
Copyright © 1986 Intel Corporation

MCS® BASIC-52
USERS MANUAL

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 270010-003

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, Genius, i, t
ICE, iCEL, iCS, iDBP, iDIS, 121CE, iLBX, im, iMDDX, iMMX, Insite, Intel, intel,
intelBOS, Intelevision, inteligent Identifier, inteligent Programming, Intellec,
Intellink, iOSP, iPDS, iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME, MUL TIBUS,
MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP,
PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI,
and VLSiCEL, and the combination of ICE, ICS, IRMX, ISBC, ISBX, MCS, or UPI
and a numerical suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDSGlis a registered trademark of Mohawk
Data Sciences Corporation .

• MUL TIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

@INTELCORPORATION 1986

Table of Contents

CHAPTER 1
Introduction

1.1 Introduction to MCS BASIC·52. 1
1.2 Getting Started . 2
1.3 Getting Started - What Happens After Reset . 2
1.4 Definition of Terms. 4
1 .5 What's the difference between Version 1.0 and Version 1.1 9

CHAPTER 2
Description of Commands

2.1 RUN.·.. 13
2.2 CO NT .. 14
2.3 LiST... 15
2.4 LIST#.. 16
2.5 LIST@.. 17
2.6 NEW... 18
2.7 NULL.. 19

CHAPTER 3
Description of EPROM File Commands

3.1 RAM and ROM .. 2'1
3.2 XFER.. 22
3.3 PROG.. 23
3.4 PROG 1 and PROG2 .. 24
3.5 FPROG, FPROG1 and FPROG2 ; 25
3.6 PROG3, PROG4, FPROG3, and FPROG4 (Version 1.1 only) 26
3.7 PROG5, PROG6, FPROG5, and FPROG6 (Version 1.1 only) 27

CHAPTER 4
Description of Statements

4.1 BAUD.. 28
4.2 CALL... 29
4.3 CLEAR... 30
4.4 CLEARS and CLEAR I .. 31
4.5 CLOCK1 and CLOCKO .. , 32
4.6 DATA - READ - RESTORE .. 33
4.7 DIM.. 35
4.8 DO - UNTIL. .. 36
4.9 DO - WHILE ... , 37
4.10 END... 38
4.11 FOR-TO-STEP-NEXT 39
4.12 GOSUB - RETURN. .. 41
4.13 GOTO... 43
4.14 ON GOTO - ON GOSUB .. 44
4.15 IF - THEN - ELSE.. 45
4.16 INPUT.. 47
4.17 LET.. 49
4.18 ONERR. .. 50
4.19 ONEXT1·......... .. 51
4.20 ONTIME ' , 52
4.21 PRINT.:.. 54
4.22 PRINT# ' .' .. 57
4.23 PHO., PH1., PHO. #, PH1. # .. 58
4.24 PRINT@, PHO.@, PH1.@ (Version 1.1 Only). .. 59
4.25 PUSH.. 60

Table of Contents

CHAPTER 4
Description of Statements

4.26 POP... 61
4.27 PWM... 62
4.28 REM... 63
4.29 RETI.... .. 64
4.30 STOP .. 65
4.31 STRING .. 66
4.32 UI1 AND UIO .. 67
4.33 U01 and UOO .. 68
4.34 IDLE (Version 1.1 only) .. 69
4.35 RROM (Version 1.1 only). .. 70
4.36 LD@ and ST@ (Version 1.1 only) .. 71
4.37 PGM (Version 1.1 only) .. 72

CHAPTER 5
Description of Arithmetic/Logical Operators and Expressions

5.1 Dual Operand (DYADIC) Operators .. 74
5.2 Unary Operators .. 76
5.2.1 General Purpose. .. 76
5.2.2 Log Functions .. 78
5.2.3 Trig Functions .. 78
5.3 Understanding Precedence of Operators. .. 80
5.4 How Relational Expressions Work. .. 81

CHAPTER 6
Description of String Operators

6.1 What are Strings? .. 82
6.2 The ASC Operator. .. 83
6.3 The CHR Operator. .. 85

CHAPTER 7
Special Operators

7.1 Special Function Operators. .. 86
7.2 Examples of Manipulating Special Function Operators. 94
7.3 System Control Values. .. 95

CHAPTER 8
Error Messages, Bells, Whistles, and Anomalies

8.1 Error Messages. .. 96
8.2 Disabling Control-C .. 100
8.3 Implementating "Fake DMA" .. 101
8.4 Run Trap Option (Version 1.1 only) .. 102
8.5 Anomalies... 103

CHAPTER 9
Assembly Language Linkage

9.1 Overview.. 104
9.2 General Purpose Routines. .. 106
9.3 Unary Operators .. 113
9.4 Special Operators .. 115
9.5 Dual Operand Operators. .. 118
9.6 Added Link Routines to Version 1.1 .. 122
9.7 Interrupts.. 129
9.8 I/O Resource Allocation. .. 131

intJ Table of Contents

CHAPTER 10
System Configuration
10.1 Memory/Hardware Configuration 132
10.2 EPROM Programming ConfigurationlTiming .. 135
10.3 Serial Port Implementation. .. 136

CHAPTER 11
Reset Options (Version 1.1 only) 145

CHAPTER 12
Command/Statement Extensions (Version 1.1 only) .. 153

CHAPTER 13
Mapping User Code Memory (Version 1.1 only). .. 159

APPENDIX A
1.1 Memory Usage (Version 1.0 and Version 1.1). .. 162
1 .2 Using the PWM Statement. .. 170
1.3 Baud Rates and Crystals. .. 174
1 .4 Quick Reference ,. 176
1 .5 Instruction Set Summary .. 183
1.6 Floating Point Format. : .. 184
1.7 Storage Allocation .. 185
1.8 Format of an MCS BASIC-52 program .. 188
1.9 Answers to a Few Questions .. 190
1.10 Pin-out List .. 192
1.11 8052AH Special Function Registers .. 193
1 .12 References .. 199

APPENDIX B
Instruction Set Summary .. " 200

INDEX ... 213

inter

CHAPTER 1
Introduction

1.1 INTRODUCTION TO MCS BASIC-52

Welcome to MCS® BASIC-52. This program functions as a BASIC interpreter occupying 8K of ROM in
INTEL's 8052AH microcontroller. MCS BASIC-52 provides most of the features of "standard" BASICS,
plus many additional features that apply to control environments and to the architecture of the 8052AH.

The design goal of MCS BASIC-52 was to develop a software program that would make it easy for a
hardware/software designer to interact with the 8052 device; but, at the same time not limit the designer
to the slow and sometimes awkward constructs of BASIC. This program is not a "toy" like many of the
so called TINY BASICS. It is a powerful software tool that can significantly reduce the design time of
many projects. MCS BASIC-52 is ideal for so called imbedded systems, where terminals are not attached
to system, but the system controls and manipulates equipment and data.

MCS BASIC-52 offers many unique hardware and software features, including the ability to store and
execute the user program out of an EPROM, the ability to process interrupts within the constructs of a
BASIC program, plus an accurate real time clock. In addition, the arithmetic routines and 110 routines
contained in MCS BASIC-52 can be accessed with assembly language CALL routines. This feature can
be used to eliminate the need for the user to write these sometimes difficult and tedious programs ..

All of the above are covered in this document. This is NOT a "How to Write Basic Programs" manual.
Many excellent texts on this subject have been produced. Your local computer store can recommend many
such texts.

The descriptions of many of the statements in this manual involve rather detailed discussions that relate
to interfacing MCS BASIC-52 to assembly language programs. If the user is not interested in using assembly
language with MCS BASIC-52 these discussions may be ignored. If you are only interested in programming
the MCS BASIC-52 device in BASIC, you can treat all statements the same way they would be in any
standard BASIC interpreter.

In reading this manual, you will find that some information may be repeated two or three times. This is
not an accident. Years of experience have proven that one of the most frustrating experiences one encounters
with manuals is trying to find a particular piece of information that the reader knows is in the manual, but
can't remember where.

1

MCS® BASIC-52

1.2 GETTING STARTED

If you are like most engineers, technicians, hobbyists· and humans, and don't lik~ to read manuals, this
section is for you; The purpose of this section is to·get you off on·the right foot: If you are in the High
Anxiety Mode and just want to see if the darn chip works; wire the device in the minimum hardware
configuration as suggested in the Hardware Configuration chapter of this manual, apply power; and watch
what happens. NOTHING! That's because after power is applied to the MCSBASIC-52 device, the
program initializes the 8052AH hardware and goes into an AUTO-BAUD search routine. You must touch
the space bar on the serial. input device in order to get MCS BASIC-52 to SIGN ON. The message that
will appear is *MCS-51 BASIC Vx.x*. If a space character is not the first character sent to the MCS
BASIC-51 device after reset, you can spend a lot of time trying to figure out what went wrong. So do
yourself a favor, read this section and touch the space bar before you call your local Intel Field Applications
Engineer. We received a number of questions asking how the AUTO-BAUD search routine worked. As
a result this routine is listed in Chapter 11 of this manual.

1.3 WHAT HAPPENS AFTER RESET?

Mter RESET, MCS BASIC-52:

1) Clears the INTERNAL 8052AH memory

2) Initializes the internal registers and pointers

3) Tests, clears, and sizes the EXTERNAL memory

BASIC then assigns the top of EXTERNAL RANDOM ACCESS MEMORY to the SYSTEM CONTROL
VALUE - MTOP and uses this number as the random numl;>er seed. BASIC assigns the default crystal
value, 11.0592 Mhz, to the SYSTEM CONTROL VALUE - XTAL and uSeS this default value to calculate
all time dependent functions, such as the EPROM programming timer and the interrupt driven REAL TIME
CLOCK. Finally, BASIC checks external memory location 80ooH·to see if the baud rate information is
stored. If the baud rate is stored, MCS BASIC-52 initializes the baud rate generator (the 8052AH's SPECIAL
FUNCTION REGISTER - T2CON) with this information and signs on. If it isn't stored, BASIC inter
rogates the serial port input and waits for a space character to be typed. This sounds like a lot, but on the
8052AH, it doesn't take much time.

2

MCSI8> BASIC-52

1.3 WHAT HAPPENS AFTER RESET?

MCS BASIC-52 initializes the 8052AH's Special Function Registers, TMOD, TCON, and T2CON with
the following values:

TCON - 244 (OF4H)

TMOD - 16 (lOH)

nCON - 52 (34H)

After Reset, the console device should display the following:

MCS-51(tm) BASIC Vx.x
READY

To see if everything is OK after Reset, type the following:

>PRINT XTAL, TMOD, TCON, T2CON
(BASIC should respond)
11059200 16 244 52

If it does, everything is working properly. If it does not make sure that the external memory, the serial
port, and the oscillator are connected and working. Hardware debu~ begins here.

In the Appendix of this manual is a QUICK REFERENCE GUIDE. It provides a short description of all
of the COMMANDS and STATEMENTS implemented in MCS BASIC-52. You might want to use this
section to gain a quick understanding of the MCS BASIC-52 software package. Those of you who are
familiar with the BASIC language will notice that most of the STATEMENTS and COMMANDS used in
MCS BASIC-52 are "standard," so getting started should not be a problem.

3

1.4 DEFINitiON OF TERMS:

COMMANDS:

MCS BASIC-52 operates in two modes~ the COMMAND or, direct mode and the interpreter or RUN mode.
MCS BASIC-52 Commands can only be entered when the processor is in the COMMAND or direct mode.
MCS BASIC-52 takes immediate action after a command has been entered. This doc.ument will use the
terms RUN MODE and COMMAND MODE to refer to the two different modes of operation.

STATEMENTS:, ' / " .. - "
.'~ ,

A BASIC program is comprised of statements. Every statement begins with a line number, followed by
the statement body, and terminated with a Carriage Return (cr) , or a colon (:) in the case of.multiple
statements per line. Some statements can be executed in the COMMAND MODE, others cannot. The
DESCRIPTION OFSTA TEMENTS section of thisrp.anual describes whether ,a statement can be executed
in the COMMAND mode or only in the RUN mode.'

Thereare;threege~l types.ofstatements in MCS BASIC-52: ·ASSIGNMENTS, INPUT/OUTPUT, and
CONTROL. The DESCRIPTION OF STATEMENT section of this manual explains what type is associated
with each statement.

• EVERY line in a program must have a statement line number ranging between 0 and 65535 in<;lusive .

• , Statement numbers are used by BASIC to order· the program statements· sequentially.

• In any program, a statement number can be used only once.

• Statements need not be entered in numerical order, because BASIC will automatically order them in
. ascending •. order~

• A statement may contain no more than 72 characters in Version 1.0 and no more than 79 in Version
1.1.

• Blanks (spaces) are ignored by BASIC and BASIC automatically inserts blanks during LIST.

• More than one statement can be put dn aline, if separated by a colon (:), but only one statement number
. is allowed per line,;' . ~ " ',' . .

FORMAT STATEMENTS:

Format Statements may only be used within the PRINT STATEMENT. The format statements include
TAB([expr]), SPC([expr]), USING(specia:l symbols), and CR (carriage return with no line feed). Details
of the format statements are provided in the description of the PRINT STATEMENT section of this manual.

inter MeSIl BASIC-52

1.4 DEFINITION OF TERMS

DATA FORMAT:

The range of numbers that can be represented in MCS BASIC-52 is:

± lE-127 to ± . 99999999E+ 127.

There are eight digits of significance in MCS BASIC-52. Numbers are internally rounded to fit this precision.
Numbers may be entered and displayed in four formats: integer, decimal, hexadecimal, and exponential.
EXAMPLE: 129, 34.98, OA6EH, l.23456E+3

INTEGERS:

In MCS BASIC-52, integers are numbers that ranges from 0 to 65535 or OFFFFH. All integers can be
entered in either decimal or hexadecimal format and all hexadecimal numbers must begin with a valid digit
(e.g. the number AOOOH must be entered OAOOOH). When an operator, such as .AND. requires an integer,
MCS BASIC-52 will truncate the fraction portion of number so it will fit the integer format. All line
numbers used by MCS BASIC-52 are integers. This document will refer to integers and line numbers,
respectively in the following manner:

[integer] - [In num]

NOTE - Throughout this document the brackets [] are used only to indicate an integer, constant, etc.
They are NOT entered when typing the actual number or variable.

CONSTANTS:

A constant is a real number that ranges from ± 1 E-127 to ± . 99999999E+ 127. A constant, of course,
can be an integer. This document will refer to constants in the following manner:

[const]

OPERATORS:

An operator performs a pre-defined operation on variables and/or constants. Operators require either one
or two operands. Typical two operand or dyadic operators include ADD (+), SUBTRACT (-), MUL
TIPLY (*), and DIVIDE (I). Operators that require only one operand are often referred to as UNARY
OPERATORS. Some typical UNARY OPERATORS are SIN, COS, and ABS.

5

intJ MCS® BASIC-52

1.4 DEFINITION OF TERMS

VARIABLES:

In Version 1.0 of MCS BASIC-52 a variable -could be defined as either a letter, (i.e. A, X, I), a letter
followed by a number, (Le. QI, T7, L3), a letter followed by a ONE DIMENSIONED expression, (i.e.
J(4) , G(A + 6), I(IO*SIN(X»), or a letter followed by a number followed by a ONE DIMENSIONED
expression (Le. Al(8), P7(DBY(9», W8(A + B). In Version L 1 variables can be defined in the same
manner as in Version 1.0, however variables may also Gontain up to 8 letters or numbers including the
underline character. This permits the user to use a more descriptive name for a given variable. Examples
of valid variables in Version 1.1 of MCS BASIC-52 are as follows:

FRED VOLTAGE 1 I_II ARRAY(ELE-'-:'l)

When using the expanded variable names available in Version 1.1 of MCS BASIC-52 it is important to
note that 1) It takes longer for MCS BASIC-52 to process these expanded variable names and 2) The user
may not use any keyword as part of a variable name (i.e. the variables TABLE and DIET could not be
used because TAB and IE are reserved words). BAD SYNTAX ERRORS will be generated if the user
attempts to define a variable that contains a reserved word.

Variables that include a ONE DIMENSIONED expression [expr] are often referred to as DIMENSIONED
or ARRAYED variables. Variables that only involve a letter or a letter and a number are called SCALAR
variables. The details concerning DIMENSIONED variables are covered in the description of the STATE
MENT ROUTINE DIM. This document will refer to VARIABLES as:

[var].

MCS BASIC-52 allocates variables in a "static" manner. That means each time a variable is used, BASIC
allocates a portion of memory (8 bytes) specifically for that variable. This memory cannot be de-allocated
on a variable by variable basis. That means if you execute a statement like Q = 3, later on you cannot tell
BASIC that the variable Q no longer exists so, please "free up" the 8 bytes of memory that belong to Q.
Sorry, it doesn't work this way. The only way the user can clear the memory that is allocated to variables
is to execute a CLEAR STA!EMENT. This Statement "frees" all memory allocated to variables.

IMPORTANT NOTE:

Relative to a dimensioned variable, it takes MCS BASIC-52 a lot less time to find a scalar variable. That's
because there is no expression to evaluate in a scalar variable. So, if you want to make a program run as
fast as possible, use dimensioned variables only when you have to. Use scalars for intermediate variables,
then assign the final result to a dimensioned variable.

EXPRESSIONS:

An expression is a logical mathematical formula that involves OPERATORS (both unary and dyadic),
CONSTANTS, and VARIABLES. Expressions can be simple or quite complex, i.e. 12*EXP(A)/lOO,
H(1) + 55, or (SIN(A)*SIN(A) + COS(A)*COS(A»/2. A "stand alone" variable [var] Or constant [const]
is also considered an EXPRESSION. This document will refer to EXPRESSIONS as:

[expr].

6

inter MCS® BASIC-52

1.4 DEFINITION OF TERMS

RELATIONAL EXPRESSIONS:

Relational expressions involve the operators EQUAL (=), NOT EQUAL «», GREATER THAN (»,
LESS THAN «), GREATER THAN OR EQUAL TO (>=) and LESS THAN OR EQUAL TO «=).
They are used in control statements to "test" a condition (Le. IF A < 100 THEN ...). Relational
expressions ALWAYS REQUIRE TWO OPERANDS. This document will refer to RELATIONAL
EXPRESSIONS as:

[reI expr).

SPECIAL FUNCTION OPERATORS:

Virtually all of the special function registers on the 8052AH can be accessed by using the special function
operators. The exceptions are PORTS 0, 2 and 3 and non-IIO associated registers such as ACC, B, and
PSW. Other SPECIAL FUNCTION OPERATORS are XTAL and TIME. Details of the SPECIAL FUNC
TION OPERATORS are covered in the section SPECIAL FUNCTION OPERATORS.

SYSTEM CONTROL VALUES:

The system control values include the following: LEN (which returns the length of the program), FREE
(which designates how many bytes of RAM are not used that are allocated to BASIC), and MTOP (which
is the last memory location that is assigned to BASIC). Details of the system control values are covered
in the section SYSTEM CONTROL VALUES.

7

MCS~, BASIC .. S2

1.4 DEFINITION OF '-TE~MS

STACK STRlfCTURE;

MCS ,BASIC:~2r~serves,the ,first 512bytesof EXTERNAL DATA MEMORY to implementtwo "soft~
war~:' ,stacks. These are the control stac;k and the arithmetic stack or ARGUMENT STACK. Understanding

, how the stacks work inMCS BASIC~54 is NOT NECESSARY,iftheuser wishes only to program in
BASIC. However, understanding the stack structure is necessary if the user wishes to link MCS BASIC-52
to,ASSEMBLY lap,guage routines" The details of hoW to link to a~sembly Janguageare covered in the
,ASSEMBL YLANGUAGE LINKAGE section of this manuaL

CONTROL STACK - The control stack occupies locations 96 (60H) through 254 (OFEH) in external
ram memory. This memory is used to store all information associated with loop control (i.e. DO.;-.. WHILE,
DO - UNTIL, and FOR - NEXT) and basic subroutines (GOSUB). The stack is initialized to 254
(OFEH) and "grows down.',~

ARGUMENT STACK - The ARGUMENT STACK occupies locations 301 (12DH) through 510 (lFEH)
in external ram memory. This stack stores all constants that MCS BASIC-52 is currently using. Operations
such as ADD, SUBTRACT, MU~TIPLY, and DIVIDE always operate on the first two !lumbers on the
ARGUMENT STACK and return the result to the ARGUMENT STACK. The argument stack is initialized
to 510 (lFEH) and "grows down" as more values are placed on the ARGUMENT STACK. Each floating
point number placed on the ARGUMENT STACK requires 6 BYTES of storage.

INTERNAL STACK - The stack pointer on the 8052AH (SPECIAL FUNCTION REGISTER, SP) is
initialized to 77 (4DH). The 8052AH's stack pointer "grows up" as values are placed on the stack. In
MCS BASIC-52 the user has the option of placing the 8052AH's STACK POINTER anywhere (above
location 77) in internal memory. The details of how to do this are covered in the ASSEMBLY LANGUAGE
LINKAGE section of this manual.

LINE EDITOR:

MCS BASIC-52 contains a minimum level line editor. Once a;line is entered the user may not change the
line' withoutre-typingithe line. However; it is possible to delete characters while aline is in the process
of being entered. This is donebyeritering' a RUB OUT or DELETE character (7FH). The RUB OUT
character will cause' the last character entered to be erased from the text' input buffer.' Additionally, a
control-D',will cause the entire line to be erased. In Version'1.1 of MCS BASIC"52, Control-Q (X~ON)
and Control S(X-OFF) recoghitioll have been added to the serial port. The user is ,cautioned not to
accidently tYPe a Control-SWhen entering information because the MCS BASIC·52 will no longer respond
to the console device. Control-Q is used to bring the console device back to life after Control-S is typed.

NOTE.;.... bfthis document a carriage return is indicated by the symbol (cr). The carriage return ~s the
RETURN key on most'keyboards.

8

inter MCS$ BASIC-!l2

1.5 WHAT'S THE DIFFERENCE BETWEEN V1.0 AND V1.1

Thanks to feedback from many of the users of MCS BASIC-52, a number of changes and additions have
been made to Version 1.1. All of these changes and additions were made to enhance the usefulness of the
product and yet retain 100% compatibility, well almost 100% compatibility with the original version. To
make things simple, all of the changes will be mentioned here and a reference will be provided as to where
the reader of this manual may obtain more information about the change or addition.

The only change that has been made to VI.I that is not compatible with V1.0 is with the IF_THEN_
ELSE STATEMENT when used with multiple statements per line. In VI.O, the following two examples
would function in the same manner.

EXAMPLE 1:

10 IF A=B THEN C=A A=A/2 GOTO 100
20 PRINT A

EXAMPLE 2:

10 IF A=B THEN C=A
12 A::oAl2
14 GOTO 100
20 PRINT A

They function in the same manner because V1.0 treats the delimiter (:) exactly the same as a carriage
return (cr) in every case. However, VI.I executes the remainder of the line if and only if the test A = B
proves to be true. This means in EXAMPLE I IF A did equal B, VI.I would then set C=A, then set
A = Al2, then execute line 100. IF A did not equal B, VI.I would then PRINT A and ignore the statements
C = A : A = Al2 : GOTO 100. VI.I will execute EXAMPLE 2 exactly the same way as V1.0. This same
logical interpretation holds true for the ELSE statement as well. This example dictates a simple rule for
maintaining IF_THEN-ELSE compatability between the two versions. IF THE DELIMITER (:) IS NOT
USED IN AN IF_THEN-ELSE STATEMENT, V1.0 AND VI.I WILL TREAT THE STATEMENTS
IN THE SAME MANNER!!

This change was made because most users of MCS BASIC-52 felt that the VI.I interpretation of this
statement was more useful because fewer GOTO statements need be employed in a typical program.

Additionally, V 1.1 accepts inputs in either lower or upper case, whereas VI. 0 converted lower case to
upper case. VI.I will however, convert keywords from lower case to upper case during the LISTing of a
program. Finally, MCS BASIC-52 VI.I runs between 2% and 10% faster than Vl.O. Typically, this should
not cause any problems.

As far as the user is concerned, these are the only changes that may affect the operation of a typical
program. Now, on to the additions.

9

MCS® BASIC-52

1.5 WHAT'S THE DIFFERENCE. BETWEEN V1.0 AND V1.1

ADDITIONS TO MCS BASIC-52 V1.1;

• X-ON (control Q) and X-OFF (control S) have been added. These permit the user to "stop" (control
S) and start (control Q) the display of characters during a LIST or PRINT. This feature also permits
synchronization with external I/O (input/output) devices. The X-OFF (control S) functions on a line by
line b~sis, not on a character by character basis.

• Five new statements have been added. These include IDLE, LD@, ST@, PGM, and RROM. Details
of these statements are listed under the DESCRIPTION OF STATEMENTS section of this manual.

• Six new RESET options have been provided. They permit the user to assign the top of memory (MTOP)
during reset, and allow the user to write specific RESET programs in assembly language. Additionally,
they provide an option where the memory WILL NOT be cleared during RESET. More information on
the specific RESET OPTIONS is detailed in the DESCRIPTIONS OF EPROM FILE COMMANDS
under PROGI, PROG2, PROG3, PROG4, PROG5, and PROG6 COMMANDS and in Chapter 11 of
this manual.

• The Timing of the EPROM programming algorithm has been significantly relaxed between the various
strobes required for the EPROM programming function. This relaxed timing permits the user to program
devices such as the 8751H and the 8748/9 using the EPROM programming capabilities of the MCS
BASIC-52 device. Details of the timing changes are in Chapter 10 of this manual.

• During EPROM programming, the INTOIDMA REQUEST pin of the MCS BASIC-52 device is treated
as a ready input pin. This allows for a simple direct connection to EEPROM devices such as the 2817 A.
For normal. EPROM programming, INTO must be kept high or the programming hangs up. Details
concerning the use of EEPROMS with the MCS BASIC-52 device are provided inChapter 10 of this
manual.

• A RUN TRAP option has been provided. This option traps the MCS BASIC-52 interpreter in the program
RUNmode and will not permit the user to exit this mode. Details of this option are covered in Chapter
8.4 of this manual.

• A user STATEMENTICOMMAND expansion option has been provided. This permits the user to easily
add new or custom STATEMENTS and COMMANDS to MCS BASIC-52. Details of this option are
covered in Chapter 12 of this manual.

10

intJ MCS® BASIC-52

1.5 WHAT'S THE DIFFERENCE BETWEEN V1.0 AND V1.1

ADDITIONS TO MCS BASIC-52 V1.1:

• A number of new assembly language user OP BYTES have been added. These permit the user to make
better use of the STATEMENT/COMMAND expansion option previously described. Details of these
new OP BYTES are presented in Chapter 9.6 of this manual.

• The length of the input buffer has been increased from 72 characters to 79 characters and the ERROR:
LINE TOO LONG has been eliminated. Instead, when the cursor reaches the 79th position a bell
character will be echoed everytime the user attempts to enter another character.

• A new variation on the PRINT (including PHO. and PHI.) and LIST statements have been added. This
new option is evoked with an @ character (EXAMPLE: PRINT@ or LIST@) and permits the user to
write specific output drivers for these statements and commands. When the @ PRINT or LIST is evoked,
MCS BASIC-52 CALLS external code memory location 403CH. The user must put the specific output
driver in this location. More details of this option is in Description of Statements section of this manual.

• The control stack has been made more "forgiving." This means that the user can execute a GOSUB
to a subroutine that contains a FOR-NEXT loop and return from the subroutine without completing the
FOR-NEXT loop. Version 1.0 would yield a C-STACK ERROR under these circumstances, Vl.l yields
no error.

• The question mark character? is interpreted as a PRINT statement (EXAMPLE: (PRINT 10 + 20 is the
same as ? 10 + 20). The symbols P. remains a shorthand notation for PRINT just as in Vl.O.

• The FOR-NEXT statement can be executed in the direct mode. This lets the user write short routines
in the DIRECT MODE t<;l, for example, display a region of memory (EXAMPLE: FOR 1= 200H to
21OH: PHO. XBY(I): NEXT I)

• Variables can be up to 8 characters in length, however, only the first character, the last character, and
the total number of characters are of signifance. This lets the user better describe variables that are used
in a program. Chapter 1.4 details the limitations on the expanded variables in Version 1.1.

11

inter MCS® BASIC-52

1.5 WHAT'S THE DIF'FERENCE BETWEEN V1.0 AND V1.1

ADDITIONS TO MCS BASIC-52 V1.1 :

• The CALL statement vectors to locations 4100H through 41FFH if the CALL integer is between 0 and
7FH inclusive. This means that CALL 0 will vector to location 4100H, CALL 1 to location 4102H,
CALL 2 to location 4104H, etc. This permits the user to easily generate assembly language CALLt8bles
by using simple integers with the CALL statement. Anyway, CALL 0 through CALL 1FFFH was not
too useful because these numbers vectored into the MCS BASIC-52 ROM.

• The error message anomaly for an invalid line number on a GOTO or GOSUB STATEMENT has been
eliminated on V1.1 of MCS BASIC-52. The correct line number is now processed and displayed by the
error processor.

• The FOR-TO-{STEP}-NEXT statement can be executed in the COMMAND MODE in version 1.1 of
MCS BASIC~52. Additionally, the NEXT statement does not require a variable in version 1.1. Details
of these features are covered in the Description of Statements section of this manual.

• The REM statement can be executed in the COMMAND MODE. If the user is employing some type
of UPLOAD/DOWNLOAD routine with a computer, this lets the user insert REM statements, without
line numbers in the text and not download them to the MCS BASIC-52 device. This helps to conserve
memory.

• Version 1.1 is also a little less "crashable" than version 1.0. This is due to a more extensive "type
checking" on control transfer routines (i.e. GOTO, GOSUB).

12

inter

CHAPTER 2
Description of Commands

2.1 DESCRIPTION OF COMMANDS

COMMAND: RUN(cr)

ACTION TAKEN:

After RUN(cr) is typed all variables are set equal to zero, all BASIC evoked interrupts are cleared and
program execution begins with the first line number of the selected program. The RUN command and the
GOTO statement are the only way the user can place the MCS BASIC-52 interpreter into the RUN mode
from the COMMAND mode. Program execution may be terminated at any time by typing a control-C on
the console device.

VARIATIONS:

Unlike some Basic interpreters that allow a line number to follow the RUN command (i.e., RUN 1(0),
MCS BASIC-52 does not permit such a variation on the RUN command. Execution always begins with the
first line number. To obtain the same functionality as the RUN [In num] command, use the GOTO[ln num]
statement in the direct mode. SEE STATEMENT GOTO.

EXAMPLE:

)10 FOR I-1 TO 3.
)20 PRINT I
)30 NEXT I
)RUN

1
2
3

READV
)

13

inter MCS® BASIC-52

2.2 DESCRIPTION OF COMMANDS:

COMMAND: CONT(cr)

ACTION TAKEN:

If a program is stopped by typing a control-C on the. console device or by execution of a STOP statement;
you can resume execution of the program by typing CONT(cr). Between the stopping and the re-starting
of the program you may display the values of variables or change the values of variables. However,you
may NOT CONTinue if the program is modified during the STOP or after an error. .

VARIATIONS:

None.

EXAMPLE:

>10 FOR 1-1 TO 10000
>20 PRINT I
>30 NEXT 1
>RUN

1
2
3
4
5 - (TYPE CONTROL-C ON CONSOLE)

STOP - IN LINE 20

READY
>PRINT I

6

>CONT

10
11
12

14

inter MCS~ BASIC';S2

2.3 DESCRIPTION OF COMMANDS:

COMMAND: LIST(cr)

ACTION TAKEN:

The LIST(cr) command prints the program to the console device. Note that the list command "formats"
the program in an easy to read manner. Spaces are inserted after the line number and before and after
statements. This feature is designed to aid in the debugging of MCS BASIC-52 programs. The "listing"
of a program may be terminated at anytime by typing a control-C on the console device.

VARIATIONS:

Two variations of the LIST COMMAND are possible with MCS BASIC-52. They are:

LIST [In num] (cr) and

LIST [In num] - [In num] (cr)

The first variation causes the program to be printed from the designated line number (integer) to the end
of the program. The second variation causes the program to be printed from the first line number (integer)
to the second line number (integer). NOTE - the two line numbers MUST BE SEPARATED BY A
DASH-.

EXAMPLE:

READY
)LIST

10 PRINT "LOOP PROGRAM"
20 FOR 1=1 TO 3
30 PRINT I
40 NEXT 1
SO END

READY
)LIST 30

30 PRINT 1
40 NEXT I
50 END

READY
)LIST 20-40

20 FOR 1=1 TO 3
30 PRINT I
40 NEXT 1

15

intJ MCS® BASIC-52

2.4 DESCRIPTION OF COMMANDS

COMMAND: LIST#(cr)

ACTION TAKEN:

The LIST#(cr) command prints the program to the LIST device. The BAUD rate to this device mus~ be.
initialized by the STATEMENT - BAOD[expr]. All coinments that apply to the LIST command apply
to the LIST# comni.and. The LlST#(cr) command is included to permit the userto make "hard copies"
of a program. The output to the list device is onPl. 7 of the MCS BASIC-52 devi~e.. . '.

16

MCS® BASIC-52

2.5 DESCRIPTION OF COMMANDS

COMMAND: LIST@(cr) (VERSION 1.1 ONLY)

ACTION TAKEN:

The LIST@ command does the same thing as the LIST command except that the output is directed to a
user defined output driver. This command assumes that the user has placed an assembly language output
routine in external code memory location 403CH. To enable the @ driver routine the user must SET BIT
27H (390) in the internal memory of the MCS BASIC-52 device. BIT 27H (390) is BIT 7 of internal
memory location 24H (360). This BIT can be set by the BASIC statement OBY(24H) = OBY(24H).
OR.SOH or by a user supplied assembly language routine. If the user evokes the @ driver routine and this
bit is not set, the output will be directed to the console driver. The only reason this BIT must be set to
·enable the @ driver is that it adds a certain degree of protection from accidently typing LIST@ when no
assembly language routine exist. The philosophy here is that if the user sets the bit, the user provides the
driver or else!!!

When MCS BASIC-52 calls the user output driver routine at location 403CH, the byte to output is in the
accumulator and R5 of register bank 0 (RBO). The user may modify the accumulator (A) and the data
pointer (OPTR) in the assembly language output routine, but cannot modify any of the registers in RBO.
This is intended to make it real easy for the user to implement a parallel or serial output driver without
having to do a PUSH or a POP.

17

inter MCS® BASIC-52

2.6 DESCRIPTION OF COMMANDS

COMMAND: NEW(cr)

ACTION TAKEN:

When NEW(cr) is entered, MCS BASIC-52 deletes the program that is currently stored in RAM memory.
In addition, all variables are set equal to ZERO, all strings and all BASIC evoked intelTQpts are cleared.
The REAL TIME CLOCK, string allocation, and the internal stack pointer value (location 3Elf) are NOT
effected. In general, NEW (cr) is used simply to erase a program and all. variables.

18

MCS$ BASIC-52

2.7 DESCRIPTION OF COMMANDS

COMMAND: NULL [integer](cr)

ACTION TAKEN:

The NULL[integer] (cr) command determines how many NULL characters (OOH) MCS BASIC-52 will
output after a carriage return. After initialization NULL = O. The NULL command was more important
back in the days when a "pure" mechanical printer was the most common liD device. Most modem
printers contain some kind of RAM buffer that virtually eliminates the need to output NULL characters
after a carriage return. NOTE - the NULL count used by MCS BASIC-52 is stored in internal RAM
location 21 (I5H). The NULL value can be changed dynamically in a program by using a DBY(21) = [expr]
statement. The [expr] can be any value between 0 and 255 (OFFH) inclusive.

VARIATIONS:

None.

19

inter

CHAPTER 3
Description of EPROM File Commands

DESCRIPTION OF EPROM FILE COMMANDS

One of the unique and powerful features of MCS BASIC-52 is that it has the ability to execute and SA VE
programs in an EPROM;. MCS BASIC-52 actually generates all of the timing signals needed to program
most EPROM devices. Saving programs in EPROMS is a much more attractive and RELIABLE alternative
relative to cassette tape, especially in control and/or noisy environments.

The hardware needed to permit MCS BASIC~52 to program an EPROM device is minimal, typically only
one NAND gate, three or four transistors, and a few resistors are all that is required. Details of the hardware
requirements are in the EPROM PROGRAMMING section of this manual.

MCS BASIC-52 can save more than one program in an EPROM. In fact, it can save as many programs
as the size of the EPROM memory permits. The programs are stored sequentially in the EPROM and ~y
program can be retrieved and executed. This sequential storing of programs is referred to as the EPROM
FiLE. The following commands permit the user to generate and manipUlate the EPROM FILE.

20

intJ MCS® BASIC-52

3.1 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: RAM(cr) and ROM [integer] (cr)

ACTION TAKEN:

These two commands tell the MCS BASIC-52 interpreter whether to select the current program (the current
program is the one that will be displayed during a LIST command and executed when RUN is typed) out
of RAM or EPROM. The RAM address is assumed to be 512 (200H) and the EPROM address begins at
32, 784 (801OH).

RAM

When RAM(cr) is entered MCS BASIC-52 selects the current program from RAM MEMORY. This is
usually ~onsidered the "normal" mode of operation and is the mode that most users interact with the
command interpreter.

ROM

When ROM [integer] (cr) is entered MCS BASIC-52 selects the current program out of EPROM memory.
If no integer is typed after the ROM command (i.e. ROM (cr» MCS BASIC-52 defaults to ROM 1. Since
the programs are stored sequentially in EPROM the integer following the ROM command selects which
program the user wants to run or list. If you attempt to select a program that does not exist (i.e. you type
in ROM 8 and only 6 programs are stored in the EPROM) the message ERROR: PROM MODE will be
displayed.

MCS BASIC-52 does not transfer the program from EPROM to RAM when the ROM mode is selected.
So, you cannot EDIT a program in the ROM mode. If you attempt to edit a program in the ROM mode,
by typing in a line number, the message ERROR: PROM MODE will be displayed. The following command
to be described, XFER, permits one to transfer a program from EPROM to RAM for editing purposes.

Since the ROM command does NOT transfer a program to RAM, it is possible to have different programs
in ROM and RAM simultaneously. The user can "flip" back and forth between the two modes at any
time. Another added benefit of NOT transferring a program to RAM is that all of the RAM memory can
be used for variable storage if the PROGRAM is stored in EPROM. The SYSTEM CONTROL VALUES
- MTOP and FREE always refer to RAM not EPROM.

VARIATIONS:

None.

21

inter MCS® BASIC-52

3.2 DESCRIPTION OF EPROMFILECOMMANPS ..

COMMAND: XFER(cr)

ACTION TAKEN:

The XFER (transfer) command·transfers the current selected program in EPRQM to RAM and.the~ selects
the RAM mode. If XFER is typed while MCS BASIC-52 is in the RAM IPode, the program stored in
RAM is transferred back into RAM and the RAM mode is selected .. The net result is that nothing happens
except that a few milli-seconds of CPU time is used to do a wasted move. After the XFER command is
executed, the user may edit the program in the same ,manner any RAM program may be .edited.

VARIATIONS:

None.

22

MCS(B) BASIC-52

3.3 DESCRIPTION OF EPROM FILE COMMANDS

COMMAND: PROG(cr)

ACTION TAKEN:

The PROG COMMAND programs the resident EPROM with the current selected program. The current
selected program may reside in either RAM or EPROM. This command assumes that the hardware is
configured in the manner described in the EPROM PROGRAMMING section of this manual.

After PROG (cr)· is typed, MCS BASIC-52 displays the number in the EPROM FILE the program will
occupy.

EXAMPLE:

:>LIST
10 FOR 1-1 TO 10
20 PRINT I
30 NEXT I

READY
)PROG

12

READY
:>ROM 12

READY
)LIST
10 FOR 1-1 TO 10
20 PRINT I
30 NEXT I

READY
:>

In this example, the program just placed in the EPROM is the 12th program stored.

VARIATIONS:

None.

23

MCS~ BASIC':':S2

3.4 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: PROGl(cr) and PROG2(cr)

ACTION TAKEN:

PROG1

Ndnnally, after powerisappUed to the MCS BASIC-52 device; the user MUST type a "space" character
to initialize the 8052AH's serial port. As a convenience, MCS BASIC-52 contains a PROGI COMMAND.
What this command does is program the resident EPROM with the BAUD RATE infonnation. So, the
next time the MCS BASIC-52 device is "powered up," i.e. RESET, the chip will read this infonnation
and initialize the serial port with the stored baud rate .. The "sign-on" message will be sent to the console
immediately after the MCS BASIC-52 device completes its reset sequence. The "space" character no
longer needs to be typed. Of course, if the BAUD rate on the console device is changed a new EPROM
must be programmed to make MCS BASIC-52 compatible with the new console.

PROG2

The PROG2 command does everything the PROGI command does, but instead of "signing-on" and
entering the COMMAND MODE, the MCS BASIC-52 device immediately begins executing the first
program stored in the resident EPROM.

THIS IS AN IMPORTANT FEATURE!!

By using the PROG2 command it is possible to RUN a program from a RESET condition and NEVER
connect the MCS BASIC-52 chip to a console. In essence, saving PROG2 infonnation is equivalent to
typing a ROM I, RUN command sequence. This is ideal for control applications, where it is not always
possible to have a tenninal present. In addition, this feature pennits the user to write a special initialization
sequence in BASIC or ASSEMBLY LANGUAGE and generate a custom "sign-on" message for specific
applications.

24

MCS® BASIC-52

3.5 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: FPROG(cr), FPROGl(cr), AND FPROG2(cr)

ACTION TAKEN:

FPROG(cr), FPROGI (cr) , and FPROG2(cr) do exactly the same thing as PROG(cr), PROGl(cr), and
PROG2(cr) respectively, except that the algorithm used to perform the programming function is the INTEL
"INTELLIGENT" fast programming algorithm. The user MUST provide a way to increase vee to the
EPROM to 6 volts.

25

inter MCS® BASIC-52

3.6 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: PROG3(cr), PROG4(cr), FPROG3(cr), FPROG4(cr) (VERSION 1.1 ONLY)

ACTION TAKEN:

PROG3

The PROG3 COMMAND functions the same way as the PROG 1 COMMAND previously described, except
that PROG3 also saves the system control value, MTOP, when it is evoked. During a RESET or power
up sequence MCS BASIC-52 will only clear the external data memory up to the MTOP value that was
saved when the PROG3 COMMAND was evoked. This permits the user to "protect" regions of memory
from being cleared during a RESET or power-up condition. In typical use, the PROG3 COMMAND
assumes that the user is saving some critical information if some type of battery-backed-up or non-volitle
memory and does not want this information to be destroyed during a RESET or power-up sequence.

PROG4

The PROG4 COMMAND is a combination of the PROG2 and PROG3 COMMAND. PROG4 saves the
same information as PROG3, but also executes the first program stored in the EPROM after a RESET or
power-up condition.

FPROG3 and FPROG4

The FPROG3 and FPROG4 commands save the same information as the PROG3 and PROG4 commands
respectively, except that the INTELligent ™ algorithm is used to program the EPROM.

VARIATIONS:

None.

26

inter MCS® BASIC-52

3.7 DESCRIPTION OF EPROM FILE COMMANDS

COMMANDS: PROGS(cr), PROG6(cr), FPROGS(cr), FPROG6(cr) (VERSION 1.1 ONLY)

ACTION TAKEN:

PROG5 & FPROG5

The PROG5 command saves both the baud rate information and the MTOP information, just like the
PROG3 command previously described. However, during a RESET or power-up condition the MCS
BASIC-52 device examines external data memory location 5FH (95 decimal). If the user has placed the
value OA5H (165 decimal) in this location, the MCS BASIC-52 device will not clear the external memory
during a RESET or power-up condition. This permits the user to "save" programs in external memory,
providing some type of battery back-up scheme has been employed.

Normally, when using the PROG5 command to establish the RESET or power-up condition, the MCS
BASIC-52 device will enter the command mode after RESET or power-up. However, if the user wishes
to execute the program stored in external memory, the character 34H (52 decimal) needs to be placed in
external memory location 5EH (94 decimal). Placing a 34H in location 5EH causes MCS BASIC-52 to
enter the "RUN TRAP MODE." Details of this mode are presented in chapter 8 of this manual.

PROG6 & FPROG6

Does the same thing as PROG5, but CALLS external program memory location 4039H during a RESET
or power-up sequence. This option also requires the user to put the character OA5H in external memory
location 5FH to insure that external RAM will not be cleared during RESET or power-up. The user must
put an assembly language initialization routine in external code memory location 4039H or else this RESET
mode will crash. When the user returns from the customized assembly language RESET routine, three
options exist:

OPTION 1 FOR PROG6

If the CARRY BIT is CLEARED (CARRY = 0) upon return from the user RESET routine MCS BASIC-52
will enter the auto-baud rate determining routine. The user must then type a space character (20H) on the
terminal to complete the RESET routine and produce a RESET message on the terminal.

OPTION 2 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is CLEARED (ACC. 0
= 0) MCS BASIC-52 will produce the standard sign-on message upon return from the user supplied
RESET routine. The baud rate will be the one that was saved when the PROG6 option was used.

OPTION 3 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is SET (ACC. 0 = 1),
MCS BASIC-52 will execute the first program stored by the user in EPROM (starting address of the
program is 801OH) upon return from the user supplied RESET routine.

27

CHAPTER 4
Description of Statements

4.1 DESCRIPTION OF STATEMENTS

STATEMENT: BAUD [expr]

MODE: COMMAND AND/OR RUN

TVPE:CONTROL

The BAUD [expr] statement is used to set the baud rate for the software line printer port resident on the
MCS BASIC-52 device. In order for this STATEMENT to properly calculate the baud rate, the crystal
(special function operator - XTAL) mUst be c.on:ectly assigned (e.g. XTAL= 9000000). MCS BASIC-52
assumes a crystal value of 11.0592 MHz if no XTAL value is assigned. The software line printer port is
Pl.7 on the 8052AH device. The main purpose of the software line printer port is to let the user make a
"hard copy" of program listings and/or data. The COMMAND LIST# and the STATEMENT PRINT#
direct outputs to .the software line printer port. If the BAUD [exprl STATEMENT is not executed befQte
a LIST# or PRINT# command/statement is entered, the output to the software line printer port will be
at about 1 BAUD and it will take A LONG TIME to output something. You may even think that BASIC
has crashed, but it hasn't, It's just outputting ala VERY SLOW rate. So be sure to ~ssign. a BAUD fIlte
to the software printer port BEFORE using LIST# or PRINT#. The maximum baud rate that can be
assigned by the BAUD statement depends on the crystal. In general, 4800 is a reasonable maximum baud
rate, however the user may want to experiment with different rates. The software serial transmits 8 data
bits, 1 start bit, and two stop bits. No parity is transmitted.

EXAMPLE:

BAUD 1200

Will eau •• the line printer port to output data at 1200 BAUD.

VARIATIONS:

None.

28

MCS® BASIC-52

4.2 DESCRIPTION OF STATEMENTS

STATEMENT: CALL [integer]

MODE: COMMAND AND/OR RUN

TYPE: CONTROL

The CALL [integer] STATEMENT is used to call an assembly language program. The integer following
CALL is the address where the user must provide the assembly language routine. To return to BASIC the
user must execute an assembly language RET instruction. Examples of how to use the CALL [integer]
instruction are given in the ASSEMBLY LANGUAGE LINKAGE section of this manual.

EXAMPLE:

I C~ ~.OOH
Will cause the 80S2AH to execute the assembly language program beginning at location 9000H (i.e. the
program counter will be loaded with 9000H).

VARIATIONS: (VERSION 1.1 ONLY)

If the integer following the CALL statement is between 0 and 127 (7FH), Version 1.1 of MCS BASIC-52
will multiply the user integer by two, then add 4100H and vector to that location. This means that CALL
o will call location 4100H, CALL 1 will call 4102H, CALL 2 - 4104H and so on. This permits the user
to generate a simple table of assembly language routines without having to enter 4 digit hex integers after
the CALL statement from the user supplied RESET routine.

29

intJ MCS® BASIC-52

4.3 DESCRIPTION OF STATEMENTS

STATEMENT: CLEAR

MODE: COMMAND AND/OR RUN

TVPE:CONTROL

The CLEAR STATEMENT sets all variables equal to 0 and resets all BASIC evoked interrupts and stacks.
This means that after the CLEAR statement is executed an ONEXI or QNTIME statement must be executed
before MCS BASIC-52 will acknowledge interrupts. ERROR trapping via the ONERR statement will also
not occur until an ONERR[integer] STATEMENT is executed. The CLEAR STATEMENT does not affect
the real time clock that is enabled by the CLOCK 1 STATEMENT. CLEAR also does not reset the memory
that has been allocated for STRINGS, so it is NOT necessary to enter the STRING [expr], [expr] STATE
MENT to re-allocate memory for strings after the CLEAR STATEMENT is executed. In general, CLEAR
is simply used to "erase~' all variables.

VARIATIONS:

None.

30

MCS® BASIC-52

4.4 DESCRIPTION OF STATEMENTS

STATEMENTS: CLEARI (clear interrupts)

CLEARS (clear stacks)

MODE: COMMAND AND/OR RUN

TVPE:CONTROL

CLEARI

The CLEARI STATEMENT clears all of the BASIC evoked interrupts. Specifically, the ONTIME and
ONEXI interrupts are DISABLED after the CLEARI STATEMENT is executed. This is accomplished by
clearing bits 2 and 3 of the 8052AH's special function register, IE and by clearing the status bits that
determine whether MCS BASIC-52 or the user is controlling these interrupts. The real time clock which
is enabled by the CLOCK 1 STATEMENT is not affected by CLEARI. This statement can be used to
selectively DISABLE interrupts during specific sections of the users BASIC program. The ONTIME and/
or ONEXI STATEMENTS MUST BE EXECUTED AGAIN before the specific interrupts will be enabled.

CLEARS

The CLEARS statement RESETS all of MCS BASIC-52's STACKS. The CONTROL and ARGUMENT
STACKS are reset to their initialization value, 254 (OFEH) and 510 (IFEH) respectively. The INTERNAL
STACK (the 8052AH's STACK POINTER, SPECIAL FUNCTION REGISTER-SP) is loaded with the
value that is in INTERNAL RAM location 62 (3EH). This statement can be used to "purge" the stack
should an error occur in a subroutine. In addition, this statement can be used to provide a "special" exit
from a FOR-NEXT, DO-WHILE, or DO-UNTIL loop.

EXAMPLE OF CLEARS:

)10 PRINT "t1UL.TIPL.ICATION TEST, YOU HAVE , SECONDS"
)20 FOR I • 2 TO 9
)30 N • INTCRND*10) : A • N*l
)40 PRINT "WHAT IS ",N, "*", I, "?": CL.OCK1
)'0 TIME. 0 : ONTIME ',200 : INPUT R: IF R<)A THEN 100
)60 PRINT "THAT'S RIQHT": TIMEaQ: NEXT I
)70 PRINT "YOU DID IT. QOOD .JOS":END
)100 PRINT "WRONQ, TRY AOAIN":QOTO '0
)200 REM WASTE CONTROL. STACK. TOO MUCH TIME
)210 CL.EARS:PRINT "YOU TOOK TOO L.ONQ":QOTO 10

NOTE: When the CLEARS and CLEARI STATEMENTS are LISTED they will appear as CLEAR S
and CLEAR I respectively. Don't be alarmed, that is the way it's supposed to work.

31

intJ

4.5 DESCRIPTION OF STATEMENTS

STATEMENTS: CLOCKl and CLOCKO

MODE: COMMAND AND/OR RUN

TVPE:CONTROL

CLOCK1

:The CLOCK] STATEMENT ehables the REAt TIME CLOCK feature resident on the MeS BAStC-52
device. The special function operator TIME is incremented once every 5 milliseconds after the CLOCK!
STATEMENT has been executed. The CLOCK! STATEMENT uses TIMER/COUNTER 0 in the 13-bit
mode to generate an interrupt once every 5 milliseconds. Because of this, the special function operatbr
TIME has a resolution of 5 milliseconds.

'", .. /

MCS BASIC~52 'autOmatically calculate's the proper reload value forTIMER/COt?:lNTER 0 after the crystai
value 'has been assigned (i.e. XT :AL= value). If no crystal value is assigned;',MCSBASIC-52' assumes a
value of 11.0592 MHz. The special function operator TIME counts from 010 65535 .995secClndS', After
reaching a count of 65535.995 seconds TIME· overflows back to a count of zero. Because the CLOCKI
STATEMENT uses the interrupts associated with TIMER/COUNTER 0 (the CLOCKI statement 'setSbits
7 and 2 in the 8052AH's special function register, IE), the user may not use this interrupt in an assembly
language routine If the CLOCKISTATEMi!NT is executed in BASIC. The interrupts associated with the
CLOCKI STATEMENT cause MCS BASIC-52 programs to run at about 99.6% of normal speed'J,That
means that the interrupt handling for the REAL TIME CLOCK feature only consumes about .4% of the
total CPU time. This very small interrupt overhead is attributed to the very fast and effective'interfupt
handling of the 8052AH device .

. CLOCKO

The CLOCKO (zero) STATEMENT disables or "turns off' the REAL TIME CLOCK -feature .. This
statement clears bit 2 in the 8052AH's special function register, IE. After CLOCKO is executed, the speci~

, function operator TIME will no longer increment. The CLOCKO STATEMENT also returns control of the
.' interrupts associated with TIMER/COUNTER 0 back to the user, so this interrupt'may be handled at the
. assembly language level. CLOCKO is the only MCS BASIC-52statemertt that can disable theREAt TIME
CLOCK. CLEAR and CLEARI will NOT disable the REAL TIME CLOCK.

VARIATIONS:

None.

inter . MCS~ .BASIC"S2

4.6 DESCRIPTION OF STATEMENTS

STATEMENTS: DATA - READ - RESTORE

MODE: RUN

TYPE: ASSIGNMENT

DATA

DATA specifies expressions that may be retrieved by a READ STATEMENT. If multiple expressions per
line are used. they MUST be separated by a comma.

READ

READ retrieves the expressions that are specified in the DATA STATEMENT and assigns the value of
the expression to the variable in the READ STATEMENT. The READ STATEMENT MUST ALWAYS
be followed by one or more variables. If more than one variable follows a READ STATEMENT. they
MUST be separated by a comma.

RESTORE

RESTORE "resets" the internal read pointer back to the beginning of the data so that itmay be read
again.

EXAMPLE:

>10 FOR I-I TO 3
>20 ~EAD A,B
>30 PRINT 'A,B
>40 NEXT I
>'0 RESTORE
>60 READ A,B
)70 PRINT A,B
>80 DATA 10.20. 10/2.20/2.SIN(PI).COS(PI)
>RUN

10 20
, 10
o -1
10 20

VARIATIONS:

None.

33

MCS® BASIC-52

4.6 DESCRIPTION OF STATEMENTS

Explanation of previous example:

Everytime a READ STATEMENT is encountered the next consecutive expression in the DATA STATE,.
MENT is evaluated and assigned to the variable in the READ STATEMENT. DAtA STATEMENTS may
be placed anywhere within a program, they will NOT be executed nor will they cause an error. DATA
STATEMENTS are considered to be chained together and appear to be one BIG DATA STATEMENT.
If at anytime all the DATA has been read and another READ STATEMENT is executed then the program
is terminated and the message ERROR: NO DATA - IN LINE XX is printed to the consOle device.

34

inter MCSiIl BASIC-52

4.7 DESCRIPTION OF STATEMENTS

STATEMENT: DIM

MODE: COMMAND AND/OR RUN

TYPE: ASSIGNMENT

DIM reserves storage for matrices. The storage area is first assumed to be zero. Matrices in MCS BASIC-
52 may have only ONE DIMENSION and the size of the dimensioned array MA Y NOT exceed 254
elements. Once a variable is dimensioned in a program it may not be re-dimensioned. An attempt to re
dimension an array will cause an ARRAY SIZE ERROR. If an arrayed variable is used that has NOT been
dimensioned by the DIM STATEMENT, BASIC will assign a default value of 10 to the array size. All
arrays are set equal to zero when the RUN COMMAND, NEW COMMAND, or the CLEAR STATEMENT
is executed. The number of bytes allocated for an array is 6 times the (array size plus 1). So, the array
A(lOO) would require 606 bytes of storage. Memory size usually limits the size of a dimensioned array.

VARIATIONS:

More than one variable can be dimensioned by a single DIM STATEMENT, i.e., DIM A(10), B(15),
Al(20).

EXAMPLE:

DEFAUL.T ERROR ON ATTEMPT TO RE-DIMENSION ARRAY

)10 A(5)-10
)20 DIM A(S·)
)RUN

- BASIC· ASSIGNS DEFAUL. T OF 10 TO ARRAY SIZE HERE
- ARRAY CANNOT BE RE-DIMENSIONED

ERROR: ARRAY SlZE - IN L.INE 20

20 DIM A(S)

----------x

35

MCS4!I BASIC-52

4.8 DESCRIPTION OF STATEMENTS

STATEMENTS: DO - UNTIL [rel expr]

MODE: RUN

TVPE:CONTROL

The DO ~ UNTIL [reI exprJ instruction provides a means oC"loopcontrol" within an MCS BASIC-52
program. All statements ~tween the DO and the UNTIL [relexpr] will be executed until the relational
expression following the UNTIL statement is TRUE. DO -'- UNTIL loops may be nested.

EXAMPLES:

SII'IPLE DO-UNTIL

>10 A-O
>20 DO
)30 A-A+1
)40 PRINT A
)~O UNTIL Aa4
>60 PRINT "DONE"
>RUN

1
2
3
4

DONE

READY
>

VARIAnONS:

None

NESTED DO-UNTIL

)10 DO : AaA+1 : DO a-B+1
)20 PRINTA,B,A*B.
)30· UNTIL 8-3
)40 a-o.
)~O UNTIL A-3
>RUN

111
122
133
212
224
236
313
326
33.

READY
)

36

intJ MCS® BASIC .. S2 00

4.9 DESCRIPTION OF STATEMENTS

STATEMENTS: DO - WHILE [rei expr]

MODE: RUN

TVPE:CONTROL

The DO -,WHILE [reI expr] jnstruction provides a means of "loop controI"within an MCS BASIC-52
program. This operation of this statement is similar to the DO - UNTIL [rei expr] except that all statements
between the DO and the WHILE [reI expr] will be executed as long as the relational expression following
the WHILE statement is true. DO - WHILE and DO - UNTIL statements can be nested.

EXAMPLES:

SIMPLE DO-WHILE

)10 DO
)20 A-A+1
)30 PRINT A
>40 WHILE A<'4
)50 PRINT "DONE"
>RUN

1
2
3
4

DONE

READY
:.

VARIATIONS:

None

NESTED DO-WHILE - DO-UNTIL

)10 DO : A"A+l : 8=B+1
)20 PRINT A,B,A*B
)30 WHILE B<')3
)40 8-0
>50 UNTIL A-3
)RUN

1 1 1
1 2 2
1 3 3
2 1 2
2 2 4
2 3 6
3 1 3
3 2 6
3 3 Ii'

READY
:.

37

MCS® BASIC-52

4.10 DESCRIPTION OF STATEMENfS

STATEMENT: END

MODE: RUN

TVPE:CONTROL

The END STATEMENT terminates program execution. The continue command, CONT will not operate
if the END STATEMENT is used to terminate execution (Le., a CAN'T CONTINUE ERROR will be
printed to the console). The last statement in an MCS BASIC-52 program will automatically terminate
program execution if no END STATEMENT is used.

EXAMPLES:

LAST STATEMENT TERMINATION

>10 FOR 1-1 TO 4
>20 PRINT I
>30 NEXT I
>RUN

1
2
3
4

READY
:.

VARIATIONS:

None

END STATEMENT TERMINATION

)10 FOR 1-1 TO 4
>20 QOSUB100
)30 NEXT I
)40 END
)100 PRINT I
>110 RETURN
)RUN

1
2
:3
4

READV
>

38

inter MCS® BASIC-52

4.11 DESCRIPTION OF STATEMENTS

STATEMENTS: FOR - TO - {STEP} - NEXT

MODE: RUN VERSION 1.0 (COMMAND AND/OR RUN in Version 1.1)

TVPE:CONTROL

The FOR - TO - {STEP} - NEXT STATEMENTS are used to set up and control loops.

EXAMPLE:

10 FOR A=B TO C STEP D
20 PRINT A
30 NEXT A

If B = 0, C = 10, and D = 2, the PRINT STATEMENT at line 20 will be executed 6 times. The values of
"A" that will be printed are 0, 2, 4, 6, 8, 10. "A" represents the name of the index or loop counter.
The value of "B" is the starting value of the index, the value of "C" is the limit value of the index, and
the value of "D" is the increment to the index. If the STEP STATEMENT and the value "D" are omitted,
the increment value defaults to 1, therefore, STEP is an optional statement. The NEXT STATEMENT
causes the value of "D" to be added to the index. The index is then compared to the value of "C," the
limit. If the index is less than or equal to the limit, control will be transferred back to the statement after
the FOR STATEMENT. Stepping "backwards" (i.e. FOR I = 100 TO 1 STEP-I) is permitted in MCS
BASIC-52. Unlike some BASICS, the index MAY NOT be omitted from the NEXT STATEMENT in
MCS BASIC-52 (i.e. the NEXT statement MUST always be followed by the appropriate variable).

EXAMPLES:

)10 FOR 1=1 TO 4
)20 PRINT I
;'30 NEXT I
)RUN

1
2
:3
4

READY

)10 FOR 1=0 TO 8 STEP 2
)20 PRINT .1
)30 NEXT I
)RUN

o
2
4
o
8

READY
:>

39

inter MCS'®BASIC-52

4.11 DESCRIPTION OF STATEMENTS:

In Version 1.1 of MCS BASIC-52 it is possible exectitethe:FOR-TO"{STEP}:NEXr statement in the'
Command Mode. This makes it possible for the user to do things like display regions of memory by writing
a short program like FOR 1=512 TO 560: PHO. XBY(I),: NEXT I. It may also have other useSjbtit:\tfiey:'
haven't been thought of.

Also Version 1.1 allows the NEXT statement to be used without a variable following the statement. This
means that programs like:

EXAMPLE:

.,

10 FOR I - 1 TO 100
20 PRINT I
30 NEXT

, :.':

Are permitted in Version 1.1 orMeS BASIC-52. The variable associated with the NEXT is alwilys assumed'
to be the variable used in the last FOR statement.

40

inter MCS® BASIC-52

4.12 DESCRIPTION OF STATEMENTS

STATEMENTS: GOSUB[In num] - RETURN

MODE: RUN

TVPE:CONTROL

GOSUB

The GOSUB [In num] STATEMENT will cause MCS BASIC-52 to transfer control of the program directly
to the line number ([In num]) following the GOSUB STATEMENT. In addition, the GOSUB STATEMENT
saves the location of the STATEMENT following GOSUB on the control stack so that a RETURN
STATEMENT can be perfonned to return control.

RETURN

This statement is used to "return" control back to the STATEMENT following the most recently executed
GOSUB STATEMENT. The GOSUB-RETURN sequence can be "nested" meaning that a subroutine
called by the GOSUB STATEMENT can call another subroutine with another GOSUB STATEMENT.

EXAMPLES:

SIMPLE SUBROUTINE

>10 FOR 1-1 TO ~
>20 QOSua 100
>30 NEXT I
>100 PRINT I
>11"0 RETURN
:'RUN

1
2
3
4
5

READY
>

NESTED SUBROUTINES

>10 FOR 1-1 TO 3
>20 QOSUB 100
>30 NEXT I
>40 END
>100 PRINT I,
> 11 0 QOSUB 200
>120 RETURN
>200 PRINT I*I
>210 RETURN
>RUN

1 1
2 4
3 9

READY
>

41

MCS@ BASIC-52

4.12 ·DESCRIPTION OF STATEMENTS

NOTE - The Control Stack on Version 1.1 permits a graceful exit from incompleted control loops, given
the following example: .

EXAMPLE:

50 QOSUB 1000

1000
1010
1020
1030
1040

FOR I - 1 TO 10
IF X - I THEN 1040
PRINT I*X
NEXT I
RETURN

Version 1.1 would pelmit the programmer to exit the subroutine even tho~gh the FOR-NEXT loop might
not be allowed to complete if X did equal I. Version 1.0 of MCS BASIC-52 would yield a C-STACK
error if the FOR-NEXT loop was not allowed to complete before the RETURN .stattmerit was executed.

42

intJ MCS® BASIC-52

4.13 DESCRIPTION OF STATEMENTS

STATEMENT: GOTO [In num]

MODE: COMMAND AND/OR RUN

TVPE:CONTROL

The GOTO [In num] STATEMENT will cause BASIC to transfer control directly to the line nuinber
([In num]) following the GOTO STATEMENT.

EXAMPLE:

50 GOTO 100

Will, if line 100 exists, cause execution of the program to resume at line 100. If line number 100 does
not exist the message ERROR: INVALID LINE NUMBER will be printed to the console device.

Unlike the RUN COMMAND the GOTO STATEMENT, if executed in the COMMAND MODE, does
not CLEAR the variable storage space or interrupts. However, if the GOTO STATEMENT is executed in
the COMMAND MODE after a line has been edited, MCS BASIC-52 will CLEAR the variable storage
space and all BASIC evoked interrupts. This is a necessity because the variable storage and the BASIC
program reside in the same RAM memory. So editing a program can destroy variables.

NOTE - (Version 1.0 only)

Because of the way MCS BASIC-52's text interpreter processes a line, when an INVALID LINE NUMBER
ERROR occurs on the GOTO, GOSUB, ON GOTO, and ON GOSUB STATEMENTS the line AFfER
the GOTO or GOSUB STATEMENT will be printed out in the error message. This may be confusing,
but it was a trade-off between execution speed, code size, and error handling. Error handling lost.

EXAMPLE:

)10 GOTO 100
;-20 PR INT X
)RUN

ERROR: INVALID LINE NUMBER - IN LINE 20

20 PRINT X
-------------x

Version 1.1 does not exhibit this particular anomaly.

43

intJ MCS$ BASIC-52

4.14 DESCRIPTION OF STATEMENTS

STATEMENTS: ON [expr] GOTO[1n num], [In num], •• '. [In num]

ON [expr] GOSUB[1n num], [In num], ••• [In num]

MODE: RUN

TVPE:cONTROL

The value of the expression following the ON statement is the number in the line list that control will be
transferred to.

EXAMPLE:

10 ON G GOTO 100,200,300

If Q was equal to 0, control would be transferred to line number 100. If Q was equal to 1, control would
be transferred to line number 200. If Q was equal to 2, GOTO line 300, etc. All comments that apply to
GOTO and GOSUB apply to the ON STATEMENT. If Q is less than ZERO a BAD ARGUMENT ERROR
will be generated. If Q is greater than the line number list following the GOTO or GOSUB STATEMENT,
a BAD SYNTAX ERROR will be generated. The ON STATEMENT provides "condi~ional ~ranc1;ling"
options within the constructs of an MCS BASIC-52 program.

44

MCS® BASIC-52

4.15 DESCRIPTION OF STATEMENTS

STATEMENTS: IF - THEN -ELSE

MODE: RUN

TVPE:CONTROL

The IF statement sets up a conditional test. The generalized form of the IF - THEN - ELSE statement
is as follows:

[In num] IF [reI expr] THEN valid STATEMENT ELSE valid STATEMENT

A specific example is as follows:

I >10 IF .=100 THEN "'0 ELSE .-•• ,

Upon execution of line 10 IF A is equal to 100, THEN A would be assigned a value of 0. IF A does not
equal 100, A would be assigned a value of A + 1. If it is desired to transfer control to different line numbers
using. the IF statement,the GOTO statement may be omitted. The following examples would yield the
same results:

)20 IF INTCA)< 10 THEN GOTO 100 ELSE GOTO 200

)20 IF INTCA)< 10 THEN 100 ELSE 200

Additionally, the THEN statement can be replaced by any valid MCS BASIC-52 statement, as shown
below:

)30 IF AC>10 THEN PRINT A ELSE 10

)30 IF A<:>10 PRINT A ELSE 10

The ELSE statement may be omitted. If it is, control will pass to the next statement.

EXAMPLE:

)20 IF A-l0 THEN 40

)30 PRINT A

In this example, IF A equals 10 then control would be passed to line number 40. If A does not equal 10
line number 30 would be executed.

45

MCS@ BASIC-52

4.15 DESCRIPTION OF STATEMENTS

COMMENTS ON IF-THEN-ELSE-

Version 1.1 is not compatible with V1.0 when the IF_THEN-ELSE STATEMENT is used with multiple
statements per line. In V1.0, the following two examples would function in the same manner.

EXAMPLE 1:

10 IF A=B THEN C=A A=A/2 GOTO 100
20 PRINT A

EXAMPLE 2:

10 IF A=B THEN C-A
12 A=A/2
14 GOTO 100
20 PRINT A

They function in the same manner because V1.0 treats the delimiter (:) exactly the same as a carriage
return (cr) in every case. However, V1.1 executes the remainder of the line if and only if the test A=B
proves to be true. This means in EXAMPLE 1 IF A did equal B, V1.1 would then set C=A, then set
A = Al2, then execute line 100. IF A did not equal B, V1.1 would then PRINT A and ignore the statements
C=A: A=A/2 : GOTO 100. V1.1 will execute EXAMPLE 2 exactly the same way as Vl.O. This same
logical interpretation holds true for the ELSE statement as well. This example dictates a simple rule for
maintaining IF_THEN-ELSE compatibility between the two versions. IF THE DELIMITER (:) IS NOT
USED IN AN IF_THEN-ELSE STATEMENT, V1.0 AND VI. 1 WILL TREAT THE STATEMENTS
IN THE SAME MANNER!!

This change was made because most users of MCS BASIC-52 felt that the VI.I interpretation of this·
statement was more useful because fewer GOTO statements need be employed in a typical program.

46

inter MCS® BASIC-52

4.16 DESCRIPTION OF STATEMENTS

STATEMENTS: INPUT

MODE: RUN

TYPE: INPUT/OUTPUT

The INPUT statement allows users to enter data from the console during program execution. One or more
variables may be assigned data with a single input statement. The variables must be separated by a comma.

EXAMPLE:

INPUT A,B

Would cause the printing of a question mark (?) on the console device as a prompt to the operator to input
two numbers separated by a comma. If the operator does not enter enough data, then MCS BASIC-52
responds by outputting the message TRY AGAIN to the console device.

EXAMPLE:

)10 INPUT A,a
)20 PRINT A,a
)RUN

71

TRY AGAIN

?1. 2
1 :2

READY

The INPUT statement may be written so that a descriptive prompt is printed to tell the user what to type.
The message to be printed is placed in quotes after the INPUT statement. If a comma appears before the
first variable on the input list, the question mark prompt character will not be displayed.

EXAMPLES:

)10 INPUT"ENTER A NUM13ER"A
)20 PRINT SGR(A)
)RUN

ENTER A NUMBER
7100

10

)10 INPUT"ENTER A NUMBER-",A
)20 PRINT SGR(A)
)RUN

ENTER A NUMBER-l00
10

47

inter MCS® BAStC,;,52

4.16 DESCRIPTION OF STATEMENTS

Strings can also be assigned with an INPUT statement. Strings are always terminated with a carriage return.
(cr). So, if more than one string input is requested with a single INPUT statement, MCS BASIC-52 will
prompt the user with a question mark.

EXAMPLES:

)10 STRING 110.10
)20 INPUT "NAME: (1)
)30 PRINT "HI ".$(1)
)RUN

NAME: SUSAN
HI SUSAN

READY

)10 STRING 110.10
)20 INPUT "NAMES: (1). $(2)
)30 PRINT "HI ".$(1)." AND ".$(2)·
)RUN

NAMES: BILL
?ANN
HI BILL AND ANN

READY

Additionally, strings and variables can be assigned with a single INPUT statement.

EXAMPLE:

)10 STRING 100. 10
)20 INPUT"NAME(CR). AGE - ". $(1). A
)30 PRINT "HELLO " •• (1). ". YOU ARE ". A. "YEARS OLD"
)RUN

NAME (CR). AGE - FRED
715
HELLO FRED. YOU ARE 15 YEARS OLD

READY
)

48

MCS® BASIC-52

4.17 DESCRIPTION OF STATEMENTS

STATEMENT: LET

MODE: COMMAND AND/OR RUN

TYPE: ASSIGNMENT

The LET statement is used to assign a variable to the value of an expression. The generalized form of
LET is:

LET [var] = [expr]

EXAMPLES:

LET A a 10*SIN(B)/100 or

LET A = A + 1

Note that the sign used in the LET statement is not equality operator, but rather a "replacement"
operator and that the statement should be read A is replaced by A plus one. THE WORD LET IS ALWAYS
OPTIONAL, i.e.

LET A - 2 i~ the same a~ A = 2

When LET is omitted the LET statement is called an IMPLIED LET. This document will use the word
LET to refer to both the LET statement and the IMPLIED LET statement.

The LET statement is .also used to assign the string variables, i.e:

LET $(l)="THIS IS A STRING" or

LET $(2)·$(1)

Before Strings can be assigned the STRING [expr], [expr] STATEMENT MUST be executed, or else a
MEMORY ALLOCATION ERROR will occur.

SPECIAL FUNCTION VALUES can also be assigned by the LET statement, i.e.:

LET IE "" 82H or

LET XBVTE(2000H)-~AH or

LET DBVTE(25).XBVTE(1000)

49

inter MCS® BASIC-52

4.18 DESCRIPTION OF STATEMENTS

STATEMENT: ONERR[ln num]

MODE: RUN

TVPE:CONTROL

The ONERR[ln num] statement lets the programmer handle arithmetic errors, should they occur, during
program execution. Only ARITH. OVERFLOW, ARITH. UNDERFLOW, DIVIDE BY ZERO, and BAD
ARGUMENT errors can be "trapped" by the ONERR statement, all other errors are not. If an arithmetic
error occurs after the ONERR statement is executed, the MCS BASIC-52 interpreter will pass control to
the line number following the ONERR[ln num] statement. The programmer can handle the error condition
in any manner suitable to the particular application. Typically, the ONERR[ln num] statement should be
viewed as an easy way to handle errors that occur when the user provides inappropriate data to an INPUT
statement.

With the ONERR[ln num] statement, the programmer has the option of determining what type of error
occurred. This is done by examining external memory location 257 (lOlH) after the error condition is
trapped. The error codes are as follows:

ERROR CODE • 10 - DIVIDE BY ZERO

ERROR CODE • 20 - ARITH. OVERFLOW

ERROR CODE • 30 - ARITH. UNDERFLOW

ERROR CODE = 40 - BAD ARGUMENT

This location may be examined by using an XBY(257) statement.

50

MCS<R> BASIC-52

4.19 DESCRIPTION OF STATEMENTS

STATEMENT: ONEXI [In num]

MODE: RUN

TVPE:CONTROL

The ONEXI [In num] statement lets the user handle interrupts on the 8052AH's INTI pin with a BASIC
program. The line number following the ONEXI statement tells the MCS BASIC-52 interpreter which line
to pass control to when an interrupt occurs. In essence, the ONEXI statement "forces" a GOSUB to the
line number following the ONEXI statement when the INTI pin on the 8052AH is pulled low. The
programmer must execute a RETI statement to exit from the ONEXI interrupt routine. If this is not done
all future interrupts on the INTI pin will be "locked out" and ignored until a RETI is executed.

The ONEXI statement sets bits 7 and 2 of the 8052AH's interrupt enable register IE. Before an interrupt
can be processed, the MCS BASIC-52 interpreter must complete execution of the staement it is currently
processing. Because of this, interrupt latency can vary from microseconds to tens of milliseconds. The
ONTIME [expr], [In num] interrupt has priority over the ONEXI interrupt. So, the ONTIME interrupt

. can interrupt the ONEXI interrupt routine.

51

intJ

4.20 DESCRIPTION OF STATEMENTS

STATEMENT: ONTIME [expr), [In· n .. m)

MODE: RUN

TVPE:CONTROL

Since MCS BASIC-52 processes a line in the millisecond time frame and the timer/counters on the 8052AH
operate in the micro-second time frame, there is an inherent incompatibility between the timer/counters on
the 8052AH and MCS BASIC-52. To help solve this situation the ONTIME [expr), [In num) statement
was devised. What ONTIME does is generate an interrupt everytimethe SPECIAL FUNCTION OPER
ATOR, TIME, is equal to or greater than the expression following the ONTIMEstatement. Actually, only
the integer portion of TIME is compared to the integer portion of the expression. The interrupt forces a
GOSUB to the line number ([In num)) following the expression ([expr)) in the ONTIME statement.

Since the ONTIME statement uses the SPECIAL FUNCTION OPERA TOR, TIME, the CLOCK! statement
must be executed in order for ONTIME to operate. If CLOCK! is not executed the SPECIAL FUNCTION
OPERATOR, TIME, will never increment and not much will happen.

Since the ONTIME statement generates an interrupt when TIME is greater than or equal to the expression
following the ONTIME statement, how can periodic interrupts be generated? That's easy, the ONTIME
statement must be executed again in the interrupt routine:

EXAMPLE:

)10 TIMEaO : C~OCKl : CNTIME 2. 100 : DO
)20 WHI~E TIME<10 : END
>'100 PR"INT "TIMER INTERRUPT AT. -", TIME. "SECONDS"
)110 ONTIME TIME+2,100 : RETI
:>RUN

TIMER INTERRUPT AT· - 2. 04:5 SECONDS
TIMER INTERRUPT AT - 4.045 SECONDS
TIMER INTERRUPT AT ~ O. 04:5 SECONDS
TIMER INTERRUPT AT - 8. 045 SECONDS
TIMER INTERRUPT AT - 10.045 SECONDS

READY

You may wonder why the TIME that was printed out was 45 milliseconds greater than the time that the
interrupt was supposed to be generated. That's because the terminal used in this example was running at
4800 BAUD and it takes about 45 milliseconds to print the message TIMER INTERRUPT AT -" ".

52

intJ MCS® BASIC~52

4.20 DESCRIPTION OF STATEMENTS

If the programmer does not want this delay, a variable should be assigned to the SPECIAL FUNCTION
OPERATOR, TIME, at the beginning of the interrupt routine.

EXAMPLE:

)10 TIME-O : CLOCKl : ONTIME 2, 100: DO
)20 WHILE TIME<10 : END
)100 A-TIME
)110 PRINT "TIMER INTERRUPT AT -",A, "SECONDS"
)120 ONTIME A+2, 100 : RETI
)RUN

TIMER INTERRUPT AT - 2 SECONDS
TIMER INTERRUPT AT - 4 SECONDS
TIMER INTERRUPT AT - 6 SECONDS
TIMER INTERRUPT AT - 8 SECONDS
TIMER INTERRUPT AT - 10 SECONDS

READV

Like the ONEXI statement, the ONTIME interrupt routine must be exited with a RETI statement. Failure
to do this will "lock-out" all future interrrupts.

The ONTIME interrupt has priority over the ONEXI interrupt. This means that the ONTIME interrupt can
interrupt the ONEXI interrupt routine. This priority was established because time related functions in
control applications were viewed as critical routines. If the user does not want the ONEXI routine to be
interrupted by the ONTIME interrupt, a CLOCKO or a CLEARI statement should be executed at the
beginning of the ONEXI routine. The interrupts would have to be re-enabled before the end of the ONEXI
routine. The ONEXI interrupt cannot interrupt an ONTIME routine.

The ONTIME statement in MCS BASIC-52 is unique, relative to most BASICS. This powerful statement
eliminates the need for the user to "test" the value of the TIME operator periodically throughout the
BASIC program.

53

intJ MCS® .BASIC-52

4.21 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT or P. (? VERSION 1.1 ONLY)

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PRINT statement directs MCS BASIC-52 to output to the console device. The value of expressions,
strings, literal values, variables or test strings may be printed out. The various forms may be combined in
the print list by separating them with commas. If the list is terminated with· a comma, the carriage returnL
line feed will be suppressed. P. is a "shorthand" notation for PRINT. In Version 1.1 ? is also "shorthand"
notation for PRINT. . .

EXAMPLES:

>PRINT 10*10,3*3
100 9

>PRINT "MCS-51"
MCS-51

:>PRINT 5,lE3
:5 1000

Values are printed next to one another with two intervening blanks. A PRINT statement with no argum~nts
causes a carriage return/line feed sequence to be sent to the console device.

SPECIAL PRn~T FORMATTING STATEMENTS

TAB([expr])

The TAB([exprD function is used in the PRINT statement to cause data to be printed out in exact locations
on the output device. TAB([exprD tells MCS BASIC-52 which position to begin printing the next value
in the print list. If the printhead or cursor is on or beyond the specified TAB position, MCS BASIC-52
will ignore the TAB function.

EXAMPLE:

)PRINT·TAB(S), "X",TAB(10), "V"
X Y

SPC([expr])

The SPC([exprD function is used in the PRINT statement to cause MCS BASiC-52 to output ihe number
of spaces in the SPC argument.

EXAMPLE:

>PRINT A,SPC(S).B

I
may be used to place an additional 5 spaces between the A and B over and above the two that would
normally be printed.

54

MCS® BASIC-52

4.21 DESCRIPTION OF STATEMENTS

CR

The CR function is interesting and unique to MCS BASIC-52. When CR is used in a PRINT statement it
will force a carriage return, but no line feed. This can be used to create one line on .a CRT device that is
repeatedly updated.

EXAMPLE:

>10 FOR 1-1 TO 1000
>20 PRINT I. CR.
>30 NEXT I

will cause the output to remain only on one line. No line feed will ever be sent to the console device.

USING(speclal characters)

The USING function is used to tell MCS BASIC-52 what format to display the values that are printed.
MCS BASIC-52 "stores" the desired format after the USING statement is executed. So, all outputs
following a USING statement will be in the format evoked by the last USING statement executed. The
USING statement need· not be executed within every PRINT statement unless the programmer wants to
change the format. U. is a "shorthand" notation for USING. The options for USING are as follows:

USING(Fx) - This will force MCS BASIC-52 to output all numbers using the floating point format. The
value of x determines how many significant digits will be printed. If x equals 0, MCS
BASIC-52 will not output any trailing zeros, so the number of digits will vary depending
upon the number. MCS BASIC-52 will always output at least 3 significant digits even if
x is 1 or 2. The maximum value for x is 8.

EXAMPLE:

)10 PRINT USING(F3). 1.2.3
:-20 PRINT USING(F4). 1. 2. 3
)30 PRINT USING(F5), 1.2,3
)40 FOR 1=10 TO 40 STEP 10
)50 PRINT I
)60 NEXT I
)RUN

1.00 EO 2.00 E 0 3.00 EO
1.000 E 0 2.000 E 0 3.000 E 0
1.0000 E 0 2.0000 E 0 3.0000 E 0
1. 0000 E+l
2.0000 E+l
3.0000 E+l
4.0000 E+l

READY

55

MCS® BASIC-52

4.21 DESCRIPTION OF STATEMENTS

USING(#.#) - This will force MCS BASIC-52 to output all numbers using an:integer aridJor:ffaCtIOtl
format. The number of "#" 's before the decimal point represents the number of sig
nificant integer digits that will be printed in the fraction:' The detiniiil point niliy:be
omitted, in which case only integers will be printed. USING may be abbreviated U.
USING (###.###), USING(######) and USING(######:##)are:all':{1!illd
in MCS BASIC-52. The maximum number of "#" characters is 8. If MCS BASIC-52
cannot output the value in the desired format (usually' because the value is toolatge)a
question mark (?) will be printed to console device"then BASIC will output the number
in the FREE FORMAT described below.

EXAMPLE:

)10 PRINT USING(##. ##).1.2.3
)20 FOR I=1 TO 120 STEP 20
):30 PRINT I
:-40 NEXT I
:-RUN

1.00
1. 00

21. 00
41. 00
01.00
81. 00

? 101

READY

2. 00 3.00

NOTE: The USING(Fx) and the USING(#.#) formats will always "align" the decimal points when
printing a number. This feature makes displayed columns of numbers easy to read.

USING(O) - This argument lets MCS BASIC-52 determine what format to use. The rules are simple, if
the number is between ± 99999999 and ±.1, BASIC will display integers and fractions. If
it is out of this range, BASIC will use the USING(FO) format. Leading and trailing zeros
will always be suppressed. After reset, MCS BASIC-52 is placed in the USING(O) format.

56

MCS® BASIC-52

4.22 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT# or P.# (?# VERSION 1.1 ONLy)

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PRINT#, P.#, and ?# (in Version 1.1 only) statement does the same thing as the PRINT, P. and?
(in Version 1.1 only) statement except that the output is directed to the list device instead of the console
device. The BAUD rate to the list device must be initialized by the STATEMENT - BAUD[expr] before
the PRINT#, P.#, or, ?# statement is used. All comments that apply to the PRINT, P. or, ? statement
apply to the PRINT#, P.#, or? statement. P.# and ?# (in Version 1.1 only) are "shorthand" notations
for PRINT#.

57

inter MCS® BASIC-52

4.23 DESCRIPTION OF STATEMENTS

STATEMENTS: PRO., PHI., PHO.#, PHI.#·

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

The PHO. and PHI. statements do the same thing as the PRINT statement except that the values are printed
out in a hexadecimal format. The PHO. statement suppresses two leading zeros if the number to be printed
is less than 255 (OFFH). The PHI. statement always prints out four hexadecimal digits. The character
"H" is always printed after the number when PHO. or PHI. is used to direct an output. The values printed
are always truncated integers. If the number to be printed is not within the range of valid integer (i.e.
between 0 and 65535 (OFFFFH) inclusive), MCS BASIC-52 will default to the normal mode of print. If
this happens no "H" will be printed out after the value. Since integers can be entered in either decimal
or hexadecimal form the statements PRINT, PHO. , and PH 1. can be used to perform decimal to hexadecimal
and hexadecimal to decimal conversion. All comments that apply to the PRINT statement apply to the
PHO. and PHI. statements. PHO.# and PHI.# do the same thing as PHO. and PHI. respectively, except
that the output is directed to the list device instead of the console device.

EXAMPLES:

)PHO. 1000
3EBH

)PH1. 2*2
0004H

)PH1. 1000
03EBH

)PRINT 99H
153

)P. 3EBH
1000

58

)PHO. 100
64H

)PHO. PI
03H

MCS® BASIC-52

4.24 DESCRIPTION OF STATEMENTS

STATEMENT: PRINT@, PHO.@, PH1.@ (VERSION 1.1 ONLY)

MODE: COMMAND AND/OR RUN

TYPE: INPUT/OUTPUT

The PRINT@ (P.@ OR ?@), PHO.@, and PHl.@ statements do the same thing as the PRINT (P.@ or
?@), PHO., and PHI. statements respectively except that the output is directed to a user defined output
driver. These statements assume that the user has placed an assembly language output routine in external
code memory location 403CH. To enable the @ driver routine the user must SET BIT 27H (39D) in the
internal memory of the MCS BASIC-52 device. BIT 27H (39D) is BIT 7 of internal memory location 24H
(36D). This BIT can be set by the BASIC statement DBY(24H) = DBY(24H).OR. 80H or by a user supplied
assembly language routine. If the user evokes the @ driver routine and this bit is not set, the output will
be directed to the console driver. The only reason this BIT must be set to enable the @ driver is that it
adds a certain degree of protection from accidently typing LIST@ when no assembly language routine
exist. The philosophy here is that if the user sets the bit, the user provides the driver or else!!!

When MCS BASIC-52 calls the user output driver routine at location 403CH, the byte to output is in the
accumulator and R5 of register bank 0 (RBO). The user may modify the accumulator (A) and the data
pointer (DPTR) in the assembly language output routine, but cannot modify any of the registers in RBO.
This is intended to make it real easy for the user to implement a parallel or serial output driver without
having to do a PUSH or a POP.

59

MCS® BASIC-52

4.25 DESCRIPTION OF STATEMENTS

STATEMENT:PUSH[expr]

MODE: COMMAND AND / OR RUN

TYPE: ASSIGNMENT

The arithmetic expression, or expressions following the PUSH statement are evaluated and then sequentially
placed on MCS BASIC-52's ARGUMENT STACK. This statement, in conjunction with the POP statement
provide a simple means of passing parameters to assembly language routines. In addition, the PUSH and
POP statements can be used to pass parameters to BASIC subroutines and to "SWAP" variables .. The last
value PUSHED onto the ARGUMENT STACK will be the first value POPPED off the ARGUMENT
STACK.

VARIATIONS:

More than one expression can be pushed onto the ARGUMENT stack with a single PUSH statement. The
expressions are simply followed by a comma: PUSH[exprJ,[expr], [exprJ. The last value P;USHED
onto the ARGUMENT STACK will be the last expression [exprJ encountered in the PUSH STATEMENT.

EXAMPLES:

SWAPPING
VARIASI.ES

)10 A-10
)20 S ... 20
)30 PRINT A.S
:·40 PUSH A. S
)50 POP A.S
:'00 PRINT A. B
)RUN

010 20
20 10

READY
)

SUSROUTINE
PASSING

;>10 PUSH 1. 3. 2
>20 GOSUS 100
>30 POP R 1. R2
>40 PRINT R1.R2
>50 END
)100 REM QUADRATIC A-2.S-3.C"'1 IN EXAMPI.E
>110 POP A.B.C
)120 PUSH (-B+SQR(B*B-4*A*C»!(2*A)
)130 PUSH (-B-SQR(S*B-4*A*C»!(2*A)
)140 RETURN
)RUN

-1 -.,

READY
>

60

MCS® BASIC-52

4.26 DESCRIPTION OF SYATEMENTS

STATEMENT: POP[var]

MODE: COMMAND AND / OR RUN

TYPE: ASSIGNMENT

The top of the ARGUMENT STACK is assigned to the variable following the POP statement and the
ARGUMENT STACK is "POPPED" (i.e. incremented by 6). Values can be placed on the stack by either
the PUSH statement or by assembly language CALLS. NOTE - If a POP statement is executed and no
number is on the ARGUMENT STACK, an A-STACK ERROR will occur.

VARIATIONS:

More than one variable can be popped off the ARGUMENT stack with a single POP statement. The
variables are simply followed by a comma (i.e. POP [var],[var], [var)).

EXAMPLES:

See PUSH statement.

COMMENT:

The PUSH and POP statements are unique to MCS BASIC-52. These powerful statements can be used to
"get around" the GLOBAL variable problems so often encountered in BASIC PROGRAMS. This problem
arises because in BASIC the "main" program and all subroutines used by the main program are required
to use the same variable names (i.e. GLOBAL VARIABLES). It is not always convenient to use the same
variables in a subroutine as in the main program and you often see programs re-assign a number of variables
(i.e. A = Q) before a GOSUB STATEMENT is executed. If the user reserves some variable names JUST
for subroutines (i.e. S 1, S2) and passes variables on the stack as shown in the previous example, you will
avoid any GLOBAL variable problems in MCS BASIC-52.

61

MCS®BASIC-52

4.27 DESCRIPTION OF STATEMENTS

STATEMENT: PWM [expr), [expr), [expr)

MODE: COMMAND and/or RUN

TYPE: INPUT/OUTPUT

pWM stands for PULSE WIDTH MODULATION, What it doesis'generate a'user defined pulse'seql1ence
on P1.2 (bit 2 of 110 PORT 1) of the MCS BASIC-52 device. The first expression following the PWM
statement is the number of clock cycles the pulse will remain high. Aclock cycle is equal to 12/XTAL;
which is 1.085 microseconds at 11.0592 MHz. The second expression is the number of clock cycles the
pulse will remain low and the third expression is the total number of cycles the user wishes to output. All
expressions in the PWM statement must be valid integers (i.e. between 0 and 65535 (OFFFFH) inclusive).
Additionally, the minimum value for the first two expressions in the PWM statement is 25.

The PWM statement can be used to create "audiable" feedback in a system. In addition, just for fun, the
programmer can play music using the PWM statement. More details about using the PWM statement are
in the appendix.

EXAMPLE:

)PWM 100. 100. 1000

At 11.0592 MHz would generate 1000 cycles of a square wave that has a period of 217 microseconds
(4608 Hz) on P1.2.

62

MCS® BASIC-52

4.28 DESCRIPTION OF STATEMENTS

STATEMENT: REM

MODE: RUN (Version 1.0) COMMAND AND/OR RUN (Version 1.1)

TYPE: CONTROL - PERFORMS NO OPERATION

REM is short for REMark. It does nothing, but allows the user to add comments to a program. Comments
are usually needed to make a program a little easier to understand. Once a REM statement appears on a
line the entire line is assumed to be a remark, so a REM statement may not be terminated by a colon (:),
however, it may be placed after a colon. This can be used to allow the programmer to place a comment
on each line.

EXAMPLES:

:>10 REM INPUT ONE VARIABLE
:>20 INPUT A
)30 REM INPUT ANOTHER VARIABLE
~'40 INPUT 13
)50 REM MULTIPLY THE TWO
)00 Z=A*13
)70 REM PRINT THE ANSWER
)80 PRINT Z

)10 INPUT A : REM INPUT ONE VARIABLE
:>20 INPUT 3 : REM INPUT ANOTHER VARIABLE
)30 Z=A*13 REM MULTIPLY THE TWO
)40 PRINT Z : REM PRINT THE ANSWER

The following will NOT work because the entire line would be interpreted as a REMark, so the PRINT
statement would not be executed:

)10 REM PRINT THE NUMBER PRINT A

NOTE - The reason the REM statement was made executable in the command mode in Version 1.1 of
MCS BASIC-52 is that if the user is employing some type of UPLOAD/DOWNLOAD routine with a
computer, this lets the user insert REM statements, without line numbers in the text and not download
them to the MCS BASIC-52 device. This helps to conserve memory.

63

inter MCS~<BASIC;;52'

4.29 DESCRIPTION OF STATEMENTS',

STATEMENT: RETI

MODE: RUN

TVPE:CONTROL

The RETIstatement is used to exit from interrupts that 'are handled' by 'an MCS BASIC-52'ptogtain.
Specifically, the ONTIME and the ONEXI irtterrupts. The RETlstatementdoesthe same'thing as the
RETURN statement except thalit·also clears a software interruptftags so interrupts can again'be aeknowl ..
edged~ If the user fails to execute the RETI statement in the interrupt procedure, all future tnterruptS will
be ignored. '

64

MCS$ BASIC-52

4.30 DESCRIPTION OF STATEMENTS

STATEMENT: STOP

MODE: RUN

TVPE:CONTROL

The STOP statement allows the programmer to break program execution at specific points in a program.
After a program is STOPped variables can be displayed and/or modified. Program execution may be
resumed with a CONTinue command. The purpose of the STOP statement is to allow for easy program
"debugging." More details of the STOP-CONT sequence are covered in the DESCRIPTION OF COM
MAND - CONT section of this manual.

EXAMPLE:

)10 FOR r-l TO 100
)20 PRINT I
)30 STOP
)40 NEXT I
)RUN

1
STOP - IN LINE 40

READV
)CONT

Note that the line number printed out after the STOP statement is executed is the line number following
the STOP statement, NOT the line number that contains the STOP statement!!!

65

MCS® BASIC-52

4.31 DESCRIPTION OF STATEMENTS

STATEMENT: STRING [expr], [expr]

MODE: COMMAND and/or RUN

TVPE:CONTROL

The STRING [expr],[expr] statement allocates memory for strings. Initially, no memory is allocated for
strings. If the user attempts to define a string with a statement such as LET $(1) = "HELLO" before
memory has been allocated for strings, a MEMORY ALLOCATION ERROR will be generated. The first
expression in the STRING [expr],[expr] statement is the total number of bYtes the user wishes to allocate
for string storage. The second expression denotes the maximum number of bytes that are in each string.
These two numbers determine the total number of defined string variables.

You might think that the total number of defined strings would be equal to the first expression in the
STRING [expr],[expr] statement divided by the second expression. Ha,ha, do not be so presumptuous.
MCS BASIC-52 requires one additional byte for each string, plus one additional byte overall. This means
that the statement STRING 100,10 would allocate enough memory for 9 string variables, ranging from
$(0) to $(8) and all of the 100 allocated bytes would be used. Note that $(0) is a valid string in MCS
BASIC-52.

After memory is allocated for string storage, neither commands, such as NEW nor statements, sllchas
CLEAR, will "de-allocate" this memory. The only way memory can be de-allocated is to execute a
STRING 0,0 statement. STRING 0,0 will allocate no memory to string variables.

IMPORTANT NOTE

Every time the STRING [expr],[expr] statement is executed, MCS BASIC-52 executes the equivalent of
a CLEAR statement. This is a necessity because string variables and numeric variables occupy the same
external memory space. Sd, after the STRING statement is executed, all variables are "wiped-out. " Because
of this, string memory allocation should be performed early in aprogram (like the first statement or so)
and string memory should never be "re-allocated" unless the programmer is willing to destroy all defined
variables.

66

intJ MCS® BASIC-52

4.32 DESCRIPTION OF STATEMENTS

STATEMENTS: un and UIO (USER INPUT)

MODE: COMMAND and/or RUN

TVPE:CONTROL

UI1

The un statement permits the user to write specific console input drivers for MCS BASIC-52. After un
is executed BASIC will call external program memory location 40~3H when a console input is requested.
The user must provide a JUMP instruction to an ASSEMBLY LANGUAGE INPUT ROUTINE at this
location. The appropriate ASCII input from this routine is placed in the 8052AH's accumulator and the
user input routine returns back to BASIC by executing an ASSEMBLY LANGUAGE RET instruction.
The user must NOT modify any of the 8052AH's registers in the assembly language program with the
exception of the MEMORY and REGISTER BANK allocated to the USER. THE ASSEMBLY LAN
GUAGE LINKAGE section of this manual explains what memory MCS BASIC-52 allocates to the user
and how the user may allocate additional memory if needed.

In addition to providing the INPUT driver routine for the un statement, the user must also provide a
CONSOLE STATUS CHECK routine. This routine checks to see if the CONSOLE DEVICE has a character
ready for MCS BASIC-52 to read. BASIC CALLS external memory location 4036H to check the CONSOLE
STATUS. The CONSOLE STATUS ROUTINE sets the CARRY BIT to 1 (C= 1) if a character is ready
for BASIC to read and CLEARS the CARRY BIT (C = 0) if no character is ready. Again, the contents of
the REGISTERS must not be changed. MCS BASIC-52 uses the CONSOLE STATUS CHECK routine
to examine the keyboard for a control-C character during program execution and during a program LISTING.
This routine is also used to perform the GET operation.

UIO

The UIO statement assigns the console input console routine back to the software drivers resident on the
MCS BASIC-52 device. UIO and un may be placed anywhere within a program. This allows the BASIC
program to accept inputs from different devices at different times.

NOTE: The UIO and un function is controlled by BIT 30 (IEH) in the 8052AH's internal memory. BIT
30 is in internal memory location 35.6 (23.6H) i.e. the sixth bit in internal memory location 35 (23H).
When BIT 30 is SET (BIT 30 = 1), the user routine will be called. When BIT 30 is CLEARED (BIT 30
= 0), the MCS BASIC-52 input driver routine will be used. The assembly language programmer can use
this information to change the input device selection in assembly language.

67

inter

4.33 DESCRIPTION OF STATEMENTSr;·~" i

STATEMENTS: UOl and UOO (USER OUTPUT)

MODE: COMMAND AND/OR RUN

TVPE:CONTROL

U01

The uot STATEMENT permitS the 'user to write specific console output drivers for MCSBASIC-52.
After UOI is executed BASIC will'cill external program memory location 4030H when a c6nsble output
is requested. The user must provide a JUMP instruction to an ASSEMBLY LANGUAGE OUTPUT
ROUTINE at this location. MCS BASIC-52 places the output character in REGISTER 5 (R5) of REGISTER
BANK 0 (RBO). The user returns back to BASic executing' an assembly limguageREt instruciion. The
user must NOT modify any of the 8052AH's REGISTERS, inCluding the ACCUMULATOR during the
user output procedure with the exception of the MEMORY and REGISTER BANK allocated to the'user.
UOI gives the user the freedom to write custom output routines for MCS BASIC-52.

, ',' ,

uoo

UOO STATEMENT assigns the console output r6utine back to the software drivers resident on the MCS
BASIC-52 device. UOO and UOI may be placed anywhere within a program. This a110ws the BASIC
program to output characters' to differe~t devices at different times~:

NOTE: The UOO and UOI function is controlled by BIT 28 (1CH) in the 8052AH's in~ernal memory.
BIT 28 is in the internal memory location 35.4 (23.4H), i.e. the fourth bit in thei'ntemal memory location
35 (28H). When BIT 28 is SET (BIT 2~ = 1), the user routines will be called. When BIT 28 is cleared,
(BIT 28= 0), the MCS BASIC-52 outPut drivers will ~ used. The assembly language programmer can
use this information to change the output device selection in assembly language.

68

MeSII!) BASIC-52

4.34 DESCRIPTION OF STATEMENTS

STATEMENT: IDLE (VERSION 1.1 ONLY)
: ~ ,

MODE: RUN

TVPE:CONTROL

The IDLE statement forces the MCS BASIC-52 device into a "wait until interrupt mode." Execution of
statements is halted until either an ONTIME [expr], [In num] or an ONEXI [In num] interrupt is received.
The user must make sure that one or both of these interrupts have been enabled before executing the IDLE
instruction or else the MCS BASIC-52 device will enter a "wait forever mode" and for all practical
purposes the system will have crashed.

When an ONT~ [expr], [In num] or an ONEXI [In nu~] is received while in the IDLE mode, the MCS
BASIC-52 device will execute the interrupt routine, then execute the statement following the IDLE in
stru~tion. Hence, the execution of the IDLE instruction is terminated when an in~rrupt is received.

While in the IDLE mode; the MCS BASIC-52 device asserts the IDMA ACKNOWLEDGE pin (PORT 1,
BIT 6 = 0) to indicate that the IDLE instruction is active and that no external bus activity will occur.
This PIN is physically pin 7 on the MCS BASIC-52 device. When the MCS BASIC-52 device exits from
the IDLE mode, this pin is placed back into the logically 1 (non-active) state.

~ , - .
The user may also exit from the IDLE mode with an assembly language interrupt routine. This is accom-
plished by setting BIT 33 (21H) (which is in Bit addressable RAM location 36.1) when returning from
the assembly language interrupt routine. If this bit is not set by the user, the MCS BASIC-52 device.w;)l
remain in the IDLE mode when the user assembly language routine returns to BASIC. . .

An attempt to 'e~ecute the IDLE statement in the direct mode will yield a BAD SYNTAX ERROR.

69.

intJ MCS® BASIC-52

4.35 DESCRIPTION OF STATEMENTS

STATEMENT: RROM [interger] (VERSION 1.1 ONLY)

MODE: COMMAND AND/OR RUN

TVPE:CONTROL

RROM stands for RUN ROM. What it does is select a program in the EPROM file, then execute the
program. The integer after the RROM statement selects what program in the EPROM file is to be executed.
In the COMMAND mode RROM 2 would be equivalent to typing ROM 2, then RUN. But, notice that
RROM [integer] is a statement. This means that a program that is already executing can actually force the
execution of a completely different program that is in the EPROM file. This gives the user the ability to
"change programs" on the fly.

If the user executes a RROM [integer] statement and an invalid integer is entered (say 6 programs are
contained in the EPROM file and the user enters RROM 8, or no EPROM is in the system), no error will
be generated and MCS BASIC-52 will execute the statement following the RROM [integer] statement.

NOTE - Every time the RROM [integer] statement is executed, all variables and strings are set equal to
zero, so variables and strings CANNOT be passed from one program to another by using the RROM
[integer] statement. Additionally, all MCS BASIC-52 evoked interrupts are cleared.

70

inter MCS®BASIC-52

4.36 DESCRIPTION OF STATEMENTS

STATEMENTS: LD@ [expr] and ST@ [expr] (VERSION 1.1 ONLY)

MODE: COMMAND AND/OR RUN

TYPE: INPUT/OUTPUT

ST@

The ST@ [expr] statement lets the user specify where MCS BASIC-52 floating point numbers are to be
stored. The expression [expr] following the ST@ statement specifies the address of where the number is
to be stored and the number is assumed to be on the argument stack. The ST@ [expr] statement is
designed to be used in conjunction with the LD@ [expr] statement. The purpose of these two statements
is to allow the user to save floating point numbers anywhere in memory with the assumption that the user
will employ some type of battery back-up or non-volatile scheme with this memory.

LD@

The LD@ [expr] statement lets the user retrieve floating point numbers that were saved with the ST@
[expr] statement . .The expression [expr] following the LD@ statement specifies where the number is stored
and after executing the LD@ [expr] statement, the number is placed on the argument stack.

EXAMPLE: Saving and retrieving a ten element array at location array at location OFOOOH

10 REM *** ARRAY SAVE ***
20 FOR I • 0 TO 9

·30 PUSH ACI) : REM PUT ARRAY VALUE ON STACK
40 ST. OF005H+6*I : REM STORE IT, SIX BYTES PER NUMBER
50 NEXT I
60 REM *** GET ARRAY ***
70 FOR I - 0 TO 9
80 LD. OF005H+6*I
90 POP BC 1>
100 NEXT I

Remember that each floating point number requires 6 bytes of storage. Also note that expression in the
ST@ [expr] and LD@ [expr] statements point to the most significant byte of the stored number. Hence,
ST@ (OF005H) would save the number in locations OF005H, OF004H, OFOO3H, OF002H, OFOOIH, and
OFOOOH.

71

•

MCS® BASIC-52'

4.37 DESCRIPTION OF STATEMENTS

STATEMENT: PGM

MODE: COMMAN:D AND/OR RUN

-rVPE: INPUT/OUTPUT

The PGM statement gives the, user the ability to program an EPROM or EEPROM while executing a
BASIC program. The PGM statement requires that the user set up internal memory'locations ISH
(24D), 19H (25D), IAH (26D), IBH (27H), lEH (30D) and IGH (3ID). Note that these internal memory
locations are normally reserved for the user!!

The User must initialize these internal memory locations with the following:

EXAMPLE:

LOCATION

1BH: 19H
(27D: 25D)

lAH: 18H
(26D:24D)

lFH:1EH
(31D:30D)

CONTENTS

THE ADDRESS OF THE SOURCE INFORMATION THAT IS TO BE
PROGRAMMED INTO THE EPROM • LOCATION 19H IS THE LOW
BYTE AND LOCATION 1SH IS THE HIGH BYTE

THE ADDRESS - 1 OF THE EPROM LOCATION(S) THAT ARE TO
BE PROGRAMMED. LOCATION 18H 19TH LOW BVTE AND
LOCATION lAH IS THE HIGH BYTE

THE NUMBER OF BYTES THAT THE USER WANTS TO PROGRAM
LOCATION lEH IS THE LOW BYTE AND LOCATION lFH IS
THE HIGH BYT~

The user must also initialize. the width of the desired EPROM programming pulse and store the, value in
internal memory locations 40H (64D),(high byte) and,41H (650) (low byte). The rel9ad for a 50 millisecond
EPROM programming pulse is calculated as follows:

10 REM R = RELOAD VALUE. W= WIDTH IN SECONDS (50 MILLISECONDS)
20 W '" . 05 ,
30 R .. 65536 - W* XTAL/12
40 DBY (40H) '. Ri256 '
50 DSY(41H) - R . AND. OFFH

In addition, the user must also SET or CLEAR BIT 38.3 (26.3H) to select, the INTELligent EPROM
programming algorithm. The Bit is SET to select INTELligent programming and CLEARED to select the
normal 50 millisecond algorithm: To SET the BIT, execute a DBY(38) = DBY'(38) .OR. 8H Statement ,
to CLEAR the BIT, execute a DBY(38) = DBY(38) .AND. OF7H instruction. ;

72

inter MCS® BASIC-52

4.317 DESCRIPTION OF STATEMENTS

IMPORTANT NOTEI

When executed in the RUN mode, The PGM statement will not generate an error if the EPROM fails to
program properly. Instead, the control of the program will be passed back to the user just as if the EPROM
programmed properly. The user must then examine locations IEH and IFH. If the contents of locations
IEH and IFH both equal zero, then the EPROM programmed properly. If they do not, then an ERROR
occurred during the programming process. The user can then examine locations lAH:18H to determine
what location in the EPROM failed to program.

Well, this sounds like a lot to do just to program an EPROM, but it's not so bad. The following program
is an example of a universal EPROM/EEPROM programmer built around MCS BASIC-52. This program
can program a block of RAM into an EPROM or EEPROM that is addressed at 8000H or above.

EXAMPLE:

10 PRINT "UNIVERSAL PROM PROGRAMMER": PRINT "WHAT TYPE OF DEVICE ?"
20 PRINT: PRINT "I .. EEPROM": PRINT "2 - INTELLIgENT EPROM"
30 PRINT "3 • NORMAL C50 MS) EPROM": PRINT INPUT "TYPE Cl,2,3) - ",T
40 ON CT-l) QoSUB 340,350,360
50 REM this .et. up intelligent programming if needed
60 IF W-.OOl THEN DBY(26)-DBYC26).oR.B ELSE DBY(26)=DBYC26). AND. OF7H
70 REM calculate pulse width and save it
BO PUSH C65536-CW*XTAL/12»: aOSUB 3BO
90 PDP Ql : DBY(40H) .. Ql: PDP Ql : DBY(41H)=Ql: PRINT
100 INPUT" STARTINQ DATA ADDRESS - ",s: IF S<512. DR. S>OFFFFH THEN 100
110 PRINT : INPUT" ENDINQ DATA ADDRESS - ",E
120 IF E<S. DR. E>OFFFFH THEN 110
130 PRINT INPUT" PROM ADDRESS - ",P: IF: P<BOOOH.oR.P>OFFFFH THEN 130
140 REM calculate the number of bvte. to program
150 PUSH CE-S)+I: 90SUB 3BO: PDP Ql : DBV(31)-Ql PDP Ql : DBY(30)=Ql
160 REM set up the eprom addre ••
170 PUSH (P-l): QOSUB 3BO: POP al : DBY(26)-al: PDP Gl : DBY(24)-Ql
180 REM set up the source address
190' PUSH S: QoSUB 380: POP Ql : DBY(27)=Ql: POP 91 : DBV(25)=91
200 PRINT PRINT "TVPE A 'CR' ON THE KEYBOARD WHEN READV TO PRoQRAM"
210 REM watt for a 'cr' then program the eprom
220 X=QET: IF X<>ODH THEN 220
230 REM program the eprom
240 PQM
250 REM see if anv errors
260 IF CDBY(30). DR. DBV(31))-0 THEN PRINT "PRoQRAMMING COMPLETE" END
270 PRINT : PRINT "***ERROR***ERRoR***ERROR***": PRINT
280 REM these routines calculate the address of the source and
290 REM eprom location that failed to program
300 SI=DBY(25)+256*DBY(27) : SI=S1-1 : Dl-DBV(24)+256*DBY(26)
310 PHO. "THE VALUE ",XBYCS1), : PHI. "WAS READ AT LOCATION ",Sl PRINT
320 PHO. "THE EPROM READ .. , XBVCD1), : PH1. " AT LOCATION ", Dl: END
330 REM these subroutines set up the pulse width
340 W-.0005: RETURN
350 W-.001: RETURN
360 W-.05: RETURN
370 REM this routine take. the top of stack and returns high, low bytes
3BO POP Q1: PUSH (Ql. AND. OFFH) : PUSH CINTCQI/256»: RETURN

73

inter

CHAPTER 5
Description of Arithmetic/Logic Operators and Expressions

5.1 DUAL OPERAND OPERATORS
MCS BASIC-52 contains a complete set of arithmetical and logical operators. Operators are divided into
two groups, dual operand or dyadic operators and single operand or unary operators. The generalized form
of all dual operand instructions is as follows:

[expr] OP [expr], where OP is one of the following operators:

+ ADDITION OPERATOR

EXAMPLE:

PRINT 3+2
~

/ DIVISION OPERATOR

EXAMPLE:

PRINT 100/~
20

** EXPONENTIATION OPERATOR

Raises the first expression to the power of the second expression. The power any number can be raised to
is limited to 255. The notation ** was chosen instead of the sometimes used, t symbol because the "up
arrow" symbol appears different on various terminals. To eliniinate confusion the ** notation wa.s chosen.

EXAMPLE:

PRINT 2**3
8

* MULTIPLICATION OPERATOR

EXAMPLE:

I

I PRINT 3*3

.-----:---
- SUBTRACTION OPERATOR

EXAMPLE:

PRINT 9-0
3

74

inter MCS® BASIC-52

5.1 DUAL OPERAND OPERATIONS

.AND. LOGICAL AND OPERATOR

EXAMPLE:

PRINT 3. AND. 2
2

.OR. LOGICAL OR OPERATOR

EXAMPLE:

PRINT 1. OR. 4 , .

. XOR. LOGICAL EXCLUSIVE OR OPERATOR

EXAMPLE:

PRINT 7. XOR. b
1

COMMENTS ON LOGICAL OPERATORS .AND., .OR., and .XOR.

These operators perform a BIT-WISE logical function on valid INTEGERS. That means both arguments
for these operators must be between 0 and 65535 (OFFFFH) inclusive. If they are not, MCS BASIC-52
will generate a BAD ARGUMENT ERROR. All non-integer values are truncated, NOT rounded.

You may wonder why the notation .OP. was chosen for the logical functions. The only reason for this is
that MCS BASIC-52 eliminates ALL spaces when it processes a user line and inserts spaces before and
after STATEMENTS when it LISTS a user program. MCS BASIC-52 does not insert spaces before and
after operators. So, if the user types in a line such as 10 A = 10 * 10, this line will be listed as
10 A= 10*10. All spaces entered by the user before and after the operator will be eliminated. The .OP.
notation was chosen for the logical operators because a line entered as lOB = A AND B would be listed
as 10 B = AANDB. This just looked confusing, so the dots were added to the logical instructions and the
previous example would be listed as 10 B=A.AND.B, which is easier to read.

75

inter MCS® BASIC-52

5.2.1 UNARY OPERATORS - GENERAL PURPOSE

ABS([expr])

Returns the ABSOLUTE VALUE of the expression.

EXAMPLES:

PRINT ABS(5)
5

NOT([expr])

PRINT ABS(-5)
5

Returns a 16 bit one's complement of the expression. The expression must be a valid integer (i.e. between
o and 65535 (OFFFFH) inclusive). Non-integers will be truncated, not rounded.

EXAMPLES:

PRINT NDT(65000) PRINT NDT(O)
535 65535

INT([expr))

Returns the integer portion of the expression.

EXAMPLES:

PRINT INT<3.7)
3

SGN([expr])

PRINT INT(100.876)
100

Will return a value of + 1 if the argument is greater than zero, zero if the argument is equal to zero, and
-1 if the argument is less than zero.

EXAMPLES:

PRINT SGN(5:2)
'1

PRINT SGN(O)
o

76

PRINT SGN(-8)
-1

MCS® BASIC-52

5.2.1 UNARY OPERATORS - GENERAL PURPOSE

SQR([expr])

Returns the square root of the argument. The argument may not be less than zero. The result returned will
be accurate to within + / - a value of 5 on the least significant digit.

EXAMPLES:

PRINT SGR(9)
3

RND

PRINT SQR(4:5)
6.708203:5

PRINT SGR(100)
10

Returns a pseudo-random number in the range between 0 and 1 inclusive. The RND operator uses a 16-
bit binary seed and generates 65536 pseudo-random numbers before repeating the sequence. The numbers
generated are specifically between 0/65535 and 65535/65535 inclusive. Unlike most BASICS, the RND
operator in MCS BASIC-52 does not require an argument or a dummy argument. In fact, if an argument
is placed after the RND operator, a BAD SYNTAX error will occur.

EXAMPLES:

PI

PRINT RND
30278477

PI is not really an operator, it is a stored constant. InMCS BASIC-52, PI is stored as 3.1415926. Math
experts will notice that PI is actually closer to 3.141592653, so proper rounding for PI should yield the
number 3.1415927. The reason MCS BASIC-52 uses a 6 instead of a 7 for the last digit is that errors in
the SIN, COS and TAN operators were found to be greater when the 7 was used instead of 6. This is
because the numberPI/2 is needed for these calculations and it is desireable, for the sake of accuracy to
have the equation PII2 + PII2 = PI hold true. This cannot be done if the last digit in PI is an odd number,
so the last digit of PI was rounded to 6 instead of 7 to make these calculations more accurate.

77

MCS® BASIC-52

5.2.2 UNARY OPERATORS - LOG FUNCTIONS .

LOG([expr])

Returns the natural logarithm of the argument. The argument must be greater than O. This calculation is
carried out to 7 significant digits.

EXAMPLES:

PRINT LOQ(12)
2.484906

EXP([expr])

PRINT LOQ(EXP(l»
1

This function raises the number "e" (2.7182818) to the power of the argument.

EXAMPLES:

PRINT EXP(1)
2.7182818

PRINT EXP(LOQ(2»
2

5.2.3 UNARY OPERATORS - TRIG FUNCTIONS

SIN([expr])

Returns the SIN of the argument. The argument is expressed in radians. Calculations are carried out to 7
significant digits. The argument must be between ± 200000.

EXAMPLES:

PRINT SIN(PI/4)
.7071067

COS([expr])

PRINT SIN(O)
o

Returns the COS of the argument. The argument is expressed in radians. Calculations are carried out to
7 significant digits. The argument must be between ± 200000.

EXAMPLES:

PRINT COS(PI/4)
.7071067

PRINT COS(O)
1

78

MCS® BASIC-52

5.2.3 UNARY OPERATORS - TRIG FUNCTIONS

TAN([expr))

Returns the TAN of the argument. The argument is expressed in radians. The argument must be between
± 200000.

EXAMPLES:

I
PRINT TAN(PI/4)
1

ATN([expr))

PRINT TAN(O)
o

Returns the ARCTANGENT of the argument. The result is in radians. Calculations are carried out to 7
significant digits. The ATN operator returns a result between - PII2 (3.141592612) and P1I2.

EXAMPLES:

PRINT ATN(PI)
1.2626272

PRINT ATN(l)
.78539804

COMMENTS ON TRIG FUNCTIONS

The SIN, COS, and TAN operators use a Taylor series to calculate the function. These operators first
reduce the argument to a value that is between 0 and P1I2. This reduction is accomplished by the following
equation:

REDUCED ARGUMENT = (user arglPI - INT(user argIPI» * PI

The REDUCED ARGUMENT, from the above equation, will be between 0 and PI. The REDUCED
ARGUMENT is then tested to see if it is greater than P1I2. If it is, then it is subtracted from PI to yield
the final value. If it isn't, then the REDUCED ARGUMENT is the final value.

Although this method of angle reduction provides a simple and economical means of generating the
appropriate arguments for a Taylor series, there is an accuracy problem associated with this technique.
The accuracy problem is noticed when the user argument is large (i.e. greater than 1000). That is because
significant digits, in the decimal (fraction) portion of REDUCED ARGUMENT are lost in the (user arg/PI
- INT(user arg/PI» expression. As a general rule, try to keep the arguments for the TRIG functions as
small as possible!

79

inter MCS®BASIC-52

. 5.3 UNDERSTANDING PRECEDENCE OF OPERATORS ..

The hierarchy of mathematics dictates. that some operations. are carried· out before others. If you understand
the hierarchy of mathematics, it is possible to write complex expressions using only a minimum amount
of parentheses. It's easy to illustrate. what precedence is all about,examine the following equation:

4+3*2.= ?

Should you add (4+3) then multiply seven by 2, or should you multiply (3*2) then add4?·WeH, the
hierarchy of mathematics says that multiplication has precedence over addition, so you would mUltiply
(3*2) first then add 4. So,

4+3*2 = 10

The rules for the hierarchy of math are simple. When an expression is scanned from left to right an operation
is not performed until an operator of lower or equal precedence is encountered. In the example addition
could not be performed because multiplication has higher precedence. The precedence of operators from
highest to lowest in MCS BASIC-52 is as follows:

l)OPERATORS THAT USE PARENTHESES ()

2)EXPONENTA TION (**)

3)NEGA TION (-)

4)MULTIPLICATION (*) AND DIVISION (I)

5)ADDITION (+) AND SUBTRACTION (-)

6)RELA TIONAL EXPRESSIONS (=, < >, >, > =, <, < =)

7)LOGICAL AND (.AND.)

8)LOGICAL OR (.OR.)

9)LOGICAL XOR (.XOR.)

Relative to operator precedence, the rule of thumb should always be; when in doubt, use parentheses.

80

inter MCS® BASIC-52

5.4 HOW RELATIONAL EXPRESSIONS WORK

Relational expressions involve the operators =, < >, >, > = , <, and < = . These operators are typically
used to "test" a condition. In MCS BASIC-52 relational operators return a result of 65535 (OFFFFH) if
the relational expression is true, and a result of 0, if the relation expression is false. But, where is the
result returned? It is returned to the argument stack. Because of this, it's possible to actually display the
result of a relational expression.

EXAMPLES:

PRINT 1=0
o

PRINT DO
6:5:535

PRINT A<>A
o

PRINT AaA
65535

It may seem strange to have a relational expression actually return a result, but it offers a unique benefit
in that relational expressions can actually be "chained" together using the logical operators .AND., .OR.,
and .XOR .. This makes it possible to test a rather complex condition with ONE statement.

EXAMPLE:

>10 IF A<B.AND.A)C.OR.A>D THEN

Additionally, the NOT([expr)) operator can be used.

EXAMPLE:

I >10 IF NQT'A>.>. AND. A<C THEN

By "chaining" together relational expressions with logical operators, it is possible to test very particular
conditions with one statement. When using logical operators to link together relational expressions, it is
very important that the programmer pay careful attention to the precedence of operators. The logical
operators were assigned lower precedence, relative to relational expressions, just to make the linking of
relational expressions possible without using parentheses.

81

inter

CHAPTER 6
Description of String Operators

6.1 WHAT ARE STRINGS?

A string is a character or a bunch of characters that are stored in memory. UsuaIly, the characters stored
in a string make up a word or a sentence. Strings are handy because they allow the programmer to deal
with words instead of numbers. This is useful because it allows one to write "friendly" programs, where
individuals can be referred to by their names instead ofa number.

MCS BASIC-52 contains ONE dimensioned string variable, $([exprD. The dimension of the string variable
(the [expr] value) ranges from 0 to 254. This means that 255 different strings can be defined and manipulated
in MCS BASIC-52. Initially, NO memory is allocated for strings. Memory is allocated by the STRING
[expr], [expr] STATEMENT. The details of this statement are covered in the DESCRIPTION OF STATE
MENTS chapter of this manual.

In MCS BASIC-52, strings can be defined in two ways, with the LET STATEMENT and with the INPUT
STATEMENT.

EXAMPLE:

>10 STRING 100,~0
:>20 $(l)a"THIS IS A STRING, "
>30 INPUT "WHAT'S YOUR NAME? - ",$(2)
>40 PRINT $(1),$(2)
>RUN

WHAT'S YOUR NAME? - FRED

THIS IS A STRING, FRED

STRINGS can also be assigned to each other with a LET statement.

EXAMPLE:

$(2)·$(1)

Would assign the STRING value in $(1) to the STRING $(2).

82

inter MCS® BASIC-52

6.2 THE ASC OPERATOR

In MCS BASIC-52, two operators manipulate STRINGS. These operators are ASC() and CHR(). Ad
mittedly, the string operators contained in MCS BASIC-52 are not quite as powerful as the string operators
contained in some BASICS. But surprisingly enough, by using the string operators available in MCS
BASIC-52 it is possible to manipulate strings in almost any way imaginable. This in itself is a commendable
feat since MCS BASIC-52 was designed primarily to be a sophisticated BASIC language oriented controller,
not a string manipulator. The string operators available in MCS BASIC-52 are as follows:

ASC()

The ASC() operator returns the integer value of the ASCII character placed in the parentheses.

EXAMPLE:

)PRINT ASCCA)
65

65 is the decimal representation for the ASCII character" A." In addition, individual characters in a pre
defined ASCII string can be evaluated with the ASC() operator.

EXAMPLE:

)10 $(1)-"THIS IS A STRINQ"
)20 PRINT $(1)
)30 PRINT ASC($(1), 1)
)RUN

THIS IS A STRINQ
84

When the ASC() operator is used in the manner shown above, the $([exprD denotes what string is being
accessed and the expression after the comma "picks out" an individual character in the string. In the above
example, the first character in the string was picked out and 84 is the decimal representation for the ASCII
character "T."

83

6.2 THE ASC OPERATOR

EXAMPLE:

)10 $(1)~"ABeDEFGHI~KL"
)20 FOR X=l TO 12
)30 PRINT ASe($(ll,X),
)40 NEXT X
)RUN

MCS®' BASIC-52

65 66 67 68 69 70 71 72 73 74 75 76

The numbers printed in the previous example are the values that represent the ASCII characters A,B,C,
... L.

Additionally, the ASC() operator can be used to change individual characters in a defined string.

EXAMPLE:

)10 .(1)-"ABeDEFGHI~KL"
)20 PRINT $(1)
)30 ASe($(l', 1l=75
)40 PRINT $(1)
)50 ASe($(1),2)-ASe($(1),3)
)60 PRINT $(1)
)RUN

ABCDEFGHI~KL
KBeDEFGHIJKL
KCCDEFGHIJKL

In general, the ASC() operator lets the programmer manipulate individual characters in a string. A simple
program can determine if two strings are identical.

EXAMPLE:

)10 $(1l="SECRET" : REM SECRET IS THE PASSWORD
)20 INPUT "WHAT'S THE PASSWORD - ",$(2)
)30 FOR 1=1 TO 6
)40 IF ASe($(l), Il .. ASe($(2l, Il THEN NEXT I ELSE 70
;'50 PRINT "YOU GUESSED IT!"
)60 END
)70 PRINT "WRONG, TRY AGAIN" GOTO 20
:>RUN

WHAT'S THE PASSWORD - SECURE
WRONG. TRY AGAIN
WHAT'S THE PASSWORD - SECRET
YOU GUESSED IT

84

inter MCS® BASIC-52

6.3 THE CHR OPERATOR

CHR()

The CHR() operator is the converse of the ASC() operator. It converts a numeric expression to an ASCII
character.

EXAMPLE:

)PRINT CHR(65)
A

Like the ASC() operator, the CHR() operator can also "pick out" individual characters in a defined
ASCII string.

EXAMPLE:

)10 S'l)-"MCS BASIC-52"
)20 FOR 1-1 TO 12 : PRINT CHR($(1), I),
)30 PRINT : FOR 1=12 TO 1 STEP -1
>40 PRINT CHR 'SC 1), I), : NEXT I
)RUN

MCS BASIC-52
25-CISAB SCM

NEXT I

In the above example, the expressions contained within the parentheses, following the CHR operator have
the same meaning as the expressions in the ASC() operator.

Unlike the ASC() operator, the CHR() operator CANNOT be assigned a value. A statement such as
CHR($(l),I) = H, is INVALID and will generate a BAD SYNTAX ERROR. Use the ASC() operator
to change a value in a string. The CHR() operator can only be used within a print statement!

85

CHAPTER 7
Special Operators

7.1 SPECIAL FUNCTION OPERATORS

SPECIAL FUNCTION OPERATORS are called SPECIAL FUNCTION OPERATORS because th~y di~
rectly manipulate the 110 hardware and the memory addresses on the 8052AH device. All SPECIAL
FUNCTION OPERATORS, with the exception of CBY([exprD and GET, can be placed on either side of
the replacement operator (=) in a LET STATEMENT.

EXAMPLES:

A ~ DBY(100) and DBY(100) = A+2

Both of the above are valid statements in MCS BASIC-52. The SPECIAL FUNCTION OPERATORS in
MCS BASIC-52 include the following:

CBY([expr))

The CBY([exprD operator is used toretrieve data from the PROGRAM or CODE MEMORY address space
of the 8052AH. Since CODE memory cannot be written into on the 8052AH, the CBY([exprD operator
cannot be assigned a value. It can only be read.

EXAMPLE: A = CBY(1000) Causes the value in code memory space 1000 to be assigned to the variable
A. The argument for the CBY([exprD operator MUST be a valid integer (i.e. between 0 and 65535
(OFFFFH)). If it is not, a BAD ARGUMENT ERROR will occur.

DBY([expr))

The DBY([exprD operator is used to retrieve or assign a value to the 8052AH's internal data memory.
Both the value and argument in the DBY operator must be between 0 and 255 inclusive. This is because
there are only 256 internal memory locations in the 8052AH and one byte can only represent a quantity
between 0 and 255 inclusive.

EXAMPLES:

A=DBY(B) and DBY(250) = CBY(1000)

The first example would assign variable A the value that is in internal memory location B. B would have
to be between 0 and 255. The second example would load internal memory location 250 with the same
value that is in program memory location 1000.

86

MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

XBY([expr])

The XBY([expr]) operator is used to retrieve or assign a value to the 8052AH's external data memory.
The argument in the XBY([expr]) operator must be a valid integer (i.e. between 0 and 65535 (OFFFFH)).
The value assigned to the XBY([expr)) operator must be between 0 and 255. If it is not a BAD ARGUMENT
ERROR will occur.

EXAMPLES:

XBY(4000H)-OBY(100) .nd A-XBY(OFOOOH)

The first example would load external memory location 4000H with the same value that was in internal
memory location 100. The second example would make the variable A equal to the value in external
memory location OFOOOH.

GET

The GET operator only produces a meaningful result when used in the RUN mode. It will always return
a result of zero in the command mode. What GET does is read the console input device. Actually, it takes
a "snapshot" of the console input device. If a character is available from the console device, the value
of the character will be assigned to GET. After GET is read in the program, GET will be assigned the
value of zero until another character is sent from the console device. The following example will print the
decimal representation of any character sent from the console:

EXAMPLE:

:'10 A-GET
:'20 IF A<:)O THEN PRINT A
)30 GO TO 10
)RUN

b5 (TYPE "A" ON CONSOLE)
49 (TYPE "1" ON CONSOLE)
24 (TYPE "CONTROL-X" ON CONSOLE)
:50 (TYPE "2" ON CONSOLE)

The reason the GET operator can be read only once before it is assigned a value of zero is that this
implementation guarantees that the first character entered will always be read, independent of where the
GET operator is placed in the program.

87

intJ MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

The following operators directly manipulate the 8052AH's special function registers. Specific detaiTs::.of
the operation of these registers is in the MICROCONTROLLER USERS HANDBOOK, available from
INTEL.

IE

The IE operator is used to retrieve or assign a value to the 8052AH's special function register IE. Since
the IE register on the 8052AH is a BYTE register, the value assigned to IE must be between 0 and255~
The IE register on the 8052AH contains an unused bit, BIT IE.6. Since this bit is "undefined," it may
be read as a random one or zero, so the user may want to mask this bit when reading the IE register. This
can be done with a statement like A = IE. AND. OBFR The only statements in MCS BASIC-52 that write
to the IE register are the CLOCKO, CLOCKI,ONEXI, CLEAR, and CLEAR! statements.

EXAMPLES:

IE • 81H and A - IE. AND. OBFH

I
IP

The IP operator is used to retrieve or assign a value to the 8052AH's special function register IP. Since
the IP register on the 8052AH is a BYTE register, the value assigned to IP must be between 0 .and 255.
The IP register on the 8052AH contains two unused bits, BIT IP.6 and IP.7. Since these bits are "un
defined," they may be read as a random I or 0, so the user may want to mask these bits when reading
the IP register. This can be done with a statement such as B=IP.AND.3FH. MCS BASIC-52 does not
write to the IP register during initialization, so user can establish whatever interrupt priorities are required
in a given application. .

EXAMPLES:

IP = 3 and A = IP. AND.3FH

PORT1

The PORTI operator is used to retrieve or assign a value to the 8052AH's PI 110 port. Since PIon the
8052AH is a BYTE wide register, the value assigned to PI must be between 0 and 255 inclusive. Certain
bits on PI have pre-defined functions. If the user does not implement any of the hardware associated with
these pre-defined functions, The PORTI instruction can be used in any manner appropriate in the application.

88

MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

PCON

The PCON operator is used to retrieve or assign a value to the 8052AH's PCON register. In the 8052AH,
only the most significant bit of the PCON register is used, all other bits are undefined. Setting this bit will
double the baud rate if TIMER/COUNTER 1 is used as the baud rate generator for the serial port. PCON
is a byte register.

RCAP2

The RCAP2 operator is used to retrieve and/or assign a value to the 8052AH's special function registers
RCAP2H and RCAP2L. This operator treats RCAP2H and RCAP2L as a 16-bit register pair. RCAP2H is
the high byte and RCAP2L is the low byte. The RCAP2H and RCAP2L registers are the reload/capture
registers for TIMER2. The user must use caution when writing to RCAP2 register because RCAP2 controls
the BAUD rate of the serial port on the MCS BASIC-52 device. The following can be used to determine
what BAUD rate the MCS BASIC-52 device is operating at:

BAUD = XTAU(32*(65536-RCAP2))

T2CON

The nCON operator is used to retrieve and/or assign a value to the 8052AH's special function register
nCON. The T2CON is a byte register that controls TIMER2's mode of operation and determines which
timer (TIMER1 or TIMER2) is used as the 8052AH's baud rate generator. MCS BASIC-52 initializes
T2CON with the value 52 (34H) and assumes that its value is never changed. Randomly changing the
value ofT2CON, without knowing what you are doing can "crash" the serial port on the 8052AH. Beware!

89

MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

TCON

The TCON operator is used to retrieve and/or assign value to the 8052AH's special function registerTCON.
TCON is a byte register that is used to enable or disable TIMERO and TIMERl, plus the interrupts that
are associated with these timers. Additionally, TCON determines whether the external interrupt pins on
the 8052AH are operating in a level sensitive or edge-triggered mode. MCS BASIC~52 initializes TCON
with the value 244 (OF4H) and assumes that it is never changed. The value 244 (OF4H) places both TIMERO
and TIMERl in the run (enabled) mode. If the user disables the operation of TIMERO, by clearing BIT
4 in the TCON register, the REAL TIME CLOCK will NOT work. If the user disables the operation of
TIMERl, by clearing BIT 6 in the TCON register, the EPROM programming routines, the software serial
port, and the PWM statement will NOT work. Use caution when changing TCON!!!

TMOD

The TMOD operator is used to retrieve and/or assign a value to the 80S2AH's special function register
TMOD. TMOD is a byte register that controls TIMERO and TIMER 1 's mode of operation. MCS BASIC-52
initializes the TCON register with a value of 16 (lOH). The value 16 (lOH) places TIMERO in mode 0, which
is a 13-bit counter mode and TIMERl in mode 1, which is a 16-bit counter mode. MCS BASIC-52
assumes that the modes of these two timer/counters are never changed. If the user changes the mode of
TIMERO, the REAL TIME CLOCK will not operate properly. If the user changes the mode of TIMER 1 ,
EPROM programming, the software serial port, and the PWM statement will not work properly. Ifthe
user does not use these features available in MCS BASIC-52, either timer/counter can be placed in any
mode required by the specific application.

90

MCS® BASIC-52

7.1 SPECIAL FUNCTION. OPERATORS

TIME

The TIME operator is used to retrieve and/or assign a value to the REAL TIME CLOCK resident in MCS
BASIC-52. After reset, TIME is equal to O. The CLOCK1 statement enables the REAL TIME CLOCK.
When the REAL TIME CLOCK is enabled, the SPECIAL FUNCTION OPERATOR, TIME will increment
once every 5 milliseconds. The TIME operator uses TIMERO and the interrupts associated with TIMERO
on the 8052AH. The unit of TIME is seconds and the appropriate XTAL value must be assigned to insure
that the TIME operator is accurate.

When TIME is assigned a value with a LET statement (Le. TIME
TIME will be changed.

EXAMPLE:

>CLOCKl (en~ble REAL TIME CLOCK)

)CLOCKO (disabl~ REAL TIME CLOCK)

)PRINT TIME (displ~~ TIME)
3.31:5

)TlMIE :- O. (ut TIME • 0)

)PRINT TIME (displ~~ TIME)
.31:5 (onl~ the intege" is changed)

100), only the integer portion of

The "f,,~ction" po"tion of TIME c~n be ch~nged b~
manipulating the contents of int."nal m.mo"y
location 71 (47HI. This is accomplished b~ a OBY(71l
statement. Note that each count in int."nal memo"y
loc~tion 71 (47H) "ep"es.nts ~ milliseconds of TIME.
Contin~ing with the EXAMPLEI .

)OBY(71) • 0

)PRINT TIME
o

)OBY(71) .- 3

)PRINT TIME
1. 5 E-2

(f"action of TIME - 0)

('"action of TIME - 3, 1~ ms)

91

inter MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

The reason only the integer portion of TIME is changed when assigned a value is that it allows the user
to generate accurate time intervals. For instance, let's say you want to create an accurate 12 hour clock;
There are 43200 seconds in a 12 hour period, so an ONTIME 43200,[1n num] statement is used. Now,
when the TIME interrupt occurs the statement TIME = 0 is executed, but the millisecond counter is not
re-assigned a value so if interrupt latency happens to exceed 5 milliseconds, the clock will still remain
accurate:

TIMERO

The TIMERO operator is used to retrieve or assign a value to the 8052AH's special function registers THO
and TLO. This operator treats the byte registers THO and TLO as a 16-bit register pair. THO is the high
byte and TLO is the low byte. MCS BASIC-52 uses THO and TLO to implement the REAL TIME CLOCK
function. If the user does not implement the REAL TIME CLOCK function (i.e. does not use the statement
CLOCK1) in the BASIC program THO and TLO may be used in any manner suitable to the particular
application.

TIMER1·
..

The TIMERI operator is used to retrieve or assign a value to the 8052AH's special function registers THI
and TLI. This operator treats the byte registers THI and TLl as a 16-bit register pair. THI is the high
byte and TLl is the low byte. MCS BASIC-52 uses THI and TLl to implement the timings for the software
serial port, the EPROM programming feature, and the PWM statement. If the user does not use any of
these features THI and TLl may be used in any manner suitable to the particular application.

TIMER2

The TIMER2 operator is used to retrieve or assign a value to the 8052AH's special function registers TH2
and TL2. This operator treats the byte registers TH2 and TL2 as a 16-bit register pair. TH2 is the high
byte and TL2 is the low byte. MCS BASIC-52 uses TH2 and TL2 to generate the baud rate for the serial
port. If the user does not use TIMER2 to clock the serial port, TH2 and TL2 may be used in any manner
suitable to the particular application.

92

inter MCS® BASIC-52

7.1 SPECIAL FUNCTION OPERATORS

XTAL

The XT AL operator tells MCS BASIC-52 what frequency the system is operating at. The XT AL operator
is used by MCS BASIC-52 to calculate the REAL TIME CLOCK reload value, the PROM programming
timing, and the software serial port baud rate generation. The XTAL value is expressed in Hz. So,

XTAL = 9000000

would set the XTAL value to 9 MHz.

93

intJ MCS®· BASIC-52

7.2 EXAMPLES OF MANIPULATING SPECIAL FUNCTION VALUES'

Using the logical operators available in MCS BASIC~52, it is possible to write to or read from any byte
of the speCial function registers that MCS BASIC-52 treats as a register pair:

EXAMPLE:

WRITING TO THE HIGH BYTE

)TIMERO ... (TIMERO . AND. OOFFH)+ INT(25Q*(USER BYTE»

EXAMPLE:

WRITING TO THE LOW BYTE

)TIMERO = (TIMERO . AND. OFFOOH) + (USER BYTE)

EXAMPLE:

READING HIGH BYTE

)PHO. INT(TIMERO/2SQ)

EXAMPLE:

READING LOW BYTE

I)PHO. TIMERO . AND. OFFH

TIMERI can f~nction as the baud rate generator for MCS BASIC-52. To assign TIMER I as the baud rate
generator, the following instructions must be executed: . .

)TMOD - 32 TIMERl in auto reload mode

)TIMER1 .. 250*(250-(Q5530-RCAP2)/12) - load TIMERl

:>T2CON = 0 use TIMER1 as baud rate gen

This sequence of instructions can be executed in either the direct mode or as part of a program. When
TIMERI is used as the baud rate generator, TIMER2 can be used in anyway suitable to the application.
The PROG, FPROG, LIST#, PRINT# and PWM commands/statements cannot be used when TIMERI
functions as the baud rate generator for the MCS BASIC-52 device. Certain crystals may not be able to
use TIMERI as the baud rate generator, especially at high (above 2400) baud rates.

94

MCS~ BASIC-52

7.3 SYSTEM CONTROL VALUES

The SYSTEM CONTROL VALUES determine or reveal how memory is allocated by MCS BASIC-52.

MTOP

After reset, MCS BASIC-52 sizes the external memory and assigns the last valid memory address to the
SYSTEM CONTROL VALUE, MTOP. MCS BASIC-52 will not use any external RAM memory beyond
the value assigned to MTOP. If the user wishes to allocate some external memory for an assembly language
routine the LET statement can be used (e.g. MTOP = USER ADDRESS). If the user assigns a value to
MTOP that is greater than the last valid memory address, a MEMORY ALLOCATION ERROR will be
generated.

EXAMPLES:

)PRINT MTOP
2047

)MTOP-iilOOO

)PRINT "'TOP
2000

LEN

The SYSTEM CONTROL V ALUE, LEN, tells the user how many bytes of memory the current selected
program occupies. Obviously, LEN cannot be assigned a value, it can only be read. A NULL program
(i.e. no program) will return a LEN of 1. The 1 represents the end of program file character.

FREE

The SYSTEM CONTROL VALUE, FREE, tells the user how many bytes of RAM memory are available
to the user. When the current selected is in RAM memory, the following relationship will always hold
true.

FREE = MTOP - LEN - 511

NOTE: Unlike some BASICS, MCS BASIC-52 does not require any "dummy" arguments for the SYSTEM
CONTROL VALUES.

95

infef

CHAPTER 8
. Error Messages, BeUs,Whistles, and Anomalies

8.1 ERROR MESSAGES

MCS BASIC~52 has a relatively sophisticated ERROR processor. When BASIC is'in the RUN m~de the
generalized form of the ERROR message is as follows:

ERROR: XXX - IN LINE YY~

YYY BASIC STATEMENT
-----------X

Where XXX is the ERROR TYPE and YYY is the line number of the program in which the error occurred.
A specific example is: .

ERROR: BAD SYNTAX - IN ,LINE 10

10 PRINT 34*21*
--------------X

'The X signifies approximately where the ERROR occurred in the line number. The specific locati~n of
the X may be off by one or two characters or expressions depending on the type of error and where the
error occurred in the program. If an ERROR occurs in the COMMAND MODE only the ERROR TYPE
will be printed out NOT the Line number. This makes sense, because there are no line numbers in the
COMMAND MODE. The E:RROR TYPES are as,.foUows:

BAD SYNTAX

A BAD SYNTAX error means that either an invalid MCS BASIC-52 COMMAND, STATEMENT, or
OPERATOR was entered and BASIC cannot process the entry. The user should check and make sure th~t
everything wastyped in correctly. In Version 1.1 of MCS BASIC-52 aBADSYrqAX EIWOR is also
generated if the progratnrner attempts to use a reserved keyword aspatt of a variable.

BAD ARGUMENT

When the argument of an operator is not within the limits of the operator a BAD ARGUMENT ERROR
will be generated. For instance, DBY(257) would generate a BAD ARGUMENT ERROR because the
argument for the DBY operator is limited to the range 0 to 255. Similarly, XBY(5000H) = -1 would
generate a BAD ARGUMENT ERROR because the value of the XBY operator is limited to the range 0
to 255.

96

MCS® BASIC-52

8.1 ERROR MESSAGES

ARITH. UNDERFLOW

If the result of an arithmetic operation exceeds the lower limit of an MCS BASIC-52 floating point number,
an ARITH. UNDERFLOW ERROR will occur. The smallest floating point number in MCS.BASIC-52 is
± lE-127. For instance, lE-SO/IE+SO would cause an ARITH. UNDERFLOW ERROR.

ARITH. OVERFLOW

If the result of an arithmetic operation exceeds the upper limit of an MCS BASIC-52 floating point number,
an ARITH. OVERFLOW ERROR will occur. The largest floating point number in MCS BASIC-52 is
± . 99999999E+ 127. For instance, lE+70*IE+70 would cause an ARITH. OVERFLOW ERROR.

DIVIDE BY ZERO

A division by ZERO was attempted i.e. 12/0, will cause a DIVIDE BY ZERO ERROR.

ILLEGAL DIRECT (VERSION 1.0 ONLY)

Some statements, such as IF-THEN and DATA cannot be executed while the MCS BASIC-52 device is
in the COMMAND MODE. If you attempt to execute one of these statements the message ERROR:
ILLEGAL DIRECT will be printed to the console device. The ILLEGAL DIRECT ERROR is not trapped
inVersion 1.1 of MCS BASIC-52. ILLEGAL DIRECT ERRORS return a BAD SYNTAX ERROR in
Version 1.1.

LINE TOO LONG (VERSION 1.0 ONLY)

If you type in a line that contains more than 73 characters the message ERROR: LINE TOO LONG will
be printed to the console device. MCS BASIC-52's input buffer can only handle up to 73 characters.

NOTE

This error does not exist in Version 1.1. Instead the input buffer has been increased to 79 characters and
MCS BASIC-52 will echo a bell character to the user terminal if too many characters are entered into the
input buffer.

NO DATA

If a READ STATEMENT is executed and no DATA STATEMENT exists or all DATA has been read
and a RESTORE instruction was not executed the message ERROR: NO DATA - IN LINE XXX will
be printed to the console device.

97

inter MCS®. BASIC-52

8.1 ERROR MESSAGES

CAN'T CONTINUE

Program execution can be halted by either typing in a control-C to the console device or by executing a
STOP STATEMENT. Nonnally, program execution can be resumed by typing in the CONTcommand.
However, if the user edits the program after halting execution and then enters the CONT command,a
CAN'T CONTINUE ERROR will be generated. A control-C must be typed during program execution or
a STOP STATEMENT must be executed before the CONT command will work .

. PROGRAMMING

If an error occurs while the MCSBASIC-52 device is programming an EPROM, a PROGRAMMING
ERROR will be generated. An error encountered during programming destroys the EPROM FILE STRUC
TURE, so the user cannot save any more programs on that particular EPROM once a PROGRAMMING
ERROR occurs.

A-STACK

An A-STACK (ARGUMENT STACK) error occurs when the argument stack pointer is forced "out of
bounds." This can happen if the user overflows the argument stack by PUSHing too many expressions
onto the stack, or by attempting to POP data. off the stack when no data is present.

C-STACK

A C-STACK (CONTROL STACK) error will occur if the control stack pointer is forced "out of bounds."
158 bytes of external memory are allocated for the control stack, FOR - NEXT loops require 17 bytes
of control stack DO - UNTIL, DO - WHILE, and GOSUB require 3 bytes of control stack. This means
that 9 nested FOR - NEXT loops is the maximum that MCS BASIC-52 can handle·because 9 times 17
equals 153. If the user attempts to use more control stack than is available in MCS BASIC-52 a C-STACK
error will be generated. In addition, C-ST ACK errors will occur if a RETURN is executed before a GOSUB,
a WHILE or UNTIL before a DO, or a NEXT before a FOR.

98

MCS® BASIC-52

8.1 ERROR MESSAGES

I-STACK

An I-STACK (INTERNAL STACK) error occurs when MCS BASIC-52 does not have enough stack space
to evaluate an expression. Normally, I-STACK errors will not occur unless insufficient memory has been
allocated to the 8052AH's stack pointer. Details of how to allocate memory to the stack pointer are covered
in the ASSEMBL Y LANGUAGE LINKAGE section of this manual.

ARRAY SIZE

If an array is dimensioned by a DIM statement and then you attempt to access a variable that is outside
of the dimensioned bounds, an ARRAY SIZE error will be generated.

EXAMPLE:

:'011'1 A(10)
:OPRINT A(l1)

ERROR: ARRAY SIZE
READV

MEMORY ALLOCATION

MEMORY ALLOCATION ERRORS are generated when user attempts to access STRINGS that are
"outside" the defined string limits. Additionally, if the SYSTEM CONTROL VALUE, MTOP is assigned
a value that does not contain any RAM memory, a MEMORY ALLOCATION ERROR will occur.

99

inter

8.2 DISABLING CONTROL-C

In soIne applicationS', . it may be desirable or even a requirement that program execution not accidentally
be halted. Under "normal" operation the execution of any MCS BASIC-52 program can be terminated
by typing a "control-C" on the console device. However, it is possible to disable the "control-C" break
function in MCS BASIC-52. This is accomplished by setting BIT 48 (30H) to a one. BIT 48 is located in
internal memory location 38.0 (26.0H). This BIT may be set by executing the following statement in an
MCS BASIC-52 program: '

DBY(38) = DBY(38).OR.OIH

Once this BIT is set to a one,the control-C break function, for both LIST and RUN operations will be
disabled. The user has the option to create a custom break character or string of characters by using. the
GET operator. The following is an example of how to implement a custom break character:

EXAMPLE:

>10 STRING lOO,10: A-l: R~M INITIALIZE STRINGS
>20 .(1) - "BREAK" : REM "BREAK" IS' THE PASSWORD
:-30 DBY(3B)-DBV(3B). OR. 1 : REM DISABL.E CONTROL-C
>40 FOR I-I TO 1000 : REM DUMMV LOOP
>~O ,J-SIN(I)
)60 K=GET : IF K<>O THEN 100 ELSE NEXT I
>70 END
>100 IFK-ASC(.(1), A) THEN A=A+l ELSE A-I
>110 REM TEST FOR MATCH
>i20 IF A-l THEN" NEXT ·1
>130 IF A-6 THEN '200 ELSE NEXT I
)140 END
)200 PRINT "BREAK"
>210 DBY(3S)-DBY(3S). AND. OFEH : REM ENABLE CONTROL-C

In this example, typing the word BREAK will stop program execution. In other words, BREAK is a
password.

100

MCS® BASIC-52

8.3 IMPLEMENTING "FAKE OMA"

The MCS BASIC-52 device does not contain any hardware mechanism that supports Direct Memory Access
(DMA). However, the DMA function is supported in software by MCS BASIC-52. During DMA operation
MCS BASIC-52 guarantees that no external memory access will be performed. To enable the DMA function,
the following must be performed:

1) BIT 49, which is located in internal memory location 38.1 (26.1H) must be set to a one. This .can be
accomplished in BASIC by using the statement - DBY(38) = DBY(38).OR.02H

2) BIT 0 and BIT 7 of the SPECIAL FUNCTION REGISTER, IE (Interrupt enable) must be set to a one.
This can be accomplished in BASIC by using the statement - IE = IE.OR.81H

After the three BITS mentioned above are set to a one, external interrupt zero (INTO) acts as a DMA input
pin. INTO is pin 12 on the 8052AH. Whenever INTO is pulled low (to a logical zero state), the MCS
BASIC-52 device will enter the DMA mode and no accesses will be made to external memory. To
acknowledge that MCS BASIC-52 has entered the DMA mode, MCS BASIC-52 outputs a zero on pin 1
(P1.6). In essence, PORT 1.6 is the DMA ACK pin of the MCS BASIC-52 device. In most applications,
this pin would be used to disable three-state buffers that would be placed on PORT2, PORTO, and the
address latch of the MCS BASIC-52 system. After the user pulls the INTO pin high, MCS BASIC-52 will
output a one on P1.6 and normal program execution will continue. During this "fake DMA" cycle, the
MCS BASIC-52 program does nothing except wait for the INTO pin to be pulled high. So, program
execution is halted.

It should be noted that although this "fake DMA" operation does provide the same functionality as a
normal DMA hardware mechanism, it also takes substantially longer for the normal DMA REQUEST -
DMA ACKNOWLEDGE cycle to be performed. That is because MCSBASIC-52 uses interrupts to
implement the DMA operation, instead of dedicated hardware. As a general rule, cycle stealing DMA is
not an option with MCS BASIC-52's "fake" DMA. Only "burst mode" DMA cycles can be implemented
without a significant time penalty. When "fake DMA'~ is implemented, the user must provide three-state
buffers on the PORT2, PORTO, and the address latch of the MCS BASIC~52 system.

101

intJ MCSIB> BASIC-52

8.4 RUN TRAP OPTION (Version 1.1 Only)

Version .1.1 of MCS BASIC-52 permits the user to trap the interpreter in the RUN MODE. This option
is evoked by putting a 34H (52D) in external data memory location 5EH (94D). After a 34H(52D) is
placed in external data memory location 5EH (94D) the MCS BASIC-52 interpreter will be trapped in the
RUN mode forever or until the contents of external data memory location is changed to something other
than·34H . (52D). If no program is present when a 34H (52D) is placed in location 5EH (94D), MCS
BASIC-52 will print the READY message forever and it will be time to RESET the device. The RUN
TRAP option can be employed with the other RESET options to permit the user to execute a program from
RAM on a RESET or power-up condition when some type of battery back-up memory scheme is employed.

1.02

inter MCS®. BASIC-52

8.5 ANOMALIES

Most dictionaries define an anomaly as 11 deviation from the normal or common'order or as an irregularity.
Anomalies to an extreme become "BUGS" or something that is wrong with the program. Like all programs,
MCS BASIC-52 contains some anomalies, hopefully, no bugs. The purpose of mentioning the known
anomalies here is that it may save the programmer some time, should strange things happen during program
execution. The known anomalies deal mainly with the way MCS BASIC-52 compacts or tokenizes the
BASIC program. The known anomalies and cautions are as follows:

1) When using the variable H after a line number, make sure you put a space between the line number
and the H, or else BASIC will assume that the line number is a HEX number.

EXAMPLES:

:020H=10 (WRONG)
:OUST

:020 H=10 (RIGHT)
)LIST

32 -10 20 H=10

2) When using the variable I before an ELSE statement, make sure you put a space between the I and the
ELSE statement, or else BASIC will assume that the IE portion of IELSE is the special function operator
IE.

EXAMPLES:

;'20 IF 1:>10 THEN PRINT IELSE 100
)UST
20 IF 1)10 THEN PRINT IELSE 100 (WRONG)

;·20 IF 1>10 THEN PRINT I ELSE 100
;OUST
20 IF 1:>10 THEN PRINT I ELSE 100 (RIGHT>

3) A Space character may not be placed inside the ASC() operator. In other words, a statement like
PRINT ASC() will yield a BAD SYNTAX ERROR. Spaces may be placed in strings however, so
a statement like LET $(1) = "HELLO, HOW ARE YOU" will work properly. The reason ASC()
yields an error is because MCS BASIC-52 eliminates all spaces when a line is processed, so ASC()
will be stored as ASC() and MCS BASIC-52 interprets this as an error.

103

,9.1 OVERVIEW ..

CHAPTER 9
Assembly Language Linkage"

. NOTE: This section assumes that the designer has an understanding of the architecture' and assembly
language of the MCS-51 Microcontroller family! !! .

Mes BASIC~52 contains a complete library of routines that can easily be accessed with assembly language
CALL instructiQns, The advantage of using assembly· language is that, it offers a significant' improvement
in execution speed relative to interpreted BASIC. In order to successfully interface MCS BASIC,52'with
an assembly language program, the software designer must be aware of a few simple facts.

READ THIS CAREFULLY!I!

1. MCS BASIC-52 uses REGISTER BANKS 0, 1, and 2 (RBO, RBI, and RB2). REGISTER BANK 3
(RB3) is never used except during a PGM statement. RB3 is designated the USER REGISTER BANK
and the users can do whatever they want to with REGISTER BANK 3 (RB3) and MCS BASIC-52 will
never alter the contents of this REGISTER BANK except dUring the execution of a PGM statement
The contents of REGISTER BANK 3 (llli3)c.an be changed by executing a DBY ([exprJ) :::;:[0 to 255]
statement. Where the [exprl evaluates to a number between 24 (I8H) and 31 (lFH) inclusive. In
addition, INTERNAL MEMORY LOCATIONS 32 (20H) and 33 (21H) are also NEVER usedOY MCS
BASIC-52. These two BIT and/or BYTE addressable locations are specifically reserved for assembly
language programs.

2. MCS BASIC-52 uses REGISTER BANK 0 (RBO) as 'the WORKING REGISTER FILE. Whenever
assembly language is used to access MCS BASIC-52's routines, the WORKING REGISTER FILE,
REGISTER BANK () (RB<)) MUST BE SELECTED!!! This means that the USER MUST MAKE SURE
THAT REGISTER BANK 0 (RHO) IS SELECTED BEFORE CALLING ANY OF MCS BASIC-52's
ROUTINES. This is done simply by setting BITS 3 and 4 in the PSW equal to ZERO. If this is not
done, MCS BASIC-52 will "KICK OUT" the USER and NO operation will be performed. When an
ASSEMBLY LANGUAGE program is accessed by using the MCS BASIC-52's CALL instruction,
REGISTER BANK 0 (RBO) will always be selected. So unless the user selects REGISTER BANK 3
(RB3) in assembly language, it is NOT NECESSARY to change the designated REGISTER BANK.

3. ALWAYS ASSUME THAT MCS BASIC-52 DESTROYS TBE CONTENTS ,OF THE WORKING
REGISTER FILE AND THE DPTR, UNLESS OTHERWISE STATED IN FOLLOWING DOCU-
MENTATION. N ;

4. Certain routines in MeS BASIC"52 require that REGISTERS be initialized BEFORE the user CALLS
that specific ROUTINE. These registers are AL WAYS in the WORKING REGISTER FILE, REGISTER
BANK 0 (RBO).

5. Certain routines in MCS BASIC-52 return the result ofanoperatioD in Ii. register of registers. Toe result
registers are ALWAYS in the WORKING REGISTER FILE, REGISTER BANK 0, (RBO).

1Q4

inter MCS<!!> BASIC-52

9.1 OVERVIEW

READ THIS CAREFULLYIII

6. MCS BASIC-52 loads the INTERNAL STACK POINTER (SPECIAL FUNCTION REGISTER- SP)
with the value that is in INTERNAL MEMORY LOCATION 62 (3EH). MCS BASIC-52 initializes
INTERNAL MEMORY LOCATION 62 (3EH) by writing a 77 (4DH) to this location after a hardware
RESET. MCS BASIC-52 does NOT use any memory beyond 77 (4DH) for anything EXCEPT STACK
SPACE. If the user wants to ALLOCATE some additional internal memory for their application, this
is done by changing the contents of INTERNAL MEMORY LOCATION 62 (3EH) to a value that is
GREATER than 77 (4DH). This will allocate the INTERNAL MEMORY LOCATIONS from 77 (4DH)
to the value that is placed in INTERNAL MEMORY LOCATION 62 (3EH) to the user. As a guideline,
it is a good idea to allow at least 48 (30H) bytes of stack space for MCS BASIC-52. The bad news
about reducing the stack space is that it will reduce the amount of nested parentheses that MCS BASIC-52
can evaluate in an expression [expr]. This will either cause a I-STACK ERROR or will cause a fatal
CPU "crash." Use caution and DON'T allocate more memory than you need.

EXAMPLE OF THE EFFECTS OF ALTERING THE STACK ALLOCATION:

:'PRINT DBY(62)
77

:'PRINT (1*(2*(3»)
6

:'DBY(62)-230

ERROR: I-STACK
READY
)OBY(62)=210

:'PRINT (1*<2*(3»)
6

COMMENTS

AFTER RESET INTERNAL MEMORY LOCATION 62
CONTAINS A 77

BASIC HAS NO PROBLEM EVALUATING 3.LEVELS
OF NESTED PARENTHESIS

NOW ALLOCATE 255-230 • 25 BYTES OF STACK
SPACE TO BASIC, REMEMBER, THE STACK ON
THE a052AH GROWS "UP"

BASIC CANNOT EVALUATE THIS EXPRESSION
BECAUSE IT DOES NOT HAVE ENOUGH STACK
NOl~ ALLOCATE 255-210 = 45 BYTES OF STACK
SPACE TO BASIC
THE I-STACK ERROR GOES AWAY

7. Throughout this section a 16-BIT REGISTER PAIR is designated-Rx:Ry, where Rx is the most sig
nificant byte and Ry is the least significant byte.

EXAMPLE:

R3:R1 - R3=MOST SIGNIFICANT BYTE, Rl=LEAST SIGNIFICANT BYTE

105

MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

Accessing MCS BASIC-52 routines with assembly . language is easy. The· user just loads the ACCUMU·'
LATOR with a specific value and CALLS LOCATION 48 (30H). The value placed in the ACCUMULATOR
determines what operation will be performed. Unless otherwise stated, the CONTENTS of the DPTR and
REGISTER BANK 0 (RBO) will ALWAYS be ~tered when calling these routines. The generalized form
for accessing MCS BASIC-52's routines is as follows:

ANL PSW,#l1 10011 IB ; make sure
RBO is
selected

MOV A,#OPBYTE ; load the
instruction

CALL 30H ; execute the
instruction

The value of OPBYTE determines what operation will be performed. The following operations can be
performed:

OPBYTE = 0 (OOH) RETURN TO COMMAND MODE

This instruction causes MCS BASIC-52 to enter tQe COMMAND MODE. Control of the CPU is banded
back to the MCS BASIC-52 interpreter, and BASIC will respond by outputting a READY,anda PROMPT
character (».

OPBYTE = 1 (01 H) POP ARGUMENT STACK AND PUT VALUE IN R3:R1

This instruction converts the value that is on the ARGUMENT STACK to a 16 BIT BINARY INTEGER
and returns the BINARY INTEGER in registers R3 (high byte) and Rl (low byte) of REGISTER BANK
o (RBO). The ARGUMENT STACK gets popped after this instruction is executed. If the value on the
ARGUMENT STACK cannot be represented by a 16-BIT BINARY NUMBER (i.e. it is NOT between 0
and 65535 (OFFFFH) inclusive), BASIC WILL TRAP THE ERROR and print a BAD ARGUMENT
ERROR MESSAGE. The BINARY VALUE returned is TRUNCATED, NOT ROUNDED.

EXAMPLE:

BASIC PROGRAM - 10 PUSH 260 ,,,;,~'
20 CALL 5000H

ASSEMBLY LANGUAGE PROGRAM - ORG 5000H
MOV A._01H load opbgte
CALL 30H RBO still selected

at this point R3 (of RBO) ~ 01H
I and Rl (of RBO) - 04H '

so.R3:R1 - 2610. which lIIa!5th.val~e
I t~at was p lac ed on th e ARGUMENT, STACK

106

inter MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

COMMENTS ON THE NEXT TWO INSTRUCTIONS:

The next two instructions permit the user to transfer floating point numbers between an assembly language
program and MCS BASIC-52. The user provides the address where a floating point number is stored or
will be stored in a 16-bit REGISTER PAIR. Depending on the operation requested, the floating point
numbers are either PUSHED ON or POPPED OFF MCS BASIC-52's ARGUMENT STACK. This in
struction permits the user to keep track of variables in assembly language and bypass the relatively slow
procedure BASIC must follow.

As mentioned earlier, when a floating point number is PUSHED onto the ARGUMENT STACK, the
ARGUMENT STACK POINTER is decremented by a count of 6. This is because a floating point number
requires 6 bytes of RAM storage. Although it may seem confusing to the novice, the LAST value placed
on the ARGUMENT STACK is referred to as the value on the TOP of the ARGUMENT STACK, even
though it is on the BOTTOM of the STACK relative to the sequential numbering of memory addresses.
No one knows why this is so.

The ARGUMENT STACK resides in EXTERNAL RAM MEMORY LOCATIONS 301 (12DH) through
510 (lFEH). The lower BYTE of the ARGUMENT STACK POINTER resides in INTERNAL MEMORY
LOCATION 9 (09H). MCS BASIC-52 always assumes that the upper BYTE (higher order address) of the
ARGUMENT STACK POINTER is 1 (OlH). The software designer can use this information, along with
the next two instructions to perform operations like copying the stack.

OPBYTE = 2 (02H) PUSH THE FLOATING POINT NUMBER ADDRESSED BY REGISTER
PAIR R2:RO ONTO THE ARGUMENT STACK.

R2 and RO (in REGISTER BANK 0, RBO) contain the ADDRESS (R2 = high byte, RO = low byte) of
the location where the floating point number is stored. After this instruction is executed the floating point
number that the REGISTER PAIR R2:RO points to is PUSHED onto the TOP of the ARGUMENT STACK.
The ARGUMENT STACK POINTER automatically gets DECREMENTED, by a count of 6, when the
value is placed on the stack. A floating point number in MCS BASIC-52 requires 6 BYTES of RAM
storage. The register Pair R2:RO points to the MOST SIGNIFICANT BYTE of the floating point number
and is DECREMENTED BY 6 after the CALL instruction is executed. So, if R2:RO = 7F18H before this
instruction was executed, it would equal 7F12H after this instruction was executed.

107

intJ MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

OPBVTE = 3 (03H) POP THE ARGUMENT STACK AND SAVE THE FLOATING· POINT
NUMBER IN THE LOCATION ADDRESSED BY R3:R1.

The TOP of the ARGUMENT STACK is moved to the location pointed to by the REGISTER PAIR
R3:RI(R3 = high byte, RI = low byte, in REGISTER BANK 0, RBO). The ARGUMENT STACK
POINTER is automatically INCREMENTED BY 6. Just as in the previous PUSH instruction, the REG-

. ISTER PAIR R3:RI points to the MOST SIGNIFICANT BYTE of the fioatingpoint number and is
DECREMENTED BY 6 after the CALL instruction is executed.

EXAMPLE OF USER PUSH AND POP:

BASIC PROGRAM:

ASM PROGRAM:

>~ REM PUT 100 AND 200 ON THE ARGUMENT STACK
>10 PUSH 100.200 .
>1~ REM CALL THE USER ROUTINE TO SAVE NUMBERS
)20 CALL 5000H
>25 REM CLEAR THE STACK
>30 CL.EARS
>35 REM USE ASM TO PUT NUMBERS BACK ON STACK
:>40 CALL 5010H
:>50 POP A.B
:>60 PRINT A.B
:>RUN

100 200

READY

ORG
MOV
MOV
MOV
CAL.L.
MOV
CAL.L
RET

ORG
MOV
MOV
MOV
CALL
MOV
CALL.
RET

5000H
R3 •• HIGH USER_SAVE
Rl •• LOW USER_SAVE
A •• 03H .
30H
A •• 03H
30H

50l0H
R2 •• ~IGH. USER_SAVE
RO,.LOW USER_SAVE
A •• 02H
30H
A •• 02H
30H

108·

iLOAD POINTERS TO WHERE
i NUMBERS WILL B~ SAVED.
i LOAD OPBYTE
iSAVE ONE NUMBER
iLOAD OPBYTE AGAIN
iSAVE ANOTHER NUMBER
i13ACK TO BASIC

iLOAD ADDRESS WHERE
iNUMBERS ARE STORED
i LOAD OPBYTE
iPUT ONE NUMBER ON STACK
i LOAD OPBVTE
,NEXT NUMBER ON STACK
i BACK TO BASIC

inter MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

OPBYTE= 4 (04H) .PROGRAM A PROM USING R3:R1 AS THE SOURCE ADDRESS
POINTER, R2:RO AS THE DESTINATION (PROM) ADDRESS POINTER, AND R7:R6 AS THE
BYTE COUNTER.

This instruction assumes that the DATA to be programmed into a PROM is stored in external memory
and that the REGISTER PAIR R3:RI (in RBO) contains the address of this external memory. REGISTER
PAIR R7:R6 contains the total number of bytes that are to be programmed. The PROM is programmed
sequentially and every time a byte is programmed the REGISTER PAIR R7:R6 is decremented and the
REGISTER PAIRS R3:RI and R2:RO are incremented. Programming continues until R7:R6 equals ZERO.
The REGISTER PAIR R2:RO must be initialized with the desired ADDRESS of the EPROM to be
programmed MINUS I. This may sound strange, but that is the way it works. So, if you wanted to program
ail EPROM starting at address 9000H, with the data stored in address ODOOH and you wanted to program
500 BYTES, then the registers would be set up as follows: R2:RO = 8FFFH, R3:RI = ODOOH, and
R7:R6 = 0lF4H (500 decimal). You would then put a 4 (04H) in the ACC and CALL location 30H.

NOTE: In Version 1.0, if an ERROR OCCURS DURING PROGRAMMING, MCS BASIC-52 WILL
TRAP THE ERROR AND ENTER THE COMMAND MODE. The user cannot handle errors that occur
during the EPROM programming operation!!!!

In Version 1.1, programming errors will only be trapped if the MCS BASIC-52 device is in the COMMAND
.MODE. If the MCS BASIC-52 device is in the run mode, control will be passed back to the user. The
user must then examine registers R6 and R7. If R6 = R7 = 0, then the programming operation was
successfully completed, if these registers do not equal zero then registers R2:RO contain the address of the
EPROM location that failed to program. This feature in Version 1.1 permits the user to program EPROMS
in embedded applications and manage errors, should they occur in the programming process, without
trapping to the comm~d mode.

In addition to setting up the pointers previously described, the user must also initialize the INTERNAL
MEMORY locations that control the width of the programming pulse. This gives the user complete control
over this critical prom programming parameter. The internal memory locations that must be initialized
with this information are 64 (40H) and 65 (4IH). These locations are treated as a 16 bit register pair with
'location 64 (40H) designated as the most significant byte and location 65 (4IH) as the least significant
:byte. Locations 64 (40H) and 65 (4IH) are loaded into THI (TIMER I high byte) and TLl (TIMER I
'low byte) respectively. The width of the prograniming pulse, in microseconds is determined by the following
equation:

WIDTH = (65536 -'-. 256*DBY(64) + DBY(65»*12/XTALmicroseconds

. conversely;

DBY(64):DBY(65) = 65536 - WIDTH*XTAL/12

The proper values for the "normal" 50 millisecond programming algorithm and the I millisecond
"INTELligent" algorithm are calculated and stored by MCS BASIC-52 in external memory locations
296:297 (128H:129H) and 298:299 (12AH:12BH) respectively. If the user wants to use the pre-calculated
values the statements DBY(64) =XBY(296) and DBY(65) =XBY(297) may be used to initialize the prom
programming width for the normal algorithm and the statements DBY(64) = XBY(298) and
DBY(65) = XBY(299) can be used to initialize for the INTELligent algorithm.

109

MCS® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

To. selec.t the "INTELLIGENT" EPROM PROGRAMMING algo.rithm the directly addressable BITSI
(33H) MUST be set to. 1 befo.re the EPROM PROGRAMMING ro.utine is called. The "STANDARD"
50 ms EPROM PROGRAMMING algo.rithm is selected by CLEARING BIT 51 (33H) (i.e. BIT 51 ::;: 0)
befo.re calling the EPROM PROGRAMMING ro.utine. The directly addressable BIT 51 is located in internal
memo.ry lo.catio.n 38.3 (26 3H)(BIT 3 o.f BYTE 38 (268) in internal memo.ry). This BIT can be SET o.r
CLEARED by the BASrC STATEMENTS DBY(38) = DBY(38).OR.OSH to. SET and
DBY(38) = DBY(38).AND.0F7H to. CLEAR. Of course, the user can set or clear this bit in assembly
language with a SETB 51 o.r CLR 51 instructio.n.

The user must alSo. tum o.n the EPROM PROGRAMMING vo.ltage BEFORE calling the EPROM PRO
GRAMMING routine. This is done by CLEARING BIT P1.5, the fifth BIT o.n PORT 1. This too Can be
do.ne in BASIC with a PORTI = PORTI.AND.ODFH instructio.n o.r in assembly language with a CLR Pl.5
instruction. The user must also. set this bit when the PROM PROGRAMMING procedure is co.mplete.

This instructio.n assumes that the hardware surrounding the MCS BASIC-52 device is the same as the
suggestio.ns in the EPROM PROGRAMMING chapter o.f this manual.

110

inter MCS® BASIC-S2

9.2 GENERAL PURPOSE ROUTINES

OPBYTE = S (OSH) INPUT A STRING OF CHARACTERS AND STORE IN THE BASIC
INPUT BUFFER.

This instruction inputs a line of text from the console device and saves the information in the MCS BASIC-
52's input buffer. MCS BASIC-52's input buffer begins at EXTERNAL MEMORY LOCATION 7 (0007H).
All of the line editing features available in MCS BASIC-52 are implemented in this instruction. If a control
C is typed during the input process, MCS BASIC-52 will trap back into the command mode. A carriage
return (cr) terminates the input procedure.

OPBYTE = 6 (06H) OUTPUT THE STRING OF CHARACTERS POINTED TO BY THE
REGISTER PAIR R3:R1 TO THE CONSOLE DEVICE.

This instruction is used to OUTPUT a string of characters to the cflsole device. R3:RI contains the initial
address of this string. The string can either be stored in PROGRAM MEMORY or EXTERNAL DATA
MEMORY. If BIT 52 (34H) (which is BIT 4 of internal RAM location 38 (26H)) is set, the output will
be from PROGRAM MEMORY. If BIT 52 is cleared, the output will be from EXTERNAL DATA
MEMORY. The DATA stored in MEMORY is sent out to the console device one byte at a time and the
memory pointer is incremented. The output is stopped when a termination character is read. The termination
character for PROGRAM MEMORY and EXTERNAL DATA MEMORY are different. The termination
character for EXTERNAL DATA MEMORY is a (cr) ODH. The termination character for PROGRAM
MEMORY is a " or 22H.

OPBYTE = 7 (07H) OUTPUT A CARRIAGE RETURN-LINE FEED SEQUENCE TO THE
CONSOLE DEVICE.

Enough said.

OPBYTE = 128 (80H) OUTPUT THE CHARACTER IN RS (REGISTER BANK 0) TO THE
CONSOLE DEVICE.

This routine takes the character that is in R5 (register bank 0) and directs it to the console device. Any
console device may be selected (Le. UO or UI or the software serial port).

111

MC$® BASIC-52

9.2 GENERAL PURPOSE ROUTINES

OPBYTE. = 144 (90H) OUTPUT THE NUMBER ON THE TOP OF ARGUMENT STACK. TO
THE CONSOLE DEVICE.·

The floating point number that is on the top of the argument stack is outputted to the console device. The
FORMAT is determined by the USING statement. The argument stack is POPPED after the output operation.

OPBYTE = 154 (9AH) THE 16 BIT NUMBER REPRESENTED BY REGISTERPAIR,R2:RO IS
PUSHED ON THE ARGUMENT STACK.

This instruction converts the 16 bit register pair R2:RO to a floating point number and pushes this number
onto the argument stack. This instniction is the converse of theOPBYTE :::= 1 instruction. '

112

intJ MCS® BASIC-52

9.3 UNARY OPERATORS

The next group of instructions perform an operation on the number that is on theTOP of the ARGUMENT
STACK. If the TOP of the ARGUMENT STACK is represented by the symbol· [TOS], then the following
instructions would take the general form:

[TOS] < OP [TOS]

Where OP is one of the following operators:

OPBYTE = 24 (18H) - ABSOLUTE VALUE

[TOS] < ABS([TOS]). The [TOS] is replaced by the absolute value of [TOS].

OPBYTE = 25 (19H) - INTEGER

[TOS] < INT([TOS]). The [TOS] is replaced by the integer portion of [TOS].

OPBYTE = 26 (1 AH) - SIGN

[TOS] < SGN([TOS]). If [TOS] > 0 then [TOS] = 1, if [TOS] = 0 then [TOS] = 0, and if [TOS] < 0
then [TOS] = - I.

OPBYTE = 27 (1 BH) - ONE'S COMPLEMENT

[TOS] < NOT([TOS]). [TOS] must be a valid integer.

OPBYTE = 28 (1 CH) - COSINE OPERATOR

[TOS] < COS([TOS]). [TOS] must be between ± 200000.

OPBYTE = 29 (1DH) - TANGENT OPERATOR

[TOS] < TAN([TOS]). [TOS] must be between ±200000 and [TOS] cannot equal PII2, 3*PI/2, 5*PII2,
.... (2*N + 1)*PII2.

113

intJ MCS® BASIC-52

9.3 UNARY OPERATORS

OPBYTE = 30·(1EH) - SINE OPERATOR

[TOS] < SIN([TOS]). [TOS] must be between ±200000.

OPBYTE = 31 (1 FH) - SQUARE ROOT

[TOS] < SQR ([TOS]). [TOS] must be > = O.

OPBYTE = 32 (20H) - C!'YOPERATOR

[TOS] < CBY ([TOS]). [TOS] must be a valid integer.

OPBYTE = 33 (21 H) - E TO THE [TOS] OPERATOR

[TOS] < e(2.7182818)**[TOS]. e is raised to the [TOS] power.

OPBYTE = 34 (22H) - ATN OPERATOR

[TOS] < ATN([TOS]). Arctangent, the value returned is between ± PII2.

OPBYTE = 35 (23H) - LOG OPERATOR (natural LOG)

[TOS] < LOG([TOS]) - [TOS] must be > O.

OPBYTE = 36 (24H) - DBY OPERATOR

[TOS] < DBY([TOS]). [TOS] must be between 0 and 255 inclusive.

OPBYTE= 37 (25H) - XBY OPERATOR

[TOS] < XBY([TOS]). [TOS] must be a valid integer.

114

inter MCS® BASIC-52

9.4 SPECIAL OPERATORS

The next group of instructions place a value on the stack. The value placed on the stack is as follows:

OPBYTE = 38 (26H) - PI

[TOS) = PI. PI (3.1415926) is placed on the [TOS).

OPBYTE = 39 (27H) - RND

[TOS) = RND. A random number is placed on the [TOS).

OPBYTE = 40 (28H) - GET

[TOS) = GET. The value of the SPECIAL FUNCTION OPERATOR, GET is put on the [TOS).

OPBYTE = 41 (29H) - FREE

[TOS) = FREE. The value of the SYSTEM CONTROL VALUE, FREE is put on the [TOS).

OPBYTE = 42 (2AH) - LEN

[TOS) = LEN. The value of the SYSTEM CONTROL V ALUE, LEN is put on the [TOS).

OPBYTE = 43 (2BH) - XTAL

[TOS) = XTAL. The value of the SPECIAL FUNCTION OPERATOR, XTAL is put on the [TOS).

OPBYTE = 44 (2CH) - MTOP

[TOS) = MTOP. The value of the SYSTEM CONTROL VALUE, MTOP is put on the [TOS).

115

intJ

9.4 SPECIAL OPERATORS

OPBYTE = 45 (2DH) - TIME

MCS~ BASIC';52

[TOS] = TIME. The value of the SPECIAL FUNCTION OPERATOR, TIME is put ~n;' the [TOSf

OPBYTE = 46 (2EH) - IE

[TOS] = IE. The value of the IE register is put on the [TOS].

OPBYTE = 47 (2FH) - IP

[TOS] = IP. The value of the IP register is put on the [TOS].

OPBYTE = 48 (30H) - TIMERO

[TOS] = TIMERO. The value of TIMERO (THO:TLO) is put on the [TOS].

OPBYTE = 49 (31 H) - TIMER1

[TOS] = TIMER!. The value of TIMERl (THl:TLl) is put on the [TOS].

OPBYTE = 50 (32H) - TIMER2

[TOS] = TIMER2. The value of TIMER2 (TH2:TL2) is put on the [TOS].

OPBYTE = 51 (33H) - T2CON

[TOS] = T2CON. The value of the T2CON register is put on the [TOS].

OPBYTE = 52 (34H) - TCON

[TOS] = TCON. The value of the TCON register is put on the [TOS].

116

inter

9.4 SPECIAL OPERATORS

OPBYTE = 53 (35H) - TMOD

MCS® BASIC-52

[TOS] = TMOD. The value of the TMOD register is put on the [TOS].

OPBYTE = 54 (36H) - RCAP2

[TOS] = RCAP2. The value of the RCAP2 registers (RCAP2H:RCAP2L) is put on the [TOS].

OPBYTE = 55 (37H) - PORT1

[TOS] = PORTI. The value of the PORTI (PI) pins is placed on the [TOS].

OPBYTE = 56 (3SH) - PCON

[TOS] = PCON. The value of the PCON register is put on the [TOS].

117

inter MCS® BASIC-52

9.5 DUAL OPERAND OPERATORS

The next group of instructions assume that TWO values are on.the ARGUMENT STACK. If number on
the TOP of the ARGUMENT STACK is represented by the symbol [TOS] and the number NEXT to TOP
of the ARGUMENT STACK is represented by the symbol [NxTOS] and the ARGUMENT STACK
POINTER is represented by the symbol AGSP, then the following instructions would take the general
form:

TEMPI = [TOS]
TEMP2 = [NxTOS]
AGSP < AGSP + 6

RESULT = TEMP2 OP TEMPI
[TOS] = RESULT

Where OP is one of the following operators to be described. NOTE that the group of instructions AL WAYS
POP the ARGUMENT STACK by one FLOATING POINT NUMBER SIZE (Le. 6 BYTES).

ERRORS can be handled in two different ways with the ADD, SUBTRACT, MULTIPLY, and DIVIDE
routines. One option is to let MCS BASIC-52 trap ERRORS, should they occur during the operation. With
this option MCS BASIC-52 will print the appropriate error, message to the console device. The other option
passes a STATUS CODE to the user. After the operation the Accumulator contains the status code
information. The Status information is as follows:

ACC.O - ARITHMETIC UNDERFLOW
ACC.l - ARITHMETIC OVERFLOW
ACC.2 - RESULT WAS ZERO (not an error, just a condition)
ACC.3 - DIVIDE BY ZERO
ACC.4 - NOT USED, ZERO RETURNED
ACC.5 - NOT USED, ZERO RETURNED
ACC.6 - NOT USED, ZERO RETURNED
ACC.7 - NOT USED, ZERO RETURNED

If an ARITH. OVERFLOW or a DIVIDE BY ZERO ERROR occurs and the user is handling the error
condition, the floating point processor will return a result of ± 99999999E + 127 to the argument stack.
The user can do what they want to with this result (Le. use it or waste it). An ARITH. UNDERFLOW
ERROR will return to the argument stack a result of 0 (zero).

118

intJ MCS® BASIC-52

9.5 DUAL OPERAND OPERATORS

MCS BASIC-52 can perform the following DUAL OPERAND OPERA nONS:

OPBYTE = 9 (09H) EXPONENTIATION - The [NxTOS] value is raised to the [TOS] power. RESULT
= [NxTOS] ** [TOS]. NOTE - [TOS] MUST BE LESS THAN 256.

OPBYTE = 10 (OAH) MULTIPLY

RESULT = [NxTOS] * [TOS]. If an ERROR occurs during this operation (i.e. ARITH. OVERFLOW
or UNDERFLOW) MCS BASIC-52 will trap the error and print the error message to the console device.

OPBYTE = 136 (88H) MULTIPLY

RESULT = [NxTOS] * [TOS]. If an error occurs during this operation, the status byte previously discussed
will be returned to the user.

OPBYTE = 11 (OBH) ADD

RESULT = [NxTOS] + [TOS]. BASIC handles errors.

OPBYTE = 130 (82H) ADD

RESULT = [NxTOS] + [TOS]. User handles errors.

OPBVTE = 12 (OCH) DIVIDE

RESULT = [NxTOS] / [TOS]. BASIC handles errors.

OPBYTE = 138 (8AH) DIVIDE

RESULT = [NxTOS] / [TOS]. User handles errors.

OPBYTE = 13 (ODH) SUBTRACT

RESULT = [NxTOS] - [TOS]. BASIC handles errors.

119

intel" MCS®BA$IC~52

9.5 DUAL OPERAND OPERATORS

OPBYTE = 132 (84H) SUBTRACT

RESULT = [NxTOS) - [TOS). User handles errors.

OPBYTE = 14 (OEH) EXCLUSIVE OR

RESULT = [NxTOS) XOR [TOS], both values must be GREATER THAN OREQUALT~ZRROand
LESS THAN OR EQUAL TO 65535 (OFFFFH).

OPBYTE = 15 (OFH) LOGICAL AND

RESULT = [NxTOS) and [TOS], both values must be GREATER THAN OR EQUAL TO ZERO and
LESS THAN OR EQUAL TO 65535 (OFFFFH).

OPBYTE = 16 (10H) LOGICAL OR

RESULT = [NxTOS) OR [TOS], both values must be GREATER THAN OR EQUAL TO ZERO and
LESS THAN OR EQUAL TO 65535 (OFFFFH).

OPBYTE = 18 (12H) TEST FOR EQUALITY

IF [NxTOS] = [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = O.

OPBYTE = 19 (13H) TEST FOR GREATER THAN OR EQUAL

IF [NxTOS] > = [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = O.

OPBYTE = 20 (14H) TEST FOR LESS THAN OR EQUAL

IF [NxTOS] < = [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = O.

120

inter MCSIB> BASIC-52

9.5 DUAL OPERAND OPERATORS

• OPBYTE = 21 (15H) TEST FOR NOT EQUAL

IF [NxTOS] <> [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = O.

OPBYTE = 22 (16H) TEST FOR LESS THAN

IF [NxTOS] < [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = O.

OPBYTE = 23 (17H) TEST FOR GREATER THAN

IF [NxTOS] > [TOS] then, RESULT = 65535 (OFFFFH), else RESULT = O.

121

MCS® BASIC-52

9.6 ADDED LINK ROUTINES TO VERSION 1.1

Version 1.1 of MCS BASIC-52 contains a number of useful assembly language link routines that were
not available in Version 1.0. Most ofthese routines were designed to be used in conjunction with the new
Command/Statement extensions that are described in Chapter 11 of this manuaL The added link routines
are as follows:

OPBYTE = 57 (39H) EVALUATE AN EXPRESSION WITHIN THE BASIC TEXT STRING AND
PLACE THE RESULT ON THE ARGUMENT STACK

This routine permits the user to evaluate a BASIC expression IexprJ containing variables, operators and
constants. The result of the evaluated expression is placed on the floating point argument stack. This lets
the user .evaluate expressions in "customized" statements and commands. An example of use of this
OPBYTE is given at the end of this section.

OPBYTE = 58 (3AH) PERFORM CRYSTAL DEPENDENT CALCULATIONS WITH THE
VALUE THAT IS ON THE ARGUMENT STACK

This routine is provided mainly to let the user write an assembly language RESET routine and perform all
of the crystal dependent calculations that are required by MCS BASIC-52. An example of a custorirized
RESET routine that uses this OPBYTE is presented in Chapter 11 of this manual.

OPBYTE = 63 (3FH) GET A CHARACTER OUT OF THE BASIC TEXT STRING

This routine permits the user to "pick" a character out of the BASIC program. For instance, in BASIC
the user could have the following:

10 CALL l000H A

If the user executed the following in assembly language at 1000H:

MOV
LCALL

A, #63
30H

The character A would be returned in the accumulator. The Basic text pointer is located in location 8 (8H)
(low byte) and 10 (OAH) (high byte) of the internal ram on the MCS BASIC-52 device. If the user were
to implement the above function, the basic text pointer must be advanced to the carriage return at the end
of the statement before returning back to Basic. Failure to do this will cause a BAD SYNTAX ERROR
when the user returns back to Basic. The following OPBYTE can be used to advance the Basic Text
pointer.

122

intJ MCS® BASIC-52

9.6 ADDED LINK ROUTINES TO VERSION 1.1

OPBYTE = 64 (40H) GET CHARACTER, THEN INCREMENT TEXT POINTER

This OPBYTE does the same thing as the previous one described, except that the BASIC text pointer is
INCREMENTED AFfER the character is read. An example of this OPBYTE is presented at the end of
this section.

OPBYTE = 65 (41 H) INPUT A CHARACTER FROM THE CONSOLE DEVICE, PUT IT IN
THE ACCUMULATOR, THEN RETURN

This OPBYTE permits the user to input characters from MCS BASIC-52's console input routine. The
character is placed in the accumulator upon return.

OPBYTE = 66 (42H) ENTER THE RUN MODE

This OPBYTE permits the user to start the execution of an MCS BASIC-52 program from assembly
language. The user need only insure that locations 19 (l3H) and 20 (14H) of internal data memory contain
the start address (high byte, low byte respectively) of the BASIC program.

OPBYTE = 129 (81 H) INPUT AN ASCII FLOATING POINT NUMBER AND PLACE IT ON
THE ARGUMENT STACK. THE DPTR POINTS TO THE EXTERNAL
RAM LOCATION, WHERE THE ASCII TEXT STRING IS STORED

This routine assumes that the user has placed an ASCII text string somewhere in memory and that this
ASCII text string represents a valid floating point number. The user then puts the DPTR to the starting
address of this text string. After this OPBYTE is executed the text string will be converted to a valid MCS
BASIC-52 floating point number and placed on the argument stack and the DPTR will be advanced to the
end of the floating point number. If the DPTR does not point to a text string that contains a valid floating
point number, the accumulator will contain an OFFH upon return.

OPBYTE = 152 (98) OUTPUT, IN HEX, TO THE CONSOLE OUTPUT DRIVER, THE
CONTENTS OF R3:R1

This routine is used to display HEX numbers, assuming that they are in registers R3:Rl. If R3 = 0,
leading zeros can be supressed by setting BIT 54 (36H) before calling this routine. If BIT 54 (36H) is
cleared when this routine is called, the driver will always output four hex digits followed by the character
H. This routine always outputs a space character (20H) to the console device, before any hex digits are
output. BIT 54 (36H) is bit 6 of internal RAM location 38.

123

MeS-51 MACRO ASSEMBLER

ISIS-II MCS-51 MACRO ASSEMBLER V1.0
OBJECT MODULE PLACED IN :F4:DEMO.HEX
ASSEMBLER INVOKED BY: ASM51 :F4:DEMO

LOC 08..1 LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

SOURCE

,*** ,
, The fol10~ing i. an example of a program that use. the ne~ OPBYTES

avaUable in version 1. 1 of MCS BASIC-52. This code is bV no mean.
optimized, but it is meant to demonstrate ho~ the user can define
"customized" commands and statements in version 1.1 ·of MeS BASIC-52.

, The ne~ command defined here is DISPLAY. What it does is displav a
, region of ext·ernal data memorv to the console device. The syntax

for this .tatement is:

DISPLAY [expr], [expr]

Where the first expre.sion is the .tarting address and the last
expre •• ion is the ending addre.s. In this examph the DISPLAY is

, treated like a command ~hich. means that it cannot be executed in
, RUN mode.

The output for the DISPLAY command is as follo~s:

, ADDRESS then 16B",tes of Characters i.e.

1000H OOH 22H 33H 27H

, No~, on to the program.
,***

m CD

~ m
3: • "'D C I""
~ C

m
C
C z

" ::D
0 c:
::::! z
m
tn
-I
0
< m
::D
tn
(5
Z

U)
_.

LOC OB,J LINE SOURCE ;" l 27 l>
2002 28 ORG 2002H C

29 C
2002 5A 30 DB 5AH Tell basic that expansion option is m

31 present C
2048 32 ORG 2048H C 33
2048 D22D 34 SETB 45 Set the bit that says so Z
204A 22 35 RET " 36 JJ
2070 37 ORG 2070H I Set up DPTR to Jump table a

38 c:
2070 90207C 39 MOV DPTR.#VECTOR_TABLE :::!
2073 22 40 RET Z

41 m
2078 42 ORG 2078H Set up DPTR to expansion table en

43 -t
2078 90207E 44 MOV DPTR.#USER_TABLE a i: 207B 22 45 RET < (')

46 m 0
47 VECTOR_TABLE: @

JJ
I\) 48

~
OJ

01 207C 2087 49 DW DO_DISPLAY I This is the address of DISPLAY ~
a 0 50 (;

51 USER_TABLE: Z •
52 ""'" UI

~
207E 10 53 DB 10H I Token for Display ""'" 207F 44495350 54 DB 'DISPLAY' I ASCII for display
2083 4C4159
2086 FF 55 DB OFFH I End of table <short tab Ie)

56
57
58
59 DO_DISPLAY:
60

2087 302F63 61 ,JNB 47. DUMMY make sure that MCS BASIC-52 is in
62 the command mode. Bit 47 is set
63 I if it is.
64

208A 7439 65 MOV A •• 57 I Evaluate the first expression after
208C 120030 66 LCALL 30H I the keyword display. MCS BASIC-52

67 will handle any errors. The value
68 of the expression will be on the
69 I Argument Stack
70

co _.
LOC OB" LINE SOURCE C» t 20BF 7440 71 MOV {>" .64 Qet the character after the expt'ession l>
209.1 120030 72 LCALL 30H and bump the BASIC text pointer C

73 C
2094; B42C6A 74 C-'NE A.ft'. '.C_ERROR I Make sure it is a comma. if not do an m

75 I error C
76 C 2097 7439 77 MOV A •• 57 I Evaluate the next expression (the

2099 120030 78 LCALL 30H I ending address) and put it on the Z
79 I At'gument Stack " 80 ::a

209C 7401 81 MOV A.tH Convert the last expression (the 0
209E 120030 82 LCALL 30H ending addt'ess) on the stack to C

83 an integer and put it 1n R3:Rl :::!
84 Z

20Al 8918 85 MOV 18H.Rl I Save the ending address in the user m
20A3 8B19 86 MOV 19H.R3 I reserved locations 18H and 19H. This rn

87 is reserved as register bank 3 -I
88 0 s: 20A5 7401 89 MOV A.tH I Convert the first expression (the

< 0
20A7 120030 90 LCALL 30H I starting address) on the stack to en

91 I an integer and put it in R3:Rl m @l
......

92 ::a IXI I\) CJ) m 20AA 891A 93 MOV lAH.Rl I Save the starting add.ress in .the user l>
201'(: 8BIB .9~ MOV IBH.R3 I reserved locations lAH and IBH 0 ~

95 Z 0 •
96 I Now ever\!thing is set up to loop en . ~
97

20AE C3 98 . LOOPt: CLR C Check to make sure that the starting
20AF E518 99 MOV A. 18H or current address is <= the ending
20Bl 951A 100 SUBB A.IAH address
20B3 E519 101 MOV A.19H
20B5 951B 102 SUBB A. ISH
20B7 5004 103 "NC LOOP2 I If the carr\! is set. it's over
20B9 E4' 104 CLR A Qo to the command mode

20BA Q20030 105 L"MP 30H I (if displa\! was a statement instead
106 I of a command. this routine would
to?, exit with a RET
108

20BQ 7407 109 LOOP2: MOV A •• 7 I Do a c;lrriage return. line feed
20B'" i20030 110 LCALL 30H

111
20C2 A91A 112 MOV Rl. lAH I Output the Starting address
20C4 ABle 113 MOV R3. IBH '"

114
20C6 C236 115 CLR 36H I Don't supr.ss leading zeros

CD --LOC OB'} LINE SOURCE m t 20C9 7499 116 MOV A,ft99H » 20CA 120030 117 LCALL 30H C 119 C 20CD 951A92 119 LOOP3: MOV DPL,lAH I NOIII, set up to read 16 bVtes m
20DO 951B93 120 MOV DPH,lBH I put address in DPTR C

121
C 20D3 EO 122 MOVX A,@DPTR I Read the bVte in external RAM

20D4 A3 123 INC DPTR I Bump to the next location Z
124 " 20D5 95921A 125 MOV 1AH,DPL I Save the Address lJ

20D9 95931B 126 MOV 1BH,DPH 0
127 c:

20DB F9 129 MOV R1, A I Output the bVte :::t 20DC 7BOO 129 MOV R3,10 J The high bVte is allllavs zero Z 20DE D236 130 SETB 36H I Supress leading Zeros 'm
20EO 7499 131 MOV A,199H en
20E2 120030 132 LCALL 30H

~ 133 0 I: 20E5 E51A 134 MOV A, lAH I Chect to see if' on a 16 bVte boundrv
20E7 540F 135 ANL A,ftOFH < n
20E9 70E2 136 '}NZ LOOP 3 Loop until on a 16 Bvte Boundrv m tn

I @ 20EB 90Cl 137 S'}MP LOOP! lJ m I\) en 139 ~ 139 DUMf1Y: 5
140 Z n • 20ED 7407 141 MOV Adt7 I Do a carriage return-line feed UI

20EF 120030 142 LCALL 30H ~
143

2OF2 7B21 144 MOV R3,IHIGH D_MSG Displav the error message
20F4 7915 145 MOV Rl,ILOW D_MSG
20F6 D234 146 SETB 52 J Print from ROM
20F9 7406 147 MOV A,ft6
20FA 120030 149 LCALL 30H
20FD E4 149 CLR A I Go bact to the command mode
20FE 020030 150 L'}MP 30H

151
152 C_ERROR:
153

2101 7407 154 MOV .A, ft7 J Do IIIhat lIIe did before
2103 120030 155 LCALL 30H

156
2106 7B21 157 MOV R3, IHIGH C_MSQ
2109 793B 159 I MOV Rl,ILOW C_MSG
210A D234 159 SETB 52
210C 7406 160 MOV A,ft6
210E 120030 161 LCALL 30H

.....
I\)
00

LOC OBJ LINE SOURCE

2111 E4 162
2112 020030 163

164
21 U 44495350 165 D_MSO:
2119 4C415920
211D 49532041
2121 20434F4D
2125 4D.414E44
2129 2C204E4F
212D 54204120
2131 53544154
2135. 454D454E
2139 5422

166
213B 594F5520 167 CJlSO:
213F 4E454544
2143 20412043
2147 4F4D4D41
214B 20544F20
214F 4D414B45

'2153.20444953
2157 504C4159
215B20574F52
215F 4B22

168
169

ASSEMBLY COMPLETE. NO ERRORS FOUND
<that's all it takes)

CD
_.

en c(
CLR A 3>
LJMP 30H C

C
DB 'DISPLAY 19 A COMMAND. NOT A STATEMENT'" m

C
C
Z

" ::D
0
c:
-I
Z

DB 'YOU NEED A COMMA TO MAKE DISPLAY WORK'" m· en
-I
0 !:
< n
m tn

8
::D III fa • 0 m
Z n

b. END
:.... N

MCS® BASIC-52

9.7 INTERRUPTS

Interrupts can be handled by MCS BASIC-52 in two distinct ways. The first, which has already been
discussed, allows statements in an MCS BASIC-52 program to perform the required interrupt routine. The
ONTIME and ONEXI statements enable this particular interrupt mode. Additionally, setting BIT 26.1H
permits EXTERNAL INTERRUPT 0 to act as a "fake" DMA input and the details of this feature are in
the BELLS, WHISTLES, and ANOMALIES section of this manual. The second method of handling
interrupts in MCS BASIC-52 allows the programmer to write assembly language routines to perform the
interrupt task. This method yields a much faster interrupt response time, but, the programmer must exercise
some caution.

All interrupt vectors on the MCS BASIC-52 device are "mirrored" to external PROGRAM MEMORY
LOCATIONS 4oo3H through 402BH inclusive. The only MCS BASIC-52 STATEMENTS that enable the
interrupts on the 8052AH are the CLOCK 1 and the ONEXI STATEMENTS. If interrupts are NOT enabled
by these STATEMENTS, BASIC assumes that the USER is providing the interrupt routine in assembly
language. The vectors for the various interrupts are as follows:

LOCATION---INTERRUPT

4003H------EXTERNAL INTERRUPT 0

400BH------TIMER 0 OVERFLOW

4013H------EXTERNAL INTERRUPT 1

40lBH------TIMER 1 OVERFLOW

4023H------SERIAL PORT

402BH------TIMER 2 OVERFLOW/EXTERNAL INTERRUPT 2

The programmer can enable interrupts in MCS BASIC-52 by using the statement IE = IE.OR.xXH, where
XX enables the appropriate interrupts. The bits in the interrupt register (IE) on the 8052AH are defined
as follows:

BIT 7 6

EA X

ENABLE UNDE-
ALL FINED

5 4 3 2 o

ET2 ES ETl EXI ETO EXO

TIMER 2 SERIAL TIMER 1 EXT 1 TIMER 0 EXT 0
PORT

129

inter MCS® .BASIC-52

9.7 INTERRUPTS

Interrupts are enabled when the appropriate BITS in the IE register are set to a one. Details of the 8052AH
interrupt structure are available in theMICROCONTROLLER USERS MANUAL available from INTEL.

IMPORTANT NOTEII

Before MCS BASIC-52 vectors to the USER interrupt locationsjustdescribed, the PROCESSOR STATUS
WORD (PSW) is PUSHED onto the STACK. So, the USER does not have to save the PSW in the assembly
language interrupt routine!!! HOWEVER, THE USER MUST POP THE PSW BEFORE RETURNING
FROM THE INTERRUPT.

VERY IMPORTANT NOTEII!

If the user is running some interrupt driven "background" routine while MCS BASIC-52 is running a
program, the user MUST NOT CALL any of the assembly language routines available in the MCS BASIC-52
device. The only way the .routines in the MCS BASIC-52 device can be accessed is when the CALL
statement in MCS BASIC-52 is used to transfer control to the users assembly language program. The
reason for this is that the MCS BASIC-52 interpreter must be in a "known" state before the user can call
the routines available in the MCS BASIC-52 device and a "random" interrupt does not guarantee that the
interpreter is in this known state. The user should use REGISTER BANK 3 to handle interrupt routines
in assembly language.

130

MCS® BASIC-52

9.8 RESOURCE ALLOCATION

Specific statements in MCS BASIC-52 require the use of certain hardware features on the device. If the
user wants to use these hardware features for interrupt driven routines, conflicts between BASIC and the
assembly language routine may occur. To avoid these potential conflicts, the programmer needs to know
what hardware features are used by MCS BASIC-52. The following is a list of the COMMANDS and/or
STATEMENTS that use the hardware features on the 8052AH.

CLOCK1- uses TIMER/COUNTER 0 in the 13 bit 8048 mode.

PWM - uses TIMER/COUNTER 1 in the 16 bit mode

LIST# - uses TIMER/COUNTER 1 to generate baud rate in 16 bit mode

PRINT# - same as LIST#

PROG - uses TIMER/COUNTER 1 for programming pulse

ONEX1- uses EXTERNAL INTERRUPT 1

In addition, TIMER/COUNTER 2 is used to generate the baud rate for the serial port. What the preceding
list means is that if CLOCK 1 , PWM, ONEX1, LIST#, PRINT#, and PROG commands/statements are
used by the programmer, the user MAY NOT use the associated TIMER/COUNTER or EXTERNAL
INTERRUPT pin for an assembly language routine.

MCS BASIC-52 initializes the TIMER/COUNTER modes by writing a 244 (OF4H), 16 (lOH), and 52
(34H) to the TCON, TMOD, and T2CON registers respectively. These registers are initialized only during
the RESET initialization sequence, and MCS BASIC-52 assumes that these registers are NEVER changed.
So, if the user changes the contents of TCON, TMOD, or T2CON, something funny and/or disastrous is
bound to happen if the Statements/Commands listed above are executed. If the user does not execute any
of the previously mentioned Statements or Commands, the user is free to use the interrupts in any way
suitable to the application.

131

inter

CHAPTER 10
System Configuration

10.1 MEMORY/HARDWARE CONFIGURATION

MCS BASIC-52 always requires at least lK bytes of external memory. After reset, "MeS BASIC-52 sizes
the external memory. If less than lK bytes of external memory are available, MCS BASIC~52 will not
"sign-on," in fact, it will internally loop forever. This obviously is not too exciting, so it is wise to hang
some external memory on the MCS BASIC-52 device.

MCS BASIC-52 sizes consecutativeexternal memory locations from OOOOH' until a memory failure is
detected. The sizing operation is performed simply by writing a 5AH to an external memory location, then
testing the location. If the particular memory location passes this test, BASIC then writes a OOH to the
location, then again, checks the location. MCS BASIC-52 only sizes the external memory from locations
o through ODFFFH. Memory locations OEOOOHthrough OFFFFH are reserved for user 110 and/or assembly
language programs.

The MCS BASIC-52 program resides in the 8K of ROM available in INTEL's 8052AH device and as a
result requires that external memory be" 'partitioned" in a specific manner. The architecture of the 8052AH
is NOT Von Neumann. This means that Data and Program Memory do not reside in the same physical
address space on the1W52AH. Specifically; the RD (pin 17) and WR (pin 16) pinson the 8052AH are
used to enable DATA memory and PSEN (pin 29) pin is used to enable PROGRAM memory. Depending
on the hardware configuration, MCS BASIC-52 operates in two distinct "memory" modes.

RAM ONLY MODE

In this mode of operation, Read/write memory is connected to the MCS BASIC-52 device starting at
memory address OOOOH. Memory can be placed up to location OFFFFH. In this mode of operation the
decoded addresses are used to generate the CHIP SELECT (CS) signal for the RAM devices. The RD pin
on the 8052AH is used to generate the OUTPUT ENABLE (OE) strobe and the WR pin generates the
WRITE ENABLE (WE or WR) strobe. PSEN is not used in the RAM only mode of operation. The RAM
only mode of operation offers the simplest hardware configuration available for the MCS BASIC-52
device. An example of this configuration is sh~wn in Figure 1. Since PSEN is not used in the RAM only
mode, the user may not CALL assembly language routines. The RAM only also does not support EP~OM
programming. In general, the RAM only mode will be used only to "check out" the device during the
initial system development stage.

1.32

MCS® BASIC-52

10.1 MEMORY/HARDWARE CONFIGURATION

RAM/EPROM MODE

The RAMlEPROM mode of operation allows for the complete system implementation of MCS BASIC-52.
This mode of operation requires that external memory be mapped in a certain manner. The RAM/EPROM
memory configuration is as follows:

1) The RD and the WR pins on the MCS BASIC-52 device are used to enable RAM memory that is
addressed from OOOOH to 7FFFH. Addresses are used to decode the chip select (CS) for the RAM
devices and RD and WR are used to enable' the OE and WE or (WR) pins respectively.

2) The PSEN pin on the MCS BASIC-52 device is used to enable EPROM memory that is addressed from
2000H to 7FFFH. Addresses are used to decode the chip select (CS) for the EPROM devices and PSEN
is used to enable the OE pin.

3) For addresses between 8000H and OFFFFH both the RD and the PSEN pin on the MCS BASIC-52
device are used to enable the memory. Either EPROM or RAM devices can be placed in this address
space. To permit both the RD and the PSEN pins to enable addresses in this address space, RD and
PSEN must be logically "ANDED" together. This can be accomplished with a simple TTL gate such
as a 74LS08. The WR pin on the MCS BASIC-52 device is used to write to RAM memory in this
same address space. The PSEN and RD signals do not have to be anded beyond address 7FFFH to
enable MCS BASIC-52 to program an EPROM. This is only a suggestion since it will permit the user
to execute assembly language routines as well as MCS BASIC-52 programs that are located in this
address space.

133

inter MCS® BASIC-52

10.1 MEMORY/HARDWARE CONFIGURATION

This scheme of memory· addressing actually permits MCS BASIC-52 to address 96K bytes of memory,
32K of RAM devices, 32K of EPROM/ROM devices and 32K of combined RAM/EPROM/ROM devices.
Since RD and PSEN are ANDED for addresses from 8000H through OFFFFH, the 8052AH"looks like"
a Von Neumann machine in this address space. The XBY and CBY special function operators will yield
the same value when their arguments are between 8000H and OFFFFH.

When the EPROM programming feature in MCS BASIC-52 is used, BASIC assumes that the EPROM to
be programmed is addressed stait4ng at location 8000H. MCS BASIC-52 can only program EPROMS
addressed between 8000H and OFFFFH. When the PROG command is used for the first time, on an erased
EPROM, MCS BASIC-52 stores this program beginning at address 801OH. Locations 8000H through
800FH are used to save the baud rate information, plus configuration information. Some suggestions for
implementation of the RAM/EPROM mode are shown in figure 2.

134

MCS® BASIC-52

10.2 EPROM PROGRAMMING CONFIGURATIONITIMING

With the proper hardware, the MCS BASIC-52 device can program just about any EPROM or EEPROM
device. The only requirement for EPROM programming is that the EPROM to be programmed is addressed
starting at location 8000H. MCS BASIC-52 requires very little exteJ;1lal hardware to programs EPROMS.
All of the critical EPROM programming timings are generated by threeI/O port pins on the MCS BASIC-52
device. These pins provide the following signals:

P1.3 - ALE DISABLE

PORT 1, BIT 3 (pin 4 on the 8052AH) is used to DISABLE the ALE signal to the external latched required
by the 8052AH when external memory is addressed. This pin should be logically ANDED with ALE. A
simple TTL gate, such as a 74LS08 can be used to perform the ANDING function. Under normal operation,
Pl.3 is in a logical high state (1). ONLY DURING EPROM PROGRAMMING IS Pl.3 PLACED IN A
LOGICAL LOW STATE (0). Disabling the ALE signal to the external latch is required to program EPROMS
because of the way MCS BASIC-52 carries out the EPROM programming process.

During programming, MCS BASIC-52 treats 110 PORT 0 and I/O PORT 2 as 110 ports, not as address/
data ports. MCS BASIC-52 first writes the low order address to be programmed to PORT O. The data in
PORT 0 is then latched into the external address latch and then MCS BASIC-52 disables the ALE signal
to the latch by clearing bit Pl.3. Thus, the low order address is "permanently" stored in the external
latch. MCS BASIC-52 then writes the high order address to PORT 2 and the DATA to be programmed
to PORT O. So, the external address latch contains the low order address, PORT 2 contains the high order
address, and PORT 0 contains the DATA when EPROM programming occurs.

IMPORTANT NOTES

When PORT 0 on the 8052AH is used as an I/O port, the output structure is an "open drain" configuration.
This requires that' 'pull-up" resistors be placed on PORT 0 to permit MCS BASIC-52 to program EPROMS.
Experimentally, 10K ohm pull-ups resistors on PORT 0 have yielded satisfactory results.

In Version 1.1, INTO must be kept high when programming EPROMs.

135

intJ MCS® BASIC-52

10.2 EPROM PROGRAMMING CONFIGURATIONITIMING

P1.4 - PROGRAM PULSE WIDTH

PORT 1,· BIT 4 (pin 5 on the 8052AH) is used to provide the 50 millisecond or the 1 millisecond
programming pulse. The length of the programming pulse is determined by whether the "normal" or the
"INTELligent"EPROM programming mode is selected. MCS BASIC-52 calculates the length of the
programming pulse from the assigned crystal value. So, be sure the proper XTAL has been assigned. The
accuracy of this pulse is within 10 CPU clock cycles. This pin is normally in a logicat' high (1) state. It
is asserted low (0) to program the EPROMS. Depending on the EPROM to be programmed this signal
will be used in different ways. More about this later.

P1.5 - ENABLE PROGRAM VOLTAGE

PORT 1, BIT 5 (pin 6 on the 8052AH) is used to enable the EPROM programming voltage. This pin is
normally in a logical high (1) state. Prior to the EPROM programming operation, this pin is brought to a
logical low (0) state. This pin is used to tum on or off the high voltage (12,5 volts to 25 volts, depending
on the EPROM) required to program the EPROMS.

The timing for the EPROM programming pins is shown in figure 3. The hardware required to program
different devices is shown in figure 4. Note that with very little external hardware the MCS BASIC-52
device can program virtually all commercially available EPROMS. Additionally, figure 5'suggests a circuit
using an INTEL 2816A EEPROM. This circuit also features a .push button erase option.

IMPORTANT NOTE

MCS BASIC-52 calculates the programming pulse width when the XTAL value is assigned. To insure
proper programming, make sure XTAL is assigned the proper value. MCS BASIC-52 performs the pro
gramming pulse width calculation to within 5 clock cycles, so the accuracy of the programming pulse is
well within the limits of any EPROM device. .

10.3 SERIAL PORT IMPLEMENTATION

The serial port I/O signals on the 8052AH are TTL compatible signals. They ru;e typically not compatible
with most terminals. Figure 6 suggests hardware options for making the serial interface compatible with
terminals. The serial port is initialized by MCS BASIC-52 to the 8-bit uart mode. In this mode 8 data bits,
plus one start and one stop bit are transmitted. Parity is not used.

136

+5C ~
+r ~

+y
~

vee GND vee CE GND

19
XTAL 1 Vee Vss ~ P1.D D10 DOD - AD 3OpF* :::b, P1.1 ~ D11 D01 - A1 At! -

q911

P1.2 ~ D12 D02 - A2
P1.3 4- D13 74 D03 - A3 Ag r--
P1.4 ~ D14 LS D04 - A4

30pF XTAL2 P1.5 .g.... D15 373 DOS - AS A10
P1.6 .f.- D16 D06 - AS

MCS P1.7 .L r--- D17 D07 - A7

+

~
BASlC-52 21 I.2K P2.0

P2.1
:ii0l 2K

9 23
5V II' RESET P2.2 x

1~~ P2.3 ~ 8
.g. SRA .. P2.4

E OE
P2.5

2B
"F

~ 31 P2.6 is
EA P2.7 ..;;.;;...

~ P3.D(RXD) PO.O
39

00 38 ..g P3.1 (TXD) PO.1
37 01 ..g P3.2 (INTO) PO.2
36 Oz

~ P3.3 (INT1) PO.3
35 Oa 14

POA 04 fs P3.4(TO) 34 ~ P3.5(T1) PO.5
33

05
~ P3.6(WR) PO.6

32 Oa 17 -
PO.7 07 WE r P3.7 (RD)ALE PSEN OE

130 129

L

Figure 1. Interface to 2K x 8 Static RAM

+5

lOOK []
~ RST

4.7,.F

-=-

"

~
XTALI

C,

C2 =r " "
XTAL2

-=- C, = Cz
=30pF

FOR
XTALS
40pF
FOR
CERAMIC
JlESONATORS

+5

~A +21 V
4001 ./ 7«11 4.7K

10K
4001

+5
ADDITIONAl. CHIP ENABLE 0-841< WITH BK BOUNDRIES

I lK

P1.5 P1.4

Y>7«11
~2N4403 E3 r-+5

+5- E3

B
0
5
2
A
4

7 7
"7 10K

f
E2 i ADDITIONAL CHIP ENABLES

4 "7 4 ,J. El L 6 - L 5 BK-16K WITH 2K BOUNORIES

S 5 - 5 4:
1 4: 1 3
3 3 3

-.r A2 B 2 B 2 - PGM
P2.7

1 -.r AI

J74LS08)t
E, 1

P2.6
ii E2

-.SAO r Ao AI Ao ii
P2.5

CE
1'2.' A'2

1 P2.3 All

'P2.2 A'0

P2.1

I I I I As

P2.0

AlII All I All I All I As

CE CE CE CE
PO.7 o,AsAl0 - 0, AsA'0 - 0, AsA'0 - 0, AsA'0 0,
PO.6 De '-- De f.- De - De De
PO.5 05 - Os - Os - Os 05
PO .. 04 '-- O. f.- O. - O. O.
PO.3 Os ~ 03 ~ Os - Os Os
PO.2 Dz - Dz '-- Dz - Dz Dz
PO.l 01 2K -01 2K - 0, 2K -0, 2K 0,
PO.O Do X - Do X '-- Do X - Do X Do

B 8 B 8
+5 V "4- 10K STATIC STATIC STATIC STATIC

B
0, Do7 f- A7 RAM - A7 RAM r- A7 RAM - A7 RAM A7

P1.3 De 7 Dos f- As - As - As = As As
Os • Dos f- As - As r- As As As

ALE O. L Do4 f- A< - A< '-- A< - A< A<
Os s Dos f- As - As r- As - As As

WR Dz 3 Do2 r- A2 - A. - A. - ". Ao
0, 7 Dol r- AI - AI r- AI -A, AI

AD - Do 3 000 f- Ao -.,.- Ao - Ao - Ao Ao

PSEN - GND OE Vee ~ WE OE WE OE WE OE WE OE OE

EA ,-+5 r 1 I 1 J
Vee ,-+5

GND

~ 74LS08'
./

Figure 2A. Full system with EPROM power on protection (no DMA)

This system will decode: RAM from 0 to 16K on 2K boundaries, EPROM from 0 to 32K on 8K boundaries,
RAM/EPROM from 32K to 64K on 8K boundaries

2
7
6
4

+5V
lN270

VPP

AD
ENABLE FOR
MEMORY ADDRESSED

84K FROM32KTO

......
Co)
<0

+5

101lFD1.

-
UK

-=

~

~
C:I T

-= C, = C2
-30pF

FOR
XTALB
4GpF
FOR
CERAMIC
RESONATORS

148S

1488

10K

~ +5

I
INTO Pl.'

RST iiiiA
'iiiiiiiEiT +5- E3

(P3.2)

f
E2 7

• r
El L

~ S
1
3 r

--...J A2 • r 8K WR READY

P2.7 X

--...J Al lr
8 XTALI P2 .• - co

...-f'AO ii
L

STATIC
P2.5 co RAM 2

8
P2.4 10,2 1

XTAL2 7 P2.3 1011
A

P2.2 AID AID

P2.1 Ag As!
a P2.0 As As
0
5
2 PO.7 Dr Dr
A PO.a 116 116
• PO.S 05 Os

PO.' D. D.
PO.3 Os D3
PO.2 D2 Os
PO.l 0, 0,
PO.O Do Do

+SV..- 10K
0. 1)00 r- 107 107

P1.3 tE>- D, 7 Do' r- As As
0, • 1)00 r- AS AS

ALE 0, L Do' r-
D. S Do' f- 103 Ag

SERIAL Wii 0. 3 Do' r- 102 102
IN 0. 7 Do' r- Al Al

0, 3 Do' f- Aa Aa iiii '----

~NDDE Vee
+5

PiEN i-- r- WE iii iii
SERIAL EA +5 ~ I OUT

Vee -+5

GND ""1- 74lS08}-

Figure 2B. Programming 2817A's with Version 1.1 of MCS BASIC-52

+5

10K ~~ II1K

+5 I
74LS08

1-.JJ..
330pF

P1.4

f-- lIST
+5- E3

8.2K

f
E2 7 -4

-=- EI L -
S -
1
3

~ A2
8 i- 8K WR

P2.7 2- X C,

~
AI 1"- 8 \I '-- BE ,.

:6.
XTALI P2.6 STATIC

~AO 0
P2.5 L BE RAM 2

~ 8

~ P2,4 A'2 1
,. XTAL2 7

P2.3 An A -=- C1" C2
=30pF P2.2 AID AID

FOR
XTALS P2.1
40pF

As As

FOR P2.D
CERAMIC

Aa Aa

RE~TORS

PO.7 D7 D7
POJI De lis
PO.5 lis lis
PO.4 04 04
PO.3 D3 D3
PO.2 Dz Dz
PO.1 Dt Dt
PO.O Do Do

+5Y"- II1K
D7 Do? f- A7 A7

P1.3

~
lis 7 Doe f- Aa As
Os 4 Dos f- As As

"ALE D4 L Do4 r- A4 A4
D3 s Do3 r- A3 A3

SERIAL
Wii

Dz 3 Do3 f- Az Az
IN 0, 7 Dol f- AI AI , Do 3 Duo r- Act Act iiii I---

PSEN r---- OIllOE vee I- WE iii iii
SERIAL

r+5 r I , our iA

vee .-+5

ONO "l. 74LS08

FIgure 2C. ProgrammIng 2817A'. with VersIon 1.0 of MCS BASIc-52

EPROM PROGRAMMING TIMING

P1.5 --,

EPROM VOLTAGE ENABLE 1 .. ____________(
. ~~----------------------

PORTO

P1.3
ALE DISABLE

PORT 2

P1.4
PROGRAMMING PULSE

, LlcaoO","--'~
XJ(OA:V~ X 'f:X..===

----- I I I ffp.----J I ----- I I I

1T~CY : I :)(
------------~ ! I

~----~H~------~i
I

-~------

______ ..JX,,_~--H-'G-H-OR-~~~~o"'g X,,--------oIX,"----====
~: T~Y ~ ... I .. ---4DTCY--...... ~1

MIN 50 MS 82 TCY MIN I
MIN

L"';f-J
1 MS

IF INTELLIGENT ALGORITHM USED NOTE: HORIZONTAL TIME SCALE IS NOT

12 TCY = 1 us
TCY = XTAL AT 12 MHz

WHEN USING THE INTELLIGENT ALGORITHM (FPROG)
THE LENGTH OF THE LAST PROGRAMMING PULSE
IS THREE TIMES THE TOTAL NUMBER OF PULSES
AFTER THE PROM IS PROGRAMMED.

Figure 3A. EPROM Programming Timing Version 1.0

s:::: o en
@

OJ
l> en
o • (II
~

I I I PROGRAM NEXT
"'.----------PROGRAM ONE BYTE---------......... -- VERIFY BYTE --......... -- BYTE

PROGRAM ENABLE ---,

P1.S I

ADDRESS HIGH
PORT 2 ~~ ________________________________ A_D_D_R_E_S_S_H_IG_H ______________________________ -i~~ ____ =_~_~~_E_S_S_H_IGH

ADDRESS LOW!
DATA

PORTO

ALE DISABLE
Pt.3

1tCY-1 r-
--------~ r--------~

DON'TeARE ADORESSLOW DATA OUT

r-·~-+~I 1·~1 IL----___ ----II
r-36 rev--1 I I -1 J- 1 rev

NEXT
ADDRESS LOW

1>ROGRAM PULSE
P1.4 u-----,--

--1~TE1~ ~ ~1tCY
R~ ~~----------------------------------~I

---i J-NOTE2 r30 tcy=t ~ 1 rev
NOTE 1. This pulse Is either 1 millisecond (INTEUgeni algorithm) or 50 milliseconds (normal algorithm). SAMPLED

NOTE 2. When PROG command Is executed, P1.5 goes low, and then the EPROM Is read to see where to place the BASIC program.

Figure 38. EPROM programming timing for Version 1.1

P1.5
OF
8052AH

(PIN 6)
P1.4

+5

1K

10K 0

UK 0

MCS® BASIC-52

21
VOLTS

1N270
(PIN 1) Vpp 1--...... ~-+5

VOLTS
TO

P1.5-...c-..........
P1.4 -""L.-'

+21
VOLTS

2N4403

4.7K
OF > ---i PGM (PIN 27) 10K

ADDRESS "'-----I
DECODE CE OE 1---+--'11"""- + 5

8052AH

ANY NON-INVERT,ER
TTL GATE MAY
BE USED

TO
ADDRESS
DECODE CE

(ACTIVE LOW)

2
7
6
4
I
2
7
1
2
8

(ACTIVE
LOW)

74LS08
PSEN--.T'"

RD--",,_

2
7
3
2
A

7407

Figure 4A. Programming 2764's/27128's Figure 4B. Programming 2732A's

P1.5
OF

8052AH

P1.4
OF
8052AH

TO
ADDRESS-_-L",
DECODE
(ACTIVE

LOW)

PsEN--~-
RD r--~-'

CEIPGM

2
7

6

r--_- +25 VOLTS

2N4403

1N270
Vpp t---+ +5 V

10K

Figure 4C. Programming 2716's

143

MCS®BASIC-S2

RD
PSEN

+10 TO +15 VOLTS

+5 ---w.
4.7K

> --tOE (PIN 20)

74LS08
7407

TO >----.-~ CE (PIN 18)

ADDRESS 7407 2
DECODE 8
LOGIC +5 1
(ACTIVE LOW) 10K

PU
PROGRAM
PULSE
WIDTH

7407

6 WE
A (PIN 21)

+5

I-----IQ

15KO

5 pi'

Cx

112 74221 112 74221

74LS08

+5

PUSH BUTTON

.1-CLEAR
r--.... ~

-=
l-e_fth-+5

FigureS. 2816A Circuit with Push Button Erase.

(Basic-52 should be "Idle" in the command mode when the Erase Button is pushed.)

SERIAL 4.7K

INPUT

SERIAL
OUTPUT

Figure 6A.

+5

4.7K

+5

4.7K

4.7K

UK

~ 10,1
-= 15.V

TO RXDON
BASIC-52
DEVICE

TO TXDON
BASIC-52
DEVICE

TWO TRANSISTORS TO IMPLEMENT RS·232. THE "NEGATIVE"
SUPPLY FOR THE SERIAL OUTPUT LINE IS TAKEN FROM THE
SERIAL INPUT LINE. NO :t 12 VOLT SUPPLY IS REQUIRED.

144

SERIAL)
INPUT

SERIAL (
OUTPUT

Figure 6B.

+5

TO RXD ON
)O---~) BASIC-52 k?o DEVICE

1/4"::" 1489

+12

TOTXDON
~_--« BASIC-62 <J DEVICE

1/4 1488

USING THE STANDARD 1489 AND 1488 LINE RECEIVERS AND
DRIVERS. :t 12 VOLTS IS NEEDED WITH THIS IMPLEMENTATION.

intJ

CHAPTER 11
Reset Options (Version 1.1 Only)

Version 1.1 of MCS BASIC-52 contains numerous RESET options that were not available in Version 1.0.
They are discussed in detail in chapters 3.2 through 3.5 of this manual. Briefly, they are as follows:

PROG1

Saves only the serial port baud rate for a power-up or RESET condition.

PROG2

Saves the serial port baud rate and automatically runs the first program that is saved in EPROM on a
power-up or RESET condition.

PROG3

Saves the serial port baud rate plus the assigned MTOP value. If RAM is available beyond the assigned
MTOP value, it will not be cleared during a power-up or RESET condition.

PROG4

Saves the serial port baud rate plus the assigned MTOP value, just like PROG3, but also automatically
runs the first program that is saved in EPROM on a power-up or RESET condition.

PROG5

Does the same thing as PROG4, however, if external memory location 5FH contains the character OASH
on a power-up or RESET condition, external memory will not be cleared. This mode assumes that the
user has employed some type of memory back-up.

145

MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

PROG6

Does the same thing as PROG5, but CALLS external program memory location 4039H during a RESET
or power-up sequence. This option also requires the user to put the character OA5H in external memory
location 5FH to insure that external RAM will not be cleared during RESET or power-up. The user must
put an assembly language RESET routine in external memory location 4039H or else this RESET mode
will crash. When the user returns from the customized assembly language RESET routine, three options
exist:

OPTION 1 FOR PROG6

If the CARRY BIT is CLEARED (CARRY = 0) upon return from the user RESET routine MCS BASIC-
52 will enter the auto-baud rate determining routine. The user must then type a space character (20H) on
the terminal to complete the RESET routine and produce a RESET message on the terminal.

OPTION 2 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is CLEARED (ACC. 0
= 0) MCS BASIC-52 will produce the standard sign-on message upon return from the user supplied
RESET routine. The baud rate will be the one that was saved when the PROG6 option was used.

OPTION 3 FOR PROG6

If the CARRY BIT is SET (CARRY = 1) and BIT 0 of the ACCUMULATOR is SET (ACC. 0 = 1),
MCS BASIC-52 will execute the first program stored by the user in EPROM (starting address of the
program is 801OH) upon return from the user supplied RESET routine.

146

intJ MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

If these options are still not sufficient to address the needs of a specific application, one other option exists
and it functions as follows:

After RESET, MCS BASIC-52 initializes the SPECIAL FUNCTION REGISTERS SCON, TMOD, TCON,
and T2CON with the following respective values, 5AH, WH, 54H, and 34H. If the user places the character
OAAH in external CODE MEMORY location 200lH (remember CODE MEMORY is enabled by PSEN),
MCS BASIC-52 will CALL external CODE MEMORY location 2090H immediately after these special
function registers are initialized. No other registers or memory locations will be altered except that the
ACCUMULATOR will contain a OAAH and the DPTR will contain a 200lH.

Since MCS BASIC-52 does not write to the above mentioned Special Function Registers at any time except
during the RESET or power-up sequence the user has the option of modifying any of the Special Function
Registers with this RESET option. Upon returning from this RESET mode, the MCS BASIC-52 software
package will clear the internal memory of the 8052AH and proceed with the RESET routine. The PROG I
through PROG6 options will function as usual.

Now, suppose the user does not want to enter the normal RESET routines, or the user wants to implement
some type of "warm" start-up routine. This can be accomplished simple by initializing the necessary
Special Function Registers and then jumping back into either MCS BASIC-52's COMMAND mode or
RUN MODE. For a warm start-up or RESET (warm means that the MCS BASIC-52 device was RESET,
but power was not removed - i.e. the user hit the RESET button) the following must be initialized:

SCON, TMOD, TCON, T2CON, if the user does not want to use the values that MCS BASIC-52 supplies.

RCAP2H and RCAP2L must be loaded with the proper baud rate values. If the user has programmed an
EPROM with one of the PROGI through PROG6 options, the proper baud rate value will be stored in
external DATA MEMORY locations 800lH (RCAP2H) and 8002H (RCAP2L).

The STACK POINTER (Special Function Register SP) must be initialized with the contents of the STACK
POINTER SAVE location, which is in internal DATA MEMORY location 3EH. A MOV SP, 3EH assembly
language instruction will accomplishment the STACK POINTER initialization.

147

MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONL V)

After the above are initialized by the user supplied RESET routine, the user may enter MCS BASIC-52's
command mode by executing the following:

CLR A
UMP 30H·

Now, it is important to remember that the previous description applies only to a "warm" RESET with
power remaining to the MCS BASIC-52 system. This means that the user must also provide some way of
detecting the difference between a warm RESET and a power-on RESET. This usually involves some type
of flip-flop getting set with a power-on-clear signal from the users power supply. The details of imple
mentating this RESET detection mechanism will not be discussed here as the possible hardware options
vary depending upon the design.

The user may also implement a "cold start" reset option with the previously described reset mode. The
following code details what is necessary to implement a cold start option.

EXAMPLE:

ORg 2001H
I

DB
I

ORG

MOY
CLR
I

RESET1: MOY
D.JNZ

HOV
MOV

I

OAAH

2090H

RO,IOFFH
A

.RO,A
RO,RESETI

SP,'4DH
3EH,14DH

I TELL BASIC THAT RESET IS EXTERNAL

I LOCATION BASIC WILL CALL FOR RESET

I AT THIS POINT BASIC HAS PLACED A SAH IN
I SCON, A 10H IN TMOD, A 54H IN TCON AND
I A 34H IN T2CON

I FIRST CLEAR THE INTERNAL MEMORY
I LOAD RO WITH THE TOP OF INTERNAL MEMORY
I SET ACCUMULATOR • 0

I LOOP UNTIL ALL THE INTERNAL RAM IS CLEARED

I NOW SET UP THE STACK POINTER AND THE STACK
I POINTER HDLDING REgISTER
I 4DH IS THE INITIALIZED VALUE OF THE STACK
I THIS IS THE SP HDLDING REGISTER

I NOW CLEAR THE EXTERNAL RAM, IN THIS
EXAMPLE ASSUME THAT lFFFH BYTES OF RAM

I ARE AYAILABLE
I THE USER MUST CLEAR AT LEAST THE FIRST 512
I BYTES OF RAM FOR A COLD START RESET

MOY R3.'HIOH lFFFH
MOY Rl,'LOW lFFFH
MOV DPTR,'OFFFFH

148

MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

RESET2: INC DPTR I DPTR = 0 THE FIRST TIME THRU
CLR A
MOVX @DPTR,A I CLEAR THE RAM, A MEMORY TEST PROGRAM

I BE IN THIS LOOP
MOV A,R3 I NOW TEST FOR THE MEMORY LIMITS
C.JNE A, DPH,RESET2
MOV A,RI
C.JNE A, DPL,RESET2

WHEN YOU GET HERE, YOU ARE DONE

I NOW SET UP THE MEMORY POINTERS, FIRST MTOP
I

MOV DPTR,.IOAH I LOCATION OF MTOP IN EXTERNAL RAM
MOV A,.HIGH IFFFHI SAVE MTOP
MOVX @DPTR,A
INC DPTR I NOW. SAVE THE LOW BYTE
MOV A,.LOW IFFFH
MOVX @DPTR.A
I
I NOW SET UP THE VARTOP POINTER. WITH NO STRINGS.
I VARTOP • MEMTOP
I

MOV DPTR,.I04H I LOCATION OF VARTOP IN EXTERNAL RAM
MOV A,.HIGH IFFFH
MOVX @DPTR,A
INC DPTR
MOV A •• LOW IFFFH
MOVX @DPTR,A

NOW SAVE THE MATRIX POINTER "DIHUSE", THIS POINTER IS
DESCRIBED IN THE APPENDIX, WITH NO PROGRAM IN RAM,

I DIMUSE = 528 AFTER RESET
I

MOV DPTR,.IOBH I LOCATION OF DIMUSE IN EXTERNAL RAM
MOV A,.HIGH 528
MOVX @DPTR,A
INC DPTR
MOV A,.LOW 528
MOVX @DPTR,A
I

I NOW SAVE THE VARIABLE POINTER "VARUSE" THIS POINTER IS

COULD

I ALSO DESCRIBED IN THE APPENDIX, AFTER RESET VARUSE - VARTOP
I

MOV DPTR,.I06H I LOCATION OF VARUSE IN EXTERNAL RAM
MOV A,.HIGH IFFFH
MOVX @DPTR,A
INC DPTR
MOV A,.LOW IFFFH
MOVX @DPTR,A
I

I NOW SETUP BASICS CONTROL STACK AND ARGUMENT STACK
I

MOV
MOV
I

9H,.OFEH
IIH,.OFEH

I THIS INITIALIZES THE ARGUMENT STACK
I THIS INITIALIZES THE CONTROL STACK

I NOW TELL BASIC THAT NO PROGRAM IS IN RAM, THIS IS NOT NEEDED
I IF THE USER HAS A PROGRAM IN RAM
J
MOV
MOV
MOVX

DPTR,.512
A,.OIH
@DPTR,A

I LOCATION OF THE START OF A USER PROGRAM
I END OF FILE CHARACTER

149

MCS® BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

XTAL:

RESET3:

RESET4:

NOW PUSH THE CRYSTAL VALUE ON TO THE STACK AND LET BASIC
CALCULATE ALL CRYSTAL DEPENDENT PARAMETERS

I

S.JMP RESET3
I

DB SSH THIS IS THE FLOATINg POINT VALUE
DB OOH FOR AN 11. 0592 MHZ CRYSTAL
DB OOH
DB 92H
DB 05H
DB 11H

/

MoV DPTR,.XTAL / SET UP TO PUSH. CRYSTAL VALUE
MoV A,9 I gET THE ARQ STACK
CLR C
SUBB A,.6 / DECREMENT ARG STACK BY ONE FP NUMBER
Mov 9,A
MOV RO,A / SAVE THE CALCULATED ADDRESS IN RO
MoV P2,.1 I THIS IS THE ARG STACK PAGE ADDRESS
Mov Rl,.6 / NU.MBER OF BYTES TO TRANSFER
/

CLR A I TRANSFER ROM CRYSTAL VALUE TO THE
MoVC A.IA+DPTR / ARGUf1ENT STACK OF BASIC
MOVX IRO.A
INC DPTR I BUMP THE POINTERS
DEC RO
D.lNZ Rl,RESET4 I LOOP UNTIL THE TRANSFER IS COMPLETE
/

I NOW CALL BASIC TO DO ALL THE CRYSTAL CACULATIONS

MOV A •• 5S
LCALL 30H

I OPBYTE FOR CRYSTAL CALCULATION
, DO THE CALCULATION

NOW TELL BASIC WHERE START OF THE USER BASIC PROGRAM IS
/ BY LOADING THE START ADDRESS, IF THE PROGRAM IS IN EPROM
I 13H WOULD • HIGH S011H AND 14H - LOW S011H. ANYWAY

ADDRESS 13H:14H MUST POINT TO THE START OF THE BASIC
PROGRAM ,

MOV 13H,.HIGH 512/ THIS TELLS BASIC THAT THE START OF
MOV 14H,.LOW 512 J THE PROGRAM IS IN LOCATION 512

NOW THE SERIAL PORT MUST BE INITIALIZED. THE USER
/ CAN SET UP THE SERIAL PORT TO ANY DESIRED CONFIGURATION

HOWEVER, THIS DEMO CODE WILL SHOW THE AUrO BAUD
ROUTINE

J

MOV
MOV
MOV
.lB

R3,.OOH
Rl.'OOH
RO,.04H
RXD ••

/ INITIALIZE THE AUTO BAUD COUNTERS

/ LOOP UNTIL A START BIT IS RECEIVED

150

MCS$ BASIC-52

RESET OPTIONS (VERSION 1.1 ONLY)

I

RESETS:" D.JNZ RO,S I WASTE 8 CLOCKS INITIALLY, SIX CLOCKS

MSG:

CLR
MOV
SUBB
MOV
MOV
SUBB
MoV
MoV
.JNB
.JB
.JNB
MOY
MoV
I

C
A,Rl
A,'l
Rl. A
A,R3
A,'OOH
R3,A
RO,'3
RXD,RESETS
RXD,S
RXD,S
RCAP2H,R3
RCAP2L,R1

I IN THE LOOP (16) TOTAL
1 CLOCK (1)

1 CLOCK (2)
1 CLOCK (3)
1 CLOCK (4)
1 CLOCK (5)
1 CLOCK -- R3:Rl • R3:R1 - 1 (6)
1 CLOCK (7)
1 CLOCK (B)
:2 CLOCKS (10), WAIT FOR END OF SPACE
WAIT FOR THE SPACE TO END (20H)

I WAIT FOR THE STOP BIT
I LOAD THE TIMER 2 HOLDING REGISTERS

I NOW YOU CAN ADD A CUSTOM SIGN ON MESSAGE
I

MaV
MoV
SETB
MaV
LCALL

R3,.HIGH MaG I PUT ADDRESS OF MESSAGE IN R3:Rl
R1,.LOW MSO
52 I PR INT FROM ROM
A, 16 I OP BYTE TO PRINT TEXT STRINO
30H

I

I NOW OUTPUT A CR LF
I

MOV A,'7 I OP BYTE FOR CRLF
LCALL 30H
I

I GO TO THE COMMAND MODE
I

CLR A
.,IMP 30H
I

DB
DB

'CUSTOM SIGN ON MESSAGE'

I

END

22H I TERMINATES MESSAGE

151

intJ MCS® BASIC~52

RESET OPTIONS (VERSION 1.1 ONLY)

To Summarize, what the us.er must do to successfully implementi,a "COLD START? RESET:

1) The user must clear the internal RAM of the MCS BASIC-52 device and at least the first 512 bYtes of
external RAM memory.

2). The user must initialize the stack point~r (special function register -, SP) and the stack pointer holding
regist~r (internal RAM location 3EH) with a value that is between 4DH and· OEOH. 4DH gives MCS
BASIC-52 the maximum stack size.

3) The user must initialize the following pointers in external RAM. MTOP at location lOAH (high byte)
and 10BH (low byte), VARTOP at locations l04H (high byte) and l05H(low byte).DIMUSEat
locations 108H (high byte) and lO9H (low byte). VARUSE at locations 106H (high byte) and l07H
(low byte). Details of what needs to be in these locations, are presented in appendix 1.7 of this man'\lal.

4) The Control stack pointer (location 11H in internal memory) and the Argument stack pointer (location
09H in internal memory) must also be initiali,zed with the value OFEH. If the useris not going to assign
the XTAL (crystal) value in BASIC, then the XTAL value must be pushed, onto the argument stack
and the user must to an OPBYTE 58 call to MCS BASIC-52.

5) The User must also initialize the start address of a program. The start address is in locations 13H (high
byte) and 14H (low byte) of internal data memory. If the user BASIC program is in RAM, then 13H:
14H = 512, if the user program is the the first program in EPROM, then 13H: 14H = 8011H.

6) The user must finally initialize the serial port. Any scheme can be used (as long as it works!!)

The added reset options should go a long way toward making MCS BASIC-52configurable to any custom
application.

152

CHAPTER 12
Command/Statement Extensions (Version 1.1 Only)

MCS BASIC-52 VI.I provides a simple, but yet effective way for the user to add COMMANDS and/or
STATEMENTS to the ones that are provided on the chip. All the user must do is write a few simple
programs that will reside in external code memory. The step by step approach is as follows:

STEP 1

The user must first inform the MCS BASIC-52 device that the expansion options are available. This is
done by putting the character 5AH in CODE memory location 2oo2H. When MCS BASIC-52 enters the
command mode it will examine CODE memory location 2oo2H. If a 5AH is in this location, MCS BASIC-
52 will CALL external CODE memory location 2048H. The user must then write a short routine to SET
BIT 45 (2DH) , which is bit 5 of internal memory location 37 (decimal) and place this routine at code
memory location 2048H. Setting BIT 45 tells MCS BASIC-52 that the expansion option is available. The
following simple code will accomplish all that is stated above:

STEP 2

ORG 2002H
DB 5AH

OG 2048H
SETB 45
RET

With BIT 45 SET, MCS BASIC-52 will CALL external CODE memory location 2078H everytime it
attempts to tokenize a line that has been entered. At location 2078H, the user must load the DPTR (Data
Pointer) with the address of the user supplied lookup table, complete with tokens.

153

intJ MCS® BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

STEP 3

The user needs the following information to generate a user token table:

1) THE USER TOKENS ARE THE NUMB RES lOH THROUGH IFH (16 TOKENS AVAILABLE)

2) THE USER TOKEN TABLE BEGINS WITH THE TOKEN, FOLLOWED BY THE ASCII TEXT
THAT IS TO BE REPRESENTED BY THAT TOKEN, FOLLOWED BY A ZERO (OOH) INDICATING
THE END OF THE ASCII, FOLLOWED BY THE NEXT TOKEN.

3) THE TABLE IS TERMINATED WITH THE CHARACTER OFFH.

EXAMPLE:

ORQ 2078H
I
MOV DPTR.IUSER_TABLE
RET
I
ORQ 2200H I THIS DOES NOT NEED TO BE
I I IN THIS LOCATION

USER_TABLE:
I
DB 10H I FIRST TOKEN
DB 'DISPLAY' I USER KEYWORD
DB OOH IKEYWORD TERMINATOR
I
DB l1H ISECOND TOKEN
DB 'TRANSFER' I SECOND USER KEYWORD
DB OOH IKEYWORD TERMINATOR
I
DB 12H I THIRD TOKEN (UP TO 16)
DB 'ROTATE' I THIRD USER KEYWORD
DB OFFH lEND OF USER TABLE

This same user table is used when MCS BASIC-52 "de-tokenizes" a line during a LIST.

154

intJ MCS® BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

STEP 4

Step 3 tokenizes the user keyword, this means that MCS BASIC-52 translates the user keyword into the
user token. So, in the preceding example, the keyword TRANSFER would be replaced with the token
IlH. When MCS BASIC-52 attempts to execute the user token, it first makes sure that the user expansion
option BIT is set (BIT 45), then CALLS location 2070H to get the address of the user vector table. This
address is placed in the DPTR. The user vector table consist of series of Data Words that define the address
of the user assembly language routines.

EXAMPLE:

ORG

,
2070H ,LOCATION BASIC CALLS TO

,GET USER LOOKUP

HOV DPTR,IVECTOR_TABLE
RET ,

VECTOR_TABLE: ,
OW RUN_DISPLAY ,ADDRESS OF DISPLAY

,ROUTINE, TOKEN (10H)
OW RUN_TRANSFER, ADDRESS OF TRANSFER

,ROUTINE, TOKEN (11H)
OW RUN_ROTATE ,ADDRESS OF ROTATE

,ROUTINE. TOKEN (12H) ,
ORG 2300H ,AGAIN. THESE ROUTINES

,HAY BE PLACED ANYWHERE ,
RUN_DISPLAY:

, USER ASH CODE FOR DISPLAY GOES HERE ,
RUN_TRANSFER:

, USER ASH CODE FOR TRANSFER GOES HERE ,
RUN_ROTATE:

I
,USER ASH CODE FOR ROTATE GOES HERE

155

MCS® BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

Note that the ordinal position of the DATA WORDS in the user vector table must correspond to the token,
so the user statement with the token lOH must be the first DW entry in the vector table, llH, the second,
12H, the third, and so on. The order of the tokens in the user table is not important!! The following user
lookup table would function properly with the previous example:

EXAMPLE:

I

USER_TABLE:
I
DB
DB
DB
I

13H
'ROTATE'
OOH

DB 10H
DB 'DISPLAY'
DB OOH
I
DB
DB
DB

12H
'TRANSFER'
OFFH

I THE TOKENS DO NOT HAVE
ITO BE IN ORDER IN THE
IUSER LOOKUP TABLE

lEND OF TABLE

156

inter MCS® BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLy)

The user may also use the command/statement extension option to re-define the syntax of MCS BASIC-
52. This is done simply by placing your own syntax in the user table and placing the appropriate BASIC
token in front of your re-defined keyword. A complete listing of all MCS BASIC-52 tokens and keywords
are provided in the back of this chapter. MCS BASIC-52 will always list out the program using the user
defined systax, but it will still accept the standard keyword as a valid instruction. As an example, suppose
that the user would like to substitute the keyword HEXOUT for PHI., then the user would generate the
following entry in the user table:

EXAMPLE:

USER_TABLE:

DB
DB
DB ,

BFH
'HEXOUT'
OOH

DB 10H
DB 'DISPLAY'
DB OOH

i TOKEN FOR PH1.
iTO BE IN ORDER IN THE
,USER LOOKUP TABLE

REST OF USER_TABLE ,
DB OFFH i END OF TABLE

MCS BASIC-52 will now accept the keyword HEXOUT and it will function in a manner identical to PHI.
PHI. will still function correctly, however HEXOUT will be displayed when the user LIST a program.

157

MCS® BASIC-52

COMMAND/STATEMENT EXTENSIONS (VERSION 1.1 ONLY)

TOKEN KEYWORD TOKEN KEYWORD TOKEN KEYWORD

80H LET OBOH ABS OECH <=
8tH CLEAR OBtH INT OEDH <:>
82H PUSH OB2H SGN OEEH <:
83H GOTO OB3H NOT OEFH :>
84H PWM OB4H COS OFOH RUN
S5H PHO. OB5H TAN OF1H LIST
B6H UI OB6H SIN OF2H NULL
87H UO OB7H SQR OF3H NEW
B8H POP OBBH CBY OF4H CONT
S9H PRINT OB9H EXP OF5H PROG
89H P. OBAH ATN OF6H XFER
89H ? (V1.1 ONLY) OBBH LOG OF7H RAM
8AH CALL OBCH DBY OFSH ROM
8BH DIM OBDH XBY OF9H FPROG
8CH STRING OBEH PI OFAH-OFFH NOT USED
BOH BAUD OBFH RND
BEH CLOCK OCOH GET
8FH PH1. OCIH FREE
90H STOP OC2H LEN
9tH ONTIME OC3H XTAL
92H ONEXI OC4H MTOP
93H RETI OC5H TIME
94H DO OC6H IE
95H RESTORE OC7H IP
96H REM OC8H TIMERO
97H NEXT OC9H TIMERt
98H ONERR OCAH TIMER2
99H ON OCBH T2CON
9AH INPUT OCCH TCON
9BH READ OCDH TMOD
9CH DATA OCEH RCAP2
9DH RETURN OCFH PORTI
9EH IF ODOH PCON
9FH GOSUB ODtH ASC(
OAOH FOR OD2H USING(
OA1H WHILE OD2H U. (
OA2H UNTIL OD3H CHR(
OA3H END OD4H-ODFH NOT USED
OA4H TAB OEOH (

OA5H THEN OE1H-- ** OA6H TO OE2H * OA7H STEP OE3H +
OA8H ELSE OE4H I
OA9H spe OE5H
OAAH CR OE6H · XOR.
OABH IDLE OE7H · AND.
OACH aT@ (V1. t ONLY) OE8H · OR.
OADH LD@ (V1. 1 ONLY) OE9H - (NEGATE)
OAEH PGM (V1. 1 ONLY) OEAH =
OAFH RROM(V1. t ONLY) OEBH)=

158

CHAPTER 13
Mapping User Code Memory

You might have noticed by now that some of external CODE memory locations that MCS BASIC-52 calls
and uses are located around 2000H and some of the locations are located around 4000H. Specifically, they
are as follows:

LOCATION

2001H

2002H

2048H

2070H

2078H

2090H

4003H

400BH

4013H

401BH

4023H

402BH

4030H

4033H

4036H

·403CH

4100H-41FFH

FUNCTION

ON RESET, MCS BASIC-52 LOOKS FOR A OAAH IN THIS LOCATION, IF
PRESENT, CALLS LOCATION 2090H

MCS BASIC-52 EXAMINES THIS LOCATION TO SEE IF THE USER
WANTS TO IMPLEMENT THE COMMAND/STATEMENT EXTENSION OP
TION, A 05AH IS TO BE PLACED IN THIS LOCATION TO EVOKE THE
COMMAND/EXTENSION OPTION

MCS BASIC-52 CALLS THE LOCATION IF THE USER WANTS TO IMPLE
MENT THE COMMAND/STATEMENT EXTENSION OPTION. THE USER
WILL USUALLY SET BIT 45 THEN RETURN.

MCS BASIC-52 CALLS THIS LOCATION TO GET THE USER VECTOR TA
BLE ADDRESS WHEN THE COMMAND/STATEMENT EXTENSION OP
TION IS EVOKED. THE ADDRESS OF THE VECTOR TABLE IS PUT IN
THE DPTR BY THE USER.

MCS BASIC-52 CALLS THIS LOCATION TO GET THE USER LOOKUP TA
BLE ADDRESS WHEN THE COMMAND/STATEMENT EXTENSION OP-

. TION IS EVOKED. THE ADDRESS OF THE LOOKUP TABLE IS PUT IN
THE DPTR BY THE USER.

MCS BASIC-52 CALLS THIS LOCATION WHEN THE USER EVOKES THE
ASSEMBLY LANGUAGE RESET OPTION

EXTERNAL INTERRUPT 0

TIMER 0 INTERRUPT

EXTERNAL INTERRUPT 1

TIMER 0 INTERRUPT

SERIAL PORT INTERRUPT

TIMER 2 INTERRUPT

USER CONSOLE OUTPUT

USER CONSOLE INPUT

USER CONSOLE STATUS

USER PRINT@ OR LlST@ VECTOR

USER CALLS FORM 0 TO 7FH

159

intJ MCS®BASIC-S2

MAPPING USER CODE MEMORY

Other vectors between 2040H and' 2090H also exist, but they are mainly for testing purposes, but for your
infonnation they are:

LOCATION

2040H

2050H

2060H

2068H

2088H

FUNCTION

TRAP LOCATION FOR EXTERNAL INTERRUPT 0 IF BIT 26H OF INTER
NAL RAM IS SET AND THE DMA OPTION IS EVOKED. PSW IS NOT
PUSHED ONTO STACK. INTERRUPTS OF COURSE, MUST BE ENA- .
BLED. ALSO, THIS LOCATION WILL BE CALLED FOR CONSOLE OUT~
PUT IF BIT 2CH OF INTERNAL RAM IS SET.

TRAP LOCATION FOR SERIAL PORT INTERRUPT IF BIT 1 FH OF INTER
NAL RAM IS SET. PSW IS PUSHED ONTO THE STACK.

CALLED FOR CONSOLE INPUT IF BIT 32H OF INTERNAL RAM IS SET.

CALLED FOR CONSOLE STATUS CHECK IF BIT 32H OF INTERNAL RAM
IS SET.

TIMER 1 INTERRUPT TRAP IF BIT 1AH OF INTERNAL RAM IS SET. PSW
·IS PVSHED ONTO THE STACK.

Contrary to popular belief, these vectors were not chosen to force the user to buy bigger EPROMS. They
are chosen so that addresses 2000Hand 4000H can be overlayed and create no conflicts. The Overlayed
addresses would appear as 200 lH , 2002H, 4003H, 400BH, 40 13H , 401BH, 4023H, 402BH, 4030H,
4033H, 4036H, 4039H,2040H, 2048H, 2050H, 2060H, 2068H, 2070H, 2078H, 2088H, 2090H, and
4100H thru 41FFH. The diagram on the next page illustrates how to implement overlapping addresses for
2000Hand 4000H. By using overlapping addresses, the user can implement all MCS BASIC-52 user
expansion options with only a few hundred bytes of EPROM.

The reason this type of addressing scheme was chosen is that it. permits the designer to offer custom
versions of MCS BASIC-52, by using the vector locations in the 2000H region. And give the designers
OEM the ability to take advantage of the I/O vectors located in the 4000H region.

As an added note, the MCS-51 instruction set is object relocatable on 2K boundaries if no LCALL or
UMP instructions are used. This means that it is possible for the designer to ORG a program for 2000H
and actually execute the program at 2800H, 3000H, 3800H, etc. If the user does not use the LCALL or
UMP instructions.

160

<.71(+21 V

74117 10K

I
+5

+5 +5

IOMFD ..L
f4.7K

lK
Pl.5 PIA

~7 L----t 2N4403 f-- RST

~ +5- E3
8.2K

174LS08 7 10K lN270

f
E2 4

b!J ,!, =
E' L

r'·7K

S
1

~-
+S-r----l

3 Vpp

~ A2 8 174LS08
8K L-- PGM

P2.7 X8 USER C,
~Al i

ICTAL 1 P2.6 STATIC EXPANSION

~ch ~AO
ij

L
RAM EPROM

P2.S

CE CE L-.....c CE
~ =r= P2.4 1.'2 I- 1.,2 f....----- 1.'2

ICTAL2
P2.3 1.11 I- 1.11 f....----- 1.11

"=" C,=C2

+5V

= 30pF P2.2 1.'0 I- 1.'0 ~ 1.,0
FOR
XTALS P2.1 As I- As f....----- As
4IIpF 2

......
CJ)

FOR P2.o. As I- As f....----- As 7
CERAMIC 1 RESONATORS

PO.7 0., I- 0., f....----- 0., 2
PO.6 0,; I- 0,; f....----- 0,; 8
PO.S Ds l- Ds f....----- Ds
POA D. I- D. f....----- O.
PO.3 Da I- D3 f....----- D3
PO.2 Do I-- Do f....----- 02
PO.l D, I- D, f....----- 0,
PO.o Do I- Do ~ Do

+SV-+- 'OK
l- I-- f....-----0., 007 1.7 1.7 1.7

P1.3

~ 0,; 7 006 I- As I- As f....----- As
lis • Dos I- As I- As f....----- AS

ALE 0. L Do4 I- '" I-- '" f....----- '" --.....-
Da s Do3 I- Aa I- Aa ~ Aa

SERIAL Do 3 Do2 I- Ao I- 1.2 f--- 1.2
IN \Vii 0, 7 Do, I- Al I- A, f--- A,

Do
3 Duo I- Ao I- Ao f--- Ao 1489 iiiit-'-- +5

PiEN ~ GNODE Vee f- WE liE liE liE
SERIAL

EA ~ ~ I ,_ OUT

Vee r-
GND t1.- -

74LS08}-

SI CLOSED PRODUCES OVERLAPPING ADDRESSES
S3 CLOSED PERMITS 27128 TO BE AT ADDRESS _. 1.'3 MUST BE CONNECTED ON 27'28

Overlapping user EPROM address space

inter

APPENDIX A

1.1 MEMORY USAGE (Version 1.0)

The following list specifies what locations in internal .and external memory MCS BASIC-52 uses, and
what these locations are used for. This information can largely be regarded as "for your information,"
but it can be used to do things like alter the pulse width of a EPROM programming pulse, etc.

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX

OOH THRU 07H
08H
09H
OAH
OBH THRU OFH
10H
11H
12H
13H
14H
15H
16H
17H
18H THRU 21H

22H

BIT 22.0H
BIT 22.1H
BIT 22.2H
BIT 22.3H
BIT 22.4H
BIT 22.5H
BIT 22.6H
BIT 22.7H

23H

BIT 23.0H
BIT 23.1H
BIT 23.2H
BIT 23.3H
BIT 23.4H
BIT23.5H
BIT 23.6H
BIT 23.7H

MCS BASIC-52 USAGE

"WORKING REGISTER BANK"
BASIC TEXT POINTER - LOW BYTE
ARGUMENT STACK POINTER
BASIC TEXT POINTER - HIGH BYTE
TEMPORARY BASIC STORAGE
READ TEXT POINTER - LOW BYTE
CONTROL STACK POINTER
READ TEXT POINTER - HIGH BYTE
START ADDRESS OF BASIC PROGRAM - HIGH BYTE
START ADDRESS OF BASIC PROGRAM - LOW BYTE
NULL COUNT
PRINT HEAD POSITION FOR OUTPUT
FLOATING POINT OUTPUT FORMAT TYPE
NOT USED - RESERVED FOR USER

BITS USED SPECIFICALLY AS FOLLOWS

SET WHEN "ONTIME" STATEMENT IS EXECUTED
SET WHEN BASIC INTERRUPT IN PROGRESS
SET WHEN "ONEX1" STATEMENT IS EXECUTED
SET WHEN "ON ERR" STATEMENT IS EXECUTED
SET WHEN "ONTIME" INTERRUPT IS IN PROGRESS
SET WHEN A LINE IS EDITED
SET WHEN EXTERNAL INTERRUPT IS PENDING
WHEN SET, CONT COMMAND WILL WORK.

BITS USED SPECIFICALLY AS FOLLOWS

USED AS FLAG FOR "GET" OPERATOR
SET WHEN INVALID INTEGER FOUND IN TEXT
TEMPORARY BIT LOCATION
CONSOLE OUTPUT CONTROL, 1 = LINE PRINTER
CONSOLE OUTPUT CONTROL, 1 = USER DEFINED
BASIC ARRAY INITIALIZATION BIT
CONSOLE INPUT CONTROL, 1 = USER DEFINED
RESERVED

162

MCS® BASIC-52

1.1 MEMORY USAGE

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX

24H

BIT 24.0H
BIT 24.1H
BIT 24.2H
BIT 24.3H
BIT 24.4H
BIT 24.SH
BIT 24.6H
BIT 24.7H

2SH

BIT 2S.0H
BIT 2S.1H
BIT 2S.2H
BIT 2S.3H
BIT 2S.4H
BIT 2S.SH
BIT 2S.6H
BIT 2S.7H

26H

BIT 26.0H
BIT 26.1H
BIT 26.2H
BIT 26.3H
BIT 26.4H
BIT 26.SH
BIT 26.6H
BIT 26.7H

MCS BASIC-52 USAGE

BITS USED SPECIFICALLY AS FOLLOWS

STOP STATEMENT OR CONTROL-C ENCOUNTERED
o = HEX INPUT, 1 = FP INPUT
o = RAM MODE, 1 = ROM MODE
ZERO FLAG FOR DOUBLE BYTE COMPARE
SET WHEN ARGUMENT STACK HAS A VALUE
RETI INSTRUCTION EXECUTED
RESERVED
RESERVED

BITS USED SPECIFICALLY AS FOLLOWS

RESERVED, SOFTWARE TRAP TEST
FIND THE END OF PROGRAM, IF SET
RESERVED
INTERRUPT STATUS SAVE BIT
SET WHEN PROGRAM EXECUTION IS COMPLETE
RESERVED, EXTERNAL TRAP TEST
SET WHEN CLOCK1 EXECUTED, ELSE CLEARED
SET WHEN BASIC IS IN THE COMMAND MODE

BITS USED SPECIFICALLY AS FOLLOWS

SET TO DISABLE CONTROL-C
SET TO ENABLE "FAKE" DMA
RESERVED
SET TO EVOKE "INTELLIGENT" PROM PROGRAMMING
SET TO PRINT TEXT STRING FROM ROM
RESERVED
SET TO SUPPRESS ZEROS IN HEX MODE PRINT
SET TO EVOKE HEX MODE PRINT

163

inter MCS® BASIC-52 .

1.1 MEMORY USAGE

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX

27H
28H THRU 3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H

49H

4AH
4BH
4CH
4DH THRU OFFH

MCS BASIC-52 USAGE

"BIT" ADDRESSABLE BYTE COUNTER
BIT AND BYTE FLOATING POINT WORKING SPACE
INTERNAL STACK POINTER HOLDING REGISTER
LENGTH OF USER DEFINED STRING - $
TIMER 1 RELOAD LOCATION - HIGH BYTE
TIMER 1 RELOAD LOCATION - LOW BYTE
BASIC TEXT POINTER SAVE LOCATION - HIGH BYTE
BASIC TEXT POINTER SAVE LOCATION - LOW BYTE
RESERVED
TRANSCENDENTAL FUNCTION TEMP STORAGE
TRANSCENDENTAL FUNCTION TEMP STORAGE
MILLI-SECOND COUNTER FOR REAL TIME CLOCK
SECOND COUNTER FOR REAL TIME CLOCK - HIGH
BYTE
SECOND COUNTER FOR REAL TIME CLOCK - LOW
BYTE
TIMER 0 RELOAD FOR REAL TIME CLOCK
SOFTWARE SERIAL PORT BAUD RATE - HIGH BYTE
SOFTWARE SERIAL PORT BAUD RATE - LOW BYTE
8052AH STACK SPACE AND USER WORKING SPACE

164

inter MCS® BASIC-52

1.1 MEMORY USAGE

EXTERNAL MEMORY ALLOCATION

LOCATION(S) IN HEX

OOH AND 01H
02H AND 03H
04H
05H AND 06H
07H THRU 49H
50H THRU 5FH
60H THRU OFEH
OFFH
100H
101H
102H AND 103H
104H AND 105H
106H AND 107H
108H AND 109H
10AH AND 10BH
10CH AND 10DH
10EH THRU 113H
114H THRU 11FH
120H AND 121H
122H AND 123H
124H THRU 127H
128H AND 129H
12AH AND 12BH
12CH
12DH THRU 1 FEH

MCS BASIC-52 USAGE

"LAST" END OF FILE ADDRESS FOR RAM FILE (H-L)
CURRENT END OR FILE ADDRESS FOR RAM FILE (H-L)
LENGTH OF THE CURRENT EDITED LINE
LN NUM IN BINARY OF CURRENT EDITED LINE (H-L)
BASIC INPUT BUFFER
FLOATING POINT OUTPUT TEMP
CONTROL STACK
CONTROL STACK OVERFLOW
LOCATION TO SAVE "GET" CHARACTER
LOCATION TO SAVE ERROR CHARACTER CODE
LOCATION TO GO TO ON USER "ON ERR" (H-L)
TOP OF VARIABLE STORAGE (H-L)
FP STORAGE ALLOCATION (H-L)
MEMORY ALLOCATED FOR MATRICES (H-L)
TOP OF MEMORY ASSIGNED TO BASIC (H-L)
RANDOM NUMBER SEED (H-L)
CRYSTAL VALUE
FLOATING POINT TEMPS
LOCATION TO GO TO ON ONEX1 INTERRUPT (H-L)
NUMBER OF BYTES ALL.OCATED FOR STRINGS (H-L)
ONTIME INTERRUPT AND LINE NUMBER (H-L)
"NORMAL" PROM PROGRAMMER TIME OUT (H-L)
"INTELLIGENT" PROM PROGRAMMER TIME OUT (H-L)
RESERVED
ARGUMENT STACK

NOTE: (H-L) means HIGH BYTE - LOW BYTE, in external memory all 16 bit binary numbers
are stored with the HIGH BYTE in the first (lower order) address and the LOW BYTE in the
next sequential address.

165

inter MCS® BASIC-52

1.1 MEMORY USAGE (VERSION 1.1)

The following list specifies what locations in internal and external memory locations are used by Version
1.1 of MCS BASIC-52. Any differences between V1.0 and V1.1 are in bold face type.

INTERNAL MEMORY ALLOCATION: (VERSION 1.1)

LOCATION(S) IN HEX

OOH THRU 07H
OSH
09H
OAH
OBH THRU OFH

10H
11H
12H
13H
14H
15H
16H
17H
1SH THRU 21H

22H

BIT 22.0H
BIT 22.1H
BIT 22.2H
BIT 22.3H
BIT 22.4H
BIT 22,5H
BIT 22.6H
BIT 22.7H

23H

BIT 23.0H
BIT 23.1H
BIT 23.2H
BIT 23.3H
BIT 23.4H
BIT 23.5H
BIT 23.6H
BIT 23.7H

MCS BASIC-52 USAGE

"WORKING REGISTER BANK"
BASIC TEXT POINTER - LOW BYTE
ARGUMENT STACK POINTER
BASIC TEXT POINTER - HIGH BYTE
TEMPORARY BASIC STORAGE (Available to usei' in BASIC
CALLS to ASM routines)
READ TEXT POINTER - LOW BYTE
CONTROL STACK POINTER
READ TEXT POINTER - HIGH BYTE
START ADDRESS OF BASIC PROGRAM - HIGH BYTE
START ADDRESS OF BASIC PROGRAM - LOW BYTE
NULL COUNT
PRINT HEAD POSITION FOR OUTPUT
FLOATING POINT OUTPUT FORMAT TYPE
NOT USED - RESERVED FOR USER

BITS USED SPECIFICALLY AS FOLLOWS

SET WHEN "ONTIME" STATEMENT IS EXECUTED
SET WHEN BASIC INTERRUPT IN PROGRESS
SET WHEN· "ONEX1" STATEMENT IS EXECUTED
SET WHEN "ON ERR" STATEMENT IS EXECUTED
SET WHEN "ONTIME" INTERRUPT IS IN PROGRESS
SET WHEN A LINE IS EDITED
SET WHEN EXTERNAL INTERRUPT IS PENDING
WHEN SET, CO NT COMMAND WILL WORK

BITS USED SPECIFICALLY AS FOLLOWS

USED AS FLAG FOR "GET" OPERATOR
SET WHEN PRINT@ OR LIST@ IS EVOKED
RESERVED, TRAPS TIMER 1 INTERRUPT
CONSOLE OUTPUT CONTROL, 1 = LINE PRINTER
CONSOLE OUTPUT CONTROL, 1 = USER DEFINED
BASIC ARRAY INITIALIZATION BIT
CONSOLE INPUT CONTROL, 1 = USER DEFINED
RESERVED, USED TO TRAP SERIAL PORT INTERRUPT

166

MCS® BASIC-52

INTERNAL MEMORY ALLOCATION (VERSION 1.1)

LOCATION(S) IN HEX

24H

BIT 24.0H
BIT 24.1H
BIT 24.2H
BIT 24.3H
BIT 24.4H
BIT 24.SH
BIT 24.6H
BIT 24.7H

2SH

BIT 2S.0H
BIT 2S.1H
BIT 2S.2H
BIT 2S.3H
BIT 25.4H
BIT 25.5H
BIT 2S.6H
BIT 2S.7H

26H

BIT 26.0H
BIT 26.1H
BIT 26.2H
BIT 26.3H
BIT 26.4H
BIT 26.5H
BIT 26.6H
BIT 26.7H

MCS BASIC-52 USAGE

BITS USED SPECIFICALLY AS FOLLOWS

STOP STATEMENT OR CONTROL-C ENCOUNTERED
USER IDLE BREAK BIT
SET DURING AN INPUT INSTRUCTION
RESERVED
SET WHEN ARGUMENT STACK HAS A VALUE
RETI INSTRUCTION EXECUTED
RESERVED, TRAPS EXTERNAL INTERRUPT 0
SET BY USER TO SIGNIFY THAT A VALID LIST@ OR
PRINT@ DRIVER IS PRESENT

BITS USED SPECIFICALLY AS FOLLOWS

RESERVED, SOFTWARE TRAP TEST
FIND THE END OF PROGRAM, IF SET
SET DURING A DIM STATEMENT
INTERRUPT STATUS SAVE BIT
RESERVED, INPUT TRAP
SET TO SIGNIFY EXPANSION IS PRESENT
SET WHEN CLOCK1 EXECUTED, ELSE CLEARED
SET WHEN BASIC IS IN THE COMMAND MODE

BITS USED SPECIFICALLY AS FOLLOWS

SET TO DISABLE CONTROL-C
SET TO ENABLE "FAKE" DMA
RESERVED,OUTPUTTRAP
SET TO EVOKE "INTELLIGENT" PROM PROGRAMMING
SET TO PRINT TEXT STRING FROM ROM
SET WHEN CONTROL-S ENCOUNTERED
SET TO SUPPRESS ZEROS IN HEX MODE PRINT
SET EVOKE HEX MODE PRINT

167

MCS® . BASIC-52

INTERNAL MEMORY ALLOCATION· (VERSION 1.1). i -..

LOCATION(S) IN HEX

27H
28H THRU 3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H

49H

4AH
4BH
4CH
4DH THRU OFFH

MCS BASIC-52 USAGE

"BIT" ADDRESSABLE BYTE COUNTER
BIT AND BYTE FLOATING POINT WORKING SPACE
INTERNAL STACK POINTER HOLDING REGISTER
LENGTH OF USER DEFINED STRING - $
TIMER 1 RELOAD LOCATION - HIGH BYTE·
TIMER 1 RELOAD LOCATION - LOW BYTE
BASIC TEXT POINTER SAVE LOCATION - HIGH BYTE
BASIC TEXT POINTER SAVE LOCATION - LOW BYTE
RESERVED
TRANCENDENTAL FUNCTION TEMP STORAGE
TRANCENDENTAL FUNCTION TEMP STORAGE
MILLI-SECOND COUNTER FOR REAL TIME CLOCK
SECOND COUNTER FOR REAL TIME CLOCK - HIGH
BYTE
SECOND COUNTER FOR REAL TIME CLOCK -,- LOW
BYTE
TIMER 0 RELOAD FOR REAL TIME CLOCK ..
USER ARGUMENT FORONTIME - HIGH BYTE
USER ARGUMENT FORONTIME - LOW BYTE
8052AH STACK SPACE AND USER WORKING SPACE·

168

inter MCS~ BASIC-52

EXTERNAL MEMORY ALLOCATION (VERSION 1.1)

LOCATION(S) IN HEX

OOH THRU 03H
04H
05H AND 06H
07H THRU S6H
S6H THRU SOH
SEH
5FH
60H THRU OFEH
OOFH
100H
101H
102H AND 103H
104H AND 105H
106H AND 107H
108H AND 109H
10AH AND 10BH
10CH AND 10DH
10EH THRU 113H
114H THRU 11FH
120H AND 121H
122H AND 123H
124H AND 12SH
126H AND 127H
128H AND 129H
12AH AND 12BH
12CH
12DH THRU 1 FEH

MCS BASIC-52 USAGE

NOT USED, RESERVED
LENGTH OF THE CURRENT EDITED LINE
LN NUM IN BINARY OF CURRENT EDITED LINE (H-L)
BASIC INPUT BUFFER
BINARY TO INTEGER TEMP
USED FOR RUN TRAP MODE (= 34H)
USED FOR POWER-UP TRAP (= OASH)
CONTROL STACK
CONTROL STACK OVERFLOW
LOCATION TO SAVI; "GET" CHARACTER
LOCATION TO SAVE ERROR CHARACTER CODE
LOCATION TO GO TO ON USER "ON ERR" (H-L)
TOP OF VARIABLE STORAGE (H-L)
FP STORAGE ALLOCATION (H-L)
MEMORY ALLOCATED FOR MATRICIES (H-L)
TOP OF MEMORY ASSIGNED TO BASIC (H-L)
RANDOM NUMBER SEED (H-L)
CRYSTAL VALUE
FLOATING POINT TEMPS
LOCATION TO GO TO ON ONEX1 INTERRUPT (H-L)
NUMBER OF BYTES ALLOCATED FOR STRINGS (H-L)
SOFTWARE SERIAL PORT BAUD RATE (H-L)
LINE NUMBER FOR ONTIME INTERRUPT (H-L)
"NORMAL" PROM PROGRAMMER TIME OUT (H-L)
"INTELLIGENT" PROM PROGRAMMER TIME OUT (H-L)
RESERVED
ARGUMENT STACK

NOTE: (H-L) still means HIGH BYTE - LOW BYTE, in external memory all 16 bit binary numbers
are stored with the HIGH BYTE in the first (lower order) address and the LOW BYTE in the next sequential
address.

169

inter MCS® BASIC-52

1.2 USING THE PWMSTATEMENT

The PWM statement can be used to generate quite accurate frequencies. The following table lists the reload
values 8 octaves of an equal tempered chromatic scale. The reload values are for the first two arguments
of the PWM statement, so it is assumed that a square wave is being generated. The reload values assume
a 11.0592 MHz crystal.

IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUENCY RELOAD RELOAD

C 1 32.703 32.704 14090 370AH
C# 1 34.648 34.649 13299 33F3H
0 1 36.708 36.708 12553 3109H
0# 1 38.891 38.889 11849 2E49H
E 1 41.203 41.202 11184 2BBOH
F 1 43.654 43.653 10556 293CH
F# 1 46.246 46.215 9963 26EBH
G 1 48.999 49.000 9404 24BCH
G# 1 51.913 51.915 8876 22ACH
A 1 55.000 55.001 8378 20BAH
A# 1 58.270 58.270 7908 1EE4H
B 1 61.735 61.736 7464 1D28H
C 2 65.406 65.408 7045 1B85H
C# 2 69.296 69.293 6650 19FAH
0 2 73.416 73.411 6277 1885H
0# 2 77.782 77.785 5924 1724H
E 2 82.406 82.403 5592 15D8H
F 2 87.308 87.306 5278 149EH
F# 2 92.498 92.493 4982 1376H
G 2 97.998 98.000 4702 125EH
G# 2 103.826 103.830 4438 1156H
A 2 110.000 110.002 4189 105DH
A# 2 116.540 116.540 3954 OF72H
B 2 123.470 123.472 3732 OE94H
C 3 130.812 130.798 3523 ODC3H
C# 3 138.592 138.586 3325 OCFDH
0 3 146.832 146.845 3138 OC42H
0# 3 155.564 155.570 2962 OB92H
E 3 164.812 164.807 2796 OAECH
F 3 174.616 174.612 2639 QA4FH
F# 3 184.996 184.986 2491 09BBH
G 3 195.996 196.001 2351 092FH
G# 3 207.652 207.661 2219 08ABH
A 3 220.000 219.952 2095 082FH
A# 3 233.080 233.080 1977 07B9H
B 3 246.940 246.946 1866 074AH

170

inter MCS® BASIC-52

1.2 USING THE PWM STATEMENT

IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUENCY RELOAD RELOAD

C 4 261.624 261.669 1761 06E1H
C# 4 277.184 277.256 1662 067EH
0 4 293.664 293.690 1569 0621H
0# 4 311.128 311.141 1481 05C9H
E 4 329.624 329.614 1398 0576H
F 4 349.232 349.355 1319 0527H
F# 4 369.992 370.120 1245 04DDH
G 4 391.992 391.836 1176 0498H
G# 4 415.304 415.135 1110 0456H
A 4 440.000 440.114 1047 0417H
A# 4 466.160 465.925 989 03DDH
B 4 493.880 493.890 933 03A5H
C 5 523.2.48 523.042 881 0371H
C# 5 554.368 554.512 831 033FH
0 5 587.238 587.006 785 0311H
0# 5 622.256 621.862 741 02E5H
E 5 659.248 659.228 699 02BBH
F 5 698.464 698.182 660 0294H
F# 5 739.984 739.647 623 026FH
G 5 783.984 783.674 588 024CH
G# 5 830.608 830.270 555 022BH
A 5 880.000 879.389 524 020CH
A# 5 932.320 932.793 494 01EEH
B 5 987.760 986.724 467 01D3H
C 6 1046.496 1047.272 440 01B8H
C# 6 1108.736 1107.692 416 01AOH
0 6 1174.656 1175.510 392 0188H
0# 6 1244.512 1245.405 370 0172H
E 6 1318.496 1320.343 349 015DH
F 6 1396.928 1396.364 330 014AH
F# 6 1479.968 1481.672 311 0137H
G 6 1567.968 1567.347 294 0126H
G# 6 1661.216 1663.538 277 0115H
.A 6 1760.000 1758.779 262 0106H
A# 6 1864.640 1865.587 247 00F7H
B 6 1975.520 1977.682 233 00E9H

171

inter MCS® BASIC-52

1.2 USING THE PWM STATEMENT

IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUENCY RELOAD RELOAD

C 7 2092.992 2094.545 220 OODCH
C# 7 2217.472 2215.385 208 OODOH
0 7 2349.312 2351.020 196 00C4H
0# 7 2489.024 2490.811 185 00B9H
E 7 2636.992 2633.143 175 OOAFH
F 7 2793.856 2792.727 165 00A5H
F# 7 2959.936 2953.846 156 009CH
G 7 3135.936 3134.694 147 0093H
G# 7 3322.432 3315.108 139 008BH
A 7 3520.000 3517.557 131 0083H
A# 7 3729.280 3716.129 124 007CH
B 7 3951.040 3938.362 117 0075H
C 8 4185.984 4189.091 110 006EH
C# 8 4434.944 4430.770 104 0068H
0 8 4698.624 4702.041 98 0062H
0# 8 4987.048 5008.695 92 005CH
E 8 5273.984 5296.552 87 0057H
F 8 5587.712 5619.512 82 0052H
F# 8 5919.872 5907.692 78 004EH
G 8 6217.872 6227.027 74 004AH
G# 8 6644.864 6678.261 69 0045H
A 8 7040.000 7089.231 65 0041H
A# 8 7458.560 7432.258 62 003EH
B 8 7902.080 7944.827 58 003AH

172

inter MCS® BASIC-52

1.2 USING THE PWM STATEMENT

The following program generates the appropriate reload values for the PWM statement, using any crystal.
The user enters the desired frequency and the crystal and the program determined the reload values and
errors.

)10 INPUT "ENTER CRYSTAL FREQUENCY - ",X
:'20 T=12/X
)30 INPUT "ENTER DESIRED FREQUENCY FOR P'''M - ", F
)40 Fl=1/F
)50 C=(F1/T)/2 : REM CALCULATE RELOAD VALUE
)60 IF C<'20 THEN 30
)70 C1=C-INT(C) : REM CALCULATE FRACTION
)80 IF C1<'. 5 THEN 90 : C=C+1
)90 PRINT: PRINT "THE DESIRED FREQUENCY IS - ".X. "HZ"
)100 C=INT(C) : PRINT
)110 PRINT "THE ACTUAL FREQUENCY IS - ". 1/(2*C*T), "HZ"
)120 PRINT
)130 PRINT "THE RELOAD VALUE FOR pwr1 IS - ". C." IN HEX -
)140 INPUT "ANOTHER FREQUENCY, 1=YES, O=NO - ",Q
)150 IF 0=1 THEN 20

173

" . , . PH1. C

inter MCS® BASIC .. 52

1.3 BAUD RATES AND CRYSTALS

The 16 bit auto-reload timer/counter (TIMER2) thatis used to generate baud rates for the MCS BASIC-52
device is capable of generating accurate baud rates with a number of crystals . .The following is a list of
crystals that will accurately generate 9600 baud on the MCS BASIC;::-52 device. Additionally, the crystal
values on the left hand side of the table will accurately generate 19200 baud.

XTAL RCAP2 RELOAD XTAL RCAP2 RELOAD

3680400 65524 3993600 65523
4300800 65522 4608000 65521
4915200 65520 5222400 65519
5529600 65518 5836800 65517
6144000 65516 6451200 65515
6758400 65514 7065600 65513
7372800 65512 7680000 65511
7987200 65510 8294400 65509
8601600 65508 8908800 65507
9216000 65506 9523200 65505
9830400 65504 10137600 65503

10444800 65502 10752000 65501
11059200 65500 11366400 65499
11673600 65498 11980800 65497

With the crystals listed above, the accuracy of the baud rate generator and the REAL TIME CLOCK will
depend ONLY on the absolute accuracy of the crystal. Note that the baud rate generator for the 8052AH
is so accurate that any crystal above 10 MHz will generate 9600 baud to within 1.5% accuracy.

174

intJ MCS® BASIC-52

1.3 BAUD RATES AND CRYSTALS

The following program generates the appropriate TIMER2 reload values for a given baud rate. The user
supplies the system clock frequency and the desired baud rate and the program calculates the proper
TIMER2 reload value. Additionally, percent error, for both the baud rate generator and MCS BASIC-52's
REAL TIME CLOCK are calculated and displayed.

)10 INPUT"ENTER CRYSTAL - It, X
)20 INPUT"ENTER BAUD RA'TE - ", B
)30 R-X/(32*B):T-X/76800
)40 RI-R-INT(R):Tl=T-INT(T)
:':50 IF R 1 (. 5 THEN 80
)60 Rl=I-Rl
)70 R=R+l
)80 IF TIC.5 THEN 110
)90 Tl=I-Tl
)100 T-T+l
)110 PRINT "TIMER2 RELOAD VALUE IS - ",USING(tttttttttttt).INT(65536-R)
)120 PRINT "BAUD RATE ERROR IS - ",USING(tttt. tttttt) , (Rl/R)*100, "X"
)130 PRINT "REAL TIME CLOCK ERROR IS - "(Tl/T)*100, "X"

175

MCS® BASIC"52

1.4 QUICK REFERENCE

COMMANDS:

COMMAND FUNCTION EXAMPLE(S)

RUN Execute a program RUN

CONT CONTinue after a STOP or control-C CO NT

LIST LIST program to the console device LIST
LIST 10-50

LlST# LIST program to serial printer LlST#
LlST# 50

LlST@ LIST program to user driver (version 1.1 LlST@
only) LlST@ 50

NEW 'erase the program stored in RAM NEW

NULL set NULL count after carriage return- NULL
line feed NULL 4

RAM evoke RAM mode, .current program in RAM
READIWRITE memory

ROM evoke ROM mode, current program in ROM
ROM/EPROM memory ROM 3

XFER transfer a program from ROM/EPROM to XFER
RAM

PROG save the current program in EPROM PROG

PROG1 save baud rate information in EPRO", PROG1

PROG2 save baud rate information in EPROM PROG2
and execute program after RESET

PROG3 save baud rate and MTOP information in PROG3
EPROM (version 1.1 only)

PROG4 save baud rate and MTOP information in PROG4
EPROM and execute program after
RESET (version 1.1 only)

176

intJ MCS® BASIC-52

1.4 QUICK REFERENCE

COMMANDS:
COMMAND FUNCTION EXAMPLE(S)

PROG5 same as PROG4 except that external PROG5·
RAM is not cleared on RESET or power
up if external RAM contains a OA5H in
location 5EH (version 1.1 only)

PROG6 same as PROG6 except that external PROG6
code location 4039H is CALLED after
RESET (version 1.1 only)

FPROG save the current program in EPROM FPROG
using the INTElligent algorithm

FPROG1 save baud rate information in EPROM FPROG1
using the INTElligent algorithm

FPROG2 save baud rate information in EPROM FPROG2
and execute program after RESET, use
INTElligent algorithm

FPROG3 same as PROG3, except INTElligent FPROG3
programming algorithm is used (version
1.1 only)

FPROG4 same as PROG4, except INTElligent FPROG4
programming algorithm is used (version
1.1 only)

FPROG5 same as PROG5, except INTElligent FPROG5
programming algorithm is used (version
1.1 only)

FPROG6 same as PROG6, except INTElligent FPROG6
programming algorithm is used (version
1.1 only)

177

intJ MCS® BASIC-52

1.4 QUICK REFERENCE

STATEMENTS:

STATEMENT FUNCTION EXAMPLE(S)

BAUD set baud rate for line printer port BAUD 1200

CALL CALL assembly language program CALL 9000H

CLEAR CLEAR variables, interrupts and Strings CLEAR

CLEARS CLEAR Stacks CLEARS

CLEARI CLEAR Interrupts CLEARI

CLOCK1 enable REAL TIME CLOCK CLOCK1

CLOCKO disable REAL TIME CLOCK CLOCKO

DATA DATA to be read by READ statement DATA 100

READ READ data in DATA statement READ A

RESTORE RESTORE READ pointer RESTORE

DIM allocate memory for arrayed variables DIM A(20)

DO set up loop for WHILE or UNTIL DO

UNTIL test DO loop condition (loop if false) UNTIL A=10

WHILE test DO loop condition (loop if true) WHILE A=B

END terminate program execution END

FOR-TO-{STEP} set up FOR-NEXT loop FOR A=1 TO 5

NEXT test FOR-NEXT loop condition NEXT A

178

intJ MCS® BASIC-52

1.4 QUICK REFERENCE

STATEMENTS:

STATEMENT FUNCTION EXAMPLE(S)

GOSUB execute subroutine GOSUB 1000

RETURN RETURN from subroutine RETURN

GOTO GOTO program line number GOTO 500

ON GOTO conditional GOTO ON A GOTO 5,
20

ON GOSUB conditional GOSUB ON A GOSUB 2,
6

IF-THEN-{ELSE} conditional test IF A<B THEN
A=O

INPUT INPUT a string or variable INPUT A

LET assign a variable or string a value LET A= 10
(LET is optional)

ONERR ONERRor GOTO line number. ONERR 1000

ONTIME generate an interrupt when TIME is equal ONTIME 10, 1000
to or greater than ONTIME argument-line
number is after comma

ONEX1 GOSUB to line number following ONEX1 ONEX1 1000
when INT1 pin is pulled low

PRINT PRINT variables, strings or literals PRINT A
P. is shorthand for PRINT

PRINT# PRINT to software serial port PRINT# A

PHO. PRINT HEX mode with zero suppression PHO. A

PH1. PRINT HEX mode with no zero PH1. A
suppression

PHO.# PHO. to line printer PHO.# A

PH1.# PH1.# to line printer PH1.# A

179

intJ MCS®·· BASIC-52

1.4 QUICK REFERENCE

STATEMENTS:

STATEMENT FUNCTION EXAMPLE(S)

PRINT@ PRINT to user defined driver (version 1.1 PRINT@ 5*5
only)

PHO.@ PHO. to user defined driver (version 1.1 PHO.@
only) XBY(5EH)

PH1.@ PH1. to user defined driver (version 1.1 PH1.@ A
only)

PGM Program an EPROM (version 1.1 only) PGM

PUSH PUSH expressions on argument stack PUSH 10, A

POP POP argument stack to variables POP A, B, C

PWM PULSE WIDTH MODULATION PWM 50, 50,100

REM REMark REM DONE

RETI RETurn from Interrupt RETI

STOP break program execution STOP

STRING allocate memory for STRINGs STRING 50, 10

UI1 evoke User console Input routine UI1

UIO evoke BASIC console Input routine UIO

U01 evoke User console Output routine U01

UOO evoke BASIC console Output routine UOO

ST@ store top of stack at user specified ST@ 1000H
location (version 1.1 only) ST@A

LD@ load top of stack from user specified LD@ 1000H

~

location (version 1.1 only) LD@A

IDLE wait for interrupt (version 1.1 only) IDLE

RROM run a program in EP(ROM) (version 1.1 RROM3
only)

180

intJ MCS® BASIC-52

1.4 QUICK REFERENCE·

OPERATORS - DUAL OPERAND:

OPERATOR FUNCTION EXAMPLE(S)

+ ADDITION 1 + 1

1 DIVISION 10/2

** EXPONENTATION 2**4

* MULTIPLICATION 4*4

SUBTRACTION 8-4

.AND. LOGICAL AND 10.AND.5

.OR. LOGICAL OR 2.0R.1

.xOR. LOGICAL EXCLUSIVE OR 3.XOR.2

OPERATORS - SINGLE OPERAND:

ABS(} ABSOLUTE VALUE ABS(-3}

NOT(} ONES COMPLEMENT NOT(O}

INT(} INTEGER INT(3.2}

SGN(} SIGN SGN(-5}

SQR(} SQUARE ROOT SQR(100}

RND RANDOM NUMBER RND

LOG(} NATURAL LOG LOG(10}

EXP() lie" (2.7182818) TO THE X EXP(10)
:

SIN() RETURNS THE SINE OF ARGUMENT SIN(3.14)

COS() RETURNS THE COSINE OF COS(O)
ARGUMENT

TAN() RETURNS THE TANGENT OF TAN(.707)
ARGUMENT

ATN() RETURNS ARCTANGENT OF ATN(1)
ARGUMENT

181

MCS<el BASIC-52

1.4 QUICK REFERENCE

OPERATORS - SPECIAL FUNCTION:

CBY() READ PROGRAM MEMORY P. CBY(4000)

DBY() READ/ASSIGN INTERNAL DATA DBY(99) = 10
MEMORY

XBY() READ/ASSIGN EXTERNAL DATA P. XBY(10)
MEMORY

GET READ CONSOLE P. GET

IE READ/ASSIGN IE REGISTER IE = 82H

IP READ/ASSIGN IP REGISTER IP=O

PORT1 READ/ASSIGN I/O PORT 1 (P1) PORT1 =OFFH

PCON READ/ASSIGN PCON REGISTER PCON=O

RCAP2 READ/ASSIGN RCAP2 RCAP2=100
(RCAP2H:RCAP2L)

T2CON READ/ASSIGN T2CON REGISTER P. T2CON

TCON READ/ASSIGN TCON REGISTER TCON=10H

TMOD READ/ASSIGN TMOD REGISTER P. TMOD

TIME READ/ASSIGN THE REAL TIME CLOCK P. TIME

TIMERO READ/ASSIGN TIMERO (THO: TLO) TIMERO=O

TIMER1 READ/ASSIGN TIMER1 (TH1: TL 1) P. TIMER1

TIMER2 READ/ASSIGN TIMER2 (TH2: TL2) TIMER2 = OFFH

STORED CONSTANT:

PI PI - 3.1415926 PI

.182

inter MCS® BASIC-52

1.5 INSTRUCTION SET SUMMARY

COMMANDS
RUN
CO NT
LIST
L1ST#
L1ST@ (V1.1)
NEW
NULL
RAM
ROM
XFER
PROG
PROG1
PROG2
PROG3 (V1.1)
PROG4 (V1 .1)
PROG5 (V1 .1)
PROG6 (V1.1)
FPROG
FPROG1
FPROG2
FPROG3 (V1.1)
FPROG4 (V1.1)
FPROG5 (V1.1)
FPROG6 (V1.1)

STATEMENTS
BAUD
CALL
CLEAR
CLEAR(S&I)
CLOCK(1&O)
DATA
READ
RESTORE
DIM
DO-WHILE
DO-UNTIL
END
FOR-TO-STEP
NEXT
GOSUB
RETURN
GOTO
ON-GOTO
ON-GOSUB
IF-THEN-ELSE
INPUT
LET
ONERR
ONEX1
ONTIME
PRINT
PRINT#
PRINT@ (V1.1)
PHO.
PHO.#
PHO.@ (V1.1)
PH1.
PH1.#
PH1.@ (V1.1)
PGM (V1.1)
PUSH
POP
PWM
REM
RETI
STOP
STRING
UI(1&O)
UO(1&O) .
LD@ (V1.1)
ST@ (V1.1)
IDLE (V1.1)
RROM (V1.1)

183

OPERATORS
ADD(+)
DIVIDE (/)
EXPONENTIATION (**)
MULTIPLY (*)
SUBTRACT(-)
LOGICAL AND (.AND.)
LOGICAL OR (.OR.)
LOGICAL X-OR (.xOR.)
LOGICAL NOT (.OR.)
ABS()
INT()
SGN()
SQR()
RND
LOG()
EXP()
SIN()
COS()
TAN()
ATN()
=, >, >=, <, <=, <>
ASC()
CHR()
CBY()
DBY()
XBY()
GET
IE
IP
PORT1
PCON
RCAP2
T2CON
TCON
TMOD
TIME
TIMERO
TIMER1
TIMER2
XTAL
MTOP
LEN
FREE
PI

inter MCS® BASIC-!i2

1.6 FLOATING POINT FORMAT

MCS BASIC-52 ~tores all floating point numbers in. a normalizeQ packed BCD format with an offset binary
exponent. The simplest way to demonstrate the floating P9int format is to use an example. If the number
PI (3.1415926) was stored in location X, the following would appear in memory.

LOCATION VALUE DESCRIPTION·

X 81H EXPONENT - 81 H = 10**1, 82H = 10**2,
80H = 10**0, 7FH = 10** -1' etc.
THE NUMBER ZERO IS REPRESENTED WITH A
ZERO EXPONENT

X-1 OOH SIGN BIT - OOH = POSITIVE, 01 H = NEGATIVE OTHER BITS ARE
USED AS TEMPS ONLY DURING A CALCULATION

X-2 26H LEAST SIGNIFICANT TWO DIGITS

X-3 59H NEXT LEAST SIGNIFICANT TWO DIGITS

X-4 41H NEXT MOST SIGNIFICANT TWO DIGITS

X-5 31H MOST SIGNIFICANT TWO DIGITS

Because MCS BASIC-52 normalizes all numbers,the most significant digit is never a zero unless the
number is zero.

184

MCS® BASIC-52

1.7 STORAGE ALLOCATION

This section is intended to answer the question - where does MCS BASIC-52 store its variables and
strings?

Two 16 bit pointers stored in external memory control the allocation of strings and variables and an
additional two pointers control the allocation of scalar variables and dimensioned variables. These pointers
are located and defined as follows:

LOCATION (H-L) NAME DESCRIPTION

10AH-10BH

104H-105H

106H-107H

108H-109H

MTOP THE TOP OF RAM THAT IS ASSIGNED TO BASIC

VARTOP VARTOP = MTOP - (THE NUMBER OF BYTES OF MEM
ORY THAT THE USER HAS ALLOCATED FOR STRINGS).
IF STRINGS ARE NOT USED, VARTOP = MTOP

VARUSE AFTER A NEW, CLEAR, OR RUN IS EXECUTED, VARUSE =
VARTOp, EVERYTIME THE USER ASSIGNS OR USES A
VARIABLE VARUSE IS DECREMENTED BY A COUNT OF 8.

DIMUSE AFTER A NEW, CLEAR, OR RUN IS EXECUTED, DIM USE =
[LENGTH OF THE USER PROGRAM THAT IS IN RAM MEM
ORY + STARTING ADDRESS OF THE USER PROGRAM IN
RAM (512) + THE LENGTH OF ONE FLOATING POINT
NUMBER (6)]. IF NO PROGRAM IS IN RAM MEMORY,
DIMUSE = 518 AFTER A CLEAR IS EXECUTED

MCS BASIC-52 stores string variables between VARTOP and MTOP. $(0) is stored from VARTOP to
VARTOP + (user defined string length + 1), $(1) is stored from VARTOP + (user defined string length
+ 1) + 1 to VARTOP + 2 * (user defined string length + 1) etc. If MCS BASIC-52 attempts to access
a string that is outside the bounds established by MTOP , a MEMORY ALLOCATION ERROR is generated.

Now, Scalar variables are stored from VARTOP "down" and Dimensioned variables are stored from
DIMUSE "up." When the user dimensions a variable either implicity or explicity the value of DIMUSE
increases by the number of bytes required to store that dimensioned variable. For example, if the user ex
ecutes a DIM A(10) statement, DIMUSE would increase by 66. This is because the user is requesting
storage for 11 numbers (A(O) through A(lO» and each number requires 6 bytes for storage and 6 * 11 = 66.

185

intJ MCS® BASIC-52

1.7 STORAGE ALLOCATION

As mentioned in the previous example, everytime the user defines a new variable the VARUSEpointer
decrements by a count of 8. Six of the eight counts are due to the memory required to store a floating
point number and the other two counts are the storage required for the variable name (i.e. AI, B7, etc).
The variable B7 would be stored as follows:

LOCATION VALUE DESCRIPTION

X 37H THE ASCII VALUE - 7, IF B7 WAS A DIMENSIONED VARIABLE THE
MOST SIGNIFICANT BIT OF THIS LOCATION WOULD BE SET. IN
VERSION 1.1 THIS LOCATION ALWAYS CONTAINS THE ASCII
VALUE FOR THE LAST CHARACTER USED TO DEFINE A
VARIABLE

X-1 42H THE ASCII VALUE - B, IN VERSION 1.1 OF MCS BASIC-52 THIS
LOCATION CONTAINS THE ASCII VALUE OF THE FIRST CHARAC
TER USED TO DEFINE A VARIABLE PLUS 26 * THE NUMBER OF
CHARACTERS USED TO DEFINE A VARIABLE, IF THE VARIABLE
CONTAINS MORE THAN 2 CHARACTERS.

X-2 ?? THE NEXT SIX LOCATIONS WOULD CONTAIN THE FLOATING
THRU POINT NUMBER THAT THE VARIABLE IS ASSIGNED TO, IF THE

X-7 VARIABLE WAS A SCALAR VARIABLE. IF THE VARIABLE WAS DI
MENSIONED, X-2 WOULD CONTAIN THE LIMIT OF THE DIMENSION
(I.E. THE MAX. NUMBER OF ELEMENTS IN THE ARRAY) AND
X-3: X-4 WOULD CONTAIN THE BASE ADDRESS OF THE ARRAY.
THIS ADDRESS IS EQUAL TO THE OLD VALUE OF THE DIMUSE
POINTER BEFORE THE ARRAY WAS CREATED

Whenever a new scalar or dimensioned variable is used in a program, MCS BASIC-52 checks both the
DIMUSE nd VARUSE pointers to make sure that VARUSE > DIMUSE. If the relationship is not true, a
MEMORY ALLOCATION ERROR is generated.

186

inter MCS<R> BASIC-52

1.7 STORAGE ALLOCATION

To Summarize:

Strings are stored from VARTOP to MTOP.

Scalar variables are stored from VARTOP "down" and VARUSE points to the next available scalar location.

Dimensioned variables are stored from the end of the user program in RAM "up." If no program is in
RAM this location is 518. DIMUSE keeps track of the number of bytes the user has allocated for dimensioned
variables.

If DIMUSE > = VARUSE a MEMORY ALLOCATION ERROR is generated

187

inter MCS® BASIC-52

1.8 FORMAT OF AN MCS BASIC-52 PROGRAM

This section answers the question "How does MCS BASIC-52 store a program?"

LINE FORMAT

Each line of MCS BASIC-52 text consists of tokens and ASCII characters, plus 4 bytes of overhead. Three
of these four bytes are stored at the beginning of every line. The first byte contains the length of a line in
binary and the second two bytes are the line number in binary. The fourth byte is stored at the end of the
line and this byte is always aODH or a carriage return in ASCII. An example of a typical line is shown
below, assume that this is the first line of a program in RAM.

10 FOR I = 1 TO 10 : PRINT I : NEXT I

LOCATION BYTE DESCRIPTION

512 11H THE LENGTH OF THE LINE IN BINARY (170 BYTES)
513 OOH HIGH BYTE OF THE LINE NUMBER
514 OAH LOW BYTE OF THE LINE NUMBER
515 OAOH THE TOKEN FOR "FOR"
516 49H THE ASCII CHARACTER "I"
517 OEAH THE TOKEN FOR "="
518 31H THE ASCII FOR "1"
519 OA6H THE TOKEN FOR "TO"
520 31H THE ASCII FOR "1"
521 30H THE ASCII FOR "0"
522 3AH THE ASCII FOR ":"
523 89H THE TOKEN FOR "PRINT"
524 49H THE ASCII FOR "I"
525 3AH THE ASCII FOR ":"
526 97H THE TOKEN FOR "NEXT"
527 49H THE ASCII FOR "I"
528 ODH END OF LINE (CARRIAGE RETURN)

TO FIND THE LOCATION OF THE NEXT LINE, THE LENGTH OF THE LINE IS ADDED TO THE
LOCATION WHERE THE LENGTH OF THE LINE IS STORED. IN THIS EXAMPLE,

·512 + 170 = 529, WHICH IS WHERE THE NEXT LINE IS STORED.

The END of a program is designated by the value 01H. So, in the previous example if line 10 was the
only line in the program, location 529 would contain the value 01H. A program simply consists of a number
of lines packed together in one continuous block with the last line ending in a ODH, 01H sequence.

188

inter MCS® BASIC-52

1.8 FORMAT OF AN MCS BASIC-52 PROGRAM

EPROM FILE FORMAT.

The EPROM FILE format consists of the same line and program format, previously described except that
each program in the EPROM file begins with the value 55H. The value 55H is only used by MCS BASIC-
52 to determine if a valid program is present. If the user types ROM 6, MCS BASIC-52 actually goes
through the first program stored in EPROM line by line until the END of PROGRAM (OIH) is found,
then it examines the next location to see if a 55H is stored in that location. It then goes through that
program line by line. This process is repeated 6 times. If the character 55H is not found after the end of
a program, MCS BASIC-52 will return with the PROM MODE error message. This would mean that less
than six programs were stored in that EPROM.

The first program stored in EPROM (ROM 1) always begins at location 8010H and this location will always
contain a 55H. The actual user program will begin at location 8011H.

EPROM locations 8000H through 800FH are reserved by MCS BASIC-52. These locations contain ini
tialization information when the PROGX options are used. Version 1.0 of MCS BASIC-52 only used the
first three bytes of this reserved EPROM area. The information stored in these bytes is as follows:

LOCATION DESCRIPTION

8000H CONTAINED A 31 H IF PROG 1 WAS lISED, CONTAINED A 32H IF PROG 2
WAS USED

8001 H BAUD RATE (RCAP2H)

8002H BAUD RATE (RCAP2L)

Version 1.1 of MCS BASIC-52 uses the same locations as Version 1.0, but additionally locations 8003H
and 8004H (high byte, low byte) are used to store the MTOP information for the PROG 3, 4, 5, 6 options.

IMPORTANT NOTE -

The PROG X options simply store ASCII character following the PROG command in loction 8000H. That
is why PROG 1 stores a 3tH in location 8000H, PROG 2 a 32H, PROG 3 (Version 1.1 only) a 33H etc.
If the user employs the user defined reset option defined in Chapter 11 of this manual, it would be possible
for the user to create unique PROG options. For example, PROG A would store a 41H in location 8000H
and upon RESET the user could examine this location with an assembly language routine and generate a
unique PROG A reset routine for that particular application.

189

intef MCS® BASIC-52

1.9 ANSWERS TO A FEW QUESTIONS

QUESTION

Why can't MCS BASIC-52 access the 8052's SPECIAL FUNCTION REGISTER SCON?

ANSWER

The only time the user would likely change the contents of SCON is if the user is writing custom 110
drivers in assembly language. If the user is writing assembly language 110 drivers, then the user can change
the contents of SCON in assembly language. Changing the contents of SCON can cause MCS BASIC-
52's console routines to crash.

QUESTION

I have written an upload/download routine using my computer, but when I download a program; MCS
BASIC-52 misses characters, why?

ANSWER

MCS BASIC-52 is actually capable of accepting characters at 38,400 baud. The problem is that after MCS
BASIC-52 receives a carriage return (cr), it tokenizes the line of text that was just entered. Depending on
how complicated and how long the line is, MCS BASIC-52 can take up to a couple of hundred milliseconds
to tokenize the line. If the user keeps stuffing characters into the serial port while MCS BASIC-52 is
tokenizing the line, the characters will be lost. What the user must do in the download routine is wait until
MCS BASIC-52 responds with the prompt character (» after a carriage return is sent to the MCS BASIC-
52 device. The prompt (» informs the user that MCS BASIC-52 is ready to receive characters from the
console device.

QUESTION

I am writing in assembly language and I notice that the 8052AH has no decrement DPTR instruction. What
is the easiest, shortest or simplest way to decrement the DPTR?

ANSWER

The shortest one we know is:

DECDP:

XCH
JNZ
DEC
DEC
XCH

A,DPL
DECDP
DPH
A
A,DPL

SWAPA<>DPL
DPH = DPH-1 IF DPL = 0

DPL = DPL-1

This routine affects no flags or registers (except the DPTR) either!

190

MCS® BASIC-52

1.9 ANSWERS TO A FEW QUESTIONS

QUESTION

After RESET or power-up, MCS BASIC-52 does not return the proper value for MTOP, what's the
problem?

ANSWER

Virtually everytime this problem occurs it is because something is wrong with the decoding circuitry in
the system or one or more of the address lines to the RAM are open or shorted. The user should make
sure that all of the address lines to the system RAM are connected properly!

A simple memory test can be implemented in the COMMAND MODE to verify the addressing to the
RAM. First set XBY(lOOOH) = 55, then walk ones across the address (i.e. P. XBY(1001H) - P.
XBY(1002H) - P. XBY(lOO4H) - P. XBY(1008H) P. XBY(101OH» until all locations are tested. If
for instance, P. XBY(1008H) returns a result of 55, then address line 3 (A3) would probably be open or
shorted.

191

inter MCS® BASIC-52

1.10 PIN-OUT LIST

The following is a pin-out list of the most common devices found in an MCSBASIC-52 system:

INPUT A , Vee

.ElPQNH
CoNrROLA INPUTD

INPUTDJ OUTPUT'" a .EI"""""
CONTROl.D

DUTPUTD INPUTS 4

INPUTC,
.18PON8I!

CONTROl. I INPUTC

OUTPUT I • RESPONSE
CONlROLC

GROUND , • OUTPUTc

1488 1489

74LS32 74LSI38 74LS245

P27128A

..... 2784A 2722A vcc 2722A A
A,2 -A,. VPI' Vpp

A,. A,.
VCC vee - '" ... " A, A,

AI AI AI
vee N.C. '" AI AI AI

AI
A11

l5l!

A,.

ill!

D7
Os

.. AI AI
As As As
As As As
As AI AI
A, A, A,
AD AD AD
Ou Ou Ou
0, 0, 0,
00 00 00
aMI aMI aMI

AI AI AI
A11 A11 A11

GiNpp llI! iii
~. A10· A,.

CI! ill!
D7 D7 D7
Os Os Os
Os Os Os
o. De o.
00 O. 00

Os
o.
00

EPROMS

T2/P1.o 1 P ..

PAS

PWII OUTPUT I P1.2 3 PAS

mlRD[IIP1.3. A02 PAT

pliOdRAi PULSE {P1,4 S !iii lIiIi

74Lsoa PllDdRiii Mliili I P1A 8 RElET

74LSOO DiA ACkNOWlEDGEi P1.' 7 ADS 00
INVERTING

UNE PRIfI'ER OUTPUT J Pl.7 8 ... 0,

AD, "" CONSOLE SEflIAL N'UT 10 1 +5 VOLTS

ALE O. - Ds
1IiTi", A'S Pee De .,. D7 .,. Vee .,. '"' A11 ...

A,. ...
AI ...

vss .1.
7408Jl.S04iLS05

8Kx8SRAM 7407 NON-
INVERllNG

192

inter MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

The following details the operation of the special function registers on the 8052AH:

SYMBOL
NAME NAME ADDRESS MCS BASIC-52

ACC Accumulator OEOH NOT ADDRESSABLE

B B Register OFOH NOT ADDRESSABLE

PSW Program Status Word ODOH NOT ADDRESSABLE

SP Stack Pointer 81H NOT ADDRESSABLE

OPTR Data Pointer 2 Bytes:
DPH Low Byte 82H NOT ADDRESSABLE
DPL High Byte 83H NOT ADDRESSABLE

PO Port 0 80H NOT ADDRESSABLE

P1 Port 1 90H PORT1

P2 Port 2 OAOH NOT ADDRESSABLE

P3 Port 3 OBOH NOT ADDRESSABLE

IP Interrupt Priority Control OB8H IP

IE Interrupt Enable Control OA8H IE

mOD Timer/Counter Mode Control 89H TMOD

TCON Timer/Counter Control 88H TCON

T2CON Timer/Counter 2 Control OC8H T2CON

THO Timer/Counter 0 High Byte 8CH

}TIMERO

TLO Timer/Counter 0 Low Byte 8AH

TH1 Timer/Counter 1 High Byte .8DH

} TIMER1

TL1 Timer/Counter 1 Low Byte 8BH

TH2 Timer/Counter 2 High Byte OCDH

}TIMER2

TL2 Timer/Counter 2 Low Byte OCCH

RCAP2H T/C 2 Capture Reg. High Byte OCBH

} RCAP2

RCAP2L T/C 2 Capture Reg. Low Byte OCAH

SCON Serial Control 98H NOT ADDRESSABLE

SBUF Serial Data Buffer 99H NOT ADDRESSABLE

PCON Power Control 87H NOT ADDRESSABLE

193

inter MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

PSW: PROGRAM STATUS WORD. ADDRESS ODOH

CY AC FO RS1 RSO OV P I
CY PSW.7 Carry Flag.

AC PSW.6 Auxiliary Carry Flag.

FO PSW.5 Flag 0 available to the user for general purpose.

RS1 PSW.4 Register Bank selector bit 1.

RSO PSW.3 Register Bank selector bit o.

OV PSW.2 Overflow Flag.

PSW.l RESERVED FOR FUTURE USE.

P PSW.O PARITY FLAG.

PCON: POWER CONTROL REGISTER. NOT BIT ADDRESSABLE.

SMOD Doubles the baud rate when TIMER I is used to generate the baud rate for the serial port.

The remaining bits of PCON are not implemented on the MCS BASIC-52 device.

194

inter MCS(ft) BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

(MSB) (LSB)

IGATEI cff I M1 MO IGATEI CfT I M1 I MO I

'\
V

/'\
V

/

TIMER 1 TIMER 0

GATE Gating control When set. Timer/Counter "x" M1 MO Operating Mode
is enabled only while "INTx" pin is high and 0 0 MCS-48 Timer "TLx" serves as five-bit
"TAx" control pin is set. When cleared Timer prescaler.
"x" is enabled whenever "TAx" control bit is 0 1 16 bit Timer/Counter "THx" and "TLX"
set are cascaded; there is no prescaler

cff Timer or Counter Selector Cleared for Timer 1 0 a-bit auto-reload timer-counter "THx"
operation (input from internal system clock). holds a value which is to be reloaded into
Set for Counter operation (input from "Tx" "TLx" each time it overflows.
input pin).

1 (Timer 0) TLO is an eight-bit timer
counter-controlled by the
standard Timer 0 control bits
THO is an eight-bit timer only
controlled by Timer 1 control
bits.

1 1 (Timer 1) Timer-counter 1 stopped.

TMOD: Timer/Counter Mode Control Register

195

inter MCS@ BASIC-52

1.11 8052AH SPECIAL FUNCTIONREGISTEAS

(MSB) (LSB)

I TF2 EXF2 RCLK TCLK . EXEN2 TR2 Cif2 CP/U2 1

Symbol P081tlon Name and Significance

TF2

EXF2

T2CON.7

T2CON.6

Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2
will not beset when either RCLK = 1 or TCLK = 1.

Timer 2 external flag set when either a capture or reload is caused by a negative
transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1
will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by
software.

RCLK ·T2CON.5 Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses
for Its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used

. for the reCeive clock.

TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses
for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be
used for the transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result
of a negative transition on T2EX if Timer 2 is not being used to clock the serial port.
EXEN2 =0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.

cif2 T2CON.1 Timer or counterselecl. (Timer 2)
o = Internal timer (OSC/12)
1 = External event counter (falling edge triggered).

CP/RL2 T2CON.O Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if
EXEN2 = 1. When ·cleared,· auto reloads will occur either with Timer 2 overflows or
negative transitions at T2EX when EXEN 2 = 1. When either RCLK = 1 or TCLK = 1,
this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

Timer/Counter 2 Control Register

.'

196

inter MCS® BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

(MSB)

where SMO, SM1 specify the serial port mode, as follows:

SMO

o
o
1

1

SM1

o
1
o

1

Mode Description Baud

o
1
2

3

shift
register
8-bit UAAT
9-bit UAAT

Aate

fosc.l12
variable

fosc.l64
or
fosc./32

9-bit UAAT variable

• SM2 enables the multiprocessor communication
feature in modes 2 and 3. In mode 2 or 3,
if SM2 is set to 1 then AI will not be activated
if the received 9th data bit (ABB) is o. In
mode 1, if SM2 = 1 then AI will not be
activated if a valid stop bit was not received.
In mode 0, SM2 should be O.

• REN enables serial reception. Set by software to
enable reception. Clear by software to dis
able reception.

• TBS is the 9th data bit that will be transmitted in
modes 2 and 3. Set or clear by software as
desired.

• RBS In modes 2 and 3, is the 9th data bit that
was received. In mode 1, if SM2 = 0, AB8
is the stop bit that was received. In mode 0,
AB8 is not used.

• TI

• RI

is transmit interrupt flag. Set by hardware at
the end of the 8th bit time in mode 0, or at
the beginning of the stop bit in the other
modes, in any serial transmission. Must be
cleared by software.

is receive interrupt flag. Set by hardware at
the end of the 8th bit time in mode 0, or
halfway through the stop bit time in the other
modes, in any serial reception (except see
SM2). Must be cleared by software.

SCON: Serial Port Control Register

(MSB)

/ TF1 / TR1 / TFO / TRO /IE1 IT1

o 1 o 1 o 1 o o

Symbol Position Name and Significance Symbol Position Name and Significance

TF1 TCON.7 Timer 1 overflow Flag. Set by IE1 TCON.3 Interrupt 1 Edge flag. Set by
hardware on timer/counter ov- hardware when external inter-
erflow. Cleared by hardware rupt edge detected. Cleared
when processor vectors to inter- when interrupt processed.
rupt routine. IT1 TCON.2 Interrupt 1 Type control bit. Set!

TR1 TCON.6 Timer 1 Aun control bit. Set! cleared by software to specify
cleared by software to turn timer/ falling edge/low level triggered
counter on/off. external interrupts.

TFO TCON.5 Timer 0 overflow Flag. Set by lEO TCON.1 Interrupt 0 Edge flag. Set by
hardware on timer/counter ov- hardware when external inter-
erflow. Cleared by hardware rupt edge detected. Cleared
when processor vectors to inter- when interrupt processed.
rupt routine. ITO TCON.O Interrupt 0 Type control bit. Set!

TRO TCON.4 Timer 0 Aun control bit. Set! cleared by software to specify
cleared by software to turn timer/ falling edge/low level triggered
counter on/off. external interrupts.

TCON: Timer/Counter Control Register

197

intel· MCS®· BASIC-52

1.11 8052AH SPECIAL FUNCTION REGISTERS

(MSB) LSB) (MSB) LSB

! X ! x !PT2! PS !PT1!PX1!PTOlpxO! ! EA I X !ET2! ES !ET1IEX1IETOIExol

Symbol Position Function Symbol Position Function

1P.7 reserved EA IE.7 disables all interrupts. If EA = 0,
no interrupt will be acknowl-

IP.6 reserved edged. If EA = 1, each interrupt
source is individually enabled or

PT2 1P.5 defines the Timer 2 interrupt disabled by setting or clearing its
priority level. PT2 = 1 programs enable bit.
it to the higher priority level.

IE.6 reserved
PS 1P.4 defines the Serial Port interrupt

priority level. PS = 1 programs ET2 IE.5 enables or disables the Timer 2
it to the higher priority level. overflow or capture interrupt. If

ET2 = 0, the Timer 2 interrupt
PT1 IP.3 defines the Timer 1 interrupt is disabled.

priority level. PT1 = 1 programs
it to the higher priority level. ES IE.4 enables or disables the Serial

Port interrupt. If ES = 0, the Se-
PX1 1P.2 defines the External Interrupt 1 rial Port interrupt is disabled.

priority level. PXl = 1 programs
it to the higher priority level. ET1 IE.3 enables or disables the Timer 1

Overflow interrupt. If ET1 = 0,
PTO IP.1 defines the Timer 0 interrupt the Timer 1 interrupt is disabled.

priority level. PTO = 1 programs
it to the higher priority level. EX1 IE.2 enables or disables External In-

terrupt 1. If EX1 = 0, External
PXO IP.O defines the External Interrupt 0 Interrupt 1 is disabled.

priority level. PXO = 1 programs
it to the higher priority level. ETO IE.1 enables or disables the Timer 0

Overflow interrupt. If ETO = 0,
the Timer 0 Interrupt is disabled.

IP: Interrupt Priority Register EXO IE.O enables or disables External In-
terrupt O. If EXO = 0, External
Interrupt 0 is disabled.

IE: Interrupt Enable Register

198

inter

1.12 REFERENCES

REFERENCES

MCS® BASIC-52

J. Sack and J. Meadows, Entering BASIC, Science Research Associates, 1973.

C. Pegels, BASIC: A Computer Programming Language, Holden-Day, Inc., 1973.

J. Kemeny and T. Kurtz, BASIC Programming, People Computer Company, 1967.

Albrecht, Finkle, and Brown, BASIC, People Computer Company, 1973.

T. Dwyer, A Guided Tour of Computer Programming in BASIC, Houghton Mifflin Co., 1973.

Eugene H. Barnett, Programming Time Shared Computers in BASIC, Wiley-Interscience, LlC 72-175789.

Programming Language #2, Digital Equipment Corp., Maynard, Mass. 01754.

101 BASIC Computer Games, Digital Equipment Corp., Maynard, Mass. 01754.

What to do After You Hit Return. People Computer Company.

BASIC-80 REFERENCE MANUAL, Intel Corp., Santa Clara, Calif.

199

APPENDIX B

INSTRUCTION SET SUMMARY

This appendix contains two tables (see tables B-1 and B-2): the first identifies all of the 8052's instructions
in alphabetical order; the second table lists the instructions according to their hexadecimal opcodes and
lists the assembly language instructions that produced that opcode.

The alphabetical listing also includes documentation of the bit pattern, flags affected, number of machine
cycles per execution and a description of the instructions operation and function. The list below defines
the conventions used to identify operation and bit patterns.

ABBREVIATIONS AND NOTATIONS USED

A Accumulator 11111111 One byte of a 16-bit
AB Register Pair address encoded in
B Multiplication Register operand byte
bit address 8052 bit address mmmmmmmm Data address encoded in

page address 11-bit code address within operand byte

2K page 00000000 Relative offset encoded in

relative offset 8-bit 2's complement offset operand byte
C Carry Flag r or rrr Register identifier encoded

code address Absolute code address in operand byte
data Immediate data AND Logical AND

data address On-chip 8-bit RAM address NOT Logical complement
DPTR Data pOinter OR Logical OR
PC Program Counter XOR Logical exclusive OR
Rr Register (r = 0-7) + Plus
SP Stack pOinter Minus
high High order byte / Divide
low Low order byte Multiply
i-j Bits i through j (X) The contents of X
.n Bit n «X)) The memory location

aaa aaaaaaaa Absolute page address addressed by (X)

encoded in instruction (The contents of X)

and operand byte ;= Is equal to
bbbbbbbb Bit address encoded in <> Is ndt equal to

operand byte < Is less than
dddddddd Immediate data encoded in > Is greater than

operand byte ~ Is replaced by

200

inter MCS® BASIC-52

Table B-1. Instruction Set Summary

Mnemonic
Cycles

Binary Flags Function
Operation . Code POVACC

ACALL code addr 2 aaa10001 Push PC on stack, and
(PC) ~ (PC) + 2 aaaaaaaa replace low order 11 bits
(SP) +- (SP) + 1 with low order 11 bits of
«SP» +- (PC) low code address.
(SP) ~ (SP) + 1
«SP» +- (PC) high
(PC) 0-1 0 ~ page address

ADDA,#data 1 00100100 P OVAC C Add immediate data to A.
(A) ~ (A) + data dddddddd

ADDA,@Rr 1 00100 1 1 r P OVAC C Add contents of indirect
(A) ~ (A) + «Rr» address to A.

ADD A,Rr 1 00101rrr P OVAC C Add register to A.
(A) ~ (A) + (Rr)

ADD A,data addr 1 00100101 POVAC C Add contents of data
(A) ~ (A) + (data address) mmmmmmmm address to A.

AD DC A,#data 1 00110100 P OVAC C Add C and immediate data
(A) ~ (A) + (C) + data dddddddd to A.

ADDCA,@Rr 1 001 101 1 r POVACC Add C and contents of
(A) ~ (A) + (C) + «Rr» indirect address to A.

ADDC A,Rr 1 00111rrr POVAC C Add C and register to A.
(A) ~ (A) + (C) + (Rr)

ADDC A,data addr 1 00110101 P OVAC C Add C and contents of data
(A) ~ (A) + (C) + (data address) mmmmmmmm address to A.

AJMP code addr 2 aaaOOO01 Replace low order 11 bits of
(PC) 0-1 0 ~ code address aaaaaaaa PC with low order 11 bits

code address.

ANL A,#data 1 01010100 P Logical AND immediate data
(A) ~ (A) AND data dddddddd to A.

ANL A,@Rr 1 o 1 0 1 0 1 1 r P Logical AND contents of
(A) ~ (A) AND «Rr» indirect address to A.

ANLA,Rr 1 01011rrr P Logical AND register to A.
(A) +- (A) AND (Rr)

ANL A,data addr 1 01010101 P Logical AND contents of
(A) ~ (A) AND (data address) mmmmmmmm data address to A.

ANL C,bit addr 2 10000010 C Logical AND bit to C.
(C) ~ (C) AND (bit address) bbbbbbbb

ANL C,lbit addr 2 10110000 C Logical AND complement of
(C) ~ (C) AND NOT (bit address) bbbbbbbb bit to C.

ANL data addr, #data 2 01010011 Logical AND immediate data
(data address) +- mmmmmmmm to contents of data address

(data address) AND data dddddddd

ANL data addr,A 1 01010010 Logical AND A to contents of
(data address) +- mmmmmmmm data address.

(data address) AND A

201

inter MCS® BASIC-52

Table B-1. Instruction .Set Summary (Cont'd.)

Mnemonic
Cycle.

Binary Flag.
Function Operation Code POVACC

CJNE @Rr,#data,code addr 2 1011011r C If immediate data and
(PC) +- (PC) + 3 dddddddd contents of indirect address
IF ((Rr)) < > data 00000000 are not equal, jump to code
THEN address.

(PC) +- (PC) + relative offset
IF ((Rr» <data

THEN (C) +-1
ELSE (C) +- 0

CJNE A,#data,code addr 2 10110100 C If immediate data and A are
(PC) +- (PC) + 3 dddddddd not equal, jump to code
IF (A) < > data 00000000 address.
THEN

(PC) +- (PC) + relative offset
IF (A) <data

THEN (C) +-1
ELSE (C) +-0

CJNE A,data addr,code addr 2 10110101 C If contents of data address
(PC) +- (PC) + 3 mmmmmmmm and A are not equal, jump to
IF (A) < > (data address) 00000000 code address.
THEN

(PC) +- (PC) + relative offset
IF (A) < (data address)

THEN (C) +-1
ELSE (C) +- 0

CJNE Rr,#data,code addr 2 10111rrr C If immediate data and
(PC) +- (PC) + 3 dddddddd register are not equal, jump
IF (Rr) < > data 00000000 to code address.
THEN

(PC) +- (PC) + relative offset
IF (Rr) < data

THEN (C) +-1
ELSE (C) +- 0

CLRA 1 11100100 P Set A to zero (0).
(A) +- 0

CLRC 1 11000011 C Set C to zero (0).
(C) +- 0

CLR bitaddr 1 11000010 Set bit to zero (0).
(bit address) +- 0 bbbbbbbb

CPLA 1 11110100 P Complements each bit in A.
(A) +- NOT (A)

CPLC 1 10110011 C Complement C.
(C) +- NOT (C)

CPL bit addr 1 10110010 Complement 'bit.
(bit address) +- bbbbbbbb

NOT (bit address)

DAA 1 11010100 P C Adjust A after a BCD add.

DEC@Rr 1 0001011r Decrement contents of
((Rr» +- ((Rr» - 1 indirect address.

DEC A 1 00010100 P Decrement A.
(A) +- (A) - 1

DEC Rr 1 00011rrr Decrement register.
(Rr) +- (Rr) - 1

202

inter MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic Cycles
Binary Flags

Function
Operation Code POVACC

DEC data addr 1 00010101 Decrement contents of data
(data address) ~ mmmmmmmm address.

(data address) - 1

DIVAB 4 10000100 P OV C Divide A by B (multiplication
(AB) ~ (A)/(B) register).

DJNZ Rr,code addr 2 11011rrr Decrement register, if not
(PC) ~ (PC) + 2 00000000 zero (0), then jump to code
(Rr) ~ (Rr) - 1 address.
IF (Rr) < > 0
THEN

(PC) ~ (PC) + relative offset

DJNZ data addr,code addr 2 11010101 Decrement data address, if
(PC), ~ (PC) + 3 mmmmmmmm zero (0), then jump to code
(data address) ~ 00000000 address.

(data address) - 1
IF (data address) < > 0
THEN

(PC) ~ (PC) + relative offset

INC@ Rr 1 0000011r Increment contents of
«Rr» ~ «Rr» + 1 indirect address.

INCA 1 00000100 P Increment A.
(A) ~ (A) + 1

INC DPTR 1 10100011 Increment 16-bit data
(DPTR) ~ (DPTR) + 1 pointer.

INC Rr 1 00001rrr Increment register.
«R) ~ (Rr) + 1

INC data addr 2 00000101 Increment contents of data
(data address) ~ mmmmmmmm address.

(data address) + 1

JB bit addr,code addr 2 00100000 If bit is one, n jump to code
(PC) ~ (PC) + 3 bbbbbbbb address.
IF (bit address) = 1 00000000
THEN

(PC) ~ (PC) + relative offset

JBC bit addr,code add; 2 00010000 If bit is one, n clear bit and
(PC) ~ (PC) + 3 bbbbbbbb jump to code address.
IF (bit address) = 1 00000000
THEN

(bit address) ~ 0
(PC) ~ (PC) + relative offset

JC code addr 2 01000000 If C is one, then jump to
(PC) ~ (PC) + 2 00000000 code address.
IF (C) = 1
THEN

(PC) ~ (PC) + relative offset

JMP@A + DPTR 2 01110011 Add A to data pointer and
(PC) ~ (A) + (DPTR) jump to that code address.

JNB bit addr,code addr 2 00110000 If bit is zero, n jump to code
(PC) ~ (PC) + 3 bbbbbbbb address.
IF (bit address) = 0 00000000
THEN

(PC) ~ (PC) + relative offset

203

MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code POVACC

JNC code addr 2 01010000 If C is zero (0), n jump to
(PC) + (PC) + 2 00000000 code address.
IF (C) = 0
THEN

(PC) +- (PC) + relative offset

JNZ code addr 2 01110000 If A is not zero (0), n jump to
(PC) +- (PC) + 2 00000000 code address.
IF (A) < > 0
THEN

(PC) +- (PC) + relative offset

JZ code addr 2 01100000 If A is zero (0), then jump to
(PC) +- (PC) + 2 00000000 code address.
IF (A) = 0
THEN

(PC) +- (PC) + relative offset

LCALL code addr 2 00010010 Push PC on stack and
(PC) +- (PC) + 3 I II I I I I It replace entire PC value with
(SP) +- (SP) + 1 I I I I I I lit code address.
«SP» +- «PC» low
(SP) +- (SP) + 1
«SP» +- (PC) high
WC) +- code address

LJMP code addr 2 00000010 Jump to code address.
(PC) +- code address I I I I I I I It

I I I I I I I It

MOV @Rr,#data 1 0111011r Move immediate data to
«Rr» +- data dddddddd indirect address.

MOV@Rr,A 1 1111011r Move A to indirect address.
«Rr» +- (A)

MOV @Rr,data addr 2 10100 1 1 r Move contents of data
«Rr» +- (data address) mmmmmmmm address to indirect address.

MOV A,#data 1 01110100 P Move immediate data to A.
(A) +- data dddddddd

MOVA,@Rr 1 1 1 100 1 1 r P Move contents of indirect
(A) +- «Rr» address to A.

MOVA,Rr 1 11101rrr P Move register to A.
(A) +- (Rr)

MOV A,data addr 1 11100101 P Move contents of data
(A) +- (data address) mmmmmmmm address to A.

MOV C,bit addr 1 10100010 C Move bit to C.
(C) +- (bit address) bbbbbbbb

MOV DPTR,#data 2 10010000 Move two bytes of
(DPTR) +- data ddddddddt immediate data pointer.

ddddddddt

MOV Rr,#data 1 01111rrr Move immediate data to
(Rr) +- data dddddddd register.

MOV Rr,A 1 11111rrr Move A to register.
(Rr) +- (A)

t The high order byte of the 16-bit operand is in the first byte following the opcode. The low order byte is in the
second byte following the opcode.

204

MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont'd.)
Mnemonic

Cycles
Binary Flags

Function
Operation Code P OVAC C

MOV Rr,data addr 2 10101rrr Move contents of data
(Rr) +- (data address) mmmmmmmm address to register.

MOV bit addr,C 2 10010010 Move C to bit.
(bit address) +- (C) bbbbbbbb

MOV data addr,#data 2 01110101 Move immediate data to data
(data address) +- data mmmmmmmm address.

dddddddd

MOV data addr,@Rr 2 1 0 0 0 0 1 1 r Move contents of indirect
(data address) +- «Rr)) mmmmmmmm address to data address.

MOV data addr,A 1 11110101 Move A to data address.
(data address) - (A) mmmmmmmm

MOV data addr,Rr 2 10001rrr Move register to data
(data address) +- (Rr) mmmmmmmm address.

MOV data addr1,data addr2 2 10000101 Move contents of second
(data address1) +- - mmmmmmmm* data address to first data

(data address2) mmmmmmmm* address.

MOVC A,@A + OPTR 2 10010011 P Add A to OPTR and move
(PC) +- (PC) + 1 contents of that code
(A) +- «A) + (OPTR)) address with A.

MOVC A,@A + PC 2 10000011 P Add A to PC and move
(A) +- «A) + (PC)) contents of that code

address with A.

MOv)(@OPTR,A 2 11110000 Move A to external data
«OPTR)) ~ (A) location addressed by

OPTR.

MOVX@Rr,A 2 1111001r Move A to external data
«Rr)) ~ (A) location addressed by

register.

MOVX A,@OPTR 2 11100000 P Move contents of external
(A) - «OPTR)) data location addressed by

OPTR to A.

MOVXA,@Rr 2 1110001r P Move contents of external
(A) - «Rr)) data location addressed by

register to A.

MULAB 4 10100100 POV C Multiply A by B
(AB) - (A) * (B) (multiplication register).

NOP 1 00000000 Do nothing.

ORL A,#data 1 01000100 P Logical OR immediate data
(A) - (A) OR data dddddddd to A.

ORLA,@Rr 1 0100011r P Logical OR contents of
(A) - (A) OR «Rr)) indirect address to A.

ORL A,Rr 1 01001rrr P Logical OR register to A.
(A) - (A) OR (Rr)

ORL A,data addr 1 01000101 P Logical OR contents of data
(A) - (A) OR (data address) mmmmmmmm address to A.

ORL C,bit addr 2 01110010 C Logical OR bit to C.
(C) ~ (C) OR (bit address) bbbbbbbb

* The source data address (second data address) is encoded in the first byte following the opcode. The destination
data address is encoded in the second byte following the opcode.

205

inter MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code POVAC C

OAL C,lbit addr 2 10100000 C Logical OR complement of
(C) - (C) OA NOT (bit address) bbbbbbbb bit to C.

OAL data addr,#data 2 01000011 Logical OR immediate data
(data address) - mmmmmmmm to data address.

-(data address) OR data dddddddd

OAL data addr,A 1 01000010 Logical OR A to data
(data address) - mmmmmmmm address.

(data address) OR A

POP data addr 2 11010000 Place top of stack at data
(data address) - «SP)) mmmmmmmm address and decrement SP.
(SP) - (SP) - 1

PUSH data addr 2 11000000 Increment SP and place
(SP) - (SP) + 1 mmmmmmmm contents of data address at
«SP» - (data address) top of stack.

RET 2 00100010 Return from subroutine call.
(PC)high - «SP»
(SP) - (SP) - 1
(PC)/ow - «SP))
(SP) - (SP) - 1

RETI 2 00110010 Return from interrupt routine.
(PC)high - «SP))
(SP) - (SP) - 1
(PC)/ow - «SP»
(SP) - (SP) - 1

RLA 1 00100011 Rotate A left one position.

RLCA 1 00110011 P C Rotate A through C left one
position.

RAA 1 00000011 Rotate A right one position.

RRCA 1 00010011 P C Rotate A through C right one
position.

SETB C 1 11010011 C Set C to one (1).
(C) -1

SETB bit addr 1 11010010 Set bit to one (1).
(bit address) - 1 bbbbbbbb

SJMP code addr 2 10000000 Jump to code address.
(PC) - (PC) + 2 00000000

(PC) - (PC) + relative offset

SUBB A,#data 1 10010100 P OVACC Subtract immediate data
(A) - (A) - (C) - data dddddddd from A.

SUBB A,@Rr 1 1001011r P OVACC Subtract contents of indirect
(A) - (A) - (C) - «Rr» address from A.

SUBB A,Rr 1 10011rrr POVACC Subtract register from A.
(A) - (A) - (C) - (Rr)

SUBB A,data addr 1 10010101 POVAC C Subtract contents of data
(A) - (A) - (C) - (data address) mmmmmmmm address from A.

SWAP A 1 11000100 Exchange low order nibble
with high order nibble in A.

206

MCS® BASIC-52

Table B-1. Instruction Set Summary (Cont'd.)
Mnemonic

Cycles
Binary Flags

Function Operation Code POVAC C

XCHA,@Rr 1 1100011r P Move A to indirect address
temp <- «Rr» and vice versa.
«Rr» <- (A)
(A) <- temp

XCH A,Rr 1 11001rrr P Move A to register and vice
temp <- (Rr) versa.
(Rr) <- (A)
(A) <-temp

XCH A,data addr 1 11000101 P Move A to data address and
temp <- (data address) mmmmmmmm vice versa.
(data address) <- (A)
(A) <- temp

XCHDA,@Rr 1 1101011r P Move low order of A to low
temp <- «Rr» 0-3 order nibble of indirect
«Rr» 0-3 <- (A) 0-3 address and vice versa.
(A) 0-3 <- temp

XRL A,#data 1 01100100 P Logical exclusive OR
(A) <- (A) XOR data dddddddd immediate data to A.

XRLA,@Rr 1 0110011r P Logical exclusive OR
(A) <- (A) XOR «Rr» contents of indirect address

to A.

XRL A,Rr 1 01101rrr P Logical exclusive OR register
(A) <- (A) XOR (Rr) to A.

XRL A,data addr 1 01100101 P Logical exclusive OR
(A) <- (A) XOR (data address) mmmmmmmm contents of data address to

A.

XRL data addr,#data 2 01100011 Logical exclusive OR
(data address) <- mmmmmmmm immediate data to data

(data address) XOR data dddddddd address.

XRL data addr,A 1 01100010 Logical exclusive OR A to
(data address) <- mmmmmmmm data address.

(data address) XOR A

207

MCS® BASIC-52

Table B-2. Instruction Opcodes in Hexadecimal·

Hex Number Mnemonic Operands
Code of Bytes

00 1 NOP
01 2 AJMP code addr
02 3 LJMP code addr
03 1 RR A
04 1 INC A
05 2 INC data add,
06 1 INC @RO
07 1 INC @R1
08 1 INC RO
09 1 INC R1
OA 1 INC R2
OB 1 INC R3
OC 1 INC R4
OD 1 INC R5
OE 1 INC R6
OF 1 INC R7
10 3 JBC bit addr,code add,
11 2 ACALL code add,
12 3 LCALL code add,
13 1 RRC A
14 1 DEC A
15 2 DEC data add,
16 1 DEC @RO
17 1 DEC @R1
18 1 DEC RO
19 1 DEC R1
1A 1 DEC R2
1B 1 DEC R3
1C 1 DEC R4
10 1 DEC R5
1E 1 DEC R6
1F 1 DEC R7
20 3 JB bit add',code add,
21 2 AJMP code add,
22 1 RET
23 1 RL A
24 2 ADD A,#data
25 2 ADD A,data add,
26 1 ADD A,@RO
27 1 ADD A,@R1
28 1 ADD A,RO
29 1 ADD A,R1
2A 1 ADD A,R2
2B 1 ADD A,R3
2C 1 ADD A,R4
2D 1 ADD A,R5
2E 1 ADD A,R6
2F 1 ADD A,R7
30 3 JNB bit add',code add,
31 2 ACALL code add'
32 1 RETI
33 1 RLC A
34 2 ADDC A,#data
35 2 ADDC A,data add,
36 1 ADDC A,@RO
37 1 ADDC A,@R1
38 1 ADDC A,RO
39 1 ADDC A,R1
3A 1 ADDC A,R2
3B 1 ADDC A,R3

208

inter MCSilli BASIC·52

Table B·2. Instruction Opcodes In Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands

Code of Bytes

3C 1 AOOC A,R4
3D 1 AOOC A,R5
3E 1 AOOC A,R7
3F 1 AOOC A,R7
40 2 JC code addr
41 2 AJMP code addr
42 2 ORL data addr,A
43 3 ORL data addr,#data
44 2 ORL A,#data
45 2 ORL A,data addr
46 1 ORL A,@RO
47 1 ORL A,@R1
48 1 ORL A,RO
49 1 ORL A,R1
4A 1 ORL A,R2
48 1 ORL A,R3
4C 1 ORL A,R4
40 1 ORL A,R5
4E 1 ORL A,R6
4F 1 ORL A,R7
50 2 JNC code addr
51 2 ACALL code addr
52 2 ANL data addr,A
53 3 ANL data addr,#data
54 2 ANL A,#data
55 2 ANL A,data addr
56 1 ANL A,@RO
57 1 ANL A,@R1
58 1 ANL A,RO
59 1 ANL A,R1
5A 1 ANL A,R2
58 1 ANL A,R3
5C 1 ANL A,R4
50 1 ANL A,R5
5E 1 ANL A,R6
5F 1 ANL A,R7
60 2 JZ code addr
61 2 AJMP code addr
62 2 XRL data addr,A
63 3 XRL data addr,#data
64 2 XRL A,#data
65 2 XRL A,data addr
66 1 XRL A,@RO
67 1 XRL A,@R1
66 1 XRL A,RO
69 1 XRL A,R1
6A 1 XRL A,R2
68 1 XRL A,R3
6C 1 XRL A,R4
60 1 XRL A,R5
6E 1 XRL A,R6
6F 1 XRL A,R7
70 2 JNZ code addr
71 2 ACALL code addr
72 2 ORL C,bitaddr
73 1 JMP @A + OPTR
74 2 MOV A,#data
75 3 MOV data addr,#data
76 2 MOV @RO,#data
77 2 MOV @R1,#data

209

MCS® BASIC-52

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands

Code of Bytes

78 2 MOV RO,#data

) 79 2 MOV R1,#data
7A 2 MOV R2,#data
7B 2 MOV R3,#data
7C 2 MOV R4,#data
70 2 MOV R5,#data
7E 2 MOV R6,#data
7F 2 MOV R7,#data
80 2 SJMP code addr
81 2 AJMP code addr
82 2 ANL C,bitaddr
83 1 MOVC A,@A + PC
84 1 OIV AB
85 3 MOV data addr,data addr
86 2 MOV data addr,@RO
87 2 MOV data addr,@R1
88 2 MOV data addr,RO
89 2 MOV data addr,R1
8A 2 MOV data addr,R2
8B 2 MOV data addr,R3
8C 2 MOV data addr,R4
80 2 MOV data addr,R5
8E 2 MOV data addr,R6
8F 2 MOV data addr,R7
90 3 MOV OPTR,#data
91 2 ACALL code addr
92 2 MOV bitaddr,C
93 1 MOVC A,@A + OPTR
94 2 SUBB A,#data
95 2 SUBB A,data addr
96 1 SUBB A,@RO
97 1 SUBB A,@R1
98 1 SUBB A,RO
99 1 SUBB A,R1
9A 1 SUBB A,R2
9B 1 SUBB A,R3
9C 1 SUBB A,R4
90 1 SUBB A,R5
9E 1 SUBB A,R6
9F 1 SUBB A,R7
AO 2 ORL C,/bit addr
A1 2 AJMP code addr
A2 2 MOV C,bit addr
A3 1 INC OPTR
A4 1 MUL AB
A5 reserved
A6 2 MOV @RO,data addr
A7 2 MOV @R1,data addr
A8 2 MOV RO,data addr
A9 2 MOV R1,data addr
AA 2 MOV R2,data addr
AB 2 MOV R3,data addr
AC 2 MOV R4,data addr
AO 2 MOV R5,data addr
AE 2 MOV R6,data addr
AF 2 MOV R7,data addr
BO 2 ANL C,/blt addr
B1 2 ACALL code addr
B2 2 CPL bit addr
B3 .1 CPL C

210

inter MCS® BASIC-52

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)
Hex Number Mnemonic Operands

Code of Bytes

B4 3 CJNE A,#data,code add,
B5 3 CJNE A,data addr,code add,
B6 3 CJNE @RO,#data,code add,
B7 3 CJNE @R1 ,#data,code add,
B8 3 CJNE RO,#data,code add,
B9 3 CJNE R1 ,#data,code add,
BA 3 CJNE R2,#data,code add,
BB 3 CJNE R3,#data,code add,
BC 3 CJNE R4,#data,code add,
BO 3 CJNE R5,#data,code add,
BE 3 CJNE R6,#data,code add,
BF 3 CJNE R7,#data,code add,
CO 2 PUSH data add,
C1 2 AJMP code add,
C2 2 CLR bit add,
C3 1 CLR C
C4 1 SWAP A
C5 2 XCH A,data add,
C6 1 XCH A,@RO
C7 1 XCH A,@R1
C8 1 XCH A,RO
C9 1 XCH A,R1
CA 1 XCH A,R2
CB 1 XCH A,R3
CC 1 XCH A,R4
CO 1 XCH A,R5
CE 1 XCH A,R6
CF 1 XCH A,R7
DO 2 POP data add,
01 2 ACALL code add,
02 2 SETB bit add,
03 1 SETB C
04 1 OA A
05 3 OJNZ data add',code add,
06 1 XCHO A,@RO
07 1 XCHO A,@R1
08 2 OJNZ RO,code add,
09 2 OJNZ R1,code add,
OA 2 OJNZ R2,code add,
DB 2 OJNZ A3,code add,
DC 2 OJNZ A4,code add,
DO 2 OJNZ A5,code add,
DE 2 OJNZ A6,code add,
OF 2 OJNZ A7,code add,
EO 1 MOVX A,@OPTA
E1 2 AJMP code add'
E2 1 MOVX A,@AO
E3 1 MOVX A,@A1
E4 1 CLA A
E5 2 MOV A,data add,
E6 1 MOV A,@AO
E7 1 MOV A,@A1
E8 1 MOV A,AO
E9 1 MOV A,R1
EA 1 MOV A,A2
EB 1 MOV A,R3
EC 1 MOV A,R4
ED 1 MOV A,R5
EE 1 MOV A,A6
EF 1 MOV A,R7

211

inter MCS~ BASIC-52

Table B-2. Instruction Opcodes In Hexadecimal (Cont'd.)
Hex Number Mnemonic Operands Code of Bytes

FO 1 MOVX @DPTR,A
F1 2 ACALL code addr
F2 1 MOVX @RO,A
F3 1 MOVX @R1,A
F4 1 CPL A
F5 2 MOV data addr,A
F6 1 MOV @RO,A
F7 1 MOV @R1,A
F8 1 MOV RO,A
F9 1 MOV R1,A
FA 1 MOV R2,A
FB 1 MOV R3,A
FC 1 MOV R4,A
FD 1 MOV R5,A
FE 1 MOV R6,A
FF 1 MOV R7,A

212

INDEX

A
ABS, 5, 76,113,158,181,183
Accumulator, 27, 106, 123, 146, 147, 193
ADD,5,8, 74,80,118,119,181,183
Argument Stack, 8, 31, 60, 61, 98, 106-108,

112,113,118,122,123,163,165,167,
169

Arithmetic Overflow, 97, 118
Arithmetic Underflow, 97, 118
Array Size, 99
ASC, 83-85, 103, 158, 183
Assembly Language Linkage, 29, 67, 99, 104
ATN, 79,114,158,181,183
Auto_Baud, 2

B
BAUD Rate, 16,24,27,28,57,89,93,94,

131,145-147,158,164,169,174, 175,
178, 183, 189, 194

C
CALL, 12,29, 104, 107, 108, 130, 132, 158,

178, 183
Carry Bit, 27, 146
CBY, 86,114,158,182,183
CHR, 83, 85, 158, 183
CLEAR, 6, 30, 32, 35, 66 158, 178
CLEARI,. 31, 32, 53, 178, 183
CLEARS, 31, 178, 183
CLOCKO, 32, 53, 158, 178, 183
CLOCK1, 30-32, 52; 91, 92,131,158,163,

167, 178, 183
Command Mode, 4, 12, 13, 24, 106, 109,

111,167,191
Command/Statement Extension, 10, 11, 122,

153-159
Constants,S, 6, 122
CONT, 14, 38, 65, 158, 166, 176, 183
Control Stack, 8, 11, 31, 42, 98, 169
COS,S, 77-79, 113, 158, 181, 183
CR, 4, 55, 158

D
DATA,33, 34,97,158,178,183
Data Format, 5
DBY, 86, 114, 158, 182, 183

213

DIM, 6, 35, 99, 15~, 167, 178, 183
DIMUSE, 185, 186
Direct Memory Access (DMA), 101, 129,

163, 167
DIVIDE,S, 8, 80,118,119,181,183
DO UNTIL, 8, 31, 36, 37, 98,158,178,183
DO-WHILE, 8, 31, 37, 98,158,178,183
DPTR, 104, 106, 123, 147, 153, 155, 159,

190, 193

E
END,38, 158, 178, 183, 188
EPROM Programming, 10, 20, 23, 72, 109,

110, 132, 134-136, 141, 142, 162
EQUAL, 7,80,81,120,158,183
Error Messages, 96-99
EXCLUSIVE OR, 120, 158
EXp, 78,158,181,183
EXPONENT, 74, 80, 119, 181, 183
Expression, 6

F
Floating Point Numbers, 55, 71, 107, 108,

112, 118, 123, 184, 186
FOR TO {STEP} NEXT, 8, 11, 12, 31, 39,

40,42,98, 15a,-178, 183
FPROG, 25, 94, 158, 177, 183
FPROG1, 25, 177, 183
FPROG2, 25, 177, 183
FPROG3, 26, 177, 183
FPROG4,26, 177, 183
FPROG5, 27, 177, 183
FPROG6, 27, 177, 183
FREE, 7, 21, 95,115,158,183

G
GET,67,86, 87,100,115,122,123,158,

162, 165, 166, 169, 182, 183
GOSUB, 8,11,12,41,43,44,51,52,61,

98, 158, 179, 183
GOTO, 12, 13, 43, 44, 46, 158, 179, 183
GREATER THAN, 7, 80, 81, 121, 158, 183
GREATER THAN OR EQUAL, 7, 80, 81,

120, 158, 183

MCS® BASIC-52

I
IDLE, 10, 69, 158, 167, 180, 183
IE, 31, 51, 88,101,103,116,129,130,158,

182, 183, 193, 198
IF _THEN_ELSE, 9, 45, 46, 97,158,179,

183
Illegal Direct, 97
INPUT,47,48,82, 158, 179, 183
Input Buffer, 11, 111
INT, 76, 113, 158~ 181,183
Integers, 5, 75, 76
INTElligent Algorithm, 25, 26, 72, 109, 110,

136,141,163,165,167,169,177
Internal Stack, 8, 99
Interrupts, 129, 130, 159, 160, 162, 163,

166, 167
Ip, 88,116,158,182,183,193,198

L
LD~, 10,71,158,180,183
LEN, 7,95,115,158,183
LESS THAN, 7, 80, 81,121,158,183
LESS THAN OR EQUAL, 7,80,81,120,

158, 183
LET, 49, 66,82,86, 91,95,158,179,183
Line Editor, 8
LIST, 4, 9,10,15-17,21,100,158,176,

183
L1ST#, 16,28,94,131,176,183
LIST~, 11, 17,59,159,166,167,176,183
LOG, 78,114,158,181,183
LOGICAL AND, 76, 80, 81,120,158,181,

183
LOGICAL EXCLUSIVE OR, 75, 80, 81, 181,

183
LOGICAL OR, 75, 80, 81,120,158,181,

183

M
MTOp, 2, 7, 21, 26, 27, 95, 115, 145, 152,

158, 176, 183, 185, 187, 189, 191
MULTIPLY, 8, 74, 80, 118,119, 181, 183

N
NEGATION, 80, 158
NEVV, 18,35,66, 158, 176, 183
NOT, 76,81,113,158,181,183
NOT EQUAL, 7, 80, 81,121,158,183
NULL, 19, 95, 158, 166, 176, 183

214

o
ON GOSUB, 43, 44, 158, 179
ON GOTO, 43, 44 158, 179
ON ERR, 30, 50, 158, 162, 166, 169, 179,

183
ONEX1, 30, 31, 51, 53, 64, 69,129,131,

158, 162, 166, 169, 179, 183
ONTIME, 30, 31, 51, 52, 53, 64, 69, 129,

158, 162, 166, 168, 179, 183
ON GOSUB, 183
ON-GOTO, 183
Opb~e, 11, 106-109,111-124
Operators, 122

P
PCON, 89, 117, 158, 182, 183, 193, 194
PGM, 10, 72, 73, 104, 158, 180 183
PHO., 58, 158, 179, 183
PHO.#, 58, 179, 183
PHO.~, 59, 180, 183
PH1., 58, 157, 158, 179, 183
PH1.#, 58, 179, 183
PH1.@, 59, 180, 183
PI, 77, 79, 115, 158, 182, 183
POP, 60, 61, 98,106,108,118,130,158,

180, 183
PORT1, 88,117,158,182,183
PRINT, 4, 10, 11, 54, 55, 57-59, 63, 158,

179, 183 _
PRINT#, 28, 57, 94,131,179,183
PRINT~, 11, 59, 159, 166, 167, 180, 183
PROG, 23, 25, 94, 131, 134, 158, 176, 183,

189
PROG1, 10,24,25,145,176,183,189
PROG2, 10, 24, 25, 145, 176, 183, 189
PROG3, 10, 26, 145, 176, 183, 189
PROG4, 10, 26, 145, 176, 183
PROG5, 10,27, 145, 177, 183
PROG6, 10,27, 146, 177, 183
Programming Error, 98
PSVV, 130, 160, 193, 194
PUSH,60, 61,98,107,130,158,180,183
PVVM, 62, 90, 94,131,158,170-173,180,

183

MCS® BASIC-52

R
RAM, 21, 158, 176, 183
RAM Only Mode, 132
RAM/EPROM Mode, 133, 134
RCAP2, 89, 117, 158, 182, 183
READ,33,34,97, 158, 178, 183
REM, 12, 63, 158, 180, 183
Reset, 2,3,10,24,26,27,29,102,122,

131,145-152,159,176,177,191
RESTORE, 33, 158, 178, 183
RETI, 51, 53, 64,158,163,180,183
RETURN,41,42, 64, 98,123,158,179,183
RND, 77,115,158,181,183
ROM, 21, 158, 176, 183
RROM, 10,70,158,180,183
RUN, 13,21,24,35,43,100,158,176,183
Run Mode, 4, 13, 123
Run Trap, 10,27, 102, 169

S
SCaN, 147, 190, 193, 197
Serial Port, 131, 136, 159, 160, 166
SGN, 76, 113, 158, 181, 183
Sign-On, 2
SIN, 5, 77-79,114,158,181,183
SMOD,194
SPC, 4, 54, 158
SQR, 77,114,158,181,183
ST@Q, 10,71,158,180,183
Stack Pointer, 8, 31, 105, 147, 152, 193
STOp, 14,65,98, 158, 163, 176, 180, 183
STRING, 30, 49, 66, 82, 83, 99, 158, 164,

168, 180, 183, 185
SUBTRACT, 5,8, 74, 80,118-120,181,183

215

T
T2CON, 2, 3, 89, 116, 131, 147, 158, 182,

183, 193
TAB, 4, 54, 158
TAN, 77, 79, 113, 158, 181, 183
TCON, 3, 90,116,131,147,158,182,183,

193, 197
Text Pointer, 122, 123, 162, 164, 166
TIME, 7, 32, 52, 53, 91, 92, 116, 158, 182,

183
TIMERO, 90, 92, 116, 158, 182, 183
TIMER1, 89, 90, 92, 94, 116, 158, 182, 183
TIMER2, 89, 92, 94, 116, 158 174, 175, 182,

183, 196
TMOD, 3, 90,117,131,147,158,182,183,

193, 195

U
UI, 67, 158, 180, 183
UNTIL, 178
UO, 68, 158, 180, 183
USING, 4, 55, 56, 112, 158

V
Variables, 6, 11, 122, 185
VARTOp, 185, 187
VARUSE, 185-187

X
X-OFF,10
X-ON,10
XBY, 87, 114, 158, 182, 183
XFER, 21, 22,158,176,183
XTAL, 2,3, 7, 28, 32, 62,89, 91, 93,115,

136,152,158,165,169,174,175,183

ALABAMA

Intel Corp.
5015 Bradford Drive
Suite 2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

Intel Corp.
11225 N. 28th Drive
Suite 2140
Phoenix 85029
Tel: (602) 869-4980

Intel Corp.
1161 N. EI Dorado Place
Suite 301
Tucson 85715
Tel: (602) 299-6815

CALIFORNIA

Intel Corp.
21515 Vanowen Street
Suite 116

¥:I~(9M'%~~81tgg
Intel Corp.
2250 E. Imperial Highway
Suite 218

~~~i'~IU~)d34~~lri~0 
Intel Corp. 

~~~~a~~~~o ~~~l~uite 101 
Tel: (916) 920-8096

Intel Corp.
4350 Executive Drive
Suite 105

~:r (~\e~)o4~~~~~80
Intel Corp!
2000 East 4th Street
Suite 100
Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-1114

Intel Corp!
San Tomas 4
2700 San Tomas Expressway
Santa Clara, CA 95051
Tel: (40e) 986-8086
TWX: 910-338-0255

COLORADO

Intel Corp.
3300 Mitchell Lane, Suite 210
Boulder 80301
Tel: (303) 442-8088

Intel Corp.
4445 Northpark Drive
Suite 100

¥~II:Ot:~~ ~C~~~~~g0907
Intel Corp.·
650 S. Cherry Street
Suite 915
Denver 80222
Tel: (303) 321-8086
TWX: 910-931-2289

CONNECTICUT

Intel Corp.
26 Mill Plain Road

~:I~~~O~m~-~130
TWX: 710-456-1199

EMCCorp.
222 Summer Street
Siamford 06901
Tel: (203) 327-2934

FLORIDA

Intel Corp.
242 N. Westmonte Drive
Suite 105

¢:~'(;~~\e 8~~~~~~8 32714

Intel co~.

~~6c.~derd:' ~loiuite 100
Tel: (305) 771-0600
TWX: 510,956-9407

DOMESTIC SALES OFFICES
FLORIDA (Cont'd)

Intel Corp.
11300 4th Street North
Suite 170
St. Petersburg 33702
Tel: (813) 577-2413

GEORGIA

Intel Corp.
3280 Pointe Parkway
Suite 200
Norcross 30092
Tel: (404) 449-0541

ILLINOIS

Intel Corp!

~~~a~'m~~7~nB6~~~oad, Suite 400 

Tel: (312) 310-8031 

INDIANA 

Intel ~orp. 
8777 Purdue Road 
Suite 125 
Indianapolis 46268 
Tel: (317) 875-0623 

IOWA 

Intel Corp. 
St. Andrews Building 
1930 St. Andrews Drive N.E. 
Cedar Rapids 52402 
Tel: (319) 393-5510 

KANSAS 

Intel Corp. 
8400 W. 11 Oth Street 
Suite 170 
Overland Park 66210 
Tel: (913) 345-2727 

MARYLAND 

Intel Corp. 
7321 Parkway Drive South 
SuiteC 
Hanover 21076 
Tel: (301) 796-7500 
TWX: 710-862-1944 

Intel Corp. 
7833 Walker Drive 
Greenbelt 20770 
Tel: (301) 441-1020 

MASSACHUSETTS 

Intel Corp'-
Westford Corp. Center 
3 CarliSle Road 
Westford 01886 
Tel: (617) 692-3222 
TWX: 710-343-6333 

MICHIGAN 

Intel Corp. 
7071 Orchard Lake Road 
Suite 100 
West Bloomfield 48033 
Tel: (313) 851-8096 

MINNESOTA 

Intel Corp. 
3500 W. 80th Street 
Suite 360 
Bloomington 55431 
Tel: (612) 835-6722 
TWX: 910-576-2867 

MISSOURI 

Intel Corp. 
4203 Earth City Expressway 
Suite 131 
Earth City 63045 
Tel: (314) 291-1990 

NEW JERSEY 

Intel Corp.-
Parkway 109 Office Center 
328 Newman Springs Road 
Red Bank 07701 
Tel: (201) 747-2233 

Intel Corp. 
75 Livingston Avenue 
First Floor 
Roseland 07068 
Tel: (201) 740-0111 

NEW MEXICO 

Intet Corp. 
8500 Menual Boulevard N.E. 
Suite B 295 
Albuquerque 87112 
Tel: (505) 292-8086 

NEW YORK 

Intel Corp.· 
300 Vanderbilt Motor Parkway 
Hauppauge 11788 
Tel: (516) 231-3300 
TWX: 510-227-6236 

Intel Corp. 
Suite 2B Hollowbrook Park 
15 Myers Corners Road 

f':fg~~im~~sl ~~590 
TWX: 510-248-0060 

Intel Corp. * 

~:~~~sls4~~6s Office Park 

Tel: (716) 425-2750 
TWX: 510-253-7391 

NORTH CAROLINA 

Intel Corp. 
5700 Executive Center Drive 
Suite 213 
Charlotte 28212 
Tel: (704) 568-8966 

Intel Corp. 

~~?t~ ~6iliff Road 

~:;,e(~~ 9r7~~8022 
OHIO 

Intel Corp" 
3401 Park Center Drive 
Suite 220 
Dayton 45414 
Tel: (513) 890-5350 
TWX: 810-450-2528 

Intel Corp.-
25700 Science Park Drive 
Beachwood 44122 
Tel: (216) 464-2736 
TWX: 810-427-9298 

OKLAHOMA 

Intel Corp. 
6801 N. Broadway 
Suite 115 
Oklahoma City 73116 
Tel: (405) 648-8086 

OREGON 

Intel Corp. 
15254 N.W. Greenbrier Parkway, Bldg. B 
Beaverton 97006 
T.el: (503) 645-8051 
TWX: 910-467-8741 

PENNSYLVANIA 

Intel Corp. 
1513 Cedar Cliff Drive 
Camphill 17011 
Tel: (717) 737-5035 

Intel Corp" 
455 Pennsylvania Avenue 
Fort Washington 19034 
Tel: (215) 641-1000 
TWX: 510-661-2077 

Intel Corp.-
400 Penn Center Boulevard 
Suite 610 

~~s~~r~t81~~:g70 
PUERTO RICO 

Intel Microprocessor Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-3030 

TEXAS 

Intel Corp. 
313 E. Anderson Lane 
Suite 314 
AusUn 78752 
Tel: (512) 454-3628 

Intel Corp. * 
12300 Ford Road 
Suite 380 
DaUas 75234 
Tel: (214) 241-8087 
TWX: 910-860-5617 

Intel Corp.-
7322 S.W. Freeway 
Suite 1490 
Houston 77074 
Tel: (713) 988-8086 
TWX: 910-881-2490 

Industrial DiQital Systems Corp. 
5925 Sovereign 
Suite 101 
Houston 77036 
Tol: (713) 988-9421 

UTAH 

Intel Corp. 
5201 Green Street 
Suite 290 
Murray 84123 
Tel: (801) 263-8051 

VIRGINIA 

Intel Corp. 
~~?t~~g9ta Rosa Road 

Richmond 23288 
Tel: (804) 282-5668 

WASHINGTON 

Intel Corp. 
155-108 Avenue N.E. 
Suite 386 
Bellevue 98004 

~lg~b~2i~o~~ 

~nJ~1 ~°r1~lIan Road 
Suite 102 
Spokane 99206 
Tel: (509) 928-8086 

WISCONSIN 

Intel Corp. 
450 N. Sunnyslope Road 
Suite 130 
Chancellory Park 1 
Brookfield 53005 
Tel: (414) 784-8087 

CANADA 
BRITISH COLUMBIA 

Intel Semiconductor of Canada, Ltd. 
301-2245 W. Broadway 
Vancouver V6K 2E4 
Tel: (604) 738-6522 

ONTARIO 

Intel Semiconductor of Canada, Ltd. 
2650 Queensview Drive 
Suite 250 > 

Ottawa K2B 8H6 

i~IL~~3~~-19/;4 

Intel Semiconductor of Canada, Ltd. 
190 Attwell Drive 
Suite 500 
Roxdale M9W 6H8 

m~~:66:~i3~~~ 
QUEBEC 

Intel Semiconductor of canada, Ltd. 
620 St. Jean Boulevard 
Pointe Claire H9A 3K3 
Tel: (514) 694-9130 
TWX, 514-694-9134 

*Fieid Application Location 

CG-11/6/B6 



intJ 
ALABAMA 

Arrow Electronics, Inc. 
1015 Henderson Road 
Huntsville 35805 
Tel: (205) 837-6955 

tHamiiton/Avnet Electronics 
4812 Commercial Drive N.W. 
Huntsville 35805 
Tel: (205) 837-7210 
TWX: 810-726-2162 

Pioneer/Technologies Group Inc. 

~~s~~I~!3~~5square 
Tel: (205) 837-9300 
TWX: 810-726-2197 

ARIZONA 

tHamiiton/Avnet Electronics 
505 S. Madison Drive 
Tempe 85281 
Tel: (602) 231-5100 
TWX: 910-950-0077 

Kierulff Electronics 
4134 E. Wood Street 
J)hoenix 85040 
Tel: (602) 437-0750 
TWX: 910-951-1550 

flJ~5o~t~?~~~c~~~~~ Highway 
Phoenix 85023 
Tel: (602) 866-2888 

CALIFORNIA 

Arrow Electronics, Inc. 
19748 Dearborn Street 
Chatsworth 91311 
Tel: (818) 701-7500 
TWX: 910-493-2086 

Arrow ElectroniCS, Inc. 
1502 Crocker Avenue 

~:l(.;"Og) ~~~~600 
Arrow Electronics 
9511 Ridgehaven Court 

~:r (~if3,°5~~~:00 
TLX: 888064 

tArrow Electronics. Inc. 
521 Weddell Drive 
Sunnyvale 94086 
Tel: (408) 745-6600 
TWX: 910-339-9371 

Arrow Electronics. Inc. 
2961 Dow Avenue 
Tustin 92680 
Tel: (714) 838-5422 
TWX: 910-595-2860 

tAvnet Electronics 
350 McCormick Avenue 
Costa Mesa 92626 
Tel: (714) 754-6051 
TWX: 910-595-1928 

Hamilton/Avnet ElectroniCS 
1175 Bordeaux Drive 

~~I~'iro:M~?:oo 
TWX: 910-339-9332 

tHamiiton/Avnet Electronics 

~~5oY!~9,,~:venue 
Tel: (61~ 571-7500 
TWX: 910-595-2638 

tHamilton/Avnet Electronics 
20501 Plummer Street 
Chatsworth 91311 

~,18J~b~~:flo~ 
tHamiiton/Avnet Electronics 
4103 Northgate Boulevard 
Sacramento 95834 
Tel: (916) 920-3150 

~~iI:f~t:~et Electronics 

Ontario 91311 
Tel: (714) 989-9411 

Hamilton/Avnet Electronics 
19515 So. Vermont Avenue 
Torrance 90502 

~~J~b~~:6~~ 
Hamilton Electro Sales 
9650 De Soto Avenue 
Chatswortl191311 
Tel: (818) 700-6500 

tHamiiton Electro Sales 
10950 W. Washington Boulevard 
Culver Ci~ 90230 

~,1~J~~;:o~ 

DOMESTIC DISTRIBUTORS 
CALIFORNIA (Cont'd) 

Hamilton Electro Sales 
1361 B West 190th Street 
Gardena 90248 
Tel: (213) 558-2131 

tHamilton Electro Sales 
3170 Pullman Street 
Costa Mesa 92626 
Tel: (714) 641-4150 
TWX: 910-595-2638 

Kierulff Electronics 
10824 Hope Street 
Cypress 90430 
Tel: (714) 220-8300 

Kierulff Electronics, Inc. 
1180 Murphy Avenue 
San Jose 95131 
Tel: (408) 971-2600 
TWX: 910-379-6430 

Kierulff Electronics. Inc. 
14101 Franklin Avenue 
Tustin 92680 
Tel: (714) 731-5711 
TWX; 910-595-2599 

tKierulff Electronics, Inc. 
5650 Jillson Street 
Commerce 90040 
Tel: (213) 725-0325 
TWX: 910-580-3666 

Wyle Distribution Group 
26560 Agoura Street 
Calabasas 91302 
Tel: (818) 880-9000 
TWX: 818-372-0232 

tWyle Distribution Group 
124 Maryland Street 

\'~r(~~~)df2~?~:go 
TWX: 910-348-7140 or 7111 

tWyle Distribution Group 
17872 Cowan Avenue 
Irvine 92714 
Tel: (714) 843-9953 
TWX: 910-595-1572 

tWyle Distribution Group 
11151 Sun Center Drive 
Rancho Cordova 95670 
Tel: (916) 638-5282 

tWyle Distribution Group 
9525 Chesapeake Drive 

~:I~ (~~e3,°5~~~~f71 
TWX: 910-335-1590 

tWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95051 
Tel: (408) 727-2500 
TWX: 910-338-0296 

Wyle Military 
18910 Teller Avenue 
Irvine 92750 
Tel: (714) 851-9958 
TWX: 310-371-9127 

Wyle Systems 
7382 Lampson Avenue 
Garden Grove 92641 
Tel: (714) 851-9953 
TWX: 910-595-2642 

COLORADO 

Arrow Electronics, Inc. 
1390 S. Potomac Street 
Suite 136 
Aurora 80012 
Tel: (303) 696-1111 

tHamiiton/Avnet ElectroniCS 
8765 E. Orchard Road 
Suite 708 
Englewood 60111 
Tel: (303) 740-1017 
TWX: 910-935-0767 

tWyle Distribution Group 
451 E. 124th Avenue 
Thornton 80241 

~,1~~W6~0s,s7~ 
CONNECTICUT 

tArrow Electronics, Inc. 
12 Beaumont Road 
wallingford 06492 

~,!27~t~~6~~~ 
tHamilton/Avnet Electronics 
Commerce Industrial Park 
Commerce Drive 
Danbu~ 06810 

~,1~~,b::l~~% 

CONNECTICUT (Cont'd) 

tPioneer Northeast Electronics 
112 Main Street 
Norwalk 06851 
Tel: (203) 853-1515 
TWX: 710-468-3373 

FLORIDA 

tArrow Electronics. Inc. 
350 Fairway Drive 
Deerfield 8E:Iach 33441 
Tel: (305) 429-8200 
TWX: 510-955-9456 

tArrow ElectroniCS, Inc. 
1001 N.w. 62nd Street 
Suite 108 
Ft. Lauderdale 33309 
Tel: (305) 776-7790 
TWX; 510-955-9456 

tArrow ElectroniCS. Inc. 
50 Woodlake Drive W., Bldg. B 

~::~3~~r m~~80 
TWX: 510-959-6337 

tHamilton/Avnet Electronics 

~~O~a~d'Z;d~~!h ~"Jg 
Tel: (305) 971-2900 
TWX: 510-958-3097 

tHamilton/Avnet Electronics 
3197 Tech Drive North 
SI. Petersburg 33702 
Tel: (813) 576-3930 
TWX: 810-863-0374 

Hamilton/Avnet Electronics 

~~Je~n~~:r;~~9~oulevard 
Tel: (385) 628-3888 
TWX; 810-853-0322 

tPioneer Electronics 
221 N. Lake Boulevard 
Suite 412 

~~~ ~8~)t~:I~g~~ 32701 
TWX: 810-853-0284

tPioneer Electronics
674 S. Military Trail
Deerfield Beach 33442
Tel: (305) 428-8877
TWX: 510-955-9653

GEORGIA

tArrow Electronics, Inc.
3155 Northwoods Parkway, Suite A
Norcross 30071
Tel: (404) 449-8252
TWX: 810-766-0439

~8~il~nt::~~:r;~ec~~~~~:
Norcross 30092
Tel: (404) 447-7500
TWX: 810-766-0432

Pioneer ElectroniCs
5835B Peachtree Corners E
Norcross 30092
Tel: (404) 448-1711
TWX; 810-768-4515

ILLINOIS

tArrow Electronics, Inc.

~~~~uEm~~~n~uJ~ 9~treet 
Tel: (312) 3a7-3440 
TWX: 910-291-3544 

tHamilton/Avnet Electronics 
1130 Thorndale Avenue 
Bensenville 60106 

i~pm~2IiJli:ci~~0 

tPioneer Electronics 
1551 Carmen Drive 

\'~: Gmi 1:J~~9:8~0007 
TW~: 910-222-1834 

INDIANA 

tArrow Electronics, Inc. 
2495 Directors Row. Suite H 
Indianapolis 46241 

~PJ~b~3~~5?9 
Hamilton/Avnet Electronics 
485 Gradle Orive 
Carmel 46032 

~pm~6'li~:9~ 

INDIANA (Cont'd) 

tPioneer Electronics 
6408 Castleplace Drive 
Indianapolis 46250 
Tel: (317) 849-7300 
TWX: 810-260-1794 

KANSAS 

tHamilton/Avnet Electronics 
9219 Quivera Road 
Overland Park 66215 

~~~m~!4~~~~5 
KENTUCKY

Hamilton/Avnet Electronics
1051 D. Newton Park
Lexington 40511

MARYLAND

Arrow Electronics. Inc.
8300 Gulford Road #H
Rivers Center
Columbia 21046
Tel: (301) 995-0003
TWX: 710-236-9005

tHamilton/Avnet Electronics
6822 Oak Hall Lane
Columbia 21045
Tel: (301) 995-3500
TWX: 710-862-1881

tPioneer Electronics
9100 Gaither Road
Gaithersbu2I 20877

~,1~~1 b~82sa?ci5'Jl5
MASSACHUSETTS

tArrow ElectroniCS, Inc.
1 Arrow Drive
Woburn 01801
Tel: (617) 933-8130
TWX: 71 0-393-6770

tHamiiton/Avnet ElectroniCS
100 Centennial Drive

~:~7g~,) ~1~~g701
TWX: 710-393-0362

MTI Systems Sales
13 Fortune Drive
Billerica 01821

Pioneer Northeast Electronics
44 Hartwell Avenue

~:~i($~) 8~~~ ~~oo
TWX: 710-326-6617

MICHIGAN

Arrow Electronics, Inc.
755 Phoenix Drive
Ann Arbor 48104
Tel: (313) 971-6220
TWX: 810-223-6020

tHamiiton/Avnet ElectroniCS
32487 Schoolcraft Road
Livonia 48150
Tel: (313) 522-4700
TWX: 810-242-8775

~:~I~~A~t~:etE:.~~onics
Space A5
Grand Rapids 49508
Tel: (616) 243-8805
TWX: 810-273-6921

tPioneer Electronics
13485 Stamford
Livonia 48150
Tel: (313) 525-1800
TWX: 810-242-3271

MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
TWX: 910-576-3125

Hamilton/Avnet Electronics
10300 Bren Road East
Minnetonka 55343
Tel: (612) 932-0600
TWX: (910) 576-2720

tPioneer Electronics
10203 Bren Road East
Minnetonka 55343

~~J~t~~6~2~\~
tMicrocomputer System Technical Demonstrator Centers

Cel-ll/S/88

MISSOURI

tArrow Electronics, Inc.
2380 Schuetz
51. LOuis 63141
Tel: (314) 567-6888
1WX: 910-764-0882

tHamllton/Avnet Electronics
13743 Shoreline Court
Earth Ci~ 63045
Tel: (314 344-1200
TWX: 91 -762-0684

NEW HAMPSHIRE

tArrow Electronics, Inc.
3 Perimeter Road
Manchester 03103
Tel: (603) 668_6968
1WX: 710-220-1684

Hamilton/Avnet Electronics
444 E.lndustlial Drive
Manchester 03104
Tel: (603) 624-9400

NEW JERSEY

tArrow Electronics. Inc.
6000 Lincoln East
Marlton 08053

~J~~~b::9~~o'l,~
tArrow Electronics, Inc.
2 Industrial Road
Fairfield 07006
Tel: (201) 575-5300
TWX: 71 0-998-2206

tHamiiton/Avnet Electronics
1 Keystone Avenue
Bldg. 36

¥~I~(;r0~;I~g:~13, 0
TWX: 710-940-0262

tHamilton{Avnet Electronics
10 Industnal
Fairfield 07006
Tel: (201) 575-3390
TWX: 701-734-4388

tPioneer·Northeast Electronics
45 Route 46
Pinebrook 07058
Tel: (201) 575-3510
TWX: 710-734-4382

tMTI Systems Sales
383 Route 46 W
Fairfield 07006
Tel: (201) 227-5552

NEW MEXICO

Alliance Electronics Inc.
11030 Cochiti S.E.
AlbU~Uerque 87123

~J: g~b~8~~~~~
Hamilton/Avnet Electronics
2524 Baylor Drive S.E.
AlbU~Uerque 87106

~J: g~b::8~~~
NEW YORK

tArrow Electronics, Inc.
25 Hub Drive
Melville 11747

~J~m~i2~~:'~06
tArrow Electronics, Inc.
3375 Brighton-Henrietta. Townline Road
Rochester 14623

~J~~,!}l:i~70Jl6

Arrow Electronics. Inc.
20 Oser Avenue

~:I~\l'i"~)~31~igllo
TWX: 510-227-8823

Hamilton/Avnet Electronics
333 Metro Park
Rochester 14623

~~J~b~~:i~~llo
Hamilton/Avnet Electronics
103 Twin Oaks Drive
Syracuse 13206
Tel: (315) 437-2841
TWX: 710-541-1560

DOMESTIC DISTRIBUTORS
NEW YORK (Conl'd)

tHamiiton/Avnet Electronics
933 Motor Parkway
Hauppauge 11788
Tel: (516) 231-9800
TWX: 510-224-6166

tMTI Systems Sales
38 Harbor Park Drive
P.O. Box 271

~~r(~-;~hJ~~~~~dd 050
1WX: 510-223-0646

tPioneer Northeast Electronics
1806 Vestal Parkway East
Vestal 13850
Tel: (607) 748-8211
1WX: 510-252-0893

tPioneer Northeast Electronics
60 Crossway Park West

f.'!:0(~~~79},~~~~~land 11797
TWX: 510-221-2184

Pioneer Northeast Electronics
840 Fairport Park
Fairport 14450
Tel: (716) 381-7070
TWX: 510-253-7001

NORTH CAROLINA

Arrow Electronics. Inc.

~~i~ ~r~~~g:iry Road

Tel: (~'9) 876-3132
TWX: 510-928-1856

tHamilton/Avnet Electronics

~~1~ Stf~~B~orest Drive

Tel: (~'9) 878-0819
TWX: 510-928-1836

Pioneer Electronics
9801 A-Southern Pine Boulevard
Charlotte 28210
Tel: (704) 524-8188
TWX: 810-621-0366

OHIO

Arrow Electronics, Inc.
7620 McEwen Road
Centerville 45459
Tel: (513) 435-5563
TWX: 810-459-1611

tArrow Electronics, Inc.
6238 Cochran Road
Solon 44139
Tel (216) 248-3990
TWX: 810-427-9409

tHamiiton/Avnet Electronics
954 Senate Drive

~:r~~ :m~-0610
TWX: 810-450-2531

tHamiiton/Avnet Electronics
4588 Emery Industrial Parkway

f.n~~~)ill3,~~l!btgs 44128
TWX: 810-427-9452

tPioneer ElectroniCS
4800 E. 131 st Street
Cleveland 44105
Tel: (216) 587-3600
TWX: 810-422-2211

OKLAHOMA

Arrow Electronics. Inc.
4719 S. Memorial Drive
Tulsa 74145
Tel: (918) 665-7700

OREGON

tAlmac Electronics Corporation
1885 NW. 169th Place
Beaverton 97006

~J5gn.s1~~8~4~
Hamilton/Avnet Electronics
6024 SW. Jean Road
Bldg. C, Suite 10

~:~~~~ig8g_~~~4
1WX: 910-455-8179

~~g ~~~.ri~~~~~~~~PparkWay
Suite 600
Hillsboro 97124
Tel: (503) 640-6000
1WX: 910-460-2203

PENNSY~VANIA

Arrow Electronics. Inc.
650 Seco Road
Monroeville 1.5146
Tel: (412) 856-7000

Pioneer Electronics
259 Kappa Drive

~~~~I'-"l'g%~~g:oo 
1WX: 710-795-3122 

tPioneer Electronics 
261 Gibralter Road 
Horsham 19044 

~J~J~~S:~~7% 
TEXAS 

tArrow Electronics, Inc. 
3220 Commander Drive 
Carrollton 75006 

~J~J1~8~~~~ 
tArrow Electronics, Inc. 
10899 Kinghurst 
Suite 100 
Houston 77099 
Tel: (713) 530-4700 
TWX: 910-880-4439 

Arrow Electronics, Inc. 
10125 Metropolitan 
Austin 78758 
Tel: (512) 835-4180 
1WX,910-874-1348 

tHamilton/Avnet ElectroniCS 
1807 W. Braker Lane 
Austin 78758 
Tel: (512) 837-8911 
1WX: 910-874-1319 

tHamitton/Avnet Electronics 
2111 W. Walnut Hill Lane 

~~:~M~~~9-41 00 
1WX: 910-860-5929 

tHamilton~Avnet Electronics 

~~~~~~i~7~~f'd #190 
Tel: (713) 780-1771
1WX: 910-881-5523

tPioneer Electronics
9901 Burnet Road
Austin 78758
Tel: (512) 835-4000
1WX: 910-874-1323

Pioneer Electronics
5853 Point West Drive
Houston 77036

~fJ~I:~~56~6
UTAH

tHamitton/Avnet ElectroniCS
1585 West 2100 South
Salt Lake C~ 84119

~J~gll:~25~0~8
Wyle Distribution Group
1959 South 4130 West, Unit B

~::~ ~~i ~~X_~Jg4
WASHINGTON

tAlmac Electronics Corporation
14360 S.E. Easlgate Way
Bellevue 98007
Tel: (206) 643-9992
1WX: 910-444-2067

Arrow Electronics. Inc.
14320 N.E. 21st Street
Bellevue 98007
Tel: (206) 643-4800
TWX: 910-444-2017

Hamilton/Avnet Electronics
14212 N.E. 21st Street
Bellevue 98005
Tel: (206) 453-5874
TWX: 910-443-2469

WISCONSIN

tArrow ElectroniCS, Inc.
430 W. Rausson Avenue
Oakcreek 53154

~t~1b:~~~3

WISCONSIN (Cont'd)

Hamilton/Avnet Electronk:s
2975 Moo~and Road
New Berlin 53151

~J4J1b:2~·tW~

CANADA
ALBERTA

Hamilton/Avnet Electronics
2816 21st Street N-E.

¥::~(~'a'3~~~6
TWX: 03-827-642

Hamilton/Avnet Electronk:s
6845 Rexwood Road Unit 6

~~r:~~f:)~~7~~~fo L4Vl R2

Zentronics

~~~ON,°.jt~ Avenue N.E. 

¥:II~(':{M~~2~~21 
BRITISH COLUMBIA 

Hamilt~Avnet Electronics 

~~~~;Iay ~~ngi3 Road 
Tel: (604) 272-4242

Zentronics

~?~h~~~ S'6~~~ort Road
Tel: (604) 273-5575
1WX: 04-5077-89

MANITOBA

Zentronics
590 Berry Street

~~(ra~ ~1~8~~1
ONTARIO

Arrow ElectroniCS Inc.
24 Martin Ross Avenue
Downsview M3J 2K9

i~ILJ~:6J:~1~l,~
Arrow Electronics Inc.
148 Colonnade Road
Nepean K2E 7 J5
Tel: (613) 226-6903

tHamilton/Avnet Electronics
6845 Rexwood Road
UnltsG & H

~~r:~~fg)~~7~~X31 R2
TWX: 610-492-8867

tHamilton/Avnet Electronics
210 Colonnade Rood South
Nepean K2E 7L5
Tel: (613) 226-1700
TWX: 05-349'71

tZentronics
8 Tilbury Court

~~~(m) 4~f-~~ 
TWX: 06-976-78 

Zentronics 
564/10 Weber Street North 
Waterloo N2L 5C6 
Tel: (519) 884-5700 

Zentronics 
155 Colonnade Road 
Unit 17 
Nepean K2E 7Kl 
Tel: (613) 225-8840 
TWX: 06-976-78 

QUEBEC 

Arrow Electronics Inc. 
4050 Jean Talon Quest 
Montreal H4P 1 WI 

i~L~~:~l-~~~' 
Arrow ElectroniCS Inc. 
909 Charest Blvd_ 
Quebec 61 N 269 
Tel: (418) 687-4231 
TLX: 05-13388 

Hamilton/Avnet Electronics 
2795 Rue Halpern 
51. Laurent H4S 1 P8 

~~J1~~111?:l\ 
Zentronics 
505 Locke Street 
51. Laurent H4T lX7 
Tel: (514) 735-5361 
1WX: 05-.!!27-535 

tMicrocomputer System Technical Demonstrator Centers 

CG-ll/8/88 



Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051; Tel. (408) 987-8080 

Printed in U.S.A./TP511 8/1186/3K1IL SM 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	xBack

