to gate data from peripheral devices onto the DX bus for input to the IM6100. Note the data does not pass through the PIE.
36	WRITE1	0 1	Outputs WRITE1 and WRITE2 are used to gate data from the IM6100 DX bus into peripheral devices. Data does not pass through the PIE.
37	READ2	0	See Pin 35 - READ1
37		-	See Pin $36-$ WRITE1
38	WRITE2   SKP/INT	0	The PIE asserts this line low to
39	SKP/INT	0	generate interrupt requests and to signal the IM6100 when sense flip flops are set during SKIP instructions. This output is open drain.
40	POUT	0	A high level on priority out indicates no higher priority PIE interrupt requests are outstanding. This output is tied to the PRIN input of the next lower priority PIE in the chain.

## TIMING DIAGRAM

Timing for a typical IOT transfer is shown in Figure 2. During the IFETCH cycle, the processor obtains from memory an IOT instruction of the form 6XXX. During the IOTA the processor places that instruction back on the DX lines (3) and pulses LXMAR transferring address and control information for the IOT transfer to all peripheral devices. A low going pulse on DEVSEL while XTC is high (4) is used by the addressed PIE
along with decoded control information to generate C1, C2, SKP and controls for data transfers to the processor. Control outputs READ1 and READ2 are used to gate peripheral data to the DX lines during this time. A low going pulse on DEVSEL while XTC is low (5) is used to generate WRITE1 and WRITE2 controls. These signals are used to clock processor accumulator data into peripheral devices.


FIGURE 2. IM6101 PIE Timing Diagram.

All PIE timing is generated from IM6100 signals LXMAR, DEVSEL, and XTC. No additional timing signals, clocks, or one shots are required. Propagation delays, pulse width, data setup and hold times are specified for direct interfacing with the IM6100.

## PIE ADDRESS AND INSTRUCTIONS

The IM6100 communicates with the PIE and with peripherals through the PIE via IOT commands. During the IOTA cycle (See Figure 1) an instruction of the form 6XXX is loaded into all PIE instruction registers. The bits are interpreted as shown below.

The 5 address bits (3-7) are compared with the select inputs SEL3, SEL4, SEL5, SEL6, SEL7 to address 1 of 31 possible PIE's. Address zero is reserved for IOT's internal to the IM6100. The four control bits are decoded to select one of 16 instructions. Note also that the IOT instructions 66XX are reserved for the Parallel Input/Output Port (P10-IM6103).


FIGURE 3. PIE Instruction Format.

CONTROL	MNEMONICS	DESCRIPTION
0000 1000		The READ instructions generate a pulse on the appropriate read outputs. This signal is used by the peripheral device to gate data onto the DX bus to be "OR'ed" with the IM6100 accumulator data.
0001 1001	WRITE1   WRITE2	The WRITE instructions generate a pulse on the appropriate write output. This signal is used by peripherals to load the IM6100 accumulator data on the DX lines into peripheral data registers.
$\begin{aligned} & 0010 \\ & 0011 \\ & 1010 \\ & 1011 \end{aligned}$	SKIP1   SKIP2   SKIP3   SKIP4	The SKIP instructions test the state of the sense flip flops. If the input conditions have set the sense flip flop, the PIE will assert the SKP/INT output causing the IM6100 to skip the next program instruction. The sense flip flop is then cleared. If the sense flip flop is not set, the PIE does not assert the SKP/INT output and the IM6100 will execute the next instruction.
0100	, RCRA	The Read Control Register A instruction gates the contents of CRA onto the DX lines during time (4) to be "OR" transferred to the IM6100 AC. (See Figure 2)
0101 1101 .1100	WCRA   WCRB   WVR	The Write Cọntrol Register A, Write Control Register B and Write Vector Register instructions transfer IM6100 AC data on the DX lines during time (5) of IOTA into the appropriate register. (See Figure 2) Bits 10, 11 of the VR;5, 7 of CRA; 8-11 of CRB are don't care bits for these instructions.
0110 1110	SFLAG1 SFLAG3	The SET FLAG instructions set the bits FL1 and FL3 in control register A to a high level. PIE outputs FLAG1 and FLAG3 follow the data stored in bits FL1 and FL3 of CRA.
$\begin{aligned} & \hline 0111 \\ & 1111 \end{aligned}$	CFLAG1 CFLAG3	The CLEAR FLAG instructions clear the bits FL1 and FL3 in control register A to a low level.
${ }^{(6007)} 8$	CAF	IM6100 internal IOT instruction CLEAR ALL FLAGS clears the interrupt requests by clearing the sense flip flops. It has no effect on control register output flags FL1, FL2, FL3, FL4. To clear these output flags, bits 0-3 of CRA must be cleared using WCRA with bits 0-3 of AC cleared.

## PRIORITY FOR VECTORED INTERRUPT

A hardware priority network uniquely selects a PIE to provide a vectored address. The first IOT command of any type, after the IM6100 signal INTERRUPT GRANT goes high, resets the line INTGNT to a low level. The signal INTGNT is used to freeze the priority network and enable vector generation. Within a given PIE, the internal priority is interrogated during every LXMAR.

The highest priority PIE has PRIN tied to VCC. The lowest priority PIE is the last one on the chain. The vector address generated by the PIE consists of 10 bits from the vector register and two bits that indicate the sense input within the highest priority PIE that generated the interrupt.
A. Daisy-chaining of several PIE chips.

B. Interrupt Vector Register Format.

SPRI	Conditions*
00	SENSE1
01	SENSE2 and not SENSE1
10	SENSE3 and not SENSE2 or SENSE1,
11	SENSE4 and not SENSE3 or SENSE2 or SENSE1,

*All sense input lines are enabled for interrupts.

FIGURE 4. IM6101 Priority for Vectored Interrupt.

## I/O CONTROL LINES (C1 AND C2)

The type of input-output transfer is controlled by the selected PIE by activating the $\overline{\mathrm{C} 1}, \overline{\mathrm{C} 2}$ lines as shown below. These outputs are open drain.

$\mathbf{C 1}$	$\mathbf{C 2}$	
$H$	$H$	DEV/PIE $~-~ A C ~ W r i t e ~$
L	H	AC - AC + DEV/PIE "OR" Read
L	L	PC - VECTOR ADDRESS Vectored Interrupt

## INTERRUPT/SKIP (INT/SKP)

Interrupt and skip information are time multiplexed on the same lines. Since the IM6100 samples skip and interrupt data at separate times (see Figure 1) there is no degradation in system performance. The PIE samples the sense flip flops and generates an interrupt request for enabled bits on the rising edge of LXMAR. Interrupt requests are asserted by driving the INT/SKP line low. During IOTA of SKIP instructions the INT/SKP. reflects the SENSE flip flop data.

If the SENSE flip flop is set, the INT/SKP line is driven low to cause the IM6100 to skip the next instruction. This output is open drain.

## CONTROL REGISTER A (CRA)

The CRA can be read and written by the IM6100 via the'RCRA and WCRA commands. The format and meaning of control bits are shown below.


* Don't care for WCRA, 0 for RCRA

FIGURE 5. Format for Control Register A.

## FL(1-4)

Data on FLAG outputs corresponds to data in FL (1-4). Changing the FL bits in CRA changes the corresponding FLAG output.

## IE(1-4)

A high level on INTERRUPT ENABLE enables interrupts.

## WP(1,2)

A high level on WRITE POLARITY bits causes positive pulses at the WRITE outputs (see Figure 1).

## IM6101

## CONTROL REGISTER B

The CRB can be written by the IM6100 via the WCRB instruction. It has no read back capability. The format and meaning of control bits are shown below. Bits 8-11 are don't care bits.


FIGURE 6. Format for Control Register B.

## SL(1-4)

A high level on the SENSE LEVEL bits causes the'SENSE inputs to be level sensitive. A low level on the SL bits causes the SENSE inputs to be edge sensitive. The INT FFs are set only if a sense line is set up to be edge sensitive.

## SP(1-4)

A high level on the SENSE POLARITY bits causes the SKIP flip flop to be set by a high level or positive going edge. A low level causes the SKIP flip flop to be set by a low level or negative going edge.

## PERIPHERAL INTERFACE LINES

SENSE(1-4)
The IM6101 has two latches associated with each sense input - a SKIP flip flop and an INTERRUPT flip flop.

For the Interrupt flip flop to be set, the corresponding interrupt enable bit must be set to 'one'. If the sense input is programmed to be edge sensitive, the flip flop is set when the edge occurs. If it was initially programmed to be level sensitive and then the móde is changed to be edge sensitive, the flip flop will be set if the polarity of sense input line corresponds to its SP bit.
All conditions that set the Interrupt flip flop also set the associated Skip flip flop. In addition, the Skip flip flop is set when the polarity of the sense input corresponds to its SP bit in the level sensitive mode.
The Skip flip flop is cleared at l'OTA READ time by executing a CAF (6007) instruction or a SKIP instruction on the associated sense input that actually skips. In the level sensitive mode, whenever the polarity of sense input does not correspond to its SP bit, the sense FF is cleared.
The Interrupt flip flop is cleared whenever the sense flip flop is cleared. In addition, it is cleared if the associated sense logic actually creates a vector, the interrupt enable bit is cleared to a 'zero' or the sense input is programmed to be level sensitive. Detailed operation of resetting Interrupt and Skip flop flops are as shown in Figure 7.


Figure 7. IM6101 SKIP Flip Flop and INTERRUPT Flip Flop Input Diagram.

## APPLICATIONS

## INTRODUCTION

The IM6101, Programmable Interface Element (PIE), provides a universal means of interfacing industry standard LSI devices and peripheral equipment controllers to the IM6100 Microproce'ssor.
The IM6100 configures each PIE for a specific interface during system initialization by programming the control registers within the PIE for write enable polarities, sense polarities, sense edges or levels, flag values and interrupt enables. On power-up, the registers will contain random bit patterns.
The data transfer between the IM6100 and the peripheral devices does not take place through the PIE. The programmable Interface Element provides the steering signals for data transfers. This approach was chosen since all the standard LSI. elements such as Keyboard chips, UARTs, FIFOs, etc. have internal storage latches and they require only control signals to take data from the bus or to put data on the bus. If some user defined peripheral interfaces do not have these built-in storage elements, discrete CMOS or low power Schottky latches, or flip-flops, must be provided to store the data from the IM6100 until the peripheral device is ready to accept it and to latch data from the peripheral devices until the IM6100 asks for it.

## INTERRUPT PROCESSING WITH PIE'S

The PIEs provide for a vectored priority interrupt scheme. Up to 31 PIEs may be chained to obtain 124 interrupt lines. The microprocessor will recognize, identify and start servicing the highest priority interrupt request within $36.6 \mu \mathrm{~s}$ at 3.3 MHz .
The INTREQ lines from all PIEs are wire-ANDed together. A PIE generates an interrupt request, if any one of its four sense lines, which are interrupt enabled, become active by driving the INTREQ line to the IM6100 low. If no higher priority requests are outstanding (RESET, CPREQ, HLT or DMAREQ), the lM6100 will grant the request at the end of the current instruction. The content of the Program Counter is deposited in location $\mathrm{OOOO}_{8}$ of the memory and the program fetches the next instruction from location 00018. The return address is hence available in location 00008 . This address must be saved in a software stack if nested interrupts are allowed.
The IM6100 activates the INTGNT signal high when an INTREQ is acknowledged. The INTGNT is reset by exe.cuting any IOT instruction. The' PIEs use the INTGNT signal to freeze the priority network and to uniquely specify the PIE with the highest priority interrupt request. The PIE with the highest priority request sends a unique vector address to the 1 M 6100 when the processor executes the first IOT instruction after the INTGNT. The Interrupt II Prototyping System uses the IOT instruction VECT (6047) for Vectoring.
The 12-bit vector address generated by the PIE consists of 10 high order bits from the vector register, defined by the user during sysiem initialization, and two low order bits which indicate the sense input that generated the interrupt. Therefore, if the instruction in location 00018 is VECT-60478, the processor will branch to 1 of 4 locations, depending on which of the sense lines within a PIE
generated the request. Each one of these locations must contain a Jump instruction pointing to the specific service routine for the corresponding sense input. The $36.6 \mu \mathrm{~s}$ interrupt acknowledge time at 3.3 MHz consists of $17 \mu \mathrm{~s}$ (max) to recognize an interrupt request, $3.6 \mu \mathrm{~s}$ to grant an interrupt request, $10 \mu \mathrm{~s}$ to execute the VECT for vectoring and $6.0 \mu \mathrm{~s}$ to execute a Jump instruction to a specific service routine.

## Proper vectoring requires the following conditions:

1. The IM6100 must be enabled for interrupts with the ION command.
2. The INTGNT output of the IM6100 must be connected to the INTGNT of all the PIEs and the PRIN of the PIE with the highest priority must be connected to VCC and its PROUT should be connected to the PRIN of the PIE with the next highest priority and so on.
3. The IE bit of the sense line that is expected to generate the interrupt must be set to 1 .
4. The sense line must be programmed to be edge sensitive. If a sense line is programmed to be level sensitive, it will not generate an INTREQ nor will it generate a vector.
5. The vector register of the PIE must be initialized with the proper vector. Note that the two least significant bits are generated by the PIE itself.
6 . The $\overline{C_{1}}$ and $\overline{\mathrm{C} 2}$ lines of all the PIEs must be wired together with the $\overline{\mathrm{C} 1}$ and $\overline{\mathrm{C} 2}$ of the IM6100 and pull up resistors must be provided on these lines since the PIE $\overline{\mathrm{C} 1}$ and $\overline{\mathrm{C} 2}$ outputs are open drain. The $\overline{\mathrm{SKP} / \mathrm{INT}}$ line of the PIE must be wired with the INT and SKP lines of the IM6100. If the PIE DX lines are buffered, the external bus must be enabled onto the PIE DX with the XTB being active high and the PIE DX bus must be enabled onto the external bus when the C1 line of a PIE is active low (during RCRA, READ1, READ2 or vector).
6. The vector address will be generated with the first IOT of any kind after the INTGNT.
7. Note also that a successful skip on a sense line will reset an interrupt request by the sense line, if any. One should not thus turn on the interrupt system after a sùccessful skip on a sense line expecting that the sense line that was just tested will generate a request.

## SKIP HANDLING WITH PIE'S

Each PIE provides for four SENSE lines. The active state of the SENSE inputs can be programmed to be a low level, high level, positive edge or negative edge. There is a SENSE FF in the PIE associated with each SENSE line. This FF is set when the SENSE line is "active".
The state of the SENSE FF can be tested by the SKP commands. When the IM6100 executes a SKIP instruction, it will skip the next sequential instruction if the SENSE FFi is set. If the skip is successful, the FF will be cleared.
If the sense line was set up to be edge sensitive, it can, therefore, be tested for the 'set' state only once. If the FF is set by a level, it will be cleared by the successful skip and then, set immediately by the active level.

## IM6101

If the SENSE FF was set by an edge, and the respective IE bit is enabled, the PIE will generate an INTREQ to the IM6100. Provided the priority conditions are met, the PIE will supply the vector address to the IM6100 when it executes the first IOT instruction of any kind, after the INTREQ has been granted. If the vector address is generated by FFi , one may still skip once on sense line i . It should be noted that if priority vectoring is inhibited by grounding PRIN, an INTREQ will be cleared only if a SKIPi instruction is executed to test the FFi that generated the request. Note also that an INTREQ will not be generated if the sense line was set up to be level sensitive. In certain instances, one may be interested in restoring the set state of a SENSE FF after it has been successfully tested and cleared and if the SENSE line has been programmed to be edge sensitive. For example, assume that SENSE1 is programmed to be positive edge sensitive ( $\mathrm{SL} 1=0, S P 1=1$ ). The transition from a 0 to 1 occurred; SENSE FF1 is set; SENSE1 is at a 1 level. SKIP1 instruction will clear SENSE FF1. The SENSE FF1 can be set, under program control, by creating an internal edge. This is accomplished, in this specific instance, by programming SP1 to a 0 and then back to a 1 . Since SP1 is in CRB and it cannot be read from the PIE, the CRB constant must be stored in user memory, for example, location KCRB.

## CLA

TAD KCRB /Get CRB constant
AND K7740
WCRB
TAD K0020
WCRB
/SP1 = 0
/Write CRB to clear SP1
/SP1 = 1
/Write CRB to set SP1
KCRB, CRB
K7740, 7740
K0020, 0020

Software systems employing Skip's on a Sense input while allowing the same input to create an Interrupt should pay attention to the fact that the Skip and Interrupt flip flops are synchronized by LXMAR from the IM6100. Since there is no LXMAR during IOTB of an I/O instruction, the following can occur. Assume that the following two instruction sequence is used:

```
SKIP SENSEX /SENSE F/F SET?
JMP .-1 /NO: WAIT FOR IT
```

Where SENSEX is also Interupt enabled.
Now, assume that the appropriate 'Edge' occurs during the fetch state of the Skip instruction. The Edge causes both flip flops to be set and the LXMAR produced at IOTA time creates an Interrupt request. The Skip instruction execution causes a Skip and clears the Skip flop flop. However, the Interrupt flip flop will not reflect the fact that the Skip flip flop has been cleared until after the next LXMAR occurs. So, the Interrupt request remains active during IOTB time since the IOTB cycle does not have a LXMAR. The IM6100 honors the Interrupt request since the next LXMAR doesn't occur until after the IOT is finished. The linterrupt servicing routine will not Skip again if it tries to find the device that created the Interrupt. Note that the proper Vector Address will still be generated.

## PIE INSTRUCTION FORMAT

The IM6100 communicates with the PIEs using the InputOutput Transfer (IOT) instructions. The first three bits, 02 , are always set to $68(110)$ to specify an IOT instruction. The standard PDP-8/ETM convention is to set the next 6 bits, $3-8$, to specify 1 of 64 I/O devices and then to control the operation of the selected I/O device by using bits 9-11. However, the PDP-8/E interfaces are not standardized since a specific pattern of bits $9-11$ could specify completely different operations in different I/O devices. For example, the pattern 000 in bits 9-11 could mean a read operation for Interface $A$, a write operation for Interface B, a skip instruction for Interface C and so on since the operation for any IOT instruction depends entirely upon the circuitry designed into the I/O device interface.

The IOT instruction format for the PIE is different from that used by PDP-8/E ${ }^{\text {TM }}$ interfaces. The first three bits are, as usual, set to 68 to indicate an IOT instruction. The next 5 bits, 3-7, specify 1 of 31 PIEs and then the operation of the selected PIE is controlled by bits $8-11$ in 16 uniquely spectified ways. For example, the specific pattern 0000 in bits 8-11 means exactly the same operation for all PIEs, namely activate READ1 line.
Of the 32 possible combinations of bits 3-7, the pattern 00000 is reserved for internal Processor IOT instructions and hence not available as a PIE address.
Recommended address assignments for the IM6101-PIE (Programmable Interface Element) are as follows:

000	00	Internal IOT (600X) and DEC HS RDR (601X)
000	01	DEC HS PUNCH (602X) and DEC TTY
000	10	Keyboard (603X)
000	11	DEC TNTY PRINTER (604X)
001	00	INTERCEPT PIE-UART Serial Interface
001	01	IM6102-MEDIC REAL TIME CLOCK
001	10	Reserved for Intercept Option - 1
001	11	Reserved for Intercept Option - 2
010	00	IM6102-MEDIC EMC/DMA
010	01	IM6102-MEDIC EMC/DMA
010	10	IM6102-MEDIC EMC/DMA
010	11	IM6102-MEDIC EMC/DMA
011	00	IM6103-PIO
011	01	IN6103-PIO
011	10	IN6103-PIO
011	11	IN6103-PIO
100	00	USER
100	01	USER
100	10	USER
100	11	USER
101	00	USER
101	01	USER
101	10	USER
101	11	USER
110	00	USER
110	01	USER
110	10	USER
110	11	USER
111	00	Reserved for Intercept Option -
111	01	Reserved for Intercept Option - 4
111	10	Intercept FLOPPY DISK System
111	11	Reserved for Intercept Option - 3


| PARAMETER | DEFINITION |
| :--- | :--- | :--- |
| Minimum Peripheral device write data setup time w.r.t. leading edge of WRITE | twPD (IM6100) + tDW (MIN) (IM6101) - tDSD (IM6100) |
| Minimum Peripheral device write data hold time w.r.t. leading edge of WRITE | tDHD (IM6100) + twPD (IM6100) - tDW (MAX) (IM6101) |
| Maximum Peripheral device read data enable time | tEND (IM6100) - tDR (IM6101), |

## TIMING REQUIREMENTS ON PERIPHERAL DEVICES

The timing required on peripheral devices is affected by the combined delays of the IM6100 and IM6101 devices. The table above describes the peripheral device timing requirements with respect to the data given for the IM6100 and IM6101 AC characteristics.
The values at any operating frequency, temperature and/or power supply voltage can be evaluated by substituting the calculated values for the IM6100 and IM6101 parameters in the defining expressions.

## ASYNCHRONOUS SERIAL INTERFACE WITH PIE AND UART

The, IM6402/03 Universal Asynchronous Receiver/ Transmitter is a general, purpose programmable serial device for interfacing an asynchronous serial data channel to a parallel synchronous data channel. The receiver converts a serial word with start, data, parity and stop bits to a parallel data word and checks for parity, framing and data overrun errors. The transmitter section converts a parallel data word into a serial word with start, data, parity and stop bits. The data word length may be 5, 6,7 or 8 bits. Parity may be odd or even. Parity checking and generation can be inhibited. The number of stop bits may be 1 or 2 or $11 / 2$ when transmitting a 5 bit code. The IM6402/03 can be used in a wide variety of applications including interfacing modems, Teletype ${ }^{\text {TM }}$ and remote data acquisition systems to the IM6100 micro-
processor. The IM6403 makes provisions for a crystal oscillator and internal divider chain to specify the data transfer rate. In the IM6402 the data transfer rate is controlled by an external timing source, for example, a Baud Generator.
A functional block diagram of the PIE/UART/IM6100 interface is shown below. The UART is configured, in this specific example, to interface with an ASR-33 Teletype which has a data format that consists of 11 bits - a start bitt, 8 data bits and 2 stop bits. The UART is clocked at 16 X the data rate. For the 10 character per second ASR-33, the UART clock frequency would be 1.76 KHz .
An 8-bit data word from the IM6100 Accumulator is loaded into the Transmitter Buffer Register via inputs TBR8-TBR1 when the Transmit Buffer Register Load (TBRL) signal makes a zero to one transition. A high level on Transmit Buffer Register Empty (TBRE) indicates that the buffer is ready to accept a new character for transmission. The microprocessor checks the status of TBRE via SENSE2 before it transmits a new character to the UART by pulsing WRITE1. The start bit, data bits and stop bits appear serially at the Transmit Register Output (TRO). A serial data stream on the Receiver Register Input (RRI) is clocked into the Receive Buffer'Register. A high level on Data Received (DR) indicates that a character has been received. The contents of Receiver Buffer Register appear on the outputs RBR8-RBR1 when a low level is applied to Receiver Register Disable (RRD) input. The RBR outputs are tristated when RRD is high. A low level on Data Received Reset (DRR) clears the DR flag. RRD and DRR

PIE/UART/IM6100 INTERFACE

may be tied together to clear DR as the register data is being read. The microprocessor monitors the status of the DR flag via SENSE1 to see if a new character has been received before it reads the information stored in the buffer register by pulsing READ1 low.
The UART interface uses only the low order 8 bits of the

IM6100 data bus (DX) to receive and transmit characters.
The NAND gate is used to load the UART with the leading edge of the WRITE pulse since the IM6100 data is valid only with respect to the leading edge at higher operating frequencies.

## PIE CONTROL REGISTER ASSIGNMENTS FOR IM6402 UART INTERFACE:



$$
\begin{aligned}
W P 1 & =0 \\
I E 2 & =1 \\
I E 1 & =1
\end{aligned}
$$

$$
\begin{aligned}
& S L 2=0 ; S P 2=1 \\
& S L 1=0 ; S P 1=1
\end{aligned}
$$

Active low WRITE1 (TBRL)

$$
\mathrm{IE} 2=1 \quad \text { Interrupt enable for SENSE2 (TBRE) }
$$ Interrupt enable for SENSE1 (DR) If vectored interrupts are used ( $\mathrm{PIN}=1$ or is part of a priority chain) the Interrupt Vector Register must be loaded with the desired vector address.

SENSE2 (TBRE) active on 0 to 1 transition SENSE1 (DR) active on 0 to 1 transition

## PIE ADDRESS AND CONTROL ASSIGNMENTS:




PIE Address and Control Assignments:



Subroutines for programmed IOT transfers:
Program Listing:

3200	6000
3261	6342
3262	5261

3263 . 7200

32046340 32656207 32065600 32870377

INPUT, $\quad 0$
SKPDR
JMP •-1
CLA
RUART
AND K6377
JMP I INPUT
K0377, 0377
/ENTRY FOR SUBROUTINE
/WAIT FOR DATA READY
/AC $=$ = UART
/STRIP D-3
/RETURN.

SKPDR=6342 /SKP IF DATA RECD SKPTBR=6343 /SKP IF XMT RDY

OUTPUT, 6
32116343 SKPTBR
32125211 JMP •-1
32136341
32147266
32155610
WUART
CLA
JMP I OUTPUT
/WAIT FOR XMT RDY 1
/WRITE UART \& CLA /RETURN
/REFER TO THE APPLICATION BULLETIN M008 /"ROM BASED SUBROUTINE CALLS WITH THE /IM6100" FOR THE IMPLEMENTATION OF A /SOFTWARE STACK. THE ROUTINES IN THIS /NOTE.ASSUME THAT THE SUBROUTINES /ARE RESIDENT IN RAM AND ARE CALLED BY /THE CONVENTIONAL JMS INSTRUCTION.
*3200
/INPUT-OUTPUT ROUTINES FOR UART /INPUT ROUTINE READS AN 8-BIT CHAR /FROM THE UART INTO THE AC RIGHT /JUSIFIED. THE OUTPUT ROUTINE XMTS /A Char from the ac to the vart and /THEN CLEARS THE AC.
/USER DEFINED MNEMONICS RUART=6340 /READ UART DATA WUART=6341 /WRITE UART

## IM6101

## TELETYPE INTERFACE WITH PIE

A simple economical program controlled serial interface for a Teletype can be built using only the Programmable Interface Element. The interface uses one Sense line to receive serial data, one Flag line to transmit serial data and one Flag line to control the Teletype paper tape
reader, as shown below. Timing for proper transmit,pulse widths, setting and clearing FLAG1, and proper receiver sampling times, testing SENSE1, is created via software timing loops.

## PIE Control Register Assignments



SL1 $=1 ; S P 1=0 \quad$ SENSE1 is level sensitive and active low.

## IM6100/PIE/TELETYPE INTERFACE



## Subroutines for programmed IOT transfers:

Transmit character routine:
The transmit routine takes an 8 -bit character from the Accumulator and transmits it to the Teletype via FLAG1. FLAG1 is initially set high or "mark". For each character,
the program sends out a start bit ("space" - zero), 8 data bits with the least significant bit first and 2 stop bits ("mark" - one).

Program listing:


## IM6101

Receiver character routine:

The receive routine accepts a serial data string from the Teletype which consists of a start bit, 8 data bits with the least significant bit first and 2 stop bits and assembles them, right justified, into an 8-bit word in the Accumulator. Each bit is sampled in the middle of the bit interval. The user can read character by character from
the Teletype reader by turning the reader off after receiving each character and then reenabling it under program control to fetch the next character in sequence. The routine assumes that the program is waiting for a character from the Teletype.

Program listing:

3100	0000
3101	7300
3102	1235
3103	3161
3104	6516
3105	6502
3106	5365
3107	1330
3110	3162
3111	2162
3112	5311

31136502
$3114 \quad 5305$
31156517
31164225 DATA,

3117	7100
3120	6502
3121	7020
3122	7010

31232161
$3124 \quad 5316$
$3125 \quad 7012$
31267012
31275700
31307243 M349,
RCUE,
*3100
/TELETYPE RECEIVE ROUTINE /SENSEI IS INITIALISED TO BE LEVEL /SENSITIVE AND ACTIVE LOW /AC AND L. ARE CLEARED. CHAR IN AC 4-11

JUSER DEFINED MNEMONICS
SKPLOW $=6502$ /SKP IF TTY IN IS 0
RDRON $=6516$ /ENABLE RDR
RDROFF=6517 /RDR OFF
0000
CLA CLL.
TAD M8
DCA TEMP2
RDRON
SKPLOW
JMP •-1
TAD M349
DCA TEMP 3
ISZ TEMP3
JMP - $-1 \quad 1 / 2$ BIT DELAY
/4.532 MS
SKPLOW
JMP START
RDROFF
JMS DELAY

CLL
SKPLOW
CML
RAR
ISZ TEMPZ
JMP DATA
RTR
RTR , /RIGHT JUSIFY
JMP I RCUE /RETURN
/FALSE START BIT
/GOOD START BIT
/TURN OFF RDR
/FULL BIT DELAY TO THE /MIDDLE OF NEXT BIT /<.15\% ERROR
/L=1 IF MARK
/RCVE 8 BITS

# IM6102 Memory Extension/ DMA Controller/ Interval Timer (MEDIC) 

## FEATURES

- Provides Extended Memory Address to 32K Words
- Simultaneous DMA - Provides Simultaneous DMA Channel that Uses DX Bus During Second Half of a Cycle to Access Memory
- DMA Channel Can be Used for Dynamic RAM Refresh
- 12-Bit Programmable Interval Timer
- Direct Interface with IM6́100 Microprocessor Via Bidirectional DX Bus and Handshake Lines
- Hardware Reset
- 28 Different I/O Instructions


## GENERAL DESCRIPTION

The IM6102 is a multi-function peripheral controller chip incorporating functions such as memory extension, direct memory access control, and a programmable real time clock.
The IM6102 provides necessary control to address up to 32 K words of memory, and its DMA channel can be used with Dynamic RAM Components for "transparent refresh". The programmable real time clock is 12 -bit long, and its output frequency can be programmed for 5 decades.
It features a high degree of system integration, putting into one chip all the functions which are normally available in three or more LSI circuits. As a result of this large integration, the user can design and produce a compact microcomputer with minicomputer performance.

PIN CONFIGURATION (outline dwg DL, PL)

| VCC |
| ---: | :--- | ---: | :--- |
| DMAEN |
| DMAGNT |

ORDERING INFORMATION

ORDER CODE	IM6102-1	IM6102A	IM6102
PLASTIC PKG.	IM6102-1IPL	IM6102-AIPL	IM6102-IPL
CERAMIC PKG	IM6102-1IDL	IM6102-AIDL	IM6102-IDL
MILITARY TEMP.	IM6102-1MDL	IM6102-AMDL	-
MILITARY TEMP   WITH 883B	IM6102-1   MDL/883B	IM6102-AMDL/   $883 B$	-

## BLOCK DIAGRAM



## IM6102

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6102	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	+4.0V to +7.0V
Supply Voltage	$+8.0 \mathrm{~V}$
Voltage On Any Input or	
Output Pin	-0.3V to Vcc +0.3V

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS <br> TEST CONDITIONS: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		Vcc-2.0		.	V	
2	VIL	Input Voltage Low				0.8	V	
3	liL	Input Leakage\|1		GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage Highi2;	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.4	.		V	
5	VOL	Output Voltage Low.	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V	
6	IOLK	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$	
7	Icc	Power Supply Current-Standby	$V_{\text {IN }}=$ GND or VCC		1.0	800	$\mu \mathrm{A}$	
8	ICC	Power Supply Current-Dynamic	$\mathrm{fc}=2.5 \mathrm{MHz}$			1.8	mA	
9	CIN	Input Capacitance 1			7.0	8.0	pF	
10	Co	Output Capacitance! 1	$\checkmark$	,	8.0	10.0	pF	

NOTE: 1. Except pins $15,29,31$ 2. Except pins 32, 33, 34.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fc}=2.5 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	$t_{\text {lin }}$	LXMAR Pulse Width IN	300	-	.	ns
2	$\mathrm{t}_{\text {ais }}$	Address Setup Time IN: DX-LXMAR (1) ..	80			ns
3	$\mathrm{t}_{\text {aih }}$	Address Hold Time IN: LXMAR(t)-DX	120			ns
4	$t_{\text {den }}$	Data Output Enable Time: DEVSEL( 1 )-DX		.	400	ns
5	$t_{\text {cen }}$	Controls Output Enable Time: DEVSEL(t)-lines C0,C1,C2,S/I			400	ns
6	$t_{\text {dis }}$	Data Input Setup Time: DX-DEVSEL( 1 )	100			ns
7	$t_{\text {dih }}$	Data Input Hold Time: DEVSEL(t)-DX	100			ns
8	$t_{\text {rst }}$	RESET Input Pulse Width	500			ns
9	$\mathrm{t}_{\text {sid }}$	SKP/INTX to SKP/INT Propagation Delay			150	ns
10	$t_{\text {dmix }}$	DMA Control Signals Delay: XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*		.	150	ns
11	$t_{\text {dem }}$	Enable/Disable Time from DMAGNT to EMA Lines	.		100	ns
12	$t_{\text {mdr }}$	MEMSEL* Pulse Width READ	750			ns
13	$t_{\text {mdw }}$	MEMSEL* Pulse Width WRITE	950			ns
14	$t_{\text {mdwr }}$	MEMSEL* Pulse Width WRITE/REFSH	550			ns
15	$t_{\text {Id }}$	LXMAR* Pulse Width	350		,	ns
16	$t_{\text {drat }}$	DMA READ Access Time: LXMAR* (1)-UP(1)	750			ns
17	$t_{\text {dxas }}$	DX \& EMA Address Setup Time Wrt LXMAR* (1)	120			ns
18	$t_{\text {dxah }}$	DX \& EMA Address Hold Time Wrt LXMAR*(1)	175			ns.
19	$t_{\text {dren }}$	DMA READ Enable Time: MEMSEL* (1)-UP ( $)$	. 550			ns
20	$t_{\text {rup }}$	UP Pulse Width DMA READ	350			ns
21	$t_{\text {dwat }}$	DMA WRITE Access Time: LXMAR*(1)-MEMSEL*(1)	750			ns
22	$t_{\text {dwen }}$	DMA WRITE Enable Time: UP (1)-MEMSEL* 1 )	550	.	\%	ns
23	$t_{\text {mws }}$	MEMSEL* Setup Time DMA WRITE MEMSEL* (1)-LXMAR*(t)	100			ns
24	$\mathrm{t}_{\text {dms }}$	DMAEN Setup Time Wrt XTA ( 1 )	100			ns
25	$t_{\text {dmh }}$	DMAEN Hold Time Wrt XTA ( 1 )	100			ns
26	$t_{\text {wup }}$	UP Pulse Width DMA WRITE	750		,	ns

INIMREIL
IM6102A

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6102A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	+4.0V to +11.0V
Supply Voltage	$+12.0 \mathrm{~V}$
Voltage On Any Input or	
Output Pin	-0.3V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

Operating Temperature
Industrial IM6102A .............. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
torage Temperature.............
Supply Voltage ................................ +12.0 V
Voltage On Any Input or
Output Pin
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

## TEST CONDITIONS: $\mathrm{VCC}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		70\% Vcc			V
2	VIL	Input Voltage Low				20\% VCC	V
3	IL	Input Leakage[1]	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High [2]	$1 \mathrm{OH}=0 \mathrm{~mA}$	Vcc-0.01		.	V
5	VOL	Output Voltage Low	$1 \mathrm{OL}=0 \mathrm{~mA}$.			GND +0.01	V
6	IOLK	Output Leakage	GND $\leq V_{\text {OUT }} \leq V_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$			900	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{fC}=5.71 \mathrm{MHz}$			4.0	mA
9	CIN	Input Capacitance [1]			7.0	8.0	pF
10	Co	Output Capacitance[1] .			8.0	10.0	pF

NOTE: 1. Except pins 15, 29, 31 2. Except pins 32, 33, 34.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fC}=5.71 \mathrm{MHz}$

	SYMBOL.	PARAMETER	MIN	TYP	MAX	UNITS
1	$\mathrm{t}_{\text {lin }}$	LXMAR Pulse Width IN	125			ns
2	$\mathrm{t}_{\text {ais }}$	Address Setup Time IN: DX-LXMAR (1)	50			ns
3	$\mathrm{t}_{\text {aih }}$	Address Hold Time IN: LXMAR(l)-DX	50			ns
4	$\mathrm{t}_{\text {den }}$	Data Output Enable Time: DEVSEL( 1 )-DX			240	ns
5	$\mathrm{t}_{\text {cen }}$	Controls Output Enable Time: DEVSEL(d)-lines C0,C1,C2,S/I			240	ns
6	$\mathrm{t}_{\text {dis }}$	Data Input Setup Time: DX-DEVSEL( t )	50			ns
7	$t_{\text {dih }}$	Data Input Hold Time: DEVSEL(1)-DX	50			ns
8	$\mathrm{t}_{\text {rst }}$	RESET Input Pulse Width	250			ns
9	$\mathrm{t}_{\text {sid }}$	SKP/INTX to SKP/INT Propagation Delay			100	ns
10	$\mathrm{t}_{\mathrm{dmlx}}$	DMA Control Signals Delay; XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*			100	ns
11	$t_{\text {dem }}$	Enable/Disable Time from DMAGNT to EMA Lines			50	ns
12	$\mathrm{t}_{\text {mdr }}$	MEMSEL* Pulse Width READ	300			ns
13	$t_{\text {mdw }}$	MEMSEL* Pulse Width WRITE	380			ns
14	$t_{\text {m }}$ mwr	MEMSEL* Pulse Width WRITE/REFSH	240			ns
15	$t_{l d}$	LXMAR* Pulse Width	150			ns
16	$\mathrm{t}_{\text {drat }}$	DMA READ Access Time: LXMAR*(t)-UP(t)	300			ns
17	$t_{\text {dxas }}$	DX \& EMA Address Setup Time Wrt LXMAR*(1)	150			ns
18	$t_{\text {dxah }}$	DX \& EMA Address Hold Time Wrt LXMAR* ( 1 )	55			ns
19	$t_{\text {dren }}$	DMA READ Enable Time: MEMSEL* ( 1 )-UP( I )	210			ns
20	$t_{\text {rup }}$	UP Pulse Width DMA READ	150			ns
21	$t_{\text {dwat }}$	DMA WRITE Access Time: LXMAR*( ) -MEMSEL* ( ${ }^{\text {( }}$	300			ns
22	$\mathrm{t}_{\text {dwen }}$	DMA WRITE Enable Time: UP (1)-MEMSEL* ( ${ }^{\text {( }}$	210			ns
23	$\mathrm{t}_{\text {mws }}$	MEMSEL* Setup Time DMA WRITE MEMSEL* (1)-LXMAR*( )	50			ns
24	$t_{\text {dms }}$	DMAEN Setup Time Wrt XTA (1)	50			ns
25	$\mathrm{t}_{\mathrm{dmh}}$	DMAEN Hold Time Wrt XTA (t)	50			ns
26	${ }^{\text {twup }}$	UP Pulse Width DMA. WRITE	300			ns

## IM6102AM (Military)

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Military IM6102AM ............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature.......... . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage $. \ldots . . . . . . . . .$. . 4.0 V to +11.0 V
Supply Voltage ................................ +12.0 V
Voltage On Any Input or
Output Pin
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices atthese or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		70\% Vcc			V	
2	$\mathrm{V}_{\text {IL }}$	Input Voltage Low	-			20\% Vcc	V	
3	ILL	Input Leakage\|1]	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$	
4	V OH .	Output Voltage High\|2		$1 \mathrm{OH}=0 \mathrm{~mA}$	$\mathrm{Vcc}-0.01$			V
5	Vol	Output Voltage Low	$1 \mathrm{OL}=0 \mathrm{~mA}$			GND +0.01	V	
6	IoLK	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$	
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=$ GND or $\mathrm{V}_{\text {CC }}$			900	$\mu \mathrm{A}$	
8	ICC	Power Supply Current-Dynamic	$\mathrm{fC}=5.0 \mathrm{MHz}$			4.0	mA	
9	Cin	Input Capacitance\|1].			7.0	8.0	pF	
10	Co	Output Capacitance\|1				8.0	10.0	pF

NOTE: 1. Except pins 15, 29, 31 2. Except pins 32, 33, 34.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{fc}_{\mathrm{C}}=5.0 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1.	$t_{\text {lin }}$	, LXMAR Pulse Width IN	135			ns
2	$\mathrm{t}_{\text {ais }}$	Address Setup Time IN: DX-LXMAR (1)	60			ns
3	$\mathrm{t}_{\text {aih }}$	Address Hold Time IN: LXMAR(t)-DX	60			ns
4	$t_{\text {den }}$	- Data Output Enable Time: DEVSEL(t)-DX			260	ns
5	$\mathrm{t}_{\text {cen }}$	Controls Output Enable Time: DEVSEL( 1 )-lines C0,C1, $22, \mathrm{~S} / \mathrm{l}$			260	ns
6	$t_{\text {dis }}$	Data Input Setup Time: DX-DEVSEL(1)	60			ns
7	$t_{\text {dih }}$	Data Input Hold Time: DEVSELITI-DX	60			ns
8	$\mathrm{t}_{\text {rst }}$	RESET Input Pulse Width	250			ns
9	$\mathrm{t}_{\text {sid }}$	SKP/INTX to SKP/INT Propagation Delay			120	ns
10	$\mathrm{t}_{\mathrm{dmlx}}$	DMA Control Signals Delay: XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*			120	ns
11	${ }^{\text {d dem }}$	Enable/Disable Time from DMAGNT to EMA Lines			60	ns
12	$\mathrm{t}_{\text {mdr }}$	MEMSEL* Pulse Width READ	375			ns
13	$t_{\text {mdw }}$	MEMSEL* Pulse Width WRITE	475			ns
14	$t_{\text {midwr }}$	MEMSEL* Pulse Width WRITE/REFSH	275			ns
15	$t_{\text {ld }}$	LXMAR* Pulse Width	175			ns
16	$t_{\text {drat }}$	DMA READ Access Time: LXMAR* (1-UP (1)	375			ns
17.	$t_{\text {dxas }}$	DX \& EMA Address Setup Time Wrt LXMAR* 11	70			ns
18	$\mathrm{t}_{\mathrm{dxah}}$	DX \& EMA Address Hold Time Wrt LXMAR* 1 )	70			ns
19	$t_{\text {dren }}$	DMA READ Enable Time: MEMSEL* (1)-UP(1)	275			ns
20	$\mathrm{t}_{\text {rup }}$	UP Pulse Width DMA READ: -	175		,	ns
21	$t_{\text {dwat }}$	DMA WRITE Access Time: LXMAR* $11-\mathrm{MEMSEL}$ * +1	375			ns
22	$\mathrm{t}_{\text {dwen }}$	DMA WRITE Enable Time: UP (1)-MEMSEL* (1)	275			ns
23	$t_{\text {mws }}$	MEMSEL* Setup Time DMA WRITE MEMSEL* (1)-LXMAR* $(1)$	50			ns
24	$\mathrm{t}_{\mathrm{dms}}$	DMAEN Setup Time Wrt XTA [1]	50			ns
25	$t_{\text {dmh }}$	DMAEN Hold Time Wrt XTA (1)	50			ns
26	twup	UP Pulse Width DMA WRIFE	375			ns

IM6102-1

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature Industrial IM6102-14	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	+4.0 V to +7.0 V
Supply Voltage	+8.0V
Voltage On Any Input or	
Output Pin	-0.3V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		Vcc-2.0	-		V	
2	VIL	Input Voltage Low				20\% Vcc	V	
3	IIL	Input Leakage\|1		$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High\|2]	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.01$			V	
5	VOL	Output Voltage Low	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			GND +0.01	V	
6	lolk	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cC }}$	-1.0		1.0	$\mu \mathrm{A}$	
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{VCC}^{\text {c }}$		.	800	$\mu \mathrm{A}$	
8	ICC	Power Supply Current-Dynamic	$\mathrm{fc}=3.33 \mathrm{MHz}$			2.0	mA	
9	CIN	Input Capacitance\|1]	-		7.0	8.0	pF	
10	Co	Output Capacitance\|1				8.0	$10.0{ }^{\circ}$	pF

NOTE: ${ }^{1}$. Except pins 15,'29, 31
2. Except pins $32,33,34$.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fc}=3.33 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN ${ }^{\text {n }}$	TYP	MAX	UNITS
1	$t_{\text {lin }}$	LXMAR Pulse Width IN	250			ns
2	$t_{\text {ais }}$	Address Setup Time IN: DX-LXMAR (1)	70			ns
3	$t_{\text {aih }}$	Address Hold Time IN: LXMAR(1)-DX	100			ns
4	$t_{\text {den }}$	Data Output Enable Time: DEVSEL(d)-DX			350	ns
5	$\mathrm{t}_{\text {cen }}$	Controls Output Enable Time: DEVSEL(1)-lines C0,C1,C2,S/I			350	ns
6	$t_{\text {dis }}$	Data Input Setup Time: DX-DEVSEL( 1 (	100			ns
7	$t_{\text {dih }}$	Data Input Hold Time: DEVSEL(1)-DX	100			ns
8	$\mathrm{t}_{\text {rst }}$	RESET Input Pulse Width	500		-	ns
9	$t_{\text {sid }}$	SKP/INTX to SKP/INT Propagation Delay			120	ns
10	$t_{\text {dmix }}$	DMA Control Signals Delay: XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*			120	ns
11	$t_{\text {dem }}$	Enable/Disable Time from DMAGNT to EMA Lines			80	ns
12	$\mathrm{t}_{\text {mdr }}$	MEMSEL* Pulse Width READ	550			ns
13	$t_{\text {mdw }}$	MEMSEL* Pulse Width WRITE	700			ns
14	$t_{\text {mdwr }}$	MEMSEL* Pulse Width WRITE/REFSH	400			ns
15	t/d	LXMAR* Pulse Width	260 ,			ns
16	$t_{\text {drat }}$	DMA READ Access Time: LXMAR* $(1)-U P(1)$	85			ns
17	$t_{\text {dxas }}$	DX \& EMA Address Setup Time Wrt LXMAR* (1)	125			ns
18.	$t_{\text {dxah }}$	DX \& EMA Address Hold Time Wrt LXMAR* (1)	125	,	-	ns
19	$t_{\text {dren }}$	DMA READ Enable Time: MEMSEL* (1)-UP(1)	400			ns ${ }^{\text { }}$
20	$\mathrm{t}_{\text {rup }}$	UP Pulse Width DMA READ	260			ns
21	$t_{\text {dwat }}$	DMA WRITE Access Time: LXMAR*(1)-MEMSEL*(1)	550			ns
22	$\mathrm{t}_{\text {dwen }}$	DMA WRITE Enable Time: UP ( 1 )-MEMSEL* $(1)$	400			ns
23	$t_{\text {mws }}$	MEMSEL* Setup Time DMA WRITE MEMSEL* (1)-LXMAR* ( )	100			ns
24	$t_{\text {dms }}$	DMAEN Setup Time Wrt XTA (1)	100			, ns
25	$\mathrm{t}_{\mathrm{dmh}}$	DMAEN Hold Time Wrt XTA (1)	100			ns
26	$t_{\text {wup }}$	UP Pulse Width DMA WRITE	550			ns

IM6102-1M (Military)

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Military IM6102-1M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	+4.0 V to +7.0 V
Supply Voltage	+8.0V
Voltage On Any Input or	
Output Pin	-0.3V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

Military IM6102-1M ............ . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $\ldots . . . . . . .$. . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage.............. . +4.0 V to +7.0 V
Supply Voltage
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pF}, T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	- CONDITIONS	MIN	TYP'	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		Vcc -2.0			V
2	$\mathrm{V}_{\text {IL }}$	Input Voltage Low				0.8	V
3	IIL	Input Leakage\|1]	$\mathrm{GND} \leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {cC }}$	-1.0		1.0	$\mu \mathrm{A}$.
4	VOH	Output Voltage High [2]	$1 \mathrm{OH}=0 \mathrm{~mA}$	2.4	.		V
5	VOL	Output Voltage Low	$1 \mathrm{OL}=0 \mathrm{~mA}$			0.45	V
6	IOLK	Output Leakage	GND $\leq V_{\text {OUT }} \leq V_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cc }}$			800	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{f}_{\mathrm{C}}=2.5 \mathrm{MHz}$			2.0	mA
9	Cin	Input Capacitance[1]			7.0	8.0	pF
10	Co	Output Capacitance[1]			8.0	10.0	pF

NOTE: 1. Except pins 15, 29, 31 2. Except pins 32, 33, 34.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{fC}=2.5 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN ${ }^{\prime}$	TYP	MAX	UNITS	
1	$\mathrm{t}_{\text {lin }}$	LXMAR Pulse Width IN	300			ns	
2,	$\mathrm{t}_{\text {ais }}$	Address Sétup Time IN: DX-LXMAR (!)	80			ns	
3	$\mathrm{t}_{\text {aih }}$	Address Hold Time IN: LXMAR(t)-DX	120			ns	
4	$\mathrm{t}_{\text {den }}$	Data Output Enable Time: DEVSEL(1)-DX			400	ns	
5	$\mathrm{t}_{\text {cen }}$	Controls. Output Enable Time: DEVSELill-lines C0,C1,C2,S/I			400	ns	
6	$\mathrm{t}_{\text {dis }}$	Data Input Setup Time: DX-DEVSEL( 1 )	100			ns	
7	$t_{\text {dih }}$	Data Input Hold Time: DEVSELI! 1 -DX	100			ns	
8	$\mathrm{t}_{\text {rst }}$	RESET Input Pulse Width	500			ns	
9.	$t_{\text {sid }}$	SKP/INTX to SKP/INT Propagation Delay			130	ns	
10	$\mathrm{t}_{\mathrm{dmlx}}$	DMA Control Signals Delay: XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*			130	ns	
11	$t_{\text {dem }}$	Enable/Disable Time from DMAGNT to EMA Lines			100	ns	
12	$\mathrm{t}_{\text {mdr }}$	MEMSEL* Pulse Width READ	750			ns	
13	$t_{\text {mdw }}$.	MEMSEL* Pulse Width WRITE	950			ns	
14	$t_{\text {mdwr }}$	MEMSEL* Pulse Width WRITE/REFSH	550			ns	
15	$t_{l d}$	LXMAR* Pulse Width	350			ns	
16	$\mathrm{t}_{\text {drat }}$	DMA READ Access Time: LXMAR*(1-UP(1).	750			ns	
17	${ }^{\text {t }{ }_{\text {dxas }}}$	DX \& EMA Address Setup Time Wrt LXMAR* 11	120		,	ns	
18	$t_{\text {dxah }}$	DX \& EMA Address Hold Time Wrt LXMAR* (1)	175			ns	
19	$t_{\text {dren }}$	DMA READ Enable Time: MEMSEL* (1)UP! ${ }^{\text {a }}$	550		,	ns	
20	${ }_{\text {trup }}$	UP Pulse Width, DMA READ	350			ns	
21	$t_{\text {dwat }}$	DMA WRITE Access Time: LXMAR*()\|-MEMSEL* ()	750			ns	
22	$t_{\text {dwen }}$	DMA WRITE Enable Time: UP \\|-MEMSEL* ${ }^{\text {d }}$	550			ns	
23	$t_{\text {mws }}$	MEMSEL* Setup Time DMA WRITE MEMSEL* (1)-LXMAR* 1 )	100			ns	
24	$t_{\text {dms }}$	DMAEN Setup Time Wrt XTA ! !	100	-		ns.	
25	$\mathrm{t}_{\mathrm{dmh}}$	DMAEN Hold Time Wrt XTA 11	100			ns	
26	$t_{\text {wup }}$	UP Pulse Width DMA WRITE	750		'	ns	

## ARCHITECTURE

The IM6102 is composed of three distinct functions:
a). A DMA port that uses the bus during the second half of a cycle tó read, write, or refresh memory. The DMA port logic includes a word count register WC, a current address register CA, an extended current address register ECA, and a DMA status register.
b) An extended memory address controller that augments the 12 -bit addresses generated by the IM6100 microprocessor by supplying a 3-bit address field that may be decoded to select one of eight 4096 word memory fields. The memory extension controller logic consists of an instruction field register IF, a data field register DF, an instruction buffer register IB, and a save field register SF.
c) A realtime clock whose mode and time base rate may be programmed by the ușer. The clock logic includes a clock enable register CE, a clock buffer register CB, a clock counter register CC, and a time base multiplexer.

A block diagram of the IM6102 is shown in. Figure 1.

The IM6102 registers are summarized as follows:

## A. Simultaneous DMA Channel (Figure 3)

## CURRENT ADDRESS (CA) REGISTER

This register is a 12 -bit presettable binary counter. At the beginning of a SDMA transfer, the current address must be set to the first location to be accessed. The content of the CA register is incremented by 1 after a

SDMA transfer, and the incremented value is used as the address of the memory location with which the next transfer will be performed.

## EXTENDED CURRENT ADDRESS (ECA) REGISTER

This is a 3-bit presettable binary counter and if the carry enable bit of the DMA status register is set, the 12 -bit CA register and the 3 ECA bits are treated as one 15 -bit register with the ECA bits most significant. If memory field 7 (all 3 bits at logic one) is selected, the ECA cannot increment, but will wrap around in field 7 and an F7 error (F7E) will occur. The Interrupt Enable bit IE in SR11must be set to enable F7E interrupts. If enabled the F7E will request an interrupt. If the carry enable bit CE in SR9 is not set, the ECA is not incremented when CA goes from 77778 to $0000_{8}$.

## WORD COUNT (WC) REGISTER

A 12 -bit presettable binary counter is used as a word counter. At the beginning of a SDMA transfer, the two's complement of the number of 12 -bit words to be transferred must be loaded into the WC. If enabled this will initiate the SDMA operation. The WC register is incremented by 1 after a SDMA transfer. If this value becomes zero, word count overflow has occurred and if the IE bit in SR11 is set, interrupts are enabled and an interrupt is requested. Unless instructed to be in the continuous run mode, a WC overflow inhibits further transfers. The WOF is set when the MSB of the WC register makes a " 1 " to " 0 " transition.



IM6102 FUNCTIONAL PIN DESCRIPTION

$\begin{array}{\|c\|} \hline \text { Pin } \\ \text { Number } \end{array}$	Symbol	Input/ Output	Description
1	Vcc		Supply voltage
2	DMAEN	1	Enable the IM6102 DMA channel to transfer data
. 3	DMAGNT	1	Direct memory access grant from CPU
4	MEMSEL	1	Memory select for read or write from CPU
5	IFETCH	1	CPU flag indicating instruction fetch cycle
6	MEMSEL*	0	Memory select generated by the IM6102
7	RESET	1	Asynchronous reset will clear Instruction Field to $\mathrm{O}_{8}$, disable all interrupts, initialize DMA port to READ/REFRESH, initialize timer to "stop", "divide by $2^{12}$ mode" and "enable divide counters"
8	$\overline{U P}$	0	User pulse (read or write)
9	XTA	1	CPU external minor cycle timing signal
10	LXMAR	1	A falling edge of LXMAR pulse from CPU will load external memory address register


$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	Symbol	Input/ Output	Description
11	LXMAR*	0	LXMAR generated by the IM6102
12	XTC*	0	XTC. generated by the IM6102
13	XTC	1 '	CPU external minor cycle timing signal
14	CLOCK	1	Oscillator, OUT pulses from CPU for timing the IM6102 DMA transfers.
15	$\overline{\mathrm{SKP}} / \overline{\mathrm{NTX}}$	1	Multiplexed SKP/INT line from lower priority devices
16	DXO	1/0	Most significant bit of the 12-bit multiplexed address and data I/O bus
17	DX1	$1 / 0$	See pin 16-DX0
18	DX2	1/0	See pin 16-DX0
19	DX3	1/0	See pin 16-DX0
20	DX4	1/0	See pin 16-DX0
21	DX5	1/0	See pin 16-DX0
22	DX6	$1 / \mathrm{O}$	See pin 16-DX0
23	DX7	$1 / 0$	See pin 16-DX0
24	DX8	1/0	See pin 16-DX0
25	DX9,	$1 / 0$	See pin 16-DX0
26	GND	$1 / 0$	Power Supply
27	DX10	1/0	See pin 16-DX0
28	DX11	$1 / 0$	See pin 16-DX0
29	OSCIN	1	Crystal input for timer oscillator
30	$\overline{\text { DEVSEL }}$	1	Device select for read or write from CPU
31	OSC OUT	0	See pin 29
32	$\overline{\mathrm{Co}}$	0	Control lines to CPU determining type of peripheral data transfer
33	$\overline{C_{1}}$	0	See pin 32-C0
34	$\overline{C_{2}}$	0	See pin 32-C0 -
35	$\overline{\mathrm{SKP}} / \overline{\mathrm{INT}}$	0	Multiplexed SKP/INT input to the CPU
36	EMAO	0	Extended memory address field (most significant bit)
37	EMA1	0	Extended memory address field
38	EMA2	0	Extended memory address field
39	INTGNT	1	CPU interrupt grant
40	PROUT	0	Priority out for vectored interrupt

NOTE: AlI DX lines are bidirectional with three-state outputs: Pins $6,8,11,12,35,40$ have active pullups; pins $32,33,34$ have open drain outputs; pin 15 has a resistive input pullup; all inputs are protected with resistors and clamp diodes.


FIGURE 2: MEDIC TIMING FOR DCA I

## DMA Status Register

This register consists of 5 control bits and 2 flag bits for the SDMA feature. For a description refer to the register bit assignments.


FIGURE 3: SDMA REGISTERS

## OPERATION

The IM6102 SDMA channel augments the throughput of the IM6100 during DMA operations by transferring data between memory and peripheral devices simultaneously with
normal processor bus usage. In other words, no memory cycles are "stolen" from the processor; but the DMA address and data are transferred on the bus during periods that the DX bus is inactive.

TABLE 1 SUMMARY OF IM6102 INSTRUCTIONS

MNEMONIC	$\begin{aligned} & \text { OCTAL } \\ & \text { CODE } \end{aligned}$	I/O CONTROL LINES			, OPERATION
		CO.	C1	C2	
GTF	6004	0	0	1	(1) Get flags, INT INH FF $\rightarrow$ AC $(3)$, SF $(0-5) \rightarrow \mathrm{AC}(6-11)$
RTF	6005	1	1	1	(2) Return flags, $\mathrm{AC}(6-8) \rightarrow \mathrm{IB}, \mathrm{AC}(9-11) \rightarrow \mathrm{DF}$
CDF	62N1	1	1	1	Change Data Field, $\mathrm{N} \rightarrow$ DF
CIF.	62N2	1	1	1	Change IF, N $\rightarrow$ IB
CDF, CIF	62N3	1	1	1	Combination of CDF, CIF
RDF	6214	1	0	1	Read DF, DF + AC(6-8) $\rightarrow$ AC(6-8)
RIF	6224	1	0	1	Read IF, IF + AC(6-8) $\rightarrow$ AC(6-8)
RIB	6234	1	0	1	Read Save Field, SF + AC(6-11) $\rightarrow \mathrm{AC}(6-11)$
RMF	6244	1	1	1	Restore Mem. Field, $\mathrm{SF}(0-2) \rightarrow$ IB, SF $(3-5) \rightarrow$ DF
LIF	6254	1	1	1	Load IF, IB $\rightarrow$ IF
CLZE	6130	1	1	1	Clear Clock Enable Register if corresponding AC bit is set AC not changed
CLSK	6131	1	1	1	Skip on Clock Overflow Interrupt condition
CLOE	6132	1	1	1	Set Clock Enable Register if corresponding AC bit is set AC not changed
CLAB	6133	1	1	1	AC $\rightarrow$ Clock Buffer; Clock Buffer $\rightarrow$ Clock Counter;   AC not changed
CLEN	6134	0	0	1	Clock Enable Register $\rightarrow$ AC
CLSA	6135.	0	0	1	COF $\rightarrow$ AC(0), Clear COF Status bit
CLBA	6136	0	0	1	Clock Buffer $\rightarrow$ AC
CLCA	6137	0	0	1	Clóck Counter $\rightarrow$ Clock Buffer; Clock Buffer $\rightarrow$ AC
LCAR	62.05	0	1	1	AC $\rightarrow$ Current Address Register, $0 \rightarrow$ AC
RCAR	6215	0	0	1	Current Address Register $\rightarrow$ AC
LWCR	6225	0	1	1	AC $\rightarrow$ Word Count Register, Start DMA, $0 \rightarrow$ AC; clears word count overflow (WOF)
LEAR	62N6	1	1	1	$\mathrm{N} \rightarrow$ Extended Current Address Register (ECA)
REAR	6235	1	0	1	Read ECA, ECA + AC(6-8) $\rightarrow$ AC(6-8)
LFSR	6245	0	1	1	$\mathrm{AC}(7-11) \rightarrow$ Status Register, $0 \rightarrow \mathrm{AC}$
RFSR	6255	1	0	1	DMA Status Register $+\mathrm{AC}(5-11) \rightarrow \mathrm{AC}(5-11)$; clears Field 7 Wraparound error (F7E)
SKOF	6265	1	1	1	Skip on Word Count Overflow
WRVR	6275	0	1	1	AC (0-10) $\rightarrow$ Vector Register, $0 \rightarrow$ AC
CAF	6007	1	1	1	(3) Clear all flags (F7E, WOF, COF) Clear clock Enable register, clock buffer,

## NOTES:

1. The internal flags of the IM6100 are defined as follows: LINK $\rightarrow A C(0)$, INTREQ $\rightarrow A C(2)$ and INTERRUPT ENABLE FF $\rightarrow$ AC (4). 2. When RTF is executed, the LINK is restored from $A C(0)$ and the Interrupt System is enabled after the next sequential instruction is executed. The Interrupt Inhibit FF is set preventing interrupts until the next JMP, JMS or LIF instruction is executed.
2. A hardware RESET clears F7E, WOF, 11FF and COF. The IF and DF are cleared to $\mathrm{O}_{8}$. The DMA status register is cleared. (Read; refresh; disable F7E and WOF interrupts; no carry from CAO to ECA2). The clock Enable register is cleared (Disable COF interrupt; disable clock buffer to clock counter transfer on COF; disable counter). Counter/buffer is cleared.

TABLE 2 SUMMARY OF IM6102 REGISTER BIT ASSIGNMENTS

	DX0	DX1	DX2	DX3	DX4	DX5	DX6	DX7	DX8	DX9	DX10	DX11
Current Address	CAO	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	CA10	CA11
Extended Current Address							ECAO	ECA1	ECA2			
Word Count	WCO	WC1	WC2	WC3	WC4	WC5	WC6	WC7	WC8	WC9	WC10	WC11
DMA Status (1).						SR5	SR6	SR7	SR8	SR9	SR10	SR11
Interrupt Vector (2)	VR0	VR1	VR2	VR3	VR4	VR5	VR6	VR7	VR8	VR9	VR10	VR11
RIF Instruction (3)							IFO	IF1	IF2			
RTF, CIF Instruction							IB0	IB1	IB2			
GTF, RIB Instruction				IIFF(4)			SFO	SF1	SF2	SF3	SF4	SF5
CDF, RDF Instruction							DF0	DF1	DF2			
RTF Instruction										DF0	DF1	DF2
Clock Enable (5)	ENO		EN2	EN3	EN4	EN5		EN7				
Clock Buffer	CBO	CB1	CB2	CB3	CB4	CB5	CB6	CB7	CB8	CB9	CB10	CB11
Clock Overflow (6)	COF											

(1) DMA STATUS
$\left.\begin{array}{ll}\text { SR5 } & \text { Set if Field } 7 \text { wraparound carry error - F7E; cleared by CAF, RFSR (at IOTA } \cdot \overline{X T C} \text { time), RESET } \\ \text { SR6 } & \text { Set if DMA Word Counter Overflow }\end{array}\right\} \begin{aligned} & \text { READ } \\ & \text { ONLY }\end{aligned}$
SR7 Mode Bit 7 ; Cleared by RESET (REFRESH MODE)
SR8 Mode Bit 8 See below
SR9 Carry enable from CA0-11 to ECA2 if set - CE
SR 10 DMA Write if set
SR11 Enable F7E or WOF interrupt if set - IE
(2) VRO-VR10 loaded from AC. VR11 is equivalent to $\overline{\mathrm{COF}}$
(3) IF - Instruction Field; cleared to $0_{8}$ by RESET AND INTGNT
(4) IIFF - Interrupt Inhibit Flip-Flop; set whenever IB $\neq$ IF; (CIF, CDF/CIF, RMF, RTF) cleared by RESET and $I B \rightarrow$ IF transfer
(5) ENO - Enable Clock Overflow (COF) interrupt; cleared (interrupt disable) by RESET , CAF

EN2 - When set causes clock buffer to be transferred to clock counter on COF.
Counter runs at selected rate; COF remains set until cleared with CLSA.
When cleared to 0 , counter runs at selected rate, overflow occurs every
212 counts and COF remains set. EN2 is cleared by RESET, CAF
EN3, EN4, EN5 - Select interval between pulses. Cleared to 000 by RESET (counter disabled), CAF See below.
EN7 - Inhibits clock prescaler when set. Cleared by RESET, CAF
(6) COF - Clock Overflow status bit; cleared by CAF, RESET and CLSA; complement provides LSB of interrupt vector.

SR 7, 800	Refresh mode; WC is frozen, no UP, DMAEN don't care	EN 3, 4,5	with	2 MHz clock
01	Normal mode; DMAEN(H) freezes WC, CA and no	000		STOP
	UP if WC has not overflowed; stop if WC overflows	001		STOP
10	Burst mode; DMAEN (H) freezes WC, CA and no	010		20 ms interval
	UP if WC has not overflowed; reverts to refresh	011		2 ms interval
	mode if WC overflows.	100		$200 \mu$ s interval
11	Stops SDMA	101		$20 \mu$ s interval
		110		$2 \mu$ s interval
		11.1		STOP

NOTES:

1. Bits SR 7 and 8 do not change when the DMA controller stops or reverts to refresh mode as a result of WC overflow.
2. The "overflow" status is defined as set when the most significant bit of a counter makes a " 1 " to " 0 " transition.

TABLE 3 SDMA INSTRUCTIONS

MNEMONIC	OCTAL   CODE	OPERATION
LCAR	62058	LOAD CURRENT ADDRESS REGISTER (CA) The contents of the AC replace   the contents of the CA and the AC is cleared. DMA sequencing is stopped.
RCAR	62158	READ CURRENT ADDRESS REGISTER   Description: Contents of CA transferred to AC.
LWCR	62258	LOAD WORD COUNT REGISTER (WC)   Description: Contents of AC are transferred to the WORD cOUNT REGISTER,   the AC is cleared WORD COUNT OVERFLOW (WOF) is cleared and DMA   operation started.
LEAR,	62 N68	LOAD IMMEDIATE TO.EXTENDED CURRENT ADDRESS REGISTER (ECA)   Description: Field N of the IOT instruction is transferred to the Extended current   address register.
REAR	62358	READ EXTENDED CA   Description: Extended current address register contents OR'd into bits $6, ~ 7, ~ 8, ~$   of AC.
LFSR	62458	LOAD DMA FLAGS and STATUS REGISTER   Description: AC bits 7.11 are transferred to the DMA STATUS REGISTER   and the AC is cleared.
RFSR	62558	READ DMA FLAGS and STATUS REGISTER   Description: DMA Flags and Status Register bits are OR transferred into AC bits   5-11 and Field 7 wraparound error (F7E) is cleared.
SKOF	62658	SKIP ON OVERFLOW INTERRUPT   Description: The PC is incremented by 1 if a word count register overflow interrupt   condition is present causing next instruction to be skipped.
WRVR	62758	WRITE VECTOR REGISTER   Description: AC bits 0-10 are transferred to the Vector Register and the AC is cleared.
CAF	60078	CLEAR ALL FLAGS-clears F7E and WOF (and also COF), Clock enable and clock   buffer. The DMA process is initiated if the status register is not set to the "stop" mode.

TABLE 4 DMA FLAGS AND STATUS REGISTER BIT ASSIGNMENTS

where* - don't care for write and zero for read.
F7E Field 7 wrap around carry error; cleared by CAF, RFSR and RESET
Logic one indicates word counter overflow; clear by CAF, LWCR and RESET
CE Carry enable from CA(0-11) to ECA; cleared by RESET
$\bar{R} / W \quad$ Logic one indicates DMA write (Port to Merhory transfer). Cleared (DMA Read) by RESET
IE Enable interrupt when WC overflows or Field 7. error occurs; cleared by RESET
SR7, 800 Refresh mode; WC is frozen, no UP, DMAEN is don't care
01 Normal mode; DMAEN(H) freezes WC CA and no UP if WC has not overflowed; stop if WC overflows
10 Burst mode; DMAEN $(H)$ freezes WC, CA and no UP if WC has not overflowed; refresh condition if WC overflows
11 Stops DMA

## DMA MODES

## $S_{7} \mathbf{7}^{=} \mathrm{SR}_{8}=0$ REFRESH MODE

- This is the mode to which the 6102 reverts on RESET. The word count register clock input is disabled, the user pulse (DMA data strobe) is suppressed and the DMAEN input is ignored. However, provided valid DMA transfer conditions are met in a particular memory cycle, the DMA sequencer will be started, appropriate timing signals will be generated and the current address register will be clocked. Thus DMA read accesses will be performed continually with an essentially free-running current address register. Read accesses will refresh dynamic memory. No WOF is possible but an F7E is possible if bit SR9 is set, enabling a carry from the current address register to the extended current address register.


## $S R_{7}=0 ; S R 8=1$ NORMAL MODE

This mode is used for normal SDMA operations with static memory. The following instruction sequence can be used:

CLA	/Clear AC
TAD CA	/Get starting address
LCAR	/Load into current address register and
	clear AC

TAD. SR. /Get DMA status Register Constant
LFSR - /Change status (from refresh to normal for example)
TAD WC /Get two's complement of block length.
LWCR : /Load word count register and start DMA TRANSFERS

Note that LWCR will start the sequencer so it should be the last instruction in the initialization sequence. The ECA register and vector register could also have been initialized in this sequence.
The SDMA sequencer samples DMAEN on the rising edge of every XTA and latches the condition of the enable line. If-DMAEN is low, the sequencer is enabled, external timing signals XTC*, MSEL*, UP, LXMAR* are generated, the WC and CA registers are clocked. If DMAEN is high, at XTA ( $\uparrow$ ) time, the signal is sampled and latched and if the WC hias not overflowed, the WC and CA registers are frozen, UP is suppressed. If the WOF condition comes up, the SDMA operation stóps, regardless of DMAEN level.

The. DMAEN and UP signals provide a simple interlocked handshaking method for transferring data one or more, characters at a time (entire blocks) concurrently with processor. operations on the bus. Of course, at all times, independent of DMAEN, the SDMA sequencer can proceed only if other bus usage conditions for DMA operations are met (not IOTA, IAUTOI, DCA, JMS, IJMIS, ISZ, DMAGNT, or access of location X00008),
NOTE: IAUTOI is an indirect cycle of any autoindexed instruction; IJMS is indirect cycle of JMS. An autoindexed JMP instruction may not be executed when the DMA mode is active.

## $S R_{7}=1 ; S R_{8}=0 \quad$ BURST MODE

This mode is the same as the normal mode except when the word count register overflows. When this happens, the SDMA sequencer will set the WOF flag and revert to the refresh mode (ignoring DMAEN, freezing WC and suppressing UP). This mode is used when SDMA operations and dynamic memory refresh must be concurrently performed. The system designer must control the block lengths to be transferred, the refresh interval, and memory system design according to the application and performanice desired.

## $\mathrm{SR}_{7}=1 ; \mathrm{SR}_{8}=1$ STOP MODE

In this mode, no SDMA operations will take place. Naturally, cycle stealing DMA is still possible, and indeed may be used in any of the modes but the designer must be aware that cycle stealing may adversely affect dynamic memory refresh intervals. LWCR and LFSR may be executed in either order to change mode and start DMA.

## B. Extended Memory Address Control

Figure 4 shows the EMA registers in more detail along with the register transfers caused by various instructions. The EMA function of the IM6102 is program compatible with the DEC PDP-8/E KM8-E Memory Extension option. The purpose of the EMA function is to extend the effective
addressing, space of the system from 4 K to 32 K words. To perform this function, the EXTENDED MEMORY CON. TROLLER maintains a 3-bit extended address which is decoded by the memory modules to select 1 of 8 memory fields each contajning 4096 words of storage. These 4 K fields start with FIELD 0 and progress to FIELD 7 when 32K of memory is used. All software communication with the controller is via programmed IOT instructions for which a summary is included in Table 1.

Figure 4 shows two 3 -bit field registers: the Instruction Field, which acts as an extension to the instruction and directly obtained operand addresses and the Data Field, which augments indirectly obtained operand addresses. The program can, therefore, use one field for instructions and address pointers and another field for data. The selection between Instruction and Data Fields is signalled by the DATAF signal generated by the IM6100. A discussion of the various registers follows.


FIGURE 4: EMA REGISTERS

## INSTRUCTION FIELD REGISTER (IF)

The IF is a 3-bit register that serves as an extension of the Program Counter (PC). The IF, however, is not incremented when the PC goes from 77778 to 00008 . The contents of the IF determine the field from which all instructions are taken. Operands for all directiy addressed memory reference instructions also come from the Instruction Field. The indirect pointer for all indirectly addressed memory reference instructions reside in the Instruction Field. The IF is cleared to $\mathrm{O}_{8}$ and the IM6100 Program Counter is set to 77778 by RESET.

## DATA FIELD REGISTER (DF)

The DF is a 3-bit register which determines the memory field from which operands are fetched in indirectly addressed AND, TAD, ISZ or DCA instructions. However, the branch address for indirectly addressed JMS or JMP instructions is obtained from the Instruction Field. The Data Field register may be modified under program control. The DF is șet to $\mathrm{O}_{8}$, on reset.

## INSTRUCTION BUFFER REGISTER (IB)

The IB is a 3-bit register which serves as an input buffer for the Instruction Field (IF) register. All programmed modifications of the IF register are made through the IB
register. The transfer from IB to IF takes place at the beginning of the execute phase of the "next" JMP or JMS instruction or immediately upon execution of an LIF instruction. Using this feature, a program segment can execute an instruction to modify the IF and then "exit" the program segment before the actual modification of the IF takes place. If inṣtructions could change the IF directly, it would be impossible to execute the "next" sequential instruction, followed by a Change IF instruction. The IB to IF transfer is inhibited if the JMP/JMS instruction is fetched from control panel memory, which is restricted to 4 K , but the LiF instruction is used here to provide the ability to load the IF register from the IB register. This allows the control panel routines to be executed transparently while the IB and IF differ and also yields a method for the panel to extract or alter the status of the primary EMA registers. The IB is set to $\mathrm{O}_{8}$, on reset. The IB to IF transfer takes place during the second cycle of a JMP/ JMS instruction when XTC makes a falling ( $\downarrow$ ) transition.

## SAVE FIELD REGISTER (SF)

The SF is a 6 -bit register in which the IB and DF registers are saved during an Interrupt Grant. When an Interrupt occurs, the contents of $I B$ and DF are automatically
stored in SF (0-2) and SF (3-5), respectively, and the IF, IB and DF registers are cleared. The INTGNT (Interrupt Grant) cycle stores the "current" Program Counter (PC) in location $0^{0000} 8$ of Memory Field $0_{8}$ and the CPU resumes operation in location 00018 of Memory Field 08 . The Instruction Field and Data Field of the program segment being executed by the CPU before the interrupt was acknowledged are available in the SF register.

## INTERRUPT INHIBIT FLIP-FLOP

The INTREQ (Interrupt Request) line to the IM6100 must be "gated" by the Interrupt Inhibit Flip-Flop so that, when the Instruction Field is changed under program control, all interrupts are disabled until a JMP or JMS instruction is executed. Since the actual modification of the Instruction Field takes place only after the "next" 'JMP/JMS, this inhibition of the.INTREQ's ensures that the program sequence resumes operation in the "new" memory. field before an Interrupt Request is granted.

Since Interrupt Requests are asynchronous'in nature, a situation may arise in which an INTREQ is generated when the IF and IB bits are different. The Interrupt Inhibit FF guarantees the structural integrity of the program segment. The IIF is cleared on reset.

TABLE 5 EMA INSTRUCTIONS

MNEMONIC	OCTAL CODE	OPERATION
GTF	$60048$	GET FLAGS   Operation: $\begin{aligned} & \text { AC }(0) \leftarrow \text { LINK } \\ & \text { AC }(2) \leftarrow \text { INTREQ Line } \\ & \text { AC }(3) \leftarrow \text { INT INHIBIT FF } \\ & \text { AC }(4) \leftarrow \text { INT ENABLE FF } \\ & \text { AC }(6.11) \leftarrow \text { SF }(0-5) \end{aligned}$   Description: LINK, INTREQ and INT ENABLE FF are internal to the CPU. The INT INHIBIT FF and SF are in the MEDIC.
RTF	$60058$	RETURN FLAGS   Operation: $\begin{aligned} & \text { LINK } \leftarrow A C(0) \\ & I B \leftarrow A C(6-8) \\ & D F \leftarrow A C(9-11) \end{aligned}$   Description: LINK is restored. All AC bits are available externally during IOTA T6 to restore other flag bits. The internal Interrupt System is enabled. However, the Interrupt Inhibit FF is made active until. the "next" JMS/JMP/LIF: The IB is transferred to IF after the "next" JMS/JMP/LIF.
CDF	62N18	CHANGE DATA FIELD   Operation: $\quad D F \leftarrow N_{8}$   Description: Change DF register to $\mathrm{N}\left(\mathrm{O}_{8}-78\right)$.

TABLE 5, Continued

MNEMONIC	OCTAL CODE	OPERATION
CIF	62 N 28	CHANGE INSTRUCTION FIELD   Operation: $\quad \mathrm{IB} \leftarrow \dot{\mathrm{N}}_{8}$   Description: Change IB to $\mathrm{N}\left(0_{8} \cdot \mathrm{7}_{8}\right)$. Transfer IB to IF after the "next" JMP/JMS/LIF. The Interrupt Inhibit FF is active until the "next" JMP/JMS/LIF.
CDF, CIF	$62 N 38$	CHANGE DF, IF   Operation: $\quad \mathrm{DF} \leftarrow \mathrm{N}_{8}$ $\mathrm{IB} \leftarrow \mathrm{~N}_{8}$   Description: Combination of CDF and CIF.
RDF	62148	READ DATA FIELD   Operation: $\quad A C(6-8) \leftarrow \dot{A C}(6.8)+D F$   Description: OR's the contents of DF into bits 6-8 of the AC. All other bits are unaffected.
RIF	62248	READ INSTRUCTION. FIELD   Operation: $\quad \mathrm{AC}(6.8) \leftarrow \mathrm{AC}(6.8)+\mathrm{IF}$   Description: OR's the contents of IF into bits 6.8 of the $A C$. All other bits of the $A C$ are unaffected.
RIB	62348	READ INSTRUCTION BUFFER   READ SAVE FIELD   Operation:, $\quad A C(\dot{6}-11)-A C(6-11)+S F$   Description: OR's the contents of SF into bits 6-11 of the AC. All other bits are unaffected.
RMF ${ }^{\text {] }}$	${ }_{6244}^{8}$	RESTORE MEMORY FIELD   Operation: $\quad \mathrm{IB} \leftarrow \mathrm{SF}(0-2)$   DF $\leftarrow \mathrm{SF}(3-5)$   Description: The SF register saves the contents of the IB and DF when an interrupt occurs. This command is used to restore IB and DF when "exiting" from the interrupt service routine in another field.   Transfer IB to IF after the next JMP/JMS/LIF. The Interrupt Inhibit Flip-Flop is active until the next JMP/JMS/LIF.
LIF	${ }^{6} 6254_{8}$	LOAD INSTRUCTION FIELD   Operation: $\quad I F \leqslant I B$   Description: Transfer IB to IF and clear the Interrupt Inhibit FF

+: "OR"

- " "AND"
$\leftarrow:$ "IS REPLACED BY"


## OPERAND FETCHING

Instructions are accessed from the currently assigned Instruction Field. For indirect AND, TAD, ISZ or DCA instructions, the operand address refers first to the Instruction Field to obtain an Effective Address which in turn refers to a location in the currently addressed Data Field. All instructions and operands are obtained from the field designated by the IF, except for indirectly addressed operands, which are specified by the DF. Thus, $D F$ is active only in the Execute phase of an AND, TAD, ISZ or DCA when it is directly preceded by an indirect phase.

ADDRESS MODE	IF	DF	AND, TAD, ISZ or DCA
Direct	$m$	$n$	Operand in field $m$
Indirect	$m$	$n$	Absolute address of   operand in field $m ;$   operand in field $n$

Each field of extended memory contains eight auto-index registers in addresses 10 through 17 . For example, assume that a program in field 2 is running ( $I F=2$ ) and using operands in field 1 ( $D F=1$ ) when the instruction TAD $\mid 10$ is fetched. The indirect autoindex cycle is entered, and the contents of location 10 in field 2 are read, incremented, and rewritten. If address 10 in field 2 originally contained 0546 , it now contains 0547 . In the execute cycle, the operand is fetched from location 0547 of field 1.

Program control is transferred between memory fields by the CIF instruction. The instruction does not change the instruction field directly, as this would make it impossible to execute the next sequential instruction; instead, it loads the new instruction field in the IB for automatic transfer into the IF when either a JMP or JMS instruction is executed. The DF is unaffected by the JMP and. JMS instructions.

The 12 -bit program counter is set in the normal manner and, because the IF is an extension on the most significant end of the PC, the program sequence resumes in the new memory field following a JMP or JMS. Entry into a program interrupt is inhibited after the CIF instruction until a JMP or JMS is executed.

NOTE: The IF is not incremented if the PC goes from 77778 to 00008 . This feature protects the user from accidentally entering a nonexistent field.

To call a subroutine that is out of the current field, the data field register is set to indicate the field of the calling JMS, which establishes the location of the operands as well as the identity of the return field. The instruction field is set to the field of the starting address of the subroutine. The following sequence returns program control to the main program from a subroutine that is out of the current field.


When a program interrupt occurs, the current instruction and data field numbers are automatically stored in the 6 -bit save field register, then the IF and DF are cleared. The 12 -bit program counter is stored in location $\mathrm{OOOO}_{8}$ of field 08 and program control advances to location 00018 of field $0_{8}$. At the end of the program interrupt subroutine, the RMF instruction restores the IF and DF from the contents of the SF. Alternatively, the GTF and RTF instructions may be used to handle the Save Field and Link information. The following instruction sequence at the end of the program interrupt subroutine continues the interrupted program after the interrupt has been processed:


IM6100 control panel memory programs, if used must be careful in the manner that EMA register data is manipulated. Control panel interrupt requests bypass the device interrupt enable flip flop, and indeed, are granted even by a halted CPU. The interrupts from a control panel may occur at any time, and in particular when the IB and IF registers do not contain the same data. The EMA logic inhibits IB to IF transfers in control panel memory so that panel routines may execute transparently (in particular, JMP/JMS instructions). The panel routines may alter the IF by executing the LIF instruction.

Users should also note that the GTF and RIB instructions read the SF register, and only the RIF instruction reads the IF register. Note also that the SF saves the IB register rather than the IF during an interrupt. However, interrupts are inhibited until the IF and IB registers are the same.

The memory extension controller that we have discussed in this section shows three important design considerations involved in extending memory addressing space. The first is the concept of having separate instruction and data fields for program flexibility. The second is the importance of double buffering the instruction field register to maintain structural integrity of programs and the third is the provision for saving the current field status upon interrupts and disabling interrupts until a change of instruction field has been completely executed.

## C. Programmable Real Time Clock

The programmable real time clock offers the 6100 user a number of ways to accurately measure and count intervals in order to implement real time data acquisition and data processing systems.

The crystal used should have the following characteristics:
$\mathrm{R}_{\mathrm{S}} \leqslant 150$ ohms
$\mathrm{C}_{\mathrm{M}}=3-30 \mathrm{mpF}\left(10^{-15 \mathrm{~F}}\right)$
$\mathrm{C}_{\mathrm{O}}=10-50 \mathrm{pF}$
Static capacitance should be around 5 pF ; for the greatest stability, $\mathrm{C}_{\mathrm{O}}$ should be around 12 pF and the oscillator is parallel resonant.

## TABLE 6 CLOCK ENABLE REGISTER BIT ASSIGNMENTS

0	1	2	3	4	5	6	7	8	, 9	10	11
ENO	$*$	EN2	EN3	EN4	EN5	$*$	EN 7	$*$	$*$	$*$	$*$

[^27]When set to a 1 -counter runs at selected rate. If the COF flag is cleared, overflow causes clock buffer to be transferred to the clock counter which continues to run. COF flag remains set until cleared with IOT 6135 (CLSA). Also cleared by RESET, CAF.
EN3, 4, 5- Assuming 2 MHz crystal oscillator cleared by RESET, CAF.

Bits 3,4,5	Octal	Interval Between Pulses	Frequéncy
000	0	Stop	0
001	1	Stop	0
010	2	20 msec	50 Hz
011	3	2 msec	500 Hz
100	4	$200 \mu \mathrm{sec}$	5 KHz
101	5	$20 \mu \mathrm{sec}$	50 KHz
110	6	$2 \mu \mathrm{sec}$	500 KHz
111	7	Stop	0

EN7 -
Inhibits clock prescaler when set to 1 cleared by RESET, CAF. EN3-5 and EN7 should not be changed simultaneously.


FIGURE 5 RTC REGISTERS

A discussion of the Real Time Clock registers as shown in Fig. 5 follows:

## CLOCK ENABLE REGISTER

This register controls the mode of counting, whether clock interrupts are allowed, and the rate of the time base of the clock. For a description refer to the register bit assignments.

## CLOCK BUFFER REGISTER (CB)

This 12-bit register stores data being transferred from the $A C$ to the clock counter, or from the clock counter to the AC. It also permits presetting of the clock counter.

## CLOCK COUNTER REGISTER (CC)

This register is a 12 -bit binary counter that may load the clock buffer or be loaded from it. It is driven by a 2 MHz crystal oscillator with the proper predivision set by the time base selection. When an overflow occurs and if bit 0 of the clock enable register is a logic one, an interrupt is requested. If bit 2 is also 1 , overflow causes the clock buffer to be transferred automatically into the clock counter.

## TIME BASE MULTIPLEXER

The multiplexer provides count pulses to the clock counter according to the rate set by the clock enable register. Use of other than a 2 MHz crystal for the clock will result in proportionately different time bases.

## CLOCK OVERFLOW FLAG

This flag is set by a clock counter overflow. It is cleared by CAF, CLSA and RESET. Its complement provides, LSB (VR11) of interrupt vector. If ENO of clock enable counter is set, COF can cause an interrupt request. The COF is set when the MSB of the counter makes a " 1 " to " 0 " transition.

TABLE 7 RTC INSTRUCTIONS

MNEMONIC	OCTAL CODE	OPERATION
clze	$61308_{8}$	CLEAR ENABLE REGISTER PER AC   Description: Clears the bits in the clock enable register corresponding to those bits set in the AC. The AC is not changed.
CLSK	61318	SKIP ON CLOCK INTERRUPT   Description: Causes the program counter to be incremented by one if clock interrupt conditions exists, so that the next sequential instruction is skipped. ENO must be 1 .
Cloe	61328	SET ENABLE REGISTER PER AC   Description: Sets the bits in the clock enable register corresponding to those bits set in the AC. The AC is not changed.
CLAB	$6133_{8}$	TRANSFER AC TO CLOCK BUFFER   Description: Causes the contents of the AC to be transferred to the Clock Buffer, then causes the contents of the Clock Buffer to be transferred to the Clock Counter. The AC is not changed.
CLEN	$6^{61348}$	READ CLOCK ENABLE REGISTER   Description: Causes the contents of the clock enable register to be transferred into the AC.
CLSA	$6135_{8}$	READ CLOCK STATUS   Description: Interrogates the clock overflow status flip flop by clearing $A C$, then transferring clock status into $A C$ bit 0 . COF is cleared.
CLBA	$6136_{8}$	READ CLOCK BUFFER   Description: Clears the $A C$, then transfers the contents of the Clock Buffer into the AC.
CLCA	$6137_{8}$	READ CLOCK COUNTER   Description: Clears the AC, transfers the contents of the Clock Counter to the Clock Buffer, then transfers the contents of the Clock Buffer into the AC. If EN7 is set to 1 (click prescaler is inhibited), the CLCA instruction increments the prescaler input by one. If the clock is in the "stop" mode but EN7 is not inhibited, the prescaler will not be clocked by the CLCA instruction.
CAF	60078	CLEAR ALL FLAGS   Description: Clears COF flag (and also F7E, WOF flags), clock enable and clock buffer registers.

## SYSTEM CONSIDERATIONS

The IM6102 is the highest priority device in a priority interrupt scheme. It provides an active low signal on pin 40, POUT, to signal the next lower priority device in the chain (thus, a high level on POUT indicates that the 6102 is not requesting an interrupt) via its "priority-in", PRIN, input.

The IM6102 when requesting an interrupt activates the SKP/INT line low on pin 35 and the POUT line low on pin 40 if its interrupt inhibit flip-flop is not set.

The IOT instructions used by the IM6102 preclude the use of certain device addresses when the system uses IM6101 PIEs. The addresses that may not be used are those given by bits 3 through 7 of the IOT instructions that are used with the IM6102. These addresses are 00101, 01000, 01001, 01010, 01011 corresponding to IOT instructions 612X, 613X, 620X, 621X, 622X, 623X, 624X, 625X, 626X and 627X.

The IM6102 does not generate DMAREQ signals to the 6100 because of its simultaneous use of the DX bus. It monitors the DMAGNT signal in order to place the EMA 0 , 1, 2 lines on pins $36,37,38$ in a high impedance state while DMAGNT is high.
If the application requires other peripherals requiring direct memory access on a cycle stealing basis, for example, bus contention problems will be resolved by the IM6102 as it monitors the DMAGNT line and gets off the bus (by placing all lines in the high impedance state) when DMAGNT is active.

If interrupts are enabled and a request is pending, during the first INTGNT cycle, the IM6102 will detect the referencing of location $0000_{8}$ by the IM6100 in order to save the PC and will suspend simultaneous DMA during that cycle. The logic will in fact suspend simultaneous DMA in any cycle that location 00008 is referenced, either in main memory or control panel memory.

This makes it possible to disable automatic interrupt vectoring by grounding the INTGNT line to the IM6102. This will not affect the generation of INTREQ so the IM6100 will have to poll peripheral devices (skip on flag instructions) to determine the interrupting source.

Grounding INTGNT is not possible in extended memory applications since the INTGNT signal is used to save the Instruction Buffer and Data Field Register and clear the IF, IB and DF registers. (All peripheral device interrupt service routines have their entry point at location 00018 of Memory Field $0_{8}$ ).

If no interrupt requests are pending in the 6102 (COF, F7E or WOF) from the DMA or RTC functions, the IM6102 interrupt request flip-flop is clear and POUT, the priority out signal, is high, enabling interrupt requests downstream in the priority chain. In the event that interrupts are enabled (DMA status bit SR11 is set and/or clock enable bit ENO is set) and an interrupting condition occurs (F7E, WOF, COF), the POUT signal goes low asynchronously disabling interrupt vectors downstream.

If the Interrupt Inhibit Flip-Flop is not set, the SKP/INT line is driven low by the interrupt request. If the IIFF is set, the SKP/INT line stays high until the IIFF is cleared (by RESET or an IB to IF transfer) at which time SKP/INT may be driven low. Skip requests will always propagate independently of IIFF during IOTA $\bullet \overline{\text { DEVSEL }} \bullet$ XTC.

Interrupt requests from devices downstream of the IM6102 must also be channeled via the IM6102 in order that the IIFF may condition the request timing. The IM6102 provides a built in pull-up on the SKP/INTX line coming in from devices downstream in the priority chain. At 5 v , the pull-up looks like a 10 K resistor; at 10 V , it looks like 5 K .

The execution of any IOT instruction will reset INTGNT to a low level at the end of IOTA time. This IOT instruction will be the first instruction in the interrupt service routine after saving status. If hardware vectoring is being used, any IOT instruction when INTGNT is high will cause the IM6102 to place a vector address on the bus if it requested an interrupt and pull the C1 and C2 lines low, thus placing the vector in PC and forcing a branch to the service routine. If the C 2 line is left unconnected, the vector address will not be forced into the PC, but will be OR'ed into the AC. The interrupt service routine would have to execute a CLA after its first IOT instruction in order to clear the AC. Note that the LSB of the vector address is determined by the complement of the COF flag and that a DMA interrupt service routine must distinguish between the two possible interrupting conditions, a word count overflow or a field 7 wraparound error. The programmer may read the DMA status register with an RFSR instruction and also test the WOF flag with a skip instruction, SKOF. The COF flag may also be tested with the CLSK skip instruction. The flag may be read (and cleared) with the CLSA instruction. The skip instructions cause the SKP/INT line to go low during IOTA - XTC time if the flag being tested is set. At all other times, the SKP/INT line carries interrupt requests as modified by the IM6102 interrupt inhibit logic. The flags must always be explicitly cleared by the interrupt service routine.

The DMA transfer rate depends on the program. The minimum rate would be obtained if the processor was executing an autoindexed DCA or an indirect JMS leven if non-autoindexed, DMA is suppressed during indirect phase of JMS). Continuously executing these instructions would cause DMA transfers to occur only every third memory cycle (IFETCH). The maximum rate could be obtained by executing a JMP• loop (JMP to itself); data would be transferred on every cycle and the interrupt routine entered when word count overflows could bump the return address out of the loop.

In dynamic memory systems it should be noted that the MEMSEL* signal narrows when the mode changes from write to refresh (burst mode). RESET signals may need to be limited in duration to prevent loss of memory data in dynamic memory systems.

The accuracy of the clock counter in the programmable real time clock section of the IM 6102 is as follows:

CASE 1: Counter running; $C C$ loaded from $A C$ via CB using instruction CLAB (IOT 6133) accuracy is 0 to +1 count.

CASE 2: CC loaded from CB automatically on overflow; the accuracy of counting is
then only dependent on accuracy of oscillator.

IM6102 users who do not need all the capabilities of the device may improve systems performance by not using some of the features. To do this properly, certain pins on the device will become unused. The following table summarizes what may be done with certain pins when using only part of the IM6102 functions. All unlisted pins must be used when implementing any of the three basic features.

PIN   NUMBER	PIN NAME	RTC ONLY	SDMA ONLY	EMC ONLY	EMC \& DYNAMIC REFRESH
2	DMAEN	VCC	USED	VCC	. VCC
3	DMAGNT	USED	USED	USED	USED
6	MEMSEL*	N/C	USED	N/C	USED
8	UP	N/C	USED	N/C	N/C
11	LXMAR*	N/C	USED	N/C	USED
12	XTC*	N/C	USED	N/C	USED
15	SKP/INTX	VCC	VCC	USED	USED
29	OSCIN	USED	GND	GND	GND
31	OSC OUT	USED	N/C	N/C	N/C
34	C2	USED	USED	N/C	N/C
36	EMAO	N/C	N/C	USED	USED
37	EMA 1	N/C	N/C	USED	USED
38	EMA 2	N/C	N/C	USED	USED ${ }^{\text {' }}$
40	PROUT	USED	USED	N/C	N/C

## SDMA OPERATIONS TIMING

## A. IM6100 Signals

B. DMA Read


## C. DMA Read/Refresh



## D. DMA Write



## E. DMA Write/Refresh




## APPLICATION

IM6100-IM6102 Interface in a Buffered System.


## IM6103 CMOS Parallel Input-Output Port (PIO)

## FEATURES

- 20 Programmable I/O Pins
- TTL Compatible Inputs and Outputs
- Compatible with IM6100 Microprocessor Family
- Low Power Dissipation < 10 mW
- Extended Temperature Range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Single Power Supply, 4-11 Volts


## GENERAL DESCRIPTION

The IM6103 is a Parallel Input-Output Port (PIO) device designed for use in IM6100 microcomputer systems. Its function is to provide a general purpose parallel I/O component to interface peripheral equipment to the IM6100 system bus. The functional configuration of the IM6103 is programmed by the user software so that normally no external logic is necessary to interface a wide variety of peripheral devices such as displays, printers, keyboards, etc. to an IM6100 microcomputer system.
A general purpose all-CMOS microcomputer system with $64 \times 12$ RAM, $1 \mathrm{k} \times 12$ ROM and 20 I/O lines can be built with just four CMOS LSI devices - IM6100 microprocessor, IM6512 (64 $x$ 12) RAM, IM6312 (1k $x$ 12) ROM and IM6103 PIO.

## PIN CONFIGURATION (outline dwg DL, PL)



ORDERING INFORMATION

ORDER CODE	IM6103-1	IM6103A	IM6103
PLASTIC PKG	IM6103-1IPL	IM6103-AIPL	IM6103-IPL
CERAMIC PKG	IM6103-1IDL	IM6103-AIDL	IM6103-IDL
MILITARY TEMP.	IM6103-1MDL	IM6103-AMDL	-
MILITARY TEMP.	IM6103-1MDL	IM6103-AMDL   WITH 883B	MDL883B
883B	-		

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

Operatin Indus	ing Temperature trial IM61031
Storage	Temperature
Supply	Voltage
Voltage	on Any Input or
NOTE:	Stresses above device failure. Th any other conditio not implied. Expo device failures.

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Industrial

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage		$\mathrm{V}_{\text {cc }}{ }^{-1.7}$			
2	VIL	Logical "0" Input Voltage				0.8	$\checkmark$
3	IIL	Input Leakage	$\mathrm{OV} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	V OH	Logical "1" Output Voltage.	IOUT $=0$ except pins 6,9	$\mathrm{V}_{\text {cc }}{ }^{-1.0}$			
5	VOL	Logical "0" Output Voltage	IOUT $=0$			0.45	$\checkmark$
6	lolk	Output Leakage	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{V}_{\text {c }}$	-1.0		1.0	$\mu \mathrm{A}$.
7	Icc	Supply Current	$\begin{gathered} \mathrm{VCC}_{\mathrm{C}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~F}_{\mathrm{CLOCK}}=\text { Operating Frequency } \end{gathered}$			2.5	mA
8	CIN	Input Capacitance			7.0	8.0	
9	$\mathrm{C}_{0}$	Output Capacitance			8.0	10.0	pF

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, All times in ns.

	SYMBOL	PARAMETER		MIN	MAX	UNITS
1	tadds	Address Set-Up Time	DX-LXMAR $\downarrow$			
2	$t_{\text {addh }}$	Address Hold Time	LXMAR $\downarrow$-DX	150		
3	$\mathrm{t}_{\text {den }}$	Output Enable Time	DEVSEL $\downarrow$-DX		550	
4	$\mathrm{t}_{\mathrm{dc}}$	Output Enable Time	DEVSEL $\downarrow$-C ${ }_{1}$		550	
5	$\mathrm{t}_{\mathrm{di}}$	Output Enable Time	DEVSEL $\downarrow$-SKP		400	
6	$\mathrm{t}_{\text {ds }}$	Data Set-Up Time	DX-DEVSEL $\uparrow$	200		
7	$\mathrm{t}_{\mathrm{d}}$	Data Hold Time	DEVSELT-DX	150		
8	$t_{\text {ps }}$	Data In Set-Up Time	Port Data In-LXMAR $\downarrow$	200		ns
9	$t_{\text {ph }}$	Data In Hold Time	LXMAR $\downarrow$-Port Data In	225		
10	$t_{\text {d } 1}$	Delay Time	DEVSEL $\uparrow$-Port Data Out		550	
11	tbs	Data In Set-Up Time	Port B In-IRS $\downarrow$	200		
12	$\mathrm{t}_{\mathrm{bh}}$	Data In Hold Time	IRS $\downarrow$-Port B In	150		
13	$\mathrm{t}_{\mathrm{d} 2}$	Output Enable Time	ORS $\uparrow$-Port B Out.		550	
14	$\mathrm{t}_{\mathrm{d} 2}$	Output Disable Time	ORS $\downarrow$-Port B Out		200	
15	$\mathrm{t}_{\mathrm{d} 3}$	Delay Time	IRS $\downarrow$-IRE $\downarrow$ ORS $\downarrow$-ORF $\downarrow$ DEVSELT-IRE $\uparrow$ DEVSEL $\uparrow-O R F \uparrow$		550	

UNTERRSUL

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IMM6103I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8 V
Voltage on Any Input or Output Pin With Respect to GND . . . . . . -0.3V to Vcc +0.3V
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## DC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=$ Industrial

	SYMBOL	- PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{1} \mathrm{H}$	Logical " 1 " Input Voltage		$V_{\text {CC }}-1.7$			V
2	VIL	Logical "0" Input Voltage				0.8	
3	IIL	Input Leakage	$\mathrm{OV} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	V OH	Logical "1" Output Voltage	$\mathrm{I}^{\mathrm{OH}}=-0.2 \mathrm{~mA}$ except pins 6,9	VCC-1.0			V
5	VOL	Logical "0" Output Voltage	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	
6	loLk	Output Leakage	$\mathrm{OV} \leqslant \mathrm{V}_{\mathrm{O}} \leqslant \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
7	$\mathrm{ICC}$	Supply Current	$\begin{gathered} \mathrm{VCC}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \text { FCLOCK }=\text { Operating Frequency } \end{gathered}$			2.5	mA
8	CIN	Input Capacitance	,		7.0	8.0	pF
9	$\mathrm{CO}_{0}$	Output Capacitance			8.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, All times in ns.

	SYMBOL	PARAMETER		MIN	MAX	UNITS
1	$t_{\text {adds }}$	Address Set-Up Time	DX-LXMAR $\downarrow$	80		
2	$t_{\text {addh }}$	Address Hold Time	LXMAR $\downarrow$-DX	100		
3	$t_{\text {den }}$	Output Enable Time	DEVSEL $\downarrow$-DX		450	
4	$t_{\text {dc }}$	Output Enable Time	DEVSEL $\downarrow$ - $\mathrm{C}_{1}$	,	$\therefore 450$	
5	$t_{\text {di }}$	Output Enable Time	DEVSEL $\downarrow$-SKP		330	
6	$\mathrm{t}_{\text {ds }}$	Data Set-Up Time	DX-DEVSEL $\uparrow$	150		
7	$\mathrm{t}_{\mathrm{d}}$	Data Hold Time	DEVSELT-DX	100		
8	$\mathrm{t}_{\text {ps }}$	Data In Set-Up Time	Port Data In-LXMAR $\downarrow$	150		
9	$\mathrm{t}_{\mathrm{ph}}$	Data In Hold Time	LXMAR $\downarrow$-Port Data In	175		ns
10	$\mathrm{t}_{\mathrm{d} 1}$	Delay Time	DEVSEL个-Port Data Out		450	
11	$t_{\text {bs }}$	Data In Set-Up Time	Port B in-IRS $\downarrow$	150		
12	$\mathrm{t}_{\mathrm{b}}{ }^{\text {b }}$	Data In Hold Time	IRS $\downarrow$-Port B In	100		
13	$\mathrm{t}_{\mathrm{d} 2}$	Output Enable Time	ORS $\uparrow$-Port B Out		450	
14	$\mathrm{t}_{\mathrm{d} 2}$	Output Disable Time	ORS $\downarrow$-Port B Out		200	
15	$\mathrm{t}_{\mathrm{d} 3}$	Delay Time	$\begin{aligned} & \text { IRS } \downarrow-\text { IRE } \downarrow \\ & \text { ORS } \downarrow-O R F \downarrow \\ & \text { DEVSEL } \uparrow-I R E \uparrow \\ & \text { DEVSEL } \uparrow-O R F \uparrow \end{aligned}$		450	



FIGURE 1: Functional Block Diagram.

## IM6103 FUNCTIONAL. PIN DEFINITION

PIN NUMBER	SYMBOL	INPUT/ OUTPUT	DESCRIPTION
1	VCC		Positive Power Supply
2	$\mathrm{PA}_{7}$	1/0	Port A I/O Line (4). Most Significant Bit of Port A in Mode 10.
	$\mathrm{PC}_{11}$	1/0	Port C I/O Line (8) in Mode 11/OX-Most Significant Bit.
$3 \sim 5$	$\mathrm{PA}_{6} \sim \mathrm{PA}_{4}$	1/0	Port $\mathrm{A}_{5} \sim \mathrm{~A}_{7}$ (Mode 10).
	$\mathrm{PC}_{10} \sim \mathrm{PC}_{8}$	1/0	Port $\mathrm{C}_{9} \sim \mathrm{C}_{11}$ (Mode 11/OX).
6	SKP/INT	0	Time Multiplexed SKP and INTREQ lines to the IM6100 Microprocessor - Active Low.
7	$\mathrm{PA}_{8}$	1/0	Port A I/O Line in Mode 11/10 - Most Significant Bit of Port A in Mode 1.1.
	IRS	0	Input Register Strobe to clock data into Port B in Handshake Mode (Mode OX). Port B Latches in the data on the falling edge of IRS (IRS $\downarrow$ ).
8	PA9	1/0	Port Ag (Mode 11/10).
	IRE	0	Input Register Empty output goes high when Port B input buffer has been read by the IM6100 microprocessor. It goes low when Port B input buffers are strobed in by IRS $\downarrow$. (Mode OX): PIO may be programmed to generate an INTREQ on IRE $\downarrow$.

## IM6103 FUNCTIONAL PIN DEFINITION (Continued)

PIN NUMBER	SYMBOL	INPUT/ OUTPUT	DESCRIPTION
9	$\mathrm{C}_{1}$	0	$\mathrm{C}_{1}$ output goes low upon completion of PIO Port data transfer to the IM6100 Accumulaor (AC). This output is an open-drain output to be wire-OR'D with $\mathrm{C}_{1}$ Lines from other IM6100 peripheral controllers.
10	LXMAR	1	Address Latch enable signal from the IM6100. PIO clocks in address and control information from the IM6100 on the falling edge of LXMAR (LXMAR $\downarrow$ ). All Port inputs are sampled at LXMAR $\downarrow$.
11	PA10	1/0	Port $\mathrm{A}_{10}$ (Mode 11/10).
	ORS	1	Output Register Strobe input to enable Port B output buffers in Mode OX. Port B is tristated when ORS is low.
12	DEVSEL	1	Input-Output Device Select control line from the IM6100. It performs both the read and write function. The first negative transition after LXMAR $\downarrow$, enables the DX output buffers of the selected PIO for a 'read' operation. When DEVSEL returns high, the 'read' operation is terminated. The second negativegoing pulse on DEVSEL serves as a 'write' pulse to the selected PIO and the IM6100 AC data is written into the selected PIO register or port on the rising edge.
13	PA11.	1/0	Port $\mathrm{A}_{11}$ (Mode 11/10)-Least Significant bit of Port A.
	ORF	0	Output Register Full output goes high when the IM6100 writes into Port B in a handshake mode. It goes low when the peripheral device reads Port B by enabling ORS high. The PIO may be programmed to generate an INTREQ on ORF $\downarrow$ (Mode OX).
14	SEL6	1	A Chip Select Input. PIO has two chip selects, $\mathrm{SEL}_{6}$ and $\mathrm{SEL}_{7}$, thereby enabling up to four PIO chips in a system.
15	SEL7	1	A Chip Select Input.
$16 \sim 25$	$D X_{0} \sim \mathrm{DX}_{9}$	1/0	The IM6100 System bus (Data and Address).
26	GND		Ground
$27 \sim 28$	. $\mathrm{DX}_{10} \sim \mathrm{DX}_{1.1}$	1/0	IM6100 System bus (Data and Address).
$29 \sim 40$	$\mathrm{PB}_{0} \sim \mathrm{~PB}_{11}$	1/0	I/O Port Pin. $\mathrm{PB}_{0}$ is the most significant bit, and $\mathrm{PB}_{11}$ is the least significant bit.

## IM6100 SYSTEM TIMING

The tristate bidirectional 12-bit DX bus is used to transfer data and control information (Figure 3) between the IM6103 and the IM6100 microprocessor. The IM6100 transmits the device address and control information on the $D X$ bus during the 'execute' phase of an Input-Output Transfer (IOT) instruction. The IM6103 accepts this information on the falling edge of the LXMAR (Address Latch Enable) Signal.

The address bits (6-7) are compared with the chip select inputs (SEL 6 and SEL7) to address 1 of 4 PIO's. The IOT address bits ( $3-5$ ) are programmed internally to respond to the bit pattern 011. The SEL6 and SEL7 inputs should be externally hard-wired to match the $D X_{6}$ and $D X_{7}$ chip select bits. As shown in Fig. 3, DEVSEL goes low, during the first half of an IOT execute machine cycle for a read operation and it goes low again in the second half for a write operation. The IM6103 responds to a 'read' instruction by putting data
on the DX bus and $\mathrm{C}_{1}$ output (of IM6103) low when DEVSEL (from 1 M 6100 ) input is low. $\mathrm{C}_{1}$ line goes low to indicate an input transfer cycle to the IM6100. All PIO data transférs to the IM6100 Accumulator (AC) is an 'OR' transfer, (i.e., PIO data is OR'ed into the contents of the AC).
During the write operation into PIO, the PIO accepts data from the IM6100 Accumulator on the rising edge of the DEVSEL. During and after the PIO write, the contents of the accumulator are not cleared.
SKP/INT line goes low during the 'read' DEVSEL if the IM6103 is responding to a 'skip' instruction, and the 'skip' condition is met, therefore causing the IM6100 to skip the next sequential instruction. SKP/INT line reflects the interrupt request status of the IM6100 at all times except during the 'read' DEVSEL. The SKP/INT line goes low if an active interrupt request is pending. During read DEVSEL mode, the SKP/INT indicates the current skip condition. The bits are interpreted as shown below:


## OPERATION OF PORT BUFFERS

The IM6103 has 20 I/O pins which can be individually programmed in groups of 4,8 or 12 bits in three different modes of operation.
In Mode 11, the 20 1/O lines are divided into three ports: -Port A with 4 bits (PA8-PA11)
-Port B with 12 bits ( $\mathrm{PB}_{0}-\mathrm{PB}_{11}$ )
-Port C with 4 bits ( $\mathrm{PC}_{8}-\mathrm{PC}_{11}$ )
In Mode 10, the $201 / O$ lines are grouped into 2 ports--Port A with 8 bits ( $\mathrm{PA}_{4}-\mathrm{PA}_{11}$ )
-Port B with 12 bits ( $\mathrm{PB}_{0}-\mathrm{PB}_{11}$ )
-The four I/O lines associated with Port $C$ in Mode 11 ( $\mathrm{PC}_{8}-\mathrm{PC}_{11}$ ) are allocated to Port A as $\mathrm{PA}_{4}-\mathrm{PA} 7$.

In Mode OX, there are two ports-Port B with 12 bits and Port $C$ with 4 bits and four lines for handshake control logic. Four lines of Port A in Mode 11 (PA8-PA1i) are reassigned as handshake control lines. They are:
-Input Register Strobe (IRS)
-Input Register Empty (IRE)
-Output Register Strobe (ORS)
-Output Register Empty (ORE)
The handshake logic controls the datà transfer for the Port B. Port C operation remains the same as in Mode 11.
For an 'input' transfer in OX Mode, the input register empty (IRE) output goes high to indicate to the peripheral device that the input register is empty (as shown in Fig. 4). The peripheral device may then strobe in the new data into Port $B$ with Input Register Strobe (IRS). At this time, IRE goes low to indicate to the peripheral device that the input buffer is full, and remains low until Port B has been read by the IM6100 microprocessor. IRE then goes high after the IM6100 executes a Read Port B (RPB) instruction to initiate another input sequence. The data into Port B should be valid only for a short duration before and after IRS makes the 1 to 0 transition.


FIGURE 4: Input data transfer (peripheral device to PIO).

For an 'output' , transfer in OX mode, the IM6100 microprocessor writes the data into Port B and its timing is shown in Figure 5. ORF line from the PIO goes high, signaling the peripheral device that the output register is full. The peripheral device may then strobe in the new data from Port $B$ with ORS. Port B stays in the high impedance mode until ORS is activated by the peripheral device. ORF line goes . low and remains low until Port B has been written into by the IM6100 microprocessor. ORF then goes high, initiating another output sequence.


FIGURE 5: Output data transfer (PIO to' peripheral device).

The IM6100 monitors the status of ORF (Output Register Full). If it is low (i.e., output register is empty), IM6100 may load data into Port B output buffer with SPB/CPB/WPB instruction. ORF goes high a delay time after the rising edge of the 'write' DEVSEL, signaling the peripheral device that output buffer has new data. During this time, Port B output buffers remain tristated. The peripheral device may then enable and read out Port B output latches by activating ORS (Output Register Strobe) high. The falling edge of ORS (from high to low) signals the PIO that the peripheral device no longer needs the valid current information. Port B is tristated and ORF then goes low, thereafter, to indicate another output sequence.

ORF should be set to 0 and IRE to 1 with a 'write' command in Mode OX, to initiate the handshaking sequence.

The IM6100 microprocessor should not write into Port B until ORF is low for an 'output' transfer and should not read Port B until IRE is low for an 'input' transfer. The peripheral device reads Port $B$ if ORF is high and writes into Port $B$ if IRE is high.

The PIO may be programmed to generate an INTREO (Interrupt Request) , to the microprocessor when ORF or IRE goes low by setting the respective Interrupt enable bits, OREN and IREN.

The IM6100 may poll the status of ORF or IRE by executing the respective skip instructions SKPOR and SKPIR, by reading the status register or by reading "Port $A$ ".

In Mode 11 and 10, when handshaking control is not in effect, the execution of SKPOR and SKPIR Instructions depend on the state of the Port A lines PA11 and PAg, respectively. The Interrupt feature is available only in Mode OX.

The 'mode of operation - 11, 10 or OX, is selected by programming the Status Register (SR).

All ports are bidirectional. The execution of a 'write' instruction caused a port to be automatically programmed to be an 'output'. The output data may be changed by using the 'set', 'clear' or 'write' instructions. The output remains valid until the port bit lines are reset to be inputs.
Execution of a 'read' instruction causes a port to be automatically set as an 'input' port - i.e., it presents a very high impedance to the I/O lines. Data appearing on the I/O lines will be sampled into the port input latch at every LXMAR pulse and may be read by the IM6100 microprocessor by the 'read' instruction.

In Mode OX, Port B acts as a tristate bidirectional buffer which is controlled by an external peripheral device. ORF and IRE lines are outputs and ORS and IRS lines are inputs.

At power-on, all ports are defined to be input ports and the PIO is initialized to be in Mode 10. With $20 \mathrm{I} / \mathrm{O}$ lines partitioned into the $8 / 12$ (i.e., Port $A=8$ bits, Port $B=12$ bits) format.


FIGURE 6: . IM6103 PIO register bit assignments.

PINS	2	3	4	5	7	8.	11	13	29	30	31	32	33	34	35	36	37.	38	39	40
MODE 10	$\mathrm{PA}_{7}$	$\mathrm{PA}_{6}$	$\mathrm{PA}_{5}$	$\mathrm{PA}_{4}$	PA8	PAg	$\mathrm{PA}_{10}$	PA11	PB0	PB1	PB2	PB3	PB4	PB5	$\mathrm{PB}_{6}$	PB6	PB8	PBg	PBio	PB11
						-														
MODE 11	$\mathrm{PC}_{11}$	$\mathrm{PC}_{10}$	$\mathrm{PC}_{9}$	$\mathrm{PC}_{8}$	PA8	PAg	PA10	$\mathrm{PA}_{11}$	PB0	PB1	PB2	$\mathrm{PB}_{3}$	PB4	$\mathrm{PB}_{5}$	$\mathrm{PB}_{6}$	PB7	PB8	PBg	PB10	PB11
MODE OX	$\mathrm{PC}_{11}$	$\mathrm{PC}_{10}$ \|	$\mathrm{PC}_{9}$	$\mathrm{PC}_{8}$	IRS	IRE	ORS	ORF	$\mathrm{PB}_{0}$	PB1	PB2	PB3	PB4	$\mathrm{PB}_{5}$	$\mathrm{PB}_{6}$	PB7	PB8	PB9	PB10	$\mathrm{PB}_{11}$

PIO INSTRUCTION
NOTE: Symbol Definition - "." - AND
" + " - OR
" $="$ - Is Replaced By

PIO CONTROL	MNEMONICS	DESCRIPTION
000	SETPA   (Set Port A)	Set $P A_{i}$ to 1 if $A C_{i}$ is $1 . A C$ is not cleared.
		$\begin{aligned} \text { Mode 11: } & \mathrm{PA}_{i}=\mathrm{PA}_{i}+A C_{i}, 8 \leqslant i \leqslant 11 \\ \text { Mode 10: } & \mathrm{PA}_{i}=\mathrm{PA}_{i}+A C_{i}, 4 \leqslant i \leqslant 11 \\ \text { Mode OX: } & \text { IREN }=\text { IREN }+A C_{8} \\ & \text { IRE }=\text { IRE }+A C_{9} \\ & \text { OREN }=O R E N+A C_{10} \\ & O R F=O R F+A C_{11} \end{aligned}$
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	CLRPA	Clear Port A. Clear $\mathrm{PA}_{\boldsymbol{i}}$ to 0 if $\mathrm{AC}_{\mathrm{i}}$ is 1 . AC is not cleared.
0010	WPA	Write Port A. Set $\mathrm{PA}_{\boldsymbol{i}}$ equal to $\mathrm{AC}_{\mathbf{j}}$. $A C$ is not cleared.
		Mode 11: $\mathrm{PA}_{\mathrm{i}}=\mathrm{AC}_{\mathrm{i}}, 8 \leqslant \mathrm{i} \leqslant 11$
		Mode 10: $\mathrm{PA}_{\mathrm{i}}=\mathrm{AC}_{\mathrm{i}}, 4 \leqslant \mathrm{i} \leqslant 11$
		$\begin{aligned} \text { Mode } O X: & \\ & \text { IREN }=A C_{8} \\ & \text { IRE }=A C_{9} \\ & O R E N=A C_{10} \\ & O R F=A C_{11} \end{aligned}$
$\begin{array}{llll}0 & 0 & 1\end{array}$	RPA	Read Port A. 'OR' transfer PA to AC.
		$\begin{gathered} \text { Mode 10: } A C_{i}=A C_{i}+P A_{i}, 4 \leqslant i \leqslant 11 \\ A C_{i}=A C_{i}, 0 \leqslant i \leqslant 3 \end{gathered}$
		$\begin{aligned} \text { Mode OX: } A C_{8}=A C_{8}+I R S \\ A C_{9}=A C_{9}+I R E \\ A C_{10}=A C_{10}+O R S \\ A C_{11}=A C_{11}+O R F \\ A C_{i}=A C_{i}, 0 \leqslant i \leqslant 7 \end{aligned}$
0100	SETPB	Set Port $B$. Set $P B_{i}$ to 1 if $A C_{j}$ is 1 . $A C$ is not cleared.
		$\mathrm{PB}_{i}=\mathrm{PB}_{i}+\mathrm{AC}_{i}, 0 \leqslant i \leqslant 11$
0101	CLRPB	Clear Port B. Clear $P B_{i}$ to 0 if $A C_{i}$ is 1 . $A C$ is not cleared. $\mathrm{PB}_{i}=\mathrm{PB}_{\mathrm{i}} \cdot \overline{\mathrm{AC}_{i}}, 0 \leqslant i \leqslant 11$
0110	WPB	Write Port $B$. Set $\mathrm{PB}_{i}$ equal to $\mathrm{AC}_{\mathrm{j}}$. $A C$ is not cleared. $P B_{i}=A C_{i}, 0 \leqslant i \leqslant 11 .$


PIO CONTROL	MNEMONICS	DESCRIPTION
0111	RPB	Read Port B. 'OR' transfer PB to AC. $A C_{i}=A C_{i}+P B_{i}, 0 \leqslant i \leqslant 11$
1000	SETPC	Set Port C. Set $P C_{i}$ to 1 if $A C_{j}$ is 1 . AC is not cleared.   Mode 11 and $\mathrm{OX}: \mathrm{PC}_{\mathrm{i}}=\mathrm{PC}_{\boldsymbol{i}}+\mathrm{AC}_{\boldsymbol{i}}$ $8 \leqslant i \leqslant 11$   Mode 10: No operation
1001	CLRPC	Clear Port C. Clear $P C_{i}$ to 0 if $A C_{i}$ is 1 . $A C$ is not cleared.   Mode 11 and $\mathrm{OX}: \mathrm{PC}_{\mathrm{i}}=\mathrm{PC}_{\mathrm{i}} \cdot \overline{\mathrm{AC}_{\mathrm{i}}}$ $8 \leqslant i \leqslant 11$   Mode 10: No operation
1010	WPC	Write Port C. Set $\mathrm{PC}_{\boldsymbol{i}}$ equal to $\mathrm{AC}_{\mathbf{j}}$. $A C$ is not cleared.   Mode 11 and $\mathrm{OX}: \mathrm{PC}_{\mathbf{i}}=\mathrm{AC}_{\mathbf{i}}$ $8 \leqslant i \leqslant 11$   Mode 10: No operation
$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	RPC	Read Port C. 'OR' transfer PC to AC.   Mode 11 and $O X: \mathrm{AC}_{\mathrm{i}}=\mathrm{AC}_{\mathrm{i}}+\mathrm{PC}_{\mathrm{i}}$ $8 \leqslant i \leqslant 11$   Mode 10: No operation
1100	SKPOR	Skip the next sequential instruction if $\mathrm{PA}_{11} / \mathrm{ORF}$ is low.   Mode 11 and 10: Skip if $\mathrm{PA}_{11}$ is low.   Mode OX: Skip if ORF is low.
$1 \begin{array}{llll}1 & 1 & 0\end{array}$	SKPIR	Skip the next sequential instruction if PAg/IRE is low.   Mode 11 and 10: Skip if PAg is low.   Mode OX: Skip if IRE is low.
1110	WSR	Write Status Register. AC is not cleared. $\begin{aligned} & M_{8}=A C_{8} \\ & M_{9}=A C_{9} \end{aligned}$
$\begin{array}{llll}1 & 1 & 1\end{array}$	RSR	Read Status Register. 'OR' transfer Status register to $A C$. $\begin{aligned} & A C_{8}=A C_{8}+M 8 \\ & A C_{9}=A C_{9}+M \dot{9} \\ & A C_{i}=A C_{i}, 0 \leqslant i \leqslant 7 \end{aligned}$   Mode 11 and 10: $A C_{10}=A C_{10}+P A_{11}$ $\mathrm{AC}_{11}=\mathrm{AC}_{11}+\mathrm{PA} 9$   Mode OX: $A C_{10}=A C_{10}+$ ORINT $A C_{11}=A C_{11+1 \text { RINT }}$

## STATUS REGISTER

The Status Register (SR) has 2 mode bits, $\mathrm{M}_{8}$ and $\mathrm{Mg}_{9}$ which can be modified by the WSR (Write Status Register) instruction. These two bits define the mode of operation for the IM6103 as shown in Figure 8.

$\mathrm{M}_{8}$	$\mathrm{Mg}_{\mathbf{g}}$	MODE	PORT OPERATION
0	$*$	Mode OX	$\mathrm{PB}_{0-11}, \mathrm{PC}_{8}-11$, IRS, IRE, ORS, ORF
1	0	Mode 10	$\mathrm{PB}_{0-11,} \mathrm{PA}_{4}-11$
1	1	Mode 11	$\mathrm{PB}_{0-11,} \mathrm{PC}_{8-11}, \mathrm{PA}_{8-11}$

FIGURE 8: Mode bit assignments.

The Mode and Interrupt status bits, ORINT (Output Register empty Interrupt) and IRINT (Input Register empty Interrupt), may be read with the RSR (Read Status Register) instruction. The interrupt status bits are set to 0 if the corresponding flag is requesting an interrupt.

In Mode 11/10 the current value of PA11 and PAg can be interrogated. In this mode, Port $A$ can be either an input or an output. M8 and $\mathrm{M}_{9}$ are initialized to " 11 " at power-on.

$\mathrm{DX}_{8}$	DX9	$\mathrm{DX}_{10}$	$\mathrm{DX}_{11}$	DX	BUS	
M8	M9	ORINT	IRINT	SR	MODE OX	READ
$\mathrm{M}_{8}$	M9	PA11	PAg	SR	MODE 11/10	READ
$\mathrm{M}_{8}$	Mg			SR	MODE 11/10/0x	OX WRIte

FIGURE 9: Status register bit assignments.

## SKIP OPERATION

The IM6100 may poll the status of ORF or IRE in Mode OX, by executing a skip instruction, SKPOR or SKPIR. The IM6103 will assert the SKP/INT line low if the corresponding status line (ORF or IRE) is low, causing the next sequential instruction to be skipped. During this cycle, ORF and IRE remain unchanged.

In Mode 11/10, SKPOR and SKPIR instruction executions depend on the state of $\mathrm{PA}_{11}$ and PAg, respectively. Port A may be an input or output port.

If ORF is reset to 0 by executing a CLRPA or WPA instruction to initiate the handshaking sequence, the next SKPOR instruction will cause the next sequential instruction to be skipped.

## INTERRUPT OPERATION

The IM6103 may be programmed to generate an interrupt request input (INTREQ) when ORF or IRE goes low, by setting the corresponding interrupt enable bits, OREN or IREN, to 1. If the IM6100 interrupt system has been previously enabled, the microprocessor will acknowledge the INTREQ input. If the IM6100 $\mu \mathrm{P}$ does not see the higher priority INTREQ's, inputs from other peripheral controllers such as IM6102 Memory Extender/Direct Memory Access/Internal Timer Controller (MEDIC) or IM6101 Parallel Interface Elements (PIE) in the system, the interrupt service routine should initiate a software poll of the PIO's in the system to identify the particular PIO that generated the INTREQ. In Mode OX, the interrupt request status of ORF and IRE may be identified by reading the Status Register. ORINT or IRINT will be set to 0 if ORF (being low) or IRE (being low) is generating an INTREQ. Note that IM6102 MEDIC and IM6101 PIE provide an automatic priority vectoring.

The interrupt feature of IM6103 is available only in Mode OX. An ORF INTREQ may be removed by one of the following methods:

- executing a SPB/CPB/WPB Instruction (ORF goes high if Port $B$ is written into), or
- setting ORF to 1 with SPA/WPA Instruction, or
- by resetting OREN to 0 with a CPA/WPA Instruction, or
- by changing to Mode 11/10.

An IRE INTREQ may be removed by:

- executing a RPB Instruction (IRE goes high after Port $B$ is read), or
- setting I'RE to 1 with SPA/WPA Instructions, or
- resetting IREN to 0 with a CPA/WPA Instruction, or
- changing to Mode 11/10.

PIO may be software programmed to generate an INTREQ to the IM6100 by resetting ORF or IRE to 0 with a CPA/WPA Instruction and by setting the corresponding enable bit, OREN or IREN, with a SPA/WPA Instruction in Mode OX.


FIGURE 10: IM6103 PIO timing diagram.


FIGURE 11: Input data transfer (peripheral device to PIO).


FIGURE 12: Output data transfer (PIO to peripheral device).

## APPLICATION OF IM6103

Figure 13 illustrates a microcomputer system block diagram using IM6103 in a dual processor system.


FIGURE 13: Dual processor system with shared memory.

FEATURES

- IM6100 compatible
- Low standby power: $5 \mu \mathrm{~W}$ typical standby at 5V, $25^{\circ} \mathrm{C}$
- Low operating power: $10 \mathrm{~mW} / \mathrm{MHz}$ maximum
- High speed operation
- TTL compatible inputs and outputs
- On-chip address registers
- Completely static and synchronous
- Operating voltage range 4.5V to 10.5V (A version)
- Mílitary and industrial temperature ranges


## GENERAL DESCRIPTION

The IM6312 is a high speed low power silicon gate CMOS static ROM organized 1024 words by 12 bits. In all static states it exhibits the microwatt power requirements typical of CMOS. The basic part offers a maximum 5 V access time of 640 ns guaranteed over the industrial temperature range. A " -1 " version guarantees 510 ns under the same conditions, and an" $A$ " version offers 200 ns with a 10V supply. Signal polarities and functions are specified for interfacing with the IM6100 microprocessor. A decoder for RAM enable is provided on chip, eliminating an external 4 bit register and decoder. Up to 4 ROMs may be present in a system without external decoders to select ROM.


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage $+12.0 \mathrm{~V}$
Applied Input or Output
Voltage $\ldots . . . . . . . .$. . GND -0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$
Storage Temperature Range .... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range
Temperature
Industrial (IM6312AI) ........... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military (IM6312AM) $. \ldots . . . . . . . \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage
IM6312AI, AM
$4.5-10.5 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

DC CHARACTERISTICS $\quad \mathrm{V}_{C C}=4.5 \mathrm{~V}-10.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		70\% Vcc			V
Logical "0" Input Voltage	VIL				20\% Vcc	V
Input Leakage	lıLK	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-1.0		+1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	$\mathrm{IOH}=0$	$\mathrm{V}_{\mathrm{CC}}-0.1$			V
Logical "0" Output Voltage	VoL	$\mathrm{IOL}=0$			GND +. 01	V
Output Leakage	Iolk	$0 \mathrm{~V} \leq \mathrm{V}_{\text {OLK }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
Supply Current	ICcsb			1.0	500	$\mu \mathrm{A}$
Dynamic Supply Current	ICCOP	$f=1 \mathrm{MHz}$			2	mA
Input Capacitance	CIN			5.0	7.0	pF
Output Capacitance	Cout			6.0	10.0	pF

AC CHARACTERISTICS $\mathrm{VCC}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}} \doteq$ Operating Temperature Range

PARAMETER	SYMBOL	6312AI		6312AM		UNITS
		MIN	MAX	MIN	MAX	
Access time from $\bar{E}$	TELQV		250		300	ns
Output enable time	TGHQV		160		175	
Output disable time	TGLQZ		160		175	
Strobe ( $\overline{\mathbf{E}}$ ) positive pulse width	TEHEL	125		140		
Address setup time	TAVEL	30		35		
Address hold time	TELAX	60		60		
Propagation delay, address to $\bar{F}$	TAVFV		100		110	
Propagation delay, address to $\overline{\mathrm{F}}$	TEHFX		100		110	

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ................................ +8.0 V
Applied Input or Output
Voltage $\qquad$ GND -0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$
Storage Temperature Range .... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range
Temperature
Industrial (IM63121/-1I) $\quad . . . . . . . .-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military (IM6312-1M) .......... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage
IM6312-1I, -1M, I, M $\qquad$ $4.5-5.5 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	CONDITIONS	IM6312-1I/-1M			IM6312I, M			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		Vcc-2V			$\mathrm{V}_{\text {cc- }} 1.5$			V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				0.8 V .			0.8	V
Input Leakage	IILK	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VCC}$	-1.0		+1.0	-5.0		+5.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			2.4			V
Logical "0" Output Voltage	VOL	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45				V
Logical "0" Output Voltage	Vol	$1 \mathrm{OL}=1.6 \mathrm{~mA}$						0.45	V
Output Leakage	Iolk	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{Vcc}$	-1.0		1.0	-5.0		5.0	$\mu \mathrm{A}$
Supply Current	Iccsb	$\mathrm{V}_{\text {IN }}=\mathrm{V}$ cc or or ${ }^{\text {GND }}$		1.0	100			800	$\mu \mathrm{A}$
Dynamic Supply Current	Iccop	$\mathrm{f}=1 \mathrm{MHz}$		1.5	1.8		1.5	1.8	mA
Input Capacitance	Cin			5.0	7.0		5.0	7.0	pF
Output Capacitance	Cout	.		6.0	10.0		6.0	10.0	pF

AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	IM6312-1]		IM6312-1M		IM6312I,M		UNITS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Access Time from $\bar{E}$	TELQV		510		560		640	ns
Output Enable Time	TGHQV		290	;	320		390	
Output Disable Time	TGLQZ		290		320		390	
Strobe Positive Pulse Width	TEHEL	260		285		300		
Address Setup Time	TAVEL	75		75		85		
Address Hold Time	TELAX	120		135		140		
Propagation Delay, Address to $\bar{F}$	TAVFV		220		240		250	
Propagation Delay, Address to $\bar{F}$	TEHFX		220		240		250	

## PIN ASSIGNMENTS

PIN	SYMBOL	ACTIVE LEVEL	DESCRIPTION
1	$\overline{\mathrm{~F}}$	$\mathrm{H} / \mathrm{L}$	RAM select, can be programmed to be active high   or low. Used to enable specified RAM address field and   disable ROM outputs.
2	$\overline{\mathrm{E}}$	L	Strobe, latches address lines and   enables outputs
3	G	H	Output enable
$4-8,10-16$	DX0-DX11	-	Address inputs, data outputs
9	GND	-	Ground
17	$\overline{\mathrm{G}}$	L	Output enable
18	VCC	-	Chip +V supply

READ CYCLE TIMING


## READ OPERATION

Address information is latched into on-chip registers by the falling edge of strobe line $\overline{\mathrm{E}}$. Address information must be removed after address hold time (TELAX) to allow placing of Data Out on DX lines. Data Out is valid an access time (TELQV) after the falling edge of $\bar{E}$ if outputs are enabled, i.e. if $\bar{E}$ remains low, $G$ is high and $\bar{G}$ is low.
RAM select $\bar{F}$ becomes valid a propagation delay time TAVFV after the address has been asserted, and invalid a propagation time TEHFX after strobe $\bar{E}$ returns to a high level.
Valid output data will be read only if decoded states of DX0 and DX1 are true. (See Chip Select Programming)

## FUNCTION TABLE

TIME REF	INPUTS			OUTPUTS		NOTES
	E	$\mathbf{G}$	$\mathbf{A}^{*}$	F	$\mathbf{Q}^{*}$	
-1	H	X	X	$\overline{\mathrm{V}}$	Z	Memory inactive, DX lines indeterminate RAM is disabled
0		X	V	$\overline{\mathrm{V}}$	Z	Addresses placed on DX lines, latched by E
1	L	X	X	V	Z	RAM select valid
2	L	H	Z	V	V	Data out valid on DX lines or RAM selected depending   on address
3	H	X	X	$\overline{\mathrm{V}}$	Z	Output disabled, DX lines switching to high Z

*Addresses (A) and data out (Q) multiplexed on DX lines.
$* * \bar{V}=$ Invalid Level

## IM6312 CUSTOM ROM PROGRAMMING

An IM6312 ROM programming papertape consists of two segments ( $A$ and $B$ ), preceded by at least one foot of sprocket holes (no channels punched). Segment $A$ is the header, and consists of frames 1-15 (see Fig. 1). Segment B contains at least one leader frame, location setting commands, data and checksum. The tape concludes with a minimum of one leader/trailer frame and a foot or more of sprocket holes.

## NOTES

1. Each ROM pattern must be prepared on a separate papertape.
2. Data/address (DX) lines are numbered from DXO (MSB) to DX11 (LSB).

3. A punched hole is considered a logical "1".
4. The following terms are synonymous.
(True, High, T, H, Logical "1")
' (False, Low, F, L, Logical "0")
5. No field change characters are allowed.

## HEADER (Frames 1-15)

The header (Figure 1) begins with a rubout followed by six ASCII characters identifying the customer and pattern number. Frames 8 and 9 specify the states of DX0 and DX1 during $\bar{E}$, which enable the chip. The RAM Select $(\bar{F})$ output is programmed with frames 10-14: A rubout (all eight channels punched) in frame 15 concludes the header. Any rubout between frames 1 and 15 will invalidate the header and cause programming failure.

COMMENTS

Sprocket holes
Begin header

6 character customer ID
(A-Z, 0-9) are allowable

DXO(MSB) Chip Select programming:
DX1
DXO(MSB) $\bar{F}$ programming:
DX1
DX2
DX3
$\vec{F}$ is programmed to be active low End header

.7 | $\mathrm{T}=$ True, |
| :--- |
| $\mathrm{F}=$ False |
| 7 |
| $\mathrm{~T}=$ True, |
| $\mathrm{F}=$ False |
| $\mathrm{V}=$ Don't Care |

Sprocket holes
At least one frame of LEADER is required

PAL Assembler "second pass" output is of this form. Channel 8 only punches indicate leader or trailer. An address is designated by a punch in channel 7. DX0-DX5 are represented by channels $(6-1)$ in the first frame. ©X6-DX11 are represented by channels (6-1) in the second frame. At least one frame of TRAILER is required.

The example shown above has customer ID and pattern ISL004. Chip selects are programmed to recognize addresses 600077778 or 3072-409510. $\bar{F}$ is active low for addresses 0000-03778 or 0000-025510. Unused locations are automatically programmed to a logic zero.

## CHIP SELECT PROGRAMMING (Frames 8, 9)

IM6312 outputs are enabled when $\bar{G}$ and $\bar{E}$ are low, $G$ is high, and the states of DX0 and DX1 agree with the conditions specified in frames 8 (DXO) and 9 (DX1) of the header. To specify a particular ROM address field frames 8 and 9 must be programmed as follows:

Table 1

FRAME 8 (DX0)	FRAME 9 (DX1)	ADDRESS FIELD
$F$	$F$	$0000_{8}-17778$
$F$	$T$	$2000_{8}-37778$
$T$	$F$	$4000_{8}-57778$
$T$	$T$	$6000_{8}-77778$

For example, to program the ROM for address field 4000857778 header frame 8 must be T and frame 9 must be F. Figure 2 diagrams the chip and RAM select logic.

"The "positions" of these "switches" are specified by the ROM programming tape (segment A).

Figure 2

## RAM SELECT PROGRAMMING (Frames 10-14)

Most memory systems contain both RAM and ROM. The designer of such a system must insure that accesses to RAM memory space do not enable the ROMs and vice versa. The IM6312 ROM decodes address information on DX0 and DX1 to provide a unique 1024 word address srace dedicated to itself. It also provides a RAM Select ( $\bar{F}$ ) output which may be used to enable an address space dedicated to RAM. The states of DXO-DX3 which activate $\bar{F}$ are programmed by frames $10-13$ respectively. Frame 14 determines whether $\bar{F}$ is considered active when high (frame $14=\mathrm{H}$ ) or active when low (frame $14=\mathrm{L}$ ).
Frames 10-13 may be T (true), V (don't care), or F (false). For example, if frames $10-13$ are FTFV respectively, $\bar{F}$ will be active when address information on DX0 and DX2 is $F$ (low) and DX1 is $T$ (high). DX3 may be either $T$ or $F$, since it is programmed V ("don't care") (see Table 3). Thus, in this
example, RAMs using $\bar{F}$ as an enable will respond to addresses 20008 through 27778.

Table 2

Channel	Function
8 only	Leader/Trailer
$8+(6-1)$	Header
$7+(6-1)$	Location Setting (first frame)
$6-1$ only	Data, Checksum, Location Setting (second frame)

Table 3

Frames	
$\mathbf{1 0 - 1 3}$	RSEL Enable Condition
$T$	$D X n$ must be high to enable
$F$	$D X n$ must be low to enable
$V$	$D X n$ may be either high or low to enable

## LOCATION SETTING/DATA

It is not necessary to specify the contents of all 1024 words in the IM6312. Words that are not explicitly programmed will contain all zeros.
Data words are entered into sequential locations in ROM, beginning from the address specified by the most recently encountered location setting command. For this reason, such a command must precede any data words. A new location setting command may be given; subsequent data words will be entered beginning at the new address.
The location setting command consists of two sequential frames. The initial frame has channel 7 punched with the remaining channels ( $6-1$ ) representing the most significant six bits of a 12-bit word. The second frame has no punches in channel 8 or 7 , and represents the least significant 6 bits of the word (see Table 1).
Figure 3 shows an example of location setting to $0410_{8}$. Subsequent data words will be stored in locations 04108, 04118, etc.


Figure 3
A data word consists of two frames with channels 8 and 7 unpunched. The two groups of six holes remaining are then concatenated to form a 12-bit binary number (punched $=\mathrm{H}$, unpunched $=\mathrm{L}$ ). The most significant six bits are punched first (channels 6-1 with 8 and 7 unpunched), followed by the least significant bits. The MSB of the 12-bit data word is channel 6 of the first frame; the LSB is channel 1 of the second frame. Figure 3 shows examples of two data words, $7440_{8}$ and 62108.

## CHECKSUM

A two frame checksum precedes the leader/trailer at the end of segment B . It is the modulo 4096 sum of all frames in segment $B$ following the initial leader/trailer and preceding the final leader/trailer (except the two frames that represent the checksum itself). For purposes of checksum computation, each frame is to be considered an 8-bit binary word. The 12-bit result is punched out in two sequential frames, with channels 8 and 7 unpunched. The most significant six bits are punched first, followed by the least significant six bits as with the data word format. Any frame with channel 7 or 8 punched (e.g. leader or location setting command) is not included in the checksum computation. For additional BIN format information, refer to "PDP®-8 Family Commonly Used Utility Routines".

## COMPATIBLE ASSEMBLER PROGRAMS

PAL III, FOPAL III, MACRO-8, PAL.8, and IFDOS PAL are assembler programs for the IM6100 microprocessor which prepare a papertape conforming to the specifications for the second tape segment. The header must in any case be produced manually.
The input to a PAL assembler is ASCII source code. More information and PAL assemblers are available from Intersil. The first frame-pair in a segment B produced by PAL III is a location setting command to address 02008. This is ignored if another origin setting follows immediately afterwards.
Some PAL assemblers prodưce a checksum with 13 bits (i.e., channel 7 of the first frame of the checksum may be punched). If channel 7 is punched, it is ignored.

## A MINIMAL MICROPROCESSOR S̄YSTEM (64 OR 128 WORDS OF RAM)



## FEATURES

－Low standby power： 11 mW maximum
－High speed： 550 ns maximum
－On－chip address registers
－TTI compatible inputs and three－state outputs
－Completely static and asynchronous
－Single 5V supply
－Intel 2316E and Mostek MK34000 pin compatible
－Two mask programmable chip selects（active level latched／unlatched）
－Outputs mask programmable（latched／unlatched）
－883B Processing available
－Military temperature range available $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ ）

## GENERAL DESCRIPTION

The IM6316 is a 16,384 －bit static silicon－gate CMOS read－ only－memory（ROM）organized 2048 words by 8 bits．In all static states，this device exhibits the microwatt power dissipation typical of CMOS．Inputs and three－state out－ puts are TTL compatible and allow for direct interface with
common system bus structures．On－chip address registers and two mask programmable chip－selects simplify system interfacing requirements．
The IM6316 operates over a 4.5 V to 5.5 V range，with an ac－ cess time of 550 ns and standby current of $200 \mu \mathrm{~A}$ guaranteed over the industrial temperature range．

## FUNCTIONAL DESCRIPTION

The falling edge of chip enable（ $E$ ）latches addresses in the on－chip register and initiates a read cycle．Address and chip selects to be latched must be present a setup time （TAVEL）prior to，and a hold time（TELAX）following the falling edge of $E$ ．After an access time，valid data will be available．
Optional latched outputs are active when S 1 and S 2 （or lat－ ched S1 and S2）are active．For unlatched outputs，E must also be low to enable．
Optional latches for S1 and S2 are level sensitive．When E is high，latched S1 and S2 thus perform as if they were not latched．

LOGICAL BLO	DIAGRAM   16，384 BIT   CELL ARRAY		PIN CONFIGURATION   （outline dwg JG，PG）		LOGIC SYMBOL
ORDERING INFORMATION			PIN NAMES		
PART NUMBER	PACKAGE	TEMP．RANGE	A0－A10	ADDRE	NPUTS
IM6316IPG	24 PIN PLASTIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Q0－Q7	DATA	UTS
IM6316IJG	24 PIN CERDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	E	ADDR．	OBE／CHIP ENABLE
IM6316MJG	24 PIN CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	S1，S2	CHIP S	TS

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+8:0V
Input or Output Voltage Applied	GND -0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Voltage	
IM6316\|	4.5 V to 5.5 V

## Note:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability:

## DC CHARACTERISTICS

Test Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1". Input Voltage	$\mathrm{V}_{\text {IH }}$		VCC -2.0			V
Logical "0" Input Voltage	VIL				0.8	
Input Leakage Current	ILLK	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		+1.0	$\mu \mathrm{A}$
Logical "1". Output Voltage	VOH	lout $=0$	VCC -0.01			v
	VOH	lout $=-0.2 \mathrm{~mA}$	2.4			
Logical "0" Output Voitage	VOL	IOUT $=0$			GND +0.01	
	VoL	IOUT $=2.0 \mathrm{~mA}$			0.45	
Output Leakage Current	IOLK	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		+1.0	$\mu \mathrm{A}$
Standby Supply Current	Iccsb	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$		100	200	
Operating Supply Current	Iccop	$\mathrm{f}=1 \mathrm{Mhz}$			20	mA
Input Capacitance	Cin				7.0	pf
Output Capacitance	Co				10.0	

## AC CHARACTERISTICS

Test Conditions: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	63161			6316M			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Access Time From $\overline{\mathrm{E}}$	TELQV			550			625	ns
Output Enable Time	TSVQX			200	.		220	ns
Chip Deselect Time	TSXQZ			200			220	ns
Output Disable Time	TEHQZ			200			220	ns
E Pulse Width (Pos):	TEHEL	300			330			ns
E Pulse Width (Neg)	TELEH	550,			625			ns
Address Setup Time	TAVEL	10			10	$\cdots$		ns
Address Hold Time	TELAX	110			120			ns
Latched Chip Select Enable Time	TELQX			0			0	ns

READ CYCLE TIMING • Latched Chip Selects


FUNCTION TABLE • Latched Chip Selects

$\begin{aligned} & \text { TIME } \\ & \text { REF } \end{aligned}$	INPUTS			Q OUTPUTS		NOTES
	E	A	$\mathbf{S}_{1} \cdot \mathbf{S}_{2}$	LATCHED	UNLATCHED	
-1	H	X	V	V	Z	LATCHED DATA VALID FROM PREVIOUS CYCLE
0	1	V	V	Z	Z	STROBE LATCHES VALID ADDRESS, CHIP SELECT INFORMATION
1	L	X	X	ACTIVE	ACTIVE	OUTPUTS ENABLED AND ACTIVE
2	L	X	X	V	V	OUTPUTS VALID
3	S	X	X	V	V	STROBE RETURNS HIGH, LATCHES OUTPUT
4	H	X	X	V	Z	OUTPUTS DISABLED ON UNLATCHED DEVICES
5	1	V	V	V	Z	NEXT CYCLE BEGINS, SAME AS 0.

READ CYCLE TIMING • Unlatched Chip Selects


TIME REF $\qquad$


LATCHED OUTPUTS


UNLATCHED OUTPUTS

FUNCTION TABLE • Unlatched Chip Selects

$\begin{aligned} & \text { TIME } \\ & \text { REF } \end{aligned}$	INPUTS			Q OUTPUTS		NOTES
	E	A	$\mathbf{S}_{1} \cdot \mathbf{S}_{2}$	LATCHED	UNLATCHED	
-1	H	X	$\overline{\mathrm{V}}$	Z	Z	MEMORY INACTIVE, OUTPUTS HIGH Z
0	$\underline{L}$	V	$\overline{\mathrm{V}}$	Z	Z	STROBE LATCHES ADDRESS INFORMATION
1	L	X	V	ACTIVE	ACTIVE	OUTPUTS ENABLED AND ACTIVE
2	L	X	V	V	V	OUTPUTS VALID
3	-	X	V	V	V	STROBE RETURNS HIGH, LATCHES OUTPUTS
4	H	X	V	V	Z	OUTPUTS DISABLED ON UNLATCHED DEVICES
5	H	X	$\overline{\mathrm{V}}$	Z	Z	OUTPUTS DISABLED ON LATCHED DEVICES
6	1	V	$\overline{\mathrm{V}}$	Z	Z	NEXT CYCLE BEGINS, SAME AS 0.

NOTES

1. $X=$ Don't
2. $V=$ Valid 3. $Z=$ High Impedance
3. $\overline{\mathrm{V}}=$ Invalid.

## APPLICATIONS



FIG. 1. $2 \mathrm{~K} \times 8$ CMOS ROM MEMORY FOR CPD1802 CMOS MICROPROCESSOR


FIG. $2.2 \mathrm{k} \times 8$ CMOS ROM MEMORY FOR 8048 or 8035 MICROCOMPUTERS


FIG. 3. $2 \mathrm{k} \times 8$ CMOS ROM MEMORY FOR 8085/NSC 800 MICROPROCESSORS


FIG. 4. $2 \mathrm{k} \times 8$ CMOS ROM MEMORY FOR Z80A MICROPROCESSOR DATA BUS

# IM6402/IM6403 Universal Asynchronous Receiver Transmitter (UART) 

## FEATURES

- Low Power - Less Than 10 mW Typ. at $\mathbf{2 M H z}$
- Operation Up to 4MHz Clock (IM6402A)
- Programmable Word Length, Stop Bits and Parity
- Automatic Data Formatting and Status Generation
- Compatible with Industry Standard UART's (IM6402)
- On-Chip Oscillator with External Crystal (IM6403)
- Operating Voltage -

IM6402-1/03-1: 5V
IM6402A/03A: 4-11V
IM6402/03: 5V

## PIN CONFIGURATION (outline dwg DL, PL)



## GENERAL DESCRIPTION

The IM6402 and IM6403 are CMOS/LSI UART's for interfacing computers or microprocessors to asynchronous serial data channels. The receiver converts serial start, data, parity and stop bits to parallel data verifying proper code transmission, parity, and stop bits. The transmitter converts parallel data into serial form and automatically adds start, parity, and stop bits.

The data word length can be 5, 6, 7 or 8 bits. Parity may be odd or even, and parity checking and generation can be inhibited. The stop bits may be one or two (or one and one-half when transmitting 5 bit code). Serial data format is shown in Figure 6.

The IM6402 and IM6403 can be used in a wide range of applications including modems, printers, peripherals and remote data acquisition systems. CMOS/LSI technology permits clock frequencies up to 4.0 MHz ( 250 K Baud), an improvement of 10 to 1 over previous PMOS UART designs. Power requirements, by comparison, are reduced from 670 mW to 10 mW . Status logic increases flexibility and simplifies the user interface.
The IM6402 differs from the IM6403 in the use of five device pins as indicated in Table 1 and Figure 1.

## ORDERING INFORMATION

ORDER CODE	IM6402-1/03-1	IM6402A/03A	IM6402/03
PLASTIC PKG	IM6402-1/03-1IPL	IM6402/03-AIPL	IM6402/03-IPL
CERAMIC PKG	IM6402-1/03-1IDL	IM6402/03-AIDL	IM6402/03IDL
MILITARY TEMP.	IM6402-1/03-1MDL	IM6402/03-AMDL	-
MILITARY TEMP.	IM6402-1/03-1	IM6402/03-AMDL	-
WITH 883B	MDL/883B	883B	



## ABSOLUTE MAXIMUM RATINGS

Operating Temperature

IM6402/03 .................................. . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ...................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage ................................ 4.0 V to 7.0 V
Supply Voltage ............................................ +8.0 V
Voltage On Any Input or Output Pin .. -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		$\mathrm{V}_{\mathrm{CC}}-2.0$			V
2.	$\mathrm{V}_{\text {IL }}$	Input Voltage Low				0.8	V
3	$\mathrm{I}_{\text {IL }}$	Input Leakage[1]	GND $\leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-5.0		5.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
5	Voí	Output Voltage Low	$1 \mathrm{OL}=1.6 \mathrm{~mA}$			0.45	V
6	lolk	Output Leakage	GND $\leqslant V_{\text {OUT }} \leqslant V_{\text {CC }}$	-5.0		5.0	$\mu \mathrm{A}$
7	${ }^{\text {I CC }}$	Power Supply Current Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$		1.0	800	$\mu \mathrm{A}$
8	ICC	Power Supply Current IM6402 Dynamic	$\mathrm{f}_{\mathrm{c}}=500 \mathrm{KHz}$			1.2	mA
9	Icc.	Power Supply Current IM6403 Dynamic	$\mathrm{f}_{\text {crystal }}=2.46 \mathrm{MHz}$			3.7	mA
10	$\mathrm{CIN}^{\text {IN }}$	Input Capacitance[1]			7.0	8.0	pF
11	$\mathrm{C}_{0}$	Output Capacitance[1]			8.0	10.0	pF

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## A.C: CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{f}_{\mathrm{c}}$	Clock Frequency IM6402	See Timing Diagrams (Figures 2,3,4)	D.C.		1.0	MHz
2	$\mathrm{f}_{\text {crystal }}$	Crystal Frequency IM6403				2.46	MHz
3	$t_{\text {pw }}$	Pulse Widths CRL, $\overline{\text { DRR, }} \overline{\text { TBRL }}$		225	50		ns
4	$\mathrm{t}_{\mathrm{mr}}$	Pulse Width MR		600	200		ns
5	$\mathrm{t}_{\mathrm{ds}}$	Input Data Setup Time		75	20		ns
6	$t_{\text {dh }}$	Input Data Hold Time		90	40		ns
7	$t_{\text {en }}$	Output Enable Time ,			80	190	ns



FIGURE 1. Functional Difference Between IM6402 and IM6403 UART (6403 has On-Chip 4/11 Stage Divider)

The IM6403 differs from the IM6402 on three Inputs (RRC, TRC, pin 2) as shown in Figure 1. Two outputs (TBRE, DR) are not three-state as on the IM6402, but are always active. The on-chip divider and oscillator allow an inexpensive crystal to be used as a timing source rather than additional circuitry such
as baud rate generators. For example, a color TV crystal at 3.579545 MHz results in a baud rate of 109.2 Hz for an easy teletype interface (Figure 10). A 9600 baud interface may be implemented using a 2.4576 MHz crystal with the divider set to divide by 16.

IM6402A/IM6403A

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6402AI/03AI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military IM6402AM/03AM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	4.0 V to 11.0 V
Supply Voltage	+12.0V
Voltage On Any Input or Out	3 V to $\mathrm{V}_{\mathrm{CC}}+0.3$

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ to $11.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYp2	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		70\% VCC			V
2	$V_{\text {IL }}$	Input Voltage Low				20\% VCC	V
3	ILL	Input Leakage[1]	$\mathrm{GND} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		11.0	$\mu \mathrm{A}$
4	$\mathrm{V}_{\mathrm{OH}}$	Output Voltage High	$\mathrm{IOH}^{\prime}=0 \mathrm{~mA}$	$\mathrm{V}_{\text {cc }}-0.01$			V
5	$\mathrm{V}_{\mathrm{OL}}$	Output Voltage Low	$\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$			GND+0.01	V
6	IOLK	Output Leakage	GND $\leqslant \mathrm{V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	I'c	Power Supply Current Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$		5.0	500	$\mu \mathrm{A}$
8	ICC	Power Supply Current IM6402A Dynamic	$\mathrm{f}_{\mathrm{C}}=4 \mathrm{MHz}$			9.0	mA
9	Icc	Power Supply Current IM6403A Dynamic	$\mathrm{f}_{\text {crystal }}=3.58 \mathrm{MHz}$			13.0	mA
10	$\mathrm{CIN}_{\text {IN }}$	Input Capacitance[1]			7.0	8.0	pF
11	$\mathrm{C}_{0}$	Output Capacitance[1]			8.0	10.0	pF

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Industrial or Military

	SYMBOL	PARAMETER ,	CONDITIONS	MIN	TYP2	MAX	UNITS
1	$\mathrm{f}_{\mathrm{c}}$	Clock Frequency IM6402A	See Timing Diagrams (Figures 2,3,4)	D.C.		4.0	MHz
2	$\mathrm{f}_{\text {crystal }}$	Crystal Frequency IM6403A				6.0	MHz
3	$t_{\text {pw }}$	Puise Widths CRL, $\overline{\text { DRR, }}$, $\overline{\text { BRL }}$		100	40		ns
4	$\mathrm{t}_{\mathrm{mr}}$	Pulse Width MR		400	200		ns
5	$t_{\text {ds }}$	Input Data Setup Time		40	0		ns
6	$t_{\text {dh }}$	Input Data Hold Time		30	30	.	ns
7	$t_{\text {en }}$	Output Enable Time			40	70	ns

## TIMING DIAGRAMS



FIGURE 2. Data Input Cycle


FIGURE 3. Control Register Load Cycle


FIGURE 4. Status Flag Enable Time or Data Output Enable Time

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6402-11/03-1I ............. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military IM6402-1M/03-1M . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ....................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 V to 7.0 V
Supply Voltage .......................................... 8.0 V
Voltage On Any Input or Output Pin .. -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP2	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		$\mathrm{V}_{\text {CC }}-2.0$			V
2	$V_{\text {IL }}$	Input Voltage Low				0.8	V
3	IIL	Input Leakage[1]	GND $\leqslant V_{1 N} \leqslant V_{\text {C }}$	-1.0		1.0	$\mu \mathrm{A}$
4	$\mathrm{V}_{\mathrm{OH}}$	Output Voltage High	$1 \mathrm{OH}^{=-0.2 m A}$	2.4			V
5	$\mathrm{V}_{\mathrm{OL}}$	Output Voltage Low	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
6	loLk	Output Leakage	GND $\leqslant V_{\text {OUT }} \leqslant V_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	ICC	Power Supply Current Standby	$\mathrm{V}_{\text {IN }}=$ GND or $\mathrm{V}_{\text {CC }}$		1.0	100	$\mu \mathrm{A}$
8	ICC	Power Supply Current IM6402 Dynamic	$\mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}$			1.9	mA
9	ICC	Power Supply Current IM6403 Dynamic	$\mathrm{f}_{\text {crystal }}=3.58 \mathrm{MHz}$			5.5	mA
10	$\mathrm{CIN}^{\text {IN }}$	Input Capacitancel 1]			7.0	8.0	pF
11	$\mathrm{C}_{0}$	Output Capacitance[1]			8.0	10.0	pF

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: $\vee_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Industrial or Military

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP2	MAX	UNITS
1	$\mathrm{f}_{\mathrm{c}}$	Clock Frequency IM6402	See Timing Diagrams (Figures 2,3,4)	D.C.		2.0	MHz
2	$\mathrm{f}_{\text {crystal }}$	Crystal Frequency IM6403				3.58	MHz
3	$t_{\text {pw }}$	Pulse Widths CRL, $\overline{\text { DRR }}$, $\overline{\text { TBRL }}$		150	50		ns
4	$\mathrm{t}_{\mathrm{mr}}$	Pulse Width MR		400	200		ns
5	$t_{\text {ds }}$	Input Data Setup Time		50	20		ns
6	$\mathrm{t}_{\mathrm{dh}}$	Input Data Hold Time		60	40		ns
7	$\mathrm{t}_{\text {en }}$	Output Enable Time			80	160	ns



FIGURE 5. Pin Configuration

## IM6403 FUNCTIONAL PIN DEFINITION

PIN	SYMBOL	DESCRIPTION
1	$\mathrm{V}_{\text {CC }}$	Positive Power Supply
2	IM6402-N/C	No Connection
	IM6403-Control	
		High: $2^{4}$ (16) Divider Low: $2^{11}$ (2048) Divider
3	GND	Ground
4	RRD	A high level on RECEIVER REGISTER DISABLE forces the receiver holding register outputs RBR1-RBR8 to a high impedance state.
5	RBR8	The contents of the RECEIVER BUFFER REGISTER appear on these three-state outputs. Word formats less than 8 characters are right justified to RBR1.
6	RBR7	See Pin 5 - RBR8
7	RBR6	See Pin 5-RBR8
8	RBR5	See Pin 5 - RBR8
9	RBR4	See Pin 5 - RBR8
10	RBR3	See Pin 5 - RBR8
1.1	RBR2	See Pin 5 - RBR8
12	RBR1	See Pin 5 - RBR8
13	PE	A high level on PARITY ERROR indicates that the received parity does not match parity programmed by control bits. The output is active until parity matches on a succeeding character. When parity is inhibited, this output is low.

IM6403 FUNCTIONAL PIN DEFINITION (Continued)

PIN	SYMBOL	DESCRIPTION
14	FE	A high level on FRAMING ERROR indicates the first stop bit was invalid. FE will stay active until the next valid character's stop bit is received.
15	OE	A high level on OVERRUN ERROR indicates the data received flag was not cleared before the last character was transferred to the receiver buffer register. The Error is reset at the next character's stop bit if DRR has been performed.(i.e., $\overline{\text { DRR: }}$ active low).
16	SFD	A high level on STATUS FLAGS DISABLE forces the outputs PE, FE, OE, DR, TBRE* to a high impedance state. See Block Diagram and Figure 4.   *IM6402 only.
17	IM6402-RRC IM6403-XTAL or EXT CLK IN	The RECEIVER REGISTER CLOCK is 16 X the receiver data rate:
18	$\overline{\text { DRR }}$	A low level on DATA RECEIVED RESET clears the data received output (DR), to a low level.
19	DR	A high level on DATA RECEIVED indicates a character has been received and transferred to the receiver buffer register.
20	RRI	Serial data on RECEIVER REGISTER INPUT is clocked into the receiver register.
21	MR	A high level on MASTER RESET (MR) clears PE, FE, OE, DR, TRE and sets TBRE, TRO high. Less than 18 clocks after MR goes low, TRE returns high. MR does not clear the receiver buffer register, and is required after power-up.
22	TBRE	A high level on TRANSMITTER BUFFER REGISTER EMPTY indicates the transmitter buffer register has transferred its data to the transmitter register and is ready for new data.
23.	$\overline{\text { TBRL }}$	A low level on TRANSMITTER BUFFER REGISTER LOAD transfers data from inputs TBR1-TBR8 into the transmitter buffer register. A low to high transition on TBRL requests data transfer to the transmitter register. If the transmitter register is busy, transfer is automatically delayed so that the two characters are transmitted end to end. See Figure 2.
24	TRE	A high level on TRANSMITTER REGISTER EMPTY indicates completed transmission of a character including stop bits.
25	TRO	Character data, start data and stop bits appear serially at the TRANSMITTER REGISTER OUTPUT.

IM6403 FUNCTIONAL PIN DEFINITION (Continued)

PIN	SYMBOL	DESCRIPTION
26	TBR1	Character data is loaded into the TRANSMITTER BUFFER REGISTER via inputs TBR1-TBR8. For character formats less than 8 -bits, the TBR8, 7 , and 6 Inputs are ignored corresponding to the programmed word length.
27	TBR2	See Pin 26 - TBR1
28	TBR3	See Pin 26 - TBR1
29	TBR4	See Pin $26-$ TBR1
30	TBR5	See Pin 26 - TBR1
31	TBR6	See Pin 26 - TBR1
32	TBR7	See Pin 26 - TBR1
33	TBR8	See Pin $26-$ TBR1
34	CRL	A high level on CONTROL REGISTER LOAD loads the control register. See Figure 3.

IM6403 FUNCTIONAL PIN DEFINITION (Continued)

PIN	SYMBOL	DESCRIPTION
35	PI*	A high level on PARITY INHIBIT inhibits parity generation, parity checking and forces PE output low.
	-	
36	SBS*	A high level on STOP BIT SELECT selects 1.5 stop bits for a 5 character format and 2 stop bits for other lengths.
37	CLS2*	These inputs program the CHARACTER LENGTH SELECTED. (CLS1 low CLS2 low 5-bits) (CLS1 high CLS2 low 6-bits) (CLS1 low CLS2 high 7-bits) (CLS1 high CLS2 high 8 -bits)
38	CLS1*	See Pin $37-$ CLS 2
39	EPE*	When PI is low, a high level on EVEN PARITY ENABLE generates and checks even parity. A low level selects odd parity.
40	$\begin{aligned} & \text { IM6402-TRC } \\ & \text { IM6403-XTAL } \\ & \text { or GND } \end{aligned}$	The TRANSMITTER REGISTER CLOCK is 16X the transmit data rate.

*See Table 2 (Control Word Function)

TABLE 2. Control Word Function

CONTROL WORD					DATA BITS	PARITY BIT	STOP BIT(S)
CLS2	CLS1	PI	EPE	SBS			
L	L	L	L	L	5	ODD	1
L	L	L	L	H	5	ODD	1.5
L	L	L	H	L	5	EVEN	1
L	L	L	H	H	5	EVEN	1.5
L	L	H	X	L	5	DISABLED	1
L	L	H	X	H	5	DISABLED	1.5
L	H	L	L	L	6	ODD	1
L	H	L	L	H	6	ODD	2
L	H	L	H	L	6	- EVEN	1
L	H	L	H	H	6	EVEN	2
L	H	H	X	L	6	DISABLED	1
L	H	H	X	H	6	DISABLED	2
H	L	L	L	L	7	ODD	1
H	L	L	L	H	7	ODD	2
H	L	L	H	L	7	EVEN	1
H	L	L	H	H	7	EVEN	2
H	L	H	X	L	7	DISABLED	1
H	L	H	X	H	7	DISABLED	2
H	H	L	L	L	8	ODD	1
H	H	L	L	H	8	ODD	2
H	H	L	H	L	8	EVEN	1
H	H	L	H	H	8	EVEN	2
H	H	H	X	L	8	DISABLED	1
H	H	H	X	H	8	DISABLED	2

## TRANSMITTER OPERATION

The transmitter section accepts parallel data, formats it and transmits it in serial form (Figure 6) on the TROutput terminal.

*IF ENABLED

## FIGURE 6. Serial Data Format

Transmitter timing is shown in Figure 7. (A) Data is loaded into the transmitter buffer register from the inputs TBR1 through TBR8 by a logic low on the $\overline{\text { TBRLoad input. Valid data must be }}$ present at least $t_{D S}$ prior to and $t_{D H}$ following the rising edge of TBRL. If words less than 8 bits are used, only the least significant bits are used. The character is right justified into the least significant bit, TBR1. (B) The rising edge of TBRL clears TBREmpty. 0 to 1 clock cycles later, data is transferred to the transmitter register, TREmpty is cleared and transmission starts. TBREmpty is reset to a logic high. Output data is clocked by TRClock, which is 16 times the data rate.(C)A second pulse on TBRLoad loads data into the transmitter buffer register. Data transfer to the transmitter register is delayed until transmission of the current character is complete.(D)Data is automatically transferred to the transmitter register and transmission of that character begins.


FIGURE 7. Transmitter Timing (Not to Scale)

## RECEIVER OPERATION

Data is received in serial form at the RI input. When no data is being received, RI input must remain high. The data is clocked by the RRClock, which is 16 times the data rate. Receiver timing is shown in Figure 8.
(A) A low level on DRReset clears the DReady line. (B) During the first stop bit, data is transferred from the receiver register to the RBRegister. If the word is less than 8 bits, the unused most significant bits will be a logic low. The output character is right justified to the least significant bit RBR1. A logic high on OError indicates an overrun which occurs when DReady has not been cleared before the present character was transferred to the RBRegister. A logic high on PError indicates a parity error. (C) $1 / 2$ clock cycle later, DReady is set to a logic high and FError is evaluated. A logic high on FError indicates an invalid stop bit was received. The receiver will not begin searching for the next start bit until a stop bit is received.


FIGURE 8. Receiver Timing (Not to Scale)

## START BIT DETECTION

The receiver uses a 16 X clock for timing (see Figure 9.) The start bit (A) could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion. The center of the start bit is defined as clock count $7 \frac{1}{2}$. If the receiver clock is a symmetrical square wave, the center of the start bit will be located within $\pm 1 / 2$ clock cycle, $\pm 1 / 32$ bit or $\pm 3.125 \%$. The receiver begins searching for the next start bit at the center of the first stop bit.


FIGURE 9. Start Bit Timing

## TYPICAL APPLICATION

Microprocessor systems, which are inherently parallel in nature, often require an asynchronous serial interface. This function can be performed easily with the IM6402/03 UART. Figure 10 shows how the IM6403 can be interfaced to an IM6100 microcomputer system with the aid of an IM6101 Programmable Interface Element (PIE). The PIE interprets Input/Output transfer (IOT) instructions from the processor and generates read and write pulses to the UART. The SENSE lines on the PIE are also employed to allow the processor to detect UART status. In particular, the processor must know when the Receive Buffer Register has accumulated a character (DR active), and when the Transmit Buffer Register can accept another character to be transmitted.

In this example the characters to be received or transmitted will be eight bits long (CLS 1 and 2: both HIGH) and transmitted with no parity (PI:HIGH) and two stop bits (SBS:HIGH). Since these control bits will-not be changed during operation, Control Register Load (CRL) can be tied high. Remember, since the IM6402/03 is a CMOS device, all unused inputs should be committed:
The baud rate at which the transmitter and receiver will operate is determined by the external crystal and DIVIDE CONTROL pin on the IM6403. The internal divider can be set to reduce the crystal frequency by either 16 (PIN 2:HIGH) or 2048 (PIN 2:LOW) times. The frequency out of the internal divider should be 16 times the desired baud rate. To generate 110 baud, this example will use a 3.579545 MHz color TV crystal
and DIVIDE CONTROL set low. The IM6402 may use different receive (RRC) and transmit (TRC) clock rates, but requires an external clock generator.
To ensure consistent and correct operation, the IM6402/03 must be reset after power-up. The Master Reset (MR) pin is active high, and can be driven reliably from a Schmitt trigger inverter and R-C delay. In this example, the IM6100 is reset through still another inverter. The Schmitt trigger between the processor and R-C network is needed to assure that a slow rising capacitor voltage does not re-trigger RESET. A long reset pulse after power-up ( -100 ms ) is required by the processor to assure that the on-board crystal oscillator has sufficient time to start.

The IM6402 supports the processor's bi-directional data bus quite easily by tying the TBR and RBR buses together. A read command from the processor will enable the RECEIVER BUFFER REGISTER onto the bus by using the RECEIVER REGISTER DISABLE (RRD) pin. A write command from the processor clocks data from the bus into the TRANSMITTER BUFFER REGISTER using TBRL. Figure 10 shows a NAND gate driving $\overline{\text { TBRL }}$ from the $\overline{W R I T E}_{2}$ pin on the PIE. This gate is used to generate a rising edge to $\overline{T B R L}$ at the point where data is
stable on the bus, and to hold TBRL high until the UART actually transfers the data to it's internal buffer. If TBRL were allowed to return low before TBRE went high, the intended output data would be overwritten, since the TBR is a transparent latch.

Although not shown in this example, the error flags (PE, FE, $O E$ ) could be read by the processor, using the other READ line from the PIE. Since an IM6403 is used, TBRE and DR are not affected by the STATUS FLAGS DISABLE pin, thus, the three error flags can be tied to the data bus and gated by connecting SFD to $\overline{\operatorname{READ}}_{2}$.

If parity is not inhibited, a parity error will cause the $P E$ pin to go high until the next valid character is received.

A framing error is generated when an expected stop bit is not received. FE will stay high after the error until the next complete character's stop bit is received.

The overrun error flag is set if a received character is transferred to the RECEIVER BUFFER REGISTER when the previous character has not been read. The OE pin will stay high until the next received stop bit after a $\overline{\mathrm{DRR}}$ is performed.


FIGURE 10. 110 Baud Serial Interface for IM6100 System

# 4096 Bit (4096 x 1) CMOS Static RAM 

## FEATURES

- Low Standby Power-275 $\mu \mathrm{W}$ maximum
- Low Operating Power-38.5 mW/MHz maximum
- High Speed-300 ns Maximum Access Time
- TTL Compatible Inputs and Outputs
- Three State Outputs
- Data Retention to $\mathrm{V}_{\mathbf{C C}}=\mathbf{2 V}$
- On-Chip Address Register
- Military and Industrial Temperature Ranges
- Harris 6504/Mostek 4104 Compatible


## GENERAL DESCRIPTION

The IM6504 is a high speed, low power CMOS Static RAM organized 4096 words by 1 bit. Input and three state outputs are TTL compatible and allow for direct interface with common system bus structures. An on-chip address register simplifies system interfacing requirements.
This device is fully compatible with the Harris HM6504, but is fabricated with Intersil's selective oxidation, ionplanted, self aligned silicon gate CMOS process, called SELOX C, to achieve higher reliability and performance.
The standard part operates from 4.5 to 5.5 volts with an access time of 300 ns and standby supply current of $50 \mu \mathrm{~A}$ guaranteed over operating temperature range.
Minimum standby current is drawn when chip select line $\bar{E}$ is held at either $V_{C C}$ or GND. Data rentention is guaranteed to a $\mathrm{V}_{\mathrm{CC}}$ of 2.0 V .

## BLOCK DIAGRAM



## PIN NAMES

$A 0-A 11$	ADDRESS INPUTS
$D$	DATA INPUT
$Q$	DATA OUTPUT
$\bar{E}$	ADDR. STROBE/CHIP ENABLE
$\bar{W}$	WRITE ENABLE

## PIN

CONFIGURATIONS

(outline dwg JN)

LOGIC SYMBOL


## ORDERING INFORMATION

PART NO.	PACKAGE	TEMP. RANGE
IM6504 IJN	18 PIN CERDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6504 MJN	18 PIN CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6504 CJN	18 PIN CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

$$
\begin{aligned}
& \text { Supply Voltages (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }+8 \mathrm{C} \\
& \text { Input or Output Voltage Applied .......................... GND }-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\
& \text { Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }-65^{\circ} \text { to }+150^{\circ} \mathrm{C} \\
& \text { NOTE:Stresses above those listed under "Absolute Maximum Ratings" may cause permanent } \\
& \text { damage to the device. Functional operation of the device at these or any other conditions } \\
& \text { exceeding those indicated in the operational sections of this specification is not implied. } \\
& \text { Exposure to absolute maximum rating conditions for extended periods may affect device } \\
& \text { reliability. }
\end{aligned}
$$

DC CHARACTERISTICS

## TEST CONDITIONS:

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Logical "1"Input Voltage.	$\mathrm{V}_{\text {IH }}$	,	$V_{\text {CC- }} 2.0$	'	$V_{\text {CC }}+0.3$	V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	
Input Leakage Current	IILK	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	V OH	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage:	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{IOL}=2.0 \mathrm{~mA}$		,	0.4	
Output Leakage Current	lolk	$\mathrm{GND} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
Standby Supply Current	ICcsB	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		0.1	50	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}=\bar{E}_{1}$		0.01	25	
Operating Supply Current	ICCOP	$\begin{aligned} & f=1 M H z, V_{I N}=V_{C C} \\ & \text { or } G N D, I_{0}=0 \end{aligned}$		5.0	7.0	mA
Data Retention Voltage	$V_{\text {DR }}$				2.0	V
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$			5.0	7.0	pF
Output Capacitance	Cout			6.0	10.0	

## AC CHARACTERISTICS ${ }^{(1)}$

Note: Capacitance values guaranteed but not $100 \%$ tested.

## TEST CONDITIONS:

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

1.) AC Test Conditions: Input rise and fall times are 20 ns ; Output load is 1 TTL load and 50 pf . All timing measurements are taken at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltages ( $\mathrm{V}_{\mathrm{CC}}$ )	$+8 \mathrm{~V}$
Input or Output Voltage Applied	GND -0.3V to VCC +0.3 V
Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Voltage	4.75 V to 5.25 V

NOTE: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

## DC CHARACTERISTICS

## TEST CONDITIONS:

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX	UNIT
Logical "1"Input Voltage	$\mathrm{V}_{\text {IH }}$		$\mathrm{V}_{\mathrm{CC}}-2.0$		$V_{C C}+0.3$	V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	
Input Leakage Current	ILL	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	-10.0		+10.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$1 \mathrm{OH}=-0.4 \mathrm{~mA}$	2.4	.		$\therefore \mathrm{V}$
Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{O} \mathrm{LL}=1.6 \mathrm{~mA}$			0.4	
Output Leakage Current	IOLK	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	-10.0		+10.0	$\mu \mathrm{A}$
Standby Supply Current	ICCsB	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		100	500	
Operating Supply Current	ICCOP	$\begin{aligned} & -f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{GND}, \mathrm{I}_{0}=0 \end{aligned}$		5.0	7.0	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$			5.0	7.0	pF
Output Capacitance	COUT			6.0	10.0	

Note: Capacitance values guaranteed but not 100\% tested.

## AC CHARACTERISTICS ${ }^{(1)}$

## TEST CONDITIONS:

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

1.) AC Test Conditions: Input rise and fall times are 20 ns ; Output load is 1 TLL load and 50 pF . All timing measurements are taken at $1 / 2 \mathrm{~V}_{\mathrm{cc}}$.

## READ CYCLE

The falling edge of chip enable ( $\bar{E}$ ) latches addresses in the on-chip register and initiates a read cycle ( $\mathrm{T}=0$ ). Addresses to be latched must be present one setup time (TAVEL) prior to and one hold time (TELAX) following the falling edge of $\bar{E}$. During time $T=1$ the outputs become valid from the high $Z$ state. There is no period of active, but invalid, data on the bus. Write enable $(\bar{W})$ must remain high until after time. $T=2$. The read cycle is terminated when $\bar{E}$ goes high, disabling the output buffers.

## TIMING



FUNCTION TABLE • READ

TIME REF	INPUTS			OUTPUT Q	NOTES
	$\bar{E}$	$\overline{\mathbf{W}}$	A		
-1	H	X	X	Z	MEMORY INACTIVE
0	$\pm$	H	V	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	H.	X	V	OUTPUT VALID
2	ת	H	X	V	READ COMPLETE
3	H	X	X	V	MEMORY INACTIVE (SAME AS - 1)
4	$\pm$	H	$\checkmark \mathrm{V}$	Z	CYCLE ENDS, NEXT CYCLE BEGINS (SAMES AS 0)

## EARLY WRITE CYCLE

The falling edge of $\bar{E}$ latches addresses in the on-chip register and initiates an early write cycle. Address, $\bar{W}$ and $D$ inputs must be present for the appropriate setup and hold times prior to and following the falling edge of $\bar{E}$. The early write operation is complete at $T=2$, after one minimum negative $\bar{E}$ pulse width (TELEH).
During the early write cycle, output data line $Q$ remains in a high impedance state.

## TIMING



FUNCTION TABLE • EARLY WRITE

TIME REF	INPUTS					NOTES
	$\bar{E}$	$\overline{\mathbf{W}}$	A	D	Q	
-1	H	X	X	X	Z	MEMORY INACTIVE
0	$\pm$	L	V	V	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	X	X	X	Z	WRITE IN PROGRESS
2	$\pi$	X	X	X	Z	WRITE COMPLETE
3	H	X	X	X	Z	CYCLE ENDS, MEMORY INACTIVE, (SAME AS -1)
4	$\downarrow$	L	V	V	Z	NEXT CYCLE BEGINS (SAME AS 0)



## READ - MODIFY - WRITE CYCLE

A read - modify - write cycle may be performed if the write portion of the cycle is controlled by $\bar{W}$, and $\bar{E}$ remains low throughout. Data is read normally, with $\bar{W}$ held high, address inputs latched at $T=0$ and $Q$ data out valid at $T=1$. A data out valid to write time (TQVWL) must be observed before $\bar{W}$ is brought low to begin the write portion of the cycle.

Input Data must be valid a setup time prior to (TDVWL) and a hold time following (TWLDX) the falling edge of $\bar{W}$. At time $T=3 \bar{W}$ is returned high, and at $T=4 \bar{E}$ is returned high to complete the cycle. The output $Q$ is disabled by $\bar{E}$ and goes to a high impedance state an output disable time (TEHQZ) after $\bar{E}$ is returned high $(T=5)$.

## FUNCTION TABLE•READY-MODIFY-WRITE

$\begin{aligned} & \text { TIME } \\ & \text { REF. } \end{aligned}$	INPUTS				$\begin{gathered} \text { OUTPUT } \\ \mathbf{Q} \\ \hline \end{gathered}$	NOTES
	$\bar{E}$	$\bar{W}$	A	D		
-1	H	X	X	X	Z	MEMORY INACTIVE
0	L	H	V	X	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	H	X	X	V	OUTPUT VALID, READIMODIFY TIME
2	L	$\downarrow$	X	$V$	V	WRITE BEGINS, DATA LATCHED
3	L	$\pi$	X	X	V	WRITE IN PROGRESS
4	$\pi$	X	X	X	V	WRITE COMPLETE
5	H	X	X	X	Z	MEMORY INACTIVE (SAME AS - 1)
6.	$\pm$	H	V	X	Z	CYCLE ENDS, NEXT CYCLE BEGINS (SAME AS 0)

## POWER DOWN SEQUENCE

The power down sequence begins at $T=0$ with $\bar{E}$ held at a logic high level and all addresses, $D$ and $\bar{W}$ established at valid logic levels. Chip enable $\bar{E}$ must be high one minimum positive pulse width (TEHEL) before power-down. At T=1 power supply $V_{C C}$ may be decreased to minimum $V_{C C D R}$. As $V_{C C}$ is decreased, $\bar{E}$ must remain within data retention high logic level threshold limits ( $V_{I H D R}$ ), and $\bar{W}$ and $A_{0}-A_{g}$, must remain within $V_{\text {IHDR }}$ or $V_{I L}$ limits. Failure to remain within these limits may cause data loss or SCR latch-up.
The same conditions must be met; in reverse, when returning to normal power ( $T=2,3$ ).

## POWER DOWN SEQUENCE



## FEATURES

- Low Standby Power: $55 \mu$ W Maximum
- Low Operating Power: $10 \mathrm{~mW} / \mathrm{MHz}$ Maximum
- High Speed Operation
- High Noise Immunity
- Data Retention to $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$
- TTL Compatible Inputs and Outputs
- Three-State Outputs
- High Output Drive = 2 TTL Loads
- On-Chip Address Registers
- Completely Static and Synchronous
- Two Chip Selects (IM65X18)
- Military and Industrial Temperature Ranges
- Operating Voltage Range 4.5V to 10.5 V (A Version)


## GENERAL DESCRIPTION

The IM65X08 and IM65X18 are high speed, low power CMOS static RAMs organized 1,024 words by 1 bit. Inputs and threestate outputs are TTL compatible and allow for direct interface with common system bus architectures. On-chip address registers and two chip-selects (65X18) simplify system interfacing requirements.
These devices are fully compatible with the industry. standard 6508/18 CMOS $1 \mathrm{~K} \times 1$ RAMs but are fabricated in SELOX C, a CMOS process that uses selective oxidation to achieve higher reliability and performance.
The standard parts operate from 4.5 to 5.5 volts, with access times of 250 ns and standby supply currents of $10 \mu \mathrm{a}$ guaranteed over operating temperature range. Access times of 180 ns are offered in " -1 " versions. High operating voltage range is offered in " $A$ " versions.
Minimum standby current is drawn when $\bar{E}$ is held at CMOS $V_{C C}$ and all address, data and control lines are held at either CMOS VCc or GND. Data retention is guaranteed to a CMOS $\mathrm{V}_{\mathrm{cc}}$ of 2.0 V .

## BLOCK DIAGRAM (IM65X18)


*IM65X08 FUNCTIONS AS IF $\overline{\mathrm{E}}, \overline{\mathrm{S}_{1}}, \overline{\mathrm{~S}_{2}}$, WERE TIED TOGETHER

## ORDERING INFORMATION

	COMMERCIAL	INDUSTRIAL				MILITARY*			
IM65X08	$\begin{aligned} & \text { STD } \\ & 5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { STD } \\ 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { STD } \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { HI SPEED } \\ 5 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { HI SPEED } \\ & \text { 10V } \end{aligned}$	$\begin{gathered} \text { STD } \\ 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { STD } \\ & \text { 10V } \end{aligned}$	$\begin{aligned} & \hline \text { STD } \\ & 10 \mathrm{v} \end{aligned}$	$\begin{gathered} \hline \text { HI SPEED } \\ 5 \mathrm{v} \end{gathered}$
16 pin Cerdip	CJE	IJE	AIJE	-11JE	A.1IJE	MJE	AMJE	A-1MJE	-1MJE
16 pin Plastic Dip	CPE	IPE	AIPE	-11PE	A-11PE				
16 pin Flatpak						MFE	AMFE	A-1AMFE	-1MFE
IM65X18 18 pin Cerdip	CJN	IJN	AIJN	- 11JN	A-1IJN	MJN	AMJN	A-1MJN	-1MJN
18 pin Plastic Dip	CPN	IPN	AIPN	-1IPN	A-1IPN				
18 pin Flatpak						MFN	AMFN	A-1MFN	- 1 MFN


(outline dwg JE, PE)


TOP VIEW
(outline dwg JN, PN)
Flatpaks (FE, FN) have same pin outs as above

[^28]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	8.0 V
Input or Output Voltage Applied	GND -0.3 V to Vcc +0.3 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ranges	
Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\because$ Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
IM65X08/X18	4.5V-5.5

## DC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		$\mathrm{V}_{\mathrm{cc}}-2.0$			V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				0.8	
Input Leakage	1	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cC }}$	-1.0	$\cdots$	+1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	$\mathrm{IOH}=0$	Vcc-0.01			V
		$\mathrm{IOH}=-0.4 \mathrm{~mA}$,	2.4			
Logical "0" Output Voltage	VoL	$\mathrm{IOL}=0$			GND +0.01	
		$\mathrm{IOL}=3.2 \mathrm{~mA}$			0.4	
Output Leakáge	10		-1.0		+1.0	$\mu \mathrm{A}$
IM65X08/X18	Iccsb	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$		1.0	10	
	ICCsb	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}=\overline{\mathrm{E}}$		0.1	10	
Operating Supply Current	Iccop	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V} \mathrm{Cc} \text { or } \mathrm{GND} \\ & \mathrm{l}=0 \end{aligned}$		.	2	mA
Input Capacitance Output Capacitance	$\mathrm{Cl}_{1}$	, .		5.0	7.0	pF
	Co	.		6.0	10.0	

AC CHARACTERISTICS
TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

	SYMBOL	IM65X08/X18		UNITS
PARAMETER		MIN	MAX	
, Access Time From $\overline{\mathrm{E}}$	TELQV		250	
Output Enable Time	TSLQX		160	
Output Disable Time	TSHQZ		160	
: Ē Pulse Width (Pos)	TEHEL	100	,	
$\bar{E}$ Pulse Width (Neg)	TELEH	250		ns
$\bar{W}$ Pulse Width (Neg)	TWLWH	130		
Address Setup Time	TAVEL	15		
Address Hold Time	TELAX	50		\%
Data Setup Time	TDVEH	110		
Data Hold Time	TEHDX	0		

## IM65X08-1/X18-1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+8.0V
Input or Output, Voltage Applied	GND -0.3 V to $\mathrm{V}_{\mathrm{Cc}}+.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ranges	
Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
IM65X08-1/X18-1	. 4.5 V to 5.5 V

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		Vcc -2.0V			V
Logical "0" Input Voltage	VIL			'	0.8	
Input Leakage	ILLK	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-1.0		+1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	IOUT $=0$	$\mathrm{V}_{\mathrm{CC}}-0.01$		GND +0.01	v
	VOH	lout $=-0.4 \mathrm{~mA}$	2.4			
Logical "0" Output Voltage	VoL	IOUT $=0$				
	VOL	IOUT $=3.2 \mathrm{~mA}$				
Output Leakage	loLk	GND $\leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {cc }}$	-1.0		+1.0	$\mu \mathrm{A}$.
Standby Supply Current IM65X08-1/X18-1	Iccsb	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$		1.0	10	
	ICCSB	$\mathrm{V}_{C C}=3 \mathrm{~V}=\overline{\mathrm{E}}$		0.01	10	
Operating Supply Current	ICCOP	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{lo}=0 \end{aligned}$			2	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$			5.0	7.0	pF
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range


ABSOLUTE MAXIMUM RATINGS

Supply Vottage	+12.0V
Input or Output, Voltage Applied	GND -0.3 V to VCC to 3 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ranges	
Temperature	
Industrial	.... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
IM65X08A/X18A	4.5 V to 10.5 V
IM65X08Ȧ-1/X18A-1 ....	.. 4.5 V to 10.5 V

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to $10.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		70\% Vcc			V
Logical "0" Input Voltage	VIL				0.8	
Input Leakage	ILLK	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{VCC}$	-1.0		+1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	Iout $=0$	V cc-0.01			V
Logical "0" Output Voltage	VoL	IOUT $=0$	,		GND +0.01	
Output Leakage	IOLK	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{Vcc}$	. -1.0		+1.0	$\mu \mathrm{A}$
Standby Supply Current IM65X08A-1/X18A-1	Iccsb	$V_{\text {IN }}=V_{C C}$		5.0	500	
	ICCSB	$V_{c c}=3 V=\bar{E}_{1}$		0.1	50	
IM65X08A/X18A	Iccsb	$V_{\text {IN }}=V_{C C}$		5.0	500	
	Iccsb	$V_{C C}=3 V=\bar{E}_{1}$		0.1	50	
Operating Supply Current	ICCOP	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{Cc}} \text { or } \mathrm{GND}, \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$			10	mA
Input Capacitance	$\mathrm{C}_{\mathrm{IN}}$		$\cdots$	5.0	7.0	pF
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, C_{L}=50 \mathrm{pf}, T_{A}=$ Operating Temperature Range

		IM65X08A-1/X18A-1		IM65X08A/X18A		
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	
Access Time From $\bar{E}$	TELQV		125		200	
Output Enable Time	TSLQX		75		120	
Output Disable Time	TSHQZ		75		120	
$\bar{E}$ Pulse Width (Pos)	TEHEL	85		125		
$\bar{E}$ Pulse Width (Neg)	TELEH	125		200		
$\bar{W}$ Pulse Width (Neg)	TWLWH	85		125		
Address Setup Time	TAVEL	10		15		
Address Hold Time	TELAX	40		60		
Data Setup Time	TDVEH	85		125		
Data Hold Time	TEHDX	0		0		

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	8.0 V
Input or Output Voltage Applied	GND -0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ranges	
Temperature	
Commercial	$\ldots . .0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Voltage	
IM6508C/18C	$4.75 \mathrm{~V}-5.25 \mathrm{~V}$

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		Vcc-2.0			V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				0.8	
Input Leakage	ILLK	$\mathrm{OV} \leq \mathrm{V}$ IN $\leq \mathrm{VCC}$	-1.0		+1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	lout $=0$	Vcc-0.01			V
		$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			
Logical "0" Output Voltage	VOL	IOUT $=0$			GND $\pm 0.01$	
		$\mathrm{IOL}=1.6 \mathrm{~mA}$			0.4	
Output Leakage	lolk	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$	$-5.0$		+5.0	
Standby Supply Current	Iccsb	$\mathrm{Vin}=\mathrm{Vcc}$		10	100	$\mu \mathrm{A}$
Operating Supply Current	IcCOP	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V} \mathrm{~N}=\mathrm{V} \mathrm{Cc} \text { or } \mathrm{GND} \\ & \mathrm{l} 0=0 \end{aligned}$			4	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$			5.0	7.0	pF
Output Capacitance	Co			6.0	10.0	

AC CHARACTERISTICS
TEST CONDITIONS: $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER		IM6508C/18C	
	SYMBOL	MIN	MAX
Access Time From $\bar{E}$	TELQV		300
Output Enable Time	TSLQX		200
Output Disable Time	TSHQZ		200
$\bar{E}$ Pulse Width (Pos)	TEHEL	150	
$\bar{E}$ Pulse Width (Neg)	TELEH	300	
$\bar{W}$ Pulse Width (Neg)	TWLWH	160	
Address Setup Time	TAVEL	20	
Address Hold Time	TELAX	70	
Data Setup Time	TDVEH	130	
Data Hold Time	TEHDX	0	

## READ MODE OPERATION

In a typical READ operation the address lines are latched by the falling edge of strobe input $\bar{E}$. If the chip has been selected, i.e. $\bar{S}_{1}$ and $\bar{S}_{2}$ (65X18 only) are low, data becomes valid an access time (TELQV) after the falling $\bar{E}$ edge. Data out for 65X08 ( 16 pin ) remains valid until $\bar{E}$ returns high. Data out for $65 \times 18$ ( 18 pin ) is latched when $\bar{E}$ returns high, and remains valid until a chip select ( $\bar{S}_{1}$ or $\overline{\mathrm{S}}_{2}$ ) is returned high.
Address information is edge triggered and must be valid a setup time (TAVEL) before and a hold time (TELAX) after the falling $\bar{E}$ edge. $\overline{\mathrm{S}}_{1}$ and $\overline{\mathrm{S}}_{2}$ on the 65X18 are level sensitive and may occur after $\bar{E}$ transition without affecting access time.

## READ CYCLE TIMING



## FUNCTION TABLE•READ



## WRITE MODE OPERATION

For a WRITE operation, address lines are latched by $\bar{E}$ as in a READ operation. Writing begins when strobe ( $\bar{E}$ ), chip selects $\left.\bar{S}_{1}, \bar{S}_{2}\right)$ and write $(\bar{W})$ are low and ends when one of these lines returns high. Data ( $D$ ) must be valid a setup time (TDVEH) before and a hold time (TEHDX। after the final rising edge.
Minimum write pulse widths are specified as TWLWH for $\bar{W}, \bar{S}_{1}$ and $\bar{S}_{2}$. Minimum write pulse width is specified as TELEH for $\overline{\mathrm{E}}$.
NOTE: Transitions on strobe line $\overline{\mathrm{E}}$ during power down or standby modes may cause change of address or loss of data. When in either mode care must be taken to maintain $\bar{E}$ at CMOS Vcc level.

## WRITE CYCLE TIMING



FUNCTION TABLE • WRITE

TIME REF	INPUT					OUTPUT	NOTES
	$\bar{E}$	A	$\overline{\mathbf{S}}^{\text {* }}$	$\overline{\text { W }}$	D	Q	
-1	H	X	H	X	X	Z	Memory inactive, output high Z
0	7	V	H	X	X	Z	Addresses latched
1	L	X	L	$\lambda$	X	Z	Write operation begins
2	L	X	L	$\cdots$	V	Z	Write operation ends
3	H	X	H	H	X	Z	Output disabled, high Z. Ready for next cycle.

# IM6512/A 768 BIT (64 x 12) CMOS RAM 

## FEATURES

- Low Power Operation
- TTL or CMOS Compatible on Inputs and Outputs
- 4V-11V Vcc Operation
- Static Operation
- On-Chip Address Register
- Two IM6512's can be used with IM6100 and IM6312 without additional components


## GENERAL DESCRIPTION

The IM6512 is a high speed, low power, silicon gate 768 bit CMOS static RAM organized 64 words by 12 bits. In all static states these units exhibit the microwatt power requirements
typical of CMOS. Inputs and three state outputs are TTL compatible. The basic part operates at 4-7 volts with a typical 5 volt, $25^{\circ} \mathrm{C}$ access time of 350 ns . A wider operating voltage range, 4-11 volts, is available with the A version. Signal polarities and functions are specified for direct interfacing with the IM6100 microprocessor. The device is ideally suited for minimum system all CMOS applications where low power, minimum cost, or non-volatility is required.

## FUNCTIONAL DESCRIPTION

The MSEL pin performs both chip enable and write-enable functions. The IM6512 has three modes of operation: read-modify-write, read only, and write. The ADR input allows two IM6512's to be used without additional decoding circuitry.

## FUNCTIONAL DIAGRAM

## ORDERING INFORMATION



## PIN CONFIGURATION



## ABSOLUTE MAXIMUM RATINGS



```
Input or Output Voltage SuppliedGND -0.3V to VCC +0.3V
```



```
Operating Temperature Range
 Industrial IM6512I - 40.
 Military IM6512M - 55 % C to +125 %
```

DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\text {IH }}$		$\mathrm{V}_{\mathrm{CC}}-2.0$			V
Logical "0" Input Voltage	VIL				0.8	V
Input Leakage	IIL	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	$-1.0$		1.0	$\mu \mathrm{A}$
Logical " 1 " Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage	VOL	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
Output Leakage	IOLK	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{V}_{\mathrm{CC}}$	-1.0		1.0	$\mu \mathrm{A}$
Supply Current	ICC	*		1.0	100	$\mu \mathrm{A}$
	ICC	${ }^{*} \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0.1	10.0	$\mu \mathrm{A}$
Input Capacitance	CIN			5.0	7.0	pF
Output Capacitance	$\mathrm{Co}_{0}$			6.0	10.0	pF

*. STR $=\mathrm{V}_{\mathrm{CC}}$, all other inputs $=\mathrm{V}_{\mathrm{CC}}$ or GND

AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Industrial or Military


ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+ 12.0 V
Input or Output Voltage Applied	GND -0.3V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
Industrial IM6512I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military IM6512AM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$ to $11 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical " 1 " Input Voltàge	VIH		70\% VCC			V
Logical "0" Input Voltage	VIL				20\% VCC	V
Input Leakage	IIL	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	IOUT $=0$	$\mathrm{V}_{\mathrm{CC}}-0.01$		;	V
Logical "0". Output Voltage.	VOL	IOUT $=0$			GND +0.01	V
Output Leakage	IOLK	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{V}_{\mathrm{CC}}$	-1.0		1.0	$\mu \mathrm{A}$
Supply Current	ICC	*		5.0	500	$\mu \mathrm{A}$
	ICC	${ }^{*} \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0.1	10.0	$\mu \mathrm{A}$
Input Capacitance	CIN			5.0	7.0	pF
Output Capacitance	$\mathrm{Co}_{0}$			6.0	10.0	pF

[^29]AC CHARACTERISTICS $V_{C C}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	IM6512A		UNITS
		MIN	MAX	
Access Time From STR	tac		150	ns
Output Enable Time	ten	.	90	ns
Output Disable Time	$t_{\text {dis }}$		90	ns
STR Pulse Width (Positive)	$t_{\text {str }}$	95.		ns
STR Pulse Width (Negative)	tstr	150		ns
Cycle Time	$t_{c}$	245		ns
Write Pulse Width (Negative)	$t_{\text {wp }}$	95		ns
Address Setup Time	$t$ as	20		ns
Address Hold Time	$t a h$	- 45		ns
Data Setup Time	$t_{\text {ds }}$	95		ns
Data Hold Time	$t_{\text {dh }}$	0		ns
MSEL Pulse Separation	$t_{p}$	60		ns
MSEL Setup Time	$t_{\text {ms }}$	20		ns
MSEL Hold Time	$t_{m h}$	20		ns


Supply Voltage	7.0V
Input or Output Voltage Supplied	GND -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
Commercial IM6512C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DC CHARACTERISTICS $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=$ Commercial

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\text {IH }}$		$\mathrm{V}_{\text {CC }}-1.5$			V
Logical " 0 " Input Voltage	VIL				0.8	V
, Input Leakage	IIL	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-5.0		5.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4		,	$\checkmark$
Logical "0" Output Voltage	VOL	$\mathrm{IOL}=1.6 \mathrm{~mA}$			0.45	V
Output Leakage	IOLK	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{V}_{\mathrm{CC}}$	-5.0		5.0	$\mu \mathrm{A}$
Supply Current	ICC	*		.	800	$\mu \mathrm{A}$
Input Capacitance	CIN		-	5.0	7.0	pF
Output Capacitance	$\mathrm{CO}_{0}$			6.0	10.0	pF

*STR $=\mathrm{V}_{\mathrm{CC}}$, all other inputs $=\mathrm{V}_{\mathrm{CC}}$ or GND

AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Commercial

	SYMBOL	IM6512C		UNITS
RA		MIN	MAX	
Access Time From STR	$\mathrm{tac}_{\text {a }}$		600	ns
Output Enable Time	$t_{\text {en }}$		375	ns
Output Disable Time	$\mathrm{t}_{\text {dis }}$		375	ns .
STR Pulse Width (Positive)	$\mathrm{t}_{\text {str }}$	395		ns
STR Pulse Width (Negative)	$\mathrm{t}_{\text {str }}$	600		ns
Cycle Time .	$t_{c}$	995		ns
Write Pulse Width (Negative)	$t_{\text {wp }}$	395		ns
Address Setup Time	$\mathrm{tas}^{\text {a }}$	40		ns
Address. Hold Time	$t_{\text {ah }}$	130		ns
Data Setup Time	$t_{\text {ds }}$	395		ns
Data Hold Time	$t_{\text {dh }}$	0		ns
MSEL Pulse Separation	$t_{\text {ps }}$	150		ns
MSEL Setup Time	$t_{\text {m }}$	50		ns
MSEL Hold Time	$t_{m h}$	50		ns



FIGURE 1. Read-Modify-Write or Read Cycle

Read-Modify-Write (MSEL high when STR goes low)
DX pins are high impedance until the first negative-going edge on MSEL (1) which enables the outputs to read data from memory (2). When MSEL returns high (3) the DX pins return to high impedance for the remainder of the cycle.
The (optional) second negative-going MSEL pulse (4) causes a write to memory. Data at D.X pins to be written
into memory should be valid for a time (tDS) prior to, and a time ( $\mathrm{t} D \mathrm{D}$ ) following the rising edge of MSEL (5). MSEL must remain high until STR returns high ending the cycle.

## Read Only

Same as Read-Modify-Write except the second negativegoing MSEL pulse is omitted.


FIGURE 2. Write Cycle

Write (MSEL low when STR goes low)
DX pins are always high impedance. Data at DX pins to be written into memory should be valid for a time (tDS) prior to, and a time ( $\mathrm{t} D \mathrm{H}$ ) following the rising edge of MSEL (6).


FIGURE 3. A Typical Microprocessor System

## Typical Microprocessor System (Figure 3)

In the example shown, the IM6312 RSEL (RAM Select) output is programmed to go low for addresses $0-255$. IM6512 with ADR $=$ " 0 " will respond to addresses $0-63$ (and 128-191); IM6512 with ADR $=$ " 1 " will respond to addresses 64-127 (and 192-255).

ADR
ADR should be either tied to logic " 0 " (GND) or logic " 1 " $\left(V_{C C}\right)$. The data on this pin is compared internally with address data on DX5. If the two match, the chip will respond to MSEL and CS, otherwise the IM6512 DX lines remain high impedance and data is unchanged. As a result, two IM6512 memories can be used with the IM6100 and IM6312 without additional components.

ADR	DX5*	MSEL @   $\overline{S T R} 1$	FUNCTION
$L$	$L$	L	WRITE
$L$	$L$	$H$	READ-MODIFY-WRITE,   READ ONLY
$L$	$H$	$X$	NO OP. (HI-Z)
$H$	$L$	$X$	NO OP. (HI-Z)
$H$	$H$	L	WRITE
$H$	$H$	$H$	READ-MODIFY-WRITE,   READ ONLY

$$
X=\text { DON'T CARE }
$$

Note 1: Addresses are latched on chip by the fallirg edge of STR

FIGURE 4. IM6512 Truth Table

## 4096 Bit (1K x 4 ) CMOS Static RAM

## FEATURES

- Low Standby Power-275 $\mu \mathrm{W}$ maximum
- Low Operating Power-38.5 mW/MHz maximum
- High Speed-300 ns Maximum Access Time
- TTL Compatible Inputs and Outputs
- Three State Outputs
- Data Retention to VCC $=2 \mathrm{~V}$
- On-Chip Address Register
- Military and Industrial Temperature Ranges
- Harris HM6514 Compatible

BLOCK DIAGRAM


PIN NAMES

AO-A9	ADDRESS INPUTS
$D / Q_{0.3}$	DATA INPUTS, Q OUTPUTS
$\overline{\mathrm{E}}$	CHIP ENABLE
$\bar{W}$	WRITE ENABLE

## ORDERING INFORMATION

PART NO.	PACKAGE	TEMP. RANGE
IM6514IJN	18-PIN CERDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6514IPN	18 -PIN PLASTIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6514MJN	18 -PIN CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6514MFN	18 -PIN FLATPACK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6514CJN	18 -PIN CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## GENERAL DESCRIPTION

The IM6514 is a high speed, low power CMOS Static RAM organized 1024 words by 4 bits. Input and three state outputs are TTL compatible and allow for direct interface with common system bus structures. An on-chip address register simplifies system interfacing requirements.
This device is fully compatible with the Harris HM6514, but is fabricated with Intersil's selective oxidation, ionplanted, self aligned silicon gate CMOS process, called SELOX C, to achieve higher reliability and performance.

The standard part operates from 4.5 to 5.5 volts with an access time of 300 ns and standby supply current of $50 \mu \mathrm{~A}$ guaranteed over operating temperature range.
Minimum standby current is drawn when chip select line $\bar{E}$ is held at $\mathrm{V}_{\mathrm{CC}}$ and all address, data and control lines are held at either $V_{C C}$ or GND. Data retention is guaranteed to a $V_{C C}$ of 2.0 V .

## PIN CONFIGURATIONS


(outline dwg FN)
(outline dwgs JN, PN)
LOGIC SYMBOL


## ABSOLUTE MAXIMUM RATINGS



## DC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Logical "1"Input Voltage	$\mathrm{V}_{\text {IH }}$		$\mathrm{V}_{\text {CC }}-2.0$		$\mathrm{V}_{\text {CC }}+0.3$	V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	
Input Leakage Current	IILK	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{OH}}$.	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage	$\mathrm{V}_{\text {OL }}$	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.4	
Output Leakage Current	loLk	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
Standby Supply Current	ICCSB	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		0.1	50	
		$V_{C C}=3.0 \mathrm{~V}=\mathrm{E}_{1}$		0.01	25	
Operating Supply Current	IcCop	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND, } \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$		5.0	7.0	mA
Data Retention Voltage	VDR				2.0	V .
Input Capacitance	$\mathrm{C}_{\text {IN }}$			5.0	7.0	pF
Output Capacitance	Cout			6.0	10.0	

NOTE: Capacitance values guaranteed but not 100\% tested.

## OPERATING CHARACTERISTICS

## AC CHARACTERISTICS1

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	MIN.	MAX.
Access Time From $\overline{\mathrm{E}}$	TELQV		300
Output Disable From $\overline{\mathrm{E}}$	TEHQZ		100
Write Enable Output Disable	TWLQZ		100
$\bar{E}$ Pulse Width (Pos)	TEHEL		
$\bar{E}$ Pulse Width (Neg)	TELEH	120	
Address Setup	TAVEL	300	
Address Hold	TELAX	0	
Write Enable Pulse Width	TWLWH	50	
Data Setup	TDVWH	300	
Data Hold	TWHDZ	200	
Write Enable Read Setup	TWHEL	0	
Write Enable Pulse Hold	TELWH	0	
Write Enable Pulse Setup	TWLEH	300	
Write Data Delay	TWLDV	300	
Data Valid to Write	TQVWL	100	
Read or Write Cycle Time	TELEL	0	

[^30]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltages (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + 8V	
Input or Output Voltage Applied	GND -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ}$ to $+150^{\circ} \mathrm{C}$	
Operating Range	
Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Voltage	4.75 V to 5.25 V

NOTE: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

## DC CHARACTERISTICS

## TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

${ }^{\prime}$ PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\text {IH }}$		$\mathrm{V}_{\mathrm{CC}}-2.0$		$\mathrm{V}_{\mathrm{CC}}+0.3$	- V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	
Input Leakage Current	IILK	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-10.0		+10.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\mathrm{V}_{\text {OH }}$	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	
Output Leakage Current	lolk	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-10.0		+10.0	$\mu \mathrm{A}$
Standby Supply Current	ICcsB	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		100	500	
Operating Supply Current	$\mathrm{I}_{\text {CCOP }}$	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{I N}=V_{C C} \\ & \text { or } G N D, \mathrm{I}_{0}=0 \end{aligned}$		5.0	7.0	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$			5.0	7.0	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$			6.0	10.0	

NOTE: Capacitance values guaranteed but not $100 \%$ tested.

AC CHARACTERISTICS
TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	MIN	MAX
Access Time from $\bar{E}$	TELQV		350
Output Disable from $\overline{\bar{E}}$	TEHQZ		100
Write Enable Output Disable	TWLQZ		100
$\bar{E}$ Pulse Width (Pos)	TEHEL	150	
$\bar{E}$ Pulse Width (Neg)	TELEH	350	
Address Setup	TAVEL	20	
Address Hold	TELAX	50	
Write Enable Pulse Width	TWLWH	350	
Data Setup.	TDVWH	250	
Data Hold	TWHDZ	0	
Write Enable Read Setup	TWHEL	0	
Write Enable Pulse Hold	TELWH	350	
Write Enable Pulse Setup	TWLEH	300	
Write Data Delay	TWLDV	100	
Data Valid to Write	TQVWL	0	
Read or Write Cycle Time	TELEL	500	

1.) AC Test Conditions: Input rise and fall times are 20 ns ; Output load is 1 TTL load and 50 pf . All timing measurements are taken at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$.

## READ CYCLE

The falling edge of chip enable ( $\bar{E}$ ) latches addresses in the on-chip register and initiates a read cycle ( $T=0$ ). Addresses to be latched must be present one setup time (TAVEL) prior to and one hold time (TELAX) following the falling edge of $\bar{E}$. During time $T=1$ the outputs become valid from the high $Z$ state. There is no period of active, but invalid, data on the bus. Write enable ( $\overline{\mathrm{W}})$ must remain high until after time $T=2$. The read cycle is terminated when $\bar{E}$ goes high, disabling the output buffers.

## READ CYCLE TIMING



FUNCTION TABLE • READ

TIME REF	INPUTS			OUTPUT	NOTES
	E	W	A	Q	
-1	H	X	X	Z	MEMORY INACTIVE
0	L	H	$V$	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	H	X	V	OUTPUT VALID
2	$\pi$	H	X	V	READ COMPLETE
3	H	X	X	V	MEMORY INACTIVE (SAME AS - 1)
4	$\checkmark$	H	V	Z	CYCLE ENDS, NEXT CYCLE -BEGINS (SAME AS 0)

## WRITE CYCLE

The falling edge of $\bar{E}$ latches addresses in the on-chip register and initiates a write cycle ( $T=0$ ). Write begins when $\bar{W}$ goes low $(T=1)$ and ends when $\bar{W}$ or $\bar{E}$ goes high $(T=2)$. Data to be written must be valid one setup time before (TDVWH) the rising edge of $\bar{W}$ or $\bar{E}$, but not before one data delay time (TWLDV) after the falling edge of $\bar{W}(T=1)$.
At write cycle termination $(T=3)$, data lines become high $Z$ one hold time (TWHDZ) after the rising edge of $W$ or one hold time (TEHDZ) after the rising edge of $\bar{E}$. The next write cycle begins at $T=4$.

## WRITE CYCLE TIMING



## FUNCTION TABLE • WRITE

TIME REF	INPUTS				NOTES
	E	$\overline{\text { W }}$	A	DQ	
-1	H	X	X	Z	MEMORY INACTIVE
0	$\downarrow$	X	$V$	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	7	X	Z	WRITE IN PROGRESS
2	L	$\pi$	X	V	WRITE COMPLETE
3	H	H	X	Z	CYCLE ENDS, OUTPUTS HIGH Z
4	$\downarrow$	X	V	Z	NEXT CYCLE BEGINS

READ-MODIFY-WRITE CYCLE TIMING


## READ - MODIFY - WRITE CYCLE

A read - modify - write cycle may be performed if the write portion of the cycle is controlled by $\bar{W}$ and $\bar{E}$ remains low throughout. Data is read normally, with $\bar{W}$ held high, addresses latched at $T=0$ and data out valid at $T=1$. A data out valid to write time (TQVWL) must be observed before $\bar{W}$ is brought low to begin the write cycle. One write output disable time (TWLQZ) after $W$ is low, the data lines return to
a high-Z state and new data to be written into the address may placed on the data bus. Data to be written must be valid one setup time before (TDVWH) and one hold time after (TWHDZ) the rising edge of $\bar{W}(T=3)$. The output buffers are latched to a high-Z state by the rising edge of $\bar{W}$, so that when input data is removed the bus remains high- $Z$ until the next cycle.

FUNCTION TABLE •READY—MODIFY—WRITE

TIMEREF.	INPUTS				OUTPUT	NOTES
	E	W	A	D	Q	
-1	H	X	X	X	Z	MEMORY INACTIVE
0	7	H	V	X	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	H	X	X	V	OUTPUT VALID, READ/MODIFY TIME
2	L	7	X	X	Z	WRITE BEGINS, OUTPUT HIGH Z
3	L	$\pi$	X	V	Z	WRITE IN PROGRESS
4	$\pi$	X	X	X	Z	WRITE COMPLETE
5	H	X	X	X	Z	MEMORY INACTIVE (SAME AS -1)
6	7	H	V	X	Z	CYCLE ENDS, NEXT CYCLE BEGINS (SAME AS 0)

## POWER DOWN SEQUENCE

The power down sequence begins at $T=0$ with $\bar{E}$ held at a logic high level and all addresses, $\bar{W}$, established at valid logic levels. Chip enable $\bar{E}$ must be high one minimum positive pulse width (TEHEL) before power-down. At $T=1$ power supply $V_{C C}$ may be decreased to minimum $V_{C C D R}$. As $V_{C C}$ is decreased, $\bar{E}$ must remain within data retention high logic level threshold limits ( $V_{I H D R}$ ), and $\bar{W}$ and $A_{0} \cdot A_{9}$, must remain within $V_{\text {IHDR }}$ or $V_{I L}$ limits. Failure to remain within these limits may cause data loss or SCR latch-up.

The same conditions must be met, in reverse, when returning to normal power ( $T=2,3$ ).

## POWER DOWN TIMING


(1) 4.5 V
(2) $\mathrm{V}_{\text {CCDR }} \mathbf{5 . 5 V} \geq \mathrm{V}_{\text {CCDR }} \geq 2.0 \mathrm{~V}$
(3) $v_{I H} v_{C C}+0.3 \mathrm{~V} \geq v_{I H} \geq v_{C C}-2.0 \mathrm{~V}$
(4) $V_{I L}\left(0.8 \geq V_{I L} \geq G N D-0.3 V\right)$
(5) $V_{i H D R}\left(V_{C C}+0.3 V \geq V_{I H D R} \geq V_{C C}-2.0 \mathrm{~V} \geq 2.0 \mathrm{~V}\right)$

IM65X51/IM65X61 1024 (256 x 4 ) Bit High Speed CMOS RAM

## FEATURES

- Low Standby Power: $55 \mu$ W Maximum
- Low Operating Power: $10 \mathrm{~mW} / \mathrm{MHz}$ Maximum
- High Speed Operation
- High Noise Immunity
- Data Retention to VCC $=\mathbf{2 . 0 V}$
$\because$ TTL Compatible Inputs and Outputs
- Three State Outputs
- High Output Drive: 2 TTL Loads
- On-Chip Address Registers
- Completely Static and Synchronous
- Operating Voltage Range 4.5V to 10.5 V (A version)
- Military and Industrial Temperature Ranges


## GENERAL DESCRIPTION

The IM65X51 and IM65X61 are high speed, low power CMOS static RAMs organized 256 words by 4 bits. Inputs and outputs are TTL compatible and allow for direct interface with common system bus architectures. On-chip address registers simplify system interfacing requirements.
These devices are fully compatible with the industry standard 6551/61 CMOS 256x4 RAMs but are fabricated in Selox C, a high density CMOS process which utilizes selective oxidation to achieve high reliability and performance.
The standard parts operate from 4.5 to 5.5 volts, with access times of 300 ns and standby supply currents of $10 \mu$ a guaranteed over operating temperature range. Access times of 220 ns are offered in " -1 " versions, and 4.5 to 10.5 volt operating ranges are available in " $A$ " versions.
Minimum standby current is drawn when $\bar{E}$ is held at $V_{c c}$ and all address, data and control lines are held at either $V_{C C}$ or GND. Data retention is guaranteed to a Vcc of 2.0 V .


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ................................................................... . + +8.0V	
Input or Output Voltage Supplied	GND -0.3V to Vcc +0.3 V
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Range	
Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
IM65X51/X61 I,M	4.5 V to 5.5 V

DC CHARACTERISTICS
TEST CONDITIONS: $\grave{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		Vcc-2.0			V
Logi-al "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				0.8	
Input Leakage	IIL	$\mathrm{GND} \leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VoH1	$1 \mathrm{OH}=-0.4 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage	Vol1	$\mathrm{lOL}=3.2 \mathrm{~mA}$			0.45	
Output Leakage	Iolk	$\mathrm{GND} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
Standby Supply Current	Iccsi	$V_{\text {IN }}=V_{C C}$		1	10	
		$V_{C C}=3 V=\bar{E}_{1}$		0.1	10	
Operating Supply Current	ICCOP	$f=1 \mathrm{MHz}, V_{\mathrm{IN}}=V_{\mathrm{CC}}$   or GND, $10=0$			2	mA
Input Capacitance	CIN			5.0	7.0	pF
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pF}, T_{A}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM65X51/X61 I,M		UNITS
		MIN	MAX	
Access Time From $\bar{E}_{1}$	TE1LQV.		300	
Output Enable Time	- TSLQV		150	
Output Disable Time	TSHQZ		150	
$\bar{E}_{1}$ Pulse Width (Positive)	TE1HE1L	100		
$\bar{E}_{1}$ Pulse Width (Negative)	TE1LE1H	300		ns
$\bar{W}$ Pulse Width (Negative)	TWLWH	300		
Address Setup Time	TAVE ${ }_{1}$ L	0		
Address Hold Time	TE ${ }_{1}$ LAX	60		
Data Setup Time	TDVE1H	150		
Data Hold Time	TE1HDX	0		

## ABSOLUTE MAXIMUM RATINGS

```
Supply Voltage .. +8.0 V
Input or Output Voltage Applied GND -0.3 V to \(\mathrm{VCc}_{c}+0.3 \mathrm{~V}\)
Storage Temperature Range .. \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Range
 Temperature
 Industrial ... \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
 Military .. \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Voltage
 IM65X51-1/X61-1I, -1M .. 4.5 V to 5.5 V
```

DC CHARACTERISTICS
TEST CONDITIONS: $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		Vcc-2.0			V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				0.8	
Input Leakage	IIL	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}$ CC	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH1	$\mathrm{lOH}^{\circ}=-0.4 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage	Vol1	$\mathrm{lOL}=3.2 \mathrm{~mA}$		, -	0.45	
Output Leakage	lolk	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}$	-1.0		1.0	$\mu \mathrm{A}$
Standby Supply Current	IccsB	. $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	,	1	10	
		$V_{C C}=3 V=\bar{E}_{1}$		0.1	10	
Operating Supply Current	Iccop	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{GND}, \mathrm{lo}=0 \end{aligned}$		i .	2	$\mathrm{mA}$
Input Capacitance	CIN			5.0	7.0	pF
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM65X51-1/X61-1I, -1M		UNITS
		MIN	MAX	
Access Time From $\bar{E}$	TE1LQV		220	
Output Enable Time	TSLQV		130	
Output Disable Time	TSHQZ		130	
$\overline{\bar{E}} 1$ Pulse Width (Positive)	TE1HEL	100		
$\bar{E}_{1}$ 'Pulse Width (Negative)	TE1LEH	220		ns
$\bar{W}$ Pulse Width (Negative)	TWLWH	220		
Address Setup Time	TAVE ${ }_{1}$	0		
Address Hold Time	TE1LAX	60		
Data Setup Time	TDVE $_{1} \mathrm{H}$	100		
Data Hold Time	TE1HDX	0		

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+12.0V
Input or Output Voltage Applied	GND -0.3 V to VCC +0.3 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
IM65X51A, IM65X61A	4.5 V to 10.5 V

## DC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=4.5 \mathrm{~V}$ to $10.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		70\% Vcc			V
Logical "0" Input Voltage	VIL				0.8	
Input Leakage	ILL	$\mathrm{GND} \leq \mathrm{V}_{1 \times} \leq \mathrm{V}_{\text {cC }}$	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	IOUT $=0$	VCc -0.01			V
Logical "0" Output Voltage	VOL	IOUT $=0$			GND +0.01	
Output Leakage	lolk	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{cc}}$	-1.0		1.0	$\mu \mathrm{A}$
Standby Supply Current	Iccsb	VIN $=$ VCC		5.0	500	
		$\mathrm{VCC}=3.0 \mathrm{~V}=\overline{\mathrm{E}}_{1}$		0.1	50	
Operating Supply Current	Iccop	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V} \mathbb{N}=\mathrm{VCC} \\ & \text { or GND, lo }=0 \end{aligned}$			10	mA
Input Capacitance	CIN 1			5.0	7.0	pF
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM65X51A/X61A I,M		UNITS
		MIN	MAX	
Access Time From $\bar{E}_{1}$	TE1LQV		235	
Output Enable Time	TSLQV		120	
Output Disable Time	TSHQV		120	
$\bar{E}_{1}$ Pulse Width (Positive)	$\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}$	80		
$\mathrm{E}_{1}$ Pulse Width (Negative)	TE ${ }_{1} \mathrm{LE}_{1} \mathrm{H}$	145		ns
W Pulse Width (Negative)	TWLWH	160		ns
Address Setup Time	TAVE ${ }_{1}$ L	35		
Address Hold Time	TE1LAX	80		
Data Setup Time	TDVE ${ }_{1} \mathrm{H}$	80		
Data Hold Time	TE1HDX	40		

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	8.0V
Input or Output Voltage Applied	GND -0.3 V to VCC +0.3 V
Storage Temperature Range	.... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	
Commercial	. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Voltage	
IM65X51/X61C	4.75 V to 5.25 V

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		Vcc-2.0			V
Logical " 0 " Input Voltage	VIL				0.8	
Input Leakage	IIL	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}$ CC	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	Voh1	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			i V
Logical "0" Output Voltage	Voll	$\mathrm{lOL}=1.6 \mathrm{~mA}$			0.45	
Output Leakage	lolk	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$	-1.0		1.0	$\mu \mathrm{A}$
Standby Supply Current	Iccsb	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		10	100	
Operating Supply Current	ICCOP	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{VCC} \\ & \text { or } G N D, \mathrm{l}_{\mathrm{C}}=0 \end{aligned}$			4.0	mA
- Input Capacitance	CIN			5.0	7.0	, pF
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM65X51C/X61C		UNITS	$\wedge$
		MIN	MAX		
Access Time From $\bar{E}_{1}$	TE1LQV		350		
Output Enable Time	TSLQV		180		
Output Disable Time	TSHQZ		180		
E1 Pulse Width (Positive) :	$\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}$	150			
E1. Pulse Width (Negative)	$\mathrm{TE}_{1} \mathrm{LE}_{1} \mathrm{H}$	350		ns	
W Pulse Width (Negative)	TWLWH	350			
Address Setup Time	TAVE ${ }_{1}$ L	20			
Address Hold Time	TE1LAX	70			
Data Setup Time	TDVE 1 H	170		.	
Data Hold Time	TE1HDX	0			

## IM65X51/IM65X61

## READ MODE OPERATION

In a typical READ operation the address lines are latched by the falling edge of strobe input $\overline{E_{1}}$. If the chip has been selected, i.e. $\bar{S}_{1}$ and $\overline{\mathrm{S}}_{2}$ ( $65 \times 51$ only) are low, data becomes valid an access time (TE1LQV) after the falling edge of $\bar{E}_{1}$. Data is latched into output registers by rising $\bar{E}_{1}$ and remains valid until the next cycle or until a chip select ( $\bar{S}_{1}$ or $\bar{S}_{2}$ ) is returned high.
Address and $\bar{E}_{2}$ information is edge triggered and must be valid a setup time ( $T A V E_{1} L$ ) before and a hold time (TE $E_{1} L A X$ ) after the falling edge of $\bar{E}_{1}$. 。
$\bar{S}_{1}, \overline{\mathrm{~S}}_{2}$ and $\overline{\mathrm{W}}$ are level sensitive and may occur after $\overline{\mathrm{E}}_{1}$ transitions without affecting access time.

## READ CYCLE TIMING



## FUNCTION TABLE •READ

TIME REF.	INPUTS					OUTPUTS	NOTES
	$\overline{E_{1}}$	A	E2*	$\overline{\mathbf{S}}$	$\overline{\text { W }}$	Q	
-1	H	X	X.	H	X	Z	Memory Inactive, output high Z.
0	\%	V	L	X	H	Z	Addresses and E2 latched, output still high Z.
1	L	X	X	L	H	X	Output enabled and active.
2	L	X	X	L	H	V	Output valid.
3	-	X	X	L	H	V	Output latched and valid, memory inactive.
4	H	X	X	H	H	Z	Output high Z. Ready for next cycle.

## WRITE MODE OPERATION

For a WRITE operation addresses and $\bar{E}_{2}$ are latched by $\bar{E}_{1}$ as in a READ operation. Data is written when strobe ( $\bar{E}_{1}$ ), chip selects $\left(\overline{\mathrm{S}}_{1}, \overline{\mathrm{~S}}_{2}\right)$ and write $(\overline{\mathrm{W}})$ are low. WRITE operation ends when one of these lines returns high. Minimum write pulse requirements are specified for $\overline{\mathrm{E}}_{1}$ as $T E_{1} L E_{1} H$ and for $\bar{S}_{1}, \bar{S}_{2}, \bar{W}$ as TWLWH.
Data must be valid a setup time (TDVE ${ }_{1} H$ ) before and a hold time ( $T E_{1} H D X$ ) after the rising edge of $\bar{E}_{1}$.
Note: Transitions on strobe line $\bar{E}_{1}$ when addresses are at indeterminate levels such as the transition to power down or standby mode may cause change of address or loss of data. When in either mode care must be taken to maintain $\mathrm{E}_{1}$ at $V_{c c}$ level:

## WRITE CYCLE TIMING



## FUNCTION TABLE • WRITE

TIME REF.	INPUTS						OUTPUTS	NOTES
	$\overline{E_{1}}$	A	$\bar{E}_{2}{ }^{*}$	$\overline{5}$	W	D	Q	
-1	H	X	X	H	X	X	Z	Memory Inactive, Outputs high Z.
0	$\cdots$	V	L	H	X	X	Z	Addresses and E2 latched.
1	L	X	X	L	$\pi$	X	Z	Write operation begins.
2	L	X	X	L	-	V	Z	Write operation ends.
3	H	X	X	H	H	X	Z	Outputs high Z. Ready for next cycle.
*65X51 only **65X61 only								

## FEATURES

- Organization - IM6653: $1024 \times 4$ IM6654: $512 \times 8$.
- Low Power - $770 \mu$ W Maximum Standby
- High Speed
- 300ns 10V Access Time for IM6653/54 AI
- 450ns 5V Access Time for IM6653/54-11
- Single +5 V supply operation
- UV erasable
- Synchronous operation for low power dissipation
- Three-state outputs and chip select for easy system expansion
- Full $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MIL range devicesIM6653/54 M, IM6653A/64A M


## GENERAL DESCRIPTION

The Intersil IM6653 and IM6654 are fully decoded 4096 bit CMOS electrically programmable ROMs (EPROMs) fabricated with Intersil's advanced CMOS processing technology. In all static states these devices exhibit the microwatt power dissipation typical of CMOS. Inputs and three-state outputs are TTL compatible and allow for direct interface with common system bus structures. On-chip address registers and chip select functions simplify system interfacing requirements.
The IM6653 and IM6654 are specifically designed for program development applications where rapid turn-around for program changes is required. The devices may be erased by exposing their transparent lids to ultra-violet light, and then re-programmed.

## BLOCK DIAGRAM



ORDERING INFORMATION

$\begin{gathered} 24 \text { PIN } \\ \text { PACKAGE } \end{gathered}$	SELECTION/TEMPERATURE RANGE				
	INDUSTRIAL			MILITARY	
	STD 5V	HI SPEED 5V	STD 10V	STD 5V	STD 10V
CERDIP (FRIT SEAL) JG	IJG	-11 JG	AIJG	MJG	AMJG

PIN CONFIGURATION
(outline dwg JG/W)


## ABSOLUTE MAXIMUM RATINGS

Supply Voltages


## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range


Note 1: These parameters guaranteed but not $100 \%$ tested.

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

	SYMBOL	IM6653/54-11		IM6653/54 I		IIM6653/54 M		UNITS
PARAMETER		MIN	MAX	MIN	MAX	Mİ	MAX	
Access Time From $\bar{E}_{1}$	TE1LQV		450		550		600	ns
Output Enable Time	TSLQV		110		140		150	
Output Disable Time	TE ${ }_{1}$ HQZ		110	.	140		150	
$\bar{E}_{1}$ Pulse Width (Positive)	$T E_{1} H E_{1} L$	130		150		150		
$\bar{E}_{1}$ Pulse Width (Negative)	TE $\mathrm{LE}_{1} \mathrm{H}$	450		550		600		
Address Setup Time	TAVE $_{1} \mathrm{~L}$	0		0		0		
Address Hold Time	TE $\mathrm{T}_{1}$ LAX	80		100		100		
Chip Enable Setup Time (6654)	$T E_{2} V E_{1} L$	0		0		0		
Chip Enable Hold Time (6654)	$T E_{1} L E_{2} \mathrm{X}$	80		100		100		

## ABSOLUTE MAXIMUM RATINGS

Supply Voltages         Input or Output Voltage Supplied.. ......................................   Storage Temperature Range....................................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$   Operating Range   Temperature      Military.....................................................-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$   Voltage   $6653 / 54$ Al, AM.......................................................... 4.5 to 10.5 V   NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $10.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operational Temperature Range

PARAMETER	SYMBOL	CONDITIONS	IM6653/54AI, AM		UNITS
			MIN	MAX	
Logical "1" Input Voltage	$\mathrm{V}_{1 \mathrm{H}}$	$\bar{E}_{1}, \overline{\mathbf{S}}$	$\mathrm{V}_{\text {DD }-2.0}$		V
	$\mathrm{V}_{\mathrm{H}}$	Address Pins	$V_{D D}-2.0$		
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$			0.8	
Input Leakage	1	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-1.0	1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{l}_{\text {OUT }}=0$	$\mathrm{V}_{\mathrm{CC}}-0.01$		V
Logical "0" Output Voltage	$\mathrm{V}_{\text {OL }}$	IOUT $=0$		GND +0.01	
Output Leakage	lolk	$\mathrm{GND} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	-1.0	1.0	$\mu \mathrm{A}$
Standby Supply Current	IDDSB	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$		100	
	$\mathrm{l}_{\mathrm{CC}}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$		40	
Operating Supply Current	IDDOP	$f=1 \mathrm{MHz}$		12	mA
Input Capacitance	$\mathrm{C}_{1}$	Note 1		7.0	pF
Output Capacitance	$\mathrm{C}_{0}$	Note 1		10.0	

Note 1: These parameters guaranteed but not 100\% tested.

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM6653/54 AI		IM6653/54 AM		UNITS
		MIN	MAX	MIN	MAX	
Access Time From $\bar{E}_{1}$	TE1LQV		300		350	ns
Output Enable Time	TSLQV		60		70	
Output Disable Time	TE1HQZ	,	60		70	
$\bar{E}_{1}$ Pulse Width (Positive)	$\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}$	125		125		
$\bar{E}_{1}$ Pulse Width (Negative)	$\mathrm{TE}_{1} \mathrm{LE}_{1} \mathrm{H}$	300		350		
Address Setup Time	TAVE ${ }_{\text {L }}$ L	0		0		
Address Hold Time	TE ${ }_{1}$ LAX	60		60		
Chip Enable Setụp Time (6654)	$T E_{2} \mathrm{VE}_{1} \mathrm{~L}$.	0		0	$\checkmark$	
Chip Enable Hold Time (6654)	TE $\mathrm{LE}_{2} \mathrm{X}$	60		60		

PIN ASSIGNMENTS

PIN	SYMBOL	$\begin{aligned} & \text { ACTIVE } \\ & \text { LEVEL } \end{aligned}$	DESCRIPTION
1-8,23	$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~A}_{8}$	-	Address Lines
9-11,13-17	$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	-	Data Out lines, 6654
	$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	-	Data Out lines, 6653
12	GND	-	
18	Program	-	Programming pulse input
19	$V_{D D}$	-	Chip V+ supply, normally tied to $\mathrm{V}_{\mathrm{CC}}$
20	$\bar{E}_{1}$	L	Strobe line, latches both address lines and, for 6654, Chip enable $\overline{\mathrm{E}}_{2}$
21	$\overline{\mathrm{s}}$	L	Chip select line, must be low for valid data out
22		-	Additional address line for 6653
	$\bar{E}_{2}$	L	Chip enable line, latched by Chip enable $\bar{E}_{1}$ on 6654
24	$\mathrm{V}_{\mathrm{cc}}$	-	Output buffer + V Şupply

## READ CYCLE TIMING



## READ MODE OPERATION

In a týpical READ operation address lines and chip enable $\bar{E}_{2}$ *are latched by the falling edge of chip enable $\bar{E}_{1}(T=0)$. Valid data appears at the outputs one access time (TELQV) later, provided level-sensitive chip select line $\bar{S}$ is low ( $T=3$ ). Data remains valid until either $\bar{E}_{1}$ or $\bar{S}$ returns to a high level $(T=4)$. Outputs are then forced to a high-Z state.
Address lines and $\bar{E}_{2}$ must be valid one setup time before (TAVEL), and one hold time after (TELAX), the falling edge of $\bar{E}_{1}$ starting the read cycle. Before becoming valid, $Q$ output lines become active ( $T=2$ ). The Q output lines return to a high-Z state one output disable time (TE $H$ HQZ) after any rising edge on $\bar{E}_{1}$ or $\overline{\mathrm{S}}$.
The program line remains high throughout the READ cycle. Chip enable line $\bar{E}_{1}$ must remain high one minimum positive pulse width (TEHEL) before the next cycle can begin.

## FUNCTION TABLE

TIME REF	INPUTS.				OUTPUTS Q	NOTES
	E1	E2*	$\overline{\mathbf{S}}$	A		
-1	H	X	X	X	$z^{\prime}$	DEVICE INACTIVE
0	$\downarrow$	L	X	V	Z	CYCLE BEGINS; ADDRESSES, $\bar{E}_{2}$ LATCHED*
1	L	X	X	X	Z	INTERNAL OPERATIONS ONLY
2	L	X	L	X	A	OUTPUTS ACTIVE UNDER CONTROL OF. $\bar{E}_{1}, \overline{\mathrm{~S}}$
3	L	X	L	X	V	OUTPUTS VALID AFTER ACCESS TIME
4	-	X	L	X	V	READ COMPLETE *
5	H	X	X	X	Z	CYCLE ENDS (SAME AS -1)

READ AND PROGRAM CYCLES


DC CHARACTERISTICS FOR PROGRAMMING OPERATION
TEST CONDITIONS: $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Program Pin Load Current	$\mathrm{I}_{\text {PROG }}$			80	100	mA
Programming Pulse Amplitude	$\mathrm{V}_{\text {PROG }}$		38	40	42	V
$\mathrm{V}_{\mathrm{CC}}$ Current	$\mathrm{I}_{\mathrm{Cc}}$			0.1	5	mA
$\mathrm{V}_{\mathrm{DD}}$ Current	$\mathrm{I}_{\mathrm{DD}}$			40	100	
Address Input High Voltage	$\mathrm{V}_{\text {IHA }}$		$V_{D D}-2.0$			V
Address Input Low Voltage	$V_{\text {ILA }}$				0.8	
Data Input High Voltage	$\mathrm{V}_{\text {IH }}$		$V_{D D}-2.0$			
Data Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$			,	0.8	

## AC CHARACTERISTICS FOR PROGRAMMING OPERATION

TEST CONDITIONS: $V_{C C}=V_{D D}=5 \mathrm{~V} \pm 5 \%, T_{A}=25^{\circ}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Program Pulse Width	TPLPH	$\mathrm{t}_{\text {rise }}=\mathrm{t}_{\text {fall }}=5 \mu \mathrm{~s}$	18	20	22	ms
Program Pulse Duty Cycle					75\%	
Data Setup Time	TDVPL		9			$\mu \mathrm{S}$
Data Hold Time	TPHDX		9			
Strobe Pulse Width	$\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}$		150	,		ns
Address Setup Time	TAVE ${ }_{1}$ L		0			
Address Hold Time	TE $\mathrm{LE}_{1} \mathrm{X}$	.	100			
Access Time	TE 1 LQV		*		1000	

## PROGRAM MODE OPERATION

Initially, all 4096 bits of the EPROM are in the logic one (output high) state. Selective programming of proper bit locations to " 0 " $s$ is performed electrically.

In the PROGRAM mode for all EPROMs, $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{DD}}$ are tied together to a +5 V operating supply. High fơgic levels at all of the appropriate chip inputs and outputs must be set at $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ minimum. Low logic levels must be set at GND + . 8 V maximum. Addressing of the desired location in PROGRAM mode is done as in the READ mode. Address and data lines are set at the desired logic levels, and PROGRAM and chip select $(\overline{\mathrm{S}})$ pins are set high. The address is
latched by the downward edge on the strobe line $\left(\bar{E}_{1}\right)$. During valid DATA IN time; the PROGRAM pin is pulsed from $\mathrm{V}_{\mathrm{DD}}$ to -40 V . This pulse initiates the programming of the device to the levels set on the data outputs. Duty cycle limitations are specified from chip heat dissipation considerations. PULSE RISE AND FALL TIMES MUST NOT BE FASTER THAN $5 \mu \mathrm{~S}$.
Intelligent programmer equípment with successive READ/PROGRAM/VERIFY sequences, such as the Intersil 6920 CMOS EPROM programmer, is recommended.

## PROGRAMMING SYSTEM CHARACTERISTICS

1. During programming the power supply should be capable of limiting peak instantaneous current to 100 mA .
2. The programming pin is driven from $V_{D D}$ to -40 volts $( \pm 2 \mathrm{~V})$ by pulses of 20 milliseconds duration. These pulses should be applied in the sequence shown in the flow chart. Pulse rise and fall times of 10 microseconds are recommended. Note that any individual location may be programmed at any time.
3. Addresses and data should be presented to the device within the recommended setup/hold time and high/low logic level margins. Both "A" (10V) and non "A" EPROMs are programmed at $V_{C C}, V_{D D}$ of $5 V \pm 5 \%$.

## ERASING PROCEDURE

The IM6653/54 are erased by exposure to high intensity short-wave ultraviolet light at a wavelength of $2537 \AA$. The recommended integrated dose (i.e.,UV intensity $x$ exposure time) is. 10 W sec/ $\mathrm{cm}^{2}$. The lamps should be used without short-wave filters, and the IM6653/54 to be erased should be placed about one inch away from the lamp tubes. For best results it is recommended that the device remain inactive for 5 minutes after erasure, before reprogramming.
The erasing effect of UV light is cummulative. Care should be taken to protect EPROMs from exposure to direct sunlight or florescent lamps radiating UV light in the $2000 \AA$ to $4000 \AA$ range.
4. Programming is to be done at room temperature.

## PROGRAMMING FLOW CHART



IM6653 CMOS EPROMS AS EXTERNAL PROGRAM MEMORY WITH THE IM80C35


IM6653 CMOS EPROMS AS PROGRAM MEMORY WITH THE IM6100


## CMOS Microcomputer Family Sampler Kit 6960 - Sampler PC Board

In addition, a printed circuit board is available to simplify construction of the Sampler system (part number 6960). The Sampler board is laid out so that it may interface with both RS-232C and 20mA current loop. The user may enhance the capability of the Sampler system with the addition of sixteen optional SSI packages, assorted switches, and LEDs (optional parts not included). The added capabilities include:

- Address/Bus Display
- Status Display
- Single Instruction Step
- Single Cycle Step
- 12-Bit Input Port
- 12-Bit Output Port

Any of these options can easily be added when desired, but are not required for operation.
The Sampler system, when teamed with any ASCII terminal, gives the user an easy to understand, yet powerful IM6100 Microcomputer system. The ODT Monitor program provides the control necessary to display and alter memory contents, start execution at a particular address, set a breakpoint, manipulate the registers, or search memory for a value. If the terminal has tape punch/read capability, built-in routines allow loading and saving of programs.

[^31]


## ODT MONITOR COMMANDS

ODT commands consist of a control character or an octal number followed by a control character. The commands may be typed in any time the terminal is idle and are executed as soon as the control character is typed.

## BINARY LOAD COMMAND

$L$ - Load from the tape reader
Typing an L will load binary tape from a reader. The checksum will be printed out on the terminal following the end of the load. Printed out checksum should be 0000 for a proper load.

## EXAMINE/MODIFY COMMANDS

/ (slash) - Opens a location
Typing an octal number ninnn followed by a slash causes the location whose address is nnnn to be opened. When a location is opened, its content is printed out as an octal number. Typing a slash not preceded by a number causes the most recently opened location to be reopened.
(carriage return) - Closes a location
When a location is open, typing an octal number, nnnn, followed by a carriage return causes the contents of the location to be changed to the number nnnn and closes the location. Typing a carriage return not preceded by a number causes the location to be closed without modifying its contents.
(line feed) - Closes and opens next
When a location is open, typing a line feed causes the location to be closed and the next memory location (that with an address one higher than the current location) to be opened. The address of the new location will be typed out, followed by a slash, followed by the contents of the new location. Typing an octal number, nnnn, before typing the line feed causes the contents of the old location to be changed to nnnn.

- (back arrow) - Closes location and opens indirect reference
When a location is open, typing a back arrow causes the location to be closed. The contents of the location are then treated as an indirect reference. That is, the content of the old location is taken as an address, and the new location is opened. If while a location is open, an octal number, nnnn, is typed followed by a back arrow, the content of the open location is changed to nnnn and proceeds as above.
1 (up arrow) - Closes location and opens memory reference
This command behaves identically to the back arrow command except that the contents of the location are treated as a memory reference instruction, and it is the location referenced by that instruction that is opened. The location opened is that immediately referenced by the instruction. If the instruction is indirect (bit 3 is set to 1 ), then typing the up arrow only opens the location containing the pointer to the operand of the instruction. To open the effective location referred to by an indirect instruction, type an up arrow (memory reference) followed by a back arrow (indirection).

PROGRAM CONTROL AND BREAKPOINT COMMANDS

G-Go to
Typing an octal number, nnnn, followed by a $G$ causes ODT to begin executing the program stored in memory, starting at location nnnn.

## B - Breakpoint

Typing an octal number, nnnn, followed by a $B$ causes ODT to set a breakpoint at location nnnn. Typing a B without preceding it by a number causes the current breakpoint to be cleared.
C - Continue
After a breakpoint causes control to return to ODT from a user program, typing $C$ causes the program to resume execution where it left off.
A - Examine/modify accumulator, link, MQ
Three consecutive ODT RAM locations are reserved for storing the contents of the AC, link and MQ registers when a breakpoint occurs. When execution of the user's program resumes (via the $G$ or $C$ command), the contents of these registers are restored from these locations. Typing A causes the first of these locations, containing the contents of the AC, to be opened.

## WORD SEARCH COMMANDS

M - Open search mask, lower bound, upper bound
The mask, lower bound and upper bound for word searches are kept in that order in three consecutive reserved ODT locations. The first of these locations, the mask, can be opened by typing M.
W - Word search command
Typing an octal number, nnnn, followed by a $W$ causes a word search to occur. The search proceeds as follows: The number, nnnn, that was typed is masked and remembered as the quantity which is being searched for. (The operation of masking is to take the bitwise boolean AND of the given word with the contents of the mask word.) Then each location, beginning with the location whose address is stored in the lower bound word, is masked and compared with the quantity being searched for. If the two are equal, then the address of the word, followed by a slash and the (unmasked) contents of the word are printed out. Then the next location is examined and so on until (and including) the location whose address is stored in the upper bound word is reached. The word search command does not change the contents of any word in the user's programs.

## TAPE PUNCHING COMMANDS

The following commands can be used to punch out paper tapes that can be read in by the BIN loader.
T-Punch leader/trailer
Typing a T will cause about four inches of leader/trailer tape (tape punched with 200 octal) to be punched. The T command also causes the accumulated checksum to be set to zero (cleared).

P - Punch tape
Typing an octal number, nnnn, followed by a semicolon (;) followed by a second octal number, mmmm, followed by a P; causes a tape corresponding to the contents of the block of memory beginning at location nnnn and ending at location.mmmm to be punched. No checksum is punched at the end of the block so that several blocks can be punched together with one inclusive checksum.
E - Punch checksum and trailer
Typing an E will cause the accumulated checksum to be punched, followed by about four inches of leader/trailer tape. The checksum is also reset to zero (cleared).

## SAMPLER ODT EXAMPLE

Say that the simple program

300	7001	START, IAC
301	7440	SZA
302	5300	JMP START
303	7402	HLT

is stored in memory. Then the following might be the result of a session with ODT. (Note: The underlined portion is typed by the user, and the remainder is typed by the computer. The symbol CR stands for carriage return, and LF stands for line feed.)



## FEATURES

- Rechargeable battery back-up
- Data Retention of up to $\mathbf{8 0}$ days
- Low power
- Compact size
- Low cost
- Switch selectable field addressing


## GENERAL DESCRIPTION

The 6901 CMOS memory module provides the Intercept System with 4096 twelve-bit words of battery-backed-up memory. The module retains its data when system power is off; an on-board rechargeable NiCad battery insures and uninterrupted power supply to the CMOS RAMs for up to 80 days. When system power is on, the NiCad batteries are recharged for future use. Up to eight 6901 modules may be installed in a system by setting on-board switches so each module responds to a unique memory field.

## SPECIFICATIONS

## PHYSICAL CHARACTERISTICS




## ELECTRICAL CHARACTERISTICS

DC Pówer
Requirements: $\quad 150 \mathrm{~mA}$ at +5 V typical, 500 mA maximum

## ENVIRONMENTAL CHARACTERISTICS

Operating
Temperature Range: $\quad 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Operating
Humidity Range: $\quad 10 \%$ to $90 \%$ (no condensation)

ORDERING INFORMATION

	Order No.	
Module:	$\ddots$	
Documentation:		6901-M4KX12   6998 LSi-8   User's Manual

## Development System

## FEATURES:

- Low Cost
- Powerful PDP©-8/e compatible processor
- Compact size
- Modular design
- 4K CMOS memory
- Bus supports easy I/O expansion
- Resident firmware monitor/debugger
- Large available software base
- Low power
- Supports interrupt and DMA operations
- Real Time Clock

HARDWARE FEATURES:

- 4K Words of Resident Memory (RAM) for Program and Data Storage
- Expandable to 32 K Words of Memory
- Resident Control Panel Memory (2K Words ROM and 256 Words RAM)
- Transparent to User Programs
- Floppy Disk Operating System Bootstrap
— Up to 8 Simultaneous Breakpoints
- Highly Interactive Debugging Facilities
- Two High Speed Serial I/O Ports with Multiple Baud Rates (14 Different Baud Rates)
- User Selectable
- RS232C Standard on Both I/O Ports
- Either Port May be Strapped for 20mA Current Loop
- Compact Size ( $21.5 \mathrm{~cm} \times 51.4 \mathrm{~cm} \times 47.8 \mathrm{~cm}$ )
- Extensive Hardware Options
- Memory Modules
- Wirewrap Module
- Extender Module
- Teletype Relay Module
- Dual Floppy Disk System



## Intercept II

## GENERAL DESCRIPTION

Intercept II is a general purpose microcomputer development system for Intersil's IM6100 Microprocessor components. It consists of two PC boards, a Central Processor Module Board, and a Memory Module Board. The Central Processor Module Board includes the IM6100 CPU, resident memory ( 2 K words ROM and 256 words RAM) for firmware storage, memory extension capability and two c̀hannels of serial I/O ports. The Memory Module Board includes 4 K words ( $4 \mathrm{~K} \times 12$ ) of CMOS RAM for the user's PROGRAM/DATA storage.
All of the system control features, such as an extended memory control (for memory expansion up to 32 K words); a real time clock, and DMA control functions are resident in the system. The resident firmware eliminates the need for the hardware control panel.
The Intercept II has a compact enclosure size of $21.5 \mathrm{~cm} \times 51.4 \mathrm{~cm} \times 47.8 \mathrm{~cm}(\mathrm{HxW} \times \mathrm{D})$, and it allows a total of twelve PC boards in the system. Because two cards come with the system, the user may add up to ten additional cards to Intercpt II.
Standardized board sizes and uniform bus definitions ensure compatibility with previous Intercept designs. Intersil offers hardware and software support including 4K memory modules, floppy disk hardware, Intercept Floppy Disk Operating System, Parallel I/O Module, etc.

## HARDWARE SPECIFICATIONS

## Word Size

Host Processor: Intersil IM6100
Data: 12-bits
Instruction: 12 or 24-bits

## Memory Size

## Main Memory

RAM: 4 K expandable to 32 K (CMOS with battery backup standard)

Control Panel Memory ( 2 K words $\times 12$ )
RAM: 256 words (resident on CPU - monitor uses 128 words)
ROM: 2K (resident on CPU - used by monitor)

## System Clock

Crystal Controlled: 3.3MHz typical

## Serial I/O Interfaces

(RS232C is standard on both I/O ports; either port may be strapped for 20 mA current loop operation)

## Primary Port

Baud Rates: 50/75/110/134.5/150/200/300/600/ 1200/1800/2400/4800/9600/19200
Any of these 14 different baud rates is switch selectable.

Code Format: 10 level code
Parity: None

## Secondary Port

Same as Primary Port except: Baud Rate is console controlled or software programmable (50/75/110/ 134.5/150/200/300/600/1200/1800/2400/4800/ 9600/38400.)
Includes four RS232C supervisory signals (two inputs and two outputs)

## Interrupt

Single level, maskable, prioritized, vectored or polled.

## Direct Memory Access

Standard IM6102 DMA, bus control implemented on CPU module - transfer rate user controlled (direct or user controlled block DMA) - typically greater than 2 MHz .

## Real Time Clock

4 MHz DEC compatible

## Physical Characteristics

Dimensions: (HxWxD) $21.5 \mathrm{~cm} \times 51.4 \mathrm{~cm} \times 47.8 \mathrm{~cm}$
Weight:
15.9KG

Electrical Characteristics

DC Power   Supply	Power Supply   Current	Basic   Sequirem Current   Requirents (Typ.)
$+5 \mathrm{~V} \pm 5 \%$	6 A	.8 A
$+12 \mathrm{~V} \pm 5 \%$	1.0 A	.1 A
$-12 \mathrm{~V} \pm 5 \%$	1.0 A	.1 A

## AC Power Requirements

Frequency: 50 or 60 Hz
Voltage: 115 or 230 V AC
Power: 175W max.

## Environmental Characteristics

Operating Temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Humidity: 10\% to $90 \%$ (no condensation)

## Equipment Supplied (Basic System)

- 6912 Central Processor Module
- 6901 4K CMOS RAM Module
- Finished Cabinet with Power'Supplies, Card Cage and Fan
- Intercept User's Manual
- Two RS232C and One 20mA Current Loop Cable
- AC Power Line Cord


## Hardware Options

## 6901-M4K x 12

4K Nonvolatile CMOS Memory Module

## 6905 - WIRE WRAP

Wirewrap Module for User Interfaces to Intercept

## 6906 - EXTEND

Extender Module

## 6909 - RELAY

Teletype Paper Tape Reader Remote Control Module

## 6914 - IFDC

Single Board Floppy Disk Controller

## 6915 - M32K x 12

32K NMOS Dynamic RAM Board

## 6917 - Parallel I/O

REMDAC Compatible 8 bit Parallel I/O

## 6970 - IFDOS Dual Floppy Disk Unit

Dual Floppy Disk System with Single Board Interface to Intercept Bus

## SOFTWARE/FIRMWARE SPECIFICATIONS

## Resident Control Panel Firmware Monitor

## Capabilities

- Ȧccumulator, Link, Program Counter, Instruction/ Data Fields, MQ, Switch Register-examine/modify
- Control Panel and Main Memory-examine/modify
- Single Instruction, Breakpoint, Snapshot and Tracedebugging and modify
- IFDOS and OS/8 Operating System Bootstraps
- Memory Bit Pattern/Word Search
- Binary Paper Tape Input/Output Commands (Loader/Punch)
- DEC PDP-8/E ${ }^{\circledR}$ Console Terminal, HLT, OSR Emulation
- Up to 8 Simultaneous Breakpoints


## Features

- High Speed Resident Operation
- Highly Interactive Debugging Facilities
- Completely Transparent to User Programs


## SOFTWARE OPTIONS

## Compatible with OS/8 Operating System Licensed from Digital Equipment Corp. Including:

- System Utilities PIP, DIRECT, FOTP, BUILD
- Editors Edit, TECO
- Assemblers PAL 8, SABR, MACREL, RALF.
- High Level Languages FOCAL, FORTRAN II, FORTRAN IV BASIC
- Intercept Floppy Disk Operating System (IFDOS)
- File System Controls Floppy Disk Input/Output Operation
- Keyboard Monitor for Communication Between User and IFDOS
- Text Editor Creates and Modifies ASCII Text at the Terminal
- PAL Assembler translates IM6100 assembly language to machine language in one or two passes. About 400 symbols can be created in standard system of 4 K word memory. 1024 more symbols can be created with each 4 K additional RAM with maximum symbol limit of up to 4095 symbols.
- Numerous Switch Options and Pseudo-operations for Assembly and Listing Control
- Numerous Utility Programs for File Manipulation and Disk Dumping and Copying
- Disk Diagnostic Programs
- Supplied with IFDOS in a Standard Floppy Diskette and Listing
- Required Hardware:
- Intercept System
- ASCII Terminal
- 6970-IFDOS Dual Floppy Disk Unit

6981 - FOPAL III
PAL III Fortran Cross Assembler

- Written in Standard Fortran IV
- Card Deck Based
- Can Use with Any Fortran Compiler and a Card Reader (such as 029 Reader)
- Multitude of Programs available through Digital Equipment Corporation User's Society, Including:
- Utilities
- Languages
- Applications
- Registered trade mark of Digital Equipment Corp.

6982 - $\mathrm{FOCAL}^{\text {® }} 8$
(Order No. 6982-IS-LFOCA) - See Note 1

- Interactive Algebraic Language
- Extensive Math. Functions
- Easy to Learn High Level Language
- Needs only 4K Words of RAM
- Paper Tape Based


## Note:

1. This is redistributed Digital Equipment Corporation Software. It is copyrighted and non-licensed Digital Equipment Corporation software, which means that it cannot be copied although it may be distributed to third parties. Digital Equipment Corporation assumes no responsibility for any software distributed by Intersil, Inc. nor for the performance of any of Intersil's products.


INTERCEPT SYSTEM BLOCK DIAGRAM

6912

## CPU with Dual Serial I/O

## HARDWARE FEATURES

- Powerful PDP ${ }^{\text {® }}-8 /$ e instruction set
- Two independent serial ports (RS-232 or 20mA current loop)
- 14 selectable baud rates
- Resident memory extension controller
- Real-time clock
- Auto-start vector option
- Single compact board
- Low power
- Reliable

FIRMWARE FEATURES

- Resident debugger
- Memory/register examination/modification
- Up to 8 breakpoints
- Single instruction in RAM or ROM
- Single instruction trace in RAM or ROM
- Snapshot mode
- Operating system bootstrap
- Memory search/search and replace
- Paper tape load/punch
- Effective address calculation for memory reference instructions


## GENERAL DESCRIPTION

The 6912 CPU module is a'powerful, compact central processor for the Intercept OEM Microcomputer System. The processor executes the powerful PDP©-8/3 instruction set; and addresses up to 3 K twelve bit words of memory. Two independent serial ports on board may be used for RS-232 or 20 mA current loop operation and each port may operate at one of 14 rates between 50 and 19,200 baud. The primary port emulates the PDP®-8/e terminal interface. Other hardware features

## SPECIFICATIONS

PHYSICAL CHARACTERISTICS:


## ELECTRICAL CHARACTERISTICS

DC Power
Requirements:

$$
\begin{array}{rll}
400 \mathrm{~mA} \text { (typ.) at }+5 \mathrm{~V} & 1.2 \mathrm{~A} \max . \\
2 \mathrm{~mA} \text { (typ.) at }+12 \mathrm{~V} & 4 \mathrm{~mA} \max \\
2 \mathrm{~mA} \text { (typ.) at }-12 \mathrm{~V} & 4 \mathrm{~mA} \max
\end{array}
$$


include a crystal-controlled, programmable real-time clock and an auto-start vector option.

Resident firmware includes a concise, powerful debugger featuring high-speed operation, highly interactive structure, and complete transparency to user programs. The firmware is located in control panel memory so no user memory space is used.
©PDP-8 is a registered trademark of Digital Equipment Corp.

## ENVIRONMENTAL CHARACTERISTICS

Operating
Temperature Range: $\quad 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Operating
Humidity Range: $10 \%$ to $90 \%$ (no condensation)

ORDERING INFORMATION

	Order No.
Module:	6912 Intercept CPU
Ribbon Cable Serial I/O Assembly:	6925 Serial I/O Assy   Eocumentation:   User's Manual

## Double Density DMA Floppy Disk Controller

## FEATURES

- Single or double density
- Up to 8 industry standard flexible disk drives
- Single or double sided
- Industry standard or non-standard formats for custom applications
- Automatic address verification
- Automatic CRC on address and data
- Variable stepping rates
- DMA transfer of data in 8-bit or 12-bit modes
- Capability to format diskettes
- Full diagnostics


## GENERAL DESCRIPTION

The Intercept floppy disk controller board provides inexpensive, reliable, compact mass storage for the Intercept system. It uses a single bus slot and controls up to eight diskette drives with a maximum sub-system capacity of 10 megabytes. Many types of drives can be used, including singleor double-density and single or double-sided. Data integrity is ensured by employing address verification and cyclic redundancy checking (CRC). Data transfer rate is maximized by using direct memory access.



Because the 6914 uses an advanced LSI controller, the user has great flexibility in choosing the drive and/or format best suited to the application. Stepping rates, sector sizes, and sector positions can be varied to increase both data capacity and throughput.
For users wishing pre-packaged disk drive sub-systems, Intersil offers the 6975 Dual: Floppy Disk Drives, consisting of two enclosed drives with power supply, cables, and documentation.

## ELECTRICAL CHARACTERISTICS

DC Pówer
Requirements

Voltage:	$+5 \mathrm{~V} \pm .25 \mathrm{~V}$
	$+12 \mathrm{~V} \pm .6 \mathrm{~V}$
Current:	1.3 A nominal, 2.2 A max.

ENVIRONMENTAL CHARACTERISTICS
Operating
Temperature Range: $\quad 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Operating
Humidity Range: . $10 \%$ to $90 \%$ (no condensation).

## ORDERING INFORMATION

	Order No.
Module:	$6914-I F D C$
Flexible Disk Drive Cable:	$6926-$
	IFDCCABLEASSY
Dual Flexible Disk Drives:	$6975-I F D D$
Documentation:	6998 LSI-8
	User's Manụal

## FEATURES

- $32 \mathrm{~K} \times 12$.full memory complement for the Intercept System
- Many options for custom applications
-. Low power
- Small parts count for reliability
- Compact size


## GENERAL DESCRIPTION

The 6915 memory module provides 32 K twelve-bit words of memory for the Intercept system, using NMOS dynamic RAMs for, low cost and small parts count. All necessary refresh circuitry is resident on the module.
The module has a host of options for custom application flexibility. These include selective 4K field disable for mixed memory -(e.g., dynamic and battery-backed) systems, RAM inhibit for shadowing ROM over RAM, and parity storage for off-board error checking.

## SPECIFICATIONS



## ELECTRICAL CHARACTERISTICS

## DC Power

Requirements: $\quad 560 \mathrm{~mA}$ (typ., at $+5 \mathrm{~V}, 1.2 \mathrm{~A}$ max. 160 mA (typ. at $+12 \mathrm{~V}, 840 \mathrm{~A}$ max. 10 mA (typ.) at $-12 \mathrm{~V}, 12 \mathrm{~A}$ max.
CPU
Crystal Frequency: $\quad 3.3 \mathrm{MHz}$ maximum

## ENVIRONMENTAL CHARACTERISTICS

Operating
Temperature Range: $\quad 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Operating
Humidity Range: $\quad 10 \%$ to $90 \%$ (no condensation)

ORDERING INFORMATION

- .	Order No.
iviódule	6915-MиЗ 2 Kxiz
Documentation:	6998 LSI-8   User's Manual

[NTMPR
ADDITIONAL MODULES


6905 - Wirewrap-Universal Wirewrap Module (Left)
6906 - Extend-Card Extender Module (Right)


6912-CPU, 6901-M4k x 12, 6915 M32k x 12, 6914-IFDC


6917 - REMDAC Compatible 8-bit Parallel I/O


Intercept II Card Cage without Power Supply.

## FEATURES

- Programs Intersil's IM6653/54 CMOS EPROM
- Software controlled for ease of expandability
- IM6100 microprocessor based
- 16K bit buffer memory
- Serial data communication
- 20 mA current loop
- RS232C
- 110 to 9600 selectable baud rate
- Three operating modes
- Master with CRT terminal or Teletype ${ }^{\circledR}$
- Slave with development system
- Stand-alone for duplicating EPROMS
- Self contained D/A controlled power supplies
- Check sum error detection


## DESCRIPTION

Intersil's 6920 CMOS EPROM programmer is a multimode cost effective instrument used to program Intersil's IM6653/54 family of CMOS EPROMs.
The 6920 is microprocessor controlled, allowing the programmer to operate as a stand-alone unit, for duplicating EPROMs; a master, for operation with CRT terminals or Teletype ${ }^{\oplus}$; or a slave, for operation with a software development system or minicomputer.
Serial data communication is used for all command and data transfers with a 20 mA current loop and an RS232C interface provided. Check sum error detection is employed for data validation.


# 6941/42 CONCEPT-48 8048 Tutorial UnitDevelopment Tool 

## FEATURES

- Executes 8048 Code
- Compact Single Board Design Fits Into3-Ring Binder
- Operated by Standard 9 Volt Battery or calculator type wall-mount power supply
- Tactile Feedback Keypad
- 7 Character LCD Display
- 44-Pin Edge Connector for System Expansion
- 3 MHz Execution of User Program
- Optional I/O Expansion with IM82C43
- 2K ROM-based Monitor includes Load, Run, Debug, Modify, and Save Commands
- Single Step Operation
- 8 Breakpoints - User Selectable
- 6941 CONCEPT-48 Tutorial Unit: Includes 256 Bytes of External Program Memory and 64 Bytes of Internal Data Memory
- 6942 CONCEPT-48 Development Tool: Includes 2K Bytes of External Program Memory, 64 Bytes of Internal and 256 Bytes of External Data Memory, on board negative voltage converter, and RS-232/TTY Serial
Interface with Selectable Baud Rates of 50 thru 19200
- Detailed User's Manual


## GENERAL DESCRIPTION

The CONCEPT-48 is a versatile single board system designed to execute and debug software written for the 8048 single-chip microcomputer family. Object code may be down-loaded from a development

## BLOCK DIAGRAM


system via the serial interface or entered in hex via the 28-position keypad. A 7-digit LCD display provides information about current operations and input commands.
Programs are executed at 3 MHz using an 8035 with external memory. Valuable debugging tools include 8 breakpoints and the ability to single step. Debugging is further enhanced by the ability to examine and/or modify registers, ports, flags, or counter. These capabilities also simplify user exploration of the 8048 family architecture.
The CONCEPT-48 provides expansion capabilities via a 44-pin edge connector. The unbuffered signals give software access to all of Port I, TO, TI, and the timer/counter, as well as the keypad, the LCD display, and the optional UART. All 8048 signals except the crystal inputs, SS, EA, and P24-P27 are available.
The CONCEPT-48 is available in two configurations. The 6941 CONCEPT-48 Tutorial version is primarily for learning the use of the 8048 architecture and instruction set. The battery operation and notebook card size make it ideal for classroom use. The 6942 CONCEPT-48 Development Tool version includes a serial interface, expanded program memory (2K), and expanded data memory (256), and is intended primarily for use as a limited product development tool. It may be used stand alone, or with any development system which can assemble 8048 program code.



## KEYPAD DESCRIPTION

The keypad monitor firmware of the CONCEPT-48 resides in a ROM and operates the keypad, display and peripheral functions of the system.
The keypad consists of two portions. The 16-key portion is doubly-labeled with the hexadecimal numbers $0-9, A-F$, and a function abbreviation above. The 12-key portion is labeled with a single function. Keys take effect on the upstroke or release, except MON, BOOT, UO, TO, T1 and CANCEL which are all actuated during the key press.


COMMAND SUMMARY


The keys have been divided into seven logical groups:

1. Terminate execution, return to MONITOR. Other function keys may now be used.
2. Command entry modifier. Used to delimit, or otherwise control input.
3. Address Display and Modify.

These keys access portions of the system (e.g., memory spaces) that are composed of multiple elements. These elements are accessed individually, or in groups, using individual addresses or address ranges.
4. Single Element Display and Modify.

These keys are used to access portions of the system that are normally defined as single elements.
5. Enter User Program Execution.

Execution will be stopped by reaching a breakpoint, receiving a BREAK character from the serial port, actuating MON or BOOT. STEP stops after every instruction.
6. Direct Inputs to Processor During User Program Execution.
These keys allow the user to input signals to the microprocessor during real time execution of a program. Some of these are disabled during monitor execution, and others are just not used by the monitor. None have any effect during monitor execution.
7. Load Program Memory from Serial Port.

This function key loads a program, or portion of a program, into the user program memory from the serial port. The program'must be in Hex format.
Incidentally, the serial port on CONCEPT-48 can be configured for 14 baud rates. An ICL7660 voltage converter chip generates the negative voltage required for RS-232 from the 9 -volt supply. An IM6402 UART handles the data communication.
The use of the keys is facilitated somewhat by prompts from the liguid crystal display. The LCD display is a seven segment, eight-character type and is driven by two ICM7211M devices. The leftmost position on the display has been provided a custom set of characters.

By selecting a subset of seven segments from the 14 driver lines of two-digit addresses, a new set of characters has been created. This set includes the numerics $0-9$, and contains alphabetic characters in a mixture of upper and lower case:
A, b, c, C, d, E, F, G, h, H, L, P, r, o, ?, blank
These have been used for display prompts. The decimal points in the display are driven by an output port and reflect its contents.

## INTERFACING THE CONCEPT-48 WITH OTHER SYSTEMS

The CONCEPT-48 was designed for ease of program entry via the keypad. However in many cases, users with access to other equipment will find it advantageous to use the serial I/O facility of the 6942 to interface ASCII terminals, PROM programmers, or host computers used as part of an 8048 development system. For example, the source program can be stored on discs and the assembled object code down-loaded in hex format to the CONCEPT-48. Later the debugged code may be uploaded to the development system/programmer.
CONCEPT-48 may also be connected to a teletype ${ }^{\circledR}$ or CRT terminal. Programs may be entered on the terminal, which is connected to the CONCEPT-48. However, to use all the powerful features of the monitor program, the keypad must be used.
Another application interfaces the CONCEPT-48 to a PROM programmer. Programs may be transmitted to the CONCEPT-48 from the programmer for debugging and modification, then transmitted back to the programmer to begin programming a new PROM.
Users of the INTERCEPT development systems can assemble 8048 code using the ASM X48 cross assembler, and transmit o'bject modules to the CONCEPT-48 for debugging, hardware simulation, etc.

[^32]
## 6950 INTERCEPT JR. MICROCOMPUTER TUTORIAL SYSTEM

## FEATURES

- Battery operation
- Executes PDP®-8/E instruction set
- Keyboard monitor program in ROM
- 8 seven-segment displays for address and data
- 256 words of non-volatile RAM
- 3 expansion sockets for optional modules
- Fully assembled and tested
- Low cost
- Tutorial manual included


## GENERAL DESCRIPTION

A practical exposure to the Intersil IM6100 microprocessor, RAMs, P/ROMs, and Input/Output interfacing can be achieved with the INTERCEPT JR. TUTORIAL SYSTEM and the owners handbook supplied.
This fully assembled and factory tested system is battery operated. Moreover, it executes the same instruction set as the popular PDP®, -8 E minicomputer, thus providing a rich supply of proven software. The INTERCEPT JR. is designed with a modular concept to enable the user to purchase only those modules which meet his requirements. Or, if the user wishes, custom interface boards can be designed using the documentation supplied The INTERCEPT JR. system is a valuable tool for the evaluation of custom circuits interfaced to an IM6100 microcomputer system.
With its simplicity of design, broad capabilities, and low cost, the INTERCEPT JR. TUTORIAL SYSTEM is ideal as an educational tool for the student, hobbyist, or 'system designer.


## 6950-INTERCEPT JR. MODULE

INTERCEPT JR. provides an all CMOS computer on a $10^{\prime \prime} \times 11^{\prime \prime}$ double sided PC board. A multiple function calculator type keypad in concert with a $1024 \times 12$ CMOS ROM (IM6312) monitor provides control functions, a serial bootstrap loader, as well as the INTERCEPT JR. MICROINTERPRETER. Memory addresses and data are displayed in octal on two four-digit LED displays. The IM6100 CMOS microprocessor interfaces via a
three-state address/data bus to $256 \times 12$ CMOS RAM. Four D-cell batteries allow for non-volatile RAM and battery operation of the entire system. External terminals permit the user to provide a 5 volt power source. A socket is provided for evaluation of a user generated CMOS ROM (IM6312/12A). Three edge connectors with 44 pins on $0.156^{\prime \prime}$ pin-to-pin spacing are provided for expansion using the optional boards available.


## 6951-M1KX12

## JR. RAM MODULE

The JR. RAM MODULE, utilizing twelve (12) IM6518 $1024 \times 1$ CMOS RAMS on a $41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$ PC board, provides a convenient memory extension module. Non-volatility is assured by two (2) penlight batteries which are provided.


## 6953-PIEART

## JR. SERIAL I/O MODULE

The JR. SERIAL I/O MODULE featuring the IM6101 CMOS Parallel Interface Element (PIE) and the IM6403 CMOS Universal Asynchronous Receiver Transmitter (UART) provides the user with serial I/O capability with both RS232 and 20 mA current loop interfaces. The IM6100 controls the -UART via the PIE. The CMOS ROM monitor contains a bootstrap routine for loading programs from the 6953-PIEART using BIN** formatted media.

## JR. PROGRAMMABLE ROM-P/ROM MODULE

6952-P2KX12

The JR. P/ROM MODULE provides the user with twelve (12) sockets organized on a $41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$ PC board. The user has the option of utilizing the IM5623, $256 \times 4$, or IM5624, $512 \times 4$ three-state-output Avalanche Induced Migration (AIM) programmable bipolar P/ROMs to obtain from 256 to 2048 words of program. Each of the four (4) rows of sockets are power strobed to permit 0.75 watts average when the P/ROMs are accessed.
$6954-\mathrm{ACI}$
JR. AUDIO CASSETTE INTERFACE MODULE
The INTERCEPT JR. AUDIO CASSETTE INTERFACE MODULE allows the user to store and retrieve programs on an inexpensive cassette tape recorder. The module transfers data at 30 characters per,second. Thus, approximately 200,000 characters may be recorded on a standard two hour cassette. The module employs the IM6101 PIE and IM6402 UART to accomplish serial/parallel conversion, as well as two phaselock looips and a digital sinewave generator for the analog interface.

## 6957-AUDVIS

## JR. AUDIO VISUAL MODULE

The JR. AUDIO VISUAL MODULE provides the user with an excellent tutorial device. A switch register, acting as an input, can be loaded into two LED display registers providing both binary and seven segment octal readout. A volume controlled speaker can be "clicked" or used to produce tones by controlling the rate at which the speaker is pulsed. A display control on-off switch is provided for power conservation.

## MICROINTERPRETER SIMPLIFIES PROGRAM ENTRY

The INTERCEPT JR. MICROINTERPRETER provides an assembler-like method of entering programs. The user needn't remember opcodes! The MICROINTERPRETER converts assembler mnemonics into machine language opcodes.

## EXAMPLE:

Add $7_{10}(00078)$ which is stored in memory location $22_{10}$ (00268), to $1510(00178)$, which is stored in memory location $23_{10}$ (00278), and store the result in $21_{10}$ (00258).

## PROGRAM

0020 CLA /Clear Accumulator
0021 TAD 0026 /Read Location 0026
0022 .TAD 0027 /Add Location 0027
0023 DCA 0025 /Deposit Result in 0025
0024 HLT . /Halt


KEYBOARD OPERATION AND DISPLAY


## SYSTEM BLOCK DIAGRAM



# Intercept Floppy Disc Operating System 

## DESCRIPTION

The 6970-IFDOS Floppy Disc Operating System is designed to facilitate development of software for an IM6100 microprocessor-based system. An ASCII terminal such as the ASR33 is required, as well as at least 4 K words of memory (included with the INTERCEPT prototyping system).

## HARDWARE

The hardware components of 6970-IFDOS consist of two completely interfaced floppy disc drive mechanisms with all electronics, power supplies; and cables necessary to add over four (4) million bits of "on line" mass storage capability to the INTERCEPT prototyping system. All components are contained in a single covered enclosure which is rack mountable or can be placed on any flat surface. The interface module is inserted directly into the INTERCEPT bus and is connected to the disc system via a multi-conductor ribbon cable.

## Features:

- IBM 3740 compatible media with multiple sources
- Software compatible with DEC RX8 for the PDP-8 minicomputers
- Intelligent disc drive/controller formatter/interface communications which provide the ability to:
- Detect, identify, and correct errors resulting from mechanical, electrical, media or human malfunction
- Completely format a diskette within industry standards
- Automatic transparent self tests on disc related equipment are performed at times when system throughput is least affected
- Flexible Programmed Input/Output for applications that require direct communications between user programs and the storage system


## SOFTWARE

## Features:

- A file system which maintains a catalog of user files on floppy disc and performs file handling and input/ output operations as specified by user


## Features (con't):

- A keyboard monitor which provides communication between the user and the operating system thereby enabling simple commands to enter and delete files in the user catalog, transfer files between memory and mass storage, print the user file catalog, and call system programs
- An easy to learn text editor which allows the user to create and modify ASCII text at the console terminal
- An extremely fast and flexible assembler which accepts source programs created by the editor and produces binary output for subsequent loading and execution
- A binary loader which loads and executes assembler. output files and facilitates loading of existing binary paper tapes
- An octal debugger which allows the user to examine, modify, and control execution of programs from the terminal
- Numerous utility programs for absolute block copying and dumping of floppy discs, system data handing, control of system parameters, and printing of system program catalogs'


## DIAGNOSTIC SOFTWARE

- Binary programs to test the floppy disc system and interface
- A listing of the programs


## PHYSICAL SPECIFICATIONS

- DIMENSIONS Height 10.5 inches

Width 19 inches
Depth 22.5 inches

- WEIGHT 54 lbs
- POWER REQUIREMENTS

110 volts @ 60 Hz (2.0 Amps) or 200 volts @ 50 Hz (1.5 Amps)

The listing for 6980-ISOFT can be ordered separately by specifying 6980-ILIST.

# IM7027/MK4027 <br> Dynamic RAM 4096 Bit (4K x 1) 

## FEATURES

- $4096 \times 1$ Bit Organization
- Gated CAS
- $\overline{\text { RAS Only Refresh }}$
- All Inputs TTL Compatible
- On-Chip Latches for Addresses, Chip Select and Data In
- 10\% Supply Tolerances ( $+12 \mathrm{~V},+5 \mathrm{~V},-5 \mathrm{~V}$ )
- Three-State TTL Compatible Output
- Low Power Dissipation
-470 mW Operating
- 27 mW Standby
- Chip Select Decode Does Not Add to Access Time
- Output Data Latched and Valid Into Next Cycle
- N-Channel Silicon Gate Technology
- Pin and Performance Compatibility with Mostek MK4027


## GENERAL DESCRIPTION

The IM7027 is a $4096 \times 1$ bit dynamic random access memory which is packaged in 16 pin DIP. The cell array is organized into 64 rows of 64 cells. Each of the 64 row addresses requires refreshing every 2 milliseconds. Any read cycle refreshes the selected row as does a refresh cycle using $\overline{\text { RAS }}$ only. A write, $\mathrm{read} / \mathrm{write}$ or read/modify/write cycle also refreshes the selected row; but non-accessed chips should not be selected to avoid writing data into the selected row. A page-mode feature is included to reduce the access and/or cycle time for block data operations. Page-mode operation is useful in direct memory access (DMA) operations.
System oriented features include direct interfacing with TTL, on-chip registers which eliminate the need for interface registers, logic input levels selected for best noise immunity. Twelve address bits are required to decode 1 of 4096 cell locations, and are multiplexed onto 6 address pins and latched into the row and column address latches. The Row Address Strobe ( $\overline{\mathrm{RAS}}$ ) latches the 6 row address bits onto the chip. The Column Address Strobe ( $\overline{\mathrm{CAS}}$ ) latches the 6 column address bits and Chip Select ( $\overline{\mathrm{CS}}$ ) onto the chip. Since the Chip Select signal is not required until well into the cycle, its decoding time does not add to the system address or cycle time.


## IM7027/MK4027

## ABSOLUTE MAXIMUM RATINGS

> Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> Voltage On Any Pin w/Respect to VBB . . . . . . . . . . . . . . -0.5 V to +20.0 V
> Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## DC CHARACTERISTICS

TEST CONDITIONS: $V_{D D}=+12.0 \mathrm{~V} \pm 10 \%, V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER		MIN	MAX	UNITS	NOTES
1	$\mathrm{V}_{\text {IHC }}$	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, WRITE Voltage High		2.4	7.0	V	
2	$\mathrm{V}_{\text {IH }}$	Input Voltage High		2.2	7.0	V	
3	$\mathrm{V}_{\text {IL }}$	Input Voltage Low		-1.0	0.8	V	
4	IILK	Input Leakage Current			10	$\mu \mathrm{A}$	4
5	loLk	Output Leakage Current			10	$\mu \mathrm{A}$	5,6
6	IDD1	Average V ${ }_{\text {DD }}$ Power Supply Current			35	mA	2
7	Icc	$\mathrm{V}_{\text {CC }}$ Power Supply Current					3
8	${ }^{\prime} \mathrm{BB}$	Average $\mathrm{V}_{\text {BB }}$ Power Supply Current	-2, -3, -4		300	$\mu \mathrm{A}$	
			-1		400	$\mu \mathrm{A}$	
9	IDD2	Standby V ${ }_{\text {DD }}$ Power Supply Current			2	mA	5
10	IDD3	Average VDD Current ("RAS Only" Refresh) -			25	mA	
11	V OH	Output Voltage High $\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$		2.4		V	
12	$\mathrm{V}_{\mathrm{OL}}$	Output Voltage Low $\mathrm{IOL}^{\text {a }}=3.2 \mathrm{~mA}$			0.4	V	

NOTES: 1. $V_{B B}$ must be applied before and removed after other supply voltages.
2. IDD1 ( $\max$ ) measured at ${ }^{t} R C(\min )$. IDD1 is proportional to cycle rate.
3. ICC depends on output loading.
4. All pins except $V_{B B}$ at $O V, V_{B B}=-5 \mathrm{~V}$ and test pin $=+10 \mathrm{~V}$.
5. Output disabled, $\overline{R A S}$ and $\overline{\mathrm{CAS}} \geqslant \mathrm{V}_{1 H C}$ (min).
6. $\mathrm{OV} \leqslant \mathrm{V}_{\text {OUT }} \leqslant+10 \mathrm{~V}$.

## TIMING DIAGRAMS

READ AND REFRESH CYCLE



RAS ONLY REFRESH CYCLE


READ/WRITE CYCLE


## PAGE MODE READ CYCLE

$\overline{\mathrm{RAS}}$
$\overline{\text { CAS }}$

ADDRESSES
$\overline{\mathrm{CS}}$
$\overline{\text { WRITE }}$

Dout


## PAGE MODE WRITE CYCLE



## AC CHARACTERISTICS

TEST CONDITIONS: $\quad V_{D D}=+12.0 \mathrm{~V} \pm 10 \%, V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (NOTES 1,5 and 8)

	SYMBOL	PARAMETER	IM7027-1CJE		MK4027 P-2		MK4027 P-3		MK4027 P-4		UNITS	NOTES
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
1	$\mathrm{t}_{\mathrm{rc}}$	Random Read or Write Cycle Time	250		320		375		375		ns	2
2	${ }^{\text {trwe }}$	Read Write Cycle Time	325		330		420		480		ns	
3	${ }^{\text {trac }}$	Access Time from Row Address Strobe		120		150		200		250	ns	3
4	${ }^{\text {tac }}$	Access Time from Column Address Strobe.		80		100		135		165	ns	3
5	${ }^{\text {off }}$	Output Buffer Turn-off Delay		40		40		50		60	ns	
6	${ }_{\text {tp }}$	Row Address Strobe Precharge Time	80		100		120		120		ns	
7	${ }^{\text {tras }}$	Row Address Strobe Pulse Width	120	10,000	150	10,000	200	10,000	250	10,000	ns	
8	${ }^{\text {rah }}$	Row Address Strobe Hold Time	80		100		135		165		ns	
9	${ }_{\text {cas }}$	Column Address Strobe Pulse Width	80		100		135		165		ns	
10	${ }^{\text {trad }}$	Row to Column Strobe Delay	20	40	20	50	25	65	35	85	ns	4
11	${ }^{\text {tasr }}$	Row Address Set-up Time	0		0		0		0		ns	
12	$\mathrm{t}_{\text {rab }}$	Row Address Hold Time	20		20		25		35		ns	
13	${ }_{\text {asc }}$	Column Address Set-up Time	0		-10		-10		-10		ns	
14	${ }_{\text {cah }}$	Column Address Hold Time	45		45	;	55		75		ns	
15	$\mathrm{t}_{\text {ar }}$	Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$	95		95		120		160		ns	
16	${ }^{\text {csec }}$	Chip Select Set-up Time	-10		-10		-10		-10		ns	
17	${ }^{\text {cheh }}$	Chip Select Hold Time	45		45		55	'	75		ns	
18	${ }^{\text {cher }}$	Chip Select Hold Time Referenced to $\overline{\mathrm{RAS}}$	95		95		120		160		ns	
19	$t$	Transition Time (Rise and Fall)	3	35	3	35	3	50	3	50	ns	
20	$\mathrm{t}_{\text {res }}$	Read Command Set-up Time	0		0		0		0		ns	
21.	$t_{\text {reh }}$	Read Command Hold Time	0		0		0		0		ns	
22	tweh	Write Command Hold Time	45		45		55		75		ns	
23.	${ }_{\text {twer }}$	Write Command Hold Time Referenced to $\overline{\mathrm{RAS}}$	95		95		120		160		ns	
24	${ }^{\text {t }}$ wp	Write Command Pulse Width	45		45		55		75		ns	
25	${ }^{\text {trwl }}$	Write Command to Row Strobe Lead Time	50		50		70		85		ns'	
26	${ }_{\text {cml }}$	Write Command to Column Strobe Lead Time	50		50		70		85		ns	
27	${ }^{\text {ds }}$	Data in Set-up Time	0		0		0		0		ns	7
28	${ }^{\text {d }}$ dh	Data in Hold Time	45		45		55		75		ns	7
29	${ }^{\text {d }}$ dhr	Data in Hold Time Referenced to $\overline{\text { RAS }}$	95		95		120		160		ns	
30	${ }^{\text {c }}$ crp	Column to Row Strobe Precharge Time	0		0		0		0		ns	
31	${ }_{\text {cp }}$	Column Precharge Time	60		60		80		110		ns	
32	${ }^{\text {trish }}$	Refresh Period		2.		2		2		2	ms	
33	${ }^{\text {w wes }}$	Write Command Set-up Time	0		0		0		0		ns	6
34	${ }_{\text {cwd }}$	$\overline{\text { CAS }}$ to WRITE Delay	60		60		80		90		ns	6
35	${ }^{\text {twd }}$	$\overline{\text { RAS }}$ to WRITE Delay	110		110		145		175		ns	6
36	${ }_{\text {doh }}$	Data Out Hold Time	10.		10		10		10		ns	

NOTES 1: $t_{t}=5 \mathrm{~ns}$ unless otherwise noted.
2. $t_{\mathrm{rc}}>\mathrm{t}_{\text {ras }}+\mathrm{t}_{\mathrm{rp}}+2 \mathrm{t}_{\mathbf{t}}$ to limit power dissipation.

3: Load $=2 \mathrm{TTL}+100 \mathrm{pF}$.
4: if ${ }^{\text {red }}$ is greater than ${ }^{{ }^{\text {red }}}$ imaxi access time is controlled by ${ }^{\boldsymbol{i}}$ cac.
5: $\mathbf{V}_{\mathrm{inc}}(\mathrm{min}), \mathrm{V}_{\mathrm{ih}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{il}}$ (max) are reference levels.
6: $t_{\text {wcs }}, t_{\text {cwd }}$ and $t_{\text {rwd }}$ are not restrictive parameters, they are electrical characteristics only as follows:
a. $\mathrm{t}_{\mathrm{cwd}}+\mathrm{t}_{\mathrm{t}} \leqslant \mathrm{t}_{\mathrm{cwd}}$ minimum output latch contains data written into current address.
b. $t_{c w d} \geqslant t_{c w d}(\max )+t_{t}$ and $t_{\text {rwd }} \geqslant t_{\text {rwd }}(\max )+t_{t}$ the data output latch contains data read from the current address.
c. If $\mathrm{t}_{\mathrm{cwd}}$ does not meet the above, data output state is indeterminate.

7: Referenced to latest of $\overline{\text { CAS }}$ or WRITE.
8: Any 8 cycles that perform refresh are required after power is applied.

## IM7027/MK4027

## TYPICAL DEVICE CHARACTERISTICS



TYPICAL IDD CURRENT VS. OPERATING TEMPERATURE


TYPICAL IBB CURRENT VS. OPERATING TEMPERATURE


TYPICAL IDD CURRENT VS. OPERATING TEMPERATURE


TYPICAL tCAC ACCESS TIME VS. VDD


## TYPICAL DEVICE CHARACTERISTICS (Continued)

TYPICAL IDD CURRENT VS. CYCLE TIME


## BIT MAP

The memory cells are divided into 2 groups each organized as 64 rows by 32 columns. The column addresses run in pure binary/ order for $\mathrm{Y}_{5} \mathrm{Y}_{4} \mathrm{Y}_{3} \mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$, where $\mathrm{Y}_{5}$ is most significant. The row addresses run in binary order for $X_{5} X_{4}$ $X_{3} X_{2} X_{1} X_{0}$ except for $X_{1}$ and $X_{0}$ which run $1,0,2,3$ and repeat. The folded bit line approach requires that data be be stored either true or false depending on the row selected. If $X_{0}$ is at logic " 0 ", data is stored true. If $X_{0}$ is at logic " 1 ", data is stored false.

ROW

$$
x_{5} x_{4} x_{3} x_{2} x_{1} x_{0}
$$



COLUMN $\mathrm{Y}_{5} \mathrm{Y}_{4} \mathrm{Y}_{\mathbf{3}} \mathrm{Y}_{\underline{2}} \mathrm{Y}_{1} \mathrm{Y}_{\underline{0}}$

TYPICAL $\mathbf{t}_{\mathbf{c a c}} \mathbf{V S} . \mathbf{t}_{\text {rel }}$


## MAXIMUM STRESS VOLTAGES

It is of interest to know worst case stress voltages for power supply failure and/or turn-on conditions. The 7027 can tolerate combinations of $\mathrm{V}_{\mathrm{BB}}, \mathrm{V}_{\mathrm{DD}}$ that operate within the curves of the figure shown below.


CAPACITANCE
TEST CONDITIONS: $V_{I N}=O V, f=1 \mathrm{MHz}$ (NOTE 1) ,

	SYMBOL	PARAMETER	TYP	MAX	UNIT
1	$\mathrm{C}_{11}$	DiN, $\overline{C S}$ Input Capacitance $A_{0}-A_{5}$	3	5	pF
2	$C_{12}$	Input Capacitance, $\overline{\text { RASS }}, \overline{\text { CAS }}$ WRITE	5	7	
3	$\mathrm{C}_{0}$	Output Capacitance, DOUT	5	7	

NOTE 1:. These parameters are characterized and periodically sampled but not $100 \%$ tested.

# 4096 Bit (4096×1) NMOS Static RAM 

FEATURES

- Cycle Time Equal to Access Time
- Completely Static - No Clock Required
- Separate Data Input and Output
- TTL Compatible Inputs and Outputs
- 883A Class B Processing Available
- Single +5 Volt Power Supply
- High Density 18 Pin Package
- Maximum Access Time:
-200ns (-2)
$-300 n s(-3)$
- Maximum Power Dissipation:
- 256mW (L)
-370mW (Standard)


## DESCRIPTION

The IM7141 is a 4096-bit static Random Access Memory device organized 4096 words X 1. bit. The storage cells and decode and control circuitry are completely static; no clocks or refresh operations are required. Memory access occurs within the specified access time after all address inputs are stable. A Chip Select input is provided for simple memory array expansion.
The 7141 is assembled in a standard 18 pin DIP for maximum system packing density.


UNIER

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature $\ldots \ldots 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $. . . \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . . \ldots 5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin to Ground ......................................... -0.5 V to +7 V
Power Dissipation
1W
NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC CHARACTERISTICS

TEST CONDITIONS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	7141L		7141		UNITS
			MIN	MAX	MIN	MAX	
Input Load Current (All Inputs)	Iinld	V IN $=0$ to 5.25 V		10		10	$\mu \mathrm{A}$
Output Leakage Current	lolk	$\begin{aligned} & \overline{\mathrm{S}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{1 / 0}=0.4 \mathrm{~V} \text { to } \mathrm{Vcc} \end{aligned}$		10		10	
Power Supply Current	Icce	$\begin{aligned} & \text { VIN }=5.25 \text {. } \\ & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { Output Open } \end{aligned}$		45		65	mA
Power Supply Current	IcC1	$\begin{aligned} & \mathrm{VIN}=5.25 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \quad \text { Output Open } \end{aligned}$		50		70	
Inf it Low Voltage	VIL		-0.5	0.8	-0.5	0.8	v
Input High Voltage	VIH		2.0	Vcc	2.0	Vcc	
Output Low Voltage	VOL	$1 \mathrm{OL}=3.2 \mathrm{~mA}$		0.4		0.4	
Output High Voltage	VOH	$1 \mathrm{OH}=-200 \mu \mathrm{~A}$	2.4	Vcc	2.4	Vcc	

## CAPACITANCE

PARAMETER	SYMBOL	TEST CONDITIONS	MAX	UNIT
Input/Output Capacitance	$\mathrm{C}_{1 / O}$	$V_{I / O}=0 \mathrm{~V}$	5	pF
Input Capacitance	$\mathrm{CIN}_{\mathrm{IN}}$	$\mathrm{V}_{1 N}=0 \mathrm{~V}$	5	

NOTE: These parameters are periodically sampled, not $100 \%$ tested.

## DEVICE OPERATION

When $\bar{W}$ is high, the data input buffers are inhibited to prevent erroneous data from getting into the array. As long as $\bar{W}$ remains high, the data stored cannot be changed by the addresses, Chip select, or data I/O voltage levels and timing transitionc. The block diagram also showis data sitörage cannot be changed by $\bar{W}$, the addresses, or the input data as long as $\overline{\mathrm{S}}$ is high. Either $\overline{\mathrm{S}}$ or $\overline{\mathrm{W}}$ by itself, or in conjunction
with the other, can prevent the extraneous writing due to signal transitions.
A READ occurs during the overlap of $\bar{S}$ low and $\bar{W}$ high. Data within the array can only be changed during a Write time, derined as the overiap of $\bar{S}$ low and $\bar{W}$ low. To prevent the loss of data, the addresses must be properly established during the entire Write time plus $t_{w r}$.

## AC CHARACTERISTICS

TEST CONDITIONS: $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V} \pm 5 \%$
$\mathrm{t}_{\mathrm{r}}=\mathrm{tt}_{\mathrm{t}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$, Output Load $=1 \mathrm{TTL}$ Gate and 100 pF Input and output timing reference level $=1.5 \mathrm{~V}$
READ CYCLE

PARAMETER	SYMBOL	7141L2, 7141-2		7141L3, 7141-3		7141L, 7141		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
Read Cycle	$t_{\text {rc }}$	200		300		450		ns
Access Time	$\mathrm{t}_{\text {aa }}$		200		300		450	
$\overline{\mathrm{S}}$ to Output Valid	$t_{\text {co }}$		70		100		100	
$\overline{\mathrm{S}}$ to Output Active	$t_{\text {cx }}$	0		0		0		
Output 3 State from Deselect	$\mathrm{t}_{\text {otd }}$	0	60	0	80	0	100	
Output Hold from Address Change	$\mathrm{t}_{\text {oha }}$	10		10	.	10		

## WRITE CYCLE

PARAMETER	SYMBOL	7141L2, 7141-2		7141L3, 7141-3		7141L, 7141		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
Write Time Cycle	$t_{\text {wc }}$	200		300		450		ns
Write Time	$t_{w}$	120		150		200		
Write Release Time	$t_{\text {wr }}$.	0		0		0		
Output 3 State from Write	$\mathrm{t}_{\text {otw }}$	0	60	0	80	0	100	
Data to Write Time Overlap	$t_{d w}$	120		150		200		
Data Hold from Write Time	$t_{\text {dh }}$	15		15		15		
Address Setup Time	$\mathrm{t}_{\text {aw }}$	0		0		0		
$\overline{\text { S Select Pulse Width }}$	$t_{\text {cw }}$	120		150		200		

## TIMING DIAGRAMS

READ CYCLE


Note: $1 . \bar{W}$ is high for a READ cycle.

WRITE CYCLE


7141 BIT MAP DIAGRAM


# IM7141M 4096 Bit (4096x1) NMOS Static RAM 

## FEATURES

- Cycle Time Equal to Access Time
- Completely Static-No Clock Required
- Separate Data Input and Output
- TTL Compatible Inputs and Outputs
- 883A Class B Processing Available
- Military Temperature Operation:
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Single +5 Volt Power Supply
- Maximum Access Time:

$$
-200 \mathrm{~ns}(-2)
$$

$-300 \mathrm{~ns}(-3)$

- Maximum Power Dissipation: 495mW


## DESCRIPTION

The IM7141 is a 4096-bit static Random Access Memory organized 4096 words $\times 1$ bit. The storage cells and decode and control circuitry are completely static; no clocks or refresh operations are required. Memory access occurs within the specified access time after all address inputs are stable. A Chip Select input is provided for simple memory array expansion.

The IM7141M operates at 90 mA over a $5 \mathrm{~V} \pm 10 \%$ range. The worst-case access time is 450 ns with speeds of $300 \mathrm{~ns}(-3)$ and 200ns ( -2 ) available.

The device is assembled in a standard 8 pin DIP for maximum system packing density.


## ABSOLUTE MAXIMUM RATINGS

Operating Temperature ................................................. $-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature . ................................................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin to Ground ............................................... -0.5 V to +7 V
Power Dissipation 1W

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS
TEST CONDITIONS: $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
Input Load Current (All Inputs)	I INLD	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$ to 5.5 V		10	$\mu \mathrm{A}$
Output Leakage Current	loLk	$\begin{aligned} & \overline{\mathrm{S}}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{I / \mathrm{O}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		10	
Power Supply Current	ICC1	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \text { Output Open } \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		65	mA
Power Supply Current	ICC2	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \text {, Output Open } \\ & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text {. } \end{aligned}$		90	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		-0.5	0.8	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	,	2.0	$\mathrm{V}_{\mathrm{CC}}$	
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{IOL}=3.2 \mathrm{~mA}$		0.4	
Output High Voltage	V OH	$\mathrm{loH}=-200 \mu \mathrm{~A}$	2.4	VCC	

## CAPACITANCE

PARAMETER	SYMBOL	TEST CONDITIONS	MAX	UNIT
Input/Output Capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{V}_{/ / O}=0 \mathrm{~V}$	5	pF
Input Capacitance	$\mathrm{C}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	5	

NOTE: These parameters are periodically sampled, not $100 \%$ tested.

## DEVICE OPERATION

When $\bar{W}$ is high, the data input buffers are inhibited to prevent erroneous data from getting into the array. As long as $\bar{W}$ remains high the data stored cannot be changed by the addresses, Chip Select, or data input voltage levels and timing transitions. The block diagram also shows data storage cannot be changed by $\bar{W}$ the addresses, or the input data as long as $\overline{\mathbf{S}}$ is high. Either $\overline{\mathrm{S}}$ or $\bar{W}$ by itself,
or in conjunction with the other, can prevent extraneous writing due to signal transitions.
A READ occurs during the overlap of $\overline{\mathrm{S}}$ low and $\overline{\mathrm{W}}$ high. Data within the airay cain unily de changed during a wírite time, defined as the overlap of $\overline{\mathrm{S}}$ low and $\bar{W}$ low. To prevent the loss data, the addresses must be properly. established during the entire Write time plus $t_{\text {WR }}$.

## AC CHARACTERISTICS

TEST CONDITIONS: $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}==5 \mathrm{~V} \pm 10 \%$
$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$, Output Load $=1 \mathrm{TTL}$ Gate and 100 pF Input and output timing reference level $=1.5 \mathrm{~V}$

## READ CYCLE

PARAMETER	SYMBOL	IM7141-2M		IM7141-3M		IM7141M		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
Read Cycle	$t_{\text {rc }}$	200		300		450		ns
Access Time	$\mathrm{t}_{\mathrm{aa}}$		200		300		450	
$\overline{\mathrm{S}}$ to Output Valid	$\mathrm{t}_{\mathrm{co}}$		70		100		100	
$\overline{\mathrm{S}}$ to Output Active	$t_{c x}$	0		0		0		
Output 3 State from Deselect	$t_{\text {otd }}$	0	60	0	80	0	100	
Output Hold from Address Change	$\mathrm{t}_{\text {oha }}$	10		10		10		

## WRITE CYCLE

PARAMETER	SYMBOL	IM7141-2M		IM7141-3M		IM7141M		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
Write Time Cycle	$t_{w c}$	200		300		450		ns
Write Time	$t_{w}$	120		150		200		
Write Release Time	$\mathrm{t}_{\mathrm{wr}}$	0		0		0		
Output 3 State from Write	$\mathrm{t}_{\text {otw }}$	0	60	0	80	0	100	
Data to Write Time Overlap	$t_{d w}$	120		150		200		
Data Hold from Write Time	$t_{\text {dh }}$	15		15		15		
Address Setup Time	$t_{\text {aw }}$	0		0		0		
$\overline{\mathrm{S}}$ Select Pulse Width	$t_{\text {cw }}$	120		150		200		

## TIMING DIAGRAMS

READ CYCLE


Note: $1 . \bar{W}$ is high for a READ cycle.

## WRITE CYCLE




## FEATURES

- High Speed - 300ns Maximum access time
- Completely static - no clock required
- Single +5V supply
- Fully TTL Compatible
- Two programmable Chip Selects
- Three-state outputs
- Industry standard 24 lead pinout


## GENERAL DESCRIPTION

The 1 M 7332 is a 32,768 bit read-only memory (ROM) organized 4096 words by 8 bits. The device is fabricated using Intersil's HMOS technology to minimize cell area and optimize circuit performance.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing to common bus structures. Two chip select inputs which are programmable to either active high or active low, facilitate ease of memory expansion.
The IM7332 operates over $5 \mathrm{~V} \pm 5 \%$ at 45 mA with an access time of 300 ns .


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+7.0V
Voltage on Any Pin Relative to GND	to +7.0 V
Commercial Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DESCRIPTION	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN.	TYP.	MAX.	
Input High Voltage	$\mathrm{V}_{\text {IH }}$		2.0		$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		-0.5		0.8	
Input Leakage Current	ILK	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V	-10		10	$\mu \mathrm{A}$
Output High Voltage	VOH	$\begin{aligned} & \text { IOUT }=-100 \mu \mathrm{~A} \\ & \mathrm{~S}_{1} / \overline{\mathrm{S}}_{1}=\mathrm{S}_{2} / \overline{\mathrm{S}}_{2}=2.0 \mathrm{~V} / 0.8 \mathrm{~V} \end{aligned}$	2.4			v
Output Low Voltage	VoL	$\begin{aligned} & \mathrm{IOUT}=1.6 \mathrm{~mA} \\ & \mathrm{~S}_{1} / \overline{\mathrm{S}}_{1}=\mathrm{S}_{2} / \overline{\mathrm{S}}_{2}=2.0 \mathrm{~V} / 0.8 \mathrm{~V} \end{aligned}$			0.4	
Output Leakage Current	loLk	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{OV} \text { to } 5.25 \mathrm{~V} \\ & \mathrm{~S}_{1} / \mathrm{S}_{1}=\mathrm{S}_{2} / \overline{\mathrm{S}}_{2}=0.8 \mathrm{~V} / 2.0 \mathrm{~V} \end{aligned}$	-10		10	$\mu \mathrm{A}$
Operating Supply Current	Icc	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { Data Out Open } \\ & \mathrm{V}_{1 \mathrm{~N}}=5.25 \mathrm{~V}, \mathrm{~S}_{1} / \overline{\mathrm{S}}_{1}=\mathrm{S}_{2} / \overline{\mathrm{S}}_{2}= \\ & 2.0 \mathrm{~V} / 0.8 \mathrm{~V} \end{aligned}$			45	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$			7	pF
Output Capacitance	Cout	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$			10	

NOTE: 1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. Capacitance values are sampled, not $100 \%$ tested.

## AC CHARACTERISTICS

DESCRIPTION	SYMBOL	JEDEC SYMBOL	MIN	TYP	MAX	UNIT
Address Access Time	, $t_{\text {a }}$	TAVQV			300	ns
Chip Select to Low Impedance	$t_{l z}$	TSVQX	20			
Chip Select Delay	$\mathrm{t}_{\text {co }}$	TSVQV			100	
Chip Deselect Delay	$t_{\text {df }}$	TSXQZ			100	
Output Hold Time	$t_{\text {oh }}$	TAXQX	20			

## READ CYCLE TIMING



## AC TEST CONDITIONS

$\mathrm{V}_{\mathrm{CC}}$ $5 \mathrm{~V} \pm 5 \%$
 Input rise and fall times 20ns (10\% to 90\%) Input and output reference leve! 1.5 V


OUTPUT LOAD CIRCUIT

## (8192 x 8) HMOS ROM

## FEATURES

- High Speed - 350ns Maximum access time
- Completely static - no clock required
- Single +5V supply
- Fully TTL Compatible
- Two Programmable Chip Select
- Three-state outputs
- Industry standard 24 lead pinout


## GENERAL DESCRIPTION

The IM7364 is a 65,536 bit read-only memory (ROM) organized 8192 words by 8 bits. The device is fabricated using Intersil's HMOS technology to minimize cell area and optimize circuit performance.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing to common bus structures. A chip select input, which is programmable to either active high or active low, facilitates ease of memory expansion.
The IM7364 operates over $5 \mathrm{~V} \pm 5 \%$ at 60 mA with an access time of 350 ns .


## ABSOLUTE MAXIMUM RATINGS



NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DESCRIPTION	SYMBOL	TEST CONDITIONS	LIMITS			UNIT
			MIN.	TẎP.	MAX.	
Input High Voltage	$\mathrm{V}_{\text {IH }}$		2.0		$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		-0.5		0.8	
Input Leakage Current	IILK	V IN $=0 \mathrm{~V}$ to 5.25 V	-10		10	$\mu \mathrm{A}$
Output High Voltage	VOH	$\begin{aligned} & \text { lout }=-100 \mu \mathrm{~A} \\ & \mathrm{~S} / \overline{\mathrm{S}}=2.0 \mathrm{~V} / 0.8 \mathrm{~V} \end{aligned}$	2.4			V
Output Low Voltage	VoL	$\begin{aligned} & \mathrm{I} \text { OUT }=1.6 \mathrm{~mA} \\ & \mathrm{~S} / \overline{\mathrm{S}}=2.0 \mathrm{~V} / 0.8 \mathrm{~V} \end{aligned}$			0.4	
Output Leakage Current	loLk	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{OV} \text { to } 5.25 \mathrm{~V} \\ & \mathrm{~S} / \overline{\mathrm{S}}=0.8 \mathrm{~V} / 2.0 \mathrm{~V} \end{aligned}$	- 10		10	$\mu \mathrm{A}$
Operating Supply Current	Icc	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { Data Out Open } \\ & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{~s} / \overline{\mathrm{S}}=2.0 \mathrm{~V} / 0.8 \mathrm{~V} \end{aligned}$			60	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$			7	pF
Output Capacitance	Cout	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$			10	

NOTE: 1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. Capacitance values are sampled, not $100 \%$ tested.

## AC CHARACTERISTICS

DESCRIPTION	SYMBOL	JEDEC SYMBOL	MIN	TYP	MAX	UNIT
Address Access Time	$\mathrm{t}_{\mathrm{aa}}$	TAVQV			350	
Chip Select to Low Impedance	$\mathrm{t}_{\mathrm{lz}}$	TSVQX	20			
Chip Select Delay	$\mathrm{t}_{\mathrm{co}}$	TSVQV			120	n ns
Chip Deselect Delay	$\mathrm{t}_{\mathrm{df}}$	TSXQZ			120	
Output Hold Time	$\mathrm{t}_{\mathrm{oh}}$	TAXQX	20			

## READ CYCLE TIMING



## AC TEST CONDITIONS



$T_{A}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Input rise and fall times . . . . . . . . . . . . 20ns (10\% to 90\%)
Input and output reference level . . . . . . . . . . . . . . . . . . 1.5V


OUTPUT LOAD CIRCUIT

## FEATURES

- 8048/41 compatible I/O expander
- CMOS pin-for-pin replacement for standard NMOS 8243
- Low power dissipation - typically 25 m W active
- Extended temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Four 4-bit I/O ports in 24-pin DIP
- Logical AND/OR directly to ports
- High output drive
- High noise immunity - typically 33\%
- Single $+5 V$ supply


## DESCRIPTION

The Intersil IM82C43 is a CMOS input/output expander equivalent to the NMOS 8243. It is designed to provide I/O expansion for the 8048 , and 8041 single-chip microcomputers.
The 24-pin IM82C43 provides four 4-bit bidirectional I/O ports; 8048/41 instructions implement accumulator/IM82C43 port transfers, as well as logical AND/OR operations. P20-P23 on the 8048/41 serves as a 4 -bit bus for transfer of control and data to the IM82C43.


## ABSOLUTE MAXIMUM RATINGS

Operating Temperature ............ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ............ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
With Respect to Ground . . Ground -0.5 to Vcc +0.5
Power Dissipation

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## D.C. AND OPERATING CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	,	, -0.5		0.8	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	.	$\mathrm{V}_{\text {cc }}-2.0$		Vcc+0.5	V
Output Low Voltage Ports 4-7	Vol	$1 \mathrm{OL}=30 \mathrm{~mA}$	,		0.40	V
Output High Voltage Ports 4-7	VOH	$\mathrm{IOH}=240 \mu \mathrm{~A}$	2.8			V
Input Leakage Ports 4-7, Port 2, CS, PROG	IILK	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ to 0 V	-1.0		1.0	$\mu \mathrm{A}$
Output Low Voltage Port 2	VOL	$1 \mathrm{OL}=0.6 \mathrm{~mA}$			0.1	V
Supply Current	Icc	WRITE mode, All outputs open, $\mathrm{t}_{\mathrm{k}}=700 \mathrm{~ns}$		1	5.0	mA
Output Voltage Port 2	V OH	$1 \mathrm{lOH}=100 \mu \mathrm{~A}$	2.8			mA
Sum of all Iol from 16 Outputs	IOL	10 mA Each Pin			160	

## A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Code Valid Before PROG	$t_{A}$	80 pF Load.	100			ns
Code Valid After PROG	$\mathrm{t}_{\mathrm{B}}$	20 pF Load	60			ns
Data Valid Before PROG	tc	80 pF Load	140			ns
Data Valid After PROG	to	20 pF Load	20			ns
Floating After PROG	$\mathrm{t}_{\mathrm{H}}$	20 pF Load	0		150	ns
PROG Negative Pulse Width	$\mathrm{t}_{\mathrm{K}}$		400			ns
$\overline{\text { CS }}$ Valid Before/After PROG	tos		50			ns
Ports 4-7 Valid Àfter PROG	tpo	100 pF Load			400	ns
Ports 4-7 Valid Before/After PROG	tLP1		0			ns
Port 2 Valid After PROG	$t_{\text {ACC }}$	80 pF Load			500	ns

## FUNCTIONAL PIN DESCRIPTION

Designator	Pin   Number	Function
PROG	7	Clock input. The falling edge of PROG
		indicates valid address and control
		information on P20-P23, while the
		rising edge indicates valid data on P20P23.
$\overline{\mathrm{CS}}$	6	Chip select input. When HIGH, it dis--
		ables PROG, thus inhibiting change in.
		output or internal status. : ,
P20-P23	8-11	Four bit bidirectional port carrying
		address and control bits on the falling.
	$\cdots$	edge of PROG and I/O data on the
		rising edge of PROG.
P40-P43	2-5	Four bit bidirectional I/O ports. May be
P50-P53	1,21-23	configured for input, tri-state output
P60-P63	17-20	(READ mode) or latched output. Data
P70-P73	13-16	on pins P20-23 may be directly written,
		or ANDed or ORed with previous data.
- GND	12	Circuit ground potential
Vcc.	24	+5 volt supply.

## FUNCTIONAL DESCRIPTION

The IM82C43 has four 4-bit I/O ports, which are addressed as Ports 4 thru 7 by the processor. The following operations may be performed on these ports:

- Transfer accumulator to port (write)
- Transfer port to accumulator (read)
- AND accumulator to port
- OR accumulator to port

All communication between the microcomputer and the 82C43 occurs over Port 2 (P20-P23) with timing provided by an output pulse on the PROG pin of the processor: Each. data transfer consists of two 4-bit nibbles:

- The first contains the port address and command to the 82C43. This data is present on Port 2 during the high-to-low transition of PROG and is encoded as shown in the table on page 8-235.
- The second contains the four bits of data associated with the instruction. The low-to-high transition of PROG indicates the presence of data.

Port Address And Command Format

P23	P22	INSTRUCTION   CODE	P21	P20	ADDRESS   CODE
0	0	Read	0	0	Port 4
0	1	Write	0	1	Port 5
1	0	ORLD	1	0	Port 6
1	1	ANLD	1	1	Port 7

## Write Modes

The device has three write modes. MOVD P,A directly writes new data into the selected port with old data being lost; ORLD P,A ORs the new data with the old data and writes it to the port; and ANLD P,A ANDs new data with old data and writes it to the port.
After the designated operation is performed, the data is latched and directed to the port. The old data remains latched until the new data is written.

## Read Mode

The device has one read mode. The command and port address are latched from port 2 on the high-to-low transition of the PROG pin. As soon as the read operation and port address are decoded, the designated port output buffers are disabled and the input buffers enabled. The read operation is terminated by the low-to-high transition of the PROG pin. The port selected is switched to the high impedance state while port 2 is returned to the input mode.
Normally a port will be in an output mode (write) or input mode (read). The first read of a port, following a
mode change from write to read should be ignored; all following reads are valid. This is to allow the external driver on the port to settle after the first read instruction removes the low impedance drive from the 82C43 output. A read of any port will leave that port in a high impedance state.

## I/O Expansion

The use of a single 82 C 43 with an 80 C 48 or 8021 is shown in figure 1. If more ports are required, more 82C43s can be added as shown in figure 2. Here, the upper nibble of port 2 is used to select one of the 82C43s. Two lines could have been decoded but that would require additional hardware. Assuming that the leftmost 82C43 chip select is connected to P24, the instructions to select and de-select would be:

MOV A, \#OEFH	P24 $=0$   OUTL P2, A
Enable 82C43	

## Power On Initialization

Initial application of power to the device forces ports 4, 5,6 , and 7 to the high impedance state and port 2 to the input mode. The PROG pin may be either high or low when power is applied. The first high-to-low transition of PROG causes the device to exit the power-on mode. The power-on sequence is initiated if $\mathrm{V}_{\mathrm{cc}}$ drops below one volt.

## WAVEFORMS



TYPICAL APPLICATIONS

EXPANDER INTERFACE



Note:
The 82C43 does not have the same quasi-bidirectional port structure as P1/P2 of the 80C48. When a "1" is written to P4-7 of the 82C43 it is a "hard 1 " (low impedance to +5 V ). which cannot be pulled low by an external device. All 4 bits of any port can be switched from output mode to input mode by executing a dummy read which leaves the port in a high impedance (no pullup or pulldown) state.

Figure 1

USING MULTIPLE 82C43s


## 82HM137 4096 BIT

 （1024 x 4）HMOS ROM
## FEATURES

－High speed－70ns maximum access time
－Low Power 630mW（82HM137C）
－Completely static－no clock required
－Single＋5V supply
－Fully TTL compatible
－Two Chip Select inputs
－Three－state outputs
－883B processing available
－Mil temp operation（ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ）available
－Pinout and functionally compatible to industry standard Bipolar PROMS，using only 75\％ the power

## GENERAL DESCRIPTION

The 82 HM137 is a high speed 4096 bit read－only memory （ROM）organized 1024 words by 4 bits．The device is fabricated using Intersil＇s SELOX HMOS technology，a single－layer polysilicon，selective－oxidation arsenic diffu－ sion process，to minimize memory cell area and optimize circuit performance．

The 82HM137 is an exact pinout and function replacement for industry standard $1024 \times 4$ Bipolar PROMs．
Inputs and three－state outputs are TTL compatible and allow for direct interfacing to common bus structures．Two chip select inputs allow for ease of memory expansion．
The standard 82 HM 137 operates over $5 \mathrm{~V} \pm 5 \%$ at 120 mA with an access time of 70 ns ．

LOGICAL BLOCK DIAGRAM


## PIN NAMES

$A_{0}-A_{9}$	ADDRESS INPUTS
$Q_{0}-Q_{3}$	DATA OUTPUTS
$\bar{S}_{1}, \bar{S}_{2}$	CHIP SELECTS

ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMP．RANGE
82HM137CPN	18 PIN PLASTIC	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
82HM137CJN	18 PIN CERDIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$82 \mathrm{HM} 137 \mathrm{MJN} / 883 \mathrm{~B}$	18 PIN CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE：Plastic package not yet available
－pending qualification

PROM REPLACEMENT GUIDE

SUPPLIER	PART NUMBER
AMD	AM27S33
FAIRCHILD	93453
HARRIS	HM7643
MMI	6353
MOTOROLA	MCM7643
NATIONAL	74 S573
RAYTHEON	29641
SIGNETICS	$82 S 137$
TI	TBP24S41

PIN CONFIGURATION

（outline dwgs JN，PN）
LOGIC SYMBOL


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	＋ 7 V
Voltage On Any Pin Relative to GND	-0.5 V to +7.0 V
Commercial Operating Temperature Range	$0^{\circ}$ to $+75^{\circ} \mathrm{C}$
Military Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	

NOTE：Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not im－ plied．Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability．

## DC CHARACTERISTICS

TEST CONDITIONS： $82 \mathrm{HM} 137 \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{A}=0^{\circ}$ to $+75^{\circ} \mathrm{C}$

$$
82 \mathrm{HM} 137 \mathrm{M}: \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

DESCRIPTION	SYMBOL	TEST CONDITIONS		82HM137C			82HM137M			UNITS
				MIN	TYP．	MAX	MIN	TYP	MAX	
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	－．		2.0	＊	$\mathrm{V}_{\mathrm{CC}}$	2.0		$\mathrm{V}_{\text {cC }}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			－1．0		0.85	－1．0		0.8	
Input Leakage Current	IILK	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V		－20		20	－20		20	$\mu \mathrm{A}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \text { IOUT }=-2 \mathrm{~mA} \\ & \overline{\mathrm{~S}}_{1}=\overline{\mathrm{S}}_{2}=.85 \mathrm{~V} \end{aligned}$		2.4			2.4			V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & \text { IOUT }=16 \mathrm{~mA} \\ & \overline{\mathrm{~S}}_{1}=\overline{\mathrm{S}}_{2}=0.85 \end{aligned}$				0.45		－	0.5	
Output Leakage Current	IOLK	$\begin{aligned} & \text { VOUT }=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \mathrm{~S}_{1}=\mathrm{S}_{2}=2.0 \mathrm{~V} \end{aligned}$		－40		40	$-60$		60	${ }_{\mu \mathrm{A}}$
Operating Supply Current	$\mathrm{ICCOP}_{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	Data Out Open $I_{/ / O}=0 \mathrm{~mA}$			120				
Operating Supply Current	$\mathrm{I}_{\mathrm{CCOP}}^{2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	$\overline{\mathrm{S}}_{1}=\overline{\mathrm{S}}_{2}=0.85 \mathrm{~V}$						130	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V}$			5			5		pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$			8		$\because$	－8	－	

NOTES：1．Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2．Capacitance values are sampled，not $100 \%$ tested．

## AC CHARACTERISTICS

DESCRIPTION	SYMBOL	JEDEC SYMBOL	82HM137C		82HM137M		UNITS
			TYP	MAX	TYP	MAX	
Address Access Time	$\mathrm{t}_{\mathrm{a}}$	TAVQV	60	70	70	80	
Chip Enable Access Time	$\mathrm{t}_{\text {ce }}$	TSVQV	30	40	30	40	ns
Output Disable Time	$t_{\text {cd }}$	TSXQZ	30	$40^{\circ}$	30	40	

NOTE: Superior speed selection is available

## AC TEST CONDITIONS

$82 \mathrm{HM} 137 \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $+75^{\circ} \mathrm{C}$
$82 \mathrm{HM} 137 \mathrm{M}: \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Input pulse levels - 0.0 V and 3.0 V Input rise and fall times - 5 ns ( $10 \%$ to $90 \%$ )
Timing reference level - 1.5V - Inputs and outputs


OUTPUT LOAD CIRCUIT

## READ CYCLE TIMING



82HM141 4096 Bit

## (512 x 8) HMOS ROM

## FEATURES

- High speed-70ns maximum access time
- Completely static - no clock required
- Single +5 V supply
- Fully TTL compatible
- Four chip select inputs
- Three-state outputs
- 883 B processing available
- Mil temp operation $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ available
- Pinout and functionally compatible to industry standard Bipolar PROMs


## GENERAL DESCRIPTION

The 82 HM 141 is a high speed 4,096 bit read-only memory (ROM) organized 512 words by 8 bits. The device is fabricated using Intersil's SELOX HMOS technology, a single-layer polysilicon, selective-oxidation arsenic diffusion process, to minimize memory cell area and optimize circuit performance.
The 82 HM 141 is an exact pinout and functional replacement for industry standard $512 \times 8$ Bipolar PROMs.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing to common bus structures. Four chip select inputs allow for ease of memory expansion.
The standard 82 HM 141 operates over $5 \mathrm{~V} \pm 5 \%$ at 175 mA with an access time of 70 ns .


## AC CHARACTERISTICS

DESCRIPTION	SYMBOL	JEDEC SYMBOL	82HM141C		- 82HM141M		UNITS
			TYP	MAX	TYP	MAX	
Address Access Time	$\mathrm{t}_{\mathrm{aa}}$	TAVQV		70		90	ns
Chip Enable Access Time	$\mathrm{t}_{\mathrm{ce}}$	TSVQV		40		50	
Output Disable Time	$\mathrm{t}_{\mathrm{cd}}$	TSXQZ		40	,	50	

NOTE: Superior speed selection is available

## AC TEST CONDITIONS

82HM141C: $\quad V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
82HM141M: $\quad V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Input pulse levels -0.0 V and 3.0 V
Input rise and fall times - 5 ns ( $10 \%$ to $90 \%$ )
Timing reference level-1.5V - Inputs and outputs


OUTPUT LOAD CIRCUIT

## READ CYCLE TIMING



## ABSOLUTE MAXIMUM RATINGS


NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC CHARACTERISTICS

TEST CONDITIONS: $82 \mathrm{HM} 141 \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$82 \mathrm{HM} 141 \mathrm{M}: \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DESCRIPTION	SYMBOL	TEST CONDITIONS		82HM141C			82HM141M			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Input High Voltage	$\mathrm{V}_{\text {IH }}$			2.0		$\mathrm{V}_{\mathrm{CC}}$	2.0		$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-		-1.0	.	0.85	-1.0		0.80	
Input Leakage Current	IILK	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to	25V	-20		20	-20		20	$\mu \mathrm{A}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \mathrm{l}_{\text {OUT }}=-2 \mathrm{~m} \\ & \overline{\mathrm{~S}}_{1}=\overline{\mathrm{S}}_{2}=0.8 \end{aligned}$	$S_{3}=S_{4}=2.0 \mathrm{~V}$	2.4			2.4			V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=9.6 \mathrm{~m} / \\ & \overline{\mathrm{S}}_{1}=\overline{\overline{\mathrm{S}}}_{2}=0.8 \end{aligned}$	$\mathrm{V}, \mathrm{~S}_{3}=\mathrm{S}_{4}=2.0 \mathrm{~V}$			0.45			0.5	
Output Leakage Current	Iolk	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } \\ & \overline{\mathrm{S}}_{1}=\overline{\mathrm{S}}_{2}=0.8 \end{aligned}$	$\begin{aligned} & .25 \mathrm{~V} \\ & \mathrm{~V}, \mathrm{~S}_{3}=\mathrm{S}_{4}=2.0 \mathrm{~V} \end{aligned}$	-40		40	-60		60	$\mu \mathrm{A}$
Operating Supply Current	$\mathrm{ICCOP}_{1}$	$\begin{aligned} & \mathrm{V}_{I N}=5.25 \mathrm{~V} \\ & T_{A}=0^{\circ} \mathrm{C} \end{aligned}$	Data Out Open $I_{1 / O}=0 \mathrm{~mA}$			175				mA
Operating Supply Current	$\mathrm{ICCOP}_{2}$	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{S}}_{1}=\overline{\mathrm{S}}_{2}=0.85 \mathrm{~V} \\ & \mathrm{~S}_{3}=\mathrm{S}_{4}=2.0 \mathrm{~V} \end{aligned}$						185	
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$				5			5	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$				8			8	

NOTES: 1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. Capacitance values are sampled, not $100 \%$ tested.

82HM181 8192 Bit
(1024 x 8) HMOS ROM

## FEATURES

- High speed- 70ns maximum access time
- Completely static - no clock required
- Single +5 V supply
- Fully TTL compatible
- Four chip select inputs
- Three-state outputs
- 883B processing available
- Mil temp operation ( $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ) available
- Pinout and functionally compatible to industry standard Bipolar PROMs


## GENERAL DESCRIPTION

The 82 HM 181 is a high speed 8,192 bit read-only memory (ROM) organized 1024 words by 8 bits. The device is fabricated using Intersil's SELOX HMOS technology, a single-layer polysilicon, selective-oxidation arsenic diffusion process, to minimize memory cell area and optimize circuit performance.
The 82 HM 181 is an exact pinout and functional replacement for industry standard $1 \mathrm{k} \times 8$ Bipolar PROMs.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing to common bus structures. Four chip select inputs allow for ease of memory expansion.
The standard 82 HM 181 operates over $5 \mathrm{~V} \pm 5 \%$ at 175 mA with an access time of 70 ns .


## PIN NAMES

$\mathrm{A}_{0}-\mathrm{A}_{9}$	ADDRESS INPUTS
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	DATA OUTPUTS
$\overline{\mathrm{S}}_{1}, \overline{\mathrm{~S}}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$	CHIP SELECTS

## ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMP. RANGE
82 HM 181 CPG	24 Pin PLASTIC	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
82 HM 181 CJG	24 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$82 \mathrm{HM} 181 \mathrm{MJG} / 883 \mathrm{~B}$	24 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Plastic package not yet available

- pending qualification

PROM REPLACEMENT GUIDE

SUPPLER	PART NUMBER
AMD	AM27S181
FAIRCHILD	93451
HARRIS	HM7681
INTEL	3628
MMI	$63 S 881$
NATIONAL	875181
RAYTHEON	29631
SIGNETICS	$82 S 181$
TI	TBP28S86


PIN CONFIGURATION			
$\mathrm{A}_{7}$		24	$\mathrm{v}_{\mathrm{CC}}$
$\mathrm{A}_{6}$			$\square \mathrm{A}_{8}$
$\mathrm{A}_{5}$		22	$\square \mathrm{A}_{9}$
$\mathrm{A}_{4}$			$\bar{s}_{1}$
$\mathrm{A}_{3}$			$\bar{S}_{2}$
$\mathrm{A}_{2}$		HM181 ${ }^{19}$	$\mathrm{S}_{3}$
$\mathrm{A}_{1}$		18	$\mathrm{s}_{4}$
$\mathrm{A}_{0}$			
	9	16	
	10	15	
GND			
(outline dwgs JG, PG)			

LOGIC SYMBOL


## AC CHARACTERISTICS

DESCRIPTION	SYMBOL	JEDEC   SYMBOL	82HM181C		82HM181M		UNITS
			TYP	MAX	TYP	MAX	
Address Access Time	$\mathrm{t}_{\mathrm{aa}}$	TAVQV		70		90	ns
Chip Enable Access Time	$\mathrm{t}_{\mathrm{ce}}$	TSVQV		40		50	
Output Disable Time	$t_{\text {cd }}$	TSXQZ		40		50	

NOTE: Superior speed selection is available

## AC T.EST CONDITIONS

82HM181C: $\quad \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$82 \mathrm{HM} 181 \mathrm{M}: \quad \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Input pulse levels -0.0 V and 3.0 V Input rise and fall times-5ns (10\% to $90 \%$ )
Timing reference level - 1.5 V - Inputs and outputs


OUTPUT LOAD CIRCUIT

READ CYCLE TIMING


## ABSOLUTE MAXIMUM RATINGS


#### Abstract

Supply Voltage ................................................................................ 7.0 V Voltage On Any Pin Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to +7.0 V Commercial Operating Temperature Range .......................... $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Military Operating Temperature Range ............................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature ..................................................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Power Dissipation .............................................................................. $1 W$ NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


## DC CHARACTERISTICS

TEST CONDITIONS: $82 \mathrm{HM} 181 \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$82 \mathrm{HM} 181 \mathrm{M}: \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DESCRIPTION	SYMBOL	TEST CONDITIONS		82HM181C			82HM181M			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
- Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$			2.0		$\mathrm{V}_{\mathrm{CC}}$	2.0		$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			-1.0		0.85	-1.0		0.80	
Input Leakage Current	ILLK	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V		-20		20	-20		20	$\mu \mathrm{A}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \text { lout }=-2 \mathrm{~mA} \\ & \mathrm{~S}_{1}=\overline{\mathrm{S}}_{2}=0.85 \mathrm{~V}, \mathrm{~S}_{3}=\mathrm{S}_{4}=2.0 \mathrm{~V} \end{aligned}$		2.4			2.4			
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=9.6 \mathrm{~mA} \\ & \overline{\mathrm{~S}}_{1}=\overline{\overline{\mathrm{S}}}_{2}=0.85 \mathrm{~V}, \mathrm{~s}_{3}=\mathrm{S}_{4}=2.0 \mathrm{~V} \end{aligned}$				0.45			0.5	V
Output Leakage Current	loLk	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \overline{\mathrm{~S}}_{1}=\overline{\mathrm{S}}_{2}=0.85 \mathrm{~V}, \mathrm{~S}_{3}=\mathrm{S}_{4}=2.0 \mathrm{~V} \end{aligned}$		-40		40	-60		60	$\mu \mathrm{A}$
Operating Supply Current	$\mathrm{ICCOP}_{1}$	$\begin{aligned} & \mathrm{V}_{I \mathrm{~N}}=5.25 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	Data Out Open $I_{1 / O}=0 \mathrm{~mA}$			175				
Operating Supply Current	$\mathrm{ICCOP}_{2}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{S}}_{1}=\overline{\mathrm{S}}_{2}=0.85 \mathrm{~V} \\ & \mathrm{~S}_{3}=\mathrm{S}_{4}=2.0 \mathrm{~V} \end{aligned}$						185	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$				5			5	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$				8			8	

NOTES: 1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. Capacitance values are sampled, not $100 \%$ tested.

## 82HM185 8192 BIT

## (2048 x 4 ) HMOS ROM

## FEATURES

- High speed - 70ns maximum access time
- Low Power 630mW (82HM185C)
- Completely static - no clock required
- Single +5 V supply
- Fully TTL compatible
- Chip Select input
- Three-state outputs
- 883B processing available
- Mil temp operation ( $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ) available
- Pinout and functionally compatible to industry standard Bipolar PROMS, using only 75\% the power


## GENERAL DESCRIPTION

The 82HM185 is a high speed 8192 bit read-only memory (ROM) organized 2048 words by 4 bits. The device is fabricated using Intersil's SELOX HMOS technology, a single-layer polysilicon, selective-oxidation arsenic diffusion process, to minimize memory cell area and optimize circuit performance.
The 82 HM 185 is an exact pinout and function replacement for industry standard $2048 \times 4$ Bipolar PROMs.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing to common bus structures. A chip select input allows for ease of memory expansion.

The standard 82 HM 185 operates over $5 \mathrm{~V} \pm 5 \%$ at 120 mA with an access time of 70 ns .

LOGICAL BLOCK DIAGRAM


## PIN NAMES

$A_{0}-A_{10}$	ADDRESS INPUTS
$Q_{0}-Q_{3}$	DATA OUTPUTS
S	CHIP SELECT

ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMP. RANGE
$92 \mathrm{H} 1 \mathrm{M}_{1} 105 \mathrm{CPN}$	18 PIN PLASTIC	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
82HM185CJN	18 PIN CERDIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$82 \mathrm{HM} 185 \mathrm{MJN} / 883 \mathrm{~B}$	18 PIN CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Plastic package not yet available - pending qualification

PROM REPLACEMENT GUIDE

SUPPLIER	PART NUMBER
FUJITSU	MB7128
HARRIS	HM7685
MITSUBISHI	2708
MOTOROLA	MCM7685
NATIONAL	87 8185
RAYTHEON	29651
SIGNETICS	$82 S 185$
TI	TBP24S81

PIN CONFIGURATION

(outline dwgs JN, PN)
LOGIC SYMBOL

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+ 7 V
Voltage On Any Pin Relative to GND	0.5 V to +7.0 V
Commercial Operating Temperature Range	$0^{\circ}$ to $+75^{\circ} \mathrm{C}$
Military Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	1W

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

## DC CHARACTERISTICS

TEST CONDITIONS: $82 \mathrm{HM} 185 \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ}$ to $+75^{\circ} \mathrm{C}$

$$
\text { 82 HM185M: } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

DESCRIPTION	SYMBOL	TEST CONDITIONS			HM18			2HM		UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$			2.0		$\mathrm{V}_{\mathrm{CC}}$	2.0		$\mathrm{V}_{\mathrm{CC}}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			-1.0		0.85	-1.0		0.8	
Input Leakage Current	IILK	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V		-20		20	-20		20	$\mu \mathrm{A}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \text { IOUT }=-2 \mathrm{~mA} \\ & \overrightarrow{\mathrm{~S}}=0.85 \mathrm{~V} \end{aligned}$		2.4			2.4			V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & \text { IOUT }=16 \mathrm{~mA} \\ & \overline{\mathrm{~S}}=0.85 \mathrm{~V} \end{aligned}$				0.45			0.5	
Output Leakage Current	IoLk	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{OV} \text { to } 5.25 \mathrm{~V} \\ & \overline{\mathrm{~S}}=2.0 \mathrm{~V} \end{aligned}$		-40		40	-60		60	$\mu \mathrm{A}$
Operating Supply Current	$\mathrm{Iccop}_{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	Data Out Open $I_{1 / O}=0 \mathrm{~mA}$	'		120				$\mu \mathrm{A}$
Operating Supply Current	$\mathrm{l}^{\text {ccop }}$	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$\overline{\mathbf{S}}=0.85 \mathrm{~V}$		.				130	
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$			5			5		pF
Output Capacitance	Cout	$\mathrm{V}_{\text {CC }}=5.0, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$			8			8		

NOTES: 1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. Capacitance values are sampled, not $100 \%$ tested.

AC CHARACTERISTICS

DESCRIPTION	SYMBOL	JEDEC SYMBOL	82HM185C		82HM185M		UNITS
			TYP	MAX	TYP	MAX	
Address Access Time	$\mathrm{t}_{\mathrm{aa}}$	TAVQV	60	70	70	90	ns
Chip Enable Access Time	$\mathrm{t}_{\mathrm{ce}}$	TSVQV	30	40	30	50	
Oufput Disable Time	$\mathrm{t}_{\mathrm{cd}}$	TSXQZ	30	40	30	50	

NOTE: Superior speed selection is available

## AC TEST CONDITIONS

82HM185C: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75 \%{ }^{\circ} \mathrm{C}$ $82 \mathrm{HM} 185 \mathrm{M}: \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Input pulse levels 0.0 V and 3.0 V Input rise and fall times-5ns ( $10 \%$ to $90 \%$ ) Timing reference level - 1.5 V - Inputs and outputs.


OUTPUT LOAD CIRCUIT

## READ CYCLE TIMING

 (2048 x 8) HMOS ROM

## FEATURES

- High speed - 80ns maximum access time
- Completely static - no clock required
- Single +5 V supply
- Fully TTL compatible
- Three chip select inputs
- Three-state outputs
- 883B processing available
- Mil temp operation ( $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ) available
- Pinout and functionally compatible to industry standard Bipolar PROMs.


## GENERAL DESCRIPTION

The 82 HM 191 is a high speed 16,384 bit read-only memory (ROM) organized 2048 words by 8 bits. The device is fabricated using Intersil's SELOX HMOS technology, a single-layer polysilicon, selective-oxidation arsenic diffusion process, to minimize memory cell area and optimize circuit performance.
The 82 HM 191 is an exact pinout and functional replacement for industry standard $2048 \times 8$ Bipolar PROMs.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing to common bus structures. Three chip select inputs allow for ease of memory expansion:
The standard 82 HM 191 operates over $5 \mathrm{~V} \pm 5 \%$ at 175 mA with an access time of 80ns.

LOGICAL BLOCK DIAGRAM


## PIN NAMES

$A_{0}-A_{10}$	ADDRESS INPUTS
$Q_{0}-Q_{7}$	DATA OUTPUTS
$\bar{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$	CHIP SELECTS

## ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMP. RANGE
82 HM 191 CPG	24 Pin PLASTIC	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
82 HM 191 CJG	24 Pin CERDIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$82 \mathrm{HM} 191 \mathrm{MJG} / 883 \mathrm{~B}$	24 Pin CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Plastic package not yet available - pending qualification

PROM REPLACEMENT GUIDE

SUPPLIER	PART NUMBER
AMD	AM27S191
FAIRCHILD	93511
HARRIS	HM76161
INTEL	3636
MMI	$63 S 1681$
NATIONAL	875191
RAYTHEON	29681
SIGNETICS	828191
TI	TBP28S166

PIN CONFIGURATION

(outline dwgs JG, PG)
LOGIC SYMBOL


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	V
Voltage On Any Pin Relative to GND	-0.5 V to +7.0 V
Commercial Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Military Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	

NOTE: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC CHARACTERISTICS

TEST CONDITIONS: $82 \mathrm{HM} 191 \mathrm{C}: \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
82HM191M: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DESCRIPTION	SYMBOL	TEST CONDITIONS		82HM191C			82HM191M			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Input High Voltage	$\mathrm{V}_{\text {IH }}$			2.0		$\mathrm{V}_{C C}$	2.0		$\mathrm{V}_{\text {cc }}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			-1.0		0.85	-1.0		0.80	
Input Leakage Current	ILL	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V		-20		20	-20		20	$\mu \mathrm{A}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \text { lout }=-2 \mathrm{~mA} \\ & \mathrm{~S}_{1}=.85 \mathrm{~V}, \mathrm{~S}_{2}=\mathrm{S}_{3}=2.0 \mathrm{~V} \end{aligned}$		2.4			2.4			
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \text { I OUT }=9.6 \mathrm{~mA} \\ & \overline{\mathrm{~S}}_{1}=.85 \mathrm{~V}, \mathrm{~S}_{2}=\mathrm{S}_{3}=2.0 \mathrm{~V} \end{aligned}$				0.45			0.5	V
Output Leakage Current	IoLk	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\ & \mathrm{~S}_{1}=2.0 \mathrm{~V}, \mathrm{~S}_{2}=\mathrm{S}_{3}=.85 \mathrm{~V} \end{aligned}$		-40		40	-60		60	${ }_{\mu} \mathrm{A}$
Operating Supply Current	$\mathrm{ICCOP}_{1}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.25 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	Data Out Open$\begin{aligned} & \mathrm{I}_{1 / O}=0 \mathrm{~mA} \\ & \mathrm{~S}_{1}=85 \mathrm{~V} \\ & \mathrm{~S}_{2}=\mathrm{S}_{3}=2.0 \mathrm{~V} \end{aligned}$		100	175				
Operating Supply Current	$\mathrm{ICCOP}_{2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$						100	185	mA
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$			5			5		pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$			8			8		

NOTES: 1. Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. Capacitance values are sampled, not $100 \%$ tested.

## AC CHARACTERISTICS

DESCRIPTION	SYMBOL	JEDEC   SYMBOL	82HM191C		82HM191M		UNITS
			TYP	MAX	TYP	MAX	
Address Access Time	$t_{\text {aa }}$	TAVQV	50	80	50	100	ns
Chip Enable Access Time	$t_{\text {ce }}$	TSVQV	20	40	20	50	
Output Disable Time	$t_{\text {cd }}$	TSXQZ	20	40	20	50	

NOTE: Superior speed selection is available

## AC TEST CONDITIONS

82HM191C: $\quad \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ 82HM191M: $\quad V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Input pulse levels -0.0 V and 3.0 V Input rise and fall times-5ns (10\% to $90 \%$ ) Timing reference level - 1.5V-Inputs and outputs


## READ CYCLE TIMING



## Appendix

PagePackage DimensionsB-2High Reliability Processing ..... B-11
Application Note Summary ..... B-19
Chip Ordering Information ..... B-21
Intersil Part Numbering System ..... B-27
Sales Offices, Distributors, and Representatives ..... B-29






PACKAGE OUTLINES All dimensions given in inches and (millimeters).




PACKAGE OUTLINES All dimensions given in inches and (millimeters).


## 100\% INTEGRATED CIRCUIT PROCESSING

Intersil is committed to build and process integrated circuits for the Military/High-Rel market segments in conformance with MIL-STD-883 and MIL-M-38510. Any customer drawing which specifies testing as set forth in these documents will be automatically processed to the latest revisions of MIL-STD-883 and MIL-M-38510, unless specific requests are made to the contrary.

## 100\% DISCRETE DEVICE PROCESSING

Intersil also offers several QPL-approved discrete products carrying the JANTX designation, which are screened and qualified to the latest revisions of MIL-STD-750 and MIL-S-19500.

## MIL-STD-883B SCREENING AND QUALITY CONFORMANCE PROGRAMS, METHODS 5004 AND 5005

The following flow chart details screening activities as carried out by Intersil for Class S, B and C requirements.


## HIGH RELIABILITY PROCESSING

## QUALITY CONFORMANCE INSPECTION, CLASSES B AND C

The following diagram presents quality conformance inspection methods for Classes B and C as performed at Intersil.

*Sample must have had temp/time exposure spécified for burn-in. LTPD of 15 applies to number of leads inspected except that in no case shall less than 3 devices be used.
**Required only when a páckage contains a dessicant.

## NOTES:

1: Group $A$ and $B$ inspections are required on individual inspection lots as a condition for acceptance for delivery.
2. Samples shall be randomly selected from the assembled inspection lot in accordance with appendix B of MIL-M-38510. Specified screen requirements of method 5004 are not required to have been completed for Intersil's standard generic data program, but will be performed when required by customer drawing. Where use of electrical rejects is permitted, and unless otherwise specified, they need not have been subjected to the temperature/time exposure of burn-in.
3. Group $C$ (chip-related test) shall be performed periodically at 3 month intervals.
4. Group D (package related tests) shall be performed periodically at 6 month intervals.
5. Where end point measurements are required but no parameters have been identified, the critical final electrical parameters specified for $100 \%$ screening shall be used as end point measurements.
6. Subgroups within a group may be performed in any order but individual tests within a subgroup shall be performed in the sequence indicated.

HIGH RELIABILITY PROCESSING

## QUALITY CONFORMANCE

The following steps are carried out when quality conformance testing is performed on a lot from which samples are taken.

QUALITY CONFORMANCE - CLASSES B \& C

	STANDARD SAMPLE SIZE	ALLOWABLE REJECTS	TIME   ALLOWANCE
Group A   (Electrical Acceptance)	45	0	$\begin{array}{r} 3-5 \\ \text { days } \end{array}$
Group. B (Package Related)	14   Electrical Rejects	0	1 week.
Group C   (Die Related)	102 Good Electrical (Note 1)	1 from   Subgroup 1   1 from   Subgroup 2	$8-10$   weeks
Group D   (Package   Related)	50 Good Electrical (Note 2) 75 Electrical Rejects	1 from each of 5 Subgroups	4 weeks

NOTE 1: Non-destructive, shippable samples (102 units).
NOTE 2: Destructive tests:
Moisture resistance. Subgroup 3 sample size
Variable-frequency vibration. Subgroup 4 sample size

$$
\text { Total Destroyed } 50 \text { units }
$$

## QUALIFICATION TESTING

When qualification testing is required, it will be equivalent to quality conformance testing, with the exception that Group A must be read and recorded on all applicable subgroups for the number of electrically-good units which will be required for samples for Groups C and D.

QUALIFICATION TESTING - GROUPS B \& C

.	STANDARD SAMPLE SIZE	ALLOWABLE REJECTS	TIME ALLOWANCE
Group A   (Electrical   Acceptance)		5	5 days
Group B (Package Related)	14   Electrical   Rejects	0	1 week
Group C (Die Related)	102   Good Electrical (Note 1)	1 from   Subgroup 1   1 from Subgroup 2	10-12 weeks
Group D (Package Related)	50 Good Electrical (Note 2) 75 Electrical Rejects	1 from each of 5 Subgroups	4 weeks

NOTE 1: Shippable samples.
NOTE 2: 50 destroyed samples, subgroups 3 and 4.

## LIMITED USAGE QUALIFICATION

A customer may elect to take advantage of a "Limited Usage" qualification per MIL-M-38510, in order to reduce the number of samples required. The following conditions must be met for eligibility for the "Limited Usage" qualification:

1. A maximum quantity of 500 microcircuits is included in a single order.
2. A maximum quantity of 2000 microcircuits is included in a given equipment-acquisition contract or program.
3. A maximum quantity of 2000 microcircuits is to be procured during a 12-month period for a given circuit type and vendor.

Microcircuits which qualify for limited usage cannot be assigned a JAN part number. Variable data will be taken only when specified in a customer drawing.

LIMITED USAGE QUALIFICATION - CLASS B ${ }^{(1)}$			
	SAMPLE   SIZE	ALLOWABLE   REJECTS	TIME   ALLOWANCE
Group A   (Electrical   Acceptance)	45	0	5 days
Group B   (Package   Related)	Electrical   Rejects	0	1 week
Group C   (Die Related,   Non-Destruc-   tive)	10 Good   Electrical   Parts	0	$8-10$
Group D   (Package   Related,   Destructive)	weeks   (15 Good,   10 Electrical   Rejects)	0	4 weeks

(1) Mil-M-38510, Paragraph 4.4.4; MIL-STD-883, Method 5005.

## GLOSSARY OF MILITARY/AEROSPACE HIGHREL DEFINITIONS/TERMINOLOGY

ACCELERATED BURN-IN - Same as "Burn-In", except that testing is carried out at an increased temperature (nominally $150^{\circ} \mathrm{C}$ ) for reduced dwell time. Accelerated testing is not permissible for Class $S$ devices.

ATTRIBUTES DATA - Go-No-Go data. Strictly pass/ fail and number of rejects recorded. A typical requirement for post burn-in electrical tests on Class B devices.

BASELINE - Technique used to define manufacturing and test processes at time of order placement. Baselining usually involves development of a Program Plan and an Acceptance Test Plan which include flow charts, specification identification/revision letters, QA procedures, and actual specimens of certain important specifications. During subsequent manufacture and testing of parts, it is not permissible to make revisions or changes to any of the identified specifications, unless prior notification and possible customer approval occurs. Other terminology associated with baselining inclụde "Critical Process Changes", "Minor Process Changes"., and "Major Process Changes".

BURN-IN - A screening operation. Devices are subjected to high temperature (typically $125^{\circ} \mathrm{C}$ ) and normal power/ operation for 160 hours (Class B devices) or 240 hours (Class S devices).

CLASS S, B AND C INTEGRATED CIRCUITS - These classes set forth the screening, sampling and document control requirements for IC testing. Terminology is defined in MIL-M-38510 and in Test Methods 5004 and 5005 of MIL-M-38510. Classes, S, B and C are sometimes referred to as "Levels S, B and C." The Classes cover:

CLASS S - For space and satellite programs. Includes Condition A Precap, SEM, 240 hour burn-in, PIND test and elaborate qualification and quality conformance testing. Normally requires extensive data, documentation, and program planning. Formerly referred to as Class $A$. Class $S$ devices are quite expensive.

CLASS B - For manned flight, and includes most fre-quently-procured military integrated circuits. Used for all but highest reliability requirements. Class B uses burn-in, pre-cap visual, etc.

CLASS C - For ground support equipment. Contains only environmental screening requirements with pre-cap visual. No burn-in required.

In all classes, LTPD (Lot Tolerance Percent Defective) is the sampling plan measurement criteria.

CORRECTIVE ACTION - Those actions which a given supplier (or user) agrees to perform so that a detected problem does not reoccur.

DESC - Defense Electronic Supply Center, located in Dayton, Ohio. The command includes two major subgroups, with functions as follows:

DESC-ECS - This group performs specification engineering work. After the original specifications are created at RÁDC, DESC-ECS implements and monitors the specifications. DESC-ECS is the industry's main interface on existing specifications.

DESC-EQM - The group which supervises supplier certifications and qualifications per MIL-M-38510. The group to which the industry submits applications when desiring to have devices qualified (QPL'd) on an existing JAN slash sheet. DESC-EQM surveys supplier facilities and grants line certification as various requirements are met. Also reviews manufacturer's qualification test data and issues JAN QPL's accordingly.

DESC-EQT - Same as EQM, except handles transistors per MIL-S-19500.

DESC LINE CERTIFICATION - The document which approves a supplier's facilities as an appropriate site to manufacture JAN parts.

DIE SHEAR TESTS - A sample test. Mounted chips are exercised to destruction. Degree of die adherence to lead frame is observed. Corrective action taken if required.

DPA - Destructive Physical Analysis. Finished products are opened and analyzed, in accordance with customer or MIL Spec criteria.

GENERIC DATA - Data pertaining to a device family; not necessarily the specific part number ordered by the customer, but representative of parts in the family. Group B, $C$ and $D$ generic data is frequently requested in lieu of the performance of special qual tests on a given order.

GROUP A - Sample electrical tests which are performed on each lot. Group A is defined in Test Method 5005 for integrated circuits and in MIL-S-19500 for diodes and trañsistors.

GROUP B - A collection of package-related environmental and "wear-and-tear" tests. Defined in Test Method 5005 for integrated circuits. For Class S screening, additional life tests are required, and are performed on every lot per MIL-$\mathrm{M}-38510$. For diodes and transistors, Group B consists of both environmental and life tests, as defined in MIL-S-19500.

GROUP C - For Class B and C integrated circuits, only Group C includes life testing and temperature cycling/constant acceleration die-related sample tests. Defined in Test Method 5005 and performed every three months per MIL-M-38510.

GROUP D - A collection of additional environmental package-related sample tests as defined in Test Method 5005. Performed every six months per MIL-M-38510. For classes S, B, \& C.

JAN - "Joint Army Navy", a registered trademark of the U.S. Government. The JAN marking denotes a device which is in full compliance to MIL-M-38510 or MIL-S-19500.

JAN TX - A JAN-qualified diode or transistor which has been subjected to additional screening (burn-in) tests. MIL-S-19500 only.

JAN TXV - A JAN-qualified diode or transistor which, in additional to burn-in testing, has been subjected to additional screening including pre-cap visual inspection, as witnessed by a government source inspector. Equivalent to Class B screening for integrated circuits. MIL-S-19500 only.
"M38510" CIRCUITS - Until a recent revision to MIL-M38510, it was a common practice for users and suppliers alike to specify or offer integrated circuits marked "M38510/ XXX" without a J or JAN prefix. This part numbering system indicated a device which was"near-JAN", "quasi-JAN" or "non-JAN". The practice tended to cause confusion between these devices and parts in full conformance to JAN levels. MIL-M-38510 now prohibits such marking with the exception of two special instances:

- When JAN QPL supplier for a given product does not exist, the government will permit "M38510/XXX" marking. While a customer may specify such marking, the suppliẹ must furnish the government with evidence that the parts meet all applicable requirements.
- For certain parts destined for use in some programs, "M38510/XXX" marking is permissible, but orders for such parts must be accompanied by appropriate DESC certification letter.

M38510/XXX - Detail specifications (or "slash sheets") for integrated circuits. For example, the 101 specification covers Operational Amplifiers, with electrical requirements for the 741, LM101, 108, 747 types, etc.

MIL-M-38510 - The general military specification for integrated circuits.

MIL-S-19500 - The general military specifications for diodes and transistors.

MIL-S-19500/XXX - Detail specifications (or "slash sheets" for diodes and transistors.

MIL-STD-750 - Specifies Test Methods for diodes and transistors, such as burn-in, pre-cap, temperature cycling, etc.

MIL-STD-883 - Specifies Test Methods for integrated circuits, such as pre-cap, burn-in, hermeticity, storage life, etc.

NPFC - Naval Públications and Forms Center, Philadelphia. Printing and distribution source for military specifications.

NON-STANDARD PARTS - In government terminology, refers to non-JAN devices. Non-standard parts are typically covered by user Source Control Drawings (SCD).

NON-STANDARD PARTS APPROVAL - Approval by the government (frequently RADC) of non-JAN parts, typically on source control drawings, for use in a military system or program. This approval is essentially a waiver which permits non-JAN 38510 parts in a system which otherwise mandatorially requires JAN parts only.

OPERATING LIFE TEST - Same conditions as burn-in, but duration is usually 1000 hours. This is a sample test (Qualification and Quality Conformance).

PCA - Parts Configuration Analysis. A new term which has much the same meaning as "Baseline".

PDA - Percent Defective Allowable. Criteria sometimes applied to burn-in screening. A 10\% PDA (the most common type) means that if more than $10 \%$ of that lot fails as a result of burn-in (as determined by pre- and post-burn-in electrical tests) the entire lot is considered to have failed.

PDS - Parameter Drift Screening. Measures the changes $(\Delta s)$ in electrical parameters through burn-in. Common for Class $S$ devices.

PIND - Particle Impact Noise Detection. This is an audio screening test to locate and elminate those parts which have loose internal particles. The test can isolate a high percentage of defectives, even in otherwise good lots. Repeatability of the tests is questionable. This test is one of the screening items for Class $S$ integrated circuits.

PREPARING ACTIVITY - The organizational element of the government which writes specifications, frequently RADC.

PRESEAL VISUAL - A screening inspection which involves observation of a die through a microscope.

PROCURING ACTIVITY - Per MIL-M-38510, this is the organizational element in the government which contracts for articles or services. The Procuring Activity can be a subcontractor (OEM), providing that the government delegates this responsibility. In such a case, the subcontractor does not have the power to grant waivers, unless this authority has been approved by the government.

PRODUCT RELIABLIITY - Pertains to the level of quality of a product over a period of time. Reliability is usually measured or expressed in terms of Failure Rate (such as " $0.002 \%$ per 1000 hours at a $60 \%$ confidence level at $25^{\circ} \mathrm{C}^{\prime \prime}$ ) or MTBF (mean time between failure in hours). MTBF is the reciprocal of Failure Rate.

QPL - Qualified Products List. In the case of JAN prodùcts, QPLs are identified as QPL-38510 for integrated circuits and QPL-19500 for diodes and transistors. - QPL38510 revisions occur approximately quarterly and QPL19500 revisions occur approximately annually. In the interim, the government will notify suppliers via letter of any new. device qualifications which may have been granted. Two types of QPLs exist for MIL-M-38510:

HIGH RELIABILITY PROCESSING
PART II QPL - This is an interim or temporary QPL which is granted on the basis of having obtained line certification and approval of an Application to Conduct Qualification Testing. A PART II QPL is automatically voided after 90 days whenever any one supplier is granted a PARTI QPL.
PART I QPL - A "permanent" QPL, granted after all qualification testing is completed and test data is approved by the government.

QPLTT - Qualified Product List Throughput Time. That period which required to obtain device qualification. OPLTT is a function of (1) whether a JAN slash sheet exists; (2) whether a competitor already holds a Part I QPL; and (3) whether the applicant's production line is certified by DESC.

Following is a worst-case example, where a JAN slash sheet does not exist and government line certification has not been granted. QPLTT will be approximately 39.5 months, if the JAN slash sheet already exists, QPLTT will be cut to about 10.5 months. If the applicant already has line certification, QPLTT will be about 2 months to obtain Part II status.
Total time required to obtain a Part I QPL adds about 7 months to QPLTT; in a worst-case example, about 46 months will be required.

QUALIFYING ACTIVITY - Per MIL-M-38510, the organizational element in the government which designates certification (i.e., DESC).

QUALIFICATION TESTING - Initial one-time sample tests which are performed to determine whether device types and processes are good. For integrated circuits, this usually means testing to Groups A, B, C and D. For diodes and transistors, this usually means testing to Groups A, B and $C$.

QUALITY CONFORMANCE TESTING - These are sample tests which must be performed at prescribed intervals per MIL-M-38510 or MIL-S-19500, assuring that processes remain in control and that individual lots are passed.

RADC - Rome Air Development Command, Griffiss AFB, New York. This is the government organization which created semiconductor specifications; MIL-M-38510 and MIL-STD-883 were developed at RADC. This Air Force unit develops specifications for all U.S. military services. RADC is frequently involved in granting waivers for non-standard parts for Air Force systems.

READ AND RECORD DATA - Same as variable data.

REWORK PROVISION - For semiconductor devices, permissible rework of parts is usually limited to re-testing (screening), lead straightening or bending, re-marking, and cleaning.

S \& V - Survivability and Vulnerability. Pertains to the ability of a device to resist radiation dosage.

SCREENING - Operations which are performed on devices on a $100 \%$ basis (not sampling). Examples include pre-cap visual, burn-in hermeticity, $100 \%$ electrical test, etc. For integrated circuits, Test Method 5004 defines screening flow.

SEM INSPECTION - Inspection by Scanning Electron Microscope. Die samples are examined at very high magnification for metallization defects. A common inspection for Class S devices.

SERIALIZATION - The marking of a unique part number on each part, with assigned numbers marked sequentially/ consecutively.

SCDs - Source Control Drawings. Typically user-generated drawings which require development of internal IC vendor sheets. Although each drawing may be slightly different, all will be modelled around MIL-M-38510, MIL-S-19500, MIL-STD-883, or MIL-STD-750.

SOURCE INSPECTION - Can be either Customer Source Inspection (CSI) or Government Source Inspection (GSI). Source Inspection is initiated via purchase order, and can occur at one or more of the following points:

- Pre-cap Visual. Expensive and adds to throughput time.
- Final Inspection. Simple and inexpensive; little delivery impact.
- Throughout. Very expensive and time-consuming.

STANDARD PARTS - In government terminology, JAN parts.

TRACEABILITY - A production and manufacturing cöntrol system which includes:

- Wafer run identification number.
- Date pre-cap visual inspection was performed, identity of inspector, and specification number and revision.
- Lot number and inspection history.
- QA Group A electrical results.

VARIABLE DATA - Read and recorded electrical measurements (parametric values). Usually required for pre- and post-burn-in electrical tests. Also common for Group C and $D$ testing.

WIRE PULL TESTS - Bond wire pull tests will be specified in two modes:

DESTRUCTIVE WIRE PULL - Generally performed periodically in assembly on a sample basis. Wires are pulled to destruction and the break point force is recorded. Corrective action is taken as required.

NON-DESTRUCTIVE WIRE PULL - Option for class 5 microcircuits, wire bonds are pulled to a max of $70 \%$ of the preseal minimum bond strengths for the applicable material on $100 \%$ of the lot.

## Ordering Information for MIL-STD-883B Processed Devices

The following Intersil devices are available as a standard with Class B screening per method 5004 of MIL-STD-883B. To order, add 833B after the device number as shown below.

Part Number	Part Number
82HM141MJG/883B	DG134AL/883B
82HM181MJG/883B	DG134AP/883B
82HM191MJG/883B	DG139AK/883B
	DG139AL/883B
AD550M-12/883B	DG139AP/883B
AD550S/883B	DG140AK/883B
AD550T/883B	DG140AL/883B
AD550U/883B	DG140AP/883B
AD590JH/883B	DG141AK/883B
AD590KH/883B	DG141AL/883B
AD590LH/883B	DG141AP/883B
AD590MH/883B	DG142AK/883B
AD7520SD/883B	DG142AL/883B
AD7520TD/883B	DG142AP/883B
AD7520UD/883B	DG143AK/883B
AD7521SD/883B	DG143AL/883B
AD7521TD/883B	DG143AP/883B
AD7521UD/883B	DG144AK/883B
AD7523SD/883B	DG144AL/883B
AD7523TD/883B	DG144AP/883B
AD7523UD/883B	DG145AK/883B
AD7533SD/883B	DG145AL/883B
AD7533TD/883B	DG145AP/883B
AD7533UD/883B	DG146AK/883B
AD7541SD/883B	DG146AL/883B
AD7541TD/883B	DG146AP/883B
	DG151AK/883B
D125AK/883B	DG151AL/883B
D125AL/883B	DG151AP/883B
D125AP/883B	DG152AK/883B
	DG152AL/883B
DG126AK/883B	DG152AP/883B
DG126AL/883B	DG154AK/883B
DG126AP/883B	DG154AL/883B
DG129AK/883B	DG154AP/883B
DG129AL/883B	DG161AK/883B
DG129AP/883B	DG161AL/883B
DG133AK/883B	DG161AP/883B
DG133AL/883B	DG162AK/883B
' DG133AP/883B	DG162AL/883B
DG134AK/883B	DG162AP/883B


Part Number	Part Number
DG163AK/883B	DG189AP/883B
DG163AL/883B	DG190AK/883B
DG163AP/883B	DG190AL/883B
DG'164AK/883B	DG190AP/883B
DG164AL/883B	DG191AK/883B
DG164AP/883B	DG191AL/883B
DG180AA/883B	DG191AP/883B
DG180AK/883B	DGM182AA/883B
DG180AL/883B	DGM182AK/883B
DG180AP/883B	DGM182AL/883B
DG181AA/883B	DGM182AP/883B
DG181AK/883B	DGM185AK/883B
DG181AL/883B	DGM185AL/883B
DG181AP/883B	DGM185AP/883B
DG182AA/883B	DGM188AA/883B
DG182AK/883B	DGM188AK/883B
DG182AL/883B	DGM188AL/883B
DG182AP/883B	DGM188AP/883B
DG183AK/883B	DGM191AK/883B
DG183AL/883B	DGM191AL/883B
DG183AP/883B	DGM191AP/883B
DG184AK/883B	
DG184AL/883B	G118AK/883B
DG184AP/883B	G118AL/883B
DG185AK/883B	G118AP/883B
DG185AL/883B	
DG185AP/883B	ICH8510MKA/883B
DG186AA/883B	ICH8520MKA/883B
DG186AK/883B	ICH8530MKA/883B
DG186AL/883B	
DG186AP/883B	ICL7109MDL/883B
DG187AA/883B	ICL8007AMTV/883B
DG187AK/883B	ICL8007MTY/883B
DG187AL/883B	ICL8013AMTZ/883B
DG187AP/883B	ICL8013BMTZ/883B
DG188AA/883B	ICL8013CMTZ/883B
DG188AK/883B	ICL8018AMJD/883B
DG188AL/883B	ICL8018AMXJD/883B
DG188AP/883B	ICL8018MJD/883B
DG189AK/883B	ICL8019AMJD/883B
DG189AL/883B	ICL8019AMXJD/883B


Part Number	Part Number	Part Number	Part Number
ICL8019MJD/883B	IH5144MTW/883B	IM6512.AMFN/883B	LM107H/883B
ICL8020AMJD/883B	IH5145MDE/883B	IM6512AMJN/883B	LM107J-14/883B
ICL8020MJD/883B	IH5145MFD/883B	IM6512MFN/883B	LM108AH/883B
ICL8021MTY/883B	IH5145MJE/883B	IM6512MJN/883B	LM108H/883B
ICL8022MFD/883B		IM65X08-1MFE/883B	LM110F/883B
ICL8022MJD/883B	IM5600MFE/883B	IM65X08-1MJE/883B	LM110H/883B
ICL8023MJE/883B	IM5600MJE/883B	IM65X08A-1MFE/883B	LM111H/883B
ICL8038AMJD/883B	IM5603AMFE/883B	IM65X08A-1MJE/883B	LM111J/883B
ICL8038BMJD/883B	IM5603AMJE/883B	IM65X08AMFE/883B	LM124J/883B
ICL8211MTY/883B	IM5604MFE/883B	IM65X08AMJE/883B	LM139AJ/883B
ICL8212MTY/883B	IM5604MJE/883B	IM65X08MFE/883B	LM139J/883B
	IM5610MFE/883B	IM65X08MJE/883B	
IH5048MJE/883B	IM5610MJE/883B	IM65X18-1MFN/883B	SE555F/883B
IH5049MJE/883B	IM5623MFE/883B	IM65X18-1MJN/883B	SE555T/883B
IH5050MJE/883B	IM5623MJE/883B	IM65X18A-1MFN/883B	SE556F/883B
IH5051MJE/883B	IM5624MFE/883B	IM65X18A-1MJN/883B	
IH5140MDE/883B	IM5624MJE/883B	IM65X18AMFN/883B	$\mu$ A723DMQB
IH5140MFD/883B	IM6100-1MDL/883B	IM65X18AMJN/883B	$\mu$ A723HMQB
IH5140MJE/883B	IM6100AMDL/883B	IM65X18MFN/883B	$\mu$ A741DMQB
IH5141MDE/883B	IM6101-1MDL/883B	IM65X18MJN/883B	$\mu$ A741FMQB
IH5141MFD/883B	IM6101AMDL/883B	IM65X51AMJF/883B	$\mu$ A741HMQB
IH5141MJE/883B	IM6102-1MDL/883B	IM65X51MJF/883B	
IH5141MTW/883B	IM6102AMDL/883B	IM65X61AMFN/883B	
IH5142MDE/883B	IM6103-1MDL/883B	IM65X61AMJN/883B	
IH5142MFD/883B	IM6103AMDL/883B	IM65X61MFN/883B	
IH5142MJE/883B	IM6312AMFN/883B	IM65X61MJN/883B	
IH5142MTW/883B	IM6312AMJN/883B		
IH5143MDÉ/883B	IM6312MFN/883B	LM100H/883B	
IH5143MFD/883B	IM6312MJN/883B	LM101AF/883B	
IH5143MJE/883B	IM6402-1MDL/883B	LM101AH/883B	
IH5144MDE/883B	IM6402AMDL/883B	LM101H/883B	
IH5144MFD/883B	IM6403-1MDL/883B	LM105H/883B	
IH5144MJE T/883B	IM6403AMDL/883B	LM107F/883B	

The following are brief descriptions of current Intersil Application notes.

A003	UNDERSTANDING AND APPLYING THE ANALOG SWITCH
	Introduces analog switches and compares them to relays. Describes CMOS, hybrid (FET + driver), J-FET "virtual ground" and J-FET "positive signal" types. Application information included.
A004	IH5009 LOW COST ANALOG SWITCH SERIES
	Compares the members of the IH5009 "virtual ground" analog switches and provides suggested applications.

A005 THE 8007-A HIGH PERFORMANCE FET INPUT OP AMP
Compares the 8007 with the 741 , which is pin compatible and suggests applications such as logantilog amplifier, sample and hold circuit, photometer, peak detector, etc.

A006 A NEW CMOS ANALOG GATE TECHNOLOGY Introduces Intersil's "Floating Body" process for manufacturing CMOS analog gate and multiplexer devices. This process virtually eliminates destructive latch up.

A007 USING THE 8048/8049 MONOLITHIC LOGANTILOG AMPLIFIER
Describes in detail the operation of the 8048 logarithmetic amplifier, and its counterpart, the 8049 antilog amp.

A011 A PRECISION FOUR QUADRANT MULTI-PLIER-THE 8013
Describes, in detail, the operation of the 8013 analog multiplier. Included are multiplication, division, and square root applications.

A013 EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT THE 8038
This note includes 17 of the most asked questions regarding the use of the 8038.

A015 DESIGN FOR A BATTERY OPERATED FREQUENCY COUNTER
Describes a low cost battery operated frequency/ period counter using the 7207A and 7208. Includes specifications, schematics, PC layout, etc.

A016

## SELECTING A/D CONVERTERS

Describes the differences between integrating converters and successive approximation converters. Includes a checklist for decision making, and a note on multiplexed data systems.

POWER SUPPLY DESIGN USING THE ICL8211 AND ICL8212
Explains the operation of the ICL8211/12 and describes various power supply configurations. Included are positive and negative voltage regulators, constant current source, programmable current source, current limiting, voltage crowbarring, power supply window detector, etc.

## BUILDING AN AUTO RANGING DMM WITH THE ICL7103A/8052A CONVERTER PAIR

This companion app note to A019 explains the use of the 8052A/7103A converter pair to build a $\pm 41 / 2$ digit auto ranging digital multimeter. Included are schematics, circuit descriptions, tips and hints, etc.

## POWER OP AMP HEAT SINK KIT

Describes the heat sinks for the ICH8510 family. These heat sinks may be ordered from the factory.

## THE ICL7104: A BINARY OUTPUT A/D CON-

 VERTER FOR MICROPROCESSORSDescribes in detail the operation of the 7104: Includes digital interfacing, handshake mode, buffer gain, auto-zero and external zero. Appendix includes detailed discussion of auto-zero loop residual errors in dual slope A/D conversion.

COIL DRIVE ALARM DESIGN CONSIDERATIONS

Explains the procedure used when using watch circuits to drive piezoelectric transducers.

UNDERSTANDING THE AUTO-ZERO AND COMMON MODE PERFORMANCE OF THE ICL7106/7107/7109 FAMILY.

Explains in detail the operation of the ICL7 106/ 7/9 family of A/D Converters.

THE POWER MOSFET - A BREAKTHROUGH IN POWER DEVICE TECHNOLOGY
Demonstrates differences in chip geometries and completely explains the significance of input and output parameters.

THE DESIGN OF SWITCHMODE CONVERTERS ABOVE 100 MHz
Defines problems, compares circuit topologies, explains component performance at high frequencies and suggests design methods.

## SWITCHMODE CONVERTER TOPOLOGIES MAKE THEM WORK FOR YOU

Compares buck, boost and DC transformer types, combinations of the three, and variations of each. Explains duality principle, bilateral inversion, and overlapping conduction. Includes design examples.

## 450 VOLT HIGH PERFORMANCE OFF LINE SWITCH MODE POWER SUPPLY

Compares bipolar supplies and MOSFET supplies, explains design procedures and problems. Includes a complete schematic for a 5V, 50A supply.

BUILDING A BATTERY OPERATED AUTO RANGING DVM WITH THE ICL7106

Explains principles of auto ranging, problems and solutions. Includes clock circuits, power supply requirements, design hints, schematics; etc.

DESIGNING LOW POWER. 12-BIT MICROPROCESSOR SYSTEMS

Explains effects of word length, architecture, and I/O structure on low power designs. Shows examples of typical circuits.

## FET, MOSFET, AND DUAL TRANSISTOR CHIPS

## INTRODUCTION

Intersil recognizes the increasing need for transistors and FETs in die form. To fulfill this need, Intersil offers a full line of JFETs, MOSFETs, and dual transistors in die form.

Die sales do, however, present some unique problems. In many cases the chips cannot be guaranteed to the same electrical specifications as the packaged part. This is due to the fact that leakage, noise, AC parameters and temperature testing cannot be tested to the same degree of accuracy for dice as it can for packaged devices. This is due to equipment limitations and handling problems.

## PURCHASE OPTIONS

Intersil offers dice which are delivered in a number of forms:

- Chips which have been electrically probed, inked, visually inspected and diced.
- Wafers which have been electrically probed, inked, visually inspected and scribed only.
- Wafers which have been electrically probed, inked, and visually inspected only.


## GENERAL PHYSICAL INFORMATION

- Consult individual product information sheets for dimensions. Except for the aluminum bonding pads, the chips are completely covered with vapox (silicon dioxide). This minimizes damage to the chip caused by handling problems.
- Dice are $100 \%$ tested to electrical specifications, then visually inspected. When wafers are ordered, dice which fail the electrical test are inked out.
- Generally the minimum size of the die-attaching pad metallization should be at least 5 mils larger (on every edge) than the chip dimensions. For example, a 15 mil chip should be attached on at least a 25 mil pad.


## Small Signal Devices

- Chips are available with exact length $X$ width dimensions plus tolerance (see individual data sheets). Chip height ranges from .003' to $.006^{\prime \prime}$.
- To facilitate die attaching, chips are gold backed. Approximate thickness is 1000 angstroms. In general, dice should be attached to gold, platinum, or palladium metallization. Thin-film gold, moly-gold and most of the thick-film metallization materials are compatible.
- All chips have aluminum metallization and aluminum bonding pads. Typical aluminum thickness is 12,000 angstroms.


## Power FETs

- Chip height ranges from .007" to .020".
- To facilitate die attaching, chips have gold or silver backing.
- Top side metal is aluminum with a thickness of 10,00030,000 angstroms.

CHIP AND WAFER PROCESSING FLOW CHART


## RECOMMENDED DICE ASSEMBLY PROCEDURE

## CLEANING

Dice supplied in die form do not require cleaning prior to assembly. Dice supplied in wafer form should be cleaned after scribing and breaking. Freon TF in a vapor degreaser is the preferred cleaning method. However, an alternative is to boil the die in TCE for five minutes with a rinse in isopropyl alcohol for 1-2 minutes.

## DIE ATTACH:

The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidation. A preform should be used if the mounting surface has less than 50 microinches of gold and the die should be handled on the edges with tweezers. Die attach temperature should be between $385^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ with eutectic visible on three sides of the die after attachment.

## BONDING:

Thermocompression gold ball or aluminum ultrasonic bonding may be used. The gold ball should be about 3 times the diameter of the gold wire. The ball should cover the bonding pad, but not excessively, or it may short out surrounding metallization. 1-mil aluminum wire may be used on most dice, but should not be used if the assembled unit will be plastic encapsulated.

## HANDLING OF DICE:

All dice shown in this catalog are passivated devices and Intersil warrants that they will meet or exceed published specifications when handled with the following precautions:

- Dice should be stored in a dry inert-gas atmosphere.
- Dice should be assembled using normal semiconductor techniqúes.
- Dice should be attached in a gaseous nitrogen spray at a temperature less than $430^{\circ} \mathrm{C}$.


## ELECTRICAL TEST LIMITATIONS

## DUAL BIPOLAR TRANSISTORS

LV CEO	100 V max. $@ \leqslant 1 \mathrm{~mA}$
$\mathrm{BV}^{\text {CBO }}$	100 V max. @ $\geqslant 1 \mu \mathrm{~A}$
$B V_{E B O}$	100 V max. @ $\leqslant 10 \mathrm{~mA}$
$h_{\text {FE }}$	$\leqslant 1000$ @ ${ }^{10} \mu \mathrm{~A}$
$V_{\text {CE (sat) }}$	$\geqslant 10 \mathrm{mV} @ \leqslant 10 \mathrm{~mA}$
${ }^{\text {¢ }}$ ¢ CBO	$\geqslant 100 \mathrm{pA} @ \leqslant 100 \mathrm{~V}$
$V_{B E 1}{ }^{-V_{B E 2}}$	$\geqslant 1 \mathrm{mV}$ @ $\geqslant 10 \mu \mathrm{~A}$
${ }_{B 1}{ }^{-1}{ }^{\text {2 }}$	$\geqslant 2 \mathrm{nA}$

FETS

Breakdown voltage	100V max. @ $1 \mu \mathrm{~A}$
Pinch-off voltage	$0-20 \mathrm{~V} @ \geqslant 1 \mathrm{nA}$
$\mathrm{V}_{\text {GS }}$ (th)	$0-20 \mathrm{~V} @ \geqslant 10 \mu \mathrm{~A}$
r DS (on) IDSS \& I DSS	$20 \Omega \mathrm{~min} . @ V_{G S}=0\left(V_{G S}=30 \mathrm{MOSFETs}\right)$ 100 mA max.
$\mathrm{g}_{\mathrm{fs}}$	10,000 $\mu$ MHOS max. @ $\mathrm{I}_{\mathrm{D}} \leqslant 10 \mathrm{~mA}$
${ }^{1} \mathrm{D}$ (öff), 'S ${ }^{\text {(off), 'GSS }}$	100 pA min.
$\mathrm{V}_{\mathrm{GS} 1}{ }^{-\mathrm{V}_{\mathrm{GS} 2}}$ (Duals)	10 mV min.

Electrical testing is guaranteed to a $10 \%$ LTPD. AC parameters such as capacitance and switching time cannot be tested in wafer or dice form.

## STANDARD DIE CARRIER PACKAGE

- Easy to handle, store and inventory.
- 100\% electrically probed dice with electrical rejects removed.
- $100 \%$ visually sorted with mechanical and visual rejects removed.
- Easy visual inspection - dice in carriers, geometry side up.
- Individual compartment for each die.
- Carriers usuable in customer production area.
- Carrier may be storage container for unused dice.
- Carriers hold 25, 100, or 400 dice, depending on die size and quantity ordered.
- Part numbers shown in this catalog are for carrier packaging.


CLEAR AMBER COVER


## CHIP ORDERING INFORMATION

## OPTIONAL VIAL PACKAGE

- 100\% electrically probed dice with rejects inked but included in vial. Bulk shipment.
- 10\% extra good dice included (no charge) to cover possible breakage and/or visual rejects.
- Preferred for production quantities.
- Lower cost.
- For vial package - replace "D" in catalog number with " $V$ ", e.g.: 2N4416/D (2N4416 dice in carrier) becomes 2N4416/V (2N4416 dice in vial).



## OPTIONAL WAFER PACKAGE

- $100 \%$ electrically probed - rejects inked.
- 10\% extra good dice included (no charge) to cover possible breakage and/or visual rejects.
- Preferred for production quantities.
- Lowest cost.
- Wafer is supplied unscribed.
- For wafer package - replace " $D$ " in catalog number with "W", e.g.: 2N4416/D (2N4416 dice in carrier) becomes 2N4416/W (2N4416 dice in wafer).


NOTE:
Intersil reserves the right to improve device geometries and manufacturing processes as required. These improvements may result in slight geometry changes. However, they will not affect the electrical limits, basic pad layouts or maximum die sizes in this catalog.

## ELECTRICAL TEST CAPABILITY

As an example of how to use the capability chart to see what Intersil actually guarantees and tests for, on a $100 \%$ basis, compare the 2 N 4391 in a TO-18 package to the 2N4391 delivered as a chip.

Electrical Test Spec.	2N4391 in a TO-18	2N4391 Chip
$\mathrm{l}_{\text {GSS }}{ }^{\text {@ 25C }}$	100 pA max.	100 pA max.
$B V_{\text {GSS }}$	40 V min.	40 V min.
${ }^{\text {D (off) }}$ @ 25C	100 pA max.	100 pA max.
$V_{\text {GS (forward) }}$.	$1 \vee$ max.	See note 1
$V_{\text {GS(off) }}$ or $\mathrm{V}_{\mathrm{P}}$	4 V to 10 V	4 V to 10 V
${ }^{1}$ DSS	50 to 150 mA	50 to 100 mA
$V_{\text {DS }}$ (on)	0.4 V max.	0.4 V max.
${ }^{\text {r DS }}$ (on)	$30 \Omega$ max.	$30 \Omega$ max.
$C_{\text {iss }}$	14 pF max.	Guaranteed by Design
$\mathrm{C}_{\text {rss }}$	3.5 pF max.	Guaranteed by Design
${ }^{\text {d }}$	15 ns max.	Guaranteed by Design
$\mathrm{t}_{\mathrm{r}}$	5 ns max.	Guaranteed by Design
$t_{\text {off }}$	20ns max.	Guaranteed by Design
$t_{f}$	15 ns max.	Guaranteed by Design

NOTE 1: This parameter is very dependent upon quality of metallization surface to which chip is attached.

## SUMMARY

Of the 14 items specified for the package part, only 7 can be tested and guaranteed in die form. It is to be noted that those specifications which cannot be tested in die form can be sample tested in package form as an indicator of lot performance. Many of the tests, however, such as capacitance tests, are design parameters.

The above electrical testing is guaranteed to a $10 \%$ LTPD. However, there are occasions where customer requirements cannot be satisfied by wafer sort testing alone. While the previously described tests will be done on a $100 \%$ basis, Intersil recognizes the need for additional testing to obtain confidence that a particular customer's needs can be met , with a reasonably high yield. Toward this end Intersil has instituted a dice sampling plan which is two-fold. First, random samples of the dice are packaged and tested to assure adherence to the electrical specification. When required, wafers are identified and wafer identity is tied to the samples. This tests both the electrical character of the die and its ability to perform electrically after going through the high temperature dice attachment stage. Second, more severe testing can be performed on the packaged devices per individual customer needs. When testing is required other than that called out in the data sheet, Intersil issues an ITS number to describe the part. Examples of tighter testing which can be performed on packaged samples is shown as follows:

## CHIP ORDERING INFORMATION

## FET \& DUAL FET PAIRS

1. Leakages to $1 \mathrm{pA}\left({ }_{\mathrm{GSS}}\right)$
2. $r_{\text {DS }}$ (on) to as low as 4 ohms
3. $I_{D}$ (off) to 10 pA
4. IDSS to 1 amp (pulsed)
5. $\mathrm{g}_{\mathrm{fs}}$ to $10,000 \mu \mathrm{mho}$
6. $\mathrm{g}_{\mathrm{OS}}$ to $1 \mu \mathrm{mho}$
7. $e_{n}$ noise to $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at frequencies of 10 Hz to 100 Hz
8. CMRR to 100 dB
9. $\Delta\left(\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right) / \Delta \mathrm{T}$ down to $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to an LTPD of $20 \%$
10. $g_{m}$ match to $5 \%$
11. I DSS match to $5 \%$ -

## TRANSISTOR PAIRS

1. Leakages to as low as 1 pA
2. Beta with collector current up to 50 mA and as low as 100 nA
3. $\mathrm{f}_{\mathrm{T}}$ up to 500 MHz with collector currents in the range of $.10 \mu \mathrm{~A}$ to 10 mA
4. Noise measurements as low as $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 10 Hz to 100 kHz
5. $\Delta\left(\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right) / \Delta \mathrm{T}$ to, $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to an LTPD of $20 \%$

## VISUAL INSPECTION

Individual chips are $100 \%$ inspected to MIL-STD-750, Method 2072 or, as an option, MIL-STD-883, Level B. Inspection is done to an LTPD of $20 \%$. As an option, Intersil offers S.E.M. capability on all wafers.

## CMOS INTEGRATED CIRCUIT CHIPS

## INTRODUCTION

In addition to discrete device chips, Intersil also offers a full line of metal gate CMOS integrated circuits in die form. Die sales, however, present some unique problems. In many cases, chips cannot be guaranteed to the same electrical specifications as can the packaged parts. This is because leakage, noise, AC parameters and temperature testing cannot be guaranteed to the same degree of accuracy for dice as for packaged devices.

## GENERAL PHYSICAL INFORMATION

- Chips are available with precise length and width dimensions, $\pm 2$ mils in either dimension.
- Chip thickness is 15 mils $\pm 1$ mil.
- Bonding pad and interconnect material is aluminum, 10 K to 15 K À thick.
- Each die surface is protected by planar passivation and additional surface glassivation except for bonding pads and scribe lines. The surface passivation is removed from the bonding pad areas by an HF etchant; bonding pads may appear discolored at low magnification due to surface roughness of the aluminum caused by the etchant.
- Dice are $100 \%$ inspected to electrical specifications, then visually inspected according to MIL-STD-883, Method 2010.2, Condition B, with modifications reflecting CMOS requirements.
- Bonding pad dimensions are $4.0 \times 4.0$ mils minimum.
- Storage temperature is $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
- Operating temperature is $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
- Guaranteed AQL Levels:

Visual	$2.0 \%$
Functional electrical testing	$1.0 \%$
Parametric DC testing	$4.0 \%$
Untested parameters	$10.0 \%$

CMOS INTEGRATED CIRCUIT CHIP PROCESSING FLOW CHART


## RECOMMENDED DICE ASSEMBLY PROCEDUṘES

## CLEANING

Dice supplied in die form do not require cleaning prior to assembly. However, if cleaning is desired, dice should be subjected to freon TF in a vapor degreaser and then vapordried.

## RECOMMENDED HANDLING

Intersil recommends that dice be stored in the vacuumsealed plastic bags which hold the dice carriers. Once removed from the sealed bags, the dice should be stored in a dry, inert-gas atmosphere.

Extreme care should be used when handling dice. Both electrical and visual damage can occur as the result of an unclean environment or harsh handling techniques.

## DIE ATTACH

The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidization. If a eutectic die attach is used, it is recommended that a $98 \%$ gold $/ 2 \%$ silicon preform be used at a die attach temperature between $385^{\circ} \mathrm{C}$ and $435^{\circ} \mathrm{C}$. If an epoxy die attach is used, the epoxy cure temperature should not exceed $150^{\circ} \mathrm{C}$. If hermetic packages are used, epoxy die attach should be carried out with caution so that there will be no "outgassing" of the epoxy.

## BONDING

Thermocompression gold ball or aluminum ultrasonic bonding may be used. The wire should be 99.99\% pure gold and the aluminum wire should be $99 \%$ aluminum $/ 1 \%$ silicon. In either case, it is recommended that 1.0 mil wire be used for normal power circuits.

## STANDARD DIE CARRIER PACKAGE

- Easy to handle, store and inventory.
- 100\% electrically probed with electrical rejects removed.
- $100 \%$ visually sorted with mechanical and visual rejects removed.
- Easy visual inspection - dice are in carriers, geometry side up.
- Individual compartment for each die.
- Carriers usable in customer production area.
- Carrier may be used as storage contained for unused dice.
- Carriers hold 25,100 or 400 dice, depending on die size and quantity ordered.
- Packaging of integrated circuit dice in carriers is identical to illustration shown earlier for discrete device, except that IC chips are not available in vial packs or in wafer form.


## CHANGES

Intersil reserves the right in improve device geometries and manufacturing processes without prior notice. Although these improvements may result in slight geometry changes, they will not affect dice electrical limits, pad layouts, or maximum die sizes.

## USER RESPONSIBILITY

Written notification of any non-conformance by Intersil of Intersil's dice specifications must be made within $\overline{7} 5$ days of the shipment date of the die to the user. Intersil assumes no responsibility for the dice after 75 days or after further user processing such as, but not limited to, chip mounting or wire bonding.

Examples of Intersil Part Numbers

	ELECTRICAL				
BASIC	OPTION	TEMP	PKG	PIN	
ICH8500,	A	C	T	V	ICH8500ACTV
ICL8038	C	C	P	D	ICL8038CCPD
IH5040		M	D	E	IH5040MDE

ON ALL INTERSIL IC PART NUMBERS. THE LAST THREE LETTERS ARE TEMPERATURE, PACKAGE, AND PIN NUMBER, RESPECTIVELY.

TEMPERATURE: C - Commercial
I - Industrial
M - Military

PACKAGE:	B - Plastic Flatpak (minipak)   D - Ceramic Dual-In-Line   E - Small TO-8 Type   F - Ceramic Flatpak   - I - 16 Pin Dip ( $0.6 \times 0.7$ ) Lead Spáce   $J$ - Cerdip Dual-In-Line   K - 8 Lead TO-3 Metal Can   L - Leadless, Ceramic   P - Epoxy Dual-In-Line   Q - 2 Lead Metal Can   T - TO-5 Type   DR - TO-72 with No. 4 Lead Connected to Case

NUMBER OF PINS: A - 8
B -10
C -12
D -14
E -16
$N-18$
$P-20$
F-22
G-24
I - -28
J - 32
K - 36
L - 40
M - 48
$V-8,0.230 \mathrm{in}$. Pin Circle
W - 10, 0.230 in. Pin Circle
$Y-8, \operatorname{Pin} 4$
Connected to Case
Z - 10, Pin 5 Connected to Case

## LINEAR:



## HYBRIDS:



$$
\mathrm{A}--55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
\mathrm{B}--20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$$
\mathrm{C}-0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Device Chip Type
Device Family
DG - Drivers
D - Drivers
G - Multi-channel FET


WATCH AND CLOCK:


BIPOLAR MEMORY:


## MOS MEMORY:



## C/MOS MEMORY:



## VERTICAL POWER MOSFET PART NUMBERING

 (PROPRIETARY PARTS)

BREAKDOWN   VOLTAGE		
A 20		PACKAGE CODES
B 30	TO-237 (92+)	A
C 35	TO-202	B
D 40	TO-220	C
E 60	TO-66	D
F 80	TO-3	K
G 90		TO-39
H 100		T
J 125		
K 150		
L 175		
M 200		
N 225		
P 250		
Q 300		
R 350		
S 400		
T 450		
U 500		

FOR INDIVIDUAL PART AVAILABILITY, PLEASE REFER TO A CURRENT INTERSIL PRICE LIST OR CONTACT YOUR NEAREST INTERSIL SALES OFFICE.

## INTERSIL INTERNATIONAL OFFICES

## DOMESTIC HEADQUARTERS

Intersil, Inc. 10710 N. Tantau Avenue Cupertino, CA 95014 Tel: (408) 996-5000
TWX: 910-338-0171
(INTRSLINT CPTO)

## SOUTHERN EUROPEAN HEADQUARTERS

intersil, Inc.
Bureau de Liaison
217, Bureaux de la Colline
Bat. D (2 ${ }^{\mathrm{e}}$ Etage)
92213 Saint-Cloud Cedex France
Tel: (1) 602.58.98
TLX: DATELEM 204280F

## NORTHERN EUROPEAN HEADQUARTERS

Intersil Datel (UK) Ltd. Snamprogetti House
Basing View
Basingstoke
Hants, RG21 2 YS
England
Tel: (0256) 57361
TLX: 858041 INTRSLG

FAR EAST HEADQUARTERS

Intersil, Inc.
c/o S.S.I. Far East, Ltd.
Suite 201, Austin Centre
21 Austin Avenue
Tsimshatsui Kowloon, Hong Kong
Tel: 3-672112-3
TLX: 86496 SSI HX

## CENTRAL EUROPEAN HEADQUARTERS

Intersil GmbH
Bavariaring 8
8000 Müenchen 2
West Germany
Tel: 89/539271
TLX: 5215736 INSLD

## INTERSIL SALES OFFICES

## CALIFORNIA

1272 Forgewood Avenue Sunnyvale, California 94086 Tel: (408) 744-0618
TWX: 910-339-9260
400 Oceangate Suite \#1102
Long Beach, CA 90802
Tel: (213) 436-9261
TWX: 910-341-6829

## COLORADO

5 Parker Place, Suite \#351
2600 S. Parker Road
Aurora, Colorado 80014
-Tel: (303) 750-7004
TWX: 910'320-2982

## FLORIDA

Hollywood 95 Office Park 2700 N. 29th Avenue Building \#2, Suite \#204 Hollywood, Florida 33020 Tel: (305) 920-2442 TWX: 510-954-9819

## ILLINOIS

201 Ogden Avenue, Suite \#230
Hinsdale, Illinois 60521
Tel: (312) 986-5303
TWX: 910-651-0859

## MASSACHUSETTS

2 Militia Drive, Suite. 12
Lexington, Massachusetts 02173
Tel: (617) 861-6220
TWX: 710-326-0887

## MINNESOTA

6550 York Avenue, South, Suite \#307
Minneapolis, Minnesota 55435
Tel: (612) 925-1844
TWX: 910-576-2780

## NEW JERSEY

560 Sylvan Avenue
Englewood Cliffs, New Jersey 07632
Tel: (201) 567-5585
TWX: 710-991-9730

## OHIO

228 Byers Road
Miamisburg, Ohio 45342
Tel: (513) 866-7328
TWX: 810-473-2981

## TEXAS

10300 N. Central Expwy.
Suite 225-III
Dallas, TX 75231
Tel: (214) 369-6916
TWX: 910-860-5482

CANADA
338 Queen Street East, Suite \#208
Brampton, Ontario L6V 1C4
Tel: (416) 457-1014
TWX: 610-492-2691

## DOMESTIC SALES REPRESENTATIVES

## ALABAMA

K \& E Associates, Inc. Suite \#122
3313 Memorial Parkway SE Huntsville, AL 35801
Tel: (205) 883-9720
TLX: 50-4421

## ARIZONA

Shefler-Kahn 2017 N. 7th St Phoenix, AZ 85006 Tel: (602) 257-9015
TWX: 910-951-0659

## CALIFORNIA

ADDEM S.D.
7380 Clairemont Mesa Blvd.
Suite 106
San Diego, CA 92111
Tel: (714) 268-8448

## CONNECTICÚT

COM-SALE
633 Williams Road
Wallingford, CT 06492
Tel: (203) 269-7964

## FLORIDA

EIR, Inc.
701 E. Semoran Blva.
Suite 112
Altamonte Springs, FL 32701
Tel: (305) 830-9600
TWX: 810-853-9213

## ILLINOIS

D. Dolin Sales Co. 6232 N. Pulaski Rd. Chicago, IL 60646
Tel: (312) 286-6200
TWX: 910-221-5018

## INDIANA

Delesa Sales
Executive Office Park
2118 Inwood Dr., Suite \#117
Ft. Wayne, IN 46805
Tei: (219) 483-9537
TWX: 810-332-1407
Delesa Sales
10026 E. 21st St.
Indianapolis, IN 46229
Tel: (317) 894-3778

## IOWA

Dy-Tronix, Inc.
Suite \#202
23 Twixt Town Rd. NE
Cedar Rapids, IA 52402
Tel: (319) 377-8275

## MARYLAND

New Era Sales, Inc. Empire Towers-Suite \#407 7300 Ritchie Highway Glen Burnie, MD 21061
Tel: (301) 768-6666
TWX: 710-861-0520

## MASSACHUSETTS

COM-SALE
235 Bear Hill Road
Waltham, MA 02154
Tel: (617) 890-0011

## MICHIGAN

Giesting \& Associates 5654 Wendzel Dr. Coloma, MI 49038 Tel: (616) 468-4200

Giesting \& Associates 149 Mary Alexander Ct. Northville, MI 48167
Tel: (313) 348-3811

## MISSOUR

Dy-Tronix, Inc. 11190 Natural Bridge Bridgeton, MO 63044
Tel: (314) 731-5799
TWX: 910-762-0651
Dy-Tronix, Inc. 13700 East 42nd Terrace Independence, MO 64055
Tel: (816) 373-6600

## NEW HAMPSHIRE

COM-SALE
102 Maple St. Manchester, NH 03103
Tel: (603) 668-1440

## NEW MEXICO

Shefler-Kahn
10200 Menaul NE
Albuquerque, NM 87112
Tel: (505) 296-0749

## NEW YORK

Ossman Component Sales Corp. 280 Metro Park
Rochester, NY 14623
Tel: (716) 424-4460
TWX: 510-253-7685
Ossman Component Sales Corp.
154 Pickerard Bldg.
Syracuse, NY 13211
Tel: (315) 455-6611
TWX: 710-541-1522

## NORTH CAROLINA

K \& E Associates
Route 2 Box 54
Garner, NC 27529
Tel: (919) 772-8454

## OHIO

Giesting \& Associates 3274 Donneybrook Lane Cincinnati, OH 45239
Tel: (513) 521-8800
TLX: 21-4283
TWX: 216-261-1311
Giesting \& Associates
5512 Autumn Hills Dr.
Westbrook Village
Dayton, OH 45426
Tel: '(513) 293-4044
Giesting \& Associates
570 South State Circle
Galion, OH 44833
Tel: (419) 468-3737

## OREGON

LD Electronics
P.O. Box 626

Beaverton, OR 97005
Tel: (503) 649-8556
(503) 649-6177

TWX: 910-467-8713

## PENNSYLVANIA

Comtek Inc.
821 Bethlehem Pike
Erdenheim, PA 19118
Tel: (215) 233-0532

## SOUTH CAROLINA

K \& E Associates
4808 St. Andrews Office Park
Suite 10
Columbia, SC 29210
Tel: (803) 798-7574

## TENNESSEE

K \& E Associates
Route 1
Box 33A
Joneboro, TN 37659
Tel: (615) 753-2921

## TEXAS

Nova Marketing 11700 Southwest Freeway

## Suite \#200

Houston, TX 77031
Tel: (713) 933-2636
TWX: 910-880-4053
Nova Marketing
5728 LBJ Freeway
Suite \#400
Dallas, TX 75240
Tel: (214) 385-9669

UTAH
Sage Sales
3524 South 1100 East
Salt Lake City, UT 84106
Tel: (801) 467-5451
TWX: 910-925-5153

## WASHINGTON

LD Electronics
East 12607 Guthrie Dr.
Spokane, WA 99216
Tel: (509) 455-0189
LD Electronics
14506 NE 169th St.
P.O. Box 663

Woodenville, WA 98072
Tel: (206) 485-7312

## WISCONSIN

D. Dolin Sales Co.

131 W. Layton Ave. Milwaukee, WI 53207
Tel: (414) 482-1111
TWX: 910-262-1139

## CANADA

Lenbrook Industries Ltd. 1145 Bellamy Rd. Scarborough, Ontario
Canada M1H 1H5
Tel: (416) 438-4610
TLX: 065-25485
Lenbrook Industries Ltd.
6896 Jarry St. East
St. Leonard, Quebec
Canada H1P 3C1
Tel: .(514) 323-3242

ARIZONA   Kierulff Electronics 4134 E. Wood St.   Phoenix, AZ 85040   Tel: (602) 243:4101	
	Western Microtechnology Sa Building \#105 7740 East Redfield Road Scottsdale, AZ 85260 Tel: (602) 948 -4240
Wyle Distribution Group   8155 N. 24th Ave.   Phoenix, AZ 85021   Tel: (602) 249-2232	
CALIFORNIA	
	Anthem Electronics, Inc. 4125 Sorrento Valley Blva. Suite A   San Diego, CA 92121   Tel: (714) 279-5200
Anthem Electronics, Inc. 1020 Stewart Dr.   Sunnyvale, CA 94086   Tel: (408) 738-1111   TWX: 910-339-9312	
	Arrow Electronics 521 Weddell Drive Sunnyvale, CA 9408 Tel: (408) 745-6600
	Kierulff Electronics 2585 Commerce Way   Los Angeles, CA 90040   Tel: (213) 725-0325   TWX: 910-580-3106
Kierulff Electronics 3969 East Bayshore Rd.   Palo Alto, CA 94303   Tel: (415) 968-6292	
Kierulff Electronics 14101 Franklin Ave.   Tustin, CA 92680   Tel: (714) 731-5711	
Schweber Electronics   17811 Gillette Ave.   Irvine, CA 92714   Tel: (714) 556-3880   TWX: 910-595-1720	
Wyle Distribution Group 3000 Bowers Ave.   Santa Clara, CA 95052   Tel: (408) 727-2500   TWX: 910-338-0541   910-338-0296	
Wyle Distribution Group 124 Maryland St.   EI Segundo, CA 90245   Tel: (213) 322-8100   TWX: 910-348-7111	
Wyle Distribution Group   17872 Cowan Ave.   Irvine, CA 92714   Tel: (714) 641-1600	
Wyle Distribution Group 9525 Chesapeake Dr. San Diego, CA 92123 Tel: (714) 565-9171 TWX: 910-335-1590	

COLORADO
Bell Industries
Century Electronics Div.
8155 W. 48th Ave.
Wheatridge, CO 80033
Tel: (303) 424-1985
TWX: 910-938-0393
Kierluff Electronics
10890 E. 47th Ave.
Denver, CO 80239
Tel: (303) 371-6500
Wyle Distribution Group
451 E. 124th Ave.
Thornton, CO 80241
(303) 457-9953

TWX: 910-936-0770

## CONNECTICUT

Arrow Electronics
12 Beaumont. Rd.
Wallingford, CT 06492
Tel: (203) 265-7741
TWX: 710-465-0780
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury, CT 06810
Tel: (203) 792-3500
TWX: 710-456-9405

## FLORIDA

Arrow Electronics
1001 NW 62nd St.
Suite \#402
Ft. Lauderdale, FL 33309
Tel: (305) 776-7790
TWX: 510-955-9456
Arrow Electronics
115 Palm Bay Road NW
Building 200-Suite 10
Palm Bay, FL 32905
Tel: (305) 725-1480
TWX: 510-959-6337
Diplomat Electronics Inc. 2120 Calumet St.
Clearwatrer, FL 33515
Tel: (813) 443-4514
TWX: 810-866-0436
Diplomat Electronics Inc. 6890 NW 20th Ave.
Ft. Lauderdale, FL 33309
Tel: (305) 971-7160
Diplomat Electronics Inc. 50 Woodlake Drive West
Suite \#3 Building A
Palm Bay, FL 32905
Tel: (305) 725-4520
Schweber Electronics
2830 N. 28th Terrace
Hollywood, FL 33020
Tel: (305) 927-0511
TWX: 510-954-0304

GEORGIA
Arrow Electronics 2979 Pacific Dr.
Norcross, GA 30071
Tel: (404) 449-8252
TWX: 810-757-4213
Schweber Electronics
303 Research Dr.
Norcross, GA 30092
Tel: (404) 449-9170

## ILLINOIS

Arrow Electronics
492 Lunt Ave.
Schaumburg, IL 60193
Tel: (312) 893-9420
TWX: 910-291-3544
Kierulff Electronics
1530 Landmeier Rd.
Elk Grove Village, IL 60007
Tel: (312) 640-0200
Newark Electronics
500 North Pulaski Road
Chicago, IL 60007
Tel: (312) 638-4411
Schweber Electronics
1275 Brummel Ave.
Elk Grove Village, IL 60007
Tel: (312) 364-3750
TWX: 910-222-3453

## INDIANA

Advent Electronics, Inc.
8446 Moller Rd.
Indianopolis, IN 46268
Tel: (317) $297-4910$
TWX: 810-341-3228

## IOWA

Advent Electronics
682 58th Avenue Court S.W.
Cedar Rapids, IA 52404
Tel: (319) 363-0221
TWX: 910-525-1337
Schweber Electronics 5720 N. Park Place N.E. Cedar Rapids, IA 52402
(319) 373-1417

## KANSAS

Component Specialties Inc.
8369 Nieman Road
Lenexa, KS 66214
Tel: (913) 492-3555

## MARYLAND

Arrow Electronics
4801 Benson Ave.
Baltimore, MD 21227
Tel: (301) 247-5200
TWX: 710-236-9005
Diplomat?Electronics Inc.
9150 Rumsey Road
Suite \#A6
Columbia, MD 21045
Tel: (301) 995-1226

MARYLAND (continued)
Schweber Electronics
9218 Gaither Rd.
Gaithersburg, MD 20760
Tel: (301) 840-5900
TWX: 710-828-9749

## MASSACHUSETTS

Arrow Electronics 96D Commerce Way
Wobum, MA 01801
Tel: (617) 933-8130
Kierulff Electronics 13 Fortune Dr. Billerica, MA 01821
Tel: (617) 667-8331
TWX: 710-390-1449
Schweber Electronics 25 Wiggins Ave.
Bedford, MA 01730
Tel: (617) 275-5100

## MICHIGAN

Arrow Electronics
3801 Varsity Dr.
Ann Arbor, MI 48104
Tel: (313) 971-8220
TWX: 810-223-6020
Schweber Electronics
33540 Schoolcraft
Livonia, MI 48150
Tel: (313) 525-8100

## MINNESOTA

Arrow Electronics
5230 W. 73rd St.
Edina, MN 55435
Tel: (612) 830-1800
TWX: 910-576-3125
Kierulff Electronics
5280 West 7th St.
Edina, MN 55435
Tel: (612) 835-4388
Schweber Electronics
7422 Washington Avenue South
Eden Prairie, MN 55343
Tel: (612) 941-5280

## MISSOURI

LCOMP
2550 Harley Dr.
Maryland Heights, MO 63043
Tel: (314) 291-6200
TWX: 910-762-0632
LCOMP
2211 River Front Dr.
Kansas City, MO 64120
Tel: (816) 221-2400
TWX: 910-771-3148

## NEW HAMPSHIRE

Arrow Electronics
One Perimeter Rd.
Manchester, NH 03103
Tel: (603) 668-6968

## NEW JERSEY

## Arrow Electronics

Pleasant Valley Ave.
Moorestown, NJ 08057
Tel: (609) 235-1900
TWX: 710-897-0829
Arrow Electronics
285 Midland Ave.
Saddle Brook, NJ 07662
Tel: (201) 797-5800
TWX: 710-988-2206
Diplomat Electronics Inc. 490 South Riverview Dr.
Totowa, NJ 07512
Tel: (201) 785-1830
Panda Electronics Inc.
370 Union Boulevard
Totowa, NJ 07512
Tel: (201) 595-1011
Schweber Electronics
18 Madison
Fairfield, NJ 07006
Tel: (201) 227-7990

## NEW MEXICO

Alliance Electronics
11030 Cochiti S.E.
Albuquerque, NM $87-123$
Tel: (505) 292-3360
Arrow Electronics
2460 'Alamo Avenue, S.E.
Albuquerque, NM 87106
Tel: (505) 243-4566

## Bell Industries

Century Electronics Div.
11728 Linn, NE
Albuquerque, NM 87123
Tel: (505) 292-2700
TWX: 910-989-0625

## NEW YORK

Arrow Electronics 900 Broad Hollow Rd.
Farmingdale, NY 11735
Tel: (516) 694-6800
TWX: 510-224-6494
Arrow Electronics
20 Oser Ave.
Hauppauge, NY 11787
Tel: (516) 231-1000
Arrow Electronics 7705 Maltlage Drive Liverpool, NY 13088
Tel: (315) 652-1000
Arrow Electronics 3000 South Winton Rd Rochester, NY 14623
Tel: (716) 275-0300
Components Plus
40 Oser Ave.
Hauppauge, NY 11787
Tel: (516) 231-9200
TWX: 510-227-9869

## NEW YORK (continued)

Harvey Electronics
P.O. Box 1208

Binghamton, NY 13902
Tel: (607) 748-8211.
TWX: 510-252-0893
Harvey Electronics
840 Fairport Park

- Fairport, NY 14450

Tel: (716)
TWX: 510-253-7001
Schweber Electronics
Jericho Turnpike
Westbury, NY 11590
Tel: (516) 334-7474
TWX: 510-222-3660
Schweber Electronics
2 Townline Circle
Rochester, NY 14623
Tel: (716) 424-2222
Summit Distributors Inc. 916 Main St.
Buffalo, NY 14202
Tel: (716) 884-3450
TWX: 710-522-1692

## NORTH CAROLINA

Arrow Electronics
938 Burke St.
Winston-Salem, NC 27102
Tel: (919) 725-8711
RESCO/Raleigh
Rt. 8 Box 116-B
Highway 70 West
Raleigh, NC 27612
Tel: (919) 781-5700
TWX: 510-928-0590

## OHIO

Arrow Electronics
P.O. Box 37856

Cincinnati, OH $45222^{-}$
Tel: (513) 761-5432
TWX: 810-461-2670
Arrow Electronics
7620 McEwen Road
Centerville, Ohio 45459
Tel: (513) 435-5563
TWX: 810-459-1611
Arrow Electronics
6238 Cochran
Solon, OH 44139
Tel: (216) 248-3990
Schweber Electronics
23880 Commerce Park Rd.
Beachwood, OH 44122
Tel: (216) 464-2970
TWX: 810-427-9441

## OKLAHOMA

Component Specialties Inc.
7920 E 40th St.
Tulsa, OK 74145
Tel: (918) 664-2820

## OREGON

Parrott Electronics
8058 S.W. Nimbus Dr.
Beaverton, OR 97005
Tēl: (503) 641-3355
TWX: 910-467-8720

## PENNSYLVANIA

Arrow Electronics
650 Seco Rd.
Monroeville, PA 15146
Tel: (412) 856-7000
Schweber Electronics
101 Rock Rd.
Horsham, PA 19044
Tel: (215) 441-0600

## TEXAS

Arrow Electronics
13715 Gamma Rd.
Dallas, TX 75234
Tel: (214) 386-7500
Arrow Electronics
10700 Corporate Dr.
Stafford, TX 77477
Tel: (713) 491-4100
Component Specialties Inc.
8222 Jamestown Dr. Suite \#115
Austin, TX 78757
Tel: (512) 837-8922
Component Specialties Inc.
10907 Shady Trail
Suite \#101
Dallas, TX 75220
Tel: (214) 357-6511,
Component Specialties Inc.
8181 Commerce Park Dr.
Suite \#700
Houston, TX 77036
Tel: (713) 771-7237
Schweber Electronics
14177 Proton St.
Dallas, TX 75234
Tel: (214) 661-5010
TWX: 910-860-5493
Schweber Electronics
7420 Harwin Dr.
Houston, TX 77036
Tel: (713) 784-3600
TWX: 910-881-1109

## UTAH

Bell Industries
Century ELectronics Div.
3639 West 2150 South
Salt Lake City, UT 84120
Tel: (801) 972-6969
TVX: 910-925-5698
Diplomat ELectronics
3007 S. West Temple, Suite \#C
Salt Lake City, UT 84115
Tel: (801) 486-4134
Kierulff Electronics
2121 S. 3600 West
Salt Lake City, UT 84119
Tel: (801) 973-6913

## WASHINGTON

Kierulff Electronics
1005 Andover Park East
Tukwila, WA 98188
Tel: (206) 575-4420
Wyle Distribution Group
1750 132nd Ave., NE
Bellevue, WA 98005
Tel: (206) 453-8300

## WISCONSIN

Arrow Electronics 430 W. Rawson Ave. Oak Creek, WI 53154
Tel: (414) 754-6600
TWX: 910-262-1193
Kierulff Electronics
2212 E. Moreland Ave.
Waukesha, WI 63186
Tel: (414) 784-8160

## CANADA

Cardinal Electronics
10630172 St.
Edmonton, Alberta
Canada T5J 2P4
Tel: (403) 483-6266
CESCO
4050 Jean Talon St. W
Montreal, Quebec
Canada H4P 1W1
Tel: (514) 735-5511
TWX: 610-421-3302
CESCO
24 Martin Ross Ave.
Downsview, Ontario
Canada M3J 2K9
Tel: (416) 661-0200
CESCO
24 Martin Ross Ave.
Downview, Ontario
Canada M3J 2K9
Tel: (416) 661-0220
R.A.E. Ind. Elect. Ltd.

3455 Gardner Ct.
Burnaby, British Columbia
Canada V5C 4 J 7
Tel: (604) 291-8866
TWX: 610-929-3065
TLX: 04-356533
Zentronics Ltd.
1355 Meyerside Dr.
Mississauga, Ontario
Canada L5T 1C9
Tel: (416) 676-9000
TLX: 06-983657.
Zentronics Ltd.
480A Dutton Dr.
Waterloo, Ontario
Canada N2L 4C6
Tel: (519) 884-5700
Zentronics Ltd.
5010 Pare St.
Montreal, Quebec
Canada H4P 1P3
Tel: (514) 735-5361
TLX: 05-827535
Zentronics Ltd.
141 Catherine St.
Ottawa, Ontario
Canada K2P 1C3
Tel: (613) 238-6411
TLX: 053-3636
Zentronics Ltd.
590 Berry Street
Winnipeg, Manitoba
Canada R3H OS1
Tel: (204) 775-8661


[^0]:    *JAN processing consists of a sample Group B pulled from the production run.
    JANTX processing consists of JAN processing plus $100 \%$ electrical read and record. and $100 \%$ burn-in.
    JANTVX processing consists of JANTX processing plus $100 \%$ pre-cap visual and on-shore assembly.

[^1]:    NOTES:

    1. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
    2. Measured at end points, $T_{A}$ and $T_{B}$.
[^2]:    NOTES:

    1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $\mathrm{T}_{\mathrm{A}}$. 2. Pulse test duration $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \% .3 . \mathrm{CMRR}=20 \log _{10}\left[\frac{\Delta V_{D D}}{\Delta\left|\mathrm{VGSI}_{1-}-\mathrm{V}_{\mathrm{GS} 2}\right|}\right]$ $\Delta V_{D D}=10 \mathrm{~V}$. 4. Measured at end points, $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{B}}$ and T C .
[^3]:    1. Maximum ratings are limiting values above which devices may be damaged. These ratings give a maximum junction temperature of 200 C .
    2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{~A}$.
    3. Lower of two $h_{F E}$ readings is defined as $h_{F E}{ }_{1}$.
[^4]:    ${ }^{*} V_{G S}^{\prime}=V_{G S}-V_{\text {th }}$

[^5]:    NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the MOS.FET switch for the given test condition.

[^6]:    APPLICATION HINT (for design only): The minimum signal handing capability of the 1 H 181 through 1 H 191 family is 20 V peak to peak for the $75 \Omega$ switches and
    15 V peak to peak for the $30 \Omega$ switches (refer ID and IS tests above. Proper switch turn off requires that $V-\leq V_{A N A L O G}(-$ peak $)-V_{P}$ where $V_{P} \leqslant 7.5 V$ for $30 \Omega$ switches and $V_{p} \leqslant 5.0 \mathrm{~V}$ for $75 \Omega$ switches i.e., $A-10 \mathrm{~V}$ minimum (-peak) analog signal and a $75 \Omega$ switch ( $V p \leqslant 5 \mathrm{~V}$ ), requires that $\mathrm{V}-\leqslant-10 \mathrm{~V}-5 \mathrm{~V}=-15 \mathrm{~V}$.

[^7]:    NUMBERS IN PARENTHESES INDICATE CERAMIC PACKAGE PIN-OUT

[^8]:    Numbers in parentheses indicate CERAMIC PACKAGE LAYOUT

[^9]:    **ICL7109 recommended as more cost effective in most applications.
    ***ICL8052/8068 and ICL8053 can be combined as analog portion of dual-slope AD converter under $\mu$ p control. See ICL8052/8068 and ICL 7104-16 for performance characteristics.

[^10]:    *Values depend on clock frequency. See Figure 9, 10, 11.

[^11]:    (1) Tested in $31 / 2$ digit ( 2,000 count) circuit shown in Fig. 1 clock frequency 20 kHz .

[^12]:    *See package key, page 5-5.

[^13]:    Converts positive voltage into negative voltages over a range of +1.5 V through +10 V . May be cascaded for higher negative output voltages, paralleled for greater output current, used as a positive voltage multiplier, or any combination of the above. Typical supply current is $170 \mu \mathrm{~A}$, and output source resistance is $55 \Omega$ at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{O}}=$ 20 mA .

[^14]:    * See package key above.

[^15]:    * 300 Only Guaranteed $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

[^16]:    *Add/883B to order number if 883 B processing is desired.

[^17]:    * Add $/ 883 \mathrm{~B}$ to order number if 883 B processing is desired.

[^18]:    * Add /883B to order number if 883B processing is desired.

[^19]:    Note 1: The maximum junction temperature of the LH2108/A is $150^{\circ} \mathrm{C}$, and that of the $\mathrm{LH} 2308 / \mathrm{A}$ is $85^{\circ} \mathrm{C}$. The thermal resistance of the packages is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
    Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
    Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
    Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified, and the LH2308A/LH2308 for $\pm 5 \mathrm{~V} \leq$ $\mathrm{V}_{\mathrm{S}} \leq 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.

[^20]:    *883B processing is available for these devices. Order -8 instead of $\mathbf{- 2}$.

[^21]:    * Add /883B to order number if 883B processing is desired.

[^22]:    Note: For evaluation only the ICM7272 is available in a 40 pin ceramic DIP with 0.1 " pin-to-pin and 0.6 " row-to-row spacing. Order part number: ICM72721DL

[^23]:    *See package and temperature key, p 8-2

[^24]:    * If 883B processing is desired add /883B to order number.

[^25]:    * If 883 B processing is desired add 1883 B to order number.

[^26]:    Note: See Figure 2 for an A.C. Timing Diagram.

[^27]:    * Don't care for write and zero for read.

    Where ENO - . When set to 1 , enables clock overflow (COF flag) to cause an interrupt. Cleared by RESET, CAF.
    EN2 - $\quad$ When reset to a 0 -counter runs at selected rate. Overflow occurs every 4096 (212) counts.COF flag remains set until cleared by IOT 6135 (CLSA), CAF, RESET.

[^28]:    * For 883B processing add /883B to order number.

[^29]:    * $\mathrm{STR}=\mathrm{V}_{\mathrm{CC}}$, all other inputs $=\mathrm{V}_{\mathrm{CC}}$ or GND

[^30]:    1.) AC Test Conditions: Input rise and fall times are 20 ns ; Output load is 1 TTL load and 50 pf . All timing measurements are taken at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$.

[^31]:    (1) PDP-8 is a registered trademark of Digital Equipment Corp.

[^32]:    - Teletype is a registered trademark of Teletype, Inc.

