$\sqrt[4]{\sqrt{5}} \sqrt{5} \sqrt{5}$

INTESTIL Data Book

Intersil reserves the right to make changes in the circuitry or specifications contained herein at any time without notice.

Intersil assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Intersil, Inc.
10710 N. Tantau Avenue Cupertino, California 95014
U.S.A.

Tel: (408) 996-5000
TWX: 910-338-0533 (INTRSLINT CPTO)
©Copyright, Intersil, Inc.

INTRODUCTION

Intersil, Inc. is a forward-integrated multi-technology company involved in the design, development, manufacture and marketing of large-scale integrated circuits, analog devices, microsystems, and systems for computers, computer-related equipment, and a wide range of other digital and analog applications.

The company produces analog and digital integrated circuits, using CMOS/LSI, MOS/LSI, low-power CMOS and bipolar LSI technologies. Applications and markets include data processing, industrial process control, portable and fixed instrumentation, RF and telecommunications and data acquisition, conversion and processing.

Our systems division is a major manufacturer of add-on memories for upgrading IBM's 303X series computers and the mid-sized 370 mainframes. This group manufactures a number of custom and standard microsystems and memory expansion boards for numerous micro and minicomputer applications.

Significant new semiconductor products introduced in 1979 include:

- VMOS Power FETs - A major breakthrough in power transistor technology, with ultra-fast 2 nanosecond switching times and direct digital logic drive. The product line includes $2 \mathrm{amp}, 5 \mathrm{amp}$ and 13 amp families with breakdowns to 400V for excellent linearity and reduced cost/ size, for applications including pulse generator, power supply switching, and RF equipment.
- CMOS Multiplexers - One-of-16, 2-of-8, 1-of-8 and 2-of-4 single ended and differential analog multiplexers which feature very low power consumption and low error terms.
- CMOS Micropower Op Amps - A complete family of high-performance op amps - singles, duals, triples, and quads - which feature rail-to-rail and output voltage swings at V_{S} from $\pm 0.5 \mathrm{~V}$ to $\pm 8.0 \mathrm{~V}$.
- ICL7112 Monolithic MOS D/A Converter - Employs laser trimming and absolute matrix positioning for improved performance at low cost.
- ICL7109 Monolithic 12-Bit A/D Converter - Specifically designed for direct interface with most popular microprocessors for data-logging operations.
- ICL7600/ICL7605 CAZ Amps - A family of revolutionary new ultra-stable operational and instrumentation amplifiers, in which a unique commutating auto-zero principle virtually eliminates V_{OS} and drift with temperature and time.
- ICM7217/ICM7227 Multipurpose Up/Down Counters The first four-digit devices to incorporate five counting functions on a single chip.
- ICM7216/ICM7226 Microprocessor-Compatible Counters - A family of universal counter chips capable of dramatically improving the design and performance of portable and laboratory counting instrumentation.
- IM6653/IM6654 CMOS EPROMs - A series of ultraviolet erasable and reprogrammable 4 K read-only memories.
- 2147 4K Static RAM - A random access memory chip featuring access times of less than 100 nanoseconds and employing Intersil's exclusive SeloxTM fine-geometry process technology.
- IM87C48/87C41 8-bit Monolithic CMOS Microprocessors - Pin-and-function compatible with the NMOS 8748/8741 microprocessors, but which employ an advanced high-density technology for reduced power dissipation and improved noise linearity.

Intersil's full range of quality integrated circuits and discrete devices is available through a worldwide network of stocking distributors. Field sales offices are located in all major market areas of the United States and Canada to provide a high level of product support. A complete listing of these distributors, Sales Representatives and Company Sales Offices is included at the end of this publication.

Table of Contents

A General Information
Introduction A-2
How to Use This Publication A-4
Base Number Index A-5
Functional Index A-8
IC Alternate Source Index A-10
Discrete Alternate Source Index A-12
1 Discretes 1-1
2 vmos 2-1
3 Analog Switches and Gates $3-1$
4 Data Acquisition 4-1
5 Linear 5-1
6 Timers, Counters, and Digit Drivers 6-1
7 Digital 7-1
B Appendix B-1
Application Note Summary B-2
High Reliability Processing B-4
Chip Ordering Information B-10
Intersil Part Numbering System B-16
Sales Offices, Distributors and Representatives B-18

A

BASE NUMBER INDEX

If you have only the basic part number of a device on which you seek further information, use the Base Number Index as a locator aid. The Base Number Index is organized in numeric-alpha sequence, with prefix letters appearing in bold type. Devices are arranged in this index according to the numeric value of the first digit on the left, then the value of the second digit, then the third, and so on. For example, device number ICM 7218 precedes ICL 741. No package/ temperature/pin number suffixes are included, but may be obtained from the specific product data page to which you are directed.

FUNCTIONAL INDEX

Provides an index of Intersil device types categorized by product grouping and function. The first major subsection, DISCRETES, is further subdivided into categories for JFETs, MOSFETs and special function devices. VMOS, the next major subsection, is arranged according to device characteristics for r_{DS} (ON). All remaining major subsections (ANALOG SWITCHES/MULTIPLEXERS, DATA ACQUISITION, LINEAR, TIMERS/COUNTERS, MEMORIES, MICROPROCESSORS/PERIPHERALS and DEVELOPMENT SYSTEMS) are organized alphabetically by function within each grouping. The Functional Index appears in its entirety in the front matter section of this publication, and an appropriate sub-index appears at the beginning of each major product subsection.

CROSS-REFERENCE GUIDES

Two cross-reference guides are provided, including one for discrete devices and one for integrated circuits.

The discrete device cross reference indicates whether Intersil can provide the industry-standard type, or an Intersil-preferred part instead.

The IC alternate source cross-reference lists competitive manufacturer device types for which Intersil makes pin-for-pin replacements. In the left-hand column, the competitive device part number is organized alphabetically by manufacturer. The Intersil pin-for-pin replacement appears in the right-hand column.

SELECTOR GUIDES

Selector guide tables appear at the front of each major product category subsection, and provide a quick-reference of key parameters for the devices contained in that section.

DEVICE FUNCTION/PACKAGE CODES

Diagrams which provide decoding information for device prefix and suffix codes are provided as rear matter material.

DIE SELECTION CRITERIA

Many of Intersil's semiconductor products are available in die form. This section contains general information on criteria for transistor and integrated circuit die selection, including physical parameters; packaging for shipment, assembly, testing, and purchase options.

HIGH-RELIABILITY PROCESSING

Defines Intersil's committment to 100 percent compliance with MIL-STD-883, MIL-STD-750, MIL-M-38510 and MIL-S-19500 specifications. Also outlines Intersil's programs for quality conformance, quality testing and limited use qualification, and includes a glossary of military/aerospace Hi-Rel terms.

BASE NUMBER INDEX

	PE \#	PAGE	TYPE \#	PAGE	TYPE \#.	PAGE	TYPE \#	PAGE
	0042	5-131	IT 132	1-93	DG 183	3-60	HA 2525	5-149
	100	1-96	DG 133	3-52	DG 184	3-60	HA 2527	5-154
	100	1-20	DG 133A	3-52	IH 184	3-72	LF 255	5-116
LM	100	5-254	G 1330	3-143	DG 185	3-60	LF 256	5-116
ICL 101ALN		5-57	DG 134	3-52	IH 185	3-72	LF 257	5-116
	101	$\begin{aligned} & 1-96 \\ & 1-20 \\ & 5-50 \\ & 5-50 \\ & 5-223 \end{aligned}$	$\begin{array}{cc} \text { DG } & 134 A \\ \mathbf{G} & 1340 \\ \mathbf{G} & 1350 \\ \text { IT } & 136 \\ \mathbf{G} & 1360 \end{array}$	$\begin{aligned} & 3-52 \\ & 3-143 \\ & 3-143 \\ & 1-94 \\ & 3-143 \end{aligned}$	DG 186 DG 187 IH 187 3N 188 DG 188	$\begin{aligned} & 3-60 \\ & 3-60 \\ & 3-72 \\ & 1-79 \\ & 3-60 \end{aligned}$	$\begin{array}{ll} \text { U } 257 \\ \text { HA } 2600 \\ \text { HA } 2602 \\ \text { HA } 2605 \\ \text { 2N } 2606 \end{array}$	$\begin{aligned} & 1-66 \\ & 5-143 \\ & 5-143 \\ & 5-143 \\ & 1-43 \end{aligned}$
IT	101							
AD	101A							
	101A							
	105	5-258	IT 137	1-94	IH 188	3-72	2N 2607	1-43
LM	107	5-69	IT 138	1-94	3N 189	1-79	HA 2607	5-147
ICL	108ALN	5-57	IT 139	1-94	DG 189	3-60	2N 2608	1-43
	108	5-71	LM 139	5-215	3N 190	1-79	2N 2609	1-43
LM	108A	5-71	LM 139A	5-215	DG 190	3-60	2N 2609JTX	1-43
	110	$\begin{aligned} & 4-45 \\ & 5-223 \\ & 3-40 \\ & 1-17 \\ & 4-45 \end{aligned}$	$\begin{array}{l:l} \text { DG } & 139 \\ \text { DG } & 139 \mathrm{~A} \\ \text { DG } & 140 \\ \text { DG } & 140 \mathrm{~A} \\ \text { DG } & 141 \end{array}$	$\begin{aligned} & 3-56 \\ & 3-56 \\ & 3-52 \\ & 3-52 \\ & 3-52 \end{aligned}$	IH 190 3N 191 DG 191 IH 191 LM 194	$\begin{aligned} & 3-72 \\ & 1-79 \\ & 3-60 \\ & 3-72 \\ & 1-88 \end{aligned}$	$\begin{gathered} \text { HA } 2620 \\ \text { HA } 2622 \\ \text { HA } 2625 \\ \text { HA } 2627 \\ \text { J } 270 \end{gathered}$	$\begin{aligned} & 5-143 \\ & 5-143 \\ & 5-143 \\ & 5-147 \\ & 1-22 \end{aligned}$
	110							
	111							
	111							
	111							
	111	5-207	DG 141A	3-52	VCR 2 N	1-99	J 271	1-22
	112	3-30	DG 142	3-56	IH 200	3-78	LM 2901	-5-215
		3-40	DG 142A	3-56	IH 201	3-81	LM 2902	5-75
	112	$1-17$$3-30$	$\begin{array}{ll}\text { DG } & 143 \\ \text { DG } & 143 \mathrm{~A}\end{array}$	$\begin{aligned} & 3-56 \\ & 3-56 \end{aligned}$	IH 202	3-81	VCR 3P	1-99
	113		DG 143A		LM 202	5-223	VN 30AA	2-5
	113	1-17	DG 144.	3-56	LM 207	5-69	VN 30AB	2-11
	114	4-45	DG 144A	3-56	LM 208	5-71	LM 300	5-254
		3-135	$\begin{array}{ll}\text { DG } & 145 \\ \text { DG } & 145 \mathrm{~A}\end{array}$	3-56	LM 210	5-223	AD 301A	5-50
	116	3-44	$\begin{array}{ll}\text { DG } & 145 A \\ \text { DG } & 146\end{array}$	$3-56$ $3-56$	LH 2101A	5-65	LM 301A	5-50
	116			3-56	LH 2108	5-67	ICL 301ALN	5-57
	116	$\begin{aligned} & 3-139 \\ & 1-72 \\ & 3-139 \end{aligned}$	DG 146A		LH 2108A	5-67	LM 302	5-223
G	117		DG 151	$\begin{aligned} & 3-52 \\ & 3-52 \\ & 3-5 \end{aligned}$	LM 211	$\begin{aligned} & 5-207 \\ & 5-228 \end{aligned}$	U 304LM 305	1-47
			DG 151A					5-258
	118 118		DG 152	3-52	LH 2111	5-213	U 305	1-47
	119	3-139	DG 152A	3-52	2114	7-4	U 306	1-47
	120	3-30	DG 153	3-52	2147	7-8	LM 307	5-69
	120	3-48	DG 153A		LM 224	5-75	ICL 308LN	5-57
			DG 154		LM 224A	$\begin{aligned} & 5-75 \\ & 5-65 \end{aligned}$	J 308LM 308	1-42
	$\begin{aligned} & 120 \\ & 120 \mathrm{~A} \end{aligned}$	1-82	LF 155	$\begin{aligned} & 3-52 \\ & 5-116 \end{aligned}$				5-71
	121	3-30			LH 2308	5-67	LM 308A	5-71
DG	121	3-48	LF 155A	5-116	LH 2308A	5-67.	U 308	1-40
	121	1-82	LF 156	5-116	U 231	1-65	J 309	1-42
		1-82	LF 156A	5-116	LH 2310	5-228	U 309	1-40
	123	3-34	LF 15157	5-116	LH 2311	5-213	J 310	1-42
DG	123	3-44	LF 157A	5-116	U 232	1-65	LM 310	5-223
G	123	3-135	3N 160	1-73	U 233	1-65	U 310	1-40
	124	1-83	3N 161	1-74	U 234	1-65	LM 311	5-207
	124A	$1-84$$1-85$	161 161	3-56 $3-56$	U 235	$\begin{aligned} & 1-65 \\ & 1-64 \end{aligned}$	U 311	$\begin{aligned} & 1-40 \\ & 5-75 \end{aligned}$
	124B		DG 161A	3-56	SU 2365		LM 324 A	
	124	5-75$3-34$	DG 162		SU $2365 A$ SU 2366 SU $2366 A$ SU 2367 SU $2367 A$	1-64		5-75$5-215$
	125		DG 162A	3-56		1-64	MC 3302	
DG	125	3-44	3N 163 DG	1-75		1-64	2N 3329	1-44
	125	3-143	$\begin{array}{lll}\text { DG } & 163 \\ \text { DG } & 163 \mathrm{~A}\end{array}$	$3-56$ $3-56$		1-64	2N 3330	1-44
	125	$\begin{aligned} & 1-86 \\ & 3-52 \\ & 3-143 \\ & 1-87 \end{aligned}$	3N 164	1-75	SU 2368	1-64	2N 3331	5-215
DG	126						LM 339	
	126		DG 164	3-56	SU 2368A	1-64	LM 339A	5-215
	126		DG 164A	3-56	SU 2369	1-64	VN 35AA	2-5
DG	126A	$\begin{aligned} & 3-52 \\ & 3-143 \\ & 1-87 \\ & 3-143 \\ & 1-87 \end{aligned}$	3N 165	$1-78$ $1-78$	LM 239	$1-64$$5-215$	VN 35AB	$\begin{aligned} & 2-11 \\ & 2-7 . \end{aligned}$
	127.		3N 169	$1-78$ $1-70$				
	127			1-70		5-215	VN 35AK	2-13
	128		3N 170	$1-70$ $1-77$	2N 2453	1-80	LF 355	5-116
	128		IT 1700	$1-77$ $1-70$	$\begin{array}{ll}\text { 2N } & 2453 A \\ \text { HA } & 2500\end{array}$	$1-80$ $5-149$	LF $\mathbf{L F} 356{ }^{\text {a }}$	5-116 $5-116$
	129	$3-38$$3-52$3		$\begin{aligned} & 1-76 \\ & 1-76 \end{aligned}$	AM 2502	4-123	LF 356A	-
DG	129		172 173		$\begin{array}{ll}\text { HA } & 2502 \\ \text { AM } & 2503\end{array}$	5-149		5-116
IT	129	$3-52$ $3-143$ 1	J 174	1-21			$\begin{array}{lll} \text { LF } & 357 \\ \text { LF } & 357 \mathrm{~A} \end{array}$	
G	130	3-143	IT 1750	$1-71$$1-21$	AM 2504	4-123$5-149$	2N 3684	5-116
$\begin{array}{ll} \text { IT } & 130 \\ \text { IT } & 130 \mathrm{~A} \\ \mathbf{G} & 131 \\ \text { IT } & 131 \\ \mathbf{G} & 132 \end{array}$			J 175J 176		HA 2505		2N 3685	1-25
		$1-21$$1-21$		$\begin{aligned} & 2507 \\ & 2510 \end{aligned}$	$\begin{aligned} & 5-154 \\ & 5-149 \end{aligned}$	2N 3686	- 1-25	
		$\begin{aligned} & 1-93 \\ & 1-93 \\ & 3-143 \\ & 1-93 \\ & 3-143 \end{aligned}$	J 176 J 177			2N 3687 2N 3810 2N 3810 A 2N 3811 2N 3811 A	$\begin{aligned} & 1-25 \\ & 1-90 \\ & 1-90 \\ & 1-90 \\ & 1-90 \end{aligned}$	
		$\begin{array}{cc} \text { DG } & 180 \\ \text { DG } & 181 \\ \text { IH } & 181 \\ \text { DG } & 182 \\ \text { IH } & 182 \end{array}$	$\begin{aligned} & 3-60 \\ & 3-60 \\ & 3-72 \\ & 3-60 \\ & 3-72 \end{aligned}$	HA 2512 HA 2515 HA 2517 HA 2520 HA 2522	$\begin{aligned} & 5-149 \\ & 5-149 \\ & 5-154 \\ & 5-149 \\ & 5-149 \end{aligned}$			

BASE NUMBER INDEX

TYP	\# \#	PAGE
2N	3821	1-26
2N	3821JTX	1-26
2N	3822	1-26
2N	3823	1-27
2N	3823JTX	1-27
2 N	3824	1-28
2N	3921	1-48
2N	3922	1-48
LM	394	1-88
2N	3954	1-49
2N	3954A	1-49
2N	3955	1-49
2N	3955A	1-49
2N	3956	1-49
2N	3957	1-49
2N	3958	1-49
2 N	3970	1-8
2 N	3971	1-8
2 N	3972	1-8
2N	3993	1-18
2N	3994	1-18
VCR	4 N	1-99
VN	40AF	2-15
IH	401	3-130
U	401	1-67
U	402	1-67
IM	4027	7-12
U	403	1-67
IT	404	1-98
U	404	1-67
2 N	4044	1-81
2 N	4045	1-81
U	405	1-67
U	406	1-67
2N	4091	1-9
2N	40911JTX	1-9
ITE	4091	1-1.5
2 N	4092	1-9
2N	4092.JTX	1-9
ITE	4092	1-15
2N	4093	1-9
2 N	4093JTX	1-9
ITE	4093	1-15
2N	4100	1-81
IM	4116	7-20
2N	4117	1-29
2 N	4117A	1-29
2N	4118	1-29
2N	4118A	1-29
2N	4119	1-29
2N	4119A	1-29
U	421	1-68
U	422	1-68
2N	4220	1-30
2 N	4220A	1-30
2N	4221	1-30
2 N	4221A	1-30
2 N	4222	1-30
2N	4222A	1-30
2N	4223	1-31
2N	4224	1-31
U	423	1-68
U	424	1-68
U	425	1-68
ICL	4250	5-160
ICL	4250 C	5-160
DG	426A	3-64
U	426	1-68
DG	429A	3-64
DG	433A	3-64
2N	4336	1-32
2N	4339	1-32
DG	434A	3-64
2 N	4340	1-32
2 N	4341	1-32

TYP	\#	PAGE
2N	4351	O1-69
DG	439A	3-68
2N	4391	1-10
ITE	4391	1-16
2N	4392	1-10
ITE	4392	1-16
2N	4393	1-10
ITE	4393	1-16
DG	440A	3-64
DG	441A	3-64
2N	4416	1-33
2N	4416A	1-33
ITE	4416	1-38
DG	442A	3-68
DG	443A	3-68
DG	444A	3-68
DG	445A	3-68
DG	446A	3-68
MM	450	3-145
MM	451	3-145
DG	451A	3-64
MM	452	3-145
DG	452A	3-64
DG	453A	3-64
DG	454A	3-64
MM	455	3-145
VN	46AF	2-17
DG	461A	3-68
DG	462A	3-68
DG	463A	3-68
DG	464A	3-68
2 N	4856	1-11
2 N	4856JTX	1-11
2 N	4857	1-11
2 N	4857JTX	1-11
2 N	4858	1-11
2 N	4858JTX	1-11
2 N	4859	1-11
2N	4860	1-11
2 N	4861	1-11
2 N	4867	1-34
2 N	4867A	1-34
2 N	4868	1-34
2 N	4868A	1-34
2 N	4869	1-34
2 N	4869A	1-34
2 N	4878	1-81
2 N	4879	1-81
2N	4880	1-81
VCR	5P	1-99
IT	500	1-62
IVN	5000A	2-23
IVN	5000S	2-19
IH	5001	3-84
IVN	5001A	2-23
IVN	5001S	2-19
IH	5002	3-84
IH	5003	3-86
IH	5004	3-86
IH	5005	3-88
IH	5006	3-88
IH	5007	3-88
IH	5009	3-92
IT	501	1-62
IH	5010	3-92
	5011	3-92
	5012	3-92
IH	5013	3-92
IH	5014	3-92

TYP	\#	PAGE	TYPE \#		PAGE
IH	5015	3-92	2 N	5267	1-45
IH	5016	3-92	2N	5268	1-45
IH	5017	3-92	2 N	5269	1-45
IH	5018	3-92	2N	5270	1-45
IH	5019	3-92	SU	536	5-140
IT	502	1-62	2N	5397	1-36
IH	5020	3-92	2N	5398	1-36
IH	5021	3-92	2N	5432	1-12
IH	5022	3-92	2N	5433	1-12
IH	5023	3-92	2 N	5434	1-12
IH	5024	3-92	2N	5452	1-51
IH	5025	3-98	2N	5453	1-51
IH	5026	3-98	2N	5454	1-51
IH	5027	3-98	2N	5457	1-37
IH	5028	3-98	2 N	5458	1-37
IH	5029	3-98	2N	5459	1-37
AD	503	5-95	2N	5460	1-46
IT	503	1-62	2N	5461	1-46
IH	5030	3-98	2N	5462	1-46
IH	5031	3-98	2 N	5463	1-46
IH	5032	3-98	2N	5464	1-46
IH	5034	3-98	2 N	5465	1-46
IH	5035	3-98	2N	5484	1-38
IH	5036	3-98	2N	5485	1-38
IH	5037	3-98	2N	5486	1-38
IH	5038	3-98	MM	550	3-145
IH	5040	3-104	MM	551	3-145
IH	5041	3-104	2 N	5515	1-52
IH	5042	3-104	2N	5516	1-52
IH	5043	3-104	2N	5517	1-52
IH	5044	3-104	2 N	5518	1-52
IH	5045	3-104	2N	5519	1-52
IH	5046	3-104	MM	552	3-145
IH	5047	3-104	2 N	5520	1-52
IH	5048	3-104	2 N	5521	1-52
IH	5049	3-104	2N	5522	1-52
IH	5050	3-104	2 N	5523	1-52
IH	5051	3-104	2N	5524	1-52
IH	5052	3-114	MM	555	3-145
IH	5053	3-114	NE	555	6-26
IH	5101	5-63	SE	555	6-26
IH	5110	5-234.	2N	5555	1-13
IH	5111	5-234	NE	556	6-30
IH	5112	5-234	SE	556	6-30
IH	5113	5-234	2N	5564	1-23
2 N	5114	1-19	IMF	5564	1-24
2 N	5114JTX	1-19	2N	5565	1-23
IH	5114	5-234	IMF	5565	1-24
2N	5115	1-19	2N	5566	1-23
2N	5115JTX	1-19	IMF	5566	1-24
IH	5115	5-234	IM	5600	7-79
2 N	5116	1-19	IM	5603	7-83
2N	5116JTX	1-19	IM	5604	7-89
2N	5117	1-92	IM	5605	7-94
2N	5118	$1-92$	IM	5610	7-79
2N	5119	1-92	IM	5623	7-83
IH	5140	3-122	IM	5624	7-89
IH	5141	3-122	IM	5625	7-94
IH	5142	3-122	2 N	5638	1-14
IH	5143	3-122	2 N	5639	1-14
IH	5144	3-122	2N	5640	1-14
IH	5145	3-122	AD	590	5-240
2N	5196	1-50	2 N	5902	1-54
2N	5197	1-50	2 N	5903	1-54
2 N	5198	1-50	2N	5904	1-54
2N	5199	1-50	2N	5905	1-54
IM	5200	7-145	2 N	5906	1-54
IVN	5200H	2-35	2 N	5907	1-54
IVN	5200K	2-27	2 N	5908	1-54
IVN	5200T	2-31	2 N	5909	1-54
IVN	5201C	2-39	2N	5911	1-55
IVN	5201H	2-35	IMF	5911	1-58
IVN	5201K	2-27	2N	5912	1-55
IVN	5201T	2-31	IMF	5912	1-58
2N	5265	1-45	IM	6100	7-103
2 N	5266	1-45	IM	6101	7-156

TYPE \#
PAGE

Discrete
JFET Single Switches
A

N-channel	Page
2N3970-2	$1-8$
2N4091-3; JTX	$1-9$
2N4391-3	$1-10$
2N4856-61	$1-11$
2N4856JTX-8.JTX	$1-11$
2N5432-4	$1-12$,
2N5555	$1-13$
2N5638-40	$1-14$
ITE4091-3	$1-15$
ITE4391-3	$1-16$
J111-113	$1-17$
P-channel	
2N3993-4	$1-18$
2N5114-6; JTX	$1-19$
IT100-1	$1-20$
J174-177	$1-21$
J270, 271	$1-22$

JFET Dual Switches

N-channel	
2N5564-6	$1-23$
IMF5564-6	$1-24$

JFET Single

Amplifiers

N-channel	
2N3684-7	$1-25$
2N3821-2; 2N3821JTX	$1-26$
2N3823; JTX	$1-27$
2N3824,	$1-28$
2N4117-9; 2N4117A-9A	$1-29$
2N4220-2; 2N4220A-2A	$1-30$
2N4223-4	$1-31$
2N4338-41	$1-32$
2N4416, 2N4416A	$1-33$
2N4867-9, 2N4867A-9A	$1-34$
2N5397-8	$1-35$
2N5457-9	$1-36$
2N5484-6	$1-37$
ITE4466	$1-38$
U308-11	$1-39$
J308-10	$1-41$
P-channel	
2N2606-9,2N2609JTX	$1-43$
2N3329-31	$1-44$
2N5265-70	$1-45$
2N5460-5	$1-46$
U304-6	$1-47$

JFET Dual
Amplifiers

N-channel	
2N3921-2	$1-48$
2N3954-8	$1-49$
2N5196-9	$1-50$
2N5452-4	$1-51$
2N5515-24	$1-52$
2N5902-9	$1-54$
2N5911-2	$1-55$
2N6483-5	$1-56$
IMF5911-2	$1-58$
IMF6485	$1-60$
IT500-3	$1-62$
SU2365-9	$1-64$
SU2365A-9A	$1-64$
U231-5	$1-65$
U257	$1-66$
U401-406	$1-67$
U421-426	$1-68$

MOSFET
 Switches/ Amplifiers

N-channel		
2N4351		
3N169-71	$1-69$	
IT1750	$1-70$	
M116	\ddots	$1-71$
P-channel		$1-72$
3N160		
3N161		
3N163-4	$1-73$	
3N172-3	$1-74$	
IT1700	$1-75$	
Dual P-channel	$1-76$	
3N165-6	$1-77$	
3N188-91		
Bipolar Dual	$1-78$	
Amplifiers		

Amplifiers

NPN	
2N2453; 2N2453A	
2N4044-5; 2N4100;	$1-80$
2N4878-80	$1-81$
IT120-2	$1-82$
IT124	$1-83$
IT124A	$1-84$
IT124B	$1-85$
IT125	$1-86$
IT126-7	$1-87$
LM194/394	$1-88$
PNP	
2N3810-1; 2N3810A-1A	$1-90$
2N5117-19	$1-92$
IT130-2	$1-93$
IT136-9	$1-94$
Special Function	
High Speed Dual Diodes	
ID100/1	$1-96$
Log/Antilog Transistors	
IT404	$1-98$
Voltage Controller	
Resistors	
VCR2-7	$1-99$
Analog Switches	
IT401/401A	$3-130$

VMOS Switch Index

$\mathbf{r}_{\text {DS (on) }}=2$ ohms	
IVN6657/IVN6658	$2-3$
VN30AA/35AA/67AA/	$2-5$
89AA/90AA	$2-7$
VN35AJ/66AJ/67AJ/	2
98AJ/99AJ	$2-7$
IVN6660/VN6661	$2-9$
VN30AB/35AB/67AB/	$2-11$
89AB/90AB	
VN35AK/66AK/67AK/	
98AK/99AK	$2-13$
VN40AF/67AF/89AF	$2-15$
VN46AF/6AAF/88AF	$2-17$
IVN5000/5001S series	$2-19$
IVN5000/5001A series	$2-23$
$\mathbf{r}_{\text {DS (on) }}=0.4$ ohm	
IVN5200/5201K series	$2-27$
IVN5200/5201T series	$2-31$
IVN5200/5201H series	$2-35$
IVN5201C series	$2-39$

Analog Gates/ Switches/ Multiplexers

Multiplexers

Analog Gates/	
Switches/	
Multiplexers	
Multiplexers	
IH6108	
IH6116	$3-6$
IH6208	$3-12$
IH6216	$3-18$
Analog Switch	
Drivers	
D112/113/120/121	$3-30$
D123, D125	$3-34$
D129	$3-38$

Analog Switches	
with Drivers	-
DG111/112	$3-40$
DG116/118/123/125	$3-44$
DG120/121	$3-48$
DG126A Family	$3-52$
DG139A Family	$3-56$
DG180-191	$3-60$
DG426A Family	$3-64$
DG439A Family	$3-68$
IH181-185, 187-191	$3-72$
IH200	$3-78$
IH201/202	$3-81$
IH5001/2	$3-84$
IH5003/4	$3-86$
IH5005-7	$3-88$
IH5009-24	$3-92$
IH5025-38	$3-98$
IH5040-51	$3-104$
IH5052/3	$3-114$
IH5140-45	$3-122$
IH401/401A	$3-130$

Analog Switches without Drivers

G115/123	$3-135$
G116-119	$3-139$
G125-132, G1330/40/	
$50 / 60$	

MM450/550, MM451/551,
MM452/552,
MM455/555 : 3-145
(CMOS or TTL to higher levels)
Digital Translator/Analog

Driver

IH6201 , 3-147

with Drivers

H6201

Data Acquisition
A/D Converters
ICL7104/8052A/8068
ICL7109
ICL8052/3 4-20
LD110/111/114 - 4-45
D/A Converters

AD7520/21/30/31	$4-51$
AD7523	$4-57$
AD7533	$4-61$
AD7541	$4-65$
IC7112	
ICL7113	$4-11$
	$4-77$

DVM Circuits

ICL7101/8052	$4-81$
ICL7103/8052	$4-89$
ICL7103/8068	$4-97$
ICL7106/7	$4-105$
ICL7116/7	$4-115$

Succiessive
 Approximation
 Registers
 AM2502/3/4

[^0]
Linear

Amplifiers

Jriver-Amplifier for Power Iransistors CL8063
Jriver; Power Driver for ictuators, motors CH8510/20/30 5-14
nstrumentation,
Sommutating Auto Zero
CL7605/6
5-22
.og-Antilog
CL8048/9
5-32
)perational,
?ommutating Auto Zero
)perational, General Purpose
(D101A/201A/301A
CL741HS
CL741LN
CL8008
.H2101/2301
H2108/2308 .M107/207/307 .M108/208/308 M124A/224A/324A; LM2902
$. M 741, \mu$ A741 .M748, μ A748 ıA777
)perational, FET Input

CH8500/A 5-98

CL8007-1/2/3/4/5 5-104

5-110
こL8043M/C
5-112
.F155/6/7; LF255/6/7;
LF355/6/7;
LFF55A/6A/7A;

LF355A/6A/7A	$5-116$
H0042	$5-131$
M740, μ A740	$5-136$
;U536	$5-140$
lperational, High	
mpedance Bipolar	
HA2600/02/05/20/	
$22 / 25$	$5-143$
1A2607/27	$5-147$

)perational, High Speed
|A2500/02/05/10/12|

15/20/22/25	$5-149$
1A2507/17/27	$\therefore 5-154$
LL8017	$5-156$

)perational, Low Power
OL4250, 4250C
5-160
CL7611-15;
ICL7621/22;
ICL7631/32;
ICL7641/42 5-163

GL8021
5-163
CL8022
CL8023
5-183
/ideo
.M733, μ A733
5-185
ンamera Circuit CL8061/62

5-189

Comparators

$\begin{aligned} & \text { Low Power } \\ & \text { ICL8001 } \end{aligned}$	5-203
Precision LM111/211/311	5-207
$\begin{aligned} & \text { Dual } \\ & \text { LH2111/2311 } \end{aligned}$	5-213
Quad LM139A/239A/339A; LM2902; MC3302	5-215

Followers
LM102/202/302; LM110/
LM210/LM310 5-223
LH2110/2310 5-227
$\begin{array}{ll}\text { Multipliers } \\ \text { ICL8013 } & 5-229\end{array}$
Sample and Hold
IH5110-15
$5-233$

Temperature Sensor	
AD590	

Voltage References
1.2 Volt
ICL8069 5-241

Reference with detector, indicator and regulator
ICL8211/12 5-243

Voltage Regulators	
LM100/200/300	$5-253$
LM105/205/305	$5-257$
LM723, μ A723	$5-261$

$\begin{array}{ll}\text { Waveform Generator } & \\ \text { ICL8038 } & 5-267\end{array}$

Timers/Counters
Watch and Clock
Chip Chart

Timers	
ICL8240/50/60	$6-4$
ICM7555/6	$6-20$
NE555	$6-26$
NE556	$6-30$
Counters	
ICM7045	$6-32$
ICM7045A	$6-40$
ICM7208	$6-42$
ICM7215	$6-50$
ICM7216	$6-56$
ICM7226	$6-72$
ICM7217/27	$6-84$
ICM7224/25	$6-96$

Oscillators and Clock Generators	
ICM7209	6-104
ICM7213	6-108

Timebases for Counters
ICM7207
$6-114$
ICM7207A 6-118
$\begin{array}{lr}\text { Display Drivers } & \\ \text { ICM7211/12 } & 6-120\end{array}$
ICM7218 6-130
Touch Tone Encoder
ICM7206/A/B
6-140

Memory \mid Peripherals

RAMs	
$7114 / 2114$	
2147	$7-4$
4027	$7-8$
4166	$7-12$
IM6512	$7-20$
IM6508/6518	$7-28$
IM6551/6561	$7-34$
IM6504	$7-40$
IM514	$7-46$
IM7141	$7-52$
ROMs	$7-56$
IM6312	
IM6316	$7-60$
IM6364	$7-64$
	$7-70$

EPROMs
IM6653, $6654 \quad 7-73$

PROMs	
IM5600. 5610	$7-79$
IM5603/5623	$7-83$
IM5604/524	$7-89$
M5605/562	$7-94$
PROM Programming	$7-101$

Microprocessors

IM6100	$7-103$
Sampler Kit-6801	$7-125$
87 C48	$7-129$
80 C 49	$7-137$

IM5200	$7-145$
IM6101	$7-156$
IM6102	$7-175$
IM6103	$7-198$
IM6402/6403	$7-210$
87C41	$7-218$
80C43	$7-219$

Development Systems

Intercept Jr.	$7-220$
Intercept I/II	$7-225$
6970-IFDOS	$7-229$
EPROM programmer	$7-230$

continued:		Raytheon	Intersil	LM101 LM107	AD101 LM107	$\begin{aligned} & \text { DG185 } \\ & \text { DG } 186 \end{aligned}$	$\begin{aligned} & \text { DG185 } \\ & \text { DG186 } \end{aligned}$
LF356	LF356	LF155	LF155	LM111	LM111	DG187	DG187
LF357	LF357	LF156	LF156	LM124	LM124		IH5050
LH0042	LH0042	LF157	LF157	LM201	AD201	DG188	DG188
LH2101	LH2101	LF255	LF255	LM207	LM207	DG189	DG189
LH2108	LH2108	LF256	LF256	LM224	LM224	DG190	DG190
LH2110	LH2110	LF257	LF257	LM2902	LM2902		IH5051
LH2111	LH2111	LF355	LF355	LM301	AD301	DG191	DG191
LH2301	LH2301	LF356	LF356	LM307	LM307	D123	D123
LH2308	LH2308	LF357	LF357	LM308	LM308	D125	D125
LH2310	LH2310	LH2101	LH2101	LM324	LM324	G115	G115
LH2311.	LH2311	LH2301	LH2301	MC3302	MC3302	G116	G116
LM100	LM100	LH2311	LH2311	NE555	NE555	G117	G117
LM101	AD101	LM101	AD101	NE556	NE556	G118	G118
LM102	LM102	LM105	LM105	SU536	SU536	G119	G119
LM105	-LM105	LM107	LM107	8049	IM80C49	G123	G123
LM107	LM107	LM108	LM108	82 S 123	IM5610	G125	G125
LM108	LM108	LM124	LM124	$82 \mathrm{S126}$	IM5603	G126	G126
LM110	LM110	LM201	AD201	825129	IM5623	G127	G127
LM111	LM111	LM205	LM205	82 S 130	IM5604	G128	G128
LM124	LM124	LM207	LM207	82 S 131	IM5624	G129	G129
LM200	LM200	LM208	LM208	${ }^{82 S 141}$	IM5625	G130	G130
LM201	AD201	LM211	LM211	82 S 23	IM5600	G131	G131
LM202 LM205	LM202	LM224 LM2902	LM224			G132	G132
LM207	LM207	LM301	AD301	Silicon General	Intersil	LD111	LD111
LM208	LM208	LM305	LM305	Silcon General	Intersil	LD114	LD114
LM210	LM210	LM307	LM307	μ A 777	$\mu \mathrm{A} 777$	S1452	MM452
LM211	LM211	LM308	LM308	SG101	AD101	SI455 SI552	MM455 MM552
LM224	LM224	LM311	LM311	SG105	LM105	SI552	MM555
LM2902	LM2902	LM324	LM324	SG107	LM107	SI555	MM555
LM300	LM300	RC555	NE555	SG108	LM108		
LM301	AD301	RC556	NE556	SG110	LM110		
LM302	LM302	RC723	LM723	SG111	LM111	Synertek	Intersil
LM305	LM305	RC733	μ A733	SG124	LM124	Synertek	Intersil
LM307	LM307	RC741 RC748	CM741	SG201	AD201	SY2114	IM7114
LM308	LM308	RC748,	LM748	SG205	LM205		M,
LM310	LM310	RM723 RM741	LM723	SG207	LM207		
LM311	LM311	RM741 RM748	LM748	SG208	LM208		
LM4250	LM4250	RMM748 RV3302	MC3302	SG210	LM210 LM211	TI	Intersil
LM556	NE556			SG224	LM224		
LM723	LM723			SG301	AD301	μ A723	LM723
LM733	μ A733			SG305	LM305	μ A733	μ A733
LM740	LM740	RCA	Intersil	SG307	LM307	$\mu \mathrm{H} 414$	LM ${ }_{\text {L }}$
LM741	LM741			SG308	LM308	${ }_{\mu \text { A }}$	μ A777
LM742	LM748			SG311	LM311	LF155	LF155
MM2114	IM7114	CA101	AD101	SG324	LM324	LF155	LF156
MM450	MM450	CA107	LM107	SG3302	MC3302	LF157.	LF157
MM451	MM451	CA111	LM111	SG4250	LM4250	LF255	LF255
MM452	MM452	CA124	LM124	SG555	NE555	LF256	LF256
MM455	MM455	CA201	AD201	SG556	NE556	LF257	LF257
MM5257	IM7141	CA207	LM207	SG723	LM723	LF355	LF355
MM550	MM550	CA208	LM208	SG733	μ A733	LF356	LF356
MM552	MM552	CA224	LM224	SG7748	LM748	LF357	LF357
MM555	MM555	CA301	AD301	SG76	LM748	LM101	AD101
MM74C200	IM6523	CA307	LM307			LM105	LM105
MM74C920	IM6551	CA308	LM308	Siliconix	Intersil	LM107	LM107
MM74C929	IM6508	CA311	LM311			LM111	LM111
MM74C930	IM6518	CA324	LM324	DG111	DG111	LM124	LM124
		CA555	NE555	DG116	DG116	LM201	AD201
		CA723	LM723	DG123	DG123	LM224	LM224
NEC	Intersil	CA741	ICL741	DG125	DG125	LM2902 LM301	LM2902 AD301
μ PB403	IM5603	CA748	LM748,	DG126	DG426	LM305	LM305
$\mu \mathrm{PB405}$	IM5605	CD4061	IM6523	DG129	DG129	LM307	LM307
$\mu \mathrm{PB} 425$	IM5625	CD4061		DG133	DG133	LM311	LM311
$\mu \mathrm{PD} 2114$	IM7114			DG134	DG134	LM324	LM324
μ PD416	IM4116			DG139	DG139	NE555	NE555
$\mu \mathrm{PD} 6508$	IM6508			DG140	DG140	NE556	NE556
		Signetics	Intersil	DG141	DG141	SN54S188	IM5600
4		Signetics		DG142	DG142	SN54S287	IM5623
				DG143	DG143	SN54S288	IM5610
Plessey	Intersil	μ A723	LM723	DG144	DG144	SN54S387	IM5603
Plessey		μ A733	μ A733	DG145	DG145	SN54S474	IM5625
SC748	LM748	$\mu 740$	LM740	DG146	DG146	SN54S475	IM5605
		$\mu \mathrm{A} 741$	$\mu \mathrm{A} 741$	DG151	DG151 ;	SN74S188	IM5600
		μ A748	LM748	DG152	DG152	SN74S287	IM5623
		LF155	LF155	DG153	DG153	SN74S288	IM5610
PMI	Intersil	LF156	LF156	DG154	DG154	SN74S387	IM5603
		LF157.	LF157	DG161	DG161	SN74S474	IM5625
PM155	LF155	LF255	LF255	DG162	DG162	SN74S475	IM5605
PM156	LF156	LF256	LF256	DG163	DG163	TMS4027	IM7027
PM157	LF157	LF257	LF257	DG164	DG464		MK4027
PM255	LF255	LF355	LF355	DG172	DG118	TMS4044	IM7141
PM256	LF256	LF356	LF356	DG180	DG180	TMS4045	IM7114
PM257	LF257	LF357	LF357	DG181	1H5048	TMS4116	IM4116
PM308	LM308	LH2101	LH2101	DG181	DG181		
PM355	LF355	LH2108	LH2108	DG182	DG182		
PM356	LF356	LH2301	LH2301	DG183	DG183	Zilog	Intersil
PM357	LF357	LH2308	LH2308	DG184	DG184		
SSS741	ICL741	LH2311	LH2311		IH5049	Z6116	IM4116

DISCRETE ALTERNATE SOURCE INDEX

A

INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT
$\begin{aligned} & 100 \mathrm{~S} \\ & 100 \mathrm{U} \\ & 102 \mathrm{M} \\ & 102 \mathrm{~S} \\ & 103 \mathrm{M} \end{aligned}$	$\begin{aligned} & 2 N 5458 \\ & 2 N 3684 \\ & 2 N 5686 \\ & \text { 2N5457 } \\ & \text { 2N5457 } \end{aligned}$	$\begin{aligned} & 233 \mathrm{~S} \\ & 234 \mathrm{~S} \\ & 235 \mathrm{~S} \\ & 241 \mathrm{U} \\ & 250 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3958 } \\ & \text { 2N4869 } \\ & \text { 2N4O91 } \end{aligned}$	$\begin{aligned} & 2 N 3044 \\ & \text { 2N3045 } \\ & \text { 2N3046 } \\ & \text { 2N3047 } \\ & \text { 2N } 3048 \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT122 } \\ & \text { IT121 } \\ & \text { IT122 } \\ & \text { IT122 } \end{aligned}$
$\begin{aligned} & 103 \mathrm{~S} \\ & 104 \mathrm{M} \\ & 105 \mathrm{M} \\ & 105 \mathrm{U} \\ & 105 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5222 } \\ & \text { 2N4340 } \end{aligned}$	$\begin{aligned} & 251 \mathrm{U} \\ & \text { 2N2060 } \\ & \text { 2N2060A } \\ & \text { 2N2223. } \\ & \text { 2N2223A } \end{aligned}$	2N4392 IT120 IT121 IT122 IT121	2N3066 2N3067 2N3068 2N3069 2N3070	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4338 } \\ & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \text { 2N4339 } \end{aligned}$
$\begin{aligned} & 106 \mathrm{M} \\ & 107 \mathrm{M} \\ & 110 \mathrm{U} \\ & 120 \mathrm{U} \\ & 125 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N5485 } \\ & \text { 2N5485 } \\ & \text { 2N3685 } \\ & \text { 2N3686 } \\ & \text { 2N4339 } \end{aligned}$	$\begin{aligned} & \text { 2N2386 } \\ & \text { 2N2386A } \\ & \text { 2N2453 } \\ & \text { 2N2453A } \\ & \text { 2N2480 } \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2453 } \\ & \text { 2N2453A } \\ & \text { IT122 } \end{aligned}$	$\begin{aligned} & \text { 2N3071 } \\ & \text { 2N3084 } \\ & \text { 2N3085 } \\ & \text { 2N3086 } \\ & \text { 2N3087 } \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N4339 } \end{aligned}$
$\begin{aligned} & 1277 A \\ & 1278 A \\ & 1279 A \\ & 1280 A \\ & 1281 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N4224 } \\ & \text { 2N3822 } \end{aligned}$	$\begin{aligned} & \text { 2N2480A } \\ & \text { 2N2497 } \\ & \text { 2N2498 } \\ & \text { 2N2499 } \\ & \text { 2N2500 } \end{aligned}$	$\begin{aligned} & \text { IT121 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \text { 2N2608 } \end{aligned}$	$\begin{aligned} & \text { 2N3088 } \\ & \text { 2N3088A } \\ & \text { 2N3089 } \\ & \text { 2N3089A } \\ & \text { 2N3113 } \end{aligned}$	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N2607 } \end{aligned}$
$\begin{aligned} & 1282 A \\ & 1283 A \\ & 1284 A \\ & 1285 A \\ & 1286 A \end{aligned}$	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N4340 } \\ & \text { 2N4222 } \\ & \text { 2N3821 } \\ & \text { 2N4220 } \end{aligned}$	$\begin{aligned} & \text { 2N2606 } \\ & \text { 2N2607 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \text { 2N2609 JANTX } \end{aligned}$	2N2606 2N2607 2N2608 2N2609 2N2609 JANTX	$\begin{aligned} & \text { 2N3277 } \\ & \text { 2N3278 } \\ & \text { 2N3328 } \\ & \text { 2N3329 } \\ & \text { 2N3330 } \end{aligned}$	$\begin{aligned} & \text { 2N2606 } \\ & \text { 2N2607 } \\ & \text { 2N5265 } \\ & \text { 2N3329 } \\ & \text { 2N3330 } \end{aligned}$
$\begin{aligned} & 130 \mathrm{U} \\ & 1325 \mathrm{~A} \\ & 135 \mathrm{U} \\ & 14 \mathrm{~T} \\ & 155 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N3687 } \\ & \text { 2N4222 } \\ & \text { 2N4339 } \\ & \text { 2N4224 } \\ & \text { 2N4416 } \end{aligned}$	$\begin{aligned} & \text { 2N2639 } \\ & \text { 2N2640 } \\ & \text { 2N2641 } \\ & \text { 2N2642 } \\ & \text { 2N2643 } \end{aligned}$	IT120 IT122 IT122 IT120 IT122	$\begin{aligned} & \text { 2N3331 } \\ & \text { 2N3332 } \\ & \text { 2N3347 } \\ & \text { 2N3348 } \\ & \text { 2N33499 } \end{aligned}$	$\begin{aligned} & \text { 2N3331 } \\ & \text { 2N3330 } \\ & \text { IT137 } \\ & \text { IT138 } \\ & \text { IT139 } \end{aligned}$
$\begin{aligned} & 1714 \mathrm{~A} \\ & 182 \mathrm{~S} \\ & 183 \mathrm{~S} \\ & 197 \mathrm{~S} \\ & 198 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4391 } \\ & \text { 2N3823 } \\ & \text { 2N4338 } \\ & \text { 2N4340 } \end{aligned}$	$\begin{aligned} & \text { 2N2644 } \\ & \text { 2N2652 } \\ & \text { 2N2652A } \\ & \text { 2N2720 } \\ & \text { 2N2721 } \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT122 } \end{aligned}$	2N3350 2N3351 2N3352 2N3365 2N3366	IT137 IT138 IT139 2N4340 2N4338
$\begin{aligned} & 199 \mathrm{~S} \\ & 2000 \mathrm{M} \\ & 2001 \mathrm{M} \\ & 200 \mathrm{~S} \\ & 200 \mathrm{U} \end{aligned}$	2N434 1 2N3823 2N3823 2N4392 2N3824	$\begin{aligned} & \text { 2N2722 } \\ & \text { 2N2841 } \\ & \text { 2N2842 } \\ & \text { 2N2843 } \\ & \text { 2N2844 } \end{aligned}$	$\begin{aligned} & \text { IT120 } \\ & \text { 2N2607 } \end{aligned}$	$\begin{aligned} & \text { 2N3367 } \\ & \text { 2N3368 } \\ & \text { 2N3369 } \\ & \text { 2N3370 } \\ & \text { 2N3376 } \end{aligned}$	2N4338 2N4341 2N4339 2N4338 2N3329
$\begin{aligned} & 201 \mathrm{~S} \\ & 202 \mathrm{~S} \\ & 203 \mathrm{~S} \\ & 204 \mathrm{~S} \\ & 2078 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 2N4391 } \\ & \text { 2N4392 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N3955 } \end{aligned}$	$\begin{aligned} & \text { 2N2903 } \\ & \text { 2N2903A } \\ & \text { 2N2913 } \\ & \text { 2N2914 } \\ & \text { 2N2915 } \end{aligned}$	$\begin{aligned} & \text { IT122 } \\ & \text { IT120 } \\ & \text { IT122 } \\ & \text { IT120 } \\ & \text { IT120 } \end{aligned}$	2N3378 2N3380 2N3382 2N3384 2N3386	2N3330 2N3331 2N3994 2N3992 2N3386
$\begin{aligned} & 2079 A \\ & 2080 A \\ & 2081 A \\ & 2093 M \\ & 2094 M \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3955A } \\ & \text { 2N39555 } \\ & \text { 2N3687 } \\ & \text { 2N3686 } \end{aligned}$	$\begin{aligned} & \text { 2N2915A } \\ & \text { 2N2916 } \\ & \text { 2N2916A } \\ & \text { 2N2917 } \\ & \text { 2N2918 } \end{aligned}$	$\begin{aligned} & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT122 } \\ & \text { IT122 } \end{aligned}$	2N3425 2N3436 2N3437 2N3438 2N3452	$\begin{aligned} & \text { IT122 } \\ & \text { 2N4341 } \\ & \text { 2N4340 } \\ & \text { 2N4338 } \\ & \text { 2N4220 } \end{aligned}$
$\begin{aligned} & 2095 \mathrm{M} \\ & 2098 \mathrm{~A} \\ & 2099 \mathrm{~A} \\ & 210 \mathrm{U} \\ & 2130 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N3686 } \\ & \text { 2N3954 } \\ & \text { 2N3955A } \\ & \text { 2N4416 } \\ & \text { 2N5452 } \end{aligned}$	$\begin{aligned} & \text { 2N2919 } \\ & \text { 2N2919A } \\ & \text { 2N2920 } \\ & \text { 2N2920A } \\ & \text { 2N2936 } \end{aligned}$	$\begin{aligned} & \text { IT120 } \\ & \text { IT120 } \\ & \text { 2N2920 } \\ & \text { 2N2920A } \\ & \text { IT120 } \end{aligned}$	$\begin{aligned} & \text { 2N3453 } \\ & \text { 2N3454 } \\ & \text { 2N3455 } \\ & \text { 2N3456 } \\ & \text { 2N3457 } \end{aligned}$	2N4338 2N4338 2N4340 2N4338 2N4338
$\begin{aligned} & 2132 U \\ & 2134 U \\ & 2136 U \\ & 2138 U \\ & 2139 U \end{aligned}$	$\begin{aligned} & \text { 2N3955 } \\ & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3958 } \\ & \text { 2N3958 } \end{aligned}$	$\begin{aligned} & \text { 2N2937 } \\ & \text { 2N2972 } \\ & \text { 2N2973 } \\ & \text { 2N2974 } \\ & \text { 2N2975 } \end{aligned}$	$\begin{aligned} & \text { IT120 } \\ & \text { ITT122 } \\ & \text { ITT122 } \\ & \text { ITT120 } \\ & \text { IT1 } 20 \end{aligned}$	$\begin{aligned} & \text { 2N3458 } \\ & \text { 2N3459 } \\ & \text { 2N3460 } \\ & \text { 2N3574 } \\ & \text { 2N3575 } \end{aligned}$	$\begin{aligned} & \text { 2N4341 } \\ & \text { 2N4339 } \\ & \text { 2N4338 } \\ & \text { 2N5265 } \\ & \text { 2N5265 } \end{aligned}$
2147 U 2148 U 2149 U 231 S 232 S	$\begin{aligned} & \text { 2N3958 } \\ & \text { 2N3958. } \\ & \text { 2N3958 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \end{aligned}$	$\begin{aligned} & \text { 2N2976 } \\ & \text { 2N2977 } \\ & \text { 2N2978 } \\ & \text { 2N2979 } \\ & \text { 2N3043 } \end{aligned}$	$\begin{aligned} & \text { IT120 } \\ & \text { IT12 } \end{aligned}$	$\begin{aligned} & \text { 2N3578 } \\ & \text { 2N3608 } \\ & \text { 2N3680 } \\ & \text { 2N3684 } \\ & \text { 2N3684A } \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 3N172 } \\ & \text { IT120 } \\ & \text { 2N3684 } \\ & \text { 2N3684 } \end{aligned}$

INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{gathered} \text { NEAREST } \\ \text { INTERSIL } \\ \text { EQUIVALENT } \end{gathered}$
2N3685	2N3685	2N4018	IT139	2N4856JANTX	2N4856 JANTX
2N3685A	2N3685	2N4019	IT139	2N4857	2N4857
2N3686	2N3686	2N4020	IT139	2N4857A	2N4857A
- 2N3686A	2N3686	2N4021	IT139	2N4857 JANTX	$2 N 4857$ J ANTX
2N3687	2N3687	2N4022	IT139	2N4858	2N4858
2N3687A	2N3687	2N4023	IT137	2N4858A	2N4858A
2N3726	IT131	2N4024	$1 T 137$	2N4858JANTX	2N4858JANTX
2N3727	IT130	2N4025	IT137	2N4859	2N4860 .
2N3800	IT132	2N4026	3N163	2N4859A	2N4860
2N3801	IT132	2N4066	3N166	2N4859JANTX	$2 N 4860$ JANTX
2N3802	IT132	2N4067	3N166	2N4860	2N4857
2N3803	IT132	2N4082	SU2366	2N4860A	2N4857A
2N3804	IT130	2N4083	SU2368	2N4860JANTX	2N4857 JANTX
2N3804A	IT130A	2N4084	2N3954	$2 \mathrm{~N} 4861$	2N4858 2N4858A
2N3805	IT130	2N4085	2N3955	2N4861A	
2N3805A	IT130A	2N4091	2N4091	2N4861 JANTX	2N4858 JANTX
2N3806	2N3806	2N4091A	2N4091	2N4867	2N4867
2N3807	2N3807	2N4091 JANTX	2N4091 JANTX	2N4867A	2N4867A
2N3808	2N3808	2N4092	2N4092	2N4868	2N4868
2N3809	2N3809	2N4092A	2N4092	2N4868A	2N4868A
$2 N 3810$	2N3810	2N4092 JANTX	2N4092 JANTX	2N4869	2N4869
$2 N 3810 \mathrm{~A}$	2N3810A	2N4093	2N4093	2N4869A	2N4869A
2N3811	2N3811	2N4093A	2N4093	2N4878	2N4878
2N3811A	2N3811A	2N4093 JANTX	2N4093JANTX	2N4879	2N4879
2N3812	[T132	2N4100	2N4 100	2N4880	2N4880
2N3814	IT132	2N4117	2N4 117	2N4937	$1 T 131$
2N3815	IT132	2N4117A	2N4117A	2N4938	$1 T 132$
2N3816	IT130	2N4118	2N4118	2N4939	IT132
2N3816A	IT130A	2N4118A	2N4118A	2N4940	IT132
2N3817	IT130	2N4119	2N4119	2N4941	1T131
2N3817A	IT130A	2N4119A	2N4119A	2N4942	1 T 132
2N3819	2N5484	2N4120	3N163	2N4955	$1 T 122$
2N3820	2N2608	2N4139	2N3822	2N4956	IT122
2N3821	2N3821	2N4220	2N4220.	2N4977	2N5433
2N3821 JANTX	2N3821 JANTX	2N4220A	2N4220A	2N4978	2N5433
2N3822	2N3822	2N4221	2N4221.	2N4979	
2N3823	2 N 3823	2N4221A	2N4221A	2N5018	2N5114
$2 N 3823$ JANTX	$2 N 3823$ JANTX	2N4222	2N4222	2N5019	2N5115
2N3824	2N3824	2N4222A	2N4222A	2N5019 2N5020	2N2843
2N3838	IT122	2N4223.	2N4223	2N5021	2N2607
2N3907	[T120	2N4224	2N4224		2N5460
2N3908	IT120	2N4267	3N163	2N5045	2N5453
2N3909	2N3331	2N4268	3N160	2N5046	2N5454
2N3909A	2N3331	2N4302	2N5457	2N5047	2N54.54
2N3913	IT132	2N4303	2N5459	2N5078	2N5397
	2N3921	2N4304			
2N3922	2N3922	2N4338	2N4338	2N5104	2N4416
2N3954	2N3954	2N4339	2N4339	2N5105	2N4416
2N3954A	2N3954A	2N4340	2N4340	2N5114	2N5114
2N3955	2N3955	2N4341	2N4341	2N5114JANTX	2N5114JANTX
2N3.955A	2N3955A	2N4342	2N5461	2N5115	2N5115
2N3956	2N3956	2N4343	2N5462	2N5115JANTX	2N5115JANTX
2N3957	2N3957	2N4351	2N4351	2N5116	2N5 116
2N3958	2N3958	2N4352	3N163	2N5116JANTX	2N5116JANTX
2N3965A	2N3685	2N4353	3N172	$2 N 5117$	2N5117
2N3966	2N4416	2N4360	2N5460	2N5118	2N5118
2N3967	2N4221	2N4381	2N2609	2N5119	2N5119
2N3968	2N3685	2N4382	2N5115	2N5158	2N5434
2N3969	2N3686	2N4391	2N4391	2N5159	2N5433
2N3969A	2N3686	2N4392	2N4392	2N5163	2N3822
2N3970	2N3970	2N4393	2N4393	2N5196	2N5196
2N3971	2N3971	2N4416	2N4416	2N5197	2N5197
2N3972	2N3972	2N4416A	2N4416A	2N5198	2N5198
2N3993	2N3993	2N4417	2N4416	2N5199	2N5199
2N3993A	2N3993	2N4445	2N5432	2N5245	2N4416
2N3994	2N3994	2N4446	2N5434	2N5246	2N5484
2N3994A	2N3994	2N4447	2N5432	2N5247	2N5486
2N4015	IT139	2N4448	2N5434	2N5248	2N5486
2N4016	IT137	2N4856	2N4856	2N5254	IT132
2N4017	IT139	2N4856A	2N4856A	2N5255	IT132

INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL; } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT
$\begin{aligned} & \text { 2N5256 } \\ & \text { 2N5257 } \\ & \text { 2N5258 } \\ & \text { 2N5258 } \\ & \text { 2N5259 } \end{aligned}$	$\begin{aligned} & \text { IT130 } \\ & \text { 2N5457 } \\ & \text { 2N5485 } \\ & \text { 2N5458 } \\ & \text { N5459 } \end{aligned}$	$\begin{aligned} & 2 N 5561 \\ & 2 N 5562 \\ & 2 N 5563 \\ & \text { 2N5564 } \\ & \text { 2N5565 } \end{aligned}$	$\begin{aligned} & \text { 2N5561 } \\ & \text { 2N5562 } \\ & \text { 2N5563 } \\ & \text { 2N5564 } \\ & \text { 2N5 } 565 \end{aligned}$	3N147 3N148 3N149 3N150 3N151	3N189 3N189 3N160 3N163 3N190
$\begin{aligned} & \text { 2N5265 } \\ & \text { 2N5266 } \\ & \text { 2N5267 } \\ & \text { 2N5268 } \\ & \text { 2N5269 } \end{aligned}$	$\begin{aligned} & \text { 2N5265 } \\ & \text { 2N5266 } \\ & \text { 2N5267 } \\ & \text { 2N5268 } \\ & \text { 2N5269 } \end{aligned}$	$\begin{aligned} & \text { 2N5566 } \\ & \text { 2N5592 } \\ & \text { 2N5593 } \\ & \text { 2N5594 } \\ & \text { 2N5638 } \end{aligned}$	$\begin{aligned} & \text { 2N5566 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N5638 } \end{aligned}$	3N155 3N155A 3N156 3N156A 3N157	3N163 3N163 3N163 3N163 3N163
$\begin{aligned} & \text { 2N5270 } \\ & \text { 2N5277 } \\ & \text { 2N5278 } \\ & \text { 2N5358 } \\ & \text { 2N5359 } \end{aligned}$	$\begin{aligned} & \text { 2N5270 } \\ & \text { 2N4341 } \\ & \text { 2N4341 } \\ & \text { 2N5358 } \\ & \text { NN } 359 \end{aligned}$	$\begin{aligned} & \text { 2N5639 } \\ & \text { 2N5640 } \\ & \text { 2N5647 } \\ & \text { 2N5648 } \\ & \text { 2N5649 } \end{aligned}$	$\begin{aligned} & \text { 2N5639 } \\ & \text { 2N56400 } \\ & \text { 2N4117A } \\ & \text { 2N4117 } \\ & \text { 2N4117A } \end{aligned}$	3N157A 3N158 3N158A 3N160 3N161	3N163 3N163 3N163 3N160 3N161
$\begin{aligned} & \text { 2N5360 } \\ & \text { 2N5361 } \\ & \text { 2N5362 } \\ & \text { 2N5363 } \\ & \text { 2N5364 } \end{aligned}$	2N5360 2N5361 2N5362 2N5363 2N5364	$\begin{aligned} & \text { 2N5653 } \\ & \text { 2N5654 } \\ & \text { 2N5668 } \\ & \text { 2N5669 } \\ & \text { 2N5670 } \end{aligned}$	$\begin{aligned} & \text { 2N5638 } \\ & \text { 2N5639 } \\ & \text { 2N5484 } \\ & \text { 2N5485 } \\ & \text { 2N5486 } \end{aligned}$	3N163 3N164 3N165 3N166 3N167	3N1 63 3N164 3N165 3N166 3N161
$\begin{aligned} & \text { 2N5391 } \\ & \text { 2N5392 } \\ & \text { 2N5393 } \\ & \text { 2N5394 } \\ & \text { 2N5395 } \end{aligned}$	2N4867A 2N4868A 2N4869A 2N4869A 2N4869A	$\begin{aligned} & \text { 2N5793 } \\ & \text { 2N5794 } \\ & 2 N 5795 \\ & 2 N 5796 \\ & \text { 2N5797 } \end{aligned}$	$\begin{aligned} & \text { IT129 } \\ & \text { IT129 } \\ & \text { IT139 } \\ & \text { IT139 } \\ & \text { 2N2608 } \end{aligned}$	$\begin{aligned} & \text { 3N168 } \\ & \text { 3N169 } \\ & \text { 3N170 } \\ & \text { 3N171 } \\ & \text { 3N172 } \end{aligned}$	3N161 3N169 3N170 3N171 3N1 72
$\begin{aligned} & \text { 2N5396 } \\ & \text { 2N5397 } \\ & \text { 2N5398 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \end{aligned}$	2N4869A 2N5397 2N5398 2N5432 2N5433	$\begin{aligned} & \text { 2N5798 } \\ & \text { 2N5799 } \\ & \text { 2N5800 } \\ & \text { 2N5801 } \\ & \text { 2N5802 } \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N4393 } \\ & \text { 2N4393 } \end{aligned}$	$\begin{aligned} & 3 N 173 \\ & \text { 3N174 } \\ & \text { 3N175 } \\ & \text { 3N176 } \\ & \text { 3N177 } \end{aligned}$	3N173 3N163 3N169 3N170 3N171
$\begin{aligned} & \text { 2N5434 } \\ & \text { 2N5452 } \\ & \text { 2N5453 } \\ & \text { 2N5454 } \\ & \text { 2N5457 } \end{aligned}$	$\begin{aligned} & \text { 2N5434 } \\ & \text { 2N5452 } \\ & \text { 2N5453 } \\ & \text { 2N5454 } \\ & \text { 2N5457 } \end{aligned}$	$\begin{aligned} & \text { 2N5803 } \\ & \text { 2N5902 } \\ & \text { 2N5903 } \\ & \text { 2N5904 } \\ & \text { 2N5905 } \end{aligned}$	$\begin{aligned} & \text { 2N4392 } \\ & \text { 2N5902 } \\ & \text { 2N5903 } \\ & \text { 2N5904 } \\ & \text { 2N5905 } \end{aligned}$	3N178 3N179 3N1 80 3N181 3N1 82	$\begin{aligned} & 3 N 172 \\ & \text { 3N172 } \\ & \text { 3N172 } \\ & \text { 3N161 } \\ & \text { 3N161 } \end{aligned}$
$\begin{aligned} & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5460 } \\ & \text { 2N5461 } \\ & \text { 2N5462 } \end{aligned}$	$\begin{aligned} & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5460 } \\ & \text { 2N5461 } \\ & \text { 2N5462 } \end{aligned}$	$\begin{aligned} & \text { 2N5906 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \text { 2N5911 } \end{aligned}$	$\begin{aligned} & \text { 2N5906 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \text { NN9 } \end{aligned}$	$\begin{aligned} & \text { 3N183 } \\ & \text { 3N188 } \\ & 3 N 189 \\ & \text { 3N190 } \\ & \text { 3N191 } \end{aligned}$	3N161 3N188 3N189 3N190 3N191
$\begin{aligned} & \text { 2N5463 } \\ & \text { 2N5464 } \\ & \text { 2N5465 } \\ & \text { 2N5471 } \\ & \text { 2N5472 } \end{aligned}$	$\begin{aligned} & \text { 2N5463 } \\ & \text { 2N5464 } \\ & \text { 2N5465 } \\ & \text { 2N5265 } \\ & \text { 2N5265 } \end{aligned}$	$\begin{aligned} & \text { 2N5912 } \\ & \text { 2N5949 } \\ & \text { 2N5950 } \\ & \text { 2N5951 } \\ & \text { 2N5952 } \end{aligned}$	$\begin{aligned} & 2 N 5912 \\ & 2 N 5486 \\ & 2 N 5486 \\ & 2 N 5486 \\ & 2 N 5484 \end{aligned}$	$\begin{aligned} & 42 \mathrm{~T} \\ & 588 \mathrm{U} \\ & 58 \mathrm{~T} \\ & 59 \mathrm{~T} \\ & 703 \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 2N4392 } \\ & \text { 2N4416 } \\ & \text { 2N5457 } \\ & \text { 2N4416 } \\ & \text { 2N4220 } \end{aligned}$
$\begin{aligned} & \text { 2N5473 } \\ & \text { 2N5474 } \\ & \text { 2N5475 } \\ & \text { 2N5476 } \\ & \text { 2N5484 } \end{aligned}$	2N5265 2N5265 2N5265 2N5266 2N5484	$\begin{aligned} & \text { 2N5953 } \\ & \text { 2N6441 } \\ & \text { 2N6442 } \\ & \text { 2N6443 } \\ & \text { 2N6444 } \end{aligned}$	$\begin{aligned} & \text { 2N5484 } \\ & \text { 2N6441 } \\ & \text { 2N6442 } \\ & \text { 2N6443 } \\ & \text { 2N6444 } \end{aligned}$	$\begin{aligned} & 704 \mathrm{U} \\ & 705 \mathrm{U} \\ & 707 \mathrm{U} \\ & 714 \mathrm{U} \\ & 734 \mathrm{EU} \end{aligned}$	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4224 } \\ & \text { 2N4860 } \\ & \text { 2N3822 } \\ & \text { 2N4 } \end{aligned}$
$\begin{aligned} & \text { 2N5485 } \\ & \text { 2N5486 } \\ & \text { 2N5515 } \\ & \text { 2N5516 } \\ & \text { 2N5517 } \end{aligned}$	2N5485 2N5486 2N5515 2N5516 2N5517	$\begin{aligned} & \text { 2N6445 } \\ & \text { 2N6446 } \\ & \text { 2N6447 } \\ & \text { 2N6448 } \\ & \text { 2N6451 } \end{aligned}$	$\begin{aligned} & \text { 2N6445 } \\ & \text { 2N6446 } \\ & \text { 2N6447 } \\ & \text { 2N6448 } \\ & \text { U311 } \end{aligned}$	$\begin{aligned} & 734 U \\ & 751 \mathrm{U} \\ & 752 \mathrm{U} \\ & 753 \mathrm{U} \\ & 754 \mathrm{U} \end{aligned}$	2N5516 2N4340 2N4340 2N4341 2N4340
$\begin{aligned} & \text { 2N5518 } \\ & \text { 2N5519 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \\ & \text { 2N5522 } \end{aligned}$	2N5518 2N5519 2N5520 2N5521 2N5522	$\begin{aligned} & \text { 2N6452 } \\ & \text { 2N6453 } \\ & \text { 2N6454 } \\ & \text { 2N6483 } \\ & \text { 2N484 } \end{aligned}$	$\begin{aligned} & \text { U311 } \\ & \text { U311 } \\ & \text { U311 } \\ & \text { 2N6483 } \\ & \text { 2N6484 } \end{aligned}$	755 U 756 U A192 A5T3821 A5T3822	2N4341 2N4340 2N4416 2N5484 2N5484
$\begin{aligned} & \text { 2N5523 } \\ & \text { 2N5524 } \\ & \text { 2N5545 } \\ & \text { 2N5546 } \\ & \text { 2N5547 } \end{aligned}$	$\begin{aligned} & \text { 2N5523 } \\ & \text { 2N5524 } \\ & \text { 2N3954 } \\ & \text { 2N3955A } \\ & \text { 2N3955 } \end{aligned}$	$\begin{aligned} & \text { 2N6485 } \\ & \text { 2N6568 } \\ & \text { 2N6656 } \\ & \text { 2N6657 } \\ & \text { 2N6658 } \end{aligned}$	$\begin{aligned} & \text { 2N6485 } \\ & \text { 2N54321 } \\ & \text { 2N6657 } \\ & \text { 2N6657 } \\ & \text { 2N6658 } \end{aligned}$	A5T3823 A5T3824 AD3954 AD3954A AD3955	2N4416 2N4341 2N3954 $2 N 3954 A$ $2 N 3955$
$\begin{aligned} & \text { 2N5549. } \\ & \text { 2N5555 } \\ & \text { 2N5556 } \\ & \text { 2N5557 } \\ & \text { 2N5558 } \end{aligned}$	$\begin{aligned} & \text { 2N5492 } \\ & \text { 2N5555 } \\ & \text { 2N3685 } \\ & \text { 2N3684 } \\ & \text { 2N3684 } \end{aligned}$	$\begin{aligned} & \text { 2N6659 } \\ & \text { 2N6660 } \\ & \text { 2N6661 } \\ & \text { 3N145 } \\ & \text { NN146 } \end{aligned}$	$\begin{aligned} & \text { 2N6660 } \\ & \text { 2N6660 } \\ & \text { 2N6661 } \\ & \text { 3N163 } \\ & \text { 3N163 } \end{aligned}$	AD3956 AD3958 AD5905 AD5906 AD5 907	$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3958 } \\ & \text { 2N5905 } \\ & \text { 2N5906 } \\ & \text { 2N5907 } \end{aligned}$

DISCRETE ALTERNATE SOURCE INDEX

INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT
$\begin{aligned} & \text { AD5908 } \\ & \text { AD5909 } \\ & \text { AD810 } \\ & \text { AD811 } \\ & \text { AD812 } \end{aligned}$	2N5908 2N5909 2N4878 2N4878 2N4878	$\begin{aligned} & \hline \text { BFW11 } \\ & \text { BFW54 } \\ & \text { BFW55 } \\ & \text { BFW56 } \\ & \text { BFW6 } 1 \end{aligned}$	$\begin{aligned} & \hline \text { 2N3822 } \\ & \text { 2NB822 } \\ & \text { 2N3822 } \\ & \text { 2N4860 } \\ & \text { 2N4224 } \end{aligned}$	DN3066A DN3067A DN3068A DN3070A	2N3821 2N4338 2N4338 2N3822 2N3821
$\begin{aligned} & \text { AD813 } \\ & A D 814 \\ & A D 815 \\ & A D 816 \\ & \text { AD820 } \end{aligned}$	2N4878 IT124 IT124 IT120A IT132	BSV22 BSV78 BSV79 BSV80 C413N	2N4416 2N4856A 2N4857A 2N4858A 2N5434	DN3071A DN3365A DN3365B DN3366B	2N4338 2N4091 2N3686 2N4091
$\begin{aligned} & \text { AD821 } \\ & \text { AD822 } \\ & \text { AD830 } \\ & \text { AD831 } \\ & \text { AD832 } \end{aligned}$	IT130A 1T130A 2N5520 2N5521 2N5522	C6690 C6691 C6692 C673 C674	2N4341 2N4341 2N4339 2N4341 2N4341.	DN3367A DN3367B DN3368A DN3369A	2N3687 2N4091 2N4341 2N4221 2N4339
AD833 AD833A AD835 AD836 AD837	2N5523 2N5524 SU2365 SU2366 SU2367	C680 C680A C681 C681A C682	2N4338 2N4338 2N4338 2N4338 2N4339	DN3369B DN3370A DN3370B DN3436A DN3436B	2N4220 2N4338 2N4338 2N4341 2N4222
$\begin{aligned} & \text { AD838 } \\ & \text { AD839 } \\ & \text { AD840 } \\ & \text { AD841 } \\ & \text { AD842 } \end{aligned}$	SU2368 SU2369 2N5520 2N5521 2N5523	C682A C683 C683A C684 C684A	2N4339 2N4339 2N4339 2N4220 2N422O	DN3437A DN34378 DN3438B DN3458A	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4341 } \end{aligned}$
BC264 BC264A BC264B BC264D	$\begin{aligned} & \text { 2N5458 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5458 } \\ & \text { 2N4416 } \end{aligned}$	C685 C685A CM600 CM601 CM602	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4220 } \\ & \text { 2N4092 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \end{aligned}$	DN3458B DN3459A DN3460A DN3460B	$\begin{aligned} & \text { 2N4222 } \\ & \text { 2N4339 } \\ & \text { 2N4220 } \\ & \text { 2N4338 } \\ & \text { 2N4220 } \end{aligned}$
BD522 BF244A BF244B BF244C	VN88AF 2N5486 2N5484 2N5486	CM603 CM640 CM64 CM642 CM643	$\begin{aligned} & 2 \mathrm{~N} 4091 \\ & 2 \mathrm{~N} 4093 \\ & 2 \mathrm{~N} 4093 \\ & \text { 2N4093 } \\ & \text { 2N4092 } \end{aligned}$	$\begin{aligned} & \hline \text { DU4339 } \\ & \text { DU4340 } \\ & \text { E100 } \\ & \text { E101 } \\ & \text { E102 } \end{aligned}$	2N5397 2N5398 2N5458 2N4338 2N5457
$\begin{aligned} & \text { BF245A } \\ & \text { BF245B } \\ & \text { BF245C } \\ & \text { BF246 } \\ & \text { BF246A } \end{aligned}$	$\begin{aligned} & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N5639 } \\ & \text { 2N5639 } \end{aligned}$	CM644 CM645 CM646 CM647 CM650	$\begin{aligned} & \text { 2N4092 } \\ & \text { 2N4092 } \\ & \text { 2N4092 } \\ & \text { 2N4091 } \\ & \text { 2N5432 } \end{aligned}$	$\begin{aligned} & \text { E103 } \\ & \text { E106 } \\ & \text { E107 } \\ & \text { E108 } \\ & \text { E109 } \end{aligned}$	2N5459 2N5433 2N5433 2N5433 2N5433
$\begin{aligned} & \text { BF246B } \\ & \text { BF246C } \\ & \text { BF247 } \\ & \text { BF247A } \\ & \text { BF247B } \end{aligned}$	$\begin{aligned} & \text { 2N5638 } \\ & \text { 2N5638 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \end{aligned}$	CM651 CM652 CM653 CM800	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N5433 } \end{aligned}$	$\begin{aligned} & \text { E110 } \\ & \text { E111 } \\ & \text { E111A } \\ & \text { E112 } \end{aligned}$	2N5434 ITE4391 ITE4091 ITE4092
$\begin{aligned} & \text { BF247C } \\ & \text { BF256A } \\ & \text { BF256B } \\ & \text { BF256C } \\ & \text { BF320 } \end{aligned}$	$\begin{aligned} & \hline \text { 2N4091 } \\ & \text { 2N5484 } \\ & \text { 2N4416 } \\ & \text { 2N4416 } \\ & \text { 2N5461 } \end{aligned}$	CMX740 CP640 CP643 CP650 CP651	$\begin{aligned} & \text { 2N5432 } \\ & \text { 2N4091 } \\ & \text { 2N5434 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \end{aligned}$	$\begin{aligned} & \text { E113 } \\ & \text { 1113A } \\ & \text { E114 } \\ & \text { E174 } \\ & \text { E175 } \end{aligned}$	$\begin{aligned} & \text { ITE4393. } \\ & \text { ITE4093 } \\ & \text { 2N5555 } \\ & \text { 2N5114 } \\ & \text { 2N5115 } \end{aligned}$
$\begin{aligned} & \text { BF } 348 \\ & \text { BFR45 } \\ & \text { BFS21 } \\ & \text { BFS21A } \\ & \text { BFS67 } \end{aligned}$	$\begin{aligned} & \text { 2N5555 } \\ & \text { 2N4416 } \\ & \text { 2N5199 } \\ & \text { 2N5199 } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & \hline \text { CP652 } \\ & \text { CP653 } \\ & \text { D1101 } \\ & \text { D1102 } \\ & \text { D1103 } \end{aligned}$	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5433 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N4338 } \end{aligned}$	E176 E201 E202 E203 E204	$\begin{aligned} & \text { 2N5116 } \\ & 2 N 4338 \\ & 2 N 4340 \\ & 2 N 4341 \\ & \text { 2N4339 } \end{aligned}$
BFS67P BFS68 BFS68P BFS70 BFS71	$\begin{aligned} & \text { 2N5459 } \\ & \text { 2N3823 } \\ & \text { 2N4416 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \end{aligned}$	$\begin{aligned} & \hline \text { D1177 } \\ & \text { D1178 } \\ & \text { 11179 } \\ & \text { D1180 } \\ & \text { D1181 } \end{aligned}$	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N4338 } \\ & \text { 2N3822 } \\ & \text { 2N4338 } \end{aligned}$	$\begin{aligned} & \text { E210 } \\ & \text { E211 } \\ & \text { E212 } \\ & \text { E230 } \\ & \text { E231 } \end{aligned}$	$\begin{aligned} & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \end{aligned}$
$\begin{aligned} & \text { BFS72 } \\ & \text { BFS73 } \\ & \text { BFS74 } \\ & \text { BFS75 } \\ & \text { BFS76 } \end{aligned}$	$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N3821 } \\ & \text { 2N4856 } \\ & \text { 2N4857 } \\ & \text { 2N4858 } \end{aligned}$	$\begin{aligned} & \hline \text { D1182 } \\ & \text { D1183 } \\ & \text { D1184 } \\ & \text { D1185 } \\ & \text { D1201 } \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4341 } \\ & \text { 2N4340 } \\ & \text { 2N4339 } \\ & \text { 2N4224 } \end{aligned}$	$\begin{aligned} & \text { E232 } \\ & E 270 \\ & E 271 \\ & E 300 \\ & E 304 \end{aligned}$	2N4341 $2 N 5116$ 2N5116 2N5397 2N5486
$\begin{aligned} & \text { BFS77 } \\ & \text { BFS7 } \\ & \text { BFS79 } \\ & \text { BF880 } \\ & \text { BFW10 } \end{aligned}$	$\begin{aligned} & \text { 2N4859 } \\ & \text { 2N48660 } \\ & \text { 2N48611 } \\ & \text { 2N4416A } \\ & \text { 2N3823 } \end{aligned}$	01202 D1203 01301 01302 D1303	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N5358 } \\ & \text { 2N4222 } \\ & \text { 2N4220 } \\ & \text { 2N4220 } \end{aligned}$	$\begin{aligned} & \text { E305 } \\ & \text { E308 } \\ & \text { E309 } \\ & \text { E310 } \\ & \text { E311 } \end{aligned}$	$\begin{aligned} & \text { 2N5484 } \\ & \text { U308/TO-92 } \\ & \text { U309/TO-92 } \\ & \text { U310/TO-92 } \\ & \text { U311/TO-92 } \end{aligned}$

DISCRETE ALTERNATE SOURCE INDEX

INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT
ITE3068 ITE3347 ITE3348 ITE3349 ITE3350	$\begin{aligned} & \text { 2N3687 } \\ & \text { IT137 } \\ & \text { IT138 } \\ & \text { IT139 } \\ & \text { IT137 } \end{aligned}$	IVN5201KND I VN5201KNE I VN5201KNF IVN5201TND IVN5201TNE	IVN5201KND IVN5201KNE IVN5201KNF IVN5201TND I VN5201TNE	$\begin{aligned} & \text { J316 } \\ & \text { J317 } \\ & \text { J401 } \\ & \text { J402 } \\ & \text { J403 } \end{aligned}$	$\begin{aligned} & \text { U309 } \\ & \text { U310 } \\ & \text { IT501P } \\ & \text { IT502P } \\ & \text { IT503P } \end{aligned}$
ITE3351 ITE3680 ITE3800 ITE3802 ITE3804	IT138 IT120 IT132 IT132 IT130	$\begin{aligned} & \text { IVN5201 TNF } \\ & \text { J } 100 \\ & \text { J } 101 \\ & \text { J } 102 \\ & \text { J } 103 \end{aligned}$	IVN5201TNF 2N5458 2N4338 2N5457 2N5459	$J 404$ $j 405$ $j 406$ $j 410$ $j 411$	IT503P IT503P IT503P IT502P IT503P
$\begin{aligned} & \text { ITE3806 } \\ & \text { ITE3807. } \\ & \text { I TE3808 } \\ & \text { ITE3809 } \\ & \text { ITE3810 } \end{aligned}$	$\begin{aligned} & \text { IT132 } \\ & \text { IT130 } \end{aligned}$	J 105 $\mathrm{~J} 105-18$ J 106 $\mathrm{~J} 106-18$ J 107	$\begin{aligned} & \text { 2N5433 } \\ & \text { 2N5433 } \end{aligned}$	$\begin{aligned} & \text { J412 } \\ & \text { J420 } \\ & \text { J421 } \\ & \text { J430 } \\ & \text { J431 } \end{aligned}$	IT503P IT5911 IT5912 2N5566 2N5566
ITE3811 ITE3907 ITE3908 ITE4017 ITE4018	$\begin{aligned} & \text { IT130 } \\ & \text { IT120 } \\ & \text { IT120 } \\ & \text { IT139 } \\ & \text { IT139 } \end{aligned}$	$\mathrm{J} 107-18$ J 108 $\mathrm{~J} 108-18$ J 109 $\mathrm{~J} 109-18$	2N5433 2N5433 2N5433 2N5433 2N5433	$\begin{aligned} & \text { K114-18 } \\ & \text { K210-18 } \\ & \text { K211-18 } \\ & \text { K212-18 } \\ & \text { K300-18 } \end{aligned}$	$\begin{aligned} & \text { 2N5555 } \\ & \text { 2N5397 } \end{aligned}$
$\begin{aligned} & \text { ITE4019 } \\ & \text { ITE4020 } \\ & \text { ITE4021 } \\ & \text { ITE4022 } \\ & \text { ITE4023 } \end{aligned}$	$\begin{aligned} & \text { IT139 } \\ & \text { IT139 } \\ & \text { IT139 } \\ & \text { IT139 } \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned} 1 \begin{array}{ll} 0 \\ \mathrm{~J} & 1 \end{array} 0-18$	2N5433 2N5433 J111 J111 J111	$\begin{aligned} & \text { K304-18 } \\ & \text { K305-18 } \\ & \text { K308-18 } \\ & \text { K309-18 } \\ & \text { K310-18 } \end{aligned}$	2N5486 2N5484 U308/TO-92 U309/TO-92 U310/TO-92
ITE4024 ITE4025 ITE4091 ITE4092 ITE4093	IT137 IT137 ITE4091 ITE4092 ITE4093		$\begin{aligned} & \mathrm{J} 1111 \\ & \mathrm{j} \\ & \mathrm{~J} 112 \\ & \mathrm{~J} 112 \\ & \mathrm{j} 112 \\ & \mathrm{j} 1 \end{aligned}$	KE3684 KE3685 KE3686 KE3687 KE3823	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3685. } \\ & \text { 2N3686 } \\ & \text { 2N3687 } \\ & \text { 2N3823 } \end{aligned}$
1TE4117 ITE4118 ITE4119 ITE4338 ITE4339	$\begin{aligned} & \text { 2N4 } 117 \\ & \text { 2N4 } 118 \\ & \text { 2N4119 } \\ & \text { 2N4338 } \\ & \text { N4339 } \end{aligned}$	$\begin{aligned} & \text { Jlll } \\ & \text { J } 11 \end{aligned} 13-18 \text { - }$	$\begin{aligned} & \mathrm{J} 1113 \\ & \mathrm{~J} 1113 \\ & \mathrm{~J} 113 \\ & \mathrm{~J} 113 \\ & 2 N 5555 \end{aligned}$	KE3970 KE3971 KE3972 KE4091 KE4092	2N4391 2N4392 2N4393 ITE4091 ITE4092
ITE4340 ITE4341 ITE4391 ITE4392 ITE4393	2N4340 2N4341 ITE4391 ITE4392 ITE4393	$\begin{aligned} & \mathrm{J} 1401 \\ & \mathrm{~J} 1402 \\ & \mathrm{~J} 1403 \\ & \mathrm{~J} 1404 \\ & \mathrm{~J} 1405 \end{aligned}$	IT501P IT502P IT503P IT503P IT503P	$\begin{aligned} & \text { KE4093 } \\ & \text { KE4220 } \\ & \text { KE4221 } \\ & \text { KE4222 } \\ & \text { KE4223 } \end{aligned}$	$\begin{aligned} & \text { ITE4093 } \\ & \text { 2N5457 } \\ & \text { 2N5459 } \\ & \text { 2N5459 } \\ & \text { 2N4223 } \end{aligned}$
ITE4416 ITE4867 ITE4868 ITE4869 I VN5000AND	ITE4416 2N4867 2N4868 2N4869 IVN5000AND	$\begin{aligned} & \mathrm{J} 1406 \\ & \mathrm{~J} 174 \\ & \mathrm{~J} 174-18 \\ & \mathrm{~J} 175 \\ & \mathrm{~J} 175-18 \end{aligned}$	$\begin{aligned} & \text { IT503P } \\ & \text { J } 174 \\ & \text { J } 174 \\ & \text { J } 175 \\ & \text { J } 175 \end{aligned}$	KE4391 KE4392 KE4393 KE4416 KE4856	$\begin{aligned} & \text { ITE4391 } \\ & \text { ITE4392 } \\ & \text { ITE4393 } \\ & \text { ITE4416 } \\ & \text { 2N4391 } \end{aligned}$
I VN5000ANE I VN5000ANF I VN5000SND I VN5000SNE I VN5000SNF	I VN5000ANE I VN5000ANF I VN5000SND I VN5000SNE IVN5000SNF	$\begin{aligned} & \mathrm{J} 176 \\ & \mathrm{~J} 176-18 \\ & \mathrm{~J} 177 \\ & \mathrm{~J} 177-18 \\ & \mathrm{~J} 201 \end{aligned}$	$\begin{aligned} & \mathrm{J} 176 \\ & \mathrm{~J} 176 \\ & \mathrm{~J} 177 \\ & \mathrm{~J} 177 \\ & \text { 2N4338 } \end{aligned}$	KE4857 KE4859 KE4860 KE4861 KE5103	$\begin{aligned} & \text { 2N4392 } \\ & \text { 2N4391 } \\ & \text { 2N4392 } \\ & \text { 2N4393 } \\ & \text { 2N4221 } \end{aligned}$
I VN5001AND I VN5001 ANE I VN5001 ANF IVN5001SND I.VN5001SNE	I VN5001AND I VN5001ANE I VN5001ANF I VN5001SND IVN5001SNE	$\begin{aligned} & \mathrm{J} 201-18 \text {. } \\ & \text { J202 } \\ & \text { J202-18 } \\ & \text { J203 } \\ & \text { J203-1 } \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4340 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \text { 2N4341 } \end{aligned}$	KE5 104 KE5105 KH5 196 KH5197 KH5198	2N4416 2N4416 2N5196 2N5197 2N5198
I VN5001 SNF I VN5200HND I VN5200HNE I VN5200HNF I VN5200KND	I VN5001SNF I VN5200HND I VN5200HNE I VN5200HNF IVN5200KND	$\begin{aligned} & \mathrm{J} 204 \\ & \mathrm{~J} 204-18 \\ & \mathrm{~J} 210 \\ & \mathrm{~J} 211 \\ & \mathrm{~J} 212 \end{aligned}$	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N4339 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \\ & \text { 2N5397 } \end{aligned}$	KH5199 LDF603 LDF604 LDF 605 LM1 14	$\begin{aligned} & \text { 2N5199 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { 2N4221 } \\ & \text { LM114 } \end{aligned}$
I VN5200KNE IVN5200KNF I VN5200TND I VN5200TNE I VN5201CND	I VN5200KNE IVN5200KNF I VN5200TND IVN5200TNE I VN5201 CND	$\begin{aligned} & \mathrm{J} 270 \\ & \mathrm{~J} 270-18 \\ & \mathrm{~J} 271 \\ & \mathrm{~J} 271-18 \\ & \mathrm{~J} 304 \end{aligned}$	$\begin{aligned} & \mathrm{J} 270 \\ & \mathrm{~J} 270 \\ & \mathrm{~J} 271 \\ & \text { J271 } \\ & \text { 2N5486 } \end{aligned}$	LM1 14A LM1 14AH LM1 14H LM1 15 LM1 15A	LM1 14A LM114AH LM114H LM115 LM1 15A
I VN5201CNE I VN5201CNF IVN5201HND I VN5201HNE I VN5201HNF	I VN5201CNE IVN5201CNF IVN5201HND I VN5201HNE I VN5201HNF	$\begin{aligned} & \text { J305 } \\ & \text { J308 } \\ & \text { J309 } \\ & \text { J310 } \\ & \text { J315 } \end{aligned}$	$\begin{aligned} & \text { 2N5484 } \\ & \text { J308 } \\ & \text { J309 } \\ & \text { J310 } \\ & \text { 2N5397 } \end{aligned}$	LM115AH LM1 15H LM1 94 LM394 M100	LM115AH LM115H LM194 LM394 $* *$

INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$
M101	**	MEM5 17	3N172	MP350	IT132
M103	3N161	MEM517A	3N172	MP351	IT130
M104	3N161	MEM517B	3N172	MP352	IT130
M106	3N166	MEM517C	3N172	MP358	IT130A
M107	3N189	MEM520	3N160	MP3954	2N3954
M108	3N191	MEM520C	3N164	MP3954A	2N3954A
M1 13	3N161	MEM550	3N189	MP3955	2N3955
M114	3N161	MEM550C	3N189	MP3956	2N3956
M1 16	M116	MEM550F	3N189	MP3958	2N3958
M1 17	2N4351	MEM551	3N190	MP5905	2N5905
M1 19	3N161	MEM551C	3N189	MP5906	2N5906
M163	3N163	MEM556	3N172	MP5907	2N5907
M164	3N164	MEM556C	3N172	MP5908	2N5908
M511	3N172	MEM560C	3N161	MP5909	2N5909
M511A	3N172	MEM561	3N163	MP5911	2N5911
M517	3N163	MEM561C	3N163	MP5912	2N5912
MD2974	IT120	MEM562	2N4351	MP804	2N5520
MD2975	IT120	MEM562C	2N4351	MP830	2N5520
MD2978	IT120	MEM563	2N4351	MP831	2N5521
MD2979	IT120	MEM563C	2N4351	MP832	2N5522
MD3008	IT120	MEM560	3N161	MP833	2N5523
MD8001	IT120	MEM806	3N163	MP835	SU2365
MD8002	IT120	MEM806A	3N163	MP836	SU2366
MEF103	2N5457	MEM807	3N172	MP837	SU2367
MEF 104	2N5459	MEM807A	3N172	MP838	SU2368
MEF3069	2N4341	MEM814	3N161	MP839	
MEF3070	2N4339	MEM816	3N172	MP841	2N5521
MEF3458	2N4341	MFE2000	2N4416	MP842	2N5523
MEF3459	2N4339	MFE2001	2N4416	MPF 102	2N5486
MEF3460	2N4338	MFE2004	2N4093	MPF 103	2N5457
MEF3684	2N3684	MFE2005	2 N 4092	MPF 104	2N5458
MEF3685	2N3685	MFE2006	2N4091	MPF 105	2N5459
MEF3686	2N3686	MFE2007	2N4860	MPF 106	2N5485
MEF3687	2N3687	MFE2008	2N4859	MPF 107	2N5486
MEF3821	2N3821	MFE2009	2N4859	MPF 108	2N5486
MEF3822	2N3822	MFE2010	2N4859	MPF109	2N5484
MEF3823	$2 N 3823$	MFE2011	2N5433	MPF 111	2N5458
MEF3954	2N3954	MFE2093	2N4338	MPF112	2N5458
MEF3955	2N3955	MFE2094	2N4339	MPF 161	2N5398
MEF3956	2N3956	MFE2095	2N4340	MPF4391	ITE4391
	2N3957	MFE2912	2N5433		
MEF3958	2N3958	MFE3002	3N169	MPF4393	ITE4393
MEF3959	2N3959	MFE3003	3N164	MPF820	U310/TO-92
MEF4223	2N4223	MFE3020	3N166	MPF. 970	2N5114
MEF4224	2N4224	MFE3021	3N166	MPF971	2N5115
MEF4391	ITE4391	MFE4007	2N3686	MTF103	2N5457
MEF4392	ITE4392	MFE4008	2N3686	MTF104	2N5459
MEF4393	ITE4393	MFE4009	2N3685	NDF9401	IT500
MEF4416	ITE4416	MFE4010	2N3330	NDF9402	IT501
MEF4856	2N4856	MFE4011	2N3330	NDF9403	IT502
MEF4857	2N4857	MFE4012	2N3331	NDF9404	17503
MEF4858	2N4858	MFE590	SD306	NDF9405	IT503
MEF4859	2N4859	MFE591	SD300	NDF9406	17500
MEF4860	2N4860	MFE823	MFE823	NDF9407	IT501
MEF4861	2N4861	MFE824	MFE824	NDF9408	$1 T 502$
		MK10			
MEF5104	ITE4416	MMF1	2N5197	NDF9410	IT503
MEF5105	ITE4416	MMF2	2N3921	NF4302	2N5457
MEF5245	ITE4416	MMF3	2N5198	NF4303	2N5459
MEF5246	2N5484	MMF4	2N3922	NF4304	2N5458
MEF5247	2N5486	MMF5	2N5 199	NF4445	2N5432
MEF5248	2N5486	MMF6	2N3955A	NF4446	2N5433
MEF5284	2N5484	MMT3823	2N3823	NF4447	2N5433
MEF5285	2N5485	MP301	IT124B	NF4448	2N5433
MEF5286	2N5486	MP302	IT125	NF500,	2N4224
MEF5561	2N5561	MP303	IT124B	NF501	2N4224
MEF5562	2N5562	MP310	2N4045	NF506	2N4416
MEF5563	2N5563	MP311	2N4045	NF510	NF510
MEM511	3N1 72	MP312	2N4044	NF5101	2N4867
MEM511C	3N172	MP318	IT120A	NF5102	2N4867

DISCRETE ALTERNATE SOURCE INDEX

INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$
NF5 103 NF511 NF5163 NF520 NF521	$2 N 4867$ $2 N 4860$ $2 N 4341$ $2 N 3684$ $2 N 3685$	$\begin{aligned} & \text { SD306 } \\ & \text { SDF1001 } \\ & \text { SDF1002 } \\ & \text { SDF1003 } \\ & \text { SDF500 } \end{aligned}$	$\begin{aligned} & \hline \text { SD306 } \\ & \text { 2N5432 } \\ & \text { 2N5433 } \\ & \text { 2N5434 } \\ & \text { 2N5520 } \end{aligned}$	TIS73 TIS74 TIS75 TIS88 TIS88A	$\begin{aligned} & \text { 2N4391 } \\ & \text { 2N4392 } \\ & \text { 2N4393 } \\ & \text { 2N4416 } \\ & \text { NN416 } \end{aligned}$
NF522 NF523 NF530 NF531 NF532	2N3686 2N3865 2N4341 2N4339 2N4341	$\begin{aligned} & \text { SDF } 501 \\ & \text { SDF } 502 \\ & \text { SDF503 } \\ & \text { SDF } 504 \\ & \text { SDF } 505 \end{aligned}$	2N5520 2N5520 2N5520 2N5520 2N5520	TIXS33 TIXS41 TIXS42 TN4 117 TN4 117	$\begin{aligned} & \text { 2N4392 } \\ & \text { 2N4859 } \\ & \text { 2N5639 } \\ & \text { 2N4117 } \\ & \text { NN117 } \end{aligned}$
NF533 NF5457 NF5458 NF5459 NF5484	$\begin{aligned} & \text { 2N4339 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \text { 2N5484 } \end{aligned}$	SDF506 SDF507 SDF508 SDF509 SDF510	$\begin{aligned} & \text { 2N5520 } \\ & \text { 2N3954 } \end{aligned}$	TN4117A TN4117A TN4118 TN4 118 TN4118A	$\begin{aligned} & \text { 2N4117A } \\ & \text { 2N4117 } \\ & \text { 2N4118 } \\ & \text { 2N4118 } \\ & \text { 2N4118A } \end{aligned}$
NF5485 NF5486 NF5638 NF5639 NF5640	2N5485 2N5486 2N5638 2N5638 2N5640	$\begin{aligned} & \text { SDF512 } \\ & \text { SDF513 } \\ & \text { SDF514 } \\ & \text { SU2078 } \\ & \text { SU2079 } \end{aligned}$	2N3954 2N3954 2N3954 2N3955 2N3955	$\begin{aligned} & \text { TN4118A } \\ & \text { TN4119 } \end{aligned}$	$\begin{aligned} & \text { 2N4118A } \\ & \text { 2N4119 } \\ & \text { 2N4119 } \\ & \text { 2N4119A } \\ & \text { 2N4:19 } \end{aligned}$
NF5653 NF5654 NF580 NF581 NF582	2N4860 2N4861 2N5432 2N5432 2N5433	$\begin{aligned} & \text { SU2098 } \\ & \text { SU12098A } \\ & \text { SU2098B } \\ & \text { SU20999A } \\ & \text { SU2099 } \end{aligned}$	2N5197 2N5197 2N5196 2N5197 2N5197	$\begin{aligned} & \text { TN4338 } \\ & \text { TN4339 } \\ & \text { TN4340 } \\ & \text { TN4341 } \\ & \text { TP5114 } \end{aligned}$	$\begin{aligned} & \text { 2N4338 } \\ & \text { 2N4339 } \\ & \text { 2N4340 } \\ & \text { 2N4341 } \\ & \text { 2N5114 } \end{aligned}$
NF583 NF584 NF585 NPD5564 NPD5565	2N5434 $2 N 5433$ $2 N 4859$ $2 N 5564$ $2 N 5565$	SU2365 SU2365A SU2366 SU2366A SU2367	$\begin{aligned} & \text { SU2365 } \\ & \text { SU2365A } \\ & \text { SU2366 } \\ & \text { SU2366A } \\ & \text { SU2367 } \end{aligned}$	TP5115 TP5116 U110 U112 U1177.	$\begin{aligned} & \text { 2N5115 } \\ & \text { 2N5116 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N4220 } \end{aligned}$
NPD5566 NPD8301 NPD8302 NPD8303 Pi069E	2N5566 2N3954 2N3955 2N3956 2N2609	$\begin{aligned} & \text { SU2367A } \\ & \text { SU2368 } \\ & \text { SU2368A } \\ & \text { SU2369 } \\ & \text { SU2369A } \end{aligned}$	$\begin{aligned} & \text { SU2367A } \\ & \text { SU2368 } \\ & \text { SU2368A } \\ & \text { SU2369 } \\ & \text { SU2369A } \end{aligned}$	$\begin{aligned} & \text { U1178 } \\ & \text { U1179 } \\ & \text { U1180 } \\ & \text { U1181 } \\ & \text { U1182 } \end{aligned}$	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N4221 } \\ & \text { 2N4220 } \\ & \text { 2N3821 } \end{aligned}$
$\begin{aligned} & \text { P1086E } \\ & \text { P1087E } \\ & \text { P1117E } \\ & \text { P1118E } \\ & \text { P1119E } \end{aligned}$	$\begin{aligned} & \text { 2N5115 } \\ & \text { 2N5516 } \\ & \text { 2N5640 } \\ & \text { 2N5641 } \\ & \text { 2N5640 } \end{aligned}$	SU2410 SU2411 SU2412 TD5432 TD5433	$\begin{aligned} & \text { 2N5097 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \\ & \text { 2N5432 } \\ & \text { NN433 } \end{aligned}$	$\begin{aligned} & \text { U1277 } \\ & \text { U1278 } \\ & \text { U1279 } \\ & \text { U12881 } \end{aligned}$	$\begin{aligned} & \text { 2N3684 } \\ & \text { 2N3865 } \\ & \text { 2N3686 } \\ & \text { 2N3684 } \\ & \text { 2N3822 } \end{aligned}$
$\begin{aligned} & \hline \text { PF5101 } \\ & \text { PF5102 } \\ & \text { PF5103 } \\ & \text { PN3684 } \\ & \text { PN3685 } \end{aligned}$	$\begin{aligned} & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N4867 } \\ & \text { 2N3684 } \\ & \text { 2N3685 } \end{aligned}$	$\begin{aligned} & \text { TD5434 } \\ & \text { TD5902 } \\ & \text { TD5902A } \\ & \text { TD5903 } \\ & \text { TD5903A } \end{aligned}$	2N5434 2N5902 2N5902 2N5903 2N5903	$\begin{aligned} & \text { U1282 } \\ & \text { U1283 } \\ & \text { U1284 } \\ & \text { U12885 } \end{aligned}$	2N4341 2N4340 2N4341 2N4220 2N4341
$\begin{aligned} & \text { PN3686 } \\ & \text { PN3687 } \\ & \text { PN4091 } \\ & \text { PN4092 } \\ & \text { PN4093 } \end{aligned}$	2N3686 2N3687 ITE4091 ITE4092 ITE4093	$\begin{aligned} & \text { TD5904 } \\ & \text { TD5904A } \\ & \text { TD5905 } \\ & \text { TD5905A } \\ & \text { TD5906 } \end{aligned}$	$\begin{aligned} & \text { 2N5904 } \\ & \text { 2N5904 } \\ & \text { 2N5905 } \\ & \text { 2N5905 } \\ & \text { 2N5906 } \end{aligned}$	U1287 U1321 U1322 U1323 U1324	$\begin{aligned} & \text { 2N4092 } \\ & \text { 2N4860 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N3687 } \end{aligned}$
PN4220 PN4 221 PN4 222 PN4223 PN4 224	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4221 } \\ & \text { 2N4222 } \\ & \text { 2N4223 } \\ & \text { 2N4224 } \end{aligned}$	TD5906A TD5907 TD5907A TD5908 TD5908A	$\begin{aligned} & \text { 2N5906 } \\ & \text { 2N5907 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5908 } \end{aligned}$	$\begin{aligned} & \text { U1325 } \\ & \text { U133. } \\ & \text { U1420 } \\ & \text { U1421 } \\ & \text { U1422 } \end{aligned}$	$\begin{aligned} & \text { 2N3686 } \\ & \text { 2N2608 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \end{aligned}$
PN4342 PN4360 PN4391 PN4392 PN4416	2N5461 2N5460 ITE4391 ITE4392 ITE4416	$\begin{aligned} & \text { TD5909 } \\ & \text { TD5909A } \\ & \text { TD59111 } \\ & \text { TD5911A } \\ & \text { TD5912 } \end{aligned}$	2N5909 2N5909 IT5911 IT5911 IT5912	$\begin{aligned} & \text { U146 } \\ & \text { U147 } \\ & \text { U148 } \\ & \text { U168 } \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2608 } \\ & \text { 2N2609 } \\ & \text { 2N2609 } \end{aligned}$
PN4856 PN4857 PN4858 PN4859 PN4860	$\begin{aligned} & \text { 2N4856 } \\ & \text { 2N4857 } \\ & \text { 2N4858 } \\ & \text { 2N4859 } \\ & \text { 2N4860 } \end{aligned}$	TD5912A TIS14 TIS15 TIS26 TIS27.	IT5912 2N4340 2N3954 2N3954 2N3955	$\begin{aligned} & \text { U1714 } \\ & \text { U182 } \\ & \text { U183 } \\ & \text { U1837E } \\ & \text { U184 } \end{aligned}$	$\begin{aligned} & \text { 2N4340 } \\ & \text { 2N4857 } \\ & \text { 2N3824 } \\ & \text { 2N5486 } \\ & \text { 2N5078 } \end{aligned}$
$\begin{aligned} & \text { PN4861 } \\ & \text { PN5033 } \\ & \text { SD300 } \\ & \text { SD301 } \\ & \text { SD304 } \end{aligned}$	$\begin{aligned} & \text { 2N4861 } \\ & \text { 2N5460 } \\ & \text { SD300 } \\ & \text { SD301 } \\ & \text { SD304 } \end{aligned}$	$\begin{aligned} & \text { TIS41 } \\ & \text { TIS58 } \\ & \text { TIS59 } \\ & \text { TIS69 } \\ & \text { TIS70 } \end{aligned}$	$\begin{aligned} & \text { 2N4859 } \\ & \text { 2N5484 } \\ & \text { 2N5486 } \\ & \text { 2N3955A } \\ & \text { 2N3956 } \end{aligned}$	$\begin{aligned} & \text { U1897E } \\ & \text { U1898E } \\ & \text { U1899E } \\ & \text { U197 } \\ & \text { U198 } \end{aligned}$	U1897 U1898 U1899 2N4339 2N4340

INDUSTRY STANDARD	$\begin{gathered} \text { NEAREST } \\ \text { INTERSIL } \\ \text { EQUIVALENT } \end{gathered}$	INDUSTRY STANDARD	NEAREST INTERSIL EQUIVALENT	INDUSTRY STANDARD	$\begin{aligned} & \text { NEAREST } \\ & \text { INTERSIL } \\ & \text { EQUIVALENT } \end{aligned}$
U199	2N4341	U329	**	UC754	2N4340
U1994E	2N4416	U330	**	UC755	2N4341
U200	U200	U331	**	UC756	2N4340
U201	U201	U401	U401	UC805	2N3331
U202	U202	U402	U402	UC807	2N5115
U2047E	2N4416	0403	U403		
U221	2N4391	U404	U404	UC814 UC85 1	2N3331 2N2608
U222	2N4391	U405	U405	UC853	2N2608
$\cup 231$	U231	U406	U406	UC853	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2608 } \end{aligned}$
U232	U232	U421	U421	Ur.e5k	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2609 } \end{aligned}$
U233	U233	U422	U422	VCRION	2N4869
U234	U234	U423	U423	VCRIIN	2N3958
U235	U235	U424	U424	VCR12N	2N3958
U240	2N5432	$\cup 425$	U425	VCR13N	2N3958
U241	2N5433	U426	U426	VCR20N	2N4341
U242	2N5432	4430	2N5566	VCR2N	
U243	2N5433	U431	2N5566	VCR3P	VCR2P
U248	2N5902	UC100	2N3684	VCR4N	VCR4N
U248A	2N5906	UC110	2N3685	VCR5P	VCR5P
U249	2N4903	UC115	2N4340	VCR6P	VCR6P
U249A	2N5907		2N3686		VCR7N
U250	2N5904	UC130	2N3687	VMP 1	***
U250A	2N5908	UC155	2N4416	VMP 11	**
U251	2N5905	UC1700	3N163	VMP 12	**
U251A	2N5909	UC1764	3N163	VMP2	**
U254	2 N 4859				**
U255	2N4860	UC200	2N3824	VMP22	**
U256	2N4861	UC201	2N3824	VMP4	**
U257	U257	UC21.	2N3687	VN30AA	VN3OAA
U257 / TO-71	U257 / TO-71	UC210	2N4416	VN30AB	VN30AB
U2.73	2N4118A	UC2130	2N5452		
U. 73 A	2N4118A	UC2132	2N5453	VN33AK	VN35AK
U274	2N4119A	UC2134	2N5454	VN35AA	VN35AA
U274A	2N4119A	UC2136	2N5454	VN35AB	VN35AB
U275	2N4119A	UC2138	2N5454	VN35AJ	VN35AJ
U275A		UC2139			
U280	2N5452	UC2147	2N3958	VN40AF	VN40AF
U281	2N5453	UC2148	2N3958	VN46AF	VN46AF
U282	2N5453	UC2149	2N3958	VN64GA	***
U283	2N5453	UC220	2N3822	VN66AF	VN66AF
U284	2N5454	UC240	2N4869		
U285	2N5454	UC241	2N4869	VN66AK	VN66AK
U290	2N5432	UC250	2N4091	VN67AA	VN67AA
U291	2N5434	UC251	2N4392	VN67AB	VN67AB
U295	2N5432	UC2766	3N166	VN67AF	VN67AF.
U300	2N5114	UC300	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2607 } \end{aligned}$	VN67AK	VN67AK
U3000	2N4341	UC320	2N2607.	VN86HF	**
U3001.	2N4339	UC330	2N2607	VN88AF	VN88AF
U3002	2N4338	UC340	2N2607	VN89AA	VN89AA
U301	2N5115		2N2608	VN89AB	VN89AB
U3010	2N4341	UC400	2N3331	VN89AF	VN89AF
U3011	2N4340	UC401	2N5116	VN90AA	VN90AA
U3012	2N4338	UC41	2N2608	VN90AB	VN90AB
U304	U304	UC410	2N3330	VN98AJ	VN98AJ
U305	U305	UC420		VN98AK	VN98AK
U306	U306	UC450	2N5114	VN99AJ	VN99AJ
U308	U308	UC451	2N5116	VN99AK	VN99AK
U309	U309	UC588	2N4416	W245A	ITE4416
U310	U310	UC703	2N4220	W245B	ITE4416
U311	U311			W245C	ITE4416
U312	2N5397	UC705	2N4220	W300	2N5398
U314	2N5555	UC707	2N4860	W300A	2N5397
U315	2N5397	UC714	2N4860	W3008	2N5397
U316	U309	UC714E	2N4341	W300C	2N5397
U317	U310				
U320	2N5433	UC734	2N4416	W300D	2N5398
U321	2N5434	UC751.	2N4416	WK5457	2N5457
U322	2N5433	UC752	2N4340	WK5458	2N5458
U328	2N**	UC753	2N4340	WK5459	2N5459

JFET Single	
Switches	
N-channel	
2N3970-2	Page
2N4091-3; JTX	$1-8$
2N4391-3	$1-9$
2N4856-61	$1-10$
2N4856TJX-8JTX	$1-11$
2N5432-4	$1-11$
2N5555	$1-12$
2N5638-40	$1-13$
1TE4091-3	$1-14$
1TE4391-3	$1-15$
J111-113	$1-17$
P-channel	
2N3993-4	$1-18$
2N5114-6; JTX	$1-19$
IT100-1	$1-20$
J174-177	$1-21$
J270, 271	$1-22$
JFET Dual Switches	

JFET Dual Switches

\section*{N -channel
 | 2N5564-6 | $1-23$ |
| :--- | ---: |
| IMF5564-6 | $1-24$ |}

JFET Single

Amplifiers

N-channel	
2N3684-7	$1-25$
2N3821-2; 2N3821JTX	$1-26$
2N3823; JTX	$1-27$
2N3824	$1-28$
2N4117-9; 2N4117A-9A	$1-29$
2N4220-2; 2N4220A-2A	$1-30$
2N4223-4	$1-31$
2N4338-41	$1-32$
2N4416, 2N4416A	$1-33$
2N4867-9, 2N4867A-9A	$1-34$
2N5397-8	$1-35$

2N5457-9 2N5484-6 ITE4416 U308-11 J308-10 P-channel 2N2606-9, 2N26 2N3329-31 2N5265-70 2N5460-5 U304-6 JFET Dual Amplifiers

N -channel

2N3921-2 1-48

2N3954-8 1-49
2N5196-9 1-50

N5452-4

2N5515-24 1-52
2N5902-9 1-54
2N5911-2 1-55
2N6483-5 1-56

MF5911-2 1-58

IMF6485 1-60
IT500-3 1-62
SU2365-9 1-64
SU2365A-9A 1-64
U231-5 1-65
U257 1-66
U401-406 1-67
U421-426 1-68

MOSFET
 Switches/ Amplifiers

N-channel	
2N4351	$1-69$
3N169-71	$1-70$
IT1750	$1-71$
M116	$1-72$

Switches-Junction FET

Ordering Information Preferred Part Number Package		$r_{\text {DS (on) }}$ max ohm		$V_{\text {max }}$	$\begin{aligned} & \mathrm{l}_{\text {Gss }} \\ & \max \end{aligned}$ PA	$\mathrm{BV}_{\text {Gss }}$ min V	I_{D} (off) max pA			$\max _{\mathbf{n S}}^{\mathbf{t}_{\text {mp }}}$	Ciss max pf	$\mathrm{C}_{\text {nss }}$ max pf
N-channel: Generally requires driver circuit to translate the popular logic levels to voltages required to drive the JFET.												
2N3970	TO-18	30	-4.0	-10.0	-	-40	250	50	150	50	25	6.0
2N3971	TO-18	60	-2.0	-5.0	-	-40	250	25	75	90	25	6.0
$2 N 3972$	TO-18	100	-0.5	-3.0	-	-40	250	5	30	180	25	6.0
2N4091	TO-18 TO-92	30	-5.0	-10.0	-200	-40	200	30		65	16	5.0
2N4092	TO-18 TO-92	50	-2.0	-7.0	-200	-40	200	15		95	16	5.0
2N4093	TO-18 TO-92	80	-1.0	-5.0	-200	-40	200	8		140	16	5.0
2N4391	TO-18 TO-92	30	-4.0	-10.0	-100	-40	100	50	150	- 55	14	3.5
$2 N 4392$	TO-18 TO-92	60	-2.0	-5.0	-100	-40	. 100	25	75	75	14	3.5
2N4393	TO-18 TO-92	100	-0.5	-3.0	-100	-40	- 100	5	30	100	14	3.5
2N4856	T0-18	25	-4.0	-10.0	-250	-40	250	50		34	18	6.0
2N4857	TO-18	40	-2.0	-6.0	-250	-40	250	20	100	60	18	6.0
2N4858	TO-18	60	-0.8	-4.0	-250	-40	250	8	80	120	18	6.0
$2 N 4859$	TO-18 TO-92	25	-4.0	-10.0	-250	-30	250	50.		34	18	8.0
2N4860	TO-18 TO-92	40	-2.0	-6.0	-250	-30	250	20	100	60	18	8.0
2N4861	TO-18 . TO-92	60	-0.8	-4.0	-250	-30	250	8		120	18	8.0
$2 N 5432$	TO-52 TO-92	5	-4.0	-10.0	-200	-25	200	150		41	30	15.0
2N5433	TO-52 TO-92	7	-3.0	-9.0	-200	-25	200	100		41	30	15.0
2N5434	TO-52 TO-92	10	-1.0	-4.0	-200	-25	200	30		41	30	15.0
2N5555	TO-92	150		-10.0	-1nA	-25	10 nA	15		35	5	1.2
2N5638	TO-92	30		-12.0	-1 nA	-30	1 nA	50		24	10	4.0
2N5639	TO-92	60		-8.0	-1 nA	-30	1 nA	25		54	10	4.0
2N5640	TO-92	100		-6.0	-1 nA	-30	1 nA	5		63	10	4.0
ITE4091	TO-18 TO-92	30	-5.0	-10.0	-200	-40	200	30		65	16	5.0
ITE4092	TO-18 TO-92	50	-2.0	-10.0	-200	-40	200	15		95	16	5.0
ITE4093	TO-18 TO-92	80	-1.0	-10.0	-200	-40	200	8		140	16	5.0
ITE4391	TO-18 TO-92	60	-4.0	-10.0	-100	-40	100	50	150	55	14	3.5
ITE4392	TO-18 TO-92	100	-2.0	-10.0	-100	-40	100	25	75	75	14	3.5
ITE4393	TO-18 TO-92	30	-0.5	-10.0	-100	-40	100	5	30	100	14	3.5
J111	TO-92	30	-3.0	-10.0	1 nA	35	1 nA	20		-	-	-
J112	TO-92	50	-1.0	-5.0	1 nA	35	1 nA	5		-	-	-
$J 113$	TO-92	100	-0.5	-3.0	1 nA	35	1 nA	2		-	-	-

P-channel: Can be used to switch into inverting input of op-amps and needs no driver circuit; can be switched directly from TTL logic.

Switches and Amplifiers-MOSFET

Amplifiers-N-Channel Junction FET

Ordering Preferred Part Number	Package		$\begin{gathered} \mathbf{g}_{\mathrm{Fs}} \\ \min _{\mu \mathrm{mho}} \end{gathered}$	$\underset{\mathrm{mA}}{\mathrm{~min}_{\text {Dss }}}$		$\underset{V}{\mathbf{\operatorname { m i n }} / \mathrm{V}_{\mathrm{p}}}$		$\mathrm{I}_{\mathrm{GSS}}$ max pA	$B V_{\text {Gss }}$ min V	$\mathrm{C}_{\text {iss }}$ max pf	$C_{\text {Rss }}$ max pf	
2N3684	TO-72.	TO-92	2000	2.5	7.5	-2.0	-5.0	-100	-50	4	1.2	140 @ 100 Hz
2N3685	TO-72	TO-92	1500	1.0	3.0	-1.0	-3.5	-100	-50	4	1.2	140 @ 100 Hz
2N3686	TO-72	TO-92	1000	0.4	1.2	-0.6	-2.0	- 100	-50	4	1.2	$140 @ 100 \mathrm{~Hz}$
2N3687	TO-72	TO-92	500	0.1	0.5	-0.3	-1.2	-100	-50	4	1.2	140 @ 100 Hz
2N3821	TO-72,		1500	0.5	2.5	-4.0		-0.1 nA	-50	6	3.0	200 @ 10 Hz
2N3822	TO-72	TO-92	3000	2.0	10.0		-6.0	-100	-50	6	3.0	200 @ 10 Hz
2N3823	TO-72		3500	4.0	20.0	-8.0		$-0.5 \mathrm{nA}$	-30	6	2.0	- -
2N3824	TO-72		-	-	-			-0.1 nA	-50	6	3.0	- *
2N4117	TO-72	TO-92	70	0.03	0.09	-0.6	-1.8	-10	-40	3	1.5	
2N4117A	TO-72	TO-92	70	0.03	0.09	-0.6	-1.8	-1	-40		1.5	
2N4118	TO-72	TO-92	80	0.08	0.24	-1.0	-3.0	- 10	-40	3	1.5	
2N4118A	TO-72	TO-92	80	0.08	0.24	-1.0	-3.0	-1	-40	3	1.5	
2N4119	TO-72	TO-92	100	0.2	0.6	-2.0	-6.0	-10	-40	3	1.5	
2N4119A	TO-72	TO-92	100	0.2	0.6	-2.0	-6.0	-1	-40	3	1.5	
2N4220	TO-72	TO-92	1000	0.5	3.0		-4.0	-100	-30	6	2.0	
2N4221	TO-72	TO-92	2000	2.0	6.0		-6.0	-100	-30	6	2.0	
2N4222	TO-72	TO-92	2500	5.0	15.0		-8.0	-100	-30	6	2.0	
2N4223	TO-72		3000	3.0	18.0	-0.1	-8.0	-250	-30	6	2.0	
2N4224	TO-72		2000	2.0	20.0	-0.1	-0.8	-150	-30	6	2.0	
2N4338	TO-18	TO-92	600	0.2	0.6	-0.3	-1.0	-100	-50	7	3.0	65 @ 1 kHz
2N4339	TO-18	TO-92	800	0.5	1.5	-0.6	-1.8	-100	-50	7	3.0	
2N4340	TO-18	TO-92	1300	1.2	3.6	-1.0	-3.0	-100	-50	7	3.0	$65 @ 1 \text { kHz }$
2N4341	TO-18	TO-92	2000	3.0	9.0	-2.0	-6.0	-100	-50	7	3.0	65 @ 1 kHz
2N4416	TO-72	TO-92	4500	5.0	15.0		-6.0	-100	-30	4	2.0	
2N4867	TO-72	TO-92	700	0.4	1.2	-0.7	-2.0	-250	-40	25	5.0	10 @ 1 kHz
2N4867A	TO-72	TO-92		0.4	1.2	-0.7	-2.0	-250	-40		5.0	
2N4868	TO-72	TO-92	1000	1.0	3.0	-1.0	-3.0	-250	-40	25	5.0	$10 @ 1 \mathrm{kHz}$
2N4868A	TO-72	T0-92	- 1000	1.0	3.0	-1.0	-3.0	-250	-40.	25	5.0	5 @ 1 kHz
2N4869	TO-72	TO-92	1300	2.5	7.5	-1.8	-5.0	-250	-40	25	5.0	10 @ 1 kHz
2N4869A	TO-72'	T0-92	1300	2.5	7.5	-1.8	-5.0	-250	-40	25	5.0	5 @ 1 kHz
2N5397	TO-72	TO-92	6000 @ 1 mA	10.0	30.0	-1.0	-6.0	- 100	-25	5	1.2	3 db @ 450 mHz
2N5398	TO-72		. 5000	5.0	40.0	-1.6	-0.1		-25	5.5	1.3	
2N5457	TO-92		1000	1.0	5.0	-0.5	-6.0	1 nA	25	7	3.0	3 dB @ 450 mHz
2N5458	TO-92		1500	2.0	9.0	-1.0	- 7.0	1 nA	25	7	3.0	3 dB @ 450 mHz
2N5459	TO-92		2000	4.0	16.0	-2.0	-8.0	-1 nA	-25	7	3.0	3 dB @ 450 mHz
2N5484	TO-92		3000	1.0	5.0	-0.3	-3.0	-1nA			1.0	120 @ 1 kHz
2N5485	TO-92		3500	4.0	10.0	-0.5	-4.0	-1 nA	-25	5	1.0	$120 @ 1 \text { kHz }$
ITE4416	TO-72	TO-92	4500	5.0	15.0		-6.0	-100	-30	4	2.0	
2N5486	TO-92		4000	8.0	20.0	-2.0	-6.0	-1 nA	-25	5	1.0	120 @ 1 kHz
U308	TO-52	TO-92	10,000	12.0	60.0	-1.0	-6.0	-150	-25	7 typ.	4.0 typ.	10 @ 10 Hz typ.
U309	TO-52	TO-92	10,000	12.0	30.0	-1.0	-4.0	-150	-25	7 typ.	4.0 typ.	10 @ 10 Hz typ.
U310	TO-52	TO-92	10,000	24.0	60.0	-2.5	-6.0	-150	-25	7 typ.	4.0 typ.	10 @ 10 Hz typ.
U311	TO-92		10,000	20.0	60.0	-1.0		-150	-25	-	-	10 @ 100 Hz
J308	TO-92		8000	12.0	60.0	-1.0		-1 nA	-25	-	-	10 @ 100 Hz
J309	TO-92		10,000	12.0	30.0	-1.0		-1.nA	-25	-	-	10 @ 100 Hz
J310	TO-92		8000	24.0	60.0	-2.0		-1 nA	-25	-	-	10 @ 100 Hz

Amplifiers-P-Channel Junction FET

Orderi Preferred Part Number	Package		$\underset{\substack{\mathbf{g}_{\mathrm{Fs}} \\ \boldsymbol{\operatorname { m i n }} \mathbf{\text { mho }}}}{ }$	$\begin{gathered} \mathrm{I}_{\text {oss }} \\ \min / \mathrm{max} \\ \mathrm{~mA} \end{gathered}$		$\underset{V}{\substack{V_{p} \\ \min / \max }}$		$l_{\text {Gss }}$ \max nA	$B V_{G S S}$ \min V	$\mathrm{C}_{\text {Iss }}$ max pf	$\mathrm{C}_{\text {Rss }}$ max pf	$\max _{\max _{n}}^{n / \vee H z}$
2N2606	TO-18	TO-92	110	-0.1	-0.5	1.0	4.0	1	30	7	2	400 @ 1 kHz
2N2607	TO-18	TO-92	330	-0.3	-1.5	1.0	4.0	3	30	7	2	400 @ 1 kHz
2N2608	TO-18	TO-92	1000	-0.9	-4.5	1.0	4.0	10	30	7	2	180 @ 1 kHz
2N2609	TO-18	TO-92	2500	-2.0	-10.0	1.0	4.0	30	30	7	2	180 @ 1 kHz
2N3329	TO-72		1000 @ - 1 mA	-1.0	-3.0		5.0	10	20	7	2	$400 @ 1 \mathrm{kHz}$
2N3330	TO-72		1500 @ - 2 mA	-2.0	-6.0		6.0	10	- 20	7	2	400 @ 1 kHz
2N3331	TO-72		$200 @-5 \mathrm{~mA}$	-5.0	-15.0		8.0	!10	120	7	2	400 @ 1 kHz
2N5265	TO-72		900	-0.5	-1.0		3.0	2	160	7	2	115 @ 100 Hz
2N5266	TO-72		1000	-0.8	-1.6		3.0	2	60	7	2	115 @ 100 Hz
2N5267	TO-72		1500	-1.5	-3.0		6.0	2	60	7	2	115 @ 100 Hz
2N5268	TO-72		2000	-2.5	-5.0		6.0	2	60	7	2	115 @ 100 Hz
2N5269	TO-72		2200	-4.0	-8.0		8.0	2	60	7	2	115 @ 100 Hz
2N5270	TO-72		2500	-7.0	-14.0		8.0	2	60	7	2	115 @ 100 Hz
2N5460	TO-92		1000	-1.0	-5.0	0.75	6.0	5	40	7	2	115@100 Hz
2N5461	TO-92		1500	-2.0	-9.0	1.0	7.5	5	40	7	2	115 @ 100 Hz
2N5462	TO-92		2500	-4.0	-16.0	1.5	9.0	5	40	7	2	115 @ 100 Hz
2N5463	TO-92		1000	-1.0	-5.0	0.75	6.0	5	60	7	2	115@100 Hz
2N5464	TO-92		1500	-2.0	-9.0	1.0	7.5	5	60	7	2	115 @ 100 Hz
2N5465	TO-92		2500	-4.0	16.0	1.8	9.0	5	60	7	2	115 @ 100 Hz
U304	TO-18			-30	-90		5	. 5	30	27	7	, - -
U305	TO-18			-15	-60		3	. 5	30	27	7	二
U306	TO-18			-5	-25		1	. 5	30.	27	7	

Differential Amplifiers－Dual Monolithic N－ChannelJunction FET؛

Ordering Preferred Part Number\quad Package		$\mathrm{V}_{\text {GS } 1-2}$ $\max ^{\operatorname{mV}}$ mV	$\begin{gathered} \Delta V_{\text {as }} \\ \operatorname{mav}^{\circ} \mathrm{C} \end{gathered}$	$\max _{\text {PA }}^{I_{G}}$	$\begin{gathered} \mathbf{B V} \mathbf{V}_{\text {as }} \\ \mathbf{m / n} \\ \mathbf{V} \end{gathered}$	$\begin{gathered} \mathbf{v}_{\mathrm{p}} \\ \min / \text { max } \\ \hline \end{gathered}$		$\underset{\mu \text { mho }}{\mathbf{m i n}_{1 / \sin }^{g_{1}}}$	$\begin{gathered} \mathrm{l}_{\text {oss }} \\ \min / \max _{\mathrm{mA}} \end{gathered}$		
2N3921	TO－71	5	10	－250	－50	－	－3．0	15007500	1.0	10.0	－
2N3922	T0－71	5	25	－250	－50		－3．0	15007500	1.0	10.0	
2N3954	TO－71	5	10	－50	－50	－1．0	－4．5	13	0.5	5.0	$160 @ 100 \mathrm{~Hz}$
2N3954A	TO－71	5	5	－50	－50	－1．0	－4．5		0.5	5.0	． $160 @ 100 \mathrm{~Hz}$
2N3955	T0－71	10	25	－50	－50	－1．0	－4．5	13	0.5	5.0	＇160＠ 100 Hz
2N3955A	TO－71	10	15	－50	－50	－1．0	－4．5	3	0.5	5.0	$160 @ 100 \mathrm{~Hz}$
2 N 3956	TO－71	15	50	－50	－50	－1．0	－4．5	$1{ }^{3}$	0.5	5.0	$160 @ 100 \mathrm{~Hz}$
2N3957	T0－71	20	75	－50	－50	－1．0	－4．5	$1 \quad 3$	0.5	5.0	$160 @ 100 \mathrm{~Hz}$
2N3958	T0－71	25	100	－50	－50	－1．0	－4．5	1.3	0.5	5.0	$160 @ 100 \mathrm{~Hz}$
2N5196	TO－71	5	5	－15	－50	－0．7	－4．0	700 ＠ $200 \mu \mathrm{~A}$	0.7	7.0	20 ＠ 1 kHz
2N5197	TO－71	5	10	－15	－50	－0．7	－4．0	700 ＠ $200 \mu \mathrm{~A}$	0.7	7.0	$20 @ 1 \mathrm{kHz}$
2N5198	T0－71	10	20	－15	－50	－0．7	－4．0	700 ＠ $200 \mu \mathrm{~A}$	0.7	7.0	20 ＠ 1 kHz
2N5199	T0－71	15	40	－15	－50	－0．7	－4．0	$700 @ 200 \mu \mathrm{~A}$	0.7	7.0	$20 @ 1 \mathrm{kHz}$
2N5452	TO－71	5	5	IGSS－100	－50	－1．0	－4．5	1.4	0.5	5.0	$20 @ 1 \mathrm{kHz}$
2N5453	T0－71	10	10	IGSS－100	－50	－1．0	－4．5	14	0.5	5.0	$20 @ 1 \mathrm{kHz}$
2N5454	TO－71	15	25	IGSS－100	－50	－1．0	－4．5	14	0.5	5.0	$20 @ 1 \mathrm{kHz}$
2 N 5515	T0－71	5	5	－100	－40	－0．7	－4．0	1	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
$2 N 5516$	TO－71	5	10	－100	－40	－0．7	－4．0	1	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
2N5517	TO－71	10	20	－100	－40	－0．7	－4．0	1	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
2N5518	T0－71	15	40	－100	－40	－0．7	－4．0	14	0.5	7.5	30 ＠ 10 Hz
2N5519	T0－71	15	80	-100 -100	－40	－0．7	－4．0	14	0.5	7.5	$30 @ 10 \mathrm{~Hz}$
2N5520	T0－71	5	5	－100	－40	－0．7	－4．0	1	0.5	7.5	$15 @ 10 \mathrm{~Hz}$
2N5521	TO－71	5	10.	－100	－40	－0．7	－4．0	14	0.5	7.5	15 ＠ 10 Hz
2N5522	TO－71	10	20	－100	－40	－0．7	－4．0	$1 \quad 4$	0.5	7.5	$15 @ 10 \mathrm{~Hz}$
2N5523	T0－71	15	40	－100	－40	－0．7	－4．0	1.4	0.5	7.5	15 ＠ 10 Hz
$2 N 5902$ 2N5903	$\begin{array}{r}10.719 \\ \hline 0.99\end{array}$	5 5	10	-3 -3	－40	-0.6 -0.6	－4．5	70 ${ }^{7}$－ 250	0.3 0.03	0.5 .05	$100 @ 1 \mathrm{kHz}$ $100 @ 1 \mathrm{kHz}$
2 N 5904	T0－99	10	20	－3	－40	－0．6	－4．5	$70 \quad 250$	0.03	． 05	$100 @ 1 \mathrm{kHz}$
2N5905	T0－99	15	40	－3	－40	－0．6	－4．5	$70 \quad 250$	0.03	0.5	$100 @ 1 \mathrm{kHz}$
2N5906	T0－99	5	5	－1	－40	－0．6	－4．5	70250	0.03	0.5	100 ＠ 1 kHz
2N5907	TO－99	5	10	－1	－40	－0．6	－4．5	$70 \quad 250$	0.03	0.5	$100 @ 1 \mathrm{kHz}$
2N5908	T0－99	10	20	－1．	－40	－0．6	－4．5	$70 \quad 250$	0.03	0.5	$100 @ 1 \mathrm{kHz}$
2N5909	TO－99	15	40	－1	－40	－0．6	－4．5	$70-250$	0.03	0.5	$100 @ 1$ kHz
2N5911	т0－99	10	20	－100	－25	－1．0	－5．0	5／10＠ 5 mA	7.0	40.0	$20 @ 10 \mathrm{kHz}$
2N5912	TO－99	15	40	－100	－25	－1．0	－5．0	5／10＠ 5 mA	7.0	40.0	20 ＠ 10 kHz
2N6483	T0－71	5	5	－100	－50	－0．7	－4．0	1000 4000	0.5	7.5	．10＠10Hz
2N6484	TO－71	10	10	－100	－50	－0．7	－4．0	10004000	0.5	7.5	$10 @ 10 \mathrm{~Hz}$
2N6485	TO－71	15	25	－100	－50	－0．7	－4．0	1000 4000	0.5	7.5	$10 @ 10 \mathrm{~Hz}$
IMF5911	TO－99	10	20	－100	－25	－1．0	－5．0	5／10＠ 5 mA	7.0	40.0	$20 @ 10 \mathrm{kHz}$
IMF5912	TO－99	15	40	－100	－25	－1．0	－5．0	5／10＠ 5 mA	7.0	40.0	20 ＠ 10 kHz
IMF6485	T0．71	25	40	－100	－50	－0．7	－4．0	$1000 \cdot 4000$	0.5	7.5	$15 @ 10 \mathrm{~Hz}$
17500	TO－52	5	5	－5	－50	－0．7	－4．0	7001600	0.7	7.0	$35 @ 10 \mathrm{~Hz}$
IT501	TO－52	5	10	－5	－50	－0．7	－4．0	7001600	0.7	7.0	$35 @ 10 \mathrm{~Hz}$
17502	TO－52	10	20	－5	－50	－0．7	－4．0	7001600	0.7	7.0	$35 @ 10 \mathrm{~Hz}$
17503	TO－52	15	40	－5	－50	－0．7	－4．0	7001600	0.7	7.0	$35 @ 10 \mathrm{~Hz}$
SU2365	TO－71	5	10	－100	－30		－3．5	1／2＠ $200 \mu \mathrm{~A}$	0.5	10.0	15 ＠ 1 kHz
SU2365A	TO－71	5	10	－20	－30		－3．5	1／2＠ $200 \mu \mathrm{~A}$	0.5	10.0	$50 @ 1 \mathrm{kHz}$
SU2366	TO－71	10	10	－100	－30		－3．5	1／2＠ $200 \mu \mathrm{~A}$	0.5	10.0	$15 @ 1 \mathrm{kHz}$
SU2366A	T0－71	10	10	20	－30		－3．5	1／2＠ $200 \mu \mathrm{~A}$	0.5	10.0	50 ＠ 1 kHz
SU2367	TO－71	10	25	－100	－30		－3．5	1／2＠ $200 \mu \mathrm{~A}$	0.5	10.0	15 ＠ 1 kHz
SU2367A	TO－7．1	10	25	－20	－30		－3．5	1／2＠ $200 \mu \mathrm{~A}$	0.5	10.0	50 ＠ 1 kHz
SU2368	TO－71	15	25	－100	－30		－3．5	1／2＠ $200 \mu \mathrm{~A}$	0.5	10.0	15 ＠ 1 kHz
SU2368A	TO－71	15	25	－20	－30		－3．5	1／2＠ $200 \mu \mathrm{~A}$	0.5	10．0	$50 @ 1$ kHz
U231	T0－71	5	10	－50	－50	－0．5	－4．5	6001600	0.5	5.0	$80 @ 100 \mathrm{~Hz}$
U232	T0－71	10	20	－50	－50	－0．5	－4．5	6001600	0.5	5.0	80 ＠100 Hz
U233	TO－71	15	50	－50	－50	－0．5	－4．5	$600 \quad 1600$	0.5	5.0	$80 @ 100 \mathrm{~Hz}$
U234	T0－71	20	75	－50	－50	－0．5	－4．5	6001600	0.5	5.0	80 ＠100 Hz
U235	TO－71	25	100	－50	－50	－0．5	－4．5	$600 \quad 1600$	0.5	5.0	80 ＠ 100 Hz
U401	T0－71	5	10	－15	－50	－0．5	－2．5	20007000	0.5	10.0	20 ＠ 10 Hz ．
U402	TO－71	10	10	－15	－50	－0．5	－2．5	20007000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
$\begin{array}{r}U 403 \\ \hline 404\end{array}$	TO－71	10	25	－15	－50	－0．5	－2．5	2000 7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U404	TO－71	15	25	－15	－50	－0．5	－2．5	2000 ， 7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
$\cup 405$ $\cup 406$	T0－71	20	40	－15	－50	－0．5	－2．5	2000＇ 7000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U406	T0－71	40	80	－15	－50	－0．5	－2．5	20007000	0.5	10.0	$20 @ 10 \mathrm{~Hz}$
U421	TO－99	10	10	0.1	－60	0.4	2.0	300800	60－1000	000 μ	$20 @ 10 \mathrm{~Hz}$
U422	TO－99	15	25	0.1	－60	0.4	2.0	$300 \quad 800$	60－1000	硅 $\mu \mathrm{A}$	$20 @ 10 \mathrm{~Hz}$
U423	TO－99	25	40	0.1	－60	0.4	2.0	300 8000	60－10		$20 @ 10 \mathrm{~Hz}$
U424 U425	TO－99	10 15	10 25	0.5 0.5	－60	0.4 0.4	3.0 3.0	$\begin{array}{ll}300 & 1000 \\ 300 & 1000\end{array}$	60－180 $60-18$		$20 @ 10 \mathrm{~Hz}$ $20 @ 10 \mathrm{~Hz}$
U426	т0－99	25	40	0.5	－60	0.4	3.0	3001000	60－18	只 A	20 ＠ 10 Hz
2N5564 2N5565				二	-40 -40				5.0		10＠ 10 Hz
2N5565	TO－71 TO－71	10 20	25 50	－	－40	-0.5 -0.5	-3.0 -3.0	$\begin{array}{ll}7.5 & 12.5 \\ 7.5 & 12.5\end{array}$	5.0 5.0	30.0 30.0	$10 @ 10 \mathrm{~Hz}$ $10 @ 10 \mathrm{~Hz}$
IMF5564	T0－71	5	10	－	－40	－0．5	－3．0	7.5012 .5	5.0	30.0	10 ＠ 10 Hz
IMF5565 IMF5566	TO－71	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	25 50		-40 -40	-0.5 -0.5	-3.0 -3.0	$\begin{array}{ll} 7.5^{\prime} & 12.5 \\ 7.5 & 12.5 \end{array}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 30.0 \end{aligned}$	$\begin{aligned} & 10 @ 10 \mathrm{~Hz} \\ & 10 @ 10 \mathrm{~Hz} \end{aligned}$

Jifferential Amplifiers—Dual Monolithic P-Channel MOSFETS Enhancement)

Ordering Preferred Part Number	mation Package	$\begin{gathered} V_{\mathrm{GS}(\tau \mathrm{H})} \\ \min / \max \\ V \end{gathered}$		$\begin{gathered} B V_{\text {oss }} \\ \min / \max \\ V \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{DSs}} \\ & \max \\ & \mathrm{pA} \end{aligned}$	$I_{\text {gss }}$ max pA	$\underset{\substack{\mathrm{g}_{\mathrm{Fs}} \\ \mu \mathrm{~min}}}{\substack{\text { mho }}}$	$\begin{gathered} \mathrm{I}_{\mathrm{D}}(\text { on }) \\ \min / \max ^{\mathrm{mA}} \\ \hline \end{gathered}$		$\mathrm{r}_{\mathrm{DS} \text { (on) }}$ max ohm	$\mathbf{V}_{\text {GS1-2 }}$ max mV
3N165	TO-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300	100
3N166	TO-99	-2	-5	-40	-200	-10	1500	-5.0	-30	300	
3N188	TO-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	100 Zener Protected
3N189	TO-99	-2	-5	-40 ।	-200	-200	1500	-5.0	-30	300	Zener Protected
3N190	TO-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	
3N191	TO-99	-2	-5	-40	-200	-200	1500	-5.0	-30	300	

Differential Amplifiers-Dual NPN Bipolar Transistors

	formation Package	$\begin{aligned} & V_{\mathrm{BE},-2} \\ & \text { max } \\ & \text { max } \end{aligned}$	$\underset{\mu \mathrm{V} /{ }^{\Delta} \mathrm{C}}{\mathrm{C}} \mathrm{V}_{\mathrm{BE}}$ max	$\begin{gathered} \mathbf{h}_{\mathrm{FE}} @ \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ \mathbf{V}_{\mathrm{cE}}=5 \mathrm{~V} \\ \min \end{gathered}$	$\begin{gathered} \hline \mathrm{I}_{\mathrm{B}}^{1-2} @ \\ \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A} \\ \mathbf{V}_{\mathrm{VE}}=5 \mathrm{~V} \\ \mathrm{nA} \\ \max \\ \hline \end{gathered}$	$\underset{\mathbf{c}}{\mathrm{BV}_{\mathrm{CEO}}}$	$\begin{aligned} & \mathrm{I}_{\text {cei }} \\ & \text { nax } \end{aligned}$	$\begin{gathered} \text { Noise } \\ \text { dB } \\ \max \end{gathered}$	$\underset{\min }{\mathbf{M H z}_{\mathbf{f}_{\mathrm{t}}^{\prime}}}$	$\begin{gathered} \mathbf{c}_{\text {opo }} \\ \text { pf } \end{gathered}$	Structure
2N2453 2N2453A 2N4044 2N4100	$\begin{aligned} & \text { TO-78 } \\ & \text { TO } 78 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 3 \\ 10 \\ 5 \end{array}$	$\begin{array}{r} 80 \\ 80 \\ 200 \\ 80 \\ 150 \end{array}$	$\begin{gathered} .6 \mu \mathrm{~A} @ 100 \mu \mathrm{~A} \\ 25 \\ 10 \end{gathered}$	$\begin{aligned} & 30 \\ & 60 \\ & 60 \\ & 45 \\ & 55 \end{aligned}$	5 5 5 .1 .1 .1	$\begin{aligned} & 7 \\ & 4 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	150 @ 1 mA 150 @ 1 mA 200 @ 1 mA 150 @ 1 mA 150 @ 1 mA	8 4 .8 .8 .8 8	Junc. Isol. Junc. Isol. Dielec. Isol. Dielec. Isol. Dielec. Isol.
$\begin{aligned} & \text { 2N4878 } \\ & \text { 2N4879 } \\ & \text { 2N4880 } \\ & \text { 1T120 } \\ & \text { IT120A } \end{aligned}$	$\begin{array}{ll} \text { TO-71 } \\ \text { TO-71 } \\ \text { TO-71 } \\ \text { TO-78 } & \\ \text { TO-71 } & \\ \text { TO-78 } & \text { TO-71 } \end{array}$	$\begin{aligned} & 3 \\ & 5 \\ & 5 \\ & 2 \end{aligned}$	$\begin{array}{r} 3 \\ 5 \\ 10 \\ 5 \\ 3 \end{array}$	$\begin{array}{r} 200 \\ 150 \\ 80 \\ 200 \\ 200 \end{array}$	$\begin{gathered} 5 \\ 10 \\ 25 \\ 5 \\ 2.5 \end{gathered}$	$\begin{aligned} & 60 \\ & 55 \\ & 45 \\ & 45 \\ & 60 \end{aligned}$	$\begin{gathered} .1 \\ .1 \\ .1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 2 \text { typ. } \\ & 2 \text { typ. } \end{aligned}$	$\begin{aligned} & 200 @ 1 \mathrm{~mA} \\ & 150 @ 1 \mathrm{~mA} \end{aligned}$.8 .8 .8 2	Dielec. Isol. Dielec. Isol. Dielec. Isol. Junc. Isol. Junc. Isol.
IT124 IT124A IT124B IT125 IT126	$\begin{array}{ll}\text { TO-78 } \\ \text { T0-78 } & \\ \text { TO-71 } & \\ \text { T0-7 }\end{array}$	$\begin{array}{r}5 \\ 3.2 \\ \hline\end{array}$	10 15 15 3	1500 1500 4000 1000 200	$\begin{aligned} & 6 A V_{C E}=1 V \\ & 0.6 A \\ & 0.6 A V_{E E E}=1 V \\ & 0.6 A V_{C E}=1 V \\ & 0.5 A \end{aligned}$	$\begin{array}{r} 2 \\ 2 \\ 2 \\ 2 \\ 60 \end{array}$.1 .1 .1 .1	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 1 \text { typ. } \end{aligned}$	$\begin{aligned} & 100 @ 200 \mu \mathrm{~A} \\ & 100 @ 100 \mu \mathrm{~A} \\ & 100 @ 100 \mu \mu \mathrm{~A} \\ & 100 @ 100 \mu \mathrm{~A} \\ & 250 @ 10 \mathrm{~mA} \end{aligned}$.8 .8 .8 .8	Dielec. Isol.
IT-127 IT128 IT129 LM194	$\begin{array}{ll} \text { TO-78 } & \text { TO-71 } \\ \text { TO-78 } & \text { TO-71 } \\ \text { TO-78 } & \text { TO-71 } \\ \text { TO-5 } & \\ \text { TO-5 } \end{array}$	$\begin{array}{r} 2 \\ 5 \\ 50 \\ 0.05 \\ 0.15 \end{array}$	$\begin{array}{r} 5 \\ 10 \\ 20 \\ 0.3 \\ 0.8 \end{array}$	$\begin{aligned} & 200 \\ & 100 \\ & 100 \\ & 300 \\ & 200 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 10 \\ \hline 5 \end{array}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 40 \\ & 40 \end{aligned}$.1 .5 .5 -	1 typ. 1 typ. 1 typ.	$\begin{aligned} & 250 @ 10 \mathrm{~mA} \\ & 250 @ 10 \mathrm{~mA} \\ & 20 @ 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	Dielec. Isol. Dielec. Isol. Dielec. Isol.

Jifferential Amplifiers—Dual PNP Bipolar Transistors

N-channel depletion mode JFET, single

- T092 Plastic case
others metal can.

P-channel depletion mode JFET, Single

r_{DS} (max)	$\mathrm{g}_{\text {fS (min) }}$	BV $\mathrm{GSS}_{\text {(min) }}$
	$\begin{aligned} & 100-499 \mu \text { mho } \\ & \text { 2N2606-7 } \end{aligned}$	60 V 2N5265-70
60-85	500-999 $\mu \mathrm{mho}$	2N5463-5
2N5114	2N3330-1	40V
IT100-1	2N5265	- 2N5460-2
$\begin{aligned} & \text { U1/4 } \\ & \hline \end{aligned}$	1000-2499 μ mho	
100-125	2N3608	.
2N5115	2N5266-70	
- J175	- 2N5460-5	
U305	2500-7499 μ mho	
150-180 ${ }^{\text {a }}$	2N3993-4	
2N3993 2N5116	$7500 \mu \mathrm{mho}$	
U306	2N5114-6 typ.	
250ת-300	IT100-1	
2N3994 J176-7	U304-6 typ	

- TO92 Plastic Case

N-channel dual depletion mode JFET

[^1]
N-channel single enhancement mode MOSFET

$r_{\text {DS }(\max)}$	Protection
$500-100 \Omega$	Diode protected
$1 T 1750$	M116
M116	No diode
200Ω	2N4351
$3 N 169-71$	3N169-71
300Ω	IT1750
2N4351	

P-channel single enhancement mode MOSFET

$\mathbf{r}_{\mathrm{DS} \text { (max) }}$	Protection		
250Ω	Diode protected		
3N163		3N161	
3N172		3N172-3	\ddots
$300-400 \Omega$		No diode	
3N164		3N160	
3N173		3N163-4	
IT1700		IT1700	

P-channel dual enhancement mode MOSFET

		Offset $\mathbf{r}_{\text {DS }(\text { max })}$
Protection	$\mathbf{V}_{\text {GSt-2 (max) }}$	
3N165-6	Diode protected	100 mV
3N188-91	3N188-9	$3 N 165$
	No diode	$3 N 188$
	3N165-6	$3 N 190$
	3N190-1	

NPN Dual Bipolar Transistors

$\begin{aligned} & h_{\text {FE }(\text { min })} \\ & I_{c}=10 \mu A \end{aligned}$	Offset $\mathbf{V}_{\text {BE 1-2 (max })}$	Breakdown $\mathbf{V}_{\text {CEO (min) }}$
$\begin{aligned} & \hline 50-250 \\ & \text { 2N2453,A } \\ & \text { 2N4044-5 } \\ & \text { 2N4100 } \\ & \text { 2N4878-80 } \\ & \text { 2N6441-8 } \\ & \text { IT120-2 } \\ & \text { - IT126-9 } \\ & \text { 1000-1500 } \\ & \text { IT124,A } \\ & \text { IT125 } \\ & 4000 \text { up } \\ & \text { IT124B } \end{aligned}$	```1 mV IT120A IT126 2 mV IT120 IT127 3 mV 2N2453, A 2N4044 2N4878 2N6445-8 IT124A```	60V 2N2453A 2N4044 2N4878 IT120A IT126 55V 2N4100 2N4878

PNP Dual Bipolar Transistors

$\begin{aligned} & \mathbf{h}_{\text {fE (min })} \boldsymbol{i}_{\mathrm{c}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Offset } \\ & \mathbf{V}_{\text {BE } 1-2(\text { max })} \end{aligned}$	Breakdown $V_{\text {CEO (min) }}$
50-250 2N3810-1, A - 2N5117-9		$\begin{aligned} & -60 V \\ & \text { 2N3810-1, A } \\ & \boldsymbol{T} 130 \mathrm{~A} \end{aligned}$
IT130-2 - IT136-9	$\begin{gathered} 2 \mathrm{mV} \\ \substack{\text { TT130 } \\ \text { T13 }} \end{gathered}$	IT137

- Dielectrically isolated

2N3970, 2N3971, 2N3972 N-Channel Silicon J-FET

FOR ANALOG SWITCHES, CHOPPERS AND AMPLIFIERS

- RDS(on) < $\mathbf{3 0}$ ohms (2N3970)
- $\mathrm{ID}_{\text {(off) }}<\mathbf{2 5 0} \mathrm{pA}$
- Fast Switching

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain Voltage . 40 V

Gate Current .50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case. Temperature . 1.8 W Storage Temperature Range \qquad -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature ($116^{\prime \prime}$ from case for 60 seconds) $300^{\circ} \mathrm{C}$

PACKAGE DIMENSIONS

bottom view

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

INPUT PULSE RISE TIME 0.25 ns FALL TIME 0.75 ns PULSE WIDTH 200 ns PULSE RATE 550 pps

SAMPLING SCOPE
RISE TIME 0.4 ns
INPUT RESISTANCE 10 M INPUT CAPACITANCE 1.5 pF

FEATURES

- r ${ }^{\text {DS(ON })}<30$ ohms (2N4091) - Fast Switching
- I D(OFF) <100 pA (JAN TX Types)

DESCRIPTION:

This family of junction FETs are characterized for analog switching applications requiring zero dc offset voltage, low ON resistance and fast switching speeds. The JAN TX versions are fully tested to meet the specifications of Mil-S-19500/431.

ABSOLUTE MAXIMUM RATINGS

(@25 ${ }^{\circ} \mathrm{C}$ unless otherwise noted)
Maximum Temperatures

Storage Temperature	-55 to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	-55 to $+175^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec. limit)	$300^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	360 mW
Linear Derating (TO18)	$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Currents	
VGS Gate to Source Voltage	-40 V
VDS Drain to Source Voltage	-40 V
VDG Drain to Gate Voltage	40 V
IGGate Current	10 mA

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

		2N4	091	2N4	092	2N4	093				
		Min.	Max.	Min.	Max.	Min.	Max.			Conditions	
BV ${ }_{\text {GSS }}$	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	$S=0$	
	Drain Reverse Current		200		200		200	pA			25 C
D	(Not JAN TX Specified)		400	.	400		400	nA	VGD ${ }^{-20}$	S $=0$	$150{ }^{\circ} \mathrm{C}$
	Gate Reverse Current		-100		-100		-100	pA			$25^{\prime \prime} \mathrm{C}$
GSS	(JAN TX Only)		-200		-200		-200	nA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$	$V_{D S}=0$	$150{ }^{\prime \prime} \mathrm{C}$
							100	pA			$25^{\circ} \mathrm{C}$
							200	nA		$V_{G S}=-6 \mathrm{~V}$	$150^{\prime \prime} \mathrm{C}$
	JAN TX				100			pA			$25^{\circ} \mathrm{C}$
	Only				200	.		nA	. -	$V_{G S}=-8 \mathrm{~V}$	$150{ }^{\circ} \mathrm{C}$
			100					pA			$25^{\prime \prime} \mathrm{C}$
	Drain Cutoff Curren		200					nA	$V{ }^{\text {d }}=20 \mathrm{~V}$	GS	$150^{\circ} \mathrm{C}$
	Drain Cut						200	pA	S	$V_{G S}=-6 V$	$25^{\prime \prime} \mathrm{C}$
							400	nA		VGS^{--6}	150 C
					200			pA			$25^{\circ} \mathrm{C}$
					400			nA		GS	150 ' C
			200					pA	\because	$V_{G S}=-12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$
			400					nA		GS $=-12$	$150{ }^{\prime \prime} \mathrm{C}$
V_{p}	Gate-Source Pinch-Off Voltage	-5	-10	-2	-7	-1	-5	V	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}$,	$D=1 \mathrm{nA}$	
${ }^{1}$ DSS	Drain Current at Zero Gate Voltage	30		15	-	8		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \text { Pulse-Test } \mathrm{D} \end{aligned}$	$\begin{aligned} & V_{\text {GS }}=0, \\ & \text { ration }=2 \mathrm{~ms} \end{aligned}$	
							0.2			${ }^{1} \mathrm{D}=2.5 \mathrm{~mA}$	
$\mathrm{V}_{\text {DS(ON) }}$	Drain-Source ON Voltage				0.2			V	$V_{G S}=0$	${ }^{\prime} D=4 \mathrm{~mA}$	
			0.2							${ }^{1} \mathrm{D}=6.6 \mathrm{~mA}$	
${ }^{\text {r DS }}$ (ON)	Static Drain-Source ON Resistance		30		50		80	Ω	$\mathrm{V}_{\mathrm{GS}}=0.1 \mathrm{D}$	1 mA	
${ }^{\text {r ds }}$ (on)	Small-Signal Drain-Source ON Resistance		30		50		80	Ω	$V_{G S}=0, I_{D}$	$0, f=1 \mathrm{kHz}$	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		16		16		16	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$,	$V_{G S}=0, f=1 \mathrm{M}$	
...	JAN TX Only		5		5		5	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$.	$V_{G S}=0, f=1 \mathrm{M}$	
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		5.		5		5	pF	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{G}}$	$=-20 \mathrm{~V}, f=1$	

Most widely used solid state switching element. Generally require a translator circuit to boost logic levels up to $\pm 15 \mathrm{~V}$ levels. Ideal for S \& H circuits, R/2R ladder network and high frequency switching.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature
$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit) $\quad+300^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ Free Air Temperature 300 mW
Linear Derating
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current
$\begin{array}{lr}V_{\text {GS }} \text { Gate to Source Voltage } & -40 \mathrm{~V} \\ \mathrm{~V}_{\text {GD }} \text { Gate to Drain Voltage } & -40 \mathrm{~V} \\ \mathrm{I}_{\mathrm{G}} \text { Gate Current } & 50 \mathrm{~mA}\end{array}$

ORDERING INFORMATION

TO18	WAFER	CHIP
2N4391	2N4391/W	2N4391/D
2N4392	2N4392/W	2N4392/D
2N4393	2N4393/W	2N4393/D

PACKAGE DIMENSIONS:

*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTIC		2N4391		2N4392		2N4393		UNIT	TEST CONDITIONS							
		MIN	MAX	MIN	MAX	MIN	MAX									
IGSS Gate Reverse Current			-100		-100		-100	pA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$							
			-200		-200		-200	nA			$150^{\circ} \mathrm{C}$					
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$							
ID(off)	Drain Cutoff Current						100	pA	$V_{D S}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}$						
							200	nA			$150^{\circ} \mathrm{C}$					
					100			pA		$\mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}$						
					200			nA			$150^{\circ} \mathrm{C}$					
			100					pA		$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$						
			200					nA			$150^{\circ} \mathrm{C}$					
VGS(f)	Gate-Source Forward Voltage		1		1		1	V	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, V_{D S}=0$							
$\mathrm{V}_{\mathrm{GS}}(\mathrm{off})$	Gate-Source Cutoff Voltage	-4	-10	-2	-5	-0.5	-3		$V_{D S}=20 \mathrm{~V}, \mathrm{ID}=1 \mathrm{nA}$							
IDSS	Saturation Drain Current (Note 1)	50	150	25	75	5	30	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$							
VDS(on)	Drain Source ON Voltage						0.4	V	$\mathrm{V}_{\mathrm{GS}}=0$	$I_{D}=3 \mathrm{~mA}$						
					0.4					$I^{\prime} \mathrm{D}=6 \mathrm{~mA}$						
			0.4							$1 \mathrm{D}=12 \mathrm{~mA}$						
rDS(on)	Static Drain-Source ON Resistance		30		60		100	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$							
$r_{\text {ds }}$ (on)	Drain-Source ON Resistance		30		60		100	Ω	$V_{G S}=0, I_{D}=0$		$\mathrm{f}=1 \mathrm{kHz}$					
$\mathrm{C}_{\text {iss }}$ Common-Source Input Capacitance $\mathrm{C}_{\text {rss }}$ Common-Source Reverse Transfer Capacitance			14.		14		14	pF	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{G S}=0$		$f=1 \mathrm{MHz}$					
							3.5		$V_{D S}=0$	$\mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}$						
					3.5					$\mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}$						
			3.5							$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$						
$t_{\text {d }}$	Turn-ON Delay Time		15		15		15	ns"	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\text {GS }}(\mathrm{on)}=0$							
t_{r}	Rise Time		5		-5		5		$\begin{array}{r} \text { 2N4391 } \\ \text { 2N4392 } \\ \text { 2N4393 } \\ \hline \end{array}$	$\begin{gathered} \text { ID (on) } \\ 12 \mathrm{~mA} \\ 6 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \text { VGS(off) } \\ & -12 \mathrm{~V} \\ & -7 \\ & -5 \\ & \hline \end{aligned}$					
$t_{\text {off }}$	Turn-OFF Delay Time		20		35		50									
t_{f}	Fall Time		15		20		30									
NOTE: 1. Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$																

GENERAL DESCRIPTION

For analog switches, commutators and choppers.

ABSOLUTE MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature TO18 $\quad-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature TO18 $+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit) $+300^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ Free Air Temperature 1.8 w
Linear Derating $T 018$
$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current

	$2 \mathrm{~N} 4856-7 \cdot 8$	$2 \mathrm{~N} 4859-60-61$
$\mathrm{~V}_{\mathrm{GS}}$	Gate to Source Voltage	-40 V
$\mathrm{~V}_{\mathrm{GD}}$ Gate to Drain	-40 V	-30 V
Voltage	-30 V	
$\mathrm{I}_{\mathrm{G}} \quad$ Gate Current	50 mA	50 mA

FEATURES

- ${ }^{r_{D S(O N)}}<25 \Omega$ (2N4856, 2N4859)
- $I_{D(o f f)}<250 \mathrm{pA}$
- Switches ± 10 V Signals with ± 15 V Supplies (2N4858, 2N4861)
PACKAGE DIMENSIONS

ORDERING INFORMATION

T018	WAFER	CHIP
2N4856	2N4856/W	2N4856/D
2N4857	2N4857/W	2N4857/D
2N4858	2N4858/W	2N4858/D
2N4859	2N4859/W	2N4859/D
2N4860	2N4860/W	2N4860/D
2N4861	2N4861/W	2N4861/D

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

NOTE:

1. Pulse test required, pulsewidth $=100 \mu$ s, duty cycle $\leqslant 10 \%$.

2N5432 2N5433 2N5434 N-Channel Silicon Planar Epitaxial JFET

FEATURES

- $r_{D S}<5$ ohms
- Excellent Switching:- Turn-On <4 ns

Turn-Off $<6 \mathrm{~ns}$

- Low Cutoff Current - ${ }^{D}$ (off) <200 pA

GENERAL DESCRIPTION.

Lowest $\mathrm{r}_{\mathrm{DS}(\text { on) }}$ for analog switches, commutators and choppers

ABSOLUTE MAXIMUM RATINGS
 $@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit)	$+260^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperaturer	
Linear Derating	300 mW
Maximum Voltages \& Current	$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
V $_{\text {GS }}$ Gate to Source Voltage	
V GD Gate to Drain Voltage	-25 V
IG Gate Current	-25 V
IG Drain Current	100 mA
ID	

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

NOTE: 1. Pulse test required pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$.

FEATURES

- Good Combination of $r_{\text {DS(on) }}[<150 \Omega]$ and Low C_{GS} ($<1.2 \mathrm{pF}$)

GENERAL DESCRIPTION

Makes ideal sample and hold switch: Low C_{GS} gives very low charge injection; low $I_{D(o f f)}$ produces super low S \& H drift rate. $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}$ less than 5 V allows switching up to ± 10 VAC with $\pm 15 \mathrm{~V}$ supplies.

ABSOLUTE MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature
Operating Junction Temperature @ Free Air Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 second time limit)
Maximum Power Dissipation
Device Dissipation
Linear Derating
300 mW
$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current

V SG Source to Gate Voltage	25 V
V $_{\text {DS }}$ Drain to Source Voltage	25 V
V DG $^{\text {Drain to Gate Voltage }}$	25 V
IG	Gate Current

ORDERING INFORMATION

TO92	WAFER	CHIP
2N5555	2N55555/W	2N5555/D

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS
$V_{\text {(BR)GSS }}$	Gate-Source Breakdown Voltage	25	-	Vdc	${ }^{\prime} \mathrm{G}=10 \mu \mathrm{Adc}, \mathrm{V}_{\text {DS }}=0$
${ }^{\prime} \mathrm{GSS}$	Gate Reverse Current	-	1.0	nAdc	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0$
	Drain Cutoff Current	-	100	pAdc	$\mathrm{V}_{\mathrm{DS}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}$
D	Drain Cutorf Current	-	2.0	$\mu \mathrm{Adc}$	$\left.\mathrm{V}_{\text {DS }}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}\right)$
$V_{\text {GS }}$ (off)	Gate-Source to Gate-Source Drain Cut-off Voltage	-	5	Vdc	$@ V_{D S}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=1 \mathrm{nA}$
'DSS	Zero-Gate Voltage Drain Current	15	-	mAdc	$\mathrm{V}_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0$
$V_{\text {GS(f) }}$	Gate-Source Forward Voltage	-	1.0	Vdc	$\mathrm{I}_{\mathrm{G}(\mathrm{f})}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{DS}}=0$
$V_{\text {DS }}(0 n)$	Drain-Source "ON" Voltage	-	1.5	Vdc	$\mathrm{I}^{\mathrm{D}}=7.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{GS}}=0$
${ }^{\text {r DSS }}$ (on)	Static Drain-Source "ON" Resistance	-	150	Ohms	$\mathrm{I}_{\mathrm{D}}=0.1 \mathrm{mAdc}, \mathrm{V}_{\mathrm{GS}}=0$

SWITCHING CHARACTERISTICS

SWITCHING TIMES TEST CIRCUIT

INPUT PULSE
Rise Time $<1.0 \mathrm{~ns}$
Fall Time $<1.0 \mathrm{~ns}$
Nominal Value of "on" Pulse Width $=400 \mathrm{n}$
Duty Cycle < 1.0%
Gener ator Source Impedance $=\mathbf{5 0} \mathbf{O h m s}$

FEATURES

For analog switches, commutator and choppers.

- Economy Packaging
- Fast Switching - $\mathrm{t}_{\text {rise }}<5$ nsec (2N5638)
- Low Drain-Source 'ON' Resistance $<30 \Omega$ (2N5638)

ABSOLUTE MAXIMUM RATINGS

Drain-Source Breakdown Voltage	30 V
Drain-Gate Breakdown Voltage	30 V
Source-Gate Breakdown Voltage	30 V
Forward Gate Current	10 mA
Total Device Dissipation at $\mathbf{~} 25^{\circ} \mathrm{C}$	310 mW
\quad Derate above $25^{\circ} \mathrm{C}$	$2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	-65 to $+135^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to $+150^{\circ} \mathrm{C}$

PACKAGE DIMENSIONS

PIN	OUT
1	D
2	S
3	G

NOTE: FOR DIE STRUCTURE, REFER TO 2N4391 FAMILY

5001B

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTIC		2N5638		2N5639		2N5640		UNIT.	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX			
BVGSS	Gate Reverse Breakdown Voltage	-30		-30		-30		V	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$	
			-1.0		-1.0		-1.0	nA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
IGSS	Gate Reverse Current		-1.0		-1.0		-1.0	$\mu \mathrm{A}$		$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$
ID (off)			1.0		1.0		1.0	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-12 \mathrm{~V}(2 \mathrm{~N} 5638) \\ & \mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}(2 \mathrm{~N} 539), \mathrm{V}_{\mathrm{GS}}=-6 \mathrm{~V}(2 \mathrm{~N} 540) \end{aligned}$	
	Drain Cutoff Current		1.0		1.0		1.0	$\mu \mathrm{A}$		$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$
IDSS	Saturation Drain Current	50		25		5.0		mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 1)	
VDS(on)	Drain-Source ON Voltage		0.5		0.5	;	0.5	V	$\begin{aligned} & V_{G S}=0, I_{D}=12 \mathrm{~mA}(2 N 5638), \\ & I_{D}=6 \mathrm{~mA}(2 N 5639), I_{D}=3 \mathrm{~mA}(2 N 5640) \end{aligned}$	
rDS(on)	Static Drain-Source ON Resistance		30		60		100	Ω	$1 \mathrm{D}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	
$\mathrm{ras}_{\text {ds }}(\mathrm{on})$	Drain-Source ON Resistance		30		60		100		$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		10.		10		10	pF	$V_{G S}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		4.0		4.0		4.0			
$t_{\text {d }}$ (on)	Turn-On Delay Time		4.0		6.0		8.0	ns	$V_{D D}=10 \mathrm{~V}$ ID(on) $=12 \mathrm{~mA}(2 \mathrm{~N} 5638)$ $V_{G S(o n)}=0$ ID(on) $=6 \mathrm{~mA}(2 \mathrm{~N} 5639)$ $V_{G S(o f f)}=-10 \mathrm{~V}$ ID(on) $=3 \mathrm{~mA}(2 \mathrm{~N} 5640)$ $\mathrm{R}_{\mathrm{G}}=50 \Omega$	
tr_{r}	Rise Time		5.0		8.0		10			
t_{d}	Turn-OFF Delay Time,		5.0		10		15			
$\mathrm{tf}^{\text {f }}$	Fall Time		10		20		30			

NOTE: 1. Pulse test $\mathrm{PW} \leqslant 300 \mu$ s, duty cycle $\leqslant 3.0 \%$.

FEATURES

- rDS(ON) < $\mathbf{3 0}$ ohms (ITE4091)
- $\mathrm{ID}(\mathrm{OfF})<200 \mathrm{pA}$
- Fast Switching

GENERAL DESCRIPTION:

This family of junction FETs are characterized for analog switching applications requiring zero dc offset voltage, low ON resistance and fast switching speeds.
ABSOLUTE MAXIMUM RATINGS(@25 ${ }^{\circ} \mathrm{C}$ unless otherwise noted)Maximum Temperatures
Storage Temperature -55 to $+200^{\circ} \mathrm{C}$Operating Junction Temperature: -55 to $+175^{\circ} \mathrm{C}$Lead Temperature (soldering, 10 sec. limit) $\ldots . .300^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ Free Air Temperature .. 360 mW
Linear Derating (TO92) $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Currents
Vas Gate to Source Voltage $-40 \mathrm{~V}$
VDS Drain to Source Voltage $-40 \mathrm{~V}$
VDG Drain to Gate Voltage 40 V
IG Gate Current 10 mA

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

ITE4391, ITE4392, ITE4393 N-Channel Silicon Planar Epitaxial JFET

FEATURES

- $r_{\text {DS(on) }}$ < $\mathbf{3 0}$ ohms (ITE4391)
- $\mathrm{I}_{\mathrm{D} \text { (off) }}$ < $\mathbf{1 0 0} \mathrm{pA}$
- Switches ± 10 VAC with $\pm 15 \mathrm{~V}$ Supplies (ITE4392, ITE4393)

GENERAL DESCRIPTION

Most widely used solid state switching element. Generally require a translator circuit to boost logic levels up to $\pm 15 \mathrm{~V}$ levels. Ideal for S \& H circuits, R/2R ladder network and high frequency switching.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature TO92 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Junction Temperature T092 $\ldots \ldots . .+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit) $+300^{\circ} \mathrm{C}$ Maximum Power Dissipation

Device Dissipation @ Free Air Temperature .. 300 mW
Linear Derating TO92 $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current
VGS Gate to Source Voltage $-40 \mathrm{~V}$
VGD Gate to Drain Voltage $-40 \mathrm{~V}$ Ig Gate Current

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC		ITE4391		ITE4392		ITE4393		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX	MIN	MAX				
IGSS	Gate Reverse Current		-100		-100		-100	pA	$\mathrm{V}_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
			-200		-200		-200	nA			$150^{\circ} \mathrm{C}$
BVGsS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
ld (off)	Drain Cutoff Current						100	pA.	$\mathrm{VDS}=20 \mathrm{~V}$	VGS $=-5 \mathrm{~V}$	
							200	nA			$150^{\circ} \mathrm{C}$
					100			pA		$\mathrm{V}_{\mathrm{GS}}=-7 \mathrm{~V}$	
					200			nA			$150^{\circ} \mathrm{C}$
			100					pA		$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$	
			200					nA			$150^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Forward Voltage		1		1		1	V	$\mathrm{IG}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$		
$V_{G S}($ off $)$	Gate-Source Cutoff Voltage	-4	-10	-2	-5	-0.5	-3		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		
IDSS :	Saturation Drain Current (Note 1)	50.	150	25	75	5	30	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
VDS(on)	Drain Source ON Voltage						0.4	V	$V_{G S}=0 \frac{I_{D}=3 \mathrm{~mA}}{\frac{\mathrm{ID}=6 \mathrm{~mA}}{\mathrm{ID}_{\mathrm{D}}=12 \mathrm{~mA}}}$		
					0.4						
			0.4								
rDS(on).	Static Drain-Source ON Resistance		30		60		100	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}=1 \mathrm{~mA}$		
rds(on)	Drain-Source ON Resistance		30		60		100	Ω			$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$ Crss	Common Source Input Capacitance Common-Source Reverse Transfer Capacitance		14		14		14	pF			$\mathrm{f}=1 \mathrm{MHz}$
							3.5		$\therefore \mathrm{VDS}=0$	$s=-5 \mathrm{~V}$	
					3.5					$s=-7 \mathrm{~V}$	
			3.5							$S=-12 \mathrm{~V}$	
td	Turn-ON Delay Time		15		15		15	ns	$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}(\mathrm{on})=0$		
tr_{r}	Rise Time		5		5		5		ID(on) ITE4391 12 mA ITE4392 6 ITE4393 3		VGS(off)
toff	Turn-OFF Delay Time		20		35		50				-12V
tf .	Fall Time		15		20		30				$\begin{aligned} & -7 \\ & -5 \end{aligned}$

[^2]
DESIGNED FOR USE AS

- Analog Switches
- Choppers
- Commutators

FEATURES

- Low Cost

- Automated Insertion Package
- Low Insertion Loss

RDS(on) < 30 (J111)

- No Offset or Error Voltage Generated by Closed Switch

Purely Resistive

High Isolation Resistance from Driver

- Fast Switching
$t_{D(\text { (on })}+t_{r}=13$ ns Typical
- Short Sample and Hold Aperture Time
$\mathbf{C g d}_{\text {(off) }}<5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{gs}(\mathrm{off})}<5 \mathrm{pF}$

PACKAGE DIMENSIONS

TO-92

ABSOLUTE MAXIMUM RATINGS (@25 ${ }^{\circ} \mathrm{C}$)	
Gate-Drain or Gate-Source Voltage	-35V
Gate Current	50 mA
Total Device Dissipation. (TLEAD $=25^{\circ} \mathrm{C}$)	625 mW
Power Derating (to $+135^{\circ} \mathrm{C}$)	$5.68 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (1/16' from	$+300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

NOTES:

1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse Test duration $300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.

FEATURES

- Low r ${ }_{\text {DS(on) }}-150 \Omega \operatorname{Max}$ (2N3993) .
- High, $\mathrm{Y}_{\mathrm{fs}}{ }^{\prime} / \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure-of-Merit)

GENERAL DESCRIPTION

Used in high-speed commutator and chopper applications. Also ideal for "Virtual Gnd" switching; needs no ext. translator circuit to switch ± 10 VAC. Can be driven direct from $T^{2} L$ or CMOS logic.

MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
$\begin{array}{lr}\text { Drain-Gate Voltage } & -25 \mathrm{~V} \\ \text { Drain-Source Voltage } & -25 \mathrm{~V} \\ \text { Reverse Gate-Source Voltage } & +25 \mathrm{~V} \\ \text { Continuous Forward Gate Current } & -10 \mathrm{~mA} \\ \text { Continuous Device Dissipation at (or below) } & \\ 25^{\circ} \mathrm{C} \text { Free-Air Temperature (See Note 1) } & 300 \mathrm{~mW} \\ \left.\begin{array}{lr}\text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to } 200^{\circ} \mathrm{C} \\ \text { Lead Temperature 1/16 Inch from Case } & \\ \quad \text { for 10 Seconds } & 300^{\circ} \mathrm{C}\end{array}\right) .\end{array}$

PACKAGE DIMENSIONS

NOTE: FOR DIE STRUCTURE, SEE 2 N5114 FAMILY.

5508B
*ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$	2N3993		2N3994		UNIT	
		MIN	MAX	MIN	MAX			
$\mathrm{BV}_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage		$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{DS}}=0$	25		25		V
IDGO	Drain Reverse Current	$V_{\text {DG }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$		-1.2		-1.2	nA	
		$\begin{array}{ll} V_{D G}=-15 \mathrm{~V}, & \mathrm{I}_{\mathrm{S}}=0, \\ & T_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{array}$		-1.2		-1.2	$\mu \mathrm{A}$	
IDSS	Zero-Gate-Voltage Drain Current	$\begin{aligned} \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { See Note } 2 \end{aligned}$	-10		-2		mA	
ID(off)	Drain Cutoff Current	$\mathrm{V}_{\text {DS }}=-10 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}$				-1.2	nA	
		$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, V_{\mathrm{GS}}=6 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$				-1	$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		-1.2			nA	
		$\begin{array}{cl} \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \\ \hline \end{array}$		-1			$\mu \mathrm{A}$	
$V_{\text {GS(off) }}$	Gate-Source Voltage	VDS $=-10 \mathrm{~V}, 1 \mathrm{D}=-1 \mu \mathrm{~A}$	4	9.5	1	5.5	V	
rds(on)	Small-Signal Drain-Source On-State Resistance	$\begin{aligned} & V_{G S}=0, \quad I D=0, \\ & f=1 \mathrm{kHz} \end{aligned}$		150		300	Ω	
$\left\|y_{\text {fs }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{array}{ll} V_{D S}=-10 \mathrm{~V}, & V_{G S}=0, \\ f=1 \mathrm{kHz}, & \text { See Note } 2 \end{array}$	6	12	4	10	mmho	
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{array}{ll} V_{\text {DS }}=-10 \mathrm{~V}, & V_{G S}=0, \\ f=1 \mathrm{MHz}, & \text { See Note } 3 \end{array}$		16		16	pF	
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$\begin{array}{ll} V_{D S}=0, & V_{G S}=6 \mathrm{~V}, \\ f=1 \mathrm{MHz} \end{array}$				5	pF	
		$\begin{array}{ll} \mathrm{V} D S \\ \mathrm{f}=0, & \mathrm{VGS}=10 \mathrm{~V}, \\ \mathrm{f}=1 \mathrm{MHz} \end{array}$		4.5		4.5	pF	

NOTES: 2. These parameters must be measured using pulse techniques. $t_{p}=100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
3. This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating.
*Indicates JEDEC registered data.
${ }^{\dagger}$ The fourth lead (case) is connected to the source for all measurements.

FEATURES

- ON Resistance <75 ohms on 2N5114
- $I_{D(o f f)}<500 \mathrm{pA}$
- Switches directly from T^{2} L Logic (2N5116)

GENERAL DESCRIPTION

Ideal for inverting switching or "Virtual Gnd" switching into inverting input of Op. Amp. No driver is required and ± 10 VAC signals can be handled using only +5 V logic ($\mathrm{T}^{2} \mathrm{~L}$ or CMOS).

ABSOLUTE MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)

2N5114/JAN TX 2N5114 2N5115/JAN TX 2N5115 2N5116/JAN TX 2N5116 P-Channel Silicon Planar Epitaxial JFET

ORDERING INFORMATION

. TO18	WAFER	CHIP
2N5114	2N5114/W	2N5114/D
2N5115	2N5115/W	2N5115/D
2N5116	2N5116/W	2N5116/D
JAN TX 2N5114		
JAN TX 2N5115		
JAN TX 2N5116		

PACKAGE DIMENSIONS

5508B

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTIC		2N5114		2N5115		2N5116		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX			
BVGSS	Gate-Source Breakdown Voltage	30		30		30		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	1
IGSS	Gate Reverse Current		500		500		500	pA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$25^{\circ} \mathrm{C}$
			1.0		1.0		1.0	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
${ }^{1} \mathrm{D}(\mathrm{OFF})$	Drain Cutoff Current		-500		-500		-500	pA	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\begin{aligned} & 2 \mathrm{~N} 5114=12 \mathrm{~V} \\ & 2 N 5115=7 \mathrm{~V} \\ & 2 N 5116=5 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$
			-1.0		-1.0		-1.0	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
V_{p}	Gate-Source Pinch-Off Voltage	5	10	3	6	1	4	V .	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}, \mathrm{ID}=-1 \mathrm{nA}$	
${ }^{\prime}$ DSS	Drain Current at Zero Gate Voltage	.-30	-90	-15	-60	-5	-25	mA	$\begin{aligned} & 2 N 51.14=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}= 2 \mathrm{~N} 5115=-15 \mathrm{~V} \\ & 2 N 5116=-15 \mathrm{~V} \end{aligned}$	
VGS(f)	Forward Gate-Source Voltage		-1		-1		-1	V	Pulse Test Duration $=2 \mathrm{~ms}$$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$	
VDS(ON)	Drain-Source ON Voltage		-1.3.		-0.8		-0.6	V	$2 N 5114$ $=-15 \mathrm{~mA}$ $=2 N 5115$ $=-7 \mathrm{~mA}$ $2 N 5116$ $=-3 \mathrm{~mA}$	
$\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$	Static Drain-Source ON Resistance Small-Signal Drain-Source ON		$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & V_{G S}=0, I_{D}=-1 \mathrm{~mA} \\ & V_{G S}=0, I_{D}=0, f=1 \mathrm{kHz} \end{aligned}$	
rds(ON)	Resistance Jan TX only		75		100		175	Ω		
Ciss	Common-Source Input		25		25		25	pF	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$	
iss	Capacitance Jan TX only		25		25.		27	pF		
Crss	Common-Source Reverse Transfer Capacitance		7		7		7	pF	$2 N 5114=12 \mathrm{~V}$ $V_{D S}=0, V_{G S}=2 N 5115=7 \mathrm{~V}$ $f=1 \mathrm{MHz}$ $2 N 5116=5 \mathrm{~V}$	

Silicon Planar Epitaxial JFET Analog Switches

FEATURES

- Interfaces Directly with $T^{2} L$ Logic Elements so that No Extra Driver Stage is Required.
- $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}<75 \Omega$ for 5 V Logic Drive
- $I_{D(O F F)}<100 \mathrm{pA}$

GENERAL DESCRIPTION

This P-channel JFET has been designed to directly interface with $\cdot T^{2} \mathrm{~L}$ logic, thus eliminating the need for costly drivers, in analog gate circuitry. Bipolar inputs of $\pm 15 \mathrm{~V}$ can be switched. The FET is OFF for hi level inputs $1+5 \mathrm{~V}$ or +15 V) and ON for low level inputs ($<0.5 \mathrm{~V}$ for $\mathrm{IT} 100<$ 1.5 V for IT101.

ABSOLUTE MAXIMUM RATINGS
 @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature (TO18) : -65°	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Storage Temperature (TO92) - 55°	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Junction Temperature (TO18)	(T018) $+200^{\circ} \mathrm{C}$
Operating Junction Temperature (TO92)	(TO92) $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	
10 sec time limit)	$+300^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	mperature $\quad 300 \mathrm{~mW}$
Linear Derating (TO18)	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
(TO92)	3.0 mW/ ${ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current	
$\mathrm{V}_{\text {GS }}$ Gate to Source Voltage	35 V
$\mathrm{V}_{\text {GD }}$ Gate to Drain Voltage	35 V
I_{G} Gate Current	50 mA

ORDERING INFORMATION

TO18	TO92	WAFER FORM	CHIP
IT100	IT100-TO92	IT100/W	IT100/D
IT101	IT101-T092	IT101/W	IT101/D

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

	CHARACTERISTIC	IT100		IT101		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
IDSS	Max Drain Current	-10	-	-20	-	mA	$V_{G S}=0, V_{D S}=-15 \mathrm{~V}$
Vp	Pinch Off Voltage	2	4.5	4	10	V	$I_{D}=1 \mathrm{nA}, V_{D S}=-15 \mathrm{~V}$
BVGSS	Gate-Source Breakdown Voltage	35		35		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$
IGSS	Gate Leakage Current		200		200	pA	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$
g_{fs}	Transconductance	-8		-8		mmho	$V_{G S}=0, V_{D S}=-15 \mathrm{~V}$
g_{os}	Output Conductance		-1		-1	mmho	$V_{G S}=0, V_{D S}=-15 \mathrm{~V}$
ID(OFF)	Drain (OFF) Leakage		-100		-100	pA	$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}, \mathrm{VGS}=-15 \mathrm{~V}$
RDS(ON)	Drain-Source "ON" Resistance		75		60	Ω	$V_{G S}=0, V_{D S}=-0.1 \mathrm{~V}$
$\mathrm{Ciss}^{\text {i }}$	Input Capacity		35		35	pF	$V_{D G}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
$\mathrm{Cr}_{\text {rss }}$	Reverse Transfer Capacity		12		12	pF	$V_{\text {DG }}=-10 \mathrm{~V}, \mathrm{IS}=0$

DESIGNED FOR USE AS

- Analog Switches
- Choppers

- Commutators

FEATURES

- Low Cost
- Low Insertion Loss

RDS(on) $<85 \Omega$ (J174)

- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive

High Isolation Resistance from Driver

- Short Sample and Hold Aperture Time
$\mathrm{C}_{\mathrm{sg}(\text { (off })}<\mathbf{5 . 5 \mathrm { pF }}$
Cdg(off) $^{\text {< }} \mathbf{~} 5.5 \mathrm{pF}$

PACKAGE DIMENSIONS

TO-92

- Fast Switching
$\mathbf{t}_{\mathrm{d} \text { (on) }}+\mathbf{t}_{\mathrm{r}}=\mathbf{7}$ ns Typical

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)	
Gate-Drain or Gate-Source Voltage (Note 1)	30 V
Gate Current	50 mA
Total Device Dissipation ($25^{\circ} \mathrm{C}$ Free-Air Temperature	350 mW
Power Derating (to $+125^{\circ} \mathrm{C}$)	$3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	-55 to $+125^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

		PARAMETERS		$J 174$			$J 175$			$J 176$			$J 177$			UNIT	TEST CONDITIONS					
		MIN	TYP	MAX																		
1	S			IGss	Gate Reverse Current (Note 2)	.		1			1			1			1	nA	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=20 \mathrm{~V}$			
2		$\mathrm{V}_{\mathrm{GS}}(\mathrm{off})$	Gate-Source Cutoff Voltage	5		10	3		6	1		4	0.8		2.25	V	$V_{D S}=-15 V, I D=-10 n A$					
3	T	BVGSS	Gate-Source Breakdown Voltage	30			30			30			30				$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{IG}_{\mathrm{G}}=1 \mu \mathrm{~A}$					
4	A	Idss	Saturation Drain Current (Note 3)	-20		-100	-7		-60	-2		-25	-1.5		-20	mA	$\mathrm{V}_{\text {OS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					
5	$\begin{aligned} & 1 \\ & c \end{aligned}$	ID(off)	Drain Cutoff Current (Note 2)			-1			-1			-1			-1	nA	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$					
6		ros(on)	Drain-Source ON Resistance			85			125			250			300	,	$V_{G S}=0, V_{D S}=-0.1 \mathrm{~V}$					
7		Cdg(off)	Drain-Gate OFF Capacitance		5.5			5.5			5.5			5.5		pF	$V_{D S}=0, V_{G S}=10 \mathrm{~V}$			$\mathrm{f}=1 \mathrm{MHz}$		
8		$\mathrm{C}_{\text {sg(off) }}$	Source-Gate OFF Capacitance		5.5			5.5			5.5			5.5								
9	$\begin{aligned} & D \\ & Y \\ & N \end{aligned}$	$\begin{gathered} \hline \mathrm{C}_{\mathrm{dg}(o n)} \\ + \\ \mathrm{C}_{\mathrm{sg}(\mathrm{on})} \\ \hline \end{gathered}$	Drain-Gate Plus Source Gate ON Capacitance		40			40			40			40			$V_{D S}=V_{G S}=0$					
10	A	td(on)	Turn On Delay Time		2			5			15			20		ns	Switching Time Test Conditions					
11	M	tr_{r}	Rise Time		5			10			20			25			VDD	J174 -10 V	J175	$\begin{array}{cc}J 176 & J 177 \\ -6 V & -6 V\end{array}$		
12	C	t_{d} (off)	Turn Off Delay Time		5			10			15			20			VGS(off)	12 V	8 V	6 V 3 V		
13		$\mathrm{tf}^{\text {f }}$	Fall Time		10			20			20			25	\because		RL $\mathrm{V}_{\mathrm{GS}}(\mathrm{on})$	$\begin{gathered} 560 \Omega \\ 0 \mathrm{~V} \end{gathered}$	12K/ 2 OV	$\begin{array}{cc} 5.6 \mathrm{~K} \Omega & 10 \mathrm{~K} \Omega \\ 0 \mathrm{~V} & \mathrm{OV} \end{array}$		

NOTES:

1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged.
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
3. Pulse test duration $-300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.

DESIGNED FOR USE AS

- General Purpose Amplifiers

FEATURES

- Low Cost
- Automatic Insertion Package
- High Gain Amplifiers
gis $=14,000 \mu \mathrm{mho}$ Typical (J271)
- Low Noise
$e_{n}=6 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at 1 kHz Typical

PACKAGE DIMENSIONS

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)	
Gate-Drain or Gate-Source Voltage (Note 1)	30 V
Gate Current	-50mA
Total Device Dissipation ($25^{\circ} \mathrm{C}$ Free-Air Temperature)	350 mW
Power Derating (to $+125^{\circ} \mathrm{C}$)	$3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	-55 to $+125^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 seconds)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

NOTES:

1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged.
2. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
3. Pulse test duration $=2 \mathrm{~ms}$.

INTMR

FEATURES

- Specified Matching Characteristics
- High Gain - 7500μ mho Minimum
- Low "ON" Resistance - 100 Maximum

ABSOLUTE MAXIMUM RATINGS

($25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Gate Voltage . $\pm 80 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage 40 V
Gate Current. 50mA
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $2.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
325 mW
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$).
. 650 mW
Storage Temperature Range $655^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds)
$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

DESIGNED FOR USE AS:

- Dual Matched Switches

- Wideband Differential Amplifiers

PACKAGE DIMENSIONS TO-71

	SYMBOL	PARAMETERS	CONDITIONS		MIN.	MAX.	UNIT
S	IGSS	Gate-Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-100	pA
				$150^{\circ} \mathrm{C}$		-200	nA
	$\mathrm{BV}_{\mathrm{GSS}}$	Gate-Source Breakdown Voltage	$!_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		V
	$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$:	-0.5	-3	
	$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Voltage	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=2 \mathrm{~mA}$			1.0	
	IDSS	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		5	30	mA
	${ }^{\text {r DS }}$ (on)	Static Drain Source ON Resistance	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$			100	Ω
				$\mathrm{f}=1 \mathrm{kHz}$	7500	12,500	
	9 fs	(Note 1)		$\mathrm{f}=100 \mathrm{MHz}$	7000		$\mu \mathrm{mho}$
V	gos	Common-Source Output Conductance		$\mathrm{f}=1 \mathrm{kHz}$		45	
N	$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Traņsfer Capacitance	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	$f=1 \mathrm{MHz}$,	3	pF
$\stackrel{\text { A }}{\text { M }}$	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance				12	
1	NF	Spot Noise Figure		$\mathrm{f}=10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{g}}=1 \mathrm{M}$		1.0	dB
C	$\overline{e_{n}}$	Equivalent Short Circuit Input Noise Voltage		$\mathrm{f}=10 \mathrm{~Hz}$		50	$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

SYMBOL		PARAMETERS	CONDITIONS		2N5564		2N5565		2N5566		UNIT	
		MIN.			MAX.	MIN.	MAX.	MIN.	MAX.			
MATCHING	$\frac{\text { IDSS1 }}{\text { DSS2 }}$		Saturation Drain Current Ratio (Notes 1 and 2)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.95	1	0.95	1	0.95	1	-
	$\mathrm{V}_{\mathrm{GS} 1} \cdot \mathrm{~V}_{\mathrm{GS} 2}$	Differential Gate-Source Voltage	.			5		10		20	mV	
	$\frac{\Delta V_{G S 1} \cdot V_{G S 2}}{\Delta T}$	Gate-Source Voltage Differential Drift (Note 3)	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=125^{\circ} \mathrm{C} \end{aligned}$		10	.	25		50	${ }^{2} \mathrm{~V} /{ }^{\circ} \mathrm{C}$	
				$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$		10	.	25		50		
	$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{fs} 2}}$	Transconductance Ratio (Notes 1 and 2)	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	0.95	1	0.90	1	0.90	1	-	

NOTES:

1. Pulse test required, pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. Assumes smaller value in numerator.
3. Measured at end points, T_{A} and T_{B}.

IMF5564/IMF5565/IMF5566 Dielectrically Isolated Dual Monolithic Matched N-Channel JFET

FEATURES

- Low Noise ($10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10Hz)
- High Gain - $7500 \mu \mathrm{mho}$ Minimum
- Specified Matching Characteristics
- Low "ON" Resistance - 100 Ω Maximum

ABSOLUTE MAXIMUM RATINGS

($25^{\circ} \mathrm{C}$ unless otherwise noted)
Gate-Gate Voltage . $\pm 80 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage 40V
Gate Current
50mA
Device Dissipation (Each Side), $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $2.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
325 mW
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 650 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds)
$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

DESIGNED FOR USE IN:

- Dual Matched Switches
- Wideband Differential Amplifiers

PACKAGE DIMENSIONS TO—71

	SYMBOL	PARAMETERS	CONDITIONS		MIN.	MAX.	UNIT
$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \\ & \mathrm{~T} \\ & \mathrm{I} \\ & \mathrm{C} \end{aligned}$	IGSS	Gate-Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-100	pA
				$150^{\circ} \mathrm{C}$		-200	nA
	BV ${ }_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		-40		
	$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.5	-3	V
	$\mathrm{V}_{\text {GS(f) }}$	Gate-Source Voltage	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=2 \mathrm{~mA}$			1.0	
	IDSS	Saturation Drain Current (Note 1)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		5	30	mA
	rDS(on)	Static Drain Source ON Resistance	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$			100	Ω
$\begin{gathered} D \\ Y \\ N \\ A \\ M \\ 1 \\ C \end{gathered}$	g_{fs}	Common-Source Forward Transconductance (Note 1)	$V_{D G}=15 \mathrm{~V}, 1 D=2 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	7500	12,500	
				$f=100 \mathrm{MHz}$	7000		$\mu \mathrm{mho}$
	gos	Common-Source Output Conductance		$f=1 \mathrm{kHz}$		45	
	Crss	Common-Source Reverse Transfer Capacitance		$\mathrm{f}=1 \mathrm{MHz}$		3	pF
	$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance				12	
	NF	Spot Noise Figure		$f=10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{g}}=1 \mathrm{M}$		1.0	dB
	\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage		$f=10 \mathrm{~Hz}$		50	$\frac{n V}{\sqrt{H z}}$

SYMBOL		PARAMETERS	CONDITIONS		IMF5564		IMF5565		IMF5566		UNIT	
		MIN.			MAX.	MIN.	MAX.	MIN.	MAX.			
$\begin{gathered} M \\ \text { A } \\ \text { T } \\ \text { C } \\ H \\ 1 \\ N \\ \text { G } \end{gathered}$	$\frac{\mathrm{IDSS1}}{\text { IDSS2 }}$		Saturation Drain Current Ratio (Notes 1 and 2)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.95	1	0.95	1	0.95	1	-
	$\left\|\mathrm{V}_{\mathrm{GS} 1} \cdot \mathrm{~V}_{\mathrm{GS} 2}\right\|$	Differential Gate-Source Voltage				5		10		20	mV	
	$\frac{\Delta\left\|V_{\mathrm{GS1}}-V_{\mathrm{GS}}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift (Note 3)	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=125^{\circ} \mathrm{C} \end{aligned}$		10		25		50	${ }^{\prime} / 7 /{ }^{\circ} \mathrm{C}$	
				$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$		10		25		50		
	$\frac{g_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{fs} 2}}$	Transconductance Ratio (Notes 1 and 2)	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=2 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	0.95	1	0.90	1	0.90	1	-	

NOTES:

1. Pulse test required, pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. Assumes smaller value in numerator.
3. Measured at ends points, T_{A} and T_{B}.

2N3684 2N3685 2N3686 2N3687 N-Channel Silicon Planar Epitaxial JFET

ORDERING INFORMATION

- Symmetrical devices for low-level choppers, data switches, multiplexers and low noise amplifiers
- Extremely low noise and capacitance
- High input impedance
- Zero offset
- High reliability silicon epitaxial planar construction

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	
10 sec time limit)	$+260^{\circ} \mathrm{C}$

Maximum Power Dissipation
Device Dissipation @ Free Air Temperature
300 mW
Linear Derating
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current
$V_{\text {GS }}$ Gate to Source Voltage
-50 V
$V_{\text {GD }}$ Gate to Drain Voltage -50 V 50 mA

TO72	WAFER	CHIP
2N3684	2N3684/W	2N3684/D
2N3685	2N3685/W	2N3685/D
2N3686	2N3686/W	2N3686/D
2N3687	2N3687/W	2N3687/D

ELECTRICAL CHARACTERISTICS (${ }^{2} 25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		2N3684		2N3685		2N3686		2N3687		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
BVGSS	Gate to Source Breakdown Voltage	-50		-50		-50		-50		V.	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=1.0 \mu \mathrm{~A}$
VP	Pinch-Off Voltage	2.0	5.0	1.0	3.5	0.6	2.0	0.3	1.2	V	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.001 \mu \mathrm{~A}$
IGSS	Total Gate Leakage Current		-0.1		-0.1		-0.1		-0.1	nA	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
IGSS	Total Gate Leakage Current ($150{ }^{\circ} \mathrm{C}$)		-0.5		-0.5		-0.5		-0.5	$\mu \mathrm{A}$	VGS $=-30 \mathrm{~V}, \mathrm{VDS}=0 @ 150^{\circ} \mathrm{C}$
IDSS	Saturation Current, Drain-to-Source	2.5	7.5	1.0	3.0	0.4	1.2	0.1	0.5	mA	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{VDS}=20 \mathrm{~V}$
$\left\|\mathrm{Y}_{\mathrm{fs}}\right\|$	Forward Transadmittance	2000	3000	1500	2500	1000	2000	500	1500	$\mu \mathrm{mhos}$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$
$\mathrm{C}_{\text {iss }}$	Common Source Input Capacitance (Output Shorted)		4.0		4.0	.	4.0		4.0	pF	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
Gos	Small Signal, Common Source Output Conductance (input shorted)		50		25		10		5	$\mu \mathrm{mhos}$	$\begin{aligned} & \text { VOS }=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
$\mathrm{C}_{\text {rss }}$	Small Signal, Common Source Short Circuit Reverse Transfer Capacitance		1.2		1.2		1.2		1.2	pF	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$
$\mathrm{R}_{\text {on }}$	On Resistance		600		800		1200		2400	Ohms	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=0$
NF	Noise Figure (Spot)		0.5		0.5		0.5		0.5	dB	$\begin{aligned} & f=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \\ & \mathrm{NBW}=6 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V} \end{aligned}$

FEATURES

- Low Capacity
- Up. to $6500 \mu \mathrm{mho}$ Transconductance

GENERAL DESCRIPTION

For small signal amplifier and oscillator applications.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
$\begin{array}{lr}\text { Storage Temperature } & -65^{\circ} \mathrm{C} \text { to }+200^{\circ} \mathrm{C} \\ \text { Operating Junction Temperature } & +200^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } & \\ 10 \text { sec time limit) } & +260^{\circ} \mathrm{C}\end{array}$
Maximum Power Dissipation
Device Dissipation @ Free Air Temperature
300 mW
Linear Derating
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current
$\begin{array}{lr}\text { V }_{\text {GS }} \text { Gate to Source Voltage } & -50 \mathrm{~V} \\ \text { V GD }_{\text {GD }} \text { Gate to Drain Voltage } & -50 \mathrm{~V} \\ \text { I G }_{\text {G }} \text { Gate Current } & 10 \mathrm{~mA}\end{array}$

ORDERING INFORMATION

TO72	WAFER	CHIP
2N3821	2N3821/W	2N3821/D
2N3822	2N3822/W	2N3822/D

PACKAGE DIMENSIONS

*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N3821		2N3822		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
IGSS	Gate Reverse Current		-0.1		-0.1	nA	$V_{G S}=-30 V_{V} V_{\text {DS }}=0$	
			-0.1		-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-50		-50		v	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-4		-6		$\mathrm{V}_{\mathrm{DS}}=15 . \mathrm{V}, \mathrm{ID}=0.5 \mathrm{nA}$	
VGS	Gate-Source Voltage	-0.5	-2				$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{ID}=50 \mu \mathrm{~A}$	
				-1	-4		VDS $=15 \mathrm{~V}, 1 \mathrm{D}=200 \mu \mathrm{~A}$	
IDSS	Saturation Drain Current	0.5	2.5	2	10	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 3)	
g_{fs}	Common-Source Forward Transconductance (Note 1)	1500	4500	3000	6500	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$	$f=1 \mathrm{kHz}$
$\left\|y_{f s}\right\|$	Common-Source Forward Transadmittance	1500	-	3000				$f=100 \mathrm{MHz}$
$\mathrm{g}_{\text {os }}$	Common-Source Output Conductance (Note 1)		10		20			$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		6		6	pF		
Crss	Common-Source Reverse Transfer Capacitance		3		3			$f=1 \mathrm{MHz}$
NF	Noise Figure		5		5	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & R_{\text {gen }}=1 \mathrm{meg}, \mathrm{BW}=5 \mathrm{~Hz} \end{aligned}$	$f=10 \mathrm{~Hz}$
$\overline{e_{n}}$	Equivalent Input Noise Voltage		200		200	$\frac{n V}{\sqrt{H z}}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{BW}=5 \mathrm{~Hz}$	

NOTE: 1. These parameters are measured during a 2 msec interval 100 msec after $\mathrm{d} c$ power is applied.

FOR VHF AMPLIFIER OSCILLATOR MIXER APPLICATIONS

- Noise Figure $<\mathbf{2 . 5}$ dB at 100 MHz
- Low Capacitance
- Transconductance up to $6500 \mu \mathrm{mho}$

PACKAGE DIMENSIONS

TO-72

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Source Voltage .. . -30 V
Gate-Drain Voltage .. 30 V
Gate Current .. 10 mA
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature 300 mW
Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature $1 / 16^{\prime \prime}$ From Case to $10 \mathrm{Sec} . ~ 300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right)$

	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS	
			-0.5	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
IGSS	Gate Reverse Current		-0.5	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-30		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-8		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{nA}$	
VGS	Gate-Source Voltage	-1.0	-7.5		$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=400 \mu \mathrm{~A}$	
IDSS	Saturation Drain Current	4	20	mA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Note 3)	
gis	Common-Source Forward Transconductance	3,500	6,500	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$ (Note 1)
$\left\|\mathrm{Vfs}_{\text {s }}\right\|$	Common-Source Forward Transadmittance	3,200				$\mathrm{f}=100 \mathrm{MHz}$
gos	Common-Source Output Transconductance		35			$\mathrm{f}=1 \mathrm{kHz}$ (Note 1)
giss	Common-Source Input Conductance		800			$\mathrm{f}=200 \mathrm{MHz}$
goss	Common-Source Output Conductance		200			
Ciss	Common-Source Input Capacitance	.	6	pF		
Crss	Common-Source Reverse Transfer Capacitance		2			$\mathrm{f}=1 \mathrm{MHz}$
NF	Noise Figure		2.5	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{f}=100 \mathrm{MHz}$

FOR HIGH SPEED COMMUTATORS AND CHOPPERS

- $\mathrm{rds}_{\mathrm{d}}<\mathbf{2 5 0}$ ohms
$-\mathrm{ID}_{\mathrm{D}}$ off) $<0.1 \mathrm{nA}$

PACKAGE DIMENSIONS
TO-72

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

CHARACTERISTIC		MIN	MAX	UNIT	TEST CONDITIONS	
IGSS	Gate Reverse Current		-0.1	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGss	Gate-Source Breakdown Voltage	-50		V	$\mathrm{IGG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
ID(off)	Drain Cutoff Current		0.1	nA	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}$	
			0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
rds(on)	Drain-Source ON Resistance		250	Ω	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{ID}^{\text {a }}=0$	$\mathrm{f}=1 \mathrm{kHz}$
Ciss	Common-Source Input Capacitance		6	pF	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		3	pF	$V_{G S}=-8 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	

2N4117/A, 2N4118/A, 2N4119/A N-Channel Silicon Planar Epitaxial JFET

ORDERING INFORMATION

TO72	WAFER	CHIP
2N4117	2N4117/W	2N4117/D
2N4117A	2N4117A/W	2N4117A/D
2N4118	2N4118/W	2N4118/D
2N4118A	2N4118A/W	2N4118A/D
2N4119	2N4119/W	2N4119/D
2N4119A	2N4119A/W	2N4119A/D

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature -65	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit)	$300^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	ture $\quad 300 \mathrm{~mW}$
Linear Derating	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current	
$\mathrm{V}_{\text {GS }}$ Gate to Source Voltage	-40 V
V^{\prime} GD Gate to Drain Voltage	-40 V
${ }^{\prime} \mathrm{G}$ Gate Current	50 mA

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

'	PARAMETER	$\begin{gathered} \text { 2N4117 } \\ \text { 2N4117A* } \\ \hline \end{gathered}$		$\begin{gathered} \text { 2N4118 } \\ \text { 2N4118A* } \\ \hline \end{gathered}$		$\begin{gathered} \text { 2N4119 } \\ \text { 2N4119A* } \end{gathered}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$
IGSS	Gate Reverse Current		$\begin{gathered} -10 \\ -1^{*} \end{gathered}$		$\begin{aligned} & -10 \\ & -1^{*} \end{aligned}$		$\begin{aligned} & -10 \\ & -1^{*} \end{aligned}$	pA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
IGSS ($+100^{\circ} \mathrm{C}$)	Gate Reverse Current		$\begin{gathered} -25 \\ -2.5^{*} \end{gathered}$		$\begin{gathered} -25 \\ -2.5^{*} \end{gathered}$		$\begin{gathered} -25 \\ -2.5^{*} \end{gathered}$	nA	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
V_{GS} (off)	Gate-Source Pinch-Off Voltage	-0.6	-1.8	-1	-3	-2	-6	V	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{ID}=1 \mathrm{nA}$
IDSS	Drain Current at Zero Gate Voltage (Note 1)	0.02	0.09	0.08	0.24	0.20	0.60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$
g_{fs}	Common-Source Forward Transconductance (Note 1)	70	210	80	250	100	330	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
g_{fs}	Common-Source Forward Transconductance	60		70	'	90		$\mu \mathrm{mho}$	$V_{G S}=0, f=30 \mathrm{MHz}$
$\mathrm{g}_{\text {os }}$	Common-Source Output Conductance		3		5		10	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		3		3		3	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
Crss	Common-Source Reverse Transfer Capacitance		1.5		1.5		1.5	pF	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{VGS}_{\mathrm{GS}}=0 \\ & f=1 \mathrm{kHz} \end{aligned}$

NOTE: 1. Puise test: Pulse duration of 2 ms used during test.

FEATURES

- $\mathrm{C}_{\mathrm{rss}}<2 \mathrm{pF}$
- Moderately High Forward Transconductance

GENERAL DESCRIPTION

For small signal applications - UHF amplifier, oscillator and mixer applications.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec time limit)	$+260^{\circ} \mathrm{C}$

Maximum Power Dissipation

| Device Dissipation @ Free Air Temperature $\begin{array}{r}300 \mathrm{~mW} \\ \text { Linear Derating }\end{array} \quad \begin{aligned} 1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\end{aligned}$ |
| :--- | :--- |

Maximum Voltages \& Current
$V_{G S}$ Gate to Source Voltage
$V_{G D}$ Gate to Drain Voltage $-30 \mathrm{~V}$
I G Gate Current 10 mA

ORDERING INFORMATION

TO72	WAFER	CHIP
2 N4220	$2 N 4220 / W$	2 N4220/D
2N4221	$2 N 4221 / W$	$2 N 4221 / D$
$2 N 4222$	$2 N 4222 / W$	$2 N 4222 / D$

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

2N4223, 2N4224 N-Channel Silicon Planar Epitaxial JFET

FEATURES

- $N F=3 \mathrm{~dB}$ Typical at 200 MHz
- $\mathrm{C}_{\mathrm{rss}}<2 \mathrm{pF}$

GENERAL DESCRIPTION

For VHF amplifier and mixer applications.

ABSOLUTE MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)

Gate-Drain or Gate-Source Voltage	-30 V
Gate Current	10 mA
Drain Current	20 mA
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$	
Free-Air Temperature	300 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature	
(1/16" from case for 10 seconds)	$300^{\circ} \mathrm{C}$

NOTE: FOR DIE STRUCTURE, REFER TO 2N4416

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N4223		2N4224		.UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
${ }^{\text {IGSS }}$	Gate Reverse Current		-0.25		-0.5	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-0.25		-0.5	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-30		-30		V	$\mathrm{IG}^{\prime}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage	-0.1	-8	-0.1	-8	V .	$V_{D S}=15 V, I_{D}=()$	
		(0.25)	(0.25)	(0.5)	(0.5)	(nA)		
VGS	Gate-Source Voltage	-1.0	-7.0	-1.0	-7.5	V		
		(0.3)	(0.3)	(0.2)	(0.2)	(mA)		
IDSS	Saturation Drain Current	3	18	2	20	mA	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	
$9_{\text {fs }}$	Common-Source Forward Transconductance	3000	7000	2000	7500	$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance (Output Shorted)		6		6	pF		$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{Crsss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		2		2			
$\left\|y_{f s}\right\|$	Common-Source Forward Transadmittance	2700		1700		$\mu \mathrm{mho}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=200 \mathrm{MHz}$
$\mathrm{g}_{\text {iss }}$	Common-Source Input Conductance (Output Shorted)		800		800			
$\mathrm{g}_{\text {oss }}$	Common-Source Output Conductance (Input Shorted)		200		200			
G_{ps}	Small Signal Power Gain	10				dB		
NF	Noise Figure		5				$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{R}_{\mathrm{gen}}=1 \mathrm{~K} \end{aligned}$	

2N4338, 2N4339 2N4340, 2N4341 N-Channel Silicon Planar Epitaxial JFET

ORDERING INFORMATION

TO18	WAFER	CHIP
2N4338	2N4338/W	2N4338/D
2N4339	2N4339/W	2N4339/D
2N4340	2N4340/W	2N4340/D
2N4341	2N4341/W	2N4341/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER		2N4338		2N4339		2N4340		2N4341		UNITS	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
IGSS , Gate Reverse Current			-0.1		-0.1		-0.1		-0.1	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
			-0.1		-0.1		-0.1	.	-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50	\cdots	-50		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
VGS(off)	Gate-Source Cutoff Voltage	-0.3	-1	-0.6	-1.8	-1	-3	-2	-6		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$	
ID(off)	Drain Cutoff Current		$\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$		$\begin{aligned} & 0.05 \\ & (-5) \end{aligned}$		$\begin{gathered} 0.05 \\ (-5) \end{gathered}$		$\begin{aligned} & 0.07 \\ & (-10) \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{VDS}=15 \mathrm{~V} \\ & \mathrm{VGS}=1 \mathrm{l} \end{aligned}$	
'DSS	Saturation Drain Current (Note 3)	0.2	0.6	0.5	1.5	1.2	3.6	3	9	mA	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
9fs	Common-Source Forward Transconductance (Note 3)	600	1800	800	2400	1300	3000	2000	4000	$\mu \mathrm{mho}$	$V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
90s	Common-Source Output Conductance		5		15		30		60			
$\mathrm{r}_{\text {ds }}$	Drain-Source ON Resistance		2500		1700		1500		800	ohm	$\mathrm{V}_{\text {DS }}=0, \mathrm{~V}_{\mathrm{GS}}=0$	
Ciss	Common-Source Input Capacitance		7	.	7		7		7	pF	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	$f=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		3		3		3		3			
NF	Noise Figure		1		1		1		1	dB	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, V_{G S}=0 \\ & R_{\text {gen }}=1 \mathrm{meg}, B W=200 \mathrm{~Hz} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$

N-Channel Silicon Planar Epitaxial JFET

GENERAL DESCRIPTION

For UHF amplifier and mixer applications

ORDERING INFORMATION

TO92	WAFER	CHIP
2N4416	2N4416/W	2N4416/D
2N4416A	2N4416A/W	2N4416A/D

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures

| Storage Temperature TO72 | $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ |
| :--- | ---: | ---: |
| Operating Junction Temperature TO72 | $+200^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, | |
| 10 sec time limit) | $+300^{\circ} \mathrm{C}$ |

Maximum Power Dissipation
Device Dissipation @ Free Air Temperature 300 mW
Linear Derating $T 072$
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current
2N4416 2N4416A

V_{GS} Gate to Source Voltage	-30 V	-35 V
$\mathrm{~V}_{\mathrm{GD}}$ Gate to. Drain Voltage	-30 V	-35 V
I_{G} Gate Current	10 mA	10 mA

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

2N4867/A
2N4868/A 2N4869/A N-Channel Silicon Planar Epitaxial JFET

FEATURES

- Lowest Noise Voltage $-e_{n} \leqslant 5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
- Low Leakage - $I_{G S S} \leqslant 0.25 n A$
- High Gain $-Y_{f s} \geqslant 1300 \leqslant 4000 \mu$ mho

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
$\begin{array}{lr}\text { Storage Temperature } & -65^{\circ} \mathrm{C} \text { to }+200^{\circ} \mathrm{C} \\ \text { Operating Junction Temperature } & +200^{\circ} \mathrm{C} \\ \text { Lead Temperature (Soldering, } & \\ 10 \text { sec time limit) } & +260^{\circ} \mathrm{C}\end{array}$
Maximum Power Dissipation
Device Dissipation @ Free Air Temperature
Linear Derating
300 mW
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current
$V_{\text {GS }}$ Gate to Source Voltage
-40 V
$V_{\text {GD }}$ Gate to Drain Voltage
$I_{G} \quad$ Gate Current

$$
-40 \mathrm{~V}
$$

50 mA

ORDERING INFORMATION

TO72	WAFER	CHIP
2N4867	2N4867/W	2N4867/D
2N4867A	2N4867A/W	2N4867A/D
2N4868	2N4868/W	2N4868/D
2N4868A	2N4868A/W	2N4868A/D
2N4869	2N4869/W	2N4869/D
2N4869A	2N4869A/W	2N4869A/D

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

. PARAMETER	PARAMETER	$\begin{aligned} & \text { 2N4867 } \\ & \text { 2N4867A } \end{aligned}$		$\begin{aligned} & \text { 2N4868 } \\ & \text { 2N4868A } \end{aligned}$		$\begin{gathered} \text { 2N4869 } \\ \text { 2N4869A } \end{gathered}$		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX	MIN	MAX				
IGSS	Gate Reverse Current		$\begin{aligned} & -0.25 \\ & -0.25 \end{aligned}$		$\begin{aligned} & -0.25 \\ & -0.25 \end{aligned}$		$\begin{aligned} & -0.25 \\ & -0.25 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$V_{G S}=-30 \mathrm{~V}, V_{D S}=0$		$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-0.7	-2	-1	-3	-1.8	-5		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{~A}$		
I DSS	Saturation Drain Current (Note 1)	0.4	- 1.2	1	3	2.5	7.5	mA	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{G S}=0$		
g_{s}	Common-Source Forward Transconductance (Note 1)	700	2000	1000	3000	1300	4000	$\mu \mathrm{mho}$	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		$f=1 \mathrm{kHz}$
$\mathrm{g}_{\text {OS }}$	Common-Source Output Conductance		1.5		4		10				
Crss	Common-Source Reverse Transfer Capacitance		5		5		5	pF			$f=1 \mathrm{MHz}$
Ciss	Common-Source Input Capacitance	\cdots	25		25		25				
\bar{e}_{n}	Short Circuit Equivalent Input Noise Voltage		20		20		20	$\frac{n V}{\sqrt{H z}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	2N4867 Series	$f=10 \mathrm{~Hz}$
			10		10		10			2N4867A Series	
			10		10		10			2N4867 Series	$f=1 \mathrm{kHz}$
			5		5		5			2N4867A Series	
NF	Spot Noise Figure		1		1		1	dB	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & R_{\text {gen }}=20 \mathrm{~K}, \end{aligned}$	$\mathrm{GS}=0$ 2N4867 Series 2N4867A Series	$\mathrm{f}=1 \mathrm{kHz}$

[^3]
FEATURES

- $\mathrm{G}_{\mathrm{ps}}=10 \mathrm{~dB}$ Typical (Common Gate) at 450 MHz
- NF $=3.5 \mathrm{~dB}$ Typical at 450 MHz
- $C_{\text {rss }}=1 \mathrm{pF}$ Typical

GENERAL DESCRIPTION

For UHF amplifier, mixer and oscillator and video amplifier applications

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	
10 sec time limit)	$300^{\circ} \mathrm{C}$

Maximum Power Dissipation

Device Dissipation @ Free Air Temperature
300 mW
Linear Derating
$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Current

V_{GS} Gate to Source Voltage	-25 V
$\mathrm{~V}_{\mathrm{GD}}$ Gate to Drain Voltage	-25 V
${ }_{\mathrm{G}}$ Gate Current	10 mA

ORDERING INFORMATION

TO72	WAFER	CHIP
2N5397	2N5397/W	2N5397/D

PACKAGE DIMENSIONS

5011

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

			397		5398			
	PARAMETER	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIO	
			-0.1		-0.1	$n \mathrm{~A}$		
IGSS	Gate Reverse Current		-0.1		-0.1	$\mu \mathrm{A}$	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	$150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-25		-25		V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	
VGS(off)	Gate-Source Cutoff Voltage	-1.0	-6.0	-1.0	-6.0		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
IDSS	Saturation Drain Current	10	30	5	40.	mA	$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Forward Voltage		1		1	V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$	
g_{fs}	Common-Source Forward Transconductance (Note 1)	6000	10,000	5500	10,000	$\mu \mathrm{mh}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
$\mathrm{g}_{\text {oss }}$	Common-Source Output Conductance		200		400	μ	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA} \\ & V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0 \end{aligned}$	1 kHz
Crss	Common-Source Reverse Transfer Capacitancë		1.2		1.3		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0 \end{aligned}$	$f=1 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		5.0		5.5		$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$f=1 \mathrm{MHz}$
9iss	Common-Source Input Conductance		2000		3000		$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
goss	Common-Source Output Conductance		400		500	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
9fs	Common-Source Forward Transconductance (Note 1)	5500	9000	5000	10,000		$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$\mathrm{f}=450 \mathrm{MHz}$
G_{ps}	Common-Source Power Gain (neutralized)	15						
NF	Common-Source, Spot Noise Figure (neutralized)		3.5		-	dB	$V \mathrm{DG}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	

Note 1: Pulse test duration $=\mathbf{2 m s}$

SMALL-SIGNAL AMPLIFIERS, CHOPPERS AND CONTROLLED RESISTORS

ABSOLUTE MAXIUMUM RATINGS
($25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	RATING	VALUE	UNIT
V ${ }_{\text {DS }}$	Drain-Source Voltage	25	Vdc
VDG	Drain-Gate Voltage	25	Vdc
$\mathrm{V}_{\mathrm{GS}}(\mathrm{r})$	Reverse Gate-Source Voltage	25	Vdc
IG	Gate Current	10	mAdc.
PD	Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\begin{aligned} & 310 \\ & 2.82 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
TJ	Operating Junction Temperature	135	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

PACKAGE DIMENSIONS

TO-92

NOTE: FOR DIE STRUCTURE, REFER TO 2N4338 FAMILY.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
OFF CHARACTERISTICS						
BVGSS Gate-Source Breakdown Voltage	-25	-60		Vdc	$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{DS}}=0$	
IGSS Gate Reverse Current		. 05	$\begin{array}{r} -1.0 \\ -200 \\ \hline \end{array}$	nAdc	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0, T_{\mathrm{A}}=10 \end{aligned}$	
V_{GS} (off) Gate-Source Cutoff Voltage	$\begin{aligned} & -0.5 \\ & -1.0 \\ & -2.0 \end{aligned}$		$\begin{aligned} & -6.0 \\ & -7.0 \\ & -8.0 \end{aligned}$	Vdc	$V D S=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nAdc}$	2N5457 2N5458 2N5459
VGS Gate-Source Voltage		$\begin{aligned} & 2.5 \\ & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$		Vdc	$\begin{aligned} & \text { VDS }=15 \mathrm{Vdc}, I_{D}=100 \mu \mathrm{Adc} \\ & V_{D S}=15 \mathrm{Vdc}, \mathrm{ID}_{\mathrm{D}}=200 \mu \mathrm{Adc} \end{aligned}$ $V_{D S}=15 \mathrm{Vdc}, I_{D}=400 \mu \mathrm{Adc}$	2N5457 2N5458 2N5459
ON CHARACTERISTICS						
IDSS $\quad \begin{aligned} & \text { Zero-Gate-Voltage Drain } \\ & \text { Current }\end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 9.0 \\ & 16 \\ & \hline \end{aligned}$	mAdc	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \\ & \hline \end{aligned}$
DYNAMIC CHARACTERISTICS						
\|yfs ${ }^{\text {a }}$ Forward Transfer Admittance	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 3000 \\ & 4000 \\ & 4500 \end{aligned}$	$\begin{aligned} & 5000 \\ & 5500 \\ & 6000 \end{aligned}$	$\mu \mathrm{mhos}$	$V_{D S}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=1 \mathrm{kHz}$	$\begin{aligned} & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \end{aligned}$
\mid Yos \mid Output Admittance		10	50	μ mhos	$V_{D S}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=1 \mathrm{kHz}$	
Ciss Input Capacitance		4.5	7.0	pF	$\mathrm{V}_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$	
Crss Reverse Transfer Capacitance		1.5	3.0	pF	$V_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$	

2N5484 2N5485 2N5486 N-Channel Silicon Planar Epitaxial JFET

GENERAL DESCRIPTION

For VHF/UHF amplifier, mixer and oscillator applications.

FEATURES

- Specified for 400 MHz Operation
- Can Be Used as a Low Capacitance Switch
- Economy Packaging
- $C_{\text {rss }}<1.0 \mathrm{pF}$

ABSOLUTE MAXIMUM RATINGS

Drain-Gate Voltage 25 V
Source Gate Voltage 25 V
Drain Current 30 mA
Forward Gate Current 10 mA
Total Device Dissipation @ $25^{\circ} \mathrm{C}$ 310 mW
Derate above $25^{\circ} \mathrm{C} \quad 2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

PACKAGE DIMENSIONS

TO-92

NOTE: FOR DIE STRUCTURE, SEE 2 N4416

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

N-Channel Silicon Planar Epitaxial JFET

FEATURES

- Silicon Planar Epitaxial Construction
- Low Noise - NF=2.0 dB max. @ $100 \mathbf{~ M H z}$ $\mathrm{NF}=4.0 \mathrm{~dB}$ max. $@ 400 \mathrm{MHz}$
- Low Feedback Capacitance - $\mathrm{C}_{\text {rss }}=\mathbf{0 . 8} \mathbf{~ p F}$ max.
- Low Output Capacitance - $\mathrm{C}_{\text {oss }}=\mathbf{2 . 0} \mathrm{pF}$ max.
- High Transconductance - $\mathrm{g}_{\mathrm{fs}}=4000 \mu \mathrm{mho}$ min.
- High Power Gain - $G_{p s}=18 \mathrm{~dB} \mathbf{m i n}$. @ 100 MHz

$$
\mathrm{G}_{\mathrm{ps}}=10 \mathrm{~dB} \text { min. @ } 400 \mathrm{MHz}
$$

GENERAL DESCRIPTION

For UHF amplifier and mixer applications

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER				MIN	MAX	UNIT	TEST CONDITIONS		
IGss	Gate Reverse Current				-0.1	nA	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$		
					-0.1	$\mu \mathrm{A}$		$150^{\circ} \mathrm{C}$	
BVGSS	Gate-Source Breakdown Voltage			-30		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	ITE4416	
VGS(off)	Gate-Source Cutoff Voltage				6		$V_{D S}=15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{nA}$	ITE4416	
IDSS	Drain Current at Zero Gate Voltage			5	15	mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$	
gis	Common-Source Forward Transconductance			4500	7500	$\mu \mathrm{mho}$			
gos	Common-Source Output Conductance				50				
Crss	Common-Source Reverse Transfer Capacitance				0.8	pF		$\mathrm{f}=1 \mathrm{MHz}$	
Ciss	Common-Source Input Capacitance			\cdot	4				
Coss	Common-Source Output Capacita				2				
	PARAMETER	100 MHz		400 MHz		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX				
giss	Common-Source Input Conductance		100		1000	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$		
biss	Common-Source Input Susceptance		2500		10,000				
goss	Common-Source Output Conductance		75		100				
$\mathrm{b}_{\text {oss }}$	Common-Source Output Susceptance		1000		4000,				
gfs	Common-Source Forward Transconductance			4000					
Gps	Common-Source Power Gain	18		10		dB	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$		
NF	Noise Figure		2		4		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$, $\mathrm{RG}_{\mathrm{G}}=1 \mathrm{~K} \Omega$	

FEATURES

- High Power Gain

15 dB Typical at 100 MHz , Common Gate
10 dB Typical at 450 MHz , Common Gate

- Low Single Sideband Noise Figure
1.5 dB Typical at 100 MHz , Common Gate
3.2 dB Typical at 450 MHz , Common Gate
- Wide Dynamic Range - Greater than 100 dB
- Offered in Wide Variety of Packages for Most Any Circuit Configuration.

GENERAL DESCRIPTION

This family of N -channel Junction FETs are designed and characterized for VHF and UHF applications requiring high gain and low noise figure. The forward transconductance
is relatively flat out to 1000 MHz . Applications for these devices in military, commercial and consumer communications equipment include low noise, high gain RF amplifiers, low noise mixers with conversion gain, and low noise, ultra stable RF oscillators.

ORDERING INFORMATION

T052	TO72	TO92	WAFER	CHIP
U308		U308-T092	U308/W	U308/D
U309		U309-T092	U309/W	U309/D
U310		U310-T092	U310/W	U310/D
	U311		U311/W	U311/D

PACKAGE DIMENSIONS

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

	TO-52
Gate-Drain or Gate-Source Voltage	-25 V
Gate Current	20 mA
Total Power Dissipation	500 mW
Power Derating (to maximum operating temperature)	$4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	-65 to $150^{\circ} \mathrm{C}$
Storage Temperature Range	-65 to $200^{\circ} \mathrm{C}$
Lead Temperature (1/16" from case for 10 sec)	$300^{\circ} \mathrm{C}$

TO-72
TO-92
-25 V .
-25V
10 mA
300 mW
$2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
-65 to $+150^{\circ} \mathrm{C}$
10 mA
300 mW
$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
-65 to $150^{\circ} \mathrm{C}$
-65 to $200^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

$$
-65 \text { to }+200^{\circ} \mathrm{C}
$$

ELECTRICAL CHARACTERISTICS FOR U308, U309 and U310 $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

ELECTRICAL CHARACTERISTICS FOR U311 $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted).

NOTE: 1. Pulse test duration $=2 \mathrm{~ms}$.

J308, J309, J310 N-Channel Silicon J-FET

DESIGNED FOR USE A'AS

- VHF/UHF Amplifiers

- Oscillators

- Mixers

FEATURES

- Industry Standard Part In Low Cost Plastic Package
- High Power Gain

11 dB Typical at 450 MHz Common-Gate

- Low Noise - 2.7 dB Typical at $\mathbf{4 5 0} \mathbf{~ M H z}$
- Wide Dynamic Range Greater than 100 dB
- Easily Matches to 75Ω Input

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Drain-Gate Voltage25 V

Source-Gate Voltage 25 V
Forward Gate Current 10 mA Total Device Dissipation (TLEAD $=25^{\circ} \mathrm{C}$) $\ldots \ldots . . .625 \mathrm{~mW}$

Derate above $25^{\circ} \mathrm{C}$............................ $5.68 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots \ldots . .-55$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature Range $\ldots .-55$ to $+135^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETERS				J308			J309			J310			UNIT	TEST CONDITIONS	
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
1	S	BVGSS	Gate-Source Breakdown Voltage	-25			-25	-		-25			V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$	
2		IGSS	Gate Reverse Current			-1.0			-1.0			-1.0	n A	$V_{G S}=-15 \mathrm{~V}$,	
3						-1.0			-1.0			-1.0	$\mu \mathrm{A}$	$V_{D S}=0$	$\mathrm{T}=+125^{\circ} \mathrm{C}$
4	A	$\begin{aligned} & \text { VGS(off) } \\ & \text { IDSS } \end{aligned}$	Gate-Source Cutoff Voltage	-1.0		-6.5	-1.0		-4.0	-2.0	,	-6.5	V	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
5	$\begin{aligned} & 1 \\ & C \end{aligned}$		Saturation Drain Current (Note 1)	12		60	12		30	24		60	mA	$\overline{V_{D S}}=10 \mathrm{~V}, \overline{V_{G S}=0}$	
6		$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Gate-Source Forward Voltage			1.0			1.0			1.0	V	$\mathrm{V}_{\text {DS }}=0, l_{\text {c }}=1 \mathrm{~mA}$	
7	D	gis	Common-Source Forward Transconductance	8,000		20,000	10,000		20,000	8,000		18,000	$\mu \mathrm{mhos}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$f=1 \mathrm{kHz}$
8		gos	Common-Source Output Conductance			200			200			200			
9		gfg	Commen-Gate Forward Transconductance'		13,000			13,000			12,000				
10		gog	Common Gate Output Conductance		150			i50̄			150				
11		Cgd	Gate-Drain Capacitance		1.8	2.5		1.8	2.5		1.8	2.5	pF	$\begin{aligned} & V_{D S}=0, \\ & V_{G S}=-10 \mathrm{~V} \end{aligned}$	$f=1 \mathrm{MHz}$
12		Cgs	Gate-Source Capacitance		4.3	5.0		4.3	5.0		4.3	5.0			
13		en_{n}	Equivalent Short-Circuit Input Noise Voltage		10			10			10		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{H}}}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=100 \mathrm{~Hz}$
14	H	Re(Vfs)	Common-Source Forward Transconductance		12			12	1.		12		mmho	$\begin{aligned} & V_{Q S}=10 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$	$\mathrm{f}=105 \mathrm{MHz}$
15		Re(Vfg)	Common-Gate Input Condúctance		14			14			14				
16		Re(Vis)	Common-Source Input Conductance		0.4			0.4			0.4	,			
17	F	Re(Vos)	Common-Source Output Conductance		0.15			0.15			0.15				
18	$\begin{aligned} & R \\ & E \end{aligned}$	Gpg	Common-Gate Power Gain at Noise Match		16			16			16	,	dB		
19	Q	NF	Noise Figure		1.5			1.5			1.5				
20		$\mathrm{Gpg}_{\mathrm{pg}}$	Common-Gate Power Gain at Noise Match		11			11	-		11				$\mathrm{f}=450 \mathrm{MHz}$
21		NF	Noise Figure		2.7			2.7			2.7				

DESIGNED FOR USE AS

- VHF/UHF Amplifiers
- Oscillators
- Mixers

FEATURES

- Industry Standard Part In Low Cost Plastic Package
- High Power Gain

11 dB Typical at 450 MHz
Common-Gate

- Low Noise - 2.7 dB Typical at 450 MHz
- Wide Dynamic Range Greater than 100 dB
- Easily Matches to 75Ω Input

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Drain-Gate Voltago25 V

Source-Gate Voltage 25 V
Forward Gate Current 10 mA
Total Device Dissipation (TLEAD $=25^{\circ} \mathrm{C}$) $\ldots \ldots . .6625 \mathrm{~mW}$

Derate above $25^{\circ} \mathrm{C}$ \qquad | $6.68 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |
| :--- |

Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature Range -55 to $+135^{\circ} \mathrm{C}$

PACKAGE DIMENSIONS

TO-92

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

GENERAL DESCRIPTION

- Low-level Choppers
- Data Switches
- Commutators

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Storage Temperature	$+175^{\circ} \mathrm{C}$
Operating Junction Temperature	
Lead Temperature (Soldering,	$+260^{\circ} \mathrm{C}$
10 sec. time limit)	
Maximum Power Dissipation	300 mW
Device Dissipation @ Free Air Temperature	$2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Linear Derating	
Maximum Voltages \& Current	30 V
V $_{\text {DG }}$ Drain to Gate Voltage	30 V
V SG Source to Gate Voltage	50 mA

PACKAGE DIMENSIONS

TO-18

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	Characteristic	Test Conditions		2N2606		2N2607		2N2608		2N2609		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
${ }^{1}$ GSS \quad Gate-Source Cutoff Current \dagger		$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			1		3		10		30	nA
		$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$,	1		3		10		30	μA
$B V_{\text {GDS }}$	Gate-Drain Breakdown Voltage	${ }^{1} \mathrm{G}=1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$		30		30.	.	30		30		V
V_{P}	Gate-Source Pinch-Off Voltage	$V_{D S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mu \mathrm{~A}$		1.	4	1	4	1	4	1	4	V
I. DSS	Drain Current at Zero Gate Voltage	$\mathrm{V}_{\text {DS }}=-5 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$		-0.10	-0.50	-0.30	-1.50	-0.90	-4.50	-2	-10	mA
$g_{f s}$	Small-Signal Common-Source Forward Transconductance	$V_{\text {DS }}=-5 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0, f=1 \mathrm{kHz}$		11.0		330		1000		2500		$\mu \mathrm{mho}$
$\mathrm{C}_{\text {iss }}$	Gate-Source Input Capacitance	$\begin{gathered} V_{D S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1 \mathrm{~V}, \\ f=140 \mathrm{kHz} \end{gathered}$			6		10		17		30	pF
NF	ise Figur	$\begin{aligned} & V_{D S}=-5 \mathrm{~V}, \\ & v_{G S}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega$		3		3					
	Noise Figure		$R_{G}=1 \mathrm{M} \Omega$						3		3	

GENERAL DESCRIPTION

For - Multi-Purpose Amplifiers

- Analog Multipliers
- Modulators

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Gate-Drain and Gate-Source Voltage	20 V
Gate Current	10 mA
Total Device Dissipation at (or below)	
$25^{\circ} \mathrm{C}$ Free-Air Temperature	0.3 W

Storage Tomper
Lead Temperature
(1/16" from case for 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
$230^{\circ} \mathrm{C}$

PACKAGE DIMENSIONS

NOTE: FOR DIE STRUCTURE, SEE 2N5460 FAMILY
*ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		2N3329		2N3330		2N3331		UNITS	TEST CONDITIONS ${ }^{\text {' }}$			
		MIN	MAX	MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current		0.01		0.01		0.01	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			
			10		10		10		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			
BVGSS	Gate-Source Breakdown Voltage	20°		20		20		V	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$			
VGS(off)	Gate-Source Cutoff Voltage		5		6		- 8		$V_{D S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$			
IDSS	Saturation Drain Current	-1	-3	-2	-6	-5	-15	mA	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			
rDS(on)	Drain-Source ON Resistance		1000		800		600	Ω	$\mathrm{ID}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			
gis ${ }^{\prime}$	Common-Source Input Conductance		0.2		- 0.2		0.2	$\mu \mathrm{mho}$	$\begin{aligned} & \text { 2N3329: } I_{D}=-1 \mathrm{~mA} \\ & \text { 2N3330: } I_{D}=-2 \mathrm{~mA} \\ & \text { 2N3331: } I_{D}=-5 \mathrm{~mA} \end{aligned}$	$f=.1 \mathrm{kHz}$		
grs	Common-Source Reverse Transfer Conductance		0.1		0.1		0.1					
gos	Common-Source Output Conductance		20		- 40		100					
gfs	Common-Source Forward Transconductance	1000	2000	1350		1800						
		900				$\mathrm{f}=10 \mathrm{MHz}$						
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		20		20				20	pF	$V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=1 \mathrm{~V}$	$f=1 \mathrm{MHz}$
NF	Noise Figure		3		3		4	dB	$\begin{aligned} & V_{D S}=-5 \mathrm{~V}, \mathrm{ID}=-1 \mathrm{~mA} \\ & R_{\text {gen }}=1 \mathrm{~m} \Omega \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$		
NF	Noise Figure		,						$\begin{aligned} & \mathrm{VDS}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA} \\ & \mathrm{R}_{\text {gen }}=10 \mathrm{M} \Omega \end{aligned}$	$\mathrm{f}=10 \mathrm{~Hz}$		

2N5265 thru 2N5270 P-Channel Silicon Planar Epitaxial JFET

GENERAL DESCRIPTION

P-Channel junction depletion mode (Type A) field-effect transistors designed for general-purpose amplifier applications.

MAXIMUM RATINGS

SYMBOL	RATING	VALUE	UNIT
V ${ }_{\text {DS }}$	Drain-Source Voltage	60	$V \mathrm{dc}$
VDG	Drain-Gate Voltage	60	Vdc
$\mathrm{V}_{\mathrm{GS}}(\mathrm{r})$	Reverse Gate-Source Voltage	60	$V \mathrm{dc}$
ID	Drain Current	20	mAdc
${ }^{\mathrm{G}}$ (f)	Gate Current-Forward	10	mAdc
PD	Total Device Dissipation @ $T_{A}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\begin{gathered} 300 \\ 2.0 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range $\quad-65$ to $+200{ }^{\circ} \mathrm{C}$		
TJ			

PACKAGE DIMENSIONS

SEE 2N5460 FAMILY.
5503B

ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		MIN	MAX	UNIT	TEST CONDITIONS	
OFF CHARACTERISTICS						
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdwon Voltage	60		Vdc	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{Adc}, \mathrm{V}_{\text {DS }}=.0$	
VGS(off)	Gate-Source Cutoff Voltage		$\begin{aligned} & 3.0 \\ & 6.0 \\ & 8.0 \end{aligned}$	Vdc	$V_{D S}=15 \mathrm{Vdc}, \mathrm{ID}=1.0 \mu \mathrm{Adc}$	$\begin{aligned} & \text { 2N5265, 2N5266 } \\ & \text { 2N5267, 2N5268 } \\ & \text { 2N5269, 2N5270 } \\ & \hline \end{aligned}$
IGSS	Gate Reverse Current		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	nAdc $\mu \mathrm{Adc}$	$\begin{aligned} & V_{G S}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$	
ON CHARACTERISTICS						
IDSS	Zero-Gate Voltage Drain Current	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 1.5 \\ & 2.5 \\ & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.0 \\ 1.6 \\ 3.0 \\ 5.0 \\ 8.0 \\ 14 \end{array}$	mAdc	$\mathrm{VDS}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0$	2N5265 2N5266 2N5267 2N5268 2N5269 2N5270
VGS	Gate-Source Voltage	$\begin{aligned} & \hline 0.3 \\ & 0.4 \\ & 1.0 \\ & 1.0 \\ & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 4.0 \\ & 4.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	Vdc	$V_{D S}=15 \mathrm{Vdc}, \mathrm{ID}=0.05 \mathrm{mAdc}$ $V_{D S}=15 \mathrm{Vdc}, \mathrm{ID}_{\mathrm{D}}=0.08 \mathrm{mAdc}$ $V_{D S}=15 \mathrm{Vdc}, \mathrm{ID}=0.15 \mathrm{mAdc}$ $V_{D S}=15 \mathrm{Vdc}, \mathrm{ID}_{\mathrm{D}}=0.25 \mathrm{mAdc}$ $V_{D S}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=0.4 \mathrm{mAdc}$ $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=0.7 \mathrm{mAdc}$	2N5265 2N5266 2N5267 2N5268 2N5269 2N5270
SMALL-SIGNAL CHARACTERISTICS						
$\left\|y_{f s}\right\|$	Forward Transadmittance	$\begin{aligned} & 900 \\ & 1000 \\ & 1500 \\ & 2000 \\ & 2200 \\ & 2500 \end{aligned}$	$\begin{aligned} & 2700 \\ & 3000 \\ & 3500 \\ & 4000 \\ & 4500 \\ & 5000 \\ & \hline \end{aligned}$	$\mu \mathrm{mhos}$	$V_{D S}=15 . V d c, V_{G S}=0, f=1.0 \mathrm{kHz}$	2N5265 2N5266 2N5267. 2N5268 2N5269 2N5270
g_{fs}	Forward Transconductance	$\begin{aligned} & 800 \\ & 900 \\ & 1400 \\ & 1700 \\ & 1900 \\ & 2100 \\ & \hline \end{aligned}$		$\mu \mathrm{mhos}$	$V_{D S}=15 \mathrm{Vdc}, V_{G S}=0, f=100 \mathrm{MHz}$	2N5265 2N5266 2N5267 2N5268 2N5269 2N5270
$\left\|Y_{\text {os }}\right\|$	Output Admittance		75	μ mhos	$\mathrm{V}_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{kHz}$	
$\mathrm{C}_{\text {iss }}$	Input Capacitance		7.0	pF	$\mathrm{V}_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=1.0 \mathrm{MHz}$	
Crss	Reverse Transfer Capacitance		2.0	pF	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	
NF	Common-Source Noise Figure		2.5	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{G}}=1.0 \mathrm{M} \mathrm{ohm}, \mathrm{f}=100 \mathrm{~Hz}, \mathrm{BW}=1.0 \end{aligned}$	
\bar{e}_{n}	Equivalent Short-Circuit Input Noise Voltage		115	$\begin{aligned} & \mathrm{nV} / \mathrm{I} \\ & \sqrt{\mathrm{~Hz}} \end{aligned}$	$\begin{aligned} & \mathrm{VDS}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{f}=100 \mathrm{~Hz}, \mathrm{BW}=1.0 \mathrm{~Hz} \end{aligned}$	

2N5460 thru 2N5465 P-Channel Silicon Planar Epitaxial JFET

MAXIMUM RATINGS

RATING	SYMBOL	2N5460 2N5461 2N5462	2N5463 2N5464 2N5465	UNITS
Drain-Gate Voltage	VDG	40	60	Vdc
Reverse Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{r})$	40	60	Vdc
Forward Gate Current	IG(f)	10		mAdc
Total Device Dissipation @ $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 310 \\ & 2.82 \end{aligned}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150		${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	TJ	-65 to +135		C

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
V(BR)GSS Gate-Source Breakdown Voltage	$\begin{aligned} & 40^{\circ} \\ & 60 \end{aligned}$			Vdc	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{DS}}=0$	2N5460, 2N5461, 2N5462 2N5463, 2N5464, 2N5465
V_{GS} (off) Gate-Source Cutoff Voltage	$\begin{array}{\|c} \hline 0.75 \\ 1.0 \\ 1.8 \end{array}$		$\begin{aligned} & 6.0 \\ & 7.5 \\ & 9.0 \\ & \hline \end{aligned}$	Vdc	$V_{D S}^{\prime}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=1.0 \mu \mathrm{Adc}$	$\begin{aligned} & \hline \text { 2N5460, 2N5463 } \\ & \text { 2N5461, 2N5464 } \\ & \text { 2N5462, 2N5465 } \\ & \hline \end{aligned}$
IGSS Gate Reverse Current	-		$\begin{aligned} & 5.0 \\ & 5.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \text { na } \\ \text { na } \\ \mu \mathrm{Adc} \\ \text { na } \end{gathered}$	$\begin{aligned} & V_{\mathrm{GS}}=20 \mathrm{Vdc}, V_{\mathrm{DS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=30 \mathrm{Vdc}, V_{\mathrm{DS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=20 \mathrm{Vdc}, V_{D S}=0, \mathrm{TA}_{\mathrm{A}}=100^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GS}}=30 \mathrm{Vdc}, V_{D S}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$	2N5460, 2N5461, 2N5462 2N5463, 2N5464, 2N5465 2N5460, 2N5461, 2N5462 2N5463, 2N5464, 2N5465
ON CHARACTERISTICS	:					
IDSS Zero-Gate Voltage Drain Current	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 9.0 \\ & 16 \\ & \hline \end{aligned}$	mAdc	$V_{D S}=15 \mathrm{Vdc}, V_{G S}=0$	2N5460, 2N5463 2N5461, 2N5464 2N5462, 2N5465
VGS , Gate-Source Voltage	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Vdc	$\begin{aligned} & V_{D S}=15 \mathrm{Vdc}, I_{D}=0.1 \mathrm{mAdc} \\ & V_{D S}=15 \mathrm{Vdc}, I_{D}=0.2 \mathrm{mAdc} \\ & V_{D S}=15 \mathrm{Vdc}, I_{D}=0.4 \mathrm{mAdc} \end{aligned}$	2N5460, 2N5463 2N5461, 2N5464 2N5462, 2N5465
SMALL-SIGNAL CHARACTERISTICS					\cdots.	
$\mathbf{g}_{\mathrm{fs}} \quad$ Forward Transadmittance	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \\ & \hline \end{aligned}$		$\begin{aligned} & 4000 \\ & 5000 \\ & 6000 \end{aligned}$	μ mhos	$V_{D S}=15 \mathrm{Vdc}, V_{G S}=0, f=1.0 \mathrm{kHz}$ 2N5460, 2N5463 $2 N 5461,2 N 5464$ $2 N 5462,2 N 5465$	
$\mathrm{g}_{\text {OS }} \quad$ Output Admittance		\cdots	75	μ mhos	$V_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{kHz}$	
Ciss Inpüt Capacitance		5.0	7	pF	$\mathrm{V}_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	
Crss \quad Reverse Transfer Capacitance		1.0	2.0	pF	$\mathrm{V}_{\text {DS }}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	
NF Common-Source Noise Figure		1.0	2.5	dB	$V_{D S}=15 \mathrm{Vdc}, V_{G S}=0, R_{G}=1.0$ Megohm, $f=100 \mathrm{~Hz}, B W=1.0 \mathrm{~Hz}$	
$\begin{array}{ll} \overline{\mathrm{e}}_{\mathrm{n}} & \begin{array}{l} \text { Equivalent Short-Circuit Input } \\ \\ \\ \hline \end{array} \text { Noise Voltage } \\ \hline \end{array}$		60	115	$\begin{aligned} & n \mathrm{~V} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$	$V_{D S}=15 \mathrm{Vdc}, V_{G S}=0, f=100 \mathrm{~Hz}, B W=1.0 \mathrm{~Hz}$	

DESIGNED FOR USE IN

- Analog Switches
- Commutators
- Choppers

FEATURES

- ON Resistance <85 ohms on U304
- ID(off) $<500 \mathrm{pA}$
- Switches directly from T2L Logic (U306)

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain or Gate-Source Voltage (Note 1)

PACKAGE DIMENSIONS
 30 V Gate Current
Total Device Dissipation, Free-Air
(Derate $2.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Storage Temperature Range
\qquad Lead Temperature
($1 / 16^{\prime \prime}$ from case for 60 seconds)
$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted.

NOTES:

1. Due to symmetrical geometry these units may be operated with source and drain leads interchanged.
2. Pulse test pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

2N3921, 2N3922 Dual Monolithic Matched N-Channel J-FETS (Pair)

MATCHED FET PAIRS FOR DIFFERENTIAL AMPLIFIERS

- $\mathrm{IG}_{\mathrm{g}}<\mathbf{2 5 0} \mathrm{pA}\left(25 \mathrm{nA}\right.$ at $\left.100^{\circ} \mathrm{C}\right)$
- goss $^{2} \mathbf{2 0} \mu$ mhos (ID $=700 \mu \mathrm{~A}$)
- Matched $V_{G S}, \Delta V_{G S}$, and gis

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate Current
50 mA
Total Device Dissipation (Derate $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$) 300 mW
Storage Temperature Range . .. -65 to $+200^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

	CHARACTERISTIC	MIN	MAX	UNIT	TEST CONDITIONS	
Igss Gate Reverse Current			-1	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	$100^{\circ} \mathrm{C}$
			-1	$\mu \mathrm{A}$		
BVDGO	Drain-Gate Breakdown Voltage	50			$I_{D}=1 \mu \mathrm{~A}, I_{S}=0$	
VGS(off)	Gate-Source Cutoff Voltage		-3	V	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
VGS	Gate-Source Voltage	-0.2	-2.7		$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	
IG	Gate Operating Current		-250	pA	$V D G=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=700 \mu \mathrm{~A}$	
			-25	nA		$100^{\circ} \mathrm{C}$
IDSS	Saturation Drain Current (Note 1)	1	10	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
gfs	Common-Source Forward Transconductance (Note 1)	1500	7500	$\mu \mathrm{mho}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
gos	Common-Source Output Conductance		35			
Ciss	Common-Source Input Capacitance		18	pF		
Crss	Common-Source Reverse Transfer Capacitance		6			
gfs	Common-Source Forward Transconductance	1500		$\mu \mathrm{mho}$	$V_{D G}=10 \mathrm{~V}, I_{D}=700 \mu \mathrm{~A}$	$\mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance		20			
NF	Spot Noise Figure		2	dB	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0$	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{meg} \end{aligned}$

CHARACTERISTIC		2N3921		2N3922		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
\| $\mathrm{VGS1}^{1-V_{G S 2}}$ \|	Differential Gate-Source Voltage		5		5	mV	$\begin{aligned} & \mathrm{VDG}=10 \mathrm{~V} \\ & \mathrm{ID}_{\mathrm{D}}=700 \mu \mathrm{~A} \end{aligned}$	
$\frac{\Delta\left\|V_{G S 1}-V_{G S 2}\right\|}{\Delta T}$	Gate-Source Differential Voltage Change with Temperature	:	10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \\ t_{B} & =100^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \mathrm{g}_{\mathrm{fs} 1} \\ & \mathrm{~g}_{\mathrm{fs} 2} \\ & \hline \end{aligned}$	Transconductance Ratio	- 0.95	1.0	0.95	1.0	-		$\mathrm{f}=1 \mathrm{kHz}$

2N3954 2N3954A 2N3955 2N3955A 2N3956 2N3957 2N3958 Monolithic Dual, Matched N-Channel JFETS (Pair)

GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers. This family of general purpose FETs is characterized for low and medium frequency differential amplifiers requiring low offset voltage, drift, noise, and capacitance.

FEATURES

- Offset Voltage $<5 \mathrm{mV}$ - Drift $<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Capacitance - $\mathrm{C}_{\text {iss }}=4 \mathrm{pF}$ Max
- Spot Noise Figure $=0.5 \mathrm{~dB}$ Max
- Superior Tracking Ability
- Low Output Conductance $-\mathrm{g}_{\mathrm{os}}=35 \mu \mathrm{mho}$ Max

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Any Case-To-Lead Voltage	$\pm 100 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage	Itage $\quad-50 \mathrm{~V}$
Gate-To-Gate Voltage	$\pm 100 \mathrm{~V}$
Gate Current	50 mA
Total Device Dissipation $85^{\circ} \mathrm{C}$ (Each Side)	(Each Side) 250 mW
Case Temperature ' (Both Sides)	(Both Sides) 500 mW
Power Derating (Each Side)	$2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
(Both Sides)	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ}$	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature	
(1/16" from case for 10 seconds)	ands) $300^{\circ} \mathrm{C}$

ORDERING INFORMATION

TO71	WAFER	CHIP
2N3954	2N3954/W	2N3954/D
2N2954A	2N3954A/W	2N3954A/D
2N3955	2N3955/W	2N3955/D
2N3955A	2N3955A/W	2N3955A/D
2N3956	2N3956/W	2N3956/D
2N3957	2N3957/W	2N3957/D
2N3958	2N3958/W	2N3958/D

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N3954		2N3954A		2N3955		2N3955A		2N3956		2N3957		2N3958		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN.	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
IGSS	Gate Reverse Current		-100		-100		-100		-100		-100		-100		-100	pA	$\begin{aligned} & V_{G S}=-30 \mathrm{~V} \\ & V_{D S}=0 \end{aligned}$,
			-500		-500		-500		-500		-500		-500		-500	nA		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50		-50		-50		-50		V .	$\begin{aligned} & V_{D S}=0 \\ & I_{G}=1 \mu \mathrm{~A} \end{aligned}$	
VGS(off)	Gate-Source Cutoff Voltage	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	:-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5		$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & I D=1 \mathrm{nA} \end{aligned}$	
$\left.\mathrm{VGS}_{\text {(}} \mathrm{f}\right)$	Gate-Source Forward Voltage		2.0		2.0		2.0		2.0		2.0		2.0		2.0		$\begin{aligned} & V_{D S}=0 \\ & I_{G}=1 \mathrm{~mA} \end{aligned}$	
V_{GS}	Gate-Source Voltage		-4.2		-4.2		-4.2		-4.2		-4.2		-4.2		-4.2		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$	$I D=50 \mu \mathrm{~A}$
		-0.5	-4.0	-0.5	-4.0	-0.5	-4.0	-0.4	-4.0	-0.5	-4.0	-0.5	-4.0	-0.5	-4.0			$1 \mathrm{D}=200 \mu \mathrm{~A}$
IG	Gate Operating Current		-50		-50		-50		-50		-50		-50		-50	nA	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	
			-250		-250		-250		-250		-250		-250		-250	nA		$T_{A}=125^{\circ} \mathrm{C}$
IDSS	Saturation Drain Current	0.5	- 5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{GS}}=0 \end{aligned}$	
	Common-Source Forward	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	1000	3000	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
9fs	Transconductance	1000		1000		1000		1000		1000		1000		1000				$\mathrm{f}=200 \mathrm{MHz}$
9os	Common-Source Output Conductance		35		35		35		35		35		35		35			$f=1 \mathrm{kHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		4.0		4.0		4.0		4.0		4.0		4.0		4.0	pF		$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{Crss}^{\text {r }}$	Common Source Reverse Transfer Capacitance		1.2		1.2		1.2		1.2		1.2		1.2		1.2			
$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance		1.5		1.5		1.5		1.5		1.5		1.5		1.5		$\begin{aligned} & V_{D G}=10 \mathrm{~V} . \\ & I_{S}=0 \end{aligned}$	
NF	Common-Source Spot Noise Figure		0.5		0.5		0.5		0.5		0.5		0.5		0.5	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \Omega \\ & \hline \end{aligned}$	$f=100 \mathrm{~Hz}$
\|IG1-IG2	Differential Gate Current		10		10		10		10		10	"	10		10	$n A$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$T=125^{\circ} \mathrm{C}$
IDSS1/IDSS2	Drain Saturation Current Ratio	0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	0.95	1.0	0.90	1.0	0.85	1.0		$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	
	Differential Gate-Source Voltage		5.0		5.0		10.0		5.0		15		20		25	mV	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & \mathrm{ID}=200 \mu \mathrm{~A} \end{aligned}$	
$\Delta \mathrm{V}_{\mathrm{GS}} 1^{-\mathrm{V}_{\mathrm{GS}}}$	Gate-Source Differential Voltage Change with Temperature		0.8		0.4		2.0		1.2		4.0		6.0		8.0			$T=25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$
			1.0		0.5		2.5		1.5		5.0		7.5		10.0			$\mathrm{T}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
9fs $1 / \mathrm{gfs} 2$	Transconductance Ratio	0.97	1.0	0.97	1.0	0.97	1.0	0.95	1.0	0.95	1.0	0.90	1.0	0.85	1.0			$f=1 \mathrm{kHz}$

2N5196 2N5197 2N5198 2N5199 Low Noise Monolithic Dual Matched N-Channel JFETs (PAIR)

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Temperatures	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering	
10 sec . time limit)	$+300^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature	
One Side	250 mW
Both Sides	500 mW
Linear Derating	
One S Side	$2.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Both Sides	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Currents	
$V_{\text {GS }}$ Gate to Source Voltage	-50 V
$V_{\text {GD }}$ Gate to Drain Voltage	-50 V
${ }^{\prime} \mathrm{G}$. Gate Current	50 mA

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

[^4]
2N5452, 2N5453, 2N5454 Monolithic Dual Matched N-Channel JFETS (PAIR)

FEATURES

- Offset Voltage 5 mV
- Drift $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Capacitance
- Low Output Conductance - 1μ mho Max

GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers. This family of general purpose FETs is characterized for low and medium frequency differential amplifier applications requiring low drift and low offset voltage.

ABSOLUTE MAXIMUM RATINGS
@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature
Operating Junction Temperature
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec. time limit)
$+300^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature

250 mW	
One Side	500 mW
Both Sides.	
Linear Derating	$2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
One Side	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Currents
$V_{\text {GS }}$ Gate to Source Voltage - -50 V
$V_{\text {GD }}$ Gate to Drain Voltage -50 V

PACKAGE DIMENSIONS

NOTE: FOR DIE STRUCTURE, SEE 2 N5196 FAMILY

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5452		2N5453		2N5454		UNITS	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	. MAX			
IGSS	Gate Reverse Current		-100		-100		-100	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	\cdots
			-200	'	-200		-200			$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
BVGSS	Gate-Source Breakdown Voltage	-50		-50		-50		V	$V_{\text {DS }}=0,1 \mathrm{G}=-1 \mu \mathrm{~A}$	
VGS(off)	Gate-Source Cutoff Voltage	-1	-4.5	-1	-4.5	-1	-4.5		$\mathrm{VDS}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$,
VGS	Gate-Source Voltage	-0.2	.$^{-4.2}$	-0.2	-4.2	-0.2	$\begin{array}{r} -4.2 \\ : \quad 2 \end{array}$		$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$	
$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	'Gate-Source Forward Voltage		2		2				$V_{\text {DS }}=0.1 \mathrm{G}=1 \mathrm{~mA}$	
IDSS	Saturation Drain Current	0.5	5.0	0.5	5.0	0.5	5.0	mA	VDS $=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	\cdots
9fs	Common-Source Forward Transconductance	1000	3000	1000	3000	1000	3000	$\mu \mathrm{mho}$	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
		1000		1000		1000				$\mathrm{f}=100 \mathrm{MHz}$
gos	Common-Source Output Conductance		3.0		3.0		3.0			$\mathrm{f}=1 \mathrm{kHz}$
			1.0		1.0		1.0		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$.	
Ciss	Common-Source Input Capacitance		4.0		4.0		4.0	pF	$V_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		1.2		1.2		1.2			
$\mathrm{C}_{\text {dgo }}$	Drain-Gate Capacitance		1.5		1.5		1.5		$\mathrm{V}_{\text {DG }}=10 \mathrm{~V}, \mathrm{IS}=0$	
\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage		20		20		20	$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$
NF	Common-Source Spot Noise Figure		0.5		0.5		0.5	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{VGS}_{\mathrm{GS}}=0 \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{~m} \Omega \end{aligned}$	$\mathrm{f}=100 \mathrm{~Hz}$
IDSS1/IDSS2	Drain Saturation Current Ratio	0.95	1.0	0.95	1.0	0.95	1.0		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
$\left\|V_{\mathrm{GS} 1} \mathrm{~V}_{\mathrm{GS} 2}\right\|$	Differential Gate-Source Voltage		5.0		10.0		15.0	mV	$V_{\text {DS }}=20 . \mathrm{V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	$\frac{\mathrm{T}=25^{\circ} \mathrm{C} \text { to }-55^{\circ} \mathrm{C}}{\mathrm{~T}=25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}}$
$\Delta\left\|V_{\mathrm{GS} 1} \mathrm{~V}^{-} \mathrm{V}_{\mathrm{GS} 2}\right\|$	Gate-Source Voltage Differential Change with Temperature		0.4		0.8		2.0			
		:	0.5		1.0		2.5			
9fs, $1 / \mathrm{gfs} 2$	Transconductance Ratio	0.97	1.0	0.97	1.0	0.95	1.0			
\| \mid os 1 -9os2\|	Differential Output Conductance		0.25		0.25		0.25	$\mu \mathrm{mhos}$		$\mathrm{f}=1 \mathrm{kHz}$

2N5515 thru 2N5524 Monolithic Dual Matched N-Channel Silicon Planar Epitaxial JFETS (Pair)

GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers.

1
ABSOLUTE MAXIMUM RATINGS (Note 1)
$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures

Storage Temperature
Maximum Power Dissipation
Device Dissipation
@ Free Air Temperature Linear Derating
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ ONE SIDE BOTH SIDES $250 \mathrm{~mW} \quad 500 \mathrm{~mW}$ $85^{\circ} \mathrm{C} \quad 85^{\circ} \mathrm{C}$ $3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Current

$V_{\text {GS }}$ Gate to Source Voltage	-40 V
$\mathrm{~V}_{\mathrm{GD}}$ Gate to Drain Voltage	-40 V
I_{G} Gate Current	50 mA

FEATURES

- Tight Temperature Tracking $-\Delta \mathrm{V}_{\mathrm{GS}}<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Tight Matching -
$V_{G S}<5 \mathrm{mV}$
$\mathrm{I}_{\mathrm{G}}<10 \mathrm{nA} @ 125^{\circ} \mathrm{C}$
$\mathrm{g}_{\mathrm{fs}}<3 \%$
$\mathrm{g}_{\text {oss }}<.1 \mu \mathrm{mho}$
- High Common Mode-Rejection - CMRR $<100 \mathrm{db}$
- Low Noise $-\mathrm{e}_{\mathrm{n}}<15 \mathrm{nV} / \sqrt{ } \mathrm{Hz} @ 10 \mathrm{~Hz}$

ORDERING INFORMATION

TO71	WAFER	CHIP
2N5515	2N5515/W	2N5515/D
2N5516	2N5516/W	2N5516/D
2N5517	2N5517/W	2N5517/D
2N5518	2N5518/W	2N5518/D
2N5519	2N5519/W	2N5519/D
2N5520	2N5520/W	2N5520/D
2N5521	2N5521/W	2N5521/D
2N5522	2N5522/W	2N5522/D
2N5523	2N5523/W	2N5523/D
2N5524	2N5524/W	2N5524/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
IGSS	Gate Reverse Current$\left(+25^{\circ} \mathrm{C}\right)$ $\left(+150^{\circ} \mathrm{C}\right)$		$\begin{array}{r} -250 \\ -250 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
BVGSS	Gate-Source Breakdown Voltage	-40		V	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$
Vp	Gate-Source Pinch-Off Voltage	-0.7	-4	V	$V_{D S}=20 \mathrm{~V}, \mathrm{D}=1 \mathrm{nA}$
IDSS	Drain Current at Zero Gate Voltage (Note 2)	0.5	7.5	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
Gfs	Common-Source Forward Transconductance (Note 2)	1000	4000	$\mu \mathrm{mho}{ }^{\prime}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \quad \mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance		10	$\mu \mathrm{mho}$	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0 \quad \mathrm{f}=1 \mathrm{kHz}$
Crss	Common-Source Reverse Transfer Capacitance		5	pF	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \quad f=1 \mathrm{MHz}$
Ciss	Common-Source Input Capacitance		25	pF	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \quad \mathrm{f}=1 \mathrm{MHz}$
\bar{e}_{n}	2N5515-19 Equivalent Input Noise Voltage 2N5520-24 2N5515-24		$\begin{aligned} & 30 \\ & 15 \\ & 10 \end{aligned}$		$V_{D G}=20 \mathrm{~V}, I D=200 \mu \mathrm{~A}$ $\mathrm{f}=10 \mathrm{~Hz}$ $V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$ $\mathrm{f}=10 \mathrm{~Hz}$ $V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$ $\mathrm{f}=1 \mathrm{kHz}$
IG	Gate Current $\begin{array}{ll}\left(+25^{\circ} \mathrm{C}\right) \\ \left(+125^{\circ} \mathrm{C}\right)\end{array}$		$\begin{array}{r} -100 \\ -100 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$V_{\text {DG }}=20 \mathrm{~V}, I_{\text {d }}=200 \mu \mathrm{~A}$
VGS	Gate Source Voltage	-0.2	-3.8	V	$\mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
9fs	Common-Source Forward Transconductance (Note 2)	500	1000	$\mu \mathrm{mho}$	$V_{D G}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A} \quad \mathrm{f}=1 \mathrm{kHz}$
goss	Common-Source Output Conductance.		1	$\mu \mathrm{mho}$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		2N5515,20		2N5516,21		2N5517,22		2N5518,23		2N5519,24		UNIT	TEST CONDITIONS	
		MIN	MAX											
IDSS1	Drain Current Ratio at	0.95	1	0.95	1	0.95	1	0.95	1	0.90	1		$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
IDSS2	Zero Gate Voltage (Note 2)													
$\\|_{\mathrm{G} 1}$ - $\mathrm{IG} 2 \mid$	Differential Gate Current $\left(+125^{\circ} \mathrm{C}\right)$		10		10		10		10		10	nA	$V_{D G}=20 \mathrm{~V}, \mathrm{ID}^{2}=200 \mu \mathrm{~A}$	
9fs 1	Transconductance Ratio	0.97	1	0.97	1	0.95	1	0.95	1	0.90	1		$\mathrm{V}_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
9fs2	(Note 2)												$f=1 \mathrm{KHz}$	
$\mid g_{\text {oss }} 1$ - goss2 ${ }^{1}$	Differential Output Conductance		0.1		0.1		0.1		0.1		0.1	$\mu \mathrm{mho}$	$\begin{aligned} & \text { VDG }=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A} \\ & f=1 \mathrm{KHz} . \end{aligned}$	
\| VGS - V_{GS} \|	Differential Gate Source Voltage		5		5		10		15	1	15	mV	$V_{\text {DG }}=20, \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
$\frac{\Delta \mid V_{G S 1}-V_{G S 21}}{\Delta T}$	Gate-Source Voltage Differential Drift ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)		5		10		20		40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
$\frac{\Delta\left\|V_{\mathrm{GS} 1}-V_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}}$	Gate-Source Voltage Differential Drift ($T_{A}=+25$ to $\left.-55^{\circ} \mathrm{C}\right)$		5	\cdot	10	.	20		40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
CMRR	Common Mode Rejection Ratio (Note 3)	100		100		90						dB	$V_{D D}=10$ to $20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	

NOTES:

1.. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of 28 mS used during test.
3. $\mathrm{CMRR}=20 \log _{10} \Delta \dot{\mathrm{~V}}_{\mathrm{DD}} / \Delta I V_{G S 1}-V_{G S 2} l,\left(\Delta V_{D D}=10 \mathrm{~V}\right)$

2N5902 thru 2N5909 Dual Monolithic Matched N-Channel JFETs (PAIR)

GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers.

FEATURES

- Tracking $<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \quad{ }^{-} \mathrm{I}_{\mathrm{G}}<1 \mathrm{pa}$
- Matched $\mathrm{V}_{\mathrm{GS}} \cdot \Delta \mathrm{V}_{\mathrm{GS}} / \Delta \mathrm{T}, \mathrm{g}_{\mathrm{fs}^{\prime}} \& \mathrm{~g}_{\mathrm{Oss}}$

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Gate-Drain or Gate-Source Voltage	-40 V
Gate Current	10 mA
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	367 mW
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	500 mW
(Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
ORDERING INFORMATION	

T099	WAFER	CHIP	T099	WAFER	CHIP
2N5902	2N5902/W	2N5902/D	2N5906	2N5906/W	2N5906/D
2N5903	2N5903/W	2N5903/D	2N5907	2N5907/W	2N5907/D
2N5904	2N5904/W	2N5904/D	2N5908	2N5908/W	2N5908/D
2N5905	2N5905/W	2N5905/D	2N5909	2N5909/W	2N5909/D

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

2N5911 2N5912 Dual Monolithic Matched N-Channel JFETs (PAIR)

FEATURES

- Tracking $<20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- $\mathrm{g}_{\mathrm{fs}}<5000 \mu \mathrm{mho}, 0-100 \mathrm{MHz}$
- Matched $\mathrm{V}_{\mathrm{GS}}, \Delta \mathrm{V}_{\mathrm{GS}} / \Delta \mathrm{T}, \mathrm{I}_{\mathrm{G}}, \mathrm{g}_{\mathrm{fs}^{\prime}}$

GENERAL DESCRIPTION

Matched FET pairs for wideband differential amplifiers.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Gate-Drain or Gate-Source Voltage -25V
Gate Current
Device Dissipation (Each Side), Linear Derating
Total Device Dissipation, Linear Derating
Storage Temperature Range
ORDERING INFORMATION

T099	WAFER	CHIP
2N5911	2N5911/W	2N5911/D
2N5912	2N5912/W	2N5912/D

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		MIN	MAX		UNIT	TEST CONDITIONS.		
Gate Reverse Current					$\overline{\mathrm{pA}}$	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$150^{\circ} \mathrm{C}$	
				-250	nA			
Gate Reverse Breakdown Voltage		-25			V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
Gate-Source Cutoff Voltage		-1		-5		$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		
Gate-Source Voltage		-0.3		-4		$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		
Gate Operating Current				$\begin{aligned} & -100 \\ & -100 \end{aligned}$	$\begin{aligned} & \hline \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$		$125^{\circ} \mathrm{C}$	
Saturation Drain Current (Pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$)		7	7	40	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		
Common-Source Forward Transconductance		5000		10,000	$\mu \mathrm{mho}$	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	
Common-Source Forward Transconductance		5000		10,000			$\mathrm{f}=100 \mathrm{MHz}$	
Common-Source Output Conductance				100			$\mathrm{f}=1 \mathrm{kHz}$	
Common-Source Output Conductance				150			$f=100 \mathrm{MHz}$	
Common-Source Input Capacitance				5	pF		$f=1 \mathrm{MHz}$	
Common-Source Reverse Transfer Capacitance				1.2			$f=1 \mathrm{MHz}$	
Equivalent Short Circuit Input Noise Voltage				20	$\frac{n V}{\sqrt{H z}}$		$\mathrm{f}=10 \mathrm{kHz}$	
Spot Noise Figure				1	dB		$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{G}}=100 \mathrm{~K} \Omega \end{aligned}$	
PARAMETER	2N5911		2N5912		UNIT	TEST CONDITIONS		
	MIN	MAX	MIN	N MAX				
$\mid I \mathrm{G} 1$-IG2\| Differential Gate Current		20		20	nA	$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	$125^{\circ} \mathrm{C}$	
$\frac{\text { IDSS1 }}{\text { IDSS2 }}$ Saturation Drain Current Ratio	0.95	1	0.95	51		$V_{D S}=10 \mathrm{~V}, V_{G S}=0$ (Pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$)		
$\mid V_{\text {GS1 }}$-VGS2 \mid Differential Gate-Source Voltage		10		15	mV	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$		
Gate-Source Voltage Differential Drift (Measured at end points, T_{A} and T_{B})		20		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=125^{\circ} \mathrm{C} \end{aligned}$	
		20		40			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \end{aligned}$	
Transconductance Ratio	0.95	1	0.95	51			$\mathrm{f}=1 \mathrm{kHz}$	

2N6483, 2N6484, 2N6485 Low Noise Dual Monolithic Matched N-Channel JFETS

FEATURES

- Ultra Low Noise

$$
\overline{\mathrm{e}}_{\mathrm{n}}<10 \mathrm{nV} / \sqrt{\mathrm{Hz}} \text { at } 10 \mathrm{~Hz}
$$

- High CMRR $>100 \mathrm{~dB}$
- Low Offset

$$
\Delta\left|V_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right|<5 \mathrm{mV}
$$

- Tight Tracking

$$
\Delta\left|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right| / \Delta \mathrm{T}<5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
$$

ABSOLUTE MAXIMUM RATINGS (Note 1)

(@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

Maximum Temperatures	
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ t	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec . time limit)	me limit) $+300^{\circ} \mathrm{C}$
Maximum Power Dissipation.	
" Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature	
One Side	250 mW
Both Sides	500 mW
Linear Derating	
One Side . 3.8	$3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Both Sides 7	$7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Currents	
V_{GS} Gate to Source Voltage	-50 V
$\mathrm{V}_{\text {GD }}$ Gate to Drain Voltage	-50 V
$\mathrm{V}_{\mathrm{G} 1 \mathrm{G2}}$ Gate to Gate Voltage	$\pm 50 \mathrm{~V}$
${ }^{\prime} \mathrm{G}$ Gate Current	50 mA

GENERAL DESCRIPTION

These N-Channel Junction FETs are characterized for ultra low noise applications requiring tightly controlled and specified noise parameters at 10 Hz and 1000 Hz . Tight matching specifications make these devices ideal as the input stage for low frequency differential, instrumentation amplifiers.

PACKAGE DIMENSIONS

NOTE: FOR DIE STRUCTURE,
REFER TO 2N5515 FAMILY.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	MIN.	MAX	UNIT	TEST CONDITIONS
'GSS	Gate Reverse Current		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}-0, \mathrm{~T}_{\mathrm{A}}=+25 \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 . \mathrm{T}_{\mathrm{A}}=+150 \mathrm{C} \end{aligned}$
$B V_{G S S}$	Gate Source Breakdown Voltage	50		v	${ }^{\prime} \mathrm{G}=1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$
V_{p}	Gate Source Pinch Off Voltage	0.7	4.0	V	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V},{ }^{1} \mathrm{D}=1 \mathrm{nA}$
'DSS	Drain Current at Zero Gate Voltage	0.5	7.5	$m A$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0($ Note 2$)$
g_{fs}	Common-Source Forward Transconductance	1000	4000	$\mu \mathrm{mho}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 . f=1 \mathrm{KHz}($ Note 2$)$
goss	Common Source Output Conductance		10	$\mu \mathrm{mho}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{KHz}$
$\mathrm{C}_{\text {iss }}$	Common Source Input Capacitance		20	pF	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 . f=1 \mathrm{MHz}$
$\mathrm{C}_{\text {rss }}$	Common Source Reverse Transfer Capacitance		3.5	pF	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{G S}=0, f=1 \mathrm{MHz}$
${ }^{\prime} \mathrm{G}$	Gate Current		$\begin{aligned} & 100 \\ & 100 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \underset{n}{ } A \end{aligned}$	$\begin{aligned} & V_{G D}-20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, T_{A}=+25 \mathrm{C} \\ & v_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, T_{A}+150 \mathrm{C} \end{aligned}$
v_{GS}	Gate Source Voltage	0.2	3.8	v	$\mathrm{V}_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
g_{fs}	Common Source Forward Transconductance	500	1500	$\mu \mathrm{mho}$	$V_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{~K}_{2}$ (Note 2)
g_{OS}	Common Source Output Conductance		1	$\mu \mathrm{mho}$	$\mathrm{V}_{\text {DG }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
\bar{e}_{n}	Equivalent Input Noise Voltage		$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, 1-10 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, 1=1 \mathrm{KHz} \end{aligned}$

MATCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	CHARACTERISTIC	2N6483		2N6484		2N6485		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
$\frac{{ }^{\text {I DSS } 1}}{{ }^{\text {D DSS2 }}}$	Drain Current Ratio at Zero Gate Voltage	0.95	1	0.95	1	0.95	1	-	$\begin{aligned} & V_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & (\text { Note 2) } \end{aligned}$
$\left.\right\|_{\mathrm{G} 1} \mathbf{- I}_{\mathrm{G} 2} \mid$	-Differential Gate Current		10		10		10	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{DG}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$
$\frac{g_{\mathrm{fs} 1}}{g_{\mathrm{gs} 2}}$	Transconductance Ratio	0.97	1	0.97	. 1	0.95	1	-	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{KHz} \text { (Note 2) } \end{aligned}$
$\left\|g_{o s 1}-g_{o s 2}\right\|$	Differential Output Conductance		0.1		0.1		0.1	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{KHz} \end{aligned}$
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage		5		10		15	mV	$V_{D G}=20 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$
$\frac{\Delta\left\|V_{G S 1}-V_{G S 2}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift		5		10		25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} . \end{aligned}$
$\left.\frac{\Delta\left\|\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta \mathrm{T}} \right\rvert\,$	Gate-Source Voltage Differential Drift		5		10	-	25	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$
CMRR	Common Mode Rejection Ratio	100		100		90		dB	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V} \\ & I_{\mathrm{D}}=200 \mu \mathrm{~A}(\text { Note } 3) \end{aligned}$

NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of $\mathbf{2} \mathbf{~ m s}$ used during test.
3. $C M R R=20 \log _{10} \Delta V_{D D} / \Delta I V_{G S 1}-V_{G S 2} 1,\left(\Delta V_{D D}=10 \mathrm{~V}\right)$, not included in JEDEC registration

TYPICAL CHARACTERISTICS OF 2N6483, 2N6484, 2N6485

GATE CURRENT vs. VDG

TYPICAL CAPACITANCE vs. VDS

$\mathrm{V}_{\mathrm{DS}}(\mathrm{V})$

IMF5911/IMF5912
 Dielectrically Isolated Dual Monolithic Matched N-Channel JFETS (Pair)

FEATURES

- Tracking $<25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- $\mathrm{g}_{\mathrm{f}}>\mathbf{5 0 0 0} \mu \mathrm{mho}, 0-100 \mathrm{MHz}$
- Matched VGs, $_{\text {g }} \Delta \mathbf{V G S}_{\mathrm{GS}} / \Delta \mathrm{T}, \mathrm{I}_{\mathrm{G}}, \mathrm{g}_{\mathrm{fs}}$
- High Adjacent Signal Isolation

GENERAL DESCRIPTION

The IMF 5911, 5912 are dielectrically isolated matched n-channel JFETS ideally suited for wideband differential amplifiers. The dielectric isolation virtually eliminates parasitic leakage currents and capacitance between the matched pair which are present in conventional junction isolated pairs. The electrical characteristics of the 5911, 5912 are the same as the popular 2N5911, 5912 type JFET's, with the exception of superior inter-device leakages and capacitance. The thermal matching of these devices is maintained by the common polysilicon substrate.

ABSOLUTE MAXIMUM RATINGS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Gate-Drain or Gate-Source Voltage .. - 25 V
Gate Current ... 50 mA
Device Dissipation (Each Side) ... 367 mW
Linear Derating .. $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Total Device Dissipation ... 500 mW
Linear Derating .. $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range ... $65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETER		MIN	MAX	UNIT	TEST CONDITIONS	
IGss	Gate Reverse Current		-100	pA	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$150^{\circ} \mathrm{C}$
			-250	nA		
BVGss	Gate Reverse Breakdown Voltage	-25		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-1	-5		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{ID}=1 \mathrm{nA}$	
VGS	Gate-Source Voltage	-0.3	-4		$V_{D G}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=5 \mathrm{~mA}$	
IG	Gate Operating Current		$\begin{aligned} & -100 \\ & -100 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$		$125^{\circ} \mathrm{C}$
Idss	Saturation Drain Current (Pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$)	7	- 40	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	
gis	Common-Source Forward Transconductance	5000	10,000	$\mu \mathrm{mho}$		$\mathrm{f}=1 \mathrm{kHz}$
gfs	Common-Source Forward Transconductance	5000	10,000			$f=100 \mathrm{MHz}$
gos	Common-Source Output Conductance		100			$\mathrm{f}=1 \mathrm{kHz}$
Goss	Common-Source Output Conductance		150			$\mathrm{f}=100 \mathrm{MHz}$
Ciss	Common-Source Input Capacitance		5	pF		$l_{f=1} \mathrm{MH7}$
Crss	Common-Source Reverse Transfer Capacitance		1.2			
\bar{e}_{n}	Equivalent Short Circuit Input Noise Voltage		10.	$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$		$\mathrm{f}=10 \mathrm{kHz}$
NF	Spot Noise Figure		1	dB		$\begin{aligned} & f=10 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{G}}=100 \mathrm{~K} \Omega \end{aligned}$
IG1G2	Gate to Gate Leakage		2	pA		

	PARAMETER	IMF5911		IMF5912		UNIT	TEST CONDITIONS		
		MIN	MAX	MIN	MAX				
\|lG1-IG2		Differential Gate Current		20		20	nA	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}^{\prime}=5 \mathrm{~mA} \mid 125^{\circ} \mathrm{C}$	
$\frac{\text { Ioss1 }}{\text { Ioss2 }}$	Saturation Drain Current Ratio	0.95	1	0.95	1		$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ (Pulsewidth $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$)		
\| $\mathrm{VGS1}^{1-V_{G S 2}}$ \|	Differential Gate-Source Voltage		25		50	mV	$V \mathrm{DG}=10 \mathrm{~V}, \mathrm{lD}=5 \mathrm{~mA}$		
$\frac{\Delta\left\|V_{G S 1}-V_{G S 2}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift (Measured at end points, T_{A} and T_{B})		25		50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{B}}=125^{\circ} \mathrm{C}$	
			25		50			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$	
$\frac{\mathrm{gfs}{ }^{\text {gis2 }}}{}$	Tranṡconductance Ratio	0.95	1	0.95	1			$\mathrm{f}^{\prime}=1^{\prime} \mathrm{kHz}$	

Low Noise Dual Monolithic Matched N-Channel JFETS

FEATURES

- $\bar{e}_{\mathrm{n}}<10 \mathrm{nV} / \mathrm{Hz}$ at 10 Hz
- CMRR $>90 \mathrm{~dB}$
- $\Delta\left|V_{G S 1}=V_{G S 2}\right|<25 \mathrm{mV}$
- $\Delta\left|V_{G S 1}=V_{G S 2}\right|<40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Maximum Power Dissipation
Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature

One Side	250 mW
Both Sides	
inear Derating	500 mW
One Side	$3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Both Sides	$7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

$\begin{array}{lr}\text { Maximum Voltages \& Currents } & \\ \text { V }_{\text {GS }} \text { Gate to Source Voltage } & -50 \mathrm{~V} \\ \text { V }_{\text {GD }} \text { Gate to Drain Voltage } & -50 \mathrm{~V} \\ \text { V }_{\text {G1 G2 }} \text { Gate to Gate Voltage } & \pm 50 \mathrm{~V} \\ \text { IG }^{\text {Gate Current }} & 50 \mathrm{~mA}\end{array}$

GENERAL DESCRIPTION

This N -Channel Junction FET is characterized for ultra low noise applications requiring tightly controlled and specified noise parameters at 10 Hz and 1000 Hz . Tight matching specifications make this device ideal as the input stage for low frequency differential instrumentation amplifiers.

PACKAGE DIMENSIONS

NOTE: FOR DIE STRUCTURE, REFER TO 2N5515 FAMILY.

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

SYMBOL	CHARACTERISTICS	MIN.	MAX	UNIT	TEST CONDITIONS
			-200	pA	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\prime} \mathrm{C}$
${ }^{\prime} \mathrm{G}$ SS	Gate Reverse Current		-200	nA	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, T_{A}=+150^{\circ} \mathrm{C}$
$\mathrm{BV}_{\text {GSS }}$	Gate-Source Breakdown Voltage	-50		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$
V_{p}	Gate-Source Pinch Off Voltage	-0.7	-4.0	V	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$
${ }^{\prime}$ DSS	Drain Current at Zero Gate Voltage	0.5	7.5	mA	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0($ Note 2$)$
$\mathrm{g}_{\text {f }}$	Common-Source Forward Transconductance	1000	4000	$\mu \mathrm{mho}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{KHz}$ (Note 2)
$\mathrm{g}_{\text {oss }}$	Common-Source Output Conductance		10	$\mu \mathrm{mho}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{KHz}$
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		20	pF	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$
Crss	Common-Source Reverse Transfer Capacitance		3.5	pF	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0, f=1 \mathrm{MHz}$
${ }^{1}$	Gate Current			pA	$V_{G D}=20 V_{, ~} I_{D}=200 \mu \mathrm{~A}, T_{A}=+25 \mathrm{C}$
G	Gate Current		-100	nA	$V_{\text {DG }}=20 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \cdot \mathrm{~T}_{A}=+150{ }^{\circ} \mathrm{C}$
V_{GS}	Gate-Source Voltage	0.2	-3.8	V	$V_{\text {DG }}=20 \mathrm{~V} \cdot{ }^{\text {d }}=200 \mu \mathrm{~A}$
$9_{\text {fs }}$	Common Source Forward Transconductance.	500	1500	$\mu \mathrm{mho}$	$V_{\text {DG }}=20 \mathrm{~V}, 1_{D}=200 \mu \mathrm{~A}, f=1 \mathrm{KHz}$ (Note 2)
$\mathrm{g}_{\text {os }}$,	Common-Source Output Conductance		1	$\mu \mathrm{mho}$	$V_{\text {DG }}=20 \mathrm{~V},{ }^{\text {I }}$ D $=200 \mu \mathrm{~A}$
			15	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, f=10 \mathrm{~Hz}$
${ }^{\text {en }}$	Equivalent Input Noise Voltage		10	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, f=1 \mathrm{KHz}$

MATCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN.	MAX.	UNIT	CONDITIONS
${ }^{1}$ DSS1	Drain Current Ration at Zero Gate Voltage	0.95	1	-	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0($ Note 2)
${ }^{1} \mathrm{CSS} 2$					
$\left.{ }^{\prime}\right\|_{G 1}-I_{G 2} \mid$	Differential Gate Current		10	nA	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$
$\frac{\mathrm{g}_{\mathrm{fs} 1}}{\mathrm{~g}_{\mathrm{gs} 2}}$	Transconductance Ratio	0.95	1	-	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \\ & f=1 \cdot \mathrm{KHz} \text { (Note 2) } \end{aligned}$
$\mathrm{lg}_{\mathrm{os} 1}-\mathrm{g}_{\mathrm{os} 2} \mid$	Differential Output Conductance		0.1	$\mu \mathrm{mho}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \\ & f=1 \mathrm{KHz} . \end{aligned}$
$1 V_{G S 1}-V_{\text {GS2 }}{ }^{\prime}$	Differential Gate-Source Voltage		25	mV	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$
$\frac{\Delta N_{\mathrm{GS} 1}-V_{\mathrm{GS} 2}}{\Delta T}$	Gate-Source Voltage Differential Drift		40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{C G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\frac{\Delta \mathrm{V}_{\text {GS1 }}-\mathrm{V}_{\text {GS2 }}}{\Delta \mathrm{T}}$	Gate-Source Voltage Differential Drift	'	40	$\mu \vee 1{ }^{\circ} \mathrm{C}$	$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$
CMRR	Common Mode Rejection Ratio	90		dB	$\begin{aligned} & V_{D D}=10 \text { to } 20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \cdot(\text { Note } 3) \end{aligned}$

NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
2. Pulse duration of 2 ms used during test.
3. $\mathrm{CMRR}=20 \log _{10} \Delta \mathrm{~V}_{\mathrm{DD}} / \Delta \mid \mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2} 1,\left(\Delta \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}\right)$

TYPICAL CHARACTERISTICS

TYPICAL CAPACITANCE vs. VDS

$V_{D S}(V)$

FEATURES

- $C_{M R R}>120 \mathrm{~dB}$
- IG $<5 \mathrm{pA} @ 50 \mathrm{~V}_{\mathrm{DG}}$
- Low Miller Capacitance ($\mathrm{C}_{\mathrm{rss}}$)
- Low $\mathrm{g}_{\text {os }}<.025 \mu \mathrm{mhos}$

ABSOLUTE MAXIMUM RATINGS

(@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

Maximum Temperatures

$$
\begin{aligned}
& \text { Storage Temperature } 65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& \text { Operating Temperature. }+150^{\circ} \mathrm{C} \\
& \text { Lead Temperature (soldering, } 10 \mathrm{sec} \text { time.limit). }+300^{\circ} \mathrm{C}
\end{aligned}
$$

Maximum Power Dissipation
Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature

$$
\text { One Side . } 250 \text { mW }
$$

\qquad
Linear Derating
One Side $3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Both Sides
$7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltages \& Currents
$V_{D S}$ Drain to Source Voltage 60V
VGS Gate to Source Voltage 60V
V_{GD} Gate to Drain Voltage. 60 V
$\mathrm{V}_{\mathrm{G} 1 \mathrm{G} 2}$ Gate to Gate Voltage 60V
I_{G} Gate Current . 50 mA

NOTE: Due to the non-symetrical structure of these devices, the drain and source ARE NOT interchangeable.

GENERAL DESCRIPTION

A low noise, low leakage FET that employs a cascode structure to accomplish very low lg at high voltage levels, while giving high transconductance and very high common mode rejection ratio.

PACKAGE DIMENSIONS

TO52

BONDING PAD DETAIL

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

- JEDEC registered data
$* C_{M R R}=20 \log _{10} \Delta V_{D D} / \Delta\left[V_{g s 1}-V_{g s 2}\right], \Delta V_{D D}=10 /-20 V$

NOTES: 1. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$. 2. Measured at end points, T_{A} and T_{B}.
3. With case guarded $\mathrm{C}_{\text {RSS }}$ is typically $<.15$ pf

TYPICAL PERFORMANCE CURVES

FEATURES

- High CMRR
- Low Input Current
- Low Leakage
- Low Noise
- Offset Differential Independent of Operating Current
- Low Offset Differential
- Low Offset Differential With Change in Temp.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature
Operating Junction Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec. time limit)
$+300^{\circ} \mathrm{C}$
Maximum Power Dissipation
Device Dissipation @ $85^{\circ} \mathrm{C}$ Free Air Temperature

One Side	
Both Sides	250 mW
Linear Derating	500 mW
One Side	
Both Sides	$2.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
ximum Voltages \& Currents	$\mathbf{4 . 3 \mathrm { mW } / { } ^ { \circ } \mathrm { C }}$
V GS Gate to Source Voltage	
V Ga	
IG Gate to Drain Voltage	-30 V
IG Gate Current	-30 V

PACKAGE DIMENSIONS

TO-71

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

[^5]
U231, U232, U233, U234, U235 Monolithic Dual N-Channel

PACKAGE DIMENSIONS

TO-71

DESIGNED FOR USE IN

- Differential Amplifiers

- Low and Maximum Frequency Amplifiers

FEATURES

- Good Matching Characteristics

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage -50.
Gate Current .. 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$
(Derate $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$)
. 300 mW
Storage Temperature Range -65 to $+200^{\circ} \mathrm{C}$
Lead Temperature
(1/16" from case for 10 seconds)
$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted.

			Characteristic	U231 Max	U232 Max	U233 Max	U234 Max	U235 Max	Unit	Test Conditions			
15	M A	\|	la1-IG2	Differential Gate Current		10	10	10	10	10	nA	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \mid 125^{\circ} \mathrm{C}$	
16		$\frac{(\operatorname{lDSS1} 1-\operatorname{lDSS} 2)}{\operatorname{loss} 1}$	Saturation Drain Current Match (Note 1)	5	5	5	10	15	\%	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			
17		\| $\mathrm{VGS1}^{\text {- }}$ - $\mathrm{VSS}^{2} \mid$	Differential Gate-Source Voltage	5	10	15	20	25	mV				
18	C	$\Delta \mid \mathrm{VGSI}^{1-V_{\mathrm{GS} 2} \mid}$	Gate-Source Voltage	10	25	50	75	100			$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{B}=125^{\circ} \mathrm{C} \end{aligned}$		
19	H 1	$\Delta \mathrm{T}$	Differential Drift (Note 2)	10	25	50	75	100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$V \mathrm{DG}=20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \end{aligned}$		
20	$\begin{aligned} & \mathrm{N} \\ & \mathrm{G} \end{aligned}$	$\frac{\left(\mathrm{g}_{\mathrm{fs} 1}-\mathrm{g}_{\mathrm{fs} 2}\right)}{\mathrm{g}_{\mathrm{fs} 1}}$	Transconductance Match (Note 1)	3	5	5	10	15	\%		$\mathrm{f}=1 \mathrm{kHz}$		
21		$\mid \text { Gos1-Gos } 2 \mid$	Differential Output Conductance	5	5	5	5	5	$\mu \mathrm{mho}$				

NOTES:

1. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
2. Measured at end points, T_{A} and T_{B}.

Dual Monolithic Matched N-Channel JFETS (PAIR)

GENERAL DESCRIPTION

Matched FET pairs for wideband differential amplifiers.

FEATURES

- $g_{\mathrm{fs}}>5000 \mu \mathrm{mho}$ from dc to 100 MHz
- Matched $\mathrm{V}_{\mathrm{GS}}, \mathrm{g}_{\mathrm{fS}}$ and g_{OS}

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Gate-Drain or Gate-Source Voltage	-25 V
Gate Current	50 mA
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	0
\quad (Derate $3.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	250 mW
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	
\quad(Derate $7.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	500 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ORDERING INFORMATION

TO99	WAFER	CHIP
U257	U257/W	U257/D

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		MIN	MAX	UNIT	TEST CONDITIONS		
IGSS	Gate Reverse Current		-100	pA	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		
			-250	nA		$150^{\circ} \mathrm{C}$	
BVGSS	Gate-Source Breakdown Voltage	-25		V	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		
VGS(off)	Gate-Source Cutoff Voltage	-1	-5		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		
IDSS	Saturation Drain Current (Note 1)	5	40	mA	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
9fs	Common-Source Forward Transconductance	5000	10,000	$\mu \mathrm{mho}$	$V_{D S}=10 \mathrm{~V}, I_{\text {d }}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	
gfs	Common-Source Forward Transconductance	5000	10,000		$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}$	$\mathrm{f}=100 \mathrm{MHz}$	
gos	Common-Source Output Conductance		150		$V_{D S}=10 \mathrm{~V}, 1 \mathrm{D}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	
goss	Common-Source Output Conductance		150		$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$	$\mathrm{f}=100 \mathrm{MHz}$	
Ciss	Common-Source Input Capacitance		5	pF		$f=1 \mathrm{MHz}$	
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		1.2			$f=1 \mathrm{MHz}$	
$\overline{e_{n}}$	Equivalent Input Noise Voltage		30	$\frac{n V}{\sqrt{H z}}$		$f=10 \mathrm{kHz}$	
$\frac{\text { IDSS1 }}{\text { IDSS2 }}$	Drain Current Ratio at Zero Gate Voltage (Note 1)	0.85	1		$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
\|VGS1-VGS2		Differential Gate-Source Voltage		100	mV	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$	
$\frac{\mathrm{gfs} 1}{9 \mathrm{fs} 2}$	Transconductance Ratio	0.85	1			$\mathrm{f}=1 \mathrm{kHz}$	
$\mid g_{\text {os } 1-g_{\text {os2 }} \mid}$	Differential Output Conductance		20	$\mu \mathrm{mho}$			

NOTE:

1. Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leqslant 30 \%$.

FEATURES

- Minimum System Error and Calibration - 5 mV Offset Maximum (U401), 95dB Minimum CMRR (U401-04)
- Low Drift with Temperature - $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Maximum $(491,02)$
- Operates from Low Power Supply Voltages V_{GS} (off) $<2.5 \mathrm{~V}$
- Simplifies Amplifier Design - Output Impedance $>500 \mathrm{~K} \Omega$

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage 50V Forward Gate Current 10 mA Device Dissipation (each side)
@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ derate $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}300 \mathrm{~mW}$
Total Device Dissipation
@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ (derate $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) . 500 mW
Storage Temperature Range -65 to $200^{\circ} \mathrm{C}$

DESIGNED FOR USE AS

- Low Noise FET Input Amplifiers
- Impedance Converters
- Precision Instrumentation Amplifiers
- Comparators

PACKAGE DIMENSIONS

TO-71

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: 25° unless otherwise noted.

Characteristic				U401		U402		U403		U404		U405		U406		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max	Min	Max	Mini	Max	Min	Max			
1	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$	BV GSS	Gate-Source Breakdown Voltage	-50		-50		-50		-50		-50	-	-50		V	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{IG}=-1 \mu \mathrm{~A}$	
2		IGSs	Gate Reverse Current (Note 1)		-25		-25		-25		-25		-25		-25	pA	$V_{D S}=0, V_{G S}=-30 \mathrm{~V}$	
3		VG̣S(off)	Gate-Source Cutoff Voltage	-5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	-. 5	-2.5	V	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	
4	$\begin{aligned} & A \\ & T \end{aligned}$	VGS(on)	Gate-Source Voltage (on)		-2.3		-2.3		-2.3		-2.3		-2.3		-2.3		$V_{D G}=15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=200 \mu \mathrm{~A}$	
5	1	Ioss	Saturation Drain Current (Note 2)	0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	mA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
6					-15		-15		-15		-15		-15		-15	pA	$\begin{array}{ll} V_{D G}=15 \mathrm{~V}, & \\ \mathrm{ID}=200 \mu \mathrm{~A} & \mathrm{~T}_{A}=125^{\circ} \mathrm{C} \end{array}$	
7		IG	Gate Current (Note 1)		-10		-10		-10		-10		-10		-10	nA		
8		$\mathrm{B} V_{\mathrm{G} 1-\mathrm{G} 2}$	Gate-Gate Breakdown Voltage	± 50		V	$V_{D S}=0, V_{G S}=0, I_{G}= \pm 1 \mu \mathrm{~A}$											
9		g fs	Common-Source Forward Transconductance (Note 2)	2000	7000	2000	7000	2000	7000	2000	7000	2000	7000	2000	7000	mho	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & V_{G S}=0 \end{aligned}$	$f=1 \mathrm{kHz}$
10		gos	Common-Source Output Conductance		20	-	20		20		20		20		20			
11	$\begin{aligned} & D \\ & Y \end{aligned}$	gis	Common-Source Forward Transconductance	1000	1600	1000	1600	1000	1600	1000	1600	1000	1600	1000	1600		$\begin{aligned} & V_{D G}=15 \mathrm{~V}, \\ & I D=200 \mu \mathrm{~A} \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
12	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~A} \end{aligned}$	gos	Common-Source Output Conductance		2.0		2.0		2.0		2.0		2.0		2.0			
13	$\begin{gathered} M \\ 1 \end{gathered}$	Ciss	Common-Source Input Capacitance		8.0		8.0		8.0		8.0		8.0	-	8.0	pF		
14	C	Crss	Common-Source Reverse Transfer Capacitance		3.0		3.0		3.0		3.0		3.0		3.0			$\mathrm{f}=1 \mathrm{MH}$
15		en	Equivalent Short-Circuit Input Noise Voltage		20		20		20		20		20		20	$\frac{n V}{\sqrt{H z}}$	$\begin{aligned} & \mathrm{VDS}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \hline \end{aligned}$	$\mathrm{f}=10 \mathrm{~Hz}$
16	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~A} \end{aligned}$	CMRR	Common-Mode Rejection Ratio (Note 3)	95		95		95		95		90				dB	$V_{D G}=10$ to $20 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	
17	$\begin{aligned} & \mathrm{T} \\ & \mathrm{C} \end{aligned}$	$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate-Source Voltage		5		10		10		15		20		40	mV	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$	
18	H 1 N G	$\frac{\Delta\left\|V_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{GS} 2}\right\|}{\Delta T}$	Gate-Source Voltage Differential Drift (Note 4)		10		10	,	25		25	,	40		80	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \hline V \mathrm{DG}=10 \mathrm{~V}, \\ & I D=200 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{B}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$

[^6]Monolithic Dual Matched N-Channel JFET U421, U422, U423,
U424, U425, U426

DESIGNED FOR

- Very High Input Impedance Differential Amplifiers Electrometers
- Impedance Converters

FEATURES

- High Input Impedance IG $=0.1 \mathrm{pA}$ Maximum (U421-3)
- High Gain $\mathrm{g}_{\mathrm{f}}=140 \mu \mathrm{mho}$ Minimum @ ID $=30 \mu \mathrm{~A}$ (U421-3)
- Low Power Supply Operation $\mathbf{V}_{\mathrm{GS} \text { (off) }}=2 \mathrm{~V}$ Maximum (U421-3)
- Minimum System Error and Calibration 10 mV Maximum Offset 90 dB Minimum CMRR (U421, U424).

PACKAGE DIMENSIONS
TO-99

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Gate-to-Gate Voltage
$\pm 40 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage $-40 \mathrm{~V}$
Gate Current
Device Dissipation (Each Side), $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ (Derate $3.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$)
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $6.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$) \qquad
\qquad
\qquad

Storage Temperature Range \qquad 750 mW

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ unless otherwise noted

					421-3			J424-6					
			Characteristic	Min	Typ	Max	Min	Typ	Max	Unit	Test	onditions	
1		BVGSS	Gate-Source Breakdown Voltage	-40	-60		-40	-60			$\mathrm{IG}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$		
2		BVG1G2	Gate-Gate Breakdown Voltage	± 40			± 40			V	$\mathrm{IG}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{ld}=0$, IS		
3	S	IGss	Gate Reverse Current (Note 1)			0.2			1.0	PA	T $=+25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{GS}}=$	$-20 \mathrm{~V}, \mathrm{VDS}=0$	
	T					0.5			1.0	nA	T $=+125^{\circ} \mathrm{C} \mathrm{VGS}^{\text {c }}$	-20V, $\mathrm{V}_{\text {DS }}=0$	
4	A	IG	Gate Opera			0.1			0.5	pA		$\mathrm{V}, \mathrm{ld}=30 \mu \mathrm{~A}$	
4	T	I_{G}	Gate Opera			-100			-500	DA	T $=+125^{\circ} \mathrm{C} V^{\text {a }}$, $1 \mathrm{D}=30 \mu \mathrm{~A}$	
5	1	VGS(oft)	Gate-Source Cutoff Voltage	-0.4		-2.0	-0.4		-3.0		VDS $=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		
6	C	VGS	Gate-Source Voltage			-1.8			-2.9	\checkmark	$V_{D G}=10 \mathrm{~V}, \mathrm{lD}=30 \mu \mathrm{~A}$		
7		Ioss	Saturation Drain Current	60^{-}		1000	60		1800	$\mu \mathrm{A}$	V DS $=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
8		9fs	Common-Source Forward Transconductance	300		800	300		1000	μ ()			
9		gos	Common-Source Output Conductance			3.0			5.0	μ	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	
$\frac{10}{11}$	D	Ciss	Common-Source Input Capacitance			3.0			3.0	pF	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$		
11	Y	Crss	Common-Source Reverse Transfer Capacitance			1.5			1.5	pF		$f=1 \mathrm{MHz}$	
12	N	gfs	Common-Source Forward Transconductance	140	,	250	135		300	μ (\%		$\mathrm{f}=1 \mathrm{kHz}$	
13	A	gos	Common-Source Output Conductance			0.5			1.0		$V_{\text {DG }}=10 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{kHz}$	
14	M	E_{n}	Equivalent Short Circuit Input		20	50		20	70	$\mathrm{nV} / \mathrm{V} \mathrm{Hz}$	$I D_{\text {d }}=30 \mu \mathrm{~A}$	$\frac{f}{}=10 \mathrm{~Hz}$	
	1		Noise Voltage		10			10	50	$n \mathrm{~V}, \mathrm{VHz}^{\text {a }}$		$\mathrm{f}=1 \mathrm{kHz}$	
15	C	NF	Noise Figure			1.0	'		1.0	dB	$f=10 \mathrm{~Hz}$	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{M} \mathrm{I}$	\cdots

NOTES: .1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in TA_{A}.
2. Measured at end points T_{A}, T_{B} and $T C$.
3. $C M R R=201 \mathrm{f}_{10}\left[\frac{\Delta V_{D D}}{\Delta\left|V_{G S 1}-V_{G S 2}\right|}\right] \Delta V_{D D}=10 \mathrm{~V}$

FEATURES

- Low On-Resistance - 50Ω
- Low Capacitance - 1.7 pF
- High Gain - 3,000 μ mhos
- High Gate Breakdown Voltage $- \pm 125$ V
- Low Threshold Voltage - 3 V

ABSOLUTE MAXIMUM RATINGS (Note 1) @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)	
Maximum Temperatures	
Operating Junction Temperature -5	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Total Dissipation at $25^{\circ} \mathrm{C}$ Ambient Temp	mp 0.375 W
Linear Derating Factor at $25^{\circ} \mathrm{C}$ Ambient	ent Temp. $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages and Current	
$V_{\text {DSS }}$ Drain to Source and Body Voltage	tage 25 V
$V_{\text {GSS }}$ Transient Gate to Source Voltage	age $\pm 125 \mathrm{~V}$
İD(on) Drain Current	100 mA

ORDERING INFORMATION

TO72	WAFER	CHIP
2N4351	2N4351/W	2N4351/D

ELECTRÍCAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Substrate connected to source.

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
OFF CHARACTERISTICS					
$\begin{aligned} & \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}} \\ & \text { IGSS } \\ & \text { IDSS } \\ & \hline \end{aligned}$	Drain-Source Breakdown Voltage Gate Leakage Current Zero-Gate-Voltage Drain Current	25	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	Vdc pAdc nAdc	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}= \pm 30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0 \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$
ON CHARACTERISTICS					
$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$ ID(on) $V_{\text {DS(on) }}$	Gate-Source Threshold Voltage "ON" Drain Current Drain-Source "ON" Voltage	$\begin{gathered} 1.0 \\ 3 \end{gathered}$	$\begin{array}{r} 5 \\ 1.0 \\ \hline \end{array}$	Vdc mAdc Vdc	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=10 \mu \mathrm{~A} \\ & V_{G S}=10 \mathrm{~V}, V_{D S}=10 \mathrm{~V} \\ & I_{D}=2 \mathrm{~mA}, V_{G S}=10 \mathrm{~V} \end{aligned}$
SMALL SIGNAL CHARACTERISTICS					
rds(on) $\left\|y_{f s}\right\|$ Crss Ciss - $\mathrm{C}_{\mathrm{d}(\mathrm{sub})}$	Drain-Source Resistance Forward Transfer Admittance Reverse Transfer Capacitance Input Capacitance Drain-Substrate Capacitance	1000	$\begin{aligned} & 300 \\ & 1.3 \\ & 5.0 \\ & 5.0 \end{aligned}$	ohms $\mu \mathrm{mho}$ pF pF pF	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, I_{D}=0, f=1 \mathrm{kHz} \\ & V_{D S}=10 \mathrm{~V}, I_{D}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz} \\ & V_{D S}=0, V_{G S}=0, f=140 \mathrm{kHz} \\ & V_{D S}=10 \mathrm{~V}, V_{G S}=0, f=140 \mathrm{kHz} \\ & V_{D}(S U B)=10 \mathrm{~V}, \mathrm{f}=140 \mathrm{kHz} \end{aligned}$
SWITCHING CHARACTERISTICS					
$\begin{aligned} & \mathrm{t}_{\mathrm{d} 1} \\ & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{d} 2} \\ & \mathrm{t}_{\mathrm{f}} \\ & \hline \end{aligned}$	Turn-On Delay Rise Time Turn-Off Delay Fall Time	.	$\begin{gathered} 45 \\ 65 \\ 60 \\ 100 \end{gathered}$		

FEATURES

- Low Switching Voltages $-\mathrm{V}_{\mathrm{GS}(\mathrm{th})} \leqslant 3.0 \mathrm{Vdc}$
- Fast Switching Times $-\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}$
- Low Drain-Source Resistance $\mathrm{r}_{\mathrm{ds}(\mathrm{on})}=200$ Ohms (Max)
- Low Reverse Transfer Capacitance $\mathrm{C}_{\mathrm{rss}}=1.3 \mathrm{pF}$ (Max)
- Manufactured Using the New Silicon Nitride Process Resulting in a Stable $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ and Gate Oxide Breakdown Protection to Typical Transients of ± 150 Volts Peak

HANDLING PRECAUTIONS

MOS field-effect transistors have extremely high input resistance. They can be damaged by the accumulation of excess static charge. Avoid possible damage to the devices while wiring, testing, or in actual operation, by following the procedures outlined below:

1. To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on because transient voltages may cause permanant damage to the devices.

GENERAL DESCRIPTION

Enhancement Mode (Type C) transistors designed for low-power switching applications.

MAXIMUM RATINGS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT
Drain-Source Voltage	$\mathrm{V}_{\text {DS }}$	25	Vdc
Drain-Gate Voltage	$V_{\text {DG }}$	± 35	Vdc
Gate-Source Voltage	VGS	± 35	Vdc
Drain Current	1 D	30	mAdc
Power Dissipation @ $\mathrm{TA}=25^{\circ} \mathrm{C}$	PD	300	mW
Derate above $25^{\circ} \mathrm{C}$		1.7	mW/ ${ }^{\circ} \mathrm{C}$
Power Dissipation @ $\mathrm{T}^{\text {C }}=25^{\circ} \mathrm{C}$	PD	800	mW
Derate above $25^{\circ} \mathrm{C}$		4.56	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	175	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-65 to +200	${ }^{\circ} \mathrm{C}$

PȦCKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) Substrate connected to source.

FEATURES

- Low On-Resistance - 50Ω
- Low Capacitance - 1.7 pF
- High Gain - 3,000 μ mhos
- High Gate Breakdown Voltage $- \pm 125 \mathrm{~V}$
- Low Threshold Voltage - 3 V

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

ORDERING INFORMATION

TO72	WAFER	CHIP
IT1750	IT1750/W	IT1750/D

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$, Body connected to Source unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
VGS(TH)	Gate to Source Threshold Voltage	0.50	1.5	3.0	V	$V_{\text {DS }}=V_{G S}, I_{\text {d }}=10 \mu \mathrm{~A} ; \mathrm{V}_{\text {BS }}=0$
IDSS	Drain Leakage Current		0.1	10	nA	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$
IGSS	Gate Leakage Current		-			(See Note 2)
BVDSS	Drain Breakdown Voltage	25			V	$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$
rbs (on)	Drain To Source on Resistance		25	50	ohms	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=0$
ID (on)	Drain Current	10	50		mA	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=0$
Y_{fs}	Forward Transadmittance	3,000			$\mu \mathrm{mhos}$	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA}, \\ & f=1 \mathrm{KHz}, V_{B S}=0 \end{aligned}$
$\mathrm{C}_{\text {iss }}$	Total Gate Input Capacitance		5.0	6.0	pF	$\begin{aligned} & I D=10 \mathrm{~mA}, V_{D S}=10 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, V_{B S}=0 \end{aligned}$
C_{dg}	Gate to Drain Capacitance		1.3	1.6	pF	$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=0$

M116

Diode Protected N-Channel Enhancement Mode MOS FET

GENERAL DESCRIPTION

- Low IGSS
- Integrated Zener Clamp Protects the Gate

PRODUCT CONDITIONING

Units receive the following treatment before final electrical tests:
High Temp Storage: 24 Hours at $150^{\circ} \mathrm{C}$
25,000 Acceleration/Impact in the Y_{1} Plane
Thermal Shock: +100 to $0^{\circ} \mathrm{C}$ for 5 Cycles
Helium and/or Gross Leak Tests for Hermeticity
ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$
Drain-to-Source Voltage 30 V
Gate-to-Drain Voltage 30 V
Drain Current
Gate Zener Current
Storage Temperature
Operating Junction Temperature
50 mA ' $\pm 0.1 \mathrm{~mA}$
-65 to $150^{\circ} \mathrm{C}$
-55 to $125^{\circ} \mathrm{C}$
Total Device Dissipation (Derate
$2.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$)
225 mW

ORDERING INFORMATION

TO72	WAFER	CHIP
M116	M116/W	M116/D

PACKAGE DIMENSIONS

1003-2

ELECTRICAL CHARACTERISTICS ${ }^{\prime}\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

!	PARAMETER	M116		UNITS	TEST CONDITIONS
		MIN	MAX		
${ }^{\text {r }}$ DS(on)	Drain Source ON Resistance		$\begin{aligned} & 100 \\ & 200 \end{aligned}$	Ω	$\begin{aligned} & V_{G S}=20 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BS}}=0 \end{aligned}$
$\mathrm{V}_{\text {GS }}$ (th)	Gate Threshold Voltage	1	5	V	$V_{G S}=V_{\text {DS }}, I_{\text {d }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {BS }}=0$
BVDSS	Drain-Source Breakdown Voltage	30		V	$\mathrm{ID}=1 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$
BVSDS	Source-Drain Breakdown Voltage	30.		V	$\mathrm{IS}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0$
BVGBS	Gate-Body Breakdown Voltage	30	60	V	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {SB }}=V_{\text {DB }}=0$
ID(OFF)	Drain Cutoff Current		10	NA	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{BS}}=0$
IS(OFF)	Source Cutoff Current		10	NA	$\mathrm{V}_{\mathrm{SD}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=0$
${ }^{\text {IGSS }}$	Gate-Body Leakage		100	PA	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{BS}}=0$
$\begin{aligned} & \mathrm{C}_{\mathrm{gs}} \text { or } \\ & \mathrm{C}_{\mathrm{gd}} \end{aligned}$	Gate-Source or Gate-Drain Capacitance		2.5	pF	$\begin{aligned} & V_{\mathrm{GB}}=V_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=0 ; f=1 \mathrm{MHz} \\ & \text { Body Guarded } \end{aligned}$
C_{db}	Drain-Body Capacitance		7	pF	$V_{G B}=0, V_{\text {DB }}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\text {iss }}$	Input Capacitance		10	pF	$\begin{aligned} & V_{G B}=0, V_{D B}=10 \mathrm{~V}, V_{B S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$

P-Channel Enhancement Mode MOS FET

GENERAL DESCRIPTION

ENHANCEMENT-TYPE METAL-OXIDE SEMICONDUCTOR TRANSISITOR

For applications requiring very high input impedance, such as series and shunt choppers, multiplexers, and commutators.

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing

ABSOLUTE MAXIMUM RATINGS

$@ 25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage

$$
-25 \mathrm{~V}
$$

Drain-Source Voltage

$$
-25 \mathrm{~V}
$$

Forward Gate-Source Voltage
-25 V
$+25 \mathrm{~V}$
Reverse Gate-Source Voltage $-125 m A$
Continuous Drain Current

360 mW
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Free-Air Temperature
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature
1.8 W

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds
$300^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

Curve-tracer testing and static-charge buildup are common causes of damage to insulated-gate devices. Permanent damage may result if either gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device, which shouild be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.

PACKAGE DIMENSIONS

1503×2

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ free-air temperature unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS	
IGSSF	Forward Gate-Terminal Current		<-1	-50	pA	$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
			-10	-50	pA	$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$,	$A=100^{\circ} \mathrm{C}$
IGSSR	Reverse Gate-Terminal Current		<1	10	pA	$\mathrm{V}_{\mathrm{GS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
IDSS	Zero-Gate-Voltage Drain Current		<1	-10	nA	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
DSS			,	-10	$\mu \mathrm{A}$	VDS $=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
V_{GS} (th)	Gate-Source Threshold Voltage	-1.5		-5	V	$V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mu \mathrm{~A}$	
V_{GS}	Gate-Source Voltage	-4.5		-8	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{ID}=-8 \mathrm{~mA}$.	
ID(on)	On-State Drain Current	-40		-120	mA	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$,	
$\left\|V_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	3.5		6.5	mmho	$V_{D S}=-15 V I_{D}=-8 \mathrm{~mA}$	$f=1 \mathrm{kHz}$
\mid Yos ${ }^{\text {a }}$	Small-Signal Common-Source Output Admittance			0.25	mmho		
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance			10	pF		$f=1 \mathrm{MHz}$
Crss	Common-Source Short-Circuit Reverṣe Transfer Capacitance			4	pF		

Diode Protected P-Channel Enhancement Mode MOS FET

GENERAL DESCRIPTION

DIODE-PROTECTED ENHANCEMENT-TYPE METAL-OXIDE-SEMICONDUCTOR TRANSISTOR

For applications requiring very high input impedance, such as series and shunt choppers, multiplexers, and commutators.

FEATURES

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
1
- Internally Connected Diode Protects Gate from Damage due to Overvoltage

DESCRIPTION

These devices are designed for applications requiring very high input impedance, such as choppers, commutators, and logic switches. Each device is protected from excessive input voltage by a shunting diode connected from the gate to the substrate. This eliminates the need for most precautionary handling procedures associated with unprotected MOS devices.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ free-air temperature unless otherwise noted)

PARAMETER		MIN	TYP	MAX	UNIT	TEST CONDITIONS		
IGSSF	Forward Gate-Terminal Current			-0.1	nA	$V_{\text {GS }}=-25 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$		
				-1	nA	$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$,	$\mathrm{T}^{\mathrm{A}}=100^{\circ} \mathrm{C}$	
$V_{\text {(BR) GSSF }}$	Forward Gate-Source Breakdown Voltage	-25			V	$\mathrm{I}_{\mathrm{G}} \mathbf{- 0 . 1} \mathrm{mA}, ~ \mathrm{~V} D S=0$,		
IDSS	Zero-Gate-Voltage Drain Current			-10	nA	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
				-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		
VGS(th)	Gate-Source Threshold Voltage	-1.5		-5	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$		
VGS	Gate-Source Voltage	-4.5		-8	V	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~mA}$		
ID(on)	On-State Drain Current	-40		-120	mA	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$, See Note 4		
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	3500		6500	$\mu \mathrm{mho}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	
\|ros		Small-Signal Common-Source Output Admittance			250	$\mu \mathrm{mho}$		
Ciss	Common-Source Short-Circuit Input Capacitance			10	pF		$=1 \mathrm{M}$	
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance			.4	pF			

FEATURES

- Very High Input Impedance
- High Gate Breakdown
- Fast Switching
- Low Capacitance

MAXIMUM RATINGS (@ $25^{\circ} \mathrm{C}$ ambient unless noted)

		3N163	3N164
$V_{\text {Gss }}$	Static Gate to Source Voltage	$\pm 40 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$V_{\text {GSS }}{ }^{(1)}$	Transmit Gate to Source Voltage	$\pm 125 \mathrm{~V}$	$\pm 125 \mathrm{~V}$
$V_{\text {DSS }}$	Drain to Source Voltage	-40V.	-30V
$V_{\text {SDS }}$	Source to Drain Voltage	-40V	-30V
V DG'	Drain to Gate Voltage	-40V	-30V
I_{0}	Drain Current	-50 mA	-50 mA
$P_{\text {D }}$	Power Dissipation	375 mW	
	Derating Factor	3.0 mW ${ }^{\circ} \mathrm{C}$	
T_{j}	Operating Junction Temperature	-55 to $+150^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {sto }}$	Storage Temperature	-65 to $+200^{\circ} \mathrm{C}$	
T_{1}	Lead Temperature $1 / 16^{\prime \prime}$ from Case for 10 sec max	$+265^{\circ} \mathrm{C}$	
(1) Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once or for longer than 300 ms .			

PACKAGE DIMENSIONS TO-72

bottom view

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {BS }}=0$ unless noted)

SWITCHING CHARACTERISTICS ($125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$)

SWITCHING TIME CIRCUIT

SWITCHING WAVEFORM

3N172, 3N173

 P-Channel Enhancement Mode MOS FET
FEATURES

- High Input Impedance
- Diode Protected Gate

MAXIMUM RATINGS (@ $25^{\circ} \mathrm{C}$ ambient unless noted)

$V_{G S S}$	Gate to Source Voltage
V_{DSS}	Drain to Source Voltage
$\mathrm{V}_{\mathrm{SDS}}$	Source to Drain Voltage
$\mathrm{V}_{\mathrm{DGO}}$	Drain to Gate Voltage
I_{D}	Drain Current
$\mathrm{I}_{\mathrm{G}(\mathrm{f})}$	Gate Forward Current
$\mathrm{I}_{\mathrm{G}(\mathrm{r}}$	Gate Reverse Current
P_{D}	Power Dissipation
	Derating Factor
T_{i}	Operating Junction Temperature
$\mathrm{T}_{\text {stg }}$	Storage Temperature
T_{1}	Lead Temperature $1 / 16^{\prime \prime}$ from
	Case for 10 sec max

3 N 172	3 N 173
-40 V	-30 V
-50 mA	-50 mA
$10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
1.0 mA	1.0 mA
375 mW	
$3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
-55	
$-65 \mathrm{to}+150^{\circ} \mathrm{C}$	
$-65 \mathrm{to}+200^{\circ} \mathrm{C}$	
	$+256^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

		3N172		3N173		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
IGss	Gate Reverse Current		-200		-500	pA	$V_{\text {GS }}=-20 \mathrm{~V}$
$\mathrm{I}_{\text {gss }}$	Gate Reverse Current ($+125^{\circ} \mathrm{C}$)		-0.5		-1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$
$B V_{\text {GSS }}$	Gate Breakdown Voltage	-40	-125	-30	-125	V	$I_{D}=-10 \mu \mathrm{~A}$
$B V_{\text {DSS }}$	Drain-Source Breakdown Voltage	-40		-30		V	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
$B V_{\text {SDS }}$	Source-Drain Breakdown Voltage	-40		-30		V	$I_{S}=-10 \mu \mathrm{~A}, \mathrm{~V}_{D B}=0$
$V_{\text {GS(th) }}$	Threshold Voltage	-2.0	-5.0	-2.0	-5.0	V	$V_{\text {DS }}=V_{\text {GS }}, I_{D}=-10 \mu \mathrm{~A}$
$V_{\text {GS(th) }}$	Threshold Voltage	-2.0	-5.0	-2.0	-5.0	\checkmark	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$
$V_{\text {GS }}$	Gate Source Voltage	-3.0	-6.5	-2.5	-6.5	v	$V_{\text {DS }}=-15 \mathrm{~V},!_{\text {D }}=-500 \mu \mathrm{~A}$
loss	Zero Gate Voltage Drain Current	.	-0.4		-10	nA	$V_{D S}=-15 \mathrm{~V}$
Isos	Zero Gate Voltage Source Current		-0.4		-10	nA	$V_{S D}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DB }}=0$
$r_{\text {dspon }}$	Drain Source On Resistance		250		350	ohms	$V_{G S}=-20 \mathrm{~V}, I_{D}=-100 \mu \mathrm{~A}$
$I_{D(t h)}$	On Drain Current	-5.0	-30	-5.0	-30	mA	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=-10 \mathrm{~V}$

FEATURES

- Low On-Resistance - r DS(on) $\leqslant 400$ ohms. - High Input Impedance - 10^{15} ohms
- High Gate Breakdown Voltage $-\mathrm{V}_{\mathrm{GSS}} \pm 125 \mathrm{~V}$ - Low Leakage - IDSS $\leqslant 200 \rho \mathrm{~A}$
- High Gain - $\mathrm{g}_{\mathrm{fs}} \geqslant 2000 \mu$ mhos
- Low Noise Voltage - $e_{n} 150 n V / \sqrt{H z}$ typical @ 100 Hz

ABSOLUTE MAXIMUM RATINGS (Note 1)
@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures

Storage Temperature
Operating Junction Temperature Lead Temperature (soldering, 10 second time limit)

Maximum Power Dissipation
Total Dissipation at $25^{\circ} \mathrm{C}$ Ambient Temperature Linear Derating Factor at $25^{\circ} \mathrm{C}$ Ambient Temperature Total Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature
Linear Derating Factor at $25^{\circ} \mathrm{C}$ Case Temperature
aximum Voltages and Current
$V_{\text {DSS }}$ Drain to Source and Body Voltage
$V_{\text {SDS }}$ Source to Drain and Body Voltage
VGSS Transient Gate to Source Voltage (Note 2)
$V_{\text {GSS }}$ Gate to Source Voltage
ID(on) Drain Current
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
+300^{\circ} \mathrm{C}
$$

0.375 W
$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
1.25 W
$10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
10 mwic
-40 V
-40 V
$\pm 125 \mathrm{~V}$

-40 V
50 mA

ORDERING INFORMATION

TO72	WAFER	CHIP
IT1700	IT1700/W	IT1700/D

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
BV DSS	Drain to Source Breakdown Voltage	-40		V	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}=-10 \mu \mathrm{~A}$
$B V_{\text {SDS }}$	Source to Drain Breakdown Voltage	-40		V	$V_{G S}=0,1 D=-10 \mu \mathrm{~A}$
IGSS	Gate Leakage Current				(See Note 2)
IDSS	Drain to Source Leakage Current		200	pA	$V_{G S}=0, V_{D S}=-20 \mathrm{~V}$
IDSS ($150^{\circ} \mathrm{C}$)	Drain to Source Leakage Current		0.4	$\mu \mathrm{A}$	$V_{G S}=0, V_{\text {DS }}=-20 \mathrm{~V}$
ISDS	Source to Drain Leakage Current		400	pA	$V_{G S}=0, V_{\text {DS }}=-20 \mathrm{~V}$
ISDS ($150^{\circ} \mathrm{C}$)	Source to Drain Leakage Current		0.8	$\mu \mathrm{A}$	$V_{G S}=0, V_{\text {DS }}=-20 \mathrm{~V}$
VGS(th)	Gate Threshold Voltage	-2	-5	V	$V_{G S}=V_{\text {DS }}, I_{\text {d }}=-10 \mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
rDS (on) IDS (on)	Static Drain to Source "on" Resistance Drain to Source "on" Current	2		400	ohms	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{VDS}_{\mathrm{DS}}=0 \\ & \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V} \end{aligned}$
g_{fs}	Forward Transconductance Common Source	2000		4000	, μ mhos	$\begin{aligned} & V D S=-15 \mathrm{~V}, \mathrm{I} D=-10 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$
$\mathrm{C}_{\text {iss }}$	Small Signal, Short Circuit, Common Source, Input Capacitance			5	pF	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$
$\mathrm{Crss}^{\text {r }}$	Small Signal, Short Circuit, Common Source, Reverse Transfer Capacitance			1.2	pF	$\begin{aligned} & V D G=-15 \mathrm{~V}, \mathrm{ID}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Small Signal, Short Circuit, Common Source, Output Capacitance			3.5	pF	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$
$\overline{\mathrm{e}_{\mathrm{n}}}$	Equivalent Input Noise Voltage		150		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$	$\begin{aligned} & V_{D S}=-15 V, I_{D}=-1 \mathrm{~mA} \\ & f=100 \mathrm{~Hz} ; B W=\mathrm{Hz} \end{aligned}$

NOTE: 1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of $<10 \mathrm{pA}$. External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.

Dual Matched P-Channel Enhancement Mode MOS FETS

FEATURES

- , Very High Input Impedance
- High Gate Breakdown
- Low Capacitance

MAXIMUM RATINGS (@ $25^{\circ} \mathrm{C}$ ambient unless noted)

$\mathrm{V}_{\text {GSS }}$	Static Gate to Source Voltage	$\pm 40 \mathrm{~V}$
$V_{\text {GSS }}{ }^{(1)}$	Transient Gate to Source Voltage	$\pm 125 \mathrm{~V}$
$V_{\text {DSS }}$	Drain to Source Voltage	-40V
$V_{\text {GDS }}$	Source to Drain Voltage	-40V
$V_{\text {GG }}$	Gate to Gate	$\pm 80 \mathrm{~V}$
V_{G}	Any Lead to Case	$\pm 40 \mathrm{~V}$
I_{D}	Drain Current	50 mA
P_{D}	Power Dissipation (each side)	300 mW
	(both sides)	525 mW
	Total Derating Factor	$4.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
T_{j}	Operating Junction Temperature	-55 to $+150^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to $+200^{\circ} \mathrm{C}$
T	Lead Temperature $1 / 16^{\prime \prime}$ from	$+300^{\circ} \mathrm{C}$

(1) Devices must not be tested at $\pm 125 \mathrm{~V}$ more than once or for longer than 300 ms .

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS ($25^{\circ}{ }^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

MATCHING CHARACTERISTICS

3N165

FEATURES

- Very High Input Impedance \bullet Low Capacitance
- High Gate Breakdown 3N190-3N191 $\bullet \mathrm{V}_{\mathrm{g}}$ \& (TH) Matched
- Zener Protected gate 3N188-3N189 V_{g} \& (TH) Tracking

MAXIMUM RATINGS(@ $25^{\circ} \mathrm{C}$ ambient unless noted)

		$\begin{aligned} & \text { 3N188 } \\ & \text { 3N189 } \end{aligned}$	$\begin{aligned} & \text { 3N190 } \\ & \text { 3N191 } \end{aligned}$
$\mathrm{V}_{\text {GSS }}$	Static Gate to Source Voltage	$\pm 40 \mathrm{~V}$	-40V

PACKAGE DIMENSIONS

ALL DIMENSIONS IN INCHES UNLESS OTHERWISE NOTED
BODY ISUBSTRATEI INTERNALLY CONNECTED TO METAL CASE

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

SWITCHING CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BS}}=0$ unless noted)

2N2453 2N2453A Monolithic Dual Matched NPN Transistor

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Collector-Base Voltage 2N2453 2N2453A	VCBO	$\begin{aligned} & 60 \\ & 80 \\ & \hline \end{aligned}$	V.olts
$\begin{array}{\|c\|} \hline \text { Collector-Emitter Voltage } \\ \text { 2N2453 } \\ \text { 2N2453A } \end{array}$	$V_{\text {CEO }}$	$\begin{aligned} & 30 \\ & 50 \\ & \hline \end{aligned}$	Volts
Emitter-Base Voltage	VEBO	Each Side $\stackrel{7.0}{ }$ Both Sides	Volts
Total Device Dissipation @ $T_{A}=25^{\circ} \mathrm{C}$ @ $T_{C}=100^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	PD	$\begin{array}{ll} 0.2 & 0.3 \\ 0.35 & 0.7 \\ 0.6 & 1.2 \\ \hline \end{array}$	Watts
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Junction Temperature	TJ	+200	${ }^{\circ} \mathrm{C}$
Derating Factor above $25^{\circ} \mathrm{C}$ 2 N 2453 2N2453A		$\begin{array}{r} 1.14 \\ 1.71 \\ \hline \end{array}$	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

FEATURES

- Closely Matched Current Gain
- Very Closely Matched, V_{BE}
- Low Differential Drift

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

.	PARAMETER		MIN	MAX	UNIT	TEST CONDITIONS	
$\mathrm{BV}_{\text {CBO }}$	Collector-Base Breakdown Voltage	$\begin{aligned} & \hline \text { 2N2453 } \\ & \text { 2N2453A } \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 80 \end{aligned}$		V	$I_{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	$\cdots \quad$,
BVEBO	Emitter-Base Breakdown Voltage		7.0		V	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{I}_{\mathrm{E}}=0.1 \mu \mathrm{~A}$	
$\mathrm{V}_{\text {CEO }}$ (sus) ${ }^{* *}$	Collector-Emitter Sustaining Voltage	$\begin{aligned} & \text { 2N2453 } \\ & \text { 2N2453A } \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$		V	$I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	\cdots
$\mathrm{V}_{\text {CE }}$ (sat)	Collector Saturation Voltage			1.0	V	$\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$	
$V_{B E}$ (sat)	Base Saturation Voltage.			0.9	V	$I_{C}=5.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$	-
ICBO	Collector-Base Cutoff Current	$\begin{aligned} & \text { 2N2453 } \\ & \text { 2N2453A } \\ & \text { 2N2453 } \\ & \text { 2N2453A } \end{aligned}$		$\begin{array}{r} 5.0 \\ 5.0 \\ 10 \\ .10 \\ \hline \end{array}$	$n A$ μA	$\begin{aligned} & I_{E}=0, V_{C B}=50 \mathrm{~V} \\ & I_{E}=0, V_{C B}=60 \mathrm{~V} \\ & I_{E}=0, V_{C B}=50 \mathrm{~V} \\ & I_{E}=0, V_{C B}=60 \mathrm{~V} \end{aligned}$	$\begin{aligned} & T_{A}=150^{\circ} \mathrm{C} \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$
IEBO	Emitter-Base Cutoff Current	-		2.0	nA	$I_{C}=0, V_{E B}=5.0 \mathrm{~V}$	
hFE	DC Current Gain		$\begin{array}{r} 80 \\ 40 \\ 150 \\ 75 \\ \hline \end{array}$	600		$\begin{aligned} & I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \\ & I_{C}=1.0 \mathrm{~mA}, V_{C E}=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$
hFE1/hFE2*	DC Current Gain Ratio $\begin{aligned} & \text { 2N24 } \\ & \text { Both } \\ & \text { Both }\end{aligned}$	53A only Types Types	$\begin{array}{r} 0.9 \\ 0.9 \\ 0.85 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \end{aligned}$	$T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$
$V_{B E 1-} V_{B E 2}$	Base Voltage Differential			$\begin{aligned} & 5.0 \\ & 3.0 \\ & \hline \end{aligned}$	mV	$\begin{aligned} & I_{C}=1.0 \mathrm{~mA}, V_{C E}=5.0 \mathrm{~V} \\ & I_{C}=10 \mu \mathrm{~A}, V_{C E}=5.0 \mathrm{~V} \end{aligned}$	1
$\Delta\left(\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right) / \Delta \mathrm{T}$	Base Voltage Differential Drift	$\begin{aligned} & \text { 2N2453 } \\ & \text { 2N2453A } \end{aligned}$		$\begin{array}{r} 10 \\ 5.0 \\ \hline \end{array}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{hfe}_{\text {fe }}$	Small Signal Current Gain		150	600	.	$I^{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	$f=1 \mathrm{kHz}$
$\left\|h_{\text {fe }}\right\|$	High Frequency Current Gain		2.0			$\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	$\mathrm{f}=30 \mathrm{MHz}$
Cob	Output Capacitance	$\begin{aligned} & \text { 2N2453 } \\ & \text { 2N2453A } \end{aligned}$		$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	pF	$I_{E}=0, V_{C B}=10 \mathrm{~V}$	$f=140 \mathrm{kHz}$
C_{ib}	Input Capacitance			10	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{BE}}=0.5 \mathrm{~V}$	$f=140 \mathrm{kHz}$
$h_{\text {rb }}$	Voltage Feedback Ratio			5.0	$\times 10^{-4}$	$I^{\prime} \mathrm{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	$f=1 \mathrm{kHz}$
$h_{\text {re }}$	Reverse Voltage Feedback Ratio			6.0	$\times 10^{-4}$	$I_{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	$f=1 \mathrm{kHz}$
$h_{\text {ib }}$	Input Resistance	1	20	30	ohms	$I_{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{C B}=5.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{kHz}$
$h_{\text {ie }}$	Input Resistance			5.0	$\mathrm{k} \Omega$	$I^{C}=1.0 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	$f=1 \mathrm{kHz}$
$h_{\text {ob }}$	Output Conductance		.	0.2	$\mu \mathrm{mhos}$	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{kHz}$
$h_{\text {oe }}$	Output Conductance		5.0	30	$\mu \mathrm{mhos}$	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CB}}=5.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{kHz}$
NF	Low Frequency Noise Figure	$\begin{aligned} & \text { 2N2453 } \\ & \text { 2N2453A } \end{aligned}$		$\begin{aligned} & 7.0 \\ & 4.0 \end{aligned}$	dB	$f=1 \mathrm{kHz}$ Source resistance $=10 \mathrm{k} \Omega$. Equivalent noise power band $I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	$\text { dwidth }=200 \mathrm{~Hz}$

[^7]
2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 Dual Monolithic Matched NPN Silicon Planar Transistors

FEATURES

- High Gain At Low Current $h_{F E} \geqslant 200 @ 10 \mu \mathrm{~A}$
- Low Output Capacitance $\mathrm{C}_{\text {obo }} \leqslant 0.8 \mathrm{pF}$
- $\mathrm{h}_{\text {FE }}$ Match $\mathrm{h}_{\mathrm{FE}_{1}} / \mathrm{h}_{\mathrm{FE}_{2}} \leqslant 10 \%$
- Tight $V_{B E}$ Tracking $\Delta\left(V_{B E_{1}}-V_{B E_{2}}\right) \leqslant 3 \mu V /{ }^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Dielectrically isolated matched pairs for differential amplifiers.

GENERAL DESCRIPTION

Dual monolithic matched NPN silicon planar transistors used for differential amplifier applications.

ABSOLUTE MAXIMUM RATINGS

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperatúre
Operating Junction Temperature
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

$$
+200^{\circ} \mathrm{C}
$$

Maximum Power Dissipation

		TO-71		TO-78	
	ONE SIDE	BOTH SIDES	ONE SIDE	BOTH SIDES	
Total Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature	0.3 Watt	0.5 Watt	0.4 Watt	0.75 Watt	
Derating Factor	$1.7 \mathrm{~mW} /{ }^{\circ}$	$2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	

		2N4044	2N4100	2N4045
	2N4878	2N4879	2N4880	
$V_{\text {CBO }}$	Collector to Base Voltage	60 V	55 V	45 V
$\mathrm{~V}_{\text {CEO }}$	Collector to Emitter Voltage	60 V	55 V	45 V
$\mathrm{~V}_{\text {EBO }}$	Emitter to Base Voltage (Note 2)	7 V	7 V	7 V
$\mathrm{~V}_{\text {CCO }}$	Collector to Collector Voltage	100 V	100 V	100 V
I	Collector Current	10 mA	10 mA	10 mA

ORDERING INFORMATION

TO78	TO71	WAFER	CHIP
2N4044		2N4044/W	2N4044/D
2N4045		2N4045/W	2N4045/D
2N4100		2N4100/W	2N4100/D
	2N4878		
	2N4879		
	2N4880		

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	PARAMETER	$\begin{aligned} & \text { 2N4044 } \\ & \text { 2N4878 } \end{aligned}$		$\begin{aligned} & \text { 2N4100 } \\ & \text { 2N4879 } \end{aligned}$		$\begin{aligned} & \text { 2N4045 } \\ & \text { 2N4880 } \end{aligned}$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
hFE	DC Current Gain	200	600	150	600	80	800		$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
hFE	DC Current Gain	225		175		100			$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
$h_{\text {FE }}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	75		50		30			$!\mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
$V_{\text {BE }}$ (on)	Emitter-Base On Voltage		0.7		0.7		0.7	V	$I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$
$V_{C E}$ (sat)	Collector Saturation Voltage		0.35		0.35		0.35	V	$I_{C}=1.0 \mathrm{~mA}, I_{B}=0.1 \mathrm{~mA}$
ICBO .	Collector Cutoff Current		0.1		0.1		0.1*	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V} *$
${ }^{\text {I }} \mathrm{CBO}\left(+150^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		0.1		0.1		0.1*	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V} *$
İEbo	Emitter Cutoff Current		0.1		0.1		0.1	nA	$\mathrm{I}^{\prime} \mathrm{C}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}$
Cobo	Output Capacitance		0.8		0.8		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5 \mathrm{~V}$

IT120 IT120A IT121 IT122 Dual Monolithic Matched NPN Silicon Planar Transistors

FEATURES

- High $h_{\text {FE }}$ at Low Current $>200 @ 10 \mu \mathrm{~A}$
- Low Output Capacitance <2.0 pf
- $\mathrm{I}_{\mathrm{B}_{1}}-\mathrm{I}_{\mathrm{B}_{2}}<2.5 \mathrm{nA}$
- Tight $V_{\text {BE }}$ Tracking $<3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

Matched pairs for differential amplifiers.

ABSOLUTE MAXIMUM RATINGS (Note 1)

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures

Storage Temperature

Operating Junction Temperature

Maximum Power Dissipation
TO. 78
TO-71

	ONE SIDE	BOTH SIDES	ONE SIDE	BOTH SIDES
Total Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature	0.4 Watt	0.75 Watt	0.3 Watt	0.5 Watt
Derating Factor	$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltage \& Current for Each Transistor

V $_{\text {CBO }}$ Collector to Base Voltage	45 V
$\mathrm{~V}_{\text {CEO }}$	Collector to Emitter Voltage
$\mathrm{V}_{\text {EBO }}$	Emitter to Base Voltage
$\mathrm{V}_{\text {CCO }}$ Collector to Collector Voltage	45 V
IC $^{\text {C }}$ Collector Current	60 V
	50 mA

ORDERING INFORMATION

T078	TO71	WAFER	CHIP
IT120A	IT120A-TO71	IT120A/W	IT120A/D
IT120	IT120-T071	IT120/W	IT120/D
IT121	IT121-T071	IT121/W	IT121/D
IT122	IT122-T071	IT122/W	IT122/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER.		IT120A		IT120		IT121		IT122		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
hFE	DC Current Gain	200		200		80		80			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
hFE	DC Current Gain	225		225		100		100			$\mathrm{I}^{\text {C }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
hFE $\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	75		75		30		30			$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base On Voltage		0.7		0.7		0.7		0.7	V	$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	
$\mathrm{V}_{\text {CE }}(\mathrm{SAT}$)	Collector Saturation Voltage		0.5		0.5		0.5		0.5	V	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~mA}$	
ICBO	Collector Cutoff Current		1.0		1.0		1.0		1.0	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}$	
$\left.{ }^{1} \mathrm{CBO}{ }^{(+150}{ }^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		10		10		10		10	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=45 \mathrm{~V}$	
IEBO	Emitter Cutoff Current		1.0		1.0		1.0		1.0	nA	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$	
COB	Output Capacitance		2.0		2.0		2.0		2.0	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}$	
CTE	Emitter Transition Capacitance		2.5		2.5		2.5		2.5	pF	$\mathrm{I}^{\prime}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$	
$\mathrm{C}_{\mathrm{C}_{1}, \mathrm{C}_{2}}$	Collector to Collector Capacitance		4.0		4.0		4.0		4.0	pF	$\mathrm{V}_{\mathrm{CC}}=0$	
${ }^{\prime} \mathrm{C}_{1}, \mathrm{C}_{2}$	Collector to Collector Leakage Current		10		10		10		10	nA	$\mathrm{V}_{\mathrm{CC}}= \pm 60 \mathrm{~V}$	
$\mathrm{V}_{\text {CEO }}$ (SUST)	Collector to Emitter Sustaining Voltage	45		45		45		45		V	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	
$\mathrm{f}^{\text {T }}$	Current Gain Bandwidth Product	$\begin{array}{r} 10 \\ 220 \\ \hline \end{array}$		$\begin{array}{r} 10 \\ 220 \\ \hline \end{array}$		$\begin{array}{r} 7 \\ 180 \\ \hline \end{array}$		$\begin{array}{r} 7 \\ 180 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & I_{C}=10 \mu \mathrm{~A}, V_{C E}=5 \mathrm{~V} \\ & I_{C}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \end{aligned}$	
$\left\|V_{B_{1}}-V_{B^{\prime}}{ }_{2}\right\|$	Base Emitter Voltage Differential		1		2		3		5	mV	$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
$\\|^{\prime} \mathrm{B}_{1}{ }^{-1} \mathrm{~B}_{2} \mid$	Base Current Differential		2.5		5		25		25	nA	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
$\left\|\Delta\left(V_{B_{B E}}-V_{B_{B E}}\right)\right\|$	Base-Emitter Voltage Differential Change with Temperature		3		5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \end{aligned}$	

NOTES: (1) These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
(2). The lowest of two $h_{F E}$ readings is taken as $h_{F E}$ for purpöses of this ratio.

Super-Beta Dual Monolithic NPN Silicon Planar Transistors

FEATURES

- Very High Gain - $h_{F E} \geq 1500 @ 1$ and $10 \mu A$
- Low Output Capacitance - C_{0} bo $\leq 0.8 \mathrm{pF}$
- Tight $V_{B E}$ Matching - $\left|V_{B E 1}-V_{B E 2}\right|-2 \mathbf{m V}$ TYP.
- High $\mathrm{f}_{\mathrm{T}}-100 \mathrm{MHz}$

ABSOLUTE MAXIMUM RATINGS (Note 1)
@ $25^{\circ} \mathrm{C}$ (unless otherwise noted).
Maximum Temperatures
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature $+200^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 second time limit) \qquad $+260^{\circ} \mathrm{C}$
Maximum Power Dissipation ONE SIDE BOTH SIDES
Device Dissipation @ Free Air $400 \mathrm{~mW} \quad 750 \mathrm{~mW}$
Linear Derating Factor $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltage and Current for Each Transistor
Vсво Collector to Base Voltage 2 C
Vceo Collector to Emitter Voltage 2 V
Vebo Emitter to Base Voltage (Note 2) 7V
VCco Collector to Collector Voltage 100 V
Ic Collector Current 10 mA

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN	MAX	UNITS	CONDITIONS
$h_{\text {FE }}$	DC Current Gain	1500			$\mathrm{I} \mathrm{C}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$
$h_{\text {FE }}$	DC Current Gain	1500			$\mathrm{I}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\mathrm{h}_{\text {FE }}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	600			$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base "ON" Voltage		0.7	V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$
Vce(SAT)	Collector Saturation Voltage		0.5	V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$
ICBO	Collector.Cutoff Current ${ }^{\text {- }}$		100	pA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
ICBO($+150^{\circ} \mathrm{C}$)	Collector Cutoff Current		100	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
Iebo	Emitter Cutoff Current		100	pA	$\mathrm{IC}=0, \mathrm{~V}_{\text {EB }}=5 \mathrm{~V}$
Cobo	Output Capacitance		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
Cte	Emitter Transition Capacitance		1.0	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C} 1 \mathrm{C} 2}$	Collector to Collector Capacitance		0.8	pF	$\mathrm{V}_{\mathrm{Cc}}=0$
IC1C2	Collector to Collector Leakajge Current		250.	pA	$\mathrm{V}_{\mathrm{CC}}= \pm 50 \mathrm{~V}$
${ }_{\text {ft }}$	Current Gain Bandwidth Product	10		MHz	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
f_{T}	Current Gain Bandwidth Product	100		MHz	$\mathrm{I}^{\text {c }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
NF	Narrow Band Noise Figure		3	dB	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{KHz}, R_{G}=10 \mathrm{Kohms}, \\ & B W=200 \mathrm{~Hz} \end{aligned}$
BVcbo	Collector-Base Breakdown Voltage	2		V	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
BVEbo	- Emitter-Base Breakdown Voltage	7		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I} \mathrm{C}=0$
Vceo(SUST)	Collector-Emitter Sustaining Voltage	2		V	$\mathrm{IC}^{\prime}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$

MATCHING CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTICS	TYP	MAX	UNITS	CONDITIONS
\| $\mathrm{V}_{\text {BE1 }} \mathrm{V}^{\text {V }}$ BE2 ${ }^{\text {l }}$	Base Emitter. Voltage Differential	2	5	mV	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\left\|\left(\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right)\right\| /{ }^{\circ} \mathrm{C}$	Base Emitter Voltage Differential Change with Temperature	5	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V} \mathrm{CE}=1 \mathrm{~V} \\ & \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
	Base Current Differential		. 6	nA	TC $=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {ce }}=1 \mathrm{~V}$

NOTES:

1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10μ Amps.

Super-Beta Dual Monolithic NPN Silicon Planar Transistors

FEATURES

- Very High Gain - hfe ≥ 1500 @ 1 and $10 \mu \mathrm{~A}$
- Low Output Capacitance - $\mathrm{C}_{\text {obo }} \leq 0.8 \mathrm{pF}$
- Tight V_{BE} Matching - |VBE1 $-\mathrm{V}_{\mathrm{BE} 2} \mid \mathbf{- 2} \mathbf{~ m V}$ TYP.
- High fT - $100 \mathbf{~ M H z}$

ABSOLUTE MAXIMUM RATINGS (Note 1)

@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature $\ldots \ldots . . \ldots . .-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature $\ldots \ldots . \ldots . .+200^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 second time limit)
$+260^{\circ} \mathrm{C}$
Maximum Power Dissipation ONE SIDE BOTH SIDES
Device Dissipation @ Free Air. $400 \mathrm{~mW} \quad 750 \mathrm{~mW}$
Linear Derating Factor $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltage and Current for Each Transistor
V Cbo Collector to Base Voltage 2 V
VCEO Collector to Emitter Voltage 2 V
VEbo Emitter to Base Voltage (Note 2) 7V
Vcco Collector to Collector Voltage 100V
Ic Collector Current 10mA

PACKAGE DIMENSIONS

ELECTRICAL CHA'RACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN	MAX	UNITS	CONDITIONS
hFE	DC Current Gain	1500			$\mathrm{IC}=1 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$
hFE	DC Current Gain	1500			$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$
$\mathrm{hFE}^{\left(-55^{\circ} \mathrm{C}\right)}$	DC Current Gain	600			$\mathrm{I}^{\text {c }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base "ON" Voltage		0.7	V	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$
VCE(SAT)	Collector Saturation Voltage		0.5	V	$\mathrm{I} \mathrm{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$
ICBO	Collector Cutoff Current		100	pA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
ICBO $\left(+150^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		100	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
Iebo	Emitter Cutoff Current		100	pA	$\mathrm{IC}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}$
Сово	Output Capacitance		0.8	pF	$\mathrm{IE}_{E}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
CTE	Emitter Transition Capacitance		1.0	pF	$\mathrm{IC}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$.
$\mathrm{C}_{11} 1$	Collector to Collector Capacitance		0.8	pF	$\mathrm{Vcc}=0$
IC1C2	Collector to Collector Leakage Current		1.0	nA	$\mathrm{VCC}= \pm 30 \mathrm{~V}$
$\mathrm{ft}^{\text {T }}$	Current Gain Bandwidth Product	10		MHz	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {ce }}=1 \mathrm{~V}$
ft	Current Gain Bandwidth Product	100		MHz	$I_{C}=100 \mu \mathrm{~A}, \mathrm{VCE}=1 \mathrm{~V}$
NF	Narrow Band Noise Figure		3	dB	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{KHz}, \mathrm{RG}_{\mathrm{G}}=10 \mathrm{Kohms}, \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$
BVCbO	Collector-Base Breakdown Voltage	2		V	$\mathrm{IC}^{\text {c }}=10 \mu \mathrm{~A}, \mathrm{l} \mathrm{E}=0$
BVEbO	Emitter-Base Breakdown Voltage	7		V	$\mathrm{IE}=10 \mu \mathrm{~A}, \mathrm{IC}=0$
Vceo(SUST)	Collector-Emitter Sustaining Voltage	2		V	$\mathrm{IC}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$

MATCHING CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTICS	TYP	MAX	UNITS	CONDITIONS
$\left\|\mathrm{V}_{\mathrm{BE}} 1-\mathrm{V}_{\mathrm{BE} 2}\right\|$	Base Emitter Voltage Differential	2	3.2	mV	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\left\|\left(V_{\text {be1 }}-\mathrm{V}_{\text {be2 }}\right)\right\| /{ }^{\circ} \mathrm{C}$	Base Emitter Voltage Differential Change with Temperature	5	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{VCE}=1 \mathrm{~V} \\ & \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
$\left\|\mathrm{IB}_{\mathrm{B} 1}-\mathrm{l}_{\mathrm{B} 2}\right\|$	Base Current Differential		. 6	nA	TC $=10 \mu \mathrm{~A}, \mathrm{~V} C E=1 \mathrm{~V}$

NOTES:

1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10μ Amps.

Super-Beta Dual Monolithic NPN Silicon Planar Transistors

FEATURES

- Very High Gain - hFe ≥ 4000 @ 1 and $10 \mu \mathrm{~A}$
- Low Output Capacitance - Cobo $\leq 0.8 \mathrm{pF}$
- Tight $V_{b e}$ Matching - $\left|V_{b E 1}-V_{b e 2}\right|-2 \mathbf{m V}$ TYP.
- High ft - $\mathbf{1 0 0} \mathbf{~ M H z}$

ABSOLUTE MAXIMUM RATINGS (Note 1)
@ 25° C (unless otherwise noted)
Maximum Temperatures \qquad
Operating Junction Temperature $+200^{\circ} \mathrm{C}$

Lead Temperature (soldering, 10 second time limit) \qquad $+260^{\circ} \mathrm{C}$
Maximum Power Dissipation ONE SIDE BOTH SIDES Device Dissipation @ Free Air $400 \mathrm{~mW} \quad 750 \mathrm{~mW}$ Linear Derating Factor $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \quad 4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Maximum Voltage and Current for Each Transistor

Vcbo Collector to Base Voltage 2 V
VCEO Collector to Emitter Voltage 2 V
VEBO Emitter to Base Voltage (Note 2) 7V
Vcco Collector to Collector Voltage 100V
Ic Collector Current 10 mA

PACKAGE DIMENSIONS

NOTES:
All dimensions in inches
045 (1.143)
Leads are gold-plated KOVAR
Package weight is 1.08 grams

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN	MAX	UNITS	CONDITIONS
$h_{\text {FE }}$	DC Current Gain	4000			$\mathrm{IC}=1 \mu \mathrm{~A}, \mathrm{~V}_{\text {ce }}=1 \mathrm{~V}$
hFE	DC Current Gain	4000			$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$h_{\text {FE }}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	600			$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base "ON" Voltage		0:7	V	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
VCE(SAT)	Collector Saturation Voltage		0.5	V	$\mathrm{IC}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$
ICBO	Collector Cutoff Current		100	pA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
$\mathrm{ICBO}\left(+150^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		100	nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
Iebo	Emitter Cutoff Current		100	pA	$\mathrm{IC}=0, \mathrm{~V}_{\text {EB }}=5 \mathrm{~V}$
Cobo	Output Capacitance		0.8	pF	$\mathrm{IE}=0, \mathrm{~V} C B=1 \mathrm{~V}$
CTE	Emitter Transition Capacitance		1.0	pF	$\mathrm{IC}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\text {C1C2 }}$	Collector to Collector Capacitance		0.8	pF	$\mathrm{V}_{\text {cc }}=0$
IC1C2	Collector to Collector Leakage Current		250	PA	$\mathrm{VCC}= \pm 50 \mathrm{~V}$
fT	Current Gain Bandwidth Product	10		MHz	$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$.
fT	Current Gain Bandwidth Product	100		MHz	$I_{C}=100 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$
NF	Narrow Band Noise Figure		3	dB	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{KHz}, \mathrm{RG}_{\mathrm{G}}=10 \mathrm{Kohms}, \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$
BVCBO	Collector-Base Breakdown Voltage	2		V	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{IE}=0$
BVEbO	Emitter-Base Breakdown Voltage	7		V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I} \mathrm{C}=0$
VCEO(SUST)	Collector-Emitter Sustaining Voltage	2		V	$\mathrm{IC}^{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$

MATCHING CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

SYMBOL	CHARACTERISTICS	TYP	MAX	UNITS	CONDITIONS
$\left\|\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right\|$	Base Emitter Voltage Differential	2	5	mV	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V} \mathrm{VE}=1 \mathrm{~V}$
$\left\|\left(\mathrm{~V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE}}\right)\right\|{ }^{\circ} \mathrm{C}$	Base Emitter Voltage Differential Change with Temperature	5	15	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$ $\mathrm{~T}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mid \mathrm{I}_{\mathrm{B} 1-\mathrm{I}_{\mathrm{B} 2} \mid}$	Base Current Differential		6	nA	$\mathrm{TC}=10 \mu \mathrm{~A}, \mathrm{VCE}_{\mathrm{C}}=1 \mathrm{~V}$

NOTES:

1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu \mathrm{Amps}$.

Super-Beta Dual Monolithic NPN Silicon Planar Transistors

FEATURES

- Very High Gain - hFE $\geq 1000 @ 1$ and $10 \mu \mathrm{~A}$
- Low Output Capacitance - $\mathrm{C}_{\text {obo }} \leq 0.8 \mathrm{pF}$
- Tight $V_{B E}$ Matching - | $V_{B E 1}-V_{B E 2} \mid-2 \mathbf{m V}$ TYP.
- High fT - $100 \mathbf{M H z}$

ABSOLUTE MAXIMUM RATINGS (Note 1)
@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature $+200^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 second
time limit)
$+260^{\circ} \mathrm{C}$
Maximum Power Dissipation ONE SIDE BOTH SIDES
Device Dissipation @ Free Air $400 \mathrm{~mW} \quad 750 \mathrm{~mW}$.
Linear Derating Factor $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C} .4 .3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltage and Current for Each Transistor
Vсво Collector to Base Voltage 2V
VCEO Collector to Emitter Voltage 2 V
VEBO Emitter to Base Voltage (Note 2) 7V
Vcco Collector to Collector Voltage 100V
Ic Collector Current 10 mA

PACKAGE DIMENSIONS

TO-78

ELECTRICAL CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (uniess otherwise noted)

SYMBOL	CHARACTERISTICS	MIN	MAX	UNITS	CONDITIONS
$h_{\text {FE }}$	DC Current Gain	1000			$\mathrm{I}^{\prime}=1 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
hFE	DC Current Gain	1000			$\mathrm{I}^{\text {c }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
V_{BE} (ON)	Emitter-Base "ON" Voltage		0.7	V	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=1 \mathrm{~V}$
$\mathrm{V}_{\text {CE }}(\mathrm{SAT})$	Collector Saturation Voltage		0.5	V	$\mathrm{IC}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$
ICBO	Collector Cutoff Current		100	pA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{CB}}=1 \mathrm{~V}$
ICBO($+150^{\circ} \mathrm{C}$)	Collector Cutoff Current		100	nA	$\mathrm{IE}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
IEBO	Emitter Cutoff Current		100	pA	$\mathrm{IC}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}$
Сово	Output Capacitance		0.8	pF	$\mathrm{I}_{\mathrm{E}} \mathrm{F}=0, \mathrm{~V}_{C B}=1 \mathrm{~V}$
CTE	Emitter Transition Capacitance		1.0	pF	$\mathrm{IC}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\text {c1c2 }}$	Collector to Collector Capacitance		0.8	pF	$\mathrm{V}_{\text {CC }}=0$
IC1C2	Collector to Collector Leakage Current		250	pA	$\mathrm{V}_{C C}= \pm 50 \mathrm{~V}$
ft_{T}	Current Gain Bandwidth Product	10		MHz	$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{VCE}=1 \mathrm{~V}$
f_{T}	Current Gain Bandwidth Product	100		MHz	$I_{C}=100 \mu \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$
NF	Narrow Band Noise Figure		3	dB	$\begin{aligned} & \text { IC }=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{KHz}, \mathrm{RG}_{\mathrm{G}}=10 \mathrm{Kohms}, \\ & \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$
BVCBO	Collector-Base Breakdown Voltage	2		V	$\mathrm{IC}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$
BVEbo	Emitter-Base Breakdown Voltage	7		V	$I_{E}=10 \mu A, I_{C}=0$
VCEO(SUST)	Collector-Emitter Sustaining Voltage	2		V	$\mathrm{IC}^{\prime}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$

MATCHING CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unfess otherwise noted).

SYMBOL	CHARACTERISTICS	TYP	MAX	UNITS	CONDITIONS	
$\\|_{\mathrm{B} 1} \mathrm{I}_{\mathrm{B} 2} \mid$	Base Current Differential		$6:$	nA	$\mathrm{T}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$	

IT126, IT127, IT128, IT129
 Dual Monolithic NPN Silicon Planar Transistors

FEATURES

- High Gain at Low Current $-\mathrm{h}_{\mathrm{FE}} \geqslant 230$ at $10 \mathrm{~mA}-5 \mathrm{~V}$
- Low Output Capacitance - $\mathrm{C}_{\text {obo }} \leqslant 3 \mathrm{pF}$
- Tight I_{B} Match $-\mathrm{I}_{\mathrm{B}_{1-2}}<.25 \mu \mathrm{~A}$ at $1 \mathrm{~mA}-5 \mathrm{~V}$
- Tight $V_{B E}$ Tracking $-\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right) \leqslant 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Dielectrically isolated matched pairs for differential amplifiers.

GENERAL DESCRIPTION

Dual monolithic NPN Silicon planar transistors used for differential amplifier applications.

ABSOLUTE MAXIMUM RATINGS (Note 1)
$@ 25^{\circ} \mathrm{C}$ (unless otherwise noted)
Maximum Temperatures
Storage Temperature
Operating Junction Temperature

Maximum Power Dissipation	T071			т078	
	ONE SIDE	Bот	DES	ONE SIDE	BOTH SIDES
Total Dissipation at $25^{\circ} \mathrm{C}$.					
Case Temperature	0.3 Watt			0.4 Watt	0.75 Watt
Derating Factor	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$			$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltage and Current for Each Transistor			IT126,7	IT128	IT129
$V_{\text {CBO }}$ Collector to Base Vol			60 V	55 V	45 V
$V_{\text {CEO }}$ Collector to Emitter	oltage		60 V	55 V	45 V
VEBO Emitter to Base Volt	ge (Note 2)		7 V	7 V	7 V
$V_{\text {CCO }}$ Collector to Collecto	Voltage		70 V	70 V	70 V
IC Collector Current			100 mA	100	100

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

	PARAMETER	17126		: IT127		IT128		17129		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{h}_{\text {FE }}$	DC Current Gain	15020023010075	800	$\begin{gathered} 150 \\ 200 \\ 230 \\ 100 \\ 75 \end{gathered}$	800	$\begin{array}{r} 100 \\ 150 \\ 170 \\ 75 \\ 60 \end{array}$	800	$\begin{array}{r} 70 \\ 100 \\ 115 \\ 50 \\ 40 \end{array}$	 \vdots \ddots .9 1.0 .3 .6 0.1^{*} 0.1^{*} 0.1 3	\therefore	$\begin{aligned} & I^{I}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}^{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V} \end{aligned}$
$h_{\text {FE }}$	DC Current Gain										
$h_{\text {FE }}$	DC Current Gain										
$h_{\text {FE }}$	DC Current Gain										
$h_{\text {FE }}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain										
$\left.V_{B E}(0)^{\prime}\right)$	Emitter-Bape On Voltage		. 9		. 9		. 9			v	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
			1.0		1.0		1.0			v	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$
$\mathrm{V}_{C E}$ (sat)	Collector Saturation Voltage		. 3		. 3		. 3			V	${ }^{\prime} \mathrm{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$
			. 6		. 6		. 6			v	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$
${ }^{\text {I Cbo }}$	Collector Cutoff Current		0.1		0.1		0.1			nA	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V} *$
${ }^{\text {CBOO }}$ ($+150^{\circ} \mathrm{C}$)	Collector Cutoff Current		0.1		0.1		0.1			$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}, 30 \mathrm{~V}^{*}$
lebo	Emitter Cutoff Current		0.1		0.1		0.1			nA	$\mathrm{I}^{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5 \mathrm{~V}$
$\mathrm{C}_{\text {obo }}$	Output Capacitance		3		3		3			pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=20 \mathrm{~V}$

FEATURES

- Emitter-base voltage matched to $50 \mu \mathrm{~V}$
- Offset voltage drift less than $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Current gain (hFE) matched to $\mathbf{2 \%}$
- Common-mode rejection ratio greater than 120 dB
- Parameters guaranteed over $1 \mu \mathrm{~A}$ to 1 mA collector current
- Extremely low noise
- Superior logging characteristics compared to conventional pairs

1

- Plug-in replacement for presently available devices

GENERAL DESCRIPTION

The LM194 and LM394 are junction isolated ultra wellmatched monolithic NPN transistor pairs with an order of magnitude improvement in matching over conventional transistor pairs. This is accomplished by advanced linear processing and a unique new device structure.

Electrical characteristics of these devices such as drift versus initial offset voltage, noise, and the exponential relationship of base-emitter voltage to collector current closely approach those of a theoretical transistor. Extrinsic emitter and base resistances are much lower than presently available pairs, either monolithic or discrete, giving extremely low noise and theoretical operation over a wide current range. Most parameters are guaranteed over a current range of $1 \mu \mathrm{~A}$ to 1 mA and 0 to 40 V collector-base voltage, ensuring superior performance in nearly all applications.

To guarantee long-term stability of matching parameters, internal clamp diodes have been added across the emitterbase junction of each transistor. These prevent degradation due to reverse biased emitter current - the most common cause of field failures in matched devices. The parasitic isolation junction formed by the diodes also clamps the substrate region to the most negative emitter to ensure complete isolation between devices.

The LM194 and LM394 will provide a considerable improvement in performance in most applications requiring a closely

CONNECTION DIAGRAM

METAL CAN PACKAGE

matched transistor pair. In many cases, trimming can be eliminated entirely, improving reliability and decreasing costs. Additionally, the low noise and high gain make this device attractive even where matching is not critical.

The LM194 and LM394 are available in an isolated header 6 -lead TO-5. The LM194 is identical to the LM394 except for tighter electrical specifications and wider temperature range.
ABSOLUTE MAXIMUM RATINGS
Collector Current 20 mA
Collector-Emitter Voltage 40 V
Collector-Base Voltage 40 V
Collector-Substrate Voltage 40 V
Collector-Collector Voltage 40 V
Base-Emitter Current $\pm 10 \mathrm{~mA}$
Power Dissipation 500 mW
Junction Temperature
LM194
LM194 $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
LM394 $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{J}=+25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITIONS	LM194			LM394			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Current Gain (hFE)(Note 1)	$V_{C B}=0 \mathrm{~V}$ to 40 V							
	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=1 \mathrm{~mA}$	500	700		300	700		
	$I_{C}=100 \mu \mathrm{~A}$	400	550		250	550		
	$I^{\prime} \mathrm{C}=10 \mu \mathrm{~A}$	300	450		200	450		
	$\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}$	200	300		150	300		
Current Gain Match (hFE Match)	$V_{C B}=0 \mathrm{~V}$ to 40 V							
	$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}$ to 1 mA		0.5	2		0.5	4	\%
	${ }^{\prime} \mathrm{C}=1 \mu \mathrm{~A}$		1.0			1.0		\%
Emitter-Base Offset Voltage	$V_{C B}=0, I_{C}=1 \mu \mathrm{~A}$ to 1 mA		25	50		25	150	$\mu \mathrm{V}$
Change in Emitter-Base Offset	(Note 1)		10	24		10	50	$\mu \mathrm{V}$
Voltage vs. Collector-Base Voltage (CMRR)	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CB}}=0 \mathrm{~V} \text { to } 40 \mathrm{~V} \end{aligned}$							
Change in Emitter-Base Offset Voltage vs. Collector Current	$\begin{aligned} & V_{C B}=0 V \\ & I_{C}=1 \mu \mathrm{~A} \text { to } 0.3 \mathrm{~mA} \end{aligned}$		5	25		5	50	$\mu \mathrm{V}$
Emitter-Base Offset Voltage								
Temperature Drift (Note 2)	$\mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2}$ VOS trimmed to 0 at $+25^{\circ} \mathrm{C}$		0.08 0.03	0.3 0.1		0.08 0.03	$\begin{aligned} & 0.8 \\ & 0.3 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Logging Conformity (Note 3)	$I^{\prime}=3 n A$ to $300 \mu A, V_{C B}=0$		150			150		$\mu \mathrm{V}$
Collector-Base Leakage	$V_{C B}=40 \mathrm{~V}$		50			50		pA
Collector-Collector Leakage	$V_{C C}=40 \mathrm{~V}$		70			70		pA
Input Voltage Noise	$I^{\prime} \mathrm{C}=100 \mu \mathrm{~A}, \mathrm{~V}_{C B}=0 \mathrm{~V}$,		1.8			1.8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$f=100 \mathrm{~Hz}$ to 100 kHz							
Collector to Emitter Saturation	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}-10 \mu \mathrm{~A}$		0.2			0.2		V
Voltage	$I_{C}=1 \mathrm{~mA}, I_{B}=100 \mu \mathrm{~A}$		0.1			0.1		V

Note 1: Collector base voltage is swept from 0 to 40 V at a collector current of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA .
Note 2: Offset voltage drift with $V_{O S}=0$ at $T_{A}=+25^{\circ} \mathrm{C}$ is valid only when the ratio of $\mathrm{I}_{\mathrm{C} 1}$ to I_{C} is adjusted to give the initial zero offset.
This ratio must be held to within 0.003% over the entire temperature range. Measurements taken at $+25^{\circ} \mathrm{C}$ and temperature extremes.
Note 3: Logging conformity is measured by computing the best fit to a true exponential and expressing the error as a base-emitter voltage deviation.

TYPICAL APPLICATIONS

FAST, ACCURATE LOGGING AMPLIFIER, $V_{I N}=10 \mathrm{~V}$ to 0.1 mV or $1 / \mathrm{N}=1 \mathrm{~mA}$ to 10 nA

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures

Lead Temperature (10 seconds) . $230^{\circ} \mathrm{C}$
Maximum Power Dissipation
Total Dissipation at
One Side Both Sides
$25^{\circ} \mathrm{C}$ Ambient Temperature . $500 \mathrm{~mW} \quad 600 \mathrm{~mW}$
Linear Derating Factor ... $3.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltage and Current (One side)
VEBO Emitter to Base Voltage . 5 - 5.0 V
VCBO Collector to Base \cdot Voltage . 60.
VCEO Collector to Emitter Voltage . 6 . 60 V
Ic DC Collector Current .. 50 mA

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ Ambient Temperature unless otherwise noted

SYMBOL	CHARACTERISTIC	2N3810		2N3811		UNITS	TEST CONDITIONS	
		MIN.	MAX.	MIN.	MAX.			
Icbo	Collector Cutoff Current		10		10	nA	$V_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	
			10		10	$\mu \mathrm{A}$	$\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{A}=150^{\circ} \mathrm{C}$	
Iebo	Emitter Cutoff Current		20		20	nA	$\mathrm{V}_{\mathrm{EB}}=-4.0 \mathrm{~V}$	
BVEBO	Emitter to Base Breakdown Voltage	-5.0		-5.0		V	$I_{C}=0, I_{E}=10 \mu \mathrm{~A}$	
BVCBO	Collector to Base Breakdown Voltage	-60	,	-60		V	$\mathrm{IE}^{\circ}=0, \mathrm{IC}=10 \mu \mathrm{~A}$	
'BVCeo	Collector to Emitter Breakdown Voltage	-60	-	-60		V.	IC $=10 \mathrm{~mA}$	
hfe	DC Current Gain	100		225			$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=-5.0 \mathrm{~V}$	
		150	450	300	900		$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$	
		150	450	300	900		$\mathrm{IC}^{\text {c }}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$	
		150	450	300	900		$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$	
		125		250			$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$	
		75		150			IC $=100 \mu \mathrm{~A}, \mathrm{~V}_{C E}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {BEION }}$	Base to Emitter "On" Voltage		-0.7		-0.7	V	$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V} C E=-5.0 \mathrm{~V}$	
VCE(sat)	Collector to Emitter Saturation Voltage		-0.2		-0.2	V	$I_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$	
			-0.25		-0.25	V	$\mathrm{IC}^{2}=1.0 \mathrm{~mA}, \mathrm{IB}^{2}=100 \mu \mathrm{~A}$	
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	Base to Emitter Saturation Voltage		-0.7		-0.7	V	$I_{C}=100 \mu \mathrm{~A}, I_{B}=10 \mu \mathrm{~A}$	
			-0.8		-0.8	V	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$	
$\frac{h_{\text {FE1 }}}{h_{\text {FE2 }}}$	DC Current Gain Ratio	0.9	1.0	0.9	1.0		$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$	
\|VBE1-VBE2		Base to Emitter Voltage Differential		-5.0		-5.0	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{IC}=10 \mu \mathrm{~A}$ to 10 mA
			-3.0		-3.0	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{IC}=100 \mu \mathrm{~A}$	
$\left\|\Delta\left(\mathrm{V}_{\mathrm{BE}} 1-\mathrm{V}_{\mathrm{BE} 2}\right)\right\|$	Base to Emitter Voltage Differential Gradient		-1.0		-1.0	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{l} \mathrm{C}=0.1 \mathrm{~mA}$	
							$\mathrm{TA}^{\prime \prime}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
			-0.8		-0.8	mV	$V_{C E}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$	
							$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$	
Cob	Output Capacitance		4.0		4.0	pF	$\mathrm{V}_{C B}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=100 \mathrm{kHz}$	
C_{ib}	Input Capacitance		8.0		8.0	pF	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{IC}=0, \mathrm{f}=100 \mathrm{kHz}$	
$\left\|h_{\text {fe }}\right\|$	Magnitude of Common Emitter Small Signal Current Gain	1.0		1.0			$\mathrm{IC}^{\text {c }}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{f}=30 \mathrm{MHz}$	
		1.0	5.0	1.0	5.0		$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{C E}=-5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$	
$\mathrm{hie}^{\text {ie }}$	Input Impedance	3.0	30	10	40	kS	$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, f=1.0 \mathrm{kHz}$	
$\mathrm{hre}_{\text {re }}$	Reverse Voltage Feedback Ratio		25		25	$\times 10^{-4}$	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$	
hoe:	Output Conductance	5.0	60	5.0	60	$\mu \mathrm{mho}$	$\mathrm{V}_{C E}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$	
$\mathrm{hf}_{\text {fe }}$	Small Signal Current Gain	150	600	300	900		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{l} \mathrm{C}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$	
RE($h_{\text {ie }}$)	Real Part of Common Emitter Small Signal Input Impedance	3.0	30	10	40	k Ω	$V_{C E}=-10 \mathrm{~V}, \mathrm{lc}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$	
NF	Noise Figure		3.0		1.5	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{VCE}=-10 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \\ & \mathrm{PBW}=200 \mathrm{~Hz}, \mathrm{RG}_{\mathrm{G}}=3.0 \mathrm{k} \Omega \\ & \hline \end{aligned}$	
			2.5		1.5	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{PBW}=2.0 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=3.0 \mathrm{kS} \Omega \\ & \hline \end{aligned}$	
			7.0		4.0	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{VCE}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{f}=100 \mathrm{~Hz}, \\ & \mathrm{PBW}=20 \mathrm{~Hz}, R_{\mathrm{G}}=3.0 \mathrm{k} \Omega \\ & \hline \end{aligned}$	
			3.5		2.5	dB	$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V} C E=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=3.0 \mathrm{k} \Omega$ 3.0 dB down at 10 Hz and 10 kHz $\text { PBW }=15.7 \mathrm{kHz}$	

2N3810, 2N3810A, 2N3811, 2N3811A

PACKAGE DIMENSIONS

TO-78

ELECTRICAL CONDITIONS

TEST CONDITIONS: $25^{\circ} \mathrm{C}$ Ambient Temperature unless otherwise noted

SYMBOL	CHARACTERISTIC	2N3810A		2N3811A		UNITS	TEST CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
Icbo	Collector Cutoff Current		10		10	\cdots	$\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{IC}^{\text {c }}=0$
			10		10	$\mu \mathrm{A}$	$\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$
Iebo	Emitter Cutoff Current		20		20	nA	$V_{E B}=-4.0 \mathrm{~V}$
BVEBO	Emitter to Base Breakdown Voltage	-5.0		-5.0		V	$I_{C}=0, I_{E}=10 \mu \mathrm{~A}$
BVCbo	Collector to Base Breakdown Voltage	-60		-60		V	$\mathrm{IE}_{\mathrm{E}}=0, \mathrm{IC}=10 \mu \mathrm{~A}$
BVCeo	Collector to Emitter Breakdown Voltage	-60		-60		V	IC $=10 \mathrm{~mA}$
hfe	DC Current Gain	100		225			$\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		150	450	300	900		$\mathrm{IC}^{\text {c }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		150	450	300	900		$\mathrm{IC}^{\text {c }}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		150	450	300	900		$\mathrm{IC}^{\text {c }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		125		250			$\mathrm{I}^{\text {C }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
		75		150			$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$
V ${ }_{\text {be(ON }}$)	Base to Emitter "On" Voltage		-0.7		-0.7	V	$\mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}$
VCE(sat)	Collector to Emitter Saturation Voltage		-0.2		-0.2	V	$I_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$
			-0.25		-0.25	V	$\mathrm{IC}^{\prime}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	Base to Emitter Saturation Voltage		-0.7		-0.7	V	$\mathrm{IC}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$
			-0.8		-0.8	V	$\mathrm{IC}^{\prime}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$
$h_{\text {FE1 }}$	DC Current Gain Ratio *	0.95	1.0	0.95	1.0		$\mathrm{V}_{C E}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$
hFE2		0.85	1.0	0.85	1.0		$\mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{~V}, \mathrm{IC}=0.1 \mathrm{~mA}$,
							$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\| $\mathrm{V}_{\text {be1 }}$-Vbe2 ${ }^{\text {\| }}$	Base to Emitter Voltage Differential		-5.0		-5.0	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{la}=10 \mu \mathrm{~A}$ to 10 mA
			-1.5		-1.5	mV	$\mathrm{V}_{C E}=-5.0 \mathrm{~V}, \mathrm{IC}=100 \mu \mathrm{~A}$
$\mid \pm\left(\mathrm{V}_{\mathrm{BE}} \mathrm{V}^{\left.-\mathrm{V}_{\mathrm{BE} 2}\right) \mid}\right.$	Base to Emitter Voltage Differential Gradient		-0.5		-0.5	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{I}=0.1 \mathrm{~mA}$
							$T_{\text {A }}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
			-0.4		-0.4.	mV	$\mathrm{V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{l} \mathrm{IC}=0.1 \mathrm{~mA}$
							$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$
Cob	Output Capacitance		4.0		4.0	pF	$\mathrm{V}_{C B}=-5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=100 \mathrm{kHz}$
C_{ib}	Input Capacitance		8.0		8.0	pF	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{IC}=0 ; \mathrm{f}=100 \mathrm{kHz}$
\|hitel	Magnitude of Common Emitter Small Signal Current Gain	1.0		1.0			$\mathrm{IC}^{\text {c }}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-5.0 \mathrm{~V}, \mathrm{f}=30 \mathrm{mHz}$
		1.0	5.0	1.0	5.0		$\mathrm{IC}^{\text {c }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}$
$\mathrm{h}_{\text {ie }}$	Input Impedance	3.0	30	10	40	$\mathrm{k} \Omega$	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
$\mathrm{h}_{\text {re }}$	Reverse Voltage Feedback Ratio		25		25	$\times 10^{-4}$	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
$\mathrm{h}_{\text {oe }}$	Output Conductance	5.0	60	5.0	60	$\mu \mathrm{mho}$	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
$\mathrm{hfe}^{\text {fe }}$	Small Signal Current Gain	150	600	300	900		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
RE($\mathrm{h}_{\text {ie }}$)	Real Part of Common Emitter Small Signal Input Impedance	3.0	30	10	40	k Ω	$V_{C E}=-10 \mathrm{~V}, \mathrm{lC}=1.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$
NF	Noise Figure	,	3.0		1.5	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{VCE}=-10 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{kHz}, \\ & \mathrm{PBW}=200 \mathrm{~Hz}, \mathrm{RG}_{\mathrm{G}}=3.0 \mathrm{kS} \mathrm{l} \end{aligned}$
			2.5		1.5	dB	$\begin{aligned} & \mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{PBW}=2.0 \mathrm{kHz}, \mathrm{RG}^{2}=3.0 \mathrm{k} \Omega \end{aligned}$
			7.0		4.0	dB	$\begin{aligned} & \mathrm{IC}=100 \mu \mathrm{~A}, \mathrm{VCE}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{PBW}=20 \mathrm{~Hz}, \mathrm{RG}=3.0 \mathrm{k} \Omega \end{aligned}$
			3.5		2.5	dB	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{RG}_{\mathrm{G}}=3.0 \mathrm{k} \Omega$, 3 dB down at 10 Hz and 10 kHz PBW $=15.7 \mathrm{kHz}$

2N5117 2N5118 2N5119 Dual Monolithic Matched PNP Silicon Planar Transistors

GENERAL DESCRIPTION

Dielectrically isolated matched pairs for differential amplifiers.
MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$ unless otherwise noted) (Note 1)

CHARACTERISTICS	SYMBOL		UNITS
Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature Each side (Note 1) Both sides	$\begin{aligned} & P D_{D} \\ & P_{D} \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.75 \end{aligned}$	Watt Watt
Derating Factor Each side Both sides		2.3	$\begin{aligned} & \mathrm{mW} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{aligned}$
Voltage Collector to Base	VCBO	45	Volts
, Collector to Emitter	VCEO	45	Volts
Emitter to Base (Note 2)	VEBO	7.0	Volts
Collector to Collector	VCCO	100	Volts
Collector Current	${ }^{1} \mathrm{C}$	10	mA
Storage Temperature	TS	-65 to +200	${ }^{\circ}$
Lead Temperature for 10 Seconds		+300	${ }^{\circ}$

ORDERING INFORMATION

TO78	WAFER	CHIP
2N5117	2N5117/W	2N5117/D
2N5118	2N5118/W	2N5118/D
2N5119	2N5119/W	2N5119/D

PACKAGE DIMENSIONS

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		$\begin{array}{r} \text { 2N5117 } \\ \text { 2N5118 } \\ \hline \end{array}$		2N5119		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX			
hFE	DC Current Gain	100	300	50			$\mathrm{I}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
hFE	DC Current Gain	100		50			$\mathrm{I}^{\prime}=500 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	
$\mathrm{h}_{\text {FE }}$	DC Current Gain ($-55^{\circ} \mathrm{C}$)	30		20			$\mathrm{I}^{\mathrm{C}} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	
ICBO	Collector Cutoff Current		0,1		0.1	nA	$\mathrm{IE}=0, \mathrm{VCB}=30 \mathrm{~V}$	
${ }^{\text {ICBO}}$	Collector Cutoff. Current ($150^{\circ} \mathrm{C}$)		0.1		0.1	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=30 \mathrm{~V}$	
IEbo	Emitter Cutoff Current		0.1		0.1	nA	$I_{C}=0, V_{E B}=5.0 \mathrm{~V}$	
${ }^{\text {IC1, }} \mathrm{C} 2$	Collector-Collector Leakage		5.0		5.0	pA	$\mathrm{V}_{C C}=100 \mathrm{~V}$	
${ }_{T}{ }^{\text {T }}$	Current Gain Bandwith Product	100		100		MHz	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	
$\mathrm{C}_{\text {ob }}$	Output Capacitance		0.8		0.8	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}$	
${ }^{\text {C }}$ TE	Emitter Transition Capacitance		1.0		1.0	pF	$\mathrm{I}^{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$	
$\mathrm{C}_{\mathrm{C} 1, \mathrm{C} 2}$	Collector-Collector Capacitance		0.8		0.8	pF	$\mathrm{V}_{\mathrm{CC}}=0$	
$\mathrm{V}_{\text {CEO }}$ (sust)	Collector-Emitter Sustaining Voltage	45		45		V	$I_{C}=1.0 \mathrm{~mA}, I_{B}=0$	
NF	Narrow Band Noise Figure		4.0	\therefore	4.0	dB	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \\ & \mathrm{BW}=200 \mathrm{cps} \end{aligned}$	$f=1 \mathrm{KHz}, \mathrm{RG}_{\mathrm{G}}=10 \mathrm{~K} \Omega$
$\mathrm{V}_{\text {(BR)CBO }}$	Collector Base Breakdown Voltage	45.		45.		V	$\mathrm{IC}^{\text {C }}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	
$\mathrm{V}_{\text {(BR) }}$ EBO	Emitter Base Breakdown Voltage	7.0		7.0		V	$\mathrm{IE}=10 \mu \mathrm{~A} ; \mathrm{lC}=0$	

MATCHING CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	2N5117		2N5118		2N5119		UNIT	- TEST CONDITIONS	
	MIN	MAX	MIN	MAX	MIN	MAX			
$h_{F E_{1}} / h_{F E_{2}} \quad$DC Current Gain Ratio (Note 3)	0.9	1.0	0.85	1.0	0.8	1.0		$\begin{aligned} & I_{C}=10 \mu \mathrm{~A} \text { to } 500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{C}} \\ & \mathrm{I} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V} \end{aligned}$	
$\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}} \quad$Base-Emitter Voltage Differential		3.0		5.0		5.0	mV	$\begin{aligned} & I_{C}=10 \mu \mathrm{~A} \text { to } 500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{C}} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \end{aligned}$	
${ }^{1} \mathrm{~B}_{1}{ }^{-1} \mathrm{~B}_{2} \quad$ Base Current Differential	.	10.0		15		40	nA	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	
$\Delta\left(V_{B E_{1}}-V_{B_{E}}\right) \quad \begin{aligned} & \text { Base Voltage Differential } \\ & \text { Change with Temperature } \end{aligned}$		3.0		5.0		10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	${ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$	$\mathrm{T}^{\prime} \mathrm{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\Delta\left(I_{B_{1}}{ }^{-1} \mathrm{~B}_{2}\right) \quad$Base-Current Differential Change with Temperature		0.3		0.5		1.0	$n A /{ }^{\circ} \mathrm{C}$	$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^8]
IT130/A, IT131, IT1 32 Dual Monolithic Matched PNP Silicon Planar Transistors

FEATURES

- High $h_{\text {FE }}$ at Low Current $>200 @ 10 \mu \mathrm{~A}$
- Low Output Capacitance < 2.0 pf
- $\mathrm{I}_{\mathrm{B}_{1}}-\mathrm{I}_{\mathrm{B}_{2}}<2.5 \mathrm{nA}$
- Tight V_{BE} Tracking $<3.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

Matched pairs for differential amplifiers.

ABSOLUTE MAXIMUM RATINGS (Note 1)
 @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$

Maximum Power Dissipation

	TO.78		TO-71	
	ONE SIDE	BOTH SIDES	ONE SIDE	BOTH SIDES
Total Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature	0.4 Watt	0.75 Watt	0.3 Watt	0.5 Watt
Derating Factor	$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltage \& Current for Each Transistor	
V $_{\text {CBO }}$ Collector to Base Voltage	
V CEO $^{\text {Collector to Emitter Voltage }}$	45 V
V EBO $^{\text {Emitter to Base Voltage }}$	45 V
V CCO $^{\text {Collector to Collector Voltage }}$	7.0 V
IC Collector Current	60 V
	50 mA

ORDERING INFORMATION

TO78	TO71	WAFER	CHIP
IT130A	IT130A-T071	IT130A/W	IT130A/D
IT130	IT130-T071	IT130/W	IT130/D
IT131	IT131-T071	IT131/W	IT131/D
IT132	IT132-T071	IT132/W	IT132/D

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		IT130A		IT130		IT131		17132		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
hFE	DC Current Gain	200		200		80		80			$I^{\prime}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$
hFE	DC Current Gain	225		225		100		100			$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{C E}=5.0 \mathrm{~V}$
$h_{\text {FE }}\left(-55^{\circ} \mathrm{C}\right)$	DC Current Gain	75		75		30		30			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})$	Emitter-Base On Voltage		0.7		0.7		0.7		0.7	V	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$
$\mathrm{V}_{\text {CE }}$ (SAT)	Collector Saturation Voltage		0.5		0.5		0.5		0.5	V	$I_{C}=0.5 \mathrm{~mA}, I_{B}=0.05 \mathrm{~mA}$
ICBO	Collector Cutoff Current		-1.0		-1.0		-1.0		-1.0	ṇ	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}$
$\left.{ }^{1} \mathrm{CBO}{ }^{(+150}{ }^{\circ} \mathrm{C}\right)$	Collector Cutoff Current		-10		-10		-10		-10	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=45 \mathrm{~V}$
IEBO	Emitter Cutoff Current		-1.0		-1.0		-1.0		-1.0	nA	$\mathrm{I}^{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=5.0 \mathrm{~V}$
COB	Output Capacitance -		2.0		2.0		2.0		2.0	pF	$\mathrm{I}_{\mathrm{E}}=0, \mathrm{~V}_{C B}=5.0 \mathrm{~V}$
CTE	Emitter Transition Capacitance		2.5	.	2.5		2.5		2.5	pF	$\mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{EB}}=0.5 \mathrm{~V}$
$\mathrm{C}_{\mathrm{C}_{1}} \mathrm{C}_{2}$	Collector to Collector Capacitance		4.0		4.0		4.0		4.0	pF	$\mathrm{V}_{\text {CC }}=0$
${ }^{\mathrm{I}} \mathrm{C}_{1} \cdot \mathrm{C}_{2}$	Collector to Collector Leakage Current		10		10		10		10	nA	$\mathrm{V}_{\mathrm{CC}}= \pm 60 \mathrm{~V}$
$\mathrm{V}_{\text {CEO }}$ (SUST)	Collector to Emitter Sustaining Voltage	-45		-45		-45		-45		V	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$
${ }^{\text {f }}$	Current Gain Bandwidth Product	$\begin{array}{\|r\|} \hline 5 \\ 110 \\ \hline \end{array}$		$\begin{array}{r} 5 \\ 110 \\ \hline \end{array}$		$\begin{array}{r} 4 \\ 90 \end{array}$		$\begin{array}{r} 4 \\ 90 \end{array}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & I_{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \end{aligned}$
$\left\|\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}}{ }_{2}\right\|$	Base Emitter Voltage Differential		1		2		3		5	mV	$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$
$\mid{ }^{B_{1}{ }^{-1} \mathrm{~B}_{2} \mid}$	Base Current Differential		2.5		5		25		25	nA	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$
$\left\|\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right)\right\|$	Base-Emitter Voltage Differential Change with Temperature		3	-	5		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V} \end{aligned}$

NOTES: (1) These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
(2) The lowest of two $h_{F E}$ readings is taken as $h_{F_{1}}$ for purposes of this ratio.

FEATURES

- High Gain at Low Current - $h_{F E} \geqslant 200 @ 1 \mathrm{~mA}$
- Low Output Capacitance $-\mathrm{C}_{\text {obo }}<3$ pf
- Tight I_{B} Match - $I_{B_{1-2}}<.25 \mu \mathrm{~A} @ 1 \mathrm{~mA}-5 \mathrm{~V}$
- Tight V_{BE} Tracking $-\Delta\left(\mathrm{V}_{\mathrm{BE}_{1}}-\mathrm{V}_{\mathrm{BE}_{2}}\right) \leqslant 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Dielectrically isolated matched pairs for differential amplifiers.

GENERAL DESCRIPTION

Dual monolithic PNP silicon planar transistors used for differential amplifier applications.

ABSOLUTE MAXIMUM RATINGS (Note 1)
@ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Maximum Temperatures				
Storage Temperature			$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	
Operating Junction Temperature			$+200^{\circ} \mathrm{C}$	
Maximum Power Dissipation		T071	T078	
	ONE SIDE	BOTH SIDES	ONE SIDE	BOTH SIDES
Total Dissipation @ $25^{\circ} \mathrm{C}$				
Case Temperature	0.3 Watt	0.5 Watt	0.4 Watt	0.75 Watt
Derating Factor	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Maximum Voltage and Current for Each Transistor

		$1 T 136,7$	IT138	$.1 T 139$
$V_{\text {CBO }}$	Collector to Base Voltage	60 V	55 V	45 V
$\mathrm{~V}_{\text {CEO }}$	Collector to Emitter Voltage	60 V	55 V	45 V
$\mathrm{~V}_{\text {EBO }}$	Emitter to Base Voltage (Note 2)	7 V	7 V	7 V
V $_{\text {CBO }}$	Collector to Collector Voltage	70 V	70 V	70 V
I	Collector Current	100 mA	100 mA	100 mA

ORDERING INFORMATION

T078	TO71	WAFER	CHIP
IT136	IT136-TO71	IT136/W	IT136/D
IT137	IT137-T071	IT137/W	IT137/D
IT138	IT138-TO71	IT138/W	IT138/D
IT139	IT139-TO71	IT139/W	IT139/D

ELECTRICALCHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

ELECTRICALCHARACTERISTICS @ $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (unless otherwise noted)

MATCHING CHARACTERISTICS @ $25^{\circ} \mathrm{C}$ (unless otherwise noted)

Low Leakage Monolithic Dual Diode

FEATURES

- $\mathrm{I}_{\mathrm{R}}=0.1 \mathrm{pA}$ (typical)
- $\mathrm{BV}_{\mathrm{R}}>30 \mathrm{~V}$
- $\mathrm{C}_{\mathrm{TR}}=0.75 \mathrm{pF}$ (typical)

GENERAL DESCRIPTION

The ID100 and ID101 are monolithic dual diodes intended for use in applications requiring extremely low leakage currents. Applications include interstage coupling with reverse isolation, signal clipping and clamping and protection of ultra low leakage FET differential dual and operational amplifiers.

ABSOLUTE MAXIMUM RATINGS

(@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

Maximum Temperatures	
Storage Temperature . -65	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature	$+200^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec. time lim	me limit) $+300^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Device Dissipation @ Free Air Temperature	ature $\quad 300 \mathrm{~mW}$
Linear Derating *	$1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Voltages \& Currents	
V_{R} Reverse Voltage	30 V
$\mathrm{V}_{\mathrm{D}_{1} \mathrm{D}_{2} \text { Diode to Diode Voltage }}$	$\pm 50 \mathrm{~V}$
I_{F} Forward Current	20 mA
I_{R} Reverse Current	$100 \mu \mathrm{~A}$

ORDERING INFORMATION

TO78	TO71	WAFER	CHIP
ID100		ID100/W	ID101/D
	ID101		

PACKAGE DIMENSIONS

1. Cathode 15. Not Used*
2. Anode 1 6. Anode 2
3. Not Used* 7. Cathode 2

*These leads are not to be connected together nor connected to the circuit in any way.

ELECTRICALCHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		ID100, ID101			UNITS	TEST CONDITIONS
		MIN.		MAX.		
V_{F}	Forward Voltage Drop	0.8		1.1	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$B V_{R}$	Reverse Breakdown Voltage	30			v	$\mathrm{I}_{\mathrm{R}}=1 \mu \mathrm{~A}$
				10	nA	$\mathrm{V}_{R}=10 \mathrm{~V}, \mathrm{~T}_{A}=125^{\circ} \mathrm{C}$
$\left\|I_{R_{1}}-I_{R_{2}}\right\|$	Differential Leakage Current			3	pA	$\mathrm{V}_{\mathrm{R}}^{\mathrm{R}}=10 \mathrm{~V}$
$\mathrm{C}_{\text {TR }}$	Total Reverse Capacitance		0.75	1	pF	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

TYPICAL CHARACTERISTICS OF ID100/ID101

Log/Antilog Transistor Array

FEATURES

Excellent log conformance over 5 decadades, 100 nA - 1 mA .

DESCRIPTION

Four closely matched NPN transistors for multipliers, dividers, and other non-linear applications.

ABSOLUTE MAXIMUM RATINGS
 ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Temperature
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Operating Junction Temperature $+200^{\circ} \mathrm{C}$
Power Dissipation
Total Dissipation . 0.6W
Derating Factor 3.4mW/ ${ }^{\circ} \mathrm{C}$
Voltage and Current
$\mathrm{V}_{\mathrm{CBO}}$ Collector to Base Voltage 20 V
$V_{\text {CEO }}$ Collector to Emitter Voltage 20V
VEBO Emitter to Base Voltage 5.0V
VCC Collector to Collector Voltage 50V
IC Collector Current ; 20 mA

ELECTRICAL CHARACTERISTICS ($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTIC	TEST CONDITION	MIN	MAX	UNIT
hFE DC Current Gain	$\mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{VCE}=5.0 \mathrm{~V}$	100		
hFE DC Current Gain	$I_{C}=1 \mathrm{~mA}, V_{C E}=5.0 \mathrm{~V}$	100		
ICBO Collector Cutoff Current	$V_{C B}=10 \mathrm{~V}$		100	pA
IEBO Emitter Cutoff Current	$V_{E B}=4 \mathrm{~V}$		100	pA.
BVCBO Collector Base Breakdown	$I_{C}=10 \mu \mathrm{~A}, I_{E}=0$	20		V
BVEBO Emitter Base Breakdown	$I_{E}=10 \mu \mathrm{~A}, \mathrm{IC}=0$	5		V
BVCEO Sustaining Voltage	$I_{C}=100 \mu \mathrm{~A}$	20		V
$r_{\text {e }}$ (Note 1)	$I_{C}=500 \mu \mathrm{~A}$	1.2	1.4	Ω

MATCHING CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	TEST CONDITION	MIN	MAX	UNIT
$\Delta \mathrm{r}_{\mathrm{e}}$ (Note 2)	$\mathrm{IC}=500 \mu \mathrm{~A}$		0.05	Ω
	$\mathrm{IS}_{\mathrm{S}}=\mathrm{I}_{\mathrm{S} 2}=\mathrm{I}_{\mathrm{S} 3}=10 \mu \mathrm{~A}$ to 1 mA	0.097	1.03	

Note 1: r_{e} is defined by $V_{B E}=\frac{K T}{q} \log \frac{I_{C}}{T_{O}}+I_{C} r_{e}$.
Note 2: $\Delta r_{e}=r_{e 1}+r_{e 2}-r_{e 3}-r_{e 4}$.

Voltage-Controlled Resistors VCR2N, VCR3P, VCR4N, VCR5P, VCR7N

FEATURES

- Small Signal Attenuators
- Filters
- Amplifier Gain Control
- Oscillator Amplitude Control

PACKAGE DIMENSIONS

ABSOLUTE MAXIMUM RATING ($25^{\circ} \mathrm{C}$)
Gate-Drain or Gate-Source Voltage
Gate Current
10 mA
Total Device Dissipation at $T_{A}=25^{\circ} \mathrm{C}$
(Derate at $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$) . 300 mW
Storage Temperature Range ... -55 to $+175^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless otherwise noted) N-Channel VCR FETs

Characteristic				VCR2N		VCR4N		VCR7N		Unit	Test Conditions	
				Min	Max	Min	Max	Min	Max			
1	S	IGSS	Gate Reverse Current		-5		-0.2		-0.1	nA	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
2	A	BVGss	Gate-Source Breakdown Voltage	-15		-15		-15		V	$\mathrm{IG}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
3		VGS(off)	Gate-Source Cutoff Voltage	-3.5	-7	-3.5	-7	-2.5	-5		$\mathrm{lD}=1 \mu \mathrm{~A}, \mathrm{VDS}=10 \mathrm{~V}$	
4	C	rds(on)	Drain Source ON Resistance	20	60	200	600	4,000	8,000	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ld}=0$	$\mathrm{f}=1 \mathrm{kHz}$
5	D	Cdgo	Drain-Gate Capacitance		7.5		3		1.5	pF	$\mathrm{V}_{\mathrm{GD}}=-10 \mathrm{~V}, \mathrm{IS}=0$	
6	Y	$\mathrm{C}_{\text {sgo }}$	Source-Gate Capacitance		7.5		3		1.5		$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{ID}=0$	

P-Channel VCR FETs

Characteristic				VCR3P		VCR5P		Unit	Test Conditions	
1		IGSS	Gate Reverse Current		20		10	nA	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
2		BVGss	Gate-Source Breakdown Voltage	15		15		V	$\mathrm{IGG}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	
3		VGS(off)	Gate-Source Cutoff Voltage	3.5	7	3.5	7	\checkmark	$\mathrm{ID}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=-10 \mathrm{~V}$	
4		rds(on)	Drain-Source ON Resistance	70	200	300	900	Ω	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ld}=0$	$\mathrm{f}=1 \mathrm{kHz}$
5	$\overline{\mathrm{D}}$	Cdgo	Drain-Gate Capacitance		6		3	pF	$V_{G D}=10 \mathrm{~V}, \mathrm{IS}=0$	z
6	\underline{Y}	Csgo	Source-Gate Capacitance		6		3	pr	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=0$	1 MHz

$r_{\text {DS (on) }}=2$ ohms
IVN6657/IVN6658 2-3 VN30AA/35AA/67AA/ 89AA/90AA
VN35AJ/66AJ/67AJ/ 98AJ/99AJ IVN6660/IVN6661 VN30AB/35AB/67AB/ 89AB/90AB VN35AK/66AK/67AK/ 98AK/99AK

VN40AF/67AF/89AF VN46AF/66AF/88AF IVN5000/5001S series IVN5000/5001A series

2-17
2-19
$r_{\mathrm{DS}(\mathrm{on})}=0.4 \mathrm{ohm}$
IVN5200/5201K series $\begin{array}{ll}2-27\end{array}$ IVN5200/5201T series IVN5200/5201H series IVN5201C series

V-MOS

(N-Channel Enhancement)

2

	$\begin{aligned} & I_{D \text { (on) }} \\ & (\mathrm{Amps}) \end{aligned}$		$\begin{aligned} & \text { Vas }_{\text {(th) }} \\ & \text { (Volts) } \end{aligned}$		$35 \mathrm{~V}_{\text {min }}$		C)	B V ${ }_{\text {DSS }}$-DRA	$\frac{\text { N-SOURCE BREAKDOW }}{60 \mathrm{~V}_{\text {min }}}$		$\frac{\mathbf{8 0 ~ V}}{\min }$!		$90 \mathrm{~V}_{\text {min }}$		PKG		
(ohms)																	
max	min	peak			min	max	Zener	Non-Zener	Zener	Non-Zener	Zener	Non-Zener	Zener	Non-Zener	Zener	Non-Zener	
0.5	5.0	12	0,8	2.0			5m*	IVN5200KND		IVN5200KNE		IVN5200KNF					
0.5	5.0	12	0.8	3.6			\%	IVN5201KND		IVN5201KNE		IVN5201KNF					
2.5	1.0	3.0	0.8	2.0		VN35AJ	x^{4}										
2.5	1.0	3.0	0.8	-	VN35AA												
3.0	1.0	3.0	0.8	. 2.0					IVN6657	VN66AJ					TO-3		
3.5	1.0	3.0	0.8	-					VN67AA	VN67A」							
3.5 4.0	1.0 1.0	3.0 3.0	0.8 0.8	2.0 2.0						VN67AJ			IVN6658	VN98AJ			
4.5	1.0	3.0	0.8	-							VN89AA						
4.5	1.0	3.0	0.8	2.0										VN99AJ			
5.0	1.0	3.0	0.8	-	VN30AA								VN90AA				
0.5	5.0	10	0.8	2.0				IVN5200TND		IVN5200TNE		IVN5200TNF					
0.5	5.0	10	0.8	3.6				IVN5201TND		IVN5201TNE		IVN5201TNF					
2.5	1.0	3.0	0.8	-	VN35AB		\because										
2.5 3.0 3	1.0 1.0	3.0 3.0	0.8 0.8	2.0 2.0		VN35AK											
3.0 3.5	1.0	3.0 3.0	0.8 0.8	2.0 2.0			,		IVN6660	VN66AK VN67AK					TO-39		
3.5	1.0	3.0	0.8	-					VN67AB								
4.0	1.0	3.0	0.8	2.0			.						IVN6661	VN98AK			
4.5	1.0	3.0	0.8	-							VN89AB						
4.5	1.0	3.0	0.8	2.0										VN99AK			
5.0	1.0	3.0	0.8	-	VN30AB								VN90AB				
2.5 2.5	1.0 1.0	3.0 3.0	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.6 \end{aligned}$				IVN5000SND IVN5001SND		IVN5000SNE IVN5001SNE		IVN5000SNF IVN5001SNF			TO-52		
$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.6 \end{aligned}$				IVN5200HND IVN5201HND		IVN5200HNE IVN5201HNE	,	IVN5200HNF IVN5201HNF			TO-66		
3.0	1.0	3.0	0.8	-		'	VN46AF		VN66AF								
3.5	1.0	3.0	0.8	-					VN67AF								
4.0	1.0	3.0	0.8	-							VN88AF			.	TO-202		
4.5	1.0	3.0	0.8	-							VN89AF						
5.0	1.0	3.0	0.8	-			VN40AF	,		,							
0.5	5.0	12	0.8	3.6				IVN5201CND		IVN5201CNE		IVN5201CNF			TO-220		
2.5	1.0	2.0	0.8	2.0													
2.5	1.0	2.0	0.8	3.6				IVN5001AND		IVN5001ANE		IVN5001ANF			TO-237		

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- DC biasing relatively simple
- Extended safe operating area
- Inherently temperature stable

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers

Note 1. $\mathrm{Tc}=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.

SCHEMATIC DIAGRAM

Body internally connected to source. Drain common to case.

PACKAGE DIMENSIONS PKG: JEDEC TO-3

Dimensions shown in inches and (mm).

INIERESUL
*ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC				IVN6657			χ^{2} /VN6658 ${ }^{\text {a }}$,			UNIT	TEST CONDITIONS	
				MIN	TYP	MAX	MIN	TYP	(MAX			
1	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \\ & \mathbf{I} \\ & \mathbf{C} \end{aligned}$	BVOSS	Drain Source Breakdown	60	06	- ${ }^{\text {a }}$	$20^{\circ 3}$, 60°		V	$V_{G S}=0, I D=10 \mu \mathrm{~A}$	
2				60	\%	\% 5	903				VGS $=0, \mathrm{ID}=2.5 \mathrm{~mA}$	
3		VGS(th)	Gate Threshold Voltage	0.8	3 ${ }^{2}$	20,	0.8		2.0		$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	
4				-	0.5	$+100$		0.5	100	nA	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
5		IGSs ${ }^{\text {. }}$	Gate-Body Leakage		\square^{2+14}	5400			500		$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
6		IDSS	Zero Gate Voltage Drain Current	$x^{4 c^{2}}$	N^{5}	10			10	$\mu \mathrm{A}$	$V_{D S}=$ Max. Rating, $\mathrm{V}_{\mathrm{GS}}=0$	
7				x^{23}		500			. 500		$V_{D S}=0.80$ Max. Rating, $V_{G S}=0, T_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
8					100			100		nA	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
9		ID (on).	ON-State Drain Current	1.0	2		1.0	2		A	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	(Note 1)
10		Vosion)	Drain-Source Saturation Voltage	.	0.3			0.4		V	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{ID}=0.1 \mathrm{Amp}$	
11					1.0	1.5		1.1	1.6		$\mathrm{VGS}=5 \mathrm{~V}, \mathrm{ID}=0.3 \mathrm{Amp}$	
12					0.9			1.3			$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{Amp}$	
13					2.2	3.0		2.2	4.0		VGS $=10 \mathrm{~V}, 1 \mathrm{D}=1.0 \mathrm{Amp}$	
14		rDS ${ }^{\text {a }}$)	Static Drain-Source ON-State Resistance		2.2	3.0		2.2	4.0	Ω	$V_{G S}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{Amp}$	
15	$\begin{aligned} & \mathbf{D} \\ & \mathbf{Y} \\ & \mathbf{N} \\ & \mathbf{A} \\ & \mathbf{M} \\ & \mathbf{I} \\ & \mathbf{C} \end{aligned}$	ras(on)	Small-Signal Drain-Source ON-State Resistance		2,2	3.0		2.2	4.0		$V G S=10 \mathrm{~V}, I_{D}=1.0, f=1 \mathrm{kHz}$	
16		gis	Forward Transconductance	170	250		170	250		mU	$\mathrm{VDS}=24 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{Amp}$	
17		Ciss	Input Capacitance			50		.	50	pF	$V_{G S}=0, V_{D S}=24 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	(Note 2)
18		$\mathrm{C}_{\text {ds }}$	Drain-Source Capacitance			40			40			
19		Crss	Reverse Transfer Capacitance			10			10		$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~V}_{\text {DS }}=24 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	
20		Crss	Reverse Transfer Capacitance			35.	.		35		$V_{G S}=0, V_{\text {DS }}=0, f=1.0 \mathrm{MHz}$	
21		tdion)	Turn-ON Delay Time		2	5		2	5	ns	,	
22		tr_{r}	Rise Time		2.	5		2	5			
23		td ${ }_{\text {off }}$)	Turn-OFF Delay Time		2	5		2	5			
24		t_{f}	Fall Time		2	5		2	5			

Note 1. Pulse test $-80 \mu \mathrm{sec}$ pulse, 1% duty cycle.
Note 2. Sample test.

THERMAL RESPONSE

POWER DISSIPATION vs CASE TEMPERATURE

DC SAFE OPERATING REGION

$$
\mathrm{TC}=25^{\circ} \mathrm{C}
$$

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- DC biasing relatively simple
- Extended safe operating area
- Inherently temperature stable

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers
ABSOLUTE MAXIMUM RATINGS($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
VN30AA, VN35AA 35 V
VN67AA 60V
VN89AA 80V
VN90AA 90 V
Drain-gate Voltage
VN30AA, VN35AA 35 V
VN67AA 60 V
VN89AA 80 V
VN90AA 90 V
Continuous Drain Current (see note 1) 2.4A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current 2.0 mA
Peak-gate Forward Current 100 mA
Peak-gate Reverse Current 100 mA
Gate-source Forward (Zener) Voltage $+15 \mathrm{~V}$
Gate-source Reverse (Zener) Voltage -0.3V
Thermal Resistance, Junction to Case $5.0^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature 25W
Linear Derating Factor $200 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec) $+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{Tc}=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.

SCHEMATIC DIAGRAM

Body internally connected to source Drain common to case

PACKAGE DIMENSIONS PKG: JEDEC to-3

Dimensions shown in inches and (mm).

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

				VN30AA :			VN35AA			VN67AA ${ }^{\text {² }}$			VN89AA			VN90AA			UNIT	TEST CONDITIONS
			ARACTERIS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
1	STATIC	BVoss	Drain Source Breakdown	'35	4	-s.	35	1	6^{6+5}	\%60			80		\checkmark	90			V	$I_{0}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {GS }}=0$
2		VGS ${ }^{\text {(th) }}$	Gate Threshold Voitage	0.8	1.2	${ }^{4}$	08.	9. 1.2	$6^{3}+$	0.8	1.2		- 0.8	1.2		0.8	1.2			$I_{D}=1.0 \mathrm{~mA}, V_{D S}=V_{G S}$
3		IGss	Gate-Body Leakage	-	0.01	0.5	5	+0.01	0.5		0.01	0.5		0.01	0.5		0.01	0.5	$\mu \mathrm{A}$	$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$
4		IDSS	Zero Gate Voltage Drain Current	\% ${ }^{\text {c }}$	$\cdots 8^{-1)^{\circ}}$	10.	x^{3}	-	10			10		\cdots	10			10		$V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
5		Rosion ${ }^{1}$	Drain-Source ON-State		- ${ }^{\text {8\% }}$	6.0			4.5			5.1			5.1			6.0	Ω.	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{ID}=300 \mathrm{~mA}$
			Resistance (Note 1)	\%	2.2	5.0		2.2	2.5		2.2	3.5		2.2	4.5		22	5.0		$V_{G S}=10 \mathrm{~V}, I_{D}=1.0 \mathrm{~A}$
6		Idon'	ON-State Drain Current (Note 1)	1.0	+ 2.0		1.0	2.0		1.0	2.0		1.0	2.0		1.0	2.0		A	$V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
7	$\begin{gathered} \mathbf{Y} \\ \mathbf{N} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{I} \\ \mathbf{C} \end{gathered}$	9's	Forward Transconductance (Note 1)	150	250	,	150	250		150	250		150	250		150	250	-	mu	$V_{D S}=25 \mathrm{~V}, 1 \mathrm{l}=0.5 \mathrm{~A}$
8		Ciss	Input Capacitance (Note 2)			50			50			50			50			50		
9		Crss	Reverse Transfer Capacitance (Note 2)		,	10			10			10			10		.	10	pF	$V_{G S}=0, V_{D S}=24 V$
10		Coss	Common Source Output Capacitance (Note 2)			40		- \cdot	40			40			40			40		$f=1.0 \mathrm{MH}$
11		ton	Turn-ON Time (Note 2)			10			10			10			10			10		
12		tolt	Turn-OFF Time (Note 2)			10			10			10			10			10	ns	.

Note 1. Pulse Test - $80 \mu \mathrm{~s}, 1 \%$ duty cycle.
Note 2. Sample Test.
THERMAL RESPONSE

POWER DISSIPATION vs CASE TEMPERATURE

DC SAFE OPERATING REGION
$\mathrm{TC}=25^{\circ} \mathrm{C}$

VN35AJ, VN66AJ, VN67AJ, VN98AJ, VN99AJ n-Channel Enhancement-mode VMOS Power FETs
 PRELIMINARY

FEATURES

- High speed, high current switching
- High gain-bandwidth product
- Inherently temperature stable
- Extended safe operating area
- DC biasing relatively simple
- Requires almost zero current drive

APPLICATIONS

- High current analog switches
- RF power amplifiers
- Laser diode pulsers
- Line drivers
- Logic buffers
- Pulse amplifiersABSOLUTE MAXIMUM RATINGS($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source VoltageVN35AJ35 V
VN66AJ, VN67AJ 60 V
VN98AJ, VN99AJ 90 V
Drain-gate Voltage VN35AJ 35 V
VN66AJ, VN67AJ 60 V
VN98AJ, VN99AJ 90 V
Continuous Drain Current (see note 1) 2.4A
Peak Drain Current (see note 2) 3.0A
Gate-source Forward Voltage $+30 \mathrm{~V}$
Gaie-source Reverse Voltage -30V
Thermal Resistance, Junction to Case $5.0^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature 25W
Linear Derating Factor $200 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating JunctionTemperature Range-55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature(1/16 in. from case for 10 sec)$+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.

VN35AJ, VN66AJ, VN67AJ, VN98AJ, VN99AJ
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC					VN35AJ			VN66AJ VN67AJ			VN98AJ VN99AJ			UNIT	TEST CONDITIONS	
					MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
1		BVDSs	Drain-Source Breakdown		35.	3, ${ }^{\text {a }}$	- ${ }^{2}$	60			90			V	$V_{G S}=0, I_{D}=10 \mu \mathrm{~A}$	
2		VGS ${ }^{\text {th }}$!	Gate-Threshold Voltage '		$0 \% 8$	${ }^{\circ}$	2.0	0.8		2.0	0.8		2.0		$\mathrm{V}_{\text {OS }}=\mathrm{V}_{\mathrm{GS}}, \mathrm{ID}=1 \mathrm{~mA}$	
3			Gate-Body Leakage		+	0.5	100		0.5	100		0.5	100	nA	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
4		IGSS					500			500			500		$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ (Note 2)	
5	S		Zero Gate Voltage Drain Current				10			10			10	$\mu \mathrm{A}$	$V_{\text {DS }}=$ Max. Rating, $V_{G S}=0$	
6	$\begin{aligned} & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \end{aligned}$	Idss			\therefore		500			500			500		$V_{D S}=0.8 \mathrm{Max}$. Rating, $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ (Note 2)	
7	1					100			100			100		nA	V ${ }_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	
8	C	IDion	ON-State Drain Current		1.0	2.0		1.0	2.0		1.0	2.0		A	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{ID}=0.3 \mathrm{~A}$	(Note 1)
9		Vosion	Drain-Source Saturation Voltage	VN66AJ VN98AJ					1.0			1.1		V		
10									2.2	3.0		2.2	4.0		$V_{G S}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$	
11	.			VN35AJ VN67AJ VN99AJ		1.0			1.1			1.2			$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, 1 \mathrm{l}=0.3 \mathrm{~A}$	
12						2.2	2.5		2.2	3.5		2.2	4.5		VGS $=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1.0 \mathrm{~A}$	
13		gts	Forward Transconductance		170	250		170	250		170	250		m ${ }^{\text {d }}$	$V_{D S}=24 \mathrm{~V}, I_{D}=0.5 \mathrm{~A}$	
14	-	Ciss	Input Capacitance			40	50		40	50		40	50	pF	$V_{G S}=0, V_{D S}=24 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	(Note 2)
15	$\begin{aligned} & \mathbf{Y} \\ & \mathbf{N} \\ & \mathbf{A} \end{aligned}$	Coss	Common Source Output Capacitance			38	45		35	40		32	40			
16	M	Crss	Reverse Transfer Capacitance			7	10		6	10		5	10			
17	C	ton	Turn ON Time			3	8		3	8		3	8	ns		
18		toff	Turn OFF Time			3	8		3	8		3	8			

Note 1. Pulse test - 80μ s pulse, 1% duty cycle.
Note 2. Sample test.

POWER DISSIPATION vs CASE TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

$V_{D S}^{1} \stackrel{10}{10} \stackrel{100}{\text { - DRAIN-TO-SOURCE }}$ VOLTAGE (VOLTS)

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- DC biasing relatively simple
- Extended safe operating area
- Inherently temperature stable

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers
ABSOLUTE MAXIMUM RATINGS
($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN6660 60 V
IVN6661 90 V
Drain-gate Voltage IVN6660 60V
IVN6661 90V
Continuous Drain Current (see note 1) 1.2A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current 2.0 mA
Peak-gate Forward Current 100 mA
Peak-gate Reverse Current 100 mA
Gate-source Forward (Zener) Voltage $+15 \mathrm{~V}$
Gate-source Reverse (Zener) Voltage -0.3V
Thermal Resistance, Junction to Case $20^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature 6.25W
Linear Derating Factor $50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Témperature
(1/16 in. from case for 10 sec) $+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{Tc}=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.

Dimensions shown in inches and (mm).

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Note 1. Pulse test -80μ sec pulse, 1% duty cycle.
Note 2. Sample test.

THERMAL RESPONSE

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

$V_{D S}$ - DRAIN-TO-SOURCE VOLTAGE (VOLTS)

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- DC biasing relatively simple
- Extended safe operating area
- Inherently temperature stable
ABSOLUTE MAXIMUM RATINGS($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage VN30AB, VN35AB 35 V
VN67AB 60 V
VN89AB 80V
VN90AB 90 V
Drain-gate Voltage
VN30AB, VN35AB 25 V
VN67AB 60 V
VN89AB 80 V
VN90AB 90V
Continuous Drain Current (see note 1) 1.2A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current 2.0 mA
Peak-gate Forward Current 100 mA
Peak-gate Reverse Current 100 mA
Gate-source Forward (Zener) Voltage $+15 \mathrm{~V}$
Gate-source Reverse (Zener) Voltage -0.3V
Thermal Resistance, Junction to Case $20^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature 6.25W
Linear Derating Factor $50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec) $+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{Tc}=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.

Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.

VN30AB, VN35AB, VN67AB, VN89AB, VN90AB

PRELIMINARY

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers

Dimensions shown in inches and (mm).

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted $)$

CHARACTERISTIC				VN30AB			VN35AB ${ }^{\text {a }}$			VN67AB			F VN89AB.			VN90AB			UNIT	TEST CONDITIONS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYPS	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
1		BVoss	Drain Source Breakdown	35		4	35		6^{6}	60	${ }^{+}$		80			90			V	$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$
2	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{T} \\ & \mathbf{I} \end{aligned}$	VGS(th)	Gate Threshold Voltage	0.8	1.2	5 ${ }^{3}$	0.8	129	0	0.8	1.2		0.8	1.2		0.8	1.2			$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$
3		IGss	Gate-Body Leakage		0.01	0.5	3	0.016	${ }^{0} 0$		0.01	0.5		0.01	0.5		0.01	0.5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$
4		Idss	Zero Gate Voltage Drain Current	,		8^{10}	+	\%	10			10			10			10		$V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
5			Drain-Source ON-State]	60^{6}			4.5			5.1			5.1			6.0	Ω	$\mathrm{VGS}=5 \mathrm{~V}, \mathrm{ID}=300 \mathrm{~mA}$
5		RDSton	Resistance (Note 1)		2.8	5.0		2.2	2.5		2.2	3.5		2.2	4.5		2.2	5.0		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$
6		IDion)	ON-State Drain Current (Note 1)	1.0	2.0		1.0	2.0		1.0	2.0		1.0	2.0		1.0	2.0		A	$V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=10 \mathrm{~V}$
7	$\begin{gathered} \mathbf{D} \\ \mathbf{Y} \\ \mathbf{N} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{1} \\ \mathbf{C} \end{gathered}$	gis	Forward Transconductance		250			250			250			250	,		250		ms	$V_{D S}=25 \mathrm{~V}, I_{D}=0.5 \mathrm{~A}$
8		Ciss	Input Capacitance (Note 2)			50			50			50			50			50		
9		Crss	Reverse Transfer Capacitance (Note 2)		,	10			10			10			10			10.	pF	$V_{G S}=0, V_{D S}=24 \mathrm{~V},$
10		Coss	Common Source Output Capacitance (Note 2)			40			40			40			40			40.		
11		ton	Turn-ON Time (Note 2)			10			10			10			10			10	ns	
12		toff	Turn-OFF Time (Note 2)			10			10			10			10			10		

Note 1. Pulse Test $-80 \mu \mathrm{~s}, 1 \%$ duty cycle.!
Note 2. Sample Test.
THERMAL RESPONSE

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$
$v_{\text {DS }}$ - DRAIN TO SOURCE VOLTAGE (VOLTS)

VN35AK, VN66AK, VN67AK, VN98AK, VN99AK n-Channel Enhancement-mode VMOS Power FETs
 PRELIMINARY

FEATURES

- High speed, high current switching
- High gain-bandwidth product
- Inherently temperature stable
- Extended safe operating area,
- DC biasing relatively simple
- Requires almost zero current drive

APPLICATIONS

- High current analog switches
- RF power amplifiers
- Laser diode pulsers
- Line drivers
- Logic buffers
- Pulse amplifiers

SCHEMATIC DIAGRAM

Body internally connected to source.
Drain common to case.
PACKAGE DIMENSIONS
PKG: JEDEC TO-39

Dimensions shown in inches and (mm).

VN35AK, VN66AK, VN67AK, VN98AK, Y̌N99AK

INTIEREIL
ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

		CHARACTERISTIC			VN35AK			VN66AK VN67AK			GN98AKCVN99AK			UNIT	TEST CONDITIONS	
					MIN	TYP	MAX	MIN	TYR	MAX	MIN	TYP	MAX			
1	$\begin{aligned} & S \\ & T \\ & A \\ & T \\ & I \\ & C \end{aligned}$	BVoss	Drain-Source Breakdown		35	\cdots	\% ${ }^{3}$	60.		${ }^{3} 7$	90			V	$V G S=0, I D=10 \mu \mathrm{~A}$	
2		$\mathrm{V}_{\text {GS }}(\mathrm{th})$	Gate-Threshold Voltage		0.8		2.0	0.8	3^{2}	2.0	0.8		2.0		$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	
3		IGss	Gate-Body Leakage		\%	0.5	1100	S^{3+}	0.5	100		0.5	100	nA	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
4		IGss				${ }_{0}$	500			500			500		$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
5			Zero Gate Voltage Drain Current		4.	-	10			10			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=$ Max. Rating, $\mathrm{V}_{\mathrm{GS}}=0$	
6		Idss			\%	,	500			500			500		$V_{D S}=0.8$ Max. Rating, $V_{G S}=0, T_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
7						100			100			100		nA	$V_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
8		IDIon)	ON-State Drain Current		1.0	2.0		1.0	2.0		1.0	2.0		A	$V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	
9		Vosion)	Drain-Source Saturation Voltage	$\begin{aligned} & \hline \text { VN66AK } \\ & \text { VN98AK } \\ & \hline \text { VN35AK } \\ & \text { VN67AK } \\ & \text { VN99AK } \end{aligned}$					1.0			1.1		V	$V_{G S}=5 \mathrm{~V}, I_{D}=0.3 \mathrm{~A}$ $V_{G S}=10 \mathrm{~V}, I_{D}=1.0 \mathrm{~A}$ $V_{G S}=5 \mathrm{~V}, I_{D}=0.3 \mathrm{~A}$ $V_{G S}=10 \mathrm{~V}, I_{D}=1.0 \mathrm{~A}$	(Note 1)
10									2.2	3.0		2.2	4.0			
11						1.0			1.1			1.2				
12						2.2	2.5		2.2	3.5		2.2	4.5			
13	D	gfs	Forward Transconductance		170	250		170	250		170	250		m ${ }^{\text {d }}$	$V_{D S}=24 \mathrm{~V}, 1 \mathrm{D}=0.5 \mathrm{~A}$	
14		$\mathrm{C}_{\text {iss }}$	Input Capacitance			40	50		40	50		40	50	pF	$V_{G S}=0, V_{D S}=24 V, f=1 \mathrm{MHz}$	(Note 2)
15	Y \mathbf{N} \mathbf{A}	Coss	Common Source Output Capacitance			38	45		35	40		32	40			
16	A	Crss	Reverse Transfer Capacitance			7	10		6	10		5	10			
17	1	ton	Turn ON Time			3	8		3	8		3	8	ns		
18	C	toff	Turn OFF Time			3	8		3	8		3	8			

Note 1. Pulse test -80μ s pulse, 1% duty cycle.
Note 2. Sample test.
THERMAL RESPONSE

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $T C=25^{\circ} \mathrm{C}$

V_{DS} - DRAIN.TO-SOURCE VOLTAGE (VOLTS)

VN40AF, VN67AF, VN89AF n-Channel Enhancement-mode VMOS Power FETs
 PRELIMINARY

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- DC biasing relatively simple
- Extended safe operating area
- Inherently temperature stable
ABSOLUTE MAXIMUM RATINGS($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source VoltageVN40AF40V
VN67AF 60 V
VN89AF 80 V
Drain-gate Voltage VN40AF 40 V
VN67AF 60 V
VN89AF 80 V
Continuous Drain Current (see note 1) 1.7A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current 2.0 mA
Peak-gate Forward Current 100 mA
Peak-gate Reverse Current 100 mA
Gate-source Forward (Zener) Voltage $+15 \mathrm{~V}$
Gate-source Reverse (Zener) Voltage $-0.3 \mathrm{~V}$
Thermal Resistance, Junction to Case $10.4^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature 12W
Linear Derating Factor $96 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec) $+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.

Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers

SCHEMATIC DIAGRAM

Body internally connected to source. Drain common to tab.

PACKAGE DIMENSIONS
PKG: JEDEC TO-202

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C} \text { unless otherwise noted }\right)^{0} 0^{\circ \circ}$

	CHARACTERISTIC			VN40AF			VN67AF			< 0° VN89AF			UNIT	TEST CONDITIONS	
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
1	S A T I C	BVoss	Drain-Source Breakdown	40			60	\cdots	ct ${ }^{+1}$	80			V	$V_{G S}=0,1 D=10 \mu \mathrm{~A}$	
2				40	\% ${ }^{2}$, x^{3}	602	\cdots		80				$V_{G S}=0,1 \mathrm{D}=2.5 \mathrm{~mA}$	
3		VGS(th)	Gate-Threshold Voltage	06	12		0.8	1.2		0.8	1.2			$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	
4		Igss	Gate-Body Leakage	\%	0.01		\%	0.01	10		0.01	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	
5				\%	5s,	100°			100			100		$V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{\text {A }}=125^{\circ} \mathrm{C}$ (Note 2)	
6		IDSS	Zero Gate Voltage Drain Current	$30^{* 8}$	\sim^{23}	10			10			10		$\mathrm{V}_{\text {DS }}=$ Max. Rating, $\mathrm{V}_{\mathrm{GS}}=0$	
7				$p^{2^{2}}$		100			100			100		$V_{D S}=0.8$ Max. Rating, $V_{G S}=0, T_{A}=125^{\circ} \mathrm{C}$ (Note 2)	
8					100			100			100		nA	$V_{\text {DS }}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	
9		IDIon)	ON-State Drain Current	1.0	2		1.0	2		1.0	2		A	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{VGS}=10 \mathrm{~V}$	(Note 1)
10		Vosion ${ }^{\text {l }}$	Drain-Source Saturation Voltage		0.3			0.3			0.4		V	VGS $=5 \mathrm{~V}, \mathrm{ID}=0.1 \mathrm{~A}$	
11					1.0	2.0		1.0	1.7		1.4	1.9		$V_{G S}=5 V_{i} \cdot 10^{\prime}=0.3 \mathrm{~A}$	
12					1.0	.		1.0			1.3			$\mathrm{VGS}^{\text {a }}=10 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{~A}$	
13					2.2	5.0		2.2	3.5		2.2	4.5		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=1.0 \mathrm{~A}$	
14		gm	Forward Transconductance		250			250			250		mU	$\mathrm{VDS}=24 \mathrm{~V}, \mathrm{ID}=0.5 \mathrm{~A}$	
15		Ciss	Input Capacitance			50			50			50	pF	$V_{G S}=0, V_{D S}=25 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	(Note 2)
16	Y	Crss	Reverse Transfer Capacitance			10			10			10			
17	$\begin{aligned} & \mathbf{N} \\ & \mathbf{A} \end{aligned}$	Coss	Common-Source Output Capacitance			50			50			50			
18	M	talon)	Turn-ON Delay Time		2	5		2	5		2	5	ns		
19	C	tr	Rise Time		2	5		2	5		2	5			
20		$t_{\text {d }{ }^{\text {off }} \text { l }}$	Turn-OFF Delay Time		2	5		2	5		2	5			
21		tf_{f}	Fall Time		2	5		2	5		2	5			

Note 1. Pulse test - 80μ s pulse, 1% duty cycle.
Note 2. Sample test.

POWER DISSIPATION vs CASE TEMPERATURE

DC SAFE OPERATING REGION TC $=25^{\circ} \mathrm{C}$

VN46AF, VN66AF, VN88AF n-Channel Enhancement-mode VMOS Power FETs
 PRELIMINARY

FEATURES

- High speed, high current switching
- Current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- DC biasing relatively simple
- Extended safe operating area
- Inherently temperature stable
ABSOLUTE MAXIMUM RATINGS
($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
\qquad
VN66AF... 60 V
VN88AF.. 80 V
Drain-gate Voltage
VN46AF... 40 V
VN66AF... 60 V
VN88AF.. 80 V
Continuous Drain Current (see note 1) 1.7A
Peak Drain Current (see note 2) 3.0A
Continuous Forward Gate Current 2.0 mA
Peak-gate Forward Current 100mA
Peak-gate Reverse Current 100mA
Gate-source Forward (Zener) Voltage 15 V
Gate-source Reverse (Zener) Voltage -0.3V
Thermal Resistance, Junction to Case $10.4^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature . 12 W
Linear Derating Factor $96 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Operating Junction
Temperature Range $\ldots \ldots \ldots \ldots$.
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) . $\ldots \ldots+300^{\circ} \mathrm{C}$

Note 1. $\mathrm{TC}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current interface
- Line drivers
- Logic buffers
- Pulse amplifiers

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Note 1. Pulse test $-80 \mu \mathrm{~s}$ pulse, 1% duty cycle. Note 2. Sample.test.

THERMAL RESPONSE

POWER DISSIPATION vS CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

FEATURES

- High speed, high current switching
- High gain-bandwidth product
- Inherently temperature stable
- Extended Safe Operating Area
- DC biasing relatively simple
- Requires almost zero current drive

PRELIMINARY

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- High gain, broad-band VHF/UHF Amplifiers
- Line drivers
- Logic buffers
- Pulse amplifiers

ABSOLUTE MAXIMUM RATINGS

($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
\qquad
IVN5000SNE, IVN5000SNE 40V
........................ 60 V
IVN5000SNF, IVN5001SNF 80 V
Drain-gate Voltage
IVN5000SND, IVN5001SND . 40V
IVN5000SNE, IVN5001SNE 60V
IVN5000SNF, IVN5001SNF 80V
Continuous Drain Current (see note 1) 0.9A
Peak Drain Current (see note 2) 3.0A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage -30 V
Thermal Resistance, Junction to Case $40^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature
3.13W

Linear Derating Factor
$25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range................. . 55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
(1/16 in. from case for 10 sec)
$+300^{\circ} \mathrm{C}$
Note 1. $\mathrm{Tc}=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.
Note 2. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.

IVN5000SND, IVN5000SNE, IVN5000SNF, IVN50001SND, IVN5001SNE, IVN50001SNF

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$

CHARACTERISTICS					IVN5000SND IVN5001SND			IVN5000SNE IVN5001SNE			IVN5000SNF INV5001SNF			UNIT	TEST CONDITIONS			
					MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
1		BVoss	Drain-Source Breakdown Voltage		40	18		60			80			V	$V_{G S}=0,1 D=10 \mu \mathrm{~A}$			
2		VGS(th)	Gate	IVN5000 Series	0.8	$\mathrm{n}^{43^{3}}$	2.0	0.8	,	2.0	0.8		2.0		$V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$			
3			Threshold Voltage	IVN5001 Series	0.8		3.6	0.8		3.6	0.8		3.6					
4		IGSs Gate-Body Leakage				0.1	10		0.1	10		0.1	10	$n A$	$V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			
5	S						50			50			50		$V_{G S}=, 15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			
6	S 	loss	Zero Gate Voltage Drain Current				10			10			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DS }}=$ Max. Rating, $\mathrm{V}_{\mathrm{GS}}=0$			
7							500			500			500		$V_{\text {DS }}=0.80$ Max. Rating, $V_{G S}=0, T_{A}=+125^{\circ} \mathrm{C}$			
8						20			20			20		nA	$V_{D S}=24 \mathrm{~V}$,			
9		ID (on)	ON-State Drain Current	IVN5000 Series	1.0	1.9		1.0	1.9		1.0	1.9		A	$V_{D S}=24 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$		(Note 1)	
10				IVN5001 Series	1.0	1.9		1.0	1.9		1.0	1.9			$V_{\text {DS }}=24 \mathrm{~V}$,			
11		Vos(on)	Drain-Source Saturation Voltage	IVN5000SND IVN5000SNE IVN5000SNF		1.5			1.5			1.5		V	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{ID}=0.3 \mathrm{~A}$			
12						2.0	2.5		2.0	2.5		2.0	2.5		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, 1 \mathrm{ld}=1.0 \mathrm{~A}$			
13				$\begin{aligned} & \text { IVN5001SND } \\ & \text { INV5001SNE } \\ & \text { IVN5001SNF } \end{aligned}$		1.2			1.2			1.2			$\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}, \mathrm{ID}=0.3 \mathrm{~A}$			
14						1.9	2.5		1.9	2.5		1.9	2.5		$V_{G S}=12 \mathrm{~V}, I_{D}=1.0 \mathrm{~A}$			
15		ros(on)	Static Drain- Source ON Resistance	IVN5000 Series		2.0	2.5		2.0	2.5		2.0	2.5	Ω	$V_{G S}=10 \mathrm{~V}$	$I D_{\text {d }}=1.0$		
16				IVN5001 Series		1.9	2.5		1.9	2.5		1.9	2.5		$V_{G S}=12 \mathrm{~V}$			
17	D	rds(on)	Small-Signal Drain-Source ON Resistance	IVN5000 Series		2.0	2.5		2.0	2.5		2.0	2.5		VGs $=10 \mathrm{~V}$	$\begin{aligned} & I D=1.0 \mathrm{~A} \\ & f=1 \mathrm{KHz} \end{aligned}$		
18				IVN5001 Series		1.9	2.5		1.9	2.5		1.9	2.5		$V_{G S}=12 \mathrm{~V}$			
19	Y	gts	Forward Transconductance		170		280	170	280		170	280		mV	$V_{D S}=24 \mathrm{~V}, \mathrm{ID}^{2}=0.5 \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz}$			
20	N	Ciss	Input Capacitance			40	50		40	50		40	50	pF	$\begin{aligned} & V D S=24 V, V_{G S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$		(Note 2)	
21	A	Coss	Output Capacitance			27	40		27	40		27	40					
22	M	Crss	Reverse Transfe	Capacitance		6	10		6	10		6	10					
23	C	td(on)	Turn-ON Delay Time				5			5			5	ns	See Switching Times Test Circuit		(Note 2)	
24	c	$\mathrm{tr}_{\text {r }}$	Rise Time				5			5			5					
25		td (oft)	Turn-OFF Delay Time				5			5			5					
26		$\mathrm{tf}^{\text {f }}$	Fall Time				5			5			5					

Note 1. Pulse test - $80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

IVN5000SND, IVN5000SNE, IVN5000SNF, IVN50001SND, IVN5001 SNE, IVN50001 SNF

TYPICAL PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted

OUTPUT CHARACTERISTICS

TRANSFER CHARACTERISTIC

CAPACITANCE vs DRAIN-SOURCE VOLTAGE

SATURATION CHARACTERISTICS

NORMALIZED DRAINSOURCE ON RESISTANCE vs TEMPERATURE

OUTPUT CONDUCTANCE vs DRAIN CURRENT

ID(ON) ON DRAIN-CURRENT - (AMPS)

INTMERSIL

DRAIN-SOURCE ON
RESISTANCE vs GATE-SOURCE VOLTAGE
RDS(ON) DRAIN-SOURCE ON RESISTANCE- (OHMS)

TRANSCONDUCTANCE vs
DRAIN CURRENT

TRANSCONDUCTANCE vs GATE-SOURCE VOLTAGE

SWITCHING TIME TEST CIRCUIT

SWITCHING TIME TEST WAVEFORMS

FEATURES

- High speed, high peak current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Inherent protection from thermal runaway
- Reliable, low cost plastic package
ABSOLUTE MAXIMUM RATINGS($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5000AND, IVN5001AND 40 V
IVN5000ANE, IVN5000ANE 60 V
IVN5000ANF, IVN5001ANF 80 V
Drain-gate Voltage
IVN5000AND, IVN5001AND 40 V
IVN5000ANE, IVN5001ANE 60 V
IVN5000ANF, IVN5001ANF 80V
Continuous Drain Current (see note 1) 0.7A
Peak Drain Current (see note 2) 2.0A
Gate-source Forward Voltage $+30 \mathrm{~V}$
Gate-source Reverse Voltage $-30 \mathrm{~V}$
Thermal Resistance, Junction to Case $62.5^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature 2.0W
Linear Derating Factor $16 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range-40 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Lead Temperature(1/16 in. from case for 10 sec)$+300^{\circ} \mathrm{C}$

Note 1. $T C=25^{\circ} \mathrm{C}$; controlled by typical RDS(on) and maximum power dissipation.
Note 2. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.

APPLICATIONS

PRELIMINARY

- LED and lamp drivers
- High gain, wide-band amplifiers
- High speed switches
- Line drivers
- Logic buffers
- Pulse amplifiers

NOTE 1: Leads solder dipped or tin plated.
Dimensions shown in inches and ($\mathbf{m m}$).

IVN5000AND, IVN5000ANE, IVN5000ANF, IVN50001 AND, IVN5001 ANE, IVN50001 ANF

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted) $\mathrm{V}^{\circ} \mathrm{BS}=0$

Note 1. Puise test - $80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

THERMAL RESPONSE

DC SAFE OPERATING REGION

$\mathrm{TC}=25^{\circ} \mathrm{C}$

POWER DISSIPATION DERATING

IVN5000AND, IVN5000ANE, IVN5000ANF, IVN50001 AND, IVN5001 ANE, IVN50001 ANF

TYPICAL PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted $)$

OUTPUT CHARACTERISTICS

TRANSFER CHARACTERISTIC

CAPACITANCE vs DRAIN-SOURCE VOLTAGE

SATURATION CHARACTERISTICS

NORMALIZED DRAINSOURCE ON RESISTANCE vs TEMPERATURE

OUTPUT CONDUCTANCE vs DRAIN CURRENT

IVN5000AND, IVN5000ANE, IVN5000ANF, IVN50001 AND, IVN5001 ANE, IVN50001 ANF

DRAIN-SOURCE ON RESISTANCE vs GATE-SOURCE VOLTAGE

TRANSCONDUCTANCE VS DRAIN CURRENT

TRANSCONDUCTANCE vs GATE-SOURCE VOLTAGE

SWITCHING TIME TEST CIRCUIT

SWITCHING TIME TEST WAVEFORMS

IVN5200KND, IVN5201 KND, IVN5200KNE, IVN5201 KNE, IVN5200KNF, IVN5201 KNF n-Channel Enhancement-mode VMOS Power FETs

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Extremely low drive currents
- Simple, straight-forward DC biasing
- Extended safe operating area
- Inherently temperature stable
NGS($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5200KND, IVN5201KND 40 V
IVN5200KNE, IVN5201KNE 60V
IVN5200KNF, IVN5201KNF 80 V
Drain-gate Voltage
IVN5200KND, IVN5201KND 40 V
IVN5200KNE, IVN5201KNE 60 V
IVN5200KNF, IVN5201KNF 80 V
Continuous Drain Current 5.0A
Peak Drain Current (see note 1) 12A
Gate-source Forward Voltage $+30 \mathrm{~V}$
Gate-source Reverse Voltage $-30 \mathrm{~V}$
Thermal Resistance, Junction to Case $2.5^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)$25^{\circ} \mathrm{C}$ Case Temperature50W
Linear Derating Factor $400 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
ead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec) $+300^{\circ} \mathrm{C}$

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- CMOS and TTL to high current logic
- High current line drivers
- Motor controllers
- Power amplifiers

IVN5200KND, IVN5201 KND, IVN5200KNE, IVN5201 KNE, IVN5200KNF, IVN5201 KNF

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise n oted), $V_{B S}=0$

Note 1. Pulse test $-80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

OUTPUT CHARACTERISTICS

TRANSFER CHARACTERISTIC

CAPACITANCE vs DRAIN-SOURCE VOLTAGE

$\mathrm{V}_{\text {DS }}$ - DRAIN-SOURCE VOLTAGE (VOLTS)

SATURATION CHARACTERISTICS

NORMALIZED DRAINSOURCE ON RESISTANCE vs TEMPERATURE

OUTPUT CONDUCTANCE vs DRAIN CURRENT

IVN5200KND, IVN5201 KND, IVN5200KNE, IVN5201 KNE, IVN5200KNF, IVN5201 KNF

DRAIN-SOURCE ON RESISTANCE vs GATE-SOURCE VOLTAGE

TRANSCONDUCTANCEVS

TRANSCONDUCTANCE vs
$\mathrm{R}_{\text {DS(on) }}$ - DRAIN-SOURCE

DRAIN CURRENT

SWITCHING TIME TEST WAVEFORMS

IVN5200TND, IVN5201 TND,
 IVN5200TNE, IVN5201TNE,
 IVN5200TNF, IVN5201 TNF n-Channel Enhancement-mode VMOS Power FETs

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Extended safe operating area
- Inherently temperature stable

ABSOLUTE MAXIMUM RATINGS

($25^{\circ} \mathrm{C}$ unless otherwise noted)

Drain-source Voltage

IVN5200TND, IVN5201TND 40V

IVN5200TNE, IVN5201TNE 60V
IVN5200TNF, IVN5201TNF . 80V
Drain-gate Voltage
-IVN5200TND, IVN5201TND 40V
IVN5200TNE, IVN5201TNE 60V
IVN5200TNF, IVN5201TNF . 80V
Continuous Drain Current (see note 1) 4.0A
Peak Drain Current (see note 2) 10A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage 30 V
Thermal Resistance, Junction to Case $10^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature . 12.5 W
Linear Derating Factor . $100 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature'
($1 / 16 \mathrm{in}$. from case for 10 sec) $\ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$
Note 1. $\mathrm{TC}=25^{\circ} \mathrm{C}$; controlled by typical $\mathrm{RDS}(o n)$ and maximum power dissipation.
Note 2. Pulse width $80 \mu \mathrm{sec}$, duty cycle 1.0%.

APPLICATIONS

- High efficiency switching power supplies
- Off-line switching regulators
- High speed, high current switches
- Line drivers
- Logic buffers
- High peak current pulse amplifiers

Body internally connected to source
Drain common to case
PACKAGE DIMENSIONS
PKG: JEDEC TO-39

Dimensions shown in inches and (mm).

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C} \text { unless otherwise noted }\right)^{\circ} V_{B S}^{\circ}=0$

Note 1. Pulse test $-80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

OUTPUT CHARACTERISTICS

TRANSFER CHARACTERISTIC

V_{GS} - GATE-SOURCE VOLTAGE (VOLTS)

CAPACITANCE vs DRAIN-SOURCE VOLTAGE

SATURATION CHARACTERISTICS

NORMALIZED DRAINSOURCE ON RESISTANCE vs TEMPERATURE

OUTPUT CONDUCTANCE vs DRAIN CURRENT

IVN5200TND, IVN5201TND, IVN5200TNE,
 IVN5201 TNE, IVN5200TNF, IVN5201TNF

DRAIN-SOURCE ON RESISTANCE vs

 GATE-SOURCE VOLTAGETRANSCONDUCTANCE vs DRAIN CURRENT

TRANSCONDUCTANCE vs GATE-SOURCE VOLTAGE

SWITCHING TIME TEST CIRCUIT

SWITCHING TIME TEST WAVEFORMS

IVN5200HND, IVN5201 HND, IVN5200HNE, IVN5201 HNE, IVN5200HNF, IVN5201 HNF n-Channel Enhancement-mode VMOS Power FETs
 PRELIMINARY

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Extended safe operating area
- Inherently temperature stable

APPLICATIONS

- Switching power supplies
- DC to DC inverters
- Logic buffers
- Line drivers
- Motor controllers
- Power amplifiers
ABSOLUTE MAXIMUM RATINGS
($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5200HND, IVN5201HND 40V
IVN5200HNE, IVN5201HNE . 60V
IVN5200HNF, IVN5201HNF 80 V
Drain-gate Voltage
IVN5200HND, IVN5201HND 40V
IVN5200HNE, IVN5201HNE . 60V
IVN5200HNF, IVN5201HNF 80V
Continuous Drain Current . 5.0A
Peak Drain Current (see note 1) 12A
Gate-source Forward Voltage +30 V
Gate-source Reverse Voltage 30 V
Thermal Resistance, Junction to Case $4.17^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below)
$25^{\circ} \mathrm{C}$ Case Temperature
.30W
Linear Derating Factor $240 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction
Temperature Range $\ldots \ldots \ldots \ldots \ldots . . .$.
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature
($1 / 16 \mathrm{in}$. from case for 10 sec)
$+300^{\circ} \mathrm{C}$

Note Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.

IVN5200HND, IVN5201 HND, IVN5200HNE, IVN5201 HNE, IVN5200HNF, IVN5201 HNF

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $\mathrm{V}_{\mathrm{BS}}=0$

CHARACTERISTICS					IVN5200HND IVN5201HND			IVN5200HNEIVN5201HNE			IVN5200HNF INV5201HNF			UNIT	TEST CONDITIONS	
					MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX			
1		BVoss	Drain-Source Breakdown Voltage		40	\cdots		60			80		-	V	$V_{G S}=0, I D=100 \mu \mathrm{~A}$	
2			Gate Threshold Voltage	IVN5200 Series	0.8	2^{2}	2.0	0.8		2.0	0.8		2.0		$V_{D S}=V_{G S}, I_{D}=5 \mathrm{~mA}$	
3				IVN5201 Series	0.8		3.6	0.8		3.6	0.8		3.6			
4		IGss	Gate-Body Leakage			0.2	20		0.2	20		0.2	20	$n \mathrm{~A}$	$V_{G S}=12 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	
5							$\cdot 100$			100			100		$V_{G S}=12 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \mathrm{~T}_{\text {A }}=+125^{\circ} \mathrm{C}$	
6		Ioss	Zero Gate Voltage Drain Current				100			100			100	$\mu \mathrm{A}$	$V_{D S}=$ Max. Rating, $V_{G S}=0$	
7							5.0			5.0			5.0	mA	$V_{\text {DS }}=0,80$ Max. Rating, $V_{G S}=0, T$	$=+125^{\circ} \mathrm{C}$
8						100			100			100		nA	$V_{\text {DS }}=24 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	
9		IDon.	ON-State Drain Current	IVN5200 Series	5.0	10		5.0	10		5.0	10		A	$V_{D S}=24 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}$	(Note 1)
10				IVN5201, Series	5.0	10		5.0	10		5.0	10			$V_{\text {DS }}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V}$	
11			Drain-Source	IVN5200HND		1.5			1.5			1.5		V	$V_{G S}=5 \mathrm{~V}, \mathrm{ID}=2.0 \mathrm{~A}$	
12		Vosion		IVN5200HNF		1.9	2.5		1.9	2.5		1.9	2.5		$V_{G S}=10 \mathrm{~V}, \mathrm{ID}=5.0 \mathrm{~A}$	
13				IVN5201HND INV5201HNE		1.2			1.2			1.2			$\mathrm{V}_{\mathrm{GS}}=7 \mathrm{~V}, 1 \mathrm{D}=2.0 \mathrm{~A}$	
14				IVN5201HNF		1.8	2.5		1.8	2.5		1.8	2.5		$V_{G S}=12 \mathrm{~V}, \mathrm{ID}=5.0 \mathrm{~A}$	
15			Static Drain-	IVN5200 Series		0.38	0.50		0.38	0.50		0.38	0.50	Ω	$V_{G S}=10 \mathrm{~V}$	
16			Resistance	IVN5201 Series		0.36	0.50		0.36	0.50		0.36	0.50		$V_{G S}=12 \mathrm{~V}$	
17		rdsion	Small-Signal Drain-Source ON Resistance	IVN5200 Series		0.38	0.50		0.38	0.50		0.38	0.50		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \quad \mathrm{ID}=5.0 \mathrm{~A}$	
18				IVN5201 Series	.	0.36 .	0.50		0.36	0.50		0.36	0.50		$V_{G S}=12 \mathrm{~V}, \mathrm{f}=1 \mathrm{KHz}$	
19		gis	Forward Transconductance		1.0	1.8		1:0	1.8		1.0	1.8		mho	$V_{D S}=24 \mathrm{~V}, \mathrm{ID}=5.0 \mathrm{~A}, \mathrm{f}=1 \mathrm{KHz}$	
20	N	$\mathrm{C}_{\text {Iss }}$	Input Capacitance			210	250		210	250		210	250	pF	$\begin{aligned} V_{D S} & =24 \mathrm{~V}, V_{G S}=0 \\ f & =1 \mathrm{MHz} \end{aligned}$	(Note 2)
21		Coss	Output Capacitance			160	200		160	200		160	200			
22	M	Crss	Reverse Transfer Capacitance			45	60		45	60		45	60			
23	1	td'on	Turn-ON Delay Time				20			20			20	ns	See Switching Times Test Circuit $I_{D}=4.0 \mathrm{~A}$	(Note 2)
24	C	tr	Rise Time				20			20			20			
25		td ${ }_{\text {d }}$ ff ${ }^{\text {d }}$	Turn-OFF Delay Time				20			20			20			
26		${ }_{\text {t }}$	Fall Time				20			20			20			

Note 1. Pulse test $-80 \mu \mathrm{sec}, 1 \%$ duty cycle
Note 2. Sample test.

THERMAL RESPONSE

POWER DISSIPATION vs CASE TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

IVN5200HND, IVN5201 HND, IVN5200HNE, IVN5201 HNE, IVN5200HNF, IVN5201 HNF

OUTPUT CHARACTERISTICS

TRANSFER CHARACTERISTIC

CAPACITANCE vs DRAIN-SOURCE VOLTAGE

V_{DS} - DRAIN-SOURCE VOLTAGE (VOLTS)

SATURATION CHARACTERISTICS

NORMALIZED DRAIN-
SOURCE ON RESISTANCE vs TEMPERATURE

OUTPUT CONDUCTANCE vs DRAIN CURRENT

DRAIN-SOURCE ON RESISTANCE vs GATE-SOURCE VOLTAGE

SWITCHING TIME TEST CIRCUIT

SWITCHING TIME TEST WAVEFORMS

IVN5201CND, IVN5201CNE, IVN5201CNF n-Channel Enhancement-mode VMOS Power FETs

PRELIMINARY

FEATURES

- High speed, high current switching
- Inherent current sharing capability when paralleled
- Directly interfaces to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Extended safe operating area
- Reliable, low cost plastic package

APPLICATIONS

- Deflection coil drivers
- Off-line switching regulators
- Power amplifiers
- DC to DC inverters
- Motor controllers
- High current line drivers
ABSOLUTE MAXIMUM RATINGS($25^{\circ} \mathrm{C}$ unless otherwise noted)
Drain-source Voltage
IVN5201CND 40V
IVN5201CNE 60V
IVN5201CNF 80V
Drain-gate Voltage
IVN5201CND 40V
IVN5201CNE 60 V
IVN5201CNF 80V
Continuous Drain Current 5.0A
Peak Drain Current (see note 1) 12A
Gate-source Forward Voltage $+30 \mathrm{~V}$
Gate-source Reverse Voltage $-30 \mathrm{~V}$
Thermal Resistance, Junction to Case $4.17^{\circ} \mathrm{C} / \mathrm{W}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature 30W
Linear Derating Factor $240 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction-40 to $+150^{\circ} \mathrm{C}$
Storage Temperature Range -40 to $+150^{\circ} \mathrm{C}$
Lead Temperature($1 / 16 \mathrm{in}$. from case for 10 sec)$+300^{\circ} \mathrm{C}$

Note 1. Maximum pulse width $80 \mu \mathrm{sec}$, maximum duty cycle 1.0%.

ELECTRICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted), $V_{\mathrm{BS}}=0$

Note 1. Pulse test - $80 \mu \mathrm{sec}, 1 \%$ duty cycle.
Note 2. Sample test.

POWER DISSIPATION vs CASE OR AMBIENT TEMPERATURE

DC SAFE OPERATING REGION $\mathrm{TC}=25^{\circ} \mathrm{C}$

TYPICAL PERFORMANCE CURVES $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

OUTPUT CHARACTERISTICS

$V_{\text {DS }}$ - DRAIN-SOURCE VOLTAGE (VOLTS)

TRANSFER CHARACTERISTIC

CAPACITANCE vs DRAIN-SOURCE VOLTAGE

SATURATION CHARACTERISTICS

NORMALIZED DRAINSOURCE ON RESISTANCE vs TEMPERATURE

OUTPUT CONDUCTANCE vs DRAIN CURRENT

DRAIN-SOURCE ON RESISTANCE vs
GATE-SOURCE VOLTAGE

$\mathrm{R}_{\text {DS(on) }}$ - DRAIN-SOURCE

TRANSCONDUCTANCE VS. DRAIN CURRENT~

TRANSCONDUCTANCE vs GATE-SOURCE VOLTAGE

SWITCHING TIME TEST CIRCUIT

SWITCHING TIME TEST WAVEFORMS

Analog Switches and Cates

Multiplexers

IH6108	$3-6$
IH6116	$3-12$
IH6208	$3-18$
IH6216	$3-24$
Analog Switch	
Drivers	
D112/113/120/121	$3-30$
D123, D125	$3-34$
D129	$3-38$

Analog Switches

 with Drivers| DG111/112 | $3-40$ |
| :--- | :--- |
| DG116/118/123/125 | $3-44$ |
| DG120/121 | $3-48$ |

DG116/118/123/125
DG120/121
DG126A Family
DG139A Family
DG180-191
DG426A Family
DG439A Family
IH1181-185, 187-191
IH200
IH201/202
IH5001/2
IH5003/4
IH5005-7
H5509-24
H55025-38
IH5040-51
IH5052/3
IH5140-45
IH401/401A
$3-52$
$3-56$
$3-60$
$3-64$
$3-68$
$3-72$
$3-78$
$3-81$
$3-84$
$3-86$
$3-88$
$3-92$
$3-98$
$3-104$
$3-114$
$3-122$
$3-130$

3-52 3-56 3-64 3-68 3-72 3-78 3-81 3-84 3-86 3-88 3-92 3-98 3-104 3-114 3-130

Analog Switches without Drivers

G115/123	$3-135$
G116-119	$3-139$
G125-132, G1330/40	$3-143$
50/60	

MM450/550, MM451/551.
MM452/552, MM455/555 3-145
(CMOS or TTL to higher levels)
Digital Translater/Analog

Driver

 IH6201
Analog Switches with Driver

Electrical Characteristics @ $+25^{\circ} \mathrm{C}$-Military Temperature Devices

Type	No. of Channels	Device No.	Switch Technology	$\begin{gathered} \mathrm{r}_{\mathrm{OS}(\mathrm{On})} \\ \Omega \\ \max (1) \end{gathered}$	$I_{D \text { (off) }}$ nA max	$\begin{gathered} \mathbf{t}_{\mathrm{on}} \\ \boldsymbol{\mu} \mathbf{S} \\ \max \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathrm{off}} \\ \mu \mathbf{S} \\ \max \end{gathered}$	Logic Input		$\begin{gathered} \text { Power } \\ \text { Consumption } \\ \mathrm{mW} \\ \hline \end{gathered}$
								Logic Level	$\begin{aligned} & \hline \text { Input } \\ & \text { Typ(2) } \end{aligned}$	
SPDT	1	DG188	N-JFET	75	0.1	0.25	0.13	DTL, TTL, RTL	(3)	80
		DG443A	N-JFET	80	5.0	0.5	1.0	DTL, TTL, RTL	(3)	175
		DG444A	N-JFET	35	5.0	0.5	1.0	DTL, TTL, RTL	(3)	175
		DG446A	N-JFET	15	15.0	0.75	1.25	DTL, TTL, RTL	(3)	175
		DG461A	N-JFET	20	15.0	0.75	1.25	DTL, TTL, RTL	(3)	175
		DG462A	N-JFET Vara FET	100 30	5.0 0.1	0.5 0.25	1.0 0.13	DTL, TTL, RTL ${ }^{\text {DTL, TTL, RTL, CMOS, PMOS, TTL High Level }}$	(3)	175 .350
		lH187	Vara FET	75	0.1	0.25	0.13 0.13	DTL, TTL, RTL, CMOS, PMOS, TTL High Level	(3)	. 350
		IH5042	CMOS	75	1.0	0.5	0.25 .	DTL, TTL, RTL, PMOS, CMOS	(3)	. 350
		IH5050	CMOS	35	1.0	0.25	0.15 .	DTL, TTL, RTL, PMOS, CMOS	(3)	. 350
	2	IH5142	CMOS	75	1.0	0.08	0.05	TTL, CMOS	(3)	450
		DG189	N-JFET	10	10.0	0.3	0.25	DTL, TTL, RTL	(3)	150
		DG1910	N -JFET	30	1.0	0.15	0.13	DTL, TTL, RTL	(3)	150
		DG191	N-JFET	75	1.0	0.25	0.13	DTL, TTL, RTL	(3)	150
		IH5043	CMOS	75	1.0	0.5	0.25	DTL, TTL, RTL, PMOS, CMOS	(3)	. 350
		IH5051	CMOS	35	1.0	0.25	0.15	DTL, TTL, RTL, PMOS, CMOS	(3)	. 350
		1H190	CMOS	30	0.1	0.25	0.13	TTL, CMOS, PMOS, TTL High Level	(3)	. 350
		IH191	CMOS	75	0.1	0.25	0.13	TTL; CMOS, PMOS, TTL High Level	(3)	. 350
		IH5143	CMOS	75	1.0	0.08	0.05	TTL, CMOS	(3)	450
DPST	1	IH5044 IH5144 DG126A DG129A DG140A	CMOS CMOS N-JFET N -JFET N -JFET	$\begin{aligned} & 75 \\ & 75 \\ & 80 \\ & 30 \\ & 10 \end{aligned}$	$\begin{array}{r} 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 10.0 \end{array}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.3 \\ & 0.3 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 0.8 \\ & 0.8 \\ & 1.25 \end{aligned}$	DTL, TTL, RTL, CMOS, PMOS TTL, CMOS DTL, TTL, RTL DTL, TTL, RTL DTL, TTL, RTL	$\begin{aligned} & \mathrm{hi} \\ & \mathrm{hi} \\ & \mathrm{hi} \\ & \mathrm{hi} \\ & \mathrm{hi} \end{aligned}$	
	1									.350 450
	2									175
										175
										175
		DG153A	N-JFET	15	10.0	0.5	1.25	DTL, TTL RTL	hi	175
		DG154A	N-JFET	50	2.0	0.3	0.8	DTL, TTL, RTL	hi	175
		DG183	N-JFET	10	10.0	0.3	0.25	DTL, TTL, RTL	hi	150
		DG184	N -JFET	30	1.0	0.15	0.13	DTL, TTL, RTL	hi	150
		DG185	N-JFET	75	1.0	0.25	0.13	DTL, TTL, RTL	hi	150
		$\begin{aligned} & \text { DG426A } \\ & \text { DG429A } \\ & \text { DG440A } \\ & \text { DG453A } \\ & \text { DG454A } \end{aligned}$	N -JFET N -JFET N -JFET N-JFET N -JFET	$\begin{array}{r} 80 \\ 35 \\ 15 \\ 20 \\ 100 \end{array}$	$\begin{array}{r} 5.0 \\ 5.0 \\ 15.0 \\ 15.0 \\ 5.0 \end{array}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.75 \\ & 0.75 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.25 \\ & 1.25 \\ & 1.0 \end{aligned}$	DTL, TTL, RTL DTL, TTL, RTL DTL, TTL, RTL DTL, TTL, RTL DTL, TTL, RTL	hihihihihi	$\begin{aligned} & 175 \\ & 175 \\ & 175 \\ & 175 \\ & 175 \end{aligned}$
		IH184 IH185 IH5045. IH5049 IH5145	Vara FET Vara FET CMOS CMOS CMOS	$\begin{aligned} & 30 \\ & 75 \\ & 75 \\ & 35 \\ & 75 \end{aligned}$	0.1	0.25	0.13	DTL, TTL, RTL, CMOS, PMOS DTL, TTL, RTL, CMOS, PMOS DTL, TTL, RTL, PMOS, CMOS DTL, TTL, RTL, PMOS, CMOS TTL, CMOS	hihihihihi	$\begin{array}{r} .350 \\ .350 \\ .350 \\ .350 \\ 450 \end{array}$
					0.1	0.25	0.13			
					1.0	. 0.5	0.25			
					1.0	0.25	0.15			
					1.0	0.08	0.05			
	3	$\begin{aligned} & \text { DG120 } \\ & \text { DG121 } \\ & \text { DG139A } \\ & \text { DG142A } \\ & \text { DG145A } \end{aligned}$	P-MOS FET P-MOS FET N -JFET N -JFET N -JFET	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	-3.0	0.3	2.0		hilo	- $\begin{aligned} & 150 \\ & 165\end{aligned}$
					-3.01.0	0.3	2,00.8			
DPDT	1			$\begin{aligned} & 30 \\ & 80 \\ & 10 \end{aligned}$		0.4		DTL, TTL, RTL DTL., TTL, RTL	(3)	- 175
					1.0	0.4	0.8	DTL, TTL, RTL	(3)	175
					10.0	0.5	1.25	DTL, TTL, RTL	(3)	175
		$\begin{aligned} & \text { DG163A } \\ & \text { DG164A } \\ & \text { DG439A } \\ & \text { DG442A } \\ & \text { DG445A } \end{aligned}$	N-JFET N -JFET N -JFET N -JFET N -JFET	15	10.0	0.5	1.25	DTL, TTL, RTL	(3)	175
				50	2.0	0.4	0.8	DTL, TTL, RTL	(3)	175
				35	5.0	0.5	1.0	DTL; TTL, RTL	(3)	175
				80	5.0	0.5	1.0	DTL, TTL, RTL	(3)	175
				15	15.0	0.75	1.25	DTL, TTLQ, RTL $\because \cdots$	(3)	175
		DG463A	N-JFET	20	15.0	- 0.75	1.25	DTL, TTL, RTLDTL, TTL, RTL	(3)	175
		DG464A	N-JFET	100	5.0	0.5	1.0			175
		IH5046	CMOS CMOS CMOS	$\begin{array}{r} 75 \\ 75 \\ 400 \end{array}$	1.0	0.5	0.25	DTL, TTL, RTL, CMOS, PMOS	(3)	.350 .
4PST	1	$\begin{aligned} & \text { IH5047 } \\ & \text { IH6108 } \end{aligned}$			1.0	0.5	0.25	DTL, TTL, RTL, CMOS	$\begin{aligned} & \mathrm{hi} \\ & \mathrm{hi} . \end{aligned}$	- 350
	1 of 8				10.0	1.5	1.0			$\cdots \quad 5$
MUX	1 of 16	IH6116 IH6208 IH6216	CMOS CMOS CMOS	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 5.0 \\ 5.0 \\ \hline \end{array}$	1.5	1.0	DTL, TTL, RTL, CMOS DTL, TTL, RTL, CMOS DTL, TTL, RTL, CMOS	hihihi	5
	$20{ }^{2} 8$					1.5	1.0			5
	2 of 16					1.5	1.0			5

Multi-Channel FET Switches

Electrical Characteristics @ +25 ${ }^{\circ} \mathrm{C}$-Military Temperature Devices

Type	No. of Channels	Device No.	Switch Technology	ohms $^{r_{\text {Ps }}(0 n)}$ $\max (4)$ ohms $\max (1)$		$I_{D \text { (off) }}$ na max	$\begin{gathered} \mathbf{t}_{\text {on }} \\ \text { ns } \\ \max ^{*} \end{gathered}$	$\begin{gathered} \mathbf{t}_{\text {off }} \\ \mathbf{n s s}^{*} \\ \boldsymbol{m a x}^{*} \\ \hline \end{gathered}$	Logic Input		
						Logic Level			type		
	3	$\begin{aligned} & \text { MM-455 } \\ & \text { MM-555 } \\ & \text { G-124 } \\ & \text { G-125 } \\ & \text { G-126 } \end{aligned}$	$\begin{aligned} & \text { P-MOS } \\ & \text { P-MOS } \\ & \text { P-MOS } \\ & \text { N-JFET } \\ & \text { N-JFET } \end{aligned}$	200 200 100 500 250	$\begin{aligned} & \hline 600 \\ & 600 \\ & 450 \\ & 500 \\ & 250 \end{aligned}$		$\begin{gathered} 0.2 \\ 20.0 \\ 2.0 \\ 0.05 \\ 0.05 \end{gathered}$	50 50 100 30 30	$\begin{array}{r} 50 \\ 50 \\ 100 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & \text { P-MOS } \\ & \text { P-MOS } \\ & \text { P-MOS } \\ & -5 \mathrm{~V} \text { PMOS } \\ & -10 \mathrm{~V} \text { PMOS } \end{aligned}$	$\begin{aligned} & \text { lo } \\ & \text { lo } \\ & \text { hi } \\ & \text { hi } \\ & \text { hi } \end{aligned}$
		$\begin{aligned} & \mathrm{G}-127 \\ & \mathrm{G}-128 \\ & \mathrm{G}-129 \\ & \mathrm{G}-130 \\ & \mathrm{G}-131 \end{aligned}$	N-JFET N-JFET N -JFET N-JFET N-JFET	$\begin{array}{r} 90 \\ 45 \\ 500 \\ 250 \\ \quad 90 \end{array}$	$\begin{array}{r} 90 \\ 45 \\ 500 \\ 250 \\ 90 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.05 \\ & 0.05 \\ & 0.1 \end{aligned}$	30 30 30 30 30	$\begin{array}{r} 50 \\ 50 \\ 50 \\ 50 \\ \therefore \quad 50 \end{array}$	$\begin{array}{r} -5 \mathrm{~V} \text { PMOS } \\ -10 \mathrm{~V} \text { PMOS } \\ -5 \mathrm{~V} \text { PMOS } \\ -10 \mathrm{~V} \text { PMOS } \\ -5 \mathrm{~V} \text { PMOSS } \end{array}$	$\begin{aligned} & \mathrm{hi} \\ & \mathrm{hi} \\ & \mathrm{hi} \\ & \mathrm{hi} \\ & \mathrm{hi} \end{aligned}$	
SPST	4	$\begin{aligned} & \mathrm{G}-132 \\ & \mathrm{G}-1330 \\ & \mathrm{G}-1340 \\ & \mathrm{G}-1350 \\ & \mathrm{G}-1360 \end{aligned}$	$\mathrm{N}-\mathrm{JFET}$ N -JFET $\mathrm{N}-\mathrm{JFET}$ $\mathrm{N}-\mathrm{JFET}$ N-JFET	45 20 10 20 10	$\begin{aligned} & 45 \\ & 20 \\ & 10 \\ & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{array}{r} 30 \\ 30 \\ 30 \\ 30 \\ 30 \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} -10 \mathrm{~V} \text { PMOS } \\ -5 \mathrm{~V} \text { PMOS } \\ -10 \mathrm{~V} \text { PMOS } \\ -5 \mathrm{~V} \text { PMOS } \\ -10 \mathrm{~V} \text { PMOS } \end{array}$	hi hi hi hi hi	
	5	MM-451 MM-452 MM-551 MM-552 G-116	P-MOS P-MOS P-MOS P-MOS P-MOS	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \\ & 450 \end{aligned}$	$\begin{array}{r} 0.2 \\ 0.2 \\ 20.0 \\ 20.0 \\ -2.5 \end{array}$	$\begin{array}{r} 50 \\ 50 \\ 50 \\ 50 \\ 100 \end{array}$	$\begin{array}{r} 50 \\ 50 \\ 50 \\ 50 \\ 100 \end{array}$	P-MOS P-MOS P-MOS P-MOS P-MOS	10 10 10 10 10	
Diff	6 2	$\begin{aligned} & \mathrm{G}-117 \\ & \mathrm{G}-115 \\ & \mathrm{G}-118 \\ & \mathrm{G}-123 \\ & \mathrm{MM}-450 \end{aligned}$	P-MOS P-MOS P-MOS P-MOS P-MOS	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 125 \\ & 200 \end{aligned}$	$\begin{aligned} & 450 \\ & 450 \\ & 450 \\ & 500 \\ & 600 \end{aligned}$	$\begin{array}{r} -0.5 \\ -10.0 \\ -3.0 \\ -10.0 \\ 0.2 \end{array}$	$\begin{array}{r} 100 \\ 100 \\ 100 \\ 100 \end{array}$	$\begin{array}{r} 100 \\ 100 \\ 100 \\ 100 \\ 50 \end{array}$	P-MOS P-MOS P-MOS P-MOS P-MOS	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \end{array}$	
SPST	3	$\begin{aligned} & \text { MM-550 } \\ & \text { G-119 } \end{aligned}$	$\begin{aligned} & \text { P-MOS } \\ & \text { P-MOS } \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 450 \end{aligned}$	$\begin{array}{r} 20.0 \\ -1.5 \end{array}$	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & \text { P-MOS } \\ & \text { P-MOS } \end{aligned}$	$\begin{aligned} & \text { lo } \\ & \text { lo } \end{aligned}$	

*These times are dependent on the driver used.

3 Drivers for FET Switches
 Electrical Characteristics @ $+25^{\circ} \mathrm{C}$-Military Temperature Devices

No. of Channels	Device No.	Positive volts	Negative volts	$\begin{gathered} \mathbf{t}_{\text {on }} \\ \mathbf{n s} \\ \mathbf{m a x} \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{nff}} \\ \mathrm{~ns} \\ \max \end{gathered}$	$\begin{gathered} \text { Lo } \\ \text { mA }(\text { Max }) \end{gathered}$	$\begin{gathered} \mathrm{Hi} \\ \mu \mathrm{~A} \text { (Max) } \end{gathered}$	Logic Input Level	$\begin{gathered} \text { Power } \\ \text { Consumption } \\ \text { (mW) } \end{gathered}$
2	D112 D113 D120 D121 IH6201	$\begin{array}{r} +9.9 \\ +9.9 \\ +9.9 \\ +9.9 \\ +14.0 \end{array}$	$\begin{aligned} & -19.2 \\ & -19.2 \\ & -19.2 \\ & -19.2 \\ & -14.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \\ & 200 \end{aligned}$	$\begin{array}{r} 1500 \\ 1500 \\ 600 \\ 600 \\ 300 \end{array}$	$\begin{array}{r} 0.7 \\ 1.0 \\ 0.7 \\ 1.0 \\ 1.0 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \text { TTL } \\ & \text { TTL } \\ & \text { TTL } \\ & \text { TTL } \end{aligned}$	200 200 200 200 .350
4 -6	$\begin{aligned} & \text { D129 } \\ & \text { D123 } \\ & \text { D125 } \end{aligned}$	$\mathrm{V}_{c c}$ $\mathrm{~V}_{\text {cc }}$ V_{cc}	$\begin{aligned} & -19.3 \\ & -19.7 \\ & -19.7 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 1000 \\ 600 \\ 600 \\ \hline \end{array}$	$\begin{array}{r} -0.2 \\ 1.0 \\ 0.7 \end{array}$	$\begin{aligned} & 0.25 \\ & 1.0 \\ & 1.0 \end{aligned}$	TTLIDTL TTLDTL TTL	$\begin{aligned} & 100 \\ & 125 \\ & 300 \end{aligned}$

NOTES:

1. Switch Resistance under worst case analog voltage.
2. Positive logic lo ("O") or hi ("l") voltage at driver input necessary to turn switch on.
3. Logic "O" or "l" can be arbitrarily assigned for double-throw switches.
4. Switch resistance under best case analog voltage.

VARAFET

Type	$\mathbf{r}_{\mathrm{DS}(0 n)}$ Ω max	$\underset{\max }{\mathbf{v}_{\mathrm{v}}}$	$\begin{aligned} & I_{s \text { s off }} \\ & \text { PA } \end{aligned}$ \max	$\mathrm{I}_{\text {DS }}$ mA \min	$\begin{gathered} \mathbf{t}_{\mathrm{non}} \\ \mathrm{~ns} \\ \max \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathrm{off}} \\ \mathrm{~ns} \\ \mathrm{max} \end{gathered}$	Package 4 FETS/Pkg	$\begin{aligned} & \mathbf{V}_{\text {analos }} \\ & \mathbf{V}_{\mathrm{p}, \mathrm{p}} \\ & \mathbf{m i n} \end{aligned}$	$V_{\text {inject }}$ V_{p-p} max
$\begin{aligned} & \text { IH401 } \\ & \text { IH401A } \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	7.5 $5 .$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 45 \mathrm{~min} \\ & 35 \mathrm{~min} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 16 \text { Pin Dip } \\ & 16 \text { Pin Dip } \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$

Notes:

1. Intersil continues to produce the older DG111 family of switches (DG111 through (DG125).

The most significant feature of this family is that it has the maximum number of switches per
package.
2. Intersil also markets devices that consist of drivers only (D112 through D129 and the IH6201) and gates only (G115 through G135, MM450 through MM555 and the IH401).

For switches whose outputs go into the input of an Op Amp:	For switching positive signals only:
```5009 FAMILY VIRTUAL GROUND SWITCH```	$\begin{aligned} & 5025 \text { FAMILY } \\ & \text { POSITIVE SIGNAL SWITCH } \end{aligned}$
Output of switch must go into the virtual ground point of an Op Amp (unless signal is $<0.7 \mathrm{~V}$ ).	Can switch positive signals only unless a translator driver is used.
Features	Features
1. Very low quiescent current	1. Very low quiescent current
2. Does not need driver, can be driven directly by TTL.	2. Does not need driver, can be driven directly by TTL.
3. Low cost.	3. Low Cost
Notes	Notes
1. All switches in 5009 family are SPST.	1. All switches in 5025 family are SPST.
2. Odd numbered devices are driven by TTL open collector logic.	2. All devices can be driven by TTL open collector logic. All devices can be driven by low
3. Even numbered devices are driven by TTL low level logic.	level TTL logic if input signal is less than 1 V .
4. Commonly used for signals going into the inverting input of Op-Amps.	3. Commonly used for signals going into the non-inverting input of Op-Amps.   4. Odd numbered devices have
5009,5010 quad, compensated	. $100 \Omega$ max $r_{\text {ds (on) }} @ 25^{\circ} \mathrm{C}$.
5011,5012 quad, uncompensated 5013,5014 triple, compensated	5. Even numbered devices have 150 max ros (on) @ $25^{\circ} \mathrm{C}$.
-5015,5016 triple, uncompensated	
5017,5018 dual, compensated	5025,5026 quad, common drain
5019,5020 dual, uncompensated	5027,5028 quad.
5021,5022 single, cómpensated	5029,5030 triple, common drain
5023,5024 single, uncompensated	5031,5032 triple.
, .	5033,5034 dual, common drain 5035,5036 dual.   5037,5038 single.

## FEATURES

- Ultra Low Leakage $\leq 100$ pA (Total IDoff)
- ron $<\mathbf{4 0 0}$ ohms over full signal and temperature range
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ analog signal range
- No Latch up or "S.C.R." action
- Break before make switching
- Binary strobe control (3 strobe inputs control 8 channels)
- TTL and CMOS compatible strobe control
- Pin - Pin with DG508 HI-508 \& AD7508


## GENERAL DESCRIPTION

The IH6108 is a CMOS monolithic, one-out-of-8 multiplexer. The part is a plug-in replacement for the DG508. Three line binary decoding is used so that the 8 channels can be controlled by 3 strobe inputs; additionally a fourth input is provided to use as a system enable; if the enable input is 0 V , none of the channels can be turned on. When the enable input is high ( 5 V ) the channels are sequenced by the 3 line strobe inputs. The 3 strobe inputs are controlled by TTL logic or CMOS logic elements; a " 0 " corresponds to any voltage less than 0.8 V and a " 1 " corresponds to any voltage greater than 2.4 V : however the enable input En must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

## FUNCTIONAL DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

VIN (A, En to Ground ............................ -15 V to 15 V
$V_{S}$ or $V_{D}$ to $V_{C C}$. ......................................... $0,-32 V$
$V_{S}$ or $V_{D}-V_{C C}$
$0,32 \mathrm{~V}$
$+V_{c c}$ to Ground 16 V

- Vcc to Ground $-16 \mathrm{~V}$
Current (Any Terminal) ................................. 30 mA
Current (Analog Drain)
20 mA

Current (Analog Source) .............................. 20 mA
Operating Temperature ..................... -55 to $125^{\circ} \mathrm{C}$
Storage Temperature ....................... -65 to $150^{\circ} \mathrm{C}$
Power Dissipation (Package)* ..................... 1200 mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

## ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		MEASURED TERMINAL	$\qquad$	$\begin{gathered} \text { TYP } \\ 25^{\circ} \mathrm{C} \end{gathered}$	MAX LIMITS						UNIT	TEST CONDITIONS   (UNLESS OTHERWISE NOTED) $\begin{gathered} +V_{C C}=15 \mathrm{~V},-V_{C C}=-15 \mathrm{~V}, \text { Ground }=\mathbf{0 V} \\ V_{E_{n}}=+5 \mathrm{~V} \text { (Note 1) } \end{gathered}$		
		M SUFFIX			C SUFFIX									
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$					
ros(ON)			$S$ to D	8	180	300	300	400	350	350	450	$\Omega$	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{IS}=-1.0 \mathrm{~mA}$	Sequence each switch on
		8		150	300	300	400 .	350	350	450	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{Is}=-1.0 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{A}(\mathrm{L})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}(\mathrm{H})}=2.4 \mathrm{~V}$	
	Ards(ON)				20							\%	$\frac{\operatorname{rDS}(O N) M A X-\operatorname{rDS}(O N) M I N}{\operatorname{rDS}(O N) A V G}-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} 10 \mathrm{~V}$	
1	IS(OFF)	S	8	0.002		0.05	50		0.1	50	NA	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	VEn - 0	
T			8	0.002	,	0.05	50		0.1	50		$\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$		
C		D	1	0.03	.	0.1	100		0.2	100		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$		
	HID(OFF)		1	0.03		0.1	100		0.2	100		$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}$		
			8	0.1		0.2	100		0.4	100		$V_{S(\text { AlI }}=V_{D}=10 \mathrm{~V}$	Sequence each switch on $\mathrm{V}_{\mathrm{A}(\mathrm{L})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}(\mathrm{H})}=2.4 \mathrm{~V}$	
	ID(ON)	D	8	0.1		0.2	100		0.4	100		$\mathrm{V}_{S(\text { All }}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		
1    $N$    $P$    $U$    $T$	Ian(on) or	$A_{0}, A_{1}$ or $A_{2}$ Inputs	3	. 01		-10	-30		-10	-30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{A}^{\prime}}=2.4 \mathrm{~V}$ or 0 V		
	IAN(OFF)		3	. 01		10	30		10	30		$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$ or 0 V		
	$12 n$	$\mathrm{A}_{0} \mathrm{~A}_{1}$											All $\mathrm{V}_{\mathrm{A}}=0$ (Strobe pins)	
		$\mathrm{A}_{2}$	3			-10	-30		-10	-30		$V_{E_{n}}-5 \mathrm{~V}$		
		En	1			-10	-30		-10	-30		$V_{\text {En }}$		
	transition	D		0.3		1	1				$\mu \mathrm{S}$	See Fig. 1		
D	topen	D		0.2								See Fig. 2		
Y	ton(En)	D		0.6		1.5						See Fig. 3		
N	toff(En)	D		0.4		1								
A	"OFF" Isolation	D		60		.					dB	$\begin{aligned} & V_{E n}=0, R_{L}=200 \Omega, C_{L}=3 p F, V_{S}=3 \mathrm{VRMS}, \\ & f=500 \mathrm{kHz} \end{aligned}$		
1	CS (OFF)			5							pF	$V_{S}=0$	$\begin{aligned} & V_{E n}-0 \mathrm{~V} . \mathrm{f} \cdot 140 \mathrm{kHz} \text { to } \\ & 1 \mathrm{MHz} \end{aligned}$	
C	CD(OFF)	:		25		.						$\mathrm{V}_{\mathrm{D}}=0$		
	CDS(OFF)			1								$V_{S}=0, V_{D}=0$		
	${ }^{13}\left(+V_{C C}\right)$	$+\mathrm{V}_{\mathrm{CC}}$	1	40		200			1000		$\mu \mathrm{A}$	$V_{\text {En }} \quad 5 \mathrm{~V}$	All $V_{A}-0$ OR 5 V	
	I3 (-V ${ }_{\text {cc }}$ )	$-V_{c c}$	1	2		100			1000					
	113 Standby	$+V_{C C}$	1	1		100			1000					
	13 Standby	-Vcc	1	1		100			1000			$V_{E n} \quad 0$		

NOTE 1: See Section I. Enable Input Strobing Levels.



Figure 2. topen Break-Before-Make Switching Test


Figure 3. $t_{o n}$ and $t_{o f f}$ Switching Test

## IH6108 APPLICATION INFORMATION

## I. Enable Input Strobing Levels

The chip enable input on the H 6108 requires a minimum of +4.5 V to trigger it into the " 1 " state and a maximum of +0.8 V to
trigger it into the " 0 " state. If the chip enable input is being driven from TTL logic, a pull-up resistor is required from the gate output to +5 V supply. The value of this resistor is not critical and can be in the 1 K to $3 \mathrm{~K} \Omega$ range iSee Figure 4 ).


Figure 4. Enable Input Strobing from TTL Logic

## IH6108 APPLICATION INFORMATION (CONT.)

When the En input is driven from CMOS logic, no pullup is necessary. Fig. 5 shows the CD4009 driving the En input.


Figure 5. Enable Input Strobing from CMOS Logic

The Supply Voltage of the CD4009 does affect the switching speed of the IH6108. same is true for TTL Supply Voltage Levels The chart below shows the effect, on tiransition times, of supply varying from +4.5 V to +5.5 V .


The throughput rate can therefore be maximized by using a +5 V to +5.5 V supply for the Enable Strobe Logic.

The cases shown in Figures 4 and 5 deal with enable strobing when expandability to more than eight channels is required. In these cases the En terminal acts as a fourth binary input. If eight channels or less are being multiplexed, the En terminal can be directly connected to +5 V logic supply which would "enable" the IH 6108 at all times.

## IH6108 APPLICATION INFORMATION (CONT.)

## APPLICATIONS

## II. Using the IH6108 with supplies other than $\pm 15 \mathrm{~V}$

The IH6108 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch ros(ON) will increase as the supply voltages decrease. However, the multiplexer error term the product of leakage times rDS(ON) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the chip enable En voltage is at least 0.7 V below $\mathrm{V}_{\mathrm{CC}}$ at all times. If this is not done the binary input strobing levels will not function properly. This may be achieved quite simply by connecting En pin 2 to $+V_{C C}$ pin 13 via a silicon diode as shown in Figure 6. If the IH6108 is hooked up in this type of a configuration a further requirement must be met - the strobe levels at $A_{0}$ and $A_{1}$ must be within 2.5 V of the En voltage to define a
binary " 1 " state. For the case shown in Figure 6 the En voltage is 11.3 V which means that logic high at $A_{0}$ and $A_{1}$ is $=+8.8 \mathrm{~V}$ logic low continues to be $=0.8 \mathrm{~V}$. In this configuration the IH6108 cannot be driven by TTL +5 V , or CMOS $i+5 \mathrm{~V}$, logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies

If the logic and the IH6108 have common supplies the En pin should again be connected to the supply through a silicon diode. In this case tying En to the logic supply directly will not work since it will violate the 0.7 V differential voltage required between $+V_{C C}$ and En on the IH6108 , See Figure 7). A $1 \mu \mathrm{f}$ capacitor can be placed across the diode to minimize switching glitches.


Figure 6. IH6108 Connection Diagram for less than $\pm 15 \mathrm{~V}$ Supply Operation.

## IH6108 APPLICATION INFORMATION (CONT.)



Figure 7. IH6108 Connection Diagram with Enable Input Strobing for less than • 15V Supply Operation

## III. Peak-to-Peak Signal Handling Capability

The IH6108 can handle input signals up to $\pm 14 \mathrm{~V}$ actually -15 V to +14.3 V when it has $\pm 15 \mathrm{~V}$ supplies. The input protection diode prevents the handling of signals up to +15 V .

## PACKAGE DIMENSIONS

16 Pin Ceramic Dual-In-Line Package (DE)


The electrical specifications of the 1 H 6108 are guaranteed for +10 V signals but the specifications have very minor changes for 14 V signals. The notable changes would be slightly lower rosion) and slightly higher leakages.

## 16 Pin Plastic Dual-In-Line Package (PE)



## Analog Multiplexer (One out of 16)

## FEATURES

- Pin Compatible with DG506, HI-506 \& AD7506
- Ultra Low Leakage $\leq 100 \mathrm{pA}$
- $\pm 11 \mathrm{~V}$ analog signal range
- ron $<\mathbf{7 0 0}$ ohms over full signal and temperature range
- Break before make switching
- TTL and CMOS compatible strobe control
- Binary strobe control (4 strobe inputs control 16 channels)
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than $\mathbf{1 0 0} \mu \mathrm{A}$
- No Latch up or "S.C.R." action

FUNCTIONAL DIAGRAM


DECODE TRUTH TABLE

$\mathbf{A}_{3}$	$\mathbf{A}_{2}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	EN	ON SWITCH
$x$	x	x	x	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

Logic " 1 " $=V_{\text {AH }} \geq 3.0 \mathrm{~V}$
Logic " 0 " $=V_{\text {AL }} \leq 0.8 \mathrm{~V}$

## PIN CONFIGURATION



## ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH 6116 MDI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 pin DIP
IH 6116 CDI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin DIP
IH 6116 CPI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin Plastic DIP

## ABSOLUTE MAXIMUM RATINGS



$\mathrm{V}_{1}$ to Ground ........................................... 16 V

Current (Any Terminal) ................................ 30 mA
Current(Analog Drain) .............................. 20 mA

Current(Analog Source) ............................ 20 mA
Operating Temperature $. \ldots \ldots . . \ldots . . . . . . .$.
Storage Temperature ........................ -65 to $150^{\circ} \mathrm{C}$
Power Dissipation (Package)* ...................... 1200 mW
*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

## ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		MEASURED TERMINAL		$\begin{aligned} & \text { TYP } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	MAX LIMITS						UNIT	TEST CONDITIONS   (UNLESS OTHERWISE NOTED) $\begin{gathered} V_{1}=15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \text { Ground }=0 \\ V_{E N}=+5 \mathrm{~V} \text { (Note 1) } \end{gathered}$		
		M SUFFIX			C SUFFIX									
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$					
rDS(ON)			S to D	16	480	600	600	700	650	650	750	$\Omega$	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{Is}=-1.0 \mathrm{~mA}$	Sequence each switch on
		16		300	600	600	700	650	650	750	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.0 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{A}(\mathrm{L})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}(\mathrm{H})}=3 \mathrm{~V}$	
$\left\|\begin{array}{l} s \\ w \end{array}\right\|$	$\Delta \mathrm{rDS}(\mathrm{ON})$				20							\%	$\Delta \mathrm{rDS}(\mathrm{ON})=\frac{\mathrm{rDS}(\mathrm{ON}) \mathrm{MAX}-\mathrm{rDS}(\mathrm{ON}) \mathrm{MIN}}{\operatorname{rDS}(\mathrm{ON}) \mathrm{AVG} .}-10 \mathrm{~V} \leq \mathrm{Vs} 10 \mathrm{~V}$	
		S	, 16	0.01		0.1	50		0.2	50	NA	$V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V}$	$V_{E N}=0$	
T	IS(OFF)		16	0.01		0.1	50		0.2	50		$V_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$		
C		D	1	0.1		0.2	100		0.4	100		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$		
H	ID(OFF)		1	0.1		0.2	100		0.4	100		$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}$		
		D	16	0.1		0.2	100		0.4	100		$\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$	Sequence each switch on$V_{A(L)}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}(\mathrm{H})}=3 \mathrm{~V}$	
l (ON)			16	0.1		0.2	100		0.4	100		$\mathrm{V}_{\mathrm{S}(\mathrm{AlI})}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		
1	Ian(ON) Or		4	. 01		-10	-30		-10	-30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{A}}=3.0 \mathrm{~V}$		
N	IAN(OFF)		4	. 01		10	30		10	. 30		$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$		
P	$\mathrm{I}_{A}$	$\begin{aligned} & A_{0} A_{1} \\ & A_{2} A_{3} \end{aligned}$	4			-10	-30		-10	-30		$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$	All $V_{A}=0$	
T		EN	1			-10	-30		-10	-30		$V_{E N}=0$		
DYN	transition	D		0.6		1					$\mu \mathrm{S}$	See Fig. 1		
	topen	D		0.2	$\cdots$							See Fig. 2		
	ton(En)	D		0.8		1.5						See Fig. 3		
	toff(En)	D		0.3		1								
N	"OFF" Isolation	D		60		$\cdots$					dB	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{VRMS}, \\ & \mathrm{f}=500 \mathrm{kHz} \end{aligned}$		
1	CS(OFF)			5							pF	$V_{S}=0$$V_{D}=0$	$\begin{aligned} & V_{E N}=0, f=140 \mathrm{kHz} \text { to } \\ & 1 \mathrm{MHz} \end{aligned}$	
C	CD(OFF)			40	,									
	Cos(OFF)			1								$V_{S}=0, V_{D}=0$		
S	$1{ }_{1}$	$V_{1}$	1	55		200			1000		+			
P	12	$\mathrm{V}_{2}$	1	2		100			1000			$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$		
P	$l_{1}$ Standby	$\mathrm{V}_{1}$	1	1		100			1000		$\mu \mathrm{A}$		All $V_{A}=0$ OR $3 V$	
	12 Standby	$\mathrm{V}_{2}$	1	1		100			1000			$V_{E N}=0$		

NOTE 1: See Section V. Enable Input Strobing Levels.


Figure 1


Figure 2
Figure 3

## IH6116 APPLICATIONS

## I. 1 out of 32 channel multiplexer using 2 IH 6116 s .



Figure 4

DECODE TRUTH TABLE

$\mathbf{A}_{4}$	$\mathbf{A}_{3}$	$\mathbf{A}_{2}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	ON SWITCH
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

$\mathbf{A}_{4}$	$\mathbf{A}_{3}$	$\mathbf{A}_{2}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	ON SWITCH
1	0	0	0	0	S 17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S 31
1	1	1	1	1	S 32

II. 1 out of 32 channel multiplexer using 2 IH 6116 s; using an IH 5041 for submultiplexing.


Figure 5

DECODE TRUTH TABLE

$\mathbf{A}_{4}$	$\mathbf{A}_{3}$	$\mathbf{A}_{2}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	ON SWITCH
0	0	0	0	0	S 1
0	0	0	0	1	S 2
0	0	0	1	0	S 3
0	0	0	1	1	S 4
0	0	1	0	0	S 5
0	0	1	0	1	S 6
0	0	1	1	0	S 7
0	0	1	1	1	S 8
0	1	0	0	0	S 9
0	1	0	0	1	S 10
0	1	0	1	0	S 11
0	1	0	1	1	S 12
0	1	1	0	0	S 13
0	1	1	0	1	S 14
0	1	1	1	0	S 15
0	1	1	1	1	S 16

DECODE TRUTH TABLE

$\mathbf{A}_{4}$	$\mathbf{A}_{3}$	$\mathbf{A}_{2}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	ON SWITCH
1	0	0	0	0	S 17
1	0	0	0	1	S 18
1	0	0	1	0	S 19
1	0	0	1	1	S 20
1	0	1	0	0	S 21
1	0	1	0	1	S 22
1	0	1	1	0	S 23
1	0	1	1	1	S 24
1	1	0	0	0	S 25
1	1	0	0	1	S 26
1	1	0	1	0	S 27
1	1	0	1	1	S 28
1	1	1	0	0	S 29
1	1	1	0	1	S 30
1	1	1	1	0	S 31
1	1	1	1	1	S 32

## IH6116 APPLICATIONS

III. 1 out of 64 multiplexer using $41 / 16$ s and IH5053 as submultiplexer.


Figure 6

## IV. GENERAL NOTE ON EXPANDABILITY OF IH6116

The IH6116 is a two tier multiplexer wherein sixteen input channels are routed to a common output in blocks of 4 channels at a time. Each block of 4 input channels is routed to one common output channel; thus the submultiplexed system looks like 4 blocks of 4 inputs routed to 4 different outputs, and the 4 outputs are all tied together. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this scheme is lower output capacity and. lower leakage than a system with all 16 channels tied to one common output. Also the expandability into $32,64,128$, etc. is facilitated. Figures 4,5 , and 6 show how the IH6116 is expanded.
Figure 4 shows a 1 out of 32 multiplexer using 2 of the IH6116s. Since the 6116 is itself a 2 tier mux the system as shown is basically a 2 tier system. Now the four output channels of each 6116 are tied together so that 8 channels are tied for the Vout common point. Since only one channel of information is on at a time, the common output will consist of 7 off channels and 1 on channel. Thus the output leakage will correspond to $7 \mathrm{lD}(\mathrm{offs})$ and $1 \mathrm{lD}(o n)$; this should result in about $1 . \overline{\mathrm{n}} \mathrm{nA}$ of typical leakage at room temperature. Thruput speed will be typically $0.8 \mu \mathrm{~s}$ for tion and $0.3 \mu \mathrm{~s}$ for toff. Thruput channel resistance will be in the 500 ohm area.
Figure 5 shows the same 1 out of 32 mux as Figure 4, except that a third tier of submultiplexing is added to further reduce leakage and output capacity. The IH5041 has typical on resistances of 50 ohms (max. is 75 ohms) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5 . Thruput channel speed is a little slower by about $0.5 \mu \mathrm{~s}$ for both on and off time. Output leakage is about 0.2 nA typical.

Figure 6 shows a 1 out of 64 mux using 3 tier muxing (similar to Figure 5 application). The Intersil IH5053 is used to get the third tier of muxing. The $V_{\text {out }}$ point will see 3 off channels and 1 on channel at any time so that the typical leakages will be about 0.4 nA . Thruput channels resistance will be in the 550 ohm area and thruput switching speeds will be about $1.3 \mu \mathrm{~s}$ for on time and $0.8 \mu \mathrm{~s}$ for off time.

The IH5053 was chosen as the third tier of the mux because it will switch the same AC signals as the IH 6116 (typically plus and minus 11 V ) and break before make switching is guaranteed so that the muxing system remains a break-before-make. Also power supply quiescent currents are typically $1 \mu \mathrm{~A}$ from any supply, so that no excessive system power is generated. Also the logic of the 5053 is such that it can be tied directly to the enable input (as shown in the figures) with no extra logic being required.

## V. ENABLE INPUT STROBING LEVELS

The enable input (EN) acts as an enabling or disabling pin for the IH6116, when used as a 16 channel mux; however, when expanding the mux to more than 16 channels, the EN pin acts as another address input. As an example, we see in Figures 4 and 5 that the EN pin acts as the $A_{4}$ input.

For the system to function properly the EN input (pin 18) must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up resistor should be used to pull the output voltage up to 5 V ; this resistor should be 1 k ohm or less. When using CMOS logic, the high state goes up to the power supply so no pull-up is required.

## PACKAGE DIMENSIONS

## 28 Pin Ceramic Package



28 Pin Plastic Package


28 Pin CerDIP Package


NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of the elimination of external resistors in each channel the $\operatorname{rDS}(O N)$ of the switch is maintained at specified values.

# IH6208 CMOS <br> 4-Channel Differential Analog Multiplexer 

## FEATURES

- Ultra low leakage $\leq 100 \mathrm{pA}$ (Total IDoff)
- ron $<\mathbf{4 0 0}$ ohms over full signal and temperature range
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- $\pm 14 \mathrm{~V}$ analog signal range
- No latch up or "S.C.R." action
- Break before make switching
- Binary strobe control (2 strobe inputs controls 2 out of 8 channels).
- TTL and CMOS compatible strobe control
- Pin - Pin with HI509, DG509 \& AD7509


## GENERAL DESCRIPTION

The 1 H 6208 is a 2 out of 8 CMOS monolithic multiplexer. The part is a plug-in replacement for the DG509. Two line binary decoding is used so that the 8 channels can be controlled in pairs by the binary inputs; additionally a third input is provided to use as a system enable; if the enable input is OV , none of the channels can be turned on. When the enable input is high ( 5 V ) the channels are sequenced by the 2 line binary inputs. The 2 strobe inputs are controlled by TTL logic or CMOS logic elements; a " 0 " corresponds to any voltage less than 0.8 V and a " 1 " corresponds to any voltage greater than 2.4 V ; however the enable input (En) must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

## FUNCTIONAL DIAGRAM



2 LINE BINARY STROBE INPUTS
(0 0) AND En = 5V (En = "1"FOR +5V, "0" FOR OV) ABOVE EXAMPLE SHOWS CHANNELS $1 \mathrm{a} \& 1 \mathrm{~b}$ ON.

## DECODE TRUTH TABLE

$A_{1}$	$A_{0}$	En	ON   SWITCH   PAIR
$x$	$x$	0	NONE
0	0	1	$1 \mathrm{a}, 1 \mathrm{~b}$
0	1	1	$2 \mathrm{a}, 2 \mathrm{~b}$
1	0	1	$3 \mathrm{a}, 3 \mathrm{~b}$
1	1	1	$4 \mathrm{a}, 4 \mathrm{~b}$

$A_{0}, A_{1}$
LOGIC " 1 " $=V_{\text {AH }}>2.4 \mathrm{~V}$
LOGIC " 0 " $=V_{\text {AL }}<0.8 V$

## PIN CONFIGURATION



PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH6208MDE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 pin DIP
IH6208CDE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin DIP
IH6208CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 pin Plastic DIP

ABSOLUTE MAXIMUM RATINGS
$V_{\text {IN }}(A, E n)$ to Ground ........................... $-15 \mathrm{~V}, \mathrm{~V}_{1}$


$+V_{\text {cc }}$ to Ground .......................................... 16 V
-VCc to Ground .................................... -16V
Current (Any Terminal) ............................. 30 mA
Current (Analog Drain) ............................. 20 mA

## ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		MEASURED TERMINAL	$\qquad$	$\begin{aligned} & \text { TYP } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	MAX LIMITS						UNIT	TEST CONDITIONS   (UNLESS OTHERWISE NOTED) $\begin{gathered} +V_{C C}=15 \mathrm{~V},-\mathrm{V}_{\mathrm{CC}}=-15 \mathrm{~V}, \text { Ground }=0 \mathrm{~V} \\ V_{\mathrm{En}}=+5 \mathrm{~V} \text { (Note 1) } \\ \hline \end{gathered}$		
		M SUFFIX			C SUFFIX									
		$-55^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$					
$\mathrm{rDS}(\mathrm{ON})$			$S \text { to } D$	8	180	300	300	400	350	350	450	$\Omega$	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$, Is $=-1.0 \mathrm{~mA}$	Sequence each switch on $\mathrm{V}_{\mathrm{A}(\mathrm{L})}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}(\mathrm{H})}=2.4 \mathrm{~V}$
		8		150	300	300	400	350	350	450	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{Is}=-1.0 \mathrm{~mA}$			
SWITCH	JrDs(ON)				20							\%	$\operatorname{JrDS}(\mathrm{ON})=\frac{\operatorname{rDS}(\mathrm{ON}) \mathrm{MAX}-\mathrm{rDS}(\mathrm{ON}) \mathrm{MIN}}{\operatorname{rDS}(\mathrm{ON}) \mathrm{AVG} .}-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} 10 \mathrm{~V}$	
			8	0.002		0.05	50		0.1	50	NA	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	$V_{E n}=0$	
	IS(OFF)	S	8	0.002		0.05	50		0.1	50		$\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$		
			2	0.03		0.1	50		0.2	100		$V_{D}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$		
	ID (OFF)	D	2	0.03		0.1	50		0.2	100		$V_{D}=-10 \mathrm{~V}, \mathrm{~V}_{S}=10 \mathrm{~V}$		
			8	0.1		0.2	50		0.4	100		$\mathrm{V}_{\text {S(AII }}=\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}$	Sequence each switch on $V_{A(L)}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}(\mathrm{H})}=2.4 \mathrm{~V}$	
		D	8	0.1		0.2	50		0.4	100		$\mathrm{V}_{\mathrm{S} \text { (AII) }}=\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		
I   N   P   U	Ian(ON) or		2	. 01		-10	-30		-10	-30	$\mu \mathrm{A}$	$V_{A}=2.4 \mathrm{~V} \text { or } 0 \mathrm{~V}$		
	IAN(OFF)		2	. 01		10	30		10	30		$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V} \text { or } 0 \mathrm{~V}$		
	$\operatorname{l2} n$	$A_{0} A_{1}$	2			-10	-30		-10	-30		$V_{E_{n}}=5 \mathrm{~V}$	$\text { All } V_{A}=0$   (Strobe Pins)	
		En	1			-10	-30		-10	-30		$\mathrm{V}_{\mathrm{En}}=0$		
D	transition   topen   ton(En)   toff(En)   "OFF" Isolation	D D D D		$\begin{aligned} & \hline 0.3 \\ & 0.2 \\ & 0.6 \\ & 0.4 \\ & \hline \end{aligned}$		$1$ $\begin{gathered} 1.5 \\ 1 \end{gathered}$					$\mu \mathrm{S}$	$\left\lvert\, \begin{aligned} & \text { See Fig. } 1 \\ & \text { See Fig. } 2 \\ & \text { See Fig. } 3 \end{aligned}\right.$		
N		D		60							dB	$V_{E n}=0, R_{L}=200 \Omega, C_{L}=3 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{VRMS}$, $\mathrm{f}=500 \mathrm{kHz}$		
1	Cs(OFF)			5							pF	$\mathrm{V}_{S}=0$	$\begin{aligned} & V_{E n}=0, f=140 \mathrm{kHz} \text { to } \\ & 1 \mathrm{MHz} \end{aligned}$	
c	CD(OFF)			12								$V_{D}=0$   $V_{S}=0, V_{D}=0$		
	Cos(OFF)			1										
S	$1{ }_{14}\left(+V_{C C}\right)$	$+V_{C C}$	1	40		200			1000		$\mu \mathrm{A}$	$V_{E n}=5 \mathrm{~V}$	All $V_{A}=0 . O R 5 V$	
U	$1_{3}\left(-V_{c c}\right)$	$-V_{C c}$	1	2		100			1000					
P	114 Standby	$+V_{C C}$	1	1		100			1000			$V_{E n}=0$		
L	13 Standby	-Vcc	1	1		100			1000					

NOTE 1: See Section I Enable Input Strobing Levels.

## SWITCHING INFORMATION




Figure 2. topen (Break-Before-Make। Switching Test


Figure 3. $\mathbf{t}_{\text {on }}$ and $\mathbf{t}_{\mathrm{off}}$ Switching Test

## IH6208 APPLICATION INFORMATION

## I. Enable Input Strobing Levels

The chip enable input on the IH 6208 requires a minimum of +4.5 V to trigger it into" the " 1 " state and a maximum of +0.8 V to
trigger it into the " 0 " state. If the chip enable input is being driven from TTL logic, a pull-up resistor is required from the gate output to +5 V supply. The value of this resistor is not critical and can be in the 1 K to $3 \mathrm{~K} \Omega$ ) range (See Figure 4 ):


Figure 4. Enable Input Strobing from TTL Logic

## IH6208 APPLICATION INFORMATION (CONT.)

When the En input is driven from CMOS logic, no pullup is necessary. Fig. 5 shows the CD4009 driving the En input.


Figure 5

The Supply Voltage of the CD4009 does affect the switching speed of the IH6208 (with the same being true for Supply Voltage Levels I. The chart below shows the effect, on transition times, of supply varying from +4.5 V to +5.5 V .


The throughput rate can therefore be maximized by using a +5 V to +5.5 V supply for the Enable Strobe Logic.

The cases shown in Figures 4 and 5 deal with enable strobing when expandability to more than four differential channels is required. In these cases the En terminal acts as a third binary input. If four channel pairs or less are being multiplexed, the En terminal can be directly connected to +5 V logic supply which would "enable" the IH6208 at all times.

## IH6208 APPLICATION INFORMATION (CONT.)

## APPLICATIONS

## II. Using the IH6208 with supplies other than $\pm 15 \mathrm{~V}$

The IH6208 can be used with power supplies ranging from $\pm 6 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The switch $\mathrm{r} \mathrm{DS}(\mathrm{ON})$ will increase as the supply voltages decrease. However, the multiplexer error term ! the product of leakage times rDS(ON) will remain approximately constant since leakage decreases as the supply voltages are reduced.

Caution must be taken to ensure that the chip enable En voltage is at least 0.7 V below $\mathrm{V}_{\mathrm{cc}}$ at all times. If this is not done the binary input strobing levels will not function properly. This may be achieved quite simply by connecting En ( pin 2 , to $+\mathrm{V}_{\mathrm{CC}}$ । pin 14 , via a silicon diode as shown in Figure 6. If the IH6208 is hooked up in this type of a configuration a further requirement must be met - the strobe levels at $A_{0}$ and $A_{1}$ must be within 2.5 V of the En voltage to define a
binary " 1 " state. For the case shown in Figure 6 the En voltage is 11.3 V which means that logic high at $A_{0}$ and $A_{1}$ is $=+8.8 \mathrm{~V}$ llogic low continues to be $=0.8 \mathrm{~V}$. In this configuration the 1 H 6208 cannot be driven by TTL $1+5 \mathrm{~V}$ ) or CMOS +5 V , logic. It can be driven by TTL open collector logic or CMOS logic with +12 V supplies.

If the logic and the IH6208 have common supplies the En pin should again be connected to the supply through a silicon diode. In this case tying En to the logic supply directly will not work since it will violate the 0.7 V differential voltage required between $+V_{C C}$ and En on the 1 H 6208 i See Figure 7 I. A $1 \mu \mathrm{f}$ capacitor can be placed across the diode to minimize switching glitches.


Figure 6. $\mathrm{H} H 6208$ Connection Diagram for less than $\pm 15 \mathrm{~V}$ Supply Operation.

## IH6208 APPLICATION INFORMATION



Figure 7. IH6208 Connection Diagram with Enable Input Strobing for less than $\pm 15 \mathrm{~V}$ Supply Operation.

## III. Peak-to-Peak Signal Handling Capability

The IH6208 can handle input signals up to $\pm 14 \mathrm{~V}$, actually -15 V to +14.3 V , when it has $\pm 15 \mathrm{~V}$ supplies. The input protection diode prevents the handing of signals up to +15 V .

The electrical specifications of the 1 H 6208 are guaranteed for $\pm 10 \mathrm{~V}$ signals but the specifications have very minor changes for $\pm 14 \mathrm{~V}$ signals. The notable changes would be slightly lower rosion) and slightly higher leakages.

## PACKAGE DIMENSIONS

16 Pin Ceramic Dual-In-Line Package (DE)


16 Pin Plastic Dual-In-Line Package (PE)


## CMOS 8-Channel Differential Analog Multiplexer

FEATURES

- Pin Compatible with HI507, DG507 \& AD7507
- $\pm 11 \mathrm{~V}$ analog signal range
- ron $<\mathbf{7 0 0}$ ohms over full signal and temperature range
- Break before make switching
- TTL and CMOS compatible strobe control
- Binary strobe control (3 strobe inputs controls 2 out of 16 channels).
- Two tier submultiplexing to facilitate expandability
- Power supply quiescent current less than $100 \mu \mathrm{~A}$
- No latch up or "S.C.R." action
- Very low leakage $\leq 100 p A$


## GENERAL DESCRIPTION

The IH6216 is a 2 out of 16 CMOS monolithic multiplexer. The part is a plug-in replacement for the DG507. Three line binary decoding is used so that the 16 channels can be controlled in pairs by the binary inputs; additionally a fourth input is provided to use as a system enable; if the enable input is 0 V , none of the channels can be turned on. When the enable input is high ( 5 V ) the channels are sequenced by the 3 line binary inputs. The 3 strobe inputs are controlled by TTL logic or CMOS logic elements; a " 0 " corresponds to any voltage less than 0.8 V and a " 1 " corresponds to any voltage greater than 3.0 V ; however the enable input (EN) must be taken to 5 V to enable the system and less than 0.8 V to disable the system.

FUNCTIONAL DIAGRAM			DECODE TRUTH TABLE					
				$A_{2}$	$\mathrm{A}_{1}$	$A_{0}$	en	$\underset{\substack{\text { ON } \\ \text { SWITCH } \\ \text { PAIR }}}{ }$
				${ }^{\times}$	${ }^{\text {x }}$	${ }^{\mathrm{x}}$	0	NONE
				$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	2
				$10$	$1$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$1 \begin{aligned} & 1 \\ & 1 \end{aligned}$	4
					${ }_{0}^{0}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	¢
						0 1	$\stackrel{1}{1}$	7
			LOGIC " 1 " $=V_{\text {AH }}>3 V$   LOGIC "0" $=V_{\text {AL }}<0.8 \mathrm{~V}$					
			PIN CONFIGURATION					
ORDERING INFORMATION								
	PART NUMBER	TEMPERATURE RANGE		PACKAGE				
	1 H 6216 MDI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		28 pin DIP				
	IH6216CDI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		28 pin DIP				
	IH6216CPI	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		28 pin Plastic. DIP.				

## ABSOLUTE MAXIMUM RATINGS

$V_{\text {IN }}(\mathrm{A}, \mathrm{EN})$ to Ground	-15V, $\mathrm{V}_{1}$	Current(Analog Source) ........................ 20 mA
$V_{\text {s or }} \mathrm{V}_{\mathrm{D}}$ to $\mathrm{V}_{1}$	. $0,-32 \mathrm{~V}$	Operating Temperature ................... -55 to $125^{\circ} \mathrm{C}$
Vsor $\mathrm{V}_{\mathrm{D}}$ to $\mathrm{V}_{2}$	0,32V	Storage Temperature ................... . 65 to $150^{\circ} \mathrm{C}$
$V_{1}$ to Ground	16 V	Power Dissipation (Package)* .................. 1200mW
$V_{2}$ to Ground	-16V	Lead Temperature (Soldering 10 sec ) . . . . . . . . . . . $300^{\circ} \mathrm{C}$
Current (Any Terminal)	30 mA	*All leads soldered or welded to PC board. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ abo
Current (Analog Drain)	20 mA	$70^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS




## SWITCHING INFORMATION




## IH6216 APPLICATIONS

## I. 2 out of 32 channel multiplexer using 2 IH6216s.



Figure 4

DECODE TRUTH TABLE

$\mathbf{A}_{3}$	$\mathbf{A}_{2}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	1	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	S8a	VouT1
1	0	0	0	S9a	
1	0	0	1	S10a	
1	0	1	0	S11a	
1	0	1	1	S12a	
1	1	0	0	S13a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

DECODE TRUTH TABLE

$\mathbf{A}_{3}$	$\mathbf{A}_{2}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	ON SWITCH	
0	0	0	0	S1b	
0	0	0	1	S2b	
0	0	1	0	S3b	
0	0	1	1	S4b	
0	1	0	0	S5b	
0	1	0	1	S6b	
0	1	1	0	S7b	
0	1	1	1	S8b	Vout2
1	0	0	0	S9b	
1	0	0	1	S10b	
1	0	1	0	S11b	
1	0	1	1	S12b	
1	1	0	0	S13b	
1	1	0	1	S14b	
1	1	1	0	S15b	
1	1	1	1	S16b	

## IH6216 APPLICATIONS

II. 2 out of 32 channel multiplexer using 2 IH 6216 s ; using an IH 5043 for submultiplexing.


Figure 5

DECODE TRUTH TABLE

$A_{3}$	$A_{2}$	$A_{1}$	$A_{0}$	ON SWITCH	
0	0	0	0	S1a	
0	0	0	1	S2a	
0	0	1	0	S3a	
0	0	1	1	S4a	
0	1	0	0	S5a	
0	1	0	1	S6a	
0	1	1	0	S7a	
0	1	1	1	S8a	VouT1
1	0	0	0	S9a	
1	0	0	1	S10a	
1	0	1	0	S11a	
1	0	1	1	S12a	
1	1	0	0	S13a	
1	1	0	1	S14a	
1	1	1	0	S15a	
1	1	1	1	S16a	

DECODE TRUTH TABLE

$\mathbf{A}_{3}$	$\mathbf{A}_{2}$	$\mathbf{A}_{1}$	$\mathbf{A}_{0}$	ON SWITCH	
0	0	0	0	S1b	
0	0	0	1	S2b	
0	0	1	0	S3b	
0	0	1	1	S4b	
0	1	0	0	S5b	
0	1	0	1	S6b	
0	1	1	0	S7b	
0	1	1	1	S8b	VouT2
1	0	0	0	S9b	
1	0	0	1	S10b	
1	0	1	0	S11b	
1	0	1	1	S12b	
1	1	0	0	S13b	
1	1	0	1	S14b	
1	1	1	0	S15b	
1	1	1	1	S16b	

## IH6216 APPLICATIONS

III. 2 out of 64 , using 4 IH 6216 s and 2 IH 5043 s as submultiplexers.

3


Figure 6

## IV. GENERAL NOTE ON EXPANDABILITY OF IH6216

The IH6216 is a two tier multiplexer wherein 8 pairs of input channels are routed to a pair of outputs in blocks of 4 channels at a time. Each block of 4 input channels is routed to one common output channel; thus the submultiplexed system looks like 4 bloks of 4 inputs routed to 4 different outputs, and the 4 outputs are tied in pairs. Thus 20 switches are needed to handle the 16 channels of information. The advantage of this scheme is lower output capacity and lower leakage than a system with all 8 channels tied to one common output. Also the expandability into 2 out of 32,64 , 128, etc. is facilitated. Figures 4, 5, and 6 show how the IH6216 is expanded.
Figure 4 shows a 2 out of 32 multiplexer using 2 of the IH6216s. Since the 6216 is itself a 2 tier mux, the system as shown is basically a 2 tier system. Corresponding output points of each of the 6216 are connected together, and the enable input strobe is used as the $A_{3}$ input. Since each output (pins 2 and 28) corresponds to an "on" fet and an "off" fet, the overall system looks like 1 "on" fet and 3 "off" fets for each of the $V_{\text {out1 }}$ and $V_{\text {out2 }}$ outputs. Thus the output leakage will be 1 ID(on) plus 3 ID (off)S or about 0.4 nA typical, at room temperature. Thruput speed will be typically $0.8 \mu \mathrm{~s}$ for ton and $0.3 \mu \mathrm{~s}$ for toff. Thruput channel resistance will be in the 500 ohm area.
Figure 5 shows the same 2 out of 32 mux as Figure 4, except that a third tier of submultiplexing is added to further reduce leakage and output capacity. The IH5043 has typical on resistance of 50 ohms (max. is 75 ohms) so it only increases thruput channel resistance from the 500 ohms of Figure 4 to about 550 ohms for Figure 5 . Thruput channel speed is a little slower by about $0.5 \mu \mathrm{~s}$ for both on and off time. Output leakage is about 0.2 nA typical.

Figure 6 shows a 2 out of 64 mux using 3 tier muxing (similar to Figure 5 application). Again the Intersil IH5043 is used to get the third tier of muxing. Each Vout point will see 3 off channels and 1 on channel at any time so that the typical leakages will be about 0.4 nA . Thruput channel resistance will be in the 550 ohm area and thruput switching speeds will be about $1.3 \mu \mathrm{~s}$ for on time and $0.8 \mu \mathrm{~s}$ for off time.
The IH5043 was chosen as the third tier of the mux because it will switch the same AC signals as the IH6216 (typically plus and minus 15 V ) and break before make switching is guaranteed so that the muxing system remains a break-before-make. Also power supply quiescent currents are typically $1 \mu \mathrm{~A}$ from any supply, so that no excessive system power is generated. Also the logic of the 5043 is such that it can be tied directly to the enable input (as shown in the figures) with no extra logic being required.

## V. ENABLE INPUT STROBING LEVELS

The enable input (EN) acts as an enabling or disabling pin for the IH6216 when used as a 2 out of 16 channel mux; however, when expanding the mux to more than 16 channels, the EN pin acts as another address input. As an example, we see in Figures 4 and 5 that the EN pin acts as the $A_{3}$ input.
For the system to function properly the EN input (pin 18). must go to $5 \mathrm{~V} \pm 5 \%$ for the high state and less than 0.8 V for the low state. When using TTL logic, a pull-up resistor should be used to pull the output voltage up to 5 V ; this resistor should be 1 k ohm or less. When using CMOS logic, the high state goes up to the power supply so no pull-up is required.

## PACKAGE DIMENSIONS

## 28 Pin Ceramic Package



28 Pin Plastic Package


28 Pin CerDIP Package


NOTE: This multiplexer does not require external resistors and/or diodes to eliminate what is commonly known as a latch up or SCR action. Because of the elimination of external resistors in each channel the rDS(ON) of the switch is maintained at specified values.

D112/D113/D120/D121

- Two separate channels


## 2-Channel FET Switch Drivers Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

- J-FET Collector Pull-up
- Interfaces 5V Logic
- Two switching speeds to choose from


## GENERAL DESCRIPTION

This series contains 2 separate channels each with J-FET collector pull-up, in one package. Two switching speeds are provided for speed-power ratio selection.

## ABSOLUTE MAXIMUM RATINGS

Pos. Supply to Emitter $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ 33V
Output to Emitter ( $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {EE }}$ ) 33V
Logic Supply to Emitter ( $\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{EE}}$ ) 30V
Ref. to Emitter ( $\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{EE}}$ ) 31V

Input to Ref. ( $V_{I N}-V_{R}$ )	2 V
Ref. to Input $\left(V_{R}-V_{I N}\right)$	6 V
Logic Supply to Input $\left(V_{L}-V_{I N}\right)$	$\pm 6 \mathrm{~V}$
Current (any pin)	30 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dissipation (Note)	750 mW
Lead Temperature (soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{-1} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## SCHEMATIC AND LOGIC DIAGRAMS



## ORDERING INFORMATION



D113 \& D121


## PACKAGE OUTLINES

14-Pin Ceramic Package


## PRODUCT CONDITIONING

The following processes are preformed $100 \%$ in accordance with MIL-STD-883.

Precap Visual - Method 2010, Cond. B.
Stabilization Bake - Method 1008
Centrifuge - Method 2001, Cond. E
Hermeticity - Method 1014, Cond. A, C.
(Leak Rate $<5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

ELECTRICAL CHARACTERISTICS (per channel)
Test conditions unless otherwise specified are as follows: $\mathrm{V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$. Output and power supply measurements based on specified input conditions.


NOTE: (OFF) and (ON) subscripts refer to the conduction state of the driver.

OUTPUT RISE TIME VS TEMPERATURE AND LOAD CAPACITANCE (D112, D113)


SWITCHING TIMES VS TEMPERATURE


IOUT(OFF) VS
TEMPERATURE


OUTPUT RISE TIME VS
TEMPERATURE AND LO. CAPACITANCE (D120, D12,



## APPLICATION TIPS

The recommended resistors for interfacing with RTL, DTL, and $T^{2} L$ Logic is shown in figures 1 and 2.


Figure 1. D112 and D120
Interface


Figure 2. D113 and D. 121
Interface

## Enable Control

The $V_{R}$ and $V_{L}$ pins can be used as a STROBE or an ENABLE control. The requirements for the enable driver are as follows: $I_{L}(O N) X$ no. of channels used for the D112 \& D120 and $I_{R}(O N) X$ no. of channels used for the D113 \& D121. The voltage at $\mathrm{V}_{\mathrm{L}}$ must be greater than the voltage at $\mathrm{V}_{\text {IN }}$ by at least +4 V .

## SWITCHING TIMES



D112, D120


D113, D121


Circuit Diagrams

# 6-Channel FET Switch Drivers Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 

## FEATURES

- Provides dc level shifting between low-level Logic and MOS-FET or J-FET switches
- External Collector Pull-ups required
- Direct interface with G116, G117, G119, G115, and G123 MOS-FET switches


## GENERAL DESCRIPTION

The D123 and D125 monolithic bi-polar drivers convert low-level positive signals $(0 \&+5 \mathrm{~V})$ to the high level positive and negative voltages necessary to drive FET switches. One lead can be used to provide an enabling capability.

## ABSOLUTE MAXIMUM RATINGS

Input-to-Emitter Voltage $\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{EE}}\right)$ 33V

Output-to-Emitter Voltage ( $\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{EE}}$ ) 33V
Logic Supply-to-Emitter Voltage ( $\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{EE}}$ ) 27V
Input-to-Reference Voltage ( $V_{I N}-V_{R}$ )

Input-to-Logic Supply Voltage $\left(V_{I N}-V_{L}\right)$
Reference-to-Emitter Voltage ( $\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{EE}}$ )
Maximum Dissipation (Note)
Current (any pin)
Storage Temperature Operating Temperature Lead Temperature (Soldering, 10 sec ) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.


## PACKAGE OUTLINES

NOTE: All dimensions in inches.


## PRODUCT CONDITIONING

Units receive the following treatment
before final electrical test:
Thermal Shock
+100 to $0^{\circ} \mathrm{C}$ for 5 cycles
Centrifuge
$20,000 \mathrm{~g}$ centrifuge in the Y . plane.
Hermeticity
Helium and gross leak tests.

## ELECTRICAL CHARACTERISTICS

Test conditions unless otherwise specified are as follows: $\mathrm{V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0, \mathrm{~V}_{\mathrm{R}}=0$. Output and power supply measurements based on specified input conditions.

		PARAMETER	MAX LIMIT				CONDITIONS	
		$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$	ÚNITS			
$\begin{aligned} & 5 \\ & \frac{0}{2} \end{aligned}$	$\stackrel{\sim}{\sim}$		IIN(OFF)   $V_{\text {IN(ON) }}$	$\begin{aligned} & 1 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 100 \\ 0.8 \\ \hline \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & V_{I N}=0.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA} \end{aligned}$
	$\stackrel{\sim}{\sim}$	I in (off) IIN(ON)	$\begin{aligned} & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 1.2 \end{aligned}$	$\mu \mathrm{A}$   mA	$\begin{aligned} & V_{I N}=4.1 \mathrm{~V} \\ & V_{I N}=0.5 \mathrm{~V} \end{aligned}$	
$\begin{aligned} & 5 \\ & \frac{1}{2} \\ & 5 \\ & 0 \end{aligned}$		lout(off)   Voution)   VOUT(ON)	$\begin{array}{r} 0.1 \\ -19.7 \\ -19.2 \end{array}$	$\begin{array}{r} 0.1 \\ -19.7 \\ -19.2 \end{array}$	$\begin{gathered} 10 \\ -19.5 \\ -19.0 \end{gathered}$	$\mu \mathrm{A}$   V   $\checkmark$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=+10 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=4 \mathrm{~mA} \end{aligned}$	
220$\frac{1}{2}$00330	$\stackrel{\sim}{\sim}$	$\begin{aligned} & I_{R(O N)^{(1)}} \\ & I_{R(O F F)^{(2)}} \\ & I_{E E(O N)^{(1)}} \\ & I_{E E(O F F)^{(2)}} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 0.5 \\ 150 \\ 1 \\ 200 \end{gathered}$	mA   $\mu \mathrm{A}$   mA   $\mu \mathrm{A}$	IOUT $=0$ for ON measurements.   $\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$ for OFF measurements.	
	$\stackrel{\text { N }}{\sim}$	$\begin{aligned} & I_{\text {LION }}{ }^{(1)} \\ & I_{\text {LIOFF }}{ }^{(2)} \\ & I_{E E(O N)^{(1)}} \\ & I_{\text {EE }(O F F)}{ }^{(2)} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 1.9 \\ 100 \\ 1.9 \\ 200 \end{gathered}$	$\begin{aligned} & m \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$		
	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \stackrel{1}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & t_{(\text {on })} \\ & t_{\text {(off) }}(4) \end{aligned}$		$\begin{aligned} & 250 \\ & 800 \\ & \hline \end{aligned}$		ns ns	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \mathrm{C}_{\text {OUT }}{ }^{(3)}=10 \mathrm{pF}$   (See Switching Times)	
		$\begin{aligned} & t_{\text {(on) }} \\ & t_{\text {(off) }} \end{aligned}$		$\begin{aligned} & 250 \\ & 600 \end{aligned}$	-	ns ns	$I_{\text {OUT }}=4 \mathrm{~mA} \mathrm{C} \mathrm{OUT}^{(3)}=10 \mathrm{pF}$   (See Switching Times)	

NOTES: (1) One channel ON, 5 channels OFF.
(2) All channels OFF.
(3) Add 30 ns per pF for 1 mA and add 8 ns per pF for 4 mA for additional capacitive loading.
(4) For Dual-In-Line package add 120 ns to (off).
(5) For Dual-In-Line package add 30 ns to toff).

## SWITCHING TIMES




Circuit Diagrams

TYPICAL CHARACTERISTICS


## IIN VS VIN D123



SWITCHING TIMES VS
TEMPERATURE D 123 AND
D125 (SEE NOTES 4 AND 5)

$V_{\text {SAT }}$ VS TEMPERATURE D123 AND D125


VIN(ON) VS
TEMPERATURE D123


## APPLICATION TIPS

## Interfacing the D123 and D125

In order to meet all the specifications on this data sheet, certain requirements must be met by the drive circuitry.
The D125 can be turned ON easily, but care must be exercised to insure turn-off. Keeping $V_{L}-V_{I N} \leq 0.4 \mathrm{~V}$ is a must to insure turn-off. To accomplish this a shunt resistor must be added to supply the leakage current (ICES) for DTL devices. Since $I_{\text {CES }}=50 \mu \mathrm{~A}$, a $0.4 \mathrm{~V} / 0.05 \mathrm{~mA}=8 \mathrm{k}$ or less should be used. For $\mathrm{T}^{2} \mathrm{~L}$ devices using a 2 k resister will insure turn-off with up to $200 \mu \mathrm{~A}$ of leakage current.


## Using the ENABLE Control

Device pins $V_{R}$ or $V_{L}$, can be used to enable the D123 or D125 drivers. For the D123 the enabling driver must sink $I_{R(O N)} \times$ no. of channels used. For the $D 125, I_{L(O N)} X$ no. of channels used must be sourced with a voltage at least +4 V greater than $\mathrm{V}_{\mathrm{IN}}$.

## APPLICATIONS

Using INTERSIL'S MOS-FET SWITCH G117 with either the D123 or D125 drivers provides a reliable means of providing up to 5 channels with a series block for multiplexing applications.


# 4-Channel MOS FET Switch Driver with Decode 

## FEATURES

- Quad Three-Input Gates Decode Binary Counter to Four Lines
- Inputs Compatible with Low Power TTL and DTL, $I_{F}=200 \mu \mathrm{~A}$ Max
- Output Current Sinking Capability 10 mA
- External Pull-Up Elements Required
- Compatible with G115 and G123 Series Multichannel MOS FET Switches which include Current-Limiter PullUp FETs


## ORDERING INFORMATION

## SCHEMATIC AND LOGIC DIAGRAMS

## GENERAL DESCRIPTION

The D129 is a 4-channel driver with binary decode input. It has been designed to provide the DC level-shifting required to interface low-level logic outputs ( 0.7 to 2.2 V ) to fieldeffect transistor inputs (up to 50 V peak-to-peak). For a 5 V input logic supply, the $V_{E E}$ terminal can be set at any voltage between -5 V and -30 V . The output transistor is capable of sinking 10 mA and will stand-off up to 50 V above $\mathrm{V}_{\mathrm{EE}}$ in the off-state.

The ON state of the driver is controlled by a logic " 1 " (open) on all three input logic lines, while the OFF state of the driver is achieved by pulling any one of the three inputs to a logic " 0 ". (ground).

The 4-channel driver is internally connected such that each one can be controlled independently or decoded from a binary counter.



## PACKAGE OUTLINES


flat package


## ABSOLUTE MAXIMUM RATINGS

$V_{O}-V_{E E}$	50 V
$V_{R}-V_{E E}$	33 V
$V_{L}-V_{R}$	8 V
$V_{I N}-V_{R}$	$\pm 6 \mathrm{~V}$
Current (any terminal)	30 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation (note)	750 mW
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Note: Dissipation rating assumes device mounted with all leads welded or soldered to pc board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient termperatures.

ELECTRICAL CHARACTERISTICS Test conditions unless otherwise specified $\mathrm{V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}$


* Per gate Input


## SWITCHING TIME AND TEST CIRCUIT



# 2-Channel Drivers with <br> MOS-FET Switches Military Series 

FEATURES

- Each Channel Completely Isolated
- 20V P-P Switching Capability
- Zener Diode Protected Gates
- MOS-FET Current-Source Pull-Up

GENERAL DESCRIPTION
This driver-switch series provides two completely isolated switches per package. The collector supply ( $\mathrm{V}_{\mathrm{cc}}$ ) may be operated at different voltages for each switch. Two driver input configurations are available for inverting and noninverting applications. For minimum propagation delay as well as optimum speed and power, a terminal is supplied for biasing the constant-current MOS-FET pull-up.

## ABSOLUTE MAXIMUM RATINGS

Collector to Emitter ( $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ )
Collector to Pull-up ( $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{P}}$ ) 33 V
Drain to Emitter $\left(\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{EE}}\right.$ )

Drain to Source $\left(V_{D}-V_{S}\right)$	28 V
Source to Drain $\left(V_{S}-V_{D}\right)$	28 V
Source to Emitter $\left(V_{S}-V_{E E}\right)$	32 V
Logic to Emitter $\left(V_{L}-V_{E E}\right)$	33 V
Ref. to Emitter $\left(V_{R}-V_{E E}\right)$	31 V
Ref. to Input $\left(V_{R}-V_{I N}\right)$	+6 V
Logic to Input $\left(V_{L}-V_{I N}\right)$	$\pm 6 \mathrm{~V}$
Current (Any Terminal)	30 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Dissipation (Note)	750 mW
Lead Temperature (soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $+70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.


## ORDERING INFORMATION



TRUTH TABLE

DG112		DG111		Switch Cond.
V IN	$V_{\text {R }}$	$V_{\text {IN }}$	$\mathrm{V}_{\mathrm{L}}$	
L	L	L	L	OFF
H	L	L	H	ON
L	H	H	L	OFF
H	H	H	H	OFF

$L=O V, H=+V$

PRODUCT CONDITIONING
The following processes are performed $100 \%$ in accordance with MIL-STD-883.
Precap Visual-Method 2010, Cond. B
Stabilization Bake-Method 1008
Temperature Cycle-Method 1010
Centrifuge-Method 2001, Cond. E
Hermeticity-Method 1014, Cond. A, C
(Leak Rate $<5 \times 10^{-8}$ atm $\mathrm{cc} / \mathrm{s}$ )

## ELECTRICAL CHARACTERISTICS

Test conditions unless otherwise specified are as follows: $\mathrm{V}_{\mathrm{R}}=0, \mathrm{~V}_{\mathrm{L}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}$, and $\mathrm{P}=-20 \mathrm{~V}$. Input ON and OFF test conditions are used for output and power supply specifications.


NOTE: (OFF) and (ON) subscripts refer to the conduction state of the MOS-FET switch.

## APPLICATION TIPS

The recommended resistor values for interfacing with RTL, DTL, and $T^{2}$ L Logic is shown in figs. 1 and 2.


Figure 1. DG111 Interface


Figure 2. DG112 Interface

## Enable Control

The $V_{R}$ and $V_{L}$ terminals can be used as a strobe or an enable control. The requirements for sinking current at $V_{R}$ or sourcing current at $V_{L}$ are: $I_{L(O N)} \times$ no. of channels used, for $D G 111$, and $I_{R}(O N) \times$ no. of channels used, for the DG112. The voltage at $V_{L}$ must be greater than $V_{I N}$ for $V_{I N}<4 V$. $V_{L}$ must be at least +4 V for $\mathrm{V}_{I N}>4 \mathrm{~V}$.

## SWITCHING TIMES

DG111


DG 112


## TYPICAL CHARACTERISTICS



## PACKAGE OUTLINES



DG116/DG118/DG123/DG125 4 and 5-Channel Driver-MOS-FET Switch Combinations Military Series

## FEATURES

- Available With and Without Programmable Constant Current pull-up
- Zener Protection on All Gates
- P-Channel Enhancement-Type MOS-FET Switches
- Each Switch Summed to One Common Point GENERAL DESCRIPTION

This series includes devices with four and five channel switching capability. Each channel is composed of a driver and a MOS-FET switch. Two driver versions are supplied for inverting and noninverting applications. A MOS-FET, used as a current source provides an active pull-up for faster switching.

An external biasing connection is brought out for biasing the current source for optimization of speed and power.
$\begin{array}{lr}\text { ABSOLUTE MAXIMUM RATINGS } & \\ \text { Collector to Emitter }\left(V_{C C}-V_{E E}\right) & 33 V \\ \text { Collector to pull-up }\left(V_{C C}-V_{P}\right) & 33 V\end{array}$
Drain to Emitter ( $\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{EE}}$ ) ..... 32V
Source to Emitter ( $\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{EE}}$ ) ..... 32V
Drain to Source ( $\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{S}}$ ) ..... 28V
Source to Drain ( $V_{S}-V_{D}$ ) ..... 28V
Logic to Emitter ( $\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{EE}}$ ) ..... 33 V
Reference to Emitter ( $\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{EE}}$ ) ..... 31V
Reference to Input ( $V_{R}-V_{\text {IN }}$ ) ..... 6V
Logic to Input ( $V_{L}-V_{I_{I N}}$ ) ..... $\pm 6 \mathrm{~V}$
Input to Emitter ( $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{EE}}$ ) ..... 33 VCurrent (any terminal)Storage TemperatureOperating TemperatureDissipation (Note)
30 mA$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 750 mW
Lead Tempertature (soldering, 10 sec .)

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.


ORDERING INFORMATION


## TRUTH TABLE

DG116, DG123		DG118, DG125		Switch Cond.
$\mathrm{V}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{R}}$	$\mathrm{V}_{\text {IN }}$	$V_{L}$	
L	L	L	L	OFF
H	L.	L	H	ON
L	H	H	L	OFF
H	H	H	H	OFF

$L=O V, H=+V$

## PRODUCT CONDITIONING

The following processes are performed $100 \%$ in accordance with MIL-STD-883.

Precap Visual-Method 2010, Cond. B.
Hermeticity-Method 1014, Cond. A,C.
Stabilization Bake-Method 1008.

Temperature Cycle-Method 1010.
Centrifuge-Method 2001, Cond. E.
(Leak $<5 \times 10^{-8} \mathrm{~atm} . \mathrm{cc} / \mathrm{s}$ )

## ELECTRICAL CHARACTERISTICS

Test conditions unless specified otherwise are as follows: $V_{L}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=\mathrm{O}, \mathrm{V}_{\mathrm{EE}}=-20 \mathrm{~V}$, and $\mathrm{P}=-20 \mathrm{~V}$. Input ON and OFF test conditions used for output and power supply specifications.


NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the MOS-FET switch for the given test condition.

## APPLICATION TIPS

The recommended resistor values for interfacing RTL, DTL, and $T^{2} L$ Logic are shown in Figures 1 and 2.


Figure 1. DG 118 and DG 125
Interface
Figure 2. DG116 and DG123 Interface

## Enable Control

The $\mathrm{V}_{\mathrm{R}}$ and $\mathrm{V}_{\mathrm{L}}$ terminals can be used as either a Strobe or an Enable control. The requirements for sinking current at $\mathrm{V}_{\mathrm{R}}$ or sourcing current at $V_{L}$ are: $\mathrm{I}_{\mathrm{L}(\mathrm{ON})} \times$ No. of channels used, for DG118 and DG125, and $\mathrm{I}_{\mathrm{R}}(\mathrm{ON}) \times$ No. of channels used, for the DG116 and DG123 devices. The voltage at $V_{L}$ must be greater than the voltage at $V_{I N}$ by at least +4 V .

## SWITCHING TIMES

DG116, 123


DG118, 125



## PACKAGE OUTLINES

## Ceramic Dual-In-Line Package



NOTE: All dimensions in inches.
FD Package
NOTE: All dimensions in inches.
DD Package

# 3-Channel Drivers with Differential Switches Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 

## FEATURES

- 3-Channel With Normally-Off
'MOS-FET Switches in One Package
- $\Delta \mathrm{r}_{\text {DS(ON) }}$ Matched to Better Than $30 \Omega$.


## GENERAL DESCRIPTION

This series is composed of three channels in one package. Each channel is composed of two matched MOS-FET switches for differential input requirements. Two driver configurations are available for inverting and noninverting applications. A MOS-FET used as a current source provides an active pull-up load for faster switching.

## ABSOLUTE MAXIMUM RATINGS

Collector to Emitter ( $V_{C C}-V_{E E}$ )
Collector to pull-up ( $V_{C C}-V_{P}$ )
Collector to pull-up ( $\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{p}}$ )

```
DG120 (One Channel)
```



## ORDERING INFORMATION

Drain to Emitter $\left(V_{D}-V_{E E}\right)$
Source to Emitter ( $V_{S}-V_{E E}$ ) $\quad$ 32V
Drain to Source ( $V_{D}-V_{S}$ ) 28 V
Source to Drain ( $V_{S}-V_{D}$ ) 28V
Logic to Emitter ( $V_{L}-V_{E E}$ )
Ref. to Emitter ( $\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{EE}}$ ) . 31V
Ref. to Input $\left(V_{R}-V_{1 N}\right) \quad+6 \mathrm{~V}$
Logic to Input $\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{1 \mathrm{~N}}\right) \quad \therefore \pm 6 \mathrm{~V}$
Current (any terminal) 30 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Dissipation (Note) 750 mW Lead Tempertature (soldering, 10 sec .) $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature of $70^{\circ} \mathrm{C}$. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for higher ambient temperature.

```
DG121 (One Channel)
```




TRUTH TABLE

DG120		DG121		Switch
V IN	V $_{\text {R }}$	VIN $^{\prime}$	V $_{\text {L }}$	Cond.
L	L	L	L	OFF
H	L	L	H	ON
L	$H$	$H$	L	OFF
H	$H$	$H$	$H$	OFF

[^9]
## PRODUCT CONDITIONING

The following processes are performed $100 \%$ in accordance with MIL-STD-883.

Precap Visual-Method 2010, Cond. B.
Stabilization Bake-Method 1008.
Temperature Cycle-Method 1010.

Centrifuge-Method 2001, Cond. E.
Hermeticity-Method 1014, Cond. A,C
(Leak Rate $<5 \times 10^{-8} \mathrm{~atm} . \mathrm{cc} / \mathrm{s}$ )

## ELECTRICAL CHARACTERISTICS

Test conditions unless otherwise specified are as follows: $V_{R}=O, V_{L}=4.5 \mathrm{~V}, V_{C C}=10 \mathrm{~V}, V_{E E}=-20 \mathrm{~V}$. Input $O N$ and OFF test conditions are used for output and power supply specifications.

		PARAMETER (NOTE 1)	MAX LIMIT				CONDITIONS	
		$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125{ }^{\circ} \mathrm{C}$	UNITS			
$\begin{aligned} & \frac{5}{2} \\ & \underline{n} \end{aligned}$	DG120		IIN(OFF)	1	1	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
		$V_{\text {INION }}$	1.3	1.0	0.8	V	$\mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA}$	
	DG121	IIN(OFF)	10	10	20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=4.1 \mathrm{~V}$	
		linion)	-0.7	-0.7	-0.7	mA	$V_{\text {IN }}=0.5 \mathrm{~V}$	
$\begin{aligned} & 5 \\ & \frac{1}{2} \\ & \frac{1}{5} \\ & 0 \end{aligned}$	Both	$\mathrm{r}_{\text {DS }}(\mathrm{ON})$	100	100	125	$\Omega$	$I_{S}=-1 m A$	
			200	200	250	$\Omega$		
			450	450	600	$\Omega$		
		$\Delta r_{\text {DS(ON }}$   (Note 2)		30		$\Omega$	$V_{D}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-100 \mu \mathrm{~A}$	
		ID(ON)		3	3000	$n \mathrm{~A}$	$V_{D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$	
		I D(off)		-3	-3000		$\mathrm{V}_{\text {S }(\text { all }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	
		ISIOFF)		-1	-1000		$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$	
	DG120	$\mathrm{I}_{\mathrm{R} \text { (ON) }}$		-0.5		mA	One Channel ON	
	DG121	$\mathrm{I}_{\text {LION) }}$		- 3				
	Both	ICCION)		3				
		$\mathrm{I}_{\mathrm{EE} \text { (ON) }}$		-6				
		ICCIOFF)		10		$\mu \mathrm{A}$	All Channels OFF	
		$i_{\text {L }}$ (OFF)		10	$\cdots$			
		$I_{\text {R(OFF) }}$	$\cdots$	-15				
		IEE(OFF)	;	-20				
	Both	${ }^{\text {ton }}$		300		ns ${ }^{\prime}$	See Switching Times	
		$t_{\text {OFF }}$		2	-	$\mu_{\mathrm{s}}$		

NOTE 1: (OFF) and (ON) subscripts refer to the conduction state of the MOS-FET switch.
NOTE 2: $\triangle r_{\text {DS }}(O N)$ is the resistance difference between differential switches.

## APPLICATION TIPS

The recommended resistor values for interfacing RTL, DTL, and $T^{2} L$ Logic are shown in Figures 1 and 2.


Figure 1. ḌG121 Interface


Figure 2. DG120 Interface

## Enable Control

The $V_{R}$ and $V_{L}$ terminals can be used as a strobe or an enable control. The requirements for sinking current at $V_{R}$ or sourcing current at $V_{L}$ are: $I_{L(O N)} \times$ No. of channels used, for DG121 and $I_{R(O N)} \times$ No. of channels used, for DG120. The voltage at $V_{L}$ must be greater than $V_{I N}$ for $V_{I N}<4 \mathrm{~V}$. $V_{\mathrm{L}}$ must be at least +4 V for $\mathrm{V}_{\mathbb{I N}}>4 \mathrm{~V}$.

## APPLICATIONS



3-Channel Differential Multiplexer

## SWITCHING TIMES

DG120


DG121


## TYPICAL CHARACTERISTICS

$r_{D S}$ vs $V_{D}$ or $V_{S}$




## PACKAGE OUTLINES



#  DG134/A, DG140/A, DG141/A, DG151/A, DG152/A, DG153/A, DG154A 2-Channel Drivers with SPST and DPST FET Switches 

## FEATURES

- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, 1 mW
- Switches analog signals up to 20 volts peak-to-peak
- Low rDs(ON), 10 ohms max on DG140/A and DG141/A
- Switching times improved $100 \%$ - 'A' Versions.

GENERAL DESCRIPTION
These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST or DPST junction FET switch. The driver interfaces DTL, TTL or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and logic " 0 "" turns it OFF.

## ABSOLUTE MAXIMUM RATINGS

Analog Signal Voltage $\left(V_{A}-V_{2}\right.$ or $\left.V_{1}-V_{A}\right)$. ... 30 V
Total Supply Voltage ( $\mathrm{V}_{1}-\mathrm{V}_{2}$ )
36 V
Pos. Supply Voltage to Ref. Voltage $\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{F}}\right)$. . . 25 V
Ref. Voltage to Neg. Supply Voltage $\left(V_{R}-V_{2}\right)$. . 22V
Power Dissipation (Note) . . . . . . . . . . . . . 750 mW
Current (any terminal) . . . . . . . . . . . . . . . . 30 mA
Storage Temperature . . . . . . . . . . . -65 to $+150^{\circ} \mathrm{C}$
Operating Temperature . . . . . . . . . . . . . -55 to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) . . . . . . . . . . $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathbf{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.


PRODUCT CONDITIONING

The following processes are performed 100\% in accordance with MIL-STD-883.

Precap Visual-Meth. 2010, Cond. B
Stabilization Bake-Meth. 1008

Temp. Cycle-Meth. 1010
Centrifuge-Meth. 2001, Cond. D
Hermeticity-Meth. 1014, Cond. A, C
(Leak Rate $<5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

## ELECTRICAL CHARACTERISTICS PER CHANNEL

Applied voltages for all tests: DG126/A, DG129/A, DG133/A, DG134/A, DG140/A, DG141/A $\left(V_{1}=+12 V, V_{2}=-18 V\right.$, $\left.V_{R}=0\right)$ and DG151/A, DG152/A, DG153/A, DG154/A ( $\left.V_{1}=+15 V, V_{2}=-15 V, V_{R}=0\right)$. Input test condition which guarantees FET switch ON and OFF as specified is used for output and power supply specifications.

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS
				$-55^{\circ}$	$25^{\circ}$	$125^{\circ}$		
$\begin{aligned} & \mathbf{I} \\ & \mathbf{N} \\ & \mathbf{P} \\ & \mathbf{U} \\ & \mathbf{T} \\ & \hline \end{aligned}$	$V_{\text {INIONI }}$	Input Voltage-On		2.9 min	2.5 min	2.0 min	Volts	$\mathrm{V}_{2}=-12 \mathrm{~V}$
	VIN(OFF)	Input Voltage-Off	All Circuits	1.4	1.0	0.6	Volts	$\mathrm{V}_{2}=-12 \mathrm{~V}$
	IINIONI	Input Current	All Circuits	120	60	60	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	IIN(OFF)	Input Leakage Current		0.1	0.1	2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
SWITCH			$\begin{aligned} & \hline \text { DG126/A } \\ & \text { DG134/A } \end{aligned}$	80	80	150	$\Omega$	
			$\begin{aligned} & \hline \text { DG129/A } \\ & \text { DG133/A } \end{aligned}$	$30 \cdot$	30	50	$\Omega$	$V_{D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$
	rosion)	Drain-Source On Resistance	$\begin{aligned} & \hline \text { DG140/A } \\ & \text { DG141/A } \end{aligned}$	. 10	10	20	$\Omega$	$V_{D}=10 \mathrm{~V}, \mathrm{I}_{S}=-10 \mathrm{~mA}$
		$\therefore$	$\begin{aligned} & \text { DG151/A } \\ & \text { DG153/A } \end{aligned}$	15	15	30	$\Omega$	
		. ${ }^{\text {" }}$	$\begin{aligned} & \hline \text { DG152/A } \\ & \text { DG154/A } \end{aligned}$	50	50	100	$\Omega$	$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V} . \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$
	ID(ON) + IS(ON)	Drive Leakage Current	DG126/A		2	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$
OUTP$U$U	Istoffi	Source Leakage Current.	DG133/A		1	100	nA	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	Idioff)	Drain Leakage Current	DG134/A		1	100	nA	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$
	IDION) $\mathrm{I}_{\text {S }}$ (ON)	Drive Leakage Current	DG140/A DG141/A		2	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$
	ISIOFF)	Source Leakage Current			10	1000	nA	$\mathrm{V}_{S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	Id(OFF)	Drain Leakage Current			10	1000	nA	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$
		Drive Leakage Current	$\begin{aligned} & \text { DG 151/A } \\ & \text { DG 153/A } \end{aligned}$		2	500	BA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
		Source Leakage Current			10	1000	nA	$\mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$
	Idoff)	Drain Leakage Current			10	1000	nA	$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
	ID(ON) + IS(ON)	Drive Leakage Current	DG152/A DG 154/A		2	500	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
	ISIOFFI	Source Leakage Current			2	200	nA	$\mathrm{V}_{S}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V}$
	Id(off)	Drain Leakage Current			2	200	nA	$\mathrm{V}_{\mathrm{D}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-7.5 \mathrm{~V}$
POWER	IIION)	Positive Power Supply Drain Current	All Circuits		3		mA	One Driver ON, $\mathrm{V}_{\text {IN }}=\mathbf{2 . 5 V}$
	$\mathrm{I}_{210 \mathrm{~N}}$ )	Negative Power Supply Drain Current			-1.8		mA	
	$I_{\text {R (ON) }}$	Reference Power Supply Drain Current			-1.4		mA	
S	I'IOFFi	Positive Power Supply Leakage Current			25		$\mu \mathrm{A}$	.
P	$\mathrm{I}_{2(0 F F)}$	Negative Power Supply Leakage Current			-25	$\because$	$\mu \mathrm{A}$	Both Drivers OFF, $\mathrm{V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$
L	Ir(off)	Reference Power Supply Leakage Current			-25		$\mu \mathrm{A}$	

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

## ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS	
				$-55^{\circ}$	$25^{\circ}$	$125^{\circ}$			
$\begin{gathered} \text { S } \\ \text { W } \\ \mathbf{I} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{I} \\ \mathbf{N} \\ \mathbf{G} \end{gathered}$	ton	Turn-On Time	$\begin{aligned} & \text { DG126, DG } 129 \\ & \text { DG133, DG } 134 \\ & \text { DG152, DG } 154 \\ & \hline \end{aligned}$		600		ns	See Below	
			DG126A, DG129A DG133A, DG134A DG152A, DG154A		300	500	ns		
	toff	Turn-Off Time	$\begin{aligned} & \text { DG126, DG } 129 \\ & \text { DG133, DG } 134 \\ & \text { DG152, DG } 154 \end{aligned}$		1.6		$\mu \mathrm{s}$	See Below	
					0.8	1.2	$\mu \mathrm{s}$		
	ton	Turn-On Time	$\begin{aligned} & \text { DG140, DG141 } \\ & \text { DG151, OG } 153 \end{aligned}$		1.0		$\mu \mathrm{s}$	See Below	
			$\begin{aligned} & \text { DG140A, DG141A } \\ & \text { DG151A, DG153A } \end{aligned}$	.	0.5	0.8	$\mu \mathrm{s}$		
	${ }^{\text {t }}$ OFF	Turn-Off Time	$\begin{aligned} & \text { DG140, DG141 } \\ & \text { DG151, DG } 153 \end{aligned}$		2.5		$\mu \mathrm{s}$	See Below	
			DG140A, DG141A DG151A, DG153A		1.25	1.8	$\mu \mathrm{s}$		
P 0 W	Pon	ON Driver Power	All' ${ }^{\text {Circuits }}$		175		mW	Both Inputs $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$	
E	Poff,	OFF Driver Power			1		mW	Both Inputs $\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$	

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES (at $25^{\circ} \mathrm{C}$ )

DG126/A, 129/A, 133/A, 134/A, 140/A, 141/A


OFF MODEL


ON MODEL


DG151/A, 152/A, 153/A, 154/A


OFF MODEL


ON MODEL


TYPICAL CHARACTERISTICS (perichannel)

DG126/A, 129/A, 133/A, 134/A, 140/A, 141/A
$V$ IN THRESHOLD
vs TEMPERATURE

rDS(ON)
vs TEMPERATURE
(Normalized to $25^{\circ} \mathrm{C}$ Value)


DG151/A, 152/A, 153/A, 154/A



## ALL CIRCUITS



# DG139/A, DG142/A - DG146/A, DG161/A - DG164/A Drivers with Differentially Driven N.O. and N.C. FET Switches 

## FEATURES

- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, 1 mW
- Switches analog signals up to 20 volts peak-to-peak
- Low $r_{\text {DS(ON), }} 10$ ohms max on DG145/A and DG146/A
- Switching times improved $100 \%-{ }^{-\prime} \mathrm{A}^{\prime \prime}$ circuits, $125^{\circ} \mathrm{C}$ guarantee

GENERAL DESCRIPTION
Each package contains a monolithic driver with differential input and 2 or 4 discrete FET switches. The driver may be treated as a special purpose differential amplifier which controls the conduction state of the FET switches. The differential output of the driver sets the switches in opposition, one pair open and the other pair closed. All switches may be opened by applying a positive control signal to the $V_{R}$ terminal.

## ABSOLUTE MAXIMUM RATINGS

$V_{1}-V_{2} \ldots . .36 \mathrm{~V}$
$V_{1}-V_{R}$
17V
$\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{2} \ldots . . .30 \mathrm{~V}$
$V_{1}-V_{S} . . . . .30 V$
$V_{S}-V_{D} \ldots \ldots 22 V$
$\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{2}$. . . . . 21 V
$V_{1}-V_{\text {IN } 1}$ or $V_{\text {IN } 2}$
14 V
$V_{I N 1}-V_{I N 2} \ldots \pm 6 V$
$V_{I N 1}-V_{R} \ldots \pm 6$
$V_{I N 2}-V_{R} \quad . . . \pm 6 V$
Power Dissipation (Note) . . ... . . . . . . . 750 mW
Current (any terminal) . . . . . . . . . . . . . . . 30 mA
Storage Temperature . . . . . . . . . . -65 to $+150^{\circ} \mathrm{C}$
Operating Temperature -55 to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec ) $\quad \therefore . . . . .0^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.


## PRODUCT CONDITIONING

Thè following processes are performed $100 \%$ in accordance with MIL-STD-883.

Precap Visual-Meth. 2010, Cond. B
Stabilization Bake-Meth. 1008
Temp. Cycle-Meth. 1010

Centrifuge-Meth. 2001, Cond. D
Hermeticity-Meth. 1014, Cond. A, C
(Leak Rate $<5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

## ELECTRICAL CHARACTERISTICS PER CHANNEL

Applied voltages for all tests: DG139/A, DG142/A, DG143/A, DG144/A, DG145/A, DG146/A (V $=12 \mathrm{~V}$, $\left.V_{2}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{1 N 2}=2.5 \mathrm{~V}\right)$ and $\mathrm{DG} 161 / \mathrm{A}, \mathrm{DG} 162 / \mathrm{A}, \mathrm{DG} 163 / \mathrm{A}, \mathrm{DG} 164 / \mathrm{A}\left(\mathrm{V}_{1}=15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0\right.$, $V_{1 N 2}=2.5 \mathrm{~V}$ ). Input test condition that guarantees FET switch ON or OFF as specified is used for output specifications.


NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS
				$-55^{\circ} \mathrm{C}$	$25^{\circ}$	$125^{\circ}$		
	TON	Turn-On Time	$\begin{aligned} & \text { DG139, DG142 } \\ & \text { DG143, DG } 144 \\ & \text { DG162, DG } 164 \\ & \hline \end{aligned}$	-	0.8		$\mu \mathrm{s}$	See Below
			$\begin{aligned} & \text { DG139A, DG142A } \\ & \text { DG143A, DG144A } \\ & \text { DG162A, DG164A } \end{aligned}$	,	0.4	0.7	$\mu \mathrm{s}$	
S	CFF	Turn-Off Time	$\begin{aligned} & \text { DG 139. DG } 142 \\ & \text { DG143, DG144 } \\ & \text { DG162, DG } 164 \end{aligned}$		1.6	${ }^{\prime}$	$\mu \mathrm{s}$	See Betow
$W$ 1 $T$ C			$\begin{aligned} & \text { DG139A, DG142A } \\ & \text { DG143A, DG 144A } \\ & \text { DG162A, DG164A } \end{aligned}$		0.8	1.2	$\mu \mathrm{s}$	
$H$ 1	TON	Turn-On Time	DG145, DG146   DG161, DG 163		1.0		$\mu \mathrm{s}$	See Beplow
$\begin{aligned} & \mathrm{N} \\ & \mathrm{G} \end{aligned}$			DG145A, DG146A DG161A, DG163A		0.5	0.8	$\mu \mathrm{s}$	
	toff	Turn-Off Time	$\begin{aligned} & \text { DG145, DG } 146 \\ & \text { DG161, DG } 163 \end{aligned}$		2.5	-	- ${ }^{\prime} \mathrm{s}$	See Below
			DG145A, DG146A DG161A, DG163A		1.25	1.8	$\mu \mathrm{s}$	
P 0 W	Pon	ON Driver Power	All Circuits		175		mW	Both Inputs $V_{1 N}=2.5 \mathrm{~V}$
E	$\mathrm{P}_{\text {OFF }}$	OFF Driver Power		-	1	$\cdot$	mW	Both Inputs $V_{\text {in }}$ - 1.0 V

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

## SWITCHING TIMES $\left(25^{\circ} \mathrm{C}\right)$

DG139/A, 142/A, 143/A, 144/A, 145/A, 146/A





OFF MODEL


ON MODEL


FIGURE 1


FIGURE 2


NOTE1: An example of Absolute Minimum Differential Voltage, $\left|V_{9}-V_{13}\right|$, is when $V_{9}=3 V$ and $V_{13}=2.5 V$, the $V$, side of the switch is ON and the $\mathrm{V}_{13}$ side of the switch is OFF at $25^{\circ} \mathrm{C}$. Conversely, when $\mathrm{V}_{9}=2 \mathrm{~V}$ and $\mathrm{V}_{13}=2.5 \mathrm{~V}$, the $\mathrm{V}_{9}$ side of the switch is $O F F$ and the $V_{13}$ side of the switch is ON at $25^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS (per channel)

DG139/A, 142/A, 144/A, 145/A, 146/A



DG161/A, 162/A, 163/A, 164/A


## FEATURES

- Constant ON-resistance: $75 \Omega$ max. for $\pm 10 \mathrm{~V}$ signals, $10 \Omega$ max. for $\pm 7.5$ signals.
- $\pm 15 \mathrm{~V}$ power supplies
- $<2 n A$ leakage from signal channel in both ON and OFF states
- TTL, DTL, RTL direct drive compatibility
- $t_{\text {on }}, t_{\text {off }}<150 \mathrm{~ns}$, break-before-make action
- Cross-talk and open switch isolation, $>50 \mathrm{~dB}$ at 10 MHz ( $75 \Omega$ load)


## FUNCTIONAL DESCRIPTION

PART   NUMBER	TYPE	RON   (MAX)
DG 180	Dual SPST	10
DG 181	Dual SPST	30
DG 182	Dual SPST	75
DG 183	Dual DPST	10
DG 184	Dual DPST	30
DG 185	Dual DPST	75
DG 186	SPDT	10
DG 187	SPDT	30
DG 188	SPDT	75
DG 189	Dual SPDT	10
DG 190	Dual SPDT	30
DG 191	Dual SPDT	75

## GENERAL DESCRIPTION

The DG180 thru DG191 series of analog gates consists of 2 or 4 N -channel junction-type field-effect transistors (J-FET) designed to function as electronic switches. Levelshifting drivers enable low-level inputs ( 0.8 to 2 V ) to control the ON-OFF state of each switch. The driver is designed to provide a turn-off speed which is faster than turn-on speed, so that break-before-make action is achieved when switching from one channel to another. In the ON state each switch conducts current equally well in either direction. In the OFF condition the switches will block voltages up to 20 V peak-to-peak. Switch-OFF input-output feedthrough is $>50 \mathrm{~dB}$ at 10 MHz , because of the low output impedance of the FET-gate driving circuit.

## ANALOG GATE <br> PRODUCT CONDITIONING

The following processes are performed $100 \%$ in accordance with MIL-STD-883.

Precap Visual - Method 2010, Condition B.
Stabilization Bake - Method 1008.
Temperature Cycle - Method 1010.
Centrifuge - Method 2001, Condition E.
Hermeticity - Method 1014, Condition A,C.
(Leak Rate $<5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

## SCHEMATIC DIAGRAM (Typical Channel)

## ONE AND TWO CHANNEL SPDT AND SPST CIRCUIT CONFIGURATION



TWO CHANNEL DPST CIRCUIT CONFIGURATION


MAXIMUM RATINGS
$V_{C C}-V_{E E}$
$V_{C C}-V_{D}$
$V_{D}-V_{E E}$
$V_{D}-V_{S}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{EE}}$
36 V
$V_{L}-V_{I N}$
$V_{L}-V_{R}$
$V_{\text {IN }}-V_{R}$
$V_{R}-V_{E E}$
$V_{R}-V_{I N}$
Current (Any Terminal except S or D) See Note

8 V
8 V 8 V 27 V 2 V

Current (S or D) See Note 3
Storage Temperature
Operating Temperature
Power Dissipation*
*Device mounted with all leads was Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TW); $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (FLAT); $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (DIP) above $75^{\circ} \mathrm{C}$.
Lead Temperature (Soldering, 10 sec )
$300^{\circ} \mathrm{C}$

MAXIMUM ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{C}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$, Unless Otherwise Noted)


Note 1: See Switching State Diagrams for ViN "ON" and VIN "OFF" Test Conditons.
Note 2: Off Isolation typically $>55 \mathrm{~dB}$ at 1 MHz for DG $180,183,186,189$.
Note 3: Saturation Drain Current for DG180, 183, 186, 189 only, typically 300 mA ( 2 msec Pulse Duration.) Maximum Current on all other devices (any terminal) 30 mA .

ELECTRICAL CHARACTERISTICS (CONT'D)
MAXIMUM ON RESISTANCES (RDSION) MAX)


APPLICATION HINT (for design only): Normally the minimum signal handling capability of the DG180 through DG191 family is 20 V peak-to-peak for the $75 \Omega$ switches and 15 V peak-to-peak for the $10 \Omega$ and $30 \Omega$ switches (refer $I_{D}$ and $I_{S}$ tests above). For other Analog Signals, the following guidelines can be used: proper switch turn-off requires that $\mathrm{V}_{\mathrm{EE}} \leqslant \mathrm{V}_{\mathrm{ANALOG}}$ (-peak) $-\mathrm{Vp}_{\mathrm{p}} \leqslant 7.5 \mathrm{~V}$ for the $10 \Omega$ and $30 \Omega$ switches and $V p \leqslant 5.0 \mathrm{~V}$ for $75 \Omega$ switches, i.e., A -10 V minimum (-peak) analog signal and a $75 \Omega$ switch ( $V p \leqslant 5 \mathrm{~V}$ ), requires that $V_{E E} \leqslant-10 \mathrm{~V}-5 \mathrm{~V}=-15 \mathrm{~V}$.

## SWITCHING TIME TEST CIRCUIT

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note that $\mathrm{V}_{\mathrm{S}}$ may be + or - as per switching time test circuit. $\mathrm{V}_{\mathrm{O}}$ is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.


## SWITCHING STATE DIAGRAMS

DUAL SPST DG180/181/182
TEST CONDITIONS

DG180/181/182	
$V_{\text {IN }}$ "ON" $=0.8 \mathrm{~V}$	All Channels
$V_{\text {IN }}$ "OFF'" $=2.0 \mathrm{~V}$	All Channels

## SWITCH STATES ARE

FOR LOGIC " 1 " INPUT $=2.0 \mathrm{~V}$

DUAL DPST

## DG183/184/185

TEST CONDITIONS

$\mathrm{DG183} / 184 / 185$	
$\mathrm{~V}_{\text {IN }}{ }^{\prime \prime} \mathrm{ON"}^{\prime \prime}=2.0 \mathrm{~V}$	All Channels
$\mathrm{V}_{\text {IN }}$ "OFFF" $=0.8 \mathrm{~V}$	All Channels

SWITCH STATES ARE
FOR LOGIC " 0 " INPUT $=0.8 \mathrm{~V}$




ORDER NUMBERS: DG180AP OR DG181BP DG181AP OR DG181BP DG182AP OR DG182BP

Dual-In-Line Package


ORDER NUMBEERS: DL183AP OR DG183BP DG184AP OR DG184BP DG185AP OR DG185BP


## DG180 - DG191

SPDT
DG186/187/188
TEST CONDITIONS

DG186/187/188	
$V_{\text {IN }}$ "ON" $=2.0 \mathrm{~V}$	Channel 1
$V_{\text {IN }}$ "ON" $=0.8 \mathrm{~V}$	Channel 2
$V_{\text {IN }}$ "OFF' $=2.0 \mathrm{~V}$	Channel 2
$V_{\text {IN }}$ "OFF' -0.8 V	Channel 1

FOR LOGIC " 1 " INPUT = 2.0 V
DUAL SPDT
DG189/190/191

DG189/190/191	
$V_{\text {IN }}$ "ON" $=2.0 \mathrm{~V}$	Channels 1 \& 2
$\mathrm{V}_{\text {IN }}$ "ON" $=0.8 \mathrm{~V}$	Channels 3 \& 4
$\mathrm{V}_{\text {IN }}{ }^{\prime \prime} \mathrm{OFF}$ " $=2.0 \mathrm{~V}$	Channels 3 \& 4
$\mathrm{V}_{\text {IN }}{ }^{\prime \prime} \mathrm{OFF}^{\prime \prime}=0.8 \mathrm{~V}$.	Channels 1 \& 2

SWITCH STATES ARE
FOR LOGIC " 1 " INPUT $=2.0 \mathrm{~V}$.

Metal Can Package


ORDER NUMBERS: DG186AA OR DG186BA DG187AA OR DG187BA DG188AA OR DG188BA

## PACKAGE DIMENSIONS

16 PIN CER AMIC PACKAGE


14 PIN CERAMIC PACKAGE


TO-100 PACKAGE


# DG426/A, DG429/A, DG433/A, DG434/A, DG440/A, DG441/A, DG451/A, DG452/A, DG453/A, DG454/A 2-Channel Drivers with SPST and DPST FET Switches 

FEATURES

- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, -1 mW
- Switches analog signals up to 16 volts peak-to-peak
- Low ros(on), 15 ohms max on DG440/A and DG441/A
- Switching times improved $100 \%$-" ${ }^{\prime} A^{\prime \prime}$ versions


## GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST or DPST junction FET switch. The driver interfaces DTL, TTL or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic " 1 ". at the input turns the FET switch ON, and logic " 0 " turns it OFF.

## ABSOLUTE MAXIMUM RATINGS

Analog Signal Voltage $\left(V_{A}-V_{2}\right.$ or $\left.V_{1}-V_{A}\right) \ldots .28 V$
Total Supply Voltage $\left(V_{1}-V_{2}\right)$ 32V

Pos. Supply Voltage to Ref. Voltage $\left(V_{1}-V_{R}\right)$. . . 18 V
Ref. Voltage to Neg. Supply Voltage ( $\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{2}$ ) ... 21 V
Power Dissipation (Note) .... . . . ... . . . . 750 mW
Current (any terminal) . . . . . . . . . . . . . . . 30 mA
Storage Temperature . . . . . . . . . . -65 to $+150^{\circ} \mathrm{C}$
Operating Temperature . . . . . . . . . . . . . -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec. ) . . . . . . . $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$.


ORDERING INFORMATION


PACKAGE DIMENSIONS
Flat Package


FD Package

Ceramic Dual-In-Line Package


## ELECTRICAL CHARACTERISTICS PER CHANNEL

Applied voltages for all tests; DG426/A, DG429/A, DG433/A, DG434/A, DG440/A, DG441/A, $\left(V_{1}=+12 \mathrm{~V}, \mathrm{~V}_{2}=-18 \mathrm{~V}\right.$, $\left.V_{R}=0\right)$ and DG451/A, DG452/A, DG453/A, DG454/A ( $\left.V_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0\right)$. Input test condition which guarantees FET switch ON and OFF as specified is used for output and power supply specifications.


NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)


NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES (at $25^{\circ} \mathrm{C}$ )

DG426/A, 429/A, 433/A, 434/A,
440/A, 441/A


OFF MODEL


ON MODEL


DG451/A, 452/A, 453/A, 454/A


## OFF MODEL



ON MODEL


## 441A/451A/452A/453A/454A

TYPICAL CHARACTERISTICS (per channel)

VIN THRESHOLD
vs TEMPERATURE

rDS(ON) VS TEMPERATURE (Normalized to $25^{\circ} \mathrm{C}$ Value)


VIN THRESHOLD
vs TEMPERATURE


## ALL CIRCUITS



OFF SUPPLY CURRENT vs TEMPERATURE


# DG439/A, DG442/A - DG446/A, <br> DG461/A - DG464/A 

## Drivers with Differentially Driven N.O. and N.C. FET Switches

## FEATURES

- Each channel complete-interfaces with most integrated logic
- Low OFF power dissipation, -1 mW
- Switches analog signals up to 16 volts peak-to-peak
- Low rDS(ON), 15 ohms max on DG445/A and DG446/A
- Switching times improved $100 \%-$ " $A^{\prime \prime}$ circuits


## GENERAL DESCRIPTION

Each package contains a monolithic driver with differential input and 2 or 4 discrete FET switches. The driver may be treated as a special purpose differential amplifier which controls the conduction state of the FET switches. The differential output of the driver sets the switches in opposition, one pair open and the other pair closed. All switches may be opened by applying a positive control signal to the $\mathrm{V}_{\mathrm{R}}$ terminal.

## ABSOLUTE MAXIMUM RATINGS

$V_{1}-V_{2} \ldots . . .33 V$	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{R}} \ldots . . . .16 \mathrm{~V}$
$\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{2} \ldots . . . .28 \mathrm{~V}$	$\mathrm{V}_{1}-\mathrm{V}_{\text {IN } 1}$ or $\mathrm{V}_{\text {IN } 2} 14 \mathrm{~V}$
$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{S}}$. . . . . 28 V	$\mathrm{V}_{1 N 1}-\mathrm{V}_{\text {IN } 2} \ldots . . \pm 5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{D}} . . . . . \pm 21 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN} 1}-\mathrm{V}_{\mathrm{R}}$. . . . $\pm 5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{2} \ldots \ldots \mathrm{l}$. . 20 V	$\mathrm{V}_{\text {IN } 2}-\mathrm{V}_{\mathrm{R}} \ldots . . \pm 5 \mathrm{~V}$
Power Dissipation (Note)	750 mW
Current (any terminal)	30 mA
Operating Temperature	-55 to $+125^{\circ} \mathrm{C}$
Lead Temperature (solderin	sec) . . . . . . $300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.


## PRODUCT CONDITIONING

The following processes are performed $100 \%$ in accordance with MIL-STD-883.

Precap Visual-Meth. 2010, Cond. B
Stabilization Bake-Meth. 1008
Temp. Cycle-Meth. 1010

Centrifuge-Meth. 2001, Cond. D
Hermeticity-Meth. 1014, Cond. A, C
(Leak Rate $<5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

## ELECTRICAL CHARACTERISTICS PER CHANNEL

Applied voltages for all tests: DG439/A, DG442/A, DG443/A, DG444/A, DG445/A, DG446/A, ( $V_{1}=12 \mathrm{~V}, \mathrm{~V}_{2}=-18 \mathrm{~V}$, $\left.V_{R}=0, V_{I N 2}=2.5 V\right)$ and DG461A, DG462/A, DG463/A, DG464/A ( $\left.V_{1}=15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{~V}_{1 N 2}=2.5 \mathrm{~V}\right)$. Input test condition that guarantees FET switch ON or OFF as specified is used for output specifications.

	SYMBOL (NOTE)	ChARACTERISTIC	TYPE	ABSOL	Ite max	Limit	UNITS	TEST CONDITIONS
				$-55^{\circ}$	$25^{\circ}$	$125{ }^{\circ}$		
$\begin{aligned} & \mathrm{I} \\ & \mathrm{~N} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \end{aligned}$	$V_{\text {INIONI }}$	Input Voltage-On	All Circuits	2.9 min	2.5 min	2.0 min	Volts	At Pin 9 and 13 See Figure 1 and 2. Pg. 4
	$V_{\text {IN (OFF) }}$	Input Voltage-Off		1.4	1.0	0.8	Volts	At Pin 9 a'nd 13 See Figure 1 and 2, Pg. 4
	$\left\|V_{9}-V_{13}\right\|$	Differential Voltage		0.5 min	0.5 min	0.5 min	Volts	See Note 1. Pg. 4
	IINTION)	Input Current		150	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN1 }} 3.0 \mathrm{~V}$
	I'N2ION)			150	100	100	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N} 2}=2.0 \mathrm{~V}$
	I'INI(OFF)	Input Leakage Current		4	4	10	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{IN1}-2.0 \mathrm{~V}}$
	I ${ }^{\text {N 2 (OFF) }}$			4	4	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN2 }}$ - 3.0 V
$\begin{gathered} \text { S } \\ \text { W } \\ \text { I } \\ T \\ \text { C } \\ H \\ \\ 0 \\ U \\ T \\ P \\ U \\ T \end{gathered}$	'DS(ON)	Drain-Source On Resistance	$\begin{aligned} & \text { DG442/A } \\ & \text { DG443/A } \end{aligned}$	80	80	130	$\Omega$	$V_{D}=10 \mathrm{~V} . \mathrm{t}=1 \mathrm{~mA}$
			$\begin{aligned} & \text { DG439/A } \\ & \text { DG444/A } \end{aligned}$	35	35	50	$\Omega$	
			DG445/A DG446/A	15	15	25	52	
			DG461/A DG463/A	20	20	30	$\Omega$	$V_{D}=7.5 \mathrm{~V} .1 \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA}$
			DG462/A   DG464/A	100	100	140	S2	
	$I_{\text {O(ON })}+I_{\text {SION }}$	Drive Leakage Current	$\begin{aligned} & \text { DG439/A } \\ & \text { DG442/A } \\ & \text { DG443/A } \\ & \text { DG444/A } \end{aligned}$		5	160	nA	$V_{D}=V_{S}=-8 \mathrm{~V}$
	$\mathrm{I}_{\text {Sioff) }}$	Source Leakage Current			5	160	nA	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-8 \mathrm{~V}$
	lotoffi	Drain Leakage Current			5	160	nA	$\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-8 \mathrm{~V}$
	$I_{\text {OION })}+I_{\text {SION }}$	Drive Leakage Current	DG445/A DG446/A		5	160	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-8 \mathrm{~V}$
	Istoff)	'Source Leakage Current			15	500	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-8 \mathrm{~V}$
	IDIOFF)	Drain Leakage Current			15	500	nA	$\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-8 \mathrm{~V}$
	$I_{\text {O(ON) }}+I_{\text {S(ON) }}$	Drive Leakage Current	DG461/A DG463/A		5	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-5.5 \mathrm{~V}$
	$\mathrm{I}_{\text {Soffi }}$	Source Leakage Current		.	15	300	nA	$\mathrm{V}_{\mathrm{S}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=-5.5 \mathrm{~V}$
	Idofaf)	Drain Leakage Current			15	300	nA	$\mathrm{V}_{\mathrm{D}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-5.5 \mathrm{~V}$
	$I_{\text {DIONI }}+I_{\text {SIONI }}$	Drive Leakage Current	$\begin{aligned} & \text { DG462/A } \\ & \text { DG464/A } \end{aligned}$		5	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-5.5 \mathrm{~V}$
	$\mathrm{I}_{\text {S ( }}^{\text {(aff) }}$	Source Leakage Current			5	100	nA	$\mathrm{V}_{\mathrm{D}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-5.5 \mathrm{~V}$
	Idioff)	Drain Leakage Current			5	100	$n \mathrm{~A}$	$\mathrm{V}_{\mathrm{D}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-5.5 \mathrm{~V}$
P 0	I'IONI	Positive Power Supply Drain Current	All Circuits	-	3.5		mA	$\begin{aligned} & V_{\text {INI }}=3 V \\ & \text { or } \\ & v_{\text {INI }}=2 V \end{aligned}$
W	$\mathrm{I}_{210 \mathrm{NI}}$	Negative Power Supply Drain Current			-2.0		mA	
R	Ifion)	Reference Power Supply Drain Current			-1.5		mA	
U	1 (Ioff)	Positive Power Supply Leakage Current			25		$\mu \mathrm{A}$	$V_{1 N 1}=V_{1 N 2}=0.8 \mathrm{~V}$
P L L	$\mathrm{I}_{\text {(10FF) }}$	Negative Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
Y	Ifioff)	Reference Power Supply Leakage Current			-25		$\mu \mathrm{A}$	

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

ELECTRICAL CHARACTERISTICS PER CHANNEL (cont.)


NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES $\left(25^{\circ} \mathrm{C}\right)$

DG439/A, 442/A, 443/A, 444/A, 445/A, 446/A


OFF MODEL


## ON MODEL



DG461/A, 462/A, 463/A, 464/A


OFF MODEL


ON MODEL
SOURCE O

FIGURE 1


FIGURE 2


NOTE1: An example of Absolute Minimum Differential Voltage, $1 V_{9}-V_{13} 1$, is when $V_{9}=3 \mathrm{~V}$ and $V_{13}=2.5 \mathrm{~V}$, the $V_{9}$, side of the switch is ON and the $\mathrm{V}_{13}$ side of the switch is OFF at $25^{\circ} \mathrm{C}$. Conversely, when $V_{9}=2 \mathrm{~V}$ and $\mathrm{V}_{13}=2.5 \mathrm{~V}$, the $V_{9}$ side of the switch is OFF and the $V_{13}$ side of the switch is ON at $25^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS (per channel)

DG439/A, 442/A, 443/A, 444/A, 445/A, 446/A


DG461/A, 462/A, 463/A, 464/A


IH181/IH182/IH184/IH185/ IH187/IH188/IH190/IH191 Low-Power, High-Level Analog Gates*

## FEATURES

- Switches 20 Vpp Signals
- Quiescent Current Less than $100 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching; tOFF 130 ns Max, tON 250 nsec. Max.
- T2L, HTL, CMOS, PMOS Compatible
- Low rDS (ON) - $30 \Omega$
- Construction includes CMOS high level driver circuitry combined with unique "VARAFET" switches.


## GENERAL DESCRIPTION

This family of solid state analog gates is designed using both CMOS technology and a unique new J-FET technology. CMOS processing is used to make a driver or translator chip, which translates the TTL strobing logic into plus and
minus 15 V . This driver chip draws extremely low quiescent current from the power supplies; thus system power dissipation is reduced to nW typical.

The actual switching element is a unique new Intersil design, called the Varafet. The Varafet is a monolithic combination of a varactor J-FET diode driving a conventional J-FET. Strobing the solid state switch is accomplished by the TTL levels of a " 1 " being 2.4 V or greater; a " 0 " is 0.8 V or lower. The translator input circuitry will draw virtually no source or sinking current (typical pa of input current) from the TTL logic output element, and the effective fanout, if one were to drive only solid state switches, approaches millions.

The family of analog gates is guaranteed to be "break-before-make" switching; The "off" time is faster than the "on" time. Typical turn-off times are 80 ns and typical turn-on times are 200 ns.

* Note: The INTERSIL IH181/191 series is a low power version of the standard DG181/191 series. They meet or exceed the standard DG181/191 series specifications with the following exceptions:
1.) $\mathrm{V}_{\text {INH }}=2.4$ volts minimum.
2.) Break-before-make switching requires toN to be 250 nsec maximum. See also IH5040, IH5140 series.


## SCHEMATIC DIAGRAM

(Typical Channel)


FUNCTIONAL DESCRIPTION

PART   NUMBER	TYPE	R ON
IH 181	Dual SPST	30
IH 182	Dual	SPST
IH 184	Dual	75
IH 185	Dual	DPST
IH 187		75
IH 188		SPDT
IH 190	Sual	30
IH 191	SPDT	75

## CMOS ANALOG GATE

 PRODUCT CONDITIONINGThe following processes are performed $100 \%$ in accordance with MIL-STD-883.

Precap Visual - Method 2010, Cond. B.
Stabilization Bake - Method 1008.
Temperature Cycle - Method 1010
Centrifuge - Method 2001, Cond. E.
Hermeticity - Method 1014, Cond. A, C.
(Leak Rate $<5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

MAXIMUM RATINGS

$V_{1}-V_{2}$	$36 V$	$V_{L}-V_{I N}$	$8 V$
$V_{1}-V_{D}$	$33 V$	$V_{L}-V_{R}$	$8 V$
$V_{D}-V_{2}$	$33 V$	$V_{I N}-V_{R}$	$8 V$
$V_{D}-V_{S}$	$\pm 22 V$	$V_{R}-V_{2}$	$36 V$
$V_{L}-V_{2}$	$36 V$	$V_{R}-V_{I N}$	$2 V$

Current (Any Terminal)
Storage Temperature
Operating Temperature
Power Dissipation*
Lead Temperature (soldering, 10 sec.)
*Device mounted with all leads welded or soldered to PC board. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS - IH 181 THRU IH 191

( $\mathrm{V}_{1}=15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$, Unless Noted)

PARAMETER   Note (1)	DEVICE		MAX LIMITS (Note 1)						UNITS	TEST CONDITIONS	
			$-55^{\circ} \mathrm{C}+25^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$			$-20^{\circ} \mathrm{C}+25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$					
SWITCH	ALL				50			100.	nA	$\begin{aligned} & V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} V_{1}=10 \mathrm{~V} \\ & V_{2}=-20 \mathrm{~V} V_{I N}=2.4 \mathrm{~V} \end{aligned}$	
	$\begin{array}{\|l\|l\|} \hline \text { IH } 181 \\ \text { IH } 187 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { IH } 184 \\ & \text { IH } 190 \end{aligned}$		0.1	50			100	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$	
IS (OFF)	$\begin{array}{\|l\|l\|} \hline \text { IH } 182 \\ \text { IH } 188 \end{array}$	$\begin{aligned} & \text { IH } 185 \\ & \text { IH } 191 \\ & \hline \end{aligned}$		0.1	50			100	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$	
$I_{\text {d }}($ OFF)	ALL			0.1	50			100	nA	$\begin{aligned} & V_{S}=10 \mathrm{~V} V_{D}=-10 \mathrm{~V} V_{1}=10 \mathrm{~V} \\ & V_{2}=-20 \mathrm{~V} V_{I N}=2.4 \mathrm{~V} \end{aligned}$	
	$\left[\begin{array}{ll} \text { IH } 181 \\ \text { IH } 187 \end{array}\right.$	$\begin{aligned} & \text { IH } 184 \\ & \text { IH } 190 \end{aligned}$		0.1	50			100	nA	$\begin{aligned} & V_{S}=7.5 \mathrm{~V} \quad V_{D}=-7.5 \mathrm{~V} \\ & V_{I N}=2.4 \mathrm{~V} \end{aligned}$	
	$\text { IH } 182$	$\begin{aligned} & \text { IH } 185 \\ & \text { IH } 191 \end{aligned}$		0.1	50			100	nA	$\begin{aligned} & V_{S}=10 \mathrm{~V} V_{D}=-10 \mathrm{~V} \\ & V_{\text {IN }}=2.4 \mathrm{~V} \end{aligned}$	
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})+{ }^{\text {I }} \text { S (ON) }}$	$\begin{array}{\|l\|l\|} \hline \text { IH } 181 \\ \text { IH } 187 \\ \hline \end{array}$	$\begin{aligned} & \text { IH } 184 \\ & \text { IH } 190 \\ & \hline \end{aligned}$		-0.2	100		-10	-200	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-7.5 \mathrm{~V} \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$	
	$\left\lvert\, \begin{array}{ll} \text { IH } 182 \\ \text { IH } 188 \end{array}\right.$	$\begin{aligned} & \text { IH } 185 \\ & \text { IH } 191 \end{aligned}$		-0.2	100		-10	-200	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=-10 \mathrm{~V} \quad \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$	
IN IINL	ALL		1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{1 N}=0 \mathrm{~V}$	
IINH	ALL		1	1	1	1	1.	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	
$\begin{aligned} & \text { DYNAMIC } \\ & \text { t on }^{\text {on }} \\ & \hline \end{aligned}$	ALL		250				300		ns	See switching time test circuit Fig. 10	
${ }^{t}{ }_{\text {off }}$	ALL		130			150			ns		
$\mathrm{C}_{\text {S }}$ (off)	ALL		9 typical						pf	$\mathrm{V}_{S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, f=1 \mathrm{MHZ}$	
$\mathrm{C}_{\mathrm{D}}$ (off)			6 typical						pf	$\mathrm{V}_{S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, f=1 \mathrm{MHZ}$	
$\mathrm{C}_{\mathrm{D} \text { (on) }}+\mathrm{C}_{S}$ (on)			14 typical						pf	$V_{D}=V_{S}=0 \quad f=1 \mathrm{MHZ}$	
Off Isolation			Typ > 50 dB at 10 MHZ						pf	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pf}$	
Supply ICC	ALL		100	10	100		100		$\mu \mathrm{A}$		
${ }^{\text {E EE }}$			100	10	100		100		$\mu \mathrm{A}$	Both $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	
${ }_{\text {I }}$			10				100		$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{R}}$			10				100		$\mu \mathrm{A}$		
${ }^{\text {I CC }}$			100	10	100		100		$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{EE}}$			100	10	100		100		$\mu \mathrm{A}$	Both $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	
$I_{L}$				10			100		$\mu \mathrm{A}$		
${ }^{\prime} \mathrm{R}$				10			100		$\mu \mathrm{A}$		

APPLICATION HINT (for design only): The minimum signal handing capability of the IH181 through $1 H 191$ family is 20 V peak to peak for the $75 \Omega$ switches and 15 V peak to peak for the $30 \Omega$ switches (refer ID and IS tests above. Proper switch turn off requires that $V_{\text {ee }} \leqslant V_{\text {ANALOG }}$ (-peak) - $V_{p}$ where $V_{p} \leqslant 7.5 \mathrm{~V}$ for $30 \Omega$ switches and $V_{p} \leqslant 5.0 \mathrm{~V}$ for $75 \Omega$ switches i.e., $A-10 \mathrm{~V}$ minimum ( -peak ) analog signal and a $75 \Omega 2$ switch ( $\mathrm{V}_{\mathrm{p}} \leqslant 5 \mathrm{~V}$ ), requires that $V_{\mathrm{ee}} \leqslant-10 \mathrm{~V}-5 \mathrm{~V}=-15 \mathrm{~V}$.
MAXIMUM ON RESISTANCES - rDS(ON) MAX
$\left(\mathrm{V}_{1}=15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}\right)$

DEVICE NUMBER	MILITARY TEMPERATURE			INDUSTRIAL TEMPERATURE			UNITS	CONDITIONS
	$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$		
IH 181	30	30	60	50	50	75	$\Omega$	$\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}$
IH 182	75	75	100	100	100	150	$\Omega$	$V_{D}=-10 \mathrm{~V}$
IH 184	30	30	60	50	50	75	$\Omega$	$\mathrm{V}_{\mathrm{D}}=-7.5 \mathrm{~V}$
IH 185	75	75	- 150	100	100	150	$\Omega$	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$
IH 187	30	30	60	50	50	75	$\Omega$	$V_{D}=-7.5 \mathrm{~V}$
IH 188	75	75	150	100	100	150	$\Omega$	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$
IH 190	30	30	60	50	50	75	$\Omega$	$V_{D}=-7.5 \mathrm{~V}$.
IH 191	75	75	150	100	100	150	$\Omega$	$V_{D}=-10 \mathrm{~V}$

## LOGIC COMPATIBILITY

The IH 181/191 series has been designed to directly interface with the popular TTL, HTL, and CMOS families; but almost any logic family can be used. The fact that the solid state switch input current approaches zero (specification has $1 \mu \mathrm{~A}$ maximum for either high or low input states)


FIGURE 1. CIRCUIT ANALYSIS AND CHARACTERISTICS OF SERIES 54/74


FIGURE 3. FOR INTERFACING WITH TTL LOGIC


FIGURE 5. FOR USE WITH CMOS LOGIC
means that one is operating along the zero load current, or zero source current line for the TTL output voltage vs. $l_{\text {load }}$ or $I_{\text {source }}$ current. Thus the maximum output is obtained from the TTL gate. Figures 1 and 2 show the expected (typical) output of a TTL gate vs. load and source currents and plotted as a function of temperature and power supply.


FIGURE 2.


FIGURE 4. FOR INTERFACING WITH HTL OPEN COLLECTOR LOGIC

Note: When using HTL or CMOS logic, a zener diode should be added between the $\mathrm{V}_{\mathrm{L}}$ supply (normally plus 5 V ) and the $V_{1}$ supply (normally plus 15 V ). This zener is not critical. Any value between 2 V and 10 V will work fine, and no biasing resistor is needed to establish a current through the zener. In cases where the TTL logic level may go below 2.4 V , a pull-up resistor should be added between the TTL output and the plus 5 V power supply.

## THEORY OF OPERATION

## Voltage Translator or Driver Circuit

The translator part of the 1 H 181 family takes the low level strobe input and converts it to a plus and minus 15 V swing. These voltage swings are necessary to drive the output Varafets so they can switch the maximum analog input signal. As shown in Figures 6 and 7, this translation is performed without drawing any power supply quiescent current. Typical quiescent current is only the $I_{D}$ (off) leakage of the FET - this is usually less than 1 nA . Whether the input strobe logic is in the " 1 " state or the " 0 " state
makes no difference; the quiescent current remains leakage of FET in the off condition.

The currents previously discussed are dc currents and the obvious result is low circuit power consumption. For example, with plus and minus 15 V power supplies, the specified maximum power consumption is 3 mW . The typical power consumption will be 30 nW . When strobing from a particular duty cycle square wave, ac currents will be drawn and the magnitude of these are dependent upon the duty cycle and the plus repetition rate. Figure 8 shows typical ac current draw as a function of pulse repetition rate.



FIGURE 6. DRIVER STATES WITH $T^{2}$ L"1" INPUT


FIGURE 7. DRIVER STATES WITH $T^{2} L$ " 0 " INPUT


FIGURE 8. POWER SUPPLY OUIESCENT CURRENT VS. LOGIC FREQUENCY RATE


FIGURE 9. OUTPUT VARAFET

## THEORY OF OPERATION (CONTINUED)

## Output J-FET or Varafet

The output J -FET is the actual solid state switch. The translator circuit is merely a means to interface the low level TTL strobing logic into higher levels to drive the output FET. The varafet is a monolithically constructed combination of a varactor diode in series with the gate of an N -channel J-FET. The driver diode (varactor diode) is needed to prevent forward biasing the output FET during normal switching applications. Figure 9 shows a schematic of the complete varafet.

Notice that the polarity of the driver diode is such that it forms a back-to-back diode combination with the source-to-gate or drain-to-gate junctions of the FET. This makes it impossible to forward bias a source-to-gate junction during switching. The driver diode is a voltage variable capacitor whose C (capacity) vs. V (voltage across diode) plot is much greater than the $C$ vs. $V$ plot for either the source-to-gate or drain-to-gate FET iunctions. In fact, the criteria for proper operation of the varafet is that the integral of the diode's $C$ vs. $V$ plot is at least equal to the sum of the $C$ vs. $V$ plots for the source-to-gate and drain-to-gate FET junctions. The integral of $C$ vs. $V$ is charge $Q . C=Q / V$ and $\mathbf{Q}=\mathbf{C} \times \mathrm{V}$. Thus the varafet is really a charge transfer device.
DUAL SPST
IH181/IH182
SWITCH STATES ARE
FOR LOGIC

DUAL SPDT
IH190/IH191


ORDER NUMBERS:
IH190MFD OR IH190CFD IH191MFD OR IH191CFD IH191MDE OR IH191CDE

## SWITCHING TIME TEST CIRCUIT

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note that $\mathrm{V}_{\mathrm{S}}$ may be + or -as per switching time test circuit. $\mathrm{V}_{\mathrm{O}}$ is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.


FIGURE 10

## PACKAGE DIMENSIONS

16 PIN CERAMIC PACKAGE




TO-100 PACKAGE


## FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $10 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching: toff 200 nsec, ton 400nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Complete Monolithic Construction


## GENERAL DESCRIPTION

The IH 200 solid state analog gate is designed using; an improved, high voltage CMOS monolithic technology. This improved CMOS technology provides input overvoltage capability to $\pm 25$ volts without damage to the device, and destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has eliminated this serious systems problem.

Key performance advantages pf the IH2OO are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $10 \mu \mathrm{~A}$. Also designed into the IH 200 is guaranteed Break-Before-Make switching. This is logically accomplished by extending the ton time (400 nsec TYP.) such that it exceeds toff time ( 200 nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. This eliminates the need for external logic required to avoid channel to channel shorting during switching.


## PIN CONFIGURATIONS

DUAL-IN-LINE PACKAGE


ORDER NUMBERS:
IH200AP IH200BP

FLAT PACKAGE


ORDER NUMBERS:
IH200AL
IH200BL

DUAL-IN-LINE PACKAGE


ORDER NUMBERS: IH200MDE IH200CDE
metal Can package


ORDER NUMBERS: IH200AA IH200BA

## MAXIMUM RATINGS

Current (Any Terminal)
Storage Temperature
Operating Temperature
Power Dissipation
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
450 mW
$300^{\circ} \mathrm{C}$

$V_{1}-V_{2}$	$<33 V$
$V_{1}-V_{D}$	$<30 V$
$V_{D}-V_{2}$	$<30 V$
$V_{D}-V_{S}$	$< \pm 22 V$
$V_{L}-V_{2}$	$<33 V$
$V_{L}-V_{I N}$	$<30 V$
$V_{L}-V_{R}$	$<20 V$
$V_{I N}-V_{R}$	$<20 V$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 . \mathrm{V}$ )

PER CHANNEL		MIN./MAX. LIMITS						UNITS	TEST CONDITIONS
		MILITARY			COMMERCIAL				
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
IIN(ON)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
IIN(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$
$\mathrm{r}^{\text {DS(ON) }}$	Drain-Source On Resistance	75	75	100	80	80	100	$\Omega$	$\begin{aligned} & \text { Is }=1 \mathrm{~mA}, \\ & \text { VANALOG }=-10 \mathrm{~V} \text { to } \\ & \pm 10 \mathrm{~V} \end{aligned}$
${ }^{\text {r }}$ (SS(ON)	Channel to Channel RDs(ON) Match	25	25	25	30	30	30	$\Omega$	Is (Each Channel) $=1 \mathrm{~mA}$
Vanalog	Min. Analog Signal Handling Capability	$\pm 11$	$\pm 11$	$\pm 11$	$\pm 10$	$\pm 10$	$\pm 10$	V	Is $=10 \mathrm{~mA}$
Id(OFF)	Switch OFF Leakage Current	1	1	100	5	5	250	nA	$\begin{aligned} & \mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{IS}_{\mathrm{S}}(\mathrm{ON}) \end{aligned}$	Switch On Leakage Current	2	2	200	10	10	250	nA	$\begin{aligned} & V_{D}=V_{S}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
ton	Switch "ON" Time		1.0			1.0		$\mu \mathrm{S}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
toff	Switch "OFF" Time		0.5			0.5		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
$\mathrm{Q}_{\text {(INJ.) }}$	Charge Injection		15			20		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54	.		50		dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=$ $100 \Omega, \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$ See Fig. C
lv1	+ Power Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	
Iv2	-Power Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}= \\ & -15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \end{aligned}$
IVL	+5 V Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle $\mid<10 \%$
IvR	Gnd Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio.	$\checkmark$	54			50	'.	dB	One Channel Off

## TEST CIRCUITS



Figure A


Figure B


Figure C

## PACKAGE DIMENSIONS

16 PIN CERAMIC PACKAGE (DE)


TO-100 PACKAGE


## 14 PIN CERDIP (JD)



FLAT PACKAGE (FD)


NOTE: Dimensions in inches (millimeters)

## FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $10 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching toff 200 nsec, ton 400nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- IH201 4 Normally Closed Switches
- IH202 4 Normally Open Switches
- Low Leakage Typical <100pA


## GENERAL DESCRIPTION

The $\mathrm{IH} 201 / 2$ solid state analog gate is designed using an improved, high voltage CMOS technology. This improved CMOS technology provides input overvoltage capability to $\pm 25$ volts without damage to the device and the destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS tectinology has eliminated this serious systems problem.

Key performance of the IH2O1 are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $10 \mu \mathrm{~A}$. Also designed into the $\mathrm{IH} 201 / 2$ is guaranteed Break-Before-Make switching. This is logically accomplished by extending the ton time ( 400 nsec TYP.) such that it exceeds toff time ( 200 nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. This eliminates the need for external logic required to avoid channel to channel shorting during switching.

## FUNCTIONAL DIAGRAM



## PIN CONFIGURATIONS

DUAL-IN-LINE PACKAGE


SWITCH STATES ARE FOR LOGIC "1" INPUT


ORDER NUMBERS: IH202MDE OR IH202CDE

MAXIMUM RATINGS

Current (Any Terminal)
Storage Temperature
Operating Temperature
Power Dissipation
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec )

$V_{1}-V_{2}$	$<33 V$
$V_{1}-V_{D}$	$<30 V$
$V_{D}-V_{2}$	$<30 V$
$V_{D}-V_{S}$	$< \pm 22 V$
$V_{L}-V_{2}$	$<33 V$
$V_{L}-V_{I N}$	$<30 V$
$V_{L}-V_{R}$	$<20 V$
$V_{I N}-V_{R}$	$<20 V$

## ELECTRICAL CHARACTERISTICS (@25 $\left.{ }^{\circ} \mathrm{C}, \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}\right)$

PER CHANNEL		MIN./MAX. LIMITS						UNITS	$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \end{aligned}$
		MILITARY			COMMERCIAL				
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
lingon)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=0.8 \mathrm{~V}(\mathrm{IH} 201), \\ & V_{\text {IN }}=2.4 \mathrm{~V}(\mathrm{IH} 202) \\ & \hline \end{aligned}$
IIN(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}(\mathrm{IH} 201), \\ \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}(\mathrm{IH} 202) \\ \hline \end{array}$
${ }^{\text {PDS }}$ (ON)	Drain-Source On Resistance	100	100	200	150	150	200	$\Omega$	$\begin{aligned} & \text { Is }=1 \mathrm{~mA}, \\ & \text { VANALOG }= \pm 10 \mathrm{~V} \end{aligned}$
${ }^{\text {r DS }}$ ( N )	Channel to Channel Rds(ON) Match	25	25	25	30	30	30	$\Omega$	Is (Each Channel) $=1 \mathrm{~mA}$
Vanalog	Min. Analog Signal Handling Capability	$\pm 11$	$\pm 11$	$\pm 11$	$\pm 10$	$\pm 10$	$\pm 10$	v	$\mathrm{Is}=10 \mathrm{~mA}$
ID(OFF)	Switch OFF Leakage Current	1	1	200	2	2	250	nA	$\begin{aligned} & \text { VANALOG }=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \hline \mathrm{ID}(\mathrm{ON}) \\ & +\mathrm{I}_{\mathrm{S}(\mathrm{ON})} \\ & \hline \end{aligned}$	Switch On Leakage Current	2	2	200	2	2	250	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
ton	Switch "ON" Time		1.0			1.0		$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{RL}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ & ==-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Fig. } \mathrm{A} \end{aligned}$
toff	Switch "OFF" Time		0.5			0.5		$\mu \mathrm{S}$	$\begin{array}{\|l\|} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }} \\ =-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ \text { See Fig. } \mathrm{A} \\ \hline \end{array}$
$\mathrm{Q}_{(\text {INJ.) }}$	Charge Injection		15			20		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54			50	.	dB	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}= \\ & 100 \Omega, \mathrm{CL} \leq 5 \mathrm{pF} \\ & \text { See Fig. } \mathrm{C} \end{aligned}$
lv1	$\begin{array}{\|l} \text { + Power Supply } \\ \text { Quiescent Current } \end{array}$	20	20	100	30	30	100	$\mu \mathrm{A}$	
Iv2	-Power Supply Quiescent Current	20	20	100	30	30	100	$\mu \mathrm{A}$	$\left\{\begin{array}{l} \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}= \\ -15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{R}}=0 \end{array}\right.$
IvL	+5 V Supply Quiescent Curren	20	20	100	30	30	100	$\mu \mathrm{A}$	Switch Duty Cycle $<10 \%$
Ive	Gnd Supply Quiescent Current	20	20	100	20,	20	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54			50		dB	One Channel Off

## test circuits



Figure A


Figure B


Figure C

## PACKAGE DIMENSIONS

16 PIN CERAMIC PACKAGE (DE)


16 PIN DIP PACKAGE


## 16-PIN FLAT PAK (FE)



NOTE: Dimensions in inches (millimeters)
*Not available in plastic at this time.

FEATURES

- Gate Lead Available for Nulling Charge Injection Voltage
- Channel Complete-Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, -1 mW
- Low rdS(ON), 30 Max on IH5001
- Switches Analog Signals up to 16 Volts Peak-to-Peak


## GENERAL DESCRIPTION

These switching circuits contain one channel in one package, the channel consisting of a driver circuit controlling a SPST junction FET switch. The driver interfaces DTL, TTL, or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and logic " 0 " turns it OFF. The gate lead of the FET has been brought out to enable the application of a referral resistor for nulling offset voltage due to charge injection.

## IH5001/IH5002 1-Channel Driver with SPST FET Switch AND Gate Available

ABSOLUTE MAXIMUM RATINGS<br>Analog Signal Voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{2}\right.$ or $\left.\mathrm{V}_{1}-\mathrm{V}_{\mathrm{A}}\right)$ 28V<br>Total Supply Voltage $\left(V_{1}-V_{2}\right) 32 V$<br>Pos. Supply Voltage to Ref. Voltage. $\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{R}}\right)$ 18V<br>Ref. Voltage to Neg. Supply Voltage $\left(\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{1}\right) \quad 21 \mathrm{~V}$<br>Power Dissipation (Note) 500 mW<br>Current (Any Terminal) 30 mA<br>Storage Temperature -65 to $+150^{\circ} \mathrm{C}$<br>Operating Temperature<br>Lead Temperature (Soldering, 10 sec )

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$.


ELECTRICAL CHARACTERISTICS
Applied voltages for all tests: $\mathrm{V}_{1}=+12 \mathrm{~V}, \mathrm{~V}_{2}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$. Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications.

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX LIMIT			UNITS	TEST CONDITIONS
				$0^{\circ}$	$25^{\circ}$	$70^{\circ}$		
$\begin{aligned} & 1 \\ & N \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \end{aligned}$	$V_{\text {IN (ON) }}$	Input Voltage-ON	Both Circuits	2.9 min	2.5 min	2.0 min	Volts	$\mathrm{V}_{2}=-12 \mathrm{~V}$
	VIN(OFF)	Input Voltage-OFF		1.4	1.0	0.8	Volts	$\mathrm{V}_{2}=-12 \mathrm{~V}$
	IIN(ON)	Input Current		150	100	100	$\cdot \mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	IIN(OFF)	Input Leakage Current		4	4	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
$\left\|\begin{array}{ll} s & \\ W & \\ 1 & O \\ T & U \\ C & T \\ H & P \\ 1 & U \\ N & T \\ G & T \end{array}\right\|$	$\mathrm{V}_{\mathrm{DS}(\mathrm{ON})}$	Drain-Source ON   Resistance	IH5001	30	30	50	$\Omega$	$\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$
			IH5002	50	50	85	$\Omega$	
	$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}+\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	Drive Leakage Current	Both Circuits		5	160	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-8 \mathrm{~V}$
	IS(OFF)	Source Leakage Current			5	160	nA	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-8 \mathrm{~V}$
	ID(OFF)	Drain Leakage Current			5	160	nA	$\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-8 \mathrm{~V}$
$\begin{aligned} & \text { P } \\ & \text { O } \\ & \text { E } \\ & \text { R } \\ & \text { S } \\ & \text { P } \\ & \text { P } \\ & \stackrel{L}{Y} \end{aligned}$	! (ON).	Positive Power Supply Drain Current	Both Circuits		3.5		mA	Driver $\mathrm{ON}, \mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$
	I2(ON)	Negative Power Supply Drain Current			-2.0	.	mA	
	$\mathrm{I}_{\mathrm{R}(\mathrm{ON})}$	Reference Power Supply Drain Current			-1.5		mA	
	$I_{1}$ (OFF)	Positive Power Supply   Leakage Current			25		$\mu \mathrm{A}$	Driver OFF, $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
	$\mathrm{I}_{2 \text { (OFF) }}$	Negative Power Supply   Leakage Current			-25		$\mu \mathrm{A}$	
	$\mathrm{I}_{\text {R (OFF) }}$	Reference Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
s	ton	Turn-On Time	Both Circuits		0.5	0.7	$\mu \mathrm{s}$	See Below
¢	toff	Turn-Off Time			1.0	1.3	$\mu \mathrm{s}$	
$\begin{aligned} & \stackrel{p}{\dot{N}} \\ & \stackrel{W}{E} \end{aligned}$	Pon	ON Driver Power	Both Circuits		175		mW	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	PofF	OFF Driver Power			1		mW	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}$
F      E	$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate Source   Forward Voltage	Both Circuits		1.5		Volts	$\mathrm{I}_{\mathrm{G}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.


OFF MODEL



ON MODEL


## FEATURES

- Gate Lead Available for Nulling Charge Injection Voltage
- Each Channel Complete-Interfaces With Most Integrated Logic
- Low OFF Power Dissipation, -1 mW
- Switches Analog Signals up to 20 Volts Peak-to-Peak
- Low rds(ON), $30 \Omega$ Max on IH5003


## GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST junction FET switch. The driver interfaces DTL, TTL, or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and logic "' 0 " turns it OFF. The gate lead of the FETs has been brought out to enable the application of a referral resistor for nulling out offset voltage due to charge injection.

## SPST FET Switches AND Gate Available

## ABSOLUTE MAXIMUM RATINGS

$$
\begin{array}{lr}
\text { Analog Signal Voltage }\left(V_{A}-V_{2} \text { or } V_{1}-V_{A}\right) & 30 \mathrm{~V} \\
\text { Total Supply Voltage }\left(V_{1}-V_{2}\right) & 36 \mathrm{~V} \\
\text { Pos. Supply Voltage to Ref. Voltage }\left(V_{1}-V_{R}\right) & 25 \mathrm{~V} \\
\text { Ref. Voltage to Neg. Supply Voltage }\left(V_{R}-V_{2}\right) & 22 \mathrm{~V} \\
\text { Power Dissipation (Note) } & 750 \mathrm{~mW} \\
\text { Current (Any Terminal) } & 30 \mathrm{~mA} \\
\text { Storage Temperature } & -65 \text { to }+150^{\circ} \mathrm{C} \\
\text { Operating Temperature } & -55 \text { to }+125^{\circ} \mathrm{C} \\
\text { Lead Temperature (Soldering, } 10 \mathrm{sec} \text { ) } & 300^{\circ} \mathrm{C}
\end{array}
$$

NOTE: Dissipation rating assumes device is mounted with.all lead welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.


## ELECTRICAL CHARACTERISTICS

Applied Voltages for all tests: $\mathrm{V}_{1}=+12 \mathrm{~V}, \mathrm{~V}_{2}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$. Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications.


NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
SWITCHING TIMES (at $25^{\circ} \mathrm{C}$ )


OFF MODEL



ON MODEL


ABSOLUTE MAXIMUM RATINGS<br>Analog Signal Voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{2}\right.$ or $\left.\mathrm{V}_{1}-\mathrm{V}_{\mathrm{A}}\right)$ 30 V Total Supply Voltage $\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$ 36 Pos. Supply Voltage to Ref. Voltage $\left(V_{1}-V_{R}\right) \quad 25 V$ Ref. Voltage to Neg. Supply Voltage $\left(\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{2}\right)$ 22V Power Dissipation (Note) 750 mW<br>Current (Any Terminal) 30 mA<br>Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10 sec .) $300^{\circ} \mathrm{C}$<br>NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## IH5005 - IH5007 2-Channel Drivers with SPST FET Switches Gate Available AND

## FEATURES

- Gate Lead Available for Nulling Charge Injection Voltage
- Expansion Capability Available
- Each Channel Complete-Interfaces With Most Integrated Logic
- Low OFF power dissipation, 1 mW
- Low rds(on), $10 \Omega$ Max on IH5005


## GENERAL DESCRIPTION

These switching circuits contain two channels in one package, each channel consisting of a driver circuit controlling a SPST junction FET switch. The driver interfaces DTL, TTL, or RTL logic signals for multiplexing, commutating, and D/A converter applications, which permits logic design directly with the switch function. Logic " 1 " at the input turns the FET switch ON, and Logic " 0 '" turns it OFF. The gate lead of the FETs has been brought out to enable the application of a referral resistor for nulling offset voltage due to charge injection. Driver points are brought out to provide for the addition of external FETs for expansion capability.

$$
\begin{aligned}
& \text { IH5005 }\left(r_{\text {DSION }}\right)=10 \Omega \\
& \text { IH5006 }\left(r_{\text {DSION }}\right)=30 \Omega \\
& \text { IH5007 }\left(r_{\text {DS }} \text { ON }\right)=80 \Omega
\end{aligned}
$$



## PACKAGE OUTLINES



NOTE: All dimensions in inches. FD Package


DD Package

ORDERING INFORMATION


## PRODUCT CONDITIONING

The following processes are performed $100 \%$ in accordance with MIL-STD-883.
Precap Visual-Meth. 2010, Cond. B
Stabilization Bake-Meth. 1008

Temp. Cycle-Meth. 1010
Centrifuge-Meth. 2001, Cond. D
Hermeticity-Meth. 1014, Cond. A, C
(Leak Rate $<5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ ) ,

## ELECTRICAL CHARACTERISTICS

Applied Voltages for all tests: $\mathrm{V}_{1}=+12 \mathrm{~V}, \mathrm{~V}_{2}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$. Input test condition which guarantees FET switch ON or OFF as specified is used for output and power supply specifications.

	SYMBOL (NOTE)	CHARACTERISTIC	TYPE	ABSOLUTE MAX. LIMIT			UNITS	TEST CONDITIONS
				-55 ${ }^{\circ}$	$25^{\circ}$	$125^{\circ}$		
$\begin{aligned} & 5 \\ & \frac{1}{2} \\ & \underline{2} \end{aligned}$	VIN(ON)	Input Voltage-ON	All Circuits	2.9 min	2.5 min	2.0 min	Volts	$\mathrm{V}_{2}=-12 \mathrm{~V}$
	VINIOFF)	Input Voltage-OFF		1.4	1.0	0.6	Volts	$\mathrm{V}_{2}=-12 \mathrm{~V}$
	I INION)	Input Current		120	60	60	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$
	I IN(OFF)	Input Leakage Current		0.1	0.1	2	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
	r ${ }^{\text {dSS }}$ (ON)	Drain-Source On Resistance	IH5007	80	80	150	$\Omega$	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$
			IH5006	30	30	50	$\Omega$	
			IH5005	10	10	20	$\Omega$	
	$\mathrm{I}_{\text {D(ON) }}+\mathrm{I}_{\text {S(ON }}$	Drive Leakage Current	$\begin{aligned} & \text { IH5006 } \\ & \text { IH5007 } \end{aligned}$		2	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$
	$\mathrm{I}_{\text {S }}$ (OFF)	Source Leakage Current			1	100	nA	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	ID(OFF)	Drain Leakage Current			1	100	nA	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$
	$I_{\text {D(ON) }}+I_{\text {S(ON })}$	Drive Leakage Current	1H5005		2	100	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$
	$\mathrm{I}_{\text {S ( OFF) }}$	Source Leakage Current			10	1000	nA	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$
	ID(OFF)	Drain Leakage Current			10	1000	nA	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$
	$\mathrm{I}_{1 \text { (ON) }}$	Positive Power Supply Drain Current	All Circuits		3	.	mA	One Driver ON, $\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$
	$\mathrm{I}_{2(0 N)}$	Negative Power Supply Drain Current			-1.8		mA	
	$\mathrm{I}_{\mathrm{R} \text { (on) }}$	Reference Power Supply Drain Current			-1.4	.	mA	
	$1_{1(0 F F)}$	Positive Power Supply Leakage Current			25	,	$\mu \mathrm{A}$	Both Drivers OFF, $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$
	$\mathrm{I}_{\text {(OFF) }}$	Negative Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
	IR(OFF)	Reference Power Supply Leakage Current			-25		$\mu \mathrm{A}$	
	ton	Turn-ON Time	IH5005		1.0	1.5	$\mu \mathrm{s}$	See Page 3
	toff	Turn-OFF Time	TH5005		2.5	3.7	$\mu \mathrm{s}$	
	ton	Turn-ON Time	$\begin{aligned} & \text { IH5006 } \\ & \text { IH5007 } \end{aligned}$		0.5	0.8	$\mu \mathrm{s}$	
	toff	Turn-OFF Time			1.0	1.5	$\mu \mathrm{s}$	
$$	Pon	ON Driver Power	All Circuits		175		mW	Both Inputs $\mathrm{V}_{\text {IN }}=2.5$
	POFF	OFF Driver Power			1		mW	Both Inputs $V_{\text {IN }}=1.0$
占	$\mathrm{V}_{\text {GS(f) }}$	Gate Source Forward Voltage	All Circuits.	$\cdots$	1.5		Volts	$\mathrm{I}_{\mathrm{G}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$
	$V_{\text {P P }}$	Peak-Peak Voltage at Expansion Outputs	All Circuits	$\cdots$	30		Volts	$\begin{aligned} & V_{I N}=0 V \\ & V_{1}=+18 \mathrm{~V}, V_{2}=-18 \mathrm{~V} \\ & R_{L} \geq 10 \Omega \end{aligned}$

NOTE: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

SWITCHING TIMES（at $25^{\circ} \mathrm{C}$ ）

OFF MODEL


## ON MODEL



TYPICAL CHARACTERISTICS（per channel）

3

rDS（ON）vs
TEMPERATURE
（Normalized to $25^{\circ} \mathrm{C}$ Value）
0．gZ OL OヨZI7甘WYON－sa」

OFF SUPPLY CURRENT vS TEMPERATURE


## APPLICATION

Expansion Capability IH5005


# IH5009 - IH5024 Positive Signal Analog Switches 

## FEATURES

- Switches Analog Signals up to 20 Volts Peak-toPeak
- Each Channel Complete - Interfaces with Most Integrated Logic
- Switching Speeds Less than $0.5 \mu \mathrm{~S}$
- ID(OFF) Less than 500 pA Typical at $70^{\circ} \mathrm{C}$
- Effective $\mathrm{r}_{\mathrm{ds}(\mathrm{ON})}-5 \Omega$ to $50 \Omega$
- Commercial and Military Temperature Range Operation


## PACKAGE DIMENSIONS (Note 1)

## 8-Pin Plastic Package (PA)



## 14-Pin Ceramic Package (DD)



NOTE 1. Board drilling dimensions will equal standard practices for .020 diameter lead.

## GENERAL DESCRIPTION

The IH5009 series of analog switches were designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective (less than $\$ 1 /$ switch in volume), performance and versatility have not been sacrificed.
Each package contains up to four channels of analog gating and is designed to eliminate the need for an external driver. The odd numbered devices are designed to be driven directly from $T^{2} \mathrm{~L}$ open collector logic ( 15 volts) while the even numbered devices are driven directly from low level $\mathrm{T}^{2} \mathrm{~L}$ logic ( 5 volts). Each channel simulates a SPDT switch. SPST switch action is obtained by leaving the diode cathode unconnected; for SPDT action, the cathode should be grounded ( 0 V ). The parts are intended for high performance multiplexing and commutating usage. A logic " 0 " turns the channel ON and a logic " 1 " turns the channel OFF.

## ABSOLUTE MAXIMUM RATINGS

Positive Analog Signal Voltage. ..... 30 V
Negative Analog Signal Voltage. ..... $-15 \mathrm{~V}$
Diode Current ..... 10 mA
Power Dissipation (Note) ..... 500 mW
Storage Temperature ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) ..... $300^{\circ} \mathrm{C}$

Operating Temperature

5009M Series ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) ..... $300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

FUNCTIONAL DIAGRAM (Four Channel Switch)






UNCOMMITTED DRAINS

Figure 1

## ELECTRICAL CHARACTERISTICS (per channel)

SYMBOL   (Note 1)	CHARACTERISTIC	TYPE	SPECIFICATION LIMIT				UNITS	TEST CONDITIONS   (Note 2)
			$\begin{array}{\|l\|} \hline-55^{\circ} \mathrm{C}(\mathrm{M}) \\ 0^{\circ} \mathrm{C}(\mathrm{C}) \\ \text { MIN/MAX } \\ \hline \end{array}$	$25^{\circ} \mathrm{C}$		$\begin{aligned} & +125^{\circ} \mathrm{C}(\mathrm{M}) \\ & +70^{\circ} \mathrm{C}(\mathrm{C}) \\ & \text { MIN/MAX } \\ & \hline \end{aligned}$		
				TYP.	MINIMAX			
İN(ON)	Input Current-ON	All	0.1	. 01	0.1	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$
$\operatorname{IN}(\mathrm{OFF})$	Input Current-OFF	5V Logic Ckts	0.2	. 04	0.1	10	nA	$\mathrm{V}_{1 \mathrm{~N}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$
IIN(OFF)	Input Current-OFF	15V. Logic Ckts	0.2	. 04	0.2	10	nA	$\mathrm{V}_{1 \mathrm{~N}}=+11 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}(\mathrm{ON}$ )	Channel Control Voltage-ON	5 V Logic Ckts	0.5		0.5	0.5	V	See Figure 6, Note 3
$\mathrm{V}_{\text {IN(ON }}$	Channel Control Voltage-ON	15V Logic Ckts	1.5		1.5	1.5	v	See Figure 7, Note 3
$\mathrm{V}_{\text {IN(OFF }}$	Channel Control Voltage-OFF	5 V Logic Ckts	4.5		4.5	4.5	v	See Figure 6, Note 3
$\mathrm{V}_{\text {IN(OFF) }}$	Channel Control Voltage-OFF	15V Logic Ckts	11.0		11.0	11.0	V	See Figure 7, Note 3
Id(OFF)	Leakage Current-OFF	5 V Logic Ckts	0.2	. 02	0.2	10	nA	$\mathrm{V}_{1 \mathrm{~N}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$
Id(OFF)	Leakage Current-OFF	15V Logic Ckts	0.2	. 02	0.2	10	nA	$\mathrm{V}_{1 \mathrm{~N}}=+11 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}= \pm 10 \mathrm{~V}$
${ }^{\prime} \mathrm{D}(\mathrm{ON})$	Leakage Current-OFF	5V Logic Ckts	1.0	0.30	1.0	$\begin{aligned} & 1000 \text { (M) } \\ & 200 \text { (C) } \end{aligned}$	nA	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{IS}=1 \mathrm{~mA}$
${ }^{\text {I }}$ (ON)	Leakage Current-ON	15V Logic Ckts	0.5	0.10	0.5	$\begin{aligned} & 500 \text { (M) } \\ & 100 \text { (C) } \end{aligned}$	nA	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{IS}=1 \mathrm{~mA}$
${ }^{\text {I }}$ (ON)	Leakage Current-ON	5 V Logic Ckts	1.0	.	1.0	10	nA	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$
ID(ON)	Leakage Current-ON	15V Logic Ckts	2.0		2.0	1000	nA	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA}$
'DS(ON)	Drain-Source ON-Resistance	5V Logic Ckts	150.0	90.00	150.0	$\begin{aligned} & 385 \text { (M) } \\ & 240 \text { (C) } \end{aligned}$	$\Omega$	$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$
'DS(ON)	Drain-Source ON-Resistance	15V Logic Ckts	100.0	60.00	100.0	$\begin{aligned} & 250 \text { (M) } \\ & 160 \text { (C) } \end{aligned}$	$\Omega$	${ }^{\prime} \mathrm{D}=2 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=1.5 \mathrm{~V}$
${ }^{\text {t }}$ (ON)	Turn-ON Time	All		150.00	500.0		ns	See Figures 4 \& 5
${ }_{\text {t }}$ (OFF)	Turn-OFF Time	All		300.00	500.0		ns	See Figures $4 \& 5$
CT	Cross Talk	All		120.00			dB	$\mathrm{f}=100 \mathrm{~Hz}$

NOTE 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.
NOTE 2: Refer to Figure 3 for definition of terms.
NOTE 3: $V_{I N(O N)}$ and $V_{I N(O F F)}$ are test conditions guaranteed by the following test respectively $r_{D S(O N)}$ and $I_{D(O F F)}$.

## THEORY OF OPERATION

The signals seen at the drain of a junction FET type analog switch can be arbitrarily divided into two categories: Those which are less than $\pm 200 \mathrm{mV}$, and those which are greater than $\pm 200 \mathrm{mV}$. The former category includes all those circuits where switching is performed at the virtual ground point of an op-amp, and it is primarily towards these applications that the 1 H 5009 family of circuits is directed.
By limiting the analog signal at the switching point to $\pm 200 \mathrm{mV}$, no external driver is required and the need for additional power supplies is eliminated.
Devices are available with both common drains and with uncommitted drains.

Those devices which feature common drains have another FET in addition to the channel switches. This FET, which has gate and source connected such that $\mathrm{V}_{\mathrm{GS}}=0$, is intended to compensate for the on-resistance of the switch. When placed in series with the feedback resistor (Figure 2) the gain is given by

$$
\mathrm{GAIN}=\frac{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}(\text { compensator })}{10 \mathrm{k} \Omega+\mathrm{r}_{\mathrm{DS}}(\text { switch })}
$$



Figure 2. Use of Compensation FET

Clearly, the gain error caused by the switch is dependent on the match between the FETs rather than the absolute value of the FET on-resistance. For the standard product, all the FETs in a given package are guaranteed to match within $50 \Omega$. Selections down to $5 \Omega$ are available however. The part numbers are shown in Table II. Since the absolute value of $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ is only guaranteed to be less than $100 \Omega$ or $150 \Omega$, a substantial improvement in gain accuracy can be obtained by using the compensating FET.

## DEFINITION OF TERMS



Figure 3.

## NOISE IMMUNITY

The advantage of SPDT switching is high noise immunity when the series element is OFF. For example, if a +10 volt analog input is being swiched by $T^{2} L$ open collector logic, the series switch is OFF when the logic level is at +15 volts. At this time the diode conducts and holds the source at approximately +0.7 volts with an AC impedance to ground of 25 ohms. Thus random noise superimposed on the +10 volt analog input will not falsely trigger the FET since the noise voltage will be shunted to ground.
When switching a negative voltage, the input further increase the OFF voltage beyond pinch-off, so there is no danger of the FET turning on.

## SWITCHING CHARACTERISTICS



Figure 4. High Level Logic



Figure 5. Standard DTL, TTL, RTL

## LOGIC INTERFACE CIRCUITS



Figure 6. Interfacing with $\pm 5 \mathrm{~V}$ Logic

TYPICAL ELECTRICAL CHARACTERISTICS (per channel)




CROSSTALK MEASUREMENT CIRCUIT



## APPLICATIONS (Note)



GAIN PROGRAMMABLE AMPLIFIER


3-CHANNEL MULTIPLEXER WITH SAMPLE \& HOLD

NOTE: Additional applications information is given in Application Bulletin A004 "The 5009 Series of Low Cost Analog Switches".

## TABLE I

## FOUR CHANNEL

IH5011 ( $\left.\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 100 \mathrm{~S}\right)$
IH5012 ( $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 150 \Omega$ )
16 PIN DIP


THREE CHANNEL
$1 H 5013\left(r_{\mathrm{DS}}(\mathrm{ON}) \leq 100!\right.$ )
IH5014 ( $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 150 \Omega$ )
14 PIN DIP

$021\left(\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 100 \mathrm{~s}\right)$
$1 H 5022\left(\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 150 \Omega\right)$ 8 PIN DIP

SINGLE CHANNEL
$1 \mathrm{H} 5023\left(\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 100 \mathrm{~S} 2\right)$
$\mathrm{IH} 5023\left(\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 150 \mathrm{~S} 2\right)$ 8 PIN DIP


H5009 ( $r_{\mathrm{DS}(\mathrm{ON}) \leq 100 \Omega 2)}$ $1 \mathrm{H} 5010\left(\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 150 \Omega 2\right)$

14 PIN DIP
 PIN DIP


IH5019 ( $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 100 \mathrm{~S}$ ) $1 \mathrm{H} 5020\left(\mathrm{r}_{\mathrm{DS}}(\mathrm{ON}) \leq 150 \mathrm{~S}\right)$ 8 PIN DIP


UNIESREM

## ORDERING INFORMATION

1. BASIC PART NUMBERS: Table Il. shows part numbers corresponding to control logic levels, number of channels, and ON-resistance requirements.

TABLE II

BASIC PART NUMBER	PACKAGE CODE	INPUT LOGIC DRIVE	DESCRIPTION	EFFECTIVE 'DSION) (OHMS) MAX.	'DSION) (OHMS) MAX. $\left(25^{\circ} \mathrm{C}\right.$
IH5009	XD	High Level	4-Channel, 15V Logic	50	100
1H5010	XD	DTL, TTL, RTL	4-Channel, 5V Logic	50	150
ITS7318	XD	High Level	4.Channel, 15V Logic	25	100
ITS7319	XD	'DTL, TTL, RTL	4.Chànnel, 5V Logic	25	150
ITS7320	XD	High Level	4.Channel, 15V Logic	- 10	100
ITS7321	XD	DTL, TTL, RTL	4.Channel, 5V Logic	10	150
ITS7322	XD	High Level	4.Channel, 15V Logic	5	100
ITS7323	XD	DTL. TTL, RTL	4.Channel, 5V Logic	5	150
IH5011	XE	High Level	4-Channel, 15V Logic	Not Available	100
IH5012	XE	DTL, TTL, RTL	${ }^{4}$-Channel; $5 \mathrm{5V}$ Logic	Not Available	150
IH5013	XD	High Level	3-Channel, 15V Logic	50	100
IH5014	XD	DTL, TTL, RTL	3-Channel. 5V Logic	50	150
ITS7324	XD	High Level	3-Channel, 15V Logic	25	100
ITS7325	XD	DTL. TTL, RTL	3-Channel, 5V Logic	25	150
ITS7326	XD	High Level	3-Channel, 15V Logic	10	100
ITS7327	XD	DTL, TTL, RTL	3-Channel, 5V Logic	10	150
ITS7328	XD	High Level	3-Channel, 15V Logic	5	100
ITS7329	XD	DTL, TTL, RTL	3-Channel, 5V Logic	5	150
IH5015	XE	High Level	3-Channel, 15V Logic	Not Available	100
IH5016	XE	DTL, TTL, RTL	3.Channel, 5 V Logic ${ }^{\text {- }}$	Not Available	150
IH5017	XA	High Level	2.Channel, 15V Logic	50	100
IH5018	XA	DTL, TTL, RTL	2-Channel, 5V Logic	50	150
ITS7330	XA	High Level	2.Channel, 15V Logic	25	100
ITS7331	XA	DTL, TTL, RTL	2.Channel, 5V Logic	25	150
ITS7332	XA	High Level	2.Channel, 15V Logic	10	100
ITS7333	XA	DTL, TTL, RTL	2.Channel, 5 V Logic	10	150
ITS7334	XA	High Level	2.Channel, 15V Logic	5	100
ITS7335	XA	DTL, TTL, RTL	2-Channel, 5V Logic	5	150
IH5019	XA	High Level	2-Channel, 15V Logic	Not Available	100
IH5020	XA	DTL, TTL, RTL	2.Channel, 5V Logic	Not Available	150
1H5021	XA	High Level	1.Channel, 15 V Logic	50	100
1H5022	XA	DTL, TTL, RTL	1-Channel, 5 V Logic	50	150
ITS7336	XA	High Level	1-Channel, 15V Logic	25	100
ITS7337	XA	DTL, TTL, RTL	1-Channel, 5V Logic	25	150
ITS7338	XA	High Level	1-Channel, 15V Logic	10	100
ITS7339	XA	DTL, TTL, RTL	1-Channel, 5V Logic	10	150
ITS7340	XA	High Level	1-Channel, 15V Logic	5	100
ITS7341	XA	DTL, TTL, RTL	1-Channel, 5V Logic	5	150
IH5023	XA	High Level	1-Channel, 15V Logic	Not Available	100
IH5024	XA	DTL, TTL, RTL	1-Channel, 5V Logic ${ }^{\text {c }}$	Not Available	150

2. ORDER NUMBER FORMAT

3. PACKAGES

A - 8 PIN PLASTIC DA - 8 PIN CERAMIC PD - 14 PIN PLASTIC DD - 14 PIN CERAMIC DE - 16 PIN CERAMIC
4. ORDERING EXAMPLE


## FEATURES

- Switches up to +20 V into High Impedance Loads (i.e. Non-Inverting Input of Operational Amp.)
- Driven from TTL Open Collector Logic
- $I_{D(O F F)}<50 \mathrm{pA}$
- $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}<150 \Omega$
- $r_{\text {DS(ON) }}$ Match < $50 \Omega$ Channel to Channel
- Switching Speeds $<100 \mathrm{~ns}$


## ORDERING INFORMATION



## GENERAL DESCRIPTION

The IH5025 series of analog switches were designed to fill the need for an easy-to-use, inexpensive switch for both industrial and military applications. Although low cost is a primary design objective (less than $\$ 1 /$ switch in volume), performance and versatility have not been sacrificed.

Each package contains, up to four channels of analog gating and is designed to eliminate the need for an external driver.

The entire family is designed to be driven from TTL open collector logic (15V), but can be driven from 5 V logic if signal input is less than 1 V . Alternatively, 20 V switching is readily obtainable if TTL supply voltage is +25 V . Normally, only positive signals can be switched; however, up to $\pm 10 \mathrm{~V}$ can be handled by the addition of a PNP stage (Figure 11) or by capacitor isolation (Figure 10). Each channel is a SPST switch. A logic " 0 " turns the channel ON and a logic "1" turns the channel OFF.

## PACKAGE DIMENSIONS (NOTE 1)



Note 1: Board drilling requirements will equal standard practices for .020 diameter lead.

## ABSOLUTE MAXIMUM RATINGS

Positive Analog, Signal Voltage. ........................... 25 V
Negative Analog Signal Voltage . . . . . . . . . . . . . . . . 0.5VDC
Drain Current . ............................................... 25 mA
Power Dissipation (Note) . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Storage Temperature
................. $-65^{\circ} \mathrm{Cto}+150^{\circ} \mathrm{C}$

Operating Temperature
5025C Series. .................................. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
5025M Series...................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) .............. $300^{\circ} \mathrm{C}$
NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## ELECTRICAL CHARACTERISTICS (per channel)

SYMBOL   (Note 1)	CHARACTERISTIC	TYPE	SPECIFICATION LIMIT				UNITS MIN/MAX	TEST CONDITIONS
			$\begin{gathered} -55^{\circ} \mathrm{C}(\mathrm{M}) \\ 0^{\circ} \mathrm{C} \text { (C) } \end{gathered}$	$\because 25^{\circ} \mathrm{C}$		$\begin{aligned} & +125^{\circ} \mathrm{C}(\mathrm{M}) \\ & +70^{\circ} \mathrm{C}(\mathrm{C}) \end{aligned}$		
				TYP.	MIN/MAX			
IIN(ON)	Input Current-ON	All		0.30	" $\quad 1.0$	$\begin{array}{r} 100(\mathrm{M}) \\ 25(\mathrm{C}) \end{array}$	nA (max)	$\mathrm{V} \mathrm{IN}=0 \mathrm{~V}$
IIN(OFF)	Input Current-OFF	All		0.20	* 1.0	$\begin{aligned} & 50(M) \\ & 10(C) \end{aligned}$	nA (max)	$\mathrm{V}_{1 \mathrm{~N}}=15 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}(\mathrm{ON}$ )	Channel Control Voltage-ON	All	1.5		1.5	1.5	$V$ (max)	See Figure 1
$\mathrm{V}_{\text {IN }}$ (OFF)	Channel Control Voltage-OFF	All	14.0	....	. 14.0	14.0	$V(\mathrm{~min})$	See Figure 1
ID(OFF)	Leakage Current-OFF	All .	$\therefore$	0.06	$\therefore 0.5$	$\begin{aligned} & 100(\mathrm{M}) \\ & 10 \text { (C) } \end{aligned}$	$n A(\max )$	$\mathrm{V}_{1 N}=15 \mathrm{~V}$
ID(ON)	Leakage Current-ON	Odd Nos.		1.00	. 10.0	$\begin{array}{r} 5000 \text { (M) } \\ 250(\mathrm{C}) \end{array}$	nA (max)	$V_{1 N}=0 V$
${ }^{\prime} \mathrm{D}(\mathrm{ON})$	Leakage Current-ON	Even Nos.		0.10	1.0	$\begin{array}{r} 500(\mathrm{M}) \\ 25(\mathrm{C}) \\ \hline \end{array}$	nA (max)	$V_{\text {IN }}=0 \mathrm{~V}$
r ${ }^{\text {d }}$ (ON)	Drain-Source ON-Resistance	Odd Nos.		60.00	100.0	$\therefore \quad \begin{aligned} & 250(M) \\ & 150(C) \end{aligned}$	$\Omega^{\prime}(\max )$	$V_{\text {IN }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
ros(ON)	Drain-Source ON-Resistance	Even Nos.	,	90.00	150.0	$\begin{aligned} & 385 \text { (M) } \\ & 240 \text { (C) } \end{aligned}$	$\Omega$ (max)	$\mathrm{V}_{I N}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
rDS(ON)	Drain-Source ON-Resistance	Odd Nos.		85.00	160.0	$\begin{aligned} & 420 \text { (M) } \\ & 250 \text { (C) } \end{aligned}$	$\Omega$ (max)	$V_{I N}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
r ${ }^{\text {PS(ON) }}$	Drain-Source ON-Resistance	Even Nos.		110.00	200.0 ..	$\begin{aligned} & 400 \text { (M) } \\ & 250 \text { (C) } \end{aligned}$	$\Omega(\max )$	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}, \mathrm{I} \mathrm{D}=1 \mathrm{~mA}$
$\left.\mathrm{t}_{( } \mathrm{ON}\right)$	Turn-ON Time	All		0.10	0.2	0.4	$\mu \mathrm{S}$ (max)	See Figure 2
t(OFF)	Turn-OFF Time	All		0.10	0.2	0.4	$\mu \mathrm{s}$ (max)	See Figure 2
$\mathrm{Q}_{\text {(INJ) }}$	Charge Injection	All		7.00	20.0	.	$m V_{p-p}(\max )$	See Figure 3
$\mathrm{V}_{\text {A }}$ (OFF)	Cross Coupling Rejection	All		0.10	1.0		$m V_{p-p}(\max )$	See Figure 4
$\Delta^{r} \mathrm{DS}(\mathrm{ON})$	Channel to Channel ${ }^{\text {r DS }}$ (ON) Match	All		25.00	50.0	50	$\Omega(\max )$	$V_{I N}=0.5 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$

NOTE 1: (OFF) and (ON) subscript notation refers to the conduction state of the FET switch for the given test.

## TEST CIRCUITS



FET "ON" FOR $V_{\text {IN }}<1.5 \mathrm{~V}$ FET "OFF" FOR $V_{\text {IN }}>14.0 \mathrm{~V}$

Figure 1


Figure 2


Figure 4

## IH5025 - IH5038

## THEORY OF OPERATION

The IH5025 series differs from the IH5009 series in that floating outputs can be driven by the IH5025 series. This family is generally used when operating into a noninverting input of an operational amplifier, while the IH5009 series is used in operations where it feeds into the inverting (virtual ground) input of an operational amplifier.

The IH5025 model is a basic charge area switching device, in that proper gating action depends upon the capacity vs. voltage relationship for the diode junctions. This C vs. V , when integrated out, produces total charge $Q$. It is $Q$ total which is switched between the series diode and the gate to source and gate to drain junctions. The charge area (C vs. V) for the diode has been chosen to be a minimum of four (4) times the area of the gate to source junction, thus providing adequate safety margins to insure proper switching action.
If normal logical voltage levels of ground to +15 V (open collector TTL) are used, only signals which are between $O \mathrm{~V}$ and +10 V can be switched. The pinch-off range of the P-Channel FET has been selected between 2.0 V and 3.9 V ; thus with +15 V at the logical input, and a +10 V signal in-
put, 1.1V of margin exists for turn-off. When the IH5025 is used with 5 V TTL logic, a maximum of +1 V can be switched. The gate of each FET has been brought out so that a "referral resistor" can be placed between gate and source. This is used to minimize charge injection effects. The connection is shown below:


For switching levels $>+10 \mathrm{~V}$, the +15 V power supply must be increased so that there is a minimum of 5 V of difference between supply and signal. For example, to switch +15 V level, $+20 \mathrm{~V} \cdot$ TTL supply is required. Up to +20 V levels can be gated.

## LOGIC INTERFACE CIRCUITS

When operating with TTL logic it is necessary to use pull-up resistors as shown in Figures 6 and 7. This ensures the necessary positive voltages for proper gating action.


Figure 5. Interfacing with +5 V Logic


Figure 6. Interfacing with +15 V Open Collector Logic

## TYPICAL ELECTRICAL CHARACTERISTICS (per channel)





## APPLICATIONS



Figure 7. Multiplexer from Positive Output Transducers


Figure 8. Sample and Hold Switch


Figure 9. Switching up to +20 V Signals with $\mathrm{T}^{2}$ L Logic


NOTE: TO SWITCH : 10 VAC ( $20 \mathrm{~V}_{\mathrm{PP}}$ ): (1) INCREASE : 5 V SUPPLY TO $+\mathbf{1 0 V}$. (2) INCREASE TTL SUPPLY FROM +15 V TO +25 V .

Figure 10. Switching Bipolar Signais with $T^{2}$ L Logic

## APPLICATIONS (Cont.)



Figure 11. Switching Bipolar Signals with $T^{2}$ L Logic (Alternate Method)


WHEN SWITCHING ( + ) OR (-) SIGNAL INPUTS,A SCHEME SIMILAR TO FIGURES 10 OR 11 SHOULD BE USED.

Figure 13. Gain Control with High Input Impedance

DEVICE SCHEMATICS AND PIN CONNECTIONS


## FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $1 \mu \mathrm{~A}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching toff 200nsec, ton 300nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- Low rds (ON) $-35 \Omega$
- New DPDT \& 4PST Configurations
- Complete' Monolithic Constructior. IH5040 through IH5047


## CMOS ANALOG GATE PRODUCT CONDITIONING

The following processes are performed $100 \%$ in accordance with MIL-STD-883.
Precap Visual - Method 2010, Cond. B.
Stabilization Bake - Method 1008
Temperature Cycle - Method 1010
Centrifuge - Method 2001, Cond. E
Hermeticity - Method 1014, Cond. A, C.
(Leak Rate $<5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

## GENERAL DESCRIPTION

The IH5040 family of solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. These devices provide ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS technology provides input overvoltage capability to $\pm 25$ volts without damage to the device, and destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The IH5040 CMOS technology has eliminated this serious systems problem.
Key performance advantages of the 5040 series are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $1 \mu \mathrm{~A}$. Also designed into the 5040 is guaranteed Break-Before-Make switching, which is accomplished by extending the toN time ( 300 nsec TYP.) so that it exceeds toff time ( 200 nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. This eliminates the need for external logic required to avoid channel to channel shorting during switching.
Many of the 5040 series improve upon and are pin-for-pin and electrical replacements for other solid state switches.

## FUNCTIONAL DIAGRAM



FIGURE 1. TYPICAL DRIVER, GATE - IH5042

FUNCTIONAL DESCRIPTION

INTERSIL				PIN/FUNCTIONAL   EQUIVALENT
PART NO.	TYPE	R ON $^{\text {(Note 1) }}$		

NOTE 1. See Switching State diagrams for applicable package equivalency.

Pin and functional equivalent monolithic versions of the DG181, DG182, DG 187 and DG188 are available. See data sheet for this and also IH181 to IH191.


ELECTRICAL CHARACTERISTICS ( $25^{\circ} \mathrm{C}, \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$ )

PER CHANNEL		MIN./MAX. LIMITS							
		MILITARY			COMMERCIAL			UNITS	
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		TEST CONDITIONS
'inton)	Input Logic Current.	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}$. Note 1
I'mioff)	Input Logic Cuirrent	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ Note 1
ros(on)	Drain-Source On Resistance	75(35)	75(35)	$150(60)$	80 (45)	80 (45)	130 (45)	$s 2$	( 1 H 5048 Thru IH 5051 ) $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$, $V_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V
$\Delta^{\text {a }}$ dsion)	Channel to Channel $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Match	25(15)	25 (15)	25(15)	30(15)	30(15)	30(15)	$\Omega$	(IH5048 thru IH5051)   $I_{S}($ Each Channel $)=1 \mathrm{~mA}$,
$\mathrm{V}_{\text {ANALOG }}$	Min. Analog Signal Handling Capability	$\pm 11( \pm 10)^{\prime}$	$\pm 11( \pm 10)$	$\pm 1.1( \pm 10)$	$\pm 10( \pm 10)$	$\pm 10( \pm 10)$	$\pm 10( \pm 10)$	v	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$ (1H5048 thru IH5051)
'doff)	Switch OFF Leakage Current	11)	1(1)	100(100)	5(5)	5(5)	100(100)	nA	$V_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V (IH5048 thru IH5051
'dion)   ${ }^{+1}$ SON)	Switch On Leakage Current	$2(2)$	2(2)	200(200)	$10(10)$	10 (10)	100(200)	nA	$\begin{aligned} & V_{D}=V_{S}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { (1H5048 thru IH5051) } \end{aligned}$
'on	Switch "ON" Time		500(250)			500(300)		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. A } \end{aligned}$
${ }^{\text {toff }}$	Switch "OFF" Time		250(150)		1	250(150)		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{kS2}, \mathrm{~V}_{\text {ANALOG }}=-10^{\circ} \mathrm{V} \\ & \text { to }+10 \mathrm{~V} \text { See Fig. A } \\ & \text { (1H5048 thru IH5051) } \end{aligned}$
$\mathrm{a}_{\text {(INJ.) }}$	Charge Injection		15 (10).			20 (10)		mv	See Fig. B (1H5048 thru IH5051)
Oirr	Min. Off Isolation Rejection Ratio		54			50		dB	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 5 \mathrm{pF} \\ & \text { See Fig. } \end{aligned}$
$\mathrm{I}_{\mathrm{V} 1}$	+ Power Supply Quiescent Current	1	1	10	10	10	100	$\mu \mathrm{A}$	
${ }^{\prime} \mathrm{V} 2$	- Power Supply Quiescent Current	1	1	10	10	10	100	$\mu \mathrm{A}$	$\begin{aligned} & v_{1}=+15 \mathrm{~V}, \mathrm{v}_{2}=-15 \mathrm{~V}, \mathrm{v}_{\mathrm{L}}=+5 \mathrm{~V} \\ & v_{L}=+5 \mathrm{v}, \mathrm{v}_{\mathrm{R}}=0 \end{aligned}$
'VL	$+5 \vee$ Supply   Quiescent Current	1	1	10	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle $\leqslant 10 \%$
Ivr	Gnd Supply Quiescent Current	1	1	10	10	10	100	$\mu \mathrm{A}$	
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio		54			50		dB	One Channel Off; Any Other Channel Switches as per Fig. E

## TEST CIRCUITS

FIG. A


FIG. B


FIG. C


NOTE 1: Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required to produce "ON" or "OFF" state.

TYPICAL ELECTRICAL CHARACTERISTICS (Per Channel)



CHARGE INJECTION vs VANALOG (SEE FIG. B) $\mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$


FIGURED




FIGURE F


## SWITCHING STATE DIAGRAMS

SWITCH STATES
ARE FOR LOGIC " 1 " INPUT
FLAT PACKAGE (FD)
DIP (DE) PACKAGE
(TW) PACKAGE

SPST
IH5040 (rDS (ON) <75 $)$


DUAL SPST
IH5041 (rDS (ON) <75 $)$


SPDT
IH5042 (rDS (ON) <75 $)$

(DG188 EQUIVALENT)


## DUAL SPDT

IH5043 ( $\mathrm{rDS}^{(O N)}$ <75 )

(DG191 EQUIVALENT)
(H5044 (rDS (ON) <75 $)$

(DG185 EQUIVALENT)

## DUAL DPST

IH5045 (rDS (ON) <75 $)$


SWITCHING STATE DIAGRAMS (Cont.)
SWITCH STATES

DIP (DE) PACKAGE
(TW) PACKAGE

## 4PST

IH5047 (rDS (ON) <75 ${ }^{\text {( }}$ )


3
UUAL SPST
IH5048 (rDS (ON) < $35 \Omega$ )



## APPLICATIONS



FIGURE H


FIGURE I

EXAMPLE: If $-\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}$. then Ladder Legs are switched between $\pm 10 \mathrm{VDC}$, depending upon state of Logic Strobe.

## THEORY OF OPERATION

## A. FLOATING BODY CMOS STRUCTURE

In a conventional C-MOS structure, the body of the " n " channel device' is tied to the negative supply, thus forming a reverse biased diode between the drain/source and the body (Fig. J). Under certain conditions this diode can become forward biased; for example, if the supplies are off (at ground) and a negative input is applied to the drain. This can have serious consequences for two reasons. Firstly, the diode has no current limiting and if excessive current flows, the circuit may be permanently damaged. Secondly, this diode forms part of a parasitic SCR in the conventional C-MOS structure. Forward biasing the diode causes the SCR to turn on, giving rise to a "latch-up" condition.
Intersil's improved C-MOS process incorporates an additional diode in series with the body (Fig. K). The cathode of this diode is then tied to $V+$, thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path, but also prevents the SCR from turning on.

## B. OVERVOLTAGE PROTECTION

The floating body construction inherently provides overvoltage protection. In the conventionalC-MOS process, the body of all N -channel FETs is tied to the most negative power supply and the body of all P-channel devices to the most positive supply (i. e., $\pm 15 \mathrm{~V}$ ). Thus, for an overvoltage spike of $> \pm 15 \mathrm{~V}$, a forward bias condition exists between drain and body of the MOSFET. For example, in Fig. Jif the analog signal input is more negative than -15 V , the drain to body of the N -channel FET is forward biased and destruction of the device can result. Now by floating the body, using diode D1, the drain to body of the MOSFET is still forward biased, but D1 is reversed biased so no current flows (up to the breakdown of D1 which is $\geqslant 40 \mathrm{~V}$ ). Thus, negative excursions of the analog signal can go up to a maximum of -25 V . When the signal goes positive $\geqslant+15 \mathrm{~V}$, D1 is forward biased, but now the drain to body junction is reversed for the N -channel FET; this allows the signal to go to a maximum of +25 V with no appreciable current flow. While the explanation above has been restricted to N -channel devices, the same applies to P-channel FETs and the construction is as shown in Fig. L. Fig. L describes an output stage showing the paralleling of an N and P channel to linearize the $r_{D S(O N)}$ with signal input. The presence of diodes D1 and D2 effectively floats the bodies and provides over voltage protection to a maximum of $\pm 25 \mathrm{~V}$.


FIGURE J

FIGURE K


FIGURE L
Constant gain, constant $Q$, variable frequency filter which provides simultaneous Lowpass, Bandpass, and Highpass outputs. With the component values shown, center frequency will be 235 Hz and 23.5 Hz for high and low logic inputs respectively, $\mathrm{Q}=100$, and Gain $=100$.

## DIGITALLY TUNED <br> LOW POWER ACTIVE FILTER

$$
f_{n}=\text { Center Frequency }=\frac{1}{2 \pi R C}
$$

## LOGIC INTERFACING



FOR INTERFACING WITH T ${ }^{2}$ L OPEN COLLECTOR LOGIC.


TYP. EXAMPLE FOR + 15V CASE SHOWN

FOR USE WITH CMOS LOGIC.


ORDERING INFORMATION

TYPE
IH 5040

IH 5041

IH 5042

IH 5043

IH 5044

IH 5045

IH 5046

IH 5047

IH 5048

IH 5049

IH 5050

IH 5051

ORDER PART NUMBER
IH 5040 MDE IH 5040 CDE IH 5040 CPE IH 5040 MFD IH 5041 MDE IH 5041 CDE IH 5041 CPE IH 5041 MFD IH 5041 CTW IH 5041 MTW IH 5042 MDE IH 5042 CDE IH 5042 CPE IH 5042 MFD IH 5042 CTW IH 5042 MTW IH 5043 MDE IH 5043 CDE IH 5043 CPE IH 5043 MFD IH 5044 MDE IH 5044 CDE IH 5044 CPE IH 5044 MFD IH 5044 CTW IH 5044 MTW IH 5045 MDE IH 5045 CDE IH 5045 CPE IH 5045 MFD IH 5046 MDE IH 5046 CDE IH 5046 CPE IH 5046 MFD IH 5047 MDE IH 5047 CDE IH 5047 CPE IH 5047 MFD IH 5048 MDE IH 5048 CDE IH 5048 MFD IH 5048 CTW IH 5048 MTW IH 5049 MDE IH 5049 CDE IH'5049 MFD IH 5050 MDE IH 5050 CDE IH 5050 MFD IH 5050 MTW IH 5050 CTW IH 5051 MDE IH 5051 CDE IH 5051 MFD

PACKAGE	TEMPERATURE RANGE	FUNCTION
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SPST
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SPST
16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SPST
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SPST
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125{ }^{\circ} \mathrm{C}$	Dual SPST
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$	Dual SPST
16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual SPST
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual SPST
TO-100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual SPST
TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual SPST
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SPDT
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SPDT
16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SPDT
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SPDT
TO-100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SPDT
TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SPDT
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual SPDT
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual SPDT
16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual SPDT
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual SPDT
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	DPST
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	DPST
16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	DPST
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	DPST
TO-100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	DPST
TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	DPST
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual DPST
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual DPST
16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual DPST
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual DPST
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	DPDT
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	DPDT
16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	DPDT
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	DPDT
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	4PST
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	4PST
16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	4PST
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	4PST
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual SPST
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual SPST
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual SPST
TO-100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual SPST
TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual SPST
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual DPST
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual DPST
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual DPST
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SPDT
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SPDT
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SPDT
TO-100	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SPDT
TO-100	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SPDT
16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Dual SPDT
16 Pin Hermetic DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Dual SPDT
14 Pin Flat Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ}$	Dual SPDT

## PACKAGE DIMENSIONS

## 16 LEAD CERAMIC (DE)

16 LEAD PLASTIC



14 LEAD FLATPACK (FD)


NOTE: All dimensions in inches and (millimeters).
TO-100 (TW) PACKAGE


## FEATURES

- Switches Greater Than 20Vpp Signals With $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $10 \mu \mathrm{a}$
- Overvoltage Protection to $\pm 25 \mathrm{~V}$
- Break-Before-Make Switching toff 100nsec, ton 250nsec Typical
- T2L, DTL, CMOS, PMOS Compatible
- Non-Latching With Supply Turn-Off
- IH5052 4 Normally Closed Switches
- IH5053 4 Normally Open Switches


## IH5052/IH5053 CMOS Analog Gates

## GENERAL DESCRIPTION

The IH5052/3 solid state analog gates are designed using an improved, high voltage CMOS technology. This provides ease-of-use and performance advantages not previously available from solid state switches. This improved CMOS technology provides input overvoltage capability to $\pm 25$ volts without damage to the device, and the destructive latch-up of solid state analog gates has been eliminated. Early CMOS gates were destroyed when power supplies were removed with an input signal present. The INTERSIL CMOS technology has eliminated this serious systems problem. Key performance advantages are TTL compatible and ultra low-power operation. The quiescent current requirement is less than $10 \mu \mathrm{~A}$. Also designed into the IH5052/3 is guaranteed Break-Before-Make switching. This is logically accomplished by extending the toN time (400nsec TYP.) such that it exceeds toff time (200nsec TYP.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON and eliminates the need for external logic required to avoid channel to channel shorting during switching. The IH5052 is designed to have switch closure with Logic " 0 " ( 0.8 V or less) and the IH5053 is designed to close switches with a Logical " 1 " (2.4V or more).

## FUNCTIONAL DIAGRAM



## PIN CONFIGURATIONS



ORDER NUMBERS:
IH5052MDE OR IH5052CDE


ORDER NUMBERS: IH5053MDE OR IH5053CDE

MAXIMUM RATINGS
Current (Any Terminal) $\qquad$
< 30 mA
Storage Temperature .................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature . ................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation . . . . . ................................ . . 450mW
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) $\qquad$
$V_{1}-V_{2}$
$<33 V$
$V_{I}-V_{D}$
$<30 \mathrm{~V}$
$V_{D}-V_{2}<30 V$
$V_{D}-V_{S} \quad< \pm 22 V$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{2} \quad<33 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{IN}} \quad<30 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{R}}: \quad<20 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{R}} \quad<20 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$ )

PER CHANNEL		MIN./MAX. LIMITS							TEST CONDITIONS
		MILITARY			COMMERCIAL			UNITS	
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
IIN(ON)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{~N}}=2.4 \mathrm{~V}(1 \mathrm{H} 5053)=0.8 \mathrm{~V}(1 \mathrm{H} 5052)$
IIN(OFF)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}(\mathrm{IH} 5053)=2.4 \mathrm{~V}(\mathrm{IH} 5052)$
${ }^{\text {r }}$ (SS(ON)	Drain-Source On Resistance	75	75	100	80	80	100	$\Omega$	$\begin{aligned} & I_{S}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{analog}}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$
$\Delta^{\text {r }}$ DS(ON)	Channel to Channel RDS(ON) Match	25	25	25	30	30	30	$\Omega$	Is (Each Channel) $=1 \mathrm{~mA}$
Vanalog	Min. Analog Signal Handling Capability	$\pm 11$	$\pm 11$	$\pm 11$	$\pm 10$	$\pm 10$	$\pm 10$	V	Is $=10 \mathrm{~mA}$
ID(OFF)	Switch OFF Leakage Current	1	1	100	5	5	100	nA	$V_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V}$
lo(on)   tIS(ON)	Switch On Leakage Current	2	2	200	10	10	100	$n A$	$V_{D}=V_{S}=-10 \mathrm{~V}$ to +10 V
ton	Switch "ON" Time	,	500			500		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {analog }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \text { See Fig. } \mathrm{A} \end{aligned}$
toff	Switch "OFF" Time		250	;		250		ns	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {analog }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \text { See Fig. } A \end{aligned}$
$\mathrm{Q}_{\text {(INJ.) }}$	Charge Injection		. 15			20		mV	See Fig. B
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$f=1 \mathrm{MHz}, R_{L}=100 \Omega, C_{L} \leq 5 p F$   See Fig. C
IV1	+ Power Supply Quiescent Curent	10	10	100	10	10	100	$\mu \mathrm{A}$	$\therefore \quad \therefore$
Iv2	- Power Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \end{aligned}$
IVL	$\begin{aligned} & +5 \mathrm{~V} \text { Supply } \\ & \text { Quiescent Current } \end{aligned}$	10	10	100	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle $\leq 10 \%$
IvR	Gnd Supply Quiescent Current	10	10	100	10	10	100	$\mu \mathrm{A}$	, . . .
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	-	54			50		dB	One Channel Off; Any Other Channel Switches as per Fig. E

## TEST CIRCUITS

FIG. A
FIG. B
FIG. C


TYPICAL ELECTRICAL CHARACTERISTICS (Per Channel)


FIGURE D

CROSS COUPLING REJECTION vS FREQUENCY



## OFF ISOLATION vs FREQUENCY




FIGURE F

POWER SUPPLY QUIESCENT CURRENT vs LOGIC FREQUENCY RATE


## THEORY OF OPERATION

## A. Floating Body CMOS Structure

In a conventional C-MOS structure, the body of the " n " channel device is tied to the negative supply, thus forming a reverse biased diode between the drain/source and the body (Fig. H). Under certain conditions this diode can become forward biased; for example, if the supplies are off (at ground) and a negative input is applied to the drain. This can have serious consequences for two reasons. Firstly, the diode has no current limiting and if excessive current flows, the circuit may be permanently damaged. Secondly, this diode forms part of a parasitic SCR in the conventional C-MOS structure. Forward biasing the diode causes the SCR to turn on, giving rise to a "latch-up" condition.
Intersil's improved C-MOS process incorporates an additional diode in series with the body (Fig. I). The cathode of this diode is then tied to $\mathrm{V}+$, thus effectively floating the body. The inclusion of this diode not only blocks the excessive current path, but also prevents the SCR from turning on.

## B. Overvoltage Protection

The floating body construction inherently provides overvoltage protection. In the conventional C-MOS process, the body of all N -channel FETs is tied to the most negative power supply and the body of all P-channel devices to the most positive supply (i.e., $\pm 15 \mathrm{~V}$ ). Thus, for an overvoltage spike of $> \pm 15 \mathrm{~V}$, a forward bias condition exists between drain and body of the MOSFET. For example, in Fig. H if the analog signal input is more negative than -15 V , the drain to body of the N -channel FET is forward biased and destruction of the device can result. Now by floating the body, using diode D1, the drain to body of the MOSFET is still forward biased, but D1 is reversed biased so no current flows (up to the breakdown of D1 which is $\geq 40 \mathrm{~V}$ ). Thus, negative excursions of the analog signal can go up to a maximum of -25 V . When the signal goes positive ( $\geq+15 \mathrm{~V}$, D 1 is forward biased, but now the drain to body junction is reversed for the N -channel FET; this allows the signal to go to a maximum of +25 V with no appreciable current flow. While the explanation above has been restricted to N -channel devices, the same applies to P-channel FETs and the construction is as shown in Fig. J. Fig. J describes an output stage showing the paralleling of an N and P -channel to linearize the rDS(on) with signal input. The presence of diodes D1 and D2 effectively floats the bodies and provides overvoltage protection to a maximum of $\pm 25 \mathrm{~V}$.


FIGURE H


FIGURE I


FIGURE J

## LOGIC INTERFACING



FOR INTERFACING WITH TZL OPEN COLLECTOR LOGIC.


TYP. EXAMPLE FOR + 15V CASE SHOWN

FOR USE WITH CMOS LOGIC.


PROGRAMMABLE GAIN NON-INVERTING AMPLIFIER WITH SELECTABLE INPUTS


## APPLICATIONS (Continued)

4-CHANNEL SEQUENCING MUX


Truth Table (IH5052)

ENABLE	MUXSEQUENCERATE	SEQUENCER OUTPUT		SWITCH STATES   (- DENOTES OFF)			
		$2^{0}$	${ }^{1}$	SW1	SW2	SW3	SW4
0	0	0	0	-	-	-	-
1	0	0	0	ON	-	-	-
1	1 pulse	1	0	-	ON	-	-
1	2 pulses	0	1	-	-	-	-
1	3 pulses	1	1	-	-	-	ON
1	4 pulses	0	0	ON	-	-	-

## A Latching DPDT

The latch feature insures positive switching action in response to non-repetitive or erratic commands. The $A_{1}$ and $A_{2}$ inputs are normally low. A HIGH input to $A_{2}$ turns $S_{1}$ and $S_{2} O N$, a HIGH to $A_{1}$ turns $S_{3}$ and $S_{4} O N$. Desirable for use with limit detectors, peak detectors, or mechanical contact closures.


Truth Table (IH5052)

COMMAND	STATE OF SWITCHES   AFTER COMMAND		
$\mathrm{A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~S}_{3} \& \mathrm{~S}_{4}$	$\mathrm{~S}_{1} \& \mathrm{~S}_{2}$
0	0	same	same
0	1	on	off
1	0	off	on
1	1	INDETERMINATE	

## PACKAGE DIMENSIONS

## 16. PIN CERAMIC PACKAGE (DE)





NOTE: Dimensions in inches (millimeters)

# IH5140-IH5145 Family High Level CMOS Analog Gates 

## FEATURES

- Super fast break before make switching $t_{\text {on }} 80 n s$ typ, $t_{\text {off }} 50 n s$ typ (SPST switches)
- Power supply currents less than $1 \mu \mathrm{~A}$
- "OFF" leakages less than 100pA @ $25^{\circ}$ C guaranteed
- Non-latching with supply turn-off
- Single monolithic CMOS chip
- Plug-in replacements for IH5040 family and part of the DG180 family to upgrade speed and leakage
- Greater than 1 MHz toggle rate
- Switches greater than 20Vp-p signals with $\pm 15 \mathrm{~V}$ supplies
- $\mathbf{T}^{2} \mathrm{~L}, \mathrm{CMOS}$ direct compatibility


## CMOS ANALOG GATE PRODUCT CONDITIONING

The following processes are performed $100 \%$ in accordance with MIL-STD-883.
Precap Visual - Method 2010, Cond. B
Stabilization Bake - Method 1008
Temperature Cycle - Method 1010
Centrifuge - Method 2001, Cond. E
Hermeticity - Method 1014, Cond. A, C
(Leak Rate $<5 \times 10^{-7} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

## GENERAL DESCRIPTION

The IH5140 Family of CMOS monolithic switches utilizes Intersil's.latch-free junction isolated processing to build the fastest switches now available. "OFF" leakages are guaranteed to be less than 100 pA at $25^{\circ} \mathrm{C}$. These switches can be toggled at a rate of greater than 1 MHz with super fast ton times (80ns typical) and faster toff times (50ns typical) guaranteeing break before make switching. This family of switches therefore combines the speed of the hybrid FET DG180 Family with the reliability and low power consumption of a monolithic CMOS construction.

No quiescent power is dissipated in either the "ON" or the "OFF" state of the switch. Maximum power supply current is $1 \mu \mathrm{~A}$ from any supply and typical quiescent currents are in the 10 nA range which makes these devices ideal for portable equipment and military applications.

The IH5140 Family is completely compatible with TTL ( 5 V ) logic, TTL open collector logic and CMOS logic gates. It is pin compatible with Intersil's IH5040 Family and part of the DG180/190 Family as shown in the switching state diagrams on page 8.


FIGURE 1. Typical Driver/Gate - IH5142

## ORDERING INFORMATION

Order   Part Number	Function	Package	Temperature
Range			

## IH5140-IH5145 Family

## MAXIMUM RATINGS

Current (Any Terminal).................... $<30 \mathrm{~mA}$
Storage Temperature ............ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature .......... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation .............................. 450 mW
(All Leads Soldered to a P.C. Board)
Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $70^{\circ} \mathrm{C}$
Soldering Temperature
$V_{1}-V_{2}<33 V$
$V_{1}-V_{D}<30 V$
$V_{D}-V_{2}<30 \mathrm{~V}$
$V_{D}-V_{S}< \pm 22 V$
$\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{2}<33 \mathrm{~V}$
$V_{L}-V_{I N}<30 \mathrm{~V}$
$V_{L}-V_{R}<20 \mathrm{~V}$
$V_{I N}-V_{R}<20 V$

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}, \mathrm{V}_{1}=+15 \mathrm{~V}, \mathrm{~V}_{2}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$ )

PER CHANNEL		MIN./MAX. LIMITS							TEST CONDITIONS
		MILITARY			COMMERCIAL			UNITS	
SYMBOL	CHARACTERISTIC	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	0	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
IIN(ON)	Input Logic Current	1	1	1.	1	1.	1	$\mu \mathrm{A}$	V IN $=2.4 \mathrm{~V}$ Note 1
lin(off)	Input Logic Current	1	1	1	1	1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ Note 1
Rds(on)	Drain-Source On Resistance	50	50	75	75	. 75	100	$\Omega$	$\begin{aligned} & \text { Is }=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$
$\Delta \mathrm{RDS}(\mathrm{ON})$	Channel to Channel RDS(ON) Match	25,	25	25	30	30	30	$\Omega$	Is (Each Čhannel) $=-10 \mathrm{~mA}$
Vanalog	Min. Analog Signal Handling Capability	$\pm 11$	$\pm 11$	$\pm 11$	$\pm 10$	$\pm 10$	$\pm 10$	V	$\mathrm{I}=10 \mathrm{~mA}$
Id (OFF) Is(off)	Switch OFF Leakage   Current	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 20 \\ \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	nA	$\begin{aligned} & V_{D}=+10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{D}=-10 \mathrm{~V}, V_{S}=+10 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { Id(ON) } \\ & +I_{S(O N)} \end{aligned}$	Switch On Leakage   Current	${ }^{1:} 0.2$	0.2	40	1	1.	40	nA	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=-10 \mathrm{~V}$ to +10 V
ton   toff	Switch "ON" Time   Switch "OFF" Time	See	ages 4 \&	5 for swit	ing ti	e specific	ations and	timing	diagrams.
$Q_{(1 N J .)}$	Charge Injection		10			15		mVPP	See Fig. 4, Note 2
OIRR	Min. Off Isolation Rejection Ratio		54			50		dB	$f=1 \mathrm{MHz}, R_{\mathrm{L}}=100 \Omega, C_{\mathrm{L}} \leq 5 \mathrm{pF}$ See Fig. 5, Note 2
Iv1	+ Power Supply Quiescent Current	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$	
İv2	- Power Supply Quiescent Current	1.0	1.0	10.0	10	10		$\mu \mathrm{A}$	$\begin{aligned} & V_{1}=+15 \mathrm{~V}, V_{2}=-15 \mathrm{~V}, \\ & V_{L}=+5 \mathrm{~V}, V_{R}=0 \end{aligned}$
IVL	+5 V Supply   Quiescent Current	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$	Switch Duty Cycle < 10\% See Fig. 6
IvR	Gnd Supply Quiescent Current	1.0	1.0	10.0	10	10	100	$\mu \mathrm{A}$	$\cdots$ -
CCRR	Min. Channel to Channel Cross Coupling Rejection Ratio	$\cdots$	54			50	$\cdots$	dB	One Channel Off; Any Other Channel Switches See Fig. 7 , Note 2

Note: 1. Some channels are turned on by high " 1 " logic inputs and other channels are turned on by low "0" inputs; however 0.8 V to 2.4 V describes the min. range for switching properly. Refer to logic diagrams to see absolute value of logic input required' to produce "ON" or "OFF" state.
2. Charge injection, OFF isolation, and Channel to Channel isolation are only sample tested in production.

IH5140-IH5145 Family


FIGURE 2. R DS(ON) $^{\text {vs. Temp., } @ \pm 15 \mathrm{~V},+5 \mathrm{~V} \text { Supplies. } . ~ . ~}$

3


FIGURE 4. Charge Injection vs. Analog Signal.


FIGURE 6. Power Supply Current Draws vs. Logic Strobe Rate.


FIGURE 3. R $_{\text {DS(ON) }}$ vs. Power Supplies.


FIGURE 5. "OFF" Isolation vs. Frequency.


FIGURE 7. Channel to Channel Cross Coupling Rejection vs. Frequency.

## SWITCHING TIME SPECIFICATIONS

( $t_{o n}$, $t_{o f f}$ are maximum specifications and $t_{o n-t_{o f f}}$ is minimum specifications)

Part   Number	Symbol	Characteristics	MILITARY			COMMERCIAL			Units	Test Conditions
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$		
$\begin{array}{r} \text { IH5140- } \\ 5141 . \end{array}$	ton   toff   ton-toff	Switch "ON" time Switch "OFF" time Break-before-make	$\because$	100 75 10			$\begin{gathered} 150 \\ 125 \\ 5 \\ \hline \end{gathered}$		ns	Figure 8
	ton   toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		150 125 10	'		$\begin{gathered} 175 \\ 150 \\ 5 \end{gathered}$	,	ns	Figure 9
$\begin{gathered} \text { IH5142- } \\ 5143 \end{gathered}$	ton   toff   ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$			$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$	$\cdots$	ns	Figure 8
	ton tof ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 200 \\ 125 \\ 10 \\ \hline \end{gathered}$		.	$\begin{gathered} 300 \\ 150 \\ 5 \end{gathered}$		ns	Figure 9
	ton   tof   ton-toff	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} \hline 175 \\ 125 \\ 10 \end{gathered}$	$\cdots$		$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns	Figure 10
	ton   tof   ton-tóf	Switch "ON" time Switch "OFF" time Break-before-make		$\begin{gathered} 200 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 300 \\ 150 \\ 5 \\ \hline \end{gathered}$		ns	Figure 11
$\begin{gathered} \text { IH5144- } \\ 5145 \end{gathered}$	$\begin{aligned} & \text { ton } \\ & \text {-toff } \\ & \text { ton-tOFF } \end{aligned}$	Switch "ON" time Switch "OFF" time Break-before-make	.	$\begin{gathered} 175 \\ 125 \\ 10 \end{gathered}$	$\cdots$		$\begin{gathered} 250 \\ 150 \\ 5 \end{gathered}$		ns	Figure 8
	ton toff ton-toff	Switch "ON" time Switch "OFF" time Break-before-make	$\therefore$ :	$\begin{gathered} 200 \\ 125 \\ 10 \\ \hline \end{gathered}$			$\begin{array}{r} 300 \\ 150 \\ 5 \\ \hline \end{array}$	"	ns	Figure 9

NOTE: SWITCHING TIMES ARE MEASURED @ 90\% PTS


FIGURE 8.


FIGURE 9.


FIGURE 10.


FIGURE 11.

TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 8)


TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 9)


TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 10)

$+25^{\circ} \mathrm{C}$

TTL OPEN COLLECTOR LOGIC DRIVE
(Corresponds to Figure 11)

$+25^{\circ} \mathrm{C}$

## APPLICATIONS



FIGURE 12. Improved Sample and Hold Using IH5143


EXAMPLE: If $-\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{VDC}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{VDC}$ then Ladder Legs are switched between $\ddagger 10 \mathrm{VDC}$. depending upon state of Logic Strobe.

FIGURE 13. Using the CMOS Switch to Drive an R/2R Ládder Network (2 Legs)


CONSTANT GAIN, CONSTANT Q, VARIABLE FREQUENCY FILTER WHICH PROVIDES SIMUL'TANEOUS LOWPASS, BANDPASS, AND HIGHPASS OUTPUTS. WITH THE COMPONENT VALUES SHOWN, CENTER FREQUENCY WILL BE 235 Hz AND 23.5 Hz FOR HIGH AND LOW LOGIC INPUTS RESPECTIVELY, $Q=100$, AND GAIN $=100$.

$$
f_{n}=\text { CENTER FREQUENCY }=\frac{1}{2 \pi R C}
$$

## APPLICATION NOTE

To maximize switching speed on the 1 H 5140 family use TTL open collector logic (15V with a 1 K or less collector resistor). For SPST switches, typical ton $\approx 80 \mathrm{~ns}$ and typical $t_{\text {off }} \approx 50 \mathrm{~ns}$ for signals in range of -10 V to +10 V with this high level drive configuration. The SPDT and DPST switches are approximately 30ns slower in both ton and toff with the same drive configuration. 15 V CMOS logic levels can be used (0V to +15 V ), but propagation delays in the CMOS logic will slow down the switching (typical 50ns $\rightarrow 100 \mathrm{~ns}$ delays).
When driving the IH5140 Family from either +5V TTL or CMOS logic, switching times run 20ns slower than if they were driven from +15 V logic levels. Thus $t_{o n} \approx$ 105 ns typical, and $\mathrm{t}_{\mathrm{off}} \approx 75 \mathrm{~ns}$ typical for SPST switches and 135ns typical and 105ns typical (ton, toff) for SPDT or DPST switches. The low level drive can be made as fast as the high level drive if $\pm 5 \mathrm{~V}$ strobe levels are used instead of the usual $0 \mathrm{~V} \rightarrow+3.0 \mathrm{~V}$ drive. Pin 13 is taken to -5 V instead of the usual GND and strobe input is taken from +5 V to -5 V levels as shown in Figure 15.
The typical channel of the IH5140 family consists of an N -channel MOS-FET. The N -channel MOS-FET uses a "Body Puller" FET to drive the body to $-15 \mathrm{~V}( \pm 15 \mathrm{~V}$ supplies) to get good breakdown voltages when the switch is in the off state (See Fig. 16). This "Body Puller" FET also allows the N -channel body to electrically float when the switch is in the on state producing a fairly constant RDs(ON) with different signal voltages. While this "Body Puller" FET improves switch performance, it can cause a problem when analog input signals are present (negative signals only) and power supplies are off. This fault condition is shown in Figure 17.
Current will flow from -10 V analog voltage through the drain to body junction of Q1, then through the drain to body junction of Q3 to GND. This means that there is 10 V across two forward-biased silicon diodes and current will go to whatever value the input signal source is capable of supplying. If the analog input signal is derived from the same supplies as the switch this fault condition cannot occur. Turning off the supplies would turn off the analog signal at the same time.
This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 18. Now when the power supplies are off and a negative input signal is present this diode is reverse biased and no current can flow.


FIGURE 15.


FIGURE 16.


FIGURE 17.


FIGURE 18.

## IH5140-IH5145 Family

SWITCHING STATE DIAGRAMS SWITCH STATES ARE FOR LOGIC " 1 " INPUT


## PACKAGE DIMENSIONS



16 LEAD PLASTIC


NOTE: All dimensions in inches and (millimeters).

TO-100 (TW) PACKAGE

14 LEAD FLATPACK (FD)



## IH401/IH401A VARAFET Switch

## FEATURES

- $\mathrm{r}_{\mathrm{DS}(\text { on })} \mathbf{= 2 5}$ ohms Typical ( 1 H 401 )
- ID(off) of 10pA Typical
- Switching Times of $\mathbf{2 5 n s}$ for $\mathrm{t}_{\text {on }}$ and $\mathbf{7 5 n s}$ for $t_{\text {off }}\left(R_{L}=1 k \Omega\right)$
- Built-In Overvoltage Protection to Plus or Minus 25V
- Charge Injection of 3 mV Typical into $0.01 \mu \mathrm{~F}$ Capacitor
- $\mathrm{C}_{\text {ISS(on) }}<1$ pF Typical
- Can Be Used for Hybrid Construction

SCHEMATIC/CONNECTION DIAGRAM


## ORDERING INFORMATION

## GENERAL DESCRIPTION

The IH401 is made up of 4 monolithically constructed combinations of a varactor type diode and an N -channel Junction FET. The FET itself is very similar to the popular 2N4391, and the driver diode is a specially designed diode, such that its capacity is a strong function of the voltage across it. The driver diode is electrically in series with the gate of the N -channel FET and simulates a back to back diode structure; this structure is needed to prevent forward biasing the source to gate or drain to gate junctions of the FET when used in switching applications.
Previous applications of Junction FETs required the addition of diodes, in series with the gate, and then perhaps a gate to source referral resistor or a capacitor in parallel with the diode; therefore, at least 3 components were required to perform the switch function. The IH401 does this same job in one component (with a great deal better performance characteristics).
Like a standard FET, to practically perform a solid state switch function a translator should be added to drive the diode. This translator takes the $\mathrm{T}^{2} \mathrm{~L}$ levels and converts them to voltages required to drive the diode/FET system (typically a 0 V to -15 V translation and a 3 V to +15 V shift). With $\pm 15 \mathrm{~V}$ power supplies, the IH401 will typically switch $18 \mathrm{Vp}-\mathrm{p}$ at any frequency from dc to 20 MHz , with less than 30 ohms rosion). The IH401A will typically switch 22 Vp -p with less than 50 ohms ros(on).

```
DIP Package: IH401JE
 IH401AJE
```


## PACKAGE DIMENSIONS/PAD LAYOUT

16 LEAD CER-DIP


Note: All dimensions in inches, $\pm .010$ unless otherwise shown.


V+.................................................... 35V



Operating Temperature.........$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature ............ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering 10 sec ) . . . . . . . . . $300^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS AT $25^{\circ} \mathrm{C}$ (unless otherwise specified)

SYMBOL	CHARACTERISTIC	CONDITIONS	IH401			UNIT
			MIN	TYP	MAX	
$\mathrm{R}_{\text {DS }}$ (on)	Switch "on' Resistance	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DRAIN }}=-7.5 \mathrm{~V} \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$		20	30	$\Omega$
$\mathrm{V}_{\mathrm{P}}$	Pinch-Off Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	4	6	7.5	V.
ID(off)	Switch "'off" Current or "off"' Leakage	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, V_{\text {SOURCE }}=-7.5 \mathrm{~V}, \\ & V_{\text {DRAIN }}=+7.5 \mathrm{~V} \end{aligned}$	:	10	200	pa
${ }^{\prime} \mathrm{D}$ (off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	Same as Above		0.25	50	na
IS(off)	Switch "off' Current	$\begin{aligned} & \text { V DRIVE }=-15 \mathrm{~V}, \mathrm{~V}_{\text {DRAIN }}=-7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {SOURCE }}=+7.5 \mathrm{~V} \end{aligned}$		10	200	pa
IS(off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	Same as Above :		0.3	50	na
$\begin{aligned} & \text { ID(on) }+ \\ & \text { IS(on) } \end{aligned}$	Switch Leakage when Turned "on"	$\begin{aligned} & V_{D}=V_{S}=-7.5 \mathrm{~V}, \\ & V_{\text {DRIVE }}=+15 \mathrm{~V} \end{aligned}$		0.02	2	na
Vanalog	AC Input Voltage Range without Distortion	See Figure B	15	18		$V_{p-p}$
$V_{\text {inject }}$	Charge Injection Amplitude	See Figure C		3	10	$m V_{p-p}$
$B V_{\text {diode }}$	Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection	$\begin{aligned} & V_{D}=V_{S}=-V, \text { IDRIVE }=1 \mu \mathrm{~A}, \\ & V_{\text {DRIVE }}=0 \mathrm{~V} \end{aligned}$	$-30$	-45		V
$B V_{\mathrm{gss}}$	Gate to Source or Gate to Drain Reverse Breakdown Voltage	$\begin{aligned} & V_{\text {DRIVE }}=-V, V_{D}=V_{S}=0 \mathrm{~V}, \\ & \text { IDRIVE }=1 \mu \mathrm{~A} \end{aligned}$	30	41	.	V
IDSS	Maximum Current Switch. can Deliver (Pulsed)	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, V_{S}=0 \mathrm{~V}, \\ & V_{D}=+10 \mathrm{~V} \end{aligned}$	45	70	;	mA
ton	Switch 'on' time (Note 1)	See Figure A		25	50	ns
$t_{\text {off }}$	Switch 'off' time (Note 1)	See Figure A		75	150	. ns

NOTE 1: Driving waveform must be $>100 \mathrm{~ns}$ rise and fall time.



FIGURE B

## ELECTRICAL CHARACTERISTICS AT $25^{\circ} \mathrm{C}$ (unless otherwise specified)

SYMBOL	CHARACTERISTIC	CONDITIONS	IH401A			UNIT
			MIN	TYP	MAX	
r DS $(0 n)$	Switch "on" Resistance	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \mathrm{~V}_{\text {DRAIN }}=-10 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA} \end{aligned}$		35	50	. S2
$V_{p}$	Pinch-Off Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}, \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	3	4	5	V
ID(off)	Switch "off" Current or "off" Leakage	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {SOURCE }}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {DRAIN }}=+10 \mathrm{~V} \end{aligned}$		10	200	pa
${ }^{\text {I }}$ (off)	Switch "'off" Leakage at $125^{\circ} \mathrm{C}$	Same as Above		0.25	50	na
IS(off)	Switch 'off' Current	$\begin{aligned} & V_{\text {DRIVE }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DRAIN }}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\text {SOURCE }}=+10 \mathrm{~V} \end{aligned}$		10	200	pa
IS(off)	Switch "off" Leakage at $125^{\circ} \mathrm{C}$	Same as Above $\because$		0.3	50	na
$I D(o n)^{+}$   IS(on)	Switch Leakage when Turned "on"	$\begin{aligned} & V_{D}=V_{S}=-10 \mathrm{~V}, \\ & V_{\text {DRIVE }}=+15 \mathrm{~V} \end{aligned}$		0.02	2	na
Vanalog	AC Input Voltage Range without Distortion	See Figure B	20	22		$V_{p-p}$
$V_{\text {inject }}$	Charge Injection Amplitude	See Figure C		3	10	$m V_{p-p}$
$B V_{\text {diode }}$	Diode Reverse Breakdown Voltage. This Correlates to Overvoltage Protection	$\begin{aligned} & V_{D}=V_{S}=-V_{,} \text {! DRIVE }=1 \mu \mathrm{~A}, \\ & V_{\text {DRIVE }}=0 \mathrm{~V} \end{aligned}$	-30	-45	,	V
$\mathrm{B} \mathrm{V}_{\text {gss }}$	Gate to Source or Gate to Drain Reverse Breakdown Voltage	$\begin{aligned} & V_{\text {DRIVE }}=-V, V_{D}=V_{S}=0 V, \\ & \text { IDRIVE }=1 \mu \mathrm{~A} \end{aligned}$	30	41		V
IDSS	Maximum Current Switch can Deliver (Pulsed)	$\begin{aligned} & V_{\text {DRIVE }}=15 \mathrm{~V}, \mathrm{~V}_{S}=0 \mathrm{~V}, \\ & V_{D}=+10 \mathrm{~V} \end{aligned}$	35	55		mA
$\mathrm{t}_{\text {on }}$	Switch "on" time (Note 1)	See Figure A		25	50	ns
$t_{\text {off }}$	Switch "off" time (Note 1)	See Figure A		75	150	ns

NOTE: Driving waveform must be $>100$ ns rise and fall time.

## APPLICATIONS

## IH401 FAMILY

In general, the IH401 family can be used in any application formally using a JFET/isolation diode combination (2N4391 or similar). Like standard FET circuits, the 1 H 401 requires a translator for normal analog switch function. The translator is used to boost the TTL input signals to the $\pm 15 \mathrm{~V}$ analog supply levels which allow the IH 401 to handle $\pm 7.5 \mathrm{~V}$ analog signals (or IH401A to handle $\pm 10 \mathrm{~V}$ analog signals). A typical simple PNP translator is shown in Figure 1.

Although this simple PNP circuit represents a minimum of components, it requires open collector TTL input and ${ }^{t}$ (off) is limited by the collector load resistor (approximately $1.5 \mu \mathrm{~s}$ for $10 \mathrm{k} \Omega$ ). Improved switching speed can be obtained by increasing the complexity of the translator stage.
A translator which overcomes the problems of the simple PNP stage is the Intersil IH6201.* This translator driving an IH401 varafet produces the following typical features:


FIGURE 1

- $\mathrm{t}_{\text {on }}$ time of approx. 200ns break before make
$-t_{\text {off }}$ time of approx. 80 ns ) switch
- TTL compatible strobing levels of

$-I^{\prime}\left(\right.$ on) ${ }^{+} I^{\prime}$ (on) typically 20 pA up to $\pm 10 \mathrm{~V}$ analog signals
- $I_{D \text { (off) }}$ or $I_{S(o f f)}$ typically 20pA
- Quiescent current drain of approx. 100nA in either "on" or "off" case


## APPLICATIONS (Cont.)

*The IH6201 is a dual translator (two independent translators per package) constructed from monolithic CMOS technology. The schematic of one-half IH6201, driving one-fourth of an IH401, is shown in Figure 2.


FIGURE 2

A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See III.)
I. DUAL SPST ANALOG SWITCH


NOTE: Either switch is turned on when strobe input goes high.

## APPLICATIONS (Cont.)

II. DPDT ANALOG SWITCH

III. DUAL SPDT

IV. DUAL DPST


## FEATURES

- Integrated MOS-FET Constant-Current Sources for tive Driver-Collector Pull-up
- Integrated Zener Diode Protection for Both Positive and Negative Spike Protection
- P-Channel Enhancement-Type Switches


## GENERAL DESCRIPTION

These switches may be connected directly to the INTERSIL switch-driver D123 series without the need of any interfacing components, and are internally protected by a Zener diode integrated on the silicon chip. A MOS-FET used as a current source provides an active pull-up for faster switching capability. The active pull-up FET can be disabled without sacrificing the Zener protection of the gates.

# $-20^{\circ} \mathrm{C}$ to $+85^{\circ}$ 

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Source Current (I ${ }_{\mathrm{S}}$ )
100 mA
Drain Current ( $I_{D}$ )
100 mA
Gate Current ( $\mathrm{I}_{\mathrm{G}}$ )
Pull-up Control Current (Ip) 5 mA

Body to Source ( $V_{B}-V_{S}$ )
$100 \mu \mathrm{~A}$
Body to Drain $\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\right)$
-2 V to +25 V
Body to Gate $\left(V_{B}-V_{G}\right)$ $-2 V$ to $+25 V$

Body to Pull up ( $\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{p}}$ )
Power Dissipation (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$ ) 750 mW
Lead Temperature (soldering, 10 sec .)
$300^{\circ} \mathrm{C}$


## ORDERING INFORMATION



## PRODUCT CONDITIONING

Units receive the following processing before final electrical test:
Temperature Cycle $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 5$ cycles
Hermeticity-Fluorocarbon Gross Leak, 100\%
Helium Fine Leak, 2\% AQL

ELECTRICAL CHARACTERISTICS (per channel unless noted)

	PARAMETER		...	LIMITS			CONDITIONS
		$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	MIN/ MAX	UNITS	
$\begin{gathered} \text { G115 } \\ \text { and } \\ \text { G123 } \end{gathered}$	rosion) "	125	125	150	Max	$\Omega$	$V_{B D}=0, V_{G D}=-30 \mathrm{~V} \quad \mathrm{I}_{\mathrm{S}}=$
		250	250	300			$\mathrm{V}_{\mathrm{BD}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=-20 \mathrm{~V} 1 \mathrm{~mA}$
		500	500	600			$\mathrm{V}_{\mathrm{BD}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=-10 \mathrm{~V}$
	I D(OFF)		-10	-500	Max	nA.	$V_{\text {DS }}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{GS}}=V_{\text {PS }}=0$
	IS(OFF)		-5	-100	Max	nA	$V_{S D}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BD}}=\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{P D}=0$
	$\mathrm{I}_{\text {GBS }}$		-5	-100	Max	nA	$V_{G B}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{PB}}=0$
	$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$		-0.8		Min :	mA	$V_{G B}=-30 \mathrm{~V}, \mathrm{~V}_{P B}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DB}}=0$
	G(ON)		-2.4		Max	mA	$V_{G B}=-30 V^{\prime} V_{P B}=-30 V, V_{D B}=0$
		-2	-2	-2	Min	V	$\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DG}}=0$,
		-6	-6	-6	Max	V	$V_{B S}=V_{P S}=0$
	$B V_{\text {DSS }}$	-25	-25	-25	Min	V	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{G B}=\mathrm{V}_{\mathrm{BS}}=\mathrm{V}_{P S}=0$
	$B V_{\text {SDS }}$	-25	-25	-25	Min	V	$\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=\mathrm{V}_{\mathrm{PD}}=0$
	$\mathrm{BV}_{\mathrm{GBS}}$	-35	-35	-35	Min	V	$\mathrm{I}_{G}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DB}}=\mathrm{V}_{S B}=\mathrm{V}_{P B}=0$
	$\mathrm{V}_{\text {GBS }}$	-90	-90	-90	Max	V	$V_{G}=-10 \mu \mathrm{~A}, V_{D B}=V_{S B}=V_{P B}=0$
	$B V_{P B S}$	-35	-35	-35	Min.	V	$I_{P}=-10 \mu \mathrm{~A}, \mathrm{~V}_{D B}=V_{S B}=V_{G B}=0$
	$B V_{\text {PBS }}$	-90	-90	-90	Max	V	$\mathrm{I}_{P}=-10 \mu \mathrm{~A}, V_{D B}=V_{S B}=V_{G B}=0$
	$\mathrm{C}_{\text {GS }}, \mathrm{C}_{\text {GD }}$		3(TYP)	,	Typ	pF	$V_{G B}=0, V_{S B}=0, V_{D B}=0, V_{P B}=0$
	$\mathrm{C}_{\mathrm{DS}}$		0.4 (TYP)		Typ	pF	$\mathrm{f}=1 \mathrm{mHz}$, Body Guarded
G115	$\mathrm{C}_{\text {DB }}$	.	18 (TYP)	1 :	Typ	pF	$V_{D B}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{GB}}=\mathrm{V}_{\mathrm{PB}}=0$
G123			9 (TYP)		Typ	pF	$\mathrm{f}=1 \mathrm{MHz}$
Both	$\mathrm{C}_{S B}$		3.5(TYP)		Typ	pF	$\begin{aligned} & V_{S B}=-5 V, V_{D B}=0, V_{G B}=V_{P B}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$

## APPLICATION TIPS

Description of Analog Switch

## Single Channel



G-Terminal - This is the control terminal of the switch. The voltage at this terminal determines the conduction state of $\mathrm{Q}_{2}$. To insure conduction of $\mathrm{Q}_{2}$ when voltages between $\pm 10 \mathrm{~V}$ are switched, the gate voltage $\left(\mathrm{V}_{\mathrm{G}}\right)$ should be at least 10 V more negative than the most negative voltage to be switched $(-10 \mathrm{~V})$. Therefore, $\mathrm{V}_{\mathrm{G}}$ should go to -20 V . To insure turn-off $\mathrm{V}_{\mathrm{G}}$ should not be less than the most positive voltage to be switched, +10 V . For convenience the same potential as the body could be used.
B-Terminal - This terminal is connected to the body (substrate) of the chip and must be maintained at a voltage that is equal to or greater than the most positive voltage to be switched. This is to insure that the drain-to-body or the source-to-body junctions do not become forward biased.
P-Terminal - The potential, with respect to the body, at this terminal determines the gate-to-source voltage of $\mathrm{O}_{1}$ which determines the amount of drain current available for driver-collector pull-up. Shorting terminal $P$ to $B$ prevents $Q_{1}$ and $Q_{3}$ from conducting, but still allows the body-to-drain junction of $Q_{1}$ to act as a forward biased diode for positive gate voltages, and to act as a Zener diode for negative voltages which exceed $B V_{\text {DSS }}(-30$ to $-90 \mathrm{~V})$ for protecting the gate of $\mathrm{Q}_{2}$.
D-Terminal - The common point of the MOS-FET switches (summing point).
S-Terminal - This is the normally-open terminal of the MOS-FET switch and is normally used as the input.

## APPLICATIONS

6-Channel Multiplexer


Dual Current-to-Voltage Converter With Range Programming


## TYPICAL CHARACTERISTICS





## PACKAGE OUTLINES



NOTES: 1. Index to be visible from bottom and/or top.
2. Installed position of lead centers.
3. All dimensions in inches.


G116-G119
5 and 6-Channel MOS-FET Switches Military Series $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

## FEATURES

- P-Channel Enhancement-type MOS-FET Switches
- Zener Protection on All Gates
- With and Without Constant Current Source Pull-up


## GENERAL DESCRIPTION

These switches may be connected directly to the INTERSIL switch-driver D123 series without need of any interfacing components. These MOS-FET switches are internally protected by a Zener diode integrated on the silicon chip. A MOS-FET used as a current source provides an active pullup for faster switching. The active pull-up FET can be disabled without sacrificing the Zener protection of the gates.

ABSOLUTE MAXIMUM RATINGS $\left(25^{\circ} \mathrm{C}\right)$

Source Current (I	100 mA
Drain Current (ID)	100 mA
Control Gate Current $I_{\mathrm{G}}$	5 mA
Pull-Up Gate Current $I_{\mathrm{P}}$	$100 \mu \mathrm{~A}$
Body Voltage $\left(V_{\mathrm{B}}\right.$ ) to Any Terminal	-2 to +30 V
Power Dissipation (Note)	750 mW
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.


## ORDERING INFORMATION



ELECTRICAL CHARACTERISTICS (per channel unless noted)
References to pull-up gate P do not apply to G118.

PARAMETER	LIMITS						CONDITIONS		
	G116M Series		G116C Series		$\begin{aligned} & \text { MIN/ } \\ & \text { MAX } \end{aligned}$	UNITS			
	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$					
rosion)   (Note 1)	100	125	125	,	Max	$\Omega$	$V_{B D}=0, V_{G D}=-30 \mathrm{~V}, \mathrm{~V}_{P B}=0$	$\left\{\begin{array}{l} I_{s}= \\ -1 \mathrm{~mA} \end{array}\right.$	
	200	250	250				$\mathrm{V}_{\mathrm{BD}}=+10 \mathrm{~V}, \mathrm{~V}_{G D}=-20 \mathrm{~V}, \mathrm{~V}_{P B}=0$		
	450	600	600				$\mathrm{V}_{\mathrm{BD}}=+20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{PB}}=0$		
IsIOFF)	-0.5	-500	-1		Max	nA	$\mathrm{V}_{S D}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BD}}=\mathrm{V}_{G D}=\mathrm{V}_{P D}=0$		
Idioff)	-2.5	-2500	-5	:	Max	nA	$\mathrm{V}_{\text {DS }}=-20 \mathrm{~V}$	G116	
	-3.0	-3000	-6				$\mathrm{V}_{\mathrm{BD}}=\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{P D}=0$	G118	
	-1.5	-1500	-3					G119	
	-0.5	-500.	-1		Max	nA	$\begin{aligned} & V_{G 1 B} \text { to } V_{G 5 B}=0, V_{G 6 B}=-30 V \\ & V_{D B}=-20 V, V_{S B}=V_{P B}=0 \end{aligned}$	G117	
BV ${ }_{\text {DSS }}$	-30		-30		Min	V	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=V_{\text {BS }}=V_{P S}=0$		
$B V_{\text {SDS }}$	-30		-30		Min		$\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{BD}}=\mathrm{V}_{P D}=0$		
$B V_{G B S}$	-30		-30		Min		$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{P B}=\mathrm{V}_{S B}=\mathrm{V}_{\mathrm{DB}}=0$		
	-90		-90		Max				
$B V_{\text {PBS }}$	-30		-30		Min		$\mathrm{I}_{\mathrm{P}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GB}}=V_{\text {SB }}=V_{\text {DB }}=0$		
	-90		-90		Max				
$V_{\text {GDith }}$	-2		-2		Min		$\mathrm{I}_{\mathrm{S}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=-10 \mathrm{~V}, \mathrm{~V}_{\text {SB }}=0$		
	-6		-6		Max				
IGION)   (Note 2)	-0.5		-0.3		Min	mA	$\mathrm{V}_{\mathrm{GB}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{PB}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{SB}}=\mathrm{V}_{\mathrm{DB}}=0$		
	-2		-2.5		Max				
$\mathrm{I}_{\text {gss }}$	-0.5	-500	-1		Max	nA	$V_{G B}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{PS}}=0$		
$\mathrm{C}_{\text {GD }}$ or $\mathrm{C}_{\text {GS }}$	3		3		Max	pF	$V_{P B}=0, V_{B S}=0, \text { or } V_{B D}=0$   Body Guarded, $f=1 \mathrm{mHz}$		
$\mathrm{C}_{\text {SD }}$	0.4		0.4		Max	pF			
$\mathrm{C}_{\text {SB }}$	3.5		3.5		Max	pF	$V_{P B}=V_{G B}=V_{D B}=0, V_{S B}=-5 \mathrm{~V}, \mathrm{f}=1 \mathrm{mHz}$		
$C_{\text {DB }}$	18		18		Max	pF	$\begin{aligned} & V_{P B}=V_{G B}=V_{S B}=0 \\ & V_{D B}=-5 V, f=1 \mathrm{mHz} \end{aligned}$	G116	
	18		. 18					G118	
	10		10					G119	
	20	-	20		Max	pF	$\begin{aligned} & V_{G 6 B}=-30 V, V_{P B}=V_{S B}=0 \\ & V_{G 1 B} \text { to } V_{G 5 B}=0, V_{D B}=-5 \mathrm{~V} \\ & f=1 \mathrm{mHz} \end{aligned}$	G117	

NOTE 1: For the G117 this is the resistance from each of the source terminals ( 5 terminals) and the one drain terminal to the internal junction of the output MOS-FETs.
NOTE 2: Not applicable to G118.

## APPLICATION TIPS

Description of Analog Switch

Single Channel


G-Terminal - This is the control terminal of the switch; the voltage at this terminal determines the conduction state of $\mathrm{Q}_{2}$. To insure conduction of $\mathrm{Q}_{2}$ when voltages between $\pm 10 \mathrm{~V}$ are switched, the gate voltage $\left(\mathrm{V}_{\mathrm{G}}\right)$ should be at least 10 V more negative than the most negative voltage to be switched ( -10 V ). Therefore, $\mathrm{V}_{\mathrm{G}}$ should go to -20 V . To insure turn-off $\mathrm{V}_{\mathrm{G}}$ should not be less than the most positive voltage to be switched, +10 V . For convenience the same potential as the body could be used.
B-Terminal - This terminal is connected to the body (substrate) of the chip and must be maintained at a voltage that is equal to or greater than the most positive voltage to be switched. This is to insure that the drain-to-body or the source-to-body junctions do not become forward biased.
P-Terminal - The potential, with respect to the body, at this terminal determines the gate-to-source voltage of $\mathbf{Q}_{1}$ which determines the amount of drain current available for driver-collector pull-up. Shorting terminal $P$ to $B$ prevents $\mathbf{Q}_{1}$ and $\mathbf{Q}_{3}$ from conducting, but still allows the body-to-drain junction of $\mathbf{Q}_{1}$ to act as a forward biased diode for positive gate voltages, and to act as a Zener diode for negative voltages which exceed $B V_{\text {DSS }}(-30$ to $-90 V)$ for protecting the gate of $\mathrm{O}_{2}$.
D-Terminal - The common point of the MOS-FET switches (summing point).
S-Terminal - This is the normally-open terminal of the MOS-FET switch and is normally used as the input.

## APPLICATIONS



## 3-Channel Differential Multiplexer







## PACKAGE OUTLINES



G125-G132 G1330/40/50/60 4-Channel Junction FET Switches

## FEATURES

- $r_{\text {DS(ON) }}<10$ ohms: G1340 and G1360
- $I_{D(O F F)}<50 \mathrm{pA}: \mathrm{G} 125, \mathrm{G} 126, \mathrm{G} 129$ and G130
- $\mathrm{C}_{\mathrm{DG}}, \mathrm{C}_{\mathrm{SG}}<2 \mathrm{pF}: \mathrm{G} 125, \mathrm{G} 126, \mathrm{G} 129$ and G130


## GENERAL DESCRIPTION

These switches consist of four N-Channel Junction FETS in a single package. In the G129, G130, G131, G132, G1350 and G1360 the drains are common to assist the designer in applications such as multiplexing.

## ABSOLUTE MAXIMUM RATINGS

Gate-Drain or Gate-Source Voltage<br>Gate Current<br>Total Device Dissipation Free Air (Note)<br>Storage Temperature Range 50 mA 500 mW<br>Operating Temperature -65 to $+150^{\circ} \mathrm{C}$<br>Lead Temperatưre (Soldering, 10 sec )<br>$300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $75^{\circ} \mathrm{C}$. For higher temperatures, derate the device at the rate of $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.


ELECTRICAL CHARACTERISTICS per channel $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

CHARACTERISTIC		TEST CONDITIONS	$\begin{aligned} & \text { G125 } \\ & \text { G129 } \end{aligned}$	$\begin{aligned} & \text { G126 } \\ & \text { G130 } \end{aligned}$	$\begin{aligned} & \text { G127 } \\ & \text { G131 } \end{aligned}$	$\begin{aligned} & \text { G128 } \\ & \text { G132 } \end{aligned}$	$\begin{aligned} & \text { G1330 } \\ & \text { G1350 } \end{aligned}$	$\begin{aligned} & \text { G1340 } \\ & \text { G1360 } \end{aligned}$	UNIT	LIMIT
loss	Gate Reverse Current	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-0.1	-0.1	-0.2	-0.2	-5.0	-5.0	nA	Max
			-0.1	-0.1	-0.2	-0.2	-5.0	-5.0	$\mu \mathrm{A}$	
$B V_{\text {Gss }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$	-40	-40	-40	-40	-30	-30	V	Min
$\mathrm{V}_{\mathrm{P}}$	Gate-Source PinchOff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.1 \mu \mathrm{~A}$	-5	-10	-5	-10	-5	-10	V	Max
Idoff)	Drain Cutoff Current	$V_{D S}=10 \mathrm{~V}$	0.05	0.05	0.1	0.1	0.5	0.5	nA	Max
		$V_{G S}=-10 \mathrm{~V}$	0.05	0.05	0.1	0.1	0.5	0.5	$\mu \mathrm{A}$	
$I_{\text {S }}$ (off)	Source Cutoff Current	$\mathrm{V}_{\text {SD }}=10 \mathrm{~V}$	0.05	0.05	0.1	0.1	0.5	0.5	nA	Max
		$\mathrm{V}_{\text {GD }}=-10 \mathrm{~V}$	0.05	0.05	0.1	0.1	0.5	0.5	$\mu \mathrm{A}$	
I Dss	Drain Current at Zero Gate Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \text { (Pulsed) } \end{aligned}$	0.5	2	5	10	15	30	mA	Min
$\mathrm{r}_{\mathrm{DS}}$	Drain-Source ON   Resistance	$V_{G S}=0, I_{D}=0, f=1 \mathrm{kHz}$	500 ;	250	90	45	20	10	$\Omega$	Max
$\mathrm{C}_{\mathrm{DG}}+\mathrm{C}_{\text {SG }}$	Gate-Source plus GateDrain ON Capacitance:	$V_{G S}=0, V_{D S}=0, f=1 \mathrm{MHz}$	10	10	. 40	40	300	300,	pF	Max
$\mathrm{C}_{\text {DG }}$	Drain-Gate OFF Capacitance	$\begin{aligned} & V_{G S}=-10 V_{;} V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$	2	2	7	7	16	16	pF	Max
$\mathrm{C}_{\text {SG }}$	Source-Gate OFF   Capacitance		2	2	7	7	16	16	pF	Max

## PRODUCT CONDITIONING

The following processes are performed $100 \%$ in accordance with MIL-STD-883.
Precap Visual-Meth. 2010, Cond. B
Stabilization Bake-Meth. 1008

## TYPICAL CHARACTERISTICS



Temp. Cycle-Meth. 1010
Centrifuge-Meth, 2001, Cond. D
Hermeticity-Meth. 1014, Cond. A, C
(Leak Rate $<5 \times 10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ )

## APPLICATION

## 4-Channel Commutator Circuit




INPUT RANGE: -10 to +10 V
GATE: LOGIC " 1 " FOR SWITCH ON LOGIC "0" FOR SWITCH OFF

## PACKAGE OUTLINE

## ORDERING INFORMATION



NOTE: All dimensions in inches.

FD - 14 Pin Flat Pack
$1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$
Temperature Range: $\mathrm{M}-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
I $-\mathbf{- 2 0}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Device Chip Type
Analog Switch

# MM450/MM550, MM451/MM551 MM452/MM552, MM455/MM555 MOS-FET Switches 

## FEATURES

- Large Analog Input- $\pm 10 \mathrm{~V}$
- Low Supply Voltage $-\mathrm{V}_{\text {BULK }}=+10 \mathrm{~V}$

$$
V_{G G}=-20 \mathrm{~V}
$$

- Typical ON Resistance- $\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}, 150 \Omega$

$$
V_{\text {IN }}=+10 \mathrm{~V}, 75 \Omega
$$

- Low Leakage Current-200 pA @ $25^{\circ} \mathrm{C}$
- Input Gate Protection


## GENERAL DESCRIPTION

The MM450, and MM550 series each contain p channel MOS enhancement mode transistors. These devices are useful in airborne and ground support systems requiring multiplexing, analog transmission, and numerous signal routing applications. The use of low threshold transistors ( $\mathrm{V}_{\mathrm{TH}}=2$ volts) permits operations with large analog input swings ( $\pm 10$ volts) at low gate voltages ( -20 volts).
Each gate input is protected from static charge build-up by the incorporation. of zener diode protective devices connected between the gate input and device bulk.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Gate Voltage ( $\mathrm{V}_{\mathrm{GG}}$ )	+14.5 V to -30 V
Bulk Voltage ( $\mathrm{V}_{\text {BULK }}$ )	+14V
Analog Input ( $\mathrm{V}_{\text {IN }}$ )	+14 V to -20V
Power Dissipation	200 mW
Operating Temperature	
MM450, MM451, MM452, MM455	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM550, MM551, MM552, MM555	$-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Tempertature (soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

NOTE 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for FD package and $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TW package.

CONNECTION DIAGRAMS


## ORDERING INFORMATION



## PACKAGE DIMENSIONS

10 Lead Metal Can Package



TW Package

ELECTRICAL CHARACTERISTICS (per channel unless noted)

SYMBOL	CHARACTERISTICS	TYPE	LIMITS						CONDITIONS
			$25^{\circ}$	$70^{\circ}$	$85^{\circ}$	$125^{\circ}$	$\frac{\text { MIN }}{\text { MAX }}$	UNITS	
$V_{\text {IN }}$	Analog Input Voltage	All	$\pm 10$				Max	$v$	
$\mathrm{V}_{\mathrm{GS}(\mathrm{Th})}$	Threshold Voltage	$\because \quad$ All	1.5				Min	V	$\begin{aligned} & V_{D G}=0 \\ & I_{D}=10 \mu \mathrm{~A} \end{aligned}$
			3.0				Max		
rosion	Drain-Source On Resistance	All	600		600		Max	$\Omega$	$\begin{aligned} & I_{D}=1 \mathrm{~mA} \\ & V_{B}=10 \mathrm{~V} \\ & V_{\text {GS }}=-20 \mathrm{~V} \end{aligned}$
			200		200	1	Max	$\Omega$	
$\mathrm{I}_{\mathrm{gBS}}$	Gate Leakage Current	All	5			100	Max	nA	$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{DS}}=0$
Idoff)	Drain Leakage Current	MM450, MM451 MM452, MM455	0.2		40	200	Max	nA	$\begin{aligned} & V_{D B}=-25 \mathrm{~V} \\ & V_{G B}=V_{S B}=0 \end{aligned}$
		$\begin{aligned} & \hline \text { MM550, MM551 } \\ & \text { MM552, MM555 } \end{aligned}$	20	100			Max	nA	
$I_{\text {S }}(\mathrm{OFF})$	Source Leakage Current	MM450, MM451 MM452, MM455	0.4		40	400	Max	nA	$\begin{aligned} & V_{S B}=-25 V \\ & V_{D B}=V_{G B}=0 \end{aligned}$
		MM550, MM551 MM552, MM555		100			Max	nA	
$\mathrm{C}_{\text {DB }}$	Drain-Body Capacitance	All	10				pF	Max	$\begin{gathered} V_{D B}=V_{G B}=V_{S B}=0 \\ f=1 \mathrm{MHZ} \end{gathered}$
$\mathrm{C}_{\text {SB }}$	Source-Body Capacitance	MM450, MM550	14				pF	Max	
		MM451, MM551	24				pF	Max	
		MM452, MM552	11				pF	Max	
		MM455, MM555	11				pF	Max	
$\mathrm{C}_{\mathrm{GB}}$	Gate-Body Capacitance	MM450, MM550	13				pF	Max	
		MM451, MM551	8				pF	Max	
		MM452, MM552	9				pF	Max	
		MM455, MM555	9			,	pF	Max	
$\mathrm{C}_{\mathrm{GS}}$	Gate-Source Capacitance	All	5				pF	Max	

## TYPICAL PERFORMANCE CURVES



# Dual CMOS Driver/ Voltage Translator 

## FEATURES

- Driven direct from TTL or CMOS logic
- Translates logic levels up to 30 V levels
- Switches $\mathbf{2 0 V}_{\text {ACPP }}$ signals when used in conjunction with Intersil IH401A Varafet (as an analog gate)
- ton $\leq \mathbf{3 0 0 n S} \&$ toff $\leq \mathbf{2 0 0 n s}$ for $\mathbf{3 0 V}$ level shifts
- Quiescent supply current $\leq 100 \mu$ a for any state (d.c.)
- Provides both normal \& inverted outputs


## GENERAL DESCRIPTION

The IH6201 is a CMOS, Monolithic, Dual Voltage Translator; it takes the low level TTL or CMOS logic level and converts them to higher levels (i.e. to $\pm 15 \mathrm{~V}$ swings). This translator is typically used in making solid state switches, or analog gates.

When used in conjunction with the Intersil IH401 family Varafets, the combination makes a complete solid state switch capable of switching signals up to 22Vpp and up to 20 MHz in frequency. This switch is a "break-before-make" type (i.e. toff time < ton time). The combination has typical toff $\approx 80 \mathrm{nS}$ and typ. ton $\approx 200 \mathrm{nS}$ for signals up to 20 Vpp in amplitude.
A TTL " 1 " input strobe will force the $\theta$ driver output up to $\mathrm{V}^{+}$level; the $\bar{\theta}$ output will be driven down to the $\mathrm{V}^{-}$level. When the TTL input goes to " 0 ", the $\theta$ output goes to $\mathrm{V}^{-}$and $\bar{\theta}$ goes to $\mathrm{V}^{+}$; thus $\theta$ and $\bar{\theta}$ are $180^{\circ}$ out of phase with each other. These complementary outputs can be used to create a wide variety of functions such as SPDT and DPDT switches, etc.; alternatively the complementary outputs can be used to drive an N and P channel Mosfet, to make a complete Mosfet analog gate.
The driver typically uses +5 V and $\pm 15 \mathrm{~V}$ power supplies; however a wide range of $\mathrm{V}^{+}$and $\mathrm{V}^{-}$is possible, however $\mathrm{V}^{+}>5 \mathrm{~V}$ is necessary for the driver to work properly.

## BLOCK DIAGRAM



## ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE
IH6201CDE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH6201MDE	$-55^{\circ} \mathrm{C} \rightarrow+125^{\circ} \mathrm{C}$
IH6201CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
IH6201MJE	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
IH6201CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

## SCHEMATIC DIAGRAM (ONE CHANNEL)



## ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}^{+}$to $\mathrm{V}^{-}$	35V
$\mathrm{V}^{+}$	35V
$\mathrm{V}^{-}$	35 V
$\mathrm{V}^{+}$to $\mathrm{V}_{\text {IN }}$	40V

Operating Temperature ................ . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec ) . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS ${ }_{i} \mathrm{~V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$

	CONDITIONS	IH6201CDE			IH6201MDE			UNITS
ITEM		$-25^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	
$\theta$ or $\bar{\theta}$ driver output swing	$\mathrm{v}_{\text {IN }}=0 \mathrm{~V} \sqrt{+3 \mathrm{~V}}$ L fig. 2 B	28	28	28	28	28	28	Vpp
VIN strobe level ("1.") for proper translation	$\begin{aligned} & \theta \geq 14 \mathrm{~V} \\ & \bar{\theta} \geq-14 \mathrm{~V} \end{aligned}$	3.0	3.0	3.0	2.4	2.4	2.4	VD.C.
VIN strobe level ("0") for proper translation	$\begin{aligned} & \theta \geq-14 \mathrm{~V} \\ & \bar{\theta} \geq 14 \mathrm{~V} \end{aligned}$	0.4	0.4	0.4	0.8	0.8	0.8	VD.C.
IIN input strobe current draw. (for $\mathrm{OV} \rightarrow 5 \mathrm{~V}$ range)	$\mathrm{VIN}=0 \mathrm{~V}$ or +5 V	1	1	1	1	1	1	$\mu \mathrm{A}$
ton time	switching turn-on time fig. 2B	400	400	400	300	300	300	nS
toff time	$\mathrm{V}_{\mathrm{V} N}=0 \mathrm{v} \sqrt[+3 \mathrm{~V}]{4 \mu \mathrm{~S}} \quad \mathrm{CL}_{\mathrm{L}}=30 \mathrm{pf}$   switching turn-off time fig. 2B	300	300	300	200	200	200	nS
$1+\left(\mathrm{V}^{+}\right)$power supply quiescent current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$
I- (V-) power supply quiescent current	$\mathrm{VIN}=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$
IL ( $V_{L}$ ) power supply quiescent current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or +5 V	100	100	100	100	100	100	$\mu \mathrm{A}$

## APPLICATIONS

## I. INPUT DRIVE CAPABILITY

The strobe input lines are designed to be driven from TTL logic levels; this means $0.8 \mathrm{~V} \rightarrow 2.4 \mathrm{~V}$ levels max. and min. respectively. For those users who require 0.8 V to 2.0 V operation, a pull-up resistor is recommended from the TTL output to +5 V line. This resistor is not critical and can be in the $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ range.
When using 4000 series CMOS logic, the input strobe is connected direct to the 4000 series gate output and no pull up resistors, or any other interface, is necessary.
When the input strobe voltage level goes below Gnd (i.e. to -15 V ) circuit is unaffected as long as $\mathrm{V}^{+}$to $\mathrm{V}_{\mathrm{IN}}$ does not exceed absolute maximum rating.

## II. OUTPUT DRIVE CAPABILITY

The translator output is designed to drive the Intersil IH401 family of Varafets; these are N -channel J-FETS with built-in driver diodes. Driver diodes are necessary to isolate the signal source from the driver/translator output; this prevents forward biasing between the signal input and the +Vcc supply. The IH6201 will drive any J-FET provided some sort of isolation is added i.e.


Figure 1
You will notice in Figure 1 that a "referral" resistor has been added from 2N4391 gate to its source. This resistor is needed to compensate for inadequate charge area curve for isolation diode (i.e. if C vs. $V$ plot for diode $\leq 2$ [C vs. $V$ plot for output $J$ FET] switch won't function; then adding this resistor overcomes this condition. The "referral" resistor is normally in the $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ range and is not too critical.

## III: MAKING A COMPLETE SOLID STATE SWITCH THAT CAN HANDLE 20Vpp SIGNALS

The limitation on signal handling capability comes from the output gating device. When a J-FET is used, it's the pinch-off of the J-FET acting with the $\mathrm{V}^{-}$supply that does the

## APPLICATIONS, CONTINUED

limiting. In fact max. signal handling capability $=2(V p+$ $\left.\left(\mathrm{V}^{-}\right)\right) \mathrm{Vpp}$ where $\mathrm{Vp}=$ pinch-off voltage of J-FET chosen. i.e. $V p=7 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \therefore$ max. signal handling $=2(7 \mathrm{~V}+$ $(-15 \mathrm{~V})) \mathrm{Vpp}=2(7 \mathrm{~V}-15) \mathrm{pp}=2(-8 \mathrm{Vpp})=16 \mathrm{Vpp}$. Obviously to get $\geq 20 \mathrm{Vpp}, \mathrm{Vp} \geq 5 \mathrm{~V}$ with $\mathrm{V}^{-}=-15 \mathrm{~V}$. Another simple way to get 20 Vpp with $\mathrm{Vp}=7 \mathrm{~V}$, is to increase $\mathrm{V}^{-}$to -17 V . In fact using $\mathrm{V}^{+}=+12 \mathrm{~V}$ or +15 V and setting $\mathrm{V}^{-}=-18 \mathrm{~V}$ allows one to switch 20Vpp with any member of IH401 family. The
advantage of using the $\mathrm{Vp}=7 \mathrm{~V}$ pinch-off (along with unsymmetrical supplies) over the $\mathrm{Vp}=5 \mathrm{~V}$ pinch-off (and $\pm 15 \mathrm{~V}$ supplies) is that you will have a much lower $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ resistance for the $\mathrm{Vp}=7 \mathrm{~V}$ fet.(i.e. for the 2N4391 fet
$\left.R_{D S}(O N) \approx 22 \Omega, R_{D S}(O N) \approx 35 \Omega\right)$
$V p=7 V \quad V p=5 V$

The IH6201 is a dual translator, each containing 4 CMOS FETs. The schematic of one-half IH6201, driving one-fourth of an IH401, is shown in Figure 2A.


Figure 2A


Figure 2B

NOTE: Each translator output has a $\theta$ and $\bar{\theta}$ output. $\theta$ is just the inverse of $\bar{\theta}$.

A very useful feature of this system is that one-half of an IH6201 and one-half of an IH401 can combine to make a SPDT switch, or an IH6201 plus an IH401 can make a dual SPDT analog switch. (See III.)

## I. Dual SPST Analog Switch <br> II. DPDT Analog Switch



NOTE: Either switch is turned on when strobe input goes high.

## APPLICATIONS, CONTINUED



## PACKAGE DIMENSIONS

16 Pin Ceramic Dual-In-Line Package (DE)


3



16 Pin Plastic Dual-In-Line Package (PE)


16-Pin CERDIP (JE)



## Integrating Analog-to-Digital Converters for Display

Maximum Electrical Specification at $25^{\circ} \mathrm{C}$ unless otherwise noted.

	Single Chip		Two Chip System				
Model	New ICL7106/ICL7116	New ICL7102/ICL7117	ICL8052/ ICL8053	$\begin{aligned} & \text { ICL8052/ } \\ & \text { ICL7101 } \end{aligned}$	ICL8068A/ ICL7103B	$\begin{aligned} & \text { ICL8052A/ } \\ & \text { ICL7103A } \end{aligned}$	LD110/LD114/ LD111-12
Resolution	$\pm 31 / 2$ digit	$\pm 31 / 2$ digit	Depends on counter used	$\pm 31 / 2$ digit	$\pm 41 / 2 \mathrm{digit}$	$\pm 41 / 2$ digit	$\pm 31 / 2$ digit
Accuracy Nonlinearity Zero Input Reading Ratiometric Reading (Ratiometric) Rollover Error.	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \end{aligned}$	$\begin{aligned} & \pm 0.002 \% \\ & \pm 0.0000 \\ & +1.0000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 \text {. } \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.000 \\ & +1.000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.0000 \\ & +1.0000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 \text { count } \\ & \pm 0.0000 \\ & +1.000 . \\ & \pm 1 \text { count } \\ & \pm 1 \text { count } \end{aligned}$
Stability Offset vs Temperature Gain vs Temperature Conversion Rate	$\begin{aligned} & 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 15 \\ & \text { conv/sec } \end{aligned}$	$\begin{aligned} & 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 15 \\ & \text { conv/sec } \end{aligned}$	$\begin{aligned} & 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \mathrm{to} 30 \\ & \text { conv/sec } \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 30 \\ & \text { conv/sec } \end{aligned}$	$\begin{aligned} & 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 30 \\ & \text { Conv } / \mathrm{sec} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.1 \text { to } 30 \\ & \text { conv/sec } \end{aligned}$	0.3 to 12 conv/sec
Analog Input Voltage Range Impedance Leakage Current Noise (peak-to-peak)	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{12} \Omega \\ & 2 \mathrm{pA} \\ & 15 \mu \mathrm{~V} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{12} \Omega \\ & 3 \mathrm{pA} \\ & 15 \mu \mathrm{~V} \text { typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~V} \\ & 10^{9} \Omega \\ & 30 \mathrm{pA} \\ & 20 \mu \mathrm{~V} \text { typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{9} \Omega \\ & 30 \mathrm{pA} \\ & 20 \mu \mathrm{~V} \text { typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{mV} \text { to } \pm 2 \mathrm{~V} \\ & 10^{9} \Omega \\ & 200 \mathrm{pA} \\ & 2 \mu \mathrm{~V} \text { typ } \end{aligned}$	$\begin{aligned} & \pm 2 \mathrm{~V} \\ & 10^{9} \Omega \\ & 10 \mathrm{pA} \\ & 20 \mu \mathrm{~V} \text { typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2 V \\ & 10^{9} \Omega \\ & \text { 40pA typ } \end{aligned}$
Digital Input	Display Hold	Display Hold					
Digital Outputs Format Logic Level	7 segment LCD display AC: 4.5 V down from $V+$	7 segment   LED display   11. Comm Anode   DTL TTL CMOS	Depends on counter used Depends on counter used	Latched   Parallel BCD   TTL/CMOS	Multiplex BCD TTL/CMOS	Multiplex BCD TTL/CMOS	Multiplex BCD TTL/CMOS
Power Supply Voltage Current Package	$\begin{aligned} & +9 \mathrm{~V} \\ & 1.8 \mathrm{~mA} \\ & 40 \text { pin DIP } \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & 1.8 \mathrm{~mA} \\ & 40 \mathrm{pin} \text { DIP } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} ;+5 \mathrm{~V} \\ & 12 \mathrm{~mA} \\ & \text { (2) } 14 \mathrm{pin} \\ & \text { DIP } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} ;+5 \mathrm{~V} \\ & 17 \mathrm{~mA} ; 25 \mathrm{~mA} \\ & 16 \text { pin DIP } \\ & 40 \text { pin DIP } \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} ;+5 \mathrm{~V} \\ & 20 \mathrm{~mA} ; 30 \mathrm{~mA} \\ & 16 \text { pin DIP } \\ & 24 \text { pin DIP } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} ;+5 \mathrm{~V} \\ & 18 \mathrm{~mA} ; 30 \mathrm{~mA} \\ & 16 \text { pin DIP } \\ & 24 \text { pin DIP } \end{aligned}$	$\pm 15 ;+5 V$   $27 \mathrm{~mA} ; 24 \mathrm{~mA}$   (2) 16 pin DIP

## Integrating Analog-to-Digital Converters for Data Acquisition

Maximum Electrical Specifications at $+25^{\circ} \mathrm{C}$ unless otherwise noted

Type	Single-Chip	Two-Chip						
Model	New ICL7109	$\begin{aligned} & \text { ICL8068/ } \\ & \text { ICL7104-12 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ICL8068/ } \\ \text { ICL7104-14 } \end{array}$	$\begin{array}{\|l\|} \hline \text { ICL8068/ } \\ \text { ICL7104-16 } \end{array}$	$\begin{array}{\|l\|} \hline \text { ICL8052/ } \\ \text { ICL7101 } \end{array}$	$\begin{aligned} & \text { ICL8068A/ } \\ & \text { ICL7103B } \end{aligned}$	$\begin{aligned} & \text { ICL8052A/ } \\ & \text { ICL7103A } \end{aligned}$	$\begin{aligned} & \text { ICL8052/ } \\ & \text { ICL8053 } \end{aligned}$
Resolution	$\pm 12-\mathrm{Bit}$   Binary	$\begin{aligned} & \pm 12 \text {-Bit } \\ & \text { Binary } \\ & \hline \end{aligned}$	$\pm 14$-Bit Binary	$\begin{aligned} & \pm 16 \text {-Bit } \\ & \text { Binary } \end{aligned}$	$\begin{aligned} & 31 / 2 \text {-Digit } \\ & \text { BCD } \end{aligned}$	$\begin{aligned} & 41 / 2 \text {-Digit } \\ & \text { BCD } \end{aligned}$	$\begin{aligned} & 41 / 2 \text {-Digit } \\ & \text { BCD } \end{aligned}$	$\begin{aligned} & \pm 12 \text {-Bit } \\ & \text { Binary } \end{aligned}$
$\mu \mathrm{P}$ Compatible	yes	yes	yes	yes	yes	yes	yes	yes
Output	Programmable:   1. Latched parallel 3 state Binary   2. Controlled 2-8 bit byte	Programmable:   1. Latched parallel 3 state binary   2. Controlled $32-8$ Bit byte for ICL710412/14, 3-8 bit byte for ICL7104-16			Latched parallel BCD	$\begin{aligned} & \text { Multiplexed } \\ & \text { BCD } \end{aligned}$	$\begin{aligned} & \text { Multiplexed } \\ & \text { BCD } \end{aligned}$	Interface to MOS, TTL, $\mu \mathrm{P}$
Control Lines	Start/Convert, Busy, Byte Enable, Mode, Load, Send Enable, Out of Range				Start/Convert. Busy, Out of Range	Start/Convert, Busy, Strobe Out of Range Underrange	Start/Convert Busy, Strobe Out of Range Underrange	Auto-zero, Signal Interpret Two Reference, Integrate, and Comparator Output
UART Compatible	yes	yes	yes	yes	no	yes	yes	no

## Digital-to-Analog Converters*

Maximum Electrical Specifications at $+25^{\circ} \mathrm{C}$ unless otherwise noted

Model	New AD7523	New AD7533	AD7520 (7530)	New ICL7113	AD7521 (7531)	$\begin{aligned} & \text { New } \\ & \text { AD7541 } \end{aligned}$	New ICL7112
Resolution	8 bit	10 bit	10 bit	3 digit	12 bit	12 bit	12 bit
Accuracy	J/K/L	J/K/L	J/K/L	B/A	J/K/L	J/K/L	J/K
Linearity	0.2\%/0.1\%/0.05\%	0.2\%/0.1\%/0.05\%	0.2\%/0.1\%/0.05\%	0.2\%/0.05\%	$0.2 \% / 0.1 \% / 0.05 \%$	$0.02 \% / 0.01 \% / 0.01 \%$	0.02\%/0.01\%
Zero Offset	$50 \mu \mathrm{~A}$	200 nA	$200 \mathrm{nA}(300 \mathrm{nA})$	200 nA	$200 \mathrm{nA}(300 \mathrm{nA})$	$50 \mathrm{nA}$	200 nA
Full Scale Reading	1.5\% max	1:4\%	0.3\% typ	0.3\% typ	0.3\% typ	0.3\%	0.3\%
Stability							
Gain vs. Temp Linearity vs. Temp	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 10 \mathrm{ppm}-{ }^{\circ} \mathrm{C} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \text { Setting Time } \\ & \text { to } \pm 0.05 \% \text { F.S. } \end{aligned}$	150 ns	600 ns typ	500 ns typ	500 ns typ	500 ns typ	$1 \mu \mathrm{~s}$	500 ns typ
Input Code Logic Compatibility option	$\begin{aligned} & \hline \text { DTL/TTL/CMOS } \\ & \text { Binary } \\ & \text { Offset Binary } \end{aligned}$	DTL/TTL/CMOS Binary Offset Binary	$\begin{aligned} & \text { DTL/TTL/CMOS } \\ & \text { Binary } \\ & \text { Offset Binary } \end{aligned}$	$\begin{aligned} & \mathrm{DTL/TTL} / \mathrm{CMOS} \\ & \mathrm{BCD} \end{aligned}$	DTL/TTL/CMOS Binary Offset Binary	$\begin{aligned} & \hline \text { DTL/TTL/CMOS } \\ & \text { Binary } \\ & \text { Offset Binary } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { DTL/TTL/CMOS } \\ \text { Binary } \\ \text { Offset Binary } \end{array}$
Power Supply Voltage Current	$\begin{aligned} & +5 \text { to }+16 \mathrm{~V} \\ & 100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+16 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & +5 \text { to }+15 \mathrm{~V} \\ & 2 \mathrm{~mA} \end{aligned}$
Package	16 pin DIP	16 pin DIP	16 pin DIP	18 pin DIP	18 pin DIP	18 pin DIP	18 pin DIP

## Successive Approximation Registers AM2502/2503/2504

8 (2502/2503) and 12 bit (2504) successive approximation registers can be used as serial to parallel counter or ring counter. Contains storage and control for SAR A to D converters.

## Quad Current Switches ICL8018/8019/8020

High speed precision current switches for use in current summing D/A converters. Can be purchased individually or in matched sets with accuracies of $0.01 \%$ (ICL8018), $0.1 \%$ (ICL8019), or $1.0 \%$ (ICL8020)

# ICL8052/ICL7104 Pair ICL8068/ICL7104 Pair 16/14/12 Bit Binary A/D Converters for $\mu$ Processors 

## FEATURES

- 16 bit binary three-state latched outputs plus polarity and overrange. Also 14 and 12 bit versions.
- Ideally suited for interface to UARTs, microprocessors, or other complex circuitry.
- Conversion on demand or continuously.
- Handshake byte-serial transmission synchronously or on demand.
- Guaranteed zero reading for zero volts input.
- True polarity at zero count for precise null detection.
- Single reference voltage for true ratiometric operation.
- Onboard clock and reference.
- Auto-Zero; Auto-Polarity
- Accuracy guaranteed to 1 count.
- All outputs TTL compatible.
- $\pm 10 \mathrm{~V}$ analog input range
- Status signal available for external sync, $A / \mathbf{Z}$ in preamp, etc.


## GENERAL DESCRIPTION

The ICL7104, combined with the ICL8052 or ICL8068, forms a member of Intersil's high performance A/D converter family. The 16 -bit version, the ICL7104-16, performs the analog switching and digital function for a 16-bit binary A/D converter, with full three-state output, UART handshake capability, and other outputs for a wide range of output interfacing. The ICL7014-14 and ICL7104-12 are 14 and 12bit versions. The analog section, as with all Intersil's integrating converters, provides fully precise Auto-Zero, Auto-Polarity (including $\pm 0$ null indication), single reference operation, very high input impedance, true input integration over a constant period for maximum EMI rejection, fully ratiometric operation, over-range indication, and a medium quality built-in reference. The chip pair also offers optional input buffer gain for high sensitivity applications, a built-in clock oscillator, and output signals for providing an external Auto-Zero capability in preconditioning circuitry, synchronizing external multiplexers, etc. The basic schematic connections are shown in Figure 1.


Figure 1: 8052 A ( 8068 A )/7104 16/14/12 Bit A/D Converter Functional Block Diagram

## ORDERING INFORMATION

Part	Temp. Range	Package	Order Number
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052CPD
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052CDD
8052 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052ACPD
8052 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052ACDD
8068	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8068CJD
8068 A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8068ACJD


Part	Temp. Range	Package	Order Number
710412 bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin plastic DIP	ICL7104-12 CPL
710412 bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin ceramic DIP	ICL7104-12 CDL
710414 bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin plastic DIP	ICL7104-14 CPL
710414 bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin ceramic DIP	ICL7104-14 CDL
710416 bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin plastic DIP	ICL7104-16 CPL
710416 bit	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin ceramic DIP	ICL7104-16 CDL

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1) . . . . . . . . . . . . . . . . . . . . . . . 500 mW
Storage Temperature .................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

## 8052, 8068

Supply Voltage ........................................... $\pm 18 \mathrm{~V}$
Differential Input Völtage(8068) ....................... $\pm 30 \mathrm{~V}$
(8052) ........................ $\pm 6 \mathrm{~V}$

Input Voltage (Note 2) ...................................... $\pm 15 \mathrm{~V}$ Output Short Circuit Duration,

All Outputs (Note 3)
............................... Indefinite
Operating Temperature................ $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature. (Soldering, 60 Sec .)
Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.
Note 4: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 5: Connecting any digital inputs or outputs to voltages greater than $\mathrm{V}+$ or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ICL7104 before its power supply is established.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the devices. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7104 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}++=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)^{\circ}$


Note 1: This spec applies when not in Auto-Zero phase.
Note 2: These specs apply when these pins are inputs i.e. the mode pin is low, and the 7104 is not in handshake mode.
Note 3: These specs apply when these pins are outputs, i.e, the mode pin is high or the 7104 is in handshake mode.
Note 4: Clock circuit shown in Fig. 12 or 13.
Note 5: V+ must not be more positive than V++.

8068 ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}\right.$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8068			8068A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER								
Input Offset Voltage	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		20	65		20	65	mV
Input Current (either input) (Note 1)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		175	250		80	150	pA
Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{VCM}= \pm 2 \mathrm{~V}$		110			110	1	
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20,000			20,000			V/V
Slew Rate			6			6		$\mathrm{V} / \mathrm{\mu s}$
Unity Gain Bandwidth			2			2		MHz
Output Short-Circuit Current			5	10	.	5	10	mA
COMPARATOR AMPLIFIER								
Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
Positive Output Voltage Swing		+12	+13		+12	+13		V
Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE								
Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
Output Resistance			5		-	5		ohms
Temperature Coefficient			50			40		ppm $/{ }^{\circ} \mathrm{C}$
Supply Voltage Range		$\pm 10$		$\pm 16$	$\pm 10$		$\pm 16$	V
Supply Current Total				14		8	14	mA

8052 ELECTRICAL CHARACTERISTICS $\left(V_{s}= \pm 15 \mathrm{~V}\right.$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8052			8052A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER								
Input Offset Voltage	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		20	50	,	20	50	mV
Input Current (either input) (Note 1)	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		5	50		2	10	pA
Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
Non-Linear Component of CommonMode Rejection Ratio (Note 2)	$\mathrm{VCM}= \pm 2 \mathrm{~V}$		110		-	110		
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	20,000			20,000			V/V
Slew Rate			6			6		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth			1			1		MHz
Output Short-Circuit Current			20	100		20	100	mA
COMPARATOR AMPLIFIER								
Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
Positive Output Voltage Swing		+12	+13.		+12	+13		V
Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE								
Output Voltage	, '	1.5	1.75	2.0	1.60	1.75	1.90	V
Output Resistance			5			5		ohms
Temperature Coefficient	,		50			40		ppm $/{ }^{\circ} \mathrm{C}$
Supply Voltage Range		$\pm 10$		$\pm 16$	$\pm 10$		$\pm 16$	V
Supply Current Total			6	12		6	12	mA

Note 1: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{J}}$. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\theta \mathrm{j} \mathrm{APd}$ where $\theta \mathrm{j} A$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 2: This is the only component that causes error in dual-slope converter.

## SYSTEM ELECTRICAL CHARACTERISTICS: 8068/7104

$\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}\right.$ Clock Frequency $=200 \mathrm{KHz}$

CHARACTERISTICS	CONDITIONS	8068A/7104-12			8068A/7104-14			8068A/7104-16			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{aligned} & V_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	-. 000	$\pm .000$	+. 000	-0.0000	$\pm 0.0000$	+0.0000	-0.0000	$\pm 0.0000$	+0.0000	Hexadecimal Reading
Ratiometric Reading (1)	$\begin{array}{\|l\|} \hline V_{\text {in }}=V_{\text {Ref. }} \\ \text { Full Scale }=4.000 \mathrm{~V} \end{array}$	7FF	800	801	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over $\pm$ Full Scale (error of reading from best straight line)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		0.2	1		0.5	1	-	0.5	1	LSB
Differential Linearity (difference between worse case step of adjacent counts and ideal step	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		. 01			. 01			. 01		LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{\text {in }} \equiv+V_{\text {in }} \approx 4 \mathrm{~V}$	$\checkmark$	0.2	1		0.5	1		0.5	1	LSB
Noise (P-P value not exceeded $95 \%$ of time)	$\begin{array}{\|l\|} \hline V_{\text {in }}=0 \mathrm{~V} \\ \text { Full scale }=4.000 \mathrm{~V} \end{array}$		3	.		2			2		$\mu \mathrm{V}$
Leakage Current at Input (2)	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		200	265		100	165		100	165	pA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=O V \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		1	5		0.5	2	-	0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature (3) Coefficient	$\begin{array}{\|l\|} \hline V_{\text {in }}=+4 \mathrm{~V} \\ 0 \leq T_{A} \leq 50^{\circ} \mathrm{C} \\ \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { ) } \\ \hline \end{array}$		2	5	,	2	5		2	5	ppm $/{ }^{\circ} \mathrm{C}$

## SYSTEM ELECTRICAL CHARACTERISTICS: 8052/7104

$\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}\right.$ Clock Frequency $=200 \mathrm{KHz}$

CHARACTERISTICS	CONDITIONS	8052/7104-12			8052A/7104-14			8052A/7104-16			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{aligned} & V_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	-. 000	$\pm .000$	+. 000	-0.0000	$\pm 0.0000$	+0.0000	-0.0000	$\pm 0.0000$	+0.0000	Hexadecimal Reading
Ratiometric Reading (3)	$\begin{aligned} & V_{\text {in }}=V_{\text {Ref. }} \\ & \text { Full Scale }=4.000 \mathrm{~V} \end{aligned}$	7FF.	800	801	1FFF	2000	2001	7FFF	8000	8001	Hexadecimal Reading
Linearity over $\pm$ Full Scale (error of reading from best straight line)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		0.2	1	$\cdots \quad \therefore$	0.5	1 '		0.5	1	LSB
Differential Linearity (difference between worse case step of adjacent counts and ideal step)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+4 \mathrm{~V}$		. 01		"	. 01	$\cdots$	$\therefore$	. 01	-	LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{\text {in }} \equiv+V_{\text {in }} \approx 4 \mathrm{~V}$		0.2	1	.	$0.5$	1		0.5	1	LSB
Noise (P-P value not exceeded $95 \%$ of time)	$\begin{aligned} & V_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=4.000 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 20 \\ 50 \\ \hline \end{array}$			30	$\cdots$		30		$\mu \mathrm{V}$
Leakage Current at Input (2)	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		30	80		20	30		20	30	pA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=0 V \\ & 0^{\circ} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		1	5	-	0.5	2		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & V_{\text {in }}=+4 \mathrm{~V} \\ & 0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { ) } \end{aligned}$		3	15		2	5		2	5	ppm/ ${ }^{\circ} \mathrm{C}$

Note 1: Tested with low dielectric absorption integrating capacitor.
Note 2: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $\mathrm{T}_{\mathrm{J}}$. Due to limited production test time, the input bias currents are measured with junctions at ambient temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\theta \mathrm{j} A \mathrm{Pd}$ where $\theta \mathrm{jA}$ is the thermal resistance from junction to ambient. A heat sink can be used to reduce temperature rise.
Note 3: The temperature range can be extended to $70^{\circ} \mathrm{C}$ and beyond if the Auto-Zero and Reference capacitors are increased to absorb the high temperature leakage of the 8068 . See note 2 above.


AC CHARACTERISTICS $(\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=+5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V})$

———ーーーー＝HIGH IMPEDANCE
Figure 2：Direct Mode Output Timing
TABLE 1：Direct Mode Timing Requirements

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
tBEA	$\overline{\text { XBEN }}$ Min．Pulse Width		500		
tDAB	Data Access Time from XBEN		200		
tDHB	Data Hold Time from $\overline{\text { XBEN }}$		$200$		ns
tCEA	$\overline{\mathrm{CE} / \mathrm{LD}}$ Min．Pulse Width		500		
tDAC	Data Access Time from $\overline{C E / L D}$		200		
tDHC	Data Hold Time from $\overline{C E / L D}$		200	$\because$	

TABLE 2: Handshake Timing Requirements



FIGURE 3: Timing Relationships In Handshake Mode

## PIN ASSIGNMENTS



TABLE 3: Pin Assignment and Function Description



TABLE 4: Three-State Byte Formats and $\overline{E N}$ able Pins.

## DETAILED DESCRIPTION

## Analog Section

Figure 4 shows the equivalent Circuit of the Analog Section of both the ICL7104/8052 and the ICL7104/8068 in the 3 different phases of operation. If the Run/Fold pin is left open or tied to $\mathrm{V}+$, the system will perform conversions at a rate
determined by the clock frequency: 131,072 for $-16 ; 32,368$ for -14 ; and 8092 for -12 clock periods per cycle (see Figure 5 conversion timing).


Figure 4A: Phase I Auto-Zero


Figure 4B: Phase II Integrate Input


Figure 4C: Phase III + Deintegrate


Figure 4D: Phase III - Deintegrate
Figure 4: Analog Section of Either ICL8052 or ICL8068 with ICL7104

1. Auto-Zero Phase I Fig. 4A.

During Auto-Zero, the input of the buffer is shorted to analog ground thru switch 2 , and switch 1 closes aloop around the integrator and comparator. The purpose of the loop is to charge the Auto-Zero capacitor until the integrator output does not change with time. Also switches 4 and 9 recharge the reference capacitor to Vref.
2. Input Integrate Phase II Fig. 4B.

During input integrate the Auto-Zero loop is opened and the analog input is connected to the buffer input thru switch 3 . (The reference capacitor is still being charged to Vref during this time.) If the input signal is zero, the buffer, integrator and comparator will see the same voltage that existed in the previous state (Auto-Zero). Thus the integrator output will not change but will remain stationary during the entire Input Integrate cycle. If $\mathrm{V}_{\text {in }}$ is not equal to zero, an unbalanced condition exists compared to the Auto-Zero phase, and the integrator will generate a ramp whose slope is proportional to $\mathrm{V}_{\text {in }}$. At the end of this phase, the sign of the ramp is latched into the polarity $F / F$.

## Deintegrate Phase III Fig. 4 C\&D

During the Deintegrate phase, the switch drive logic uses the output of the polarity F/F in determining whether to close switches 6 and 9 or 7 and 8 . If the input signal was positive, switches 7 and 8 are closed and a voltage which is Vref more negative than during Auto-Zero is impressed on the buffer input. Negative inputs will cause $+V_{\text {ref }}$ to be applied to the buffer input via switches 6 and 9 . Thus, the reference capacitor generates the equivalent of a (+) reference or a $(-)$ reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to the zero-crossing point established in Phase I. The time, or number of counts, required to do this is proportional to the input voltage. Since the Deintegrate phase can be twice as long as the Inpút integrate phase, the input voltage required to give a full scale reading $=2 \mathrm{~V}_{\text {ref }}$.

Note: Once a zero crossing is detected, the system automatically reverts to Auto-Zero phase for the leftover Deintegrate time (unless Run/Fold is manipulated, see Run/ Hold Input in detailed description, digital section).


COUNTS			
	Phase I	Phase II	Phase III
-16	32768	32768	65536
-14	8192	8192	16384
-12	2048	2048	4096

Figure 5: Conversion Timing

Table 5: Some Typical Component Values
$\mathrm{V}++=+15 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Clock Freq $=200 \mathrm{kHz}$

ICL8052/8068 with	ICL7104-16			ICL7104-14		ICL7104-12		UNITS
Full scale VIN	200	800	4000	100	4000	50	4000	mV
Buffer Gain	10	1	1	10	1	10	1	
Rint	100	43	200	47	180	27	200	k ת
CINT	: 33	. 33	. 33	0.1	0.1	. 022	. 022	$\mu \mathrm{F}$
$\mathrm{C}_{\text {AZ }}$	1.0	1.0	1.0	1.0	1.0	. 47	. 47	$\mu \mathrm{F}$
$\mathrm{C}_{\text {ref }}$	10	1.0	1.0	10	1.0	4.7	4.7	$\mu \mathrm{F}$
$V_{\text {ref }}$	100	400	2000	50	2000	25	200	mV
Resolution	3.1	12	61	6.1	244	12	980	$\mu \mathrm{V}$

## Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

## Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. This current should be small. compared to the output short circuit current such that thermal effects are kept to a minimum and linearity is not affected. Values of 5 to $40 \mu \mathrm{~A}$ give good results with a nominal of $20 \mu \mathrm{~A}$. The exact value maybe chosen by

$$
\text { RINT }=\frac{\text { full scale voltage }{ }^{*}}{20 \mu \mathrm{~A}}
$$

*Note: If gain is used in the buffer amplifier then -

$$
\mathrm{R}_{\text {INT }}=\frac{\text { (Buffer gain) (full scale voltage) }}{20 \mu \mathrm{~A}}
$$

## Integrating Capacitor

The product of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at +14 volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. In general, the value of CINT is give by

$$
\mathrm{CINT}=\frac{\left[\begin{array}{l}
(32768 \text { for }-16 \\
(8192 \text { for }-14 \times \text { clock period }) \\
(2048 \text { for }-12
\end{array}\right] \times(20 \mu \mathrm{~A})}{\text { Integrator output voltage swing }}
$$

A very important characteristic of the integrating capacitor is that it have low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.
This ratiometric condition should read half scale $100 \ldots 000$ and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

## Auto-Zero and Reference Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system, a large capacitor giving less noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

Note: Wher gain is used in the buffer amplifier the reference capacitor should be substantially larger than the auto-zero capacitor. As a rule of thumb, the reference caipacitor should be approximately the gain times the value of the auto-zero capacitor. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

## Reference Voltage

The analog input required to generate a full scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\text {Ref }}$.
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7104 at 16 bits is one part in 65536, or
15.26 ppm . Thus, if the reference has a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (on board reference) a temperature change of $1 / 3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. For this reason, it is recommended that an external high quality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

## Buffer Gain

At the end of the auto-zero interval, the instantaneous noise voltage on the auto-zero capacitor is stored, and subtracts from the input voltage while adding to the reference voltage during the next cycle. The result is that this noise voltage effectively is somewhat greater than the input noise voltage of the buffer itself during integration. By introducing some voltage gain into the buffer, the effect of the auto-zero noise (referred to the input) can be reduced to the level of the inherent buffer noise. This generally occurs with a buffer gain of between 3 and 10. Further increase in buffer gain merely increases the total offset to be handled by the autozero loop, and reduces the available buffer and integrator swings, without improving the noise performance of the system. The circuit recommended for doing this with the ICL8068/ICL7104 is shown in Figure 6. With careful layout, the circuit shown can achieve effective input noise voltages on the order of $1-2 \mu \mathrm{~V}$, allowing full 16 -bit use with full scale inputs of as low as 150 mV . Note that at this level, thermoelectric EMFs between PC boards, IC pins, etc., due to local temperature changes can be very troublesome. For further discussion, see App. Note A030.


Figure 6: Adding Buffer Gain to ICL8068

## ICL8052 vs ICL8068

The ICL8052 offers significantly lower input leakage currents than the ICL8068, and may be found preferable in systems with high input impedances. However, the ICL8068 has substantially lower noise voltage, and for systems where system noise is a limiting factor, particularly in low signal level conditions, will give better performance.

## DETAILED DESCRIPTION

## Digital Section

The digital section includes the clock oscillator circuit, a 16, 14 or 12 bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic and UART handshake logic, as shown in the Block Diagram Figure 7 (16 bit version shown).
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined under "ICL7104 Electrical Characteristics". For minimum power consumption, all inputs should swing from GND (low) to $\mathrm{V}^{+}$ (high). Inputs driven from TTL gates should have $3-5 \mathrm{k} \Omega$. pullup resistors added for maximum noise immunity.

## Mode Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in three bytes for the 7104-16 or two bytes for the 7104-14 and 7104-12, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

## STaTuS Output

During a conversion cycle, the STaTuS output goes high at the beginning of Input Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 5 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STaTuS is low) to drive interrupts, or for monitoring the status of the converter.

## Run/Thold Input

When the Run/Hold input is connected to $\mathrm{V}+$ or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 5). (See under "Handshake Mode" for exception.) In this mode of operation, the conversion cycle will be performed in 131,072 for 7104-16, 32768 for $7104-14$ and 8192 for $7104-2$ clock periods, regardless of the resulting value.
If Run/Hold goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If Run/Fold stays or goes low, the converter will ensure a minimum Auto-Zero time, and then wait in Auto-Zero until the Run/Hold input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STaTuS output will go high) seven clock periods after the high level is detected at Run/Hold. See Figure 8 for details.
Using the Run/Hold input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in Auto-Zero with Run/Hold low. When Run/Hold goes high the conversion is started, and when the STaTuS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). Run/Hold may now go low terminating Deintegrate and ensuring a minimum AutoZero time before stopping. to wait for the next conversion. Alternately, Run/Hold can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the Run/Hold input can be provided by connecting it to the CLOCK3 $(-12,-14)$, CLOCK2 $(-16)$ Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on Auto-Zero performance.


Figure 7: Digital Section


Figure 8: Run/Hold Operation

If the Run/Hold input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for Run/Hold to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

## Direct Mode

When the MODE pin is left at a low level, the data outputs[bits 1 through 8 low order byte, see Table 4 for format of middle $(-16)$ and high order byteslare accessible under control of the byte and chip ENable terminals as inputs. These ENable inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip $\overline{E N}$ able input is low, taking a byte $\overline{E N} a b l e$
input low will allow the outputs of that byte to become active (three-stated on): This allows a variety of parallel data accessing techniques to be used, as shown in Figure 2. The timing requirements for these outputs are shown in Figure 2 and Table 1.

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is being updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STaTuS output will prevent this. Data is never updated while STaTuS is low. Also note the potential bus conflict described under "Initial Clear Circuitry".


Figure 9: Handshake With SEN Held Positive

## Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7104 to digital systems, where the $A / D$ converter becomes active in controlling the flow of data instead of passively responding to chip and byte ENable inputs. This mode is specifically designed to allow a direct interface between the ICL7104 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7104 provides all the control and flag signals necessary to sequence the three (ICL7106-16) or two (ICL7104-14, -12) bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.
Entry into the handshake mode will occur if either of two conditions are fulfilled; first, if new data is latched (i.e. a conversion is completed) while MODE pin (pin 27) is high, in which case entry occurs at the end of the latch cycle; or secondly, if the MODE pin goes from low to high, when entry will occur immediately (if new data is being latched, entry is delayed to the end of the latch cycle). While in the handshake mode, data latching is inhibited, and the MODE pin is ignored. (Note that conversion cycles will continue in the normal manner). This allows versatile initiation of handshake operation without danger of false data generation; if the MODE pin is held high, every conversion (other than those completed during handshake operations) will start a new
handshake operation, while if the MODE pin is pulsed high, handshake operations can be obtained "on demand."
When the converter enters the handshake mode, or when the MODE input is high, the chip and byte ENable terminals become TTL-compatible outputs which provide the control signals for the output cycle. The Send ENable pin (SEN) (pin 29) is used as an indication. of the ability of the external device to receive data. The condition of the line is sensed once every clock pulse, and if it is high; the next (or first) byte is enabled on the next rising CLOCK 1 (pin 25) clock edge, the corresponding byte ENable line goes low, and the Chip ENable/LoaD line (pin 30) (CE/LD) goes low for one full clock pulse only, returning high.
On the next falling CLOCK 1 clock pulse edge, if SEN remains high, or after it goes high again, the byte output lines will be put in the high impedance state (or three-stated off). One half pulse later, the byte ENable pin will be cleared high, and (unless finished) the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and the next byte $\overline{\mathrm{EN}}$ able pin will go low. This will continue until all three (2 in the case of 12 and 14 bit devices) bytes have been sent. The bytes are individually put into the low impedance state i.e.: threestated on during most of the time that their byte $\overline{\mathrm{EN}}$ able pin is (active) low. When receipt of the last byte has been acknowledged by a high SEN, the handshake mode will be cleared, re-enabling data latching from conversions, and recognizing the condition of the MODE pin again. The byte and chip ENable will be three-stated off, if MODE is low, but held high by their (weak) pullups. These timing relationships are illustrated in Figure 9, 10, and 11, and Table 2.


Figure 10: Handshake - Typical UART Interface Timing

Figure 9 shows the sequence of the output cycle with SEN held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the $\overline{\mathrm{CE}} / \overline{\mathrm{DD}}, \overline{\mathrm{LBEN}}, \overline{\mathrm{MBEN}}$ and $\overline{\mathrm{HBEN}}$ terminals are active as outputs). The high level at the SEN input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the $\overline{C E} / \overline{L D}$ and the $\overline{H B E N}$ outputs assume a low level and the high-order byte (POL and OR, and except for -16 , Bis $9-14$ ) outputs are enabled. The $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte ENable remains low for two clock periods. Thus the $\overline{C E} / \overline{L D}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte ENable as an output may be used as a byte identification flag. With SEN remaining high the converter completes the output cycle using $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}, \overline{\mathrm{MBEN}}$ and $\overline{\mathrm{LBEN}}$ while the remaining byte outputs (see Table 4) are activated. The handshake mode is terminated when all bytes are sent ( 3 for 16, 2 for $-14,-12$ ).
Figure10 shows an output sequence where the SEN input is used to delay portions of the sequence, or handshake, to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEN input to the ICL7104 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the $\overline{\overline{C E}} / \overline{[D}$ terminal of the ICL7104 drives the TBRL (Transmitter Buffer Register Load) input to the UART.

The data outputs are paralleled into the eight Transmitter Buffer Register inputs.
Assuming the UART Transmitter Buffer Register is empty, the SEN input will be high when the handshake mode is entered after new data is stored. The $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and $\overline{\mathrm{HBEN}}$ terminals will go low after SEN is sensed, and the high order byte outputs become active. When $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ goes high at the end of one clock period, the high order byte data is clocked. into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7104 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the $\overline{\mathrm{HBEN}}$ output returns high. At the same time, the $\overline{\mathrm{CE}} / \overline{\mathrm{LD}}$ and $\overline{\mathrm{MBEN}}(-16)$ or $\overline{\mathrm{LBEN}}$ outputs go low, and the corresponding byte outputs become active. Similarly, when the $\overline{C E} / \overline{L D}$ returns high at the end of one clock period, the enabled data is clocked into the UART• Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7104 internal clock high to low edge, disabling the data outputs. For the 16 bit device, the sequence is repeated for LBEN. One-half internal clock later, the handshake mode will be cleared, and the chip and byte ENable terminals return high and stay active (as long as MODE stays high).
With the MODE input remaining high as in these examples, the converter will output the results of every conversion


Figure 11: Handshake Triggered By Mode
except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 11 shows a handshake output sequence triggered by such an edge. In addition, the SEN input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is. controlled by the SEN input, and the sequence for the first (high order) byte is similar to the sequence for the other bytes. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STaTuS output and Run/Hold input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is. therefore lost.

## Initial Clear Circuitry

The internal logic of the 7104 is supplied by an internal regulator between V++ and Digital Ground. The regulator includes a low-voltage detector that will clear various registers. This is intended to ensure that on initial power-up, the control logic comes up in Auto-Zero, with the 2nd, 3rd, and 4th MSB bits cleared, and the "mode" FF cleared (i.e. in "direct" mode). This, however, will also clear these registers if the supply voltage "glitches" to a low enough value. Additionally, if the supply voltage comes up too fast, this clear pulse may be too narrow for reliable clearing. In general, this is not a problem, but if the UART internal "MODE" FF should come up set, the byte and chip ENable lines will become active outputs. In many systems this could lead to buss conflicts, especially in non-handshake systems. In any case, SEN should be high (held high for nonhandshake systems) to ensure that the MODE FF will be cleared as fast as possible (see Fig. 9 for timing). For these and other reasons, adequate supply bypass is recommended.

## Oscillator

The ICL7104-14 and -12 are provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillator.
Figure 12 shows the oscillator configured for RC operation. The internal clock will be of the same frequency and phase as the voltage on the CLOCK 3 pin . The resistor and capacitor should be connected as shown. The circuit will oscillate at a frequency given by $f=.45 / R C$. An $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that $32768(-16), 8192(-14), 2048(-12)$ clock periods is close to an integral multiple of the 60 Hz period.


Figure 12: RC Oscillator
Note that CLOCK 3 has the same output drive as the bit outputs.

As a result of pin count limitations, the ICL7104-16 has only CLOCK 1 and CLOCK 2 available, and cannot be used as an RC oscillator. The internal clock will correspond to the inverse of the signal on CLOCK 2. Figure 13 shows a crystal oscillator circuit, which can be used with all 7104 versions. If an external clock is to be used, it should be applied to CLOCK 1. The internal clock will correspond to the signal applied to this pin.


Figure 13: Crystal Oscillator

## POWER SUPPLY SEQUENCING

Because of the nature of the CMOS process used to fabricate the ICL7104, and the multiple power supplies used, there are certain conditions of these supplies under which a disabling and potentially damaging SCR action can occur. All of these conditions involve the $\mathrm{V}+$ supply ( $n o m .+5 \mathrm{~V}$ ) being more positive than the $\mathrm{V}++$ supply. If there is any possibility of this occuring during start-up, shut down, under transient conditions during operation, or when inserting a PC board into a "hot" socket, etc., a diode should be placed between Vand $\mathrm{V}++$ to prevent it. A germanium or Schottky rectifier diode would be best, but in most cases a silicon rectifier diode is adequate.

## ANALOG AND DIGITAL GROUNDS

Extreme care must be taken to avoid ground loops in the layout of 8068 or $8052 / 7104$ circuits, especially in 16-bit and high sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line. A recommended connection sequence for the ground lines is shown in Figure 14.

Some applications bulletins that may be found useful are listed here:

A016 "Selecting A/D Converters", by Dave Fullagar
A017 "The Integrating A/D Converter", by Lee Evans
A018 "Do's and Dont's of Applying A/D Converters", by Peter Bradshaw and Skip Osgood
A025 "Building a Remote Data Logging Station", by Peter Bradshaw
A030 "The ICL7104-A Binary Output A/D Converter for Microprocessors", by Peter Bradshaw
R005 "Interfacing Data Converters \& Microprocessors", by Peter Bradshaw et al, Electronics, Dec. 9, 1976.


Figure 14: Grounding Sequence

## PACKAGE DIMENSIONS



14 Pin Ceramic Dual-In-Line Package


14 Pin CERDIP


40 Pin Ceramic Dual-In-Line Package


## FEATURES

- 12 bit binary (plus polarity and overrange) dual slope integrating analog-to-digital converter.
- Byte-organized TTL-compatible three-state outputs and UART handshake mode for simple parallel or serial interfacing to microprocessor systems.
- RUN/HOLD input and STATUS output can be used to monitor and control conversion timing.
- True differential input and differential reference.
- Low noise-typically $15 \mu \mathrm{~V}$ peak-to-peak.
- 1pA typical input current.
- Operates at up to 30 conversions per second.
- On-chip oscillator operates with inexpensive 3.58 MHz TV crystal giving 7.5 conversions per second for 60 Hz rejection, or may be operated as an RC oscillator for other clock frequencies.
- Fabricated using MAX-CMOS ${ }^{\text {™ }}$ technology combining analog and digital functions on a single low power LSI CMOS chip.
- All inputs fully protected against static discharge; no special handling precautions necessary.


## GENERAL DESCRIPTION

The ICL7109 is a high performance, low power integrating A/D converter designed to easily interface to microprocessors.
The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inputs and a chip select input for a simple parallel bus interface. A UART handshake mode is provided which allows the ICL7109 to work with industry-standard UARTs to provide serial data transmission, ideal for remote data logging applications. The RUN/ HOLD input and STATUS output allow monitoring and control of conversion timing.
The ICL7109 provides the user the high accuracy, low noise, low drift, versatility and economy of the dual-slope integrating $A / D$ converter. Features like true differential input and reference, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max., input bias current of 10 pA max., and typical power consumption of 20 mW make the ICL7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications.
Note: A MIL-STD (883 processing) version of the ICL7109 will be available July 1979.

## PIN CONFIGURATION AND TEST CIRCUIT:

ISee Figure 1 for typical connection to a UART or Microcomputer .


## ORDERING INFORMATION

Part	Package	Temp. Range	Order Part \#
7109	40 pin ceramic DIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ICL7109IDL
7109	40 pin plastic DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL7109CPL

## PACKAGE DIMENSIONS

40 Pin Plastic Dual-in-Line Package


40 Pin Ceramic Dual-in-Line Package


## ABSOLUTE MAXIMUM RATINGS

Positive Supply Voltage (GND to $\mathrm{V}^{+}$)	6.2V
Negative Supply Voltage (GND to ${ }^{-}$)	9 V
Analog Input Voltage (Lo or Hi) (Note 1)	$\mathrm{V}^{+}$to $\mathrm{V}^{-}$
Reference Input Voltage (Lo or Hi) (Note 1)	$\mathrm{V}^{+}$to $\mathrm{V}^{-}$
Digital Input Voltage	$\mathrm{V}^{+}+0.3 \mathrm{~V}$
(Pins 2-27) (Note 2)	GND-0.3V
Power Dissipation (Note 3)	.
Ceramic or Cerdip Package	1W@85º
Plastic Package	500 mW @ $70^{\circ} \mathrm{C}$
Operating Temperature	
Ceramic or Cerdip Package	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
Plastic Package	. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 sec ).	. $300^{\circ} \mathrm{C}$

Absolute maximum ratings define stress limitations which if exceeded may permanently damage the device. These ratings are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

## TABLE I OPERATING CHARACTERISTICS

All parameters with $V=+5 \mathrm{~V}, \mathrm{~V} \quad 5 \mathrm{~V}$ GND $\quad O \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \quad 25^{\circ} \mathrm{C}$. unless otherwise indicated.
Test circuit as shownon page 1.
ANALOG SECTION

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading		$\begin{aligned} & \mathrm{VIN}=0.0 \mathrm{~V} \\ & \text { Full scale }=409.6 \mathrm{mV} \end{aligned}$	00008	$\pm 00008$	$+00008$	Octal Reading
Ratiometric Reading		$\begin{aligned} & V_{I N}=V_{\text {REF }} \\ & V_{\text {REF }}=204.8 \mathrm{mV} \end{aligned}$	37778	$\begin{aligned} & 37778 \\ & 4000_{8} \end{aligned}$	40008	Octal Reading
Non-Linearity (Max deviation from best straight line fit)		Full scale $=409.6 \mathrm{mV}$ or 4.096 V	-1	$\pm .2$	+. 1	Counts
Roll-over Error (difference in reading for equal pos. and neg. inputs near full scale.			-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio		$\begin{aligned} & V_{C M} \pm 1 V V_{I N}=0 V \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		$50$		$\mu \mathrm{V} / \mathrm{V}$
Noise ( $p-\mathrm{p}$ value not exceeded $95 \%$ of time)		$\begin{aligned} & V_{\text {IN }}=0 V \\ & \text { Full Scale }=409.6 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current at Input		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		1	10	pA
Zero Reading. Drift		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale. Factor Temperature Coefficient		$\begin{aligned} & V_{\text {IN }}=408.9 \mathrm{mV}=>7770_{8} \\ & \text { reading } \\ & \text { Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$		1	5	ppm $/{ }^{\circ} \mathrm{C}$
Supply Current ${ }^{+}$to GND	IDL	$\mathrm{V}_{\text {IN }}=0$, Crystal Osc.		700	1500	$\mu \mathrm{A}$
Supply Current V+ to V-	IDA	Pins 2-21, 25, 26, 27, 29, open		700	1500	$\mu \mathrm{A}$
Ref Out Voltage	* .	Referred to $\mathrm{V}^{+}, 25 \mathrm{k} \Omega \Omega$ between $\mathrm{V}^{+}$and REF OUT	-2.4	-2.8	-3.2	V
Ref Out Temp. Coefficient		$25 \mathrm{k} \Omega$ between $\mathrm{V}^{+}$and REF OUT		80		ppm $/{ }^{\circ} \mathrm{C}$

DIGITAL SECTION

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	VOH	$\begin{array}{\|l} \text { Iout }=100 \mu \mathrm{~A} \\ \text { Pins } 2-16,18,19,20 \end{array}$	3.5	4.3		V
Output Low Voltage	VOL	IOUT $=1.6 \mathrm{~mA}$		0.2	0.4	V
Output Leakage Current		Pins 3-16 high impedance		$\pm .01$	$\pm 1$	$\mu \mathrm{A}$
Control I/O Pullup Current		Pins $18,19,20$ VOUT $=V^{+}-3 \mathrm{~V}$ MODE input at GND		5		$\mu \mathrm{A}$
Control I/O Loading					50	pF
Input High Voltage	VIH	Pins 18-21, 26, 27 referred to GND	2.5			V
Input Low Voltage	VIL	Pins 18-21, 26, 27 referred to GND		'	1	V
Input Pull-up Current		Pins 26, 27 Vout $=\mathrm{V}+-3 \mathrm{~V}$		5		$\mu \mathrm{A}$
Input Pull-up Current		Pins 17, 24 Vout $=$ V +-3 V		25		$\mu \mathrm{A}$
Input Pull-down Current		Pin 21 Vout = GND +3V		5		$\mu \mathrm{A}$
Oscillator Output $\quad$ High	OOH	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		1		mA
Current ${ }^{\text {L }}$	OOL	VOUT $=2.5 \mathrm{~V}$.		1.5		mA
Buffered Oscillator High	BOOH	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		2		mA
Output Current Low	BOOL	VOUT $=2.5 \mathrm{~V}$		5		mA
MODE Input Pulse Width			50			ns

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$
Note 2: Due to the SCR structure inherent in the process used to fabricate these devices, connecting any digital inputs or outputs to voltages greater than $\mathrm{V}^{+}$or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources not on the same power supply be applied to the ICL7109 before its power supply is established, and that in multiple supply systems the supply to the ICL7109 be activated first.
Note 3: This limit refers to that of the package and will not be obtained during normal operation.


Figure 1A. To transmit latest result, send any word to UART.


Figure 1B. Typical Connection Diagram Parallel Interface With 8748/8048 Microcomputer

TABLE 2 - Pin Assignment and Function Description

PIN	SYMBOL	DESCRIPTION
1	GND	Digital Ground, OV, Ground return for all digital logic
2	STATUS	Output - High during integrate and deintegrate until data is latched.   - Low when analog section is in Auto-Zero configuration.
3	POL	Polarity, Three-State Output
4	OR	Over-range, Three-State Output
5	B12	Bit 12 (Most Significant Bit)
6	B11	Bit 11
7	B10	Bit 10
8	B9	Bit 9
9	B8	Bit 8
10	B7	Bit 7
11	B6	Bit 6 Data Bits, Three-State Output
12	B5	Bit 5
13	B4	Bit 4
14	B3	Bit 3
15	B2	Bit 2
16	B1	Bit 1 (Least Significant Bit)
17	TEST	Input High - Normal Operation.   Input Low - Forces all bit outputs high.   Note: This input is used for test purposes only.
18	$\overline{\text { LBEN }}$	Low Byte Enable - With Mode ! Pin 21 l low, and $\overline{\mathrm{CE} / L O A D}$ (Pin 20) low, taking this pin low activates low order byte outputs B1-B8.   - With Mode (Pin 21) high, this pin serves as a low byte flag output used in handshake mode. See Figures 7, 8; 9.
19	HBEN	High Byte Enable - With Mode (Pin 211 low. and $\overline{C E / L O A D}$ (Pin 20) low, taking this pin low activates high order byte outputs B9B12, POL. OR.   - With Mode (Pin 21) high, this pin serves as a high byte flag output used in handshake mode. See Figures 7, 8, 9.
20	$\overline{\text { CE/LOAD }}$	Chip Enable Load - With Mode (Pin 21) low. $\overline{C E / L O A D}$ serves as a master output enable. When high, B1-B12, POL, OR outputs are disabled.   - With Mode (Pin 21 ) high, this pin serves as a load strobe used in handshake mode. See Figures 7, 8, 9.


PIN	SYMBOL	DESCRIPTION
21	MODE	Input Low - Direct output mode where $\overline{\mathrm{CE} / L O A D}$ (Pin 20), $\overline{\mathrm{HBEN}}$ (Pin 19) and LBEN (Pin 18) act as inputs directly controlling byte outputs.   Input Pulsed High - Causes immediate entry into handshake mode and output of data as in Figure 9.   Input High - Enables CE/LOAD (Pin 20), HBEN (Pin 19), and LBEN (Pin 18) as outputs, handshake mode will be entered and data output as in Figures 7 and 8 at conversion completion.
22	OSC IN	Oscillator Input
23	OSC OUT	Oscillator Output
24	OSC SEL	Oscillator Select - Input high configures OSC IN. OSC OUT, BUF OSC OUT as RC oscillator - clock will be same phase and duty cycle as BUF OSC OUT.   - Input low configures OSC IN, OSC OUT for crystal oscillator - clock frequency will be $1 / 58$ of frequency at BUF OSC OUT.
25	BUF OSC OUT	Buffered Oscillator Output
26	RUN/ $\overline{\text { HOLD }}$	Input High - Conversions continuoúsly performed every 8192 clock pulses. Input Low - Conversion in progress completed, converter will stop in Auto-Zero 7 counts before integrate.
27	SEND	Input - Used in handshake mode to indicate ability of an external device to accept data.
28	V	Analog Negative Supply - Nominally 5V with respect to GND (Pin 1 ).
29	REF OUT	Reference Voltage Output - Nominally 2.8 V down from V (Pin 40).
30	BUFFER	Buffer Amplifier Output
31	AUTO-ZERO	Auto-Zero Node - Inside foil of CAZ
32	INTEGRATOR	Integrator Output - Outside foil of CINT
33	COMMON	Analog Common - System is Auto-Zeroed to COMMON
34	INPUT LO	Differential Input Low Side
35	INPUT HI	Differential Input High Side
36	REF IN	Differential Reference Input Positive
37	REF CAP	Reference Capacitor Positive
38	REF CAP	Reference Capacitor Negative
39	REF IN	Differential Reference Input Negative
40	V	Positive Supply Voltage - Nominally +5 V with respect to GND (Pin 1 ).

## DETAILED DESCRIPTION

## Analog Section

Figure 2 shows the equivalent circuit of the Analog Section of the ICL7109. When the RUN/HOLD input is left open or connected to $\mathrm{V}^{+}$, the circuit will perform conversions at a rate determined by the clock frequency ( 8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 3. They are (1) Auto-Zero (AZ), (2) Signal Integrate (INT) and (3) Deintegrate (DE).

## 1. Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from their pins and internally shorted to analog common. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-
zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

## 2. Signal Integrate Phase

During signal integrate the auto-zero loop is opened, the internal short is removed and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between input high and input low for a fixed time of 2048 clock periods. At the end of this phase, the polarity of the integrated signal is determined.


Figure 2: Analog Section


Figure 3: Conversion Timing

## 3. Deintegrate Phase

The final phase is deintegrate, or reference integrate. input low is internally connected to analog common and input high is connected across the previously charged (during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to the zero crossing (established in Auto Zero) with a fixed slope. Thus the time for the output to returr. to zero (represented by the number of clock periods counted) is proportional to the input signal.

## Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator
positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale with some loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.
The ICL7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of +5 V and -5 V , this allows a 4 V full scale integrator swing positive or negative maximizing the performance of the analog section.

## Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for ( + ) or $(-)$ input voltage will give a roll-over error. However, by
selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worst case condition (see Component Values Selection below).

The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog common.

## Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.
The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with $\pm 5 \mathrm{~V}$ supplies and COMMON connected to GND, the nominal integrator output swing at full scale is $\pm 4 \mathrm{~V}$. Since the integrator output can go to 0.3 V from either supply without significantly affecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With $\pm 5 \mathrm{~V}$ supplies and a common mode range of $\pm 1 \mathrm{~V}$ required, the component values should be selected to provide $\pm 3 \mathrm{~V}$ integrator output swing. Noise and rollover errors will be slightly worse than in the $\pm 4 \mathrm{~V}$ case. For larger common mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and rollover errors. To improve the performance, supplies of $\pm 6 \mathrm{~V}$ may be used.

## 1. Integrating Resistor

Both the buffer amplifier and the integrator have a class $A$ output stage with $100 \mu \mathrm{~A}$ of quiescent current. They supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 4.096 volt full scale, 200k $\Omega$ is near optimum and similarly a $20 \mathrm{k} \Omega$ for a $409: 6 \mathrm{mV}$ scale. For other values of full scale voltage, Rint should be chosen by the relation RINT $=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}$

## 2. Integrating Capacitor

The integrating capacitor CINT should be selected to give the maximum integrator output voltage swing without saturating the integrator (approximately 0.3 volt from either supply). For the ICL7109 with $\pm 5$ volt supplies and analog common connected to GND, a $\pm 3.5$ to $\pm 4$ volt integrator output swing is nominal. For $7-1 / 2$ conversions per second $(61.72 \mathrm{KHz}$ clock frequency) as provided by the crystal oscillator, nominal values for $\mathrm{C}_{\text {INT }}$ and $\mathrm{C}_{A Z}$ are $0.15 \mu \mathrm{~F}$ and $0.33 \mu \mathrm{~F}$, respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output voltage swing. In general, the value of CINT is given by

$$
\mathrm{C}_{\mathrm{INT}}=\frac{(2048 \times \text { clock period) }(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
$$

An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over: errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

## 3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system; a big capacitor, giving less noise. However, it cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and more important the error that exists at the end of an auto-zero cycle. For 409.6 mv full scale where noise is very important and the integrating resistor small, a value of CAZ twice $\mathrm{C}_{\text {INT }}$ is optimum. Similarly for 4.096 V full scale where recovery is more important than noise, a value of CAZ equal to half of CINT is recommended.
For optimal rejection of stray pickup, the outer foil of $C_{A Z}$ should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of CINT should be connected to pin 32 and the inner foil to the R-C summing junction.

## 4. Reference Capacitor

A $1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the reference low is not at analog common) and a 409.6 mV scale is used, a larger value is required to prevent roll-over error. Generally $10 \mu \mathrm{~F}$ will hold the rollover error to 0.5 count in this instance.

## 5. Reference Voltage

The analog input required to generate a full scale output of 4096 counts is $V_{I N}=2 V_{\text {REF }}$. Thus for a normalized scale,. a reference of 2.048 V should be usd for a 4.096 V full scale, and 204.8 mV should be used for a 0.4096 V full scale. However, in many applications where the A/D is sensing the output of a transducer, there will exist a scale factor other than unity between the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 409.6 mV , the input voltage should be measured directly and a reference voltage of 0.341 V should be used. Suitable values for integrating resistor and capacitor are 34 k and $0.15 \mu \mathrm{~F}$. This avoids a divider on the input. Another advantage of this system occurs when a zero reading is desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing poiarities carefully. However, in proces-sor-based systems using the ICL7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software.

## 6. Reference Sources

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7109 at 12 bits is one part in 4096, or 244 ppm . Thus if the reference has a temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (onboard reference) a temperature difference of $3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error. For this reason, it is recommended that an external highquality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

The ICL7109 provides a Reference Output (pin 29) which may be used with a resistive divider to generate a suitable reference voltage. This output will sink up to about 20 mA without significant variation in output voltage, and is provided with a pullup bias device which sources about $10 \mu \mathrm{~A}$. The output voltage is nominally 2.8 V below $\mathrm{V}^{+}$, and has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. When using the onboard reference, Ref Out (Pin 29) should be connected to Ref - (pin 39), and Ref+ should be connected to the wiper of a precision potentiometer between Ref Out and $\mathrm{V}^{+}$. The circuit for a 204.8 mV . reference is shown in the test circuit. For a 2.048 V reference, the fixed resistor should be removed, and a $25 \mathrm{k} \Omega$ precision potentiometer between Ref Out and $\mathrm{V}^{+}$should be used.

## DETAILED DESCRIPTION

## Digital Section

The digital section includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and TTLcompatible three-state output drivers, polarity, over-range and control logic, and UART handshake logic, as shown in the Block Diagram Figure 4.
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined in Table 1 "Operating Characteristics". For minimum power consumption, all inputs should swing from GND (low) to $\mathrm{V}^{+}$ (high). Inputs driven from TTL gates should have 3-5k』 pullup resistors added for maximum noise immunity.

## MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is connected to GND or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open); the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable
inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

## STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate (Phase II), and goes low one-half clock period after new data from the conversion hias been stored in the output latches. See Figure 3 for details of this timing. This signal may be used as a "data valid" flag (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter.

## RUN/ $\overline{H O L D}$ Input

When the RUN/HOLD input is connected to $\mathrm{V}^{+}$or left open (this input has a pullup resistor to ensure a high level when the pin is left open), the circuit will continuously perform conversion cycles, updating the output latches at the end of every Deintegrate (Phase III) portion of the conversion cycle (See Figure 3). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value.
If the RUN/HOLD input goes low (and stays there) during Integrate (Phase II) or Deintegrate (Phase III) before the zero crossing is detected, the converter will complete the conversion in progress, update the output latches, and then terminate Phase III, jumping to Auto-Zero (Phase I). If RUN/ $\overline{\text { HOLD }}$ stays low, the converter will ensure a minimum Auto-Zero time, and wait in Auto-Zero until the RUN/ $\overline{H O L D}$ input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STATUS output will go high) seven clock periods after the high level is detected at RUN// $\overline{H O L D}$. See Figure 5 for details.



Figure 5: Run/Hold Operation

Using the RUN/TOLD input in this mariner allows an easy "convert on demand" interface to be used. The converter may be held at idle in auto-zero with RUN/ $\overline{H O L D}$ low. When RUN/ $\overline{\text { HOLD }}$ goes high thie conversion is started, and when the STATUS output goes low the new data is valid (or transferred to the UART - see Handshake Mode). RUN/FOLD may now go low terminating Deintegrate and ensuring a minimum Auto-Zero time before stopping to wait for the next conversion.
If RUN/ $\overline{H O L D}$ goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred; the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to "short-cycle" the converter by eliminating the time spent in Deintegrate after the zero crossing. The required activity on the RUN/ $\overline{H O L D}$ input can be provided by connecting it to the Buffered Oscillator Output. In this mode the conversion time is dependent on the input value measured. Also refer to Intersil Application Bulletin A030 for a discussion of the effects this will have on AutoZero performance.
If the RUN/ $\overline{H O L D}$ input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for RUN/HOLD to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

## Direct Mode

When the MODE pin is left at a low level, the data outputs (bits 1 through 8 low order byte, bits 9 through 12, polarity and over-range high order byte) are accessible under control of the byte and chip enable terminals as inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (three-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in the section entitled "Interfacing." The timing requirements for these outputs are shown in Figure 6 and Table 3.

Table 3 - Direct Mode Timing Requirements

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
tBEA	Byte Enable Width	200	500		ns
tDAB	Data Access Time   from Byte Enable		150	300	ns
tDHB	Data Hold Time   from Byte Enable		150	300	ns
tCEA	Chip Enable Width	300	500		ns
tDAC	Data Access Time   from Chip Enable		200	400	ns
tDHC	Data Hold Time   from Chip Enable		200	400	ns



Figure 6: Direct Mode Output Timing
It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the data while it is begin updated, which could lead to scrambled data. Synchronizing the access of data with the conversion cycle by monitoring the STATUS output will prevent this. Data is never updated while STATUS is low.

## Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7109 to digital systems, where the A/D converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is specifically designed to allow a direct interface between the ICL7109 and industry-standard UARTs (such as the Intersil CMOS UARTs, IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7109 provides all the control and flag signals necessary to sequence the two bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission to minimize the number of lines to the central controlling processor.
Entry into the handshake mode is controlled by the MODE pin. When the MODE terminal is held high, the ICL7109 will enter the handshake mode after new data has been stored in the output latches at the end of every conversion performed (See Figures 7 and 8). The MODE terminal may also be used to trigger entry into the handshake mode on demand. At any time during the conversion cycle, the low to high transition of a short pulse at the MODE input will cause immediate entry


Figure 7: Handshake With Send Held Positive


Figure 8: Handshake - Typical UART Interface Timing
into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 9) until the converter completes the output cycle and clears the handshake mode.

When the converter enters the handshake mode, or when the MODE input is high, the chip and byte enable terminals become TTL-compatible outputs which provide the control signals for the output cycle (See Figures 7, 8, and 9).

In handshake mode, the SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data.

Figure 7 shows the sequence of the output cycle with SEND held high. The handshake mode (Internal MODE high) is entered after the data latch pulse (since MODE remains high the $\overline{C E / L O A D}, \overline{L B E N}$ and $\overline{H B E N}$ terminals are active as outputs). The high level at the SEND input is sensed on the same high to low internal clock edge. On the next low to high internal clock edge, the $\overline{\mathrm{CE} / L O A D}$ and the $\overline{\mathrm{HBEN}}$ outputs assume a low level, and the high-order byte (bits 9 through $12, \mathrm{POL}$, and OR) outputs are enabled. The $\overline{\mathrm{CE} / L O A D}$ output remains low for one full internal clock period only, the data outputs remain active for 1-1/2 internal clock periods, and the high byte enable remains low for two clock periods. Thus the $\overline{C E / L O A D}$ output low level or low to high edge may be used as a synchronizing signal to ensure valid data; and the
byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using $\overline{\mathrm{CE} / \mathrm{LOAD}}$ and $\overline{\mathrm{LBEN}}$ while the low order byte outputs (bits 1 through 8 ) are activated. The handshake mode is terminated when both bytes are sent.
Figure 8 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake. to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEND input to the ICL7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the CE/LOAD terminal of the ICL7.109 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs.
Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake mods is entered after new data is stored. The $\overline{C E / L O A D}$ and $\overline{\mathrm{HBEN}}$ terminals will go low after SEND is sensed, and the high order byte outputs become active. When $\overline{C E / L O A D}$ goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outpúts active. When the UART has transferred the data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7109

internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the $\overline{H B E N}$ output returns high. At the same time, the $\overline{C E / L O A D}$ and LBEN outputs go low, and the low order byte outputs become active. Similarly, when the $\overline{C E / L O A D}$ returns high at the end of one clock period, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the $\overline{C E / L O A D} ; \overline{\mathrm{HBEN}}$, and $\overline{\mathrm{LBEN}}$ terminals return high and stay active (as long as MODE stays high).
With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence is controlled by the SEND input, and the sequence for the first (high order) byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/ $\overline{H O L D}$ input functioning normally. The only difference is that new data will not be latched when in handshake mode. and is therefore lost.

## Oscillator

The ICL7109 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated as an RC or crystal oscillato:. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation.
When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 10. The circuit will oscillate at a frequency given by $f=.45 / R C$. A $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60 Hz period.


Figure 10: RC Oscillator
When the OSCILLATOR SELECT input is low a feedback device and output and input capacitors are added to the oscillator. In this configuration, as shown in Figure 11, the


Figure 11: Crystal Oscillator oscillator will operate with most crystals in the 1 to 5 MHz range with no external components. Taking the OSCILLATOR SELECT input low also inserts a fixed $\div 58$ divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58 MHz TV crystal, this division ratio provides an integration time given by:

$$
T=(2048 \text { clock periods }) \times\left(\frac{58}{3.58 \mathrm{MHz}}\right)=33.18 \mathrm{~ms}
$$

This time is very close to two 60 Hz periods or 33.33 ms . The error is less than one percent, which will give better than 40 dB 60 Hz rejection. The converter will operate reliably at conversion rates of up to 30 per second, which corresponds to a clock frequency of 245.8 kHz .
If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, : and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency.
When using the ICL7109 with the IM6403 UART, it is posssible to use one 3.58 MHz crystal for both devices. The BUFFERED OSCILLATOR OUTPUT of the ICL7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive, and when driving more than one slave device, external buffering should be used.

## Test Input

When the TEST input is taken to a level halfway between $V$. and GND, the counter output latches are enabled, allowing the counter contents to be examed anytıme.
When the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the input returns to the $1 / 2\left(\mathrm{~V}^{+}-\mathrm{GND}\right)$ voltage or to $\mathrm{V}^{+}$and one clock is input, the counter outputs will all be clocked to the negative state. This allows easy testing of the counter and its outputs.

## INTERFACING <br> Direct Mode

Figure 12 shows some of the combinations of chip enable and byte enable control signals which may be used when interfacing the ICL7109 to parallel data lines. The CE/LOAD input may be tied low, allowing either byte to be controlled by its own enable as in Figure 12A. Figure 12B shows a configuration where the two byte enables are connected together. In this configuration, the $\overline{C E / L O A D}$ serves as a chip enable, and the $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Figure 12C shows the $\overline{\mathrm{HBEN}}$ and $\overline{\text { LBEN }}$ as flag inputs, and $\overline{\mathrm{CE} / L O A D}$ as a master enable, which could be the READ strobe available from most microprocessors.


Figure 12: Direct Mode Chip and Byte Enable Combinations

Figure 13 shows an approach to interfacing several ICL7109s to a bus, ganging the $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ signals to several converters together, and using the $\overline{\mathrm{CE} / L O A D}$ inputs (perhaps decoded from an address) to select the desired converter.

Some practical circuits utilizing the parallel three-state output capabilities of the ICL7109 are shown in Figures 14 through 19. Figure 14 shows a straightforward application to the Intel MCS-48, -80 and -85 systems via an 8255PPI, where the ICL7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be used in a read-anytime mode, although a read performed while the data latches are being updated will lead to scrambled data. This will occur very rarely, in the proportion of setup-skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than $1 / 2$ converter clock period. If STATUS is now low, the second reading is correct, and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read-after-update sequence, as shown in Figure 15. Here the high to low transition of the STATUS output drives an interrupt to the microprocessor causing it to
access the data. This application also shows the RUN/ $\overline{H O L D}$ input being used to initiate conversions under software control.

A similar interface to Motorola MC6800 or MOS Technology MCS650X systems is shown in Figure 16. The high to low transition of the STATUS output generates an interrupt via the Control Register B CB1 line. Note that CB2 controls the RUN/FOLD pin through Control Register B, allowing software-controlled initiation of conversions in this system also.

Figure 17 shows an interface to the Intersil IM6100 CMOS microprocessor family using the IM6101 PIE to control the data transfers. Here the data is read by the microprocessor in an 8-bit and a 6-bit word, directly from the ICL7109 to the microprocessor data bus. Again, the high to low transition of the STTATUS output generates an interrupt leading to a software routine controlling the two read operations. As before, the RUN/ $\overline{H O L D}$ input to the ICL7109 is shown as being under software control.

The three-state output capability of the ICL7109 allows direct interfacing to most microprocessor busses. Examples of this are shown in the Typical Connection Diagram on


Figure 13: Three-stating Several 7109's to a Small Bus

Page 3 and in Figures 18 and 19. It is necessary to carefully consider the system timing in this type of interface, to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long busses. Generally this type of interface is only favored if the
memory peripheral address density is low so that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case.


Figure 14: Full-time Parallel Interface to INTEL Microcomputer Systems


Figure 15: Full-time Parallel Interface to INTEL Microcomputers With Interrupt


Figure 16: Full-time Parallel Interface to MC6800 or MCS650X Microprocessors


Figure 17: ICL7109-IM6100 Interface Using IM6101 PIE


Figure 18: Direct ICL7109-INTEL 8080/8085 Interface


Figure 19: Direct ICL7109-MC6800 Bus Interface

## Handshake Mode

The handshake mode allows ready interface with a wide variety of external devices. For instance, external latches may be clocked by the rising edge of $\overline{C E / L O A D}$, and the byte enables may be used as byte identification flags or as load enables.

Figure 20 shows a handshake interface to Intel microprocessors again using an 8255PPI. The handshake operation with the 8255 is controlled by inverting its Input Buffeı Full (IBF) flag to drive the SEND input to the ICL7109, and using the $\overline{\mathrm{CE} / L O A D}$ to drive the 8255 strobe. The internal control register of the PPI should be set in MODE 1 for the port used. If the 7109 is in handshake mode and the 8255 IBF flag is low, the next word will be strobed into the port. The strobe will cause IBF to go high (SEND goes low), which will keep the enabled byte outputs active. The PPI will generate an interrupt which when executed will result in the data being read. When the byte is read, the IBF will be reset low, which causes the ICL7109 to sequence into the next byte. This figure shows the MODE input to the ICL7109 connected to a control line on the PPI. If this output is left high, or tied high
separately, the data from every conversion (provided the data access takes less tıme than a conversion) will be sequenced in two bytes into the system.

If this output is made to go from low to high, the output sequence can be obtaıned on demand, and the interrupt may be used to reset the MODE bit. Note that the RUN/HOLD input to the ICL7 109 may also be driven by a bit of the 8255 so that conversıons may be obtaıned on command under software control. Note that one port of the 8255 is not used, and can service another peripheral device. The same arrangement can also be used with the 8155.

Figure 21 shows a similar arrangement with the MC6800 or MCS650X microprocessors, except that both MODE and RUN/ $\overline{H O L D}$ are tied high to save port outputs.

The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the Intersil IM6402/6403 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown on page 3. In this circuit, any word received by the UART causes


Figure 20: Handshake Interface-- ICL7109 to INTEL MCS-48, -80, 85


Figure 21: Handshake Interface - ICL7109 to MC6800, MCS650X
the UART DR (Data Ready) output to go high. This drives the MODE input to the ICL7109 high, triggering the ICL7109 into handshake mode. The high order byte is output to the.UART first, and when the UART has transferred the data to the Transmitter Register, TBRE (SEND) goes high and the second byte is output. When TBRE (SEND) goes high again, LBEN will go high, driving the UART DRR (Data Ready Reset) which will signal the end of the transfer of data from the ICL7109 to the UART.
Figure 22 shows an extension of the one converter - one UART scheme of the Typical Connection to several ICL7109s with one UART. In this circuit, the word received by the UART (available at the RBR outputs when DR is high)
is used to select which converter will handshake with the UART. With no external components, this scheme will allow up to eight ICL7109s to interface with one UART. Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line.
The applications of the ICL7109 are not limited to those shown here. The purpose of these examples is to provide a starting point for users to develop useful systems, and to show some of the variety of interfaces and uses of the ICL7109. Many of the ideas suggested here may be used in combination; in particular the uses of the STATUS, RUN/ $\overline{H O L D}$, and MODE signals may be mixed.


Figure 22: Multiplexing Converters with Mode Input

## FEATURES

- Accuracy high enough for $\pm 40,000$ count instruments
- Priced low enough to compete with $31 / 2$ digit DPM/DVM pairs
- One basic circuit for an entire family of DVMs
- Auto-Zero; Auto-Polarity
- 5pA input current typical
- Single reference voltage
- True ratiometric (scale factor of 1 )

CONNECTION DIAGRAM


8052 Analog Signal Conditioner


## GENERAL DESCRIPTION

The 8052/8053 pair has been designed to "lock-in" the accuracy of a DVM and at the same time give the designer the freedom of using any output format his system requires. With reasonable care, the $0.001 \%$ linearity capability of the pair can be maintained in production instruments. The system uses time-proven dual-slope integration with all of its advantages: i.e., non-critical components, high rejection of noise and a-c signals, non-critical clock frequency and true ratiometric readings. At the same time it has reduced or eliminated many of the sources of error that have limited dual-slope accuracy. With the $8052 / 8053$ pairs, critical board layout is no longer required to give low charge injection by the switches, and elaborate ground planes are not necessary to keep clock pulse transients out of the comparator circuitry: A further feature of these devices is that the DVM/DPM manufacturer can generate an entire family of instruments using only one basic p-c board with 2 or 3 jumper points. The family could include:

```
\(\pm 200.0 \mathrm{mV}\) Full Scale
\(\pm 2.000\) Volts
\(\pm 400.0 \mathrm{mV}\)
\(\pm 4.000\) Volts
\(\pm 800.0 \mathrm{mV}\)
\(\pm 2.0000\) Volts
\(\pm 4.0000\) Volts
\(\pm 3.2768\) Volts (16 bits in 0.1 mV increments)
```


## ORDERING INFORMATION

Part	Temp. Range	Package	Order Number
8052	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052CPD
8052	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052CDD
8052 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052ACPD
8052 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052ACDD
8053	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8053CPD
8053	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8053CDD
8053 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8053ACPD
8053 A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin ceramicD DIP	ICL8053ACDD

## PACKAGE DIMENSIONS



## ICL 8052A/ICL8053A $41 / 2$ Digit Pair



Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.

8053 ELECTRICAL CHARACTERISTICS ( $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8053			8053A			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{R}_{\text {on }}$ Switch 1, 3 (each Switch)	$\begin{gathered} V_{7}=+4.5 V \\ V_{6}=V_{9}=V_{10}=+0.5 V \end{gathered}$		1000	2500		1000	2500	ohms		
$\mathrm{R}_{\text {on }}$ Switch 2	Same as Switch 1, 2		2000	5000		2000	5000	ohms		
$\mathrm{R}_{\text {on }}$ Switch 4	$\begin{gathered} V_{9}=+4.5 \mathrm{~V} \\ V_{6}=V_{7}=V_{10}=+0.5 V \end{gathered}$		1000	2500		1000	2500	ohms		
$\mathrm{R}_{\text {on }}$ Switch 5	$\begin{gathered} V_{10}=+4.5 \mathrm{~V} \\ V_{6}=V_{7}=V_{9}=+0.5 \mathrm{~V} \end{gathered}$		1000	2500		1000	2500	ohms		
$\mathrm{R}_{\text {on }}$ Switch 6	$\begin{gathered} V_{6}=+4.5 V \\ V_{7}=V_{9}=V_{10}=+0.5 V \end{gathered}$		1000	2500		1000	2500	ohms		
Total Leakage Sw 1, 2, 5 \& 6 $I_{1}+I_{3} @$ most positive Voltage	$\begin{gathered} V_{6}=V_{7}=V_{9}=V_{10}=+0.5 \mathrm{~V} \\ V_{4}=-4 \mathrm{~V}, V_{2}=0 \mathrm{~V} \\ V_{1}=V_{3}=+4 V \end{gathered}$		10	50		5	20	pA		
Total Leakage Sw 1, 2, 5 \& 6 $I_{1}+I_{3} @$ most negative Voltage	$\begin{gathered} V_{6}=V_{7}=V_{9}=V_{10}=+0.5 \mathrm{~V} \\ V_{4}=+4 V, V_{2}=0 V \\ V_{1}=V_{3}=-4 V \end{gathered}$		10	50		5	20	pA		
Total Leakage Sw 3 \& 4 $l_{12}+I_{13} @$ most positive Volt.	$\begin{gathered} V_{6}=V_{7}=V_{9}=V_{10}=+0.5 V \\ V_{1}=V_{11}=-4 V \\ V_{12}=V_{13}=+4 V \end{gathered}$	$\cdots$	10	50		5	20	pA		
Total Leakage Sw 3 \& 4 $\mathrm{l}_{12}+\mathrm{I}_{13} @$ most negative Volt.	$\begin{gathered} V_{6}=V_{7}=V_{9}=V_{10}=+0.5 \mathrm{~V} \\ V_{1}=V_{11}=+4 V \\ V_{12}=V_{13}=-4 V \end{gathered}$		10	50		5	20	pA		
Supply Current ( $\mathrm{V}^{+}$or $\mathrm{V}^{-1}$ )	$V_{6,7,9} \text { or } 10=0.5 \mathrm{~V}$ $\text { (each of } 4 \text { drivers) }$		$150$	300		150	300	$\mu \mathrm{A}$		
	$\begin{gathered} \mathrm{V}_{6,7,9} \& 10=4.5 \mathrm{~V} \\ \text { (all drivers) } \end{gathered}$		. 1	10		1.	10	$\mu \mathrm{A}$		
Switching Time $\begin{array}{l}t_{\text {on }} \\ t_{\text {off }}\end{array}$	See Figure 1   See Figure 1		$\begin{gathered} 75 \\ 150 \end{gathered}$			$\begin{gathered} 75 \\ 150 \end{gathered}$		nsec nsec		

FIGURE 1. TURN-ON SWITCHING TIME.
TURN-OFF SWITCHING TIME.

8052 ELECTRICAL CHARACTERISTICS $\left(V_{s}= \pm 15 \mathrm{~V}\right.$ unless otherwise specified)

*This is the only component that causes error in dual-slope converter.
SYSTEM ELECTRICAL CHARACTERISTICS
( $\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}$ Clock Frequency Set for 3 Reading/Sec)

CHARACTERISTICS	CONDITIONS	8052/8053 ${ }^{(1)}$			8052A/8053A ${ }^{(2)}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\mathrm{V}_{\text {in }}=0.0 \mathrm{~V}$	-0.000	$\pm 0.000$	+0.000	-0.0000	$\pm 0.0000$	+0.0000	Digital   Reading
Ratiometric Reading	$V_{\text {in }} \equiv \mathrm{V}_{\text {Ref }}$.	+0.999	+1.000	+1.001	+0.9999	+1.0000	+1.0001	Digital Reading
Linearity over $\pm$ Full Scale (error of reading from best straight line)	$-2 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant+2 \mathrm{~V}$		0.2	1		0.5	1	Digital   Count   Error
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{i n} \equiv+V_{i n} \approx 2 \mathrm{~V}$		0.2	1		0.5	1	Digital Count Error
Noise (P-P value not exceeded $95 \%$ of time)	$\begin{aligned} V_{\text {in }} & =0 \mathrm{~V} \\ \text { Full scale } & =200.0 \mathrm{mV} \end{aligned}$	.	0.2		1			Digital Count
	Full scale $=2.000 \mathrm{~V}$		0.05		4	0.3		
Leakage Current into Input	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		5	30		3	10	pA
Zero Reading Drift	$\begin{gathered} V_{\text {in }}=0 V \\ 0^{\circ} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C} \end{gathered}$		1	5		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{gathered} V_{\text {in }}=+2 V \\ 0 \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C} \end{gathered}$   (ext. ref. $0 . \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		3	15		2	5	ppm/ ${ }^{\circ} \mathrm{C}$

[^10]
## THEORY OF OPERATION

Figure 4 shows a function diagram for an A-D converter using the 8052/8053 pair. In this circuit, each measurement cycle is divided into four equal parts by the state F/F. The first part, state 00, is the auto-zero cycle. The switch driver decoder recognizes this state and turns on hex switches number 1, 2, and 3 . Switches 1 and 2 impress a voltage equal to $V_{\text {REF }}$ across the reference capacitor. Switch 3 closes a loop around the integrator and comparator. The purpose of this loop is to charge up the auto-zero capacitor until the integrator output does not change with time. During the second state, 01 , switches 1,2 and 3 are opened and switch 4 is closed. If the input voltage is zero, the buffer, integrator and comparator will see the same voltages that existed in the previous state. Thus, the integrator output will not change but will remain stationary during the entire signal-integrate cycle. If $\mathrm{V}_{1 N}$ is not equal to zero, an unbalanced condition exists compared to the auto-zero cycle and the integrator will generate a ramp whose slope is proportional to $\mathrm{V}_{\mathrm{IN}}$. At the end of this cycle, the sign of the ramp is latched into the polarity $F / F$. The final cycle, reference integrate, includes states 10 and 11. The switch driver decoder uses the output of the polarity $F / F$ in deciding whether to close switch 5 or 6 . If the input signal was positive, switch 6 is closed and a voltage which is $V_{\text {REF }}$ more negative than during auto-zero is impressed on the buffer input. If the input signal was negative switch 5 is closed and a voltage which is $V_{\text {REF }}$ more positive than during auto-zero is impressed on the buffer input. Thus, the reference capacitor generates the equivalent of a $(+)$ reference or a ( - ) reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to zero. The time, or number of counts, required to do this is proportional to the input voltage. Since the reference cycle can be twice as long as the signal integrate cycle, the input voltage required to give a full scale reading $\equiv 2 \mathrm{~V}_{\text {REF }}$. The circuit, as described to this point, is not new to this application. It has been used successfully for several years. However, this system makes three major contributions to the accuracy of this circuit. These are: (1) low charge injection, (2) junction FET op amp, and (3) zero-crossing flip-flop.


FIGURE 2.
INTEGRATOR OUTPUT NEAR ZERO-CROSSING.

## 1. Low Charge Injection.

During auto-zero, there is no problem in charging the capacitors to the correct voltage. The problem is getting the switches off without changing this voltage. As the
gate is driven off, the gate-to-drain capacitance of the switch injects a charge on the reference or auto-zero capacitor, changing its voltage. The designer, using discrete components, is forced into critical board layouts where charges of opposite polarity are injected to compensate or neutralize the driver injection. This balance will be upset by any unit-to-unit variation of switch capacitance so at best the final design is a compromise. In the 8052/8053 the critical layout has been done on the semiconductor chip and need not concern the user. Also, since a silicon-gate process is used for the switches, the unit-to-unit variation is extremely low. The net result is to give an error due to charge injection that is so low it is difficult to measure; but certainly less than $5 \mu \mathrm{~V}$ referred to the input.

## 2. Junction FET Op Amps.

Both the buffer and integrator use junction FET inputs in a guarded circuit that reduces the voltage across the FET to 3 or 4 volts. At this voltage level, input leakage currents of 1 pA are typical. For typical component values 2 pA leakege contributes less than $2 \mu \mathrm{~V}$ of error to the circuit. In theory, MOS FET's would contribute less leakage but their increased noise would swamp out any improvement by orders of magnitude.

## 3. Zero-Crossing Flip Flop.

The problem that the zero-crossing flip-flop is designed to solve is shown in figure 2 .

The integrator output is approaching the zero-crossing point where the clock will be stopped and the reading displayed. The clock pulse feedthrough superimposed upon this ramp will cause a false reading by stopping the count prematurely. For a 40,000 count instrument, the ramp is changing approximately 0.25 mV per clock pulse ( 10 volt max integrator output divided by 40,000 counts). The clock pulses have to be less than $100 \mu \mathrm{~V}$ peak to avoid causing significant errors. The circuit layout to achieve this can be time consuming at best and impossible at worst. The suggested circuit gets around this problem by feeding the zero-crossing information into a J-K flip-flop instead of using it directly. The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have died down. Any false zerocrossing caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by one count in every instance. If a correction was not made, the display would always be one count too high. The correction is to change the four states of the converter one count early. In other words, instead of changing states at the beginning of count 0000, the states are changed at the beginning of count 9999 . Since this pulse is always available as "carry" from a synchronous counter, nolextra decoding is required. A bonus feature of this circuit is that latching the counter output becomes very simple with no potential race condition existing. The designer has one complete clock pulse to transfer the counter data to the latches and decouple them before a false reading will occur. The timing diagram for a signal $\approx 0$ is shown in figure 3 .



## Specific Circuits Using the 8052/8053

Figure 5 shows the complete circuit for a 4-1/2 digit $( \pm 2.000 \mathrm{~V}$ full scale) A-D with LED readout and parallel BCD data lines. In addition to the $8052 / 8053$, this circuit uses 6 low-cost CMOS packages for control and 5 TIL 306 as a combination LED readout, synchronous counter, and BCD latch. In this circuit, the clock runs continuously driving the 5 decade counters in the TIL 306's. The carry from the fourth decade is used to trigger the state F-F. Thus, each of the four states lasts for 10,000 counts. At the beginning of state 10 , the 5 th decade is cleared. None of the other counters need to be cleared since they automatically roll to 0000 at this point. When the zero-crossing F-F detects the end of the measurement, a latch pulse is initiated. The R-C time constant of this pulse is selected long enough ( 50 nSec ) to assure the latches turn on, but short enough $(3 \mu \mathrm{Sec})$ to assure that the latches are de-
coupled before the next clock pulse. Selecting a typical time constant of 400 nSec assures proper latching with wide variance in component value.

In order to give a visual indication of overload, the LED displays are blanked during state 00 if an overload exists. If overloaded, the instrument will blink a reading of 19999. A non-blinking reading of 19999 is a valid reading for the instrument.

By tying the clear terminals of the state flip-flop and the four decade counters to a common bus, the instrument can be synchronized to external events. If the bus is low, the instrument is held in auto-zero with the last measurement cycle at the beginning of state 00 . The data valid pulse indicates the end of measurement cycle. For freerunning condition, the bus is held high at +5 volts.


NOTE: FOR $31 / 2$ DIGIT USE $12 \mathrm{KHz}_{2}$ CLOCK FREQUENCY AND DELETE TIL 306 FROM-MIDDLE.
FIGURE 5. GENERAL CIRCUIT FOR A FAMILY OF DVM's.

## Generating a Family of A-D Converters

In figure 5, the lines marked (MSB) and (MSB-1) are connected to $\mathrm{O}_{\mathrm{B}}$ and $\mathrm{O}_{\mathrm{A}}$ of the 4-bit state flip-flop respectively. This forces a change in state for each carry pulse ( 10,000 counts) from the decade counters. If the lines were moved to $\mathrm{Q}_{\mathrm{C}}$ and $\mathrm{O}_{\mathrm{B}}$ respectively, two carry pulses $(20,000$ counts) would be required to change states. Since full-scale is two states long, the max count now becomes 40,000; (actually 39,999). Similarly if $Q_{D}$ and $Q_{C}$ are used the max count is now 7,999 (one less decade counter would be used in this case). The ability to easily change max count (full scale) is most useful where the A-D converter is measuring physical constants such as temperature, distances, weight, etc. It allows designer to match the digital reading of the instrument to the analog range of the transducer. Since the analog input required to generate full scale output is $2 \mathrm{~V}_{\text {REF }}$ in every case, an almost endless variety of scale factors can be generated easily from one
basic design. Table I summarizes how the family of DVM's is generated.

Full Scale	VREF	Total Number Of Decade Counters	Connect MSB-1 to	Connect MSB to
$\pm 200.0 \mathrm{mV}$	+.1000V	4	$\mathrm{Q}_{\text {A }}$	$\mathrm{O}_{\mathrm{B}}$
$\pm 2.000 \mathrm{~V}$	+1.000V	4	$\mathrm{Q}_{\mathrm{A}}$	$\mathrm{O}_{\mathrm{B}}$
$\pm 400.0 \mathrm{mV}$	+.2000V	4	$\mathrm{O}_{\mathrm{B}}$	$\mathrm{O}_{\mathrm{C}}$
$\pm 4.000 \mathrm{~V}$	-2.000V	4	$\mathrm{O}_{\mathrm{B}}$	$\mathrm{Q}_{\mathrm{C}}$
$\pm 800.0 \mathrm{mV}$	+.4000V	4	$\mathrm{O}_{\mathrm{C}}$	$\mathrm{O}_{\mathrm{D}}$
$\pm 2.0000 \mathrm{~V}$	+1.0000V	5	$\mathrm{Q}_{\mathrm{A}}$	$\mathrm{O}_{\mathrm{B}}$
$\pm 4.0000 \mathrm{~V}$	-2.0000V	5	$\mathrm{O}_{\mathrm{B}}$	$\mathrm{Q}_{\mathrm{C}}$
$\pm 3.2768 \mathrm{~V}$	+1.6384V	4*	$\mathrm{Q}_{\mathrm{C}}$	$\mathrm{O}_{\mathrm{D}}$

TABLE I


FIGURE 6. 16-BIT BINARY CONVERTER

Specific circuits demonstrating this principle are shown in figures 5 and 6 . An 800.0 mV full scale A-D can be obtained from the 2.0000 V instrument shown in figure 5 with the three following modifications:

1. Delete middle LED counter.
2. State decode moved to $Q_{D}$ and $Q_{C}$,
3. Reference voltage adjusted to 0.4000 V .

Figure 6 is the specific circuit for a 16 -bit binary A-D. Here the decade counters and displays have been replaced by synchronous 4 -bit counters and latches. To give a full scale reading of $\pm 3.2768$ volts the reference is adjusted to 1.6384 volts.

Figure 7 shows the circuit for a 40,000 count instrument. This circuit conforms to all of the "family" rules with the exception that it uses a -2.0000 volt reference. If a positive reference was used, pin 3 of the 8053 would have to swing to $+6 \mathrm{~V}(+4$ volt input +2 volt reference). Since this exceeds the +5 volt supply, the switch would forward bias into the substrate. It can easily accommodate the +2 to -6 volt swing required of a negative reference. The only change required by a negative reference is that the drive to pin 6 (+ Reference driver) and pin 10 (- Reference driver) be interchanged. Also since the internal reference is not used, no connections are made to pins 3,6 , and 7 of the 8052.


FIGURE 7. 4314 DIGIT DVM

## Alternate Circuits

In a $4 \frac{1}{2}$ digit ( 20,000 count) instrument where the family generating capabilities of the four bit counter is not required, a dual $D$ flip-flop can be substituted for this function with some reduction in parts costs. Also a " $\pm 1$ " LED, driven by a dual D flip-flop, can replace the fifth TIL306. Figure 8 shows a circuit with these two substitutions made.

If the Paralle BCD capabilities of the TIL306 are not required, a further reduction in parts cost can be achieved by using the circuit of figure 9 . In this circuit the MM74C926 performs the counting, latch and 7 segment decode function of the TIL306 such that it can be used with any LED displays. Some modification of the clock and latch circuit is required since the 74C926 uses a ripple counter with a carry
at 0000 instead of a synchronous carry at 9999 . When a zero-crossing signal is detected and the latch-enable is initiated, a signal is simultaneously fed to the clock drive circuitry to delay the clock and therefore the count until the previous count can be latched. The latch time-constant is shorter than the clock-delay time-constant to assure that the latch is transferred and disabled before the clock resumes counting. A $1 \mu \mathrm{~S}$ time delay in the output of the clock driver assures that the slight delay $(100 \mathrm{nS})$ between the clock pulse and the clock-delay pulse does not clock the counter. Blanking is provided to give a visual indication of overload. However, the display will flash .0000 instead of 1.9999 due to the nature of the ripple counter.


## Component Selection

Except for the Reference Voltage, none of the component values are first-order important in determining the accuracy of the instrument. While this is undoubtedly an advantage of this approach, it does make the selection of nominal component values arbitrary at best. For instance the reference capacitor and auto-zero capacitor are each shown as $1.0 \mu \mathrm{~F}$. These relative large values are selected to give greater immunity to PC board leakage since much smaller capacitors are adequate for charge injection errors or leakage errors from the $8052 / 8053$. The ratio of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at $\pm 14$ volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. Again the .22 value for integrating cap is selected for PC considerations alone since
the very small leakage at the integrator input is nulled at auto-zero. A very important characteristic of the integrating cap is low dielectric absorption. A polypropylene cap (made by TRW) gave excellent results in the application. In fact a good test for dielectric absorption is to test the subject cap in this circuit with the input tied to reference. This ratiometric condition should read 1.0000 and any deviation is probably due to dielectric absorption. In this test poly-carbonate caps typically read .9992 , polystyrene, .9997 and polypropylene, 1.0000. The increased temperature coefficient of polypropylene is of no consequence in this circuit. The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.


FIGURE 9. $4 ½$ DIGIT DVM (20,000 COUNT MULTIPLEXED DISPLAY)

The output of the comparator is clamped to the +5 volts supply to prevent the positive swing of the comparator from forward biasing the auto-zero switch to its substrate and injecting minority carriers that would be collected as leakage currents. In addition, a voltage translation network connects the output of the comparator to the auto-zero switch. The purpose of this network is to assure that, during auto-zero, the output of the comparator is at or, near the threshold of the CMOS logic $(+2.5 \mathrm{~V})$ while the auto-zero cap is being charged to $\mathrm{V}_{\text {REF }}(+1 \mathrm{~V}$ in the case of 2.0000 instrument). Otherwise even with zero signal in, some reference integrate period would be required to drive the comparator output to the threshold region. This would show up as an equivalent offset error. Once the divider chain has been selected, the unit-to-unit variation should contribute less than a few tenths-of-a-count error in the worse case ( 40,000 count instrument) and proportionately less in other instruments. For a $3 \frac{1}{2}$ digit instrument, the error is unmeasurable.

Finally, the back-to-back diodes are used to lower noise. In the normal operating mode they offer a high impedance and long integrating time constant to any noise pulses charging the auto-zero cap. At start-up or recovery from an overload, their impedance is low to large signals so the cap can be charged in one auto-zero cycle.

## Max Clock Frequency

The maximum conversion rate of most dual-slope A-D converters is limited by the frequency response of the comparator. Even though the comparator in this circuit is all NPN with an open-loop gain-bandwidth product of 300 MHz , it is no exception. The comparator output follows the integrator ramp with a $3 \mu \mathrm{~S}$ delay. At a clock frequency of $160 \mathrm{kHz}(6 \mu \mathrm{~S}$ period) half of the first reference integrate period is lost in delay. This means that the meter reading will change from 0 to 1 with $50 \mu \mathrm{~V}$ in, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at midpoint is considered desirable by most users. However, if the clock frequency is increased appreciably above this, the instrument will flash " 1 " on noise peaks even when the input is shorted.
Some circuits use positive feedback or a latch to solve the delay problem. However, unless the comparator voltage swing, the comparator gain, and the integrator gain are carefully controlled, this circuit can generate anticipation errors that greatly exceed the $3 \mu \mathrm{~S}$ delay error. Also it is very susceptible to noise spikes. A more controlled approach for extending the conversion rate is the use of a small resistor in the integrator feedback loop. This feeds a small pulse to the comparator to get it moving quickly, and partially compensate for its delay.
The minimum clock frequency is established by leakage on the auto-zero and reference cap. With most deyices, measurement cycles as long as 10 seconds gave no measurable leakage error.

LD110, LD111

## 3-1/2 Digit A/D Converter Set

LD1 14

## Multiple-Option Digital Processor

## FEATURES

- Accuracy 0.05\% Of Reading $\pm 1$ Count
- Two Voltage Ranges -1.999 V and 199.9 mV
- Sampling Rates up to 12 Samples/Second
- FET Input for $Z_{\text {in }}>1000 \mathrm{M} \Omega$
- Auto-Zero Minimizes Effects of Offset, Drift and Temperature
- Auto-Polarity
- Multiplexed Parallel BCD or Serial BCD Output (LD114)
- Active High or Active Low Logic Outputṣ (LD114)
- Overrange and Underrange Signals Available for AutoRanging Capability.
- $\div 512$ Output Available for Phase Locked Loop Clock (LD114)
- TTL Compatible Outputs


## GENERAL DESCRIPTION

The monolithic LD111 analog processor contains a bipolar comparator, a bipolar integrating amplifier, two MOS-FET input unity gain amplifiers, several P-channel enhancement
mode analog switches and the necessary level shifting drivers to allow the analog and digital processors to be directly interfaced. A wide range of conversion rates (1/3 to 12 samples per second) as well as two voltage ranges can be accommodated using externally determined RC time constants. All amplifiers are internally compensated.
The PMOS LD110/LD114 synchronous digital processor combines the counting, storage and data multiplexing functions with the random logic necessary to control the quantized charge-balancing function of the analog processor. Seventeen static latches store the $31 / 2$ digits of BCD data as well as overrange, underrange and polarity information.
In the LD110, nine push-pull output buffers (capable of driving one standard TTL load each) provide the sign, digit strobe and multiplexed BCD data outputs, all of which are active high. The digit scan is an interlaced format of digits $1,3,2$, and 4 .
In the LD114, ten push-pull output buffers (capable of driving one standard TTL load) provide the clock frequency $\div 512$, sign, digit strobe and multiplexed $B C D$ data. Four data output format options allow the user to tailor the BCD output to his circuit requirements.


## ABSOLUTE MAXIMUM RATINGS

VIN . . . . . . . . . . . . . . $\pm 5.0 \mathrm{~V}$
$V_{1}-V_{2}(L D 111) . \quad . \quad . \quad . \quad . \quad . \quad . \quad . \quad 30 V$
VSS . . . . . . . . . . 6V
$V_{S S}-V_{2}$ (LD110/LD114). . . . . . . . . 20 V
Voltage on any pin relative to $\mathrm{V}_{\mathrm{SS}}(\mathrm{LD} 114) \quad 0.3 \mathrm{~V}$ to -20 V
VREF . . . . . . . . . . . . . $V_{1}$

Operating Temperature . . . . . . . . . 0 to $70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . -65 to $150^{\circ} \mathrm{C}$
Power Dissipation (Package, LD110/LD111*. . 750 mW
Power Dissipation (Package, LD114)* . . . . 1200 mW
*Device mounted with all leads welded or soldered to PC Board, Derate $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS $\quad V_{1}=12 \mathrm{~V}, \mathrm{~V}_{2}=-12 \mathrm{~V}, \mathrm{~V}_{S S}=5 \mathrm{~V} \quad \mathrm{~V}_{\text {REF }}=8.2 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	$\because$ PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
INPUT	Clock Frequency	f IN	50\% Duty Cycle		30.7		KHz
	Input Bias Current	IIN	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		pA
			$\mathrm{TA}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		40		
	Normal Mode Rejection	NMR	$\mathrm{f}_{\mathrm{L}}=60 \mathrm{~Hz}$		40		dB
	Clock Input Current, Low	${ }^{\text {I CL }}$	$V_{\text {CLOCK }}$ in $=0.4 \mathrm{~V}$			-500	$\mu \mathrm{A}$
	Comparator	IINL	$\mathrm{V}_{\text {INL }}=-12 \mathrm{~V}$			-100	
	Latch Inhibit.	IINL	$V_{\text {INL }}=-12 \mathrm{~V}$		180	-600	
	Format Option Inputs	IINH	$\mathrm{V}_{\text {INH }}=\mathrm{V}_{\text {SS }}$		25	400	
$\begin{aligned} & O \\ & U \\ & T \\ & P \\ & U \\ & T \end{aligned}$	Measure/Zero Voltage, Low	VOL1	$\mathrm{IOL}=150 \mu \mathrm{~A}$			0.4	V
	Measure/Zero Voltage, High	VOH1	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$	2.4			
	Up/Down Logic Voltage, Low	VOL2	${ }^{1} \mathrm{OL}=250 \mu \mathrm{~A}$			0.4	
	Up/Down Logic Voltage, High	VOH2	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4			
	Digits, Bits, Sign Voltage, $\div 512^{*}$	VOL3	$1 \mathrm{OL}=1.6 \mathrm{~mA}$			0.4	
	Analog Comparator Voltage	$\mathrm{V}_{\mathrm{OH} 3}$	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$	2.4			
	Data Bit Voltage, High	VOH	$1 \mathrm{OH}=-200 \mu \mathrm{~A}$	2.4			
	Digits, Sign Voltage, $\div 512^{*}$	V OH 5	$\mathrm{I}^{\mathrm{OH}}=-800 \mu \mathrm{~A}$	2.4			
$\begin{gathered} \mathrm{S} \\ \mathrm{~W} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{C} \\ \mathrm{H} \end{gathered}$	ON Resistance, Auto Zero Switch	rDS(on)	$V_{A Z}($ in $)=-4.0 \mathrm{~V}$, IS $=-50 \mu \mathrm{~A}$		11	50	$\mathrm{K} \Omega$
	ON Resistance, Up/Down Switch	rDS(on)	$\mathrm{I}^{\mathrm{S}}=1 \mathrm{~mA}$		650	3000	$\Omega$
	Up/Down Switch Temperature Coefficient	TC			0.20	0.50	\%/ ${ }^{\circ} \mathrm{C}$
$\begin{aligned} & S \\ & U \\ & P \\ & P \\ & L \\ & Y \end{aligned}$	Supply Current, LD111	11			2.2	3.5	mA
	Supply Current, LD111	I2A			-1.8	-3.0	
	Supply Current, LD110/114	12D			-17	-23	
	Supply Current, LD110/114	ISS			17.4	24	
	Power Supply Rejection Ratio, $\mathrm{V}_{1}$	PSRR 1		80	85		dB
	Power Supply Rejection Ratio, $\mathrm{V}_{2}$	$\mathrm{PSRR}_{2}$		60	65		
	Reference Current Rejection Ratio		$\mathrm{R}_{\text {REF }}=\mathrm{R}_{2}=100 \mathrm{~K} \Omega, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$	35	41		nA/LSB

* $\div 512$ output applicable to LD114 only


## INPUT/OUTPUT SCHEMATICS



OUTPUT BUFFERS
(Digits, Bits, Sign, 512, M/Z, U/D)


COMPARATOR, CLOCK, LATCH INHIBIT INPUTS


FORMAT OPTION INPUTS
(Bit Phase, Digit Phase, Scan, Serial Bits)

VSS - Positive Supply Voltage. Recommended level is +5 volts $\pm 10 \%$.
$\mathrm{V}_{2}$ - Negative Supply Voltage. Recommended level is -12 volts $\pm 10 \%$.

CLOCK IN - This input accepts a TTL or MOS level clock to drive the synchronous digital circuitry. Acceptable duty cycles on the external clock range from $30 \%$ high, $70 \%$ low to $70 \%$ high, $30 \%$ low for clock frequencies from 2 kHz to 75 kHz . Although any clock frequency between 2 kHz and 75 kHz may be used, clock frequencies that are integer divisions of $2048 \mathrm{~F}_{\mathrm{L}}\left(\mathrm{FIN}_{\mathrm{I}}=2048 \mathrm{~F}_{\mathrm{L}} / \mathrm{n}, \mathrm{n}=1,2,3,4,5, \mathrm{~F}_{\mathrm{L}}=\right.$ Line Frequency) provide measure and zero periods that are integer multiples of the line frequency period ( $T_{\text {zero }}=n / F_{L}$, $T_{\text {measure }}=2 n / F_{L}$ ). Line frequency interference is minimized by the selection of one of these 50 frequencies.

This input has an active pull-up to $\mathrm{V}_{\mathrm{SS}}$.

M/Z - Measure/Zero Logic Output. This 0 to 5 volt logic output successively provides Autozero and Measurement intervals of 2048 and 4096 clock periods respectively. This output is compatible with CMOS logic and directly interfaces with the LD111 analog processor.
$\div 512$ (LD114) - This TTL compatible output (1 standard load) provides the necessary clock frequency division for a phase locked loop digital clock. The line frequency rejection will be held at the maximum level $(>80 \mathrm{~dB})$ when locked to the line frequency.

U/D - Up/Down Logic Output. This output has logic levels of 0 to +5 volts to provide pulse-width modulation of the reference current when used with the LD111 analog processor. This output is CMOS compatible.

COMP - Analog Comparator Input. This input has an active pull-up to $\mathrm{V}_{\mathrm{SS}}$ for a comparator "high" state. This pin must be pulled down to $\mathrm{V}_{2}$ for a "low" comparator state.

An End-of-Conversion Signal can be decoded from the three interconnecting logic lines ( $M / Z, U / D$, Comp) using the following CMOS logic.
$\overline{M / Z+U / D+C o m p}=$ E.O.C.

SIGN - Sign of Analog Input Polarity. This TTL level output is a static signal which is either 0 or $V_{S S}$ for a negative . or positive input polarity respectively.

BIT PHASE (*LD114) - The bit outputs will be active high (positive) logic if this pin is left open or connected to $V_{2}$. The application of $V_{S S}$ to this pin will give a complemented output (negative logic).

DIGIT PHASE (*LD114) - The Digit Strobe outputs will be of positive logic if this pin is left open or connected to $V_{2}$ (an active pull-down is internally connected to $V_{2}$ ). Applying $V_{S S}$ to this pin will complement the outputs to give negative logic. Negative logic may simplify interfacing with Common Anode LED, Gas Discharge and Liquid Crystal Displays.
$B_{1}, B_{2}, B_{3}, B_{4}-B C D$ Data Bit Output. B4 represents the most significant bit and $B_{1}$ the least significant bit of the BCD output. Bit 4 of digit 4 goes high for an underrange condition (less than 100 counts). These outputs are com. patible with 1 standard TTL load.

MUX Underrange $=B_{4} \cdot D_{4}$ (5\% of full scale)
$D_{1}, D_{2}, D_{3}, D_{4}$ - Digit Strobe Outputs. $D_{4}$ is the most significant and $D_{1}$ the least significant digit of the $31 / 2$ digit output. The digit strobes are each selected in turn when the BCD data bits for that digit appear at the bit outputs.
MUX Overrange $=\overline{D_{1}+D_{2}+D_{3}+D_{4}}$ (100\% of full scale, count $\geqslant 2000$ ).

SCAN (*LD114) - Sequential/Interlace Digit Scan. The digit strobe format will be an interlaced format of digits 1,3 , 2 and 4 if this pin is left open or is connected to $\mathrm{V}_{2}$. This format is useful for display digits packaged two to an envelope and which require an interdigit blanking period eg. (Beckman Displays). By alternating from envelope, an interdigit blanking period is effectively provided.

The application of $V_{S S}$ to this pin will give a sequential scan of digits 1, 2, 3 and 4. This format may be more useful in interfacing with data acquisition equipment.

LATCH INHIBIT (*LD114) - Connecting this pin to $V_{2}$ will prevent updating of the internal static latches, thus providing a "hold" function. Leaving this pin disconnected will allow the latches to be updated once each sampling period.

## DESCRIPTION OF PIN FUNCTIONS (LD110/LD114) Cont.

SERIAL BITS (*LD114) -Parallel/Serial Bit Output Format. . The BCD data bits for each digit will appear simultaneously with the digit strobe if the parallel bit option is selected.

This format is useful for driving multiplexed displays. The parallel bit format is available when this pin is left open or connected to $\mathrm{V}_{2}$.

The application of $V_{S S}$ to this pin will put all of the BCD data bits in a serial order at the bit 4 output.

Bit outputs 1, 2, and 3 contain time markers to identify the data. The most significant bit of the last digit ( $D_{4}$ ) is identified by a marker at the bit 2 output. The least significant bit of the first Digit $\left(D_{1}\right)$ is identified by a marker at bit 3. Bit 1 shows a marker for the least significant bit of each digit.

All oùtput format options are independent of one another (i.e., the serial bit oùtput can have either sequential or interlace scan, Positive or Negative logic).
(*For LD110, action is described for "pin left open".)

## DESCRIPTION OF PIN FUNCTIONS - LD111

BUF OUT - The output of this unity gain input buffer amplifier is applied to the integrator summing node through a scaling resistor $R_{2}$. The value of this resistor is typically $10 \mathrm{~K} \Omega$ for a 200.0 mV full-scale and $100 \mathrm{~K} \Omega$ for a $2.000 \cdot \mathrm{~V}$ full-scale. The digital output is inversely proportional to the value of this resistor,

$$
\text { Count }=\frac{V_{\text {IN }}}{V_{\text {REF }}} \frac{R_{1}}{R_{2}} 8192
$$

HI-QUALITY GND - This pin, typically connected to a High Quality Ground point for single ended inputs CAN BE USED AS THE INVERTING INPUT FOR DIFFERENTIAL SIGNALS. The digital output will be $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{HI}}-\mathrm{Q}$. When using this differential mode, it is important that resistor $\mathrm{R}_{3}$ equal Resistor $\mathrm{R}_{2}$ for proper operation.

M/Z - Measure/Zero Logic Input. Internal level shifting drivers operate the PMOS switches in response to this digital signal.

U/D - Up/Down Logic Input. The logic signal applied to this pin operates a SPDT switch to provide Quantized pulses of charge to the integrator.

COMP - This analog comparator output is an open collector configuration which goes to $\mathrm{V}_{2}$ when "low."

V2 - Negative Supply Voltage. Recommended level is -12 V $\pm 10 \%$.

GND - Analog Processor Ground.

REF ${ }_{\text {out }}$ - This voltage output of the SPDT U/D switch, converted to a current by resistor $\mathrm{R}_{1}$, supplies the reference current to the integrator.

INT. IN - Integrator Summing Node.
$\mathbf{V}_{\text {REF }}$ - A stable positive reference voltage (5 to 11 V ) applied to this pin is the standard to which the input voltage $\mathrm{V}_{\text {IN }}$ is measured. Ratio measurements can be made by applying a variable to this input ( 1.0 to 11 V ).

INT. OUT - The output of the integrating amplifier is made available for application to the Auto-Zero amplifier by means of resistor R4.

AZ OUT - The output of the unity gain Auto-Zero Amplifier provides a second negative reference current to the integrator through resistor $\mathbf{R}_{3}$.

AZ FILTER - The RC filter ( $\mathrm{R}_{5}$ and CSTRG) connected to this pin stores. D.C. voltage components to balance amplifier offset and drift components.
$A Z I N$ - This input is switched into the $A Z$ filter during the Zeroing interval.

VIN - Analog Voltage Input. The A/D System digitizes the voltage appearing at this input.
$\mathrm{V}_{1}$ - Positive Supply Voltage. The recommended level is +12 volts $\pm 10 \%$.

## APPLICATIONS LD111/LD114


$31 / 2$ Digit DVM ( $\pm 200.0 \mathrm{mV}$ )

## APPLICATIONS LD110/LD111


$31 / 2$ Digit DVM ( $\pm 2.000$ Volts)

ORDERING INFORMATION

PART	TEMP. RANGE	PACKAGE	ORDERNO.
LD110	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 lead DIP ceramic	LD110 CP
LD110	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 lead DIP plastic	LD110 CJ
LD111	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 lead DIP ceramic	LD111 CP
LD111	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 lead DIP plastic	LD111 CJ
LD114	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 lead DIP ceramic	LD114 CR

## PACKAGE DIMENSIONS

## 16 PIN CERAMIC PACKAGE



16 PIN DIP PACKAGE


## 28 LEAD DUAL-IN-LINE PACKAGE

 (SIDE BRAZE)

## AD7520IAD7530 AD7521/AD7531

 10 \& 12 Bit Monolithic Multiplying DIA Converters
## FEATURES

- AD7520 (AD7530): 10 Bit Resolution; 8, 9 and 10 Bit Linearity
- AD7521 (AD7531): 12 Bit Resolution; 8, 9 and 10 Bit Linearity
- Low Power Dissipation: 20 mW (Max)
- Low Nonlinearity Tempco: 2 PPM of FSR/ ${ }^{\circ}$ C (Max)
- Current Settling Time: $\mathbf{5 0 0} \mathbf{n S}$ to $\mathbf{0 . 0 5 \%}$ of FSR
- Supply Voltage Range: +5 V to +15 V
- DTTL/TTL/CMOS Compatible
- Full Input Static Protection
- 883B Processed Versions Available


## GENERAL DESCRIPTION

The AD7520 (AD7530) and AD7521 (AD7531) are monolithic, high accuracy, low cost 10 -bit and 12 -bit resolution, multiplying digital-to-analog converters (DAC). INTERSIL thin-film on CMOS process enables up to 10-bit accuracy with DTL/TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by compensating diodes to ground and positive supply.
Typical applications for the AD7520 (7530) and AD7521 (7531) include: digital/analog interfacing, multiplication and division; programmable power supplies; CRT character generation; digitally controlled gain circuits, integrators and attenuators, etc.
The AD7530 and AD7531 are identical to the AD7520 and AD7521, respectively, with the exception of output leakage current and feedthrough specifications.

FUNCTIONAL DIAGRAM   (Switches shown for Digital Inputs "High")				CHIP TOPOGRAPHY
PACKAGE IDENTIFICATION   Suffix D: Cerdip package Suffix N: Plastic DIP package				PIN CONFIGURATION
ORDERING INFORMATION				
0.2\% (8-Bit)	AD7520JN   AD7530JN   AD7521JN   AD7531JN	AD7520JD   AD7530JD   AD7521JD   AD7531JD	AD7520SD AD7521SD	
0.1\% (9-Bit)	AD7520KN AD7530KN AD7521KN AD7531KN	AD7520KD   AD7530KD   AD7521KD   AD7531KD	AD7520TD AD7521TD	
0.05\% (10-Bit)	AD7520LN   AD7530LN   AD7521LN   AD7531LN	AD7520LD   AD7530LD   AD7521LD   AD7531LD	AD7520UD AD7521UD	

## ABSOLUTE MAXIMUM RATINGS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

VDD (to GND) ......................................... +17 V
VREF (to GND) ....................................... $\pm 25 \mathrm{~V}$
Digital Input Voltage Range ................... VDD to GND
Output Voltage Compliance ................ -100 mV to VDD
Power Dissipation (package)
up to $+75^{\circ} \mathrm{C}$
450 mW
derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
CAUTION: 1) The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2) Do not apply voltages higher than VDD or less than GND potential on any terminal except $V_{\text {REF }}$

SPECIFICATIONS (VDD $=+15 \mathrm{~V}$, VREF $=+10 \mathrm{~V}, T A=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	$\begin{aligned} & \text { AD7520 } \\ & \text { (AD7530) } \end{aligned}$	$\begin{gathered} \text { AD7521 } \\ \text { (AD7531) } \end{gathered}$	UNITS	LIMIT	TEST CONDITIONS	FIG.
DC ACCURACY (Note 1) Resolution	10	12	Bits			
Nonlinearity $\frac{J}{S}$    $\frac{\mathrm{~K}}{\mathrm{~L}}$    $U$	0.2 (8-Bit)		\% of FSR	Max	$\left\{\begin{array}{l} \mathrm{S}, \mathrm{~T}, \mathrm{U}: \text { over }-55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ -10 \mathrm{~V} \leq \text { VREF } \leq+10 \mathrm{~V} \end{array}\right.$	1
	0.1 (9-Bit)		\% of FSR	Max		1
	0.05 (10-Bit)		\% of FSR	Max		1
Nonlinearity Tempco	2		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max	$-10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V}$	
Gain Error (Note 2)	0.3		\% of FSR.	Typ		
Gain Error Tempco (Note 2)	10		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max		
Output Leakage Current (either output)	$\begin{aligned} & 200 \\ & (300) \end{aligned}$		nA	Max	Over the specified temperature range	
Power Supply Rejection	$\pm 0.005$		\% of FSR/\%	Typ		2
AC ACCURACY   Output Current Settling Time	500		nS	Typ	To $0.05 \%$ of FSR (All digital inputs low to high and high to low)	6
Feedthrough Error	, 10		mV pp	Max	VREF $=20 \mathrm{Vpp}, 100 \mathrm{KHz}$ ( 50 KHz ) All digital inputs low	5
REFERENCE INPUT Input Resistance (Note 3 i	5K		$\Omega$	Min	All digital inputs high. IOUTi at ground.	
	10K			Typ		
	20K			Max		
ANALOG OUTPUT Voltage Compliance (both outputs)	See absolute max. ratings				,	
Output Capacitance	IOUT1 IOUT2		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \end{aligned}$	All digital inputs high	$4!$
	$\begin{aligned} & \text { IOUT1 } \\ & \text { IOUT2 } \end{aligned}$	$\begin{array}{r} 37 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { Typ } \end{aligned}$	All digital inputs low	4
Output Noise (both outputs)	Equivalen Johnso	$\text { to } 10 \mathrm{~K} \Omega$ noise	:	Typ		3
DIGITAL INPUTS   Low State Threshold	0.8		V	Max	Over the specified temp	
High State Threshold	2.4		V	Min	range	
Input Current (low to high state)	1		$\stackrel{\mu}{\text { A }}$	Typ		
Input Coding	Binary/Offset Binary		:		See Tables $1 \& 2$ on pages 4 and 5	
POWER REQUIREMENTS Power Supply Voltage Range	+5 to +15		V			
IDD	5		nA	Typ	All digital inputs at GND	
	2		mA	Max	All digital inputs high or low	
Total Power Dissipation (Including the ladder)	20		mW	Typ		

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
Specifications subject to change without notice.

## AD7520/7530/7521/7531

## TEST CIRCUITS

NOTE: The following test circuits apply for the AD7520. Similar circuits can be used for the AD7530, AD7521 and AD7531.


Figure 1. Nonlinearity


Figure 3. Noise


Figure 5. Feedthrough Error


Figure 2. Power Supply Rejection


Figure 4. Output Capacitance


Figure 6. Output Current Settling Time

## DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire $V_{\text {REF }}$ range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with $n$ bits has a resolution of $\left(2^{-n}\right)$ (VREF). A bipolar converter of $n$ bits has a resolution of $\left[2^{-(n-1)}\right]$ [ $V_{\text {REF }}$ ]. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout1 and IOUT2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on Iouti terminal with all digital inputs LOW or on louta terminal when all inputs are HIGH.

## GENERAL CIRCUIT INFORMATION

The AD7520 (AD7530) and AD7521 (AD7531) are monolithic, multiplying D/A converters. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters also enable low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential or virtual ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")
Figure 7. 7520 (7521) Functional Diagram

Converter errors are further eliminated by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 8). This configuration results in DTL/TTL/ CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors, resulting in accurate leg currents.


Figure 8. CMOS Switch

## APPLICATIONS

## UNIPOLAR BINARY OPERATION

The circuit configuration for operating the AD7520 (AD7530) and AD7521 (AD7531) in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.


Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

## Zero Offset Adjustment

1. Connect all AD7520 (AD7530) or AD7521 (AD7531) digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at VOUT.
Gain Adjustment
3. Connect all AD7520 (AD7530) or AD7521 (AD7531) digital inputs to VDD.
4. Monitor VOUT for a $-\operatorname{VREF}\left(1-2^{-n}\right.$ ) reading. ( $n=10$ for AD7520 (AD7530) and $n=12$ for AD7521 (AD7531)).
5. To decrease VOUT, connect a series resistor, ( 0 to 500 ohms); between the reference voltage and the VREF terminal.
6. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 1
CODE TABLE - UNIPOLAR BINARY OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-n}\right)$
1000000001	$-V_{\text {REF }}\left(1 / 2+2^{-n}\right)$
1000000000	$-V_{\text {REF }} / 2$
0111111111	$-V_{\text {REF }}\left(1 / 2-2^{-n}\right)$
0000000001	$-V_{\text {REF }}\left(2^{-n}\right)$
0000000000	0

NOTE: 1. $L S B=2^{-n} V_{\text {REF }}$
2. $\mathrm{n}=10(12)$ for 7520 (7521) 7530 (7531)

## (APPLICATIONS, Cont'd.)

## BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the AD7520 (AD7530) or AD7521 (AD7531) in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values 4Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.


Figure 10. Bipolar Operation (4-Quadant Multiplication)

A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB="Logic 1", All other bits="Logic 0), is corrected by
using an external resistor, ( 10 Megohm), from VREF to IOUT2.
Offset Adjustment

1. Adjust VREF to approximately +10 V .
2. Connect all digital inpúts to "Logic 1 "
3. Adjust IOUT2 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at IOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1 ", and all other bits to "Logic 0".
5. Adjust IOUT1 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at VOUT.

Gain Adjustment

1. Connect all AD7520 (AD7530) or AD7521 (AD7531) digital inputs to VDD.
2. Monitor VOUT for a -VREF (1-2-(n-1) volts reading. ( $n=10$ for AD7520 $(\operatorname{AD7530})$ and $n=12$ for AD7521 (AD7531)).
3. To increase VOUT, connect a series resistor, (0 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, (0 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 2
CODE TABLE - BIPOLAR (OFFSET BINARY) OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-(n-1))}\right.$
1000000001	$-V_{\text {REF }}\left(2^{-(n-1))}\right.$
1000000000	0
0111111111	$V_{\text {REF }}\left(2^{-(n-1)}\right)$
0000000001	$V_{\text {REF }}\left(1-2^{-(n-1)}\right)$
0000000000	$V_{\text {REF }}$

POWER DAC DESIGN USING AD7520


Figure 11. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 11. INTERSIL IH8510 power amplifier (1 Amp continuous output with up to +25 V ) is driven by the AD7520.
A summing amplifier between the AD7520 and the IH8510 is used to separate the gain block containing the AD7520 on-chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise AD7520 can be directly connected to the IH8510, by using a 25 volts reference for the DAC.

An important note on the AD7520/101A interface concerns the connection of pin 1 of the DAC and pin 2 of the 101A. Since this point is the summing junction of an amplifier with an AC gain of 50,000 or better, stray capacitance should be minimized; otherwise instabilities and poor noise performance will result. Notice that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information write for: INTERSIL Application Bulletin A021-Power D/A Converters Using The IH8510 by Dick Wilenken.)

## (APPLICATIONS, Cont'd.)

## ANALOG/DIGITAL DIVISION

With the AD7520 connected in its normal multiplying configuration as shown in figure 15, the transfer function is
$V_{O}=-V_{I N}\left(\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \frac{A_{n}}{2^{n}}\right)$
where the coefficients $A_{x}$ assume a value of 1 for an $O N$ bit and 0 for an OFF bit.
By connecting the DAC in the feedback of an operational amplifier, as shown in Figure 12, the transfer function becomes
$V_{O}=\left(\frac{-V_{I N}}{\frac{A_{1}}{2^{1}}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\cdots \frac{A_{n}}{2^{n}}}\right)$

This is division of an analog variable ( $\mathrm{V}_{\mathrm{IN}}$ ) by a digital word. With all bits off, the amplifier saturates to its bound, since division by zero isn't defined. With the LSB (Bit-10) ON, the gain is 1023 . With all bits $O N$, the gain is $1( \pm 1$ LSB).


Figure 12. Analog/Digital Divider

## PACKAGE DIMENSIONS

16 PIN CERDIP


16 PIN PLASTIC DIP


BONDING DIAGRAM


18 PIN CERDIP


18 PIN PLASTIC DIP


BONDING DIAGRAM


1. Lead no. 1 identified by dot or notch.
2. Dimensions in inches (millimeters).

## FEATURES

- 8, 9 and 10 bit linearity
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Fast settling time: 100 nS
- Four quadrant multiplication
- 883B Processed versions available


## GENERAL DESCRIPTION

The Intersil AD7523 is a monolithic, low cost, high performance, 10 bit accurate, multiplying digital-to-analog converter (DAC), in a 16-pin DIP.
Intersil's thin-film resistors on CMOS circuitry provide 8-bit resolution (8, 9 and 10-bit accuracy), with DTL/TTL/CMOS compatible operation.
Intersil AD7523's accurate four quadrant multiplication, full military temperature range operation, full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and GND and very low power dissipation make it a very versatile converter.
Low noise audio gain control, motor speed control, digitally controlled gain and attenuators are a few of the wide number of applications of the 7523 .


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
VDD (to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +17 V
VREF (to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 25 \mathrm{~V}$
Digital Input Voltage Range
-0.3 to VDD
Output Voltage Compliance
-0.3 to VDD
Power Dissipation (package)
Plastic
up to $+70^{\circ} \mathrm{C}$
670 mW
derates above $+70^{\circ} \mathrm{C}$ by
$8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

## Ceramic

up to $75^{\circ} \mathrm{C}$......................................... . . 450 mW
derates above $75^{\circ} \mathrm{C}$ by ............................ $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperatures
JN, KN, LN Versions........................ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD, BD, CD Versions ...................... . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SD, TD, UD Versions . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature .................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) ...... $+300^{\circ} \mathrm{C}$

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than VDD and lower than GND to any terminal except VREF.

SPECIFICATIONS (VDD $=+15 \mathrm{~V}$, VREF $=+10 \mathrm{~V}$ unless otherwise specified)


NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

## APPLICATIONS <br> UNIPOLAR OPERATION



Figure 1. Unipolar Binary Operation (2-Quadrant Multiplication)

DIGITAL INPUT
MSB LSB

11111111	$-V_{\text {REF }}$	$\left(\frac{255}{256}\right)$
10000001	$-V_{\text {REF }}$	$\left(\frac{129}{256}\right)$
10000000	$-V_{\text {REF }}$	$\left(\frac{128}{256}\right)=-\frac{V_{\text {REF }}}{2}$
01111111	$-V_{\text {REF }}$	$\left(\frac{127}{256}\right)$
00000001	$-V_{\text {REF }}$	$\left(\frac{1}{256}\right)$
00000000	$-V_{\text {REF }}$	$\left(\frac{0}{256}\right)=0$

Note: $1 \mathrm{LSB}=\left(2^{-8}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{256}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)$
Table 1. Unipolar Binary Code Table

## BIPOLAR OPERATION



NOTES:

1. R3/R4 MATCH $0.1 \%$ OR BETTER
2. R1, R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
3. R5-R7 USED TO ADJUST VOUT $=$ OV AT INPUT CODE 10000000.
4. CR1 \& CR2 PROTECT AD7523 AGAINST NEGATIVE TRANSIENTS.

Figure 2. Bipolar (4-Quadrant) Operation

DIGITAL INPUT   MSB	ANALOG OUTPUT	
11111111	$-V_{\text {REF }}$	$\left(\frac{127}{128}\right)$
10000001	$-V_{\text {REF }}$	$\left(\frac{1}{128}\right)$
10000000	0	
01111111	$+V_{\text {REF }}$	$\left(\frac{1}{128}\right)$
00000001	$+V_{\text {REF }}$	$\left(\frac{127}{128}\right)$
00000000	$+V_{\text {REF }}$	$\left(\frac{128}{128}\right)$

Note: $1 \mathrm{LSB}=\left(2^{-7}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{128}\right) \cdot\left(\mathrm{V}_{\mathrm{REF}}\right)$
Table 2. Bipolar (Offset Binary) Code Table

## POWER DAC DESIGN USING AD7523



Figure 3. The Basic Power DAC

A typical power DAC designed for 10 bit accuracy and 8 bit resolution is shown in Figure 3. INTERSIL IH8510 power amplifier ( 1 Amp continuous output with up to +25 V ) is driven by the AD7523.

A summing amplifier between the AD7523 and the IH8510 is used to separate the gain block containing the AD7520 on-
chip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach minimizes drift since the resistor pairs will track properly. Otherwise AD7523 can be directly connected to the IH8510, by using a 25 volts reference for the DAC.

## APPLICATIONS (continued)

DIVIDER (DIGITALLY CONTROLLED GAIN)
MODIFIED SCALE FACTOR AND OFFSET


VOUT $=-V_{I N / D}$
WHERE:
$D=\frac{\text { BIT1 }}{21}+\frac{\text { BIT2 }}{22}+\cdots \frac{\text { BIT8 }}{28}$
$\left(0 \leq D \leq \frac{255}{256}\right)$

$V_{\text {OUT }}=V_{\text {REF }}\left[\left(\frac{R_{2}}{R_{1}+R_{2}}\right)-\left(\frac{R_{1} D}{R_{1}+R_{2}}\right)\right]$ WHERE: $\quad D=\frac{\text { BIT } 1}{2^{1}}+\frac{\text { BIT } 2}{2^{2}}+\cdots \frac{\text { BIT } 8}{2^{8}}$

$$
\left(0 \leq \mathrm{D} \leq \frac{255}{256}\right)
$$

## DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with $n$ bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of $n$ bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{R E F}\right]$. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from Vref to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout1 and lout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

## PACKAGE DIMENSIONS

## 16 PIN CERDIP



1. Lead no. 1 identified by dot or notch.
2. Dimensions in inches (millimeters).

## FEATURES

- Lowest cost 10-bit DAC
- 8, 9 and 10 bit linearity
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS direct interface
- +5 to +15 volts supply range
- Low power dissipation
- Fast settling time
- Four quadrant multiplication
- Direct AD7520 equivalent
- 883B Processed versions available


## GENERAL DESCRIPTION

The Intersil AD7533 is a low cost, monolithic 10-bit, fourquadrant multiplying digital-to-analog converter (DAC).
Intersil's thin-film resistors on CMOS circuitry provide 10, 9 and 8 bit accuracy, full temperature range operation, +5 V to +15 V power range, full input protection from damage due to static discharge by clamps to $\mathrm{V}+$ and ground and very low power dissipation.
Pin and function equivalent to Industry Standard AD7520, the AD7533 is recommended as a lower cost alternative for old or new 10-bit DAC designs.
Application of AD7533 includes programmable gain amplifiers, digitally controlled attenuators, function generators and control systems.


## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

D (to GND)	,
VREF (to GND)	. $\pm 25 \mathrm{~V}$
Digital Input Voltage Range	-0.3 V to VDD
Output Voltage Compliance	-0.3 to VDD
Power Dissipation (package)	
Ceramic	
up to $+75^{\circ} \mathrm{C}$	
derates above $+75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Plastic

derates above $70^{\circ} \mathrm{C}$ by.....................
Operating Temperatures
JN, KN, LN Versions . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD, BD, CD Versions . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SD, TD, UD Versions . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) $\ldots . . .+300^{\circ} \mathrm{C}$

CAUTION: 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields: Keep unused units in conductive foam at all times.
2. Do not apply voltages lower than ground or higher than $V_{D D}$ to any pin except $V_{R E F}$ and RFB.

SPECIFICATIONS $\left(V D D=+15 \mathrm{~V}\right.$, VREF $=+10 \mathrm{~V}, \mathrm{~V}_{\text {OUT } 1}=$ VOUT $^{2}=0$ unless otherwise specified $)$


NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
Specifications subject to
2. Using internal feedback resistor, RFEEDBACK.
change without notice.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.
5. Full scale (FS) $=-\left(V_{\text {REF }}\right) \cdot(1023 / 1024)$
6. Sample tested to ensure specification compliance.
7. $100 \%$ screened to MIL-STD-833, method 5004, para. 3.1.1. through 3.1.12 for class B device. Final electrical tests are: Nonlinearity, Gain Error, Output Leakage Current, $\mathrm{V}_{\mathrm{INH}}, \mathrm{V}_{\mathrm{INL}}$, $\mathrm{IIN}_{\mathrm{N}}$ and IDD @ $+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ (SD, TD, UD) or $+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ (AD, BD, CD).

## GENERAL CIRCUIT INFORMATION

The Intersil AD7533 is a 10 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 1. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

(Switches shown for Digital Inputs "High")
Figure 1

## APPLICATIONS UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)



NOTES:

1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
2. SCHOTTKY DIODE CR1 (HP5082-2811 OR EQUIV) PROTECTS OUT1 TERMINAL AGAINST NEGATIVE TRANSIENTS.

Figure 3. Unipolar Binary Operation (2-Quadrant Muiltiplication)

$\underset{\text { MSB }}{\substack{\text { DIGITAL } \\ \text { INPUT } \\ \text { LSB }}}$	NOMINAL ANALOG OUTPUT (Vout as shown in Figure 3)	
1111111111	- Vref	( $\left.\frac{1023}{1024}\right)$
1000000001	-Vref	$\left(\frac{513}{1024}\right)$
1000000000	-Vref	$\left(\frac{512}{1024}\right)=-$
0111111111	-Vref.	$\left(\frac{511}{1024}\right)$
0000000001	-VREF	( $\frac{1}{1024}$ )
0000000000	-Vref	$\left(\frac{0}{1024}\right)=0$

## NOTES:

1. Nominal Full Scale for the circuit of Figure 3 is given by

$$
F S=-V_{R E F}\left(\frac{1023}{1024}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 3 is given by

$$
\operatorname{LSB}=V_{\text {REF }}\left(\frac{1}{1024}\right)
$$

Table 1. Unipolar Binary Code

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 2). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch' is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors resulting in accurate leg currents.


Figure 2

## BIPOLAR OPERATION

(4-QUADRANT MULTIPLICATION)


1. R3/R4 MATCH $0.05 \%$ OR BETTER.
2. R1, R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
3. SCHOTTKY DIODES CR1 AND CR2 (HP5082-2811 OR EQUIV) PROTECT OUT1 AND OUT2 TERMINALS FROM NEGATIVE TRANSIENTS
Figure 4. Bipolar Operation (4-Quadrant Multiplication)

DIGITAL INPUT MSB LSB	NOMINAL ANALOG OUTPUT (Vout as shown in Figure 4)
1111111111	$-V_{\text {REF }} \quad\left(\frac{511}{512}\right)$
1000000001	$-V_{\text {REF }} \quad\left(\frac{1}{512}\right)$
$1000000000^{\prime \prime}$	0 O
0111111111	$+V_{\text {REF }} \quad\left(\frac{1}{512}\right)$
0000000001	$+\mathrm{V}_{\text {REF }}^{\prime} \quad\left(\frac{511}{512}\right)$
0000000000	$+V_{\text {REF }} \quad\left(\frac{512}{512}\right)$

## NOTES:

1. Nominal Full Scale Range for the circuit of Figure 4 is given by

$$
\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}}\left(\frac{1023}{512}\right)
$$

2. Nominal LSB magnitude for the circuit of Figure 4 is given by

$$
\mathrm{LSB}=\mathrm{V}_{\mathrm{REF}}\left(\frac{1}{512}\right)
$$

Table 2. Bipolar (Offset Binary) Code Table

POWER DAC DESIGN USING AD7533


Figure 5. The Basic Power DAC

A typical power DAC designed for 8 bit accuracy and 10 bit resolution is shown in Figure 5. INTERSIL IH8510 power amplifier ( 11 Amp continuous output with up to +25 V ) is driven by the AD7533.
A summing amplifier between the AD7533 and the IH8510 is used to separate the gain block containing the AD7533 onchip resistors from the power amplifier gain stage whose gain is set only by the external resistors. This approach
10-BIT AND SIGN MULTIPLYING DAC

minimizes drift since the resistor pairs will track properly. Otherwise AD7533 can be directly connected to the IH8510, by using a 25 volts reference for the DAC. Notice that the output of the 101A is fed into an inverting amplifier with a gain of -3 , which can be easily changed to a non-inverting configuration. (For more information write for: INTERSIL Application Bulletin A021-Power D/A Converters Using The IH8510 by Dick Wilenken.)

## PROGRAMMABLE FUNCTION GENERATOR



## PACKAGE DIMENSIONS

## 16 PIN CERDIP



1. Lead no. 1 identified by dot or notch.

16 PIN PLASTIC DIP

2. Dimensions in inches (millimeters).

## FEATURES

- 12 bit linearity ( $0.01 \%$ )
- Pretrimmed gain
- Low gain and linearity Tempcos
- Full temperature range operation
- Full input static protection
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Low power dissipation ( 20 mW )
- Current settling time: $1 \mu \mathrm{~s}$ to $\mathbf{0 . 0 1 \%}$ of FSR
- Four quadrant multiplication
- 883B Processed versions available


## GENERAL DESCRIPTION

The Intersil AD7541 is a monolithic, low cost, high performance, 12 -bit accurate, multiplying digital-to-analog converter (DAC).
Intersil's wafer level laser-trimmed thin-film resistors on CMOS circuitry provide true 12-bit linearity with DTL/TTL/ CMOS compatible operation.
Special tabbed-resistor geometries (improving time stability), full input protection from damage due to static discharge by diode clamps to $\mathrm{V}+$ and ground, large lout1 and lout2 bus lines (improving superposition errors) are some of the features offered by Intersil AD7541.
Pin compatible with AD7521, this new DAC provides accurate four quadrant multiplication over the full military temperature range.
FUNCTIONAL DIAGRAM

## ABSOLUTE MAXIMUM RATINGS

( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

VDD (to GND)	V
VREF (to GND)	$\pm 25 \mathrm{~V}$
Digital Input Voltage Range	VDD to GND
Output Voltage Compliance	-100 mV to VDD
Power Dissipation (package)	
up to $+75^{\circ} \mathrm{C}$	
derates abov	mW/

## Operating Temperatures

JN, KN, LN Versions ......................... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD, BD Versions . . . . . . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SD, TD Versions . ........................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature .................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION 1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than VDD or less than GND potential on any terminal except VREF.

SPECIFICATIONS $\operatorname{VDDD}=+15 \mathrm{~V}$, $\mathrm{VREF}=+10 \mathrm{~V}, T A=25^{\circ} \mathrm{C}$ unless otherwise specified)


NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, RfEedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

## TEST CIRCUITS



Figure 1. Nonlinearity


Figure 3. Noise


Figure 5. Feedthrough Error


Figure 2. Power Supply Rejection


Figure 4. Output Capacitance


Figure 6. Output Current Settling Time

## DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with $n$ bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of $n$ bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{R E F}\right]$. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from VREF to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout1 and lout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

## GENERAL CIRCUIT INFORMATION

The Intersil AD7541 is a 12 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. CMOS level shifters provide low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.
Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

(Switches shown for Digital Inputs "High")
Figure 7. AD7541 Functional Diagram

Each circuit is laser-trimmed, at the wafer level, to better than 12 bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.
The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first (Figure 8). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors, resulting in accurate leg currents.


Figure 8. CMOS Switch

## APPLICATIONS

## General Recommendations

Static performance of the AD7541 depends on IOUT1 and IOUT2 (pin 1 and pin 2) potentials being exactly equal to GND (pin 3).

The output amplifier should be selected to have a low input bias current (typically less than 75 nA ), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than $\pm 200 \mu \mathrm{~V}$ ).

The bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Noninverting input should be connected to GND with a low resistance wire.

Ground-loops must be avoided by taking all pins going to GND to a common point, using separate connections.

The VDD (pin 18) power supply should have a low noise level and should not have any transients exceeding +17 volts.

Unused digital inputs must be connected to GND or VDD for proper operation.

A high value resistor ( $\sim 1 \mathrm{M} \Omega$ ) can be used to prevent static charge accumulation, when the inputs are open-circuited for any reason.

When gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ) resistors or trim-pots should be selected.

## APPLICATIONS, Continued

## UNIPOLAR BINARY OPERATION

The circuit configuration for operating the AD7541 in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1. Schottky diode (HP 5082-2811 or equivalent) prevents lout1 from negative excursions which could damage the device. This precaution is only necessary with certain high speed amplifiers.


Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 0.5 \mathrm{mV}$ (max) at VOUT.
Gain Adjustment
3. Connect all digital inputs to VDD.
4. Monitor VOUT for a $-\operatorname{VREF}(1-1 / 212)$ reading.
5. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
6. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 1
Code Țable - Unipolar Binary Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-V_{\text {REF }}(1-1 / 212)$
100000000001	$-V_{\text {REF }}(1 / 2+1 / 212)$
100000000000	$-V_{\text {REF }} / 2$
011111111111	$-V_{\text {REF }}(1 / 2-1 / 212)$
000000000001	$-V_{\text {REF }}(1 / 212)$
000000000000	0

## BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the AD7541 in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.


Note: R1 and R2 should be $0.01 \%$, low-TCR resistors.
Figure 10. Bipolar Operation (4-Quadrant Multiplication)
A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0"), is corrected by using an external resistive divider, from VREF to IOUT2.

Offset Adjustment

1. Adjust VREF to approximately +10 V .
2. Connect all digital inputs to "Logic 1".
3. Adjust IOUT2 amplifier offset zero adjust trimpot for
$0 \mathrm{~V} \pm 0.1 \mathrm{mV}$ at IOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
5. Adjust IOU்T1 amplifier offset zero adjust trimpot for
$0 \mathrm{~V} \pm 0.1 \mathrm{mV}$ at IOUT1 amplifier output.
6. Adjust R4 for $0 \mathrm{~V} \pm 0.2 \mathrm{mV}$ at VOUT.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF ( $1-1 / 211$ ) volts reading.
3. To increase VOUT, connect a series resistor, 0 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 2
Code Table - Bipolar (Offset Binary) Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	- V REF $^{(1-1 / 211)}$
100000000001	$-V_{\text {REF }}(1 / 211)$
100000000000	0
011111111111	V REF $^{(1 / 211)}$
000000000001	V REF $^{(1-1 / 211)}$
000000000000	V REF



Figure 11. General DAC Circuit with Compensation Capacitor, Cc.


Figure 12.-AD7541 Response with: $A=$ Intersil 741HS


Figure 13. AD7541 Response with: $A=$ Intersil 2515

$$
\mathrm{C}_{\mathrm{c}}=15 \mathrm{pF}
$$



Figure 14. AD7541 Response with: $A=$ Intersil 2520

## DYNAMIC PERFORMANCE

The dynamic performance of the DAC, alsodepends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.
The output impedance of the AD7541 looking into lOUT1 varies between 10k $\Omega$ (RFeedback alone) and 5kS) (RFeedback in parallel with the ladder resistance).
Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.

A capacitor in parallel with the feedback resistor provides the necessary phase compensation to critically damp the output.

A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.
Three typical circuits and the resultant waveforms are shown in Figures 11 to 14. A low-cost general purpose (Intersil 741HS), a low-cost high-speed (Intersil 2515) and a highspeed fast-settling (Intersil 2520) amplifier cover the principal application areas.

## PACKAGE DIMENSIONS

## 18 PIN CERDIP

18 PIN PLASTIC DIP


1. Lead no. 1 identified by dot or notch.
2. Dimensions in inches (millimeters).


## 12 Bit Monolithic Multiplying DIA Converters

## FEATURES

- 12 bit linearity ( $0.01 \%$ )
- Low gain Tempco (5ppm/ ${ }^{\circ} \mathrm{C}$ )
- Full temperature range operation
- Latch-up free operation
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Low power dissipation ( 20 mW )
- Current settling time: $1 \mu \mathrm{~s}$ to $0.01 \%$ of FSR
- Four quadrant multiplication
- 883B Processed versions available

FUNCTIONAL DIAGRAM

(Switches shown for Digital Inputs "High")

ABSOLUTE MAXIMUM RATINGS

VDD (to GND)	+17V
VREF (to GND)	$\pm 25 \mathrm{~V}$
Digital Input Voltage Range	VDD to GND
Output Voltage Compliance	-5 to VDD
Power Dissipation (package)	
up to $+75^{\circ} \mathrm{C}$ by derates above $+75^{\circ} \mathrm{C}$ by	$\begin{aligned} & .450 \mathrm{~mW} \\ & 6 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{aligned}$

Operating Temperatures
JP, KP, LP Versions . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
JJ, KJ Versions .............................. . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SJ, TJ Versions . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature .................. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION: The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.

SPECIFICATIONS (VDD $=+15 \mathrm{~V}, \mathrm{VREF}=+10 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	$\begin{gathered} \text { TA } \\ +25^{\circ} \mathrm{C} \end{gathered}$	TA MIN-MAX	UNITS	LIMIT	TEST CONDITIONS	FIG.	
DC ACCURACY (Note 1)   Resolution	12	$\therefore 12$	Bits	Min			
Nonlinearity (Note 2)  S    T     K      L	$\pm 0.020$	$\pm 0.024$	\% of FSR	Max	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V} \\ & \text { VouT1 }=\text { VOUT2 }=0 \mathrm{~V} \end{aligned}$	1	
	$\pm 0.010$	$\pm 0.012$	\% of FSR	Max			
	$\pm 0.010$ $\pm 0.012$   Guaranteed Monotonic		\% of FSR	Max			
	$\pm 0.3$	0.35	\% of FSR	Max	$-10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V}$		
Nonlinearity Tempco (Note 2 and 3)	0.2		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max			
Gain Error Tempco (Note 2 and 3)	5		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max			
Output Leakage Current (either output)	$\pm 50$	$\pm 200$	nA	Max			
AC ACCURACY (Note 3) Power Supply Rejection (Note 2	$\pm 50$	$\pm 100$	PPM of FSR/\%	Max	$V_{D D}=14.0$ to 16.0 V	2	
Output Cürrent Settling Time	1		$\mu \mathrm{S}$	Max	To 0.01\% of FSR	6	
Feedthrough Error	1		mV pp	Max	VREF $=20 \mathrm{~V} p$, 10 KHz . All digital inputs low.	5	
$\frac{\text { REFERENCE INPUT }}{\text { Input Resistance }}$	5K		$\Omega$	Min	All digital inputs high. lout1 at ground.		
	10K			Typ			
			Max				
ANALOG OUTPUT   Voltage Compliance (Note 4)	-100 mV to $\mathrm{V}_{\text {DD }}$				$\because$	Both outputs. See maximum ratings.	
Output Capacitance (Note 3)	$\begin{aligned} & \text { lout1 } 550 \\ & \text { lout2 } 250 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \text { Max } \end{aligned}$	All digital inputs high	4	
	$\begin{aligned} & \text { lout1 } 250 \\ & \text { louta } 550 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Max	All digital inputs low .	4	
Output Noise (both outputs)	Equivalent to $10 \mathrm{~K} \Omega$ Johnson noise			Typ		3	
$\frac{\text { DIGITAL INPUTS }}{\text { Low State Threshold }}$	0.8		V	Max			
High State Threshold	2.4		V	Typ			
	3.0		V	Min			
Input Current	$\pm 1$		$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=0$ to VDD		
Input Coding	Binary/Offset Binary				See Tables 1\&2 on pages 4 and 5.		
Input Capacitance(Note 3)	8		pF	Max			
POWER REQUIREMENTS	+5 to +16		V		Accuracy not guaranteed over this range.		
IDD	2		mA	Max	All digital inputs high or low		
Total Power Dissipation (including the ladder)	20		mW	Typ	$\cdots$		

NOTES: 1. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, Rfeedback.
3. Guaranteed by design; not subject to test.
4. Accuracy not guaranteed unless outputs at ground potential.

Specifications subject to change without notice.

## TEST CIRCUITS



Figure 1. Nonlinearity


Figure 3. Noise


Figure 5. Feedthrough Error


Figure 2. Power Supply Rejection


Figure 4. Output Capacitance

Figure 6. Output Current Settling Time

## DEFINITION OF TERMS

NONLINEARITY: Error contributed by deviation of the DAC transfer function from a best straight line function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire VREF range.
RESOLUTION: Value of the LSB. For example, a unipolar converter with $n$ bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {REF }}\right)$. A bipolar converter of $n$ bits has a resolution of $\left[2^{-(n-1)}\right]\left[V_{\text {REF }}\right]$. Resolution in no way implies linearity.
SETTLING TIME: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

GAIN: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.

FEEDTHROUGH ERROR: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.

OUTPUT CAPACITANCE: Capacity from lout1 and Iout2 terminals to ground.

OUTPUT LEAKAGE CURRENT: Current which appears on lout1 terminal with all digital inputs LOW or on lout2 terminal when all inputs are HIGH.

## GENERAL CIRCUIT INFORMATION

The Intersil ICL7112 is a 12 bit, monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network and NMOS DPDT switches form the basis of the converter circuit. Junction isolated CMOS level shifters provide latch-proof low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in Figure 7. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.
Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs, and by compensating the internal feedback resistor with a series switch. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.

(Switches shown for Digital Inputs "High")
Figure 7. ICL7112 Functional Diagram

Each circuit is laser-trimmed, at the wafer level, to better than 12 bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.

The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to the first, (Figure 8). This configuration results in DTL/TTL/CMOS compatible operation over the full military temperature range. With the ladder DPDT switches driven by the level shifter, each switch is binarily weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors, resulting in accurate leg currents.


Figure 8. CMOS Switch

## APPLICATIONS

## General Recommendations

Static performance of the ICL7112 depends on IOUT1 and lout2 (pin 1 and pin 2) potentials being exactly equal to GND (pin 3).

The output amplifier should be selected to have a low inpuit bias current (typically less than 75 nA ), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than $\pm 200 \mu \mathrm{~V}$ ).

The bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Noninverting input should be connected to GND with a low resistance wire.

Ground-loops must be avoided by taking all pins going to GND to a common point; using separate connections.
ICL7112 does not require any external protection diodes.
The VDD (pin 18) power supply should have a low noise level and should not have any transients exceeding +17 volts.
Unused digital inputs must be connected to GND or VDD for proper operation.
A high value resistor $(\sim 1 \mathrm{M} \Omega)$ can be used to prevent static charge accumulation, when the inputs are open-circuited for any reason.
When gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ) resistors or trim-pots should be selected.

## APPLICATIONS, Continued UNIPOLAR BINARY OPERATION

The circuit configuration for operating the ICL7112 in unipolar mode is shown in Figure 9. With positive and negative VREF values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.


Figure 9. Unipolar Binary Operation (2-Quadrant Multiplication)

## Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $O \mathrm{~V} \pm 0.5 \mathrm{mV}$ (max) at VOUT.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF ( $1-1 / 2^{12}$ ) reading.
3. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, $(0$ to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 1
Code Table - Unipolar Binary Operation

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-V_{\text {REF }}(1-1 / 212)$
100000000001	$-V_{\text {REF }}(1 / 2+1 / 212)$
100000000000	$-V_{\text {REF }} / 2$
01111111111	$-V_{\text {REF }}(1 / 2-1 / 212)$
0000000000001	$-V_{\text {REF }}(1 / 212)$
000000000000	0

## BIPOLAR (OFFSET BINARY) OPERATION

The circuit configuration for operating the ICL7112 in the bipolar mode is given in Figure 10. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.


Note: R1 and R2 should be $0.01 \%$, low-TCR resistors.
Figure 10. Bipolar Operation (4-Quadrant Multiplication)
A "Logic 1 " input at any digital input forces the corresponding ladder switch to steer the bit current to IOUT1 bus. A "Logic 0" input forces the bit current to IOUT2 bus. For any code the IOUT1 and IOUT2 bus currents are complements of one another. The current amplifier at IOUT2 changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range but halves the resolution of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0 "), is corrected by using an external resistive divider, from VREF to IOUT2.

Offset Adjustment

1. Adjust VREF to approximately +10 V .
2. Connect all digital inputs to "Logic 1 ".
3. Adjust IOUT2 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 0.1 \mathrm{mV}$ at IOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
5. Adjust IOUT11 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 0.1 \mathrm{mV}$ at IOUT1 amplifier output.
6. Adjust R4 for $0 \mathrm{~V} \pm 0.2 \mathrm{mV}$ at VOUT.

Gain Adjustment

1. Connect all digital inputs to VDD.
2. Monitor VOUT for a -VREF (1-1/211) volts reading.
3. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, 10 to 500 ohms), between the reference voltage and the VREF terminal.

TABLE 2
Code Table - Bipolar (Offset Binary) Operation

DIGITAL INPUT	ANALOG OUTPUT
11111111111	$-V_{\text {REF }}(1-1 / 211)$
100000000001	$-V_{\text {REF }}(1 / 211)$
100000000000	0
01111111111	$V_{\text {REF }}(1 / 211)$
000000000001	$\operatorname{V}_{\text {REF }}(1-1 / 211)$
000000000000	$\operatorname{V}_{\text {REF }}$



Figure 11. General DAC Circuit with Compensation Capacitor, Cc.


Figure 12. ICL7112 Response with: $A=$ Intersil 741HS $C_{c}=100 \mathrm{pF}$


Figure 13. ICL7112 Response with: $A=$ Intersil 2515

$$
\mathrm{C}_{\mathrm{c}}=30 \mathrm{pF}
$$



Figure 14. ICL7112 Response with: $A=$ Intersil 2520

$$
\mathrm{C}_{\mathrm{c}}=22 \mathrm{pF}
$$

## DYNAMIC PERFORMANCE

The dynamic performance of the DAC also depends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.
The output impedance of the ICL7112 looking into lout1 varies between $10 \mathrm{k} \Omega$ ( $\mathrm{R}_{\text {Feedback }}$ alone) and $5 \mathrm{k} \Omega$ ( $\mathrm{R}_{\text {Feedback }}$ in parallel with the ladder resistance).
Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.
A capacitor in parallel with the feedback resistor provides the necessary phase compensation to critically damp the output.
A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.

Three typical circuits and the resultant waveforms are shown in Figures 11 to 14. A low-cost general purpose (Intersil 741HS), a low-cost high-speed (Intersil 2515) and a highspeed fast-settling (Intersil 2520) amplifier cover the principal application areas.

## PACKAGE DIMENSIONS



1. Lead no. 1 identified by dot or notch.
2. Dimensions in inches (millimeters).

## FEATURES

- .05\% Linearity (ICL7113L)
- Low gain Tempco (10 ppm/o/C)
- Full temperature range operation
- Latch-up free operation
- DTL/TTL/CMOS compatible
- +5 to +15 volts supply range
- Low power dissipation ( 20 mW )
- Current settling time: $1 \mu$ S to $0.05 \%$ of FSR
- 883B Processed versions available


## GENERAL DESCRIPTION

The Intersil ICL7113 is a monolithic, low cost, high performance, 3 digit BCD, multiplying digital-to-analog converter (DAC).
Intersil's laser-trimmed thin-film resistors on junctionisolated CMOS circuitry provide :05\% absolute accuracy with DTL/TTL/CMOS compatible operation.
Special tabbed-resistor geometries (improving time stability), latch-up free operation, feed-back resistor compensation (improving gain tempco and power supply rejection ratio), large lout1 and lout2 bus lines (improving superposition errors) are some of the features offered by Intersil ICL7113.
Typical applications include: Thumbwheel switch voltage dividers; digitally controlled gain circuits; attenuators, power supplies, etc.


## ABSOLUTE MAXIMUM RATINGS

（ $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted）

VDD（to GND）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．+17 V
VREF（to GND）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\pm 25 \mathrm{~V}$
Digital Input Voltage Range ．．．．．．．．．．．．．．．．．VDD to GND
Output Voltage Compliance................. ． 5 to VDD
Power Dissipation：
up to $+75^{\circ} \mathrm{C}$ $\qquad$ 450 mW
derates above $+75^{\circ} \mathrm{C}$ by
$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Operating Temperatures
JP，KP，LP Versions ．．．．．．．．．．．．．．．．．．．．．． $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
JJ，KJ Versions ．．．．．．．．．．．．．．．．．．．．．．．．．$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SJ，TJ Versions ．．．．．．．．．．．．．．．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ．．．．．．．．．．．．．．．．．．． $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION：The digital control inputs are zener protected；however，permanent damage may occur on unconnected units under high energy electrostatic fields．Keep unused units in conductive foam at all times．

SPECIFICATIONS（VDD $=+15 \mathrm{~V}$ ，VREF $=+10 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise specified）

PARAMETER	$\begin{array}{r} \text { TA } \\ +25^{\circ} \mathrm{C} \end{array}$	TA MIN－MAX	UNITS	LIMIT	TEST CONDITIONS	
$\begin{aligned} & \text { DC ACCURACY (Note 1) } \\ & \text { Resolution } \end{aligned}$	3	3	Digits	Min		
Nonlinearity（Note 2）	． 20	． 20	\％of FSR	Max	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V} \\ & \text { VOUT1 }^{2}=\mathrm{V}_{\text {OUT2 }}=0 \mathrm{~V} \end{aligned}$	
	． 10	10	\％of FSR	Max		
	． 05	． 05	\％of FSR	Max		
Gain Error（Note 2）	$\pm .3$	$\pm .4$	\％of FSR	Typ	$-10 \mathrm{~V} \leq \mathrm{VREF} \leq+10 \mathrm{~V}$	
Nonlinearity Tempco（Note 2 and 3）	2		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max		
Gain Error Tempco（Note 2 and 3）	10		PPM of FSR $/{ }^{\circ} \mathrm{C}$	Max		
Output Leakage Current（either output）	$\pm 50$	$\pm 200$	nA	Max		
AC ACCURACY   Power Supply Rejection（Note 2 and 3）	$\pm 0.05$	$\pm 0.1$	\％of FSR／\％	Max	$V_{D D}=14.0$ to 16.0 V	
Output Current Settling Time（Note 3）	1	1	$\mu \mathrm{S}$	Max	To 0．05\％of FSR	
Feedthrough Error（Note 3）	1.5	2	mV pp	Max	VREF $=20 \mathrm{~V} p \mathrm{p}, 10 \mathrm{KHz}$ ．All digital inputs low．	
$\begin{aligned} & \text { REFERENCE INPUT } \\ & \text { Input Resistance } \end{aligned}$	5K		－$\Omega$	Min	All digital inputs high． lout1 at ground．	
			Typ			
	20K			Max		
ANALOG OUTPUT   Voltage Compliance（Note 4）	－100mV to VDD				－	Both outputs． See maximum ratings．
Output Capacitance（Note 3）	lout1 550		pF	Max	All digital inputs high	
	IOUT2 250		pF	Max		
	lout1 250		pF	Max	All digital inputs low	
	lout2 550		pF	Max		
Output Noise（both outputs）	Equivalent to $10 \mathrm{~K} \Omega$ Johnson noise			Typ		
DIGITAL INPUTS Low State Threshold	0.8		V	Max	Over the specified temp range	
High State Threshold	2.4		V	Typ		
	3.0		V	Min		
Input Current $V_{I N}=0$ to $V_{D D}$	$\pm 1$		$\mu \mathrm{A}$	Max		
Input Coding	BCD				See Table 1	
Input Capacitance（Note 3）	8		pF	Max		
POWER REQUIREMENTS Power Supply Voltage Range	+5 to +16		V		Accuracy not guaranteed over this range．	
IDD	2		mA	Max	All digital inputs high or low	
Total Power Dissipation（including the ladder）	20		mW	Typ		

NOTES：1．Full scale range（FSR）is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes．
Specifications subject to
2．Using internal feedback resistor，RFEEDBACK．
change without notice．
3．Guaranteed by design；not subject to test．
4．Accuracy not guaranteed unless outputs at ground potential．

## GENERAL CIRCUIT INFORMATION

The Intersil ICL7113 is a 3 digit BCD monolithic, multiplying D/A converter. Highly stable thin film R-2R resistor ladder network, interquad voltage dividers, and NMOS DPDT switches form the basis of the converter circuit. Junction isolated CMOS level shifters, Figure 2, provide latch-proof low power DTL/TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.


Figure 2: CMOS Level Shifter/Switch

A simplified equivalent circuit of the DAC is shown in Figure 3. The NMOS DPDT switches steer the ladder leg currents between IOUT1 and IOUT2 busses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code. Each circuit is laser-trimmed, at the wafer level, to better than $.05 \%$ linearity. For the first MSB bits, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.


Figure 3: ICL7113 Circuit Diagram

## APPLICATIONS

## General Recommendations

To insure stability and prevent output ringing, a compensation capacitor of $10-100 \mathrm{pF}$ in parallel with the feed back resistor will be needed for some applications.
Unused digital inputs must be connected to GND or VDD for proper operation.
ICL7113 does not require external schottky protection diodes at output.

## BCD MULTIPLYING DAC

Intersil 7113 is capable of 2-quadrant multiplication with positive and negative reference values. The "Digital Input Code/Analog Output Value" table is given in Table 1. Figure 4 shows a typical circuit.

Zero Offset Adjustment:

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 0.5 \mathrm{mV}$ (max) at VOUT.

Gain Adjustment:

1. Apply BCD Code 999 (1001. 1001 1001)
2. Monitor VOUT for a -VREF (1-1/103) reading.
3. To increase VOUT, connect a series resistor, 10 to 500 ohms), in the IOUT1 amplifier feedback loop.
4. To decrease VOUT, connect a series resistor, 0 to 500 ohms), between the reference voltage and the VREF terminal.


Figure 4: BCD Multiplying DAC Circuit

TABLE 1
CODE TABLE - BCD DAC

INPUT		ANALOG OUTPUT
BCD	DECIMAL	
100110011001	999	$-V_{\text {REF }}(1-1 / 103)$
000000000001	001	$-V_{\text {REF }}(1 / 103)$
000000000000	000	0

## APPLICATIONS (Continued)



Figure 5: Thumbwheel Switch Attenuator

The circuit in Figure 4 shows the ICL7113 used as a low-cost precision voltage divider, similar to 10-turn potentiometers. Low parts count, increased reliability, low cost, $0.1 \% \mathrm{VIN}$ resolution and an excellent $0.05 \%$ of FSR non-linearity make ICL7113 a real advantage for the circuit designer.
The BCD coded thumbwheel assembly (available from AMP, Harrisburg, PA; CHERRY, Waukegan, IL; SAE, Santa Clara, CA) applies to BCD data to the ICL7113 inputs. A SPST assembly with pull-up or pull-down resistors can be substituted.

Resistors R1, R2 can be used to adjust the gain, R3 to limit the current if make-before-break switches are used; and R4 to adjust the offset voltage.

A voltage reference and an Intersil IH8510 power amplifier can be used with this circuit to build a $\pm 25 \mathrm{~V}, 1$ Amp continuous output power source. (For more information write for Intersil Application Bulletin A021-"Power D/A Converters Using the IH8510," by D. Wilenken.)

## PACKAGE DIMENSIONS

## 18 PIN CERDIP



18 PIN PLASTIC DIP


BONDING DIAGRAM

1. Lead no. 1 identified by dot or notch. 2. Dimensions in inches (millimeters).


## FEATURES

- Guaranteed zero reading for 0 volts input
- Auto-zero; auto polarity
- 5pA input current typical
- Single reference voltage
- Latched parallel (full-time) BCD output for LCDs or data busing
- True polarity at zero count for precise null detection
- On-board clock and reference


## ORDERING INFORMATION

Part	Temp. Range	Package	Order Number
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052CPD
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052 CDD
7101	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin plastic DIP	ICL7101CPL
7101	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	40 pin ceramic DIP	ICL7101CDL

## GENERAL DESCRIPTION

The $8052 / 7101$ A/D Pair, with its parallel BCD outputs, is ideally suited for data processing applications or interfacing with 312 -digit Liquid Crystal Displays. No external circuitry is required to demultiplex the information. In addition, it has a "start/reset" input and "busy" output that allows easy synchronization to system requirements. The 8052/7101 provides $41 / 2$-digit accuracy in a $31 / 2$-digit format with typical system performance like 5 pA input leakage, auto-zero to $10 \mu \mathrm{~V}$ with less than $1 \mu \mathrm{~V} /{ }^{\rho} \mathrm{C}$ drift and Linearity to $0.002 \%$.

The 8052/7101 A/D pair also features conversion rates from 10 seconds to 30 per second, making them ideally suited for a wide variety of applications.

## CONNECTION DIAGRAM

8052 Analog Signal Conditioner


CONNECTION DIAGRAM
7101 Digital Processor


ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)
Storage Temperature

## 8052 ONLY

## Supply Voltage

Differential Input Voltage
Input Voltage (Note 2)
Output Short Circuit Duration, All Outputs (Note 3)

Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

500 mW	Operating Temperature .	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Lead Temperature (Soldering, 60 Sec.$)$	
	7101 ONLY	
$\pm 18 \mathrm{~V}$	Source Current ( $I_{\text {S }}$ )	100 mA
$\pm 6 \mathrm{~V}$	Drain Current (ID)	100 mA
$\pm 15 \mathrm{~V}$	Digital Inputs	5 mA
	$\mathrm{V}^{+}$to $\mathrm{V}^{-}$	25 V
Indefinite	Digital Input	$\mathrm{V}^{-}$to $\mathrm{V}^{+}$

Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.

7101 ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5.0 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	7101			UNITS
			MIN	TYP	MAX	
Clock Frequency	${ }_{\text {f }} \mathrm{N}$	$\mathrm{C}=1500 \mathrm{pF}$		20		kHz
External Clock In	IINL	- $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		0.35	1.0	mA
External Clock In	IINH	$V_{\text {IN }}=+5.0 \mathrm{~V}$		0.35	1.0	mA
Reset/Start	IINL	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		0.8	2.0	$m A$
Internal Counter Override External Counter Input	IINH	$V_{\text {IN }}=+5.0 \mathrm{~V}$		0.35	1.0	mA
BCD	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.25	0.4	V
$B C D$	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4	4.5		V
Out-of-Range	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$		0.25	0.4	V
Out-of-Range	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}$	2.4	4.5	$\bigcirc$	V
Polarity, Apex, Busy, $\overline{1000}$	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=0.8 \mathrm{~mA}$		0.25	0.4	
Polarity, Apex, Busy, $\overline{1000}$	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4	4.5		V
Gated Clockout	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=0.3 \mathrm{~mA}$		0.25	0.4	V
Gated Clockout	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4	4.5		V
Switches 1, 3, 4, 5, 6	$\mathrm{R}_{\text {DS(ON) }}$			400		$\Omega$
Switch 2	$\mathrm{R}_{\text {DS(ON) }}$			2500		$\Omega$
+5.0 V Supply Current	${ }^{1} \mathrm{CC}{ }^{+}$			15	25	mA
-15 V Supply Current	${ }^{1} \mathrm{CC}^{-}$			3.0	5.0	mA



Output


External Counter Input Internal Counter Override


Start/Reset

TYPICAL INPUT/OUTPUT SCHEMATICS

8052 ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8052			UNITS
		MIN	TYP	MAX	
OPERATIONAL AMPLIFIER					
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		20	50	mV
Input Current (either input)	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		5	50	pA
Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		dB
Non-Linear Component of Common-Mode Rejection Ratio*	$\mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}$		110		dB
Large Signal Voltage Gain	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V} \end{aligned}$	20,000			V/V
Slew Rate			6		V/us
Unity Gain Bandwidth			1		MHz
Output Short-Circuit Current			20	50	mA
COMPARATOR AMPLIFIER					
Small-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000		V/V
Positive Output Voltage Swing		+12	+13		V
Negative Output Voltage Swing		-2.0	-2.6		V
VOLTAGE REFERENCE					
Output Voltage		1.5	1.75	2.0	V
Output Resistance			5		ohms
Temperature Coefficient	$\ldots$		40		ppm
Supply Current Total			6	12	mA

*This is the only component that causes error in dual-slope converter.

SYSTEM ELECTRICAL CHARACTERISTICS
( $\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5.0 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Clock Frequency Set for 3 Reading/Sec)

CHARACTERISTICS	CONDITIONS	8052/7101(1)			UNITS
		MIN	TYP	MAX	
Zero Input Reading	$\mathrm{V}_{\text {in }}=0.0 \mathrm{~V}$	-0.000	$\pm 0.000$	+0.000	Digital   Reading
Ratiometric Reading	$\mathrm{V}_{\text {in }} \equiv \mathrm{V}_{\text {Ref. }}$	+0.998	+1.000	+1.001	Digital   Reading
Linearity over $\pm$ Full Scale (error off reading from best straight line)	$-2 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant+2 \mathrm{~V}$		0.1	1	Digital Count Error
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{\text {in }} \equiv+\mathrm{V}_{\text {in }} \approx 2 \mathrm{~V}$		0.1	1	Digital Count Error
Noise (P-P value not exceeded 95\% of time)	$\begin{aligned} & V_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=200.0 \mathrm{mV} \end{aligned}$		0.2		Digital
	Full scale $=2.000 \mathrm{~V}$		0.05		Count
Leakage Current into Input	$V_{\text {in }}=0 \mathrm{~V}$		5	30	pA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=0 \mathrm{~V} \\ & 0^{\circ} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$		1	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & V_{\text {in }}=+2 \mathrm{~V} \\ & 0^{\circ} \leqslant T_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} \\ & \text { (ext. ref. } 0 \mathrm{ppm} / \mathrm{C} \text { ) } \end{aligned}$		3	15	ppm/ $/ \mathrm{C}$

[^11]
## CIRCUIT DESCRIPTION

Figure 1 shows a typical circuit for a DVM. A minimum of external components is required since the chips have an onboard clock and a medium-quality ( $40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ) internal reference. The circuit also shows the switching required for two scale factors: 2.000 V and 200.0 mV full scale.

The system uses the time-proven dual-slope integration with all of its advantages; non-critical components, high rejection of noise and AC signals, non-critical clock frequency and true ratiometric readings. At the same time, it eliminates one of the basic disadvantages of dual-slope conversion: separate positive and negative reference sources. In this system, the negative reference is generated by charging the reference capacitor to the positive reference potential and then switching it into the circuit inverted when a negative reference is required. Due to the very low leakage and charge injection of the FET switches, the positive and negative references track each other to $10 \mu \mathrm{~V}$ over a wide temperature range. This assures a very small error between positive and negative scale factor and, thus, excellent linearity from ( + ) full-scale to ( - ) full-scale (.002\% typical).

The measurement cycle for the $8052 / 7101$ has three phases, These are auto-zero, integrate input, and integrate reference. At the end of a measurement the system automatically reverts to the auto-zero mode until a new measurement is initiated. If an over-load has not occurred in the previous measurement, 10 milliseconds of auto-zero is sufficient to null any offsets to $10 \mu \mathrm{~V}$. At power on, or after an overload, 100 milliseconds is required to assure the auto-zero capacitor has charged to the correct value.

## Start Conversion

Prior to conversion, the reset-start input must be held low to inhibit conversion (during auto-zero). Conversion is
initiated by a positive transition on the start-reset line. (It must therefore return to the low state prior to completion of conversion in order to allow proper auto-zero function.) The positive transition generates a clear pulse which resets all internal logic (counters, etc.) and sets the clock enable, thus initiating the conversion sequence.

## Integrate Input

During the first period, switch \#4 is closed, (all others open), applying the input potential to the buffer. Since the amplifier offsets are stored on the auto-zero capacitor, the integrator's slope is determined solely by the input voltage. The input voltage is integrated for exactly 1000 counts, thus reaching an integrator output proportional to the integral of the input for a fixed time.

## Integrate Reference

At the end of 1000 counts, switch \#4 is opened, the polarity flip-flop is set, and the integrate reference period begins. Depending on the polarity, switch \#5 or \#6 is closed, connecting the buffer input to ground or $2 \mathrm{~V}_{\text {ref. }}$. This causes the integrator to ramp towards its quiescent (auto-zero) point with a slope proportional to $+\mathrm{V}_{\text {ref }}$ or $-\mathrm{V}_{\text {ref }}$. When the integrator crosses its quiescent auto-zero point, the comparator changes state, causing the zero crossing detector to generate a conversion complete signal which inhibits the clock and loads the logic information into the output latches. Switch \#5 (or \#6) is opened, switches \#1, \#2, and \#3 are closed, and the system returns to a quiescent autozero mode, awaiting the next initiate conversion signal. If 2000 counts are received prior to zero crossing, an out-ofrange signal is generated which sets the "out-of-range" output and resets the system.

[^12]

FIGURE 1. $3 ½$ DIGIT A/D CONVERTER FUNCTIONAL DIAGRAM

## 7101 Digital Processor Controls

Two pins are included on the 7101 that allow the user to externally control the gain of the converter. The first pin, "Internal Counter Override", if held high, will inhibit the carry pulse from the internal counter that switches the converter from signal integrate to reference integrate. As long as this input is high, the converter will remain in the signal integrate mode. At the same time, it enables the other pin, External Counter Input, to supply this transition pulse from external sources. One technique for changing the gain of the system would be to hold "Internal Counter Override" high through the first N carry pulses. This would increase the signal integrate time by a factor of $\mathrm{N}+1$ and, thus, the sensitivity of the system by $N+1$. Since the number of suppressed pulses could be controlled digitally, the system could accomodate signals from $\pm 2.000 \mathrm{~V}$ to $\pm 200.0 \mathrm{mV}$ (or lower, if time permits) without changing the external analog scale factor components. By using more complex external logic and both inputs, the user could digitally set offset (tare) and scale factor to convert voltages to physical units such as "degrees centigrade", "pounds", or "feet".
A "BUSY" pin is provided which permits interrogating the 8052/7101 to determine the status of the conversion. During the signal integrate and reference integrate periods, the "busy" line is high until the conversion is complete, at which time "busy" line goes low. This transition can be used to signal "new data available".
The "Apex" pin provides a digital signal which goes high during the reference integrate period.
"OUT-OF-RANGE" is indicated by a latched "low" on pin 23 for counts over 2000. The BCD digital values are "high"' (true), except $\overline{1000}$ which is "low".
A positive polarity of the analog input signal is indicated by a "high" state at the output of the "polarity" latch on pin 22.


FIGURE 2.
The 7101 has an internal clock which requires a single capacitor between Pins 25 and 28 to operate. Figure 2 shows the typical capacitor value required to give the desired frequency.
During auto-zero, the clock is internally gated-off with Pin 28 high and Pin 25 low. When "start-reset" goes high, starting a measurement cycle, the clock starts counting with Pins 25 and 28 immediately changing phase. The counting continues until the end of the measurement cycle, at which time the clock is returned to its auto-zero condition.

In a typical application where visual readings are required, three readings per second is near the optimum speed. Faster readings make it difficult to resolve individual readings, while at slower rates the reader has to wait too long between measurements. In this application, $40 \%$ of the time $(133 \mathrm{mS})$ could be allocated to auto-zero and $60 \%(200 \mathrm{mS})$ to signal and reference integrate. Since a measurement cycle consists of 3,000 clock pulses maximum, this dictates a clock frequency of 15 kHz . Also, since the dual-slope technique of $A / D$ conversion is not first-order dependent on clock frequency, the $\pm 20 \%$ variation of clock frequency from unit-to-unit would result in no measurable error. However, in some applications, a more precise clock frequency would be desired. For instance, if precise rejection of 60 Hz is required, the signal integrate phase ( 1,000 counts) would have to contain an integral number of 60 Hz periods. For these applications, an external clock can be used by deleting the capacitor and connecting the external clock to Pin 25. However, if the clock is run asynchronously with start/reset, there will be one clock pulse of uncertainty in the integrate signal time, depending on where in the clock pulse period the start/reset went high. This will show up as one count of noise for signal near full-scale. This noise or jitter can be avoided by synchronizing the start/reset pulse to the negative-going edge of the external clock. Pin 33, Gated Clock Out, is a buffered output of the clock (internal or external) that is off (low) during auto-zero and in phase with Pin 25 during measurement.

## Component Selection

Except for the reference voltage, none of the component values are first order important in determining the accuracy of the instrument. While this is undoubtedly an advantage of this approach, it does make the selection of nominal component values arbitrary at best. For instance, the reference capacitor and auto-zero capacitor are each shown as $1.0 \mu \mathrm{fd}$. These relatively large values are selected to give greater immunity to PC board leakage since much smaller capacitors are adequate for charge injection errors or leakage errors from the 8052/7101.
The ratio of integrating resistor and capacitor is selected to give 9 -volt swing for full-scale inputs. This is a compromise between possibly saturating the integrator (at $\pm 14 \mathrm{~V}$ ) due to tolerance build-up between the resistor, capacitor, and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. Again, the $.22 \mu \mathrm{fd}$ value for the integrating capacitor is selected for PC board considerations alone since the very small leakage at the integrator input is nulled at auto-zero. A very important characteristic of the integrating capacitor is low dielectric absorption. A polypropylene capacitor gave excellent results. In fact, a good test for dielectric absorption is to use the capacitor in this circuit with the input tied to reference. This ratiometric condition should read 1.000 and any deviation is probably due to dielectric absorption. In this ratiometric condition, a polycarbonate capacitor contributed an error of approximately 0.8 digit, polystyrene about 0.3 digit, and polypropylene less than 0.05 digit. The increased T.C. of polypropylene is of no consequence in this circuit. The dielectric absorption of the reference capacitor and auto-zero capacitor are only important at power on or when the circuit is recovering from an overload. Thus, smaller or cheaper capacitors can be used here if accurate readings are not required for the first few seconds of recovery.

The back-to-back diodes on the comparator output are recommended in the 200.0 mV range to reduce the noise effects. In the normal operating mode, they offer a high impedance and long integrating time constant to any noise pulses charging the auto-zero capacitor. At start-up or recovery from an overload, their impedance is low to large signals so the capacitor can be charged in one auto-zero cycle. If only the 2.000 V range is used, a 100 k resistor in place of the back-to-back diodes is adequate for noise effects.

## Maximum Clock Frequency

The maximum conversion rate of most dual-slope $A / D$ converters is limited by the frequency response of the comparator. Even though the comparator in this circuit is all NPN with an open loop gain-bandwidth product of 300 MHz , it is no exception. The comparator output follows the integrator ramp with a $3 \mu \mathrm{~S}$ delay. At a clock frequency of 160 kHz ( $6 \mu \mathrm{~S}$ period), half of the first reference integrate period is lost in delay. This means that the
meter reading will change from 0 to 1 with $50 \mu \mathrm{~V}$ in, 1 to 2 with $150 \mu \mathrm{~V}, 2$ to 3 at $250 \mu \mathrm{~V}$, etc. This transition at midpoint is considered desirable by most users. However, if the clock frequency is increased appreciably above this, the instrument will flash 1 on noise peaks even when the input is shorted.
Some circuits use positive feedback or a latch to solve the delay problem. However, unless the comparator voltage swing, the comparator gain, and the integrator gain are carefully controlled, this circuit can generate anticipation errors that greatly exceed the $3 \mu \mathrm{~S}$ delay error. Also, it is very susceptible to noise spikes. A more controlled approach for extending the conversion rate is the use of a small resistor in the integrator feedback loop. This feeds a small pulse to the comparator to get it moving quickly and partially compensate for its delay.
The minimum clock frequency is' established by leakage on the auto-zero and reference capacitor. With most devices, measurement cycles as long as 10 seconds gave no measurable leakage error.

## APPLICATIONS

## 8052/7101 3½ Digit LCD DPM/DVM

Figure 3 illustrates an application where the 8052/7101 interfaces with a Liquid Crystal Display. The CD4054 and CD4055s are Liquid Crystal Display Drivers (4-segment and 7 -segment, respectively) which provide the level shifting (up to $30 V_{p-p}$ at $V_{D D}-V_{E E}=15 \mathrm{~V}$ ) necessary to drive the LCD. Overrange is indicated by a special character. If blanking of any part of the display is required on overload,

Pin 23 (7101) can be used to drive Pin 7 on those display drivers via an inverter and level shift such as CD4009 or 74C903 or another CD4054. Display applications requiring a plus sign rather than a blank indication for positive analog input levels (i.e., +1.999 versus 1.999 ) need to invert the "polarity" logic output level which is normally high for positive analog input signals.


8052/7101/6100/6101 Set
The circuit in Figure 4 interfaces the 8052/7101 A-to-D converter chip set to an IM6100* microprocessor, using the 6101* Parallel Interface Element. Hex Tri-state Buffers (e.g., MM80C95*) are used to control bus access from the 7101 during read operations.
Conversion is initiated by activating the WRITE 1 line (positive going). The converter pair will then convert the analog input to digital form, and latch the data in the 7101. The busy line will go low as the conversion ends, and this transition is sensed by the SENSE 1 line, triggering an interrupt. The interrupt routine should read the 12 -line data word, and then the polarity, $\overline{1000}$ and out-of-range lines.

Sufficient time must be allowed for the auto-zero loop to settle before retriggering a conversion. Ten milliseconds of
auto-zero is sufficient to null any offsets to 10 microvolts. At power-on or after an overload, 100 milliseconds is required to assure the auto-zero capacitor has charged to the correct value. This time delay may be implemented conveniently using the IM6102 (Memory Extender/Time Delay Device).
Some skeletal service routines for this connection are given on page 7 and 8 .
*References:
Intersil IM6100 CMOS 12-bit Microprocessor Intersil IM6101 Parallel Interface Element National MM80C95 Hex CMOS Tri-State Buffers


FIGURE 4. $3 ½$ DIGIT PARALLEL BCD DATA ACQUISITION SYSTEM

## 8052/7101/6100/6101 APPLICATION PROGRAM

A possible set-up and service routine for the connection is given below.

```
/ASSUME PIE SELECT IS SET TO 54, INTERRUPT VECTOR TO 2000
 (OCTAL)
/INITIALIZE ROUTINE: SET-UP FOR NO INTERRUPT
```

1200	7200	CLA	
1201	1240	TAD SSCRA	
1202	6545	WCRA 54	/SET-UP CONTROL REGISTER A
1203	7200	CLA	
1204	1241	TAD SSCRB	
1205	6555	WCRB 54	/SET-UP CONTROL REGISTER B
1206	7200	CLA	
1207	1242		
1210	6556		TAD SSVV
1220	0000	CONVERT,	
1221	1243		TAD SSCRAI


1222	6545		WCRA 54	/SET-UP CONTROL REGISTER A
1223	6541		WRITE1 54	/THE WRITE PULSE STARTS CONVERSION
1224	5620		JMP I CONVERT	/RETURN
1240	0040	SSCRA,	0040	/WP 1 SET HI, IE1 SET LO
1241	0000	SCRRB,	0000	/SL1, SP1 SET LP, NEGATIVE EDGE SENSE
1242	2000	SSVV,	2000	/VECTOR ADDRESS
1243	0041	SSCRAI,	0041	WPI SET HI, IE1 SET HI
0000	0000	INTRPT,	0	/ENTRY POINT FOR.INTERRUPT
0001	6002		IOF	/DISABLE INTERRUPT, JUMP TO VECTOR ADDRESS
0140	0000	AD1,	0	/FIRST WORD OF DATA
0141	0000	AD2,	0	/SECOND WORD OF DATA
0160	0000	TEMP1,	0	/TEMPORARY STORAGE
2000	5210	VV,	JMP ATOD	/JUMP TO SERVICE POINT
2010	3160	ATOD,	DCA TEMP1	/SAVE AC
2011	6540		READ1 54	/READ BCD LINES
2012	3140		DCA AD1	/AND STORE
2013	6550		READ2 54	/READ POLARITY, 1000, AND OVERRANGE
2014	7040		CMA	/COMPLEMENT TO THE TRUE
2015	3141		DCA AD2	/AND STORE
1	--	- - -	--	/ANY OTHER WORK
2020	1160		TAD TEMP1	/RESTORE AC
2021	6001		ION	/RESTORE INTERRUPT
2022	5400		JMP I INTRPT	/RETURN

## PACKAGE DIMENSIONS



# 8052A/7103A 4½ Digit Pair 8052/7103 3½ Digit Pair 

## FEATURES

- Accuracy guaranteed to $\pm 1$ count over entire $\pm 20,000$ counts (8052A/7103A)
- Guaranteed zero reading for 0 volts input
- 5pA input current typical
- True polarity at zero count for precise null detection
- Single reference voltage required
- Over-range and under-range signals available for autoranging capability
- All outputs TTL compatible
- Medium quality reference (40ppm typical) on board
- Blinking display gives visual indication of over-range
- Six auxillary inputs/outputs are available for interfacing to UARTS, Microprocessors or other complex circuitry


## GENERAL DESCRIPTION

The 8052A/7103A with its multiplexed BCD outputs and digit drivers is ideally suited for the visual display DVM/ DPM market. Accuracy is outstanding with performance like: 5 pA input leakage, auto-zero to $10 \mu \mathrm{~V}$ with less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift; linearity of $0.002 \%$; scale factor temperature coefficients of $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (with external reference). The system uses the time-proven dual-slope integration with all its advantages, i.e., non-critical components, high rejection of noise and a-c signals, non-critical clock frequency, almost perfect differential linearity and true ratiometric readings. At the same time it has reduced or eliminated many of the sources of error that have limited dual-slope accuracy. With the 8052A/7103A pairs, critical board layout is no longer required to give low charge injection by the switches and elaborate ground planes are not necessary to keep clock pulse transients out of the comparator circuit.
The 8052/7,103 ( $31 / 2$ digit pair) features conversion rates from 1 measurement every 10 seconds to $30 /$ second, making them ideally suited for a wide variety of applications.


FIGURE 1. FUNCTIONAL BLOCK DIAGRAM

## ORDERING INFORMATION

3½ Digit Pair

Part	Temp. Range	Package	Order Number
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052CPD
8052	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052CDD
7103	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin plastic DIP	ICL7103CPI
7103	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin ceramic DIP	ICL7103CDI

4½ Digit Pair

rt	Temp. Range	Pa	Order Number
8052A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8052
8052A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8052ACDD
7103A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin plastic DIP	ICL7103ACPI
7103A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin ceramic DIP	ICL7103

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)
Storage Temperature

## 8052, 8052A

## Supply Voltage

Differential Input Voltage
Input Voltage (Note 2)
Output Short Circuit Duration, All Outputs (Note 3)
$-65^{\circ} \mathrm{C}$ to $+1500^{\circ} \mathrm{C}$
Operating Temperature
Lead Temperature (Soldering, 60 Sec. )
7103, 7103A

Source Current (I $I_{s}$ )	100 mA
Drain Current (ID)	100 mA
Digital Inputs	5 mA
$\mathrm{~V}^{+}$to $\mathrm{V}-$	25 V
Digital Input to $\mathrm{V}^{+}$	$\mathrm{V}^{-}$to $\mathrm{V}^{+}$
Digital Input to $\mathrm{V}^{-}$	$\mathrm{V}^{+}$to $\mathrm{V}-$

Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature.

## SYSTEM ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}$ Clock Frequency Set for 3 Reading $/ \mathrm{Sec}$ )

CHARACTERISTICS	CONDITIONS	8052/7103 ${ }^{(1)}$			8052A/7103A ${ }^{(2)}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Zero Input Reading	$\begin{aligned} & \mathrm{V}_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=2.000 \mathrm{~V} \end{aligned}$	-0.000	$\pm 0.000$	+0.000	-0.0000	$\pm 0.0000$	+0.0000	Digital   Reading
Ratiometric Reading (3)	$\begin{aligned} & \mathrm{V}_{\text {in }} \equiv \mathrm{V}_{\text {Ref. }} \\ & \text { Full Scale }=2.000 \mathrm{~V} \end{aligned}$	+0.999	+1.000	+1.001	+0.9999	+1.0000	+1.0001	Digital Reading
Linearity over $\pm$ Full Scale (error of reading from best straight line)	$-2 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant+2 \mathrm{~V}$		0.2	1	- .	0.5	- 1	Digital Count Error
Differential Linearity (difference between worse case step of adjacent counts and ideal step	$-2 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant+2 \mathrm{~V}$		. 01			. 01		LSB
Rollover error (Difference in reading for equal positive \& negative voltage near full scale)	$-V_{i n} \equiv+V_{i n} \approx 2 \mathrm{~V}$	,	0.2	1		0.5	1	Digital Count Error
Noise (P-P value not exceeded $95 \%$ of time)	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\ & \text { Full scale }=200.0 \mathrm{mV} \\ & \text { Full scale }=2.000 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 20 \\ 50 \\ \hline \end{array}$			$30$		$\mu \mathrm{V}$
Leakage Current at Input	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		5	30		3	10	pA
Zero Reading Drift	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\ & 0^{\circ} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C} \end{aligned}$		1	5		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\text {in }}=+2 \mathrm{~V} \\ & 0 \leqslant \mathrm{~T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} \\ & \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { ) } \\ & \hline \end{aligned}$		3	15		2	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

(1) Tested in $3 \frac{1}{2}$ digit ( 2,000 count) circuit shown in Fig. 3 clock frequency 12 kHz . Pin 27103 connected to Gnd.
(2) Tested in $4 \frac{1}{2}$ digit ( 20,000 count) circuit shown in Fig. 3 clock frequency 120 kHz . Pin 27103 A open.
(3) Tested with a low dielectric absorbtion integrating capacitor. See Component Selection Section.

8052 ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8052			8052A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER								
Input Offset Voltage   Input Current (either input)   Common-Mode Rejection Ratio   Non-Linear Component of Common-   Mode Rejection Ratio*   Large Signal Voltage Gain   Slew Rate   Unity Gain Bandwidth   Output Short-Circuit Current	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 2 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 70 \\ 20,000 \end{gathered}$	$\begin{gathered} \hline 20 \\ 5 \\ 90 \\ 110 \\ \\ 6 \\ 1 \\ 20 \end{gathered}$	50   50   100	$\begin{gathered} 70 \\ 20,000 \end{gathered}$	$\begin{gathered} 20 \\ 2 \\ 90 \\ 110 \\ \\ 6 \\ 1 \\ 20 \\ \hline \end{gathered}$	50   10   100	$\begin{gathered} \mathrm{mV} \\ \mathrm{pA} \\ \mathrm{~dB} \\ \\ \mathrm{~V} / \mathrm{V} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mathrm{MHz} \\ \mathrm{~mA} \end{gathered}$
COMPARATOR AMPLIFIER								
Small-signal Voltage Gain   Positive Output Voltage Swing Negative Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$	$\begin{array}{r} +12 \\ -2.0 \end{array}$	$\begin{gathered} 4000 \\ +13 \\ -2.6 \end{gathered}$		$\begin{array}{r} +12 \\ -2.0 \end{array}$	$\begin{array}{r} +13 \\ -2.6 \end{array}$	$\ldots$	$\begin{aligned} & V / V \\ & V \\ & V \end{aligned}$
VOLTAGE REFERENCE								
Output Voltage   Output Resistance   Temperature Coefficient	$\because$	1.5	$\begin{gathered} 1.75 \\ 5 \\ 50 \\ \hline \end{gathered}$	2.0	1.60	$\begin{gathered} 1.75 \\ 5 \\ 40 \\ \hline \end{gathered}$	1.90	$\begin{gathered} \mathrm{V} \\ \text { ohms } \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$
Supply Current Total		$\cdots$	6	12	;	6.	12	mA

*This is the only component that causes error in dual-slope converter.
7103 AND 7103A ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5.0, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	Clock In, Run/Hold, $41 / 2 / 31 / 2$ Comp. In	I inL   IinH   $I_{\text {inL }}$   InH	$\begin{aligned} & V_{\text {in }}=0 \\ & V_{\text {in }}=+5 \mathrm{~V} \\ & V_{\text {in }}=0 \\ & V_{\text {in }}=+5 \mathrm{~V} \end{aligned}$	$\cdots$	$\begin{array}{r} .2 \\ .1 \\ . \\ .1 \\ . \end{array}$	$\begin{aligned} & .6 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	mA   $\mu \mathrm{A}$   $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\begin{aligned} & \mathrm{O} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{~S} \end{aligned}$	All Outputs $\begin{aligned} & B_{1}, B_{2}, B_{4}, B_{8} \\ & D_{1}, D_{2}, D_{3}, D_{4}, D_{5} \end{aligned}$   Busy, Strobe,   Over-range, Under-range Polarity	$V_{\text {OL }}$   $\mathrm{V}_{\mathrm{OH}}$   VOH	$\begin{aligned} & \mathrm{IOL}=1.6 \mathrm{ma} \\ & \mathrm{IOH}=-1 \mathrm{~mA} \\ & \mathrm{IOH}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.9 \end{aligned}$	$\begin{array}{r} .25 \\ 4.2 \\ 4.99 \end{array}$	. 40	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\begin{gathered} \text { S } \\ \text { W } \\ \text { L } \\ \text { T } \\ \text { C } \\ H \end{gathered}$	Switches 1, 3, 4, 5, 6   Switch 2   Switch Leakage (AII)	RDS ON RDS ON ID OFF			$\begin{gathered} 400 \\ 1200 \\ 2 \end{gathered}$		$\begin{gathered} \Omega \\ \Omega \\ \mathrm{pA} \end{gathered}$
$\begin{aligned} & \hline S \\ & U \\ & P \\ & P \\ & L \\ & Y \end{aligned}$	+5 V Supply Current   -15V Supply Current	$\begin{aligned} & \mathrm{Icc}^{+} \\ & \text {Icc- } \end{aligned}$		$\cdots$	$\begin{gathered} 20 \\ 4 \end{gathered}$	$\begin{gathered} 30 \\ 6 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

## THEORY OF OPERATION

Figure 1 shows a function diagram for an A/D converter using the 8052/7103 pair. In this circuit, each measurement cycle is divided into four equal parts. The first part, phase 1, is the auto-zero cycle. The switch driver decoder recognizes this state and turns on hex switches number 1,2 , and 3. Switches 1 and 2 impress a voltage equal to $V_{\text {REF }}$ across the reference capacitor. Switch 3 closes a loop around the integrator and comparator. The purpose of this loop is to charge up the auto-zero capacitor until the integrator output does not change with time. During the second part, Phase 2, switches 1, 2 and 3 are opened and switch 4 is closed. If the input voltage is zero, the buffer, integrator and comparator will see the same voltages that existed in the previous state. Thus, the integrator output will not change but will remain stationary during the entire signalintegrate cycle. If V iN is not equal to zero, an unbalanced condition exists compared to the auto-zero cycle and the integrator will generate a ramp whose slope is proportional to VIN. At the end of this cycle, the sign of the ramp is latched into the polarity $F / F$. The final part, reference integrate, includes phases 3 \& 4. The switch driver decoder uses the output of the polarity F/F in deciding whether to close switch 5 or 6 . If the input signal was positive, switch 6 is closed and a voltage which is $V_{\text {REF }}$ more negative than during auto-zero is impressed on the buffer input. If the input signal was negative switch 5 is closed and a voltage which is $\mathrm{V}_{\text {REF }}$ more positive than during autozero is impressed on the buffer input. Thus, the reference capacitor generates the equivalent of a ( + ) reference or a $(-)$ reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to zero. The time, or number of counts, required to do this is porportional to the input voltage. Since the reference cycle can be twice as long as the signal integrate cycle, the input voltage required to give a full scale reading $\equiv 2 \mathrm{~V}_{\text {REF }}$. The circuit, as described to this point, is not new to this application. It has been used successfully for several years. However, this system makes three major contributions to the accuracy of this circuit. These are: (1) low charge injection, (2) junction FET op amp, and (3) zero-crossing flip-flop.

## 1. Low Charge Injection.

During auto-zero, there is no problem in charging the capacitors to the correct voltage. The problem is getting the switches off without changing this voltage. As the gate is driven off, the gate-to-drain capacitance of the switch injects a charge on the reference or auto-zero capacitor, changing its voltage. The designer, using discrete components, is forced into critical board layouts where charges of opposite polarity are injected to compensate or neutralize the driver injection. This balance will be upset by any unit-to-unit variation of switch capacitance so at best the final design is a compromise. In the 8052/7103 the critical layout has been done on the semiconductor chip and need not concern the user. Also, since a silicon-gate process is used for the switches,
the unit-to-unit variation is extremely low. The net result is to give an error due to charge injection that is so low it is difficult to measure; but certainly less than $5 \mu \mathrm{~V}$ referred to the input.

## 2. Junction FET Op Amps.

Both the buffer and integrator use junction FET inputs in a guarded circuit that reduces the voltage across the FET to 3 or 4 volts. At this voltage level, input leakage currents of 2 pA are typical. For typical component values 2 pA leakage contributes less than $2 \mu \mathrm{~V}$ of error to the circuit. In theory, MOS FET's would contribute less leakage but their increased noise would more than swamp out any improvement.

## 3. Zero-Crossing Flip Flop.

The problem that the zero-crossing flip-flop is designed to solve is shown in figure 2.


FIGURE 2. INTEGRATOR OUTPUT NEAR
ZERO-CROSSING

The integrator output is approaching the zero-crossing point where the clock will be stopped and the reading displayed. The clock pulse feedthrough superimposed upon this ramp will cause a false reading by stopping the count prematurely. For a 20,000 count instrument, the ramp is changing approximately 0.50 mV per clock pulse (10 volt max integrator output divided by 20,000 counts). The clock pulses have to be less than $100 \mu \mathrm{~V}$ peak to avoid causing significant errors. The circuit layout to achieve this can be time consuming at best and impossible at worst. The suggested circuit gets around this problem by feeding the zero-crossing information into a flip-flop instead of using it directly. The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have died down. Any false zerocrossing caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by one count in every instance. If a correction was not made, the display would always be one count too high. The correction is to disable the counter for one clock pulse at the beginning of phase 3. This one count delay compensates for the delay of the zero-crossing flip-flop and allows the correct number to be latched into the display. Similarly, a one count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001 . No delay occurs during phase 2 so that true ratiometric readings are possible.

## APPLICATIONS

## Specific Circuits Using the 8052A/7103A

Figure 3 shows the complete circuit for a $4 \frac{1}{2}$ digit ( $\pm 2.000 \mathrm{~V}$ ) full scale) $A / D$ with LED readout using the internal reference of the 8052 A . If an external reference is used, the reference supply (pin 7) should be connected to ground and the 300 pF reference cap deleted. The circuit also shows a typical R-C input filter. Depending on the application, the time-constant of this filter can be made faster, slower or the filter deleted completely. The $1 / 2$ digit LED is driven off of the 7 segment decoder with a zero reading blanked by connecting a D5 signal to RBI input of the decoder.

A voltage translation network is connected between the comparator output of the 8052A and the auto-zero input of the 7103A. The purpose of this network is to assure that, during auto-zero, the output of the comparator is at or near the threshold of the 7103A logic $(+2.5 \mathrm{~V})$ while the auto-cap is being charged to $V_{\text {REF }}(+1.0$ volts for a 2.000 V instrument). Otherwise, even with zero volts in,
some reference integrate period would be required to drive the comparator output to the threshold level. This would show up as an equivalent offset error. Once the divider network has been selected, the unit-to-unit variation should contribute less than a tenth of a count error. A second feature of the network is that it holds the source of switch 3 to $\approx+4 \mathrm{~V}$ during the integrate and deintegrate cycles of positive input voltages. During this time, the comparator output is clamped by an internal diode on the $7103 A$ to $\approx+5.7$ volts. Since the gate of switch 3 is at +5 volts for this off condition, the +1 volt Vgs of the FET assures the switch is off to the 1 or 2 pA leakage level. Finally, the back-to-back diodes are used to lower noise. In the normal operating mode they offer a high impedance and long integrating time constant to any noise pulses charging the auto-zero cap. At startup or recovery from an overload, their impedance is low to large signals so that the cap can be charged up in one auto-zero cycle.


FIGURE 3. 8052A/7103A $4 ½$ DIGIT A-D CONVERTER

## Component Selection

Except for the Reference Voltage, none of the component values are first-order important in determining the accuracy of the instrument. While this is undoubtedly an advantage of this approach, it does make the selection of nominal component values arbitrary at best. For instance the reference capacitor and auto-zero capacitor are each shown as $1.0 \mu \mathrm{~F}$. These relative large values are selected to give greater immunity to PC board leakage since smaller capacitors are adequate for charge injection errors or leakage errors from the $8052 / 7103$. The ratio of integrating resistor and capacitor is selected to give 9 volt swing for full scale inputs. This is a compromise between possibly saturating the integrator (at $\pm 14$ volts) due to tolerance build-up between the resistor, capacitor and clock and the errors a lower voltage swing could induce due to offsets referred to the output of the comparator. Again the $.22 \mu \mathrm{~F}$ value for
the integrating cap is selected for PC considerations alone since the very small leakage at the integrator input is nulled at auto-zero. A very important characteristic of the integrating cap is low dielectric absorption. A polypropylene cap gave excellent results in the application. In fact a good test for dielectric absorption is to test the subject cap in this circuit with the input tied to reference. This ratiometric condition should read 1.0000 and any deviation is probably due to dielectric absorption. In this test poly-carbonate caps typically read .9992 , polystyrene, .9997 and polypropylene, 1.0000. The increased temperature coefficient of polypropylene is of no consequence in this circuit. The dielectric absorption of the reference cap and auto-zero cap are only important, at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

## Max Clock Frequency

The maximum conversion rate of most dual-slope A-D converters is limited by the frequency response of the comparator. Even though the comparator in this circuit is all NPN with an open-loop gain-bandwidth product of 300 MHz , it is no exception. The comparator output follows the integrator ramp with a $3 \mu \mathrm{~S}$ delay. At a clock frequency of 160 kHz ( $6 \mu \mathrm{~S}$ period) half of the first reference integrate period is lost in delay. This means that the meter reading will change from 0 to 1 with $50 \mu \mathrm{~V}$ in, 1 to 2 with $150 \mu \mathrm{~V}, 2$ to 3 at $250 \mu \mathrm{~V}$, etc. This transition at midpoint is considered desirable by most users. However, if the clock frequency is increased appreciably above this, the instrument will flash " 1 " on noise peaks even when the input is shorted.

For many dedicated applications where the input signal is always one polarity, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, up to 500 kHz clock rate may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally.

The minimum clock frequency is established by leakage on the auto-zero and reference cap. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

## AUXILIARY INPUTS/OUTPUTS

The 7103 and 7103A include several pins that allow them to operate conveniently in more sophisticated systems. These include:

1. $4 \frac{1}{2} / 3 \frac{1}{2}$ (Pin 2). When high (or open) the internal counter operates as a full $41 / 2$ decade counter with a complete measurement cycle requiring 40,000 counts. When held low, the least significant decade is cleared and the clock is fed directly into the next decade. A measurement cycle now requires only 4000 clock pulses. All 5 digit drivers are active in either case with each digit lasting 200 counts with pin 2 high ( $41 / 2$ digit) and 20 counts for pin 2 low ( $31 / 2$ digit). The only difference between 7103A and 7103 is that they were tested with this pin high and low respectively. Actually, most 7103 will operate satisfactorily in a $41 / 2$ digit application. They simply have not received the more complex testing required to prove it.
2. Run/Hold (Pin 4). When high (or open) the $A / D$ will free-run with equally spaced measurement cycles every $40,000 / 4,000$ clock pulses. If taken low, the converter will continue the full measurement cycle that it ${ }^{1}$ is in and then hold this reading as long as pin 4 is held low. A short positive pulse (greater than 300 ns ) will now initiate a new measurement cycle beginning with $10,000 / 1,000$ counts of auto zero. Of course if the pulse occurs before the full measurement cycle ( $40,000 / 4,000$ counts) is completed, it will not be recognized and the converter will simply complete the measurement it is in. An external indication that a full
measurement cycle has been completed is that the first strobe pulse (see below) will occur 100/10 counts after the end of this cycle. Thus, if Run/Hold is low and has been low for at least 100/10 counts, the converter is holding and ready to start a new measurement when pulsed high.
3. Strobe (Pin 18). This is a negative going output pulse that aids in transferring the BCD data to external latches, UARTs or microprocessors. There are 5 negative going Strobe pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 100/10 pulses after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 200/20 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first Strobe pulse goes negative for $1 / 2$ clock pulse width. Similarly, after 200/20 clock pulses, digit 4 goes high and 100/10 pulses later the Strobe goes negative for the second time. This continues through digit 1 (LSD) when the fifth and last Strobe pulse is sent. The digit drive will continue to scan (unless the previous signal was over-range) but no additional Strobe pulses will be sent until a new measurement is available.


FIGURE 4. TIMING DIAGRAM
4. Busy (Pin 28). Busy goes high at the beginning of signal integrate and stays high until the first clock pulse after zero-crossing (or after end of measurement in the case of an over-range). The internal latches are enabled (i.e., transferred during the first clock pulse after busy and are latched at the end of this clock pulse. The circuit automatically reverts to auto-zero when not BUSY so it may also be considered a $\overline{\mathrm{A}-\mathrm{Z}}$ signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with clock and subtract 10,001/1,001 counts from the number of pulses received (as mentioned previously there is one NO count pulse in each reference integrate (cycle).
5. Over-range (Pin 14). This pin goes positive when the input signal exceeds the range $(20,000 / 2,000)$ of the converter. The output F-F is set at the end of Busy and is reset to zero at the beginning of Reference integrate in the next measurement cycle.
6. Under-range (Pin 13). This pin goes positive when the reading is $9 \%$ of range or less. The output F-F is set at the end of busy (if the new reading is $1800 / 180$ or less) and is reset at the beginning of signal integrate of the next reading.
7. Polarity (Pin 3). This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be used as a null detector by forcing equal $(+)$ and $(-)$ readings. The null at this point should be less than 0.1 LSB. This output becomes valid at the beginning of reference integrate and remains correct until it is re-validated for the next measurement.
8. Digit Drives (Pins 19, 24, 25, 26 and 27). The digit drives are a positive going signal that each last for 200/20 clock pulses. The scan sequence is $\mathrm{D}_{5}$ (MSD), $\mathrm{D}_{4}$, $D_{3}, D_{2}$ and $D_{1}$ (LSD). All five digits are scanned even when operating in the $31 / 2$ digit mode. The scan is continuous unless an over-range occurs. Then all digit drives are blanked from the end of the strobe sequence until the beginning of Reference Integrate when $D_{5}$ will start the scan again. This gives a blinking display as a visual indication of over-range.
9. BCD (pins 20, 21, 22 and 23). The Binary coded Decimal bits $\mathrm{B}_{8}, \mathrm{~B}_{4}, \mathrm{~B}_{2}$ and $\mathrm{B}_{1}$ are positive logic signals that go on simultaneously with the digit driver.

## INTERFACING WITH UARTS AND MICROPROCESSORS

Figure 5 shows a very simple interface between a freerunning 8052A/7103A and a UART. The five Strobe pulses start the transmission of the five data words. The digit 5 word is $0000 \times X \times X$, digit 4 is $1000 \times X X X$, digit 3 is $0100 \times X X X$, etc. Also the polarity is transmitted indirectly by using it to drive the Even Parity Enable Pin (EPE). If EPE of the receiver is held low, a parity flag at the receiver can be decoded as a positive signal, no flag as negative.


FIGURE 5. SIMPLE 7103/7103A TO UART INTERFACE
A more complex arrangement is shown in Fig. 6. Here the UART can instruct the A/D to begin a measurement sequence by a word on RRI. The Busy signal resets the Data Ready Reset (DRR). Again Strobe starts the transmit sequence. A quad 2 input multiplexer is used to superimpose polarity, over-range, and under-range onto the $\mathrm{D}_{5}$ word since in this instance it is known that $\mathrm{B}_{2}=\mathrm{B}_{4}=\mathrm{B}_{8}=0$.


FIGURE 6. COMPLEX 7103/7103A TO UART INTERFACE
Circuits for the 7103/7103A to interface directly with three popular microprocessors are shown in Figures 7, 8 and 9. The main differences in the circuits are that IM6100 with its 12 bit word capability can accept polarity, over-range, under-range, 4 bits of $B C D$ and 5 digits simultaneously where the 8080 and the MC6800 with 8 bits words need to have polarity, over-range and under-range multiplexed onto the Digit 5 word - as in the UART circuits. In each case the microprocessor can instruct the A/D when to begin a measurement and when to hold this measurement.


FIGURE 7. IM6100 TO 7103/7103A INTERFACE


FIGURE 8. Mc6800 TO 7103/7103A INTERFACE


FIGURE 9. INTEL 8080 TO 7103/7103A INTERFACE

## PACKAGE DIMENSIONS

14 Pin Plastic Dual-In-Line Package


28 Pin Plastic Dual-In-Line Package


14 Pin Ceramic Dual-In-Line Package


28 Pin Ceramic Dual-In-Line Package


ICL8068AIICL7103B 4½ Digit ICL8068/ICL7103 3½ Digit Precision A/D Converter

## FEATURES

- Typically less than $2 \mu \mathrm{~V}$ p-p noise ( 200.00 mv full scale)
- Accuracy guaranteed to $\pm 1$ count over entire $\pm \mathbf{2 0 , 0 0 0}$ counts ( 2.0000 volts full scale)
- Guaranteed zero reading for 0 volts input
- True polarity at zero count for precise null detection
- Single reference voltage required
- Over-range and under-range signals available for auto-ranging capability
- All outputs TTL compatible
- Medium quality reference (40ppm typical) on board
- Blinking display gives visual indication of overrange
- Six auxillary inputs/outputs are available for interfacing to UARTs, Microprocessors or other complex circuitry


## GENERAL DESCRIPTION

The 8068A/7103B is the latest addition to Intersil's growing family of A/D converters. With the 8068 low noise B-FET process, is ideally suited for low voltage, low impedance applications. When used in a 200.00 mV full scale configuration, it will give $10 \mu \mathrm{~V}$ /count resolution with $2 \mu \mathrm{~V}$ p-p noise. At the same time it has the dynamic range to handle signals as large as +3 volts or -5 volts with excellent linearity. The system uses the time-proven dual-slope integration technique with all its advantages, i.e., non-critical components, high rejection of noise and AC signals, noncritical clock frequency, almost perfect differential linearity and true ratiometric readings.
When only 2000 counts of resolution are required the 7103 can be wired for $3-1 / 2$ digits and give up to 30 readings/ second making it ideally suited for a wide variety of applications.


Figure 1. Functional Block Diagram

## ORDERING INFORMATION

3-1/2 Digit Pair     Part Temp.Range Package Order Number			
8068	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin plastic DIP	ICL8068CPD
8068	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	14 pin ceramic DIP	ICL8068CDD
7103	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin plastic DIP	ICL7103CPI
7103	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	28 pin ceramic DIP	ICL7103CDI

4-1/2 Digit Pair
Part Temp.Range
8068A $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
8068A $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$7103 \mathrm{~B} \quad 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$7103 \mathrm{~B} 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Package Order Number 14 pin plastic DIP ICL8068ACPD 14 pin ceramic.DIP ICL8068ACDD 28 pin plastic DIP ICL7103BCPI 28 pin ceramic DIP ICL7103BCDI

ABSOLUTE MAXIMUM RATINGS
Power Dissipation (Note 1) . . . . . . . . . . . . . . . . . . . . . . 500 mW
Storage Temperature . . . . . . . . . ......... . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
8068, 8068A

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 18 \mathrm{~V}$
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\pm 15 \mathrm{~V}$
Output Short Circuit Duration,
All Outputs (Note 3) Indefinite
Operating Temperature $\ldots . . . . . . . . . . . . . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 Sec .)
$300^{\circ} \mathrm{C}$

7103, 7103B
Source Current (IS) : . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
$\qquad$
$\qquad$
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA
Digital Input to $\mathrm{V}^{+}$. ...................................... $\mathrm{V}^{-}$to $\mathrm{V}^{+}$
Digital Input to $\mathrm{V}^{-} \ldots \ldots . . .$.
'Note 1: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $+70^{\circ} \mathrm{C}$. For higher temperatures, derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3: Short circuit may be to ground or either supply. Rating applies to $+70^{\circ} \mathrm{C}$ ambient temperature:

## SYSTEM ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{++}=+15 \mathrm{~V}, \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Clock Frequency Set for 3 Reading $\left./ \mathrm{Sec}\right)$

CHARACTERISTICS	CONDITIONS	8068/7103(1)			8068A/7103B(2)			UNITS
		MIN	TYP.	MAX	MIN	TYP	MAX	
Zero Input Reading .	$\begin{aligned} & \hline V_{\text {in }}=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.00 \mathrm{mV} \end{aligned}$	-00.00	$\pm 00.00$	+00.00	-00.00	$\pm 00.00$	+00.00	Digital Reading
Ratiometric Reading(3)	$\begin{aligned} & V_{\text {in }}=V_{\text {Ref. }} \\ & \text { Full Scale }=2.000 \mathrm{~V} \end{aligned}$	+0.999	+1.000	+1.001	+0.9999	+1.0000	+1.0001	Digital Reading
Linearity over $\pm$ Full Scale (error of reading from best straight line)	$-2 \mathrm{~V}=\mathrm{V}_{\text {in }} \leq+2 \mathrm{~V}$		0.2	1		0.5	1	Digital Count Error
Differential Linearity (difference between worse case step of adjacent counts and ideal step)	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq+2 \mathrm{~V} \quad$.		. 01	-		. 01		LSB
Rollover error (Difference in. reading for equal positive \& negative voltage near full scale)	$-V_{\text {in }}=+V_{\text {in }}=2 \mathrm{~V}$		0.2	1		0.5	1	Digital Count Error
Noise (P-P value not exceeded $95 \%$ of time)	$\begin{aligned} & V_{\text {in }}=0 \mathrm{~V} \\ & \quad \text { Full scale }=200.0 \mathrm{mV} \end{aligned}$		3		:	2		$\mu \mathrm{V}$
Leakage Current at Input	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$		200	300		100	200	pA
Zero Reading Drift	$\begin{aligned} & V_{\text {in }}=0 V \\ & 0^{\circ} \leq T_{A} \leq 50^{\circ} \mathrm{C} \end{aligned}$		1	5	'	0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {in }}+2 \mathrm{~V} \\ 0 \leq \mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C} \text { (4) } \\ \text { (ext. ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { ) } \\ \hline \end{array}$		3	15		2	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Note 1: Tested in 3-1/2 digit ( 2,000 count) circuit shown in Fig. 3 clock frequency 12 kHz . Pin 27103 connected to Gnd.
2: Tested in 4-1/2 digit ( 20,000 count) circuit shown in Fig. 3 clock frequency 120 kHz . Pin 27103 A open.
3: Tested with a low dielectric absorption integrating capacitor. See Component Selection Section.
4: The temperature range can be extended to $+70^{\circ} \mathrm{C}$ and beyond as long as the auto-zero and reference capacitors are increased to absorb the higher leakage of the 8068.

## 8068 ELECTRICAL CHARACTERISTICS <br> (V $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8068			8068A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
EACH OPERATIONAL AMPLIFIER								
Input Offset Voltage	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$		20	65		20	65	mV
Input Current (either input)(Note 1)	$\mathrm{VCM}=0 \mathrm{~V}$		175	250		80	150	pA
Common-Mode Rejection Ratio	$\mathrm{VCM}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
Non-Linear Component of CommonMode Rejection Ratio* (Note 2)	$\mathrm{V}_{\text {CM }}= \pm 2 \mathrm{~V}$		110			110		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	20,000			20,000			V/V
Slew Rate			6	.		6		$\mathrm{V} / \mu \mathrm{S}$
Unity Gain Bandwidth			2			2		MHz
Output Short-Circuit Current			5	10		5	10	mA
COMPARATOR AMPLIFIER								
Small-signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=30 \mathrm{k} \Omega$		4000					V/V
Positive Qutput Voltage Swing		+12	+13		+12	+13		V
Negative Output Voltage Swing		-2.0	-2.6		-2.0	-2.6		V
VOLTAGE REFERENCE								
Output Voltage		1.5	1.75	2.0	1.60	1.75	1.90	V
Output Resistance			5			5		ohms
Temperature Coefficient			50			40		ppm $/{ }^{\circ} \mathrm{C}$
$\pm 15 \mathrm{~V}$ Supply Range		$\pm 12$	$\pm 15$	$\pm 18$	$\pm 12$	$\pm 15$	$\pm 18$	Volts
Supply Current Total			8	14		8	14	mA

Note 1: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $T j$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, Pd. $T_{j}-T_{A}+(-) j A P d$ where $\left.{ }^{-}\right) j \mathrm{~A}$ is the thermal resistance from junction to ambient.
2: This is the only component that causes error in dual-slope converter

7103 AND 7103B ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}+=+5.0 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$\begin{gathered} 1 \\ N \\ P \\ U \\ T \\ S \end{gathered}$	Clock In, Run/Hold, 4-1/2/3-1/2	$\begin{aligned} & \mathrm{linL} \\ & \mathrm{linH} \end{aligned}$	$\begin{aligned} & V_{\text {in }}=0 \\ & V_{\text {in }}=+5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & .2 \\ & . \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
	Comp. In	linL   linH	$\begin{aligned} & V_{\text {in }}=0 \\ & V_{\text {in }}=+5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & .1 \\ & .1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\begin{aligned} & \mathrm{O} \\ & U \\ & T \\ & P \\ & U \\ & T \\ & S \end{aligned}$	All Outputs	VOL	$1 \mathrm{OL}=1.6 \mathrm{ma}$		. 25	40	V
	$\begin{aligned} & \mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{4}, \mathrm{~B}_{8} \\ & \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5} \end{aligned}$	VOH	$\mathrm{lOH}=-1 \mathrm{~mA}$.	2.4	4.2		V
	Busy, Strobe, Over-range, Under-range Polarity	VOH	$\mathrm{IOH}^{\prime}=-10 \mu \mathrm{~A}$	4.9	4.99		V
$\begin{gathered} \hline \mathrm{S} \\ \mathrm{~W} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{C} \\ \mathrm{H} \end{gathered}$	Switches 1,3,4,5,6	RDS On			400		!
	Switch 2	RDS ON			1200		,
	Switch Leakage (All).	ID OFF			2		pA
S   $U$   $P$   $P$	+5V Supply Range			+4	+5	+6	Volts
	-15V Supply Range			-12	-15	-18	Volts
	+5V Supply Current	ICC+			20	30	mA
	-15V Supply Current	ICC-		,	4	6	mA

## THEORY OF OPERATION

Figure" 1 shows a function diagram for an A/D converter using the 8068/7103 pair. In this circuit, each measurement cycle is divided into four equal parts. The first part, phase 1 , is the auto-zero cycle. The switch driver decoder recognizes this state and turns on hex switches number 1,2 , and 3. Switches 1 and 2 impress a voltage equal to $V_{\text {REF }}$ across the reference capacitor. Switch. 3 closes' a loop around the integrator and comparator. The purpose of this loop is to charge up the auto-zero capacitor until the integrator output does not change with time. During the second part, Phase 2, switches 2,3 and 3 are opened and switch 4 is closed. If the input voltage is zero, the buffer, integrator and comparator will see the same voltages that existed in the previous state. Thus, the integrator output will not change but will remain stationary during the entire signal-integrate cycle. If $\mathrm{V}_{\text {IN }}$ is not equal to zero, an unbalanced condition exists compared to the auto-zero cycle and the integrator will generate a ramp whose slope is proportional to $\mathrm{V}_{\mathrm{IN}}$. At the end of this cycle, the sign of the ramp is latched into the polarity F/F. The final part, reference integrate, includes phases $3 \& 4$. The switch driver decoder uses the output of the polarity F/F in deciding whether to close switch 5 or 6 . If the input signal was positive; switch 6 is closed and a voltage which is VREF more negative than during auto-zero is impressed on the buffer input. If the input signal was negative switch 5 is closed and a voltage which is VREF more positive than during auto-zero is impressed on the buffer input. Thus, the reference capacitor generates the equivalent of a ( + ) reference or a ( - ) reference from the single reference voltage with negligible error. The reference voltage returns the output of the integrator to zero. The time, or number of counts, required to do this is proportional to the input voltage. Since the reference cycle can be twice as long as the signal integrate cycle, the input voltage required to give a full scale reading $=2 V_{\text {REF }}$. The circuit, as described to this point, is not new to this application. It has be used successfully for several years. However, this system makes three major contributions to the accuracy of this circuit. These are: (1) low charge injection, (2) low noise BiFET op amp, and (3) zero-crossing flip-flop.

## 1. Low Charge Injection.

During auto-zero, there is no problem in charging the capacitors to the correct voltage. The problem is getting the switches off without changing this voltage. As the gate is driven off, the gate-to-drain capacitance of the switch injects a charge on the reference or auto-zero capacitor, changing its voltage. The designer, using discrete components, is forced into critical board layouts where charges of opposite polarity are injected to compensate or neutralize the driver injection. This balance will be upset by any unit-to-unit variation of switch capacitance so at best the final design is a compromise. In the 8068/7103 the critical layout has been done on the semiconductor chip and need not concern the user. Also, since a silicon-gate process is used for the switches, the unit-to-unit variation is extremely low. The net result is to give an error due to charge injection that is so low it is difficult to measure; but certainly less than $5 \mu \mathrm{~V}$ referred to the input.

## 2. Bi-FET Op Amps.

Both the buffer and integrator use low noise Bi-FET inputs in a configuration that minimizes the noise voltage generated. The main contribution to system noise is the
residual noise trapped on the auto-zero capacitor when the switch opens. With typically $2 \mu \mathrm{~V}$ of noise, the low noise of the Bi-FET 8068 keeps this error to a minimum.

## 3. Zero-Crossing Flip Flop.

The problem that the zero-crossing flip-flop is designed to solve is shown in figure 2 .


Figure 2. Integrator Output Near Zero-Crossing
The integrator output is approaching the zero-crossing point where the clock will be stopped and the reading displayed. The clock pulse feedthrough superimposed upon this ramp will cause a false reading by stopping the count prematurely. For a 20,000 count instrument, the ramp is changing approximately 0.50 mV per clock pulse ( 10 volt max integrator output divided by 20,000 counts). The clock pulses have to be less than $100 \mu \mathrm{~V}$ peak to avoid causing significant errors. The circuit layout to achieve this can be time consuming at best and impossible at worst. The suggested circuit gets around this problem by feeding the zero-crossing information into a flip-flop instead of using it directly. The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have died down. Any false zero-crossing caused by clock pulses are not recognized. Of course; the flip-flop delays the true zerocrossing by one count in every instance. If a correction was not made, the display would always be one count too high. The correction is to disable the counter for one clock pulse at the beginning of phase 3 . This one count delay compensates for the delay of the zero-crossing flip-flop and allows the correct number to be latched into the display: Similarly, a one count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001. No delay occurs during phase 2 so that true ratiometric readings are possible.

## APPLICATIONS

Specific Circuits Using the 8068A/7103B.
Figure 3 shows the complete circuit for a $\pm 4-1 / 2$ digit $( \pm 200.0 \mathrm{mV}$ full scale) A/D with LED readout using the internal reference of the 8068 A . If an external reference is used, the reference supply (pin 7) should be connected to ground and the 300 pF reference cap deleted. The circuit also shows a typical R-C input filter. Depending on the application, the time-constant of this filter can be made faster, slower or the filter deleted completely. The $1 / 2$ digit LED is driven from the 7 segment decoder with a zero reading blanked by connecting a D5 signal to RBI input of the decoder.
A voltage translation network is connected between the comparator output of the 8068A and the auto-zero input of the 7103 B . The purpose of this network is to assure that, during auto-zero, the output of the comparator is at or near the threshold of the 7103B logic ( +2.5 V ) while the auto-zero capacitor is being charged to $V_{\text {REF }}(+100.0 \mathrm{mV}$ for a 200.0 mV instrument). Otherwise, even with zero volts in, some reference integrate period would be required to drive the comparator output to the threshold level. This would show
up as an equivalent offset error. Once the divider network has been selected, the unit-to-unit variation should contribute less than a tenth of a count error. A second feature of the network is that it holds the source of switch 3 to approximately +4 V during the integrate and deintegrate cycles of positive input voltages. During this time, the comparator output is clamped by an internal diode on the 7103 B to approximately +5.7 V volts. Since the gate of switch 3 is at +5 volts for this off condition, the +1 volt Vgs of the FET assures the switch is off to the 1 or 2pA typical leakage level. Finally, the back-to-back diodes are used to lower the noise. In the normal operating mode they offer a high impedance and long integrating time.constant to any noise pulses charging the auto-zero cap. At startup or recovery from an overload, their impedance is low to large signals so that the cap can be charged up in one auto-zero cycle. Therefore the circuit is identical to the 2.0000 V scale for the 8052A/7103A (see ICL8052/ICL7103 data sheet for details). However, there are three changes to operate the 8068 A at 200.00 mV .

1. The buffer is run at a gain of 10 with the $90 \mathrm{~K}, 10 \mathrm{~K}$ voltage divider inserted in the $(-)$ input of the 8068 A . The gain does not have to be set precisely at 10 since the gain of the buffer is used both in the integrate and deintegrate phase.
2. The reference cap is increased to $10 \mu \mathrm{~F}$. Since the reference voltage is 100 mV instead of 1 V this capacitor is ten times as sensitive to leakage droop or charge injection.
3. A low cost diode (IN914 or equivalent) is required to clamp the comparator output for negative going signals. Without this clamp, the thermal dissipation of the comparator would be different in negative saturation than at auto-zero voltages. This would induce an offset in the comparator causing a different zero crossing at the autozero value and therefore an error for minus input signal. This diode is used on all scales of the 8068A.

## Other Circuits Using the 8068A.

For optimum performance, care "must be taken in the selection of values for the integrating capacitor and resistor,
reference capacitor and conversion rate. These values must be selected to suit the particular application.
The most important consideration is that the integrator output swing (for full scale input) be as large as possible. This will reduce errors due to the comparator such as noise and thermal induced offsets. For $\pm 15 \mathrm{~V}$ supplies a $\pm 10 \mathrm{~V}$ integrator swing is recommended. For 100 kHz clock (2-1/2 reading/sec) a 100 K integrating resistor and $.22 \mu \mathrm{~F}$ capacitor should be used. For different frequencies the capacitor should be changed to keep a $\pm 10 \mathrm{~V}$ swing. For scale factors other than 200.00 mV the gain of the buffer should be changed to give a $\pm 2 \mathrm{~V}$ buffer output. For 2.0000 V full scale this means unity gain and for $20,000 \mathrm{mV}(1 \mu \mathrm{~V}$ resolution) a gain of 100 is necessary. Not all 8068A can operate properly at a gain of 100 since their offset should be less than 10 mV in order to accommodate the auto-zero circuitry. However, for devices selected with less than 10 mV offset, the noise performance is reasonable with approximately $0.7 . \mu \mathrm{V}$-p noise around zero, increasing. linearly to approximately $1.5 \mu \mathrm{~V}$ near full scale. On all scales less than 200.00 mV , the voltage translation network should be made adjustable as an offset trim.
The auto-zero cap should be $1 \mu \mathrm{~F}$ for all scales and the reference capacitor should be $1 \mu \mathrm{~F}$ times the gain of the buffer amplifier. At this value if the input leakages of the 8068A are equal, the droop effects will cancel giving zero offset. This is especially important at high temperature. Finally the integrating capacitor should have low dielectric absorption. Polypropylene capacitors give negligible errors: at reasonable cost. A good test for dielectric absorption is to test the subject capacitor in this circuit with the input tied to reference. This ratiometric condition should read 1.0000 and any deviation is probably due to dielectric absorption. In this test polycarbonate capacitor typically read .9992, polystyrene, . 9997 and polypropylene, 1.0000. The increased temperature coefficient of polypropylene is of no consequence in this circuit. The dielectric absorption of the reference capacitor and auto-zero capacitor are only important at power-on or when the circuit is recovering from


Figure 3. 8068A/7103B 4-1/2 Digit A-D Converter
an overload. Thus, smaller or cheaper capacitors can be used here if accurate readings are not required for the first few seconds of recovery.

## Max Clock Frequency

The maximum conversion rate of most dual-slope $A / D$ converters is limited by the frequency response of the comparator. Even though the comparator in this circuit is all NPN with an open-loop gain-bandwidth product of 300 MHz , it is no exception. The comparator output follows the integrator ramp with a $3 \mu$ s delay. At a clock frequency of $160 \mathrm{kHz}(6 \mu \mathrm{~s}$ period) half of the first reference integrate period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}$; 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at mid-point is considered desirable by most users. However, if the clock frequency is increased appreciably above this, the instrument will flash " 1 " on noise peaks even when the input is shorted.

For many dedicated applications where the input signal is always one polarity, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, up to 500 kHz clock rate may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally.
The minimum clock frequency is established by leakage on the auto-zero and reference cap. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

## AUXILIARY INPUTS/OUTPUTS

The 7103 and 7103B include several pins that allow them to operate conveniently in more sophisticated systems. These include:

1. 4-1/2/3-1/2 (Pin 2). When high or open) the internal counter operates as a full 4-1/2 decade counter with a complete measurement cycle requiring 40,000 counts. When hold low, the least significant decade is cleared and the clock is fed directly into the next decade. A measurement cycle now required only 4000 clock pulses. All 5 digit drivers are active in either case with each digit lasting 200 counts with pin 2 high (4-1/2 digit) and 20 counts for pin 2 low (3-1/2 digit). The only difference between $7103 B$ and 7103 is that they were tested with this pin high and low respectively. Actually, most 7103 will operate satisfactorily in a 4-1/2 digit application. They simply have not received the more complex testing required to prove it.
2. Run/Hold (Pin 4). When high (or open) the $A / D$ will freerun with equally spaced measurement cycles every $40,000 / 4,000$ clock pulses. If taken low, the converter will continue the full measurement cycle that it is in and then hold this reading as long as pin 4 is held low. A short positive pulse (greater than 300 ns ) will now initiate a new measurement cycle beginning with 10,000/1,000 counts of auto zero. Of course if the puise occurs before the full measurement cycle ( $40,000 / 4,000$ counts) is completed, it will not be recognized and the converter will simply complete the measurement it is in. An external indication that a full measurement cycle has been completed is that the first strobe pulse (see below) will occur 100/10 counts after the end of this cycle. Thus, if Run/Hold is low and has been low for at least $100 / 10$ counts, the converter is holding and ready to start a new measurement when pulsed high.
3. Strobe (Pin 18). This is a negative going output pulse that aids in transferring the BCD data to external latches,

UARTs or microprocessors. There are 5 negative going Strobe pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 100/10 pulses after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 200/20 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first Strobe pulse goes negative for $1 / 2$ clock pulse width. Similarly, after 200/20 clock pulses, digit 4 goes high and 100/10 pulses later the Strobe goes negative for the second time. This continues through digit 1. (LSD) when the fifth and last Strobe pulse is sent. The digit drive will continue to scan (unless the previous signal was overrange) but no additional Strobe pulses will be sent until a new measurement is available.
4. Busy (Pin 28). Busy goes high at the beginning of signal integrate and stays high until the first clock pulse after zero-crossing (or after end of measurement in the case of an over-range). The internal latches are enabled (i.e., transferred during the first clock pulse after busy and are latched at the end of this clock pulse. The circuit automatically reverts to auto-zero when not BUSY so it may also be considered a $\overline{A-Z}$ signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with clock and subtract 10,001/1,001 counts from the number of pulses received las mentioned previously there is one NO count pulse in each reference integrate (cycle).


Figure 4. Timing Diagram
5. Over-range (Pin 14). This pin goes positive when the input signal exceeds the range ( $20,000 / 2,000$ ) of the converter. The output F-F is set at the end of Busy and is reset to zero at the beginning of Reference integrate in the next measurement cycle.
6. Under-range (Pin 13). This pin goes positive when the reading is $9 \%$ of range or less. The output $F-F$ is set at the end of busy (if the new reading is $1800 / 180$ or less) and is reset at the beginning of signal integrate of the next reading.
7. Polarity (Pin 3). This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be used as a null detector by forcing equal $(+)$ and $(-)$ readings. The null at this point should be less than 0.1 LSB . This output becomes valid at the beginning of reference integrate and remains correct until it is re-validated for the next measurement.
8. Digit Drives (Pins 19, 24, 25, 26 and 27). The digit drives are a positive going signal that each last for 200/20 clock pulses. The scan sequence is $D_{5}(M S D), D_{4}, D_{3}, D_{2}$ and $D_{1}$ (LSD). All five digits are scanned even when operating in the $3-1 / 2$ digit mode. The scan is continuous unless an over-range occurs. Then all digit drives are blanked from


Figure 5. Simple 7103/7103B to UART Interface
the end of the strobe sequence until the beginning of Reference Integrate when $\mathrm{D}_{5}$ will start the scan again. This gives a blinking display as a visual indication of overrange
9. BCD (Pins 20, 21, 22 and 23). The Binary coded Decimal bits $B_{8}, B_{4}, B_{2}$ and $B_{1}$ are positive logic signals that go on simultaneously with the digit driver.

## INTERFACING WITH UARTS AND MICROPROCESSORS

Figure 5 shows a very simple interface between a freerunning 8068A/7103B and a UART. The five Strobe pulses start the transmission of the five data words. The digit 5 word is $0000 \times X X X$, digit 4 is $1000 \times X X X$, digit 3 is $0100 \times X X X$, etc. Also the polarity is transmitted indirectly by using it to drive the Even Parity Enable Pin (EPE). If EPE of the receiver is held low, the parity flag at the receiver can be decoded as a positive signal, no flag as negative. Circuits for the 7103 to interface directly with three popular microprocessors are shown in Figures 7, 8 and 9. The main differences in the circuits are that IM6100 with its 12 bit word capability can accept polarity, over-range and under-range multiplexed onto the Digit 5 - as in the UART circuits. In each case the microprocessor can insiruct the $A / D$ when to begin a measurement and when to hold this measurement.


Figure 6. Complex 7103;7103B to UART.Interface


Figure 7. IM6100 to 7103/7103B Interface


Figure 8. Mc6800 to 7103/7103B Interface


Figúre 9. Intel 8080 to $7103 / 7103 \mathrm{~B}$ Interface

## PACKAGE DIMENSIONS

14 Pin CERDIP Dual-In-Line Package
14 Pin Ceramic Dual-In-Line Package


28 Pin Ceramic Dual-In-Line Package


# ICL7106/ICL7107 3½ Digit Single Chip A/D Converter 

## FEATURES

- Guaranteed zero reading for 0 volts input on all scales.
- True polarity at zero for precise null detection.
- 1 pA input current typical.
- True differential input and reference.
- Direct display drive - no external components required. - LCD ICL7106
- LED ICL7107
- Low noise - less than $15 \mu \mathrm{~V}$ pk-pk.
- On-chip clock and reference.
- Low power dissipation - typically less than 10 mW .
- No additional active circuits required.
- Evaluation Kit available.


## GENERAL DESCRIPTION

The Intersil ICL7106 and 7107 are high performance, low power 3-1/2 digit A/D converters. All the necessary active devices are contained on a single CMOS I.C., including seven segment decoders, display drivers, reference, and a clock. The 7106 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7107 will directly drive an instrument-size light emitting diode (LED) display.
The 7106 and 7107 bring together an unprecedented combination of high accuracy, versatility, and true economy. High accuracy like auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. The versatility of true differential input and reference is useful in'all systems, but gives the designer an uncommon advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally the true economy of single power supply operation (7106), enabling a high performance panel meter to be built with the addition of only 7 passive components and a display.


ABSOLUTE MAXIMUM RATINGS
ICL 7106
Supply Voltage (V+ to V-) . 15 V
Analog Input Voltage (either input) (Note 1) ...... V $\mathrm{V}+$ to V -
Reference Input Voltage (either input) ............. V+ to V-
Clock Input .......................................... Test to V+
Power Dissipation (Note 2)
Ceramic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 mW
Plastic Package 800 mW
Operating Temperature ......................... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature ..................... $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec ) . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$

## ICL 7107

Supply Voltage V+ ..... $+6 \mathrm{~V}$
V- ..... -9V
Analog Input Voltage (either input) (Note 1) ..... $V+$ to $V$
Reference Input Voltage (either input) ..... $\mathrm{V}+$ to V -
Clock Input ..... Gnd to $V+$Power Dissipation (Notè 1)
Ceramic Package 1000 mW
Plastic Package ..... 800 mW
Operating Temperature ..... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature ..... $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec ) ..... $300^{\circ} \mathrm{C}$

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device, is mounted with all leads soldered to printed circuit board.

ELECTRICAL CHARACTERISTICS (Note 3)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS.
Zero Input Reading	$\begin{array}{\|l} \text { Vin }=0.0 \mathrm{~V} \\ \text { Full Scale }=200.0 \mathrm{mV} \end{array}$	-000.0	$\pm 000.0$	+000.0	Digital Reading
Ratiometric Reading	$\begin{aligned} & \text { Vin }=\text { Vref } \\ & \text { Vref }=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$-\mathrm{Vin}=+\mathrm{Vin} \simeq 200.0 \mathrm{mV}$	-1	$\pm .2$	+1	Counts
Linearity (Max: deviation'from best straight line fit)	Full scale $=200 \mathrm{mV}$ or full scale $=2.000 \mathrm{~V}$	-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & \text { Vcm }= \pm 1 \mathrm{~V}, \mathrm{Vin}=0 \mathrm{~V} . \\ & \text { Full Scale }=200.0 \mathrm{mV} . \end{aligned}$		50	.	$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk - Pk value not exceeded 95\% of time)	$\begin{aligned} & \text { Vin }=0 V \\ & \text { Fuill Scale }=200.0 \mathrm{mV} \end{aligned}$		15		$\mu \mathrm{V}$
Leakage Current @ Input	Vin $=0 \mathrm{~V}$	1	1	10	pA
Zero Reading Drift	$\begin{aligned} & \operatorname{Vin}=0 \\ & 0^{\circ}<T_{A}<70^{\circ} \mathrm{C} \end{aligned}$	-	0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \operatorname{Vin}=199.0 \mathrm{mV} \\ & 0<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \end{aligned}$   (Ext.Ref.Oppm $/{ }^{\circ} \mathrm{C}$ )	.	1	5	ppm/ ${ }^{\circ} \mathrm{C}$
Supply Current (Does not include LED current for 7107)	Vin $=0$		0.8	1.8	mA
Analog Common Voltage (With respect to pos. supply)	$25 \mathrm{~K} \Omega$ between Common \& pos. Supply	2.4	2.8	3.2	Volts
Temp. Coeff. of Analog Common (with respect to pos. Supply)	$25 \mathrm{~K} \Omega$ between Common \& pos. Supply	-	80		ppm $/{ }^{\circ} \mathrm{C}$
7106 ONLY Pk-Pk Segment Drive Voltage (Note 5)	$V$ Supply $=9 \mathrm{~V}$	4	$5$	6	Volts
7106 ONLY   Pk-Pk Backplane Drive Voltage (Note 5)	$V$ Supply $=9 \mathrm{~V}$	4	5	6	Volts
$\begin{array}{\|l} \hline 7107 \text { ONLY } \\ \text { Segment Sinking Current } \\ \text { (Except Pin 19) } \\ \hline \end{array}$	$\begin{aligned} & \text { +Supply }=5.0 \mathrm{~V} \\ & \text { Segment voltage }=3 \mathrm{~V} \end{aligned}$	5	8.0		mA
$7107 \text { ONLY }$   Segment Sinking Current (Pin 19 only)	$\begin{aligned} & \text { +Supply }=5.0 \mathrm{~V} \\ & \text { Segment voltage }=3 \mathrm{~V} \end{aligned}$	10	16	$\cdots$	mA

Note 3: Unless otherwise noted, specifications apply to both the 7106 and 7107 at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{Clock}}=48 \mathrm{kHz}$. 7106 is tested in the circuit of Figure 1. 7107 is tested in the circuit of Figure 2.

Note 4: Refer to "Differential Input" discussion on page 4.
Note 5: Back plane drive is in phase with segment drive for 'off' segment, $180^{\circ}$ out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .

## TEST CIRCUITS



Figure 1: 7106

## DETAILED DESCRIPTION ANALOG SECTION

Figure 3 shows the Block Diagram of the Analog Section for the ICL 7106 and 7107. Each measurement cycle is divided


Figure 2: 7107
into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) deintegrate (DE).


## 1. Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog common. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $C_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

## 2. Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between input
high and input low for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, input low can be tied to analog common to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

## 3. De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog common and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{\mathrm{Vin}}{\mathrm{Vref}}\right)$.

## Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worse case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

## Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for ( + ) or $(-)$ input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count for the worse case condition. (See Component Values Selection below).

## Analog Common

This pin is included primarily to set the common mode voltage for battery operation (7106) or for any system where the input signals are floating with respect to the power supply. The common pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6V.' However, the analog common has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ( $>7 \mathrm{~V}$ ), the common voltage will have a low voltage coefficient (. $001 \% / \%$ ), low output impedance $(\sim 15 \Omega)$, and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on-chip reference should also be recognized, however. With the 7107, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from 25 $\mu \mathrm{V}$ to $80 \mu \mathrm{Vpk}-\mathrm{pk}$. Also the linearity in going from a high dissipation count such as 1000 ( 20 segments on) to a low dissipation count such as 1111 ( 8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. All
these problems are of course eliminated if an external reference is used.

The 7106, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as showr in Fig. 4.


Figure 4: Using an External Reference
1

Analog common is also the voltage the input returns to during auto-zero and de-integrate. If signal low is different from analog common, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications input low will be set at a fixed known voltage (power supply common for instance). In this application, analog common should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently referenced to analog common, it should be since this removes the common mode voltage from the reference system.
Within the IC, analog common is tied to an $N$ channel FET that can sink 30 mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so common may easily be tied to a more negative voltage thus over-riding the internal reference.

## Test

The test pin serves two functions. On the 7106 it is coupled to the internally generated digital supply through a $500 \Omega$ resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application.


Figure 5: Simple Inverter for Fixed Decimal Point


Figure 6: Exclusive 'OR' Gate for Decimal Point Drive

The second function is a "lamp test". When Test is pulled high (to + supply) all segments will be turned on and the display should read-1888. Caution: on the 7106, in the lamp test mode, the segments have a constant d-c voltage (no square-wave) and will burn the LCD display if left in this mode for several minutes.

## DIGITAL SECTION

Figures 7 and 8 show the digital section for the 7106 and $7 \cdot 107$, respectively. In the 7106, an internal digital ground is generated from a 6 volt Zener diode and a large $P$ channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequericy and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases neglible d-c voltage exists across the segments.
Figure 8 is the Digital Section of the 7107. It is identical except the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA.


Figure 7: Digital Section 7106


Figure 8: Digital Section 7107

## System Timing

Figure 9 shows the clocking arrangement used in the 7106 and 7107. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.


Figure 9: Clock Circuits
The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate ( 0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 (16,000 clock pulses) independent of input voltage. For three readings/ second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 33,1 / 3 \mathrm{k} \cdot \mathrm{Hz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}$, $66.2 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that

40 kHz ( 2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz ).

## COMPONENT VALUE SELECTION

## 1. Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, $470 \mathrm{~K} \Omega$ is near optimum and similarly a $47 \mathrm{~K} \Omega$ for a 200.0 mV scale.

## 2. Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7106 or the 7107, when the analog common is used as a reference, a nominal $\pm 2$ volt full scale integrator swing is fine. For the 7107 with $\pm 5$ volt supplies and analog common tied to supply ground, a $\pm 3.5$ to $\pm 4$ volt swing is nominal. For three readings/ second ( 48 kHz clock), nominal values for $\mathrm{C}_{\mathrm{int}}$ are .22 and $.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

## 3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise
is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 volt scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

## 4. Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the reference low is not at analog common) and a 200 mV scale is used, a larger value is required to prevent rollover error. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

## 5. Oscillator Components

For all ranges of frequency a $100 \mathrm{~K} \Omega$, resistor is recommended and the capacitor is selected from the equation $f=\frac{45}{R C}$. For 48 kHz clock ( 3 readings/second), $C$ $=100 \mathrm{pF}$.

## 6. Reference Voltage

The analog input required to generate full-scale output ( 2000 counts) is: Vin $=2$ Vref. Thus, for the 200.0 mV and 2.000 volt scale, Vref should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select Vref $=.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{~K} \Omega$ and $.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The 7107 with $\pm 5$ volts supplies can accept input signals up to $\pm 4$ volts. Another advantage of this system occurs when a digital reading of zero is desired for Vin $\neq 0$. Temperature
and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between analog high and common and the variable (or fixed) offset voltage between common and analog low.

## 7. 7107 Power Supplies

The 7107 is designed to work from $\pm 5$ volt supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application.


Figure 10: Generating Negative Supply from $+5 v$

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than $\pm 1.5$ volts.
3. An external reference is used.

## TYPICAL APPLICATIONS

The 7106 and 7107 may be used in a wide variety of configurations. The circuits which follow show some of the


Figure 11: 7106 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9V battery).
possibilities, and serve to illustrate the exceptional versatility of these A/D converters.


Figure 12: 7107 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog Common on page 4).

## TYPICAL APPLICATIONS (Contd.)



Figure 13:7107 with an external band-gap reference (1.2V type). IN LO is tied to COMMON, thus establishing the correct common mode voltage. If COMMON is not shorted to GND, the input voltage may float with respect to the power supply and COMMON acts as a preregulator for the reference. If COMMON is shorted to GND, the input is single ended (referred to supply ground) and the pre-regulator is over-ridden.


Figure 15: 7106/7107: Recommended component values for 2.000 V full scale.


Figure 17: 7107 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.


Figure 14: 7107 with Zener diode reference. Since low T.C. zeners have breakdown voltages -6.8 V , diode must be placed across the total supply (10V). As in the case of Figure 12, IN LO may be tied to either COMMON or GND.


Figure 16: 7107 operated from single +5 V supply. An external reference must be used in this application, since the voltage between $\mathrm{V}+$ and V - is insufficient for correct operation of the internal reference.


Figure 18: 7106 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

## TYPICAL APPLICATIONS (Contd.)



Figure 19: Circuit for developing Underrange and Overrange signals from 7106 outputs.


Figure 20: Circuit for developing Underrange and Overrange signals from 7107 outputs. The LM339 is required to ensure logic compatibility with heavy display loading.


Figure 21: AC to DC Converter with 7106. Test is used as a common mode reference level to ensure compatibility with most op-amps.


Figure 22: Display Buffering for increased drive current. Requires four DM7407 Hex Buffers. Each buffers is capable of sinking 40 mA max.

## 7106/7107 EVALUATION KITS

After purchasing a sample of the 7106 or the 7107 , the majority of users will want to build a simple voltmeter. The parts can then be evaluated against the data sheet specifications, and tried out in the intended application. However, locating and purchasing even the small number of additional components required, then wiring a breadboard, can often cause delays of days or sometimes weeks. To avoid this problem and facilitate evaluation of these unique circuits, Intersil is offering a kit which contains all the necessary components to build a $31 / 2$ digit panel meter. With the help of this kit, an engineer or technician can have the system "up and running" in about half an hour.
Two kits are offered, the ICL7106EV/KIT and the ICL7107EV/KIT. Both contain the appropriate IC, a circuit board, a display (LCD for $7106 E V / K I T$, LEDs for 7107EV/KIT), passive components, and miscellaneous hardware.


## APPLICATION NOTES

A016 "Selecting A/D Converters," by David Fullagar
A017 "The Integrating A/D Converter," by Lee Evans
A018 "Do's and Dont's of Applying A/D Converters," by Peter Bradshaw and Skip Osgood
A019 " $41 / 2$ Digit Panel Meter Demonstrator/Instrumentation Boards," by Michael Dufort.
A023 "Low Cost Digital Panel Meter Designs," by David Fullagar \& Michael Dufort.

## PACKAGE DIMENSIONS TYPICAL CONNECTION DIAGRAMS

40 Pin Plastic Dual-in-Line Package


40 Pin Ceramic Dual-in-Line Package


# ICL7116/ICL7117 31⁄2 Digit Single Chip A/D Converter with Display Hold 

## FEATURES

- HOLD Reading Input allows indefinite display hold
- Guaranteed zero reading for 0 volts input on all scales.
- True polarity at zero for precise null detection.
- 1 pA input current typical.
- True differential input and reference.
- Direct display drive - no external components required. - LCD ICL7116
- LED ICL7117
- Low noise - less than $15 \mu \mathrm{~V}$ pk-pk typical.
- On-chip clock and reference.
- Low power dissipation - typically less than 10 mW .
- No additional active circuits required.


## GENERAL DESCRIPTION

The Intersil ICL7116 and 7117 are high performance, low power $3-1 / 2$ digit $A / D$ converters. All the necessary active devices are contained on a single CMOS I.C., including
seven segment decoders, display drivers, reference, and a clock. The 7116 is designed to interface with a liquid crystal display (LCD) and includes a backplane drive; the 7117 will directly drive an instrument-size light emitting diode (LED) display.
The 7116 and 7117 have almost all of the features of the 7106 and 7107 with the addition of a HOLD Reading input. With this input, it is possible to make a measurement and then retain the value on the display indefinitely. To make room for this feature the reference input has been referenced to Common rather than being fully differential. These circuits retain the accuracy, versatility, and true economy of the 7106 and 7107. High accuracy like auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA maximum, and roll over error of less than one count. The versatility of true differential input is of particular advantage when measuring load cells, strain gauges and other bridgetype transducers. And finally the true economy of single power supply operation (7116), enabling a high performance panel meter to be built with the addition of only seven passive components and a display.

## TYPICAL CONNECTION DIAGRAMS



## ABSOLUTE MAXIMUM RATINGS ICL7116

Supply Voltage ( $\mathrm{V}^{+}$to $\mathrm{V}^{-}$) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V
Analog Input Voltage (either input) (Note 1) ....... $\mathrm{V}^{+}$to $\mathrm{V}^{-}$
Reference Input Voltage'(either input) ............... $\mathrm{V}^{+}$to $\mathrm{V}^{-}$
Clock Input
Test to $\mathrm{V}^{+}$
Power Dissipation (Note 2)
Ceramic Package
1000 mW
Plastic Package 800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec ) . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$

## ICL7117

Supply Voltage $\mathrm{V}^{+}$ $+6 \mathrm{~V}$

Analog Input Voltage (either input) (Note 1) ....... $\mathrm{V}^{+}$to $\mathrm{V}^{-}$
Reference Input Voltage (either input) $\ldots . . . . . . . . . V^{+}$to $\mathrm{V}^{-}$
Clock Input ........................................ . Gnd to $V^{+}$
Power Dissipation (Note 1)
Ceramic Package
1000 mW
Plastic Package 800 mW
Operating Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec ) . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$

Note 1: Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
Note 2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
ELECTRICAL CHARACTERISTICS (Note 3)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading	$\begin{aligned} & \text { Vin }=0.0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$	-000.0	$\pm 000.0$	${ }^{+}+000.0$	Digital Reading
Ratiometric Reading	$\begin{aligned} & \text { Vin }=\text { Vref } \\ & \text { Vref }=100 \mathrm{mV} \end{aligned}$	999	999/1000	1000	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$-\operatorname{Vin}=+V \text { in } \simeq 200.0 \mathrm{mV}$	-1	$\pm .2$	+1	Counts
Linearity (Max. deviation from best straight line fit)	$\begin{aligned} & \text { Full scale }=200 \mathrm{mV} \\ & \text { or full scale }=2.000 \mathrm{~V} \end{aligned}$	-1	$\pm .2$	+1	Counts
Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & \text { Vcm }= \pm 1 \mathrm{~V}, \mathrm{Vin}=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		50		$\mu \mathrm{V} / \mathrm{V}$
Noise (Pk - Pk value not exceeded 95\% of time)	$\begin{aligned} & \text { Vin }=0 \mathrm{~V} \\ & \text { Full Scale }=200.0 \mathrm{mV} \end{aligned}$		15	$\cdots$	$\mu \mathrm{V}$
Leakage Current @ Input	Vin $=0 \mathrm{~V}$		1	10	pA
Zero Reading Drift	$\begin{aligned} & \text { Vin }=0 \\ & 0^{\circ}<T_{A}<70^{\circ} \mathrm{C} \end{aligned}$		0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \text { Vin }=199.0 \mathrm{mV} \\ & 0<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { (Ext. Ref. } 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { ) } \end{aligned}$		1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Supply Current (Does not include LED current for 7117)	Viṇ $=0$		0.8	1.8	mA
Analog Common Voltage (With respect to pos. supply)	$25 \mathrm{k} \Omega$ ) between Common \& pos. Supply	2.4	2.8	3.2	Volts
Temp. Coeff. of Analog Common (with respect to pos. Supply)	$25 \mathrm{k} \Omega$ between Common \& pos. Supply		80		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Input Resistance, Pin 1. (Note 6)		30	70		kS
VIL, Pin 1 ( 7116 only)				Test +1.5	Volts
$\mathrm{V}_{\text {IL, }}$, Pin 1 ( 7117 only)				GND +1.5	Volts
$\mathrm{V}_{\text {IH, }}$ Pin 1 (Both)		$\mathrm{V}^{+}-1.5$			Volts
7116 ONLY   Pk-Pk Segment Drive Voltage (Note 5)	$V$ Supply $=9 \mathrm{~V}$	4	5	6	Volts
7116 ONLY   Pk-Pk Backplane Drive Voltage (Note 5)	V Supply $=9 \mathrm{~V}$.	'4	5	6	Volts
7117 ONLY   Segment Sinking Current (Except Pin 19)	$\begin{aligned} & + \text { Supply }=5.0 \mathrm{~V} \\ & \text { Segment voltage }=3 \mathrm{~V} \end{aligned}$	5	8.0	$\cdots$	mA
7117 ONLY   Segment Sinking Current (Pin 19 only)	$\begin{aligned} & + \text { Supply }=5.0 \mathrm{~V} \\ & \text { Segment voltage }=3 \mathrm{~V} \end{aligned}$	10	$16$		mA

Note 3: Unless otherwise noted, specifications apply to both the 7116 and 7117 at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{clock}}=48 \mathrm{kHz} .7116$ is tested in the circuit of Figure 1. 7117 is tested in the circuit of Figure 2.

Note 4: Refer to "Differential Input" discussion on page 4.
Note 5: Back plane drive is in phase with segment drive for 'off' segment, $180^{\circ}$ out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
Note 6: The 7116 logic input has an internal pull-down resistor connected from HLDR, pin 1, to TEST, pin 37. The 7117 logic input has an internal pull-down resistor connected from HLDR, pin 1 to GROUND, pin 21.

## TEST CIRCUITS



Figure 1: 7116


Figure 2: 7117

## DETAILED DESCRIPTION

 ANALOG SECTIONFigure 3 shows the Block Diagram of the Analog Section for the ICL7116 and 7117. Each measurement cycle is divided into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) deintegrate (DE).


Figure 3: Analog Section of 7116/7117

## 1. Auto-zero phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog common. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier; integrator, and comparator. Since the comparator is included in the loop, the $A-Z$ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

## 2. Signal Integrate phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between input
high and input low for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If; on the other hand, the input signal has no return with respect to the converter power supply, input low can be tied to analog common to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is determined.
3. De-integrate phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog common and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is $1000\left(\frac{\mathrm{Vin}}{\mathrm{Vref}}\right)$.

## ICL7116/7117

## Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 volts below the positive supply to 1.0 volt above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worse case condition would be a large positive commonmode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing within 0.3 volts of either supply without loss of linearity.

## Reference

The reference input must be generated as a positive voltage with respect to Common.

## Analog Common

This pin is included primarily to set the common mode voltage for battery operation (7116) or for any system where the input signals are floating with respect to the power supply. The common pin sets a voltage that is approximately 2.8 volts more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, the analog common has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ( $>7 \mathrm{~V}$ ), the common voltage will have a low voltage coefficient (. $001 \% / \%$ ), low output impedance ( $\sim 15 \Omega 2$ ), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on-chip reference should also be recognized, however. With the 7117,' the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full scale from 25 $\mu \mathrm{V}$ to $80 \mu \mathrm{Vpk}-\mathrm{pk}$. Also the linearity in going from a high dissipation count such as 1000 ( 20 segments on) to a low dissipation count such as 1111 (8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an overload condition. This is because overload is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between overload and a nonoverload count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.
The 7116, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Fig. 4.
Analog common is also the voltage the input returns to during auto-zero and de-integrate. If signal low is different from analog common, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications input low will be set at a fixed known voltage (power supply common for instance). In this application, analog common should be tied to the same point, thus removing the common mode voltage from the converter.


Figure 4: Using an External Reference
Within the IC, analog common is tied to an $N$ channel FET that can sink 30 mA or more of current to hold the voltage 2.8 volts below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so common may easily be tied to a more negative voltage thus over-riding the internal reference.

## Test

The test pin serves two functions. On the 7116 it is coupled to the internally generated digital supply through a $500 \Omega$ resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application.


Figure 5: Simple Inverter for Fixed Decimal Point


Figure 6: Exclusive 'OR' Gate for Decimal Point Drive
The second function is a "lamp test". When Test is pulled high (to + supply) all segments will be turned on and the display should read - 1888. Caution: on the 7116, in the lamp test mode, the segments have a constant d-c voltage (no square-wave) and will burn the LCD display if left in this mode for several minutes.

## ICL7116/7117

## DIGITAL SECTION

Figures 7 and 8 show the digital section for the 7116 and 7117, respectively. In the 7116, an internal digital ground is generated from a 6 volt Zener diode and a large $P$ channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 volts. The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases neglible d-c voltage exists across the segments.

Figure 8 is the Digital Section of the 7117. It is identical except the regulated supply and back plane drive have been
eliminated and the segment drive has been increased from 2 to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .

## HOLD Reading Input

The HLDR input will prevent the latch from being updated when this input is at a logic "HI". The chip will continue to make A/D conversions, however, the results will not be updated to the internal latches until this input goes low. This input can be left open or connected to TEST (7116) or GROUND (7117) to continuously update the display. This input has been implemented as a CMOS compatible input with a 70K typical resistance to either TEST (7116) or GROUND (7117).



Figure 8: Digital Section 7117

## System Timing

Figure 9 shows the clocking arrangement used in the 7116 and 7117. Three basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. A crystal between pins 39 and 40.
3. An R-C oscillator using all three pins.


Figure 9: Clock Circuits
The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate ( 0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 ( 16,000 clock pulses) independent of input volteige. For three readings/ second, an oscillator frequency of 48 kHz would be used.
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}$, $662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that

40 kHz (2.5 readings/second) will reject both 50 and 60 Hz (also 400 and 440 Hz ).

## COMPONENT VALUE SELECTION

## 1. Integrating Resistor

Both the buffer amplifier and the integrator have a class $A$ output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. The integrating resistor shouly be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 volt full scale, $470 \mathrm{k} \Omega$ is near optimum and similarly a $47 \mathrm{k} \Omega$ for a 200.0 mV scale.

## 2. Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approx. 0.3 volt from either supply). In the 7116 or the 7117 , when the analog common is used as a reference, a nominal $\pm 2$ volt full scale integrator swing is fine. For the 7117 with $\pm 5$ volt supplies and analog common tied to supply ground, a $\pm 3.5$ to $\pm 4$ volt swing is nominal. For three readings/ second ( 48 kHz clock), nominal values for Cint are .22 and $.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.
An additional requirement of the integrating capacitor is it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

## 3. Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full scale where noise
is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 volt scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

## 4. Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. If rollover errors occur a larger value, up to $1.0 \mu \mathrm{~F}$ may be required.

## 5. Oscillator Components

For all ranges of frequency a $100 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation $f=\frac{45}{\mathrm{RC}}$. For 48 kHz clock ( 3 readings/second), C $=100 \mathrm{pF}$.

## 6. Reference Voltage

The analog input required to generate full-scale output ( 2000 counts) is: Vin $=2$ Vref. Thus, for the 200.0 mV and 2.000 volt scale, Vref should equal 100.0 mV and 1.000 volt, respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and select Vref $=.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the ir,put. The 7117 with $\pm 5$ volts supplies can accept input signals up to $\pm 4$ volts. Another advantage of this system occurs when a digital reading of zero is desired for $\operatorname{Vin} \neq 0$. Temperature
and weighing systems with a variable tare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between analog high and common and the variable (or fixed) offset voltage between common and analog low.

## 7. 7117 Power Supplies

The 7117 is designed to work from $\pm 5$ volt supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application.


Figure 10: Generating Negative Supply from $+5 v$

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than $\pm 1.5$ volts.
3. An external reference is used.

## TYPICAL APPLICATIONS

The 7116 and 7117 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.


Figure 11: 7116 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second, floating supply voltage (9V battery).


Figure 12: 7117 using the internal reference. Values shown are for 200.0 mV full scale, 3 readings per second. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog Common on page 4).


Figure 13: 7116/7117: Recommended component values for 2.000V full scale.


Figure 15: 7117 measuring ratiometric values of Quad Load Cell. The resistor values within the bridge are determined by the desired sensitivity.


Figure 14: 7117 operated from single +5 V supply. An external reference must be used in this application, since the voltage between . $V+$ and $V$ - is insufficient for correct operation of the internal reference.


Figure 16: 7116 used as a digital centigrade thermometer. A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for 100.0 reading.

## PACKAGE DIMENSIONS

40 Pin Plastic Dual-in-Line Package


40 Pin Ceramic Dual-in-Line Package


# AM2502, AM2503, AM2504 Eight-Bit/Twelve-Bit Successive Approximation Registers 

## FEATURES

- Contains all the storage and control for successive approximation A-to-D converters.
- Provision for register extension or truncation.
- Can be operated in START-STOP or continuous conversion mode.


## GENERAL DESCRIPTION

The AM2502, 2503 and 2504 are 8 -bit and 12 -bit TTL Successive Approximation Registers. The registers contain all the digital control and storage necessary for successive approximation analog-todigital conversion. They can also be used in digital systems as the control and storage element in recursive digital routines.

The registers consist of a set of master latches that act as the control elements in the device and change state when the input clock is LOW, and a set of slave latches that hold the register data and change on the input clock LOW-to-HIGH transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the $D$ input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the 2502 and 2504 when the clock goes from LOW-to-HIGH. There are no restrictions on the data input; it can change state at any time except during the set-up time just prior to the clock transition. At the same time that data enters the register bit the next less significant bit is set to a LOW ready for the next iteration.

The register is reset by holding the $\overline{\mathrm{S}}$ (Start) signal LOW during the clock LOW-to-HIGH transition. The register synchronously resets to the state $Q_{7}(11)$ LOW, (Note 2) and all the remaining register outputs HIGH. The CC (Conversion Complete) signal is also set HIGH at this time. The $\overline{\mathrm{S}}$ signal should not be brought back HIGH until

- 100\% reliability assurance testing in compliance with MIL-STD-883.
- Can be used as serial-to-parallel counter or ring counters.
- Electrically tested and optically inspected dice for the assemblers of hybrid products.
after the clock LOW-to-HIGH transition in order to guarantee correct resetting. After the clock has gone HIGH resetting the register, the $\overline{\mathrm{S}}$ signal is removed. On the next clock LOW-to-HIGH transition the data on the $D$ input is set into the $Q_{7}(11)$ register bit and the $\mathrm{Q}_{6}(10)$ register bit is set to a LOW ready for the next clock cycle. On the next clock LOW-to-HIGH transition data enters the $\mathrm{Q}_{6}(10)$ register bit and $O_{5}(9)$ is set to a LOW. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into $Q_{0}$, the $\overline{C C}$ signal goes LOW, and the register is inhibited from further change until reset by a Start signal.
In order to allow complementary conversion the complementary output of the most significant register bit is made available. An active LOW enable input, $\bar{E}$, on the 2503 and 2504 allows devices to be connected together to form a longer register by connecting the clock, $D$, and $\bar{S}$ inputs together and connecting the $\overline{C C}$ output of one device to the $E$ inpuit of the next less significant device. When the Start signal resets the register, the $\bar{E}$ signal goes HIGH, forcing the $\mathrm{Q}_{7}(11)$ bit HIGH and inhibiting the device from accepting data until the previous device is full and its $\overline{\mathrm{CC}}$ goes LOW. If only one device is used the $E$ input should be held at a LOW logic level (Ground). If all the bits are not required, the register may be truncated and conversion time saved by using a register output going LOW rather than the CC signal to indicate the end of conversion.


## LOGIC DIAGRAM/SYMBOLS



## AM2502, AM2503, AM2504

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage to Ground Potential Continuous
DC Voltage Applied to Outputs for High Output State
DC Input Voltage
Output Current, Into Outputs
DC Input Current
Temperature (Ambient) Under Bias
Storage Temperature
-0.5 V to +7 V
-0.5 V to $+\mathrm{V}_{\mathrm{CC}} \max$
-0.5 V to +5.5 V
30 mA
-30 mA to +5.0 mA
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

## ORDERING INFORMATION

Temperature   Range	Package	AM2502   Order No.	AM2503   Order No.	AM2504   Order No.
0 to $+75^{\circ} \mathrm{C}$	Ceramic DIP	AM2502CJE	AM2503CJE	AM2504CJG
0 to $+75^{\circ} \mathrm{C}$	Epoxy DIP	AM2502CPE	AM2503CPE	AM2504CPG
0 to $+75^{\circ} \mathrm{C}$	Dice	AM2502C/D	AM2503C/D	AM2504C/D
-55 to $+125^{\circ} \mathrm{C}$	Ceramic DIP	AM2502MJE	AM2503MJE	AM2504MJG
-55 to $+125^{\circ} \mathrm{C}$	Dice	AM2502M/D	AM2503M/D 'AM2504M/D	

## ELECTRICAL CHARACTERISTICS

AM2502C 2503C AM2502M 2503M	$\begin{array}{ll} 2504 \mathrm{C} & \mathrm{~T}_{A}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ 2504 \mathrm{M} & T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & v_{C C}=5.0 \mathrm{~V} \pm 5 \% \\ & v_{C C}=5.0 \mathrm{~V} \pm 10 \% \end{aligned}$		nless otherwise noted)				
PARAMETERS	DESCRIPTION	TEST CONDITIONS			MIN.	TYP. (Note 1)	MAX.	UNITS
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O H}=-0.48 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$			2.4	3.6		Volts
VOL	Output Low Voltage	$\begin{aligned} & V_{C C}=M I N ., I_{O L}=9.6 \mathrm{~mA} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$				0.2	0.4	Volts
$V_{1 H}$	. Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
$\begin{aligned} & \text { I/L } \\ & \text { (Note 2) } \end{aligned}$	Unit Load Input LOW Current	$V_{C C}=M A X ., V_{\text {IN }}=0.4 V$				-1.0	-1.6	mA
$\begin{aligned} & \mathrm{I} \mathrm{H} \\ & \text { (Note 2) } \end{aligned}$	Unit Load Input HIGH Current	$\mathrm{V}_{C \mathrm{C}}=\mathrm{MAX} ., \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			.	6.0	40	$\mu \mathrm{A}$
	Input HIGH Current	$V_{C C}=M A X ., V_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
Isc	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ., \mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$			-10	-25	-45	mA
ICC	Power Supply Current	$V_{C C}=$ MAX.	AM2502	M		65	85	$\because \mathrm{mA}$
				C		65	95	
			AM2503	M		60	80	mA
				C		60	90	
			AM2504	M		90	110	mA
				C		90	124	

NOTE 1: Typical Limits are at $V_{C C}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient and maximum loading.
NOTE 2: Actual input currents are obtained by multiplying unit load current by input load factor (See Loading Rules).

SWITCHING CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETERS	DESCRIPTION		MIN.	TYP.	MAX.	UNITS
$t_{\text {pd }}$ +	Turn Off Delay CP to Output HIGH		10	26	38	ns
${ }^{\text {p }}$ d -	Turn On Delay CP to Output LOW		10	18	28	ns
$t_{s}(D)$	Set-up Time Data Input		-10	4	8	ns
. $\mathrm{t}_{\mathbf{s}}(\mathrm{S})$	Set-up Time Start Input		0	9	16	ns
$t_{\text {pd }+}(E)$	Turn Off Delay E to $\mathrm{Q}_{7}(11) \mathrm{HIGH}$	(AM2503/4)$C_{P}=H, \bar{S}=L$		13	19	ns
$t_{\text {pd_ }}(E)$	Turn On Delay E to $\mathrm{Q}_{7}(11)$ LOW			16	24	ns
$t_{\text {pwL }}$ (CP)	Minimum LOW Clock Pulse Width			28	, 46	ns
${ }^{\text {pwhH }}$ (CP)	Minimum HIGH Clock Pulse Width			12	20	ns
${ }^{\text {max }}$	Maximum Clock Frequency		15	25		MHz

2502/3 LOADING RULES (IN UNIT LOADS)

INPUT/ OUTPUT	$\begin{aligned} & \text { PIN. } \\ & \text { NO.'s } \end{aligned}$	INPUT UNIT LOAD		FANOUT	
				OUTPUT	OUTPUT
		LOW	HIGH	HIGH	LOW
$\overline{\mathrm{E}}$ (2503)	1	2	2	-	-
DO (2502)	1	-	-	12	6
$\overline{\mathrm{CC}}$	2	-	-	12	6
$\mathrm{O}_{0}$	3	-	-	12	6
$\mathrm{Q}_{1}$	4	-	-	12	6
$\mathrm{Q}_{2}$	5	-	-	12	6
$\mathrm{O}_{3}$	6	-	-	12	6
D	7	2	2	-	-
GND	8	-	-	-	-
CP	9	1	1	-	-
$\bar{s}$	10	1	2	-	-
$\mathrm{O}_{4}$	11	-	-	12	6
$\mathrm{a}_{5}$	12	-	-	12	6
$\mathrm{O}_{6}$	13	-	-	12	6
$\overline{\overline{\alpha_{7}}}$	14	-	-	12	6
$\mathrm{O}_{7}$	15	-	-	12	6
$\mathrm{v}_{\mathrm{Cc}}$	16	-	-	-	-

MSI INTERFACING RULES
EQUIVALENT INPUT UNIT LOAD

	INPUT UNIT LOAD	
INTERFACING DIGITAL FAMILY	HIGH	LOW
Advanced Micro Devices $9300 / 2500$ Series	1	1
FSC Series 9300	1	1
Advanced Micro Devices 54/7400	1	1
TI Series 54/7400	1	1
Signetics Series 8200	2	2
National Series DM 75/85	1	1
DTL Series 930	12	1

2504 LOADING RULES (IN UNIT LOADS)

INPUT/ OUTPUT	$\begin{aligned} & \text { PIN } \\ & \text { NO.'s } \end{aligned}$	INPUT UNIT LOAD		FANOUT	
		LOW	HIGH	HIGH	LOW
$\overline{\mathrm{E}}$	1	2	2	-	-
DO	2	-	-	12	6
$\overline{\overline{C C}}$	3	-	-	12	6
$\mathrm{Q}_{0}$	4	-	-	12	6
$\mathrm{o}_{1}$	5	-	-	12	6
$\mathrm{Q}_{2}$	6	-	-	12	6
$\mathrm{O}_{3}$	7	-	-	12	6
$\mathrm{O}_{4}$	8	-	-	12	6
$\mathrm{O}_{5}$	9	-	-	12	6
NC	10	-	-	-	-
D	11	2	2	-	-
GND	12	-	-	-	-
CP	13	1	1	-	-
$\overline{\bar{s}}$	14	1	2	-	-
NC	15	-	-	-	-
$\mathrm{O}_{6}$	16	-	-	12	6
$\mathrm{O}_{7}$	17	-	-	12	6
$\mathrm{O}_{8}$	18	-	-	12	6
$\mathrm{O}_{9}$	19	-	-	12	6
$\mathrm{Q}_{10}$	20	-	-	12	6
$\overline{\mathrm{Q}_{11}}$	21	-	-	12	6
NC	22	-	-	-	-
$\mathrm{Q}_{11}$	23	-	-	12	6
$\mathrm{v}_{\mathrm{CC}}$	, 24	-	-	-	-

NC $=$ No Connection

## INPUT/OUTPUT INTERFACE CONDITIONS

VOLTAGE INTERFACE CONDITIONS - LOW \& HIGH


CURRENT INTERFACE CONDITIONS - LOW


CURRENT INTERFACE CONDITIONS - HIGH


SWITCHING TIME WAVEFORMS


## DEFINITION OF TERMS

## SUBSCRIPT TERMS:

H HIGH, applying to a HIGH logic level or when used with $V_{C C}$ to indicate high $V_{C C}$ value.
I Input.
L LOW, applying to LOW logic level or when used with $\mathrm{V}_{\mathrm{CC}}$ to indicate low $\mathrm{V}_{\mathrm{CC}}$ value.

## O Output.

## FUNCTIONAL TERMS:

Fan-Out The logic HIGH or LOW output drive capability in terms of Input Unit Loads.
Input Unit Load One $T^{2} L$ gate input load. In the HIGH state it is equal to $I_{I_{H}}$ and in the LOW state it is equal to IIL.
CP The clock input of the register.
$\overline{\mathbf{C C}}$ The conversion complete output. This output remains HIGH during a conversion and goes LOW when a conversion is complete.
D The serial data input of the regiter.
$\overline{\mathbf{E}}$ The register enable. This input is used to expand the length of the register and when HIGH forces the $\mathrm{Q}_{7}(11)$ register output HIGH and inhibits conversion. When not used for expansion the enable is held at a LOW logic level (Ground).
$\mathrm{O}_{7}(11)$ The true output of the MSB of the register.
$\overline{\mathrm{O}}_{\mathbf{7}}(11)$ The complement output of the MSB of the register.
$\mathbf{a}_{\mathbf{i}} \mathbf{i}=\mathbf{7 ( 1 1 )}$ to 0 The outputs of the register.
$\overline{\mathbf{S}}$ The start input. If the start input is held LOW for at least a clack period the register will be reset to $\mathrm{Q}_{7}(11)$ LOW and all the remaining outputs HIGH. A start pulse that is LOW for a shorter period of time can be used if it meets the set-up time requirements of the $\overline{\mathbf{S}}$ input.
DO The serial data output. (The D input delayed one bit).

## OPERATIONAL TERMS:

IIL Forward input load current.
$\mathbf{I O H}_{\mathrm{OH}}$ Output HIGH current, forced out of output $\mathrm{V}_{\mathrm{OH}}$ test.
IOL Output LOW current, forced into the output in $\mathrm{V}_{\mathrm{OL}}$ test.
$\mathbf{I}_{\mathbf{I H}}$ Reverse input load current:
Negative Current Current flowing out of the device.
Positive Current Current flowing into the device.
$V_{I H}$ Minimum logic HIGH input voltage.
$V_{\text {IL }}$ Maximum logic LOW input voltage.
$\mathrm{V}_{\mathrm{OH}}$ Minimum logic HIGH output voltage with output HIGH current IOH flowing out of output.
$\mathrm{V}_{\mathrm{OL}}$ Maximum logic LOW output voltage with output LOW current IOL flowing into output.
SWITCHING TERMS: (Measured at the 1.5 V logic level):
$\mathbf{t}_{\text {pd- }}$ The propagation delay from the clock signal LOWHIGH transition to an output signal HIGH-LOW transition.
$t_{\text {pd }}+$ The propagation delay from the clock signal LOWHIGH transition to an output signal LOW-HIGH transition.
$\mathbf{t}_{\mathbf{p d}}$ ( $\left.\overline{\mathrm{E}}\right)$ The propagation delay from the Enable signal HIGH-LOW transition to the $\mathrm{Q}_{7}(11)$ output signal HIGHLOW transition.
$\mathbf{t}_{\text {pd }+}(\overline{\mathbf{E}})$ The propagation delay from the Enable signal LOW-HIGH transition to $\mathrm{O}_{7}(11)$ output signal LOW-HIGH transition.
$\mathrm{t}_{\mathbf{s}}(\mathrm{D})$ Set-up time required for the logic level to be present at the data input prior to the clock transition from LOW to HIGH in order for the register to respond. The data input should remain steady between $\mathrm{t}_{\mathrm{s}}$ max, and $\mathrm{t}_{\mathrm{s}} \mathrm{min}$. before the clock.
$\mathrm{t}_{\mathbf{s}}(\overline{\mathbf{S}})$ Set-up time required for a LOW level to be present at the $\overline{\mathrm{S}}$ input prior to the clock transition from LOW to HIGH in order for the register to be reset, or time required for a HIGH level to be present on S before the HIGH to LOW clock transition to prevent resetting.
't ${ }_{\text {pw }}$ CP)' The minimum clock pulse width (LOW or HIGH) required for proper register operation.

## AM2502/3 TRUTH TABLE

TIME INPUTS
OUTPUTS

$t_{n}$	D	$\overline{\mathbf{s}}$	$\bar{E}$		$0_{7}$	$\mathrm{O}_{6}$	$\mathrm{O}_{5}$	$0_{4}$	$\mathrm{O}_{3}$	$\mathrm{O}_{2}$	$\mathrm{a}_{1}$	$\mathrm{O}_{0}$	$\overline{\text { CC }}$
0	$\times$	L	L	X	x	x	X	X	X	X	x	x	X
1	$\mathrm{D}_{7}$	H	L	X	L	H	H	H	H	H	H	H	H
2	$\mathrm{D}_{6}$	H	L	$\mathrm{D}_{7}$	$\mathrm{D}_{7}$	L	H	H	H	H	H	H	H
3	$\mathrm{D}_{5}$	H	L	$\mathrm{D}_{6}$	D7	$\mathrm{D}_{6}$	L	H	H	H	H	H	H
4	D4	H	L	$\mathrm{D}_{5}$	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	L	H	H	H	H	H
5	$\mathrm{D}_{3}$	H	L	$\mathrm{D}_{4}$	D7	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	D4	L	H	H	H	H
6	$\mathrm{D}_{2}$	H	L	$\mathrm{D}_{3}$	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	D4	$\mathrm{D}_{3}$	L	H	H	H
7	$\mathrm{D}_{1}$	H	L	$\mathrm{D}_{2}$	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	L	H	H
8	$\mathrm{D}_{0}$	H	L	$\mathrm{D}_{1}$	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	L	H
9	X	H	L	Do	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	D4	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	$\mathrm{D}_{1}$	Do	L
10	X	$\times$	L	X	$\mathrm{D}_{7}$	$\mathrm{D}_{6}$	$\mathrm{D}_{5}$	$\mathrm{D}_{4}$	$\mathrm{D}_{3}$	$\mathrm{D}_{2}$	D1	Do	L
	X	X	H	X	H	NC	NC	NC	NC	NC		NC	NC

[^13]Note: Truth Table for 2504 is extended to include 12 outputs.

## USER NOTES FOR A/D CONVERSION

1. The register can be used with either current switches that require a low voltage level to turn the switch on, or current switches that require a high voltage level to turn the current switch on. If current switches are used which turn on with a low logic level the resulting digital output from the register is active LOW. That is, a logic " 1 "" is represented as a low voltage level. If current switches are used that turn on with a high logic level then the digital output is active HIGH; a logic " 1 " is represented as a high voltage level.
2. For a maximum digital error of $\pm 1 / 2$ LSB the comparator must be biased. If current switches that require a high voltage level to turn on are used, the comparator should be biased $+1 / 2$ LSB and if the current switches require a high logic level to turn on then the comparator must be biased -1⁄2LSB.
3. The register, by suitable selection of resistor ladder network, can be used to perform either binary or BCD conversion.
4. The register can be used to perform 2's complement conversion by offsetting the comparator $1 / 2$ full range $+1 / 2$ LSB and using the complement of the MSB $Q_{7}(11)$ as the sign bit.
5. If the register is truncated and operated in the continuous conversion mode a lock-up condition may occur on power-on. This situation can be overcome by making the START input the OR function of $\overline{\mathrm{CC}}$ and the appropriate register output.


## AM2502/3/4 APPLICATION <br> CONTINUOUS CONVERSION ANALOG-TO-DIGITAL CONVERTER



This shows how the 2502/3/4 registers are used with a Digital-to-Analog converter and a comparator to form a very high-speed continuous conversion Analog-to-Digital converter. Conversion time is limited mainly by the speed of the D/A converter and comparator with typical conversion rates of 100,000 conversions per second. A $\mathbf{1 0}$-bit continuous conversion can be performed by connecting $Q_{1}$ to $Q_{3}$ and $u s i n g Q_{1}$ as the conversion complete signal.

2502/3
16-PIN MOLDED DIP


24-PIN MOLDED DIP


PHYSICAL DIMENSIONS

16-PIN HERMETIC DIP


24-PIN HERMETIC DIP


16-PIN FLAT PAK


24-PIN FLAT PAK


CONNECTION DIAGRAMS
Top View


METALLIZATION AND PAD LAYOUT

$\begin{array}{lllllll}a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5}\end{array}$
Die size $0.95^{\prime \prime} \times 0.142^{\prime \prime}$

# ICL8018A, ICL8019A, ICL8020A Quad Current Switch For D/A Conversion 

## GENERAL DESCRIPTION

The Intersil ICL8018A integrated circuit is a high speed precision current switch for use in current summing digital-to-analog converters. It consists of four logically controlled current switches and a reference device on a single monolithic silicon chip. The reference transistor combined with an external source and precision resistors determines the magnitude of the currents to be summed. By weighting the currents in proportion to the binary bit which controls them, the total output current will be proportional to the binary number represented by the input logic levels.

The performance and economy of the ICL8018A quad current switch make it ideal for use in digital-to-analog converters for industrial process control and instrumentation systems.

## CONNECTION DIAGRAM



## ORDERING INFORMATION



ACCURACY	MIL PART NO.   CERAMIC DIP	COMMERCIAL PART NO.   PLASTIC DIP
Individual Devices		
$.01 \%$	ICL8018AM-DD	ICL8018AC-PD
$0.1 \%$	ICL8019AM-DD	ICL8019AC-PD
$1.0 \%$	ICL8020AM-DD	ICL8020AC-PD
Matched Sets*		
$.01 \%$	ICL8018AM-X-DD	ICL8018AC-X-PD
$0.1 \%$	ICL8019AM-X-DD	ICL8019AC-X-PD
$1.0 \%$	ICL8020AM-X-DD	ICL8020AC-X-PD

-NOTE: Units ordered in equal quantities will be matched such that with respect to the $V_{b e}$ of the compensation transistor of the 8018 quad, the $V_{b e}$ 's of the 8019 will be within $\pm 10 \mathrm{mV}$ and the $\mathrm{V}_{\mathrm{be}}$ 's of the 8020 will be within $\pm 50 \mathrm{mV}$.

## FEATURES

- TTL Compatible: LOW-0.8V

HIGH-2.0V

- 12 Bit Accuracy
- 40 nsec, Switching Speed
- Wide Power Supply Range
- Low Temperature Coefficient


## APPLICATIONS

- D/A-A/D Converters
- Digital Threshold Control
- Programmable Voltage Source
- Meter Drive
- X-Y Plotters


## TRUTH'TABLE

Logic Input		Nominal   Output   Current (mA)		
0	0	0	0	1.875
0	0	0	1	1.750
0	0	1	0	1.625
0	0	1	1	1.500
0	1	0	0	1.375
0	1	0	1	1.250
0	1	1	0	1.125
0	1	1	1	1.000
1	0	0	0	0.875
1	0	0	1	0.750
1	0	1	0	0.625
1	0	1	1	0.500
1	1	0	0	0.375
1	1	0	1	0.250
1	1	1	0	0.125
1	1	1	1	0.000

## SCHEMATIC DIAGRAM

EQUIVALENT CIRCUIT


ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Logic Input Voltage
Storage Temperature
Operating Temperature ICL8018AM ICL8019AM ICL8020AM ICL8018AC ICL8019AC ICL8020AC

$$
\begin{aligned}
\begin{array}{r} 
\pm 20 \mathrm{~V} \\
-2 \text { to } V+
\end{array} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{B}} \text { to }+20 \mathrm{~V} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{B}}=\mathrm{V}-\text { to }+5 \mathrm{~V} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} & \text { Lead Temp (Soldering, } 10 \mathrm{sec} \text { ) } 300^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} &
\end{aligned}
$$

ELECTRICAL CHARACTERISTICS $\left(4.5 \mathrm{~V} \leqslant \mathrm{~V}+\leqslant 20 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} @ \operatorname{pin} 6=-5 \mathrm{~V}\right)$


## Linear

Amplifiers	Operational, FET Input		Comparators	
Driver-Amplifier for Power	ICH8500/A	5-98	Low Power	
Transistors 5-6	ICL8007-1/2/3/4/5	5-104		5-203
ICL8063 5-6	8007C, M	5-110	Precision ,	
Driver; Power Driver for actuators, motors	ICL8043M/C ${ }^{\text {LF155/6/7. }}$ LF255/6/7.	5-112	LM111/211/311	5-207
	LF155/6/7; LF255/6/7; LF355/6/7;			
ICH8510/20/30 5-14			$\begin{aligned} & \text { Dual } \\ & \text { LH2111/2311 } \end{aligned}$	5-213
Instrumentation, Commutating Auto Zero	LF355A/6A/7A	5-116		
	LH0042	5-131		
ICL7605/6 5-22	LM7740, $\mu$ A740	5-136	LM139A/239A/339A; LM2902; MC3302	5-215
Log-Antilog	SU536	5-140	Followers LM102/202/302•LM110/	
ICL8048/9 / 5-32	Operational, High			
Operational, Commutating Auto Zero	Impedance Bipolar		LM210/LM310	5-223
	HA2600/02/05/20/ 22/25	5-143	LH2110/2310	5-227
ICL7600/1 5-40	HA2607/27	5-147	Multipliers	
Operational, General Purpose	Operational, High Speed HA2500/02/05/10/12/		ICL8013	5-229
AD101A/201A/301A 5-50			Sample and Hold	
$\begin{array}{ll}\text { AD741/K } & 5-54 \\ \text { ICL741HS } & 5-55\end{array}$	15/20/22/25	5-149	IH5110-15	5-233
ICL741LN $\quad 5-57$	HA2507/17/27	5-154		
ICL8008 5-61	ICL8017	5-156	AD590	5-239
IH5101 5-63	Operational, Low Power			
LH2101/2301 5-65	ICL4250, 4250C	5-160	Voltage References	
LH2108/2308 5-67	ICL7611-15;		1.2 Volt	
LM107/207/307 5-69	ICL7621/22;		ICL8069	5-241
LM108/208/308 5-71	ICL7631/32;		Reference with detector,	
LM124A/224A/324A;	ICL7641/42	5-163	indicator and regulator	
LM2902 5-75	ICL8021	5-179	ICL8211/12	5-243
LM741, A 741 - 5-79	ICL8022	5-183	Voltage Regulators	
LM748, $\mu$ A748 5-81	ICL8023	5-184	LM100/200/300	5-253
$\mu$ A777 $\quad 5-89$			LM105/205/305	5-257
	$\text { LM733, } \mu \text { A733 }$	5-185	LM723, $\mu$ A723	5-261
	Camera Circuit ICL8061/62	5-189	Waveform Generator ICL8038	5-267

## Operational Amplifiers-General Purpose

Type	Description	$\begin{aligned} & V_{\mathrm{os}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} I_{\mathrm{b}} \\ \left(\mathrm{n}^{2}\right) \end{gathered}$	$A_{\text {vol }}$ (V/V)	$\begin{gathered} \text { GxB/W } \\ (\mathrm{MHz}) \end{gathered}$	$\begin{aligned} & I_{c c} \\ & (m A) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}} \\ & \left({ }^{\circ} \mathbf{C}\right) \end{aligned}$	Packages *	Remarks
101A	Gen Purpose, Uncompensated	2.0	75	50,000	0.8*	3.0	$-55,+125$	J,F,T	
101ALN	Guaranteed Noise 101A	2.0	75	50,000	0.8*	3.0	-55,+125	J,F,T	$50 \mathrm{nV} / \mathrm{V} \mathrm{Hz}$ @ 10 Hz
107	Gen Purpose, Compensated	2.0	75	50,000	-	3.0	$-55,+125$		
108	Low Level, Uncompensated	2.0	2.0	50,000	1.0*	0.6	$-55,+125$	J,FT	
108A	Low offset, 108	0.5	2.0	80,000	1.0*	0.6	$-55,+125$	J,F,T	
108LN	Guaranteed Noise 108	2.0	2.0	50,000	1.0*	0.6	-55,+125	$T$	$70 n \mathrm{~V} / \mathrm{VHz}$ @ 10 Hz
124	Quad, Compensated	5.0	300	100,000*	1.0*	2.0	$-55,+125$	J	70nV/ Hz @10Hz
207	Low bias, Compensated	2.0	75	50,000	-	3.0	$-25,+85$	T	
208	Low Level, Uncompensated	2.0	2.0	50,000	1.0*	0.6	$-25,+85$	J,F,T	
208A	Low offset 208	0.5	2.0	80,000	1.0*	0.6	$-25,+85$	J,F,T	
224	Quad, Compensated	7.0	500	100,000*	1.0*	2.0	$-25,+85$		
301A	Gen Purpose, Uncompensated	7.5	250	25,000	0.8*	3.0	0,+70	P,T	
301ALN	Guaranteed noise 301A	7.5	250	25,000	0.8*	3.0	0, +70	P,T (	$50 \mathrm{nV} / \mathrm{V} \mathrm{Hz}$ @ 10 Hz
307	Low bias, Compensated	7.5	250	25,000	-	3.0	0,+70	P,T	
308	Low Level, Uncompensated	7.5	7.0	25,000	1.0**	0.8	$0,+70$	F,J,P,T	
308A	Low offset 308	0.5	7.0	80,000	1.0*	0.8	0,+70	J,T	
308LN	Guaranteed noise 308	7.5	7.0	25,000	1.0*	0.8	$0,+70$	T	$70 n \mathrm{~V} / \mathrm{V} \mathrm{Hz}$ @ 10 Hz
324	Quad, Compensated	7.0	500	100,000*	1.0*	2.0	0,+70	J,P	
741	, Gen Purpose, Compensated	5.0	500	50,000	1.0**	2.8	$-55,+125$	T	
741 C	Gen Purpose, Compensated	6.0	500	25,000	1.0*	2.8	$0,+70$	P,T	
741HS	Guaranteed Slew Rate 741	5.0	500	50,000	1.0*	2.8	$-55,+125$	J,T	Slew Rate $0.7 \mathrm{~V} / \mu \mathrm{S}$
741 CHS	Guaranteed Slew Rate 741C	6.0	500	25,000	${ }^{1.0}{ }^{*}$	2.8	$0,+70$	${ }_{\text {PT }}$ T ${ }_{\text {P }}$	
741LN	Guaranteed Noise 741	5.0	500	50,000	1.0*	2.8	$-55,+125$	J,F,T	$50 \mathrm{nV} / \vee \mathrm{Hz} @ 10 \mathrm{~Hz}$
741CLN	Guaranteed Noise 741C	6.0	500	25,000	1.0*	2.8	$0,+70$	P, T	$50 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ @ 10 Hz
741 K	High Accuracy 741	0.5	50	50,000	1.0	2.8	0 0 -5070	T ${ }_{\text {PT }}$	
748	General Purpose	1.0	80	25,000	0.8	2.0	-55 to 125	P,T	
748C	General Purpose, Compensated	1.0	80	25,000	0.8	2.0	0 to 70	P,T	
777	General purpose comparator	0.7	25	150,000	0.8	2.5	$-55,+125$	P,T	
777C	General purpose comparator	0.7	25	150,000	0.8	2.5	0, +70	P,T	
8008M	Low bias current, Compensated	5.0	10	20,00	1.0*	2.8	$-55,+125$	J,T	
8008C	Low bias current, Compensated	6.0	25	20,000	1.0*	2.8	$0,+70$	J,P,T	
IH5101	Ultra low noise		1,000	100,000	10.0	15.0	-55 to +125	1	
LH2101A	Dual high performance	2.0	100	25,000	0.8	2.5	-55 to 125	D	
LH2108	Dual super beta	2.0	3.0	25,000	1.0	0.4	-55 to 125	D	,
LH2108A	Dual super beta	0.5	3.0	40,000	1.0	0.4	-55 to 125	D	
LH2301A	Dual high performance	7.5	300	15,000	0.8	2.5	0 to 70	D	
LH2308	Dual super beta	7.5	10	15,000	1.0	0.4	0 to 70	D	
LH2308A	Dual super beta	0.5	10	60,000	1.0	0.4	0 to 70	D	
LM2902	Quad, Compensated	2.0	45	100,000	1.0	0.7	-40 to 85	P	

## Operational Amplifiers-Low Power Programmable

Type	Description	$\begin{aligned} & V_{\mathrm{os}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} I_{D} \\ (n A) \end{gathered}$	$A_{\text {voL }}$ (V/V)	GxB/W (MHz)	$\begin{gathered} I_{c \mathrm{c}} \\ (\mu \mathrm{~A}) \end{gathered}$	$\begin{aligned} & \mathrm{at}_{\text {set }} \\ & (\mu \mathrm{A}) \end{aligned}$	$\text { at } V_{s}$ (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}} \\ & \left({ }^{\mathbf{C}}\right) \end{aligned}$	Packages
4250	Programmable, Uncompensated Programmable, Compensated	5.0 5.0	10	25,000	二	8.0	1	$\pm 1.5$ $\pm 15$	$-55 \text { to } 125$	T
4250C		5.0 6.0	10 75	25,000 25,000	二	8.0 90	1 10	$\pm 1.5$ $\pm 1.5$	$0,+70$	T
8021M	Programmable, Compensated Programmable, Compensated	3.0	20	50,000	0.27	40	30	$\pm 6.0$	$-55,+125$	J, T
8021 C		6.0	30	50,000	0.27	50	30	$\pm 6.0$	0,+70	T
8022M	Dual 8021M	3.0	20	50,000	0.27	40	30	$\pm 6.0$	$-55,+125$	J,F
8022C	Dual 8021C	6.0	30	50,000	0.27	50	30	$\pm 6.0$	0,+70	J,P
8023M	Triple 8021M	3.0	20	50,000	0.27	40	30	$\pm 6.0$	$-55,+125$	J
8023C	,Triple 8021C	6.0	30	50,000	0.27	50	30	$\pm 6.0$	0,+70	J,P

[^14]
## Operational Amplifiers-F.E.T. Input

Type	Description	$\begin{gathered} V_{o s} \\ (\mathrm{mV}) \end{gathered}$	$\begin{aligned} & I_{b} \\ & (\mathrm{pA}) \end{aligned}$	Avol (V/V)	GxB/W   (MHz)	$\begin{aligned} & \text { Slew } \\ & \text { Rate } \\ & \text { V/S } \end{aligned}$	$\begin{gathered} \mathrm{Icc}_{c} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	Packages*.	Remarks
LH0042	General Purpose	5.0	10	50,000		6	2.3	-55 to 125	T	
LF155	BIFET, Compensated	5	100	50,000	2.5*	5*	4	$-55,+125$	T	
LF155A	BIFET, Compensated	2	50	50,000	2.5*	3	4	$-55,+125$	T	
LF156	BIFET, Compensated	5	100	50,000	5*	7.5	7	$-55,+125$	T	
LF156A	BIFET, Compensated	2	50	50,000	4	10	7.	$-55,+125$	T	
LF157	BIFET, Compensated for $A_{v} \geqslant 5$	5	100	50,000	20*	30	7	$-55,+125$ $-55,125$	T	All BIFET amplifiers
LF157A	BIFET, Compensated for $\mathrm{A}_{\text {vKIA }} \geqslant 5$	2	50	50,000	15	40	7	$-55,+125$	T	offer low noise-
LV255	BIFET, Compensated	5	100	50,000	2.5*	5*	4	$-25,+85$	T	See data sheets
LF256	BIFET, Compensated	5	100	50,000	5*	7.5*	7	-25, +85	T	
LF257	BIFET, Compensated for $\mathrm{A}_{\mathrm{v}} \geqslant 5$	5	100	50,000	20*	30	7	$-25,+85$	T	
LF355.	BIFET, Compensated	10	200	25,000	2.5*	5*	4	$0,+70$	T, P	
LF355A	BIFET, Compensated	2	50	50,000	2.5*	3	4	0, +70	T, P	
LF356	BIFET, Compensated	10	200	25,000	5*	12*	10	0,+70	T, P	
LF356A	BIFET, Compensated	2	50	50,000	4	10	7	$0,+70$	T, P	
LF357	BIFET, Compensated for $A_{v} \geqslant 5$	10	200	25,000	20*	50*	10	0,+70	T, P	
LF357A	BIFET, Compensated for $A_{V} \geqslant 5$	2	50	50,000	15	40	7	$0,+70$	T, P	
AD503	High accuracy, low offset	20	10	50,000		3	7 max	0, +70	T	
SU536	General Purpose	30	30	50,000		6	6	-55 to 85	$T$	
740 M	General Purpose	20	200	50,000	3*	6*	5.2	$-55,+125$	T	
740C	General Purpose	110	2000	20,000	- ${ }^{*}$	6*	8.0	0,+70	T	
8007M	General Puirpose, Compensated	20	20	50,000	1.0*	6*	5.2	$-55,+125$	$T$	:
8007AM	8007 M , Low ${ }_{\mathrm{b}}$	30	1.0	20,000	1.0*	2.5	6	$-55,+125$	T	
8007C	General Purpose, Compensated	50	50	20,000	1.0*	6*	6	$0,+70$	T	
8007AC	8007C, Low lb	30	1.0	20,000	1.0*	2.5	6	0,+70	T	
$8007 \mathrm{M}-5$	8007 M , Low $\mathrm{V}_{\text {os }}, I_{\text {b }}$	10	10	50,000	1.0*	3.0	5.2	$-55,+125$	T	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
8007C-4	8007C, Low $\mathrm{V}_{\text {os }}$, Offset Null	10	10	50,000	1.0*	3.0	6	$0,+70$.	T	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
8007C-5	8007C, Low Vos, Offset Null	10	10	50,000	1:0*	3.0	6	0,+70	T	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
8043M	Dual 8007M .	20	20	50,000	1.0*	6.0*	6	$-55,+125$	J	
8043C	Dual 8007C	50	50	20,000	1.0*	6.0*	6.8	$-55,+125$	J,P	: - :
8500	MOSFET Input, Compensated	50	0.1	20,000	0.7*	0.5*	2.7*	$-25,+85$	T	
8500A	MOSFET Input, Super Low $\mathrm{I}_{\text {b }}$	50	0.01	20,000	0.7*	0.5*	2.7*	$-25,+85$	T	

## Operational Amplifiers-High Speed

Type	Description	$\begin{gathered} V_{\Phi} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} I_{\mathrm{b}} \\ (\mathrm{nA}) \end{gathered}$	Avol (V/V)	GxB/W (MHz)	$\begin{aligned} & \text { Slew } \\ & \text { Rate } \\ & \text { V/ } / \boldsymbol{S} \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{I}_{\infty}}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages
HA2500	High slew rate, Compensated	5.0	200	20,000	12*	25	6.0	$-55,+125$	F,T,J
HA2502	High slew rate, Compensated	8.0	250	15,000	12*	20	6.0	$-55,+125$	F,T, J
HA2505	High slew rate, Compensated	8.0	250	15,000	12*	20	6.0	$0,+75$	F,T
HA2507.	High slew rate, Compensated	5.0	125	15,000	12	30	4.0	0 to 75	F,T
HA2510	High slew rate, Compensated	8.0	200	10,000	12*	50	6.0	$-55,+125$	F,T
HA2512	High slew rate, Compensated	10.0	250	7,500	12*	40	6.0	$-55,+125$	F,T
HA2515	High slew rate, Compensated	10.0	250	7,500	12*	40	6.0	$0,+75$	F,T
HA2517	High slew rate, Compensated	5.0	125	7,500	12	60	4.0	0 to 75	F,T
HA2520	Compensated for $A_{v} \geqslant 3$	8.0	200	10,000	30*	100	6.0	$-55,+125$	F,T, J
HA2522	Compensated for $A_{v} \geqslant 3$	10.0	250	7,500	30*	80	6.0	$-55,+125$	F,T,J
HA2525	Compensated for $A_{V} \geqslant 3$	10.0	250	7,500	30*	80	6.0	0,+75	F,T,J
HA2527	High slew rate, Compensated for $\mathrm{A}_{v} \geqslant 3$	5.0	125	7,500	20	120	4.0	-65, to 150	F,T
8017M	High speed, Inverting.	5.0	200	25,000	10*	130*	7.0	$-55,+125$	T, F
8017C	High speed, Inverting	7.0	200	25,000	10*	130*	8.0	$0,+70$	T, F

## Operational Amplifiers-High Impedance

Type	Description	$\begin{gathered} V_{\sigma b} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{b}} \\ (\mathrm{nA}) \end{gathered}$	AvoL (V/V)	$\begin{aligned} & \text { Slew } \\ & \text { Rate } \\ & \text { (V/ } / \mu \mathrm{S}) \end{aligned}$	$\begin{gathered} \mathrm{I}_{\infty} \\ (\mathrm{mA}) \end{gathered}$	$\begin{gathered} \left.\mathbf{T}^{\circ} \mathbf{C}\right) \end{gathered}$	Packages
HA2600   HA2602   HA2605.   HA2607   HA2620	High impedance, Compensated High impedance, Compensated High impedance, Compensated High impedance, Compensated 2600 Compensated for $A_{v} \geqslant 5$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & 5.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	$\begin{array}{r} 10 \\ 25 \\ 25 \\ 5 \\ 15 \end{array}$	$\begin{array}{r} 100,000 \\ 80,000 \\ 80,000 \\ 70,000 \\ 100,000 \end{array}$	$\begin{array}{r} 4 \\ 4 \\ 4 \\ 7 \\ 25 \end{array}$	$\begin{aligned} & 3.7 \\ & 4.0 \\ & 4.0 \\ & 3.0 \\ & 3.7 \end{aligned}$	$\begin{array}{r} -55,+125 \\ -55,+125 \\ 0,+75 \\ 0 \text { to } 75 \\ -55,+125 \end{array}$	$\begin{aligned} & \hline \text { F,J,T } \\ & \text { F,J,T } \\ & \text { F,J,T } \\ & \mathbf{P}, \mathrm{S} \\ & \mathrm{~F}, \mathrm{~J}, \mathrm{~T} \end{aligned}$
HA2622   HA2625   HA2627	2602 Compensated for $A_{v} \geqslant 5$   2605 Compensated for $A_{v} \geqslant 5$   2607 Compensated for $A_{v} \geqslant 5$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 4.0 \end{aligned}$	$\begin{array}{r} 25 \\ 25 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 80,000 \\ & 80,000 \\ & 70,000 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} -55,+125 \\ 0,+75 \\ 0 \text { to } 75 \\ \hline \end{gathered}$	$\begin{aligned} & \text { F,J,T } \\ & \text { F,J,T } \\ & \text { P } \end{aligned}$

## Video Amplifiers

Type	Description	Gains (V/V)	Bandwidths (MHz)	$\underset{\mu \mathbf{V}(\mathrm{rms})}{\mathbf{E}_{\mathrm{N}}(\mathrm{IN})}$	Output Offset (V)	$\begin{gathered} I_{\infty} \\ (m A) \end{gathered}$	$\begin{aligned} & \mathbf{T}_{\hat{\prime}}\left({ }^{\mathbf{C}}\right) \end{aligned}$	Packages
$\begin{aligned} & 733 M \\ & 733 C \end{aligned}$	Gain selectable video amp. Gain selectable video amp.	$\begin{aligned} & 400,100,10^{*} \\ & 400,100,10^{*} \end{aligned}$	$\begin{aligned} & 40,90,120^{*} \\ & 40,90,120^{*} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{gathered} -55,+125 \\ 0,+70 \end{gathered}$	T

## Voltage Followers

Type	Description	$\begin{gathered} \mathbf{V}_{\infty \in} \\ (\mathrm{mV}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{1 \mathrm{~N}} \\ (\mathrm{nA}) \end{gathered}$	$\begin{gathered} A_{V}(M / \mathbb{N}) \\ (V / V) \end{gathered}$	$\begin{gathered} \text { 3db B/W } \\ \text { (MHz) } \end{gathered}$	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ (\mathrm{V} / \mu \mathrm{S}) \end{gathered}$	Swing (V)	$\begin{gathered} \mathrm{I}_{\mathrm{cc}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	Packages*
102	Voltage Follower	5	10	0.999	-	-	$\pm 10$	4.0	$-55,+125$	F,T
110	Voltage Follower	4	3	0.999	一.	-	$\pm 10$	-	$-55,+125$	D, F, T
202	Voltage Follower	10	15	0.999	$\bar{*}$	$\bar{\square}$	$\pm 10$	-	$-25,+85$	T
210	Voltage Follower	4	3	0.999	15**	$30^{*}$	$\pm 10$	4.0	$-25,+85$	D,T
302	Voltage Follower	15	30	0.9985	15*	30*	$\pm 10$	4.0	0,+70	
310	Voltage Follower	7.5	7	0.999	15*	30*	$\pm 10$	-	$0,+70$	D,P,T
LH2110		4.0	3	0.999	-	-	$\pm 10$	4.0	-55 to 125	
LH2310		7.5	7	0.999	-	-	$\pm 10$	4.0	0 to 70	D

## Comparators

Notes: Tpd measured for 100 mV step with 5 mV overdrive. $l_{o c}$ measured for $V_{s}= \pm 15 \mathrm{~V}$

Type	Description	$\begin{aligned} & \mathbf{v}_{\text {©5 }} \\ & \left(\mathbf{V}^{2}\right. \end{aligned}$	$\begin{aligned} & I_{b} \\ & (n A) \end{aligned}$	$\begin{gathered} A_{V} \\ (V / m V) \end{gathered}$	$\begin{aligned} & \text { tpd } \\ & \text { (nS) } \end{aligned}$	$\begin{gathered} \mathrm{l}_{\infty} \\ (\mathrm{mA}) \end{gathered}$	$V_{\mathrm{OL}}$ at (V)	$\begin{gathered} I_{0 L} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\hat{A}} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	Packages
111	Precision Comparator	3	100	200**	200**	6	0.4	8	$-55,+125$ $-25+85$	D,FTT
211	Precision Comparator	3	100	200**	200**	6 7	0.4	8	-25,+85	$\mathrm{D}, \mathrm{~F}, \mathrm{~T}$
311	Precision Comparator	7.5	250	200*	200**	7.5	0.4	8	$0,+70$ -55	D,F,J,P,T
8001 M 8001 C	Low Power Comparator	3	100 250	15 15	250**	2	0.5 0.4	2	$-55,+125$ $0,+70$	
LM139	Quad. Comparator	5	100	200*	1300*	2	0.7	4	-55,+125	D
LM139A	Low Offset 139	2	100	200*	1300*	2	0.4	3	$-55,+125$	D
LM239	Quad. Comparator	5	250	200*	1300*	2	0.7	4	-25,+85	D
LM239A	Low Offset 239	2	. 250	200*	1300*	2	0.4	3	$-25,+85$	D
LM339	Quad. Comparator	5	250	200*	1300**	2	0.7	4	0,+70	D,P
LM339A	Low Offset 339	2	250	200*	1300**	2	0.4	3	$0,+70$	D,P
LH2111	Dual Precision Comparator	3	100	200	200	6	0.4	8	-55 to 125	D'
LH2311	Dual Precision Comparator	7.5	250	200	200	7.5	0.4	8	0 to 70	D
MC2901	Quad. Comparator	2	25	100	300	0.8	. 25	4	0 to 70	D,F
MC3302	Quad. Comparator	3	25	30	300	0.8	. 25	4	0 to 70	D,F

## Power Amplifiers

Note 1. Specifications apply at $\pm 30 \mathrm{~V}$ supplies.
2. All units packaged in 8 lead TO3 can.
3. Fully protected against inductive current flow.
4. Externally settable output current limiting.

Type	Description	Use	Output Current (A)	Output Swing (V)	$\begin{aligned} & V_{\mathrm{os}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{b}} \\ (\mathrm{nA}) \end{gathered}$	A vol (V/V)	$\begin{aligned} & \text { Slew } \\ & \text { Rate } \\ & \text { (V/ S) } \end{aligned}$	$\begin{gathered} \text { Quiescent } \\ I_{c c} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	$\begin{gathered} \left.\mathrm{T}_{1} \hat{\mathbf{C}}\right) \\ \left({ }^{\circ}\right. \end{gathered}$
$\begin{aligned} & \text { ICH8510M } \\ & \text { ICH18510C } \\ & \text { ICH8520M } \\ & \text { ICH8520C } \\ & \text { ICH8530M } \end{aligned}$	Hybrid Power Amp. Hybrid Power Amp. Hybrid Power Amp. Hybrid Power Amp. Hybrid Power Amp.	Servo and Actuator	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 2.0 \\ & 2.0 \\ & 2.7 \end{aligned}$	$\pm 26$ $\therefore \pm 26$ $\pm 26$ $\pm 26$ $\pm 25$	$\begin{aligned} & \hline 3.0 \\ & 6.0 \\ & 3.0 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \\ & 250 \\ & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & \hline 100,000 \\ & 100,000 \\ & 100,000 \\ & 100,000 \\ & 100,000 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 40 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & -55,+125 \\ & -25,+85 \\ & -55,+125 \\ & -25,+85 \\ & -55,+125 \end{aligned}$
ICH8530C ICL8063C ICL8063M	Hybrid Power Amp. Monolithic Power Amp. Monolithic Power Amp.	Power Transistors	2.7 2.0 2.0	$\begin{aligned} & \pm 25 \\ & \pm 27 \\ & \pm 27 \end{aligned}$	6.0 50 75	500	$\begin{array}{r} 100,000 \\ 6 \\ 6 \end{array}$	0.5	$\begin{array}{r} 50 \\ 250 \\ 300 \\ \hline \end{array}$	$\begin{array}{r} -25,+85 \\ 0,+70 \\ -55,+125 \\ \hline \end{array}$

Voltage Regulators

Type	Input Voltage (V)		Output Voltage (V)		Input/Output Differential (V)		Load Current (mA)		Load Reg ${ }^{n}$ O-F.L.   (a)	Line Regn (■/V)	Avg. Temp Coeff ( $\quad /{ }^{\circ} \mathrm{C}$ )	Pd at $25^{\circ} \mathrm{C}$ (mW)	$\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{T}^{\prime}}$	Packages	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX							
100	8.5	40	2.0	30	3.0	30	3.0	12	0.5	0.2	0.005	500	$-55,+150$	F,T	
105	8.5	50	4.5	40	3.0	30	0	12	0.05	0.06	0.005	500	$-55,+150$	F,T	
300	8.0	30	2.0	20	3.0	20	3.0	12	0.5	0.2	0.03	300	$0,+70$	T	
305	8.0	40	4.5	30	3.0	30	0	12	0.05	0.06	0.03	500	0,+70	$T$	
723	9.5	40	2.0	37	3.0	38	0	50	0.15	0.03	0.015	800	$-55,+125$	T,J	
723C	9.5	40	2.0	37	3.0	38	0	50	0.2	0.03	0.015	660	0, + 70	P,T	

## Sample and Hold



[^15]
## Special Function Circuits

Type		Accuracy	$\begin{aligned} & V_{\mathrm{s}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Packages
AD590	Temperature transducer-output linear at $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$	$\pm 1^{\circ} \mathrm{C}$	4 to 15	-55 to 150	H
8013AM	Four quadrant multiplier. Output proportional to. algebraic products	$\pm 0.5 \%$	$\pm 15$	-55, + 125	T
8013BM	of two input signals. Features $\pm 0.5 \%$ accuracy; internal op-amp	$\pm 1.0 \%$	$\pm 15$	$-55,+125$	T
8013CM	for level shift, division and square root functions; full $\pm 10 \mathrm{~V}$	$\pm 2.0 \%$	$\pm 15$	$-55,+125$	T
8013AC	input/output range; 1 MHz bandwidth.	$\pm 0.5 \%$	$\pm 15$	0,+70	T
8013BC		$\pm 1.0 \%$	$\pm 15$	$0,+70$	T
8013CC		$\pm 2.0 \%$	$\pm 15$	0, +70	T
8038AM	Simultaneous Sine, Square, and Triangle wave outputs $\mathrm{T}^{2} \mathrm{~L}$	1.5\%	$\pm 5$ to $\pm 15$	$-55,+125$	$J$
8038AC.	compatible to 28 V over frequency range from 0.001 Hz to 1.0 MHz .	1.5\%	$\pm 5$ to +15	0, +70	P
8038BM	Low distortion ( $<1 \%$ ); high linearity ( $0.1 \%$ ); low frequency drift with	3.0\%	$\pm 5$ to $\pm 15$	-55,+125	J
8038BC.	temperature ( $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.), variable duty cycle $2 \%-98 \%$ ).	3.0\%	$\pm 5$ to $\pm 15$	$0,+70$	P
8038CC	External frequency modulation.	5.0\%	$\pm 5$ to $\pm 15$	0, +70	P
8048BC	Log amp. 1V/decade (Adjustable). 120 db range	$\pm 30 \mathrm{mV}$	$\pm 15$	$0,+70$	J,P
8048CC	with current input. Error referred to output	$\pm 60 \mathrm{mV}$	$\pm 15$	0,+70	J,P
8049BC	Antilog amp, adjustable scale factor.	$\pm 10 \mathrm{mV}$,	$\pm 15$	0,+70	J,P
8049CC	Error referred to input	$\pm 30 \mathrm{mV}$	$\pm 15$	$0,+70$	J,P
ICL8061.	The ICL8061 converts a wide range of photographic variables	$\pm 30 \mathrm{mV}$			
ICL8062	to electronic signals from which $f$-stop, aperture, EV and BV may				
	be obtained. The ICL8062 converts the signals from the 8061 into output drive voltages.				
8069	1.2 V temperature compensated voltage reference		5 to 15	-55 to 125	Q
8211M	Micropower voltage detector/indicator/voltage regulator/		2 to 30	$-55,+125$	${ }_{T}^{\text {Q }}$
8211C	programmable zener. Contains 1.15 V micropower reference		2 to 30	0,+70	P, T
8212M	plus comparator and hysteresis output. Main output		2 to 30	$-55,+125$	T'
8212C	inverting (8212) or non-inverting (8211).		2 to 30	0,+70	P,T

Notes: 1. All parameters are specified at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.
2. All parameters are worst case MIN/MAX limits except for those marked * which are typical.

## PACKAGE KEY

D-Solder lid side brazed ceramic dual in line.
F-Ceramic flat pack.
$J$-Glass frit seal ceramic dual in line.
$P$ - Plastic dual in line.
T-Metal can (TO5 size)

## Operational Amplifiers-CMOS

Type	Description	Compensation	Offset Null	$\mathrm{V}_{\text {os }}$ Selection	Ios	$\mathrm{I}_{\mathrm{B}}$	Input CMR	Output Swing	Packages
7611	Single, Selectable Ia	Internal	Yes	2, 5, 15 mV	0.5pA	1pA	$\mathrm{V}_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P, T
7612	Single, Selectable Io, Extended CMVR	Internal	Yes	2, 5, 15 mV	0.5 pA	1pA	$V_{\text {Supply }}+300 \mathrm{mV}$	$V_{\text {Supply }}-100 \mathrm{mV}$	P,T
7613	Single, Selectable la, Input Protected	Internal	Yes	$2,5,15 \mathrm{mV}$	0.5 pA	${ }^{1 p A}$	$V_{\text {Supply }}-100 \mathrm{mV}$	$V_{\text {Supply }}-100 \mathrm{mV}$	P,T
7614	Single, Fixed $\mathrm{I}_{a}$ Input Proct	External	Yes	2, 5, 15 mV	0.5 pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	${ }_{\text {P, }}$ PT
7615	Single, Fixed $\mathrm{I}_{0}$, Input Protected	External	Yes	2, 5, 15 mV	0.5pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P,T
7621	Dual, Fixed Io	Internal	No	2, 5, 15 mV	0.5 pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P,T
7622	Dual, Fixed Ia	Internal	Yes	2, $5,15 \mathrm{mV}$	0.5 pA	1pA	$V_{\text {Supply }}-100 \mathrm{mV}$	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	P, J
7631	Triple, Selectable Io	Internal	No	$5,10,20 \mathrm{mV}$	0.5 pA	1pA	$V_{\text {Supply }}-100 \mathrm{mV}$	$V_{\text {Supply }}-100 \mathrm{mV}$	P, J
7632	Triple, Selectable $\mathrm{I}_{\mathrm{a}}$	None	No	$5,10,20 \mathrm{mV}$	0.5 pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {Supplr }}-100 \mathrm{mV}$	P, J
7641	Quad, Fixed Io	Internal	No	$5,10,20 \mathrm{mV}$	0.5pA	1pA	$V_{\text {SUPPLY }}-100 \mathrm{mV}$	$V_{\text {Supplr }}-100 \mathrm{mV}$	P,J
7642	Quad, Fixed $\mathrm{I}_{0}$	Internal	No	$5,10,20 \mathrm{mV}$	0.5pA	1pA	$\mathrm{V}_{\text {SUPPLY }}-100 \mathrm{mV}$	$\mathrm{V}_{\text {SUPPLY }}-100 \mathrm{mV}$	P,J

## Instrumentation Amplifiers-Commutating Auto Zero

Type	Description	$\begin{aligned} & \mathbf{V}_{\text {OS }} \\ & (\mu \mathbf{V}) \end{aligned}$	$\begin{gathered} \Delta V_{\text {os }} \\ (\mu \mathrm{V} / \text { year }) \end{gathered}$	$\begin{aligned} & I_{\text {supp }} \\ & (\mathrm{pA}) \end{aligned}$	$\begin{gathered} A_{v} \\ (\mathrm{~dB}) \end{gathered}$	$\mathrm{V}_{\text {Supply }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{BiAS}} \\ & (\mathrm{pA}) \end{aligned}$	Packages	$\mathrm{TA}^{\circ} \mathrm{C}$
ICL7600C	Compensated	$\pm 2$	0.2	1	90 min	+5 to +16	$\pm 30$	J,P	0 to 70
ICL7600\|	Compensated	$\pm 2$	0.2	1	90 min	+5 to +16	+30	J,P	-25 to 85
ICL7600M	Compensated	$\pm 2$	0.2	1	90 min	+5 to +16	$\pm 30$	J,P	-55 to 125
ICL7601C	Uncompensated	$\pm 2$	0.2	1	90 min	+5 to +16	$\pm 30$	J,P	0 to 70
ICL76011	Uncompensated	$\pm 2$	0.2	1	90 min	+5 to +16	$\pm 30$	J,P	-25 to 85
ICL7601M	Uncompensated	$\pm 2$	0.2	1	90 min	+5 to +16	$\pm 30$	J,P	-55 to 125

## Operational Amplifiers-Commutating Auto Zero

Type	Description	$\begin{aligned} & \mathbf{V}_{\text {OS }} \\ & (\mu V) \end{aligned}$	$\begin{gathered} \Delta \mathbf{V}_{\text {os }} \\ (\mu \mathrm{V} / \text { year }) \end{gathered}$	$\begin{aligned} & I_{\text {supp }} \\ & (\mathrm{mA}) \end{aligned}$	$\begin{gathered} A_{v} \\ (\mathrm{~dB}) \end{gathered}$	$\mathbf{V}_{\text {Supply }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{BIAS}} \\ & (\mathrm{pA}) \end{aligned}$	Packages	$\mathrm{T}_{\wedge}{ }^{\circ} \mathrm{C}$
ICL7605C	Compensated	$\pm 2$	0.5	1.7	90 min	5 to 10	$\pm 30$	J,P	0 to 70
ICL76051	Compensated	$\pm 2$	0.5	1.7	90 min	5 to 10	$\pm 30$	J,P	-25 to 85
ICL7605M	Compensated	$\pm 2$	0.5	1.7	90 min	5 to 10	$\pm 30$	J,P	-55 to 125
ICL7606C	Uncompensated	$\pm 2$	0.5	1.7	90 min	5 to 10	$\pm 30$	J,P	0 to 70
ICL7606I	Uncompensated	$\pm 2$	0.5	1.7	90 min	5 to 10	$\pm 30$	J,P	-25 to 85
ICL7606M	Uncompensated	$\pm 2$	0.5	1.7	90 min	5 to 10	$\pm 30$	$J, P$	-55 to 125

# Power Transistor Driver-Amplifier 

## FEATURES:

- Converts $\pm 12 \mathrm{~V}$ Outputs from Op Amps and other linear functions up to $\pm 30 \mathrm{~V}$ levels
- When used in conjunction with general-purpose op amps and external complementary power transistors, system can deliver > $\mathbf{5 0}$ Watts to external loads
- Has built-in Safe Area Protection and short-circuit proof protection
- Produces 25mA typical quiescent current in typical power amp configuration while capable of delivering $\pm 2$ Amps full output current
- Has built in $\pm 13 \mathrm{~V}$ Regulators to power op amps or other external functions
- $500 \mathrm{k} \Omega$ input impedance with $\mathrm{R}_{B I A S}=1 \mathrm{M} \Omega$


## GENERAL DESCRIPTION

The ICL8063 is a unique monolithic power transistor driver and amplifier that allows construction of minimum chip power amplifier systems complete with safe operating area circuitry, short circuit protection and built-in voltage regulators, without adding extra power supplies. It is primarily intended for complementary symmetrical outputs.

Designed to operate with all varieties of operational amplifiers and other functions and two external power transistors of any construction technique and 8 to 10 passive components, the ICL8063 is ideal for use in such applications as linear and rotary actuator drivers, stepper motor drivers, servo motor drivers, power supplies, power DACs and electronically controlled orifices.

The ICL8063 takes the output levels (typically $\pm 11 \mathrm{~V}$ ) from an op amp and boosts the levels up to $\pm 30 \mathrm{~V}$ to drive any power. transistors, (e.g. 2N3055 (NPN) and 2N3789 (PNP) ). The outputs from the ICL8063 drive the external power transistors' base leads with up to 100 milliamperes of current.

This amplifier-driver contains internal positive and negative regulators to drive an op amp; or numerous other functions; thus, only. $\pm 30 \mathrm{~V}$ supplies are needed for a complete power amp.

The ICL8063 provides built-in power supplies and will operate from inputs generated by most of the op amps in use today---regardless of technology---as well as many other linear functions, such as timers, comparators and waveform generators. And it will drive almost all power transistors with breakdown voltages up to 70 volts.

## CONNECTION DIAGRAM

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS
@ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Supply Voltage

Power Dissipation Input Voltage (Note 1)
Operating Temperature Range Lead Temperature (Soldering, 10 sec )

500 mW $\pm 30 \mathrm{~V}$
ICL8063MJE $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ICL8063CPE $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ICL8063CJE $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Note 1: For supply voltages less than $\pm 30 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}= \pm 30 \mathrm{~V}$ )

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN/MAX LIMITS						UNITS
			ICL8063M			ICL8063C			
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
Vos	Max. Offset Voltage	See Figure 1	150	50	50	150	75	75	mV
Iout	Min. Positive Drive Current	See Figure 2	50	50	50	40	40	40	mA
$10^{+}$	Max. Positive Output Quiescent Current	See Figure 3	500	250	250	600	300	300	$\mu \mathrm{A}$
IơT	Min. Negative Drive Current	See Figure 2	25	25	25	20	20	20	mA
$1 \overline{0}$	Max. Negative Output Quiescent Current	See Figure 4	500	250	250	600	300	300	$\mu \mathrm{A}$
$V_{\text {REG }}^{ \pm}$	Regulator Output Voltages Range	See Figure 5	$\begin{aligned} & \pm 13.7 \\ & \pm 1.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 13.7 \\ \pm 1.0 \mathrm{~V} \end{gathered}$	$\begin{array}{r}  \pm 13.7 \\ \pm 1.0 \mathrm{~V} \end{array}$	$\begin{aligned} & \pm 13.7 \\ & \pm 1.0 \mathrm{~V} \end{aligned}$	V
ZIN	A.C. Input Impedance	See Figure 6.	400	400	400	400	400	400	$\mathrm{k} \Omega$
Vcc	Power Supply Range	-			$\pm 5$ to	$\pm 35 \mathrm{~V}$			V
10	Power Supply Quiescent Currents		10	6	6	12	7	7	mA
$A_{V}$	Range of Voltage Gain	See Figure 7 $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{Vp-p}$	$6 \pm 2$	$6 \pm 2$	$6 \pm 2$	$6 \pm 2$	$6 \pm 2$	$6 \pm 2$	V/V
$v_{\text {OUT(MIN })}$	Minimum Output Swing	See Figure 7; Increase Vin until Vout flattens	$\pm 27$	$\pm 27$	$\pm 27$	$\pm 27$	$\pm 27$	$\pm 27$	V
lin	Input Bias Current	See Figure 8	100	100	100	100	100	100	$\mu \mathrm{A}$



Figure 1: Offset Voltage Measurement


FOR Iout: Vin IS POSITIVE: INCREASE Vin UNTIL Iout LIMITS FOR lout: Vin IS NEGATIVE: INCREASE VIN UNTIL IOUT LIMITS

Figure 2: Output Current Measurement


Figure 3: Positive Output Quiescent Current


Figure 4: Negative Output Quiescent Current


Figure 5: On Chip Regulator Measurement Figure 6: A.C. Input Impedance Measurement


Figure 7: Gain and Output Voltage Swing Measurement


Figure 8: Input Bias Cürrent Measurement

## APPLICATION

A problem that has been studiously ignored by integrated circuit manufacturers as being too difficult is a dilemma faced almost every day by circuit designers - interfacing the low voltage, low current output world (relatively speaking) of standard linear and digital devices to that of power transistors and darlingtons---higher by several orders of magnitude.
A low level op amp, for example, has a typical voltage range of $\pm 6$ to $\pm 12 \mathrm{~V}$ and output current usually on the order of about 5 or so milliamperes. A power transistor with a $\pm 35$ volt supply requirement and a collector current of 5 amperes or so, and with a beta, or gain of 100 needs at least 50 milliamperes to drive it.
Quite a jump.
For the majority of applications, cost considerations (among other things) mean that only one choice is possible: painstakingly building up a discrete circuit that performs this very necessary power transistor driving and amplifying function. But it's not just a matter of amplifying the current and voltage to the required levels. To protect the devices, all sorts of back up circuitry must be built in; such things as safe area protection and short circuit protection. It's also necessary to build in a number of supplies, because of the varying requirements of the different components.
Recently, integrated power amplifier devices have been introduced, but these are still only partial solutions---and expensive ones at that. Moreover, these so-called solutions often require additional protection circuitry. So, whatever
reduction in component count and circuit complexity achieved is lost due to these additional protection requirements.
What's necessary is to integrate---totally---this crucial portion of almost every circuit design.
The ICL8063 is just such a total solution. It's a monolithic power transistor driver and power transistor amplifier circuit on the same chip, has all the necessary safe operating area circuitry and short circuit protection, and has on-chip $\pm 13 \mathrm{~V}$ voltage regulators to eliminate the need for extra external power supplies.
With the ICL8063 more time can be spent on designing systems---and less time designing circuits. Following are a few applications which illustrate this clearly:

## 1. Using the ICL8063 to make a complete Power Amplifier

As Figure 9 shows, using the ICL8063 allows the circuit designer to build a power amplifier block capable of delivering $\pm 2$ amperes at $\pm 25$ volts ( 50 watts) to any load, with only three additional discrete devices and 8 passive components. Moreover, the circuit draws only about $\pm 30$ milliamperes of quiescent current from either of the $\pm 30 \mathrm{~V}$ power supplies. A similar design using discrete components would require anywhere from 50 to 100 components.
Slew rate is about the same at that of a 741 op amp by itself, except that the output current can slew up to 2 amps at roughly $1 \mathrm{~V} / \mu \mathrm{s}$ (that's a 10 ohm load to ground and $\pm 20 \mathrm{~V}$ output across this resistance). Input current, voltage offset, CMRR and PSRR are also the same. Use of 1,000 picofarad

## ICL8063

compensation capacitors (three in this configuration) allows good stability down to unity gain non-inverting (the worst case). This circuit will drive a $1000 \mathrm{pF} \mathrm{C}_{\mathrm{L}}$ to G nd, with no significant problems. In other words the circuit can drive 30 feet of RG-58 coaxial cable for line driver applications with no problems.
As Figure 10 indicates, setting up a current limiting (safe area) protection circuit is straightforward. The 0.4 ohm, 5 watt resistors set the maximum current one can get out of the output. The equation this SOA circuit follows is: VOUT + ILX $0.4 \Omega=0.7 \mathrm{~V}+\mathrm{I}(24.5 \mathrm{k})$. When $\mathrm{ILR}_{3}-\mathrm{IR}_{2}=0.7 \mathrm{~V}$ safe area protection is achieved.


Figure 9: Standard Circuit Diagram


Figure 10: Current Limiting (Safe Area) Protection Circuit


Solving these equations we get the following:

Vout	I	IL @ $25^{\circ} \mathrm{C}$	IL @ $125^{\circ} \mathrm{C}$
24 V	1 ma	3 amps	2.4 amps
20 V	$830 \mu \mathrm{~A}$	2.8 amps	
16 V	$670 \mu \mathrm{~A}$	2.6 amps	
12 V	$500 \mu \mathrm{~A}$	2.4 amps	1.8 amps
8 V	$333 \mu \mathrm{~A}$	2.1 amps	
4 V	$167 \mu \mathrm{~A}$	1.9 amps	
0 V	$0 \mu \mathrm{~A}$	1.7 amps	1.1 amps

As these equations indicate, maximum power delivered to a load is obtained when VOUT $\geq 24 \mathrm{~V}$, the optimum voltage one needs when driving any DC motor, actuator, etc.
Often design requirements necessitate an unsymmetrical output current capability. In that case, instead of the 0.4 ohm resistors protecting the npn and pnp output stages, as shown in Figure 9, simply substitute any other value. For example, if up to 3 amps are required when Vout $\geq+24 \mathrm{~V}$ and only 1 amp out when VOUT $\geq-24 \mathrm{~V}$, use a 0.4 ohm resistor between pin 8 and pin 9 on the ICL8063 and a' 1 ohm, 2 watt resistor between pin 7 and pin 8 . Maximum output current versus Vout for varying values of protection resistors are as follows:

Vout	$0.4 \Omega @ 25^{\circ} \mathrm{C}$	$0.68 \Omega @ 25^{\circ} \mathrm{C}$	$1 \Omega @ 25^{\circ} \mathrm{C}$
24 V	3 amps	1.7 amps	1.2 amps
12 V	2.4 amps	1.4 amps	0.9 amps
0 V	1.7 amps	1.0 amps	0.7 amps

The biasing resistors located between pin 13 and pin 14 and between pin 2 and pin 4 are typically 1 M -ohm for $\mathrm{Vcc}= \pm 30 \mathrm{~V}$, which guarantees adequate performance in such applications as DC motor drivers, power DACs, programmable power supplies and line drivers (with $\pm 30$ volt supplies). The table that follows shows the proper value for Rbias for optimum output current capability with supply voltages between $\pm 5 \mathrm{~V}$ and $\pm 30 \mathrm{~V}$.

$\pm V_{\text {CC }}$	$R_{\text {BIAS }}$
30 V	$1 \mathrm{M} \Omega$
25 V	$680 \mathrm{k} \Omega$
20 V	$500 \mathrm{k} \Omega$
15 V	$300 \mathrm{k} \Omega$
10 V	$150 \mathrm{k} \Omega$
5 V	$62 \mathrm{k} \Omega$

If 30 V and 1 meg ohms are used, performance curves appear as shown in Figure 11.


Figure 11. Typical Performance Curve of Max. Output Current vs. Vout for Fixed RBiAS $=1 \mathrm{M} \Omega$

When buying external power transistors, careful attention should be paid to beta values. For 2N3055 and 2N3789 transistors used in this circuit, beta should be no more than 150 max at $\mathrm{IC}=20 \mathrm{~mA}$ and $\mathrm{V}_{C E}=30 \mathrm{~V}$. This beta value sets the quiescent current at less than 30 mA when not delivering power to a load.
The design in Figure 9 will tolerate a short to ground indefinitely, provide adequate heat sinking is used. However if


Vout is shunted to $\pm 30 \mathrm{~V}$ the output transistors (2N3055 and 2N3789) will be destroyed. But since the safe operating area for both devices is 4 amps at 30 volts, the problem does not occur for $V_{C C}= \pm 15 \mathrm{~V}$.
A typical bode plot of the power amplifier system is shown in Figure 12. Referring to Figure 6, the schematic for this bode plot is shown below:


Figure 12: Bode Plot of Open Loop Gain of Above Schematic



Figure 13: Typical Performance of Rout vs. Frequency of Power Amplifier System

## 2. Designing A Simple Function Generator

Using a variation of the fundamental power amplifier building block described in the previous section, the ICL8063 can be implemented in the design of a simple, low cost function generator (Figure 14). It will allow generation of sine waves, triangular waves and square waves at the output from 2 hertz to 20 kilohertz. This complete test instrument can be plugged into a standard 110 VAC line for power. Vout will be up to $\pm 25 \mathrm{~V}(50 \mathrm{~V} p-\mathrm{p})$ across loads as small as 10 ohms (that's about 2.5 amps maximum output current).
All capacitor working voltages should be greater than 50 V DC. All resistors should be 500 mW , unless otherwise
indicated. Keep the interconnecting leads from pin 2 of the 741 to the 10k-ohm feedback resistor and 10k-ohm amplitude adjust potentiometer as short as possible. Less than 2 inches long is best, since this point is the summing junction of an operational amplifier. Failure to do so results in oscillation problems. Because of the slewing of the 741, the generator will not produce a 56 V p-p amplitude all the way up to 20 kHz . Full output swing is possible up to about 5 kHz . Beyond this point slewing begins and undistorted $\mathrm{p}-\mathrm{p}$ output will diminish. Due to this effect, amplitude at 20 kHz is about $20 \mathrm{~V} p-\mathrm{p}( \pm 10 \mathrm{~V})$. This could be remedied by using a higher slew rate op amp such as the LF156.


Figure 14: Power Function Generator

## 3. Building a Constant Current Motor Drive Circuit

The constant current motor drive configuration shown in Figure 15 is an extremely simple circuit to construct using the ICL8063. This minimum device circuit can be used to drive DC motors where there is some likelihood of stalling or lock up. If the motor locks, the current drive remains constant and the system does not destroy itself. Using this approach two 6V batteries are sufficient for decent performance. A 10 volt input will produce one amp of output current to drive the motor. If the motor is stalled, lout remains at 1 amp .
For example, suppose it's necessary to drive a 24 V DC motor with 1 amp of drive current into the motor. First make Vcc at least 6 volts more than the motor being driven (in this case 30 volts). Next select RBIAS according to $\pm \mathrm{V}_{\text {cc }}$ from the data sheet, which indicates an $R_{B I A S}=1 \mathrm{M}$-ohm. Then choose $R_{1}$, $R_{2}$, and $R_{3}$ for optimum sensitivity. That means making $R_{a}=1$ ohm to minimize the voltage drop across $R_{a}$ (the drop will be 1amp $\times 1$ ohm or 1 volt). If $1 \mathrm{amp} /$ volt sensitivity is desireable let $R_{2}=R_{1}$ and choose $R_{2}=R_{1}=10 k$-ohms to minimize feedback current error. Then $a \pm 1 \mathrm{~V}$ input voltage will produce a $\pm 1 \mathrm{amp}$ current through the motor.
All capacitors should be at least 50 volts working voltage and all resistors 500 mW , except for those valued at 0.4 ohms, and $R_{a}$. Power across $R_{a}=1 \times V=1 \mathrm{amp} \times 1$ volt = 1 watt, so at least a 2 watt value should be used. Use large heat sinks for the 2N3055 and 2N3791 power transistors. A Delta NC-641 or the equivalent is appropriate. Use a thermal compound when mounting the transistor to the heat sink. (See Intersil ICH8510 data sheet).


Figure 15: Constant Current Motor Drive

## 4. Building A Low Cost 8 ohm per channel HI -fi Amplifier.

For about \$20 per channel, it's possible to build a high fidelity amplifier using the ICL8063 capable of driving 8 ohm speakers. A channel is defined here as all amplification between turntable or tape output and power stage to drive 8 ohm speakers (Figure 16).
The input 741 stage is a preamplifier with R.I.A.A. equalization for records (disc). Following the first 741 stage is a 10k-ohm control pot, whose wiper arm feeds into the power amplifier stage consisting of a second 741, the ICL8063 and
the power transistors. To achieve good listening results, selection of proper resistance values in the power amplifier stage is important. Best listening is at a gain value of $6[(5 \mathrm{k} \Omega+$ $1 \mathrm{k} \Omega) / 1 \mathrm{k} \Omega=6$. Don't go below 3, since the first stage 741 preamp puts out only $\pm 10$ volt maximum signals. So, if maximum power is necessary this value must be multiplied by 3 to get $\pm 30$ volt levels at the output of the power amp stage.
Each channel delivers about 56 volts p-p across an 8 ohm speaker and this converts to 50 watts RMS power. This is derived as follows:
Power $=\frac{V_{r m s_{2}^{2}}}{80 h m s}, V_{r m s}=\frac{56 \mathrm{~V} \text { p-p }}{2.82}=20 \mathrm{~V}, 20 \mathrm{~V} 2=400 \mathrm{~V} 2$
$\therefore$ Power $=\frac{4002}{8 \text { ohms }}=50$ watts RMS Power.
Distortion will be $<0.1 \%$ up to about 100 Hz , and then it increases as the frequency increases, reaching about 1\% at 20 kHz .

The ganged switch at the input is for either disc playing or FM, either from an FM tuner or a tape amplifier. Assuming DC coupling (not capacitive coupling) on the outputs, there is no need for a DC reference to ground (resistor) for FM position. To clear the signal in the FM position; place a 51kohm resistor to ground as shown in Figure 16 (from FM input position to ground).


Figure 16: Hi Fi Amplifier



Figure 17: Typical Performance Curve of $\frac{\text { EOUT }}{V_{\text {IN }}}$ vs. Frequency For Typical Circuit Show̄n


Figure 18: Typical Performance Curve of Input Impedance Versusi Frequency for Typical Circuit Shown

NOTE: Intersil offers a hybrid power amplifier similar to the circuit shown in Figure 9, the ICH8510, ICH8520, \& ICH8530, "Power Amplifier, Motor \& Actuator Driver". This hybrid circuit has the following features:

- Capable of delivering 2.7 amps @ 24-28V d.c. operation (30V supplies)
- Protected against inductive kick back with internal power limiting
- Programmable current limiting (short circuit protection)
- Package is electrically isolated (allowing easy heat sinking)
- d.c. gain > 100dB
- 20mA typical standby quiescent current
- Popular 8 pin TO-3 package
- Internal frequency compensation
- Can drive up to 0.1 horsepower motors.


## PACKAGE DIMENSIONS

16 PIN CERDIP (JE)


16 PIN PLASTIC DIP (PE)


# ICH8510/ICH8520/ICH8530 Power Amplifier Motor and Actuator Driver 

## KEY FEATURES:

- Capable of delivering 2.7 amps @ 24-28V d.c. operation (30V supplies)
- Protected against inductive kick back with internal power limiting
- Programmable current limiting (short circuit protection)
- Package is electrically isolated (allowing easy heat sinking)
- d.c. gain $>100 \mathrm{~dB}$
- 20mA typical standy quiescent current
- Popular 8 pin TO-3 package
- Internal frequency compensation
- Can drive up to 0.1 horsepower motors.


## DESCRIPTION:

The ICH8510/8520/8530 is a family of hybrid power amplifiers that have been specifically designed to drive linéar and rotary actuators, electronic valves, push-pull solenoids, and d.c. \& a.c. motors.
There are three models available for up to $\pm 30 \mathrm{~V}$ power supply operation. One model will deliver up to $2.7 \mathrm{amps} @ 24$ volt output levels, while the remaining models deliver 2 amps \& $1 \mathrm{amp} @ 24 \mathrm{~V}$ outputs. All amplifiers are protected against shorts to ground by the addition of 2 external protection resistors.
The design uses a conventional 741 operational amplifier, a special monolithic driver chip (BL8063), NPN \& PNP power transistors, and internal frequency compensating capacitors. The chips are mounted on a beryllium oxide substrate, for optimum heat transfer to the metal package; this substrate provides electrical isolation between amplifiers and metal package.
The I.C. power driver chip has built-in regulators to drive the 741 @ typically $\pm 13 v$ supply voltages.


ABSOLUTE MAXIMUM RATINGS @ $T_{A}=25^{\circ} \mathrm{C}$

Supply Voltage	$\pm 35 \mathrm{~V}$
Power Dissipation, Safe Operating Area	See Curves
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage	$\pm 13 \mathrm{~V}$ (Note 1)
Peak Output Current	See Figs. 9 \& 13 (Note 2)
Output Short Circuit. Duration (to ground)	Continuous (Note 2)
Operating Temperature Range	$-55^{\circ} \mathrm{C} \rightarrow+125^{\circ} \mathrm{C}$
	$1-25^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Max Case Temperature	$150^{\circ} \mathrm{C}$

Note 1: Rating applies to supply voltage $> \pm 18$.
Note 2: Rating applies as long as maximum junction temperature is not exceeded $\left(200^{\circ} \mathrm{C}\right)$. See important note on power dissipation, page 3.

ELECTRICAL SPECIFICATIONS @ $T_{A}=+25^{\circ} \mathrm{C}$ (unless stated otherwise)

Description	Conditions		$\mathrm{V}_{\mathrm{CC}}= \pm 30 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}= \pm 30 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}= \pm \mathbf{3 0 V}$	
			ICH85301	ICH8530M	ICH85201	ICH8520M	ICH85101	ICH8510M
Max. Input Offset Change/Watt of Pdiss.	Part Mtd. 403 Heat	Wakefield   k	4mv/watt	2mv/watt	4mv/watt	$2 \mathrm{mv} /$ watt	4mv/watt	2mv/watt
Maximum Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqq 10 \mathrm{~K} \Omega$,	diss. < 1 watt	$\pm 6 \mathrm{mv}$	$\pm 3 \mathrm{mv}$	$\pm 6 \mathrm{mv}$	$\pm 3 \mathrm{mv}$	$\pm 6 \mathrm{mv}$	$\pm 3 \mathrm{mv}$.
Maximum Input Offset Current	RS $\leqq 10 \mathrm{~K} \Omega$	diss. $<1$ watt	200na	100na	200na	100na	200na	100na
Maximum Input Bias Current	$\mathrm{R}_{\mathrm{S}} \leqq 10 \mathrm{~K} \Omega$,	diss. < 1 watt	500na	250na	500na	250na	500na	250na
Minimum Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=20 \Omega, \mathrm{f}= \\ & \mathrm{V}_{\text {OUT }} \geqq 67 \% \end{aligned}$	$0 H Z$	100dB	100 dB	100dB	100 dB	100 dB	100dB
Minimum Input Voltage Range			$\pm 10 \mathrm{v}$	$\pm 10 \mathrm{v}$	$\pm 10 \mathrm{v}$	$\pm 10 \mathrm{v}$	$\pm 10 \mathrm{v}$	$\pm 10 \mathrm{v}$
Minimum CMRR	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{~K} \Omega$,	10 HZ	70 dB	70 dB	70dB	70 dB	70 dB	70 dB
Minimum PSRR	$\mathrm{R}_{S}=10 \mathrm{~K} \Omega$,	10 HZ	77 dB	77 dB	77 dB	77dB	77 dB	77 dB
Minimum Slew Rate	$\begin{aligned} & C_{\mathrm{L}}=30 \mathrm{Pf} . \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega, \mathrm{~V} \end{aligned}$	$\begin{aligned} & =1 \\ & \mathrm{JT} \geqq 67 \% \text { VCC } \end{aligned}$	$0.5 \mathrm{v} / \mu \mathrm{s}$	$0.5 \mathrm{v} / \mu \mathrm{s}$	$0.5 \mathrm{v} / \mu \mathrm{s}$	$0.5 \mathrm{v} / \mu \mathrm{s}$	$0.5 \mathrm{v} / \mu \mathrm{s}$	$0.5 \mathrm{v} / \mu \mathrm{s}$
Minimum Output Voltage Swing (Vsw)	$\begin{aligned} & R_{L}=20 \Omega ; A \\ & \mathbf{f}=1 \mathrm{KC} \end{aligned}$		- $\pm 25 \mathrm{v}$	$\pm 25 \mathrm{v}$	$\pm 26 \mathrm{v}$	$\pm 26 \mathrm{v}$	$\begin{gathered} \left(\mathrm{R}_{\mathrm{L}}=30 \Omega\right)^{\prime} \\ \pm 26 \mathrm{v} \end{gathered}$	$\begin{gathered} \left(R_{\mathrm{L}}=30 \Omega\right) \\ \pm 26 \mathrm{v} \end{gathered}$
Minimum   Output Current Capability(Imax)	VOUT $\geqq 24 \mathrm{v}$	Note 3	2.7 amps	2.7 amps	2 amps	2 amps	1 amp	1 amp
Max. $\pm$ Vcc Power Supply Quiescent Current	$\mathrm{R}_{\mathrm{L}}=\propto, \mathrm{V}_{\mathrm{IN}}=$		50 ma	40ma	50 ma	40ma	50ma	40ma

Note 3: Output current and $V_{\text {SWING }}$ are reduced as power supplies are lowered. See Figures 1, 2, \&9.

ELECTRICAL SPECIFICATIONS @. $T_{A}=-55^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}(\mathrm{M})$ or $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \rightarrow+85^{\circ} \mathrm{C}(\mathrm{I})$

Maximum Input Offset Voltage	Pdiss < 1 watt	$\pm 10 \mathrm{mv}$	$\pm 9 \mathrm{mv}$	$\pm 10 \mathrm{mv}$	$\pm 9 \mathrm{mv}$	$\pm 10 \mathrm{mv}$	$\pm 9 \mathrm{mv}$
Maximum Input Bias Current	Pdiss < 1 watt	$1.5 \mu \mathrm{a}$	750na	$1.5 \mu \mathrm{a}$	750na	$1.5 \mu \mathrm{a}$	750na
Maximum Input Offset Current		500na	200na	500na	200na	500na	200na
Minimum Large   Signal Voltage Gain	$R_{L}=20 \Omega$, $V_{\text {OUT }}=67 \% V_{C C}$ $f=10 \mathrm{HZ}$; with heat sink	90dB	90dB I	90 dB	90dB	90 dB	90dB
Minimum Output Voltage Swing	$R_{L}=20 \Omega$, Pkg. Mtd. on Wakefield 403 Heat Sink	$\pm 24 \mathrm{v}$	$\pm 24 \mathrm{~V}$	$\pm 24 \mathrm{v}$	$\pm 24 \mathrm{v}$	$\pm 24 \mathrm{v}$	$\pm 24 \mathrm{v}$
Maximum Thermal Resistance Junction to Ambient	Without Heat Sink	$40^{\circ} \mathrm{C} /$ watt	$40^{\circ} \mathrm{C} /$ watt	$40^{\circ} \mathrm{C} /$ watt	$40^{\circ} \mathrm{C} /$ watt	$40^{\circ} \mathrm{C} /$ watt	$40^{\circ} \mathrm{C} /$ watt
Maximum Thermal Resistanca Junction to Case	-	$2.5{ }^{\circ} \mathrm{C} /$ watt	$2.5{ }^{\circ} \mathrm{C} /$ watt	$2.5^{\circ} \mathrm{C} /$ watt	$2.5^{\circ} \mathrm{C} /$ watt	$3.0^{\circ} \mathrm{C} /$ watt	$3.0^{\circ} \mathrm{C} / \mathrm{watt}$
Typical Thermal Resistance Junction to Ambient	Pkg. Mtd. on Wakefield 403 Heat Sink	$4.0^{\circ} \mathrm{C} /$ watt	$4.0^{\circ} \mathrm{C} /$ watt	$4.0^{\circ} \mathrm{C} /$ watt	$4.0^{\circ} \mathrm{C} /$ watt	$4.5^{\circ} \mathrm{C} /$ watt	$4.5^{\circ} \mathrm{C} /$ watt
$\pm \mathrm{V}_{\text {cc }}$ Range (typical)		$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$	$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$	$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$	$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$	$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$	$\pm 18 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$

How To Set The Externally Programmable, Current Limiting Resistors:

The maximum output current is set by the addition of two external resistors-R+s.c. and R-s.c. Because of the INTERNAL POWER LIMITING CIRCUITRY, the maximum output current is only available when Vout is
close to either power supply. As Vout moves away from $\pm \mathrm{V}$ cc, the maximum output current decreases in proportion to output voltage. The curve below shows maximum output current versus output voltage.


FIGURE 1 Maximum Output Current for Given Rs.c.

In general, for a given Vout, Isc limit, and case temperature Tc, Rs.c. can be calculated from the equation below (Vout in Volts):

$$
\text { Rs.c. }=\frac{\left[600+(24 \times \text { VOUT })-2.2\left(\mathrm{TC}-25^{\circ} \mathrm{C}\right)\right] \mathrm{mV}}{\text { Isc limit }}
$$

i.e., If lout $($ maximum $)=1.5 \mathrm{amps} @$ Vout $=25 \mathrm{~V}$, $\mathrm{TC}=25^{\circ} \mathrm{C}$

$$
\text { Rs.c. }=\frac{1200 \mathrm{mV}}{1.5 \mathrm{amps}}=0.8 \Omega
$$

When an Rs.c. $=0.8 \Omega$ is used, lout @ Vout = OV will be reduced to 750 mA . Except for small changes in the "Vsw Limit" area, the effects of changing Rs.c. on the lout vs VOUT characteristics can be determined by merely changing the lout scale on Fig. 1 to correspond to the new value. Changes in Tc move the limit curve bodily up and down.
This INTERNAL POWER LIMITING CIRCUITRY however does not at all restrict the normal use of the driver. For any normal load, the static load line will be similar to that shown in Figure 1. Clearly, as Vout decreases, the lout requirement falls also, more steeply than the lout
available. For reactive loads, the dynamic load lines are more complex. Two typical operating point loci are sketched here:


Capacitive Load

|Inductive Load (Note catch diode)

Thus the limiting circuitry protects the load and avoids needless damage to the driver during abnormal conditions. For any $24 \mathrm{Vdc}-28 \mathrm{Vdc}$ motor/actuator, the Rs.c. resistors must be calculated to get proper power delivered to the motor (up to a maximum of 2.7 amps ) and $\pm \mathrm{Vcc}$ set at $\pm 30 \mathrm{~V}$. For lower supply and/or output voltages, the maximum output current will follow graphs of Figures 1 and 10.

## IMPORTANT NOTE ON POWER DISSIPATION OF POWER AMPLIFIER

The steady state power dissipation equation is:

$$
P_{\text {diss } \max }=\frac{T_{J M A X}-T_{A M B}}{\Theta_{J C}+\Theta_{C H}+\Theta_{H A}}
$$

Where:
TJMAX $=$ Maximum junction temperature
TAMB = Ambient temperature
$\Theta_{\mathrm{Jc}}=$ Thermal resistance from transistor junction to case of package
$\Theta_{\mathrm{CH}}=$ Thermal resistance from case to heat sink
$\Theta_{\mathrm{HA}}=$ Thermal resistance from heat sink to ambient air
Now:
TJMAX $=200^{\circ} \mathrm{C}$ for silicon transistors
$\Theta_{\mathrm{Jc}} \cong 2.0 \mathrm{C} /$ WATT for a steel bottom TO-3 package with die attachment to beryllia substrate to header
$\Theta \mathrm{CH}=.045^{\circ} \mathrm{C} / \mathrm{W}$ for 1 mil thickness of Wakefield type 120 thermal joint compound.
$.09^{\circ} \mathrm{C} / \mathrm{W}$ for 2mil thickness of type 120 $.13^{\circ} \mathrm{C} / \mathrm{W}$ for 3mil thickness of type 120 $.17^{\circ} \mathrm{C} / \mathrm{W}$ for 4 mil thickness of type 120 $.21^{\circ} \mathrm{C} / \mathrm{W}$ for 5 mil thickness of type 120 $.24^{\circ} \mathrm{C} / \mathrm{W}$ for 6 mil thickness of type 120

OHA The choice of heat sink that a user selects depends upon the amount of room available to mount the heat sink. A sample calculation follows: by choosing a Wakefield 403 heat sink, with free air, natural convection (no fan). $\Theta_{\mathrm{HA}} \cong 2.0^{\circ} \mathrm{C} / \mathrm{W}$. Using 4 mil joint compound,

$$
\begin{aligned}
\therefore P_{\text {diss }} \text { MAX } & =\frac{200^{\circ} \mathrm{C}-T_{\text {AMB }}}{2.0^{\circ} \mathrm{C} / \mathrm{W}+17^{\circ} \mathrm{C} / \mathrm{W}+2.0^{\circ} \mathrm{C} / \mathrm{W}} \\
& =\frac{200^{\circ} \mathrm{C}-\mathrm{T}_{\text {AMB }}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}
\end{aligned}
$$

$\therefore$ Pdiss MAX at TAMB $=25^{\circ} \mathrm{C}=\frac{200^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=42$ watts
Pdiss MAX at $\mathrm{T}_{\mathrm{AMB}}=125^{\circ} \mathrm{C}$ is $\frac{200^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{4.17^{\circ} \mathrm{C} / \mathrm{W}}=18$ watts
From Fig. 2 the worst case steady state power dissipation for an IH8520 (Rsc $=0.6 \Omega$ ) are about 30 W and 18 W respectively. Thus this heat sink is adequate. The IH8530 (Rsc $=0.4 \Omega$ ) would need a bigger heat sink (or a blower) giving about $1^{\circ} \mathrm{C} / \mathrm{W}$ for $\Theta_{\mathrm{CA}}$ to maintain satisfactory junction and case temperatures with 25 W dissipation and $T_{\text {AMB }}=125^{\circ} \mathrm{C}$.

## TYPICAL PERFORMANCE CURVES



Figure 2: Safe Operating Area; Iout vs Vout vs TC


Figure 3: Input Offset Voltage vs Power Dissipation


Figure 4: Input Impedance vs Gain vs Frequency


Figure 5: Quiescent Current vs Power Supply Voltage

TYPICAL PERFORMANCE CURVES, CONTINUED.



Figure 6: Large Signal Power Band Width


Figure 7: Small Signal Frequency Response


Figure 8: Maximum Output Current
vs. Case Temperature


## BRIEF APPLICATION NOTES

The maximum input voltage range, for $\pm \mathrm{V}_{\mathrm{CC}}> \pm 18 \mathrm{~V}$, is substantially less than the available output voltage swing. Thus non-inverting amplifiers, as in Figure 11, should always be set up with a gain greater than about 2.5 , (with $\pm 30 \mathrm{~V} \mathrm{VCC}$ ), so that the full output swing is available without hazard to the input. At first sight, it would seem that no restrictions would apply to inverting amplifiers, since the inputs are virtual ground and ground. However, under fault (output short-circuited) or high slew conditions, the input can be substantially removed from ground. Thus for inverting amplifiers with gains less than about 5, some protection should be provided at this input. A suitable resistor from the input to ground will provide protection, but also increases the effect of input offset voltage at the output. A pair of diodes, as shown in Figure 12, has no effect on normal operation, but gives excellent protection.


Figure 10:
Non-Inverting Amplifier


Figure 11: Inverting Amplifier

## TYPICAL APPLICATIONS

I. Actuator Driving Circuit ( $24 \rightarrow 28 \mathrm{Vd.c}$. rated)


Figure 13: Power Amp Driving Actuator

The gain of the circuit is set to +10 , so a +2.4 V input Vin will produce a +24 V output (and will deliver up to 2.7 amps output current). To reverse the piston travel, invert Vin to -2.4 V and Vout will go to -24 V . Diodes D1 and D2 absorb the inductive kick of the motor during transients (turn-on or turn-off); their breakdown should exceed 60V.

Power dissipation is another important parameter to consider. The current protection circuit protects the device against short circuits to ground, (but only for transients to the opposite supply) provided the device has adequate heat sink. A curve of power dissipation vs VOut under short circuit conditions is given in Figure 13. The limiting circuit is more closely dependent on case temperature than (output transistor) junction temperatures. Although these operating conditions are unlikely to be attained in actual use, they do represent the limiting case a heat sink must cope with. For fully safe design, the anticipated range of VOUt values that could occur, (steady state, including faults) should be examined for the highest power dissipation, and the device provided with a heat sink that will keep the junction temperature below $200^{\circ} \mathrm{C}$ and the case temperature below $150^{\circ} \mathrm{C}$ with the worst case ambient temperature expected.


Figure 12: Power Dissipation under Short Circuit Conditions
II. Obtaining Up To 5 Amps Output Current Capability By Paralleling Amplifiers


Figure 14: Paralleling Power Amps for Increased Current Capability
This paralleling procedure can be repeated to get any desired output current. However, care must be taken to ensure that enough load is provided to avoid the amplifiers pulling against each other.

## III．Driving A 48VDC Motor



Figure 15：Power Amp Driving 48 VDC Motor

## IV．Precise Rate Control of an Electronic Valve

To get very fine control of the opening of an orifice，driven by an electronic valve，there are two ways to go．

1．Keep the voltage constant，i．e．， 24 Vdc or 12 Vdc ，and vary the time the voltage is applied，i．e．，if it takes five seconds to completely open an orifice at 24 Vdc ， then applying 24 V for only $2-1 / 2$ seconds opens it only $50 \%$ ．

2．Simply vary the d．c．driving voltage to valve．Most valves obtain full opening as an inverse of applied voltage．，i．e．，valves opens $100 \%$ in five seconds at 24 Vdc and in 10 seconds at 12 Vdc ．
A circuit to perform the second method is shown below； the advantage of this is that digit switches can precisely． set driving voltage to $0.2 \%$ accuracy（8－bit DAC），thereby controlling the rate at which the valve opens．


Figure 16：Digitally Controlled Electronic Value

V．The circuit presented in IV is also an excellent way to get a precise power supply voltage；in fact，a precision，

$$
V_{\text {OƯT }}= \pm 5 V\left(\frac{4 K+1 K}{1 K}\right) \times \text { digital } \# \text { set by Sws. and can deliver up to } 3 \text { amps. }
$$

Figure 17：Digitally Programmable Power Supply
variable power supply can be made．Using a BCD coded DAC with BCD Thumbwheel switches．

20	21	22	23	24	25	26	27	$\emptyset$ BIT	Vout
1	1	1	1	1	1	1	1	1	$+25 V d . c$.
1	1	1	1	1	1	1	1	0	$-25 V d . c$.
0	1	0	1	1	0	0	1	1	$+15 V d . c$.
0	1	0	1	1	0	0	1	0	$-15 V d . c$.
1	0	0	0	0	0	0	0	1	$+0.098 V d . c$.
1	0	0	0	0	0	0	0	0	$-0.098 V d . c$.

Etc．

The power supply can be set to $\pm 0.1 \mathrm{Vd} . \mathrm{c}$ ．

## ICH8510/8520/8530

VI. There is great power available (no pun intended) in the sub-systems shown in IV and $V$; there the D/A converter is shown being set manually (via digit switches) to get a precise analog output (binary \# $\times$ full scale voltage), then the driver amplifier multiplies this voltage to produce the final output voltage. It seems obvious that the next logical step is
to let a microprocessor (local) or C.P.U. program the D/A converter. Then total, pre-programmable, electronic control of an actuator, electronic valve, motor, etc., is obtained. This would be used in conjunction with a transducer/multiplex system for electronic monitoring and control of any electromechanical function.

## ELECTRONIC CONTROL SYSTEM:



MUX $=$ INTERSIL IH5060 (1/16) or IH5070 (2/16)
S/H|(SAMPLE \& HOLD) $=$ INTERSIL IH5111.
D/A CONVERTER = INTERSIL 7520 or INTERSIL 7105
POWER AMP $=$ IH8510 (1 AMP) or IH8520 (2 AMP) or IH8530 (2.7 AMP)
A/D CONVERTER $=$ ICL8052/7103 or ICL8052/7104 $\mu$ COMPUTER $=$ IM6100 family:


FOR OTHER APPLICATIONS etc. see

1) Intersil Applications Bulletin A021 "Power D/A

Converters using the IH8510" by Dick Wilenken

## HEAT SINK INFORMATION

Heat sinks are available from Intersil. Order part number 29-0305 (\$10.00 ea.) with a $\Theta S / A=1.3^{\circ} \mathrm{C} /$ watt. $A$ convenient mating connector is also available. Order part number 29-0306 (\$4.50 ea.).

NOTE. This product contains Beryllia. If used in an application where the package integrity may be breached and the internal parts crushed or machined, avoid inhalation of the dust.

# Commutating Auto-Zero (CAZ) Instrumentation Amplifier 

## FEATURES

- Exceptionally low input offset voltage $-2 \mu \mathrm{~V}$
- Low long term input offset voltage drift $0.2 \mu \mathrm{~V} / \mathrm{year}$
- Low input offset voltage temperature drift $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Wide common mode input voltage range $\mathbf{- 0 . 3 V}$ above supply rail
- High common mode rejection ratio - 100 dB
- Excellent low supply voltage - Down to $\pm 2 \mathrm{~V}$
- Short circuit protection on outputs for $\pm 5 \mathrm{~V}$ operation
- Static-protected inputs - no special handling required
- Fabricated using proprietary MAXCMOS ${ }^{\text {TM }}$ process technology
- Compensated (ICL7605) or uncompensated (ICL7606) versions


## SYMBOL



## GENERAL DESCRIPTION

The ICL7605/ICL7606 commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace almost any of today's expensive hybrid or monolithic instrumentation amplifiers for low frequency applications from DC to 10 Hz . This is made possible by the unique construction of this new Intersil device, which takes an entirely new design approach to low frequency amplifiers.
Unlike conventional amplifier designs which employ three op amps and require últra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key feature of the CAZ principle involves automatic compensation for long term drift phenomena and temperature effects.
The ICL7605/ICL7606 is a monolithic CMOS chip which consists of two analog sections - a unity gain differential to single-ended voltage converter and a CAZ op amp. The first section serves to insure that at all times the differential input source is being sensed and applied to the CAZ amp section. The CAZ instrumentation amp section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift:
The ICL7605/ICL7606 is intended for low-frequency operation in applications such as strain gauges, which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz . Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. The no-adjustment feature, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.


## ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (sum of both positive and negative supply voltages, $\mathrm{V}^{+}$and $\mathrm{V}^{-}$) .......... 18 Volts
Positive Supply Voltage (GND to $\mathrm{V}^{+}$) .............. 18 Volts
Negative Supply Voltage (GND to $\mathrm{V}^{-}$) ............ 18 Volts
DR Input Voltage ................ ( $\mathrm{V}^{+}+0.3$ ) to $\left(\mathrm{V}^{+}-8\right)$ Volts
Input Voltage ( $\mathrm{C}_{1}, \mathrm{C}_{2}$, +INPUT, -INPUT, BIAS,
OSC (Note 2) ) ............... ( $\mathrm{V}^{+}+0.3$ ) to ( $\mathrm{V}^{-}-0.3$ ) Volts
Differential Input Voltage (Note 3) . $\pm\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3\right)$
Volts
Duration of Output Short Circuit (Note 4) ..... Unlimited
Continuous Total Power Dissipation at or below $+25^{\circ} \mathrm{C}$ free air temperature (Note 5)
CERDIP Package ................................. 500 mW
Plastic Package ...................................... 375 mW

Operating Temperature Range
(ICL7600/ICL7601/MJD) .............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range (ICL7600/ICL7601/IJD) .................. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range (ICL7600/ICL7601/CPD) ...................... 0 to $+70^{\circ} \mathrm{C}$ Storage Temperature Range .............. -55 to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 60 seconds) ........ $+300^{\circ} \mathrm{C}$

Note 1: Stresses above those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent device failures. These are stress ratings only and functional operation of devices under conditions other than those indicated in the Table of Electrical Characteristics is not recommended. Exposure to absolute maximum rating conditions for extended periods of time can cause device failures.
Note 2: An SCR structure is inherent in the CMOS process used in the fabrication of these devices. If voltages in excess of $\left(\mathrm{V}^{+}+0.3\right)$ to $\left(\mathrm{V}^{-}-0.3\right)$ volts are connected to either inputs or outputs, destructive latchup can occur. For this reason it is recommended that no inputs from sources not on the same power supply or supplies be applied before the ICL7600/ICL7601 supplies are established, and that if multiple supplies are used the ICL7600/ICL7601 supplies be activated first.
Note 3: No restrictions are placed on the differentialinput voltages on either the inverting or non-inverting inputs, so long as these voltages do not exceed the power supply voltages by more than 0.3 V .
Note 4: Outputs may be shorted to ground (GND) or to either supply ( $\mathrm{V}^{+}, \mathrm{V}^{-}$). Temperature and/or supply voltages must be limited to insure that the dissipation rating is not exceeded.
Note 5: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW for CERDIP and $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 375 mW for plastic above $25^{\circ} \mathrm{C}$.

## BLOCK DIAGRAM



## OPERATING CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5$ volts, $\mathrm{V}^{-}=-5$ volts, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to $\mathrm{V}^{+}$(fcOM $\cong 160 \mathrm{~Hz}, \mathrm{fCOM} \cong 80 \mathrm{~Hz}$ ), $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F}$, Test Circuit 1 unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	VALUE			UNIT
			MIN	TYP	MAX	
Input Offset Voltage	Vos	RS $\leq 1 \mathrm{k} \Omega$ Low Bias Setting    Med Bias Setting    High Bias Setting   MIL version over temp. Med Bias Setting		$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 7 \end{aligned}$	$\begin{array}{r}  \pm 5 \\ \pm 20 \end{array}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$
Average Input Offset Voltage Temperature Coefficient	TCVos	$\begin{aligned} & \text { Low or Med Bias Settings }-55^{\circ} \mathrm{C}>T_{\mathrm{A}}>+25^{\circ} \mathrm{C} \\ &+25^{\circ} \mathrm{C}>T_{\mathrm{A}}>+85^{\circ} \mathrm{C} \\ &+25^{\circ} \mathrm{C}>T_{\mathrm{A}}>+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \hline 0.01 \\ & 0.01 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Long Term Input Offset Voltage Stability	Vos/Time	Low or Med Bias Settings		0.5		$\mu \mathrm{V} / \mathrm{Year}$
Common Mode Input Range	CMVR		-5.3		+5.3	V
Common Mode Rejection Ratio	CMRR	$\begin{aligned} & \text { COSC }=0, \mathrm{DR} \text { connected to } \mathrm{V}^{+}, \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\ & \text { Cosc }=1 \mu \mathrm{~F}, \text { DR connected to } \mathrm{GND}, \mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \\ & \text { CosC }=1 \mu \mathrm{~F}, \text { DR connected to GND, } \mathrm{C}_{3}=\mathrm{C}_{4}=10 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} 94 \\ 100 \\ 104 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Power Supply Rejection Ratio	PSRR			110		dB
-INPUT Bias Current	$i_{\text {INTB }}$	Any bias setting, $\mathrm{fc}=160 \mathrm{~Hz}$ (Includes charge injection currents)		0.15	1.5	nA
Equivalent Input Noise Voltage peak-to-peak	enp-p	Low Bias Mode   Band Width Med Bias Mode   0.1 to 10 Hz High Bias Mode		$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Equivalent Input Noise Voltage	ē̄p-p	Band Width $\quad$ All Bias Modes 0.1 to 1.0 Hz .		1.7		$\mu \mathrm{V}$
Voltage Gain	Av	$R_{L}=100 \mathrm{k} \Omega$ Low Bias Setting       Hed Bias Setting Bias Setting	$\begin{aligned} & 90 \\ & 90 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 100 \\ & \hline \end{aligned}$	\%	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Maximum Output Voltage Swing	Vout	$\begin{array}{ll} R_{L}=1 \mathrm{M} \Omega \\ R_{L}=100 \mathrm{k} \Omega & \\ R_{L}=10 \mathrm{k} \Omega & \text { Positive Swing } \\ & \text { Negative Swing } \\ \hline \end{array}$	+4.4	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \end{aligned}$	-4.5	$\begin{aligned} & \hline V \\ & V \\ & V \\ & V \\ & \hline \end{aligned}$
Band Width of Input Voltage Translator	GBW	$\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F} \quad$ All Bias Modes		10		Hz
Nominal Commutation Frequency	fCOM	Cosc $=0 \mathrm{pF}$ DR Connected to $\mathrm{V}^{+}$    DR Connected to GND		$\begin{gathered} 160 \\ 2560 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \\ & \hline \end{aligned}$
Nominal Input Converter Commutation Frequency	fCOM1	Cosc = OpF $\quad . \quad$ DR Connected to $\mathrm{V}^{+}$		$\begin{gathered} 80 \\ 1280 \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
Bias Voltage to define Current Modes	$\begin{array}{\|l\|} \hline V_{B A} \\ V_{B M} \\ V_{B L} \\ \hline \end{array}$	Low Bias Setting Med Bias Setting High Bias Setting	$\begin{aligned} & \mathrm{V}^{+}-0.3 \\ & \mathrm{~V}^{-}+1.4 \\ & \mathrm{~V}^{-}-0.3 \end{aligned}$		$\begin{aligned} & \mathrm{V}^{+}+0.3 \\ & \mathrm{~V}^{+}-1.4 \\ & \mathrm{~V}^{-}+0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Bias (Pin 8) Input Current	IBIAS			$\pm 30$		pA
Division Ratio Input Current	IDR	$\mathrm{V}^{+}-8.0 \leq \mathrm{V}_{\mathrm{DR}} \leq \mathrm{V}^{+}+0.3$ volt		$\pm 30$		pA
DR Voltage to define Oscillator division ratio	VDRH VDRL	Internal oscillator division ratio 32 Internal oscillator division ratio 2	$\begin{array}{\|c} \hline \mathrm{V}^{+}-0.3 \\ \mathrm{~V}^{+}-8 \\ \hline \end{array}$		$\begin{aligned} & \hline \mathrm{V}^{+}+0.3 \\ & \mathrm{~V}^{+}-1,4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Effective Impedance of Voltage Translator Analog Switches	Ras	(	$\cdots$	30	$\cdots$	kS
Supply Current	Is	High Bias Setting Med Bias Setting Low Bias Setting	$\begin{gathered} \hline 4 \\ 0.6 \\ 0.25 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 1.7 \\ 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 1.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Supply Voltage Range	$\mathrm{V}^{+}-\mathrm{V}^{-}$	High Bias Setting Med or Low Bias Setting	$\begin{aligned} & 5 \\ & 4 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

## INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES



INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY ( $\mathbf{C}_{1}, \mathbf{C}_{2}=0.1 \mu \mathbf{F}$ )

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE $\left(\mathbf{V}^{+}-\mathbf{V}^{-}\right)$

fСом - COMMUTATION FREQUENCY -Hz



INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY ( $\mathbf{C}_{1}, \mathbf{C}_{2}=1 \mu \mathrm{~F}$ )


COMMON MODE REJECTION RATIO AS A FUNCTION OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER CAPACITORS


INPUT CURRENT AS A FUNCTION OF'COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


FСОМ - COMMUTATION FREQUENCY - Hz


RL - LOAD RESISTANCE


SUPPLY CURRENT AS A
FUNCTION OF TEMPERATURE

OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING


AMPLITUDE RESPONSE OF THE INPUT DIFFERENTIAL' TO SINGLE ENDED VOLTAGE CONVERTER



FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2).



TEST CIRCUIT 1: USE TO MEASURE:
USE TO MEASURE:
a) INPUT OFFSET VOLTAGE $\left(\frac{\text { VOUT }}{1000}\right)$
b) INPUT EQUIV NOISE VOLTAGE
c) SUPPLY CURRENT
d) CMRR
e) PSRR


TEST CIRCUIT 2: DC to $10 \mathrm{~Hz}(1 \mathrm{~Hz})$ Unity Gain Low Pass Filter

## DETAILED DESCRIPTION

## CAZ Instrumentation Amp Overview

The CAZ instrumentation amplifier operates on principles which are very different from those of the conventional three op amp designs, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the ICL7605/ICL7606 CAZ instrumentation amp is the provision for self-compensation for internal error voltages, whether they are derived from steady-state conditions, temperature, supply voltage fluctuations, or are variable over a long term.
The CAZ instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input signal. The analog switches are driven from a self-contained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the ICL7605/ICL7606 is shown in Figure 1.


Figure 1: Simplified Block Diagram
The ICL7605/ICL7606 have approximately constant input equivalent noise voltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100 .
The only major limitation of the ICL7605/ICL7606 is its lowfrequency operation ( 10 to 20 Hz maximum). However in many applications speed is not the most important parameter.

## CAZ Op Amp Section

Operation of the CAZ amp section of the ICL7605/ICL7606 instrumentation amplifier is best illustrated by referring to Figure 2. The basic amplifier configuration, represented by the large triangles, has one more input than does a regular op amp - the AZ, or auto-zero terminal. The voltage on the $A \geq$ input is that level to which each of the internal op amps are to be auto-zeroed. In Mode A, op amp \#2 is connected into a unity gain mode through on-chip analog switches, and charges external capacitor $\mathrm{C}_{2}$ to a voltage equal to the DC input offset voltage of the amplifier, in addition to the instantaneous low-frequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp \#2 has capacitor $\mathrm{C}_{2}$ (which is charged to a voltage equal to the offset and noise voltage of op amp \#2) connected in series to its non-inverting $(+)$ input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input signal, the second op amp is in an auto-zero mode, and charges a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The on-chip amplifiers are connected and reconnected at a rate designated as the commutation frequency (fcom) so that at all times one or the other of the on-chip op amps is processing the input signal while the voltages on capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are being updated regularly to compensate for variables such as low frequency noise voltage and input offset voltage changes due to temperature, drift or supply voltages effects.
Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important advantages:

* Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming.
* Long-term offset voltage drift phenomena can be compensated and dramatically reduced.
* Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better.
* Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and


Figure 2: Diagrammatic representation of the 2 half cycles of operation of the CAZ OP AMP.


Figure 3: Schematic of analog switches connecting each internal OP AMP to the external inputs at the output.
the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge injection and the widest operating voltage range. The analog section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. CMOS structure provides the CAZ amp concept with open-loop gains of greater than 100 dB , typical input offset voltages of $\pm 5 \mathrm{mV}$, and ultra-low output leakage currents, typically 1 pA .

The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 3. Here, one op amp and its associated analog switches are required to connect each on-chip op amp so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N -channel transistor.

## DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER

An idealized schematic of a voltage converter block is shown in Figure 4. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input and the other from a ground or reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 5 , where the voltage steps equal the differential voltage $\left(V_{A}-V_{B}\right)$ at commutation times $a, b, c$, etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, commutation and noise voltages are added. Sampling theory states that to preserve the integrity of the information to be processed, at least two samples must be taken within a period ( $1 / \mathrm{f}$ ) of the highest frequency of the signal being


Figure 4: Schematic of the differential to single ended voltage converter


Figure 5: Input to Output Voltage waveforms from the differential to single ended voltage converter. For additional information, see frequency characteristics in Amplitude Response of the Input Differential to single ended voltage converter graph on page 5.
sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation frequency, the input signal is transferred to a lower frequency. This phenomenon is known as aliasing. Although the output responds above the commutation frequency, the frequencies of the output responses have been aliased down to frequencies below the commutation frequency.
The example shown in Figure 4 for the voltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P -channel and N -channel transistors. The switches have finite ON impedances of $30 \mathrm{k} \Omega$, plus parasitic capacitances to the substrate. Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors $\mathrm{C}_{0}$ and $\mathrm{C}_{0}$ must be about $1 \mu \mathrm{~F}$ to preserve signal translation accuracies to $0.01 \%$. The $1 \mu$ F capacitors, coupled with the $30 \mathrm{k} \Omega$. equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is approximately 3 dB at 10 Hz .

## APPLICATIONS

## USING THE ICL7605/ICL7606 TO BUILD A DIGITAL READOUT TORQUE WRENCH

A typical application for the $1 C L 7605 / I C L 7606$ is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure 6. In this application, the CAZ intrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting this voltage to a single-ended voltage reference to ground. The signal is then amplifier by the CAZ instrumentation amplifier and applied to the input of a 3-1/2 digit dual-slope A/D converter chip for LCD panel meter display. The A/D converter device used in this instance is the Intersil ICL7106.
In the digital readout torque wrench circuit, the internal reference voltage of the ICL7106 is used instead of the conventional external reference source. In order to set the full-scale reading, it is required that, given a certain strain
gauge bridge with a defined pressure voltage sensitivity, a value of gain for the ICL7605/ICL7606 instrumentation CAZ amp be selected along with an appropriate value for the reference voltage. The gain should be set so that at full scale the output will swing about 0.5 V . The reference voltage required is about one-half the maximum output swing, or approximately 0.25 V .
In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage must be varied for full-scale adjustment. Note that the common to $\mathrm{V}^{+}$voltage of the CAZ amp is about 2.8 V . This voltage must therefore be divided by about 10 to provide the 0.25 V reference voltage. Total current consumption of all circuitry, less the current through the strain gauge bridge, is typically 2 mA .


Figure 6: 3-1/2 Digit Digital Readout Torque Wrench

## SOME HELPFUL HINTS

## Testing the ICL7605/ICL7606 CAZ Instrumentation Amplifier

Test Circuits \#1 and \#2 provide convenient means of measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscilloscope after being fed through a low-pass filter. It is recommended that for most applications, a low-pass filter of about 1.0 to 1.5 Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage.
The output low-pass filter must be of a high-input impedance type - not a capacitor across the feedback resistor $\mathrm{R}_{2}$ nor a low-impedance type of around $1 \mathrm{k} \Omega$ - but rather must be rated at about $100 \mathrm{k} \Omega$ and $1.0 \mu \mathrm{~F}$ so that the output dynamic loading on the CAZ instrumentation amp is about $100 \mathrm{k} \Omega$.

## Bias Control

The on-chip op amps consume over $90 \%$ of the power required by the ICL7605/ICL7606 instrumentation op amp. For this reason, the internal op amps have externallyprogrammable bias levels. These levels are set by connecting the BIAS terminal to either $\mathrm{V}^{+}$, GND, or $\mathrm{V}^{-}$. The difference between each bias setting is about a factor of 3 , allowing a 9:1 ratio of power supply versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the lower the amplitude of commutation spikes) and offset errors due to "IR" voltage drops and thermoelectric temperature gradients across the chip and the higher the temperature gradients across the chip and the highe the input offset error), In most cases, the medium bias (MED BIASI setting will be found to be the best choice.

## Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with loads as low as $2 k \Omega$.
However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 k \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. Therefore, for high gain configurations requiring high accuracy, an output loading of $100 \mathrm{k} \Omega$ or less is suggested.
There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked, and that is the additional power dissipation of the chip which will result from a large output voltage swing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions.

## Output Loading (Capacitive)

In many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op amp to reduce high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter.
However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteristic in the direction of the auto-zero voltage and a high-impedance characteristic on the recovery edge, as shown in Figure 7. It can be seen that the effect of a large load capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a highimpedance type to avoid these area errors. For example, a 1.5 Hz filter will require a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1 \mathrm{M} \Omega$ resistor and an $0.1 \mu \mathrm{~F}$ capacitor.

## Oscillator and Digital Circuitry Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160 Hz . The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the auto-zero modes. A 160 Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others.
The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired $(5.2 \mathrm{kHz})$ the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The ICL7605/ ICL7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratio) terminal allows a choice of either dividing the oscillator by 32 ( DR terminal to $\mathrm{V}^{+}$) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and the $\mathrm{V}^{+}$or system GND terminals. For situations which require that the commutation frequency be synchronized with a master clock, (Figure 8) the OSC terminal may be driven from TTL logic (with resistive pull-up) or by CMOS logic, provided that the $\mathrm{V}^{+}$ supply (with respect to ground) is $+5 \mathrm{~V}( \pm 10 \%)$ and the logic driver also operates from a similar voltage supply. The


Figure 7: Effect of a load capacitor on output voltage waveforms.


Figure 8: ICL7605 being clocked from external logic into the oscillator terminal.
reason for this requirement is that the logic section (including the oscillator) operates from an internal -5 V supply, referenced to $\mathrm{V}^{+}$support which is generated on-chip, and which is not accessible externally.

## Thermoelectric Effects

The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects whereby electrical junctions consist of various metals (alloys, silicon, etc.) Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.
In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. Special thermoelectric solder ( $70 \%$ cadmium, $30 \% \mathrm{tin}$ ) should be used. In addition, the supply voltages and power dissipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep well away from equipment which dissipates heat.

## Component Selection

The two auto-zero capacitors ( $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ ) should each be about $1.0 \mu \mathrm{~F}$ value. These are relatively large values for nonelectrolytic capacitors, but since the voltages stored on them do not change significantly, problems of dielectric absorption, charge bleed-off and the like are not as significant as they would be for integrating dual-slope A/D converter applications. Polypropylene and Mylar are the best.
Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, smaller-size capacitors, since the absolute values of the capacitors is not critical. Even polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F}$ and 50 V have been used successfully at room temperature, although no recommendations are made concerning the use of such capacitors.

## Commutation Voltage Transient Effects

Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 10 Hz . The is due to the finite switching transients which occur at both the input and
output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest in-band frequency, then the commutation transients can be filtered out with a low-pass filter.
The input commutation transients arise when each of the onchip op amps experiences a shift in voltage which is equal to the input offset voltages (about $5-10 \mathrm{mV}$ ), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors $C_{1}$ and $\mathrm{C}_{2}$ must have values of at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each.
The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent DC input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0 pA at an ambient temperature of $25^{\circ} \mathrm{C}$.
The output waveform in Test Circuit \#1 (with no input signal) is shown in Figure 9. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the onchip op amps, the input transients of approximately 7 mV are not amplified by 1000.


Figure 9: Output waveform from Test Circuit 1.

## Layout Considerations

Care should be exercised in positioning components on the PC board, particularly the capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and $\mathrm{C}_{4}$, all of which must be shielded from the OSC terminal. Also, parasitic PC board leakage capacitances associated with these four capacitors should be kept as low as possible to minimize charge injection effects.
PACKAGE DIMENSIONS


## ICL8048, ICL8049 Monolithic Log Amplifier Monolithic Antilog Amplifier

## FEATURES

- 1/2\% Full Scale Accuracy
- Temperature Compensated $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Scale Factor 1V/Decade, Adjustable
- 120 dB Dynamic Current Range (8048)
- 60 dB Dynamic Voltage Range ( 8048 \& 8049)
- Dual FET-Input Op-Amps


## GENERAL DESCRIPTION

The 8048 is a monolithic logarithmic amplifier capable of handling six decades of current input, or three decades of voltage input. It is fully temperature compensated and is' nominally designed to provide 1 volt of output for each decade change of input. For increased flexibility, the scale factor, reference current and offset voltage are externally adjustable.
The 8049 is the antilogarithmic counterpart of the 8048; it nominally generates one decade of output voltage for each 1-valt change at the input.

## 8048 SCHEMATIC DIAGRAM



8049 SCHEMATIC DIAGRAM


## CONNECTION DIAGRAM



CONNECTION DIAGRAM


MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Iin (Input Current)	2 mA
Iref (Reference Current) $^{\text {Voltage between Offset' } \text { Null and } \mathrm{V}^{+}}$2 mA    Power Dissipation $\pm 0.5 \mathrm{~V}$$\quad 750 \mathrm{~mW}$	

## ELECTRICAL CHARACTERISTIC (Note 1)

PARAMETER	CONDITION	8048BC			8048CC			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Dynamic Range								
$\mathrm{I}_{\text {in }}(1 \mathrm{nA}-1 \mathrm{~mA})$		120			120			dB
$V_{\text {in }}(10 \mathrm{mV}-10 \mathrm{~V})$	$\mathrm{R}_{\text {IN }}=10 \mathrm{k} \Omega$	60			60			dB
Error, \% of Full Scale	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1 \mathrm{IN}=1 \mathrm{nA}$ to 1 mA		. 20	0.5		. 25	1.0	\%
Error, \% of Full Scale	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,		. 60	1.25		. 80	2.5	\%
	$1 / \mathrm{N}=1 \mathrm{nA}$ to 1 mA							
Error, Absolute Value	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{1 N}=1 \mathrm{nA}$ to 1 mA		12	30		14	60	mV
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$,		36	75		50	150	mV
	$1 / \mathrm{N}=1 \mathrm{nA}$ to 1 mA							
Temperature Coefficient of VOUT	$1 / \mathrm{N}=1 \mathrm{nA}$ to 1 mA		0.8			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Output		2.5			2.5		$\mathrm{mV} / \mathrm{V}$
Offset Voltage ( $A_{1} \& A_{2}$ )	Before Nulling		15	25		15	50	mV
Wideband Noise	At Output, for $I_{1 N}=100 \mu \mathrm{~A}$		250			250		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		$\pm 10$	$\pm 13$		V
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

NOTE 1: Unless otherwise noted, specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$, scale factor adjusted for $1 \mathrm{~V} / \mathrm{decade}$. Accuracy specifications assume that offset voltages and scale factor have been adjusted using the procedure outlined on page 3.


## THEORY OF OPERATION

The 8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor:

$$
\begin{equation*}
I_{C}=\operatorname{IS}\left[e^{q V_{B E} / k T}-i\right] \tag{1}
\end{equation*}
$$

For base-emitter voltages greater than 100 mV , Eq. (1) becomes

$$
\begin{equation*}
I_{C}=I_{S} e^{q V_{B E} / k T} \tag{2}
\end{equation*}
$$

From Eq. (2), it can be'shown that for two identical transistors operating at different collector currents, the $V_{B E}$ difference ( $\triangle V_{B E}$ ) is given by:

$$
\begin{equation*}
\Delta V_{B E}=-2.303 \times \frac{\mathrm{kT}}{\mathrm{q}} \log 10\left[\mathrm{I}_{\mathrm{C} 1} / \mathrm{I}_{\mathrm{C} 2}\right] \tag{3}
\end{equation*}
$$

Referring to Fig. 1, it is clear that the potential at the collector of $\mathrm{Q}_{2}$ is equal to the $\triangle \mathrm{V}_{\mathrm{BE}}$ between $\mathrm{Q}_{1}$ and $\mathrm{Q}_{\mathbf{2}}$. The output voltage is $\Delta V_{B E}$ multiplied by the gain of $A_{2}$ :

$$
\begin{equation*}
V_{\text {OUT }}=-2.303\left(\frac{R_{1} R_{2}}{R_{2}}\right)\left(\frac{k T}{q}\right) \log 10\left[I_{I N} / I_{R E F}\right] \tag{4}
\end{equation*}
$$

The expression $2.303 \times \frac{\mathrm{kT}}{\mathrm{q}}$ has a numerical value of 59 mV at $25^{\circ} \mathrm{C}$; thus in order to generate 1 volt/decade at the output, the ratio $\left(R_{1}+R_{2}\right) / R_{2}$ is chosen to be 16.9. For this scale factor to hold constant as a function of temperature, the $\left(R_{1}+R_{2}\right) / R_{2}$ term must have a $1 / T$ characteristic to compensate for $\mathrm{kT} / \mathrm{q}$.
In the 8048 this is achieved by making $R_{1}$ a thin film resistor, deposited on the monolithic chip. It has a nominal
value of $15.9 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, and its temperature coefficient is carefully designed to provide the necessary compensation. Resistor $R_{2}$ is external and should be a low T.C. type; it should have a nominal value of $1 \mathrm{k} \Omega$ to provide 1 volt/ decade, and must have an adjustment range of $\pm 20 \%$ to allow for production variations in the absolute value of $\mathrm{R}_{1}$.

## OFFSET AND SCALE FACTOR ADJUSTMENT

A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves $\mathrm{Q}_{1}$ of collector current and open the feedback loop around $A_{1}$. Instead, it is necessary to zero the offset voltage of $A_{1}$ and $A_{2}$ separately, and then to adjust the scale factor. Referring to Fig. 1, this is done as follows:

1) Temporarily connect a $10 \mathrm{k} \Omega$ resistor ( $\mathrm{R}_{0}$ ) between pins 2 and 7. With no input voltage, adjust $R_{4}$ until the output of $A_{1}$ (pin 7) is zero. Remove $\mathrm{R}_{0}$.
Note that for a current input, this adjustment is not necessary since the offset voltage of $A_{1}$ does not cause any error for current-source inputs.
2) Set IIN $=$ IREF $=1 \mathrm{~mA}$. Adjust R5 such that the output of $A_{2}$ (pin 10 ) is zero.
3) Set $I_{I N}=1 \mu A$, IREF $=1 \mathrm{~mA}$. Adjust $R_{2}$ for $\mathrm{V}_{\text {OUT }}=3$ volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor).
Step \#3 determines the scale factor. Setting $I_{I N}=1 \mu \mathrm{~A}$ optimizes the scale factor adjustment over a fairly wide dynamic range, from 1 mA to 1 nA . Clearly, if the 8048 is to be used for inputs which only span the range $100 \mu \mathrm{~A}$ to 1 mA , it would be better to set $\mathrm{I}_{\mathrm{IN}}=.100 \mu \mathrm{~A}$ in Step \#3. Similarly, adjustment for other scale factors would require different $I_{I N}$ and $V_{O U T}$ values.


FIGURE 1. 8048 OFFSET AND SCALE FACTOR ADJUSTMENT

## MAXIMUM RATINGS

| Supply Voltage | $\pm 18 \mathrm{~V}$ |
| :--- | ---: | ---: |
| $V_{\text {in (Input Voltage) }}$ | $\pm 15 \mathrm{~V}$ |
| Iref (Reference Current) | 2 mA |
| Voltage between Offset Null and $\mathrm{V}^{+}$ | $\pm 05 \mathrm{~V}$ |
| Power Dissipation | 750 mW |
| Operating Temperature Range | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Output Short Circuit Duration | Indefinite |
| Storage Temperature Range | $-65^{\circ} \mathrm{C} \mathrm{to}+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 60 sec.) | $300^{\circ} \mathrm{C}$ |

## ELECTRICAL CHARACTERISTIC (Note 1)

PARAMETER	CONDITION	MIN.	$\begin{gathered} \text { 8049BC } \\ \text { TYP. } \end{gathered}$	MAX.	MIN.	$\begin{aligned} & \text { 8049CC } \\ & \text { TYP. } \end{aligned}$	MAX.	UNITS
Dynamic Range ( $\mathrm{V}_{\text {OUT }}$ )	$V_{\text {OUT }}=10 \mathrm{mV}$ to 10 V	60			60			dB
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0 \mathrm{~V} \leq \mathrm{V}_{1} \mathrm{~N} \leq 3 \mathrm{~V}$		3	10		5	25	mV
Error, Absolute Value	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & 0 V \leq V_{I N} \leq 3 V \end{aligned}$		20	75		30	150	$m V$
Temperature Coefficient, Referred to VIN	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$		0.38			0.55		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Input, for		2.0			2.0		$\mu \mathrm{V} / \mathrm{V}$
	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$							
Offset Voltage ( $\mathrm{A}_{\mathbf{1}}$ \& $\mathrm{A}_{\mathbf{2}}$ )	Before Nulling		15	25		15	50	mV
Wideband Noise	Referred to Input, for		26	$\because$		26	$\therefore$	$\mu \mathrm{V}$ (RMS)
	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$							
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		v
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		$\pm 10$	$\pm 13$		V
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

NOTE 1: Unless otherwise noted, specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$, scale factor adjusted for 1 decade (out) per volt (in). Accuracy specifications assume that offset voltages and scale factor have been adjusted using the procedure on page 5.


## THEORY OF OPERATION

The 8049 relies on the same logarithmic properties of the transistor as the 8048 . The input voltage forces a specific $\Delta V_{B E}$ between $\mathrm{Q}_{1}$ and $\mathrm{Q}_{2}$ (Fig. 2). This $\mathrm{V}_{\mathrm{BE}}$ difference is converted into a difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on Page 3 and is as follows:

$$
\begin{equation*}
\mathrm{IC}_{1} / \mathrm{IC}_{2}=\exp \left[q \Delta \mathrm{~V}_{\mathrm{BE}} / \mathrm{kT}\right] \tag{5}
\end{equation*}
$$

When numerical values for $\mathrm{q} / \mathrm{kT}$ are put into this equation; it is found that a $\Delta V_{B E}$ of 59 mV (at $25^{\circ} \mathrm{C}$ ) is required to change the collector current ratio by a factor of ten. But for ease of application, it is desirable that a 1 volt change at the input generate a tenfold change at the output. The required input attenuation is achieved by the network comprising $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$. In order that scale factors other than one decade per volt may be selected, $\mathbf{R}_{2}$ is external to the chip. It should have a value of $1 \mathrm{k} \Omega$, adjustable $\pm 20 \%$, for one decade per volt. $R_{1}$ is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5, as explained on Page 3.
The overall transfer function is as follows:

$$
\begin{equation*}
\text { IOUT/ } / I_{R E F}=\exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right] \tag{6}
\end{equation*}
$$

Substituting VOUT $=$ IOUT $\times$ ROUT gives:

$$
\begin{equation*}
V_{O U T}=\text { ROUT }^{\prime} \text { IREF } \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{I N}}{k T}\right] \tag{7}
\end{equation*}
$$

For voltage references equation 7 becomes

$$
\begin{equation*}
V_{O U T}=V_{\text {REF }} \times \frac{R_{O U T}^{\prime}}{R_{R E F}} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right.} \times \frac{q V_{I N}}{k T}\right] \tag{8}
\end{equation*}
$$

## OFFSET AND SCALE FACTOR ADJUSTMENT

As with the log amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of $A_{2}$. This is accomplished by reverse biasing the base-emitter of $\mathbf{Q}_{\mathbf{2}}$. $\mathbf{A}_{\mathbf{2}}$ then operates as a unity gain buffer with a grounded input. The second step forces $\mathrm{V}_{1 \mathrm{~N}}=0$; the output is adjusted for VOUT $=10 \mathrm{~V}$. This step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Fig. 2, the exact procedure for 1 decade/volt is as follows:

1) Connect the input (pin \#16) to +15 V . This reverse biases the base-emitter of $\mathrm{Q}_{2}$. Adjust $\mathrm{R}_{7}$ for $\mathrm{VOUT}=0 \mathrm{~V}$. Disconnect the input from +15 V .
2) Connect the input to Ground. Adjust $R_{4}$ for $V_{\text {OUT }}=10 \mathrm{~V}$. Disconnect the input from Ground.
3) Connect the input to a precise 2 V supply and adjust $R_{2}$ for $V_{\text {OUT }}=100 \mathrm{mV}$.
The procedure outlined above optimizes the performance over a 3 decade range at the output (i. e., VOUT from 10 mV to 10 V ). For a more limited range of output voltages, for example 1 V to 10 V , it would be better to use a precise 1 volt supply and adjust for VOUT $=1 \mathrm{~V}$. For other scale factors and/or starting points, different values for $R_{2}$ and R REF will be needed, but the same basic procedure applies.


8049
FIGURE 2 -

## APPLICATIONS INFORMATION

## Scale Factor Adjustment

The scale factor adjustment procedures outlined on Page 3 (8048) and Page 5 (8049) are primarily directed towards setting up 1 volt ( $\Delta V_{O U T}$ ) per decade ( $\Delta I_{I N}$ or $\Delta V_{I N}$ ) for the log amp, or one decade ( $\Delta V_{\text {OUT }}$ ) per volt $\left(\triangle V_{I N}\right)$ for the antilog amp.

This corresponds to $K=1$ in the respective transfer functions:


Antilog Amp: $\mathrm{V}_{\text {OUT }}=$ ROUT IREF $10^{-} \mathrm{V}$ IN $/ \mathrm{K}$

By adjusting $R_{2}$ (Fig. 1 and Fig. 2) the scale factor " $K$ " in equation 9 and 10 can be varied. The effect of changing $K$ is shown graphically in Fig. 3 for the log amp, and Fig. 4 for the antilog amp. The nominal value of $\mathrm{R}_{2}$ required to give a specific value of $K$ can be determined from equation 11. It should be remembered that $R_{1}$ has a $\pm 20 \%$ tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of $\mathrm{R}_{2}$ by $\pm 20 \%$.

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{941}{(K-.059)} \Omega \tag{11}
\end{equation*}
$$

EFFECT OF VARYING " $K$ " ON THE LOG AMPLIFIER


EFFECT OF VARYING "K" ON THE ANTILOG AMPL!FIER


FIGURE 4

## Frequency Compensation

Although the op-amps in both the 8048 and the 8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the 8048, 150 pF should be connected between Pins 2 and 7 (Fig. 1). In the 8049, 200 pF between Pins 3 and 7 is recommended (Fig. 2).

## Error Analysis

Performing a meaningful error analysis of a circuit containing $\log$ and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/ antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is necessary, when referring errors from output to input, or vice versa, to check the inpút voltage level, then determine the gain of the circuit by referring to the graphs given on Pages 2 and 4.

The various error terms in the log amplifier, the 8048, are referred to the output (RTO) of the device. The error terms in the antilog amplifier, the 8049, are referred to the input (RTI) of the device. The errors are expressed in this way because in the majority of systems a number of log amps interface with an antilog amp, as shown in Fig. 5.


FIGURE 5

It is very straightforward to estimate the system error at node ( $A$ ) by taking the square root of the sum-of-the squares of the errors of each contributing block.

Total Error $=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(A)$

If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain plot on Page 4.
The numerical values of $\dot{x}, y$, and $z$ in the above equation are obtained from the maximum error voltage plots given on Pages 2 and 4. For example, with the 8048 BC , the maximum error at the output is 30 mV at $25^{\circ} \mathrm{C}$. This means that the measured output will be within 30 mV of the theoretical transfer function, provided the unit has been adjusted per the procedures on Page 3. Fig. 6 illustrates this point.

To determine the maximum error over the operating temperature range, the 0 to $70^{\circ} \mathrm{C}$ absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the $25^{\circ} \mathrm{C}$ value and the $70^{\circ} \mathrm{C}$ value.

For the antilog amplifier, the only difference is that the error refers to the input, i. e., the horizontal axis. It will be noticed that the maximum error voltage of the 8049, over the temperature range, is strongly dependent on the input voltage. This is because the output amplifier, $A_{2}$, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At VIN $=3 \mathrm{~V}$, for example, errors at the output are multiplied by $1 / .023(=43.5)$ when referred to the input.

It is important to note that both the 8048 and the 8049 require positive values of IREF, and the input and output currents (or voltages) respectively must also be positive. Application of negative $\operatorname{IIN}$ to the 8048 or negative IREF to
either circuit will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.

## SETTING UP THE REFERENCE CURRENT

In both the 8048 and the 8049 the input current reference pin (IREF) is not a true virtual ground. For the 8048, a fraction of the output voltage is seen on Pin 16 (Fig. 1). This does not constitute an appreciable error provided $V_{\text {REF }}$ is much greater than this voltage. A 10 V or 15 V reference satisfies this condition. For the 8049, a fraction of the input voltage appears on Pin 3 (Fig. 2), placing a similar restraint on the value of $V_{\text {REF }}$.
Alternatively, IREF can be provided from a true current source. One method of implementing such a current source is shown in Fig. 7.

## LOG OF RATIO CIRCUIT, DIVISION

The 8048 may be used to generate the log of a ratio by modulating the IREF input. The transfer function remains the same, as defined by equation 9:

$$
\begin{equation*}
V_{\text {OUT }}=-K \log _{10}\left[I \text { IN } / I_{\text {REF }}\right] \tag{9}
\end{equation*}
$$

Clearly it is possible to perform division using just one 8048, followed by an 8049. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp.
To avoid the problems caused by the I REF input not being a true virtual ground (discussed in the previous section), the circuit of Fig. 7 is again recommended if the IREF input is to be modulated.

## TRANSFER FUNCTION FOR CURRENT INPUTS



Actual output will lie within shaded area for 8048 BC at $25^{\circ} \mathrm{C}$


FIGURE 7

## DEFINITION OF TERMS

In the definitions which follow, it will be noted that the various error terms are referred to the output of the log

DYNAMIC RANGE The dynamic range of the 8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the 8049 the dynamic range refers to the range of output voltages over which the device is guaranteed to operate.
ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined on Pages 3 (8048) or 5 (8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the 8048, it is a measure of the deviation from the theoretical output voltage for a given input current or voltage. For the 8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage.
The absolute error specification is guaranteed over the dynamic range.

ERROR, \% OF FULL SCALE The error as a percentage of full scale can be obtained from the following relationship:

Error, \% of Full Scale $=\frac{100 \times \text { Error, absolute value }}{\text { Full Scale Output Voltage }}$
amp, and to the input of the antilog amp. The reason for this is explained on Page 6.

TEMPERATURE COEFFICIENT OF VOUT OR VIN For the 8048 the temperature coefficient refers to the drift with temperature of VOUT for a constant input current. For the 8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT.

POWER SUPPLY REJECTION RATIO The ratio of the voltage change in the linear axis of the transfer function (VOUT for the 8048, VIN for the 8049) to the change in the supply voltage, assuming that the $\log$ axis is held constant.

WIDEBAND NOISE For the 8048, this is the noise occurring at the output under the specified conditions. In the case of the 8049, the noise is referred to the input.

SCALE FACTOR For the log amp, the scale factor $(\mathrm{K})$ is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10.

## ORDERING INFORMATION

TYPE	PACKAGE	MAX. ABSOLUTE ERROR $\left(25^{\circ} \mathrm{C}\right)$	TEMPERATURE RANGE	ORDER PART NUMBER
8048 BC	16 Pin Hermetic DIP	30 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8048 BC DE
8048 BC	16 Pin Plastic DIP	30 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8048 BC PE
8048 CC	16 Pin Hermetic DIP	60 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8048 CC DE
8048 CC	16 Pin Plastic DIP	60 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8048 CC PE
8049 BC	16 Pin Hermetic DIP	10 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8049 BC DE
8049 BC	16 Pin Plastic DIP	10 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8049 BC PE
8049 CC	16 Pin Hermetic DIP	25 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8049 CC DE
8049 CC	16 Pin Plastic DIP	25 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL 8049 CC PE

## PACKAGE DIMENSIONS

16 PIN CERAMIC DIP (DE)


16 PIN PLASTIC DIP (PE)


# ICL7600/ICL7601 Commutating Auto-Zero (CAZ) Operational Amplifier 

## FEATURES

- Exceptionally low input offset voltage --2 $\mu \mathrm{V}$
- Low long-term input offset voltage drift -$0.2 \mu \mathrm{~V} /$ year
- Low input offset voltage temperature drift -$0.005 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low DC input bias current -- $\mathbf{3 0 0}$ pA
- Low DC input offset bias current -- 150 pA
- Wide common mode and differential input voltage ranges
- Excellent low supply voltage operation -- Down to $\pm 2 \mathrm{~V}$
- Static-protected inputs -- no special handling required
- Fabricated using proprietary MAXCMOS ${ }^{\text {m }}$ technology
- Compensated (ICL7600) or uncompensated (ICL7601) versions


## SYMBOL



## GENERAL DESCRIPTION

The ICL7600/ICL7601 commutating auto-zero (CAZ) operational amplifiers are designed to replace almost any of today's expensive hybrid or monolithic ultra-low offset op amps, and will provide almost three orders of magnitude (1000x) reduction in input offset voltage compared with conventional device designs. This is achieved through Intersil's new CAZ amp principle, which uses an entirely new approach to low-frequency operational amplifier design.
The key feature of the CAZ principle is automatic compensation for long-term drift phenomena and temperature effects. Two internal op amps are connected so that when one amplifier is processing an input signal the other is maintained in an "auto-zero" mode. The ICL7600/ICL7601 contains all of the circuitry required for system operation, including an oscillator, a counter, level translators, analog switches and operational amplifiers. Only two external gainsetting resistors and two auto-zero capacitors are needed for complete amplifier function. Control of the oscillator and counter section is provided through the OSC and DR (division ratio) terminals. Internal biasing of the two on-chip op amps is programmable through a three-voltage-level terminal designated BIAS
The ICL7600 is internally-compensated and is intended for applications which require voltage gains from unity through 100. The uncompensated ICL7601 is intended for those situations which require voltage gains of greater than 20. Major advantage of the ICL7601 over the ICL7600 at high gain settings is the reduction in commutation noise and subsequent greater accuracy.
Minimum periodic adjustments and extremely low offset voltage and temperature coefficients make the CAZ operational amplifiers very desirable for operation in adverse environments (temperature, humidity, toxic or radioactive) where equipment service is difficult. Since the device will auto-zero its internal offset errors, no adjustment is required other than that of gain, which is established by the external resistors.

## PIN CONFIGURATION



## ORDERING INFORMATION

Order parts by the following part numbers:

Compensated	Uncompensated	Package	Temperature Range
ICL7600 CPD	ICL7601 CPD	Plastic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7600 IJD	ICL7601 IJD	CERDIP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7600 MJD	ICL7601 MJD	CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Order die by following part numbers: ICL7600/D ICL7601/D

## ABSOLUTE MAXIMUM RATINGS (Note 1)


Operating Temperature Range (ICL7600/ICL7601/MJD) ............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Operating Temperature Range(ICL7600/ICL7601/IJD) .................. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Operating Temperature Range
(ICL7600/ICL7601/CPD) ...................... 0 to $+70^{\circ} \mathrm{C}$
Storage Temperature Range .............. -55 to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 60 seconds) ........ $+300^{\circ} \mathrm{C}$

Note 1: Stresses above those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent device failures. These are stress ratings only and functional operation of devices under conditions other than those indicated in the Table of Electrical Characteristics is not recommended. Exposure to absolute maximum rating conditions for extended periods of time can cause device failures.
Note 2: An SCR structure is inherent in the CMOS process used in the fabrication of these devices. If voltages in excess of $\left(\mathbf{V}^{+}+0.3\right)$ to $\left(\mathbf{V}^{-}-0.3\right)$ volts are connected to either inputs or outputs, destructive latchup can occur. For this reason it is recommended that no inputs from sources not on the same power supply or supplies be applied before the ICL7600/ICL7601 supplies are established, and that if multiple supplies are used the ICL.7600/ICL7601 supplies be activated first.
Note 3: No restrictions are placed on the differentialinput voltages on either the inverting or non-inverting inputs, so long as these voltages do not exceed the power supply voltages by more than 0.3 V .

Note 4: Outputs may be shorted to ground (GND) or to either supply ( $\mathrm{V}^{+}, \mathrm{V}^{-}$). Temperature and/or supply voltages must be limited to insure that the dissipation rating is not exceeded.

Note 5: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW for CERDIP and $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 375 mW for plastic above $25^{\circ} \mathrm{C}$.

## BLOCK DIAGRAM



OPERATING CHARACTERISTICS:
Test Conditions: $\mathrm{V}^{+}=+5$ volts, $\mathrm{V}^{-}=-5$ volts, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to $\mathrm{V}^{+}\left(\mathrm{f} \mathrm{COM} \cong 160 \mathrm{~Hz}\right.$ ), $\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}$, Test Circuit 1 , unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN	VALUE TYP	MAX	UNIT
Input Offset Voltage	Vos	$\mathrm{Rs}_{5} \leq 1 \mathrm{k} \Omega \Omega$ Low Bias Setting   $\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mu \mathrm{~F}$ Med Bias Setting    High Bias Setting   MIL version over temp. Med Bias Setting		$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 7 \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 20 \end{gathered}$	$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Long Term Input Offset Voltage Stability	Vos/Time	Low or Med Bias Settings		0.2		$\mu \mathrm{V} / \mathrm{year}$
Average input Offset Voltage Temperature Coefficient	TCVos	$\begin{aligned} \text { Low or Med Bias Settings }-55^{\circ} \mathrm{C}>\mathrm{T}_{A}>+25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C}>\mathrm{T}_{A}>+85^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C}>\mathrm{T}_{A}>+125^{\circ} \mathrm{C} \\ \hline \end{aligned}$		$\begin{gathered} \hline 0.005 \\ 0.01 \\ 0.05 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.15 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu V /{ }^{\circ} \mathrm{C}$ $\mu V /{ }^{\circ} \mathrm{C}$
Noise Voltage (RMS)	$e_{n}$	Band Width Low Bias   0.1 to 10 Hz    RS $\leq 1 \mathrm{~kJ}$ Med Bias		$\begin{aligned} & 0.8 \\ & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Equivalent Input Noise Voltage Peak-to-peak	enp-p	Band Width Low Bias   0.1 to 10 Hz Med Bias   $R S \leq 1 \mathrm{k} \Omega$ High Bias	,	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mu V \\ & \mu V \\ & \mu V \end{aligned}$
Spot equivalent   Noise voltage	$\mathrm{en}_{\mathrm{n} 10}$	$f=10 \mathrm{~Hz} \quad$ Band Width 1 Hz			700	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Spot equivalent Noise Current	into	$\mathrm{f}=10 \mathrm{~Hz} \quad$ Band Width 1 Hz			0.1	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Differential Input Voltage Range	DIF VIN	. . . .	$\mathrm{V}^{-}-0.3$	to	$\mathrm{v}^{+}+0.3$	V
Common Mode Input Range	CMVR	Low Bias Med Bias High Bias	$\begin{aligned} & -4.2 \\ & -4.0 \\ & -3.5 \end{aligned}$		$\begin{aligned} & +4.2 \\ & +4.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Common Mode Rejection Ratio	CMRR	Any Bias Setting		88		dB
Power Supply Rejection Ratio	PSRR	Any Bias Setting		110		dB
Non Inverting Input Bias Current	${ }^{\text {NIIB }}$	Any Bias Setting, (Includes charge injection currents)		0.300	3	nA
Inverting Input Bias Current	$\mathrm{I}_{\mathrm{B}}$	Any Bias Setting. (Includes charge injection currents)		0.150	1.5	nA
Voltage Gain	Av	$R_{\mathrm{L}}=100 \mathrm{k} \Omega \Omega$ Low Bias   Med Bias   High Bias  	$\begin{aligned} & 90 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & \hline 105 \\ & 105 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Maximum Output Voltage Swing	Vout	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned} \quad \begin{aligned} & \text { Positive Swing } \\ & \text { Negative Swing } \end{aligned}$	+4.4	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \end{aligned}$	-4.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Large Signal Slew Rate	SR	Unity High Bias Setting   Gain Med Bias Setting   ICL7600 Low Bias Setting		$\begin{aligned} & 1.8 \\ & 0.5 \\ & 0.2 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{S} \\ & \hline \end{aligned}$
Unity Gain Band Width	GBW	High Bias Setting   ICL7600 Med Bias Setting   Test Circuit 2 Low Bias Setting		$\begin{gathered} 1.2 \\ 0.3 \\ 0.12 \\ \hline \end{gathered}$		MHz   MHz   MHz
Extrapolated Unity Gain Band Width	GBW	ICL7601 $\quad$High Bias Setting   Med Bias Setting   Low Bias Setting		$\begin{aligned} & 1.8 \\ & 0.4 \\ & 0.2 \\ & \hline \end{aligned}$		MHz   MHz   MHz
BIAS Terminal Input Current	IBIAS	$\mathrm{V}^{-}-0.3 \leq \mathrm{V}_{\text {BIAS }} \leq \mathrm{V}^{+}+0.3$ volt		$\pm 30$		pA
BIAS Voltage to Define Current Modes	$\mathrm{V}_{\mathrm{BH}}$   VBM   $V_{B L}$	Low Bias Setting   Med Bias Setting   High Bias Setting	$\begin{aligned} & \mathrm{V}^{+}-0.3 \\ & \mathrm{~V}^{-}+1.4 \\ & \mathrm{~V}^{-}-0.3 \end{aligned}$		$\begin{aligned} & \mathrm{V}^{+}+0.3 \\ & \mathrm{~V}^{+}-1.4 \\ & \mathrm{~V}^{-}+0.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
DR (Division Ratio) Input Current	IDR	$\mathrm{V}^{+}-8.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DR}} \leq \mathrm{V}^{+}+0.3 \mathrm{~V}$		$\pm 30$		pA
DR Voltage to define oscillator division ratio	VDRH   VDRL	Internal oscillator division ratio 32   Internal oscillator division ratio 2	$\begin{aligned} & \mathrm{V}^{+}-0.3 \\ & \mathrm{~V}^{+}-8 \end{aligned}$		$\begin{aligned} & \mathrm{v}^{+}+0.3 \\ & \mathrm{v}^{+}-1.4 \end{aligned}$	V   V
Nominal Commutation Frequency	fCOM	Cosc $=0 \mathrm{pF}$ DR Connected to $\mathrm{V}^{+}$    DR Connected to GND		$\begin{gathered} 160 \\ 2560 \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
Supply Current	Is	High Bias Setting Medium Bias Setting Low Bias Setting	$\begin{gathered} 4 \\ 0.6 \\ 0.25 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \\ 1.7 \\ 0.6 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Operating Supply Voltage Range	$\mathrm{V}^{+}-\mathrm{V}^{-}$	High Bias Setting Medium or Low Bias Setting	$\begin{aligned} & 5 \\ & 4 \end{aligned}$		$\begin{aligned} & \hline 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \bar{V} \\ & v \end{aligned}$

## ICL7600/ICL7601

## TEST CIRCUITS



Test Circuit 1: Voltage Gain $=1000$


Test Circuit 3: Voltage Gain $=10$


Test Circuit 2: Unity Voltage Gain


Test Circuit 4: DC to 10 Hz Unity Gain Low Pass Filter

## TYPICAL CHARACTERISTICS

INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND

## PK TO.PK NOISE

VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES



INPUT OFFSET VOLTAGE AND PK TO PK NOISE
VOLTAGE AS. A FUNCTION OF COMMUTATION FREQUENCY
( $\mathrm{C}_{1}, \mathrm{C}_{2}=1 \mu \mathrm{~F}$ )

fCOM - COMMUTATION FREQUENCY - Hz


INPUT OFFSET VOLTAGE AND PK TO PK NOISE AS A
FUNCTION OF SUPPLY VOLTAGE


INPUT OFFSET VOLTAGE AND
PK TO PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY
( $\mathrm{C}_{1}, \mathrm{C}_{2}=0.1 \mu \mathrm{~F}$ )


INPUT CURRENT AS A FUNCTION OF COMMUTATION FREQUENCY

MAXIMUM OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE





OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING


FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 4).


TOTAL EQUIVALENT INPUT OFFSET
VOLTAGE AS A FUNCTION OF
SOURCE IMPEDANCE - +INPUT


TOTAL EQUIVALENT INPUT OFFSET
VOLTAGE AS A FUNCTION OF
SOURCE IMPEDANCE - -INPUT


## DETAILED DESCRIPTION

## CAZ Operational Amplifier Operation

The CAZ operational amplifier functions on principles which are very different from those encountered in conventional op amp types. An important advantage of the ICL7600/ICL7601 devices is the ability to self-compensate for internal error voltages, whether they are steady-state, related to temperature or supply voltage, or variable in nature over a long term.

Operation of the ICL7600/ICL7601 CAZ operational amplifier is demonstrated in Figure 1. The basic amplifier configuration represented by the large triangles has one more input than does a regular op amp--the AZ, or auto-zero input. The voltage at the $A Z$ input is that voltage to which each of the internal op amps must be auto-zeroed. In Mode A, op amp \#2 is connected into a unity gain mode through on-chip analog switches, and charges the external capacitor $\mathrm{C}_{2}$ to a voltage equal to the DC offset voltage of that amplifier, in addition to the instantaneous low frequency noise voltage. A short time later, the analog switches reconnect to the onchip op amps in the configuration shown in Mode B. In this mode, op amp \#2 has capacitor $\mathrm{C}_{2}$ (which was charged to a voltage equal to its offset and noise voltage) connected in series to its non-inverting ( + ) input and nulls out the input offset and noise voltage of the amplifier. While one of the op amps is processing the input signal, the other is placed in an auto-zero mode and charges a capacitor to a voltage equal to its equivalent DC and low-frequency error voltage. The internal op amps are connected (at a rate designated as the commutation frequency, $\mathrm{f} \mathbf{C O M}$ ) so that at all times one or the other of the op amps is processing the input signal, while the voltages on capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are being updated regularly to compensate for variables such as low-frequency noise voltage and input offset voltages due to drift with temperature, time, or supply voltage.

The CAZ amp concept offers a number of other advantages to the designer, as compared to standard bipolar or FETinput op amps:

- Effective input offset voltages can be made between $1000 x$ and $10,000 x$ less without trimming.
- Long-term drift phenomena are compensated for and dramatically reduced.
- Temperature effects are compensated for over a wide range. Reductions can be as high as 100 times or higher.
- Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ op amp structure. Not only is the digital section simple to design in CMOS, but the transmission gates (analog switches), which connect the internal op amps, are efficiently implemented for minimum charge injection and widest operating voltage range. The analog section, which includes the two on-chip op amps, provides performance which in most cases is similar to bipolar or FET input designs. Open loop gains of greater than 100 dB , typical offset voltages of $\pm 5 \mathrm{mV}$, and ultra-low input leakage currents (typically 1 pA ) make the CMOS process quite suitable for the CAZ amp concept.
The on-chip op amps are connected internally to the external input and output terminals via CMOS analog switches, as shown in Figure 2. The analog switch structure shown in Figure 2 is arranged so that at any time three switches are open and three switches are conducting. Each analog switch includes a P -channel transistor in parallel with an N -channel transistor.

'Figure 1: Diagramatic representation of the 2 half cycles of operation of the CAZ OP AMP.


Figure 2: Schematic of analog switches connecting each internal OP AMP to the external inputs at the output.

## APPLICATIONS

The ICL7600/ICL7601 CAZ op amp is ideal for use as a frontend preamplifier for dual-slope $A / D$ converters which require high sensitivity for single-ended input sources such as thermocouples.
A typical high-sensitivity A/D converter system is shown in Figure 3. The system uses an Intersil ICL7109'12-bit monolithic A/D binary converter, and is intended for direct interface with microprocessors. Both the ICL7600/ICL7601 and the ICL7109 use power supply voltages of $\pm 5 \mathrm{~V}$, and the entire system consumes typically 2.5 mA of current.
The input signal is applied through a low-pass filter ( 150 Hz ) to the CAZ op amp, which is connected in a non-inverting gain configuration of either 10 or 100 . The internal oscillator of the CAZ amp is allowed to run free at about $5,200 \mathrm{~Hz}$, resulting in a commutation frequency of 160 Hz , with the DR terminal connected to $\mathrm{V}^{+}$. The error-storage capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are each $1 \mu \mathrm{~F}$ value, and provide a good compromise between the minimum equivalent input offset voltage and the lowest value of low-frequency noise.
The output signal is then passed through a low-pass filter ( $1 \mathrm{M} \Omega$ and $0.1 \mu \mathrm{~F}$ ), with a bandwidth of 1.5 Hz . This results in an equivalent DC offset voltage of 1 to $2 \mu \mathrm{~V}$, and a peak-topeak noise voltage of $1.7 \mu \mathrm{~V}$, referred to the input of the CAZ amp. The output from the low-pass filter feeds directly into the input of the ICL7109.

- In a system such as that shown in Figure 3 there is a degree of flexibility possible in assigning various gains to the ICL7600/ ICL7601 pre-amplifier, and to various sensitivities for the ICL7109. For optimum performance, the CAZ op amp must amplify the input signal so that the equivalent $15 \mu \mathrm{~V}$ input noise voltage of the A/D converter is masked. This implies a gain of at least 10 for the CAZ op amp preamplifier.
On the other hand, if the gain of the CAZ op amp is increased too much, its output swing will be limited by the $\pm 5 \mathrm{~V}$ supplies. This condition imposes a maximum gain of 200 to produce an output of $\pm 0.000005$ times 4,096 times 200 , or $\pm 4.096 \mathrm{~V}$, for a $5 \mu \mathrm{~V}$ per count sensitivity. Use of an ICL7600 is recommended for low gains (<20) and the ICL7601 for gains of more than 20.
The values of the integrating resistor and the reference voltage must be chosen to suit the overall sensitivity of the system. For example, in a system requiring a sensitivity of $5 \mu \mathrm{~V}$ per count, it is suggested to use a CAZ amp in a gain configuration of 100 (use ICL7601). Thus for a full scale count of 4096 (12 bits), the input voltage to the ICL7109 would be $5 \mu \mathrm{~V}$ times 100 times 4096 or 2.048 volts. Since the ratio of input to reference is $2: 1$, the value of the reference voltage becomes 1.024 V , and a $100 \mathrm{k} \Omega$ integrating resistor is recommended. A system such as that shown in Figure 3 will allow a resolution of $1^{\circ} \mathrm{C}$ for low sensitivity platinum/ rhodium junctions. For $0.1^{\circ} \mathrm{C}$ resolution, use high sensitivity thermocouples having copper/constantan junctions.


The low-pass filter between the output of the CAZ op amp and the input of the ICL7109 A/D converter can be used to improve the signal-to-noise ratio of the system by reducing bandwidth. A 10 Hz filter will result in an equivalent peak-topeak noise voltage figure of $4 \mu \mathrm{~V}$. If the bandwidth is reduced
to 1.5 Hz , the peak-to-peak noise voltage will be reduced to about $1.7 \mu \mathrm{~V}$, a reduction by a factor of three. The penalty for this reduction will be a lower system response time; however in most cases this will not be a major consideration, because of the large thermal inertia of many thermocouple probes.

## SOME HELPFUL HINTS

## Testing the ICL7600/ICL7601 CAZ Operational Amplifier

A simple and relatively accurate means of testing the CAZ op amp is to use a Tektronix Type 577 curve tracer, with the CAZ op amp inserted in a special 14-lead socket which plugs into a Tektronix 178, and which contains two soldered-in autozero capacitors of $1 \mu \mathrm{~F}$ each. This simple and convenient tester will provide most of the information needed for lowfrequency parameters. The test setup will allow resolution of input offset voltages to about $10, \mu \mathrm{~V}$.

For greater accuracy, it is suggested that a breadboard be built which minimizes thermoelectric effects and which includes an output low-pass filter of the type shown in Test Circuit \#4. The output from the CAZ amp can be connected to a dual-slope A/D converter as shown in Figure 3. The lowfrequency noise can then be displayed on a storage scope or on a strip chart recorder.

## Bias Control

The on-chip op amps consume over $90 \%$ of the power required for the ICL7600/ICL7601. Three externallyprogrammable bias levels are provided. These levels are set by connecting the BIAS terminal to $\mathrm{V}^{+}$, GND or $\mathrm{V}^{-}$. The difference between each bias setting is approximately a factor of three, which allows a 9:1 ratio between supply current and the bias setting. The reason for this current programmability is to provide the user with a choice of device power dissipation levels, slew rate values (the higher the slew rate the better the recovery from commutation spikes), and offset errors due to chip "voltage drop" and thermoelectric effects (the higher the power dissipation the higher the input offset error). In most cases, the medium (MED BIAS) setting will be the best choice.

## Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load the output swing can cover nearly the entire supply voltage range, and the device can be used with loads as low as $2 \mathrm{k} \Omega$. However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps become transconductance amplifiers, since their output impedances are about $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 \mathrm{k} \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. For high gain configurations requiring high accuracy, output loads of $100 \mathrm{k} \Omega$ or more are suggested.


Figure 4: Effect of a load capacitor on output voltage waveforms.
or to run it at another frequency. The ICL7600/ICL7601 provides two degrees of flexibility. First; the DR (division ratio) terminal permits the user to choose between dividing the oscillator by 32 (DR terminal to $\mathrm{V}^{+}$) or by 2 ( DR terminal to GND), to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and $\mathrm{V}^{+}$, or system ground terminals. For situations which required the commutation frequency to be locked onto a master clock, the OSC terminal can be driven from TTL logic (with resistive pull-up) or from CMOS logic, provided that the $\mathrm{V}^{+}$supply (with respect to ground) is $+5 \mathrm{~V}( \pm 10 \%)$ and the logic driver also operates from a similar supply voltage. This is because the logic section -- including the oscillator -operates from an internal -5 V supply referenced to $\mathrm{V}^{+}$ generated on-chip, and is not accessible externally.

## Thermoelectric Effects

The ultimate limitations to ultra-high-precision, DC amplifiers are due to thermoelectric, Peltier or thermocouple effects whereby junctions consist of various metals, alloys, silicon, etc. Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.
In order to realize the extremely low offset voltages which the CAZ op amp can provide, it is essential to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. Special low-temperature solder ( $70 \%$ cadmium, 30\% tin) should be used. In addition, the supply voltages and power dissipation should be kept to a minimum. Use the medium bias mode as well as a high impedance load, and keep well away from heat dissipated by surrounding equipment.

## Component Selection

The two required auto-zero capacitors; $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$, should each be of $1.0 \mu \mathrm{~F}$ value. These are large values for nonelectrolytic capacitors, but since the voltages impressed on them do not change significantly, problems of dielectric absorption and the like are not as important as they would be in applications involving integrating dual-slope A/D converters.
Excellent results have been obtained in operation at commercial temperature ranges when using several of the smaller-size and more economical capacitors, since the absolute values of the capacitors need not be critical. Although not guaranteed, polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F} / 50 \mathrm{~V}$ have been used with success.

## Commutating Voltage Transient Effects

While in most respects the CAZ op amp behaves like a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 100 Hz . This is because of the finite switching transients which occur in the input and output terminals due to commu-
tation effects. These transients have a frequency spectrum beginning at the commutation frequency, and include all of the higher harmonics. If the commutation frequency is higher than the highest in-band frequency, these transients can be effectively blanked with a low-pass filter.
The input commutation transients arise when each of the onchip op amps experiences a shift in voltage equal to the input offset voltage about ( $5-10 \mathrm{mV}$ ), which usually occurs during the transition from the signal processing mode to the autozero mode. Since the input capacitances of the on-chip op amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage auto-zero capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ must be at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each.


Figure 5: Output waveform from Test Circuit 1.
The charge which is injected into the op amp when it is switched into the signal-processing mode produces a rapidly-decaying voltage spike at the input, in addition to an equivalent DC bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically about 1.0 pA at ambient temperature of $25^{\circ} \mathrm{C}$.
The output waveform shown in Test Circuit \#1 (with no input) is treated in Figure 5, Note that the equivalent noise voltage shown is amplified 1000 times, and that because of the finite slew rate of the on-chip op amps the 7 mV input transients are not amplified by 1000 .
The output transient voltage effects (as distinct from the input effects which are propagated through the on-chip op amps) will occur if there is a difference in the output voltage of the internal op amps between the auto-zero modes and the signal-processing modes. The output stage of the on-chip op amp must slew from its auto-zero output voltage to the desired signal-processing output voltage. This is shown in Figure 6, where the system is auto-zeroed to ground.
The duration of the output transients is greatly affected by the gain configuration and the bias setting, since these two parameters have an effect on system slew rate. At low gains and high bias settings, the output transient durations are very short. For this reason there are two versions of the CAZ op amp, the ICL7600 which is compensated for unity gain and which can be used for gain configurations up to 100 , and the ICL7601, which is uncompensated and recommended for operation in gain configurations greater than 20. Thus, when a signal is being processed in a high gain configuration, the effective output signal error is greater for the ICL7600 than it is for the ICL7601.


Figure 6: Simple CAZ OP AMP circuit and the output voltage waveform.

## PACKAGE DIMENSIONS

14 LEAD CERDIP PACKAGE


14 LEAD PLASTIC PACKAGE


# General Purpose Operational Amplifier 

## GENERAL DESCRIPTION

The Intersil 101A and 301A integrated circuits are general purpose operational amplifiers. These high performance op amps are improved versions of the standard 101 and 709.

This general purpose op amp has many outstanding features; overload protection on the input and output, no latch-up when the common mode range is exceeded, and freedom from oscillations. The 101A also features better accuracy and lower noise in high impedance circuitry, and low input currents. Frequency compensation is achieved with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

The Intersil 101A operates over a temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The 301 A has an operating temperature range from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## SCHEMATIC DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

Supply Voltage 101A	$\pm 22 \mathrm{~V}$
301 A	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$.
Output Short-Circuit Duration	Indefinite
Operating Temperature Range 101A	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec )	$300^{\circ} \mathrm{C}$

NOTE 1: The maximum junction temperature of the 101 A is $150^{\circ} \mathrm{C}$, while that of the 301 A is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

TYPICAL APPLICATIONS
Fast Voltage Follower
Standard Compensation and Offset Balancing Circuit


Fast Summing Amplifier


## CONNECTION DIAGRAMS



NOTE: Pin 4 connected to case.

Flat Package


NOTE: Pin 5 connected to bottom of package.



NOTE: Pin 6 connected to bottom of package.

ELECTRICAL CHARACTERISTICS (Note)


NOTE: For the 101 A , these specifications apply for $\pm 5 \mathrm{~V}<\mathrm{V}_{S}< \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$ unless otherwise specified. For the 301A, these specifications apply for $+5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified.

GUARANTEED PERFORMANCE FOR 101A, 301A*


TYPICAL PERFORMANCE FOR 101A, 301A*



INPUT NOISE CURRENT (101A/301A)

$\cdot 301 \mathrm{~A}$ only guaranteed to $\pm 15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.

## DEFINITION OF TERMS

INPUT VOLTAGE RANGE: The range of DC input voltages over which the regulator will operate within specifications.

OUTPUT VOLTAGE RANGE: The range of regulated output voltages over which the specifications apply.

OUTPUT-INPUT VOLTAGE DIFFERENTIAL: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.

LINE REGULATION: The percentage change in regulated output voltage for a change in input voltage.

LOAD REGULATION: The percentage change in regulated output voltage for a change in load from the minimum load to the maximum load current specified.

CURRENT-LIMIT SENSE VOLTAGE: The voltage across the current limit terminals required to cause the regulator to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.
TEMPERATURE STABILITY: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.
FEEDBACK SENSE VOLTAGE: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.

OUTPUT NOISE VOLTAGE: The average AC voltage at the output with constant load and no input ripple.
STANDBY CURRENT DRAIN: That part of the operating current of the regulator which does not contribute to the load current.

## PACKAGE OUTLINES



AD741K

# General Purpose Operational Amplifier High Accuracy 

## GENERAL DESCRIPTION

The AD741K is a high accuracy version of the popular 741 op amp. By setting maximum limits on voltage drift, and significantly reducing errors due to offset voltage, bias and offset currents, gain, PSRR, and CMRR, improvements in accuracy on the order of five times can be achieved over that delivered by a standard 741.

## SPECIFICATIONS

(Typical @ $+25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{VDC}$, unless otherwise specified)

Model	AD741K
Open Loop Gain $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$   Over Temp Range, $\mathrm{T}_{\text {min/max }}$,   same loads as above   Output Characteristics   Voltage @ $R_{L}=1 \mathrm{k} \Omega, T_{\text {min } / \text { max }}$ Voltage @ $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\text {min } / \text { max }}$ Short Circuit Current	50,000 min   $25,000 \mathrm{~min}$   $\pm 10 \mathrm{~V}$ min   25 mA
Frequency Response Unity Gain, Small Signal Full Power Response Slew Rate, Unity Gain	$\begin{gathered} 1 \mathrm{MHz} \\ 10 \mathrm{kHz} \\ 0-5 \mathrm{~V} / \mu \mathrm{sec} \end{gathered}$
Input Offset Voltage   Initial, $R_{S} \leqslant 10 \mathrm{~K} \Omega$   $T_{\text {min/max }}$   Avg vs Temperature (untrim.)   vs Supply, $T_{\text {min/max }}$   Input Offset Current   Initial   $T_{\text {min } / \text { max }}$   Avg vs Temperature   Input Bias Current   Initial   $T_{\text {min/max }}$   Avg vs Temperature   Input Impedance   Differential   Input Voltage Range (Note 1)   Differential, max safe   Common Mode, max safe   Common Mode Rejection   $T_{\text {min/max }}$	$2 m V$ max 3 mV max $15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max $15 \mu \mathrm{~V} / \mathrm{V}$ max   10nA max 15nA max $0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ max   75nA max 120nA max $1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ max   2M $\Omega$   $\pm 30 \mathrm{~V}$   $\pm 15 \mathrm{~V}$   90 dB min
Power Supply Rated Performance Operating Current, Quiescent	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm(5 \text { to } 22) \mathrm{V} \\ 2.8 \mathrm{~mA} \text { max } \end{gathered}$
Temperature Range Operating, Rated Performance Storage	$\begin{gathered} 0 \text { to }+70^{\circ} \mathrm{C} \\ -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{gathered}$

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
$\pm 22 \mathrm{~V}$
Power Dissipation
500 mW
Differential Voltage $\pm 30 \mathrm{~V}$
Input Voltage
$\pm 15 \mathrm{~V}$
Output Short Circuit Duration
Operating Temp Range
indefinite

Lead Temperature (soldering, 10 sec )
$0-70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

NOTE:Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## CONNECTION DIAGRAMS/ ORDERING INFORMATION



NOTE: PIN 4 CONNECTED TO CASE

Order No. AD741KH


NOTE: PIN 4 CONNECTED TO BOTTOM OF PACKAGE

Order No. AD741KN

# High Speed 741 Operational Amplifier 

## FEATURES

- Pin For Pin and Electrically Equivalent to $\mu \mathrm{A} 741$
- Guaranteed Slew Rate - 0.7V/ $\mu \mathrm{s}$ Min.

Low Cost

- Short Circuit Protection


## GENERAL DESCRIPTION

The 741 HS high slew rate version of the 741 general purpose operational amplifier is intended for applications where slew rate performance greater than $0.3 \mathrm{~V} / \mu \mathrm{sec}$ is required. Typical applications are oscillators, active filters, sample and hold and other large signal applications. This device has a guaranteed minimum slew rate of $0.7 \mathrm{~V} / \mu \mathrm{sec}$ and is identical and equivalent to the standard 741 operational amplifier. It will fill the application void between the 741 and 101A type amplifiers (slew rate $=0.3 \mathrm{~V} / \mu \mathrm{sec}$ ) and the more costly high-speed amplifiers (slew rate $=30 \mathrm{~V} / \mu \mathrm{sec}$ ).

## HIGH-SPEED 741 OPERATIONAL AMPLIFIER



## SCHEMATIC DIAGRAM



- Large Common-Mode Input Range
- Guaranteed Drift Characteristics
- No Latch Up
- Internal Frequency Compensation


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering at 60 sec.)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 3)	Indefinite

TEST CIRCUITS


NOTE 1: The maximum junction temperature of the 741 HS is $150^{\circ} \mathrm{C}$. while that of the 741 CHS is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage. $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.
NOTE 3: Short circuit may be to ground or either supply.
NOTE 4: Pin 4 connected to case.
NOTE 5: Pin 5 connected to bottom of package.
NOTE 6: Pin 6 connected to bottom of package.

## CONNECTION DIAGRAMS (Top View)



Flat Package (Note 5)


8 Pin Plastic DIP (Note 4)


14 Pin DIP (Note 6)


ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	$\begin{aligned} & \text { 741CHs } \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{gathered} \text { 741MHS } \\ \text { TYP } \end{gathered}$	MAX	UNITS
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		2	6.0		1.0	5.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	200		20	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200	500		200	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	2.0		0.3	1.0		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		1.7	2.8		1.7	2.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & V_{O U T}= \pm 10 \mathrm{~V}, R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	25	160		50	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			7.5			6	mV
Slew Rate	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L} \geq 2 \mathrm{k} \Omega \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	0.7	1.0		0.7	1.0		V/usec
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			300			500	nA
Input Bias Current				0.8			1.5	$\mu \mathrm{A}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	15			25			V/mV
Output Voltage Swing -	$\begin{array}{ll} V_{S}= \pm 15 \mathrm{~V}, & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{array}$	$\pm 12$ $\pm 10$	$\pm 14$ $\pm 13$	..	$\pm 12$ $\pm 10$	$\pm 14$ $\pm 13$		v
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	$\pm 12$			$\pm 12$			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	77	96		77	96		dB

## DEFINITION OF TERMS

INPUT OFFSET VOLTAGE: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
INPUT OFFSET CURRENT: The difference in the currents into the two input terminals when the output is at zero.
INPUT VOLTAGE RANGE: The range of voltages on the input terminals for which the offset specifications apply.
INPUT BIAS CURRENT: The average of the two input currents.

COMMON MODE REJECTION RATIO: The ratio of the input voltage range to the peak-to-peak change in input offset voltage over this range.
INPUT RESISTANCE: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

SLEW RATE: A measure of the large signal capability of amplifier output to follow the amplifier input. Slew Rate $=2 \pi W_{\text {Large Signal }} V_{\text {O-Peak }}$.
SUPPLY CURRENT: The current required from the power supply to operate the amplifier with no load and the output at zero.

OUTPUT VOLTAGE SWING: The peak output voltage swing, referred to zero, that can be obtained without clipping.

LARGE-SIGNAL VOLTAGE GAIN: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
POWER SUPPLY REJECTION: The ratio of the change in input offset voltage to the change in power supply voltages producing it.

## ORDERING INFORMATION

## TYPE

741 MHS 741 CHS
741 MHS 741MHS ICL 741 CHS

TEMPERATURE RANGE

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}
\end{array}
$$

## PACKAGE

14 Pin DIP 8 Pin Plastic DIP TO-99 Flat Pak TO-99

ORDER NUMBER
ICL 741 MHS DD
ICL 741 CHS PA
ICL 741 MHS TY
ICL 741 MHS FD
ICL 741 CHS TY

# ICL741-LN, ICL741C-LN, ICL101A-LN ICL301 A-LN, ICL108-LN, ICL308-LN 

## Low Noise Operational Amplifiers

## FEATURES

- Guaranteed Noise Specifications
- Complete Electrical Specifications


## GENERAL DESCRIPTION

These low noise amplifiers are suitable for all applications where low level signals are encountered. The three important noise parameters, input referred voltage noise, input referred current noise, and popcorn noise, are all 100\% screened and guaranteed.

CONNECTION DIAGRAMS


41/741C
TO.99


NOTE: PIN 4 CONNECTED TO CASE.


NOTE: PIN 5 CONNECTED TC BOTTOM OF PACKAGE.


NOTE: PIN 4 CONNECTED TO CASE.

741 C
PLASTIC
8 PIN DIP



NOTE: PIN 4 CONNECTED TO CASE.

101A
14 PIN DIP


NOTE: PIN 6 CONNECTED TO BOTTOM OF PACKAGE.


301A
PLASTIC 8 PIN DIP


GUARANTEED NOISE SPECIFICATIONS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

	741	741 C	101 A	301 A	108	308	UNITS
Input Referred Voltage   Noise @ $10 \mathrm{~Hz}(\mathrm{Max})$	50	50	50	50	70	70	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current   Noise @ $10 \mathrm{~Hz}(M a x)$	0.4	0.4	0.7	0.7	0.2	0.2	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Popcorn Noise Transition   Amplitude for $\mathrm{R}_{\mathrm{S}}=100 \mathrm{k}$ (Max)	25	25	25	25	25	25	$\mu \mathrm{~V}$



## ORDERING INFORMATION

PART NUMBER	TYPE	PACKAGE	TEMPERATURE RANGE	ORDER   NUMBER
741-LN	MIL	TO-99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL741-LN-TY
741C-LN	COM	T0.99	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL741C-LN-TY
741-LN	MIL	14 Lead DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL741-LN-DD
741C-LN	COM	8 Lead DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL741C-LN-PA
741-LN	MIL	FLAT PACK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL741.LN.FB
101A-LN	MIL	TO.99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL101A-LN-TY
301A-LN	COM	T0.99	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL301A-LN-TY
101A.LN	MIL	14 Lead DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL101A-LN-DD
301A.LN	COM	8 Lead DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL301A-LN.PA
101A.LN	MIL	FLAT PACK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL101A-LN.FB
108.LN	MIL	TO-99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL108-LN.TY
$308 . \mathrm{LN}$	COM	T0.99	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL308.LN.TY

## NOISE IN OPERATIONAL AMPLIFIERS

The noise of an amplifier may be expressed in terms of an input referred voltage generator ( $e_{n}$ ) and an input referred current generator ( $i_{n}$ ), see Figure 4. The total noise of an amplifier in a typical application contains contributions from both these genarators, together with a contribution from the source resistance. The total mean square noise for a bandwidth of 1 Hz is given by:

$$
\begin{equation*}
e^{2}{ }_{T}=e_{n}^{2}+i^{2}{ }_{n} R_{S}^{2}+4 k T R_{S} \tag{1}
\end{equation*}
$$

Since both $e_{n}$ and $i_{n}$ are frequency dependent, the total mean square noise for a given bandwidth $\Delta f=f_{2}-f_{1}$ is given by:

$$
\begin{equation*}
e^{2} T=\int_{f_{1}}^{f_{2}} e_{n}^{2} d f+R^{2} \int_{f_{1}}^{f_{2}} i^{2} d f+4 k T R_{S} \Delta f \tag{2}
\end{equation*}
$$

With most amplifiers, the voltage noise term dominates for low source impedances. The current noise term is dominant at higher source impedances.

To specify operational amplifier noise performance one of two methods is used. One is to specify the total input referred noise for a given bandwidth and source impedance. This is defined as $e_{T}$ from equation 1 above. The test circuit in Figure 5 is used. The typical broadband noise of the 741 and 101A type amplifier is shown in Figure 5.

The second method is to guarantee specific values of $e_{n}$ and $i_{n}$ (in equation 2) at various frequencies. A Noise Analyzer is used for this measurement (Figure 3). The values of $e_{n}$ and $i_{n}$ (for $\Delta f=1 \mathrm{~Hz}$ ) are measured at 10 Hz , $100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$ and 100 kHz . The recorded values may be plotted graphically, as shown on page 1. The noise information obtained from these measurements is considerably more general than that obtained from the first method, since the noise for any source impedance and bandwidth may be calculated from equation 2. (Graphical integration can determine the area under each curve.)

Popcorn noise should be screened visually using the circuit of Figure 3. Since popcorn noise is a function of the source. impedance it is best represented by an input referred current source.


FIGURE 4.


FIGURE 5.

FIGURE 6.

## DEFINITION OF TERMS \& TEST CIRCUITS

VOLTAGE NOISE: The noise due to the equivalent input voltage generator is measured using the circuit shown in Figure 1. It is expressed in $n V / \sqrt{\mathrm{Hz}}$.

CURRENT NOISE: The noise due to the equivalent input current generator is measured using the circuit in Figure 2. It is expressed in $\mathrm{pA} / \sqrt{\mathrm{Hz}}$. Popcorn noise cannot be effectively screened using this test due to its erratic nature and very low frequency.

POPCORN NOISE: Popcorn noise, sometimes referred to as burst noise, is a low frequency noise phenomenon in which the output of the amplifier appears to jump erratically between two or more stable states. It is most noticeable when operating at high source impedances and is expressed as a transition amplitude, in $\mu \mathrm{V}$, for a given source resistance. The test circuit of Figure 3 is used.

figure 1.


FIGURE 2.


FIGURE 3.

# Low Input Current Operational Amplifier 

## FEATURES

- Low Input Current
- No Frequency Compensation Required
- Offset Voltage Null Capability
- Large Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch up


## GENERAL DESCRIPTION

The 8008 is a high performance monolithic operational amplifier with very low input currents. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the 8008 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general ' feedback applications. The 8008 is short-circuit protected, has the same pin configuration as the popular 741 operational amplifier, and requires no external components for frequency compensation. The internal $6 \mathrm{~dB} /$ octave roll-off insures stability in closed loop applications.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Internal Power Dissipation (Note 1)

Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Voltage between Offset Null and $\mathrm{V}^{-}$	$\pm 0.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
8008M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8008C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.$)$	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 3)	Indefinite

NOTE 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+75^{\circ} \mathrm{C}$.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

## CONNECTION DIAGRAMS



NOTE: Pin 4 CONNECTED TO CASE

PACKAGE DIMENSIONS

ORDERING INFORMATION


ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}\right.$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8008M			8008C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
The following specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ :								
Input Offset Voltage	$\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega$		1.0	5		1.0	6.0	mV
Input Offset Current			1.0	5		2.0	20	nA
Input Bias Current			2	10		5	25	nA
Input Resistance	: $\quad$.	5	25		5	25		$\mathrm{M} \Omega$
Input Capacitance .			1.5			1.5		pF
Offset Voltage Adjustment Range			$\pm 15$			$\pm 15$	'i	mV
Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	20,000	200,000		20,000	200,000		V/V
Output Resistance			75			75		$\Omega$
Output Short-Circuit Current			25			25		mA
Supply Current			1.7	2.8		1.7	2.8	mA
Power Consumption			50	85		50	85	mW
Transient Response (unity gain)	$V_{I N}=20 \mathrm{mV}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$							
Risetime	$C_{L} \leq 100 \mathrm{pF}$		- 0.3			0.3		$\mu \mathrm{s}$
Overshoot			- 5.0			5.0		\%
Slew Rate (unity gain)	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$		0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$

The following specifications apply for $0^{\circ} \mathrm{C} \leq \boldsymbol{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (8008C), $-\mathbf{5 5 ^ { \circ }} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (8008M):


## TYPICAL PERFORMANCE CURVES

OPEN LOOP VOLTAGE
GAIN AS A FUNCTION OF FREQUENCY



GAIN AS A FUNCTION
OF SUPPLY VOLTAGE


## CIRCUIT NOTES:



FEATURES

- Input Noise Current $\leqslant 1.5 \frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$
- 40 dB Gain
- $\pm 15 \mathrm{~V}$ Supply


## GENERAL DESCRIPTION

The 1 H 5101 is specifically designed for transresistance amplifier applications. Its ultra low noise and high frequency capabilities make it ideal for vidicon head tube amplification. The low level current output of a vidicon head tube can be readily converted to a voltage level for system processing. For example, a 100 nA tube output current will be transformed into 75 mV of output voltage.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Input Current	1 mA
Peak Output Current	10 mA
Power Dissipation (Note)	1 W
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature (M)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(I)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

NOTE: Dissipation rating assumes device is mounted with all leads welded or soldered to printed circuit board in ambient temperature below $70^{\circ} \mathrm{C}$. For higher temperature, derate at rate of $10 \mathrm{~mW} /{ }^{9} \mathrm{C}$.

## SCHEMATIC DIAGRAM



CONNECTION DIAGRAMS


## ORDERING INFORMATION



PACKAGING DIMENSIONS


ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Transresistance ( $\mathrm{E}_{\text {OUT }} / \mathrm{I}_{\text {IN }}$ )			0.75		$\mathrm{mV} / \mathrm{nA}$
Power Supply Current (Quiescent) (Pins 3 and 15)	$\mathrm{I}_{1 N}=0$			15	mA
Output Impedance	$f=1 \mathrm{MHz}$			10	$\Omega$
Output Swing	$R_{L}=75 \Omega, f=1 \mathrm{MHz}$		1.0		$V_{p-p}$
Bandwidth ( 3 dB )	$R_{L}=75 \Omega$	$10^{2}$		$10^{7}$	Hz
Transient Response (Step Response)	$\mathrm{R}_{\mathrm{L}}=75 \Omega$	,			
$t_{\text {(ON) }}$	10\% to $90 \%$			100	ns
$t_{\text {(OFF) }}$	90\% to 10\%			100	ns
Output Wide Band Noise	100 Hz to $10 \mathrm{MHz}, \mathrm{I}_{1 \mathrm{~N}}=0$			3.0	mVrms
Input Current Noise				1.5	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

## NOISE TESTING



BANDWIDTH FOR NOISE TEST


## APPLICATION TIPS



## Dual High Performance Op Amp

## FEATURES

- Low offset voltage
- Low offset current
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$


## GENERAL DESCRIPTION

The LH2101A series of dual operational amplifiers consist of two LM101A type op amps in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, and reduced insertion cost.
The LH2101A is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range, while the LH2301A is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

## CONNECTION DIAGRAM



ORDER NUMBER LH2101AD, LH2301AD

## AUXILIARY CIRCUITS

INVERTING AMPLIFIER WITH BALANCING CIRCUIT

+May be zero or equal to parallel combination of $R_{1}$ and $R_{\mathbf{2}}$ for minimum offset.

TWO POLE COMPENSATION


ALTERNATE BALANCING CIRCUIT


SINGLE POLE COMPENSATION


FEEDFORWARD COMPENSATION

ABSOLUTE MAXIMUM RATINGS
Supply Voltage ..... $\pm 22 \mathrm{~V}$
Power Dissipation (Note 1) ..... 500 mW
Differential Input Voltage ..... $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) ..... $\pm 15 \mathrm{~V}$
Output Short-Circuit Duration ..... Continuous
Operating Temperature RangeLH2101A $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$LH2301A $\ldots \ldots . . . . . . . . . . . . . . . . . . .0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$Storage Temperature Range ...................................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec ) ......................................... $300^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS Each side (Note 3)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2101A	LH2301A	
Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RS} \leq 50 \mathrm{k} \Omega$	2.0	7.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	50	
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	75	250	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	0.5	M $\Omega$ Min
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	3.0	3.0	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \text { VOUT }= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	50	25	V/mV Min
Input Offset Voltage Average Temperature	Rs $\leq 50 \mathrm{k} \Omega$	3.0	10	mV Max
Coefficient of Input Offset Voltage		15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		20	70	nA Max
Average Temperature	$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$	0.1	0.3	
Coefficient of Input Offset Current	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	0.2	0.6	$n \mathrm{n} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Curirent		100	300	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	2.5		mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \text { VOUT }= \pm 10 \mathrm{~V} \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	25	15	V/mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 12$	$\checkmark$ Min
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 10$	
Input Voltage Range Common Mode	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	$\pm 15$	$\pm 12$	
Rejection Ratio Supply Voltage	Rs $\leq 50 \mathrm{k} \Omega$	80	70	dB Min
Rejection Ratio	RS $\leq 50 \mathrm{k} \Omega$	80	70	

[^16]
# LH2108, LH2308, LH2108A, LH2308A Dual Super Beta Op Amp 

## FEATURES

- Low offset current - 50 pA
- Low offset voltage - $0.7 \mathbf{m V}$
- Low offset voltage - LH2108A: 0.3 mV LH2108: 0.7 mV
- Wide input voltage range $- \pm 15 \mathrm{~V}$
- Wide operating supply range $- \pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$


## GENERAL DESCRIPTION

The LH2108A/LH2308A and LH2108/LH2308 series of dual operational amplifiers consist of two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, and reduced insertion cost.
The LH2108A/LH2108 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range, and the LH2308A/LH2308 is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## CONNECTION DIAGRAM



ORDER NUMBER LH2108AD, LH2408AD, LH2108D, OR LH2408D

## AUXILIARY CIRCUITS

## STANDARD COMPENSATION CIRCUIT



## ALTERNATE* <br> FREQUENCY COMPENSATION




## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ..... $\pm 20 \mathrm{~V}$
Power Dissipation (Note 1) ..... 500 mW
Differential Input Current (Note 2) $\pm 10 \mathrm{~mA}$
Input Voltage (Note 3) ..... $\pm 15 \mathrm{~V}$
Output Short Circuit Duration Continuous
Operating Temperature Range
LH2108A/LH2108 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH2308A/LH2408
LH2308A/LH2408 ..... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) ..... $300^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS Each side (Note 4)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2108	LH2308	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	7.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	1.0	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	7.0	
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	10	$\mathrm{M} \Omega$ Min
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	50	25	V/mV Min
Input Offset Voltage		3.0	10	mV Max
Average Temperature Coefficient of Input Offset Voltage		15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		3.0	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	0.4	-	mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \text { VOUT }= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25	15	V/mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{RiL}=10 \mathrm{k} \Omega$	$\pm 13$	$\pm 13$	V Min
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 13.5$	$\pm 14$	
Common Mode Rejection Ratio		85	80	dB Min
Supply Voltage Rejection Ratio	;	80	80	


PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2108A	LH2308A	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5	0.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	1.0	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	7.0	
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	10	M $\Omega$ Min
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \text { VOUT }= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	80	80	V/mV Min
Input Offset Voltage		1.0	0.73	mV Max
Average Temperature Coefficient of Input Offset Voltage		5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current	,	2.5	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		3.0	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	0.4	-	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	40	60	V/mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 13$	$\pm 13$	$V \mathrm{Min}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 13.5$	$\pm 14$	
Common Mode Rejection Ratio		96	96	dB Min
Supply Voltage Rejection Ratio		96	96	

Note 1: The maximum junction temperature of the $\mathrm{LH} 2108 / \mathrm{A}$ is $150^{\circ} \mathrm{C}$, and that of the $\mathrm{LH} 2308 / \mathrm{A}$ is $85^{\circ} \mathrm{C}$. The thermal resistance of the packages is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified, and the LH2308A/LH 2308 for $\pm 5 \mathrm{~V} \leq$ $\mathrm{V}_{\mathrm{s}} \leq 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.

## FEATURES

- Offset voltage 3 mV maximum over temperature (107 and 207)
- Input current 100 nA maximum over temperature (107 and 207)
- Offset current 20 nA maximum over temperature (107 and 207)
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode range


## GENERAL DESCRIPTION

The 107 series amplifiers are complete, general purpose operational amplifiers, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards like the 709. Yet, they are a direct, plug-in replacement for the 709, LM101, LM101A and 741.

The 107 series provides better accuracy and lower noise than its predecessors in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators of timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at reduced cost.

The 207 is identical to the 107, except that the 207 has its performance guaranteed over a $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The 307 has somewhat different specifications, and operates from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

## SCHEMATIC DIAGRAM



## CONNECTION DIAGRAMS




Order Number LM307P

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage 107, 207
307
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)

$\pm 22 \mathrm{~V}$	Operating Temperature Range	107
$\pm 18 \mathrm{~V}$		$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
500 mW		207
$\pm 30 \mathrm{~V}$	Storage Temperature Range	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$\pm 15 \mathrm{~V}$	Lead Temperature (Soldering, 60 sec )	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Indefinite		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

## SWITCHING CHARACTERISTICS



Note 1: The maximum junction temperature of the 107 is $150^{\circ} \mathrm{C}$, while that of the 207 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $70^{\circ} \mathrm{C}$ and ambient temperatures to $55^{\circ} \mathrm{C}$.
Note 4: These specifications apply for $\pm 5 \mathrm{~V}<\mathrm{V}_{S}< \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant 125^{\circ} \mathrm{C}$ for the 107 or $-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 85^{\circ} \mathrm{C}$ for the 207 , unless otherwise specified. For the 307 , the specifications apply for $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$ and $\pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 15 \mathrm{~V}$, unless otherwise specified.

# LM1 08/A, LM208/A, LM308/A Low Level Operational Amplifiers 

## FEATURES

- Input Bias Current - 2 nA max to 7 nA max
- Input Offset Current - 0.2 nA max to 1 nA max
- Input Offset Voltage -0.5 mV max to 7.5 mV max
- $\Delta \mathrm{Vos} / \Delta \mathrm{T}-5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- $\Delta \mathrm{los} / \Delta \mathrm{T}-2.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ to $10 \mathrm{pA} /{ }^{\circ} \mathrm{C}$
- Pin for Pin Replacement for 101A/301A


## GENERAL DESCRIPTION

These differential input, precision amplifiers provide low input currents and offset voltages competitive with FET and chopper stabilized amplifiers. They feature low power consumption over a supply voltage range of $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$. The amplifiers may be frequency compensated with a single external capacitor. The LM108A, LM208A, and LM308A are high performance selections from the 108/208/308 amplifier family.

ALTERNATE CIRCUIT: IMPROVES REJECTION OF POWER SUPPLY NOISE BY A FACTOR OF TEN.


## CONNECTION DIAGRAMS

TO-99 PACKAGE


TOP VIEW

DUAL-IN-LINE PACKAGE


NOTES: On DIP, Pin 7 is connected to case.
Pin 1 is marked for orientation.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltáge	
$\quad$ 108, 208, 108A, 208A,	$\pm 20 \mathrm{~V}$
308, 308A	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	
$\quad$ Metal Can (TO-99	500 mW
$\quad$ DIP (Hermetic)	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	


Output Short-Circuit Duration	Indefinite
Operating Temperature Range	
$108,108 \mathrm{~A}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$208,208 \mathrm{~A}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$308,308 \mathrm{~A}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Note 4)

PARAMETER	CONDITIONS	MIN	308   TYP	MAX	MIN	$\begin{aligned} & \text { 308A } \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{aligned} & 108 \\ & 208 \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{aligned} & \text { 108A } \\ & \text { 208A } \\ & \text { TYP } \end{aligned}$	MAX	UNITS
Input Offset Voltage			2.0	7.5		0.3	0.5		0.7	2.0		0.3	0.5	$m V$
Input Offset Current			0.2	1.0		0.2	1.0		0.05	0.2		0.05	0.2	nA
Input Bias Current			1.5	7		1.5	7		0.8	2.0		0.8	2.0	nA
Input Resistance		10	40		10	40		30	70			70		$M \Omega$
Supply Current	$\begin{aligned} V_{\mathrm{S}} & = \pm 20 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}} & = \pm 15 \mathrm{~V} \end{aligned}$		0.3	0.8		0.3	0.8		0.3	0.6		0.3	0.6	$\begin{aligned} & m A \\ & m A \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25	300		80	300		50	300			300		$\mathrm{V} / \mathrm{mV}$

THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES

Input Offset Voltage				10			0.73			3.0			1.0	mV
Input Offset Current	....			1.5			1.5			0.4			0.4	nA
Average Temperature Coefficient of Input Offset Voltage	$\therefore \quad$,		6.0	30		1.0	5.0		. 3.0	15		1.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current	". - .		2	10		2.0	10	.	0.5	2.5		0.5	2.5	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				10			10			3.0			3.0	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	15			60			25			40			$\mathrm{V} / \mathrm{mV}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 13.5$			$\pm 13.5$			$\pm 13.5$			$\pm 13.5$			V
Common Mode Rejection Ratio		80	100		96	110		85	100		96	110		dB
Supply Voltage Rejection Ratio		80	96		96	110			$96$		96	110		dB
Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 13$	$\pm 14$		$\pm 13$	$\pm 14$		$\pm 13$	$\pm 14$		$\pm 13$	$\pm 14$		$V$
Supply Current	$T_{A}=+125^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$								0.15	0.4		0.15	0.4	mA

NOTE 1: Derate Metal Can package at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$ and the Dual In-Line package at $9 \mathrm{~mW} / /^{\circ} \mathrm{C}$ for operation at ambient temperatures above $95^{\circ} \mathrm{C}$.

NOTE 2: The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.

NOTE 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the maximum input voltage is equal to the supply voltage.
NOTE 4: Unless otherwise specified, these specifications apply for supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ for the $108,208,108 \mathrm{~A}$ and 208 A and from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ for the 308 and 308A.

## TYPICAL PERFORMANCE CURVES









LARGE SIGNAL
FREQUENCY RESPONSE





## GUARDING

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the 108 amplifier. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at $125^{\circ} \mathrm{C}$, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 -lead TO-99
package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage at the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration).

## PHYSICAL DIMENSIONS



NOTES: All dimensions in inches.
Leads are gold-plated Kovar.

DUAL-IN-LINE PACKAGE


NOTES: All dimensions in inches.
Leads are intended for insertion in hole rows on .300 centers

## ORDERING INFORMATION

PART NUMBER	PACKAGE TYPE	TEMPERATURE RANGE	ORDER NUMBER
108	$\begin{aligned} & \text { TO. } 99 \\ & \text { DIP } \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	LM108T   LM108D
208	$\begin{aligned} & \text { TO-99 } \\ & \text { DIP } \end{aligned}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LM208T   LM208D
308	TO-99 DIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM308T LM308D
108A	$\begin{aligned} & \text { TO. } 99 \\ & \text { DIP } \end{aligned}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.	LM108AT LM108AD
208A	$\begin{aligned} & \text { TO.99 } \\ & \text { DIP } \end{aligned}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	LM208AT LM208AD
308A	$\begin{aligned} & \text { TO-99 } \\ & \text { DIP } \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM308AT LM308AD

# LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers 

## FEATURES

- Internally frequency compensated for unity gain
- Large dc voltage gain

100 dB

- Wide bandwidth (unity gain)

1 MHz
(temperature compensated)

- Wide power supply range:

Single supply
or dual supplies
$3 V_{D C}$ to $30 V_{D C}$ $\pm 1.5 \mathrm{~V}_{\mathrm{DC}}$ to $\pm 15 \mathrm{~V}_{\mathrm{DC}}$

- Very low supply current drain $(800 \mu \mathrm{~A})$ - essentially independent of supply voltage ( $1 \mathrm{~mW} / \mathrm{op}$ amp at $+5 \mathrm{~V}_{\mathrm{DC}}$ )
- Low input biasing current 45nA (temperature compensated)
- Low input offset 2 mV and offset current 5nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing
$0 V_{D C}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$



## GENERAL DESCRIPTION

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5 V DC power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V} D C$ power supplies.

In the linear mode the input common-mode voltage range includes ground, and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

The unity gain cross frequency is temperature compensated, as is the input bias current.


ABSOLUTE MAXIMUM RATINGS

LM124/LM224/LM324 LM124A/LM224A/LM324A

32 VDC or $\pm 16 \mathrm{~V}$ DC<br>$32 \mathrm{~V} D \mathrm{C}$

$-0.3 V_{D C}$ to $+32 V_{D C}$

## 570 mW

 900 mW800 mW
Continuous

## LM2902

26 VDC or $\pm 13 \mathrm{~V}$ DC
26 VDC
$-0.3 \mathrm{~V} D C$ to $+32 \mathrm{~V} D C$

570 mW

Continuou

LM124/LM224/LM324 LM124A/LM224A/LM324A

LM2902 Operating Temperature Range

LM324/LM324A
LM224/LM224A
LM124/LM124A
Storage Temperature Range Lead Temperature (Soldering, 10 seconds)

## 50 mA

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+5.0 \mathrm{VDC}\right.$, Note 4$)$

PARAMETER	CONDITIONS	LM124A			LM224A			LM324A			LM124/LM224			LM324			LM2902			UNITS
		MIN	TYP	MAX		TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		1	2		1	3		2	3		$\pm 2$	$\pm 5$		$\pm 2$	$\pm 7$		$\pm 2$	$\pm 7$	mV VCC
Input Bias Current (Note 6)	$\operatorname{liN}(+)$ or $\operatorname{lin}(-), \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		20	50		40	80		45	100		45	150		45	250		45	250	nAdC
Input Offset Current	$\operatorname{lin}(+)-\operatorname{lin}(-), T_{A}=25^{\circ} \mathrm{C}$		2	10		2	15		5	30		$\pm 3$	$\pm 30$		$\pm 5$	$\pm 50$		$\pm 5$	$\pm 50$	nADC
Input Common-Mode Voltage Range (Note 7)	$\mathrm{V}^{+}=30 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		V+-1.5	0		$V^{+}-1.5$	0		V+-1.5	0		$V^{+}-1.5$	0.	-	$V^{+}-1.5$	0		V+-1.5	VDC
Supply Current	$R_{L}=\infty V_{C C}=30 V,(L M 2902 V C C=26 C)$   $\mathrm{R}_{\mathrm{L}}=\infty$ On All Op Amps   Over Full Temperature Range $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} \hline 3 \\ 1.2 \\ 3 \\ \hline \end{gathered}$	mADC mADC   mADC
Large Signal Voltage Gain	$\begin{aligned} & V^{+}=15 V_{D C} \text { (For Large } V_{O} \text { Swing) } \\ & R_{L} \geq 2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		50	100		25	100		50	100		25	100			100		V/mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\mathrm{LM} 2902 \mathrm{RL} \geq 10 \mathrm{k} \Omega)$										0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	VDC
Common-Mode Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	70	85		70	85		65	85		70	85		65	70		50	70		dB
Power Supply Rejection Ratio	$D C, T_{A}=25^{\circ} \mathrm{C}$	65	100			100		65	100		65	100		65	100		50	100		dB
Amplifier-to-Amplifier Coupling (Note 8)	$\begin{aligned} & f=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred) } \end{aligned}$		-120			-120			-120			-120			-120.			-120		dB
Output Current Source	$\begin{aligned} & V_{I N^{+}}=1 V_{D C}, V_{N^{-}}=0 V_{D C}, \\ & V^{+}=15 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		40		20	40			40		20	40			40.			40	-	mADC
Sink	$\begin{aligned} & V_{I N}=1 V_{D C}, V_{I N}=0 V_{D C}, \\ & V^{+}=15 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	20		10	20		10	20		10	20		10	20		10	20		mADC
.	$\begin{aligned} & V_{I N}-=1 V_{D C}, V_{I N^{+}}=0 V_{D C}, \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{VO}_{0}=200 \mathrm{mV} \mathrm{~V}^{-} \end{aligned}$	12	50			50			50						50		$\cdots$			$\mu \mathrm{ADC}$
Short Circuit to Ground	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)		40.	60		40	- 60		40	60		40	60		40	60		40	60	mADC

## ELECTRICAL CHARACTERISTICS (con't)

PARAMETER	CONDITIONS	LM124A			LM224A			LM324A			LM124/LM224			LM324			LM2902			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	(Note 5)			4			4			5			$\pm 7$			$\pm 9$			10	mV VC
Input Offset Voltage Drift	Rs $=0 \Omega$		7	20		7	20		7	30		7	:		7			7	-	$-\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\operatorname{lin}(+)-\operatorname{lin}(-)$			30			30			75		.	$\pm 100$			$\pm 150$		45	$\pm 200$	nADC
Input Offset Current Drift			10	200		10	200		10	300	-	10		-	10			10		PADC $/{ }^{\circ} \mathrm{C}$
Input Bias Current	$1(+)$ or $\operatorname{lin}(-)$		40	100		40	100		40	200		40	500		40	500		40	500	$n A_{D C}$
Input Common-Mode   Voltage Range (Note 7)	$\mathrm{V}^{+}=30 \mathrm{VDC}$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	0	,	$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	VDC
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{VDC} \text { (For Large } \mathrm{VO}_{\mathrm{O}} \text { Swing) } \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			25			15			25			15			15		.	V/mV
Output Voltage Swing VOH   Vol	$\begin{aligned} & \mathrm{v}^{+}=30 \mathrm{VDC}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{~V}^{+}=5 \mathrm{VC}, \mathrm{R}_{\mathrm{L}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		$\begin{gathered} 28 \\ 5 \end{gathered}$	$20$	26	$\begin{gathered} 28 \\ 5 \\ \hline \end{gathered}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 28 \\ 5 \\ \hline \end{gathered}$	20		$\begin{gathered} 28 \\ 5 \end{gathered}$	$20$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 28 \\ 5 \\ \hline \end{gathered}$	$20$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{gathered} 24 \\ 5 \end{gathered}$	$100$	VDC VDC $m V_{D C}$
Output Current Source Sink	$\begin{aligned} & V_{I N}=+1 \mathrm{VDC}_{D C}, V_{I N}=O V_{D C}, V^{+}=15 \mathrm{~V}_{D C} \\ & V_{I N^{-}}=+1 V_{D C}, V_{I N^{+}}^{+}=O V_{D C}, V^{+}=15 \mathrm{~V}_{D C} \end{aligned}$		$\begin{array}{r} 20 \\ \quad-15 \\ \hline \end{array}$		10 5	$\begin{array}{r}20 \\ 8 \\ \hline\end{array}$		$\begin{array}{r} 10 \\ 5 \\ \hline \end{array}$	$\begin{array}{r} 20 \\ 8 \\ \hline \end{array}$		$\begin{array}{r} 10 \\ \therefore 5 \\ \hline \end{array}$	$\begin{gathered} 20 \\ 8 \\ \hline \end{gathered}$		$\begin{aligned} & 10 \\ & 5 \\ & \hline \end{aligned}$	$\begin{gathered} 20 \\ 8 \\ \hline \end{gathered}$		$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 8 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Differential Input Voltage	(Note 7)			V+			$\mathrm{V}^{+}$			$\mathrm{V}^{+}$			V+			$\mathrm{V}^{+}$			$\mathrm{V}^{+}$	Voc


 amplifiers - use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.




 returns to a value greater than $-0.3 V_{D C}$.
 temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM 2902 specifications are limited to $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$.
Note 5: $\mathrm{V}_{O} \cong 1.4 \mathrm{~V}_{\mathrm{DC}}, R_{S}=0 \Omega$ with $\mathrm{V}^{+}$from $5 \mathrm{~V}_{D C}$ to $30 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ( $0 \mathrm{~V}_{D C}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{D C}$ ).

 can go to $+32 \mathrm{~V} D C$ without damage ( +26 VDC for LM2902)
 higher frequencies.


VOLTAGE GAIN


VOLTAGE FOLLOWER PULSE RESPONSE


OUTPUT CHARACTERISTICS CURRENT SOURCING


INPUT CURRENT


OPEN LOOP
FREQUENCY RESPONSE


VOLTAGE FOLLOWER PULSE RESPONSE (SMALL SIGNAL)


OUTPUT CHARACTERISTIICS CURRENT SINKING


SUPPLY CURRENT


COMMON MODE REJECTION RATIO


LARGE SIGNAL FREQUENCY RESPONSE



## GENERAL DESCRIPTION

The 741 and 741C are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.
The offset voltage and offset current are guaranteed over the entire common mode range. The amplifiers also offer
many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.
The 741 C is identical to the 741 except that the 741 C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

## CONNECTION DIAGRAMS



TOP VIEW
NOTE: PIN 4 CONNECTED TO CASE



NOTE: PIN 4 CONNECTED TO BOTTOM OF PACKAGE

14 PIN PLASTIC, CERDIP


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage 741
741C
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short Circuit Duration
Operating Temperature Range 741

Storage Temperature Range
Lead Temperature (Soldering, 10 sec )

500 mW $\pm 30 \mathrm{~V}$ $\pm 15 \mathrm{~V}$
Indefinite
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## ELECTRICAL CHARACTERISTICS (Note 3)

PARAMETER	CONDITIONS	741			741C			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}<10 \mathrm{k} \Omega$		$\therefore 1.0$	5.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	200	,	30	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200	500		200	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0	:	$\mathrm{M} \boldsymbol{\Omega}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		1.7	2.8		1.7	2.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{S}= \pm 15 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	50	160		25	160		$\mathrm{v} / \mathrm{mV}$
Input Offset Voltage	Rs $<10 \mathrm{k} \Omega$			6.0			7.5	mV
Input Offset Current				500			300	$n \mathrm{~A}$
Input Bias Current				1.5			0.8	$\mu \mathrm{A}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega \end{aligned}$	25			15			V/mV
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 12$			$\pm 12$			V
Common Mode Rejection Ratio	RS $<10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	Rs $<10 \mathrm{k} \Omega$	77	96		77.	96		dB

Note 1: The maximum junction temperature of the 741 if $150^{\circ} \mathrm{C}$, while that of the 741 C is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \mathrm{~K} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the 741 C , however, all specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.

SCHEMATIC DIAGRAM


## LM748/LM748C

 $\mu A 748 / \mu A 748 C$Operational Amplifier

## FEATURES

- Short-circuit protection
- Offset voltage null capability
- Large common-mode and differential voltage ranges
- Low power consumption
- No latch up


## GENERAL DESCRIPTION

The 748 is a High Performance Monolithic Operational Amplifier and is intended for a high wide range of analog applications where tailoring of frequency characteristics is desirable. High common mode voltage range and absence of latch-up make the 748 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The 748 is short-circuit protected and has the same pin configuration as the popular 741 operational amplifier. Unity gain frequency compensation is achieved by means of a single 30 pF capacitor. For superior performance, see 777 data sheet.
ABSOLUTE MAXIMUM RATINGS
Supply Voltage ..... $\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)
Metal Can ..... 500 mW
DIP ..... 670 mW
Mini DIP ..... 310 mW
Differential Input Voltage ..... $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) ..... $\pm 15 \mathrm{~V}$
Storage Temperature Range
Metal Can, DIP ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Mini DIP $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range
Military (748) ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial (748C) $\ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 Seconds)$300^{\circ} \mathrm{C}$
Molded DIPs ..... $260^{\circ} \mathrm{C}$
Output Short Circuit Duration (Note 3) ..... Indefinite
NOTES:

1. Rating applies to ambient temperatures up to $70^{\circ} \mathrm{C}$. Above $70^{\circ} \mathrm{C}$ ambient derate linearly at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for metal can, $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the DIP and $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the mini DIP.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply, Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

## CONNECTION DIAGRAMS



8-LEAD METAL CAN
FREO. COMP


NOTE: Pin 4 connected to case

## ORDERING INFORMATION

	8-Lead   Metal Can	8-Lead   Mini DIP	14-Lead   DIP
$\mu$ A748   $\mu$ A748A   $\mu$ A748C	$\mu$ A748HM   $\mu$ A748AHM   $\mu$ A748HC		$\mu$ A748DM
LM748	LM748H	LM748TC	$\mu$ A748ADM
LM748DC			
LM748C	LM748CH	LM748CN	

## LM748/LM748C/ $\mu$ A748/ $\mu$ A748C

748 ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}$ unless otherwise specified)

PARAMETERS (see definitions)		CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		Rs $\leqslant 10 \mathrm{k} \Omega$	.	1.0	5.0	mV
Input Offset Current				20	200	nA
Input Bias Current				80	500	nA
Input Resistance			0.3	2.0		$\mathrm{M} \Omega$
Input Capacitance		. . . .		2.0		pF
Offset Voltage Adjustment Range				$\pm 15$		mV
Large Signal Voltage Gain		$R_{L} \geqslant 2 \mathrm{k} \Omega$, V ${ }_{\text {OUT }}= \pm 10 \mathrm{~V}$	50,000	150,000		V/V
Output Resistance				75		$\Omega$
Output Short-Circuit Current				25		mA
Supply Current				1.9	2.8	mA
Power Consumption				60	85	mW
Transient Response (Voltage Follower, Gain of 1)	Rise Time	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{c}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$		0.3		$\mu \mathrm{s}$
	Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 1)		$R_{L} \geqslant 2 \mathrm{k} \Omega$		0.5		$\mathrm{V} / \mu \mathrm{s}$
Transient Response (Voltage Follower, Gain of 10)	Rise Time	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{C}}=3.5 \mathrm{pF}, \mathrm{RL}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$	.	0.2		$\mu \mathrm{S}$
	Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 10)		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{c}}=3.5 \mathrm{pF}$		5.5		$\mathrm{V} / \mu \mathrm{s}$
The following specifications apply for $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$ :						
Input Offset Voltage		RS $\leqslant 10 \mathrm{k} \Omega$		1.0	6.0	mV
Input Offset Current		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		10	200	nA
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		50	500	nA
Input Bias Current		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		0.03	0.5	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		0.3	1.5	$\mu \mathrm{A}$
Input Voltage Range			$\pm 12$	$\pm 13$		V
Common Mode Rejection Ratio		RS $\leqslant 10 \mathrm{k} \Omega$	70	90		dB
Supply Voltage Rejection Ratio		Rs $\leqslant 10 \mathrm{k} \Omega$		30	150	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	25,000			V/V
Output Voltage Swing		$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		V
		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		V
Supply Current		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		1.5	2.5	mA
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		2.0	3.3	mA
Power Consumption		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		45	75	mW
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		60	100	mW



## LM748/LM748C/ $\mu$ A748 $/ \mu$ A748C


748C ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}$ unless otherwise specified)

PARAMETERS		CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		2.0	6.0	mV
Input Offset Current				20	200	nA
Input Bias Current				80	500	nA
Input Resistance			0.3	2.0		$\mathrm{M} \Omega$
Input Capacitance		.		2.0		pF
Offset Voltage Adjustment Range				$\pm 15$		mV
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	20,000	150,000		V/V
Output Resistance				75		$\Omega$
Output Short-Circuit Current				25		mA
Supply Current				1.9	2.8	mA
Power Consumption				60	85	mW
Transient Response (Voltage Follower, Gain of 1)	Rise Time	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{c}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$		0.3		$\mu \mathrm{s}$
	Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 1)		$\mathrm{RL} \geqslant 2 \mathrm{k} \Omega$		0.5		$\mathrm{V} / \mu \mathrm{s}$
Transient Response (Voltage Follower, Gain of 10)	Rise Time	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{mV}, \mathrm{C}_{\mathrm{c}}=3.5 \mathrm{pF}, \mathrm{I}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}$		0.2		$\mu \mathrm{S}$
	Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 10)		$R \mathrm{~L} \geqslant 2 \mathrm{k} \Omega, \mathrm{Cc}=3.5 \mathrm{pF}$		5.5		$\mathrm{V} / \mu \mathrm{s}$
The following specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ :						
Input Offset Voltage		RS $\leqslant 10 \mathrm{k} \Omega$			7.5	mV
Input Offset Current		,		$\because$	300	nA
Input Bias Current				,	800	nA
Input Voltage Range			$\pm 12$	$\pm 13$		V
Common Mode Rejection Ratio		$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	70	90		dB
Supply Voltage Rejection Ratio		$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		30	150	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	15,000			V/V
Output Voltage Swing		$R_{L} \leqslant 10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		V
		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		V
Power Consumption			*	60	100	mW

## EQUIVALENT CIRCUIT



## LM748／LM748C／$\mu$ A748／$\mu$ A748C

## TYPICAL PERFORMANCE CURVES FOR 748



## TYPICAL PERFORMANCE CURVES FOR 748C

OUTPUT SHORT－CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE


POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE


OUTPUT SHORT－CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE


POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE


## LM748/LM748C/ $\mu$ A748/ $\mu$ A748C

## TYPICAL PERFORMANCE CURVES FOR 748 AND 748C



748 FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE


INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY


748C FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE


BROAD BAND NOISE FOR VARIOUS BANDWIDTHS


TYPICAL PERFORMANCE CURVES FOR 748 AND 748C


OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY FOR VARIOUS GAIN/COMPENSATION OPTIONS



VOLTAGE FOLLOWER TRANSIENT RESPONSE (GAIN OF 1)


OPEN LOOP PHASE RESPONSE
AS A FUNCTION OF FREQUENCY


FREQUENCY RESPONSE FOR VARIOUS CLOSED LOOP GAINS


OUTPUT RESISTANCE AS A FUNCTION OF FREQUENCY


TRANSIENT RESPONSE TEST CIRCUIT


OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY


COMPENSATION CAPACITANCE AS A FUNCTION OF CLOSED LOOP VOLTAGE GAIN


COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY


VOLTAGE FOLLOWER LARGE-SIGNAL PULSE RESPONSE


## LM748/LM748C/ $\mu$ A748/ $\mu$ A748C

TYPICAL PERFORMANCE CURVES FOR 748 AND 748C
FEED FORWARD COMPENSATION


TYPICAL APPLICATIONS
PULSE WIDTH MODULATOR

$f_{c}=\frac{1}{2 \pi R_{2} C_{1}}$
$f_{n}=\frac{1}{2 \pi R 1 C 1}$
$=\frac{1}{2 \pi \mathrm{R}_{2} \mathrm{C} 2}$
$\mathbf{f}_{\mathbf{c}}<\mathrm{f}_{\mathbf{n}}<\mathrm{f}_{\text {unity }}$ gain

PRACTICAL DIFFERENTIATOR


CIRCUIT FOR OPERATING THE 748 WITHOUT A NEGATIVE SUPPLY


## PACKAGE DIMENSIONS

8 LEAD PLASTIC MINI DIP (PA)



Note: Pin 4 connected to case.

14 LEAD PLASTIC (PD)


## FEATURES

- Low offset voltage and offset current
- Low offset voltage and current drift
- Low input bias current
- Low input noise voltage
- Large common mode and differential voltage ranges


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Metal Can	670 mW
DIP	310 mW
Mini DIP	$\pm 30 \mathrm{~V}$
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Input Voltage (Note 2)	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Metal Can and Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Mini DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operating Temperature Range	
Lead Temperature	
Metal Can and Hermetic DIP (Soldering, 60 s$)$	$300^{\circ} \mathrm{C}$
Mini DIP (Soldering, 10 Ss )	$20^{\circ} \mathrm{C}$
Output Short Circuit Duration (Note 3)	Indefinite

Note 1: Rating applies to ambient temperatures up to $70^{\circ} \mathrm{C}$. Above $70^{\circ} \mathrm{C}$ ambient derate linearly at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for Metal Can, $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the DIP, and $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the Mini DIP.

Note 2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3. Short Circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature for ISET $\leq 30 \mu \mathrm{~A}$.

## CONNECTION DIAGRAM

8-LEAD MINI DIP
(TOP VIEW)


## PIN CONFIGURATION



ORDER INFORMATION
TYPE PART NO.
$\mu$ A777C $\quad$ A A777TC

## GENERAL DESCRIPTION

The $\mu$ A777C is a monolithic Precision Operational Amplifier: It is an excellent choice when performance versus cost trade-offs are possible between super beta or FET input operational amplifiers and low cost general purpose operational amplifiers. Low offset and bias currents improve system accuracy when used in applications such as long term integrators, sample and hold circuits and high source impedance summing amplifiers. Even though the input bias current is extremely low, the $\mu \mathrm{A} 777 \mathrm{C}$ maintains full $\pm 30 \mathrm{~V}$ differential voltage range. High common mode input voltage range, latch-up protection, short circuit protection and simple frequency compensation make the device versatile and easily used.

## CONNECTION DIAGRAMS

8-LEAD METAL CAN
(TOP VIEW)


ORDER INFORMATION
TYPE PART NO.
$\mu$ A777C. $\quad \mu$ A777HC

ELECTRICAL CHARACTERISTICS FOR $\mu$ A777C $\left(V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{C}}=30 \mathrm{pF}\right.$ unless otherwise specified)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	Rs $\leq 50 \mathrm{k} \Omega$		0.7	5.0	mV
Input Offset Current			0.7	20.0	nA
Input Bias Current			25	100	nA
Input Resistance		1.0	2.0		$\mathrm{M} \Omega$
Input Capacitance			3.0		pF
Offset Voltage Adjustment Range			$\pm 25$		mV
Large Signal Voltage Gain	RL $\geq 2 \mathrm{k} \Omega$, VOUT $= \pm 10 \mathrm{~V}$	25,000	250,000		V/V
Output Resistance			100		$\Omega$
Output Short Circuit Current			$\pm 25$		mA
Supply Current			1.9	2.8	mA
Power Consumption			60	85	mW
Transient Response   (Voltage Follower, Rise Time	$\mathrm{ViN}_{\mathrm{iN}}=20 \mathrm{mV}, C_{c}=30 \mathrm{pF}$		0.3		$\mu \mathrm{S}$
Gain of 1) Overshoot.			5.0		\%
Slew Rate (Voltage Follower, Gain of 1)	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$		0.5		$\mathrm{V} / \mu \mathrm{s}$
Transient Response    (Voltage Follower, Rise Time	$\mathrm{VIN}=20 \mathrm{mV}, \mathrm{Cc}=3.5 \mathrm{pF}$		0.3		$\mu \mathrm{s}$
Gain of 10) Overshoot			5.0		\%
Slew Rate (Voltage Follower, Gain of 10)	$\mathrm{RL}_{\mathrm{L}} \leq 2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{c}}=3.5 \mathrm{pF}$		5.5		$\mathrm{V} / \mu \mathrm{s}$
The following specifications apply	for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$				
Input Offset Voltage	Rs $\leq 50 \mathrm{k} \Omega$		0.8	5.0	mV
Average Input Offset Voltage Drift	Rs $\leq 50 \mathrm{k} \Omega$		4.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				40	nA
Average Input Offset Current Drift	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10: 3 \\ 0.6 \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{nA} /^{\circ} \mathrm{C} \\ \mathrm{nA} /^{\circ} \mathrm{C} \\ \hline \end{array}$
Input Bias Current			$\cdots$	200	nA
Input Voltage Range		$\pm 12$	$\pm 13$		V
Common Mode Rejection Ratio	RS $\leq 50 \mathrm{k} \Omega$	70	95		dB
Supply Voltage Rejection Ratio	Rs $\leq 50 \mathrm{k} \Omega$		15	150	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	RL $\geq 2 \mathrm{k} \Omega$, VOUT $= \pm 10 \mathrm{~V}$	15,000			V/V
Output Voltage Swing	RL $\geq 10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		V
	$\mathrm{RL} \geq 2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		V
Power Consumption			60	100	mW

EQUIVALENT CIRCUIT


## TYPICAL PERFORMANCE CURVES



POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE


INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION

OF AMBIENT
TEMPERATURE


OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE


INPUT CURRENT AS A FUNCTION OF
AMBIENT TEMPERATURE


POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE


INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE


INPUT RESISTANCE AS A FUNCTION OF.
AMBIENT TEMPERATURE


OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE


INPUT NOISE VOLTAGE AND CURRENT AS A FUNCTION OF FREQUENCY


## TYPICAL PERFORMANCE CURVES

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY


OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY FOR VARIOUS GAIN/COMPENSATION OPTIONS


INPUT RESISTANCE,
OUTPUT RESISTANCE,
AND INPUT CAPACITANCE AS A FUNCTION OF FREQUENCY


VOLTAGE FOLLOWER TRANSIENT RESPONSE (GAIN OF 1)





COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY


TRANSIENT RESPONSE TEST CIRCUIT


OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY



INPUT OFFSET VOLTAGE
DRIFT AS A FUNCTION
OF TIME


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


## TYPICAL PERFORMANCE CURVES

THERMAL RESPONSE OF INPUT OFFSET VOLTAGE TO STEP CHANGE OF CASE TEMPERATURE


## FEED FORWARD COMPENSATION

LARGE SIGNAL FEEDFORWARD
TRANSIENT RESPONSE


VOLTAGE OFFSET
NULL CIRCUIT


SUGGESTED


Alternate

STABILIZATION TIME OF INPUT OFF-SET VOLTAGE FROM POWER TURN-ON



GAIN TEST CIRCUIT


## TYPICAL APPLICATIONS

BIAS COMPENSATED LONG TIME INTEGRATOR

*ADJUST R ${ }_{3}$ FOR MINIMUM INTEGRATOR DRIFT

CAPACITANCE MULTIPLIER


BILATERAL CURRENT SOURCE

$I_{\text {OUT }}=\frac{R_{3} V_{I N}}{R_{1} R_{5}} ; R_{1}=R_{2} ; R_{3}=R_{4}+R_{5}$
$\pm 100 \mathrm{~V}$ COMMON MODE RANGE INSTRUMENTATION AMPLIFIER
$\frac{R_{1}}{R_{7}} \equiv \frac{R_{3}}{R_{4}}$ for best CMRR
$R_{3}=R_{4}$
$R_{1}=R_{6}=10 R_{3}$
Gain $=\frac{R_{7}}{R_{6}}$



AMPLIFIER FOR CAPACITANCE TRANSDUCERS


LOW FREQUENCY CUTOFF $\mathrm{R}_{1} \times \mathrm{C}_{1}$

HIGH SLEW RATE POWER AMPLIFIER


INSTRUMENTATION AMPLIFIER WITH HIGH COMMON MODE REJECTION


## AD503 High Accuracy Low Offset Op Amp

## FEATURES

## - Low IBIAS: 15pA MAX

- Low Drift: $\mathbf{2 5} \mu V^{\circ} \mathrm{C}$ MAX


## GENERAL DESCRIPTION

The AD503 is an IC FET input op amp which provides the user with input currents of a few pA, high overall performance, low cost, and accurately specified, predictable operation. The device achieves maximum bias currents as low as 5 pA , minimum gain of 75,000 , CMRR of 80 dB , and a minimum slew rate of $3 \mathrm{~V} / \mu \mathrm{s}$. It is free from latch-up and is short circuit protected, and no external compensation is required, as the internal $6 \mathrm{~dB} /$ octave rolloff provides stability in closed loop applications.

The AD503 is suggested for all general purpose FET input amplifier requirements where low cost is of prime importance.

The circuits are supplied in the TO-99 package; the AD503J, K are specified for 0 to $+70^{\circ} \mathrm{C}$ temperature
range operation; the AD503S for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

It provides performance comparable to modular FET op amps, but because of its monolithic construction, however, its cost is significantly below that of modules, and becomes even lower in large quantities.

The AD503 is especially designed for applications involving the measurement of low level currents or small voltages from high impedance sources, in which bias current can be a primary source of error. Input bias current contributes to error in two ways: (1) in current measuring configurations, the bias current limits the resolution of a current signal; (2) the bias current produces a voltage offset which is proportional to the value of input resistance (in the case of an inverting configuration) or source impedance (when the noninverting "buffer" connection is used). The AD503, therefore, is of use where small currents are to be measured or where relatively low voltage drift is necessary despite large values of source resistance.


SPECIFICATIONS（Typical＠$+25^{\circ} \mathrm{C}$ and $\pm 15 \mathrm{Vdc}$ ，unless otherwise noted）

PARAMETER	AD503J	AD503K	AD503S		
$\begin{aligned} & \text { OPEN LOOP GAIN1 } \\ & \text { Vout }= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\min \text { to } \max \end{aligned}$	$\begin{aligned} & 20,000 \min (50,000 \text { typ }) \\ & 15,000 \text { min } \end{aligned}$	$\begin{aligned} & 50,000 \min (120,000 \text { typ }) \\ & 40,000 \min \end{aligned}$	$25,000 \mathrm{~min}$		
OUTPUT CHARACTERISTICS   Voltage＠$R_{L}=2 k \Omega, T_{A}=\min$ to $\max$   Voltage＠$R_{L}=10 k \Omega, T_{A}=$ min to $\max$   Load Capacitance2   Short Circuit Current	$\begin{aligned} & \pm 10 \mathrm{~V} \min ( \pm 13 \mathrm{~V} \text { typ }) \\ & \pm 12 \mathrm{~V} \min ( \pm 14 \mathrm{~V} \text { typ }) \\ & 750 \mathrm{pF} \\ & 25 \mathrm{~mA} \end{aligned}$				
FREQUENCY RESPONSE   Unity Gain，Small Signal Full Power Response Slew Rate，Unity Gain． Settling Time，Unity Gain（to 0．1\％）	$\begin{aligned} & 1.0 \mathrm{MHz} \\ & 100 \mathrm{kHz} \\ & 3.0 \mathrm{~V} / \mu \mathrm{s} \min (6.0 \mathrm{~V} / \mu \mathrm{s} \text { typ }) \\ & 10 \mu \mathrm{~s} \end{aligned}$				
INPUT OFSET VOLTAGE3 vs Temperature， $\mathrm{T}_{\mathrm{A}}=\min$ to $\max$ vs Supply，$T_{A}=\min$ to max	$50 \mathrm{mV} \max (20 \mathrm{mV}$ typ $)$ $75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ $)$ $400 \mu \mathrm{~V} / \mathrm{V} \max (200 \mu \mathrm{~V} / \mathrm{V}$ typ $)$	$20 \mathrm{mV} \max (8 \mathrm{mV}$ typ $)$ $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \left(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ typ $)$ $200 \mu \mathrm{~V} / \mathrm{V} \max (100 \mu \mathrm{~V} / \mathrm{V}$ typ $)$	$50 \mu \mathrm{~V}^{\circ} \mathrm{C} \max \left(20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { typ }\right)$		
INPUT BIAS CURRENT Either Input 4	15pA max（5pA typ）	$10 \mathrm{pA} \max$（2．5pA typ）	い进		
INPUT IMPEDANCE   Differential   Common Mode	$\begin{aligned} & 1011 \Omega \\| 2 \mathrm{pF} \\ & 1012 \Omega \\| 2 \mathrm{pF} \\ & \hline \end{aligned}$		\％		
INPUT NOISE $\begin{aligned} \text { Voltage, } & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & 5 \mathrm{~Hz} \text { to } 50 \mathrm{kHz} \\ & f=1 \mathrm{kHz} \text { (spot noise) } \end{aligned}$	$\begin{aligned} & 15 \mu \mathrm{~V}(\mathrm{p}-\mathrm{p}) \\ & 5.0 \mu \mathrm{~V}(\mathrm{rms}) \\ & 30.0 \mathrm{nV} / \sqrt{ } \mathrm{Hz} \\ & \hline \end{aligned}$	＊			
INPUT VOLTAGE RANGE   Differential 5   Common Mode， $\mathrm{T}_{\mathrm{A}}=\min$ to $\max$ Common Mode Rejection， $\mathrm{VIN}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	$\begin{aligned} & \pm 3.0 \mathrm{~V} \\ & \pm 10 \mathrm{~V} \min ( \pm 12 \mathrm{~V} \text { typ }) \\ & 70 \mathrm{~dB} \min (90 \mathrm{~dB} \text { typ }) \end{aligned}$	$\begin{array}{\|l\|} * \\ * \\ 80 \mathrm{~dB} \min (90 \mathrm{~dB} \text { typ }) \\ \hline \end{array}$			
POWER SUPPLY   Rated Performance Operating Quiescent Current	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm(5 \text { to } 18) \mathrm{V} \\ & 7 \mathrm{~mA} \max (3 \mathrm{~mA} \text { typ) } \end{aligned}$		$\pm(5 \text { to } 22) \mathrm{V}$		
TEMPERATURE Operating，Rated Performance Storage	$\left\lvert\, \begin{aligned} & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}\right.$	＊－	$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$		

Note 1．Open Loop Gain is specified with Vos both nulled and unnulled．
Note 2．A conservative design would not exceed 500 pF of load capacitance．
Note 3．Input offset voltage specifications are guaranteed after 5 minutes of operation at $T_{A}=+25^{\circ} \mathrm{C}$ ．
Note 4．Bias current specifications are guaranteed after 5 minutes of operation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．For higher temperatures，the current doubles every $10^{\circ} \mathrm{C}$ ．

Note 5．See comments in Input Considerations section．
＊Specifications same as for AD503J．
＊＊Specifications same as for AD503K．
Specifications subject to change without notice．

## APPLICATIONS CONSIDERATIONS

## Bias Current

Most IC FET op amp manufacturers specify maximum bias currents as the value immediately after turn－on． Since FET bias currents double every $10^{\circ} \mathrm{C}$ and since most FET op amps have case temperature increases of $15^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ above ambient，initial＂maximum＂readings
may be only $1 / 4$ of the true warmed up value．Furthermore， most IC FET op amp manufacturers specify $\mathrm{lb}_{\mathrm{b}}$ as the average of both input currents，sometimes resulting in twice the＂maximum＂bias current appearing at the input being used．The total result is that 8 X the expected bias current may appear at either input terminal in a warmed up operating unit．

The AD503 specifies maximum bias currents at either input after warmup, thus giving the user the values he expected.

## Improving Bias Current Beyond Guaranteed Values

Bias currents can be substantially reduced by decreasing the junction temperature of the device. One technique to accomplish this is to reduce the operating supply voltage. This procedure will decrease the power dissipation of the device, which will in turn result in a lower junction temperature and lower bias currents. The supply voltage effect on bias current is shown in Figure 1.


Figure 1. Normalized Bias Current vs Supply Voltage
Operation of the AD503K at $\pm 5 \mathrm{~V}$ reduces the warmed up bias current by $70 \%$ to a typical value of 0.75 pA .

A second technique is the use of a suitable heat sink. Wakefield Engineering Series 200 heat sinks were selected to demonstrate this effect. The characteristic bias current vs case temperature above ambient is shown in Figure 2. Bias current has been normalized with unity representing the $25^{\circ} \mathrm{C}$ free air reading.


Figure 2. Normalized Bias Current vs Case Temperature

Note that the use of the model 209 heat sink reduces warmed up bias current by $60 \%$ to 1.0 pA in the AD503K.
Both of these techniques may be used together for obtaining lower bias currents. Remember that loading the output can also affect the power dissipation.


Figure 3. Input Bias Current vs Temperature

## Input Considerations

The common mode input characteristic is shown in Figure 4. Note that positive common mode inputs up to +13.5 Volts and negative common mode inputs to $-V_{s}$ are permissible, without incurring excessive bias currents. To prevent possible damage to the unit, do not exceed $\mathrm{V}_{\mathrm{Cm}}=\mathrm{V}$ s.


Figure 4. Input Bias Current vs Common Mode Voltage
Like most other FET input op amps, the AD503 displays a degraded bias current specification when operated at moderate differential input voltages. It maintains its specified bias current up to a differential input voltage of $\pm 3 \mathrm{~V}$ typically, while the bias current will increase to approximately $400 \mu \mathrm{~A}$. This is not a failure mode. Above $\pm 10 \mathrm{~V}$ differential input voltage, the bias current will increase $100 \mu \mathrm{~A} / \mathrm{V}_{\text {diff }}$ (in volts), and other parameters may suffer degradation.

# ICH8500/ICH8500A <br> Ultra Low Bias Current Operational Amplifier 

## FEATURES

- Input diode protection
- Input bias current less than 0.01 pA at all operating temperatures.
- No frequency compensation required
- Offset voltage null capability
- Short circuit protection
- Low power consumption


## SCHEMATIC DIAGRAM



## CONNECTION DIAGRAM


(TOP VIEW)

NOTE: Pin 4 is not connected to case.

## GENERAL DESCRIPTION

The ICH 8500 and ICH 8500A are hybrid circuits designed for ultra low input bias current operational amplifier applications. They are ideally suited for analog and electrometer applications where high input resistance and low input current are of prime importance.

## APPLICATIONS

- Femto Ammeter
- Electrometers
- Long time integrators
- Flame detectors
- pH meter
- Proximity detector


## ORDERING INFORMATION



## PACKAGE OUTLINE



NOTES:
All dimensions in inches. Dimensions as per latest J-10 committee.
Leads are gold plated Kovar: Package weight is 1.22 grams.

## ICH8500/8500A

## MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Voltage	$\pm 0.5 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 sec )	$300^{\circ} \mathrm{C}$
Output Short Circuit Duration	Indefinite

NOTE:

1. Rating applies for ambient temperature to $+70^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified, $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ )

CHARACTERISTICS	ICH8500			ICH8500A			UNITS	TEST CONDITIONS
	MIN	TYP	MAX	MIN	TYP	MAX		
Input Leakage Current (Inverting and Non-Inverting)			0.1			0.01	pA	Case at same potential as inputs
Input Offset Voltage			50			50	mV	
Offset Voltage Adjustment Range			$\pm 50$			$\pm 50$	mV	$20 \mathrm{k} \Omega$ Potentiometer
Change in Input Offset			$\therefore$	$\therefore$		$\pm 5.0$	mV	+25 to $+85^{\circ} \mathrm{C}$
Voltage Over Temperature						$\pm 5.0$	mV	-25 to $+25^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	60	75		60	75		dB	$\pm 5$ volts common mode voltage
Output Voltage Swing	$\pm 11$			$\pm 11$			V	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$
- Common Mode Voltage Range	$\pm 10$			$\pm 10$			V	
Large Signal Voltage Gain	20,000	$10^{5}$		20,000	105		-	
Feedback Capacitance			0.1 .			0.1	pF	Case guarded
Long Term Input Offset Voltage Stability			$\pm 3.0$			$\pm 3.0$	mV	At $25^{\circ} \mathrm{C}$
Slew Rate		0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$	$R_{L} \geqslant 2 k \Omega$

## CIRCUIT NOTES

VOLTAGE OFFSET
NULL CIRCUIT


LOW LEVEL CURRENT MEASURING CIRCUIT


NOTE: Adjust input offset voltage to $0 \mathrm{mV} \pm 1 \mathrm{mV}$ before measuring leakage.



OPEN LOOP VOLTAGE GAIN VERSUS FREQUENCY VERSUS SUPPLY VOLTAGE
$\pm$ QUIESCENT SUPPLY CURRENT VERSUS SUPPLY VOLTAGE


INPUT VOLTAGE RANGE VERSUS SUPPLY VOLTAGE

$\pm$ POWER SUPPLY REJECTION RATIO VERSUS SUPPLY VOLTAGE


INPUT REFERRED NOISE VOLTAGE


COMMON MODE REJECTION RATIO VERSUS SUPPLY VOLTAGE


OUTPUT VOLTAGE SWING VERSUS SUPPLY VOLTAGE


POWER CONSUMPTION VERSUS SUPPLY VOLTAGE


## BASIC CHARACTERISTICS

The ICH8500 and ICH8500A are packaged in a TO-5 eight lead header. Functionally, they are pin for pin identical to the popular 741 monolithic amplifier. These amplifiers are unconditionally stable and the input offset voltage can be adjusted to zero with an external 20 k potentiometer. The input bias current for the inverting and non-inverting inputs is 0.1 pA maximum for the ICH 8500 , and 0.01 pA maximum for the ICH8500A. In addition, the input bias currents of the ICH8500 and ICH8500A are constant over the operating temperature range from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Like the 741, the slew rate of these two amplifiers is about 0.5 volts per $\mu \mathrm{s}$. Unlike the 741 and other monolithic amplifiers, Pin 4 (the negative supply voltage terminal) is not connected to the case; however Pin 8 is connected to the case. This permits the designer to operate the case at any desired potential. This feature is the key to achieving the ultra low input currents associated with these two amplifiers. Forcing , the case to the same potential as the inputs eliminates any current flow between the case and the input pins. In addition, any leakage currents that may otherwise have existed between any of the other pins and the inputs are intercepted by the case. This is possible since the case completely encircles every pin on the header, thus the case acts as a guard against any stray leakage currents.

## APPLICATIONS

## I. The Pico Ammeter

A very sensitive pico ammeter can be constructed with the ICH8500. The basic circuit (illustrated in Figure 1) employs the amplifier in the inverting or current summing mode.

Care must be taken to eliminate any stray currents from flowing into the current summing node. This can be accomplished by forcing all points surrounding the input to the same potential as the input. In this case, the potential of the input is at virtual ground, or 0 V . The case of the device is, therefore, grounded to intercept any stray leakage currents that may otherwise exist between the $\pm 15 \mathrm{~V}$ input terminals and the inverting input summing junctions. Feedback capacitance* should also be minimized, in the pico ammeter, in order to maximize the response time of the circuit to step function input currents. The time constant of the circuit is approximately the product of the feedback capacitance $\mathrm{C}_{\mathrm{FB}}$ times to feedback resistor $\mathrm{R}_{\mathrm{FB}}$. For instance, the time constant of the circuit in Figure 1 is 1 sec if $\mathrm{C}_{\mathrm{S}}=1 \mathrm{pF}$. Thus, it takes approximately 5 sec ( 5 time constants) for the circuit to stabilize to within $1 \%$. of its final output voltage after a step function of input current has been applied. $\mathrm{C}_{\mathrm{FB}}$ of less than 0.2 to 0.3 pF can be achieved with proper circuit layout. A practical pico ammeter circuit is illustrated in Figure 2.

CR1, CR2 are internal diodes, along with R1 which protect the input stage of the amplifier from voltage transients. CR1 and CR2 are low leakage, high impedance diodes. These diodes do not, however, contribute any error currents, since there is zero volts potential across them under normal operating conditions.

[^17]

FIGURE 2. PICO AMMETER CIRCUIT.

## II. Sample and Hold Circuit

The circuit illustrated in Figure 3 is a sample and hold circuit employing the ICH8500. The basic principal of this circuit is to rapidly charge a capacitor $\mathrm{C}_{S}$ to a voltage equal to an input signal. The input signal is then electrically disconnected from the capacitor with the charge still remaining on $\mathrm{C}_{\mathrm{S}}$. Since $\mathrm{C}_{\mathrm{S}}$ is in the negative feedback loop of an operational amplifier, the output voltage of the amplifier is equal to the voltage across the capacitor. Ideally, the voltage across $\mathrm{C}_{S}$ will remain constant; thus the output of the amplifier will also be constant. The voltage across $\mathrm{C}_{S}$ will, however decay at a rate proportional to the current being injected or taken out of the current summing node of the amplifier. This current can come from four sources: leakage resistance of $\mathrm{C}_{\mathrm{S}}$, leakage current due to the solid state switch SW2, currents due to high resistance paths on the circuit fixture, and most important, bias current of the operational amplifier. If the ICH8500A operational amplifier is employed, this bias current is almost non-existant ( $<0.01 \mathrm{pA}$ ). Study of the sample and hold circuit will show that the voltage on the source, drain and gate of switch SW2 is zero or near zero when the circuit is in the hold mode. Since there is no voltage, there is no leakage current due to SW2. Careful construction will eliminate stray resistance paths and capacitor resistance can be eliminated if a quality capacitor is selected. The net result is a quality sample and hold circuit.

As an example, suppose the leakage current due to all sources flowing into the current summing node of the sample and hold circuit is 100 pA . The rate of change of the voltage across the $0.01 \mu \mathrm{~F} \mathrm{C}_{\mathrm{S}}$ capacitor is then $10 \mathrm{mV} / \mathrm{sec}$. In contrast, if an operational amplifier were employed that exhibited an input bias current of 1 nA , the rate of change of the voltage across $\mathrm{C}_{\mathrm{S}}$ would be $0.1 \mathrm{~V} / \mathrm{sec}$. An error build up such as this could not be tolerated in most applications.
Wave forms illustrating the operation of the sample and hold circuit are illustrated in Figure 4.

## III. The Gated Integrator

The circuit in Figure 3 can double as an integrator circuit. In this application the input voltage is applied to the integrator input terminal. The time constant of the circuit is the product of R1 and $C_{S}$. When the FET switch (SW2) is open; capacitor $\mathrm{C}_{\mathrm{S}}$ charges at a rate equal to the current flowing through R1. Because of the low leakage current associated with the ICH8500 and ICH8500A, very large values of R1 (up to $10^{12}$ ohms) can be employed. This permits the use of small values of integrating capacitor ( $\mathrm{C}_{\mathrm{S}}$ ) in applications that require long time delays. Waveforms for the integrator circuit are illustrated in Figure 5.



FIGURE 4. SAMPLE AND HOLD CIRCUIT WAVEFORMS
h) INTEGRATOR OUTPUT



FIGURE 5. GATED INTEGRATOR WAVEFORMS.

This amplifier incorporates a pair of fast Ultra-Low Leakage back-to-back diodes at the amplifier inputs. The diodes do not interfere with the normal ultra-low input leakage currents of the amplifier.

These diodes will protect the amplifier inputs against static charge build-up damage and most transients. The diodes will not, however, react fast enough to ultra-high speed transients which may then damage the amplifier inputs.

When working with femto amp signals, teflon and ceramic should be used as insulators to keep leakage to a minimum. Teflon wire and ceramic switches should also be used along with metal film resistors.

The device input leakage resistance will adversely be affected by the package contamination. It is, therefore, recommended that the devices and finished assembly be washed in a freon bath for two minutes at a temperature of $50^{\circ} \mathrm{C}$. Then baked in an oven for thirty minutes at $+150^{\circ} \mathrm{C}$.

## FEATURES

- Very low input current - 1pA (max) 8007A
- Very low offset voltage - 2 mV (max) 8007-1 \& 8007-3
- Guaranteed low drift - $5 \mu \mathrm{~V}!^{\circ} \mathrm{C}$ 8007-1
- High slew rate $-6 \mathrm{~V} / \mu \mathrm{sec}$
- High input impedance - 1,000,000M ohm
- Internal frequency compensation


## NOTE:

The 8007-1 thru -5 amplifiers are part of the 8007 family of FET-input op amps. See also the 8007C, 8007M data sheet.

## GENERAL DESCRIPTION

The 8007 Series is a family of FET input operational amplifiers which provides a broad range of both general purpose products and special selections. The selections include devices with input currents of 1 pA (max) and offset voltages of 2.0 mV (max).

All are pin compatible with the 741 and have output short circuit protection. A unique bootstrap circuit insures unusually good common mode rejection and prevents the excessive gate currents seen in the majority of FET input amplifiers at high common mode voltages.

## CONNECTION DIAGRAMS

8007-1, 8007-2 and 8007-3
(Without Offset Null)


NOTE: Pin 4 connected to case

8007-4 and 8007-5
(With Offset Null)

'OTE: Pin 4 connected to case

EQUIVALENT CIRCUIT


VOLTAGE OFFSET NULL CIRCUIT (8007-4 and 8007-5 only)


TRANSIENT RESPONSE TEST CIRCUIT


8007M-2 AND 8007M-5
(Selected 8007s - Military Temp. Range)
ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Voltage between Offset Null and V	$\pm 0.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration	Indefinite

NOTES:

1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+75^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

For connections to $8007 \mathrm{M}-2$, see connection diagram for 8007C-2, page 3.

For connections to $8007 \mathrm{M}-5$, see connection diagram for 8007C-5, page 4.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)


ABSOLUTE MAXIMUM RATINGS	
Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Voltage between Offset Null and V	$\pm 0.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$
Output Short-Circuit Duration	Indefinite

NOTE:
For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

CONNECTION DIAGRAM


TOP VIEW
NOTE: Pin 4 connected to case


ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Internal Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Voltage between Offset Null and $\mathrm{V}^{-}$ Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 60 sec .)
Output Short-Circuit Duration

## NOTE:

For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

## CONNECTION DIAGRAM



TOP VIEW
NOTE: Pin 8 connected to case

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)


TYPICAL PERFORMANCE CURVES
OPEN LOOP VOLTAGE GAIN

AS A FUNCTION OF
FREQUENCY



OPEN LOOP VOLTAGE GAIN
AS A FUNCTION OF
SUPPLY VOLTAGE


QUIESCENT SUPPLY CURRENT
AS A FUNCTION OF TEMPERATURE


OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY


INPUT CURRENT AS A
FUNCTION OF TEMPERATURE


INPUT VOLTAGE RANGE AS
A FUNCTION OF SUPPLY VOLTAGE


INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY


VOLTAGE FOLLOWER LARGE-
SIGNAL PULSE RESPONSE


OUTPUT SWING AS A FUNCTION OF SUPPL:Y VOLTAGE


QUIESCENT SUPPLY CURRENT
AS A FUNCTION OF SUPPLY VOLTAGE


WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE


## ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	MAX. VOS (mV)	$\operatorname{MAX} . \Delta V_{\mathrm{OS}} / \Delta \mathrm{T}$ $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { MAX. Ib } \\ & (\mathrm{pAA}) \end{aligned}$	PACKAGE
ICL8007C-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	2	5	10	T0-99 Type
ICL8007M-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	2	15	10	T0-99 Type
ICL8007C-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	2	15	10	T0-99 Type
ICL8007C-3	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4	30	20	T0-99 Type
ICL8007C-4	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10	10	10	T0-99 Type
ICL8007M-5	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10	15	10	T0-99 Type
ICL8007C-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10	15	10	T0-99 Type

## PACKAGE DIMENSIONS



ICL8007M/AM/C/AC
FET Input
Operational Amplifier

## GENERAL DESCRIPTION

The Intersil 8007 integrated circuit is a low input current FET input operational amplifier. The 8007A is selected for 1 pA max input current.

The devices are designed for use in very high input impedance applications. Because of their high slew rate, high common mode voltage range and absence of "latch-up", they are ideal for use as a voltage follower.

The Intersil 8007 and 8007A are short circuit protected. They require no external components for frequency compensation because the internal $6 \mathrm{~dB} /$ roll-off insures stability in closed loop applications. A unique bootstrap circuit insures unusually good commonmode rejection for an FET input amp and prevents large input currents as seen in some amplifiers at high common mode voltage.

## EQUIVALENT CIRCUIT



ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Internal Power Dissipation (Note 1) 500 mW
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 2)
$\pm 15 \mathrm{~V}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range

> 8007M, 8007AM 8007C, 8007AC
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
Indefinite
Lead Temperature (Soldering, 10 sec.)
Output Short-Circuit Duration (Note 3)
NOTES:

1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+75^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

## TRANSIENT RESPONSE TEST CIRCUIT



## CONNECTION DIAGRAM


itOP VIEWI

## PACKAGE OUTLINE



NOTES: All dimensions in inches.
Leads are gold-plated Kovar.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	8007M			8007C			8007AM \& 8007AC			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
The following specifications apply for $T_{A}=25^{\circ} \mathrm{C}$ :											
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10	20		20	50		15	30	mV
Input Offset Current			0.5			0.5			0.2		pA
Input Current (either input)			2.0	20		3.0	50		0.5	1.0	pA
Input Resistance			$10^{6}$			$10^{6}$			$10^{6}$		$\mathrm{M} \Omega$
Input Capacitance			2.0			2.0			2.0		pF
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50,000			20,000			20,000			V/V
Output Resistance			75			75			75	'	$\Omega$
Output Short-Circuit Current			25			25		,	25		mA
Supply Current			3.4	5.2		3.4	6.0		3.4	6.0	mA
Power Consumption			102	156		102	180		102	180	mW
Slew Rate			6.0			6.0		2.5	6.0		$\mathrm{V} / \mathrm{\mu s}$
Unity Gain Bandwidth			1.0			1.0			1.0		MHz
Transient Response (Unity Gain) Risetime	$\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		300			300			300		ns
Overshoot			10			10			10		\%

The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (8007C and 8007AC), $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (8007M and 8007AM):


TYPICAL PERFORMANCE CURVES


## ICL8043M/C <br> Dual FET Input Operational Amplifier

## FEATURES

- Low Cost
- Two High Performance FET Input Amplifiers in One Package.
- Very Low Input Current - 1 pA
- High Slew Rate - $6 \mathrm{~V} / \mu \mathrm{sec}$
- Internal Frequency Compensation


## GENERAL DESCRIPTION

The 8043 is a dual monolithic FET input operational amplifier. The performance of each amplifier is similar to the Intersil 8007. It features exceptionally low input currents, high slew rate, and has excellent common mode rejection. The inputs and outputs are fully short circuit protected and there are no latch up problems. Offset nulling of each amplifier is accomplished using a potentiometer having its wiper connected to the positive supply voltage.


## OFFSET VOLTAGE NULL CIRCUIT



## EQUIVALENT CIRCUIT (One Side)



## ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Internal Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Voltage between Offset Null and $\mathrm{V}^{+}$
Storage Temperature Range
Operating Temperature Range
8043M
8043C
$\pm 18 \mathrm{~V}$
500 mW
$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$
$\pm 0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 60 sec .)
Output Short-Circuit Duration

## NOTES:

1. Rating applies for case temperatures to $125^{\circ} \mathrm{C}$; derate linearly at $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

CHARACTERISTICS	CONDITIONS	MIN.	$8043 M$   TYP.	MAX.	MIN.	8043C   TYP.	MAX.	UNITS

The following specifications apply for $T_{A}=25^{\circ} \mathrm{C}$ :

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega$	10	20	20	50	mV
Input Offset Current		0.5		0.5		pA
Input Current (either input)		2.0	20	3.0	50	pA
Input Resistance		$10^{6}$		$10^{6}$		$\mathrm{M} \Omega$
Input Capacitance		2.0		2.0		pF
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}= \pm 10 \mathrm{~V}$	50,000		20,000		V/V
Output Resistance		75		75		$\Omega$
Output Short-Circuit Current		25		25		mA
Supply Current (Total)		4.5	6	4.5	6.8	mA
Power Consumption		135	180	135	204	mW
Slew Rate		6.0		6.0		$\mathrm{V} / \mathrm{\mu s}$
Unity Gain Bandwidth		1.0		1.0		MHz
Transient Response (Unity Gain)	$C_{L}<100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$					
Risetime		300		300		ns
Overshoot		10		10		\% ${ }^{\text { }}$

The following specifications apply for $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ (8043C), $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$ (8043M):

Input Voltage Range		$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		V
Common Mode Rejection Ratio		70	90		70	90		dB
Supply Voltage Rejection Ratio			70	300		70	600	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain		25,000			15,000			V/V
Output Voltage Swing	$R_{L}>10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		V
	$R_{L}>2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		$\pm 10$	$\pm 13$		$v$
Input Offset Voltage			15	30		30	60	mV
Input Current (either input)	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		2.0	15				nA
	$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$					50	175	pA
Average Temperature Coefficient of Input Offset Voltage				75			75	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

## TYPICAL PERFORMANCE CURVES

OPEN LOOP VOLTAGE GAIN
AS A FUNCTION OF
FREQUENCY


## TRANSIENT RESPONSE



OPEN LOOP VOLTAGE GAIN
AS A FUNCTION OF
SUPPLY VOLTAGE


TOTAL QUIESCENT SUPPLY CÜRRENT AS A FUNCTION OF TEMPERATURE


OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY


INPUT CURRENT AS A
FUNCTION OF TEMPERATURE


INPUT VOLTAGE RANGE AS
A FUNCTION OF SUPPLY VOLTAGE


INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY


VOLTAGE FOLLOWER LARGE-
SIGNAL PULSE RESPONSE


OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE


QUIESCENT SUPPLY CURRENT
AS A FUNCTION OF SUPPLY
VOLTAGE


WIDEBAND NOISE AS A FUNCTION OF SOURCE RESISTANCE


## CHANNEL SEPARATION

Channel separation or crosstalk is measured using the circuit of Fig. 1. One amplifier is driven so that its output swings $\pm 10 \mathrm{~V}$; the signal amplitude seen in the other amplifier (referred to the input) is then measured. Typical performance is shown in Fig. 2.

$$
\text { Channel Separation }=20 \log \left(\frac{V_{\mathrm{OUT}(\mathrm{~A})}}{V_{\operatorname{IN}(B)}}\right)
$$



FIGURE 1


FIGURE 2

## ORDERING INFORMATION

TYPE	ORDER PART NUMBER	PACKAGE	TEMPERATURE RANGE
8043M	ICL 8043M DE	Hermetic 16 Pin DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
8043C	ICL 8043C PE	Plastic 16 Pin DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
8043C	ICL 8043C DE	Hermetic 16 Pin DIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

## PACKAGE OUTLINES

16 LEAD CERAMIC DIP



NOTE: Board drilling dimensions will equal standard practices for $\mathbf{.} 020$ diameter lead.

## COMMON FEATURES

(LF155A, LF156A, LF157A)

- Low input bias current	30 pA
- Low Input Offset Current	3 pA
- High input impedance	$1012 \Omega$
- Low input offset voltage	1 mV
- Low input offset voltage temperature drift	$3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High common-mode rejection ratio	100 dB
- Large dc voltage gain	106 dB

## UNCOMMON FEATURES

LF155A LF156A LF157A(AV=5) UNITS

0.01\%	4	1.5	1.5	$\mu \mathrm{s}$
- Fast slew rate	5	12	50	$\mathrm{V} / \mu_{\mathrm{s}}$
Wide gain bandwidth	2.5	5	20	MHz
- Low input				
noise voltage	20	12	12	$/ \sqrt{\mathrm{Hz}}$

## APPLICATIONS

- Precision high.speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers
- Logarithmic amplifiers
- Photocell amplifiers


## GENERAL DESCRIPTION

These monolithic JFET input operational amplifiers incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BIFET Technology). These amplifiers feature low input bias and offset currents, low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f.noise corner.

## ADVANTAGES

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance-very low $1 /$ f corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads ( $10,000 \mathrm{pF}$ ) without stability problems
- Internal compensation and large differential input voltage capability


## SIMPLIFIED SCHEMATIC



## CONNECTION DIAGRAM

## Metal Can Package

8 Pin Minidip



NOTE 4: PIN 4 CONNECTED TO CASE.
TOP VIEW

# LF1 55, LF255, LF355, LF156, LF256, LF356, LF157, LF257, LF357 

ABSOLUTE MAXIMUM RATINGS


DC ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL ${ }^{\text {" }}$	PARAMETER	CONDITIONS	LF155A/6A/7A			LF355A/6A/7A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   Over Temperature		1	$\begin{gathered} 2 \\ 2.5 \end{gathered}$		1	2 2.3	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		3	5		3	5	$m V$
$\Delta T C / \Delta V_{\text {OS }}$	Offset Voltage   Change in Average TC with $V_{\text {OS }}$ Adjust	$R_{S}=50 \Omega,(\text { Note } 4)$		0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$   per mV
IOS	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (Notes 3,5)		3	10		3	10	pA
	Input Bias Current	$\mathrm{Tj}_{j} \leqslant \mathrm{~T}_{\text {HIGH }}$			10			1	nA
${ }^{\prime} \mathrm{B}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, (Notes 3,5)		30	50		30	50	pA
		$\mathrm{T}_{J} \leqslant \mathrm{~T}_{\text {HIGH }}$			25			5	nA
$R_{I N}$$A V_{\mathrm{OL}}$	Input Resistance   Large Signal Voltage Gain	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		$10^{12}$			$10^{12}$		$\Omega$
		$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	200		50	200		$\mathrm{V} / \mathrm{mV}$
		$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$							
		Over Temperature	25			25			$\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{\mathrm{O}}$	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
$\mathrm{V}_{\mathrm{CM}}$	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		+15.1			+15.1		V
			$\pm 11$	-12		$\pm 11$	-12		V
CMRR	Common-Mode Rejection		85	100		85	100		dB
	Ratio								
PSRR	Supply Voltage Rejection	(Note 6)	85	100		85	100		dB
	Ratio $\because$								

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	LF155A/355A			LF156A/356A			LF157A/357A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
SR	Slew Rate	LF155A/6A: $A V=1$, LF157A: $A V=5$	3	5		10	12	.	40	50		$\mathrm{V} / \mu_{\mathrm{s}}$
GBW	Gain-Bandwidth Product			2.5		4	4.5		15	20	:	MHz
$t_{s}$	Settling Time to 0.01\%	(Note 7)		4			1.5			1.5		$\mu_{\text {s }}$
$\mathrm{e}_{\mathrm{n}}$	Equivalent Input Noise	$\mathrm{R}_{\mathrm{S}}=100 \Omega$									$\because$	
	Voltage	$\mathrm{f}=100 \mathrm{~Hz}$		25			15			15		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		$f=1000 \mathrm{~Hz}$		20			12			12		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
$i_{n}$	Equivalent Input	$\mathrm{f}=100 \mathrm{~Hz}$		0.01			0.01			0.01		pA/ $\sqrt{\mathrm{Hz}_{2}}$
	Noise Current	$f=1000 \mathrm{~Hz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{CIN}_{1}$	Input Capacitance			3			3			3		pF

LF1 55, LF255, LF355, LF1 56, LF256, LF356, LF157, LF257, LF357
INTMEPSUL
DC ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL	PARAMETER	CONDITIONS	LF155/6/7			LF255/6/7			LF355/6/7			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP ${ }^{\prime}$	MAX	
V	Inpuit Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$   Over Temperature $R_{S}=50 \Omega$		3	5		3	5		3	10	mV
					7			6.5			13	mV
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input			5			5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Offset Voltage											
$\triangle T C / \Delta V_{\text {OS }}$	Change in Average TC with $V_{\text {OS }}$ Adjust	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, (Note 4)		0.5			0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
					-							per mV
IOS	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (Notes 3,5)		3	20		3	20		3	50	pA
	Input Bias Current	$\mathrm{T}_{\mathrm{j}} \leqslant \mathrm{T}_{\mathrm{HIGH}}$			20	$\because$		1			2	nA
$I_{B}$		$\mathrm{T}_{\mathrm{J}}=22{ }^{\circ} \mathrm{C}$, (Notes 3,5)		30	100	-	30	100		30	200	pA
		$T_{J} \leqslant T_{H I G H}$			50			5			8	nA
RIN $A V_{O L}$	Input Resistance Large Signal Voltage Gain	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		$10^{12}$			$10^{12}$			$10^{12}$		$\Omega$
		$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50	200		50	200		25	200		$\mathrm{V} / \mathrm{mV}$
		$V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$										
		Over Temperature	25			25			15			$\mathrm{V} / \mathrm{mV}$
$\mathrm{V}_{0}$	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
$\overline{\mathrm{V}} \mathrm{CM}$	Input Common-Mode   Voltage Range   Common-Mode Rejection   Ratio   Supply Voltage Rejection   Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 11$	$\begin{gathered} +15.1 \\ -12 \end{gathered}$			+15.1			+15.1	.	V
						$\pm 11$	$-12$		$\pm 10$	-12		V
CMRRPSRR			85	100		85	100	.1	80	100		dB
		(Note 6)	85	100		85	100		80	100	$\cdot$	dB

DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$

PARAMETER	$\begin{gathered} \text { LF 155A/355A } \\ \text { LF155/255 } \\ \hline \end{gathered}$		LF355		LF156A/356ALF156/256		LF356		$\begin{gathered} \text { LF157A/357A } \\ \text { LF157/257 } \\ \hline \end{gathered}$		LF357		UNITS
	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	
Supply Current,	2	4	2	4	5	7	5	10	5	7	5.	10	mA

AC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

SYMBOL	PARAMETER	CONDITIONS	LF155/LF255/   LF355	LF156/LF256	LF156/LF256/   LF356	LF157/LF257	LF157/LF257/   LF357	UNITS
			TYP	MIN	TYP	MIN	TYP	
SR	Slew Rate	LF155/6: $A V=1$,   LF157: AV $=5$	5	7.5	$\bigcirc 12$	$\bigcirc 30$	50	$\mathrm{V} / \mu_{\mathrm{s}}$
GBW	Gain-Bandwidth		2.5		5		20	MHz
	Product							
$\mathrm{t}_{5}$.	Settling Time to 0.01\%	(Note 7)	4		1.5	$\therefore$.	1.5	$\mu \mathrm{s}$
$e_{n}$	Equivalent Input Noise	$\mathrm{R}_{\mathrm{S}}=100 \Omega$						
	Voltage	. $f=100 \mathrm{~Hz}$	25		15		15	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		$f=1000 \mathrm{~Hz}$	- 20		12		12	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in	Equivalent Input	$f=100 \mathrm{~Hz}$	0.01	$\therefore$	0.01		0.01	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Current Noise	$f=1000 \mathrm{~Hz}$	0.01	' .	0.01		0.01	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
CIN	Input Capacitance		3	$\therefore . . .$.	3	!	3	pF

LF155, LF255, LF355, LF1 56, LF256, LF356, LF157, LF257, LF357

## NOTES FOR ELECTRICAL CHARACTERISTICS

NOTE 1: The TO-99 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. NOTE 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage. NOTE 3: These specifications apply for $\pm 15 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V},-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{HIGH}}=+125^{\circ} \mathrm{C}$ unless otherwise stated for the LF155A/6A/7A and the LF155/6/7. For the LF255/6/7, these specifications apply for $\pm 15 \mathrm{~V} \leqslant \mathrm{~V}_{S} \leqslant \pm 20 \mathrm{~V},-25^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+85^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{HIGH}}=85^{\circ} \mathrm{C}$ unless otherwise stated. For the LF355A/6A/7A, these specifications apply for $\pm 15 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{HIGH}}=+70^{\circ} \mathrm{C}$, and for the LF355/6/7 these specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{OS}}{ }^{\circ} \mathrm{I}_{\mathrm{B}}$ and $\mathrm{I}_{\mathrm{OS}}$ are measured at $V_{C M}=0$.
NOTE 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount $10.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment. NOTE 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, $T_{J}$. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the
 thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
NOTE 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously; in accordance with common practice.
NOTE 7: Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF155/6. It is the time required for error voltage (the voltage at the inverting input pin on the amplifier) to settle to within $0.01 \%$ of its final value from the time a 10 V step input is applied to the inverter. For the LF157, $A_{V}=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega$ and the output step is 10 V (See Settling Time Test Circuit, page 9).

## TYPICAL DC PERFORMANCE CHARACTERISTICS

Curves are for LF155, LF156 and LF157 unless otherwise specified.


## TYPICAL DC PERFORMANCE CHARACTERISTICS (CON'T)



TYPICAL AC PERFORMANCE CHARACTERISTICS


LF155 Small Signal Puise Response,
$A_{V}=+1$


TIME (0.5 $\mu \mathrm{s} / \mathrm{DIV}$ )

LF155 Large Signal Pulse Response,
$A_{V}=+1$


LF156 Small Signal Pulse Response,
$A_{V}=+1$


TIME ( $0.5 \mu \mathrm{~s} / \mathrm{DIV}$ )

LF156 Large Signal Pulse Response,
$A_{V}=+1$


Normalized Slew Rate


LF157 Small Signal Pulse Response,
$A_{V}=+5$

time ( $0.1 \mu \mathrm{~s} / \mathrm{DIV}$ )

LF157 Large Signal Pulse Response,
$A V=+5$


TYPICAL AC PERFORMANCE CHARACTERISTICS (CON'T)


Bode Plot


Common-Mode Rejection
Ratio



Bode Plot



Power Supply Rejection
Ratio


TYPICAL AC PERFORMANCE CHARACTERISTICS (CON'T)


## DETAILED SCHEMATIC



PACKAGE DIMENSIONS


## APPLICATION HINTS

The LF155/6/7 series are op amps with JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltage. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the commonmode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in
polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

## TYPICAL CIRCUIT CONNECTIONS



- $\mathrm{V}_{\text {OS }}$ is adjusted with a 25 k potentiometer
- The potentiometer wiper is connected to $\mathrm{V}^{+}$
- For potentiometers with temperature coefficient of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less the additional drift with adjust is $\approx 0.5 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C} / \mathrm{m}$ of adjustment.
- Typical overall drift: $50 \mathrm{~V} /{ }^{\circ} \mathrm{C} \cong(0.5 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adj.)

Driving Capacitive Loads


Due to a unique output stage design these amplifiers have the ability to drive large capacitive loads and still maintain stability. $C_{L}$ MAX $\cong 0.01 \mu \mathrm{~F}$.
Overshoot $\leqslant 20 \%$.
Settling time $\left(\mathrm{t}_{\mathrm{s}}\right) \cong 5 \mu \mathrm{~s}$

LF157. A Large Power BW Amplifier


For distortion < 1\% and a $20 \mathrm{Vp-p} V_{\text {OUT }}$ swing power bandwidth is: 500 kHz .

Settling Time Test Circuit


- Settling time is tested with the LF155/6 connected as unity gain inverter and LF157 connected for $A V=-5$
- FET used to isolate the probe capacitance
- Output $=10 \mathrm{~V}$ step
* $A V=-5$ for LF157

Large Signal Inverter Output, VOUT (from Settling Time Circuit)


Low Drift Adjustable Voltage Reference


- $\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{T}= \pm 0.002 \% /{ }^{\circ} \mathrm{C}$
- All resistors and potentiometers should be wire-wound
- P1: drift adjust
- P2: Vout adjust
- Use LF155 for
- Low $1_{B}$
- Low drift
- Low supply current


## TYPICAL APPLICATIONS (CON'T)

Fast Logarithmic Converter

$R 2=15.7 k, R_{T}=1 k, 0.3 \% /{ }^{\circ} \mathrm{C}$ (for temperature compensation)

- Dynamic range: $100 \mu \mathrm{~A} \leqslant \mathrm{I}_{\mathrm{i}} \leqslant 1 \mathrm{~mA}$ (5 decades), $\left|\mathrm{V}_{\mathrm{O}}\right|=1 \mathrm{~V} /$ decade
- Transient response: $3 \mu$ s for $\Delta I_{i}=1$ decade
- C1, C2, R2, R3: added dynamic compensation
- $V_{\text {OS }}$ adjust the LF156 to minimize quiescent error
- $\mathrm{R}_{\mathrm{T}}:$ Tel Labs type $\mathrm{O} 81+0.3 \% /{ }^{\circ} \mathrm{C}$.



## TYPICAL APPLICATIONS (CON'T)

LF156 as an Output Amplifier in a Fast 8-Bit DAC


Wide BW Low Noise, Low Drift Amplifier


- Power BW: $\mathrm{f}_{\mathrm{MAX}}=\frac{\mathrm{S}_{\mathrm{r}}}{2_{\pi} V_{p}} \cong 240 \mathrm{kHz}$
- Parasitic input capacitance $\mathbf{C 1} \cong$ (3 pF for LF155, LF156, and LF157 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2C2 $\cong$ R1C1.

Isolating Large Capacitive Loads


- Overshoot 6\%
- $\mathrm{t}_{\mathrm{s}} \quad 10 \mu \mathrm{~s}$
- When driving large $C_{L}$ the $V_{\text {OUT }}$ slew rate determined by $C_{L}$ and IOUT MAX:
$\frac{\Delta V_{\text {OUT }}}{\Delta T}=\frac{I_{O . U T}}{C_{L}} \cong \frac{0.02}{0.5} \quad \mathrm{~V} / \mu \mathrm{s}=0.04 \mathrm{~V} / \mu \mathrm{s}$
(with $C_{L}$ shown)


## TYPICAL APPLICATIONS (CON'T)

Boosting the LF156 with a Current Amplifier


- IOUT MAX $\cong 150 \mathrm{~mA}$ (will drive $R_{L} \geqslant 100 \Omega$ )
$\frac{\Delta V_{\text {OUT }}}{\Delta T}=15 \mathrm{~V} / \mu \mathrm{sec}$ (with. $C_{L}$ shown)
- No additional phase shift added by the current amplifier

Low Drift Peak Detector


- By adding $D 1$ and $R_{f}, V_{D 1}=0$ during hold mode. Leakage of D2 provided by feedback path through $R_{f}$.
- Leakage of circuit is essentially $\mathrm{I}_{\mathrm{b}}$ (LF155, LF156) plus capacitor leakage of Cp .
- Diode D3 clamps $V_{\text {OUT }}(A 1)$ to $V_{I N}-V_{D 3}$ to improve speed and to limit reverse bias of D2.
- Maximum input frequency should be $\ll 1 / 2 \pi R_{f} C_{D 2}$ where $C_{D 2}$ is the shunt capacitance of D2.


## 3 Decades VCO


$f=\frac{V_{C}(R 8+R 7)}{\left[8 V_{P U R 8 R 1]}\right.}, 0 \leqslant V_{C} \leqslant 30 \mathrm{~V}, 10 \mathrm{~Hz} \leqslant f \leqslant 10 \mathrm{kHz}$
R1, R4 matched. Linearity $0.1 \%$ over 2 decades.

High Impedance, Low Drift Instrumentation Amplifier


- Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)
- Acquisition time, $\mathrm{T}_{\mathrm{A}}$, estimated by:
$T_{A} \cong\left[\frac{2 R_{O N}, V_{I N}, C_{h}}{S r}\right]^{1 / 2}$ provided that:
$V_{I N}<2 \pi S_{r} R_{\text {ON }} C_{h}$ and $T_{A}>\frac{V_{I N} C_{h}}{\text { IOUTMAX }} \quad, R_{\text {ON }}$ is of SW1

If inequality not satisfied: $T_{A} \cong \frac{V_{I N} C_{h}}{20 \mathrm{~mA}}$

- LF156 develops full $\mathrm{S}_{\mathrm{r}}$ output capability for $\mathrm{V}_{\text {IN }} \geq 1 \mathrm{~V}$
- Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2


## High Accuracy Sample and Hold



- By closing the loop through A2 the VOUT accuracy will be determined uniquely by $A 1$. No $V_{O S}$ adjust required for $A 2$.
- $T_{A}$ can be estimated by same considerations as previously but because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible.
- Overall system slower than fast sample and hold
- $\mathrm{R} 1, \mathrm{C}_{\mathrm{C}}$ : additional compensation
- Use LF156 for
- Fast settling time
- Low VOS

- By adding positive feedback (R2) Q increases to 40
- $f_{B P}=100 \mathrm{kHz}$
$\frac{V_{\text {OUT }}}{V_{\text {IN }}}=10 \sqrt{Q}$
- Clean layout recommended
- Response to a 1 Vp -p tone burst: $300 \mu \mathrm{~s}$



## DEFINITION OF TERMS

Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.

Input Offset Current: The difference in the currents into the two input terminals when the output is at zero. Input Bias Current: The average of the two input currents. Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.

Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Power Supply Rejection Ratio: The ratio of the change in input offset voltage to the change in power supply voltage producing it. The typical curves in this sheet show values for each supply independently changed. The electrical specification, however, is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
Settling Time: The time required for the error between input and output to settle to within a specified limit after an input is applied to the test circuit shown in typical applications.

# LH0042/LH0042C Operational Amplifiers/Buffers 

## FEATURES

- Low input offset voltage-100 microvolts-typ.
- High open loop gain-100 dB typ.
- Excellent slew rate-3.0 $\mathrm{V} / \mu \mathrm{s}$ typ.
- Internal $6 \mathrm{~dB} /$ octave frequency compensation
- Pin compatible with standard IC op amps (TO-5 package)


## GENERAL DESCRIPTION

The LH0042 is a FET input operational amplifier with very closely matched input characteristics, very high input impedance, and ultra-low input current, with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. Devices are internally compensated and
free of latch-up and unusual oscillation problems, and may be offset nulled with a single 10K trimpot with negligible effect in CMRR.

The LH0042 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0042C is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The LH0042 IC op amp is intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents and tightly matched input offsets. The LH0042 provides low cost high performance for such applications as electrometer and photocell amplification, pico-ammeters, and high input impedance buffers.

## CONNECTION DIAGRAM



## SCHEMATIC



## LH0042/LH0042C

## ABSOLUTE MAXIMUM RATINGS

Supply Vo	$\pm 22 \mathrm{~V}$
Power Dissipation (see graph)	500 mW
Input Voltage (Note 1)	V
Differential Input Voltage (Note 2)	OV
Voltage Between Offset Null and $\mathrm{V}^{-}$	. 5 V
Short Circuit Duration	Continuous
Operating Temperature Range	
LH0042	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0042C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10	$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

DC ELECTRICAL CHARACTERISTICS for LH0042/LH0042C
( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified).

	CONDITIONS	LIMITS		UNITS
PARAMETER		LH0042	LH0042C	
		MIN. TYP. MAX.	MIN. TYP. MAX.	
Input Offset Voltage	Rs $\leqslant 100 \mathrm{k} \Omega$	5.0 20	6.020	mV
Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega$	5	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time		7	10	$\mu \mathrm{V} /$ week
Input Offset Current	... ... .	1.5	210	pA.
Temperature Coefficient of Input Offset Current		Doubles every $10^{\circ} \mathrm{C}$	Doubles every $10^{\circ} \mathrm{C}$	
Offset Current Drift with Time	$\cdots$	0.1	0.1	pA/week
Input Bias Current		$10 \quad 25$	1550	pA
Temperature Coefficient of Input Bias Current		Doubles every $10^{\circ} \mathrm{C}$	Doubles every $10^{\circ} \mathrm{C}$	
Differential Input Resistance		$10^{12}$	$10^{12}$	$\Omega$
Common Mode Input Resistance		$10^{12}$	$10^{12}$,	$\Omega$
Input Capacitance		4.0	4.0	pF
Input Voltage Range		$\pm 12 \pm 13.5$	$\pm 12 \pm 13.5$	V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	7086	7080	dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 15 \mathrm{~V}$	70.86	$70 \quad 80$	dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	$50 \quad 150$	$25 \quad 100$	$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\pm 10 \pm 12.5$	$\pm 10 \quad \pm 12$	V
Output Current Swing	Vout $= \pm 10 \mathrm{~V}$	$\pm 10 \pm 15$	$\pm 10 \pm 15$	mA
Output Resistance		75	75	$\Omega$
Output Short Circuit Current		20	20	mA
Supply Current		2.5 : 3.5	2.84 .0	mA
Power Consumption		105	120	mW

AC ELECTRICAL CHARACTERISTICS For all amplifiers ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ )

PARAMETER	CONDITIONS	LIMITS						UNITS
		LH0042			LH0042C			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Slew Rate	Voltage Follower	1.5	3.0		1.0	3.0		$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	Voltage Follower		40			40		kHz
Small Signal Bandwidth			1.0			1.0		MHz
Rise Time			0.3	1.5		0.3	1.5	$\mu \mathrm{s}$
Overshoot			10	30		15	40	\%
Settling Time (0.1 \%)	$\Delta \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$		4.5			4.5		$\mu \mathrm{S}$
Overload Recovery			4.0			4.0		$\mu \mathrm{S}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{Rs}_{\mathrm{s}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=100 \mathrm{~Hz}$		55			55		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$\mathrm{Rs}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{kHz}$		30			30		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{BW}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{Rs}=10 \mathrm{k} \Omega$		12			12		$\mu \mathrm{Vrms}$
Input Noise Current	$B W=10 \mathrm{~Hz}$ to 10 kHz		<. 1			<. 1		pArms

Notes:

1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. Rating applies' for minimum source resistance of $10 \mathrm{k} \Omega$, for source resistances less than $10 \mathrm{k} \Omega$, maximum differential input voltage is $\pm 5 \mathrm{~V}$.
3. Unless otherwise specified, these specifications apply for $\pm 5 \mathrm{~V} \leqslant V_{S} \leqslant \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \pm 125^{\circ} \mathrm{C}$ for the LH0042 and $-25^{\circ} \mathrm{C}$ $\leqslant T_{A}+85^{\circ} \mathrm{C}$ for the LH0042C. Typical values are given for $T_{A}=25^{\circ} \mathrm{C}$.

AUXILIARY CIRCUITS (shown for TO-5 pin out)


OFFSET NULL


BOOSTING OUTPUT
DRIVE TO $\pm 100 \mathrm{~mA}$


NOTE: ALL DIODES ARE ULTRA LOW LEAKAGE
PROTECTING INPUTS FROM $\pm 150 \mathrm{~V}$ TRANSIENTS

## TYPICAL APPLICATIONS



## TYPICAL PERFORMANCE CHARACTERISTICS



[^18]
## TYPICAL PERFORMANCE CHARACTERISTICS (CON'T.)



FREQUENCY CHARACTERISTICS VS AMBIENT TEMPERATURE


OUTPUT RESISTANCE VS
FREQUENCY


FREQUENCY CHARACTERISTICS VS SUPPLY VOLTAGE


OPEN LOOP TRANSFER CHARACTERISTICS VS FREQUENCY


## FEATURES

- High input impedance. . . $1 \mathrm{M} \Omega$
- No frequency compensation required
- Short-circuit protection
- Offset voltage null capability
- Large common-mode and differential voltage ranges
- No latch up


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Voltage between Offset Null and V+	$\pm 0.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military ( 740 )	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Commercial ( 740 C )	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 seconds)	Indefinite

## ORDERING INFORMATION

TYPE	PART NO.
740	LM740T
740C	LM740CT
	$\mu A 740 T$
	$\mu A 740 C T$

## GENERAL DESCRIPTION

The 740 is a high performance monolithic FET-Input Operational Amplifier epitaxial process. It is intended for a wide range of analog applications where very high input impedance is required and features very low input offset current and very low input bias current. High slew rate, high common mode voltage range and absence of "latch up" make the 740 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in active filters, integrators, summing amplifiers, sample and holds, transducer amplifiers, and other general feedback applications. The 740 is short circuit protected and has the same pin configuration as the 741. operational amplifier. No external components for frequency compensation are required as the internal $6 \mathrm{~dB} /$ octave roll-off insures stability in closed loop applications.

## CONNEĊTION DIAGRAM



NOTE: Pin 4 Connécted to Case.

## EQUIVALENT CIRCUIT



740
ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER		- CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		$\mathrm{R}_{S} \leqslant 100 \mathrm{k} \Omega$	$\because$	10	20	mV
Input Offset Current (Note 4)				40	150	pA
Input Current (either input) (Note 4)				100	200	pA
Input Resistance				1		$\mathrm{M} \Omega$
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50,000	1		
Output Resistance				75		$\Omega$
Output Short-Circuit Current				20		mA'
Common Mode Rejection Ratio			64	80		dB
Supply Voltage Rejection Ratio				70	300	$\mu \mathrm{V} / \mathrm{V}$
Supply Current				4.2	5.2	mA
Power Consumption				126	156	mW
Slew Rate		,		6.0		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth		- .		3.0		MHz
Transient Response (Unity Gain)	Risetime	$C_{L} \leqslant 100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}$		110		ns
	Overshoot		$\cdots$	10	20	\%

The following specifications apply for $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ :

Input Voltage Range		$\pm 10$		$\pm 12$	V
Large Signal Voltage Gain		25,000			
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		$v$.
	$R_{L} \geqslant 2 k \Omega$	$\pm 10$	$\pm 13$		V
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 100 \mathrm{k} \Omega$		15	30	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		30		pA
	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		185		pA
urrent (either input)	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			200	pA
	$\mathrm{T}_{A}=+85^{\circ} \mathrm{C}$	.	2.5	4.0	$n A$

VOLTAGE OFFSET
NULL CIRCUIT
TRANSIENT RESPONSE TEST CIRCUIT




740C
ELECTRICAL CHARACTERISTICS (VS $= \pm 15 \mathrm{~V}, T_{C}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER		C... CONDITIONS	MIN	TYP	MAX	UNITS
Input Off set Voltage		$\mathrm{R}_{S} \leqslant 100 \mathrm{k} \Omega$		30	110	mV
Input Offset Current (Note 4)				60	300	pA
Input Current (either input) (Note 4)				0.1	2.0	nA
Input Resistance .				1		M $\Omega$
Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	20,000	1	-	
Output Resistance				75		$\Omega$
Output Short-Circuit Current				20		mA
Supply Current				4.2	8.0	mA
Power Consumption				126	240	mW
Slew Rate				6.0		$\mathrm{V} / \mathrm{\mu} \mathrm{~s}$
Unity Gain Bandwidth				1.0		MHz
Transient Response (Unity Gain)	Risetime	$\mathrm{C}_{\mathrm{L}} \leqslant 100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$		300		ns
	Overstioot			10	$\because$	\%

The following specifications apply for $\mathbf{0}^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+70^{\circ} \mathrm{C}$ :

Input Voltage Range		$\pm 10$	$\pm 12$		V
Common Mode Rejećtion Ratio		55	80		dB
Supply Voltage Rejection Ratio			70	500	$\mu \mathrm{~V} / \mathrm{V}$
Large Signal Voltage Gain			500,000		
Output Voltage Swing	$\mathrm{R} \geqslant 10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$		V
	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		V
Input Offset Voltage			30		mV
Input Offset Current			60	pA	
Input Current (either input)			1.1	10	nA

NOTE 1: Rating applies for ambient temperature to $+70^{\circ} \mathrm{C}$; derate linearly at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+70^{\circ} \mathrm{C}$.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.
NOTE 4: Typically doubles for every $10^{\circ} \mathrm{C}$ increase in ambient temperature.


OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY



OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY


## FEATURES

- 5pA input bias current
- Input and output protection
- Offset null capability
- Internally compensated
- $6 \mathrm{~V} / \mu$ sec slew rate
- Standard pinout
- 1MHz unity gain bandwidth


## PIN CONFIGURATION



## DESCRIPTION

The 536 is a special purpose high performance operational amplifier utilizing a FET input stage for extremely high input impedance and low input current.
The device features internal compensation, standard pinout, wide differential and common mode input voltage ranges, high slew rate and high output drive capability.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage .................................. $\pm 22 \mathrm{~V}$
Differential Input Voltage Range ................ $\pm 30 \mathrm{~V}$
Common Mode Input Voltage Range $\ldots \ldots . \ldots . . \pm \mathrm{V}_{\mathrm{s}}$
Power Dissipation ${ }^{1}$ 500 mW
Operating Temperature Range $\ldots \ldots . . .-55^{\circ}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range........ . $-65^{\circ}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Solder, 60 sec ) .............. $300^{\circ} \mathrm{C}$
Output Short Circuit Duration ${ }^{2}$................ indefinite

Notes:

1. Rating applies for case temperature to $+25^{\circ} \mathrm{C}$; derate linearly at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $75^{\circ} \mathrm{C}$.
2. Short circuit may be to ground or either supply. Rating applies to $+125^{\circ} \mathrm{C}$ case temperature or $+75^{\circ} \mathrm{C}$ ambient temperature.

DC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$, V SUPP $\pm 15 \mathrm{~V}$ unless otherwise specified. $1^{1}$

PARAMETER		TEST CONDITIONS	SU536			UNIT	
		MIN.	TYP.	MAX.			
Vos   $\Delta \mathrm{Vos} / \Delta \mathrm{T}$	Offset Voltage   Drift		$\begin{gathered} \mathrm{R}_{\mathrm{s}} \leqslant 10 \mathrm{k} \Omega \\ \text { Over Temp., Rs } \leqslant 10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{s}}=0 \Omega, \text { Over Temp. } \end{gathered}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	90	$\mathrm{mV}$ $\mathrm{mV}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Offset Current			5		pA	
IBIAS	Input Current ${ }^{2}$.			30	100	pA	
VCM CMRR	Common Mode Voltage Range Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{V}_{\mathbb{N}}= \pm 10 \mathrm{~V}$	$\begin{gathered} \pm 10 \\ 64 \\ \hline \end{gathered}$	$\begin{gathered} \pm 11 \\ 80 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~dB} \end{gathered}$	
RIN	Input Resistance			100		$\mathrm{M} \Omega$	
Vout	Output Voltage Swing	$R_{L} \geqslant 2 k \Omega$, Over Temp. RL $10 \mathrm{k} \Omega$, Over Temp.	$\begin{aligned} & \pm 10 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & \pm 11 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Icc	Supply Current	Vout $=$ OV		6.0	8.0	mA	
PSRR	Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \pm 6 \leqslant \mathrm{~V}_{\mathrm{s}} \pm 15$		100	300	$\mu \mathrm{V} / \mathrm{V}$	
Avol	Large Signal Voltage Gain	$\begin{gathered} \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} 2 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \text {, Over Temp. } \end{gathered}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$	
V SUPP	Power Supply Range		$\pm 6$	$\pm 18$		V	

Notes:

1. Input current typically doubles every $10^{\circ} \mathrm{C}$.

DC ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \pm 6 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant \pm 20 \mathrm{~V}$ unless otherwise specified. ${ }^{2}$

PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vos Offset Voltage ${ }^{2}$	$\begin{aligned} & \mathrm{Rs} \leqslant 10 \mathrm{k} \Omega \\ & \mathrm{Rs} \leqslant 10 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{Vos} / \Delta \mathrm{T}$ Drift	Rs $\leqslant 10 \mathrm{k} \Omega$		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los Offset Current			5		pA
IBIAS Input Current ${ }^{1,2}$			$\begin{gathered} 5 \\ 250 \end{gathered}$	$\begin{gathered} \hline 30 \\ 3000 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
VCM Common Mode Voltage Range CMRR . Common Mode Rejection Ratio	$\begin{gathered} V_{\text {SUPP }}= \pm 15 \mathrm{~V} \\ \mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V} \end{gathered}$	$\begin{gathered} \pm 10 \\ 70 \end{gathered}$	$\begin{gathered} \pm 11 \\ 80 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~dB} \end{aligned}$
RIN Input Resistance	$\cdots$		100		$\mathrm{M} \Omega$
Vout Output Voltage Swing?	$\begin{gathered} R_{L} \geq 2 k \Omega, V_{\text {SUPP }}= \pm 15 \mathrm{~V} \\ R_{L} \geq 10 k \Omega, V_{\text {SUPP }}= \pm 15 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 10 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I+ Supply Current	$\mathrm{V}_{\text {OUT }}=$ OV, V $\mathrm{V}_{\text {SUPP }}= \pm 20 \mathrm{~V}$		4.5	5.5	mA
PsRR Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		50	150	$\mu \mathrm{V} / \mathrm{V}$
Avol Large Signal Voltage Gain ${ }^{2}$	VSUPP $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	50			$\mathrm{V} / \mathrm{mV}$
VSupp Power Supply Range		$\pm 6$		$\pm 20$	V

Notes:

1. Input current typically doubles every $10^{\circ} \mathrm{C}$.
2. Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

## AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. ${ }^{1,2}$

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
CDIFF	Differential Capacitance		,	6		pF
$e_{n}$	Input Noise Voltage	$0.1 \mathrm{~Hz}-100 \mathrm{kHz}$		20		$\mu \mathrm{Vrms}$
$\mathrm{Z}_{0}$	Output Impedance	- .		100		$\Omega$
GBW	Unity Gain Frequency Full Power Bandwidth	$\begin{aligned} & \text { V SUPP }= \pm 15 \mathrm{~V} \\ & \text { V SUPP }= \pm 15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1 \\ 100 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{KHz} \end{aligned}$
SR	Slew Rate, Inverter Slew Rate, Follower	$\begin{aligned} & \text { VSUPP }= \pm 15 \mathrm{~V}, \mathrm{~A}=-1 \mathrm{~V} \\ & \text { VSUPP }= \pm 15 \mathrm{~V}, \mathrm{~A}=+1 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$

Notes:

1. Temperature range is $-55 \leqslant T_{A} \leqslant 85^{\circ} \mathrm{C}$
2. $\pm 6 \mathrm{~V} \leqslant \mathrm{~T}_{\mathrm{A}} \pm 20 \mathrm{~V}$

## TEST CIRCUITS



VOLTAGE FOLLOWER CIRCUIT


OFFSET NULL CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

LARGE SIGNAL VOLTAGE FOLLOWER PULSE RESPONSE


OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY


OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY



INPUT VOLTAGE NOISE AS A FUNCTION OF FREQUENCY


VOLTAGE FOLLOWER TRANSIENT RESPONSE


INPUT CURRENTS AS A FUNCTION OF AMBIENT TEMPERATURE


OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE


OUTPUT SHORT-CIRCUIT CURRENT
AS A FUNCTION OF AMBIENT TEMPERATURE


# HA2600, HA2605, HA2622, <br> HA2602, HA2620, HA2625 <br> High Impedance Operational Amplifiers 

## FEATURES

- Input Impedance - $500 \mathrm{M} \Omega$
- Offset Current - 1nA
- Bias Current - 1nA
- Gain Bandwidth Product -100 MHz
- High Gain - 150K
- Output Short Circuit Protection
- Meets MIL-STD-883


## GENERAL DESCRIPTION

The 2600 series of high impedance operational amplifiers are monolithic integrated circuits fabricated using dielectric isolation. These internally compensated amplifiers feature excellent input parameters, low input bias and wide bandwidth. They are ideally suited for general purpose use in instrumentation and signal processing applications.

2600 through 2605 are compensated for unity gain. 2620 through 2625 are intended for closed loop gains of 5 or greater and feature increased slew rated and gain-bandwidth products.

## CONNECTION DIAGRAMS, TOP VIEWS

TO-99


Case Connected to $V$ -

TO-91 Flat Pack


14 Pin CerDIP


EQUIVALENT CIRCUIT


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 22.5 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$
Differential Input Voltage	$\pm 12 \mathrm{~V}$
Peak. Output Current	300 mW
Internal Power Dissipation (Note 2)	$+300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.$)$	Full Short Circuit Protection
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(2600,2602)$
	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}(2605)$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified)

PARAMETER	CONDITIONS	2600			2602			2605			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$R_{S} \leqslant 10 k \Omega$		0.5	4		3	5		3	5	mV
Input Offset Current			1	10		5	25		5	25	nA
Input Bias Current			1	10		5	25		5	25	nA
Input Resistance		100	500		40	300		40	300		$M \Omega$
Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	100K	150K		80K	150K		80K	150K		V/V
Unity Gain Bandwidth	$\mathrm{V}_{\mathrm{O}}<90 \mathrm{mV}$		12			12			12		MHz
Full Power Bandwidth	$R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}-\mathrm{p}$	50	75		50	75		50	75		KHz
Rise Time (Note 3)	$R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$		30	60		30	60		30	60	ns
Overshoot (Note 4).	$R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$		25	40		25	50		25	50	\%
Slew Rate	$R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$	4	7		4	7		4	7		$\mathrm{V} / \mu \mathrm{s}$
Setting Time	$R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=25 \mathrm{~V}$		1.5	:		1.5			1.5		ns
(to $\pm 10 \mathrm{mV}$ of Final Value)											
Output Current	$V_{0}= \pm 10 \mathrm{~V}$	$\pm 15$	$\pm 22$		$\pm 10$	$\pm 18$		$\pm 10$	$\pm 18$		mA
Supply Current			3	3.7		3	4		3	4	mA

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		2	6			7 :			7	miv
Input Offset Current			5	30			60			40	nA
Input Bias Current			10	$\therefore 30$			60			40	nA
Offset Voltage Average Drift	$\mathrm{R}_{S} \leqslant 10 \mathrm{ks} 2$		5								$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	$V_{C M}= \pm 5 \mathrm{~V}$	80	100		74	100		74	100		dB
Common Mode Range		$\pm 11$			$\pm 11$			$\pm 11$			V
Supply Voltage Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 9 \mathrm{~V}$ To $\pm 15 \mathrm{~V}$	80.	$\bigcirc 90$		74	90		74	90		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	70k			60k			70k			V/V
Output Voltage Swing	$R_{L}=2 k \Omega$	$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		V

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO-91 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate TO-99 at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: $\mathrm{V}_{\mathrm{O}}=400 \mathrm{mV} \mathrm{V}_{\mathrm{p}} \mathrm{p}$
NOTE 4: $\mathrm{V}_{\mathrm{O}}=800 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$


## HA2600, HA2605, HA2622, HA2602, HA2620, HA2625

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Input Voltage. (Note 1)
Differential Input Voltage
Peak Output Current
Internal Power Dissipation (Note 2)
Lead Temperature (Soldering, 60 sec .)
Storage Temperature Range
Operating Temperature Range

$$
\begin{aligned}
& \pm 22.5 \mathrm{~V} \\
& \pm 15 \mathrm{~V} \\
& \pm 12 \mathrm{~V}
\end{aligned}
$$

Full Short Circuit Protection
300 mW $300^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(2620,2622)$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (2625)

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$, unless otherwise specified)

PARAMETER	CONDITIONS	2620			2622			2625			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage (Note 3)	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		0.5	4		3	5		3	5	mV
Input Offset Current			1	15		5	25		5	25	nA
Input Bias Current $\quad \therefore$	.		1	15		5	25		5	25	nA
Input Resistance		65	500		40	300		40	300		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	100K	150K		80K	150K		80K	150K		V/V
Gain Bandwidth (Notes 4 and 5)	$R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		100			100	:		100.		MHz
Full Power Bandwidth	$R_{L}=2 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}$ p-p	400	600		320	600		320	600		KHz
Rise Time ( Note 6)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		17	45		17	45		17	45	ns
Slew Rate (Note 6)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5.0 \mathrm{~V}$	$\pm 25$	$\pm 35$		$\pm 20$	$\pm 35$		$\pm 20$	$\pm 35$		$\mathrm{V} / \mu \mathrm{s}$
Output Current	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	$\pm 15$	$\pm 22$		$\pm 10$	$\pm 18$		$\pm 10$	$\pm 18$		mA
Supply Current			3	3.7		3	4		3	4	mA

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE

Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			6			7			7	mV
Input Offset Current			5	35		.	60			40	$n \mathrm{~A}$
Input Bias Current			10	35		.	60			40	nA
Common Mode Rejection Ratio	$V_{C M}= \pm 5 \mathrm{~V}$	80	100		74	100		74	100		dB
Common Mode Range		$\pm 11$			$\pm 11$			$\pm 11$			V
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {Supply }}= \pm 9 \mathrm{~V}$ To $\pm 15 \mathrm{~V}$	80	90		74	90		74	90		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	70k			60k			70k			V/V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		V

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO-91 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate TO-99 at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: May be externally adjusted to zero.
NOTE 4: $\mathrm{V}_{\mathrm{O}}<90 \mathrm{mV}$.
NOTE 5: 40dB gain.
NOTE 6: $A_{V}=5.0 \mathrm{~V}$.


## ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE TYPE	ORDER NUMBER.
HA2600	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 TO-91 Flat Pack 14 Pin CerDIP	$\begin{aligned} & \text { HA2-2600-2 } \\ & \text { HA9-2600-2 } \\ & \text { HA } 1-2600-2 \end{aligned}$
HA2602	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 TO-91 Flat Pack 14 Pin CerDIP	$\begin{aligned} & \text { HA2-2602-2 } \\ & \text { HA9-2602-2 } \\ & \text { HA1-2602-2 } \end{aligned}$
HA2605	$0^{\circ} \mathrm{C}$ to $+75{ }^{\circ} \mathrm{C}$	TO-99 TO-91 Flat Pack 14 Pin CerDIP	$\begin{aligned} & \text { HA2-2605-5 } \\ & \text { HA9-2605-5 } \\ & \text { HA 1-2605-5 } \end{aligned}$
HA2620	$-55^{\circ} \mathrm{C}$ to $+1.25{ }^{\circ} \mathrm{C}$	TO-99 TO-91 Flat Pack 14 Pin CerDIP	$\begin{aligned} & \text { HA2-2620-2 } \\ & \text { HA9-2620-2 } \\ & \text { HA } 1-2620-2 \end{aligned}$
HA2622	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 TO-91 Flat Pack 14 Pin CerDIP	$\begin{aligned} & \text { HA2-2622-2 } \\ & \text { HA9-2622-2 } \\ & \text { HA 1-2622-2 } \end{aligned}$
HA2625	$0^{\circ} \mathrm{C}$ to $+75{ }^{\circ} \mathrm{C}$	TO-99 TO-91 Flat Pack 14 Pin CerDIP	$\begin{aligned} & \text { HA2-2625-5 } \\ & \text { HA9-2625-5 } \\ & \text { HA1-2625-5 } \\ & \hline \end{aligned}$

*883B processing is available for these devices. Order -8 instead of $\mathbf{- 2}$.

## PACKAGE DIMENSIONS

## TO.91 Flat Pack



ALL DIMENSIONS ARE IN INCHES.
ALL DIMENSIONS $\pm .010$ UNLESS OTHERWISE SHOWN.


NOTES: All dimensions in inches.
Leads are gold-plated Kovar.

14-Pin CerDIP


# HA2607/2627 Wide Band Operational Amplifier Series 

## FEATURES

	- Wide gain-bandwidth	12	100	MHz
- High slew rate	7	35	$\mathrm{~V} / \mathrm{\mu} \mathrm{~S}$	
- Wide power bandwidth	75	600	KHz	

- High gain
$150 \mathrm{KV} / \mathrm{V}$
- High input impedance

500M $\Omega$

- Output short circuit protection


## DESCRIPTION

HA-2607/2627 bipolar operational amplifiers are high performance, epoxy-packaged monolithic IC's designed to deliver outstanding wideband AC performance. HA-2607 has a specified bandwidth of 12 MHz while HA-2627 has a typical gain-bandwidth of $100 \mathrm{MHz}!^{*} \mathrm{HA}-2607$ and HA-2627 also offer correspondingly high slew rates of $7 \mathrm{~V} / \mu$ Sec and $35 \mathrm{~V} / \mu \mathrm{Sec}$ respectively. These dynamic characteristics, coupled with $150,000 \mathrm{~V} / \mathrm{V}$ open-loop gain enables HA-2607/2627 to perform high-gain amplification of very fast, wideband signals.
The HA-2607 and HA-2627 op amps afford an economical means of designing high performance equipment for industrial and commercial use. These amplifiers are ideally suited to pulse amplification designs as well as high frequency (e.g. RF, video) applications. The frequency response of both amplifiers can be tailored to exact design requirements by means of an external bandwidth control capacitor.
*HA-2607/2627 are internally compensated-HA-2607 is stable for $A_{V} \geqslant 1,-H A-2627$, is stable for $A_{V} \geqslant 5$.

## PIN CONFIGURATION



## PACKAGE DIMENSIONS




ABSOLUTE MAXIMUM RATINGS

Voltage Between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$Terminals .......... 45.0V
Differential Input Voltage ....................... $\pm 12.0 \mathrm{~V}$
Peak Output Current ....... Full Short Circuit Protection Internal Power Dissipation (Note 10) . . . . . . . . . . 300mW Operating Temperature Range-

HA-2607/HA-2627 $\qquad$ $0^{\circ} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots-65^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+150^{\circ} \mathrm{C}$

NOTE:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+15 \mathrm{VDC}, \mathrm{V}^{-}=-15 \mathrm{VDC}$


Notes:

1. $R_{L}=2 K$
2. $\mathrm{V}_{\mathrm{o}}=+400 \mathrm{mV}$
3. $\mathrm{V}_{\mathrm{CM}}=+5.0 \mathrm{~V}$
4. For HA-2607, $A_{V}=1$; For HA-2627, $A_{v}=5$.
5. $\mathrm{V}_{\mathrm{O}}<90 \mathrm{mV}$
6. $V_{\mathrm{s}}=+9.0 \mathrm{~V}$ to +15 V
7. $\mathrm{V}_{\mathrm{O}}=+10 \mathrm{~V}$
8. Derate by $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$
9. $C_{L}=100 \mathrm{pF}$
10. 40 dB gain setting used to measure Gain-Band width for HA-2627
11. $\mathrm{V}_{\mathrm{L}}=+200 \mathrm{mV}$

# High Slew Rate Operational Amplifiers HA 2500/02/05/10/12/15/20/22/25 

## FEATURES

- Slew Rate - Up to $120 \mathrm{~V} / \mu \mathrm{s}$
- Settling Time - 200 ns to $0.1 \%$
- Bias Current - 100 nA
- Gain Bandwidth Product - 30 MHz
- Internal Frequency Compensation
- Radiation Hardened
- Meets MIL-STD-883


## GENERAL DESCRIPTION

The 2500 series of high slew rate operational amplifiers are monolithic integrated circuits fabricated using dielectric isolation and thin film resistors. . These internally compensated amplifiers feature excellent input parameters, high gain and wide bandwidth. They are ideally suited for $D / A$ and $A / D$ converter circuits, pulse amplifiers and high frequency buffer amplifiers.

2500 through 2515 are compensated for unity gain. 2520 through 2525 are intended for closed loop gains of 3 or greater, and feature increased slew rates and gain-bandwidth products.


## ABSOLUTE MAXIMUM RATINGS



ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$ unless otherwise specified)

	CONDITIONS	2500			2502			2505			UNITS
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		2	5		4	8		4	8	mV
Input Offset Current			10	25		20	50		20	50	nA
Input Resistance		25	50		20	50		20	50		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	20k	30k		15k	25k		15k	25k		V/V
Gain Bandwidth	$\mathrm{A}_{\mathrm{V}}>10$		12			12			12		MHz
Full Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp} \cdot \mathrm{p}$	350	500		300	500		300	500		kHz
Rise Time (Notes 3,4)	$R_{L}=2 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$	.	25	50	$\because$	25	50		25	50	ns
Overshoot (Notes 3,4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	!	25	40		25	50		25	50	\%
Slew Rate (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$	$\pm 25$.	$\pm 30$		$\pm 20$	$\pm 30$		$\pm 20$	$\pm 30$		$\mathrm{V} / \mu_{\mathrm{s}}$
Settling Time (to 0.1\% of Final Value) (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$		330.	.		330			330		ns
Output Current	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	$\pm 10$			$\pm 10$			$\pm 10$			mA
Supply Current			4	6		4	6		4	6	mA

the following specifications apply for operating temperature range

- Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			8			10			10	mV
Input Offset Current	-			50			100			100	nA
Input Bias Current	$\begin{aligned} & +25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	nA   nA   nA   nA
Offset Voltage Average Drift	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		20			20			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Current Average Drift	R		0.1			0.1			0.1		$n A /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB
Common Mode Range		$\pm 10$			$\pm 10$			$\pm 10$			V
Supply Voltage Rejection Ratio	$\Delta V= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB'
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	7.5k			5 k			10k			$\mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		V

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO-86 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate TO-99 at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: $A_{V}=1$.
NOTE 4: $\mathrm{V}_{\mathrm{O}}=400 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.


NOTE: Measured on both positive and negative transitions.

ABSOLUTE MAXIMUM RATINGS


ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

	CONDITIONS	2510			2512			2515			UNITS
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		4	8		5	10		5	10	mV .
Input Offset Current			10	25		20	50		20.	50	nA
Input Resistance		50	100		40	100		40	100.		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	10k	15k		7.5k	15k		7.5k	15k		$\mathrm{V} / \mathrm{V}$
Gain Bandwidth	$\mathrm{A}_{\mathrm{V}}>10$		12			12			12		MHz
Full Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}$	750	1000		600.	1000		600	1000		kHz
Rise Time (Notes 3,4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	50		25	50		25	50	ns
Overshoot (Notes 3,4).	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		25	40	$\ldots$	25	50		25	50	\%
Slew Rate (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$	$\pm 50$	$\pm 65$		$\pm 40$	$\pm 60$		$\pm 40$	$\pm 60$		$\mathrm{V} / \mu \mathrm{s}$
Settling Time (to 0.1\% of Final Value) (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$		250		*	250			250		ns
Output Current	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	$\pm 10$			$\pm 10$			$\pm 10$			mA
Supply Current			4	6		4	6		4	6	

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE

Input.Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$			11			14			14	mV
Input Offset Current				50			100			100	nA
Input Bias Current	$\begin{aligned} & +25^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \\ & \hline \end{aligned}$	nA   nA   nA   nA
Offset Voltage Average Drift	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		20			30			30		$\mu \vee /{ }^{\circ} \mathrm{C}$
Offset Current Average Drift			0.1			0.1			0.1		$n A /{ }^{\circ} \mathrm{C}$
Common Mode Rejection Ratio	$V_{C M}= \pm 5 \mathrm{~V}$	80	90		74.	90		74	90 :		dB
Common Mode Range :		$\pm 10$			$\pm 10$			$\pm 10$			V
Supply Voltage Rejection Ratio	$\Delta \mathrm{V}= \pm 5 \mathrm{~V}$	80	90		74	90		74	90		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	7.5k			5k			5 k			V/V
Output Voltage Swing.	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		$\pm 10$	$\pm 12$		V

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO-86 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate $\mathrm{TO}-99$ at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: $A_{V}=1$.
NOTE 4: $\mathrm{V}_{\mathrm{O}}=400 \mathrm{~m} \mathrm{~V}_{\mathrm{p}=\mathrm{p}}$.


NOTE: Measured on both positive and negative transitions.

## ABSOLUTE MAXIMUM RATINGS



ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified)

PARAMETER	CONDITIONS	2520			2522			2525			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$		4	8		5	10		5	10	$\mathrm{mV}^{\prime}$
Input Offset Current			10	25		20	50		20	50	nA
Input Resistance	- .	50	100		40	100		40	100		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	10k.	15k		7.5k	15k		7.5k	15k		V/V
Gain Bandwidth	$A_{V}>10$		30			30			30		MHz
Full Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}$-p	1500	2000		1200	1600		1200	1600		kHz
Rise Time (Notes 3,4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		15	50		15	50		15	50	ns
Overshoot (Notės 3,4).	$R_{L}=2 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$		25	40		25	50		25	50	\%
Slew Rate (Note 3)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \cdot \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$	$\pm 100$	$\pm 120$	.	$\pm 80$	$\pm 120$		$\pm 80$	$\pm 120$		$\mathrm{V} / \mu_{\mathrm{s}}$
$\begin{aligned} & \hline \text { Settling Time (to } 0.1 \% \\ & \text { of Final Value) (Note } 3 \text { ) } \\ & \hline \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$		200	$\vdots$		200			200		ns
Output Current	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	$\pm 10$			$\pm 10$			$\pm 10$			mA
Supply Current	- '		4	6		4	6		4	6	mA

THE FOLLOWING SPECIFICATIONS APPLY FOR OPERATING TEMPERATURE RANGE


NOTE 1: For supply voltage less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Derate TO-86 at $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $84^{\circ} \mathrm{C}$; derate. TO-99 at $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
NOTE 3: $A V=3$.
NOTE 4: $\mathrm{V}_{\mathrm{O}}=600 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.


NOTE: Measured on both positive and negative transitions.

SCHEMATIC DIAGRAM


OFFSET

## PHYSICAL DIMENSIONS

TO-99 Package


NOTE: All dimensions in inches. Leads are gold plated Kovar.


HA2507/2517/2527 High Slew Rate Operational Amplifier Series

FEATURES

- High Slew Rate	30	60	120	$\mathrm{V} / \mu \mathrm{s}$
- Fast Settling	330	250	200	ns
- Wide Power Bandwidth	0.5	1.0	1.6	MHz
- High Gain Bandwidth	12	12	20	MHz
- High Input Impedance	50	100	100	M $\Omega$

## DESCRIPTION

HA2507/2517/2527 operational amplifiers are a series of high-performance, epoxy-packaged monolithic IC's designed to deliver excellent slew rate, bandwidth and settling time specifications. Typical slew rate specifications for HA2507, HA2517 and HA2527 are $30 \mathrm{~V} / \mu \mathrm{sec}$, $60 \mathrm{~V} / \mu \mathrm{sec}$ and $120 \mathrm{~V} / \mu \mathrm{sec}$ respectively. Corresponding settling times ( 10 V step to $0.1 \%$ ) are 330 ns , 250 ns and 200ns for HA2507, HA2517 and HA2527 respectively. Bandwidths range from 12 MHz to 20 MHz . HA2507/ 2517/2527 are internally compensated; HA2507 and HA2517 are stable for closed loop gains ( $\mathrm{A}_{v}$ ) greater than or equal to unity. HA2527 is stable for $A_{V}>3$.
This series of op amps affords an economical means of designing high performance equipment for industrial and commercial use. Their slew rate and settling time performance makes them ideally suited for high speed $D / A$, A/D and pulse amplification designs. The wide bandwidth offered by these devices also makes them valuable components in RF and video applications. HA2507/2517/2527 also deliver offset current, bias current and offset voltage specifications compatible with the requirements of accurate signal conditioning systems.


SCHEMATIC


ABSOLUTE MAXIMUM RATINGS

Voltage Between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$Terminals .......... 40.0V
Differential Input Voltage ........................ $\pm 15.0 \mathrm{~V}$
Peak Output Current .............................. 50mA
Internal Power Dissipation ....................... . . 300mW
Operating Temperature Range-
HA-2507/HA-2517/HA-2527 ..... $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}$
Storage Temperature Range .. $-65^{\circ} \leqslant T_{A} \leqslant+150^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=+15 \mathrm{~V}$ D.C., $\mathrm{V}^{-}=-15 \mathrm{~V}$ D.C.

PARAMETER	TEMP.	$\begin{gathered} \text { HA-2507 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2517 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \text { LIMITS } \\ \hline \end{gathered}$			$\begin{gathered} \text { HA-2527 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \text { LIMITS } \\ \hline \end{gathered}$			UNITS
		LIMITS									
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS											
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		5	10 14	- •	5	10 14		5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\mathrm{mV}$ $\mathrm{mV}$
Offset Voltage Average Drift	Full		25			30			30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \mathrm{nA} \end{aligned}$
Offset Current	$+\underset{\text { Full }}{25^{\circ} \mathrm{C}}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$		20	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance	$+25^{\circ} \mathrm{C}$	20	50		40	100	;	40	100		$\mathrm{M} \Omega$
Common Mode Range	Full	$\pm 10.0$			$\pm 10.0$			$\pm 10.0$			V
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 1, 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 15 K \\ & 10 K \end{aligned}$	25K		$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	15K		$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	15K		$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Common Mode Rejection Ratio (Note 2)	Full	74	90		74	90		74	90		dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$		12			12			20		MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 1)	Full	$\pm 10.0$	$\pm 12.0$		$\pm 10.0$	$\pm 12.0$		$\pm 10.0$	$\pm 12.0$		V
Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	$\pm 10$	$\pm 20$		$\pm 10$	$\pm 20$		$\pm 10$	$\pm 20$		mA
Full Power Bandwidth (Note 4)	$+25^{\circ} \mathrm{C}$	220	500		450	1000		750	1600		kHz
TRANSIENT RESPONSE											
Rise Times (Notes 1, 5, 6 \& 8)	$+25^{\circ} \mathrm{C}$		25	50		25	50		25	50	ns
Overshoot (Notes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$		25	50		25	50		25	50	\%
Slew Rate (Notes 1, 4, 5 \& 8)	$+25^{\circ} \mathrm{C}$	$\pm 15$	$\pm 30$		$\pm 30$	$\pm 60$		$\pm 60$	$\pm 120$		$\mathrm{V} / \mathrm{Lis}$
Settling Time to 0.1\% (Notes 1, 4, 5 \& 8)	$+25^{\circ} \mathrm{C}$		0.33			0.25			0.20		$\mu \mathrm{S}$
POWER SUPPLY CHARACTERISTICS											
Supply Current	$+25^{\circ} \mathrm{C}$		4	6		4	6		4	6	mA
Power Supply Rejection Ratio (Note 9)	Full	74	90		74	90		74	90		dB

Notes:

1. $R_{\mathrm{L}}=2 \mathrm{~K}$
2. $\mathrm{V}_{\mathrm{CM}}=+5.0 \mathrm{~V}$
3. $A v>10$
4. $\mathrm{V}_{\mathrm{O}}=+10.0 \mathrm{~V}$
5. $C_{L}=50 \mathrm{pF}$
6. $\mathrm{V}_{\mathrm{O}}=+400 \mathrm{mV}$ for HA-2507 and HA-2517; $\mathrm{V}_{\mathrm{O}}=+200 \mathrm{mV}$ for HA-2527
7. $V_{0}=+600 \mathrm{mV}$
8. For $H A-2507$ and $H A-2517, A_{v}=1$; For HA-2527, $A_{v}=3$
9. $\Delta V=+5.0 \mathrm{~V}$

## FEATURES

- 130 V/ $\mu \mathrm{s}$ Slew Rate
- Fast Settling Time
- 50 nA Input Current
- 10 MHz Bandwidth
- Simple Frequency Compensation
- Short Circuit Protection


## GENERAL DESCRIPTION

The Intersil 8017 integrated circuit is a high speed inverting amplifier combining excellent input characteristics with wide bandwidth and high slew rate. Frequency compensation is achieved with the minimum number of external components. The high slew rate and fast settling time ensure exceptional performance in high speed data acquisition circuits. Full power bandwidth of 2 MHz makes the 8017 amplifier suitable for all applications where large amplitude, high frequency signals are encountered.

The 8017 is available in the military version, 8017 M , with a temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and in the commercial version, 8017 C , from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## SCHEMATIC DIAGRAM



## ORDERING INFORMATION

## APPLICATIONS

- High Speed Inverting Amplifier
- D/A Converter
- A/D Converter
- Pulse Amplifier
- Active Filter
- Sample and Hold Circuit
- Peak Detector


## VOLTAGE OFFSET NULL CIRCUIT




## PACKAGE DIMENSIONS

TO-100


NOTE: Pin 5 connected to case.

## CL 8017

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Operating Temperature Range	
ICL8017M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICL8017C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (60 secs)	$300^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS $\left(V_{S}= \pm 15 \mathrm{~V}\right)$

PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { 8017M } \\ \text { TYP } \end{gathered}$	MAX	MIN	$\begin{aligned} & \text { 8017C } \\ & \text { TYP } \end{aligned}$	MAX	UNITS
The following specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ :								
Input Offset Voltage			2.0	5.0		2.0	7.0	mV
Input Current			50	200		50	200	nA
Input Noise Voltage (rms)	10 Hz to 1 MHz		20			20		$\mu \mathrm{V}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	1000		25	1000		$\mathrm{V} / \mathrm{mV}$.
Output Resistance :			75			75		$\Omega$
Output Short-Circuit Current			25			25		mA
Supply Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		5.0	7.0		5.0	8.0	mA
Power Consumption	$V_{\text {OUT }}=0 \mathrm{~V}$		150	210		150	240	mW
Slew Rate	$\mathrm{R}_{\text {BW }}=20 \mathrm{k} \Omega$		130			130		$\mathrm{V} / \mathrm{\mu s}$
Unity Gain Bandwidth (Note 3)	$\mathrm{R}_{\mathrm{BW}}=20 \mathrm{k} \Omega$		10			10		MHz
Transient Response (Note 3)	Unity Gain, $\mathrm{R}_{\mathrm{BW}}=20 \mathrm{k} \Omega$							
Risetime			30			30		ns
Overshoot			5			5		\%
Settling Time (0.1\%) (Note 3)			- 1.0			1.0		$\mu \mathrm{s}$
(.01\%) (Note 3)	Unity Gain, $\mathrm{R}_{\mathrm{BW}}=20 \mathrm{k} \Omega$		3.5			3.5		$\mu \mathrm{s}$

The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}(8017 \mathrm{C}),-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (8017M):

Input Offset Voltage			6.0		7.5	mV
Input Current			500		500	nA
Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$		10			$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ}{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{C} \end{aligned}$
Large Signal Voltage Gain		15		15		$\mathrm{V} / \mathrm{mV}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\pm 10$		$\pm 10$		V
Supply Voltage Rejejction Ratio			300		300	$\mu \mathrm{V} / \mathrm{V}$
Supply Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		9.0		9.0	mA

NOTE 1: The maximum junction temperature of the 8017 M is $150^{\circ} \mathrm{C}$, while that of the 8017 C is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures the package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. Above $100^{\circ} \mathrm{C}$ it may be necessary to use a heatsink with the 8017 M to avoid exceeding the maximum chip temperature.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Circuit and compensation as in Figure 1.

TYPICAL PERFORMANCE CURVES*


## DEFINITION OF TERMS

Input Offset Voltage: Voltage which must be applied to input terminal to obtain zero output voltage.
Input Current: Current into input terminal when at ground potential.
Large Signal Voltage Gain: The ratio of maximum output swing with load to the required change in input drive voltage.
Slew Rate: The maximum rate of change of output voltage in response to a large amplitude input pulse.

Unity Gain Bandwidth: The frequency at which the small signal gain is 3 dB below its low frequency value.

Transient Response: The $10 \%$ to $90 \%$ closed loop stepfunction response of the amplifier under small signal conditions.

Settling Time: The elapsed time between the application of a fast input pulse and the time at which the output has settled to its final value within a specified limit of accuracy.

## APPLICATIONS INFORMATION

Figure 1. Inverting Voltage Amplifier


GAIN	R $_{\mathbf{S}}$	$R_{\mathbf{f}}$	R $_{\text {Bw }}$	BAND.   WIDTH	SLEW   RATE
$1 \times$   $10 x$   100 x	$10 \mathrm{k} \Omega$   $10 \mathrm{k} \Omega$   $1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$   $100 \mathrm{k} \Omega$   $100 \mathrm{k} \Omega$	$20 \mathrm{kR} \Omega$   $2 \mathrm{k} \Omega$   short	10 MHz   6 MHz   800 kHz	$130 \mathrm{~V} / \mu \mathrm{s}$   $100 \mathrm{~V} / \mu \mathrm{s}$   $50 \mathrm{~V} / \mu \mathrm{s}$

NOTE: If no bandwidth control resistor ( $R_{B W}$ ) is connected between pins 3 and 4, the amplifier is unconditionally stable for normal feedback configurations. Some improvement in frequency performance can be realized by setting $\mathbf{R}_{B W}=20 \mathrm{k} \Omega$; the amplifier will still be unconditionally stable. However, for optimum frequency response, $R_{B W}$ should be selected from the curve on page 3, based on the closed loop gain of the circuit. Additional control of the bandwidth/stability trade-off is possible by bypassing $R_{f}$ with a low value capacitor. It is not necessary to alter the value of $C_{1}, C_{2}$ or $C_{3}$.

Figure 2. Current Summing Amplifier


NOTE: The analog output current of the 8018 Series D/A current switches can be converted to voltage using the 8017 as shown. Input compensation of approximately $10 \mathrm{k} \Omega$ and 30 pF helps improve settling time.

Figure 3. Settling Time Measurement


NOTE: Settling time is measured by creating a dummy summing junction and observing the error voltage waveform on a scope. The junction is clamped with high speed diodes to avoid overdriving the scope preamp.

Figure 4. Isolation of Capacitive Loads

-NOTE: Excess phase shift caused by heavy capacitive loading (above 200 to $\mathbf{3 0 0} \mathrm{pF}$ ) can cause stability problems. By providing the amplifier with a minimum real load impedance ( $51 \Omega$ ), these difficulties can be overcome. Note that at high output currents, maximum voltage swing will be reduced.

## FEATURES

- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply operation
- $3 n A$ input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programable electrical characteristics
- Offset Voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection


## GENERAL DESCRIPTION

The 4250 and 4250 C are extremely versatile programable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product.
The 4250 C is identical to the 4250 except that the 4250 C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range instead of the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range of the 4250.


## SCHEMATIC DIAGRAM



ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
ISET Current	$150 \mu \mathrm{~A}$


Output Short Circuit Duration	Indefinite
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 125^{\circ} \mathrm{C}$
4250	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$
4250 C	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $4250\left(-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}\right.$ unless otherwise specified)


ELECTRICAL CHARACTERISTICS $4250 \mathrm{C}\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right.$ unless otherwise specified)


## FEATURES

- Wide operating voltage range $\pm 0.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- Single Ni-cad battery operation
- High input impedance - $10^{12} \Omega$
- Programmable power consumption - as low as $10 \mu \mathrm{~W}$
- Input current lower than BIFETs - typ 1pA
- Available as singles, duals, triples, and quads
- Input voltage swing ranges to within millivolts of $\mathrm{V}^{-}$to $\mathrm{V}^{+}$
- Low power replacement for many standard op amps
- Compensated and uncompensated versions


## APPLICATIONS

- Portable instruments - Meter amplifiers
- Telephone headsets - Medical instruments
- Hearing aid/microphone - High impedance buffers amplifiers

A number of special options are available. They include:

- Single, dual, triple, and quad configurations
- Internally compensated and uncompensated versions
- Inputs protected to $\pm 200 \mathrm{~V}$ (ICL7613/15)
- Input common mode voltage range greater than supply rails (ICL7612)
Note: See page 2 for table of options.



## ICL761X/762X/763X/764X

## Preliminary

NNIER ${ }^{5}$

## GENERAL DESCRIPTION

The ICL761X/762X/763X/764X series is a family of monolithic CMOS op amps, fabricated using Intersils' proven MAXCMOS ${ }^{\text {T" }}$ process. These amplifiers provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power drain are essential.
The basic amplifier will operate at supply voltages ranging from $\pm 0.5$ to $\pm 8 \mathrm{~V}$, and may be operated from a single Ni-Cad battery.
A unique quiescent current programming pin allows setting of standby current to $1 \mathrm{~mA}, 100 \mu \mathrm{~A}$, or $10 \mu \mathrm{~A}$, with no external components. This results in power drain as low as $10 \mu \mathrm{~W}$. Output swings range to within a few millivolts of the supply voltages.

Of particular significance is the extremely low (1 pA) input current, input noise current of $.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and $1012 \Omega$ input impedance. These features optimize performance in very high source impedance applications.
The inputs are internally protected and require no special handling procedures. Outputs are fully protected against shorts to ground or to either supply.
AC performance is excellent, with a slew rate of $1.6 \mathrm{~V} / \mu \mathrm{s}$, and unity gain bandwidth of 1 MHz at $\mathrm{I}_{\mathrm{Q}}=$ 1 mA .
Because of the low power dissipation, operating temperatures and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

## SELECTION GUIDE

## BASIC TYPE



EXTERNAL OFFSET IQSETTING
NULL CAPABILITY
$\mathbf{Y}=\mathrm{YES}$
$\mathbf{N}=\mathbf{N O}$
$L=10 \mu \mathrm{~A}$ FIXED
$M=100 \mu \mathrm{~A}$ FIXED
$H=1 \mathrm{~mA} \cdot \operatorname{FIXED}$
$P=P R O G R A M M A B L E$

ORDERING INFORMATION ${ }^{[2]}$

TEMP. RANGE
$\mathrm{C}=0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$
$M=-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$

## PACKAGE CODE

TY - TO-99, 8 PIN, PIN 4 CONNECTED TO CASE
PA - PLASTIC 8 PIN MINIDIP
PD - 14 PIN PLASTIC

NOTES: 1. Duals and quads are available in 14 pin DIP packages, triples in 16 pin only.
2. Ordering code must consist of basic device and order suffix, e.g., ICL7611BCPA
3. ICL 7632 is not compensatable. Recommended for use in high gain circuits only.


CONNECTION DIAGRAMS

DEVICE	DESCRIPTION	PIN ASSIGNMENTS
iCL7611XCPA ICL7611XCTY ICL7611XMTY ICL7612XCPA ICL7612XCTY ICL7612XMTY ICL7613XCPA ICL7613XCTY ICL7613XMTY	Internal compensation, plus external offset null capability and external $\mathrm{I}_{\mathrm{Q}}$ control.	TO. 99 (TOP VIEW)   8 PIN DIP (TOP VIEW)
ICL7614XCPA ICL7614XCTY ICL7614XMTY ICL7615XCPA ICL7615XCTY ICL7615XMTY	Fixed $I_{Q}(100 \mu A)$, external. compensation, and internal offset null capability.	TO.99 (TOP VIEW)   8 PIN DIP (TOP VIEW)
ICL7621XCPA ICL7621XCTY ICL7621XMTY	Dual op amps with internal compensation; 1 Q fixed at $100 \mu \mathrm{~A}$   Pin compatible with   Texas Inst. TL082   Motorola MC1458   Raytheon RC4558	TO-99 (TOP VIEW)   8 PIN DIP (TOP VIEW)
ICL7622XCPD	Dual op amps with internal compensation; $I_{Q}$ fixed at $100 \mu \mathrm{~A}$   Pin compatible with   Texas Inst. TL083   Fairchild $\mu$ A747.	14 PIN DIP (TOP VIEW)   Note: Pins 9 and 13 are internally connected.


CONNECTION DIAGRAMS (Cont.)

device	description	PIN ASSIGNMENTS
ICL7631XCPE   ICL7632XCPE	Triple op amps with internal compensation (ICL7631) and no compensation (ICL7632). Adjustable ${ }^{1} \mathbf{a}$ Same pin configuration as ICL8023.	16 PIN DIP (TOP VIEW)   Note: Pins 5 and 15 are internally connected.
ICL7641XCPD ICL7642XCPD	Quad op amps with internal compensation.   ${ }^{1} \mathrm{Q}$ fixed at 1 mA (ICL 7641)   $I_{Q}$ fixed at $10 \mu \mathrm{~A}$ (ICL7642)   Pin compatible with   Texas Instr. TLO84   National LM324   Harris HA4741	14 PIN DIP (TOP VIEW)

## GENERAL INFORMATION

## STATIC PROTECTION

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

## LATCHUP AVOIDANCE

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4 -layer ( $p-n-p-n$ ) structure. The 4-layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails may be applied to any pin. (An exception to this rule concerns the inputs of the ICL7613 and ICL7615, which are protected to $\pm 200 \mathrm{~V}$.) In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2 mA to prevent latchup.

## CHOOSING THE PROPER IQ

Each device in the ICL76XX family has a similar lo set-up scheme, which allows the amplifier to be set to nominal quiescent currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ or 1 mA .

These current settings change only very slightly over the entire supply voltage range. The ICL7611/12/13 and ICL7631/32 have an external lQ control terminal, permitting user selection of each amplifiers' quiescent current. (The ICL7614/15, 7621/22, and 7641/42 have fixed lo settings - refer to selector guide for details.) To set the lQ of programmable versions, connect the lo terminal as follows:

$$
\mathrm{IQ}=10 \mu \mathrm{~A}-\mathrm{IQ} \text { pin to } \mathrm{V}^{+}
$$

$\mathrm{IQ}=100 \mu \mathrm{~A}-\mathrm{IQ}$ pin to ground. If this is not possible, any voltage from $\mathrm{V}^{+}-0.8$ to $\mathrm{V}^{-}+0.8$ can be used.

$$
\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}-\mathrm{IQ} \text { pin to } \mathrm{V}^{-}
$$

NOTE: The negative output current available is a function of the quiescent current setting. For maximum p-p output voltage swings into low impedance loads, IQ of 1 mA should be selected.

## OUTPUT STAGE AND LOAD <br> DRIVING CONSIDERATIONS

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately $70 \%$ of the lo settings. This allows output swings to almost the supply rails for output loads of $1 \mathrm{M}, 100 \mathrm{~K}$, and 10 K , using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB, which can supply

## ICL761X/762X/763X/764X

higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.
A special feature of the output stage is that it approximates a transconductance amplifier, and its gain is directly proportional to load impedance. Approximately the same open loop gains are obtained at each of the lo settings if loads of $10 \mathrm{~K}, 100 \mathrm{~K}$, and 1 M respectively are used.

## INPUT OFFSET NULLING

For those models provided with OFFSET NULLING pins, nulling may be achieved by connecting a 25 K pot between the OFFSET terminals with the wiper connected to $\mathrm{V}^{+}$. At quiescent currents of 1 mA and $100 \mu \mathrm{~A}$, the nulling range provided is adequate for all Vos selections; however with $\mathrm{IQ}=10 \mu \mathrm{~A}$, nulling may not be possible with higher values of Vos.

## FREQUENCY COMPENSATION

The ICL7611/12/13, 7621/22, 7631, 7641/42 are internally compensated, and are stable for closed loop gains as low as unity for capacitive loads up to 100 pF .
The ICL7614 and 15 are externally compensated by connecting a capacitor between the COMP and OUT pins. A 33 pF capacitor is required for unity gain compensation; for greater than unity gain applications, increased bandwidth and slew rate can be obtained by reducing the value of the compensating capacitor.
Since the $g_{m}$ of the first stage is proportional to $\sqrt{1 Q}$, greatest compensation is required when $\mathrm{lQ}=1 \mathrm{~mA}$. The ICL7632 is not compensated internally, nor can it be compensated externally. The device is stable when used as follows:
lQ of 1 mA for gains $\geq 20$
lQ of $100 \mu \mathrm{~A}$ for gains $\geq 10$
lQ of $10 \mu \mathrm{~A}$ for gains $\geq 5$

HIGH VOLTAGE INPUT PROTECTION
The ICL 7613 and 7615 include on-chip thin film resistors and clamping diodes which allow voltages of up to $\pm 200$ to be applied to either input for an indefinite time without device failure. These devices will be useful where high common mode voltages, differential mode voltages, or high transients may be experienced. Such conditions may be found when interfacing separate systems with separate supplies.

## EXTENDED COMMON MODE INPUT RANGE

The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 volt for applications where Vsupp $\geq$ $\pm 1.5 \mathrm{~V}$. For those applications where $\mathrm{V}_{\text {supp }} \leq \pm 1.5 \mathrm{~V}$, the input CMVR is limited to the magnitude of the positive supply rail in the positive direction, but may exceed the negative supply rail by 0.1 volt in the negative direction (eg. for VSUPP $= \pm 0.5 \mathrm{~V}$, the input CMVR would be +0.5 volts to -0.6 volts).

## OPERATION AT Vsupp $= \pm 0.5$ VOLTS

Operation at VSUPP $= \pm 0.5 \mathrm{~V}$ is guaranteed at $\mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A}$ only. This applies to these devices with selectable la, and those devices are set internally to $\mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A}$ (i.e., ICL7611, 7612, 7613, 7631, 7632, 7642).

Output swings to within a few millivolts of the supply rails are achievable for $R_{L} \geq 1 \mathrm{Meg} \Omega$. Guaranteed input CMVR is $\pm 0.1 \mathrm{~V}$ minimum and typically +0.4 V to -0.2 at $\mathrm{V}_{\text {SUPP }}= \pm 0.5 \mathrm{~V}$. For applications where greater common mode range is desirable, refer to description of ICL7612 above.

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.

## ABSOLUTE MAXIMUM RATINGS ${ }^{[1]}$

Total Supply Voltage $\mathrm{V}^{+}$to $\mathrm{V}^{-} \ldots . . . . . . . . . . . . .$. . 18 V
Positive Supply Voltage $\mathrm{V}^{+}$to GND .................. 18V
Negative Supply Voltage $V^{-}$to GND $\ldots . . . . . . . . .$. -18V
Input Voltage $\ldots \ldots . . . . . . . . . . . .$. . $\mathrm{V}^{+}+0.3$ to $\mathrm{V}^{-}-0.3 \mathrm{~V}$
Input Voltage ICL7613/15 Only .... $\mathrm{V}^{+}+200$ to $\mathrm{V}^{-}-200 \mathrm{~V}$
Differential Input Voltage $\left.\ldots . . \pm\left(\mathrm{V}^{+}+0.3\right)-\left(\mathrm{V}^{-}-0.3\right)\right] \mathrm{V}$
Differential Input Voltage
ICL7613/15 Only ........ $\pm\left|\left(\mathrm{V}^{+}+200\right)-\left(\mathrm{V}^{-}-200\right)\right| \mathrm{V}$
Duration of Output Short Circuit|2| ........... Unlimited
Continuous Power Dissipation @ $25^{\circ} \mathrm{C}$ Above $25^{\circ} \mathrm{C}$

TO-99
8 Lead Minidip
14 Lead Plastic
14 Lead Cerdip 16 Lead Plastic 16 Lead Cerdip

250 mW
250 mW
375 mW
500 mW
375 mW
500 mW
derate as follows:
$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range


Lead Temperature (Soldering, 10 sec )
$300^{\circ} \mathrm{C}$

Notes:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.
2. The outputs may be shorted to ground or to either supply, for Vsupp $\leq 10 \mathrm{~V}$. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS $V_{\text {SUPP }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS	76XXA			76XXB			76XXD			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage	Vos	$\begin{gathered} R s \leq 100 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{gathered}$	$\stackrel{\square}{ }$		$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\because$	-	$\begin{aligned} & 5 \\ & 7 \end{aligned}$			$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	mV
Temperature Coefficient of Vos	$\Delta \mathrm{Vos} / \Delta \mathrm{T}$	RS $\leq 100 \mathrm{~K} \Omega$		10			15			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	los	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C^{\|2\|} \\ & \Delta T_{A}=M^{\|2\|} \end{aligned}$		0.5	$\begin{array}{r} 30 \\ 300 \\ 800 \\ \hline \end{array}$		0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \end{aligned}$		0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \\ & \hline \end{aligned}$	pA
Input Bias Current	IbIAS	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \\ & \hline \end{aligned}$	$\because$	1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$	pA
Common Mode Voltage Range (Except ICL7612)	VCMR	$\begin{aligned} & \mathrm{IQ}=10 \mu \mathrm{~A}\|1\| \\ & \mathrm{IQ}=100 \mu \mathrm{~A} \\ & \mathrm{IQ}=1 \mathrm{~mA}\|1\| \end{aligned}$	$\begin{array}{\|l\|} \hline \pm 4.4 \\ \pm 4.2 \\ \pm 3.7 \\ \hline \end{array}$			$\pm 4.4$ $\pm 4.2$ $\pm 3.7$			$\begin{array}{\|l\|}  \pm 4.4 \\ \pm 4.2 \\ \pm 3.7 \\ \hline \end{array}$			V
Extended Commón Mode Voltage Range (ICL7612 Only)	VCMR	$1 \mathrm{C}=10 \mu \mathrm{~A}^{(1]}$	$\pm 5.3$			$\pm 5.3$			$\pm 5.3$			
		$\mathrm{l}=100 \mu \mathrm{~A}$	$\begin{gathered} -5.3 \\ -5.1 \end{gathered}$			$\begin{array}{\|l\|} \hline+5.3 \\ -5.1 \\ \hline \end{array}$	*		$\begin{aligned} & +5.3 \\ & -5.1 \\ & \hline \end{aligned}$			
		$10=1 \mathrm{~mA}^{\|1\|}$	$\begin{aligned} & +5.3 \\ & \hline-4.5 \end{aligned}$			$\begin{array}{\|c\|} \hline+5.3 \\ -4.5 \\ \hline \end{array}$			$\begin{aligned} & +5.3 \\ & -4.5 \end{aligned}$			
Output Voltage Swing	Vout	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{A}=\mathrm{C} \\ \Delta \mathrm{~T}_{A}=\mathrm{M} \end{gathered}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.6 \end{aligned}$			$\begin{array}{\|l\|}  \pm 4.9 \\ \pm 4.8 \\ \pm 4.6 \end{array}$	$\cdots$	$\because!$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.6 \end{aligned}$			V
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \\ & \hline \end{aligned}$	$\begin{array}{\|l}  \pm 4.5 \\ \pm 4.3 \\ \pm 4.0 \\ \hline \end{array}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \\ & \hline \end{aligned}$			$\begin{array}{\|l}  \pm 4.5 \\ \pm 4.3 \\ \pm 4.0 \\ \hline \end{array}$		:	
Large Signal Voltage Gain	Avol	$\begin{gathered} V_{O}=4.0 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\ \mathrm{IO}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{1 \mathrm{I},, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}} \\ \Delta \mathrm{~T}_{A}=\mathrm{C} \\ \Delta T_{A}=M \end{gathered}$	$\begin{aligned} & 90 \\ & 85 \\ & 77 \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104	:	$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	104	$\therefore$	dB
		$\begin{gathered} V_{O}=4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \\ \mathrm{IQ}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=\mathrm{C} \\ \Delta T_{A}=\mathrm{M} \end{gathered}$	$\begin{aligned} & 90 \\ & 85 \\ & 77 \\ & \hline \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	102	,	$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	102	$\therefore$	
		$\begin{gathered} V_{O}=4.0 \mathrm{~V}, R_{L}=100 \mathrm{~K} \Omega \\ 1 \mathrm{Q}=1 \mathrm{~mA} A^{\|1\|}, T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$	$\begin{aligned} & 90 \\ & 85 \\ & 77 \end{aligned}$	98	-	$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	98		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	98	\%	
Unity Gain Bandwidth	GBW	$\begin{gathered} \mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A}{ }^{\|11\|} \\ \mathrm{IQ}=100 \mu \mathrm{~A} \\ \mathrm{IQ}=1 \mathrm{~mA}\|1\| \end{gathered}$	$\cdots$	$\begin{array}{c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$	.		  0.044   0.48   1.4	:	MHz
Input Resistance	Rin			1012			1012			1012		$\Omega$
Common Mode Rejection Ratio	CMRR	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega, \mathrm{IQ}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{\|1\|}$   R $s \leq 100 \mathrm{~K} \Omega, I_{\mathrm{Q}}=100 \mu \mathrm{~A}$   $\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega, 1 \mathrm{Q}=1 \mathrm{~mA}^{11 \mid}$	$\begin{aligned} & \hline 76 \\ & 76 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \\ & \hline \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		dB
Power Supply Rejection Ratio	PSRR	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{\|1\|}$ R $\leq \leq 100 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$ $\mathrm{R}_{\mathrm{s}} \leq 100 \mathrm{~K} \Omega, \mathrm{IQ}=\left.1 \mathrm{~mA}\right\|^{11} \mid$	$\begin{array}{\|} 80 \\ 80 \\ 70 \\ \hline \end{array}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		dB
Input Referred Noise Voltage	$\mathrm{e}_{\mathrm{n}}$	$\mathrm{RS}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		100			100			100	1	$n \mathrm{~V} / / \overline{\mathrm{Hz}}$
Input Referred Noise Current	$i_{n}$	RS $=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Supply Current (Per Amplifier)	Isupp	$\begin{gathered} \text { No Signal, No Load } \\ \|\mathrm{Q}=10 \mu \mathrm{~A}\| 1 \mid \\ \mathrm{I}=100 \mu \mathrm{~A} \\ \mathrm{IQ}=1 \mathrm{~mA} \mathrm{~A}^{\|1\|} \end{gathered}$		$\begin{gathered} 0.0 .1 \\ 0.1 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \\ \hline \end{gathered}$		$\begin{array}{r} 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{array}$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \\ \hline \end{gathered}$		$\begin{gathered} 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{gathered}$	$\begin{aligned} & 0.02 \\ & 0.25 \\ & 2.5 \\ & \hline \end{aligned}$	mA
Channel Separation	V01/VO2	Avol $=100$		120			120			120		dB
Slew Rate	SR		$\cdots$	$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \end{gathered}$			$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \end{gathered}$			$\begin{array}{\|c} 0.016 \\ 0.16 \\ 1.6 \end{array}$		$V / \mu \mathrm{s}$
Rise Time . $\quad \therefore$	tr	$\begin{aligned} & V_{I N}=20 \mu V, C_{L}=100 \mathrm{pF} \\ & l_{\mathrm{Q}}=10 \mu \mathrm{~A}\|1\|, R_{L}=1 \mathrm{M} \Omega \\ & \mathrm{I}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & \mathrm{I}=1 \mathrm{~mA}\|1\|, R_{L}=10 \mathrm{~K} \Omega \end{aligned}$		$\begin{gathered} 20 \\ 2 \\ 0.9 \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \end{gathered}$	$\because$		$\begin{gathered} 20 \\ 2 \\ 0.9 \end{gathered}$		$\mu \mathrm{S}$
Overshoot Factor		$\begin{aligned} & V_{I N}=20 \mu V, C_{L}=100 \mathrm{pF} \\ & I_{\mathrm{Q}}=10 \mu \mathrm{~A} \mid 1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{CQ}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\|1\|, R_{L}=10 \mathrm{~K} \Omega \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$			5 10 40		\%

Note: 1. ICL7611, 7612, 7613 only.

ELECTRICAL CHARACTERISTICS $V_{S U P P}= \pm 0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. Specs apply to ICL7611/7612/7613 only.

PARAMETER	SYMBOL	CONDITIONS	76XXA			76XXB			76XXD			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage	Vos	$\begin{gathered} \mathrm{RS}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{gathered}$			$\begin{aligned} & 2 \\ & 3 \end{aligned}$			5 7			$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
Temperature Coefficient of Vos	$\Delta \mathrm{Vos} / \Delta \mathrm{T}$	$\mathrm{R}_{\mathrm{s}} \leq 100 \mathrm{~K} \Omega$		10			15			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	los	$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ \Delta \mathrm{~T}_{A}=\mathrm{M} \end{gathered}$		0.5	$\begin{array}{r} 30 \\ 300 \\ 800 \\ \hline \end{array}$		0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \\ & \hline \end{aligned}$		0.5	$\begin{aligned} & 30 \\ & 300 \\ & 800 \end{aligned}$	pA
Input Bias Current	Ibias	$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ \Delta \mathrm{~T}_{A}=C \\ \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{gathered}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 500 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 500 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 500 \\ 4000 \\ \hline \end{array}$	pA
Common Mode Voltage Range (Except ICL7612)	$V_{\text {CMR }}$		$\pm 0.1$			$\pm 0.1$			$\pm 0.1$			V
Extended Common Mode Voltage Range (ICL7612 Only)	$V_{\text {CMR }}$		$\begin{gathered} \hline+0.1 \\ \text { to } \\ -0.6 \end{gathered}$			$\begin{array}{\|c\|} \hline+0.1 \\ \text { to } \\ -0.6 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline+0.1 \\ \text { to } \\ -0.6 \end{array}$			V
Output Voltage Swing	Vout	$\begin{gathered} R=1 M \Omega, T_{A}=25^{\circ} C \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$	-	$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \end{aligned}$			$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \\ & \hline \end{aligned}$			$\begin{array}{\|}  \pm 0.49 \\ \pm 0.48 \\ \pm 0.41 \\ \hline \end{array}$		V
		$\begin{gathered} \mathrm{R}=100 \mathrm{~K} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$		$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \end{aligned}$	.		$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|}  \pm 0.49 \\ \pm 0.48 \\ \pm 0.41 \\ \hline \end{array}$		
Large Signal Voltage Gain	Avol	$\begin{gathered} \mathrm{V}_{\mathrm{O}}= \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=\mathrm{C} \\ \Delta T_{A}=\mathrm{M} \\ \hline \end{gathered}$		$\begin{aligned} & 90 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$			$\begin{aligned} & 90 \\ & 80 \\ & 70 \end{aligned}$			$\begin{aligned} & 90 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$		dB
		$\begin{gathered} V_{0}= \pm 0.1 \mathrm{~V}, R_{L}=100 \mathrm{~K} \Omega \\ T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C . \\ \Delta T_{A}=M \end{gathered}$		$\begin{aligned} & 80 \\ & 70 \\ & 60 \end{aligned}$			$\begin{aligned} & 80 \\ & 70 \\ & 60 \end{aligned}$			$\begin{aligned} & 80 \\ & 70 \\ & 60 \end{aligned}$		
Unity Gain Bandwidth	GBW			0.044			0.044			0.044		MHz
Input Resistance	RIN			1012			1012			1012		$\Omega$
Common Mode Rejection Ratio	CMRR	R $\mathrm{S} \leq 100 \mathrm{~K} \Omega$		80			80			80		dB
Power Supply Rejection Ratio	PSRR	$\mathrm{R}_{\mathrm{s}} \leq 100 \mathrm{~K} \Omega$		80			80			80		dB
Input Referred Noise Voltage	$e_{n}$	Rs=100 ${ }^{\text {; }} \mathbf{f}=1 \mathrm{KHz}$		100			100			100		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Referred Noise Current	in	RS $=100 \Omega, \mathrm{f}=1 \mathrm{KHz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Supply Current (Per Amplifier)	Isupp	No Signal, No Load		6	15		6	15		6	15	$\mu \mathrm{A}$
Channel Separation	$\mathrm{VO}_{1} / \mathrm{V}_{\mathrm{O} 2}$	AVOL=100		120			120			120		dB
Slew Rate	SR	$\begin{gathered} \text { AvOL }=1, C_{L}=100 \mathrm{pF}, \\ V_{\text {IN }}=8 \mathrm{~V} \\ R_{L}=1 \mathrm{M} \Omega \end{gathered}$		0.016			0.016			0.016		$\mathrm{V} / \mu \mathrm{s}$
Rise Time	$\mathrm{tr}_{r}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=20_{\mu} \mathrm{V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{gathered}$		20			20			20		$\mu \mathrm{S}$.
Overshoot Factor		$\begin{gathered} \hline V_{I N}=20 \mu V, C_{L}=100 p F \\ R_{L}=1 M \Omega \end{gathered}$		5			5			5		\%

Note: $\mathrm{C}=$ Commercial Temperature $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ Range; $\mathrm{M}=$ Military Temperature $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ Range.

## 763X/764X

ELECTRICAL CHARACTERISTICS $V_{\text {SUPP }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.


Note: 1. Does not apply to 7641.
2. Does not apply to 7642 .

$$
\mathrm{C}=\text { Commercial Temperature Range: } 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

$\mathrm{M}=$ Military Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

## 763X/764X

INTMERSIL
ELECTRICAL CHARACTERISTICS $V_{S U P P}= \pm 0.5 \mathrm{~V}, \mathrm{I}_{Q}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Specs apply to ICL7631/7632/7642 only.

PARAMETER   Input Offset Voltage	SYMBOL	CONDITIONS	76XXB			76XXD			$76 \times X E$			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
	Vos	$\begin{gathered} R S \leq 100 K \Omega, T_{A}=25^{\circ} \mathrm{C} \\ T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{gathered}$			$\begin{aligned} & 5 \\ & 7 \end{aligned}$			$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\because$		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
Temperature Coefficient of Vos	JVOS/ $\triangle T$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{~K} \Omega$		15			20	-		30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	los	$\begin{aligned} & T_{A}=25^{\circ} C \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \end{gathered}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \end{gathered}$		$\begin{gathered} 0.5 \\ 15 \\ 500 \end{gathered}$		pA
Input Bias Current	IBIAS	$\begin{gathered} T_{A}=25^{\circ} C \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$		1.0	$\begin{gathered} \hline 50 \\ 500 \\ 4000 \\ \hline \end{gathered}$	,	1.0	$\begin{array}{\|c\|} \hline 50 \\ 500 \\ 4000 \\ \hline \end{array}$		1.0   30   3000		pA
Common Mode Voltage Range	VCMR		$\pm 0.1$		.	$\pm 0.1$			$\pm 0.1$		.	V
Output Voltage Swing	Vout	$\begin{gathered} R=1 M \Omega, T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$		$\pm 0.49$ $\pm 0.48$ $\pm 0.41$			$\begin{aligned} & \pm 0.49 \\ & \pm 0.48 \\ & \pm 0.41 \end{aligned}$			$\begin{array}{r} \pm 0.49 \\ \pm 0.48 \\ \pm 0.46 \\ \hline\end{array}$		V
		$\begin{gathered} R=100 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$		$\begin{array}{r}  \pm 0.49 \\ \pm 0.46 \\ \pm 0.39 \end{array}$	$\because$		$\begin{aligned} & \pm 0.49 \\ & \pm 0.46 \\ & \pm 0.39 \end{aligned}$			$\begin{array}{\|}  \pm 0.47 \\ \pm 0.46 \\ \pm 0.39 \\ \hline \end{array}$		
Large Signal Voltage Gain	AVOL	$\begin{gathered} \hline V_{O}= \pm 0.1 \mathrm{~V}, R_{L}=1 \mathrm{M} \Omega \\ T_{A}=25^{\circ} \mathrm{C} \\ 1 T_{A}=C \\ \Delta T_{A}=M \\ \hline \end{gathered}$		90   80   70	$\cdot$		90   80   70			90   80   70	"."	
		$\begin{gathered} V_{O}= \pm 0.1 \mathrm{~V}, R_{L}=100 \mathrm{~K} \Omega \\ T_{A}=25^{\circ} \mathrm{C} \\ \Delta T_{A}=C \\ \Delta T_{A}=M \end{gathered}$		80   70   60			80   70   60			90   80   70		dB
Unity Gain Bandwidth	GBW			0.044			0.044			0.044		MHz
Input Resistance	RIN			1012			1012			1012.		S
Common Mode Rejection Ratio	CMRR	$R_{S} \leq 100 \mathrm{~K} \Omega$		80			80			80		dB
Power Supply Rejection Ratio	PSRR			80			80			80		dB
Input Referred Noise Voltage	en	$\mathrm{R}_{\mathrm{S}}=100 \mathrm{~S}, \mathrm{f}=1 \mathrm{KHz}$		100			100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Noise Current	in	$\mathrm{R}_{\mathrm{s}}=100 \mathrm{~s} 2, \mathrm{f}=1 \mathrm{KHz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Supply Current \| Per Amplifier,	Isupp	No Signal, No. Load		6	15		6	15		6	15	$\mu \mathrm{A}$
Channel Separation	Vo1/VO2	Avol $=100$		120			120			120		dB
Slew Rate	SR	$\begin{gathered} \text { AVOL }=1, C_{L}=100 \mathrm{pF} \\ V_{\text {IN }}=8 \mathrm{~V} \\ R_{L}=1 \mathrm{M} \Omega \end{gathered}$		0.016			0.016	,		0.016		$\mathrm{V} / \mu \mathrm{s}$
Rise Time	$\mathrm{tr}_{r}$	$\begin{gathered} V_{I N}=20_{\mu} \mathrm{V}, C_{L}=100 \mathrm{pF} \\ R_{L}=1 \mathrm{MS} \Omega \end{gathered}$		20			20			20		$\mu \mathrm{S}$
Overshoot Factor	.	$\begin{gathered} V_{I N}=20 \mu \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{gathered}$		5			5			5	,	\%

Note: $\mathrm{C}=$ Commercial Temperature $10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Range; $\mathrm{M}=$ Military Temperature $1-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ) Range.

ONTERTSUL

## APPLICATIONS

Note that in no case is IQ shown. The value of IQ must be chosen by the designer with regard to frequency and power dissipation, and will in no way affect the operation of the circuits shown.
SIMPLE FOLLOWER.


## LEVEL DETECTOR

By using the ICL7612 in these applications, the circuits will follow rail to rail inputs.


5


## PHOTOCURRENT INTEGRATOR

Low leakage currents allow integration times up to several hours.


## ICL761X/762X/763X/764X

FIFTH ORDER CHEBYSHEV MULTIPLE FEEDBACK LOW PASS FILTER
The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff: $\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz}, \mathrm{AvOL}=4$, Passband ripple $=0.1 \mathrm{~dB}$.


Note that small capacitors ( $25-50 \mathrm{pF}$ ) may be needed for stability in some cases.

SECOND ORDER BIQUAD BANDPASS FILTER
Note that la on each amplifier may be different.
$A v o l=10, Q=100, f_{o}=100 \mathrm{~Hz}$.


BURN-IN AND LIFE TEST CIRCUIT


UNITY GAIN FREQUENCY COMPENSATION


NOTES

1. FOR DEVICES WITH EXTERNAL COMPENSATION, USE 33pF.
2. FOR DEVICES WITH PROGRAMMABLE STANDBY CURRENT, CONNECT I $I_{Q}$ PIN TÓ $V^{-}\left(I_{Q}=1 \mathrm{~mA}\right.$ MODE).

## ICL761X/762X/763X/764X <br> Preliminary : iniexil

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF SUPPLY VOLTAGE


LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF FREE-AIR TEMPERATURE


FREE-AIR TEMPERATURE - "C

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF FREE-AIR TEMPERATURE


LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY


INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE


COMMON MODE REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE


## POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE



EQUIVALENT INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY


PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY


MAXIMUM OUTPUT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE


LOAD RESISTANCE - K $\Omega$

MAXIMUM PEAK-TO-PEAK VOLTAGE AS A FUNCTION OF FREE-AIR TEMPERATURE


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE


## ICL761X/762X/763X/764X

Prebininary
INTIERSIL

## CHIP TOPOGRAPHY



761X


ICL761X/762X/763X/764X Prelinninary CHIP TOPOGRAPHY (Cont.)


## PACKAGE DIMENSIONS

8 LEAD PLASTIC MINI DIP (PA)
Preeliminary iniesen

8 LEAD TO-99 METAL CAN (TY)


14 LEAD CERDIP (JD)


## 14 LEAD PLASTIC (PD)



16 LEAD PLASTIC (PE)


ICL8021 M, ICL8021 C Low Power Operational Amplifier

## FEATURES

- $\Delta \mathrm{Vos}=3 \mathrm{mV}$ max (adjustable to zero)
- $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ Power Supply Operation.
- Power Consumption - $20 \mu \mathrm{~W} @ \mathrm{~V}_{\text {ss }} \pm 1 \mathrm{~V}$


## GENERAL DESCRIPTION

The Intersil 8021 integrated circuit is a low power operational amplifier specifically designed for applications requiring very low standby power consumption over a wide range of supply voltages. The electrical characteristics of the 8021 can be tailored to a particular application by adjusting an external resistor, $\mathrm{R}_{\mathrm{SET}}$, which controls the quiescent current. This is advantageous because $I_{Q}$ can be made independent of the supply voltages: it can be set to an extremely low value where power is critical, or to a larger value for high slew rate or wideband applications.

Other features of the 8021 include low input current that remains constant with temperature, low noise, high input impedance, internal compensation and pin-for-pin compatibility with the 741.

## SCHEMATIC DIAGRAM



ORDERING INFORMATION


- Input Bias Cúrrent - 30 nA max
- Internal Compensation.
- Pin-For-Pin Compatible With 741.
- Short Circuit Protected.


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Differential Input Voltage (Note 1)
Common Mode Input Voltage (Note 1) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration
Power Dissipation (Note 2)
Operating Temperature Range 8021M 8021C.
Storage Temperature Range
Lead Temperature (Soldering, 10 sec )

NOTE 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Rating applies for case temperatures to $+125^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$.

## CONNECTION DIAGRAM



NOTE: Pin 4 connected to case.

## VOLTAGE OFFSET NULL CIRCUIT



ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mu \mathrm{~A}\right.$, unless otherwise specified.)

CHARACTERISTICS	CONDITIONS	8021M			8021C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
The following specifications apply for $\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}$ 鱼:								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		2	3		2	6	mV
Input Offset Current			. 5	7.5		. 7	10	nA
Input Bias Current			5	20		7	30	n'A
- Input Resistance		3	10		3	10		$\mathrm{M} \Omega$
Input Voltage Range	$V_{S}{ }^{\prime}= \pm 15 \mathrm{~V}$	$\pm 12$	$\pm 13$		$\pm 12$	$\pm 13$		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	80		70	80		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Resistance	Open Loop		2			2		$k \Omega$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 20 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 12$	$\pm 14$		$\pm 12$	$\pm 14$		V
	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\pm 11$	$\pm 13$		$\pm 11$	$\pm 13$		$V$
Output Short-Circuit Current			$\pm 13$			$\pm 13$		mA
Power Consumption	$V_{\text {OUT }}=0$		360	480		360	600	$\mu \mathrm{W}$
Slew Rate (Unity Gain)			0.16			0.16		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=20 \mathrm{mV}$		270			270		kHz
Transient Response (Unity Gain)	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}}=20 \mathrm{mV}$							
Risetime \%			1.3			1.3		$\mu \mathrm{s}$
Overshoot			10			10		\%

The following specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (8021C) $-55^{\circ} \mathrm{C} \leq+125^{\circ} \mathrm{C}$ (8021M)


TYPICAL PERFORMANCE C URVES* $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}\right.$, unless otherwise specified.)


SLEW RATE VS
QUIESCENT CURRENT


OPEN-LOOP FREQUENCY
RESPONSE


INPUT BIAS CURRENT VS AMBIENT TEMPERATURE


FREQUENCY RESPONSE VS QUIESCENT CURRENT



EQUIVALENT INPUT NOISE VOLTAGE VS FREQUENCY


DIFFERENTIAL INPUT IMPEDANCE VS QUIESCENT CURRENT


PHASE MARGIN VS QUIESCENT CURRENT



EQUIVALENT INPUT NOISE CURRENT VS FREQUENCY


## DEFINITION OF TERMS

INPUT OFFSET VOLTAGE: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.

INPUT OFFSET CURRENT: The difference in the currents into the two input terminals when the output is at zero.

INPUT BIAS CURRENT: The average of the two input currents.

INPUT VOLTAGE RANGE: The range of voltages on the input terminals for which the amplifier operates within specifications:

COMMON MODE REJECTION RATIO: The ratio of the common mode input voltage to the differential input voltage which produces the same output signal.

TRANSIENT RESPONSE: The $10 \%$ to $90 \%$ closed loop step-function response of the amplifier under small-signal conditions.

UNITY GAIN BANDWIDTH: The frequency at which the small signal gain is 3 dB below its low frequency value.

## APPLICATIONS INFORMATION

Figure 1. Battery Operated Thermocouple Amplifier


A Chromel-Alumel thermocouple has an output of about $41 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. (it should be noted that the voltage-temperature relationship is only linear over a limited temperature range). The circuit shown amplifies the output signal to $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and provides an output impedance of less then $0.1 \Omega$. Two 2.7 V 1000 mAH mercury cells will power the circuit for the shelf life of the battery, approximately two years.

Figure 2. Light-Emitting Diode Voltage Dropout Indicator


The circuit shown uses the 8021 as a comparator to drive a lightemitting diode (H.P. 5082-4403 for example). For the values shown, the indicator will turn on if the input voltage falls below about 6 V . Operating life (assuming L.E.D. off) is greater than one year.

SLEW RATE: The maximum rate of change of output voltage in response to a large amplitude input pulse.

INPUT RESISTANCE: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

SUPPL Y CURRENT: The current required from the power supply to operate the amplifier with no load and the output at zero.

OUTPUT VOLTAGE SWING: The peak output voltage swing, referred to zero, that can be obtained without clipping.

LARGE-SIGNAL VOLTAGE GAIN: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

POWER SUPPLY REJECTION: The ratio of the change in input offset voltage to the change in power supply voltage producing it.

OUTPUT RESISTANCE: The ratio of the change in output current to the change in output voltage. The average output current is zero and operation is without feedback.

## PACKAGE OUTLINE

TO-5


Figure 3. Low Quiescent Power Regulator


The simple regulator shown is adequate for many applications. Line regulation is $0.1 \% / \mathrm{V}$, load regulation is $\leq .01 \% / \mathrm{mA}$, input voltage range is +8 V to +36 V , and the quiescent power consumption is $400 \mu \mathrm{~W}$ ( F or $\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$ ). Additional features such as current limiting can be added in the usual manner.

# Dual Low Power Operational Amplifier 

## FEATURES

- Two Op Amps in a Single 14-Pin DIP.
- Electrically Identical to the 8021.


## GENERAL DESCRIPTION

The Intersil 8022 consists of two low power operational amplifiers in a single 14-pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, $\mathrm{R}_{\text {SET }}$, which controls the quiescent current of that amplifier.
Detailed electrical parameters for each amplifier may be found on the 8021 data sheet.

## ORDERING INFORMATION



## PACKAGE OUTLINE



NOTE: All dimensions in inches.
14-PIN CERAMIC DIP

CONNECTION DIAGRAM
-
5


TOP VIEW

# Triple Low Power Operational Amplifier 

## FEATURES

- Three Op Amps in a Single 16-Pin DIP.
- Electrically Identical to the 8021.


## GENERAL DESCRIPTION

The Intersil 8023 consists of three low power operational amplifiers in a single 16-pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, $\mathrm{R}_{\text {SET }}$, which controls the quiescent current of that amplifier.

Detailed electrical parameters for each amplifier may be found on the 8021 data sheet.

## PACKAGE OUTLINE



NOTE: All dimensions in inches.

## ORDERING INFORMATION



## CONNECTION DIAGRAM



TOP VIEW

# HA733/C, LM733/C Differential Video Amplifier Linear Integrated Circuits 

## FEATURES

- 120 MHz Bandwidth
- $250 \mathrm{k} \Omega$ Input Resistance
- Selectable Gains of 10, 100, and 400
- No Frequency Compensation Required


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 8 \mathrm{~V}$
Differential Input Voltage $\pm 5 \mathrm{~V}$
Common Mode Input Voltage $\pm 6 \mathrm{~V}$
Output Current
10 mA
Internal Power Dissipation

Metal Can	500 mW
Flatpak	570 mW
DIP	670 mW

Operating Temperature Range (Note 1)
Military (733)
Commercial (733C)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 second time limit) $300^{\circ} \mathrm{C}$

## CONNECTION DIAGRAMS

10-LEAD METAL CAN (TOP VIEW)


Note: Pin 5 connected to case.


## GENERAL DESCRIPTION

The 733 is a monclithic two-stage Differential Input, Differential Output Video Amplifier. Internal series-shunt feedback is used to obtain wide bandwidth, low phase distortion, and excellent gain stability. Emitter follower outputs enable the device to drive capacitive loads and all stages are current-source biased to obtain high power supply and common mode rejection ratios. It offers fixed gains of 10,100 or 400 without external components, and adjustable gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components are required for any gain option. The device is particularly useful in magnetic tape or disc file systems using phase or NRZ encoding and in high speed thin film or plated wire memories.

## CHIP TOPOGRAPHY



EQUIVALENT CIRCUIT


INTUERESIL

733M ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$ unless otherwise specified)

PARAMETER (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Differential Voltage Gain   Gain 1 (Note 2)   Gain 2 (Note 3)   Gain 3 (Note 4)	\%	$\begin{array}{r} 300 \\ 90 \\ 9.0 \end{array}$	$\begin{array}{r} 400 \\ 100 \\ 10 \end{array}$	$\begin{array}{r} 500 \\ 110 \\ 11 \end{array}$	
Bandwidth   Gain 1   Gain 2   Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		$\begin{array}{r} 40 \\ 90 \\ 120 \end{array}$	$\cdots$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\begin{aligned} & \hline \text { Risetime } \\ & \text { Gain } 1 \\ & \text { Gain } 2 \\ & \text { Gain } 3 \\ & \hline \end{aligned}$	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-p }}$		$\begin{array}{r} 10.5 \\ 4.5 \\ 2.5 \end{array}$	10	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Propagation Delay   Gain 1   Gain 2   Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 . \mathrm{V}_{\mathrm{p}-\mathrm{p}}$		$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \end{aligned}$	10	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Input Resistance   Gain 1   Gain 2   Gain 3		20	$\begin{array}{r} 4.0 \\ 30 \\ 250 \end{array}$		$\begin{aligned} & k \Omega \\ & k \Omega \\ & k \Omega \end{aligned}$
Input Capacitance	Gain 2		2.0		pF
Input Offset Current			0.4	3.0	$\mu \mathrm{A}$
Input Bias Current			9.0	20	$\mu \mathrm{A}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12		$\mu \mathrm{V}$ rms
Input Voltage Range		$\pm 1.0$			V
Common Mode Rejection Ratio   Gain 2   Gain 2	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, f \leqslant 100 \mathrm{kHz} \\ & V_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$	,	
Supply Voltage Rejection Ratio Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3			$\begin{array}{r} 0.6 \\ 0.35 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
Output Common Mode Voltage		2.4	2.9	3.4	$v$
Output Voltage Swing		3.0	4.0		$V_{p-p}$
Output Sink Current		2.5	3.6		mA
Output Resistance	*		20		$\Omega$
Power Supply Current			18	24	mA

The following specifications apply for $-55^{\circ} \mathrm{C} \leqslant \tau_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$


733C ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 6.0 \mathrm{~V}$ unless otherwise specified)

PARAMETER (see definitions)	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Differential Voltage Gain   Gain 1 (Note 2)   Gain 2 (Note 3)   Gain 3 (Note 4)		$\begin{array}{r} 250 \\ 80 \\ 8.0 \\ \hline \end{array}$	$\begin{array}{r} 400 \\ 100 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 600 \\ 120 \\ 12 \\ \hline \end{array}$	
$\begin{array}{r} \hline \text { Bandwidth } \\ \text { Gain } 1 \\ \text { Gain } 2 \\ \text { Gain } 3 \\ \hline \end{array}$	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	-	$\begin{array}{r} 40 \\ 90 \\ 120 \\ \hline \end{array}$		MHz   MHz   MHz
Risetime   Gain 1   Gain 2   Gain 3	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		$\begin{array}{r} 10.5 \\ 4.5 \\ 2.5 \\ \hline \end{array}$	12	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
```Propagation Delay Gain 1 Gain 2 Gain 3```	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\text {OUT }}=1 . \mathrm{V}_{\mathrm{p}-\mathrm{p}}$		$\begin{aligned} & 7.5 \\ & 6.0 \\ & 3.6 \end{aligned}$	10	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
Input Resistance Gain 1 Gain 2 Gain 3	\cdots.	10	$\begin{array}{r} 4.0 \\ 30 \\ 250 \end{array}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Input Capacitance	Gain 2		2.0		pF
Input Offset Current			0.4	5.0	$\mu \mathrm{A}$
Input Bias Current			9.0	30	$\mu \mathrm{A}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{BW}=1 \mathrm{kHz}$ to 10 MHz		12		$\mu \mathrm{V}_{\text {rms }}$
Input Voltage Range		± 1.0			\checkmark
Common Mode Rejection Ratio Gain 2 Gain 2	$\begin{aligned} & V_{C M}= \pm 1 \mathrm{~V}, f \leqslant 100 \mathrm{kHz} \\ & V_{C M}= \pm 1 \mathrm{~V}, f=5 \mathrm{MHz} \end{aligned}$	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply Voltage Rejection Ratio Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		dB
Output Offset Voltage Gain 1 Gain 2 and Gain 3			$\begin{array}{r} 0.6 \\ 0.35 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	v
Output Common Mode Voltage		2.4	2.9	3.4	V
Output Voltage Swing		3.0	4.0		$\mathrm{V}_{\mathrm{p} \cdot \mathrm{p}}$
Output Sink Current		2.5	3.6		mA
Output Resistance			20		Ω
Power Supply Current			18	24	mA
The following specifications apply for $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant \pm 70^{\circ} \mathrm{C}$					
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)	-	$\begin{array}{r} 250 \\ 80 \\ 8.0 \\ \hline \end{array}$		$\begin{array}{r} 600 \\ 120 \\ 12 \end{array}$.
Input Resistance-Gain 2		8.0			$\mathrm{k} \Omega$.
Input Offset Current			,	6.0	$\mu \mathrm{A}$
Input Bias Current)			40	$\mu \mathrm{A}$
Input Voltage Range		± 1.0			V
Common Mode Rejection Ratio Gain 2	$V_{C M}= \pm 1 \mathrm{~V}, \mathrm{f} \leqslant 100 \mathrm{kHz}$	50		,	dB
Supply Voltage Rejection Ratio Gain 2	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50			dB
Output Offset Voltage (All Gain)				1.5	V
Output Voltage Swing		2.8			V_{p-p}
Output Sink Current		2.5			mA
Power Supply Current				27	mA

10 LEAD METAL CAN

ICL8061/8062 Camera Exposure Control Circuits

FEATURES

- 50pA to $500 \mu \mathrm{~A}$ photocell current range
- Low power dissipation
- Track \& hold ckt for mirror-up or exposure memory use.
- Direct linearized inputs for aperture values, sensitivity, manual shutter speed, etc.
- Easy switching between automatic and manual ("match needle") control.
- 4 decade shutter speed control range.
- Minimal photocell voltage for optimum lowlight operation.
- Built-in temperature compensation.
- Minimum number of external components required.
- Built in exposure timer for long manual exposures.
- Low light level warning.

GENERAL DESCRIPTION

The ICL8061 log-converts a wide range of photocell input current to a temperature compensated voltage, and adds or subtracts external control signals, such as film sensitivity (ASA rating), shutter speed, and aperture setting. It will hold on command the desired value against changes, occurring for example during SLR mirror up, and allow use of the "meter here, expose there" technique.
Analog output signals corresponding to brightness value (BV), exposure value (EV), and calculated f-stop and shutter speed are provided; these can be used to drive indicating meters. In addition, since the ICL8061 antilog-converts the required shutter speed value back to a current source, standard electronic shutters may be driven as well.
The ICL8061 also contains + and - reference voltages, which track each other and are used by other sections of the circuit for reference and control signals.
The ICL8062 is a comparator, alarm driver, and control circuit. This device converts the output signals from the ICL8061 to OVER, UNDER, and CORRECT signals which may be used to drive LEDs, servo motors, etc. It also provides indications relating to low battery voltage and slow shutter speed.

PIN CONFIGURATION

ORDERING INFORMATION

PART NUMBER	TYPE	TEMPERATURE RANGE	ORDER NUMBER	
8061 C	Com'I	18 lead pill pack	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	ICL8061CFN
8061 C	Com'I	18 lead dip	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	ICL8061CPN
8061 C	Com'I	DIE	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	ICL8061C/D
8062 C	Com'	18 lead pill pack	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	ICL8062CFN
8062 C	Com'I	18 lead dip	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	ICL8062CPN
8062 C	Com'I	DIE	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	ICL8062C/D

ELECTRICAL CHARACTERISTICS: ICL8061

ABSOLUTE MAXIMUM RATINGS*

VCc .. 10V
Icc REVERSE 10mA
Operating Temp Range $\ldots \ldots \ldots \ldots . . .-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage Temp Range $\ldots \ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Soldering Temp
Power Dissipation
$\left(25^{\circ} \mathrm{C}\right)$
$(10 \mathrm{sec}) 300^{\circ} \mathrm{C}$
.. 500 mW

Note: Stresses above those listed may cause permanent damage to the device. Functional operation at the listed stress level is not implied. Long term exposure to absolute maximum rating conditions may affect device reliability adversely.

DC CHARACTERISTICS

V^{+}to $\mathrm{V}^{-}=6 \mathrm{~V}$, All voltages measured with respect to Analog Common, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
Supply Voltage Range	2.8		10	V	V^{+}to V^{-}
Supply Current	--	0.8	2.0	mA	No external loads
Regulator Section					
Output Voltage Vref to Common	580	650	720.	mV	
Output Voltage V^{-}to Common	1.16	1.30	1.40	V	
Output Current V ${ }_{\text {REF }}$ Source	1.0			mA	
Output Common Sink	1.0			mA	
Output Common Source	1.0			mA	
Power Supply Rejection VREF V^{-}		$\begin{aligned} & .5 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$	Note 1
Temp Coefficient		50	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
Load Regulation (min to max load) VREF V^{-}		$\begin{aligned} & 7 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$	Note 1
Log Amplifier					
Input Offset Voltage @ lin	-80	-12	+60	mV	
Temp Coefficient			50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Bias Current (IIN)	-20		+20	pA	
Input Bias Current @ $50^{\circ} \mathrm{C}$	-120	± 50	+120	pA	,
Dynamic Range	50pA		500	$\mu \mathrm{A}$	IREF of 100nA Note 3
Output Scale Factor	20	30	40	mV/octave	
Reference Current Range	0.1		1	$\mu \mathrm{A}$	NB upper range can be extended
VOUT for $\mathrm{lin}^{\text {a }}$ = IREF	-30		+30	mV	
Accuracy (full-dynamic range)			± 30	\% of octave	
(100pA to $100 \mu \mathrm{~A}$)			± 10	\% of octave	Note 2
Temperature Tracking (1nA to $100 \mu \mathrm{~A}$)	-10		+10	mV	Deviation of output from $25^{\circ} \mathrm{C}$
Offset Null Range	\pm Vos				O/N pin to V^{-}or VREF Note 4
Input Offset Voltage (IreF).	-5	± 1	+5	mV .	
Input Bias Current (IREF)		10	40	- nA	Note 3 (measure by scale factor error for small IREF
SAMPLE \& HOLD (A3)					
Input Offset Voltage	-5	± 1	+5	mV	
Input Bias Current		10	50	nA	
Input Leakage on $\mathrm{CH} 1 / \mathrm{P}$ pin			50	pA	TRK/HOLD pin LO.
Output Voltage Swing	-700		$+400$	mV	$5 \mathrm{k} \Omega$ load to $\mathrm{V}^{-} ; 10 \mathrm{k} \Omega$ to Common
Charge Injection	-	0.8	1.5	nC	
Trk/Hold Threshold	0.8	1.2	1.6	V	With respect to V^{-}
Input impedance Trk/Hold pin	100			k Ω	Resistance to V^{-}
Inverting Amplifiers (A4, A5)					
Input Offset Voltage	-5	± 1	+5		
Input Bias Current		10	40	nA	
Output Voltage Swing	-200		$+400$	mV	$1 \mathrm{k} \Omega$ to common

PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
Amplifier Match					
Input Offset Voltage Differential АЗ-А4 A3-A5	$\begin{aligned} & -7 \\ & -7 \end{aligned}$	$\begin{array}{r} +1.5 \\ +1.5 \\ \hline \end{array}$	$\begin{aligned} & +7 \\ & +7 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$	
Antilog Amplifier					
Input Scale Factor	10	15	20	mV/Octave	
Dynamic Range	. 05		500	$\mu \mathrm{A}$	Iref of 100nA
Input Bias Current		15	60	nA	
VIN for lout $=1$ IREF	-30		+30	mV	
Accuracy			± 10	\% of Octave	
Output Voltage Range	Common		V^{+}		
AC CHARACTERISTICS					
Response Time (lin 10nA to 1nA) Log Mode			5	ms	,
Power-up Time (lin @ 200pA)			150	ms	

Note 1: Analog common regulated with respect to V^{-}; measurement of common with respect to V^{-}is intended.
Note 2: Measured @ $\operatorname{lin}=1 n A$, Iref, $100 \mu \mathrm{~A}$; center must be $\pm 10 \%$ of interpolated value.
Note 3: Not tested directly; guaranteed by other tests or design control.
Note 4: Offset null not available on Standard 18 pin part. An offset null pin is available in die form, or as a special bonding option in a 22 pin package, or an 18 pin package with the loss of one other pin. Consult factory for details on this or other options.

ELECTRICAL CHARACTERISTICS: ICL8062

ABSOLUTE MAXIMUM RATINGS (*)

Vcc	10 V	Outputs short circuits
Icc reverse	$\cdot 10 \mathrm{~mA}$	to either supply Indefinite
Operating Temp Range	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	V^{-}to V^{+}
Storage Temp Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	*Short duration only
Lead Soldering Temp	$(10 \mathrm{sec}) 300^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}$ (any input except "Osc off) V^{-}to V^{+}
Power Dissipation $\left(25^{\circ} \mathrm{C}\right)$	500 mW	$\mathrm{V}_{\text {IN }}$ (Osc off only) V^{-}to $\left(\mathrm{V}^{-}+5 \mathrm{~V}\right)$
Derate above $50^{\circ} \mathrm{C}$	@ $0.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	Note: Stresses above those listed may cause permanent damage to the device. Functional operation at the listed stress levels is
lin (all inputs)	$2 \mathrm{~mA}{ }^{\text {* }}$	not implied. Continuous exposure to absolute maximum
- lout (all outputs)	.. 25mA	rating conditions may adversely affect device reliability.

DC CHARACTERISTICS $\left(\mathrm{V}+=+6 \mathrm{~V}_{1} \mathrm{~V}=\right.$ gnd, TA $=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
Supply Voltage Range	2.7		10	V	V^{+}to V^{-}
Supply Current (one o/p low) (two o/p low)	.	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{gathered} 2 \\ 2.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	(excludes output load current)
Input bias currents (except Osc off)			50	nA	(per comparator; see loading table)
Input Offset voltages: As to Ac, upper trip lower trip upper trip to lower trip point	$\begin{gathered} +2 \\ -12 \\ 8 \end{gathered}$	$\begin{gathered} +7 \\ -7 \\ 14 \end{gathered}$	$\begin{gathered} +12 \\ -2 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	
Amax to As, Tmax to T	-12	-7	-2	mV	
Amin to As, Tmin to T	+2	+7	+12	mV	
Tslo to T, LBAT to REF	-6	± 1	+6	mV	
Input Common Mode Range	0.2		4.7	V	
Output Drive Current Output Saturation Output Leakage Current	10	$\begin{aligned} & \hline 15 \\ & .01 \\ & \hline \end{aligned}$	$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{aligned} & \text { VOUT }=1.5 \mathrm{~V} \\ & \text { lout }=8 \mathrm{~mA} \\ & \text { VOUT }=10 \mathrm{~V} \end{aligned}$
Oscillator frequency Oscillator duty cycle		$\begin{gathered} 1 \\ 30 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{RI}=120 \mathrm{k}, \mathrm{R} 2=240 \mathrm{k}, \\ & \mathrm{C} 1=22 \mu \mathrm{~F} \end{aligned}$
Input Impedance, Osc off Osc off threshold	$\begin{aligned} & 100 \\ & 0.8 \end{aligned}$	$\begin{gathered} 250 \\ 1.2 \end{gathered}$	1.6	$\begin{gathered} \mathrm{k} \Omega \\ \mathrm{~V} \end{gathered}$	

LOADING TABLE

Input Pin	$A_{\max }$	$A_{\min }$	$\mathrm{T}_{\text {sio }}$	$\mathrm{T}_{\max }$	T	$\mathrm{T}_{\min }$	REF	LBAT	A_{c}	A_{s}
Load multiple	1	1	1	1	3	1	1	1	2	4

CIRCUIT DESCRIPTION

The two circuits basically consist of an analog computation circuit, on one die, and an alarm and LED control circuit on the other. Each circuit will work with single floating supply
voltages between 2.7 V and 10 V , and draw less than 1 mA of quiescent supply current. A minimum of external components are required, over and above those inherently associated with controlling the camera.

FUNCTIONAL BLOCK DIAGRAM - ICL8061

ICL8061 Computation Circuit

The computation circuit, which in many applications can stand alone, contains several functions. In terms of normal camera control description, the first is a wide range logarithmic converter. This circuit establishes a voltage of less than 50 mV across the photocell (offset null is available as an option, see Note 4 above), and generates a temperaturecompensated logarithm of the input current from 50pA (at room temperature) to $500 \mu \mathrm{~A}$. The scale factor can be set
anywhere below approximately 40 mV /octave, though $20-$ 30 mV is generally most suitable. The photocell current is compared against a reference current, IREF externally generated, but most conveniently derived from the built-in (band gap) reference voltage on $V_{\text {REF }}$. The output voltage on BV is referred to analog common, and goes positive for increasing brightness. The equivalent schematic of this portion of the circuit is shown in Fig. 1. Q_{1} is the logging

Figure 1: Logarithmic Converter Equivalent Circuit
transistor, Q_{2} the reference diode. (Note Q_{2} collector and base tied together.) FET input amplifier A_{1} drives Q_{1}, and A_{2} drives Q_{2}. Additional circuitry, not shown, compensates for A_{1} and Q_{1} input leakage. The difference in Q_{1} and Q_{2} baseemitter voltages is amplified in the instrumentation amplifier IA1 by the ratio of resistors R_{1} and R_{2}. This provides temperature compensation, since R_{1} and R_{2} have very different T.C.'s.
Subsequent analog processing is done with signals proportional to the log of the corresponding photographic variables. Note that A_{1} may require external frequency compensation, depending on the capacitance of the photocell and interconnecting leads.

Next is an inverting track and hold circuit, see Fig. 2. The virtual ground input point can be used to add signals, such as ASA rating and (in the case of SLR cameras), metering aperture value, to the BV to obtain an EV. The required signals can be derived via potentiometers from VREF; the suggested connections are indicated in Fig. 2.

The second section of the track and hold amplifier has a FET input, which allows a very slow droop rate; the value of the external hold capacitor, C_{H} can be chosen to provide the necessary compromise between droop rate and response time, while frequency compensating A3.

In general, a value of $\sim 1 \mu \mathrm{~F}$ will allow settling commensurate with the speed of the other sections of the circuit while
maintaining a droop rate of under one EV per minute. The hold function can be used for holding an EV during mirror-up-time in an SLR (when the photocell is blocked) or for other situations where the shutter timing and metering functions are not simultaneous. If the hold function is not needed, the control pin may be held high, or a metal mask option can be provided to eliminate the switching function.
The next function consists of two independent but identical inverting amplifiers, see Fig. 3. These can be used to subtract two separate values from EV to generate output signals powerful enough to drive small meter movements. By subtracting actual shutter speed, a calculated desired aperture signal can be derived; by subtracting actual aperture value, a desired shutter speed can be derived. Since both amplifiers can be used, both calculations can be done, so that, in match needle systems, both desired and actual aperture and shutter speed can be shown; either needle-pair can be matched. For a motor-driven aperture system, automatic aperture setting can be achieved by driving the motor until calculated and actual aperture agree (see application section below). For automatic shutter systems, the shutter control input is connected to desired shutter speed. The described connections are shown in Fig. 3, which also shows voltages derived from V^{-}for very slow shutter speeds. By adjusting the scale factor for the slowest shutter speeds, a simple correction for reciprocity failure can be provided. Note that the two amplifiers can be used in other ways, as well; see applications section.

Figure 2: Track-Hold and Film Speed-Meter Sensitivity Circuit

Figure 3: Calculated Aperture and Shutter Speed Circuits

The final major function is an antilog circuit which converts the required shutter speed input (either calculated or set) to a high impedance current output over more than 13 octaves. Feeding this current into a suitable capacitor produces a ramp voltage suitable for driving standard electronic shutter control comparators. The circuit as presently constructed uses the track and hold control input to disable the antilog output during track, although this inter-connect is readily removed (metal mask option) if full-time antilog (or full-time track) operation is required. The equivalent schematic for this portion of the device is shown in Fig. 4. The instrumentation amplifier IA2 does the reverse temperature coefficient correction to that of IA1, and drives the emitter of Q_{3}, the antilog transistor. The current output, from the collector of Q3, has a high output impedance from analog common to the maximum voltage allowed on $\mathrm{Q}_{3},(+10 \mathrm{~V})$. Fig. 4 also shows a typical shutter control comparator using the current from Q3 to time the shutter closure solenoid. The operation is as follows: when the shutter release occurs, SW1 opens first, putting the circuit in hold and antilog mode. The timing current stabilizes and flows through SW2, which opens at the same time as the shutter opens. The current charges C_{s} down till it reaches analog common, when the (external) comparator trips the shutter.closing solenoid S1: The adjustment at the input to the TS pin corrects for scale factor errors in the antilog circuit. These errors will track very closely between IA1 and IA2, and if no use is made of intermediate signals to drive scale-sensitive devices such as analog meters, the two scale factor adjustments can be omitted, and correction made with one adjustment to the aperture, film, and shutter speed switch voltage.

The remainder of the ICL8061 circuit contains the ground, or analog common, and reference lines. The equivalent

Figure 4: Shutter Timing and Control Circuit schematic for this section is shown in Fig. 5. This figure also shows the recommended floating battery and external bypass capacitor connections.

Figure 5: Equivalent Circuit, Analog Common and Reference Voltage
Since the various sections of the circuit are fairly independent, the individual blocks can be reconfigured readily. The analog common line should be treated with care, however, as it connects to almost all portions of the circuit.

FUNCTIONAL BLOCK DIAGRAM

ICL8062 Alarm \& LED Control Circuit

The Alarm and LED control circuit compares the voltages corresponding to shutter speed, calculated and actual aperture, and reference and track-hold-control (from the ICL8061) with the maximum and minimum aperture and shutter speed voltages, together with a slow shutter speed warning limit from the external circuits, and a divided battery voltage, and drives three LEDs or similar indicators, alarms, etc. If the calculated and actual aperture values are close enough ($\pm 1 / 4$ f-stop, typically), fall within acceptable limits, the shutter speed is within limits, and the control input is high (corresponding to "track" in the ICL8061 circuit), the "OK" output is on (pulled low) and the others are off. If everything is the same, except that the shutter speed is between the slow warning and the lowest allowed limit, the "OK" output flashes on and off at a frequency controlled by an external RC network. In either case, if the control input goes low (the "hold" position if tied to the ICL8061), the same oscillator will flash the "OK" output. The user can time long manual exposures by counting flashes.
If the calculated and actual apertures are different, the "OK" output goes high, and depending on whether the actual aperture is above or below the calculated value, the corresponding "under" or "over" outputs will go low. Using these outputs to drive a motor results in a simple aperture controlled motor drive. A deadband, together with a small amount of hysteresis, is provided to prevent "hunting". If the actual aperture reaches either the minimum or maximum value, and still does not agree with the calculated value, both "over" and "under" outputs go low, preventing the motor from trying to overdrive the aperture system. If the actual and indicated values agree, but are at or outside the minimum or maximum value, either "over" or "under" will go low, and "OK" go high. This allows aperture setting to be done electronically on the camera body, without regard to limits of separate lenses. Circuits showing these features are given in the applications section.

If the shutter speed is either too high or too low, or the battery voltage falls below a settable multiple of the reference voltage, both "over" and "under" will go low, and "OK" will go high.
Since aperture value and shutter speed are electronically interchangeable signals, the descriptions of function above may be interchanged freely, and the low battery detect can also be used for other functions. The minimum and maximum shutter speed and aperture limit values may also be used for other functions, if desired. The outputs are capable of guaranteed drive of 10 mA each, but are limited against excessive currents if short circuited.
The comparators are similar to LM139 devices in principle, and the logic shown in the block diagram is mainly RTL (or DCTL). The various comparators have built-in offsets to avoid external "tweaking" of voltage levels for system compatibility.
The oscillator schematic is shown in more detail in Fig. 6. In some applications, the "OSC IN" pin can be used as an additional control input. In this case, "OSC OUT" provides an inverted logic output, with substantial hysteresis.

Figure 6: Equivalent Schematic 8062 Oscillator

APPLICATIONS

Since all inputs to the system，other than the photocell itself， are of logarithmic values（namely ASA rating，aperture value， f－stop and speed settings，etc．），and normal controls are most desirably set up on the same basis，the tapped potentiometers to feed these values to the circuit are linear， avoiding the difficulties of logarithmic potentiometers．The same reference and scale values are used for all control inputs and outputs，allowing for ease in setting up and calibration of the system．The specifications of the circuits are such that the set－up requirements in the minimal system can be reduced to one sensitivity adjustment（to control photocell sensitivity，shutter timing capacitor value，and all system offset voltages）and one scale value adjustment to equalize the internal and external scale calibration．The most
sophisticated system can be set up with one extra scale adjustment（for meter scale equalization）and one photocell voltage adjustment，if needed，and possibly an adjustment for flasher frequency．
Some typical applications connections are shown in the following figures．The selection is intended to be illustrative， rather than exhaustive，and many other combinations are possible．Also，custom modifications of the circuits can be made to facilitate certain applications．Consult the factory for details．Note that in some cases it may be necessary to use a $4.7 \mathrm{k} \Omega$ pull down resistor from A 3 to V^{-}；it may also be required to insert a resistor in series with C_{H} to obtain a TC of 1 ms ．Table I shows a typical set of voltage values corres－ ponding to the normal photographic variables．

Table 1

Voltage	+200	180	160	140	120	100	+80	+60	+40	+20	0	-12	-14	-60	-80	mV
Shutter speed	1000	500	250	120	60	30	15	8	4	2	1	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$	$1 / \mathrm{sec}$
TV $_{\mathrm{V}}, \mathrm{A}_{\mathrm{v}}$	+10	+9	+8	+7	+6	+5	+4	+3	+2	+1	0	-1	-2	-3	-4	
Aperture（f\＃）	32	22	16	11	8	5.6	4	2.8	2	1.4	1	$(.7)$				
EV	+10	+9	+8	+7	+6	+5	+4	+3	+2	+1	0	-1	-2	-3	-4	
BV（IASA 100）	+5	+4	+3	+2	+1	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	
SV	+10	+9	+8	+7	+6	+5	+4	+3	+2	+1	0					
ASA	3200	1600	800	400	200	100	50	25	12	6	3					
DIN	36	33	30	27	24	21	18	15	12	9	6					

Figure 7：Simple Automatic Aperture Camera

Camera has fixed shutter speed．The shutter pre－release switch applies power to the circuit；photocell current， together with film speed（e．g．from cartridge sensor） activates aperture vane to give correct exposure．If the light
level is too low，the optional LED comes on．If a flash cube is inserted，either fixed or focus related BV is used．Film speed correction is retained．Only one set－up adjustment may be required．

Figure 8: Servo-Control Movie Camera

During interframe time, mirror-shutter directs light to photocell, and the shutter switch activates track circuit. A_{3} and A_{4} together with the aperture vane act as a servo loop to maintain constant light level on the photocell. During film exposure, A_{3} holds value, and the vane remains still. Correc-
tions are made for film-speed and frame-rate. The same circuit can be used for a mechanical shutter still camera, with shutter speed replacing frames $/ \mathrm{sec}$. The TRK/HLD pin can be tied high if the photocell is illuminated during exposure.

Figure 9: Simple Automatic Shutter Camera
Camera has fixed aperture. Pre-release S_{1} applies power, S_{2} establishes antilog circuit, S_{3} signals shutter opening, solenoid closes shutter

Figure 10: Electronic Shutter Servo Control Camera
Similar to Fig. 8, but has electronic shutter.

Figure 11: Automatic Clamp-Aperture S.L.R. Camera

Meter indicates calculated aperture. The "actual aperture" input tracks the lens aperture as it closes just before exposure, and when it equals the calculated value the
aperture clamp solenoid is tripped. The circuit can be used with either mechanical or electronic shutters.

Figure 12: Automatic-Manual Shutter Control Camera

Amax is metering aperture of lens, A_{s} is shooting aperture. Shutter speed control has 'Auto' position \& manual settings.

Figure 13: Motor-Driven Auto Aperture Camera

Motor is driven until set (or actual) aperture is equal to calculated aperture. If either maximum or minimum aperture is reached, motor stops. If satisfactory balance is achieved,
'O.K.' L.E.D. comes on. If chosen shutter speed is below preset value, L.E.D. will blink.

Figure 14: Aúto-Manual Aperture Auto-Manual Shutter Camera

Motor drive is similar to Figure 13. 'Manual-Manual' position gives L.E.D. indication of 'high/correct/low' settings. In 'Auto-Auto' position, Sx connects Rx in the circuit, so that both aperture and shutter speed are controlled. Rx sets the weighting of shutter to aperture. Both shutter-preferred and
aperture-preferred operations are achieved by placing the other control to automatic (automatic aperture ties in motor control system). Metering can be done at open-aperture or closed-aperture via S4. Monitor meters can be connected to the outputs of A_{4} and A_{5} if desired.

Figure 15: Digital Readout Circuits

PROM or EPROM can be programmed to read any scale. Direct readout is suitable for 'EV' scale as shown. Note that
converters are near -ve common mode limit.

CHIP TOPOGRAPHY, ICL8061/D

PACKAGE DIMENSIONS

1. Lead no. 1 identified by dot or notch.
2. Dimensions in inches (millimeters).

CHIP TOPOGRAPHY, ICL8062/D

Precision Comparator

FEATURES

- Low Input Current $\leq 250 n A$
- Low Power Consumption 30 mW
- Large Input Voltage Range $\geq \pm 10 \mathrm{~V}$
- Low Offset Voltage Drift $3 \bar{\mu} \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Output Swing Compatible with Bipolar Logic

GENERAL DESCRIPTION

The Intersil 8001 integrated circuit is a monolithic voltage comparator featuring low input currents, low power consumption, and 250 ns response time. A versatile output stage enables the designer to control the output voltage swing. The use of thin film resistors ensures excellent long term stability and the device is particularly suitable for low power space and airborne applications.

SCHEMATIC DIAGRAM

ORDERING INFORMATION

NOTES and Additional Electrical Characteristics on Page 2.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Internal Power Dissipation (Note 1)	500 mW
Peak Output Current	15 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$00^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\quad(8001 \mathrm{C})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(8001M)	$300^{\circ} \mathrm{C}$

EQUIVALENT CIRCUIT

CONNECTION DIAGRAM

NOTE: Pin 5 connected to case.

PACKAGE DIMENSIONS

NOTES: All dimensions in inches. Leads are gold-plated Kovar. Package weight is 1,32 grams.

ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}^{++}=15 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\right.$ unless otherwise specified)

NOTE 1: Rating applies for ambient temperatures to $+70^{\circ} \mathrm{C}$.
NOTE 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Positive output level can be adjusted below 9 V by changing V^{+}. See circuit.
NOTE 4: The response time specified is for a 100 mV input step with 5 mV overdrive.
NOTE 5: Input bias current is independent of V^{-}.

CIRCUIT NOTES:

VOLTAGE OFFSET NULL CIRCUIT

OUTPUT LEVEL COMPATIBLE WITH TTL, DTL, ETC.

NOTE: As with all high gain comparators, care must be taken to avoid feedback between output and input. Where possible, hysteresis should be used to provide a small deadband.

TYPICAL PERFORMANCE CURVES

POWER CONSUMPTION
AS A FUNCTION OF
AMBIENT TEMPERATURE

VOLTAGE TRANSFER CHARACTERISTICS

INPUT BIAS CURRENT
AS A FUNCTION OF
V^{++}(NOTE 5)

COMMON MODE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

RESPONSE TIME FOR VARIOUS INPUT
OVERDRIVES

INPUT OFFSET CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

POSITIVE OUTPUT SWING AS A FUNCTION OF V^{+}

RESPONSE TIME FOR
VARIOUS INPUT
OVERDRIVES

CIRCUIT AND APPLICATION NOTES

SIMPLE VOLTAGE LEVEL DETECTOR

CONNECTION TO PROVIDE LOGICAL OR OF TWO COMPARATOR OUTPUTS

WINDOW DETECTOR

COMPARATOR WITH HYSTERESIS

USE OF EXTERNAL NAND GATES TO PROVIDE OUTPUT STORAGE

A TO D CONVERTER

LM111, LM211, LM311 Precision Voltage Comparators

FEATURES

- Differential Input Voltage Range $- \pm 30 \mathrm{~V}$
- Input Common Mode Voltage Range $- \pm 14 \mathrm{~V}$
- Operating Power Supplies +5 V to $\pm 18 \mathrm{~V}$
- Input Offset Current - 20 nA max
- Input Offset Voltage - 3 mV max
- Output Flexibility $-35 \mathrm{~V} ; 50 \mathrm{~mA}$;
T^{2} L Compatible

- Strobed Output \& Input Offset Adjustable

GENERAL DESCRIPTION

The LM111 Series comparators are designed for precision applications where the input and output characteristics of 710 and 106 high speed comparators are not adequate for low level signal detection and high level output drive capability. They are designed to operate from supplies up to $\pm 18 \mathrm{~V}$ and single supplies down to +5 V . The output is capable of driving. TTL, RTL, DTL as well as MOS and lamps or relays. Input offset voltage balancing and TTL strobe capability are provided. Outputs can be wire OR'ed.

Switching speeds to TTL logic levels are typically 250 ns.
CONNECTION DIAGRAMS*

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS (Note 3)

PARAMETER	CONDITIONS	LM111/LM211			LM311			UNITS
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	3.0		2.0	7.5	mV
Input Offset Current (Note 4)	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		4.0	10		6.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100		100	250	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200			200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200			200		ns
Saturation Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
	$\mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}$, $\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$		0.75	1.5				
	$\mathrm{VIN}_{\text {IN }}<-10 \mathrm{mV}$, Іоטt $=50 \mathrm{~mA}$					0.75	1.5	V
Strobe on Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0			3.0		mA
Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
........	$\begin{aligned} & V_{\text {IN }} \geq 5 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \\ & V_{\text {IN }} \geq 10 \mathrm{mV}, V_{\text {OUT }}=35 \mathrm{~V} \end{aligned}$		0.2	10		0.2	50	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			4.0			10	mV
Input Offset Current (Note 4)				20			70	$n A$
Input Bias Current				150			300	nA
Input Voltage Range			± 14			± 14	-	V
Saturation Voltage	$\mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0$							
	$\begin{aligned} & V_{I N} \leq-6 \mathrm{mV}, I_{\operatorname{SINK}} \leq 8 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }} \leq-10 \mathrm{mV}, I_{\text {SINK }} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4		0.23	0.4	V
Output Leakage Current (Note 6)	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5				$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	;	4.1	5.0	mA

NOTE 1: This rating applies for $£ 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
NOTE 2: The maximum junction temperature of the 111 is $150^{\circ} \mathrm{C}$, that of the 211 is $110^{\circ} \mathrm{C}$ while that of the 311 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten, 0.03 -inch-wide, 2 -ounce copper conductor. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
NOTE 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the operating temperature range, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply vol tage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
NOTE 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
NOTE 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
NOTE 6: This specification applies for Pin $1-15 \mathrm{~V}, \mathrm{P}$ in $7+20 \mathrm{~V}$.

TYPICAL PERFORMANCE

TYPICAL PERFORMANCE (Cont)

DEFINITION OF TERMS

INPUT OFFSET VOLTAGE: The voltage between the input terminals required to make the output voltage greater than or less than specified voltages.

INPUT OFFSET CURRENT: The difference between the two input currents for which the output will be driven higher than or lower than specified voltages.
INPUT BIAS CURRENT: The average of the two input currents.
INPUT VOLTAGE RANGE: The range of voltage on the input terminals (common mode) over which the offset specifications apply.

VOLTAGE GAIN: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.
RESPONSE TIME: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.
SATURATION VOLTAGE: The low output voltage level with the input drive equal to or greater than a specified value.
STROBE ON CURRENT: The current that must be drawn out of the strobe terminal to disable the comparator.

OUTPUT LEAKAGE CURRENT: The current into the output terminal with a specified output voltage relative to the ground pin and the input drive equal to or greater than a given value.

SUPPLY CURRENT: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.

TYPICAL APPLICATIONS

TTL COMPATIBLE OUTPUT SWING

HIGH LEVEL TTL COMPATIBLE OUTPUT SWING

MOS LOGIC COMPATIBLE OUTPUT SWING

USING CLAMP DIODES TO

 IMPROVE RESPONSE
*INPUT POLARITY REVERSED WHEN USING PIN 1 AS OUTPUT

INCREASING INPUT STAGE SLEW RATE*

*INCREASES TYPICAL COMMON MODE SLEW FROM $7.0 \mathrm{~V} / \mu \mathrm{s}$ TO $18 \mathrm{~V} / \mu \mathrm{s}$

PACKAGE DIMENSIONS

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE TYPE	ORDER NUMBERS
111	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 DIP	LM1111T LM111D
		Flat Pack	LM111F
211	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-99	LM211T
		DIP	LM211D
311	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Flat Pack	LM211F
		TO-99	LM311T
		DIP	Flat Pack
			LM311D

LH2111, LH2311 Dual Voltage
 Comparator

FEATURES

- Wide operating range $- \pm 15 \mathrm{~V}$ to a single +5 V
- Low input currents - 6 nA
- High sensitivity - $10 \mu \mathrm{~V}$
- Wide differential input range - $\pm 30 \mathrm{~V}$
- High output drive - 50V, 50 mA

GENERAL DESCRIPTION

The LH2111 series of dual voltage comparators consist of two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, and reduced insertion cost.
The LH2111 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range, and the LH 2311 is specified for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

AUXILIARY CIRCUITS

OFFSET BALANCING

DRIVING GROUNDREFERRED LOAD

INCREASING INPUT STAGE CURRENT*

COMPARATOR AND SOLENOID DRIVER

STROBING OFF BOTH INPUT*

 AND OUTPUT STAGES

TTL INTERFACE WITH HIGH LEVEL LOGIC

ORDER NUMBER LH2111D OR LH2311D

ABSOLUTE MAXIMUM RATINGS

\qquad
Total Supply Voltage 36 V
Output to Negative Supply Voltage (Vout - V-) 50 V
Ground to Negative Supply Voltage (GND - V-) 30V
Differential Input Voltage .. $\pm 30 \mathrm{~V}$
Input Voltage (Note 1) ... $\pm 15 \mathrm{~V}$
Power Dissipation (Note 2) . .. 500 mW
Output Short Circuit Duration ... 10 sec
Operating Temperature Range LH 2111 $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LH2311 . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Ránge . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) .. $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Each side (Note 3)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2111	LH2311	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$	3.0	7.5	mV Max
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	50	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	250	
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	200	200	V/mV Typ
Response Time (Note 5)	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	200	200	ns Typ
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \text { IOUT }=50 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	- 1.5	1.5	V Max
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.0	3.0	mA Typ
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \text { V OUT }=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	10	50	nA Max
Input Offset Voltage (Note 4)	Rs $\leq 50 \mathrm{k}$	4.0	10	mV Max
Input: Offset Current (Note 4)	\%	20	70	nA Max
Input Bias Current		150	300	
Input Voltage Range		± 14	± 14	V Typ
Saturation Voltage	$\begin{aligned} & \mathrm{V}+\geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V} \operatorname{IN} \leq-5 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 8 \mathrm{~mA} \end{aligned}$	0.4	0.4	V Max
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	7.5	mA Max
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.0	5.0	

Note: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature is $150^{\circ} \mathrm{C}$. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the LH 2111 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LH2311, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. For the LH2311, $\mathrm{VIN}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

LM139/LM239/LM339/ LM139A/LM239A/LM339A/ LM2901/LM3302 Voltage Comparators

FEATURES

- Wide single supply voltage range or dual supplies

LM139 series, LM139A series, LM2901 LM3302
$2 V_{D C}$ to $36 V_{D C}$ or $\pm 1 V_{D C}$ to $\pm 18 V_{D C}$
$2 V_{D C}$ to $28 V_{D C}$
or $\pm 1 \mathrm{~V}_{\mathrm{DC}}$ to $\pm 14 \mathrm{~V}_{\mathrm{DC}}$

- Very low supply current drain (0.8 mA)independent of supply voltage ($2 \mathrm{~mW} /$ comparator at $+5 \mathrm{~V}_{\mathrm{DC}}$)
- Low input biasing current 25 nA
- Low input offset current and offset voltage $\pm 5 \mathrm{nA}$ $\pm 3 \mathrm{mV}$
- Input common-mode voltage range includes gnd
- Differential input voltage range equal to the power supply voltage
- Low output

250 mV at 4 mA saturation voltage

- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

GENERAL DESCRIPTION

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic -where the low power drain of the LM339 is a distinct advantage over standard comparators.

SCHEMATIC AND CONNECTION DIAGRAMS

DUAL-IN-LINE AND FLAT PACKAGE

ORDERING INFORMATION

Order Number: LM139D, LM139AD,
LM239D or LM239AD

Order Number: LM139F, LM139AF, LM239F or LM239AF

Order Number: LM139J, LM139AJ, LM239J, LM239AJ, LM339J, LM339AJ, LM2901J or LM3302J

Order Number: LM339N, LM339AN, LM2901N or LM3302N

ABSOLUTE MAXIMUM RATINGS

$\left.\begin{array}{lcc} & \begin{array}{c}\text { LM139/LM239/LM339 } \\ \\ \text { LM139A/LM239A/LM339A }\end{array} & \text { LM3302 } \\ \text { LM2901 }\end{array}\right)$

NOTE:
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}\right.$, Note 4)

PARAMETER	CONDITIONS	LM139A			LM239A, LM339A			L.M139			UNITS
		MIN.	TYP.	MaX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ;$ (Note 9)		± 1.0	$\pm \pm 2.0$,	± 1.0	± 2.0		± 2.0	± 5.0	$\mathrm{mV}_{\text {DC }}$
Input Bias Current	$\mathrm{I}_{\mathrm{IN}_{(+)}}$or $\mathrm{I}_{\mathrm{IN}_{(-)}}$with Output in Linear Range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 5)		25	100		25	250		25	100	$n A_{D C}$
Input Offset Current			± 3.0	± 25		± 5.0	± 50		$\pm 3: 0$	± 25	$n A_{\text {dc }}$
Input Common-Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 6)	0		$\mathrm{V}^{+}-1.5$	0	-	$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	$V_{D C}$
Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on all Comparators, } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.8	2.0		0.8	2.0		0.8	2.0	$m A_{D C}$ $m A_{D C}$
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{oc}}\left(\mathrm{To}_{0}\right. \\ & \text { Support Large } \mathrm{V}_{0} \text { Swing), }, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	200		50	200	i		200		V / mV
Large Signal Response Time	$\begin{aligned} & V_{I N}=T T L \text { Logic Swing, } V_{\text {REF }}= \\ & 1: 4 V_{D C}, V_{\text {RL }}=5 V_{D C}, R_{L}=5.1 \mathrm{k} \Omega ; \\ & T_{A}=25^{\circ} C \end{aligned}$		300			300			300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC},}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, (Note 7) } \end{aligned}$		1.3			1.3			1.3		$\mu \mathrm{S}$
Output Siṇk Current	$\begin{aligned} & V_{I N(-)} \geqslant 1 V_{D C}, V_{I N+1}=0, \\ & V_{0} \leqslant 1.5 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	6.0	16		6.0	16		6.0	16		$\mathrm{mA}_{\text {DC }}$
Saturation Voltage	$\begin{aligned} & V_{1 N(-)} \geqslant 1 V_{D C}, V_{\text {IN(}(1)}=0 \\ & I_{S I N K} \leqslant 4 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		250	400			400		250	400	mV VC
Output Leakage Current	$\begin{aligned} & V_{1 N(+)} \geqslant 1 V_{D C}, V_{I N(-)}=0, \\ & V_{0}=5 V_{D C}, T_{A}=25^{\circ} C \end{aligned}$		0.1			0.1	:		$0: 1$		$n A_{\text {DC }}$:
Input Offset Voltage	(Note 9)			4.0			4.0			9.0	mV VC
Input Offset Current				± 100			± 150			± 100	$n A_{\text {dc }}$
Input Bias Current	$\mathrm{I}_{\mathrm{IN}_{(+)}}$or $\mathrm{I}_{\mathrm{IN}_{(-)}}$with Output in Linear Range			300	.		400			300	$n A_{\text {DC }}$
Input Common-Mode Voltage Range		0		$\mathrm{V}^{+}-2.0$	0		$\mathrm{V}+$-2.0	0		V+-2.0	$V_{D C}$
Saturation Voltage	$\begin{aligned} & V_{\mathrm{IN(木)}^{2} \geqslant 1 \mathrm{~V}_{\mathrm{D},}, \mathrm{~V}_{\mathrm{IN(+)}}=0,} \\ & \mathrm{I}_{\mathrm{SINK}} \leqslant 4 \mathrm{~mA} \end{aligned}$			700			700			700	mV DC
Output Leakage Current	$\begin{aligned} & V_{I N+1} \geqslant 1 V_{D C}, V_{I N(-)}=0, \\ & V_{0}=30 V_{D C} \end{aligned}$			1.0			1.0			1.0	$\mu \mathrm{A} \mathrm{DC}^{\prime}$
Differential Input Voltage	$\begin{aligned} & \text { Keep all } V_{I N^{\prime} ' s \geqslant 0} \text { if } V_{D C} \text { (or } V^{-}, \\ & \text {is } \text {, (Note 8) } \end{aligned}$			${ }^{+}+$		\because	$\overline{V^{+}}$			36	$V_{D C}$

ELECTRICAL CHARACTERISTICS（CON＇T）（ ${ }^{+}=5 \mathrm{~V}_{\mathrm{DC}}$ ，Note 4）

PARAMETER	CONDITIONS	LM239，LM339			LM2901			LM3302			UNITS
		MIN．	TYP．	MaX．	MIN．	TYP．	MaX．	MIN．	TYP．	max．	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，（Note 9）		± 2.0	± 5.0		± 2.0	± 7.0		± 3	± 20	$\mathrm{mV}_{\mathrm{oc}}$
Input Bias Current	$\mathrm{I}_{\mathrm{IN}_{(+1}}$ or $\mathrm{I}_{\left.\mathrm{IN}_{(-1}\right)}$ with Output in Linear Range，$T_{A}=25^{\circ} \mathrm{C}$ ，（Note 5）		25	250		25	250		25	500	$\mathrm{nA}_{\mathrm{DC}}$
Input Offset Current	$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN(-)},}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 5.0	± 50		± 5	± 50		± 3	± 100	$n A_{\text {DC }}$
Input Common－Mode Voitage Range	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$ ，（Note 6）	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0	\cdots	$\mathrm{V}^{+}-1.5$	$V_{D C}$
Supply Current－	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on all Comparators, } \mathrm{T}_{\hat{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.8	2.0		$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$		0.8	2	$\begin{aligned} & \mathrm{mA}_{\mathrm{DC}} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \text { (} \mathrm{To}_{0} \\ & \text { Support Large } \mathrm{V}_{\mathrm{O}} \text { Swing), } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		200		25	100		2	30		V / mV
Large Signal Response Time	$\begin{aligned} & V_{I N}=T T L \text { Logic Swing, } V_{\text {REF }}= \\ & 1.4 V_{D C}, V_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, R_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		300			300			300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{PL}}=5 \mathrm{~V}_{\mathrm{Dc}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 7) \end{aligned}$		1.3			1.3			1.3		$\mu \mathrm{S}$
Output Sink Current	$\begin{aligned} & V_{1 N(-)} \geqslant 1 V_{\mathrm{DC}}, V_{V_{1 N(+)}}=0, \\ & V_{0} \leqslant 1.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	6.0	16		6.0	16		2.0	16		$\mathrm{mA}_{\mathrm{DC}}$
Saturation Voltage	$\begin{aligned} & V_{V_{(N-)} \geqslant 1 V_{D C},} V_{I N(+)}=0, \\ & I_{\text {SINK }} \leqslant 4 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		250	400			400		250	500	mV DC
Output Leakage Current	$\begin{aligned} & V_{1 N(+)} \geqslant 1 V_{D C}, V{ }^{(N(-)}=0, \\ & V_{0}=5 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.1			0.1	；		0.1		$\mathrm{nA}_{\mathrm{DC}}$
Input Offset Voltage	（Note 9）			9.0		9	15			40	mV DC
Input Offset Current				± 150		50	200			300	$\mathrm{nA}_{\mathrm{oc}}$
Input Bias Current	$\mathrm{I}_{\mathrm{IN}(+)}$ or $\mathrm{I}_{\mathrm{IN}(-)}$ with Output in Linear Range			400		200	500			1000	$n A_{\text {oc }}$
Input Common－Mode Voltage Range		0		$\mathrm{V}+-2.0$	0		$\mathrm{V}^{+}-2.0$	0		$\mathrm{V}^{+}-2.0$	V_{DC}
Saturation Voltage	$\begin{aligned} & V_{V_{N(-)}} \geqslant 1 V_{D C}, V_{V_{N(+)}}=0, \\ & I_{\text {SINK }} \leqslant 4 \mathrm{~mA} \end{aligned}$			700		400	700			700	m_{DC}
Output Leakage Current	$\begin{aligned} & V_{V_{N(+1}} \geqslant 1 V_{D C}, V_{I N(-)}=0, \\ & V_{0}=30 V_{D C} \end{aligned}$			1.0			1.0			1.0	$\mu \mathrm{A}_{\text {DC }}$
Differential Input Voltage	$\begin{aligned} & \text { Keep all } V_{I N} \text { 's } \geqslant 0 V_{D C} \text { (or } V^{-}, \\ & \text {if used), (Note 8) } \end{aligned}$			36	0		V^{+}			$\mathrm{V}_{\text {cc }}$	V_{DC}

Note：
1．For operating at high temperatures，the LM339／LM339A，LM2901，LM3302 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board，operating in a still air ambient．The LM239 and LM139 must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature．The low bias dissipation and the＂ON－OFF＂characteristic of the outputs keeps the chip dissipation very small（ $\mathrm{PD}_{\mathrm{D}} \leq 100 \mathrm{~mW}$ ），provided the output transistors are allowed to saturate．
2．Short circuits from the output to $\mathrm{V}+$ can cause excessive heating and eventual destruction．The maximum output current is approximately 20 mA independent of the magnitude of V^{+}．
3．This input current will only exist when the voltage at any of the input leads is driven negative．It is due to the collector－base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps．In addition to this diode action，there is also lateral NPN parasitic transistor action on the IC chip．This transistor action can cause the output voltages of the comparators to go to the V^{+}voltage level （or to ground for a large overdrive）for the time duration that an input is driven negative．This is not destructive and normal output states will re－ establish when the input voltage，which was negative，again returns to a value greater than－ $0.3 \mathrm{~V}_{\mathrm{DC}}$ ．
4．These specifications apply for $\mathrm{V}^{+}=5 \mathrm{VDC}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ ，unless otherwise stated．With the LM239／LM239A，all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ，the LM339／LM339A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ ，and the LM2901，LM3302 temperature range is $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ．
5．The direction of the input current is out of the IC due to the PNP input stage．This current is essentially constant，independent of the state of the output so no loading change exists on the reference or input lines．
6．The input common－mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V ．The upper end of the common－mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$ ，but either or both inputs can go to +30 V 酸 without damage．
7．The response time specified is for a 100 mV input step with 5 mV overdrive signals 300 ns can be obtained，see typical performance characteristics section．
8．Positive excursions of input voltage may exceed the power supply level．As long as the other voltage remains within the common－mode range， the comparator will provide a proper output state．The low input voltage state must not be less than－ $0.3 \mathrm{~V}_{\mathrm{DG}}$（or 0.3 VDC below the magnitude of the negative power supply，if used）．
9．At output switch point，$V_{O}=1.4 \mathrm{~V}_{D C}, R_{S}=0 \Omega$ with $\mathrm{V}+$ from $5 \mathrm{~V}_{\mathrm{DC}}$ ；and over the full input common－mode range（ $0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$ ）．
10．For input signals that exceed $V_{c c}$ ，only the overdriven comparator is affected．With a 5 V supply Vin should be limited to 25 V max，and a limiting resistor should be used on all inputs that might exceed the positive supply．

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES-POSITIVE TRANSITION

TYPICAL PERFORMANCE CHARACTERISTICS LM2901

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES-NEGATIVE TRANSITION

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES-POSITIVE TRANSITION

LM139/LM239/LM339/LM139A/LM239A/LM339A/LM2901/LM3302

APPLICATION HINTS

The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.
All pins of any unused comparators should be grounded.
The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to 30 V D.
It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.

The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+}terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega \mathrm{r}_{\text {sat }}$ of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.

TYPICAL APPLICATIONS $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$

AND GATE
OR GATE

TYPICAL APPLICATIONS (CON'T) $\left(\mathrm{V}^{+}=15 \cdot \mathrm{~V}_{\mathrm{DC}}\right)$

ONE-SHOT MULTIVIBRATOR WITH INPUT LOCK OUT

LARGE FAN-IN AND GATE

COMPARING INPUT VOLTAGES OF OPPOSITE POLARITY

BASIC COMPARATOR

*OR LOGIC GATE WITHOUT PULL-UP RESISTOR

OUTPUT STROBING

LOW FREQUENCY OP AMP

CRYSTAL CONTROLLED OSCILLATOR

LOW FREQUENCY OP AMP $\left(V_{O}=O V\right.$ FOR $\left.V_{I N}=O V\right)$

TRANSDUCER AMPLIFIER

ZERO CROSSING DETECTOR (SINGLE POWER SUPPLY)

SPLIT-SUPPLY APPLICATIONS $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V}-=-15 \mathrm{~V}_{\mathrm{DC}}\right)$

ZERO CROSSING DETECTOR

COMPARATOR WITH A NEGATIVE REFERENCE

LM102, LM202, LM302, LM110, LM210, LM310
High Performance Voltage Followers

FEATURES

- Low Input Current - 7 to 30 nA Max
- High Slew Rate - 10 to $30 \mathrm{~V} / \mu \mathrm{s}$
- Wide Bandwidth - 20 MHz (LM110/LM310)
- Internal Frequency Compensation
- Interchangeable with 741 in Follower Applications

GENERAL DESCRIPTION

The LM102/LM302 and LM110/LM310 are monolithic high performance voltage followers. In buffer applications they offer substantial advantages compared with general purpose operational amplifiers: input current, bandwidth, and slew rate are all significantly improved. Applications include high speed sample and hold circuits, instrumentation amplifiers, active filters, as well as general purpose buffers.

For new designs the LM110/LM310 is recommended.

EQUIVALENT CIRCUIT

OFFSET BALANCING

INCREASING NEGATIVE SWING UNDER LOAD

- May te added to reduce internal dissipation.

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS 102/202/302 (Note 4)

PARAMETER	CONDITIONS .	LM102			LM202			LM302			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Offset Voltage			2	5		3.	10		$5 \cdots$	$15 \cdot$	mV
Average Temperature Coefficient of Offset Voltage		' 1	$6 \cdots$			15					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Current		:.	3	10		7	15 .		$10 \times$	30	nA
Input Resistance		10^{10}	10^{12}		10^{10}	10^{12}		10^{9}	10^{12}		Ω
Voltage Gain	$R_{L} \geq 10 \mathrm{k} \Omega$	0.999	0.9996		0.999	0.9995	1.000	0.998	0.9995	- 1.000	
Output Resistance			0.8	2.5		0.8	2.5		0.8	2.5	Ω
Output Voltage Swing (Note 6)	$\mathrm{R}_{\mathrm{L}} \geq 8 \mathrm{k} \Omega$	± 10	± 13		± 10			± 10			V
Supply Current		3.5	5.5		3.5	5.5		3.5	5.5	mA
Positive Supply Rejection		60			60			60			dB
Negative Supply Rejection		70			70			70			dB
Input Capacitance				3.0		3.0			3.0		pF
Offset Voltage	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		-	7.5			15			20	mV
Input Current	$T_{A}=T_{\text {MAX }}$		3	10		1.5	5.0	\cdots	3.0	15	nA.
	$T_{A}=T_{\text {MIN }}$		30	100		30	50		20 .	50	nA
Voltage Gain	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C} \\ & R_{L} \geq 10 \mathrm{k} \Omega \end{aligned}$	0.999			\because						
Supply Current	$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$		2.6	4.0							mA

ELECTRICAL CHARACTERISTICS 110/210/310 (Note 5)

NOTE 1: The maximum junction temperature of the 102 and 110 is $150^{\circ} \mathrm{C}$, that of the 202 and 210 is 100 C, while that of the 302 and 310 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, 'devices in the TO. 5 package must be derated based on a thermal resistance of 150 " C / W. junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$. junction to case. For the flat package, the derating is based on a thermal resistance of $185 \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$ inch. thick epoxy glass board with ten, 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is 100 " C / W, junction to ambient.
NOTE 2: For supply voltages less than $: 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\prime \prime} \mathrm{C}$. It is necessary to insert a resistor greater than $2 k \Omega 2$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted NOTE 4: These specifications apply for $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=: 15 \mathrm{~V}$ and $\mathrm{C}_{L} \leq 100 \mathrm{pF}$ unless otherwise noted.
NOTE 5: These specifications apply for $: 5 V \leq V_{S} \leq: 18 V$ and $-55^{\prime \prime} \mathrm{C}<T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the 210 , however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathbf{A}} \leq 85^{\circ} \mathrm{C}$, while for the 310 the limits are $0^{\prime \prime} \mathrm{C} \leq \mathrm{T}_{A}<70^{\circ} \mathrm{C}$.
NOTE 6: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals: See curve.

LM102, LM202, LM302, LM110, LM210, LM310

TYPICAL PERFORMANCE

[^19]
APPLICATIONS

SAMPLE AND HOLD

DEFINITION OF TERMS

OFFSET VOLTAGE: The voltage at the output of the amplifier with the input at zero.

OFFSET VOLTAGE TEMPERATURE DRIFT: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.

INPUT CURRENT: The current into the input of the amplifier with the input at zero.
INPUT RESISTANCE: The ratio of the rated output voltage swing to the change in input current required to drive the output from zero to this voltage.

LARGE SIGNAL VOLTAGE GAIN: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

OUTPUT RESIST:ANCE: The ratio of the change in out-

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE TYPE	ORDER NUMBER
102	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO.99 Flat Pack	LM102T
LM102F			
202	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO.99	LM202T
302	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99	LM302T

put voltage to the change in output current with constant input voltage.

OUTPUT VOLTAGE SWING: The peak output voltage swing, referred to zero, that can be obtained without the large-signal voltage gain falling below the minimum specified value.

SUPPLY CURRENT: The current required from the power supply to operate the amplifier, with no load, anywhere within its linear range.

POWER SUPPLY REJECTION: The ratio of the change in input offset voltage to the change in power supply voltage producing it.

SLEW RATE: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.

PART NUMBER	TEMPERATURE RANGE	PACKAGE TYPE	ORDER NUMBER
110	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 DIP Flat Pack	LM110T LM110D LM110F
210	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-99	DIP
310	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	LM210T TO 99 DIP	LM210D
		LM310T	
LM310D			

LH2110, LH2310 Dual Voltage Follower

FEATURES

- Low input current - 1 nA
- High input resistance-10 $\mathrm{M} \Omega$
- High slew rate - 30V $/ \mu \mathrm{s}$
- Wide bandwidth - 20 MHz
- Wide operating supply range $- \pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Output short circuit protected.

GENERAL DESCRIPTION

The LH2110 series of dual voltage followers consist of two LM110 type followers in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, and reduced insertion cost.
The LH 2110 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range, and the LH2310 is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

CONNECTION DIAGRAM

ORDER NUMBER LH2110D
or LH2310D

AUXILIARY CIRCUITS

INCREASING NEGATIVE SWING UNDER LOAD

May be added to reduce
internal dissipation

OFFSET BALANCING CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) 500 mW
Input Voltage (Note 2) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 3) Continuous
Operating Temperature RangeLH2110 $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LH2310 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Each side (Note 4)

PARAMETER	CONDITIONS	LIMITS		UNITS
		LH2110	LH2310	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.0	7.5	mV Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.0	7.0	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10M	10M	Ω Min
Input Capacitance	:	1.5	1.5	pF Typ
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VS}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega \end{aligned}$. 999	. 999	V/V Min
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.5	2.5	Ω Max
Supply Current (Each Amplifier)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.5	5.5	mA Max
Input Offset Voltage		6.0	10	mV Max
Offset Voltage	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	6	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ
Temperature Drift	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	12	-	$\mu \mathrm{V}$ C Typ
Input Bias Current		10	10	nA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{VOUT}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{kS} \text {. } \end{aligned}$. 999	. 999	V/V Min
Output Voltage Swing (Note 5)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} 10 \mathrm{k} \Omega$	± 10	± 10	V Min
Supply Current (Each Amplifier)	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	4.0	-	mA Max
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq \pm 18 \mathrm{~V}$	70	70	dB Min

Note 1: The maximum junction temperature of the LH 2110 is $150^{\circ} \mathrm{C}$, while that of the LH 2310 is $85^{\circ} \mathrm{C}$. The thermal resistance of the package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$. It is necessary to insert a resistor greater than $2 \mathrm{~K} \Omega$ in series with the inut when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V} S \leq \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified, and for the LH 2310 , all temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and \vee - terminals.

Four Quadrant Analog Multiplier

FEATURES

- $\pm 0.5 \%$ Accuracy
- Internal Op-Amp for Level Shift, Division and Square Root Functions
- Uses Film Resistors for Minimum External Components
- Full ± 10 Volt Input/Output Voltage Range
- Wide Bandwidth - 1 MHz
- Operates with Standard ± 15 Volt Supplies

CONNECTION DIAGRAM

GENERAL DESCRIPTION

The 8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the 8013 makes it ideal for all multiplier applications in control and instrumentation systems.

APPLICATIONS

- Multiplication, Division, Squaring, Square Roots
- RMS Measurements
- Frequency Doubler
- Balanced Modulator and Demodulator
- Electronic Gain Control
- Function Generator and Linearizing Circuits
- Process Control Systems

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Input Voltages (X, Y, Z, $\left.\mathrm{X}_{0}, Y_{0}, Z_{0}\right)$	$\pm \mathrm{V} \mathrm{Supply}$
Lead Temperature $(60 \mathrm{sec})$	$300^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE 1: Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperature above $75^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified $T_{A}=25^{\circ} C^{*}, V_{S}= \pm 15 \mathrm{~V}$, Gain and Offset Potentiometers Externally Trimmed)

THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES

APPLICATIONS INFORMATION

MULTIPLIER Trimming Procedure

1. Set $X_{I N}=Y_{I N}=O V$ and adjust Z_{0} for zero Output.
2. Apply a low frequency sweep ($f_{0} \leq 100 \mathrm{~Hz}$ sine or triangle) of $= \pm 10 \mathrm{~V}$ to $\mathrm{Y}_{1 \mathrm{~N}}$ with $\mathrm{X}_{1 \mathrm{~N}}=0 \mathrm{~V}$ and adjust X_{0} for minimum Output.
3. Apply the sweep signal of Step 2 to $X_{I N}$ with $Y_{\text {iN }}=O V$ and adjust Y_{0} for minimum Output.
4. Readjust Z_{o} as in Step 1, if necessary.
5. With $X_{I N}=10.0 \mathrm{~V}$ dc and the sweep signal of Step 2 applied to Y_{IN}, adjust the Gain potentiometer for Output $=Y_{I N}$. This is easily accomplished with a differential scope plug-in $(A+B)$ by inverting one signal and adjusting Gain control for (Output $-Y_{(N)}$) $=$ Zero.

DIVIDER Trimming Procedure

1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and $10\left(X_{0}, Y_{0}, Z_{0}\right)$ for zero volts.
2. With $Z_{I N}=O V$, trim Z_{0} to hold the Output constant, as $X_{I N}$ is varied from -10 V through -1 V .
3. With $Z_{I N}=O V$ and $X_{I N}=-10.0 \mathrm{~V}$ adjust Y_{0} for zero Output voltage.
4. With $Z_{I N}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust X_{0} for minimum worst-case variation of Output as $X_{I N}$ is varied from -10 V to -1 V .
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With $Z_{I N}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust the gain control until the output is the closest average around +10.0 V $\left(-10 \mathrm{~V}\right.$ for $\left.Z_{I N}=-X_{I N}\right)$ as $X_{I N}$ is varied from -10 V to -3 V .

SQUARE ROOT Trimming Procedure

1. Connect the 8013 in the Divider configuration.
2. Adjust Z_{0}, Y_{0}, X_{0} and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3. Convert to the Square Root configuration by connecting $X_{\text {IN }}$ to the Output and inserting a diode between Pin 4 and the Output node.
4. With $Z_{I N}=O V$ adjust Z_{o} for zero Output voltage.

TYPICAL APPLICATIONS

MULTIPLICATION

DIVISION

POTENTIOMETERS FOR

TRIMMING OFFSET AND FEEDTHROUGH

SQUARE ROOT

TYPICAL PERFORMANCE CURVES

DEFINITION OF TERMS

Mu/tiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.

Feedthrough: With either input at zero the output of anideal multiplier should be zero regardless of the signal applied to the other input. The output seen in a non-ideal
multiplier is known as the feedthrough.
Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

ORDERING INFORMATION

TYPE	TEMPERATURE RANGE	MULTIPLICATION ERROR	ORDER PART NUMBER
8013 AM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm .5 \%$	ICL 8013AM TZ
8013 BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1 \%$	ICL 8013BM TZ
8013 CM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2 \%$	ICL 8013CM TZ
8013 AC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm .5 \%$	ICL 8013AC TZ
8013 BC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 \%$	ICL 8013BC TZ
8013 CC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 2 \%$	ICL 8013CC TZ

PACKAGE DIMENSIONS

NOTE: Pin 5 connected to case.

IH5110-IH5115
 General Purpose Sample \& Hold

FEATURES

- Low cost
- Military and industrial temperature ranges
- $\pm 10 \mathrm{~V}$ input voltage range
- $0.5 \mathrm{mV} / \mathrm{sec}$ drift typical @ $\mathrm{CS}_{\mathrm{s}}=0.01 \mu \mathrm{~F}$
- TTL, DTL and CMOS compatible
- Short circuit protected
- Input offset voltage adjustable to $<100 \mu \mathrm{~V}$ using a 20k potentiometer
- 0.1% guaranteed sample accuracy with 10 V signals and Cs $=0.01 \mu \mathrm{~F}$
- Sample to hold offset is 5 mV max

SCHEMATIC DIAGRAM

GENERAL DESCRIPTION

Each of the 5110 family is a complete Sample and Hold circuit, (except for sampling capacitor) including input buffer amplifier, outpụt buffer amplifier and CMOS logic switching. The devices are designed to operate from $\pm 15 \mathrm{~V}$ and +5 V supplies. The input logic is designed to "Sample" and "Hold" from standard TTL logic levels.
The design is such that the input and output buffering is performed by only one operational amplifier, by switching the sampling capacitor from the output back to input. Switches Q_{1}, Q_{2}, and Q_{3} (see Fig. 1) accomplish this switching. In the sampling mode Q_{1} and Q_{3} are shorted and Q_{2} is open; thus the op. amp. charges up the sampling capacitor. In the hold mode Q_{1} and Q_{3} are open and Q_{2} is shorted; thus the sampling cap. is switched back to the noninverting input of the op. amp.
This structure provides a very accurate d.c. gain of 1 with very fast settling times (i.e. 5μ s); additionally the design has internal feedback to cancel charge injection effects (sample to hold offsets). Q_{1} and Q_{2} are driven 180 degrees out of phase to accomplish this charge nulling.

FIGURE 1

ORDERING INFORMATION

TYPE	ORDER PART NUMBER	PACKAGE	TEMPERATURE RANGE
5110	IH5110IDE	16 Pin Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5110	IH5110MDE	16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
5111	IH5111IDE	16 Pin Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5111	IH5111MDE	16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
5112	IH5112IDE	16 Pin Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5112	IH5112MDE	16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to 125°
5113	IH5113IDE	16 Pin Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5113	IH5113MDE	16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
5114	IH5114IDE	16 Pin Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5114	IH5114MDE	16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
5115	IH5115IDE	16 Pin Hermetic DIP	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5115	IH5115MDE	16 Pin Hermetic DIP	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

Pin 1 is designated either by a dot or notch.

ABSOLUTE MAXIMUM RATINGS

Supply Voltages . $\pm 16 \mathrm{E}$	
Power Dissipation	500 mW
Operating Temperature $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	
	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Pin $7=5 \mathrm{~V}, \operatorname{Pin} 8=\mathrm{GND}, \operatorname{Pin} 9=-15 \mathrm{~V}, \operatorname{Pin} 11=15 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) Note 3

NOTES: 1. Offset voltage of op. amp. must be adjusted to 0 mV (using $20 \mathrm{k} \Omega$ potentiometer) before charge injection is measured.
2. The A.C. input voltage range differs from the D.C. input voltage range. All versions will handle any analog input within the range of plus 10 V to minus 10 V ; however the $\mathrm{IH} 5110,5112,5114$ has the added restriction that the peak to peak swing should be less than $15 \mathrm{~V}_{\mathrm{p}}-\mathrm{p}$ i.e. $\pm 7.5 \mathrm{Vac}$.
3. All of the electrical characteristics specs, are guaranteed with $\mathrm{Cs}=0.01 \mu \mathrm{~F}$ in series with 100Ω as per $\mathrm{Fig} .2, \mathrm{Cs}=0.1 \mu \mathrm{~F}$ \& $\mathrm{Cs}=0.001 \mu \mathrm{~F}$ are for design aid only.
4. If supplies are reduced to $\pm 12 \mathrm{VDC}$, analog signal range will be reduced to $\pm 7 \mathrm{Vp}-\mathrm{p}$.

APPLICATIONS INFORMATION

I. Typical Connection Diagram

NOTES: 1. To trim output offset to 0 mV , set strobe input to sample mode (3 V), set analog input to GND, adjust potentiometer until \& H output is 0 mV .
2. Use a low dielec' 'bsorption capacitor such as polystyrene.

SAMPLE MODE occurs when logic input is greater than 2.4 V .
HOLD MODE occurs when logic input is less than 0.8 V .
FIGURE 2
II. Charge Injection (sample to hold offset) measurement circuit; also switching transients test circuit.

Adjust offset to 0 mV before testing for charge injection. See note 1.

CHARGE INJECTION

SWITCHING TRANSIENTS

FIGURE 3
III. Typical Circuit for measurement of A.C. signal handling capability.

NOTE: The acquisition time is actually a settling time spec. since the reading is only taken when the output has settled within 1% of its final value. The $6 \mu \mathrm{~s}$ spec. (IH5111, $5113 \& 5115$ is the worst reading of the ton or toff settling time shown above. The above test can be performed with a 0 to +7.5 V or 0 to -7.5 V step for the $\mathrm{IH} 5110,5112,5114$.

FIGURE 4
IV. Typical Circuit for measurement of A.C. peak to peak signal handling capability.

this parameter, increase the amplitude of the signal generator until the output starts to distort (it will always show up on the positive excursion of the sine wave first); then back off until all distortion is gone. The resultant peak to peak swing must be greater than 15 Vpp for the $\mathrm{IH} 5110,5112,5114$ and greater than 20Vpp for the IH5111, 5113, 5115.
A.C. PEAK TO PEAK

TYP. IH5111

V. Application Tips:

If you are undecided as to which sample and hold to use within the family, the following will give you a pretty good idea of the outstanding differences between the six models.
First, determine the voltage range you need to sample and hold.
The even numbered parts are designed to switch smaller a.c. signal amplitudes with the goal being to minimize the charge injection effects (sample to hold offsets). This charge injection error is shown in Fig. 3. Once the voltage offset is zeroed, the 5110 has typical error amplitudes of 1 to $2 \mathrm{mVp}-\mathrm{p}$ (corresponds to 10 pc to 20pc of charge). Thus one could sample very low level d.c. signals with extreme accuracy. If very low level a.c. signals are being sampled, voltage offset potentiometer can be adjusted for a zero charge injection effect. Once the potentiometer has been adjusted, there will be a zero error going from sample to hold; however there will be a d.c. error caused by adjusting the potentiometer for zero charge injection and not for zero voltage offset. In general, this d.c. error will be in the area of 2 mV to 5 mV .

The odd numbered parts are primarily designed to handle any input in the plus or minus 10 V range, regardless of whether it is a.c. or d.c.; to obtain this, the charge injection is about a factor of 2 higher than the even numbered parts.

The use of Varafet switching elements similar to Intersil's IH401/401A leads to a trade-off between AC signal swing and charge injection.

After the voltage range and charge injection requirements have been determined, all that remains is to determine the input offset voltage the system can tolerate. By using the higher numbered parts, it is possible to eliminate the offset potentiometer if system accuracy will allow 5 mV (5114, $5115)$ or $10 \mathrm{mV}(5112,5113)$ due to the low input offset voltage on these devices.

The drift rate is specified at $10 \mathrm{mV} / \mathrm{sec}$. Max. for all models: this corresponds to approximately 100pA total leakage into a $0.01 \mu \mathrm{~F}$ sampling capacitor (Cs). While the $10 \mathrm{mV} / \mathrm{sec}$. is the Max. encountered, a more typical reading is less than
$1 \mathrm{mV} / \mathrm{sec}$. (true for any input between -10 V and +10 V); thus the IH5110 family is ideal for applications requiring very low drift or droop rates.

The aperture time is spec'd at 200ns Max. for all models, but a more typical value is 150 ns ; this is basically the off time of switch Q_{1}. The way this aperture time affects system accuracy is shown below:

Assume the input signal to the Sample and Hold is an a.c. signal of peak amplitude A (peak to peak swing is 2A) and frequency $2 \pi f=w$, then $V_{\text {input }}=A e_{j w t}$ then $d V / d t=A e_{j w t}$. This means the slope of input signal $=\mathrm{dV} / \mathrm{dt}$; this slope is a maximum at t (time) $=0$, this maximum value is $w A$ (in amplitude). (i.e.) input frequency is 10 kc , therefore $\mathrm{dV} / \mathrm{dt}=$ $w A=6.28 \times 104 \times 10 \mathrm{~V}=6.3 \times 105 \mathrm{~V} / \mathrm{sec} . \mathrm{A}=10 \mathrm{~V}$, then slope or $\mathrm{dV} / \mathrm{dt}=0.63 \mathrm{~V} / \mu \mathrm{s}$. Now if we wish error to be a Max. of say 1% of full scale 10 V , we see that $100 \mathrm{mV}(1 \%$ /aperture time $=$ $0.63 \mathrm{~V} / \mu \mathrm{s}$. Solving this equation we see that aperture time must be 160 ns or less to get 1% holding accuracy. Since our aperture time is 150 ns typical, we have 1% accuracy in holding 10 kHz varying signals; for signal frequencies 1 kHz and less, Max. error is 0.1%. The simple interpretation of just how the off time of the switch causes this system error is due to the fact a finite time is required for the switch to react to a hold command; this reaction time manifests itself with a system voltage error because the time varying input signal is changing to a new value before the switch has actually turned off. (i.e.) in the above example off $=10 \mathrm{kHz}$ and $A=$ 10 V , suppose we gave the hold command (thru TTL logic) at t $=0$ (a.c. signal goes thru zero pt.) At this point we have calculated the slope to be a Max. and equal to $0.63 \mathrm{~V} / \mu \mathrm{s}$. If there were no aperture time error, we would read 0 V at output of Sample and Hold; however because of finite time for switch to respond to hold command, 150ns passes before switch goes off. During this 150ns, the input signal has gone to 100 mV above or below 0 V , thus the stored value of signal will be 100 mV and that is the reading at the output of the Sample and Hold. If the input frequency were 1 kHz , the "error voltage" would be 10 mV .
VI. Connection for Hi-Speed Sample and Hold with following typical performance: w/Cs $=0.001$
a. $2 \mu \mathrm{~s}$ settling time (acquisition time) to 1% accuracy
b. 25 mV charge injection amplitude
c. $10 \mathrm{mV} / \mathrm{sec}$ drift rate

NOTE: Typical times for the Sample and Hold to acquire the input are $2 \mu \mathrm{~s}$ for turn on (output) goes to +10 V and $3 \mu \mathrm{~s}$ for turn off (output goes down to 0 V). As a general note, all the electrical specifications are guaranteed with a sampling capacitor equal to $0.01 \mu \mathrm{f}$. As the above application (Fig. 6) shows, other values of sampling capacitors can be used but the best combinations of S \& H specs may not result with values other than $0.01 \mu \mathrm{~F}$. The only advantage of using a $0.001 \mu \mathrm{~F}$ for Cs_{s} is the acquisition time is $2 \mu \mathrm{~s}$ typical instead of $5 \mu \mathrm{~s}$ typical (with $0.01 \mu \mathrm{~F}$; however the drift rate would be worse and charge injection would be affected). To minimize drift rate, use a $0.1 \mu \mathrm{~F}$ capacitor; this should produce a $0.1 \mathrm{mV} / \mathrm{sec}$ rate of change and a charge injection amplitude of $0.2 \mathrm{mVp}-\mathrm{p}$. Of course the acquisition time will be slowed down to the 25μ s area. Also use a $0.1 \mu \mathrm{~s}$ system for slow speed changes (i.e., input frequency is less than 1 kHz . The series resistor should be about 100 2 -200 to stabilize the system.

FIGURE 6
PACKAGE OUTLINE

NOTE: Board drilling dimensions will equal standard practices for .020 diameter lead.

DEFINITION OF TERMS

Aperture Time: The time it takes to switch from sample mode to hold mode and the actual opening of switch.
Charge Injection: The amount of charge coupled across the switch with no input voltage.
Drift Rate: The amount of drift of output voltage at a rate caused by current flow through the storage capacitor.
$\left(\frac{d V}{d t}=\frac{i}{c}\right) \begin{aligned} & \text { This current is the leakage across the } \\ & \text { switch and the amplifier's bias current. }\end{aligned}$

Feed Through: The amount of input signal that appears at the output when in the hold mode. Normally caused by capacitance across the switch.
Offset Voltage: Voltage measured at output with no input voltage and circuit in sample mode.
Acquisition Time: The time it takes amplifier to reach full scale output either plus or minus.

Two-Terminal IC Temperature Transducer

FEATURES

- Linear current output: $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
- Wide range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Two-terminal device: Voltage in/current out
- Laser trimmed to $\pm 1^{\circ} \mathrm{C}$ calibration accuracy (AD590L)
- Excellent linearity: $\pm 0.5^{\circ} \mathrm{C}$ over full range (AD590K, L)
- Wide power supply range: +4 V to +30 V
- Sensor isolation from case
- Low cost

GENERAL DESCRIPTION

The AD590 is a two-terminal integrated circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance, constant current regulator passing $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$ for supply voltages between +4 V and +30 V . Laser trimming of the chip's thin film resistors is used to calibrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right)$.
The AD590 should be used in any temperature sensing application between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$ in which conventional electrical temperature sensors are currently
employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistance-measuring circuitry and cold junction compensation are not needed in applying the AD590. In the simplest application a resistor, a power source and any voltmeter can be used to measure temperature.

In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature. The AD590 is available in chip form making it suitable for hybrid circuits and fast temperature measurements in protected environments.

The AD590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its high impedance current output. Any wellinsulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590 easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Forward Voltage (V^{+}to V^{-})	4V
Reverse Voltage (V^{+}to V^{-})	-20V
Breakdown Voltage (C ase to V^{+}or V^{-})	$\pm 200 \mathrm{~V}$
Rated Performance Temperature Range	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+275^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 s	$+300^{\circ} \mathrm{C}$

SPECIFICATIONS (Typical values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise noted)

CHARACTERISTICS	AD5901	AD590J	AD590K	AD590L	AD590M	UNITS
Output Nominal Output Current @ $+25^{\circ} \mathrm{C}\left(298.2^{\circ} \mathrm{K}\right)$	298.2	298.2	298.2	298.2	298.2	$\mu \mathrm{A}$
Nominal Temperature Coefficient	1.0	1.0	1.0	1.0	1.0	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Calibration Error @ $+25^{\circ} \mathrm{C}$ (notes)	± 10.0 max	$\pm 5.0 \max$	± 2.5 max	$\pm 1.0 \mathrm{max}$	± 0.5 max	${ }^{\circ} \mathrm{C}$
Absolute Error (-55 to $+150^{\circ} \mathrm{C}$) (Note 1) Without external calibration adjustment With external calibration adjustment	$\begin{aligned} & \pm 20.0 \max \\ & \pm 5.8 \max \end{aligned}$	$\begin{aligned} & \pm 10.0 \max \\ & \pm 3.0 \max \end{aligned}$	$\begin{aligned} & \pm 5.5 \max \\ & \pm 2.0 \max \end{aligned}$	$\begin{aligned} & \pm 3.0 \mathrm{max} \\ & \pm 1.6 \mathrm{max} \end{aligned}$	$\begin{aligned} & \pm 1.7 \max \\ & \pm 1.0 \max \end{aligned}$	$\begin{array}{r} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \hline \end{array}$
Non-Linearity	$\pm 3.0 \mathrm{max}$	$\pm 1.5 \mathrm{max}$	$\pm 0.8 \mathrm{max}$	$\pm 0.4 \mathrm{max}$	± 0.3 max	${ }^{\circ} \mathrm{C}$
Repeatability (Note 2)	± 0.1 max	$\pm 0.1 \mathrm{max}$	± 0.1 max	± 0.1 max	± 0.1 max	${ }^{\circ} \mathrm{C}$
Long Term Drift (Note 3)	± 0.1 max	$\pm 0.1 \mathrm{max}$	± 0.1 max	± 0.1 max	± 0.1 max	${ }^{\circ} \mathrm{C}$
Current Noise	40	40	40	40	40	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Power Supply Rejection $\begin{aligned} & +4<V_{S}<+5 V \\ & +5<V_{S}<+15 V \\ & +15 V<V_{S}<+30 V \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.5 \\ 0.2 \\ 0.1 \end{array}$	$\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$ $\mu \mathrm{A} / \mathrm{V}$
Case Isolation to Either Lead	1010	1010	1010	1010	1010	,
Effective Shunt Capacitance	100	100	100	100	100	pF
Electrical Turn-on Time (Note 1)	20	20	20	20	20	$\mu \mathrm{S}$
Reverse Bias Leakage Current (Note 4)	10	10	10	10	10	pA
Power Supply Range	+4 to +30	+4 to +30	+4 to +30	+4 to +30	+4 to +30	Volts

Notes 1. Does not include self heating effects.
2. Maximum deviation between $+25^{\circ} \mathrm{C}$ reading after temperature cycling between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$; guaranteed, not tested.
3. Conditions: Constant +5 V , constant $+125^{\circ} \mathrm{C}$; Guaranteed, not tested.
4. Leakage current doubles every $+10^{\circ} \mathrm{C}$.

TYPICAL APPLICATIONS

FEATURES

- Temperature Coefficient guaranteed to $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max.
- Low Bias Current . . . 50 $\mu \mathrm{A}$ min
- Low Dynamic Impedance
- Low Reverse Voltage
- Low Cost

GENERAL DESCRIPTION

The ICL8069 is a 1.2 V temperature compensated voltage reference. It uses the band-gap principal to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. Applications include analog-to-digital converters, digital-toanalog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

TYPICAL CONNECTION DIAGRAMS

(a) Simple Reference (1.2 volts or less)

(b) Buffered 10 V Reference using a single supply.

(c) Double regulated 100 mV reference for ICL7107 one-chip DPM circuit.

ORDERING INFORMATION

MAX. TEMPERATURE COEFFICIENT OF V REF	TEMP RANGE	ORDER PART \#
$.001 \% /{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL8069ACO
$.0025 \% /{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL8069BCQ
$.005 \% /{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL8069CMQ
$.005 \% /{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL8069CCQ
$.01 \% /{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	ICL8069DMQ
$.01 \% /{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	ICL8069DCQ

PIN CONFIGURATION AND PACKAGE DIMENSIONS

TWO LEAD TO-52 (Q Package)

Note: Pin 2 connected to case.

ABSOLUTE MAXIMUM RATINGS

e Voltage . See Sote 2	
Forward Current	10 mA
Reverse Current	
Power Dissipation . Limited by max forward/reverse current	
Storage Temperature $65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	
Operating Temperature	
ICL8069C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL8069M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Sold	300°

ELECTRICAL CHARACTERISTICS (@ $25^{\circ} \mathrm{C}$ unless otherwise noted)

CHARACTERISTICS	CONDITIONS	MIN	TYP	MAX	UNITS
Reverse breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	1.20	1.23	1.25	V
Reverse breakdown Voltage change	$50 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 5 \mathrm{~mA}$		15	20	mV
Reverse dynamic Impedance	$\begin{aligned} & I_{R}=50 \mu \mathrm{~A} \\ & I_{R}=500 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Ω
Forward Voltage Drop	$\mathrm{IF}_{\mathrm{F}}=500 \mu \mathrm{~A}$. 7	1	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A} \end{aligned}$		5		$\mu \mathrm{V}$
Breakdown voltage Temperature coefficient: ICL8069A ICL8069B ICL8069C ICL8069D	$\left\{\begin{array}{l} \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A} \\ \mathrm{~T}_{\mathrm{A}}=\text { operating } \\ \text { temperature range } \\ \text { (Note 3) } \end{array}\right.$:	,	$\begin{aligned} & .001 \\ & .0025 \\ & .005 \\ & .01 \end{aligned}$	\%/ ${ }^{\circ} \mathrm{C}$
Reverse Current		. 050		5	mA

TYPICAL PERFORMANCE CHARACTERISTICS

voltage change as a FUNCTION OF REVERSE CURRENT

REVERSE VOLTAGE AS A FUNCTION OF CURRENT

REVERSE VOLTAGE AS A FUNCTION OF TEMPERATURE

Notes:

1) The diode should not be operated with shunt capacitances between 200 pF and $0.22 \mu \mathrm{~F}$, as it may oscillate at some currents. If circuit strays in excess of 200 pF are anticipated, a $4.7 \mu \mathrm{~F}$ shunt capacitor will ensure stability under all operating conditions.
2) In normal use, the reverse voltage cannot exceed the reference voltage. However when plugging units into a powered-up test fixture, an instantaneous voltage equal to the compliance of the test circuit will be seen. This should not exceed 20 V .
3) For the military part, measurements are made at $25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$. The unit is then classified as a function of the worst case T.C. from $25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$, or $25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

ICL8211, ICL8212
 Micropower Voltage Detectors/Indicators

FEATURES

- High accuracy voltage sensing and generation: internal reference 1.15 volts typical
- Low sensitivity to supply voltage and temperature variations
- Wide supply voltage range: Typ. 1.8 to 30 volts
- Essentially constant supply current over full supply voltage range
- Easy to set hysteresis voltage range
- Defined output current limit - ICL8211

High output current capability - ICL8212

- Innumerable useful applications including:

1. Low voltage sensor/indicator
2. High voltage sensor/indicator
3. Non volatile out-of-voltage range sensor/indicator
4. Programmable voltage reference or zener diode
5. Series or shunt power supply regulatot
6. Fixed value constant current source

CONNECTION DIAGRAM

8 LEAD PLASTIC MINI DIP

TO99

Pin 1 is designated by either a dot or a notch for dual inline package.

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL8211CPA	0 to $+70^{\circ} \mathrm{C}$	8 lead MiniDIP
ICL8211CTY	0 to $+70^{\circ} \mathrm{C}$	TO.99 Can
ICL8211MTY	-55 to $+125^{\circ} \mathrm{C}$	TO-99 Can
ICL8212CPA	0 to $70^{\circ} \mathrm{C}$	8 lead MiniDIP
ICL8212CTY	0 to $70^{\circ} \mathrm{C}$	TO-99 Can
ICL8212MTY	-55 to $+125^{\circ} \mathrm{C}$	To.99 Can
ICL8211D	Dice only	
ICL8212D	Dice only	

GENERAL DESCRIPTION

The Intersil ICL8211/12 are micropower bipolar monolithic integrated circuits intended primarily for precise voltage detection and generation. These circuits consist of an accurate voltage reference, a comparator and a pair of output buffer/drivers.
Specifically, the ICL8211 provides a 7ma current limited output sink when the voltage applied to the 'THRESHOLD' terminal is less than 1.15 volts - the internal reference. The ICL8212 requires a voltage in excess of 1.15 volts to switch its output on (no current limit). Both devices have a low current output (HYSTERESIS OUTPUT) which is switched on for input voltages in excess of 1.15 V . The HYSTERESIS output may be used to provide positive and noise free output switching using a simple feedback network.

Applications for the ICL8211/12 include a variety of voltage detection circuits such as low battery indicators (portable systems), power supply malfunction detectors for volatile memory systems, programmable zener diodes, both shunt and series power supply regulators, constant current sources.
The ICL8211/12 may be customized by the use of metal mask options to provide more complete integration on chip (including set resistors, etc.) for volume dedicated systems, thereby reducing component counts and cost.

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Supply, Voltage (V^{+}- V^{-})	-0.5 to +30 volts
Output Voltage (with respect to V -)	-0.5 to +30 volts
Hysteresis Voltage (with respect to V^{+})	+0.5 to -10 volts
Threshold Input Voltage an	+30 to -5 volts with respect to V^{-} and +0 to -30 volts with respect to V^{+}
Current into Any Terminal	30 mA
Power Dissipation (Note 2 \& 3)	300 mW
Operating Temperature Range ICL $8211 \mathrm{M} / 12 \mathrm{M}$	$\mathrm{M} \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range ICL8211C/12C	C 0 to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE 1: Absolute maximum ratings define parameter limits that if exceeded may permanently damage or change the device.
NOTE 2: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$ for, ICL8211MTY/12MTY products. Derate linearly at $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
NOTE 3: Derate linearly above $50^{\circ} \mathrm{C}$ by $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{ICL} 8211 \mathrm{C} / 12 \mathrm{C}$ products. The threshold input voltage may exceed +7 volts with respect to V - for short periods of time. However for continuous operation this voltage must be maintained at a value less than 7 volts.

TYPICAL OPERATING CHARACTERISTICS (V^{+}to $\mathrm{V}^{-}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	ICL8211			ICL8212			UNITS
			MIN	TYP.	MAX:	MIN.	TYP.	MAX.	
Supply Current	$1+$	$\begin{gathered} 2.0<V^{+},-V-<30 \\ V_{T}=1.3 V \\ V_{T}=0.9 V \end{gathered}$	$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 22 \\ 140 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 250 \\ \hline \end{gathered}$	$\begin{aligned} & 50 \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{r} 110 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Threshold Trip Voltage	$\mathrm{V}_{\text {TH }}$	$\begin{array}{ll} \hline \text { IOUT }=4 \mathrm{~mA} & \mathrm{~V}^{+}-V^{-}=5 V \\ \text { VOUT }=2 V & V^{+}-V=2 V \\ & V^{+}-V=30 V \end{array}$	$\begin{aligned} & \hline 0.98 \\ & 0.98 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.145 \\ & 1.165 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.19 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.145 \\ & 1.165 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.19 \\ & 1.20 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Threshold Voltage Disparity Between Output \& Hysteresis Output	$\mathrm{V}_{\text {THP }}$	$\begin{aligned} & \text { IOUT }=4 \mathrm{~mA} \quad V_{\text {OUT }}=2 \mathrm{~V} \\ & \text { IHYST }=7 \mu \mathrm{~A} \quad V_{\text {HYST }}=3 \mathrm{~V} \end{aligned}$		-8.0			-0.5		mV
Guaranteed Operating Supply Voltage Range	VOP	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.8 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 2.8 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{v} \end{aligned}$
Typical Operating Supply Voltage Range	VOP	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Threshold Voltage Temperature Coefficient	IVTH	$\begin{aligned} & \text { IOUT }=4 \mathrm{~mA} \\ & \text { VOUT }=2 \mathrm{~V} \end{aligned}$		+200		.	+200		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Variation of Threshold Voltage with Supply Voltage	$\Delta \mathrm{VTH}$	$\Delta\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)^{=} 10 \%$ at $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$		1.0			1.0		mV
Threshold Input Current	ITH	$\begin{aligned} & V_{T H}=1.15 \mathrm{~V} \\ & V_{T H}=1.00 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 5 \end{gathered}$	250		$\begin{gathered} 100 \\ 5 \\ \hline \end{gathered}$	250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Output Leakage Current	'Lo	$\begin{aligned} & V_{\text {OUT }}=30 \mathrm{~V} \mathrm{~V}_{\text {TH }}=1.0 \mathrm{~V} \\ & \mathrm{VOUT}=30 \mathrm{~V} \mathrm{~V}_{\text {TH }}=1.3 \mathrm{~V} \\ & \mathrm{VOUT}=5 \mathrm{~V} \quad \mathrm{~V}_{\text {TH }}=1.0 \mathrm{~V} \\ & \mathrm{VOUT}=5 \mathrm{~V} \quad \mathrm{~V}_{\text {TH }}=1.3 \mathrm{~V} \end{aligned}$.	$\begin{gathered} 10 \\ 1 \end{gathered}$,		10 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Output Saturation Voltage	VSAT	$\begin{array}{r} \text { IOUT }=4 \mathrm{~mA} \quad V_{T H}=1.0 \mathrm{~V} \\ V_{\mathrm{TH}}=1.3 \mathrm{~V} \end{array}$		0.17	0.4		0.17	0.4	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Max Available Output Current	'HO	$\begin{aligned} & \text { (Note 4 \& 5) } \quad V_{T H}=1.0 \mathrm{~V} \\ & V_{O U T}=5 \mathrm{~V} \quad V_{T H}=1.3 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 125^{\circ} \mathrm{C} \quad V_{T H}=1.0 \mathrm{~V} \\ & \hline \end{aligned}$	4	7.0	$\begin{aligned} & 12 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	35		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Hysteresis Leakage Current	'QHYST	$\begin{gathered} \mathrm{V}^{+}+\mathrm{V}^{-}=10 \mathrm{~V} \mathrm{~V}_{\mathrm{TH}}=1.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{HYST}}=\mathrm{V}^{-} \end{gathered}$			0.1			0.1	$\mu \mathrm{A}$
Hysteresis Sat Voltage	VSATHYST	$\begin{aligned} & \text { } \begin{array}{l} \mathrm{HYST} \end{array}=-7 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V} \\ & \text { measured with respect to } \mathrm{V}^{+} \end{aligned}$		-0.1	-0.2		-0.1	-0.2	V
Max Available Hysteresis Current	IHHYST	$\mathrm{V}_{\mathrm{TH}}=1.3 \mathrm{~V}$	-15	-21		-15	-21		$\mu \mathrm{A}$

NOTE 4: The maximum output current of the ICL8211 is limited by design to 15 ma under any operating condition. The output voltage may be sustained at any voltage up to +30 with respect to V^{-}as long as the maximum power dissipation of the device is not exceeded.
NOTE 5: The maximum output current of the ICL8212 is not defined and systems using the ICL8212 must therefore ensure that the output current does not exceed 50 ma and that the maximum power dissipation of the device is not exceeded.

Characteristics ICL8211

OUTPUT SATURATION CURRENTS AS A FUNCTION OF THRESHOLD VOLTAGE

OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE

Characteristics common to both the ICL8211 and the ICL8212

SUPPLY CURRENT AS A' FUNCTION OF THRESHOLD VOLTAGE

THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

HYSTERESIS
OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE

HYSTERESIS OUTPUT CURRENT AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE

TYPICAL OPERATING CHARACTERISTICS
 Characteristics ICL8212

SUPPLY CURRENT AS A FUNCTION

 OF SUPPLY VOLTAGE

OUTPUT SATURATION VOLTAGE AND CURRENT AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE

THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

THRESHOLD VOLTAGE
TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE

HYSTERESIS OUTPUT CURRENT
AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE

CIRCUIT DESCRIPTION

The ICL8211 and ICL8212 use a standard linear bipolar integrated circuit technology with high, value thin film resistors. The reason for the use of thin film resistors is to be able to define extremely low value currents.
Components Q_{1} thru Q_{10} and $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} set up an accurate voltage reference of 1.15 volts. This reference voltage is close to the value of the bandgap voltage for
silicon and is highly stable with respect to both temperature and supply voltage. The deviation from the bandgap voltage is necessary due to the negative temperature coefficient of the thin film resistors (-5000 ppm per ${ }^{\circ} \mathrm{C}$).
Components Q_{2} thru O_{9} and R_{2} make up a constant current source. Q_{2} and Q_{3} are identical and form a current mirror. Q_{8} has 7 times the emitter area of Qg_{g}. Due to the current mirror the collector currents of Q_{8} and Q_{9} are
forced to be equal and it can be shown that the collector current in O_{8} and O_{9} is

$$
\begin{aligned}
& \qquad \begin{array}{l}
\mathrm{I} \mathrm{C} \\
\left(\mathrm{Q}_{8} \text { or } \mathrm{Q} g\right)=\frac{1}{\mathrm{R}_{2}} \times \frac{\mathrm{kT}}{\mathrm{q}} \ln 7 \\
\text { or approximately } 1 \mu \mathrm{~A} \text { at } 25^{\circ} \mathrm{C}
\end{array} \\
& \text { Where } \mathrm{k}=\text { Boltzman's constant } \\
& \mathrm{q}=\text { charge on an electron } \\
& \text { and } \mathrm{T}=\text { absolute temperature in }{ }^{\circ} \mathrm{K}
\end{aligned}
$$

Transistors Q_{5}, Q_{6}, and Q_{7} assure that the collector to emitter voltage of $\mathrm{O}_{3}, \mathrm{O}_{4}$, and O_{9} remain constant with supply voltage variations thereby guaranteeing that the value of the constant current source is insensitive to supply voltage variations.
The base current of Q_{1} provides sufficient current to ensure that the current source will start up; there being two stable states for this type of circuit - either as defined above or OFF if no start up current is provided. Leakage current in the transistors is not sufficient in itself to guarantee reliable startup.
Q_{4} is matched to Q_{3} and Q_{2}; and, Q_{10} is matched to Q_{9}. Thus the collector current and base emitter voltage Q_{10} are identical to that of O_{9} or Q_{8}. To generate the bandgap voltage it is necessary to sum a voltage equal to the base emitter voltage O_{9} to a voltage proportional to the difference of the base emitter voltages of two transistors Q_{8} and O_{9} operating at two current densities.

Thus $1.15=V_{B E}\left(Q_{g}\right.$ or $\left.Q_{10}\right)+\frac{R_{3}}{R_{2}} \times \frac{k T}{q} \ln 7$
which provides $\frac{R_{3}}{R_{2}}=12$ (approx.)
The total supply current consumed by the voltage reference section is approximately $6 \mu \mathrm{~A}$ at room temperature. An input voltage at the THRESHOLD input is compared to the reference voltage 1.15 volts by the comparator consisting of transistors. Q_{11} thru Q_{17}. The outputs from the comparator taken from the collectors of Q_{16} and Q_{17} are limited to two diode drops less than V^{+}or approximately 1.1 volts. Thus the base current into the hysteresis output transistor is limited to about 500 nA and the collector current of Q_{19} to $100 \mu \mathrm{~A}$.

In the case of the ICL8211, O_{21} is proportioned to have 70 times the emitter area of O_{20} thereby limiting the output current to approximately 7 ma whereas, for the ICL8212 almost all the collector current of Q_{19} is available for base drive to Q_{21} resulting in a maximum available collector current of the order of 30 ma . It is advisable to externally limit this current to 25 ma or less.

APPLICATIONS

The ICL8211 and ICL8212 are similar in.many respects especially with regard to the setup of the input trip conditions and hysteresis circuitry. The following discussion describes both devices and where differences occur they are clearly noted.

1. GENERAL INFORMATION THRESHOLD INPUT CONSIDERATIONS

Although any voltage between -5 V and V^{+}may be applied to the THRESHOLD terminal, it is recommended that the THRESHOLD voltage does not exceed about +6 volts with respect to V^{-}since above that voltage the threshold input current increases sharply. Also, prolonged operation above this voltage will lead to degradation of device characteristics.

FIGURE 1 - VOLTAGE LEVEL DETECTION
The outputs change states with an input THRESHOLD voltage of approximately 1.15 volts. Input and output waveforms are shown in Figure 1 for a simple 1.15 volt level detector.

The HYSTERESIS output is a low current output and is intended primarily for input threshold voltage hysteresis applications. If this output is used for other applications it is suggested that output currents be limited to $10 \mu \mathrm{~A}$ or less.
The regular OUTPUT's from either the ICL8211 or ICL. 8212 may be used to drive most of the common logic families such as TTL or C-MOS using a single pullup resistor. The guaranteed TTL fanout for the ICL8211 is 2 and for the ICL8212 is 4.

FIGURE 2 - OUTPUT LOGIC INTERFACE

ICL8211, ICL8212

A principal application of the ICL8211 is voltage level detection and for that reason the OUTPUT current has been limited to typically 7 ma to permit direct drive to an LED lamp connected to the positive supply V^{+}without a series current limiting resistor.
On the other hand the ICL8212 is intended for many applications such as programmable zener references and voltage regulators where output currents well in excess of 7 ma are desirable. Therefore, the output of the ICL8212 is not current limited. If however, the output is used to drive an LED lamp then a series current limiting resistor must be used.

In many applications an input resistor divider network will be used. It is recommended that the current in this resistor network necessary to produce 1.15 volts be as follows. If the current in this network is of no concern, a current of $50 \mu \mathrm{~A}$ may be used. If the current is a concern (battery operated systems) it is suggested a current of 6 to $8 \mu \mathrm{~A}$ represents a good compromise between accuracy and low power. Lower currents than $6 \mu \mathrm{~A}$ are usable if accuracy is not important. The inaccuracy at lower currents is due to the input current of the device becoming a significant percentage of the current flowing in the resistor network.

FIGURE 3 - INPUT RESISTOR NETWORK CONSIDERATIONS

Case 1. High accuracy required, current in resistor network unimportant Set $I=50 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{TH}}=1.15$ volts $\therefore R_{1} \Rightarrow 20 \mathrm{~K}$ ohms.

Case 2. Good accuracy required, current in resistor network important Set $\mathrm{I}:=7.5 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{TH}}=1.15$ volts $\therefore R_{1} \Rightarrow 150 K$ ohms.

SETUP PROCEDURES FOR VOLTAGE LEVEL DETECTION

Case 1. Simple voltage detection - no hysteresis
Unless an input voltage of approximately 1.15 volts is to be detected, resistor networks will be used to divide or multiply the unknown voltage to be sensed. Figure 4 shows procedures on how to set up resistor networks to detect INPUT VOLTAGES of any magnitude and polarity with respect to the negative supply V^{-}.

a) Range of input voltage greater than +1.15 volts with respect to V^{-}.
Input voltage to change the output states
$=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \times 1.15$ volts

b) Range of input voltage less than +1.15 volts with respect to V-.
Input voltage to change the output states

$$
=\frac{\left(R_{1}+R_{2}\right) \times 1.15}{R_{1}}-\frac{R_{2} V_{R E F}}{R_{1}}
$$

FIGURE 4 - INPUT RESISTOR NETWORK SETUP PROCEDURES For supply voltage level detection applications the input resistor network is connected across the supply terminals as shown in Figure 5.

FIGURE 5 - COMBINED INPUT AND SUPPLY VOLTAGES
Conditions for correct operation of OUTPUT (terminal \#4).

1. ICL8211
1.8 volts \leqslant Supply Voltage $\leqslant 30$ volts
2. ICL8212
$0 \leqslant$ Supply Voltage $\leqslant 30$ volts
Case 2. Use of the HYSTERESIS function
The disadvantage of the simple detection circuits is that there is a small but finite input range whereby the outputs are neither totally 'ON' nor totally 'OFF'. The principle behind hysteresis is to provide positive feedback to the input trip point such that there is a voltage difference between the input voltage necessary to turn the outputs ON and to turn the outputs OFF.

The advantage of hysteresis is especially apparent in electrically noisy environments where simple but positive voltage detection is required. Hysteresis circuitry, however, is not limited to applications requiring better noise performance but may be expanded into highly complex systems with multiple voltage level detection and memory applications refer to specific applications section.
There are two simple methods to apply hysteresis to a circuit for use in suppliv voltage level detection. These are shown in Figure 6.

a) Low trip voltage
$V_{T R 1}=\left[\frac{\left(R_{1}+R_{2}\right) \times 1.15}{R_{1}}+0.1\right]$ volts
High trip voltage

$$
V_{T R 2}=\frac{\left(R_{1}+R_{2}+R_{3}\right)}{R_{1}} \times 1.15 \text { volts }
$$

b) Low trip voltage

$$
V_{T R 1}=\left[\frac{R_{Q} R_{S}}{\left(R_{Q}+R_{S}\right)}+R_{p}\right] \times \frac{1}{R_{P}} \times 1.15 \text { volts }
$$

High trip voltage
$V_{\text {TR2 }}=\frac{\left(R_{P}+R_{Q}\right)}{R_{p}} \times 1.15$ volts

FIGURE 6 - Two alternative voltage detection circuits employing hysteresis to provide pairs of well defined trip voltages.

Circuit (a) requires that the full current flowing in the resistor network be sourced by the HYSTERESIS output whereas for circuit (b) the current to be sourced by the HYSTERESIS output will be a function of the ratio of the two trip points and their values. For low values of hysteresis circuit (b) is to be preferred due to the offset voltage of the hysteresis output transistor.

A third way to obtain hysteresis (ICL8211 only) is to connect a resistor between the OUTPUT and the THRESHOLD terminals thereby reducing the total external resistance connected between the THRESHOLD and V - terminals when the OUTPUT is switched on.

3. PRACTICAL APPLICATIONS

a) Low Voltage Battery Indicator

FIGURE 7 - LOW VOLTAGE BATTERY INDICATOR
This application is particularly suitable for portable or remote operated equipment which requires an indication of a depleted or discharged battery. The quiescent current taken by the system will be typically $35 \mu \mathrm{~A}$ which will increase to. 7ma when the lamp is turned on. R_{3} will provide hysteresis if required.
b) |Non-Volatile| Low Voltage Detector

FIGURE 8 - LOW VOLTAGE DETECTOR AND MEMORY
In this application the high trip voltage $V_{T R 2}$ is set to be above the normal supply voltage range. On power up the initial condition is A. On momentarily closing switch S_{1} the operating point changes to B and will remain at B until the
supply voltage drops below $V_{T R 1}$ when the output will revert to condition A. Note that state A is always retained if the supply voltage is reduced below VTR1 (even to zero volts) and then raised back to VNOM.
c) (Non-volatile) Power Supply Malfunction Recorder In many systems a transient or an extended abnormal (or absence of a) supply voltage will cause a system failure. This failure may take the form of information lost in a volatile semiconductor memory stack, a loss of time in a timer or even possible irreversible damage to components if a supply voltage exceeds a certain value.
There is, therefore, a need to be able to detect and store a record that an out-of-operating range supply voltage condition has occurred; even in the case : where a supply voltage may have dropped to zero. On power up to the normal operating voltage the record must have been retained and easily interrogated. This could be important in the case of, say, a transient power failure due to a faulty component or intermittent power supply, open circuit, etc., where direct observation of the failure is difficult.
A simple circuit to record an out of range voltage excursion may be constructed using an ICL8211, an ICL8212 plus a few resistors. This circuit will operate to 30 volts without exceeding the maximum ratings of the I.C.'s. The two voltage limits defining the in range supply voltage may be set to any value between 2.0 and 30 volts.

FIGURE 9 - SCHEMATIC OF RECORDER

FIGURE 10 - OUTPUT STATES OF THE ICL8211 AND ICL8212 AS A FUNCTION OF THE SUPPLY VOLTAGE

Referring to Figure 9, the ICL8212 is used to detect a voltage V_{2} which is the upper voltage limit to the operating voltage range. The ICL8211 detects the lower voltage limit of the operating voltage range V_{1}. Hysteresis is used with the ICL8211 so that the output can be stable in either state over the operating voltage range V_{1} to V_{2} by making V_{3} - the upper trip point of the ICL8211 much higher in voltage than V_{2}.
The output of the ICL8212 is used to force the output of the ICL8211 into the ON state above V_{2}. Thus there is
no value of the supply voltage that will result in the output of the ICL8211 changing from the ON state to the OFF state. This may be achieved only by shorting out R_{3} for values of supply voltage between V_{1} and V_{2}.
d) Constant Current Sources

The ICL8212 may be used as a constant current source of value of approximately $25 \mu \mathrm{~A}$ by connecting the THRESHOLD terminal to the V - terminal. Similarly the ICL8211 will provide a $130 \mu \mathrm{~A}$ constant current source. The equivalent parallel resistance is in the tens of megohms over the supply voltage range of 2 to 30 volts. These constant current sources may be used to provide biasing for various circuitry including differential amplifiers and comparators. See Typical Operating Characteristics for complete information.

FIGURE 11 - CONSTANT CURRENTSOURCE APPLICATIONS
e) Zener or Precision Voltage Reference

FIGURE 12 - PROGRAMMABLE ZENER OR VOLTAGE REFERENCE
The ICL8212 may be used to simulate a zener diode by connecting the OUTPUT terminal to the V_{Z} output and using a resistor network connected to the THRESHOLD terminal to program the zener voltage (VZENER = $\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \times 1.15$ volts) .
Since there is no internal compensation in the ICL8212 it is necessary to use a large capacitor across the output to prevent oscillation.

Zener voltages from 2 to 30 volts may be programmed and typical impedance values between $300 \mu \mathrm{~A}$ and 25 ma will range from 4 to 7 ohms. The knee is sharper and occurs at a significantly lower current than other similar devices available.
f) Precision Voltage Regulators

FIGURE 13 --SIMPLE VOLTAGE REGULATOR
The ICL8212 may be used as the controller for a highly stable series voltage regulator. The output voltage is simply programmed using a resistor divider network R_{1} and R_{2}. Two capacitors C_{1} and C_{2} are required to ensure stability since the ICL8212 is uncompensated internally.

This regulator may be used with lower input voltages than most other commercially available regulators and also consumes less power for a given output control current than any commercial regulator. Applications would therefore include battery operated equipment especially those operating at low voltages.
f) High supply voltage dump circuit

In many circuit applications it is desirable to remove the power supply in the case of high voltage overload. For circuits consuming less than 5 ma this may be achieved using an ICL8211 driving the load directly. For higher load currents it is necessary to use an external pnp transistor or darlington pair driven by the output of the ICL8211. Resistors R_{1} and R_{2} set up the disconnect voltage and R_{3} provides optional voltage hysteresis if so desired.

FIGURE 14 - HIGH VOLTAGE DUMP CIRCUITS
g) Frequency limit detectors

Simply frequency limit detectors providing a go/no-go output for use with varying amplitude input signals may be conveniently implemented with the ICL8211/12 devices. In the application shown the first device ICL8212 is used as a zero crossing detector. The output circuit consisting of R_{3}, R_{4} and C_{2} results in a slow output positive ramp. The negative range is much faster than the positive range. R_{5} and R_{6} provide hysteresis so that under all circumstances the second ICL8212 is turned on for sufficient time to discharge C_{3} to V^{-}. The time constant of $\mathrm{R}_{7} \mathrm{C}_{3}$ is much greater than $\mathrm{R}_{4} \mathrm{C}_{2}$. Depending upon the desired output polarities for low and high input frequencies either an ICL8211 or an ICL8212 may be used as the output driver.

This circuit is sensitive to supply voltage variations and should be used with a stabilized power supply. At very low frequencies the output will switch at the input frequency.
h) Switch bounce filter

Single pole single throw (SPST) switches are less costly and more available than single pole double throw (SPDT) switches. SPST switches range frorn push button types, slide types to calculator keyboard types. A major problem with the use of SPST switches is the mechanical bounce of the electrical contacts on closure. Contact bounce times can range from a fraction of a millisecond to several tens of milliseconds depending upon the switch type. During this contact bounce time the switch may make and break contact several times.
The circuit shown in Figure 16 provides a rapid charge up of C_{1} to close to the positive supply voltage $\left(\mathrm{V}^{+}\right)$on a switch closure and a corresponding slow discharge of C_{1} on a switch break. By proportioning the time constant of \mathbf{R}_{1} C_{1} to approximately the manufacturer's bounce time the output a; terminal \#4 of the ICL8211/12 will be a single transition of state per desired switch closure:

FIGURE 16 - SWITCH BOUNCE FILTER

j) Low voltage power disconnector:

There are some classes of circuits that require the power supply to be disconnected if the power supply voltage falls below a certain value. As an example, the National LM199 precision reference has an on chip heater which malfunctions with supply voltages below 9 volts causing an excessive device temperature. The ICL8212 may be used to detect a power supply voltage of 9 volts and turn the power supply off to the LM199 heater section below that voltage.

FIGURE 17 - LOW VOLTAGE POWER SUPPLY DISCONNECT

CUSTOM OPTIONS

The ICL8211/12 have been designed with more on chip components than are used, in anticipation of more dedicated high volume system usage. The trigger voltage and hysteresis resistor network is integrated on chip but not connected. Consult the factory for more information on custom options.

DICE INFORMATION

ICL8211/12 dice may be die bonded using either eutectic or epoxy techniques, and may either be thermocompression gold ball or ultrasonic wire bonded.

CHIP TOPOGRAPHY

Die is passivated with a deposited oxide. Bonding pad oxide windows are 3.6×3.6 mils square.

PACKAGE DIMENSIONS

NOTES: All dimensions in inches Leads are gold-plated Kovar

8 LEAD PLASTIC DIP

NOTE: Board drilling dimensions will equal standard practices for . 020 diameter lead.

FEATURES

- Output voltage adjustable from 2 V to 30 V
- One percent load and line regulation
- One percent stability over full military temperature range GENERAL DESCRIPTION

The Intersil $100 / 300$ monolithic integrated circuit is a voltage regulator. It is designed for use in applications that range from digital power supplies to precision regulators.

The output voltage is adjustable from 2 V to 30 V with a 1% load and line regulation. Short circuit current limiting is also adjustable. By adding external transistors, output currents in excess of 5A are possible.
The device can be used as either a linear or high-efficiency switching regulator, and will start on any load within rating. It responds quickly to both load and line transients and features small standby power dissipation, and freedom from oscillations with varying resistive and reactive loads.

SCHEMATIC DIAGRAM*

TYPICAL APPLICATIONS*

Basic Regulator Circuit

2A Regulator With Foldback Current Limiting

Basing diugram is ToD View

- Adjustable short circuit current limiting
- Output currents in excess of 5A possible by adding external transistors

Can be used as either a linear or high-efficiency switching regulator

200 mA Regulator

'Solid Thutum Solid Tanctum

4A Switching Regulator

ABSOLUTE MAXIMUM RATINGS

	LM100	LM300
Input Voltage	40 V	35 V
Input-Output Voltage Differential	40 V	30 V
Power Dissipation (Note 1)	500 mW	300 mW
Operating Junction Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

(Note 2)

PARAMETER	CONDITIONS	MIN	LM100 TYP	MAX	MIN	$\begin{gathered} \text { M300 } \\ \text { TYP } \end{gathered}$	MAX	UNITS
Input Voltage Range		8.5		40	8.0		30	V
Output Voltage Range		2.0		30	2.0	,	20	V
Output-Input Voltage Differential		3.0		30	3.0		20	V
Load Regulation (Note 3)	$\mathrm{R}_{\mathrm{SC}}=0, \mathrm{I}_{0}<12 \mathrm{~mA}$		0.1	0.5		0.1	0.5	\%
Line Regulation	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }} \leq 5 V \\ & V_{\text {IN }}-V_{\text {OUT }}>5 V \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$	0.2 0.1		0.1 0.05	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Temperature Stability	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		0.3	1.0		0.3	2.0	$\begin{aligned} & \% \\ & \% \end{aligned}$
Feedback Sense Voltage			1.8			1.8		V
Output Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$							
$\because \because$	$\mathrm{C}_{\text {REF }}=0$		0.005			0.005		\%
	$\mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}$		0.002			0.002		\%
Long Term Stability			0.1	1.0		0.1	1.0	\%
Standby Current Drain	$\begin{aligned} & V_{\text {IN }}=40 \mathrm{~V} \\ & V_{\text {IN }}=30 \mathrm{~V} \end{aligned}$		1.0	3.0		1.0	3.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Minimum Load Current	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=30 V \\ & V_{\text {IN }}-V_{\text {OUT }}=20 V \end{aligned}$		1.5	3.0		1.5	3.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

NOTE 1: The maximum junction temperature of the 100 is $150^{\circ} \mathrm{C}$, while that of the 300 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures devices in the TO:5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2 -ounce copper conductors. Peak dissipations to 1 W are allowable providing the dissipation rating is not exceeded with the power averaged over a five second interval.
NOTE 2: These specifications apply for a junction temperature between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C},(100) 0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C},(300)$ for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of $2 \mathrm{k} \Omega$, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
NOTE 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

LM1 00, LM300

TYPICAL PERFORMANCE CHARACTERISTICS FOR 100, 300*

REGULATION
CHARACTERISTICS WITHOUT CURRENT
LIMITING

CURRENT LIMIT SENSE
VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

MINIMUM INPUT VOLTAGE
AS A FUNCTION OF
JUNCTION TEMPERATURE

MINIMUM LOAD CURRENT AS A FUNCTION OF INPUT.
OUTPUT VOLTAGE
DIFFERENTIAL

INPUT OUTPUT VOLTAGE DIFFERENTIAL (V)

REGULATION
CHARACTERISTICS
WITH CURRENT
LIMITING

SHORT CIRCUIT CURRENT
AS A FUNCTION OF
JUNCTION TEMPERATURE

REGULATOR DROPOUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

LOAD TRANSIENT RESPONSE

CURRENT LIMITING CHARACTERISTICS

OPTIMUM DIVIDER
RESISTANCE VALUES AS A FUNCTION OF OUTPUT
VOLTAGE

SUPPLY VOLTAGE
REJECTION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

DEFINITION OF TERMS

INPUT VOLTAGE RANGE: The range of DC input voltages over which the regulator will operate within specifications.

OUTPUT VOLTAGE RANGE: The range of regulated output voltages over which the specifications apply.

OUTPUT-INPUT VOLTAGE DIFFERENTIAL: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.

LINE REGULATION: The percentage change in regulated output voltage for a change in input voltage.

LOAD REGULATION: The percentage change in regulated output voltage for a change in load from the minimum load to the maximum load current specified.

CURRENT-LIMIT SENSE VOLTAGE: The voltage across the current limit terminals required to cause the regulator to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.
TEMPERATURE STABILITY: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.
FEEDBACK SENSE VOLTAGE: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.
OUTPUT NOISE VOLTAGE: The average $A C$ voltage at the output with constant load and no input ripple.

STANDBY CURRENT DRAIN: That part of the operating current of the regulator which does not contribute to the load current.

PACKAGE OUTLINES

NOTES: All dimensions in inches.
Leads are gold-plated Kovar.
ORDER NUMBER LM100T and LM300T
IUMBER LM100T and LM300T

Order Number LM100F

FEATURES

- Output voltage adjustable from 4.5 V to 40 V (105)
- DC line regulation guaranteed at $0.03 \% / \mathrm{V}$
- Load regulation better than 0.1%

GENERAL DESCRIPTION

The Intersil 105/305 monolithic integrated circuit is a positive voltage regulator. It is a direct replacement for the 100/300 with an extra gain stage added for improved regulation. In contrast to the 100/300, the $105 / 305$ requires no minimum load current while permitting higher voltage operation by reducing standby current drain.

SCHEMATIC DIAGRAM

TYPICAL APPLICATIONS*

10A Regulator with Foldback Current Limiting

Switching Regulator

- Output current in excess of 10A possible by adding external resistor
- Direct, plug-in replacement for 100/300 giving improved regulation

The Intersil 105/305 can be used as either a linear or switching regulator circuit with output voltages greater than 4.5 V . It features fast response to both load and line transients, and freedom from oscillations with varying resistive and reactive loads.

CONNECTION DIAGRAMS

TO-5

NOTE: Pin 4 connected to case
Flat Package

NOTE: Pin 4 connected to bottom of package
1.0A Regulator with Protective Diodes

Shunt Regulator

[^20]
ABSOLUTE MAXIMUM RATINGS

Input Voltage
Input-Output Voltage Differential
Power Dissipation (Note 1)
Operating Junction Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

50 V	40 V
40 V	40 V
500 mW	500 mW
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Note 2)

PARAMETER	CONDITIONS	MIN	$\begin{aligned} & 105 \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{gathered} 305 \\ \text { TYP } \end{gathered}$	MAX	UNITS
Input Voltage Range		8.5		50	8.0		40	V
Output Voltage Range		4.5		40	4.5		30	V
Output-Input Voltage Differential		3.0		30	3.0		30	v
Load Regulation (Note 3)	$\begin{aligned} & 0 \leq I_{0}<12 \mathrm{~mA} \\ & R_{S C}=18 \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.02	0.05		0.02	0.05	\%
	$\mathrm{R}_{\text {SC }}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		0.03	0.1				\%
	$\mathrm{R}_{\text {SC }}=18 \Omega, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		0.03	0.1				\%
	$\mathrm{R}_{\text {SC }}=15 \Omega, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$					0.03	0.1	\%
	$\mathrm{R}_{\text {SC }}=18 \Omega, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$					0.03	0.1	\%
Line Regulation	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}$		0.025	0.06		0.025	0.06	\%/V
	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}>5 \mathrm{~V}$		0.015	0.03		0.05	0.03	\%/V
Temperature Stability	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \end{aligned}$		0.3	1.0		0.3	1.0	\%
Feedback Sense Voltage			1.8			1.8		v
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{C}_{\text {REF }}=0 \\ & \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F} \end{aligned}$		0.005			0.005		\%
			0.002			0.002		\%
Long Term Stability			0.1	1.0		0.1	1.0	\%
Standby Current Drain	$V_{\text {IN }}=50 \mathrm{~V}$		0.8	2.0				mA
	$V_{\text {IN }}=40 \mathrm{~V}$					0.8	2.0	mA
Ripple Rejection	$C_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$		0.003	0.01		0.003	0.01	\%/V

NOTE 1: The maximum junction temperature of the 105 is $150^{\circ} \mathrm{C}$, while that of the 305 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures devices in the TO-5 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the flat package, the derating is based on thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16$-inch-thick epoxy glass board with ten 0.03 -inch-wide, 2 -ounce copper conductors. Peak dissipations to 1 W are allowable providing the dissipation rating is not exceeded with the power averaged over a five second interval.
NOTE 2: These specifications apply for a junction temperature between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C},(105) 0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$, (305) for input and output voltages within the ranges given, and for a divider impedance seen by the feedback terminal of $\mathbf{2 k \Omega}$, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
NOTE 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

TYPICAL PERFORMANCE CHARACTERISTICS FOR 105,305*

CURRENT LIMIT SENSE

MINIMUM OUTPUT VOLTAGE

LOAD REGULATION

SHORT CIRCUIT CURRENT

REGULATOR DROPOUT
VOLTAGE

CURRENT LIMITING CHARACTERISTICS

OPTIMUM DIVIDER
RESISTANCE VALUES

$* 305$ only guaranteed $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}, V_{I N}=40 \mathrm{~V}$ max, $V_{O U T}=30 \mathrm{~V}$ max.

LM105, LM305

DEFINITION OF TERMS

INPUT VOLTAGE RANGE: The range of DC input voltages over which the regulator will operate within specifications.

OUTPUT VOLTAGE RANGE: The range of regulated output voltages over which the specifications apply.

OUTPUT-INPUT VOLTAGE DIFFERENTIAL: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.

LINE REGULATION: The percentage change in regulated output voltage for a change in input voltage.
LOAD REGULATION: The percentage change in regulated output voltage for a change in load from the minimum load to the maximum load current specified.

CURRENT-LIMIT SENSE VOLTAGE: The voltage across the current limit terminals required to cause the regulator
to current-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.

TEMPERATURE STABILITY: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.
FEEDBACK SENSE VOLTAGE: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.
OUTPUT NOISE VOLTAGE: The average AC voltage at the output with constant load and no input ripple.
STANDBY CURRENT DRAIN: That part of the operating current of the regulator which does not contribute to the load current.

RIPPLE REJECTION: The line regulation for ac input signals at or above a given frequency with a specified value of bypass capacitor on the reference bypass terminal.

PACKAGE OUTLINES

NOTES: All dimensions in inches.'
Leads are gold-plated Kovar.

Order Number LM105T and LM305T

Order Number LM105F

FEATURES

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding external transistors
- Input voltage 40V max
- Output voltage adjustable from 2 V to 37 V
- Can be used as either a linear or a switching regulator.

LM723/LM723C/ μ A723 Voltage Regulator

GENERAL DESCRIPTION

The LM723/LM723C is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA ; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting.
The LM723/LM723C is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature-controller.
The LM723C is identical to the LM723 except that the LM723C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

LM723/LM723C/ μ A723

ABSOLUTE MAXIMUM RATINGS

Pulse Voltage from $\mathrm{V}+$ to V - (50 ms) 50 V
Continuous Voltage from V^{+}to V - 40 V
Input-Output Voltage Differential 40V
Maximum Amplifier Input Voltage (Either Input) 7.5 V
Maximum Amplifier Input Voltage (Differential) 5 V
Current from V_{z} 25 mA
Current from VREF 15 mA
Internal Power Dissipation Metal Can (Note 1) 800 mW
Cavity DIP (Note 1) 900 mW
Molded DIP (Note 1) 660 mW
Operating Temperature Range LM723 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Storage Temperature Range Metal Can $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$DIP $-55^{\circ} \mathrm{C}_{-}$to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Note 2)

PARAMETER	CONDITIONS	LM723			LM723C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Line Regulation	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ to $\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$. 01	0.1		. 01	0.1	\% Vout
	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$			0.3				
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$						0.3	
	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ to $\mathrm{V}_{\text {IN }}=40 \mathrm{~V}$. 02	0.2		0.1	0.5	
Load Regulation	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$. 03	0.15		. 03	0.2	
	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			0.6				
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq=+70^{\circ} \mathrm{C}$						0.6	
Ripple Rejection	$\mathrm{f}=50 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=0$		74			74		dB
	$\mathrm{f}=50 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F}$		86			86		
Average Temperature	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$. 002	. 015				\%/ ${ }^{\circ} \mathrm{C}$
Coefficient of Output Voltage	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$,				. 003	. 015	
Short Circuit Current Limit	RSC $=10 \Omega, \mathrm{VOUT}=0$		65			65		mA
Reference Voltage		6.95	7.15	7.35	6.80	7.15	7.50	V
Output Noise Voltage	$B W=100 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=0$		20			20		$\mu \mathrm{Vrms}$
	$\mathrm{BW}=100 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F}$		2.5			2.5		
Long Term Stability	\%		0.1			0.1	\cdots	$\% / 1000 \mathrm{hrs}$
Standby Current Drain	$\mathrm{IL}_{\mathrm{L}}=0, \mathrm{~V} \mathrm{IN}=30 \mathrm{~V}$		1.3	3.5		1.3	4.0	mA
Input Voltage Range		9.5		40	9.5		40	
Output Voltage Range		2.0		37	2.0		37	V
Input-Output Voltage Differential		3.0		38	3.0		38	

Note 1: See derating curves for maximum power rating above $25^{\circ} \mathrm{C}$.
Note 2: Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}, \mathrm{~V}-=0$, $\mathrm{VOUT}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{IL}=1 \mathrm{~mA}, \mathrm{RSC}=0, \mathrm{C}_{1}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{REF}}=0$ and divider impedance as seen by error amplifier $\leq 10 \mathrm{~K} \Omega$ connected as shown in Figure 1. Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.
Note 3: L_{1} is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in. air gap.
Note 4: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.
Note 5: Replace R1/R2 in figures with divider shown in Figure'13.
Note 6: $\mathrm{V}+$ must be connected to a +3 V or greater supply.
Note 7: For metal can applications where V_{z} is required, an external 6.2 volt zener diode should be connected in series with Vout.

LM723/LM723C/ μ A A 3

TYPICAL PERFORMANCE CHARACTERISTICS

> LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

CURRENT LIMITING CHARACTERISTICS

LINE TRANSIENT RESPONSE

LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

CURRENT LIMITING CHARACTERISTICS VS JUNCTION TEMPERATURE

LOAD TRANSIENT RESPONSE

LOAD \& LINE REGULATION VS INPUT-OUTPUT VOLTAGE DIFFERENTIAL

STANDBY CURRENT DRAIN VS INPUT VOLTAGE

FREQUENCY

MAXIMUM POWER RATINGS

LM723
 POWER DISSIPATION VS AMBIENT TEMPERATURE

LM723C
POWER DISSIPATION VS AMBIENT TEMPERATURE

TABLE I: RESISTOR VALUES (K Ω) FOR STANDARD OUTPUT VOLTAGE

POSITIVE OUTPUT VOLTAGE	$\begin{gathered} \text { APPLICABLE } \\ \text { FIGURES } \end{gathered}$	$\begin{gathered} \text { FIXED } \\ \text { OUTPUT } \\ \pm 5 \% \end{gathered}$		OUTPUT ADJUSTABLE $\pm 10 \%$ (Note 5)			$\begin{aligned} & \text { NEGATIVE } \\ & \text { OUTPUT } \\ & \text { VOLTAGE } \end{aligned}$	APPLICABLE FIGURES	$\begin{aligned} & \text { FIXED } \\ & \text { OUTPUT } \\ & \pm 5 \% \end{aligned}$		5\% OUTPUT ADJUSTABLE $\pm 10 \%$		
	(Note 4)	R1	R2	R1	P1	R2			R1	R2	R1	P1	R2
+3.0	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91
+3.6	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
+5.0	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	2.15	4.99	'. 75	0.5	2.2	-6 (Note 6)	3, (10)	3.57	2.43	1.2	0.5	. 75
+6.0	$\begin{aligned} & 1,5,6,9, \\ & 12(4) \end{aligned}$	1.15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0
+9.0	$\begin{aligned} & 2,4,(5,6, \\ & 12,9) \end{aligned}$	1.87	7.15	. 75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3
+12	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \\ & \hline \end{aligned}$	4.87	7.15	2.0	1.0	3.0	-15	3,10	3.65	11.5	1.2	0.5	4.3
+15	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	7.87	7.15	3.3	1.0	3.0	-28	3, 10	3.57	24.3	1.2	0.5	10
+28	$\begin{aligned} & 2,4,(5,6, \\ & 9,12) \end{aligned}$	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	97.6	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE II: FORMULAE FOR INTERMEDIATE OUTPUT VOLTAGES

Outputs from +2 to +7 volts (Figures 1, 5, 6, 9, 12, (4)) $\text { VOUT }=\left[V_{\text {REF }} \times \frac{R 2}{R 1+R 2}\right]$	Outputs from $+\mathbf{4}$ to $+\mathbf{2 5 0}$ volts (Figure 7) $V_{O U T}=\left[\frac{V_{\text {REF }}}{2} \times \frac{R 2-R 1}{R 1}\right] ; R 3=R 4$	Current Limiting $\text { ILIMIT }=\frac{\text { VSENSE }}{\text { RSC }}$
Outputs from +7 to +37 volts (Figures 2, 4, (5, 6, 9, 12)) $V_{\text {OUT }}=\left[V_{\text {REF }} \times \frac{\mathbf{R}_{1}+\mathbf{R} 2}{R 2}\right]$	Outputs from -6 to - $\mathbf{2 5 0}$ volts (Figures 3, 8, 10) $\text { VOUT }=\left[\frac{V_{\text {REF }}}{2} \times \frac{R 1+R 2}{R 1}\right] ; R 3=R 4$	Foldback Current Limiting $\begin{gathered} \text { IKNEE }=\left[\frac{\text { VOUTR3 }}{\text { RSC R4 }}+\frac{\text { V SENSE } \left.^{(R 3}+\mathrm{R} 4\right)}{R S C R 4}\right] \\ \text { ISHORT CKT }=\left[\frac{V_{\text {SENSE }}}{\text { RSC }} \times \frac{R 3+R 4}{R 4}\right] \end{gathered}$

TYPICAL APPLICATIONS

FIGURE 1:
Basic Low Voltage Regulator
(VOUT $=2$ to 7 Volts)

TYPICAL PERFORMANCE
Regulated Ouput Voltage
Line Regulation ($\Delta V_{\text {IN }}=3 \mathrm{~V}$)
Load Regulation ($\Delta I_{\mathrm{L}}=100 \mathrm{~mA}$)
FIGURE 3:
Negative Voltage Regulator

TYPICAL PERFORMANCE
Regulated Ouput Voltage
Regulated Ouput Voitage
Line Regulation $\left(\Delta V_{I N}=3 V\right)$
$\left.\begin{array}{l}\text { Line Regulation }(~ \\ \text { Load Regulation }(~ \\ \mathrm{IL}\end{array}=50 \mathrm{~mA}\right)$

NOTE: $R_{3}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
R_{3} may be eliminated for minimum component count.

FIGURE 2:

Basic High Voltage Regulator (VOUT $=7$ to 37 Volts)

TYPICAL PERFORMANCE
Regulated Ouput Voltage
Line Regulation $\left(\Delta V_{I N}=3 \mathrm{~V}\right)$
Load Regulation $(\Delta I L=1 \mathrm{~A})$
$+15 V$
15 mV
Load Regulation ($\triangle I_{\mathrm{L}}=1 \mathrm{~A}$)
FIGURE 4:
Positive Voltage Regulator (External NPN Pass Transistor)

TYPICAL PERFORMANCE

Regulated Output Voltage	+5V
Line Regulation ($\Delta \mathrm{V}_{1} \mathrm{~N}=3 \mathrm{~V}$)	5 mV
Load Regulation ($\Delta \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$)	1 mV

FIGURE 6:
Foldback Current Limiting

FIGURE 7:
Positive Floating Regulator

FIGURE 9:
Positive Switching Regulator

FIGURE 8:
Negative Floating Regulator

FIGURE 10:
Negative Switching Regulator

TYPICAL PERFORMANCE
NOT limiting is not required.

Urrent limit transistor may be used for shutdown if curren

Regulated Ouput Voltage Line Regulation ($\Delta \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$) Load Regulation ($\Delta \mathrm{IL}=50 \mathrm{~mA}$)

FIGURE 11:
Remote Shutdown Regulator with Current Limiting

FIGURE 12:
Shunt Regulator

FIGURE 13:
Output Voltage Adjust (See Note 5)

ICL8038 Precision Waveform Generator Voltage Controlled Oscillator

FEATURES

- Low Frequency Drift With

Temperature - $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max.

- Simultaneous Outputs - Sine-Wave, Square-Wave and Triangle.
- High Level Outputs - $\mathrm{T}^{2} \mathrm{~L}$ to 28 V
- Low Distortion-1\%
- High Linearity-0.1\%
- Easy to Use - 50\% Reduction in External Components.
- Wide Frequency Range of Operation 0.001 Hz to 1.0 MHz
- Variable Duty Cycle - 2% to 98%

GENERAL DESCRIPTION

The 8038 Waveform Generator is a monolithic integrated circuit, capable of producing sine, square, triangular, sawtooth and pulse waveform of high accuracy with a minimum of external components (refer to Figures 8 and 9) The frequency (or repetition rate) can be selected externally over a range from less than $1 / 1000 \mathrm{~Hz}$ to more than 1 MHz and is highly stable over a wide temperature and supply voltage range. Frequency modulation and sweeping can be accomplished with an external voltage and the frequency can be programmed digitally through the use of either resistors or capacitors. The Waveform Generator utilizes advanced monolithic technology, such as thin film resistors and Schottky-barrier diodes. The 8038 Voltage Controlled Oscillator can be interfaced with phase lock loop circuitry to reduce temperature drift to below $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

MAXIMUM RATINGS

Supply Voltage	$\pm 18 \mathrm{~V}$ or 36V Total
Power Dissipation	750mW (Note 5)
Input Voltage (any pin)	Not To Exceed Supply Voltages
Input Current (Pins 4 and 5)	25 mA
Output Sink Current (Pins 3 and 9)	25 mA
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range:	
8038AM; 8038BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8038AC, 8038BC, 8038CC	$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\left(V_{S}= \pm 10 \mathrm{~V}\right.$ or $+20 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$ Unless Otherwise Specified) Note 3.

NOTE 1: R_{A} and R_{B} collection currents not included.
NOTE 2: $\mathrm{V}_{\mathrm{S}}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{A}}$ and $\mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \tilde{\Omega}, \mathrm{f} \cong 9 \mathrm{kHz} ;$ Can be extended to 1000.1 See Figures 13 and 14
NOTE 3: All parameters measured in test circuit given in Fig. 2
NOTE 4: $82 \mathrm{k} \Omega$ connected between pins 11 and 12, Triangle Duty Cycle set at 50%. (Use R_{A} and R_{B})
NOTE 5: Derate plastic package at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $50^{\circ} \mathrm{C}$
Derate ceramic package at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$
NOTE 6: Over operating temperature range, Fig. 2, pins 7 and 8 connected, $V_{S}= \pm 10 \mathrm{~V}$. See Fig. 6 c for T.C. vs. V_{S}

TEST CONDITIONS (See Fig. 2)

PARAMETER	$\mathbf{R}_{\text {A }}$	R ${ }_{B}$	\mathbf{R}_{L}	C_{1}	SW1	MEASURE
Supply Current	10k Ω	10k Ω	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Current into Pin 6
Maximum Frequency of Oscillation	$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	100pf	Closed	Frequency at Pin 9
Sweep FM Range (Note 1).	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Open	Frequency at Pin 9
Frequency Drift with Temperature	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 9
Frequency Drift with Supply Voltage (Note 2)	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3 nF	Closed	Frequency at Pin 9
Output Amplitude: Sine	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 2
Triangle	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	10k Ω	3.3 nF .	Closed	Pk-Pk output at Pin 3
Leakage Current (off) Note 3	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Current into Pin 9
Saturation Voltage (on) Note 3	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3nF	Closed	Output (low) at Pin 9
Rise and Fall Times	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	3.3nF	Closed	Waveform at Pin 9
Duty Cycle Adjust: MAX	$50 \mathrm{k} \Omega$	$\sim 1.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
MIN	-25k Ω	$50 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Triangle Waveform Linearity	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 3
Total Harmonic Distortion	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 2

NOTE 1: The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 (fni) and then connecting pin 8 to pin 6 (flo $)$. Otherwise apply Sweep Voltage at pin $8(2 / 3 \mathrm{~V} C c+2 \mathrm{~V}) \leq \mathrm{V}_{\text {sweep }} \leq \mathrm{V}_{c c}$ where V_{Cc} is the total supply voltage. In Fig. 2, Pin 8 should vary between 5.3 V and 10 V with respect to ground.
NOTE 2: $10 \mathrm{~V} \leq \mathrm{Vcc} \leq 30 \mathrm{~V}$, or $\pm 5 \mathrm{~V} \leq \mathrm{Vs} \leq \pm 15 \mathrm{~V}$.
NOTE 3: Oscillation can be halted by forcing pin 10 to +5 volts or -5 volts.

DEFINITION OF TERMS:

Supply Current	The current required from the power supply to operate the device, excluding load currents and the currents through R_{A} and R_{B}.
Frequency Range	The frequency range at the square wave output through which circuit operation is guaranteed.
Sweep FM Range	The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to Pin 8. For correct operation, the sweep voltage should be within the range $\left(2 / 3 V_{C C}+2 V\right)<V_{\text {sweep }}<V_{C C}$
FM linearity	The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve.
Frequency Drift with Temperature	The change in output frequency as a function of temperature.
Frequency Drift with Supply Voltage	The change in output frequency as a function of supply voltage.
Output Amplitude	The peak-to-peak signal amplitude appearing at the outputs.
Saturation Voltage	The output voltage at the collector of Q_{23} when this transistor is turned on. It is measured for a sink current of 2 mA .
Rise Time and Fall Time	The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value.
Triangle Waveform Linearity	The percentage deviation from the best-fit straight line on the rising and falling triangle waveform.
Total Harmonic	The total harmonic distortion at the sine-wave output.

TEST CIRCUIT

FIGURE 2

CHARACTERISTIC CURVES

FIGURE 3. PERFORMANCE OF THE SQUARE-WAVE OUTPUT (PIN 9).

FIGURE 4. PERFORMANCE OF TRIANGLE-WAVE OUTPUT.

FIGURE 5. PERFORMANCE OF SINE-WAVE OUTPUT.

FIGURE 6. CURRENT CONSUMPTION AND FREQUENCY STABILITY.

THEORY OF OPERATION

FIGURE 7. PHASE RELATIONSHIP OF WAVEFORMS.

The performance of the sine-wave output is shown in Figure 5. Figure 6 shows additional general information concerning current consumption and frequency stability and Figure 7 shows the phase relationship between the three waveforms.

WAVEFORM TIMING

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in. Figure 8. Best results are obtained by keeping the timing resistors R_{A} and R_{B} separate (a). R_{A} controls the rising portion of the triangle and sine-wave and the 1 state of the square-wave.
The magnitude of the triangle-waveform is set at $1 / 3 V_{C C}$; therefore the rising portion of the triangle is,

$$
t_{1}=\frac{C \times V}{I}=\frac{C \times 1 / 3 \times V_{C C} \times R_{A}}{1 / 5 \times V_{C C}}=\frac{5}{3} R_{A} \times C
$$

The falling portion of the triangle and sine-wave and the 0 state of the square-wave is:

$$
t_{2}=\frac{C \times V}{I}=\frac{C \times 1 / 3 V_{C C}}{\frac{2}{5} \times \frac{V_{C C}}{R_{B}}-\frac{1}{5} \times \frac{V_{C C}}{R_{A}}}=\frac{5}{3} \times \frac{R_{A} R_{B} C}{2 R_{A}-R_{B}}
$$

Thus a 50% duty cycle is achieved when $R_{A}=R_{B}$.

If the duty-cycle is to be varied over a small range about 50% only, the connection shown in Figure 8 b is slightly more convenient. If no adjustment of the duty cycle is desired, terminals 4 and 5 can be shorter together, as shown in Figure 8c. This connection, however, carries an inherently larger variation of the duty-cycle.

With two separate timing resistors, the frequency is given by

$$
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{5}{3} R_{A} C\left(1+\frac{-R_{B}}{2 R_{A}-R_{B}}\right)}
$$

or, if $R_{A}=R_{B}=R$

$$
f=\frac{0.3}{R C} \quad(\text { for Figure } 8 \mathrm{a})
$$

If a single timing resistor is used (Figures 8 c only), the frequency is

$$
f=\frac{0.15}{R C}
$$

Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the

ICL8038

fact that both currents and thresholds are direct, linear function of the supply voltage and thus their effects cancel.

To minimize sine-wave distortion the $82 \mathrm{k} \Omega$ resistor between pins 11 and 12 is best made a variable one. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 9. This configuration allòws a reduction of sine-wave distortion close to 0.5%.

FIGURE 9. CONNECTION TO ACHIEVE MINIMUM SINE-WAVE DISTORTION.

SELECTING RA, $\mathbf{R}_{\mathbf{B}}$ and \mathbf{C}

For any given output frequency, there is a wide range of RC combinations that will work. However certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than $1 \mu \mathrm{~A}$ are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents ($1>5 \mathrm{~mA}$), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will be obtained for charging currents of $10 \mu \mathrm{~A}$ to 1 mA . If pins 7 and 8 are shorted together, the magnitude of the charging current due to \mathbf{R}_{A} can be calculated from:

$$
I=\frac{R_{1} \times V_{C C}}{\left(R_{1}+R_{2}\right)} \times \frac{1}{R_{A}}=\frac{V_{C C}}{5 R_{A}}
$$

A similar calculation holds for R_{B}.
The capacitor value should be as large as possible.

WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES

The waveform generator can be operated either from a single power-supply (10 to 30 Volts) or a dual powersupply (± 5 to ± 15 Volts). With a single power-supply the average levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square-wave alternates between +V and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.

The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capa-
bility of the waveform generator (30V). In this way, the square-wave output be made TTL compatible (load resistor connected to +5 Volts) while the waveform generator itself is powered from a much higher voltage.

FREQUENCY MODULATION AND SWEEPING

The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from $+\mathrm{V}_{\mathrm{CC}}$). By altering this voltage; frequency modulation is performed.

For small deviations (e. g. $\pm 10 \%$) the modulating signal can be applied directly to pin 8, merely providing dc decoupling with a capacitor, as shown in Figure 10a: An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance. Without it (i.e. terminals 7 and 8 connected together), the input impedance is $8 \mathrm{k} \Omega$; with it, this impedance increases to ($\mathrm{R}+8 \mathrm{k} \Omega$).

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 10b). In this way the entire bias for the current sources is created by the modulating signal and a very large (e.g. 1000:1) sweep range is created ($f=0$ at $V_{\text {sweep }}=0$). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept from $V_{C C}$ to $\left(2 / 3 V_{C C}+2 V\right)$.

(b)

FIGURE 10. CONNECTIONS FOR FREQUENCY MODULLATION (a) AND SWEEP (b).

APPLICATIONS

FIGURE 11. SINE WAVE OUTPUT BUFFER AMPLIFIERS
The sine wave output has a relatively high output impedance ($1 \mathrm{~K} \Omega$ Typ). The circuit of Figure 11 provides buffering, gain and amplitude adjustment. A simple op amp follower could also be used.

FIGURE 12. STROBE - TONE BURST GENERATOR
With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the 8038 oscillation. Figure 12 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.

FIGURE 13. VARIABLE AUDIO OSCILLATOR, 20 Hz to 20 KHz

To obtain a 1000:1 Sweep Range on the 8038 the voltage across external resistors RA and RB must decrease to nearly zero. This requires that the highest voltage on control Pin 8 exceed the voltage at the top of RA and RB by a few hundred millivolts.

The Circuit of Figure 13 achieves this by using a diode to lower the effective supply voltage on the 8038 . The large resistor on pin 5 helps reduce duty cycle variations with sweep.

FIGURE 14. LINEAR VOLTAGE CONTROLLED OSCILLATOR

The linearity of input sweep voltage verses output frequency can be significantly improved by using an op amp as shown in Figure 14.

This circuit is more fully described in "Electronics" magazine, October 30, 1975, page 96.

DETAILED SCHEMATIC

PACKAGE DIMENSIONS

14 PIN CERDIP
(

14 PIN PLASTIC DIP

IImers, Counters, and Digit Drivers

Watch and Clock Chip Chart

Timers

ICL8240/50/60
ICM7555/6
6-4

NE555
NE556
6-26
6-30

Counters
ICM7045
ICM7045A
ICM7208
ICM7215
ICM7216
ICM7226
ICM7217/27
ICM7224/25

Oscillators and Clock Generators ICM7209 6-104 ICM7213 6-108

Timebases for Counters ICM7207

6-114 ICM7207A

6-118
Display Drivers ICM7211/12

6-120 ICM7218

6-130
Touch Tone Encoder ICM7206/A/B

6-140

Counters, Timers and Display Drivers

Part Number	Circuit Description	Package	Crystal Frequency	Output
ICM7045A	Complete industrial stopwatch precision decade timer to count seconds, minutes or hours by selection of suitable oscillator frequencies.	28-Pin DIP	Seconds: 1.31 MHz Minutes: 2.18 MHz	Seven-digit common-cathode LED drive. Displays up to 240,000 seconds, 2,400 minutes, 24 hours.
ICM7201	Low battery voltage indicator	TO-72	Not applicable	Lights LED at voltage below 2.9 V .
ICM7206	. Touch-tone encoder; requires one contact per key	16-Pin DIP	3.57954 MHz	2-of-8 sine wave for tone dialing
, ICM7206A	Touch-tone encoder; requires two contacts per key with common line connected to + supply.	16-Pin DIP	3.57954 MHz :	2-of-8 sine wave for tone dialing
ICM7206B	Touch-tone encoder; common line connected to negative supply and oscillator enabled when key is pressed.	16-Pin DIP	3.57954 MHz	2-of-8 sine wave for tone dialing
$\begin{aligned} & \text { ICM7207 } \\ & \text { ICM7207A } \end{aligned}$	Frequency counter timebase. Includes $0.01,0.1$; or 1 -second count window plus store, reset and MUX	$\begin{aligned} & \text { 14-Pin DIP } \\ & \text { 14-Pin DIP } \end{aligned}$	$\begin{aligned} & 6.5536 \mathrm{MHz} \\ & 5.24288 \mathrm{MHz} \end{aligned}$	Crysal frequency $\div 2^{13}, \div 2^{17}, \div 10\left(2^{17}\right)$ divider stage
ICM7208	7-digit unit counter. With addition of 7207 the circuit becomes a complete timer-frequency counter	28-Pin DIP	-	LED display drive
ICM7209	High-frequency clock-generator for 5-volt systems	8-Pin DIP	to 10 MHz	Crystal frequency, $\div 2^{3}$ divider stage
$\begin{aligned} & \text { ICM7211 } \\ & \text { ICM7212 } \end{aligned}$	Four-digit display decoder drivers; ICM7211 is LCD; ICM7212 is LED; Non-multiplexed for low noise, BCD input, decoded display drive output.	40-Pin DIP (plastic)	-	Four-digit, seven-segment direct display drive; LED or LCD
ICM7213	Oscillator and frequency divider	14-Pin DIP (plastic)	to 10 MHz	1pps, 1ppm, 10 Hz , composite
$\begin{aligned} & \text { ICM7216 } \\ & \text { ICM7226 } \end{aligned}$	Eight-digit universal counter; measures frequency, period, frequency ratio, time interval, units.	28-Pin DIP 40-Pin DIP (Cerdip, ceramic, plastic)	1 or 10 kHz	Eight-digit common anode or common cathode direct LED drive
$\begin{aligned} & \text { ICM7217 } \\ & \text { ICM7227 } \end{aligned}$	Four-digit CMOS up/down counter; presettable start/count and compare register; for hard-wired or microprocessor control applications; cascadable	28-Pin Cerdip or plastic	-	Four-digit, seven-segment common anode or common cathode direct LED display drive; equal, zero, carry/borrow
ICM7218A/D ICM7218E	LED display driver system with 8×8 memory; numeric or dot (1 of 64) decoding; microprocessor compatible	```28-Pin DIP 40-Pin DIP (ceramic or plastic)```	-	Eight-digit, seven-segment plus decimal point; common cathode or common anode
ICM7219	Audio generator; digitally programmable; 5 bit input	14-Pin DIP (ceramic or plastic)		$0-100 \mathrm{kHz}$ output; waveform fully programmable
$\begin{aligned} & \text { ICM7224 } \\ & \text { ICM7225 } \end{aligned}$	41⁄2-digit high speed counter/decoder/driver; 25 MHz typ; ICM7224 is LCD, ICM7225 is LED; direct display drive; cascadable	40-Pin DIP. (plastic)	-	4 $1 / 2$-digit seven-segment direct display driver; LED or LCD
ICM7555 ICM7556	Single or dual CMOS version of industry-standard 555 timer; $80 \mu \mathrm{~A}$ typ. supply current; 500 kHz guaranteed; 2 -18V power supply	8-Pin DIP 14-Pin DIP	- \quad.	
$\begin{aligned} & \text { ICM7240 } \\ & \text { ICM7242 } \\ & \text { ICM7250 } \\ & \text { ICM7260 } \end{aligned}$	CMOS programmable counters/timers using external RC time base set. Programmable from minutes to years. Hr. accuracy $= \pm 0.5 \%$ typ.	16-Pin DIP	External	Timed output

Watches and Clocks

All circuits available as dice

Part Number	Circuit Description	Package	Power	Crystal Frequency
ICM1115A/ ICM1115B	Quartz clock circuit, bipolar stepper motor application with simple alarm	8-Pin DIP	(1) 1.5-volt cell	4.194 MHz
ICM1424B	5-function LCD wristwatch circuit. Features: hrs , min, sec, month, date, $31 / 2$ digit display with rapid advance on setting	dice only	(1) 1.5 -volt cell	32.768 kHz
ICM1424MB	Same electrical characteristics as ICM1424B but with mirror image configuration.	dice only	(1) 1.5 -volt cell	32.768 kHz
ICM7038A	Quartz clock circuit with alarm, synchronous motor	8-Pin DIP	(2) 1.5 -volt cells	2 to 10 MHz
ICM7038B	Quartz clock circuit with alarm, synchronous motor	8-Pin DIP	(1) 1.5 volt cell	2 to 10 MHz
ICM7045	Complete 4-function stop watch/24-hr. clock on single microcircuit chip with direct drive for LEDs on chip	28-Pin DIP	(3) 1.2 volt cells	6.5536 MHz
ICM7045A	Complete 4-function industrial stopwatch precision decade timer to count seconds, minutes or hours by selection of suitable oscillator frequencies	28-Pin DIP	(3) 1.2 volt cells	$\begin{array}{ll}\text { Seconds } & 1.31072 \mathrm{MHz} \\ \text { Minutes } & 2.184533 \mathrm{MHz} \\ \text { Hours } & 3.640889 \mathrm{MHz}\end{array}$
ICM7049A	Quartz clock circuit, unipolar stepper motor application with complex alarm	8-Pin DIP	(1) 1.5 -volt cell	4.1943 MHz
ICM7050	Quartz clock circuit, bipolar stepper motor application with complex alarm	8-Pin DIP	(1) 1.5 -volt cell	4.1943 MHz
ICM7051A	Quartz automobile clock circuit for synchronous motor	8-Pin DIP	(1) 12.0 -volt cell	4.1943 MHz
ICM7051B	Quartz automobile clock circuit for bipolar stepper motor	8-Pin DIP	(1) 12.0-volt cell	4.1943 MHz
ICM7205	Split and Taylor time stopwatch circuit with direct drive for LEDs on chip	24-Pin DIP	(3) 1.2-volt cells	3.2768 MHz
$\begin{aligned} & \text { ICM7210/ } \\ & \text { ICM7210C } \end{aligned}$	4-digit 6-function alpha-numeric LCD wristwatch circuit. Features: hrs, min, day, date, month, sec	dice only	(1) 1.5 -volt cell	32.768 kHz
ICM7210M/MC	Same electrical characteristics as ICM7210 but with mirror image	dice only	(1) 1.5-volt cell	32.768 kHz
ICM7214A	6-function alpha-numeric LED readout wristwatch circuits with english, french, german and italian languages versions and perpetual calendar. Features: hrs, min, sec, day, date, month	24-Pin leadless	(2) 1.5-volt cells	32.768 kHz
ICM7215	Complete 4-function stopwatch including "time-out" function. Direct drive for LED on chip	24-Pin DIP	(3) 1.2-volt cells	32.768 kHz
ICM7220	6-digit and 6-function LCD wristwatch circuit, alphanumeric 12 or 24 hours	dice only	(1) 1.5-volt cell	32.768 kHz
ICM7220A	Same as ICM7220 with cricket alarm	dice only	(1) 1.5 -volt cell	32.768 kHz
ICM7220B	Same as ICM7220 with two time zones	dice only	(1) 1.5 -volt cell	32.768 kHz
ICM7220C	Same as ICM7220 with 1/10 sec. auto ranging chronograph	dice only	(1) 1.5 -volt ceil	32.768 kHz
$\begin{aligned} & \text { ICM7220M/ } \\ & \text { MA/MC } \end{aligned}$	Same characteristics as 7220/A/C but with mirror image	dice only	(1) 1.5 -volt cell	32.768 kHz
ICM7221	4-digit 6-function LCD watch circuit with alarm-can be used for clock circuits	dice only	(1) 1.5 -volt cell	32.768 kHz
ICM7222	Same as ICM7220A $\quad \because$	dice only		

ICL8240, ICL8250, ICL8260 Programmable
 Timers/Counters

FEATURES

- Times from microseconds to minutes, hours, or days
- Time base set by simple R, C network or external clock
- Programmable with standard thumbwheel switches
- Select output count from

1 RC to 255 RC (8240)
1 RC to 99 RC (8250)
1 RC to 59 RC (8260)

- Easily expanded to multiple decades (1 RC to 9,999 RC)
- Open collector outputs for flexibility
- High accuracy: $\pm 0.5 \%$ typical
- Low drift: $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical
- Works over large supply range: $\mathbf{4 V}$ to $\mathbf{1 8 V}$
- TTL compatible trigger and reset inputs

APPLICATIONS

- Programmable timing Process timers Appliance timers
 Darkroom timers

- Programmable counter Inventory/loading/filling Counting/summing
- Frequency generation .

Music synthesis
Harmonic synchronization

- Accurate, long-delay generator
- A/D conversion
- Digital Sample and Hold
- Pattern generation

PIN DIAGRAM

ORDERING INFORMATION

GENERAL DESCRIPTION

The 8240,8250 and 8260 are a family of monolithic programmable timer circuits. They are intended to simplify the problem of selecting various time delays or frequency outputs available from a fixed oscillator circuit.
Each device consists of an accurate, low-drift oscillator a counter section of master-slave flip flops and appropriate logic and control circuitry all on one monolithic chip. The internal time base oscillator can be set with an external RC or can be disabled and the time base supplied from an external clock. The counter output taps are open collector transistors which can be programmed by a wire AND at external pins. Manual programming is easily accomplished by using standard thumbwheel switches. Additional logic circuitry will allow timing to be programmed by computer or microprocessor. These units are also very useful for generating ultra long delay times with relatively inexpensive RC components.
The 8260 is specifically designed to time accurate delays in seconds, minutes and hours. With its maximum count of 59 and carry out gate, a cascade of three 8260's will generate a one second clock from the 60 Hertz line, 60 seconds per minute and 60 minutes per hour programmable start to stop time. Thumbwheel switches with digits 0 to 5 and 0 to 9 are readily available to simplify the man-machine interface.
The 8250 is optimized for decimal counting and delays. It can be programmed by standard binary coded decimal (BCD) thumbwheel switches (0 to 9). Each unit gives 2 decades of counting allowing selection of time delays of from 1 RC to 99 RC. The carryout gate on the 8250 allows expansion to 9,999 or more.
The 8240 uses straight binary counting. With eight flip flops dividing down the base frequency, 8 suboctaves of the fundamental are available simultaneously in the astable mode. In the monostable mode the collectors can be wired AND to give any combination of pulse width of from 1 RC to 255 RC.
Applications for these versatile devices include appliance timers, darkroom timers and process timers. They can also be used as programmable counters. The internal clock can be disabled and the unit will count external pulses for programmable summing, loading or inventory applications. The internal clock can also be synchronized with the (m)th harmonic of an external sync and with the selectable counter, can provide a large number of non-harmonic frequencies from a single reference. Finally, they can be used as logic controlled switches in ramp type D-to-A and A-to-D converters.

TYPE	MAXIMUM COUNT	TEMPERATURE RANGE	16 PIN PACKAGE	ORDER PART NUMBER
8240 C	255	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	Plastic DIP	ICL 8240 C PE
8240 M	255	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP	ICL 8240 M DE
8250 C	99	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	Plastic DIP	ICL 8250 C PE
8250 M	99	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP	ICL 8250 M DE
8260 C	59	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	Plastic DIP	ICL 8260 C PE
8260 M	59	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Ceramic DIP	ICL 8260 M DE

ICL8240, ICL8250, ICL8260

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	18 V
Power Dissipation	
Ceramic Package	750 mW
Derate above $+25^{\circ} \mathrm{C}$	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Plastic Package	625 mW
Derate above $+25^{\circ} \mathrm{C}$. $0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Operating Temperature
8240M, 8250M, 8260M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
8240C, 8250C, 8260C $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: See Figure $2, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise noted.

PARAMETERS	8240M			8240C			UNITS	CONDITIONS
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
GENERAL CHARACTERISTICS								
Supply Voltage	4		18	4		18	V	For $\mathrm{V}+<4.5 \mathrm{~V}$, Short Pin 15 to Pin 16
Supply Current Total Circuit (Reset)		3.5	6	. ${ }^{\text {. }}$	4	7	mA	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {TR }}=0, \mathrm{~V}_{\mathrm{RS}}=5 \mathrm{~V}$
		12	16		13	18		$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{T R}=0, \mathrm{~V}_{\mathrm{RS}}=5 \mathrm{~V}$
Total Circuit (Trigger)		24			24			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{TR}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RS}}=0$ All outputs ON. (Worst Case)
Counter Only		1			1.5			See Figure 3, 8240 only
Regulator Output, V_{R}	4.1	4.4		3.9	4.4		V	Measured at Pin 15, $\mathrm{V}^{+}=5 \mathrm{~V}$
(8240 only)	6.0	6.3	6.6	5.8	6.3	6.8		$\mathrm{V}^{+}=15 \mathrm{~V}$, See Figure 4
TIME BASE SECTION								See Figure 2
Timing Accuracy		0.5	2.0		0.5	5	\%	$\mathrm{V}_{\mathrm{RS}}=0, \mathrm{~V}_{\text {TR }}=5 \mathrm{~V}$, Note 1.
Temperature Drift		150	300		200		ppm $/{ }^{\circ} \mathrm{C}$	$\mathrm{V}^{+}=5 \mathrm{~V}$ Over Operating Temperature
		80			80			$\mathrm{V}^{+}=15 \mathrm{~V}$
Supply Drift		0.05	0.2		0.08	0.3	\%/V	$\mathrm{V}^{+} \geq 8$ Volts, See Figure 11
Max. Frequency	100	130			130		kHz	$\mathrm{R}=1 \mathrm{kS}$, $\mathrm{C}=0.007 \mu \mathrm{~F}$
Time Base Output $V_{\text {tB }}$ High	2.4	2.8		2.4	2.8	.	V	Measured at Pin 14 $\text { ISource }=80 \mu \mathrm{~A}$
VTB LOW		0.2	0.4		0.2	0.4		$I_{\text {Sink }}=3.2 \mathrm{~mA}$
Modulation Voltage Level	3.00	3.50	4.0	2.80	3.50	4.20		Measured at Pin 12 $\mathrm{V}+=5 \mathrm{~V}$
		10.5			10.5			$\mathrm{V}+=15 \mathrm{~V}$
Recommended Range of Timing Components Timing Resistor, R	0.001		10	0.001		10	MS2	See Figure 8
Timing Capacitor, C	0.007		1000	0.01		1000	$\mu \mathrm{F}$	

TRIGGER/RESET CONTROLS

Trigger Trigger Threshold		1.4	2.0		1.4	2.0	V	Measured at Pin 11
Trigger Current		8			10		$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{RS}}=0, \mathrm{~V}_{\text {TR }}=2 \mathrm{~V}$
Impedance		25			25		$\mathrm{k} \Omega$	
Response Time		1			1		$\mu \mathrm{sec}$.	Note 2
Reset Reset Threshold		1.4	2.0		1.4	2.0	V	Measured at Pin 10
Reset Current		8			10		$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {TR }}=0, \mathrm{~V}_{\text {RS }}=2 \mathrm{~V}$
Impedance		25			25		$\mathrm{k} \Omega$	
Response Time		0.8			0.8		$\mu \mathrm{sec}$.	Note 2

COUNTER SECTION

Max. Toggle Rate	0.8	1.5			1.5		MHz	$\mathrm{V}_{\mathrm{RS}}=0, \mathrm{~V}_{\mathrm{TR}}=5 \mathrm{~V}$ $\text { Max Input to Pin } 14$
Input: Impedance	,	1.5	-	;	15		k Ω	Measured at Pin 14
Threshold	1.0	1.4		1.0	1.4		V	
Output: Rise Time		180	:	\cdots	180		nsec.	Measured at Pins 1 thru 8 $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pf}$
Fall Time		180			180			
Vout Low		0.2	0.4		0.2	0.4	V	ISINK $=3.2 \mathrm{~mA}$
Leakage Current		0.01	8		0.01	15	$\mu \mathrm{A}$	$\mathrm{VOH}=15 \mathrm{~V}$

NOTE 1: Timing error solely introduced by 8240, measured as $\%$ of ideal time-base period of $T=1.00$ RC.
NOTE 2: Propagation delay from application of trigger (or reset) input to corresponding state change in counter output at Pin 1.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: See Figure $2, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise noted.

TIME BASE SECTION

Timing Accuracy		0.5	2.0		0.5	5	\%	
Temperature Drift		150	300		200		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
		80			80			
Supply Drift		0.05	0.2		0.08	0.3	\%/V	
Max. Frequency	100	130			130		kHz	
Time Base Output $V_{\text {tB }}$ HIGH	2.4	2.8		2.4	2.8		V	
VTB LOW		0.2	0.4		0.2	0.4		
Modulation Voltage Level	3.00	3.50	4.0	2.80	3.50	4.20		
		10.5			10.5			
Recommended Range of Timing Components Timing Resistor, R	0.001		10	0.001		10	MS	
Timing Capacitor, C	0.007		1000	0.01		1000	$\mu \mathrm{F}$	

See Figure 2

V RS $=0, \mathrm{VTR}=5 \mathrm{~V}$, Note 1
$\mathrm{~V}^{+}=5 \mathrm{~V}$ Over Operating Temp.
$\mathrm{V}^{+}=15 \mathrm{~V}$
$\mathrm{~V}+\geq 8 \mathrm{Volts}$, See Figure 11
$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=0.007 \mu \mathrm{~F}$
Measured at Pin 14
ISource $=80 \mu \mathrm{~A}$
ISINK $=3.2 \mathrm{~mA}$
Measured at Pin 12 $\mathrm{~V}^{+}=5 \mathrm{~V}$ $\mathrm{~V}^{+}=15 \mathrm{~V}$
See Figure 8

TRIGGER/RESET CONTROLS

Trigger Trigger Threshold		1.4	2.0		1.4	2.0	V	Measured at Pin 11
Trigger Current		8			10		$\mu \mathrm{~A}$	V RS $=0, \mathrm{~V}$ TR $=2 \mathrm{~V}$
Impedance		25			25		$\mathrm{k} \Omega$	
Response Time		1			1		$\mu \mathrm{sec}$.	Note 2
Reset Reset Threshold		1.4	2.0		1.4	2.0	V	
Reset Current		8			10		$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {TR }}=0, \mathrm{~V}$ RS $=2 \mathrm{~V}$
Impedance		25			25		$\mathrm{k} \Omega$	
Response Time		0.8			0.8		$\mu \mathrm{sec}$.	Note 2

COUNTER SECTION

CARRY OUT GATE

See Figure 4, ${ }^{+}+=5 \mathrm{~V}$

Vco Low		0.2	0.4		0.2	0.4	V	Measured on Pin 15 $I_{\mathrm{SINK}}=3.2 \mathrm{~mA}$
Vco High	2.4	3.5		2.4	3.5			ISOURCE $=80 \mu \mathrm{~A}$

NOTE 1: Timing error solely introduced by 8250 , measured as $\%$ of ideal time-base period of $T=1.00$ RC.
NOTE 2: Propagation delay from application of trigger (or reset) input to corresponding state change in counter output at Pin 1.

ELECTRICAL CHARACTERISTICS
TEST CONDITIONS: See Figure $2, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise noted.

PARAMETERS	8260 M			8260 C			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	

GENERAL CHARACTERISTICS

Supply Voltage	4.5		18	4.5		18	V	
$\begin{aligned} & \text { Supply Current } \\ & \text { Total Circuit (Reset) } \end{aligned}$							mA	
		3.5	6		4	7		$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\text {TR }}=0, \mathrm{~V}_{\mathrm{RS}}=5 \mathrm{~V}$
		12	16		13	18		$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{Vq} 4 \mathrm{TR}=0, \mathrm{~V}$ RS $=5 \mathrm{~V}$
Total Circuit (Trigger)		24			24			$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{TR}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RS}}=0$ All outputs ON. (Worst Case)

TIME BASE SECTION

Timing Accuracy		0.5	2.0		0.5	5	\%	$\mathrm{V}_{\mathrm{RS}}=0, \mathrm{~V}_{\text {TR }}=5 \mathrm{~V}$, Note 1
Temperature Drift		150	300		200		ppm $/{ }^{\circ} \mathrm{C}$	$\mathrm{V}^{+}=, 5 \mathrm{~V}$ Over Operating Temp.
		80			80			$\mathrm{V}^{+}=15 \mathrm{~V}$
Supply Drift		0.05	0.2		0.08	0.3	\%/V	$\mathrm{V}^{+} \geq 8$ Volts; See Figure 11
Max. Frequency	100	130			130		kHz	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=0.007 \mu \mathrm{~F}$
Time Base Output Vtb HIGH	2.4	2.8		2.4	2.8		V	Measured at Pin 14 $\text { ISource }=80 \mu \mathrm{~A}$
Vtb LOW		0.2	0.4		0.2	0.4		$I_{\text {Sink }}=3.2 \mathrm{~mA}$
Modulation Voltage Level	3.00	3.50	4.0	2.80	3.50	4.20		Measured at Pin 12 $\mathrm{V}^{+}=5 \mathrm{~V}$
		10.5			10.5			$\mathrm{V}+=15 \mathrm{~V}$
Recommended Range of Timing Components Timing Resistor, R	0.001		10	0.001	\cdots	10	M. ${ }^{\text {L }}$	See Figure 8
Timing Capacitor, C	0.007		1000	0.01		1000	$\mu \mathrm{F}$	

TRIGGER/RESET CONTROLS

Trigger Trigger Threshold		1.4	2.0		1.4	2.0	V	Measured at Pin 11
Trigger Current		8			10		$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{RS}}=0, \mathrm{~V}$ TR $=2 \mathrm{~V}$
Impedance		25			25		$\mathrm{k} \Omega$	
Response Time		1			1		$\mu \mathrm{sec}$.	Note 2
Reset Reset Threshold		1.4	2.0		1.4	2.0	V	Measured at Pin 10
Reset Current		8			10		$\mu \mathrm{~A}$	V TR $=0, \mathrm{~V}$ RS $=2 \mathrm{~V}$
Impedance		25			25		ks	
Response Time		0.8			0.8		$\mu \mathrm{sec}$.	Note 2

COUNTER SECTION \quad See Figure 4, $\mathrm{V}+=5 \mathrm{~V}$

Max. Toggle Rate	0.8	1.5			1.5		MHz	$\mathrm{V}_{\mathrm{RS}}=0, \mathrm{~V}_{T \mathrm{R}}=5 \mathrm{~V}$ Max Input Pin 14
Input: Impedance		20	,		20		k Ω	Measured at Pin 14
Threshold	1.0	1.4		1.0	1.4		V	,
Output: Rise Time		180			180		nsec.	Measured at Pins 1 thru 7 $R_{L}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
Fall Time		180			180			
Vout Low		0.2	0.4		0.2	0.4	V	Isink $=3.2 \mathrm{~mA}$
Leakage Current		0.01	8		0.01	15	$\mu \mathrm{A}$	$\mathrm{VOH}=15 \mathrm{~V}$

CARRY OUT GATE

VCO LOW		0.2	0.4		0.2	0.4	V	Measured on Pin 15 ISINK $=3.2 \mathrm{~mA}$
VHIGH	2.4	3.5		2.4	3.5			

[^21]
ICL8240, ICL8250, ICL8260

BLOCK DIAGRAM

FIGURE 1.

FIGURE 2: Generalized Test Circuit

FIGURE 3: Test Circuit for Low-Power Operation (T.ime-Base Powered Down) 8240 Only

1

FIGURE 4: Test Circuit for Counter Section

FIGURE 5: Supply Current vs. Supply Voltage in Reset Condition

TRIGGER OF RESET AMPLITUDE (VOLTS)
FIGURE 8: Minimum Trigger and Reset Pulse Widths at Pins 10 and 11

FIGURE 6: Recommended Range of Timing Component Values

FIGURE 9: Power Supply Drift

FIGURE 7: Time-Base Period, T, as a Function of External RC

FIGURE 10:
A) Minimum Trigger Delay Time Subsequent to Application of Power B) Minimum Re-trigger Time, Subsequent to a Reset Input

MODULATION VOLTAGE, V_{M} (VOLTS)

FIGURE 11: Normalized Change in Time-Base Period As a Function of Modulation Voltage at Pin 12

FIGURE 12: Temperature Stability at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

FIGURE 13: Temperature Stability at $V_{C C}=15 \mathrm{~V}$

INTRODUCTION TO PROGRAMMABLE TIMING

A timing diagram of waveforms and circuit states is shown in Figure 14．A generalized circuit connection for the 8240／50／ 60 is shown in Figure 15.

FIGURE 14：Timing Diagram of Output Waveforms（8240） （NOTE：BCD States are not all symmetrical）

The timing cycle is initiated by applying a positive－going trigger pulse to pin 11．This trigger pulse enables the counter section，sets all counter outputs to the＂low＂or＂on＂state， and starts the time base oscillator．Then external C is charged through external R from 20% to 70% of V^{+}，generat－ ing a timing waveform with period，T ，equal to 1 RC．A short negative clock or time base pulse occurs during the capaci－ tor discharge portion of the waveform．（Normally this time is small compared with the period T but has been enlarged for Figure 14．）These clock pulses are counted by the binary counter of the 8240 or by a Binary Coded Decimal（BCD） Counter in the 8250／60．The timing cycle terminates when a positive－going，reset pulse is applied to pin 10．When the circuit is at reset state，both the time base and the counter sections are disabled and all the counter outputs are at a ＂high＂or＂off＂state．The carry－out is also high．
In most timing applications，one or more of the counter out－ puts are connected back to the reset terminal，as shown in Figure 15 ，with S_{1} closed．In this manner，the circuit will start timing when a trigger is applied and will automatically reset itself to complete the timing cycle when a programmed count is completed．If none of the counter outputs are connected back to the reset terminal（switch S_{1} open），the circuit would operate in its astable or free－running mode， subsequent to a trigger input．

PROGRAMMING CAPABILITY

The counter outputs（pins 1 through 8）are open－collector type stages and can be shorted together to a common pull－ up resistor to form a＂wired－and＂connection．The combined output will be＂low＂as long as any one of the outputs is low． In this manner，the time delays associated with each counter output can be summed by simply shorting them together to a common output bus as shown in Figure 15．For example，if only pin 6 is connected to the output and the rest left open， the total duration of the timing cycle． T_{0} ，would be 32 T for an 8240 ，and 20 T for an 8250 ．Similarly，if pins 1,5 ，and 6 were shorted to the output bus，the total time delay would be $T_{0}=$ $(1+16+32) \mathrm{T}=49 \mathrm{~T} \cdot(8240)$ or $(1+10+20) \mathrm{T} \pm 31 \mathrm{~T}(8250)$ ．In
this manner，by proper choice of counter terminals connected to the output bus，one can program the timing cycle to be：

```
1T < To \leq 255T (8240)
1T \leq To \leq 99T (8250)
1T\leqTO
```

Note that for the 8250 and 8260 invalid count states（BCD values ≥ 10 ）will not be recognized，and the counter will not stop．

FIGURE 15：Generalized Circuit Connection for Timing Applications （Switch S_{1} Open for Astable Operations，Closed for Monostable Operations）

THUMBWHEEL SWITCHES

While the 8240 is frequently hard wired for a particular function，the 8250 and 8260 can easily be programmed by using Thumbwheel switches．Standard BCD thumbwheel switches have four inputs（ $20,21,22,23$ or $1,2,4$ and 8 ）and one＂common＂，which are connected according to the binary equivalent of the digits 0 through 9.
For a single 8250 two such switches would select a time of from 01 RC to 99 RC．A cascade of two 8250＇s（using the carry out gate）would expand selection to 9999 RC．For an 8260 there are standard BCD Thumbwheel switches for the 0 through 5 digit（Twelve position， 0 to 5 repeated）．

DESCRIPTION OF CIRCUIT CONTROLS COUNTER OUTPUTS (PINS 1 THROUGH 8)

The binary counter outputs are buffered "open-collector" type stages, as shown in Figure 15. Each output is capable of sinking $\approx 5 \mathrm{~mA}$ of load current. At reset condition, all the counter outputs are at high or non-conducting state. Subsequent to a trigger input, the outputs change state in accordance with the timing diagram of Figure 14.

The counter outputs can be used individually, or can be connected together in a wired-and configuration, as described in the Programming section.

GROUND (PIN 9)

This is the return or most negative supply for the device. It should have a very low impedance since capacitor discharge and other switched currents could create transients.

RESET AND TRIGGER INPUTS (PINS 10 AND 11)

The circuit is reset or triggered with positive-going control pulses applied to pins 10 and 11. The threshold level for these controls is approximately two diode drops ($\approx 1.4 \mathrm{~V}$) above ground, and is therefore TTL/DTL compatible.

When power is applied to the 8240/50/60 with no trigger or reset inputs, the circuit reverts to "reset" state. Once triggered, the circuit is immune to additional trigger inputs, until the timing cycle is completed or a reset input is applied. If both the reset and the trigger controls are activated simultaneously, trigger overrides reset. Minimum pulse widths for reset and trigger inputs are shown in Figure 8.

MODULATION AND SYNC INPUT (PIN 12)

The period T of the time-base oscillator can be modulated by applying a dc voltage to this terminal (see Figure 11). The time-base oscillator can be synchronized to an external clock by applying a sync pulse to pin 12, as shown in Figure 26. Recommended sync pulse widths and amplitudes are also given in the figure.

TIMING TERMINAL (PIN 13)

The time-base period T is determined by the external RC network connected to this pin. When the time-base is triggered, the waveform at pin 13 is an exponential ramp with a period $T=1.0$ RC. Figures 5 and 6 show RC values.

TIME-BASE OUTPUT (PIN 14)

Time-Base output is an open-collector type stage. An internal $10 \mathrm{k} \Omega$ pull-up resistor is provided to ensure correct operation. At reset state, the time-base output is at "high" state. Subsequent to triggering, it produces a negative-going pulse train with a period $T=R C$, as shown in the diagram of Figure 14.

Time-base output is internally connected to the binary counter section and also serves as the input for the external clock signal when the circuit is operated with an external time-base.

The counter input triggers on the negative-going edge of the timing or clock pulses applied to pin 14. The trigger threshold for the counter section is $\approx+1.4$ volts. The counter section can be disabled by clamping the voltage level at pin 14 to ground.

Under certain operating conditions such as high supply voltages ($\mathrm{V}+>7 \mathrm{~V}$) and small values of timing capacitor ($\mathrm{C}<$ $0.1 \mu \mathrm{~F}$) the pulse-width of the time-base output at pin 14 may be too narrow to trigger the counter section. This can be corrected by connecting a 300 pF capacitor from pin 14 to ground.

CARRY OUTPUT (PIN 15, 8250 AND 8260 ONLY)

This pin will go HI for the last 10 counts of a 59 or 99 count, and can be used to drive another 8250 or 8260 counter stage, while still using all the counter outputs of the first. Thus, by cascading several 8250's a large BCD countdown can be achieved. The carry-out can also be used to drive TTL logic, etc.

REGULATOR OUTPUT (PIN 15, 8240 ONLY)

This terminal can serve as a V+ supply to additional 8240 circuits when several timer circuits are cascaded (see Figure 19), to minimize power dissipation. For circuit operation with external clock, pin 15 can be used as the $\mathrm{V}+$ terminal to power-down the internal time-base and reduce power dissipation.

When the internal time-base is used with $\mathrm{V}+\leq 4.5 \mathrm{~V}$, pin 15 should be shorted to pin 16.

V+(PIN 16)

This is the most positive supply voltage. (4.5 V to 18 V) A low. supply impedance or $0.1 \mu \mathrm{~F}$ to ground will help suppress voltage transients.

ICL8240, ICL8250, ICL8260

APPLICATIONS INFORMATION

PRECISION TIMING (Monostable Operation)

In precision timing applications, the 8240/50 is used in its monostable or "self-resetting" mode. The generalized circuit connection for this application is shown in Figure 16.
The output is normally "high" and goes to "low" subsequent to a trigger input. It stays low for the time duration T_{0} and then returns to the high state. The duration of the timing cycle T_{0} is given as:

$$
\mathrm{T}_{0}=\mathrm{NT}=\mathrm{NRC}
$$

where $T=R C$ is the time-base period as set by the choice of timing components at pin 13 (see Figure 7). N is an integer in the range of:

$$
1 \leq N \leq 255^{\prime}(8240) \leq 99(8250) \leq 59^{\prime}(8260)
$$

as determined by the combination of counter outputs (pins 1 through 8i) connected to the output bus, as described before. (see page 7)

FIGURE 16: Circuit for Monostable Operation

ULTRA-LONG DELAY GENERATION

Two 8240/50/60 units can be cascaded as shown in Figure 17 to generate extremely long time delays. In this application, the reset and the trigger terminals of both units are tied together and the time base of Unit 2 disabled. In this manner, the output would normally be high when the system is at reset. Upon application of a trigger input, the output goes low for a total of (256)2 or 65,536 cycles of the time-base oscillator (8240) or (100) 2 or 10,000 cycles (8250). The 8250/60 can also be connected as shown in Figure 18, allowing finer resolution in timing interval. The same applies to the 8260. PROGRAMMING: Total timing cycle of two cascaded 8240's can be programmed from $T_{0}=256 R D$ to $T_{0}=65,536 R C$ in 256 discrete steps by selectively shorting any one or the combination of the counter outputs from Unit 2 to the output bus. Two cascaded 8250's can be programmed from $\mathrm{T}_{\mathrm{o}}=$ $1 R C$ to $T_{0}=9999 R C$ in 10,000 discrete steps by selectively shorting any combination of the counter outputs from both units to the output bus.

FIGURE 17: Cascaded Operation for Long Delay Generation (8240)

FIGURE 18: Cascaded Operation (8250 or 8260)

LOW-POWER OPERATION (8240 ONLY)

In cascaded operation, the time-base section of Unit 2 can be powered down to reduce power consumption, by using the circuit connection of Figure 19. In this case, the V+terminal (pin 16) of Unit 2 is left open circuited, and the second unit is powered from the regulator output of Unit 1, by connecting pin 15 of both units. The V+terminal of an 8250 can be connected to pin 15 of an 8240, but the power drain is not greatly reduced by this connection.

FIGURE 19: Low-Power Operation of Cascaded Timers (8240 only)

ELECTRONICALLY PROGRAMMED TIMER/COUNTER

The current interest in microprocessors, ROM's, PROM's, etc., requires timers which can be programmed electronically. Figures 20A and B show two ways of using readily available TTL/MSI logic to accomplish this. Although one is shown as a timer and the other as a counter, the choice of an external or internal clock would allow either circuit to perform either function.

The circuit of Figure 20A uses a standard 54/74 series TTL four bit magnitude comparator to compare the digitally programmed input with the 8240/50/60 counter outputs. The Greater, Less Than and Equal waveforms provide several outputs to choose from. An external start pulse triggers. the timer and the $A<B$ output is used as a reset.

FIGURE 20A: Electronically Programmed Timer

In Figure 20B two Quad Nor circuits with open collector outputs are wired together to form an inexpensive digital comparator. A start pulse triggers the 8240/50/60 counter and sets the output flip flop high. The digital comparator output goes high momentarily when $\mathrm{A}=\mathrm{B}$. This resets the
flip flop which in turn resets the counter. For extended temperature range or higher speed operation, individual pull-up resistors may be needed on the counter outputs of both circuits 20 A and 20B.

FIGURE 20B: Electronically Programmed Counter

ASTABLE OPERATION

The 8240/50 can be operated in its astable or free-running mode by disconnecting the reset terminal (pin 10) from the counter outputs. Two typical circuit connections for this mode of operation are shown in Figure 21. In the circuit connection of Figure 21(a), the circuit operates in its freerunning mode, with external trigger and reset signals. It will start counting and timing subsequent to a trigger input until an external reset pulse is applied. Upon application of a positive-going reset signal to pin 10, the circuit reverts back to its rest state. The circuit of Figure 21(a) is essentially the same as that of Figure 15, with the feedback switch S_{1} open. The circuit of Figure 21(b) is designed for continuous operation. The circuit self-triggers automatically when the power supply is turned on, and continues to operate in its free-running mode indefinitely.
In astable or free-running operation, each of the counter outputs can be used individually as synchronized oscillators; or they can be interconnected or generate complex pulse patterns.

FIGURE 21: Circuit Connections for Astable Operation (a) Operation with External Trigger and Reset Controls (b) Free-running or Continuous Operation

BINARY OR DECIMAL PATTERN GENERATION

In astable operation, as shown in Figure 21, the output of the 8240/50 appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 14 which shows the phase relations between the counter outputs. Figure 22 shows some of these complex pulse patterns. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output.

FIGURE 22: Pulse Patterns Obtained by Shorting Various Counter Outputs (Shown for the 8240)

OPERATION WITH EXTERNAL CLOCK

The 8240/50 can be operated with an external clock or timebase, by disabling the internal time-base oscillator and applying the external clock input to pin 14. The recommended circuit connection for this application is shown in Figure 23. The internal time-base can be de-activated by connecting pin 13 to ground. The counters are triggered on the negative-going edges of the external clock pulse. For proper operation, a minimum clock pulse amplitude of 3 volts is required. Minimum external clock pulse width is $1 \mu \mathrm{~s}$.

FIGURE 23: Operation with External Clock

FREQUENCY SYNTHESIZER

The programmable counter section of 8240/50 can be used to generate many discrete frequencies from a given time base setting using the circuit connection of Figure 24. The output of the circuit is a positive pulse train with a pulse width equal to T, and a period equal to $(N+1)$ where N is the programmed count in the counter.
The modulus N is the total count corresponding to the counter outputs connected to the output bus. Thus, for example, if pins 1,3 and 6 are connected together to the output bus, the total count is: $N=1+4+32=37$ and the period of the output waveform is equal to $(\mathrm{N}+1) \mathrm{T}$ or 38 T (25T for 8250). In this manner, many different frequencies can be synthesized from a given time-base setting.

FIGURE 24: Frequency Synthesis from Internal Time-Base

FIGURE 25: Frequency Synthesis by Harmonic Locking to an External Reference

FIGURE 26: Operation with External Sync Signal.
(a) Circuit for Sync Input
(b) Recommended Sync Waveform

HARMONIC SYNCHRONIZATION

The time-base can be synchronized with integer multiples or harmonics of an input sync frequency, by setting the timebase period, T, to be an integer multiple of the sync pulse period, Ts. This can be done by choosing the timing components R and C at pin 13 such that:

$$
\begin{aligned}
& T=R c=(T s / m) \text { where } \\
& m \text { is an integer, } 1 \leq m \leq 10 .
\end{aligned}
$$

Figure 27 gives the typical pull-in range for harmonic synchronization, for various values of harmonic modulus, m. For $m<10$, typical pull-in range is greater than $\pm 4 \%$ of timebase frequency. For $m>10$, the circuit is too sensitive for reliable synchronization.

SYNTHESIS WITH HARMONIC LOCKING: The harmonic synchronization property of the 8240/50 time-base can be used to generate a wide number of discrete frequencies from a given input reference frequency. The circuit connection for this application is shown in Figure 25. (See Figures 26 and 27 for external sync waveform and harmonic capture range.) If the time base is synchronized to (m)th harmonic of input frequency where $1 \leq m \leq 10$, as described in the section on "Harmonic Synchronization", the frequency of f_{0} of the output waveform in Figure 25 is related to the input reference frequency f_{R} as:

$$
f_{0}=f_{R} \frac{m}{(N+1)}
$$

where m is the harmonic number, and N is the programmed counter modulus. For a range of $1 \leq N \leq 255$, the circuit of Figure 19 can produce 2550 different frequencies from a single fixed reference.
One particular application of the circuit of Figure 25 is generating frequencies which are not harmonically related to a reference input. For example, by choosing the external RC to set $m=10$ and setting $N=5$, one can obtain a 100 Hz output frequency synchronized to 60 Hz power line frequency. See Figure 29.

8260 APPLICATIONS

The 8260 provides a convenient method of generating accurate long delays where the inputs are programmed in terms of seconds, minutes and hours. An example of this is the 100 hour timer shown in Fig. 28. The 8260 on the right uses the carryout gate to generate a one second clock from a 60 hertz line source. The diodes on the time base input rectify the input signal and alternately clamp and release the internal pull up resistor at pin 14. The input network depends on the amplitude of 60 Hertz signal available. The internal oscillators are disabled with a 1Kresistor to ground at pin 13. The second and third 8260's are programmable with thumbwheel switches up to 59 seconds and 59 minutes. The carryout of each divider drives the next counter. An 8250 was chosen as the final stage to give a maximum count of 99 hours. All Reset pin's are tied together and back to the 10 K output pull up at the thumbwheel switches. The timing cycle begins by closing the push button to pulse the trigger inputs which are also tied together. The output is a normally high voltage which goes low when triggered. The output will stay
low until the counters reach the time programmed at the thumbwheel switches. At that time the output returns to the high state and resets all the counters.

Some applications require monitoring of the continuing count. The Intersil ICM7045 (or 7208) provides a counter chip plus direct drive to seven segment LED displays. The counter can be reset from the 8260 (or 8250) timer after the programmed count is reached.

The timing resolution can be increased to hundredths of a second by substituting 8250's for the initial stages and using the 60 Hertz line to generate a 100 Hertz clock. This was shown in Figure 25 under synthesis with harmonic locking. See Figure 29.

For applications with no 60 Hertz signal available the Intersil ICM7049 is recommended. This part works with a 4 Mhz quartz crystal to generate a very stable one pulse per second clock frequency. See Figure 30.

FIGURE 28: Programmable 100 Hour Timer with Display

FIGURE 29: Front End for High Resolution Timer
FIGURE 30: Intersil 7049 CMOS 1 Second Reference Oscillator

STAIRCASE GENERATOR

The open collector outputs of the 8240/50/60 counter stages are useful in several applications where digitally sequenced switches are needed. One example is the staircase generator of Figure 31. In this circuit an array of resistors is switched to ground to generate binary (or BCD) weighted currents. The op amp converts these currents to an output voltage. Under reset condition the switches are off and the output is at
ground. When a trigger is applied the output goes to VREF and generates a negative going staircase of 256 (or 100) levels. The time duration of each stop is equal to the time base period ($T=R C$). The amplitude of the staircase can be varied by changing the input reference voltage. The staircase can be stopped at any desired level by applying a "disable" signal to pin 14 as shown.

FIGURE 31: Staircase Generator

ICL8240, ICL8250, ICL8260

DIGITAL SAMPLE AND HOLD

By adding a comparator and RS flip flop to the staircase circuit we obtain the digital sample and hold shown in Figure 32. When a "strobe" input is applied, the 8240/8250 is first reset and then triggered through the small RC at pin 11 which delays the strobe signal. The strobe also sets the flip flop which in turn enables the counter via pin 14. The op amp goes to the high state and begins to count down at a rate set
by the counter time base. When the op amp output reaches the analog input to be sampled; the comparator switches, resetting the flip flop and stops the count. The op amp output will accurately hold the sampled value until the next strobe pulse is applied. If the $8240 / 50$ time base is set as shown, the maximum acquisition time would be 256 (or 100) times .01 msec , or approximately 2.6 msec .

FIGURE 32: Digital Sample and Hold

ANALOG TO DIGITAL CONVERTER

Figure 33 shows an 8 bit binary (8240) or 2 digit BCD (8250) A / D converter using the staircase scheme of Figure 31. The operation is similar to the digital sample and hold of Figure 32 except digital outputs are taken off the counter output' taps. In this circuit an input strobe pulse first resets then triggers the 8240/50 and sets the flip flop which enables the counter. The staircase from the op amp counts down until it
reaches the analog input, at which time the comparator resets the flip flop and stops the count. The digital word at the 8 outputs is the complementary binary (or BCD) equivalent of the analog input. The maximum conversion time is again approximately 2.6 msec . The $\overline{\mathrm{Q}}$ flip flop output is convenient to use as a data ready flag since its output goes high when the conversion is complete.

FIGURE 33: Analog-To-Digital Converter

PACKAGE DIMENSIONS

16 PIN CERAMIC DIP (DE)

16 PIN PLASTIC DIP (PE)

ICM7555
 Low Power General Purpose Timer
 ICM7556
 Low Power Dual Timer
 (High Performance Equivalents of the 555, 556, and 355 timers)

FEATURES

- Exact equivalent in most cases for SE/NE555 or 556 or the 355.
- Low Supply Current

80 μ A Typ. (ICM7555)
160μ A Typ. (ICM7556)

- Extremely low trigger, threshold and reset currents - 20pA Typical
- High speed operation - 500 kHz guaranteed
- Wide operation supply voltage range guaranteed 2 to 18 volts
- Well behaved Reset function - No crowbarring of supply during output transition.
- Can be used with higher impedance timing elements than regular 555/6 for longer RC time constants.
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- High output source/sink driver-can drive TTL/CMOS
- Typical temperature stability of 0.005% per ${ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$
- Normally on and normally off output with very low offsets
- Completely static protected - no special handling considerations.

GENERAL DESCRIPTION

The ICM7555/6 are CMOS RC timers providing significantly improved performance over the standard SE/NE555/6 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include the low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during any output transition, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.
Specifically, the ICM7555/6 are stable controllers capable of producing accurate time delays or frequency. The ICM7556 is a dual ICM7555, with the two timers operating independently of one another, sharing only $\mathrm{V}^{+}(\mathrm{Vcc})$ and $\mathrm{V}^{-}(\mathrm{GND})$. In the time delay one shot mode of operation for each circuit, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor, unlike the regular bipolar 555/6 devices, which also requires the CONTROL VOLTAGE terminal to be decoupled with a capacitor to prevent multiple output glitching during a transition. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink large currents to drive TTL loads or provide minimal offsets to drive CMOS loads.

APPLICATIONS

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Missing Pulse Detector

ORDERING INFORMATION

ORDER PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7555IPA	-20 to $70^{\circ} \mathrm{C}$	8 Lead MiniDip
ICM7555ITY	-20 to $70^{\circ} \mathrm{C}$	TO-99 Can
ICM7555MTY	-55 to $+125^{\circ} \mathrm{C}$	TO-99 Can
ICM7556IPD	-20 to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
ICM7556MDD	-55 to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
ICM7555D	DICE	
ICM7556D		DICE

PIN CONFIGURATIONS (Top View)
ICM7555

ICM7556

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Supply Voltag	- V^{-1}
Input Voltage	Trigger
(Note 2)	Threshold
	Reset
	Control Volta

Output Current Control Voltage

100 mA
Power Dissipation (Note 3) ICM7556 300 mW
ICM7555
200 mW
+18 Volts
$\leq \mathrm{V}^{+}+0.3 \mathrm{~V}$
to $\geq \mathrm{V}^{-}-0.3 \mathrm{~V}$

OPERATING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}-\mathrm{V}^{-}=+2\right.$ to +15 Volts unless other specified)

PARAMETER	TEST CONDITIONS	VALUE			UNITS
		MIN	TYP	MAX	
Supply Voltage	$\begin{aligned} & -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 18 \\ & 16 \end{aligned}$	V
Supply Current (Note 4)	$\begin{array}{ll} \text { ICM7555 } & V^{+}-V^{-}=2 V \\ V^{+}-V^{-}=18 V \end{array}$		$\begin{gathered} 60 \\ 120 \end{gathered}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$
Supply Current (Note 4)	$\begin{array}{ll} \text { ICM7556 } & V^{+}-V^{-}=2 V \\ V^{+}-V^{-}=18 V \end{array}$.	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	
Timing Error (Note 5) Initial Accuracy Drift with Temperature Drift with Supply Voltage	$\begin{aligned} & R_{A}, R_{B}=1 \mathrm{k} \text { to } 100 \mathrm{k} \\ & \mathrm{C}=0.1 \mu \mathrm{~F} \end{aligned}$ $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$,	$\begin{array}{r} 2.0 \\ 50 \\ 1.0 \end{array}$		$\begin{gathered} \% \\ \text { ppm } /{ }^{\circ} \mathrm{C} \\ \% / \overline{\mathrm{Volt}} \end{gathered}$
Threshold Voltage			$2 / 3\left(V^{*}-V^{-}\right)$		V
Trigger Voltage			$1 / 3\left(\mathrm{~V}^{*}-\mathrm{V}^{-}\right)$		
Trigger Current	$\begin{aligned} & V^{+}-V^{-}=18 V \\ & V^{+}-V^{-}=5 V \\ & V^{+}-V^{-}=2 V \end{aligned}$		$\begin{gathered} 50 \\ 10 \\ 1 \end{gathered}$		pA
Threshold Current	$\left\{\begin{array}{l} V^{+}-V^{\bullet}=18 V \\ V^{+}-V^{-}=5 V \\ V^{+}-V^{-}=2 V \end{array}\right.$	-	50 10 1	'	
Reset Current	$\begin{aligned} & V_{\text {RESET }}=V^{-} V^{+}-V^{-}=18 V \\ & V^{+}-V^{-}=5 V \\ & V^{+}-V^{-}=2 V \end{aligned} .$		$\begin{gathered} 100 \\ 20 \\ 2 \end{gathered}$		
Reset Voltage .	$\begin{aligned} & V^{+}-V^{-}=18 V \\ & V^{+}-V^{-}=2 V \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	V
Control Voltage Lead	.		$2 / 3\left(\mathrm{~V}^{ \pm}-\mathrm{V}^{-}\right)$		
Output Voltage Drop	Output Lo $\mathrm{V}^{+}-\mathrm{V}^{-}=18 \mathrm{~V}$ ISINK $=3.2 \mathrm{~mA}$ $\mathrm{~V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$ ISINK $=3.2 \mathrm{~mA}$ Output Hi $\mathrm{V}^{+}-\mathrm{V}^{-}=18 \mathrm{~V}$ ISOURCE $=1.0 \mathrm{~mA}$ $\mathrm{~V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$ ISOURCE $=1.0 \mathrm{~mA}$	$\begin{aligned} & 17.8 \\ & 4.0 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.15 \\ 17.25 \\ 4.5 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	
Rise Time of Output	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{Mohms} \quad \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}, \quad \mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$		40.0		nS
Fall Time of Output	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{Mohms}: \quad \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF} \quad$: $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$		40.0		
Guaranteed Max Osc Freq	Astable Operation	500	\because	8	kHz

NOTES:

1. Absolute Maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These ratings may not be continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "OPERATING" CHARACTERISTICS."
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than V^{+} +0.3 V or less than $\mathrm{V}^{-}-0.3 \mathrm{~V}$ may cause destructive latchup. For this reason it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its power supply is established. In multiple systems, the supply of the ICM7555/6 must be turned on first.
3. Junction temperatures should not exceed $135^{\circ} \mathrm{C}$ and the power dissipation must be limited to 20 mW at $125^{\circ} \mathrm{C}$. Below $125^{\circ} \mathrm{C}$ power dissipation may be increased to 300 mW at $25^{\circ} \mathrm{C}$. Derating factor is approximately $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(7556)$ or $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(7555)$.
4. The supply current value is essentially independent of the TRIGGER, THRESHOLD and RESET voltages.
5. For supply voltages between 5 and 15 volts.

TYPICAL CHARACTERISTICS

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE - $X\left(V^{+} \ldots v\right)$

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

DISCHARGE OUTPUT CURRENT
AS A FUNCTION OF
DISCHARGE OUTPUT VOLTAGE

FREE RUNNING FREQUENCY AS A FUNCTION OR RA, RB AND C

OUTPUT SOURCE CURRENT AS A FUNCTION OF OUTPUT VOLTAGE OUTPUT VOLTAGE REFERENCED TO \mathbf{V} *

OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

PROPAGATION DELAY AS A FUNCTION OF VOLTAGE LEVEL OF TRIGGER PULSE

TIME DELAY IN THE MONOSTABLE MODE AS A FUNCTION OF RA AND C

APPLICATION NOTES
 GENERAL

The ICM7555/6 devices are, in most instances, direct replacements for the NE/SE 555/6 devices. However, it is possible to effect economics in the external component count using the ICM7555/6. In general because the bipolar 555/6 devices produce large crowbar currents in the output driver, it is necessary to decouple the power supply lines with a good capacitor close to the device. The current transient is shown in Figure 2.

Figure 2: Supply Current Transient for a Standard Bipolar 555 During an Output Transition

The ICM7555/6 produces supply current spikes of only 2-3 mA instead of $300-400 \mathrm{~mA}$ and supply decoupling is normally not necessary. Secondly, in most instances, the CONTROL VOLTAGE decoupling capacitors are not required since the input impedance of the CMOS comparators on chip are very high. THUS, FOR MANY APPLICATIONS 2 CAPACITORS CAN BE SAVED USING AN ICM7555 AND 3 CAPACITORS WITH AN ICM7556.

POWER SUPPLY CONSIDERATIONS

Although the supply current consumed by the ICM7555/6 devices is very low, the total system supply can be high unless the timing components are high impedance. Therefore, use high values for R_{A} and R_{B} and low values for C in Figures 3 and 4.

OUTPUT DRIVE CAPABILITY

The output driver consists of a CMOS inverter capable of driving most logic families including CMOS and TTL. As such, if driving CMOS, the output swing at all supply voltages will equal the supply voltage. At a supply voltage of 4.5 volts or more the ICM7555/6 will drive at least 2 standard TTL loads.

ASTABLE OPERATION

The circuit can be connected to trigger itself and free run as a multivibrator. The external capacitor charges through R_{A} and R_{B} and discharges through R_{B} only. Thus the duty cycle may be precisely set by the ratio of these two resistors. In this mode of operation, the capacitor charges and discharges between $1 / 3$ and $2 / 3\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$. As in the triggered mode, the charge and discharge times, and therefore the frequency, are essentially independent of the supply voltage.
The frequency of oscillation is given by:

$$
f=\frac{1}{t}=\frac{1.46}{\left(R_{A}+2 R_{B}\right) C}
$$

Figure 3: Astable Operation

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative trigger pulse to pin 2, the flip flop is set which releases the short circuit across the external capacitor and drives the output high. The voltage across the capacitor now increases exponentially with a time constant $\gamma=\mathrm{R}_{A} \mathrm{C}$. When the voltage across the capacitor equals $2 / 3\left(V^{+}-V^{-}\right)$, the comparator resets the flip flop, which in turn discharges the capacitor rapidly and also drives the output to its low state.

Figure 4: Monostable Operation

CONTROL VOLTAGE

The CONTROL VOLTAGE terminal permits the two trip voltages for the THRESHOLD and TRIGGER internal comparators to be controlled. This provides the possibility of oscillation frequency modulation in the astable mode or even inhibition of oscillation, depending on the applied voltage. In the monostable mode, delay times can be changed by varying the applied voltage to the CONTROL VOLTAGE pin.

RESET

The RESET terminal is designed to have essentially the same trip voltage as the standard bipolar $555 / 6$, i.e. 0.6 to 0.7 volts. At all supply voltages V^{-}to V^{+}it represents an extremely high input impedance (Mohms). The mode of operation of the RESET function is, however, much improved over the standard bipolar 555/6 in that it controls only the internal flip flop, which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins. However, with the 555/6 the situation is much more complex and undesirable. When the RESET pin is slowly taken negatively through its trip voltage, the DISCHARGE terminal is initially partially turned on. Then the internal flip flop has its state changed. Finally the OUTPUT and the DISCHARGE pins are put into low impedance "LOW" states.

EQUIVALENT CIRCUIT

BLOCK DIAGRAM

This block diagram reduces the circuitry down to its simplest equivalent components.

TRUTH TABLE

THRESHOLD VOLTAGE	TRIGGER VOLTAGE	RESET	OUTPUT	DISCHARGE SWITCH
DONT CARE	DON'T CARE	LOW	LOW	ON
$>2 / 3\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$	$>2 / 3\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$	HIGH	LOW	ON
$1 / 3<V_{T H}<2 / 3$	$1 / 3<\mathrm{V}_{T H}<2 / 3$	HIGH	$?$	$?$
$<1 / 3\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$	$<1 / 3\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$	HIGH	HIGH	OFF

PACKAGE OUTLINES

TO-99 PACKAGE

14 PIN HERMETIC DUAL-IN-LINE PACKAGE

NOTES 1 All leads gold plated KOVAR
2 All dimensions in inches (mm)

CHIP TOPOGRAPHIES

ICM7555

8 LEAD PLASTIC DIP

14 PIN PLASTIC DUAL-IN-LINE PAĊKAGE

Precision Timer

FEATURES

- Timing From Microseconds Through Hours
- Operates In Both Astable And Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source Or Sink 200mA
- Output Can Drive TTL
- Temperature Stability Of 0.005\% Per $^{\circ} \mathrm{C}$
- Normally On And Normally Off Output

APPLICATIONS

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Missing Pulse Detector

GENERAL DESCRIPTION

The NE/SE 555 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink large currents or drive TTL circuits.

ABSOLUTE MAXIMUM RATINGS

Power Dissipation ... 600mW
Operating Temperature Range
NE555 ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range $\ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .+300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=+5 \mathrm{~V}$ to +15 unless otherwise specified

PARAMETER	TEST CONDITIONS	SE555			NE555			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage		4.5		18	4.5		16	V
Supply Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ RL $=\infty$		3	5		3	6	mA
	$\mathrm{VCC}=15 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=\infty$		10	12		10	15	
	Low State, Note 1							
Timing Error Initial Accuracy Drift with Temperature Drift with Supply Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{A},} \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega \text { to } 100 \mathrm{k} \Omega \\ & \mathrm{C}=0.1 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$,	0.5					
			0.5	2		1		\%
			30	100		50		ppm $/{ }^{\circ} \mathrm{C}$
			0.005	0.02		0.01		\%/Volt
Threshold Voltage			2/3			2/3		XV cc
Trigger Voiltage	$V_{C C}=15 \mathrm{~V}$	4.8	5	5.2		5		V
	$\mathrm{VCC}=5 \mathrm{~V}$	1.45	1.67	1.9		1.67		
Trigger Current			0.5			0.5		$\mu \mathrm{A}$
Reset Voltage		0.4	0.7	1.0	0.4	0.7	1.0	V
Reset Current			0.1			0.1		mA
Threshold Current	Note 3		0.1	. 25		0.1	. 25	$\mu \mathrm{A}$
Control Voltage Level	$\mathrm{V}_{\text {CC }}=15 \mathrm{~V}$	9.6	10	10.4	9.0	10	11	
	$\mathrm{VCC}=5 \mathrm{~V}$	2.9	3.33	3.8	2.6	3.33	4	
Output Voltage Drop (low)	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$							v
	ISINK $=10 \mathrm{~mA}$		0.1	0.15		0.1	. 25	
	$\mathrm{ISINK}=50 \mathrm{~mA}$		0.4	0.5		0.4	. 75	
	$\mathrm{ISINK}=100 \mathrm{~mA}$		2.0	2.2		2.0	2.5	
	$\mathrm{ISINK}=200 \mathrm{~mA}$		2.5			2.5		
	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$							
	ISINK $=8 \mathrm{~mA}$		0.1	0.25				
	$\mathrm{ISINK}^{\text {a }}$ = 5 mA					. 25	. 35	
Output Voltage Drop (high)	ISOURCE $=200 \mathrm{~mA}$		12.5			12.5		
	$\mathrm{VCC}=15 \mathrm{~V}$							
	ISOURCE $=100 \mathrm{~mA}$							
	$\mathrm{V}_{\text {cc }}=15 \mathrm{~V}$	13.0	13.3		12.75	13.3		
	$\mathrm{VCC}=5 \mathrm{~V}$	3.0	3.3		2.75	3.3		
Rise Time of Output			100			100		nsec
Fall Time of Output			100			100		

NOTE 1: Supply Current when output high typically 1 mA less.
NOTE 2: Tested at $\mathrm{V}_{c c}=5 \mathrm{~V}$ and $\mathrm{V}_{c c}=15 \mathrm{~V}$.
NOTE 3: This will determine the maximum value of $R_{A}+R_{B}$. For 15 V operation, the max. total $R=20$ megohm.

TYPICAL CHARACTERISTICS

DELAY TIME VS SUPPLY VOLTAGE

SUPPLY CURRENT VS SUPPLY VOLTAGE

LOW OUTPUT VOLTAGE VS OUTPUT SINK CURRENT

DELAY TIME
VS TEMPERATURE

HIGH OUTPUT VOLTAGE VS OUTPUT SOURCE CURRENT

LOW OUTPUT VOLTAGE
VS OUTPUT SINK CURRENT

PROPAGATION DELAY VS VOLTAGE LEVEL OF TRIGGER PULSE

APPLICATION INFORMATION
 MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative trigger pulse to pin 2, the flip-flop is set which releases the short circuit across the external capacitor and drives the

ASTABLE OPERATION

The circuit can also be connected so as to trigger itself and free run as a multivibrator. The external capacitor charges through R_{A} and R_{B} and discharges through R_{B} only. Thus the duty cycle may be precisely set by the ratio of these two resistors. In this mode of operation, the capacitor charges and discharges between $1 / 3 V_{C C}$ and $2 / 3 V_{C C}$. As in the

TIME DELAY
VS RA, RBAND

output high. The voltage across the capacitor, now, increases exponentially with the time constant $\tau \mathrm{R}_{A} C$. When the voltage across the capacitor equals $2 / 3 \mathrm{~V} C c$, the comparator resets the flip-flop which in turn discharges the capacitor rapidly and drives the output to its low state.

FREE RUNNING FREQUENCY VS R_{A}, R_{B} AND C

triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

The frequency of oscillation is given by: $f=\frac{1}{T}=\frac{1.46}{\left(R_{A}+2 R_{B}\right) C}$

PIN CONFIGURATIONS

8-PIN DIP

TO-99

Dual Precision Timer

FEATURES

- Timing from Microseconds to Hours
- Replaces Two 555 Timers
- Operates in Both Astable, Monostable, Time Delay Modes
- High Output Current
- Adjustable Duty Cycle
- TTL Compatible
- Temperature Stability of $\mathbf{0 . 0 0 5} \%$ per ${ }^{\circ} \mathbf{C}$

APPLICATIONS

- Precision Timing
- Sequential Timing
- Pulse Shaping
- Pulse Generator
- Missing Pulse Detector
- Tone Burst Generator
- Pulse Width Modulation
- Time Delay Generator
- Frequency Division
- Industrial Controls
- Pulse Position Modulation
- Appliance Timing
- Traffic Light Control
- Touch Tone Encoder

GENERAL DESCRIPTION

The NE/SE556 Dual Monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. The 556 is a dual 555 . Timing is provided by an external resistor and capacitor for each timing function. The two timers operate independently of each other sharing only $V_{C C}$ and ground. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 150 mA .

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ... +18 V
Power Dissipation 800 mW
Operating Temperature Range NE556 $\ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ SE556 .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ SE556C . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 60 sec)
$+300^{\circ} \mathrm{C}$

- Derate linearly at $6.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ above ambient temperature of $75^{\circ} \mathrm{C}$.

Power Dissipation*

PIN CONFIGURATION

ORDER NO.: SE556A, NE556A

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS：$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+5 \mathrm{~V}$ to +15 unless otherwise specified

PARAMETER	TEST CONDITIONS	SE556			NE556			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage		4.5		18	4.5		16	V
Supply Current （each device）	$\mathrm{V}_{C C}=5 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=\infty$		3	5		3	6	
	$V_{C C}=15 V R_{L}=\infty$ Low State，Note 1		10	11		10	14	．mA
Timing Error（Monostable） Initial Accuracy	$\begin{aligned} & \mathrm{R}_{\mathrm{A}}=2 \mathrm{~K} \Omega \text { to } 100 \mathrm{~K} \Omega \\ & \mathrm{C}=0.1 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$		0.5	1.5		0.75		\％
Drift with Temperature			30	100		50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Drift with．Supply Voltage			0.05	0.2		0.1		\％／Volt
Timing Error（Astable） Initial Accuracy．	$\begin{aligned} & \mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}=2 \mathrm{~K} \Omega \text { to } 100 \mathrm{~K} \Omega \\ & \mathrm{C}=0.1 \mu \mathrm{~F} \text { Note } 2 \end{aligned}$		1.5			2.25		\％
Drift with Temperature			90			150		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Drift with Supply Voltage			0.15	，		0.3	．	\％／Volt
Threshold Voltage			2／3			2／3		X VCC
Threshold Current	Note 3		30	100		30	100	nA
Trigger Voltage	$V_{\text {CC }}=15 \mathrm{~V}$	4.8	5	5.2		5		V
	$\mathrm{V}_{C C}=5 \mathrm{~V}$	1.45	1.67	1.9		1.67		
Trigger Current			0.5			0.5		$\mu \mathrm{A}$
Reset Voltage		0.4	0.7	1.0	0.4	0.7	1.0	V
Reset Current			0.1			0.1		mA
Control Voltage Level	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	9.6	10	10.4	9.0	10	11	
	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	2.9	3.33	3.8	2.6	3.33	4	
Output Voltage（low）	$\mathrm{V}_{C C}=15 \mathrm{~V}$							V
	ISINK $=10 \mathrm{~mA}$		0.1	0.15		0.1	． 25	
	ISINK $=50 \mathrm{~mA}$		0.4	0.5		0.4	． 75	
	ISINK $=100 \mathrm{~mA}$		2.0	2.25		2.0	2.75	
	ISINK $=200 \mathrm{~mA}$		2.5			2.5		
	$\mathrm{V}_{C C}=5 \mathrm{~V}$							
	ISINK $=8 \mathrm{~mA}$		0.1	0.25				
	ISINK $=5 \mathrm{~mA}$					． 25	． 35	
Output Voltage（high）	ISOURCE $=200 \mathrm{~mA}$		12.5			12.5		
	$\mathrm{V}_{\text {CC }}=15 \mathrm{~V}$							
	ISOURCE $=100 \mathrm{~mA}$							
	$\mathrm{V}_{C C}=15 \mathrm{~V}$	13.0	13.3		12.75	13.3		
	$V_{C C}=5 \mathrm{~V}$	3.0	3.3		2.75	3.3		
Rise Time of Output			100			100		nsec
Fall Time of Output			100			100		
Discharge Leakage Current			20	100		20	100	nA
Matching Characteristics （Note 4） Initial Timing Accuracy			0.05	0.1		0.1	0.2	\％
Timing Drift with Temperature	，		± 10			± 10		ppm $/{ }^{\circ} \mathrm{C}$
Drift with Supply Voltage			0.1	0.2		0.2	0.5	\％／Volt

NOTES： 1 ．Supply current when output is high is typically 1.0 mA less．
2．Tested at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V}$ ．
3．This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation．The maximum total $R=20$ meg－ohms．
4．Matching characteristics refer to the difference between performance characteristics of each timer section．

Complementary MOS Precision Timer

FEATURES

- Versatility of applications: precision timer, 4 stopwatch modes, 24-hour clock
- Simple to use:
4 controls
stopwatch
timer
24-hour $\left\{\begin{array}{l}\text { 1. Function } \\ \text { 2. Start/Stop } \\ \text { 3. Reset } \\ \text { clock }\end{array}\right.$ 4. Display $\begin{array}{l}\text { 5. Rapid Minute Advance } \\ \text { 6. Rapid Hour Advance }\end{array}$
- Total integration: includes oscillator, divider, decoder driver on chip
- Wide operating supply range: $\mathbf{2 . 5 V} \leq \mathrm{V}_{\mathrm{DD}} \leq 4.5 \mathrm{~V}$
- Low operating power consumption: display off typ. 0.9 mW at 3.6 V supply
- High precision-high frequency operation: quartz crystal oscillator @ 6.5536 MHz
- High output current drive: 15 mA peak current per segment, with 12.5% duty cycle
- Leading zero suppression: timer stopwatch applications
- Fractional second suppression: 24-hour clock application
- Short duration short circuit protection on all inputs and outputs at 3.6 V supply (Note 2)
- All terminals protected against static charges: no special handling precautions required
- Wide operating temperature range: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The ICM7045 is a fully integrated digital timer/stopwatch/ 24-hour clock circuit made using Intersil's low voltage metal gate C-MOS technology. The oscillator, frequency divider, multiplexer, decoder, segment and digit output buffers are all included on chip. The circuit is designed to interface directly with a fully multiplexed seven segment/eight digit common cathode LED display. The nominal supply voltage is 3.6 V , equivalent to a stack of three nickel cadmium rechargeable batteries. The only external components required for a complete stopwatch in addition to the display and the batteries are a 6.5536 MHz quartz crystal; a trimming capacitor and four switches.
The circuit takes the oscillator frequency and divides it in sixteen binary stages to a frequency of 100 Hz . Some of these divider outputs are used to generate the multiplex waveforms at a 12.5% duty cycle $/ 800 \mathrm{~Hz}$ rate. The 100 Hz signal is then processed in the counters which feed into latches which in turn are multiplexed into the decoder. The counter section spans the range of $1 / 100 \mathrm{sec}$. to 24 hours, which can be simultaneously displayed on the eight digits available. The digit drivers (cathodes) are connected to the multiplex lines through zero supression logic, while the segment drivers (anodes) are directly connected to the decoder outputs.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Notes 1 and 2)
Equal to, but never in excess of the supply voltages
Output Voltage Equal to, but never in excess of the supply voltages
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

NOTE: Absolute maximum ratings define parameter limits that if exceeded may permanently damage or change the device.

TYPICAL OPERATING CHARACTERISTICS

TEST CONDITIONS: $\left|V_{D D}\right|-\left|V_{S S}\right|=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{osc}}=6.5536 \mathrm{MHz}$, test circuit 1 unless otherwise stated.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	IDD	Display Off		180	2000	$\mu \mathrm{A}$
Instantaneous Supply Current	IDD	7 Segments 1.8V Dropped Across Display	70	105		mA
Instantaneous Supply Current	IDD	2 Segments Lit 1.8 V Dropped Across Display	28	42		mA
Operating Voltage	VDD	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$	2.5		4.5	VmAmA
Segment Current DriveInstantaneousAverage	,	7 Segments Lit, 1.8V Dropped Across Display, 12.5\% Duty Cycle				
	ISEG		10	15		
	ISEG		1.25	1.875	;	
Segment Current DriveInstantaneousAverage		2 Segments Lit, 1.8V Dropped Across Display, 12.5\% Duty Cycle	:			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	ISEG		14	21		
	ISEG	.	1.75	2.625		
Min. Switch Actuation Current Any Switch	Isw		50			$\mu \mathrm{A}$
Digit Driver Leakage Current	ILD	.			200	$\mu \mathrm{A}$
Segment Driver Leakage Current	ILS				200	$\mu \mathrm{A}$
Typical Oscillator Stability	fStab	$3 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 4 \mathrm{~V}, \mathrm{C}_{\text {TUNING }}=15 \mathrm{pF}$		1.0		ppm
Max Time for Oscillator to		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$			0.1	sec
Start	t	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$			1.0	sec
Oscillator Input Capacitance	CIN			17		pF

NOTE 1: This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.
NOTE 2: Short Circuit and High Output Drive Considerations:
The ICM7045 has been designed such that the maximum digit output drive current will not exceed 150 mA when used with any conventional LED displays and a fully charged stack of three nickel cadmium cells. If the 150 mA is exceeded for any extended duration of time, damage may result to the device.
It is, therefore, recommended that if the ICM7045 is to be used under conditions where the digit output drive could exceed 150 mA high voltage operation at 5 V for example - that additional external current limiting resistors be included in series with the LED display (segment lines).
If the digit outputs are short circuited to the positive supply (3.6 V) the short circuit current will be approximately 300 mA . This will not damage the device momentarily. Unless this short circuit condition is immediately removed probable device failure will occur from extended time periods of short circuit operation.
Consult the factory if questions arise on your output drive requirements.

TYPICAL OPERATING CHARACTERISTICS

TEST CIRCUIT 1: FOUR STOPWATCH MODES

Quartz Crystal Parameters

$f=6.5536 \mathrm{MHz}$ (parallel mode frequency)
Rs $=40$ Ohms (series resistance)
$\mathrm{C}_{1}=15 \mathrm{mpF}$ (motional capacitance)
$\mathrm{C}_{0}=3.5 \mathrm{pF}$ (static package capacitance)

NOTE: Specify quartz crystal to have nominal frequency value when tuned by a total parallel capacitance value of 12 pF or less.

FUNCTIONAL OPERATION

STOPWATCH/TIMER OPERATION

The control inputs used in the complete stopwatch application are: (refer to test circuit I for a schematic diagram).
START/STOP
DISPLAY
RESET
STANDARD
SPLIT
RALLY

START/STOP and DISPLAY are designed for connection to single pole double throw switches to insure operation free of contact bounce.
The switch connected to RESET can be a normally open single pole single throw. STANDARD, SPLIT and RALLY are control points with internal pull down resistors to Vss. These are designed to be connected to a rotary function switch which will connect no more than one of these points to VDD. If STANDARD (SPLIT, RALLY) is connected to VDD, the stopwatch is said to be in the STANDARD (SPLIT, RALLY) mode. If all three are left open, the stopwatch is in the SEQUENTIAL mode.

RESET FUNCTION

When the stopwatch is turned on, the RESET will normally be activated. This puts the stopwatch in a ready condition by:

1. Resetting all circuitry
2. Blanking seconds, minutes, hour
3. Showing; 00 in the fractional seconds position
4. Turning on the display if it was previously turned off

The display of just two zeros in the fractional seconds positions gives the complete assurance that the stopwatch is "ready to go."

STANDARD MODE

In the STANDARD mode, after a reset has taken place, START/STOP is activated at time to. The clock and display are moving simultaneously. A second activation of START/ STOP stops the clock and holds the display at time trotal. This completes an event. For timing a second event there are two options. One is to activate START/STOP at the start of the second event. This will momentarily reset the counter and display so that the timing of the second event proceeds from zero. Another activation of START/STOP stops the counter and display at time ttotal to end the second event. The other option is to activate RESET after the first event is over. Then the second event proceeds similarly to the first event. As is clear from this description, RESET can be used at any time to reset the stopwatch, including when a timing is in progress. The DISPLAY input can be activated to turn the display off and on. If the display is off when RESET is activated, it will reset and turn on. Turning off the display for timing long events will result in a very substantial power saving.

[^22]
SEQUENTIAL MODE

The sequential mode of the stopwatch is designed for timing events consisting of more than one leg (such as relays, multilap races, etc.). After the initial reset the START/STOP is activated at to to start the event. A second activation of START/STOP at time t_{1} stops the display to allow t_{1} to be read out, while the clock resets and starts counting again instantaneously. At time t_{2} an activation of START/STOP enters t_{2} (the time of leg no. 2) into the display. This sequence can continue indefinitely. Assuming the total event has N
legs, the total elapsed time is then equal to the sum of the N times read out:

$$
\text { tTOTAL }=t_{1}+t_{2} \ldots+t_{N}
$$

If it is desired to see the moving clock after a time has been recorded, the DISPLAY switch can be activated to release the display hold and catch up with the moving clock. The display cannot be turned off in the sequential mode. Reset can be activated at any time to reset clock and display.

SPLIT MODE

The split mode is another mode for timing multileg events. In contrast to the sequential mode, the timing in the split mode is cumulative. From a reset condition, the START/STOP switch is activated to to to start the counter and display running. A second activation at t_{1} stops the display so t_{1} can be read out while the counter continues timing. A third activation at t_{2} advances the display with the total elapsed
time from to to t_{2} showing. Finally, at time tw the tolal elapsed time of the event is entered in the display. The time of one leg of the event can be obtained by subtraction. The display can be synchronized to the counter (catch-up function) at any time by activating the display switch. To reset the timer, activate reset. The display cannot be turned off in the SPLIT mode.

RALLY MODE

The rally mode is designed for timing of events with interruptions. Consider an N leg event where the legs may be separated by intervals which should not be timed. The rally mode starts with a RESET. At time to the stopwatch is started by activating START/STOP. After this point the RESET function is disabled to prevent accidental resets during long
timing intervals. At time t_{1} a START/STOP pulse stops counter and display. From here on each leg time is added to the total by a START/STOP pulse at the beginning of the leg and at the end. The individual leg times are determined by subtraction. The display can be turned on and off with the display switch.

CLOCK OPERATION

The control inputs used in a possible 24-hour clock configuration are (refer to test circuit no. 2):

START/STOP
 MINUTES ADVANCE
 HOURS ADVANCE
 RALLY

START/STOP, MINUTES ADVANCE and HOURS ADVANCE are designed for connection to single pole double throw switches; this assures contact bounce elimination on these inputs. To avoid an additional switch for the DISPLAY input, the RALLY input should be connected to $V_{D D}$ through a 20 k resistor and to Vss through a $0.01 \mu \mathrm{~F}$ capacitor. These components insure that the display is on when power is applied to the circuit. The most convenient setting procedure is:

1. If clock is not running when power is applied activate START/STOP switch
2. Depress MINUTES ADVANCE switch to obtain correct minutes setting, one minute count per activation.
3. Depress HOURS ADVANCE switch to obtain correct HOURS setting, one hour count per activation.
It is possible to set the clock more accurately or to correct small time errors by using START/STOP in combination with MINUTES ADVANCE. If the clock is, for instance, 20 seconds slow; activate the MINUTES ADVANCE once, then activate the START/STOP, wait 40 seconds and activate the START/STOP again. If the clock is 20 seconds fast, the START/STOP switch should be activated to stop the clock, then after 20 seconds activated again to restart the clock. Other clock configurations are possible (see Application Notes).

TEST CIRCUIT NO. 2: CLOCK MODE

N.C. $=$ NORMALLY CLOSED

APPLICATION NOTES

The ICM7045 has been designed with versatility of applications in the digital timer/stopwatch/24-hour clock field as the major objective. The simplicity of operating modes designed for an extremely practical, easy to use stopwatch, at the same time allow the design of a variety of simpler elapse timer, stopwatch and clock circuits; a few of these will be shown and discussed briefly here:

TIMER CIRCUIT I

This simple circuit (display connections not shown) allows interval timing up to 24 hours with a resolution of 0.01 seconds. Each interval is timed by one start and one stop pulse on the start/stop line. The start pulse for the next interval to be timed automatically resets the timer. Leading zero suppression is automatic.

TIMER CIRCUIT II

This circuit allows interval timing with a single pulse on the start/stop line. Each pulse enters the time elapsed since the previous pulse into the display, resets the timer and starts the timer for the next interval.

TIMER CIRCUIT II

This circuit allows cumulative timing of intervals. Each interval is timed by one start and one stop pulse on the start/stop line. Each subsequent interval timed adds to the total line displayed. The reset switch allows the timer to be reset to zero to start another sequence of intervals. Note that the time between the end of one interval and the start of the reset is not recorded or added to the total.

CLOCK CIRCUIT I

The standard clock circuit is shown and described in the general description. The clock accuracy with a stable voltage supply will depend mostly on the temperature and aging characteristics of the crystal.
The power supply can be modified to give battery standby power.

The standby circuit should be designed to provide the specified minimum voltage to the ICM7045.

OTHER CLOCK CIRCUITS

The basic clock circuit can be modified for various special applications. If it is desired to turn the display on and off, then connect the display input to an additional SPDT switch, while omitting the capacitor/resistor combination on the STANDARD input.
This input can then be wired directly to VDD. This 24-hour clock version might be applicable to vehicles, boats, etc. where a battery is available to supply the display off clock current, while the display can be turned on with the ignition.

APPLICATION NOTES (con't)

Another possible configuration would connect a special circuit to the DISPLAY input which generates a double pulse about 3 seconds apart:

This means depressing the switch will turn on the clock's display for 3 seconds. This allows design of a battery operated "on demand" digital 24-hour clock.

OSCILLATOR CONSIDERATIONS

The oscillator is a high gain complementary MOS inverter with on-chip feedback resistors and an on-chip fixed input capacitor of 17 pF . For the 6.5536 MHz crystal needed for normal timing, it is suggested that the nominal load capacitance be kept under 12 pF , to keep total loading on the oscillator to a reasonable level. The actual trimmer range and the nominal load capacitance needed will have to be determined from the total stray capacitance of the particular circuit (including ICM7045 with package, PC board, etc.) and the tuning tolerance of the chosen crystal.
The series resistance of the crystal should also be kept to a low value (typically less than 50 ohms) to achieve adequate low voltage operation.

Tuning of the oscillator can be most easily performed using a pull-up resistor of 10 K ohms on the fractional seconds digit, using period average tune for $1.25 \mathrm{mS}(800 \mathrm{~Hz})$.

STOPWATCH EXTERNAL SYNC CIRCUIT

If the stopwatch is connected as shown in test circuit 1 , a few additional components will allow external synchronization of the stopwatch in any mode:

NOTE: Be sure to minimize the distance between the transistor and the ICM7045 to prevent noise from being generated along this connection, which could damage the device. Refer to Absolute Maximum Ratings, page 2 (Input Ratings). Noise spikes absolutely must not exceed the supply voltages.
The external sync signal source has to supply a positive pulse to active the START/STOP input. The minimum voltage of this pulse is about 1.2 V in the circuit as shown, but the triggering level can be changed by modifying the input resistor ratio. The output impedance of the external sync signal source should be no greater than 4 k ohms.

PACKAGE DIMENSIONS

NOTE: Dimensions in inches (mm)

FEATURES

- May Be Used to Count
-Seconds (1.31072 MHz osc.)
-Minutes (2.184533 MHz osc.)
-Hours (3.640889 MHz osc.)
- Total Integration-Includes Oscillator, Divider, Decoder Drivers On Chip
- Wide Operating Supply Voltage Range $2.5 \mathbf{V} \leq \mathbf{V}^{+}$-$\mathrm{V}-\leq 4.5 \mathrm{~V}$
- Low Operating Power Consumption - Display Off 7.2 mW Maximum at 3.6 V Supply
- High Output Current Drive - 18mA Peak Segment Current With 12.5\% Duty Cycle
- Leading Zero Suppression
- All Terminals Protected Against Static Charge - No Special Handling Precautions Required
- Wide Operating Temperature Range $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The ICM7045A is a standard device derived from the ICM7045 generic C-MOS timer family and is intended to be used as a decimal timer. As such, either seconds, minutes or hours may be counted by the choice of suitable oscillator frequencies. The ICM7045A is designed to be operated with a nominal supply voltage of 3.6 volts, equivalent to a stack of three nickel cadmium rechargeable batteries and may drive many LED displays directly.

Specifically, the ICM7045A differs from the ICM7045 in that a) the two divide by sixty's used for counting seconds and minutes are replaced by four decade dividers; b) the least significant digit is not available (terminal \#21 open circuit); c) the division ratio between the oscillator and the least available digit is $\div 217$ for the ICM7045A.

Refer to the ICM7045 data sheet for more complete information.

TYPICAL OPERATING CHARACTERISTICS

OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

APPLICATION NOTES

The ICM7045A will count to a total of 2399999. The next count will show 0000000 . On application of RESET the display will show 0 on the least significant digit; all other digits will be blanked. Leading zero suppression blanking is
'SECONDS' TIMER Use a 1.31071 MHz quartz crystal DIGIT\# : 1 2 100 K Secs 10 K Secs 1 K Secs
'MINUTES' TIMER Use a 2.184533 MHz quartz crystal DIGIT \# $1 \quad 3$. 2 1K Mins 100 Mins 10 Mins
'HOURS' TIMER Use a 3.640889 MHz quartz crystal DIGIT \# $1 \quad 2$ $10 \mathrm{Hrs} \quad \mathrm{Hrs} \quad \mathrm{Hrs} \div 10$
performed on pairs of digits. For example, 9 will show as 9,10 will show as 010, 999 will show as 999,1000 will show as 010000 and so forth.

The oscillator frequency alone determines whether the timer is to be used for second, minute or hour counting.

4	5	6	7
100 Secs	10 Secs	Secs	Sec $\div 10$
4	5	6	7
Mins	Min $\div 10$	Min $\div 100$	Min $\div 1000$
4	5	6	7
Hrs $\div 100$	Hrs $\div 1,000$	Hrs $\div 10,000$	Hrs $\div 100,000$

OSCILLATOR CONSIDERATIONS

The oscillator on the ICM7045A is identical to that of the ICM7045 which was optimized for 6.55 MHz operation. For 6.55 MHz operation using an on chip input capacitance of 22 pF and a nominal off chip output capacitor of 20 pF resulted in excellent frequency stability with respect to supply voltage and a wide operating supply voltage range. Using similar value tuning capacitances with the lower frequency crystals $(1.310772 \mathrm{MHz}, \quad 2.184533 \mathrm{MHz}$ and 3.64089 MHz) the stability of the oscillator is significantly degraded. It is therefore recommended that the tuning capacitances be increased to a nominal total of 40 pF at both the oscillator input and output. Since there is an on chip input capacitance of $20-22 \mathrm{pF}$ the additional external input capacitance should be approximately 20 pF .
The ICM7045A is guaranteed to operate over the supply voltage range of 2.5 to 4.5 V using nominal input and output tuning capacitances of 40 pF and with crystals having the following characteristics:

$$
\begin{aligned}
f= & 1.310772 \mathrm{MHz} \text { or } \\
& 2.184533 \mathrm{MHz} \text { or } \\
& 3.64089 \mathrm{MHz}
\end{aligned}
$$

$\mathrm{Rs} \leq 100 \Omega(150 \Omega$ for 1.310772 MHz
$\mathrm{CM}_{\mathrm{M}} \rightarrow 10-20 \mathrm{mpF}$
Co $\leq 6 p F$
$C_{L}=20 \mathrm{pF}$ (parallel resonance mode)

ABSOLUTE MAXIMUM RATINGS

-as per ICM7045 data sheet
Typical Operating Characteristics Test Circuit 1 as per ICM7045 data sheet except for oscillator data and absence of 8th digit.
Functional Operation Application Note as per ICM7045 data sheet.

PACKAGE DIMENSIONS

Pin 1 is identified by cutout pattern at end of package

CMOS 7 Decade Counter

FEATURES

- Low operating power dissipation < 10 mW
- Low quiescent power dissipation $<\mathbf{5 m W}$
- Counts and displays 7 decades
- Wide operating supply voltage range

$$
2 V \leq|V+-V-| \leq 6 V
$$

- Drives directly 7 decade multiplexed common cathode LED display
- Internal store capability
- Internal inhibit to counter input
- Test speedup point
- All terminals protected against static discharge

DESCRIPTION

The ICM7208 is a fully integrated seven decade counter-decoder-driver and is manufactured using the Intersil low voltage metal gate C-MOS process. As such it has applications as either a unit, a frequency or period counter. For unit counter applications the only additional components are a 7 . digit common cathode display, 3 resistors and a capacitor to generate the multiplex frequency reference, and the control switches.
Specifically the ICM7208 provides the following on chip functions: a 7 decade counter, multiplexer, 7 segment decoder, digit \& segment drivers, plus additional logic for display blanking, reset, input inhibit, and display on/off.
The ICM7208 is intended to operate over a supply voltage of 2 to 6 volts as a medium speed counter or over a more restricted voltage range for high frequency applications.
As a frequency counter it is recommended that the ICM7208 be used in conjunction with the ICM7207 Oscillator Controller which provides a stable HF oscillator, and output signal gating.

CHIP TOPOGRAPHY

Chip may be die attached using conventional eutectic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.

ORDERING INFORMATION

Order Devices by following Part Number: -ICM 7208 IPI Order Dice by follówing Part Number: - ICM7208D

CONNECTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1) ... 1 watt
Supply voltage |V+ - V-| (Note 2) .. 6 V
Output digit drive current (Note 3) :... 150mA
Output segment drive current .. 30 mA
Input voltage range (any input terminal) Not to exceed the supply voltage
Operating temperature range . $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature range .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Absolute maximum rating define parameter limits that if exceeded may permanently damage the device.

TYPICAL OPERATION CHARACTERISTICS
TEST CONDITIONS: $V_{D D}-V_{S S}=5 V, T_{A}=25^{\circ} \mathrm{C}$, TEST CIRCUIT, display off, unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Quiescent Current	I_{+1}	All controls plus terminal 19 connected to $\mathrm{V}+$. No multiplex oscillator		30	100	$\mu \mathrm{A}$,
Quiescent Current	I+2	All control inputs plus terminal 19 connected to $V+$ except store which is connected to V -.	;	70	150	$\mu \mathrm{A}$
Operating Supply Current	1+S	All inputs connected to $\mathrm{V}+$, RC multiplexer osc operating $\mathrm{f}_{\text {in }}<25 \mathrm{KHz}$		210	500	$\mu \mathrm{A}$
Operating Supply Current	\because	$\mathrm{f}_{\text {in }}=2 \mathrm{MHz}$. 700	$\mu \mathrm{A}$
Supply Voltage Range	V+	$\mathrm{f}_{\text {in }} \leq 2 \mathrm{MHz}$	3.5		5.5	V
Digit Driver On Resistance	R ${ }_{\text {d }}$			4	12	ohm
Digit Driver Leakage Current	ID				500	$\mu \mathrm{A}$
Segment Driver On Resistance	Rs			40		ohm
Segment Driver Leakage Current	Is				500	$\mu \mathrm{A}$
Pullup Resistance of Reset or Store Inputs	Rp_{p}		100	400		Kohms
Counter Input Resistance	RIN	Terminal 12 either at $\mathrm{V}+$ or V - potentials			100	Kohms
Counter Input Hysteresis Voltage	$\mathrm{V}_{\mathrm{HIN}}$	$\because \cdots$		25	50	mV

NOTE 1: This value of power dissipation refers to that of the package and will not be obtained under normal operating conditions.
NOTE 2: The supply voltage must be applied before or at the same time as any input voltage. This poses no problems with a single power supply system. If a multiple power supply system is used, it is mandatory that the supply for the ICM7208 is not switched on after the other supplies otherwise the device may be permanently damaged.
NOTE 3: The output digit drive current must be limited to 150 mA or less under steady state conditions. IShort term transients up to 250 mA will not damage the device.) Therefore, depending upon the LED display and the supply voltage to be used it may be necessary to include additional segment series resistors to limit the digit currents.

ICM7208

TEST CIRCUIT

TEST PROCEDURES

The ICM7208 is provided with three input terminals 7, 23, 27 which may be used to accelerate testing. The least two significant decade counters may be tested by applying an input to the 'COUNTER INPUT' terminal 12. 'TEST POINT' terminal 23 provides an input which bypasses the 2 least significant decade counters and permits an injection of a signal into the third decade counter. Similarly terminals 7 and 27 permit rapid counter advancing at two points further along the string of decade counters.

CONTROL INPUT DEFINITIONS

INPUT TERMINAL VOLTAGE

FUNCTION

COUNTER INPUT DEFINITION

The internal counters of the ICM7208 index on the negative edge of the input signal at terminal \#12.

MAXIMUM COUNTER INPUT FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

SEGMENT OUTPUT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF COUNTER INPUT FREQUENCY

APPLICATION NOTES

GENERAL

1. Format of Signal to be Counted

The noise immunity of the Signal Input Terminal is approximately $1 / 3$ the supply voltage. Consequently, the input signal should be at least 50% of the supply in peak to peak amplitude and preferably equal to the supply. NOTE: The amplitude of the input signal should not exceed the supply; otherwise, damage may be done to the circuit.
The optimum input signal is a 50% duty cycle square wave equal in amplitude to the supply. However, as long as the rate of change of voltage is not less than approximately $10-4 \mathrm{~V}$ / $\mu \mathrm{sec}$ at 50% of the powr supply voltage, the input waveshape can be sinusoidal, triangular, etc.

2. Display Considerations

Any common cathode multiplexable LED display may be used. However, if the peak digit currents exceed 150 ma for any prolonged time, it is recommended that resistors be included in series with the segment outputs (terminals 2,3 , $15,17,18,26,28$) to limit current to 150 mA . The ICM7208 is
specified with $500 \mu \mathrm{~A}$ of possible digit leakage current. With certain new LED displays that are extremely efficient at low currents, it may be necessary to include resistors between the cathode outputs and the positive supply $\mathrm{V}+$ to bleed off this leakage current.

3. Display Multiplex Rate

The multiplex frequency reference is divided by eight to generate an 8 bit sequencer. Thus the display multiplex rate is one eighth of the multiplex frequency reference.
The ICM7208 has approximately $0.5 \mu \mathrm{~S}$ overlap between output drive signals. Therefore, if the multiplex rate is very fast, digit ghosting will occur. The ghosting determines the upper limit for the multiplex frequency reference. At very low multiplex rates flicker becomes visible.
It is recommended that the display multiplex rate be within the range of 50 Hz to 200 Hz which corresponds to 400 Hz to 1600 Hz for the multiplex frequency reference.

4. Unit Counter

The unit counter updates the display for each negative transition of the input signal. The information on the display will count after reset from 00 to $9,999,999$ and then will reset to 0000000 and will begin to count up again. To blank leading zeros actuate reset at the beginning of a count:Leading zero blanking affects two digits at a time.
For battery operated systems the display may be switched off to conserve power.
An external generator may be used to provide the multiplex frequency reference (input terminal 19). The signal applied to terminal 19 (terminals 16 and 20 open circuit) should be approximately equal to the supply voltage and for minimum power dissipation should be a square wave.
For stand alone systems two inverters are provided so that a simple but stable RC oscillator may be built using only. 2 resistors and a capacitor.

Figure 1 shows the schematic of an extremely simple unit counter that can be used for remote traffic counting, to name one application. The power cell stack should consist of 3 or 4 nickel cadmium rechargeable cells (nominal 3.6 or 4.8 volts). If 4×1.5 volt cells are used it is recommended that a diode be placed in series with the stack to guarantee that the supply voltage does not exceed 6 volts.
The input switch is shown to be a single pole double throw switch (SPDT). A single pole single throw switch (SPST) could also be used with a pullup resistor. However, antibounce circuitry must be included in series with the counter input. In order to avoid all contact bounce problems due to the SPDT switch the ICM7208 contains an input latch on chip.

4
COMMON CATHODE

FIGURE 1: Schematic Unit Counter

5. Frequency Counter

The ICM7208 may be used as a frequency counter when used with an external frequency reference and gating logic. This can be achieved using the ICM7207 Oscillator Controller (Figure 2). The ICM7207 provides the store and reset pulses together with the counting window, and are generated from a crystal controlled oscillator. Figure 3 shows the recommended input gating waveforms to the ICM7208. At the end of a counting period (50% duty cycle) the counter input is inhibited. The counter information is then transferred and stored in latches and can be displayed.

Immediately after this information is stored, the counters are cleared and are ready to start a new count when the counter input is enabled.
Using a $6,553,600 \mathrm{~Hz}$ quartz crystal and the ICM7207 driving the ICM7208 two ranges of counting may be obtained using either 0.01 sec or 0.1 sec counter enable windows.
Previous comments on leading zero blanking, etc., apply as per the unit counter.
The ICM7207 provides the multiplex frequency reference of 1.6 KHz .

FIGURE 2: Frequency Counter

Note: For a 1 sec count window which allows all 7 digits to be used with a resolution of 1 Hz , the ICM7207 can be replaced with the ICM7207A. Circuit details are given on the 7207A data sheet.

FIGURE 3: Frequency Counter Input Waveforms

6. Period Counter

For this application, as opposed to the frequency counter, the gating and the input signal to be measured are reversed to the frequency counter. The input period is multiplied by two to produce a single polarity signal (50% duty cycle) equal to the input period, which is used to gate into the counter the frequency reference (1 MHz in this case). Figure 5 shows a
block schematic of the input waveform generator. The 1 MHz frequency reference is generated by the ICM7209 Clock Geneator using an 8 MHz oscillator frequency and internally dividing this frequency by 8 . Alternatively, a 1 MHz signal could be applied directly to the 'COUNTER INPUT'. Waveforms are shown in Figure 4.

FIGURE 4: Period Coünter Input Waveforms

FIGURE 5: Period Counter Input Generátor

BLOCK DIAGRAM

®v-

PACKAGE DIMENSIONS

NOTE: Dimensions in inches (mm)

Complementary MOS LED Stopwatch Circuit

FEATURES

- Total integration: oscillator, divider, decoder, segment and digit drivers on chip
- Four functions: start/stop/reset, split, taylor, time-out
- Retrofit to ICM7205 for split and/or taylor applications
- Six digit display: ranges up to 59 minutes 59.99 seconds
- Requires only three low cost SPST switches without loss of accuracy: start/stop, reset, display unlock
- Chip enable pin to turn off both segment and digit outputs; can be used for multiple circuits driving one display
- Low battery indicator on chip turns on well above minimum operating voltage
- Digit blanking on seconds and minutes to conserve battery life
- High LED drive current: 13mA per segment at 16.7\% duty cycle with 4.0 volt supply
- Wide operating range: 2.0 to 5.0 volts
- Oscillator requires only 3.2768 MHz crystal and trimming capacitor
- 1 KHz multiplex rate prevents flickering display
- Fully protected against static charge, no special handling precautions required
- Can be used easily in four different single function stopwatches or two two-function stopwatches: start/stop/reset with time-out, split with taylor. The component count for a three- or four-function stopwatch will be slightly greater.

GENERAL DESCRIPTION

The ICM7215 is a fully integrated six digit LED stopwatch circuit fabricated with Intersil's low threshold metal gate CMOS process. The circuit interfaces directly with a six digit/seven segment common cathode LED display. The low battery indicator can be connected to the decimal point anode or to a separate LED lamp. The only components required for a complete stopwatch besides the display are: three SPST switches, a 3.2768 MHz crystal, a trimming capacitor, three AA batteries and an on-off switch. For a two function stopwatch or for adding a display off feature one additional slide switch would be required. The circuit divides the oscillator frequency by 215 to obtain 100 Hz which is fed to the fractional seconds, seconds and minutes counters. An intermediate frequency is used to obtain the $1 / 6$ duty cycle 1.07 KHz multiplex waveforms. The blanking logic provides leading zero blanking for seconds and minutes independently of the clock. The ICM7215 is packaged in a 24-lead plastic DIP.

PIN CONFIGURATIONS

ORDERING INFORMATION

Order devices by following part number ICM 7215 I PG
Order dice by following part number ICM 7215 D

CHIP TOPOGRAPHY

ABSOLUTE MAXIMUM RATINGS

> Supply Voltage .. 5.5 Volts
> Power Dissipation (Note 1) ... 0.75 Watts
> Operating Temperature . $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> Storage Temperature ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
> Input and Output Voltage equal to but never exceeding the supply voltage

OPERATING CHARACTERISTICS

TEST CONDITIONS: $T_{A}=+25^{\circ} \mathrm{C}$, stopwatch circuit, $\mathrm{V}_{D D}=4.0 \mathrm{~V}$ unless otherwise specified.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	$-20^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	2.0		5.0	Volts
Supply Current	Display off		0.6	1.5	mA
Segment Current Peak	5 segments lit 1.8 Volts across display	9.0	13.2		
Average			2.2		
Switch Actuation Current	All inputs except chip enable		20	50	$\mu \mathrm{A}$
Switch Actuation Current	Chip enable		50	200	
Digit Leakage Current	$\mathrm{V}_{\text {DIGIT }}=2.0 \mathrm{~V}$			50	
Segment Leakage Current	VSEGMENT $=2.0 \mathrm{~V}$			100	
Low Battery Indicator Trigger Voltage		2.2		2.8	Volts
LBI Output Current	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {LBI }}=1.6 \mathrm{~V}$		2.0		mA
Oscillator Stability	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		6.		PPM
Oscillator Transconductance	$V_{D D}=2.0 \mathrm{~V}$	120			$\mu \mathrm{mho}$
Oscillator Input Capacitance	: . ${ }_{\text {! }}$		30		pF

NOTE 1: This value of power dissipation refers to the package and will not be obtained under normal conditions. The output devices on the ICM7215 have very low impedance characteristics, especially the digit cathode drivers. If these devices are shorted to a low impedance power supply, the current could be as high as 300 mA . This will not damage the device momentarily, but if the short circuit condition is not removed immediately probable device failure will occur.

STOPWATCH CIRCUIT

BLOCK DIAGRAM

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT VS VOLTAGE

OSC. STABILITY VS SUPPLY VOLTAGE

SEGMENT CURRENT VS SUPPLY VOLTAGE

FUNCTIONAL OPERATION

Turning on the stopwatch will bring up the reset state where the fractional seconds are on displaying 00 and the other digits are blanked. This display always indicates that the stopwatch is ready to go.
The display can be turned off in any mode by connecting the chip enable input to VDD.

START/STOP/RESET

When the mode input is floating and the display input is floating or connected to VDD, the circuit is in the start/stop/ reset mode.

The start/stop/reset mode can be used for single event timing in a one-button stopwatch. An additional reset switch can be used to provide reset at any time capability. The diagram indicates the operation and the results. To time another event the display must be reset before the start of the event.

Seconds will be displayed after one second, minutes after one minute. The range of the stopwatch is 59 minutes 59.99 seconds. If an event exceeds one hour, the number of hours must be remembered by the user. Leading zeroes are not blanked after one hour.

TAYLOR

When the mode input is connected to $V_{S S}$, the stopwatch is in the taylor or sequential mode.

As depicted graphically above, each split time is measured from zero in the taylor mode, i.e., after stopping the watch, the counters reset to zero momentarily and start counting the next interval. The time displayed is the time elapsed since
the last activation of start/stop. The display is stationary after the first interval unless the display unlock is used to show the running clock. Reset can be used at any time.

SPLIT
When the mode input is connected to $V_{D D}$, the stopwatch is
in the split mode.

The split mode differs from the taylor in that the lap times are cumulative in the split mode. The counters do not reset or stop after the first start until reset is activated: Any time
displayed is the cumulative time elapsed since the first start after reset. Display unlock can be used to let the display 'catch up' with the clock. Reset can be used at any time.

TIME OUT

When the mode input is floating and the display input is tied to VSS, the stopwatch is in the time-out mode.

In the time-out mode the clock and display alternately start and stop with activations of the start/stop switch. Reset can

LOW BATTERY INDICATOR

The on-chip low battery indicator is intended for use with a small LED lamp or the decimal points on a standard LED display. The output is the drain of a p-channel transistor twothirds the size of the segment drivers. The LBI circuitry is designed to provide a trigger voltage of approximately 2.5 volts at room temperature. With normal AA type batteries the discharge characteristics will provide many hours of accurate timekeeping after the indicator comes on. However, the wide voltage spread between the LBI voltage and minimum operating voltage is required to guarantee low battery indication under worst case conditions.
be used at any time. The display unlock button is bypassed in this mode.

SWITCH CHARACTERISTICS

The ICM7215 is designed for use with SPST switches throughout. On the display unlock and reset inputs the characteristics of the switches are unimportant, since the circuit responds to a logic level held for any level of time, however short. Switch bounce on these inputs does not need to be specified; The start/stop input, however, responds to an edge and it requires a switch with less than 15 msec of switch bounce. The bounce protection circuitry has been specifically designed to let the circuit respond to the first edge of the signal, so as to preserve the full accuracy of the system.

APPLICATION NOTES OSCILLATOR NOTES

The oscillator of the ICM7215 includes all components on chip except the 3.2768 MHz crystal and the trimming capacitor. The oscillator input capacitance has a nominal value of 30 pf . The circuit is designed to work with a crystal with a load capacitance of approximately 15 pf . If the crystal has characteristics as shown on page 2 , an $8-40$ pf trimming capacitor will be adequate for a tuning tolerance of ± 30 PPM on the crystal. If the crystal's static capacitance is significantly lower, a narrower trimming range may be selected.
After deciding on a crystal and a nominal load capacitance, take the worst case values of $\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\text {out }}$ and R_{S} and calculate the gm_{m} required by:

$$
\begin{aligned}
& g_{m}=\omega^{2} C_{o u t} R_{S} \quad\left\{1+\frac{C_{o}\left(C_{\text {in }}+C_{\text {out }}\right)}{C_{\text {in }} C_{o u t}}\right\}^{2} \\
& C_{o}=\text { static capacitance } \\
& R_{s}=\text { series resistance } \\
& C_{i n}=\text { input capacitance } \\
& C_{o u t}=\text { output capacitance } \\
& \omega \quad=2 \pi \times \text { crystal frequency }
\end{aligned}
$$

The resulting g_{m} should be less than half the g_{m} specified for the device. If it is not, a lower value of crystal series resistance and/or load capacitance should be specified.

OSCILLATOR TUNING

To avoid loading the oscillator when tuning, a frequency counter cannot be connected to the oscillator itself. Easy tuning can be accomplished by using the |0th or |00th cathode with the device reset. The frequency on the cathode should be tuned to 1066.667 Hz , which is equivalent to a period of 937.5 microseconds.

TEST POINT

The test point input is used for high speed testing of the device. When the input is pulsed low, a latch is set which speeds up counting by a factor of 32. Also, each pulse on the test point rapid advances both minutes and seconds in a parallel mode. To accurately rapid advance the signal applied to the test point must be free of switch bounce. The circuit is taken out of the test point mode by using either reset or start/stop.

REPLACING THE ICM7205 WITH THE ICM7215

The ICM7215 is designed to be compatible with circuits using the ICM7205. If the 7205 is used only in the split mode no changes are required. If the 7205 is used in the taylor mode and the split/taylor input (pin 21) is left open, a jumper from pin 21 to VSS must be added when converting to the 7215. A jumper may also be needed if the 7205 is used with a split/taylor switch. Once the jumper has been added the board can be used with either device.

CHIP ENABLE

The chip enable input is used to disable both segment and digit drivers without affecting any of the functions of the device. When the chip enable input is floating or connected to Vss, the display is enabled. When the chip enable input is tied to VDD the display is turned off. One example of the many possible uses of this feature is driving one display from two ICM7215 devices, one in the split mode and the other in the taylor mode. The circuit below indicates how the user can obtain lap and cumulative readings of the same event.

ALL OTHER SWITCHES COMMON TO BOTH DEVICES

LATCHUP CONSIDERATIONS

Due to the inherent structure of junction isolated CMOS devices, the circuit can be put in a latchup mode if large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs and/or outputs before power is applied to VDD and VSS. If only inputs are affected latchup can also be prevented by limiting the current into the input terminal to less than 1 mA .

PACKAGE DIMENSIONS

NOTE: All dimensions in parentheses are metric.

ICM7216A/B/C/D

ICM7216A 10 MHz Universal Counter, Drives Common Anode LED's ICM7216B 10 MHz Universal Counter, Drives Common Cathode LED's ICM7216C 10 MHz Frequency Counter, Drives Common Anode LED's ICM7216D 10 MHz Frequency Counter, Drives Common Cathode LED's

FEATURES

ICM7216A AND B

- Functions as a Frequency Counter, Period Counter, Unit Counter, Frequency Ratio Counter or Time Interval Counter
- Four Internal Gate Times:
$0.01 \mathbf{~ s e c}, 0.1 \mathrm{sec}, 1 \mathrm{sec}, 10 \mathrm{sec}$ in Frequency Counter Mode
- 1 Cycle, 10 Cycles, 100 Cycles, 1000 Cycies in Period, Frequency Ratio and Time Interval Modes
- Measures Frequencies from DC to $\mathbf{1 0} \mathbf{~ M H z}$
- Measures Period from $0.5 \mu \mathrm{sec}$ to $10 \mathbf{~ s e c}$ ICM7216C AND D
- Functions as a Frequency Counter. Measures Frequencies from DC to 10 MHz
- Decimal Point and Leading Zero Blanking May be Externally Selected
ALL VERSIONS:
- Eight Digit Multiplexed LED Outputs
- Output Drivers will Directly Drive Both Digits and Segments of Large LED Displays. Both Common Anode and Common Cathode Versions are Available
- Single Nominal 5V Supply Required
- Stable High Frequency Oscillator, Uses Either 1 MHz or 10 MHz Crystal
- Internally Generated Multiplex Timing with Interdigit Blanking, Leading Zero Blanking and Overflow Indication
- Decimal Point and Leading Zero Blanking Controlled Directly by the Chip
- Display Off Mode Turns Off Display and Puts Chip into Low Power Mode
- Hold and Reset Inputs for Additional Flexibility
- Test Speedup Function Included
- All Terminals Protected Against Static Discharge

GENERAL DESCRIPTION

The ICM7216A and B are fully integrated Universal Counters with LED display drivers. They combine a high frequency oscillator, a decade timebase counter, an 8 decade data counter and latches, a 7 segment decoder, digit multiplexers and 8 segment and 8 digit drivers which can directly drive large LED displays. The counter inputs have a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.

The ICM7216A and B can function as a frequency counter, period counter, frequency ratio (f_{A} / f_{B}) counter, time interval counter or as a totalizing counter. The counter uses either a 10 MHz or 1 MHz quartz crystal timebase. For period and time interval, the 10 MHz timebase gives a $0.1 \mu \mathrm{sec}$ resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation times of $0.01 \mathrm{sec}, 0.1 \mathrm{sec}, 1 \mathrm{sec}$ and 10 sec . With a 10 sec accumulation time, the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit. There is 0.2 seconds between measurements in all ranges.
The ICM7216C and D function as frequency counters only, as described above.
All versions of the ICM7216 incorporate leading zero blanking. Frequency is displayed in KHz . In the ICM7216A and B, time is displayed in $\mu \mathrm{sec}$. The display is multiplexed at 500 Hz with a 12.5% duty cycle for each digit. The ICM7216A and C are designed for common anode display with typical peak segment currents of 25 mA . The ICM7216B and D are designed for common cathode displays with typical peak segment currents of 12 mA . In the display off mode, both digit drivers and segment drivers are turned off enabling the display to be used for other functions.

ORDERING INFORMATION

PIN CONFIGURATIONS

EVALUATION KIT

The ICM7226 Universal Counter System has all of the features of the ICM7216 plus a number of additional features. The ICM7226 Evaluation Kit consists of the ICM7226AIDL (Common Anode LED Display), a 10 MHz quartz crystal, 8 each 7 segment . $3^{\prime \prime}$ LED's, P.C. board, resistors, capacitors, diodes, switches, socket: everything needed to quickly assemble a functioning ICM7226 Universal Counter System.

ABSOLUTE MAXIMUM RATINGS

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

[^23]
ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}-\mathrm{V}^{-}=5.0 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified:

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNITS
ICM7216A/B Operating Supply Current	IDD	Display Off, Unused Inputs to V^{-}		2	5	mA
Supply Voltage Range		$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$, Input A , Input B Frequency at $\mathrm{Fmax}^{\text {m }}$.	4.75		6.0	Volts
Maximum Frequency Input A. Pin 28	$\mathrm{F}_{\text {A MAX }}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \text {, Figure } 1 \\ & \text { Function }=\text { Frequency, Ratio, Unit } \\ & \text { Counter } \\ & \text { Function = Period, Time Interval } \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 2.5 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Maximum Frequency Input B, Pin 2	Fbmax	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V} \end{aligned}$ Figure 2	2.5	-		MHz
Minimum Separation Input A to Input B Time Interval Function		$\begin{aligned} & -20^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}-V^{-} \leq 6.0 \mathrm{~V} \end{aligned}$ Figure 3	250			nsec
Maximum Osc. Freq. and Ext. Osc. Frequency		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \end{aligned}$	10			MHz
Minimum Ext. Osc. Freq.					100	KHz
Oscillator Transconductance	gm	$\mathrm{V}^{+}-\mathrm{V}^{-}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	2000			$\mu \mathrm{mhos}$
Multiplex Frequency	$f_{\text {mux }}$	$\mathrm{fosc}=10 \mathrm{MHz}$: :	500		Hz
Time Between Measurements		$\mathrm{fosc}=10 \mathrm{MHz}$,		200		msec
Input Voltages: Pins 2,13,25,27,28 Input Low Voltage Input High Voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	3.5	,	1.0	Volts Volts
Input Resistance to V^{+} Pins 13,24	R	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	100K	400K		ohms
Input Leakage Pin 27,28,2	IL				20	$\mu \mathrm{A}$
ICM7216A Digit Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Low Output Current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{-}+1.0 \mathrm{~V} \end{aligned}$	-150	$\begin{array}{r} -180 \\ +0.3 \\ \hline \end{array}$		mA mA
Segment Driver: Pins 4,5,6,7,9,10,11,12 Low Output Current High Output Current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{-}+1.5 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	25	$\begin{array}{r} 35 \\ -100 \end{array}$		mA $\mu \mathrm{A}$
Multiplex Inputs: Pins 1,3,14 Input Low Voltage Input High Voltage Input Resistance to V^{-}	$\begin{aligned} & V_{\text {IL }} \\ & V_{I H} \\ & R \\ & R \end{aligned}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{-}+1.0 \mathrm{~V}$	$\left\|\begin{array}{c} v^{-}+2.0 \\ 50 \end{array}\right\|$	100	0.8	Volts Volts $\mathrm{K} \Omega$
ICM7216B Digit Driver: Pins 4,5,6,7,9,10,11,12 Low Output Current High Output Current	Iol IOH	$\begin{aligned} & \text { VOUT }=V^{-}+1.0 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{array}{r} 75 \\ -100 \\ \hline \end{array}$	\%	mA $\mu \mathrm{A}$
Segment Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Leakage Current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IL} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	-10		10	${ }_{\mu \mathrm{A}}^{\mathrm{A}}$
Multiplex Inputs: Pins 1,3.14 Input Low Voltage Input High Voltage Input Resistance to V^{+}	VIL $V_{I H}$ R	$\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	$\begin{gathered} v^{+}-0.8 \\ 200 \end{gathered}$	360	$v^{+}-2.0$	Volts Volts K Ω

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}-\mathrm{V}^{-}=5.0 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNITS
ICM7216C/D Operating Supply Current	ldo	Display Off. Unused Inputs to V^{-}	-	2	5	mA
Supply Voltage Range		$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$. Input A Frequency at $F_{\text {MAX }}$	4.75		6.0	Volts
Maximum Frequency Input A. Pin 28	$F_{\text {max }}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \text {. Figure } 1 \end{aligned}$	10			MHz
Maximum Osc. Freq and Ext. Osc: Frequency		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & 4.75<\mathrm{V}^{+}-\mathrm{V}^{-}-8.0 \mathrm{~V} \end{aligned}$	10			MHz
Minimum Ext. Osc. Freq.					100	KHz
Oscillator Transconductance	gm_{m}	$\mathrm{V}^{+}-\mathrm{V}^{-}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	2000			μ mhos
Multiplex Frequency	$f_{\text {mux }}$.	$\mathrm{fose}=10 \mathrm{MHz}$		500		Hz
Time Between Measurements		$\mathrm{fosc}^{\prime}=10 \mathrm{MHz}$		200		msec
Input Voltages: Pins 12.27. 28 Input Low Voltage Input High Voltage	$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & \hline \end{aligned}$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	3.5		1.0	Volts Volts
Input Resistance to V^{+} Pins 12.24	R	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	100	400		K』
Input Leakage Pin 27, Pin 28	L				20	$\mu \mathrm{A}$
Output Current	IOL	$\mathrm{V}_{\text {OL }}=\mathrm{V}^{-}+.4 \mathrm{~V}$	0.36			mA
Pin 2	${ }^{1} \mathrm{OH}$	$\mathrm{VOH}=\mathrm{V}^{+}-8 \mathrm{~V}$	265			$\mu \mathrm{A}$
ICM7216C Digit Driver: Pins 15,16,17,19,20,21,22,23 High Output Current Low Output Current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }=1.0 \mathrm{~V} \end{aligned}$	-150	$\begin{aligned} & -180 \\ & +0.3 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Segment Driver: Pins 3,4,5,6,8,9,10,11 Low Output Current High Output Current	$\begin{aligned} & \mathrm{iOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{-}+1.5 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	25	$\begin{array}{r} 30 \\ -100 \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Multiplex Inputs: Pins 1,13,14 Input Low Voltage Input High Voltage Input Resistance to V^{-}	$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & R \end{aligned}$	$V_{I N}=V^{-}+1.0 \mathrm{~V}$	$\left\lvert\, \begin{gathered} v^{-}+2.0 \\ 50 \end{gathered}\right.$	100	$v^{-}+0.8$	Volts Volts K』
ICM7216D Digit Driver: Pins 3.4.5.6.8.9,10.11 Low Output Current High Output Current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{-}+2.0 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{array}{r} 75 \\ 100 \end{array}$.	$\underset{\mu \mathrm{A}}{\mathrm{~mA}}$
Segment Driver: Pins 15, 16, 17, 19,20,21,22,23 High Output Current Leakage Current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \text { VOUT }=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & \text { VOUT }=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	10	15	10	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Mültiplex Inputs: Pins 1.13.14 Input Low Voltage Input High Voltage Input Resistance to V^{+}	$\begin{aligned} & V_{I L} \\ & V_{I H} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	$\left\lvert\, \begin{gathered} v^{+}-0.8 \\ 200 \end{gathered}\right.$	360	$V^{+}-2.0$	Volts Volts ks!

INPUT A

FIGURE 1. Waveform for Guaranteed Minimum Famax Function = Frequency, Frequency Ratio, Unit Counter.

INPUT A OR INPUT B

FIGURE 2. Waveform for Guaranteed Minimum Fbmax and FamAX for Function = Period and Time Interval.

TIME INTERVAL MEASUREMENT

The ICM7216/7226 can be used to accurately measure the time interval between two events. With a 10 MHz timebase crystal, the time between the two events can be as long as ten seconds. Accurate resolution in time interval measurement is 100 ns .

The feature operates with Channel A going low at the start of the event to be measured, followed by Channel B going low at the end of the event.

FIGURE 3a.
\square
FIGURE 3b. Waveform for Minimum Time Between Transitions of Input A and Input B.

When in the time interval mode and measuring a single event, the ICM7216/7226 must first be "primed" prior to measuring the event of interest. This is done by placing both Channel A and Channel B at V^{+}, then causing A to toggle to V^{-}and back to V^{+}followed by B toggling to V^{-}and back to V^{+}The input is then ready for measurement.

FIGURE 3c.

This can be easily accomplished with the following circuit: (Figure 3d)

FIGURE 3d. Priming Circuit, Signal A\&B High or Low.

Following the priming procedure (when in single event or 1 cycle range input) the device is ready to measure one (only) event.
When timing repetitive signals, it is not necessary to "prime" the ICM7216/7226 as the first alternating signal states automatically prime the device.
During any time interval measurement cycle, the ICM7216/7226 requires 200 ms following B going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.

FIGURE 3 e.

BLOCK DIAGRAM

TEST CIRCUIT

OVERFLOW WILL BE INDICATED ON THE DECIMAL POINT OUTPUT OF DIGIT 7.

LED OVERFLOW INDICATOR CONNECTIONS

ICM 7216A
ICM 7216B
ICM 7216C
CATHODE DEC. PT.

ANODE

ICM 7216D
D_{7}
DEC. PT.
DEC. PT.
D_{7}
-

APPLICATIONS NOTES

GENERAL
Inputs A and B
Inputs A and B are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}^{+}=5.0 \mathrm{~V}$. For optimum performance the peak-to-peak input signal should be at least 50% of the supply voltage and centered about the switching voltage. When these inputs are being driven from T2L logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.
Note: The amplitude of the input should not exceed the supply, otherwise, the circuit may be damaged:

Multiplexed Inputs

The function, range, control and external decimal point inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{sec}$). The multiplex inputs are active high for the common anode ICM7216A and C and active low for the common cathode ICM7216B and D.
Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a 10 K resistor should be placed in series with the multiplex inputs as shown in the application notes.
Table 1 shows the functions selected by each digit for these inputs.

Control Input Functions

Display Test - All segments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Display Off is selected at the same time.
Display Off - To enable the Display Off mode it is necessary to input D_{3} to the control input and have the HOLD input at V^{+}. The chip will remain in the Display Off mode until HOLD is switched back to V^{-}. While in the Display Off mode, the segment and digit driver outputs are open. During Display Off the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal and no measurements are made.' In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to V^{-}.
1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in μ second increments rather than $0.1 \mu \mathrm{sec}$ increments.
External Oscillator Enable - In this mode the external oscillator input is used instead of the on-chip oscillator for Timebase input and Main Counter input in Period and Time interval modes. The on-chip oscillator will continue to function when the external oscillator is selected. The external oscillator input frequency must be greater than 100 KHz or the chip will reset itself to enable the on-chip oscillator.

TABLE 1

	FUNCTION DIGIT
Function Input Pin 3 (ICM7216A \& B Only)	Frequency D_{0} Period D_{7} Frequency Ratio D_{1} Time Interval D_{4} Unit Counter D_{3} Oscillator D_{2} Frequency
Range Input Pin 14	$.01 \mathrm{sec} / 1$ Cycle D_{0} $.1 \mathrm{sec} / 10$ Cycles D_{1} $1 \mathrm{sec} / 100$ Cycles D_{2} $10 \mathrm{sec} / 1 \mathrm{~K}$ Cycles D_{3}
Control Input Pin 1	Blank Display D_{3} and Hold Display Test D_{7} 1 MHz Select D_{1} External Oscillator D_{0} Enable External Decimal Point Enable D_{2} Test D_{4}
External Decimal Point Input Pin 13; ICM7216C \& D Only	Decimal point is output for same digit that is connected to this input

[^24]These functions select which signal is counted into the Main Counter and which signal is counted by the reference counter, as shown in Table 2'. In Time Interval, a flip flop is toggled first by a 1-0 transition of Input A and then by a 1-0 transition of Input B. The oscillator is gated into the Main Counter from the time Input A toggles the flip flop until Input B gates the flip flop. A change in the function input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Function Input is changed.

TABLE 2

DESCRIPTION	MAIN COUNTER	REFERENCE COUNTER
Frequency (F_{A})	Input A	$\begin{aligned} & 100 \mathrm{~Hz} \text { (Oscillator } \\ & \div 105 \text { or } 104 \text {) } \end{aligned}$
Period (T_{A})	Oscillator	Input A
Ratio ($\mathrm{F}_{\mathrm{A}} / \mathrm{F}_{\mathrm{B}}$)	Input A	Input B
Time Interval $(A \rightarrow B)$	Osce(Time Interval FF)	Time Interval FF
Unit Counter (Count A)	Input A	Not Applicable
Osc. Freq. (Fosc)	Oscillator	100 Hz (Oscillator $\div 105$ or 104)

External Decimal Point Input - When the external decimal point is selected this input is active. Any of the digits, except D7, can be connected to this point. D_{7} should not be used since it will override the overflow output and leading zeros will remain unblanked after the decimal point. This input is available on the ICM7216C and D only.
Hold Input - When the Hold Input is at V^{+}, any measurement in progress is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated so the last complete measurement is displayed. When Hold is changed to V^{-}, a new measurement is initiated.
Reset Input - The Reset Input is the same as a Hold Input, except the latches for the Main Counter are enabled, resulting in an output of all zeros.

DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{sec}$. An interdigit blanking time of $6 \mu \mathrm{sec}$ is used to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays, zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled when the Main Counter overflows.
The ICM7216A and C are designed to drive common anode LED displays at peak current of 25 mA /segment, using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 25 mA . The average DC current will be over 3mA under these conditions. The ICM7216B and D are designed to drive common cathode displays at peak current of $15 \mathrm{~mA} /$ segment using displays with $V_{F}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if
required. Figures $4,5,6$ and 7 show the digit and segment currents as a function of output voltage.
To get additional brightness out of the displays, V^{+}may be increased up to 6.0 V . However, care should be taken to see that maximum power and current ratings are not exceeded.

FIGURE 4. ICM7216A \& C Typical $I_{\text {DIG }}$ vs. $V^{+}-V_{\text {OUT }}$, $4.5 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}$

FIGURE 5. ICM7216A \& C Typical $I_{\text {SEG }}$ vs. $V_{\text {OUT }} \mathbf{V}^{-}$

FIGURE 6. ICM7216B \& D Typical I ${ }_{\text {DIGIT }}$ vs. $V_{\text {OUT }} \mathbf{V}^{-}$

FIGURE 7. ICM7216B \& D Typical $\mathrm{I}_{\text {SEG }}$ vs. $\mathrm{V}^{+}-\mathrm{V}_{\text {OUT }}$, $4.5 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}$

The segment and digit outputs in ICM7216's are not directly compatible with either TTL or CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

Segment Identification:

ACCURACY

In a Universal Counter crystal drift and quantization errors cause errors. In Frequency, Period and Time Interval modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$.

In addition, there is a quantization error inherent in any digital measurement of ± 1 count. Clearly this error is reduced by displaying more digits. In the Frequency mode the maximum , accuracy is obtained with high frequency inputs and in Period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 8, the least accuracy will be obtained at 10 KHz . In Time Interval measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 9. In Frequency Ratio measurement can be more accurately obtained by averaging over more cycles of Input B as shown in Figure 10.

FIGURE 8. Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors

FIGURE 9. Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors

FIGURE 10. Maximum Accuracy for Frequency Ratio Measurement Due to Limitation of Quantization Errors

CIRCUIT APPLICATIONS

The ICM7216 has been designed for use in a wide range of Universal and Frequency counters. In many cases, prescalers will be required to reduce the input frequencies to under 10 MHz . Because Input A and Input B are digital inputs, additional circuitry is often required for input buffering, amplification, hysterisis, and level shifting to obtain a good digital signal.

The ICM7216A or B can be used as a minimum component complete Universal Counter as shown in Figure 11. This circuit can use input frequencies up to 10 MHz at Input A and 2 MHz at Input B.

For input frequencies up to 40 MHz the circuit shown in Figure 12 can be used to implement a frequency counter. To obtain the correct measured value, it is necessary to divide the oscillator frequency by four as well as the input frequency. In doing this the time between measurements is also lengthened to 800 msec and the display multiplex rate is decreased to 125 Hz .

FIGURE 11. 10MHz Universal Counter

FIGURE 12. 40MHz Frequency Counter

If the input frequency is prescaled by ten, then the oscillator can remain at 10 or 1 MHz , but the decimal point must be moved one digit to the right. Figure 13 shows a frequency counter implemented with $a \div 10$ prescaler and an ICM7216C. Since there is no external decimal point with the ICM7216A or B, the decimal point must be implemented with additional drivers as shown in Figure 14. Note that there can be one zero to the left of the decimal point since the internal leading zero blanking cannot be changed. In Figure 15 additional logic has been added to count the input directly in period mode for maximum accuracy. In both Figures 13 and 14, Input A comes from Q_{c} of the prescaler rather than Q_{A} to obtain an input duty cycle of 40%. If the signal at Input A has a very low duty cycle then it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse width to guarantee 50 nsec minimum pulse width.

FIGURE 13. 100 MHz Frequency Counter

FIGURE 14. 100 MHz Multifunction Counter

FIGURE 15. 100 MHz Frequency, 2 MHz Period Counter

OSCILLATOR CONSIDERATIONS

The oscillator has been implemented as a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ or $22 \mathrm{M} \Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of $22 p \mathrm{~F}$ and a series resistance of less than 35 ohms.

For a specific crystal and load capacitance, the required gm_{m} can be calculated as follows:

$$
\begin{aligned}
& g_{m}=\omega^{2} C_{\text {in }} C_{\text {out }} R_{s}\left(1+\frac{C_{o}}{C_{L}}\right)^{2} \\
& \text { where } C_{L}=\left(\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{o u t}}\right) \\
& C_{o}=\text { Crystal Static Capacitance } \\
& R_{s}=\text { Crystal Series Resistance } \\
& C_{\text {in }}=\text { Input Capacitance } \\
& C_{o u t}=\text { Output Capacitance } \\
& \omega=2 \pi f
\end{aligned}
$$

The required gm_{m} should exceed the gm_{m} specified for the ICM7216 by at least 50% to insure reliable startup. The oscillator input and output pins each contribute about 5 pf to $\mathrm{C}_{\text {in }}$ and $\mathrm{C}_{\text {out. }}$ For maximum stability of frequency, C_{in} and Cout should be approximately twice the specified crystal static capacitance.
In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz or 1 MHz . In that case both the multiplex rate and time between measurements will be different. The multiplex rate is $f_{\max }=$ $\frac{f_{\text {osc }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\max }=\frac{f_{\text {osc }}}{2 \times 10^{3}}$ for the 1 MHz 2×10^{4}
mode. The time between measurements is $\frac{2 \times 10^{6}}{f_{\text {osc }}}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{f_{\text {osc }}}$ in the 1 MHz mode.
The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the External oscillator input to the oscillator output or input can cause undesirable shifts in oscillator frequency.

CHIP TOPOGRAPHY

ICM7216A

ICM7216C

$\mathrm{F}_{\mathrm{A} \text { max }}, \mathrm{F}_{\mathrm{B} \text { max }}$ as a Function of $\mathrm{V}^{+}-\mathrm{V}^{-}$

FIGURE 16. Typical Operating Characteristics

PACKAGE DIMENSIONS

28 PIN CERDIP DUAL IN LINE PACKAGE

28 PIN PLASTIC DUAL IN LINE PACKAGE

ICM7226A/B 10 MHz Universal Counter System

ICM7226A Drives Common Anode LED's ICM7226B Drives Common Cathode LED's

FEATURES

- Functions as a frequency counter, period counter, unit counter, frequency ratio counter or time interval counter
- Output drivers directly drive both digits and segments of large 8 digit LED displays. Both common anode and common cathode versions are available
- Measures frequencies from DC to $10 \mathbf{M H z}$
- Measures period from $0.5 \mu \mathrm{sec}$ to 10 sec
- Stable high frequency oscillator, uses either 1 MHz or 10 MHz crystal
- Control signals available for gating of prescalers and prescaler display logic

- Multiplexed BCD outputs

- All terminals protected against static discharge; no special handling precautions required

GENERAL DESCRIPTION

The ICM7226 is a fully integrated Universal Counter and LED display driver. It combines a high frequency oscillator, a decade timebase counter, an 8 decade data counter and latches, a 7 segment decoder, digit multiplexer and 8 segment and 8 digit drivers which can directly drive large LED displays. The counter inputs accept a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.
The ICM7226 can function as a frequency counter, period counter; frequency ratio (f_{A} / f_{B}) counter, time interval counter or as a totalizing counter. The counter uses either a 10 MHz or 1 MHz crystal timebase. An external timebase input is also provided. For period and time interval, the 10 MHz timebase gives a $0.1 \mu \mathrm{sec}$ resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation time of $.01 \mathrm{sec}, .1 \mathrm{sec}, 1 \mathrm{sec}$ and 10 sec . With a 10 sec accumulation time, the frequency can be displayed to a resolution of .1 Hz in the least significant digit. There is 0.2 second interval between measurements in all ranges. Control signals are provided to enable gating and storing of prescaler data.
Leading zero blanking has been incorparated with frequency displayed in KHz and time in usec. The display is multiplexed at a 500 Hz rate with a 12.5% duty cycle for each digit. The ICM7226A is designed for common anode display with typical peak segment currents of 25 mA . The ICM7226B is designed for common cathode displays with typical segment currents of 12 mA . In the display off mode both digit drivers \& segment drivers are turned off allowing the display to be used for other functions.

ORDERING INFORMATION

Component:

- ICM7226A IDL (Common anode driver, $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Operating temperature range, 40 pin ceramic DIP)
- ICM7226B IPL (Common cathode driver, $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Operating temperature range, 40 pin plastic DIP)
Evaluation Kit:
- ICM7226 EV/KIT See page 3

PIN CONFIGURATION

*FOR MAXIMUM FREQUENCY
STABILITY, CONNECT TO \mathbf{V}^{+}OR \mathbf{V}^{-}

ABSOLUTE MAXIMUM RATINGS

Maximum Supply Voltage ($\mathrm{V}^{+-\mathrm{V}-)}$	6.5 volts
Maximum Digit Output Current	400 mA
Maximum Segment Output Current	60mA
Voltage on any Input or Output Terminal (Note 2)	... Not to exceed $\mathrm{V}^{+}-\mathrm{V}^{-}$ by more than ± 0.3 volts
Maximum Power Dissipation at	1.0 watts (ICM7226A)
$70^{\circ} \mathrm{C}$ (Note 1)	. 0.5 watts (ICM7226B)
Maximum Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute maximum ratings refer to values that if exceeded may destroy or permanently change the device. The device is guaranteed for continous operation only under the conditions defined under the section TYPICAL OPERATING CHARACTERISTICS.

Note 1: The ICM7226 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding $\mathrm{V}^{+}-\mathrm{V}^{-}$by more than 0.3 volts.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}-\mathrm{V}^{-}=5.0 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Supply Current	IDD	Display Off Unused inputs to V^{-}		2	5	mA
Supply Voltage Range		$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ Input A, Input B Frequency at $\mathrm{F}_{\text {MAX }}$	4.75		6.0	volts
```Maximum Guaranteed. Frequency Input A, Pin 40```	FAMAX	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$   $4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V}$ Figure 1   Function $=$ Frequency,   Ratio, Unit Counter   Function $=$ Period, Time Interval	$\begin{array}{r} 10 \\ 2.5 \\ \hline \end{array}$	14	"	$\mathrm{MHz}$ $\mathrm{MHz}$
Maximum Frequency Input B, Pin 2	Fbmax	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \\ & \text { Figure 2 } \\ & \hline \end{aligned}$	2.5			MHz
Minimum Separation Input A to Input B Time Interval Function		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \end{aligned}$   Figure 3	250			nsec
Maximum osc. freq. and ext. osc. freq.   Minimum ext. osc. freq.		$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}^{+}-\mathrm{V}^{-}<6.0 \mathrm{~V} \end{aligned}$	10		100	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{kHz} \end{aligned}$
Oscillator Transconductance	gm	$\begin{aligned} & \mathrm{V}^{+}-\mathrm{V}^{-}=4.75 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	2000			$\mu \mathrm{S}$
Multiplex Frequency   Time Between Measurements	Fmax	$\begin{aligned} & f_{\text {osc }}=10 \mathrm{MHz} \\ & f_{\text {osc }}=10 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 500 \\ & 200 \end{aligned}$	,	$\begin{aligned} & \mathrm{Hz} \\ & \text { msec } \end{aligned}$



Figure 1: Waveform for Guaranteed Minimum Famax Function = Frequency, Frequency Ratio, Unit Counter.


Figure 2: Waveform for Guaranteed Minimum FBMAX and FAMAX for Function = Period and Time Interval.


Figure 3: Waveform for Minimum Time Between Transitions of Input A and Input B.

For single or "one-shot" time interval measurements, Input A then Input B must have a high to low transition prior to the interval which is to be measured. Provisions for "priming" the circuit as described above must be made using external circuitry. For repetitive signals this occurs automatically.

ELECTRICAL CHARACTERISTICS $=\mathrm{v}^{+}-\mathrm{v}^{-}=5.0 \mathrm{~V}$, test circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
INPUT VOLTAGES   PINS 2,19,33,39,40 input low voltage input high voltage	$\begin{aligned} & V_{\text {IL }} \\ & V_{I H} \end{aligned}$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ $\text { Referred to } \mathrm{V}^{-}$	1.0		3.5	v
PIN 2, 39, 40 INPUT LEAKAGE, A, B	IL				20	$\mu \mathrm{A}$
PIN 33 input low voltage input high voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & \text { Referred to } \mathrm{V}^{-} \end{aligned}$	. 8		2.0	$\mathrm{v}$
$\begin{aligned} & \text { Input resistance to } \mathrm{V}^{+} \\ & \text {PINS } 19,33 \\ & \hline \end{aligned}$	R	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}$.	100	400		$\mathrm{k} \Omega$
Input resistance to $\mathrm{V}^{-}$ PIN 31	R	$\mathrm{VIN}_{\text {IN }}=\mathrm{V}^{-}+1.0 \mathrm{~V}$	50	100		k $\Omega$
Output Current PINS $3,5,6,7,17,18,32,38$	loL	$\mathrm{VOL}=\mathrm{V}^{-}+0.4 \mathrm{~V}$	. 40			mA
PINS 5,6,7,17,18,32	IOH	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}^{-}+0.4 \mathrm{~V}$	100			$\mu \mathrm{A}$
PINS 3,38	IOH	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}^{+}-.8 \mathrm{~V}$	265			$\mu \mathrm{A}$
ICM7226A   DIGIT DRIVER   PINS 22,23,24,26,27,28,29,30   high output current low output current	$\begin{aligned} & \mathrm{IOH} \\ & \mathrm{IOL} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\text {out }}=\mathrm{V}^{+}-2.0 \mathrm{~V} \\ & V_{\text {out }}=\mathrm{V}^{-+}+1.0 \mathrm{~V} \end{aligned}$	150	$\begin{aligned} & 180 \\ & -.3 \end{aligned}$		$\mathrm{mA}_{\mathrm{mA}}$
SEGMENT DRIVER PINS 8,9,10,11,13,14,15,16 low output current high output current	$\begin{aligned} & \mathrm{loL} \\ & \mathrm{loH} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{\text {out }}=V^{-}+1.5 \\ & V_{\text {out }}=V^{+}-1.0 \mathrm{~V} \end{aligned}$	25	$\begin{gathered} 35 \\ 100 \end{gathered}$		$\mathrm{mA}_{\mu \mathrm{A}}$
MULTIPLEX INPUTS PINS 1,4,20,21 input low voltage input high voltage	$\begin{aligned} & V_{\mathrm{IL}} \\ & V_{I H} \\ & \hline \end{aligned}$	Referred to $\mathrm{V}^{-}$	2.0		. 8	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Input Resistance to V -	R	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{-}+1.0 \mathrm{~V}$	50	100		k $\Omega$
ICM7226B   DIGIT DRIVER   PINS 8,9,10,11,13,14,15,16   low output current   high output current	$\begin{aligned} & \mathrm{IOL} \\ & \mathrm{IOH} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}^{-}+1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=\mathrm{V}^{+}-2.5 \mathrm{~V} \end{aligned}$	50	$\begin{array}{r} 75 \\ 100 \end{array}$		${ }_{\mu \mathrm{m}}^{\mathrm{A}}$
SEGMENT DRIVER   PINS 22,23,24,26,27,28,29,30 high output current leakage current	Іон	$\begin{aligned} & V_{\text {out }}=V^{+}-2.0 \mathrm{~V} \\ & V_{\text {out }}=V^{-} \end{aligned}$	10	15	10	${ }_{\mu \mathrm{A}}^{\mathrm{A}}$
MULTIPLEX INPUTS PINS 1,4,20,21 input low voltage input high voltage	$\begin{aligned} & V_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$		$\mathrm{V}^{+}-8$		$\mathrm{v}^{+}-2.0$	$\begin{aligned} & v \\ & v \end{aligned}$
input resistance to $\mathrm{V}^{+}$	R	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}-1.0 \mathrm{~V}$	200	360		k $\Omega$

## EVALUATION KIT

An evaluation kit is available for the ICM7.226. It includes all the components necessary to assemble and evaluate a universal frequency/period counter based on the ICM7226. With the help of this kit, an engineer or technician can have the ICM7226 "up-and-running" in less than an hour. Specifically, the kit contains an ICM7226AIDL, a 10MHz quartz crystal, eight each 7 -segment $.3^{\prime \prime}$ leds, PC board, resistors, capacitors, diodes, switches and IC socket. Ordering information for the kit is given on page 1.

BLOCK DIAGRAM


TEST CIRCUIT


## APPLICATION NOTES

## GENERAL

## Inputs A \& B

The signal to be measured is input at Input $A$ in Frequency, Period, Unit Counter, Frequency Ratio and Time Interval modes. The other input signal to be measured is input at Input B in Frequency Ratio and Time Interval. In Frequency Ratio $F_{A}$ should be larger than $F_{B}$.

Both inputs are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}^{+}=5.0 \mathrm{~V}$. For optimum performance the peak to peak input signal should be at least $50 \%$ of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs.
Note: The amplitude of the input should not exceed the supply by more than .3 volt otherwise, the circuit may be damaged.

## Multiplexed Inputs

The function, range, control and external decimal point inputs are time multiplexed to select the input function desired. This is achieved by connecting the appropriate digit driver output to the inputs. The input function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{sec}$ ). The multiplex inputs are active high for the common anode ICM7226A and active low for the common cathode ICM7226B.
Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a 10 K resistor should be placed in series with the multiplex inputs as shown in the application notes.
Table 1 shows the functions selected by each digit for these inputs.

TABLE 1

	FUNCTION	DIGIT
FUNCTION INPUT PIN 4	Frequency   Period   Frequency Ratio   Time Interval   Unit Counter   Oscillator Frequency	$\begin{aligned} & \hline D_{0} \\ & D_{7} \\ & D_{1} \\ & D_{4} \\ & D_{3} \\ & D_{2} \\ & \hline \end{aligned}$
RANGE INPUT PIN 21	$.01 \mathrm{Sec} / 1$ Cycle $.1 \mathrm{Sec} / 10$ Cycles $1 \mathrm{Sec} / 100$ Cycles $10 \mathrm{Sec} / 1 \mathrm{k}$ Cycles	$\begin{aligned} & D_{0} \\ & D_{1} \\ & D_{2} \\ & D_{3} \end{aligned}$
External Range Input PIN 31	Enabled	
CONTROL INPUT PIN 1	Blank Display   Display Test   1MHz Select   External Oscillator Enable   External Decimal Point   Enable   Test	$D_{3} \&$ Hold   $D_{7}$   $D_{1}$   $D_{0}$      $D_{2}$   $D_{4}$
EXTERNAL DECIMAL POINT INPUT, PIN 20	Decimal Point is Output for Same Digit That is Connected to This Input	

## Control Input Functions

Display Test - All ségments are enabled continuously, giving a display of all 8's with decimal points. The display will be blanked if Display Off is selected at the same time.

Display Off - To enable the Display Off mode it is: necessary to input $D_{3}$ to the control input and have the HOLD input at $\mathrm{V}^{+}$. The chip will remain in the Display Off mode until HOLD is switched back to $\mathrm{V}^{-}$. While in the Display Off mode, the segment and digit driver outputs are open. During Display Off the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal and no measurements are made. In addition, inputs to the multiplexed inputs will have no effect. A new measurement is initiated when the HOLD input is switched to $\mathrm{V}^{-}$

1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurements as with a 10 MHz crystal. The decimal point is also shifted one digit to the right in Period and Time Interval, since the least significant digit will be in $\mu$ second increments rather than $0.1 \mu \mathrm{sec}$ increments.

External Oscillator Enable - In this mode the external oscillator input is used instead of the on chip oscillator for the Timebase input and Main Counter input in Period and Time interval modes. The on chip oscillator will continue to function when the external oscillator is selected, but will have no effect on circuit operation. The external oscillator input frequency must be greater than 100 KHz or the chip will reset itself to enable the on chip oscillator.

External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to the external decimal point is active. Leading Zero Blanking will be disabled for all digits following the decimal point.
Test Mode - In the test mode the main counter is split into groups of two digits each and the groups are clocked in parallel. The reference counter is split such that the clock into the reference count goes directly to the clock of the third decade counter ( $10 \mathrm{sec} / 1 \mathrm{k}$ cycle range). Store is also enabled so the count in the main counter is continuously output.

Range Input - The range input selects whether the measurement is made for $1,10,100,1000$ counts of the reference counter or if the external range input determines the measurement time. In all functional modes except Unit Counter a change in the range input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Range Input is changed.

Function Input - The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency.

These functions select which signal is counted into the main counter and which signal is counted by the reference counter as shown in Table 2. In Time Interval a flip flop is toggled first by a $1 \rightarrow 0$ transition at Input $A$ and then by a $1 \rightarrow 0$ transition at Input $B$. The oscillator is gated into the Main Counter from the time Input A toggles the flip flop until Input $B$ gates the flip flop. A change in the function input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Function Input is changed. If main counter overflows, an overflow indication is output on the decimal point output during D7.

TABLE 2

DESCRIPTION	MAIN COUNTER	REFERENCE   COUNTER
Frequency $\left(\mathrm{F}_{\mathrm{A}}\right)$	Input A	$100 \mathrm{~Hz}($ Oscillator $\div$   105 or 104)
Period $\left(\mathrm{T}_{\mathrm{A}}\right)$	Oscillator	Input A
Ratio $\left(\mathrm{F}_{\mathrm{A}} / \mathrm{F}_{\mathrm{B}}\right)$	Input A	Input B
Time $\operatorname{Interval}(\mathrm{A} \rightarrow \mathrm{B})$	Osc• Time Interval FF Time Interval FF	
Unit Counter(Count A$)$	Input A	Not Applicable
Osc. Freq. (Fosc)	Oscillator	$100 \mathrm{~Hz}($ Osc $\div 105$ or   $104)$

External Decimal Point Input - when the external decimal point is selected this input is active. Any of the digits, except $\mathrm{D}_{7}$, can be connected to this point. $\mathrm{D}_{7}$ should not be used since it will overide the overflow output and leading zeros will remain unblanked after the decimal point.
Hold Input - Except in the Unit counter mode when the Hold Input is at $\mathrm{V}^{+}$, any measurement in progress is stopped, the main counter is reset and the chip is held ready to initiate a new measurement. The latches which hold the main counter data are not updated so the last complete measurement is displayed. In Unit counter mode when Hold Input is at $\mathrm{V}^{+}$the counter is stopped but not reset. When Hold is changed to $\mathrm{V}^{-}$ the count continues from where the counter stopped.
$\overline{R e s e t}$ Input - The $\overline{R e s e t}$ Input is the same as a Hold Input, except the latches for the main counter are enabled, resulting in an output of all zeros.

External Range Input - The External Range Input is used to select different ranges than those provided on the chip. Figure 4 shows the relationship between Measurement In Progress and External Range Input.


Figure 4: External Range Input to End of Measurement in Progress.
$\overline{M e a s u r e m e n t ~ I n ~ P r o g r e s s, ~ S t o r e ~ a n d ~ R e s e t ~ O u t p u t s ~-~ T h e s e ~}$ outputs are provided to enable display of prescaler digits. Figure 5 shows the relationship between these signals during the time between measurements. All three outputs can drive a low power Schottky TTL load. The Measurement In Progress Output can directly drive an ECL load, if the ECL device is powered from the same power supply as the ICM7226.


Figure 5: Reset, $\overline{\text { Store, and }} \overline{\text { Measurement in Progress }}$ Outputs Between Measurements.

BCD Outputs - The BCD representation of each digit output is output on the BCD outputs. Leading zero blanking of the display has no effect on the BCD output. Each BCD output will drive one low power Schottky TTL load. Table 3 shows the truth table for the BCD outputs.

TABLE 3 Truth Table BCD Outputs

NUMBER	D   PIN 7	C   PIN 6	BIN 17	A   PIN 18
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Buffered Oscillator Output - The Buffered Oscillator Output has been provided to enable use of the on chip oscillator signal without loading the oscillator itself. This output will drive one low power Schottky TTL load. Care should be taken to minimize capacitive loading on this pin.

## DISPLAY CONSIDERATIONS

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{sec}$. An interdigit blanking time of $6 \mu \mathrm{sec}$ is used to prevent ghosting between digits. The decimal point and leading zero blanking have been implemented for right hand decimal point displays. Any zeros following the decimal point will not be blanked. Also, the leading zero blanking will be disabled if the Main Counter overflows. The decimal point has been implemented to display frequency in KHz and time in $\mu \mathrm{sec}$.
The ICM7226A is designed to drive common anode LED displays at peak current of $25 \mathrm{~mA} /$ segment, using displays with $V_{F}=1.8 \mathrm{~V}$ at 25 mA . The average DC current will be over 3 mA under these conditions. The ICM7226B is designed to drive common cathode displays at peak current of $15 \mathrm{~mA} /$ segment using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 15 mA : Resistors can be added in series with the segment drivers to limit the display current in very efficient displays; if required. Figures $6,7,8$ and 9 show the digit and segment currents as a function of output voltage for common anode and common cathode drivers.


Figure 7: ICM7226A Typical Iseg Vs. $\mathrm{V}_{\text {out }}-\mathrm{V}^{-}$


Figure 8: ICM7226B Typical IDIgit Vs. Vout-V ${ }^{-}$


Figure 9: ICM7226B Typical ISEG Vs. $\mathrm{V}^{+}-\mathrm{V}_{\text {out }}$ $4.5 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-} \leq 6.0 \mathrm{~V}$

To increase the light output from the displays, $\mathrm{V}^{+}$may be increased up to 6.0 V , however, care should be taken to see that maximum power and current ratings are not exceeded.
The segment and digit outputs in both the 7226A and $B$ are not directly compatible with either TTL or CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

## Segment Identification



## ACCURACY

In a Universal Counter crystal drift and quantization errors cause errors. In Frequency, Period and Time Interval Modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
In addition, there is a quantization error inherent in any digital measurement of $\pm 1$ count. Clearly this error is reduced by displaying more digits. In the Frequency Mode the maximum accuracy is obtained with high frequency inputs and in Period Mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 10, the least accuracy will be obtained at 10 KHz . In Time Interval measurements there is a maximum error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 11. In Frequency Ratio measurement more accuracy can be obtained by averaging over more cycles of Input B as shown in Figure 12.


Figure 10: Maximum Accuracy of Frequency and Period Measurements Due to Limitations of Quantization Errors.


Figure 11: Maximum Accuracy of Time Interval Measurement Due to Limitations of Quantization Errors.


Figure 12: Maximum Accuracy for Frequency Ratio Measurement Due to Limitations of Quantization Errors:

## CIRCUIT APPLICATIONS

The ICM7226 has been designed to be used as a complete Universal Counter or with prescalers and other circuitry in a variety of applications. Since Input A and Input B are digital inputs additional circuitry will be required in many applications for input buffering, amplification, hysteresis, and level shifting to obtain the required digital voltages. For many applications an FET source follower can be used for input buffering and an ECL 10116 line receiver can be used for amplification and hysteresis to obtain a high impedance input, sensitivity and bandwidth. However, cost and complexity of this circuitry can vary widely depending upon the sensitivity and bandwidth required. When TTL prescalers or input buffers are used, pull up resistors to $\mathrm{V}^{+}$should be used to obtain optimal voltage swing at Inputs A and B.
If prescalers aren't required the ICM7226 can be used to implement a minimum component Universal counter as shown in figure 13. This circuit can be for input frequencies up to 10 MHz at Input A and 2 MHz at Input B.
For input frequencies up to 40 MHz the circuit shown in figure 14 can be used to implement a Frequency and Period Counter. To obtain the correct value when measuring
frequency and period it is necessary to divide the 10 MHz oscillator frequency down to 2.5 MHz . In doing this the time between measurements is also lengthened to 800 msec . and the display multiplex rate is decreased to 125 Hz .
If the input frequency is prescaled by ten then the oscillator frequency can remain at 10 or 1 MHz , but the decimal point must be moved. Figure 15 shows use of a $\div 10$ prescaler in frequency counter mode. Additional logic has been added to
have the 7226 count the input directly in Period mode for maximum accuracy. Note that Input A comes from $Q_{c}$ rather than $Q_{D}$ to obtain an input duty cycle of $40 \%$. If an output without a duty cycle near $50 \%$ must be used then it may be necessary to use a 74121 monostable multivibrator or similar circuit to stretch the input pulse to guarantee a 50 nsec minimum pulse width.


Figure 13: 10 MHz Universal Counter


Notes: 1) If a 2.5 MHz crystal is used then diode D1 and I.C's 1 and 2 can be eliminated.
Figure 14: 40MHz Frequency, Period Counter

Figure 16 shows the use of a CD4016 analog multiplexer to multiplex the digital outputs back to the Function Input. Since the CD4016 is a digitally controlled analog transmission gate no level shifting of the digit output is required. CD4051's or CD4052's could also be used to select the proper inputs for the multiplexed input on the ICM7226 from 2 or 3 bit digital inputs. These analog multiplexers could
also be used in systems in which the mode of operation is controlled by a microprocessor rather than directly from front panel switches. TTL multiplexers such as the 74153 or 74251 could also be used, but some additional circuitry will be required to convert the digit output to TTL compatible logic levels.

Figure 15: 100 MHz Multi Function Counter


Figure 16: 100 MHz Frequency Period Counter

## ICM7226A/B

If the, prescaler information needs to be displayed, then the Measurement in Progress, Store and Reset outputs from the ICM7226 can be used to control the prescaler and data latch as shown in figure 17. Note that the output of IC 7 has been decoded with a NAND to obtain a $40 \%$ duty cycle for the signal into input $A$.
To obtain a full Universal Counter with prescalers with the count displayed, it is necessary to add significantly more
circuitry to implement the Time External Mode as shown in figure 18.
All of the circuits shown directly drive a multiplexed LED display, however, the BCD outputs can be used with external BCD to 7 segment decoders and appropriate level shifting to drive other types of displays.


Figure 17: 9 Digit Multi Function Counter


Figure 18: 9 Digit Universal Counter

The circuit shown in figure 19 can be used in any of the circuit applications shown to implement a single measurement mode of operation. This circuit uses the $\overline{\text { Store }}$ output to put the ICM7226 into a hold mode. The Hold input can also be used to reduce the time between measurements. The circuit shown in figure 20 puts a short pulse into the Hold input a short time after Store goes low. A new measurement will be initiated at the end of the pulse on the Hold Input. This circuit reduces the time between measurements to less than 40 msec from 200 msec . Use of the circuit shown in Figure 20 on the circuit shown in Figure 14 will reduce the time between measurements from 800 msec . to 1600 msec .


Figure 19: Single Measurement Circuit for Use With ICM7226


Figure 20: Circuit for Reducing Time Between Measurements


Figure 21: Typical Operating Characteristics

## OSCILLATOR CONSIDERATIONS

The oscillator has been implemented as a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ or $22 \mathrm{M} \Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonance of 10 MHz quartz crystal with a static capacitance of 22 pF and a series resistance of less than 35 ohms.

For a specific crystal and load capacitance, the required gm can be calculated as follows:

$$
\begin{aligned}
g_{m}=\omega^{2} & \text { Cin Cout Rs }\left(1+\frac{C_{0}}{C_{L}}\right)^{2} \\
\text { where } C_{L} & =\left(\frac{\text { CinCout }}{\text { Cin+Cout }}\right) \\
C_{o} & =\text { Crystal static capacitance } \\
R & =\text { Crystal Series Resistance } \\
C i n & =\text { Input Capacitance } \\
\text { Cout } & =\text { Output Capacitance } \\
\omega & =2 \pi \mathrm{f}
\end{aligned}
$$

The required $\mathrm{gm}_{\mathrm{m}}$ should exceed the $\mathrm{gm}_{\mathrm{m}}$ specified for the ICM7226 by at least $50 \%$ to insure reliable startup. The oscillator input and output pins each contribute about 5 pf to Cin and Cout. For maximum frequency stability, Cin and

Cout should be approximately twice the specified crystal static capacitance.

In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz . In that case, both the multiplex rate and time between measurements will be different. The multiplex rate is $f_{\max }=\frac{f_{\text {osc }}}{2 \times 10^{4}}$ for 10 MHz mode and $f_{\max }=\frac{f_{\text {ose }}}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 106}{f_{\text {osc }}}$ in the 10 MHz mode and $2 \times 105$ in the 1 MHz mode. The buffered oscillator output should be used for an oscillator test point or to drive additional logic. This output will drive one low power Schottky TTL load. When the buffered oscillator output is used to drive CMOS or to drive the external oscillator input, a 10k』 resistor should be added from buffered oscillator output to $\mathrm{V}^{+}$.

The crystal and oscillator components should be located as close to to the chip as practical to minimize pickup from other signals. In particular, coupling from the Buffered Oscillator Output and External Oscillator Input to the oscillator output or input can cause undesirable shifts in oscillator frequency. To minimize this coupling, pins 34 and 37 should be connected to $\mathrm{V}^{+}$or $\mathrm{V}^{-}$and these two signals should be kept away from the oscillator circuit.

CHIP TOPOGRAPHY (ICM7226A SHOWN)


## PACKAGE DIMENSIONS

40 Pin Plastic Dual-in-Line Package



## FEATURES

- Four decade, presettable up-down counter with parallel zero detect
- Settable register with contents continuously compared to counter
- Directly drives multiplexed 7 segment common anode or common cathode LED displays
- On-board multiplex scan oscillator
- Schmitt trigger on count input
- TTL compatible BCD I/O port, carry/borrow, equal, and zero outputs
- Display blank control for lower power operation; quiescent power dissipation < 5mW
- All terminals fully protected against static discharge
- Single 5V supply operation


## DESCRIPTION

The ICM7217 and ICM7227 are four digit, presettable up/ down counters, each with an onboard presettable register continuously compared to the counter. The ICM7217 versions are intended for use in hardwired applications where thumbwheel switches are used for loading data, and simple SPDT switches are used for chip control. The ICM7227 versions are for use in processor-based systems, where presetting and control functions are performed under processor control.

These circuits provide multiplexed 7 segment LED display outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to directly drive displays of up to $1^{\prime \prime}$ character height at a $25 \%$ duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeroes can be blanked. The data appearing at the 7 segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin. The ICM7217/7227 (common anode) and ICM7217A/7227A (common cathode) versions are decade counters, providing a maximum count of 9999, while the ICM7217B, 7227B (common anode) and ICM7217C/7227C (common cathode) are intended for timing purposes, providing a maximum count of 5959 .
These circuits provide 3 main outputs; a carry/borrow output, which allows for direct cascading of counters, a zero output, which indicates when the count is zero, and an equal output, which indicates when the count is equal to the value contained in the register. Data is multiplexed to and from the device by means of a tri-state BCD I/O port. The carry/borrow, equal, zero outputs, and the BCD port will each drive one standard TTL load.
To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.
Input frequency is guaranteed to 2 MHz , although the device will typically run with $f_{i n}$ as high as 5 MHz .


COMMON ANODE



COMMON CATHODE


## ABSOLUTE MAXIMUM RATINGS



Absolute maximum ratings define stress limitations which if exceeded may permanently damage the device. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

## OPERATING CHARACTERISTICS

$\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit, Display Diode Drop 1.7V, unless otherwise specified

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply current (Lowest power mode)	Imin, (7217)	Display Off, LC, DC, UP/DN, ST, RS, BCD I/O Floating or at $\mathrm{V}^{+}$(Note 3)		350	500	$\mu \mathrm{A}$
Supply current (Lowest power mode)	$\begin{aligned} & \text { IMIN, } \\ & \text { (7227) } \end{aligned}$	Display off (Note 3)		300	500	$\mu \mathrm{A}$
Supply current OPERATING	Iop	Common Anode, Display On, all "8's"	175	200		mA
		Common Cathode, Display On, all "8's"	85	100		mA
Supply Voltage	$\mathrm{V}^{+} \mathrm{v}^{-}$		4.5	5	5.5	V
Digit Driver output current	IDIG	Common anode, VOUT $=\mathrm{V}^{+}-2.2 \mathrm{~V}$	175	200		mA peak
Segment driver output current	İSEG	Common anode, $\mathrm{V}_{\text {OUT }}=\mathrm{V}^{-}+1.3 \mathrm{~V}$	-25	-40		mA   peak
Digit Driver output current	IDIG	Common cathode, V OUT $=\mathrm{V}^{-}+1.3 \mathrm{~V}$	-75	-100		mA peak
Segment Driver output current	ISEG	Common cathode $\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-2 \mathrm{~V}$	10	12.5		mA peak
$\overline{\mathrm{ST}}, \overline{\mathrm{RS}}, \mathrm{UP} / \mathrm{DN}$ input pullup current	Ip	Vout $=\mathrm{V}^{+}-2 \mathrm{~V}$ (See Note 3)	5	25		$\mu \mathrm{A}$
3 level input impedance				100		k ${ }^{\text {2 }}$
BCD I/O input high voltage	VВIH	ICM7217 common anode (Note 4)	1.3			V
		ICM7217 common cathode (Note 4)	4.1			V
		ICM7227 with 50pF effective load	3			V
BCD I/O input low voltage	VBIL	ICM7217 common anode (Note 4)			0.8	V
		ICM7217 common cathode (Note 4)			3.7	V
		ICM7227 with 50pF effective load			1.5	V
BCD I/O input pullup current	IBPU	ICM7217. common anode $\mathrm{V}_{\text {IN }}=\mathrm{V}^{+}-2 \mathrm{~V}$ (Note 3)	5	25		$\mu \mathrm{A}$
BCD I/O input pulldown current	IBPD	ICM7217 common cathode $\mathrm{V}_{\text {IN }}=\mathrm{V}^{-}+1.3 \mathrm{~V}$ (Note 3)	5	25		$\mu \mathrm{A}$
BCD I/O, Carry/borrow zero, equal outputs output high current	IBOH	$\mathrm{VOH}=\mathrm{V}^{+}-1.5 \mathrm{~V}$	100			$\mu \mathrm{A}$
BCD I/O, Carry/borrow zero, equal outputs output low current	IBOL	V OL $=\mathrm{V}_{\text {OL }} \mathrm{V}^{-}+0.4 \mathrm{~V}$	-2			mA
Count input frequency (Guaranteed)	fin	$\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V} \pm 10 \%,-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	0	5	2	MHz
Count input threshold	$V_{\text {TC }}$	$\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$		2		V
Count input hysteresis	$\mathrm{V}_{\mathrm{HC}}$	$\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$		0.5		V
Display scan oscillator frequency	$\mathrm{f}_{\mathrm{ds}}$	Free-running (SCAN terminal open circuit)		10		KHz
Operating Temperature Range	TA	Industrial temperature range	-20		70	${ }^{\circ} \mathrm{C}$

NOTE 1 These limited refer to the package and will not be obtained during normal operation.
NOTE 2 Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $\mathrm{V}^{+}$or less than $\mathrm{V}^{-}$may cause destructive device latchup. For this reason it is recommended that the power supply to the device be established before any inputs are applied and that in multiple systems the supply to the ICM7217/7227 be turned on first.
NOTE 3 In the ICM7217 the Up/Down, Store, Reset and the BCD I/O as inputs have pullup devices which consume power when connected to the negative supply. When all these terminals are connected to the negative supply, with the display off, the device will consume typically $750 \mu$ A. The ICM7227 devices do not have these pullups and thus are not subject to this condition.
NOTE 4 These voltages are adjusted to allow the use of thumbwheel switches for the ICM7217 versions. Note that a positive level is taken as a logic zero for ICM7217 common-cathode versions only.


Figure 1

Figure 1 shows the ICM7217 in the common-anode version and the ICM7227 in the common-cathode version.


Figure 2: Block Diagram ICM7217


Figure 3: Multiplex Timing


Figure 4: Thumbwheel switch/diode connections


Figure 5: ICM7227 I/O Timing (See Table 2)

CONTROL INPUT DEFINITIONS ICM7217

INPUT	TERMINAL	VOLTAGE	FUNCTION
$\overline{\text { Store }}$ ( $\overline{\mathrm{ST}}$ )	9	$\begin{gathered} \mathrm{V}^{+} \text {(or floating) } \\ \mathrm{V}^{-} \end{gathered}$	Output latches not updated Output latches updated
Up/Down (U/D)	10	$\begin{gathered} \mathrm{V}^{+} \text {(or floating) } \\ \mathrm{V}^{-} \end{gathered}$	Counter counts up Counter counts down
$\overline{\text { Reset }}$ ( $\overline{\mathrm{RST}}$ )	14	$\mathrm{V}^{+} \text {(or floating) }$ $\mathrm{V}^{-}$	Normal Operation Counter Reset
Load Counter LC/I/O OFF	12	Unconnected $\mathrm{V}^{+}$ $V^{-}$	Normal operation Counter loaded with BCD data BCD port forced to Hi Z condition
Load Register LR/ $\overline{\text { OFF }}$	11	$\begin{gathered} \hline \text { Unconnected } \\ V^{+} \\ V^{-} \end{gathered}$	Normal operation Register loaded with BCD data Display drivers disabled; BCD port forced to Hi Z condition, mpx counter reset to D3; mpx oscillator inhibited
Display Control (DC)	23 Common Anode   20 Common Cathode	$\begin{gathered} \text { Unconnected } \\ \mathrm{V}^{+} \\ \mathrm{V}^{-} \end{gathered}$	Normal operation Segment drivers disabled Leading zero blanking inhibited

## CONTROL INPUT DEFINITIONS ICM7227

	INPUT	TERMINAL	VOLTAGE	FUNCTION
		13	$\begin{aligned} & \mathrm{V}^{+} \\ & \mathrm{V}^{-} \end{aligned}$	Normal Operation Causes transfer of data as directed by select code
Control Word Port 17	Store (ST)	9	```V+ V-```	Output latches updated Output latches not updated
	Up/Down (U/D)	- 10	$\begin{aligned} & \mathrm{V}^{+} \text {(During } \overline{\mathrm{CWS}} \text { Pulse) } \\ & \mathrm{V}^{-} \end{aligned}$	Counter counts up Counter counts down
	Select Code Bit 1 (SC1)   Select Code Bit 2 (SC2)	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}=1 \\ & \mathrm{~V}^{-}=0 \end{aligned}$	SC1, SC2   00 Change store and up/down latches. No data transfer. 01 Output latch data active 10 Counter to be preset 11 Register to be preset
$\overline{\text { Control Word Strobe ( } \overline{\mathrm{CWS}})}$		14	$\begin{aligned} & \mathrm{V}^{+} \\ & \mathrm{V}^{-} \end{aligned}$	Normal operation Causes control word to be written into control latches
	Display Control (DC)	23 Common Anode 20 Common Cathode	Unconnected $\mathrm{V}^{+}$ $\mathrm{V}^{-}$	Normal operation Display drivers disabled Leading zero blanking inhibited

## DESCRIPTION OF OPERATION <br> OUTPUTS

The carry/borrow output is a positive going signal occurring typically 500 nS after the positive going edge of the count input. It advances the counter from 9999 to 0000 when counting up and from 0000 to 9999 when counting down. This output allows direct cascading of counters.
The equal output assumes a negative level when the contents of the counter and register are equal.
The $\overline{z e r o}$ output assumes a negative level when the content of the counter is 0000 .
The carry/borrow, $\overline{\text { equal, and } \overline{z e r o}}$ outputs will drive a single TTL load over the full range of supply voltage and ambient temperature; for a logic zero, these outputs will sink 2mA @ 0.4 V (on resistance 200 ohms), and for a logic one, the
outputs source $>60 \mu \mathrm{~A}$.
The digit and segment drivers provide a decoded 7 segment display system, capable of directly driving common anode LED displays at typical peak currents of $40 \mathrm{~mA} / \mathrm{seg}$. This corresponds to average currents of $10 \mathrm{~mA} / \mathrm{seg}$ at a $25 \%$ multiplex duty cycle. For the common cathode versions, peak segment currents are 12.5 mA , corresponding to average segment currents of 3.1 mA . The display pin controls the display output using three level logic. The pin is selfbiased to a voltage approximately $1 / 2\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$; this corresponds to normal operation. When this pin is connected to $\mathrm{V}^{+}$, the segments are inhibited, and when connected to $\mathrm{V}^{-}$, the leading zero blanking feature is inhibited. For normal operation (display on with leading zero blanking) the pin may be left open. The display may be controlled with a 3 position SPDT switch; see fig. 1.

The BCD I/O port provides a means of transferring data to and from the device. The ICM7217 versions multiplex data into the counter, or register via thumbwheel switches, depending on inputs to the load counter or load register pins; in the ICM7227 versions, input/output control and timing must be provided externally. When functioning as outputs, the BCD I/O pins will drive one standard TTL load.
The onboard multiplex scan oscillator has a nominal freerunning frequency of 10 kHz . This may be reduced by the addition of a single capacitor between the Scan pin and the positive supply, or the oscillator may be directly overdriven to about 20 kHz . Capacitor values and corresponding nominal oscillator frequencies, digit repetition rates, and loading times (for ICM7217 versions) are shown in Table 1 below.
The internal oscillator output has a duty cycle of approximately 25:1, providing a short pulse occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse width is used to delay the digit driver outputs, thereby providing inter-digit blanking which prevents ghosting. The digits are scanned from MSD (D4) to LSD (D1). See Fig. 3 for the display digit multiplex timing.

Table 1

Scan   Capacitor	Nominal   Oscillator   Frequency	Digit   Repetition   Date	Scan Cycle   Time
None	10 kHz	2.5 kHz	$400 \mu \mathrm{~s}$
20 pF	5 kHz	1.2 kHz	$800 \mu \mathrm{~s}$
90 pF	1 kHz	250 Hz	4 ms

## CONTROL OF ICM7217

The counter is incremented by the rising edge of the count input signal when U/D is high. It is decremented when U/D is low. A Schmitt trigger on the count input provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments.
The $\overline{S T}$ pin controls the internal latches and consequently the signals appearing at the 7 segment and BCD outputs. Bringing the store pin to $\mathrm{V}^{-}$transfers the contents of the counter into the latches.
The counter is asynchronously reset to 0000 by bringing the $\overline{\text { RST }}$ pin to $\mathrm{V}^{-}$. The count input is inhibited during reset and load counter operations. The $\overline{S T}, \overline{R S T}$ and Up/ $\overline{\text { Down }}$ pins are provided with pullup resistors of approximately $75 \mathrm{k} \Omega$.
The BCD I/O pins, the load counter (LC), and load register (LR) pins combine to provide presetting and compare functions. LC and LR are three-level inputs, being selfbiased at approximately $1 / 2\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)$for normal operation. With both LC and LR open, the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD
to LSD by the display multiplex. In this mode of operation, the BCD pins will drive one TTL load. When either or both of the LC or LR pins is connected to $\mathrm{V}^{+}$, the TTL driver devices are turned off and the BCD pins become high-impedance inputs. When LC is connected to $\mathrm{V}^{+}$, the count input is inhibited and the levels at the BCD pins are multiplexed into the counter. When LR is connected to $\mathrm{V}^{+^{\prime}}$, the levels at the $B C D$ pins are multiplexed into the register without disturbing the counter. When both are connected to $\mathrm{V}^{+}$, the count is inhibited and both register and counter are presettable. When LR is connected to $\mathrm{V}^{-}$, the oscillator is inhibited, the BCD I/O pins go to the high impedance state, and the segment and digit drivers are turned off. This allows the display to be used for other purposes and minimizes power consumption. In this display off condition, the circuit will continue to count, and the carry/borrow, equal, zero, up/ down, reset and store functions operate as normal. When LC is connected to $\mathrm{V}^{-}$, the BCD I/O pins are forced to the high impedance state without disturbing the counter or register. See "Control Input Definitions" for a cataloging of the pins that function as three-state self-biased inputs and their respective operations.
Note that the ICM7217 and 7217B have been designed to drive common anode displays. The BCD inputs are active high, as are the BCD outputs.
The ICM7217A and 7217C are used to drive common cathode displays, and the BCD inputs are active low. BCD outputs are active high.
The 7.227 series has been designed to permit microprocessor control of the inputs. $B C D$ inputs and outputs are active high.

## NOTES ON THUMBWHEEL SWITCHES \& MULTIPLEXING

The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000.
Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits. See fig. 4.
In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops.
During load counter and load register operations, the multiplex oscillator is disconnected from the scan input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven; however the internal oscillator output will be of the same duty cycle and phase as the overdriving signal, and the digits are blanked during the time the internal oscillator output is at a positive level. To insure proper leading zero blanking, the blanking time should not be less than about $2 \mu \mathrm{~s}$, and by varying the duty cycle, the display brightness may be altered. Overdriving the oscillator at less than 200 Hz may cause display flickering. See fig. 6 for brightness control circuits.
These circuits are variable-duty-cycle oscillators suitable for overdriving the multiplex oscillator at the Scan input of an ICM7217. The inverters should be CMOS CD4000 series, and the diodes may be any inexpensive device such as IN914.


Figure 6: Brightness Circuits

## OUTPUT AND INPUT RESTRICTIONS

The carry/borrow output is not valid during load counter and reset operations.
The equal output is not valid during load counter or load register operations.
The $\overline{z e r o}$ output is not valid during a load counter operation. The reset input may be susceptible to noise if its input rise time (coming out of reset) is less than about $500 \mu \mathrm{~s}$. This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any capacitance to the reset input can cause trouble. A simple circuit which provides a reliable power-up reset and a fast rise time on the reset input is shown below.


## CONTROL OF 7227 VERSIONS

In the IM7227 versions, the Store, Up/ $\overline{\text { Down, SC1 and SC2 }}$ (select code bits 1 and 2) pins form a four-bit control word input. A negative-going pulse on the CWS (control word strobe) pin writes the data on these pins into four internal control latches, and resets the multiplex counter in preparation for sequencing a data transfer operation. The select code 00 is reserved for changing the state of the Store and/or Up/Down latches without initiating a data transfer. Writing a one into the Store latch sets the latch and causes the data in the counter to be transferred into the output latches, while writing a zero resets the latches causing them to retain data and not be updated. Similarly, writing a one into the

Up/Down latch causes the counter to count up and writing a zero causes the counter to count down. The state of the Store and-Up/ $\overline{\text { Down }}$ latches may also be changed with a nonzero select code.
Writing a nonzero select code initiates a data transfer operation. Writing select code of 01 (SC1, SC2) indicates that the data in the output latches will be active and enables the BCD I/O port to output the data. Writing a select code of 11 indicates that the register will be preset, and a 10 indicates that the counter will be preset.
When a nonzero select code is read, the clock of the fourstate multiplex counter is switched to the $\overline{\mathrm{DT}}$ (data transfer) pin. Negative-going pulses at this pin then sequence a digit-by-digit data transfer, either outputting data or presetting the counter or register as determined by the select code. The output drivers of the BCD I/O port will be enabled only while DT is low during a data transfer initiated with a 01 select code.
The sequence of digits will be D4-D3-D2-D1, i.e. when outputting, the data from D4 will be valid during the first $\overline{D T}$ pulse, then D3 will be valid during the second pulse, etc. When presetting, the data for $D 4$ must be valid at the positivegoing transition (trailing edge) of the first $\overline{\mathrm{DT}}$ pulse, the data for D3 must be valid during the second $\overline{\mathrm{DT}}$ pulse, etc.
At the end of a data transfer operation, on the positive going transition of the fourth $\overline{\mathrm{DT}}$ pulse, the SC1 and SC2 control latches will automatically reset, terminating the data transfer and reconnecting the multiplex counter clock to the oscillator. In the ICM7227 versions, the multiplex oscillator is always free-running, except during a data transfer operation when it is disabled.
Fig. 5 shows the timing of data transfers initiated with a 11 select code (writing into the register) and a 01 select code (reading out of the output latches). Typical times during which data must be valid at the control word and BCD I/O ports are indicated in Table 2.

Table 2

SYMBOL	DEFINITION	TIME, NS	SYMBOL	DEFINITION	TIME, NS
tcws.	CONTROL WORD STROBE WIDTH	200	${ }_{\text {tcdh }}$	$\begin{aligned} & \text { CONTROL } \\ & \text { DATA HOLD } \end{aligned}$	100
tics	INTERNAL CONTROL SETUP	500	tids	$\begin{array}{\|l} \hline \text { INPUT } \\ \text { DATA } \\ \text { SETUP } \\ \hline \end{array}$	100
$t \overline{d t}$	DATA TRANSFER PULSE WIDTH	200	tidh	$\begin{aligned} & \text { INPUT } \\ & \text { DATA HOLD } \\ & \hline \end{aligned}$	100
			toda	OUTPUT DATA ACCESS	100
$\mathrm{t}_{\text {cds }}$	CONTROL DATA SETUP	100	todh	$\begin{aligned} & \text { OUTPUT } \\ & \text { DATA } \\ & \text { HOLD } \end{aligned}$	100

## APPLICATIONS

## 1. FIXED DECIMAL POINT

In the common anode versions, a fixed decimal point may be implemented by connecting the D.P. segment lead from the appropriate digit (with separate digit displays) through a 39, series resistor to $\mathrm{V}^{-}$. With common cathode devices, the D.P. segment lead should be connected through a $75 \Omega$ series resistor to $\mathrm{V}^{+}$

To force the device to display leading zeroes after a fixed decimal point, use a bipolar transistor and base resistor in a configuration like that of Fig. 8 with the resistor connected to the digit output driving the D.P. for left hand D.P. displays, and to the next least significant digit output for right hand D.P. display. For common cathode devices use a PNP and NPN transistor as shown below:


## 2. UNIT COUNTER WITH BCD OUTPUT (Figure 7)

The simplest application of the ICM7217 is a 4 digit unit counter. All that is required is an ICM7217, a power supply and a 4 digit display. Add a momentary switch for reset, an SPDT center-off switch to blank the display or view leading zeroes, and one more SPDT switch for up/down control. Using an ICM7217A and a common-cathode calculator-type display, results in the least expensive digital counter/display system available.


Figure 7: Unit Counter

## 3. PRECISION ELAPSED TIME/COUNTDOWN TIMER (Figure 8)

This circuit uses an ICM7213 precision one minute/one second timebase generator and a 4.1943 MHz crystal oscillator and divider for generating pulses counted by an ICM7217B. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare functions. For instance, to make a 24-hour clock with BCD output the register can be preset with 2400 and the Equal output used to reset the counter. Note the 10k resistor connected between the LC terminal and $\mathrm{V}^{-}$. This resistor pulls the LC input low when not loading, thereby inhibiting the BCD output drivers. This resistor should be eliminated and SW4 replaced with an SPDT center-off switch if the BCD outputs are to be used. This technique may be used on any 3-level input. The 100 k pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213. For a less expensive (and less accurate) timebase, a 555 timer may be used in a configuration like that shown in Fig. 12 to generate a 1 Hz reference.


Figure 8: Precision Timer

## 4. 8-DIGIT UP/DOWN COUNTER (Figure 9)

This circuit shows how to cascade counters and retain correct leading zero blanking. The NAND gate detects whether a digit is active since one of the two segments $\bar{a}$ or $\bar{b}$ is active on any unblanked number. The flip flop is clocked by the least significant digit of the high order counter, and if this digit is not blanked, the Q output of the flip flop goes high
and turns on the NPN transistor, thereby inhibiting leading zero blanking on the low order counter.
It is possible to use separate thumbwheel switches for presetting, but as the devices load data with the oscillator free-running, the multiplexing of the two devices is difficult to synchronize. This presents no problems with the ICM7227 devices, since the two devices are operated as peripherals to a processor.


Figure 9: 8 Digit Up/Down Counter

## 5. TAPE RECORDER POSITION INDICATOR/ CONTROLLER (Figure 10)

This circuit shows an application which uses the up/down counting feature of the ICM7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position. For example, an ICM7227 as a peripheral to a processor can monitor the position of a lathe bed or digitizing head, transfer the data to the processor, drive interrupts to the processor using the equal or $\overline{\text { zero outputs, }}$ and serve as a numerical display for the processor.
In the tape recorder application, the preset register, $\overline{\text { equal }}$ and $\overline{z e r o}$ outputs are used to control the recorder. To make the recorder stop at a particular point on the tape, the
register can be set with the stop point and the equal output used to stop the recorder either on fast forward, play or rewind.
To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the tape, a few feet from the end of the leader, allows the zero output to be used to stop the recorder on rewind, leaving the leader on the reel.
The $1 \mathrm{M} \Omega$ resistor and $.0047 \mu \mathrm{~F}$ capacitor on the count input provide a time constant of about 5 ms to debounce the reel switch. The Schmitt trigger on the count input of the ICM7217 squares up the signal before applying it to the counter. This technique may be used to debounce switchclosure inputs in other applications.


Figure 10: Recorder Indicator

## 6. PRECISION FREQUENCY COUNTER/ TACHOMETER (Figure 11)

This circuit is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the store and reset signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7027A connected to $\mathrm{V}^{+}$, the gating time will be 0.1 second; this will display tens of hertz as the least significant digit. For shorter gating times, an ICM7207 may be used (with
a 6.5536 MHz crystal), giving a 0.01 second gating with Pin 11 connected to $\mathrm{V}^{+}$, and a 0.1 second gating with Pin 11 open. To implement a four digit tachometer, the ICM7207A with one second gating should be used. To get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60 . This can be done electronically using a phase-locked loop, or mechanically by using a disc rotating with the object with the appropriate number of holes drilled around its edge to interrupt the light from an LED to a photo-dector. For faster updating, use 0.1 second gating, and multiply the rotational frequency by 600.


Figure 11: Precision Frequency Counter

## 7. INEXPENSIVE FREQUENCY COUNTER/ TACHOMETER (Figure 12)

This circuit uses an inexpensive 556 dual timer rather than an ICM7027A to generate the gating, store and reset signals. To provide the gating signal, one timer is configured as an astable multivibrator, using $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$ and C to provide an output that is positive for approximately 1 second and negative for approximately $300-500 \mu \mathrm{~S}$. The gating positive time is given by $G_{L}=0.693\left(R_{A}+R_{B}\right) C$ while the gating low time is $\mathrm{G}_{\mathrm{L}}=0.693 \mathrm{R}_{B} C$. The system is calibrated by using a $5 \mathrm{M} \Omega$ potentiometer for $\mathrm{R}_{\mathrm{A}}$ as a "coarse" control and a 1 k
potentiometer for RB as a "fine" control. The other timer in the 556 is configured as a one-shot triggered by the negativegoing edge of the gating signal. This one-shot output is inverted to serve as the store pulse and to hold reset high. When the one-shot times out and $\overline{\text { store }}$ goes high, $\overline{\text { reset }}$ goes low, resetting the counter for the next measurement. The one-shot pulse width will be approximately $50 \mu \mathrm{~s}$ with the component values shown. When "fine" trimming the gating signal with $R_{B}$, care should be taken to keep the gating low time $\left(=0.693 \mathrm{R}_{\mathrm{B}} \mathrm{C}\right)$ at least twice as long as the one-shot pulse width.


Figure 12: Inexpensive Frequency Counter

## 8. INEXPENSIVE CAPACITANCE METER (Figure 13)

This circuit uses two 555 timers (or one 556) to generate a gated count to the ICM7217 dependent on the value of an arbitrary capacitor. The clock timer operates as a fixed oscillator whose output period is determined by $\mathrm{R}_{1}, \mathrm{R}_{2}$ and C (which is switched with the range). The relation is $\mathrm{T}_{\mathrm{CL}}=0.693$ ( $R_{1}+2 R_{2}$ ) C. The gating timer also operates as an oscillator, but its output high time (and period) is determined by the value of the measured capacitor in combination with $\mathrm{R}_{3}$ and $\mathrm{R}_{4}$ (also switched with range). The output high time of this timer is given by $\mathrm{GH}_{H}=0.693\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \mathrm{Cm}$. The number of clock pulses during one gating time is thus given by

$$
N=\frac{\left(R_{3}+R_{4}\right) C m}{\left(R_{1}+2 R_{2}\right) C}
$$

With the values shown, this number is ten times the number to be displayed when the circuit is calibrated. This allows the use of a dummy divide by 10 (the CD4017) to eliminate jitter in the least significant digit of the display. The R3 resistors should be precision potentiometers for greatest accuracy, and the circuit must be calibrated in each range. Range A reads $1-9999 \mathrm{pF}$, Range B reads $1-9999 \mathrm{nF}$, and Range C reads $1-9999 \mu \mathrm{~F}$.
Note that in comparison to Fig. 12, the $\overline{\text { store }}$ and $\overline{\text { reset }}$ signals are generated by CD4000 series one-shots. The operation of the two circuits is similar.


Figure 13: Capacitance Meter

## 9. LCD DISPLAY INTERFACE (Figure 14)

The low-power operation of the ICM7217 makes an LCD interface desirable. The Siliconix CF411 4 digit BCD to LCD display driver easily interfaces to the ICM7217A with one CD4000-series package to provide a total system power consumption of less than 5 mW . The common-cathode devices should be used, since the digit drivers are CMOS, while the common-anode digit drivers are NPN devices and will not provide full logic swing.


Figure 14: LCD Display Interface

## 10. MICROPROCESSOR INTERFACE-ICM7227 <br> (Figure 15)

This circuit shows the hardware necessary to interface the ICM7227 to an Intersil IM6100 CMOS microprocessor. Using an IM6101 Parallel Interface Element (PIE) allows the addition of one or more ICM7227 devices as generalized peripherals to any IM6100 system, using a minimum of external components.

A similar configuration may be used with the MC6800 using the corresponding PIE, while an 8223 can be used to interface 8080 based systems.

The ICM7227 can perform many "accessory" functions that are inefficient or impossible for the processor to perform. For simple systems, the ICM7227 can provide a cost-effective display latch/decoder/driver. By adding a timebase such as an ICM7213, and using an ICM7227C or D, an inexpensive real-time clock/display, directly accessible by the processor, can be implemented:

In the area of "intelligent" instrumentation, the ICM7227 can serve as a high speed (up to 2 MHz ) counter/comparator. This is the element often used for converting time, frequency, and positional and occurence data into digital form. For example, an ICM7207A can be used with two ICM7227's to provide an 8 digit, 2 MHz frequency counter.
Since the ICM7207A gating output has a $50 \%$ duty cycle, there is 1 second for the processor to respond to an interrupt, generated by the negative going edge of this signal while it inhibits the count. The processor can respond to the interrupt using ROM based subroutines, to store the data, reset the counter, and read the data into main memory. To add simultaneous period display, the processor inverts the data and an ICM7218 Universal Display Driver stores and displays it. Capacitance can be measured by counting the frequency of an oscillator, as in the Capacitance Meter circuit, allowing the measurement of fluid levels, proximity detectors, etc.
Future Application Notes and Bulletins will address the ICM7227 more fully, and users are welcome to submit any circuits or unique uses for review and possible publication in application information.


Figure 15: IM6100 Interface

## OPTION MATRIX \& ORDERING INFORMATION

	Order Part Number	Display Option	Count Option Max Count	28-LEAD   Package
Hardwired Control Versions	ICM7217IJI ICM7217AIPI ICM7217BIJI ICM7217C	Common Anode Common Cathode Common Anode Common Cathode	Decade/9999   Decade/9999   Timer/5959   Timer/5959	CERDIP PLASTIC CERDIP PLASTIC
Processor Control Versions	ICM7227IJI ICM7227AIPI ICM7227BIJI ICM7227CIPI	Common Anode Common Cathode Common Anode Common Cathode	Decade/9999   Decade/9999   Timer/5959   Timer/5959	CERDIP PLASTIC CERDÍP. PLASTIC

## PACKAGE DIMENSIONS



4½ Digit Counter/Decoder/Drivers

## FEATURES

- High frequency counting - guaranteed 15 MHz , typically 25 MHz at 5 V
- Low power operation - less than $100 \mu \mathrm{~W}$ quiescent
- Direct $4 \mathbf{1 / 2}$ digit seven-segment display drive ICM7224 for LCD displays, ICM7225 for LED displays
- Store and Reset inputs permit operation as frequency or period counter
- True count inhibit disables first counter stage
- Carry output for cascading four-digit blocks
- Schmitt-trigger on the count input allows operation in noisy environments or with slowly changing inputs
- Leading zero blanking input and output for correct leading zero blanking with cascaded devices
- LCD devices provide complete onboard oscillator and divider chain to generate backplane frequency, or backplane driver may be disabled allowing segments to be slaved to a master backplane signal
- LED devices provide Brightness input which can function digitally as a display enable or with a single potentiometer as a continuous display brightness control
- All inputs fully protected against static discharge no special handling precautions necessary


## DESCRIPTION

The ICM7224 and ICM7225 devices constitute a family of high-performance CMOS $41 / 2$-digit counters, including decoders, 'output latches, display drivers, count inhibit, leading zero blanking, and reset circuitry.
The ICM7224 (19999 maximum count) and ICM7224A (15959 maximum count) provide 29 segment outputs and a backplane driver output, generating the zero dc component signals necessary to drive a conventional $41 / 2$ digit liquid
crystal display. These devices also include a complete RC oscillator and divider chain to generate the backplane frequency, and a backplane driver disable control which allows the segments to be slaved to a master backplane signal.
The ICM7225 (19999 maximum count) and ICM7225A (15959 maximum count) provide 28 segment and 1 half-digit opendrain n-channel transistor outputs, suitable for directly driving common-anode LED displays at greater than 5 mA per segment. These devices provide a brightness input which may be used digitally as a display enable, or with a potentiometer as a continuous display brightness control.
The counter section of all the devices in the ICM7224/ ICM7225 family provides direct static counting from DC to 15 MHz , guaranteed, with a $5 \mathrm{~V} \pm 10 \%$ supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz . The count input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. These devices also provide count inhibit, store and reset circuitry which allows a direct interface with the ICM7207/A devices to implement a low cost, low power frequency counter with a minimum component count.
These devices also incorporate several features intended to simplify cascading four-digit blocks. The carry output allows the counter to be cascaded, while the leading zero blanking input and output allows correct leading zero blanking between four-decade blocks. The backplane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, which is necessary when using an eight or twelve digit, single backplane display. In LED systems, the brightness input to several ICM7225 devices may be ganged to one potentiometer.
All the devices in the ICM7224/ICM7225 family are packaged in a standard 40-pin dual-in-line plastic package.
Table 1, the option matrix and ordering information, shows the four standard devices in the ICM7224/ICM7225 family and their markings, which serve as part numbers for ordering purposes.

## CHIP TOPOGRAPHY



## OPTION MATRIX AND ORDERING INFORMATION TABLE 1

	ORDER PART NUMBER	COUNT OPTION
LCD	ICM7224 IPL	19999
DISPLAY	ICM7224A IPL	15959
LED	ICM7225 IPL	19999
DISPLAY	ICM7225A IPL	15959

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)	0.5 Watt @ $70^{\circ} \mathrm{C}$
Supply Voltage ( $\mathrm{V}^{+}-\mathrm{V}^{-}$)	6.5 Volts
Input Voltage (Any	
Terminal) (Note 2)	$+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

OPERATING CHARACTERISTICS TABLE 2
(All Parameters measured with $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$ unless otherwise indicated)
ICM7224 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating current	lop	Test circuit, Display blank		10	50	$\mu \mathrm{A}$
Operating supply voltage range	$V_{\text {s }}$	$\mathrm{V}^{+}-\mathrm{V}^{-}$	3	5	6	V
Oscillator input current	IOSL	Pin 36		$\pm 2$	$\pm 10$	$\mu \mathrm{A}$
Segment rise/fall time	trfs	Cload $=200 \mathrm{pf}$		0.5		$\mu \mathrm{S}$
Backplane rise/fall time	trfb	$\mathrm{Cload}^{\text {l }}$ 5000pf		1.5		$\mu \mathrm{S}$
Oscillator frequency	fosc	Pin 36 Floating		16		KHz
Backplane frequency	$f \mathrm{fp}$	Pin 36 Floating		125		Hz

ICM7225 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating current display off	IOPQ	Pin 5 (Brightness) at $\mathrm{V}^{-}$   Pins 29, 31-34 at $\mathrm{V}^{+}$		10	50	$\mu \mathrm{~A}$
Operating supply voltage range	$\mathrm{V}_{\mathrm{S}}$	$\mathrm{V}^{+}-\mathrm{V}^{-}$	4	5	6	V
Operating current	IOP	Pin 5 at $\mathrm{V}^{+}$, Display 18888		200		mA
Segment leakage current	ISL	Segment Off		$\pm 0.01$	$\pm 1$	$\mu \mathrm{~A}$
Segment on current	IS	Segment On, Vout $=\mathrm{V}^{-}+3 \mathrm{~V}$	5	8		mA
Half digit on current	IH	Half digit on, Vout $=\mathrm{V}^{-}+3 \mathrm{~V}$	10	16		mA

FAMILY CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Pullup Currents	Ipu	Pins 29, 31, 33, 34   Vout $=V^{+}-3 \mathrm{~V}$		10		$\mu \mathrm{A}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Pins 29, 31, 33, 34	3			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Pins 29, 31, 33, 34			2	V
Count Input Threshold	$\mathrm{V}_{\mathrm{CT}}$		,	2		V
Count Input Hysteresis	V CH			0.5		V
Output High Current	IOH	Carry Pin 28 Leading Zero Out Pin 30 $\text { Vout }=\mathrm{V}^{+}-3 \mathrm{~V}$	350	$500$		$\mu \mathrm{A}$
Output Low Current	IDL	Carry Pin 28   Leading Zero Out Pin 30 $\text { Vout }=V^{-}+3 V$	350	500		$\mu \mathrm{A}$
Count Frequency	fcount	$4.5 \mathrm{~V}>\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)>6 \mathrm{~V}$	0	.	15	MHz
Store, Reset Minimum Pulse Width	ts, tR		3			$\mu \mathrm{S}$

NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.
NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than $\mathrm{V}^{+}$or less than $\mathrm{V}^{-}$may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7224/ICM7225 be turned on first.

TYPICAL CHARACTERISTICS

OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


BACKPLANE FREQUENCY
AS A FUNCTION OF SUPPLY VOLTAGE


LED SEGMENT CURRENT
AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE


BACKPLANE FREQUENCY
AS A FUNCTION OF OSCILLATOR CAPACITOR Cosc


LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE


## CONTROL INPUT DEFINITIONS

In this table, $\mathrm{V}^{+}$and $\mathrm{V}^{-}$are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 2. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	VOLTAGE	FUNCTION
Leading Zero Input	29	$\mathrm{V}^{+}$or Floating   $\mathrm{V}^{-}$	Leading Zero Blanking Enabled   Leading Zeroes Displayed
Count Inhibit	31	$\mathrm{V}^{+}$or Floating   $\mathrm{V}^{-}$	Counter Enabled   Counter Disabled
Reset	33	$\mathrm{V}^{+}$or Floating   $\mathrm{V}^{-}$	Inactive   Counter Reset to 0000
Store	34	$\mathrm{V}^{+}$or Floating   $\mathrm{V}^{-}$	Output Latches not Updated   Output Latches Updated

## BLOCK DIAGRAMS

ICM7224 (A)


ICM7225 (A)


CONNECTION DIAGRAMS


TEST CIRCUIT



## SEGMENT ASSIGNMENT



DISPLAY WAVEFORMS


## DESCRIPTION OF OPERATION

## LCD Devices

The LCD devices in the family (ICM7224 and ICM7224A) provide outputs suitable for driving conventional four digit by seven segment LCD displays, including 29 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the $n$-and $p$-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from differing rise and fall times, and ensures maximum display life.
The backplane output devices can be disabled by connecting the oscillator input (pin 36) to the negative supply. This allows the 29 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200 pF (comparable to one additional segment). The limitation on how many devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to
minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding $5 \mu \mathrm{~s}$ (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7224 devices be slaved to it.
This external signal should be capable of driving very large capacitive loads with short ( $1-2 \mu \mathrm{~s}$ ) rise and fall times. The maximum frequency for a backplane signal should be about 125 Hz , although this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 16 KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125 Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the oscillator terminal (pin 36); see the plot of oscillator/backplane frequency vs. external capacitance for detailed information. The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This
can be done by driving the oscillator input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

## LED Devices

The LED devices in the family (ICM7225, ICM7225A) provide outputs suitable for directly driving four digit by seven segment common-anode LED displays, including 28 individual segment drivers and one half-digit driver, each consisting of a low-leakage current-controlled open-drain nchannel transistor.
The drain current of these transistors can be controlled by varying the voltage at the Brightness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value $(100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega)$ to minimize I2R power consumption, which can be significant when the display is off.
The brightness input may also be operated digitally as a display enable; when at $\mathrm{V}^{+}$, the display is fully on, and at $\mathrm{V}^{-}$ fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the Brightness input.
Note that the LED devices have two connections for $\mathrm{V}^{-}$; both of these pins should be connected to the negative supply. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.
When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}$ $\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $35^{\circ} \mathrm{C}$ ). Power dissipation for the device is given by:

$$
P=\left[\left(V^{+}-V^{-}\right)-V_{F L E D}\right] \times I_{S} \times N_{S}
$$

where $V_{F L E D}$ is the LED forward voltage drop, $I_{s}$ is segment current, and $N_{s}$ is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the Brightness input to keep power dissipation within the limits described-above.


Figure 3: Brightness Control

## COUNTER SECTION

The devices in the ICM7224/ICM7225 family implement a four digit ripple carry resetable counter, including a Schmitt trigger on the count input and a carry output. Also included is an extra D-type flip-flop, clocked by the carry signal and outputting to the half-digit segment driver, which can be used as either a true half-digit or as an overflow indicator. The counter will index on the negative-going edge of the signal at the count input, and the carry output will provide a
negative-going edge following the count which indexes the counter from 9999 (or 5959) to 10000 . Once the half-digit flipflop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the Reset terminal, pin 33. However, the four decades will continue to count in a normal fashion after the half digit is set, and subsequent carry outputs will not be affected.
A negative level at the Count Inhibit input disables the first divide-by-two in the counter chain without affecting its clock. This provides a true count inhibit which is not sensitive to the state of the count input, preventing false counts which can result from using a normal logic gate forcing the state of the clock to prevent counting.
Each decade of counter drives directly into a four-to-seven decoder which derives the seven segment output code. Each decoder output corresponds to one segment terminal of the device. The output data is latched at the driver; when the Store pin is at a negative level, these latches are updated, and when the Store pin is left open or at a positive level, the latches hold their contents.
The decoders also include zero detect and blanking logic to provide leading zero blanking. When the leading zero input is floating or at a positive level, this circuitry is enabled and the device will blank leading zeroes. When the leading zero input is at a negative level, or the half digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The leading zero output is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked, which can only occur when the leading zero input is at a positive level and the half digit is not set.
For example in an eight-decade counter with overflow using two ICM7224/ICM7225 devices, the leading zero output of the high order digit device would be connected to the leading zero input of the low order digit device. This will assure correct leading zero blanking for all eight digits.
The Store, Reset, Count Inhibit, and Leading Zero inputs are provided with pullup devices, so that they may be left open when a positive level is desired. The Carry and Leading Zero outputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of ICM7224 or ICM7225 devices in four digit blocks.

## MAXIMUM COUNT FREQUENCY (TYPICAL)

 AS A FUNCTION OF SUPPLY VOLTAGE


## APPLICATIONS

## 1. Two-Hour Precision Timer


2. Eight-Digit Precision Frequency Counter

3. Unit Counter


## PACKAGE DIMENSIONS

40 Pin Plastic Dual-In-Line Package


## FEATURES

- High frequency operation - 10 MHz guaranteed
- Easy to use oscillator - requires only a quartz crystal and two capacitors
- Bipolar, MOS and CMOS compatibility
- High output drive capability - $5 \times$ TTL fanout with 10 nS rise and fall times
- Low power - 50 mW at 10 MHz
- Choice of two output frequencies - osc. plus osc. $\div 8$ frequencies
- Disable control for both outputs
- Wide industrial temperature range $-\mathbf{- 2 0} \mathbf{C}$ to
, $+70^{\circ} \mathrm{C}$
- All inputs fully protected - circuits may be handled without any special precautions


## GENERAL DESCRIPTION

The Intersil ICM7209 is a versatile CMOS clock generator capable of driving many $5 \cdot$ volt systems, having a variety of input requirements. When used to drive a fanout of 5 TTL gates the typical rise and fall times are 10 nS .
The ICM7209 consists of an oscillator, a buffered output and a second buffered output having an output frequency oneeighth that of the oscillator. The guaranteed maximum oscillator frequency is 10 MHz . Connecting the DISABLE terminal to the negative supply forces the $\div 8$ output into the ' 0 ' state and the output 1 into the ' 1 ' state.

## SCHEMATIC DIAGRAM


*ZENER VOLTAGE IS TYPICALLY 6.3 VOLTS

## ORDERING INFORMATION



Order Devices by Following Part Number - ICM7209 I PA Order Dice by Following Part Number - ICM7209 D

## CONNECTION DIAGRAM



Pin 1 is designated by either a dot or a notch.

ABSOLUTE MAXIMUM RATINGS

Power Dissipation ( $25^{\circ} \mathrm{C}$ )	mW
Supply Voltage	6 volts
Output Voltages	Equal to or less than supplies
Input Voltages	Equal to or less than supplies
Storage Temp.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temp. Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
NOTE: Absolute maximum r damage or change the device.	ed may permanently

TYPICAL OPERATING CHARACTERISTICS
TEST CONDITIONS: $V^{+}-V^{-}=5 \mathrm{~V} \pm 10 \%$, test circuit, $\mathrm{f}_{\mathrm{Os}}=10 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP.	MAX	UNITS
Supply Current	I+	Note 1   No Load		11	20	mA
Disable Input Capacitance	$\mathrm{C}_{\mathrm{D}}$				5	pf
Disable Input Leakage	ID	Either ' 1 ' or ' 0 ' state			$\pm 10$	$\mu \mathrm{A}$
Output Low State	VOL	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads			0.4	V
Output High State	VOH	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads	4.0	4.9		
Output Rise Time (Note 3)	$\mathrm{tr}_{r}$	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads	:	$10$	25	nS
Output Fall Time (Note 3)	$\mathrm{t}_{\mathrm{f}}$	Either OUT 1 or OUT $\div 8$ simulated $5 \times$ TTL loads		10	25	
Minimum OSC Frequency for $\div 8$ Output	$\mathrm{f}_{\text {min }}$	Note 2	2			MHz
Output $\div 8$ duty cycle	D cycle	Any operating frequency   Low state : High state		7:9		

NOTE 1: The power dissipation is a function of the oscillator frequency (1st ORDER EFFECT see curve) but is also effected to a small extent by the oscillator tank components.
NOTE 2: The $\div 8$ circuitry uses a dynamic scheme. As with any dynamic system whereby information or data is stored on very small nodal capacitances instead of latches (static systems) there is a lower cutoff frequency of operation. Dynamic dividers are used in the ICM7209 to significantly improve high frequency performance and to decrease power consumption.
NOTE 3: Rise and fall times are defined between the output levels of 0.5 and 2.4 volts.

## TEST CIRCUIT



## SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY

## TYPICAL OUT 1 RISE AND F.ALL TIMES

## SUPPLY VOLTAGE RANGE FOR CORRECT OPERATION OF $\therefore 8$ COUNTER AS A FUNCTION OF OSCILLATOR FREQUENCY





Rise and fall times of OUT $\div 8$ are similar to those of OUT 1 .

## APPLICATION NOTES

## OSCILLATOR CONSIDERATIONS

The oscillator consists of a C-MOS inverter having a nonlinear resistor connected between the oscillator input and output to provide D.C. biasing. Using commercially obtainable quartz crystals the oscillator will operate from low frequencies $(10 \mathrm{KHz})$ to approximately 20 MHz . However although the oscillator may operate to 20 MHz the buffer to the divide by 8 and the OUT 1 is frequency limited to slightly in excess of 10 MHz .

The oscillator circuit consumes about $500 \mu \mathrm{~A}$ of current using a 10 MHz crystal with a 5 volt supply, and is designed to operate with a high impedance tank circuit. It is therefore necessary that the quartz crystal be specified with a load capacitance (CL) of 10 pF instead of the standard 30pf. To maximize the stability of the oscillator as a function of supply voltage and temperature the motional capacitance of the crystal should be low ( 5 mpf or less). Using a fixed oscillator input capacitor of 18pf and at the oscillator output a variable capacitor of nominal value of 18 pf and at the oscillator output a variable capacitor of nominal value of 18 pf will result in oscillator stabilities of typicaly 1 ppm per one volt change in supply voltage.

## THE $\div 8$ OUTPUT

A dynamic divider is used to divide the oscillator frequency by 8 for the $\div 8$ output. Dynamic dividers use small nodal capacitances to store voltage levels instead of latches which are used in static dividers. The dynamic divider has advantages in high speed operation and low power but suffers from limited low frequency operation. This results in a window of operation for any oscillator frequency (see graph under TYPICAL OPERATING CHARACTERISTICS).

## OUTPUT DRIVERS

The output drivers consists of C-MOS inverters having active pullups and pulldowns. Thus the outputs can be used to drive directly TTL gates, other C-MOS gates operating with a 5 volt supply, or TTL compatible MOS gates.
The guaranteed fanout is 5 TTL loads although typically fanout capability is at least 10 TTL loads with slightly increased output rise and fall times.

## COMMENTS ON THE DEVICE POWER CONSUMPTION

At low frequencies the principal component of the power consumption is due to the oscillator. At high oscillator frequencies the major portion of the power is consumed by the output drivers, thus by disabling the outputs (activating the DISABLE INPUT) the device power consumption can be dramatically reduced.

## CHIP TOPOGRAPHY



Chip may be die attached using conventional
enteric or epoxy procedures. Wire bonding may be either Aluminum ultrasonic or Gold compression.

## PACKAGE DIMENSIONS

## 8 LEAD PLASTIC DIP



NOTE: Board drilling dimensions will equal standard practices for 020 diameter lead.

# One Second/One Minute Precision Clock And Reference Generator 

## FEATURES

- Guaranteed 2 volts operation
- Very low current consumption: Typ. $100 \mu \mathrm{~A} @ 3 \mathrm{~V}$
- All outputs TTL compatible
- On chip oscillator feedback resistor
- Oscillator requires only 3 external components: fixed capacitor, trim capacitor, and a quartz crystal
- Output inhibit function
- 4 outputs: one pulse/sec, one pulse/min, 16 Hz and composite $1024+16+2 \mathrm{~Hz}$ outputs
- Test speed-up: provides other frequency outputs
- Input static protection - no special handling required


## GENERAL DESCRIPTION

The ICM7213 is a fully integrated micropower oscillator and frequency divider with four buffered outputs suitable for interfacing with most logic families. The power supply may be either a two battery stack (Ni-cad, alkaline, etc.) or a regular power supply greater than 2 volts. Depending on the states of the 'TEST POINT' and 'INHIBIT' inputs and using a $4.194,304 \mathrm{MHz}$ quartz crystal oscillator a variety of output frequencies (including composite frequencies) may be obtained including $2048 \mathrm{~Hz}, 1024 \mathrm{~Hz}, 34.133 \mathrm{~Hz}, 16 \mathrm{~Hz}, 1 \mathrm{~Hz}$ and $1 / 60 \mathrm{~Hz}$.
The ICM7213 utilizes a very high speed low power metal gate C-MOS technology which results in there being 6.4 volt zeners (typical value) between the drains and sources of each transistor and also across the supply terminals. Consequently, the ICM7213 is limited to 6 volt maximum supply voltage, although a simple dropping network can be used to extend the supply voltage range well above 6 volts (see Figure 2). Applications for the ICM7213 include precision timers, frequency references and frequency counter timebases.
The ICM7213 may be obtained in a 14 lead plastic dual in line or as dice.

## CONNECTION DIAGRAM

ORDERING INFORMATION


Order Devices by Following Part Number ICM7213 1 PD
Order Dice by Following Part Number ICM7213D

## CHIP TOPOGRAPHY



Chip may be die attached using conventional eutetic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.

ABSOLUTE MAXIMUM RATINGS

Output Current (Any output) ...................................................... 20mA
All Input and Oscillator Voltages (Note 1) $\ldots . . . \ldots . .$. ..... Equal to but not greater (Terminals $1,3,5,6,11$ ) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.................................
All Output Voltages (Note 1) $\ldots \ldots$........ Not greater than +6 volts with respect to, (Terminals 2, 12, 13, 14) nor less than, the negative supply
(terminal 4.)
Operating Temperature Range . ......................................... $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range ............................................ . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation (Note 2) .............................................................. 200 mW
Absolute maximum ratings define parameter limits that if exceeded may permanently damage or change the device.

## OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}-\mathrm{V}^{-}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{osc}}=4.194304 \mathrm{MHz}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	$1^{+}$			100	140	$\mu \mathrm{A}$
Guaranteed Operating Supply Voltage Range	V SUPP	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	2		4	Volts
Typical Operating Supply Voltage Range	VSupp	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	1.4		5	
Output Leakage Current	IL	Any output, VOUT $=6$ Volts, (Note 3)			10	$\mu \mathrm{A}$
Output Sat. Resistance	Rout	Any output, $\mathrm{IL}_{\mathrm{L}}=2.5 \mathrm{~mA}$		120	200	Ohms
Inhibit Input Current	$I_{\text {R }}$	Inhibit terminal connected to VDD		10	40	$\mu \mathrm{A}$
Test Point Input Current	ITP.	Test point terminal connected to $\mathrm{V}^{+}$		10	40	
Width Input Current	IW	Width terminal connected to $V_{D D}$	.	10	40	
Oscillator gm	gm	$\mathrm{V}^{+}-\mathrm{V}^{-}=2 \mathrm{~V}$	100			umho
Typical Oscillator Frequency Range	fosc	(NOTE 4)	1	:	10	MHz
Oscillator Stability	fstab	$2 \mathrm{~V}<\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)<4 \mathrm{~V}$, (NOTE 5)		1.0		ppm
Oscillator Start Time	$\mathrm{t}_{\text {s }}$	$\mathrm{V}^{+}-\mathrm{V}^{-}=3.0$ volts		0.1		sec
		$\mathrm{V}^{+}-\mathrm{V}^{-}=2.0$ volts		0.2		

NOTE 1: The ICM7213 and most C-MOS devices have a destructive latchup mode if an input or output voltage is applied in excess of those defined and there is no supply current limiting.
NOTE 2: Derate linearly power rating of 200 mW at $25^{\circ}$ to 50 mW at $70^{\circ} \mathrm{C}$.
NOTE 3: Leakage current in the output transistors is due to the inherent characteristics of an MOS transistor operating below threshold voltage in the expoential region of their characteristic. See "Ion-implanted C-MOS Transistors in Low Voltage Circuits", Swanson and Meindl, IEEE Journal of Solid State Circuits, April 1972.
NOTE 4: The ICM7213 uses dynamic dividers for high frequency division. As with any dynamic system, information is stored on very small nodal capacitances instead of latches (static system), therefore, there is a lower frequency of operation. Dynamic dividers are used to improve the high frequency performance while at the same time significantly decreasing power consumption. At low supply voltages, operation at less than 1 MHz is possible. See application notes.
NOTE 5: The actual oscillator stability obtained will depend on the parameters of the quartz crystal and the value of the tuning capacitors. The value given therefore relates only to conditions given in the test circuit.
NOTE 6: When TP and RESET are open circuit or connected to VSs, all outputs are $50 \%$ duty cycle except OUT 3 and OUT 4.


OUTPUT DEFINITIONS (NOTE 6)

0

INPUT STATES*			OUT 1	OUT 2	OUT 3	OUT 4
TP	INHIBIT	WIDTH				
L	L	L	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 218 \\ & \hline \end{aligned}$	$\begin{aligned} & 1024+16+2 \mathrm{~Hz} \\ & (\div 212 \div 218 \div 221) \text { composite } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~Hz}, 7.8 \mathrm{mS} \\ & \div 222 \end{aligned}$	$\begin{aligned} & 1 / 60 \mathrm{~Hz}, 1 \mathrm{sec} \\ & \div(226 \times 3 \times 5) \\ & \hline \end{aligned}$
L	L	H	$\begin{gathered} 16 \mathrm{~Hz} \\ \div 218 \end{gathered}$	$\begin{aligned} & 1024+16+2 \mathrm{~Hz} \\ & \left(\div 2^{12 \div} \div 218 \div 2^{21}\right) \text { composite } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~Hz}, 7.8 \mathrm{mS} \\ & \div 224 \end{aligned}$	$1 / 60 \mathrm{~Hz}, 125 \mathrm{mS}$
L	H	L	$\begin{aligned} & 16 \mathrm{~Hz} \\ & \div 218 \end{aligned}$	$\overline{1024+16} \mathrm{~Hz}$   $(\div 212 \div 218)$ composite	OFF	OFF
L	H	H	$\begin{gathered} 16 \mathrm{~Hz} \\ \div 218 \end{gathered}$	$\begin{aligned} & 1024+16 \mathrm{~Hz} \\ & (\div 212 \div 218) \text { composite } \\ & \hline \end{aligned}$	OFF	SEE WAVEFORMS
H.	L	L	ON	$\begin{aligned} & \hline 4096+1024 \mathrm{~Hz} \\ & (\div 210 \div 212) \text { composite } \end{aligned}$	$\begin{aligned} & \hline 2048 \mathrm{~Hz} \\ & \div 211 \\ & \hline \end{aligned}$	$\begin{aligned} & 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\ & \div 213 \times 5 \times 3) \end{aligned}$
H	L	H	ON	$\begin{aligned} & \hline 4096+1024 \mathrm{~Hz} \\ & (\div 210 \div 212) \text { composite } \end{aligned}$	$\begin{aligned} & 2048 \mathrm{~Hz} \\ & \div 211 \end{aligned}$	$\begin{aligned} & 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\ & \div(213 \times 5 \times 3) \end{aligned}$
H	H	L	ON	$\begin{aligned} & 1024 \mathrm{~Hz} \\ & \div 212 \end{aligned}$	ON	ON
H	H	H	ON	$\begin{aligned} & 1024 \mathrm{~Hz} \\ & \div 212 \\ & \hline \end{aligned}$	ON	ON

* L denotes input open circuit or connected to VSs $H$ denotes input connected to VDD


## SIMPLIFIED BLOCK SCHEMATIC



## OUTPUT WAVEFORMS



EFFECT OF INHIBIT INPUT (T.P. connected to Vss or open circuit)


All time scales are arbitrary, and in the case of OUT 3 only the pulses coinciding with the negative edge of OUT 4 are
shown. Where time intervals are relevant they are clearly shown.

## SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE



SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

## OSCILLATOR STABILITY

 AS A FUNCTION OF DEVICE TEMPERATURE

OUTPUT CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE


OUTPUT SATURATION VOLTAGE (ANY OUTPUT)

OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

-

## DEVICE DESCRIPTION

The oscillator consists of a C-MOS inverter with a non-linear high value resistor connected between the OSC.IN and OSC OUT terminals. The initial divider chain (29) consists of both dynamic (highest frequency) and static dividers. All other dividers are static.
The input designated TP inhibits the 218 output and takes the 29 output and applies it to the 221 divider, thereby permitting a speedup of the teting of the $\div 60$ section by a factor of 2048 times. This also results in alternative output frequencies (see table).
The WIDTH input may be used to change the pulse width of OUT 4 from 125 mS to 1 sec or, to change the state of OUT 4 from ON to OFF during INHIBIT (if OUT 4 is ON upon application of an inhibit signal).

## APPLICATIONS

## 1. Supply Voltage Considerations

The ICM7213 may be used to provide various precision outputs having frequencies from 2048 Hz to $1 / 60 \mathrm{~Hz}$ using a $4.194,304 \mathrm{~Hz}$ quartz oscillator. Other output frequencies may be obtained using other quartz crystal frequencies. Since the ICM7213 uses dynamic high frequency dividers for the initial frequency division there are limitations on the supply voltage
range depending on the oscillator frequency. If for example a low frequency quartz crystal is selected the supply voltage should be selected in the center of the operating window, or approximately 1.7 volts.


FIGURE 1: Window of Correct Operation

The supply voltage to the ICM7213 may be derived from a high voltage supply by using a simple resistor divider (if power is of no concern), by using a series resistor for minimum current consumption, or by means of a regulator.

## 2. Logic Family Compatibility

Pull up resistors will generally be required to interface with other logic families. These resistors must be connected between the various outputs and a positive power supply with respect to Vss.

## 3. Oscillator Considerations

The oscillator consists of a C-MOS inverter and a feedback resistor whose value is dependent on the voltage at the oscillator input and output terminals and the supply voltage. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt variation are achievable with a nominal supply voltage of 5 volts, and a single voltage dropping resistor. The crystal specifications are shown in the TEST CIRCUIT.
It is recommended that the crystal load capacitance (CL) be no greater than 22 pf for a crystal having a series resistance equal to or less than 75 ohms, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.
If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance $\pm 10 \mathrm{ppm}$, a low series resistance (less than 25 ohms), a low motional capacitance of 5 mpf and a load capacitance of

EXAMPLE:
$\mathrm{f}=4.2 \mathrm{MHz}$
$8 \mathrm{~V} \leqslant \mathrm{~V} \leqslant 12 \mathrm{~V}$ (10 nom.)
$I_{1} \approx 100 \mu \mathrm{~A}$
$1_{2} \approx 1 \mathrm{~mA}$
$\mathrm{R}_{2} \approx 3 \mathrm{~K} \mathrm{OHMS}$
$\mathrm{R}_{1} \approx 6.8 \mathrm{~K}$ OHMS

20pf. The fixed capacitor $\mathrm{CIN}_{\mathrm{N}}$ should be 30 pf and the oscillator tuning capacitor should range between approximately 16 and 60 pf.
Use of a high quality crystal will result in typical stabilities of 0.05 ppm per 0.1 volt change of supply voltage.

## 4. C-MOS Latchup Considerations

A destructive latchup mode is possible if an input or output is forward biased with respect to either the positive or negative supplies. Example: if the oscillator output terminal is taken sufficiently negative with respect to Vss or positive with respect to $V_{D D}$ so that many milliamperes of current are forced to flow into/from this terminal, the device may present an extremely low impedance across its supply terminals $V_{D D}$ and $V_{S S}$ causing very high values of current to be drawn from the supply which can cause device failure.
If the supply current is limited to less than 20 mA maximum the device may return to its normal operating state after an inadvertent input transient. It is, therefore, recommended that a supply series resistor and bypass capacitor be used in the breadboarding stage of a design, where mistakes can be made.


EXAMPLE:
fosc $=4.2 \mathrm{MHz}$
$8 \mathrm{~V} \leqslant \mathrm{~V} \leqslant 12 \mathrm{~V}$ (10V nom)
$\mathrm{l}_{1} \approx 100 \mu \mathrm{~A}$
$\mathrm{R}_{3}=\left(10^{-3}\right)$ К онMS
$\approx 68 \mathrm{~K}$ OHMS

FIGURE 2: Biasing Schemes with High Voltage Supplies

## PACKAGE DIMENSIONS



## FEATURES

- Stable HF oscillator
- Low power dissipation $\leq 5 \mathrm{~mW}$ with 5 volt supply
- Counter chain has outputs at $\div 212$ and $\div 217$ or $\div(217 \times 10)$
- Low impedance output drivers $\leq \mathbf{1 0 0}$ ohms


## DESCRIPTION

The ICM7.207 consists of a high stability oscillator and frequency divider providing 4 control outputs suitable for frequency counter timebases. Specifically, when used as a frequency counter timebase in conjunction with the ICM7208 frequency counter, the four outputs provide the gating signals for the count window, store function, reset function and multiplex frequency reference. Additionally, the duration of the count window may be changed by a factor of 10 to provide a 2 decade range counting system.
The normal operating voltage of the ICM7207 is 5 volts at which the typical dissipation is less than 2 mW using an oscillator frequency of 6.5536 MHz .
The ICM7207 is fabricated using Intersil's standard low voltage metal gate C-MOS process which has been used exclusively for all of Intersil's timing products.
Can be used for:
a) System timebase
b) Oscilloscope calibration generator
c) Marker generator strobe
d) Frequency counter controller

CHIP TOPOGRAPHY


Chip may be die attached using conventional eutectic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.

ORDERING INFORMATION


ORDER DEVICES BY FOLLOWING PART NUMBER ICM 7207 I PD ORDER DICE BY FOLLOWING PART NUMBER ICM 7207D

## CONNECTION DIAGRAM



## PACKAGE DIMENSIONS



## ABSOLUTE MAXIMUM RATINGS

> Supply Voltage 6.0 V
> Input Voltages Equal to or less than supply voltage
> Output Voltages $\ldots \ldots \ldots \ldots \ldots$.............. more positive than Not more positive than +6 V with respect to the negative supply V -
> Output Currents 25 mA
> Power Dissipation @ $25^{\circ} \mathrm{C}$ Note 1 ............................................. 200 20. .
> Operating Temperature Range $\ldots \ldots . .-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> Storage Temperature Range $\ldots \ldots . . .{ }^{-55^{\circ} \mathrm{C}}$ to $+125^{\circ} \mathrm{C}$
> Absolute maximum ratings refer to values which if exceeded may permanently change or destroy the device.
> NOTE 1: Derate by $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

## TYPICAL OPERATING CHARACTERISTICS

TEST CONDITIONS: $f_{\text {osc }}=6.5536 \mathrm{MHz}, \mathrm{V}+-\mathrm{V}-=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, test circuit unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage Range	$\mathrm{V}+\mathrm{V}$ -	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4		5.5	V
Supply Current	IDD	All outputs open circuit		260	1000	$\mu \mathrm{A}$
Output on Resistances	rds(ON)	Output current $=5 \mathrm{~mA}$ All outputs		50	120	ohms
Output Leakage Currents	10	All outputs			50	$\mu \mathrm{A}$
Input Pulldown Current	ID	Terminal 11 connected to $\mathrm{V}+$		50	200	
Input Noise Immunity	NF		25			\% supply voltage
Oscillator	$\mathrm{fr}_{r}$	Note 2	2		10	MHz
Oscillator Stability	$\mathrm{f}_{\text {Stab }}$	$\mathrm{CIN}_{\text {IN }}=$ COUT $=22 \mathrm{pf}$		0.2	1.0	ppm/volt
Oscillator Feedback Resistance	Rosc	Quartz crystal open circuit Note 3	3			Mohm

NOTE 1: Dynamic dividers are used in the initial stages of the divider chain. These dividers have a lower frequency of operation determined by transistor sizes, threshold voltages and leakage currents.
NOTE 3: The feedback resistor has a non-linear value determined by the oscillator instantaneous input and output voltage voltages and the supply voltage.

## BLOCK SCHEMATIC



OUTPUT TIMING WAVEFORMS


Referring. to the test circuit, the 6.5536 MHz oscillator frequency is divided by 212 to provide both the multiplex frequency of 1.6 KHz and to generate the duration of the output pulse widths $(312 \mu$ for OUTPUT 1 and OUTPUT 2.

The GATING OUTPUT provides either a 50 Hz or $5 \mathrm{~Hz} 50 \%$ duty cycle signal depending upon whether the RANGE CONTROL terminal is connected to $\mathrm{V}+$ or V - '(or open. circuit).

## TEST CIRCUIT



[^25]SWITCH $\mathrm{S}_{5}$ OPEN CIRCUIT FOR SLOW GATING PERIOD.

SUPPLY CURRENT AS A FUNCTION OF OSCILLATOR FREQUENCY


OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE


## APPLICATION NOTES

## OSCILLATOR CONSIDERATIONS

The oscillator consists of a C-MOS inverter and uses a nonlinear resistor connected between the oscillator input and output terminals to provide biasing. Oscillator stabilities of approximately 0.1 ppm per 0.1 volt change are achievable at a supply voltage change at 5 volts, using low cost crystals. The crystal specifications are shown in the TEST CIRCUIT.
It is recommended that the crystal load capacitance (CL) be no greater than 15 pf for a crystal having a series resistance equal to or less than 75 ohms, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.
If a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance $\pm 10 \mathrm{ppm}$, a low series resistance (less than 25 ohms), a low motional capacitance of 5 mpf and a load capacitance of 20pf. The fixed capacitor CIN should be 39pf and the oscillator tuning capacitor should range between approximately 8 and 60 pf.
Use of a high quality crystal will result in typical oscillator stabilities of 0.05 ppm per 0.1 volt change of supply voltage.

## FREQUENCY LIMITATIONS

The ICM7207 uses dynamic frequency counters in the initial divider sections. Dynamic frequency counters are faster and consume less power than static dividers but suffer from the disadvantage that there is a minimum operating frequency at a given supply voltage.


For example, if instead of 6.5 MHz , a 1 MHz oscillator is required it is recommended that the supply voltage be reduced to between 2 and 2.5 volts. This may be realized by using a series resistor in series with the 5 V positive supply line plus a decoupling capacitor. The quartz crystal parameters, etc., will determine the value of this resistor. NOTE: Except for the output open drain n-channel transistors no other terminal is permitted to exceed the supply voltage limits.

## PRACTICAL FREQUENCY COUNTER

A complete frequency counter using the ICM7207 together with the ICM7208 Frequency Counter is described in the ICM7208 data sheet.

ICM7207A

## Complementary MOS Oscillator Controller

## FEATURES

- Stable HF oscillator
- Low power dissipation $\leq 5 \mathrm{~mW}$ with 5 volt supply
- Counter chain has outputs at $\div \mathbf{2}^{12}$ and $\div \mathbf{2 0}^{20}$ or $\div\left(\mathbf{2}^{20} \times 10\right)$
- $1 \mathbf{~ s e c}$ and 100 ms count enable outputs


## GENERAL DESCRIPTION

The ICM7207A is pin for pin compatible with the ICM7207 but has an 0.1 second and 1 second count enable window output. When used with the ICM7208 frequency counter, the four outputs provide the gating signals for the count window, store function, reset function and multiplex frequency reference. With the 1 second count enable window it is now possible to obtain 7 - significant digits, when measuring frequencies over 1 MHz .
The gating output, output 2 and the multiplex output now provide both pull up and pull down, eliminating the need for 3 external resistors. However, buffering must be provided if interfacing with T2L is required. Output 2 occurs 391 $\mu$ seconds after output 1, eliminating any potential problems of overlap between Store and Reset when using the ICM7208. In addition, a 5.24288 MHz crystal must be used instead of the 6.5536 MHz crystal used with the ICM7207.
The normal operating voltage of the ICM7207A is 5 volts at which the typical dissipation is less than 2 mW using an oscillator frequency of 5.24288 MHz .
The ICM7207A is fabricated using Intersil's standard low voltage metal gate CMOS process which has been used exclusively for all of Intersil's timing products.

## CONNECTION DIAGRAM

## ORDERING INFORMATION



ORDER DEVICES BY FOLLOWING PART NUMBER ICM7207A I PD ORDER DICE BY FOLLOWING PART NUMBER IEM7207A I D

## CHIP TOPOGRAPHY



Chip may be die attached using conventional eutectic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.

TYPICAL OPERATING CHARACTERISTICS
TEST CONDITIONS $\quad f_{\text {osc }}=5.24288 \mathrm{MHz} ; \mathrm{V}^{+}-\mathrm{V}-=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; test circuit unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Operating Voltage Range	V+-V-	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\text {A }}<70^{\circ} \mathrm{C}$	4		5.5	Volts
Supply Current	IDD	Terminal 2 open circuit		190	1000	$\mu \mathrm{A}$
Output On Resistance, Terminal 2	rds	Terminal 2 outnut current $=5 \mathrm{~mA}$		50	120	Ohms
Output Leakage Current, Terminal 2	10	Terminal 2 connected to $\mathrm{V}^{+}$			20	$\mu \mathrm{A}$
Output Resistance Terminals 12, 13, 14	$\mathrm{r}_{\mathrm{ds}}$	Output current $=50 \mu \mathrm{~A}$			33 K	Ohms
Input Pulldown Current	ID	Terminal 11 connected to $V_{\text {DD }}$		50	200	$\mu \mathrm{A}$
Oscillator Freq. Range	$\mathrm{fr}_{\mathrm{r}}$		2		10	MHz
Osc. Stability	$\mathrm{fstab}^{\text {d }}$	$\mathrm{Cin}^{\prime}=\mathrm{Cout}=22 \mathrm{pF}$			. 2	ppm/Volt

## TEST CIRCUIT



## PACKAGE DIMENSIONS



# Four Digit Display Decoder-Drivers 

## ICM7211 (LCD) FEATURES

- Four digit non-multiplexed 7 segment LCD display outputs with backplane driver.
- Complete onboard RC oscillator to generate backplane frequency.
- Backplane input/output allows simple synchronization of slave-device segment outputs with a master backplane signal.
- ICM7211 devices provide separate digit select inputs to accept multiplexed BCD input (Pinout and functionally compatible with Siliconix DF411).
- ICM7211M devices provide data and digit select code input latches controlled by chip select inputs to provide a direct high speed processor interface.
- ICM7211 device for binary-to-hexadecimal decoding; ICM7211A device for binary-to-EHLP-dash-blank decoding.


## ICM7212 (LED) FEATURES

- 28 current-limited segment outputs provide 4 digit non-multiplexed direct LED drive at $>5 \mathrm{~mA}$ per segment.
- Brightness input allows direct control of LED segment current with a single potentiometer, or can function digitally as a display enable.


## FAMILY FEATURES

- All devices fabricated using high density MAXCMOS ${ }^{\text {™ }}$ LSI technology for very low-power, highperformance operation.
- All inputs fully protected against static discharge; no special handling precautions necessary.


## DESCRIPTION

THE ICM7211(LCD) and ICM7212(LED) devices constitute a family of non-multiplexed four digit seven segment display decoder-drivers.
The ICM7211 devices are configured to drive conventional LCD displays, by providing a complete (no external components necessary) RC oscillator, divider chain, backplane driver devices, and 28 segment outputs. These outputs provide the zero d.c. component signals necessary for long display life.
The ICM7212 devices are configured to drive commonanode LED displays, providing 28 current-controlled low leakage open-drain n-channel outputs. These devices provide a Brightness input which may be used at normal logic levels as a display enable, or with a potentiometer as a continuous display brightness control.
Both the LCD and LED devices are available with two input configurations. The basic devices provide four data-bit inputs and four digit select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices, such as the ICM7217, ICM7226 and ICL7103. The microprocessor interface (suffix M) devices provide data input latches and digit select code latches under control of high-speed chip select inputs. These devices simplify the task of implementing a cost-effective alphanumeric 7 segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating.
The standard devices available will provide two different decoder configurations. The basic device will decode the four bit binary input into a seven-segment alphanumeric hexa-decimal output. The " $A$ " versions will provide the same output code as the ICM7218 "Code B", i.e., 0-9, E, H, L, P, dash, blank. Either device will correctly decode true BCD to seven segment decimal outputs.
All devices in the ICM7211/7212 family are packaged in a standard 40 pin plastic dual-in-line package.
Table 1, the option matrix and ordering information, shows the 8 standard devices of the ICM7211/7212 family and their markings, which serve as part numbers for ordering purposes.

TABLE 1: OPTION MATRIX AND ORDERING INFORMATION

ORDER PART NUMBER		OUTPUT CODE	INPUT CONFIGURATIONS
$\begin{array}{\|l\|} \hline \text { LCD } \\ \text { DISPLAY } \end{array}$	$\begin{aligned} & \text { ICM7211 IPL } \\ & \text { ICM7211A IPL } \end{aligned}$	HEXADECIMAL CODE B	MULTIPLEXED 4-BIT
	ICM7211M IPL ICM7211AM IPL	$\begin{aligned} & \text { HEXADECIMAL } \\ & \text { CODE B } \\ & \hline \end{aligned}$	MICROPROCESSOR INTERFACE
LED DISPLAY	ICM7212 IPL ICM7212A IPL	HEXADECIMAL CODE B	MULTIPLEXED 4-BIT
	$\begin{aligned} & \text { ICM7212M IPL } \\ & \text { ICM7212AM IPL } \end{aligned}$	HEXADECIMAL CODE B	MICROPROCESSOR INTERFACE

## ABSOLUTE MAXIMUM RATINGS

Power Dissipation (Note 1)	0.5 Watt @ $70^{\circ} \mathrm{C}$
Supply Voltage ( $\mathrm{V}^{+}-\mathrm{V}^{-}$)	6.5 Volts
Input Voltage (Any	
Terminal) (Note 2)	$\mathrm{V}^{+}+0.3 \mathrm{~V}, \mathrm{~V}^{-}-0.3 \mathrm{~V}$
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute maximum ratings define stress limitations which, if exceeded, may permanently damage the device. These are not continuous duty ratings. For continuous operation these devices must be operated under the conditions defined under "Operating Characteristics."

TABLE 2: OPERATING CHARACTERISTICS
All parameters measured with $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}$
ICM7211 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	$V_{s}$	$\mathrm{V}^{+}-\mathrm{V}^{-}$	3	5	6	V
Operating Current	lop	Test circuit, Display blank.		10	50	$\mu \mathrm{A}$
Oscillator Input Current	losL	Pin 36		$\pm 2$	$\pm 10$	$\mu \mathrm{A}$
Segment Rise/Fall Time	$t_{\text {rif }}$	$\mathrm{Cload}_{\text {load }}=200 \mathrm{pf}$		0.5		$\mu \mathrm{S}$
Backplane Rise/Fall Time	$t_{\text {rfb }}$	$\mathrm{Cload}_{\text {lo }}=5000 \mathrm{pf}$		1.5		$\mu \mathrm{S}$
Oscillator Frequency	fosc	Pin 36 Floating		16		kHz
Backplane Frequency	$\mathrm{fbp}^{\text {b }}$	Pin 36 Floating		125		Hz

## ICM7212 CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating Supply Voltage Range	$V_{s}$	$\mathrm{V}^{+}-\mathrm{V}^{-}$	4	5	6	V
Operating Current	IOPQ	Pin 5 (Brightness) at $\mathrm{V}^{-}$		10	50	$\mu \mathrm{A}$
Display Off		Pins 27-34 ${ }^{\text {a }}$				
Operating Current	lop	Pin 5 at V ${ }^{+}$, Display all 8's		200		mA
Segment Leakage Current	ISL	Segment Off		$\pm 0.01$	$\pm 1$	$\mu \mathrm{A}$
Segment On Current	Is	Segment On, Vout $=\mathrm{V}-+3 \mathrm{~V}$	5	8		mA

## INPUT CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Logical "1." input voltage	$\mathrm{V}_{\mathrm{IH}}$	Referred to $\mathrm{V}^{-}$	3			V
Logical "0" input voltage	VIL	Referred to $\mathrm{V}^{-}$			2	V
Input leakage current	IDL	Pins 27-34		$\pm .01$	$\pm 1$	$\mu \mathrm{A}$
Input capacitance	Cln	Pins 27-34		5		pF
BP/Brightness input leakage	ILBPI	Measured at pin 5 with Pin 36 at $\mathrm{V}^{-}$		$\pm .01$	$\pm 1$	$\mu \mathrm{A}$
BP/Brightness input capacitance	CBPI	All Devices		200		pF
AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION						
Digit Select Active Pulse Width	tsa	Refer to Timing Diagrams	1			$\mu \mathrm{S}$
Data Setup Time	tds		500			ns
Data Hold Time	tdh		200			ns
Inter-Digit Select Time	$t_{\text {ids }}$		2			$\mu \mathrm{S}$
AC CHARACTERISTICS - MICROPROCESSOR INTERFACE						
Chip Select Active Pulse Width	$\mathrm{t}_{\text {csa }}$	other chip select either held active, or	200			ns
		both driven together				
Data Setup Time	$t_{\text {dsm }}$		100			ns
Data Hold Time	tahm		10	0		ns
Inter-Chip Select Time	tics		2			$\mu \mathrm{s}$

[^26]NOTE 2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than $\mathrm{V}^{+}$or less than $\mathrm{V}^{-}$may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supplybe applied to the device before its supply is established; and that in multiple supply systems; the supply to the ICM7211/ICM7212 be turned on first.

## TYPICAL CHARACTERISTICS

OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE


LED SEGMENT CURRENT
AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE


BACKPLANE FREQUENCY AS A FUNCTION OF OSCILLATOR CAPACITOR COSC


LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE


## CONNECTION DIAGRAMS



## BLOCK DIAGRAMS




ICM7212(A)M


## INPUT DEFINITIONS

In this table, $\mathrm{V}^{+}$and $\mathrm{V}^{-}$are considered to be normal operating input logic levels. Actual input low and high levels are specified in Table 2. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	CONDITION	FUNCTION	
B0	27	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \mathrm{V}^{-}=\text {Logical Zero } \end{aligned}$	Ones (Least Significant)	Data Input Bits
B1	28	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \mathrm{V}^{-}=\text {Logical Zero } \\ & \hline \end{aligned}$	Twos	
B2	29	$\begin{array}{\|l} \hline \mathrm{V}^{+}=\text {Logical One } \\ \mathrm{V}^{-}=\text {Logical Zero } \\ \hline \end{array}$	Fours	
B3	30	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \mathrm{V}^{-}=\text {Logical Zero } \end{aligned}$	Eights (Most significant)	
OSC   (LCD Devices Only)	36	Floating or with external capacitor $\mathrm{V}^{-}$	Oscillator input   Disables BP output devices, allowing segments to be synced to an external signal input at the BP terminal (Pin 5)	

## ICM7211/ICM7212

MULTIPLEXED-BINARY INPUT CONFIGURATION

INPUT	TERMINAL	CONDITION	FUNCTION
D1	31	$\begin{aligned} & \mathbf{V}^{+}=\text {Active } \\ & \mathbf{V}^{-}=\text {Inactive } \end{aligned}$	D1 (Least significant) Digit Select
D2	32		D2 Digit Select
D3	33		D3 Digit Select
D4	34		D4 (Most significant) Digit Select

## ICM7211M/ICM7212M

MICROPROCESSOR INTERFACE INPUT CONFIGURATION

INPUT	DESCRIPTION	TERMINAL	CONDITION	FUNCTION
DS1	Digit Select Code Bit 1	31	$\begin{aligned} & \mathrm{V}^{+}=\text {Logical One } \\ & \mathrm{V}^{-}=\text {Logical Zero } \end{aligned}$	DS1 \& DS2 serve as a two bit Digit Select Code Input   DS1, DS2 $=00$ selects D4   DS1, DS2 $=01$ selects D3   DS1, DS2 $=10$ selects D2   DS1, DS2 = 11 selects D1
DS2	Digit Select Code bit 2	32		
CS1	Chip Select 1	33	$\begin{aligned} & \mathrm{V}^{+}=\text {Inactive } \\ & \mathrm{V}^{-}=\text {Active } \end{aligned}$	When both CS1 and CS2 are taken to $\mathrm{V}^{-}$, the data at the Data and Digit Select code inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches.
CS2	Chip Select 2	34		

## TEST CIRCUIT




Figure 1: Multiplexed Input Timing Diagram


Figure 2: Microprocessor Interface Input Timing Diagram

## DESCRIPTION OF OPERATION

## LCD Devices

The LCD devices in the family (ICM 7211, 7211A, 7211M, 7211AM) provide outputs suitable for driving conventional four digit by seven segment LCD displays; including 28 individual segment drivers, backplane driver, and a selfcontained oscillator and divider chain to generate the backplane frequency.
The segment and backplane drivers each consist of a CMOS inverter, with the $n$ - and $p$-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any dc component which could arise from differing rise and fall times, and ensures maximum display life.
The backplane output devices can be disabled by connecting the oscillator input (pin 36) to the negative supply. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to, the backplane output of one master device or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200 pF (comparable to one additional segment). The limitation on how many devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption is to keep the rise and fall times less than about 5 microseconds. The backplane driver devices of one device should handle the backplane to a display of 16 one-half-inch characters without the rise and fall times exceeding $5 \mu \mathrm{~s}$ : (ie, 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM 7211 devices be slaved to it. This external signal should be capable of driving very large capacitive loads with


Display Waveforms
short ( $1-2 \mu \mathrm{~s}$ ) rise and fall times. The maximum frequency for a backplane signal should be about 125 Hz although this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 16 KHz at microampere power levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 125 Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor to the oscillator terminal (pin 36); see the plot of oscillator/backplane frequency vs. external capacitance for detailed information. The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a d.c. component to the display). This can be done by driving the oscillator input between the positive supply and a level out of the range where the backplane disable is sensed, about one fifth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

## LED Devices

The LED devices in the family (ICM 7212, 7212A, 7212M, 7212AM) provide outputs suitable for directly driving four digit by seven segment common-anode LED displays, including 28 individual segment drivers, each consisting of a low-leakage current-controlled open-drain $n$-channel transistor.
The drain current of these transistors can be controlled by varying the voltage at the Brightness input (pin 5). The voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Fig (3). The potentiometer should be a high value ( $100 \mathrm{~K} \Omega$ to $1 \mathrm{M} \Omega$ ) to minimize 12 R power consumption, which can be significant when the display is off.
The brightness input may also be operated digitally as a display enable; when at $\mathrm{V}^{+}$, the display is fully on, and at $\mathrm{V}^{-}$ fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two supplies at the Brightness input.
Note that the LED devices have two connections for $\mathrm{V}^{-}$; both of these pins should be connected to the negative supply. The double connection is necessary to minimize effects of
bond wire resistance with the large total display currents possible.
When operating the LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 watt at $25^{\circ} \mathrm{C}$, derated linearly above $35^{\circ} \mathrm{C}$ to 500 mW at $70^{\circ} \mathrm{C}$ $\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $35^{\circ} \mathrm{C}$ ). Power dissipation for the device is given by:

$$
P=\left[\left(V^{+}-V^{-}\right)-V_{F L E D}\right] \times I_{S} \times N_{S}
$$

where $V_{F L E D}$ is the LED forward voltage drop, $I_{s}$ is segment current, and $N_{s}$ is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the Brightness input to keep power dissipation within the limits described above.


Figure 3: Brightness control

## Input Configurations And Output Codes

The standard devices in the ICM 7211/12 family accept a four-bit true binary (ie, positive level = logical one) input at pins 27 thru 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM 7211, ICM 7211M, ICM 7212, and ICM 7212M devices decode this binary input into a seven-segment alphanumeric hexadecimal outpút. The ICM 7211A, ICM 7211AM, ICM 7212A, and ICM 7212AM decode the binary input into the same seven-segment output as in the ICM 7218 "Code, B", ie 0-9, E, H, L, P, dash, blank. These codes are shown explicitly in Table 3. Either decoder option will correctly decode true BCD to a seven-segment decimal output.
These devices are actually mask-programmable to provide any 16 combinations of the seven segment outputs decoded from the four input bits. For larger quantity orders, custom decoder options can be arranged. Contact the factory for details.
The ICM7211, ICM7211A, ICM7212, and ICM7212A devices are intended to accept multiplexed binary or BCD output. These devices provide four separate digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30 . More than one digit select may be activated simultaneously (which will write the same character into all selected digits), although the timing requirements shown in Fig (1) and Table 2 for data setup, hold, and inter-digit select times must be met to ensure correct output.
The ICM7211M, ICM7211AM, ICM7212M, and ICM7212AM devices are intended to accept data from a data bus under processor control.
In these devices, the four data input bits and the two-bit digit select code (DS1 pin 31, DS2 pin 32) are written into input buffer latches when both chip select inputs (CS1 pin 33, CS2 pin 34) are taken to a negative level. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the select code latches.

A select code of 00 writes into $\mathrm{D} 4, \mathrm{SC2}=0, \mathrm{SC} 1=1$ writes into D3, SC2 $=1, S C 1=0$ writes into D2, and 11 writes into D1. The timing relationships for inputting data are shown in Fig (2), and the chip select pulse widths and data setup and hold times are specified in Table 2.

Table 3 Output Codes

		INARY		HEXADECIMAL ICM7211(M)	CODE B ICM7211A(M)
B3		B2 B1	Bo	ICM7212(M)	ICM7212A(M)
0	0	00	0	$\square$	-
0	0	0	1	;	'
0		01	0	2	2
0	0	0	1	$\exists$	3
0	1	10	0	-'	4
0	1	10	1	'	5
0	1	$1 \times 1$	0	5	$\square$
0	1	1 1	1	7	7
1	0	00	0	8	5
1	0	0 0	1	9	9
1	0	0 - 1	0	日	-
1	0	0.1	1	$\square$	$E$
1	1	1	0	-	H
1	1	10	1	d	-
1	1	1.1	0	$E$	9
1	1	11	1	F	(BLANK)

## SEGMENT ASSIGNMENT



## APPLICATIONS

## 1. Ganged ICM7211's Driving 8-Digit LCD Display.



## 2. 4 1/2 Digit LCD DPM with Digit Blanking on Overrange.



## 3. 8048/8748 Microprocessor Interface.



## PACKAGE DIMENSIONS

## 40 Pin Plastic Dual-In-Line Package



# ICM7218 Series CMOS Universal 8 Digit LED Driver System 

## FEATURES

- Total circuit integration on chip includes:
a) Digit and segment drivers
b) All multiplex scan circuitry
c) $8 \times 8$ static memory
d) 7 segment Hexadecimal and Code B decoders
- Output drive suitable for large LED displays
- Both common anode and common cathode LED drive versions
- Single 5 volt supply required
- Data retention to 2 volts supply
- Shutdown feature - turns off display and puts chip into very low power dissipation mode
- Pin selectable choice of $\mathbf{2}$ seven segment decoders Hexa or Code B
- Pin selectable choice of seven segment decode or no decoder
- Microprocessor compatible and hardwire versions
- All terminals protected against static discharge


## GENERAL DESCRIPTION

The ICM7218 series of universal LED driver systems provide, in a single package, all the circuitry necessary to interface most common microprocessors or digital systems and an LED display. Included on chip is an $8 \times 8$ static memory array providing storage for the displayed information, 2 types of 7 segment decoders, all the multiplex scan circuitry and the high power digit and segment drivers.

The ICM7218A and ICM7218B are intended to be used primarily in microprocessor systems. Data is read directly from the I/O bus line from the microprocessor. 2 Control lines ( $\overline{\text { Write }}$, and Mode) define chip select, which reads either 4 bits of control information (Data Coming, Shutdown, Decode, Hexa or Code B Decoding) or 8 bits of Display Input Data. Display Input Data ( 8 words, 8 bits each) is automatically sequenced into the memory on successive negative going Write pulses. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The ICM7218A drives a common anode display while the ICM7218B drives a common cathode display. (See Block Diagram 1)
The ICM7218C and ICM7218D feature 2 lines for control information (Write, Three Level Input; Hexa, Code B, Shutdown), 4 lines for Input Data and 3 lines for BCD Data Addressing of each of eight data memory locations.
Data is written into memory by setting up a BCD Data Address memory location, defining 4 lines of Input Data and then strobe the $\bar{W}$ rite line low. The Three Level Control Input is independent of the Write instruction. Only Hexadecimal and Code B decoding are available for the Display Outputs. The ICM7218C drives a common anode display, the ICM7218D a common cathode display. (See Block Diagram 2)

The ICM7218E provides 4 separate lines for control information (Write, Hexa-Code B, Decode, Shutdown), 8 lines for input data, and 3 lines for BCD digit address. Data is written into the memory by setting up a BCD Data Address memory location, defining 8 lines of Input Data, and then strobe the Write line low. Control information is on separate lines and is independent of the $\overline{\text { Write }}$ instruction. Data may be displayed either directly or decoded in Hexadecimal or Code B formats. The ICM7218E drives a common anode display. (See Block Diagram 3)

## ORDERING INFORMATION

Typical   App.	Order   Part Number	Display   Option	Package   Microprocessor   Control
ICM7218A IJI	Common Anode	28 Lead CERDIP	
Hardwire	ICM7218B IPI	Common Cathode	28 Lead Plastic
Control	ICM7218D IJI	Common Anode	28 Lead CERDIP
	ICM7218E IDL	Common Cathode   Common Anode	28 Lead Plastic   40 Lead Ceramic

## CHIP TOPOGRAPHY ICM7218A



This is a preliminary specification and is subject to change.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	6 V
Digit Output Current	300 mA
Segment Output Current	50 mA
Input Voltage (any terminal)	$\mathrm{V}^{+}+0.3 \mathrm{~V}$ to $\mathrm{V}^{-}-0.3 \mathrm{~V}$
	NOTE 1
Power Dissipation (28 Pin CERDIP)	1 watt NOTE 2
Power Dissipation (28 Pin Plastic)	0.5 watt NOTE 2
Power Dissipation (40 Pin Ceramic)	1 watt NOTE 2
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+7.0^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE 1 Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $\mathrm{V}^{+}$or less than $\mathrm{V}^{-}$may cause destructive device latchup. For this reason it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established. When using multiple supply systems the supply to the ICM7218 should be turned on first.
NOTE 2 These limits refer to the package and will not be obtained during normal operation. Derate above $.50^{\circ} \mathrm{C}$ by 25 mW per ${ }^{\circ} \mathrm{C}$.

SYSTEM ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}-\mathrm{V}^{-}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit, Display Diode Drop 1.7V

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage	$\begin{aligned} & \mathrm{V}^{+}-\mathrm{V}^{-} \\ & \mathrm{V}^{+}-\mathrm{V}^{-} \end{aligned}$	Power Down Mode	$\begin{aligned} & 4 \\ & 2 \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Quiescent Supply Current	10	Shutdown (Note 3)	6	10	300	$\mu \mathrm{A}$.
Operating Supply Current	IDP	Decoder On, Outputs Open Ckt No Decode, Outputs Open Ckt	$\begin{aligned} & 250 \\ & 200 \\ & \hline \end{aligned}$		$\begin{aligned} & 950 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Digit Drive Current	10	$\begin{aligned} & \text { Common Anode Vout }=\mathrm{V}^{+}-2.0 \\ & \text { Common Cathode Vout }=\mathrm{V}^{-}+1 \mathrm{~V} \end{aligned}$	$\begin{gathered} -170 \\ 50 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Digit Leakage Current	IDL				100	$\mu \mathrm{A}$
Peak Segment Drive Current	Is	Common Anode Vout $=\mathrm{V}^{-}+1.5 \mathrm{~V}$ Common Cathode Vout $=\mathrm{V}^{+}-2.0 \mathrm{~V}$	$\begin{gathered} 20 \\ -10 \\ \hline \end{gathered}$	25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Segment Leakage Current	ISL				50	$\mu \mathrm{A}$
Display Scan Rate	FMUX			250		Hz
Three Level Input Logical "1" Input Voltage Floating Input Logical " 0 ". Input Voltage	VTH   VTD   VTL	Hexidecimal ICM7218C, D (Pin 9) Code B ICM7218C, D (Pin 9) Shutdown ICM7218C, D (Pin 9)	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\cdots$	$\begin{aligned} & 3.0 \\ & 1.75 \end{aligned}$	$\begin{aligned} & V \\ & v \\ & V \end{aligned}$
Three Level Input Impedance				100		$\mathrm{k} \Omega$
Logical "1" Input Voltage Logical "0" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$		$2.4$		. 8	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Write Pulse Width (Negative) Write Pulse Width (Positive)	$\begin{aligned} & \mathrm{tw} \\ & \mathrm{t} \bar{w} \end{aligned}$		$\begin{aligned} & 400 \\ & 400 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \end{aligned}$
Mode Pulse Width	tm		400			nS
Data Set Up Time	tds		400			nS
Data Hold Time	tah		25			nS
Digit Address Set Up Time Digit Address Hold Time	tdas   tdah	ICM7218 ICM7218	$\begin{aligned} & 400 \\ & 100 \end{aligned}$			$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \end{aligned}$
Operating Temperature Range	TA	Industrial Temperature Range	-20		70	${ }^{\circ} \mathrm{C}$

NOTE 3 In the ICM7218C and D (hardwire control versions) the Hexa/Code B/Shutdown Input (Pin 9) has internal biasing resistors to hold it at $\mathrm{V}^{+} / 2$ when Pin 9 is open circuited. These resistors consume power and result in a Quiescent Supply Current (IQ) of typically $50 \mu \mathrm{~A}$. The ICM7218A, B, and E devices do not have these biasing resistors and thus are not subject to this condition.

ICM7218A, ICM7218B

(1)

ICM7218C, ICM7218D

(2)

ICM7218E

(3)

## PIN CONFIGURATION



## CONTROL INPUT DEFINITIONS ICM7218A and B

INPUT	TERMINAL	VOLTAGE	FUNCTION
Write	8	High   Low	Input Not Loaded Into Memory   Input Loaded Into Memory
Mode	9	High   Low	Load Control Word on Write Pulse   Load Input Data on Write Pulse
ID6 (Hexadecimal/Code B)	5	High   Low	Hexadecimal Decoding   Code B Decoding
ID5 (Decode/No Decode)	High   Low	No Decode   Decode	
ID7 (Data Coming/Input $\overline{\text { D.P.) }}$	7	High   Low	Data Coming   No Data Coming
ID4 Shutdown	10	High   Low	Normal Operation   Shutdown (Oscillator, Decoder, and Displays   Disabled)
Input Data	$11,12,13$,	High	Loads "One" (Note 2)
ID0-ID7	$14,5,6$	Low	Loads "Zero"

## CONTROL INPUT DEFINITIONS ICM7218C and D

INPUT	TERMINAL	VOLTAGE	FUNCTION
$\overline{\text { Write }}$	8	High   Low	Inputs Not Loaded Into Memory   Inputs Loaded Into Memory
Three Level Input (Note 1)	9	High   Floating   Low	Hexadecimal Decode   Code B Decode   Shutdown (Oscillator, Decoder and Displays   Disabled)
Digit Address		High   Low	Loads "Ones"   Loads "Zeros"
Input Data	$11,12,13$,	High	Loads "Ones" (Note 2)
ID0-ID7	14,5,	Low	Loads "Zeros"

## CONTROL INPUT DEFINITIONS ICM7218E

INPUT	TERMINAL	VOLTAGE	FUNCTION
Write	9	High   Low	Input Latches Not Updated   Input Latches Updated
Shutdown	10	High   Low	Normal Operation   Shutdown (Oscillator, Decoder and Displays   Disabled)
Digit Address (0,1,2)   DAO-DA2	$13,14,12$	High   Low	Loads "Ones"   Loads "Zeros"
Decode/No Decode	33	High	No Decode   Decode
Hexadecimal/Code B	32	High   Low	Code B Decoding   Hexadecimal Decoding
Input Data	$16,17,18,19$	High	Loads "Ones" (Note 2)
ID0-ID7	6	Low	Loads "Zeros"

NOTE 1 In the ICM7218C and ICM7218D versions, Hexadecimal, Code B ana silutdown are controlled with a three level input on Pin 9. Pulling Pin 9 high decodes Hexadecimal. Floating Pin 9 decodes Code B and pulling Pin 9 low puts the ICM7218 in a Shutdown mode.
NOTE 2 In the No Decode Mode, "Ones" represents "on" segments for all inputs except for the Decimal Point, where "Zero" represents "on" segments, (i.e. segments are positive true, decimal point is negative true).


Figure 1: Multiplex Timing


Figure 2: Segment Assignments

## APPLICATIONS

## Decode/No Decode

For the ICM7218A/B/E products, there are 3 input data formats possible; either direct segment and decimal point information-8 bits per digit or 2 BCD codes plus decimal point- 5 bits per digit. The 7 segment decoder on chip may be disabled if direct segment information is inputted.
In the No Decode format, the inputs directly control the outputs as follows:
Input Data: $\quad$ ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Output Segments: $\overline{D . P} . \quad b \quad c \quad e, g$ f $d$
The No Decode Mode, "Ones" represents on segments for all inputs except for the Decimal Point, where "zero" represents on segments.
Hexadecimal or Code B Decoding:
For all products, a choice of either Hexa or Code B decoding may be made. Hexa decoding provides 7 segment plus six alpha characters while Code B provides a negative sign $(-)$, a blank (for leading zero blanking) and certain useful alpha characters for most numeric formats.
The four bit binary code is set up on inputs ID3-ID0.
Binary Code 011234556.7819101112131415



## Shutdown

Shutdown performs several'functions: it puts the device into a very low dissipation mode (typically $10 \mu \mathrm{~A}$ at $\mathrm{V}^{+}-\mathrm{V}^{-}=5$ ), turns off both the digit and segment drivers, stops the multiplex scan oscillator (this is the only way the scan oscillator can be disabled). However, it is still possible to input the memory during shutdown - only the output and read sections of the device are disabled:

## Powerdown

In a Shutdown Mode, the supply voltage may be reduced to 2 volts without data being lost in memory. However, data should not be written into memory if the supply voltage is less than 4 volts.

## Output Drive

The common anode output drive is approximately 200 mA per digit at a $12 \%$ duty cycle. With 5 segments being driven, this is equal to about 40 mA per segment peak drive or 5 mA average drive. The common cathode drive is approximately one half that of the common anode drive. If high impedance LED displays are used, the drive will be correspondingly less.

## Inter Digit Blanking

A blanking time of approximately $10 \mu \mathrm{~s}$ occurs between digit strobes to ensure that segment information is correct before the next digit drive thereby avoiding ghosting.

## Leading Zero Blanking

This may be programmed into chip memory in the nodecode operation (each segment programmed for a zero for the blanked digits) or by using the 16 th state (binary 15) with the Code B decoder.

## Driving Larger Displays

If a higher average drive current per digit is required, it is possible to parallel connect digit drives together. For example, by paralleling pairs of digit drives together to drive a 4 digit display 10 mA average segment drive can be obtained.

## APPLICATIONS, continued

## Power Dissipation Considerations

Assuming common anode drive at $\mathrm{V}^{+}-\mathrm{V}^{-}=5$ volts and all digits on with an average of 5 segments driven per digit, the average current would be approximately 200 mA . Assuming further a 1.8 volt drop across the LED display would result in a 3.2 volt drop across the ICM7218. The device power dissipation will, therefore, be 640 mW rising to about 900 mW for all ' 8 's displayed. Caution: Position device in system such that air can flow freely to provide maximum cooling. The common cathode dissipation is approximately one half that of the common anode dissipation.

## Proceșsor Input Drive Considersations (ICM7218A/B)

The control instructions are read from the input bus lines if Mode is high and Write low. The instructions occur on 4 lines and are - Decode/no Decode, type of Decode (if desired), Shutdown/no Shutdown and Data Coming/not Coming. After the control instructions have been read (with Data Coming instruction) display data can be written into memory with each following negative going pulse of Write, Mode being low. After all 8 words or digit memory locations have been re-written, additional transitions of the state of Write
are ignored. It is not possible to change for example digit \#7 only without refreshing the data for all the other digits. (This can, however, be achieved with the ICM7218C/D/E where the digits are individually addressed.)

Hardwire Input Drive Considerations (ICM7218C/D/E)
Control instructions are provided to the ICM7218C/D by a single three level input terminal (Pin 9), which operates independently of the $\overline{\text { Write }}$ pulse. The ICM7218E control instructions are also independent but are on three separate pins (10, 32, 33).
Data can be written into memory on the ICM7218C/D/E by setting up a 3 bit binary code (one of eight) on the digit address inputs, which define the digit where the data is to be written into the memory, and apply a negative going Write pulse. For example, it is possible to change only digit 7 without refreshing the data for all the other digits. (However, this cannot be achieved with the ICM7218A/B.

## Supply Capacitor

$\mathrm{A} .1 \mu \mathrm{~F}$ capacitor is recommended between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$to inhibit multiplex noise.

## SWITCHING WAVEFORMS ICM7218



DON'T CARE
Figure 3

## CHIP ADDRESS SEQUENCE ICM7218A and B



Figure 4
CHIP ADDRESS SEQUENCE EXAMPLE ICM7218C/D/E


Figure 5.

## TEST CIRCUITS



TYPICAL CHARACTERISTICS
COMMON ANODE
SEG. DRIVER

Iseg. VS. (Vout-V)
AT $25^{\circ} \mathrm{C}$


COMMON ANODE
SEG. DRIVER
Iseg. VS. (Vout-V )


COMMON ANODE DIGIT DRIVER
Idig VS. ( $\mathbf{V}^{+}-$VOUT) $^{\text {I }}$


TYPICAL CHARACTERISTICS, continued COMMON CATHODE

DIGIT DRIVER
IDIG VS. (Vout-V ${ }^{-}$)
AT $\mathbf{2 5}^{\circ} \mathrm{C}$


COMMON CATHODE
SEG. DRIVER Iseg VS. ( $\mathbf{V}^{+}$-Vout)


## COMMON CATHODE

 digit driver Idig. Vs. (Vout-V)

## APPLICATION EXAMPLES

## 8 DIGIT MICROPROCESSOR DISPLAY APPLICATION

The display interface (ICM 7218) is shown with an Intel 8048 microprocessor. The 8 bit data bus DB0/DB7 - IDO/ID7 transfers control and data information to the 7218 display interface on successive Write pulses. When Mode is high a control word is transferred. Mode low allows data transfer on a Write pulse. Eight memory address locations in the $8 \times 8$ static memory are automatically sequenced on each succes-
sive Write pulse. After eight Write pulses have occurred, further pulses are ignored and the display interface returns to normal display operation until a new control word is transferred. See Figure 4.
Decoding of the stored data in memory is defined by the control word and may be decoded in Hexadecimal, Code B, or No-Decode formats.


Figure 6: 8 Digit Microprocessor Display

## 16 DIGIT MICROPROCESSOR DISPLAY APPLICATION

Both ICM7218's are addressed simultaneously with a 3 bit word, DA2-DA0.
Display data from the 8048 I/O bus (DB7-DB0) is transferred to both ICM7218 (ID3-ID0) simultaneously, 4 bits +4 bits on Write enable.
Display digits from both ICM7218's are interleaved to allow adjacent pairs of digits to be loaded sequentially on a single 8 bit data bus, ie D0 D1, D2 D3, D4 D5, etc..

Decimal point information (from 8048, P26-P27) is supplied to the ICM7218 on bus lines ID7 to both devices.
Choice of decoding is available in either Hexadecimal or Code-B format by hardwiring or decoding to a Three Level format on Pin 9 of the ICM7218.
Multiplexing is asynchronous with respect to the microprocessor and is completely performed by the ICM7218.


Figure 7: 16 Digit Display

The ICM7218 can be used as a microprocessor based LED status panel driver. The microprocessor selected control word would include "No Decode" and "Data Coming". The computer then outputs word oriented "Ones" and "Zeroes" to indicate on-off states. This data is read into the ICM7218 which in turn directly drives appropriate descrete LEDs. LED indicators can be red or green ( 8 "segments" $\times 8$ digits $=64$ dots $\div 2$ per red or green $=32$ channels) on red, yellow or green ( 21 channels).

Additional ICM7218's may be bussed and addressed (see Figure 7) to expand the status panel capacity. Note per figure 4 that after the ICM7218 has read in its data (8 write pulses), it ignores additional information on the data lines. A new control word must be received before the next write sequence can be accommodated. Consequently, by address decoding and write pulse enabling, numerous ICM7218's can be bussed together to allow a large number of indicator channels.

## PACKAGE DIMENSIONS

## 28 Pin CERDIP Dual-In-Line Package



40 Pin Ceramic Dual-In-Line Package


# ICM7206, ICM7206A, ICM7206B Complementary MOS Touch Tone Encoder 

## FEATURES

- Low cost system with minimum component count
- Fully integrated oscillator uses 3.58 MHz color TV crystal
- High current bipolar output driver
- Low output harmonic distortion
- Wide operating supply voltage range: $\mathbf{3}$ to 6 volts
- Requires inexpensive single contact per key calculator type keyboard (ICM7206 only)
- Extremely low power $\leq 5.5 \mathrm{~mW}$ with a 5.5 V supply
- Single and dual tone capabilities
- Multiple key lockout
- Disable output: provides output switch function whenever a key is enabled
- Custom options available


## CHIP TOPOGRAPHY



Chip Dimensions $0.060^{\prime \prime}(1.524 \mathrm{~mm}) \times 0.101^{\prime \prime}(2.565 \mathrm{~mm})$
Chip may be die attached using conventional eutectic or epoxy procedures. Wire bonding may be either aluminum ultrasonic or gold compression.

## CONNECTION DIAGRAM



Pin 1 is designated either by a dot or a notch.

## GENERAL DESCRIPTION

The Intersil ICM7206/A/B are 2-of-8 sine wave tone encoders for use in telephone dialing systems. Each circuit contains a high frequency oscillator, two separate programmable dividers, a D/A converter, and a high level output driver.
The reference frequency is generated from a fully integrated oscillator requiring only a 3.58 MHz color TV crystal. This frequency is divided by 8 and is then gated into two divide by N counters (possible division ratios 1 through 128) which provide the correct division ratios for the upper and lower band of frequencies. The oútputs from these two divide by $N$ counters are further divided by 8 to provide the time sequencing for a 4 voltage level synthesis of each sinewave. Both sinewaves are added and buffered to a high current output driver, with provisions made for up to two external capacitors for low pass filtering, if desired. Typically, the total output harmonic distortion is $20 \%$ with no L.P. filtering and it may be reduced to typically less than $5 \%$ with filtering. The output drive level of the tone pairs will be approximately -3 dBV into a 900 ohm termination. The skew between the high and low groups is typically 2.5 dB without low pass filtering:
The 7206 uses either a $3 \times 4$ or $4 \times 4$ single contact keyboard; the oscillator will run whenever the power is applied, and the DISABLE output consists of a p-channel open drain FET whose source is connected to $\mathrm{V}^{+}$.
The 7206A can also use a $3 \times 4$ or $4 \times 4$ keyboard, but requires a double contact type with the common line tied to $\mathrm{V}^{+}$. The oscillator will be on whenever power is applied; the DISABLE output consists of a p-channel open drain FET; its' source is connected to $\mathrm{V}^{+}$.
The 7206B requires a $4 \times 4$ double contact keyboard with the common line tied to $\mathrm{V}^{-}$. The oscillator will be on only during the time that a ROW is enabled, and the DISABLE output consists of an n-channel open drain FET with its' source tied to $\mathrm{V}^{-}$.
The ICM7206 family is fabricated using Intersil's standard low voltage metal gate C-MOS process which has been used exclusively for all Intersil timing products. Custom options are possible using different quartz crystal frequencies, two contacts per key type keyboards and any combinations of output frequencies as defined above.

ORDERING INFORMATION

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7206 JPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic
ICM7206A JPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic
ICM7206B JPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic
ICM7206/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206A/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE
ICM7206B/D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DICE

## ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (Note 2) ............................................ . . 6.0V
Supply Current $V^{-}$(terminal 8) ................... . . . . . . . . . . . . . . 25 mA
Supply Current $V^{+}$(terminal 16) .................................. . 40mA
Disable Output Volt. (term. 7) .. Not more pos. than $\mathrm{V}^{+}$nor more neg. than -6 V with respect to $\mathrm{V}^{+}$
Output Volt. (term. 15). Not more pos. than +5 V with respect to $\mathrm{V}^{+}$, nor more neg. than -1.0 with respect to $\mathrm{V}^{-}$

Output Current (terminal 15) ............................. . . . . . . . 25 mA
Power Dissipation ................................................ 300 mW
Operating Temperature Range ................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range .................. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE 1. Absolute maximum, ratings refer to values which if exceeded may permanently change or destroy the device. Additionally, absolute maximum ratings do not imply that the device will operate correctly if these values are used (see Typical Operating Characteristics).
NOTE 2. The ICM7206 family has a zener diode connected between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$having a breakdown voltage between 6.2 and 7.0 volts. If the currents into terminals 8 and 16 are limited to 25 and 40 mA maximum respectively, the supply voltage may be increased above 6 volts to zener voltage. With no such current limiting, the supply voltage must not exceed 6 volts.

## TYPICAL OPERATING CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}^{+}-\mathrm{V}^{-}=5.5 \mathrm{~V}$, Test Circuit, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Current	Is	RL disconnected . .;		450	1000	$\mu \mathrm{A}$
Guaranteed Operating Supply Voltage Range (Note 3)	VOP	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	3.0		6.0	V
Peak to Peak Output Voltage	VOUT	$\mathrm{C}_{1}, \mathrm{C}_{2}$ disconnected - LOW BAND	0.90	1.15	1.45	
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega-\mathrm{HIGH}$ BAND	1.10	1.40	1.7	
		NO FILTERING		490		
RMS Output Voltage	Vout	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega-\mathrm{C}_{2}$ only		480		mV
		$\mathrm{f}_{\text {out }}=697 \mathrm{~Hz}-\mathrm{C}_{1}$ \& $\mathrm{C}_{2}$		480		
		NO FILTERING		655		
RMS Output Voltage	VOUT	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega-\mathrm{C}_{2}$ only		490	,	
		$\mathrm{f}_{\text {out }}=1633 \mathrm{~Hz}-\mathrm{C}_{1} \cdot \& \mathrm{C}_{2}$		580		
Skew Between High and Low Band Output Voltages	$\mathrm{V}_{\mathrm{HL}}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		2.5	3.0	dB
		$\mathrm{C}_{1}, \mathrm{C}_{2}$ disconnected				
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, operating		90	200	$\Omega$
Output Impedance	Zout	$R_{L}=1 \mathrm{k} \Omega$, quiescent		25		$k \Omega$
		$R_{L}=1 \mathrm{k} \Omega$				
Total Output Harmonic Distortion	THD1	Either high or low bands		20.0	25.0	\%
		No low pass filtering				
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{fout}=697 \mathrm{~Hz}$		2.3	10	
Total Output Harmonic Distortion	THD2	$\mathrm{C}_{1}=0.002 \mu \mathrm{~F}$				
		$\mathrm{C}_{2}=0.02 \mu \mathrm{~F}, \quad \mathrm{fout}=1633 \mathrm{~Hz}$		1.0	10	
Maximum Output Voltage Level	VOH	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$			4.6	V
Minimum Output Voltage Level	VOL	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.5			
Keyboard Input Pullup Resistors	RIN	Terminals 3, 4, 5, 6, 11, 12, 13, 14	35	100	150	$\mathrm{k} \Omega$
Keyboard Input Capacitance	CIN	Terminals 3, 4, 5, 6, 11, 12, 13, 14			5	pF
Guaranteed Oscillator Frequency Range (Note 4)	OFR ${ }_{1}$	$\left.3 \mathrm{~V} \leq \mathrm{V}^{+}-\mathrm{V}^{-}\right) \leq 6.0 \mathrm{~V}$	2.0		4.5	MHz
Guaranteed Oscillator Frequency Range	$\mathrm{OFR}_{2}$	$4 \mathrm{~V} \leq\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) \leq 6.0 \mathrm{~V}$	2.0		7.	
System Startup Time on Application of Power	ton	Supply voltage and key depressed simultaneously		10	$\cdots$	mS
Disable Output Saturation Resistance (ON STATE)	RD	See Logic Table for Input Conditions Current $=4 \mathrm{~mA}$		330	700	$\Omega$
Disable Output Leakage (OFF STATE)	ID	See Logic Table for Input Conditions			10	$\mu \mathrm{A}$
Oscillator Load Capacitance	Cosc	Measured between terminals 9 \& 10, no supply voltage applied to circuit $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	*	7		pF
Guaranteed Output Frequency Tolerance	fout	Any output frequency Crystal tolerance $\pm 60$ ppm   Crystal load capacitance $C_{L}=30 \mathrm{pF}$			$\pm 0.75$	\%
Oscillator Startup Time ICM7206B	tstart	$\mathrm{V}^{+}-\mathrm{V}^{-}=3 \mathrm{~V}$ Note 5			7	mS

NOTE 3: Operation above 6 volts must employ supply current limiting. Refer to 'ABSOLUTE MAXIMUM RATINGS' and the Application Notes for further information.
NOTE 4: The ICM7206 family uses dynamic high frequency circuitry in the initial $2^{3}$ divider resulting in low power dissipation and excellent performance over a restricted frequency range. Thus, for reliable operation with a 6 volt supply an oscillator frequency of not less than 2 MHz must be used.
NOTE 5: After row input is enabled.

## TRUTH TABLE

LINE	ROWS (1) ACTIVATED	COLS (2) ACTIVATED	OUTPUT   (TERMINAL \#15)	DISABLE (TERMINAL \#7)	COMMENTS
1	0	0	Off	Off	Quiescent State
2	1	1	frow +fcol	On	Dual Tone
3	1	2 or 3 (incl. col \#4)	frow	On	Single Tone
4	2 or 3	1.	$\mathrm{f}_{\mathrm{col}}$	On	Single Tone
5	2 or 3	2 or 3 (excl. col \#3)	D.C. Level : .	On	No Tone
6	1	4 or 3 (must excl. col \#4)	frow, 50\% Duty Cycle	frow, 50\% Duty Cycle	frow Test
7	4	1	focl, 50\% Duty Cycle	fcol, 50\% Duty Cycle	$\mathrm{f}_{\mathrm{col}}$ Test
8	0	1 or 2 or 3 or 4	Off	Off	n/a*
9	1	0	$902 \mathrm{~Hz}+$ frow	On	n/a*
10	2 or 3	0	902 Hz	On'	$n / a^{*}$
11	4	0	$902 \mathrm{~Hz}, 50 \%$ Duty Cycle	902Hz, 50\% Duty Cycle	n/a*
12	2 or 3 or 4	4	D.C. Level	Indeterminate	Multiple Key Lockout
13	4	2 or 3 or 4	D.C. Level	Indeterminate	Multiple Key Lockout

*n/a - not applicable to telephone calling.
Note 1: Rows are activated for the ICM7206 by connecting to a negative supply voltage with respect to $\mathrm{V}^{+}$(terminal 16) at least $33 \%$ of the value. of the supply voltage ( $\mathrm{V}^{+}-\mathrm{V}^{-}$). For the ICM7206A rows (and columns) are activated by connecting to a positive supply voltage with respect to $\mathrm{V}^{-}$(terminal 8 ) at least $33 \%$ of the value of the supply voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$. The rows and columns of the ICM7206B are activated by connecting to a negative supply voltage.
Note 2: Columns (ICM7206) are activated by being connected to a positive supply voltage with respect to $\mathrm{V}^{-}$(terminal 8 ) at least $33 \%$ of the value of the supply voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$.

## COMMENTS

All combinations of row and column activations are given in the truth table. Lines 1 thru 7 and 12, 13 represent conditions obtainable with a matrix keyboard. Lines 8 thru 11 are given only for completeness and are not pertinent to telephone dialing.
Lines 6 and 7 show conditions for generating 50\% duty cycle full amplitude signals useful for rapid testing of the row and column frequencies on automatic test equipment. In all other cases, output frequencies on terminal 15 are single or dual 4 level synthesized sine waves.

A 'DC LEVEL' on terminal 15 may be any voltage level between approximately 1.2 and 4.3 volts with respect to $\mathrm{V}^{-}$ (terminal 8) for'a 5.5 volt supply voltage.
The impedance of the OUTPUT (terminal 15) is approximately 20 K ohms in the OFF state. The 'DISABLE OUT-OUT' ON and OFF conditions are defined in the TYPICAL OPERATING CHARACTERISTICS.

## SCHEMATIC DIAGRAM



## TEST CIRCUIT



TYPICAL OPERATING CHARACTERISTICS
SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


OSCILLATOR FREQUENCY DEVIATION AS A FUNCTION OF SUPPLY VOLTAGE


## TOTAL HARMONIC DISTORTION AS A FUNCTION OF LOAD RESISTANCE



PEAK TO PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE




KEY	LOW BAND   FREQ. Hz	HI BAND   FREQ. Hz
1	697	1209
2	697	1336
3	697	1477
4	770	1209
5	770	1336
6	770	1477
7	852	1209
8	852	1336
9	852	1477
$*$	941	1209
0	941	1336
$\#$	941	1477
A	697	1633
B	770	1633
C	852	1633
D	941	1633

FIGURE 1: Keyboard Frequencies


FIGURE 2
Figure 2 shows individual currents of a low band and high band frequency pair into the swimming mode A (See Figure 3) and the resultant voltage waveform.

DESIRED   FREQUENCY   Hz	ACTUAL   FREQUENCY   Hz	FREQUENCY   DEVIATION   $\%$	DIVIDE BY N   RATIO
697	699.13	+0.30	80
770	766.17	-0.50	73
852	847.43	-0.54	66
941	947.97	+0.74	59
1209	1215.88	+0.57	46
1336	1331.68	-0.32	42
1477	1471.85	-0.35	38
1633	1645.01	+0.74	34

## APPLICATION NOTES

## 1. Device Description

The ICM7206 family is manufactured with a standard metal gate C-MOS technology having proven reliability and excellent reproducability resulting in extremely high yields. The techniques used in the design have been developed over many years and are characterized by wide operating supply voltage ranges and low power dissipation.

To minimize chip size, all diffusions used to define sourcedrain regions and field regions are butted up together. This results in approximately 6.3 volt zener breakdown between the supply terminals, and between all components on chip. As a consequence, the usual C-MOS static charge problems and handling problems are not experienced with the ICM7206.

The oscillator consists of a medium size C-MOS inverter having on chip a feedback resistor and two capacitors of 14 pF each, one at the oscillator input and the other at the oscillator output. The oscillator is followed by a dynamic $\div 23$ circuit which divides the oscillator frequency to $447,443 \mathrm{~Hz}$. This is applied to two programmable dividers each capable of division ratios of any integer between 1 and 128, and each counter is controlled by a ROM. The outputs from the programmable counters drive sequencers (divide by 8 ) which generate the eight time slots necessary to synthesize the 4level sine waves.


FIGURE 3: D to A Converter and Output Buffer

The control logic block recognizes signals on the row and column inputs that are only a small fraction of the supply voltage, thereby permitting the use of a simple matrix single contact per key keyboard, rather than the more usual two contacts per key type having a common line. The row and column pullup resistors are equal in value and connected to the opposite supply terminals (ICM7206 only; for the ICM7206A all pullup resistors are connected to the $\mathrm{V}^{-}$ terminal and for the ICM7206B they are tied to the $\mathrm{V}^{+}$. Therefore, connecting a row input to a column input generates a voltage on those inputs which is one half of the supply voltage.

The ICM7206 family employs a unique but extremely simple digital to analog ( $D$ to $A$ ) converter. This $D$ to $A$ converter produces a 4 level synthesized sine wave having an intrinsic total harmonic distortion level of approximately $20 \%$. Figure 3 shows a single channel D to $A$ converter. The current sources $Q_{2}$ and $Q_{3}$ are proportioned in the ratio of
1:1.414. During time slots 1 and 8 both $S_{1}$ and $S_{2}$ are off, during time slots 2 and 7 only $\mathrm{S}_{1}$ is on, during time slots 3 and 6 only $\mathrm{S}_{2}$ is on, and during time slots 4 and 5 both $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are on. The resultant currents are summed at node $A$, buffered by $Q_{4}$ and further buffered by $R_{3}, R_{4}$ and $Q_{5}$. Switch $\mathrm{S}_{3}$ allows the output to go into a high impedance mode under quiescent conditions.

Node $A$ is the common summing point for both the high and low band frequencies although this is not shown in Figure 3.

The synthesized sine wave has negligible even harmonic distortion and very low values of third and fifth harmonic distortion thereby minimizing the filtering problems necessary to reduce the total harmonic distortion to well below the $10 \%$ level required for touch tone telephone encoding. Figure 4 shows the low pass filter characteristic of the output buffer for $\mathrm{C}_{1}=0.0022 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=0.022 \mu \mathrm{~F}$. A small peak of 0.4 dB occurs at 1100 Hz with sharp attention (12dB per octave) above 2500 Hz . This type of active filter produces a sharper and more desirable knee characteristic than would two simple cascaded RC networks.


FIGURE 4: Frequency Attentuation Characteristics of the Output Buffer

## 2. Latchup Considerations

Most junction isolated C-MOS integrated circuits, especially those of moderate or high complexity, exhibit latchup phenomena whereby they can be triggered into an uncontrollable low impedance mode between the supply terminals. This can be due to gross forward biasing of inputs or outputs (with respect to the supply terminals), high voltage supply transients, or more rarely by exceptional fast rate of rise of supply voltages.

The ICM7206 family is no exception, and precautions must be taken to limit the supply current to those values shown in the ABSOLUTE MAXIMUM RATINGS. For an example, do not use a 6 volt very low impedance supply source in an electrically extremely noisy environment unless a 500 ohm current limiting resistor is included in series with the $\mathrm{V}^{-}$ terminal. For normal telephone encoding applications no problems are envisioned, even with. low impedance transients of 100 volts or more, if circuitry similar to that shown in the next section is used.

## 3. Typical Application (Telephone Handset)

A typical encoder for telephone handsets is shown in Figure 5. This encoder uses a single contact per key keyboard and provides all other switching functions electronically. The diode connected between terminals 8 and. 15 prevents the
output going more than 1 volt negative with respect to the negative supply $\mathrm{V}^{-}$and the circuit operates over the supply voltage range from 3.5 volts to 15 volts on the device side of the bridge rectifier. Transients as high as 100 volts will not cause system failure, although the encoder will not operate correctly under these conditions. Correct operation will resume immediately after the transient is removed.
The output voltage of the synthesized sine wave is almost directly proportional to the supply voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$and will increase with increase of supply voltage until zener breakdown occurs (approximately 6.3 volts between terminals 8 and 16) after which the output voltage remains constant.

## 4. Portable Tone Generator

The ICM7206A/B require a two contact key keyboard with the common line connected to the positive supply (neg for ICM7206B) (terminal 16). A simple diode matrix may be used with this keyboard to provide power to the system whenever a key is depressed, thus negating the need for an on/off switch. In Figure 6 the tone generator is shown using a 9 volt battery. However, if instead, a 6 volt battery is used, the diode $D_{4}$ is not required. It is recommended that a 470 ohm resistor still be included in series with a negative (positive) supply to prevent accidental triggering of latchup.


NOTE: If dual contact keyboard is used, common should be left floating.


FIGURE 6: Portable Tone Generator

## OPTIONS

## (For additional information consult the factory)

New types of keyboards, new applications for tone generators and nèw system requirements, provide challenges and difficulties to the semiconductor manufacturer. The design criteria for the ICM7206 included the following:
a) Selecting the least expensive and most reliable keyboard
b) Selecting the lowest cost and most available quartz crystal
c) Minimizing the number of external components
d) Minimizing supply current drain and maximizing operating supply voltage range
e) Providing the smallest and least expensive circuit possible in a 16 lead package
Options can be achieved using metal mask additions to provide the following.

1) The sequence or position of either the row or column terminals can be interchanged i.e., row 1 terminal 3 could become terminal 11, etc.
2) Any frequency oscillator from approximately 0.5 MHz to 7 MHz can be chosen. Note that the accuracy of the output frequencies will depend on the exact oscillator frequency. For instance, a 1 MHz crystal could be used with worst case output frequency error of $0.8 \%$. Or, if high accuracy is required, $\pm 0.25 \%$, oscillator frequencies of $5,117,376 \mathrm{~Hz}$ or $2,558,688 \mathrm{~Hz}$ could be selected. ROM's are used to program the dividers.
3) The 'DISABLE' output may be changed to an inverter or an uncommitted drain n-channel transistor.
4) The oscillator may be disabled until a key is depressed.

## PACKAGE DIMENSIONS



NOTE 1: Board drilling dimensions will equal standard practices for .020 diameter lead.
NOTE 2: All dimensions in parenthesis are metric.

NOTES

## Digital

Memory
RAMs

7114/2114	7-4
2147	7-8
4027	7-12
4116	7-20
IM6512	7-28
IM6508/6518	7-34
IM6551/6561	7-40
IM6504	7-46
IM6514	7-52
IM7141	7-56
ROMs	
IM6312	7-60
IM6316	7-64
IM6364	7-70


EPROMs	
IM6653, 6654	$7-73$
PROMs	
IM5600, 5610	$7-79$
IM5603/5623	$7-83$
IM5604/5624	$7-89$
IM5605/5625	$7-94$
PROM Programming	$7-101$
Microprocessors	
IM6100	$7-103$
Sampler Kit-6801	$7-125$
87C48	$7-129$
80C49	$7-137$

## Peripherals

IM5200
IM6101
IM6102
IM6103
IM6402/6403
$87 C 41$
80C43
Development
Systems
Sys
intercept Jr. Intercept I/II 6970-IFDOS 6970-IFDOS 7-229 EPROM programmer 7-230

## CMOS RAM's

Organization	$\begin{gathered} \text { Max } \\ \text { Access Time } \\ \text { (ns) } \end{gathered}$	No. of Pins	$\left\lvert\, \begin{gathered} V_{\infty} \\ \max (V) \end{gathered}\right.$	$\begin{gathered} \mathrm{I}_{\mathrm{Cc}} \operatorname{Max} \\ (\mu \mathrm{~A}) \end{gathered}$	Pkg ${ }^{2}$	Temp Range
$\begin{aligned} & 4096 \times 1 \\ & \text { IM } 6504 \end{aligned}$	170	18	5.5	0.2 (typ.)	D,J,F,	C,I,M
$1024 \times 1$						
IM6508/6518	460	16/18	7.0	100	D,J,F	C,I,M
IM6508-1/6518-1	300.	16/18	7.0	10	D, J,F	I,M
IM6508A/6518A	150	16/18	11.0	500	D, J,F	I,M
IM6508A-1/6518A-1	95	16/18	12.0	100	D,J,F	I,M
$256 \times 4$		$\cdots \cdots$				
IM6551/61	, 360	18/22	8.0	100	D, J,F	I,M
IM6551A/61A	180	18/22	12.0	500	D,J,F	I,M
$\begin{aligned} & 256 \times 1 \\ & 1 \text { M6523 } \end{aligned}$	800	16	7.0	50	D,J,F	I,M
$64 \times 12$						
IM6512 IM6512A	460 150	18 18	8.0 12.0	100 500	$\begin{aligned} & \mathrm{D}, \mathrm{~J}, \mathrm{~F} \\ & \mathrm{D}, \mathrm{~J}, \mathrm{~F} \end{aligned}$	$\begin{gathered} \mathrm{C}, \mathrm{I}, \mathrm{M} \\ \mathrm{I}, \mathrm{M} \end{gathered}$

## UV-ERASABLE CMOS PROMS

Organization	$\begin{gathered} \text { Max } \\ \text { Access Time } \\ \text { (ns) } \end{gathered}$	No. of Pins	Operating Range (V)	$\mathrm{I}_{\substack{\propto \\(\mu \mathrm{A}) \\ \max ^{2} \\ \hline}}$	P $\mathbf{k g}^{2}$	Temp Range
$1024 \times 4$						
6653	600	24	5	20	D, J	I,M
6653-1	450	24	5	20	D, J	1
6653A	300	24	10	20	D, J	1
$512 \times 8$						
6654	. 600	24	5	20	D, J	I,M
6654-1	450	24	5	20	D, J	I
5554A	300	24	10	20	D, J	1

## CMOS ROM's

Organization	$\begin{gathered} \text { Max } \\ \text { Access Time (ns) } \end{gathered}$	No. of Pins	$V_{\max _{\infty}(V)}$	$\begin{gathered} \mathrm{I}_{(\mu \mathrm{A})} \mathrm{Max} \\ \hline \end{gathered}$	Pkg ${ }^{2}$	Temp Range
$1024 \times 12$						
IM6312	400	18	7.0	100	D, J	C,I,M
IM6312A	200	18	11.0	500	D, J	I,M
$2048 \times 8$						
IM6316	350 (typ)	24	7.0	100(typ)	D, J	C,I,M
$8192 \times 8$						
IM6364	350(typ)	24	7.0	100(typ)	D, J	C,I,M

## BIPOLAR PROM's

Organization	$\begin{gathered} \text { Max } \\ \text { Access Time (ns) } \end{gathered}$	No. of Pins	Output Type ${ }^{1}$	Pkg ${ }^{2}$	Temp
FPLA IM5200 48 Product Terms 14 Inputs; 8 Outputs	100	24	OC	J	C
$32 \times 8$					
IM5600	50	16	OC	D, J,F	C,M
IM5610	50	16	TS	D, J,F	C,M
$256 \times 4$					
- IM5603A	60	16	OC	D, J,F	C,M
IM5623	60	16	TS	D,J,F	C,M
$512 \times 4$					
IM5604	70	16	OC		
IM5624	70 :	16	TS	D, J,F	C,M
$512 \times 8$					
IM5605 IM5625	70 70	24	OC TS	D	C,M

Note 1: OC-Open Collector Output
TS-Tri-State Output
Note 2:
D: Ceramic Dual-In-Line
J: Cerdip Dual-In-Line
F: Ceramic Flat Package

## Dynamic RAMS

Organization	Max Access Time (ns)	Min Read Cycle (ns)	Min Read/Mod Write Cycle (ns)	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Pins } \end{gathered}$	$\begin{gathered} \text { Input } \\ \text { Levels } \\ \mathbf{V}_{1} / V_{H H}(V) \end{gathered}$	Power Supplies (V)	Max Operating Power (mW)	$\begin{aligned} & \hline \text { Standby } \\ & \text { Power } \\ & \text { (mW) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Pkg } \\ \text { (note 1) } \end{gathered}$	
$\begin{aligned} & 16384 \times 1 \\ & \text { IM4116-2 } \\ & \text { IM4116-3 } \\ & \text { IM4116-4 } \end{aligned}$	150 200 250	375 375 375	375 $\left.\left\lvert\, \begin{array}{l}375 \\ 375\end{array}\right.\right)$	16 16 16	$.8 / 2.4$ $.8 / 2.4$ $.8 / 2.4$	$+12, \pm 5$ $+12, \pm 5$ $+12, \pm 5$	550 550 550	27 27 27	J J	C C C
$\begin{aligned} & 4096 \times 1 \\ & \text { IM7027-1 } \end{aligned}$	120	250	325	16	.8/2.2	+12, $\pm 5$	462	27.	$J$	C
MK4027-2   MK4027-3   MK4027-4	150 200 250	320 375 375	325 420 480	16 16 16	$\begin{aligned} & .8 / 2.2 \\ & .8 / 2.2 \\ & .8 / 2.2 \end{aligned}$	$\begin{aligned} & +12, \pm 5 \\ & +12, \pm 5 \\ & +12, \pm 5 \end{aligned}$	$\begin{aligned} & 462 \\ & 462 \\ & 462 \end{aligned}$	27 27 27	$\begin{aligned} & \mathrm{J} \\ & \mathbf{J} \end{aligned}$	C C C

## Static RAMS

Organization	Max Access Time (ns)	Min Read Cycle (ns)	$\begin{gathered} \text { No } \\ \text { of } \\ \text { Pins } \end{gathered}$	$\begin{gathered} \text { Input } \\ \text { Levels } \\ \mathbf{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{HH}}(\mathrm{~V}) \end{gathered}$	Power Supplies (V)	$\begin{gathered} \text { Max } \\ \text { Operating } \\ \text { Power (mW) } \end{gathered}$	$\begin{gathered} \text { Pkg } \\ \text { (note 1) } \end{gathered}$	Temp Range (note 2)
4096 $\times 1$								
IM7141-2,	200	200 300	18	$.8 / 2.0$ $8 / 20$	+5 +5	370 370	J	C,M
IM7141-3 IM7141	300 450	300 450	18	.8/2.0	+5 +5	370 370	J	C,M
IM7141L2	200	200	18	.8/2.0	+5	265	J	$\stackrel{C}{C}$
IM7141L3	300	300	18	.8/2.0	+5	265	J	C
IM7141L	450	450	18	.8/2.0	+5	265	$J$	C
$1024 \times 4$								
IM2114-2	200	200	18	.8/2.0	+5	525	$J$	C
IM2114-3	300	300	18	.8/2.0	+5	525	J	C
IM2114	450	450	18	.8/2.0	+5	525	$J$	C
IM2114L2	200	200	18	.8/2.0	+5	370	$J$	C;M
IM2114L3	300	300	18	.8/2.0	+5	370	J	C,M
IM2114L	450	450	18	.8/2.0	+5	370	J	C,M
IM7114L2	200	200	18	.8/2.0	+5	265	J	C
IM7114L3	300	300	18	.8/2.0	+5	265	J	C
IM7114L	450	450	18	.8/2.0	+5	265	J	C
IM2147	70	70	18	.8/2.4	+5	880/110	D,J	C
IM2147-3	55	55	18	.8/2.4	+5	990/165	D,J	C

## FEATURES

- Organization - 1024x4
- Maximum Access Time:
- 7114L2, 2114L2, 2114-2: 200ns
- 7114L3, 2114L3, 2113-3: 300ns
- 7114L, 2114L, 2114: 450ns
- TTL Compatible Inputs and Outputs
- Common Data Input and Output
- Military Temperature Operation $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ Available
- 883A Class B Processing Available
- Minimum Cycle Time Equal to Access Time
- Power Dissipation:
-7114L: 265mW Maximum
- 2114L: 385mW Maximum
- 2114: 525mW Maximum
- Military Temp Units - 495mW Maximum
- Completely Static Operation
- Pin Compatible with Intel 2114



## GENERAL DESCRIPTION

The 7114 is a 4096-bit static Random Access Memory device. The 7114 is organized $1024 \times 4$. The storage cell, decode and control circuitry are completely static, therefore no clocks or refresh operations are required. Memory access occurs within the specified access time after all address inputs are stable. A Chip Select input is provided for simple memory array expansion.

The 7114 is pin and performance compatible with the Intel 2114 series with the exception that the 7114 has lower power dissipation.
The device is assembled in a standard 18-pin DIP for maximum system packing density.

## BLOCK DIAGRAM



ORDERING INFORMATION

TEMP. RANGE	POWER	PACKAGE	ACCESS TIME		
			200nS	300 nS	450nS
C	265 mW	CERDIP	IM7114L2CJN	IM7114L3CJN	IM7114LCJN
C	370 mW	CERDIP	IM2114L2CJN (D2114L2)	IM2114L3CJN (D2114L3)	IM2114LCJN (D2114L)
M	495 mW	CERDIP	IM2114L2MJN (MD2114L2)	IM2114L3MJN (MD2114L3)	IM2114LMJN (MD2114L)
M	$\begin{aligned} & \hline 495 \mathrm{~mW} \\ & \mathrm{w} / 883 \mathrm{~B} \end{aligned}$	CERDIP	IM2114L2MJN/883B (MD2114L2/B)	IM2114L3MJN/883B (MD2114L3/B)	IM2114LMJN/883B (MD2114L/B)
C	525 mW	CERDIP	IM2114-2CJN (D2114-2)	IM2114-3CJN (D2114-3)	IM2114CJN (D2114)
C	265 mW	PLASTIC	IM7114L2CPN	IM7114L3CPN	IM7114LCPN
C	370 mW	PLASTIC	IM2114L2CPN (P2114L2)	IM2114L3CPN (P2114L3)	IM2114LCPN (P2114L)
C	525 mW	PLASTIC	IM2114-2CPN (P2114-2)	IM2114-3CPN (P2114-3)	IM2114CPN (P2114)

ABSOLUTE MAXIMUM RATINGS

Operating Temperature MD2114 . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin to Ground . . . . . . . . . . -0.5 V to +7 V
Power Dissipation

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

AC CHARACTERISTICS MD2114: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
7114, 2114: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{T}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$, Output Load $=1 \mathrm{TTL}$ Gate and 100 pf

## READ CYCLE

	PARAMETER	$\begin{gathered} \text { 7114L2 } \\ \text { 2114L2,2114-2 } \end{gathered}$		$\begin{gathered} \text { 7114L3, 2114L3, } \\ 2114-3 \\ \hline \end{gathered}$		$\begin{gathered} \text { 7114L, 2114L } \\ 2114 \end{gathered}$		UNITS
SYMBOL		MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {R }}$ RC	Read Cycle Time	200		300		450		ns
${ }^{t}$ A	Access Time		200		300		450	ns
${ }^{\text {t }} \mathrm{CO}$	CS to Output Valid		70		100		100	ns
${ }^{\text {t }} \mathrm{CX}$	CS to Output Active	20		20		20		ns
${ }^{\text {t }}$ OTD	Output Three-State from Deselect	0	60	0	80	0	100	ns
${ }^{\mathrm{t}} \mathrm{OHA}$	Output Hold from Address Change	50		50		50	.	ns

WRITE CYCLE

SYMBOL	PARAMETER	$\begin{gathered} \text { 7114L2, 2114L2 } \\ 2114-2 \end{gathered}$		$\begin{gathered} \text { 7114L3, 2114L3, } \\ 2114-3 \\ \hline \end{gathered}$		$\begin{gathered} 7114 \mathrm{~L}, 2114 \mathrm{~L} \\ 2114 \\ \hline \end{gathered}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {W }}$ WC	Write Cycle Time	200		300		450		ns
${ }^{t}$ W	Write Time	120		150		200		ns
${ }^{t}$ WR	Write Release Time	0		0		0		ns
${ }^{\text {t OTW }}$	Output Three-State from Write	0	60	0	80	0	100	ns
${ }^{\text {t }}$ DW	Data to Write Time Overlap	120		150		200		ns
${ }^{\text {t }}$ DH	Data Hold from Write Time	0		0		0		ns
${ }^{\text {t }}$ AW	Address Setup Time	0		0	,	0		ns
${ }^{\text {t }} \mathrm{CW}$	CS Select Pulse Width	120		150		200		ns

DC CHARACTERISTICS MD2114: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
7114, 2114: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	7114L		2114L		2114		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
$\mathrm{l}_{\mathrm{L} 1}$	Input Load Current		10 ।		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 5.25 V
${ }^{\text {L }}$ O	I/O Leakage Current (All Inputs)		10		10		10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{CS}=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=+0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
${ }^{\text {I CC2 }}$	Power Supply Current		40		65		90	mA	$\begin{aligned} & V_{I N}=+5.25 \mathrm{~V}, \\ & I_{I / O}=0 \mathrm{~mA}, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$
${ }^{\text {I CC1 }}$	Power Supply Current		50		70		100	mA	$\begin{aligned} & \mathrm{V}_{\text {IN }}=+5.25 \mathrm{~V}, \\ & \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
${ }^{\text {I CC3 }}$	Power Supply Current	$\checkmark$			90			mA	$\begin{aligned} & V_{\text {IN }}=+5.5 \mathrm{~V}, \\ & \mathrm{I}_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {IL }}$	Input Low Voltage	-0.5	0.8	-0.5	0.8	-0.5	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	$\mathrm{V}_{\text {c }}$	2.0	$\mathrm{V}_{\text {cc }}$	2.0	$\mathrm{V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage		0.4		0.4		0.4	V	$\mathrm{I}^{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	2.4	$\mathrm{V}_{\text {cc }}$	2.4	$\mathrm{V}_{\text {cc }}$	2.4	$\mathrm{V}_{\text {cc }}$	V	$\mathrm{IOH}^{\prime}=-200 \mu \mathrm{~A}$

## DEVICE OPERATION

When $\overline{W E}$ is high, the data input buffers are inhibited to prevent erroneous data from getting into the array. As long as $\overline{\mathrm{WE}}$ remains high, the data stored cannot be changed by the address Chip Select, or data input voltage levels and timing transitions. The block diagram also shows data storage cannot be changed by $\overline{W E}$, the addresses, not the input data as long as $\overline{\mathrm{CS}}$ is high. Either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ by itself, or in conjunction with the other, can prevent the extraneous writing due to signal transitions.
Data within the array can only be changed during a Write time, defined as the overlap of $\overline{\mathrm{CS}}$ low and $\overline{\mathrm{WE}}$ low. To prevent the loss of data, the addresses must be properly established during the entire Write time plus tWR.

## CAPACITANCE

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	5	pF	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$

## TIMING DIAGRAMS

## READ CYCLE



## WRITE CYCLE



## 7114/2114 BIT MAP

## PHYSICAL DIMENSIONS

## CERDIP PACKAGE



## NMOS Static RAM 4096 Bit (4096 x 1) Preliminary

## FEATURES

- High speed - $55 n$ S maximum access time (2147-3)
- Automatic low-power standby - 20 mA maximum (2147)
- Completely static - no clock required
- Single +5 V supply
- TTL compatible inputs and outputs
- Three-state outputs
- High-density SELOX III process technology
- Intel 2147 compatible


## GENERAL DESCRIPTION

The Intersil 2147 is a high-speed 4096-bit static RAM organized as 4096 words by 1 bit, fabricated with Intersil's SELOX III, single-layer poly, selective-oxidation process. Innovative design techniques result in minimum cell area and optimum circuit performance.
Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.
An automatic low-power standby mode is controlled by chip select ( $\overline{\mathrm{S}}$ ); less than one cycle time after $\overline{\mathrm{S}}$ goes high, power dissipation drops from a maximum of 160 mA to 20 mA (2147).
The basic device operates over the $5 \mathrm{~V} \pm 5 \%$ range with a worst-case access time of 70 ns . A " -3 " device is available with 55 ns worst-case access time.

The Intersil 2147 is supplied in an 18-pin package with industry standard pin configuration.


ABSOLUTE MAXIMUM RATINGS 1

SYMBOL	DESCRIPTION	MIN	MAX	UNITS	NOTES
VIN	Voltage on any Pin Relative to GND	-0.5	+7	V	2
IOS	Short Circuit Output Current		20	mA	
TSTORE	Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$	
TBIAS	Ambient Temperature Under Bias	-10	+85	${ }^{\circ} \mathrm{C}$	
PD	Power Dissipation		1	W	

## NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.
2. This device contains internal circuitry to protect against damage due to static charge. Conventional precautions should be observed, however, during storage, handling, and use to avoid exposure to excessive voltages.
ELECTRICAL PARAMETERS $1 \quad \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted

SYMBOL	DESCRIPTION	2147			2147-3			UNITS	NOTES
		MIN	TYP ${ }^{1}$	MAX	MIN	TYP1	MAX		
VIH	Input HIGH Voltage	2.0		6.0	2.0		6.0	V	
VIL	Input LOW Voltage	-0.3		0.8	-0.3		0.8	V	
IIL	Input Leakage Current		0.01	10		0.01	10	$\mu \mathrm{A}$	2
VOH	Output HIGH Voltage	2.4			2.4			V	3
VOL	Output LOW Voltage			0.4			0.4	V	4
IOZ	Output Leakage Current		0.1	50		0.1	50	$\mu \mathrm{A}$	5
ICCOP1	Operating Supply Current		50	150		60	170	mA	6,7
ICCOP2	Operating Supply Current			160			180	mA	6,8
ICCSB	Standby Supply Current		10	20		15	30	mA	9
ICCPON	Peak Power-On Supply Current	.	25	50		35	70	mA	10

## NOTES:

1. Typical values are measured at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ and are not guaranteed.
2. $\mathrm{VCC}=5.25 \mathrm{~V}, \mathrm{GND} \leq \mathrm{VIN} \leq \mathrm{VCC}$
3. $1 \mathrm{OH}=-4.0 \mathrm{~mA}$
4. $\mathrm{IOL}=8 \mathrm{~mA}$
5. $\mathrm{VCC}=5.25 \mathrm{~V}, \overrightarrow{\mathrm{~S}}=\mathrm{VIH}, \mathrm{GND} \leq \mathrm{VO} \leq 4.5 \mathrm{~V}$
6. $\mathrm{VCC}=5.25 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{VIL}, I \mathrm{O}=0$
7. $\mathrm{TA}=25^{\circ} \mathrm{C}$
8. $T A=0^{\circ} \mathrm{C}$
9. $\mathrm{VCC}=4.75$ to $5.25 \mathrm{~V}, \overline{\mathrm{~S}}=\mathrm{VIH}$
10. $\mathrm{VCC}=\mathrm{GND}$ to $4.75 \mathrm{~V}, \overline{\mathrm{~S}}=$ lower of VCC or VIH min. A pullup resistor on $\bar{S}$ is required during power-on in order to keep the "device deselected; otherwise ICCPON approaches ICCOP. VCC slew rate _ $1 \mathrm{~V} / \mu \mathrm{S}$.

TIMING PARAMETERS $\vee C C=5 \mathrm{~V} \pm 5 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, unless otherwise noted

	DESCRIPTION	JEDEC SYMBOL	2147		2147-3		UNITS	NOTES
SYMBOL			MIN	MAX	MIN	MAX		
tRC	READ CYCLE   Read Cycle Time	-	70		55			
tAA	Address Access Time	TAVQV		70		55		
tASC1	Chip Select Access Time	TSLQV		70		55		2
tASC2	Chip Select Access Time	TSLQV		80		65		3
tOH	Output Hold from Address Change	TAXQX	5		5			
tLZ	Chip Selection to Output Enabled	TSLQX	10		10			
tHZ	Chip Deselection to Output Disabled	TSHQZ	0	40	0	40		
tPU	Chip Deselection to Power Up Time		0	-	0			
tPD	Chip Deselection to Power Down Time			30		30		
tWC	WRITE CYCLE   Write Cycle Time		70		55		ns	$\cdots$
tCW	Chip Selection to End of Write	TSLWH	55		45			
tAW	Address Valid to End of Write	TAVWH	55		45			
tAS	Address Setup Time	TAVWL	0		0			
tWP	Write Pulse Width	TWLWH	40		35			
tWR	Write Recovery Time	TWHAX	15		10			
tDW	Data Valid to End of Write	TDVWH	30		25			
tDH	Data Hold Time	TWHDX	10		10			
tWZ	Write Enabled to Output Disabled	TWLQZ	0	35	0	30		$\cdots$
tOW	Output Active from End of Write	TWHQX	0	35	0	30		

## NOTES:

1. $\mathrm{tR}=\mathrm{tF}=10 \mathrm{~ns}$. Input and output timing reference level $=1.5 \mathrm{~V}$.
2. Device deselected for 55 ns or more prior to selection.
3. Device deselected for a finite time less than 55 ns prior to selection.

TIMING DIAGRAMS


Read Cycle (Chip Select)


## PRINTED CIRCUIT LAYOUT



## PACKAGE DIMENSIONS

18-pin CERDIP*


[^27]
## FEATURES

- 4096 X 1 Bit Organization
- Gated CAS
- $\overline{\text { RAS }}$ Only Refresh
- All Inputs TTL Compatible
- On-Chip Latches for Addresses, Chip Select and Data In
- $10 \%$ Supply Tolerances ( $+12 \mathrm{~V},+5 \mathrm{~V},-5 \mathrm{~V}$ )
- Three-State TTL Compatible Output
- Low Power Dissipation
-470 mW Operating
- 27 mW Standby
- Chip Select Decode Does Not Add to Access Time
- Output Data Latched and Valid Into Next Cycle
- N-Channel Silicon Gate Technology
- Pin and Performance Compatibility with Mostek MK4027


## GENERAL DESCRIPTION

The IM7027 is a $4096 \times 1$ bit dynamic random access memory which is packaged in 16 pin DIP. The cell array is organized into 64 rows of 64 cells. Each of the 64 row addresses requires refreshing every 2 milliseconds. Any read cycle refreshes the selected row as does a refresh cycle using $\overline{\mathrm{RAS}}$ only. A write, read/write or read/modify/write cycle also refreshes the selected row, but non-accessed chips should not be selected to avoid writing data into the selected row. A page-mode feature is included to reduce the access and/or cycle time for block data operations. Page-mode operation is useful in direct memory access (DMA) operations.

System oriented features include direct interfacing with TTL, on-chip registers which eliminate the need for interface registers, logic input levels selected for best noise immunity. Twelve address bits are required to decode 1 of 4096 cell locations, and are multiplexed onto 6 address pins and latched into the row and column address latches. The Row Address Strobe ( $\overline{\mathrm{RAS}}$ ) latches the 6 row address bits onto the chip. The Column Address Strobe ( $\overline{\mathrm{CAS}}$ ) latches the 6 column address bits and Chip Select ( $\overline{\mathrm{CS}}$ ) onto the chip. Since the Chip Select signa is not required until well into the cycle, its decoding time does not add to the system address or cycle time.

PIN CONF	IGURA   16   15   14   13   12   11   10   9	TION   VSS   $\overline{\text { CAS }}$   DOUT   $\overline{\mathrm{CS}}$   A3   A4   A5   VCC	LOGIC	SYMBOL
ORDERING INFORMATION				
ORDER NUMBER	$\begin{gathered} \text { ACCESS } \\ \text { TIME } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { CYCLE } \\ \text { TIME } \\ \hline \end{array}$	PACKAGE	Equivalent
IM7027-1CJE	120 ns	250 ns	16 PIN	-
IM7027-2CJE	150 ns	320 ns	16 PIN CERDIP	MK4072P-2
IM7027-3CJE	200 ns	375 ns	CERDIP	MK4027P-3
IM7027-4CJE	250 ns	375 ns	16 PIN CERDIP	MK4027P-4

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage On Any Pin w/Respect to VBB . . . . . . . . . . . . . . . . . -0.5 V to +20.0 V
Power Disṣipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W

NOTE: Stresses above those listed under "Absolute Maximum Ratings"' may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## DC CHARACTERISTICS

TEST CONDITIONS: $\quad V_{D D}=+12.0 \mathrm{~V} \pm 10 \%, V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER		MIN	MAX	UNITS	NOTES
1	$\mathrm{V}_{\text {IHC }}$	$\overline{\text { RAS }}$, $\overline{\mathrm{CAS}}$, WRITE Voltage High		2.4	7.0	V	
2	$V_{1 H}$	Input Voltage High		2.2	7.0	V	
3	$V_{\text {IL }}$	Input Voltage Low		-1.0	0.8	V	
4	$I_{1(L)}$	Input Leakage Current.			10	$\mu \mathrm{A}$	4
5	IO(L)	Output Leakage Current			10	$\mu \mathrm{A}$	5,6
6	IDD1	Average $\mathrm{V}_{\text {DD }}$ Power Supply Current			35	mA	2
7	Icc	$\mathrm{V}_{\mathrm{CC}}$ Power Supply Current					3
8	'BB'	Average $\mathrm{V}_{\text {BB }}$ Power Supply Current	-2, -3, -4		300	$\mu \mathrm{A}$	
			-1		400	$\mu \mathrm{A}$	
9	IDD2	Standby $\mathrm{V}_{\text {DD }}$ Power Supply Current			2	mA	5
10	IDD3	Average $\mathrm{V}_{\text {DD }}$ Current (" $\overline{\mathrm{RAS}}$ Only" Refresh)			25	mA	
11	$\mathrm{V}_{\mathrm{OH}}$	Output Voltage High $\mathrm{IOH}=-5 \mathrm{~mA}$		2.4		V	
12	$\mathrm{V}_{\mathrm{OL}}$	Output Voltage Low $\mathrm{IOL}^{\text {a }}=3.2 \mathrm{~mA}$			0.4	V	

NOTES: 1. $V_{B B}$ must be applied before and removed after other supply.voltages.
2. IDD1 (max) measured at ${ }^{t} R C(\min )$. IDD1 is proportional to cycle rate.
3. ICC depends on output loading.
4. All pins except $V_{B B}$ at $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}$ and test pin $=+10 \mathrm{~V}$.
5. Output disabled, $\overline{R A S}$ and $\overline{C A S} \geqslant \mathrm{~V}_{I H C}$ (min).
6. $\mathrm{OV} \leqslant \mathrm{V}_{\mathrm{OUT}} \leqslant+10 \mathrm{~V}$.

TIMING DIAGRAMS
READ AND REFRESH CYCLE


IM7027/MK4027

## WRITE CYCLE



RAS ONLY REFRESH CYCLE


READ/WRITE CYCLE


PAGE MODE READ CYCLE
$\overline{\mathrm{RAS}}$
$\overline{\mathrm{CAS}}$

ADDRESSES


PAGE MODE WRITE CYCLE


## AC CHARACTERISTICS

TEST CONDITIONS: $\quad V_{D D}=+12.0 \mathrm{~V} \pm 10 \%, V_{C C}=+5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, V_{B B}=-5.0 \mathrm{~V} \pm 10 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (NOTES 1,5 and 8)

	SYMBOL	PARAMETER	IM7027-1CJE		MK4027 P-2		MK4027 P-3		MK4027 P-4		UNITS	NOTES
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
1	${ }^{\text {tr }} \mathrm{C}$	Random Read or Write Cycle Time	250		320		375		375		ns	2
2	$t_{\text {thw }}$	Read Write Cycle Time	325		330		420		480		ns	
3	${ }^{\text {trac }}$	Access Time from Row Address Strobe		120		150		200		250	ns	3
4	${ }^{\text {t }}$ CAC	Access Time from Column Address Strobe		80		100		135		165	ns	3
5	toff	Output Buffer Turn-off Delay		40		40		50		60	ns	
6	${ }_{\text {t }} \mathrm{P}$ P	Row Address Strobe Precharge Time	80		100		120		120		ns	
7	tras	Row Address Strobe Pulse Width	120	10,000	150	10,000	200	10,000	250	10,000	ns	
8	${ }^{\text {tRSH}}$	Row Address Strobe Hold Time	80		100		135		165		ns	
9	${ }^{\text {t CAS }}$	Column Address Strobe Pulse Width	80		100		135		165		ns	
10	${ }^{\text {trec }}$	Row to Column Strobe Delay	20	40	20	50	25	65	35	85	ns	4
11	${ }^{\text {t }}$ ASR	Row Address Set-up Time	0		0		0		0		ns	
12	trah	Row Address Hold Time	20		20		25		35		ns	
13	${ }^{\text {t }}$ ASC	Column Address Set-up Time	0		-10		-10		-10		ns	
14	${ }^{\text {t }} \mathrm{CAH}$	Column Address Hold Time	45		45		55		75		ns	
15	${ }^{\text {t }}$ AR	Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$	95		95		120		160		ns	
16	${ }^{\text {t }}$ cs C	Chip Select Set-up Time	-10		-10		-10		-10		ns	
17	${ }^{\text {t }} \mathrm{CH}$	Chip Select Hold Time	45		45		55		75		ns	
18	${ }^{\text {t }}$ CHR	Chip Select Hold Time Referenced to $\overline{\mathrm{RAS}}$	95		95		120		160		ns	
19	${ }^{\text {t }}$	Transition Time (Rise and Fall)	3	35	3	35	3	50	3	50	ns	
20	tres	Read Command Set-up Time	0		0		0		0		ns	
21	trch	Read Command Hold Time	0		0		0		0		ns	
22	twCH	Write Command Hold Time	45		45		55		75		ns	
23	tWCR	Write Command Hold Time Referenced to $\overline{\text { RAS }}$	95		95		120		160		ns	
24	twp	Write Command Pulse Width	45		45		55		75		ns	
25	${ }^{\text {tr }}$ W ${ }^{\text {d }}$	Write Command to Row Strobe Lead Time	50		50		70		85		ns	
26	${ }^{\text {t CWL }}$	Write Command to Column Strobe Lead Time	50		50		70		85		ns	
27	${ }^{\text {t }}$ S	Data in Set-up Time	0		0		0		0		ns	7.
28	${ }^{\text {t }}$ D ${ }^{\text {d }}$	Data in Hold Time	45		45		55		75		ns	7
29	to ${ }^{\text {d }}$	Data in Hold Time Referenced to $\overline{\text { RAS }}$	95		95	-	120		160		ns	
30	${ }^{\text {t }}$ CRP	Column to Row Strobe Precharge Time	0		0		0		0		ns	
31	${ }^{\text {t }} \mathrm{C} P$	Column Precharge Time	60		60		80		110		ns	
32	trish	Refresh Period		2		2		2		2	ms	
33	twCS	Write Command Set-up Time	0	$\because$	0		0		0		ns	6
34	${ }^{\text {t }}$ CWD	$\overline{\text { CAS }}$ to WRITE Delay	60		60		80		90		ns	6
35	$t_{\text {RWW }}$	$\overline{\text { RAS }}$ to WRITE Delay	110		110		145		175		ns	6
36	${ }^{\text {to }}$	Data Out Hold Time	10		10		10		10		ns	

NOTES 1: $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$ unless otherwise noted.
2: $t_{R C}>t_{R A S}+t_{R P}+2 t_{T}$ to limit power dissipation.
3: Load $=2 \mathrm{TTL}+100 \mathrm{pF}$.
4: If $t_{R C D}$ is greater than $t_{R C D}$ (max) access time is controlled by $t_{C A C}$.
5: $V_{I H C}(\min ), V_{I H}(\min )$ and $V_{I L}(\max )$ are reference levels.
6: tWCS, t CWD and t RWD are not restrictive parameters, they are electrical characteristics only as follows:
a. ${ }^{\mathrm{t}} \mathrm{CWD}+\mathrm{t}_{\mathrm{T}} \leqslant \mathrm{t}_{\mathrm{C} W D}$ minimum output latch contains data written into current address.
b. $\mathrm{t}_{\mathrm{C} W D} \geqslant \mathrm{t}_{\mathrm{C} W D}(\max )+\mathrm{t}_{\mathrm{T}}$ and $\mathrm{t}_{\mathrm{RWD}} \geqslant \mathrm{t}_{\mathrm{RWD}}$ (max) $+\mathrm{t}_{\mathrm{T}}$ the data output latch contains data read from the current address.
c. If t CWD does not meet the above, data output state is indeterminate.

7: Referenced to latest of $\overline{\mathrm{CAS}}$ or $\overline{\text { WRITE. }}$
8: Any 8 cycles that perform refresh are required after power is applied.

## IM7027/ MK4027

TYPICAL DEVICE CHARACTERISTICS

TYPICAL ADDRESS DATA INPUT LEVELS VS. VDD


TYPICAL IDD CURRENT VS. OPERATING TEMPERATURE


TYPICAL IBB CURRENT VS. OPERATING TEMPERATURE


TYPICAL DATA OUTPUT LEVEL VS. VDD


TYPICAL IDD CURRENT VS. OPERATING TEMPERATURE



## TYPICAL DEVICE CHARACTERISTICS (Continued)



## BIT MAP

The memory cells are divided into 2 groups each organized as 64 rows by 32 columns. The column addresses run in pure binary order for $\mathrm{Y}_{5} \mathrm{Y}_{4} \mathrm{Y}_{3} \mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0}$, where $\mathrm{Y}_{5}$ is most significant. The row addresses run in binary order for $X_{5} X_{4}$ $X_{3} X_{2} X_{1} X_{0}$ except for $X_{1}$ and $X_{0}$ which run $1,0,2,3$ and repeat. The folded bit line approach requires that data be be stored either true or false depending on the row selected. If $X_{0}$ is at logic " 0 ", data is stored true. If $X_{0}$ is at logic " 1 ", data is stored false.


TYPICAL tCAC VS. tRCL


## MAXIMUM STRESS VOLTAGES

It is of interest to know worst case stress voltages for power supply failure and/or turn-on conditions. The 7027 can tolerate combinations of $\mathrm{V}_{\mathrm{BB}}, \mathrm{V}_{\mathrm{DD}}$ that operate within the curves of the figure shown below.


## CAPACITANCE

TEST CONDITIONS: $\quad V_{I N}=O V, f=1 \mathrm{MHz}$ (NOTE 1)

	SYMBOL	PARAMETER	TYP	MAX	UNIT
1	$\mathrm{C}_{11}$	DIN,$\overline{\mathrm{CS}}$ Input Capacitance   $A_{0}-A_{5}$	3	5	
2	$\mathrm{C}_{12}$	Input Capacitance, $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$   $\overline{\text { WRITE }}$	5	7	pF
	$\mathrm{C}_{0}$	Output Capacitance, DOUT	5	7	

NOTE 1: These parameters are characterized and periodically sampled but not $100 \%$ tested.

PACKAGE DIMENSIONS


# IM4116/MK4116 16,384 Bit NMOS Dynamic RAM 

## FEATURES

- Industry Standard 16-pin configuration
- Standard 10\% Supplies (+12V, +5V, -5)
- Low Capacitance TTL Compatible Inputs
- TTL Compatible 3-State Outputs Controlled by CAS
- On-chip Address and Data Latches
- Common I/O Capability Using "Early Write" Cycle
- Read-Modify-Write, RAS-only Refresh, Page Mode Operation
- 128-Cycle RAS-Only Refresh
- Compatible with MOSTEK MK4116
- Read Access
4116-2 150 nS

4116-3 200 nS 4116-4 $\quad 250 \mathrm{nS}$

- Page Mode Access

4116-2 100 nS
4116-3 135 nS 4116-4 , 165 nS

## LOGICAL BLOCK DIAGRAM



## LOGIC SYMBOL



## GENERAL DESCRIPTION

The Intersil IM4116/MK4116 is a $16 ; 384$-bit dynamic random access memory employing the latest advances in N -channel silicon-gate MOS technology. The use of double-level poly allows the highest possible density consistent with reliability, high performance and low cost.
The basic memory element is a single transistor which stores charge on a small capacitor. These dynamic memory "cells" are organized into an array of 128 rows by 128 columns. Each of the 128 rows requires refreshing at least every two milliseconds. This refresh may be accomplished on a given row by any read or $\overline{R A S}-o n l y ~ c y c l e . ~ A ~ p a g e-m o d e ~ f e a t u r e ~ i s ~$ included which reduces access and/or cycle time when multiple operations are performed within the same row.
All inputs and outputs are TTL compatible. On-chip address registers and three-state outputs simplify system design and allow for interfacing with common bus structures.
The device is packaged in a standard 16-pin DIP, providing high system bit density and compatibility with automatic testing and insertion equipment.

## PIN CONFIGURATION



ORDERING INFORMATION

	ACCESS TIME			
ORDER CODE	NORMAL	PAGE	EQUIPMENT	PACKAGE
IM4116-2CJE	150 ns	100 ns	MK4116J-2	CERDIP
IM4116-2CDE	150 ns	100 ns	MK4116P-2	CERAMIC
IM4116-2CPE	150 ns	100 ns	-	-
IM4116-3CJE	200 ns	135 ns	MK4116J-3	CERDIC
IM4116-3CDE	200 ns	135 ns	MK4116P-3	CERAMIC
IM4116-3CPE	200 ns	135 ns	-	PLASTIC
IM4116-4CJE	250 ns	165 ns	MK4116J-2	CERDIP
IM4116-4CDE	250 ns	165 ns	MK4116P-2	CERAMIC
IM4116-4CPE	250 ns	165 ns	-	PLASTIC


PIN NAMES		DESCRIPTION
MNEMONIC	JEDEC	
AO-A6	AO-A6	Address Inputs
$\overline{C A S}$	$\overline{C E}$	Column Address Strobe
DI	D	Data In
DO	Q	Data Out
$\overline{\text { RAS }}$	$\overline{R E}$	Row Address Strobe
VBB	VBB	Power ( -5 V )
VCC	VCC	Power (+5V)
VDD	VDD	Power (+12V)
VSS	VSS	Ground
$\overline{W E}$	$\bar{W}$	Write Enable

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	DESCRIPTION	MIN	MAX	UNITS	NOTES
VIN	Voltage on any Pin Relative to VBB	-0.5	+20	V	$\therefore 2,3$
PD	Power Dissipation		1	W	
IOS	Short Circuit Output Current		50	mA	
TSTORE	Storage Temperature	-55	+150	${ }^{\circ} \mathrm{C}$	
TA	Ambient Temperature Under Bias	0	+70	${ }^{\circ} \mathrm{C}$	

## NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.
2. VSS - VBB $\geq 4.5 \mathrm{~V}$
3. This device contains internal circuitry to protect against damage due to static charge. Conventional precautions should be observed, however, during storage, handling, and use to avoid exposure to excessive voltages.

## OPERATING CONDITIONS1

SYMBOL	DESCRIPTION	MIN	MAX	UNITS
VBB	VBB Supply	-4.5	-5.5	V
VCC	VCC Supply	4.5	5.5	V
VDD	VDD Supply	10.8	13.2	V
VSS	VSS Supply	0	0	V
TA	Ambient Temperature Under Bias	0	+70	${ }^{\circ} \mathrm{C}$

NOTE: VBB must be applied prior to and removed after other supply voltages.

ELECTRICAL PARAMETERS $V D D=+12 \mathrm{~V} \pm 10 \%, V C C=+5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{VBB}=-5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	DESCRIPTION	MIN	MAX	UNITS	NOTES
$\begin{aligned} & \text { IDD1 } \\ & \text { ICC1 } \\ & \text { IBB1 } \end{aligned}$	Average Operating Supply Currents (RAS, CAS cycling; tRC = tRC (min))		$\begin{array}{r} 35 \\ 200 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$	1
	Standby Supply Current $(\overline{\mathrm{RAS}}=\mathrm{VIHC})$	-10.	$\begin{gathered} 1.5 \\ 10 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	
$\begin{aligned} & \text { IDD3 } \\ & \text { ICC3 } \\ & \text { IBB3 } \\ & \hline \end{aligned}$	Average Refresh Supply Currents ( $\overline{\text { RAS }}$ Cycling, $\mathrm{CAS}=\mathrm{VIHC} ; \mathrm{tRC}=\mathrm{tRC}(\mathrm{Min}))$	-10	$\begin{array}{r} 27 \\ 10 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & m \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { IDD4 } \\ & \text { ICC4 } \\ & \text { IBB4 } \end{aligned}$	Average Page Mode Supply Current $(\overline{\mathrm{RAS}}=\mathrm{VIL}, \mathrm{CAS}$ cycling; tPC $=\mathrm{tPC}(\min ))$		$\begin{array}{r} 27 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$	$\therefore 1$
VIH VIH1 VIL IIL VOH VOL IOZ CIN CIN1 CO	Input HIGH Voltage (A, DI)   Input HIGH Voltage ( $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ )   Input LOW Voltage   Input Leakage Current   Output HIGH Voltage   Output LOW Voltage   Output Leakage Current   Input Capacitance (A)   Input Capacitance ( $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{DI}}, \overline{\mathrm{WE}}$ )   Output Capacitance (DO)	$\begin{gathered} 2.4 \\ 2.7 \\ -1.0 \\ -10 \\ 2.4 \\ -10 \end{gathered}$	$\begin{gathered} 7.0 \\ 2.7 \\ +0.8 \\ +10 \\ \\ 0.4 \\ +10 \\ 5 \\ 10 \\ 7 \end{gathered}$	V   V   V   $\mu \mathrm{A}$   V   V   $\mu \mathrm{A}:$   pF   pF   pF	$\begin{gathered} 3,4 \\ 2 \\ 2 \\ 2 \end{gathered}$

NOTES: 1. ICC1 and ICC4 depend upon output loading.
2. These parameters characterized and periodically sampled; not $100 \%$ tested.
3. $\mathrm{OV} \leq$ VOUT $\leq 10 \mathrm{~V}$
4. $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$

TIMING PARAMETERS $1,2,3 \mathrm{VDD}=+12 \mathrm{~V} \pm 10 \%, \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{VBB}=-5 \mathrm{~V} \pm 10 \%, \mathrm{TA}:=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL		DESCRIPTION	MK4116-2		MK4116-3		MK4116-4		UNITS	NOTES
MNEMONIC	JEDEC ${ }^{8}$		MIN	MAX	MIN	MAX	MIN	MAX		
- tAR	TRELAX (C)	$\overline{\mathrm{RAS}}$ LOW to Column Address Hold Time	95		120		160			
tASC	TAVCEL	Column Address Set-up Time	-10		-10		-10			
tASR	TAVREL	Row Address Set-up Time	0		0		0			
tCAC	TCELQV	Access Time from $\overline{\mathrm{CAS}}$		100		135		165		4
tCAH	TCELAX	$\overline{\text { CAS }}$ LOW to Column Address Hold Time	45		55		75			
tCAS	TCELCEH	$\overline{\text { CAS }}$ Pulse Width	100	10000	135	10000	165	10000		
tCP	TCEHCEL	Page Mode $\overline{\mathrm{CAS}}$ Precharge Time	60		80		100			
tCRP.	TCEHREL	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ Precharge Time	-20		-20		-20			
tCSH	TRELCEH	$\overline{\mathrm{RAS}}$ LOW to $\overline{\mathrm{CAS}}$ HIGH Delay	150		200		250			
tCWD	TCELWL	$\overline{\text { CAS }}$ LOW to $\overline{W E}$ LOW Delay	70		95		125			5
tCWL	TWLCEH	$\overline{W E}$ LOW to $\overline{\mathrm{CAS}}$ HIGH Set-up Time	60		80		100			
tDH	TCELDX or TWLDX	$\overline{\overline{C A S}}$ LOW or $\overline{W E}$ LOW to Data In Valid Hold Time	45		55		75		nS	6
tDHR	TRELDX	$\overline{\mathrm{RAS}}$ LOW to Data in Valid Hold Time	95		120		160			
tDS	TDVCEL or TDVWL	Data In Stable to CAS LOW or WE LOW Set-up Time	0		0		0			6
tOFF	TCEHQZ	$\overline{\text { CAS }}$ HIGH to Output OFF Delay	0	40	0	50	0	60		
tPC	TCELCEL (P)	Page Mode Cycle Time	170		225		275			
tRAC	TRELQV	Access Time from $\overline{\text { RAS }}$		150		200		250		4
tRAH	TRELAX (R)	$\overline{\text { RAS }}$ LOW to Row Address Hold Time	20		25		35			
tRAS	TRELREH	$\overline{\text { RAS }}$ Pulse Width	150	10000	200	10000	250	10000		
tRC	TRELREL	Random Read or Write Cycle Time	375		375		410			
tRCD	TRELCEL	$\overline{\text { RAS }}$ LOW to $\overline{\text { CAS }}$ LOW Delay	20	50	25	65	35	85		7
tRCH	TCEHWX	Read Hold Time	0		0		0			
tRCS	TWHCEL	Read Set-up Time	0		0		0			
tREF		Refresh Interval		2		2		2	mS	
tRMW	TRELREL (RMW)	Read-Modify-Write Cycle Time								
tRP	TREHREL	RAS Precharge Time	100		120		150			.
tRSH	TCELREH	$\overline{\overline{C A S}}$ LOW to $\overline{\mathrm{RAS}}$ HIGH Delay	100		135		165			
tRWC	TRELREL (R/W)	Read/Write Cycle Time	375		375		515			
tRWD	TRELWL	$\overline{\text { RAS }}$ LOW to $\overline{W E}$ LOW Delay	120		160		200		nS	
tRWL	TWLREH	$\overline{\text { WE }}$ LOW to $\overline{\mathrm{RAS}}$ HIGH Set-up Time	60		80		100			
tT		Transition Time	3	35	3	50	3	50		3
tWCH	TCELWH	Write Hold Time	45		55		75			
tWCR	TRELWH	$\overline{\text { RAS }}$ LOW to Write Hold Time	95		120		160			
tWCS	TWLCEL	$\overline{W E}$ LOW to $\overline{\text { CAS }}$ LOW Set-up Time	-20		-20		-20			5
tWP	TWLWH	Write Pulse Width	45		55		75			

NOTES: 1. Several cycles are required after power-up before proper device operation is achieved. Any eight cycles which perform refresh are adequate for this purpose.
2. Unless otherwise noted, $\mathrm{tRISE}=\mathrm{tFALL}=5 \mathrm{nS}$
3. VIHC ( min ), VIH $(\mathrm{min})$ and $\mathrm{VIL}(\max )$ are reference levels for timing measurements.
4. Loading equivalent to two TTL inputs +100 pF
5. tWCS, tCWD, and tRWD are not restrictive operating parameters. They are included in the datasheet as electrical characteristics only: for TWCS $\geq$ TWCS (min), the cycle is an early-write cycle and the data output will remain high-impedance throughout the entire cycle; for $\mathrm{tCWD}>\mathrm{tCWD}(\mathrm{min})$ and $\mathrm{tRWD} \geq \mathrm{tRWD}(\mathrm{min})$, the cycle is a read-write cycle and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data output (at access time) is indeterminate.
6. For positive tWCS these parameters are referenced to CAS. For negative tWCS, or read-write cycles these parameters are referenced to $\overline{W E}$.
7. For $t R C D \geq t R C D$ (max), access time is controlled by tCAC.

## FUNCTIONAL DESCRIPTION

## Addressing

Fourteen address bits are required to select one of the 4116's 16,384 possible bit locations. These 14 address bits are latched on-chip in two groups of seven bits. The Row Address Strobe ( $\overline{\mathrm{RAS}}$ ) latches the 7 -bit row address on its falling edge; similarly, the 7-bit column address is latched by CAS.
The normal sequence of events is as follows: First, the 7-bit row address is applied to the address inputs. At the end of the row address setup time (tASR), $\overline{R A S}$ is brought LOW. After the row address hold time (tRAH) has elapsed, the 7-bit column address is applied and $\overline{\mathrm{CAS}}$ is brought LOW.
The column address information is not used internally until tRCD (max) after $\overline{R A S}$-falls. Further, $\overline{\mathrm{CAS}}$, is gated with the $\overline{\mathrm{RAS}}$ clock generator such that it may occur at any time from tRCD (min) to tRCD (max), without effecting access time. If $\overline{\text { CAS }}$ occurs after tRCD (max) the access time will be lengthened by the delay from tRCD (max) to $\overline{\mathrm{CAS}}$.

## Page Mode Operation

Successive memory cycles accessing the same row in the memory array require the row address and $\overline{R A S}$ to be supplied only once. Further accesses to the same row require only column addresses and $\overline{\mathrm{CAS}}$, with $\overline{\mathrm{RAS}}$ held LOW.

In addition to savings in access and cycle time, page mode operation results in reduced power consumption since dynamic power due to $\overline{\mathrm{RAS}}$ transitions is drawn only once per row address.

## Data Input

Data to be written is strobed into the on-chip data latch by a combination of $\overline{C A S}$ and $\overline{W E}$ while $\overline{R A S}$ is active. Whichever of $\overline{C A S}$ and $\overline{W E}$ makes the later negative-going transition serves as the data strobe. Several different write cycles are made possible by this flexibility.
An "early-write" cycle takes place if $\overline{W E}$ goes LOW before $\overline{\mathrm{CAS}}$. In the case where data-in (DI) is not valid when $\overline{\mathrm{CAS}}$ goes LOW, WE must be delayed until after $\overline{\mathrm{CAS}}$ falls. In this "delayed-write" cycle, data setup and hold times are referenced to the negative-going edge of $\overline{W E}$, rather than CAS.

## Data Output

The data output (DO) unconditionally assumes the highimpedance state wherever $\overline{\mathrm{CAS}}$ is HIGH. For read, read-modify-write, or delayed-write cycles, DO remains highimpedance until access time, at which time it will reflect the logic state of the addressed cell. DO remains highimpedance in an early-write cycle, or in cycles where $\overline{R A S}$ and $\overline{C A S}$ are not both received. Thus, in systems which utilize early-write cycles exclusively, DI, and DO may be connected together with no conflict.

## Input/Output Levels

All inputs, including $\overline{\text { RAS }}$ and $\overline{\text { CAS, }}$, are low-capacitance high-impedance, and TTL-level compatible. Special clock drivers are not required, simplifying input driver design.
In order to prevent ringing, signal termination resistors are usually necessary. In general, transmission line techniques must be utilized on signal lines to achieve maximum system speeds.

## Refresh

Any cycle in which $\overline{R A S}$ occurs serves to refresh the selected row. However, it is generally more convenient (and requires substantially less power) to perform the refresh operation using the $\overline{\text { RAS }}$-only cycle. Each of the 128 rows must be refreshed at least once per two milliseconds.

## Power Sequencing

VBB should be applied before and removed after other supply voltages. Under system failure conditions in which one or more supplies exceed the specified limit, significant additional margin against catastrophic device failure may be achieved by forcing $\overline{R A S}$ and $\overline{\mathrm{CAS}}$ to the inactive state.
After power is applied, the MK4116 requires several cycles before proper device operation is achieved. Any eight cycles which perform refresh are adequate for this purpose.

## Power Dissipation

Because of the extensive use of dynamic circuitry in the MK4116, most of the dissipated power is as a result of a transition on $\overline{R A S}$ or $\overline{\text { CAS. Thus, the dynamic power is }}$ primarily a function of operating frequency. Worst case power dissipation is 462 MW at 375 nS cycle time.
VCC is utilized only to power the output buffer, and is not connected elsewhere; ICC, is thus a function only of output loading. VCC may be left unconnected for battery-backup operation.

IM4116/MK4116


READ CYCLE


PAGE MODE READ CYCLE


READ-WRITE/READ MODIFY-WRITE CYCLE

## PACKAGE DIMENSIONS



EARLY WRITE CYCLE


PAGE MODE WRITE CYCLE

oo $\frac{v_{0}}{\text { bot }}$

18-pin CERDIP (J)*

*Hermetic: Maximum leakage rate $5 \times 10^{-7}$ atm. cc/sec.

TYPICAL ACCESS TIME
（NORMALIZED）vs．VDD


TYPICAL ACCESS TIME
（NORMALIZED）vs．VDD


TYPICAL ACCESS TIME （NORMALIZED）vs．VCC


TYPICAL IDDAV vs．VDD


TYPICAL IDDSB vs．JUNCTION TEMPERATURE



TYPICAL IDDRAV vs．JUNCTION TEMPERATURE


TYPICAL ACCESS TIME (NORMALIZED) vs. JUNCTION

TEMPERATURE

typical clock input levels vs. $V_{D D}$


TYPICAL ADDRESS AND DATA INPUT LEVELS vs. VDD


TYPICAL IDDPAV vs. VDD


TYPICAL CLOCK INPUT LEVELS vs. $V_{B B}$


TYPICAL ADDRESS AND DATA INPUT LEVELS vs. $V_{B B}$


TYPICAL IDDPAV vs. JUNCTION TEMPERATURE


TYPICAL CLOCK INPUT LEVELS vs. $\mathrm{T}_{\mathrm{J}}$


TYPICAL ADDRESS AND DATA INPUT LEVELS vs. $\mathrm{T}_{J}$


## SYMBOLS AND ABBREVIATIONS

This data sheet utilizes a new set of specification nomenclature. This new format is an IEEE and JEDEC supported standard for semiconductor memories. It is intended to clarify the symbols, abbreviations and definitions, and to make all memory data sheets consistent. We believe, once acclimated, you will find this standardized format easy to read and use.

## ELECTRICAL PARAMETER ABBREVIATIONS

All abbreviations use upper case letters with no subscripts. The initial symbol is one of these four characters:
$\checkmark$ (Voltage)
I (Current)
P (Power)
C (Capacitance)
The second letter specifies input (1) or output ( $O$ ), and the third letter indicates $\mathrm{HIGH}(\mathrm{H})$, LOW $(\mathrm{L})$ or off $(\mathrm{Z})$ state of the pin during measurements. Examples:

> VIL - Input Low Voltage
> IOZ - Output Leakage Current

## TIMING PARAMETER ABBREVIATIONS

All timing abbreviations use upper case characters with no subscripts. The initial character is always T and is followed by four descriptors. These characters specify two signal points arranged in a "from-to" sequence that define a timing interval. The two descriptors for each signal point specify the signal name and the signal transitions. Thus the format is:


Signal Definitions:
A = Address
$D=$ Data In
Q = Data Out
W = Write Enable
E Chip Enable
S Chip Select
G Output Enable
Transition Definitions:
H = Transition to High
$L=$ Transition to Low
$V=$ Transition to Valid
$X=$ Transition to Invalid or Don't Care
$\mathbf{Z}=$ Transition to Off (High Impedance)

EXAMPLE:


The example shows write-pulse setup time defined as TWLEH-Time from Write enable Low to chip Enable High.

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address set-up time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

## WAVEFORMS

WAVEFORM SYMBOL	INPUT	OUTPUT
	MUST BE VALID	WILL BE VALID
	CHANGE FROM HTOL	WILL CHANGE FROM H TO L
	CHANGE FROM LTOH	WILL CHANGE FROM LTO H
怒	DON'T CARE:   ANY CHANGE PERMITTED	CHANGING:   STATE UNKNOWN
		HIGH IMPEDANCE

# IM6512/IM6512A CMOS RAM 768 BIT (64 x 12) 

## FEATURES

- Low Power Operation
- TTL or CMOS Compatible on Inputs and Outputs
- 4V-11V VCc Operation
- Static Operation
- On-Chip Address Register
- Two IM6512's can be used with IM6100 and IM6312 without additional components


## GENERAL DESCRIPTION

The IM6512 is a high speed, low power, silicon gate CMOS 768 bit static RAM organized 64 words by 12 bits. In all static states these units exhibit the microwatt power requirements
typical of CMOS. Inputs and three state outputs are TTL compatible. The basic part operates at 4-7 volts with a typical 5 volt, $25^{\circ} \mathrm{C}$ access time of 350 ns . A wider operating voltage range, $4-11$ volts, is available with the A version. Signal polarities and functions are specified for direct interfacing with the IM6100 microprocessor. The device is ideally suited for minimum system all CMOS applications where low power, minimum cost, or non-volatility is required.

## FUNCTIONAL DESCRIPTION

The MSEL pin performs both chip enable and write-enable functions. The IM6512 has three modes of operation: read-modify-write, read only, and write. The ADR input allows two IM6512's to be used without additional decoding circuitry.


## ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Input or Output Voltage Applied
Storage Temperature Range
Operating Temperature Range
Industrial IM6512AI
Military IM6512AM

$$
\begin{array}{r}
+12.0 \mathrm{~V} \\
\text { GND }-0.3 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC}+0.3 \mathrm{~V} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{array}
$$

DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$ to $11 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\text {IH }}$		70\% VCC			V
Logical "0' Input Voltage	VIL				20\% VCC	V
Input Leakage	IIL	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	IOUT $=0$	$\mathrm{V}_{\mathrm{CC}}-0.01$			V
Logical "0' Output Voltage	VOL	- IOUT $=0$			GND +0.01	V
Output Leakage	10	$0 \mathrm{~V} \leqslant \mathrm{~V}_{O} \leqslant \mathrm{~V}_{\mathrm{CC}}$	-1.0		1.0	$\mu \mathrm{A}$
Supply Current	ICC	*		5.0	500	$\mu \mathrm{A}$
	ICC	${ }^{*} V_{C C}=3.0 \mathrm{~V}$		0.1	10.0	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{CIN}^{\text {N }}$			5.0	7.0	pF
Output Capacitance	$\mathrm{C}_{0}$			6.0	10.0	pF

* $\mathrm{STR}=\mathrm{V}_{\mathrm{CC}}$, all other inputs $=\mathrm{V}_{\mathrm{CC}}$ or GND

AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	IM6512A		UNITS
		MIN	MAX	
Access Time From STR	${ }^{\text {t }} \mathrm{AC}$		150	ns
Output Enable Time	ten		90	ns
Output Disable Time	tDIS		90	ns
STR Pulse Width (Positive)	tSTR	95		ns
STR Pulse Width (Negative)	tSTR	150		ns
Cycle Time	tc	245		ns
Write Pulse Width (Negative)	tWP	95		ns
Address Setup Time	tas	20		ns
Address Hold Time	${ }^{\text {t }} \mathrm{AH}$	45		ns
Data Setup Time	tDS	95		ns
Data Hold Time	tDH	0		ns
MSEL Pulse Separation	tPS	60		ns
MSEL Setup Time	tMS	20		ns
MSEL Hold Time	${ }^{\text {t M }}$ H	20		ns

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage Input or Output Voltage Supplied Storage Temperature Range ${ }^{\prime}$ Operating Temperature Range

Industrial IM6512I
Military IM6512M

$$
\begin{array}{r}
+8.0 \mathrm{~V} \\
\text { GND }-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{array}
$$

DC CHARACTERISTICS $V_{C C}=5.0 \mathrm{~V} \pm 10 \% T_{A}=$ Industrial or Military

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	VIH		$\mathrm{V}_{\mathrm{CC}}-2.0$			1 V
Logical " 0 "' Input Voltage	VIL				0.8	V
Input Leakage	IIL	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant V_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}^{\mathrm{OH}}=-0.2 \mathrm{~mA}$	2.4			V
Logical " 0 " Output Voltage	VOL	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
Output Leakage	10	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{O}} \leqslant \mathrm{V}_{\mathrm{CC}}$	-1.0		1.0	$\mu \mathrm{A}$
Supply Current	Icc	*		1.0	100	$\mu \mathrm{A}$
	${ }^{\text {ICC }}$	${ }^{*} \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		0.1	10.0	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{CIN}^{\text {I }}$			5.0	7.0	pF
Output Capacitance	$\mathrm{CO}_{0}$			6.0	10.0	pF

* $\mathrm{STR}=\mathrm{V}_{\mathrm{CC}}$, all other inputs $=\mathrm{V}_{\mathrm{CC}}$ or GND

AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	IM6512		UNITS
		MIN	MAX	
Access Time From STR	${ }^{\text {t }}$ AC		460	ns
Output Enable Time	ten		285	ns
Output Disable Time	tDIS		285	ns
STR Pulse Width (Positive)	tSTR	300	:	ns
STR Pulse Width (Negative)	tSTR	460		ns
Cycle Time	${ }^{\text {t }}$ C	760		ns
Write Pulse Width (Negative)	tWP	300		ns
Address Setup Time	${ }^{\text {tas }}$	40		ns
Address Hold Tirne	${ }_{\text {t }} \mathrm{AH}$	130	.	ns
Data Setup Time	tDS	300		ns
Data Hold Time	tDH	0		ns
MSEL.Pulse Separation	tPS	150		ns
MSEL Setup Time	tMS	50		ns
MSEL Hold Time	tMH	50		ns

Supply Voltage
Input or Output Voltage Supplied
Storage Temperature Range
Operating Temperature Range
Commercial IM6512C

$$
\begin{array}{r}
+7.0 \mathrm{~V} \\
\text { GND }-0.3 \mathrm{~V} \text { to } \mathrm{VCC}^{+0.3 \mathrm{~V}} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{array}
$$

DC CHARACTERISTICS $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=$ Commercial

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	VIH		$\mathrm{V}_{\mathrm{CC}}-1.5$			V
Logical "0" Input Voltage	VIL				0.8	V
Input Leakage	IIL	$0 V \leqslant V_{\text {IN }} \leqslant V_{C C}$	-5.0		5.0	$\mu \mathrm{A}$
Logical " ${ }^{\prime \prime}$ " Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	$1 \mathrm{OL}=1.6 \mathrm{~mA}$			0.45	V
Output Leakage	10	$0 \mathrm{~V} \leqslant \mathrm{~V}_{0} \leqslant V_{C C}$	$-5.0$		5.0	$\mu \mathrm{A}$
Supply Current	ICC	*			800	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{CIN}^{\text {I }}$			5.0	7.0	pF
Output Capacitance	$\mathrm{Co}_{0}$			6.0	10.0	pF

${ }^{*} \mathrm{STR}=\mathrm{V}_{\mathrm{CC}}$, all other inputs $=\mathrm{V}_{\mathrm{CC}}$ or GND

AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Commercial

PARAMETER	SYMBOL	IM6512C		UNITS
		MIN	MAX	
Access Time From STR	${ }^{\text {t }}$ AC		600	ns
Output Enable Time	ten		375	ns
Output Disable Time	tois		375	ns
STR Pulse Width (Positive)	tSTR	395		ns
STR Pulse Width (Negative)	tSTR	600		ns
Cycle Time	${ }^{\text {t }}$ C	995		ns
Write Pulse Width (Negative)	twp	395	.	ns
Address Setup Time	${ }^{\text {tas }}$	40		ns
Address Hold Time	${ }^{\text {tah }}$	130		ns
Data Setup Time	tDS	395		ns
Data Hold Time	tD ${ }^{\text {d }}$	0		ns
MSEL Pulse Separation	tPS	150		ns
MSEL Setup Time	tMS	50		ns
MSEL Hold Time	$\mathrm{t}_{\mathrm{MH}}$	50		ns



FIGURE 1. Read-Modify-Write or Read Cycle

Read-Modify-Write (MSEL high when STR goes low)
DX pins are high impedance until the first negative-going edge on MSEL (1) which enables the outputs to read data from memory (2). When MSEL returns high (3) the DX pins return to high impedance for the remainder of the cycle.
The (optional) second negative-going MSEL pulse (4) causes a write to memory. Data at DX pins to be written
into memory should be valid for a time (tDS) prior to, and a time ( $\mathrm{t} D \mathrm{DH}$ ) following the rising edge of MSEL (5). MSEL must remain high until STR returns high ending the cycle.

## Read Only

Same as Read-Modify-Write except the second negativegoing MSEL pulse is omitted.


FIGURE 2. Write Cycle

Write (MSEL low when STR goes low)
DX pins are always high impedance. Data at DX pins to be written into memcry should be valid for a time (tDS) prior to, and a time ( $\mathrm{t}_{\mathrm{DH}}$ ) following the rising edge of MSEL (6).


FIGURE 3. A Typical Microprocessor System

## Typical Microprocessor System (Figure 3)

In the example shown, the IM6312 RSEL (RAM Select) output is programmed to go low for addresses 0-255. IM6512 with ADR $=$ " 0 " will respond to addresses $0-63$ (and 128-191); IM6512 with ADR $=$ " 1 " will respond to addresses 64-127 (and 192-255).

## ADR

ADR should be either tied to logic " 0 " (GND) or logic " 1 " ( $V_{C C}$ ). The data on this pin is compared internally with address data on DX5. If the two match, the chip will respond to MSEL and CS, otherwise the IM6512 DX lines remain high impedance and data is unchanged. As a result, two IM6512 memories can be used with the IM6100 and IM6312 without additional components.

ADR	DX5 *	MSEL @   STR 1	FUNCTION
L	L	L	WRITE
L	L	$H$	READ-MODIFY-WRITE,   READ ONLY
L	$H$	X	NO OP. (HI-Z)
$H$	L	X	NO OP. (HI-Z)
$H$	$H$	L	WRITE
$H$	$H$	$H$	READ-MODIFY-WRITE,   READ ONLY

X = DON'T CARE

FIGURE 4. IM6512 Truth Table

IM6508/IM6518
1024 Bit (1024 x 1)
CMOS RAM

## FEATURES

- Low Standby Power: $5 \mu \mathrm{~W}$ Typical Standby at 5V, $25^{\circ} \mathrm{C}$
- Low Operating Power: $10 \mathrm{~mW} / \mathrm{MHz}$ Maximum
- High Speed Operation
- Data Retention to $\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 0 V}$ (non-C version)
- TTL Compatible Inputs and Outputs
- Three-State Outputs
- On-Chip Address Registers
- Completely Static and Synchronous
- Operating Voltage Range 4V to 11V (A version)
- Two Chip Selects (IM6518)
- Military and Industrial.Temperature Ranges


## GENERAL DESCRIPTION

The IM6508 and IM6518 are high speed, Iow power silicon gate CMOS static RAMs organized 1024 words by 1 bit. In all static states these RAMs exhibit the microwatt power requirements typical of CMOS. The basic parts operate from 4.5 to 5.5 volts, with access times of 460 ns and standby supply currents of $100 \mu$ a guaranteed over operating temperature range. Access times of 300 ns and standby supply currents of $10 \mu \mathrm{a}$ are offered in " -1 " versions. Higher operating voltages and faster speeds are offered in "A" versions. Data retention is guaranteed to 2.0 V on all non-C parts.

*IM6508 FUNCTIONS AS IF $\overline{\mathrm{E}}, \overline{\mathrm{S}_{1}}, \overline{\mathrm{~S}_{2}}$, WERE TIED TOGETHER

## ORDERING INFORMATION

SELECTION/TEMPERATURE RANGE

PACKAGE		COMMERCIAL	INDUSTRIAL				MILITARY			
		sto	$\underset{\text { SVD }}{\substack{\text { STD }}}$	$\begin{aligned} & \text { STD } \\ & \substack{00} \end{aligned}$	$\begin{gathered} \text { HI SPEED } \\ \text { lov } \end{gathered}$	hi speed LOW ICC 5 V	$\begin{aligned} & \text { STD } \\ & \text { sV } \end{aligned}$	$\begin{aligned} & \text { sTo } \\ & \text { jov } \end{aligned}$	$\begin{aligned} & \text { HI SPEED } \\ & \text { 10V } \end{aligned}$	HI Speed LOW ICC 5 V
PLASTIC	P	CP	IP	-	-	-	-	-	-	-
CERDIP	J	CJ	IJ	AIJ	A-11J	-1IJ	MJ	AMJ	A-1MS	-1MJ
CERAMIC	D	-	ID	AID	A-1ID	-1ID	MD	AMD	A-1MD	-1MD
FLAT	F	-	-	-	-	-	MF	AMF	A-1MF	-1MF

PIN
CONFIGURATION



TOP VIEW

Pin 1 is designated by a dot or a notch

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+12.0V
Input or Output, Voltage Applied	GND -0.3V to Vcc to . 3 V
Storage Temperature Range	. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ranges	
Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
IM6508A/18A	4 V to 11V

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{C}}=4 \mathrm{~V}$ to $11 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating : Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{1} \mathrm{H}$		Vcc-2.0			V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				. 8	
Input Leakage	11	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		+1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	lout $=0$	Vcc-0.01			V
Logical "0" Output Voltage	VOL	Iout $=0$			GND + 0.01	
Output Leakage	10	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$	-1.0		+1.0	$\mu \mathrm{A}$
Standby Supply Current	Iccsb	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$		5.0	500	
	Iccsb	$V_{C C}=3.0 \mathrm{~V}$		. 1	50	
Operating Supply Current	IcCop	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \\ & \mathrm{l} \mathrm{O}=0 \end{aligned}$			10	mA
Input Capacitance	$\mathrm{Cl}_{1}$	$\cdots$		5.0	7.0	pf
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	IM6508A-1/18A-1		IM6508A/18A		UNITS
		MIN	MAX	MIN	MAX	
Access Time From $\overline{\mathrm{E}}$	TELQV		95		150	
Output Enable Time	TSLQX		55.		90	
Output Disable Time	TSHQZ		55		90	
E Pulse Width (Pos)	TEHEL	65		95		
E Pulse Width (Neg)	TELEH	95		150		ns
$\bar{W}$ Pulse Width (Neg)	TWLWH	65		95		
Address Setup Time	TAVEL	5		10		
Address Hold Time	TELAX	30		45		
Data Setup Time	TDVEH	65		95		
Data Hold Time	TEHDX	0		0		

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ................................................................ +8.0 V	
Input or Output Voltage Applied	GND -0.3V to Vcc +0.3 V
Storage Temperature Range . ................................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Ranges	
Temperature	
Military . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Voltage	
IM6508/18I, M, -1I, -1M	4.5V-5.5V

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\text {IH }}$		Vcc-2.0			V
Logical "0" Input Voltage	$V_{\text {IL }}$				. 8	
Input Leakage	II	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		+1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	$\mathrm{IOH}=0$	Vcc-0.01	-		V
		$\mathrm{IOH}=-0.2 \mathrm{ma}$	2.4	:		
Logical "0" Output Voltage	VOL	$\mathrm{IOL}=0$			GND +0.01	
		$\mathrm{IOL}=2.0 \mathrm{ma}$			. 45	
Output Leakage	10		-1.0		+1.0	$\mu \mathrm{A}$
Standby Supply Current IM6508-1/18-1	Iccsb	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$		. 1	10	
	Iccsb	$V_{C C}=3.0 \mathrm{~V}$		. 01	5	
IM6508/18	Iccsb	$\mathrm{V}_{\text {IN }}=V_{\text {cc }}$		1.0	100	
	Iccsb	$V_{c c}=3.0 \mathrm{~V}$		. 1	50	
Operating Supply Current	Iccop	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V} \text { IN }=\mathrm{VCC} \text { or } G N D, \\ & \mathrm{IO}=0 \end{aligned}$			2	mA
Input Capacitance,	$\mathrm{Cl}_{1}$			5.0	7.0	pf
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM6508-1/18-1		IM6508/18		UNITS
		MIN	MAX	MIN	MAX	
Access Time From E	TELQV		300		460	
Output Enable Time	TSLQX		180		285	
Output Disable Time	TSHQZ		180		285	
E Pulse Width (Pos)	TEHEL	200		300		
E Pulse Width (Neg)	TELEH	300		460		ns
$\bar{W}$ Pulse Width (Neg).	TWLWH	200		300		
Address Setup Time	TAVEL	7		15		
Address Hold Time	TELAX	90		130		
Data Setup Time	TDVEH	200		300		
Data Hold Time	TEHDX	0		0		

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ............................................................... +7.0 V	
Input or Output Voltage Applied	GND -0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Ranges	
Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Voltage	
IM6508C/18C	4.75V-5.25V

DC CHARACTERISTICS
TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		VCC-2.0			
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				. 8	$V$
Input Leakage	11	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-5.0		+5.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	V OH	lout $=0$	V $\mathrm{Cc}-0.01$			V
		$\mathrm{IOH}=-.2 \mathrm{~mA}$	2.4			
Logical "0" Output Voltage	VoL	IOUT $=0$			GND $\pm 0.01$	
		$\mathrm{lOL}=1.6 \mathrm{~mA}$			. 45	
Output Leakage	10	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{VCC}$	$-5.0$		+5.0	
Standby Supply Current	Iccsb	$V_{\text {IN }}=V_{\text {CC }}$		500	800	$\mu \mathrm{A}$
Operating Supply Current	ICCOP	$\begin{aligned} & f=1 \mathrm{MHz}, V_{I N}=V C C \text { or GND, } \\ & \mathrm{l}=0 \end{aligned}$			4	mA
Input Capacitance	$\mathrm{Cl}_{1}$	-		5.0	7.0	pf
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER		IM6508C/18C		
	SYMBOL	MIN	MAX	
Access Time From $\bar{E}$	TELQV		600	
Output Enable Time	TSLQX		375	
Output Disable Time	TSHQZ		375	
$\bar{E}$ Pulse Width (Pos)	TEHEL	395		
$\bar{E}$ Pulse Width (Neg)	TELEH	600		
$\bar{W}$ Pulse Width (Neg)	TWLWH	395		
Address Setup Time	TAVEL	20		
Address Hold Time	TELAX	170		
Data Setup Time	TDVEH	395		
Data Hold Time	TEHDX	0		

## READ MODE OPERATION

In a typical READ operation the address lines are latched by the falling edge of strobe input $\overline{\mathrm{E}}$. If the chip has been selected; i.e. $\overline{S_{1}}$ and $\overline{\mathrm{S}_{2}}$ ( 6518 only) are low, data becomes valid an access time (TELQV, after the falling $\bar{E}$ edge. Data out for 6508, 16 pin remains valid until $\bar{E}$ returns high. Data out for 6518 (18 pin) is latched when $\bar{E}$ returns high, and remains valid until a chip select ' $\bar{S}_{1}$ or $\bar{S}_{2}$ ) is returned high.
Address information is edge triggered and must be valid a setup time 'TAVEL, before and a hold time (TELAX) after the falling $E$ edge. $\overline{\mathrm{S}_{1}}$ and $\overline{\mathrm{S}_{2}}$ on the 6518 are level sensitive and may occur after $\overline{\mathrm{E}}$ transition without affecting access time.

READ CYCLE TIMING


## FUNCTION TABLE•READ

TIME REF	INPUTS				OUTPUT	NOTES
	$\bar{E}$	A	$\overline{\mathbf{S}}$	W	Q	
-1	H	X	H	H	Z	Memory inactive, output high Z
0	7	V	X	H	Z	Addresses latched, output sill high Z
1	L	X	L	H	X	Output enabled and active
2	L	X	L	H	V	Output valid
3	1	X	L	H	V	Output latched and valid (6518). Output disabled (6508).
4	H	X	H	H	Z	Output disabled, high Z. Ready for next cycle.

## WRITE MODE OPERATION

For a WRITE operation, address lines are latched by $\overline{\mathrm{E}}$ as in a READ operation. Writing begins when strobe $\bar{E}^{\prime}$, chip selects $\overline{\mathrm{S}}_{1}, \overline{\mathrm{~S}}_{2}$ ) and write, $\bar{W}_{1}$ are low and ends when one of these lines returns high. Data (D) must be valid a setup time , TDVEH, before and a hold time 'TEHDX, after the final rising edge.
Minimum write pulse widths are specified as TWLWH for $\bar{W}, \bar{S}_{1}$ and $\bar{S}_{2}$. Minimum write pulse width is specified as TELEH for $\bar{E}$.

## WRITE CYCLE TIMING



FUNCTION TABLE•WRITE

TIME REF	INPUT					OUTPUT	NOTES
	$\bar{E}$	A	$\overline{\mathbf{S}}^{\star}$	$\overline{\text { W }}$	D	Q	
-1	H	X	H	X	X	Z	Memory inactive, output high Z
0	$\downarrow$	V	H	X	- $X$	Z	Addresses latched
1	L	X	L	$\lambda$	X	Z	Write operation begins
2	L	X	L	$\cdots$	V	Z	Write operation ends
3	H	X	H	H	X	Z	Output disabled, high Z. Ready for next cycle.

## PACKAGE DIMENSIONS

16 LEAD CERAMIC (DE)


16 LEAD FLATPACK (FE)


16 LEAD PLASTIC


NOTE: Dimensions in inches (mm)

18 LEAD CERAMIC (DN)


18 LEAD CERDIP (JN)


18 PIN FLATPACK (FN)*


18 LEAD PLASTIC (PN)


IM6551/IM6561 1024 (256 x 4) Bit CMOS RAM

## FEATURES

- Low Standby Power: $5 \mu \mathrm{~W}$ Typical Standby at 5V, $25^{\circ} \mathrm{C}$
- Low Operating Power: $10 \mathrm{~mW} / \mathrm{MHz}$ Maximum
- High Speed Operation
- Data Retention to VCC $=2.0 \mathrm{~V}$ (non-C version)
- TTL Compatible Inputs and Outputs
- Three State Outputs
- On-Chip Address Registers
- Completely Static and Synchronous
- Operating Voltage Range 4V to 11 V (A version)
- Military and Industrial Temperature Ranges


## GENERAL DESCRIPTION

The IM6551 and IM6561 are high speed, low power silicon gate CMOS 1024 bit static RAMs organized 256 words by 4 bits. In all static states these RAMs exhibit the microwatt power requirements typical of CMOS. The basic parts operate from 4.5 to 5.5 voits, with access times of 360 ns and standby supply currents of $100 \mu$ a guaranteed over operating temperature range. Higher operating voltages and correspondingly faster speeds are offered in " $A$ " versions. Data retention is guaranteed to 2.0 V on all non-C parts.


## IM6551A/IM6561A

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	. O
Input or Output Voltage Applied	GND -0.3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
IM6551A, IM6561A	4 V to 11V

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$ to $11 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating . Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		VCC-2.0			V
Logical "0" Input Voltage	VIL				0.8	
Input Leakage	IIL	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	Iout $=0$	Vcc -0.01			V
Logical "0" Output Voltage	V OL	IOUT $=0$			GND +0.01	
Output Leakage.	10	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
Standby Supply Current	Iccsb	$\mathrm{V}_{\text {IN }} \doteq \mathrm{V}_{\text {cc }}$		5.0	500	
	Iccsb	$\mathrm{VCC}=3.0 \mathrm{~V}=\overline{\mathrm{E}}_{1}$		0.1	50	
Operating Supply Current	ICCOP	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } G N D, \mathrm{IO}_{2}=0 \end{aligned}$			10	mA
Input Capacitance	CIN			5.0	7.0	pF
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, C L=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	IM6551A/61AI,M		UNITS
		MIN	MAX	
Access Time From $\overline{\mathrm{E}}_{1}$	TE1LQV		180	
Output Enable Time	TSLQV		90	
Output Disable Time	TSHQV		90	
$\bar{E}_{1}$ Pulse Width (Positive)	$\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}$	60		
$\bar{E}_{1}$ Pulse Width (Negative)	TE1LE1H	110		ns
W Pulse Width (Negative)	TWLWH	120		
Address Setup Time	TAVE ${ }_{1}$ L	25		
Address Hold Time	TE ${ }^{\text {LAX }}$	60		
Data Setup Time	TDVE $_{1} \mathrm{H}$	60		
Data Hold Time	TE1HDX	30		

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+8.0V
Input or Output Voltage Supplied	GND -0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
6551/61 I,M	....... 4.5V to 5.5 V

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		Vcc-2.0			V
Logical "0" Input Voltage	VIL			.	0.8	
Input Leakage	IIL	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0	;	1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage.	VOH 1	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage	VOL1	$\mathrm{lOL}=2.0 \mathrm{~mA}$		:	. 0.45	
Output Leakage	10	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
Standby Supply Current	ICCsB	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$		1	100	
	Iccsb	$V_{C C}=3 V=E_{1}$		1	50	mA
Operating Supply Current	ICCOP	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$   or GND, $\mathrm{l}_{\mathrm{o}}=0$			2	
Input Capacitance	Cin			5.0	7.0	$\cdots \mathrm{pF}$
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{CL}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM6551/61 1,M		UNITS
		MIN	MAX	
Access Time From $\overline{\mathrm{E}}$	TE1LQV		360	
Output Enable Time	TSLQV.		180	
Output Disable Time	TSHQZ		180	
$\bar{E}_{1}$ Pulse Width (Positive)	TE1HEL	120		
$\bar{E}_{1}$. Pulse Width (Negative)	TE1LEH	220		ns
$\overline{\text { W }}$ Pulse Width (Negative)	TWLWH	240		
Address Setup Time	$\mathrm{TAVE}_{1} \mathrm{~L}$	50		
Address Hold Time	TE1LAX	120		
Data Setup Time	TDEV ${ }_{1} \mathrm{H}$	120		
Data Hold Time	TE ${ }_{1}$ HDX	60		

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	7.0 V
Input or Output Voltage Applied	GND -0.3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Voltage	
IM6551/61C	4.75 V to 5.25 V

## DC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{IH}}$		VCC-2.0			V
Logical "0" Input Voltage	VIL				0.8	
Input Leakage	IIL	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-5.0		5.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	$\mathrm{VOH1}$	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
Logical "0" Output Voltage	VOL	$10 \mathrm{~L}=1.6 \mathrm{~mA}$			0.45	
Output Leakage	10	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{Cc}}$	-5.0		5.0	$\mu \mathrm{A}$
Standby Supply Current	Iccsb	$V_{\text {IN }}=V_{C C}$		500	800	
Operating Supply Current	IcCop	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{ViN}=\mathrm{VCC} \\ & \text { or GND, } \mathrm{lo}=0 \end{aligned}$			4.0	mA
Input Capacitance	CIN	: .	:	5.0	7.0	pF
Output Capacitance	Co			6.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM6551C/61C		UNITS
		MIN	MAX	
Access Time From $\overline{\mathrm{E}}_{1}$	TE1LQV		450	
Output Enable Time	TSLQV		200	
Output Disable Time	TSHQZ		200	
$\bar{E}_{1}$ Pulse Width (Positive)	$\mathrm{TE}_{1} \mathrm{HE}_{1} \mathrm{~L}$	150		
$E_{1}$ Pulse Width (Negative)	TE1LE ${ }_{1}{ }^{\text {H }}$	250		ns
W Pulse Width (Negative)	TWLWH	300		
Address Setup Time	TAVE ${ }_{1}$ L	65		
Address Hold Time	TE ${ }_{1}$ LAX	200		
Data Setup Time	TDVE ${ }_{1} \mathrm{H}$	200		
Data Hold Time	TE1HDX:	65		

## IM6551/IM6561

## READ MODE OPERATION

In a typical READ operation the address lines are latched by the falling edge of strobe input $\overline{\bar{E}_{1}}$. If the chip has been selected, i.e. $\bar{S}_{1}$ and $\overline{\mathrm{S}}_{2}$ (6551 only) are low, data becomes valid an access time (TE1LQV) after the falling $\bar{E}_{1}$ edge. Data is latched into output registers by rising $\bar{E}_{1}$ and remains valid until the next cycle or until a chip select ( $\overline{\mathrm{S}}_{1}$ or $\overline{\mathrm{S}}_{2}$ ) is returned high.
Address and $\bar{E}_{2}$ information is edge triggered and must be valid a setup time ( $T A V E_{1} \mathrm{~L}$ ) before and a hold time (TE 1 LAX ) after the falling edge of $\bar{E}_{1}, \bar{S}_{1}, \bar{S}_{2}$ and $\bar{W}$ are level sensitive and may occur after $\bar{E}_{1}$ transitions without affecting access time.

## FUNCTION TABLE•READ

## READ CYCLE TIMING



TIME REF.	INPUTS					OUTPUTS	NOTES
	$\overline{E_{1}}$	A	E2.	$\overline{\mathbf{S}}$	$\overline{\text { W }}$	Q	
-1	H	X	X	H	X	Z	Memory Inactive, output high Z .
0	7	V	L	X	H	Z	Addresses and E2 latched, output still high Z.
1	L	X	X	L	H	X	Output enabled and active.
2	L	X	X	L	H	V	Output valid
3	-	X	X	L	H	V	Output latched and valid, memory inactive.
4	H	X	X	H	H	Z	Output disabled, high Z. Ready for next cycle.

## WRITE MODE OPERATION

For a WRITE operation addresses and $\bar{E}_{2}$ are latched by $\bar{E}_{1}$ as in a READ operation. Data is written when strobe $\left(\bar{E}_{1}\right)$, chip selects ( $\overline{\mathrm{S}}_{1}, \overline{\mathrm{~S}}_{2}$ ) and write ( $\overline{\mathrm{W}}$ ) are low. WRITE operation ends when one of these lines returns high. Minimum write pulse requirements are specified for $\bar{E}_{1}$ as $T E_{1} L E_{1} H$ and for $\bar{S}_{1}, \bar{S}_{2}, W$ as TWLWH.
Data must be valid a setup time (TDVE ${ }_{1} \mathrm{H}$ ) before and a hold time ( $T E_{1} H D X$ ) after the final rising edge.

## FUNCTION TABLE • WRITE

## WRITE CYCLE TIMING




## PACKAGE DIMENSIONS

18 LEAD CERAMIC (DN)


18 LEAD CERDIP (JN)


18 LEAD PLASTIC (PN)


NOTE: All dimensions in parenthesis are metric.

22 LEAD CERAMIC (DF)


22 LEAD CERDIP (JF)


22 LEAD PLASTIC (PF)


# IM6504 <br> CMOS Static RAM 4096 Bit (4096 x 1) 

## FEATURES

- Low Power Standby - Typically $1 \mu W$
- High Speed - 170nS Typical Access Time at 5V, $25^{\circ} \mathrm{C}$
- Improved Chip Enable Function Simplifies BatteryBackup System Design
- TTL/CMOS Compatible Inputs and Oatputs
- Three State Outputs
- Operating Voltage Range 4.5V to 5.5V (5V $\pm 10 \%$ )
- Data Retention to VCC = 2V
- On-Chip Address Register
- Harris IM6504/Mostek MK4104 Compatible


## GENERAL DESCRIPTION

The IM6504 is a low power, high speed 4096-bit static RAM organized as 4096 words by 1 bit, fabricated with Intersil's selective-oxidation, ion-implanted, self-aligned silicon-gate CMOS process (SELOX-C). In all static states, this device exhibits the microwatt power dissipation typical of CMOS. Inputs and three-state outputs are TTL and CMOS compatible and allow for direct interface with common system bus structures. On-chip address registers simplify system timing requirements.
Battery-backup design is simplified by an improved chip enable which, when high, allows all other inputs to be floating without increased power dissipation.
The basic part operates over the 4.5 V to 5.5 V range with a typical $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ access time of 170 nS .


## PIN NAMES

$A 0-A 11$	ADDRESS INPUTS
$D$	DATA INPUT
$Q$	DATA OUTPUT
$\bar{E}$	ADDR. STROBE/CHIP ENABLE
$\bar{W}$	WRITE ENABLE

## FUNCTIONAL DESCRIPTION

## Read Cycle

The falling edge of chip enable ( $\bar{E}$ ) latches addresses in the on-chip register and initiates a read cycle. Addresses to be latched must be present a setup time (TAVEL) prior to and a hold time (TELAX) following the falling edge of $\bar{E}$. After an access time, valid data will be present at the output. The read is terminated when $\bar{E}$ goes high, disabling the output buffers.

## Early-Write Cycle

The falling edge of $\bar{E}$ latches addresses, data-in ${ }^{\circ}(D)$ and $\bar{W}$ in on-chip registers. For the early-write cycle, $\bar{W}$ will be latched low causing the output buffers to remain in the highimpedance state through the end of the cycle.

## Read-Modify-Write Cycle

The read-modify-write cycle begins as a normal read. The falling edge of $\bar{E}$ latches addresses in the on-chip register and initiates the read cycle when $\bar{W}$ is high. After an access time, valid data will be present at the output. Data-in (D) and data-out ( $Q$ ) are latched on the falling edge of $\bar{W}$. At this point, all input signals with the exception of $\bar{E}$ have been latched and may change without affecting the cycle. On the next rising edge of $\bar{E}$ the write portion is complete, inputs are unlatched, and the output returns to high-impedance.

## ORDERING INFORMATION

PART NO.	PACKAGE	TEMP. RANGE
IM6504IPN	$18-$ PIN PLASTIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6504IJN	18 -PIN CERDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6504IDN	18 -PIN CERAMIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6504MJN	$18-$ PIN CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6504MDN	$18-$ PIN CERAMIC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6504MFN	$18-$ PIN FLATPACK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6504CPN**	18 -PIN PLASTIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IM6504CJN*	18 -PIN CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

*Preliminary specifications for these devices have not yet been established.

## PIN ASSIGNMENTS

LOGIC SYMBOL


## ABSOLUTE MAXIRAM RATINGS



## OPERATING CONDITIONS

Supply Voltage (VCC)	+4.5 V to +5.5 V
Operating Temperature	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

ELECTRICAL PARAMETERS $V C C=5 \mathrm{~V} \pm 10 \%, C L=50 \mathrm{pF}, \mathrm{TA}=$ Operating Temperature Range

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS	TEST CONDITIONS
ICCDR	Data Retention Supply Current		0.01		$\mu \mathrm{~A}$	$\mathrm{VCC}=3 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}, \mathrm{D}=\overline{\mathrm{W}}=\mathrm{VCC}$ or GND, IO $=0$
ICCSB	Standby Supply Current		0.1		$\mu \mathrm{~A}$	$\overline{\mathrm{E}}=\mathrm{VCC}, \mathrm{D}=\overline{\mathrm{W}}=\mathrm{VCC}$ or GND, IO $=0$
ICCOP	Operating Supply Current		2		mA	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VIN}=\mathrm{VCC}$ or GND, IO $=0$
VCCDR	Data Retention Supply Voltage	2			V	
VIH	Input High Voltage	VCC -2		$\mathrm{VCC}+0.3$	V	
VIL	Input Low Voltage	-0.3		0.8	V	
II	Input Leakage	-1		+1	$\mu \mathrm{~A}$	$\mathrm{GND} \leq \mathrm{VIN} \leq \mathrm{VCC}$
VOH	Output High Voltage	2.4			V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage			0.4	V	$\mathrm{IOL}=2 \mathrm{~mA}$
IOZ	Output Leakage	-1		+1	$\mu \mathrm{~A}$	$\mathrm{E}=\mathrm{VCC}, \mathrm{GND} \leq \mathrm{VOUT} \leq \mathrm{VCC}$
CI	Input Capacitance		5		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VIN}=\mathrm{VCC}$ or GND
CO	Output Capacitance1		6		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VIN}=\mathrm{VCC}$ or GND

TIRAING PARARETERS VCC $=5 \mathrm{~V} \pm 10 \%, C L=50 \mathrm{pF}, \mathrm{TA}=$ Operating Temperature Range

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS	TEST CONDITIONS
TELQV	Chip Enable Access Time		170		nS	TRISE $=$ TFALL $=20 n S$
TAVQV	Address Access Time		170			
TEHQZ	Chip Enable Output Disable Time		50			
TELEH	Chip Enable Pulse Negative Width		170			
TEHEL	Chip Enable Pulse Positive Width		70			
TAVEL	Address Setup Time		-10			
TELAX	Address Hold Time		20			
TWLWH	Write Enable Pulse Width		40			
TWLEH	Write Enable Pulse Setup Time		70			
TWLEL	Early Write Pulse Setup Time		-10			
TWHEL	Write Enable Read Setup Time		-10			
TELWH	Early Write Pulse Hold Time	;	40			
TDVWL	Data Setup Time		0			
TDVEL	Early Write Data Setup Time		0			
TWLDX	Data Hold Time		40			
TELDX	Early Write Data Hold Time		40			
TQVWL	Data Valid to Write Time		0			
TELEL	Read or Write Cycle Time		240			

NOTE 1: This parameter periodically sampled, not $100 \%$ tested.


FUNCTION TABLE

TIME REF.	INPUTS			OUTPUT	NOTES
	E	$\overline{\text { w }}$	A	0	
-1	H	X	X	Z	MEMORY INACTIVE
0	2	H	V	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	H	x	V	OUTPUT VALID
2	-	H	X	V	READ COMPLETE
3	H	X	X	Z	MEMORY INACTIVE (SAME AS:-1)
4	2	H	V	Z	CYCLE ENDS, NEXT CYCLE BEGINS (SAME AS 0)

READ CYCLE


TIME


FUNCTION TABLE

$\begin{aligned} & \text { TIME } \\ & \text { REF. } \end{aligned}$	INPUTS				$\begin{array}{\|c\|} \hline \text { OUTPUT } \\ \hline \mathbf{Q} \\ \hline \end{array}$	NOTES
	$\overline{\mathrm{E}}$	$\overline{\text { w }}$	A	D		
- -1	H	X	X	X	Z	MEMORY INACTIVE
0	2	L	V	V	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	X	X	X	Z	WRITE IN PROGRESS
2	-	X	X	X	Z	WRITE COMPLETE
3	H	X	X	X	Z	MEMORY INACTIVE ISAME AS -1)
4	7	L	V	V	Z	CYCLE ENDS, NEXT CYCLE BEGINS (SAME AS 0)

EARLY WRITE CYCLE


FUNCTION TABLE

TIME REF.	INPUTS				OUTPUT	NOTES
	$\bar{E}$	$\overline{\text { w }}$	A	D	0	
-1	H	X	X	X	Z	MEMORY INACTIVE
0	2	H	V	X	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	H	X	X	V	OUTPUT VALID, READ/ MODIFY TIME
2	L	2	X	V	V	WRITE BEGINS, DATA LATCHED
3	L	X	X	X	V	WRITE IN PROGRESS
4	-	X	X	X	V	WRITE COMPLETE
5	H	X	X	X	Z	MEMORY INACTIVE ISAME AS -1)
6	2	H	V	X	Z	CYCLE ENDS, NEXT CYCLE BEGINS (SAME AS 0)

READ-MODIFY-WRITE CYCLE

## SYMBOLS AND ABBREVIATIONS

This data sheet utilizes a new set of specification nomenclature. This new format is an IEEE and JEDEC supported standard for semiconductor memories. It is intended to clarify the symbols, abbreviations and definitions, and to make all memory data sheets consistent. We believe, once acclimated, you will find this standardized format easy to read and use.

## ELECTRICAL PARAMETER ABBREVIATIONS

All abbreviations use upper case letters with no subscripts. The initial symbol is one of these four characters:

$$
\begin{array}{ll}
\mathrm{V} & \text { (Voltage) } \\
\text { I } & \text { (Current) } \\
\mathrm{P} & \text { (Power) } \\
\mathrm{C} & \text { (Capacitance) }
\end{array}
$$

The second letter specifies input (1) or output ( O ), and the third letter indicates high ( H ), low ( L ) or off ( Z ) state of the pin during measurements. Examples:

> VIL - Input Low Voltage
> IOZ - Output Leakage Current

## TIMING PARAMETER ABBREVIATIONS

All timing abbreviations use upper case characters with no subscripts. The initial character is always $T$ and is followed by four descriptors. These characters specify two signal points arranged in a "from-to" sequence that define a timing interval. The two descriptors for each signal point specify the signal name and the signal transitions. Thus the format is:

Signal name from which interval is defined


Signal Definitions:

$$
\begin{aligned}
\mathrm{A} & =\text { Address } \\
\mathrm{D} & =\text { Data In } \\
\mathrm{Q} & =\text { Data Out } \\
\mathrm{W} & =\text { Write Enable } \\
\mathrm{E} & =\text { Chip Enable } \\
\mathrm{S} & =\text { Chip Select } \\
\mathrm{G} & =\text { Output Enable }
\end{aligned}
$$

Transition Definitions:
H = Transition to High
$\mathrm{L}=$ Transition to Low
$\mathrm{V}=$ Transition to Valid
X $=$ Transition to Invalid or Don't Care
Z = Transition to Off (High Impedance)

EXAMPLĖ:


The example shows Write pulse setup time defined as TWLEH-Time from Write enable Low to chip Enable High.

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address set-up time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

WAVEFORMS

WAVEFORM SYMBOL	INPUT	OUTPUT
!	MUST BE   VALID	WILL BE VALID
	CHANGE   FROM H TOL	WILL CHANGE FROM H TO L
	CHANGE FROM L TO H	WILL CHANGE FROM LTO H
" 8 \%	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
		$\begin{gathered} \mathrm{HIGH} \\ \text { IMPEDANCE } \end{gathered}$

PACKAGE SPECIFICATIONS


## 18 LEAD PLASTIC (PN)



## NOTES:

1. Hermetic: Maximum Leakage Rate $5 \times 10-7 \mathrm{~atm} . \mathrm{cc} / \mathrm{sec}$

## FEATURES

- Low Power Standby - Typically $1 \mu \mathbf{W}$
- High Speed - 170nS Typical Access Time at 5V, $25^{\circ} \mathrm{C}$
- Improved Chip Enable Function Simplifies BatteryBackup System Design
- TTL Compatible Inputs and Outputs
- Three State Outputs
- Operating Voltage Range 4.5V to 5.5 V ( $5 \mathrm{~V} \pm 10 \%$ )
- Data Retention to VCC $=\mathbf{2 V}$
- On-Chip Address Register
- Harris IM6514/Mostek MK4114 Compatible


## GENERAL DESCRIPTION

The IM6514 is a low power, high speed 4096-bit static RAM organized as 1024 words by 4 bits, fabricated with Intersil's selective-oxidation, ion-implanted, self-aligned silicon-gate CMOS process (SELOX-C). In all static states, this device exhibits the microwatt power dissipation typical of CMOS. Inputs and three-state outputs are TTL and CMOS compatible and allow for direct interface with common system bus structures. On-chip address registers simplify system timing requirements.
Battery-backup design is simplified by an improved chip enable which, when high, allows all other inputs to be floating without increased power dissipation.
The basic part operates over the 4.5 V to 5.5 V range with a typical $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ access time of 170 nS .

FUNCTIONAL DESCRIPTION

## Read Cycle

The falling edge of chip enable ( $\overline{\mathrm{E}}$ ) latches addresses in the on-chip register and initiates a read cycle. Addresses to be latched must be present a setup time (TAVEL) prior to and a hold time (TELAX) following the falling edge of $\bar{E}$. During time $T=1$ the output will become valid. Write enable $(\bar{W})$ must remain high until after time $T=2$. The read is terminated when $\bar{E}$ goes high at time $T=3$ disabling the output buffers.

## Write Cycle

The falling edge of $\bar{E}(T=0)$ latches addresses in on-chip registers. Write begins at $\mathrm{T}=1$ and ends at $\mathrm{T}=2$ with rising $\overline{\mathrm{E}}$ or $\overline{\mathrm{W}}$. Data in must remain valid until $\mathrm{T}=4$.

## Read-Modify-Write Cycle

The read-modify-write cycle begins as a normal read. The falling edge of $\bar{E}(T=0)$ latches addresses in the on-chip register and initiates the read cycle when $\bar{W}$ is high. During time $T=1$ the output will become active; at $T=3$ valid data must be present. Data-in (D) is latched on the rising edge of $\bar{W}$. On the rising edge of $\bar{E}(T=4)$ the write portion is complete, inputs are unlatched, and the output returns to highimpedance.

BLOCK DIAGRAM


PIN NAMES

A0-A9	ADDRESS INPUTS.
D/Q $0-3$	DATA INPUTS, Q OUTPUTS
$\bar{E}$	ADDR. STROBE/CHIP ENABLE
$\bar{W}$	WRITE ENABLE

## ORDERING INFORMATION

PART NO.	PACKAGE	TEMP. RANGE
IM6514IPN	$18-$ PIN PLASTIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6514IJN	18 -PIN CERDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6514IDN	18 -PIN CERAMIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
IM6514MJN	$18-$ PIN CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6514MDN	$18-$ PIN CERAMIC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6514MFN	$18-$ PIN FLATPACK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
IM6514CPN	18 -PIN PLASTIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
IM6514CJN	18 -PIN CERDIP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## PIN ASSIGNMENTS



LOGIC SYMBOL



FUNCTION TABLE

TIME REF.	INPUTS			OUTPUT	NOTES
	$\bar{E}$	$\overline{\text { w }}$	A	0	
-1	H	X	X	Z	MEMORY INACTIVE
0	L	H	V	Z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	H	X	V	OUTPUT VALID
2	-	H	X	V	READ COMPLETE
3	H	X	X	V	MEMORY INACTIVE (SAME AS -1)
4	2	H	V	Z	CYCLE ENDS, NEXT CYCLE BEGINS (SAME AS 0)

READ CYCLE


FUNCTION TABLE

TIME   REF.	INPUTS				
-1	$\bar{E}$	$\bar{W}$	A	I/O	
$\mathbf{0}$	H	X	X	Z	MEMORY INACTIVE

WRITE CYCLE


FUNCTION TABLE

$\begin{aligned} & \text { TIME } \\ & \text { REF. } \end{aligned}$	INPUTS				OUTPUT	NOTES
	$\bar{E}$	$\overline{\text { w }}$	A	D	Q	
-1	H	X	X	X	Z	MEMORY INACTIVE
0	2	H	V	X	z	CYCLE BEGINS, ADDRESSES LATCHED
1	L	H	X	X	V	OUTPUT VALID, READ/ MODIFY TIME
2	L	2	X	X	Z	WRITE BEGINS, OUTPUT HIGH Z
3	L	L'	X	V	Z	WRITE IN PROGRESS
4	$\sim$	X	X	X	Z	WRITE COMPLETE
5	H	X	X	X	Z	MEMORY INACTIVE ISAME AS -1)
6	2	H	V	X	Z	CYCLE ENDS, NEXT CYCLE BEGINS (SAME AS O)

READ-MODIFY-WRITE CYCLE

## PACKAGE SPECIFICATIONS

18 LEAD CERAMIC (DN)


18 LEAD PLASTIC (PN)


NOTES:

1. Hermetic: Maximum Leakage Rate $5 \times 10-7 \mathrm{~atm} . \mathrm{cc} / \mathrm{sec}$

## FEATURES

- $4096 \times 1$ Organization
- Maximum Access Time:
- 7141-2, 7141L2 - 200ns
- 7141-3, 7141L3-300ns
- 7141, 7141L - 450ns
- TTL Compatible Inputs and Outputs
- Separate Data Input and Output
- Military Temperature Operation $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Available
- 883A Class B Processing Available
- High Density 18 Pin Package
- Minimum Cycle Time Equal to Access Time
- Power Dissipation
- 7141L - 275mW Maximum
- 7141 - 385mW Maximum
- Military Temp Units - 495mW Maximum
- Completely Static Operation


## DESCRIPTION

The 7141 is a 4096-bit static Random Access Memory device organized $4096 \times 1$. The storage cell, decode and control circuitry are completely static, therefore no clocks or refresh operations are required. Memory access occurs within the specified access time after all address inputs are stable. A Chip Select input is provided for simple memory array expansion.

The 7141 is assembled in a standard 18 pin DIP for maximum system packing density.
(3)

ABSOLUTE MAXIMUM RATINGS
Operating Temperature Military . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Commercial ....... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin to Ground . . . . . . . . . . -0.5 V to +7 V
Power Dissipation
Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W
AC CHARACTERISTICS Military Temp: $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \pm 10 \%$
Commercial Temp: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \pm 5 \%$
READ CYCLE $\quad \mathrm{t}_{\mathrm{T}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$, Output Load $=1 \mathrm{TTL}$ Gate and 100pf

	SYMBOL	PARAMETER	7141L2, 7141-2		7141L3, 7141-3		7141L, 7141		UNITS
			MIN	MAX	MIN	MAX	MIN	MAX	
1	${ }^{\text {r }}$ RC	Read Cycle	200		300		450		ns
2	${ }^{t}$ A	Access Time		200		300		450	ns
3	${ }^{\text {t }} \mathrm{CO}$	CS to Output Valid		70		100		100	ns
4	${ }^{\text {t }} \mathrm{CX}$	CS to Output Active	0		0		0		ns
5	${ }^{\text {t O }}$ OTD	Output 3 State from Deselect	0	60	0	80	0	100	ns
6	${ }^{\text {t }} \mathrm{OHA}$	Output Hold from Address Change	10		10		10		ns

## WRITE CYCLE

	SYMBOL	PARAMETER	7141L2, 7141-2		7141L3, 7141-3		7141L, 7141		UNITS
			MIN	MAX	MIN	MAX	MIN	MAX	
1	${ }^{\text {t }}$ WC	Write Time Cycle	200		300		450		ns
2	${ }^{\text {t }}$ W	Write Time	120		150		200		ns
3	${ }^{t}$ WR	Write Release Time	0		0		0		ns
4	${ }^{\text {t OTW }}$	Output 3 State from Write	0	60	0	80	0	100	ns
5	${ }^{\text {t }}$ DW	Data to Write Time Overlap	120		150		200		ns
6	${ }^{\text {t }}$ DH	Data Hold from Write Time	15		15		15		ns
7	${ }^{\text {t }}$ AW	Address Setup Time	0		0		0		ns
8	${ }^{\text {t }} \mathrm{CW}$	CS Select Pulse Width	120		150		200		ns

DC CHARACTERISTICS Military Temp: $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \pm 10 \%$
Commercial Temp: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \pm 5 \%$

	SYMBOL	PARAMETER	7141L		7141		UNITS	TEST CONDITIONS
			MIN	MAX	MIN	MAX		
1	${ }^{\prime} \mathrm{L} 1$	Input Load Current   (All Inputs)		10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
2	'LO	I/O Leakage Current		10	!	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{CS}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
3	${ }^{\text {CC2 }}$	Power Supply Current		40		65	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
4	${ }^{1} \mathrm{CC1}$	Power Supply Current		50		70	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$
5	${ }^{\text {I CC3 }}$	Power Supply Current		$\cdots$		90	mA	$\begin{aligned} & V_{I N}=+5.5 \mathrm{~V}, I_{I / O}=0 \mathrm{~mA} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$
6	$V_{\text {IL }}$	Input Low Voltage	-0.5	0.8	-0.5-	0.8	V	
7	$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	$\mathrm{V}_{\mathrm{CC}}$	2.0	$\mathrm{V}_{\mathrm{CC}}$	V	
8	$\mathrm{V}_{\mathrm{OL}}$	Ouput Low Voltage		0.4		0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
9	$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	2.4	$\mathrm{V}_{\mathrm{CC}}$	2.4	$\mathrm{V}_{\mathrm{CC}}$	V	$\mathrm{I}^{\mathrm{OH}}=-200 \mu \mathrm{~A}$

## DEVICE OPERATION

When $\overline{W E}$ is high, the data input buffers are inhibited to prevent erroneous data from getting into the array. As long as $\overline{W E}$ remains high, the data stored cannot be changed by the address Chip Select, or data input voltage levels and timing transitions. The block diagram also shows data storage cannot be changed by $\overline{\mathrm{WE}}$, the addresses, nor the input data as long as $\overline{\mathrm{CS}}$ is high. Either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ by itself - or in conjunction with the other - can prevent extraneous writing due to signal transitions.
Data within the array can only be changed during a Write time - defined as the overlap of $\overline{C S}$ low and $\overline{W E}$ low. To prevent the loss of data, the addresses must be properly established during the entire Write time plus tWR.

## CAPACITANCE

	SYMBOL	PARAMETER	MAX	UNIT	TEST CONDITIONS
1	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	5	pF	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$
2	$\mathrm{C}_{\mathrm{IN}}$	Input Capacitance	5	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

## TIMING DIAGRAMS

## READ CYCLE



## WRITE CYCLE



## 7141 BIT MAP DIAGRAM



## PHYSICAL DIMENSIONS

## CERDIP PACKAGE



## IM6312 CMOS ROM 1024 Word x 12 Bit

## FEATURES

- IM6100 compatible
- Low standby power: $5 \mu \mathrm{~W}$ typical standby at 5V, $25^{\circ} \mathrm{C}$
- Low operating power: $10 \mathrm{~mW} / \mathrm{MHz}$ maximum
- High speed operation
- TTL compatible inputs and outputs
- On-chip address registers
- Completely static and synchronous
- Operating voltage range 4V to 11V (A version)
- Military and industrial temperature ranges


## GENERAL DESCRIPTION

The IM6312 is a high speed low power silicon gate CMOS static ROM organized 1024 words by 12 bits. In all static states it exhibits the microwatt power requirements typical of CMOS. The basic part offers a maximum 5 V access time of 640 ns guaranteed over the industrial temperature range. A "1 " version guarantees 510 ns under the same conditions, and an "A" version offers 200 ns with a 10V supply. Signal polarities and functions are specified for interfacing with the IM6100 microprocessor. A decoder for RAM enable is provided on chip, eliminating an external 4 bit register and decoder. Upto 4 ROMs may be present in a system without external decoders to select ROM.

## FUNCTIONAL DIAGRAM



PIN CONFIGURATIONS


Pin 1 is designated either by a dot or a notch.

ORDERING INFORMATION
MEMORY CIRCUIT MARKING AND PRODUCT CODE EXPLANATION

Supply Voltage	. O
Applied Input or Output	
Voltage	GND - 0.3V to Vcc +0.3 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	
Industrial (IM6312AI)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military (IM6312AM)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
IM6312AI, AM	4-11

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

DC CHARACTERISTICS $\mathrm{V}_{C C}=4-11 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Logical "1" Input Voltage	VIH		70\% VCC			V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				20\% VCC	V
Input Leakage	ILL	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		+1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	$10=0.0 \mathrm{~mA}$	Vcc. - 01			V
Logical "0" Output Voltage	VOL	$1 \mathrm{O}=0.0 \mathrm{~mA}$			GND + 01	V
Output Leakage	10	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{Vcc}$	-1.0		1.0	$\mu \mathrm{A}$
Supply Current	Iccsb			1.0	500	$\mu \mathrm{A}$
Dynamic Supply Current	Iccop	$f=1 \mathrm{MHz}$			2	mA
Input Capacitance	CIN	$\ldots$		5.0	7.0	pf
Output Capacitance	Cout			6.0	10.0	pf

AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	6312AI		6312AM		UNITS
		MIN	MAX	MIN	MAX	
Access time from $\overline{\mathrm{E}}$	TELQV		200		220	
Output enable time	TGHQV	,	160		175	
Output disable time	TGLQZ		160		175	ns
Strobe (E) positive pulse width	TEHEL	125		140		
Address setup time	TAVEL	30		35		
Address hold time	TELAX	60		60		
Propagation delay, address to $\overline{\mathrm{F}}$	TAVFV		100		110	
Propagation delay, address to $\overline{\mathrm{F}}$.	TAZFX		100		110	

ABSOLUTE MAXIMUM RATINGS
Supply Voltage ............................. +8.0 V
Applied Input or Output
Voltage $\ldots . . . . . . . . . .$. GND -0.3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$
Storage Temperature Range $\ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range
Temperature
Industrial (IM63121/-11) ......... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Military (IM6312-1M) .......... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage
IM6312-1I, -1M, I, M
4.5-5.5V

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

DC CHARACTERISTICS $\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

PARAMETER	SYMBOL	CONDITIONS	IM6312-1I/-1M			IM6312I, M			UNITS
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Logical "1" Input Voltage	VIH		Vcc-2V			Vcc-1.5			V
Logical "0" Input Voltage	$\mathrm{V}_{\text {IL }}$				0.8 V			0.8	V
Input Leakage	IIL	$0 \mathrm{~V} \leq \mathrm{V}_{\text {I }} \leq \mathrm{VCC}$	-1.0		+1.0				$\mu \mathrm{A}$
Input Leakage	IIL	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}$ cc				-5.0		+5.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			2.4			V
Logical "0" Output Voltage	VOL	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45				V
Logical "0" Output Voltage	VOL	$1 \mathrm{OL}=1.6 \mathrm{~mA}$						0.45	V
Output Leakage	10	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{Cc}}$	-1.0		1.0				$\mu \mathrm{A}$
Output Leakage	10	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{o}} \leq \mathrm{Vcc}$				-5.0		+5.0	$\mu \mathrm{A}$
Supply Current	Iccsb	$\mathrm{V}_{1 \times}=\mathrm{V}_{\text {cc }}$ or GND		1.0	100			800	$\mu \mathrm{A}$
Dynamic Supply Current	ICCOP	$\mathrm{f}=1 \mathrm{MHz}$		1.5	1.8		1.5	1.8	mA
Input Capacitance	CIN			5.0	7.0		5.0	7.0	pf
Output Capacitance	Cout			6.0	10.0		6.0	10.0	pf

AC CHARACTERISTICS $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pf}, T_{A}=$ Industrial or Military

PARAMETER	SYMBOL	IM6312-1]		IM6312-1M		IM63121,M		UNITS
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Access Time from $\bar{E}$	TELQV		510		560		640	ns
Output Enable Time	TGHQV		290		320		390	
Output Disable Time	TGLQZ		290		320		390	
Strobe Positive Pulse Width	TEHEL	260		285		300		
Address Setup Time	TAVEL	75		85		75		
Address Hold Time	TELAX	120		135		140		
Propagation Delay, Address to $\overline{\mathrm{F}}$	TAVFV		220		240		250	
Propagation Delay, Address to $\overline{\mathrm{F}}$	TAZFX		220		240		250	

PIN ASSIGNMENTS

PIN	SYMBOL	ACTIVE LEVEL	DESCRIPTION
1	$\bar{F}$	$\mathrm{H} / \mathrm{L}$	RAM select, can be programmed to be active high   or low. Used to enable specified RAM address field and   disable ROM outputs.
2	$\overline{\mathrm{E}}$	L	Strobe, latches address lines and   enables outputs
3	G	H	Output enable
$4-8,10-16$	DX0-DX 11	-	Address inputs, data outputs
9	GND	-	Ground
17	$\overline{\mathrm{G}}$	L	Output enable
18	VCC	-	Chip +V supply

## READ CYCLE TIMING:



## READ OPERATION

Address information is latched into on-chip registers by the falling edge of strobe line $\bar{E}$. Address information must be removed after address hold time (TELAX) to allow placing of Data Out on DX lines. Data Out is valid an access time (TELQV) after the falling edge of $\bar{E}$ if outputs are enabled, i.e. if $\bar{E}$ remains low, $G$ is high and $\bar{G}$ is low.
RAM select $\bar{F}$ becomes valid a propagation delay time TAVFV after the address has been asserted, and invalid a propagation time TAZFX after the address has been removed.
Valid output data will be read only if decoded states of DXO and DX1 are true. (See Chip Select Programming)

## FUNCTION TABLE

TIME REF	INPUTS			OUTPUTS		NOTES
	E	$\mathbf{G}$	$\mathbf{A}^{*}$	$\mathbf{F}$	$\mathbf{Q}^{*}$	
-1	H	X	X	$\overline{\mathrm{V}}$	Z	Memory inactive, DX lines indeterminate RAM is disabled
0		X	V	$\overline{\mathrm{V}}$	Z	Addresses placed on DX lines, latched by E
1	L	X	X	V	Z	RAM select valid
2	L	H	Z	V	V	Data out valid on DX lines or RAM selected depending   on address
3	H	X	X	$\overline{\mathrm{V}}$	Z	Output disabled, DX lines switching to high Z

*Addresses (A) and data out (Q) multiplexed on DX lines.
** $\bar{V}=$ Invalid Level

## IM6312 CUSTOM ROM PROGRAMMING

An IM6312 ROM programming papertape consists of two segments ( $A$ and $B$ ), preceded by at least one foot of sprocket holes (no channels punched). Segment A is the header, and consists of frames 1-15 (see Fig. 1). Segment B contains at least one leader frame, location setting commands, data and checksum. The tape concludes with a minimum of one leader/trailer frame and a foot or more of sprocket holes.

## NOTES

1. Each ROM pattern must be prepared on a separate papertape.
2. Data/address (DX) lines are numbered from DXO (MSB) to DX11 (LSB).

3. A punched hole is considered a logical " 1 ".
4. The following terms are synonymous
(True, High, T, H, Logical "1")
(False, Low, F, L, Logical "0")
5. No field change characters are allowed.

## HEADER (Frames 1-15)

The header (Figure 1) begins with a rubout followed by six ASCII characters identifying the customer and pattern number. Frames 8 and 9 specify the states of DX0 and DX1 during $\bar{E}$, which enable the chip. The RAM Select $(\bar{F})$ output is programmed with frames 10-14. A rubout (all eight channels punched) in frame 15 concludes the header. Any rubout between frames 1 and 15 will invalidate the header and cause programming failure.

COMMENTS

Sprocket holes
Begin header

6 character customer ID
(A-Z, 0-9) are allowable

DXO(MSB) Chip Select programming:
DX1
DXO(MSB) $\bar{F}$ programming:
DX1
DX2
DX3
$\bar{F}$ is programmed to be active low End header
] L = Active Low

Sprocket holes
At least one frame of LEADER is required

PAL Assembler "second pass" output is of this form. Channel 8 only punches indicate leader or trailer. An address is designated by a punch in channel 7. DX0-DX5 are represented by channels (6-1) in the first frame. DX6-DX11 are represented by channels $(6-1)$ in the second frame. At least one frame of TRAILER is required.

The example shown above has customer ID and pattern ISL004. Chip selects are programmed to recognize addresses 600077778 or $3072-409510$. $\bar{F}$ is active low for addresses $0000-0377_{8}$ or 0000-025510. Unused locations are automatically programmed to a logic zero.

## CHIP SELECT PROGRAMMING (Frames 8, 9)

IM6312 outputs are enabled when $\bar{G}$ and $\bar{E}$ are low, $G$ is high, and the states of DX0 and DX1 agree with the conditions specified in frames 8 (DX0) and 9 (DX1) of the header. To specify a particular ROM address field frames 8 and 9 must be programmed as follows:

Table 1

FRAME 8 (DX0)	FRAME 9 (DX1)	ADDRESS FIELD
F	F	$0000_{8}-1777_{8}$
F	T	$2000_{8}-37778$
T	F	$4000_{8}-57778$
T	T	$6000_{8}-77778$

For example, to program the ROM for address field 4000857778 header frame 8 must be $T$ and frame 9 must be F. Figure 2 diagrams the chip and RAM select logic.

*The "positions" of these "switches" are specified by the ROM programming tape (segment A).

Figure 2

## RAM SELECT PROGRAMMING (Frames 10-14)

Most memory systems contain both RAM and ROM. The designer of such a system must insure that accesses to RAM memory space do not enable the ROMs and vice versa. The IM6312 ROM decodes address information on DX0 and DX1 to provide a unique 1024 word address srace dedicated to itself. It also provides a RAM Select ( $\bar{F}$ ) output which may be used to enable an address space dedicated to RAM. The states of DXO-DX3 which activate $\bar{F}$ are programmed by frames 10-13 respectively. Frame 14 determines whether $\bar{F}$ is considered active when high (frame $14=\mathrm{H}$ ) or active when low (frame $14=\mathrm{L}$ ).
Frames 10-13 may be T (true), V (don't care), or F (false). For example, if frames $10-13$ are FTFV respectively, $\bar{F}$ will be active when address information on DX0 and DX2 is $F$ (low) and DX1 is $T$ (high). DX3 may be either $T$ or $F$, since it is programmed V ("don't care") (see Table 3). Thus, in this
example, RAMs using $\bar{F}$ as an enable will respond to addresses $2000_{8}$ through $2777_{8}$.

Table 2

Channel	Function
8 only	Leader/Trailer
$8+(6-1)$	Header
$7+(6-1)$	Location Setting (first frame)
$6-1$ only	Data, Checksum, Location Setting (second frame)

Table 3

Frames   $10-13$	RSEL Enable Condition
$T$	DXn must be high to enable
$F$	DXn must be low to enable
$V$	DXn may be either high or low to enable

## LOCATION SETTING/DATA

It is not necessary to specify the contents of all 1024 words in the IM6312. Words that are not explicitly programmed will contain all zeros.
Data words are entered into sequential locations in ROM, beginning from the address specified by the most recently encountered location setting command. For this reason, such a command must precede any data words. A new location setting command may be given; subsequent data words will be entered beginning at the new address.
The location setting command consists of two sequential frames. The initial frame has channel 7 punched with the remaining channels (6-1) representing the most significant six bits of a 12-bit word. The second frame has no punches in channel 8 or 7 , and represents the least significant 6 bits of the word (see Table 1).
Figure 3 shows an example of location setting to 04108 . Subsequent data words will be stored in locations 04108, 04118, etc.


Figure 3
A data word consists of two frames with channels 8 and 7 unpunched. The two groups of six holes remaining are then concateniated to form a 12-bit binary number (punched $=\mathrm{H}$, unpunched $=\mathrm{L}$ ). The most significant six bits are punched first (channels 6-1 with 8 and 7 unpunched), followed by the least significant bits. The MSB of the 12-bit data word is channel 6 of the first frame; the LSB is channel 1 of the second frame. Figure 3 shows examples of two data words, $7440_{8}$ and 62108.

## CHECKSUM

A two frame checksum precedes the leader/trailer at the end of segment B. It is the modulo 4096 sum of all frames in segment $B$ following the initial leader/trailer and preceding the final leader/trailer (except the two frames that represent the checksum itself). For purposes of checksum computation, each frame is to be considered an 8-bit binary word. The 12-bit result is punched out in two sequential frames, with channels 8 and 7 unpunched. The most significant six bits are punched first, followed by the.least significant six bits as with the data word format. Any frame with channel 7 or 8 punched (e.g. leader or location setting command) is not included in the checksum computation. For additional BIN format information, refer to "PDP®-8 Family Commonly Used Utility Routines".

## COMPATIBLE ASSEMBLER PROGRAMS

PAL III, FOPAL III, MACRO-8, PAL 8, and IFDOS PAL are assembler programs for the IM6100 microprocessor which prepare a papertape conforming to the specifications for the second tape segment. The header must in any case be produced manually.
The input to a PAL assembler is ASCII source code. More information and PAL assemblers are available from Intersil. The first frame-pair in a segment B produced by PAL III is a location setting command to address $0200_{8}$. This is ignored if another origin setting follows immediately afterwards.
Some PAL assemblers produce a checksum with 13 bits (i.e., channel 7 of the first frame of the checksum may be punched). If channel 7 is punched, it is ignored.
@Registered trademark of Digital Equipment Corp.

## A MINIMAL MICROPROCESSOR SYSTEM (64 OR 128 WORDS OF RAM)



18 LEAD CERDIP (JN)


18 PIN FLATPACK (FN)*


0

# IM6316 CMOS ROM 16,384 Bit (2048x8) 

## FEATURES

- Low power: $500 \mu$ W typical standby at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$
- High speed: 350ns typical access time at 5V, $25^{\circ} \mathrm{C}$
- On-chip address registers
- TTL/CMOS compatible inputs and three-state outputs
- Completely static and synchronous
- Single 5V supply
- Intel 2316E and Mostek MK34000 compatible
- Two mask programmable chip selects (active level latched/unlatched)
- Outputs mask programmable (latched/unlatched)


## GENERAL DESCRIPTION

The IM6316 is a 16,384-bit static silicon-gate CMOS read-only-memory (ROM) organized 2048 words by 8 bits. In all static states, this device exhibits the microwatt power dissipation typical of CMOS. Inputs and three-state outputs are

TTL and CMOS compatible and allow for direct interface with common system bus structures. On-chip address registers and two mask programmable chip-selects simplify system interfacing requirements.
The IM6316 operates over a 4 V to 6 V range, with a typical 5 V , $25^{\circ} \mathrm{C}$ access time of 350 ns .

## FUNCTIONAL DESCRIPTION

The falling edge of chip enable ( $\overline{\mathrm{E}})$ latches addresses in the on-chip register and initiates a read cycle. Address and chip selects to be latched must be present a setup time (TAVEL) prior to and a hold time (TELAX) following the falling edge of $\bar{E}$. After an access time, valid data will be available.

Optional latched outputs are active when S1 and S2 (or latched S1 and S2) are active. For unlatched outputs, $\overline{\mathrm{E}}$ must also be low to enable.
Optional latches for S 1 and S 2 are level sensitive. When $\overline{\mathrm{E}}$ is high, latched S1 and S2 thus perform as if they were not latched.

LOGICAL BLO	K DIAGRAM   CELL ARRAY CELL ARRAY		PIN ASSIG	ENTS	LOGIC SYMBOL
ORDERING INFORMATION			PIN NAMES		
PART NO.	PACKAGE	TEMP. RANGE	A0-A10	ADDR	INPUTS
IM6316IJG	24 PIN CERDIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Q0-Q7	DATA	TPUTS
IM6316IDG.	24 PIN CERAMIC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		ADDR	ROBE/CHIP ENABLE
IM6316MJG	24 PIN CERDIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
IM6316MDG	24 PIN CERAMIC	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	S1, S2	CHIP	ECTS

## IM6316

UNTSRㅇSUL
READ CYCLE TIMING - Latched Chip Selects



LATCHED OUTPUTS


UNLATCHED OUTPUTS

FUNCTION TABLE - Latched Chip Selects

TIME   REF	INPUTS			Q OUTPUTS		NOTES
	$\bar{E}$	$\mathbf{A}$	$\mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}$	LATCHED	UNLATCHED	
-1	H	X	$\overline{\mathrm{V}}$	Z	Z	MEMORY INACTIVE, OUTPUTS HIGH Z
0	L	V	V	Z	Z	STROBE LATCHES VALID ADDRESS, CHIP   SELECT INFORMATION
1	L	X	X	ACTIVE	ACTIVE	OUTPUTS ENABLED AND ACTIVE
2	L	X	X	V	V	OUTPUTS VALID
3	-	X	X	V	V	STROBE RETURNS HIGH, LATCHES OUTPUTS
4	H	X	X	V	Z	OUTPUTS DISABLED ON UNLATCHED   DEVICES
5	L	V	V	V	Z	NEXT CYCLE BEGINS, SAME AS 0.

## READ CYCLE TIMING • Unlatched Chip Selects



TIME REF


LATCHED OUTPUTS


UNLATCHED OUTPUTS

FUNCTION TABLE • Unlatched Chip Selects

TIME   REF	INPUTS			Q OUTPUTS		NOTES
	$\bar{E}$	A	$\mathbf{S}_{\mathbf{1}} \cdot \mathbf{S}_{\mathbf{2}}$	LATCHED	UNLATCHED	
-1	H	X	$\overline{\mathrm{V}}$	Z	Z	MEMORY INACTIVE, OUTPUTS HIGH Z
0	L	V	$\overline{\mathrm{~V}}$	Z	Z	STROBE LATCHES ADDRESS INFORMATION
1	L	X	V	ACTIVE	ACTIVE	OUTPUTS ENABLED AND ACTIVE
2	L	X	V	V	V	OUTPUTS VALID
3	-	X	V	V	V	STROBE RETURNS HIGH, LATCHES OUTPUTS
4	H	X	V	V	Z	OUTPUTS DISABLED ON UNLATCHED   DEVICES
5	H	X	$\overline{\mathrm{V}}$	Z	Z	OUTPUTS DISABLED ON LATCHED DEVICES
6	L	V	$\overline{\mathrm{~V}}$	Z	Z	NEXT CYCLE BEGINS, SAME AS O.

## NOTES

1. $X=$ Don't Care
2. $V=$ Valid
3. $Z=$ High Impedance
4. $\overline{\mathrm{V}}=$ Invalid.


2k x 8 External CMOS ROM Memory for 8048 Microprocessor


2k x 8 ROM Memory for Z80 Microprocessor


2k x 8 ROM, $512 \times 8$ RAM System for 8085 Microprocessor

## CUSTOMER DATA

Date:
Company: $\qquad$
P.O. \#

Engineer: $\qquad$
Engineer Telephone Number:


INTERSIL USE ONLY
6316S $\square$

## DATA FORMAT

$\square$ Intellec ${ }^{\text {TM }}$ HEX
$\square$ "PN".

MEDIA (all data must be in card form regardless of media)
$\square$ Punched Cards
ㅁ Magnetic Tape (9-track, 800 bpi, odd parity)

- Paper Tape


## LOGIC FORMAT

$\square$ Positive (default)
$\square$ Negative

## VERIFICATION

$\square$ Hold for verification (default)
$\square$ Not required

## UNSPECIFIED LOCATIONS

$\square$ Programmed to FFH (default)
$\square$ Programmed to 00 H
CUSTOMER OPTIONS (check only one box in each section)
$\square$ Latched Outputs
$\square$ Unlatched Outputs

- Latched Chip Selects

ㅁ Unlatched Chip Selects
$\square$ S1 Active High
$\square$ S1 Active Low
$\square$ S1 Always Active
$\square$ S2 Active High
$\square$ Active Low
$\square$ S2 Always Active

## SYMBOLS AND ABBREVIATIONS

This data sheet utilizes a new set of specification nomenclature. This new format is an IEEE and JEDEC supported standard forsemiconductor memories. It is intended to clarify the symbols, abbreviations and definitions, and to make all memory data sheets consistent. We believe, once acclimated, you will find this standardized format easy to read and use.

## ELECTRICAL PARAMETER ABBREVIATIONS

All abbreviations use upper case letters with no subscripts. The initial symbol is one of these four characters:
$\checkmark$ (Voltage)
1 (Current)
P (Power)
C (Capacitance)

The second letter specifies input (1) or output (O), and the third letter indicates high $(\mathrm{H})$, low $(\mathrm{L})$ or off $(\mathrm{Z})$ state of the pin during measurements. Examples:

> VIL - Input Low Voltage
> IOZ - Output Leakage Current

## TIMING PARAMETER ABBREVIATIONS

All timing abbreviations use upper case characters with no subscripts. The initial character is always $T$ and is followed by four descriptors. These characters specify two signal points arranged in a "from-to" sequence that define a timing interval. The two descriptors for each signal point specify the signal name and the signal transitions. Thus the format is:

Signal name from which interval is defined
Transition direction for first signal
Signal name to which interval is defined


Signal Definitions:
A = Address
$D=$ Data In
Q = Data Out
W = Write Enable
$E=$ Chip Enable
$S=$ Chip Select
G = Output Enable
Transition Definitions:

$$
\begin{aligned}
\mathrm{H} & =\text { Transition to High } \\
\mathrm{L} & =\text { Transition to Low } \\
\mathrm{V} & =\text { Transition to Valid } \\
\mathrm{X} & =\text { Transition to Invalid or Don't Care } \\
\mathbf{Z} & =\text { Transition to Off (High Impedance) } \\
\mathrm{V} & =\text { Transition to level opposite } \\
& \quad \text { that of valid state }
\end{aligned}
$$

## EXAMPLE:



The example shows write pulse setup time defined as TWLEH-Time from Write enable Low to chip Enable High.

## TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address set-up time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

## WAVEFORMS

WAVEFORM SYMBOL	INPUT	OUTPUT
	MUST BE VALID	WILL BE VALID
	CHANGE   FROM H TOL	WILL CHANGE FROM HTOL
	CHANGE   FROM LTOH	WILL CHANGE FROM LTO H
	DON'T CARE:   ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
	-	HIGH IMPEDANCE

## IM6316

## PACKAGE SPECIFICATIONS

Ceramic Package (DG)*


CERDIP Package (JG)*

*Hermetic: Maximum leakage rate $5 \times 10-7$ atm. cc/sec.

## FEATURES

- Low power: $500 \mu \mathrm{~W}$ typical standby at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$
- High speed: 300ns typical access time at 5V, $25^{\circ} \mathrm{C}$
- On-chip address registers
- TTL/CMOS compatible inputs and three-state outputs
- Completely static and synchronous
- Single 4V to 6V supply
- Outputs programmable latched/unlatched


## GENERAL DESCRIPTION

The IM6364 is a 65,536 -bit static silicon-gate CMOS read-only-memory (ROM) organized 8192 words by 8 bits. In all static states, this device exhibits the microwatt power dissipation typical of CMOS. Inputs and three-state outputs are TTL and CMOS compatible and allow for direct interface with common system bus structures.

The 1 M 6364 operates over a 4 V to 6 V range, with a typical $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ access time of 300 ns.

## FUNCTIONAL DESCRIPTION

In both the latched and unlatched output configuration, the falling edge of chip enable ( $\bar{E}$ ) latches the address inputs into the on-chip address register and initiates a read cycle. The address must be present a setup time (TAVEL) prior to and a hold time (TELAX) following the falling edge of $\bar{E}$.
In both output configurations, the outputs switch to active " 1 " level about 120 ns after the falling edge of $\bar{E}$. The outputs remain at this level until making a transition to valid data, an access time following, the falling edge of $\bar{E}$.
In the latched output configuration, the outputs remain latched for at least an address hold time (TELAX) following the falling edge of $\bar{E}$. This feature allows outputs to be fed back as address bits.


TIMING DIAGRAM


FUNCTION TABLE

TIME REFERENCE	INPUTS		Q OUTPUTS		FUNCTION
	$\bar{E}$	A	LATCHED	UNLATCHED	
-1	H	V	PREVIOUS DATA	Z	ADDRESS SET UP
0	$L$	V	PREVIOUS DATA	z	CYCLE BEGINS, ADDRESSES ARE LATCHED
1	L	x	H	z	LATCHED OUTPUTS BECOME ACTIVE HIGH
2	L	x	H	H	UNLATCHED OUTPUTS BECOME ACTIVE HIGH
3	L	x	V	v	VALID DATA AT OUTPUTS AFTER ACCESS TIME
4	H	x	V	z	UNLATCHED OUTPUTS BECOME HIGH IMPEDANCE
5	H	v	V	z	ADDRESS SET UP FOR NEXT CYCLE (SAME AS -1)
6	$1$	v	V	z	CYCLE ENDS, NEXT CYCLE BEGINS (SAME ASO)

## 24 LEAD CERAMIC (DG)



NOTES:

1. ALL DIMENSIONS IN INCHES AND (MILLIMETERS)
2. BOARD DRILLING DIMENSIONS WILL EQUAL STANDARD PRACTICES FOR . 020 DIAMETER LEAD

## CUSTOMER DATA

Date:
Company:
P.O. \#:

Engineer:
Engineer Telephone Number:
INTERSIL PART NUMBER
DATA FORMAT
$\square$ Intellec ${ }^{\text {TM }}$ HEX
$\square$ "PN"
MEDIA (all data must be in card image form
regardless of media)
$\square$ Punched Cards
$\square$ Magnetic Tape (9-track, 800 bpi, odd parity)
$\square$ Paper Tape
LOGIC FORMAT
$\square$ Positive (default)
$\square$ Negative

INTERSIL USE ONLY


## VERIFICATION

$\square$ Hold for verification (default)Not required

## UNSPECIFIED LOCATIONS

$\square$ Programmed to FFH (default)
$\square$ Programmed to 00 H

CUSTOMER OPTIONS (check only one box)
$\square$ Latched Outputs
$\square$ Unlatched Outputs

[^28]
## FEATURES

- Organization - IM6653: $1024 \times 4$

IM6654: $512 \times 8$

- Low Power - $5 \mu \mathrm{~W}$ Typical Standby
- High Speed
- 300ns 10V Access Time for IM6653/54 AI
- 450ns 5V Access Time for IM6653/54-1I
- Single +5 V supply operation
- UV erasable
- Synchronous operation for low power dissipation
- Three-state outputs and chip select for easy system expansion
- Full $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MIL range device IM6653/54 M


## GENERAL DESCRIPTION

The Intersil IM6653 and IM6654 are fully decoded, 4096-bit, CMOS electrically programmable ROMs (EPROMs) fabricated using Intersil's advanced CMOS processing technology. The EPROMs are specifically designed for program development applications where rapid turn-around for program changes is required.

The 24 pin packages have a transparent lid to allow the user to erase the EPROM by exposing it to ultraviolet light. The EPROM may ther be reprogrammed.


## ABSOLUTE MAXIMUM RATINGS

Supply Voltages	
VDD	. . . +11.0 V
$V_{C C}=V_{D D}$	+11.0V
Input or Output Voltage Supplied	GND -0.5 V to $\mathrm{V} D \mathrm{D}+0.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	
Temperature	
Industrial	. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage	
6653/54 I, -11	. 4.5-5.5
6653/54 M	. 4.5-5.5
6653/54 AI	9.5-10.5

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## DC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=$ Operating Voltage Range, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	CONDITIONS	IM6653/54I, -11, M		IM6653/54AI		UNITS
			MIN	MAX	MIN	MAX	
Logical "1" Input Voltage	VIH	$\overline{\bar{E}_{1}}, \overline{\mathrm{~s}}$	VDD - 2.0		VDD-2.0		V
	VIH	Address Pins	- 2.7		VDD - 2.0		
Logical " 0 " Input Voltage	VIL			0.8		0.8	
Input Leakage	11	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {IN }} \leqslant \mathrm{V}_{\text {DD }}$	-1.0	1.0	-1.0	1.0	$\mu \mathrm{A}$
Logical "1" Output Voltage	VOH2	IOUT $=0$	VCC - 0.01		$\mathrm{V}_{\text {CC }}-0.01$		V
Logical "1" Output Voltage	VOH1	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.4		,		
Logical "0" Output Voltage	VOL2	IOUT $=0$		GND +0.01		GND +0.01	
Logical "0" Output Voltage	VOLi	$\mathrm{IOL}=2.0 \mathrm{~mA}$		0.45			
Output Leakage	IOZ	$0 \mathrm{~V} \leqslant \mathrm{~V}_{0} \leqslant \mathrm{~V}_{\text {CC }}$	-1.0	1.0	-1.0	1.0	$\mu \mathrm{A}$
Standby Supply Current	IDDSB	$V_{\text {IN }}=V_{\text {DD }}$		100	/	100	
	ICC	VIN $=$ VDD		40		40	
Operating Supply Current	IDDOP	$\mathrm{f}=1 \mathrm{MHz}$		6		12	mA
Input Capacitance	$\mathrm{C}_{1}$	Note 1		7.0		7.0	pF
Output Capacitance	CO	Note 1		10.0		10.0	

Note: These parameters guaranteed but not $100 \%$ tested.

## AC CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=\mathrm{V}_{D D}=$ Operating Voltage Range, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	SYMBOL	IM6653/54-1]		IM6653/54 I		IM6653/54 M		IM6653/54 AI		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Access Time From $\bar{E}_{1}$	TE1LQV		450		550		600		300	
Output Enable Time	TSLQV		110		140		150		60	
Output Disable Time	TE1HQZ		110		140		150		60	
$\bar{E}_{1}$ Pulse Width (Positive)	TE1HE1L	130		150		150		125		
$\bar{E}_{1}$ Pulse Width (Negative)	TE1LE1H	450		550		600		300		ns
Address Setup Time	TAVE1L	0		0		0		0		
Address Hold Time	TE1LAX		80		100		100	1	60	
Chip Enable Setup Time (6654)	TE2VE2L	0		0		0		0		
Chip Enable Hold Time (6654)	TE2LE2X		80		100		100		60	

## PIN ASSIGNMENTS

PIN	SYMBOL	ACTIVE   LEVEL	DESCRIPTION
$1-8,23$	$\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~A}_{8}$	-	Address Lines
$9-11,13-17$	$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	-	Data lines, 6654
	$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	-	Data lines, 6653
12	$\mathrm{~V}_{\mathrm{SS}}$	-	GND
18	Program	-	Programming pulse input
19	$\mathrm{~V}_{\mathrm{DD}}$	-	Chip +V supply, normally tied to $\mathrm{VCC}_{\mathrm{CC}}$
20	$\overline{\mathrm{E}_{1}}$	L	Strobe line, latches both address lines and, for 6654, Chip enable $\mathrm{E}_{2}$
21	$\overline{\mathrm{~S}}$	L	Chip select line, must be low for valid data outputs
22	$\mathrm{~A}_{9}$	-	Additional address line for 6653
	$\overline{\mathrm{E}_{2}}$	L	Chip enable line, latched by strobe $\mathrm{E}_{1}$ on 6654
24	$\mathrm{~V}_{\mathrm{CC}}$	-	Output buffer +V supply

## READ CYCLE TIMING



## READ MODE OPERATION

In a typical READ operation the address lines are latched by a downward edge on the strobe line, $\bar{E}_{1}$. The chip must then be selected by driving pin $21^{\prime}(\overline{\mathrm{S}})$ low. If the chip has been selected the data outputs become valid an access time (TELQV) after the downward strobe edge. The data outputs remain valid until the strobe line is returned to a high level. Both $\overline{\mathrm{S}}$ and $\overline{\mathrm{E}}_{2}$ may be tied low during the READ cycle. Note that $\bar{E}_{2}$ is latched by the downward strobe edge, but $\overline{\mathrm{S}}$ is not. The PROGRAM pin must be tied high to VDD.

## FUNCTION TABLE

$\begin{aligned} & \hline \text { TIME } \\ & \text { REF. } \end{aligned}$	INPUTS				$\begin{gathered} \hline \text { OUTPUTS } \\ Q \end{gathered}$	NOTES
	$\overline{\mathrm{E} 1}$	E2*	$\overline{\mathbf{s}}$	A		
-1	H	X	X	X	Z	DEVICE INACTIVE
0	L	L	X	V	Z	CYCLE BEGINS; ADDRESSES, E2 LATCHED*
1	L	X	X	X	Z	INTERNAL OPERATIONS ONL.Y
2	L	X	L	X	A	OUTPUTS ACTIVE UNDER CONTROL OF' $(E 1, \overline{\mathrm{~S}}$ )
3	L	X	L	X	V	OUTPUTS VALID AFTER ACCESS TIME
4	$\pi$	X	L	X	V	READ COMPLETE
5	H	X	X	X	Z	CYCLE ENDS (SAME AS -1)
0	L	H	X	V	Z	CYCLE BEGINS: ADDRESSES, E2 LATCHED
1	L	X	X	X	Z	OUTPUTS REMAIN HIGH-Z SINCE E2 LATCHED HIGH



## DC CHARACTERISTICS FOR PROGRAMMING OPERATION

TEST CONDITIONS: $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Program Pin Load Current	IPROG			80	100	mA
Programming Pulse Amplitude	VPROG		38	40	42	V
$V_{\text {CC }}$ Current	ICC			0.1	5	mA
$V_{\text {DD }}$ Current	IDD			40	100	
Address Input High Voltage	V IHA		$\mathrm{V}_{\text {DD }-2.0}$			V
Address Input Low Voltage	VILA				0.8	
Data Input High Voltage	$V_{\text {IH }}$		VDD-2.0			
Data Input Low Voltage	$V_{\text {IL }}$				0.8	

## AC CHARACTERISTICS FOR PROGRAMMING OPERATION

TEST CONDITIONS: $V_{C C}=V_{D D}=5 \mathrm{~V} \pm 5 \%, T_{A}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Prógram Pulse Width	TPLPH	$\mathrm{trise}=\mathrm{t}_{\text {fall }}=5 \mu \mathrm{~s}$	18	20	22	ms
Program Pulse Duty Cycle					75\%	
Data Setup Time	TDVPL		9	10		$\mu \mathrm{s}$
Data Hold Time	TPHDX		9	10		
'Strobe Pulse Width	TE1HE1L		150			ns
Address Setup Time	TAVE1L		0		.	
Address Hold Time.	TE1LAX				100	
Access Time	TE1LQV				1000	

## PROGRAM MODE OPERATION

Initially, all 4096 bits of the EPROM are in the logic one (output high) state. Selective programming of proper bit locations to " 0 "s is performed electrically.
In the PROGRAM mode', $\mathrm{V}_{C C}$ and $\mathrm{V}_{D D}$ are tied together to the normal operating supply. High logic levels at all of the appropriate chip inputs and outputs must be set at $V_{D D}-2 \mathrm{~V}$ minimum. Low logic levels must be set at $\mathrm{V}_{\mathrm{SS}}+.8 \mathrm{~V}$ maximum. Addressing of the desired location in PROGRAM mode is done as in the READ mode. Address and data lines are set at the desired logic levels, and PROGRAM and chip select ( $\overline{\mathrm{S}}$ )
pins are set high. The address is latched by the downward edge on the strobe line ( $\overline{E_{1}}$ ). During valid DATA IN time, the PROGRAM pin is pulsed from $V_{D D}$ to -40 V . This pulse initiates the programming of the device to the levels set on the data outputs. Duty cycle limitations are specified from chip heat dissipation considerations. Pulse rise and fall times must not be faster than $5 \mu \mathrm{~s}$.
Intelligent programmer equipment with successive READ/ PROGRAM/VERIFY sequences is recommended.

## PROGRAMMING SYSTEM CHARACTERISTICS

1. During programming the power supply should be capable of limiting peak instantaneous current to 100 mA .
2. The programming pin is driven from VDD to -40 V volts $( \pm 2 \mathrm{~V})$ by pulses of 20 milliseconds duration. These pulses should be applied following the algorithm shown in the flow chart. Pulse rise and fall times of 10 microseconds are recommended. Note that any individual location may be programmed at any time.
3. Addresses and data should be presented to the device within the recommended setup/hold time and high/low logic level margins.

## 4. The programming is to be done at room temperature.

## ERASING PROCEDURE

The IM6653/54 may be erased by exposure to high intensity short-wave uitraviolet light at a wavelength of $2537 \AA$. The recommended integrated dose (i.e., UV intensity $x$ exposure time) is 10 W sec/cm². The lamps should be used without short-wave filters, and the IM6653/54 to be erased should be placed about one inch away from the lamp tubes. For best results it is recommended that the device remain inactive for 5 minutes after erasure, before programming.

PROGRAMMING FLOW CHART


## PHYSICAL DIMENSIONS

## CERAMIC PACKAGE (DG)



NOTE: All dimensions in parenthesis are metric.

# IM5600/IM5610 256 Bit Bipolar Read Only Memory 

## FEATURES

- Uses Patented AIM Programming Element for
- Superior Reliability
- High Programming Yield
- Fast Programming Speed < 1 sec
- TTL Processing Compatibility
- Low Power Consumption $1.5 \mathrm{~mW} / \mathrm{bit}$
- Operating Speed
- Address to Output - 50ns
- Chip Enable to Output - 40ns
- Large Output Drive - $16 \mathrm{~mA} @ 0.45 \mathrm{~V}$
- TTL Compatible Inputs \& Outputs
- Two Output Designs
- 5600 Open Collector
- 5610 Active Pull-up
- Chip Enable Facilitates Memory Expansion and Use in Bus Organized Systems


## APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits
- Character Generation


## CONNECTION DIAGRAM



ORDERING INFORMATION

PART NUMBER	PACKAGE	TEMPERATURE RANGE	ORDER NUMBER
IM5600	16 Pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	$\begin{aligned} & \text { IM5600CDE } \\ & \text { IM5600MDE } \end{aligned}$
	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5600CFE IM5600MFE
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	IM5600CPE
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5600CJE IM5600MJE
IM5610	16 Pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	$\begin{aligned} & \text { IM5610CDE } \\ & \text { IM5610MDE } \end{aligned}$
	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Military	IM5610CFE IM5610MFE
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	IM5610CPE
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5610CJE IM5610MJE

## GENERAL DESCRIPTION

The Intersil IM5600 and IM5610 are high speed, electrically programmable, fully decoded, bipolar 256 bit read only memories organized as 32 words by 8 bits. On-chip address decoding, chip enable input and uncomitted collector or three-state outputs provide for simplified memory expansion and use in bus organized systems.
Unprogrammed AIM elements are sensed as ZERO's or low logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's or high logic levels.
The following companies make programmers approved by Intersil:

1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash. 98009
2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR PROM PROGRAMMING SPECIFICATION Data Sheet.

## BLOCK DIAGRAM



## TRUTH TABLE

ADDRESS INPUTS   $\mathbf{A}_{\mathbf{0}}-\mathbf{A}_{\mathbf{4}}$	$\overline{\mathrm{CE}}$	ANY OUTPUT   $\mathbf{O}_{1}-\mathbf{O}_{8}$
Any one of 32   possible addresses. .	L	H -if the bit uniquely associated with   this output and address has been   electrically programmed.   L-if it has not been programmed.
Any one of 32   possible addresses.	H	All outputs are forced to a high im-   pedance state regardless of the   address.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ................................................................................ . . +7.0 V
Input Voltage Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.5 V to +5.5 V
Output Voltage Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to + VCC
Output Voltage Applied (Programming Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28V
Current Into Output (Programming Only) .............................................. 210 mA
Storage Temperature ...................................................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range*
(IM5600C and IM5610C) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (IM5600M and IM5610M) .................................................. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
*Operating temperature is defined as ambient temperature for the DIP and case temperature for the flatpack. Case temperature is measured directly below the die.

## DC CHARACTERISTICS

SYMBOL	CHARACTERISTICS	LIMITS$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \pm 5 \% \\ \mathrm{~T}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			LIMITS$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \pm 10 \% \\ T=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
Ifa	Address Input Load Current		-0.63	-1.0		-0.63	-1.0	mA	$V_{A}=0.4 \mathrm{~V}$
Ife	Chip Enable Input Load Current		-0.63	-1.0		-0.63	-1.0		$\overline{\mathrm{CE}}=0.4 \mathrm{~V}$
IRA	Address Inpuit Leakage Current		5.0	40		5.0	60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{A}}=4.5 \mathrm{~V}$
IRE	Chip Enable Input Leakage Current		5.0	40		5.0	60		$\overline{\mathrm{VEE}}=4.5 \mathrm{~V}$
VOL	Output Low Voltage		0.3	0.45		0.3	0.45	V	$\begin{aligned} & \mathrm{IOL}=16 \mathrm{~mA} \\ & \mathrm{VCE}=0.4 \mathrm{~V} \\ & \mathrm{CO}^{\prime} \text { bit is addressed. } \end{aligned}$
VIL	Input Low Voltage			0.8			0.8		
$\mathrm{V}_{\mathrm{H}}$	Input High Voltage	2.0			2.0				
Vc	Input Clamp Voltage		-0.9	-1.5		-0.9	-1.5		$\mathrm{l} \mathrm{N}^{\prime}=-10 \mathrm{~mA}$
BVin	Input Breakdown Voltage	5.5	6.5		5.5	6.5			$\mathrm{I} \mathrm{N}=1.0 \mathrm{~mA}$
Icc	Power Supply Current		75	100		75	100	mA	Inputs Either Open or at Ground
10 (High R State)	Output Leakage Current		$<1.0$	40		$<1.0$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=2.4 \mathrm{~V}$
10 (High R State)	Output Leakage Current		<-1.0	-40		<-1.0	-100		$\mathrm{V}_{0}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=2.4 \mathrm{~V}$
CIN	Input Capacitance		$\begin{aligned} & 5.0 \\ & 70 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{OV} \\ & \mathrm{~V}_{0}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$
Cout	Output Capacitance		7.0			7.0		pF	$\mathrm{V}_{0}=2.0 \mathrm{~V}, \mathrm{Vcc}=0 \mathrm{~V}$

The following are guaranteed characteristics of the output high level state when the chip is enabled ( $\overline{\mathrm{CE}}=0.4 \mathrm{~V}$ ) and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

loLk	Output Leakage Current		<1.0	100		$<1.0$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE}}=0.4 \mathrm{~V}$
VOH. (IM5610)	Output High Voltage	2.4	3.2		2.4	3.2		V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$ (IM5610M) $\mathrm{IOH}=-2.4 \mathrm{~mA}$ (IM5610C)
IsC (IM5610)	Output Short Circuit	-15	-30	$-60$	-15	-30	$-60$	mA	$\mathrm{V}_{0}=0 \mathrm{~V}$

NOTE 1: Typical characteristics are for $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	CHARACTERISTIC	$\begin{gathered} \text { LIMITS } \\ \mathbf{V}_{\mathrm{CC}}=\mathbf{5 V} \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { V } C \mathrm{C}=5 \mathrm{5V} \pm 5 \% \\ \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { VCC }=\mathbf{5 V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
TAA	Address Access Time	20	50	20	65	20	75	
TJIS	Output Disable Time*	10	40	10	50	10	60	ns
TEN	Output Enable Time*	5	40	5	50	5	60	

* Output disable time is the time taken for the output to reach a high resistance state when the chip enable is taken high. Output enable time is the time taken for the output to become active when the chip enable is taken low. The high resistance state is defined as a point on the output waveform equal to a $\Delta \mathrm{V}$ of 0.5 V from the active output level.


## SWITCHING WAVEFORMS



FIGURE 1: Access Time Via Address Input


IM5600


IM5610

FIGURE 3: Output Stage Schematics

## SWITCHING TIME TEST CONDITIONS



FIGURE 4: Output Load Circuit

SWITCHING	IM5600			IM5610		
PARAMETER	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C}_{\mathrm{L}}$	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C}_{\mathrm{L}}$
tAA	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF
tDIS"1"	$\infty$	$3.3 \mathrm{~K} \Omega$	10 pF	$\infty$	$600 \Omega$	10 pF
tDIS"0"	$300 \Omega$	$600 \Omega$	10 pF	$300 \Omega$	$600 \Omega$	10 pF
tEN"1" 2	$\infty$	$3.3 \mathrm{~K} \Omega$	30 pF	$\infty$	$600 \Omega$	30 pF
tEN"0" 2	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF

## INPUT CONDITIONS

Amplitude - 0 V to 3 V
Rise and Fall Time - 5 ns From 1V to 2 V
Frequency -1 MHz

## PACKAGE OUTLINES

## 16 LEAD CERAMIC DIP (DE)



16 LEAD CERDIP PACKAGE (JE)


16 LEAD FLAT-PACK (FE)


NOTE 1: All dimensions in parenthesis are metric.
NOTE 2: Board drilling dimensions will equal standard practices for .020 diameter lead.

IM5603/IM5623

# Electrically Programmable 1024 Bit Bipolar Read Only Memory 

## FEATURES

- Uses Patented AIM Programming Element for
- Superior Reliability
- High Programming Yield
- Fast Programming Speed $<1$ sec
- TTL Processing Compatibility
- Low Power Consumption $439 \mu$ W/bit
- Operating Speed
- Address to Output - 60ns
- Chip Enable to Output - 35 nS
- Large Output Drive - 16mA @ 0.45V
- TTL Compatible Inputs \& Outputs
- Two Output Designs
- 5603 Open Collector
- 5623 Active Pull-up
- Chip Enables Facilitate Memory Expansion and Use in Bus Organized Systems


## APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits
- Character Generation


## GENERAL DESCRIPTION

The Intersil IM5603 and IM5623 are high speed, electrically programmable, fully decoded, bipolar 1024 bit read only memories organized as 256 words by 4 bits. On-chip address decoding, chip enable inputs and uncomitted collector or three-state outputs provide for simplified memory expansion and use in bus organized systems.
Unprogrammed AIM elements are sensed as ZERO's or low logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's or high logic levels.
The following companies make programmers approved by Intersil:

1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash. 98009
2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR PROM PROGRAMMING SPECIFICATION Data Sheet.


## IM5603/IM5623



## ABSOLUTE MAXIMUM RATINGS

Supply Voltage ................................................................. +7.0 V
Input Voltage Applied . ..................................................... -1.5 V to 5.5 V

Output Voltage Applied (Programming Only) ....................................... 28 V
Current Into Output (Programming Only) ..................................... 210 mA
Storage Temperature.......................................$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range*
(IM5603C and IM5623C) $.0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
(IM5603M and IM5623M) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
*Operating temperature is defined as ambient temperature for the DIP and case temperature for flatpack. Case temperature is measured directly below the die.

## DC CHARACTERISTICS

SYMBOL	CHARACTERISTICS	LIMITS$\begin{aligned} & V C C=5.0 \mathrm{~V} \pm 5 \% \\ & \mathbf{T}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			LIMITS$\begin{gathered} V_{C C}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
IfA	Address Input Load Current		0.63	-1.0		-0.63	-1.0	mA	$\mathrm{V}_{\mathrm{A}}=0.4 \mathrm{~V}$
Ife	Chip Enable Input Load Current		-0.63	-1.0		-0.63	-1.0		$V_{C E}=0.4 V$
IRA	Address Input Leakage Current		5	40		5	60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{A}}=4.5 \mathrm{~V}$
Ire	Chip Enable Input Leakage Current		5	40		5	60		$\mathrm{V}_{\text {CE }}=4.5 \mathrm{~V}$
VOL	Output Low Voltage		0.3	0.45		0.3	0.45	V	$\begin{aligned} & \mathrm{IOL}=16 \mathrm{~mA}, \\ & \mathrm{~V} \overline{\mathrm{CE} 1}=\mathrm{V} \overline{\mathrm{CE} 2}=0.4 \mathrm{~V} \\ & \mathrm{O}^{\prime} \text { bit is addressed. } \end{aligned}$
VIL	Input Low Voltage			0.8			0.8		
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0			2.0				
Vc	Input Clamp Voltage		-0.9	-1.5		-0.9	-1.5		$\mathrm{l}_{\mathrm{N}}=-10 \mathrm{~mA}$
BVIN	Input Breakdown Voltage	5.5	6.5		5.5	6.5			$\mathrm{l} \mathrm{N}=1.0 \mathrm{~mA}$
ICC	Power Supply Current		90	130		90	130	mA	Inputs Either Open or at Ground
10 (High R State)	Output Leakage Current		$<1$	40		$<1$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}$ V $\overline{\mathrm{CE}} 1$ or
10 (High R State)	Output Leakage Current		$<-1$	-40		$<-1$	-100		$\mathrm{V}_{0}=0.4 \mathrm{~V} \quad \mathrm{~V}_{\overline{\mathrm{CE} 2}}=2.4 \mathrm{~V}$
CIN	Input Capacitance		5			5		pF	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {cc }}=0 \mathrm{~V}$
Cout	Output Capacitance		7			7			$\mathrm{V}_{0}=2.0 \mathrm{~V}, \mathrm{Vcc}=0 \mathrm{~V}$

The following are guaranteed characteristics of the output high level state when the chip is enabled ( $\overline{\mathrm{CE}}$ 1 and $\overline{\mathrm{CE}}=0.4 \mathrm{~V}$ ) and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

IOLK	Output Leakage Current		$<1$	100		$<1$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}$
VOH (IM5603)	Output High Voltage	2.4	3.3		2.4	3.3			$\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOH (IM5623)	Output High Voltage	2.4	3.2		2.4	3.2		V	$\begin{aligned} & \mathrm{IOH}=-2.4 \mathrm{~mA} \\ & \mathrm{I} \mathrm{M} 5623 \mathrm{C}) \\ & \mathrm{IOH}=-1.0 \mathrm{~mA} \\ & \mathrm{I} \mathrm{M} 5623 \mathrm{M}) \end{aligned}$
Isc (IM5603)	Output Short Circuit Current	-1.0	$-3.0$	-6.0	-1.0	-3.0	-6.0		$\mathrm{V}_{0}=0 \mathrm{~V}$
Isc (IM5623)	Output Short Circuit Current .	-15	$-30$	-60	-15	-30	-60		$\mathrm{V}_{0}=0 \mathrm{~V}$

NOTE: Typical characteristics are for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTICS	$\begin{gathered} \text { LIMITS } \\ \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { VCC }=5.0 \mathrm{~V} \pm 5 \% \\ \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+\mathbf{7 5 ^ { \circ } \mathrm { C }} \\ \hline \end{gathered}$		LIMITS$\begin{gathered} V C C=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-\mathbf{5 5 ^ { \circ }} \mathrm{C} \text { to }+\mathbf{1 2 5 ^ { \circ }} \mathrm{C} \end{gathered}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{A}}$	Access Time (Via Address Inputs) (See Figure 1)	20	60	20	70	20	80	
tois	Output Disable Time* (See Figure 2)	10	35	10	50	10	60	ns
ten	Output Enable Time* (See Figure 2)	5	35	5	50	5	60	

*NOTE: Output disable time is the time taken for the output to reach a high resistance state when either chip enable is taken high. Output enable time is the time taken for the output to become active when both chip enables are taken low. The high resistance state is defined as a point on the output waveform equal to a $\Delta \mathrm{V}$ of 0.5 V from the active output level.

## SWITCHING WAVEFORMS



FIGURE 1: Access Time Via Address Inputs


FIGURE 2: Output Enable And Disable Times

## SWITCHING TIME TEST CONDITIONS



SWITCHING	IM5603			IM5623		
PARAMETER	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C}_{\mathrm{L}}$	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C}_{\mathrm{L}}$
tAA	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega \Omega$	$600 \Omega$	30 pF
tDIS"1"	$\infty$	$3.3 \mathrm{~K} \Omega$	10 pF	$\infty$	$600 \Omega$	10 pF
tDIS"0" 2	$300 \Omega$	$600 \Omega$	10 pF	$300 \Omega$	$600 \Omega$	10 pF
tEN"1"	$\infty$	$3.3 \mathrm{~K} \Omega$	30 pF	$\infty$	$600 \Omega$	30 pF
tEN"0 $"$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF

FIGURE 3: Output Load Circuit

## INPUT CONDITIONS

Amplitude - 0 V to 3 V
Rise and Fall Time - 5 ns From 1V to 2 V
Frequency -1 MHz


IM5603 OUTPUT LOW CURRENT (IOL) VS OUTPUT LOW VOLTAGE (VOL)


OUTPUT LOW VOLTAGE (mV)

IM5603 OUTPUT HIGH CURRENT (IOH) VS OUTPUT HIGH VOLTAGE (VOH)


IM5603 OR IM5623 CHIP ENABLE INPUT CURRENT VS INPUT VOLTAGE

IM5623 OUTPUT LOW CURRENT (IOL) VS OUTPUT LOW VOLTAGE (VOL)


OUTPUT LOW VOLTAGE (mV)

IM5623 OUTPUT HIGH CURRENT (IOH) VS OUTPUT HIGH VOLTAGE (VOH)


IM5603 OR IM5623 ADDRESS INPUT CURRENT VS INPUT VOLTAGE


OUTPUT STAGE SCHEMATICS


## PACKAGE DIMENSIONS

16 LEAD CERAMIC DIP (DE)


16 LEAD CERDIP PACKAGE (JE)


16 LEAD PLASTIC DIP (PE)


16 LEAD FLAT-PACK (FE)


NOTE 1: All dimensions in parenthesis are metric.
NOTE 2: Board drilling dimensions will equal standard practices for .020 diameter lead.

# IM5604/IM5624 2048 Bit Bipolar Programmable Read Only Memory 

## FEATURES

- Uses Patented AIM Programming Element for
- Superior Reliability
- High Programming Yield
- Fast Programming Speed $<1$ sec
- TTL Processing Compatibility
- Low Power Consumption $244 \mu$ W/bit
- Operating Speed
- Address to Output - 70 nS
- Chip Enable to Output - $35 n$ n
- Large Output Drive - $16 \mathrm{~mA} @ 0.45 \mathrm{~V}$
- TTL Compatible Inputs \& Outputs
- Two Output Designs
- 5604 Open Collector
- 5624 Active Pull-up
- Chip Enable Facilitates Memory Expansion and Use in Bus Organized Systems


## APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits
- Character Generation


TOP VIEW

BLOCK DIAGRAM


## ORDERING INFORMATION

PART   NUMBER	PACKAGE	TEMPERATURE RANGE	ORDER NUMBER
IM5604	16 Pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5604CDE IM5604MDE
	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5604CFE IM5604MFE
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5604 CJE IM5604MJE
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	IM5604CPE
IM5624	16 Pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5624CDE IM5624MDE
	16 Pin Flatpack	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5624CFE IM5624MFE
	16 Pin Cerdip DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5624 CJE IM5624MJE
	16 Pin Plastic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	IM5624CPE

TRUTH TABLE

ADDRESS INPUTS $\mathrm{A}_{0}-\mathrm{A}_{8}$	$\overline{\mathrm{CE}}$	ANY OUTPUT $\mathrm{O}_{1}-\mathrm{O}_{4}$
Any one of 512 possible addresses	L	H - if the bit uniquely associated with this output and address has been electrically programmed.   $L$ - if it has not been programmed.
Any one of 512 possible addresses	H	All outputs are forced to a high impedance state regardless of the address.

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	OV
Input Voltage Applied	-1.5 V to +5.5 V
Output Voltage Applied	-0.5 V to +V CC
Output Voltage Applied (Programming Only)	28V
Current Into Output (Programming Only)	210 mA
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range*	
(IM5604C and IM5624C).	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
(IM5604M and IM5624M)	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*Operating temperature is defined as ambient temperature for the DIP and case temperature for the flatpack. Case temperature is measured directly below the die.

## DC CHARACTERISTICS

SYMBOL	CHARACTERISTICS	$\begin{gathered} \text { LIMITS } \\ \text { VCC }=5.0 \mathrm{~V} \pm 5 \% \\ \mathrm{~T}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { LIMITS } \\ \text { VCC }=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
Ifa	Address Input Load Current		-0.63	-1.0		-0.63	-1.0	mA	$\mathrm{V}_{\mathrm{A}}=0.4 \mathrm{~V}$
Ife	Chip Enable Input Load Current	$\because$	-0.63	-1.0		-0.63	-1.0		$V \overline{C E}=0.4 \mathrm{~V}$
IRA	Address Input Leakage Current		5.0	40		5.0	60	$\mu \mathrm{A}$	$V_{A}=4.5 \mathrm{~V}$
IRE	Chip Enable Input Leakage Current		5.0	40		5.0	60		$\overline{\mathrm{V} E \mathrm{CE}}=4.5 \mathrm{~V}$
VOL	Output Low Voltage		0.3	0.45		0.3	$0.45$	-	$\begin{aligned} & \hline \mathrm{IOL}=16 \mathrm{~mA} \\ & \mathrm{~V} \overline{\mathrm{CE}}=0.4 \mathrm{~V} \\ & \mathrm{O} \text { ' bit is addressed. } \end{aligned}$
VIL	Input Low Voltage			0.8			0.8		
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage	2.0			2.0				
Vc	Input Clamp Voltage		-0.9	-1.5	,	-0.9	-1.5		$\operatorname{lin}=-10 \mathrm{~mA}$
BVIN	Input Breakdown Voltage	5.5	6.5		5.5	6.5	1		$\mathrm{IIN}=1.0 \mathrm{~mA}$
IcC	Power Supply Current		100	140		100	140	mA	Inputs Either Open or at Ground
10 (High R State)	Output Leakage Current		$<1.0$	40		$<1.0$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE}}=2.4 \mathrm{~V}$
10 (High R State)	Output Leakage Current		$<-1.0$	-40		<-1.0	-100		$\mathrm{V}_{0}=0.4 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE}}=2.4 \mathrm{~V}$
Cin	Input Capacitance		5.0			5.0			$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$
Cout	Output Capacitance	:	7.0			7.0		pF	$\mathrm{V}_{0}=2.0 \mathrm{~V} ; \mathrm{V}_{\text {cc }}=0 \mathrm{~V}$

The following are guaranteed characteristics of the output high level state when the chip is enabled ( $\overline{\mathrm{CE}}=0.4 \mathrm{~V}$ ) and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

Iolk	Output Leakage Current		$<1.0$	100		- <1.0	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE}}=0.4 \mathrm{~V}$
$\mathrm{V}_{\text {OH }}$ (IM5604)	Output High Voltage	2.4	3.3		2.4	3.3			$10=-0.4 \mathrm{~mA}$
VOH (IM5624)	Output High Voltage	2.4	3.2	$\because$	2.4	3.2		V	$\begin{aligned} & 10=-1.0 \mathrm{~mA} \\ & (\mathrm{IM} 5624 \mathrm{M}) \\ & 10=-2.4 \mathrm{~mA} \\ & (\mathrm{IM} 5624 \mathrm{C}) \end{aligned}$
Isc (IM5604)	Output Short Circuit Current	-1.0	$-3.0$	-6.0	-1.0	-3.0	-6.0		$\mathrm{V}_{0}=0 \mathrm{~V}$
Isc (IM5624)	Output Short Circuit Current	-15	-30	-60	. -15	-30	-60	A	$\mathrm{V}_{0}=0 \mathrm{~V}$

NOTE: Typical characteristics are for $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTICS	LIMITS$\begin{gathered} \mathbf{V}_{C C}=\mathbf{5 V} \\ \mathrm{T}_{\mathrm{A}}=\mathbf{2 5} 5^{\circ} \mathrm{C} \end{gathered}$		LIMITS$\begin{aligned} & V_{C C}=\mathbf{5 V} \pm \mathbf{5} \% \\ & \mathbf{T}_{A}=\mathbf{0}^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathbf{C} \end{aligned}$		LIMITS$\begin{gathered} V \mathrm{CC}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
TAA	Access Time (Via Address Inputs) (See Figure 1)	20	70	20	80	20	90	
TDIS	Output Disable Time* (See Figure 2)	10	35	10	50	10	60	ns
TEN	Output Enable Time* (See Figure 2)	5	35	5	50	5	60	

*NOTE: Output disable time is the time for the output to reach a high resistance state when either chip enable is taken high. Output enable time is the time taken for the output to become active when both chip enables are taken low. The high resistance state is defined as a point on the output waveform equal to a $\Delta \mathrm{V}$ of 0.5 V from the active output level.

## SWITCHING WAVEFORMS



FIGURE 1: Access Time Via Address Inputs


FIGURE 2: Output Enable And Disable Times

## SWITCHING TIME TEST CONDITIONS



FIGURE 3: Output Load Circuit

SWITCHING	IM5604			IM5624		
PARAMETER	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C}_{\mathrm{L}}$	$\mathbf{R}_{1}$	$\mathbf{R}_{2}$	$\mathbf{C}_{\mathrm{L}}$
t $_{\text {AA }}$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF
tDIS"1"	$\infty$	$3.3 \mathrm{~K} \Omega$	10 pF	$\infty$	$600 \Omega$	10 pF
tDIS"0" 2	$300 \Omega$	$600 \Omega$	10 pF	$300 \Omega$	$600 \Omega$	10 pF
tEN"1"	$\infty$	$3.3 \mathrm{~K} \Omega$	30 pF	$\infty$	$600 \Omega$	30 pF
tEN"0" 2	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF

## INPUT CONDITIONS

[^29]TYPICAL DC CHARACTERISTICS

## IM5604 OUTPUT LOW CURRENT (Iol) VS OUTPUT LOW VOLTAGE (Vol)



OUTPUT LOW VOLTAGE (mV)

IM5604 OUTPUT HIGH CURRENT (Іон) VS OUTPUT HIGH VOLTAGE (VOH)


OUTPUT HIGH VOLTAGE (V)

## IM5604 OR IM5624 CHIP ENABLE INPUT

 CURRENT VS INPUT VOLTAGE

INPUT VOLTAGE (V)

IM5624 OUTPUT LOW CURRENT (IOL) VS OUTPUT LOW VOLTAGE (VOL)



OUTPUT LOW VOLTAGE (mV)

IM5624 OUTPUT HIGH CURRENT (ІОн) VS OUTPUT HIGH VOLTAGE (VOH)


IM5604 OR IM5்624 ADDRESS INPUT CURRENT VS INPUT VOLTAGE


## IM5604



IM5624


## PACKAGE DIMENSIONS

## 16 LEAD CERAMIC DIP (DE)



16 LEAD CERDIP PACKAGE (JE)


NOTE 1: All dimensions in Parenthesis are metric.
NOTE 2: Board drilling dimensions will equal standard practices for* .020 lead.

## 16 LEAD FLAT-PACK (FE)



16 LEAD PLASTIC DIP (PE)


## FEATURES

- Uses Patented AIM Programming Element for
- Superior Reliability
- High Programming Yield
- Fast Programming Speed < 1 sec
- TTL Processing Compatibility
- Low Power Consumption $171 \mu \mathrm{~W} /$ bit
- Operating Speed
- Address to Output - 70 nS
- Chip Enable to Output - 45 ns
- Large Output Drive - 16mA @ 0.45V
- TTL Compatible Inputs \& Outputs
- Two Output Designs
- 5605 Open Collector
- 5625 Active Pull-up
- Chip Enables Facilitate Memory Expansion and Use in Bus Organized Systems


## APPLICATIONS

- Code Conversion
- Logic Implementation
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits
- Character Generation


# IM5605/IM5625 4096 Bit Bipolar Programmable Read Only Memory 

## GENERAL DESCRIPTION

The Intersil IM5605 and IM5625 are high speed, electrically programmable, fully decoded, bipolar 4096 bit read only memories organized as 512 words by 8 bits. On-chip address decoding, chip enable inputs and uncommitted collector or three-state outputs provide for simplified memory expansion and use in bus organized systems.
Unprogrammed AIM elements are sensed as ZERO's or low logic levels at the outputs. Programming with a commercially available programmer irreversibly converts selected elements in the array so that they are sensed as ONE's/or high logic levels.
The following companies make programmers approved by Intersil:

1. Data I/O Corp., P.O. Box 1603, Bellevue, Wash. 98009
2. PRO-LOG Corp., 2411 Garden Rd., Monterey, CA 93940

Detailed programming specifications for all Intersil PROMs are presented in the Intersil BIPOLAR PROM PROGRAMMING SPECIFICATION Data Sheet.

BLOCK DIAGRAM				CONNECTION DIAGRAM   NOTE 1: Pin 22 must be left open during normal operation and connected to VCc during programming.   NOTE 2: The chip is enabled when $\overline{\mathrm{CE}_{1}}$ and $\overline{\mathrm{CE}}{ }_{2}$ are low and $\mathrm{CE}_{3}$ and $\mathrm{CE}_{4}$ are high.						
		TRUTH TABLE								
				$\begin{array}{\|c\|} \hline \text { ADDRESS } \\ \text { INPUTS } \end{array}$		$\begin{aligned} & \text { HIP E } \\ & \text { INP } \end{aligned}$	$\begin{aligned} & \text { NAB } \\ & \text { UTS } \\ & \hline \end{aligned}$		NY OUTPUT	
ORDERING INFORMATION					$\mathrm{CE}_{1}$	CE2	$\mathrm{CE}_{3}$	CE4	$\mathrm{O}_{1-08}$	
				Any one of 512 possible addresses.	L	L	H	H	H-if the bit uniquely associated with this output and address has been electrically programmed.   L-if it has not been programmed.	
$\begin{gathered} \text { PART } \\ \text { NUMBER } \end{gathered}$	PACKAGE			TEMPERATURE RANGE						$\begin{aligned} & \hline \text { ORDER } \\ & \text { NUMBER } \end{aligned}$
IM5605	24 Pin Cerdip DIP			$\begin{array}{\|l\|} \hline 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \text { Commercial } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { Military } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \text { Commercial } \end{array}$						$\begin{aligned} & \text { IM5605CJG } \\ & \text { IM5605MJG } \\ & \hline \text { IM5605CDG } \end{aligned}$
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5605MDG		Any one of 512 possible addresses.	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$X$   $X$   X   X		All outputs are forced to a high impedance state regardless of the address.
IM5625	24 Pin Cerdip DIP	$\begin{array}{\|l\|} \hline 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \text { Commercial } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { Military } \\ \hline \end{array}$	$\begin{aligned} & \text { IM5625CJG } \\ & \text { IM5625MJG } \end{aligned}$						X X L	
	24 Pin Ceramic DIP	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Commercial $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Military	IM5625CDG	X = Don't Care.						

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	OV
Input Voltage Applied	-1.5 V to +5.5 V
Output Voltage Applied	-0.5 V to +V cc
Output Voltage Applied (Programming Only)	28V
Current Into Output (Programming Only)	210 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range*	
(IM5605C and IM5625C)	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
(IM5605M and IM5625M)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

*Operating temperature is defined as ambient temperature for the DIP and case temperature for the flatpack. Case temperature is measured directly below the die.

## DC CHARACTERISTICS

SYMBOL	CHARACTERISTICS	$\begin{gathered} \text { LIMITS } \\ \text { VCC }=5.0 \mathrm{~V} \pm 5 \% \\ \mathrm{~T}=0^{\circ} \mathrm{C} \text { to }+\mathbf{7 5 ^ { \circ } \mathrm { C }} \end{gathered}$			$\begin{gathered} \text { LIMITS } \\ \text { VCC }=5.0 \mathrm{~V} \pm 10 \% \\ T=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			UNITS	CONDITIONS
		MIN	TYP	MAX	MIN	TYP	MAX		
IFA	Address Input Load Current		-0.63	-1.0		-0.63	-1.0	mA	$\mathrm{V}_{\mathrm{A}}=0.4 \mathrm{~V}$
IfE	Chip Enable Input Load Current		-0.63	-1.0		-0.63	-1.0		$V_{C E}=0.4 \mathrm{~V}$
IRA	Address Input Leakage Current		5.0	40		5.0	60	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{A}}=4.5 \mathrm{~V}$
I RE	Chip Enable Input Leakage Current		5.0	40		5.0	60		$\mathrm{V}_{\text {CE }}=4.5 \mathrm{~V}$
Vol	Output Low Voltage		0.3	0.45		0.3	0.45	V	$\mathrm{IOL}=16 \mathrm{~mA}$   $\mathrm{V} \overline{\mathrm{CE} 1} \& \mathrm{~V} \overline{\mathrm{CE} 2}=0.4 \mathrm{~V}$,   $V_{C E 3} \& V_{C E 4}=4.5 \mathrm{~V}$   " 0 " bit is addressed'
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			0.8			0.8		
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0			2.0				
$\mathrm{V}_{\mathrm{C}}$	Input Clamp Voltage		-0.9	-1.5		-0.9	-1.5		$1 \mathrm{IN}=-10 \mathrm{~mA}$
BVIN	Input Breakdown Voltage	5.5	6.5		5.5	6.5			$\mathrm{l} \mathrm{IN}^{\mathrm{N}}=1.0 \mathrm{~mA}$
Icc	Power Supply Current		140	185		140	185	mA	Inputs Either Open or at Ground
Io(High R State)	Output Leakage Current		$<1.0$	40		$<1.0$	100	$\mu \mathrm{A}$	$\begin{aligned} & V_{0}=5.5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{CE1}}=2.4 \\ & \text { or } \mathrm{V} \overline{\mathrm{CE} 2}=2.4 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CE}}=0.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CE}} 4 \\ & =0.4 \mathrm{~V} \end{aligned}$
Io(High R State)	Output Leakage Current		$<-1.0$	-40		$<-1.0$	-100		$\mathrm{V}_{0}=0.4 \mathrm{~V}$
$\mathrm{CIN}^{\text {I }}$	Input Capacitance		5.0	10		5.0	10	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \\ & \mathrm{~V}_{0}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$
Cout	Output Capacitance		7.0	12		7.0	12		

The following are guaranteed characteristics of the output high level state when the chip is enabled and a programmed bit is addressed. These characteristics cannot be tested prior to programming but are guaranteed by design.

lolk	Output Leakage Current		$<1.0$	100		$<1.0$	100	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}$
$\mathrm{VOH}_{\text {(IM5605) }}$	Output High Voltage	2.4	3.3		2.4	3.3		V	$\mathrm{lOH}=-0.4 \mathrm{~mA}$
VOH(IM5625)	Output High Voltage	2.4	3.2		2.4	3.2			$\begin{aligned} & \mathrm{lOH}=-1.0 \mathrm{~mA} \\ & \mathrm{I} \mathrm{M} 5625 \mathrm{M}) \\ & \mathrm{lOH}=-2.4 \mathrm{~mA} \\ & \mathrm{I} \mathrm{M} 5625 \mathrm{C}) \end{aligned}$
Isc(IM5605)	Output Short Circuit Current	-1.0	-3.0	-6.0	-1.0	-3.0	-6.0	mA	$\mathrm{V}_{0}=0 \mathrm{~V}$
Isc(IM5625)	Output Short Circuit Current	-15	-30	-60	-15	-30	-60		$\mathrm{V}_{0}=0 \mathrm{~V}$

NOTE: Typical characteristics are for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTIC	$\begin{gathered} \text { LIMITS } \\ \text { VCC }=\mathbf{5 V} \\ \mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C} \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { V }_{\mathrm{CC}}=\mathbf{5 V} \pm \mathbf{5} \% \\ \mathrm{~T}_{\mathrm{A}}=\mathbf{0} \text { to } 75^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { LIMITS } \\ \text { VCC }=5 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
TAA	Address Access Time (See Figure 1)	20	70	20	90	20	105	
TDIS	Output Disable Time* (See Figure 2)	10	45	10	55	10	65	ns
TEN	Output Enable Time* (See Figure 2)	5	45	5	55	5	65	

## *NOTE

 Output disable time is the time taken for the output to reach a high resistance state when any chip enable is taken to its inactive level. Output enable time is the time taken for the output to become active when all chip enables are taken to their active (enabling) levels. The high resistance state is defined as a point on the output waveform equal to a $\Delta \mathrm{V}$ of 0.5 V from the active output level.
## SWITCHING WAVEFORMS



FIGURE 1: Access Time Via Address Inputs


FIGURE 2: Output Enable And Disable Times

## SWITCHING TIME TEST CONDITIONS



SWITCHING PARAMETER	IM5605			IM5625		
	$\mathbf{R}_{1}$	$\mathrm{R}_{2}$	$\mathrm{C}_{\mathrm{L}}$	$\mathrm{R}_{1}$	$\mathrm{R}_{2}$	$\mathrm{C}_{\mathrm{L}}$
t ${ }_{\text {A }}{ }^{\text {a }}$	$300 \Omega$	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF
tDIS"1"	$\infty$	$3.3 \mathrm{~K} \Omega$	10 pF	$\infty$	$600 \Omega$	10 pF
toIs"0"	$300 \Omega$	$600 \Omega$	10 pF	$300 \Omega$	$600 \Omega$	10 pF
ten'1"	$\infty$	$3.3 \mathrm{~K} \Omega$	30 pF	$\infty$	$600 \Omega$	30 pF
ten"0"	300,	$600 \Omega$	30 pF	$300 \Omega$	$600 \Omega$	30 pF

FIGURE 3: Output Load Circuit

Amplitude - OV to 3 V
Rise and Fall Time - 5 ns From' 1 V to 2 V
Frequency -1 MHz

IM5605 OUTPUT LOW CURRENT (IOL) VS OUTPUT LOW VOLTAGE (Vol)


OUTPUT LOW VOLTAGE (mV)

IM5605 OUTPUT HIGH CURRENT (Іон) VS OUTPUT HIGH VOLTAGE (VOH)


OUTPUT HIGH VOLTAGE (V)

## IM5605 OR IM5625 CHIP ENABLE INPUT CURRENT VS INPUT VOLTAGE



INPUT VOLTAGE (V)

IM5625 OUTPUT LOW CURRENT (Iol) VS OUTPUT LOW VOLTAGE (Vol)


OUTPUT LOW VOLTAGE (mV)

IM5625 OUTPUT HIGH CURRENT (IOH) VS OUTPUT HIGH VOLTAGE (VOH)


OUTPUT HIGH VOLTAGE (V)

IM5605 OR IM5625 ADDRESS INPUT CURRENT VS INPUT VOLTAGE


## APPLICATION NOTES

Memory expansion is accomplished by the use of the chip enable inputs. The chip is enabled if $\overline{\mathrm{CE}_{1}}$ and $\overline{\mathrm{CE}} 2$ are low and $\mathrm{CE}_{3}$ and $\mathrm{CE}_{4}$ are high.

## 2048 WORD X 32 BIT MEMORY

The memory is organizec as 4 groups of 512 words $X 32$ bits each. The 4 groups are controlled by $\mathrm{l}_{9} \& I_{10}$. of the data bus which are connected to the chip enable inputs (See Truth Table). Word selection, within a word group, is controlled by $l_{0}$ through $l_{8}$ of the data bus connected in parallel with $A_{0}$ through $A_{8}$ of all 16 chips. Chip outputs, $Q_{0}$ through $Q_{7}$ are connected in parallel by column to give a system output of 32 bits ( 4 columns $\times 8$ bits).

TRUTH TABLE

GROUP	$\mathrm{I}_{9}$	$\mathrm{I}_{10}$	SELECTED GROUP   CHIP SELECT   CONDITIONS			
			$\overline{\text { CE }}_{1}$	$\overline{\text { CE }}_{2}$	$\mathrm{CE}_{3}$	$\mathrm{CE}_{4}$
$0 \sim 511$			$\mathrm{I}_{9}$	$\mathrm{I}_{10}$	$\mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}$
$512 \sim 1023$	H	L	$\mathrm{V}_{\mathrm{SS}}$	$\mathrm{I}_{10}$	$\mathrm{I}_{9}$	$\mathrm{~V}_{\mathrm{CC}}$
$1024 \sim 1535$	L	H	$\mathrm{V}_{\mathrm{SS}}$	$\mathrm{I}_{9}$	$\mathrm{I}_{10}$	$\mathrm{~V}_{\mathrm{CC}}$
$1536 \sim 2047$	H	H	$\mathrm{V}_{\mathrm{SS}}$	$\mathrm{V}_{\mathrm{SS}}$	$\mathrm{I}_{9}$	$\mathrm{I}_{10}$

## ADDRESS BUS



POWER SWITCHING
4096 WORDS $\times 16$ BIT PROM ORGANIZATION POWER SWITCHED WITH DISCRETE PNP TRANSISTOR SWITCHES AND 1/8 SCHOTTKY TTL DECODER


Note: Access time via power switches is dependent on the: RC time constant of the switch and other filter capacitors.

## IM5605／IM5625

## OUTPUT STAGE SCHEMATICS



## PACKAGE DIMENSIONS

## 24 LEAD CERDIP PACKAGE（JG）



NOTE 1：All dimensions in parenthesis are metric．
NOTE 2：Board drilling dimensions will equal standard practices for .020 diameter lead．

## PROGRAMMING PROCEDURES

1. Preceding a programming cycle the part to be programmed must be searched for previously programmed bits. This procedure eliminates the risk of beginning programming on a part that has some bits not conforming to the pattern desired.
2. Programming is begun by addressing the first word in the sequence, normally address ZERO, although satisfactory programming is not dependent on the word sequence or bit order used.
3. Disable the device by applying a normal TTL high logic level to any active low CE pin. Each device in the family has at least one active low Chip Enable pin. Disabling the device forces the normal output circuitry to a high impedance condition so that it will not be affected by programming pulses applied through the output pins to the programming element array.
4. Sense the bit status by forcing 20 mA into the associated output pin and comparing the resultant voltage to the SENSE VOLTAGE.
5. If the bit is to be programmed, increase the 20 mA to 200 mA at the proper ramp rate and maintain 200 mA for $2.5 \mu \mathrm{~S}$. The constant current'source must be clamped at 28 V .
6. Reduce the current from 200 to 20 mA and after $1 \mu \mathrm{~S}$ compare the resultant 20 mA voltage level to the SENSE VOLTAGE.
7. If the voltage is greater than the SENSE VOLTAGE the current should be increased again to 200 mA for another $2.5 \mu \mathrm{~S}$. Generally programming occurs on the first pulse, but repeated attempts are allowed up to an elapsed time of 100 ms .

## PROGRAMMING PARAMETER SPECIFICATIONS

The following specification details the necessary requirements for the correct programming of the IM56XX Series of AIM PROMs. Intersil will not accept responsibility for any
device found to be defective if it was not programmed according to these specifications.

PARAMETER	LIMITS			UNITS	CONDITIONS
	MIN	NOM	MAX		
Programming Current Pulse Amplitude	190	200	210	mA	Constant current to be supplied over a 10 to 28 V voltage range. Set the nominal value with a $100 \Omega, 6 \mathrm{~W}$ load @ 20 V .
Voltage Clamp	27.5	28	28.5	Volts	Constant voltage clamp when sinking 130 to 210 mA . Adjust nominal level when sinking 200 mA .
Ramp Rate $\frac{\mathrm{dv}}{\mathrm{dt}}$ Program Current Source	50	60	70	$\mathrm{V} / \mu \mathrm{s}$	Voltage ramp rate is measured by switching from 20 to 200 mA into a 100 ohm, 6 W resistor with the maximum voltage clamped at 28 V .
Pulse Width	2.0	2.5	3.0	$\mu \mathrm{S}$	Measured at 10 V when switching between 20 and 200 mA into a 100 ohm, 6W load resistor.
Duty Cycle	20	25	30.	\%	Measured at 10 V when switching between 20 and 200 mA into a 100 ohm, 6 W load resistor.
Sense Current Amplitude	19.5	20.0	20.5	mA	Constant current source amplitude is adjusted for a nominal value of 20 mA into a $12 \mathrm{~V}, 400 \mathrm{~mW}$ zener diode load.
Ramp Rate $\frac{\mathrm{dv}}{\mathrm{dt}}$ Sense Current Source	50	60	70	$\mathrm{V} / \mu \mathrm{s}$	Voltage ramp rate is measured by switching from 0 to 20 mA into a 1.5 k ohm, 1 W resistor with the maximum voltage clamped at 28 V .
Sense Voltage Analog Comparator Reference Voltage 5600/10 Only	6.9	7.0	7.1 12.6	Volts Volts	An element is considered programmed when the voltage sensed at the appropriate output pin with 20 mA forced through the element is less than the analog comparator reference voltage.
Min. delay from trailing edge of programming pulse before sensing	0.9	1.0	1.1	$\mu \mathrm{S}$	Measured from the 10 V level of the voltage pulse when switching from 200 to 20 mA into a 100 ohm, 6 W load resistor.
Vcc	4.9	5.0	5.5	Volts	100 to 200 mA current range.
Programming Time Allocation/Bit	-	100	-	ms	Maximum time allowed to program a bit.
Extra Programming Pulses	-	4	-	Pulse	Absolute number of programming pulses to be issued after the bit output is first sensed as a programmed ' $I$ '. This occurs when the sensed voltage is less than the comparator reference voltage.

## Bipolar PROM Programming Specification

PROGRAMMING PROCEDURES (Continued)
8. If the voltage after a programming current pulse is less than the SENSE VOLTAGE, four additional programming pulses are applied with a sense after each pulse.
9. After the fourth extra pulse and correct sense, programming is complete. The 20 mA current pulse then is shut off and the address is changed to program the next bit.
10. Repeat steps 4 thru 9 until a successful programming and sense operation is performed at all address locations to be programmed.
11. After the programming cycle is complete, a logical verification must be performed. This is done by
cycling through all address locations with the chip enabled and testing the voltage level at each output under the appropriate current forcing conditions ( 20 mA for a low level and $100 \mu \mathrm{~A}$ for a high level). This cycle should be completed at both low and high Vcc.

## POST PROGRAMMING LOGICAL VERIFICATION

Both high ( $\mathrm{VOH}^{\prime}$ ) and low ( $\mathrm{VOL}^{\prime}$ ) logic levels on all outputs should be tested. For all truth-table addresses two passes must be made, one with $V_{C C}$ high $\left(V_{C C H}\right)$ and one with $V_{C C}$ low (VCCL). Forcing conditions and limits for level testing are specified in the following tables.

HIGH VCC TESTS $-V_{C C H}=6.5 \pm .1 V$

PARAMETER	LIMIT			
	MIN	MAX		LEVEL TESTED
$\mathrm{VOL}^{2}$	-	85	IOL $=20 \mathrm{~mA} \pm 1 \mathrm{~mA}$	Zero
$\mathrm{VOH}_{\mathrm{OH}}$	6.9	-	loLK $=100 \mu \mathrm{~A} \pm 10 \mu \mathrm{~A}$	One

LOW VCC TESTS - $\mathrm{V}_{\mathrm{CCL}}=4.0 \mathrm{~V} \pm .1 \mathrm{~V}$

PARAMETER	LIMIT			
	MIN	MAX	FORCING CONDITION	LEVEL TESTED
VOL	-	.85		IOL $=20 \mathrm{~mA} \pm 1 \mathrm{~mA}$
Zero				
$\mathrm{VOH}^{2}$	4.5	-	IOLK $=100 \mu \mathrm{~A} \pm 10 \mu \mathrm{~A}$	One

PROGRAMMING CYCLE TIMING DIAGRAM


E -180 mA CURRENT SOURCE IS TURNED OFF
F - VOLTAGE LEVEL IS SENSED AND COMPARED
G -180 mA CURRENT SOURCED IS TURNED ON
H -20 mA CURRENT SOURCE IS TURNED OFF
I - ADDRESS IS CHANGED

## FEATURES

- Silicon Gate Complementary MOS
- Fully Static - 0 to 5.7 MHz
- Single Power Supply

IM6100 VCC $=\mathbf{5}$ volts
IM6100A VCC $=10$ volts

- Crystal Controlled On Chip Timing
- PDP®-8/e, Instruction Set Compatible
- Low Power Dissipation
$<10 \mathrm{~mW}$ @ 3.3 MHz @ 5 volts
- TTL Compatible at 5 volts
- Excellent Noise Immunity
- Direct Memory Access (DMA)
- Interrupt
${ }^{( }$PPDP is a registered trademark of Digital Electronics Corp.


## GENERAL DESCRIPTION

The IM6100 is a fixed word length, single word instruction, parallel transfer microprocessor using 12-bit, two's complement arithmetic which recognizes the instruction set of Digital Equipment Corporation's PDP-8/e minicomputer. The internal circuitry is completely static and designed to operate at any speed between DC and the maximum operating frequency. Two pins are available to allow for an external crystal, thereby eliminating the need for clock generators and level translators. The crystal can be removed and the processor clocked by an external clock generator. The device design is optimized to minimize the number of external components required for interfacing with standard memory and peripheral devices.
The IM6100 family includes IM6101 (Programmable Interfacing Element), IM6102 (Memory Extension/DMA Controller/Interval Timer), IM6103 (Parallel Input-Output Port), IM6512 ( $64 \times 12$ RAM), IM6312 ( $1 \mathrm{k} \times 12$ ROM), and IM6402/03 (UART), all featuring ultra low power-high noise immunity CMOS characteristics. The entire family is supported by the 6910 Intercept II Microcomputer Development System.




Figure 1: Functional Block Diagram

## FUNCTIONAL PIN DESCRIPTIONS

PIN	SYMBOL	DESCRIPTION
1	Vcc	Supply voltage.
2	RUN	The signal indicates the runstate of the CPU and may be used to power down the external circuitry
3	DMAGNT	Direct Memory Access Grant-DX lines are three-state.
4	$\overline{\text { DMAREQ }}$	Direct Memory Access Request-DMA is granted at the end of the current instruction. Upon DMA grant, the CPU suspends program execution until the DMAREQ line is released.
5	$\overline{\text { CPREQ }}$	Control Panel Request-a dedicated interrupt which bypasses the normal device interrupt request structure.
6	$\overline{\text { RUN/HLT }}$	Pulsing the Run/Halt line causes the CPU to alternately run and halt by changing the state of the internal RUN/HLT flip flop.
7	$\overline{\text { RESET }}$	Clears the AC and loads 77778 into the PC. CPU is halted.
8	$\overline{\text { INTREQ }}$	Peripheral device interrupt request.
9	XTA	External coded minor cycle timing-signifies input transfers to the IM6100.
10	LXMAR	The Load External Memory Address Register is used to store memory and peripheral addresses externally.
11	$\overline{\text { WAIT }}$	Indicates that peripherals or external memory is not ready to transfer data. The CPU state gets extended as long as WAIT is active. The CPU is in the lowest power state with clocks running.
12	XTB	External coded minor cycle timing-signifies output transfers from the IM6100.
13	XTC	External coded minor cycle timing-used in conjunction with the Select Lines to specify read or write operations.
14	OSC OUT	Crystal input to generate the internal timing (also external clock input).
15	OSC IN	See Pin 14-OSC OUT (also external clock ground)
16	DX ${ }_{0}$	DataX-multiplexed data in, data out and address lines.
17	DX ${ }_{1}$	See Pin 16-DX ${ }_{\text {. }}$


PIN	SYMBOL	DESCRIPTION
18	$\mathrm{DX}_{2}$	See Pin 16-DX ${ }_{0}$.
19	DX ${ }^{\text {a }}$	See Pin 16-DX0.
20	DX ${ }_{4}$	See Pin 16-DX0.
21	DX ${ }_{5}$	See Pin 16-DX0.
22	DX6	See Pin 16-DX0.
23	DX7	See Pin 16-DX ${ }_{0}$.
24	DX8	See Pin 16-DX ${ }_{\text {O }}$.
25	DX9	See Pin 16-DX0.
26	GND	Ground
27	DX ${ }_{10}$	See Pin 16-DX0.
28	DX ${ }_{11}$	See Pin 16-DX ${ }_{0}$.
29	LINK	Indicates state of link flip flop.
30	DEVSEL	Device Select for 1/O transfers.
31	SWSEL	Switch Register Select for the OR THE SWITCH REGISTER INSTRUCTION (OSR). OSR is a Group 2 Operate Instruction which reads a 12 bit external switch register and OR's it with the contents of the AC.
32	$\overline{\mathrm{Co}}$	Control line inputs from the peripheral device during an I/O transfer (Table VI).
33	$\overline{\mathrm{C}}$	See Pin 32-C ${ }_{\text {cos }}$.
34	$\overline{\mathrm{C}_{2}}$	See Pin 32-C ${ }^{\text {cos }}$.
35	SKP	Skips the next sequential instruction if active during an I/O instruction.
36	IFETCH	Instruction Fetch Cycle
37	MEMSEL	Memory Select for memory transfers.
38	$\overline{\text { CPSEL }}$	The Control Panel Memory Select becomes active, instead of the MEMSEL, for control panel routines. Signal may be used to distinguish between control panel and main memories.
39	INTGNT	Peripheral device Interrupt Grant.
40	DATAF	Data Field pin indicates the execute phase of indirectly addressed AND, TAD, ISZ and DCA instructions so that the data transfers are controlled by the Data Field, DF, and not the Instruction Field, IF; if Extended Memory Control hardware is used to extend the addressing space from 4 K to 32 K words.

## ARCHITECTURE

The IM6100 has 6 twelve bit registers, a programmable logic array, an arithmetic and logic unit and associated gating and timing circuitry. A block diagram of the IM6100 is shown in Figure 1.

## ACCUMULATOR (AC)

The $A C$ is a 12-bit register in which arithmetic and logical operations are performed. Data words may be transferred from memory to the AC or transferred from the AC into memory. Arithmetic and logical operations involve one or two operands, one held in the AC and the other fetched from the memory. The result of the operation is left in the AC which may be cleared, complemented, tested; incremented or rotated under program control. The AC also serves as an input-output register, as all programmed data transfers pass through the AC.

## LINK (L)

The Link is a 1-bit flip-flop that serves as a high-order extension of the AC. It is used as a carry flip-flop for 2's complement arithmetic. A carry out of the accumulator complements the Link. Link can be cleared, set, complemented and tested under program control and rotated as part of the AC.

## MQ REGISTER (MQ)

The MQ is a 12-bit temporary register which is program accessible. The contents of AC may be transferred to the MQ for temporary storage, or MQ can be OR'ed with the AC and the result stored in the AC: The contents of the AC and the MQ may also be exchanged.

## MEMORY ADDRESS REGISTER (MAR)

While accessing memory, the 12-bit MAR register contains the address of the memory location that is currently selected for reading or writing. The MAR is also used as an internal register for microprogram control during data transfers to and from memory and peripherals.

## PROGRAM COUNTER (PC)

The 12-bit PC contains the address of the memory location from which the next instruction is fetched. During an instruction fetch, the PC is transferred to MAR and the PC is then incremented by 1 . When there is a branch to another address in memory, the branch address is set into the PC. Branching normally takes place under program control, however, during an input-output operation, a device may specify a branch address. A skip. (SKP) instruction increments the PC by 1 , thus causing the next instruction to be skipped. The SKP instruction may be unconditional, or conditional on the state of the AC or the Link. During an input-output operation, a device can also cause the next sequential instruction to be skipped. Interrupts force the PC to 0000 . Reset forces the PC to 77778 .

## ARITHMETIC AND LOGICAL UNIT (ALU)

The ALU performs both arithmetic and logical operations, -two's complement binary addition, AND, OR and complement. The ALU can perform a single position shift either to the left or to the right; a double rotate is implemented in two single bit shifts. The ALU can also shift by 3 positions to implement a byte swap in two steps. The AC is always one of the inputs to the ALU, however, under internal microprogram control, AC may be gated off and all one's or all zero's gated in. The second input may be any one of the other registers under internal microprogram control.

## TEMPORARY REGISTER (TEMP)

The 12-bit TEMP register latches the result of an ALU operation, before it is sent to the destination register, to avoid race conditions. The TEMP is also used as an internal register for microprogram control.

## INSTRUCTION REGISTER (IR)

During an instruction fetch, the 12 -bit IR is loaded with the instruction that is to be executed by the CPU. The IR specifies the initial step of the microprogram sequence for each instruction, and is also used as an internal register to store temporary data for microprogram control.

## MULTIPLEXER (DX)

The 12-bit Input/Output Multiplexer handles data, address and instruction transfers into and out of the CPU, and to or from the main memory and peripheral devices on a timemultiplexed basis.

## MAJOR STATE GENERATOR AND THE PROGRAMMED LOGIC ARRAY (PLA)

During an instruction fetch the instruction to be executed is loaded into the IR. The PLA is then used for the correct sequencing of the CPU for the appropriate instruction. After an instruction is completely sequenced, the major state generator scans the internal priority network, which decides whether the machine is going to fetch the next instruction in sequence, or service one of the external request lines.

## PLA OUTPUT LATCH

The PLA Output Latch permits the PLA to be pipelined; it fetches the next control sequence while the CPU is executing the current sequence.

## MEMORY AND DEVICE CONTROL, ALU AND REG TRANSFER LOGIC

The Memory and Device Control Unit provides external control signals to communicate with peripheral devices (DEVSEL), switch register (SWSEL), memory (MEMSEL) and/or control panel memory (CPSEL). During I/O instructions this unit also modifies the PLA outputs depending on the states of the four device control lines (SKP, $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$ ). The ALU and Register Transfer Logic provides the control signals for the internal register transfers and ALU operation.

## ARCHITECTURE (CONTINUED)

## TIMING AND STATE CONTROL

The IM6100 internally generates all the timing and state signals. A crystal is used to control the CPU operating frequency, which is divided by two by the CPU. With a 4 MHz crystal, the internal states will be of 500 nsec duration. The major timing states are described in Figure 2.
$\mathbf{T}_{1} \quad$ For memory reference instructions, a 12-bit address is sent on the DX lines. The Load External Memory Address Register, LXMAR, is used to clock an external register to store the address information externally, if required. When executing an InputOutput I/O instruction, the instruction being executed is sent on the DX lines to be stored externally. The external address register then contains the device address and control information. The LXMAR pulse occurs only if a valid address is present on the DX lines.
Various CPU request lines are priority sampled if the next cycle is an Instruction Fetch cycle. Current state of the CPU is available externally.

T2 Memory/Peripheral data is read for an input transfer (READ). WAIT controls the transfer duration. If WAIT is active during input transfers, the CPU waits in the $T_{2}$ state. The wait duration is an integral multiple of the crystal frequency - 250nsec for 4 MHz .
For memory reference instructions, the Memory Select, MEMSEL, line is active. For I/O instructions the Device Select, DEVSEL, line is active. Control lines, therefore, distinguish the contents of the external register as memory or device address.
External device sense lines, $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and SKP, are sampled if the instruction being executed is an $1 / O$ instruction.
Control Panel Memory Select, CPSEL, and Switch Register Select, SWSEL, become active low for data transfers between the IM6100 and Control Panel Memory and the Switch Register, respectively.
$T_{3}, T_{4}, T_{5} A L U$ operation and internal register transfers.
$\mathbf{T}_{6} \quad$ This state is entered for an output transfer (WRITE). The address is defined during $T_{1}$. WAIT controls the time for which the Write data must be maintained.


Figure 2: IM6100 AC Timing Diagram

## MEMORY ORGANIZATION

The IM6100 has a basic addressing capacity of 4096 12-bit words which may be extended by Extended Memory Control hardware to 32 K . The memory system is organized in 4096 word blocks, called MEMORY FIELDS. The first 4096 words of memory are in Field 0 ; if a full 32 K of memory is installed, the uppermost Memory Field will be numbered 7. In any given Memory Field every location has, a unique 4 digit octal (12 bit binary) address, $0000_{8}$ to $7777_{8}\left(0000_{10}\right.$ to $\left.4095_{10}\right)$. Each Memory Field is subdivided into 32 PAGES of 128 words each. Memory Pages are numbered sequentially from Page 008 , containing addresses $0000-0.177_{8}$, to Page 378 , containing addresses 76008-77778. The first 5 bits of a 12-bit MEMORY ADDRESS denote the PAGE NUMBER and the low order 7 bits specify the PAGE ADDRESS of the memory location within the given Page.

During an instruction fetch cycle, the IM6100 fetches the instruction pointed to by the PC, the contents of the PC are transferred to the MAR, and the PC is incremented by 1 . The PC now contains the address of the 'next' sequential instruction and the MAR contains the address of the 'current' instruction which must be fetched from memory. Bits $0-4$ of the MAR identify the CURRENT PAGE, that is, the Page from which instructions are currently being fetched, and bits 5-11 of the MAR identify the location within the Current Page. (PAGE ZERO (0), by definition, denotes the first 128 words of memory, 00008-01778.)


## INSTRUCTION SET

The IM6100 instructions are 12-bit words stored in memory. The IM6100 makes no distinction between instructions and data; it can manipulate instructions as stored variables or execute data as instructions when it is programmed to do so. There are three general classes of IM6100 instructions. They are referred to as Memory Reference Instruction (MRI), Operate Instruction (OPR) and Input/Output Transfer Instruction (IOT).

The notations used in the following instruction tables are defined in Table I below:

TABLE 1. Notation Definitions

1. ( ) denotes the contents of the register or location within parenthesis. (EA) is read as ". . . the contents of the Effective Address."
2. (()) denotes the contents of the location pointed to by the contents of the location within the double parenthesis. ((PA)) is read as ". . . the contents of the location pointed to by the contents of the Pointer Address."
3.     - denotes ". . . is replaced by . ..'
4.     - denotes the interchange operation.
5. $\wedge$ denotes logical AND operation.
6. $v$ denotes logical OR operation.
7. EA denotes the Effective Address for Direct Addressing.
8. PA denotes the Pointer Address for Indirect Addressing. PA can be any address on the CURRENT PAGE or PA can be any address $\left(0000_{8}\right)$ through ( 01778 ) on PAGE ZERO other than the addresses $\left(0010_{8}\right)$ through ( 00178 ) which are reserved for autoindexing.
9. PAIX denotes the Pointer Address for autoindexing. It can be any address $\left(0010_{8}\right)$ through (00178).
10. I represents bit 3 , the Indirect Addressing Bit, of the instruction:
11. EA, PA, or PAIX is specified by bit 4 through bit 11 of the memory reference instruction.
12. PC denotes the Program Counter.
13. SR denotes the Switch Register.
14. (AC)n denotes the nth bit of the AC contents.
15. DEV denotes a specific peripheral device and "dddddd" denotes the device address code. CMND is the command issued to the device during an I/O operation and "eee" is its three bit code.

## INSTRUCTION SET (CONTINUED) MEMORY REFERENCE INSTRUCTION (MRI)

The Memory Reference Instructions operate on the contents of a memory location or use the contents of a memory location to operate on the AC or the PC. The first 3 bits of a Memory Reference Instruction specify the operation code, or OPCODE, and the low order 9 bits, the OPERAND address, as shown in Figure 3.


Figure 3: Memory Reference Instruction Format
Bits 5 through 11, the PAGE ADDRESS, identify the location of the OPERAND on a given page, but they do not identify the page itself. The page is specified by bit 4, called the CURRENT PAGE OR PAGE 0 BIT. If bit 4 is a 0 , the page address is interpreted as a location on Page 0 . If bit 4 is a 1 , the page address specified is interpreted to be on the Current Page.
For example, if bits 5 through 11 represent $123_{8}$ and bit 4 is a 0 , the location referenced is the absolute address 01238 . However, if bit 4 is a 1 and the current instruction is in a memory location whose absolute address is $4610_{8}$ the page address $123_{8}$ designates the absolute address $4723_{8}$, as shown below.
$46108=100110001000=$ PAGE 10011 = PAGE 238
Location $4610_{8}$ is in PAGE 238. Location 1238 in PAGE 238, CURRENT PAGE, will be:
$10.011,1010011=100111010011=4723_{8}$
LPAGE ADDRESS 1238
PAGE NUMBER 238

By this method, 256 locations may be directly addressed, 128 on PAGE 0 and 128 on the CURRENT PAGE. Other locations are addressed indirectly by setting bit 3. An INDIRECT ADDRESS (pointer address) identifies the location that contains the desired address (effective address). To address a location that is not directly addressable, not in PAGE 0 or in the CURRENT PAGE, the absolute address of the desired location is stored in one of the 256 directly addressable locations (pointer address). Upon execution, the MRI will operate on the contents of the location identified by the address contained in the pointer location.

It should be noted that locations 00108-00178 in PAGE 0 are AUTOINDEXED. If these locations are addressed indirectly, the contents are incremented by 1 and restored before they are used as the operand address. These locations may, therefore, be used for indexing applications.

Table II lists the mnemonics for the six memory reference instructions, their OPCODEs, the operations they perform and the number of states required for execution.

It should be noted that the data is represented in Two's Complement Intager notation. In this system, the negative of a number is formed by complementing each bit in the data word and adding " 1 " to the complemented number. The sign is indicated by the most significant bit. In the 12-bit word used by the IM6100, when bit 0 is a " 0 ", it denotes a positive number and when bit 0 is a " 1 ", it denotes a negative number. The maximum single precision number ranges for this system are $3777_{8}(+2047)$ and 40008 $(-2048)$.

Table II

MNEMONIC	OP CODE	IA	STATES	OPERATION		
AND EA	08	0	10	```LOGICAL AND DIRECT Operatıon: (AC)-IAC। \(EA) Description: Contents of the EA are logically ANDed with the contents of the AC and the result is stored in AC.```		
AND I PA		1	15	LOGICAL AND INDIRECT (PA $\neq 0010-00178$ ) Operation: $/ A C 1-(A C) A$ ( $P$ PA)		
AND PAIX		1	16	LOGICAL AND AUTOINDEX (PAIX $=0010-00178$ )   operation: $(P A)-(P A)+1:(A C)-(A C) A \\| P A$		
TAD EA	18	0	10	BINARY ADD DIRECT   Operation $(A C) \longleftarrow A C)+(E A)$   Description: Contents of the EA are ADD'ed with the contents of the AC and the result is stored in the AC, carry out complements the LINK. If AC is initially cleared, this instruction acts as LOAD from Memory.		
TAD I PA		1	15	BINARY ADD INDIRECT (PA $\neq 0010-00178$ ) Operation (AC) - AC) + "PA		
TAD I PAIX		1	16	BINARY ADD AUTOINDEX (PAIX $=0010-0017_{8}$ ) Operation $(\mathrm{PA})=-(\mathrm{PA})+1,(\mathrm{AC})=\mathrm{AC})+(\mathrm{PA})$		
ISZ EA	28	0	16	INCREMENT AND SKIP IF ZERO DIRECT   Operation: $(E A)-\|E A\|+1$, if $(E A)=0000_{8}, P C-P C+1$.   Description: Contents of the EA are incremented by 1 and restored. If the result is zero, the next sequential instruction is skipped.		
ISZ I PA		1	21	INCREMENT AND SKIP IF ZERO INDIRECT (PA $\neq 0010-00178$ ) Operation: $(P A \\|-(P A)+1$, if $4 \mathrm{PA} \\|=0000 \mathrm{~B}, \mathrm{PC}-\mathrm{PC}+1$		
ISZ I PAIX		1	22	INCREMENT AND SKIP IF ZERO AUTOINDEX (PAIX $=0010-0017_{8}$ ) Operation $(\mathrm{PA})-(\mathrm{PA})+1$; $(\mathrm{PPA})-(\mathrm{PA})+1$; if $(\mathrm{PPA})-0000$, $\mathrm{PC}(\mathrm{PC}+1$		
DCA EA	38	0	11	DEPOSIT AND CLEAR THE ACCUMULATOR DIRECT Operation (EA) ↔(AC), $(A C) \leftarrow 0000_{8}$   Description: The contents of the $A C$ are stored in EA and the $A C$ is cleared.		
DCA I PA		1	16	DEPOSIT AND CLEAR THE ACCUMULATOR INDIRECT (PA $\neq 0010-00178$ ) Operation $(\mathbb{P A})-(A C): A C)-0000_{8}$		
DCA I PAIX		1	17	$\begin{aligned} & \text { DEPOSIT AND CLEAR THE ACCUMULATOR AUTOINDEX (PAIX }=0010-00178 \text { ) } \\ & \text { Operation }(P A) \&(P A)+1,(P A)!-(A C),(A C)-00008 \end{aligned}$		
JMS EA	48	0	11	JUMP TO SUBROUTINE DIRECT Operation: $(E A)-(P C)$ ) $(P C)-E A+1$   Description: The contents of the PC are stored in the EA. The PC is incremented by 1 immediately atter every instruction tetcch. The contents of the EA now point to the next sequential instruction following the JMS treturn addressl. The next instruction is taken from EA+ EA+1		
JMS IPA		1	16	JUMP TO SUBROUTINE INDIRECT (PA $\left.\neq 0010-0017_{8}\right)$ Operation ( $(\mathrm{PA}) \leftrightarrows \mathrm{PC},(\mathrm{PC})-(\mathrm{PA})+1$		
JMS I PAIX		1	17	JUMP TO SUBROUTINE AUTOINDEX (PAIX $=0010-00178$ ) operation $(\mathrm{PA})=(\mathrm{PA})+1,(\mathrm{PA}) 1-\mathrm{PC},(\mathrm{PC})=\mathrm{PA})+1$		
JMP EA	58	0	10	JUMP DIRECT   Operation ( PC ) $\leftarrow$ EA   Description: The next instruction is taken from the EA.		
JMP IPA		1	15	JUMP INDIRECT (PA $\neq 0010-00178$ ) Operation (PC) PA )		
JMP I PAIX		1	16	JUMP AUTOINDEX (PAIX $=0010-00178$ ) Operation $(\mathrm{PA})+1$. $(\mathrm{PC})-(\mathrm{PA})$		

## INSTRUCTION SET (CONTINUED) <br> OPERATE INSTRUCTIONS

The Operate Instructions, which have an OPCODE of 78 (111), consist of 3 groups of microinstructions. Group 1, which is identified by the presence of the 0 in bit 3 , is used to perform logical operations on the contents of the accumulator and link. Group 2, which is identified by the presence of a 1 in bit 3 and a 0 in bit 11 , is used primarily to test the contents of the Accumulator and/or Link and then conditionally skip the next sequential instruction. Group 3 has a 1 in bit 3 and a 1 in bit 11 and performs logical operations on the contents of the $A C$ and $M Q$.
The basic OPR instruction format is shown in Figure 4.


Figure 4: Basic OPR Instruction Format
Operate microinstructions from any group may be microprogrammed with other operate microinstructions of the same group providing the instruction codes do not conflict. The actual code for a microprogrammed combination of two, or more, microinstructions is the bitwise logical OR of the octal codes for the individual microinstructions. When more than one operation is microprogrammed into a single instruction, the operations are performed in a prescribed sequence, with logical sequence number 1 performed first,
logical sequence number 2 performed second, logical sequence number 3 performed third and so on. Two operations with the same logical sequence number, within a given group of microinstructions, are performed simultaneously.

## GROUP MICROINSTRUCTIONS

Figure 5 shows the instruction format of a group 1 microinstruction. Any one of bits 4 to 11 may be set, loaded with a binary 1 , to indicate a specific group 1 microinstruction. If more than one of these bits is set, the instruction is a microprogrammed combination of group 1 microinstructions, which will be executed according to the logical sequence shown in Figure 5.


Figure 5: Group 1 Microinstruction Format

Table III lists commonly used group 1 microinstructions, their assigned mnemonics, octal code, logical sequence, the number of states, and the operation they perform. The same format is followed in Table IV and $V$ which lists group 2 and 3 microinstructions, respectively.

Table III: Group 1 Operate Microinstructions

MNEMONIC	$\begin{aligned} & \text { OCTAL } \\ & \text { CODE } \end{aligned}$	LOGICAL SEQUENCE	NUMBER OF STATES	OPERATION
NOP	7000	1	10	NO OPERATION-This instruction causes a 10 state delay in program execution without aftecting the state of the im6100. It may be used for timing. synchronization or as a convenient means of deleting an instruction from a program.
IAC	7001	3	10	INCREMENT ACCUMULATOR -The content of the AC is incremented by one (i) and carry out complements the Link (L)
RÄL	7004	4	15	ROTATE ACCUMULATOR LEFT-The contents of the $A C$ and $L$ are rotated one binary position to the left. $A C$ ( 0 ) is shifted to $L$ and $L$ is shifted to $A C$ 111.
RTLi	7006	4	15	ROTATE TWO LEFT-The contents of the $A C$ and $L$ are rotated two binary positions to the left. $A C(1)$ is shifted to $L$ and $L$ is shifted to $A C$ ( 10
RAR	7010	4	15	ROTATE ACCUMULATOR RIGHT - The content of the $A C$ and $L$ are rotated one binary position to the right. $A C$ (11) is shifted to $L$ and $L$ is shifted to $A C 10$.
RTR	7012	4	15	ROTATE TWO RIGHT-The contents of the $A C$ and $L$ are rotated two binary positions to the right. $A C$ ito is shifted to $L$ and $L$ is shifted to $A C$ (1).
BSW	7002	4	15	BYTE SWAP-The right six ( 6 ) buts of the AC are exchanged or SWAPPED with the left six bits. AC $(0)$ is swapped with $A C$ (6), $A C$ (1) with $A C$ (7), etc. $L$ is not affected.
CML	7020	2	10	COMPLEMENT LINK - The content of the link is complemented.
CMA	7040	2	10	COMPLEMENT ACCUMULATOR一The content of each bit of the AC is complemented having the effect of replacing, the content of the $A C$ with its one's complement.
CIA	7041	2,3	10	COMPLEMENT AND INCREMENT ACCUMULATOR一The content of the AC is replaced with its two's complement. Carry out complements the LINK.
CLL	7100	1	10	CLEAR LINK-The link is loaded with a binary 0 .
CLL RAL	7104	1,4	15	CLEAR LINK-ROTATE ACCUMULATOR LEFT.
CLL RTL	7106	1,4	15	CLEAR LINK-ROTATE TWO LEFT.
CLL RAR	7110	1,4	15	CLEAR LINK-ROTATE ACCUMULATOR RIGHT.
CLL RTR	7112	1,4	15	-CLEAR LINK-ROTATE TWO RIGHT.
STL	7120	1,2	10	SET THE LINK-The LINK is loaded with a binary 1 corresponding with a microprogrammed combination of CLL and CML.
CLA	7200		10	CLEAR ACCUMULATOR-Tho accumulator is loaded with binary O's.
CLA IAC	7201	1,3	10	CLEAR ACCUMULATOR-INCREMENT ACCUMULATOR.
GLT	7204	1,4	- 15	GET THE LINK-The AC is cleared; the content of $L$ is shifted into $A C(11), a$ a s shifted into $L$. This is a microprogrammed combination of CLA and RAL.
CLA CLL	7300	1	10	CLEAR ACCUMULATOR-CLEAR LINK.
STA	7240	1,2	10	SEE THE ACCUMULATOR—Each bit of the AC is set to 1 corresponding to a microprogrammed combination of CLA and CMA.

## IM6100

## INSTRUCTION SET（CONTINUED）

## GROUP 2 MICROINSTRUCTIONS

Figure 6 shows the instruction format of group 2 microin－ structions．Bits 4－10 may be set to indicate a specific group 2 microinstruction．If more than one of bits 4－7 or 9－10 is set， the instruction is a microprogrammed combination of group 2 microinstructions，which will be executed according to the logical sequence shown in Figure 6.
Skip microinstrüctions may be microprogrammed with CLA，

OSR，or HLT microinstructions．When two or more skip microinstructions are microprogrammed into a single in－ struction，the resulting condition on which the decision will be based is the logical OR of the individual conditions when bit 8 is 0 ，or，when bit 8 is 1 ，the decision will be based on the logical AND．
By combining skip instructions properly，all possible relational conditions can be tested（i：e．，$=, \neq,<, \leq,>, \geq$ ）．Skip microinstructions which have a 0 in bits $5,6,7$ ，or 8 may not be microprogrammed with skip microinstructions which have a 1 in those same bits．

0	1	2	3	4	5	6	7	8	9	10	11
1		1	1	CLA	SMA	SZA	$\frac{\text { SNL }}{\text { SZL }}$	0	OSR	HLT	0

LOGICAL SEQUENCES：
1 （BIT 8 IS ZERO）－SMA OR SZA OR SNL
（BIT 8 IS ONE）－SPA AND SNA AND SZL
2
－CLA
－OSR，HLT

Figure 6：Group 2 Microinstruction Format

Table IV：Group 2 Operate Microinstructions

MNEMONIC	OCTAL CODE	LOGICAL SEQUENCE	$\begin{gathered} \text { NUMBER } \\ \text { OF } \\ \text { STATES } \\ \hline \end{gathered}$	OPERATION
NOP	7400	1	10	NO OPERATION－See Group 1 MICROINSTRUCTIONS
HLT	7402	3	10	HALT－Program stops at the conclusion of the current machine cycle．If HLT is combined with others in OPR 2 ．the other operations are completed before the end of the cycle．
OSR	7404	3	15	OR WITH SWITCH REGISTER－The content of the Switch Register if OR＇ed with the content of the AC and the result is stored in the AC．The OSR INSTRUCTION TIMING is shown in Figure 7．The IM6100 sequences the and instruction through a 2－cycle execute phase referred to as OPR 2A and OPR 2B．
SKP	7410	1	10	SKIP－The content of the PC is incremented by． 11 to skip the next sequential instruction．．
SNL	7420	1	10	SKIP ON NON－ZERO LINK－The content of $L$ is sampled，the next sequential instruction is skipped if $L$ contains a 1 ．If $L$ contains a 0 ，the next instruction is executed．
SZL	7430	1	10	SKIP ON ZERO LINK－The content of $L$ is sampled，the next sequential instruction is skipped if $L$ contains a 0．If the $L$＇contains a 1 ，the next instruction is executed
SZA	7440	1	10	SKIP ON ZERO ACCUMULATOR一The content of the AC is sampled；the next sequential instruction is skipped if the $A C$ has all bits which are 0 ．If any bit in the $A C$ is a 1 ，the next instruction＇is executed．
SNA	7450	1	10	SKIP ON NON－ZERO ACCUMULATOR－The content of the AC is sampled；the next sequential instruction is skipped if the $A C$ has any bits which are not 0 ．If every bit in the $A C$ is 0 ，the next instruction is executed
SZA SNL	7460	1	10	SKIP ON ZERO ACCUMULATOR，OR SKIP ON NON－ZERO LINK，OR BOTH＇
SNA SZL	7470	1	10	SKIP ÓN NON－ZERO ACCUMULATOR AND SKIP ON ZERO LINK
SMA	7500	1	10	SKIP ON MINUS ACCUMULATOR－If the content of AC 10 contains a 1 ，indicating that the $A C$ contains a negative two＇s complement number，the next sequential instruction is skipped．If $A$＇ 10 ＇contains $a 0$ ，the next instruction is executed．
SPA	7510	1	$10^{\circ}$	SKIP ON POSITIVE ACCUMULATOR一The contents of $A C(0)$ are sampled．If AC 10 ）contains a a 0 ． indicating that the $A C$ contains a positive two＇s complement number，the next sequential instruction is skipped．If $A C(0)$ contains a 1 ，the next instruction is executed．
SMA SNL	7520	1	10	SKIP ON MINUS ACCUMULATOR OR SKIP ON NON－ZERO LINK OR BOTH
SPA SZL	7530	1	10	SKIP ON POSITIVE ACCUMULATOR AND SKIP ON ZERO LINK
SMA SZA	7540	1	10	SKIP ON MINUS ACCUMULATOR OR SKIP ON ZERO ACCUMULATOR OR BOTH
SPA SNA	7550	1	10	SKIP ON POSITIVE ACCUMULATOR AND SKIP ON NON－ZERO ACCUMULATOR
SMA SZA   SNL	7560	1	10	SKIP ON MINUS ACCUMULATOR OR SKIP ON ZERO ACCUMULATOR OR SKIP ON NON－ZERO LINK OR ALL
SPA SNA SZL	7570	1	10	SKIP ON POSITIVE ACCUMULATOR AND SKIP ON NON－ZERO ACCUMULATOR AND SKIP ON ZERO LINK
CLA	7600	2	10	CLEAR ACCUMULATOR－The AC is loaded with binary 0 ＇s．
LAS	7604	1，3	15	LOAD ACCUMULATOR WITH SWITCH REGISTER一The content of the AC is loaded with the content of the SR，bit for bit．This is equivalent to a microprogrammed combination of CLA and OSR．
SZA CLA	7640	1，2	10	SKIP ON ZERO ACCUMULATOR THEN CLEAR ACCUMULATOR
SNA CLA	7650	1，2	10	SKIP ON NON－ZERO ACCUMULATOR THEN CLEAR ACCUMULATOR
SMA CLA	7700	1，2	10	SKIP ON MINUS ACCUMULATOR THEN CLEAR ACCUMULATOR

INSTRUCTION SET (CONTINUED)

(1) INSTRUCTION ADDRESS (2) INSTRUCTION $\rightarrow$ CPU (3) SWITCH REGISTER, $\rightarrow$ CPU DATA

Figure 7: OSR Instruction Timing

## GROUP 3 MICROINSTRUCTIONS

Figure 8 shows the instruction format of group 3 microinstructions which requires bits 3 and 11 to contain a 1. Bits 4,5 or 7 may be set to indicate a specific group 3 microinstruc-
tion. If more than one of the bits is set; the instruction is a microprogrammed combination of group 3 microinstructions following the logical sequence listed in Figure 8. All unused bits are "don't care".

*DON'T CARE

```
LOGICAL SEQUENCES:
1-CLA
2-MQA, MQL
3-ALL OTHERS
```

Figure 8: Group 3 Microinstruction Format

Table V: Group 3 Operate Microinstructions

MNEMONIC	OCTAL CODE	LOGICAL SEQUENCE	NUMBER OF STATES	OPERATION
NOP.	7401	3	10	NO OPERATION-See Group 1 Microinstructions
MQL	7421	2	10	MQ REGISTER LOAD - The content of the AC is loaded into the MQ, the AC is cleared and the original content of the MQ is lost.
MQA	7501	2	10	MQ REGISTER INTO ACCUMULATOR-The content of the MQ is OR'ed with the content of the AC and the result is loaded into the $A C$. The original content of the $A C$ is lost but the original content of the $M Q$ is retained. This instruction provides the programmer with an inclusive OR operation.
SWP	7521	3	10	SWAP ACCUMULATOR AND MQ REGISTER - The content of the AC and MQ are interchanged accomplishing a microprogrammed combination of MQA and MOL.
CLA	7601	1	10	CLEAR ACCUMULATOR
CAM	7621	3	10	CLEAR ACCUMULATOR AND MQ REGISTER-The content of the AC and MQ are loaded with binary O's. This is equivalent to a microprogrammed combination of CLA and MOL.
ACL	7701	3	10	CLEAR ACCUMULATOR AND LOAD MQ REGISTER INTO ACCUMULATORThis is equivalent to a microprogrammed combination of CLA and MQA.
CLA SWP	7721	3	10	CLEAR ACCUMULATOR AND SWAP ACCUMULATOR AND MQ REGISTERThe content of the $A C$ is cleared. The content of the $M Q$ is loaded into the $A C$ and the $M Q$ is cleared.

## INSTRUCTION SET (CONTINUED) INPUT/OUTPUT (IOT) INSTRUCTIONS

The input/output transfer instructions, which have an OPCODE of 68 are used to control the operation of peripheral devices and to transfer data between peripherals and the IM6100. Three types of data transfer may be used to receive or transmit information between the IM6100 and one or more peripheral I/O devices: PROGRAMMED DATA TRANSFER, which provides a straightforward means of communicating with relatively slow I/O devices, such as Teletypes, cassettes, card readers and CRT displays, INTERRUPT TRANSFERS which use the interrupt system to service several peripheral devices simultaneously, and DIRECT MEMORY ACCESS, DMA, which transfers variable-size blocks of data between high-speed peripherals and memory without IM6100 intervention.

## IOT INSTRUCTION FORMAT

The Input/Output Transfer Instruction format is represented in Figure 9. The instruction executes in 17 states.
The first three bits, $0-2$, are always set to 68 (110) to specify an IOT instruction. The low order nine bits are used for device selection and control. PDP-8/e compatible interfaces use bits 3-8 for device selection and bits 9-11 for control of the selected device. The IM6101 PIE interface uses bits 3-7 for device selection and bits 8-11 for control. In user designed systems, the 512 possible IOT instructions may be alloted according to the user's needs. The nature of this operation for any given IOT instruction depends entirely upon the circuitry designed into the I/O device interface.

## PROGRAMMED DATA TRANSFER

Programmed Data Transfer is the easiest, simplest, most convenient and most common means of performing data I/O. For microprocessor applications, it may also be the most cost effective approach. The data transfer begins when the IM6100 fetches an instruction from the memory and recognizes that the current instruction is an IOT (Figure 10). This is
referred to as IFETCH and consists of five (5) internal states. The IM6100 sequences the IOT instruction through a 2-cycle execute phase referred to as $\mathrm{IOT}_{A}$ and $I O T_{B}$. Bits $0-11$ of the IOT instructions are available on DX0-11 at IOTA $\bullet$ LXMAR; these bits must be latched in an external address register. DEVSEL is active low to enable data transfers between the IM6100 and the peripheral device(s). The selected peripheral device communicates with the IM6100 through 4 control lines - $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$ and SKP. In the IM6100 the type of data transfer, during an IOT instruction, is specified by the peripheral device(s) by asserting the control lines as shown in Table VI.

The control line SKP, when low during an IOT, causes the IM6100 to skip the next sequential instruction. This feature is used to sense the status of various signals in the device interface. The $\mathrm{C}_{0}, \mathrm{C}_{1}$, and $\mathrm{C}_{2}$ lines are treated independently of the SKP line. In the case of a RELATIVE or ABSOLUTE JUMP, the skip operation is performed after the jump. The input signals to the IM6100, DX $0-11, \mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$, and SKP, are sampled at $I O T_{A}$ during DEVSEL $\bullet$ XTC and the data from the IM6100 is available to the device(s) during that time. IOTB is used by the IM6100 to perform the operations requested during $\mathrm{IOT}_{A}$. Both $\mathrm{IOT}_{A}$ and $I O T_{B}$ consist of six (6) internal states.

In summary, Programmed Data Transfer performs data I/O with a minimum of hardware support. The maximum rate at which programmed data transfers may take place is limited by the IM6100 instruction execution rate, however, the data rate of the most commonly used peripheral devices is much lower than the maximum rate at which programmed transfers can take place in the IM6100. The major drawback associated with Programmed Data Transfer is the IM6100 must hang up in a waiting loop while the I/O device completes the last transfer and prepares for the next transfer. On the other hand, this technique permits easy hardware implementation and simple, economical interface design. For this reason, almost all devices except máss storage units rely on programmed data transfer.


Figure 9: IOT Instruction Format


Figure 10: Input-Output Instruction Timing

## INSTRUCTION SET (CONTINUED)

Table VI: Programmed I/O Control Lines

CONTROL LINES   $\begin{array}{lll}\mathbf{C}_{0} & \mathbf{C}_{1} & \mathbf{C}_{2}\end{array}$			OPERATION	DESCRIPTION
H	H	H	DEV $\leftarrow A C$	The content of the AC is sent to the device.
L	H	H	$D E V \leftarrow A C ; ~ C L A ~$	The content of the AC is sent to a device and then the AC is cleared.
H	L	H	AC $\leftarrow A C V D E V$	Data is received from a device, OR'ed with the data in the AC and the result is stored in the AC.
L	L	H	$\mathrm{AC} \leftarrow \mathrm{DEV}$	Data is received from a device and loaded into the AC.
*	H	L	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{DEV}$	Data from the device is added to the contents of the.PC. This is referred to as a RELATIVE JUMP.
*	L	L	PC ↔DEV	Data is received from a device and loaded into the PC. This is referred to as an ABSOLUTE JUMP.

*Don't Care

## INTERRUPT TRANSFER

## PROGRAM INTERRUPT TRANSFERS

The program interrupt system may be used to initiate programmed data transfers in such a way that the time spent waiting for device $1 / O$ is greatly reduced or eliminated altogether. This is accomplished by isolating the I/O handling routines from the mainline program and using the interrupt system to ensure that these routines are entered only when an I/O device status is set, indicating that the device is actually ready to perform a data transfer.

The interrupt system allows certain external conditions to interrupt the computer program by driving the INTREQ input Low. If no higher priority requests are outstanding and the interrupt system is enabled, the IM6100 grants the device interrupt at the end of the current instruction. After an interrupt has been granted, the Interrupt Enable Flip-Flop in the IM6100 is reset so that no more interrupts are acknowledged until the interrupt system is re-enabled under program control.

## DEVICE INTERRUPT GRANT TIMING

The current contents of the Program Counter, PC, are deposited in location 00008 of the memory and the program fetches the instruction from location 00018. The return address is available in location 00008 . This address must be saved in a software stack, before the interrupts are reenabled, if nested interrupts are permitted. The INTGNT signal, Figure 11, is activated by the IM6100 when a device interrupt is acknowledged; this signal is reset by executing any IOT instruction as shown in Figure 12. The INTGNT signal is necessary to implement an External Vectored Priority Interrupt network. The IM6101 PIE contains the logic necessary to implement both vectored and non-vectored interrupts.
The user program controls the interrupt mechanism of the IM6100 by executing the processor IOT instructions listed in Table VII. Several of these interrupt IOT instructions are also used if the memory is extended beyond 4 K words to save and restore extended memory status during interrupt servicing.



Figure 11: Device Interrupt Grant Timing

Figure 12: Device Interrupt Grant Reset Timing

## INSTRUCTION SET (CONTINUED)

Table VII: Processor IOT Instructions

MNEMONIC	OCTAL CODE	OPERATION
SKON	6000	SKIP IF INTERRUPT ON - If interrupt system is enabled, the next sequential instruction is skipped. The Interrupt system is disabled.
ION	6001	INTERRUPT TURN ON - The internal interrupt acknowledge system is enabled. The interrupt system is enabled after the CPU executes the next sequential instruction. The INTERRUPT ENABLE TIMING is shown in Figure 13.
IOF	6002	INTERRUPT TURN OFF - The interrupt system is disabled. Note that the interrupt system is automatically disabled when the CPU acknowledges an INT request.
SRQ	6003	SKIP IF INT REQUEST - The next sequential instruction is skipped if the INT request bus is low.
GTF	6004	GET FLAGS - The following machine states are read into the indicated bits of AC.   bit 0 - Link   bit $2-$ INT request bus   bit 4 - Interrupt Enable FF   Other bits may be modified by external devices by controlling the C-lines, (ex. Extended memory control).
RTF	6005	RETURN FLAGS - Link is restored from AC ( 0 ). Interrupt system is enabled after the next sequential instruction is executed. All AC bits are available externally to restore external states. (ex. Extended memory control).
SGT	6006	Operation is determined by external devices, if any.
CAF	6007	CLEAR ALL FLAGS - AC and Link are cleared. Interrupt system is disabled.

IFETCH ION EXECUTE ION EXECUTE IFETCH EXECUTE


Figure 13: Interrupt Enable FF ON (ION)

## CONTROL PANEL INTERRUPT TRANSFER

The IM6100 supports a memory space completely separate from main memory, called control panel memory. Therefore, the IM6100 control panel and other supervisory functions are implemented in software. This implementation need not use any part of the main memory or change the processor state. This is an important feature, since the final version of the system may not have a control panel and the system designer would like to use the entire capacity of the main memory for the specific system application.
The control panel communicates with the IM6100 with the Control Panel Request, CPREQ, line. The CPREQ is functionally similar to the INTREQ with some important differences: The CPREQ is granted even when the machine is in the HALT state; the IM6100 is temporarily. put in the RUN
state for the duration of the panel routine. The IM6100 reverts to its original processor state after the panel routine has been executed:
The CPREQ does not affect the interrupt enable system, and the processor IOT instruction, ION is redefined and IOF is ignored while the IM6100 is in the Control Panel Mode. Once a CPREQ is granted, the IM6100 will not recognize any DMAREQ or INTREQ until CPREQ has been fully serviced. When a CPREQ is granted, the PC is stored in location $0000_{8}$ of the Panel 'Memory and the IM6100 resumes operation at location $7777_{8}$. The Panel Memory would be organized with RAM's in the lower pages and PROM's in the higher pages. The control panel service routine would be stored in the higher pages in the nonvolatile PROM's, starting at 77778.


Figure 14: Control Panel Interrupt Grant Timing

## INSTRUCTION SET (CONTINUED)

A Control Panel Flip-Flop, CNTRL FF, internal to the IM6100, is set when the CPREQ is granted. The CNTRL FF prevents further CPREQ's from being granted.
'When the CNTRL FF is set, the Control Panel Memory Select, CPSEL, is active rather than the Memory Select, MEMSEL, for memory references. The CPSEL signal may therefore be used to distinguish the Control Panel Memory from the Main Memory. However, during the Execute phase of indirectly addressed AND, TAD, ISZ or DCA instructions, the MEMSEL is made active. The instructions are always fetched from the control panel memory, and the operand address for indirectly address AND, TAD, ISZ or DCA refers first to the control panel memory for an effective address, which, in turn, refers to a location in the main memory. A main memory location may therefore be examined and changed by indirectly addressed TAD and DCA instructions, Figure 15, respectively. Every location in the main memory is accessible to the control panel routine.
Exiting from the control panel routine is achieved by executing the following sequence with reference made to Figure 16.

ION.
JMP I 00008 (Loc 00008 in CPMEM)
The ION, 60018, instruction will reset the CP FF after executing the next sequential instruction, but will not affect
the interrupt system since the CNTRL FF is still active. Location 00008 of the CPMEM contains either the original return address, deposited by the IM6100 when the CP routine was entered, or a new starting address defined by the CP routine, for example, by activating the LOAD ADDRESS SWITCH. CPREQ's are normally generated by the manual actuation of the control switches. If the CPU registers must be displayed in real-time, the CPREQ's must be generated by a timer at fixed intervals.
The designer may also make use of the control panel features to implement Bootstrap loaders in the CP Memory so that the loader will be "transparent" to the main memory. Programs will be loaded by DCA I POINTER instruction, the pointer being developed in the CP RAM to point to the main memory location to be loaded.
Approximately 64 P/ROM locations are sufficient to implement all the functions of the PDP®-8/e Control Panel. The IM6100 provides for a 12-bit switch register which can be read by the IM6100 under program control with the SWITCH REGISTER, OSR, instruction even without a control panel. An RTF, 60058, instruction also resets the internal CNTRL FF. Exiting from a panel routine can be achieved by activating the RESET line since RESET has a higher priority than CPREQ, see Figure 18. If the RUN/HLT line is pulsed while the IM6100 is in the panel mode, it will 'remember' the pulses(s) but defer any action until the IM6100 exits from the panel mode.


Figure 15: "DCA Indirect" In Control Panel Routine

(1) instruction address
(2) INSTRUCTION FETCH FROM CP MEM
(3) DEVICE ADDRESS ( 60018 )
(4) DON'T CARE DEVICE READ, SAMPLE CO, C1, C2 \& SKP
(5) DON'T CARE DEVICE WRITE
(6) INSTRUCTION ADDRESS
(7) INSTRUCTION FETCH FROM CP MEM
(8) EFFECTIVE ADDRESS $\left(0000_{8}\right)$
(9) JMP ADDRESS FROM CP MEM LOC $0000_{B}$
(10) if CPU WAS IN THE HALT STATE, THE RUN IS FALSE AT T1

Figure 16: "ION; JMP' 00008 " In Control Panel Routine

## DIRECT MEMORY ACCESS (DMA)

Direct Memory Access, sometimes called data break, is the preferred form of data transfer for use with high-speed storage devices such as magnetic disk or tape units. The DMA mechanism transfers data directly between memory and peripheral devices, and the IM6100 is involved only in setting up the transfer; the transfers take place on a "cycle stealing" basis. The DMA transfer rate is limited only by the bandwidth of the memory and the data transfer characteristics of the device.
The device generates a DMA Request when it is ready to transfer data. The IM6100 grants the DMAREQ by activating
the DMAGNT signal at the end of the current instruction as shown in Figure 17. The IM6100 suspends any further instruction fetches until the DMAREQ line is released. The DX lines are tri-stated, all SEL lines are high, and the external timing signals $X T_{A}, X T_{B}$, and $X T_{C}$ are active and LXMAR remains low. The device which generated the DMAREQ must provide the address and the necessary control signals to the memory for data transfers. The DMAREQ line can also be used as a level sensitive "pause" line.

DMA may also be implemented in a transparent mode without stealing processor cycles by using the DX bus during idle periods. The IM6102 MEDIC operates in this manner.


Figure 17: Direct Memory Access(DMA)

## INTERNAL PRIORITY STRUCTURE

After an instruction is completely sequenced, the major state generator scans the internal priority network às shown in Figure 18. The state of the priority network decides the next sequence of the IM6100.
The request lines, RESET, CPREQ, RUN/HLT, DMAREQ and INTREQ, are sampled in the last cycle of an instruction execution, at time T1. The worst case response time of the IM6100 to an external request is, therefore, the time required to execute the longest instruction preceded by any 6 -state execution cycle. For the IM6100, this is an autoindexed ISZ, 22 states, preceded by any 6-state execution cycle instruction.
When the IM6100 is initially powered up, the state of the timing generator is undefined. The generator is automatically initialized with a maximum of 34 clock pulses. The request inputs, as the IM6100 is powered on, must span at least 58 clock pulses to be recognized, 34 clocks for the counter to initialize and a maximum of two IM6100 cycles ( 20 to 24 clocks) for the state generator to sample the request lines. A positive transition on RUN/HALT should occur at least 10 clock pulses after RESET for it to be recognized.
The internal priority is RESET, CPREQ, RUN/HLT, DMAREQ, INTREQ, and IFETCH.

## IFETCH

If no external requests are pending, the IM6100 fetches the next instruction pointed to by the contents of the PC. The IFETCH line is active during the cycle in which the instruc-
tion is fetched. External devices can monitor DX, 0-2, during IFETCH-XTA to determine the functional class of the current instruction. For example, the external memory extension hardware must know when JMP or JMS instructions are fetched to implement the Extended Memory Control. The IM6102 does this to implement extended memory addressing.
The Programmable Logic Array, PLA, in the IM6100 sequences the IM6100 to execute the fetched instruction. All INDIRECT and AUTOINDEX Memory Reference Instructions go through a common state sequence to generate the Effective Address, EA, of the operand. The subsequent sequence, referred to as the EXECUTE phase, is controlled by the functional class of the instruction. The EXECUTE phase of AND, TAD, DCA, JMS, JMP and OPR Group 3 Microinstructions consists of only one cycle. ISZ and IOT have a 2-cycle EXECUTE phase. OPR Group 1 and Group 2 Microinstructions have an optional second cycle, depending on the microcoding of the OPR instructions. An IM6100 cycle consists of 5 states, $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$ and $\mathrm{T}_{5}$, with an optional sixth state, T6, for Output Transfers (WRITE).
The state sequence for internal (processor) and external IOT instructions are identical. The Device Address and Control bits are available in the External Address Register for internal IOT instructions. External hardware, for example Extended Memory Control, can control the C-lines for data transfers to implement Get Flags (GTF), Return Flags (RTF), and Clear All Flags (CAF) instructions. External Control of the C-lines is necessary to implement these internal IOT instructions since the flag bits may be distributed both inside and outside the IM6100.


Figure 18: Major Processor States and Number of Clock Cycles in Each State

## RESET

The Reset initializes all internal IM6100 flags and clears the $A C$ and the LINK. The machine is halted.

As long as the RESET line is low, the IM6100 remains in the reset state and the DX lines are three stated. The IM6100
continues to provide the external timing signals $X T_{A}, X T_{B}$ and $X T_{C}$, all SEL lines are high, and the PC is set to $7777_{8}$. In most applications, the higher memory locations utilize P/ROM's or ROM's. Therefore, a power-up routine starting at the highest memory location can be used to initialize the system. It is also possible to force entry into control panel memory on power-up.

(1) REQUESTS SAMPLED AT T1 OF THE FINAL EXECUTE PHASE
(2) EXECUTE MAY BE $5 / 6$ STATES
(3) PC IS SET TO 77778
(4) CPU HALTS

Figure 19; Reset Timing

## RUN/HALT

RUN/HLT changes the state of the IM6100's RUN/HLT flipflop. Pulsing the line low causes the IM6100 to alternately run and halt. The RUN/HLT line is normally high. The IM6100 recognizes the positive transition of the signal.
The RUN/HLT flip-flop can be put in the halt state under program control by executing the HLT, 74028, instruction. When the IM6100 is halted, RUN/HLT is functionally
identical to the CONTINUE switch of the PDP-8/e control panel and the RUN signal is low. The RUN signal can be used to power down external circuitry for a low power system. The RUN/HLT can also be used to make the IM6100 execute one instruction at a time as shown in Figure 21. The RUN/HLT combines the functional features of STOP, CONTINUE, and SINGLE INSTRUCTION as defined by the PDP-8/e Control Panel.


Figure 20: Run/Halt Timing


Figure 21: "Single Step" With Run/HIt

## WAIT

The IM6100 samples the WAIT line during input-output data transfers (Figure 22). The WAIT line, if low, controls the transfer duration. If WAIT is active during input transfers (READ), the CPU waits in the T2 state. For an output transfer (WRITE), WAIT controls the time for which the write data is maintained on the DX lines by extending the T6 state. The wait duration is an integral multiple of the oscillator time period - 250 nsec at 4 MHz .
The WAIT mechanism is an ideal way of providing for slower memory and peripheral devices in the system without significant degradation in system performance. For example, if one waits for all reads and writes for one delay unit ( 250 nsec at 4 MHz ), the system throughput is reduced by less than $3 \%$.


Figure 22: Wait Line Sampling Timing


Figure 23: Memory And Input Transfer Wait Circuit
The circuit shown in Figure 23 will make the IM6100 wait during main memory and device input (READ) transfers. MEMSEL or DEVSEL, being low, will assert WAIT Iow. When XTA becomes active high, the WAIT line is asserted high after a delay. The wait duration is controlled by the delay in the XTA-WAIT path ( $t_{L_{1}}$ ).
The following conditions must be satisfied to obtain $x$ units of delay during READ's:
$\mathrm{tsL}_{\mathrm{L}}(\max )+\mathrm{t}_{\mathrm{L} 2(\max )}+\mathrm{tws}<\mathrm{T}_{\mathrm{s}}$
$\left.\mathrm{tXT}_{\mathrm{min}}\right)+\mathrm{t}_{\mathrm{L} 1(\text { min })}-\mathrm{t}_{\mathrm{W}} \mathrm{H} \geq \mathrm{x} \frac{\mathrm{Ts}}{2}$
$\mathrm{tXT}_{\mathrm{T}}(\max )+\mathrm{t}_{\mathrm{L} 1(\max )}+\mathrm{tws}<(\mathrm{x}+1) \quad \frac{\mathrm{Ts}}{2}$

For example, for an IM6100 I device operating at $4 \mathrm{MHz}, 5.0 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$, the constraints to be met to obtain 1 unit of delay (250nsec) are as follows:
tL2(max) $<$ Ts - tsL(max) - tws
$<500-300-30$
< 170nsec
$t_{L 1}($ min $) \geq \frac{T S}{2}-t_{X T}($ min $)+t w H$
$\geq 250-100+30$
$\geq 180 \mathrm{nsec}$
$t_{L 1}$ (max) $<T_{S}-t_{X T}(\max )-t_{w s}$
$<500-250-30$
< 220nsec
Note that the delay circuit can be as simple as an R-C network in conjunction with CMOS logic. Note also that the WAIT can be made selective on main memory, device, control panel memory or switch register select line.


Figure 24: Write Transfer Wait Circuit
Figure 24 shows a logic implementation to wait during WRITE's only.
The rising edge of MEMSEL (or CPSEL or DEVSEL) during READ clocks in a zero on the WAIT line. XTB, after a delay, releases the WAIT line. Every WRITE pulse is preceded by a READ pulse, and if no write operation is performed in a cycle, the T6 state is not entered and the WAIT line is not sampled. For $x$ units of delay, the following conditions must be met:
$\mathrm{t}_{\mathrm{X}} \mathrm{T}($ min $)+\mathrm{t}_{\mathrm{L} 3(\text { min })}-\mathrm{t}_{\mathrm{W} H} \geq \mathrm{x} \frac{\mathrm{TS}}{2}$ and
$t_{x T}(\max )+t_{L 3(\text { max })}+t_{w s}<(x+1) \frac{T s}{2}$

In the circuit shown in Figure 25, the WAIT signal is normally asserted low and it is released by XTA during READ's and XTB during WRITE's. Note that WAIT is active for all data transfers. Since XTA and XTB have identical timing relative to the WAIT sample point, the constraints to be satisfied are as follows:
$\mathrm{t}_{\mathrm{XT}}(\min )+\mathrm{t}_{\mathrm{L}} 4(\min )-\mathrm{t}_{\mathrm{WH}} \geq \mathrm{x} \frac{\mathrm{T}_{S}}{2}$ and
$t_{X T}(\max )+t_{L 4(\max )}+t_{w s}<(x+1) \frac{T s}{2}$


Figure 25: Data Transfer Wait Circuit

IM6100
ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6100	$-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Voltage ..................... +4.0 V to +11.0 V	
Supply Voltage .................................. +12.0 V	
Voltage On Any Input or	
Output Pin	. 3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		$\mathrm{V}_{\text {cc- }} 2.0$			V
2	VIL	Input Voltage Low				0.8	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.4			V
5	VOL	Output Voltage Low	$\mathrm{IOL}=2.0 \mathrm{~mA}$			0.45	V
6	'lol	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or VCC			800	$\mu \mathrm{A}$
8	ICC	Power Supply Current-Dynamic	$\mathrm{fC}=2.5 \mathrm{MHz}$			1.8	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS (See Figure 2 and 22)

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fc}=2.5 \mathrm{MHz}$

	SYMBOL	PARAMETER !	MIN	TYP	MAX	UNITS
1	FREQ	Operating Frequency			2.5	MHz
2	ts	Major State Time	800	$\bigcirc$	,	ns
3	tLXMAR	LXMAR Pulse Width	335.		..	ns
4	$\mathrm{t}_{\mathrm{AS}}$	Address Setup Time : DX-LXMAR ( $\downarrow$ )	120			ns
5	$\mathrm{taH}_{\text {A }}$	Address Hold Time: LXMAR ( $\downarrow$ )-DX	175	,		ns
8	tend	Data Output Enable Time: DEVSEL ( )-DX			575	ns
6	$t_{\text {AL }}$	Access Time from LXMAR			650	ns
7	ten	Output Enable Time (MEM, CP, DEVSEL)	.		400	ns
9	twp	Pulse Width (MEMSEL, CPSEL)	320			ns
10	tWRD	Pulse Width (DEVSEL)	320			ns
11	tDS	Data Setup Time (DX- $\uparrow$ MEMSEL/CPSEL)	240			ns
12	tDH	Data Hold Time ( $\uparrow$ MEMSEL/CPSEL-DX)	175			ns
13	toSD	Data Setup Time (DX-4 DEVSEL)	275			ns
14	tDHD	Data Hold Time (4 DEVSEL-DX)	175			ns
15	tSL	Logic Delay to MEM/DEV/CP/SWSEL	75		440	ns
16	${ }_{\text {t }}$ T $T$	Logic Delay to LXMAR, XTA, XTB, XTC	65		380	ns
17	tst ....	Logic Delay to DATAF, RUN, DMAGNT, INTGNT, LINK, IFETCH			475	ns
18	tRS	Set up Time for CP/INT/DMAREQ	0			ns
19	$\mathrm{tRH}^{\text {H }}$	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	300			ns
20	trhP	RUN-HALT Pulse Width	110			ns
21	tws	Set up Time for Wait	100			ns
22	twh	Hold Time for Wait	35			ns

Note: For capacitance greater than 50 pF , the AC parameters will have a delay factor of $0.5 \mathrm{~ns} / \mathrm{pF}$.

## IM6100-1

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6100-1I ...................... . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage ......................... +4.0 V to +11.0 V
Supply Voltage ...................................... +12.0 V
Voltage On Any Input or
Output Pin
-0.3 V to $\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS <br> TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		VCC -2.0			V
2	$\mathrm{V}_{\mathrm{IL}}$	Input Voltage Low				0.8	V
3	ILL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	V OH	Output Voltage High	$1 \mathrm{lOH}^{=}=-0.2 \mathrm{~mA}$	2.4			V
5	VoL	Output Voltage Low	$\mathrm{loL}=2.0 \mathrm{~mA}$			0.45	V
6	IoL	Output Leakage	$\mathrm{GND} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=$ GND or VCC			800	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{fC}=3.33 \mathrm{MHz}$			2.0	mA
9	CIN	Input Capacitance			7.0.	8.0	pF
10	Co	Output Capacitance	.		8.0	10.0	pF

A.C. CHARACTERISTICS (Ref. Fig. 2 and 22)

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fC}=3.33 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	FREQ	Operating Frequency			3:33	MHz
2	ts	Major State Time	600	,		ns
3	tLXMAR	LXMAR Pulse Width	- 260			ns
4	tas	Address Setup Time: DX-LXMAR ( $\downarrow$ )	85			ns
5	taH	"i Address Hold Time : LXMAR ( $\downarrow$ )-DX	125			ns
8	tend	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX			470	ns
6	$\mathrm{taL}^{\text {L }}$	Access Time from LXMAR			520	ns
7.	ten	Output Enable Time (MEM, CP, DEVSEL)			300	ns
9	twp	Pulse Width (MEMSEL, CPSEL)	235			ns
10	twPD	Pulse Width (DEVSEL)	235			ns
11	tDS	Data Setup Time (DX-4 MEMSEL/CPSEL)	135.			ns
12	toh	Data Hold Time ( $\uparrow$ MEMSEL/CPSEL-DX)	125			ns
13	tos	Data Setup Time (DX-¢ DEVSEL)	225			ns
14	tohD	Data Hold Time ( $\uparrow$ DEVSEL-DX)	125			ns
15	tSL	Logic Delay to MEM/DEV/CP/SWSEL	75		380	ns
16	txT	Logic Delay to LXMAR, XTA, XTB, XTC	65		270	ns
17	tST	Logic Delay to DATAF, RUN, DMAGNT,.,INTGNT, LINK, IFETCH			340	ns
18	tris	Set up Time for CP/INT/DMAREQ	0			ns
19	tRH	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	200			ns
20	trHP	RUN-HALT Pulse Width	80			ns
21	tws	Set up Time for Wait	100			ns
22.	twh	Hold Time for Wait	20			ns

IM6100A

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6100AI ...................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ................. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage . ......................... +4.0 V to +11.0 V
Supply Voltage ........................................... +12.0 V
Voltage On Any Input or
Output Pin
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		70\% VCC			V
2	$\mathrm{V}_{\text {IL }}$	Input Voltage Low				20\% VCC	V
3	IIL	Input Leakage	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	V OH	Output Voltage High	$1 \mathrm{OH}=0.0 \mathrm{~mA}$	VCC -0.01			V
5	VoL	Output Voltage Low	$1 \mathrm{OL}=0.0 \mathrm{~mA}$			GND +0.01	V
6	IOL	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0	!	1.0	$\mu \mathrm{A}$
7	IcC	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=$ GND or $\mathrm{V}_{\text {CC }}$.			900	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{f}_{\mathrm{C}}=5.71 \mathrm{MHz}$			4.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS (Ref: Figures 2 and 22)

TEST CONDITIONS: $\mathrm{VCC}=10 \mathrm{~V} \pm 5 \%, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{f} \mathrm{C}=5.71 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1.	FREQ	Operating Frequency			5.71	MHz
2	ts	Major State Time	350			ns
3	tLXMAR	LXMAR Pulse Width	150			ns
4	$t_{\text {AS }}$	Address Setup Time : DX-LXMAR ( $\downarrow$ )	55			ns
5	tar	Address Hold Time : LXMAR (t)-DX	60			ns
8.	tend	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX			250	ns
6	$\mathrm{taL}^{\text {a }}$	Access Time from LXMAR			295	ns
7	ten	Output Enable Time (MEM, CP, DEVSEL)			185	ns
9	twp	Pulse Width (MEMSEL, CPSEL)	140			ns
10	twPD	Pulse Width (DEVSEL)	140			ns
11	tos	Data Setup Time (DX- $\uparrow$ MEMSEL/CPSEL)	115			ns
12	tDH	Data Hold Time ( $\uparrow$ MEMSEL/CPSEL-DX)	60			ns
13	tosd	Data Setup Time (DX- $\uparrow$ DEVSEL)	110			ns
14	tDHD	Data Hold Time ( 4 DEVSEL-DX)	60			ns
15	tSL	Logic Delay to MEM/DEV/CP/SWSEL	35		180	ns
16	txT	Logic Delay to LXMAR, XTA, XTB, XTC	35		155	ns
17.	tST	Logic Delay to DATAF, RUN, DMAGNT, INTGNT, LINK, IFETCH			190	ns
18	tRS	Set up Time for CP/INT/DMAREQ	0			ns
19	tri	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	125			ns
20	trip	RUN-HALT Pulse Width	45			ns
21	tws	Set up Time for Wait	45	-		ns
22	twh	Hold Time for Wait	15			ns

Note: For capacitance greater than 50 pF , the AC parameters will have a delay factor of $0.5 \mathrm{~ns} / \mathrm{pF}$.

IM6100-1M (Military)
ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6100-1M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage ...................... +4.0 V to +11.0 V	
Supply Voltage .................................. +12.0 V	
Voltage On Any Input or	
Output Pin	-0.3V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{1 \mathrm{H}}$	Input Voltage High		$\mathrm{V}_{\text {CC }}-2.0$	$\because$		V
2	$\mathrm{V}_{\mathrm{IL}}$	Input Voltage Low				0.8	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0	!	1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{loH}=-0.2 \mathrm{~mA}$	2.4			V
5	VOL	Output Voltage Low	$1 \mathrm{~L}=2.0 \mathrm{~mA}$			0.45	V
6	loL	Output Leakage	GND $\leq$ V OUT $^{\text {S }}$ VCC	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby:	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$			800	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{fc}=2.5 \mathrm{MHz}$			2.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS (Ref. Fig. 2 and 22 )

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, C L=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{fC}=2.5 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	FREQ	Operating Frequency			2.5	MHz
2	ts	Major State Time	800			ns
3	tLXMAR	LXMAR Pulse Width $\quad$ -	. 355		*	ns
4	tas	Address Setup Time : DX-LXMAR ( $\downarrow$ )	200			ns .
5	tah	Address Hold Time : LXMAR ( $\downarrow$ )-DX	175			ns
8	tend	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX			655	ns
6	$\mathrm{t}_{\mathrm{AL}}$	Access Time from LXMAR			745	ns
7	ten	Output Enable Time (MEM, CP, DEVSEL)	$\cdots$		470	ns
9	twp	Pulse Width (MEMSEL, CPSEL)	330			ns
10	twPD	Pulse Width (DEVSEL)	330			ns
11	tDS	Data Setup Time (DX- $\uparrow$ MEMSEL/CPSEL)	250		,	ns
12	tDH	Data Hold Time ( 4 MEMSEL/CPSEL-DX)	170			ns
13	tDSD	Data Setup Time (DX-4 DEVSEL)	350			ns
14	tohD	Data Hold Time ( $\uparrow$ DEVSEL-DX)	170		".	ns
15	tsL	Logic Delay to MEM/DEV/CP/SWSEL	75		420	ns
16	txT	Logic Delay to LXMAR, XTA, XTB, XTC	65		300	ns
17	tst	Logic Delay to DATAF, RUN, DMAGNT, INTGNT, LINK, IFETCH	$\cdots$		375	ns.
18	tRS	Set up Time for CP/INT/DMAREQ	0			ns
19	tRH	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	220			ns
20	tRHP	RUN-HALT Pulse Width	90			ns
21	tws	Set up Time for Wait	110			ns
22	twh	Hold Time for Wait	20			ns

Note: For capacitance of greater than 50 pF , the AC parameters all have delay factor of $0.5 \mathrm{~ns} / \mathrm{pF}$.

## IM6100AM (Military)

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Industrial IM6100AM	
	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature, $\ldots . . . . . . . . . .{ }^{\circ} 65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Voltage ...................... +4.0 V to +11.0 V	
Supply Voltage ................................... +12.0 V	
Voltage On Any Input or	
Output Pin	. 3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		70\% Vcc			V
2	VIL	Input Voltage Low				20\% VCC	V
3	ILL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0	,	1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=0.0 \mathrm{~mA}$	$\mathrm{V}_{\text {cc }}-0.01$			V
5	VOL	Output Voltage Low	$1 \mathrm{loL}=0.0 \mathrm{~mA}$			GND +0.01	V
6	loL	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$			900	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\mathrm{fC}^{\text {c }}=5.0 \mathrm{MHz}$			4.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS (Ref.: Figures 2 and 22)

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{fC}=5.0 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	FREQ	Operating Frequency			5.0	MHz
2	ts	Major State Time	400			ns
3	tLXMAR	LXMAR Pulse Width	170			ns
4	tas	Address Setup Time: DX-LMAR ( $\downarrow$ )	70			ns
5	$\mathrm{t}_{\text {AH }}$	Address Hold Time : LXMAR (b)-DX	70			ns
8	tend	Data Output Enable Time: DEVSEL ( $\downarrow$ )-DX			290	ns
6	$\mathrm{t}_{\mathrm{AL}}$	Access Time from LXMAR	,		340	ns
7	ten	Output Enable Time (MEM, CP, DEVSEL) ...	$\cdots$		220	ns
9	twp	Pulse Width (MEMSEL, CPSEL)	160			ns
10	twPD	Pulse Width (DEVSEL)	160			ns
11	tos	Data Setup Time (DX- 4 MEMSEL/CPSEL)	140			ns
12	tDH	Data Hold Time (4 MEMSEL/CPSEL-DX)	70			ns
13	tDSD	Data Setup Time (DX- + DEVSEL)	140			ns
14	tohD	Data Hold Time ( 4 DEVSEL-DX)	70			ns
15	tSL	Logic Delay to MEM/DEV/CP/SWSEL . .	35		210	ns
16	txt	Logic Delay to LXMAR; XTA, XTB, XTC	35		170	ns
17	tst	Logic Delay to DATAF; RUN; DMAGNT; INTGNT, LINK, IFETCH			210	ns
18	trs	Set up Time for CP/INT/DMAREQ	0			ns
19	$\mathrm{t}_{\mathrm{RH}}$	Hold Time for CP/INT/DMAREQ, RESET, RUN-HALT	140		.	ns
20	trhP	RUN-HALT Púse Width . . ${ }_{\text {a }}$ :	50		$\because$	ns
21	tws	Set up Time for Wait	50		$\cdots$	ns
22	twh	Hold Time for Wait $\quad \cdots$	20		.	ns

[^30]CMOS Microcomputer Family Sampler Kit 6960 - Sampler PC Board

## FEATURES

- Provides fast and simple exposure to the IM6100 Microcomputer Family
- Very inexpensive
- Interfaces to any ASCII RS-232 or $\mathbf{2 0 m A}$ terminal
- Includes ODT monitor in ROM
- Includes tape punch and load routines in ROM
- All CMOS components
- Executes PDP®-8/E instruction set
- Sampler PC board available - easy to use and inexpensive


## GENERAL DESCRIPTION

The 6801 CMOS Microcomputer Family Sampler Kit is a complete set of LSI components necessary to build a general purpose microcomputer. The heart of the Sampler Kit is the IM6100 Microprocessor. The IM6100 Microprocessor executes the PDP-8/E instruction set. The Sampler Kit also includes the ODT (Octal Debugging Technique) monitor ROM ( $1 \mathrm{~K} \times 12$ ), three RAM's (each with $256 \times 4$ bits to form $256 \times 12$ bit words), the Programmable Interface Element (IM6101) and a UART (IM6403). A significant cost savings is realized through purchase of the Sampler Kit over the single quantity purchase price of all the included components.

A printed circuit board is also available to simplify construction of the Sampler system (part number 6960). The Sampler board is laid out so that it may interface with both RS-232C and 20 mA current loop. The user may enhance the capability of the Sampler system with the addition of sixteen optional SSI packages, assorted switches, and LEDs (optional parts not included). The added capabilities include:

- Address/Bus Display
- Status Display
- Single Instruction Step
- Single Cycle Step
- 12-Bit Input Port
- 12-Bit Output Port

Any of these options can easily be added when desired, but are not required for operation.

The Sampler system, when teamed with any ASCII terminal, gives the user an easy to understand, yet powerful IM6100 Microcomputer system. The ODT Monitor program provides the control necessary to display and alter memory contents, start execution at a particular address, set a breakpoint, manipulate the registers, or search memory for a value. If the terminal has tape punch/read capability, built-in routines allow loading and saving of programs.
${ }^{\bullet}$ PDP is a registered trademark of Digital Equipment Corp.

## BLOCK DIAGRAM




## ODT MONITOR COMMANDS

ODT commands consist of a control character or an octal number followed by a control character. The commands may be typed in any time the terminal is idle and are executed as soon as the control character is typed.

## BINARY LOAD COMMAND

$L$ - Load from the tape reader
Typing an $L$ will load binary tape from a reader. The checksum will be printed out on the terminal following the end of the load. Printed out checksum should be 0000 for a proper load.
EXAMINE/MODIFY COMMANDS
/ (slash) - Opens a location
Typing an octal number nnnn followed by a slash causes the location whose address is nnnn to be opened. When a location is opened, its content is printed out as an octal number. Typing a slash not preceded by a number causes the most recently. opened location to be reopened.
(carriage return) - Closes a location
When a location is open, typing an octal number, nnnn, followed by a carriage return causes the contents of the location to be changed to the number ninn and closes the location. Typing a carriage return not preceded by a number causes the location to be closed without modifying its contents.
(line feed) - Closes and opens next
When a location is open, typing a line feed causes the location to be closed and the next memory location (that with an address one higher than the current location) to be opened. The address of the new location will be typed out, followed by a slash, followed by the contents of the new location. Typing an octal number, nnnn, before typing the line feed causes the contents of the old location to be changed to nnnn.

- (back arrow) - Closes location and opens indirect reference
When a location is open, typing a back arrow causes the location to be closed. The contents of the location are then treated as an indirect reference. That is, the content of the old location is taken as an address, and the new location is opened. If while a location is open, an octal number, nnnn, is typed followed by a back arrow, the content of the open location is changed to nnnn and proceeds as above.
1 (up arrow) - Closes location and opens memory reference
This command behaves identically to the back arrow command except that the contents of the location are treated as a memory reference instruction, and it is the location referenced by that instruction that is opened. The location opened is that immediately referenced by the instruction. If the instruction is indirect (bit 3 is set to 1), then typing the up arrow only opens the location containing the pointer to the operand of the instruction. To open the effective location referred to by an indirect instruction, type an up arrow (memory reference) followed by a back arrow (indirection).

PROGRAM CONTROL AND BREAKPOINT COMMANDS
G - Go to
Typing an octal number, nnnn, followed by a G causes ODT to begin executing the program stored in memory, starting at location nnnn.
B - Breakpoint
Typing an octal number, nnnn, followed by a B causes. ODT to set a breakpoint at location nnnn. Typing a B without preceding it by a number causes the current breakpoint to be cleared.
C-Continue
After a breakpoint causes control to return to ODT from a user program, typing $C$ causes the program to resume execution where it left off.

## A - Examine/modify accumulator, link, MQ

Three consecutive ODT RAM locations are reserved for storing the contents of the $A C$, link and $M Q$ registers when a breakpoint occurs. When execution of the user's program resumes (via the $G$ or $C$ command), the contents of these registers are restored from these locations. Typing A causes the first of these locations, containing the contents of the AC, to be opened.

## WORD SEARCH COMMANDS

M - Open search mask, lower bound, upper bound
The mask, lower bound and upper bound for word searches are kept in that order in three consecutive reserved ODT locations. The first of these locations, the mask, can be opened by typing $M$.

## W - Word search command

Typing an octal number, nnnn, followed by a W causes a word search to occur. The search proceeds as follows: The number, nnnn, that was typed is masked and remembered as the quantity which is being searched for. (The operation of masking is to take the bitwise boolean AND ' of the given word with the contents of the mask word.) Then each location, beginning with the location whose address is stored in the lower bound word, is masked and compared with the quantity being searched for. If the two are equal, then the address of the word, followed by a slash and the (unmasked) contents of the word are printed out. Then the next location is examined and so on until (and including) the location whose address is stored in the upper bound word is reached. The word search command does not change the contents of any word in the user's programs.

## TAPE PUNCHING COMMANDS

The following commands can be used to punch out paper tapes that can be read in by the BIN loader.
T - Punch leader/trailer
Typing a $T$ will cause about four inches of leader/trailer tape (tape punched with 200 octal) to be punched. The T command also causes the accumulated checksum to be set to zero (cleared).

P-Punch tape
Typing an octal number, nnnn, followed by a semicolon (;) followed by a second octal number, mmmm, followed by a P, causes a tape corresponding to the contents of the block of memory beginning at location nnnn and ending at location mmmm to be punched. No checksum is punched at the end of the block so that several blocks can be punched together with one inclusive checksum.
E - Punch checksum and trailer
Typing an E will cause the accumulated checksum to be punched, followed by about four inches of leader/trailer tape. The checksum is also reset to zero (cleared).

## SAMPLER ODT EXAMPLE

Say that the simple program

300	7001	START, IAC
301	7440	SZA
302	5300	JMP START
303	7402	HLT

is stored in memory. Then the following might be the result of a session with ODT. (Note: The undertined portion is typed by the user, and the remainder is typed by the computer. The symbol CR stands for carriage return, and LF stands for line feed:)

300/7001 LF 301/7440 LF 302/5300 LF 303/7400 7402 CR 17402 CR A 1764 OLF

0050/0001 OCR
302 B
300G
0302 (0001

7774C
0302 (7776
303B

C
$0303(0000$
A 0000 LF
0050/0001 CR

LIST THE PROGRAM IN OCTAL
LF MEANS - SHOW NEXT LOCATION

LOCATION 303 IS WRONG CHANGE AND VERIFY

ACCUMULATOR CONTAINS GARBAGE, MAKE IT ZERO

SAME FOR LINK
SET BREAKPOINT AT JMP START
EXECUTE PROGRAM (GO)
BREAKPOINT OCCURS; ACCUMULATOR HAS BEEN INCREMENTED
CONTINUE PAST BREAKPOINT $1+7774$ TIMES
BREAKPOINT OCCURS; AC=7776
RESET BREAKPOINT TO HLT INSTRUCTION
CONTINUE
PROGRAM STOPS WHEN AC REACHES O AGAIN
EXAMINE AC AND LINK
LINK HAS BEEN CHANGED BY OVERFLOW
CLEAR ALL BREAKPOINTS

## 6960 - SAMPLER PC BOARD LAYOUT



## FEATURES

- 8-bit CPU, EPROM, RAM and I/O in single package
- Pin-for-pin replacement for the industry standard 8748 NMOS single-chip microcomputer
- CMOS/LSI for low power dissipation - less than 50 mW at $5 \mathrm{~V}, \mathbf{6 M H z}$
- High noise immunity
- Extended temperature operation: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Single +5 V volt supply
- Over 90 instructions
- 1024 bytes of on-chip EPROM
- 64 bytes of on-chip RAM
- 27 I/O lines
- On-chip counter/timer for real-time applications


## PIN CONFIGURATION

$$
\begin{aligned}
\text { T0 } \\
\text { OSC1 } \\
\text { OSC2 } \\
\text { RESET }
\end{aligned}
$$

## ORDERING INFORMATION

PART NO.	PACKAGE
IM87C48IDL	40 PIN CERAMIC
IM87C48IJL	40 PIN CERDIP

## GENERAL DESCRIPTION

The IM87C48 CMOS single-chip microcomputer from Intersil provides the user with a complete microcomputer in a single device. The CPU, EPROM, RAM, a set of I/O lines as well as a counter/timer are all combined in one 40-pin package. Intersil's high performance CMOS/LSI process is used to fabricate a device with equivalent performance to the NMOS 8748 while greatly decreasing the power dissipation. In addition, high noise immunity and an extended temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, make the device ideal for battery operated and hostile environment applications.
The IM87C48 microcomputer features a CPU with a repertoire of over 90 instructions. Included are versatile bit set/reset functions as well as instructions dealing directly with the on-chip counter/timer which are idea! for real-time controller applications. In addition, an eight-level subroutine stack and sixteen general purpose registers ease data flow, provide direct and indirect addressing modes, and implement subroutine calls.
The 27 I/O lines serve as static bidirectional ports, or interfaces to external memories and I/O Expander circuits. Three of the input lines can be "tested". with instructions by the CPU to perform conditional jumps. By combining the microcomputer with external memory devices, compact systems up to 4096 bytes of program memory and 256 bytes of data memory can be constructed. Even larger systems are possible by using bank-switching techniques.
The IM87C48 has been configured to assist the user in debugging his software and hardware prototypes. A single-step pin allows the user to step through the program, instruction by instruction. The EPROM program memory allows the user to try his software without commiting it to ROM. The device also allows external memories to be substituted for the on-chip program memory. This allows simple prototyping aids to be constructed that use RAM in place of EPROM for easy program changes. Additionally, the Intersil Intercept microcomputer development system and EPROM programmer are available to support the software and hardware development of IM87C48 microcomputer based systems.

## BLOCK DIAGRAM




FUNCTIONAL PIN DESCRIPTION

DESIGNATOR	PIN \#	FUNCTION
VCC	40	Main power supply.
VDD	26	+5 V normally, also low power standby.
Vss	20	Circuit GND potential.
PROG	25	This output pin provides timing pulses to the Intersil IM82C43 I/O Expander devices.
$\begin{aligned} & \text { OSC } 1 \\ & \text { OSC } 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Crystal inputs for generating the internal clock.
RESET	4	Active low input used to reset the microcomputer. A capacitor from this pin: to ground will automatically reset the device on power-up.
EA	7	External Access input used to force all program memory accesses to occur out of external memory.
PSEN	9	Program Store Enable. This output, active low, occurs only during accesses to external program memory. The system uses this signal together with the address bits to access external program memory.


DESIGNATOR	PIN \#	FUNCTION
ALE	11	Address Latch Enable. This output, active high, occurs once during each cycle. The falling edge of this timing signal is used to strobe the address bits appearing on the data bus.
$\overline{\mathrm{RD}}$	8	This output, active low, is used by external devices to place data onto the bus during a bus read operation.
$\overline{W R}$	10	This output, active low, is used to strobe data into external devices during a bus write operation.
$\overline{\text { SS }}$	5	Single-Step input, active low, that can be used in conjunction with ALE to single-step the processor through each instruction.
T0	1	An inpuit pin that can be tested by the conditional jump instructions. This pin can be programmed as an output by the ENTO CLK instruction which then causes an internal clock to be output on this pin. The frequency of the system clock is the clock crystal frequency divided by three.
T1	39	An input pin that can be tested by the conditional jump instructions. The pin can also be programmed as the input to counter/timer.
$\overline{\text { INT }}$	6	Interrupt input. Initiates an interrupt if external interrupt is enabled.
P10-P17	27-34	Port 1. An 8-bit quasi bidirectional port. The I/O structure on these eight lines allows each to be used separately as either an input or an output.
P20-P27	$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	Port 2. Identical to Port 1 except that P20-P23 contain the four high order program counter bits during an external program memory fetch. If IM82C43 I/O Expanders are being used in the system, they communicate with the IM87C48 through these four lines.
DB0-DB7 (BUS)	12-19	Data Bus. These eight lines form a true bidirectional port which can store data as a latched output port or serve as a non-latching input port.

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature ............ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Supply Voltage ................................ +7.0 V Voltage on Any Input or
Output Pin
$V_{s s}-0.3 V$ to $V_{c c}+0.3 V$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=\mathrm{V}_{D D}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
1	$V_{\text {IL }}$	Input Low Voltage		-0.3		0.8	V
2	$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage (All except OSC1, $\overline{\text { RESET, and T1) }}$		Vcc-2		Vcc	V
3	$\mathrm{V}_{1+}$	Input High Voltage , OSC1, RESET, and T1)		Vcc-1		Vcc	V
4	VOL	Output Low Voltage	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
5	$\mathrm{VOH}$	Output High Voltage (BUS, $\overline{R D}, \overline{W R}, \overline{P S E N}, ~ A L E)$	IOH $=-100 \mu \mathrm{~A}$	2.4	.		V
6	Voh1	Output High Voltage (All other outputs	$\mathrm{IOH}=-50 \mu \mathrm{~A}$	2.4		,	V
7	IIL	Input Léakage Current   (All except $\overline{\text { RESET, }} \overline{\text { SS }}$, Port 1 and Port 2	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	:	$\pm 1$		$\mu \mathrm{A}$
8	ILLP	Input Current Port 1, Port 2	$\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$		-160		$\mu \mathrm{A}$
9	IILC	Input Current $\overline{\text { SS }}$, $\overline{\text { RESET }}$	$\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$		-40		$\mu \mathrm{A}$
10	IOL	Output Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\text {CC }}$		$\pm 1$		$\mu \mathrm{A}$
11	Icc	VCC Supply Current	$\mathrm{f}_{\mathrm{TAL}}=6 \mathrm{MHz}$			10	mA
12	IDD + ICC	Total Supply Current	,			10	mA

## A.C. CHARACTERISTICS ${ }^{1}$

TEST CONDITIONS: $V_{C C}=V_{D D}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	:. PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
1	tcy	Cycle Time	$\mathrm{f} \times \mathrm{XTAL}=6 \mathrm{MHz}$	2.5			$\mu \mathrm{S}$
2	til	ALE Pulse Width		400	.		ns
3	$t_{A L}$	Address Setup to ALE		150			ns
4	tLA	Address Hold from ALE		80			ns
5	tcc	Control Pulse Width $\overline{\text { PSEN }} . \overline{\mathrm{RD}} . \overline{\mathrm{WR}}$	$\cdots$	700			ns
6.	tow	Data Setup Before $\bar{W}$		500			ns
7	two	Data Hold After WR		120			ns
8	tor	Data Hold	,	0		200	ns
9	trD ...	$\overline{\text { PSEN }}$. $\overline{\mathrm{RD}}$ to Data In		;		500	ns
10	taw	Address Setup to $\overline{\mathrm{WR}}$	$\cdots$	230			ns
11	tad	Address Setup to Data In				950	ns
12	$\mathrm{t}_{\text {AFC }}{ }^{\text {c }}$	Address Float to $\overline{\mathrm{RD}}$. $\overline{\mathrm{PSEN}}$		0		.	ns

## NOTE:

1. Control outputs are loaded with $C_{L}=80 \mathrm{pF}$ and $B U S$ outputs with $C_{L}=150 \mathrm{pF}$, tcy is assumed to be $2.5 \mu \mathrm{~S}$.

Preliminary
A.C. CHARACTERISTICS (PORT 2 TIMING)

TEST CONDITIONS: $V_{C C}=V_{D D}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
1	tcp	Port Control Setup Before Falling Edge of PROG		110		,	ns
2	tpC	Port Control Hold After Falling Edge of PROG		100			ns
3	tpr	PROG to Time P2 Input Must be Valid				810	ns
4	tDP	Output Data Setup Time		250			ns
5	tPD	Output Data Hold Time		65			ns
6	tPF	Input Data Hold Time		0		150	ns
7	tpp	$\overline{\text { PROG Pulse Width }}$		1200			ns
8	tpl	Poit $21 / O$ Data Setup		350			ns
9	tLP	Port 2 I/O Data Hold		150			ns

## WAVEFORMS

INSTRUCTION FETCH FROM EXTERNAL PROGRAM MEMORY


READ FROM EXTERNAL DATA MEMORY


WRITE TO EXTERNAL DATA MEMORY


PORT 2 TIMING


## IM87C48

## Preliminary

## APPLICATIONS

## SINGLE-CHIP MICROCOMPUTER SYSTEM



USING IM6654 CMOS EPROM TO EXTEND PROGRAM MEMORY



## PACKAGE DIMENSIONS

40 PIN CERAMIC DIP


NOTE: Dimensions in parenthesis are metric.

IM80C49
CMOS Single-Chip
Microcomputer

## FEATURES

- 8-bit CPU, ROM, RAM and I/O in single package
- Pin-for-pin replacement for the industry standard 8049 NMOS single-chip microcomputer
- CMOS/LSI for low power dissipation - less than 50 mW at $5 \mathrm{~V}, 6 \mathrm{MHz}$
- High noise immunity
- Extended temperature operation: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Single +5 V volt supply
- Over 90 instructions
- 2048 bytes of on-chip ROM
- 128 bytes of on-chip RAM
- 27 I/O lines
- On-chip counter/timer for real-time applications


## PIN CONFIGURATION

TO
OSC1
OSC2
RESET
SS

## GENERAL DESCRIPTION

The IM80C49 CMOS single-chip microcomputer from Intersil provides the user with a complete microcomputer in a single device. The CPU, ROM, RAM, a set of I/O lines as well as a counter/timer are all combined in one 40-pin package. Intersil's high performance CMOS/LSI process is used to fabricate a device with equivalent performance to the NMOS 8049 while greatly decreasing the power dissipation. In addition, high noise immunity and an extended temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, make the device ideal for battery operated and hostile environment applications.
The IM80C49 microcomputer features a CPU with a repertoire of over 90 instructions. Included are versatile bit set/reset functions as well as instructions dealing directly with the on-chip counter/timer which are ideal for real-time controller applications. In addition, an eight-level stack and sixteen general purpose registers ease data flow, provide direct and indirect addressing modes, and implement subroutine calls.
The 27 I/O lines serve as static bidirectional ports, or interfaces to external memories and I/O Expander circuits. Three of the input lines can be "tested" with instructions by the CPU to perform conditional jumps. By combining the microcomputer with external memory devices, compact systems up to 4096 bytes of program memory and 256 bytes of data memory can be constructed. Even larger systems are possible by using bank-switching techniques.

## ORDERING INFORMATION

PART NO.	PACKAGE
IM80C49IDL	40 PIN CERAMIC
IM80C49IJL	40 PIN CERDIP

## BLOCK DIAGRAM




FUNCTIONAL PIN DESCRIPTION

DESIGNATOR	PIN \#	FUNCTION
VCc	40	Main power supply.
VDD	26	+5 V normally, also low power standby.
Vss	20	Circuit GND potential.
PROG	25	This output pin provides timing pulses to the Intersil IM82C43 1/O Expander devices.
$\begin{aligned} & \text { OSC } 1 \\ & \text { OSC } 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Crystal inputs for generating the internal clock.
RESET	4	Active low input used to reset the microcomputer. A capacitor from this pin to ground will automatically reset the device on power-up.
EA	7	External Access input used to force all program memory accesses to occur out of external memory.
PSEN	9	Program Store Enable. This output, active low, occurs only during accesses to external program memory. The system uses this signal together with the address bits to access external program memory.


DESIGNATOR	PIN \#	FUNCTION
ALE	11	Address Latch Enable. This output, active high, occurs once during each cycle. The falling edge of this timing signal is used to strobe the address bits appearing on the data bus.
$\overline{\mathrm{RD}}$	8	This output, active low, is used by external devices to place data onto the bus during a bus read operation.
$\overline{W R}$	10	This output, active low, is used to strobe data into external devices during a bus write operation.
$\overline{\mathrm{SS}}$	5	Single-Step input, active low, that can be used in conjunction with ALE to single-step the processor through each, instruction.
TO	1	An input pin that can be tested by the conditional jump instructions. This pin can be programmed as an output by the ENTO CLK instruction which then causes an internal clock to be output on this pin. The frequency of the system clock is the clock crystal frequency divided by three.
T1	$39$	An input pin that can be tested by the conditional jump instructions. The pin can also be programmed as the input to counter/timer.
$\overline{\text { INT }}$	6	Interrupt input. Initiates an interrupt if external interrupt is enabled.
P10-P17	27-34	Port 1: An 8-bit quasi bidirectional port. The I/O structure on these eight lines allows each to be used separately as either an input or an output.
P20-P27	$\begin{aligned} & 21-24, \\ & 35-38 \end{aligned}$	Port 2. Identical to Port 1 except that P20-P23 contain the four high order program counter bits during an external program memory fetch. If IM82C43 I/O Expanders are being used in the system, they communicate with the IM87C48 through these four lines.
$\begin{aligned} & \text { DB0-DB7 } \\ & \text { (BUS) } \end{aligned}$	12-19	Data Bus. These eight lines form a true bidirectional port which can store data as a latched output port or serve as a non-latching input port.

## IM80C49

Prelininary
ABSOLUTE MAXIMUM RATINGS

Operating Temperature ............ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ............ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage ................................. +7.0 V
Voltage on Any Input or
Output Pin
Vss -0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=V_{D D}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
1	$V_{\text {IL }}$	Input Low Voltage		-0.3		0.8	V
- 2	$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage   (All except OSC1, $\overline{\operatorname{RESET}}$, and T1)		Vcc-2		Vcc	V
3	$\mathrm{V}_{1}$	Input High Voltage (OSC1, RESET, and T1)	.	Vcc-1		Vcc	V
4	VOL	Output Low Voltage	$\mathrm{IOL}=2.0 \mathrm{~mA}$	$\cdots$		0.45	V
5	VOH	Output High Voltage   (BUS, $\overline{R D}, \overline{W R}, \overline{P S E N}, ~ A L E)$	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$	2.4			V
6	$\overline{\mathrm{VOH} 1}$	Output High Voltage   (All other outputs)	$\mathrm{IOH}=-50 \mu \mathrm{~A}$	2.4			V
7	ILL	Input Leakage Current   (All except $\overline{\text { RESET, }} \overline{\text { SS }}$, Port 1 and Port 2)	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {CC }}$	$\cdots$	$\pm 1$	$\because$	$\mu \mathrm{A}$
8	IILP	Input Current Port 1, Port 2	$\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$		-160		$\mu \mathrm{A}$
9	liLc	Input Current $\overline{\text { SS }}, \overline{\mathrm{RESET}}$	$\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$		-40		$\mu \mathrm{A}$
10	IOL :	Output. Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\text {cc }}$		$\pm 1$		$\mu \mathrm{A}$
11	Icc	Vcc Supply Current	fxtal $=6 \mathrm{MHz}$			10	mA
12	IDD + ICC	Total Supply Current				10	mA

## A.C. CHARACTERISTICS ${ }^{1}$

TEST CONDITIONS: $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
1	tcy	Cycle Time	$\mathrm{fxTAL}=6 \mathrm{MHz}$	2.5			$\mu \mathrm{S}$
2	tLL	ALE Pulse Width		400	.	,	ns
3	$\mathrm{taL}^{\text {a }}$	Address Setup to ALE		150			ns
4	tLA	Address Hold from ALE		80	.		ns
5	tcc	Control Pulse Width , $\overline{\text { PSEN }}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$		700			ns
6	tow	Data Setup Before $\overline{W R}$.		500			ns
7	two	Data Hold After WR		120			ns
8	tDR	Data Hold		0		200	ns
9	$t_{\text {RD }}$	$\overline{\text { PSEN }}$, $\overline{\mathrm{RD}}$ to Data In				500	ns
10	$\mathrm{t}_{\text {A }} \mathrm{W}$	Address Setup to $\overline{\mathrm{WR}}$		230			ns
11	$t_{A D}$	Address Setup to Data In				950	ns
12	tAFC	Address Float to $\overline{\mathrm{RD}}$. $\overline{\text { PSEN }}$		0			ns

NOTE:

1. Control outputs are loaded with $C_{L}=80 \mathrm{pF}$ and BUS outputs with $C_{L}=150 \mathrm{pF}$, tcy is assumed to be $2.5 \mu \mathrm{~s}$.
A.C. CHARACTERISTICS (PORT 2 TIMING)

TEST CONDITIONS: $V_{C C}=V_{D D}=5.0 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
1	tcp	Port Control Setup Before Falling Edge of PROG		110			ns
2	$t_{\text {PC }}$	Port Control Hold After Falling Edge of PROG		100			ns
3	$t_{\text {PR }}$	PROG to Time P2 Input Must be Valid				810	ns
4	tDP	Output Data Setup Time		250			ns
5	tpd	Output Data Hold Time		65			ns
6	tPF	Input Data Hold Time		0		150	ns
7	tpp	PROG Pulse Width		1200			ns
8	$t_{\text {PL }}$	Port $21 / O$ Data Setup		350			ns
9	tLP	Port $21 / \mathrm{O}$ Data Hold		150			ns

## WAVEFORMS

## INSTRUCTION FETCH FROM EXTERNAL PROGRAM MEMORY



READ FROM EXTERNAL DATA MEMORY


WRITE TO EXTERNAL DATA MEMORY


PORT 2 TIMING


## APPLICATIONS

## SINGLE-CHIP MICROCOMPUTER SYSTEM



USING IM6654 CMOS EPROM TO EXTEND PROGRAM MEMORY


Preliminary
USING IM82C43 I/O EXPANDERS, THIS FIVE CHIP SYSTEM HAS 80 I/O LINES.


## PACKAGE DIMENSIONS

## 40 PIN CERAMIC DIP



NOTE: Dimensions in parenthesis are metric.

## FEATURES

- Avalanche Induced Migration (AIM) Programmability
- 48 Product Terms; 14 Inputs, 8 Outputs
- Output Active Level - High or Low
- Product Term Expandability
- Edit Flexibility
- DTL/TTL Compatible Inputs and Outputs
- tpd - typically 65 ns
- 5 Volt $\pm 5 \%$ Power Supply
- Passive Pullup Outputs

APPLICATIONS

- Random Combinatorial Logic
- Code Conversion
- Microprogramming
- Look-up Tables
- Control of Sequential Circuits, Counters, Registers, RAMs, etc.
- Character Generators
- Decoders or Encoders

LOGIC DIAGRAM


## CONNECTION DIAGRAM



## GENERAL DESCRIPTION

The IM5200, field programmable logic array (FPLA), is useful in a wide variety of logic applications. The device has 14 inputs and 8 outputs. The FPLA may have up to 48 product terms. Each product term may have up to 14 variables and each one of the outputs provides a sum of the product terms. The FPLA is functionally equivalent to a collection of AND gates which may be OR'ed at any of its outputs. Since some functions are more easily represented in their inverted form, the output level is also programmable to either a high or low active level. The IM5200 is provided with passive pullup outputs. This output configuration is useful for product term expansion by wire-ANDing the outputs of different IM5200's.

## PACKAGE DIMENSIONS

## ORDERING INFORMATION



MAXIMUM RATINGS

Supply Voltage Rating	-0.5 V to +7 V
Input Voltage	-1.5 V to +5.5 V
Output Voltage (Operating)	-0.5 V to +5.5 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
$V_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

SYMBOL	- PARAMETERS	MIN	TYP	MAX	UNITS	CONDITIONS
IIL	Low level input current		-0.63	-1.0	mA	$V_{\text {IL }}=0.4 \mathrm{~V}$
I'H	High level input current		5	40	$\mu \mathrm{A}$	$V_{1 H}=4.5 \mathrm{~V}$
VIL	Input low threshold voltage			0.8	V	$\therefore$ ¢ .a.
$\mathrm{V}_{\text {IH }}$	Input high threshold voltage	2.0			V	
$\mathrm{V}_{\mathrm{C}}$	Input clamp voltage		-. 9	-1.5	V	$I_{\text {IN }}=-10 \mathrm{~mA}$
$B V_{\text {in }}$	Input breakdown voltage ...	5.5	6.5		V	$I_{I N}=1.0 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OH}}$	Output high voltage	2.4	3.25		$\mathrm{V}^{\prime}$	$\mathrm{IOH}^{=}=-250 \mu \mathrm{~A}$
${ }^{1}$ Cex	Output leakage current		<1	50.	$\mu \mathrm{A}$	$\mathrm{V}_{0}=5.5 \mathrm{~V}$
${ }^{\text {ISC }}$	Output short circuit current	-0.7	-1.1	-1.7	mA	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}}$	Output low voltage ${ }^{\text {a }}$		0.3	0.45	$V$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$
${ }^{\prime} \mathrm{CC}$	Power Supply Current		135		mA	Inputs either open or at ground (see note 3).
$C_{\text {in }}$	Input capacitance		5	10	pF	$\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {out }}$	Output capacitance		7	12	pF	$\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{pd}}$	Input to output switching delay $\left(t_{+-}, t_{++}, t_{-+}, t_{--}\right)$	20	65	100	ns	See switching test circuit

NOTE 1: Conditions for all typical values are $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: Conditions for all maximum and minimum specifications are the worst case for the complete range of $V_{C C}$ and $T_{A}$.
NOTE 3: Power consumption will increase after programming. The increase will be typically 0.75 mA per product term programmed.

SWITCHING DELAY
TEST CIRCUIT



ALL MEASUREMENTS MADE AT 1.5 V LEVELS

## PRODUCT DESCRIPTION

## AVALANCHE INDUCED MIGRATION TECHNOLOGY

The AIM element is a minimum size, open base, NPN transistor. The emitter is contacted by an aluminum "column" line and the collector is common with the collectors of other elements and the "row" driver collector. A conventional gold doped TTL process is used to fabricate the AIM element and all other transistors, diodes and resistors on the chip. The programming technique is to force a high current through the element from emitter to collector. This forces the emitter-base junction beyond normal avalanche and into a second breakdown mode. In the second breakdown, the current constricts to a narrow high temperature filament. Aluminum then migrates down the filament to the emitter-base-junction and causes a short of that junction. The drop in power dissipation, as soon as the emitter-base short is achieved, causes a decrease in temperature. Since temperature is a driving force in the programming action, further advance of migrating aluminum is inhibited after programming is achieved. The action is thus self-limiting. The AIM programming technique assures superior reliability since the element junction where the programming action occurs is inherently hermetic.

## GENERAL DESCRIPTION

The IM5200 Field Programmable Logic Array (FPLA) is a logic element designed to produce a sum of product terms, which may be programmed by the user, at each of eight outputs. The basic operating circuit is comprised of 56 input inverters, which generate the true and complement of the 14 inputs, 48 twenty-eight input AND gates, 8 forty-eight input NOR gates and 3 arrays of AIM programmable elements. Additional circuitry is dedicated to the functions of programming and testing before programming. All outputs have 4 K resistor pull-ups which
permit wire-ANDing. Inputs are DTL and TTL designs with $2 \mathrm{~V}_{\mathrm{BE}}$ operating thresholds.

## Froduct Term Array

The Product Term Array, consisting of a $48 \times 28$ element AND array, allows the desired true or complement inputs to be connected by programming to the 48 AND gates which form the product terms. Only the input variables included in the product terms are programmed. New variables may always be added to a previously programmed product-term until all 14 variables have been used.

## Summing Array

A $48 \times 8$ element OR array allows any combination of as many as 48 product terms to be logically summed (OR'ed) at each output by programming.

## Output Active Level Array

The Output Active Level Array consists of eight elements, one per output, which provide for changing the active level of any output from LOW to HIGH. Active LOW is the necessary active state when expanding product terms by the parallel connections of two (2) or more IM5200s. The programmable active HIGH feature may be used to advantage in nonexpanded applications to save inverters and/or product terms when system considerations so require.

## LOGIC OPERATION

The operating logic and AIM programmable element arrays are shown in Figure 1. In logic equation form each output can be expressed in the SUM OF PRODUCTS form.
$F_{i}$ or $\bar{F}_{i}=$ logical sum of any user programmed combination of 48 available product terms ( $\mathrm{PT}_{\mathrm{j}}$ )
where $\mathrm{PT}_{\mathrm{j}}=$ any user programmed combination of the true or complement of the 14 available inputs $\left(I_{k}\right)$.

## NOTES

1. Programming Logic and Preprogramming Test Logic is not shown.
2. Active Level Inversion Elements (8 total)


Some examples of possible SUM-OF-PRODUCT-TERMS functions and individual PRODUCT TERMS are:

SUM OF PRODUCT TERMS

$$
\begin{aligned}
& \overline{\mathrm{F}}_{1}=\mathrm{PT}_{3}+\mathrm{PT}_{28}+\mathrm{PT}_{39}+\mathrm{PT}_{47} \\
& \mathrm{~F}_{3}=\mathrm{PT}_{1}+\mathrm{PT}_{33}+\mathrm{PT}_{39}+\mathrm{PT}_{45}+\mathrm{PT}_{46}+\mathrm{PT}_{47} \\
& \overline{\mathrm{~F}}_{7}=\mathrm{PT}_{2}
\end{aligned}
$$

PRODUCT TERMS

$$
\begin{aligned}
& \mathrm{PT}_{3}=\mathrm{I}_{0} T_{2} T_{8} T_{13} \\
& \mathrm{PT}_{46}=\mathrm{I}_{1} T_{6} \mathrm{I}_{9} \mathrm{I}_{11} T_{12} \mathrm{I}_{13} \\
& \mathrm{PT}_{2}=\mathrm{I}_{4}
\end{aligned}
$$

A product term is not necessarily a minterm since a minterm contains all input variables. The unprogrammed inputs of a product term that is not a minterm are "don't care". For example, the product term $\mathrm{I}_{1} \mathrm{I}_{3} \bar{T}_{13}$ will activate any output to which it is programmed whenever the $I_{1}$ input is HIGH, $\mathrm{I}_{3}$ is HIGH, and $\mathrm{I}_{13}$ is LOW, regardless of the logic state of the other inputs. A minterm expansion of $I_{1} I_{3} T_{13}$ would produce 211 miniterms which means there are $\mathbf{2}^{11}$ out of $2^{14}$ possible combinations of all 14 input variables that will activate any output to which the product term is programmed.
Any minterm condition applied to the IM5200 inputs will select (1) no product terms, (2) one product term, or (3) more than one product term.
In the case of no product term selection all the outputs will be in the inactive state (opposite to the levels specified in the ACTIVE LEVEL DATA for each output).
When only one product term is selected, the outputs assume the active levels specified by the SUMMING DATA TRUTH TABLE entry for the selected product term. The outputs not specified as active will assume the inactive state (opposite state to that specified in the ACTIVE LEVEL DATA).
To determine the output status for a case of multiple product term selection, first all of the product terms selected must be identified. Each output state can then be determined by examining the SUMMING DATA for all of the multiply selected product terms.
If any of the product terms has an active level specified for the output, the output will assume the active state as specified by the ACTIVE LEVEL DATA. If none of the product terms have an active level specified for the output, the outputs will assume the inactive state (opposite state to that specified by the ACTIVE LEVEL DATA.

## TESTING

Some circuitry is built into the IM5200 for test purposes only. On an unprogrammed part it allows for:

1. Testing the output in the LOW state
2. Sampling the switching delay time through a maximum delay path
3. Checking the accuracy of programming circuitry decoding
4. Checking the integrity of programming paths under programming conditions

This test capability assures high programming yield and data sheet electrical performance after programming of parts.

## PRODUCT TERM MINIMIZATION TECHNIQUES

Standard two (2) level multi-output minimization techniques (e.g: Quine-McCluskey algorithm) can be used to realize a minimal sum of product terms. In certain cases, the number of product terms can be further reduced by sharing product terms and by inverting the output active level. These techniques are important in cases where the initial specification indicates a need for more than 48 product terms.

## APPLICATION OF BOOLEAN REDUCTION

REALIZE: $\quad F_{1}=\bar{I}_{2} \bar{I}_{1} \bar{I}_{0}+I_{2} I_{1} \bar{I}_{0}+I_{2} I_{1} I_{0}$
Applying the distributive law, product terms $I_{2} I_{1} I_{0}$ and $I_{2} I_{1} T_{0}$ can be expressed as $I_{2} I_{1}\left(I_{0}+T_{0}\right)$. By the law of complement, $I_{0}+T_{0}=1$ and the entire expression is reduced to:

$$
F_{1}=T_{2} T_{1} T_{0}+I_{2} I_{1}
$$

PRODUCT TERM SHARING
REALIZE: $\quad F_{1}=T_{2} T_{1} T_{0}+T_{2} l_{1} T_{0}$

$$
F_{2}=T_{2} I_{1} T_{0}+I_{2} T_{1} T_{0}
$$

Since $T_{2} I_{1} T_{0}$ is common to both $F_{1}$ and $F_{2}$, it may be shared so that only three product terms, rather than four, are required.

## ACTIVE LEVEL INVERSION

REALIZE: $\quad F_{1}=T_{2} T_{1} T_{0}+T_{2} I_{1} I_{0}+I_{2} T_{1} I_{0}+I_{2} I_{1}$
To achieve a reduction in product terms, in this case, $\mathrm{F}_{1}$ can be realized in its complement form using DeMorgan's Theorems. The true form required a HIGH active level and 4 product terms. The complement form requires a LOW active level and 3 product terms.

$$
\bar{F}_{1}=T_{2} T_{1} I_{0}+T_{2} I_{1} \bar{T}_{0}+I_{2} \bar{T}_{1} \bar{T}_{0}
$$

## EDIT FLEXIBILITY

## PRODUCT TERM DEACTIVATION

The true or the complement of any input may be connected to the AND gates by programming. However, if both the true and the complement of any variable are programmed in a product term, that product term will never be selected since $I_{i} \cdot \bar{T}_{i}=0$. This feature may be used to deactivate permanently any previously programmed product term.

## ADDITION OF NEW INPUT VARIABLES TO EXISTING PRODUCT TERMS

In the AIM technology only the active inputs are pregrammed. Unprogrammed inpuits are "don't care." Therefore, additional input variables can be added to the "old" product terms at any time. For example,

$$
\begin{aligned}
& \text { Old Product Term } \\
& \qquad I_{0} I_{1} \bar{I}_{4}\left(I_{2}, I_{3}, I_{5} \cdots I_{13}=\text { don't care }\right)
\end{aligned}
$$

Adding input variable $I_{2}$ (true or complement) to the product term would yield:

## New Product Term

$$
I_{0} I_{1} I_{2} I_{4}\left(I_{3}, I_{5} \cdots I_{13}=\text { don't care }\right)
$$

## EXPANDING A SUM OF PRODUCT TERMS BY ADDING NEW PRODUCT TERMS

New product terms may be added to the sum of product terms at any output by programming the AIM element that connects the product term AND gate to the output thereby enabling activation of the output when the product term is activated. The product term may be one already used in another output sum of product terms or it may be one that has not previously been used.

## CHANGING AN OUTPUT ACTIVE LEVEL FROM LOW TO HIGH

Any outputs that are active LOW can be changed to active HIGH by programming the corresponding AIM element in the OUTPUT ACTIVE LEVEL ARRAY.

## PROGRAMMING

## GENERAL

Recommended Programmer is DATA I/O model 10.
Programming an IM5200 requires:

1. Two input pins, $I_{0}$ and $I_{9}$ corresponding to pins 21 and 7 , respectively, to be forced to a voltage above normal TTL operating levels to establish the programiming mode.
2. One input pin, $\mathrm{I}_{3}$ corresponding to pin 1 , to be switched between a high level and ground to select between the Summing Array (OR Array) or the Product Term Array (AND Array), respectively.

OUTPUT	PIN	SECTOR	LOCATION
$F_{0}$	13	1	$0-15$Product Terms;   AND/OR Arrays
$F_{1}$	14	2	$16-31$Product Terms;   AND/OR Arrays
$F_{2}$	15	3	$32-47$Product Terms;   AND/OR Arrays
$F_{3}$	16	4	Output Active Level Array

3. Four outputs, $F_{0}, F_{1}, F_{2}$, and $F_{3}$ corresponding to pins $13,14,15$, and 16 , respectively, for the routing of current into one of four sectors of the arrays.
4. Nine inputs, $I_{4}, I_{5}, I_{6}, I_{7}, I_{8}, I_{10}, I_{11}, I_{12}$, and $I_{13}$ corresponding to pins $2,3,4,5,6,8,9,10$, and 11 , respectively, to select a unique element within a. sector.

Inputs $I_{1}$ and $I_{2}$, corresponding to pins 22 and 23, are used to enable testing of propagation delay, programming circuitry decoding and output low level characteristics before programming.

Programming current pulses are forced into the output pin, corresponding to a particular sector and routed to the element selected for programming. The elements are sensed at a reduced current level after each programming pulse to determine if programming has occurred.

After all necessary elements are programmed, the array is reverified by scanning the array and resensing all elements directly. Finally, a logical verification is conducted forcing all $2^{14}$ input states and checking the eight outputs for the correct logic levels.

EFFECTS OF PROGRAMMING (P)
OR NOT PROGRAMMING (NP)
AN ELEMENT IN EACH OF THE THREE ARRAYS

## Output Active Level Array

AL $\mathbf{i}$	EFFECT ON AN OUTPUT
NP	Output active level will be a LOW for all product   terms programmed to the output.
$\mathbf{P}$	Output active level will be a HIGH for all product   terms programmed to the output.

## Product Term Array

$I_{k}$	$T_{k}$	EFFECT ON A PRODUCT TERM
$N P$	$N P$	The logic state of the input cannot effect the   product term. It is a "don't care" input.
$N P$	$P$	Low input becomes an active variable in the   product term.
$P$	NP	High input becomes an active variable in the   product term.
$P$	$P$	Disables the product term, preventing the   product term from ever activating any out-   put.

## Summing Array

PT $_{\mathbf{j}}$	EFFECT ON AN OUTPUT
NP	Output is isolated from the product term unless   programmed. Therefore, activation of the pro-   duct term can not affect the output.
$\mathbf{P}$	Activation of the product term will force the out-   put to its active level.

## DATA FORMATS FOR PROGRAMMING

Intersil Inc. can program the IM5200 from data inputs consisting of a truth table, or paper tape. Format specifics follow. If TWX data inputting is used, TWX 910-338-0171. If mailing data input, mail to:

INTERSIL, INCORPORATED
ATTEN: ORDER ENTRY
10710 N. Tantau Avenue
Cupertino. CA 95014

FORMAT INFORMATION SUMMARY

	HAND ENTRY IN TRUTH TABLE FORM	TWX - RCVD AS HARD COPY OR PAPER TAPE	PAPER   TAPE
Heading Information	Enter at top of the form as.indicated	Enter as per example preceding start of data (STX). The asterisk (") character may not be used in any heading information	Enter as per example preceding the start of data (STX). The asterisk (") character may not be used in any heading . information
Start of Data	Not required	STX (Control B)	STX (Control B)
Active Level Data Identifier.	Not required	* A	* A
Active Level Data Entry	$H=$ High active level   L = Low active level	$\mathrm{H}=$ High active level   L = Low active level	$H=$ High active level   L = Low active level
Product Term Number Identifier	Not required	* P	*P
Product Term Number Entry	Preprinted ${ }^{\text {" }}$.	$\begin{aligned} & \text { MSD }=\text { Decimal } 0-4 \\ & \text { LSD }=\text { Decimal } 0-9 \end{aligned}$	$\begin{aligned} & \text { MSD }=\text { Decimal } 0.4 \\ & \text { LSD }=\text { Decimal } 0.9 \end{aligned}$
Product Term Input Data Identifier	Not required	* 1	$*$
Product Term Input Data Entry	$\begin{array}{ll} \mathrm{H} & =\text { Active high input } \\ \mathrm{L} & =\text { Active low input } \\ \text { BLANK } & =\text { Don't care input } \end{array}$	$\mathrm{H}=$ Active high input   L = Active low input   - = Don't care input	$\mathrm{H}=$ Active high input   $\mathrm{L}=$ Active low input   - = Don't care input
Summing Data Identifier	Not required ,	* F	$\cdots{ }^{*} \mathrm{~F}$
Summing Data Entry	A $\quad=$Product term   is summed by   this output    BLANK $=$ Product term   is not summed     by this output	$A=$ Product term is summed by this output   - = Product term is not summed by this output	$\begin{aligned} & A= \text { Product term is } \\ & \text { summed by this } \\ & \text { output } \\ &-= \text { Product term is } \\ & \text { not summed by } \\ & \text { this output } \end{aligned}$
End of Data	Not required.	ETX (Control C)	ETX (Control C)
Deactivating a Product Term	Enter D as any input entry for a product term to be deactivated	Enter D as any input entry for a product term to be deactivated	Enter D as any input entry for a product term to be deactivated
Spacing, Carriage Returns, Line Feeds	Not applicable	As needed to give an easily readable appearance in . teletype printed form   See TWX description for recommended format	Not required unless examination by printout on a teletype is desirable   See Paper Tape description for recommended format
Rubouts	Not applicable	May be used to correct errors	May be used to correct errors

## TRUTH TABLES

Truth tables can be submitted to Intersil Inc. by mail or by TWX (910-338-0171). A truth table format for mailing is presented as a part of this data sheet. Additional copies of this format are available upon request. The customer should complete all heading information on the format in order to
assure that it will remain as a part of the purchase order which is entered.
When entering a truth table by TWX, the following format is recommended so that the data is compatible with the paper tape format. The TWX can, therefore, be received in punched paper tape form for direct processing by a programmer equipped with a paper tape reader input.

## TWX FORMAT

```
ATTEN ORDER ENTRY
FO NUMBER 7-706574
EILL TO ERADY ELECTKONICS INC
 1074 SIXIH ST
 SYKACUSE NY 13806
SHIF TF EFADY ELECTHONICS INC
 74 EAST CAFLTON
 SYFACUSE NY 13E06
TELE (315) 463-5870
TWX 910-377-6402
EUYEF HANK KENONE
SHIP AIK EXPFESS
ITEM 01 P/N 706475-001 12 FCS LELIVERY ASAF
T RUTH TARLE P/N 706475-001
```


## START OF DATA



EXPLANATION OF NUMBERS
(1) STX "CONTROL B" ON TELETYPEWRITER
(2) *A = ACTIVE LEVEL DATA IDENTIFIER
(3) ACTIVE LEVEL'DATA (H OR L)
(4) ${ }^{*} P=$ PRODUCT TERM NUMBER IDENTIFIER CHARACTERS
(5) PRODUCT TERM NUMBER
(6) ${ }^{*}$ I $=$ PRODUCT TERM INPUT DATA IDENTIFIER CHARACTERS
(7) PRODUCT TERM INPUT DATA (H, L, D OR -)
(8) ${ }^{*} \mathrm{~F}=$ SUMMING DATA IDENTIFIER CHARACTERS
(9) SUMMING DATA (A OR-)
(10) ETX = "CONTROL C"' ON TELETYPEWRITER

## TAPE FORMAT



LEADER: RUBOUT
KEY FOR TWX IAT
LEAST 25 FRAMES

1. SKIP 21 SPACES
2. SKIP ONE SPACE
3. ONE CARRIAGE RETURN AND TWO LINE FEEDS
4. ONE CARRIAGE RETURN AND ONE LINE FEED

## PAPER TAPE

Teletype 8 level TWX tape can be mailed to Intersil, Inc., Attention: Order Entry. Heading information similar to that used for the TWX truth table format presented above, should be punched on the tape.

The recommended format for the data portion of a paper tape is shown above. Deviations in spacing, carriage returns, line feeds and rubouts are allowed but the start and end characters; the data identifiers, the data characters and the order of data must be strictly followed.

## APPLICATIONS

## CODE CONVERSION

The IM5200 can be used efficiently in code conversion applications where all possible combinations of a particular code are not used. The conversion from 12 level Hollerith to 8 level ASCII provides such an example. In the standard solution to this problem, the 12 level Hollerith code is first reduced to 8 levels, with logic, before it is presented to a $256 \times 8$ ROM. All non-existing input combinations must be decoded as "don't care" output states in the ROM.

The IM5200 can selectively decode 14 input variables; no precoding of the inputs is necessary. With the proper selection of output active levels, an invalid input combination will also automatically produce a unique "don't care" or error code.

## MICROPROGRAMMING

In a microprogrammed computer, the microinstructions control the correct sequencing of the Central Processor Unit to execute appropriate macroinstructions. The microinstructions reside in the microprogram store. The addresses of the microroutine in the control store, which interpret external instructions, are the operation codes of the external instructions. Since the operation codes of various instructions in a processor may be of different lengths, some codes may have more bits than are necessary to address the control store. For example, a 16 -bit microprocessor may have operation codes up to 16 bits long. However, the microprocessor store may have only 256 words of memory.

The IM5200 can be conveniently used to translate an arbitrary operation code to obtain the proper control store address. The IM5200 can also be used in the control store to minimize the size of the microprogram memory by utilizing the unique capability of the device to cope with special address combinations - "don't care" bits in addresses, a single address for multiple words and multiple addresses for single words.

## SEQUENTIAL CONTROL

The IM5200 can be used effectively in sequencing applications to implement flow charts of state diagrams, condition driven look up tables or arbitrary state sequencers. The IM5200 input set could come from external control points ("qualifying inputs") or the IM5200 outputs coupled through feed-back latches ("current state inputs").

## PERIPHERAL DEVICE CONTROL

For a Central Processor Unit to communicate with a peripheral device, the CPU must select the device and the mode of communication. During an Input-Output instruction, the CPU transmits the device address and control information to select a unique device in a specified mode. The IM5200 can be used to monitor the device address and control field bus to issue appropriate control signals to the devices.

## PRIORITY ENCODING

An interesting application of the IM5200 is the priority encoding of interrupt request lines to generate a unique vector address which corresponds to the highest priority request line. The CPU can then use the vector address as a JUMP address to service the highest priority device without going through a software "polling" routine.

## EXPANSION OF THE NUMBER PRODUCT TERMS BY WIRE-ANDING

The IM5200 can implement several simple functions by using only part of the structure for each function. Complex functions can be implemented by connecting several IM5200's in series or parallel.
The IM5200 has passive pull-up (4K) outputs. This output configuration is useful for product term expansion by wire-ANDing the outputs of different IM5200's. For EPLA applications, expansion by wire-ANDing is preferrable to the conventional chip select approach, since in many applications, it is difficult to generate the chip select signal, in view of the fact that "chip select" decision may itself be based on a random combination of the input variables.
Active LOW is the necessary active state for the outputs that must be wire-ANDed. It must be noted that the fan-out of the wire-ANDed outputs is reduced by approximately one standard TTL load for each IM5200 output that is tied together.

COMPANY


IM5200
TRUTH TABLE

active LEVEL DATA		$H=$ High Active Level   L = Low Active Level			$\begin{aligned} & \text { PRODUCT } \\ & \text { TERM } \\ & \text { INPUT } \\ & \text { DATA } \end{aligned}$		$H$ = Active High Input   L = Active Low Input   Blank = Don't Care Input			SUMMING   DATA		A = Product Term is Summed by This Output Blank - Product Term is Not Summed by this Output						$\ldots$		1	\%	
	PRODUCT TERM INPUT DATA														SUMMING DATA							
	113	112	111	$\mathrm{I}_{10}$	19	18	17.	16	15	14	13	12	11	10	$F_{7}$	F6	$F_{5}$	F4	F3	$F_{2}$	$\mathrm{F}_{1}$	$F_{0}$
	PIN 11	PIN 10	$\begin{gathered} \hline \text { PIN } \\ 9 \end{gathered}$	$\begin{array}{r} \hline \text { PIN } \\ 8 \end{array}$	$\underset{7}{\mathrm{PIN}}$	$\begin{gathered} \text { PIN } \\ 6 \end{gathered}$	$\begin{gathered} \text { PIN } \\ 5 \end{gathered}$	$\begin{gathered} \text { PIN } \\ \hline \end{gathered}$	$\begin{gathered} \text { PIN } \\ 3 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { PIN } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { PIN } \\ 1 \end{array}$		$\begin{array}{\|c} \hline \text { PIN } \\ 22 \end{array}$	$\begin{gathered} \text { PIN } \\ 21 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PIN } \\ 20 \end{array}$	$\begin{gathered} \hline \text { PIN } \\ 19 \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 18 \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 17 \end{gathered}$	$\begin{gathered} \hline \text { PIN } \\ 16 \end{gathered}$	$\begin{aligned} & \hline \text { PIN } \\ & 15 \end{aligned}$	$\begin{array}{r} \hline \text { PIN } \\ 14 \\ \hline \end{array}$	$\begin{gathered} \text { PIN } \\ 13 \end{gathered}$
0	$\therefore \cdot$	1)	$\because$		$\because$.		$\because$			$\because$		.										
1	* ${ }^{\text {a }}$	$\cdots$	,	$\cdots$	;	,	$\therefore$	"		$\therefore$.	- "		$\cdots$									
2													$\cdot$	.								
3									.		+						.					
4	:	$\therefore \quad \therefore$	$\cdots$	$\because$	$\cdots$		\%	$\therefore \because$	$\cdots$	$\because$	$\cdots$											
5		...	$\cdots$	$\because$	1:			.	$\cdots$	$\ldots$	;	.							$\ldots$	$\therefore$		
6						$\because \cdot$		,											,			
7									-					.		;	.					
8		:	$\cdots$	$\cdots$		-				$\cdots$	\%			$\cdots$		!			!		.	
9	$\cdots$	$\therefore$ :	":	$\cdots \cdots$			.	.	$\therefore$.		.		, '	$\cdots$								
10			$\backslash$	$\therefore 4$	$\because$	$\cdots$							,	$\therefore$	:		,			.	,	
11			.				$\because$	$\cdots$	.						:		$\cdots$				:	
12		$\cdots$		: $\quad$. $\because$ '	:		$\cdots$		:				-									
13					$\because \therefore$		$\because$							.								
14																						
15				$\because$			:		$\cdots$ :				$\because$		$\because$							
16		$\therefore$		, .,			.		1.						$\cdots$	.						$\cdot$
17				$\therefore!$			$\cdots$					\%		$\therefore$								
18				$\stackrel{ }{ } \cdot$	.	,	.				-						$\cdots$					,
19													+									
20										,												
21													,									
22			'					,														
23							,											.				



# Programmable Interface Element (PIE) 

## FEATURES

- Compatible with IM6100 Microprocessor
- Four Separate SENSE Input Lines to Sense the Status of Peripheral Devices
- Four Programmable OPERATE Control Lines for READ/WRITE on Peripheral Devices
- Four General Purpose FLAGS each of which is Programmable
- Chained Vectored Priority Interrupt Structure Possible
- Low Power: Less than 1mW @ 5V
- TTL Compatible at $\mathbf{+ 5 V}$


## GENERAL DESCRIPTION

The IM6101 is a Programmable Interface Element (PIE) device designed for interfacing various peripheral chips such as UART's, FIFO's, Keyboard Scanner's to IM6100 Microprocessor. In this way, the IM6101 eliminates the need for additional external logic between $6100 \mu \mathrm{P}$ and its peripherals.
The IM6101 provides the control signals to peripheral devices for READING or WRITING on the DX bus by activating the WRITE CNTRL and READ CNTRL lines with IOT (Input Output Transfer) instructions.
Each IM6101 can sample 4 status lines from peripheral devices. It can also generate interrupt requests to the $\mu \mathrm{P}$ if the corresponding individual interrupt enable bits in the PIE are enabled and the respective status lines become active.
The four FLAG lines may be set or reset under program control to send control information to the peripheral devices or to send binary data.

## ORDERING INFORMATION

ORDER CODE	IM6101-1	IM6101A	IM6101
PLASTIC PKG.	IM6101-1IPL	IM6101-AIPL	IM6101-IPL
CERAMIC PKG.	IM6101-1IDL	IM6101-AIDL	-
MILITARY TEMP.	IM6101-1MOL	IM6101-AMDL	-
MILITARY TEMP.   WITH 883B	IM6101-1   MDL/883B	IM6101-AMDL/   $883 B$	-

PACKAGE DIMENSIONS


IM6101 FUNCTIONAL DESCRIPTION

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	Symbol	Input/ Output	Description
1	Vcc		+5 volts
2	INTGNT	1	A high level on INTERRUPT GRANT inhibits recognition of new interrupt requests and allows the priority chain time to uniquely specify a PIE.
3	PRIN	1	A high level ON PRIORITY IN and an interrupt request will select a PIE for vectored interrupt.
4	SENSE 4	1	The SENSE input is controlled by the SL (sense level) and SP (sense polarity) bits of control register B. A high SL level will cause the SKIP flip flop to be set by a level while a low SL level causes sense and interrupt flip flops to be set by an edge. A high SP level will cause the sense flip flop to set by a positive going edge or high level. A high IE (interrupt enable) level generates an interrupt request whenever the INT flip flop is set (by an edge).
5	SENSE 3	1	See pin 4 - SENSE 4
6	SENSE 2	1	See pin 4 - SENSE 4
7	SENSE 1	1	See•pin 4 - SENSE 4
8	SEL 3	1	Matching SELECT(3-7) inputs with PIE addressing on DX(3-7) during IOTA selects a PIE for programmed input output transfers.
9	SEL 4	1	See pin 8 - SEL 3
10	LXMAR	1	A positive pulse on LOAD EXTERNAL ADDRESS REGISTER loads address and control data from DX(3-11) into the address register.
11	SEL 5	1	See Pin 8 - SEL 3
12	SEL 6	1	See Pin 8 - SEL 3
13	XTC	1	The XTC input is a timing signal produced by the microprocessor. When XTC is high a low going pulse on DEVSEL initiates a "read" operation. When XTC is low, a low going pulse on DEVSEL initiates a "write" operation.
14	SEL 7	1	See Pin 8 - SEL 3
15	DX 0	1/O	Data transfers between the microprocessor and PIE take place via these input/output pins.
16	DX 1	1/O	See Pin 15 - DX 0
17	DX 2	1/0	See Pin $15-\mathrm{DX} 0$
18	DX 3	1/0	See Pin 15 - DX 0
19	DX 4	1/0	See Pin $15-\mathrm{DX} 0$
20	DX 5	1/O	See Pin 15 - DX 0
21	DX 6	1/0	See Pin $15-\mathrm{DX} 0$
22	DX 7	1/0	See Pin $15-\mathrm{DX} 0$
23	DX 8	1/0	See Pin 15 - DX 0


Pin Number	Symbol	Input/ Output	Description
24	DX 9	1/0	See Pin 15 - DX 0
25	DX 10	1/O	See Pin $15-\mathrm{DX} 0$
26	DX 11	1/0	See Pin 15 - DX 0
27	GND		
28	$\overline{\text { DEVSEL }}$	1	The DEVSEL input is a timing signal produced by the microprocessor during IOT instructions. It is used by the PIE to generate timing for controlling PIE registers and "read" and "write" operations.
29	FLAG 4	0	The FLAG outputs reflect the data stored in control register $A$. Flags (1-4) can be set or reset by changing data in CRA via a WRA (write control register A) command. FLAG1 and FLAG3 can be controlled directly by PIE commands SFLAG1, CFLAG1, SFLAG3 and CFLAG3;
30	FLAG 3	0	See Pin 29 - FLAG 4
31	FLAG 2	0	See Pin 29 - FLAG 4
32	FLAG 1	0	See Pin 29 - FLAG 4
33	$\overline{\mathrm{C} 1}$	0	The PIE decodes address, control and priority information and asserts outputs C1 and C2 during the IOTA cycle to control the type of data transfer. These outputs are open drain for bussing and require pullup resistors to Vcc.

C1(L), C2(L)-vectored interrupt C1(L), C2(H) - READ1, READ3 or RRA commands
$\mathrm{C} 1(\mathrm{H}), \mathrm{C} 2(\mathrm{H})$ - all other instructions
See Pin $33-\mathrm{C} 1$
Outputs READ1 and READ2 are used to gate data from peripheral devices onto the DX bus for input to the IM6100. Note the data does not pass through the PIE.
Outputs WRITE1 and WRITE2 are used to gate data from the IM6100 DX bus into peripheral devices. Data does not pass through the PIE.
See Pin 35 - READ1
See Pin 36 - WRITE1
The PIE asserts this line low to generate interrupt requests and to signal the IM6100 when sense flip flops are set during SKIP instructions. This output is open drain.
A high level on priority out indicates no higher priority PIE interrupt requests are outstanding. This output is tied to the PRIN input of the next lower priority PIE in the chain.

## TIMING DIAGRAM

Timing for a typical IOT transfer is shown in Figure 2. During the IFETCH cycle, the processor obtains from memory an IOT instruction of the form 6XXX. During the IOTA the processor places that instruction back on the DX lines (3) and pulses LXMAR transferring address and control information for the IOT transfer to all peripheral devices. A low going pulse on DEVSEL while XTC is high (4) is used by the addressed PIE
along with decoded control information to generate $\overline{\mathrm{C} 1}, \overline{\mathrm{C} 2}, \overline{\mathrm{SKP}}$ and controls for data transfers to the processor. Control outputs READ1 and READ2 are used to gate peripheral data to the DX lines during this time. A low going pulse on DEVSEL while XTC is low (5) is used to generate WRITE1 and WRITE2 controls. These signals are used to clock processor accumulator data into peripheral devices.


FIGURE 2. IM6101 PIE Timing Diagram.

All PIE timing is generated from IM6100 signals LXMAR, DEVSEL, and XTC. No additional timing signals, clocks, or one shots are required. Propagation delays, pulse width, data setup and hold times are specified for direct interfacing with the IM6100.

The IM6100 communicates with the PIE and with peripherals through the PIE via IOT commands. During the IOTA cycle (See Figure 1) an instruction of the form 6XXX is loaded into all PIE instruction registers. The bits are interpreted as shown below.

The 5 address bits (3-7) are compared with the select inputs SEL3, SEL4, SEL5, SEL6, SEL7 to address 1 of 31 possible PIE's. Address zero is reserved for IOT's internal to the IM6100. The four control bits are decoded to select one of 16 instructions. Note also that the IOT instructions 66XX are reserved for the Parallel Input/Outpút Port (P10-IM6103).


FIGURE 3. PIE Instruction Fórmat.

CONTROL	MNEMONICS	DESCRIPTION
$\begin{aligned} & 0000 \\ & 1000 \end{aligned}$	READ1   READ2	The READ instructions generate a pulse on the appropriate read outputs. This signal is used by the peripheral device to gate data onto the DX bus to be "OR'ed" with the IM6100 accumulator data.
0001 1001	WRITE1 WRITE2	The WRITE instructions generate a pulse on the appropriate write output. This signal is used by peripherals to load the IM6100 accumulator data on the DX lines into peripheral data registers.
$\begin{aligned} & \hline 0010 \\ & 0011 \\ & 1010 \\ & 1011 \end{aligned}$	SKIP1   SKIP2   SKIP3   SKIP4	The SKIP instructions test the state of the sense flip flops. If the input conditions have set the sense flip flop, the PIE will assert the SKP/INT output causing the IM6100 to skip the next program instruction. The sense flip flop is then cleared. If the sense flip flop is not set, the PIE does not assert the SKP/INT output and the IM6100 will execute the next instruction.
0100	RCRA	The Read Control Register A instruction gates the contents of CRA onto the DX lines during time (4) to be "OR" transferred to the IM6100 AC. (See Figure 2)
$\begin{aligned} & 0101 \\ & 1101 \\ & 1100 \end{aligned}$	WCRA WCRB WVR	The Write Control Register A, Write Control Register B and Write Vector Register instructions transfer IM6100 AC data on the DX lines during time (5) of IOTA into the appropriate register. (See Figure 2) Bits 10,11 of the VR;5, 7 of CRA; 8-11 of CRB are don't care bits for these instructions.
0110 1110	SFLAG1 SFLAG3	The SET FLAG instructions set the bits FL1 and FL3 in control register A to a high level. PIE outputs FLAG1 and FLAG3 follow the data stored in bits FL1 and FL3 of CRA.
$\begin{aligned} & \hline 0111 \\ & 1111 \end{aligned}$	CFLAG1 CFLAG3	The CLEAR FLAG instructions clear the bits FL1 and FL3 in control register A to a low level.
${ }^{(6007) 8}$	CAF	IM6100 internal IOT instruction CLEAR ALL FLAGS clears the interrupt requests by clearing the sense flip flops. It has no effect on control register output flags FL1, FL2, FL3, FL4. To clear these output flags, bits 0-3 of CRA must be cleared using WCRA with bits 0-3 of AC cleared.

## PRIORITY FOR VECTORED INTERRUPT

A hardware priority network uniquely selects a PIE to provide a vectored address. The first IOT command of any type, after the IM6100 signal INTERRUPT GRANT goes high, resets the line INTGNT to a low level. The signal INTGNT is used to freeze the priority network and enable vector generation. Within a given PIE, the internal priority is interrogated during every LXMAR.

The highest priority PIE has PRIN tied to Vcc. The lowest priority PIE is the last one on the chain. The vector address generated by the PIE consists of 10 bits from the vector register and two bits that indicate the sense input within the highest priority PIE that generated the interrupt.
A. Daisy-chaining of several PIE chips.

B. Interrupt Vector Register Format.

SPRI: Sense Priority

SPRI	Conditions* *
00	SENSE1
01	SENSE2 and not SENSE1
10	SENSE3 and not SENSE2 or SENSE1,
11	SENSE4 and not SENSE3 or SENSE2 or SENSE1 ${ }_{\text {I }}$

*All sense input lines are enabled for interrupts.
FIGURE 4. IM6101 Priority for Vectored Interrupt.

## I/O CONTROL LINES (C1 AND C2)

The type of input-output transfer is controlled by the selected PIE by activating the $\overline{\mathrm{C} 1}, \overline{\mathrm{C} 2}$ lines as shown below. These outputs are open drain.

$\overline{\mathbf{C}}$	$\overline{\mathbf{C 2}}$	
H	H	DEV/PIE - AC Write
L	H	AC - AC + DEV/PIE "OR" Read
L	L	PC - VECTOR ADDRESS Vectored Interrupt

## INTERRUPT/SKIP (INT/SKP)

Interrupt and skip information are time multiplexed on the same lines. Since the IM6100 samples skip and interrupt data at separate times (see Figure 1) there is no degradation in system performance. The PIE samples the sense flip flops and generates an interrupt request for enabled bits on the rising edge of LXMAR. Interrupt requests are asserted by driving the INT/SKP line low: During IOTA of SKIP instructions the INT/SKP reflects the SENSE flip flop data.

If the SENSE flip flop is set, the INT/SKP line is driven low to cause the IM6100 to skip the next instruction. This output is open drain.

## CONTROL REGISTER A (CRA)

The CRA can be read and written by the IM6100 via the'RCRA and WCRA commands. The format and meaning of control bits are shown below.


* Don't care for WCRA, 0 for RCRA

FIGURE 5. Format for Control Register A.

## FL(1-4)

Data on FLAG outputs corresponds to data in FL (1-4). Changing the FL bits in CRA changes the corresponding FLAG output.

## WP(1,2)

A high level on WRITE POLARITY bits causes positive pulses at the WRITE outputs (see Figure 1).

IE(1-4)
A high level on INTERRUPT ENABLE enables interrupts.

## CONTROL REGISTER B

The CRB can be written by the IM6100 via the WCRB instruction. It has no read back capability. The format and meaning of control bits are shown below. Bits 8-11 are don't care bits.


FIGURE 6. Format for Control Register B.

## SL(1-4)

A high level on the SENSE LEVEL bits causes the'SENSE inputs to be level sensitive. A low level on the SL bits causes the SENSE inputs to be edge. sensitive. The INT FFs are set only if a sense line is set up to be edge sensitive.

## SP(1-4)

A high level on the SENSE POLARITY bits causes the SKIP flip flop to be set by a high level or positive going edge. A low level causes the SKIP flip flop to be set by a low level or negative going edge.

## PERIPHERAL INTERFACE LINES

## SENSE(1-4)

The IM6101 has two latches associated with each sense input - a SKIP flip flop and an INTERRUPT flip flop.

For the Interrupt flip flop to be set, the corresponding interrupt enable bit must be set to 'one'. If the sense input is programmed to be edge sensitive, the flip flop is set when the edge occurs. If it was initially programmed to be level sensitive and then the mode is changed to be edge sensitive, the flip flop will be set if the polarity of sense input line corresponds to its SP bit.
All conditions that set the Interrupt flip flop also set the associated Skip flip flop. In addition, the Skip flip flop is set when the polarity of the sense input corresponds to its SP bit in the level sensitive mode.
The Skip flip flop is cleared at IOTA READ time by executing a CAF (6007) instruction or a SKIP instruction on the associated sense input that actually skips. In the level sensitive mode, whenever the polarity of sense input does not correspond to its SP bit, the sense FF is cleared:
The Interrupt flip flop is cleared whenever the sense flip flop is cleared. In addition, it is cleared if the associated sense logic actually creates a vector, the interrupt enable bit is cleared to a 'zero' or the sense input is programmed to be level sensitive. Detailed operation of resetting Interrupt and Skip flop flops are as shown in Figure 7.


## ABSOLUTE MAXIMUM'RATINGS

Operating Temperature
Industrial IM6101A
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature .............. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage .................... 4.0 V to 11.0 V
Supply Voltage ............................... +12.0 V
Voltage On Any Input or
Output Pin
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{Cc}}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$V_{\text {IH }}$	Input Voltage High		70\% Vcc			V
2	VIL	Input Voltage Low		.		20\% Vcc	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$\mathrm{IOH}=0 \mathrm{~mA}$	Vcc-0.01			V
5	Vol	Output Voltage Low	$\mathrm{lOL}=0 \mathrm{~mA}$			GND+0.01	V
6	IOL	Output Leakage	GND $\leq \mathrm{VOUT}^{\text {S }}$ VCC	-1.0	,	1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{Vcc}=10 \mathrm{~V} \pm 5 \%$		1.0	500	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\begin{aligned} & \mathrm{VCC}=10 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}=571 \mathrm{kHz} \end{aligned}$		.	2.0	mA
9	CIN	Input Capacitance	'		7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

A.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	tDR	Delay from DEVSEL to READ			150	ns
2	tow	Delay from DEVSEL to WRITE	50		150	ns
3	tof	Delay from DEVSEL to FLAG			200	ns
4	toc	Delay from DEVSEL to C1, C2			215	ns
5	tDI	Delay from DEVSEL to SKP/INT			215	ns
6	tDA	Delay from DEVSEL to DX			215	ns
7	tLXMAR	LXMAR Pulse Width	120			ns
8	$t_{\text {AS }}$	Address Setup Time	40			ns
9	$t_{\text {AH }}$	Address Hold Time	50			ns
10	tos	Data Setup Time	65			ns
11	toh	Data Hold Time	50			ns

Note: See Figure 2 for an A.C. Timing Diagram.

TNITERS仏

## IM6101-1I

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6101-1I ............. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ............. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage ..................... 4.0 V to 7.0 V
Supply Voltage $\ldots . . . . . . . . . . . . . . . . . . . . . .$. . 8.0 V
Voltage On Any Input or
Output Pin -0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\mathrm{IH}}$	Input Voltage High		Vcc-2.0			V
2	VIL	Input Voltage Low				0.8	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$\mathrm{IOH}=-0.2 \mathrm{~mA}$	2.4			V
5	Vol	Output Voltage Low	$\mathrm{IOL}=2.0 \mathrm{~mA}$			0.45	V
6	IOL	Output Leakage	GND $\leq$ VOUT $\leq V_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$V \mathrm{cc}=5 \mathrm{~V} \pm 10 \%$.		1.0	100	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic	$\begin{aligned} & V c c=5 V \pm 10 \% \\ & f=330 \mathrm{kHz} \end{aligned}$			500	$\mu \mathrm{A}$
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	tDR	Delay from DEVSEL to READ			300	ns
2	tow	Delay from DEVSEL to WRITE	100		300	ns
3	tDF	Delay from DEVSEL to FLAG			375	ns
4	toc	Delay from DEVSEL to C1, C2			460	ns
5	tal	Delay from DEVSEL to SKP/INT			460	ns
6	tDA	Delay from DEVSEL to DX		-	460	ns
7	tLXMAR	LXMAR Pulse Width	240			ns
8	$t_{\text {AS }}$	Address Setup Time	80			ns
9	$t_{\text {AH }}$	Address Hold Time	. 125			ns
10	tos	Data Setup Time	80			ns
11	toh	Data Hold Time	100			ns

Note: See Figure 2 for an A.C. Timing Diagram.

## IM6101AM

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Military IM6101AM .............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ............. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage ..................... 4.0 V to 11.0 V
Supply Voltage .............................. +12.0 V
Voltage On Any Input or
Output Pin
-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{VCC}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

.	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$V_{\text {IH }}$	Input Voltage High		70\% VCc	.		V
2	VIL	Input Voltage Low				20\% VCC	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=0 \mathrm{~mA}$	Vcc-0.01			V
5	VOL	Output Voltage Low	$\mathrm{IOL}=0 \mathrm{~mA}$			GND +0.01	V
6	IoL	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{VCC}=10 \mathrm{~V} \pm 5 \%$		1.0	500	$\mu \mathrm{A}$
8	Icc	Power Supply Current-Dynamic.	$\begin{aligned} & V_{c c}=10 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}=571 \mathrm{kHz} \end{aligned}$			2.0	mA
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance	- .		8.0	10.0	pF

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	tDR	Delay from DEVSEL to READ			165	ns
2	tow	Delay from DEVSEL to WRITE	50		165	ns
3	tDF	Delay from DEVSEL to FLAG			220	ns
4	toc	Delay from DEVSEL to C1, C2			240	ns
5	tol	Delay from DEVSEL to SKP/INT			240	ns
6	to'A	Delay from DEVSEL to DX			240	ns
7	tLXMAR	LXMAR Pulse Width	135			ns
8	$t_{\text {AS }}$	Address Setup Time	45			ns
9	$\mathrm{taH}^{\text {A }}$	Address Hold Time	55			ns
10	tos	Data Setup Time	70			ns
11	toh	Data Hold Time	55			ns

[^31]ABSOLUTE MAXIMUM RATINGS
Operating Temperature
Military IM6101-IM ............. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature......... . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage ...................... 4.0 V to 7.0 V
Supply Voltage ................................. +8.0 V
Voltage On Any Input or
Output Pin $\ldots \ldots \ldots . . . . . .$.

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$V_{\text {IH }}$	Input Voltage High		Vcc-2.0			V
2	VIL	Input Voltage Low				0.8	V
3	IIL	Input Leakage	GND $\leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
5	Vol	Output Voltage Low	$\mathrm{loL}=2.0 \mathrm{~mA}$			0.45	V
6	IOL	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$V_{c c}=5 \mathrm{~V} \pm 10 \%$		1.0	100	$\mu \mathrm{A}$
8	İC	Power Supply Current-Dynamic	$\begin{aligned} & V \mathrm{VC}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{f}=330 \mathrm{kHz} \end{aligned}$			500	$\mu \mathrm{A}$
9	CIN	Input Capacitance			7.0	8.0	pF
10	Co	Output Capacitance			8.0	10.0	pF

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{VCC}_{C \mathrm{C}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	tDR \}	Delay from DEVSEL to READ	,		330	ns
2	tow	Delay from DEVSEL to WRITE	100		330	ns
3	tDF	Delay from DEVSEL to FLAG			415	ns
4	toc	Delay from DEVSEL to C1, C2			510	ns
5	tDI	Delay from DEVSEL to SKP/INT			510	ns
6	tDA	Delay from DEVSEL to DX			510	ns
7	tLXMAR	LXMAR Pulse Width	265			ns
8	$t_{\text {AS }}$	Address Setup Time	90			ns
9	$\mathrm{taH}^{\text {H }}$	Address Hold Time	140			ns
10	tDS	Data Setup Time	80			ns
11	toh	Data Hold Time	110			ns

Note: See Figure 2 for an A.C. Timing Diagram.

## APPLICATION

## INTRODUCTION

The IM6101, Programmable Interface Element (PIE), provides a universal means of interfacing industry standard LSI devices and peripheral equipment controllers to the IM6100 Microprocessor.
The IM6100 configures each PIE for a specific interface during system initialization by programming the control registers within the PIE for write enable polarities, sense polarities, sense edges or levels, flag values and interrupt enables. On power-up, the registers will contain random bit patterns.
The data transfer between the IM6100 and the peripheral devices does not take place through the PIE. The programmable Interface Element provides the steering signals for data transfers. This approach was chosen since all the standard LSI elements such as Keyboard chips, UARTs, FIFOs, etc. have internal storage latches and they require only control signals to take data from the bus or to put data on the bus. If some user defined peripheral interfaces do not have these built-in storage elements, discrete CMOS or low power'Schottky latches, or flip-flops, must be provided to store the data from the IM6100 until the peripheral device is ready to accept it and to latch data from the peripheral devices until the IM6100 asks for it.

## INTERRUPT PROCESSING WITH PIE'S

The PIEs provide for a vectored priority interrupt scheme. Up to 31 PIEs may be chained to obtain 124 interrupt lines. The microprocessor will recognize, identify and start servicing the highest priority interrupt request within $36.6 \mu \mathrm{~s}$ at 3.3 MHz .
The INTREQ lines from all PIEs are wire-ANDed together. A PIE generates an interrupt request, if any one of its four sense lines, which are interrupt enabled, become active by driving the INTREQ line to the IM6100 low. If no higher priority 'requests are outstanding (RESET, CPREQ, HLT or DMAREQ), the IM6100 will grant the request at the end of the current instruction. The content of the Program Counter is deposited in location $0000_{8}$ of the memory and the program fetches the next instruction from location 00018. The return address is hence available in location 00008 . This address must be saved in a software stack if nested interrupts are allowed.
The IM6100 activates the INTGNT signal high when an INTREQ is acknowledged. The INTGNT is reset by executing any IOT instruction. The PIEs use the INTGNT signal to freeze the priority network and to uniquely specify the PIE with the highest priority interrupt request. The PIE with the highest priority request sends a unique vector address to the IM6100 when the processor executes the first IOT instruction after the INTGNT. The Interrupt II Prototyping System uses the IOT instruction VECT (6047) for Vectoring.

The 12-bit vector address generated by the PIE consists of 10 high order bits from the vector register, defined by the user during system initialization, and two low order bits which indicate the sense input that generated the interrupt. Therefore, if the instruction in location 00018 is VECT-60478, the processor will branch to 1 of 4 locations, depending on which of the sense lines within a PIE
generated the request. Each one of these locations must contain a Jump instruction pointing to the specific service routine for the corresponding sense input. The $36.6 \mu \mathrm{~s}$ interrupt acknowledge time at 3.3 MHz consists of $17 \mu \mathrm{~s}$ (max) to recognize an interrupt request, $3.6 \mu \mathrm{~s}$ to grant an interrupt request, $10 \mu \mathrm{~s}$ to execute the VECT for vectoring and $6.0 \mu \mathrm{~s}$ to execute a Jump instruction to a specific service routine.

## Proper vectoring requires the following conditions:

1. The IM6100 must be enabled for interrupts with the ION command:
2. The INTGNT output of the IM6100 must be connected to the INTGNT of all the PIEs and the PRIN of the PIE with the highest priority must be connected to VCC and its PROUT should be connected to the PRIN of the PIE with the next highest priority and so on.
3. The IE bit of the sense line that is expected to generate the interrupt must be set to 1 .
4. The sense line must be programmed to be edge sensitive. If a sense line is programmed to be level sensitive, it will not generate an INTREQ nor will it generate a vector.
5. The vector register of the PIE must be initialized with the proper vector. Note that the two least significant bits are generated by the PIE itself.
6. The $\overline{\mathrm{C} 1}$ and $\overline{\mathrm{C} 2}$ lines of all the PIEs must be wired together with the $\overline{\mathrm{C} 1}$ and $\overline{\mathrm{C} 2}$ of the IM6100 and pull up resistors must be provided on these lines since the PIE $\overline{\mathrm{C} 1}$ and $\overline{\mathrm{C} 2}$ outputs are open drain. The $\overline{S K P / I N T}$ line of the PIE must be wired with the INT and SKP lines of the IM6100. If the PIE DX lines are buffered, the external bus must be enabled onto the PIE DX with the XTB being active high and the PIE DX bus must be enabled onto the external bus when the C1 line of a PIE is active low (during RCRA, READ1, READ2 or vector).
7. The vector address will be generated with the first IOT of any kind after the INTGNT.
8. Note also that a successful skip on a sense line will reset an interrupt request by the sense line, if any. One should not thus turn on the interrupt system after a successful skip on a sense line expecting that the sense line that was just tested will generate a request.

## SKIP HANDLING WITH PIE'S

Each PIE provides for four SENSE lines. The active state of the SENSE inputs can be programmed to be a low level, high level, positive edge or negative edge. There is a SENSE FF in the PIE associated with each SENSE line. This FF is set when the SENSE line is "active"
The state of the SENSE FF can be tested by the SKP commands. When the IM6100 executes a SKIP instruction, it will skip the next sequential instruction if the SENSE FFi is set. If the skip is successful, the FF will be cleared.
If the sense line was set up to be edge sensitive, it can, therefore, be tested for the 'set' state only once. If the FF is set by a level, it will be cleared by the successful skip and then, set immediately by the active level.

If the SENSE FF was set by an edge, and the respective IE bit is enabled, the PIE will generate an INTREQ to the IM6100. Provided the priority conditions are met, the PIE will supply the vector address to the IM6100 when it executes the first IOT instruction of any kind, after the INTREQ has been granted. If the vector address is generated by FFi, one may still skip once on sense line $i$. It should be noted that if priority vectoring is inhibited by grounding PRIN, an INTREQ will be cleared only if a SKIPi instruction is executed to test the FFi that generated the request. Note also that an INTREQ will not be generated if the sense line was set up to be level sensitive. In certain instances, one may be interested in restoring the set state of a SENSE FF after it has been successfully tested and cleared and if the SENSE line has been programmed to be edge sensitive. For example, assume that SENSE1 is programmed to be positive edge sensitive (SL1 $=0, S P 1=1$ ). The transition from a 0 to 1 occurred; SENSE FF1 is set; SENSE1 is at a 1 level. SKIP1 instruction will clear SENSE FF1. The SENSE FF1 can be set, under program control, by creating an internal edge. This is accomplished, in this specific instance, by programming SP1 to a 0 and then back to a 1 . Since SP1 is in CRB and it cannot be read from the PIE, the CRB constant must be stored in user memory, for example, location KCRB.

CLA
TAD KCRB /Get CRB constant
AND K7740 /SP1 = 0
WCRB /Write CRB to clear SP1
TAD K0020 $/$ SP1 $=1$.
WCRB
/Write CRB to set SP1
KCRB, CRB /CRB constant
K7740, 7740
K0020, 0020

Software systems employing Skip's on a Sense input while allowing the same input to create an Interrupt should pay attention to the fact that the Skip and Interrupt flip flops are synchronized by LXMAR from the IM6100. Since there is no LXMAR during IOTB of an I/O instruction, the following can occur. Assume that the following two instruction sequence is used:

## SKIP SENSEX /SENSE F/F SET? <br> JMP - 1 /NO: WAIT FOR IT

## Where SENSEX is also Interupt enabled.

Now, assume that the appropriate 'Edge' occurs during the fetch state of the Şkip instruction. The Edge causes both flip flops to be set and the LXMAR produced at IOTA time creates an Interrupt request. The Skip instruction execution causes a Skip and clears the Skip flop flop. However, the Interrupt flip flop will not reflect the fact that the Skip flip flop has been cleared until after the next LXMAR occurs. So, the Interrupt request remains active during IOTB time since the IOTB cycle does not have a LXMAR. The IM6100 honors the Interrupt request since the next LXMAR doesn't occur until after the IOT is finished. The Interrupt servicing routine will not Skip again if it tries to find the device that created the Interrupt. Note that the proper Vector Address will still be generated.

## PIE INSTRUCTION FORMAT

The IM6100 communicates with the PIEs using the InputOutput Transfer (IOT) instructions. The first three bits, 02, are always set to 68 (110) to specify an IOT instruction. The standard PDP-8/E ${ }^{\mathrm{TM}}$ convention is to set the next 6 bits, $3-8$, to specify 1 of $64 \mathrm{I} / \mathrm{O}$ devices and then to control the operation of the selected I/O device by using bits 9-11. However, the PDP-8/E interfaces are not standardized since a specific pattern of bits $9-11$ could specify. completely different operations in different I/O devices. For example, the pattern 000 in bits $9-11$ could mean a read operation for Interface $A$, a write operation for Interface B, a skip instruction for Interface C and so on since the operation for any IOT instruction depends entirely upon the circuitry designed into the I/O device interface.
The IOT instruction format for the PIE is different from that used by PDP-8/E ${ }^{\text {ru }}$ interfaces. The first three bits are, as usual, set to 68 to indicate an IOT instruction. The next' 5 bits, 3-7, specify 1 of 31 PIEs and then the operation of the selected PIE is controlled by bits $8-11$ in 16 uniquely specified ways. For example, the specific pattern 0000 in bits 8-11 means exactly the same operation for all PIEs, namely activate READ1 line.
Of the 32 possible combinations of bits 3-7, the pattern 00000 is reserved for internal Processor IOT instructions and hence not available as a PIE address..
Recommended address assignments for the IM6101-PIE (Programmable Interface Element) are as follows:

000	00	Internal IOT (600X) and DEC HS RDR (601X)
000	01	DEC HS PUNCH (602X) and DEC TTY
000	10	Keyboard (603X)
000	11	DEC TTY PRINTER (604X)
001	00	INTERCEPT PIE-UART Serial Interface
001	01	IM6102-MEDIC REAL TIME CLOCK
001	10	Reserved for Intercept Option - 1
001	11	Reserved for Intercept Option -
010	00	IM6102-MEDIC EMC/DMA
010	01	IM6102-MEDIC EMC/DMA
010	10	IM6102-MEDIC EMC/DMA
010	11	IM6102-MEDIC EMC/DMA
011	00	IM6103-PIO
011	01	IN6103-PIO
011	10	IN6103-PIO
011	11	IN6103-PIO
100	00	USER
100	01	USER
100	10	USER
100	11	USER
101	00	USER
101	01	USER
101	10	USER
101	11	USER
110	00	USER
110	01	USER
110	10	USER
110	11	USER
111	00	Reserved for Intercept Option -
111	01	Reserved for Intercept Option - 4
111	10	Intercept FLOPPY DISK System (675X)
111	11	Reserved for Intercept Option -


PARAMETER	DEFINITION
Minimum Peripheral device write data setup time w.r.t. leading edge of WRITE	tWPD (IM6100) + tDW (MIN) (IM6101) - tDSD (IM6100)
Minimum Peripheral device write data hold time w.r.t. leading.edge of WRITE	tDHD (IM6100) + twPD (IM6100) - tDW (MAX) (IM6101)
Maximum Peripheral device read data enable time	tEND (IM6100) - tDR (IM6101)

## TIMING REQUIREMENTS ON PERIPHERAL DEVICES

The timing required on peripheral devices is affected by the combined delays of the IM6100 and IM6101 devices. The table above describes the peripheral device timing requirements with respect to the data given for the IM6100 and IM6101 AC characteristics.
The values at any operating frequency, temperature and/or power supply voltage can be evaluated by substituting the calculated values for the IM6100 and IM6101 parameters in the defining expressions.

## ASYNCHRONOUS SERIAL INTERFACE WITH PIE AND UART

The IM6402/03 Universal Asynchronous Receiver/ Transmitter is a general, purpose programmable serial device for interfacing an asynchronous serial data channel to a parallel synchronous data channel. The receiver converts a serial word with start, data, parity and stop bits to a parallel data word and checks for parity, framing and data overrun errors. The transmitter section converts a parallel data word into a serial word with start, data, parity and stop bits. The data word length may be 5 , 6,7 or 8 bits. Parity may be odd or even. Parity checking and generation can be inhibited. The number of stop bits may be 1 or 2 or $11 / 2$ when transmitting a 5 bit code.
The IM6402/03 can be used in a wide variety of applications including interfacing modems, Teletype ${ }^{\text {tu }}$ and remote data acquisition systems to the IM6100 micro-
processor. The IM6403 makes provisions for a crystal oscillator and internal divider chain to specify the data transfer rate. In the IM6402 the data transfer rate is controlled by an external timing source, for example, a Baud Generator.
A functional block diagram of the PIE/UART/IM6100 interface is shown below. The UART is configured, in this specific example, to interface with an ASR-33 Teletype which has a data format that consists of 11 bits - a start bit, 8 data bits and 2 stop bits. The UART is clocked at 16 X the data rate. For the 10 character per second ASR-33, the UART clock frequency would be 1.76 KHz .
An 8-bit data word from the IM6100. Accumulator is loaded into the Transmitter Buffer Register via inputs TBR8-TBR1 when the Transmit Buffer Register Load (TBRL) signal makes a zero to one transition. A high level on Transmit Buffer Register Empty (TBRE) indicates that the buffer is ready to accept a new character for transmission. The microprocessor checks the status of TBRE via SENSE2 before it transmits a new character to the UART by pulsing WRITE1. The start bit, data bits and stop bits appear serially at the Transmit Register Output (TRO). A serial data stream on the Receiver Register Input (RRI) is clocked into the Receive Buffer Register. A high level on Data Received (DR) indicates that a character has been received. The contents of Receiver Buffer Register appear on the outputs RBR8-RBR1 when a low level is applied to Receiver Register Disable (RRD) input. The RBR outputs are tristated when RRD is high. A low level on Data Received Reset (DRR) clears the DR flag. RRD and DRR

## PIE/UART/IM6100 INTERFACE


may be tied together to clear DR as the register data is being read. The microprocessor monitors the status of the DR flag via SENSE1 to see if a new character has been received before it reads the information stored in the buffer register by pulsing READ1 low.
The UART interface uses only the low order 8 bits of the

IM6100 data bus (DX) to receive and transmit characters.
The NAND gate is used to load the UART with the leading edge of the WRITE pulse since the IM6100 data is valid only with respect to the leading edge at higher operating frequencies.

## PIE CONTROL REGISTER ASSIGNMENTS FOR IM6402 UART INTERFACE:



$$
\begin{aligned}
W P 1 & =0 \\
I E 2 & =1 \\
I E 1 & =1
\end{aligned}
$$

$S L 2=0 ; S P 2=1$
$S L 1=0 ; S P 1=1$

Active low WRITE1 (TBRL)
Interrupt enable for SENSE2 (TBRE) Interrupt enable for SENSE1 (DR) If vectored interrupts are used (PIN = 1 or is part of a priority chain) the Interrupt Vector Register must be loaded with the desired vector address.
SENSE2 (TBRE) active on 0 to 1 transition SENSE1 (DR) active on 0 to 1 transition

## PIE ADDRESS AND CONTROL ASSIGNMENTS:




PIE Address and Control Assignments:



Subroutines for programmed IOT transfers:
Program Listing:


## TELETYPE INTERFACE WITH PIE

A simple economical program controlled serial interface for a Teletype can be built using only the Programmable Interface Element. The interface uses one Sense line to receive serial data, one Flag line to transmit serial data and one Flag line to control the Teletype paper tape
reader, as shown below. Timing for proper transmit pulse widths, setting and clearing FLAG1, and proper receiver sampling times, testing SENSE1, is created via software timing loops.

## PIE Control Register Assignments



SL1 $=1 ;$ SP1 $=0 \quad$ SENSE1 is level sensitive and active low:

## IM6100/PIE/TELETYPE INTERFACE



## IM6101

Subroutines for programmed IOT transfers:

## Transmit character routine:

The transmit routine takes an 8-bit character from the Accumulator and transmits it to the Teletype via FLAG1. FLAG1 is initially set high or "mark". For each character,
the program sends out a start bit ("space" - zero), 8 data bits with the least significant bit first and 2 stop bits ("mark" - one).

## Program listing:



Receiver character routine:
The receive routine accepts a serial data string from the Teletype which consists of a start bit, 8 data bits with the least significant bit first and 2 stop bits and assembles them, right justified, into an 8-bit word in the Accumulator. Each bit is sampled in the middle of the bit interval. The user can read character by character from
the Teletype reader by turning the reader off after receiving each character and then reenabling it under program control to fetch the next character in sequence The routine assumes that the program is waiting for a character from the Teletype.

Program listing:

3100	0000
3161	7300
3102	1235
3103	3161
3104	6516
3165	6562
3106	5305
3167	1330
3110	3162
3111	2162
3112	5311

31136562
31145305
$3115 \quad 6517$
31164225 DATA,
$3117 \quad 7100$
31266502
31217020
31227610
31232161
$3124 \quad 5316$
$3125 \quad 7012$
31267012
31275700
3136 7243 M349,
RCÚE,
*3100
/TELETYPE RECEIVE ROUTINE
/SENSEI IS INITIALISED TO BE LEVEL
/SENSITIVE AND ACTIVE LOW
/AC AND L ARE CLEARED. CHAR IN AC 4-11
IUSER DEFINED MNEMONICS
SKPLOW $=6502 \quad$ SKP IF TTY IN IS 0
RDRON=6516 /ENABLE RDR
RDROFF=6517 /RDR OFF
0060
CLA CLL
TAD M8
DCA TEMP2
RDRON
SKPLOW
JMP - -1

TAD M349
DCA TEMP 3
1-349 IN TEMP3
ISZ TEMP3
JMP - -1 /1/2 BIT DELAY /4.532 MS

SKPLOW
JMP START /FALSE START BIT
RDROFF /GOOD START BIT
/TURN OFF RDR
/FULL BIT DELAY TO THE
/MIDDLE OF NEXT BIT
1<.15\% ERROR

CLL	
SKPLOW	
CML	
RAR	
ISZ TEMPZ	
JMP DATA	
RTR MARK	
RTR	
JMP I RCVE	
7243	/RIGHT JUSIFY

## FEATURES

- Provides Extended Memory Address to 32 K Words
- Simultaneous DMA - Provides Simultaneous DMA Channel that Uses DX Bus During Second Half of a Cycle to Access Memory
- DMA Channel Can be Used for Dynamic RAM Refresh
- 12-Bit Programmable Interval Timer
- Direct Interface with IM6100 Microprocessor Via Bidirectional DX Bus and Handshake Lines
- Hardware Reset
- 28 Different I/O Instructions


## GENERAL DESCRIPTION

The IM6102 is a multi-function peripheral controller chip incorporating functions such as memory extension, direct memory access control, and a programmable real time clock.
The IM6102 provides necessary control to address up to 32 K words of memory, and its DMA channel can be used with Dynamic RAM Components for "transparent refresh". The programmable real time clock is 12 -bit long, and its output frequency can be programmed for 5 decades.
It features a high degree of system integration, putting into one chip all the functions which are normally available in three or more LSI circuits. As a result of this large integration, the user can design and produce a compact microcomputer with minicomputer performance.

## PIN CONFIGURATION



ORDERING INFORMATION

ORDER CODE	IIM6102-1	IM6102A	IM6102
PLASTIC PKG.	IM6102-1IPL	IM6102-AIPL	IM6102-IPL
CERAMIC PKG	IM6102-1IDL	IM6102-AIDL	-
MILITARY TEMP	IM6102-1MDL	IM6102-AMDL	-
MILITARY TEMP   WITH 883B	IM6102-1	IMDL/883B	8838

## PACKAGE DIMENSIONS



此IERESIL


## IM6102 FUNCTIONAL PIN DESCRIPTION

Pin Number	Symbol	Input/ Output	Description
1	VCc		Supply voltage
2	DMAEN	1	Enable the IM6102 DMA channel to transfer data
3	DMAGNT	1	Direct memory access grant from CPU
4	$\overline{M E M S E L}$	1	Memory select for read or write from CPU
5	IFETCH	1	CPU flag indicating instruction fetch cycle
6	$\overline{\text { MEMSEL*}}$	0 .	Memory select generated by the IM6102
7	$\overline{\text { RESET }}$	1	Asynchronous reset will clear Instruction Field to $0_{8}$, disable all interrupts, initialize DMA port to READ/REFRESH, initialize timer to "stop", "divide by $2^{12}$. mode" and "enable divide counters"
8	$\overline{U P}$	0	User pulse (read or write).
9	XTA	1	CPU external minor cycle timing signal
10	LXMAR	1	A falling edge of LXMAR pulse from CPU will load external memory address register


Pin Number	Symbol	Input/ Output	- Description
11	LXMAR*	O	LXMAR generated by the IM6102
12	XTC*	0	XTC generated by the IM6102
13	XTC	1	CPU external minor cycle timing signal
14	CLOCK	1	Oscillator OUT pulses from CPU for timing the IM6102 DMA transfers.
15	$\overline{\text { SKP }} / \overline{\mathrm{NTX}}$	1	Multiplexed SKP/INT line from lower priority devices
16	DXO	1/0	Most significant bit of the 12-bit multiplexed address and data I/O bus
17	DX1	1/0	See pin 16-DX0
18	DX2	1/0	See pin 16-DX0
19	DX3	1/0	See pin 16-DX0
20	DX4	1/0	See pin 16-DX0
21	DX5	1/0	See pin 16-DX0
22	DX6	1/0	See pin 16-DX0
23	DX7	1/0	See pin 16-DX0
24	! ${ }^{\text {¢ }}$	1/0	See pin 16-DX0
25	DX9	1/O	See pin 16-DX0
26	GND	1/0	Power Supply
27	DX10	1/0	See pin 16-DX0
28	DX11	$1 / 0$	See pin 16-DX0
29	OSCIN	1	Crystal input for timer oscillator
30	$\overline{\text { DEVSEL }}$	1	Device select for read or write from CPU
31	OSC OUT	0	See pin 29
32	$\overline{\mathrm{C}}$	0	Control lines to CPU determining type of peripheral data transfer
33	$\overline{\mathrm{C}_{1}}$	0	See pin 32-C0
34	$\overline{\mathrm{C}_{2}}$	0	See pin 32-C0
35	$\overline{\text { SKP }} / \overline{\text { INT }}$	0	Multiplexed SKP/INT input to the CPU
36	EMAO	0	Extended memory address field (most significant bit)
37	EMA1	0	Extended memory address field
38	EMA2	0	Extended memory address field
39	INTGNT	1	CPU interrupt grant
40	$\overline{\text { PROUT }}$	0	Priority out for vectored interrupt

NOTE: All DX lines are bidirectional with three-state outputs: Pins 6, 8, 11, 12, 35, 40 have active pullups; pins $32,33,34$ have open drain outputs; pin 15 has a resistive input pullup; all inputs are protected with resistors and clamp diodes.

## ARCHITECTURE

The IM6102 is composed of three distinct functions:
a) A DMA port that uses the bus during the second half of a cycle to read, write, or refresh memory. The DMA port logic includes a word count register WC, a current address register CA, an extended current address register ECA, and a DMA status register.
b) An extended memory address controller that augments the 12 -bit addresses generated by the IM6100 microprocessor by supplying a 3-bit address field that may be decoded to select one of eight 4096 word memory fields. The memory extension controller logic consists of an instruction field register IF, a data field register DF, an instruction buffer register IB, and a save field register SF.
c) A realtime clock whose mode and time base rate may be programmed by the user. The clock logic includes a clock enable register $C E$, a clock buffer register $C B$, a clock counter register CC, and a time base multiplexer.
A block diagram of the IM6102 is shown in Figure 1.

The IM6102 registers are summarized as follows:

## A. Simultaneous DMA Channel (Figure 3)

## CURRENT ADDRESS (CA) REGISTER

This register is a 12 -bit presettable binary counter. At the beginning of a SDMA transfer, the current address must be set to the first location to be accessed. The content of the CA register is incremented by 1 after a

SDMA transfer, and the incremented value is used as the address of the memory location with which the next transfer will be performed.

## EXTENDED CURRENT ADDRESS (ECA) REGISTER

This is a 3 -bit presettable binary counter and if the carry enable bit of the DMA status register is set, the 12 -bit CA register and the 3 ECA bits are treated as one 15 -bit register with the ECA bits most significant. If memory field 7 (all 3 bits at logic one) is selected, the ECA cannot increment, but will wrap around in field 7 and an F7 error (F7E) will occur. The Interrupt Enable bit IE in SR1 1 must be set to enable F7E interrupts. If enabled the F7E will request an interrupt. If the carry enable bit CE in SR9 is not set, the ECA is not incremented when CA goes from 77778 to 00008 .

## WORD COUNT (WC) REGISTER

A 12 -bit presettable binary counter is used as a word counter. At the beginning of a SDMA transfer, the two's complement of the number of 12 -bit words to be transferred must be loaded into the WC. If enabled this will initiate the SDMA operation. The WC register is incremented by 1 after a SDMA transfer. If this value becomes zero, word count overflow has occurred and if the IE bit in SR11 is set, interrupts are enabled and an interrupt is requested. Unless instructed to be in the continuous run mode, a WC overflow inhibits further transfers. The WOF is set when the MSB of the WC register makes a " 1 " to " 0 ' transition.



FIGURE 2: MEDIC TIMING FOR DCA I

## DMA Status Register

This register consists of 5 control bits and 2 flag bits for the SDMA feature. For a description refer to the register bit assignments.


FIGURE 3: SDMA REGISTERS

## OPERATION

The IM6102 SDMA channel augments the throughput of the IM6100 during DMA operations by transferring data be-tween memory and peripheral devices simultaneously with
normal processor bus usage. In other words, no memory cycles are "stolen" from the processor; but the DMA address and data are transferred on the bus during periods that the DX bus is inactive.

TABLE 3 SDMA INSTRUCTIONS

MNEMONIC	OCTAL CODE	OPERATION
LCAR	62058	LOAD CURRENT ADDRESS REGISTER (CA) The contents of the AC replace the contents of the CA and the AC is cleared. DMA sequencing is stopped.
RCAR	62158	READ CURRENT ADDRESS REGISTER Description: Contents of CA transferred to AC.
LWCR	62258	LOAD WORD COUNT REGISTER (WC)   Description: Contents of AC are transferred to the WORD COUNT REGISTER, the AC is cleared WORD COUNT OVERFLOW (WOF) is cleared and DMA operation started.
LEAR	62N68	LOAD IMMEDIATE TO EXTENDED CURRENT ADDRESS REGISTER (ECA) Description: Field $N$ of the IOT instruction is transferred to the Extended current address register.
REAR	62358	READ EXTENDED CA   Description: Extended current address register contents OR'd into bits 6, 7, 8, of AC.
LFSR	62458	LOAD DMA FLAGS and STATUS REGISTER Description: AC bits 7-11 are transferred to the DMA STATUS REGISTER and the $A C$ is cleared.
RFSR	62558	READ DMA FLAGS and STATUS REGISTER   Description: DMA Flags and Status Register bits are OR transferred. into AC bits 5.11 and Field 7 wraparound error (F7E) is cleared.
SKOF	62658	SKIP ON OVERFLOW INTERRUPT   Description: The PC is incremented by 1 if a word count register overflow interrupt condition is present causing next instruction to be skipped.
WRVR	62758	WRITE VECTOR REGISTER   Description: AC bits $0-10$ are transferred to the Vector Register and the AC is cleared.
CAF	60078	CLEAR ALL FLAGS-clears F7E and WOF (and also COF), Clock enable and clock buffer. The DMA process is initiated if the status register is not set to the "stop" mode.

TABLE 4 DMA FLAGS AND STATUS REGISTER BIT ASSIGNMENTS

where* - don't care for write and zero for read.
F7E Field 7 wrap around carry error; cleared by CAF, RFSR and RESET
WOF Logic one indicates word counter overflow; clear by CAF, LWCR and RESET
CE Carry enable from CA(0-11) to ECA; cleared by RESET
$\bar{R} / W \quad$ Logic one indicates DMA write (Port to Memory transfer). Cleared (DMA Read) by RESET
IE . Enable interrupt when WC overflows or Field 7 error occurs; cleared by RESET
SR7, 8 . 00 Refresh mode; WC is frozen, no UP, DMAEN is don't care
01 Normal mode; $\operatorname{DMAEN}(H)$ freezes WC CA and no UP if WC has not overflowed; stop if WC overflows
10 Burst mode; DMAEN(H) freezes WC, CA and no UP if WC has not overflowed; refresh condition if WC overflows
11 Stops DMA

## DMA MODES

## $S_{7}=S_{8}=0$ REFRESH MODE

This is the mode to which the 6102 reverts on RESET. The word count register clock input is disabled, the user pulse (DMA data strobe) is suppressed and the DMAEN input is ignored. However, provided valid DMA transfer conditions are met in a particular memory cycle, the DMA sequencer will be started, appropriate timing signals will be generated and the current address register will be clocked. Thus DMA read accesses will be performed continually with an essentially free-running current address register. Read accesses will refresh dynamic memory. No WOF is possible but an F7E is possible if bit SR9 is set, enabling a carry from the current address register to the extended current address register.

## $S R_{7}=0 ; S R_{8}=1$ NORMAL MODE

This mode is used for normal SDMA operations with static memory. The following instruction sequence can be used:

CLA	/Clear AC
TAD CA	/Get starting address
LCAR	/Load into current address register and
	clear AC

/Clear AC
CAD CA starting address clear AC

TAD SR /Get DMA status Register Constant LFSR /Change status (from refresh to normal for example)
TAD WC /Get two's complement of block length LWCR /Load word count register and start DMA TRANSFERS

Note that LWCR will start the sequencer so it should be the last instruction in the initialization sequence. The ECA register and vector register could also have been initialized in this sequence.

The SDMA sequencer samples DMAEN on the rising edge of every XTA and latches the condition of the enable line. If DMAEN is low, the sequencer is enabled, external timing signals XTC*, MSEL*, UP, LXMAR* are generated, the WC and CA registers are clocked. If DMAEN is high, at XTA ( $\uparrow$ ) time, the signal is sampled and latched and if the WC has not overflowed, the WC and CA registers are frozen, UP is suppressed. If the WOF condition comes up, the SDMA operation stops, regardless of DMAEN level.
The DMAEN and UP signals provide a simple interlocked handshaking method for transferring data one or more characters at a time (entire blocks) concurrently with processor operations on the bus. Of course, at all times, independent of DMAEN, the SDMA sequencer can proceed only if other bus usage conditions for DMA operations are met (not IOTA, IAUTOI, DCA, JMS, IJMS, ISZ, DMAGNT, or access of location X00008),
NOTE: IAUTOI is an indirect cycle of any autoindexed instruction; IJMS is indirect cycle of JMS. An autoindexed JMP* instruction may not be executed when the DMA mode is active.

## $S R_{7}=1 ; \mathrm{SR}_{8}=0 \quad$ BURST MODE

This mode is the same as the normal mode except when the word count register overflows. When this happens, the SDMA sequencer will set the WOF flag and revert to the refresh mode (ignoring DMAEN, freezing WC and suppressing UP). This mode is used when SDMA operations and dynamic memory refresh must be concurrently performed. The system designer must control the block lengths to be transferred, the refresh interval, and memory system design according to the application and performance desired.

## $S R_{7}=1 ; R_{8}=1$ STOP MODE

In this mode, no SDMA operations will take place. Naturally, cycle stealing DMA is still possible, and indeed may be used in any of the modes but the designer must be aware that cycle stealing may adversely affect dynamic memory refresh intervals. LWCR and LFSR may be executed in either order to change mode and start DMA.

## B. Extended Memory Address Control

Figure 4 shows the EMA registers in more detail along with the register transfers caused by various instructions. The EMA function of the IM6102 is program compatible with the DEC PDP-8/E KM8-E Memory Extension option. The purpose of the EMA function is to extend the effective
addressing space of the system from 4 K to 32 K words. To perform this function, the EXTENDED MEMORY CONTROLLER maintains a 3 -bit extended address which is decoded by the memory modules to select 1 of 8 memory fields each containing 4096 words of storage. These 4 K fields start with FIELD 0 and progress to FIELD 7 when 32 K of memory is used. All software communication with the controller is via programmed IOT instructions for which a summary is included in Table 1.

Figure 4 shows two 3 -bit field registers: the Instruction Field, which acts as an extension to the Instruction and directly obtained operand addresses and the Data Field, which augments indirectly obtained operand addresses. The program can, therefore, use one field for instructions and address pointers and another field for data. The selection between Instruction and Data Fields is signalled by the DATAF signal generated by the IM6100. A discussion of the various registers follows.


FIGURE 4: EMA REGISTERS

## INSTRUCTION FIELD REGISTER (IF)

The IF is a 3-bit register that serves as an extension of the Program Counter ( PC ). The IF, however, is not incremented when the PC goes from 77778 to 00008 . The contents of the IF determine the field from which all instructions are taken. Operands for all directly addressed memory reference instructions also come from the Instruction Field. The indirect pointer for all indirectly addressed memory reference instructions reside in the Instruction Field. The IF is cleared to $0_{8}$ and the IM6100 Program Counter is set to 77778 by RESET.

## DATA FIELD REGISTER (DF)

The DF is a 3-bit register which determines the memory field from which operands are fetched in indirectly addressed AND, TAD, ISZ or DCA instructions. However, the branch address for indirectly addressed JMS or JMP instructions is obtained from the Instruction Field. The Data Field register may be modified under program control. The DF is set to $\mathrm{O}_{8}$, on reset.

## INSTRUCTION BUFFER REGISTER (IB)

The IB is a 3-bit register which serves as an input buffer for the Instruction Field (IF) register. All programmed modifications of the IF register are made through the IB
register. The transfer from IB to IF takes place at the beginning of the execute phase of the "next" JMP or JMS instruction or immediately upon execution of an LIF instruction. Using this feature, a program segment can execute an instruction to modify the IF and then "exit" the program segment before the actual modification of the IF takes place. If instructions could change the IF directly, it would be impossible to execute the "next" sequential instruction, followed by a Change IF instruction. The IB to IF transfer is inhibited if the JMP/JMS instruction is fetched from control panel memory, which is restricted to 4 K , but the LIF instruction is used here to provide the ability to load the IF register from the IB register. This allows the control panel routines to be executed transparently while the IB and IF differ and also yields a method for the panel to extract or alter the status of the primary EMA registers. The IB is set to $\mathrm{O}_{8}$, on reset. The IB to IF transfer takes place during the second cycle of a JMP/ JMS instruction when XTC makes a falling ( $\downarrow$ ) transition.

## SAVE FIELD REGISTER (SF)

The SF is a 6-bit register in which the IB and DF registers are saved during an Interrupt Grant. When an Interrupt occurs, the contents of $I B$ and DF are automatically
stored in SF (0-2) and SF (3-5), respectively, and the IF, IB and DF registers are cleared. The INTGNT (Interrupt Grant) cycle stores the "current" Program Counter (PC) in location $0000_{8}$ of Memory Field $0_{8}$ and the CPU resumes operation in location 00018 of Memory Field 08 . The Instruction Field and Data Field of the program segment being executed by the CPU before the interrupt was acknowledged are available in the SF register.

## INTERRUPT INHIBIT FLIP-FLOP

The INTREQ (Interrupt Request) line to the IM6100 must be "gated" by the Interrupt Inhibit Flip-Flop so that, when the Instruction Field is changed under program control, all interrupts are disabled until a JMP or JMS instruction is executed. Since the actual modification of the Instruction Field takes place only after the "next" JMP/JMS, this inhibition of the INTREO's ensures that the program sequence resumes operation in the "new" memory field before an Interrupt Request is granted.
Since Interrupt Requests are asynchronous in nature, a situation may arise in which an INTREQ is generated when the IF and IB bits are different. The Interrupt Inhibit FF guarantees the structural integrity of the program segment. The IIF is cleared on reset.

TABLE 5 EMA INSTRUCTIONS

MNEMONIC	$\begin{aligned} & \text { OCTAL } \\ & \text { CODE } \end{aligned}$	OPERATION
GTF	$6004_{8}$	GET FLAGS   Operation: $\begin{aligned} & \text { AC }(0) \leftarrow \text { LINK } \\ & \text { AC }(2) \leftarrow \text { INTREQ Line } \\ & \text { AC }(3) \leftarrow \text { INT INHIBIT FF } \\ & \text { AC }(4) \leftarrow \text { INT ENABLE FF } \\ & \text { AC }(6-11) \leftarrow \text { SF }(0-5) \end{aligned}$   Description: LINK, INTREQ and INT ENABLE FF are internal to the CPU. The INT INHIBIT FF and SF are in the MEDIC.
RTF	$6005_{8}$	RETURN FLAGS   Operation: $\quad$ LINK $\leftarrow A C(0)$ $\mathrm{IB} \leftarrow \mathrm{AC}(6-8)$ $D F \leftarrow A C(9-11)$   Description: LINK is restored. All AC bits are available externally during IOTA T6 to restore other flag bits. The internal Interrupt System is enabled. However, the Interrupt Inhibit FF is made active until the "next" JMS/JMP/LIF. The IB is transferred to IF after the "next" JMS/JMP/LIF.
CDF	62N18	CHANGE DATA FIELD   Operation: $\quad \mathrm{DF} \leftarrow \mathrm{N}_{8}$   Description: Change DF register to $\mathrm{N}\left(0_{8}-78\right)$.

TABLE 5, Continued

MNEMONIC	OCTAL CODE	$\because$ OPERATION
CIF	62 N 28	CHANGE INSTRUCTION FIELD   Operation: $\quad \mathrm{IB} \leftarrow \mathrm{N}_{8}$   Description: Change IB to $N(08-78)$. Transfer IB to IF after the "next" JMP/JMS/LIF. The Interrupt Inhibit FF is active until the "next" JMP/JMS/LIF.
CDF, CIF	62N38	CHANGE DF, IF   Operation: $\quad \mathrm{DF} \leftarrow \mathrm{N}_{8}$ $I B \leftarrow N_{8}$   Description: Combination of CDF and CIF.
RDF	62148	READ DATA FIELD   Operation: $\quad A C(6.8) \leftarrow A C(6-8)+D F$   Description: OR's the contents of DF into bits 6.8 of the AC. All other bits are unaffected.
RIF	62248	READ INSTRUCTION FIELD   Operation: $\quad A C(6-8) \leftarrow A C(6-8)+I F$   Description: OR's the contents of IF into bits 6-8 of the AC. All other bits of the $A C$ are unaffected.
RIB	62348	READ INTERRUPT BUFFER   READ SAVE FIELD   Operation: $\quad A C(6-11)-A C(6-11)+S F$   Description: OR's the contents of SF into bits 6-11 of the AC. All other bits are unaffected.
RMF	${ }^{6244} 8$	RESTORE MEMORY FIELD   Operation: $\quad \mathrm{IB} \leftarrow \mathrm{SF}(0-2)$   DF $\leftarrow \mathrm{SF}(3.5)$   Description: The SF register saves the contents of the IB and DF when an interrupt occurs. This command is used to restore IB and DF when "exiting" from the interrupt service routine in another field.   Transfer IB to IF after the next JMP/JMS/LIF. The Interrupt Inhibit Flip-Flop is active until the next JMP/JMS/LIF.
- LIF	${ }_{6254}^{8}$	LOAD INSTRUCTION FIELD

+: "OR"
-: "AND"
↔: "IS REPLACED BY"

## OPERAND FETCHING

Instructions are accessed from the currently assigned Instruction Field. For indirect AND, TAD, ISZ or DCA instructions, the operand address refers first to the Instruction Field to obtain an Effective Address which in turn refers to a location in the currently addressed Data Field. All instructions and operands are obtained from the field designated by the IF, except for indirectly addressed operands, which are specified by the DF. Thus, DF is active only in the Execute phase of an AND, TAD; ISZ or DCA when it is directly preceded by an Indirect phase.

ADDRESS MODE	IF	DF	AND, TAD, ISZ or DCA
Direct	m	n	Operand in field m
Indirect	m	n	Absolute address of   operand in field $\mathrm{m} ;$   operand in field n

Each field of extended memory contains eight auto-index registers in addresses 10 through 17. For example, assume that a program in field 2 is running ( $I F=2$ ) and using operands in field $1(D F=1)$ when the instruction TAD I 10 is fetched. The indirect autoindex cycle is entered, and the contents of location 10 in field 2 are read, incremented, and rewritten. If address 10 in field 2 originally contained 0546, it now contains 0547. In the execute cycle, the operand is fetched from location 0547 of field 1.

Program control is transferred between memory fields by the CIF instruction. The instruction does not change the instruction field directly, as this would make it impossible to execute the next sequential instruction; instead, it loads the new instruction field in the IB for automatic transfer into the IF when either a JMP or JMS instruction is executed. The DF is unaffected by the JMP and JMS instructions.

The 12 -bit program counter is set in the normal manner and, because the IF is an extension on the most significant end of the PC, the program sequence resumes in the new memory field following a JMP or JMS. Entry into a program interrupt is inhibited after the CIF instruction until a JMP or JMS is executed.

NOTE: The IF is not incremented if the PC goes from 77778 to 00008 . This feature protects the user from accidentally entering a nonexistent field.

To call a subroutine that is out of the current field, the data field register is set to indicate the field of the calling JMS, which establishes the location of the operands as well as the identity of the return field. The instruction field is sei to the field of the starting address of the subroutine. The following sequence returns program control to the main program from a subroutine that is out of the current field.

	CIF 10	/CHANGE TO INSTRUCTION /FIELD $1=6212$
	JMS I SUBRP	/SUBRP = ENTRY ADDRESS
	CDF 20	/RESTORE DATA FIELD
SUBRP,	SUBR	/POINTER
		FIELD 1
SUBR,		/CALLED SUBROUTINE, /LOCATION IN FIELD 1
	0	/RETURN ADDRESS /STORED HERE
	CLA	
	RDF	/READ DATA FIELD INTO AC
	TAD RETURN	/CONTENTS OF THE AC =
		/6202 + DATA FIELD BITS
	DCA EXIT	/STORE CIF N INSTRUCTION /NOW CHANGE DATA FIEL.D /IF DESIRED
EXIT,	0	/A CIF INSTRUCTION
	JMP I SUBR	/RETURN TO CALLING /PROGRAM
RETURN, CIF		/USED TO FORM CIF N /INSTRUCTION

When a program interrupt occurs, the current instruction and data field numbers are automatically stored in the 6-bit save field register, then the IF and DF are cleared. The 12-bit program counter is stored in location $0^{0000} 8$ of field $0_{8}$ and program control advances to location 00018 of field 08 . At the end of the program interrupt subroutine, the RMF instruction restores the IF and DF from the contents of the SF. Alternatively, the GTF and RTF instructions may be used to handle the Save Field and Link information. The following instruction sequence at the end of the program interrupt subroutine continues the interrupted program after the interrupt has been processed:TAD AC
RMF
ION

$$
\text { JMP I } 0
$$

IM6100 control panel memory programs, if used must be careful in the manner that EMA register data is manipulated. Control panel interrupt requests bypass the device interrupt enable flip flop, and indeed, are granted even by a halted CPU. The interrupts from a control panel may occur at any time, and in particular when the IB and IF registers do not contain the same data. The EMA logic inhibits IB to IF transfers in control panel memory so that panel routines may execute transparently (in particular, JMP/JMS instructions). The panel routines may alter the IF by executing the LIF instruction.

Users should also note that the GTF and RIB instructions read the SF register, and only the RIF instruction reads the IF register. Note also that the SF saves the IB register rather than the IF during an interrupt. However, interrupts are inhibited until the IF and IB registers are the same.

The memory extension controller that we have discussed in this section shows three important design considerations involved in extending memory addressing space. The first is the concept of having separate instruction and data fields for program flexibility. The second is the importance of double buffering the instruction field register to maintain structural integrity of programs and the third is the provision for saving the current field status upon interrupts and disabling interrupts until a change of instruction field has been completely executed.

## C. Programmable Real Time Clock

The programmable real time clock offers the 6100 user a number of ways to accurately measure and count intervals in order to implement real time data acquisition and data processing systems.

The crystal used should have the following characteristics:

$$
\begin{aligned}
& R_{S} \leqslant 150 \text { ohms } \\
& C_{M}=3-30 \mathrm{mpF}(10-15 \mathrm{~F}) \\
& \mathrm{C}_{\mathrm{O}}=10-50 \mathrm{pF}
\end{aligned}
$$

Static capacitance should be around 5pF; for the greatest stability, $\mathrm{C}_{\mathrm{O}}$ should be around 12 pF and the oscillator is parallel resonant.

## TABLE 6 CLOCK ENABLE REGISTER BIT ASSIGNMENTS

0	1	2	3	4	5	6	7	8	9	10	11
ENO	$\cdot$	EN2	EN3	EN4	EN5	$\cdot$	EN 7	$\cdot$	.	.	$\cdot$

* Don't care for write and zero for read.

Where ENO - When set to 1 , enables clock overflow (COF flag) to cause an interrupt. Cleared by RESET, CAF.
EN2 - When reset to a 0 -counter runs at selected rate. Overflow occurs every 4096 (212) counts.COF flag remains set until cleared by $10 T 6135$ (CLSA), CAF, RESET.

When set to a 1-counter runs at selected rate. If the COF flag is cleared, overflow causes clock buffer to be transferred to the clock counter which continues to run. COF flag remains set until cleared with IOT 6135 (CLSA). Also cleared by RESET, CAF.
EN3, 4, 5- Assuming 2 MHz crystal oscillator cleared by RESET, CAF.

Bits 3,4,5	Octal	Interval Between Pulses	Frequency
000	0	Stop	0
001	1	Stop	0
010	2	20 msec	50 Hz
011	3	2 msec	500 Hz
100	4	$200 \mu \mathrm{sec}$	5 KHz
101	5	$20 \mu \mathrm{sec}$	50 KHz
110	6	$2 \mu \mathrm{sec}$	500 KHz
111	7	Stop	0
EN7 - Inhibits clock prescaler when set to 1			
	cleared by RESET, CAF. EN3-5 and EN7		
should not be changed simultaneously.			



FIGURE 5 RTC REGISTERS

A discussion of the Real Time Clock registers as shown in Fig. 5 follows:

## CLOCK ENABLE REGISTER

This register controls the mode of counting, whether clock interrupts are allowed, and the rate of the time base of the clock. For a description refer to the register bit assignments.

## CLOCK BUFFER REGISTER (CB)

This 12-bit register stores data being transferred from the $A C$ to the clock counter, or from the clock counter to the AC. It also permits presetting of the clock counter.

## CLOCK COUNTER REGISTER (CC)

This register is a 12 -bit binary counter that may load the clock buffer or be loaded from it. It is driven by a. 2 MHz crystal oscillator with the proper predivision set by the time base selection. When an overflow occurs and if bit 0 of the clock enable register is a logic one, an interrupt is requested. If bit 2 is also 1 , overflow causes the clock buffer to be transferred automatically into the clock counter.

## TIME BASE MULTIPLEXER

The multiplexer provides count pulses to the clock counter according to the rate set by the clock enable register. Use of other than a 2 MHz crystal for the clock will result in proportionately different time bases.

## CLOCK OVERFLOW FLAG

This flag is set by a clock counter overflow. It is cleared by CAF, CLSA and RESET. Its complement provides LSB (VR11) of interrupt vector. If ENO of clock enable counter is set, COF can cause an interrupt request. The COF is set when the MSB of the counter makes a " 1 " to " 0 " transition.

TABLE 7 RTC INSTRUCTIONS

MNEMONIC	OCTAL CODE	OPERATION
CLZE	$6130_{8}$	CLEAR ENABLE REGISTER PER AC   Description: Clears the bits in the clock enable register corresponding to those bits set in the AC. The AC is not changed.
CLSK	$6131_{8}$	SKIP ON CLOCK INTERRUPT   Description: Causes the program counter to be incremented by one if clock interrupt conditions exists, so that the next sequential' instruction is skipped.
CLOE	$61328$	SET ENABLE REGISTER PER AC   Description: Sets the bits in the clock enable register corresponding to those bits set in the AC. The AC is not changed.
CLAB	61338	TRANSFER AC TO CLOCK BUFFER   Description: Causes the contents of the $A C$ to be transferred to the Clock Buffer, then causes the contents of the Clock Buffer to be transferred to the Clock Counter. The AC is not changed.
CLEN	61348	READ CLOCK STATUS   Description: Interrogates the clock overflow status flip flop by clearing AC, then transferring clock status into AC bit O. COF is cleared.
CLSA	61358	READ CLOCK STATUS   Description: Interrogates the clock overflow status flip flop by clearing $A C$, then transferring clock status into $A C$ bit $O$. COF is cleared.
CLBA	61368	READ CLOCK BUFFER   Description: Clears the AC, then transfers the contents of the Clock Buffer into the AC.
CLCA	$61378$	READ CLOCK COUNTER   Description: Clears the AC, transfers the contents of the Clock Counter to the Clock Buffer, then transfers the contents of the Clock Buffer into the AC. If EN7 is set to 1 (clock prescaler is inhibited), the CLCA instruction increments the prescaler input by one. If the clock is in the "stop" mode but EN7 is not inhibited, the prescaler will not be clocked by the CLCA instruction.
CAF	60078	CLEAR ALL FLAGS   Description: Clears COF flag (and also F7E, WOF flags), clock enable and clock buffer registers.

## SYSTEM CONSIDERATIONS

The IM6102 is the highest priority device in a priority interrupt scheme. It provides an active low signal on pin 40, POUT, to signal the next lower priority device in the chain (thus, a high level on POUT indicates that the 6102 is not requesting an interrupt) via its "priority-in", PRIN, input.

The IM61.02 when requesting an interrupt activates the SKP/INT line low on pin 35 and the POUT line low on pin 40 if its interrupt inhibit flip-flop is not set.

The IOT instructions used by the IM6102 preclude the use of certain device addresses when the system uses IM6101 PIEs. The addresses that may not be used are those given by bits 3 through 7 of the IOT instructions that are used with the IM6102. These addresses are 00101, 01000, 01001, 01010, 01011 corresponding to IOT instructions 612 X , 613X, 620X, 621X, 622X, 623X, 624X, 625X, 626X and 627X.

The IM6102 does not generate DMAREQ signals to the 6100 because of its simultaneous use of the DX buis. It monitors the DMAGNT signal in order to place the EMA 0 , 1, 2 lines on pins $36,37,38$ in a high impedance state while DMAGNT is high.
If the application requires other peripherals requiring direct memory access on a cycle stealing basis, for example, bus contention problems will be resolved by the IM6102 as it monitors the DMAGNT line and gets off the bus (by placing all lines in the high impedance state) when DMAGNT is active.

If interrupts are enabled and a request is pending, during the first INTGNT cycle, the IM6102 will detect the referencing of location 00008 by the IM6100 in order to save the PC and will suspend simultaneous DMA during that cycle. The logic will in fact suspend simultaneous DMA in any cycle that location $0^{0000} 8$ is referenced, either in main memory or control panel memory.

This makes it possible to disable automatic interrupt vectoring by grounding the INTGNT line to the IM6102. This will not affect the generation of INTREQ so the IM6100 will have to poll peripheral devices (skip on flag instructions) to determine the interrupting source.

Grounding INTGNT is not possible in extended memory applications since the INTGNT signal is used to save the Instruction Buffer and Data Field Register and clear the IF, IB and DF registers. (All peripheral device interrupt service routines have their entry point at location 00018 of Memory Field $0_{8}$ ).

If no interrupt requests are pending in the 6102 (COF, F7E or WOF) from the DMA or RTC functions, the IM6102 interrupt request flip-flop is clear and POUT, the priority out signal, is high, enabling interrupt requests downstream in the priority chain. In the event that interrupts are enabled (DMA status bit SR11 is set and/or clock enable bit ENO is set) and an interrupting condition occurs (F7E, WOF, COF), the POUT signal goes low asynchronously disabling interrupt vectors downstream.

If the Interrupt Inhibit Flip-Flop is not set, the SKP/INT line is driven low by the interrupt request. If the IIFF is set, the SKP/INT line stays high until the IIFF is cleared (by RESET or an IB to IF transfer) at which time SKP/INT may be driven low. Skip requests will always propagate independently of IIFF during IOTA • $\overline{\text { DEVSEL }} \bullet$ XTC.

Interrupt requests from devices downstream of the IM6102 must also be channeled via the IM6102 in order that the IIFF may condition the request timing. The IM6102 provides a built in pull-up on the SKP/INTX line coming in from devices downstream in the priority chain. At 5 v , the pull-up looks like a 10 K resistor; at 10 V , it looks like 5 K .

The execution of any IOT instruction will reset INTGNT to a low level at the end of IOTA time. This IOT instruction will be the first instruction in the interrupt service routine after saving status. If hardware vectoring is being used, any IOT instruction when INTGNT is high will cause the IM6102. to place a vector address on the bus if it requested an interrupt and pull the C1 and C2 lines low, thus placing the vector in PC and forcing a branch to the service routine. If the C2 line is left unconnected, the vector address will not be forced into the PC, but will be OR'ed into the AC. The interrupt service routine would have to execute a CLA after its first IOT instruction in order to clear the AC. Note that the LSB of the vector address is determined by the complement of the COF flag and that a DMA interrupt service routine must distinguish between the two possible interrupting conditions, a word count overflow or a field 7 wraparound error. The programmer may read the DMA status register with an RFSR instruction and also test the WOF flag with a skip instruction, SKOF. The COF flag may also be tested with the CLSK skip instruction. The flag may be read (and cleared) with the CLSA instruction. The skip instructions cause the SKP/INT line to go low during IOTA - XTC time if the flag being tested is set. At all other times, the SKP/INT line carries interrupt requests as modified by the IM6102 interrupt inhibit logic. The flags must always be explicitly cleared by the interrupt service routine.

The DMA transfer rate depends on the program. The minimum rate would be obtained if the processor was executing an autoindexed DCA or an indirect JMS (even if non-autoindexed, DMA is suppressed during indirect phase of JMS). Continuously executing these instructions would cause DMA transfers to occur only every third memory cycle (IFETCH). The maximum rate could be obtained by executing a JMP• loop (JMP to itself); data would be transferred on every cycle and the interrupt routine entered when word count overflows could bump the return address out of the loop.

In dynamic memory systems it should be noted that the MEMSEL* signal narrows when the mode changes from write to refresh (burst mode). RESET signals may need to be limited in duration to prevent loss of memory data in dynamic memory systems.

The accuracy of the clock counter in the programmable real time clock section of the IM6102 is as follows:

CASE 1: Counter running; $C C$ loaded from $A C$ via CB using instruction CLAB (IOT 6133) accuracy is 0 to +1 count.

CASE 2: CC loaded from CB automatically on overflow; the accuracy of counting is
then ónly dependent on accuracy of oscillator.

IM6102 users who do not need all the capabilities of the device may improve systems performance by not using some of the features. To do this properly, certain pins on the device will become unused. The following table summarizes what may be done with certain pins when using only part of the IM6102 functions. All unlisted pins must be used when implementing any of the three basic features.

PIN   NUMBER	PIN NAME	RTC ONLY	SDMA ONLY	EMC ONLY	EMC \& DYNAMIC REFRESH
2	DMAEN	GND	USED	GND	GND
3	DMAGNT	USED	USED	USED	USED
6	MEMSEL**	N/C	USED	N/C	USED
8	UP	N/C	USED	N/C	N/C
11	LXMAR*	N/C	USED	N/C	USED
12	XTC**	N/C	USED	N/C	USED
15	SKP/INTX	VCC	VCC	USED	USED
29	OSCIN	USED	GND	GND	GND
31	OSC OUT	USED	N/C	N/C	N/C
34	C2	USED	USED	N/C	N/C
36	EMAO	N/C	N/C	USED	USED
37	EMA 1	N/C	N/C	USED	USED
38	EMA 2	N/C	N/C	- USED	USED
40	PROUT	USED	USED	N/C	N/C

TABLE 1 SUMMARY OF IM6102 INSTRUCTIONS

MNEMONIC	$\begin{aligned} & \text { OCTAL } \\ & \text { CODE } \end{aligned}$	I/O CONTROL LINES			OPERATION
		C0	C1	C2	
GTF	6004	0	0	1	(1) Get flags, INT INH FF $\rightarrow \mathrm{AC}(3)$, SF $(0-5) \rightarrow \mathrm{AC}(6-11)$
RTF	6005	1	1.	1	(2) Return flags, $\mathrm{AC}(6-8) \rightarrow \mathrm{IB}, \mathrm{AC}(9-11) \rightarrow \mathrm{DF}$
CDF	62N1	1	1	1	Change Data Field, $\mathrm{N} \rightarrow$ DF
CIF	62N2	1	1	1	Change IF, N $\rightarrow$ IB
CDF, CIF	62N3	1	1	1	Combination of CDF, CIF
RDF	6214	1	0	1	Read DF, DF + AC (6-8) $\rightarrow \mathrm{AC}(6-8)$
RIF	6224	1	0	1	Read IF, IF + AC(6-8) $\rightarrow$ AC(6-8)
RIB	6234	1	0	1	Read Save Field, SF + AC(6-11) $\rightarrow$ AC(6-11)
RMF	6244	1	1	1	Restore Mem. Field, SF (0-2) $\rightarrow$ IB, SF $(3-5) \rightarrow$ DF
LIF	6254	1	1	1	Load IF, IB $\rightarrow$ IF
CLZE	6130	1	1	1	Clear Clock Enable Register if corresponding AC bit is set AC not changed
CLSK	6131	1	1	1	Skip on Clock Overflow Interrupt condition
CLOE	6132	1	1	1	Set Clock Enable Register if corresponding AC bit is set AC not changed
CLAB	6133	1	1	1	AC $\rightarrow$ Clock Buffer; Clock Buffer $\rightarrow$ Clock Counter;   AC not changed
CLEN	6134	0	0	1	Clock Enable Register $\rightarrow$ AC
CLSA	6135	0	0	1	COF $\rightarrow$ AC(0), Clear COF Status bit
CLBA	6136	0	0	1	Clock Buffer $\rightarrow$ AC
CLCA	6137	0	0	1	Clock Counter $\rightarrow$ Clock Buffer; Clóck Buffer $\rightarrow$ AC
LCAR	6205	0	1	1	$\mathrm{AC} \rightarrow$ Current Address Register, $0 \rightarrow \mathrm{AC}$
RCAR	6215	0	0	1	Current Address Register $\rightarrow$ AC
LWCR	6225	0	1	1	AC $\rightarrow$ Word Count Register, Start DMA, $0 \rightarrow$ AC; clears word count overflow (WOF)
LEAR	62N6	1	1	1	$\mathrm{N} \rightarrow$ Extended Current Address Register (ECA)
REAR	6235	1	0	1	Read ECA, ECA + AC(6-8) $\rightarrow$ AC(6-8)
LFSR	6245	0	1	1	$\mathrm{AC}(7.11) \rightarrow$ Status Register, $0 \rightarrow \mathrm{AC}$
RFSR	6255	1	0	1	DMA Status Register $+\mathrm{AC}(5-11) \rightarrow \mathrm{AC}(5-11)$; clears Field 7 Wraparound error (F7E)
SKOF	6265	1	1.	1	Skip on Word Count Overflow
WRVR	6275	0	1	$!$	$\mathrm{AC}(0-10) \rightarrow$ Vector Register, $0 \rightarrow$ AC
CAF	6007	1	1	1	(3) Clear all flags (F7E, WOF, COF) Clear clock Enable register, ċlock buffer

NOTES:

1. The internal flags of the IM6100 are defined as follows: LINK $\rightarrow A C(0)$, INTREQ $\rightarrow A C(2)$ and INTERRUPT ENABLE FF $\rightarrow$ AC (4).
2. When RTF is executed, the LINK is restored from $A C(0)$ and the Interrupt System is enabled after the next sequential instruction is executed.

The Interrupt Inhibit FF is set preventing interrupts until the next JMP, JMS or LIF instruction is executed.
3. A hardware RESET clears F7E, W0F, 11FF and COF. The IF and DF are cleared to $\mathrm{O}_{8}$. The DMA status register is cleared. (Read; refresh; disable F7E and WOF interrupts; no carry from CAO to ECA2). The clock Enable register is cleared (Disable COF interrupt; disable clock buffer to clock counter transfer on COF; disable counter). Counter/buffer is cleared.

TABLE 2 SUMMARY OF IM6102 REGISTER BIT ASSIGNMENTS

	DX0	DX1	DX2	DX3	DX4	DX5	DX6	DX7	DX8	DX9	DX10	DX11
Current Address	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	CA10	CA11
Extended Current Address							ECA0	ECA1	ECA2			
Word Count	WC0	WC1	WC2	WC3	WC4	WC5	WC6	WC7	WC8	WC9	WC10	WC111
DMA Status (1)						SR5	SR6	SR7	SR8	SR9	SR10	SR11
Interrupt Vector (2)	VR0	VR1	VR2	VR3	VR4	VR5	VR6	VR7	VR8	VR9	VR10	VR11
RIF Instruction (3)							IF0	IF1	IF2			
RTF, CIF Instruction							IB0	IB1	IB2			
GTF, RIB Instruction				IIFF(4)			SF0	SF1	SF2	SF3	SF4	SF5
CDF, RDF Instruction							DF0	DF1	DF2			
RTF Instruction										DF0	DF1	DF2
Clock Enable (5)	EN0		EN2	EN3	EN4	EN5		EN7				
Clock Buffer	CB0	CB1	CB2	CB3	CB4	CB5	CB6	CB7	CB8	CB9	CB10	CB11
Clock Overflow (6)	COF											

(1) DMA STATUS
$\begin{array}{ll}\text { SR5 Set if Field } 7 \text { wraparound carry error - F7E; cleared by CAF, RFSR (at IOTA } \cdot \overline{\text { XTC }} \text { time), RESET } \\ \text { SR6 } & \text { Set if DMA Word Counter Overflow - WOF; cleared by CAF, LWCR, RESET }\end{array} \begin{aligned} & \text { READ } \\ & \text { ONLY }\end{aligned}$
SR7 Mode Bit 7) ; Cleared by RESET (REFRESH MODE)
SR8 Mode Bit 8 \} See below
SR9 Carry enable from CA0-11 to ECA2 if set - CE
SR10 DMA Write if set
SR11 Enable F7E or WOF interrupt if set - IE
(2) VRO-VR10 loaded from AC. VR11 is equivalent to $\overline{\mathrm{COF}}$
(3) IF - Instruction Field; cleared to $0_{8}$ by RESET AND INTGNT
(4) IIFF - Interrupt Inhibit Flip-Flop; set whenever IB $\neq I F$; (CIF, CDF/CIF, RMF, RTF) cleared by RESET and $I B \rightarrow I F$ transfer
(5) ENO - Enable Clock Overflow (COF) interrupt; cleared (interrupt disable) by RESET , CAF

EN2 - When set causes clock buffer to be transferred to clock counter on COF.
Counter runs at selected rate; COF remains set until cleared with CLSA.
When cleared to 0 , counter runs at selected rate, overflow occurs every
212 counts and COF remains set. EN2 is cleared by RESET, CAF
EN3, EN4, EN5 - Select interval between pulses. Cleared to 000 by RESET (counter disabled), CAF See below.
EN7 - Inhibits clock prescaler when set. Cleared by RESET, CAF
(6) COF - Clock Overflow status bit; cleared by CAF, RESET and CLSA; complement provides LSB of interrupt vector.

SR 7, 800 Refresh mode; WC is frozen, no UP, DMAEN don't care
01 Normal mode; DMAEN(H) freezes WC, CA and no UP if WC has not overflowed; stop if WC overflows
10 Burst mode; DMAEN $(H)$ freezes WC, CA and no UP if WC has not overflowed; reverts to refresh mode if WC overflows.
11 Stops SDMA

EN 3, 4,5 with 2 MHz clock

## NOTES:

1. Bits SR 7 and 8 do not change when the DMA controller stops or reverts to refresh mode as a result of WC overflow.
2. The "overflow" status is defined as set when the most significant bit of a counter makes a " 1 " to " 0 " transition.

## SDMA OPERATIONS TIMING

## A. IM6100 Signals


C. DMA Read/Refresh


## D. DMA Write


E. DMA Write/Refresh


TIMING DIAGRAM


INTMESUL

## IM6102A

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Industrial IM6102A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	+4.0V to +11.0V
Supply Voltage	$+12.0 \mathrm{~V}$
Voltage On Any Input or	
Output Pin	3V to Vcc +0.3 V

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
$\ldots$	$\mathrm{V}_{\text {IH }}$	Input Voltage High		70\% Vcc		.	V	
2	VIL	Input Voltage Low				20\% VCC	V	
3	IIL	Input Leakage\|1		GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High\|2		$1 \mathrm{lOH}^{\prime}=0 \mathrm{~mA}$	$\mathrm{Vcc}-0.01$			V
5	Vol	Output Voltage Low	$\mathrm{IOL}=0 \mathrm{~mA}$			GND+0.01	V	
6	lol	Output Leakage	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$	
7.	Icc	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\cdot \mathrm{V}_{\text {cc }}$			900	$\mu \mathrm{A}$	
8	Ićc	Power Supply Current-Dynamic	$\mathrm{fc}=5.71 \mathrm{MHz}$			4.0	mA	
9	CIN	Input Capacitance 11			7.0	8.0	pF	
10	Co	Output Capacitance\|1				8.0	10.0	pF

NOTE: 1. Except pins $15,29,31$ 2. Except pins $32,33,34$.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fc}=5.71 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	tLIN	LXMAR Pulse Width IN	125			ns
2	tals	Address Setup Time IN: DX-LXMAR (1)	50			ns
3	talh	Address Hold Time IN: LXMAR(t)-DX	50			ns
4	tDEN	Data Output Enable Time: DEVSEL(l)-DX			240	ns
5	tcen	Controls Output Enable Time: DEVSEL(1)-lines C0,C1,C2,S/I			240	ns
6	tois	Data Input Setup Time: DX-DEVSEL(1)	50			ns
7	ToIn	Data Input Hold Time: DEVSEL(1)-DX	50			ns
8	trst	RESET Input Pulse Width	250			ns
9	tSID	SKP/INTX to SKP/INT Propagation Delay			100	ns
10	tomlx	DMA Control Signals Delay: XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*			100	ns
11	tDEM	Enable/Disable Time from DMAGNT to EMA Lines			50	ns
12	tMDR	MEMSEL* Pulse Width READ	300			ns
13	tMDW	MEMSEL* Pulse Width WRITE	380			ns
14	tMDWR	MEMSEL* Pulse Width WRITE/REFSH	240			ns
15	tLD	LXMAR* Pulse Width	150			ns
16	torat	DMA READ Access Time: LXMAR*( 1 -UP( $\dagger$ )	300			ns
17	toxas	DX \& EMA Address Setup Time Wrt LXMAR* (1)	150			ns
18	tDXAH	DX \& EMA Address Hold Time Wrt LXMAR*( $\downarrow$ )	55			ns
19	tDREN	DMA READ Enable Time: MEMSEL* ( 1 -UP( 1 ) ,	210			ns
20	trup	UP Pulse Width DMA READ	150			ns
21.	towat	DMA WRITE Access Time: LXMAR*( $)$-MEMSEL* $(1)$	300			ns
22	towen	DMA WRITE Enable Time: UP (t)-MEMSEL*(1)	210			ns
23	tMWS	MEMSEL* Setup Time DMA WRITE MEMSEL*(1)-LXMAR*( $\downarrow$ )	50			ns
24	tDMS	DMAEN Setup Time Wrt XTA ( 1 )	50			ns
25	tDMH	DMAEN Hold Time Wrt XTA ( 1 )	50			ns
26	twUP	UP Pulse Width DMA WRITE	300			ns

## ABSOLUTE MAXIMUM RATINGS

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
1.	$\mathrm{V}_{\text {IH }}$	Input Voltage High		$V_{\text {cc- }} 2.0$			V	
2	VIL	Input Voltage Low				20\% VCC	V	
3	IIL	Input Leakage\|1		GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1:0	$\mu \mathrm{A}$
4	VOH	Output Voltage High\|2		$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	Vcc-0.01			V
5	Vol	Output Voltage Low	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			GND+0.01	V	
6	IoL	Output Leakage	GND $\leq \mathrm{VOUT} \leq \mathrm{V}_{\text {cc }}$	-1.0		1.0	$\mu \mathrm{A}$	
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$			800	$\mu \mathrm{A}$	
8	ICC	Power Supply Current-Dynamic	$\mathrm{fc}=3.33 \mathrm{MHz}$	:	-	2.0	mA	
9	CIN	Input Capacitance\|1]			7.0	8.0	pF	
10	Co	Output Capacitance [1]			8.0	10.0	pF	

NOTE: 1. Except pins 15, 29, 31 2. Except pins 32, 33, 34.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fC}=3.33 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	tIIN	LXMAR Pulse Width IN	250		.	ns
2	tals	Address Setup Time IN: DX-LXMAR (1)	70			ns
3	tall	Address Hold Time IN: LXMAR(1)-DX	100			ns
4	toen	Data Output Enable Time: DEVSEL(b)-DX			350	ns
5	tCen	Controls Output Enable Time: DEVSEL(1)-lines C0,C1,C2,S/I			350	ns
6	tois	Data Input Setup Time: DX-DEVSEL( $\dagger$ )	100			ns
7	TDIH	Data Input Hold Time: DEVSEL( 11 -DX	100			ns
8	trst	RESET Input Pulse Width	500			ns
9	tSID	SKP/INTX to SKP/INT Propagation Delay			120	ns
10	tomlx	DMA Control Signals Delay: XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*			120	ns
11	tdem	Enable/Disable Time from DMAGNT to EMA Lines			80	ns - ${ }^{\text {a }}$
12	tMDR	MEMSEL* Pulse Width READ	550			ns
13	tmDW	MEMSEL* Pulse Width WRITE	700			ns
14	tmDWr	MEMSEL* Pulse Width WRITE/REFSH	400			ns
15	tLD	LXMAR* Pulse Width	260	$\ldots$		ns
16	tDRat	DMA READ Access Time: LXMAR*(1)-UP(1)	85			ns
17.	tDXAS	DX \& EMA Address Setup Time Wrt LXMAR* (1)	125			ns
18	tDXAH	DX \& EMA Address Hold Time Wrt LXMAR* (1)	125			ns
19	toren	DMA READ Enable Time: MEMSEL* (!)-UP ( 1 )	400			ns
20	trup	UP Pulse Width DMA READ	260			ns
21	towat	DMA WRITE Access Time: LXMAR*() -MEMSEL* (i)	550			ns
22	towen	DMA WRITE Enable Time: UP (1)-MEMSEL* (1)	400			ns
23	tmws	MEMSEL* Setup Time DMA WRITE MEMSEL* (1)-LXMAR* ( )	100			ns
24	tDMS	DMAEN Setup Time Wrt XTA (1)	100			ns
25	tome	DMAEN Hold Time Wrt XTA (! !	100			ns
26	twup	UP Pulse Width DMA WRITE	550			ns

IM6102

## ABSOLUTE MAXIMUM RATINGS

```
Operating Temperature
 Industrial IM6102-40. C to +85 %
Storage Temperature-65}-6\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }15\mp@subsup{0}{}{\circ}\textrm{C
Operating Voltage +4.0V to +7.0V
Supply Voltage0V
Voltage On Any Input or
 Output Pin
 Any Input or
 -0.3V to Vcc +0.3V
```

NOTE: Stresses above those listed under "Absolute Maximum Ratings". may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	VIH	Input Voltage High		VCC-2.0			V
2	VIL	Input Voltage Low				0.8	V
3	IIL	Input Leakagelı:	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	-1.0	1.	1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High 2	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			V
5	VOL	Output Voltage Low	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
6	IOL	Output Leakage	GND $\leq V_{\text {OUT }} \leq V_{C C}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=$ GND or $\mathrm{V}_{\text {CC }}$		1.0	800	$\mu \mathrm{A}$
8	IcC	Power Supply Current-Dynamic	$\mathrm{fc}=2.5 \mathrm{MHz}$			1.8	mA
9	CIN	Input Capacitance 1			7.0	8.0	pF
10	Co	Output Capacitance 1			8.0	10.0	pF

NOTE: 1. Except pins 15, 29, 31 2. Except pins 32, 33, 34.
A.C. CHARACTERISTICS

TEST CONDITIONS: $5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{fc}=2.5 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	$\therefore$ MAX	UNITS
1	tLin	LXMAR Pulse Width IN	300	,		ns
2	tals	Address Setup Time IN: DX-LXMAR (t)	80.	' ${ }^{\text {\% }}$	$\therefore$ :	ns
3	tall	Address Hold Time IN: LXMAR(1)-DX	120		¢	ns
4	tDEN	Data Output Enable Time: DEVSEL( 1 -DX		.	400	ns $\quad 1$
5	tCEN:	Controls Output Enable Time: DEVSEL(1)-lines C0,C1,C2,S/I		$\therefore$	400	ns
6	toIs	Data Input Setup Time: DX-DEVSEL(t)	100	:		ns
7	TDIH	Data Input Hold Time: DEVSEL(t)-DX	100	:		ns
8	tRST,	RESET Input Pulse Width	500	\%.	:	ns
9	tSID	SKP/INTX to SKP/INT Propagation Delay		$\cdots$	150	ns
10	tDMLX	DMA Control Signals Delay: XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*			$150$	ns
11	tDEM	Enable/Disable Time from DMAGNT to EMA Lines	- " ${ }^{\text {\% }}$	$\cdots$	100	ns
12	tMDR	MEMSEL** Pulse Width READ	750	- : :	1	ns
13	tMDW	MEMSEL* Pulse Width WRITE	950			ns
14	tMDWR	MEMSEL* Pulse Width WRITE/REFSH	550	.		ns
15	tLD	LXMAR* Pulse Width :	350			ns
16	tDRAT	DMA READ Access Time: LXMAR* $(1)$ UP( $\dagger)$	750	: 4	,	ns
17.	tDXAS	DX \& EMA Address Setup Time Wrt LXMAR* (1)	120	- U	,	ns
18	TDXAH	DX \& EMA Address Hold Time Wrt LXMAR* $(1)$	175		-	ns
19	toren	DMA READ Enable Time: MEMSEL* (1)-UP(1)	550	;	.	ns
20	trup	UP Pulse Width DMA READ	350		.	ns
21	tDWAT	DMA WRITE Access Time: LXMAR*(1)-MEMSEL*(1)	750	- .	.	ns
22	towen	DMA WRITE Enable Time: UP (1)-MEMSEL* 11$)$	550	,		ns
23	tMWS	MEMSEL* Setup Time DMA WRITE MEMSEL*(1)-LXMAR*( ${ }^{\text {( })}$	100		$\because$	ns
24.	toms	DMAEN Setup Time Wrt XTA (t)	100		;	ns
25	tDMH.	DMAEN Hold Time Wrt XTA (1)	100		$\because$	ns
26	tWUP	UP Pulse Width DMA WRITE	750	$\because$	:	ns

## IM6102AM (Military)

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature Military IM6102AM	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	+4.0V to +11.0V
Supply Voltage	+12.0V
Voltage On Any Input or	
Output Pin	. 3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure: These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=10 \mathrm{~V} \pm 5 \%, T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
1	VIH	Input Voltage High		70\% VCc	4	:	$V$	
2	$\mathrm{V}_{\text {IL }}$	Input Voltage Low			$\because \cdot$	20\% Vcc	V .	
3	IIL	Input Leakage\|1		GND $\leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {CC }}$	-1.0	!	$1: 0$	$\mu \mathrm{A}$
4	VOH	Output Voltage High ${ }^{\text {2 }}$ ]	$\because \mathrm{IOH}=0 \mathrm{~mA}$	V cc-0.01	$\cdots$	$\therefore \quad \%$	V	
5	VOL	Output Voltage Low	$\because \quad \mathrm{IOL}=0 \mathrm{~mA}$			GND +0.01	V	
6	IOL	Output Leakage ${ }^{\text {-1 }}$	GND $\leq V_{\text {OUT }} \leq V_{\text {CC }}$	-1.0		. 1.0 .	$\mu \mathrm{A}$	
7	Icc	Power Supply Current-Standby	$V_{\text {IN }}=$ GND or $\mathrm{V}_{\text {CC }}$	-		$\therefore \quad 900$	$\mu \mathrm{A}$	
8	ICC	Power Supply Current-Dynamic $\quad \vdots$	$\mathrm{fc}=5.0 \mathrm{MHz}$	$\cdots$		4.0	mA	
9	CIN	Input Capacitance\|1]			7.0	8.0	pF	
10	Co	Output Capacitance\|1]			8.0	10.0	pF	

NOTE: 1. Except pins $15,29,31$ 2. Except pins $32,33,34$.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \%, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{fc}=5.0 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	1. TYP	$\therefore$ MAX	UNITS	
1	tLIN	LXMAR Pulse Width IN	135	$\because$		ns	
2	tals	Address Setup Time IN: DX-LXMAR (b)	60		.	ns	
3	talh	Address Hold Time IN: LXMAR(t)-DX	60			ns	
4	tDEN	Data Output Enable Time: DEVSEL(t)-DX		\%	260	ns:	
5	tCEN	Controls Output Enable Time: DEVSEL(1)-lines C0,C1,C2,S/I	$\cdots$		- 260	ns	
6	toIs	Data Input Setup Time: DX-DEVSEL 11	60	. $\quad$.	*	ns.	
7.	TDIH	Data Input Hold Time: DEVSEL(1)-DX	60	:		ns	
8	trst	RESET Input Pulse Width	250	. . .	$\cdots$	ns	
9	tsio	SKP/INTX to SKP/INT Propagation Delay	.		120	ns	
10	tDMLX	DMA Control Signals Delay: XTC-XTC*; MEMSEL-MEMSEL*, LXMAR-LXMAR*			$120$	ns	
11	tDEM	Enable/Disable Time from DMAGNT to EMA Lines			60	ns	
12	tMDR;	MEMSEL* Pulse Width READ	375			ns :	
13	tMDW	MEMSEL* Pulse Width WRITE	475			ns	
14	tMDWR	MEMSEL* Pulse Width WRITE/REFSH	275	' .	$\cdots$	$\therefore \mathrm{ns}$	
15	tıD	LXMAR* Pulse Width	175	$\cdots$		ns	
16	tDRAT	DMA READ Access Time: LXMAR*(1)UP(1)	375	-		ns	
17	tDXAS	DX \& EMA Address Setup Time Wrt LXMAR* $\\|^{\prime}$	70	, $\cdot$	*	ns	
18	tDXAH	DX \& EMA Address Hold Time Wrt LXMAR* ${ }^{\text {a }}$	70	" ${ }^{\text {a }}$		ns	
19	t DREN	DMA READ Enable Time: MEMSEL* \|1-UP! 11	275	". ${ }^{\text {P }}$		ns	
20	trup	UP Pulse Width DMA READ	175	"		ns	
21	towat	DMA WRITE Access Time: LXMAR*(1)-MEMSEL* 1 )	375	$\cdots$	-	ns	
22	tDWEN	DMA WRITE Enable Time: UP (1)-MEMSEL* 1 ).	275		.	ns	
23	tMWS	MEMSEL* Setup Time DMA WRITE MEMSEL*(1)-LXMAR*!	50	. ${ }^{\text {a }}$	4	ns	
24	tDMS	DMAEN Setup Time Wrt XTA 111.	50	-	,	ns.	
25	tDMH	DMAEN Hold Time Wrt XTA ( 1	50			ns	
26	twup	UP Pulse Width DMA, WRITE	375	$\cdots$	- .	ns	

INTEERSIL

## IM6102-1M (Military)

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
Military IM6102-1M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	+4.0 V to +7.0 V
Supply Voltage	$+8.0 \mathrm{~V}$
Voltage On Any Input or	
Output Pin	-0.3V to Vcc +0.3 V

NOTE: Stresses, above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

!	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High	,	VCC -2.0		$\cdots$	V	
2	VIL	Input Voltage Low				0.8	V	
3	IIL	Input Leakage\|1		GND $\leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	VOH	Output Voltage High\|2		$1 \mathrm{OH}=0 \mathrm{~mA}$	2.4			V
5	VOL	Output Voltage Low	$1 \mathrm{OL}=0 \mathrm{~mA}$			0.45	V	
6	Ioi	Output Leakage	GND $\leq V_{\text {OUT }} \leq V_{C C}$	-1.0	-	1.0	$\mu \mathrm{A}$	
7	IcC	Power Supply Current-Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$		.	800	$\mu \mathrm{A}$	
8	ICC.	Power Supply Current-Dynamic	$\therefore \mathrm{fc}=2.5 \mathrm{MHz}$			2.0	mA	
9	Cin	Input Capacitance\|1				7.0	8.0	pF
10	Co	Output Capacitance\|1]			8.0	$10.0{ }^{\circ}$	pF	

NOTE: 1. Except pins $15,29,31$ 2. Except pins 32, 33, 34.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; $\mathrm{fc}=2.5 \mathrm{MHz}$

	SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
1	tLin	LXMAR Pulse Width IN	300			ns
2	tals	Address Setup Time IN: DX-LXMAR [1]	80	-		ns
3	tain	Address Hold Time IN: LXMAR11-DX	120			ns
4	tDEN	Data Output Enable Time: DEVSELII-DX			400	ns
5	tCEN	$\because$ Controls Output Enable Time: DEVSEL ${ }^{\text {d-lines }}$ C0,C1,C2,S/I			400	ns
6	tois	Data Input Setup Time: DX-DEVSEL 1 .	100			ns
7	TDIH	Data Input Hold Time: DEVSEL 1 - -DX	100			ns
8	trst	RESET Input Pulse Width	500	,		ns
9	tSID	. SKP/INTX to SKP/INT Propagation Delay			130	ns
10	TDMLX	DMA Control Signals Delay: XTC-XTC*:   , MEMSEL-MEMSEL*, LXMAR-LXMAR*			130	ns
11	tDEM	Enable/Disable Time from DMAGNT to EMA Lines			100	ns
12	tMDR	MEMSEL* Pulse Width READ	750			ns
13	tMDW	MEMSEL* Pulse Width WRITE	950			ns
14	tMDWR	MEMSEL* Pulse Width WRITE/REFSH	550			ns
15	tlo	LXMAR* Pulse Width	350			ns
16	tDRAT	DMA READ Access Time: LXMAR* \| - UP 1 '	750			ns
17	tDXAS	DX \& EMA Address Setup Time Wrt LXMAR* 1	120			ns
18	tDXAH	DX \& EMA Address Hold Time Wrt LXMAR*।1,	175		,	ns
19	tDREN	DMA READ Enable Time: MEMSEL* , !-UP 1 !	550			ns
20	trup	UP Pulse Width DMA READ	350		$\therefore$	ns
21	towat	DMA WRITE Access Time: LXMAR* 1 ,-MEMSEL* 1 !	750	:		ns
22	towen	DMA WRITE Enable Time: UP , li-MEMSEL* 1 :	550			ns
23	tmws	MEMSEL* Setup Time DMA WRITE MEMSEL*1-LXMAR*il*	100			ns
24	tDMS	DMAEN Setup Time Wrt XTA if.	100			ns
25	tom	1 DMAEN Hold Time Wrt XTA i 1	100			ns
26	twup .	UP Pulse Width DMA WRITE	750			ns

INIURRSIL

## APPLICATION

IM6100-IM6102 Interface in a Buffered System.


## IM6103 CMOS Parallel Input-Output Port (PIO)

## FEATURES

- 20 Programmable I/O Pins
- TTL Compatible Inputs and Outputs
- Compatible with IM6100 Microprocessor Family
- Low Power Dissipation < $\mathbf{1 0} \mathbf{~ m W}$
- Extended Temperature Range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Single Power Supply


## GENERAL DESCRIPTION

The IM6103 is a Parallel Input-Output Port (PIO) device designed for use in IM6100 microcomputer systems. Its functión is to provide a general purpose parallel I/O component to interface peripheral equipment to the IM6100 system bus. The functional configuration of the IM6103 is programmed by the user software so that normally no external logic is necessary to interface a wide variety of peripheral devices such as displays, printers, keyboards, etc. to an IM6100 microcomputer system.

A general purpose all-CMOS microcomputer system with $64 \times 12$ RAM, $1 \mathrm{k} \times 12$ ROM and 20 I/O lines can be built with just four CMOS LSI devices - IM6100 microprocessor, IM6512 (64 x 12) RAM, IM6312 (1k $\times 12$ ) ROM and IM6103 PIO.

FUNCTIONAL BLOCK DIAGRAM


ORDERING INFORMATION

PART NO.	TEMPERATURE   RANGE	OPERATING   VOLTAGE   RANGE	PACKAGE
IM6103 AMDL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4-11 \mathrm{~V}$	40 Pin Ceramic
IM6103 AIDL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4-11 \mathrm{~V}$	40 Pin Ceramic
IM6103 AIPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4-11 \mathrm{~V}$	40 Pin Plastic
IM6103 IPL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4-7 \mathrm{~V}$	40 Pin Plastic
IM6103 CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4-7 \mathrm{~V}$	40 Pin Plastic
IM6103 MDL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4-7 \mathrm{~V}$	40 Pin Ceramic
IM6103 IDL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$4-7 \mathrm{~V}$	40 Pin Ceramic

## PIN CONFIGURATION

vcc 1		40	$\mathrm{PB}_{11}$
$\mathrm{PA}^{2} / \mathrm{PC}_{11} 2$		39	$\mathrm{PB}_{10}$
$P A_{6} / P^{\prime} C_{10}{ }^{3}$		38	PB9
PA5/PC9 4		37	$\mathrm{PB8}_{8}$
$\mathrm{PA}_{4} / \mathrm{PC}_{8} 5$		36	PB7
SKP/INT 6		35	${ }^{P}{ }^{8} 6$
PA8/IRS 7		34	PB5
PAg/IRE 8		33	$\mathrm{PB}_{4}$
$\mathrm{C}_{1} 9$		32	$\mathrm{PB}_{3}$
LXMAR 10	$1 \mathrm{M6103}$	31	$\mathrm{PB}_{2}$
PA10/ORS 517		30	$\mathrm{PB}_{1}$
devsel 12		29	$\mathrm{PB}_{0}$
PA $11 /$ ORF 13		28	DX ${ }_{11}$
SEL6 14		27	DX ${ }_{10}$
SEL7 15		26	GND
Dx 016		25	DX9
DX 17		24	$\mathrm{DX}_{8}$
$\mathrm{DX}_{2} 18$		23	DX7
$\mathrm{DX}_{3} 19$		22	DX6
DX4 20		21	$\mathrm{DX}_{5}$

PACKAGE DIMENSIONS


## ABSOLUTE MAXIMUM RATINGS



## DC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=$ Industrial

	SYMBOL	. PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
1	$\mathrm{V}_{1} \mathrm{H}$	Logical "1" Input Voltage		$V_{\text {CC }}-1.7$			
2	$V_{\text {IL }}$	Logical "0' Input Voltage		- ..	\%	0.8	V
3.	IIL	Input Leakage	OV $\leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{VCC}$	-1.0	.	1.0	$\mu \mathrm{A}$
4	$\mathrm{V}_{\mathrm{OH}}$	Logical "1" Output Voltage	IOUT $=0$ except pins 6,9	$\mathrm{V}_{\mathrm{CC}}-1.0$	,		V
5	$\mathrm{V}_{\mathrm{OL}}$	Logical "0" Output Voltage	IOUT $=0$			0.45	$\checkmark$
6	10	Output Leakage	$\mathrm{OV} \leqslant \mathrm{V}_{\mathrm{O}} \leqslant \mathrm{V}_{\mathrm{CC}}$	-1.0	$\therefore$	1.0	$\mu \mathrm{A}$
7	${ }^{\prime} \mathrm{Cc}$	Supply Current -	$\begin{gathered} \mathrm{VCC}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \text { FCLOCK }=\text { Operating Frequency } \end{gathered}$		$\therefore$ :	2.5	mA
8	CIN	Input Capacitance			7.0	$\therefore 8.0$	
9	$\mathrm{C}_{0}$	Output Capacitance		' ${ }^{\prime}$	8.0	10.0	pF

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, All times in ns.

	SYMBOL	PARAMETER		MIN	MAX	UNITS
1	tADDS	Address Set-Up Time	DX-LXMAR $\downarrow$ :	110	-	
2	t ADDH	Address Hold Time	LXMAR $\downarrow$-DX	150		
3	tDEN	Output Enable Time	DEVSEL $\downarrow$-DX		550	
4	tDC	Output Enable Time	DEVSEL $\downarrow-\mathrm{C}_{1}$		550	
5	tDI	Output Enable Time	DEVSEL $\downarrow$-SKP		400	
6	itDS	Data Set-Up Time	DX-DEVSEL $\uparrow$	200		
7	tDH	Data Hold Time	DEVSELT-DX	150		!
8	tPS	Data In Set-Up Time	Port Data In-LXMAR $\downarrow$	200		ns
9	tPH	Data In Hold Time	LXMAR $\downarrow$-Port Data In	225		
10	tD1	Delay Time	DEVSEL $\uparrow$-Port Data Out		550	
11	tBS	Data In Set-Up Time	Port B In-IRS $\downarrow$	200		
12	${ }_{\text {t }} \mathrm{BH}$	Data In Hold Time	IRS $\downarrow$-Port B In	150		
13	${ }_{\text {t }}$ 2	Output Enable Time	ORS $\uparrow$-Port B Out		550	
14	tD2	Output Disable Time	ORS $\downarrow$-Port B Out		200	
15	tD3	Delay Time	$\begin{aligned} & \text { IRS } \downarrow-\text { IRE } \downarrow \\ & \text { ORS } \downarrow-\text { ORF } \downarrow \\ & \text { DEVSEL } \uparrow-I R E \uparrow \\ & \text { DEVSEL } \uparrow \text {-ORF } \uparrow \\ & \hline \end{aligned}$	$\cdots$	550	-

ABSOLUTE MAXIMUM RATINGS


## DC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=$ Industrial

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	VIH	Logical "1" Input Voltage		$V_{\text {CC }}-1.7$			V
2	VIL	Logical "0' Input Voltage				0.8	
3	IIL	Input Leakage	$\mathrm{OV} \leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	V OH	Logica! "1" Output Voltage	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$ except pins 6,9	$\mathrm{V}_{\mathrm{CC}}-1.0$			V
5	VOL	Logical " 0 " Output Voltage ${ }_{i}$	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	
6	10	Output Leakage	$\mathrm{OV} \leqslant \mathrm{V}_{\mathrm{O}} \leqslant \mathrm{V}_{\mathrm{CC}}$	-1.0		1.0	$\mu \mathrm{A}$
7	ICC	Supply Current	$\begin{gathered} \mathrm{VCC}=5.0 \mathrm{~V} \\ \mathrm{CL}=50 \mathrm{pF} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~F}_{\mathrm{CLOCK}}=\text { Operating Frequency } \end{gathered}$	'		2.5	mA
8	CIN	Input Capacitance			7.0	8.0	pF
9	$\mathrm{C}_{0}$	Output Capacitance			8.0	10.0	

## AC CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, All times in ns.

	SYMBOL	PARAMETER		MIN	MAX	UNITS
1	tADDS	Address Set-Up Time	DX-LXMAR $\downarrow$	80		
2	t $A D D$	Address Hold Time	LXMAR $\downarrow$-DX	100		
3	tDEN	Output Enable Time	DEVSEL $\downarrow$-DX		450	
4	tDC	Output Enable Time	DEVSEL $\downarrow$ - ${ }_{1}$	, .	450	
5	tDI	Output Enable Time	DEVSEL $\downarrow$-SKP.		330	
6	tDS	Data Set-Up Time	DX-DEVSEL $\uparrow$	150		
7	tDH	Data Hold Time	DEVSELT-DX	100		
8	tPS	Data In Set-Up Time	Port Data In-LXMAR $\downarrow$	150		
9	tPH	Data In Hold Time	LXMAR $\downarrow$-Port Data In	175	1	ns
10	tD1	Delay Time	DEVSEL $\uparrow$-Port Data Out		450	
11	tBS	Data In Set-Up Time	Port B in-IRS $\downarrow$	150		
12	${ }^{\text {t }} \mathrm{H}$	Data In Hold Time	IRS $\downarrow$-Port B In	100	$\therefore$	
13	tD2	Output Enable Time	ORS $\uparrow$-Port B Out		450	
14	tD2	Output Disable Time	ORS $\downarrow$-Port B Out		200	
15	tD3	Delay Time	$\begin{aligned} & \text { IRS } \downarrow-I R E \downarrow \\ & \text { ORS } \downarrow-O R F \downarrow \\ & \text { DEVSEL } \uparrow-I R E \uparrow \\ & \text { DEVSEL } \uparrow-O R F \uparrow \end{aligned}$	$\therefore$	450	



FIGURE 1: Functional Block Diagram.

## IM6103 FUNCTIONAL PIN DEFINITION

PIN NUMBER	SYMBOL	INPUT/ OUTPUT	DESCRIPTION
1	$V_{C C}$	$\cdots$	Positive Power Supply
2$3 \sim 5$	PA7	1/0	Port A I/O Line (4). Most Significant Bit of Port A in Mode 10.
	$\mathrm{PC}_{11}$	1/0	Port C I/O Line (8) in Mode 11/OX-Most Significant Bit.
	$\mathrm{PA}_{6} \sim \mathrm{PA}_{4}$	1/0	Port $\mathrm{A}_{5} \sim \mathrm{~A}_{7}$ (Mode 10).
	$\mathrm{PC}_{10} \sim \mathrm{PC}_{8}$	I/O	Port $\mathrm{C}_{9} \sim \mathrm{C}_{11}$ (Mode 11/OX).
6	SKP/INT	0	Time Multiplexed SKP and INTREQ lines to the IM6100 Microprocessor - Active Low.
7	PA8	I/O	Port A I/O Line in Mode 11/10 - Most Significant Bit of Port A in Mode 11.
	IRS	0	Input Register Strobe to clock data into Port B in Handshake Mode (Mode OX). Port B Latches in the data on the falling edge of IRS (IRS $\downarrow$ ).
8	PA9	1/0	Port A9 (Mode 11/10).
	IRE	0	Input Register Empty output goes high when Port B input buffer has been read by the IM6100 microprocessor. It goes low when Port B input buffers are strobed in by IRS $\downarrow$. (Mode OX). PIO may be programmed to generate an INTREQ on IRE $\downarrow$.


IM6103 FUNCTIONAL PIN DEFINITION (Continued)

| PIN |
| :---: | :---: | :---: | :---: |
| NUMBER | SYMBOL | INPUT/ |
| :---: |
| OUTPUT |

|NTMERSIL

## IM6100 SYSTEM TIMING

The tristate bidirectional 12-bit DX bus is used to transfer data and control information (Figure 3) between the IM6103 and the IM6100 microprocessor. The IM6100 transmits the device address and control information on the DX bus during the 'execute' phase of an Input-Output Transfer (IOT) instruction. The IM6103 accepts this information on the falling edge of the LXMAR (Address Latch Enable) Signal.

The address bits (6-7) are compared with the chip select inputs (SEL6 and SEL7) to address 1 of 4 PIO's. The IOT address bits (3-5) are programmed internally to respond to the bit pattern 011. The SEL6 and $\mathrm{SEL}_{7}$ inputs should be externally hard-wired to match the $\mathrm{DX}_{6}$ and $\mathrm{DX}_{7}$ chip select bits. As shown in Fig. 3, DEVSEL goes low, during the first half of an IOT execute machine cycle for a read operation and it goes low again in the second half for a write operation. The IM6103 responds to a 'read' instruction by putting data
on the DX bus and $\mathrm{C}_{1}$ output (of IM6103) low when DEVSEL (from IM6100) input is low. $C_{1}$ line goes low to indicate an input transfer cycle to the IM6100. All PIO data transfers to the IM6100 Accumulator (AC) is an 'OR' transfer, ' (i.e., PIO data is OR'ed into the contents of the $A C$ ).
During the write operation into PIO , the PIO accepts data from the IM6100 Accumulator on the rising edge of the DEVSEL. During and after the PIO write, the contents of the accumulator are not cleared.
SKP/INT line goes low during the 'read' DEVSEL if the IM6103 is responding to a 'skip' instruction, and the 'skip' condition is met, therefore causing the IM6100 to skip the next sequential instruction. SKP/INT line reflects the interrupt request status of the IM6100 at all times except during the 'read' DEVSEL. The SKP/INT line goes low if an active interrupt request is pending. During read DEVSEL mode, the SKP/INT indicates the current skip condition. The bits are interpreted as shown below:


## OPERATION OF PORT BUFFERS

The IM6103 has 20 I/O pins which can be individually programmed in groups of 4,8 or 12 bits in three different modes of operation.

In Mode 11, the $201 / O$ lines are divided into three ports: -Port A with 4 bits (PA8-PA11)
-Port B with 12 bits ( $\mathrm{PB}_{0}-\mathrm{PB}_{11}$ )
-Port C with 4 bits ( $\mathrm{PC}_{8}-\mathrm{PC}_{11}$ )
In Mode 10, the 20 I/O lines are grouped into 2 ports--Port A with 8 bits (PA4-PA11)
-Port B with 12 bits ( $\mathrm{PB}_{0}-\mathrm{PB}_{11}$ )
-The four $1 / O$ lines associated with Port C in Mode 11 ( $\mathrm{PC}_{8}-\mathrm{PC}_{11}$ ) are allocated to Port A as $\mathrm{PA}_{4}-\mathrm{PA} 7$.

In Mode OX, there are two ports-Port B with 12 bits and Port $C$ with 4 bits and four lines, for handshake control logic. Four lines of Port $A$ in Mode 11 (PA8-PA11) are reassigned as handshake control lines. They are:
-Input Register Strobe (IRS)
-Input Register Empty (IRE)
-Output Register Strobe (ORS)
-Output Register Empty (ORE)
The handshake logic controls the data transfer for the Port B. Port C operation remains the same as in Mode 11.
For an 'input' transfer in OX Mode, the input register empty (IRE) output goes high to indicate to the peripheral device that the input register is empty (as shown in Fig. 4). The peripheral device may then strobe in the new data into Port B with Input Register Strobe (IRS). At this time, IRE goes low to indicate to the peripheral device that the input buffer is full, and remains low until Port B has been read by the IM6100 microprocessor. IRE then goes high after the IM6100 executes a Read Port B (RPB) instruction to initiate another input sequence. The data into Port B should be valid only for a short duration before and after IRS makes the 1 to 0 transition.


FIGURE 4: Input data transfer (peripheral device to PIO).

For an 'output' transfer in OX mode, the IM6100 microprocessor writes the data into Port $B$ and its timing is shown in Figure 5. ORF line from the PIO goes high, signaling the peripheral device that the output register is full. The peripheral device may then strobe in the new data from Port B with ORS. Port B stays in the high impedance mode until ORS is activated by the peripheral device. ORF line goes low and remains low until Port B has been written into by the IM6100 microprocessor. ORF then goes high, initiating another output sequence.


FIGURE 5: Output data transfer (PIO to peripheral device).

The IM6100 monitors the status of ORF (Output Register Full). If it is low (i.e., output register is empty), IM6100 may load data into Port B output buffer with SPB/CPB/WPB instruction. ORF goes high a delay time after the rising edge of the 'write' DEVSEL', signaling the peripheral device that output buffer has new data. During this time, Port B output buffers remain tristated. The peripheral device may then enable and read out Port B output latches by activating ORS (Output Register Strobe) high. The falling edge of ORS (from high to low) signals the PIO that the peripheral device no longer needs the valid current information. Port B is tristated and ORF then goes low; thereafter, to indicate another output sequence.

ORF should be set to 0 and IRE to 1 with a 'write' command in Mode OX, to initiate the handshaking sequence.

The IM6100 microprocessor should not write into Port B until ORF is low for an 'output' transfer 'and should not read Port B until IRE is low for an 'input' transfer. The peripheral device reads Port B if ORF is high and writes into Port B if IRE is high.

The PIO may be programmed to generate an INTREQ (Interrupt Request) to the microprocessor when ORF or IRE goes low by setting the respective Interrupt enable bits, OREN and IREN.

The IM6100 may poll the status of ORF or IRE by executing the respective skip instructions SKPOR and SKPIR, by reading the status register or by reading "Port $A^{\prime \prime}$.

In Mode 11 and 10, when handshaking control is not in effect, the execution of SKPOR and SKPIR Instructions depend on the state of the Port A lines PA11 and PAg, respectively. The Interrupt feature is available only in Mode OX.

The mode of operation - 11, 10 or OX , is selected by programming the Status Register (SR).

All ports are bidirectional. The execution of a 'write' instruction caused a port to be automatically programmed to be an 'output'. The output data may be changed by using the 'set', 'clear' or 'write' instructions. The output remains valid until the port bit lines are reset to be inputs.

Execution of a 'read' instruction causes a port to be automatically set as an 'input' port - i.e., it presents a very high impedance to the I/O lines. Data appearing on the I/O lines will be sampled into the port input latch at every LXMAR pulse and may be read by the IM6100 microprocessor by the 'read' instruction.

In Mode OX, Port B acts as a tristate bidirectional buffer which is controlled by an external peripheral device. ORF and IRE lines are outputs and ORS and IRS lines are inputs.

At power-on, all ports are defined to be input ports and the PIO is initialized to be in Mode 10. With $20 \mathrm{I} / \mathrm{O}$ lines partitioned into the $8 / 12$ (i.e., Port $A=8$ bits, Port $B=12$ bits) format.

## STATUS REGISTER

The Status Register (SR) has 2 mode bits, $\mathrm{M}_{8}$ and $\mathrm{M}_{9}$ which can be modified by the WSR (Write Status Register) instruction. These two bits define the mode of operation for the IM6103 as shown in Figure 8.

$\mathrm{M}_{8}$	$\mathrm{Mg}_{9}$	MODE	PORT OPERATION
0	$*$	Mode OX	$\mathrm{PB}_{0-11}, \mathrm{PC}_{8}-11$, IRS, IRE, ORS; ORF
1	0	Mode 10	$\mathrm{PB}_{0-11}, \mathrm{PA}_{4-11}$
1	1	Mode 11	$\mathrm{PB}_{0-11,} \mathrm{PC}_{8-11}, \mathrm{PA}_{8}-11$

FIGURE 8: Mode bit assignments.

The Mode and Interrupt status bits, ORINT (Output Register empty Interrupt) and IRINT (Input Register empty Interrupt), may be read with the RSR (Read Status Register) instruction. The interrupt status bits are set to 0 if the corresponding flag is requesting an interrupt.

In Mode 11/10 the current value of PA11 and PA9 can be interrogated. In this mode, Port $A$ can be cither an input or an output. $\mathrm{M}_{8}$ and $\mathrm{M}_{9}$ are initialized to " $11^{\prime \prime}$ " at power-on.

$\mathrm{DX}_{8}$
$\mathrm{M}_{8}$
$\mathrm{M}_{8}$
$\mathrm{M}_{8}$


$D X_{9}$	DX 10	$D X_{11}$
$M_{9}$	ORINT	IRINT
$\mathrm{M}_{9}$	PA $_{11}$	PA $_{9}$
$\mathrm{M}_{9}$		


DX	BUS
SR	MODE OX READ
SR	MODE $11 / 10 \quad$ READ
SR	MODE $11 / 10 / O X \quad$ WRITE

FIGURE 9: Status register bit assignments.

## SKIP OPERATION

The IM6100 may poll the status of ORF or IRE in Mode OX, by executing a skip instruction, SKPOR or SKPIR. The IM6103 will assert the SKP/INT line low if the corresponding status line (ORF or IRE) is low, causing the next sequential instruction to be skipped. During this cycle, ORF and IRE remain unchanged.

In Mode 11/10, SKPOR and SKPIR instruction executions depend on the state of $P A_{11}$ and $P A g$, respectively. Port $A$ may be an input or output port.

If ORF is reset to 0 by executing a CLRPA or WPA instruction to initiate the handshaking sequence, the next SKPOR instruction will cause the next sequential instruction to be skipped.

## INTERRUPT OPERATION

The IM6103 may be programmed to generate an interrupt request input (INTREQ) when ORF or IRE goes low, by setting the corresponding interrupt enable bits, OREN or IREN, to 1. If the IM6100 interrupt system has been previously enabled, the microprocessor will acknowledge the INTREQ input. If the $1 \mathrm{M} 6100 \mu \mathrm{P}$ does not see the higher priority INTREQ's, inputs from other peripheral controllers such as IM6102 Memory Extender/Direct Memory Access/Internal Timer Controller (MEDIC) or IM6101 Parallel Interface Elements (PIE) in the system, the interrupt service routine should initiate a software poll of the PIO's in the system to identify the particular PIO that generated the INTREQ. In Mode OX, the interrupt request status of ORF and IRE may be identified by reading the Status Register. ORINT or IRINT will be set to 0 if ORF (being low) or IRE (being low) is generating an INTREO. Note that IM6102 MEDIC and IM6101 PIE provide an automatic priority vectoring.

The interrupt feature of IM6103 is available only in Mode OX. An ORF INTREQ may be removed by one of the following methods:

- executing a SPB/CPB/WPB Instruction (ORF goes high if Port $B$ is written into), or
- setting ORF to 1 with SPA/WPA Instruction, or
- by resetting OREN to 0 with a CPA/WPA Instruction, or
- by changing to Mode 11/10.

An IRE INTREQ may be removed by:

- executing a RPB Instruction (IRE goes high after Port $B$ is read), or
- setting IRE to 1 with SPA/WPA Instructions, or
- resetting IREN to 0 with a CPA/WPA Instruction, or
- changing to Mode 11/10.

PIO may be software programmed to generate an INTREQ to the IM6100 by resetting ORF or IRE to 0 with a CPA/WPA Instruction and by setting the corresponding enable bit, OREN or IREN, with a SPA/WPA Instruction in Mode OX.

## PIO INSTRUCTION

NOTE: Symbol Definition - ".." - AND
" + " - OR
$"="$ - Is Replaced By

PIO CONTROL	MNEMONICS	DESCRIPTION
0000	SETPA   (Set Port A)	Set $P A_{j}$ to 1 if $A C_{j}$ is $1 . A C$ is not cleared. $\begin{aligned} \text { Mode 11: } & \mathrm{PA}_{i}=P A_{i}+A C_{i}, 8 \leqslant i \leqslant 11 \\ \text { Mode 10: } & \mathrm{PA}_{i}=P A_{i}+A C_{i}, 4 \leqslant i \leqslant 11 \\ \text { Mode OX: } & \text { IREN }=\text { IREN }+A C_{8} \\ & \text { IRE }=\text { IRE }+A C_{9} \\ \therefore & \text { OREN }=\text { OREN }+A C_{10} \\ & \text { ORF }=\text { ORF }+A C_{11} \end{aligned}$
00001	CLRPA	is $1 . A C$ is not cleared. $\begin{aligned} & \text { Mode 11: } \mathrm{PA}_{i}=\mathrm{PA}_{i} \cdot \overline{\mathrm{AC}_{i}}, 8 \leqslant i \leqslant 11 \\ & \text { Mode 10: } \mathrm{PA}_{i}=\mathrm{PA}_{i} \cdot \overline{\mathrm{AC}}, 4 \leqslant i \leqslant 11 \\ & \text { Mode OX: } \text { IREN }=\text { IREN } \cdot \overline{\mathrm{AC}} \\ & \text { IRE }=\text { IRE } \cdot \overline{A C 9} \\ & \text { OREN }=\text { OREN } \cdot \overline{\mathrm{AC}} 10 \\ & \text { ORF }=\text { ORF } \cdot \overline{A C_{11}} \end{aligned}$
0010	WPA	Write Port $A$. Set $P A_{i}$ equal to $A C_{i}$. $A C$ is not cleared. $\begin{aligned} \text { Mode 11: } & \mathrm{PA}_{\mathrm{i}}=A C_{i}, 8 \leqslant i \leqslant 11 \\ \text { Mode 10: } & \mathrm{PA}_{\mathrm{i}}=A C_{i}, 4 \leqslant i \leqslant 11 \\ \text { Mode OX: } & \text { IREN }=A C_{8} \\ & \text { IRE }=A C_{9} \\ & \text { OREN }=A C_{10} \\ & \text { ORF }=A C_{11} \end{aligned}$
001	RPA	Read Port A: 'OR' transfer PA to AC. $\begin{gathered} \text { Mode 11: } A C_{i}=A C_{i}+P A_{i}, 8 \leqslant i \leqslant 11 \\ A C_{i}=A C_{i}, 0 \leqslant i \leqslant 7 \\ \text { Mode 10: } A C_{i}=A C_{i}+P A_{i}, 4 \leqslant i \leqslant 11 \\ A C_{i}=A C_{i}, 0 \leqslant i \leqslant 3 \\ \text { Mode OX: } A C_{8}=A C_{8}+1 R S \\ A C_{9}=A C_{9}+1 R E \\ A C_{10}=A C_{10}+O R S \\ A C_{11}=A C_{11}+O R F \\ A C_{i}=A C_{i}, 0 \leqslant i \leqslant 7 \end{gathered}$
0100	SETPB	Set Port $B$. Set $P B_{j}$ to 1 if $A C_{j}$ is 1 . $A C$ is not cleared. $\mathrm{PB}_{i}=\mathrm{PB}_{i}+A C_{i}, 0 \leqslant i \leqslant 11$
0101	CLRPB	Clear Port B. Clear $\mathrm{PB}_{\mathrm{i}}$ to 0 if $\mathrm{AC}_{\mathrm{i}}$ is 1 . $A C$ is not cleared. $P B_{i}=P B_{i} \cdot \overline{A C_{i}}, 0 \leqslant i \leqslant 11$
0110	WPB	Write Port $B$. Set $P B_{i}$ equal to $A C_{i}$. $A C$ is not cleared. $\mathrm{PB}_{\mathrm{i}}=\mathrm{AC}_{\mathrm{i}}, 0 \leqslant \mathrm{i} \leqslant 11$


PIO CONTROL	MNEMONICS	DESCRIPTION
01011	RPB	Read Port B. 'OR' transfer PB to AC. $A C_{i}=A C_{i}+P B_{i} ; 0 \leqslant i \leqslant 11$
1000	SETPC	Set Port C. Set $P C_{j}$ to 1 if $A C_{j}$ is 1 . $A C$ is not cleared.   Mode 11 and $O X: \mathrm{PC}_{\mathrm{i}}=\mathrm{PC}_{\boldsymbol{i}}+\mathrm{AC}_{\mathrm{i}}$ $8 \leqslant i \leqslant 11$   Mode 10: No operation
1001	CLRPC	Clear Port C. Clear $\mathrm{PC}_{\mathbf{j}}$ to 0 if $\mathrm{AC}_{\mathbf{i}}$ is 1 . $A C$ is not cleared. $\begin{gathered} \text { Mode } 11 \text { and } O X: P C_{i}=P C_{i} \cdot \overline{A C_{i}} \\ 8 \leqslant i \leqslant 11 \end{gathered}$   Móde 10: .No operation
1010	WPC	Write Port C. Set $\mathrm{PC}_{\boldsymbol{j}}$ equal to $\mathrm{AC}_{\boldsymbol{j}}$. $A C$ is not cleared.   Mode 11 and $\mathrm{OX}: \mathrm{PC}_{\mathrm{i}}=\mathrm{AC}_{\mathrm{i}}$ $8 \leqslant i \leqslant 11$   Mode 10: No operation
1011	RPC	Read Port C. 'OR' transfer PC to AC.   Mode 11 and $O X: A C_{i}=A C_{i}+P C_{i}$ $8 \leqslant i \leqslant 11$   Mode 10: No operation
1100	SKPOR	Skip the next sequential instruction if $\mathrm{PA}_{11} / \mathrm{ORF}$ is low.   Mode 11 and 10: Skip if $\mathrm{PA}_{11}$ is low.   Mode OX: Skip if ORF is low.
1101	SKPIR	Skip the next sequential instruction if PAg/IRE is low.   Mode 11 and 10: Skip if PAg is low.   Mode OX: Skip if IRE is low.
1110	WSR	Write Status Register. AC is not cleared. $\begin{aligned} & M_{8}=A C_{8} \\ & M 9=A C 9 \end{aligned}$
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	RSR	Read Status Register. 'OR' transfer Status register to $A C$. $\begin{aligned} & A C_{8}=A C_{8}+M_{8} \\ & A C_{9}=A C_{9}+M 9 \\ & A C_{i}=A C_{i} ; 0 \leqslant i \leqslant 7 \end{aligned}$   Mode 11 and 10: $A C_{10}=A C_{10}+P_{11}$ $A C_{11}=A C_{11}+P A_{9}$   Mode OX: $A C_{10}=A C_{10}+$ ORINT $A C_{11}=A C_{11}+I R I N T$



FIGURE 6: IM6103 PIO register bit assignments.

PINS

2	3	4	5


7	8	11	13


29	30	31	32	33	34	35	36	37	38	39	40

MODE 10

$\mathrm{PA}_{7}$	$\mathrm{PA}_{6}$	$\mathrm{PA}_{5}$	$\mathrm{PA}_{4}$


PA $_{8}$	PAg	PA10	PA11


$\mathrm{PB}_{0}$	$\mathrm{~PB}_{1}$	$\mathrm{~PB}_{2}$	$\mathrm{~PB}_{3}$	$\mathrm{~PB}_{4}$	$\mathrm{~PB}_{5}$	$\mathrm{~PB}_{6}$	$\mathrm{~PB}_{6}$	$\mathrm{~PB}_{8}$	$\mathrm{~PB}_{9}$	$\mathrm{~PB}_{10}$	$\mathrm{~PB}_{11}$

MODE 11


$\mathrm{PA}_{8}$	$\mathrm{PA}_{9}$	$\mathrm{PA}_{10}$	$\mathrm{PA}_{11}$


$\mathrm{PB}_{0}$	$\mathrm{~PB}_{1}$	$\mathrm{~PB}_{2}$	$\mathrm{~PB}_{3}$	$\mathrm{~PB}_{4}$	$\mathrm{~PB}_{5}$	$\mathrm{~PB}_{6}$	$\mathrm{~PB}_{7}$	$\mathrm{~PB}_{8}$	PB	PB	10

MODE OX

$\mathrm{PC}_{11}$	$\mathrm{PC}_{10}$	PC9	$\mathrm{PC}_{8}$	IRS	IRE	ORS	ORF	$\mathrm{PB}_{0}$	PB1	PB2	$\mathrm{PB}_{3}$	PB4	$\mathrm{PB}_{5}$	$\mathrm{PB}_{6}$	PB7	PB8	PBg	PB10	$\mathrm{PB}_{11}$



FIGURE 10: IM6103 PIO timing diagram.


FIGURE 11: Input data transfer (peripheral device to PIO).


FIGURE 12: Output data transfer (PIO to peripheral device).

## APPLICATION OF IM6103

Figure 13 illustrates a microcomputer system block diagram using IM6103 in a dual processor system.


FIGURE 13: Dual processor system with shared memory.

IM6402/IM6403 Universal Asynchronous Receiver Transmitter (UART)

## FEATURES

- Low Power - Less Than 10 mW Typ. at $\mathbf{2 M H z}$
- Operation Up to 4MHz Clock - IM6402A
- Programmable Word Length, Stop Bits and Parity
- Automatic Data Formatting and Status Generation
- Compatible with Industry Standard UART's IM6402
- On-Chip Oscillator with External Crystal IM6403
- Operating Voltage -
- IM6402-1/03-1: 4-7V
- IM6402A/03A: 4-11V
- IM6402/03: 4-7V


## GENERAL DESCRIPTION

The IM6402 and IM6403 are CMOS/LSI UART's for interfacing computers or microprocessors to asynchronous serial data channels. The receiver converts serial start, data, parity and stop bits to parallel data verifying proper code transmission, parity, and stop bits. The transmitter converts parallel data into serial form and automatically adds start, parity, and stop bits.
The data word length can be 5, 6, 7 or 8 bits. Parity may be odd or even. Parity checking and generation can be inhibited. The stop bits may be one or two (or one and one-half when transmitting 5 bit code). Serial data format is shown in Figure 7.

The IM6402 and IM6403 can be used in a wide range of applications including modems, printers, peripherals and remote data acquisition systems. CMOS/LSI technology permits operating clock frequencies up to 4.0 MHz (250K Baud) an improvement of 10 to 1 over previous PMOS UART designs. Power requirements, by comparison, are reduced from 670 mW - to 10 mW . Status logic increases flexibility and simplifies the user interface.

The IM6402 differs from the IM6403 on pins 2, 17, 19, 22, and 40 as shown in Figure 5. The IM6403 utilizes pin 2 as a crystal divide control and pins 17 and 40 for an inexpensive crystal oscillator. TBREmpty and DReady are always activé. All other input and output functions of the IM6402 and IM6403 are identical.

## PIN CONFIGURATION


TABLE 1

PIN	IM6402	IM6403 w/XTAL	IM6403 w/EXT CLOCK
2	N/C	DIVIDE CONTROL	DIVIDE CONTROL
17	RRC	XTAL	EXTERNAL CLOCK INPUT
40	TRC	XTAL	GND

## ORDERING INFORMATION

ORDER COOE	IM6402-1/03-1	IM6402A/03A	IM6402/03
PLASTIC PKG	IM6402-1/03-1IPL	IM6402/03-AIPL	IM6402/03-IPL
CERAMIC PKG	IM6402-1/03-1IDL	IM6402/03-AIDL	-
MILTARY TEMP.	IM6402-1/03-1MDL	IM6402/03-AMDL	-
MLITARY TEMP.   WITH 883B	IM6402-1/03-1   MDL/883B	IM6402/03-AMDL   883B	-

## PACKAGE DIMENSIONS



40 PIN PLASTIC DUAL-IN-LINE PACKAGE (PL)


INIEREIL


FIGURE 1. Pin Configuration

## IM6403 FUNCTIONAL PIN DEFINITION



IM6403 FUNCTIONAL PIN DEFINITION (Continued)

PIN	SYMBOL	DESCRIPTION
14	FE	A high level on FRAMING ERROR indicates the first stop bit was invalid. FE will stay active until the next valid character's stop bit is received.
15	OE	A high level on OVERRUN ERROR indicates the data received flag was not cleared before the last character was transferred to the receiver buffer register. The Error is reset at the next character's stop bit if $\overline{\mathrm{DRR}}$ has been performed (i.e., $\overline{\mathrm{DRR}}$ : active low).
16	SFD	A high level on STATUS FLAGS DISABLE forces the outputs PE, FE, OE, DR,'TBRE* to a high impedance state. See Figure 4 and Figure 5.   *IM6402 only.
17	IM6402-RRC IM6403-XTAL or EXT CLK IN	The RECEIVER REGISTER CLOCK is 16 X the receiver data rate.
18	$\overline{\text { DRR }}$	A low level on DATA RECEIVED RESET clears the data received output (DR), to a low level.
19	DR	A high level on DATA RECEIVED indicates a character has been received and transferred to the receiver buffer register.
20	RRI	Serial data on RECEIVER REGISTER INPUT is clocked into the receiver register.
21	: MR	A high level on MASTER RESET (MR) clears PE, FE, OE, DR, TRE and sets TBRE, TRO high. Less than 18 clocks after MR goes low, TRE returns high. MR does not clear the receiver buffer register, and is required after power-up.
22	TBRE	A high level on TRANSMITTER BUFFER REGISTER EMPTY indicates the transmitter buffer register has transferred its data to the transmitter register and is ready for new data.
23	TBRL	A low level on TRANSMITTER BUFFER REGISTER LOAD transfers data from inputs TBR1-TBR8 into the transmitter buffer register. A low to high transition on TBRL requests data transfer to the transmitter register. If the transmitter register is busy, transfer is automatically delayed so that the two characters are transmitted end to end. See Figure 2.
24	, TRE	A high level on TRANSMITTER REGISTER EMPTY indicates completed transmission of a character including stop bits.
25	. TRO	Character data, start data and stop bits appear serially at the TRANSMITTER REGISTER OUTPUT.

IM6403 FUNCTIONAL PIN DEFINITION (Continued)

PIN	SYMBOL	DESCRIPTION
26	TBR1	Character data is loaded into the TRANSMITTER BUFFER REGISTER via inputs TBR1-TBR8. For character formats less than 8-bits, the TBR8, 7, and 6 Inputs are ignored corresponding to the programmed word length:
27.	TBR2	See Pin 26 - TBR1
28	TBR3	See Pin $26-$ TBR1
29	TBR4	See Pin 26 - TBR1
30	TBR5	See Pin 26 - TBR1
31	TBR6	See Pin 26 - TBR1
32	TBR7	See Pin 26 -TBR1
33	TBR8	See Pin 26 - TBR1
34	CRL	A high level on CONTROL REGISTER LOAD loads the control register. See Figure 3.

IM6403 FUNCTIONAL PIN DEFINITION (Continued)

PIN	SYMBOL	DESCRIPTION
35	PI*	A high level on PARITY INHIBIT inhibits parity generation, parity checking and forces PE output low.
36	SBS*	A high level on STOP BIT SELECT selects 1.5 stop bits for a 5 character format and 2 stop bits for other lengths.
37	CLS2*	These inputs program the CHARACTER LENGTH SELECTED. (CLS1 low CLS2 low 5-bits) (CLS1 high CLS2 low 6-bits) (CLS1 low CLS2 high 7-bits) (CLS1 high CLS2 high 8 -bits)
38	CLS ${ }^{*}$	See Pin $37-$ CLS2
39	EPE*	When PI is low, a high level on EVEN PARITY ENABLE generates and checks even parity. A low level selects odd parity.
40	IM6402-TRC IM6403-XTAL or GND	The TRANSMITTER REGISTER CLOCK is 16X the transmit data rate.

*See Table 2 (Control Word Function)

TABLE 2. Control Word Function

CONTROL WORD.					DATA BITS	PARITY BIT	STOP BIT(S)
CLS2	CLS 1	PI	EPE	SBS			
L	L	L	L	L	5	ODD	1
L	L	L	L	H	5	ODD	1.5
L	L	$\cdots \mathrm{L}$	H	L	5	EVEN	1
L	L	$\therefore \mathrm{L}$	H	H	5	EVEN	1.5
L	L	H	X	L	5	DISABLED	1
L	L	H:	X	H	5	DISABLED	1.5
L	H	L	L	L	6	ODD	1
L	$\therefore \mathrm{H}$	L	L	H	6	ODD	2
L	H	L	H	L	6	EVEN	1
L	H	L	H	H	6	EVEN	2
L	H	H	X	L	6	DISABLED	1
L	H	H	X	H	6	DISABLED	2
H	$\cdots$	L	L	L	7	ODD	1
H	L	L	L	H	7	ODD	2
H	L	L	H	L	7	EVEN	1
- H	L	L	H	H	7	EVEN	2
H	L-	H	X	L	7	DISABLED	1
H	L	H	X	H	7	DISABLED	2
H	H	L	L	L	8	ODD	1
H	H	L	L	H	8	ODD	2
H	H	L	H	L	8	EVEN	1
H	H	L	H	H	8	EVEN	2
H	H	H	X	L	8	DISABLED	1
H	H	H	X	H	8	DISABLED	2

[^32]
## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6402AI/03AI .............. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military IM6402AM/03AM ........... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ....................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage . . . . . . . . . . . . . . . . . . . . . . . . 4.0 V to 11.0 V
Supply Voltage ............................................ +12.0 V
Voltage On Any Input or Output Pin .. -0.3V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{VCC}=4 \mathrm{~V}$ to $11 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP2	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		70\% VCC			V
2	$V_{\text {IL }}$	Input Voltage Low				20\% VCC	V
3	${ }_{1} \mathrm{~L}$	Input Leakage[1]	GND $\leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	$\mathrm{V}_{\mathrm{OH}}$	Output Voltage High	$1 \mathrm{OH}=0 \mathrm{~mA}$	$\mathrm{v}_{\mathrm{CC}}-0.01$			V
5.	$\mathrm{V}_{\mathrm{OL}}$	Output Voltage Low	$1 \mathrm{OL}=0 \mathrm{~mA}$			GND+0.01	V
6	IOL	Output Leakage	GND $\leqslant V_{\text {OUT }} \leqslant V_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	ICC	Power Supply Current Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$		5.0	500	$\mu \mathrm{A}$
8	${ }^{\text {ICC }}$	Power Supply Current IM6402A Dynamic	$\mathrm{f}_{\mathrm{C}}=4 \mathrm{MHz}$			9.0	mA
9	ICC	Power Supply Current IM6403A Dynamic	${ }^{\text {f CRYSTAL }}=3.58 \mathrm{MHz}$			13.0	mA
10	$\mathrm{C}_{\text {IN }}$	Input Capacitancel 1$]$		$\therefore$. . . .	7.0	8.0	pF.
11	$\mathrm{Co}_{0}$	Output Capacitance[1]			8.0	10.0	pF

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{VCC}=10 \mathrm{~V} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Industrial or Military

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP ${ }^{2}$	MAX	UNITS
1	$\mathrm{f}_{\mathrm{C}}$	Clock Frequency IM6402A	See Timing Diagrams   (Figures 2,3,4)	D.C.	6.0	4.0	MHz
2	${ }_{\text {f CRYSTAL }}$	Crystal Frequency IM6403A			8.0	6.0	MHz
3	tPW	Pulse Widths CRL, $\overline{\text { DRR, }}$, TBRL		100	40		ns
4	${ }_{\text {t }}^{\text {MR }}$	Pulse Width MR		400	200		ns
5	tos	Input Data Setup Time		40	0		ns
6	${ }^{\text {t }}$ H	Input Data Hold Time		30	30		ns
7	ten	Output Enable Time			40	70	ns

## TIMING DIAGRAMS



FIGURE 2. Data Input Cycle

figure 3. Control Register Load Cycle


FIGURE 4. Status Flag Enable Time or Data Output Enable Time

IM6402-1/IM6403-1

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature
Industrial IM6402-11/03-11 ............. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military IM6402-1 M/03-1 M ............ . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature ..................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Voltage .,............................ 4.0 V to 7.0 V
Supply Voltage ............................................ 8.0 V
Voltage On Any Input or Output Pin ... -0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under ."Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.

## D.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{V}_{\mathrm{cc}}=5.0 \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Industrial or Military

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP2	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High	,	$\mathrm{V}_{\mathrm{CC}}-2.0$			V
2	$V_{\text {IL }}$	Input Voltage Low ${ }^{*}$				0.8	V
3	IIL	Input Leakagel []	GND $\leqslant \mathrm{V}_{\text {IN }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
4	$\mathrm{V}_{\mathrm{OH}}$	Output Voltage High	$1 \mathrm{OH}^{=}=0.2 \mathrm{~mA}$	2.4			V
5	$\mathrm{V}_{\mathrm{OL}}$	Output Voltage Low	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
6	${ }^{1} \mathrm{OL}$	Output Leakage	$\mathrm{GND} \leqslant \mathrm{V}_{\text {OUT }} \leqslant \mathrm{V}_{\text {CC }}$	-1.0		1.0	$\mu \mathrm{A}$
7	Icc	Power Supply Current Standby	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cC }}$		1.0	100	$\mu \mathrm{A}$
8	ICC	Power Supply Current IM6402 Dynamic	${ }_{\mathrm{f}} \mathrm{C}=2 \mathrm{MHz}$			1.9	mA
9	Icc	Power Supply Current IM6403 Dynamic	${ }^{\text {f }}$ CRYSTAL $=3.58 \mathrm{MHz}$			5.5	mA
10	$\mathrm{CIN}^{\text {! }}$	Input Capacitance[1]			7.0	8.0	pF
11	$\mathrm{C}_{0}$	Output Capacitance [ ${ }^{1]}$			8.0	10.0	pF

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

## A.C. CHARACTERISTICS

TEST CONDITIONS: $\mathrm{VCC}_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Industrial or Military

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP2	MAX	UNITS
1	${ }^{\mathrm{f}} \mathrm{C}$	Clock Frequency IM6402		D.C.	3.0	2.0	MHz
2	fCRYSTAL	Crystal Frequency IM6403	$\therefore$;	$\therefore \cdots \cdots$	- 4.0	3.58	MHz
3	tPW	Pulse Widths CRL, $\overline{\text { DRR, }}$ TBRL		150	50	.	ns
4	tMR	Pulse Width MR	See Timing Diagrams	400	200		ns
5	${ }^{\text {t }}$ DS	Input Data Setup Time	(Figures 2,3,4)	50	- 20	: ;	ns
6	tDH	Input Data Hold Time	' $\quad$ !	60	$\bigcirc$		ns
7	${ }^{\text {teN }}$	Output Enable Time			80	160	ns



FIGURE 5. Functional Difference Between IM6402 and IM6403 UART (6403 has On-Chip 4/11 Stage Divider)

The IM6403 differs from the IM6402 on three Inputs (RRC, TRC, pin 2) as shown in Figure 5. Two outputs (TBRE, DR) are not three-state as on the IM6402, but are always active. The on-chip divider and oscillator allow an inexpensive crystal to be used as a timing source rather than additional circuitry such
as baud rate generators. For example, a color TV crystal at 3.579545 MHz results in a baud rate of 109.2 Hz for an easy teletype interface (Figure 11). A 9600 baud interface may be implemented using a 2.4576 MHz crystal with the divider set to divide by 16 . IM6402/IM6403

## ABSOLUTE MAXIMUM RATINGS

Operating Temperature	
IM6402/03	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Voltage	4.0 V to 7.0 V
Supply Voltage	+8.0V
Voltage On Any Input or	3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the devices at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.'
D.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	$\mathrm{V}_{\text {IH }}$	Input Voltage High		$\mathrm{V}_{\text {CC }}-2.0$			V
2	$V_{\text {IL }}$	Input Voltage Low		;		0.8	V
3	$I_{\text {IL }}$	Input Leakage[1]	GND $\leqslant V_{\text {IN }} \leqslant V_{\text {CC }}$	-5.0		5.0	$\mu \mathrm{A}$
4	$\mathrm{V}_{\mathrm{OH}}$	Output Voltage High	$1 \mathrm{OH}=-0.2 \mathrm{~mA}$	2.4			$V^{\prime}$
5	$\mathrm{V}_{\mathrm{OL}}$	Output Voltage Low	$1 \mathrm{OL}^{\prime}=1.6 \mathrm{~mA}$			0.45	V
6	${ }^{1} \mathrm{OL}$	Output Leakage	GND $\leqslant V_{\text {OUT }} \leqslant V_{\text {CC }}$	-5.0		5.0	$\mu \mathrm{A}$
7	$\mathrm{I}_{\mathrm{C}}$	Power Supply Current Standby	$V_{\text {IN }}=$ GND or $V_{\text {CC }}$	$\cdots$	1.0	800	$\mu \mathrm{A}$
8	ICC	Power Supply Current IM6402 Dynamic	$\mathrm{f}_{\mathrm{C}}=500 \mathrm{KHz}$		.	1.2	mA
9	${ }^{\prime} \mathrm{CC}$	Power Supply Current IM6403 Dynamic	f. ${ }^{\text {CRPRSTAL }}=2.46 \mathrm{MHz}$	,		3.7	mA
10	CIN	Input Capacitance[1]	- . . .	,	7.0	8.0	pF
11	$\mathrm{C}_{0}$	Output Capacitance[1]	; $\quad$ -	!	8.0	10.0	pF

NOTE 1: Except IM6403 XTAL input pins (i.e. pins 17 and 40).
NOTE 2: $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
A.C. CHARACTERISTICS

TEST CONDITIONS: $V_{C C}=5.0 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
1	${ }^{\mathrm{f}} \mathrm{C}$	Clock Frequency IM6402	See Timing Diagrams (Figures 2,3,4)	D.C.	". 3.0	1.0	MHz
2	fCRYSTAL	Crystal Frequency IM6403			4.0	2.46	MHz
3	${ }^{\text {tPW }}$	Pulse Widths CRL, $\overline{\text { DRR, }} \overline{\text { TBRL }}$		225	50		ns
4	${ }_{\text {tMR }}$	Pulse Width MR		$\cdots 600$	200		ns
5	${ }^{\text {t }}$ DS	Input Data Setup Time		75	20		ns
6	${ }^{t}$ DH	Input Data Hold Time		90	40		ns
7	${ }^{\text {t E N }}$	Output Enable Time			80	190	ns



FIGURE 6. IM6402/03 Functional Block Diagram

## TRANSMITTER OPERATION

The transmitter section accepts parallel data, formats it and transmits it in serial form (Figure 7) on the TROutput terminal.

*IF ENABLED
FIGURE 7. Serial Data Format
Transmitter timing is shown in Figure 8. (A) Data is loaded into the transmitter buffer register from the inputs TBR1 through TBR8 by a logic low on the TBRLoad input. Valid data must be present at least $t_{D S}$ prior to and $t_{D H}$ following the rising edge of TBRL. If words less than 8 bits are used, only the least significant bits are used. The character is right justified into the least significant bit, TBR1. (B) The rising edge of TBRL clears TBREmpty. 0 to 1 clock cycles later data is transferred to the transmitter register and TREmpty is cleared and transmission starts. TBREmpty is reset to a logic high. Output data is clocked by TRClock. The clock rate is 16 times the data rate. (C) A second pulse on TBRLoad loads data into the transmitter buffer register. Data transfer to the transmitter register is delayed until transmission of the current character is complete. (D) Data is automatically transferred to the transmitter register and transmission of that character begins.


FIGURE 8. Transmitter Timing (Not to Scale)

## RECEIVER OPERATION

Data is received in serial form at the RI input. When no data is being received, RI input must remain high: The data is clocked through the RRClock. The clock rate is 16 times the data rate. Receiver timing is shown in Figure 9.
(A) A low level on DRReset clears the DReady line. (B) During the first stop bit data is transferred from the receiver register to the RBRegister. If the word is less than 8 bits, the unused most significant bits will be a logic low. The output character is right justified to the least significant bit RBR1. A.logic high on OError indicates overruns. An overrun occurs when DReady has not been cleared before the present character was transfered to the RBRegister. A logic high on PError indicates a parity error. (C) $1 / 2$ clock cycle later DReady is set to a logic high and FError is evaluated. A logic high on FError indicates an invalid stop bit was received. The receiver will not begin searching for the next start bit until a stop bit is received.


FIGURE 9. Receiver Timing (Not to Scale)

## START BIT DETECTION

The receiver uses a 16 X clock for timing (see Figure 10.) The start bit (A) could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion. The center of the start bit is defined as clock count $71 / 2$. If the receiver clock is a symmetrical square wave, the center of the start bit will be located within $\pm 1 / 2$ clock cycle, $\pm 1 / 32$ bit or $\pm 3.125 \%$. The receiver begins searching for the next start bit at the center of the first stop bit.


FIGURE 10. Start Bit Timing

## TYPICAL APPLICATION

Microprocessor systems, which are inherently parallel in nature, often require an asynchronous serial interface. This function can be performed easily with the IM6402/03 UART. Figure 11 shows how the IM6403 can be interfaced to an IM6100 microcomputer system with the aid of an IM6101 Programmable Interface Element (PIE). The PIE interprets Input/Output transfer (IOT) instructions from the processor and generates read and write pulses to the UART. The SENSE lines on the PIE are also employed to allow the processor to detect UART status. In particular, the processor must know when the Receive Buffer Register has accumulated a character (DR active), and when the Transmit Buffer Register can accept another character to be transmitted.

In this example the characters to be received or transmitted will be eight bits long (CLS 1 and 2: both HIGH) and transmitted with no parity (PI:HIGH) and two stop bits (SBS:HIGH). Since these control bits will not be changed during operation, Control Register Load (CRL) can be tied high. Remember, since the IM6402/03 is a CMOS device, all unused inputs should be committed.

The baud rate at which the transmitter and receiver will operate is determined by the external crystal and DIVIDE CONTROL pin on the IM6403. The internal divider can be set to reduce the crystal frequency by either 16 (PIN 2:HIGH) or 2048 (PIN 2:LOW) times. The frequency out of the internal divider

## IM6402/IM6403

should be 16 times the desired baud rate. To generate 110 baud, this example will use a 3.579545 MHz color TV crystal and DIVIDE CONTROL set low. The IM6402 may use different receive (RRC) and transmit (TRC) clock rates, but requires an external clock generator.

To assure consistent and correct operation, the IM6402/03 must be reset after power-up. The Master Reset (MR) pin is active high, and could be driven reliably from a Schmitt trigger inverter and R-C delay. In this example, the IM6100 is reset through still another inverter. The Schmitt trigger between the processor and R-C network is needed to assure that a slow rising capacitor voltage does not re-trigger RESET. A long reset pulse after power-up ( -100 ms ) is required by the processor to assure that the on-board crystal oscillator has sufficient time to start.

The IM6402 supports the processor's bi-directional data bus quite easily by tying the TBR and RBR buses together. A read command from the processor will enable the RECEIVER BUFFER REGISTER onto the bus by using the RECEIVER REGISTER DISABLE (RRD) pin. A write command from the processor clocks data from the bus into the TRANSMITTER BUFFER REGISTER using TBRL. Figure 11 shows a NAND gate
driving $\overline{\text { TBRL }}$ from the $\overline{W R I T E}_{2}$ pin on the PIE. This gate is used to generate a rising edge to TBRL at the point where data is stable on the bus, and to hold TBRL high until the UART actually transfers the data to it's internal buffer. If TBRL were allowed to return low before TBRE went high, the intended output data would be overwritten, since the TBR is a transparent latch.

Although not shown in this example, the error flags (PE, FE, OE) could be read by the processor using the other READ line from the PIE. Since an IM6403 is used, TBRE and DR are not affected by the STATUS FLAGS DISABLE pin. Thus, the three error flags can be tied to the data bus and gated by connecting SFD to $\overline{\operatorname{READ}}_{2}$.

If parity is not inhibited, a parity error will cause the PE pin to go high until the next valid character is received.
A framing error is generated when an expected stop bit is not received. FE will stay high after the error until the next complete character's stop bit is received.

The overrun error flag is set if a received character is transferred to the RECEIVER BUFFER REGISTER when the previous character has not been read. The OE pin will stay high until the next received stop bit after a $\overline{\mathrm{DRR}}$ is performed.


FIGURE 11. 110 Baud Serial Interface for IM6100 System

IM87C41 CMOS Single-Chip Programmable Peripheral Interface Microcomputer

## FEATURES

- 8-bit CPU plus EPROM, RAM, I/O, Timer/Counter, and Clock in a single package
- CMOS pin-for-pin replacement for standard NMOS 8741
- Low power dissipation - maximum 50mW @ 5V, 6 MHz
- Extended temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Completely static - no minimum operating frequency
- Compatible with Intersil's CMOS IM80C48 family
- $1 \mathrm{~K} \times 8$ EPROM, $64 \times 8$ RAM, 18 programmable I/O lines
- Asynchronous double-buffered data register for master processor interface
- On-chip Timer/Counter ideal for real-time applications
- Expandable I/O
- Alternative to custom LSI
- Compatible ROM versions (IM80C41/C42)
- High noise immunity - typically 33\%
- Single +5 V supply

PIN CONFIGURATION	OR INFO	ERING MATION
	PART No.	PACKAGE
	IM87C411DL	40 PIN CERAMIC
	IM87C411JL	40 PIN CERDIP

## GENERAL DESCRIPTION

The Intersil IM87C41 is a general-purpose programmable peripheral interface device, optimized for use as a slave to many common 8 -bit processors. Intersil's high-performance silicon-gate CMOS/LSI process is used to fabricate a device which is pinout, function, software, and throughput compatible with the NMOS 8741, while offering significantly decreased power consumption. In addition, the IM87C41's extended operating temperature range ( $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ) and high noise immunity make it ideal for battery operated equipment and hostile environments. The IM87C41 contains an 8 -bit CPU, program and data memory, two I/O ports, clock, and timer/counter. An interfacestatus register and double-buffered data register facilitate communication with a master processor, such as the IM87C48 or 8085.

The IM87C41 CPU has a repertoire of over 90 instructions, most of which execute in one cycle. Included are versatile bit set/reset and test operations, as well as instructions dealing directly with the on-chip timer/counter. 1024 bytes of UV-erasable EPROM program memory and 64 bytes of data memory are provided on chip. The EPROM program memory is ideal for prototypes and low-volume applications. It also conveniently allows for program modifications before the user commits to masked-ROM (IM80C41 or IM80.C42). Included in the data memory area are an eight-level subroutine stack, and sixteen general purpose registers. Register direct, indirect, and unique accumulator-indirect addressing modes are implemented for ease of data manipulation.

The IM87C4. has two general-purpose TTL-compatible 8 -bit I/O ports; individual port lines may be programmed to function as either inputs or outputs. Two additional inputs are testable using conditionaljump instructions. The compatible CMOS IM82C43 I/O expander is supported by the IM87C41 instruction set and extends $1 / \mathrm{O}$ capability in increments of $16 \mathrm{I} / \mathrm{O}$ lines.

For debugging purposes, a single-step input allows instructions to be executed one at a time. Since the IM87C41 is completely static (in contrast to the dynamic NMOS 8741, the device may also be singleclocked.

Intersil's Intercept microcomputer development systems provide full IM87C41 support. The efficient IFDOS operating system supports a text editor, assembler, EPROM programmer, and a hardware incircuit emulator.

IM82C43
CMOS Input/Output Expander

## FEATURES

- IM87C48/C41 - compatible I/O expander
- CMOS pin-for-pin replacement for standard NMOS 8243
- Low power dissipation - typically 25 mW active
- Extended temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Four 4-bit I/O ports in 24-pin DIP
- Logical AND/OR directly to ports
- High output drive
- High noise immunity - typically $33 \%$
- Single +5V supply


## DESCRIPTION

The Intersil IM82C43 is a CMOS input/output expander compatible with the NMOS 8243. It is designed to provide low-cost I/O expansion for the CMOS IM87C48 and IM87C41 single-chip microcomputers.
The 24 -pin IM82C43 provides four 4 -bit I/O ports; IM87C48/C41 instructions implement accumulator/ IM82C43 port transfers, as well as logical AND/OR operations. P20-P23 on the IM87C48/C41 serves as a 4-bit bus for transfer of control and data to the IM82C43.


# 6950 INTERCEPT JR. MICROCOMPUTER TUTORIAL SYSTEM 

FEATURES

- Battery operation
- Executes PDP®-8/E instruction set
- Keyboard monitor program in ROM
- 8 seven-segment displays for address and data
- 256 words of non-volatile RAM
- 3 expansion sockets for optional modules
- Fully assembled and tested
- Low cost
- Tutorial manual included
@Registered trademark of Digital Equipment Corp.


## GENERAL DESCRIPTION

A practical exposure to the Intersil IM6100 microprocessor, RAMs, P/ROMs, and Input/Output interfacing can be achieved with the INTERCEPT JR. TUTORIAL SYSTEM and the owners handbook supplied.
This fully assembled and factory tested system is battery operated. Moreover, it executes the same instruction set as the popular $\mathrm{PDP}^{®-8 E}$ minicomputer, thus providing a rich supply of proven software. The INTERCEPT JR. is designed with a modular concept to enable the user to purchase only those modules which meet his requirements. Or, if the user wishes, custom interface boards can be designed using the documentation supplied. The INTERCEPT JR. system is a valuable tool for the evaluation of custom circuits interfaced to an IM6100 microcomputer system.
With its simplicity of design, broad capabilities, and low cost, the INTERCEPT JR. TUTORIAL SYSTEM is ideal as an educational tool for the student, hobbiest, or system designer.


## 6950-INTERCEPT JR. MODULE

INTERCEPT JR. provides an all CMOS computer on a $10^{\prime \prime} \times 11^{\prime \prime}$ double sided PC board. A multiple function calculator type keypad in concert with a $1024 \times 12$ CMOS ROM (IM6312) monitor provides control functions, a serial bootstrap loader, as well as the INTERCEPT JR. MICROINTERPRETER. Memory addresses and data are displayed in octal on two four-digit LED displays. The IM6100 CMOS microprocessor interfaces via a
three-state address/data bus to $256 \times 12$ CMOS RAM. Four D-cell batteries allow for non-volatile RAM and battery operation of the entire system. External terminals permit the user to provide a 5 volt power source. A socket is provided for evaluation of a user generated CMOS ROM (IM6312/12A). Three edge connectors with 44 pins on $0.156^{\prime \prime}$ pin-to-pin spacing are provided for expansion using the optional boards available.


## 6951-M1KX12 <br> JR. RAM MODULE

The JR. RAM MODULE, utilizing twelve (12) IM6518 $1024 \times 1$ CMOS RAMS on a $41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$ PC board, provides a convenient memory extension module. Non-volatility is assured by two (2) penlight batteries which are provided.

## 6952-P2KX12

## JR. PROGRAMMABLE ROM-P/ROM MODULE.

The JR. P/ROM MODULE provides the user with twelve (12) sockets organized on a $41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime}$ PC board: The user has the option of utilizing the IM5623, $256 \times 4$, or IM5624, $512 \times 4$ three-state-output Avalanche Induced Migration (AIM) programmable bipolar P/ROMs to obtain from 256 to 2048 words of program. Each of the four (4) rows of sockets are power strobed to permit 0.75 watts average when the P/ROMs are accessed.

## 6953-PIEART

## JR. SERIAL I/O MODULE

The JR. SERIAL I/O MODULE featuring the IM6101 CMOS Parallel Interface Element (PIE) and the IM6403 CMOS Universal Asynchronous Receiver Transmitter (UART) provides the user with serial I/O capability with both RS232 and 20 mA current loop interfaces. The IM6100 controls the UART via the PIE. The CMOS ROM monitor contains a bootstrap routine for loading programs from the $6953-$ PIEART using BIN** formatted media.


## 6954-ACI

## JR. AUDIO CASSETTE INTERFACE MODULE

The INTERCEPT JR. AUDIO CASSETTE INTERFACE MODULE allows the user to store and retrieve programs on an inexpensive cassette tape recorder. The module transfers data at 30 characters per second. Thus, approximately 200,000 characters may be recorded on a standard two hour cassette. The module employs the IM6101 PIE and IM6402 UART to accomplish serial/parallel conversion, as well as two phaselock loops and a digital sinewave generator for the analog interface.

## 6957-AUDVIS

## JR. AUDIO VISUAL MODULE

The JR. AUDIO VISUAL MODULE provides the user with an excellent tutorial device. A switch register, acting as an input, can be loaded into two LED display registers providing both binary and seven segment octal readout. A volume controlled speaker can be "clicked" or used to produce tones by controlling the rate at which the speaker is pulsed. A display control on-off switch is provided for power conservation.


## MICROINTERPRETER SIMPLIFIES PROGRAM ENTRY

The INTERCEPT JR. MICROINTERPRETER provides an assembler-like method of entering programs. The user needn't remember opcodes! The MICROINTERPRETER converts assembler mnemonics into machine language opcodes.

## EXAMPLE:

Add $7_{10}(00078)$ which is stored in memory location $22_{10}$ $\left(0026_{8}\right)$, to $15_{10}\left(0017_{8}\right)$, which is stored in memory location $23_{10}(00278)$, and store the result in 2110 (00258).

PROGRAM
0020 CLA /Clear Accumulator
0021 TAD 0026 /Read Location 0026
0022 TAD 0027 /Add Location 0027
0023 DCA 0025 /Deposit Result in 0025
0024 HLT /Halt


SYSTEM BLOCK DIAGRAM


## 6910/6911 Intercept I/II Microcomputer Development System

## HARDWARE FEATURES:

- 4K Words of Resident Memory (RAM) for Program and Data Storage
- Expandable to 32 K Words of Memory: Intercept II
- Resident Control Panel Memory (2K Words ROM and 256 Words RAM)
- Transparent to User Programs
- Floppy Disk Operating System Bootstrap
- Up to 8 Simultaneous Breakpoints
- Highly Interactive Debugging Facilities
- Two High Speed Serial I/O Ports with Multiple Baud Rates (14 Different Baud Rates)
- User Selectable
- RS232C Standard on Both I/O Ports
- Either Port May be Strapped for 20mA Current Loop
- Compact Size
- Intercept I ( $8.3 \mathrm{~cm} \times 40.8 \mathrm{~cm} \times 27.9 \mathrm{~cm}$ )
- Intercept II ( $\mathbf{2 1 . 6 \mathrm { cm } \times 5 0 . 8 \mathrm { cm } \times 4 7 . 6 \mathrm { cm } \text { ) } ) ~ ( { } ^ { 2 } )}$
- Extensive Hardware Options
- Memory Module
- Wirewrap Module
- Extender Module
- Teletype Relay Module
- Dual Floppy Disk System
- Intercept II: 6910
- Intercept I: 6911



## Intercept I/II

## GENERAL DESCRIPTION

Intercept I/II is a general purpose microcomputer development system for Intersil's IM6100 Microprocessor component. It consists of two PC boards, a Central Processor Module Board, and a Memory Module Board. The Central Processor Module Board includes the IM6100 CPU, resident memory ( 2 K words ROM and 256 words RAM) for firmware storage, memory extension capability and two channels of serial I/O ports. The Memory Module Board includes 4 K words ( $4 \mathrm{~K} \times 12$ ) of CMOS RAM for the user's PROGRAM/DATA storage.
All of the system control features, such as an extended memory control (for memory expansion up to 32 K words); a real time clock, and DMA control functions are resident in the system. The resident firmware eliminates the need for the hardware control panel.
The Intercept I has an ultra compact enclosure size of $8.3 \mathrm{~cm} \times 40.8 \mathrm{~cm} \times 27.9 \mathrm{~cm}(\mathrm{HxW} \times \mathrm{D})$ and it can accommodate a total of four PC Boards. Two boards, a processor card and a memory card, are supplied with the Intercept I system, and thus, the user can add up to two additional cards.
The Intercept II has a compact enclosure size of $21.6 \mathrm{~cm} \times 50.8 \mathrm{~cm} \times 47.6 \mathrm{~cm}(\mathrm{H} \times W \times \mathrm{D})$, and it allows a total of eleven PC boards in the system. Because two cards come with the system, the user may add up to nine additional cards to Intercept II.
Standardized board sizes and uniform bus definitions ensure compatibility with previous Intercept designs. Intersil offers hardware and software support including 4K memory modules, floppy disk hardware, Intercept Floppy Disk Operating System, etc.

## HARDWARE SPECIFICATIONS

## Word Size

Host Processor: Intersil IM6100
Data: 12-bits
Instruction: 12 or 24-bits

## Memory Size

Main Memory
RAM: $\mathbf{4 K}$ expandable to 32 K (CMOS with battery backup standard)
Control Panel Memory (2K words x 12)
RAM: 256 words (not expandable - monitor uses 128 words)
ROM: 2K (not expandable - used by monitor)

## System Clock

Crystal Controlled: 3.3MHz typical

## Serial I/O Interfaces

(RS232C is standard on both I/O ports; either port may be strapped for 20 mA current loop operation)

## Primary Port

Baud Rates: 50/75/110/134.5/150/200/300/600/ 1200/1800/2400/4800/9600/19200

Any of these 14 different baud rates is switch selectable.
Code Format: 10 level code
Parity: None

## Secondary Port

Same as Primary Port except: Baud Rate is console controlled or software programmable (50/75/110/ 134.5/150/200/300/600/1200/1800/2400/4800/ 9600/38400.)
Includes four RS232C supervisory signals (two inputs and two outputs)

## Interrupt

Single level, maskable, prioritized, vectored or polled.

## Direct Memory Access

Standard IM6102 DMA, bus control implemented on CPU module - transfer rate user controlled (direct memory interface) - typically greater than 2 MHz .

## Physical Characteristics

Dimensions: $(H \times W \times D) 8.3 \mathrm{~cm} \times 40.8 \mathrm{~cm} \times 27.9 \mathrm{~cm} *$ $21.6 \mathrm{~cm} \times 50.8 \mathrm{~cm} \times 47.6 \mathrm{~cm} *$
Weight: 18 lbs.* 35 lbs.**

## Electrical Characteristics

DC Power   Supply	Power Supply   Current	System Current   Requirements (Typ.)
$* *+5 \mathrm{~V} \pm 5 \%$	6 A	.8 A
$*+5 \mathrm{~V} \pm 5 \%$	1.5 A	.9 A
$* *+12 \mathrm{~V} \pm 5 \%$	.8 A	.1 A
$* *-12 \mathrm{~V} \pm 5 \%$	.8 A	.1 A

*Applies to Intercept I Only.: **Applies to Intercept II Only.

## AC Power Requirements

Frequency: 50 or 60 Hz
Voltage: 115 or 230V AC
Power: Intercept I: 70W max.
Intercept II: 175W max.

## Environmental Characteristics

Operating Temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Humidity: $10 \%$ to $90 \%$ (no condensation)

## Intercept I/II

## Equipment Supplied (Basic System)

- 6912 Central Processor Module
- 6901 4K CMOS RAM Module
- Finished Cabinet with Power Supplies, Card Cage and Fan**
- Intercept User's Manual
- IM6100 CMOS Microcomputer User's Manual
- Two RS232C and One 20mA Current Loop Cable
- AC Power Line Cord
**Intercept II Only.


## Hardware Options

## 6901 - M4K x 12

4K Nonvolatile CMOS Memory Module

- 4 K Words ( $4 \mathrm{~K} \times 12$ ) CMOS Static RAM
- 100 mAH Rechargeable Ni-Cd Battery Back-Up Included
- Data Retention of Up to 40 Days
- Ni-Cd Batteries Automatically Recharged in a System Under Normal Power
- Input Protect Switch (For Write Inhibit into RAM's)
- $15.2 \mathrm{~cm} \times 21.6 \mathrm{~cm} \times 1.9 \mathrm{~cm}$


## 6905 - WIREWP

Wirewrap Module for User Interfaces to Intercept

- Direct Interface to Intercept System
- Universal Wirewrap Board

6906 - EXTEND
Extender Module

- Extend any Intercept Module for Servicing, Testing, Trouble-Shooting, and Debugging


## 6909 - RELAY

Teletype Paper Tape Reader Remote Control Module

- Remote Control of Teletype Model ASR33 Paper Tape Reader
- $6.4 \mathrm{~cm} \times 9.5 \mathrm{~cm}$
- Protection Against Noise Induced by Line Surges when Interfacing to Teletype ASR33


## 6970 - IFDOS

Dual Floppy Disk System with Single Board Interface to Intercept Bus

- IBM 3740 Compatible Media with Multiple Sources
- Disc Drive/Controller/Formatter/Intercept Interface Included
- Powerful Operating System
- Editor, Assembler
- Binary Loader, Octal Debugger
- Numerous Utility Programs for File Copying, Dumping, System Data Handling, and System Program Cataloging


## SOFTWARE/FIRMWARE SPECIFICATIONS

## Resident Control Panel Firmware Monitor

## Capabilities

- Accumulator, Link, Program Counter, Instruction/ Data Fields, MQ, Switch Register-examine/modify
- Control Panel and Main Memory-examine/modify
- Single Instruction, Breakpoint, Snapshot and Tracedebugging and modify
- IFDOS (FLOPPY DISK) Operating System Bootstrap
- Memory Bit Pattern/Word Search
- Binary Paper Tape Input/Output Commands (Loader/Punch)
- DEC PDP-8/E Console Terminal, HLT, OSR Emulation
- Up to 8 Simultaneous Breakpoints


## Features

- High Speed Resident Operation
- Highly Interactive Debugging Facilities
- Completely Transparent to User Programs


## SOFTWARE OPTIONS

6980 - Intercept Floppy Disk Operating System (IFDOS)

## Components

- File System Controls Floppy Disk Input/Output Operation
- Keyboard Monitor for Communication Between User and IFDOS
- Text Editor Creates and Modifies ASCII Text at the Terminal
- PAL Assembler translates IM6100 assembly language to machine language in one or two passes. About 400 symbols can be created in standard system of 4 K word memory. 1024 more symbols can be created with each 4 K additional RAM with maximum symbol limit of up to 4095 symbols.
- Numerous Switch Options and Pseudo-operations for Assembly and Listing Control
- Numerous Utility Programs for File Manipulation and Disk Dumping and Copying
- Disk Diagnostic Programs
- Supplied with IFDOS in a Standard Floppy Diskette and Listing
- Required Hardware:
- Intercept System
- ASCII Terminal
- 6970-IFDOS Dual Floppy Disk Unit


## 6981 - FOPAL III

PAL III Fortran Cross Assembler

- Written in Standard Fortran IV
- Card Deck Based
- Can Use with Any Fortran Compiler and a Card Reader (such as 029 Reader)
6982 - PDP ${ }^{\text {® }}$-8/E Extended Paper Tape Software Kit (Order No. 6982-QF081-AC) - See Note 1


## Components

- Text Editor Creates and Modifies ASCII Text at the Terminal
- PAL III Assembler Translates the IM6100 Assembly Language to Machine Language in Two or Three Passes
- 23-Bit Floating Point Arithmetic Package Performs Basic Arithmetic, Trigonometric, and Exponential Function Using Floating Point Numbers
- Supplied with programs in Paper Tapes and Documentation


## 6982 - FOCAL $^{\circledR} 8$

(Order No. 6982-IS-LFOCA) - See Note•1

- Interactive Algebraic Language
- Extensive Math. Functions
- Easy to Learn High Level Language
- Needs only 4K Words of RAM
- Paper Tape Based
© Registered trade mark of Digital Equipment Corp.


## Note:

1. This is redistributed Digital Equipment Corporation Software. It is copyrighted and non-licensed Digital Equipment Corporation software, which means that it cannot be copied although it may be distributed to third parties. Digital Equipment Corporation assumes no responsibility for any software distributed by Intersil, Inc. nor for the performance of any of Intersil's products.

## DESCRIPTION

The 6970-IFDOS Floppy Disc Operating System is designed to facilitate development of software for an IM6100 microprocessor-based system. An ASCII terminal such as the ASR33 is required, as well as at least 4 K words of memory (included with the INTERCEPT prototyping system).

## HARDWARE

The hardware components of 6970-IFDOS consist of two completely interfaced floppy disc drive mechanisms with all electronics, power supplies, and cables necessary to add over four (4) million bits of "on line" mass storage capability to the INTERCEPT prototyping system. All components are contained in a single covered enclosure which is rack mountable or can be placed on any flat surface. The interface module is inserted directly into the INTERCEPT bus and is connected to the disc system via a multi-conductor ribbon cable.

## Features:

- IBM 3740 compatible media with multiple sources
- Software compatible with DEC RX8 for the PDP-8 minicomputers
- Intelligent disc drive/controller formatter/interface communications which provide the ability to:
- Detect, identify, and correct errors resulting from mechanical, electrical, media or human malfunction
- Completely format a diskette within industry standards
- Automatic transparent self tests on disc related equipment are performed at times when system throughput is least affected
- Flexible Programmed Input/Output for applications that require direct communications between user programs and the storage system


## SOFTWARE

## Features:

- A file system which maintains a catalog of user files on floppy disc and performs file handling and input/ output operations as specified by user

Features (con't):

- A keyboard monitor which provides communication between the user and the operating system thereby enabling simple commands to enter and delete files in the user catalog, transfer files between memory and mass storage, print the user file catalog, and call system programs
- An easy to learn text editor which allows the user to create and modify ASCII text at the console terminal
- An extremely fast and flexible assembler which accepts source programs created by the editor and produces binary output for subsequent loading and execution
- A binary loader which loads and executes assembler output files and facilitates loading of existing binary paper tapes
- An octal debugger which allows the user to examine, modify, and control execution of programs from the terminal
- Numerous utility programs for absolute block copying and dumping of floppy discs, system data handling, control of system parameters, and printing of system program catalogs


## DIAGNOSTIC SOFTWARE

- Binary programs to test the floppy disc system and interface
- A listing of the programs


## PHYSICAL SPECIFICATIONS

- DIMENSIONS Height 10.5 inches Width 19 inches Depth 22.5 inches
- WEIGHT 54 lbs
- POWER REQUIREMENTS

110 volts @ $60 \mathrm{~Hz}(2.0 \mathrm{Amps})$ or
200 volts @ 50 Hz (1.5 Amps)
The listing for 6980-ISOFT can be ordered separately by specifying 6980-ILIST.

## FEATURES

- Programs Intersil's IM6653/54 and IM87C48/C41 families of CMOS EPROM products
- Software controlled for ease of expandability
- IM6100 microprocessor based
- 16K bit buffer memory
- Serial data communication
- 20 mA current loop
- RS232C
- 110 to 9600 selectable baud rate
- Three operating modes
- Master with CRT terminal or Teletype ${ }^{\circledR}$
- Slave with development system
- Stand-alone for duplicating EPROMS
- Self contained D/A controlled power supplies
- Check sum error detection


## DESCRIPTION

Intersil's 6920 CMOS EPROM programmer is a multimode, cost effective solution to programming Intersil's IM6653/54 family of CMOS EPROMs and the IM87C48/C41 family of CMOS EPROM based, single chip, 8 -bit microcomputers.
The 6920 is microprocessor controlled, allowing the programmer to operate as a stand-alone unit, for duplicating EPROMS; a master, for operation with CRT terminals or Teletype ${ }^{\circledR}$; or a slave, for operation with a software development system or minicómputer.
Serial data communication is used for all command and data transfers with a 20 mA current loop and an RS232C interface provided. Check sum error detection is employed for data validation.

Application Note Summary ..... B-2
High Reliability Processing ..... B-4
Chip Ordering Information ..... B-10
Intersil Part Numbering System ..... B-16
Sales Offices, Distributors, and Representatives ..... B-18

The following brief descriptions of current Intersil application notes will provide a quick review of available applications literature.

## A003 UNDERSTANDING AND APPLYING THE ANA-

 LOG SWITCHIntroduces analog switches and compares them to relays. Describes CMOS, hybrid (FET + driver), J-FET "virtual ground" and J-FET "positive signal"' types. Applications information included.

A004
IH5009 LOW COST ANALOG SWITCH SERIES
Compares the members of the IH5009 "virtual ground" analog switches and provides suggested applications.

A005 THE 8007 - A HIGH PERFORMANCE FET INPUT OP AMP

Compares the 8007 with the 741, which is (pin compatible), and suggests applications such as logantilog amplifier, sample and hold circuit, photometer, peak detector, etc.

A006 A NEW CMOS ANALOG GATE TECHNOLOGY
Introduces Intersils" "Floating Body" process for manufacturing CMOS analog gate and multiplexer devices. This process virtually eliminates destructive latch up.

A007 USING THE 8048/8049 MONOLITHIC LOGANTILOG AMPLIFIER

Describes in detail the operation of the 8048 logarithmic amplifier, and its counterpart, the 8049 antilog amp.

A008 A LOW COST DUAL FET-INPUT OP AMP: THE ICL8043

Covers sample and hold, instrumentation amplifier, staircase generator, and automatic offset suppression circuits.

A010 DIGITAL TO ANALOG CONVERTER CIRCUITS USING THE 8018A
Describes, in detail, the operation of the 8018 D/A converter switch network.

## A PRECISION FOUR QUADRANT MULTIPLIER

 THE 8013Describes, in detail, the operation of the 8013 analog multiplier. Included are multiplication, division, and square root applications.

A012 A PRECISION WAVEFORM GENERATOR AND VOLTAGE CONTROLLED OSCILLATOR - THE 8038
Describes, in detail, the operation of the 8038 and includes the generation of sine, square, triangular, sawtooth, and pulse waveshapes. Frequency control from $1 / 100 \mathrm{~Hz}$ to 500 kHz is possible. See also A013.

A013 EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT THE 8038

A companion to A012, this note includes 17 of the most asked questions regarding the use of the 8038.

## SELECTING A/D CONVERTERS

Describes the differences between integrating converters and successive approximation converters. Includes a checklist for decision making, and a note on multiplexed data systems.

## THE INTEGRATING A/D CONVERTER

Explanation of integrating A/D converters, together with a detailed error analysis.

A018 DO'S AND DONT'S OF APPLYING A/D CONVERTERS

An analysis of proper design techniques using D/A converters.

A019 4½ DIGIT PANEL METER DEMONSTRATION/ INSTRUMENTATION BOARDS

Describes two typical PC board layouts using the 8052A/7103A 4½ digit A/D pair. Includes schematics, parts layout, list of materials, etc. Also see A028.

POWER D/A CONVERTERS USING THE ICH 8510

Detailed analysis of the 8510. Included are a section describing the linearity of the device and application notes for driving servo motors, linear and rotary actuators, etc.

## LOW COST DIGITAL PANEL METER DESIGNS

Provides a detailed explanation of the 7106 and 7107 31/2 digit panel meter IC's, and describes the two evaluation kits available from Intersil.

DC SERVO MOTOR SYSTEMS USING THE ICH8510

This companion note to A021 explains the design techniques utilized in using the ICH8510 family to drive closed loop servo motor systems.

A027 POWER SUPPLY DESIGN USING THE ICL8211 AND ICL8212

Explains the operation of, the ICL8211/12 and describes various power supply configurations. Included are positive and negative voltage regulators, constant current source, programmable current source, current limiting, voltage crowbarring, power supply window detector, etc.

A028 BUILDING AN AUTO RANGING DMM WITH THE ICL7103A/8052A CONVERTER PAIR

This companion app note to A019 explains the use of the 8052A/7.103A converter pair to build a $\pm 41 / 2$ digit auto ranging digital multimeter. Included are schematics, circuit descriptions, tips and hints, etc.

A029 POWER OP AMP HEAT SINK KIT
Describes the heat sinks for the ICH8510 family. These heat sinks may be ordered from the factory.

THE ICL7104: A BINARY OUTPUT A/D CONVERTER FOR MICROPROCESSORS

Describes in detail the operation of the 7104. Includes digital interfacing, handshake mode, buffer gain, auto-zero and external zero. Appendix includes detailed discussion of auto-zero loop residual errors in dual slope A/D conversion.

H001 ULTRA LOW BIAS CURRENT OPERATIONAL AMPLIFIER

Introduces the ICH8500 op amp, and suggests applications, such as: picoammeter, sample and hold circuit, and gated integrator.

## HIGH RELIABILITY PROCESSING

## 100\% INTEGRATED CIRCUIT PROCESSING

Intersil is committed to build and process integrated circuits for the Military/High-Rel market segments in conformance with MIL-STD-883 and MIL-M-38510. Any customer drawing which specifies testing as set forth in these documents will be automatically processed to the latest revisions of MIL-STD-883 and MIL-M-38510, unless specific requests are made to the contrary.

The latest significant changes in MIL-STD-883, Rev. B, and MIL-M-38510, Rev. D, concerned the change of Class A to Class S, the addition of $100 \%$ PIND for Class S, and revisions of certain Group B and Group D quality conformance requirements.

## DISCRETE DEVICE PROCESSING

Intersil also offers several QPL-approved discrete products carrying the JANTX designation, which are screened and qualified to the latest revisions of MIL-STD-750 and MIL-S-19500.

## MIL-STD-883B SCREENING AND OUALITY CONFORMANCE PROGRAMS, METHODS 5004 AND 5005

The following flow chart details screening activities as carried out by Intersil for Class $\mathrm{S}, \mathrm{B}$ and C requirements.


## QUALITY CONFORMANCE INSPECTION, CLASSES B AND C

The following diagram presents quality conformance inspection methods for Classes B and C as performed at Intersil.

*Sample must have had temp/time exposure specified for burn-in. LTPD of 15 applies to number of leads inspected except that in no case shall less than 3 devices be used.
**Required only when a package contains a dessicant.

## NOTES:

1. Group $A$ and $B$ inspections are required on individual inspection lots as a condition for acceptance for delivery.
2. Samples shall be randomly selected from the assembled inspection lot in accordance with appendix B of MIL-M-38510. Specified screen requirements of method 5004 are not required to have been completed for Intersil's standard generic data program, but will be performed when required by customer drawing. Where use of electrical rejects is permitted, and unless otherwise specified, they need not have been subjected to the temperature/time exposure of burn-in.
3. Group C (chip-related test) shall be performed periodically at 3 month intervals.
4. Group D (package related tests) shall be performed periodically at 6 month intervals.
5. Where end point measurements are required but no parameters have been identified, the critical final electrical parameters specified for $100 \%$ screening shall be used as end point measurements.
6. Subgroups within a group may be performed in any order but individual tests within a subgroup shall be performed in the sequence indicated.

HIGH RELIABILITY PROCESSING

## QUALITY CONFORMANCE

The following steps are carried out when quality conformance testing is performed on a lot from which samples are taken.

QUALITY CONFORMANCE - CLASSES B \& C

	STANDARD SAMPLE SIZE	ALLOWABLE REJECTS	TIME ALLOWANCE
Group A   (Electrical Acceptance)	45	0	$\begin{array}{r} 3-5 \\ \text { days } \end{array}$
Group B (Package Related)	19   Electrical Rejects	0	1 week
Group C (Die Related)	102 Good   Electrical   (Note 1)	1 from   Subgroup 1   1 from Subgroup 2	$8-10$ weeks
Group D   (Package   Related)	50 Good Electrical (Note 2) 75 Electrical Rejects	1 from each of 5 Subgroups	4 weeks

NOTE 1: Non-destructive, shippable samples (102 units).
NOTE 2: Destructive tests:
Moisture resistance. Subgroup 3 sample size
Variable-frequency vibration. Subgroup 4 sample size
25 units

Total Destroyed 50 units

## QUALIFICATION TESTING

When qualification testing is required, it will be equivalent to quality conformance testing, with the exception that Group A must be read and recorded on all applicable subgroups for the number of electrically-good units which will be required for samples for Groups C and D.

QUALIFICATION TESTING - GROUPS B \& C

	STANDARD SAMPLE SIZE	ALLOWABLE REJECTS	TIME   ALLOWANCE
Group A (Electrical Acceptance)	184   (Read \& Record)	5	5 days
Group B (Package Related)	19   Electrical Rejects	0	1 week
Group C (Die Related)	102   Good Electrical (Note 1)	1 from   Subgroup 1   1 from Subgroup 2	$10-12$ weeks
Group D (Package Related)	50 Good Electrical (Note 2) 75 Electrical Rejects	1 from each of 5 Subgroups	4 weeks

NOTE 1: Shippable samples.
NOTE 2: 50 destroyed samples, subgroups 3 and 4.

## LIMITED USAGE QUALIFICATION

A customer may elect to take advantage of a "Limited Usage" qualification per MIL-M-38510, in order to reduce the number of samples required. The following conditions must be met for eligibility for the "Limited Usage" qualification:

1. A maximum quantity of 500 microcircuits is included in a single order.
2. A maximum quantity of $\mathbf{2 0 0 0}$ microcircuits is included in a given equipment-acquisition contract or program.
3. A maximum quantity of 2000 microcircuits is to be procured during a 12-month period for a given circuit type and vendor.

Microcircuits which qualify for limited usage cannot be assigned a JAN part number. Variable data will be taken only when specified in a customer drawing.

LIMITED USAGE QUALIFICATION - CLASS B ${ }^{(1)}$

	SAMPLE   SIZE	ALLOWABLE   REJECTS	TIME   ALLOWANCE
Group A   (Electrical   Acceptance)	45	0	
Group B   (Package   Related)	Electrical   Rejects	0	5 days
Group C   (Die Related,   Non-Destruc-   tive)	Electrical   Parts	0	1 week
Group D   (Package	Good   Related,	25   (15 Good,   Destructive)	10 Electrical   Rejects)

(1) Mil-M-38510, Paragraph 4.4.4; MIL-STD-883, Method 5005.

## GLOSSARY OF MILITARY/AEROSPACE HIGHREL DEFINITIONS/TERMINOLOGY

ACCELERATED BURN-IN - Same as "Burn-In", except that testing is carried out at an increased temperature (nominally $150^{\circ} \mathrm{C}$ ) for reduced dwell time. Accelerated testing is not permissible for Class $S$ devices.

ATTRIBUTES DATA - Go-No-Go data. Strictly pass/ fail and number of rejects recorded. A typical requirement for post burn-in electrical tests on Class B devices.

BASELINE - Technique used to define manufacturing and test processes at time of order placement. Baselining usually involves development of a Program Plan and an Acceptance Test Plan which include flow charts, specification identification/revision letters, QA procedures, and actual specimens of certain important specifications. During subsequent manufacture and testing of parts, it is not permissible to make revisions or changes to any of the identified specifications, unless prior notification and possible customer approval occurs. Other terminology associated with baselining include "Critical Process Changes", "Minor Process Changes", and "Major Process Changes".

BURN-IN - A screening operation. Devices are subjected to high temperature (typically $125^{\circ} \mathrm{C}$ ) and normal power/ operation for 160 hours (Class B devices) or 240 hours (Clàss S devices).

CLASS S, B AND C INTEGRATED CIRCUITS - These classes set forth the screening, sampling and document control requirements for IC testing. Terminology is defined in MIL-M-38510 and in Test Methods 5004 and 5005 of MIL-M-38510. Classes, S, B and C are sometimes referred to as "Levels S, B and C." The Classes cover:

CLASS S - For space and satellite programs. Includes Condition A Precap, SEM, 240 hour burn-in, PIND test and elaborate qualification and quality conformance testing. Normally requires extensive data, documentation, and program planning. Formerly referred to as Class $A$. Class $S$ devices are quite expensive.

CLASS B - For manned flight, and includes most fre-quently-procured military integrated circuits. Used for all but highest reliability requirements. Class $B$ uses burn-in, pre-cap, visual, etc.

CLASS C - For ground support equipment. Contains only environmental screening requirements with pre-cap visual. No burn-in required.

In all classes, LTPD (Lot Tolerance Percent Defective) is the sampling plan measurement criteria.

CORRECTIVE ACTION - Those actions which a given supplier (or user) agrees to perform so that a detected problem does not reoccur.

DESC - Defense Electronic Supply Center, located in Dayton, Ohio. The command includes two major subgroups, with functions as follows:

DESC-ECS - This group performs specification engineering work. After the original specifications are created at RADC, DESC-ECS implements and monitors the specifications. DESC-ECS is the industry's main interface on existing specifications.

DESC-EQE - The group which supervises supplier certifications and qualifications. The group to which the industry submits applications when desiring to have devices qualified ( $Q P L^{\prime} d$ ) on an existing JAN slash sheet. DESC-EQE surveys supplier facilities and grants line certification as various requirements are met. Also reviews manufacturer's qualification test data and issues JAN OPL's accordingly.

DESC LINE CERTIFICATION - The document which approves a supplier's facilities as an appropriate site to manufacture JAN parts.

DIE SHEAR TESTS - A sample test. Mounted chips are exercised to destruction. Degree of die adherence to lead frame is observed. Corrective action taken if required.

DPA - Destructive Physical Analysis. Finished products are opened and analyzed, in accordance with customer or MIL Spec criteria.

GENERIC DATA - Data pertaining to a device family; not necessarily the specific part number ordered by the customer, but representative of parts in the family. Group B, $C$ and $D$ generic data is frequently requested in lieu of the performance of special qual tests on a given order. Generic data tends to be inexpensive.

GROUP A - Sample electrical tests which are performed on each lot. Group A is defined in Test Method 5005 for integrated circuits and in MIL-S-19500 for diodes and transistors.

GROUP B - A collection of package-related environmental and "wear-and-tear". tests. Defined in Test Method 5005 for integrated circuits. For Class S screening, additional life tests are required, and are performed on every lot per MIL-$\mathrm{M}-38510$. For diodes and transistors, Group $B$ consists of both environmental and life tests.

GROUP C - For Class B and C integrated circuits, only Group C includes life testing and temperature cycling/constant acceleration die-related sample tests. Defined in Test Method 5005 and performed every three months per MIL-M-38510.

GROUP D - A collection of additional environmental package-related sample tests as defined in Test Method 5005. Performed every six months per MIL-M-38510.

JAN - "Joint Army Navy", a registered trademark of the U.S. Government. The JAN marking denotes a device which is in full compliance to MIL-M-38510 or MIL-S-19500.

JAN TX - A JAN-qualified diode or transistor which has been subjected to additional screening (burn-in) tests.

JAN TXV - A JAN-qualified diode or transistor which, in additional to burn-in testing, has been subjected to additional screening including pre-cap visual inspection, as witnessed by a government source inspector. Equivalent to Class $B$ screening for integrated circuits.
"M38510" CIRCUITS - Until a recent revision to MIL-M38510, it was a common practice for users and suppliers alike to specify or offer integrated circuits marked "M38510/ XXX" without a J or JAN prefix. This part numbering system indicated a device which was"near-JAN","quasi-JAN" or "non-JAN". The practice tended to cause confusion between these devices and parts in full conformance to JAN levels. MIL-M-38510 now prohibits such marking with the exception of two special instances:

- When JAN QPL supplier for a given product does not exist, the government will permit "M38510/XXX" marking. While a customer may specify such marking, the supplier must furnish the government with evidence that the parts meet all applicable requirements.
- For certain parts destined for use in F-16 aircraft, "M38510/XXX" marking is permissible, but orders for such parts must be accompanied by appropriate DESC certification letter.

M38510/XXX - Detail specifications (or "slash sheets") for integrated circuits. For example, the 101 specification covers Operational Amplifiers, with electrical requirements for the 741, LM101, 108, 747 types, etc.

MIL-M-38510 - The general military specification for integrated circuits.

MIL-S-19500 - The general military specifications for diodes and transistors.

MIL-S-19500/XXX - Detail specifications (or "slash sheets" for diodes and transistors.

MIL-STD-750 - Specifies Test Methods for diodes and transistors, such as burn-in, pre-cap, temperature cycling, etc.

MIL-STD-883 - Specifies Test Methods for integrated circuits, such as pre-cap, burn-in, hermeticity, storage life, etc.

NPFC - Naval Publications and Forms Center, Philadelphia. Printing and distribution source for military specifications.

NON-STANDARD PARTS - In government terminology, refers to non-JAN devices. Non-standard parts are typically covered by user Source Control Drawings (SCD).

NON-STANDARD PARTS APPROVAL - Approval by the government (frequently RADC) of non-JAN parts, typically on source control drawings, for use in a military system or program. This approval is essentially a waiver which permits non-JAN 38510 parts in a system which otherwise mandatorially requires JAN parts only.

OPERATING LIFE TEST - Same conditions as burn-in, but duration is usually 1000 hours. This is a sample test (Qualification and Quality Conformance).

PCA - Parts Configuration Analysis. A new term which has much the same meaning as "Baseline".

PDA - Percent Defective Allowable. Criteria sometimes applied to burn-in screening. A $10 \%$ PDA (the most common type) means that if more than $10 \%$ of that lot fails as a result of burn-in (as determined by pre- and post-burn-in electrical tests) the entire lot is considered to have failed.

PDS - Parameter Drift Screening. Measures the changes $(\Delta s)$ in electrical parameters through burn-in. Common for Class S devices.

PIND - Particle Impact Noise Detection. This is an audio screening test to locate and elminate those parts which have loose internal particles. The test can isolate a high percentage of defectives, even in otherwise good lots. Repeatability of the tests is questionable. This test is one of the screening items for Class $S$ integrated circuits.

PREPARING ACTIVITY - The organizational element of the government which writes specifications, frequently RADC.

PRESEAL VISUAL - A screening inspection which involves observation of a die through a microscope.

PROCURING ACTIVITY - Per MIL-M-38510, this is the organizational element in the government which contracts for articles or services. The Procuring Activity can be a subcontractor (OEM), providing that the government delegates this responsibility. In such a case, the subcontractor does not have the power to grant waivers, unless this authority has been approved by the government.

PRODUCT RELIABLIITY - Pertains to the level of quality of a product over a period of time. Reliability is usually measured or expressed in terms of Failure Rate (such as " $0.002 \%$ per 1000 hours at a $60 \%$ confidence level at $25^{\circ} C^{\prime \prime}$ ) or MTBF (mean time between failure in hours). MTBF is the reciprocal of Failure Rate.

QPL - Qualified Products List. In the case of JAN products, QPLs are identified as QPL-38510 for integrated circuits and QPL-19500 for diodes and transistors. QPL38510 revisions occur approximately quarterly and OPL19500 revisions occur approximately annuall!. In the interim, the government will notify suppliers via letter of any new device qualifications which may have been granted. Two types of QPLs exist:

PART II QPL - This is an interim or temporary QPL which is granted on the basis of having obtained line certification and approval of an Application to Conduct Qualification Testing. A PART II QPL is automatically voided whenever any one supplier is granted a PART I QPL; thus, a sole-source situation is condoned.
PART I OPL - A "permanent" QPL, granted after all qualification testing is completed and test data is approved by the government.

QPLTT - Qualified Product List Throughput Time. That period which required to obtain device qualification. QPLTT is a function of (1) whether a JAN slash sheet exists; (2) whether a competitor already holds a Part I QPL; and (3) whether the applicant's production line is certified by DESC.
Following is a worst-case example, where a JAN slash sheet does not exist and government line certification has not been granted. OPLTT will be approximately 39.5 months, if the JAN slash sheet already exists, OPLTT will be cut to about 10.5 months. If the applicant already has line certification, QPLTT will be about 2 months to obtain Part II status.
Total time required to obtain a Part I OPL adds about 7 months to QPLTT; in a worst-case example; about 46 months will be required.

QUALIFYING ACTIVITY - Per MIL-M-38510, the organizational element in the government which designates certification (i.e., DESC).

QUALIFICATION TESTING - Initial one-time sample tests which are performed to determine whether device types and processes are good. For integrated circuits, this usually means testing to Groups A, B, C and D. For diodes and transistors, this usually means testing to Groups $A, B$ and $C$.

QUALITY CONFORMANCE TESTING - These are sample tests which must be performed at prescribed intervals per MIL-M-38510 or MIL-S-19500, assuring that processes remain in control and that individual lots are passed.

RADC - Rome Air Development Command, Griffiss AFB, New York. This is the government organization which created semiconductor specifications; MIL-M-38510 and MIL-STD-883 were developed at RADC. This Air Force unit develops specifications for all U.S. military services. RADC is frequently involved in granting waivers for non-standard parts for Air Force systems.

READ AND RECORD DATA - Same as variable data.

REWORK PROVISION - For semiconductor devices, permissible rework of parts is usually limited to re-testing (screening), lead straightening or bending, re-marking, and cleaning.

S\&V - Survivability and Vulnerability. Pertains to the ability of a device to resist radiation dosage.

SCREENING - Operations which are performed on devices on a 100\% basis (not sampling). Examples include pre-cap visual, burn-in hermeticity, $100 \%$ electrical test, etc. For integrated circuits, Test Method 5004 defines screening flow.

SEM INSPECTION - Inspection by Scanning Electron Microscope. Die samples are examined at very high magnification for metallization defects. A common inspection for Class S devices.

SERIALIZATION - The marking of a unique part number on each part, with assigned numbers marked sequentially/ consecutively.

SCDs - Source Control Drawings. Typically user-generated drawings which require development of internal IC vendor sheets. Although each drawing may be slightly different, all will be modelled around MIL-M-38510, MIL-S-19500, MIL-STD-883, or MIL-STD-750.

SOURCE INSPECTION - Can be either Customer Source Inspection (CSI) or Government Source Inspection (GSI). Source Inspection is initiated via purchase order, and can occur at one or more of the following points:

- Pre-cap Visual. Expensive and adds to throughput time.
- Final Inspection. Simple and inexpensive; little delivery impact.
- Throughout. Very expensive and time-consuming.

STANDARD PARTS - In government terminology, JAN parts.

TRACEABILITY - A production and manufacturing control system which includes:

- Wafer run identification number.
- Date pre-cap visual inspection was performed, identity of inspector, and specification number and revision.
- Lot number and inspection history.
- QA Group A electrical results.

VARIABLE DATA - Read and recorded electrical measurements (parametric values). Usually required for pre- and post-burn-in electrical tests. Also common for Group C and D testing.

WIRE PULL TESTS - Bond wire pull tests will be specified in two modes:

DESTRUCTIVE WIRE PULL - Generally performed periodically in assembly on a sample basis. Wires are pulled to destruction and the break point force is recorded. Corrective action is taken as required.

## CHIP ORDERING INFORMATION

## FET, MOSFET, AND DUAL TRANSISTOR CHIPS

## INTRODUCTION

Intersil recognizes the increasing need for transistors and FETs in die form. To fulfill this need, Intersil offers a full line of JFETs, MOSFETs, and dual transistors in die form.

Die sales do, however, present some unique problems. In many cases the chips cannot be guaranteed to the same electrical specifications as the packaged part. This is due to the fact that leakage, noise, AC parameters and temperature testing cannot be tested to the same degree of accuracy for dice as it can for packaged devices. This is due to equipment limitations and handling problems.

## PURCHASE OPTIONS

Intersil offers dice which are delivered in a number of forms:

- Chips which have been electrically probed, inked, visually inspected and diced.
- Wafers which have been electrically probed, inked, visually inspected and scribed only.
- Wafers which have been electrically probed, inked, and visually inspected only.


## GENERAL PHYSICAL INFORMATION

- Chips are available with exact length $X$ width dimensions plus tolerance (see individual data sheets). Chip height ranges from .003' to .006".
- To facilitate die attaching, chips are gold backed. Approximate thickness is 1000 angstroms. In general, dice should be attached to gold, platinum, or palladium metallization. Thin-film gold, moly-gold and most of the thick-film metallization materials are compatible.
- Consult individual product information sheets for dimensions. Except for the aluminum bonding pads, the chips are completely covered with vapox (silicon dioxide). This minimizes damage to the chip caused by handling problems.
- All chips have aluminum metallization and aluminum bonding pads. Typical aluminum thickness is 12,000 angstroms.
- Die are $100 \%$ tested to electrical specifications, then visually inspected. When wafers are ordered, dice which fail the electrical test are inked out.
- Generally the minimum size of the die-attaching pad metallization should be at least 5 mils larger (on every edge) than the chip dimensions. For example, a 15 mil chip should be attached on at least a $\mathbf{2 5}$ mil pad.


## CHIP AND WAFER PROCESSING FLOW CHART



## RECOMMENDED DICE ASSEMBLY PROCEDURE

## CLEANING

Dice supplied in die form do not require cleaning prior to assembly. Dice supplied in wafer form should be cleaned after scribing and breaking. Freon TF in a vapor degreaser is the preferred cleaning method. However, an alternative is to boil the die in TCE for five minutes with a rinse in isopropyl alcohol for 1-2 minutes.

## DIE ATTACH:

The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidation. A preform should be used if the mounting surface has less than 50 microinches of gold and the die should be handled on the edges with tweezers. Die attach temperature should be between $385^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ with eutectic visible on three sides of the die after attachment.

## BONDING:

Thermocompression gold ball or aluminum ultrasonic bonding may be used. The gold ball should be about 3 times the diameter of the gold wire. The ball should cover the bonding pad, but not excessively, or it may short out surrounding metallization. 1-mil aluminum wire may be used on most dice, but should not be used if the assembled unit will be plastic encapsulated.

## HANDLING OF DICE:

All dice shown in this catalog are passivated devices and $\operatorname{In}$ tersil warrants that they will meet or exceed published specifications when handled with the following precautions:

- Dice should be stored in a dry inert-gas atmosphere.
- Dice should be assembled using normal semiconductor techniques.
- Dice should be attached in a gaseous nitrogen spray at a temperature less than $430^{\circ} \mathrm{C}$.


## ELECTRICAL TEST LIMITATIONS

## DUAL BIPOLAR TRANSISTORS

$\mathrm{LV}_{\text {ceo }}$	$100 \mathrm{~V} \max . @ \leqslant 1 \mathrm{~mA}$
$\mathrm{BV}_{\text {cbo }}$	$100 \mathrm{~V} \max . @ \geqslant 1 \mu \mathrm{~A}$
$\mathrm{BV}_{\text {ebo }}$	$100 \mathrm{~V} \max . @ \leqslant 10 \mathrm{~mA}$
$\mathrm{H}_{\text {fe }}$	$\leqslant 1000 @ \geqslant 10 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {ce }}(S A T)$	$\geqslant 10 \mathrm{mV} @ \leqslant 10 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{cbo}}$	$\geqslant 100 \mathrm{pA} @ \leqslant 100 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{be} 1}-\mathrm{V}_{\mathrm{be} 2}$	$\geqslant 1 \mathrm{mV} @ \geqslant 10 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{b} 1^{-1} \mathrm{~b} 2}$	$\geqslant 2 \mathrm{nA}$

FETS

Breakdown voltage	100 V max. @ $1 \mu \mathrm{~A}$
Pinch-off voltage	$0-20 \mathrm{~V} @ \geqslant 1 \mathrm{nA}$
$V_{\text {GS }}(\mathrm{TH})$	$0-20 \mathrm{~V} @ \geqslant 10 \mu \mathrm{~A}$
$\mathrm{R}_{\text {DS(on) }}$	$20 \Omega \mathrm{~min}$. @ $\mathrm{V}_{\mathrm{GS}}=0\left(\mathrm{~V}_{\mathrm{GS}}=30 \mathrm{MOSFETs}\right)$
${ }^{\text {DSS }}$ \& ${ }^{\text {D }}$ (on)	100 mA max.
$\mathrm{gf}_{\text {s }}$	$10,000 \mu$ MHOS max. @ ${ }_{\mathrm{D}} \leqslant 10 \mathrm{~mA}$
'D(off), 'S(off), 'Gss	100 pA min.
$\mathrm{v}_{\mathrm{GS} 1}{ }^{-} \mathrm{V}_{\mathrm{GS} 2}$ (Duals)	10 mV min.

Electrical testing is guaranteed to a $10 \%$ LTPD. AC parameters such as capacitance and switching time cannot be tested in wafer or dice form.

## STANDARD DIE CARRIER PACKAGE

- Easy to handle, store and inventory.
- $100 \%$ electrically probed dice with electrical rejects removed.
- $100 \%$ visually sorted with mechanical and visual rejects removed.
- Easy visual inspection - dice in carriers, geometry side up.
- Individual compartment for each die.
- Carriers usuable in customer production area.
- Carrier may be storage container for unused dice.
- Carriers hold 25,100 , or 400 dice, depending on die size and quantity ordered.
- Part numbers shown in this catalog are for carrier packaging.



## CHIP ORDERING INFORMATION

## OPTIONAL VIAL PACKAGE

- $100 \%$ electrically probed dice with rejects inked but included in vial. Bulk shipment.
- 10\% extra good dice included (no charge) to cover possible breakage and/or visual rejects.
- Preferred for production quantities.
- Lower cost.
- For vial package - replace " $D$ "' in catalog number with " $V$ ", e.g.: 2N4416/D (2N4416 dice in carrier) becomes 2N4416/V (2N4416 dice in vial).



## OPTIONAL WAFER PACKAGE

- 100\% electrically probed - rejects inked.
- 10\% extra good dice included (no charge) to cover possible breakage and/or visual rejects.
- Preferred for production quantities.
- Lowest cost.
- Wafer is supplied unscribed.
- For wafer package - replace " $D$ " in catalog number with "W", e.g.: 2N4416/D (2N4416 dice in carrier) becomes 2N4416/W (2N4416 dice in wafer).


NOTE:
Intersil reserves the right to improve device geometries and manufacturing processes as required. These improvements may result in slight geometry changes. However, they will not affect the electrical limits, basic pad layouts or maximum die sizes in this catalog.

## ELECTRICAL TEST CAPABILITY

As an example of how to use the capability chart to see what Intersil actually guarantees and tests for, on a $100 \%$ basis, compare the 2 N 4391 in a TO-18 package to the 2N4391 delivered as a chip.

Electrical Test Spec.	2N4391 in a TO-18	2N4391 Chip
${ }^{1}$ GSS ${ }^{\text {@ 25C }}$	100 pA max.	100 pA max.
BV ${ }_{\text {GSS }}$	40 V min.	40 V min.
${ }^{1}$ D(off) @ 25C	100 pA max.	100 pA max.
$V_{\text {GS (forward) }}$	1V max.	See note 1
$\mathrm{V}_{\text {GS(off) }}$ or $\mathrm{V}_{\mathrm{P}}$	4 V to 10 V	4 V to 10 V
${ }^{1}$ DSS	50 to 150 mA	50 to 100 mA
$V_{\text {DS }}$ (on)	0.4 V max.	0.4V max.
r DS(on)	$30 \Omega$ max.	$30 \Omega$ max.
$\mathrm{C}_{\text {iss }}$	14 pF max.	Guaranteed by Design
$\mathrm{C}_{\text {rss }}$	, 3.5 pF max.	Guaranteed by Design
${ }^{\text {d }}$	15 ns max.	Guaranteed by Design
${ }^{\text {r }}$	5ns max.	Guaranteed by Design
$t_{\text {off }}$	20ns max.	Guaranteed by Design
$\mathrm{t}_{\mathrm{f}}: \cdots$	15 ns max.	Guaranteed by Design

NOTE 1: This parameter is very dependent upon quality of metallization surface to which chip is attached.

## SUMMARY

Of the 14 items specified for the package part, only 7 can be tested and guaranteed in die form. It is to be noted that those specifications which cannot be tested in die form can be sample tested in package form as an indicator of lot performance. Many of the tests, however, such as capacitance tests, are design parameters.

The above electrical testing is guaranteed to a $10 \%$ LTPD. However, there are occasions where customer requirements cannot be satisfied by wafer sort testing alone. While the previously described tests will be done on a $100 \%$ basis, Intersil recognizes the need for additional testing to obtain confidence that a particular customer's needs can be met with a reasonably high yield. Toward this end Intersil has instituted a dice sampling plan which is two-fold. First, random samples of the dice are packaged and tested to assure adherence to the electrical specification. When required, wafers are identified and wafer identity is tied to the samples. This tests both the electrical character of the die and its ability to perform electrically after going through the high temperature dice attachment stage. Second, more severe testing can be performed on the packaged devices per individual customer needs. When testing is required other than that called out in the data sheet, Intersil issues an ITS number to describe the part. Examples of tighter testing which can be performed on packaged samples is shown as follows:

## FET \& DUAL FET PAIRS

1. Leakages to $1 \mathrm{pA}\left(\mathrm{I}_{\mathrm{gss}}\right)$
2. ros (on) to as low as 4 ohms
3. $\mathrm{I}_{\mathrm{D}}$ (off) to 10 pA
4. IDSS to 1 amp (pulsed)
5. GFS to $10,000 \mu$ mho
6. $\mathrm{G}_{\mathrm{os}}$ to $1 \mu \mathrm{mho}$
7. $\mathrm{e}_{\mathrm{n}}$ noise to $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at frequencies of 10 Hz to 100 Hz
8. CMRR to 100 dB
9. $\Delta\left(\mathrm{V}_{\mathrm{gs} 1}-\mathrm{V}_{\mathrm{gs} 2}\right) / \Delta \mathrm{T}$ down to $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to an LTPD of $20 \%$
10. $\mathrm{g}_{\mathrm{m}}$ match to $5 \%$
11. I DSS match to $5 \%$

## TRANSISTOR PAIRS

1. Leakages to as low as 1 pA
2. Beta with collector current up to 50 mA and as low as 100 nA
3. $\mathrm{f}_{\mathrm{T}}$ up to 500 MHz with collector currents in the range of $10 \mu \mathrm{~A}$ to 10 mA
4. Noise measurements as low as $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ from 10 Hz to 100 kc
5. $\Delta\left(\mathrm{V}_{\mathrm{be} 1}-\mathrm{V}_{\mathrm{be} 2}\right) / \Delta \mathrm{T}$ to $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ to an LTPD of $20 \%$

## VISUAL INSPECTION

Individual chips are $100 \%$ inspected to MIL-STD-750, Method 2072 or, as an option, MIL-STD-883, Level B. Inspection is done to an LTPD of $20 \%$. As an option, Intersil offers S.E.M. capability on all wafers:

## CHIP ORDERING INFORMATION

## CMOS INTEGRATED CIRCUIT CHIPS

## INTRODUCTION

In addition to discrete device chips, Intersil also offers a full line of metal gate CMOS integrated circuits in die form. Die sales, however, present some unique problems. In many cases, chips cannot be guaranteed to the same electrical specifications as can the packaged parts. 'This is because leakage, noise, AC parameters and temperature testing cannot be guaranteed to the same degree of accuracy for dice as for packaged devices.

## GENERAL PHYSICAL INFORMATION

- Chips are available with precise length and width dimensions, $\pm 2$ mils in either dimension.
- Chip thickness is 15 mils $\pm 1$ mil.
- Bonding pad and interconnect material is aluminum, 10K to $15 \mathrm{~K} \AA$ Â thick.
- Each die surface is protected by planar passivation and additional surface glassivation except for bonding pads and scribe lines. The surface passivation is removed from the bonding pad areas by an HF etchant; bonding pads may appear discolored at low magnification due to surface roughness of the aluminum caused by the etchant.
- Die are $100 \%$ inspected to electrical specifications, then visually inspected according to MIL-STD-883, Method 2010.2, Condition B, with modifications reflecting CMOS requirements.
- Bonding pad dimensions are $4.0 \times 4.0$ mils minimum.
- Storage temperature is $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
- Operating temperature is $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
- Guaranteed AQL Levels:

Visual	$2.0 \%$
Functional electrical testing	$1.0 \%$
Parametric DC testing	$4.0 \%$
Untested parameters	$10.0 \%$

CMOS INTEGRATED CIRCUIT CHIP PROCESSING FLOW CHART


## CHIP ORDERING INFORMATION

## RECOMMENDED DICE ASSEMBLY PROCEDURES

## CLEANING

Dice supplied in die form do not require cleaning prior to assembly. However, if cleaning is desired, dice should be subjected to freon TF in a vapor degreaser and then vapordried.

## RECOMMENDED HANDLING

Intersil recommends that dice be stored in the vacuumsealed plastic bags which hold the dice carriers. Once removed from the sealed bags, the dice should be stored in a dry, inert-gas atmosphere.

Extreme care should be used when handling dice. Both electrical and visual damage can occur as the result of an unclean environment or harsh handling techniques.

## DIE ATTACH

The die attach operation should be done under a gaseous nitrogen ambient atmosphere to prevent oxidization. If a eutectic die attach is used, it is recommended that a $98 \%$ gold $/ 2 \%$ silicon preform be used at a die attach temperature between $385^{\circ} \mathrm{C}$ and $435^{\circ} \mathrm{C}$. If an epoxy die attach is used, the epoxy cure temperature should not exceed $150^{\circ} \mathrm{C}$. If hermetic packages are used, epoxy die attach should be carried out with caution so that there will be no "outgassing" of the epoxy.

## BONDING

Thermocompression gold ball or aluminum ultrasonic bonding may be used. The wire should be $99.99 \%$ pure gold and the aluminum wire should be $99 \%$ aluminum $/ 1 \%$ silicon. In either case, it is recommended that 1.0 mil wire be used for normal power circuits.

STANDARD DIE CARRIER PACKAGE

- Easy to handle, store and inventory.
- $100 \%$ electrically probed with electrical rejects removed.
- $100 \%$ visually sorted with mechanical and visual rejects removed.
- Easy visual inspection - dice are in carriers, geometry side up.
- Individual compartment for each die.
- Carriers usable in customer production area.
- Carrier may be used as storage contained for unused dice.
- Carriers hold 25,100 or 400 dice, depending on die size and quantity ordered.
- Packaging of integrated circuit dice in carriers is identical to illustration shown earlier for discrete device, except that IC chips are not available in vial packs or in wafer form.


## CHANGES

Intersil reserves the right in improve device geometries and manufacturing processes without prior notice. Although these improvements may result in slight geometry changes, they will not affect dice electrical limits, pad layouts, or maximum die sizes.

## USER RESPONSIBILITY

Written notification of any non-conformance by Intersil of Intersil's dice specifications must be made within 75 days of the shipment date of the die to the user. Intersil assumes no responsibility for the dice after 75 days or after further user processing such as, but not limited to, chip mounting or wire bonding.

## PART NUMBERS AND ORDER INFORMATION

Example of Intersil Part Number:

BASIC	SELECTION	TEMP	PKG	PIN	
ICH8500	A	C	T	V	ICH8500ACTV
ICL8038	C	C	P	D	ICL8038CCPD
IH5040		$M$	$D$	E	IH5040MDE

ON ALL INTERSIL IC PART NUMBERS. THE LAST THREE LETTERS ARE TEMPERATURE, PACKAGE, AND PIN NUMBER, RESPECTIVELY.

TEMPERATURE: C - Commercial
I - Industrial
M - Military
PACKAGE:
D - Ceramic Dual-In-Line
E - Small TO-8 Type
F - Ceramic Flat Pack
I - 16 Pin Dip ( $0.6 \times 0.7$ ) Lead Space
J - Cerdip Dual-In-Line
K - 8 Lead TO-3 Metal Can
L - Leadless, Ceramic
P. - Epoxy Dual-In-Line

Q - 2 Lead Metal Can
T - TO-5 Type
DR - TO-72 with No. 4 Lead Connected to Case

NUMBER OF PINS: $\mathrm{A}-8$
B -10
C -12
D -14
$E-16$
$N-18$
F -22
G - 24
I-28
J - 32
K - 36
L - 40
M - 48
V - 8, 0.230 in . Pin Circle
W - 10, 0.230 in . Pin Circle
Y - 8, No. 4 Lead Connected to Case
Z - 10, No. 5 Lead Connected to Case .

## LINEAR:



HYBRIDS:


- Device Chip Type
- Device Family

DG - Drivers
D - Drivers
G - Multi-channel FET


WATCH AND CLOCK:


# FART NUMBERS AND ORDER INFORMATION MOS MEMORY: 

BIPOLAR MEMORY:


## C/MOS MEMORY:



```
M \(--55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
I \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
\(\mathrm{C}-\quad 0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\)
- Improved Speed, Reduced Current (optional)
Operating Voltage (optional)
Specific Chip Type
General Type
1- Processing Elements
3 - Read Only Memories (ROM)
4 - Interface Elements
5 - Random Access Memories (RAM)
6 - Programmable Read Only Memory (PROM)
C/MOS Process
Intersil Memory Circuit
```

VMOS PART NUMBERING (PROPRIETARY PARTS)


BREAKDOWN   VOLTAGE	PACKAGE CODES	
A 20		TO-237 (92+)
B 30	TO-202	B
C 35	TO-220	C
D 40	DICE	D
E 60	TO-66	H
F 80	TO-3	K
G 90		TO-52
H 100		
J 125		
K 150		
L 175		
M 200		
N 225		
P 250		
Q 300		
R 350		
S 400		
T 450		
U 500		

TO-237 (92+)
TO-202 B
TO-220
D
TO-66 H

- K

TO-39 T

FOR IND́IVIDUAL PART AVAILABILITY, PLEASE REFER TO A CURRENT INTERSIL PRICE LIST OR CONTACT YOUR NEAREST INTERSIL SALES OFFICE.

## INTERSIL FIELD SALES OFFICES

## CALIFORNIA

1272 Forgewood Avenue Sunnyvale, California 94086
Tel: (408) 744-0618
TWX: 910-339-9260
400 Oceangate, Suite \#1102
Long Beach, CA 90802
Tel: (213) 436-9261
TWX: 910-341-6829

## COLORADO

2 Parker Place, Suite 101
2600 S. Parker Road
Aurora, Colorado 80014
Tel: (303) 750-7004
TWX: 910-320-2982

## FLORIDA

1001 N.W. 62nd Street, Suite \#309
Fort Lauderdale, Florida 33309
Tel: (305) 772-4122
TWX: 510-955-9883

## ILLINOIS

201 Ogden Avenue, Suite \#230
Hinsdale, Illinois 60521
Tel: (312) 986-5303
TWX: 910-651-0859
MASSACHUSETTS
2 Militia Drive, Suite 12
Lexington, Massachusetts 02173
Tel: (617) 861-6220
TWX: 710-326-0887

## MINNESOTA

6550 York Avenue, South, Suite \#307
Minneapolis, Minnesota 55435
Tel: (612) 925-1844
TWX: 910-576-2780

## NEW JERSEY

560 Sylvan Avenue
Englewood Cliffs, New Jersey 07632
Tel: (201) 567-5585
TWX: 710-991-9730

## OHIO

228 Byers Road
Miamisburg, Ohio 45342
Tel: (513) 866-7328
TWX: 810-473-2981

## TEXAS

12820 Hillcrest Drive, Suite \#118
Dallas, Texas 75230
Tel: (214) 387-0539
TWX: 910-860-5482

## CANADA

338 Queen Street East, Suite \#208
Brampton, Ontario L6V 1C4
Tel: (416) 457-1014
TWX: 610-492-2691

## DOMESTIC SALES REPRESENTATIVES

## ALABAMA

K \& E Associates, Inc. Suite 122 3313 Memorial Parkway SE
Huntsville, AL 35801
Tel: (205) 883-9720
TLX: 594421

## ARIZONA

Shefler-Kahn 2017 N. 7th Street Phoenix, AZ 85001 Tel: (602) 257-9015
TWX: 910-951-0659

## CALIFORNIA

$\mathrm{D}^{2}$ Sales, Inc.
5575 Magnatron Blvd. - Suite B
San Diego, CA 92111
Tel: (714) 560-6266

## CONNECTICUT

COM-SALE
633 Williams Road
Wallingford, CT 06492
Tel: (203) 269-7964

## FLORIDA

Eir, Inc.
450 Seminola Blvd.
Casselberry, FL 32707
Tel: (305) 830-9600
TWX: 810-853-9213

## IDAHO

Sage Sales
3524 South 1100 East
Salt Lake City, UT 84106
Tel: (801) 485-5111
TWX: 910-925-5153

## ILLINOIS

Dolin Sales
6232 N. Pulaski Road
Chicago, IL 60646
Tel: (312) 286-6200
TWX: 910-221-5018

## INDIANA

Delesea Sales
Executive Office Park 2118 Inwood Drive- Suite 117 Ft. Wayne, IN 46805
Tel: (219) 483-9537
TWX: 810-332-1407
Delesea Sales 10026 E. 21st Street Indianapolis, IN 46229
Tel: (317) 894-3778

## IOWA

Dy-Tronix, Inc. 23 Twixt Town Road, N.E., Ste. 103 Cedar Rapids, IA 52042
Tel: (319) 377-8275

## MARYLAND

New Era Sales, Inc.
Empire Towers - Suite 407
7300 Ritchie Highway
Glen Burnie, MD 21061
Tel: (301) 768-6666
TWX: 7.10-861-0520
MASSACHUSETTS
COM-SALE
235 Bear Hill Road
Waltham, MA 02154
Tel: (617) 890-0011

## MICHIGAN

Giesting \& Associates 5654 Wendzel Drive Coloma, MI 49038
Tel: (616) 468-4200
Giesting \& Associates
18427 Jamestown Circle
Northville, MI 48167
Tel: (313) 348-3811
MISSISSIPPI
K \& E Associates, Inc.
Route 4, Box 70
Corinth, MS 38834
Tel: (601) 287-1471
TWX: 510-984-0766

## MISSOURI

Dy-Tronix, Inc. 11190 Natural Bridge Bridgeton, MO 63044
Tel: (314) 731-5799
TWX: 910-762-0651
Dy-Tronix, Inc.
13700 East 42nd Terrace Independence, MO 64055 Tel: (816) 373-6600

## MONTANA

Sage Sales
3524 South 1100 East
Salt Lake City, Utah 84106
Tel: (801) 485-5111
TWX: 910-925-5153
NEW HAMPSHIRE
COM-SALE
Grenier Industrial Village
P.O. Box 315

Londonderry, NH 03053
Tel: (603) 668-1440

NEW JERSEY
Barrett Associates
140 Barclay Center Route 70
Cherry Hill, NJ 08034
Tel: (609) 429-1551
TWX: 710-896-0881
NEW MEXICO
Shefler-Kahn
10200 Menaul NE
Albuquerque, NM 87112
Tel: (505) 296-0749
NEW YORK
NYCOM, Inc.
10 Adler Drive
East Syracuse, NY 13057
Tel: (315). 437-8343
TWX: 710-541-1506

## NORTH CAROLINA

B. T. Funderburk, Inc. 5933 Ponderosa Drive Raleigh, NC 27612
Tel: (919) 782-3493
OHIO
Crest Component Sales
Tanglewood Professional Building
8505 Tanglewood Square
Chagrin Falls, OH 44022
Tel: (216) 543-9808
Giesting \& Associates 3274 Donneybrook Lane
Cincinnati, OH 45239
Tel: (513) 521-8800
TLX: 21-4823
Giesting \& Associates
5512 Auturnn Hills Drive
Dayton, OH 45426
Tel: (513) 293-4044
Giesting \& Associates
570 South State Circle
Galion, OH 44833
Tel: (419) 468-3737

## OREGON

LD Electronics
P.O. Box 626

Beaverton, OR
Tel: (503) 649-8556, 649-6177
TWX: 910-467-8713

## TEXAS

Southern States Marketing 14330 Midway Road Suite \#216
Dallas, TX 75240
Tel: (214) 387-2489
Southern States Marketing, Inc.
6006 Bellaire - Suite 118
Houston, TX 77081
Tel: (713) 665-0991

## UTAH

Sage Sales
3524 South 1100 East
Salt Lake City, Utah 84106
Tel: (801) 485-5111
TWX: 910-925-5153

## WASHINGTON

LD Electronics
14506 NE 169th Street
P.O. Box 663

Woodenville, WA 98072
Tel: (206) 485-7312
LD Electronics
East 12607 Guthrie Drive
P.O. Box 14586

Spokane, WA 99216
Tel: (509) 455-0189

## WISCONSIN

Dolin Sales
131 W. Layton
Oak Creek, WI 53207
Tel: (414) 482-1111
TWX: 910-262-1139

## CANADA

Lenbrook Industries Ltd. 1145 Bellamy Road Scarborough, Ontario Canada M1H 1H5 Tel: (416) 438-4610
TLX: 065-25485

# INTERSIL FRANCHISED DISTRIBUTORS 

## ARIZONA

Wyle Distribution Group 8155 No. 24th Avenue Phoenix, AZ 80521 Tel: (602) 249-2232

Kierulff Electronics 4134 E. Wood St. Phoenix, AZ 85040 Tel: (602) 243-4101

## CALIFORNIA

Wyle Distribution Group 3000 Bowers Ave. Santa Clara, CA 95052
Tel: (408) 727-2500
TWX: 910-379-6561
Intermark Electronics Inc. 4125 Sorrento Valley Blvd. Suite A
San Diego, CA 92121
Tel: (714) 279-5200
Intermark Electronics Inc. 1020 Stewart Drive Sunnyvale, CA 94086
Tel: (408) 738-1111
TWX: 910-339-9312
Kierulff Electronics 2585 Commerce Way Los Angeles, CA 90040
Tel: (213) 725-0325
Kierulff Electronics 3969 East Bayshore Road Palo Alto, CA 94303
Tel: (415) 968-6292
Kierulff Electronids 14101 Franklin Ave.
Tustin, CA 92680
Tel: (714) 731-571.1
Wyle Distribution Group 124 Maryland St. El Segundo, CA 90245
Tel: (213) 322-8100
TWX: 910-348-7111
Wyle Distribution Group
9525 Chesapeake Dr.
San Diego, CA 92123
Tel: (714) 565-9171
TWX: 910-335-1590
Schweber Electronics
17811 Gillette Ave.
Irvine, CA 92714
Tel: (714) 556-3880
TWX: 910-595-1720

## COLORADO

Bell Industries
Century Electronics Div.
8155 W. 48th Avenue
Wheatridge, CO 80033
Tel: (303) 424-1985
TWX: 910-938-0393
Wyle Distribution Group 6777 E. 50th Avenue Commerce City, CO 80022
Tel: (303) 287-9611
TWX: 910-936-0770
Kierulff Electronics 10890 E. 47th Avenue
Denver, CO 80239
Tel: (303) 371-6500
CONNECTICUT:
Arrow Electronics 295 Treadwell Street Hamden, CT 06514
Tel: (203) 248-3801
TWX: 710-465-0780
Schweber Electronics
Finance Drive
Commerce Industrial Park.
Danbury, CT 06810
Tel: (203) 792-3500
TWX: 710-456-9405

## FLORIDA

Arrow Electronics 1001 NW 62nd Street Suite \#402
Ft. Lauderdale, FL 33309
Tel: (305) 776-7790
TWX: 510-955-9456
Arrow Electronics 115 Palm Bay Road NW Building 200 Suite 10 Palm Bay, FL 32905
Tel: (305) 725-1480
TWX: 510-959-6337
Diplomat Electronics Inc.
2120 Calumet Street
Clearwater, FL 33515
Tel: (813) 443-4514
TWX: 810-866-0436
Diplomat Electronics Inc. 800 NW 62nd St. Suite \#205
Ft. Lauderdale, FL 33009
Tel: (305) 771-0440
Diplomat Electronics Inc. 50 Woodlake Drive West Suite \#3 Building A Palm Bay, FL 32905
Tel: (305) 725-4520
Schweber Electronics 2830 N. 28th Terrace Hollywood, FL 33020 Tel: (305) 927-0511
TWX: 510-954-0304

## GEORGIA

Arrow Electronics
3406 Oak Cliff Road
Doraville, GA 30340
Tel: (404) 455-4054
TWX: 810-757-4213
Schweber Electronics 4126 Pleasantdale Road
Atlanta, GA 30340
Tel: (404) 449-9170

## ILLINOIS

Arrow Electronics
492 Lunt Avenue
Schaumburg, IL 60193
Tel: (312) 893-9420
Kierulff Electronics 1530. Landmeier Rd. Elk Grove Village, IL 60007
Tel: (312) 640-0200
Schweber Electronics
1275 Brummel Avenue
Elk Grove Village, IL 60007
Tel: (312) 593-2740
TWX: 910-222-3453

## INDIANA

Advent Electronics, Inc.
8505 Zionsville Road Indianapolis, IN 46268
Tel: (317) 297-4910
TWX: 810-341-3228

## MARYLAND

Arrow Electronics
4801 Benson Avenue
Baltimore, MD 21227
Tel: (301) 247-5200
TWX: 710-236-9005
Schweber Electronics
9218 Gaither Road
Gaithersburg, MD 20760
Tel: (301) 840-5900
TWX: 710-828-9749

## MASSACHUSETTS

Arrow Electronics 96D Commerce Way
Woburn, MA 01801
Tel: (617) 933-8130
Kierulff Electronics, Inc.
13 Fortune Drive
Billerica, MA 01821
Tel: (617) 667-8331
TWX: 710-390-1449
Schweber Electronics
25 Wiggins Ave.
Bedford, MA 01730
Tel: (617) 275-5100

## MICHIGAN

Arrow Electronics
3921 Varsity Drive
Ann Arbor, MI 48104
Tel: (313) 971-8220
TWX: 810-223-6020
Schweber Electronics 33540 Schoolcraft Livonia, MI 48150 Tel: (313) 525-8100

## MINNESOTA

Arrow Electronics
5251 W. 73rd St.
Edina, MN 55435
Tel: (612) 830-1800
TWX: 910-576-3125
Schweber Electronics
7402 Washington Avenue South
Eden Prairie, MN 55343
Tel: (612) 941-5280

## MISSOURI

LCOMP
2211 River Front Dr.
Kansas City, MO 64120
Tel: (816) 221-2400
TWX: 910-771-3148
LCOMP
2550 Harley Drive
Maryland Heights, MO 63043
Tel: (314) 291-6200
TWX: 910-762-0632

## NEW HAMPSHIRE

Arrow Electronics
One Perimeter Rd.
Manchester, NH 03103
Tel: (603) 668-6968

## NEW JERSEY

Arrow Electronics
Pleasant Valley Avenue
Moorestown, NJ 08057
Tel: (609) 235-1900
TWX: 710-897-0829
Arrow Electronics
285 Midland Avenue
Saddle Brook, NJ 07662
Tel: (201) 797-5800
TWX: 710-988-2206
Diplomat Electronics, Inc. 490 South River Drive Totowa, NJ 07512
Tel: (201) 785-1830
Schweber Electronics 18 Madison
Fairfield, NJ 07006
Tel: (201) 227-7880

## NEW MEXICO

Alliance Electronics, Inc. 11721 Céntral Ave., NE P.O. Box 13562

Albuquerque, NM 87123
Tel: (505) 292-3360
Bell Industries
Century Electronics Div. 11728 Linn NE
Albuquerque, NM 87123
Tel: (505) 292-2700
TWX: 910-989-0625

## NEW YORK

Arrow Electronics 900 Broad Hollow Road Farmingdale, NY 11735
Tel: (516) 694-6800
TWX: 510-224-6494
Arrow Electronics 399 Conklin Avenue
Farmingdale, NY 11735
Tel: (516) 694-1359
Components Plus
40 Oser Avenue Hauppauge, NY 11787
Tel: (516) 231-9200
TWX: 510-227-9869
Harvey Federal Electronics
P.O. Box 1208

Binghamton, NY 13902
Tel: (607) 748-8211
TWX: 510-252-0893
Harvey Federal Electronics
10 Riverton Way
West Henrietta, NY 14586
Tel: (716) 334-5920
TWX: 510-253-7001
Schweber Electronics
2 Townline Circle
Rochester, NY 14623
Tel: (716) 424-2222
Schweber Electronics
Jericho Turnpike
Westbury, NY 11590
Tel: (516) 334-7474
TWX: 510-222-3660
Summit Distributors, Inc.
916 Main Street
Buffalo, NY 14202
Tel: (716) 884-3450

## NORTH CAROLINA

Arrow Electronics 1377-G South Park Dr.
P.O. Box 989

Kernersville, NC 27284
Tel: (919) 996-2039
RESCO/Raleigh
Rt. 8 Box 116-B Highway 70 West Raleigh, NC 27612
Tel: (919) 781-5700
TWX: 510-928-0590

## OHIO

Arrow Electronics 6238 Cochran
Solon, OH 44139
Tel: (216). 248-3990
Arrow Electronics
3100 Plainfield Road
Dayton, OH 45432
Tel: (513) 253-9176
TWX: 810-459-1611
Schweber Electronics
23880 Commerce Park Road
Beachwood, OH 44122
Tel: (216) 464-2970
TWX: 810-427-9441
Arrow Electronics
P.O. Box 37856

Cincinnati, OH 45222
Tel: (513) 761-5432
TWX: 810-461-2670

## OKLAHOMA

Component Specialties 7920 E. 40th Street Tulsa, OK 74145
Tel: (918) 664-2820

## OREGON

Parrott Electronics 8058 S.W. Nimbus Dr. Beaverton, OR 97005
Tel: (503) 641-3355

## PENNSYLVANIA

Schweber Electronics
101 Rock Road
Horsham, PA 19044
Tel: .(215) 441-0600
Sheridan Associates 4297 Greensburgh Pike Suite \#3114
Pittsburgh, PA 15221
Tel: (412) 351-4000

## TEXAS

Arrow Electronics
13715 Gamma Road
Dallas, TX 75234
Tel: (214) 386-7500
Arrow Electronics
10700 Corporate Drive
Stafford, TX 77477
Tel: (713) 491-4100
Component Specialties inc.
8222 Jamestown Drive Suite 115
Austin, TX 78758
Tel: (512) 837-8922
Component Specialties
10907 Shàdy Trail
Dallas, TX 75220
Tel: (214) 357-6511
Component Specialties 8585 Commerce Park Drive Suite \#590
Houston, TX 77036
Tel: (713) 771-7237

Schweber Electronics
14177 Proton Street
Dallas, TX 75240
Tel: (214) 661-5010
TWX: 910-860-5493
Schweber Electronics 7420 Harwin Drive Houston, TX 77036
Tel: (713) 784-3600
TWX: 910-881-1109

## UTAH

Bell Industries
Century Electronics Div. 2258 South 2700 West
Salt Lake City, UT 84119
Tel: (801) 972-6969
TWX: 910-925-5698
Kierulff Electronics 3695 West 1987 South
Salt Lake City, UT 84104
Tel: (801) 973-6913

## WASHINGTON

Kierulff Electronics
1005 Andover Park East
Tukwila, WA 98188
Tel: (206) 575-4420
Wyle Distribution Group
1750 132nd Ave., N.E.
Bellevue, WA 98005
Tel: (206) 453-8300
TWX: 910-443-2526
WISCONSIN
Arrow Electronics
434 W. Rawson Avenue
Oak Creek, WI 53514
Tel: (414) 764-6600
TWX: 910-262-1193
Kierulff Electronics
2212 E. Moreland Avenue Waukesha, WI 53186

CANADA
CESCO
4050 Jean Talon St., W.
Montreal, Quebec
Canada H4P 1W1
Tel: (514) 735-5511
TWX: 610-421-3302

## CESCO

24 Martin Ross Avenue
Downsiview, Ontario
Canada M3J 2K9
Tel: (416) 661-0220
CESCO
1300 Carling Avenue
Ottawa, Ontario
Canada K1Z 7L2
Tel: (613) 729-5118
CESCO
98 Ouest St. Vallier
Quebec City, Quebec
Canada G1K 6W8
Tel: (418) 524-4641
R.A.E. Ind: Elect. Ltd. 3455 Gardner Ct.
Burnaby, British Columbia
Canada V5C 4J7
Tel: (604) 291-8866
TWX: 610-929-3065
Zentronics Ltd.
1355 Meyerside Dr.
Mississauga, Ontario
Canada L5T 1C9
Tel: (416) 676-9000
TLX: 06-983657
Zentronics Ltd.
480A Dutton Drive
Waterloo, Ontario
Canada N2L 4C6
Tel: (519) 884-5700
Zentronics Ltd.
5010 Pare St.
Montreal, Quebec
Canada H4P 1P3
Tel: (514) 735-5361
TLX: 05-827535
Zentronics Ltd.
141 Catherine Street
Ottawa, Ontario
Canada K2P 1C3
Tel: (613) 238-6411
TLX: 053-3636

# INTERSIL INTERNATIONAL DISTRIBUTOR OFFICES 

## INTERNATIONAL MARKETING HEADQUARTERS

Intersil Inc.
10710 N. Tantau Avenue
Cupertino, California 95014
U.S.A.

Tel: (408) 996-5000
TWX: 910-338-0533 (INTRSLINT CPTO)

NORTHERN EUROPEAN
HEADQUARTERS
Intersil Inc.
8 Tessa Road
Richfield Trading Estate
Reading, Berks. RG1 8ND
England
Tel: 0734-595011
TLX: 847227 INTRSL G

## SOUTHERN EUROPEAN <br> HEADQUARTERS

Intersil inc.
3, rue de Marly
78000 Versailles
France
Tel: (1) 953-47-08
TLX: INTERSF 695231F

CENTRAL EUROPE
HEADQUARTERS
Intersil GmbH
8000 Munchen 2
Bavariaring 8
West Germany
Tel: 89/539271
TLX: 5215736 INSL D

AUSTRALIA
R \& D Electronics Pty. Ltd.
P.O. Box 206

Burwood, Victoria 3125
Australia
Tel: 288-8232/8262
TLX: RADET AA 33288
R \& D Electronics Pty. Ltd.
133'Alexander St
P.O. Box 57

Crows Nest NSW 2065
Australia
Tel: 439-5488
TLX: SECCO AA25468

## AUSTRIA

Rieger GmbH
Marxergasse 10
A-1030 Vienna 3
Austria
Tel: (0222) 73-46-84-0
TLX: 131087 RIEGER A
BELGIUM
Ad. Auriema Europe
Rue Brogniez 172A
B-1070 Brussels
Belgium
Tel: 02-523.62.95
TLX: 21646 ADAURI B

## DENMARK

E. V. Johanssen Electronik A-S

15, Titangade
DK-2200 Copenhagen $N$
Denmark
Tel: 45-1-839022
TLX: 16522 EVICAS DK

## FINLAND

Nabla Elektroniikka Oy
P.O. Box 3

SF-02101 Espoo 10
Finland
Tel: 90-46 2829
TLX: 121394 (Cable: NABLA)

## FRANCE

Tekelec-Airtronic
B.F. No. 2

Cite des Bruyeres
Rue Carle-Vernet
92310 Sevres
France
Tel: (1) 534-75-35
TLX: TKLEC A 204552F

## HOLLAND

Auriema Nederland B.V
Vestdijk 32
Eindhoven
Netherlands
Tel: 040-444470
TLX: 51992 AURI NL

## HONG KONG

S.S.I. Far East Limited

Suite 201, Austin Centre
21 Austin Avenue
Tsim Sha Tsui, Kowloon
Hong Kong
Tel: 3-672112-3
TLX: 86496 SSI HK

INDIA
Zenith Electronics
541, Panchratna
Mama Parmanand Marg.
Bombay 400004
India
Tel: 384214
TLX: 011-3152 ZENITH
INDIA-U.S. OFFICE
Fegu Electronics
260 Sheridan Ave., Suite 415
Palo Alto, California 94306
U.S.A.

Tel: (415) 493-1788
TLX: 34-5599 (FEGU ELEC PLA)

## ISRAEL

R. N. Electronics

Hagolan Street 103
Ramat-Hachayal
P.O.B. 10205

Tel-Aviv
Israel
Tel: 471659
TLX: 341730 SPEEL IL

## ITALY

Metroelettronica
Viale Cirene, 18
20135 Milano
Italy
Tel: 546.26.41
TLX: 312168 METRONIC
Metroelettronica
Via C. Lorenzini, 12
00137 Roma, Italy.
Tel: 827-28-41
Metroelettronica
Via Beaumont, 15
10138 Torino, Italy
Tel: 54.30.12

## JAPAN

Internix Inc.
Ohta Bldg. No. 2 (7th Floor)
7-4-7 Nishi Shinjuku
Shinjuku-Ku
Tokyo 160,
Japan
Tel: (03) 369-1101
TLX: INTERNIX J26733
Internix Inc.
Takahashi Nishikan Bldg.
4-4-13 Nishitenman, Kitaku
Osaka
Japan 530
Tel: 06-364-5971

NEW ZEALAND
Delphi Industries Ltd.
26A Lagoon Drive
Panmure, Auckland 6
New Zealand
Tel: Auckland 574-858
TLX: ANSERAK NZ21157
(ATTN: AK21 RAY C.)

## NORWAY

Hans H. Schive A/S
P.O. Box 250 Skoyen

Hoff Terrasse 10
Oslo 2, Norway
Tel: 557692
TLX: 19124 SKIVE N
PORTUGAL
M. Gomes Ponce

Av. 5 de Outubro, $96-4 .{ }^{\circ} \mathrm{B}$
Lisbon, Portugal
Tel: 772919/733330
TLX: 13566 TURCOP-LISBON

## SOUTH AFRICA

Electronic Bldg. Elements Pty. Ltd
P.O. Box 4609

Pretoria, Transvaal
Republic of South Africa
Tel: 78-9221/6
TLX: 3-0181 SA
SOUTH AMERICA -
U.S. OFFICE

Intectra
2349 Charleston Road
Mountain View, California 94043
U:S.A.
Tel: (415) 967-8818
TLX: 345-545 INTECTRA MNTV

## SPAIN

Hispano Electronica S.A.
Poligono Industrial Urtinsa
Apartado de Correos 48
Madrid, Spain
Tel: 6194108
TLX: 42634/22404 ELEC E

## SWEDEN

Svensk Teleimport AB
Box 5071
S-162 05 Vallingby
Sweden
Tel: 08-890265
TLX: 13033 STIAB S
SWITZERLAND
Laser- \& Electronic-Equipment
Eierbrechtstrasse 47
8053 Zurich, Switzerland
Tel: 01553330
TLX: 52124 LASEO CH

## TAIWAN

Galaxy Far East
Room 3, 2nd FI. No. 312
Sec. 4 Chung Hsato E. Rd
Taipei, Taiwan, R. O. C.
P.O. Box 36-12 Taipei

Cable: GALEXYER
Cable: GALEXYER
TLX: 26110 GALAXYER
Tel: (02) 7311895-7

THAILAND
Solid Supply Centre (SSC)
42 Soi'Prachasanti
Dindang Road
Bangkok 4, Thailand
Tel: 519889

## TURKEY

Turkelek Elektronik Ltd.
Ataturk Boulevard 169
Ankara, Turkey
Tel: 189483
TLX: 42120 TRKL TR
UNITED KINGDOM
Andis Components Ltd.
Etwall Street
Derby DE3.3DT
England
Tel: 0332.363296
TLX: 37163 ORNDON G
Macro-Marketing Ltd.
396 Bath Road
Slough, Berks.
England
Tel: (06286) 422
TLX: 847945 MACRO G
Rapid Recall Ltd.
6 Soho Hills Industrial Park
Woodburn Green
Bourne End, Bucks
England
Tel: (062-85) 24961
TLX: 849439 RAPID G
Rapid Recall Ltd.
46-50 Beam Street
Nantwich, Cheshire CWS 5LJ
England
Tel: Crewe 626061
TLX: 36329 RAPIDN G
Tranchant Electronics Ltd.
61-63 London Rd.
Redhill, Surrey
England
Tel: Redhill 69217
TLX: 8953230 TRELEC G
WEST GERMANY
Spezial-Electronic KG
8000 Munich 2
Hermann-Linggstr. 16
West Germany
Tel: 89/530387
TLX: 5212176 SPEZ D
Spezial-Electronic KG
3062 Buckeburg
Kreuzbreite 15
West Germany
Tel: 057221011
TLX: 0971624 SPEZ D


## ()

 푸넨
[^0]:    Switches; Current Switches for D/A

[^1]:    - dielectrically isolated

[^2]:    NOTE 1: Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$

[^3]:    NOTE: 1. Pulse test duration $=2 \mathrm{~ms}$.

[^4]:    NOTE: 1. Pulse test required, pulsewidth $=300 \mu \mathrm{~s}$, duty cycle $\leqslant 3 \%$.
    2. Measured at end points, $T_{A}$ and $T_{B}$.

[^5]:    *Figures for $A$ versions only. Other $\bar{e}_{n}=50 n V / \sqrt{\mathrm{Hz}}$.

[^6]:    NOTES:

    1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in $T_{A}$. 2. Pulse test duration $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \% .3 . \quad \mathrm{CMRR}=20 \log 10\left[\frac{\Delta V_{D D}}{\Delta\left|\mathrm{VGSI}_{1}-\mathrm{VGSN}^{2}\right|}\right]$ $\Delta V_{D D}=10 \mathrm{~V} .4$. Measured at end points, $T_{A}, T_{B}$ and $T C$.
[^7]:    *The lower of the hFE readings is taken as hFE1. $\quad$ "*Pulse Test: Pulse Width $=300 \mu \mathrm{sec}$; Duty Cycle $=1 \%$.

[^8]:    1. Maximum ratings are limiting values above which devices may be damaged. These ratings give a maximum junction temperature of 200 C .
    2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed $10 \mu A$.
    3. Lower of two $h_{F E}$ readings is defined as $h_{F E_{1}}$.
[^9]:    $L=O V, H=+V$

[^10]:    (1) Tested in $3 \frac{1}{2}$ digit ( 2,000 count) circuit shown in Fig. 5 clock frequency 12 kHz .
    (2) Tested in $4 \frac{1}{2}$ digit ( 20,000 count) circuit shown in Fig. 5 clock frequency 120 kHz .

[^11]:    (1) Tested in $31 / 2$ digit ( 2,000 count) circuit shown in Fig. 1 clock frequency 20 kHz .

[^12]:    Note 1: Internal reference out $\simeq 1.8 \mathrm{~V}$, reference input $=1,000$ volts for 1.999 volt scale and 100 mV for 199.9 mV scale.
    Note 2: External components shown are suggested for 3 readings/sec. Note 3: Parallel BCD outputs and other latched outputs are strobed at end of conversion and retain data until completion of next conversion.
    Note 4: Start/Reset should remain Low during Auto-Zero. Conversion is initiated by a positive pulse on start pin.. (minimum width 100 nsec ). Note 5: Component values $\pm 20 \%$ typ.

[^13]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    X = Don't Care
    NC = No Change

[^14]:    *See package key, page 5-5

[^15]:    See package key, page 5-5

[^16]:    Note 1: The maximum junction temperature of the LH2101A is $150^{\circ} \mathrm{C}$, and the thermal resistance is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
    Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
    Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. For the LH2301A these specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \pm 5 \mathrm{~V}$ and $\leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$. Supply current and input voltage range are specified as $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LH2301A. $\mathrm{C}_{1}=30 \mathrm{pF}$ unless otherwise specified.

[^17]:    *Feedback capacitance is the capacitance between the output and the inverting input terminal of the amplifier.

[^18]:    *NOISE VOLTAGE INCLUDES CONTRIBUTION FROM SOURCE RESISTANCE.

[^19]:    *Note that optimum stability is obtained for a source resistance of $10 \mathrm{k} \Omega$. For source resistances lower than $10 \mathrm{k} \Omega$, it is advisable to put additional resistance in series with the input to ensure adequate stability margin.

[^20]:    *Pin connections shown are for TO-5

[^21]:    NOTE 1: Timing error solely introduced by 8260, measured as $\%$ of ideal time-base period of $\mathrm{T}=1.00 \mathrm{RC}$.
    NOTE 2: Propagation delay from application of trigger (or reset) input to corresponding state change in counter output at. Pin 1.

[^22]:    *Term momentarily means - that a reset pulse is applied to the circuit during a time interval which is negligeable compared to the resolution of the stopwatch, i.e. 0.01 seconds.

[^23]:    Notes:

    1. The ICM7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding $\mathrm{V}^{+}$to $\mathrm{V}^{-}$by more than 0.3 volts.
[^24]:    External Decimal Point Enable - When external decimal point is enabled a decimal point will be displayed whenever the digit driver connected to the external decimal point is active. Leading Zero Blanking will be disabled for all digits following the decimal point:

    Test Mode - In the test mode the main counter is split into groups of two digits each and the groups are clocked in parallel. The reference counter is split such that the clock into the reference count goes directly to the clock of the second decade counter (. $1 \mathrm{sec} / 10$ cycle range)، The count in the main counter is continuously output.

    Range Input - The range input selects whether the measurement is made for $1,10,100,1000$ counts of the reference counter. In all functional modes except Unit Counter a change in the range input will stop the measurement in progress without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the Range Input is changed.
    Function Input - The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency. This Input is available on the ICM7216A and B only.

[^25]:    SWITCHES $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}, \mathbf{S}_{\mathbf{3}}, \mathbf{S}_{\mathbf{4}}$ OPEN CIRCUIT FOR SUPPLY CURRENT MEASUREMENT.

[^26]:    NOTE 1: This limit refers to that of the package and will not be obtained during normal operation.

[^27]:    *Hermetic: Maximum leakage rate $5 \times 10-7 \mathrm{~atm} . \mathrm{cc} / \mathrm{sec}$.

[^28]:    Intellec ${ }^{\text {™ }}$ is a trademark of Intel Corporation.

[^29]:    Amplitude - OV to 3 V
    Rise and Fall Time -5 ns From 1 V to 2 V
    Frequency -1 MHz

[^30]:    Note: For capacitance of greater than 50 pF ; the AC parameters will have a delay factor of $0.5 \mathrm{~ns} / \mathrm{pF}$.

[^31]:    Note: See Figure 2 for an A.C. Timing Diagram.

[^32]:    X = Don't Care

