Optoelectronics Designer's Catalog

:

Hewlett-Packard: A Leader in Components

A Brief Sketch

For over 25 years, HewlettPackard's Components Group has developed reliable, high performance optoelectronic and microwave components. Recognized for technological advances, setting world standards, and providing highquality products, the Components Group has become a leader in the markets it serves, such as the computer, telecommunication, automotive and military/aerospace markets.

The products of the Components Group are vertically integrated, from the growing of LED crystals, to the development of the various on-board integrated circuits, to package design. Vertical integration ensures that HP quality is maintained throughout product development and manufacturing.

Over 5000 employees are dedicated to HP Components, including a worldwide sales force. Manufacturing facilities are located in Malaysia and Singapore with factory and marketing support in San Jose, California. Marketing operations are also located in Germany, Singapore, and Japan.

Each field sales office is staffed with engineers trained to provide technical assistance. An extensive communications network links field with factory to assure that each customer can quickly obtain the information and help needed.

Quality and Reliability

Quality and reliability are very important concepts to HewlettPackard in maintaining the commitment to product performance.

At Hewlett-Packard, quality is integral to product development, manufacturing, and final introduction. "Parts per million" (PPM), as a measure of quality, is used in HP's definition of product assurance. And HP's commitment to quality means that there is a continuous process of improvement and tightening of quality standards. Manufacturing quality circles and quality testing programs are important ingredients in HP products.

Reliability testing is also required for the introduction of new HP components. Lifespan calculations in "mean-time-between-failure" (MTBF) terms are published and available as reliability data sheets. HP's stringent reliability testing assures long component lifetimes and consistent product performance.

About This Catalog

To help you choose and design with Hewlett-Packard optoelectronic components, this catalog includes detailed specifications for HP component products. The catalog is divided into nine sections:

1. Motion Sensing and Encoder Products
2. LED Light Bars and Bar Graph Arrays
3. LED Lamps
4. LED Displays
5. Fiber Optics
6. Optocouplers
7. Electrophotographic Products
8. Applications
9. Appendix

How to Find the Right Information

- The Table of Contents (p. iii) helps you to locate the product sections as well as the selection guides for each of the product sections.
- An alphanumeric index (p. iv) lists every component represented in this catalog.
- Selection guides at the beginning of each of the seven product sections, contain basic product specifications which allows you to quickly select products most suitable for your application.

Following the product sections is a complete listing of application bulletins and notes which are frequently useful as design aids. The final section is an appendix containing HP sales, service, and authorized distributor locations.

How to Order

To order any component in this catalog or additional applications information, call the HP office nearest you and ask for a Components representative. A complete listing of the U.S. sales offices is on page 9-7; offices located outside of the U.S. are listed on page 9-8.

A world-wide listing of HP authorized distributors is on page 9-3. These distributors can offer off-the-shelf delivery for most HP components.

If you need technical assistance, please call our Customer Information Center at 1-800-752-0900.

Table of Contents

Alphanumeric Index iv
Section 1. Motion Sensing and Control Products 1-1
Selection Guide 1-3
Section 2. Light Bars and Bar Graph Arrays 2-1
Selection Guide 2-3
Section 3. Solid State Lamps 3-1
Selection Guide 3-3
Hermetic Lamps 3-129
Selection Guide 3-131
Section 4. Solid State Displays 4-1
Selection Guide 4-3
Hermetic Displays 4-158
Selection Guide 4-160
Section 5. Fiber Optics 5-1
Selection Guide 5-6
Section 6. Optocouplers 6-1
Selection Guide 6-8
Hermetic Optocouplers 6-203
Screening Programs 6-205
Selection Guide 6-214
Section 7. Electrophotographic Products 7-1
Section 8. Applications 8-1
Section 9. Appendix 9-1
How to Order 9-2
Authorized Distributor \& Representative List 9-3
U.S. Sales \& Service 9-7
International Sales \& Service 9-8

Alphanumeric Index

CNW135 6-100
CNW136 6-100
CNW138 6-128
CNW139 6-128
CNW4502 6-100
HCMS-2000 4-54
HCMS-2001 4-54
HCMS-2002 4-54
HCMS-2003 4-54
HCMS-2004 4-54
HCMS-2010 4-195
HCMS-2010TXV 4-195
HCMS-2010TXVB 4-195
HCMS-2011 4-195
HCMS-2011TXV 4-195
HCMS-2011TXVB 4-195
HCMS-2012 4-195
HCMS-2012TXV 4-195
HCMS-2012TXVB 4-195
HCMS-2013 4-195
HCMS-2013TXV 4-195
HCMS-2013TXVB 4-195
HCMS-2300 4-54
HCMS-2301 4-54
HCMS-2302 4-54
HCMS-2303 4-54
HCMS-2304 4-54
HCMS-2310 4-195
HCMS-2310TXV 4-195
HCMS-2310TXVB 4-195
HCMS-2311 4-195
HCMS-2311TXV 4-195
HCMS-2311TXVB 4-195
HCMS-2312 4-195
HCMS-2312TXV 4-195
HCMS-2312TXVB 4-195
HCMS-2313 4-195
HCMS-2313TXV 4-195
HCMS-2313TXVB 4-195
HCMS-2314 4-195
HCMS-2314TXV 4-195
HCMS-2314TXVB 4-195
HCMS-2351 4-195
HCMS-2351TXV 4-195
HCMS-2351TXVB 4-195
HCMS-2352 4-195
HCMS-2352TXV 4-195
HCMS-2352TXVB 4-195
HCMS-2353 4-195
HCMS-2353TXV 4-195
HCMS-2353TXVB 4-195
HCMS-2354 4-195
HCMS-2354TXV 4-195
HCMS-2354TXVB 4-195
HCPL-0452 6-93
HCPL-0453 6-93
HCPL-0500 6-93
HCPL-0501 6-93
HCPL-0600 6-74
HCPL-0601 6-74
HCPL-0611 6-74
HCPL-0700 6-122
HCPL-0701 6-122
HCPL-1930 6-265
HCPL-1931 (883B) 6-265
HCPL-2200 6-17
HCPL-2200, OPT 100, 300 6-193
HCPL-2201 6-22
HCPL-2201, OPT 100, 300 6-193
HCPL-2202 6-22
HCPL-2202, OPT 100, 300 6-193
HCPL-2211 6-22
HCPL-2211, OPT 100, 300 6-193
HCPL-2212 6-22
HCPL-2212, OPT 100, 300 6-193
HCPL-2219 6-17
HCPL-2219, OPT 100, 300 6-193
HCPL-2231 6-27
HCPL-2231, OPT 100, 300 6-193
HCPL-2232 6-27
HCPL-2232, OPT 100, 300 6-193
HCPL-2300 6-32
HCPL-2300, OPT 100, 300 6-193
HCPL-2400 6-39
HCPL-2400, OPT 100, 300 6-193
HCPL-2411 6-39
HCPL-2411, OPT 100, 300 6-193
HCPL-2430 6-46
HCPL-2430, OPT 100, 300 6-193
HCPL-2502 6-80
HCPL-2502, OPT 100, 300 6-193
HCPL-2530 6-87
HCPL-2530, OPT 020 6-191
HCPL-2530, OPT 100, 300 6-193
HCPL-2531 6-87
HCPL-2531, OPT 020 6-191
HCPL-2531, OPT 100, 300 6-193
HCPL-2601 6-53
HCPL-2601, OPT 020 6-191
HCPL-2601, OPT 100, 300 6-193
HCPL-2602 6-60
HCPL-2602, OPT 020 6-191
HCPL-2602, OPT 100, 300 6-193
HCPL-2611 6-53
HCPL-2611, OPT 020 6-191
HCPL-2611, OPT 100, 300 6-193
HCPL-2612 6-60
HCPL-2612, OPT 020 6-191
HCPL-2612, OPT 100, 300 6-193
HCPL-2630 6-68
HCPL-2630, OPT 020 6-191
HCPL-2630, OPT 100, 300 6-193
HCPL-2631 6-68
HCPL-2631, OPT 020 6-191
HCPL-2631, OPT 100, 300 6-193
HCPL-2730 6-112
HCPL-2730, OPT 020 6-191
HCPL-2730, OPT 100, 300 6-193
HCPL-2731 6-112
HCPL-2731, OPT 020 6-191
HCPL-2731, OPT 100, 300 6-193
HCPL-3700 6-165
HCPL-3700, OPT 020 6-191
HCPL-3700, OPT 100, 300 6-193
HCPL-3760 6-165
HCPL-3760, OPT 020 6-191
HCPL-3760, OPT 100, 300 6-193
HCPL-4100 6-175
HCPL-4100, OPT 100, 300 6-193
HCPL-4200 6-183
HCPL-4200, OPT 100, 300 6-193
HCPL-4502 6-80
HCPL-4502, OPT 020 6-191
HCPL-4502, OPT 100, 300 6-193
HCPL-4503 6-80
HCPL-4503, OPT 020 6-191
HCPL-4503, OPT 100, 300 6-193
HCPL-4562 6-159
HCPL-4562, OPT 020 6-191
HCPL-4562, OPT 100, 300 6-193
HCPL-5200 6-222
HCPL-5201 (883B) 6-222
HCPL-5230 6-222
HCPL-5231 (883B) 6-222
HCPL-5400 6-236
HCPL-5401 (883B) 6-236
HCPL-5430 6-236
HCPL-5431 (883B) 6-236
HCPL-4661 6-68
HCPL-4661, OPT 020 6-191
HCPL-4661, OPT 100, 300 6-193
HCPL-5500 6-305
HCPL-5501 (883B) 6-305
HCPL-5530 6-305
HCPL-5531 (883B) 6-305
HCPL-5600 6-257
HCPL-5601 (883B) 6-257
HCPL-5630 6-257
HCPL-5631 (883B) 6-257
HCPL-5700 6-280
HCPL-5701 (883B) 6-280
HCPL-5730 6-280
HCPL-5731 (883B) 6-280
HCPL-5760 6-290
HCPL-5761 (883B) 6-290
HCPL-6230 6-222
HCPL-6231 (883B) 6-222
HCPL-6430 6-236
HCPL-6431 (883B) 6-236
HCPL-6530 6-305
HCPL-6531 (883B) 6-305
HCPL-6630 6-257
HCPL-6631 (883B) 6-257
HCPL-6730 6-280
HCPL-6731 (883B) 6-280
HCPL-7100 6-135
HCPL-7100, OPT 020 6-191
HCPL-7100, OPT 100, 300 6-193
HCPL-7101 6-147
HCPL-7101, OPT 020 6-191
HCPL-7101, OPT 100, 300 6-193
HCTL-1100 1-77
HCTL-1100, OPT PLC 1-77
HCTL-2000 1-61
HCTL-2016 1-61
HCTL-2020 1-61
HDLA-2416 4-30
HDLG-2416 4-30
HDLO-2416 4-30
HDLR-2416 4-30
HDLY-2416 4-30
HDSP-A101 4-72
HDSP-A103 4-72
HDSP-A107 4-72
HDSP-A108 4-72
HDSP-A151 4-88
HDSP-A153 4-88
HDSP-A157 4-88
HDSP-A158 4-88
HDSP-A801 4-72
HDSP-A803 4-72
HDSP-A807 4-72
HDSP-A808 4-72
HDSP-A901 4-72
HDSP-A903 4-72
HDSP-A907 4-72
HDSP-A908 4-72
HDSP-E100 4-72
HDSP-E101 4-72
HDSP-E103 4-72
HDSP-E108 4-72
HDSP-E150 4-105
HDSP-E151 4-105
HDSP-E153 4-105
HDSP-E156 4-105
HDSP-F001 4-97
HDSP-F003 4-97
HDSP-F007 4-97
HDSP-F008 4-97
HDSP-F101 4-72
HDSP-F103 4-72
HDSP-F107 4-72
HDSP-F108 4-72
HDSP-F151 4-97
HDSP-F153 4-97
HDSP-F157 4-97
HDSP-F158 4-97
HDSP-F201 4-97
HDSP-F203 4-97
HDSP-F207 4-97
HDSP-F208 4-97
HDSP-F301 4-97
HDSP-F303 4-97
HDSP-F307 4-97
HDSP-F308 4-97
HDSP-F401 4-97
HDSP-F403 4-97
HDSP-F407 4-97
HDSP-F408 4-97
HDSP-F501 4-97
HDSP-F503 4-97
HDSP-F507 4-97
HDSP-F508 4-97
HDSP-H101 4-72
HDSP-H103 4-72
HDSP-H107 4-72
HDSP-H108 4-72
HDSP-H151 4-115
HDSP-H153 4-115
HDSP-H157 4-115
HDSP-H158 4-115
HDSP-K121 4-72
HDSP-K123 4-72
HDSP-L101 4-62
HDSP-L103 4-62
HDSP-L201 4-62
HDSP-L203 4-62
HDSP-M101 4-62
HDSP-M103 4-62
HDSP-N100 4-72
HDSP-N101 4-72
HDSP-N103 4-72
HDSP-N105 4-72
HDSP-N106 4-72
HDSP-N150 4-125
HDSP-N151 4-125
HDSP-N153 4-125
HDSP-N155 4-125
HDSP-N156 4-125
HDSP-P101 4-134
HDSP-P103 4-134
HDSP-P151 4-134
HDSP-P153 4-134
HDSP-0760 4-148
HDSP-0761 4-148
HDSP-0762 4-148
HDSP-0763 4-148
HDSP-0770 4-148
HDSP-0771 4-148
HDSP-0772 4-148
HDSP-0773 4-148
HDSP-0781 4-215
HDSP-0781TXV 4-215
HDSP-0781TXVB 4-215
HDSP-0782 4-215
HDSP-0782TXV 4-215
HDSP-0782TXVB 4-215
HDSP-0783 4-215
HDSP-0783TXV 4-215
HDSP-0783TXVB 4-215
HDSP-0784 4-215
HDSP-0784TXV 4-215
HDSP-0784TXVB 4-215
HDSP-0791 4-215
HDSP-0791TXV 4-215
HDSP-0791XVB 4-215
HDSP-0792 4-215
HDSP-0792TXV 4-215
HDSP-0792TXVB 4-215
HDSP-0794 4-215
HDSP-0794TXV 4-215
HDSP-0794TXVB 4-215
HDSP-0860 4-148
HDSP-0861 4-148
HDSP-0862 4-148
HDSP-0863 4-148
HDSP-0881 4-215
HDSP-0881TXV 4-215
HDSP-0881TXVB 4-215
HDSP-0882 4-215
HDSP-0882TXV 4-215
HDSP-0882TXVB 4-215
HDSP-0883 4-215
HDSP-0883TXV 4-215
HDSP-0883TXVB 4-215
HDSP-0884 4-215
HDSP-0884TXV 4-215
HDSP-0884TXVB 4-215
HDSP-0960 4-148
HDSP-0961 4-148
HDSP-0962 4-148
HDSP-0963 4-148
HDSP-0981 4-215
HDSP-0981TXV 4-215
HDSP-0981TXVB 4.215
HDSP-0982 4-215
HDSP-0982TXV 4-215
HDSP-0982TXVB 4-215
HDSP-0983 4-215
HDSP-0983TXV 4-215
HDSP-0983TXVB 4-215
HDSP-0984 4-215
HDSP-0984TXV 4-215
HDSP-0984TXVB 4-215
HDSP-2000 4-3
HDSP-2001 4-3
HDSP-2002 4-3
HDSP-2003 4-3
HDSP-2010 4-162
HDSP-2010TXV 4-162
HDSP-2010TXVB 4-162
HDSP-2110 4-14
HDSP-2111 4-14
HDSP-2112 4-14
HDSP-2113 4-14
HDSP-2121 4-14
HDSP-2122 4-14
HDSP-2123 4-14
HDSP-2131 4-166
HDSP-2131TXV 4-166
HDSP-2131TXVB 4-166
HDSP-2132 4-166
HDSP-2132TXV 4-166
HDSP-2132TXVB 4-166
HDSP-2133 4-166
HDSP-2133TXV 4-166
HDSP-2133TXVB 4-166
HDSP-2179 4-166
HDSP-2179TXV 4-166
HDSP-2179TXVB 4-166
HDSP-2300 4-3
HDSP-2301 4-3
HDSP-2302 4-3
HDSP-2303 4-3
HDSP-2310 4-162
HDSP-2310TXV 4-162
HDSP-2310TXVB 4-162
HDSP-2311 4-162
HDSP-2311TXV 4-162
HDSP-2311TXVB 4-162
HDSP-2312 4-162
HDSP-2312TXV 4-162
HDSP-2312TXVB 4-162
HDSP-2313 4-162
HDSP-2313TXV 4-162
HDSP-2313TXVB 4-162
HDSP-2351 4-161
HDSP-2351TXV 4-161
HDSP-2351TXVB 4-161
HDSP-2352 4-161
HDSP-2352TXV 4-161
HDSP-2352TXVB 4-161
HDSP-2353 4-161
HDSP-2353TXV 4-161
HDSP-2353TXVB 4-161
HDSP-2416 *
HDSP-2424
HDSP-2432
HDSP-2440 *
HDSP-2450 4-162
HDSP-2450TXV 4-162
HDSP-2450TXVB 4-162
HDSP-2451 4-162
HDSP-2451TXV 4-162
HDSP-2451TXVB 4-162
HDSP-2452 4-162
HDSP-2452TXV 4-162
HDSP-2452TXVB 4-162
HDSP-2453 4-162
HDSP-2453TXV 4-162
HDSP-2453TXVB 4-162
HDSP-2470
HDSP-2471
HDSP-2472
HDSP-2490 4-4
HDSP-2491 4-4
HDSP-2492 4-4
HDSP-2493 4-4
HDSP-3350 4-72
HDSP-3351 4-72
HDSP-3353 4-72
HDSP-3356 4-72
HDSP-3400 4-125
HDSP-3400, OPT S02 4-11
HDSP-3401 4-125
HDSP-3403 4-125
HDSP-3403, OPT S02 4-11
HDSP-3405 4-125
HDSP-3406 4-125
HDSP-3406, OPT S02 4-11
HDSP-3530 4-10
HDSP-3531 4-10
HDSP-3533 4-10
HDSP-3536 4-10
HDSP-3600 4-105
HDSP-3600, OPT S02 4-11
HDSP-3601 4-105
HDSP-3603 4-105
HDSP-3603, OPT S02 4-11
HDSP-3606 4-105
HDSP-3606, OPT S02 4-11
HDSP-3730 4-10
HDSP-3731 4-10
HDSP-3733 4-10
HDSP-3736 4-10
HDSP-3900 4-125
HDSP-3900, OPT S02 4-11
HDSP-3901 4-125
HDSP-3901, OPT S02 4-11
HDSP-3903 4-125
HDSP-3903, OPT S02 4-11
HDSP-3905 4-125
HDSP-3905, OPT S02 4-11
HDSP-3906 4-125
HDSP-3906, OPT S02 4-11
HDSP-4030 4-10
HDSP-4031 4-10
HDSP-4033 4-10
HDSP-4036 4-10
HDSP-4130 4-10
HDSP-4131 4-10
HDSP-4133 4-10
HDSP-4136 4-10
HDSP-4200 4-125
HDSP-4201 4-125
HDSP-4203 4-125
HDSP-4205 4-125
HDSP-4206 4-125
HDSP-4401 4-62
HDSP-4403 4-62
HDSP-4501 4-62
HDSP-4503 4-62
HDSP-4600 4-105
HDSP-4601 4-105
HDSP-4603 4-105
HDSP-4606 4-105
HDSP-4701 4-62
HDSP-4703 4-62
HDSP-4820 2-23
HDSP-4830 2-23
HDSP-4832 2-23
HDSP-4836 2-23
HDSP-4840 2-23
HDSP-4850 2-23
HDSP-5101 4-62
HDSP-5103 4-62
HDSP-5301 4-115
HDSP-5301, OPT S01, S02 4-11
HDSP-5303 4-115
HDSP-5303, OPT S01, S02 4-11
HDSP-5307 4-115
HDSP-5307, OPT S01, S02 4-11
HDSP-5308 4-115
HDSP-5308, OPT S01, S02 4-11
HDSP-5321 4-115
HDSP-5321, OPT S02 4-11
HDSP-5323 4-115
HDSP-5323, OPT S02 4-11
HDSP-5401 4-62
HDSP-5403 4-62
HDSP-5501 4-115
HDSP-5501, OPT S01, S02 4-11
HDSP-5503 4-115
HDSP-5503, OPT S01, S02 4-11
HDSP-5507 4-115
HDSP-5507, OPT S01, S02 4-11
HDSP-5508 4-115
HDSP-5508, OPT S01, S02 4-11
HDSP-5521 4-115
HDSP-5521, OPT S01, S02 4-11
HDSP-5523 4-115
HDSP-5523, OPT S02 4-11
HDSP-5531 4-10
HDSP-5533 4-10
HDSP-5537 4-10
HDSP-5538 4-10
HDSP-5551 4-72
HDSP-5553 4-72
HDSP-5557 4-72
HDSP-5558 4-72
HDSP-5601 4-115
HDSP-5601, OPT S02 4-11
HDSP-5603 4-115
HDSP-5607 4-115
HDSP-5607, OPT S02 4-11
HDSP-5608 4-115
HDSP-5621 4-115
HDSP-5623 4-115
HDSP-5701 4-115
HDSP-5703 4-115
HDSP-5707 4-115
HDSP-5708 4-115
HDSP-5721 4-115
HDSP-5723 4-115
HDSP-5731 4-10
HDSP-5733 4-10
HDSP-5737 4-10
HDSP-5738 4-10
HDSP-6300 4-4
HDSP-6504 4-4
HDSP-6508 4-4
HDSP-6621 4-4
HDSP-6624 4-4
HDSP-7301 4-88
HDSP-7301, OPT S01, S02 4-11
HDSP-7302 4-88
HDSP-7303 4-88
HDSP-7303, OPT S01, S02 4-11
HDSP-7304 4-88
HDSP-7307 4-88
HDSP-7307, OPT S01, S02 4-11
HDSP-7308 4-88
HDSP-7308, OPT S01, S02 4-11
HDSP-7311 4-88
HDSP-7313 4-88
HDSP-7317 4-88
HDSP-7318 4-88
HDSP-7401 4-88
HDSP-7402 4-88
HDSP-7403 4-88
HDSP-7404 4-88
HDSP-7407 4-88
HDSP-7408 4-88
HDSP-7501 4-88
HDSP-7501, OPT S01, S02 4-11
HDSP-7502 4-88
HDSP-7503 4-88
HDSP-7503, OPT S01, S02 4-11
HDSP-7504 4-88
HDSP-7507 4-88
HDSP-7507, OPT S01, S02 4-11
HDSP-7508 4-88
HDSP-7508, OPT S01, S02 4-11
HDSP-7511 4-72
HDSP-7513 4-72
HDSP-7517 4-72
HDSP-7518 4-72
HDSP-7801 4-88
HDSP-7801, OPT S02 4-11
HDSP-7802 4-88
HDSP-7803 4-88
HDSP-7803, OPT S02 4-11
HDSP-7804 4-88
HDSP-7807 4-88
HDSP-7807, OPT S02 4-11
HDSP-7808 4-88
HDSP-7808, OPT S02 4-11
HDSP-8600 4-125
HDSP-8601 4-125
HDSP-8603 4-125
HDSP-8605 4-125
HDSP-8606 4-125
HDSP-8820 *
HDSP-8825 *
HDSP-8835 *
HEDS-5000 1-6
HEDS-5010 1-6
HEDS-5110 1-6
HEDS-5120 1-12/31
HEDS-5140 1-22
HEDS-5200 1-6
HEDS-5210 1-6
HEDS-5300 1-6
HEDS-5310 1-6
HEDS-5500 1-41
HEDS-5505 1-41
HEDS-5540 1-41
HEDS-5545 1-41
HEDS-5600 1-41
HEDS-5605 1-41
HEDS-5640 1-41
HEDS-5645 1-41
HEDS-5700 1-59
HEDS-5701 1-59
HEDS-6000 1-6
HEDS-6010 1-6
HEDS-6100 1-12
HEDS-6140 1-22
HEDS-7500 1-8
HEDS-7501 1-8
HEDS-7502 1-8
HEDS-7503 1-8
HEDS-8902 1-12/18/41
HEDS-8903 1-22/41
HEDS-8905 1-22
HEDS-8906 1-22
HEDS-8910 1-41
HEDS-892X 1-11
HEDS-8930 1-11
HEDS-9000 1-12
HEDS-9040 1-22
HEDS-9100 1-12
HEDS-9140 1-22
HEDS-9200 1-18
HEDS-9700 1-31
HEDS-9701 1-31
HEDS-9720 1-31
HEDS-9721 1-31
HEMT-1001 3-29
HEMT-3301 3-29
HEMT-6000 3-29
HEXP-RT00 7-9
HFBR-AUDXXX 5-67
HFBR-AUSXXX 5-67
HFBR-AWDXXX 5-67
HFBR-AWSXXX 5-67
HFBR-AXDXXX 5-67
HFBR-AXSXXX 5-67
HFBR-BUDXXX 5-67
HFBR-BUSXXX 5-67
HFBR-BWDXXX 5-67
HFBR-BWSXXX 5-67
HFBR-BXDXXX 5-67
HFBR-BXSXXX 5-67
HFBR-CXSXXX 5-67
HFBR-PLDXXX 5-11
HFBR-PLSXXX 5-11
HFBR-PMDXXX 5-11
HFBR-PNDXXX 5-11
HFBR-PNSXXX 5-11
HFBR-PUDXXX 5-11
HFBR-PUSXXX 5-11
HFBR-QLSXXX 5-11
HFBR-QNSXXX 5-11
HFBR-QUSXXX - 5 -11
HFBR-0400 5-35
HFBR-0410 5-35
HFBR-0501 5-11
HFBR-1100 5-116
HFBR-1125 5-125
HFBR-1160 5-116
HFBR-1202 5-90
HFBR-1204 5-98
HFBR-1402 5-11
HFBR-1404 5-11
HFBR-1412 5-46
HFBR-1412T 5-65
HFBR-1414 5-46
HFBR-1414T 5-65
HFBR-1432 5-46
HFBR-1434 5-46
HFBR-1442 5-46
HFBR-1442T 5-65
HFBR-1444 5-46
HFBR-1444T 5-65
HFBR-1452 5-46
HFBR-1454 5-46
HFBR-1462 5-46
HFBR-1462T 5-65
HFBR-1464 5-46
HFBR-1464T 5-65
HFBR-1502 5-72
HFBR-1510 5-72
HFBR-1512 5-72
HFBR-1521 5-11
HFBR-1522 5-11
HFBR-1523 5-11
HFBR-1524 5-11
HFBR-1531 5-11
HFBR-1532 5-11
HFBR-1533 5-11
HFBR-1534 5-11
HFBR-2100 5-116
HFBR-2125 5-125
HFBR-2202 5-90
HFBR-2204 5-102
HFBR-2208 5-110
HFBR-2402 5-52
HFBR-2402C 5-63
HFBR-2404 5-54
HFBR-2404C 5-63
HFBR-2406 5-58
HFBR-2406C 5-63
HFBR-2412 5-51
HFBR-2412T 5-65
HFBR-2414 5-54
HFBR-2414T 5-65
HFBR-2416 5-58
HFBR-2416T 5-65
HFBR-2432 5-51
HFBR-2432C 5-63
HFBR-2434 5-54
HFBR-2434C 5-63
HFBR-2436 5-58
HFBR-2436C 5-63
HFBR-2442 5-51
HFBR-2442T 5-65
HFBR-2444 5-54
HFBR-2444T 5-65
HFBR-2446 5-58
HFBR-2446T 5-65
HFBR-2452 5-51
HFBR-2452C 5-63
HFBR-2454 5-54
HFBR-2454C 5-63
HFBR-2456 5-55
HFBR-2456C 5-63
HFBR-2462 5-51
HFBR-2462T 5-65
HFBR-2464 5-54
HFBR-2464C 5-63
HFBR-2466 5-58
HFBR-2466T 5-65
HFBR-2501 5-72
HFBR-2502 5-72
HFBR-2503 5-72
HFBR-2521 5-11
HFBR-2522 5-11
HFBR-2523 5-11
HFBR-2524 5-11
HFBR-2531 5-11
HFBR-2532 5-11
HFBR-2533 5-11
HFBR-2534 5-11
HFBR-4202 5-90
HFBR-4501 5-11
HFBR-4503 5-11
HFBR-4505 5-11
HFBR-4506 5-11
HFBR-4511 5-11
HFBR-4513 5-11
HFBR-4515 5-11
HFBR-4516 5-11
HFBR-4525 5-11
HFBR-4593 5-11
HFBR-5125 5-9
HLCP-A100 2-8
HLCP-B100 2-8
HLCP-C100 2-8
HLCP-D100 2-8
HLCP-E100 2-8
HLCP-F100 2-8
HLCP-G100 2-8
HLCP-H100 2-8
HLCP-J100 2-23
HLMP-D101 3-38
HLMP-D101, OPT 001, 002 3-119
HLMP-D101, OPT 010, 100 3-123
HLMP-D105 3-38
HLMP-D105, OPT 001, 002 3-119
HLMP-D105, OPT 010, 100 3-123
HLMP-D150 3-42
HLMP-D150, OPT 001, 002 3-119
HLMP-D150, OPT 010, 100 3-123
HLMP-D155 3-42
HLMP-D155, OPT 001, 002 3-119
HLMP-D155, OPT 010, 100 3-123
HLMP-D400 3-62
HLMP-D400, OPT 001, 002 3-119
HLMP-D400, OPT 010, 100 3-123
HLMP-D401 3-62
HLMP-D401, OPT 001, 002 3-119
HLMP-D401, OPT 010, 100 3-123
HLMP-K101 3-38
HLMP-K101, OPT 001, 002 3-119
HLMP-K101, OPT 010, 101, 102, 103, 104 3-126
HLMP-K105 3-38
HLMP-K105, OPT 001, 002 3-119
HLMP-K105, OPT 010, 101, 102, 103, 104 3-126
HLMP-K150 3-42
HLMP-K150, OPT 001, 002 3-119
HLMP-K150, OPT 010, 101, 102, 103, 104 3-126
HLMP-K155 3-42
HLMP-K155, OPT 001, 002 3-119
HLMP-K155, OPT 010, 101, 102, 103, 104 3-126
HLMP-K400 3-77
HLMP-K400, OPT 001, 002 3-119
HLMP-K400, OPT 010, 101, 102, 103, 104 3-126
HLMP-K401 3-77
HLMP-K401, OPT 001, 002 3-119
HLMP-K401, OPT 010, 101, 102, 103, 104 3-126
HLMP-K402 3-77
HLMP-K402, OPT 001, 002 3-119
HLMP-K402, OPT 010, 101, 102, 103, 104 3-126
HLMP-L250 3-25
HLMP-L251 3-25
HLMP-L350 3-25
HLMP-L351 3-25
HLMP-L550 3-25
HLMP-L551 3-25
HLMP-M200 3-26
HLMP-M201 3-26
HLMP-M250 3-26
HLMP-M251 3-26
HLMP-M300 3-26
HLMP-M301 3-26
HLMP-M350 3-26
HLMP-M351 3-26
HLMP-M500 3-26
HLMP-M501 3-26
HLMP-M550 3-26
HLMP-M551 3-26
HLMP-P005 3-91
HLMP-P005-010 3-127
HLMP-P105 3-91
HLMP-P005-010 3-127
HLMP-P205 3-91
HLMP-P005-010 3-127
HLMP-P305 3-91
HLMP-P005-010 3-127
HLMP-P405 3-91
HLMP-P005-010 3-127
HLMP-P505 3-91
HLMP-Q101 3-91
HLMP-Q101, OPT 010 3-127
HLMP-Q105 3-91
HLMP-Q105, OPT 010 3-127
HLMP-Q150 3-42
HLMP-Q150, OPT 010 3-127
HLMP-Q400 3-91
HLMP-Q400, OPT 010 3-127
HLMP-Q155 3-91
HLMP-R100 3-83
HLMP-S100 3-87
HLMP-S200 3-87
HLMP-S201 3-87
HLMP-S300 3-87
HLMP-S301 3-87
HLMP-S400 3-87
HLMP-S401 3-87
HLMP-S500 3-87
HLMP-S501 3-87
HLMP-T200 2-19
HLMP-T300 2-19
HLMP-T400 2-19
HLMP-T500 2-19
HLMP-0103 3-128
HLMP-0300 3-83
HLMP-0300, OPT S02 3-29
HLMP-0301 3-83
HLMP-0354 3-142
HLMP-0364 3-153
HLMP-0365 3-153
HLMP-0366 3-153
HLMP-0380 3-142
HLMP-0381 3-142
HLMP-0400 3-83
HLMP-0400, OPT S02 3-29
HLMP-0401 3-83
HLMP-0454 3-142
HLMP-0464 3-153
HLMP-0465 3-153
HLMP-0480 3-142
HLMP-0481 3-142
HLMP-0503 3-83
HLMP-0503, OPT S02 3-29
HLMP-0504 3-83
HLMP-0554 3-142
HLMP-0564 3-153
HLMP-0566 3-153
HLMP-0580 3-142
HLMP-0581 3-142
HLMP-0800 3-111
HLMP-0904 3-142
HLMP-0930 3-142
HLMP-0931 3-142
HLMP-1000 3-81
HLMP-1000, OPT 001, 002 3-119
HLMP-1000, OPT 010, 101 3-125
HLMP-1000, OPT 102, 103, 104 3-126
HLMP-1002 3-81
HLMP-1002, OPT 001, 002 3-119
HLMP-1002, OPT 010, 101 3-125
HLMP-1002, OPT 102, 103, 104 3-126
HLMP-1002, OPT S02 3-29
HLMP-1071 3-81
HLMP-1071, OPT 001, 002 3-119
HLMP-1071, OPT 010, 101 3-125
HLMP-1071, OPT 102, 103, 104 3-126
HLMP-1080 3-81
HLMP-1080, OPT 001, 002 3-119
HLMP-1080, OPT 010, 101 3-125
HLMP-1080, OPT 102, 103, 104 3-126
HLMP-1100 3-115
HLMP-1100, OPT 001, 002 3-119
HLMP-1100, OPT 010, 101 3-125
HLMP-1100, OPT 102, 103, 104 3-126
HLMP-1120 3-115
HLMP-1120, OPT 001, 002 3-119
HLMP-1120, OPT 010, 101 3-125
HLMP-1120, OPT 102, 103, 104 3-126
HLMP-1155, OPT 010 3-127
HLMP-1200 3-81
HLMP-1200, OPT 001, 002 3-119
HLMP-1201 3-81
HLMP-1201, OPT 001, 002. 3-119
HLMP-1300 3-77
HLMP-1300, OPT 001, 002 3-119
HLMP-1300, OPT 010, 101 3-125
HLMP-1300, OPT 102, 103, 104 3-126
HLMP-1301 3-77
HLMP-1301, OPT 001, 002 3-119
HLMP-1301, OPT 010, 101 3-125
HLMP-1301, OPT 102, 103, 104 3-126
HLMP-1302 3-77
HLMP-1302, OPT 001, 002 3-119
HLMP-1302, OPT 010, 101 3-125
HLMP-1302, OPT 102, 103, 104 3-126
HLMP-1302, OPT S02 3-129
HLMP-1320 3-73
HLMP-1320, OPT 001, 002 3-119
HLMP-1320, OPT 010, 101 3-125
HLMP-1320, OPT 102, 103, 104 3-126
HLMP-1321 3-73
HLMP-1321, OPT 001, 002 3-119
HLMP-1321, OPT 010, 101 3-125
HLMP-1321, OPT 102, 103, 104 3-126
HLMP-1340 3-50
HLMP-1340, OPT 001, 002 3-119
HLMP-1340, OPT 010, 101 3-125
HLMP-1340, OPT 102, 103, 104 3-126
HLMP-1350 3-14
HLMP-1385 3-77
HLMP-1385, OPT 001, 002 3-119
HLMP-1385, OPT 010, 101 3-125
HLMP-1385, OPT 102, 103, 104 3-126
HLMP-1400 3-77
HLMP-1400, OPT 001, 002 3-119
HLMP-1400, OPT 010, 101 3-125
HLMP-1400, OPT 102, 103, 104 3-126
HLMP-1401 3-77
HLMP-1401, OPT 001, 002 3-119
HLMP-1401, OPT 010, 101 3-125
HLMP-1401, OPT 102, 103, 104 3-126
HLMP-1402 3-77
HLMP-1402, OPT 001, 002 3-119
HLMP-1402, OPT 010, 101 3-125
HLMP-1402, OPT 102, 103, 104 3-126
HLMP-1402, OPT S02 3-29
HLMP-1420 3-73
HLMP-1420, OPT 001, 002 3-119
HLMP-1420, OPT 010, 101 3-125
HLMP-1420, OPT 102, 103, 104 3-126
HLMP-1421 3-73
HLMP-1421, OPT 001, 002 3-119
HLMP-1421, OPT 010, 101 3-125
HLMP-1421, OPT 102, 103, 104 3-126
HLMP-1440 3-50
HLMP-1440, OPT 001, 002 3-119
HLMP-1440, OPT 010, 101 3-125
HLMP-1440, OPT 102, 103, 104 3-126
HLMP-1440, OPT S02 3-29
HLMP-1450 3-14
HLMP-1485 3-77
HLMP-1485, OPT 001, 002 3-119
HLMP-1485, OPT 010, 101 3-125
HLMP-1485, OPT 102, 103, 104 3-126
HLMP-1503 3-77
HLMP-1503, OPT 001, 002 3-119
HLMP-1503, OPT 010, 101 3-125
HLMP-1503, OPT 102, 103, 104 3-126
HLMP-1520 3-73
HLMP-1520, OPT 001, 002 3-119
HLMP-1520, OPT 010, 101 3-125
HLMP-1520, OPT 102, 103, 104 3-126
HLMP-1521 3-73
HLMP-1521, OPT 001, 002 3-119
HLMP-1521, OPT 010, 101 3-125
HLMP-1521, OPT 102, 103, 104 3-126
HLMP-1523 3-77
HLMP-1523, OPT 001, 002 3-119
HLMP-1523, OPT 010, 101 3-125
HLMP-1523, OPT 102, 103, 104 3-126
HLMP-1523, OPT S02 3-29
HLMP-1540 3-50
HLMP-1540, OPT 001, 002 3-119
HLMP-1540, OPT 010, 101 3-125
HLMP-1540, OPT 102, 103, 104 3-126
HLMP-1540, OPT S02 3-29
HLMP-1550 3-14
HLMP-1585 3-77
HLMP-1585, OPT 001, 002 3-119
HLMP-1585, OPT 010, 101 3-125
HLMP-1585, OPT 102, 103, 104 3-126
HLMP-1600 3-115
HLMP-1600, OPT 001, 002 3-119
HLMP-1600, OPT 010, 101 3-125
HLMP-1600, OPT 102, 103, 104 3-126
HLMP-1601 3-115
HLMP-1601, OPT 001, 002 3-119
HLMP-1601, OPT 010, 101 3-125
HLMP-1601, OPT 102, 103, 104 3-126
HLMP-1601, OPT S02 3-29
HLMP-1620 3-115
HLMP-1620, OPT 001, 002 3-119
HLMP-1620, OPT 010, 101 3-125
HLMP-1620, OPT 102, 103, 104 3-126
HLMP-1621 3-115
HLMP-1621, OPT 001, 002 3-119
HLMP-1621, OPT 010, 101 3-125
HLMP-1621, OPT 102, 103, 104 3-126
HLMP-1640 3-115
HLMP-1640, OPT 001, 002 3-119
HLMP-1640, OPT 010, 101 3-125
HLMP-1640, OPT 102, 103, 104 3-126
HLMP-1641 3-115
HLMP-1641, OPT 001, 002 3-119
HLMP-1641, OPT 010, 101 3-125
HLMP-1641, OPT 102, 103, 104 3-126
HLMP-1660 3-25
HLMP-1661 3-25
HLMP-1674 3-25
HLMP-1675 3-25
HLMP-1687 3-25
HLMP-1688 3-25
HLMP-1700 3-54
HLMP-1700, OPT 001, 002 3-119
HLMP-1700, OPT 010, 101 3-125
HLMP-1700, OPT 102, 103, 104 3-126
HLMP-1700, OPT S02 3-29
HLMP-1719 3-54
HLMP-1719, OPT 001, 002 3-119
HLMP-1719, OPT 010, 101 3-125
HLMP-1719, OPT 102, 103, 104 3-126
HLMP-1719, OPT S02 3-29
HLMP-1740 3-24
HLMP-1760 3-24
HLMP-1790 3-54
HLMP-1790, OPT 001, 002 3-119
HLMP-1790, OPT 010, 101 3-125
HLMP-1790, OPT 102, 103, 104 3-126
HLMP-1790, OPT S02 3-29
HLMP-1800 3-24
HLMP-1801 3-24
HLMP-1819 3-24
HLMP-1820 3-24
HLMP-1840 3-24
HLMP-1841 3-24
HLMP-2300 2-8
HLMP-2300, OPT S02 2-7
HLMP-2350 2-8
HLMP-2350, OPT S02 2-7
HLMP-2400 2-8
HLMP-2400, OPT S02 2-7
HLMP-2450 2-8
HLMP-2450, OPT S02 2-7
HLMP-2490 (87019G01) 3-134
HLMP-2500 2-8
HLMP-2500, OPT S02 2-7
HLMP-2550 2-8
HLMP-2550, OPT S02 2-7
HLMP-2598 2-30
HLMP-2599 2-30
HLMP-2600 2-8
HLMP-2600, OPT S02 2-7
HLMP-2620 2-8
HLMP-2620, OPT S02 2-7
HLMP-2635 2-8
HLMP-2635, OPT S02 2-7
HLMP-2655 2-8
HLMP-2655, OPT S02 2-7
HLMP-2670 2-8
HLMP-2670, OPT S02 2-7
HLMP-2685 2-8
HLMP-2685, OPT S02 2-7
HLMP-2700 2-8
HLMP-2700, OPT S02 2-7
HLMP-2720 2-8
HLMP-2720, OPT S02 2-7
HLMP-2735 2-8
HLMP-2735, OPT S02 2-7
HLMP-2740 (87019Y01) 3-134
HLMP-2755 2-8
HLMP-2755, OPT S02 2-7
HLMP-2770 2-8
HLMP-2770, OPT S02 2-7
HLMP-2785 2-8
HLMP-2785, OPT S02 2-7
HLMP-2800 2-8
HLMP-2800, OPT S02 2-7
HLMP-2820 2-8
HLMP-2820, OPT S02 2-7
HLMP-2835 2-8
HLMP-2835, OPT S02 2-7
HLMP-2855 2-8
HLMP-2855, OPT S02 2-7
HLMP-2870 2-8
HLMP-2870, OPT S02 2-7
HLMP-2885 2-8
HLMP-2885, OPT S02 2-7
HLMP-2898 2-30
HLMP-2899 2-30
HLMP-2950 2-8
HLMP-2965 2-8
HLMP-3000 3-71
HLMP-3000, OPT 001, 002 3-119
HLMP-3000, OPT 010, 100 3-123
HLMP-3001 3-71
HLMP-3001, OPT 001, 002 3-119
HLMP-3001, OPT 010, 100 3-123
HLMP-3001, OPT S02 3-29
HLMP-3002 3-71
HLMP-3002, OPT 001, 002. 3-119
HLMP-3002, OPT 010, 100 3-123
HLMP-3003 3-71
HLMP-3003, OPT 001, 002. 3-119
HLMP-3003, OPT 010, 100 3-123
HLMP-3050 3-71
HLMP-3050, OPT 001, 002 3-119
HLMP-3050, OPT 010, 100 3-123
HLMP-3105 3-115
HLMP-3105, OPT 001, 002 3-119
HLMP-3105, OPT 010, 100 3-123
HLMP-3112 3-115
HLMP-3112, OPT 001, 002 3-119
HLMP-3112, OPT 010, 100 3-123
HLMP-3200 3-66
HLMP-3201 3-66
HLMP-3300 3-62
HLMP-3300, OPT 001, 002 3-119
HLMP-3300, OPT 010, 100 3-123
HLMP-3301 3-62
HLMP-3301, OPT 001, 002 3-119
HLMP-3301, OPT 010, 100 3-123
HLMP-3301, OPT S02 3-29
HLMP-3315 3-58
HLMP-3315, OPT 001, 002 3-119
HLMP-3315, OPT 010, 100 3-123
HLMP-3316 3-58
HLMP-3316, OPT 001, 002 3-119
HLMP-3316, OPT 010, 100 3-123
HLMP-3316, OPT S02 3-29
HLMP-3350 3-66
HLMP-3351 3-66
HLMP-3365 3-66
HLMP-3366 3-66
HLMP-3390 3-50
HLMP-3400 3-62
HLMP-3400, OPT 001, 002 3-119
HLMP-3400, OPT 010, 100 3-123
HLMP-3401 3-62
HLMP-3401, OPT 001, 002 3-119
HLMP-3401, OPT 010, 100 3-123
HLMP-3415 3-58
HLMP-3415, OPT 001, 002 3-119
HLMP-3415, OPT 010, 100 3-123
HLMP-3416 3-58
HLMP-3416, OPT 001, 002 3-119
HLMP-3416, OPT 010, 100 3-123
HLMP-3450 3-66
HLMP-3451 3-66
HLMP-3465 3-66
HLMP-3466 3-66
HLMP-3490 3-50
HLMP-3502 3-62
HLMP-3502, OPT 001, 002 3-119
HLMP-3502, OPT 010, 100 3-123
HLMP-3507 3-62
HLMP-3507, OPT 001, 002 3-119
HLMP-3507, OPT 010, 100 3-123
HLMP-3517 3-58
HLMP-3517, OPT 001, 002. 3-119
HLMP-3517, OPT 010, 100 3-123
HLMP-3519 3-58
HLMP-3519, OPT 001, 002. 3-119
HLMP-3519, OPT 010, 100 3-123
HLMP-3553 3-66
HLMP-3554 3-66
HLMP-3567 3-66
HLMP-3568 3-66
HLMP-3590 3-50
HLMP-3600 3-115
HLMP-3600, OPT 001, 002. 3-119
HLMP-3600, OPT 010, 100 3-123
HLMP-3601 3-115
HLMP-3601, OPT 001, 002. 3-119
HLMP-3601, OPT 010, 100 3-123
HLMP-3650 3-115
HLMP-3650, OPT 001, 002 3-119
HLMP-3650, OPT 010, 100 3-123
HLMP-3651 3-115
HLMP-3651, OPT 001, 002. 3-119
HLMP-3651, OPT 010, 100 3-123
HLMP-3680 3-115
HLMP-3680, OPT 001, 002. 3-119
HLMP-3680, OPT 010, 100 3-123
HLMP-3681 3-115
HLMP-3681, OPT 001, 002. 3-119
HLMP-3681, OPT 010, 100 3-123
HLMP-3750 3-50
HLMP-3750, OPT 001, 002. 3-119
HLMP-3750, OPT 010, 100 3-123
HLMP-3750, OPT S02 3-29
HLMP-3762 3-62
HLMP-3762, OPT 001, 002. 3-119
HLMP-3762, OPT 010, 100 3-123
HLMP-3850 3-50
HLMP-3850, OPT 001, 002. 3-119
HLMP-3850, OPT 010, 100 3-123
HLMP-3850, OPT S02 3-29
HLMP-3862 3-62
HLMP-3862, OPT 001, 002 3-119
HLMP-3862, OPT 010, 100 3-123
HLMP-3950 3-50
HLMP-3950, OPT 001, 002 3-119
HLMP-3950, OPT 010, 100 3-123
HLMP-3950, OPT S02 3-29
HLMP-3962 3-62
HLMP-3962, OPT 001, 002 3-119
HLMP-3962, OPT 010, 100 3-123
HLMP-4000 3-111
HLMP-4100 3-46
HLMP-4101 3-46
HLMP-4700 3-54
HLMP-4700, OPT 001, 002 3-119
HLMP-4700, OPT 010, 100 3-123
HLMP-4700, OPT S02 3-29
HLMP-4719 3-54
HLMP-4719, OPT 001, 002 3-119
HLMP-4719, OPT 010, 100 3-123
HLMP-4719, OPT S02 3-29
HLMP-4740 3-54
HLMP-4740, OPT 001, 002 3-119
HLMP-4740, OPT 010, 100 3-123
HLMP-4740, OPT S02 3-29
HLMP-5029 3-29
HLMP-6000 3-91
HLMP-6000, OPT 010 3-127
HLMP-6001 3-91
HLMP-6001, OPT 010 3-127
HLMP-6203 3-91
HLMP-6204 3-91
HLMP-6205 3-91
HLMP-6206 3-91
HLMP-6208 3-91
HLMP-6300 3-91
HLMP-6300, OPT 010 3-127
HLMP-6305 3-91
HLMP-6305, OPT 010 3-127
HLMP-6400 3-91
HLMP-6400, OPT 010 3-127
HLMP-6405 3-91
HLMP-6405, OPT 010 3-127
HLMP-6500 3-91
HLMP-6500, OPT 010 3-127
HLMP-6505 3-91
HLMP-6505, OPT 010 3-127
HLMP-6600 3-91
HLMP-6600, OPT 010 3-127
HLMP-6620 3-91
HLMP-6620, OPT 010 3-127
HLMP-6653 3-91
HLMP-6654 3-91
HLMP-6655 3-91
HLMP-6656 3-91
HLMP-6658 3-91
HLMP-6700 3-91
HLMP-6700, OPT 010 3-127
HLMP-6720 3-91
HLMP-6720, OPT 010 3-127
HLMP-6753 3-91
HLMP-6754 3-91
HLMP-6755 3-91
HLMP-6756 3-91
HLMP-6758 3-91
HLMP-6800 3-91
HLMP-6800, OPT 010 3-127
HLMP-6820 3-91
HLMP-6820, OPT 010 3-127
HLMP-6853 3-91
HLMP-6854 3-91
HLMP-6855 3-91
HLMP-6856 3-91
HLMP-6858 3-91
HLMP-7000 3-91
HLMP-7000, OPT 010 3-127
HLMP-7019 3-91
HLMP-7019, OPT 010 3-127
HLMP-7040 3-91
HLMP-7040, OPT 010 3-127
HLMP-8100 3-34
HLMP-8102 3-34
HLMP-8103 3-34
HLMP-8104 3-34
HLMP-8150 3-30
HMDL-2416 4-185
HMDL-2416TXV 4-185
HMDL-2416TXVB 4-185
HPDL-1414 4-42
HPDL-2416 4-42
HRPG-XXXX 1-51
HSSR-8200 6-195
HTIL-311A 4-154
IN5765 3-142
IN6092 3-142
IN6093 3-142
IN6094 3-142
IN6609 3-153
IN6610 3-153
IN6611 3-153
JANIN5765 3-142
JANIN6092 3-142
JANIN6093 3-142
JANIN6094 3-142
JANIN6609 3-153
JANIN6610 3-153
JANIN6611 3-153
JANM19500/51903 3-153
JANM19500/51904 3-153
JANM19500/52003 3-153
JANM19500/52004 3-153
JANM19500/52103 3-153
JANM19500/52104 3-153
JANTXIN5765 3-142
JANTXIN6092 3-142
JANTXIN6093 3-142
JANTXIN6094 3-142
JANTXIN6609 3-153
JANTXIN6610 3-153
JANTXIN6611 3-153
M187/00101AAX 4-207
M187/00102AAX 4-207
M187/00103AAX 4-207
M187/00104AAX 4-207
4N45 6-1174N
55/883B 6-298
5082-7100 *
5082-7101 *
5082-7102 *
5082-7295 *
5082-7300 4-139
5082-7302 4-139
5082-7304 4-139
5082-7340 4-139
5082-7356 4-143
5082-7357 4-143
5082-7358 4-143
5082-7359 4-143
5082-7404 4-13
5082-7405 4-13
5082-7414 4-13
5082-7415 4-13
5082-7432 4-13
5082-7433 4-13
5082-7441
5082-7446
5082-7610 4-105
5082-7610, OPT S01, S02 4-11
5082-7611 4-105
5082-7611, OPT S01, S02 4-11
5082-7613 4-105
5082-7613, OPT S01, S02 4-11
5082-7616 4-105
5082-7616, OPT S01, S02 4-11
5082-7620 4-105
5082-7621 4-105
5082-7623 4-105
5082-7626 4-105
5082-7650 4-105
5082-7650, OPT S01, S02 4-11
5082-7651 4-105
5081-7651, OPT S01, S02 4-11
5082-7653 4-105
5082-7653, OPT S01, S02 4-11
5082-7656 4-105
5082-7656, OPT S01, S02 4-11
5082-7660 4-105
5082-7661 4-105
5082-7663 4-105
5082-7663, OPT S20 4-11
5082-7663, OPT S01, S02 4-11
5082-7666 4-105
5082-7666 OPT S20 4-11
5082-7730 4-105
5082-7730, OPT S01, S02 4-11
5082-7731 4-105
5082-7731, OPT S01, S02 4-11
5082-7736 4-105
5082-7736, OPT S01, S02 4-11
5082-7740 4-105
5082-7740, OPT S01, S02 4-11
5082-7750 4-105
5082-7750, OPT S01, S02 4-11
5082-7751 4-105
5082-7751, OPT S01, S02 4-11
5082-7756 4-105
5082-7756, OPT S01, S02 4-11
5082-7760 4-105
5082-7760, OPT S01, S02 4-11
5962-8767901EC 6-298
5962-8876801PC 6-222
5962-8876901PC 6-222
5962-8947701PC 6-290
5962-8957001PC 6-236
5962-8957101PC 6-236
5962-89571022A 6-236
5962-8957201EC 6-265
5962-8978501PC 6-280
5962-89785022A 6-280
5962-8981001PC 6-280
6N134 6-251
6N134TXV 6-251
6N134TXVB 6-251
6N134/883B 6-251
6N135 6-80
6N135, OPT 020 6-191
6N135, OPT 100, 300 6-193
6N136 6-80
6N136, OPT 020 6-191
6N136, OPT 100, 300 6-193
6N137 6-53
6N137, OPT 020 6-191
6N137, OPT 100, 300 6-193
6N138 6-107
6N138, OPT 020 6-191
6N138, OPT 100, 300 6-283
6N139 6-107
6N139, OPT 20 6-191
6N139, OPT 100, 300 6-193
6N140A 6-273
6N140A/883B 6-273
6N140TXV 6-273
6N140TXVB 6-273
8102801EC 6-251
8302401EC 6-273
87019G01 (HLMP-Z490) 3-134
87019 Y01 (HLMP-Z740) 3-134

Motion Sensing and Control

- Optical Encoder Modules
- Optical Encoders
- Rotary Pulse Generators
- Motion Control ICs
- Codewheels

Motion Sensing and Control

Motion Sensing and Control

Hewlett-Packard's growing family of motion sensing and control products developed as an extension of our emitter/ detector systems capabilities. Motion sensing products include optical shaft encoders and optical encoder modules for closed-loop servo applications, and rotary pulse generators for manual input applications. HP's optical products provide a digital link converting mechanical shaft rotation into TTL logic level signals. HP's motion control ICs complement the optical products and greatly simplify the design of digital motion control systems.

Our HEDS-9000, HEDS-9100, HEDS-9200, and HEDS-9700 series optical encoder modules provide sophisticated motion detection at a low price, making them ideal for high volume applications such as printer, plotters, and industrial automation equipment. The HEDS-9000 and HEDS-9100 are now available in three channel versions, the HEDS9040 and 9140 , which provide a third channel index pulse in
addition to the standard two channel outputs. The HEDS9200 series linear encoder module uses the same emitter/ detector technology as the HEDS-9000 to sense linear position. The HEDS-9700 comes in a super small, wave solderable package with a variety of mounting options.

The HEDS-5500 and HEDS5600 series are complete, quick assembly, low cost optical shaft encoders. No adhesives or last minute adjustments are necessary for assembly. In addition, the HEDS-5540 and HEDS-5640 provide a third channel index pulse for home position sensing. The HEDS5500 and 5600 series encoders offer a complete solution in industrial, medical, and office automation equipment.

Hewlett-Packard's new HRPG series of low cost miniature rotary pulse generators (RPGs) use reflective optics technology for superior reliability and consistent rotational feel for more than 1 million revolutions. The HRPG is ideal for front panel applications such as test and measurement equipment, medical equipment,

CAD/CAM systems, and audio/ video equipment. The HRPG is available in a variety of configurations including smooth or detented turning, multiple terminations and mounting options, and a wide selection of shaft configurations.

To complement the motion sensing products, HP has released two motion control IC families. The HCTL-1100 CMOS general purpose motion control IC performs all of the timeintensive tasks of digital motion control. The HCTL-1100 controls position or velocity while using an incremental encoder for feedback information. The HCTL-1100 is also available in a surface mount package. The HCTL-2000, HCTL-2016, and HCTL-2020 Quadrature Decoder/ Counter ICs provide a one chip, easy to implement solution to interfacing the quadrature output of an encoder or RPG to a microprocessor. These CMOS ICs include a quadrature decoder, a 12 or 16 bit up/down counter, and an 8 bit bus interface. In addition, the HCTL-2020 has cascade output signals as well as quadrature decoder output signals.

Optical Encoder Modules

Small Optical Encoder Modules－HEDS－9700 Series

Package Outline Drawing	Part No．	Lead Bend	Channels	Resolution	Mounting Options	Page No．
		Straight	A，B	T	回园 50 －Standard	1－31
	HEDS－9700			K 96 CPR		
	OPT 回圂圂			C 100 CPR	51 －Rounded Outine	
	HEDS－9701	Bent	A，B	D 192 CPR	52－Backplane	
	OPT回园			E 200 CPR	53 －Standard w／Posts	
				F 256 CPR	54－Tabless	
				G 360 CPR	55 －Backplane w／Posts	
				H 400 CPR		
				3		
	HEDS－9720	Straight	A，B	L 120 LPI		
	OPT 3 圂圂			M 127 LPI		
	HEDS－9721	Bent	A，B	P 150 LPI		
	OPT 3^{3} 圂					

Bold Type－New Product

Quick Assembly Encoder－HEDS－5500 Series

Package Outline Drawing	Part No．	Channels	Mounting Type	Through Hole	Resolution	Shaft Size	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
					T	22］	1－41
	HEDS－5500	A，B	Standard	None	K 96 CPR	012 mm	
	OPT回圂圂				C 100 CPR	023 mm	
	HEDS－5505	A，B	Standard	$8.9 \text { mm }$	D 192 CPR	$03 \quad 1 / 8 \mathrm{in}$ ．	
	OPT回圂圂				E 200 CPR	$04 \quad 5 / 32 \mathrm{in}$ ．	
		A，B	External Mounting	None	F 256 CPR	05 3／16 in．	
	OPT 回国运		Ears		G 360 CPR	$06 \quad 1 / 4 \mathrm{in}$ ．	
		A，B	External Mounting	$\begin{aligned} & 8.9 \mathrm{~mm} \\ & (0.35 \mathrm{in} .) \end{aligned}$	H 400 CPR	114 mm	
	OPT回圂园		Ears		A 500 CPR	145 mm	
					1 512 CPR	12 mm	
						138 mm	
		A，B，I	Standard	None	F 256 CPR		
	OPT 3 圂圂				G 360 CPR		
		A，B，I	Standard	$\begin{aligned} & 8.9 \mathrm{~mm} \\ & (0.35 \mathrm{in} .) \end{aligned}$	$\text { A } 500 \mathrm{CPR}$		
	OPT 3^{3} 2］				1512 CPR		
	HEDS－5640 OPT 3 国园	A，B，I	External Mounting Ears	None			
	HEDS－5645 OPT ${ }^{3}$ 园2	A，B，I	External Mounting Ears	$\begin{aligned} & 8.9 \mathrm{~mm} \\ & (0.35 \mathrm{in} .) \end{aligned}$			

Bold Type－New Product

28 mm Encoders－HEDS－5000 Series

Package Outline Drawing	Part No．	Channels	Option Code		$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
			Resolution	Shaft Size	
			11	回园	
	HEDS－5000	A，B	C 100 CPR	012 mm	＊
			D 192 CPR	023 mm	
			E 200 CPR	03 1／8 in．	
			F 256 CPR	$04 \quad 5 / 32 \mathrm{in}$ ．	
			G 360 CPR	05 3／16 in．	
	HEDS－5010	A，B，I	H 400 CPR	06 1／4 in．	
	OPT回园		A 500 CPR	114 mm	
			1512 CPR	145 mm	
				12 mm	

＊Contact your local Sales Representative for information regarding this product．（See Section 9．）

56 mm Encoders－HEDS－6000 Series

Package Outline Drawing	Part No．	Channels	Option Code				$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
			Resolution		Shaft Size		
			［1］		220		
				192 CPR			
	HEDS－6000	A，B		200 CPR	05	3／16 in．	
	OPT． 团圂圂 2			400 CPR	06	1／4 in．	
				500 CPR	07	5／16 in．	
				512 CPR	08	$3 / 8 \mathrm{in}$ ．	
				1000 CPR	09	1／2 in．	
				1024 CPR	10	$5 / 8 \mathrm{in}$ ．	
	HEDS－6010	A，B，I			11	4 mm	
	OPT回园				12	6 mm	
					13	8 mm	

＊Contact your local Sales Representative for information regarding this product．（See Section 9．）

Rotary Pulse Generator - HRPG Series

Package Outline Drawing	Part No.	Shaft Feel/ Resolution	Mechanical Configuration	Termination	Page No.

*When ordering detented versions, a D-cut shaft is recommended.

Bold Type - New Product

Rotary Pulse Generator - HEDS-5700

Package Outline Drawing	Part No.	Termination	Resolution	Shaft Configuration	Drag Option	Page No.
			目		目	

Rotary Pulse Generator - HEDS-7500

Package Outline Drawing	Part No.	Resolution	Channels	Termination	Page No.
	HEDS-7500	256 CPR	A, B	Color Coded Wire	*
	HEDS-7501	256 CPR	A, B	Ribbon Cable	
	HEDS-7502	256 CPR	A, B, I	Color Coded Wire	
	HEDS-7503	256 CPR	A, B, I	Ribbon Cable	

Bold Type - New Product

*Contact your local Sales Representative for information regarding this product. (See Section 9.)

Motion Control ICS - HCTL-XXXX Series

\begin{tabular}{|c|c|c|c|c|}
\hline Package Outline Drawing \& Part No. \& Package \& Description \& Page No. \\
\hline \& \begin{tabular}{l}
HCTL-1100 \\
HCTL-1100 \\
OPT PLC
\end{tabular} \& PDIP

PLCC \& | CMOS General Purpose Motion Control IC |
| :--- |
| CMOS General Purpose Motion Control IC | \& 1-77

\hline \& HCTL-2000 \& | PDIP |
| :---: |
| |
| PDIP | \& CMOS Quadrature Decoder/Counter IC, 12-bit Counter \& 1-61

\hline \& HCTL-2020 \& PDIP \& CMOS Quadrature Decoder/Counter IC, 16-bit Counter, Quadrature Decoder Output Signals, Cascade Output Signals \&

\hline
\end{tabular}

Bold Type - New Product

Codewheels $\mathbf{- 1 1 . 0 0 ~ m m ~ (~} 0.433 \mathrm{in}$ ）Optical Radius

Package Outline Drawing	Part No．	Matching Encoder Module	Channels	Resolution	Shaft Size	Page No．
	HEDS－5120 OPT回圂	$\begin{aligned} & \text { HEDS-9100 } \\ & \text { HEDS-9700 } \end{aligned}$	A，B	T K 96 CPR C 100 CPR D 192 CPR E 200 CPR F 256 CPR G 360 CPR H 400 CPR A 500 CPR I 512 CPR	园园2 01 2 mm 02 3 mm 03 $1 / 8 \mathrm{in}$. 04 $5 / 32 \mathrm{in}$. 05 $3 / 16 \mathrm{in}$. 06 $1 / 4 \mathrm{in}$. 11 4 mm 14 5 mm 12 6 mm 13 8 mm	$\begin{aligned} & 1-12 \\ & 1-31 \end{aligned}$
	HEDS－5140 OPT 圂园	HEDS－9140	A，B，I	$\begin{array}{ll} \text { 2 } & \\ \text { F } & 256 \text { CPR } \\ \text { G } & 360 \mathrm{CPR} \\ \text { A } & 500 \mathrm{CPR} \\ \text { I } & 512 \mathrm{CPR} \end{array}$		1－22

Codewheels $\mathbf{- 2 3 . 3 6 ~ m m ~ (~} 0.920 \mathrm{in}$ ）Optical Radius

Package Outline Drawing	Part No．	Matching Encoder Module	Channels	Resolution	Shaft Size	Page No．
	HEDS－6100 OPT回圂	HEDS－9000	A，B	D 192 CPR E 200 CPR H 400 CPR A 500 CPR I 512 CPR B 1000 CPR J 1024 CPR	目园 05 $3 / 16 \mathrm{in}$. 06 $1 / 4 \mathrm{in}$. 07 $5 / 16 \mathrm{in}$. 08 $3 / 8 \mathrm{in}$. 09 $1 / 2 \mathrm{in}$. 10 $5 / 8 \mathrm{in}$. 11 4 mm	1－12
	HEDS－6140 OPT 3 ［2］	HEDS－9140	A，B，I	$\begin{array}{ll} 3 & \\ \text { B } & 1000 \text { CPR } \\ \text { J } & 1024 \text { CPR } \end{array}$	138 mm	1－22

Bold Type－New Product

Accessories for Encoders and Encoder Modules

Package Outline Drawing	Part No.	Description	Page No.		
		HEDS-8902	4-wire connector with 15.5 cm (6.1 in.) flying leads. Locks into HEDS-5500 and HEDS-5600 2 channel encoders. Also fits HEDS-9000, HEDS-9100, and HEDS-9200 2 channel encoder modules.		$1-41$
:---:					
$1-12$					
$1-18$					

Convenience Assembly Tools for 28 mm Diameter Encoders - Not Required

Package Outline Drawing	Part No.	Description	Page No.
	HEDS-8930	HEDS-5000 Series Tool Kit - Holding Screwdriver - Torque Limiting Screwdriver - HEDS-8920 Hub Puller - HEDS-8922 Gap Setter	*
	HEDS-892X	Centering Cones - Aid in High Volume Assembly - Order in Appropriate Shaft Size	

Bold Type - New Product
*Contact your local Sales Representative for information regarding this product. (See Section 9.)

Two Channel Optical Incremental Encoder Module

Technical Data

Features

- High Performance
- High Resolution
- Low Cost
- Easy to Mount
- No Signal Adjustment Required
- Insensitive to Radial and Axial Play
- Small Size
- $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Operating Temperature
- Two Channel Quadrature Output
- TTL Compatible
- Single 5 V Supply

Package Dimensions

Description

The HEDS-9000 and HEDS9100 series are high performance, low cost, optical incremental encoder modules. When used with a codewheel, these modules detect rotary position. The modules consist of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the modules are extremely tolerant to mounting misalignment.

The two channel digital outputs and the single 5 V supply input

HEDS-9000
HEDS-9100
are accessed through five 0.025 inch square pins located on 0.1 inch centers.

Standard resolutions for the HEDS-9000 are 500 CPR and 1000 CPR for use with a HEDS-

ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

6100 codewheel or equivalent. For the HEDS-9100, standard resolutions between 96 CPR and 512 CPR are available for use with a HEDS-5120 codewheel or equivalent.

Applications

The HEDS-9000 and 9100 provide sophisticated motion detection at a low cost, making them ideal for high volume applications. Typical applications include printers, plotters, tape drives, and factory automation equipment.

Theory of Operation

The HEDS-9000 and 9100 are C-shaped emitter/detector modules. Coupled with a codewheel, they translate the rotary motion of a shaft into a two-channel digital output.

As seen in the block diagram, each module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the

Block Diagram

Output Waveforms

adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$, and $\overline{\mathrm{B}}$. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Definitions

Count $(N)=$ The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

$$
\begin{aligned}
& 1 \text { Shaft Rotation }= 360 \\
& \text { mechanical } \\
& \text { degrees } \\
&= \mathrm{N} \text { cycles } \\
& 1 \text { cycle }(\mathrm{c})= 360 \text { electrical } \\
& \text { degrees }\left({ }^{\circ} \mathrm{e}\right) \\
&= 1 \text { bar and } \\
& \text { window pair }
\end{aligned}
$$

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90° e.

State Width Error (ΔS): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.
Absolute Maximum Ratings
Storage Temperature, T_{S} $40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Operating Temperature, T_{A} $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Supply Voltage, V_{cc} -0.5 V to 7 V
Output Voltage, V_{o} 0.5 V to V_{cc}
Output Current per Channel, I_{O} 1.0 mA to 5 mA

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} e$ for quadrature output.

Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates in the
direction of the arrow on top of the module, channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius ($R_{o P}$): The

 distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.
Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{Cc}	4.5		5.5	Volts	Ripple $<100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$
Load Capacitance	C_{L}			100	pF	$3.2 \mathrm{k} \Omega$ pull-up resistor
Count Frequency	f			100	kHz	$\frac{\text { Velocity (rpm) } \times \mathrm{N}}{60}$

Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These characteristics do not include codewheel contributions.

Parameter	Sym.	Typ.	Case 1 Max.	Case 2 Max.	Units	Notes
Pulse Width Error	$\Delta \mathrm{P}$	7	30	40	${ }^{\circ} \mathrm{e}$	
Logic State Width Error	$\Delta \mathrm{S}$	5	30	40	${ }^{\circ} \mathrm{e}$	
Phase Error	$\Delta \phi$	2	10	15	${ }^{\circ} \mathrm{e}$	

Case 1: Modules mounted on tolerances of $\pm 0.13 \mathrm{~mm}\left(0.005^{\prime \prime}\right)$.
Case 2: HEDS -9000 mounted on tolerances of $\pm 0.50 \mathrm{~mm}\left(0.020^{\prime \prime}\right)$.
HEDS -9100 mounted on tolerances of $\pm 0.38 \mathrm{~mm}\left(0.015^{\prime \prime}\right)$.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, typical at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typical	Max.	Units	Notes
Supply Current	I_{CC}		17	40	mA	
High Level Output Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ max.
Low Level Output Voltage	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
Rise Time	t_{r}		200		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Fall Time	t_{f}		50		ns	$\mathrm{R}_{\mathrm{L}}=11 \mathrm{k} \Omega$ pull-up

Recommended Codewheel Characteristics

Codewheel Options

Figure 1. Codewheel Design.

HEDS Series	CPR (N)	Option	Optical Radius mm (in.)
5120	96	K	$11.00(0.433)$
5120	100	C	$11.00(0.433)$
5120	192	D	$11.00(0.433)$
5120	200	E	$11.00(0.433)$
5120	256	F	$11.00(0.433)$
5120	360	G	$11.00(0.433)$
5120	400	H	$11.00(0.433)$
5120	500	A	$11.00(0.433)$
5120	512	I	$11.00(0.433)$
6100	500	A	$23.36(0.920)$
6100	1000	B	$23.36(0.920)$

Parameter	Symbol	Minimum	Maximum	Units	Notes
Window/Bar Ratio	$\phi_{\mathrm{w}} / \phi_{\mathrm{b}}$	0.7	1.4		
Window Length	L_{w}	$1.8(0.07)$	$2.3(0.09)$	mm (inch)	
Absolute Maximum Codewheel Radius	R_{c}		$\mathrm{R}_{\mathrm{OP}}+1.9(0.075)$	mm (inch)	Includes eccentricity errors

Mounting Considerations

Figure 2. Mounting Plane Side A.

NOTES:

1. THESE DIMENSIONS INCLUDE SHAFT END PLAY,

AND CODEWHEEL WARP
2. MAXIMUM RECOMMENDED MOUNTING SCREW

TORQUE IS $4 \mathbf{~ k g - c m ~ (~} 3.5 \mathrm{in}-\mathrm{lbs}$).
Figure 3. Mounting Plane Side B.

Figure 4. HEDS-5120 Codewheel.

Figure 5. HEDS-6100 Codewheel.

Connectors

Manufacturer	Part Number	Mounting Surface
AMP	$103686-4$	Both Side B
DuPont	$640442-5$ 65039-032 with $4825 X-000$ term.	Both
HP	HEDS-8902 with 4-wire leads	Side B (see Fig. 6)
Molex	2695 series with 2759 series term.	Side B

Figure 6. HEDS-8902 Connector.

Ordering Information

LINEAR OPTICAL INCREMENTAL ENCODER MODULE

Features

- HIGH PERFORMANCE
- HIGH RESOLUTION
- LOW COST
- EASY TO MOUNT
- NO SIGNAL ADJUSTMENT REQUIRED
- INSENSITIVE TO MECHANICAL DISTURBANCES
- SMALL SIZE
- $-40^{\circ} \mathrm{C}$ TO $100^{\circ} \mathrm{C}$ OPERATING TEMPERATURE
- TWO CHANNEL QUADRATURE OUTPUT
- TTL COMPATIBLE
- SINGLE 5 V SUPPLY

Description

The HEDS-9200 series is a high performance, low cost, optical incremental encoder module. When operated in conjunction with a codestrip, this module detects linear position. The module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.

The two channel digital outputs and the single 5 V supply input are accessed through four 0.025 inch square pins located on 0.1 inch centers.

Package Dimensions

Five standard resolutions between 4.72 counts per mm (120 counts per inch) and 7.87 counts per mm (200 counts per inch) are available. Consult local Hewlett-Packard sales representatives for other resolutions ranging from 1.5 to 7.87 counts per mm (40 to 200 counts per inch).

Applications

The HEDS-9200 provides sophisticated motion detection at a low cost, making it ideal for high volume applications. Typical applications include printers, plotters, tape drives, and factory automation equipment.

ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

Block Diagram

Theory of Operation

The HEDS-9200 is a C-shaped emitter/detector module. Coupled with a codestrip it translates linear motion into a two-channel digital output.
As seen in the block diagram, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.
The codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codestrip. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the count density of the codestrip. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$ and $\overline{\mathrm{B}}$. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Definitions

Count density (D): The number of bar and window pairs per unit length of the codestrip.

Output Waveforms

Pitch: $1 / \mathrm{D}$, The unit length per count.
Electrical degree (${ }^{\circ}$ e): Pitch/360, The dimension of one bar and window pair divided by 360 .

1 cycle (C): 360 electrical degrees, 1 bar and window pair.
Pulse Width (\mathbf{P}): The number of electrical degrees that an output is high during 1 cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.
Pulse Width Error ($\Delta \mathbf{P}$): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.
State Width(S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} \mathrm{e}$.
State Width Error ($\Delta \mathbf{S}$): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.
Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} e$ for quadrature output.
Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.
Direction of Movement: When the codestrip moves, relative to the module, in the direction of the arrow on top of the module, channel A will lead channel B. If the codestrip moves in the opposite direction, channel B will lead channel A.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Storage Temperature	T_{S}	-40		100	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	-0.5		7	Volts	
Output Voltage	V_{O}	-0.6		$\mathrm{~V}_{\mathrm{CC}}$	Volts	
Output Current per Channel	I_{O}	-1.0		5	mA	

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	4.5		5.5	Volts	Ripple $<100 \mathrm{~m}$ Vp-p
Load Capacitance	C_{L}			100	pF	$3.2 \mathrm{~K} \Omega$ pull-up resistor
Count Frequency	f			100	kHz	Velocity $\times \mathrm{D}$

Note:

The module performance is guaranteed to 100 kHz but can operate at higher frequencies.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These characteristics do not include codestrip defects.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Pulse Width Error	$\Delta \mathrm{P}$		7	35	elec. deg.	
Logic State Width Error	$\Delta \mathrm{S}$		5	35	elec. deg.	
Phase Error	$\Delta \phi$		2	13	elec. deg.	

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, typical at $25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	I_{CC}		17	40	mA	
High Level Output Voltage	V_{OH}	2.4			Volts	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A} \mathrm{Max}$.
Low Level Output Voltage	V_{OL}			0.4	Volts	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
Rise Time	t_{r}		200		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Fall Time	t_{f}		50		ns	$\mathrm{R}_{\mathrm{L}}=11 \mathrm{~K} \Omega$ pull-up

Note:

1. For improved performance in noisy environments or high speed applications, a $3.3 \mathrm{k} \Omega$ pull-up resistor is recommended.

Recommended Codestrip Characteristics

Codestrip design must take into consideration mounting as referenced to either side A or side B (See figure 1).
mounting as referenced to side a

MOUNTING AS REFERENCED TO SIDE B

STATIC CHARGE WARNING: LARGE STATIC CHARGE ON CODESTRIP MAY HARM MODULE. PREVENT ACCUMULATION OF CHARGE.

Parameter	Symbol	Mounting Ref. Side A	Mounting Ref. Side B	Units
Window/Bar Ratio	$\mathrm{W}_{\mathrm{w}} / \mathrm{W}_{\mathrm{b}}$	0.7 Min .1 .4 Max.	0.7 Min .1 .4 Max	
Mounting Distance	L	$\mathrm{L}_{\mathrm{a}} \leq 0.51(0.020)$	$\mathrm{L}_{\mathrm{b}} \geq 3.23(0.127)$	mm (inch)
Codestrip edge to inside window edge	W_{1}	$\mathrm{~W}_{1} \leq 0.53(0.021)+\mathrm{L}_{\mathrm{a}}$	$\mathrm{W}_{1} \leq 4.27(0.168)-\mathrm{L}_{\mathrm{b}}$	mm (inch)
Codestrip edge to outside window edge	W_{2}	$\mathrm{~W}_{2} \geq 1.50(0.059)+\mathrm{L}_{\mathrm{a}}$	$\mathrm{W}_{2} \geq 5.23(0.206)-\mathrm{L}_{\mathrm{b}}$	mm (inch)

Note:

All parameters and equations must be satisfied over the full length of codestrip travel including maximum codestrip runout.

Mounting Considerations

MOUNTING PLANE SIDE A

Notes:

1. These dimensions include codestrip warp.
2. Reference definitions of L_{a} and L_{b} on page 3 .
3. Maximum recommended mounting screw torque is $4 \mathrm{~kg}-\mathrm{cm}$ (3.5 in-Ibs).

Connectors

Manufacturer	Part Number	Mounting Surface
AMP	$103686-4$	Both
	$640442-5$	Side B
DuPont	$65039-032$ with $4825 X-000 ~ t e r m . ~$	Both
	HEDS-8902 with 4-wire leads	Side B
Molex	2695 series with 2759 series term.	Side B

MOUNTING PLANE SIDE B

Ordering Information

RESOLUTION Counts per mm (inch)	PITCH mm (inch) per count
L $-4.72(120)$	$0.212(0.0083)$
M $-5.00(127)$	$0.200(0.0079)$
P-5.91(150)	$0.169(0.0067)$
Q $-7.09(180)$	$0.141(0.0056)$
R-7.87 (200)	$0.127(0.0050)$

Consult local Hewlett-Packard sales representatives for other resolutions.

Three Channel Optical Incremental Encoder Modules

Technical Data

Features

- Two Channel Quadrature Output with Index Pulse
- Resolution Up to 1024 Counts Per Revolution
- Low Cost
- Easy to Mount
- No Signal Adjustment Required
- Small Size
- $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Operating Temperature
- TTL Compatible
- Single 5 V Supply

Description

The HEDS-9040 and HEDS9140 series are three channel optical incremental encoder modules. When used with a codewheel, these low cost modules detect rotary position. Each module consists of a lensed LED source and a detector IC enclosed in a small plastic package. Due to a highly collimated light source and a unique photodetector array, these modules provide the same

HEDS-9040 HEDS-9140

high performance found in the HEDS-9000/9100 two channel encoder family.

Package Dimensions

The HEDS-9040 and 9140 have two channel quadrature outputs plus a third channel index output. This index output is a 90 electrical degree high true index pulse which is generated once for each full rotation of the codewheel.

The HEDS-9040 is designed for use with a HEDS-6140 codewheel which has an optical radius of 23.36 mm (0.920 inch). The HEDS-9140 is designed for use with a HEDS-5140 codewheel which has an optical radius of 11.00 mm (0.433 inch)

The quadrature signals and the index pulse are accessed through five 0.025 inch square pins located on 0.1 inch centers.

Standard resolutions between 256 and 1024 counts per revolution are available. Consult local Hewlett-Packard sales representatives for other resolutions.

Applications

The HEDS-9040 and 9140 provide sophisticated motion control detection at a low cost, making then ideal for high volume applications. Typical applications include printers, plotters, tape drives, and industrial and factory automation equipment.

Theory of Operation

The HEDS-9040 and 9140 are emitter/detector modules. Coupled with a codewheel, these modules translate the rotary motion of a shaft into a threechannel digital output.

As seen in the block diagram, the modules contain a single

Block Diagram

Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}, \overline{\mathrm{B}}, \mathrm{I}$ and $\overline{\mathrm{I}}$. Comparators receive these signals and
produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

The output of the comparator for I and \bar{I} is sent to the index processing circuitry along with the outputs of channels A and B. The final output of channel I is an index pulse P_{o} which is generated once for each full rotation of the codewheel. This output P_{o} is a one state width (nominally 90 electrical degrees), high true index pulse which is coincident with the low states of channels A and B.

Output Waveforms

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

One Cycle (C): 360 electrical degrees (${ }^{\circ} \mathrm{e}$), 1 bar and window pair.

One Shaft Rotation: 360 mechanical degrees, N cycles.

Position Error $(\Delta \Theta)$: The normalized angular difference between the actual shaft position and the position indicated by the encoder cycle count.

Cycle Error (ΔC): An indication of cycle uniformity. The differ-
ence between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of
channel B. There are 4 states per cycle, each nominally 90°.

State Width Error (Δ S): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.

Phase Error ($\Delta \phi$): The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates in the direction of the arrow on top of the module, channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius ($R_{O P}$): The distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.

Index Pulse Width $\left(P_{o}\right)$: The number of electrical degrees that an index is high during one full shaft rotation. This value is nominally 90° e or $1 / 4$ cycle.
Absolute Maximum RatingsStorage Temperature, $\mathrm{T}_{\mathrm{s}}$$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Operating Temperature, T_{A} $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Supply Voltage, V_{Cc}
0.5 V V
0.5 V V
Output Voltage, V_{o} -0.5 V to V_{cc}
Output Current per Channel, $\mathrm{I}_{\text {out }}$ -1.0 mA to 5 mA
Shaft Axial Play $\pm 0.25 \mathrm{~mm}(\pm 0.010 \mathrm{in}$.
Shaft Eccentricity Plus Radial Play 0.1 mm (0.004 in .) TIR
Velocity $30,000 \mathrm{RPM}^{[1]}$
Acceleration $250,000 \mathrm{rad} / \mathrm{sec}^{2[1]}$

Note:

1. Absolute maximums for HEDS-5140/6140 codewheels only.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T_{A}	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	4.5	5.0	5.5	Volts	Ripple $<100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$
Load Capacitance	C_{L}			100	pF	$2.7 \mathrm{k} \Omega$ pull-up
Count Frequency	f			100	kHz	Velocity (rpm) $\mathrm{xN} / 60$
Shaft Perpendicularity Plus Axial Play				± 0.25 (± 0.010)	mm (in.)	$6.9 \mathrm{~mm}(0.27 \mathrm{in}$.$) from$ mounting surface
Shaft Eccentricity Plus Radial Play				0.04 (0.0015)	mm (in.) $)$ TIR	$6.9 \mathrm{~mm}(0.27 \mathrm{in}$.$) from$ mounting surface

Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances unless otherwise specified. Values are for the worst error over the full rotation of HEDS-5140 and HEDS-6140 codewheels.

Parameter	Symbol	Min.	Typ.*	Max.	Units
Cycle Error	$\Delta \mathrm{C}$		3	5.5	${ }^{\circ} \mathrm{e}$
Pulse Width Error	$\Delta \mathrm{P}$		7	30	${ }^{\circ} \mathrm{e}$
Logic State Width Error	$\Delta \mathrm{S}$		5	30	${ }^{\circ} \mathrm{e}$
Phase Error	$\Delta \phi$		2	15	${ }^{\circ} \mathrm{e}$
Position Error	$\Delta \Theta$		10	40	min. of arc
Index Pulse Width	P_{o}	60	90	120	${ }^{\circ} \mathrm{e}$
CH. I rise after CH. B or CH. A fall	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	t_{1}	10	100	250
	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	t_{1}	-300	100	250
CH. I fall after CH. A or CH. B rise	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	t_{2}	70	150	300
	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	t_{2}	70	150	1000

Note: Module mounted on tolerance circle of $\pm 0.13 \mathrm{~mm}$ (± 0.005 in.) radius referenced from module Side A aligning recess centers. $2.7 \mathrm{k} \Omega$ pull-up resistors used on all encoder module outputs.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Notes
Supply Current	I_{CC}	30	57	85	mA	
High Level Output Voltage	$\mathrm{V}_{\mathrm{OII}}$	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$ max.
Low Level Output Voltage	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.86 \mathrm{~mA}$
Rise Time	t_{r}		180		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=2.7 \mathrm{k} \Omega$ pull-up Fall Time

[^0]Mechanical Characteristics

Part No.	Parameter	Dimension	Tolerance	Units
```HEDS-6140 23.36 mm optical radius codewheel```	Codewheel Available to Fit These Standard Shaft Diameters	468	$\begin{array}{r} +0.000 \\ -0.015 \\ \hline \end{array}$	mm
		$3 / 16$ $1 / 4$ $5 / 16$   $3 / 8$ $1 / 2$ $5 / 8$	$\begin{aligned} & +0.000 \\ & -0.0007 \end{aligned}$	in
	Moment of Inertia	$7.7\left(110 \times 10^{-6}\right)$		$\mathrm{g}-\mathrm{cm}^{2}\left(\mathrm{oz}-\mathrm{in}-\mathrm{s}^{2}\right)$
```HEDS-5140 11.00 mm optical radius codewheel```	Codewheel Available to Fit These Standard Shaft Diameters	$\begin{array}{lll} 2 & 3 & 4 \\ 5 & 6 & 8 \\ \hline \end{array}$	$\begin{array}{r} +0.000 \\ -0.015 \\ \hline \end{array}$	mm
		$\begin{array}{ll} 5 / 32 & 1 / 8 \\ 3 / 16 & 1 / 4 \\ \hline \end{array}$	$\begin{array}{r} +0.000 \\ -0.0007 \end{array}$	in
	Moment of Inertia	0.6 (8.0 $\times 10^{-6}$)		$\mathrm{g}-\mathrm{cm}^{2}\left(\mathrm{oz}-\mathrm{in}-\mathrm{s}^{2}\right)$

Note: The tolerance requirements are on the mating shaft, not on the codewhecl.

Electrical Interface

To insure reliable encoding performance, the HEDS-9040 and 9140 three channel encoder modules require $2.7 \mathrm{k} \Omega(\pm 10 \%)$ pull-up resistors on output pins 2,3 , and 5 (Channels I, A and B) as shown in Figure 1. These pull-up resistors should be located as close to the encoder module as possible (within 4 feet). Each of the three encoder module outputs can drive a single TTL load in this configuration.

Figure 1. Pull-up Resistors on HEDS-9X40 Encoder Module Outputs.

Mounting Considerations

Figure 2 shows a mounting tolerance requirement for proper operation of the HEDS-9040 and HEDS-9140. The Aligning Recess Centers must be located within a tolerance circle of 0.005 in. radius from the nominal locations. This tolerance must be maintained whether the module is mounted with side A as the mounting plane using aligning pins (see Figure 5), or mounted with Side B as the mounting plane using an alignment tool (see Figures 3 and 4).

Figure 2. HEDS-9X40 Mounting Tolerance.

Mounting with an Alignment Tool

The HEDS-8905 and HEDS8906 alignment tools are recommended for mounting the modules with Side B as the mounting plane. The HEDS8905 is used to mount the HEDS-9140, and the HEDS8906 is used to mount the HEDS-9040. These tools fix the module position using the codewheel hub as a reference. They will not work if Side A is used as the mounting plane.

The following assembly procedure uses the HEDS-8905/ 8906 alignment tool to mount a HEDS-9140/9040 module and a HEDS-5140/6140 codewheel:

Instructions:

1. Place codewheel on shaft.
2. Set codewheel height: (a) place alignment tool on motor base (pins facing up) flush up
against the motor shaft as shown in Figure 3. (b) Push codewheel down against alignment tool. The codewheel is now at the proper height. (c) Tighten codewheel setscrew and remove alignment tool.

Some motors have a boss around the shaft that extends above the mounting plane. In this case, the alignment tool cannot be used as a gage block to set the codewheel height as described in 2(a), (b), and (c). If boss is above mounting plane: Slide module onto motor base, adjusting height of codewheel so that it sits approximately in the middle of module slot. Lightly tighten setscrew. The codewheel height will be more precisely set in step 5.
3. Insert mounting screws through module and thread into the motor base. Do not tighten screws.
4. Slide alignment tool over codewheel hub and onto module as shown in Figure 4. The pins of the alignment tool should fit snugly inside the alignment recesses of the module.

If boss is above mounting plane: The pins of the tool may not mate properly because the codewheel is too high on the shaft. Loosen codewheel setscrew and lower codewheel slightly. Retighten setscrew lightly and attempt this step again.
5. While holding alignment tool in place, tighten screws down to secure module.

If boss is above mounting plane: Push codewheel up flush against alignment tool to set codewheel height. Tighten codewheel setscrew.
6. Remove alignment tool.

Figure 3. Alignment Tool is Used to Set Height of Codewheel.

NOTE 1: THIS DIMENSION IS FROM THE MOUNTING PLANE TO THE NON-HUB SIDE OF THE CODEWHEEL.

Figure 4. Alignment Tool is Placed over Shaft and onto Codewheel Hub. Alignment Tool Pins Mate with Aligning Recesses on Module.

Mounting with Aligning Pins

The HEDS-9040 and HEDS-
9140 can also be mounted using aligning pins on the motor base.
(Hewlett-Packard does not provide aligning pins.) For this configuration, Side A must be used as the mounting plane. The aligning recess centers
must be located within the 0.005 in . Radius Tolerance Circle as explained in "Mounting Considerations." Figure 5 shows the necessary dimensions.

NOTE 1: THESE DIMENSIONS INCLUDE SHAFT END PLAY AND CODEWHEEL WARP NOTE 2: RECOMMENDED MOUNTING SCREW TORQUE IS 4 KG-CM (3.5 IN-LBS).

Figure 5. Mounting Plane Side A.

Figure 7. HEDS-5140 Codewheel Used with HEDS-9140.

Connectors

Manufacturer	Part Number	Mounting Surface
AMP	$103686-4$	Both
	$640442-5$	Side B
DuPont	$65039-032$ with 4825X-000 term.	Both
	HEDS-8903 with 5-wire leads	Side B (see Figure 8)
Molex	2695 series with 2759 series term.	Side B

Figure 8. HEDS-8903 Connector.

Typical Interfaces

Ordering Information

Three Channel Encoder Modules and Codewheels, $\mathbf{2 3 . 3 6 \mathrm { mm } \text { Optical Radius }}$

Three Channel Encoder Modules and Codewheels, 11.00 mm Optical Radius

Accessories

HEDS-8905
Alignment Tool for mounting the HEDS-9140.
HEDS-8906
Alignment Tool for Mounting the HEDS-9040.

Small Optical Encoder
 Module

Technical Data

HEDS-9700 Series

Features

- Small Size
- Low Cost
- Multiple Mounting Options
- Wide Resolution Range
- Linear and Rotary Options Available
- No Signal Adjustment Required
- Insensitive to Radial and Axial Play
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature
- Two Channel Quadrature Output
- TTL Compatible
- Single 5V Supply
- Wave Solderable

Description

The HEDS-9700 series is a high
 performance, low cost, optical incremental encoder module. When operated in conjunction with either a codewheel or codestrip, this module detects rotary or linear position. The

Package Dimensions

Mounting Option \#50-Standard
dimensions are millimetres

LEAD THICKNESS - 0.25 mm L.EAD PITCH - 2.54 mm

Contact Factory for Detailed Package Dimensions
module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, the module is extremely tolerant to mounting misalignment.

The two channel digital outputs and 5 V supply input are accessed through four solderplated leads located on 2.54 mm (0.1 inch) centers.

The standard HEDS-9700 is designed for use with an 11 mm optical radius codewheel, or linear codestrip. Other options are available. Please contact factory for more information.

Applications

The HEDS-9700 provides sophisticated motion detection at a low cost, making closedloop control very costcompetitive! Typical
applications include printers, plotters, copiers, and office automation equipment.

Theory of Operation

The HEDS-9700 is a C-shaped emitter/detector module. Coupled with a codewheel, it translates rotary motion into a two-channel digital output. Coupled with a codestrip, it translates linear motion into a digital output.

As seen in the block diagram, the module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel/codestrip moves between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel/codestrip. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and count density of the codewheel/codestrip. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are fed through the signal processing circuitry. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with channel B (90 degrees out of phase).

Block Diagram

Output Waveforms

Definitions

Count (N) = The number of bar and window pairs or counts per revolution (CPR) of the codewheel, or the number of lines per inch of the codestrip (LPI).

1 Shaft Rotation $=360$
mechanical degrees
$=\mathrm{N}$ cycles
1 cycle (c) $=360$ electrical degrees (${ }^{\circ}$ e)
$=1$ bar and window pair

Pulse Width (P): The number of electrical degrees that an output is high during one cycle. This value is nominally $180^{\circ} \mathrm{e}$ or $1 / 2$ cycle.

Pulse Width Error ($\Delta \mathrm{P}$): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.

State Width (S): The number of electrical degrees between a transition in the output of

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	85	${ }^{\circ} \mathrm{C}$	See Note
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	See Note
Supply Voltage	V_{Cc}	-0.5	7	V	
Output Voltage	V_{O}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V	
Output Current per Channel	I_{O}	-1.0	5	mA	
Soldering Temperature			260	${ }^{\circ} \mathrm{C}$	$\mathrm{t} \leq 5$ sec.

Note: Higher operating ranges available, contact factory for more information.
channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} e$.

State Width Error ($\Delta \mathrm{S}$): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.

Phase Error ($\Delta \phi$): The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates counterclockwise, as viewed looking down on the module (so the marking is visible), channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (Rop): The distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature	T	-40	85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{cc}	4.5	5.5	V	Ripple $<100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$
Load Capacitance	C_{L}		100	pF	$3.2 \mathrm{k} \Omega$ pull-up
Count Frequency			20	kHz	$($ Velocity $(\mathrm{rpm}) \times \mathrm{N}) / 60$

Note: The module performance is guaranteed to 20 kHz but can operate at higher frequencies. Contact factory for more information.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These characteristics do not include codewheel/codestrip contributions.

Parameter	Symbol	Typ.	Case 1 Max.	Case 2 Max.	Units	Notes
Pulse Width Error	$\Delta \mathrm{P}$	7	30	40	${ }^{\circ} \mathrm{e}$	
Logic State Width Error	$\Delta \mathrm{S}$	5	30	40	${ }^{\circ} \mathrm{e}$	
Phase Error	$\Delta \phi$	2	10	15	${ }^{\circ} \mathrm{e}$	

Case 1: Module mounted on tolerances of $\pm 0.13 \mathrm{~mm}\left(0.005^{\prime \prime}\right)$. Case 2: Module mounted on tolerances of $\pm 0.25 \mathrm{~mm}$ ($0.010^{\prime \prime}$)
Note: See Figures in Mounting Considerations for details on Case 1 and Case 2 mounting tolerances.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, Typical at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	I_{CC}		17	40	mA	
High Level Output Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$
Low Level Output Voltage	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
Rise Time	t_{r}		200		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=11 \mathrm{k} \Omega$
Fall Time	t_{f}		50		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=11 \mathrm{k} \Omega$

Recommended Codewheel and Codestrip Characteristics

Parameter	Symbol	Min.	Max.	Units	Notes
Window/Bar Ratio	$\mathrm{Ww} / \mathrm{Wb}$	0.7	1.4		
Window Length (Rotary)	Lw	1.80 (0.071)	2.30 (0.091)	mm (inch)	
Absolute Maximum Codewheel Radius (Rotary)	Rc		Rop +3.40 (Rop + 0.134)	mm (inch)	Includes eccen- tricity errors
Center of Post to Inside Edge of Window	W 1	1.04 (0.041)	mm (inch)		
Center of Post to Outside Edge of Window	W 2	0.76 (0.030)		mm (inch)	
Center of Post to Inside Edge of Codestrip	L		3.60 (0.142)	mm (inch)	

Optional Packages Available

Optional Packages Available (cont'd.)

LEAD THICKNESS: $\frac{0.25}{0.010}$

DIMENSIONS ARE $\frac{\text { MILLIMETRES }}{\text { INCHES }}$

Mounting Option \#52-Backplane

Optional Packages Available (cont'd.)

Mounting Option \#54 - Tabless

Mounting Option \#55 - Backplane with Posts

Bent Lead Option

DIMENSIONS ARE MILLIMETERS

Mounting Considerations

Note: These dimensions include shaft end play and codewheel warp.
All dimensions for mounting the module and codewheel/codestrip should be measured with respect to the two mounting posts, shown above.

Mounting Tolerances

Case 1 and Case 2 specify the mounting tolerances required on Rm in order to achieve the respective encoding characteristics shown on page 4. The mounting tolerances are as follows:

Case 1: $\mathrm{Rm} \pm 0.13 \mathrm{~mm}$ (. 005 inches)
Case 2: $\mathrm{Rm} \pm 0.25 \mathrm{~mm}$ (. 010 inches)

Wave Solder Conditions

Flux - RMA Water Soluble (per MIL-F-14256D)

Process Parameters

1. Flux
2. Pre-heat 60 seconds total

PCB top side @ $230^{\circ} \mathrm{C}$
PCB bottom side @ $260^{\circ} \mathrm{C}$
3. Wave solder $255^{\circ} \mathrm{C}, 1.2$
meters/min line speed
4. Hot Water Wash

1st: $30^{\circ} \mathrm{C} 45$ seconds
2nd: $70^{\circ} \mathrm{C} 90$ seconds
5. Rinse

1st: $23^{\circ} \mathrm{C} 45$ seconds
2nd: $23^{\circ} \mathrm{C} 45$ seconds
6. Dry

1st: $80^{\circ} \mathrm{C} 105$ seconds
2nd: $95^{\circ} \mathrm{C} 105$ seconds

Typical Interface

Ordering Information

Note: Please contact factory for codewheel and codestrip information.

HEWLETT
PACKARD

Quick Assembly
 Two and Three Channel Optical Encoders

Technical Data

Features

- Two Channel Quadrature Output with Optional Index Pulse
- Quick and Easy Assembly
- No Signal Adjustment Required
- External Mounting Ears Available
- Low Cost
- Resolutions Up to 512

Counts Per Revolution

- Small Size
- $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Operating Temperature
- TTL Compatible
- Single 5 V Supply

Description

The HEDS-5500/5540 and 5600/ 5640 are high performance, low cost, two and three channel optical incremental encoders. These encoders emphasize high reliability, high resolution, and easy assembly.

Each encoder contains a lensed LED source, an integrated circuit with detectors and output
circuitry, and a codewheel which rotates between the emitter and detector IC. The outputs of the HEDS-5500 and 5600 are two square waves in quadrature. The HEDS-5540 and 5640 also have a third channel index output in addition to the two channel quadrature. This index output is a 90 electrical degree, high true index pulse which is generated once for each full rotation of the codewheel.

These encoders may be quickly and easily mounted to a motor. For larger diameter motors, the HEDS-5600/5640 feature external mounting ears.

The quadrature signals and the index pulse are accessed through five 0.025 inch square pins located on 0.1 inch centers.

Standard resolutions between 96 and 512 counts per revolution are presently available. Consult local Hewlett-Packard sales representatives for other resolutions.

HEDS-5500/5540
HEDS-5600/5640

Applications

The HEDS-5500, 5540, 5600, and 5640 provide motion detection at a low cost, making them ideal for high volume applications. Typical applications include printers, plotters, tape drives, positioning tables, and automatic handlers.

Package Dimensions

HEDS-5500/5540

*Note: For the HEDS-5500, Pin \#2 is a No Connect. For the HEDS-5540, Pin \#2 is CH. I, the index output.

HEDS-5600/5640

*Note: For the HEDS-5600, Pin \#2 is a No Connect. For the HEDS-5640, Pin \#2 is CH. I, the index output.

Theory of Operation

The HEDS-5500, 5540, 5600, and 5640 translate the rotary motion of a shaft into either a two- or a three-channel digital output.

As seen in the block diagram, these encoders contain a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}$ and $\overline{\mathrm{B}}$ (also I and $\overline{\mathrm{I}}$ in the HEDS-5540 and 5640). Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Block Diagram

NOTE: CIRCUITRY FOR CH. I IS ONLY IN HEDS-5540 AND 5640 THREE CHANNEL ENCODERS.

In the HEDS-5540 and 5640, the output of the comparator for I and \bar{I} is sent to the index processing circuitry along with the outputs of channels A and B. The final output of channel I is an index pulse P_{o} which is generated once for each full rotation of the codewheel. This output P_{o} is a one state width (nominally 90 electrical degrees), high true index pulse which is coincident with the low states of channels A and B.

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

One Cycle (C): 360 electrical degrees $\left({ }^{\circ} \mathrm{e}\right), 1$ bar and window pair.

One Shaft Rotation: 360 mechanical degrees, N cycles.

Position Error $(\Delta \Theta)$: The normalized angular difference between the actual shaft position and the position indicated by the encoder cycle count.

Cycle Error (ΔC): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180° e or $1 / 2$ cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} e$.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} e$.

State Width Error (Δ S): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} \mathrm{e}$ for quadrature output.

Phase Error ($\Delta \phi$): The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates in the counterclockwise direction (as viewed from the encoder end of the motor), channel A will lead channel B. If the codewheel rotates in the clockwise direction, channel B will lead channel A.

Index Pulse Width $\left(P_{o}\right)$: The number of electrical degrees that an index output is high during one full shaft rotation. This value is nominally $90^{\circ} \mathrm{e}$ or $1 / 4$ cycle.

Absolute Maximum Ratings

Operating Temperature, T_{A}... $40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Supply Voltage, $\mathrm{V}_{\text {cc }}$..-0.5 V to 7 V
Output Voltage, V_{o}.. 0.5 V to V_{cc}
Output Current per Channel, $\mathrm{I}_{\text {out }}$............................. 1.0 mA to 5 mA
Vibration .. $20 \mathrm{~g}, 5$ to 1000 Hz
Shaft Axial Play ... $\pm 0.25 \mathrm{~mm}(\pm 0.010 \mathrm{in}$.)
Shaft Eccentricity Plus Radial Play 0.1 mm (0.004 in .) TIR
Velocity ...30,000 RPM
Acceleration ...250,000 rad/sec ${ }^{2}$

Output Waveforms

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T_{A}	-40		100	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{cc}	4.5	5.0	5.5	Volts	Ripple $<100 \mathrm{mV} \mathrm{p}_{\mathrm{p}-\mathrm{p}}$
Load Capacitance	C_{L}			100	pF	$2.7 \mathrm{k} \Omega$ pull-up
Count Frequency	f			100	kHz	Velocity (rpm) $\mathrm{x} \mathrm{N} / 60$
Shaft Perpendicularity Plus Axial Play				± 0.25 (± 0.010)	mm (in.)	$6.9 \mathrm{~mm}(0.27 \mathrm{in}$.$) from$ mounting surface
Shaft Eccentricity Plus Radial Play				0.04 (0.0015)	mm (in.) TIR	$6.9 \mathrm{~mm}(0.27$ in.) from mounting surface

[^1]
Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances unless otherwise specified. Values are for the worst error over the full rotation.

Part No.	Description		Sym.	Min.	Typ.*	Max.	Units
HEDS-5500 HEDS-5600 (Two Channel)	Pulse Width Error Logic State Width Error Phase Error Position Error Cycle Error		$\begin{aligned} & \Delta \mathrm{P} \\ & \Delta \mathrm{~S} \\ & \Delta \phi \\ & \Delta \Theta \\ & \Delta \mathrm{C} \end{aligned}$		$\begin{gathered} \hline 7 \\ 5 \\ 2 \\ 10 \\ 3 \end{gathered}$	$\begin{aligned} & 45 \\ & 45 \\ & 20 \\ & 40 \\ & 5.5 \end{aligned}$	${ }^{\circ} \mathrm{e}$ ${ }^{\circ} \mathrm{e}$ ${ }^{\circ} \mathrm{e}$ \min. of arc ${ }^{\circ} \mathrm{e}$
HEDS-5540 HEDS-5640 (Three Channel)	Pulse Width Error Logic State Width Error Phase Error Position Error Cycle Error Index Pulse Width		$\begin{aligned} & \Delta \mathrm{P} \\ & \Delta \mathrm{~S} \\ & \Delta \phi \\ & \Delta \Theta \\ & \Delta \mathrm{C} \\ & \mathrm{P}_{\mathrm{o}} \\ & \hline \end{aligned}$	55	$\begin{gathered} \hline 5 \\ 5 \\ 2 \\ 10 \\ 3 \\ 90 \\ \hline \end{gathered}$	$\begin{aligned} & 35 \\ & 35 \\ & 15 \\ & 40 \\ & 5.5 \\ & 125 \end{aligned}$	${ }^{\circ} \mathrm{e}$ ${ }^{\circ} \mathrm{e}$ ${ }^{\circ} \mathrm{e}$ $\min .0$ of arc ${ }^{\circ} \mathrm{e}$ ${ }^{\circ} \mathrm{e}$
	CH. I rise after CH. A or CH. B fall	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{1} \\ & \mathrm{t}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 10 \\ -300 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
	CH. I fall after CH. B or CH. A rise	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{2} \\ & \mathrm{t}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{gathered} \hline 300 \\ 1000 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Note: Sce Mechanical Characteristics for mounting tolerances.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range.

Part No.	Parameter	Sym.	Min.	Typ.*	Max.	Units	Notes
HEDS-5500 HEDS-5600	Supply Current	I_{CC}	2.4	17	40	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{OII}}=-40 \mu \mathrm{~A} \max . \\ & \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA} \end{aligned}$
	High Level Output Voltage	V_{OH}				V	
	Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$			0.4	V	
	Rise Time	t_{r}		200		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
	Fall Time	t_{f}		50		ns	$\mathrm{R}_{\mathrm{L}}=11 \mathrm{k} \Omega$ pull-up
$\begin{aligned} & \text { HEDS-5540 } \\ & \text { HEDS-5640 } \end{aligned}$	Supply Current	I_{cc}	30	57	85	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \max . \\ & \mathrm{I}_{\mathrm{OL}}=3.86 \mathrm{~mA} \end{aligned}$
	High Level Output Voltage	$\mathrm{V}_{\text {OII }}$	2.4			V	
	Low Level Output Voltage	V_{oL}			0.4	V	
	Rise Time			180		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
	Fall Time	t_{f}		40		ns	$\mathrm{R}_{\mathrm{L}}=2.7 \mathrm{k} \Omega$ pull-up

${ }^{*}$ Typical values specified at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$.

Mechanical Characteristics

Parameter	Symbol	Dimension	Tolerance ${ }^{[1]}$		Units
			HEDS-5X00	HEDS-5X40	
Codewheel Fits These Standard Shaft Diameters		$\begin{array}{lll} 2 & 3 & 4 \\ 5 & 6 & 8 \\ \hline \end{array}$	$\begin{aligned} & +0.000 \\ & -0.015 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.000 \\ & -0.015 \\ & \hline \end{aligned}$	mm
		$\begin{array}{ll} \hline 5 / 32 & 1 / 8 \\ 3 / 16 & 1 / 4 \\ \hline \end{array}$	$\begin{aligned} & +0.0000 \\ & -0.0007 \end{aligned}$	$\begin{aligned} & +0.0000 \\ & -0.0007 \end{aligned}$	in
Moment of Inertia	J	0.6 (8.0 x $\left.10^{-6}\right)$			$\mathrm{g}-\mathrm{cm}^{2}\left(\mathrm{oz}-\mathrm{in}-\mathrm{s}^{2}\right)$
Required Shaft Length ${ }^{[2]}$		14.0 (0.55)	$\begin{gathered} \pm 0.5 \\ (\pm 0.02) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.5 \\ (\pm 0.02) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$
Bolt Circle ${ }^{[3]}$	$\begin{gathered} \hline 2 \text { screw } \\ \text { mounting } \end{gathered}$	$\begin{gathered} \hline 19.05 \\ (0.750) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.13 \\ (\pm 0.005) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.13 \\ (\pm 0.005) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$
	3 screw mounting	$\begin{gathered} \hline 20.90 \\ (0.823) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.13 \\ (\pm 0.005) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.13 \\ (\pm 0.005) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mm} \\ \text { (in.) } \end{gathered}$
	ext. mtg. ears	$\begin{gathered} 46.0 \\ (1.811) \end{gathered}$	$\begin{gathered} \pm 0.13 \\ (\pm 0.005) \end{gathered}$	$\begin{gathered} \pm 0.13 \\ (\pm 0.005) \end{gathered}$	mm (in.)
Mounting Screw Size ${ }^{[4]}$	2 screw mounting	M 2.5 or (2-56)			mm (in.)
	3 screw mounting	M 1.6 or (0-80)			mm (in.)
	$\begin{gathered} \text { ext. mtg. } \\ \text { ears } \\ \hline \end{gathered}$	M 2.5 or (2-56)			mm (in.)
Encoder Base Plate Thickness		0.33 (0.130)			mm (in.)
Hub Set Screw		(2-56)			(in.)

Notes:

1. These are tolerances required of the user.
2. The HEDS-55X5 and 56 X 5 provide an 8.9 mm (0.35 inch) diameter hole through the housing for longer motor shafts. See Ordering Information.
3. The HEDS-5540 and 5640 must be aligned using the aligning pins as specified in Figure 3, or using the alignment tool as shown in "Encoder Mounting and Assembly". See also "Mounting Considerations."
4. The recommended mounting screw torque for 2 screw and external ear mounting is $1.0 \mathrm{~kg}-\mathrm{cm}(0.88 \mathrm{in}-\mathrm{lbs})$. The recommended mounting screw torque for 3 screw mounting is $0.50 \mathrm{~kg}-\mathrm{cm}$ ($0.43 \mathrm{in}-\mathrm{lbs}$).

Electrical Interface

To insure reliable encoding performance, the HEDS-5540 and 5640 three channel encoders require $2.7 \mathrm{k} \Omega(\pm 10 \%)$ pull-up resistors on output pins 2,3, and 5 (Channels I, A, and B) as shown in Figure 1. These
pull-up resistors should be located as close to the encoder as possible (within 4 feet). Each of the three encoder outputs can drive a single TTL load in this configuration.

The HEDS-5500 and 5600 two channel encoders do not
normally require pull-up resistors. However, pull-up resistors on output pins 3 and 5 (Channels A and B) are recommended to improve rise times.

Figure 1. Pull-up Resistors on HEDS-5X40 Encoder Outputs.

Mounting Considerations

The HEDS-5540 and 5640 three channel encoders must be aligned using the aligning pins as specified in Figure 3, or using the HEDS-8910 Alignment Tool as shown in Encoder Mounting and Assembly.

The use of aligning pins or alignment tool is recommended but not required to mount the HEDS-5500 and 5600. If these

Figure 2. Mounting Holes.
two channel encoders are attached to a motor with the screw sizes and mounting tolerances specified in the mechanical characteristics section without any additional mounting bosses, the encoder output errors will be within the maximums specified in the encoding characteristics section.

The HEDS-5500 and 5540 can be mounted to a motor using either the two screw or three
screw mounting option as shown in Figure 2. The optional aligning pins shown in Figure 3 can be used with either mounting option.

The HEDS-5600 and 5640 have external mounting ears which may be used for mounting to larger motor base plates. Figure 4 shows the necessary mounting holes with optional aligning pins and motor boss.

Figure 3. Optional Mounting Aids.

Figure 4. Mounting with External Ears.

Encoder Mounting and Assembly

1. For HEDS-5500 and 5600: Mount encoder base plate onto motor. Tighten screws. Go on to step 2.

1a. For HEDS-5540 and 5640: Slip alignment tool onto motor shaft. With alignment tool in place, mount encoder baseplate onto motor as shown above. Tighten screws. Remove alignment tool.

3a. Push the hex wrench into the body of the encoder to ensure that it is properly seated into the code wheel hub set screws. Then apply a downward force on the end of the hex wrench. This sets the code wheel gap by levering the code wheel hub to its upper position.

3b. While continuing to apply a downward force, rotate the hex wrench in the clockwise direction until the hub set screw is tight against the motor shaft. The hub set screw attaches the code wheel to the motor's shaft.

3c. Remove the hex wrench by pulling it straight out of the encoder body.

2. Snap encoder body onto base plate locking all 4 snaps.

4. Use the center screwdriver slot, or either of the two side slots, to rotate the encoder cap dot clockwise from the one dot position to the two dot position. Do not rotate the encoder cap counterclockwise beyond the one dot position.

The encoder is ready for use!

Connectors

Manufacturer	Part Number
AMP	$103686-4$ $640442-5$
Berg	$65039-032$ with $4825 \mathrm{X}-000$ term.
HP	HEDS-8902 (2 ch.) with 4-wire leads
	HEDS-8903 (3 ch.) with 5-wire leads
Molex	2695 series with 2759 series term.

Figure 5. HEDS-8902 and 8903 Connectors.

Typical Interfaces

Ordering Information

(Included with each order of HEDS-554X/564X three channel encoders)

Miniature Panel Mount Optical Encoder

Technical Data

HRPG Series

Features

- Miniature Size
- Smooth Turning and Detented Options
- Multiple Mounting Bracket Options
- Uses Optical Reflective Technology
- Quadrature Digital Output
- Small Footprint for Versatile Mounting
- TTL Compatible

Description

The HRPG series is a family of miniature panel mount optical encoders, also known as Rotary Pulse Generators (RPG) and digital potentiometers. The HRPG is designed to be mounted on a front panel and used as a rotary, data-entry device. The HRPG is very flexible for numerous applications due to the many configuration options available. These options include detents or smooth, multiple terminations, versatile mounting capabilities, and different shaft configurations.

The HRPG uses optical reflective technology providing accuracy and reliability to the encoder. An LED emits a beam of light onto the specular codewheel surface. When the light strikes the surface, it projects the image of the codewheel back on the photodetector, causing the output to change. The entire detector circuit is on one IC, thus the part is less sensitive to temperature and other environmental variations.

Applications

Typical applications for the Rotary Pulse Generator include front panel instruments, audio/ visual boards, and other devices requiring digital output from a turning knob.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{s}	-40	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	
Vibration			20	g	20 Hz to 2 kHz
Supply Voltage	V_{cc}	-0.5	7	V	
Output Voltage	V_{o}	-0.5	$\mathrm{~V}_{\mathrm{cc}}$	V	
Output Current Per Channel	I_{o}	-1	5	mA	
Shaft Load - Axial			4.0	N	10^{6} Revolutions
Shaft Load - Radial			0.1	Nm	10^{6} Revolutions
Revolution Life		10^{6}		Rev	At Maximum Loads

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature	\mathbf{T}	0	+70	${ }^{\circ} \mathrm{C}$	Non Condensing Atmosphere
Supply Voltage	V_{CC}	4.5	5.5	V	Ripple $<100 \mathrm{mV}_{\text {P.P }}$
Rotation Speed - Detented			200	RPM	
-Smooth			300	RPM	

Electrical Characteristics

Over Recommended Operating Range

Parameter	Symbol	Min.	Max.	Units	Notes
Supply Current	I_{CC}		40	mA	
High Level Output Voltage	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ Max.
Low Level Output Voltage	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$

Output Waveforms

Mechanical Configurations

Termination Options

Option R - Pins Rear with Bracket HRPG-AXXX\#XXR
suggested configuration

PCB MOUNTING DIMENSIONS

SUGGESTED CONFIGURATION

Option C - Cable Connector with Strain Relief HRPG-AXXX*XXC

NOTES:
DIMENSIONS ARE: $\frac{\mathrm{mm}}{\text { INCHES }}$
TOLERANCES ARE: $X \pm 0.25 \mathrm{~mm}$
$. X X \pm 0.01^{\prime \prime}$
$\frac{X X \pm 0.13 \mathrm{~mm}}{X X X \pm 0.005^{\prime \prime}}$
$. X X X \pm 0.005^{\prime \prime}$
SHIELD IS FOR HOUSING ESD PATH ONLY

$0.100^{\prime \prime}(2.54 \mathrm{~mm})$ CENTERS, ROUND CONDUCTOR FLAT CABLE GRAY PVC INSULATION

Shaft Configurations

Shaft Dimensions (D-cut shown also)

Shaft Options Available

Option \#	Shaft Length (l)	Shaft Diameter (d)	D-Cut Thickness (c)	D-Cut Length (b)	Sketch (not to scale)
11	0.30"	0.251"	-	-	Fomin
13	0.30"	0.250"	0.225"	0.230"	Fimill
14	0.50"	0.251"	-	-	Fimin
16	0.50"	0.250"	0.225"	0.400"	0
17	0.80"	0.251"	-	-	 0
19	0.80"	0.250"	0.225"	0.700"	Fimmo
51	7.6 mm	6.02 mm	-	-	0
53	7.6 mm	6.00 mm	5.33 mm	5.84 mm	0
54	12.7 mm	6.02 mm	-	-	flimil
56	12.7 mm	6.00 mm	5.33 mm	10.16 mm	(
57	20.32 mm	6.02 mm	-	-	 Q
59	20.32 mm	6.00 mm	5.33 mm	17.78 mm	

Typical Interface

Ordering Information

*Note: When ordering detented versions, a D-cut shaft is recommended.

Features

- AVAILABLE WITH OR WITHOUT STATIC DRAG FOR MANUAL OR MECHANIZED OPERATION
- HIGH RESOLUTION - UP TO 512 CPR
- LONG ROTATIONAL LIFE, >1 MILLION REVS
- -20 TO $85^{\circ} \mathrm{C}$ OPERATING TEMPERATURE RANGE
- TTL QUADRATURE OUTPUT
- SINGLE 5V SUPPLY

- AVAILABLE WITH COLOR CODED LEADS

Description

The HEDS-5700 series is a family of low cost, high performance, optical incremental encoders with mounted shafts and bushings. The HEDS-5700 is available with tactile feedback for hand operated panel mount applications, or with a free spinning shaft for applications requiring a pre-assembled encoder for position sensing.

The encoder contains a collimated LED light source and special detector circuit which allows for high resolution, excellent encoding performance, long rotational life, and increased reliability. The unit outputs two digital waveforms which are 90 degrees out of phase to provide position and direction information.

Package Dimensions

The HEDS-5700 is quickly and easily mounted to a front panel using the threaded bushing, or it can be directly coupled to a motor shaft (or gear train) for position sensing applications.

Applications

The HEDS-5700 with the static drag option is best suited for applications requiring digital information from a manually oper-ated knob. Typical front panel applications include instruments, CAD/CAM systems, and audio/video control boards.

The HEDS-5700 without static drag (free spinning) is best suited for low speed, mechanized operations. Typical applications are copiers, $X-Y$ tables, and assembly line equipment.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{a}	-20	+85	${ }^{\circ} \mathrm{C}$	
Vibration			20	g	$20 \mathrm{~Hz}-2 \mathrm{kHz}$
Supply Voltage	V_{CC}	-0.5	7	V	
Output Voltage	V_{O}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V	
Output Current Per Channel	I_{O}	-1	5	mA	
Shaft Load - Axial			1	lb	
Radial			1	lb	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature	T	-20	+85	${ }^{\circ} \mathrm{C}$	Non Condensing Atmosphere
Suppy Voltage	V_{CC}	4.5	5.5	V	Ripple $<100 \mathrm{mV}$ V-p
Rotation Speed - Drag			300	RPM	
Free Spinning					
		2000	RPM		

Electrical Characteristics over Recommended Operating Range, Typical at $25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Supply Current	I_{CC}		17	40	mA	
High Level Output Voltage	V_{OH}	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A} \mathrm{Max}$.
Low Level Output Voltage	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$

Note: If more source current is required, use a 3.2 K pullup resistor on each output.

Mechanical Characteristics

Parameter	Min.	Typ.	Max.	Units	Notes
Starting Torque - Static Drag		0.47		oz in	
- Free Spinning			0.14	oz in	
Dynamic Drag - Static Drag		1.1		oz in	100 RPM
- Free Spinning		0.70		oz in	2000 RPM
Rotational Life - Static Drag	1×10^{6}			Revolutions	1 lb Load
- Free Spinning	12×10^{6}			Revolutions	4 oz Radial Load
Mounting Torque of Nut			13	lb in	

Output Waveforms

NOTE: All values are in electrical degrees, where $360^{\circ} \mathrm{e}=1$ cycle of resolution.
Errors are worst case over one revolution.
CH B leads CH A for counterclockwise rotation.
CH A leads CH B for clockwise rotation.

Ordering Information

Features

- INTERFACES ENCODER TO MICROPROCESSOR
- 14 MHz CLOCK OPERATION
- FULL 4X DECODE
- HIGH NOISE IMMUNITY:

SCHMITT TRIGGER INPUTS DIGITAL NOISE FILTER

- 12 OR 16-BIT BINARY UP/DOWN COUNTER
- LATCHED OUTPUTS
- 8-BIT TRISTATE INTERFACE
- 8, 12, OR 16-BIT OPERATING MODES
- QUADRATURE DECODER OUTPUT SIGNALS, UP/DOWN AND COUNT
- CASCADE OUTPUT SIGNALS, UP/DOWN AND COUNT
- SUBSTANTIALLY REDUCED SYSTEM SOFTWARE

Description

The HCTL-2000, 2016, 2020 are CMOS ICs that perform the quadrature decoder, counter, and bus interface function. The HCTL-20XX family is designed to improve system performance in digital closed loop motion control systems and digital data input systems. It does this by shifting time intensive quadrature decoder functions to a cost effective hardware solution. The entire HCTL-20XX family consists of a $4 x$ quadrature decoder, a binary up/down state counter, and an 8 -bit bus interface. The use of Schmitt-triggered CMOS inputs and input noise filters allows reliable operation in noisy environments. The HCTL-2000 contains a 12-bit counter. The HCTL-2016 and 2020 contain a 16-bit counter. The HCTL-2020 also contains quadrature decoder output signals and cascade signals for use with many standard counter ICs. The HCTL-20XX family provides LSTTI compatible tri-state output buffers. Operation is specified for a temperature range from -40 to $+85^{\circ} \mathrm{C}$ at clock frequencies up to 14 MHz .

PINOUT A	PINOUT B

Applications

- INTERFACE QUADRATURE INCREMENTAL
ENCODERS TO MICROPROCESSORS
- INTERFACE DIGITAL POTENTIOMETERS TO DIGITAL DATA INPUT BUSES

Table of Contents

PACKAGE DIMENSIONS 2
OPERATING CHARACTERISTICS 2
FUNCTIONAL PIN DESCRIPTIONS 3
SWITCHING CHARACTERISTICS 4
OPERATION 6
INTERFACING

- GENERAL INTERFACING . 11
- MOTOROLA 6802/8, 24-BIT CASCADE 12
- INTEL 8748 .. . 15

ESD WARNING: Standard CMOS handling precautions should be observed with the HCTL-20XX family ICs.

Devices

Part Number	Description	Package Drawing
HCTL-2000	12-bit counter. 14 MHz clock operation.	A
HCTL-2016	All features of the HCTL-2000. 16-bit counter.	A
HCTL-2020	All features of the HCTL-2016. Quadrature decoder output signals. Cascade output signals.	B

Package Dimensions

PACKAGE A LEAD FINISH: SOLDER DIPPED
PACKAGE A

PACKAGE B LEAD FINISH: SOLDER DIPPED
PACKAGE B

Operating Characteristics

Table 1. Absolute Maximum Ratings (All voltages below are referenced to $V_{S S}$)

Parameter	Symbol	Limits	Units
DC Supply Voltage	V_{DD}	-0.3 to +5.5	V
Input VoItage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage Temperature	T_{S}	-40 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\mathrm{A}}{ }^{[1]}$	-40 to +85	${ }^{\circ} \mathrm{C}$

Table 2. Recommended Operating Conditions

Parameter	Symbol	Limits	Units
DC Supply Voltage	V_{DD}	+4.5 to +5.5	V
Ambient Temperature	$\mathrm{T}_{A}[1]$	-40 to +85	${ }^{\circ} \mathrm{C}$

Table 3. DC Characteristics $V_{D D}=5 \mathrm{~V} \pm 5 \% ; T_{A}=-40$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{IL}}[2]$	Low-Level Input Voltage				1.5	V
$\mathrm{~V}_{\mathrm{IH}}{ }^{[2]}$	High-Level Input Voltage		3.5			V
$\mathrm{~V}_{\mathrm{T}+}$	Schmitt-Trigger Positive-Going Threshold			3.5	4.0	V
$\mathrm{~V}_{\mathrm{T}-}$	Schmitt-Trigger Negative-Going Threshold		1.0	1.5		V
$\mathrm{~V}_{\mathrm{H}}$	Schmitt-Trigger Hysteresis		1.0	2.0		V
I_{N}	Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ or V_{DD}	-10	1	+10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}{ }^{[2]}$	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}-1.6 \mathrm{~mA}$	2.4	4.5		V
$\mathrm{~V}_{\mathrm{OL}}{ }^{[2]}$	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=+4.8 \mathrm{~mA}$		0.2	0.4	V
I_{OZ}	High-Z Output Leakage Current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$ or V_{DD}	-10	1	+10	$\mu \mathrm{~A}$
I_{DD}	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{O}}=\mathrm{HiZ}$		1	5	$\mu \mathrm{~A}$
C_{IN}	Input Capacitance	Any Input ${ }^{[3]}$		5		pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	Any Output $[3]$		6		pF

Notes:

1. Free Air
2. In general, for any $V_{D D}$ between the allowable limits $\left(+4.5 \mathrm{~V}\right.$ to +5.5 V), $\mathrm{V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{IH}}=0.7 \mathrm{~V}_{\mathrm{DD}}$; typical values are
$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V} @ \mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ and $\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}+0.2 \mathrm{~V} @ \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$.
3. Including package capacitance.

Functional Pin Description

Table 4. Functional Pin Descriptions

Symbol	$\begin{gathered} \text { Pin } \\ 2000 / 2016 \end{gathered}$	$\begin{gathered} \hline \text { Pin } \\ 2020 \end{gathered}$	Description
$V_{D D}$	16	20	Power Supply
$V_{\text {SS }}$	8	10	Ground
CLK	2	2	CLK is a Schmitt-trigger input for the external clock signal.
$\begin{aligned} & \text { CHA } \\ & \text { CHB } \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	CHA and CHB are Schmitt-trigger inputs which accept the outputs from a quadrature encoded source, such as incremental optical shaft encoder. Two channels, A and B, nominally 90 degrees out of phase, are required.
$\overline{\text { RST }}$	5	7	This active low Schmitt-trigger input clears the internal position counter and the position latch It also resets the inhibit logic. $\overline{\mathrm{RST}}$ is asynchronous with respect to any other input signals.
$\overline{\mathrm{OE}}$	4	4	This CMOS active low input enables the tri-state output buffers. The $\overline{\mathrm{OE}}$ and SEL inputs are sampled by the internal inhibit logic on the falling edge of the clock to control the loading of the internal position data latch.
SEL	3	3	This CMOS input directly controls which data byte from the position iatch is enabled into the 8-bit tri-state output buffer. As in $\overline{O E}$ above, SEL also controls the internal inhibit logic.
CNT ${ }_{\text {DCDR }}$		16	A pulse is presented on this LSTTL-compatible output when the quadrature decoder has detected a state transition.
U/ \bar{D}		5	This LSTTL-compatiole output allows the user to determine whether the IC is counting up or down and is intended to be used with the $C N T_{D C D R}$ and CNT ${ }_{C A S}$ outputs. The proper signal U (high level) or $\overline{\mathrm{D}}$ (low level) will be present before the rising edge of the $\mathrm{CNT}_{D C D R}$ and $\mathrm{CNT}_{\mathrm{CAS}}$ outputs.
$\mathrm{CNT}_{\text {CAS }}$		15	A pulse is presented on this LSTTL-compatible output when the HCTL-2020 internal counter overflows or underflows. The rising edge on this waveform may be used to trigger an external counter.
D0	1	1	These LSTTL-compatible tri-state outputs form an 8-bit output port through which the contents of the $12 / 16$-bit position latch may be read in 2 sequential bytes. The high byte, containing bits $8-15$, is read first (on the HCTL-2000, the most significant 4 bits of this byte are set to 0 internally). The lower byte, bits $0-7$, is read second.
D1	15	19	
D2	14	18	
D3	13	17	
D4	12	14	
D5	11	13	
D6	10	12	
D7	9	11	
NC		6	Not connected - this pin should be left floating.

Switching Characteristics

Table 5. Switching Characteristics Min/Max specifications at $V_{D D}=5.0 \pm 5 \%, T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

Symbol Description			Min.	Max.	Units
1	$\mathrm{t}_{\text {CLK }}$	Clock period	70		ns
2	$\mathrm{t}_{\mathrm{CHH}}$	Pulse width, clock high	28		ns
3	$t_{C D}{ }^{[1]}$	Delay time, rising edge of clock to valid, updated count information on D0-7		65	ns
4	tode	Delay time, $\overline{O E}$ fall to valid data		65	ns
5	todz	Delay time, $\overline{\mathrm{OE}}$ rise to Hi Z State on $\mathrm{D} 0-7$		40	ns
6	tsDV	Delay time, SEL valid to stable, selected data byte (delay to High Byte = delay to Low Byte)		65	ns
7	$\mathrm{t}_{\mathrm{CLH}}$	Pulse width, clock low	28		ns
8	$\mathrm{tss}^{[2]}$	Setup time, SEL before clock fall	20		ns
9	$\mathrm{tos}^{[2]}$	Setup time, $\overline{O E}$ before clock fall	20		ns
10	$\mathrm{t}_{\mathrm{SH}}{ }^{[2]}$	Hold time, SEL after clock fall	0		ns
11	$\mathrm{t}_{\mathrm{OH}^{[2]}}$	Hold time, $\overline{O E}$ after clock fall	0		ns
12	$\mathrm{t}_{\text {RST }}$	Pulse width, RST low	28		ns
13	$t_{\text {DCD }}$	Hold time, last position count stable on D0-7 after clock rise	10		ns
14	$\mathrm{t}_{\text {DSD }}$	Hold time, last data byte stable after next SEL state change	5		ns
15	$t_{\text {DOD }}$	Hold time, data byte stable after $\overline{\mathrm{OE}}$ rise	5		ns
16	tudd	Delay time, U/D valid after clock rise		45	ns
17	$\mathrm{t}_{\mathrm{CHD}}$	Delay time, $\mathrm{CNT}_{\text {DCDR }}$ or $\mathrm{CNT}_{\text {CAS }}$ high after clock rise		45	ns
18	${ }_{\text {t CLD }}$	Delay time, $\mathrm{CNT}_{\text {DCDR }}$ or $\mathrm{CNT}_{\text {CAS }}$ low after clock fall		45	ns
19	tudh	Hold time, U/ $\overline{\mathrm{D}}$ stable after clock rise	10		ns
20	$\mathrm{t}_{\text {UDCS }}$	Setup time, U/ $\overline{\mathrm{D}}$ valid before $\mathrm{CNT}_{\text {DCDR }}$ or $C N T_{\text {CAS }}$ rise	$\mathrm{t}_{\text {CLK }}{ }^{\text {45 }}$		ns
21	tudCH	Hold time, U/D stable after $\mathrm{CNT}^{\text {DCDR }}$ or $\mathrm{CNT}_{\text {CAS }}$ rise	$\mathrm{t}_{\text {CLK }}$-45		ns

Notes:

1. $t_{C D}$ specification and waveform assume latch not inhibited.
2. $\mathrm{t}_{\mathrm{SS}}, \mathrm{t}_{\mathrm{OS}}, \mathrm{t}_{\mathrm{SH}}, \mathrm{t}_{\mathrm{OH}}$ only pertain to proper operation of the inhibit logic. In other cases, such as 8 bit read operations, these setup and hold times do not need to be observed.

Figure 1. Reset Waveform

Figure 2. Waveform for Positive Clock Related Delays

Figure 3. Tri-State Output Timing

Figure 4. Bus Control Timing

Figure 5. Decoder, Cascade Output Timing (HCTL-2020 only)

Operation

A block diagram of the HCTL-20XX family is shown in Figure 6. The operation of each major function is described in the following sections.

Figure 6. Simplified Logic Diagram

DIGITAL NOISE FILTER

The digital noise filter section is responsible for rejecting noise on the incoming quadrature signals. The input section uses two techniques to implement improved noise rejection. Schmitt-trigger inputs and a three-clock-cycle delay filter combine to reject low level noise and large, short duration noise spikes that typically occur in motor system applications. Both common mode and differential mode noise are rejected. The user benefits from these techniques by improved integrity of the data in the counter. False counts triggered by noise are avoided.
Figure 7 shows the simplified schematic of the input section. The signals are first passed through a Schmitt trigger buffer to address the problem of input signals with slow
rise times and low level noise (approximately $<1 \mathrm{~V}$). The cleaned up signals are then passed to a four-bit delay filter. The signals on each channel are sampled on rising clock edges. A time history of the signals is stored in the four-bit shift register. Any change on the input is tested for a stable level being present for three consecutive rising clock edges. Therefore, the filtered output waveforms can change only after an input level has the same value for three consecutive rising clock edges. Refer to Figure 8 which shows the timing diagram. The result of this circuitry is that short noise spikes between rising clock edges are ignored and pulses shorter than two clock periods are rejected.

Figure 7. Simplified Digital Noise Filter Logic

Figure 8. Signal Propagation Through Digital Noise Filter

QUADRATURE DECODER

The quadrature decoder decodes the incoming filtered signals into count information. This circuitry multiplies the resolution of the input signals by a factor of four (4 X decoding). When using an encoder for motion sensing, the user benefits from the increased resolution by being able to provide better system control.

The quadrature decoder samples the outputs of the CHA and CHB filters. Based on the past binary state of the two signals and the present state, it outputs a count signal and a direction signal to the internal position counter. In the case of the HCTL-2020, the signals also go to external pins 5 and 16 respectively.
Figure 9 shows the quadrature states and the valid state transitions. Channel A leading channel B results in counting up. Channel B leading channel A results in counting
down. Illegal state transitions, caused by faulty encoders or noise severe enough to pass through the filter, will produce an erroneous count.

DESIGN CONSIDERATIONS

The designer should be aware that the operation of the digital filter places a timing constraint on the relationship between incoming quadrature signals and the external clock. Figure 8 shows the timing waveform with an incremental encoder input. Since an input has to be stable for three rising clock edges, the encoder pulse width (t_{E} - low or high), has to be greater than three clock periods (3tcLK). This guarantees that the asynchronous input will be stable during three consecutive rising clock edges. A realistic design also has to take into account finite rise times of the waveforms, asymmetry of the waveforms, and noise. In the presence of large amounts of noise, t_{E} should be much
greater than $3 \mathrm{t}_{\mathrm{CLK}}$ to allow for the interruption of the consecutive level sampling by the three-bit delay filter. It should be noted that a change on the inputs that is qualified by the filter will internally propagate in a maximum of seven clock periods.

The quadrature decoder circuitry imposes a second timing constraint between the external clock and the input signals. There must be at least one clock period between consecutive quadrature states. As shown in Figure 9, a quadrature state is defined by consecutive edges on both channels. Therefore, $\mathrm{t}_{\text {ES }}$ (encoder state period) $>\mathrm{t}_{\text {CLK }}$. The designer must account for deviations from the nominal 90 degree phasing of input signals to guarantee that $t_{E S}$ $>t_{\text {CLK }}$.

CHA	CHB	STATE
1	0	1
1	1	2
0	1	3
0	0	4

Figure 9. 4x Quadrature Decoding

POSITION COUNTER

This section consists of a 12 -bit (HCTL-2000) or 16 -bit (HCTL-2016/2020) binary up/down counter which counts on rising clock edges as explained in the Quadrature Decoder Section. All 12 or 16 bits of data are passed to the position data latch. The system can use this count data in several ways:
A. System total range is ≤ 12 or 16 bits, so the count represents "absolute" position.
B. The system is cyclic with ≤ 12 or 16 bits of count per cycle. $\overline{\text { RST }}$ is used to reset the counter every cycle and the system uses the data to interpolate within the cycle.
C. System count is $>8,12$ or 16 bits, so the count data is used as a relative or incremental position input for a system software computation of absolute position. In this case counter rollover occurs. In order to prevent loss of position information, the processor must read the outputs of the IC before the count increments onehalf of the maximum count capability (i.e. 127, 2047, or 32,767 quadrature counts). Two's-complement arithmetic is normally used to compute position from these periodic position updates. Three modes can be used:

1. The IC can be put in 8 -bit mode by tying the SEL line high, thus simplifying IC interface. The outputs must then be read at least once every 127 quadrature counts.
2. The HCTL-2000 can be used in 12-bit mode and sampled at least once every 2047 quadrature counts.
3. The HCTL-2016 or 2020 can be used in 16 -bit mode and sampled at least once every 32,767 quadrature counts.
D. The system count is >16 bits so the HCTL-2020 can be cascaded with other standard counter IC's to give absolute position.

POSITION DATA LATCH

The position data latch is a 12/16-bit latch which captures the position counter output data on each rising clock edge, except when its inputs are disabled by the inhibit logic section during two-byte read operations. The output data is passed to the bus interface section. When active, a signal from the inhibit logic section prevents new data from being captured by the latch, keeping the data stable while successive reads are made through the bus section. The latch is automatically reenabled at the end of these reads. The latch is cleared to 0 asynchronously by the $\overline{\text { RST signal. }}$

INHIBIT LOGIC

The Inhibit Logic Section samples the $\overline{\mathrm{OE}}$ and SEL signals on the falling edge of the clock and, in response to certain conditions (see Figure 10 below), inhibits the position data latch. The $\overline{\mathrm{RST}}$ signal asynchronously clears the inhibit logic, enabling the latch. A simplified logic diagram of the inhibit circuitry is illustrated in Figure 11.

STEP	SEL	$\overline{O E}$	CLK	INHIBIT SIGNAL	ACTION
1	L	L	L	1	SET INHIBIT; READ HIGH BYTE
2	H	L	L	1	READ LOW BYTE; STARTS RESET
3	X	H	L	0	COMPLETES INHIBIT LOGIC RESET

Figure 10. Two Byte Read Sequence

BUS INTERFACE

The bus interface section consists of a 16 to 8 line multiplexer and an 8 -bit, three-state output buffer. The multiplexer allows independent access to the low and high bytes of the position data latch. The SEL and $\overline{\mathrm{OE}}$ signals determine which byte is output and whether or not the output bus is in the high-Z state. In the case of the HCTL2000 the data latch is only 12 bits wide and the upper four bits of the high byte are internally set to zero.

QUADRATURE DECODER OUTPUT (HCTL-2020 ONLY)

The quadrature decoder output section consists of count and up/down outputs derived from the $4 X$ decode logic of the HCTL-2020. When the decoder has detected a count, a pulse, one-half clock cycle long, will be output on the $C N T_{\text {DCDR }}$ pin. This output will occur during the clock cycle in which the internal counter is updated. The U / \bar{D} pin will be set to the proper voltage level one clock cycle before the rising edge of the $C N T_{D C D R}$ pulse, and held one clock cycle after the rising edge of the $C N T_{D C D R}$ pulse. These outputs are not affected by the inhibit logic. See Figures 5 and 12 for detailed timing.

CASCADE OUTPUT (HCTL-2020 ONLY)

The cascade output aiso consists of count and up/down outputs. When the HCTL-2020 internal counter overflows or underflows, a pulse, one-half clock cycle long, will be output on the CNT CAS pin. This output will occur during the clock cycle in which the internal counter is updated. The U / \bar{D} pin will be set to the proper voltage level one clock cycle before the rising edge of the CNT CAS pulse, and held one clock cycle after the rising edge of the CNT ${ }_{\text {CAS }}$ pulse. These outputs are not affected by the inhibit logic. See Figures 5 and 12 for detailed timing.

Figure 11. Simplified Inhibit Logic

${ }^{*} \mathrm{CHA}_{\text {FILT }}$ and $\mathrm{CHB}_{\text {FILT }}$ are the outputs of the digital noise filter (see figures 7 and 8).

Figure 12. Decode and Cascade Output Diagram

CASCADE CONSIDERATIONS (HCTL-2020 ONLY)

The HCTL-2020's cascading system allows for position reads of more than two bytes. These reads can be accomplished by latching all of the bytes and then reading the bytes sequentially over the 8 -bit bus. Care must be taken to latch all of the bytes such that they represent the count as it actually is, despite propagation delays through the counters.

A good understanding of the mechanics of count propagation is important in designing a proper interface. Consider the sequence of events for a read cycle that starts as the HCTL-2020's internal counter rolls over. On the rising clock edge, count data is updated in the internal counter, rolling it over. A count-cascade pulse ($\mathrm{CNT}_{\mathrm{CAS}}$) will be generated with some delay after the rising clock edge ($\mathrm{t}_{\mathrm{CHD}}$). There will be additional propagation delays through the external counters and registers. Meanwhile, with $\overline{\mathrm{OE}}$ and SEL low to start the read, this new count on the HCTL-2020 will be latched in on the falling clock edge of this cycle. If the external registers are latched too soon, before the $\mathrm{CNT}_{\text {CAS }}$ pulse has toggled the external counters and registers, a major count error will occur.

Valid data can be ensured by latching the external counter data on the first rising clock edge following the falling edge on which the internal count on the HCTL-2020 is latched (provided that all the delays are less than one clock cycle). This will ensure that a cascade pulse that occurs during the clock cycle when the read begins has adequate time to propagate. This also guarantees that a cascade pulse occurring on the clock cycle after the read is initiated will not be erroneously latched.

For example, suppose the HCTL-2020 count is at FFFFH and an external counter is at FOH , with the count going up. A count occurring in the HCTL-2020 will cause the counter to roll over and a cascade pulse will be generated. A read starting on this clock cycle will show 0000 H from the HCTL-2020. The external counter should read F1H, but if the host latches the count before the cascade signal propagates through, the external counter will still read FOH.

General Interfacing

The 12-bit (HCTL-2000) or 16 -bit (HCTL-2016/2020) latch and inhibit logic allows access to 12 or 16 bits of count with an 8 -bit bus. When only 8 -bits of count are required, a simple 8 -bit (1-byte) mode is available by holding SEL high continuously. This disables the inhibit logic. $\overline{\mathrm{OE}}$ provides control of the tri-state bus, and read timing is shown in Figures 2 and 3.
For proper operation of the inhibit logic during a two-byte read, $\overline{\mathrm{OE}}$ and SEL must be synchronous with CLK due to the falling edge sampling of $\overline{O E}$ and SEL.

The internal inhibit logic on the HCTL-20XX family inhibits the transfer of data from the counter to the position data latch during the time that the latch outputs are being read. The inhibit logic allows the microprocessor to first read the high order 4 or 8 bits from the latch and then read the low order 8 bits from the latch. Meanwhile, the counter can continue to keep track of the quadrature states from the CHA and CHB input signals.
Figure 11 shows the simplified inhibit logic circuit. The operation of the circuitry is illustrated in the read timing shown in Figure 13.

Figure 13. Typical Interface Timing

ACTIONS

1. On the rising edge of the clock, counter data is transferred to the position data latch, provided the inhibit signal is low.
2. When $\overline{\mathrm{OE}}$ goes low, the outputs of the multiplexer are enabled onto the data lines. If SEL is low, then the high order data bytes are enabled onto the data lines. If SEL is high, then the low order data bytes are enabled onto the data lines.
3. When the IC detects a low on $\overline{\mathrm{OE}}$ and SEL during a falling clock edge, the internal inhibit signal is activated. This blocks new data from being transferred from the counter to the position data latch.
4. When SEL goes high, the data outputs change from the high byte to the low byte.
5. The first of two reset conditions for the inhibit logic is met when the IC detects a logic high on SEL and a logic low on $\overline{\mathrm{OE}}$ during a falling clock edge.
6. When $\overline{\mathrm{OE}}$ goes high, the data lines change to a high impedance state.
7. The IC detects a logic high on $\overline{\mathrm{OE}}$ during a falling clock edge. This satisfies the second reset condition for the inhibit logic.

Interfacing the HCTL-2020 to a Motorola 6802/8 and Cascading the Counter for 24 Bits

Figure 14. A Circuit to Interface to the 6802/8

In this circuit an interface to a Motorola 6802/8 and a cascading scheme for a 24 -bit counter are shown. This circuit provides a minimum part count by: 1) using two 74LS697 Up/Down counters with output registers and tri-state outputs and 2) using a Motorola 6802/8 LDX instruction which stores 16 bits of data into the index registers in two consecutive clock cycles.
The HCTL-2020 $\overline{\mathrm{OE}}$ and the 74LS697 $\overline{\mathrm{G}}$ lines are decoded from Address lines A15-A13. This results in counter data being enabled onto the bus whenever an external memory access is made to locations 4 XXX or 2 XXX . Address line A12 and processor clock E enable the 74LS138. The processor clock E is also used to clock the HCTL-2020. Address AO is connected directiy to the SEL pin on the HCTL-2020. This line selects the low or high byte of data from the HCTL-2020.

Cascading is accomplished by connecting the CNT ${ }_{C A S}$ output on the HCTL-2020 with the counter clock (CCK) input on both 74LS697's. The U/ $\overline{\mathrm{D}}$ pin on the HCTL-2020 and the U / \bar{D} pin on both 74LS697's are also directly connected for easy expansion. The $\overline{\mathrm{RCO}}$ of the first 4-bit 74LS697 is connected to the ENT pin of the second 74LS697. This enables the second counter only when there is a $\overline{\mathrm{RCO}}$ signal on the first counter.

This configuration allows the 6802 to read both data bytes with a single double-byte fetch instruction (LDX 2XX0). This instruction is a five cycle instruction which reads external memory location 2XX0 and stores the high order byte into the high byte of the index register. Memory location $2 X X 1$ is next read and stored in the low order byte
of the index register. The high byte of counter data is clocked into the 74LS697 registers when SEL is high and $\overline{\mathrm{OE}}$ goes low. This upper byte can be read at any time by pulling the 74LS697 $\overline{\mathrm{G}}$ low when reading address 4XXX. Figure 15 shows memory addresses and gives an example of reading the HCTL-2020. Figure 16 shows the interface timing for the circuit.

Address	Function
$C X X X$	Reset Counters
$4 X X X$	Enable High Byte on Data Lines
$2 X X 0$	Enable Low Byte on Data Lines
$2 X X 1$	Enable Mid Byte on Data Lines

Read Example	
LDX 2000	Loads mid byte and then low byte into
STX 0100	memory locations 0100 and 0101
LDAA 4000	Loads the high byte into memory STAA 0102
location 0102	

Figure 15. Memory Addresses and Read Example

Figure 16. Interface Timing for the 6802/8

ACTIONS

1. The microprocessor clock output is E . If the internal HCTL-2020 inhibit is not active, new data is transferred from the internal counter to the position data latch.
2. An even address output from the 6802 causes SEL to go low. When E goes high, the address decoder output for the HCTL-2020 $\overline{\mathrm{OE}}$ signal goes low. This causes the HCTL-2020 to output the middle byte of the system counter (high byte of the HCTL-2020 counter).
3. In this case, the HCTL-2020 counter has overflowed and there is an output on the $\mathrm{CNT}_{\text {CAS }}$ line. This pulse is counted by the 74LS697 but not loaded into the output register of the 74LS697 at this time.
4. The 6802 reads the data bus on the falling edge of E, storing the high order 2020 data byte (middle system byte) into the high byte of the index register. The chip detects that $\overline{\mathrm{OE}}$ and SEL are low on the falling edge of E and activates the internal inhibit signal. The position data latch is inhibited and data cannot be transferred from the internal counter to the latch.
5. When E goes low, the address decoder output is disabled and $\overline{\mathrm{OE}}$ goes high. The 6802 increments the address, causing SEL to go high. The position data latch is still inhibited.
6. When SEL is high and $\overline{\mathrm{OE}}$ is low the 74LS697 register clock (RCK) goes high. The rising edge of RCK loads the 74LS697 count into the 74LS697 register. Delaying the RCK signal until the second $\overline{O E}$ allows for delays on the $\mathrm{CNT}_{\text {CAS }}$ signal.
7. The address decoder is enabled after E goes high. The $\overline{\mathrm{OE}}$ line goes low and the low data byte is enabled onto the bus.
8. The 6802 reads the data bus on the falling edge of E, storing the low order data byte into the low byte of the index register. The HCTL-2020 detects that $\overline{O E}$ is low and SEL is high on the falling edge of E, thus meeting the first inhibit reset condition.
9. When E goes low, the address decoder is disabled, causing $\overline{O E}$ to go high and the data lines to go to the high impedance state. The 6802 continues its instruction execution, and the state of SEL is indeterminate.
10. The HCTL-2020 detects $\overline{\mathrm{OE}}$ is high on the next falling edge of E. This satisfies the second inhibit reset condition and the inhibit signal is reset.
11. When E goes high, a new address causes the \bar{G} line on the 74LS697 to go low and enables the high byte onto the data bus.
12. When E goes low, the high byte is read into the 6802. The data bus returns to tri-state.

Interfacing the HCTL-20XX to an Intel 8748

The circuit shown in Figure 17 shows the connections between an HCTL-20XX and an 8748. Data lines D0-D7 are connected to the 8748 bus port. Bits 0 and 1 of port 1 are used to control the SEL and $\overline{O E}$ inputs of the HCTL-20XX respectively. TO is used to provide a clock signal to the HCTL-20XX. The frequency of T0 is the crystal frequency divided by 3. T0 must be enabled by executing the ENTO CLK instruction after each system reset, but prior to the first encoder position change. An 8748 program which interfaces to the circuit in Figure 17 is given in Figure 18. The resulting interface timing is shown in Figure 19.

* NOTE: PIN NUMBERS ARE DIFFERENT FOR THE HCTL-2020

Figure 17. An HCTL-20XX-to-Intel 8748 Interface

LOC	Object Code	Source Statements	Comments
000	9900	ANL P1, OOH	Enable output and higher order bits
002	08	INS A, BUS	Load higher order bits into ACC
003	A8	MOVE RO A	Move data to register 0
004	8903	ORL P1, 01H	Change data from high order to low order bits
006	08	INS A, BUS	Load order bits into AC
008	A9	MOV R1, A	Move data to register 1
009	8903	ORL P1,03H	Disable outputs
$00 B$	93	RETR	Return

Figure 18. A Typical Program for Reading HCTL-20XX with an 8748

Figure 19. 8748 READ Cycle from Figure 18.

ACTIONS

1. ANL P1, 00 H has just been executed. The output of bits 0 and 1 of Port 1 cause SEL and $\overline{O E}$ to be logic low. The data lines output the higher order byte.
2. The HCTL-20XX detects that $\overline{O E}$ and SEL are low on the next falling edge of the CLK and asserts the internal inhibit signal. Data can be read without regard for the phase of the CLK.
3. INS A, BUS has just been executed. Data is read into the 8748.
4. ORL PORT 1, 01H has just been executed. The program sets SEL high and leaves $\overline{O E}$ low by writing the correct values to port 1. The HCTL-20XX detects $\overline{O E}$ is low and SEL is high on the next falling edge of the CLK, and thus the first inhibit reset condition is met.
5. INS A, BUS has just been executed. Lower order data bits are read into the 8748 .
6. ORL P1, 03H has just been executed. The HCTL-20XX detects $\overline{O E}$ high on the next falling edge of CLK. The program sets $\overline{\mathrm{OE}}$ and SEL high by writing the correct values to port 1. This causes the data lines to be tristated. This satisfies the second inhibit and reset condition. On the next rising CLK edge new data is transferred from the counter to the position data latch.

General Purpose Motion Control IC

Technical Data

HCTL-1100 Series

Features

- Low Power CMOS
- PDIP and PLCC Versions Available
- Enhanced Version of the HCTL-1000
- DC, DC Brushless, and Step Motor Control
- Position and Velocity Control
- Programmable Digital Filter and Commutator
- 8-Bit Parallel, and PWM Motor Command Ports
- TTL Compatible
- SYNC Pin for Coordinating Multiple HCTL-1100 ICs
- 100 kHz to 2 MHz Operation
- Encoder Input Port

Description

The HCTL-1100 series is a high performance, general purpose motion control IC, fabricated in HP CMOS technology. It frees the host processor for other tasks by performing all the time-intensive functions of digital motion control. The programmability of all control parameters provides maximum flexibility and quick design of
control systems with a minimum number of components. In addition to the HCTL-1100, the complete control system consists of a host processor to specify commands, an amplifier, and a motor with an incremental encoder (such as the HP HEDS-5XXX, -6XXX, 9XXX series). No analog compensation or velocity feedback is necessary.

Pinouts

Table of Contents
General Description
Comparison of HCTL-1100vs. HCTL-10002
Package Dimensions 3
Theory of Operation 3
Electrical Specifications5
Absolute Maximum Ratings 5
DC Electrical Characteristics 5
AC Electrical Characteristics 6
I/O Timing Diagrams 8
Pin Descriptions and
Functionality 12
Pin Descriptions 12
Pin Functionality 13
Operation of the HCTL-1100Registers15
Register Block Diagram 15
Register Reference Tables 16
Register Descriptions 19
Commutator 25
Operation Flowchart 29
Setup Modes 30
Hard Reset 30
Soft Reset 30
Initialization/Idle 30
Align 30
Control Modes 30
Position Control 31
Proportional Velocity 31
Integral Velocity 32
Trapezoid Profile 34
Applications of the HCTL-1100. 36
Interfacing the HCTL-1100 to Host Processors 36
Interfacing theHCTL-1100 toAmplifiers and Motors 37Additional Informationfrom HP39
Ordering Information 39

Applications

Typical applications for the HCTL-1100 include printers, medical instruments, material handling machines, and industrial automation.

HCTL-1100 vs. HCTL-1000
The HCTL-1100 is designed to replace the HCTL-1000. Some differences exist, and some enhancements have been added.

System Block Diagram

Comparison of HCTL-1100 and HCTL-1000

Description	HCTL-1100	HCTL-1000
Max. Supply Current	30 mA	180 mA
Max. Power Dissipation	165 mW	950 mW
Max. Tri-State Output Leakage Current	150 nA	$10 \mathrm{\mu A}$
Operating Frequency	$100 \mathrm{kHz}-2 \mathrm{MHz}$	$1 \mathrm{MHz}-2 \mathrm{MHz}$
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Synchronize 2 or More ICs	Yes	-
Preset Actual Position Registers	Yes	-
Read Flag Register	Yes	-
Limit and Stop Pins	Must be pulled up to V_{DD} if not used.	Can be left floating if not used.
Hard Reset	Required	Recommended
PLCC Package Available	Yes	-

Package Dimensions

40-PIN PLASTIC DUAL INLINE PACKAGE

44 PIN PLASTIC LEADED CHIP CARRIER PACKAGE

Theory of Operation

The HCTL-1100 is a general purpose motor controller which provides position and velocity control for DC, DC brushless and stepper motors. The internal block diagram of the HCTL-1100 is shown in Figure 1. The HCTL- 1100 receives its input commands from a host processor and position feedback from an incremental encoder with quadrature output. An 8bit bi-directional multiplexed address/data bus interfaces the HCTL-1100 to the host
processor. The encoder feedback is decoded into quadrature counts and a 24 -bit counter keeps track of position. The HCTL-1100 executes any one of four control algorithms selected by the user. The four control modes are:

- Position Control
- Proportional Velocity Control
- Trapezoidal Profile Control for point to point moves
- Integral Velocity Control with continuous velocity profiling using linear acceleration

The resident Position Profile Generator calculates the necessary profiles for Trapezoidal Profile Control and Integral Velocity Control. The HCTL-1100 compares the desired position (or velocity) to the actual position (or velocity) to compute compensated motor commands using a programmable digital filter $\mathrm{D}(\mathrm{z})$. The motor command is externally available at the Motor Command port as an 8bit byte and at the PWM port as a Pulse Width Modulated (PWM) signal.

The HCTL-1100 has the capability of providing electronic commutation for DC brushless and stepper motors. Using the encoder position information, the motor phases are enabled in the correct sequence. The commutator is fully programmable to encompass most motor/encoder combinations. In addition, phase overlap and phase advance can be programmed to improve torque ripple and high speed performance. The HCTL1100 contains a number of flags including two externally available flags, Profile and Initialization, which allow the user to see or check the status of the controller. It also has two emergency inputs, Limit and $\overline{\text { Stop, }}$, which allow operation of the HCTL-1100 to be interrupted under emergency conditions.

The HCTL- 1100 controller is a digitally sampled data system. While information from the host processor is accepted asynchronously with respect to the control functions, the motor command is computed on a discrete sample time basis. The sample timer is programmable.

Figure 1. Internal Block Diagram.

Figure 2. Operating Mode Flowchart

Electrical Specifications

Absolute Maximum Ratings

Operating Temperature, T_{A}.. $20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\mathrm{s}} \ldots . ~ 55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Supply Voltage, V_{DD}... 0.3 V to 7 V

Maximum Operating Clock Frequency, $\mathrm{f}_{\mathrm{cLK}}$............................. 2 MHz
DC Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Supply Voltage	V_{DD}	4.75	5.00	5.25	V	
Supply Current	I_{DD}		15	30	mA	
Input Leakage Current	I_{IN}		10	100	nA	$\mathrm{V}_{\mathrm{IN}}=0.00$ and 5.25 V
Input Pull-Up Current SYNC PIN	I_{PU}		-40	-100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0.00 \mathrm{~V}$
Tristate Output Leakage Current	I_{OZ}		10	150	nA	$\mathrm{V}_{\mathrm{OUT}}=-0.3$ to 5.25 V
Input Low Voltage	V_{IL}	-0.3		0.8	V	
Input High Voltage	V_{HH}	2.0		$\mathrm{~V}_{\mathrm{DD}}$	V	
Output Low Voltage	V_{OL}	-0.3		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}$
Output High Voltage	V_{OH}	2.4		$\mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
Power Dissipation	P_{D}		75	165	mW	
Input Capacitance	C_{IN}			20	pF	
Output Capacitance	$\mathrm{C}_{\mathrm{OUT}}$		100		pF	

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Units $=\mathrm{nsec}$

$\underset{\#}{\operatorname{II}}$	Signal	Symbol	Clock Frequency				Formula*	
			2 MHz		1 MHz			
			Min.	Max.	Min.	Max.	Min.	Max.
1	Clock Period (clk)	$\mathrm{t}_{\text {CPER }}$	500		1000			
2	Pulse Width, Clock High	$\mathrm{t}_{\text {cPWH }}$	230		300			
3	Pulse Width, Clock Low	$\mathrm{t}_{\text {cPWL }}$	200		200		200	
4	Clock Rise and Fall Time	t_{CR}		50		50		50
5	Input Pulse Width $\overline{\text { Reset }}$	$\mathrm{t}_{\text {IRST }}$	2500		5000		5 clk	
6	Input Pulse Width $\overline{\text { Stop }}$, $\overline{\text { Limit }}$	$\mathrm{t}_{\text {IP }}$	600		1100		$\begin{array}{c\|} \hline 1 \mathrm{clk} \\ +100 \mathrm{~ns} \end{array}$	
7	Input Pulse Width $\overline{\text { Index, }}$, Index	t_{Ix}	1600		3100		$\begin{array}{c\|} \hline 3 \mathrm{ck} \\ +100 \mathrm{~ns} \end{array}$	
8	Input Pulse Width CHA, CHB	$\mathrm{t}_{\text {IAB }}$	1600		3100		$\begin{gathered} 3 \mathrm{clk} \\ +100 \mathrm{~ns} \end{gathered}$	
9	Delay CHA to CHB Transition	t_{AB}	600		1100		$\begin{array}{c\|} \hline 1 \mathrm{clk} \\ +100 \mathrm{~ns} \end{array}$	
10	Input Rise/Fall Time CHA, CHB, Index	$\mathrm{t}_{\text {IABR }}$		450		900		$\begin{gathered} 900(\mathrm{clk} \\ <1 \mathrm{MHz}) \end{gathered}$
11	Input Rise/Fall Time $\overline{\text { Reset }}, \overline{\text { ALE }}$, $\overline{\mathrm{CS}}, \overline{\mathrm{OE}}, \overline{\text { Stop }}, \overline{\text { Limit }}$	$\mathrm{t}_{\text {R }}$		50		50		50
12	Input Pulse Width $\overline{\text { ALE }}, \overline{\mathrm{CS}}$	$\mathrm{t}_{\text {PPW }}$	80		80		80	
13	Delay Time, $\overline{\text { ALE Fall to } \overline{\mathrm{CS}} \text { Fall }}$	$\mathrm{t}_{\text {AC }}$	50		50		50	
14	Delay Time, $\overline{\text { ALE }}$ Rise to $\overline{\text { CS }}$ Rise	t_{CA}	50		50		50	
15	Address Setup Time Before ALE Rise	$\mathrm{t}_{\text {ASR1 }}$	20		20		20	
16	Address Setup Time Before $\overline{\mathrm{CS}}$ Fall	$\mathrm{t}_{\text {ASR }}$	20		20		20	
17	Write Data Setup Time Before $\overline{\mathrm{CS}}$ Rise	$\mathrm{t}_{\text {DSR }}$	20		20		20	
18	Address/Data Hold Time	t_{H}	20		20		20	
19	Setup Time, R/ \bar{W} Before $\overline{\text { CS }}$ Rise	$\mathrm{t}_{\mathrm{wcs}}$	20		20		20	
20	Hold Time, $\mathrm{R} / \overline{\mathrm{W}}$ After $\overline{\text { CS }}$ Rise	t_{wH}	20		20		20	
21	Delay Time, Write Cycle, $\overline{\mathrm{CS}}$ Rise to ALE Fall	$\mathrm{t}_{\mathrm{cSAL}}$	1700		3400		3.4 clk	
22	Delay Time, Read/Write, $\overline{\mathrm{CS}}$ Rise to CS Fall	$\mathrm{t}_{\mathrm{cscs}}$	1500		3000		3 clk	
23	Write Cycle, $\overline{\text { ALE }}$ Fall to $\overline{\text { ALE }}$ Fall For Next Write	$t_{\text {wc }}$	1830		3530		3.7 clk	

AC Electrical Characteristics, continued

$\mathrm{m}_{\#}$	Signal	Symbol	Clock Frequency				Formula*	
			2 MHz		1 MHz			
			Min.	Max.	Min.	Max.	Min.	Max.
24	Delay Time, $\overline{\mathrm{CS}}$ Rise to $\overline{\mathrm{OE}}$ Fall	$\mathrm{t}_{\text {cSoE }}$	1700		3200		$\begin{array}{c\|} 3 \mathrm{clk} \\ +200 \mathrm{~ns} \end{array}$	
25	Delay Time, $\overline{\mathrm{OE}}$ Fall to Data Bus Valid	$\mathrm{t}_{\text {OEDB }}$	100		100		100	
26	Delay Time, $\overline{\mathrm{CS}}$ Rise to Data Bus Valid	$\mathrm{t}_{\text {cSDB }}$	1800		3300		$\begin{gathered} 3 \mathrm{clk} \\ +300 \mathrm{~ns} \end{gathered}$	
27	Input Pulse Width $\overline{\mathrm{OE}}$	$\mathrm{t}_{\text {IPWOE }}$	100		100		100	
28	Hold Time, Data Held After $\overline{\mathrm{OE}}$ Rise	$\mathrm{t}_{\text {DOEH }}$	20		20		20	
29	Delay Time, Read Cycle, $\overline{\mathrm{CS}}$ Rise to ALE Fall	$\mathrm{t}_{\text {cSALR }}$	1820		3320		$\begin{gathered} 3 \mathrm{clk} \\ +320 \mathrm{~ns} \\ \hline \end{gathered}$	
30	Read Cycle, $\overline{\text { ALE }}$ Fall to $\overline{\text { ALE }}$ Fall For Next Read	$\mathrm{t}_{\text {RC }}$	1950		3450		$\begin{gathered} 3 \mathrm{clk} \\ +450 \mathrm{~ns} \end{gathered}$	
31	Output Pulse Width, PROF, INIT, Pulse, Sign, PHA-PHD, MC Port	$\mathrm{t}_{\text {OF }}$	500		1000		1 clk	
32	Output Rise/Fall Time, PROF, INIT, Pulse, Sign, PHA-PHD, MC Port	$\mathrm{t}_{\text {OR }}$	20	150	20	150	20	150
33	Delay Time, Clock Rise to Output Rise	t_{EP}	20	300	20	300	20	300
34	Delay Time, $\overline{\mathrm{CS}}$ Rising to MC Port Valid	$\mathrm{t}_{\text {CSMC }}$		1600		3200		3.2 clk
35	Hold Time, ALE High After CS Rise	$\mathrm{t}_{\text {ALH }}$	100		100		100	
36	Pulse Width, $\overline{\text { ALE High }}$	$\mathrm{t}_{\text {ALPWH }}$	100		100		100	
37	Pulse Width, $\overline{\text { SYNC Low }}$	$\mathrm{t}_{\text {sync }}$	9000		18000		18 clk	

[^2]
HCTL-1100 I/O Timing Diagrams

Input logic level values are the TTL Logic levels $\mathrm{V}_{\mathrm{L}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{H}}=2.0 \mathrm{~V}$. Output logic levels are V_{OL} $=0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$.

HCTL-1100 I/O Timing Diagrams

There are three different timing configurations which can be used to give the user flexibility to interface the HCTL-1100 to most microprocessors. See the I/O interface section for more details.

$\overline{\text { ALE }} / \overline{\mathbf{C S}}$ NON OVERLAPPED

Read Cycle

HCTL-1100 I/O Timing Diagrams

$\overline{\text { ALE }} / \overline{\mathrm{CS}}$ OVERLAPPED

Write Cycle

HCTL-1100 I/O Timing Diagrams

$\overline{\text { ALE WITHIN }} \overline{\mathbf{C S}}$

Write Cycle

Pin Descriptions and Functions

Input/Output Pins

	Pin Number		
Symbol	PDIP	PLCC	
AD0/DB0- AD5/DB5	$2-7$	$3-8$	Address/Data Bus - Lower 6 bits of 8-bit I/O port which are multiplexed between address and data.
DB6, DB7	8,9	9,10	Data bus - Upper 2 bits of 8-bit I/O port used for data only.

Input Signals

Symbol	Pin Number		Description
	PDIP	PLCC	
CHA/CHB	31, 30	34, 33	Channel A, B - Input pins for position feedback from an incremental shaft encoder. Two channels, A and B, 90 degrees out of phase are required.
$\overline{\text { Index }}$	33	36	Index Pulse - Input from the reference or index pulse of an incremental encoder. Used only in conjunction with the Commutator. Either a low or high true signal can be used with the Index pin. See Timing Diagrams and Encoder Interface section for more detail.
$\mathrm{R} / \overline{\mathrm{W}}$	37	41	Read/Write - Determines direction of data exchange for the I/O port.
$\overline{\text { ALE }}$	38	42	Address Latch Enable - Enables lower 6 bits of external data bus into internal address latch.
$\overline{\mathrm{CS}}$	39	43	Chip Select - Performs I/O operation dependent on status of $\mathrm{R} / \overline{\mathrm{W}}$ line. For a Write, the external bus data is written into the internal addressed location. For Read, data is read from an internal location into an internal output latch.
$\overline{\mathrm{OE}}$	40	44	Output Enable - Enables the data in the internal output latch onto the external data bus to complete a Read operation.
$\overline{\text { Limit }}$	14	15	Limit Switch - An internal flag which when externally set, triggers an unconditional branch to the Initialization/Idle mode before the next control sample is executed. Motor Command is set to zero. Status of the Limit flag is monitored in the Status register.
$\overline{\text { Stop }}$	15	16	Stop Flag - An internal flag that is externally set. When flag is set during Integral Velocity Control mode, the Motor Command is decelerated to a stop.
$\overline{\text { Reset }}$	36	40	Reset - A hard reset of internal circuitry and a branch to Reset mode.
ExtClk	34	37	External Clock
V_{DD}	11, 35	12, 38	Voltage Supply - Both V_{DD} pins must be connected to a 5.0 volt supply.
GND	10, 32	$\begin{array}{\|l\|} \hline 1,11, \\ 23,35 \end{array}$	Circuit Ground
$\overline{\text { SYNC }}$	1	2	Used to synchronize multiple HCTL-1100 sample timers.
NC	-	17, 39	Not connected. These pins should be left floating.

Output Pins

Symbol	Pin Number		Description
	PDIP	PLCC	
MC0-MC7	18-25	$\begin{aligned} & 20-22, \\ & 24-28 \end{aligned}$	Motor Command Port - 8-bit output port which contains the digital motor command adjusted for easy bipolar DAC interfacing. MC7 is the most significant bit (MSB).
Pulse	16	18	Pulse - Pulse width modulated signal whose duty cycle is proportional to the Motor Command magnitude. The frequency of the signal is External Clock/ 100 and pulse width is resolved into 100 external clocks.
Sign	17	19	Sign - Gives the sign/direction of the pulse signal.
PHA-PHD	26-29	29-32	Phase A, B, C, D - Phase Enable outputs of the Commutator.
Prof	12	13	Profile Flag - Status flag which indicates that the controller is executing a profiled position move in the Trapezoidal Profile Control mode.
Init	13	14	Initialization/Idle Flag - Status flag which indicates that the controller is in the Initialization/Idle mode.

Pin Functionality SYNC Pin

The SYNC pin is used to synchronize two or more ICs. It is only valid in the INIT/IDLE mode (see Operating the HCTL1100). When this pin is pulled low, the internal sample timer is cleared and held to zero. When the level on the pin is returned to high, the internal sample timer instantly starts counting down from the programmed value.

Connecting all $\overline{\text { SYNC }}$ pins together in the system and pulsing the $\overline{\text { SYNC }}$ signal from the host processor will synchronize all controllers.

$\overline{\text { Limit Pin }}$

This emergency-flag input is used to disable the control modes of the HCTL-1100. A low level on this input pin causes the internal Limit flag to be set. If this pin is NOT used, it must be pulled up to V_{DD}. If it is not connected, the pin could float low, and possibly trigger a false emergency condition.

The Limit flag, when set in any control mode, causes the HCTL1100 to go into the Initialization/Idle mode, clearing the Motor Command and causing an immediate motor shutdown. When the Limit flag is set, none of the three control mode flags (F0, F3, or F5) are cleared as the HCTL-1100 enters the Initialization/Idle mode. The user should be aware that these flags are still set before commanding the HCTL-1100 to re-enter one of the four control modes from Initialization/Idle mode.

In general, the user should clear all control mode flags after the limit pin has been pulled low, then proceed.

Stop Pin

The Stop flag affects the HCTL1100 only in the Integral Velocity Mode.

When a low level is present on this emergency-flag input, the internal stop flag is set. If this pin is NOT used, it must be pulled up to $V_{D D}$. If it is not
connected, the pin could float low, and possibly trigger a false emergency condition.

When the STOP flag is set, the system will come to a decelerated stop and stay in this mode with a command velocity of zero until the Stop flag is cleared and a new command velocity is specified.

Notes on Limit and Stop Flags

Stop and Limit flags are set by a low level input at their respective pins. The flags can only be cleared when the input to the corresponding pin goes high, signifying that the emergency condition has been corrected, AND a write to the Status register (R 07 H) is executed. That is, after the emergency pin has been set and cleared, the flag also must be cleared by writing to R07H. Any word that is written to R07H after the emergency pin is set and cleared will clear the emergency flag. The lower four bits of that word will also reconfigure the Status register.

Encoder Input Pins (CHA, CHB, $\overline{\text { INDEX }}$

The HCTL-1100 accepts TTL compatible outputs from 2 and 3 channel incremental encoders such as the HEDS-5XXX, 6XXX, and 9XXX series encoders.
Channels A and B are internally decoded into quadrature counts which increment or decrement the 24 -bit position counter. For example, a 500 -count encoder is decoded into 2000 quadrature counts per revolution. The position counter will be incremented when Channel B leads Channel A. The Index channel is used only for the Commutator and its function is to serve as a reference point for the internal Ring Counter.

The HCTL- 1100 employs an internal 3-bit state delay filter to remove any noise spikes from the encoder inputs to the HCTL1100 . This 3 -bit state delay filter requires the encoder inputs to remain stable for three consecutive clock rising edges for an encoder pulse to be considered valid by the HCTL1100's actual position counter (i.e., an encoder pulse must remain at a logic level high or low for three consecutive clock rising edges for the HCTL1100 's actual position counter to be incremented or decremented.) The designer should therefore generally avoid creating the encoder pulses of less than 3 clock cycles.

The index signal of an encoder is used in conjunction with the Commutator. It resets the internal ring counter which keeps track of the rotor position so that no cumulative errors are generated.

The Index pin of the HCTL1100 also has a 3-bit filter on its input. The Index pin is active low and level transition sensitive. It detects a valid high-to-low transition and qualifies the low input level through the 3-bit filter. At this point, the Index signal is internally detected by the commutator logic. This type of configuraiton allows an Index or Index signal to be used to generate the reference mark for commutator operation as long as the AC specifications for the Index signal are met.

Motor Command Port (MC0MC7)

The 8-bit Motor Command port consists of register R08H whose data goes directly to external pins MC0-MC7. MC7 is the most significant bit. R08H can be read and written to, however, it should be written to only during the Initialization/Idle mode. During any of the four Control modes, the controller writes the motor command into R 08 H .

This topic is further discussed in the "Register Section" under "Motor Command Register R08H".

[^3]
Trapezoid Profile Pin (Prof)

 The Trapezoid Profile Pin is internally connected to software flag bit 4 in the Status Register. This flag is also represented by bit 0 in the Flag Register (R00H). See the "Register Section" for more information. Both the Pin and the Flag indicate the status of a trapezoid profile move. When the HCTL-1100 begins a trapezoid move, this flag is set by the controller (a high level appears on the pin), indicating the move is in progress. When the HCTL1100 finishes the move, this flag is cleared by the controller.Note that the instant the flag is cleared may not be the same instant the motor stops. The flag indicates the completion of the command profile, not the actual profile. If the motor is stalled during the move, or cannot physically keep up with the move, the flag will be cleared before the move is finished.

INIT/IDLE Pin (INIT)

This pin indicates that the HCTL-1100 is in the INIT/IDLE mode, waiting to begin control. This pin is internally connected to the software flag bit 5 in the Status Register R07H. This flag is also represented by bit 1 in the Flag Register (R00H) (See the "Register Section" for more information).

Commutator Pins (PHAPHD)

These pins are connected only when using the commutator of the HCTL-1100 to drive a brushless motor or step motor. The four pins can be programmed to energize each winding on a multiphase motor.

Operation of the HCTL-1100

Registers

The HCTL-1100 operation is controlled by a bank of 648 -bit registers, 35 of which are user
accessible. These registers contain command and configuration information necessary to properly run the controller chip. The 35 useraccessible registers are listed in Tables 1 and 2. The register number is also the address. A
functional block diagram of the HCTL-1100 which shows the role of the user-accessible registers is also included in Figure 3. The other 29 registers are used by the internal CPU as scratch registers and should not be accessed by the user.

Figure 3. Register Block Diagram

Table 1. Register Reference By Mode

Register		Function	Data Type ${ }^{[1]}$	User Access
Hex	Dec.			
General Control				
R00H	R00D	Flag Register		r/w
R05H	R05D	Program Counter	scalar	r/w
R07H	R07D	Status Register	-	$\mathrm{r} / \mathrm{w}^{[2]}$
R0FH	R15D	Sample Timer	scalar	r/w
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathrm{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$\mathrm{r}^{[4]} / \mathrm{w}^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathrm{r}^{[4]}$
R15H	R21D	Preset Actual Position MSB	2's Complement	$\mathrm{w}^{[8]}$
R16H	R22D	Preset Actual Position	2's Complement	$w^{[8]}$
R17H	R23D	Preset Actual Position LSB	2's Complement	$\mathrm{w}^{[8]}$
Output Registers				
R07H	R07D	Sign Reversal Inhibit	-	$\mathrm{r} / \mathrm{w}^{[2]}$
R08H	R08D	8 bit Motor Command	2's Complement+80H	r/w
R09H	R09D	PWM Motor Command	2's Complement	r/w
Filter Registers				
R20H	R32D	Filter Zero, A	scalar	r/w
R21H	R33D	Filter Pole, B	scalar	r/w
R22H	R34D	Gain, K	scalar	r/w
Commutator Registers				
R07H	R07D	Status Register	-	$\mathrm{r} / \mathrm{w}^{[2]}$
R18H	R24D	Commutator Ring	scalar ${ }^{[6,7]}$	r/w
R19H	R25D	Velocity Timer	scalar	w
R1AH	R26D	X	scalar ${ }^{[6,7]}$	r/w
R1BH	R27D	Y Phase Overlap	scalar ${ }^{[6,7]}$	r/w
R1CH	R28D	Offset	2's Complement ${ }^{[7]}$	r/w
R1FH	R31D	Max. Phase Advance	scalar ${ }^{[6,7]}$	r/w
Position Control Mode				
R00H	R00D	Flag Register	-	r/w
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathrm{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$\mathrm{r}^{[4]} / \mathrm{w}^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathrm{r}^{[4]}$
R0CH	R12D	Command Position MSB	2's Complement	$\mathrm{r} / \mathrm{w}^{[3]}$
R0DH	R13D	Command Position	2's Complement	$\mathrm{r} / \mathrm{w}^{[3]}$
R0EH	R14D	Command Position LSB	2's Complement	$\mathrm{r} / \mathrm{w}^{[3]}$

Table 1. Continued

Register		Function	Data Type	User Access
Hex	Dec.			
Trapezoid Profile Control Mode				
R00H	R00D	Flag Register	-	r/w
R07H	R07D	Status Register	-	$\mathrm{r} / \mathrm{w}^{[2]}$
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathrm{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$\mathrm{r}^{[4]} / \mathrm{w}^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathrm{r}^{[4]}$
R29H	R41D	Final Position LSB	2's Complement	r/w
R2AH	R42D	Final Position	2's Complement	r/w
R2BH	R43D	Final Position MSB	2's Complement	r/w
R26H	R38D	Acceleration LSB	scalar	r/w
R27H	R39D	Acceleration MSB	scalar ${ }^{[6]}$	r/w
R28H	R40D	Maximum Velocity	scalar ${ }^{[6]}$	r/w
Integral Velocity Mode				
R00H	R00D	Flag Register	-	r/w
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathrm{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$\mathrm{r}^{[4]} / \mathrm{w}^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathrm{r}^{[4]}$
R26H	R38D	Acceleration LSB	scalar	r/w
R27H	R39D	Acceleration MSB	scalar ${ }^{[6]}$	r/w
R3CH	R60D	Command Velocity	2's Complement	r/w
Proportional Velocity Mode				
R00H	R00D	Flag Register	-	r/w
R12H	R18D	Read Actual Position MSB	2's Complement	$\mathrm{r}^{[4]}$
R13H	R19D	Read Actual Position	2's Complement	$\mathrm{r}^{[4]} / \mathbf{w}^{[5]}$
R14H	R20D	Read Actual Position LSB	2's Complement	$\mathrm{r}^{[4]}$
R23H	R35D	Command Velocity LSB	2's Complement	r/w
R24H	R36D	Command Velocity MSB	2's Complement	r/w
R34H	R52D	Actual Velocity LSB	2's Complement	r
R35H	R53D	Actual Velocity MSB	2's Complement	r

Notes:

1. Consult appropriate section for data format and use.
2. Upper 4 bits are read only.
3. Writing to R0EH (LSB) latches all 24 bits.
4. Reading R14H (LSB) latches data in R12H and R13H.
5. Writing to R13H clears Actual Position Counter to zero.
6. The scalar data is limited to positive numbers $(00 \mathrm{H}$ to 7 FH$)$.
7. The commutator registers ($\mathrm{R} 18 \mathrm{H}, \mathrm{R} 1 \mathrm{CH}, \mathrm{R} 1 \mathrm{FH}$) have further limits which are discussed in the Commutator section of this data sheet.
8. Writing to R17H (R23D) latches all 24 bits (only in INIT/IDLE mode).

Table 2. Register Reference Table by Register Number

Register		Function	Mode Used	Data Type	User Access
Hex	Dec.				
R00H	R00D	Flag Register	All	-	r/w
R05H	R05D	Program Counter	All	scalar	
R07H	R07D	Status Register	All		$\mathrm{r} / \mathrm{w}^{[2]}$
R08H	R08D	8 bit Motor Command Port	All	$\begin{aligned} & \text { 2's complement } \\ & +80 \mathrm{H} \end{aligned}$	r/w
R09H	R09D	PWM Motor Command Port	All	2's complement	r/w
R0CH	R12D	Command Position (MSB)	All except Proportional Velocity	2's complement	$\mathrm{r} / \mathrm{w}^{[3]}$
R0DH	R13D	Command Position	All except Proportional Velocity	2's complement	$\mathrm{r} / \mathrm{w}^{[3]}$
R0EH	R14D	Command Position (LSB)	All except Proportional Velocity	2's complement	$\mathrm{r} / \mathrm{w}^{[3]}$
R0FH	R15D	Sample Timer	All	scalar	r/w
R12H	R18D	Read Actual Position (MSB)	All	2's complement	$\mathrm{r}^{[4]}$
R13H	R19D	Read Actual Position	All	2's complement	$\mathrm{r}^{[4]} / \mathbf{w}^{[5]}$
R14H	R20D	Read Actual Position (LSB)	All	2's complement	$\mathrm{r}^{[4]}$
R15H	R21D	Preset Actual Position (MSB)	INIT/IDLE	2's complement	$\mathrm{w}^{[8]}$
R16H	R22D	Preset Actual Position	INIT/IDLE	2's complement	$\mathrm{w}^{[8]}$
R17H	R23D	Preset Actual Position (LSB)	INIT/IDLE	2's complement	$\mathrm{w}^{[8]}$
R18H	R24D	Commutator Ring	All	scalar ${ }^{[6,7]}$	r/w
R19H	R25D	Commutator Velocity Timer	All	scalar	w
R1AH	R26D	X	All	scalar ${ }^{[6]}$	r/w
R1BH	R27D	Y Phase Overlap	All	scalar ${ }^{[6]}$	r/w
R1CH	R28D	Offset	All	2's complement ${ }^{[7]}$	r/w
R1FH	R31D	Maximum Phase Advance	All	scalar ${ }^{[6,7]}$	r/w
R20H	R32D	Filter Zero, A	All except Proportional Velocity	scalar	r/w
R21H	R33D	Filter Pole, B	All except Proportional Velocity	scalar	r/w
R22H	R34D	Gain, K	All	scalar	r/w
R23H	R35D	Command Velocity (LSB)	Proportional Velocity	2's complement	r/w
R24H	R36D	Command Velocity (MSB)	Proportional Velocity	2 's complement	r/w
R26H	R38D	Acceleration (LSB)	Integral Velocity and Trapezoidal Profile	scalar	r/w
R27H	R39D	Acceleration (MSB)	Integral Velocity and Trapezoidal Profile	scalar ${ }^{[6]}$	r/w
R28H	R40D	Maximum Velocity	Trapezoidal Profile	scalar ${ }^{[6]}$	r/w
R29H	R41D	Final Position (LSB)	Trapezoidal Profile	2's complement	r/w
R2AH	R42D	Final Position	Trapezoidal Profile	2's complement	r/w
R2BH	R43D	Final Position (MSB)	Trapezoidal Profile	2's complement	r/w
R34H	R52D	Actual Velocity (LSB)	Proportional Velocity	2's complement	r
R35H	R53D	Actual Velocity (MSB)	Proportional Velocity	2's complement	
R3CH	R60D	Command Velocity	Integral Velocity	2 's complement	r/w

Notes:

1. Consult appropriate section for data format and use.
2. Upper 4 bits are read only.
3. Writing to R0EH (LSB) latches all 24 bits.
4. Reading R14H (LSB) latches data in R12H and R13H.
5. Writing to R13H clears Actual Position Counter to zero.
6. The scalar data is limited to positive numbers (00 H to 7 FH).
7. The commutator registers ($\mathrm{R} 18 \mathrm{H}, \mathrm{R} 1 \mathrm{CH}, \mathrm{R} 1 \mathrm{FH}$) have further limits which are discussed in the Commutator section of this data sheet.
8. Writing to R17H (R23D) latches all 24 bits (only in INIT/IDLE mode).

Register Descriptions General Control, Output, Filter, and Commutator

Flag Register (R00H)

The Flag register contains flags F0 through F5. This register is a read/write register. Each flag is set and cleared by writing an 8 -bit data word to R 00 H . When writing to R 00 H , the upper four bits are ignored by the HCTL1100 , bits $0,1,2$ specify the flag address, and bit 3 specifies whether to set (bit=1) or clear (bit=0) the addressed flag.

Flag Descriptions

F0-Trapezoidal Profile Flag set by the user to execute Trapezoidal Profile Control. The flag is reset by the controller when the move is completed. The status of F 0 can be monitored at the Profile pin and in Status register R07H bit 4.

F1-Initialization/Idle Flag - set/ cleared by the HCTL-1100 to indicate execution of the Initialization/Idle mode. The status of F1 can be monitored at the Initialization/Idle pin and in bit 5 of the Status register (R 07 H). The user should not attempt to set or clear F1.

F2-Unipolar Flag - set/cleared by the user to specify Bipolar (clear) or Unipolar (set) mode for the Motor Command port.

F3-Proportional Velocity Control Flag - set by the user to specify Proportional Velocity control.

F4-Hold Commutator flag - set/ cleared by the user or automatically by the Align mode. When set, this flag inhibits the internal commutator counters to
allow open loop stepping of a motor by using the commutator. (See "Offset register" description in the "Commutator section.")

F5-Integral Velocity Control set by the user to specify Integral Velocity Control. Also set and cleared by the HCTL1100 during execution of the Trapezoidal Profile mode. This is transparent to the user except when the Limit flag is set (see "Emergency Flags" section).

Writing to the Flag Register When writing to the flag register, only the lower four bits are used. Bit 3 indicates whether to set or clear a certain flag, and bits 0,1 , and 2 indicate the desired flag. The following table shows the bit map of the Flag register:

Bit Number	Function
$7-4$	Don't Care
3	$1=$ set
	$0=$ clear
2	AD2
1	AD1
0	AD0

The following table outlines the possible writes to the Flag Register:

Flag	SET	CLEAR
F0	08 H	00 H
F1	-	-
F2	0 AH	02 H
F3	0 BH	03 H
F4	0 CH	04 H
F5	0DH	05 H

Reading the Flag Register
Reading register R00H returns the status of the flags in bits 0 to 5 . For example, if bit 0 is set (logic 1), then flag F0 is set. If bit 4 is set, then flag F4 is set. If
bits 0 and 5 are set, then both flags F0 and F5 are set.

The following table outlines the Flag Register Read:

Bit Number	Flag $(\mathbf{1}=$ set $)$ $(0=$ clear $)$
$8-6$	Don't Care
5	F5
4	F4
3	F3
2	F2
1	F1
0	F0

Notes:

1. A soft reset (writing 00 H to R 05 H) will not reset the flags in the flag register. A hard reset (RESET pin low) is required to reset all the flags. The flags can also be reset by writing the proper word to the Flag register as explained above.
2. While in Trapezoid Profile Mode, Flag F0 will be set, and Flag F5 may be set. F5 is used for internal purposes. Both flags will be cleared at the end of the profile.

Program Counter Register (R05H)

The Program Counter, which is a write-only register, executes the preprogrammed functions of the controller. The program counter is used along with the control flags F0, F3, and F5 in the Flag register (R 00 H) to change control modes. The user can write any of the following four commands to the Program Counter.

Value written to R05H	Action
00 H	Software Reset 01 H 02 H
$\mathbf{E n t e r}$ Init/Idle Mode	
Enter Align Mode	
(only from INIT/	
IDLE Mode)	
Enter Control Mode	
(only from INIT/	
IDLE Mode)	

These Commands are discussed in more detail in the "Operating Modes" section.

Status Register (R07H)

The Status register indicates the status of the HCTL- 1100 . Each bit decodes into one signal. All 8 bits are user readable and are decoded as shown below. Only the lower 4 bits can be written to by the user to configure the HCTL-1100. To set or clear any of the lower 4 bits, the user writes an 8-bit word to R07H. The upper 4 bits are ignored. Each of the lower 4 bits directly sets/clears the corresponding bit of the Status register as shown below. For example, writing XXXX0101 to R07H sets the PWM Sign

Reversal Inhibit, sets the Commutator Phase Configuration to " 3 Phase", and sets the Commutator Count Configuration to "full".

Motor Command Register (R08H)

The 8-bit Motor Command Port consists of register R08H. The register is connected to external pins MC0-MC7. MC7 is the most significant bit. R 08 H can be read and written to; however, it should be written to only in the Initialization/Idle mode. During any of the four control modes, the HCTL-1100 writes values to register R 08 H .

The Motor Command Port operates in two modes, bipolar

Table 3. Status Register

Status Bit	Function
0	PWM Sign Reversal Inhibit $0=$ off $1=$ on
1	Commutator Phase Configuration $0=3$ phase $1=4$ phase
2	Commutator Count Configuration $0=$ quadrature $1=$ full
3	Should always be set to 0
4	Trapezoidal Profile Flag F0 $1=$ in Profile Control
5	Initialization/Idle Flag F1 $1=$ in Initialization/Idle Mode
6	Stop Flag $0=$ set (Stop triggered) $1=$ cleared (no Stop)
7	Limit Flag $0=$ set (Limit triggered) $1=$ cleared (no Limit)

and unipolar, when under control of internal software. Bipolar mode allows the full range of values in $\mathrm{R} 08 \mathrm{H}(-128 \mathrm{D}$ to +127 D). The data written to the Motor Command Port by the control algorithms is the internally computed 2 'scomplement motor command with an 80 H offset added. This allows direct interfacing to a DAC. Connecting the Motor Command Port to a DAC, Bipolar mode allows the full voltage swing (positive and negative).

Unipolar mode functions such that with the same DAC circuit, the motor command output is restricted to positive values (80 H to FFH) when in a control mode. Unipolar mode is used with multi-phase motors when the commutator controls the direction of movement. (If needed, the Sign pin could be used to indicate direction). In Unipolar mode, the user can still write a negative value to R08H in INIT/IDLE mode.

Unipolar mode or Bipolar mode is programmed by setting or clearing flag F2 in the Flag Register R00H.

Internally, the HCTL-1100 operates on data of 24,16 and 8 -bit lengths to produce the 8-bit motor command, available externally. Many times the computed motor command will be greater than 8 bits. At this point, the motor command is saturated by the controller. The saturated value output by the controller is not the full scale value $00 \mathrm{H}(00 \mathrm{D})$, or FFH
(255D). The saturated value is adjusted to 0FH (15D) (negative saturation) and FOH (240D) (positive saturation). Saturation levels for the Motor Command port are in Figure 4.

PWM Motor Command

Register (R09H)

The PWM port outputs the motor command as a pulse width modulated signal with the correct sign of polarity. The PWM port consists of the Pulse and Sign pins and R09H.

The PWM signal at the Pulse pin has a frequency of External Clock/ 100 and the duty cycle is resolved into the 100 clocks. (For example, a 2 MHz clock gives a 20 KHz PWM frequency).

The Sign pin gives the polarity of the command. Low output on Sign pin is positive polarity.

The 2's-complement contents of R09H determine the duty cycle and polarity of the PWM
command. For example, D8H $(-40 \mathrm{D})$ gives a 40% duty cycle signal at the Pulse pin and forces the Sign pin high. Data outside the $64 \mathrm{H}(+100 \mathrm{D})$ to 9 CH $(-100 \mathrm{D})$ linear range gives 100% duty cycle. R09H can be read and written to. However, the user should only write to R09H when the controller is in the Initialization/Idle mode. Figure 5 shows the PWM output versus the internal motor command.

Figure 4. Motor Command Port Output

When any Control mode is being executed, the unadjusted internal 2's-complement motor command is written to R09H. Because of the hardware limit on the linear range $\mathbf{~} 64 \mathrm{H}$ to $9 \mathrm{CH}, \pm 100 \mathrm{D}$), the PWM port saturates sooner than the 8-bit Motor Command port (00 H to FFH, +127D to -128D). When the internal motor command saturates above 8 bits, the PWM port is saturated to the full $\pm 100 \%$ duty cycle level. Figure 5
shows the actual values inside the PWM port. Note that the Unipolar flag, F2, does not affect the PWM port.

For commutation of brushless motors with the PWM port, only use the Pulse pin from the PWM port as the commutator already contains sign information. (See Figure 9.)

The PWM port has an option that can be used with H-bridge
type amplifiers. The option is Sign Reversal Inhibit, which inhibits the Pulse output for one PWM period after a sign polarity reversal. This allows one pair of transistors to turn off before others are turned on and thereby avoids a short across the power supply. Bit 0 in the Status register (R07H) controls the Sign Reversal Inhibit option. Figure 6 shows the output of the PWM port when Bit 0 is set.

Figure 5. PWM Port Output

Figure 6. Sign Reversal Inhibit

Actual Position Registers
Read, Clear: R12H,R13H,R14H
Preset : R15H,R16H,R17H
The Actual Position Register is accessed by two sets of registers in the HCTL-1100. When reading the Actual Position from the HCTL-1100, the host processor will read Registers R12H(MSB), R13H, and R 14 H (LSB). When presetting the Actual Position Register, the processor will write to Registers R 15 H (MSB), R16H, and R17H(LSB).

When reading the Actual Position registers, the order should be R14H, R13H, R12H. These registers are latched, such that, when reading Register R14H, all three bytes will be latched so that count data does not change while reading three separate bytes.

When presetting the Actual Position Register, write to R15H and R16H first. When R17H is written to, all three bytes are simultaneously loaded into the Actual Position Register.

Note that presetting the Actual Position Registers is only allowed while the HCTL-1100 is in INIT/IDLE mode.

The Actual Position Registers can be simultaneously cleared at any time by writing any value to R 13 H .

Digital Filter Registers

Zero (A) R20H
Pole (B) R21H
Gain (K) R22H
All control modes use some part of the programmable digital filter $D(z)$ to compensate for closed loop system stability. The compensation $D(z)$ has the form:

$$
\begin{equation*}
\mathrm{D}(\mathrm{z})=\frac{\mathrm{K}\left(\mathrm{z}-\frac{\mathrm{A}}{256}\right)}{4\left(\mathrm{z}+\frac{\mathrm{B}}{256}\right)} \tag{1}
\end{equation*}
$$

where:
$z=$ the digital domain operator
$\mathrm{K}=$ digital filter gain (R 22 H)
$\mathrm{A}=$ digital filter zero (R 20 H)
$B=$ digital filter pole (R 21 H)
The compensation is a first-order lead filter which in combination with the Sample Timer T (ROFH) affects the dynamic step response and stability of the control system. The Sample Timer, T, determines the rate at which the control algorithm gets executed. All parameters, A, B, K, and T, are 8-bit scalars that can be changed by the user any time.

As shown in equations [2] and [3], the digital filter uses previously sampled data to calculate $\mathrm{D}(\mathrm{z})$. This old internally sampled data is cleared when the Initialization/ Idle mode is executed.

In Position Control, Integral Velocity Control, and Trapezoidal Profile Control the digital filter is implemented in the time domain as shown below:

$$
\begin{align*}
M C_{n}= & (\mathrm{K} / 4)\left(\mathrm{X}_{\mathrm{n}}\right)- \\
& {\left[(\mathrm{A} / 256)(\mathrm{K} / 4)\left(\mathrm{X}_{\mathrm{n}-1}\right)+\right.} \\
& \left.(\mathrm{B} / 256)\left(\mathrm{MC} \mathrm{C}_{\mathrm{n}-1}\right)\right] \tag{2}
\end{align*}
$$

where:
$\mathrm{n}=$ current sample time
$\mathrm{n}-1=$ previous sample time
$\mathrm{MC}_{\mathrm{n}}=$ Motor Command
Output at n
$\mathrm{MC}_{\mathrm{n}-1}=$ Motor Command
Output at $\mathrm{n}-1$
$\mathrm{X}_{\mathrm{n}}=$ (Command Position -
Actual Position) at n
$\mathrm{X}_{\mathrm{n}-1}=$ (Command Position -
Actual Position) at $\mathrm{n}-1$

In Proportional Velocity control the digital compensation filter is implemented in the time domain as:

$$
\begin{equation*}
M C_{n}=(K / 4)\left(Y_{n}\right) \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
& Y_{\mathrm{n}}=(\text { Command Velocity }- \\
& \text { Actual Velocity }) \text { at } \mathrm{n}
\end{aligned}
$$

For more information on system sampling times, bandwidth, and stability, please consult Hewlett-Packard Application Note 1032, Design of the HCTL1000's Digital Filter Parameters by the Combination Method.

Sample Timer Register (ROFH)

The contents of this register set the sampling period of the HCTL-1100. The sampling period is:

$$
\begin{array}{rl}
\mathrm{t}=\underset{ }{1} & 16(\mathrm{~T}+1)(1 / \text { frequency of the } \\
& \text { external clock })
\end{array}
$$

where:
$\mathrm{T}=$ contents of register R0FH
The Sample Timer has a limit on the minimum allowable sample time depending on the control mode being executed. The limits are given in Table 4 below.

The minimum value limits are to make sure the internal programs have enough time to complete proper execution.

The maximum value of T (R 0 FH) is FFH (255D). With a 2 MHz clock, the sample time can vary from $64 \mu \mathrm{sec}$ to $2048 \mu \mathrm{sec}$. With a 1 MHz clock, the sample time can vary from $128 \mu \mathrm{sec}$ to 4096 $\mu \mathrm{sec}$.

Digital closed-loop systems with slow sampling times have lower stability and a lower bandwidth than similar systems with faster sampling times. To keep the system stability and bandwidth as high as possible the HCTL1100 should typically be
programmed with the fastest sampling time possible. This rule of thumb must be balanced by the needs of the velocity range to be controlled. Velocities are specified to the HCTL-1100 in terms of quadrature encoder counts per sample time. The faster the sampling time, the higher the slowest possible speed.

Hardware Description

The Sample Timer consists of a buffer and a decrement counter. Each time the counter reaches 00 H , the Sampler Timer Value T (value written to R 0 FH) is loaded from the buffer into the counter, which immediately begins to decrement from T.

Writing to the Sample Timer Register

Data written to R0FH will be latched into the internal buffer and used by the counter after it completes the present sample time cycle by decrementing to 00 H . The next sample time will use the newly written data.

Reading the Sample Timer Register

Reading R0FH gives the values directly from the decrementing counter. Therefore, the data read from R 0 FH will have a value anywhere between T and 00 H , depending where in the sample time cycle the counter is.

Table 4.

Control Mode	R0FH Contents Minimum Limit
Position Control	$07 \mathrm{H}(07 \mathrm{D})$
Proportional Velocity Control	$07 \mathrm{H}(07 \mathrm{D})$
Trapezoidal Profile Control	$0 \mathrm{FH}(15 \mathrm{D})$
Integral Velocity Control	$0 \mathrm{FH}(15 \mathrm{D})$

Example -

1. On reset, the value of the timer is pre-set to 40 H .
2. Reading R0FH shows 3EH . . . 2 BH . . . 08 H . . . 3CH. .

Synchronizing Multiple Axes

Synchronizing multiple axes with HCTL-1100s can be achieved by using the $\overline{S Y N C}$ pin as explained in the Pin Discussion section. Some users may not only want to synchronize several HCTL-1100s but also follow custom profiles for each axis. To do this, the user may need to write a new command position or command velocity during each sample time for the duration of the profile. In this case, data written to the HCTL1100 has to be coordinated with the Sample Timer. This is so that only one command position or velocity is received during any one sample period, and that it is written at the proper time within a sample period.

At the beginning of each sample period, the HCTL-1100 is performing calculations and executions. New command positions and velocities should not be written to the HCTL1100 during this time. If they are, the calculations may be thrown off and cause unpredictable control.

The user can read the Sample Timer Register to avoid writing too early during a sample period. Since the Sample Timer Register continuously counts down from its programmed value, the user can check if enough time has passed in the sample period to insure the completion of the internal calculations. The length of time needed by the HCTL-1100 to do
its calculations is given by the Minimum Limits of ROFH (Sample Timer Register) as shown in Table 4. For Position Control Mode, the user should wait for the Sample Timer to count down 07 H from its programmed value before writing the next command position or velocity. If the programmed sample timer value is 39 H , wait until the Sample Timer Register reads 32 H . Writing between 32 H and 00 H will make the command information available for the next sample period.

Commutator

Status Register	(R07H)
Commutator Ring	(R18H)
X Register	(R1AH)
Y Phase Overlap	(R1BH)
Offset	(R1CH)
Max. Phase Advance	(R1FH)
Velocity Timer	(R19H)

The commutator is a digital state machine that is configured by the user to properly select the phase sequence for electronic commutation of multiphase motors. The Commutator is designed to work with 2,3 , and 4 -phase motors of various winding configurations and with various encoder counts. Along with providing the correct phase enable sequence, the Commutator provides programmable phase overlap, phase advance, and phase offset.

Phase overlap is used for better torque ripple control. It can also be used to generate unique state sequences which can be further decoded externally to drive more complex amplifiers and motors.

Phase advance allows the user to compensate for the frequency characteristics of the motor/ amplifier combination. By advancing the phase enable command (in position), the delay in reaction of the motor/ amplifier combination can be offset and higher performance can be achieved.

Phase offset is used to adjust the alignment of the commutator output with the motor torque curves. By correctly aligning the HCTL1100 's commutator output with the motor's torque curves, maximum motor output torque can be achieved.

The inputs to the Commutator are the three encoder signals, Channel A, Channel B, and Index, and the configuration data stored in registers.

The Commutator uses both channels and the index pulse of an incremental encoder. The index pulse of the encoder must be physically aligned to a known torque curve location because it is used as the reference point of the rotor position with respect to the Commutator phase enables.

The index pulse should be permanently aligned during motor encoder assembly to the last motor phase. This is done by energizing the last phase of the motor during assembly and permanently attaching the encoder codewheel to the motor shaft such that the index pulse is active as shown in Figures 7 and 8 . Fine tuning of alignment for commutation purposes is done electronically by the Offset register (R 1 CH) once the complete control system is set up.

Figure 7. Index Pulse Alignment to Motor Torque Curves.

Each time an index pulse occurs, the internal commutator ring counter is reset to 0 . The ring counter keeps track of the current position of the rotor based on the encoder feedback. When the ring counter is reset to 0 , the Commutator is reset to its origin (last phase going low, Phase A going high) as shown in Figure 10.

The output of the Commutator is available as PHA, PHB, PHC,
and PHD. The HCTL-1100's commutator acts as the electrical equivalent of the mechanical brushes in a motor. Therefore, the outputs of the commutator provide only proper phase sequencing for bidirectional operation. The magnitude information is provided to the motor via the Motor Command and PWM ports. The outputs of the commutator must be combined with the outputs of one of the
motor ports to provide proper DC brushless and stepper motor control. Figure 9 shows an example of circuitry which uses the outputs of the commutator with the Pulse output of the PWM port to control a DC brushless or stepper motor. A similar procedure could be used to combine the commutator outputs PHA-PHD with a linear amplifier interface output
(Figure 16) to create a linear amplifier system.

Figure 8. Codewheel Index Pulse Alignment.

Figure 9. PWM Interface to Brushless DC Motors.

Figure 10. Commutator Configuration.

The Commutator is programmed by the data in the following registers. Figure 10 shows an example of the relationship between all the parameters.

Status Register (R07H)

Bit \#1- $0=3$-phase configuration, PHA, PHB, and PHC are active outputs.
$1=4$-phase configuration, PHA - PHD are active outputs.
Bit \#2- 0 = Rotor position measured in quadrature counts (4 x decoding). 1 = Rotor position measured in full counts (1 count = 1 codewheel bar and space.)

Bit \#2 only affects the commutator's counting method. This includes the Ring register (R 18 H), the X and Y registers (R1AH \& R1BH), the Offset register (R 1 CH), the Velocity Timer register (R 19 H), and the Maximum Advance register (R1FH).

Quadrature counts (4 x decoding) are always used by the HCTL1100 as a basis for position, velocity, and acceleration control.

Ring Register (R18H)

The Ring register is defined as 1 electrical cycle of the commutator which corresponds to 1 torque cycle of the motor. The Ring register is scalar and determines the length of the commutation cycle measured in full or quadrature counts as set by bit \#2 in the Status register (R 07 H). The value of the ring must be limited to the range of 0 to 7FH.

X Register (R1AH)

This register contains scalar data which sets the interval during which only one phase is active.

Y Register (R1BH)

This register contains scalar data which set the interval during which two sequential phases are both active. Y is phase overlap. X and Y must be specified such that:

$$
\begin{equation*}
X+Y=\text { Ring/(\# of phases }) \tag{5}
\end{equation*}
$$

These three parameters define the basic electrical commutation cycle.

Offset Register (R1CH)

The Offset register contains two's-complement data which determines the relative start of the commutation cycle with respect to the index pulse. Since the index pulse must be physically referenced to the rotor, offset performs fine alignment between the electrical and mechanical torque cycles.

The Hold Commutator flag (F4) in the Status register (R 07 H) is used to decouple the internal commutator counters from the encoder input. Flag (F4) can be used in conjunction with the Offset register to allow the user to advance the commutator phases open loop. This technique may be used to create a custom commutator alignment procedure. For example, in Figure 10, case 1, for a threephase motor where the ring $=9$, $X=3$, and $Y=0$, the phases can be made to advance open loop by setting the Hold Commutator flag (F4) in the Flag register $(\mathrm{R} 07 \mathrm{H})$. When the values 0,1 , or 2 are written to the Offset register, phase A will be
enabled. When the values 3,4 or 5 are written to the Offset register, phase B will be enabled. And, when the values 6,7 , or 8 are written to the Offset register, phase C will be enabled. No values larger than the value programmed into the Ring register should be programmed into the Offset register.

Phase Advance Registers (R19H, R1FH)

The Velocity Timer register and Maximum Advance register linearly increment the phase advance according to the measured speed for rotation up to a set maximum.

The Velocity Timer register (R19H) contains scalar data which determines the amount of phase advance at a given velocity. The phase advance is interpreted in the units set for the Ring counter by bit \#2 in R 07 H . The velocity is measured in revolutions per second.

$$
\begin{equation*}
\text { Advance }=\mathrm{N}_{\mathrm{f}} \mathrm{v} \Delta \mathrm{t} \tag{6}
\end{equation*}
$$

where: $\Delta t=\frac{16(\mathrm{R} 19 \mathrm{H}+1)}{\text { f external clk }}$
$\mathrm{N}_{\mathrm{f}}=$ full encoder counts/ revolution.
$\mathrm{v}=$ velocity (revolutions/second)
The Maximum Advance register (R1FH) contains scalar data which sets the upper limit for phase advance regardless of rotor speed.

Figure 11 shows the relationship between the Phase Advance registers. Note: If the phase advance feature is not used, set both R19H and R1FH to 0 .

Commutator Constraints and Use

When choosing a three-channel encoder to use with a DC brushless or stepper motor, the user should keep in mind that the number of quadrature encoder counts ($4 x$ the number of slots in the encoder's codewheel) must be an integer multiple ($1 \mathrm{x}, 2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}, 5 \mathrm{x}$, etc.) of the number of pole pairs in the DC brushless motor or steps in a stepper motor. To take full advantage of the commutator's overlap feature, the number of quadrature counts should be at least 3 times the number of pole pairs in the DC brushless motor or steps in the stepper motor. For example, a 1.8°, (200 step/ revolution) stepper motor should employ at least a 150
slot codewheel $=600$ quadrature counts/revolution $=3 \times 200$ steps/revolution).

There are several numerical constraints the user should be aware of to use the Commutator.

The parameters of Ring, X, Y, and Max Advance must be positive numbers $(00 \mathrm{H}$ to 7 FH$)$. Additionally, the following equation must be satisfied:

$$
\begin{align*}
& \text { (-128D) } 80 \mathrm{H} \leq 3 / 2 \text { Ring } \\
& + \text { Offset } \pm \text { Max Advance } \\
& \leq 7 \mathrm{FH}(127 \mathrm{D}) \tag{8}
\end{align*}
$$

In order to utilize the greatest flexibility of the Commutator, it must be realized that the Commutator works on a circular ring counter principle, whose range is defined by the Ring

Figure 11. Phase Advance vs. Motor Velocity.
register (R 18 H). This means that for a ring of 96 counts and a needed offset of 10 counts, numerically the Offset register can be programmed as 0AH (10D) or AAH (-86D), the latter satisfying Equation 8.

If bit \#2 in the Status register is set to allow the commutator to count in full counts, a higher resolution codewheel may be chosen for precise motor control without violating the commutator constraints equation (Equation 8).

Example: Suppose you want to commutate a 3-phase $15 \mathrm{deg} /$ step Variable Reluctance Motor attached to a 192 count encoder.

1. Select 3-phase and quadrature mode for commutator by writing 0 to R07H.
2. With a 3-phase 15 degree/step Variable Reluctance motor the torque cycle repeats every 45 degrees or 8 times/ revolution.
3. Ring register $=\frac{(4)(192) \text { counts/revolution }}{8 / \text { revolution }}$
$=96$ quadrature counts
$=1$ commutation cycle
4. By measuring the motor torque curve in both directions, it is determined that an offset of 3 mechanical degrees, and a phase overlap of 2 mechanical degrees is needed.

$$
\begin{aligned}
\text { Offset } & =3^{\circ} \frac{(4)(192)}{360^{\circ}} \\
& \cong 6 \text { quadrature counts }
\end{aligned}
$$

To create the 3 mechanical degree offset, the Offset
register (R 1 CH) could be programmed with either A 6 H
(-90D) or $06 \mathrm{H}(+06 \mathrm{D})$.
However, because 06 H
(+06D) would violate the commutator constraints Equation 8, A6H (-90D) is used.
$\mathrm{Y}=$ overlap $=\frac{\left(2^{\circ}\right)(4)(192)}{360^{\circ}} \cong 4$

$$
X+Y=96 / 3
$$

Therefore, $\mathrm{X}=28$

$$
Y=4
$$

For the purposes of this example, the Velocity Timer and Maximum Advance are set to 0.

Operation Flowchart

The HCTL- 1100 executes any one of three setup routines or four control modes selected by the user. The three setup routines include:

- Reset
- Initialization/Idle
- Align.

The four control modes available to the user include:

- Position Control
- Proportional Velocity Control
- Trapezoidal Profile Control
- Integral Velocity Control

The HCTL-1100 switches from one mode to another as a result of one of the following three mechanisms:

1. The user writes to the Program Counter.
2. The user sets/clears flags F0, F3, or F5 by writing to the Flag register (R 00 H).
3. The controller switches automatically when certain initial conditions are provided by the user.

This section describes the function of each setup routine and

*Only one flag should be set at a time.

Figure 12. Operation Flowchart.
control mode and the initial conditions which must be provided by the user to switch from one mode to another. Figure 12
shows a flowchart of the setup routines and control modes, and shows the commands required to switch from one mode to another.

Setup Modes

Hard Reset

Executed by:
-Pulling the RESET pin low (required at power up)

When a hard reset is executed (RESET pin goes low), the following conditions occur:

- All output signal pins are held low except Sign, Data bus, and Motor Command.
- All flags (F0 to F5) are cleared.
- The Pulse pin of the PWM port is set low while the $\overline{\text { Reset }}$ pin is held low. After the Reset pin is released (goes high) the Pulse pin goes high for one cycle of the external clock driving the HCTL-1100. The Pulse pin then returns to a low output.
- The Motor Command port (R 08 H) is preset to 80 H (128D).
- The Commutator logic is cleared.
- The I/O control logic is cleared.
- A soft reset is automatically executed.

Soft Reset

Executed by:

- Writing 00 H to R 05 H , or
- Automatically called after a hard reset

When a soft reset is executed, the following conditions occur:
-The digital filter parameters are preset to

$$
\mathrm{A}(\mathrm{R} 20 \mathrm{H})=\mathrm{E} 5 \mathrm{H}(229 \mathrm{D})
$$

$\mathrm{B}(\mathrm{R} 21 \mathrm{H})=\mathrm{K}(\mathrm{R} 22 \mathrm{H})=40 \mathrm{H}$ (64D)

- The Sample Timer (R0FH) is preset to 40 H (64D).
- The Status register (R 07 H) is cleared.
- The Actual Position Counters (R12H, R13H, R14H) are cleared to 0 .

From Reset mode, the HCTL1100 goes automatically to Initialization/Idle mode.

Initialization/Idle

Executed by:

- Writing 01 H to R 05 H , or
- Automatically executed after a hard reset, soft reset, or
- Limit pin goes low.

The Initialization/Idle mode is entered either automatically from Reset, by writing 01H to the Program Counter (R05H) under any conditions, or pulling the Limit pin low.

In the Initialization/Idle mode, the following occur:

- The Initialization/Idle flag (F 1) is set.
- The PWM port R09H is set to 00 H (zero command).
- The Motor Command port (R 08 H) is set to 80 H (128D) (zero command).
- Previously sampled data stored in the digital filter is cleared.

It is at this point that the user should pre-program all the necessary registers needed to execute the desired control mode. The HCTL- 1100 stays in this mode (idling) until a new mode command is given.

Align

Executed by:

- Writing 02H to R05H

The Align mode is executed only when using the commutator feature of the HCTL-1100. This mode automatically aligns multiphase motors to the HCTL1100's internal Commutator.

The Align mode can be entered only from the Initialization/Idle mode by writing 02 H to the Program Counter register (R05H).

Before attempting to enter the Align mode, the user should clear all control mode flags and set both the Command Position registers (R 0 CH , R 0 DH , and R0EH) and the Actual Position registers ($\mathrm{R} 12 \mathrm{H}, \mathrm{R} 13 \mathrm{H}$, and R14H) to zero. After the Align mode has been executed, the HCTL- 1100 will automatically enter the Position Control mode and go to position zero. By following this procedure, the largest movement in the Align mode will be one torque cycle of the motor.

The Align mode assumes: the encoder index pulse has been physically aligned to the last motor phase during encoder/ motor assembly, the Commutator parameters have been correctly preprogrammed (see the section called Commutator for details), and a hard reset has been executed while the motor is stationary.

The Align mode first disables the Commutator and with open loop control enables the first phase (PHA) and then the last phase (PHC or PHD) to orient the motor on the last phase torque detent. Each phase is energized for 2048 system sampling periods (t). For proper operation, the motor must come to a complete stop during the last phase enable. At this point the Commutator is enabled and commutation is closed loop.

The HCTL-1100 then automatically switches from the Align mode to Position Control mode.

Control Modes

Control flags F0, F3, and F5 in the Flag register (R 00 H) determine which control mode is executed. Only one control flag can be set at a time. After one of
these control flags is set, the control modes are entered either automatically from Align or from the Initialization/Idle mode by writing 03 H to the Program Counter (R05H).

Position Control Mode
Flags: F0 Cleared
F3 Cleared
F5 Cleared
Registers Used:
Register Function
R00H R00D Flag Register
R12H R18D Read Actual Position MSB
R13H R19D Read Actual Position
R14H R20D Read Actual Position LSB
R0CH R12D Command Position MSB
R0DH R13D Command Position
R0EH R14D Command Position LSB

Position Control performs point-to-point position moves with no velocity profiling. The user specifies a 24 -bit position command, which the controller compares to the 24 -bit actual
position. The position error is calculated, the full digital lead compensation is applied and the motor command is output.

The controller will remain position-locked at a destination until a new position command is given.

The actual and command position data is 24 -bit two'scomplement data stored in six 8 -bit registers. Position is measured in encoder quadrature counts.

The command position resides in R0CH (MSB), R0DH, R0EH
(LSB). Writing to R0EH latches all 24 bits at once for the control algorithm. Therefore, the command position is written in the sequence R 0 CH , RODH and ROEH. The command registers can be read in any desired order.

The actual position resides in R12H (MSB), R13H, and R14H (LSB). Reading R14H latches the upper two bytes into an internal buffer. Therefore, Actual Position registers are
read in the order of R 14 H , R 13 H , and R 12 H for correct instantaneous position data.

The largest position move possible in Position Control mode is 7 FFFFFH ($8,388,607 \mathrm{D}$) quadrature encoder counts.

Proportional Velocity Mode
 Flags: F0 Cleared F3 Set F5 Cleared

Registers Used:

Register	Function
R00H R00D	Flag Register
R23H R35D	Command
	Velocity LSB
R24H R36D	Command R34H R52D
	Velocity MSB
	LSB
R35H R	

Proportional Velocity Control performs control of motor speed using only the gain factor, K , for compensation. The dynamic pole and zero lead compensation are not used. (See the "Digital Filter" section of this data sheet.)

```
Example Code to Program Position Moves
    { Begin }
            Hard Reset { HCTL-1100 goes into INIT/IDLE Mode }
            Initialize Filter, Timer, Command Position Registers
            Write 03H to Register R05H
            { HCTL-1100 is now in Position Mode }
            Write Desired Command Position to Command Position Registers
            { Controller Moves to new position }
            Continue writing in new Command Positions
{ end }
```

The command and actual velocity are 16 -bit two's-complement words.

The command velocity resides in registers R 24 H (MSB) and R23H (LSB). These registers are unlatched which means that the command velocity will change to a new velocity as soon as the value in either R 23 H or R 24 H is changed. The registers can be read or written to in any order.

R24	R23H
IIII IIII	IIII FFFF
COMMAND VELOCITY FORMAT	

The units of velocity are quadrature counts/sample time. To convert from rpm to quadrature counts/sample time, use the formula shown below:
$\mathrm{Vq}=(\mathrm{Vr})(\mathrm{N})(\mathrm{t})(0.01667 / \mathrm{rpm}-\mathrm{sec}) \quad[9]$
Where:
$\mathrm{Vq}=$ velocity in quadrature counts/sample time
$\mathrm{Vr}=$ velocity in rpm
$\mathrm{N}=4$ times the number of slots in the codewheel (i.e., quadrature counts).
$t=$ The HCTL- 1100 sample time in seconds. (See the section on the HCTL-1100's Sample Timer register).

Because the Command Velocity registers (R 24 H and R 23 H) are internally interpreted by the HCTL-1100 as 12 bits of integer and 4 bits of fraction, the host processor must multiply the desired command velocity (in quadrature counts/sample time) by 16 before programming it into the HCTL-1100's Command Velocity registers.

The actual velocity is computed only in this algorithm and stored in scratch registers R35H (MSB) and R34H (LSB). There is no fractional component in the actual velocity registers and they can be read in any order.

The controller tracks the command velocity continuously until new mode command is given. The system behavior after a new velocity command is governed only by the system dynamics until a steady state velocity is reached.

Integral Velocity Mode

Flags: F0 Cleared
F3 Cleared
F5 Set to begin move
Registers Used:

Register	Function
R00H R00D	Flag Register
R26H R38D	Acceleration LSB
R27H R39D	Acceleration MSB
R3CH R60D	Command
	Velocity

Integral Velocity Control performs continuous velocity profiling which is specified by a command velocity and command acceleration. Figure 13 shows the capability of this control algorithm.

The user can change velocity and acceleration any time to continuously profile velocity in time. Once the specified velocity is reached, the HCTL-1100 will maintain that velocity until a new command is specified. Changes between actual velocities occur at the presently specified linear acceleration.

The command velocity is an 8 bit two's-complement word

```
Example Code for Programming Proportional Velocity Mode
    { Begin }
            Hard Reset { HCTL-1100 goes into INIT/IDLE Mode }
            Initialize Filter, Timer, Command Position Registers
            Write 03H to Register R05H
            { HCTL-1100 is now in Position Mode }
            Write Desired Command Velocity (if needed)
            Set Flag F3 {Proportional Velocity Move Begins}
            { System ramps to Command Velocity }
            Continue writing new Command Velocities
                {end}
```

stored in R 3 CH . The units of velocity are quadrature counts/ sample time.

The conversion from rpm to quadrature counts/sample time is shown in equation 9. The Command Velocity register (R 3 CH) contains only integer data and has no fractional component.

While the overall range of the velocity command is 8 bits, two's-complement, the difference between any two sequential commands cannot be greater than 7 bits in magnitude (i.e., 127 decimal). For example, when the HCTL-1100 is executing a command velocity of $40 \mathrm{H}(+64 \mathrm{D})$, the next velocity command must fall in the range of $7 \mathrm{FH}(+127 \mathrm{D})$, the maximum command range, C 1 H (-63D), the largest allowed difference.

The command acceleration is a 16-bit scalar word stored in R 27 H and R 26 H . The upper byte $(\mathrm{R} 27 \mathrm{H})$ is the integer part and the lower byte $(\mathrm{R} 26 \mathrm{H})$ is the fractional part provided for resolution. The integer part has

R27H	R26H
OIIIIIII	FFFFFFFF/256
Command Acceleration Format	

a range of 00 H to 7 FH . The contents of R26H are internally divided by 256 to produce the fractional resolution.

The units of acceleration are quadrature counts/sample time squared.

To convert from rpm/sec to quadrature counts/[sample time $]^{2}$, use the formula shown below:
$\mathrm{Aq}=(\mathrm{Ar})(\mathrm{N})\left(\mathrm{t}^{2}\right)(0.01667 / \mathrm{rpm}-$ sec)

Where:

$\mathrm{Aq}=$ Acceleration in quadrature counts/[sample time] ${ }^{2}$
$\mathrm{Ar}=$ Acceleration in $\mathrm{rpm} / \mathrm{sec}$
$\mathrm{N}=4$ times the number of slots in the codewheel (i.e., quadrature counts)
$\mathrm{t}=$ The HCTL-1100 sample time in seconds. (See the section on the HCTL-1100's Sample Timer register).

Because the Command
Acceleration registers (R27H and R 26 H) are internally interpreted by the HCTL-1100 as 8 bits of integer and 8 bits of fraction, the host processor must multiply the desired command acceleration (in quadrature counts/[sample time ${ }^{2}$) by 256 before programming it into the HCTL1100's Command Acceleration registers.

Internally, the controller performs velocity profiling through position control.

Each sample time, the internal profile generator uses the information which the user has programmed into the Command Velocity register (R 3 CH) and the Command Acceleration registers (R 27 H and R 26 H) to determine the value which will be automatically loaded into the Command Position registers (R0CH, R0DH, and R0EH). After the new command position has been generated, the difference between the value in the Actual Position registers (R12R 13 H , and R 14 H) and the new value in the Command Position registers is calculated as the new position error. This new position error is used by the full digital compensation filter to compute a new motor command output by this sample time. The register block in Figure 3 further shows how the internal profile generator works in Integral Velocity mode. In control theory terms, integral compensation has been added and therefore, this system has zero steady-state error.

Although Integral Velocity Control mode has the advantage over Proportional Velocity mode of zero steady state velocity error, its disadvantage is that the closed loop stability is more difficult to achieve. In Integral Velocity Control mode the system is actually a position control system and therefore the complete dynamic compensation $D(z)$ is used.

If the external Stop flag F6 is set during this mode signalling an emergency situation, the controller automatically decelerates to zero velocity at the presently specified acceleration factor and stays in this condition until the flag is cleared. The user then can specify new velocity profiling data.

Trapezoid Profile Mode	
Flags: $\begin{array}{r}\text { F } \\ \\ \text { F } \\ \text { F }\end{array}$	et to begin move
	leared
	leared
Registers Used:	
Register	Function
R00H R00D F	Flag Register
R07H R07D S	Status Register
R12H R18D	Read Actual
	Position MSB
R13H R19D ${ }^{\text {R }}$	Read Actual
	Position
R14H R20D	Read Actual
	Position LSB
R29H R41D F	Final Position
	LSB
R2AH R42D F	Final Position
R2BH R43D F	Final Position
	MSB
R26H R38D A	Acceleration LSB
R27H R39D A	Acceleration MSB
R28H R40D	Maximum
	Velocity

Trapezoid Profile Control performs point-to-point position moves and profiles the velocity trajectory to a trapezoid or triangle. The user specifies only the desired final position, acceleration and maximum velocity. The controller computes the necessary profile to conform to the command data. If maximum velocity is reached before the distance halfway point, the profile will be trapezoidal, otherwise the profile will be triangular.
Figure 14 shows the possible trajectories with Trapezoidal Profile Control.

The command data for Trapezoidal Profile Control mode consists of a final position, a command acceleration, and a

Example Code for Programming Integral Velocity Mode

```
(Begin)
    Hard Reset {HCTL-1100 goes into INIT/IDLE Mode}
    Initialize Filter, Timer, Command Position Registers
    Write 03H to Register R05H
            {HCTL-1100 is now in Position Mode}
    Write Desired Acceleration (if needed)
    Write Desired Maximum Velocity (if needed)
    Set Flag F5 {Integral Velocity Move Begins}
        {System ramps to Maximum Velocity}
        Continue writing new Accelerations and Velocities
{ end }
```


Figure 14. Trapezoidal Profile Mode.
maximum velocity. The 24 -bit, two's-complement final position is written to registers R2BH, (MSB), R2AH, and R29H (LSB). The 16 -bit command acceleration resides in registers R27H (MSB) and R26H (LSB). The command acceleration has the same integer and fraction format as discussed in the Integral Velocity Control mode section. The 7 -bit maximum velocity is a scalar value with the range of 00 H to 7 FH (0 D to 127D). The maximum velocity has the units of quadrature counts per sample time, and resides in register R 28 H . The command data registers may be read or written to in any order.

The internal profile generator produces a position profile using the present Command Position ($\mathrm{R} 0 \mathrm{CH}-\mathrm{ROEH}$) as the starting point and the Final Position (R2BH-R29H) as the end point.

Once the desired data is entered, the user sets flag F0 in the Flag register (R 00 H) to commence motion (if the HCTL1100 is already in Position Control mode).

When the profile generator sends the last position command to the Command Position registers to complete the trapezoidal move, the controller clears flag F0. The HCTL-1100 then automatically goes to Position Control mode with the final position of the trapezoidal move as the command position.

When the HCTL-1100 clears flag F0 it does NOT indicate that the motor and encoder are at the final position NOR that the motor and encoder have stopped. The flag indicates that the command profile has finished. The motor and encoder's true position can only be determined by reading the Actual Position registers. The only way to determine if the motor and encoder have stopped is to read the Actual Position registers at successive intervals.

The status of the Profile flag can be monitored both in the Status register (R07) and at the external Profile pin at any time. While the Profile flag is high NO new command data should be sent to the controller.

Each sample time, the internal profile generator uses the information which the user has programmed into the Maximum Velocity register (R28H), the Command Acceleration registers (R 27 H and R 26 H), and the Final Position registers (R2BH, R2AH, and R29H) to determine the value which will be automatically loaded into the Command Position registers (R0EH, R0DH, and R0CH). After the new command position has been generated, the difference between the value in the Actual Position registers ($\mathrm{R} 12 \mathrm{H}, \mathrm{R} 13 \mathrm{H}$, and R 14 H) and the new value in the Command Position registers is calculated as the new position error. This new position error is used by the full digital compensation filter to compute a new motor command output for the sample time. (The register block diagram in Figure 3 further shows how the internal profile generator works in Trapezoidal Profile mode.)

```
Example Code for Programming Trapezoid Moves
{ Begin }
    Hard Reset { HCTL-1100 goes into INIT/IDLE Mode }
    Inititalize Filter, Timer, Command Position Registers
    Write 03H to Register R05H
        { HCTL-1100 is now in Position Mode }
    { Profile #1}
    Write Desired Acceleration
    Write Desired Maximum Velocity
    Write Final Position
    Set Flag F0 {Trapezoid Move Begins, PROF pin goes high}
    Poll PROF pin until it goes low (Move is complete)
        { Profile #2}
    Write Desired Acceleration
    Write Desired Maximum Velocity
    Write Final Position
    Set Flag FO {Trapezoid Move Begins, PROF pin goes high}
    Poll PROF pin until it goes low (Move is complete)
    { Repeat }
    .
    .
    .
    .
{ end }
```


Applications of the HCTL-1100

Interfacing the HCTL-1100 to Host Processors
The HCTL-1100 looks to the host microprocessor like a bank of 8 -bit registers to which the host processor can read and
write (i.e., the host processor treats the HCTL- 1100 like RAM). The data in these registers controls the operation of the HCTL-1100. The host processor communicates to the HCTL-1100 over a bidirectional multiplexed 8 -bit data bus. The
four I/O control lines. $\overline{\mathrm{ALE}}, \overline{\mathrm{CS}}$, $\overline{\mathrm{OE}}$, and $\mathrm{R} / \overline{\mathrm{W}}$ execute the data transfers (see Figure 15).

There are three different timing configurations which can be used to give the user greater flexibility to interface the

HCTL-1100 to most microprocessors (see Timing diagrams). They are differentiated from one another by the arrangement of the $\overline{\mathrm{ALE}}$ signal with respect to the $\overline{\mathrm{CS}}$ signal. The three timing configurations are listed below.

1. $\overline{\mathrm{ALE}}, \overline{\mathrm{CS}}$ non-overlapped
2. $\overline{\mathrm{ALE}}, \overline{\mathrm{CS}}$ overlapped
3. $\overline{\mathrm{ALE}}$ within $\overline{\mathrm{CS}}$

Any I/O operation starts by asserting the ALE signal which starts sampling the external bus into an internal address latch. Rising ALE or falling CS during ALE stops the sampling into the address latch.
$\overline{\mathrm{CS}}$ low after rising $\overline{\mathrm{ALE}}$ samples the external bus into the data latch. Rising CS stops the sampling into the data latch, and starts the internal synchronous process.

In the case of a write, the data in the data latch is written into the addressed location. In the case of a read, the addressed location is written into an internal output latch. OE low enables the internal output latch onto the external bus. The $\overline{\mathrm{OE}}$ signal and the internal output latch allow the I/O port to be flexible and avoid bus conflicts during read operations.

It is important that the host microprocessor does not attempt to perform too many I/O operations in a single sample time of the HCTL-1100. Each I/O operation interrupts the execution of the HCTL-1100's internal code for 1 clock cycle. Although extra clock cycles have been allotted in each sample time for I/O operations, the number of extra cycles is
reduced as the value programmed into the Sample Timer register (R 0 FH) is reduced.

Table 5 shows the maximum number of I/O operations allowed under the given conditions.

The number of external clock cycles available for I/O operations in any of the four control modes can be increased by increasing the value in the Sample Timer register (R0FH).

For every unit increase in the Sample Timer register (R0FH) above the minimums shown in Table 5 the user may perform 16 additional I/O operations per sample time.

Interfacing the HCTL-1100 to Amplifiers and Motors

The Motor Command port is the ideal interface to an 8-bit DAC, configured for bipolar output. The data written to the 8-bit Motor Command port by the control algorithms is the internally computed 2's-
complement motor command with an 80 H offset added. This allows direct interfacing to a DAC. Figure 16 shows a typical DAC interface to the HCTL1100. An inexpensive DAC, such as MC1408 or equivalent, has its digital inputs directly connected to the Motor Command port. The DAC produces an output current which is converted to a voltage by an operational amplifier. R_{o} and R_{G} control the analog offset and gain. The circuit is easily adjusted for +5 V to -5 V operation by first writing 80 H to R 08 H and adjusting R_{o} for 0 V output. Then FFH is written to R 08 H and R_{G} is adjusted until the output is 5 V . Note that 00 H in R 08 H corresponds to -5 V out.

Figure 17 shows an example of how to interface the HCTL-1100 to an H-bridge amplifier. An Hbridge amplifier allows bipolar motor operation with a unipolar power supply. The Sign Reversal Inhibit feature prevents all transistors from being on at the same time when the direction of motion is reversed.

Table 5. Maximum Number of I/O Allowed

Sample Timer Register Value	Operating Mode	Maximum Number of I/O Operations Allowed per Sample
07 H (07D)	Position Control or Prop. Vel. Control	5
OFH (15D)	Position Control or Prop. Vel. Control Trapezoidal Prof. or Integral Vel. Control	133

Figure 15. I/O Port Block Diagram.

Figure 16. Linear Amplifier Interface.

Figure 17. H-Bridge Amplifier Interface.

Additional Information From Hewlett-Packard

Additional information regarding the HCTL-1100 is available from the HewlettPackard Motion Control
Factory. Please contact your local HP sales representative for more information.

1. Application Note 1032:
"Design of the HCTL-1000's
"Design of the HCTL-1000's
Digital Filter Parameters by the Combination Method"
2. Intel 8051 interface to the HCTL-1100
3. Zilog Z80 interface to the

HCTL-1100
4. Motorola 6803-1 interface to the HCTL-1100
5. HCTL-1100 Sample Timer and Digital Filter (Seminar Slides)
6. DC Brush Motor Interfaces
(Seminar Slides)
7. DC Brushless Motor

Interfaces (Seminar Slides)
8. Step Motor Interfaces-
including half-step mode (Seminar Slides)
9. List of Board Level Vendors
using the HCTL-1000/ HCTL-1100. Many companies provide board level products using the HCTL-1000 and HCTL-1100 compatible with numerous busses.
10. HCTL-1000/HCTL-1100 Troubleshooting Guide. An answer guide to the most often asked questions about the operation of the HCTL1000 and HCTL-1100.
(Seminar Slides)

Ordering Information

HCTL-1100: 40 Pin DIP
Package
HCTL-1100\#PLC: 44 Pin
PLCC Package .

Light Bars and Bar Graph Arrays

- Light Bars
- Bar Graph Arrays

Light Bars and Bar Graph Arrays

LED Light Bars are HewlettPackard's innovative solution to fixed message annunciation. The large, uniformly illuminated light emitting surface may be used for backlighting legends or simple indicators. Four distinct colors are offered: AlGaAs red, high efficiency red, yellow, and high performance green with two bicolor combinations. The AlGaAs Red Light Bars provide exceptional brightness at very low drive currents for those applications where portability and battery backup are important considerations. Each of the eight X-Y stackable package styles offers one, two, or four light emitting surfaces. Along with this family of stackable light bars, HP also provides a single chip light bar for high brightness indication of small areas. Panel Mounts are also available for all devices.

In addition to light bars, HP offers effective analog message annunciation with the $10-$ element LED Bar Graph Arrays. These bar graph arrays eliminate the matching and alignment problems commonly associated with arrays of discrete LED indicators. Each device offers easy to handle packages that are compatible with standard DIP sockets. The 10element Bar Graph Array is available in standard red, AlGaAs red, high efficiency red, yellow, and high performance green. The multicolor 10 -element arrays have high efficiency red, yellow, and green LEDs in one package. The package is X-Y stackable, with a unique interlock allowing easy end-toend alignment.

LED Light Bars

Device		Description			Typical Luminous Intensity @ 20 mA	Typical Forward Voltage @ 20 mA	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$						
Package Outline Drawing	Part No.	Color	Package	Lens									
	HLMP-2300	High Efficiency Red	4 Pin In-Line; 0.100^{*} Centers; $0.400^{\circ} \mathrm{L} x$ $0.195^{\prime \prime} \mathrm{W} \times 0.245^{\circ} \mathrm{H}$	Diffused	23 mcd	2.0 V	2-8						
	HLMP-2400	Yellow		Diffused	20 mcd	2.1 V							
	HLMP-2500	Green		Green Diffused	25 mcd	2.2 V							
	HLMP-2350	High Efficiency Red	8 Pin In-Line; 0.100^{*} Centers; $0.800^{\circ} \mathrm{L} x$ $0.195^{\prime \prime W} \times 0.245$ " H	Diffused	45 mcd	2.0 V							
	HLMP-2450	Yellow		Diffused	38 mcd	2.1 V							
$\\|\\|\\|\\|$	HLMP-2550	Green		Green Diffused	50 mcd	2.2 V							
	HLMP-2600	High Efficiency Red	8 Pin DIP; $0.100^{\prime \prime}$ Centers; $0.400^{\circ L} \mathrm{x}$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Dual Arrangement	Diffused	22 mcd	2.0 V							
	HLMP-2700	Yellow		Diffused	18 mcd	2.1 V							
$\left\\|\left\\|\left\\|\\|^{4}\right.\right.\right.$	HLMP-2800	Green		Green Diffused	25 mcd	2.2 V							
	HLMP-2620	$\begin{gathered} \text { High } \\ \text { Efficiency } \\ \text { Red } \end{gathered}$ Red	16 Pin DIP; 0.100" Centers; $0.800^{\circ} \mathrm{L} x$ $0.400^{\circ W} \mathrm{~W} \times 0.245^{\mathrm{H}} \mathrm{H}$ Quad Arrangement	Diffused	25 mcd	2.0 V							
\square	HLMP-2720	Yellow		Diffused	18 mcd	2.1 V							
$\\|\\|\\|\\|\\| d$	HLMP-2820	Green		$\begin{gathered} \text { Green } \\ \text { Diffused } \end{gathered}$	25 mcd	2.2 V							
	HLMP-2635	$\begin{gathered} \text { High } \\ \text { Efficiency } \\ \text { Red } \end{gathered}$	16 Pin DIP; $0.100^{"}$ Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.400^{\circ} \mathrm{W} \times 0.245^{\mathrm{H}} \mathrm{H}$ Dual Bar Arrangement	Diffused	45 mcd	2.0 V							
	HLMP-2735	Yellow		Diffused	35 mcd	2.1 V							
$\\|\\|\\|\\|\\|\\| d$	HLMP-2835	Green		Green Diffused	50 mcd	2.2 V							

LED Light Bars (Continued)

Device		Description			Typical Luminous Intensity @ 20 mA	Typical Forward Voltage @ 20 mA	Page No.
Package Outline Drawing	Part No.	Color	Package	Lens			
	HLMP-2655	$\begin{gathered} \text { High } \\ \text { Efficiency } \\ \text { Red } \end{gathered}$	8 Pin DIP; $0.100^{\prime \prime}$ Centers; $0.400^{\circ} \mathrm{L} x$ $0.400^{\circ} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Square Arrangement	Diffused	43 mcd	2.0 V	2-8
	HLMP-2755	Yellow		Diffused	35 mcd	2.1 V	
	HLMP-2855	Green		Green Diffused	50 mcd	2.2 V	
	HLMP-2670	High Efficiency Red	16 Pin DIP; 0.100^{*} Centers; $0.800^{\circ} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Dual Square Arrangement	Diffused	45 mcd	2.0 V	
\square	HLMP-2770	Yellow		Diffused	35 mcd	2.1 V	
	HLMP-2870	Green		Green Diffused	50 mcd	2.2 V	
	HLMP-2685	High Efficiency Red	16 Pin DIP; 0.100" Centers; $0.800^{\prime 2} \mathrm{~L} x$ $0.400^{\circ} \mathrm{W} \times 0.245^{\circ} \mathrm{H}$ Single Bar Arrangement	Diffused	80 mcd	2.0 V	
	HLMP-2785	Yellow		Diffused	70 mcd	2.1 V	
	HLMP-2885	Green		Green Diffused	100 mcd	2.2 V	

DH AIGaAs Low Current LED Light Bars

Device		Description			Typical Luminous Intensity @ 3 mA	Typical Forward Voltage @ 3mA	PageNo
Package Outline Drawing	Part No.	Color	Package	Lens			
\square	HLCP-A100	AIGaAs Red	4 Pin In-Line; 0.100" Centers; $0.400^{\circ} \mathrm{L} x$ $0.195^{\prime W} \mathrm{~W} \times 0.245^{\circ} \mathrm{H}$	Diffused	7.5 mcd	1.6 V	2-8
	HLCP-B100	AIGaAs Red	8 Pin In-Line; $0.100^{"}$ Centers; $0.800^{\circ} \mathrm{L} x$ $0.195^{\circ} \mathrm{W} \times 0.245^{\mathrm{H}} \mathrm{H}$	Diffused	15.0 mcd		

DH AIGaAs Low Current LED Light Bars (Continued)

Device		Description			Typical Luminous Intensity @ 3 mA	Typical Forward Voltage @ 3 mA	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens			
	HLCP-D100	AIGaAs Red	8 Pin DIP; $0.100^{\prime \prime}$ Centers; $0.400^{\circ L} \mathrm{x}$ $0.400^{\text {"W }} \mathrm{W} \times .245^{\circ} \mathrm{H}$ Dual Arrangement	Diffused	7.5 mcd	1.6 V	2-8
	HLCP-E100	AIGaAs Red	16 Pin DIP; 0.100^{*} Centers; $0.800^{\circ} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\circ} \mathrm{H}$ Quad Arrangement	Diffused	7.5 mcd		
\square \square \square	HLCP-F100	AIGaAs Red	16 Pin DIP; 0.100" Centers; $0.800^{\prime 2} \mathrm{x}$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Dual Bar Arrangement	Diffused	15.0 mcd		
\square	HLCP-C100	AIGaAs Red	8 pin DIP; $0.100^{\prime \prime}$ Centers; $0.400^{\circ} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Square Arrangement	Diffused	15.0 mcd		
	HLCP-G100	AIGaAs Red	16 Pin DIP; 0.100" Centers; $0.800^{\circ L} \mathrm{x}$ $0.400^{* W} \times 0.245^{\prime \prime} \mathrm{H}$ Dual Square Arrangement	Diffused	15.0 mcd		
	HLCP-H100	AIGaAs Red	16 Pin DIP; 0.100" Centers; $0.800^{\circ} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Single Bar Arrangement	Diffused	30.0 mcd		

LED Bicolor Light Bars

Device		Description			Typical Luminous Intensity @ 20 mA	Typical Forward Voltage @ 20 mA	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens			
	HLMP-2950	High Efficiency Red/ Yellow	8 Pin DIP; $0.100^{\prime \prime}$ Centers; $0.400^{\circ} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Square Arrangement	Diffused	HER: 20 mcd Yellow: 12 mcd	HER: 2.0 V Yellow: 2.1 V	2-8
	HLMP-2965	High Efficiency Red/ Green		Diffused	HER: 20 mcd Green: 20 mcd	HER: 2.0 V Green: $2.2 \mathrm{~V}$	

Single Chip LED Light Bar

Device		Description			Tyical Luminous Intensity	$2 \theta^{1 / 2}$	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-T200	High Efficiency Red (626 nm)	One Chip LED Light Bar	Tinted Diffused	4.8 mcd @ 20 mA	100°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	2-19
	HLMP-T300	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			6.0 mcd @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-T400	Orange (608 nm)			4.8 mcd @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-T500	Green (569 nm)			6.0 mcd @ 20 mA		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	

LED Bar Graph Arrays

Device		Description			Typical Luminous Intensity	Typical Forward Voltage	$\begin{array}{\|l} \hline \text { Page } \\ \text { No. } \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens			
	HDSP-4820	Standard Red	20 Pin DIP; 0.100" Centers; 1.0"L x $0.400^{* W} \times 0.200^{\prime \prime}$	Diffused	$1250 \mu \mathrm{~cd}$ @ 20 mA DC	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \\ \mathrm{DC} \end{gathered}$	2-23
	HDSP-4830	High Efficiency Red		Diffused	$3500 \mu \mathrm{~cd}$ @ 10 mA DC	$\begin{aligned} & 2.1 \mathrm{~V} \\ & 20 \mathrm{~mA} \end{aligned}$ DC	
	HDSP-4840	Yellow		Diffused	$1900 \mu \mathrm{~cd}$ @ 10 mA DC	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$ DC	
	HDSP-4850	High Performance Green		Green Diffused	$1900 \mu \mathrm{~cd}$ @ 10 mA DC	$\begin{gathered} 2.1 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$ DC	
	HDSP-4832	Multicolor		Diffused	$1900 \mu \mathrm{~cd}$ @ 10 mA DC		
	HDSP-4836	Multicolor		Diffused	$1900 \mu \mathrm{~cd}$ @ 10 mA DC		

DH AIGaAs Low Current 10-Element Bar Graph Arrays

Device		Description			Typical Luminous Intensity	Typical Forward Voltage	Page No.										
Package Outline Drawing	Part No.	Color	Package	Lens													
¢ ¢ ¢ ¢ ¢ ¢ ¢	HLCP-J100	AIGaAs Red	20 Pin DIP; 0.100" Centers;1.0"L x $0.400^{\prime \prime} \mathrm{W} \times 0.200^{\mathrm{H}} \mathrm{H}$	Diffused	$1000 \mu \mathrm{~cd}$ @ 1 mA	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 1 \mathrm{~mA} \end{gathered}$	2-23										
$\\|\\|\\|\\|\\|\\|\\|\\|\\|\\|$																	

Panel Mounts for LED Light Bars

Device		Corresponding Light Bar Module Part Number	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.		
\square	HLMP-2598	HLMP-2350, -2450, -2550, HLCP-B100	2-30
	HLMP-2599	HLMP-2300, -2400, -2500, HLCP-A100	
	HLMP-2898	$\begin{aligned} & \text { HLMP-2600, -2700, -2800 } \\ & -2655,-2755,-2855 \\ & -2950,-2965, \text { HLCP-C100, -D100 } \end{aligned}$	
	HLMP-2899	$\begin{gathered} \text { HLMP-2620, -2720, -2820, } \\ -2635,-2735,-2835 \\ -2670,-2770,-2870 \\ -2685,-2785,-2885 \\ \text { HLCP-E100, -F100, -G100, -H100 } \end{gathered}$	

Intensity Selected Light Bars

Description	Option Code	Applicable Part Number HLMP.	Page No.
	SO2	This option provides the selection of light bars from two adjacent luminous intensity categories.	$*$

[^4]
LED Light Bars

Technical Data

Features

- Large Bright, Uniform

Light Emitting Areas

- Choice of Colors
- Categorized for Light Output
- Yellow and Green Categorized for Dominant Wavelength
- Excellent ON-OFF Contrast
- X-Y Stackable
- Flush Mountable
- Can be Used with Panel and Legend Mounts
- Light Emitting Surface Suitable for Legend Attachment per Application Note 1012
- HLCP-X100 Series Designed for Low Current Operation
- Bicolor Devices Available

Applications

- Business Machine Message Annunciators
- Telecommunications Indicators
- Front Panel Process Status Indicators
- PC Board Identifiers
- Bar Graphs

Description

The HLCP-X100 and HLMP2XXX series light bars are rectangular light sources designed for a variety of applications where a large bright source of light is required. These light bars are configured in single-in-line and dual-in-line packages that contain either single or segmented light emitting areas. The AlGaAs Red HLCP-X100 series LEDs use double heterojunction AlGaAs on a GaAs substrate. The HER HLMP-2300/2400 and Yellow HLMP-2400/2700 series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HLMP-2500/2800 series LEDs use a liquid phase GaP epitaxial layer on a GaP substrate. The bicolor HLMP-2900 series use a combination of HER/Yellow or HER/Green LEDs.

> HLCP-A100, -B100, -C100, $-D 100,-E 100,-$ F100, -G100, - H100
> HLMP-2300, -2350, -2400, $-2450,-2500,-2550,-2600$, $-2620,-2635,-2655,-2670$, $-2685,-2700,-2720,-2735$, $-2755,-2770,-2785,-2800$, $-2820,-2835,-2855,-2870$, $-2885,-2950,-2965$

Selection Guide

Light Bar Part Number				Size of Light Emitting Areas	Number of Light Emitting Areas	Package Outline		Corresponding Panel and Legend Mount Part No. HLMP.
HLCP.	HLMP.							
AlGaAs	HER	Yellow	Green					
A100	2300	2400	2500	$\begin{aligned} & 8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm} \\ & (.350 \mathrm{in} . \times .150 \mathrm{in} .) \end{aligned}$	1	A		2599
B100	2350	2450	2550	$\begin{aligned} & 19.05 \mathrm{~mm} \times 3.81 \mathrm{~mm} \\ & \text { (.750 in. } \times .150 \mathrm{in} .) \end{aligned}$	1	B	\square	2598
D100	2600	2700	2800	$\begin{aligned} & 8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm} \\ & (.350 \mathrm{in} \times .150 \mathrm{in} .) \end{aligned}$	2	D	\square	2898
E100	2620	2720	2820	$\begin{aligned} & 8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm} \\ & \text { (. } 350 \mathrm{in} . \times .150 \mathrm{in} .) \end{aligned}$	4	E		2899
F100	2635	2735	2835	$\begin{aligned} & 3.81 \mathrm{~mm} \times 19.05 \mathrm{~mm} \\ & \text { (. } 150 \mathrm{in} . \times .750 \mathrm{in} .) \end{aligned}$	2	F		2899
C100	2655	2755	2855	$\begin{aligned} & 8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} \\ & (.350 \mathrm{in} \times .350 \mathrm{in} .) \end{aligned}$	1	C	\square	2898
G100	2670	2770	2870	$\begin{aligned} & 8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} \\ & (.350 \mathrm{in} . \times .350 \mathrm{in} .) \end{aligned}$	2	G		2899
H100	2685	2785	2885	$\begin{aligned} & 8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm} \\ & (.350 \mathrm{in} . \times .750 \mathrm{in} .) \end{aligned}$	1	H		2899
	2950	2950		$\begin{aligned} & 8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} \\ & (.350 \mathrm{in} . \times .350 \mathrm{in} .) \end{aligned}$	Bicolor	I		2898
	2965		2965	$\begin{aligned} & 8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} \\ & (.350 \mathrm{in} . \times .350 \mathrm{in} .) \end{aligned}$	Bicolor	I	\square	2898

Package Dimensions

END VIEW A, B

SIDE B

NOTES:

1. DIMENSIONS IN MILLIMETRES (INCHES). TOLERANCES $\pm 0.25 \mathrm{~mm}(\pm 0.010$ IN.) UNLESS OTHERWISE INDICATED.
2. FOR YELLOW AND GREEN DEVICES ONLY.
3. CATHODE NOTCH IS IN PROCESS OF BEING REPLACED BY A CATHODE DOT ON THE UNIT MARKING SIDE OF THE DEVICE. PROPOSED EFFECTIVE DATE FOR THIS CONVERSION IS JANUARY 1 ST, 1991.

Internal Circuit Diagrams

Absolute Maximum Ratings

Parameter	$\begin{gathered} \text { AlGaAs Red } \\ \text { HLCP-X100 } \\ \text { Series } \end{gathered}$	HER HLMP-2300/ 2600/29XX Series	Yellow HLMP-2400/ 2700/2950 Series	Green HLMP-2500/ 2800/2965 Series
Average Power Dissipated per LED chip	$37 \mathrm{~mW}{ }^{[1]}$	$135 \mathrm{~mW}^{[2]}$	$85 \mathrm{~mW}^{[3]}$	$135 \mathrm{~mW}^{[2]}$
Peak Forward Current per LED chip	$45 \mathrm{~mA}^{[4]}$	$90 \mathrm{~mA}^{[5]}$	$60 \mathrm{~mA}^{[5]}$	$90 \mathrm{~mA}^{[5]}$
Average Forward Current per LED chip	15 mA	25 mA	20 mA	25 mA
DC Forward Current per LED chip	$15 \mathrm{~mA}^{[1]}$	$30 \mathrm{~mA}^{[2]}$	$25 \mathrm{~mA}^{[3]}$	$30 \mathrm{~mA}^{[2]}$
Reverse Voltage per LED chip	5 V	$6 \mathrm{~V}^{[6]}$		
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}^{[7]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Lead Soldering Temperature 1.6 mm ($1 / 16$ inch) Below Seating Plane	$260^{\circ} \mathrm{C}$ for seconds ${ }^{[8]}$			

Notes:

1. Derate above $87^{\circ} \mathrm{C}$ at $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For DC operation, derate above $91^{\circ} \mathrm{C}$ at $0.8 \mathrm{~mA} /^{\circ} \mathrm{C}$.
2. Derate above $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For DC operation, derate above $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}^{\circ} \mathrm{C}$.
3. Derate above $50^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For DC operation, derate above $60^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. See Figure 1 to establish pulsed operation. Maximum pulse width is 1.5 mS .
5. See Figure 6 to establish pulsed operation. Maximum pulse width is 2 mS .
6. Does not apply to bicolor parts.
7. For operation below $-20^{\circ} \mathrm{C}$, contact your local HP sales representative.
8. Maximum component side temperature is $140^{\circ} \mathrm{C}$ during solder process.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$
 AlGaAs Red HLCP-X100 Series

Parameter	HLCP-	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity per Lighting Emitting Area ${ }^{[1]}$	A100/D100/E100	I_{v}	3	7.5		mcd	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}$
	B100/C100/F100/G100		6	15		mcd	
	H100		12	30		med	
Peak Wavelength		$\lambda_{\text {PEAK }}$		645		nm	
Dominant Wavelength ${ }^{[2]}$		$\lambda_{\text {d }}$		637		nm	
Forward Voltage per LED		V_{F}		1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED		V_{R}	5	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		$\mathrm{R} \theta_{\text {J-PIN }}$		250		$\begin{aligned} & \text { º} / \mathrm{W} / \mathrm{F} \\ & \text { LED } \end{aligned}$	

High Efficiency Red HLMP-2300/2600/2900 Series

Parameter	HLMP-	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity per Lighting Emitting Area ${ }^{[1]}$	2300/2600/2620	I_{v}	6	23		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	2350/2635/2655/2670/2950 ${ }^{[3]}$		13	45		mcd	
	$2965{ }^{[4]}$		19	45		mcd	
	2685		22	80		mcd	
Peak Wavelength		$\lambda_{\text {PEAK }}$		635		nm	
Dominant Wavelength ${ }^{[2]}$		$\lambda_{\text {d }}$		626		nm	
Forward Voltage per LED		V_{F}		2.0	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED ${ }^{[5]}$		V_{R}	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		$\mathrm{R} \theta_{\text {J-PIN }}$		150		$\begin{aligned} & \text { º} \mathrm{C} / \mathrm{W} / \\ & \text { LED } \end{aligned}$	

Yellow HLMP-2400/2700/2950 Series

Parameter	HLMP.	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity per Lighting Emitting Area ${ }^{[1]}$	2400/2700/2720	I_{v}	6	20		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	2450/2735/2755/2770/2950 ${ }^{[3]}$		13	38		mcd	
	2785		26	70		mcd	
Peak Wavelength		$\lambda_{\text {PEAK }}$		583		nm	
Dominant Wavelength ${ }^{[2]}$		$\lambda_{\text {d }}$	579.0	585	595.0	nm	
Forward Voltage per LED		V_{F}		2.1	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED ${ }^{[5]}$		V_{R}	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		R $\mathrm{J}_{\text {-PIN }}$		150		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{LED} \end{aligned}$	

High Performance Green HLMP-2500/2800/2965 Series

Parameter	HLMP-	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity per Lighting Emitting Area ${ }^{[1]}$	2500/2800/2820	I_{v}	5	25		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	2550/2835/2855/2870		11	50		mcd	
	$2965{ }^{[4]}$		25	50		med	
	2885		22	100		mcd	
Peak Wavelength		$\lambda_{\text {PEAK }}$		565		nm	
Dominant Wavelength ${ }^{[2]}$		$\lambda_{\text {d }}$		572	577	nm	
Forward Voltage per LED		V_{F}		2.2	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED ${ }^{[5]}$		V_{R}	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED Junction-to-Pin		$R \theta_{\text {J-PIN }}$		150		º/W/	

Notes:

1. These devices are categorized for luminous intensity. The intensity category is designated by a letter code on the side of the package.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the device. Yellow and Green devices are categorized for dominant wavelength with the color bin designated by a number code on the side of the package.
3. This is an HER/Yellow bicolor light bar. HER electrical/optical characteristics are shown in the HER table. Yellow electrical/ optical characteristics are shown in the Yellow table.
4. This is an HER/Green bicolor light bar. HER electrical/optical characteristics are shown in the HER table. Green electrical/ optical characteristics are shown in the Green table.
5. Does not apply to HLMP-2950 or HLMP-2965.

AlGaAs Red

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration

Figure 2. Maximum Allowed DC Current per LED vs. Ambient Temperature, $\mathrm{T}_{3} \mathrm{MAX}=110^{\circ} \mathrm{C}$

Figure 4. Forward Current vs. Forward Voltage

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 5. Relative Luminous Intensity vs. DC Forward Current

HER, Yellow, Green

Figure 6. Maximum Allowed Peak Current vs. Pulse Duration

Figure 7. Maximum Allowable DC Current per LED vs. Ambient Temperature, $\mathrm{T}_{\mathbf{J}} \mathrm{MAX}=100^{\circ} \mathrm{C}$

Figure 9. Forward Current vs. Forward Voltage Characteristics

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak PED Current

Figure 10. Relative Luminous Intensity vs. DC Forward Current

For a detailed explanation on the use of data sheet information and recommended soldering procedures, see Application Notes 1005, 1027, and 1031.

Electrical

These light bars are composed of two, four, or eight light emitting diodes, with the light from each LED optically scattered to form an evenly illuminated light emitting surface.

The anode and cathode of each LED is brought out by separate pins. This universal pinout arrangement allows the LEDs to be connected in three possible configurations: parallel, series, or series parallel. The typical forward voltage values can be scaled from Figures 4 and 9. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation, may be
calculated using the following $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}$ models:

AlGaAs Red HLCP-X100 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $20 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 45 \mathrm{~mA}$
HER (HDSP-2300/2600/2900), Yellow (HDSP-2400/2700/2900) and Green (HDSP-2500/2800/ 2900) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6+\mathrm{I}_{\mathrm{Peak}}(50 \Omega)$ For: $5 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{y}} \mathrm{MAX}=1.8+\mathrm{I}_{\text {Peak }}(40 \Omega)$
For: $I_{\text {Peak }} \geq 20 \mathrm{~mA}$
The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power dissipation is the product of the maximum
forward voltage and the maximum forward current. For pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance ($R \theta_{\mathrm{J} \cdot \mathrm{A}}$) can be determined by using Figure 2 or 7. The solid line in Figure 2 or 7 ($\mathrm{R} \theta_{\mathrm{J} \cdot \mathrm{A}}$ of $600 / 538 \mathrm{C} / \mathrm{W}$) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistances that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

Optical

Size of Light Emitting Area	Surface Area	
	Sq. Metres	Sq. Feet
$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}$	67.74×10^{-6}	729.16×10^{-6}
$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}$	33.87×10^{-6}	364.58×10^{-6}
$8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}$	135.48×10^{-6}	1458.32×10^{-6}
$3.81 \mathrm{~mm} \times 19.05 \mathrm{~mm}$	72.85×10^{-6}	781.25×10^{-6}

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:
$L_{v}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\frac{\mathrm{I}_{\mathrm{v}}(\mathrm{cd})}{\mathrm{A}\left(\mathrm{m}^{2}\right)}$
$L_{v}($ footlamberts $)=\frac{\pi I_{v}(c d)}{A\left(\mathrm{ft}^{2}\right)}$

Refresh rates of 1 kHz or faster provide the most efficient operation resulting in the maximum possible time average luminous intensity.

The time average luminous intensity may be calculated using the relative efficiency characteristic of Figure 3 or 8, $\eta \mathrm{I}_{\text {PEAK }}$, and adjusted for operating ambient temperature. The time average luminous intensity at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ is calculated as follows:
$I_{v \text { time avg }}=\left[\frac{I_{\text {AVG }}}{\mathrm{I}_{\text {test }}}\right]\left(\eta I_{\text {PEAK }}\right)\left(I_{v}\right.$ Data Sheet $)$
where:
$I_{\text {TEST }}=3 \mathrm{~mA}$ for AlGaAs Red
(HLMP-X000 series)
20 mA for HER,
Yellow and Green
(HLMP-2XXX series)
Example:
For HLMP-2735 series

$$
\begin{aligned}
& \eta \mathrm{I}_{\text {PEAK }}=1.18 \text { at } \mathrm{I}_{\text {PEAK }}=48 \mathrm{~mA} \\
& \begin{aligned}
\mathrm{I}_{\mathrm{vTIME} \mathrm{AVG}} & =\left[\frac{12 \mathrm{~mA}}{20 \mathrm{~mA}}\right](1.18)(35 \mathrm{mcd}) \\
& =25 \mathrm{mcd}
\end{aligned}
\end{aligned}
$$

The time average luminous intensity may be adjusted for operating ambient temperature by the following exponential equation:
$I_{v}\left(T_{A}\right)=I_{V}\left(25^{\circ} C\right) e^{\left[K\left(T_{A}-25^{\circ} C\right)\right]}$

Color	\mathbf{K}
AlGaAs Red	$-0.0095 /{ }^{\circ} \mathrm{C}$
HER	$-0.0131 /{ }^{\circ} \mathrm{C}$
Yellow	$-0.0112 /{ }^{\circ} \mathrm{C}$
Green	$-0.0104 /{ }^{\circ} \mathrm{C}$

Example:

$\mathrm{I}_{\mathrm{v}}\left(80^{\circ} \mathrm{C}\right)=(25 \mathrm{mcd}) \mathrm{e}^{[-0.0112(80-25)]}$ $=14 \mathrm{mcd}$.

Mechanical

These light bar devices may be operated in ambient temperatures above $+60^{\circ} \mathrm{C}$ without derating when installed in a PC board configuration that provides a thermal resistance pin to ambient value less than $280^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. See Figure 2 or 7 to determine the maximum allowed thermal resistance for the PC board, $\mathrm{R} \theta_{\mathrm{PC-A}}$, which will permit nonderated operation in a given ambient temperature.

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with
an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DES, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

For further information on soldering LEDs please refer to Application Note 1027.

Description

The HLMP-T200/-T300/-T400/-T500 light bars are rectangular light sources designed for a variety of applications where this shape and a high sterance are desired. These light bars consist of a rectangular plastic case around an epoxy encapsulated LED lamp. The encapsulant is tinted to match the color of the emitted light. The flat top surface is exceptionally uniform in light emission and the plastic case eliminates light leakage from the sides of the device.

Applications

- BAR GRAPHS
- FRONT PANEL STATUS INDICATORS
- TELECOMMUNICATIONS INDICATORS
- PUSH BUTTON ILLUMINATION
- PC BOARD IDENTIFIERS
- BUSINESS MACHINE MESSAGE ANNUNCIATORS

Package Dimensions

NOTES:

1. DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. TOLERANCES ARE $\pm 0.25 \mathrm{~mm}(\pm 0.010 \mathrm{INCH})$ UNLESS OTHERWISE NOTED.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
IV	Luminous Intensity	High Efficiency Red T200	3.0	4.8		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
		Orange T400	3.0	4.8			
		$\begin{array}{\|l\|l} \text { Yellow } \\ \text { T300 } \end{array}$	3.0	6.0			
		$\begin{aligned} & \text { Green } \\ & \text { T500 } \end{aligned}$	3.0	6.0			
2@1/2	Included Angle Between Half Luminous Intensity Points	All		100		Deg.	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & \text { See Note } 1 \end{aligned}$
$\lambda_{\text {PEAK }}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 635 \\ & 612 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak
λ_{d}	Dominant Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 626 \\ & 608 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2
τ_{S}	Speed of Response	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 350 \\ & 350 \\ & 390 \\ & 870 \end{aligned}$		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		$\begin{gathered} \hline 4 \\ 4 \\ 8 \\ 11 \end{gathered}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$R \theta_{\text {Jc }}$	Thermal Resistance	All		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead at Seating Plane
V_{F}	Forward Voltage	HER/Orange Yellow Green	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \\ & 2.6 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
V_{R}	Reverse Breakdown Volt.	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 145 \\ & 262 \\ & 500 \\ & 595 \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

Notes:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red, Orange, Yellow, and Green Light Bars

VF - FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage Characteristics.

$I_{\text {cc }}$ - DC CURRENT PER LED - mA

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings).

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	High Efficiency Red/ Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current[1]	25	20	25	mA
DC Current ${ }^{[2]}$	30	20	30	mA
Power Dissipation [3]	135	85	135	mW
Operating Temperature Range	-40 to +85	-40 to +85	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100	-55 to +100	-55 to +100	
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5			V
Transient Forward Current ${ }^{44}$ ($10 \mu \mathrm{sec}$ Pulse)	500			mA
Lead Soldering Temperature [1.6 mm (0.063 in .) below seating plane]	$260^{\circ} \mathrm{C}$ for 3 seconds			

Notes:

1. See Figure 5 to establish pulsed operating conditions.
2. For Red, Orange, and Green derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow derate linearly from $50^{\circ} \mathrm{C}$ at $0.34 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red, Orange, and Green derate power linearly from $25^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical

The typical forward voltage values, scaled from Figure 2, should be used for calculating the current limiting resistor values and typical power dissipation. Expected maximum V_{F} values for the purpose of driver circuit design and maximum power dissipation may be calculated using the following V_{F} models:

$$
\begin{gathered}
V_{F}=1.8 \mathrm{~V}+I_{\text {PEAK }}(40 \Omega) \\
\text { For } I_{\text {PEAK }} \geq 20 \mathrm{~mA} \\
V_{F}=1.6 \mathrm{~V}+\mathrm{I}_{\mathrm{DC}}(50 \Omega)
\end{gathered}
$$

For $5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{DC}} \leq 20 \mathrm{~mA}$

Optical

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:

$$
\mathrm{L}_{\mathrm{V}}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=\frac{\mathrm{I}_{\mathrm{V}}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{~m}^{2}\right)}
$$

$$
\mathrm{L}_{\mathrm{V}}(\text { footlamberts })=\frac{\pi \mathrm{I}_{\mathrm{V}}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{ft}^{2}\right)}
$$

Size of light emitting area $(A)=3.18 \mathrm{~mm} \times 5.72 \mathrm{~mm}$

$$
\begin{aligned}
& =18.19 \times 10^{-6} \mathrm{~m}^{2} \\
& =195.8 \times 10^{-6} \mathrm{ft}^{2}
\end{aligned}
$$

Mechanical

These light bar devices may be operated in ambient temperatures above $+50^{\circ} \mathrm{C}$ without derating when installed in a PC board configuration that provides a thermal resistance (junction to ambient) value less than $625^{\circ} \mathrm{C} / \mathrm{W}$.

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DI-15 or DE-15, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

10-Element Bar Graph Array Technical Data

Features

- Custom Multicolor Array Capability
- Matched LEDs for Uniform Appearance
- End Stackable
- Package Interlock Ensures Correct Alignment
- Low Profile Package
- Rugged Construction
- Large, Easily Recognizable Segments
- High ON-OFF Contrast, Segment to Segment
- Wide Viewing Angle
- Categorized for Luminous Intensity
- HDSP-4832/4836/4840/4850 Categorized for Dominant Wavelength

- HLCP-J100 Operates at

 Low Current Typical Intensity of 1.0 mcd at 1 mA Drive Current
Applications

- Industrial Controls
- Instrumentation
- Office Equipment
- Computer Peripherals
- Consumer Products

Description

These 10-element LED arrays are designed to display information in easily recognizable bar graph form. The packages are end stackable and therefore capable of displaying long strings of information. Use of these bar graph arrays eliminates the alignment, intensity, and color matching problems associated with discrete LEDs. The HDSP4820/4830/4840/4850 and HLCP-J100 each contain LEDs of one color. The HDSP-4832/ 4836 are multicolor arrays with High Efficiency Red, Yellow, and High Performance Green LEDs in a single package.

HDSP-4820
HLCP-J100
HDSP-4830
HDSP-4840
HDSP-4850
HDSP-4832
HDSP-4836

CUSTOM MULTICOLOR ARRAYS ARE AVAILABLE WITH MINIMUM DELIVERY REQUIREMENTS. CONTACT YOUR LOCAL DISTRIBUTOR OR HP SALES OFFICE FOR DETAILS.

Package Dimensions

Absolute Maximum Ratings ${ }^{[7]}$

Parameter	Red HDSP-4820	AlGaAs Red HLCP-J100	HER HDSP-4830	Yellow HDSP-4840	Green HDSP-4850
Average Power Dissipation per LED $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	63 mW	37 mW	87 mW	50 mW	105 mW
Peak Forward Current per LED	$150 \mathrm{~mA}^{[1]}$	$45 \mathrm{~mA}^{[2]}$	$90 \mathrm{~mA}^{[3]}$	$60 \mathrm{~mA}^{[3]}$	$90 \mathrm{~mA}^{[3]}$
DC Forward Current per LED	$30 \mathrm{~mA}^{[4]}$	$15 \mathrm{~mA}^{[4]}$	$30 \mathrm{~mA}^{[5]}$	$20 \mathrm{~mA}^{[5]}$	$30 \mathrm{~mA}^{[5]}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3.0 V	
Reverse Voltage per LED	3.0 V	5.0 V			
Lead Soldering Temperature $(1.59 \mathrm{~mm}(1 / 16$ inch $)$ below seating plane $)^{[6]}$					

Notes:

1. See Figure 1 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms .
2. See Figure 2 to establish pulsed operating conditions. Maximum pulse width is 1.5 ms .
3. See Figure 8 to establish pulsed operating conditions. Maximum pulse width is 2 ms .
4. Derate maximum DC current for Red above $\mathrm{T}_{\mathrm{A}}=62^{\circ} \mathrm{C}$ at $0.79 \mathrm{~mA}{ }^{\circ} \mathrm{C}$, and AlGaAs Red above $\mathrm{T}_{\mathrm{A}}=91^{\circ} \mathrm{C}$ at $0.8 \mathrm{~mA}^{\circ} \mathrm{C}$. See Figure 3.
5. Derate maximum DC current for HER above $T_{A}=48^{\circ} \mathrm{C}$ at $0.58 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$, Yellow above $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ at $0.66 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$, and Green above $\mathrm{T}_{\mathrm{A}}=37^{\circ} \mathrm{C}$ at $0.48 \mathrm{~mA} /^{\circ} \mathrm{C}$. See Figure 9.
6. Clean only in water, isopropanol, ethanol, Freon TF or TE (or equivalent), or Genesolve DI-15 (or equivalent).
7. Absolute maximum ratings for HER, Yellow, and Green elements of the multicolor arrays are identical to the HDSP-4830/4840/ 4850 maximum ratings.
8. Maximum component side temperature is $140^{\circ} \mathrm{C}$ during solder process.

Internal Circuit Diagram

Pin	Function	Pin	Function
1	Anode a	11	Cathode j
2	Anode b	12	Cathode i
3	Anode c	13	Cathode h
4	Anode d	14	Cathode g
5	Anode e	15	Cathode f
6	Anode f	16	Cathode e
7	Anode g	17	Cathode d
8	Anode h	18	Cathode c
9	Anode i	19	Cathode b
10	Anode j	20	Cathode a

Multicolor Array Segment Colors

Segment	HDSP-4832 Segment Color	HDSP-4836 Segment Color
a	HER	HER
b	HER	HER
c	HER	Yellow
d	Yellow	Yellow
e	Yellow	Green
f	Yellow	Green
g	Yellow	Yellow
h	Green	Yellow
i	Green	HER
j	Green	HER

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathbf{C}^{[4]}$

Red HDSP-4820

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED Unit Average) $^{[1]}$	I_{F}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	610	1250		$\mu \mathrm{~cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			655		nm
Dominant Wavelength ${ }^{[2]}$	λ_{d}			645		nm
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1.6	2.0	V
Reverse Voltage per LED ${ }^{[5]}$	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3	12		V
Temperature Coefficient V_{F} per LED	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{R}_{\text {J.PN }}$			300		${ }^{\circ} \mathrm{C} / \mathrm{W} / /$
LED						

AlGaAs Red HLCP-J100

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED						
(Unit Average) $^{[1]}$						

High-Efficiency Red HDSP-4830

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) $^{[1,4]}$	I_{V}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	900	3500		$\mu \mathrm{~cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			635		nm
Dominant Wavelength ${ }^{[2]}$	λ_{d}			626		nm
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		2.1	2.5	V
Reverse Voltage per LED ${ }^{[5]}$	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3	30		V
Temperature Coefficient V_{F} per LED	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{RO}_{\mathrm{JPN}}$			300		${ }^{\circ} \mathrm{C} / \mathrm{W} /$

Yellow HDSP-4840

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) $^{[1,4]}$	I_{v}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	600	1900		$\mu \mathrm{~cd}$
Peak Wavelength	$\lambda_{\text {pEAK }}$			583		nm
Dominant Wavelength ${ }^{[2,3]}$	λ_{d}		581	585	592	nm
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		2.2	2.5	V
Reverse Voltage per LED ${ }^{[5]}$	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3	40		V
Temperature Coefficient V_{F} per LED	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-RN }}$			300		${ }^{\circ} \mathrm{C} / \mathrm{W} /$
LED						

Green HDSP-4850

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity per LED (Unit Average) $^{[1,4]}$	I_{V}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	600	1900		$\mu \mathrm{~cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			566		nm
Dominant Wavelength						
Forward Voltage per LED	λ_{d}			571	577	nm
Reverse Voltage per LED ${ }^{[5]}$	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		2.1	2.5	V
Temperature Coefficient V_{F} per LED	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3	50	
Thermal Resistance LED Junction-to-Pin	$\mathrm{R}_{\mathrm{J} \cdot \mathrm{PN}}$			-2.0	V	

Notes:

1. The bar graph arrays are categorized for luminous intensity. The category is designated by a letter located on the side of the package.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
3. The HDSP-4832/-4836/-4840/-4850 bar graph arrays are categorized by dominant wavelength with the category designated by a number adjacent to the intensity category letter. Only the yellow elements of the HDSP-4832/-4836 are categorized for color.
4. Electrical/optical characteristics of the High-Efficiency Red elements of the HDSP-4832/-4836 are identical to the HDSP-4830 characteristics. Characteristics of Yellow elements of the HDSP-4832/-4836 are identical to the HDSP-4840. Characteristics of Green elements of the HDSP-4832/-4836 are identical to the HDSP-4850.
5. Reverse voltage per LED should be limited to 3.0 V max. for the HDSP-4820/4830/4840/4850/4832/4836 and 5.0 V max. for the HLCP-J100.

Red, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration - Red.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration - AlGaAs Red.

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 3. Maximum Allowable DC Current vs. Ambient Temperature. $\mathrm{T}_{\text {JMAX }}=100^{\circ} \mathrm{C}$ for Red and $\mathrm{T}_{\text {JMAX }}=110^{\circ} \mathrm{C}$ for AlGaAs Red.

I PEAK - PEAK SEGMENT CURRENT - mA
Figure 4. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Forward Current vs. Forward Voltage.

Figure 6. Relative Luminous Intensity vs. DC Forward Current Red.

Figure 7. Relative Luminous Intensity vs. DC Forward Current AlGaAs. Application Note 1005.

HER, Yellow, Green

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration - HER/Yellow/Green.

Figure 9. Maximum Allowable DC Current vs. Ambient Temperature. $\mathrm{T}_{\mathrm{JMAX}}=100^{\circ} \mathrm{C}$.

V_{F} - FORWARD VOLTAGE - V
Figure 11. Forward Current vs. Forward Voltage.

Figure 10. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

For a Detailed Explanation on the Use of Data Sheet Information and Recommended Soldering Procedures, See Application Note 1005.

Electrical/Optical

These versatile bar graph arrays are composed of ten light emitting diodes. The light from each LED is optically stretched to form individual elements. The Red (HDSP-4820) bar graph array LEDs use a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The AlGaAs Red (HLCP-J100) bar graph array LEDs use double heterojunction AlGaAs on a GaAs substrate. HER (HDSP-4830) and Yellow (HDSP-4840) bar graph array LEDs use a GaAsP epitaxial layer on a GaP substrate. Green (HDSP-4850) bar graph array LEDs use liquid phase GaP epitaxial layer on a GaP substrate. The multicolor bar graph arrays (HDSP-4832/4836) have HER, Yellow, and Green LEDs in one package.

These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 5 and 11. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation may be calculated using the following V_{F} MAX models:

Standard Red HDSP-4820 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \geq 5 \mathrm{~mA}$

AlGaAs Red HDSP-J100 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}$
HER (HDSP-4830) and Yellow
(HDSP-4840) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6+\mathrm{I}_{\text {Peak }}(45 \Omega)$
For: $5 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.75+\mathrm{I}_{\text {Peak }}(38 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}$
Green (HDSP-4850) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0+\mathrm{I}_{\text {Peak }}(50 \Omega)$
For: $I_{\text {Peak }}>5 \mathrm{~mA}$
Figures 4 and 10 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:
$\eta_{\text {peak }}$ is the relative efficiency at the peak current, scaled from Figure 4 or 10.
I_{v} DATA SHEET is the data sheet luminous intensity, resulting from I_{F} AVG DATA SHEET.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & \left(\mathrm{I}_{\mathrm{p}} \mathrm{AVG} / \mathrm{I}_{\mathrm{F}}\right. \text { AVG DATA } \\
& \text { SHEET })\left(\eta_{\text {peak }}\right)\left(\mathrm{I}_{\mathrm{v}}\right. \text { DATA } \\
& \text { SHEET })
\end{aligned}
$$

Where:
$\mathrm{I}_{\mathrm{v}} \mathrm{AVG}$ is the calculated time averaged luminous intensity resulting from $I_{F} A V G$.
$I_{F} A V G$ is the desired time averaged LED current.
I_{F} AVG DATA SHEET is the data sheet test current for I_{v} DATA SHEET.

For example, what is the luminous intensity of an HDSP4830 driven at 50 mA peak $1 / 5$ duty factor?

$$
\begin{aligned}
\mathrm{I}_{\mathrm{F}} \mathrm{AVG}= & (50 \mathrm{~mA})(0.2)= \\
& 10 \mathrm{~mA}
\end{aligned}
$$

I_{F} AVG DATA SHEET $=10 \mathrm{~mA}$
$\eta_{\text {Peak }}=1.3$
I_{v} DATA SHEET $=3500 \mu \mathrm{~cd}$
Therefore

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & (10 \mathrm{~mA} / 10 \mathrm{~mA}) \\
& (1.3)(3500 \mu \mathrm{~cd}) \\
= & 4550 \mu \mathrm{~cd}
\end{aligned}
$$

Features

- FIRMLY MOUNTS LIGHT BARS IN PANELS
- HOLDS LEGENDS FOR FRONT PANEL OR PC BOARD APPLICATIONS ${ }^{[1]}$
- ONE PIECE, SNAP-IN ASSEMBLY
- MATTE BLACK BEZEL DESIGN ENHANCES PANEL APPEARANCE
- FOUR SIZES AVAILABLE
- MAY BE INSTALLED IN A WIDE RANGE OF PANEL THICKNESSES
- PANEL HOLE EASILY PUNCHED OR MILLED

Description

This series of black plastic bezel mounts is designed to install Hewlett-Packard Light Bars in instrument panels ranging in thickness from 1.52 mm (0.060 inch) to 3.18 mm
(0.125 inch). A space has been provided for holding a 0.13 mm (0.005 inch) film legend over the light emitting surface of the light bar module.

Selection Guide

Panel and Legend Mount Part No. HLMP-	Corresponding Light Bar Module Part No. HLCP- HLMP-		Panel Hole Installation Dimensions ${ }^{[2]}$	Package Outline	
2598	B100	2350, 2450, 2550	7.62 mm (0.300 inch) $\times 22.86 \mathrm{~mm}$ (0.900 inch		B
2599	A100	2300, 2400, 2500	7.62 mm (0.300 inch) $\times 12.70 \mathrm{~mm}$ (0.500 inch)		A
2898	$\begin{aligned} & \hline \text { D100 } \\ & \text { C100 } \end{aligned}$	$\begin{aligned} & 2600,2700,2800 \\ & 2655,2755,2855 \\ & 2950,2965,2980 \end{aligned}$	$12.70 \mathrm{~mm}(0.500$ inch) $\times 12.70 \mathrm{~mm}$ (0.500 inch)	\square	C
2899	$\begin{aligned} & \text { E100 } \\ & \text { F100 } \\ & \text { G100 } \\ & \text { H100 } \end{aligned}$	$2620,2720,2820$ $2635,2735,2835$ $2670,2770,2870$ $2685,2785,2885$	12.70 mm (0.500 inch $\times 22.86 \mathrm{~mm}$ (0.900 inch)	\square	D

Notes:

1. Application Note 1012 addresses legend fabrication options.
2. Allowed hole tolerance: $+0.00 \mathrm{~mm},-0.13 \mathrm{~mm}$ (+0.000 inch, -0.005 inch). Permitted radius: $1.60 \mathrm{~mm}(0.063$ inch $)$.

Package Dimensions

NOTES: 1. DIMENSIONS IN MILLIMETRES (INCHES
2. UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.

Mounting Instructions

1. Mill ${ }^{[3 \mid}$ or punch a hole in the panel. Deburr, but do not chamfer, the edges of the hole.
2. Place the front of the mount against a solid, flat surface. A film legend with outside dimensions equal to the outside dimensions of the light bar may be placed in the mount or on the light bar light emitting surface. Press the light bar into the mount until the tabs snap over the back of the light bar[4]. When inserting the HLMP-2898, align the notched sides of the light bar with the mount sides which do not have the tabs). (See Figure 1)
3. Applying even pressure to the top of the mount, press the entire assembly into the hole from the front of the panel ${ }^{[5]}$. (See Figure 2)
NOTE: For thinner panels, the mount may be pressed into the panel first, then the light bar may be pressed into the mount from the back side of the panel.
Notes:
4. A $3.18 \mathrm{~mm}(0.125$ inch) diameter mill may be used.
5. Repetitve insertion of the light bar into mount may cause damage to the mount.
6. Repetitive insertion of the mount into the panel will degrade the retention force of the mount.

Suggested Punch Sources

Hole punches may be ordered from one of the following sources:

Danly Machine Corporation
Punchrite Division
15400 Brookpark Road
Cleveland, OH 44135
(216) 267-1444

Ring Division
The Producto Machine Company
Jamestown, NY 14701
(800) 828-2216

Porter Precision Products Company
12522 Lakeland Road
Santa Fe Springs, CA 90670
(213) 946-1531

Di-Acro Division
Houdaille Industries
800 Jefferson Street
Lake City, MN 55041
(612) 345-4571

Installation Sketches

Figure 1. Installation of a Light Bar into a Panel Mount

Figure 2. Installation of the Light Bar/Panel Mount Assembly into a Front Panel

Solid State Lamps

- AlGaAs Lamps
- General Purpose Lamps
- Special Purpose Lamps
- Lead Bend Options
- JAN Qualified Hermetic Lamps (pg 3-129)

Solid State Lamps

From General to Special Purpose Lamps, HewlettPackard continues to grow its LED lamp product offering. This year, HP expanded the AS AlGaAs product family with the introduction of new rectangular, $\mathrm{T} 1, \mathrm{~T}-13 / 4$, and subminiature lamps.

HP always strives to supply products with greater performance each year. To this effect, HP has introduced a new series of transparent substrate AlGaAs products, including the world's brightest LED, the HLMP-8150.

New packages are always an area of growth and importance to designers and HewlettPackard. Now, applications that require a high brightness light source can be addressed with HP's high power LED family. These LEDs have a superior optical performance due to the high tech package design. In addition, these parts are capable of being driven by higher currents than traditional LEDs and this results in more light output. Finally, designers will have a high reliability alternative to applications which traditionally required the brightness supplied by incandescent bulbs.

High Power TS AIGaAs Lamps

Device		Description			Typical Luminous Intensity	$2 \theta^{1 / 2}$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-8150	$\begin{gathered} \text { Red } \\ (637 \mathrm{~nm}) \end{gathered}$	T-4	Untinted Nondiffused	15.0 mcd @ 20 mA	4°	$\left\|\begin{array}{c} 1.85 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	3-30
	HLMP-8104	$\begin{array}{\|c\|} \hline \text { Red } \\ (637 \mathrm{~nm}) \end{array}$	T-1 $3 / 4$	Untinted Nondiffused	4.0 mcd @ 20 mA	$7{ }^{\circ}$	$\left\|\begin{array}{c} 1.85 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	3-34
	HLMP-8103				3.0 mcd @ 20 mA			
	HLMP-8102				2.0 mcd @ 20 mA			
	HLMP-8100				$\begin{aligned} & 0.7 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	24°		

High Intensity DH AIGaAs Lamps

Bold Type - New Product

High Intensity DH AIGaAs Lamps (Continued)

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-K101	AIGaAs Red (637 nm)	T-1	Tinted Diffused	45.0 mcd @ 20 mA	60°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	3-38
	HLMP-K105			Untinted Nondiffused	65.0 mcd @ 20 mA	45°		
	HLMP-R100		Rectangular	Tinted Diffused	7.5 mcd @ 20 mA	100°		3-83
\square 逈	HLMP-S100		$2 \mathrm{~mm} \times 5 \mathrm{~mm}$ Rectangular		7.5 mcd @ 20 mA	110°		3-87
	HLMP-P105		Flat Top Subminiature	Untinted Nondiffused	10.0 mcd @ 10 mA	125°	$\begin{gathered} 1.7 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	3-91
	HLMP-Q101		Subminiature	Tinted Diffused	45.0 mcd @ 20 mA	70°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-Q105			Untinted Nondiffused	55.0 mcd @ 10 mA	28°	$\begin{gathered} 1.7 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	

Low Current DH AIGaAs Lamps

Low Current DH AIGaAs Lamps (Continued)

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outine Drawing	Part No.	Color	Package	Lens				
	HLMP-K150	$\begin{gathered} \text { AIGaAs } \\ \text { Red } \\ (637 \mathrm{~nm}) \end{gathered}$	T-1	Tinted Diffused	$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 1 \mathrm{~mA} \end{aligned}$	60°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 1 \mathrm{~mA} \end{gathered}$	3-42
	HLMP-K155			Untinted Nondiffused	$\begin{aligned} & 3.0 \mathrm{mcd} \\ & @ 1 \mathrm{~mA} \end{aligned}$	45°		
	HLMP-Q150		Subminiature	Tinted Diffused	$\begin{aligned} & 1.8 \mathrm{mcd} \\ & @ 1 \mathrm{~mA} \end{aligned}$	70°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 1 \mathrm{~mA} \end{gathered}$	3-91
	HLMP-Q155			Untinted Nondiffused	$\begin{aligned} & \hline 4.0 \mathrm{mcd} \\ & @ 1.0 \mathrm{~mA} \end{aligned}$	28°		

Very High Intensity AIGaAs Lamps

Device		Description			Typical Luminous Intensity	$2 \theta^{1 / 2}$	Typical Forward Voltage	$\begin{array}{\|c} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-4100	AIGaAs Red (637 nm)	T-1 3/4	Untinted Nondiffused	$\begin{aligned} & 750.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	8°	$\left\|\begin{array}{c} 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	3-46
	HLMP-4101				$\begin{gathered} 1000.0 \mathrm{mcd} \\ @ 20 \mathrm{~mA} \end{gathered}$			

[^5]Ultrabright Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{array}{\|c} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-3750	High Efficiency Red (626 nm)	T-1 3/4	Untinted Non-diffused	125.0 mcd @ 20 mA	24°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	$3-50$
	HLMP-3850	Yellow (585 nm)			140.0 mcd @ 20 mA		$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	
	HLMP-3950	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			120.0 mcd @ 20 mA		$\left.\begin{array}{\|c\|} \hline 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array} \right\rvert\,$	
	HLMP-3390	High Efficiency Red (626 nm)	T-1 $3 / 4$ Low Profile	UntintedNon-diffused	55.0 mcd @ 20 mA	32°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-3490	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$					$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-3590	Green $(569 \mathrm{~nm})$					$\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-1340	High Efficiency Red (626 nm)	T-1	Untinted Non-diffused	$45.0 \mathrm{mcd}$$\text { @ } 20 \mathrm{~mA}$	45°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-1440	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$					$\begin{array}{\|c\|} \hline 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}$	
	HLMP-1540	Green (569 nm)					$\left.\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered} \right\rvert\,$	

Low Current Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-4700	High Etficiency Red (626 nm)	T-1 3/4	Tinted Diffused	$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 2 \mathrm{~mA} \end{aligned}$	50°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	3-54
	HLMP-4719	Yellow (585 nm)			1.8 mcd @ 2 mA		1.9 V @ 2 mA	
	HLMP-4740	Green $(569 \mathrm{~nm})$			1.8 mcd @ 2 mA		$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
(5)	HLMP-1700	High Efficiency Red (626 nm)	T-1	Tinted Diffused	$\begin{aligned} & 1.8 \mathrm{mcd} \\ & @ 2 \mathrm{~mA} \end{aligned}$	50°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
	HLMP-1719	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			1.6 mcd @ 2 mA		$\begin{array}{\|c\|} \hline 1.9 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{array}$	
	HLMP-1790	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			1.6 mcd @ 2 mA		$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
$\begin{aligned} & \square=\square \\ & =\square=\square \end{aligned}$	HLMP-7000	High Efficiency Red (626 nm)	Subminiature	Tinted Diffused	0.8 mcd @ 2 mA	90°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	3-9
	HLMP-7019	Yellow (585 nm)			0.6 mcd @ 2 mA		$\begin{gathered} 1.9 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
	HLMP-7040	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			0.6 mcd @ 2 mA		$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	

High Intensity T-1 3/4 Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-3315	High Efficiency Red $(626 \mathrm{~nm})$		Tinted Nondiffused	40.0 mcd @ 10 mA	35°	$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	3-58
	HLMP-3316				60.0 mcd @ 10 mA			
	HLMP-3415	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			40.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3416				50.0 mcd @ 10 mA			
	HLMP-3517	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			50.0 mcd @ 10 mA	24°	$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3519				70.0 mcd @ 10 mA			

Diffused (Wide Angle) T-1 3/4 Lamps

Device		Description			Typical Luminous Intensity	$2 \theta^{1 / 2}$	Typical Forward Voltage	$\begin{array}{\|c} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-3300	High Efficiency Red (626 nm)	T-1 3/4		3.5 mcd @ 10 mA	60°	$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	3-62
	HLMP-3301				7.0 mcd @ 10 mA			
	HLMP-3762				12.0 mcd @ 10 mA			
	HLMP-D400	$\begin{gathered} \text { Orange } \\ (602 \mathrm{~nm}) \end{gathered}$			3.5 mcd @ 10 mA		$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-D401				7.0 mcd @ 10 mA			
	HLMP-3400	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			4.0 mcd @ 10 mA	60°	$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-3401				8.0 mcd @ 10 mA			
	HLMP-3862				$\begin{aligned} & 12.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-3502	Green (569 nm)			$\begin{aligned} & 2.4 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	60°	$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3507				$\begin{aligned} & 5.2 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-3962				$\begin{aligned} & 11.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			

High Intensity T-1 3/4 Low Profile Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	$$	Lens				
	HLMP-3365	High Efficiency Red (626 nm)	T-1 3/4 Low Profile	Tinted NonDiffused	10.0 mcd @ 10 mA	45°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	3-66
	HLMP-3366				18.0 mcd @ 10 mA			
	HLMP-3465	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			12.0 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3466				18.0 mcd @ 10 mA			
	HLMP-3567	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			7.0 mcd @ 10 mA	40°	$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3568				$\begin{aligned} & 15.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			

Diffused (Wide Angle) T-1 3/4 Low Profile Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-3200	$\begin{array}{\|c\|} \hline \text { Red } \\ (640 \mathrm{~nm}) \end{array}$	T-1 3/4 Low Profile	Tinted Diffused	2.0 mcd @ 20 mA	60°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	3-66
	HLMP-3201				4.0 mcd @ 20 mA			
	HLMP-3350	$\begin{array}{\|c} \text { High } \\ \text { Efficiency } \\ \text { Red } \\ (626 \mathrm{~nm}) \end{array}$			$\begin{aligned} & 3.5 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	50°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3351				7.0 mcd @ 10 mA			
	HLMP-3450	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3451				$\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-3553	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			$\begin{aligned} & 3.2 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-3554				$\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			

Standard Red T-1 3/4 Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{array}{\|l\|l} \hline \text { Page } \\ \text { No. } \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-3000	$\begin{gathered} \text { Red } \\ (648 \mathrm{~nm}) \end{gathered}$	T-1 3/4	Tinted Diffused	$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	60°	$\left\|\begin{array}{c} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	3-71
	HLMP-3001				$\begin{aligned} & 4.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			
	HLMP-3002				2.0 mcd @ 20 mA			
	HLMP-3003				4.0 mcd @ 20 mA			
~号吅	HLMP-3050			Tinted NonDiffused	$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	24°		

T-1 3/4 Mounting Hardware

Device			Page Package Outline Drawing
Part No.		Description	$3-128$
	HLMP-0103	Mounting Clip and Ring for T-1 3/4 Lamps	

T-1 High Intensity Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outine Drawing	Part No.	Color	Package	Lens				
	HLMP-1320	High Efficiency Red (626 nm)	T-1	Untinted Nondifused	$\begin{aligned} & 12.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	45°	$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	3-73
	HLMP-1321			Tinted Nondiffused				
	HLMP-1420	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$		Untinted Nondiffused	12.0 mcd @ 10 mA		$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-1421			Tinted Nondiffused				
	HLMP-1520	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$		Untinted Nondiffused	$\begin{aligned} & 12.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$		$\left\|\begin{array}{c} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-1521			Tinted Nondiffused				

T-1 Diffused (Wide Angle) Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	Page No.
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-1300	High Efficiency	T-1	Tinted Diffused	5.0 mcd @ 10 mA	60°	$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	3-77
	HLMP-1301	(626 nm)			5.5 mcd @ 10 mA			
	HLMP-1302				7.0 mcd @ 10 mA			
	HLMP-1385				10.0 mcd @ 10 mA			
	HLMP-K400	Orange (602 nm)			4.0 mcd @ 10 mA		$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-K401				5.0 mcd @ 10 mA			
	HLMP-K402				6.5 mcd @ 10 mA			

T-1 Diffused (Wide Angle) Lamps (Continued)

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{array}{\|l\|} \hline \text { Page } \\ \text { No. } \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
(2)	HLMP-1400	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$	T-1	Tinted Diffused	5.0 mcd @ 10 mA	60°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	3-77
	HLMP-1401				6.0 mcd @ 10 mA			
	HLMP-1402				7.0 mcd @ 10 mA			
	HLMP-1485				10.0 mcd @ 10 mA			
	HLMP-1503	Green (569 nm)			5.0 mcd @ 10 mA		$\left\|\begin{array}{c} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-1523				7.0 mcd @ 10 mA			
	HLMP-1585				8.5 mcd @ 10 mA			

T-1 Standard Red Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	$\begin{array}{\|c} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-1000	$\begin{array}{\|c} \text { Red } \\ (648 \mathrm{~nm}) \end{array}$	T-1	Tinted Diffused	$\begin{gathered} 1.0 \mathrm{mcd} \\ @ 20 \mathrm{~mA} \end{gathered}$	60°	1.6 V$@ 20 \mathrm{~mA}$	3-81
	HLMP-1002				$\begin{aligned} & 2.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			
	HLMP-1080			Untinted Diffused	$\begin{aligned} & 1.5 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			
	HLMP-1071			Untinted Non-Diffused	2.0 mcd @ 20 mA	45°	$\begin{array}{\|c\|} \hline 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}$	
	HLMP-1200		T-1 Low Profile	Untinted Non-Diftused	1.0 mcd @ 20 mA	55°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-1201				2.5 mcd @ 20 mA			

T-1 Low Profile Diffused Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	$\begin{array}{\|l\|} \hline \text { Page } \\ \text { No. } \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-1350	High Efficiency Red (626 nm)	T-1 Low Profile	Tinted Diffused	2.0 mcd @ 10 mA	55°	$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	*
	HLMP-1450	Yellow (585 nm)					$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-1550	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$					$\left\|\begin{array}{c} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	

*Contact your local Sales Representative for information regarding this product. (See Section 9.)

Rectangular Lamps

Device		Description			Typical Luminous Intensity	$2 \theta^{1 / 2}$	Typical Forward Voltage	$\begin{array}{\|c\|} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-R100	DH AIGaAs Red (637 nm)	Rectangular	Tinted Diffused	7.5 mcd @ 20 mA	100°	$\begin{array}{c\|} \hline 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}$	3-83
	HLMP-0300	High Efficiency			2.5 mcd @ 20 mA		$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	
	HLMP-0301	(626 nm)			5.0 mcd @ 20 mA			
	HLMP-0400	Yellow (585 nm)			2.5 mcd @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-0401				5.0 mcd @ 20 mA			
	HLMP-0503	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			2.5 mcd @ 20 mA		$\left\|\begin{array}{c} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	
	HLMP-0504				5.0 mcd @ 20 mA			

Bold Type - New Product
$2 \mathrm{~mm} \times 5 \mathrm{~mm}$ Rectangular Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	$\begin{array}{\|l\|} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-S100	DH AIGaAs Red (637 nm)	$2 \mathrm{~mm} \times 5 \mathrm{~mm}$ Rectangular	Tinted Diffused	7.5 mcd @ 20 mA	110°	$\begin{array}{\|c\|} \hline 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}$	3-87
	HLMP-S200	High Efficiency			3.5 mcd @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-S201	(626 nm)			4.8 mcd @ 20 mA			
	HLMP-S400	Orange (602 nm)			3.5 micu @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-S401				4.8 mcd @ 20 mA			
	HLMP-S300	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			2.1 mcd @ 20 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-S301				3.5 mcd @ 20 mA			
	HLMP-S500	Green (569 nm)			4.0 mcd @ 20 mA		$\begin{gathered} 2.3 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-S501				5.8 mcd @ 20 mA			

Bold Type - New Product

Subminiature Flat Top Lamps

Device		Description			Typical Luminous Intensity	$2 \theta^{1 / 2}$	Typical Forward Voltage	$\begin{array}{\|c} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-P005	Standard Red (640 nm)	Flat Top Subminiature	Untinted Non-diffused	2.5 mcd @ 10 mA	125°	$\begin{array}{c\|} \hline 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}$	3-91
	HLMP-P105	$\begin{gathered} \text { DH } \\ \text { AIGaAs } \\ \text { Red } \\ (637 \mathrm{~nm}) \end{gathered}$			45.0 mcd @ 20 mA		$\begin{gathered} 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-P205	High Efficiency Red (626 nm)			5.0 mcd @ 10 mA		$\begin{gathered} 1.8 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-P405	Orange (602 nm)			4.0 mcd @ 10 mA		$\left.\begin{gathered} 1.9 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered} \right\rvert\,$	
	HLMP-P305	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			4.0 mcd @ 10 mA		$\begin{gathered} 2.0 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-P505	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			5.0 mcd @ 10 mA		$\left.\begin{gathered} 2.0 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered} \right\rvert\,$	

[^6]Subminiature Diffused Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{array}{\|l\|} \hline \text { Page } \\ \text { No. } \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
$\begin{aligned} & \square \square \square \\ & \square \square \end{aligned}$	HLMP-6000	Standard Red (640 nm)	Subminiature	Tinted Diffused	1.2 mcd @ 10 mA	90°	$\left\|\begin{array}{c} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	3-91
	HLMP-6001				3.2 mcd @ 10 mA		$\left\|\begin{array}{c} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-Q101	$\begin{array}{\|c} \text { DH } \\ \text { AIGaAs } \\ \text { Red } \\ (637 \mathrm{~nm}) \end{array}$			45.0 mcd @ 20 mA		$\begin{gathered} 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HiLimp-63000	High Efficiency Red (626 nm)			3.0 mcd @ 10 mA		$\left\|\begin{array}{c} 1.8 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-Q400	$\begin{aligned} & \text { Orange } \\ & (602 \mathrm{~nm}) \end{aligned}$			3.0 mcd @ 10 mA		$\left\|\begin{array}{c} 1.9 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-6400	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			3.0 mcd @ 10 mA		$\left.\begin{gathered} 2.0 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered} \right\rvert\,$	
	HLMP-6500	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			3.0 mcd @ 10 mA		$\left.\left\lvert\, \begin{array}{c} 2.0 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right.\right)$	

Subminiature Nondiffused Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens				
$\begin{aligned} & \square \square \\ & \square \square=\Omega \end{aligned}$	HLMP-Q105	$\begin{gathered} \text { DH } \\ \text { AIGaAs } \\ \text { Red } \\ (637 \mathrm{~nm}) \end{gathered}$	Subminiature	Untinted Non-diffused	55.0 mcd @ 20 mA	28°	$\begin{gathered} 1.8 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	3-91
	HLMP-6305	High Efficiency Red (626 nm)			12.0 mcd @ 10 mA		$\left\|\begin{array}{c} 1.8 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-6405	$\begin{array}{\|c} \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$			12.0 mcd @ 10 mA		$\left.\begin{gathered} 2.0 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered} \right\rvert\,$	
	HLMP-6505	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			12.0 mcd @ 10 mA		$\left\|\begin{array}{c} 2.0 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	

Subminiature Low Current Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{array}{\|l} \hline \text { Page } \\ \text { No. } \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
$\begin{aligned} & \square=\square \\ & =\square=\square \end{aligned}$	HLMP-Q150	DH AIGaAs	Subminiature	Tinted Diffused	$\begin{gathered} 1.8 \mathrm{mcd} \\ @ 1.0 \mathrm{~mA} \end{gathered}$	90°	$\left\|\begin{array}{c} 1.6 \mathrm{~V} \\ @ 1.0 \mathrm{~mA} \end{array}\right\|$	3-91
	HLMP-Q155	(637 nm)		Untinted Nondiffused	$\begin{gathered} 4.0 \mathrm{mcd} \\ @ 1.0 \mathrm{~mA} \end{gathered}$	28°		
	HLMP-7000	High Efficiency Red (626 nm)		Tinted Diffused	$\begin{gathered} 0.8 \mathrm{mcd} \\ @ 2.0 \mathrm{~mA} \end{gathered}$	90°	$\begin{aligned} & 1.8 \mathrm{~V} @ \\ & 10.0 \mathrm{~mA} \end{aligned}$	
	HLMP-7019	$\begin{array}{\|c} \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$			$\begin{gathered} 0.6 \mathrm{mcd} \\ @ 2.0 \mathrm{~mA} \end{gathered}$		$\begin{aligned} & 2.0 \mathrm{~V} @ \\ & 10.0 \mathrm{~mA} \end{aligned}$	
	HLMP-7040	Green			0.6 mcd		2.0 V @	

Bold Type - New Product

Subminiature Resistor Lamps

Device		Description			Typical Luminous Intensity	201/2	Typical Forward Current	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens				
$\begin{align*} & \square \square \square \\ & \square \square \end{align*}$	HLMP-6600	High Efficiency	Subminiature Resistor	Tinted Diffused	$\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 5.0 \mathrm{~V} \end{aligned}$	90°	$\begin{aligned} & 9.6 \mathrm{~mA} \\ & @ 5.0 \mathrm{~V} \end{aligned}$	3-91
	HLMP-6620	(626 nm)			$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5.0 \mathrm{~V} \end{aligned}$	
	HLMP-6700	$\begin{array}{\|l\|} \hline \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}$			$\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 9.6 \mathrm{~mA} \\ & @ 5.0 \mathrm{~V} \end{aligned}$	
	HLMP-6720				$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5.0 \mathrm{~V} \end{aligned}$	
	HLMP-6800	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			5.0 mcd @ 5.0 V		$\begin{aligned} & 9.6 \mathrm{~mA} \\ & @ 5.0 \mathrm{~V} \end{aligned}$	
	HLMP-6820				$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.5 \mathrm{~mA} \\ & @ 5.0 \mathrm{~V} \end{aligned}$	

Subminiature Lamp Arrays

Device		Description				Typical Luminous Intensity	$2 \theta^{1 / 2}$	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No } \end{gathered}$
Package Outline Drawing	Part No.	Color	Packa		Lens				
	HLMP-6203 HLMP-6204 HLMP-6205 HLMP-6206 HLMP-6208	$\begin{gathered} \text { Red } \\ (640 \mathrm{~nm}) \end{gathered}$	Array \dagger		Tinted Diffused	$\begin{aligned} & 1.2 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	90°	$\left\|\begin{array}{c} 1.6 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	3-91
	HLMP-6653 HLMP-6654 HLMP-6655 HLMP-6656 HLMP-6658	High Efficiency Red (626 nm)			3.0 mcd @ 10 mA	$\left\|\begin{array}{c} 1.8 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$			
	HLMP-6753 HLMP-6754 HLMP-6755 HLMP-6756 HLMP-6758	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$				$\left\|\begin{array}{c} 2.0 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$			
	HLMP-6853 HLMP-6854 HLMP-6855 HLMP-6856 HLMP-6858	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$				$\left\|\begin{array}{c} 2.0 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$			

\dagger Array length

Lead Bend Options, Subminiature Lamps

Bicolor Solid State Lamps

Bold Type - New Product

T-13/4 and T-1 Integrated Resistor Lamps

Device		Description			Typical Luminous Intensity	$2 \theta^{1 / 2}$	Typical Forward Current	$\begin{array}{\|c\|} \hline \text { Page } \\ \text { No. } \\ \hline \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-3105	$\begin{gathered} \text { Red } \\ (648 \mathrm{~nm}) \end{gathered}$	T-1 3/4	Tinted Diffused	$\begin{aligned} & 3.0 \mathrm{mcd} \\ & @ \\ & \mathrm{~V} \text { V } \end{aligned}$	60°	$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	3-115
	HLMP-3112				3.0 mcd @ 12 V		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-3600	High Efficiency Red (626 nm)			$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-3601				$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-3650	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-3651				$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-3680	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-3681				$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-1100	$\begin{gathered} \text { Red } \\ (648 \mathrm{~nm}) \end{gathered}$	T-1	Tinted Diffused	$\begin{aligned} & 2.5 \mathrm{mcd} \\ & \text { @ } 5 \mathrm{~V} \end{aligned}$	60°	$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1120			Untinted Diffused				
	HLMP-1600	High Efficiency Red (626 nm)		Tinted Diffused	$8.0 \mathrm{mcd}$ $\text { @ } 5 \text { V }$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1601				$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-1620	$\begin{aligned} & \text { Yellow } \\ & (585 \mathrm{~nm}) \end{aligned}$			8.0 mcd @ 5 V		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1621				8.0 mcd @ 12 V		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-1640	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 12 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1641				$\begin{aligned} & 8.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	

2 mm Round Flat Top Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	PageNo
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-1800	High Efficiency	2 mm Flat Top, Round Emitting	Tinted Diffused	1.8 mcd @ 10 mA	140°	$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	*
	HLMP-1801	(626 nm)			$\begin{gathered} 2.9 \mathrm{mcd} \\ @ 10 \mathrm{~mA} \end{gathered}$			
	HLMP-1819	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			1.5 mcd @ 10 mA		$\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered}$	
	HLMP-1820				2.5 mcd @ 10 mA			
	HLMP-1840	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			2.0 mcd @ 10 mA		$\begin{array}{\|c\|} \hline 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}$	
	HLMP-1841				3.0 mcd @ 10 mA			
	HLMP-1740 (Low Current)	High Efficiency Red (626 nm)			0.5 mcd @ 2 mA		$\begin{gathered} 1.8 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	
	HLMP-1760 (LOW Current)	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			$\begin{aligned} & 0.4 \mathrm{mcd} \\ & @ 2 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 1.9 \mathrm{~V} \\ @ 2 \mathrm{~mA} \end{gathered}$	

*Contact your local Sales Representative for information regarding this product. (See Section 9.)

2 mm Round Integrated Resistor Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-1660	High Efficiency Red	2 mm Flat Top, Round Emitting Surface	Tinted Diffused	$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$	140°	$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1661				$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-1674	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1675				$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 13 \mathrm{~mA} \\ & @ 12 \mathrm{~V} \end{aligned}$	
	HLMP-1687	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10 \mathrm{~mA} \\ & @ 5 \mathrm{~V} \end{aligned}$	
	HLMP-1688				$\begin{aligned} & 1.0 \mathrm{mcd} \\ & @ 12 \mathrm{~V} \end{aligned}$		13 mA @ 12 V	

2 mm Square Flat Top Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	$\begin{array}{\|l\|} \hline \text { Page } \\ \text { No. } \end{array}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-L250	High Efficiency	2 mm Flat Top, Square Emiting	Tinted Diffused	1.8 mcd @ 10 mA	140°	$\left.\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered} \right\rvert\,$	*
	HLMP-L251	(626 nm)			2.9 mcd @ 10 mA			
	HLMP-L350	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			1.5 mcd @ 10 mA		$\left.\begin{gathered} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{gathered} \right\rvert\,$	
	HLMP-L351				2.5 mcd @ 10 mA			
	HLMP-L550	$\begin{gathered} \text { Green } \\ (569 \mathrm{~nm}) \end{gathered}$			$\begin{aligned} & 2.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$		$\left\|\begin{array}{c} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-L551				3.0 mcd @ 10 mA			

*Contact your local Sales Representative for information regarding this product. (See Section 9.)

4 mm Round Flat Top Lamps

Device		Description			Typical Luminous Intensity	$2 \theta 1 / 2$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	HLMP-M200	High Efficiency Red (626 nm)	4 mm Flat Top	Tinted Diffused	5.0 mcd @ 20 mA	135°	$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	*
	HLMP-M201				7.0 mcd @ 20 mA			
	HLMP-M250			Tinted Non-Diffused	$\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	80°		
	HLMP-M251				7.0 mcd @ 10 mA			
	HLMP-M300	Yellow (585 nm)		Tinted Diffused	$\begin{aligned} & 5.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	135°	$\left\|\begin{array}{c} 2.2 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-M301				$\begin{aligned} & 7.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$			
	HLMP-M350			Tinted Non-Diffused	5.0 mcd @ 10 mA	80°		
	HLMP-M351				$\begin{aligned} & 7.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$			
	HLMP-M500	Green (569 nm)		Tinted Diffused	7.0 mcd @ 20 mA	135°	$\left\|\begin{array}{c} 2.3 \mathrm{~V} \\ @ 10 \mathrm{~mA} \end{array}\right\|$	
	HLMP-M501				10.0 mcd @ 20 mA			
	HLMP-M550			Tinted Non-Diffused	$\begin{aligned} & 10.0 \mathrm{mcd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	80°		
	HLMP-M551				16.0 mcd @ 10 mA			

*Contact your local Sales Representative for information regarding this product. (See Section 9.)

Right Angle Lamp Options

Device		Description	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Package Outline Drawing	Option No.		
	010	T-1 3/4 Rt. Angle, Leads Sheared Even	3-123
	100	T-1 3/4 Rt. Angle, Leads Sheared Uneven	
	101	T-1 Rt. Angle, Leads Sheared Even	3-125
	010	T-1 Rt. Angle, Leads Sheared Uneven	
	102	T-1 Rt. Angle, 2 Element Array	3-126
	103	T-1 Rt. Angle, 3 Element Array	
	104	T-1 Rt. Angle, 4 Element Array	
	105	T-1 Rt. Angle, 5 Element Array	
	106	T-1 Rt. Angle, 6 Element Array	
	107	T-1 Rt. Angle, 7 Element Array	
	108	T-1 Rt. Angle, 8 Element Array	
	010	Subminiature Rt. Angle, Leads Sheared Even	3-127

Tape and Reel Lamp Options

Device			Description
Package Outine Drawing	Option No.		Page No.
	001	T-1 $3 / 4,5 \mathrm{~mm}(0.197 \mathrm{in})$ Formed Leads, 1300 Lamps per Reel	$3-119$
	002	T-1 $3 / 4,2.54 \mathrm{~mm}(0.100 \mathrm{in})$ Formed Leads, 1300 Lamps per Reel	
	001	$\mathrm{~T}-1,5 \mathrm{~mm}(0.197 \mathrm{in})$ Formed Leads, 1800 Lamps per Reel	

Intensity Selected Lamps

$\left.$| Device | | | Description |
| :---: | :---: | :--- | :---: | | Page |
| :---: |
| No. | \right\rvert\,

Emitter Components

Device		Description	Features	Page No.
Package Outline Drawing	Part No.			
	HEMT-6000	700 nm High Intensity Subminiature Emitter	- Visible (Near IR) emission facilitates alignment. - Compatible with most silicon phototransistors and photodiodes.	*
	HEMT-3301	940 nm T-1 3/4 High Radiant Emitter	- Efficiency at Low Currents - Radiated spectrum matches response of silicon photodetectors - Non-saturated, high radiant flux output	
	HEMT-1001	940 nm T-1 High Radiant Emitter		

T-1 3/4 Mounting Hardware

Device			Page Package Outline Drawing
	Part No.		Noscription

*Contact your local Sales Representative for information regarding this product. (See Section 9.)
Hermetic Lamps Selection Gude (see page 3-131).

High Power T-4 ($\mathbf{1 3 . 3} \mathbf{~ m m}$) TS AlGaAs Red Lamp

Technical Data

HLMP-8150 15 Candela

Features

- 15 Candelas at 20 mA
- Outstanding LED Material Efficiency
- High Light Output Over a Wide Range of Drive Currents
- 4° Viewing Angle
- Low Forward Voltage
- Low Power Dissipation
- CMOS/MOS Compatible
- Red Color

Applications

- Emitter for Emitter/ Detector Applications
- Power Signaling
- Bright Ambient Lighting Conditions
- Bar Code Readers
- Replacement for a Low Power Laser

Description

This untinted, nondiffused solid state lamp utilizes a highly optimized LED material, transparent substrate aluminum gallium arsenide, TS AlGaAs. This material has outstanding light output efficiency over a wide range of currents, and has superior high current capability to most other LED materials. The
lamp design utilizes advanced optical methods to enable extremely high peak intensity and a very narrow viewing angle. The LED color is red at a dominant wavelength of 637 nm .

Package Dimensions

Notes: 1. All dimensions are in millimetres (inches).
2. The leads are mild steel. solder dipped.
3. An epoxy meniscus may extend about $1 \mathrm{~mm}\left(0.040{ }^{\circ}\right)$ down the leads.

Axial Luminous Intensity and Viewing Angle at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Minimum Intensity (cd) © 20 mA	Typical Intensity (cd) © 20 mA	Maximum Intensity (cd) © 20 mA	Typical Radiant Intensity (mW/sr) © 20 mA	$\begin{gathered} 2 \theta_{1 / 2}{ }^{[1]} \\ \text { (degrees) } \end{gathered}$
8.0	15.0	36.0	176	4.0

Note. 1. $\theta_{1 / 2}$ is the off axis angle from optical centerline where the luminous intensity is $1 / 2$ the on-axis value.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Peak Forward Current ${ }^{[1,2]} . ~ 300 ~ m A ~$
Average Forward Current ($@_{\text {PEAK }}=300 \mathrm{~mA}$) ${ }^{[2]}$......................... 15 mA
DC Forward Current ${ }^{[3]}$.. 50 mA
Power Dissipation .. 130 mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$) ... 8 V
Transient Forward Current ($10 \mu \mathrm{~s}$ Pulse) ${ }^{[4]} \ldots .500 \mathrm{~mA}$
Operating Temperature Range -55 to $+100^{\circ} \mathrm{C}$
Storage Temperature Range ... -55 to $+100^{\circ} \mathrm{C}$

Lead Soldering Temperature

[1.6 mm (0.063 in .) from body] \qquad $260^{\circ} \mathrm{C}$ for 5 seconds

Notes:

1. Maximum $\mathrm{I}_{\text {PEAK }}$ at $\mathrm{f}=1 \mathrm{kHz}, \mathrm{DF}=5 \%$.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents above the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at T $\mathbf{A}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Description	Symbol	Min	Typ	Max	Units	Test Condition
Forward Voltage	V_{F}		1.85	2.4	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Voltage	V_{R}	8.0	20.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Peak Wavelength	$\lambda_{\text {PEAK }}$		650		nm	
Dominant Wavelength ${ }^{[1]}$	λ_{d}		637		nm	
Spectral Line Halfwidth	$\Delta \lambda 1 / 2$		22		nm	
Speed of Response	τ_{s}		45		ns	Exponential Time Constant, $\mathrm{e}^{-\psi \tau_{\mathrm{s}}}$
Capacitance						$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
Thermal Resistance	$\mathrm{R} \theta_{\text {JPIN }}$		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction-to-Anode Lead
Luminous Efficacy ${ }^{[2]}$	η_{v}		85		$\mathrm{~lm} / \mathrm{W}$	

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is luminous efficacy in lumens/watt.
3. The approximate total luminous flux output within a cone angle of 2θ about the optical axis may be obtained from the following formula:
$\phi_{\mathrm{v}} 2(\theta)=\left[\phi_{\mathrm{v}}(\theta) \mathrm{I}_{\mathrm{v}}(0)\right] \mathrm{I}_{\mathrm{v}} ;$
Where: $\phi_{\mathrm{v}}(\theta) / \mathrm{I}_{\mathrm{v}}(0)$ is obtained from Figure 7.

Figure 1. Relative Intensity vs.Wavelength.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

TA-AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

Figure 5. Maximum Forward DC Current vs.Ambient Temperature.
Derating Based on $\mathrm{T}_{\mathbf{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$.

Figure 2. Forward Current vs.Forward Voltage.

Figure 4. Relative Efficiency vs. Peak Forward Current.

Figure 6. Maximum Average Current vs. Peak Forward Current. Refresh Rate $=1 \mathbf{k H z}$.

Figure 7. Relative Luminous Intensity vs. Angular Displacement, HLMP-8150.

High Power T-1 3/4 (5 mm) TS AlGaAs Red Lamps

Technical Data

Features

- Exceptional Brightness
- Outstanding LED Material Efficiency
- High Light Output Over a Wide Range of Drive Currents
- Viewing Angle: Narrow or Wide
- Low Forward Voltage
- Low Power Dissipation
- CMOS/MOS Compatible
- Red Color

Applications

- Signaling Applications
- Emitter for Emitter/ Detector Applications
- Moving Message Signs
- Bright Ambient Lighting Conditions
- Automotive Lighting
- Medical Instruments
- Bar Code Readers
- Low Power Laser Replacement
- Alternative to Incandescent Lighting

Description

These untinted, nondiffused solid state lamps utilize a highly optimized LED material, transparent substrate aluminum gallium arsenide, TS AlGaAs. This material has outstanding light output efficiency over a wide range of currents, and has superior high current capability
compared to most other LED materials. The lamp design utilizes advanced optical methods to enable extremely high peak intensity and a very narrow viewing angle. The LED color is red at a dominant wavelength of 637 nm .

HLMP-8104 4 Candela HLMP-8103 3 Candela HLMP-8102 2 Candela HLMP-8100 Wide Angle

Package Dimensions

HLMP-8104/8103/8102

HLMP-8100

Notes: 1. All Dimensions are in millimetres (inches).
2. The leads are mild steel. solder dipped.
3. An epoxy meniscus may extend about $1 \mathrm{~mm}\left(0.040{ }^{\circ}\right)$ down the leads.

Axial Luminous Intensity and Viewing Angle at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Part Number HLMP-	Minimum Intensity (cd) @ 20 mA	Typical Intensity (cd) @ 20 $\mathbf{~ M A ~}$	Maximum Intensity (cd) @ 20 mA	Typical Radiant Intensity (mW/sr) @ 20 mA	$\mathbf{2} \theta_{1 / 2}^{[1]}$ Degrees
8104	2.9	4.0	8.4	47.1	7
8103	2.0	3.0	5.8	35.3	7
8102	1.4	2.0	4.0	23.5	7
8100	0.29	0.7	2.0	11.8	24

Note:

1. $\theta_{1 / 2}$ is the off axis angle from optical centerline where the luminous intensity is $1 / 2$ the on-axis value.Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Peak Forward Current ${ }^{[1,2]}$ 300 mA
Average Forward Current (@ $\mathrm{I}_{\text {PEAK }}=300 \mathrm{~mA}$) ${ }^{[2]}$ 15 mA
DC Forward Current ${ }^{[3]}$ 50 mA
Power Dissipation 130 mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$) 8 V
Transient Forward Current ($10 \mu \mathrm{~s}$ Pulse) ${ }^{[4]}$ 500 mA
Operating Temperature Range 55 to $+100^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature[1.6 mm (0.063 in.) from body]
\qquad $260^{\circ} \mathrm{C}$ for 5 seconds

Notes:

1. Maximum $\mathrm{I}_{\text {PEAK }}$ at $\mathrm{f}=1 \mathrm{kHz}, \mathrm{DF}=5 \%$.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents above the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Description	Symbol	Min	Typ	Max	Units	Test Condition
Forward Voltage	V_{F}		1.85	2.4	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Voltage	V_{R}	8.0	20.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Peak Wavelength	$\lambda_{\text {PEAK }}$		650		nm	
Dominant Wavelength ${ }^{[1]}$	λ_{d}		637		nm	
Spectral Line Halfwidth	$\Delta \lambda 1 / 2$		22		nm	
Speed of Response	τ_{s}		45		ns	Exponential Time Constant, $\mathrm{e}^{-t / \tau_{\mathrm{s}}}$
Capacitance	C		20		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
Thermal Resistance	$\mathrm{R}_{\mathrm{J} \text { J-PIN }}$		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction-to-Anode Lead
Luminous Efficacy ${ }^{[2]}$	η_{v}		85		$\mathrm{~lm} / \mathrm{W}$	

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is luminous efficacy in lumens/watt.
3. The approximate total luminous flux output within a cone angle of 2θ about the optical axis may be obtained from the following formula:
$\phi_{v} 2(\theta)=\left[\phi_{\mathrm{v}}(\theta) / I_{\mathrm{v}}(0)\right] \mathrm{I}_{\mathrm{v}} ;$
Where: $\phi_{\mathrm{v}}(\theta) / \mathrm{I}_{\mathrm{v}}(0)$ is obtained from Figure 7.

Figure 1. Relative Intensity vs.Wavelength.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 5. Maximum Forward DC Current vs. Ambient Temperature.
Derating Based on $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$.

Figure 2. Forward Current vs.Forward Voltage.

Figure 4. Relative Efficiency vs. Peak Forward Current.

Figure 6. Maximum Average Current vs. Peak Forward Current. Refresh Rate $=1 \mathbf{k H z}$.

Figure 7. Relative Luminous Intensity vs.Angular Displacement. HLMP- 8104, HLMP-8103 and HLMP-8102.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-8100.

Features

- EXCEPTIONAL BRIGHTNESS
- WIDE VIEWING ANGLE
- OUTSTANDING MATERIAL EFFICIENCY
- LOW FORWARD VOLTAGE
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- DEEP RED COLOR

Applications

- BRIGHT AMBIENT LIGHTING CONDITIONS
- MOVING MESSAGE PANELS
- PORTABLE EQUIPMENT
- General use

Package Dimensions

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency over a wide range of drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps may be DC or pulse driven to achieve desired light output.

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MINISCUS MAY EXTEND ABOUT
$1 \mathrm{~mm}\left(0.040^{\prime \prime}\right)$ DOWN THE LEADS

(Continued on next page.)

Package Dimensions

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP-	Package Description	IV (mcd) @ 20 mA Min. Typ.	$\mathbf{2 \theta} \mathbf{1 / 2}$ Note 1. Degrees	Package Outline	
D101	T-1 3/4 Red Tinted Diffused	35	70	65	A
D105	T-1 $3 / 4$ Red Untinted, Non-diffused	100	240	24	B
K101	T-1 Red Tinted Diffused	22	45	60	C
K105	T-1 Red Untinted Non-diffused	35	65	45	C
Q101	Subminiature Red Tinted Diffused	20	45	70	D

Note:

1. $\boldsymbol{\theta} 1 / 2$ is the off axis angle from lamp centerline where the luminous intensity is $1 / 2$ the on-axis value.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Peak Forward Current ${ }^{[1,2]}$
300 mA
Average Forward Current[2] . 20 mA
DC Current ${ }^{[3]}$... . . 30 mA
Power Dissipation 87 mW

Transient Forward Current (10μ s Pulse) ${ }^{[4]} \ldots . . .500 \mathrm{~mA}$
Operating Temperature Range -20 to $+100^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature
[1.6 mm (0.063 in.) from body] ... $260^{\circ} \mathrm{C}$ for 5 seconds

Notes:

1. Maximum IPEAK at $f=1 \mathrm{kHz}, \mathrm{DF}=6.7 \%$.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Unit	Test Condition
V_{F}	Forward Voltage		1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{R}}$	Reverse Breakdown Voltage	5.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
λ_{p}	Peak Wavelength		645	\cdot	nm	Measurement at peak
λ_{d}	Dominant Wavelength		637		nm	Note 1
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		20		nm	
Υ_{S}	Speed of Response		30		ns	Exponential Time Constant, $\mathrm{e}^{-\mathrm{t} / \mathrm{T}_{\mathrm{S}}}$
C	Capacitance		30		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
θ_{JC}	Thermal Resistance		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
η_{V}	Luminous Efficacy		80		Im / W	Note 2

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta_{\mathrm{V}}$, where I_{V} is the luminous intensity is in candelas and $\eta \mathrm{V}$ is luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 5. Maximum Forward DC Current vs. Ambient Temperature.
Derating Based on $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$.

Figure 2. Forward Current vs. Forward Voltage.

Figure 4. Relative Efficiency vs.
Peak Forward Current.

Figure 6. Maximum Tolerable Peak Current vs. Peak Duration (IPEAK MAX Determined from Temperature Derated IDC MAX).

Figure 7. Relative Luminous Intensity vs.
Angular Displacement. HLMP-D101.

Figure 9. Relative Luminous Intensity vs. Angular Displacement. HLMP-D105.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-K101.

Figure 10. Relative Luminous Intensity vs. Angular Displacement. HLMP-K105.

Figure 11. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp

DOUBLE HETEROJUNCTION AIGaAs LOW CURRENT RED LED LAMPS

T-1 3/4 (5mm) HLMP-D150/D155 T-1 (3mm) HLMP-K150/K155 SUBMINIATURE HLMP-Q150

Features

- MINIMUM LUMINOUS INTENSITY SPECIFIED AT 1 mA
- HIGH LIGHT OUTPUT AT LOW CURRENTS
- WIDE VIEWING ANGLE
- OUTSTANDING MATERIAL EFFICIENCY
- LOW POWER/LOW FORWARD VOLTAGE
- CMOS/AAOS COMPATIDLE
- TTL COMPATIBLE
- DEEP RED COLOR

Applications

- LOW POWER CIRCUITS
- BATTERY POWERED EQUIPMENT
- TELECOMMUNICATION INDICATORS

Package Dimensions

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AlGaAs/GaAs material technology. This LED material has outstanding light output efficiency at very low drive currents. The color is deep red at the dominant wavelength of 637 nanometres. These lamps are ideally suited for use in applications where high light output is required with minimum power input.

(Continued on next page.)

Package Dimensions

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP-	Package Description	$\mathbf{I V}_{\mathbf{v}}$ (mcd) @ 1 mA DC Min. Typ.	$\mathbf{2 \theta} \mathbf{1 / 2}$ Note 1. Degrees	Package Outline
D150	T-1 $3 / 4$ Red Tinted Diffused	1.2	3	65
D155	T-1 $3 / 4$ Red Untinted, Non-diffused	5	10	24
K150	T-1 Red Tinted Diffused	1.2	2	60
K155	T-1 Red Untinted Non-diffused	2	3	45
Q150	Subminiature Red Tinted Diffused	1	1.8	70

Note:

1. $\theta^{1 / 2}$ is the off axis angle from lamp centerline where the luminous intensity is $1 / 2$ the on-axis value.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Peak Forward Current[1]
Average Forward Current 20 mA
DC Current ${ }^{[2]}$. 30 mA
Power Dissipation 87 mW

Transient Forward Current (10μ S Pulse) ${ }^{[3]} \ldots . . .500 \mathrm{~mA}$
Operating Temperature Range \ldots.
Storage Temperature Range -55 to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature
[1.6 mm (0.063 in.) from body] ... $260^{\circ} \mathrm{C}$ for 5 seconds

Notes:

1. Maximum IPEAK at $f=1 \mathrm{kHz}, \mathrm{DF}=6.7 \%$.
2. Derate linearly as shown in Figure 4.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Unit	Test Condition
V_{F}	Forward Voltage		1.6	1.8	V	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{R}}$	Reverse Breakdown Voltage	5.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
λ_{p}	Peak Wavelength		645		nm	Measurement at peak
λ_{d}	Dominant Wavelength		637		nm	Note 1
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		20		nm	
Υ_{S}	Speed of Response		30		ns	Exponential Time Constant, $\mathrm{e}^{-\mathrm{t} / \mathrm{T}_{\mathrm{S}}}$
C	Capacitance		30		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
$\theta_{\text {JC }}$	Thermal Resistance		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
η_{V}	Luminous Efficacy		80		Im / W	Note 2

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $I_{e}=I_{V} / \eta V$, where I_{V} is the luminous intensity is in candelas and $\eta \mathrm{V}$ is luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Forward Current vs. Forward Voltage.

Figure 4. Maximum Forward DC Current vs. Ambient Temperature. Derating Based on $\mathrm{T}_{\mathbf{J}}$ Max. $=110^{\circ} \mathrm{C}$.

Figure 5. Relative Luminous Intensity vs. Angular Displacement. HLMP-D150.

Figure 6. Relative Luminous Intensity vs. Angular Displacement. HLMP-K150.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. HLMP-K155.

Figure 9. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp

DOUBLE HETEROJUNCTION AIGaAs

Features

- 1000 mcd AT 20 mA
- VERY HIGH INTENSITY AT LOW DRIVE CURRENTS
- NARROW VIEWING ANGLE
- OUTSTANDING MATERIAL EFFICIENCY
- LOW FORWARD VOLTAGE
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- DEEP RED COLOR

Applications

- BRIGHT AMBIENT LIGHTING CONDITIONS
- EMITTER/DETECTOR AND SIGNALING APPLICATIONS
- GENERAL USE

Description

These solid state LED lamps utilize newly developed double heterojunction (DH) AIGaAs/GaAs material technology. This LED material has outstanding light output efficiency over a wide range of drive currents. The lamp package has a tapered lens, designed to concentrate the luminous flux into a narrow radiation pattern to achieve a very high intensity. The LED color is deep red at the dominant wavelength of 637 nanometres. These lamps may be DC or pulse driven to achieve desired light output.

Package Dimensions

Luminous Intensity @ $25^{\circ} \mathrm{C}$

P/N HLMP-	Package Description	$I_{V}(\mathrm{mcd})$ @ 20 mA DC		201/2 Note 1. Degrees
		Min.	Typ.	
4100	T-1 3/4 Red Untinted, Non-diffused	500	750	8
4101		700	1000	

Note:

1. $\theta 1 / 2$ is the angle from optical centerline where the luminous intensity is $1 / 2$ the optical centerline value.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Maximum Rating	Units
Peak Forward Current ${ }^{[1,2]}$	300	mA
Average Forward Current ${ }^{[2]}$	20	mA
DC Current ${ }^{[3]}$	30	mA
Power Dissipation	87	mW
Reverse Voltage $\left(I_{R}=100 \mu \mathrm{~A}\right)$	5	V
Transient Forward Current $\left(10 \mu \mathrm{~s}\right.$ Pulse) ${ }^{[4]}$	500	mA
Operating Temperature Range	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature $[1.6 \mathrm{~mm}(0.063 \mathrm{in}$.$) from body]$	$260^{\circ} \mathrm{C}$ for 5 seconds	

Notes:

1. Maximum IPEAK at $f=1 \mathrm{kHz}, \mathrm{DF}=6.7 \%$.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linerally as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Unit	Test Condition
V_{F}	Forward Voltage		1.8	2.2	V	20 mA
$\mathrm{~V}_{\mathrm{R}}$	Reverse Breakdown Voltage	5.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\lambda_{\text {PEAK }}$	Peak Wavelength		645		nm	Measurement at peak
λ_{d}	Dominant Wavelength		637		nm	Note 1
$\Delta \lambda 1 / 2$	Spectral Line Halfwidth		20		nm	
τ_{S}	Speed of Response		30		ns	Exponential Time Constant, $\mathrm{e}^{-t / s}$
C	Capacitance		30		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
θ_{jc}	Thermal Resistance		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
η_{V}	Luminous Efficacy		80		Im / W	Note 2

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta \mathrm{V}$, where I_{V} is the luminous intensity in candelas and $\eta \mathrm{V}$ is luminous efficacy in lumens/watt.
3. The approximate total luminous flux output within a cone angle of 2θ about the optical axis, $\phi_{\mathrm{V}}(2 \theta)$, may be obtained from the following formula:
$\phi_{\mathrm{V}}(2 \theta)=\left[\phi_{\mathrm{V}}(\theta) / l_{\mathrm{V}}(0)\right] \mathrm{l}_{\mathrm{V}}$;
Where: $\phi \mathrm{V}(\theta) / \mathrm{I}_{\mathrm{V}}(0)$ is obtained from Figure 7.

Figure 1. Relative Intensity vs. Wavelength

Figure 3. Relative Luminous Intensity vs. DC Forward Current

Figure 5. Maximum Forward DC Current vs. Ambient Temperature Derating Based on T_{J} MAX. $=110^{\circ} \mathrm{C}$

Figure 2. Forward Current vs. Forward Voltage

Figure 4. Relative Efficiency vs. Peak Forward Current

Figure 6. Maximum Tolerable Peak Current vs. Peak Duration (IpEAK MAX Determined from Temperature Derated IDC MAX).

Figure 7. Relative Luminous Intensity vs. Angular Displacement

Features

- IMPROVED BRIGHTNESS
- IMPROVED COLOR PERFORMANCE
- AVAILABLE IN POPULAR T-1 and T-1 3/4 PACKAGES
- NEW STURDY LEADS
- IC COMPATIBLE/LOW CURRENT CAPABILITY
- RELIABLE AND RUGGED
- ChOICE OF 3 bright COLORS High Efficiency Red High Brightness Yellow High Performance Green

Description

These clear, non-diffused lamps out perform conventional LED lamps. By utilizing new higher intensity material, we achieve superior product performance.

The HLMP-3750/-3390/-1340 Series Lamps are Gallium Arsenide Phosphide on Gallium Phosphide red light emitting diodes. The HLMP-3850/-3490/-1440 Series are Gallium Arsenide Phosphide on Gallium Phosphide yellow light emitting diodes. The HLMP-3950/-3590/-1540 Series lamps are Gallium Phosphide green light emitting diodes.

Applications

- LIGHTED SWITCHES
- BACKLIGHTING FRONT PANELS
- LIGHT PIPE SOURCES
- KEYBOARD INDICATORS

Axial Luminous Intensity and Viewing Angle @ $25^{\circ} \mathrm{C}$

Part Number HLMP-	Package Description	Color	$\begin{gathered} \mathrm{Iv}_{\mathrm{y}}(\mathrm{mcd}) \\ @ 20 \mathrm{~mA} \mathrm{DC} \end{gathered}$		$2 \Theta 1 / 2$ Note 1.	Package Outline
			Min.	Typ.		
3750	T-1 3/4	HER	80	125	24°	A
3850		Yellow	80	140	24°	A
3950		Green	80	120	24°	A
3390	T-1 3/4 Low Profile	HER	35	55	32°	B
3490		Yellow	35	55	32°	B
3590		Green	35	55	32°	B
1340	T-1	HER	24	45	45°	C
1440		Yellow	24	45	45°	C
1540		Green	24	45	45°	C

NOTE:

1. $\Theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Package Dimensions

NOTES:

1. All dimensions are in millimeters (inches).
2. An epoxy meniscus may extend about 1 mm ($0.40^{\prime \prime}$) down the leads.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Red	Yellow	Green	Units	
Peak Forward Current	90	60	90	mA	
Average Forward Current[1]	25	20	25	mA	
DC Current ${ }^{2]}$	30	20	30	mA	
Power Dissipation ${ }^{\text {[3] }}$	135	85	135	mW	
Transient Forward Current ${ }^{\|4\|}$ ($10 \mu \mathrm{sec}$ pulse)	500	500	500	mA	
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	V	
Operating Temperature Range	-		-20 to +100		
Storage Temperature Range	-55		-55 to +100		
Lead Soldering Temperature \| 1.6 mm (0.063 in .) from body		$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 2 to establisin pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	T-1 3/4	$\begin{aligned} & \text { T-1 } 3 / 4 \\ & \text { Low } \\ & \text { Dome } \end{aligned}$	T-1	Min.	Typ.	Max.	Units	Test Conditions
$\lambda_{\text {PEAK }}$	Peak Wavelength	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at peak
λd	Dominant Wavelength	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 626 \\ & 585 \\ & 569 \end{aligned}$		nm	Note 1
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
$\tau_{\text {s }}$	Speed of Response	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{gathered} 90 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \\ & \hline \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 11 \\ & 15 \\ & 18 \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
Ojc	Thermal Resistance	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{gathered} \hline 95 \\ 95 \\ 95 \\ 120 \\ 120 \\ 120 \end{gathered}$	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$I_{F}=20 \mathrm{~mA}$ (Figure 3)
VR	Reverse Breakdown Voltage	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \\ & \hline \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \\ & \hline \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$	5.0			V	$\mathrm{IF}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	$\begin{aligned} & 3750 \\ & 3850 \\ & 3950 \end{aligned}$	$\begin{aligned} & 3390 \\ & 3490 \\ & 3590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1440 \\ & 1540 \end{aligned}$		$\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$		$\frac{\text { lumens }}{\text { watt }}$	Note 2

NOTES:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Red, Yellow and Green

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

IDC - DC CURRENT PER LED - mA
Figure 4. Relative Luminous Intensity vs. Forward Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Lamp.

V_{F}-FORWARD VOLTAGE - V
Figure 3. Forward Current vs. Forward Voltage.

IPEAK - PEAK CURRENT PER LED - mA
Figure 5. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 7. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Low Profile Lamp.

Figure 8. Relative Luminous Intensity vs. Angular Displacement. T-1 Lamp.

LOW CURRENT LED LAMPS

(hp HEWLETT PACKARD

T-1 3/4 (5mm) HLMP-4700, -4719, -4740 T-1 (3mm) HLMP-1700, -1719, -1790
SUBMINIATURE HLMP-7000,-7019,-7040

Features

- LOW POWER
- HIGH EFFICIENCY
- CMOS/MOS COMPATIBLE
- TTL COMPATIBLE
- WIDE VIEWING ANGLE
- CHOICE OF PACKAGE STYLES
- CHOICE OF COIORS

Applications

- LOW POWER DC CIRCUITS
- TELECOMMUNICATIONS INDICATORS

- PORTABLE EQUIPMENT
- KEYBOARD INDICATORS

Description

These tinted diffused LED lamps were designed and optimized specifically for low DC current operation. Luminous intensity and forward voltage are tested at 2 mA to assure consistent brightness at TTL output current levels.

LOW CURRENT LAMP SELECTION GUIDE

Size	Color		
	Red HLMP-	Yellow HLMP-	Green HLMP-
T-1 3/4	4700	4719	4740
T-1	1700	1719	1790
Subminiature	7000	7019	7040

Package Dimensions

AXIAL LUMINOUS INTENSITY AND VIEWING ANGLE @ $25^{\circ} \mathrm{C}$

Part Number HLMP-	Package Description	Color	$I_{V}(\mathrm{mcd})$ @ 2 mADC		$2\left(1 / 2{ }^{[1]}\right.$	Package Outline
			Min.	Typ.		
-4700	T-1 3/4	Red	1.2	2.0	50°	A
-4?19	Tinted Diffused	Yellow	1.2	1.8		
-4740		Green	1.2	1.8		
-1700	T-1	Red	1.0	1.8	50°	B
-1719	Tinted	Yellow	1.0	1.6		
-1790	Diffused	Green	1.0	1.6		
-7000	Subminiature	Red	0.4	0.8	90°	C
-7019	Tinted Diffused	Yellow	0.4	0.6		
-7040		Green	0.4	0.6		

Note:

1. $\Theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	T-1 3/4	T-1	Subminiature	Min.	Typ.	Max.	Units	Test Condition
V_{F}	Forward Voltage	4700	1700	7000		1.8	2.2	V	2 mA
		4719	1719	7019		1.9	2.7		
		4740	1790	7040		1.8	2.2		
V_{R}	Reverse Breakdown Voltage	4700	1700	7000	5.0			V	$\mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}$
		4719	1719	7019	5.0				
		4740	1790	7040	5.0				
$\lambda \mathrm{D}$	Dominant Wavelength	4700	1700	7000		626		$n \mathrm{~m}$	Note 1
		4719	1719	7019		585			
		4740	1790	7040		569			
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	4700	1700	7000		40		nm	
		4719	1719	7019		36			
		4740	1790	7040		28			
τS	Speed of Response	4700	1700	7000		90		ns	
		4719	1719	7019		90			
		4740	1790	7040		500			
C	Capacitance	4700	1700	7000		11		pF	$\begin{aligned} & V_{F}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$
		4719	1719	7019		15			
		4740	1790	7040		18			
Θ_{Jc}	Thermal Resistance	4700	1700	7000		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode lead
		4719	1719	7019		120			
		4740	1790	7040		120			
$\lambda_{\text {PEAK }}$	Peak Wavelength	4700	1700	7000		635		nm	Measurement at peak
		4719	1719	7019		583			
		4740	1790	7040		565			
$\eta \mathrm{v}$	Luminous Efficacy	4700	1700	7000		145		Lumens	Note 2
		4719	1719	7019		500		Watt	
		4740	1790	7040		595			

Notes:

1. The dominant wavelength, λ_{D}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. Radiant intensity, l_{e}, in watts/steradian, may be found from the equation $l_{e}=I_{v} / \eta_{v}$, where l_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings

Parameter	Maximum Rating		Units
Power Dissipation (Derate linearly from $92^{\circ} \mathrm{C}$ at $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$)	Red Yellow Green	$\begin{aligned} & 24 \\ & 36 \\ & 24 \\ & \hline \end{aligned}$	mW
DC and Peak Forward Current	7		mA
Transient Forward Current ($10 \mu \mathrm{sec}$ pulse) ${ }^{11}$	500		mA
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}$)	5.0		V
Operating Temperature Range	Red/Yellow Green	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\ & -20^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \end{aligned}$	
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$		
Lead Soldering Temperature ($1.6 \mathrm{~mm} 0.063 \mathrm{in} \mid$ from body)	$260^{\circ} \mathrm{C}$ for 5 Seconds (T-1, T-1 3/4) $260^{\circ} \mathrm{C}$ for 3 Seconds (Subminiature)		

Note:

1. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

Figure 2. Forward Current vs. Forward Voltage

Figure 3. Relative Luminous Intensity vs. Forward Current

Figure 4. Relative Luminous Intensity vs. Angular Displacement for T-1 3/4 Lamp

Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Lamp

Figure 6. Relative Luminous Intensity vs. Angular Displacement for Subminiature Lamp

T-1 3/4 (5 mm) HIGH INTENSITY SOLID STATE LAMPS

HIGH EFFICIENCY RED • HLMP-331X SERIES YELLOW • HLMP-341X SERIES HIGH PERFORMANCE GREEN • HLMP-351X SERIES

Features

- HIGH INTENSITY
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red Yellow
High Performance Green

- POPULAR T-1 3/4 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- NARROW VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL

Package Dimensions

[^7]

Description

This family of T-1 3/4 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

Part Number HLMP-	Description	Minimum Intensity (mcd) at $\mathbf{1 0} \mathbf{~ m A}$	Color (Material)
3315	Illuminator/Point Source	12	High Efficiency Red (GaAsP on GaP)
3316	Illuminator/High Brightness	20	
3415	Illuminator/Point Source	10	Yellow (GaAsP on GaP)
3416	Illuminator/High Brightness	20	
3517	Illuminator/Point Source	6.7	Green (GaP)
3519	Illuminator/High Brightness	10.6	

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
Iv	Luminous Intensity	$\begin{aligned} & 3315 \\ & 3316 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 20.0 \end{aligned}$	40.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
		$\begin{aligned} & 3415 \\ & 3416 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 50.0 \end{aligned}$		mcd	$\mathrm{IF}=10 \mathrm{~mA}$ (Figure 8)
		$\begin{aligned} & 3517 \\ & 3519 \end{aligned}$	$\begin{gathered} \hline 6.7 \\ 10.6 \end{gathered}$	$\begin{aligned} & 50.0 \\ & 70.0 \end{aligned}$		mcd	$\mathrm{IF}=10 \mathrm{~mA}$ (Figure 3)
$2 H 1 / 2$	Including Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3315 \\ & 3316 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		Deg.	$\begin{aligned} & \mathrm{IF}=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 6) } \end{aligned}$
		$\begin{aligned} & 3415 \\ & 3416 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$		Deg.	$\begin{aligned} & \text { If }-10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 11) } \end{aligned}$
		$\begin{aligned} & 3517 \\ & 3519 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$		Deg.	$\begin{aligned} & I F=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 16) } \end{aligned}$
入PEAK	Peak Wavelength	$\begin{aligned} & 331 \mathrm{X} \\ & 341 \mathrm{X} \\ & 351 \mathrm{X} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 635 \\ & 583 \\ & 565 \\ & \hline \end{aligned}$		nm	Measurement at Peak (Figure 1)
د $1 / 2$	Spectral Line Halfwidth	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
λ_{d}	Dominant Wavelength	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		$\begin{aligned} & 626 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2 (Figure 1)
${ }^{\text {s }}$ S	Speed of Response	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		$\begin{gathered} 90 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \\ & \hline \end{aligned}$		$\begin{aligned} & 11 \\ & 15 \\ & 18 \\ & \hline \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
${ }^{\theta J_{\mathrm{C}}}$	Thermal Resistance	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { (Figure 2) } \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { (Figure 7) } \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { (Figure 12) } \end{aligned}$
V_{R}	Reverse Breakdown Volt.	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\eta \mathrm{V}$	Luminous Efficacy	$\begin{aligned} & 331 x \\ & 341 x \\ & 351 x \end{aligned}$		$\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$		lumens Watt	See Note 3

NOTES: 1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=I_{\mathrm{V}} / \eta_{\mathrm{V}}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.
Absolute Maxirnum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	331X Series	341X Series	351X Series	Units	
Peak Forward Current	90	60	90	mA	
Average Forward Current ${ }^{1{ }^{1}}$	25	20	25	mA	
DC Current ${ }^{12}$	30	20	30	mA	
Power Dissipation ${ }^{\text {\| }}$ \|	135	85	135	mW	
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	V	
Transient Forward Current ${ }^{\|4\|}$ (10 $\mu \mathrm{sec}$ Pulse)	500	500	500	mA	
Operating Temperature Range Storage Temperature Range	-55 to +100	-55 to +100	$\frac{-20 \text { to }+100}{-55 \text { to }+100}$	${ }^{\circ} \mathrm{C}$	
Lead Soldering Temperature \| 1.6 mm (0.063 in.) from body		$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

High Efficiency Red HLMP-331X Series

Figure 2. Forward Current vs. Forward Voltage Characteristics

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

IdC - dC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 6. Relative Luminous Intensity vs. Angular Displacement

Yellow HLMP-341X Series

Figure 7. Forward Current vs. Forward Voltage Characteristics

t_{p}-PULSE DURATION - $\mu \mathrm{s}$

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

IF - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current

I PEAK - PEAK CURRENT - mA
Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current

Figure 11. Relative Luminous Intensity vs. Angular Displacement

Green HLMP-351X Series

V_{F} - FORWARD VOLTAGE - V
Figure
12. Forward Current vs. Forward Voltage Characteristics

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration (IDC MAX as per MAX Ratings)

I_{F}-DC FORWARD CURRENT-mA
Figure 13. Relative Luminous Intensity vs. DC Forward Current

ipeak - peak current per led - ma
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 16. Relative Luminous Intensity vs. Angular Displacement. T-1 3/4 Lamp

T-1 3/4 (5mm) DIFFUSED SOLID STATE LAMPS
 HIGH EFFICIENCY RED • HLMP-3300 SERIES
 ORANGE - HLMP-D400 SERIES
 YELLOW - HLMP-3400 SERIES
 HIGH PERFORMANCE GREEN HLMP-3500 SERIES

Features

- HIGH INTENSITY
- CHOICE OF 4 BRIGHT COLORS

High Efficiency Red
Orange
Yellow
High Performance Green

- POPULAR T-1¼ DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- WIDE VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL

Description

This family of T-13/4 lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Package Dimensions

[^8]1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm
(040") DOWN THE LEADS.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
IV	Luminous Intensity	High Efficiency Red 3300 3301 3762	$\begin{aligned} & 2.1 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 3.5 \\ 7.0 \\ 12.0 \end{array}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		Orange D400 D401	$\begin{aligned} & 2.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \end{aligned}$			
		$\begin{array}{\|l} \text { Yellow } \\ 3400 \\ 3401 \\ 3862 \end{array}$	$\begin{aligned} & 2.2 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} 4.0 \\ 8.0 \\ 12.0 \end{gathered}$			
		$\begin{aligned} & \text { Green } \\ & 3502 \\ & 3507 \\ & 3962 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 4.2 \\ & 8.0 \end{aligned}$	$\begin{gathered} 2.4 \\ 5.2 \\ 11.0 \end{gathered}$			
$2 \Theta_{1 / 2}$	Including Angle Between Half Luminous Intensity Points	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$		Deg.	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & \text { See Note } 1 \end{aligned}$
$\lambda_{\text {PEAK }}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 635 \\ & 600 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	HER/Orange Yellow Green		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
λ_{d}	Dominant Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 626 \\ & 602 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2
τ_{S}	Speed of Response	High Efficiency Red Orange Yellow Green		$\begin{gathered} 90 \\ 280 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		$\begin{gathered} 11 \\ 4 \\ 15 \\ 18 \end{gathered}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
θ_{Jc}	Thermal Resistance	All		140		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	HER/Orange Yellow Green	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 145 \\ & 380 \\ & 500 \\ & 595 \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{V}} / \eta_{\mathrm{V}}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HER/Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{[1]}$	25	20	25	mA
DC Current ${ }^{[2]}$	30	20	30	mA
Power Dissipation ${ }^{[3]}$	135	85	135	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	V
Transient Forward Current ${ }^{141}$ ($10 \mu \mathrm{sec}$ Pulse)	500	500	500	mA
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	C
Storage Temperature Range			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in .) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 (Red/Orange), 10 (Yellow) or 15 (Green) to establish pulsed operating conditions.
2. For Red, Orange, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Red, Orange, and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at
3. $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at 1.6 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

T-13/4 High Efficiency Red, Orange Diffused Lamps

V_{F} - FORWARD VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings

IDC - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current.

I peak - Peak current per led - ma
Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 Yellow Diffused Lamps

Figure 7. Forward Current vs. Forward Voltage Characteristics.

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-13/4 Green Diffused Lamps

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 13. Relative Luminous Intensity vs. DC Forward Current.

Ipeak - PEAK Current per led - ma
Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings)

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

T-1 3/4 (5mm) LOW PROFILE SOLID STATE LAMPS

 PACKARD
Features

- HIGH INTENSITY
- LOW PROFILE: 5.8 mm (0.23 in) NOMINAL
- T-13/4 DIAMETER PACKAGE
- DIFFUSED AND NON-DIFFUSED TYPES
- GENERAL PURPOSE LEADS
- IC COMPATIBLE/LOW CURRENT REQUIREMENTS
- reliable and rugged

Description

The HLMP-3200 Series are Gallium Arsenide Phosphide Red Light Emitting Diodes with a red diffused lens.

The HLMP-3350 Series are Gallium Arsenide Phosphide on Gallium Phosphide High Efficiency Red Light Emitting Diodes.

The HLMP-3450 Series are Gallium Arsenide Phosphide on Gallium Phosphide Yellow Light Emitting Diodes.

The HLMP-3550 Series are Gallium Phosphide Green Light Emitting Diodes.

The Low Profile T-13/4 package provides space savings and is excellent for backlighting applications.

Package Dimensions

Number HLMP-	Application	Minimum Intensity $\mathbf{1 0} \mathbf{~ m A ~ (m c d) ~}$	Lens

RED HLMP-3200 SERIES

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
Iv	Axial Luminous Intensity	3200	1.0	2.0		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ (Figure 3)
		3201	2.0	4.0			
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points			60		deg.	Note 1 (Figure 6)
$\lambda_{\text {PEAK }}$	Peak Wavelength			655		nm	Measurement at Peak (Fig. 1)
λ_{d}	Dominant Wavelength			648		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth			24		nm	
$\tau_{\text {s }}$	Speed of Response			10		ns	
C	Capacitance			100		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
$\theta \mathrm{Jc}$	Thermal Resistance			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage		1.4	1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ (Fig. 2)
$V_{\text {R }}$	Reverse Breakdown Voltage		5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy			65		Im/W	Note 3

Notes: 1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the CiE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity l_{e}, in watts/steradian may be found from the equation $I_{e}=I_{v} / \eta_{\mathbf{v}}$, where I_{v} is the luminous intensity in candelas and $\eta_{\mathbf{v}}$ is the luminous efficacy in lumens/watt.

Figure 2. Forward Current versus Forward Voltage.

Figure 5. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)

I_{F} - FORWARD CURRENT - MA
Figure 3. Relative Luminous Intensity versus Forward Current.

$I_{\text {PEAK }}$ - PEAK CURRENT - mA
Figure 4. Relative Efficiency (Luminous intensity per Unit Current) versus Peak Current.

Figure 6. Relative Luminous Intensity versus Angular Displacement.

GREEN HLMP-3550 SERIES
 Electrical Specifications at $T_{A}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
IV	Axial Luminous Intensity	3553	1.6	3.2		mcd	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 18)
		3554	6.7	10.0			
		3567	4.2	7.0			
	3568	10.6	15.0				
$2 \theta_{1 / 2}$	Included Angle Between	3553		50		Deg.	Note 1 (Figure 21)
	Half Luminous Intensity	3554		50			
	Points	3567		40			
$\lambda_{\text {PEAK }}$	Peak Wavelength			565		nm	Measurement at Peak (Fig. 1)
λ_{d}	Dominant Wavelength			569		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth			28		nm	
τ_{s}	Speed of Response			500		ns	
C	Capacitance			18		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
θ_{JC}	Thermal Resistance			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage		1.5	2.3	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 17)
V_{R}	Reverse Breakdown 		5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Loltage						

Notes: $1 . \theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity I_{e}, in watts/steradian may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 17. Forward Current versus Forward Voltage.

I_{F} - FORWARD CURRENT - mA
Figure 18. Relative Luminous Intensity versus Forward Current.

fpeak - peak current per led - ma
Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 20. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX ratings).

Figure 21. Relative Luminous Intensity versus Angular Displacement.

HIGH EFFICIENCY RED HLMP-3350 SERIES
 Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
Iv	Axial Luminous Intensity	$\begin{aligned} & 3350 \\ & 3351 \\ & 3365 \\ & 3366 \end{aligned}$	$\begin{gathered} 2.0 \\ 5.0 \\ 7.0 \\ 12.0 \end{gathered}$	$\begin{gathered} 3.5 \\ 7.0 \\ 10.0 \\ 18.0 \end{gathered}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 8)
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points	$\begin{aligned} & 3350 \\ & 3351 \\ & 3365 \\ & 3366 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 45 \\ & 45 \end{aligned}$		Deg.	Note 1 (Fig. 11)
$\lambda_{\text {PEAK }}$	Peak Wavelength			635		nm	Measurement at Peak (Fig. 1)
λ_{d}	Dominant Wavelength			626		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth			40		nm	
τ_{s}	Speed of Response			90		ns	
C	Capacitance			11		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
日Jc	Thermal Resistance			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage		1.5	2.2	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 7)
V_{R}	Reverse Breakdown Voltage		5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy			145		Im/W	Note 3

Notes: 1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity le, in watts/steradian may be found from the equation $I_{e}=I_{v} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

F - FORWARD VOLTAGE - V
Figure 7. Forward Current versus Forward Voltage.

t_{p} - PULSE DURATION $-\mu \mathrm{s}$

Figure 10. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings)

IPEAK - PEAK CURRENT PER LED - mA
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

Figure 11. Relative Luminous Intensity versus Angular Displacement.

YELLOW HLMP-3450 SERIES
 Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
IV	Axial Luminous Intensity	3450	2.5	4.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Fig. 13)
		3451	6.0	10.0			
		3465	6.0	12.0			
		3466	12.0	18.0			
$2 \theta_{1 / 2}$	Included Angle Between	3450		50		Deg.	Note 1 (Fig. 16)
	Half Luminous Intensity	3451		50			
	Points	3465		45			
$\lambda_{\text {PEAK }}$	Peak Wavelength	3466		45			
λ_{d}	Dominant Wavelength		583		nm	Measurement at Peak (Fig. 1)	
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		585		nm	Note 2	
τ_{s}	Speed of Response		36		nm		
C	Capacitance		90		ns		
θ_{JC}	Thermal Resistance		15		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$	
V_{F}	Forward Voltage		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead	
V_{R}	Reverse Breakdown	1.5	2.2	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}($ Fig. 12)	
	Voltage	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	
$\eta \mathrm{~V}$	Luminous Efficacy			500		Im / W	Note 3

Notes: $1 . \theta_{1 / 2}$ is the off-ax is angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity I_{e}, in watts/steradian may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 12. Forward Current versus Forward Voltage.

I_{F} - FORWARD CURRENT - mA
Figure 13. Relative Luminous Intensity versus Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) versus Peak Current.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 15. Maximum Tolerable Peak Current versus Pulse Duration. (IDC MAX as per MAX Ratings).

Figure 16. Relative Luminous Intensity versus Angular Displacement

Features

- LOW COST, BROAD APPLICATIONS
- LONG LIFE, SOLID STATE RELIABILITY
- LOW POWER REQUIREMENTS: 20 mA @ 1.6V
- HIGH LIGHT OUTPUT:
2.0 mcd Typical for HLMP-3000
4.0 mcd Typical for HLMP-3001
- WIDE AND NARROW VIEWING ANGLE TYPES
- RED DIFFUSED AND NON-DIFFUSED VERSIONS

Description

The HLMP-3000 series lamps are Gallium Arsenide Phosphide light emitting diodes intended for High Volume/ Low Cost applications such as indicators for appliances, smoke detectors, automobile instrument panels and many other commercial uses.
The HLMP-3000/-3001/-3002/-3003 have red diffused lenses where as the HLMP-3050 has a red non-diffused lens. These lamps can be panel mounted using mounting clip HLMP-0103. The HLMP-3000/-3001 lamps have .025" leads and the HLMP-3002/-3003/-3050 have .018" leads.

NOTES:

1. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Absolute Maximum Ratings

 at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$| Parameter | $\mathbf{3 0 0 0}$ Series | Units |
| :--- | :---: | :---: |
| Power Dissipation | 100 | mW |
| DC Forward Current (Derate
 linearly from $50^{\circ} \mathrm{C}$ at $\left.0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\right)$ | 50 | mA |
| Average Forward Current | 50 | mA |
| Peak Operating Forward Current | 1000 | mA |
| Reverse Voltage (IR $=100 \mu \mathrm{~A})$ | 5 | V |
| $\left.\begin{array}{l}\text { Transient Forward Current } \\ (10\end{array}\right]$ | 2000 | mA |
| Opec Pulse $)$
 erature Range | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ | |
| Lead Solder Temperature $(1.6 \mathrm{~mm}$
 $[0.063$ inch] below package base) | $260^{\circ} \mathrm{C}$ for 5 seconds | |

HLMP-3000/-3001

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
IV	Luminous Intensity	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & 2.5 \\ & \hline \end{aligned}$		mcd mcd mcd	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & I_{F}=20 \mathrm{~mA} \\ & I_{F}=20 \mathrm{~mA} \end{aligned}$
$2 \Theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$		$\begin{aligned} & 60 \\ & 60 \\ & 24 \end{aligned}$		Deg.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
λP	Peak Wavelength	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$		$\begin{aligned} & 655 \\ & 655 \\ & 655 \\ & \hline \end{aligned}$		nm	Measurement at Peak
λd	Dominant Wavelength	$3000 / 3002$ $3001 / 3003$ 3050		648		nm	
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$		24		nm	
$\tau_{\text {S }}$	Speed of Response	$\begin{gathered} 3000 / 3002 \\ 3001 / 3003 \\ 3050 \\ \hline \end{gathered}$		10		ns	
C	Capacitance	$3000 / 3002$ $3001 / 3003$ 3050		100		pF	$V_{F}=0, f=1 \mathrm{MHz}$
${ }^{(} \mathrm{JC}$	Thermal Resistance	$\begin{gathered} 3000 / 3001 \\ 3002 / 3003 \\ 3050 \\ \hline \end{gathered}$		$\begin{gathered} 95 \\ 120 \\ 120 \\ \hline \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	$3000 / 3002$ $3001 / 3003$ 3050	1.4	1.6	2.0	V	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$ (Fig. 2)
V_{R}	Reverse Breakdown Voltage	$3000 / 3002$ $3001 / 3003$ 3050	5.0			V	$\mathrm{IR}=100 \mu \mathrm{~A}$

$V_{F}-$ FORWARD VOLTAGE - VOLTS

Figure 3. Relative Luminous Intensity Versus Angular Displacement.

Figure 2. Relative Luminous Intensity Versus Forward Current

Figure 4. Relative Luminous Intensity Versus Wavelength. HEWLETT PACKARD

Features

- HIGH INTENSITY
- CHOICE OF 3 BRIGHT COLORS

High Efficiency Red Yellow
High Performance Green

- POPULAR T-1 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- NARROW VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL

Package Dimensions

Description

This family of T-1 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

Part Number HLMP-	Description	Minimum Intensity (mcd) at 10 mA	Color (Material)
1320	Untinted Non-Diffused	8.6	High Efficiency Red (GaAsP on GaP)
1321	Tinted Non-Diffused	8.6	
1420	Untinted Non-Diffused	9.2	Yellow (GaAsP on GaP)
1421	Tinted Non-Diffused	6.0	
1520	Untinted Non-Diffused	4.2	Green (GaP)
1521	Tinted Non-Diffused	4.2	

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (.040") DOWN THE LEADS.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
Iv	Luminous Intensity	$\begin{aligned} & 1320 \\ & 1321 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
		$\begin{aligned} & 1420 \\ & 1421 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 8)
		$\begin{aligned} & 1520 \\ & 1521 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
${ }^{2} \Theta_{1 / 2}$	Including Angle Between Half Luminous Intensity Points	All		45		Deg.	$I_{F}=10 \mathrm{~mA}$ See Note 1 (Figures 6, 11, 16, 21)
$\lambda_{\text {PEAK }}$	Peak Wavelength	$\begin{aligned} & 132 X \\ & 142 X \\ & 152 X \end{aligned}$		$\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak (Figure 1)
$\Delta \lambda 1 / 2$	Spectral Line Halfwidth	$\begin{aligned} & 132 X \\ & 142 X \\ & 152 X \end{aligned}$		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
λ_{d}	Dominant Wavelength	$\begin{aligned} & 132 X \\ & 142 X \\ & 152 X \end{aligned}$		$\begin{aligned} & 626 \\ & 585 \\ & 569 \end{aligned}$		nm	See Note 2 (Figure 1)
$\tau_{\mathbf{S}}$	Speed of Response	$\begin{aligned} & 132 \mathrm{X} \\ & 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$		$\begin{gathered} 90 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	$\begin{aligned} & 132 \mathrm{X} \\ & 142 \mathrm{X} \\ & 152 \mathrm{x} \end{aligned}$		$\begin{aligned} & 11 \\ & 15 \\ & 18 \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$\theta_{\text {JC }}$	Thermal Resistance	All		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	$\begin{aligned} & 132 \mathrm{X} \\ & 142 \mathrm{X} \\ & 152 \mathrm{X} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\mathrm{V}_{\text {R }}$	Reverse Breakdown Voltage	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	$\begin{aligned} & 132 \mathrm{X} \\ & 142 \mathrm{X} \\ & 152 \mathrm{x} \end{aligned}$		145 500 595		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

Notes:

1. $\Theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial uminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{11}$	25	20	25	mA
DC Current ${ }^{2]}$	30	20	30	mA
Power Dissipation ${ }^{3]}$	135	85	135	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	V
Transient Forward Current ${ }^{\text {4 }}$) (10 $\mu \mathrm{sec}$ Pulse)	500	500	500	mA
Operating Temperature Range Storage Temperature Range	-55 to +100	-55 to +100	$\frac{-20 \text { to }+100}{-55 \text { to }+100}$	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature [1.6 mm (0.063 in.) from body]	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C} \mathrm{at} 0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

T-1 High Efficiency Red Non-Diffused

 V_{F} - FORWARD VOLTAGE - V

Figure 2. Forward Current vs. Forward Voltage Characteristics

IdC - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current

IPEAK - PEAK CURRENT PER LED - ma
Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 5. Maximum Tolerable Peak
Current vs. Pulse Duration. (IDCMAX as per MAX Ratings)

Figure 6. Relative Luminous Intensity vs. Angular Displacement

T-1 Yellow Non-Diffused

Figure 7. Forward Current vs. Forward Voltage Characteristics

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDCMAX as per MAX Ratings)

Figure 8. Relative Luminous Intensity vs. Forward Current

I Peak - Peak current -ma
Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current

Figure 11. Relative Luminous Intensity vs. Angular Displacement

T-1 Green Non-Diffused

V_{F} - FORWARD VOLTAGE - V
Figure 12. Forward Current vs. Forward Voltage Characteristics

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDCMAX as per MAX Ratings)

Figure 13. Relative Luminous Intensity vs. Forward Current

Ipeak - PEAK CURRENT PER LED - mA
Figure 14. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 16. Relative Luminous Intensity vs. Angular Displacement

T-1 (3mm) DIFFUSED SOLID STATE LAMPS
 HIGH EFFiCIENCY RED - HLMP-1300 SERIES
 ORANGE - HLMP-K400 SERIES
 YELLOW - HLMP-1400 SERIES
 HIGH PERFORMANCE GREEN - HLMP-1500 SERIES

Features

- HIGH INTENSITY
- CHOICE OF 4 BRIGHT COLORS

High Efficiency Red
Orange
Yellow
High Performance Green

- POPULAR T-1 DIAMETER PACKAGE
- SELECTED MINIMUM INTENSITIES
- WIDE VIEWING ANGLE
- GENERAL PURPOSE LEADS
- RELIABLE AND RUGGED
- AVAILABLE ON TAPE AND REEL

Package Dimensions

Description

This family of T-1 lamps is widely used in general purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

Part Number HLMP-	Application	Minimum Intensity (mcd) at 10 mA	Color (Material)
1300	General Purpose	1.0	High Efficiency Red (GaAsP on GaP)
1301	General Purpose	2.0	
1302	High Ambient	3.0	
1385	Premium Lamp	6.0	
K400	General Purpose	1.0	Orange (GaAsP on GaP)
K401	High Ambient	2.0	
K402	Premium Lamp	3.0	
1400	General Purpose	1.0	Yellow (GaAsP on GaP)
1401	General Purpose	2.0	
1402	High Ambient	3.0	
1485	Premium Lamp	6.0	
1503	General Purpose	1.0	Green (GaP)
1523	High Ambient	2.6	
1585	Premium Lamp	4.0	

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device	Min.	Typ.	Max.	Units	Test Conditions
IV	Luminous Intensity	High Efficiency Red 1300 1301 1302 1385	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.0 \\ 5.5 \\ 7.0 \\ 10.0 \\ \hline \end{array}$		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		$\begin{aligned} & \hline \text { Orange } \\ & \text { K400 } \\ & \text { K401 } \\ & \text { K402 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & 6.5 \\ & \hline \end{aligned}$			
		$\begin{aligned} & \hline \text { Yellow } \\ & 1400 \\ & 1401 \\ & 1402 \\ & 1485 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.0 \\ 6.0 \\ 7.0 \\ 10.0 \\ \hline \end{array}$			
		$\begin{aligned} & \text { Green } \\ & 1503 \\ & 1523 \\ & 1585 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.6 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & 8.5 \end{aligned}$			
2 1 1/2	Including Angle Between Half Luminous Intensity Points	All		60		Deg.	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & \text { See Note } 1 \end{aligned}$
$\lambda_{\text {PEAK }}$	Peak Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 635 \\ & 600 \\ & 583 \\ & 565 \\ & \hline \end{aligned}$		nm	Measurement at Peak
λd	Dominant Wavelength	High Efficiency Red Orange Yellow Green		$\begin{aligned} & 626 \\ & 602 \\ & 585 \\ & 569 \end{aligned}$		$n m$	See Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	High Efficiency Red Yellow Green		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
$\tau \mathrm{s}$	Speed of Response	High Efficiency Red Orange Yellow Green		$\begin{gathered} 90 \\ 280 \\ 90 \\ 500 \end{gathered}$		ns	
C	Capacitance	High Efficiency Red Orange Yellow Green		$\begin{gathered} 11 \\ 4 \\ 15 \\ 18 \end{gathered}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
$R \theta_{J C}$	Thermal Resistance	All		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	HER/Orange Yellow Green	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
V_{R}	Reverse Breakdown Volt.	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{V}	Luminous Efficacy	High Efficiency Red Orange Yellow. Green		$\begin{aligned} & 145 \\ & 380 \\ & 500 \\ & 595 \\ & \hline \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

NOTES:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HER/Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{11 \mid}$	25	20	25	mA
DC Current ${ }^{\|2\|}$	30	20	30	mA
Power Dissipation ${ }^{[3]}$	135	85	135	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	V
Transient Forward Current ${ }^{141}$ ($10 \mu \mathrm{sec}$ Pulse)	500	500	500	mA
Operating Temperature Range	55 to +100	55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	55 to 100	-5 to +100	-55 to +100	,
Lead Soldering Temperature 11.6 mm (0.063 in .) from body)	$260^{\circ} \mathrm{C}$ for 5 seconds			

NOTES:

1. See Figure 5 (Red/Orange), 10 (Yellow) or 15 (Green) to establish pulsed operating conditions.
. For Red, Orange, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at 0.5 $\mathrm{mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. For Red, Orange, and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at 1.8 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

T-1 High Efficiency Red, Orange Diffused Lamps

Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

T-1 Yellow Diffused Lamps

Figure 7. Forward Current vs. Forward Voltage Characteristics.

 tp - PULSE DURATION - $\mu \mathrm{s}$

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

I_{F} - FORWARD CURRENT - mA
Figure 8. Relative Luminous Intensity vs. Forward Current.

peak - PEAK CURRENT - mA
Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

T-1 Green Diffused Lamps

Figure 12. Forward Current vs. Forward Voltage Characteristics.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (IDC MAX as per MAX Ratings.)

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

HLMP-1000 Series
HLMP-1200 Series

Features

- WIDE VIEWING ANGLE
- SMALL SIZE T-1 DIAMETER 3.18 mm ($0.125^{\prime \prime}$)
- IC COMPATIBLE
- RELIABLE AND RUGGED

Description

The HLMP-1000 is a series of Gallium Arsenide Phosphide Light Emitting Diodes designed for applications where space is at a premium, such as in high density arrays.
The HLMP-1000 series is available in three lens configurations.

HLMP-1000 - Red Diffused lens provides excellent on-off contrast ratio, high axial luminous intensity, and wide viewing angle.

HLMP-1080 - Same as HLMP-1000, but untinted diffused to mask red color in the "off" condition.
HLMP-1071/-1201 - Untinted non-diffused plastic lens provides a point source. Useful when illuminating external lens, annunciators, or photo-detectors.

Part Number HLMP-	 Lens Type	Iv (mcd) @ 20 mA		Typ. Viewing Angle 2 Θ 1/2
		Typ.		
-1000	A-Tinted Diffused	.5	1.0	60°
-1002	A-Tinted Diffused	1.5	2.5	60°
-1080	A-Untinted Diffused	.5	1.5	60°
-1071	A-Untinted Non-Diffused	1.0	2.0	45°
-1200	B-Untinted Non-Diffused	.5	1.0	55°
-1201	B-Untinted Non-Diffused	1.5	2.5	55°

Figure \mathbf{A}.

Figure B.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	$\mathbf{1 0 0 0}$ Series	Units
Power Dissipation	100	mW
DC Forward Current [1]	50	mA
Average Forward Current	50	mA
Peak Operating Forward Current	1000	mA
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	V
Transient Forward Current 1 l$](10 \mu$ sec Pulse)	2000	mA
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Lead Solder Temperature $(1.6 \mathrm{~mm}[0.063$ inch] below package base)	$260^{\circ} \mathrm{C}$ for 5 seconds	

Note:

1. Derate linerarly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameters	Min.	Typ.	Max.	Units	Test Conditions
$\lambda_{\text {PEAK }}$	Peak Wavelength		655		nm	Measurement at Peak
λ_{d}	Dominant Wavelength		648		nm	
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		24		nm	
τ_{s}	Speed of Response		10		ns	
C	Capacitance		100		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
$\theta \mathrm{JC}$	Thermal Resistance		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	1.4	1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{R}}$	Reverse Breakdown Voltage	5			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$

HLMP-1200/-1201

HLMP-1000/-1002/-1080

Figure 4. Relative Luminous Intensity vs. Angular Displacement.

HLMP-1071

Figure 5. Relative Luminous Intensity vs. Angular Displacement.

Rectangular Solid State Lamps

Technical Data

Features

- Rectangular Light Emitting Surface
- Flat High Sterance Emitting Surface
- Stackable on 2.54 mm (0.100 inch) Centers
- Ideal as Flush Mounted Panel Indicators
- Ideal for Backlighting Legends
- Long Life: Solid State Reliability
- Choice of 4 Bright Colors

DH AS AlGaAs Red High Efficiency Red Yellow
High Performance Green

- IC Compatible/Low Current Requirements

Description

The HLMP-R100, -030X, -040X, -050X are solid state lamps encapsulated in a radial lead rectangular epoxy package. They utilize a tinted, diffused epoxy to provide high on-off contrast and a flat high intensity emitting surface. Borderless package design allows creation of uninterrupted light emitting areas.

The HLMP-R100 uses a double heterojunction (DH) absorbing substrate (AS) aluminum gallium arsenide (AlGaAs) red LED chip in a light red epoxy package. This combination produces outstanding light output over a wide range of drive currents.

The HLMP-0300 and -0301 have a high efficiency red GaAsP on GaP LED chip in a light red epoxy package.

The HLMP-0400 and -0401 provide a yellow GaAsP on GaP LED chip in a yellow epoxy package.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm ($0.040^{\circ \prime}$) DOWN THE LEADS.
3. THERE IS A MAXIMUM 1° TAPER FROM BASE TO TOP OF LAMP.

Axial Luminous Intensity

	Part	I (med) (0) 20 mA DC	
Color		Min.	Typ.
AlGaAs Red	HLMP-R100	3.4	7.5
High Efficiency Red	HLMP-0300	1.0	2.5
	HLMP-0301	2.5	5.0
Yellow	HLMP-0400	1.5	2.5
	HLMP-0401	3.0	5.0
	HLMP-0503	1.5	2.5
	HLMP-0504	3.0	5.0

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	HLMP-	$\underset{\text { 0300/-0301 }}{\text { HLMP- }}$	$\begin{gathered} \text { HLMP- } \\ \text { 0400/0401 } \end{gathered}$	$\underset{0503 /-0504}{\text { HLMP- }}$	Units
Peak Forward Current	300	90	60	90	mA
Average Forward Current ${ }^{[1]}$	20	25	20	25	mA
DC Current ${ }^{[2]}$	30	30	20	30	mA
Power Dissipation	87	135	85	135	mW
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	5	V
Transient Forward Current ${ }^{[3]}$ ($10 \mu \mathrm{~s}$ Pulse)	500	500	500	500	mA
Operating Temperature Range	$\begin{aligned} & -20 \text { to } \\ & +100 \end{aligned}$	$-55 \text { to }$	$-55 \text { to }$	$\begin{aligned} & -20 \text { to } \\ & +100 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\begin{aligned} & -55 \text { to } \\ & +100 \\ & \hline \end{aligned}$			$\begin{aligned} & -55 \text { to } \\ & +100 \\ & \hline \end{aligned}$	
Lead Soldering Temperature (1.6 mm [0.063 in .] from body)	$260^{\circ} \mathrm{C}$ for 5 seconds				

Notes:

1. See Figure 5 to establish pulsed operating conditions.
2. For AlGaAs Red, Red, and Green Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}{ }^{\circ} \mathrm{C}$. For Yellow Series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak current beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical/Optical Characteristics at $\mathbf{T}_{A}=\mathbf{2 5}^{\circ} \mathrm{C}$

Sym.	Description	HLMP-R100			$\underset{-0300 /-0301}{\text { HLMP }}$			$\underset{-0400 /-0401}{\text { HLMP }}$			$\begin{gathered} \text { HLMP } \\ -0503 /-0504 \end{gathered}$			Units	Test Conditions
		Min.	Typ.	Max.											
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points		100			100			100			100		Deg.	Note 1. Fig. 6
$\lambda_{\text {P }}$	Peak Wavelength		645			635			583			565		nm	Measurement at Peak
$\lambda_{\text {d }}$	Dominant Wavelength		637			626			585			569		nm	Note 2
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		20			40			36			28		nm	
τ_{8}	Speed of Response		30			90			90			500		ns	
C	Capacitance		30			16			18			18		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 ; \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance		220			120			120			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
V_{F}	Forward Voltage	1.6	1.8	2.2	1.6	2.2	3.0	1.6	2.2	3.0	1.6	2.3	3.0	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Figure } 2 . \end{aligned}$
V_{R}	Reverse Breakdown Voltage	5.0			5.0			5.0			5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{v}	Luminous Efficacy		80			145			500			595		lm / W	Note 3

Notes:

1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{0}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage. $\mathbf{V}_{\mathrm{F}}(\mathbf{3 0 0} \mathrm{mA})$ for AlGaAs Red = 2.6 Volts Typical.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current. η_{v} (300 mA) for AlGaAs Red $=0.7$.

HER, YELLOW, GREEN

Figure 5. Maximum Tolerable Peak Current vs. Peak Duration ($I_{\text {PEAE }}$ MAX Determined from Temperature Derated I $\mathrm{I}_{\mathrm{P}}{ }^{\text {PEAK }} \mathbf{M} \mathbf{A X}$).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

2 mm x 5 mm Rectangular Lamps

Technical Data

HLMP-S100 Series
HLMP-S200 Series
HLMP-S300 Series
HLMP-S400 Series
HLMP-S500 Series

Features

- Rectangular Light Emitting Surface
- Excellent for Flush Mounting on Panels
- Choice of Five Bright Colors
- Long Life: Solid State Reliability
- Excellent Uniformity of Light Output

Description

The HLMP-S100, -S200, -S300, -S400, -S500 are epoxy encapsulated lamps in rectangular packages which are easily stacked in arrays or used for discrete front panel indicators. Contrast and light uniformity are enhanced by a special epoxy diffusion and tinting process.

The HLMP-S100 uses double heterojunction (DH) absorbing substrate (AS) aluminum gallium arsenide (AlGaAs) LEDs to produce outstanding light output over a wide range of drive currents.

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT $1 \mathrm{~mm}\left(0.040^{\prime \prime}\right)$ DOWN THE LEADS.
3. THERE IS A MAXIMUM 1° TAPER FROM BASE TO THE TOP OF LAMP.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Sym.	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
I_{v}	Luminous Intensity	AlGaAs Red S100 High Efficiency Red S200 S201 Orange S400 S401 Yellow S300 S301 Green S500 S501	$\begin{aligned} & 3.6 \\ & 2.1 \\ & 3.4 \\ & 2.1 \\ & 3.4 \\ & \\ & 1.4 \\ & 2.2 \\ & \\ & 2.6 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 3.5 \\ & 4.8 \\ & 3.5 \\ & 4.8 \\ & 2.1 \\ & 3.5 \\ & 4.0 \\ & 5.8 \end{aligned}$		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
201/2	Included Angle Between Half Luminous Intensity Points	All		110		Deg.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ See Note 1
$\lambda_{\text {PEAK }}$	Peak Wavelength	AlGaAs Red High Efficiency Red Orange Yellow Green		$\begin{aligned} & \hline 645 \\ & 635 \\ & 600 \\ & 583 \\ & 565 \\ & \hline \end{aligned}$		nm	Measurement at Peak
$\lambda_{\text {d }}$	Dominant Wavelength	AlGaAs Red High Efficiency Red Orange Yellow Green		$\begin{aligned} & 637 \\ & 626 \\ & 602 \\ & 585 \\ & 569 \\ & \hline \end{aligned}$		nm	See Note 2
$\tau_{\text {s }}$	Speed of Response	AlGaAs Red High Efficiency Red Orange Yellow Green		$\begin{aligned} & 30 \\ & 350 \\ & 350 \\ & 390 \\ & 870 \end{aligned}$		ns	
C	Capacitance	AlGaAs Red High Efficiency Red Orange Yellow Green		$\begin{gathered} 30 \\ 11 \\ 4 \\ 15 \\ 18 \\ \hline \end{gathered}$		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{R} \theta_{\text {Jc }}$	Thermal Resistance	AlGaAs Red All Others		$\begin{aligned} & 220 \\ & 120 \end{aligned}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead at Seating Plane
V_{F}	Forward Voltage	AlGaAs Red HER/Orange Yellow Green	$\begin{aligned} & 1.6 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.2 \\ & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 2.2 \\ 3.0 \\ 3.0 \\ 3.0 \end{array} \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
V_{R}	Reverse Breakdown Voltage	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{v}	Luminous Efficacy	AlGaAs Red High Efficiency Red Orange Yellow Green		$\begin{gathered} 80 \\ 145 \\ 380 \\ 500 \\ 595 \\ \hline \end{gathered}$		lumens/ watt	See Note 3

Notes:

1. $\theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{v}, in watts/steradian, may be found from the equation $I_{0}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	AlGaAs Red	High Efficiency Red/Orange	Yellow	Green	Units
Peak Forward Current	300	90	60	90	mA
Average Forward Current ${ }^{[1]}$	20	25	20	25	mA
DC Current ${ }^{2]}$	30	30	20	30	mA
Power Dissipation	87	135	85	135	mW
Transient Forward Current ${ }^{[3]}$ ($10 \mu \mathrm{sec}$ Pulse)	500				mA
Operating Temperature Range	-20 to +100	-55 to +100	-55 to +100	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100			-55 to +100	
Lead Soldering Temperature [1.6 mm (0.063 in.) below seating plane]	$260^{\circ} \mathrm{C}$ for 5 seconds				

Notes:

1. See Figure 5 to establish pulsed operating conditions.
2. For AlGaAs Red, Red, Orange, and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.34 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wire bond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative Intensity vs. Wavelength

Figure 2. Forward Current vs. Forward Voltage Characteristics. $V_{F}(300 \mathrm{~mA})$ for AlGaAs Red $=2.6$ Volts Typical

IDC - DC CURRENT PER LED - mA
Figure 3. Relative Luminous Intensity vs. DC Forward Current

I PEAK - PEAK CURRENT PER LED - mA
Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current. η v $(\mathbf{3 0 0} \mathbf{~ m A})$ for AlGaAs Red $=0.7$

Figure 5. Maximum Tolerable Peak Current vs. Peak Duration ($\mathrm{I}_{\text {PEAK }}$ MAX Determined from Temperature Derated $\mathrm{I}_{\mathrm{DC}} \mathbf{M A X}$)

Figure 6. Relative Luminous Intensity vs. Angular Displacement

Subminiature Solid State Lamps

Technical Data

Features

- Subminiature Flat Top Package
Ideal for Backlighting and Light Piping Applications
- Subminiature Dome Package
Diffused Dome for Wide Viewing Angle
Nondiffused Dome for High Brightness
- Arrays
- TTL and LSTTL Compatible 5 Volt Resistor Lamps
- Available in Six Colors
- Ideal for Space Limited Applications
- Axial Leads
- Available with Lead Configurations for Surface Mount and Through Hole PC Board Mounting

Description

Flat Top Package
The HLMP-PXXX Series flat top
lamps use an untinted, nondiffused, truncated lens to provide a wide radiation pattern that is necessary for use in backlighting applications. The flat top lamps are also ideal for use as emitters in light pipe applications.

Dome Packages
The HLMP-6XXX Series dome lamps for use as indicators use a tinted, diffused lens to provide a wide viewing angle with a high on-off contrast ratio. High brightness lamps use an untinted, nondiffused lens to provide a high luminous intensity within a narrow radiation pattern.

Arrays

The HLMP-66XX Series subminiature lamp arrays are available in lengths of 3 to 8 elements per array. The luminous intensity is matched within an array to assure a 2.1 to 1.0 ratio.

Resistor Lamps

The HLMP-6XXX Series 5 volt subminiature lamps with built in current limiting resistors are for use in applications where space is at a premium.

Lead Configurations

All of these devices are made by encapsulating LED chips on axial lead frames to form molded epoxy subminiature lamp packages. A variety of package configuration options is available. These include special sur-

> HLMP-PXXX Series HLMP-Q1XX Series HLMP-6XXX Series HLMP-70XX Series
face mount lead configurations, gull wing, yoke lead or Z-bend. Right angle lead bends at 2.54 $\mathrm{mm}(0.100 \mathrm{inch})$ and 5.08 mm (0.200 inch) center spacing are available for through hole mounting.

Device Selection Guide
 Part Number: HLMP-XXXX

Standard Red	DH AS AlGaAs Red	High Efficiency Red	Orange	Yellow	Performance Green	Device Description ${ }^{[1]}$	Device Outline Drawing	
P005	P105	P205	P405	P305	P505	Nondiffused, Flat Top	A	
$6000 / 6001$	Q101	6300	Q400	6400	6500	Diffused		
	Q105	6305		6405	6505	Nondiffused, High Brightness	B	
	Q150	7000		7019	7040	Diffused, Low Current		
	Q155					Nondiffused, Low Current		
		6600		6700	6800	Diffused, Resistor, 5 V, 10 mA		
6203		6620		6720	6820	Diffused, Resistor, 5 V, 4 mA		
6204		6654		6754	6854	4 Element		
6205		6655		6755	6855	5 Element	Matched Array, Diffused	C
6206		6656		6766	6856	6 Element		
6208		6658		6768	6858	8 Element		

Package Configuration Options

$\begin{array}{c}\text { Option } \\ \text { Code }\end{array}$	Package Configuration Description		
	Gull Wing Lead, Tape and Reel ${ }^{[2]}$		$\begin{array}{c}\text { Package } \\ \text { Outline } \\ \text { Drawing }\end{array}$
012	Gull Wing Lead, Bulk Packaging ${ }^{[3]}$		D, L, P
013	Gull Wing Lead, Arrays, Shipping Tube		Surface Mount Lead
	Configurations		

Notes:

1. Diffused lamps have tinted lenses. Nondiffused lamps have untinted lenses.
2. Lamps are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 lamps per reel. Minimum order quantity and order increment are in quantity of reels only.
3. Vapor barrier bags are used for bulk packaging.

Package Dimensions

(A) Flat Top Lamps

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

(B) Diffused and Nondiffused

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

nots:
3. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
4. OVERALL LENGTH IS THE NUMBER OF ELEMENTS TIMES 2.54 mm (0.100 IN.$)$.
5. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.

Package Dimensions, Lead Bend Options

(D) Individual Lamp, Gull Wing Lead, Option 011 and 012

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(E) Subminiature Array, Gull Wing Lead, Option 013

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
(F) Individual Lamp, "Yoke" Lead, Options 021 and 022

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

(G) Individual Lamp, Z-Bend Lead, Options 031 and 032

(H) Individual Lamp or Array, Rt. Angle Bend Option 1L1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
(I) Individual Lamp or Array, Rt. Angle Bend Option 1S1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
(J) Individual Lamp or Array, Rt. Angle Bend Option 2L1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
(K) Individual Lamp or Array, Rt. Angle Bend Option 2S1

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)

Package Dimensions: Surface Mount Tape and Reel Options

(L) $\mathbf{1 2} \mathbf{~ m m}$ Tape and Reel, Gull Wing Lead, Option 011

(M) Array Shipping Tube, Gull Wing Lead, Option 013

(N) $12 \mathbf{m m}$ Tape and Reel, "Yoke" Lead, Option 021

NOTES:

1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE.
2. 7 INCH REEL-1500 PIECES PER REEL.
3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm .
4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING LAMPS IS TWO.
5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKET HOLE.
(O) 12 mm Tape and Reel, Z-Bend Lead, Option

TOLERANCES (UNLESS OTHERWISE SPECIFIED): $. X \pm .1 ; . X X \pm .05(. X X X \pm .004)$

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\mathbf{}} \mathbf{C}$

Parameter	Standard Red	DH AS AlGaAs Red	High Eff. Red	Orange	Yellow	High Perf. Green	Units
Power Dissipation	100	87	135	135	85	135	mW
DC Forward Current ${ }^{[1]}$	50	30	30	30	20	30	mA
Peak Forward Current ${ }^{[2]}$	1000	300	90	90	60	90	mA
DC Forward Voltage (Resistor Lamps Only)			6		6	6	V
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	5	5	5	5	5	V
Transient Forward Current ${ }^{[3]}$ ($10 \mu \mathrm{~s}$ Pulse)	2000	500	500	500	500	500	mA
Operating Temperature Range: Non-Resistor Lamps	$\begin{aligned} & -55 \text { to } \\ & +100 \\ & \hline \end{aligned}$	$\begin{aligned} & -20 \text { to } \\ & +100 \\ & \hline \end{aligned}$	-55 to +100			$\begin{aligned} & -20 \text { to } \\ & +100 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
Resistor Lamps			-40 to +85			$\begin{gathered} -20 \text { to } \\ +85 \end{gathered}$	
Storage Temperature Range	-55 to +100						${ }^{\circ} \mathrm{C}$
Wave Soldering Temperature [1.6 mm (0.063 in .) from body]	$260^{\circ} \mathrm{C}$ for 3 Seconds						
Surface Mount Reflow Soldering: Convective IR Vapor Phase	$235{ }^{\circ} \mathrm{C}$ for 90 Seconds						
	$215^{\circ} \mathrm{C}$ for 3 Minutes						

Notes:

1. See Figure 5 for current derating vs. ambient temperature. Derating is not applicable to resistor lamps.
2. Refer to Figure 6 showing Max. Tolerable Peak Current vs. Pulse Duration to establish pulsed operating conditions.
3. The transient peak current is the maximum non-recurring peak current the device can withstand without failure. Do not operate these lamps at this high current.

Electrical/Optical Characteristics, $\mathbf{T}_{\mathrm{A}} \mathbf{=} \mathbf{2 5}^{\mathbf{}} \mathbf{C}$

Standard Red

Device HLMP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
P005	Luminous Intensity ${ }^{[1]}$	I_{v}	1.0	2.5		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
6000			0.5	1.2			
6001			1.3	3.2			
$\begin{gathered} 6203 \text { to } \\ 6208 \end{gathered}$			0.5	1.2			
	Forward Voltage	V_{F}	1.4	1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
All	Reverse Breakdown Voltage	V_{R}	5.0	12.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
P005	Included Angle Between Half Intensity Points ${ }^{[2]}$	$2 \theta_{1 / 2}$		125		Deg.	
All Others				90			
All	Peak Wavelength	$\lambda_{\text {PEAK }}$		655		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		640		nm	
	Spectral Line Half Width	$\Delta \lambda_{12}$		24		nm	
	Speed of Response	τ_{8}		15		ns	
	Capacitance	C		100		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
	Thermal Resistance	$\mathrm{R} \theta_{\text {J.PIN }}$		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction-to-Cathode Lead
	Luminous Efficacy ${ }^{[4]}$	η v		65		$\operatorname{lm} / \mathrm{W}$	

DH AS AlGaAs Red

Device HLMP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
P105	Luminous Intensity	I_{v}	22.0	45.0		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Q101			22.0	45.0			
Q105			22.0	55.0			
Q150			1.0	1.8			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
Q155			2.0	4.0			
Q101	Forward Voltage	V_{F}		1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
P105/Q105				1.8	2.2		
Q150/Q155				1.6	1.8		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
All	Reverse Breakdown Voltage	$\mathrm{V}_{\text {R }}$	5.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
P105	Included Angle Between Half Intensity Points ${ }^{[2]}$	$2 \theta_{1 / 2}$		125		Deg.	
Q101/Q150				90			
Q105/Q155				28			
All	Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	Measured at Peak
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
	Spectral Line Half Width	$\Delta \lambda_{1 / 2}$		20		nm	
	Speed of Response	τ_{B}		30		ns	Exponential Time Constant; $\mathrm{e}^{-\tau \tau}$
	Capacitance	C		30		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
	Thermal Resistance	$\mathrm{R} \theta_{\text {J-PIN }}$		220		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction-to Cathode Lead
	Luminous Efficacy ${ }^{[4]}$	$\eta_{\text {v }}$		80		lm/W	

High Efficiency Red

Device HLMP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
P205	Luminous Intensity ${ }^{[1]}$	I_{v}	1.0	5.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
6300			1.0	3.0			
6305			3.4	12.0			
7000			0.4	0.8			$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
6600			1.3	5.0			$\mathrm{V}_{\mathrm{F}}=5.0$ Volts
6620			0.8	2.0			
$\begin{gathered} 6653 \text { to } \\ 6658 \end{gathered}$			1.0	3.0			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
All	Forward Voltage (Nonresistor Lamps)	V_{F}	1.5	1.8	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
6600	Forward Current (Resistor Lamps)	I_{F}		9.6	13.0	mA	$\mathrm{V}_{\mathrm{F}}=5.0 \mathrm{~V}$
6620				3.5	5.0		
All	Reverse Breakdown Voltage	V_{R}	5.0	30.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
P205	Included Angle Between Half Intensity Points ${ }^{[2]}$	$2 \theta_{1 / 2}$		125		Deg.	
6305				28			
$\begin{array}{c\|} \text { All } \\ \text { Diffused } \end{array}$				90			
All	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	Measured at Peak
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		626		nm	
	Spectral Line Half Width	$\Delta \lambda_{1 / 2}$		40		nm	
	Speed of Response	$\tau_{\text {s }}$		90		ns	
	Capacitance	C		11		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
	Thermal Resistance	$\mathrm{R} \theta_{\text {J-PIN }}$		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction-to-Cathode Lead
	Luminous Efficacy ${ }^{[4]}$	η_{v}		145		lm/W	

Orange

Device HLMP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
P405	Luminous Intensity	I_{v}	1.0	4.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Q400			1.0	3.0			
P405	Forward Voltage	V_{F}	1.5	1.9	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse Breakdown Voltage	V_{R}	5.0	30.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Included Angle Between Half Intensity Points ${ }^{[2]}$	$2 \theta_{1 / 2}$		125		Deg.	
Q400				90			
$\begin{aligned} & \text { P405/ } \\ & \text { Q400 } \end{aligned}$	Peak Wavelength	$\lambda_{\text {PEAK }}$		600		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		602		nm	Measured at Peak
	Spectral Line Half Width	$\Delta \lambda_{1 / 2}$		40		nm	
	Speed of Response	τ_{8}		260		ns	
	Capacitance	C		4		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
	Thermal Resistance	$\mathrm{R} \theta_{\text {J-PIN }}$		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction-to-Cathode Lead
	Luminous Efficacy ${ }^{[4]}$	η_{v}		380		$\operatorname{lm} / \mathrm{W}$	

Yellow

Device HLMP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
P305	Luminous Intensity ${ }^{[1]}$	I_{v}	1.0	4.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
6400			1.0	3.0			
6405			3.6	12			
7019			0.4	0.6			$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
6700			1.4	5.0			$\mathrm{V}_{\mathrm{F}}=5.0$ Volts
6720			0.9	2.0			
$\begin{gathered} 6753 \text { to } \\ 6758 \end{gathered}$			1.0	3.0			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
All	Forward Voltage (Nonresistor Lamps)	V_{F}	1.5	2.0	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
6700	Forward Current (Resistor Lamps)	I_{F}		9.6	13.0	mA	$\mathrm{V}_{\mathrm{F}}=5.0 \mathrm{~V}$
6720				3.5	5.0		
All	Reverse Breakdown Voltage	V_{R}	5.0	50.0		V	
P305	Included Angle Between Half Intensity Points ${ }^{[2]}$	$2 \theta_{1 / 2}$		125		Deg.	
6405				28			
All Diffused				90			
All	Peak Wavelength	$\lambda_{\text {PEAK }}$		583		nm	Measured at Peak
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		585		nm	
	Spectral Line Half Width	$\Delta \lambda_{12}$		36		nm	
	Speed of Response	τ_{8}		90		ns	
	Capacitance	C		15		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
	Thermal Resistance	$\mathrm{R} \theta_{\text {J-PIN }}$		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction-to-Cathode Lead
	Luminous Efficacy ${ }^{[4]}$	η		500		lm/W	

High Performance Green

Device HLMP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
P505	Luminous Intensity ${ }^{[1]}$	I_{v}	1.0	5.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
6500			1.0	3.0			
6505			4.2	12.0			
7040			0.4	0.6			$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
6800			1.6	5.0			$\mathrm{V}_{\mathrm{F}}=5.0$ Volts
6820			0.8	2.0			
$\begin{gathered} 6853 \text { to } \\ 6858 \end{gathered}$			1.0	3.0			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
All	Forward Voltage (Nonresistor Lamps)	V_{F}	1.5	2.0	3.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
6800	Forward Current (Resistor Lamps)	I_{F}		9.6	13.0	mA	$\mathrm{V}_{\mathrm{F}}=5.0 \mathrm{~V}$
6820				3.5	5.0		
All	Reverse Breakdown Voltage	V_{R}	5.0	50.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
P505	Included Angle Between Half Intensity Points ${ }^{[2]}$	$2 \theta_{1 / 2}$		125		Deg.	
6505				28			
$\begin{gathered} \text { All } \\ \text { Diffused } \end{gathered}$				90			
All	Peak Wavelength	$\lambda_{\text {PEAK }}$		565		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		569		nm	
	Spectral Line Half Width	$\Delta \lambda_{1 / 2}$		28		nm	
	Speed of Response	τ_{8}		500		ns	
	Capacitance	C		18		pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
	Thermal Resistance	$\mathrm{R} \theta_{\text {J-PIN }}$		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction-to-Cathode Lead
	Luminous Efficacy ${ }^{[4]}$	η		595		lm / W	

Notes:

1. The luminous intensity for arrays is tested to assure a 2.1 to 1.0 matching between elements. The average luminous intensity for an array determines its light output category bin. Arrays are binned for luminous intensity to allow I_{v} matching between arrays.
2. $\theta_{1 / 2}$ is the off-axis angle where the luminous intensity is half the on-axis value.
3. Dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and represents the single wavelength that defines the color of the device.
4. Radiant intensity, I_{0}, in watts/steradian, may be calculated from the equation $I_{0}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

Figure 2. Forward Current vs. Forward Voltage (Non-Resistor Lamp).

Figure 3. Relative Luminous Intensity vs. Forward Current (Non-Resistor Lamp).

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current (Non-Resistor Lamps).

TA $_{\text {A }}$ - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$

Re $_{\text {J.A }}(X)$	STD RED	AIGaAs RED	HI-EFF RED	ORANGE	YELLOW	GREEN	UNITS
1	600						${ }^{\circ}$ CWW LED
2	400						JUNCTION
3		689	444	444	470	444	TO
4		559	296	296		296	
5					705		

Figure 5. Maximum Forward dc Current vs. Ambient Temperature. Derating Based on $\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$ (Non-Resistor Lamps).

Standard Red

HER, Orange, Yellow, and High Performance Green

DH As AIGaAs Red

Figure 6. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{d c}$ MAX as per MAX Ratings) (Non-Resistor Lamps).

Figure 7. Resistor Lamp Forward Current vs. Forward Voltage.

V_{F} - FORWARD VOLTAGE - VOLTS
Figure 8. Resistor Lamp Luminous Intensity vs. Forward Voltage.

Figure 9. Relative Intensity vs. Angular Displacement.

HEWLETT
PACKARD

High Efficiency Red/
 High Performance Green Bicolor Solid State Lamps

Technical Data

Features:

- Two Color (Red, Green) Operation
- (Other Two LED Color Combinations Available)
- Three Leads with One Common Cathode
- Diffused, Wide Visibility Lens

Description

The T- $13 / 4$ HLMP-4000 and 2 mm by 5 mm rectangular HLMP-0800 are three leaded bicolor light sources designed for a variety of applications where dual state illumination is required in the same package. There are two LED chips, high efficiency red (HER), and high performance green (Green), mounted on a central common cathode lead for maximum onaxis viewability. Colors between

HER and Green can be generated by independently pulse width modulating the LED chips.

Note: Other possible LED combinations available are AlGaAs, orange, yellow.

Package Dimensions

 HLMP-4000

HLMP-0800

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm
($0.040^{\prime \prime}$) DOWN THE LEADS.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	High Efficiency Red/Green	Units
Peak Forward Current	90	mA
Average Forward Current ${ }^{[1,2]}$ (Total)	25	mA
DC Current ${ }^{[2,4]}$ (Total)	30	mA
Power Dissipation ${ }^{[3,5]}$ (Total)	135	mW
Operating Temperature Range	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100	
Reverse Voltage ($\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$)	5	V
Transient Forward Current ${ }^{[6]}$ ($10 \mu \mathrm{sec}$ Pulse)	500	mA
Lead Soldering Temperature [1.6 mm (0.063 in .) below seating plane]	$260^{\circ} \mathrm{C}$ for 5 seconds	

Notes:

1. See Figure 5 to establish pulsed operating conditions.
2. The combined simultaneous current must not exceed the maximum.
3. The combined simultaneous power must not exceed the maximum.
4. For HER and Green derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
5. For HER and Green derate linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
6. The transient peak current is the maximum non-recurring current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Sym.	Parameter	Red			Green			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.		
I_{v}	Luminous Intensity HLMP-4000	2.1	5		4.2	8		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	HLMP-0800	2.1	3.5		2.6	4.0			$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\lambda_{\text {PEAK }}$	Peak Wavelength		635			565		nm	
$\lambda_{\text {d }}$	Dominant Wavelength ${ }^{[1]}$		626			569			
τ_{8}	Speed of Response		90			500		ns	
C	Capacitance		11			18		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$
V_{F}	Forward Voltage		2.1	2.5		2.3	2.7	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
V_{R}	Reverse Breakdown Voltage	5			5			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\theta_{\text {Jc }}$	Thermal Resistance		120		120			${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points ${ }^{[2]}$ HLMP-4000		65			65		Deg.	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	HLMP-0800		100			100			$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
η_{v}	Luminous Efficacy ${ }^{[3]}$		145			595		Lumen/ Watt	

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. Radiant intensity, I_{0}, in watts steradian, may be found from the equation $I_{d}=I / \eta_{v}$ where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Figure 1. Relative Intensity vs. Wavelength.

$V_{F}-F O R W A R D$ VOLTAGE - V
Figure 2. Forward Current vs. Forward Voltage Characteristics.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration ($I_{\text {dc }}$ MAX as per MAX Ratings.

Figure 6. Relative Luminous Intensity vs. Angular Displacement for the HLMP-4000.

Figure 7. Relative Luminous Intensity vs. Angular Displacement for the HLMP-0800.

INTEGRATED RESISTOR LAMPS
 5 Volt and 12 Volt in $\mathrm{T}-1$ and $\mathrm{T}-1$ 3/4 Packages

Features

- INTEGRAL CURRENT LIMITING RESISTOR
- tTL COMPATIBLE

Requires no External Current Limiter with 5 Volt/12 Volt Supply

- COST EFFECTIVE

Saves Space and Resistor Cost

- WIDE VIEWING ANGLE
- AVAILABLE IN ALL COLORS Red, High Efficiency Red, Yellow and High Performance Green in T-1 and T-1 3/4 Packages

Description

The 5 volt and 12 volt series lamps contain an integral current limiting resistor in series with the LED. This allows the lamp to be driven from a 5 volt/12 volt source without an external current limiter. The red LEDs are made from GaAsP on a GaAs substrate. The High Efficiency Red and Yellow devices use GaAsP on a GaP substrate.

The green devices use GaP on a GaP substrate. The diffused lamps provide a wide off-axis viewing angle.

The T-1 3/4 lamps are provided with sturdy leads suitable for wire wrap applications. The T-1 3/4 lamps may be front panel mounted by using the HLMP-0103 clip and ring.

Color	$\begin{gathered} \text { P/N } \\ \text { HLMP. } \end{gathered}$	Package	Operating Voltage	IV mad		$2 \Theta 1 / 2[1]$	Package Outline
				Min.	Typ.		
Red	1100	T-1 Tinted Diffused	5	0.8	2.5	60°	A
	1120	T-1 Untinted Diffused	5	0.8	2.5	60°	A
	3105	T-1 3/4 Tinted Diffused	5	1.0	3.0	60°	B
	3112		12	1.0	3.0	60°	B
High Efficiency Red	1600	T-1 Tinted Diffused	5	2.0	8.0	60	A
	1601		12			60	A
	3600	T-1 3/4 Tinted Diffused	5				
	3601		12			60°	B
Yellow	1620	T-1 Tinted Diffused	5	2.0	8.0	60°	A
	1621		12			60	A
	3650	T-1 3/4 Tinted Diffused	5			60°	
	3651		12			60°	B
High Performance Green	1640	T-1 Tinted Diffused	5	2.0	8.0	60	A
	1641		12			60	A
	3680	T-1 3/4 Tinted Diffused	5			60°	B
	3681		12				

Notes:

1. $\Theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	Red/HER/Yellow $\mathbf{5}$ Volt Lamps	Red/HER/Yellow $\mathbf{1 2}$ Volt Lamps	Green $\mathbf{5}$ Volt Lamps	Green $\mathbf{1 2}$ Volt Lamps
DC Forward Voltage $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	7.5 Volts $\|2\|$	15 Volts $\|3\|$	7.5 Volts $\|2\|$	15 Volts $\|3\|$
Reverse Voltage $\left(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5 Volts	5 Volts	5 Volts	5 Volts
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$			
Lead Soldering Temperature	$260^{\circ} \mathrm{C}$ for 5 seconds			

Notes:
2. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.071 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 3 .
3. Derate from $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ at $0.086 \mathrm{~V} /{ }^{\circ} \mathrm{C}$, see Figure 4.

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Red			High Efficiency Red			Yellow			Green			Units	Test Conditions
		Min.	Typ.	Max.											
$\lambda_{\text {PEAK }}$	Peak Wavelength		655			635			583			565		nm	
λ_{d}	Dominant Wavelength		648			626			585			569		nm	Note 4
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth		24			40			36			28		nm	
OJc	Thermal Resistance		120			120			120			120		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead (Note 6)
OJc	Thermal Resistance		95			95			95			95		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead (Note 7)
If	Forward Current 12 V Devices		13	20		13	20		13	20		13	20	mA	$\mathrm{V}_{\mathrm{F}}=12 \mathrm{~V}$
IF	Forward Current 5 V Devices		13	20		10	15		10	15		12	15	mA	$\mathrm{V}_{\mathrm{F}}=5 \mathrm{~V}$
$\eta \mathrm{V}$	Luminous Efficacy		65			145		:	500			595		lumen /watt	Note 5
V_{R}	Reverse Breakdown Voltage	5.0			5.0			5.0		\because	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$

Notes:
4. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
5. Radiant intensity, I_{e}, in watts/steradian, may be found from the
equation $\mathrm{l}_{\mathrm{e}}=\mathrm{Iv} / \eta \mathrm{v}$. Where lv is the luminous intensity in candelas and ηv is the luminous efficacy in lumens/watt.
6. For Figure A package type.
7. For Figure B package type.

Package Dimensions

Figure B. T-1 3/4 Package

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1mm (.040') DOWN THE LEADS'.

Figure A. T-1 Package

Figure 1. Forward Current vs. Applied Forward Voltage. 5 Volt Devices

Figure 3. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature $\mathrm{R} \theta \mathrm{JA}=175^{\circ} \mathrm{C} / \mathrm{W} .5$ Volt Devices

Figure 5. Relative Luminous Intensity vs. Angular Displacement for T-1 Package

Figure 2. Forward Current vs. Applied Forward Voltage. 12 Volt Devices

Figure 4. Maximum Allowed Applied Forward Voltage vs. Ambient Temperature $\mathrm{R} \theta_{\mathrm{JA}}=175^{\circ} \mathrm{C} / \mathrm{W} .12$ Volt Devices

Figure 6. Relative Luminous Intensity vs. Angular Displacement for T-1 3/4 Package

Figure 7. Relative Luminous Intensity vs. Applied Forward Voltage. 5 Volt Devices

Figure 8. Relative Luminous Intensity vs. Applied Forward Voltage. 12 Volt Devices

TAPE AND REEL SOLID STATE LAMPS

Leads: $\quad 5 \mathrm{~mm}$ (0.197 inch) Formed Leads - OPTION 001 2.54 mm (0.100 inch) Straight Leads - OPTION 002

Features

- COMPATIBLE WITH RADIAL LEAD AUTOMATIC INSERTION EQUIPMENT
- MEETS DIMENSIONAL SPECIFICATIONS OF IEC PUBLICATION 286 AND ANSI/EIA STANDARD RS-468 FOR TAPE AND REEL
- REEL PACKAGING SIMPLIFIES HANDLING AND TESTING
- T-1 AND T-1 3/4 LED LAMPS AVAILABLE PACKAGED ON TAPE AND REEL
- 5 mm (0.197 INCH) FORMED LEAD AND 2.54 mm (0.100 INCH) STRAIGHT LEAD SPACING AVAILABLE

Device Selection Guide

Option	Description
001	Tape and reel, $5 \mathrm{~mm}(0.197$ inch $)$ formed leads.
002	Tape and reel, $2.54 \mathrm{~mm}(0.100$ inch $)$ straight leads.

Package	Quantity/Reel	Order Increments
T-1	1800	1800
T-1 3/4	1300	1300

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings, mechanical dimension tolerances and electrical/optical characteristics for lamps packaged on tape and reel are identical to the basic catalog device. Refer to the basic data sheet for the specified values.

Notes:

1. Minimum leader length at either end of tape is 3 blank part spaces.
2. Silver saver paper is used as the interlayer for silver plated lead devices.
3. The maximum number of consecutive missing lamps is 3 .
4. In accordance with EIA and IEC specs, the anode lead leaves the reel first.
5. Drawings apply to devices with $0.46 \mathrm{~mm}(0.018 \mathrm{inch})$ square leads only. Contact Hewlett-Packard Sales Office for dimensions of $0.635 \mathrm{~mm}(0.025$ inch) square lead devices.

Tape and Reel LED Configurations

Figure 1. T-1 High Profile Lamps, Option 001

Figure 3. T-1 Low Profile Lamps, Option 001

Figure 5. T-1 3/4 High Profile Lamps, Option 001

Figure 7. T-1 3/4 Low Profile Lamps, Option 001

Figure 2. T-1 High Profile Lamps, Option 002

Figure 4. T-1 Low Profile Lamps, Option 002

Figure 6. T-1 3/4 High Profile Lamps, Option 002

Figure 8. T-1 3/4 Low Profile Lamps, Option 002

Dimensional Specifications for Tape and Reel

Note:

1. Dimensions in millimetres (inches), maximum/minimum.

Figure 9. Front to Rear Alignment and Tape Thickness, Typical All Device Types

Figure 10. Device Retention Tests and Specifications

Figure 11. Reel Configuration and Labeling

Features

- IDEAL FOR CARD EDGE STATUS INDICATION
- PACKAGE DESIGN ALLOWS FLUSH SEATING ON A PC BOARD
- MAY BE SIDE STACKED ON 6.35 mm ($\mathbf{0 . 2 5}$ ") CENTERS
- LEDs AVAILABLE IN FOUR COLORS, WITH OR WITHOUT INTEGRATED CURRENT LIMITING RESISTOR IN T-1 3/4 TINTED DIFFUSED PACKAGES
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS

Description

The T-1 3/4 Option 010 and 100 series of Right Angle Indicators are industry standard status indicators that incorporate a tinted diffused T-1 3/4 LED lamp in a black plastic housing. The indicators are available in standard Red, High Efficiency Red, Yellow, or High Performance

Green with or without an integrated current limiting resistor. These products are designed to be used as back panel diagnostic indicators and card edge logic status indicators.

Package Dimensions

Ordering Information

To order T-1 3/4 high dome lamps in addition to the parts indicated above, select the base part number and add the option code 010 or 100. For example: HLMP-3750-010.

All Hewlett-Packard T-1 3/4 high-dome lamps are available in right angle housing. Contact your local Hewlett-Packard Sales Office or authorized components distributor for additional ordering information.
The Plastic right angle housing may be purchased separately as part number HLMP-5029.

Absolute Maximum Ratings and Electrical/Optical Characteristics

The absolute maximum ratings and device characteristics are identical to those of the T-1 3/4 LED lamps. For information about these characteristics, see the data sheets of the equivalent T-1 3/4 LED lamp.

Features

- IDEAL FOR CARD EDGE STATUS INDICATION
- PACKAGE DESIGN ALLOWS FLUSH SEATING ON A PC BOARD
- MAY BE SIDE STACKED ON 4.57 mm (0.18 in) CENTERS
- UP TO 8 UNITS MAY BE COUPLED FOR A HORIZONTAL ARRAY CONFIGURATION WITH A COMMON COUPLING BAR (SEE T-1 RIGHT ANGLE ARRAY DATA SHEET)
- LEDs AVAILABLE IN ALL LED COLORS, WITH OR WITHOUT INTEGRATED CURRENT LIMITING RESISTOR IN T-1 PACKAGES
- EASY FLUX REMOVAL DESIGN
- HOUSING MATERIAL MEETS UL 94V-0 RATING
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS

Description

Hewlett-Packard T-1 Right Angle Indicators are industry standard status indicators that incorporate a tinted diffused T-1 LED lamp in a black plastic housing. The indicators are available in Standard Red, High Efficiency Red, Orange, Yellow, and High Performance Green, with or without an integrated current limiting 'resistor. These products are designed to be used as back panel diagnostic indicators and card edge logic status indicators.

Ordering Information

To order other T-1 High Dome Lamps in Right Angle Housings in addition to the parts indicated above, select the base part number and add the option code 010 or 101, depending on the lead length desired (see drawing below).

Package Dimensions

For example, by ordering HLMP-1302-010, you would receive the long lead option. By ordering HLMP-1302-101, you would receive the short lead option.
Arrays made by connecting two to eight single Right Angle Indicators with a Common Coupling Bar are available. Ordering information for arrays may be found on the T-1 Right Angle Array data sheet.
The above data sheet information is for the most commonly ordered part numbers. Refer to other T-1 base part number specifications in this catalog for other lamp types that may be ordered with the right angle option.

Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the T-1 LED lamps. For information about these characteristics, see the data sheets of the equivalent T-1 LED lamp.

Features

- IDEAL FOR PC BOARD STATUS INDICATION
- STANDARD 4 ELEMENT CONFIGURATION
- EASY HANDLING
- EASY FLUX REMOVAL
- HOUSING MEETS UL 94V-O FLAMMABILITY SPECIFICATIONS
- OTHER CATALOG LAMPS AVAILABLE

Description

These T-1 right angle arrays incorporate standard T-1 lamps for a good balance of viewing angle and intensity. Single units are held together by a plastic tie bar. The leads of each member of the array are spaced on $2.54 \mathrm{~mm}(0.100 \mathrm{in})$ centers. Lead spacing between adjacent lamps in the array is on 2.03 mm (0.080 in) centers. These products are designed to be used as back panel diagnostic indicators and logic status indicators on PC boards.

Ordering Information

Use the option code 102 through 108 in addition to the base part number to order these arrays. Arrays from 2 to 8 elements in length and special lamp color combinations within an array are available. Please contact your nearest Hewlett-Packard Components representative for ordering information on these special items.

Package Dimensions

SUBMINIATURE LED RIGHT ANGLE INDICATORS

Features

- IDEAL FOR PC BOARD STATUS INDICATION
- SIDE STACKABLE ON 2.54 mm (0.100 in) CENTERS
- AVAILABLE IN FOUR COLORS
- HOUSING MEETS UL 94V-O FLAMMABILITY SPECIFICATIONS
- ADDITIONAL CATALOG LAMPS AVAILABLE AS OPTIONS

Description

The Hewlett-Packard series of Subminiature Right Angle Indicators are industry standard status indicators that incorporate tinted diffused LED lamps in black plastic housings. The 2.54 mm (0.100 in) wide packages may be side stacked for maximum board space savings. The silver plated leads are in line on 2.54 mm (0.100 in) centers, a standard spacing that makes the PC board layout straightforward. These products are designed to be used as back panel diagnostic indicators and logic status indicators on PC boards.

Ordering Information

To order Subminiature Right Angle indicators, order the base part number and add the option code 010. For price

and delivery on Resistor Subminiature Right Angle Indicators and other subminiature LEDs not indicated above, please contact your nearest H.P. Components representative.

Absolute Maximum Ratings and Other Electrical/Optical Characteristics

The absolute maximum ratings and typical device characteristics are identical to those of the Subminiature lamps. For information about these characteristics, see the data sheets of the equivalent Subminiature lamp.

Package Dimensions

NOTE: ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

Description

The Option 009 (HLMP-0103) is a black plastic mounting clip and retaining ring. It is designed to panel mount Hewlett-Packard Solid State high profile T-1 3/4 size lamps. This clip and ring combination is intended for installation in instrument panels from $1.52 \mathrm{~mm}\left(.060^{\prime \prime}\right)$ to $3.18 \mathrm{~mm}\left(.125^{\prime \prime}\right)$ thick. For panels greater than $3.18 \mathrm{~mm}\left(.125^{\prime \prime}\right)$ counterboring is required to the $3.18 \mathrm{~mm}\left(.125^{\prime \prime}\right)$ thickness.

Mounting Instructions

1. Drill an ASA C size 6.15 mm (.242') dia. hole in the panel. Deburr but do not chamfer the edges of the hole.
2. Press the panel clip into the hole from the front of the panel.
3. Press the LED into the clip from the back. Use blunt long nose pliers to push on the LED. Do not use force on the LED leads. A tool such as a nut driver may be used to press on the clip.

Note: Clip and retaining ring are also available for T-1 package, from a non-HP source. Please contact Interconsal Association, 2584 Wyandotte Way, Mountain View, CA for additional information.
4. Slip a plastic retaining ring onto the back of the clip and press tight using tools such as two nut drivers.

Ordering Information

T-13/4 High Dome LED Lamps can be purchased to include clip and ring by adding Option Code 009 to the device catalog part number.

Example:

To order the HLMP-3300 including clip and ring, order as follows: HLMP-3300 Option 009.

Hermetic Lamps

Hermetic Lamps

In addition to Hewlett-Packard commercial solid state lamps, Hewlett-Packard offers a complete line of hermetically sealed solid state lamps which are listed on MIL-S-19500 Qualified Parts List. For applications where suppression of infrared (IR) emission is essential, IR-secure indicators, which conform to the Defense Electronics Supply Center (DESC) Selected Item Drawing 87019 are also available.

Hewlett-Packard offers the following families of military grade hermetic and panel mount hermetic LED lamps, hi-
rel screened to military specifications:

- IR Secure panel mount lamps, designed and screened to meet the requirements of DESC Drawing 87019.
- JAN and JANTX hermetic and panel mount hermetic lamps, screened to the requirements of MIL-S-19500 slash sheet specifications and listed on the MIL-S-19500 Qualified Parts List (QPL).
- Ultrabright hermetic and ultrabright panel mount hermetic lamps screened to
the JAN and JANTX
requirements of MIL-S-19500.
These military grade hermetic and panel mount hermetic lamps are produced and hi-rel screened at Hewlett-Packard's DESC qualified facilities, approved to the requirements of MIL-S-19500 and MIL-STD750.

The applicable MIL-S-19500 or DESC 87019 screening tables are detailed on each hermetic lamp data sheet.

IR Secure, Hermetically Sealed LED Lamps, DESC Approved

Notes:

1. Military approved to DESC Drawing 87019.
2. Percent radiometric power emission between specified wavelengths as compared to the radiometric power between 350 nm and 930 nm .

Bold Type - New Product

Hermetically Sealed JAN Qualified LED Lamps

Device		Description			Typical Luminous Intensity	$201 / 2$	Typical Forward Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
$\begin{gathered} \text { Package } \\ \text { Outline Drawing } \end{gathered}$	Part No.	Color	Package	Lens				
	1N5765 JAN1N5765 ${ }^{[1]}$ JANTX1N5765 ${ }^{[1]}$	$\begin{gathered} \text { Red } \\ (640 \mathrm{~nm}) \end{gathered}$	Hermetic/T0-46	Red Diffused	1.0 mcd @ 20 mA	70°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	3-142
	1N6092 JAN1N6092 ${ }^{[1]}$ JANTX1N6092 ${ }^{(1)}$	High Efficiency Red (626 nm)			8.0 mcd @ 20 mA		$\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	1N6093 JAN1N6093 ${ }^{[1]}$ JANTX1N6093 ${ }^{(1)}$	$\left.\begin{array}{c} \text { Yellow } \\ (585 \mathrm{~nm}) \end{array}\right)$		Yellow Diffused	8.0 mcd @ 20 mA		$\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	1N6094 JAN1N6094 ${ }^{[1]}$ JANTX1N6094 ${ }^{(1)}$	$\left\|\begin{array}{c} \text { Green } \\ (570 \mathrm{~nm}) \end{array}\right\|$		Green Diffused	8.0 mcd @ 25 mA		$\begin{gathered} 2.1 \mathrm{~V} \\ @ 25 \mathrm{~mA} \end{gathered}$	
	HLMP-0904 HLMP-0930 HLMP-0931	$\begin{gathered} \text { Red } \\ (640 \mathrm{~nm}) \end{gathered}$	Panel Mount Version	Red Diffused	1.0 mcd @ 20 mA	70°	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-0354 JANM19500/ $51901^{(1]}$ JTXM19500/ $51902^{[1]}$	High Efficiency Red (626 nm)			8.0 mcd @ 20 mA		$\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-0454 JANM19500/ $52001^{(11)}$ JTXM19500/ $52002^{[1]}$	Yellow (585 nm)		Yellow Diffused	8.0 mcd @ 20 mA		$\begin{gathered} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{gathered}$	
	HLMP-0554 JANM19500/ $52101^{(11)}$ JTXM19500/ $52102^{[1]}$	$\begin{gathered} \text { Green } \\ (570 \mathrm{~nm}) \end{gathered}$		Green Diffused	8.0 mcd @ 25 mA		$\begin{gathered} 2.1 \mathrm{~V} \\ @ 25 \mathrm{~mA} \end{gathered}$	

Note:

1. Military qualified and listed on the MIL-S-19500 Qualified Parts List (QPL).

Hermetically Sealed JAN Qualified Ultra-Bright LED Lamps

Device		Description			Typical Luminous Intensity	$281 / 2$	Typical Forward Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Package Outline Drawing	Part No.	Color	Package	Lens				
	1N6609 JAN1N6609(1) JANTX1N6609	High Efficiency Red (626 nm)	$\begin{aligned} & \text { Hermetic } \\ & \mathrm{T} 0-18^{[3]} \end{aligned}$	Clear Glass	50.0 mcd @ 20 mA	18	$\left\|\begin{array}{c} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	3-153
	1N6610 JAN1N6610(1) JANTX6610 ${ }^{(1)}$	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			50.0 mcd @ 20 mA		$\left\|\begin{array}{c} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	
	1N6611 JAN1N6611 ${ }^{[1]}$ JANTX6611 ${ }^{(1)}$	$\begin{gathered} \text { Green } \\ (570 \mathrm{~nm}) \end{gathered}$			50.0 mcd @ 25 mA		$\left\|\begin{array}{c} 2.1 \mathrm{~V} \\ @ 25 \mathrm{~mA} \end{array}\right\|$	
	HLMP-0364 JANM19500/ 51903 ${ }^{\text {(11 }}$ JANTXM19500/ 51904 ${ }^{(11}$	High Efficiency Red (626 nm)	Panel Mount Version	Clear Glass	50.0 mcd @ 20 mA	18	$\left\|\begin{array}{c} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	
	HLMP-0464 JANM19500/ 52003 ${ }^{\prime 11}$ JANTXM19500/ 52004 ${ }^{[1]}$	$\begin{gathered} \text { Yellow } \\ (585 \mathrm{~nm}) \end{gathered}$			50.0 mcd @ 20 mA		$\left\|\begin{array}{c} 2.0 \mathrm{~V} \\ @ 20 \mathrm{~mA} \end{array}\right\|$	
	HLMP-0545 JANM19500/ $52103^{(1)}$ JANTXM19500/ 52104(1]	$\begin{gathered} \text { Green } \\ (570 \mathrm{~nm}) \end{gathered}$			50.0 mcd @ 25 mA		$\left\|\begin{array}{c} 2.1 \mathrm{~V} \\ @ 25 \mathrm{~mA} \end{array}\right\|$	

Notes:

1. Military qualified and listed on theMIL-S-19500 Qualified Parts List (QPL).

Bold Type - New Product

IR Secure, Hermetic, Panel Mount Solid State Lamps DESC Approved

Technical Data

Features

- Designed for IR Secure Lighting Applications
- Conforms to Requirements of DESC Drawing 87019 100% Screening
- Integral Glass NVG Filter with Antireflection Coating
Suppresses IR Emissions at all Viewing Angles
Green: 0.3% IR (620 nm to $930 \mathrm{~nm})^{[1]}$
Yellow: 0.2% IR (675 nm to $930 \mathrm{~nm})^{[1]}$
- True Hermetic LED Lamp

Identical in Design to MIL-S-19500/520/521
Produced and Tested in a DESC Qualified Facility

- Choice of Colors

567 nm Green
585 nm Yellow

- Panel Mount Package

Exceeds the Sealing Requirements of MIL-L-3661
Solder Dipped Leads, Electrically Isolated from Package

- Low Power Operation
- IC Compatible

Description

The 87019G01 high performance green and 87019 Y 01 yellow front panel mountable LED indicators conform to the requirements of the DESC Selected Item Drawing 87019 and are designed for use in infrared (IR) secure lighting applications. These devices are constructed by

87019G01 Green 87019Y01 Yellow

assembling true hermetic solid state lamps into panel mountable aluminum sleeves. They are produced on Hewlett-Packard's hermetic lamp line which has been approved and qualified by the Defense Electronics Supply Center (DESC) to the requirements of MIL-S-19500 and MIL-STD-750. An integral night vision goggle (NVG) filter mounted within the collar of each sleeve provides suppression of IR emissions.

Lamp Selection Guide

DESC Part Number	Color	($\lambda \mathbf{d})$	$\mathbf{I}_{\mathbf{v}}(10 \mathrm{~mA})$ Typ (mcd)	Typical Suppressed IR Emission
87019G01	Green	567 nm	2.0	0.3% IR $(620 \mathrm{~nm} \text { to } 930 \mathrm{~nm})^{[1]}$
87019 Y 01	Yellow	585 nm	2.0	0.2% IR $(675 \mathrm{~nm} \text { to } 930 \mathrm{~nm})^{[1]}$

Note:

1. Percent radiometric power emission between specified wavelengths as compared to the radiometric power between 350 nm and 930 nm .

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Green 87019G01	Yellow 87019Y01	Units
Power Dissipation	105	100	mW
DC Forward Current ${ }^{[1]}$	35	35	mA
Peak Forward Current	90	60	mA
Average Forward Current	30	30	mA
Operating and Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$		
Lead Soldering Temperature $[1.6 \mathrm{~mm}(0.063$ in.) from body $]$	$260^{\circ} \mathrm{C}$ for 7 seconds		

Note:

1. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}{ }^{\circ} \mathrm{C}$

Package Dimensions 87019G01/87019Y01

Notes:

1. Glass NVG filter with a front surface antireflection coating per MIL-C-14806.
2. Collar of sleeve is black anodized per MIL-A-8625.
3. Panel mount sleeve material is aluminum alloy with conductive chromate conversion coating per MIL-C-5541.
4. Recommended panel hole diameter for mounting is $8.03 / 8.00 \mathrm{~mm}(0.319 / 0.315 \mathrm{inch})$.
5. Sealing washer, synthetic rubber, black, 60 durometer per MIL-R-6855.
6. Stainless steel flat washer per MS-15795.
7. Steel lock washer, cadmium plated, per MS-35333.
8. Aluminum alloy nut, M8x0.75-6H metric threads, with conductive chromate conversion coating per MIL-C-5541.
9. All dimensions in millimetres (inches).
10. Weight of panel mount lamp assembly, exclusive of mounting hardware, is 2.8 grams.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Green			Yellow			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.		
I_{v}	Axial Luminous Intensity	0.5	$\begin{aligned} & 2.0 \\ & 7.0 \end{aligned}$	5.0	0.5	$\begin{aligned} & 2.0 \\ & 5.0 \end{aligned}$	4.0	mcd	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA} \end{aligned}$
I_{D}	LED Diffusion	50		150	50		150	\% of I_{v}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}^{[1]}$
P_{E}	Total Power Emission 350 nm to 930 nm			1			1	$\mu \mathrm{W}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}^{[2]}$
$\begin{aligned} & \mathbf{P}_{\mathrm{IRG}} \\ & \mathrm{P}_{\mathrm{IRY}} \end{aligned}$	Infrared Power Emission 620 nm to 930 nm 675 nm to 930 nm		0.3	0.5		0.2	0.5	$\%$ of P_{E}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}^{[3]}$
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points		24			24		deg	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}^{[4]}$
$2 \theta_{\text {c }}$	Included Angle Between 0.5\% Luminous Intensity Points		50	60		50	60	deg	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}^{[5]}$
$\lambda_{\text {PEAK }}$	Peak Wavelength		568			583		nm	
$\lambda_{\text {d }}$	Dominant Wavelength	555	567	572	580	585	590	nm	Note 6
$\tau_{\text {s }}$	Speed of Response		200			200		ns	
C	Capacitance		35	100		35	100	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 ; \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$\mathrm{R} \theta_{\text {J-PIN }}$	Thermal Resistance LED Junction to Cathode Pin		425			425		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Note 7
V_{F}	Forward Voltage	1.6	2.2	2.5	1.6	2.0	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
I_{R}	Reverse Current			100			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
η_{v}	Luminous Efficacy		600			455		$\operatorname{lm} / \mathrm{W}$	Note 8
$\mathrm{R}_{\text {ISo }}$	Insulation Resistance	1000			1000			$\mathrm{M} \Omega$	Note 9

Notes:

1. LED diffusion, I_{D}, is the variation of luminous intensity across the face of the NVG filter. Light output measurements are in accordance with DESC Drawing 87019.
2. Total power, P_{E}, is the amount of radiometric power in watts from 350 nm to 930 nm emitted by the lamp through the NVG filter.
3. Infrared power, $P_{\text {IRG }}$ (green) and $P_{\text {IRY }}$ (yellow), is the ratio of the infrared power emitted thorugh the NVG filter between the wavelengths indicated to the total radiometric power emitted between 350 nm and $930 \mathrm{~nm}, P_{E}$
4. $\theta_{1 / 2}$ is the off-axis angle where the luminous intensity is half the on-axis value. $\theta_{1 / 2}$ TYP $=12^{\circ} \mathrm{C}$.
5. $\theta_{\theta}^{1 / 2}$ is the off-axis angle where the luminous intensity is 0.5% of the on-axis value. $\theta_{\mathrm{c}}^{1 / 2} \mathrm{TYP}=25^{\circ} \mathrm{C}, \theta_{\mathrm{c}} \mathrm{MAX}=30^{\circ}$.
6. The dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and represents the single wavelength which defines the color of the device.
7. Junction to cathode lead with 3.18 mm (0.125 inch) of lead exposed between base of lamp and heat sink.
8. Radiant intensity, I, in watts/steradian, may be determined from the equation $I_{a}=I / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.
9. Insulation resistance is between both leads and the metal sleeve.

Figure 1. Relative Intensity vs. Wavelength

Figure 3. Relative Luminous Intensity vs. Forward Current

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{Dc} MAX as per MAX Ratings)

Figure 2. Forward Current vs. Forward Voltage

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current

Figure 6. Relative Luminous Intensity vs. Angular Displacement

High-Reliability Screening as Defined by DESC Drawing 87019

All lamps are subjected to 100 percent screening as listed in Table I. Random samples are pulled from each lot and are subjected to Group A electrical/
optical and mechanical tests as listed in Table II. Random sample Group B quality conformance tests in accordance with MIL-S-19500 subgroups, as listed in Table III, are performed every six months.

Table I. Screening Tests

Test	MIL-STD-750 Method	Measurements and Conditions
High Temperature Storage (Nonoperating)	1032	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$, time $=72$ hours
Thermal Shock (Temperature Cycling)	1051	Test condition A, except $T_{\text {(high) }}=+100^{\circ} \mathrm{C}, 10$ cycles; time at temperature extremes $=15$ minutes minimum.
Constant Acceleration	2006	Nonoperating $20,000 \mathrm{~g}$; Y_{1} only.
Seal	1011	Test condition A
Pre Burn-in Measurements	$\begin{aligned} & 4011 \\ & 4016 \end{aligned}$	$\begin{array}{\|l\|l} \hline \mathrm{I}_{\mathrm{V}}^{[1]]} \\ \mathrm{V}_{\mathrm{F}}{ }^{[1]} \\ \mathrm{I}_{\mathrm{R}}{ }^{1]} \\ \hline \end{array}$
Burn-in (Forward Bias)		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ dc for yellow, $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$ dc for green, 168 hours minimum
Post Burn-in Measurements	$\begin{aligned} & 4011 \\ & 4016 \end{aligned}$	I_{V} (within 72 hours of burn-in) ${ }^{[1]}$ $\mathrm{V}_{\mathrm{F}}{ }^{[1]}$ $\mathrm{I}_{\mathrm{R}}{ }^{[1]}$ $\mathrm{P}_{\mathrm{E}}{ }^{[1]}$ $\Delta \mathrm{I}_{\mathrm{v}}=-20 \%$ maximum from inital value $\Delta \mathrm{V}_{\mathrm{F}}= \pm 50 \mathrm{mV}$ from initial value

Note:

1. Limits and conditions are those listed in the electrical/optical characteristics.

Table II. Group A Inspection

Inspection	MLL-STD-750		LTPD	Symbol	Limits		Unit
	Method	Conditions			Min.	Max.	
Subgroup 1 Visual and mechanical inspection	2071		5				
Subgroup 2 Luminous intensity		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc}$	7		Verify light output		
Forward voltage Reverse current	$\begin{aligned} & 4011 \\ & 4016 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc} \\ & \mathrm{~V}_{\mathrm{R}}=5 \mathrm{Vdc} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{F}} \\ & \mathrm{I}_{\mathrm{R}} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 100 \end{aligned}$	V dc $\mu \mathrm{Adc}$
Subgroup 3 High temperature Luminous intensity		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc} \end{aligned}$	10		Verify light output		
Reverse current Low temperature Luminous intensity	4016	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} \mathrm{dc} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc} \end{aligned}$		I_{R} I_{v}	$\left.\right\|_{\substack{\text { Verify } \\ \text { light output }}} 100 \mid \mu \mathrm{Adc}$		
Forward voltage	4011	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc}$		V_{F}		2.5	Vdc
Subgroup 4 Insulation resistance	1016		10	$\mathrm{R}_{\text {ISO }}$	1000		M Ω
Subgroup 5		Not applicable					
Subgroup 6		Not applicable					
Subgroup 7 Power emission		Note 1	10	$\mathrm{P}_{\text {IRY }}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$

Note:

1. Test conditions and wavelength limits are those listed in the electrical/optical characteristics.

Table III. Group B Inspection

Inspection	MIL-STD-750		Sampling Plan
	Method	Conditions	
Subgroup 1 Solderability Resistance to solvents	$\begin{aligned} & 2026 \\ & 1022 \end{aligned}$		5/0
Subgroup 2 Thermal shock Immersion (seal) Watertightness (panel sealing) Electrical/Optical endpoints	$\begin{aligned} & 1051 \\ & 1011 \end{aligned}$	Test condition A, $\mathrm{T}_{\text {(high) }}=100^{\circ} \mathrm{C}$ Test condition A See MIL-L-3661, sealing test watertight, except maximum pressure is 30 psi . $\mathrm{I}_{\mathrm{v}}, \mathrm{~V}_{\mathrm{F}}, \mathrm{I}_{\mathrm{R}}, \lambda_{\mathrm{d}}, \mathrm{P}_{\mathrm{E}}, \mathrm{P}_{\mathrm{IR}}, \mathrm{I}_{\mathrm{D}}, \mathrm{R}_{\mathrm{ISO}}^{[1]}$	5/0
Subgroup 3 Life test Electrical/Optical endpoints	1027	$\mathrm{I}_{\mathrm{v}}, \mathrm{V}_{\mathrm{F}}, \mathrm{I}_{\mathrm{R}}, \lambda_{\mathrm{d}}, \mathrm{P}_{\mathrm{E}}, \mathrm{P}_{\mathrm{IR}}, \mathrm{I}_{\mathrm{D}}, \mathrm{R}_{\text {ISO }}{ }^{[1]}$	5/0
Subgroup 4 and 5		Not applicable	
Subgroup 6 High temperature life (nonoperating) Electrical/Optical endpoints	1032	$\mathrm{I}_{\mathrm{v}}, \mathrm{V}_{\mathrm{F}}, \mathrm{I}_{\mathrm{R}}, \lambda_{\mathrm{d}}, \mathrm{P}_{\mathrm{E}}, \mathrm{P}_{\text {IR }}, \mathrm{I}_{\mathrm{D}}, \mathrm{R}_{\text {ISO }}{ }^{[1]}$	5/0
Subgroup 7 Terminal strength Vibration Mechanical shock Electrical/Optical endpoints	$\begin{array}{r} 2036 \\ \\ 2056 \\ 2016 \end{array}$	Test condition A, 2 pounds for 20 seconds $I_{v}, V_{F}, I_{R}, \lambda_{d}, P_{E}, P_{\text {IR }}, I_{D}, R_{\text {ISo }}{ }^{[1]}$	5/0

Note:

1. Limits and conditions are those listed in the electrical/optical characteristics.

Application Information

IR Secure Lighting

The objective of IR secure lighting is to suppress IR emission from a light source in order to reduce the susceptibility of detection by a threat optical infrared image intensifier. IR Secure Lighting is derived from the Priority 1 Wavelength Restriction objective of the U.S. Army CECOM Statement of Work for NVG Secure Lighting. The Priority 1 objective limits the amount of IR energy as follows:
"Between 350 nm and 930 nm , no more than 0.5% of the total energy emitted shall be above 700 nm . The wavelength cut-off to 0.5% shall begin between 600 nm and 700 nm , and shall be as close to 600 nm as possible."

Mechanical/Optical

Each 87019G01 and 87019Y01 secure lamp is constructed by assembling a military grade true hermetic LED lamp into an aluminum alloy panel mountable sleeve. The internal design of the sleeve provides a light trap that shapes the radiation pattern into a narrow viewing angle necessary for IR Secure Lighting applications, limits the luminous intensity to less than 0.5% of the on-axis value at offaxis angles greater than 30°, and provides increased contrast enhancement for daylight viewing. A glass NVG filter with a front surface antireflection coating per MIL-C-14806 is integrally mounted in the collar of the sleeve. The NVG filter provides suppression of IR energy to meet the Priority 1 objective. The IR suppression is constant with respect to off-axis viewing angles. The luminance of these lamps may be reduced by either
decreasing the DC forward current or by using pulse width modulation of the peak current.

The collar of the panel mountable sleeve surrounding the NVG filter is black anodized to enhance viewability. The chromate conversion coating on the body of the sleeve is electrically conductive, thus permitting an effective EMI attenuation seal to be formed with the front panel by way of a positive mechanical and electrical contact through the mounting hardware. The solder dipped leads are electrically insulated from the sleeve. The front and rear sealing techniques and materials maximize the sealed surface areas to achieve superior resistance to moisture and adverse environments, exceeding the sealing and immersion requirements of MIL-L-3661. The maximum torque that may be applied to the nut is 3.62 N m ($32 \mathrm{in}-\mathrm{lbs}$).

JAN Qualified Hermetic Solid State Lamps*

1N5765
JAN1N5765
JANTX1N5765
1N6092
JAN1N6092
JANTX1N6092
1N6093
JAN1N6093
JANTX1N6093
1N6094
JAN1N6094
JANTX1N6094

Features

- Military Qualified
- Listed on MIL-S-19500 QPL
- Choice of Four Colors Red
High Efficiency Red
Yellow
Green
- Designed for HighReliability Applications
- Hermetically Sealed
- Wide Viewing Angle
- Low Power Operation
- IC Compatible
- Long Life
- Panel Mount

Configuration

Description

The 1N5765, 1N6092, 1N6093 and 1N6094 solid state LEDs are hermetically sealed in a TO46 package with a tinted, diffused plastic lens over a glass window. These devices are designed for high reliability applications and provide excellent on-off contrast, high axial luminous intensity, and a wide viewing angle. The panel mount
versions consist of an LED unit permanently mounted in an anodized aluminum sleeve.

The 1N5765 utilizes a GaAsP LED chip with a red diffused lens over a glass window.

The 1N6092 has a high efficiency red GaAsP on GaP LED chip with a red diffused lens over a glass window. This device is comparable to the 1N5765 but its efficiency extends to higher currents and it provides greater luminous intensity.

The 1N6093 provides a yellow GaAsP on GaP LED chip with a yellow, diffused lens over a glass window.

The 1N6094 utilizes a green GaP LED chip with a green, diffused lens over a glass window.

The plastic lens over glass window system is extremely durable and has exceptional temperature cycling capabilities.

HERMETIC TO-46 LAMP

PANEL MOUNT LAMP ASSEMBLY

[^9]| COLOR - PART NUMBER - LAMP AND PANEL MOUNT MATRIX | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Description | Standard Product | With JAN Qualification ${ }^{[1]}$ | JAN Plus TX Testing ${ }^{[2]}$ | Controlling MIL-S-19500 Document ${ }^{[4]}$ |
| TABLE A. Hermetic TO-46 Part Number System | | | | |
| Standard Red | 1N5765 | JAN1N5765 | JANTX1N5765 | /467 |
| High Efficiency Red | 1N6092 | JAN1N6092 | JANTX1N6092 | /519 |
| Yellow | 1N6093 | JAN1N6093 | JANTX1N6093 | /520 |
| Green | 1N6094 | JAN1N6094 | JANTX1N6094 | /521 |
| TABLE B. Panel Mountable Part Number System ${ }^{[3]}$ | | | | |
| Standard Red | HLMP-0904 | HLMP-0930 | HLMP-0931 | None |
| High Efficiency Red | HLMP-0354 | HLMP-0380 | HLMP-0381 | |
| | | (JANM19500/51901) | (JTXM19500/51902) | /519 |
| Yellow | HLMP-0454 | HLMP-0480 (JANM19500/52001) | $\begin{gathered} \text { HLMP-0481 } \\ \text { (JTXM19500/52002) } \end{gathered}$ | /520 |
| Green | HLMP-0554 | HLMP-0580 | HLMP-0581 | |
| | | (JANM19500/52101) | (JTXM19500/52102) | /521 |

Notes:

1. Parts are marked with the JAN part number.
2. Parts are marked with the JANTX part number.
3. Panel mountable packaging incorporates the Table A TO-46 part into a panel mount enclosure.
4. JAN and JANTX parts only.

Package Dimensions

1N5765, 1N6092, 1N6093, 1N6094

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
2. GOLD-PLATED KOVAR LEADS
3. PACKAGE WEIGHT OF LAMP ALONE IS . $25 \cdot 40$ GRAMS.

Absolute Maximum Ratings at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	$\begin{array}{\|c\|} \hline \text { Red } \\ \text { HLMP-0904 } \\ \hline \end{array}$	High Eff. Red HLMP-0354	$\begin{gathered} \text { Yellow } \\ \text { HLMP-0454 } \end{gathered}$	$\begin{gathered} \text { Green } \\ \text { HLMP-0554 } \end{gathered}$	Units
Power Dissipation (derate linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	100	120	120	120	mW
DC Forward Current	$50^{[1]}$	$35^{[2]}$	$35^{[2]}$	$35^{[2]}$	mA
Peak Forward Current	1000 See Fig. 5	$\stackrel{60}{\text { See Fig. } 10}$	$\begin{gathered} 60 \\ \text { See Fig. } 15 \end{gathered}$	$\begin{gathered} 60 \\ \text { See Fig. } 20 \end{gathered}$	mA
Operating and Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$				
Lead Soldering Temperature [1.6 mm (0.063 in .) from body]	$260^{\circ} \mathrm{C}$ for 7 seconds.				

Notes:

1. Derate from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$

Sym.	Description	$\begin{gathered} \text { 1N5765/ } \\ \text { HLMP-0904 } \end{gathered}$			$\begin{aligned} & \text { 1N6092/ } \\ & \text { HLMP-0354 } \end{aligned}$			$\begin{gathered} \text { 1N6093/ } \\ \text { HLMP-0454 } \end{gathered}$			1N6094/			Units	Test Conditions
		Min.	Typ.	Max.											
$\mathrm{I}_{\mathrm{v}_{1}}$	Axial Luminous Intensity	0.5	1.0		3.0	8.0		3.0	8.0			$\begin{gathered} 8.0 \\ I_{F}=25 \end{gathered}$		mcd	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Figs. } 3,8,13,18 \\ & \theta=0^{\circ} \end{aligned}$
$\mathrm{I}_{\mathrm{v} 2}$	Luminous Intensity at $\theta=30^{\circ}$	1.5		.	1.5			1.5			$\begin{array}{r} 1.5 \\ \text { At } \end{array}$	$\mathrm{F}_{\mathrm{F}}=25$		mcd	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \theta=30^{\circ} \end{aligned}$
$2 \theta_{1,2}$	Included Angle Between Half Luminous Intensity Points ${ }^{[1]}$		60			70		,	70			70		deg	Figures 6, 11, 16, 21
$\lambda_{\text {pEAK }}$	Peak Wavelength	630	655	700	590	635	695	550	583	660	525	565	600	nm	Measurement at Peak
$\lambda_{\text {d }}$	Dominant Wavelength ${ }^{[2]}$		640			626			585			570		nm	
τ_{s}	Speed of Response		10			200			200			200		ns	
C	Capacitance		200	300		35	100		35	100		35	100	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 ; \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
$\mathrm{R} \theta_{\text {J.-PIN }}$	Thermal Resistance*[3]		425			425			425			425		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
R $\theta_{\text {J.PIN }}$	Thermal Resistance**[3]		550			550			550			550		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
V_{F}	Forward Voltage		1.6	2.0		2.0	3.0		2.0	3.0		$\begin{array}{\|r\|} \hline 2.1 \\ I_{F}=25 \\ \hline \end{array}$	$\begin{gathered} 3.0 \\ \mathrm{~mA} \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Figures } 2,7, \\ & 12,17 \end{aligned}$
I_{R}	Reverse Current			1.0			1.0			1.0			1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$
BV_{R}	Reverse Breakdown Voltage	4.0	5.0		5.0			5.0			5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η	Luminous Efficacy ${ }^{[4]}$		56			140			455			600		lm / W	

Notes:

1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Junction to Cathode Lead with $3.18 \mathrm{~mm}(0.125 \mathrm{inch})$ of leads exposed between base of flange and heat sink.
4. Radiant intensity, I_{0}, in watts/steradian, may be found from the equation $I_{0}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{∇} is the luminous efficacy in lumens/watt.
*Panel mount.
**T0-46.

Figure 1. Relative Intensity vs. Wavelength.

Family of Red 1N5765/HLMP-0904

Figure 2. Forward Current vs. Forward Voltage.

I_{F} - FORWARD CURRENT - mA
Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Family of High Efficiency Red 1N6092/HLMP-0354

Figure 7. Forward Current vs. Forward Voltage.

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{Dc} MAX as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Family of Yellow 1N6093/HLMP-0454

Figure 12. Forward Current vs. Forward Voltage.

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (D_{Dc} MAX as per MAX Ratings).

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Family of Green 1N6094/HLMP-0554

Figure 17. Forward Current vs. Forward Voltage.

Figure 18. Relative Luminous Intensity vs. Forward Current.

Figure 19. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 20. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings).

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

JAN PART: Samples of each lot are subjected to Group A and B tests listed below. Every six months, samples from a single lot of each part type are subjected to Group C testing. All tests are to the conditions and limits specified by the appropriate MIL-S-19500 slash sheet.

JANTX PART: These devices undergo 100% screening tests as listed below to the conditions and limits specified by the MIL-S-19500 slash sheet. The JANTX lot has also been subjected to Group A, B, and C sample tests as for the JAN PART above.

Table I. Group A Inspection for TO-46 Lamps

Examination or Test	MIL-STD-750		LTPD	Symbol	Limits		Unit
	Method	Details			Min.	Max.	
Subgroup 1			5				
Visual and mechanical inspection	2071						
Subgroup 2			5				
Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc} ;{ }^{[1]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{v} 1}$	$\begin{aligned} & 0.5^{[2]} \\ & 3.0^{[3]} \end{aligned}$		mcd mcd
Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc} ;{ }^{[1]} \theta=30^{\circ}$		$\mathrm{I}_{\mathrm{v} 2}$	$\begin{aligned} & 0.3^{[2]} \\ & 1.5^{[3]} \end{aligned}$		med med
Reverse current	4016	DC method; $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ dc		$\mathrm{I}_{\text {R }}$		1.0	$\mu \mathrm{Adc}$
Forward current	4011	DC method; $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{[1]}$		V_{F}		3.0	V dc
Subgroup 3			10				
High temperature:		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$					
Reverse current	4016	DC method; $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ dc		$\mathrm{I}_{\text {R }}$		1.0	$\mu \mathrm{Adc}$
Forward voltage	4011	DC method; $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{[1]}$		V_{F}		3.0	V dc
Low Temperature:		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$					
Reverse current	4016	DC method; $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ dc		$\mathrm{I}_{\text {R }}$		1.0	$\mu \mathrm{Adc}$
Forward voltage	4011	DC method; $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{[1]}$		V_{F}		3.0	V dc
Subgroup 4			5				
Capacitance	4001	$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$		C		100	pF

Notes:

1. $\mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}$ for 1 N 6094 .
2. For 1N5765.
3. For 1N6092, 1N6093, and 1N6094.

Table II. Group B Inspection

Notes:

1. For 1N5765.
2. For 1N6092. 1N6093, and 1NGO94.
3. 25 mA for 1 N 6094.

Table III. Group C Inspection

Table III. Group C Inspection (continued)

Examination or Test	MLL-STD-750		LTPD	Symbol	Limits		Unit
	Method	Details			Min.	Max.	
Subgroup 7 Peak forward pulse current (transient)		$\begin{aligned} & \mathrm{t}_{\mathrm{p}}=1 \mu \mathrm{~s}, \mathrm{pps}=300, \\ & \text { total test time }=5 \mathrm{~s}, \\ & \mathrm{I}_{\mathrm{ptr}}=1.0 \mathrm{~A}(\mathrm{pk}) \end{aligned}$	10				
Electrical test: Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{mAdc},{ }^{[3]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{v} 1}$	$\begin{gathered} 0.45^{[1]} \\ 2.7^{[2]} \end{gathered}$		mcd med
Subgroup 8 Peak forward pulse current (operating)		$\begin{aligned} & \mathrm{t}_{\mathrm{p}}=0.5 \mathrm{~ms}, \\ & \mathrm{P}_{\mathrm{FM}} \leq 120 \mathrm{~mW}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{P}}=60 \mathrm{~mA}, 500 \text { hours } \end{aligned}$	10				
Electrical test: Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc},{ }^{[3]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{V} 1}$	$\begin{gathered} 0.45^{[1])} \\ 2.7^{[2]} \end{gathered}$		mcd med

Notes:

1. For 1N5765.
2. For 1N6092, 1 N 6093 , and 1N6094.
3. $I_{F}=25 \mathrm{~mA}$ for 1 N 6094 .

Table IV. Group A Inspection for panel mount lamps

Examination or Test	MIL-STD-750		LTPD	Symbol	Limits		Unit
	Method	Details			Min.	Max.	
Subgroup 1			5				
External visual examination	2071						
Subgroup 2			5				
Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc},{ }^{[3]} \boldsymbol{\theta}=0^{\circ}$		$\mathrm{I}_{\mathrm{v} 1}$	$\begin{aligned} & 0.5^{[1]} \\ & 3.0^{[2]} \end{aligned}$		$\begin{aligned} & \mathrm{mcd} \\ & \mathrm{mcd} \end{aligned}$
Forward voltage		DC method: $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{[3]}$		V_{F}		3.0	V dc
Reverse current		DC method: $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ dc		I_{R}		1.0	$\mu \mathrm{Adc}$
Subgroup 3 Resistance to solvents	1022	Omit solution 2.1d	5				
Resistance to solvents		Omit solution 2.1d					
Subgroup 4 Physical dimensions	2066		5				

Notes:

1. For 1N5765.
2. For 1 N 6092 , 1 N 6093 , and 1 N 6094 .
3. $\mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}$ for 1 N 6094 .

HEWLETT
PACKARD

JAN Qualified Ultra-Bright Hermetic Solid State Lamps*

Technical Data

Features

- Military Qualified
- Listed on MIL-S-19500 QPL
- Sunlight Viewable with Proper Contrast
Enhancement Filter
- Hermetically Sealed
- Choice of Three Colors

High Efficiency Red
Yellow
High Performance Green

- Low Power Operation
- IC Compatible
- Long Life/Reliable/Rugged
- Panel Mount

Configuration

Description

The 1N6609, 1N6610, and 1N6611 are hermetically sealed solid state lamps in a TO-18 package with a clear glass lens. These hermetic lamps provide improved brightness over conventional hermetic LED lamps, excellent on-off contrast,
and high axial luminous intensity. These LED indicators are designed for use in applications requiring readability in bright sunlight. With a proper contrast enhancement filter, these LED indicators are readable in sunlight ambients, see Application Note 1015 Contrast Enhancement Techniques for LED Displays. The panel mount versions consist of an LED unit
 permanently mounted in an anodized aluminum sleeve.

The 1N6609 utilizes a high efficiency red GaAsP on GaP LED chip. The 1N6610 uses a yellow GaAsP on GaP LED chip. The 1N6611 uses a green GaP LED chip.

1N6609
JAN1N6609
JANTX1N6609
1N6610
JAN1N6610
JANTX1N6610 1N6611
JAN1N6611
JANTX1N6611

COLOR - PART NUMBER - LAMP AND PANEL MOUNT MATRIX				
Description	Standard Product	With JAN Qualification ${ }^{[1]}$	JAN Plus TX Testing ${ }^{[2]}$	Controlling MIL-S-19500 Document ${ }^{[4]}$
TABLE A. Hermetic TO-18 Part Number System				
High Efficiency Red	1N6609	JAN1N6609	JANTX1N6609	/519
Yellow	1N6610	JAN1N6610	JANTX1N6610	/520
Green	1N6611	JAN1N6611	JANTX1N6611	/521
TABLE B. Panel Mountable Part Number System ${ }^{[3]}$				
High Efficiency Red	HLMP-0364	HLMP-0365	HLMP-0366	
		(JANM19500/51903)	(JANTXM19500/51904)	/519
Yellow	HLMP-0464	HLMP-0465	HLMP-0466	
		(JANM19500/52003)	(JANTXM19500/52004)	/520
Green	HLMP-0564	HLMP-0565 (JANM19500/52103)	$\begin{gathered} \text { HLMP-0566 } \\ \text { (JANTXM19500/52104) } \end{gathered}$	/521

Notes:

1. Parts are marked with JAN part number.
2. Parts are marked with JANTX/JTX part number.
3. Panel mountable packaging incorporates the Table A TO-18 part into a panel mount enclosure.
4. JAN and JANTX parts only.

Package Dimensions

HLMP-0364, 0464, 0564

NOTES:

1. THE PANELMOUNT SLEEVE IS BLACK ANODIZED ALUMINUM.
2. SOLDER DIPPED LEADS. GOLD PLATED LEADS AVAILABLE ON REQUEST.
3. ONE LOCK WASHER AND ONE HEX-NUT ARE INCLUDED 3. ONE LOCK WASHER AND ONE HEX
WITH EACH PANEL MOUNT LAMP.
4. USE OF METRIC DRILL SIZE 8.20 MILLIMETRES OR ENGLISH DRILL SIZE P (.323 INCH) IS RECOMMENDED FOR PRODUCING HOLE IN THE PANEL MOR PRODU
5. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
6. PACKAGE WEIGHT INCLUDING LAMP AND PANEL MOUNT IS 1.2-1.8 GRAMS. NUT AND WASHER IS AN EXTRA .6-1.0 GRAM

1N6609, 1N6610, 1N6611

OUTLINE TO-18

[^10]Absolute Maximum Ratings at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	High Efficiency Red 1N6609	Yellow 1N6610	Green 1N6611	Units
Power Dissipation (derate linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	120	120	120	mW
DC Forward Current	$35^{[1]}$	$35^{[1]}$	$35^{[1]}$	mA
Peak Forward Current	60 See Fig. 5	60 See Fig. 10	60 See Fig. 15	mA
Operating and Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$			
Lead Soldering Temperature $[1.6 \mathrm{~mm}(0.063$ in.) from body $]$	$260^{\circ} \mathrm{C}$ for 7 seconds.			

Note:

1. Derate from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$

Symbol	Description	1N6609			1N6610			1N6611			Units	Test Conditions
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\mathrm{I}_{\mathrm{v} 1}$	Axial Luminous Intensity	20	50		20	50			$\begin{gathered} 50 \\ \mathrm{I}_{\mathrm{F}}=2 \end{gathered}$	$5 \mathrm{~mA}$	mcd	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{Figs.} 3,8,13 \\ & \theta=0^{\circ} \end{aligned}$
$2 \theta_{1 / 2}$	Included Angle Between Half Luminous Intensity Points ${ }^{[1]}$		18			18			18		deg.	Figures 6, 11, 16
$\lambda_{\text {PEAK }}$	Peak Wavelength	590	635	695	550	583	660	525	565	600	nm	Measurement at Peak
$\lambda_{\text {d }}$	Dominant Wavelength ${ }^{[2]}$		626			585			570		nm	
$\tau_{\text {s }}$	Speed of Response		200			200			200		ns	
C	Capacitance		35	100		35	100		35	100	pF	$\mathrm{V}_{\mathrm{F}}=0 ; \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{R} \boldsymbol{\theta}_{\text {J-PIN }}$	Thermal Resistance*[3]		425			425			425		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$R \theta_{\text {J-PIN }}$	Thermal Resistance**[3]		550			550			550		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
V_{F}	Forward Voltage		2.0	3.0		2.0	3.0		$\begin{gathered} 2.1 \\ I_{F}=2 \end{gathered}$	$\begin{array}{r} 3.0 \\ 5 \mathrm{~mA} \end{array}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Figures } 2,7,12, \end{aligned}$
$\mathrm{I}_{\text {R }}$	Reverse Current			1.0			1.0			1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$
BV_{R}	Reverse Breakdown Voltage	5.0			5.0			5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
η_{v}	Luminous Efficacy ${ }^{[4]}$		140			455			600		$\operatorname{lm} / \mathrm{W}$	

Notes:

1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Junction to Cathode Lead with 3.18 mm (0.125 inch) of leads exposed between base of flange and heat sink.
4. Radiant intensity, I_{0}, in watts/steradian, may be found from the equation $I_{0}=I / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{∇} is the luminous efficacy in lumens/watt.
*Panel mount.
**T0-18.

Figure 1. Relative Intensity vs. Wavelength.

Family of High Efficiency Red 1N6609/HLMP-0364

Figure 2. Forward Current vs. Forward Current.

Figure 3. Relative Luminous Intensity vs. Forward Current.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (D_{DC} MAX as per MAX Ratings).

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Family of Yellow 1N6610/HLMP-0464

Figure 7. Forward Current vs. Forward Voltage.

Figure 8. Relative Luminous Intensity vs. Forward Current.

Figure 9. Relative Efficiency
(Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{\text {DC }}$ MAX as per MAX Ratings).

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Family of Green 1N6611/HLMP-0564

Figure 12. Forward Current vs. Forward Voltage.

Figure 13. Relative Luminous Intensity vs. Forward Current.

Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. ($I_{\text {D }}$ MAX as per MAX Ratings).

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

JAN PART: Samples of each lot are subjected to Group A and B tests listed below. Every six months, samples from a single lot of each part type are subjected to Group C testing. All tests are to the conditions and limits specified by the appropriate MIL-S-19500 slash sheet for the device under test.

JANTX PART: These devices undergo 100% screening tests as listed below to the conditions and limits specified by the MIL-S-19500 slash sheet. The JANTX lot has also been subjected to Group A, B, and C sample tests as for the JAN PART above.

Table I. Group A Inspection for TO-18 Lamps

Examination or Test	MIL-STD-750		LTPD	Sym.	Limits		Unit
	Method	Details			Min.	Max.	
Subgroup 1			5				
Visual and mechanical inspection	2071						
Subgroup 2			5				
Luminous intensity		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{mAdc}{ }^{[1]} \\ & \theta=0^{\circ} \end{aligned}$		$\mathrm{I}_{\mathrm{v} 1}$	20.0		mcd
Reverse current	4016	DC method; $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ dc		I_{R}		1.0	$\mu \mathrm{Adc}$
Forward current	4011	DC method; $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		V_{F}		3.0	V dc
Subgroup 3			10				
High temperature:		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$					
Reverse current	4016	DC method; $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ dc		I_{R}		1.0	$\mu \mathrm{Adc}$
Forward voltage	4011	DC method; $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{[1]}$		V_{F}		3.0	V dc
Low Temperature:		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$					
Reverse current	4016	DC method; $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ dc		$\mathrm{I}_{\text {R }}$		1.0	$\mu \mathrm{Adc}$
Forward voltage	4011	DC method; $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{[1]}$		V_{F}		3.0	V dc
Subgroup 4			5				
Capacitance	4001	$\mathrm{V}_{\mathrm{R}}=0 ; \mathrm{f}=1 \mathrm{MHz}$		C		100	pF
Subgroups 5, 6, and 7 Not applicable							

Note:

1. $\mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}$ for 1N6611.

Table II. Group B Inspection

Examination or Test	MIL-STD-750		LTPD	Symbol	Limits		Unit
	Method	Details			Min.	Max.	
Subgroup 1			15				
Solderability	2026						
Resistance to solvents	1022						
Subgroup 2			10				
Thermal shock (temperature cycle)	1051	Test condition A, T (high) $=100^{\circ} \mathrm{C}$; 25 cycles					
Hermetic seal	1071	Test condition H					
Fine leak							
Gross Leak		Test condition \mathbf{C} or K , leak indicator fluid/ device maintained at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$					
Electrical test: Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc},{ }^{[1]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{v} 1}$	20.0		mcd
Subgroup 3			5				
Steady-state-operation life	1027	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA} \text { dc, } 340 \text { hours, } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$					
Electrical test:							
Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc},{ }^{[1]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{V} 1}$	18.0		mcd
Subgroup 4							
Decap internal design verification	2075	Test 1 device/0 failure					
Subgroup 5 (Not applicable)							
Subgroup 6			7				
High temperature life (nonoperating)	1032	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, 340$ hours					
Electrical test:							
Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc},{ }^{[1]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{v} 1}$	18.0		mcd

Note:

1. $I_{F}=25 \mathrm{~mA}$ for 1 N 6611 .

Table III. Group C Inspection

Examination or Test	MIL-STD-750		LTPD	Symbol	Limits		Unit
	Method	Details			Min.	Max.	
Subgroup 1			15				
Physical dimensions	2066						
Subgroup 2			10				
Thermal shock (glass strain)	1056	Test condition A					
Terminal strength	2036	Test condition E					
Hermetic seal	1071						
Fine leak		Test condition H					
Gross leak		Test condition C or K, indicator fluid/device maintained at $100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$					
Moisture resistance	1021	Omit initial conditioning					
Electrical test: Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{mAdc},{ }^{[1]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{v} 1}$	20.0		mcd
Subgroup 3			10				
Shock	2016	Nonoperating, 1500 g's, $0.5 \mathrm{~ms}, 5$ blows in X 1 , $\mathrm{Y} 1, \mathrm{Z} 1$ orientation.					
Vibration, variable frequency	2056	Nonoperating					
Constant acceleration	2006	$\begin{aligned} & 20,000 \mathrm{~g} \cdot \mathrm{~s} ; \mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1 \\ & \text { orientation } \end{aligned}$					
Electrical test: Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{mAdc}{ }^{[1]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{v} 1}$	20.0		med
Subgroup 4 Salt atmosphere (corrosion)	1041		15				
Subgroup 5 (Not applicable)							
Subgroup 6 Steady-stateoperation life	1027	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=35 \mathrm{~mA} \mathrm{dc}, 1000 \\ & \text { hours, } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$					
Electrical test: Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc},{ }^{[1]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{V} 1}$	18.0		mcd

Table III. Group C Inspection (continued)

Examination or Test	MIL-STD-750		LTPD	Symbol	Limits		Unit
	Method	Details			Min.	Max.	
Subgroup 7			10				
Peak forward pulse current (transient)		$\begin{aligned} & \mathrm{t}_{\mathrm{p}}=1 \mu \mathrm{~s}, \mathrm{pps}=300, \\ & \text { total test time }=5 \mathrm{~s}, \\ & \mathrm{I}_{\mathrm{ptr}}=1.0 \mathrm{~A}(\mathrm{pk}) \end{aligned}$					
Electrical test:							
Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc},{ }^{[1]} \theta=0^{\circ}$		$\mathrm{I}_{\mathrm{v} 1}$	18.0		mcd
Subgroup 8			10				
Peak forward pulse current (operating)		$\begin{aligned} & \mathrm{t}_{\mathrm{p}}=0.5 \mathrm{~ms}, \\ & \mathrm{P}_{\mathrm{FM}} \leq 120 \mathrm{~mW}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{P}}=60 \mathrm{~mA}, 500 \text { hours } \end{aligned}$					
Electrical test:							
Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc}{ }^{[1]} \boldsymbol{\theta}=0^{\circ}$		$\mathrm{I}_{\mathrm{V} 1}$	18.0		mcd

Note:

1. $I_{\mathrm{F}}=25 \mathrm{~mA}$ for 1N6611.

Table IV. Group A Inspection for Panel Mount Assemblies

Examination or Test	MIL-STD-750		LTPD	Symbol	Limits		Unit
	Method	Details			Min.	Max.	
Subgroup 1			5				
External visual examination	2071						
Subgroup 2 Luminous intensity		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{dc},{ }^{[1]} \theta=0^{\circ}$	5	$\mathrm{I}_{\mathrm{v} 1}$	20.0		
Forward voltage		DC method: $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{[1]}$		V_{F}		3.0	V dc
Reverse current		DC method: $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$ dc		$\mathrm{I}_{\text {R }}$		1.0	$\mu \mathrm{Adc}$
Subgroup 3 Resistance to solvents	1022	Omit solution 2.1d	5				
Subgroup 4 Physical dimensions	2066		5				

Note:

1. $\mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}$ for HLMP-0564.

Solid State Displays

- Smart Alphanumeric Displays
- Alphanumeric Displays and Systems
- Seven Segment Displays
- Hexidecimal and Dot Matrix Displays
- Monolithic Numeric Displays
- Hermetic Displays (pg 4-158)

Solid State Displays

Hewlett-Packard's line of Solid State Displays answers all the needs of the designer. From smart alphanumeric displays to low cost numeric displays in sizes from 3 mm (0.15 in .) to 20 mm (0.8 in.) and colors of red, AlGaAs red, high efficiency red, yellow, and high performance green, the selection is complete.

Hewlett-Packard's 5×7 dot matrix alphanumeric display line comes in three character sizes: 3.8 mm (0.15 in .), 5 mm (0.2 in .), and 6.9 mm (0.27 in .). In addition, there are now four colors available for each size: standard red, yellow, high efficiency red, and green. This wide selection of package sizes and colors makes these products ideal for a variety of applications in avionics, industrial control, and instrumentation.

The newest addition to HP's alphanumeric display line, the intelligent eight character, 5.0 mm (0.2 in .) alphanumeric display in the very flexible 5×7 dot matrix font. Product features include a low power onboard CMOS IC, ASCII decoder,
the complete 128 ASCII character set, and the LED drivers. In addition, an on-board RAM offers the designer the ability to store up to 16 userdefinable characters, such as foreign characters, special symbols and logos. These features make it ideal for avionics, medical, telecommunications, analytical equipment, computer products, office and industrial equipment applications.

Also part of HP's alphanumeric display line is the large (0.68 in . and 1.04 in .) 5×7 dot matrix alphanumeric display family. This family is offered in standard red, high efficiency red, AlGaAs red, and high performance green. These displays have excellent viewability; the 1.04 inch character font can be read at up to 18 meters (12 meters for the 0.68 inch display). Applications for these large 5×7 displays include industrial machinery and process controllers, weighing scales, computer tape drive systems, and transportation.

Hewlett-Packard's line of numeric seven segment displays is one of the broadest. From low cost, standard red displays to high light ambient displays producing $7.5 \mathrm{mcd} /$ segment, HP's $0.3 \mathrm{in} ., 0.43 \mathrm{in}$., 0.56 in ., and 0.8 in. characters can provide a solution to every display need. HP's product offering includes 0.56 in. dual digit displays and a line of small package, bright 0.3 in. displays - the 0.3 in . Microbright. HP's broad line of numeric seven segment displays is ideal for electronic instrumentation, industrial, weighing scales, point-of-sale terminals, and appliance applications. Included in HP's line of numeric seven segment displays is the Double Heterojunction AlGaAs red low current sunlight viewable display family. This family is offered in the 0.3 in. Mini, 0.43 in., 0.56 in., and 0.8 in . package sizes. These AlGaAs numeric displays are very bright at low drive currents - typical intensity of $650 \mathrm{mcd} /$ segment at $1 \mathrm{~mA} /$ segment drive. These displays are ideal for battery operated and other low power applications.

Alphanumeric LED Displays

Device	P/N	Description	Color	Application	Page No.
	HDSP-2110 HDSP-2111 HDSP-2112 HDSP-2113 HDSP-2121 HDSP-2122 HDSP-2123	5.0 mm (0.2 in.) 5×7 Eight Character Intelligent Display Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ HDSP-211X-ASCII HDSP-212X-Katakana	Orange Yellow High Efficiency Red Green Yellow High Efficiency Red Green	- Avionics - Medical - Telecommunications - Analytical Equipment - Computer Products - Office Equipment - Industrial Equipment	4-14
	HDLR-2416 HDLO-2416 HDLA-2416 HDLY-2416 HDLG-2416	5.0 mm (0.2 in .) 5×7 Four Character Intelligent Display Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red High Efficiency Red Orange Yellow Green	- Portable Data Entry Devices - Industrial Instrumentation - Computer Peripherals - Telecommunications	4-30
	HPDL-1414 HPDL-2416	$2.85 \mathrm{~mm}(0.112 \mathrm{in}$. 4.1 mm (0.16 in .) 16 Segment Four Character Monolithic Intelligent Display Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red Red	- Portable Data Entry Devices - Medical Equipment - Industrial Instrumentation - Computer Peripherals - Telecommunications	4-42
	HCMS-2000 HCMS-2001 HCMS-2002 HCMS-2003 HCMS-2004	3.8 mm (0.15 in .) 5×7 Four Character Display 12 pin Ceramic DIP 7.6 mm (0.30 in .) Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red Yellow High Efficiency Red Green Orange	- Computer Terminals - Business Machines - Portable, Hand-held or mobile data entry, read-out, or communications	4-54
	HCMS-2300 HCMS-2301 HCMS-2302 HCMS-2303 HCMS-2304	5.0 mm (0.20 in.) 5×7 Four Character Display 12 pin Ceramic DIP 6.35 mm (0.250 in .) Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red Yellow High Efficiency Red Green Orange	- Avionics - Ground Support, Cockpit, Shipboard Systems - Medical Equipment - Industrial and Process control - Computer Peripherals and Terminals	
	HDSP-2000 HDSP-2001 HDSP-2002 HDSP-2003	3.8 mm (0.15 in.) 5×7 Four Character Alphanumeric 12 Pin Ceramic 7.62 mm (0.3 in.) DIP with untinted glass lens Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red Yellow High Efficiency Red High Performance Green	- Computer Terminals - Business Machines - Portable, Hand-held or mobile data entry, read-out or communications For further information see Application Note 1016.	*
	HDSP-2300 HDSP-2301 HDSP-2302 HDSP-2303	5.0 mm (0.20 in.) 5×7 Character Alphanumeric 12 Pin Ceramic 6.35 mm (0.25 in.) DIP with untinted glass lens Operating Temperature Range: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Red Yellow High Efficiency Red High Performance Green	- Avionics - Ground Support, Cockpit, Shipboard Systems - Medical Equipment - Industrial and Process control - Computer Peripherals and Terminals For further information see Application Note 1016.	

Alphanumeric LED Displays (Continued)

Alphanumeric Display Systems

Device	P/N	Description	Color	Application	Page No.
	HDSP-6621	Single Line 16 Character Display Board Utilizing the HPDL-1414	$\begin{aligned} & 114.30 \mathrm{~mm} \text { (} 4.50 \mathrm{in} \text {.) } \\ & \mathrm{L} \times 30.48 \mathrm{~mm} \\ & (1.20 \mathrm{in} .) \mathrm{Hx} \\ & 8.12 \mathrm{~mm}(0.32 \mathrm{in} .) \mathrm{D} \end{aligned}$	- Computer Peripherals - Telecommunications - Industrial Equipment - Instruments	*
	HDSP-6624	Single Line 32 Character Display Board Utilizing the HPDL-2416	$\begin{aligned} & 223.52 \mathrm{~mm} \text { (} 8.80 \mathrm{in} .) \\ & L \times 58.42 \mathrm{~mm}(2.30 \mathrm{in} .) \\ & H \times 15.92 \mathrm{~mm} \\ & (0.62 \mathrm{in} .) \mathrm{D} \end{aligned}$		

*Contact your local Sales Representative for information regarding this product. (See Section 9.)

Large Alphanumeric 5×7 Displays

Device	P/N	Description	Color	Package	Typical IV	Page No.
00000 00000 00000 00008 00000 00000 00000	HDSP-4701 HDSP-4703 HDSP-L101 HDSP-L103 HDSP-L201 HDSP-L203 HDSP-5401 HDSP-5403	Common Row Anode Common Row Cathode	Red Red AlGaAs Red AlGaAs Red High Efficiency Red High Efficiency Red Green Green	$\begin{aligned} & 17.3 \mathrm{~mm} \text { (0.68 in.) } \\ & \text { Dual-in-Line } \\ & 0.70 \text { in. Hx } \\ & 0.50 \mathrm{in.Wx} \\ & 0.26 \mathrm{in} . \mathrm{D} \end{aligned}$	$770 \mu \mathrm{~cd} / \mathrm{dot} 100 \mathrm{~mA}$ peak $1 / 5$ Duty Factor $1650 \mu \mathrm{~cd} / \mathrm{dot} 10 \mathrm{~mA}$ peak $1 / 5$ Duty Factor $2800 \mu \mathrm{~cd} / \mathrm{dot} 50 \mathrm{~mA}$ peak $1 / 5$ Duty Factor $2700 \mu \mathrm{~cd} / \mathrm{dot} 50 \mathrm{~mA}$ peak $1 / 5$ Duty Factor	4-62
$\left.\left\lvert\, \begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right.\right]$	HDSP-4401 HDSP-4403 HDSP-M101 HDSP-M103 HDSP-4501 HDSP-4503 HDSP-5101 HDSP-5103	Common Row Anode Common Row Cathode	Red Red AIGaAs Red AIGaAs Red High Efficiency Red High Efficiency Red Green Green	$\begin{aligned} & 26.5 \mathrm{~mm} \text { (1.04 in.) } \\ & \text { Dual-in-Line } \\ & 1.10 \mathrm{in} . \mathrm{Hx} \\ & 0.79 \mathrm{in} . \mathrm{Wx} \\ & 0.25 \mathrm{in} . \mathrm{D} \end{aligned}$	$800 \mu \mathrm{~cd} / \mathrm{dot} 100 \mathrm{~mA}$ peak $1 / 5$ Duty Factor $1850 \mu \mathrm{~cd} / \mathrm{dot} 10 \mathrm{~mA}$ peak $1 / 5$ Duty Factor $3500 \mu \mathrm{~cd} / \mathrm{dot} 50 \mathrm{~mA}$ peak $1 / 5$ Duty Factor $3100 \mu \mathrm{~cd} / \mathrm{dot} 50 \mathrm{~mA}$ peak $1 / 5$ Duty Factor	

Large Alphanumeric 5 X 8 Displays

Device	P/N	Description	Color	Package	Typical Iv	Page No.
$\left[\begin{array}{llll}00 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$	HDSP-P101 HDSP-P103 HDSP-P151 HDSP-P153	Common Row Anode Common Row Cathode Common Row Anode Common Row Cathode	AlGaAs Red	$\begin{aligned} & 58.4 \mathrm{~mm}(2.3 \mathrm{in} .) \\ & 2.4 \mathrm{in} . \mathrm{Hx} \\ & 1.5 \mathrm{in} . \mathrm{Wx} \\ & 0.35 \mathrm{in} . \mathrm{D} \end{aligned}$	$12000 \mu \mathrm{~cd} / \mathrm{dot}$ 50 mA Peak $1 / 5$ Duty Factor $15000 \mu \mathrm{~cd} / \mathrm{dot}$ 50 mA Peak $1 / 5$ Duty Factor	4-134

Alphanumeric Driver ICs

Device	P/N	Description	Page No.
	Smart Sets	1 Driver IC and 4 or 8 HDSP-L203 or HDSP-4501 Displays	$*$

Bold Type - New Product

*Contact your local Sales Representative for information regarding this product. (See Section 9.)

Low Current Seven Segment Displays

Device	P/N	Description	Color	Typical IV	Page No.
	HDSP-A101 HDSP-A103 HDSP-A107 HDSP-A108	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	AIGaAs Red	$600 \mu \mathrm{~cd}$ @ 1 mA	4-72
	HDSP-7511 HDSP-7513 HDSP-7517 HDSP-7518	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	High Efficiency Red	$270 \mu \mathrm{~cd}$ @ 2 mA	
	HDSP-A801 HDSP-A803 HDSP-A807 HDSP-A808	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	Yellow	$420 \mu \mathrm{~cd}$ @ 4 mA	
7.62 mm (0.30 in .) Mini Dual-in-Line $0.5^{\prime \prime} \mathrm{H} \times 0.3^{\prime \prime} \mathrm{W} \times 0.24^{\circ} \mathrm{D}$	HDSP-A901 HDSP-A903 HDSP-A907 HDSP-A908	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	Green	$475 \mu \mathrm{~cd}$ @ 4 mA	
10.16 mm (0.40 in .) Dual-in-Line $0.51^{\prime \prime} \mathrm{H} \times 0.39^{\prime \prime} \mathrm{W} \times 0.25^{\prime \prime} \mathrm{D}$	HDSP-F101 HDSP-F103 HDSP-F107 HDSP-F108	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	AIGaAs Red	$650 \mu \mathrm{~cd}$ @ 1 mA	
$10.92 \mathrm{~mm} \text { (} 0.43 \mathrm{in} . \text {) }$ Dual-in-Line $0.75^{\prime \prime} \mathrm{H} \times 0.5^{\prime \prime} \mathrm{W} \times 0.25^{\mathrm{n}} \mathrm{D}$	HDSP-E100 HDSP-E101 HDSP-E103 HDSP-E108	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow	AIGaAs Red	$650 \mu \mathrm{~cd}$ @ 1 mA	
	HDSP-3350 HDSP-3351 HDSP-3353 HDSP-3356	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	High Efficiency Red	$300 \mu \mathrm{~cd}$ @ 2 mA	
$\left[\begin{array}{ll} +{ }^{+++}+{ }^{+} \\ \text {凸 } & 0 \\ \curvearrowleft & 0 \\ ++++++ \end{array}\right]$	HDSP-H101 HDSP-H103 HDSP-H107 HDSP-H108 HDSP-K121 HDSP-K123	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	AIGaAs Red	$700 \mu \mathrm{~cd}$ @ 1 mA	
14.2 mm (0.56 in .) Dual-in-Line (Single Digit) $0.67^{\prime \prime} \mathrm{H} \times 0.49^{\prime \prime} \mathrm{W} \times 0.31^{\prime \prime} \mathrm{D}$	$\begin{aligned} & \text { HDSP-5551 } \\ & \text { HDSP-5553 } \\ & \text { HDSP-5557 } \\ & \text { HDSP-5558 } \end{aligned}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	High Efficiency Red	$370 \mu \mathrm{~cd}$ @ 2 mA	
	HDSP-N100 HDSP-N101 HDSP-N103 HDSP-N105 HDSP-N106	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal ± 1. Overflow	AIGaAs Red	$590 \mu \mathrm{~cd}$ @ 1 mA	
$\begin{aligned} & 20 \mathrm{~mm} \text { (} 0.8 \text { in.) } \\ & \text { Dual-in-Line } \\ & 1.09^{n} \mathrm{H} \times 0.78^{n} \mathrm{~W} \times 0.33^{n} \mathrm{D} \end{aligned}$					

Seven Segment Displays

Device	P/N	Description	Color	Typical IV	Page No.
$\left[\begin{array}{rr} + & 0 \\ \vdots & 0 \\ \hdashline & 0 \\ & 0 \\ \hline \end{array}\right.$	HDSP-7301 HDSP-7302 HDSP-7303 HDSP-7304 HDSP-7307 HDSP-7308	Common Anode Right Hand Decimal Common Anode Right Hand Decimal, Colon Common Cathode Right Hand Decimal Common Cathode Right Hand Decimal, Colon Common Anode ± 1. Overflow Common Cathode ± 1. Overllow	Red	$\begin{aligned} & 1100 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	4-88
	HDSP-7311 HDSP-7313 HDSP-7317 HDSP-7318	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overllow	Red	$\begin{aligned} & 1355 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	
	HDSP-A151 HDSP-A153 HDSP-A157 HDSP-A158	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overllow Common Cathode ± 1. Overllow	AIGaAs Red	14 mcd @ 20 mA	
	HDSP-7501 HDSP-7502 HDSP-7503 HDSP-7504 HDSP-7507 HDSP-7508	Common Anode Right Hand Decimal Common Anode Left Hand Decimal, Colon Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal, Colon Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	High Efficiency Red	$980 \mu \mathrm{~cd}$ @ 5 mA	
	HDSP-7401 HDSP-7402 HDSP-7403 HDSP-7404 HDSP-7407 HDSP-7408	Common Anode Right Hand Decimal Common Anode Left Hand Decimal, Colon Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal, Colon Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	Yellow	$480 \mu \mathrm{~cd}$ @ 5 mA	
7.62 mm (0.3 in .) Microbright Dual-in-Line $0.5^{\prime \prime} \mathrm{H} \times 0.3^{\prime \prime} \mathrm{W} \times 0.24^{" \mathrm{D}}$	HDSP-7801 HDSP-7802 HDSP-7803 HDSP-7804 HDSP-7807 HDSP-7808	Common Anode Right Hand Decimal Common Anode Left Hand Decimal, Colon Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal, Colon Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	Green	$1480 \mu \mathrm{~cd}$ @ 10 mA	
$\begin{array}{r} 30 \\ 0 \\ 0 \end{array}$	HDSP-F001 HDSP-F003 HDSP-F007 HDSP-F008	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	Red	$\begin{aligned} & 1200 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	4-97
	HDSP-F151 HDSP-F153 HDSP-F157 HDSP-F158	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	AIGaAs Red	15.0 mcd @ 20 mA	
	HDSP-F201 HDSP-F203 HDSP-F207 HDSP-F208	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	High Efficiency Red	$\begin{aligned} & 1200 \mu \mathrm{~cd} \\ & @ 5 \mathrm{~mA} \end{aligned}$	
$\begin{aligned} & 10.16 \mathrm{~mm}(0.4 \mathrm{in} . \text {) } \\ & \text { Dual-In-Line } \\ & \text { (Single Digit) } \\ & 0.51^{\prime \prime} \mathrm{H} \times 0.39^{\prime \prime} \mathrm{W} \times 0.25^{\prime \prime} \mathrm{D} \end{aligned}$	HDSP-F401 HDSP-F403 HDSP-F407 HDSP-F408	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	Orange	$\begin{aligned} & 1200 \mu \mathrm{~cd} \\ & @ 5 \mathrm{~mA} \end{aligned}$	

Bold Type - New Product

Seven Segment Displays (Continued)

Device	P/N	Description	Color	Typical I_{v}	Page No.
	HDSP-F301 HDSP-F303 HDSP-F307 HDSP-F308	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	Yellow	$800 \mu \mathrm{~cd}$ @ 5 mA	4-97
	HDSP-F501 HDSP-F503 HDSP-F507 HDSP-F508	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	Green	$2100 \mu \mathrm{~cd}$ @ 10 mA	
	$\begin{aligned} & 5082-7730 \\ & 5082-7731 \\ & 5082-7740 \\ & 5082-7736 \end{aligned}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Red	$770 \mu \mathrm{~cd}$ @ 20 mA	4-105
	$\begin{aligned} & 5082-7610 \\ & 5082-7611 \\ & 5082-7613 \\ & 5082-7616 \end{aligned}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	High Efficiency Red	$800 \mu \mathrm{~cd}$ @ 5 mA	
	$\begin{aligned} & 5082-7620 \\ & 5082-7621 \\ & 5082-7623 \\ & 5082-7626 \end{aligned}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Yellow	620 cod @ 5 mA	
$\begin{aligned} & 7.62 \mathrm{~mm}(0.3 \mathrm{in} .) \\ & \text { Dual-in-Line } \\ & 0.75^{{ }^{\prime}} \mathrm{H} \times 0.4^{\prime \prime} \mathrm{W} \times 0.18^{\mathrm{n}} \mathrm{D} \end{aligned}$	HDSP-3600 HDSP-3601 HDSP-3603 HDSP-3606	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Green	$\begin{aligned} & 1800 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	
	$\begin{aligned} & 5082-7750 \\ & 5082-7751 \\ & 5082-7760 \\ & 5082-7756 \end{aligned}$	Common Anode Lett Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Red	$\begin{aligned} & 1100 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	
	HDSP-E150 HDSP-E151 HDSP-E153 HDSP-E156	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	AlGaAs Red	15.0 mcd @ 20 mA	
	$\begin{aligned} & 5082-7650 \\ & 5082-7651 \\ & 5082-7653 \\ & 5082-7656 \end{aligned}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	High Efficiency Red	$1115 \mu \mathrm{~cd}$ @ 5 mA	
	$\begin{aligned} & 5082-7660 \\ & 5082-7661 \\ & 5082-7663 \\ & 5082-7666 \end{aligned}$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Yellow	$835 \mu \mathrm{~cd}$ @ 5 mA	
10.92 mm (0.43 in .) Dual-in-Line $0.75^{\prime \prime} \mathrm{H} \times 0.5^{\prime \prime} \mathrm{W} \times 0.25^{\prime \prime} \mathrm{D}$	HDSP-4600 HDSP-4601 HDSP-4603 HDSP-4606	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Green	$1750 \mu \mathrm{~cd}$ @ 10 mA	

Bold Type - New Product

Seven Segment Displays (Continued)

Device	P/N	Description	Color	Typical Iv	Page No.
	HDSP-5301 HDSP-5303 HDSP-5307 HDSP-5308 HDSP-5321 HDSP-5323	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	Red	$\begin{aligned} & 1300 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	4-115
	HDSP-H151 HDSP-H153 HDSP-H157 HDSP-H158	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow	AIGaAs Red	16.0 mcd @ 20 mA	
14.2 mm (0.56 in .) Dual-in-Line (Single Digit) $0.67^{\prime \prime} \mathrm{H} \times 0.49^{\prime \prime} \mathrm{W} \times 0.31^{\prime \prime} \mathrm{D}$	HDSP-5501 HDSP-5503 HDSP-5507 HDSP-5508 HDSP-5521 HDSP-5523	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	High Efficiency Red	$\begin{aligned} & 2800 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	
	HDSP-5701 HDSP-5703 HDSP-5707 HDSP-5708 HDSP-5721 HDSP-5723	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	Yellow	$\begin{aligned} & 1800 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	
14.2 mm (0.56 in .) Dual-in-Line (Dual Digit) $0.67^{\prime \prime} \mathrm{H} \times 1.0^{\prime \prime} \mathrm{W} \times 0.31^{\prime \prime} \mathrm{D}$	HDSP-5601 HDSP-5603 HDSP-5607 HDSP-5608 HDSP-5621 HDSP-5623	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Common Cathode ± 1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	Green	$\begin{aligned} & 2500 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	
	HDSP-3400 HDSP-3401 HDSP-3403 HDSP-3405 HDSP-3406	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Red	$\begin{aligned} & 1200 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$	4-125
$\begin{array}{\|ccc} \hline+ & & + \\ + \\ + & \square & f_{+}^{+} \\ ++ \\ + \\ + \\ + \\ + \\ + & & \bigcup_{+}^{+} \\ + \\ + \\ + \end{array}$	HDSP-N150 HDSP-N151 HDSP-N153 HDSP-N155 HDSP-N156	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal ± 1. Overflow Right Hand Decimal	AIGaAs Red	14.0 mcd @ 20 mA	
20 mm (0.8 in .) Dual-in-Line $1.09^{\prime \prime} \mathrm{H} \times 0.78^{\prime \prime} \mathrm{W} \times 0.33^{n \prime} \mathrm{D}$	HDSP-3900 HDSP-3901 HDSP-3903 HDSP-3905 HDSP-3906	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal ± 1. Overflow Right Hand Decimal	High Efficiency Red	$7000 \mu \mathrm{~cd}$ @ 100 mA peak 1/5 Duty Factor	

Bold Type - New Product

Seven Segment Displays (Continued)

Device	P/N	Description	Color	Typical Iv	Page No.
(See previous page)	HDSP-4200 HDSP-4201 HDSP-4203 HDSP-4205 HDSP-4206	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Yellow	$\begin{aligned} & 7000 \mu \mathrm{~cd} \\ & @ 100 \mathrm{~mA} \\ & \text { peak } 1 / 5 \text { Duty } \\ & \text { Factor } \end{aligned}$	4-125
	HDSP-8600 HDSP-8601 HDSP-8603 HDSP-8605 HDSP-8606	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Green	$\begin{aligned} & 1500 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \end{aligned}$	

High Ambient Light, Seven Segment Displays

[^11]Solid State Display Intensity and Color Selections

Option	Description	Publication Number
Option S01	Intensity and Color Selected Displays	$*$
Option S02		

Hexadecimal and Dot Matrix Displays

| Device | P/N | Description | Package | Application |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^12]Hexadecimal and Dot Matrix Displays (Continued)

Device	P/N	Description	Package	Application	Page No.
(A) (B)	HDSP-0760 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	High Efficiency Red Low Power	- Military Equipment - Ground Support Equipment - Avionics - High Reliability Applications	4-148
	HDSP-0761 (B)	Numeric LHDP Built-in Decoder/Driver/Memory			
	HDSP-0762 (C)	Hexadecimal Built-in Decoder/Driver/Memory			
(C) (D)	HDSP-0763 (D)	Over Range ± 1			
	HDSP-0770 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	High Efficiency Red High Brightness	- High Brightness Ambient Systems - Cockpit, Shipboard Equipment - High Reliability Applications	
	HDSP-0771 (B)	Numeric LHDP Built-in Decoder/Driver/Memory			
	HDSP-0772 (C)	Hexadecimal Built-in Decoder/Driver/Memory			
	HDSP-0773 (D)	Over Range ± 1			
7.4 mm (0.29 in .) 4×7 Single Digit Package: 8 Pin Glass Ceramic 15.2 mm (0.6 in .) DIP	HDSP-0860 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	Yellow	- Business Machines - Fire Control Systems - Military Equipment - High Reliability Applications	
	HDSP-0861 (B)	Numeric LHDP Built-in Decoder/Driver/Memory			
	HDSP-0862 (C)	Hexadecimal Built-in Decoder/Driver/Memory			
	HDSP-0863 (D)	Over Range ± 1			
	HDSP-0960 (A)	Numeric RHDP Built-in Decoder/Driver/Memory	High Performance Green	- Business Machines - Fire Control Systems - Military Equipment - High Reliability Applications	
	HDSP-0961 (B)	Numeric LHDP Built-in Decoder/Driver/Memory			
	HDSP-0962 (C)	Hexadecimal Built-in Decoder/Driver/Memory			
	HDSP-0963 (D)	Over Range ± 1			
	HTIL-311A	Hexadecimal Lett Hand or Right Hand Decimal Built-in Decoder/Driver/ Memory/Blanking	Red	- Instrumentation - Computers and Peripherals - Status Indicators - Telcocommunications	4-154

Monolithic Numeric Displays

Device	P/N	Description	Package	Application	Publ. No.
	5082-7404	2.79 mm (0.11 in .) Red, 4 Digits, Centered D.P.	12 Pin Epoxy, 7.62 mm (0.3 in.) DIP	Small Display Market - Portable/Battery Power Instruments - Portable Calculators - Digital Counters - Digital Thermometers - Digital Micrometers - Stopwatches - Cameras - Copiers - Digital Telephone Peripherals - Data Entry Terminals - Taxi Meters For further information ask for Application Note 937.	*
	5082-7405	2.79 mm (0.11 in .) Red, 5 Digits, Centered D.P.	14 Pin Epoxy, 7.62 mm (0.3 in.) DIP		
	5082-7414	2.79 mm (0.11 in .) Red, 4 Digits, RHDP	12 Pin Epoxy, 7.62 mm (0.3 in.) DIP		
	5082-7415	2.79 mm (0.11 in .) Red, 5 Digits, RHDP	14 Pin Epoxy, 7.62 mm (0.3 in.) DIP		
	5082-7432	2.79 mm (0.11 in .) Red, 2 Digits, Right, RHDP	12 Pin Epoxy, 7.62 mm (0.3 in.) DIP		
	5082-7433	2.79 mm (0.11 in.) Red, 3 Digits, RHDP			

Hermetic Displays (see page 4-160)
*Contact your local Sales Representative for information regarding this product. (See Section 9.)

Eight Character 5.0 mm (0.2 inch) Smart 5×7 Alphanumeric Displays

Technical Data

Features

- Smart Alphanumeric

Display
On-Board CMOS IC
Built-In RAM
ASCII or Katakana Decoder
LED Drive Circuitry

- 128 ASCII Character Set or 128 Katakana Character Set
- 16 User Definable

Characters

- Programmable Features

Individual Flashing
Character
Full Display Blinking
Multi-Level Dimming and Blanking
Self Test
Clear Function

- Read/Write Capability
- Full TTL Compatibility
- Single 5 Volt Supply
- Excellent ESD Protection
- Wave Solderable
- End Stackable

Description

These are eight-digit, 5×7 dot matrix, alphanumeric displays. The 5.0 mm (0.2 inch) high characters are packaged in a standard 15.24 mm (0.6 inch) 28 pin DIP. The on-board CMOS IC has the ability to decode 128 ASCII (Katakana) characters, which are permanently stored in ROM. In addition, 16 programmable symbols may be stored in on-board RAM. Seven brightness levels provide versatility in adjusting the display intensity and power consumption. The HDSP-211X/-212X is designed for standard microprocessor interface techniques. The display and special features are accessed through a bidirectional eight-bit data bus. These features make the HDSP-211X/212X ideally suited for applications where a low cost, low power alphanumeric display is required.

HDSP-2110
HDSP-2111
HDSP-2112
HDSP 2113
HDSP-2121
HDSP-2122
HDSP-2123

Applications

- Avionics
- Computer Peripherals
- Industrial Instrumentation
- Medical Equipment
- Portable Data Entry Devices
- Telecommunications
- Test Equipment

Devices

High Efficiency Red	Orange	Yellow	Green	Description
HDSP-2112	HDSP-2110	HDSP-2111	HDSP-2113	ASCII
HDSP-2122	-	HDSP-2121	HDSP-2123	Katakana

[^13]
Package Dimensions

Absolute Maximum Ratings

Supply Voltage, V_{DD} to Ground ${ }^{[1]}$ \qquad -0.3 to 7.0 V
Operating Voltage, V_{DD} to Ground ${ }^{[2]}$.5.5 V
Input Voltage, Any Pin to Ground -0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Free Air Operating Temperature Range, $\mathrm{T}_{\mathrm{A}}{ }^{[3]} \ldots-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity (non-condensing) 85\%
Storage Temperature Range, T_{s}................................ $55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Maximum Solder Temperature
1.59 mm (0.063 in .) Below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$ \qquad $260^{\circ} \mathrm{C}$
ESD Protection @ $1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$ \qquad $. \mathrm{V}_{\mathrm{Z}}=4 \mathrm{kV}$ (each pin)

Notes:

1. Maximum Voltage is with no LEDs illuminated.
2. 20 dots ON in all locations at full brightness.
3. Maximum supply voltage is 5.25 V for operation above $70^{\circ} \mathrm{C}$.

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED WITH THE HDSP-211X AND HDSP-212X.

ASCII Character Set HDSP-2110, HDSP-2111, HDSP-2112, HDSP-2113

Katakana Character Set HDSP-2121, HDSP-2122, HDSP-2123

Recommended Operating Conditions

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Supply Voltage	V_{DD}	4.5	5.0	5.5	V

Electrical Characteristics Over Operating Temperature Range

$4.5<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$ (unless otherwise specified)

Parameter	Symbol	Min.	$\begin{gathered} \mathbf{2 5}{ }^{\circ} \mathrm{C} \\ \text { Typ. }{ }^{[1]} \end{gathered}$	$\begin{gathered} 25^{\circ} \mathbf{C} \\ \text { Max. }{ }^{[1]} \end{gathered}$	Max.	Units	Test Conditions
Input Leakage (Input without pullup)	I_{I}	-1.0			1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{N}}=0 \text { to } \mathrm{V}_{\mathrm{DD}}, \\ & \text { pins CLK, } \mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{~A}_{0}-\mathrm{A}_{4} \end{aligned}$
Input Current (Input with pullup)	$\mathrm{I}_{\text {IP }}$	-30	-11	-18	0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { to } \mathrm{V}_{\mathrm{Dp}}, \\ & \text { pins } \\ & \overline{\mathrm{RD}}, \overline{\mathrm{CE}}, \overline{\mathrm{RL}}, \overline{\mathrm{FL}}, \end{aligned}$
I_{DD} Blank	I_{DD} (BLK)		0.5	3.0	4.0	mA	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$
$\mathrm{I}_{\mathrm{DD}} 8$ digits 12 dots/character ${ }^{[2,3]}$	$\mathrm{I}_{\mathrm{DD}}(\mathrm{V})$		200	255	330	mA	"V" on in all 8 locations
$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} 8 \text { digits } \\ & 20 \text { dots/character }{ }^{[2,3,4,5]} \end{aligned}$	$\mathrm{I}_{\mathrm{DD}}(\#)$		300	370	430	mA	"\#" on in all locations
Input Voltage High	V_{IH}	2.0			$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ +0.3 \end{gathered}$	V	
Input Voltage Low	V_{L}	$\begin{array}{\|c\|} \hline \text { GND } \\ -0.3 \mathrm{~V} \\ \hline \end{array}$			0.8	V	
Output Voltage High	V_{OH}	2.4				V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A} \end{aligned}$
Output Voltage Low $\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{V}_{\text {oL }}$				0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{oL}}=1.6 \mathrm{~mA} \end{aligned}$
Output Voltage Low CLK	$\mathrm{V}_{\text {oL }}$				0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{oL}}=40 \mu \mathrm{~A} \end{aligned}$
Thermal Resistance IC Junction-to-Case	$\mathrm{R} \theta_{\text {J. }}$		15			${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

1. $\mathrm{V}_{\mathrm{pd}}=5.0 \mathrm{~V}$.
2. Average $I_{D D}$ measured at full brightness. See Table 2 in Control Word Section for $I_{D D}$ at lower brightness levels. Peak $I_{D D}=28 / 15 \times I_{D D}$ (\#).
3. Maximum $I_{D D}$ occurs at $-55^{\circ} \mathrm{C}$.
4. Maximum $\mathrm{I}_{\mathrm{DD}}(\#)=355 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$ and $\mathrm{IC} \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$.
5. Maximum $\mathrm{I}_{\mathrm{DD}}(\#)=375 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$ and $\mathrm{IC} \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$.

Optical Characteristics at $\mathbf{2 5}^{\mathbf{o}} \mathbf{C}^{[6]}$
$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ at Full Brightness
High Efficiency Red HDSP-2112/HDSP-2122

Description	Symbol	Min.	Typ.	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mod
Peak Wavelength	$\lambda_{\text {PEAK }}$		635	nm
Dominant Wavelength	λ_{d}		626	nm

Orange HDSP-2110

Description	Symbol	Min.	Typ.	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		600	nm
Dominant Wavelength	λ_{d}		602	nm

Yellow HDSP-2111/HDSP-2121

Description	Symbol	Min.	Typ.	Units
Luminous Intensity Character Average (\#)	I_{v}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		583	nm
Dominant Wavelength	λ_{d}		585	nm

High Performance Green HDSP-2113/HDSP-2123

Description	Symbol	Min.	Typ.	Units
Luminous Intensity Character Average (\#)	I_{v}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		568	nm
Dominant Wavelength	λ_{d}		574	nm

Note:
6. Refers to the initial case temperature of the device immediately prior to the light measurement.

AC Timing Characteristics Over Temperature Range

$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V unless otherwise specified.

Reference Number	Symbol	Description	Min. ${ }^{[1]}$	Units
1	$\mathrm{t}_{\mathrm{ACC}}$	Display Access Time Write Read	210	
2	$\mathrm{t}_{\mathrm{ACS}}$	Address Setup Time to Chip Enable	230	ns
3	t_{CE}	Chip Enable Active Time ${ }^{[2,3]}$ Write Read	10	ns
4	$\mathrm{t}_{\mathrm{ACH}}$	Address Hold Time to Chip Enable	140	ns
5	$\mathrm{t}_{\mathrm{CER}}$	Chip Enable Recovery Time	20	ns
6	$\mathrm{t}_{\mathrm{CES}}$	Chip Enable Active Prior to Rising Edge of ${ }^{[2,3]}$ Write Read	60	ns
7	$\mathrm{t}_{\mathrm{CEH}}$	Chip Enable Hold Time to Rising Edge of Read/Write Signal ${ }^{[2,3]}$	140	
8	t_{w}	Write Active Time	160	ns
9	t_{WD}	Data Valid Prior to Rising Edge of Write Signal	50	ns
10	t_{DH}	Data Write Hold Time	20	ns
11	t_{R}	Chip Enable Active Prior to Valid Data	160	ns
12	t_{RD}	Read Active Prior to Valid Data	75	ns
13	t_{DF}	Read Data Float Delay	10	ns
	t_{RC}	Reset Active Time ${ }^{[4]}$	300	ns

Notes:

1. Worst case values occur at an IC junction temperature of $150^{\circ} \mathrm{C}$.
2. For designers who do not need to read from the display, the Read line can be tied to V_{DD} and the Write and Chip Enable lines can be tied together.
3. Changing the logic levels of the Address lines when $\overline{\mathrm{CE}}=$ " 0 " may cause erroneous data to be entered into the Character RAM, regardless of the logic levels of the WR and $\overline{\mathrm{RD}}$ lines.
4. The display must not be accessed until after 3 clock pulses ($110 \mu \mathrm{~s}$ min. using the internal refresh clock) after the rising edge of the reset line.

Symbol	Description	$\mathbf{2 5}{ }^{\circ}$ C Typical	Minimum $^{[1]}$	Units
$\mathrm{F}_{\mathrm{OSC}}$	Oscillator Frequency	57	28	kHz
$\mathrm{F}_{\mathrm{RF}}{ }^{[5]}$	Display Refresh Rate	256	128	Hz
$\mathrm{~F}_{\mathrm{FL}}{ }^{[6]}$	Character Flash Rate	2	1	Hz
$\mathrm{t}_{\mathrm{ST}}{ }^{[7]}$	Self Test Cycle Time	4.6	9.2	sec

Notes:

5. $\mathrm{F}_{\mathrm{RF}}=\mathrm{F}_{\mathrm{OSC}} 224$
6. $\mathrm{F}_{\mathrm{FL}}=\mathrm{F}_{\mathrm{OSC}} / 28,672$
7. $\mathrm{t}_{\mathrm{ST}}=262,144 / \mathrm{F}_{\mathrm{osc}}$

Write Cycle Timing Diagram

Read Cycle Timing Diagram

Character Font

(Not to Scale)

Relative Luminous Intensity vs. Temperature

Electrical Description

Pin Function
$\operatorname{RESET}(\overline{\mathrm{RST}}, \operatorname{pin} 1)$
FLASH ($\overline{\mathrm{FL}}$, pin 2)

ADDRESS INPUTS
($\mathrm{A}_{0}-\mathrm{A}_{4}$, pins 3-6, 10)

Description

Reset initializes the display.
$\overline{\mathrm{FL}}$ low indicates an access to the Flash RAM and is unaffected by the state of address lines $\mathrm{A}_{3}-\mathrm{A}_{4}$.
Each location in memory has a distinct address. Address inputs ($\mathrm{A}_{0}-\mathrm{A}_{2}$) select a specific location in the Character RAM, the Flash RAM or a particular row in the UDC (User-Defined Character) RAM. $\mathrm{A}_{3}-\mathrm{A}_{4}$ are used to select which section of memory is accessed. Table 1 shows the logic levels needed to access each section of memory.
Table 1. Logic Levels to Access Memory

FL	A_{4}	$\mathrm{~A}_{3}$	Section of Memory	$\mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$
$\mathbf{0}$	X	X	Flash RAM	Character Address
1	0	0	UDC Address Register	Don't Care
1	0	1	UDC RAM	Row Address
1	1	0	Control Word Register	Don't Care
1	1	1	Character RAM	Character Address

CLOCK SELECT
(CLS, pin 11)
CLOCK INPUT/OUTPUT
(CLK, pin 12)
WRITE ($\overline{\mathrm{WR}}, \operatorname{pin} 13$)

This input is used to select either an internal or external clock source.

Outputs the master clock $(C L S=1)$ or inputs a clock $(C L S=0)$ for slave displays.

Data is written into the display when the $\overline{W R}$ input is low and the $\overline{\mathrm{CE}}$ input is low.
CHIP ENABLE ($\overline{\mathrm{CE}}$, pin 17) This input must be at a logic low to read or write data to the display and must go high between each read and write cycle.
READ ($\overline{\mathrm{RD}}$, pin 18)

DATA Bus ($\mathrm{D}_{0}-\mathrm{D}_{7}$, pins $19,20,23-28$)
GND (SUPPLY) (pin 15)
GND (LOGIC) (pin 16)
V_{DD} (POWER) (pin 14)
V_{DD} (SUBSTRATE)
(pins 7-9)

Data is read from the display when the $\overline{R D}$ input is low and the $\overline{\mathrm{CE}}$ input is low.
The Data bus is used to read from or write to the display.

This is the analog ground for the LED drivers.
This is the digital ground for internal logic.
This is the positive power supply input.
These pins are used to bias the IC substrate and must be connected to V_{DD}. These pins cannot be used to supply power to the display.

Figure 1. HDSP-213X Internal Block Diagram.

Display Internal Block Diagram

Figure 1 shows the internal block diagram of the HDSP-211X/-212X display. The CMOS IC consists of an 8 byte Charac-
ter RAM, an 8 bit Flash RAM, a 128 character ASCII (Katakana) decoder, a 16 character UDC RAM, a UDC Address Register, a Control Word Register and the refresh circuitry necessary to
synchronize the decoding and driving of eight 5×7 dot matrix characters. The major user accessible portions of the display are listed below:

Character RAM

Flash RAM
User-Defined Character RAM (UDC RAM)

User-defined Character
Address Register
(UDC Address Register)
Control Word Register

This RAM stores either ASCII (Katakana) character data or a UDC RAM address.
This is a 1×8 RAM which stores Flash data.
This RAM stores the dot pattern for custom characters.

This register is used to provide the address to the UDC RAM when the user is writing or reading a custom character.

This register allows the user to adjust the display brightness, flash individual characters, blink, self test or clear the display.

Character Ram

Figure 2 shows the logic levels needed to access the HDSP-211X/-212X Character RAM. During a normal access the $\overline{\mathrm{CE}}=" 0$ " and either $\overline{\mathrm{RD}}=" 0$ " or $\overline{W R}=" 0$ ". However, erroneous data may be written into the Character RAM if the Address lines are unstable when $\overline{\mathrm{CE}}=$ " 0 " regardless of the logic levels of the $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ lines. Address lines $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the location in the Character RAM. Two types of data can be stored in each Character RAM location: an ASCII (Katakana) code or a UDC RAM address. Data bit D_{7} is used to differentiate between the ASCII (Katakana) character and a UDC RAM address. $\mathrm{D}_{7}=0$ enables the ASCII (Katakana) decoder and $D_{7}=1$ enables the UDC RAM. $D_{0}-D_{6}$ are used to input ASCII (Katakana) data and $D_{\hat{v}}-D_{\overrightarrow{3}}$ are used to input a UDC address.

UNDEFINED
WRITE TO DISPLAY
READ FROM DISPLAY
UNDEFINED
CONTROL SIGNALS

CHARACTER RAM ADDRESS

CHARACTER RAM DATA FORMAT

DISPLAY
0 = LOGIC 0; 1 = LOGIC $1 ; X=$ DO NOT CARE

Figure 2. Logic Levels to Access the Character RAM.

UDC RAM and UDC Address Register

Figure 3 shows the logic levels needed to access the UDC RAM and the UDC Address Register. The UDC Address Register is eight bits wide. The lower four bits ($D_{0}-D_{3}$) are used to select one of the 16 UDC locations. The upper four bits ($D_{4}-D_{7}$) are not used. Once the UDC address has been stored in the UDC Address Register, the UDC RAM can be accessed.

To completely specify a 5×7 character requires eight write cycles. One cycle is used to store the UDC RAM address in the UDC Address Register. Seven cycles are used to store dot data in the UDC RAM. Data is entered by rows. One cycle is needed to access each row. Figure 4 shows the organization of a UDC character assuming the symbol to be stored is an " F ". $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the row to be accessed and $D_{0}-D_{4}$ are used to transmit the row dot data. The upper three bits $\left(D_{5}-\right.$ D_{7}) are ignored. D_{0} (least significant bit) corresponds to the right most column of the 5×7 matrix and D_{4} (most significant bit) corresponds to the left most column of the 5×7 matrix.

Flash RAM

Figure 5 shows the logic levels needed to access the Flash RAM. The Flash RAM has one bit associated with each location of the Character RAM. The Flash input is used to select the Flash RAM. Address lines $\mathrm{A}_{3}-\mathrm{A}_{4}$ are ignored. Address lines $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the location in the Flash RAM to store the attribute. D_{0} is used to store or remove the flash attribute. $D_{0}=$ " 1 " stores the attribute and $\mathrm{D}_{0}=$ " 0 " removes the attribute.

Figure 3. Logic Levels to Access a UDC Character.

C	C	C	C	C			
0	0	0	0	0			
L	L	L	L	1			
1	2	3	4	5		UDC	HEX
D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		CHARACTER	CODE
1	1	1	1	1	ROW 1	* * * * *	1 F
1	0	0	0	0	ROW 2	*	10
1	0	0	0	0	ROW 3	*	10
1	1	1	1	0	ROW 4	* * * *	1 E
1	0	0	0	0	ROW 5	*	10
1	0	0	0	0	ROW 6	*	10
1	0	0	0	0	ROW 7	*	10
IGN	NOR	ED					

Figure 4. Data to Load "'F"' into the UDC RAM.

When the attribute is enabled through bit 3 of the Control Word and a " 1 " is stored in the Flash RAM, the corresponding character will flash at approximately 2 Hz . The actual rate is
dependent on the clock frequency. For an external clock the flash rate can be calculated by dividing the clock frequency by 28,672 .

UNDEFINED
WRITE TO DISPLAY READ FROM DISPLAY UNDEFINED
CONTROL SIGNALS

Figure 6. Logic Levels to Access the Control Word Register

Control Word Register

Figure 6 shows how to access the Control Word Register. This is an eight bit register which performs five functions. They are Brightness control, Flash RAM control, Blinking, Self Test and Clear. Each function is independent of the others. However, all bits are updated during each Control Word write cycle.

Brightness (Bits 0-2)

Bits 0-2 of the Control Word adjust the brightness of the display. Bits 0-2 are interpreted as a three bit binary code with code (000) corresponding to maximum brightness and code (111) corresponding to a blanked display. In addition to varying the display brightness, bits 0-2 also vary the average value of $\mathrm{I}_{\mathrm{DD}} \mathrm{I}_{\mathrm{DD}}$ can be calculated at any brightness level by multiplying the percent brightness level by the value of I_{DD} at the 100% brightness level.
These values of I_{DD} are shown in Table 2.

Flash Function (Bit 3)

Bit 3 determines whether the flashing character attribute is on or off. When bit 3 is a " 1 ", the output of the Fiash KÀM̄ is checked. If the content of a location in the Flash RAM is a " 1 ", the associated digit will flash at

Table 2. Current Requirements at Different Brightness Levels

Symbol	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$	\% Brightness	$\mathbf{V}_{\mathbf{D D}}=\mathbf{5 . 0} \mathbf{~ V}$ $\mathbf{2 5} \mathbf{C}^{\circ} \mathbf{~ T y p . ~}$	Units
$\mathrm{I}_{\mathrm{DD}}(\mathrm{V})$	0	0	0	100	200	mA
	0	0	1	80	160	mA
	0	1	0	53	106	mA
	0	1	1	40	80	mA
	1	0	0	27	54	mA
	1	0	1	20	40	mA
	1	1	0	13	26	mA

approximately 2 Hz . For an external clock, the blink rate can be calculated by dividing the clock frequency by $\mathbf{2 8 , 6 7 2}$. If the flash enable bit of the Control Word is a " 0 ", the content of the Flash RAM is ignored. To use this function with multiple display systems see the Reset section.

Blink Function (Bit 4)

Bit 4 of the Control Word is used to synchronize blinking of
all eight digits of the display. When this bit is a " 1 " all eight digits of the display will blink at approximately 2 Hz . The actual rate is dependent on the clock frequency. For an external clock, the blink rate can be calculated by dividing the clock frequency by 28,672 . This function will override the Flash function when it is active. To use this function with multiple display systems see the Reset section.

Self Test Function (Bits 5, 6)

Bit 6 of the Control Word Register is used to initiate the self test function. Results of the internal self test are stored in bit 5 of the Control Word. Bit 5 is a read only bit where bit $5=$ " 1 " indicates a passed self test and bit $5=" 0$ " indicates a failed self test.

Setting bit 6 to a logic 1 will start the self test function. The built-in self test function of the IC consists of two internal routines which exercises major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII (Katakana) decoder ROM through all states and performs a checksum on the output. If the checksum agrees with the correct value, bit 5 is set to " 1 ". The second routine provides a visual test of the LEDs using the drive circuitry. This is accomplished by writing checkered and inverse checkered patterns to the display. Each pattern is displayed for approximately 2 seconds.

During the self test function the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock period by 262,144 . For example, assume a clock frequency of 58 KHz , then the time to execute the self test function frequency is equal to $(262,144 / 58,000)=4.5$ second duration.

At the end of the self test function, the Character RAM is loaded with blanks, the Control Word Register is set to zeros except for bit 5, and the Flash RAM is cleared and the UDC Address Register is set to all ones.

Clear Function (Bit 7)

Bit 7 of the Control Word will clear the Character RAM and the Flash RAM. Setting bit 7 to a "1" will start the clear function. Three clock cycles ($110 \mu \mathrm{~s}$ \min. using the internal refresh clock) are required to complete the clear function. The display must not be accessed while the display is being cleared. When the clear function has been completed, bit 7 will be reset to a " 0 ". The ASCII (Katakana) character code for a space (20 H) will be loaded into the Character RAM to blank the display and the Flash RAM will be loaded with " 0 "s. The UDC RAM, UDC Address Register and the remainder of the Control Word are unaffected.

Display Reset

Figure 7 shows the logic levels needed to Reset the display. The display should be Reset on Power-up. The external Reset clears the Character RAM, Flash RAM, Control Word and resets the internal counters. After the rising edge of the Reset signal, three clock cycles ($110 \mu \mathrm{~s}$ min . using the internal refresh clock) are required to complete the reset sequence. The display must not be accessed while the display is being reset. The ASCII (Katakana) Character code for a space $(20 \mathrm{H})$ will be loaded into the Character RAM to blank the display. The Flash RAM and

Figure 7. Logic Levels to Reset the Display.

Control Word Register are loaded with all " 0 "s. The UDC RAM and UDC Address Register are unaffected. All displays which operate with the same clock source must be simultaneously reset to synchronize the Flashing and Blinking functions.

Mechanical and Electrical Considerations

The HDSP-211X/-212X is a 28 pin dual-in-line package with 26 external pins, which can be stacked horizontally and vertically to create arrays of any size. The HDSP-211X/212X is designed to operate continuously from $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with a maximum of 20 dots on per character at 5.25 V . Illuminating all thirty-five dots at full brightness is not recommended.

The HDSP-211X/-212X is assembled by die attaching and wire bonding 280 LED chips and a CMOS IC to a thermally conductive printed circuit board. A polycarbonate lens is placed over the PC board creating an air gap over the LED wire bonds. A protective cap creates an air gap over the CMOS IC. Backfill epoxy environmentally seals the display package. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering.

The inputs to the IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HDSP-211X/-212X should be stored in antistatic tubes or in conductive material. During assembly, a grounded conductive work area should be used, and assembly personnel should wear
conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static buildup. Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground ($\mathrm{V}_{\text {IN }}<$ ground) or to a voltage higher than $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{DD}}\right)$ and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{DD}. Voltages should not be applied to the inputs until $V_{D D}$ has been applied to the display.

Thermal
 Considerations

The HDSP-211X/-212X has been designed to provide a low thermal resistance path for the CMOS IC to the 26 package pins. This heat is then typically conducted through the traces of the printed circuit board to free air. For most applications no additional heatsinking is required.

Measurements were made on a 32 character display string to determine the thermal resistance of the display assembly. Several display boards were constructed using 62 mil printed circuit material, and one ounce copper 20 -mil traces. Some of the device pins were connected to a heatsink formed by etching a copper area on the printed circuit board surrounding the display. A maximum metalized printed circuit board was also evaluated. The junction temperature was measured for displays soldered directly to these PC boards, displays installed in sockets, and finally displays installed in sockets with a filter over the display to restrict airflow. The results of these ther-
mal resistance measurements, $R \theta_{J-A}$ are shown in Table 3 and include the effects of $R \theta_{J . C}$.

Ground Connections

Two ground pins are provided to keep the internal IC logic ground clean. The designer can, when necessary, route the ana\log ground for the LED drivers separately from the logic ground until an appropriate ground plane is available. On long interconnections between the display and the host system, the designer can keep voltage drops on the analog ground from affecting the display logic levels by isolating the two grounds.

The logic ground should be connected to the same ground potential as the logic interface circuitry. The analog ground and the logic ground should be connected at a common ground which can withstand the current introduced by the switching LED drivers. When separate ground connections are used, the analog ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltage below -0.3 V can cause all dots to be on. Voltage above +0.3 V can cause dimming and dot mismatch.

Soldering and Post Solder Cleaning Instructions for the HDSP-211X/-212X

The HDSP-211X/-212X may be hand soldered or wave soldered with SN63 solder. When hand soldering it is recommended that an electronically temperature controlled and securely grounded soldering iron be used. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be set at $245^{\circ} \mathrm{C}$ $\pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$, and the dwell in the wave should be set between 1-1/2 to 3 seconds for optimum soldering. The preheat temperature should not exceed $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.

Post solder cleaning may be performed with a solvent or aqueous process. For solvent cleaning, Allied Chemical's Genesolv DES, Baron Blakeslee's Blaco-Tron TES or DuPont's Freon TE may be used. These solvents are azeotropes of trichlorotrifluoroethane FC-113 with low concentrations of ethanol (5\%). The

Table 3. Thermal Resistance, $\theta_{J A}$, Using Various Amounts of Heatsinking Material

Heatsinking Metal per Device sq. in.	W/Sockets W/O Filter (Avg.)	W/O Sockets W/O Filter (Avg.)	W/Sockets W/Filter (Avg.)	Units
0	31	30	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
1	31	28	33	${ }^{\circ} \mathrm{C} / W$
3	30	26	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Max. Metal	29	25	32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
4 Board	30	27	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Avg.				

maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes. Solvents containing high concentrations of alcohols such as methanol, ketones such as acetone, or chlorinated solvents should not be used as they will chemically attack the polycarbonate lens. Solvents containing trichloroethylene (TCE), FC-111, FC-112 or trichloroethylane (TCA) are also not recommended.

An aqueous cleaning process may be used. A saponifier, such as Kesterbio-kleen Formula 5799 or its equivalent, may be added to the wash cycle of an aqueous process to remove rosin flux residues. Organic acid flux residues must be thoroughly removed by an aqueous cleaning process to prevent corrosion of the leads and solder connections. The optimum water temperatuer is $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. The maximum cumulative exposure of the HDSP-211X/-212X to
wash and rinse cycles should not exceed 15 minutes. For additionsal information on soldering and post solder cleaning, see Application Note 1027.

Contrast Enhancement

The objective of contrast enhancement is to provide good readability in the end user's ambient lighting conditions. The concept is to employ both luminance and chrominance contrast techniques. These enhance readability by having the OFFdots blend into the display background and the ON-dots vividly stand out against the same background. Contrast enhancement may be achieved by using one of the following suggested filters.

HDSP-2112/-2122
Panelgraphic SCARLET RED 65 or GRAY 10
SGL Homalite H100-1670 RED or - 1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

HDSP-2110
Panelgraphic AMBER 23, AMBER 26, or GRAY 10
SGL Homqalite H100-1709
AMBER or - 1250 GRAY
3M Louvered Filter ND0220 GRAY

HDSP-2111/-2121
Panelgraphic YELLOW 27 or GRAY 10
SGL Homalite H100-1720
AMBER or - 1250 GRAY
3M Louvered Filter ND0220 GRAY

HDSP-2113/-2123
Panelgraphic GREEN 48 or GRAY 10
SGL Homalite H100-1440 GREEN or - 1250 GRAY
3M Louvered Filter ND0220 GRAY

For additional information on contrast enhancement see Application Note 1015.

Four Character 5.0mm (0.2 in.) Smart 5×7 Alphanumeric Displays

Technical Data

Features

- Enhanced Drop-in Replacement to HPDL-2416
- Smart Alphanumeric Display
Built-in RAM, ASCII Decoder, and LED Drive Circuitry
- CMOS IC for Low Power Consumption
- Software Controlled Dimming Levels and Blank
- 128 ASCII Character Set
- End-Stackable
- Categorized for Luminous Intensity; YELLOW and GREEN Categorized for Color
- Wide Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Excellent ESD Protection
- Wave Solderable
- Wide Viewing Angle (50° typ)

Description

These are 5.0 mm (0.2 inch) four character 5×7 dot matrix displays driven by an on-board CMOS IC. These displays are pin for pin compatible with the HPDL-2416. The IC stores and decodes 7 bit ASCII data and displays it using a 5×7 font. Multiplexing circuitry, and drivers are also part of the IC. The IC has fast setup and hold times which makes it easy to interface to a microprocessor.

Absolute Maximum Ratings

Supply Voltage, V_{DD} to $\mathrm{Ground}^{[1]} . ~ 0.5 ~ V ~ t o ~ 7.0 ~ V ~$
Input Voltage, Any Pin to Ground 0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Free Air Operating Temperature Range, T_{A}............... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity (non-condensing) at $65^{\circ} \mathrm{C}$............................... 85%
Storage Temperature, T_{S}.. $40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Maximum Solder Temperature, 1.59 mm
(0.063 in .) below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$. $260^{\circ} \mathrm{C}$
ESD Protection, $\mathrm{R}=1.5 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF} \ldots \ldots \mathrm{V}_{\mathrm{Z}}=2 \mathrm{kV}$ (each pin)
Note:

1. Maximum Voltage is with no LEDs illuminated.

Devices:

Standard Red	High Efficiency Red	Orange	Yellow	Green
HDLR-2416	HDLO-2416	HDLA-2416	HDLY-2416	HDLG-2416

[^14]The address and data inputs can be directly connected to the microprocessor address and data buses.

The HDLX-2416 has several enhancements over the HPDL2416. These features include an expanded character set, internal

8 level dimming control, external dimming capability, and individual digit blanking. Finally, the extended functions can be disabled which allows the HDLX-2416 to operate exactly like an HPDL-2416 by disabling all of the enhancements except the expanded character set.

Package Dimensions

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Function	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Function
1	$\overline{\mathrm{CE}}_{1}$ Chip Enable	10	GND
2	$\overline{\mathrm{CE}}_{2}$ Chip Enable	11	D_{0} Data Input
3	CLR Clear	12	D_{1} Data Input
4	CUE Cursor Enable	13	D_{2} Data Input
5	$\overline{\text { CU }}$ Cursor Select	14	D_{3} Data Input
6	$\overline{\text { WR Write }}$	15	D_{6} Data Input
7	A_{1} Address Input	16	D_{5} Data Input
8	A_{0} Address Input	17	D_{4} Data Input
9	V_{DD}	18	BL Display Blank

Character Set

ASCII CODE			D0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
			D1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
			D2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
			D3	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
D6	D5	D4	Hex	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
0	0	0	0	-"	"			: if:					:	$:$					
0	0	1	1			$\left\lvert\, \begin{gathered} \text { enga: } \\ 0 \text { ene } \end{gathered}\right.$	-		$\begin{array}{\|c} \bullet \bullet \\ \hline \end{array}$		$\begin{array}{r} 0.0 \\ \vdots \\ 0.000^{\circ} \end{array}$		$\begin{array}{\|c\|} \bullet \bullet \\ 0 \\ 0 \\ 0 \end{array}$	\vdots	$\left\|\begin{array}{c} : 8.000 \\ : 0.000 \end{array}\right\|$		0	ene	0
0	1	0	2			$8:$	$\begin{array}{\|c\|c} \hline 8 \% \\ 0 & 0 \\ 0 \end{array}$		$\begin{array}{\|l\|} \hline 800 \\ \hline 000 \\ 0000 \\ 0 \end{array}$	$\begin{aligned} & \because: \\ & \because \because: \end{aligned}$	$8:$	0_{0}°	$\%$		-nine	$\because:$	*esee	88	
0	1	1	3	0					8					$\begin{aligned} & 8: 8 \\ & 8: \end{aligned}$	18 8		$\mid 00000$		
1	0	0	4		$:$	ene	$!^{000}$			\square	\%	! \quad !	-0	-000	$0^{\circ} 0^{\circ}$!	\%	:	${ }^{000}$
1	0	1	5	$\begin{array}{\|l\|} \hline 000 \\ \hline \end{array}$			0	$\begin{array}{\|c\|} \hline 0000 \\ \hline \\ \hline \end{array}$	\%		$\begin{array}{\|l\|l\|} \hline: & 0 \\ 0 & 0 \\ 0 \end{array}$						$\begin{array}{r} 008 \\ \hline \end{array}$	$\bullet \bullet$.	10000
1	1	0	6	8			$:_{00 \bullet}^{00 \bullet}$	(1)	0	!ea		:	\because	\%		!	\% ${ }^{\circ}$	$\begin{aligned} & \because \bullet \bullet \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	0^{0000}
1	1	1	7		0	0		:	\%	\%	18:	$\because 0 \cdot$	$:$	$\left\|\begin{array}{c} \text { oungen } \\ 0.8000 \end{array}\right\|$	$\overbrace{0}^{\circ}$		$:$	$\bullet \bullet \cdot$	

Notes: 1. High $=1$ level.
2. Low $=0$ level.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply Voltage	V_{DD}	4.5	5.0	5.5	V

Electrical Characteristics Over Operating Temperature Range

$4.5<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$ (unless otherwise specified)

All Devices

Parameter	Symbol	Min.	25 ${ }^{\circ} \mathbf{C}^{[1]}$			Units	Test Conditions
			Typ.	Max.			
I_{DD} Blank	I_{DD} (blnk)		1.0		4.0	mA	All Digits Blanked
Input Current	I_{I}	-40			10	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{DD} $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
Input Voltage High	V_{IH}	2.0			$\mathrm{~V}_{\mathrm{DD}}$	V	
Input Voltage Low	V_{IL}	GND			0.8	V	

HDLO/HDLA/HDLY/HDLG-2416

Parameter	Symbol	Min.	$25^{\circ} \mathrm{C}^{[1]}$		Max.	Units	Test Conditions
			Typ.	Max.			
$\mathrm{I}_{\mathrm{DD}} 4$ digits 20 dots/character ${ }^{[2,3]}$	$\mathrm{I}_{\mathrm{DD}}{ }^{(\#)}$		110	130	160	mA	"\#" ON in all four locations
I_{DD} Cursor all dots ON © 50%	$\mathrm{I}_{\mathrm{DD}}(\mathrm{CU})$		92	110	135	mA	Cursor ON in all four locations

HDLR-2416

Parameter	Symbol	Min.	$25^{\circ} \mathrm{C}^{[1]}$		Max	Units	Test Conditions
			Typ.	Max.			
$\mathrm{I}_{\mathrm{DD}} 4$ digits 20 dots/character ${ }^{[2,3]}$	$\mathrm{I}_{\mathrm{DD}}{ }^{(\#)}$		125	146	180	mA	"\#" ON in all four locations
I_{pp} Cursor all dots ON © 50%	$\mathrm{I}_{\mathrm{DD}}(\mathrm{CU})$		105	124	154	mA	Cursor ON in all four locations

Notes:

1. $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
2. Average I_{DD} measured at full brightness. Peak $\mathrm{I}_{\mathrm{DD}}=28 / 15 \times$ Average $\mathrm{I}_{\mathrm{DD}}{ }^{(\#)}$.
3. $\mathrm{I}_{\mathrm{DD}}(\#)$ max. $=130 \mathrm{~mA}$ for HDLO/HDLA/HDLY/HDLG-2416 and 146 mA for HDLR- 2416 at $125^{\circ} \mathrm{C}$ IC junction temperature and $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$.

Optical Characteristics at $\mathbf{2 5}^{\circ} \mathbf{C}^{[1]}$
$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ at Full Brightness

HDLR-2416

Parameter	Symbol	Min.	Typ.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I_{v}	0.5	1.1	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{\text {PEAK }}$		655	nm	
Dominant Wavelength $^{[2]}$	λ_{d}		640	nm	

HDLO-2416

Parameter	Symbol	Min.	Typ.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I_{v}	1.2	3.5	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{\text {PEAK }}$		635	nm	
Dominant Wavelength $^{[2]}$	λ_{d}		626	nm	

HDLA-2416

Parameter	Symbol	Min.	Typ.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I_{v}	1.2	3.5	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{\text {PEAK }}$		600	nm	
Dominant Wavelength $^{[2]}$	λ_{d}		602	nm	

HDLY-2416

Parameter	Symbol	Min.	Typ.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I_{v}	1.2	3.7	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{\text {PEAK }}$		583	nm	
Dominant Wavelength ${ }^{[2]}$	λ_{d}		585	nm	

HDLG-2416

Parameter	Symbol	Min.	Typ.	Units	Test Conditions
Average Luminous Intensity per digit, Character Average	I_{v}	1.2	5.6	mcd	"*" illuminated in all four digits. 19 dots ON
Peak Wavelength	$\lambda_{\text {PEAK }}$		568	nm	
Dominant Wavelength ${ }^{[2]}$	λ_{d}		574	nm	

Notes:

1. Refers to the initial case temperature of the device immediately prior to the light measurement.
2. Dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color of the device.

AC Timing Characteristics Over Operating Temperature Range at $V_{D D}=4.5 \mathrm{~V}$

Parameter	Symbol	Min	Units
Address Setup	$\mathrm{t}_{\text {AS }}$	10	ns
Address Hold	$\mathrm{t}_{\text {AH }}$	40	ns
Data Setup	t_{DS}	50	ns
Data Hold	t_{DH}	40	ns
Chip Enable Setup	$\mathrm{t}_{\text {CES }}$	0	ns
Chip Enable Hold	$\mathrm{t}_{\text {CEH }}$	0	ns
Write Time	t_{W}	75	ns
Clear	$\mathrm{t}_{\text {CLR }}$	10	$\mu \mathrm{s}$
Clear Disable	$\mathrm{t}_{\text {CLRD }}$	1	$\mu \mathrm{s}$

Timing Diagram

Enlarged Character Font

NOTES:

1. UNLESS OTHERWISE SPECIFIED THE TOLERANCE ON ALL DIMENSIONS IS $\pm 0.254 \mathrm{~mm}$ (0.010 IN .)
2. DIMENSIONS ARE IN MILLIMETRES (INCHES).

Electrical Description

Pin Function	Description
Chip Enable ($\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$, pins 1 and 2)	$\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ must be a logic 0 to write to the display.
$\begin{aligned} & \text { Clear } \\ & \text { (CLR, pin 3) } \end{aligned}$	When $\overline{\text { CLR }}$ is a logic 0 the ASCII RAM is reset to 20hex (space) and the Control Register/ Attribute RAM is reset to 00hex.
Cursor Enable (CUE pin 4)	CUE determines whether the IC displays the ASCII or the Cursor memory. ($1=$ Cursor, $0=$ ASCII).
Cursor Select ($\overline{\mathrm{CU}}, \operatorname{pin} 5$)	$\overline{\text { CU }}$ determines whether data is stored in the ASCII RAM or the Attribute RAM/Control Register. ($1=$ ASCII, $0=$ Attribute RAM/Control Register).
$\begin{aligned} & \text { Write } \\ & (\overline{\mathrm{WR}}, \text { pin } 6) \end{aligned}$	$\overline{\mathrm{WR}}$ must be a logic 0 to store data in the display.
Address Inputs (A_{1} and A_{0}, pins 8 and 7)	$\mathrm{A}_{0}-\mathrm{A}_{1}$ selects a specific location in the display memory. Address 00 accesses the far right display location. Address 11 accesses the far left location.
Data Inputs ($\mathrm{D}_{0}-\mathrm{D}_{6}$, pins 11-17)	$D_{0}-D_{6}$ are used to specify the input data for the display.
$\begin{aligned} & V_{\text {pin }} \\ & (\text { pin } \end{aligned}$	V_{DD} is the positive power supply input.
$\begin{aligned} & \text { GND } \\ & (\operatorname{pin} 10) \end{aligned}$	GND is the display ground.
Blanking Input ($\overline{\mathrm{BL}}, \mathrm{pin} 18$)	$\overline{\mathrm{BL}}$ is used to flash the display, blank the display or to dim the display.

Display Internal Block Diagram

Figure 1 shows the HDLX-2416 display internal block diagram. The CMOS IC consists of a 4×7 Character RAM, a 2×4 Attribute RAM, a 5 bit Control Register, a 128 character ASCII decoder and the refresh circuitry necessary to synchronize the decoding and driving of four 5×7 dot matrix displays.

Four 7 bit ASCII words are stored in the Character RAM. The IC reads the ASCII data and decodes it via the 128 character ASCII decoder. The ASCII decoder includes the 64 character set of the HPDL-2416, 32 lower case ASCII symbols, and 32 foreign language symbols.

A 5 bit word is stored in the Control Register. Three fields within the Control Register provide an 8 level brightness control, master blank, and extended functions disable.

For each display digit location, two bits are stored in the Attribute RAM. One bit is used to enable a cursor character at each digit location. A second bit is used to individually disable the blanking features at each digit location.

The display is blanked and dimmed through an internal blanking input on the row drivers. Logic within the IC allows the user to dim the display either through the $\overline{\mathrm{BL}}$ input or through the brightness control in the control register. Similarly the display can be blanked through the $\overline{\mathrm{BL}}$ input, the Master Plank in the Conitool Register, or the Digit Blank Disable in the Attribute RAM.

Figure 1. Internal Block Diagram

Display Clear

Data stored in the Character RAM, Control Register, and Attribute RAM will be cleared if the clear ($\overline{\mathrm{CLR}}$) is held low for a minimum of $10 \mu \mathrm{~s}$. Note that the display will be cleared regardless of the state of the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$). After the display is cleared, the ASCII code for a space (20hex) is loaded into all character RAM locations and 00 hex is loaded into all Attribute RAM/Control Register memory locations.

Data Entry

Figure 2 shows a truth table for the HDLX-2416 display. Setting the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) to logic 0 and the cursor select ($\overline{\mathrm{CU}}$) to logic 1 will enable ASCII data loading. When cursor select
$(\overline{\mathrm{CU}})$ is set to logic 0 , data will be loaded into the Control Register and Attribute RAM. Address inputs $\mathrm{A}_{0}-\mathrm{A}_{1}$ are used to select the digit location in the display. Data inputs $\mathrm{D}_{0}-\mathrm{D}_{6}$ are used to load information into the display. Data will be latched into the display on the rising edge of the WR signal. $\mathrm{D}_{0}-\mathrm{D}_{6}, \mathrm{~A}_{0}-\mathrm{A}_{1}$, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, and $\overline{\mathrm{CU}}$ must be held stable during the write cycle to ensure that correct data is stored into the display. Data can be loaded into the display in any order. Note that when A_{0} and A_{1} are logic 0 , data is stored in the right most display location.

Cursor

When cursor enable (CUE) is a logic 1 , a cursor will be displayed
in all digit locations where a logic 1 has been stored in the Digit Cursor memory in the Attribute RAM. The cursor consists of all 35 dots ON at half brightness. A flashing cursor can be displayed by pulsing CUE. When CUE is a logic 0, the ASCII data stored in the Character RAM will be displayed regardless of the Digit Cursor bits.

Blanking

Blanking of the display is controlled through the $\overline{\mathrm{BL}}$ input, the Control Register and Attribute RAM. The user can achieve a variety of functions by using these controls in different combinations, such as full hardware display blank, software blank, blanking of individual charac-

CUE	$\overline{\mathrm{BL}}$	$\overline{\text { CLR }}$	$\overline{\mathbf{C E}}_{1}$	$\overline{C E}_{2}$	$\overline{\mathrm{WR}}$	$\overline{\mathbf{C U}}$	A_{1}	A_{6}	D.	D ${ }_{5}$	D4	D	D_{3}	D_{1}	D.	Function	
0	1	1	X	X	X	X	X	X	\mathbf{X}	X	X	X	X	X	X	Display ASCII	
1	1	1														Display Stored Cursor	
X	X	0														Reset RAMs	
X	0	1														Blank Display but do not reset RAMS and Control Register	
X	X	1	0	0	0	0	0	0	Extended Functions Disable $0=$ Enable $\mathrm{D}_{1}-\mathrm{D}_{8}$ $1=$ Disable $D_{1}-D_{8}$ D. Always Enabled	Intensity Control			Master Blank	Digit Blank Disable 0	Digit Cursor 0	Write to Attribute RAM and Control Register	
						0	0	1		$\begin{aligned} & 001=60 \% \\ & 010=40 \% \\ & 011=27 \% \\ & 100=17 \% \\ & 101=10 \% \\ & 110=7 \% \\ & 111=3 \% \end{aligned}$			$0=$ Display ON	Digit Blank Disable 1	Digit Cursor 1	$\mathrm{DBD}_{\mathrm{n}}=0$, Allows Digit n to be blanked	
						0	1	0					$1=$ Display Blanked	Digit Blank Disable 2	Digit Curbor 2	$\mathrm{DBD}_{\mathrm{n}}=1$ Prevents Digit n from being blanked. $\mathrm{DC}_{\mathrm{n}}=0$ Removes cursor from Digit n $\mathrm{DC}_{\mathrm{n}}=1$ Stores cursor at Digit n	
						0	1	1					Digiit Blank Disable 3	Digit Cursor 3			
X	X	1	0	0	0	1	0	0	Digit 0 ASCII Data (Right Most Character)							Write to Character RAM	
						1	0	1	Digit 1 ASCII Data								
						1	1	0	Digit 2 ASCII Data								
						1	1	1	Digit 3 ASCII Data (Left Most Character)								
X	X	1	1	X	X	X	X	X	X	X	X			X	X	X	No Change
			X	1	X							\mathbf{X}					
			X	X	1												

[^15]Figure 2. Display Truth Table
ters, and synchronized flashing of individual characters or entire display (by strobing the blank input). All of these blanking modes affect only the output drivers, maintaining the contents and write capability of the internal RAMs and Control Register, so that normal loading of RAMs and Control Register can take place even with the display blanked.

Figure 3 shows how the Extended Function Disable (bit D_{6} of the Control Register), Master Blank (bit D_{2} of the Control Register), Digit Blank Disable (bit D_{1} of the Attribute RAM), and BL input can be used to blank the display.

When the Extended Function Disable is a logic 1 , the display can be blanked only with the $\overline{\mathrm{BL}}$ input. When the Extended Function Disable is a logic 0 , the display can be blanked through the $\overline{\mathrm{BL}}$ input, the Master Blank, and the Digit Blank Disable. The entire display will be blanked if either the $\overline{\mathrm{BL}}$ input is logic 0 or the Master Blank is logic 1, providing all Digit Blank Disable bits are logic 0 . Those digits with Digit Blank Disable bits a logic 1 will ignore

0	0	0	0	Display Blanked by $\overline{\mathrm{BL}}$
0	0	X	1	Display ON
0	X	1	0	Display Blanked by $\overline{\mathrm{BL}}$. Individual characters "ON" based on "1" being stored in DBD
0	1	0	X	Display Blanked by MB
0	1	1	1	Display Blanked by MB. Individual characters "ON" based on "1" being stored in DBD n
1	X	X	0	Display Blanked by $\overline{\mathrm{BL}}$
1	X	X	1	Display ON

Figure 3. Display Blanking Truth Table
both blank signals and remain ON. The Digit Blank Disable bits allow individual characters to be blanked or flashed in synchronization with the $\overline{\mathrm{BL}}$ input.

Dimming

Dimming of the display is controlled through either the $\overline{\mathrm{BL}}$ input or the Control Register. A pulse width modulated signal can be applied to the $\overline{\mathrm{BL}}$ input to dim the display. A three bit word in the Control Register generates an internal pulse width modulated signal to dim the display. The internal
dimming feature is enabled only if the Extended Function Disable is a logic 0 .

Bits 3-5 in the Control Register provide internal brightness control. These bits are interpreted as a three bit binary code, with code (000) corresponding to the maximum brightness and code (111) to the minimum brightness. In addition to varying the display brightness, bits 3-5 also vary the average value of $I_{D D}$. $I_{D D}$ can be specified at any brightness level as shown in Table 1:

Table 1. Current Requirements at Different Brightness Levels

Symbol	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{3}}$	Brightness	$25^{\circ} \mathbf{C}$ Typ.	25 $^{\circ}$ C Max.	Max. over Temp.	Units
$\mathrm{I}_{\mathrm{DD}^{(\#)}}{ }^{(\#)}$	0	0	0	100%	110	130	160	mA
	0	0	1	60%	66	79	98	mA
	0	1	0	40%	45	53	66	mA
	0	1	1	27%	30	37	46	mA
	1	0	0	17%	20	24	31	mA
	1	0	1	10%	12	15	20	mA
	1	1	0	7%	9	11	15	mA
	1	1	1	3%	4	6	9	mA

Figure 4. Intensity Modulation Control Using an Astable Multivibrator (reprinted with permission from Electronics magazine, Sept. 19, 1974, VNU Business pub. Inc.)

Figure 4 shows a circuit designed to dim the display from 98% to 2% by pulse width modulating the $\overline{\mathrm{BL}}$ input. A logarithmic or a linear potentiometer may be used to adjust the display intensity. However, a logarithmic potentiometer matches the response of the human eye and therefore provides better resolution at low intensities. The circuit frequency should be designed to operate at 10 kHz or higher. Lower frequencies may cause the display to flicker.

Extended Function Disable

Extended Function Disable (bit D_{6} of the Control Register) disables the extended blanking and dimming functions in the HDLX-2416. If the Extended Function Disable is a logic 1, the internal brightness control, Master Blank, and Digit Blank Disable bits are ignored. However the $\overline{\mathrm{BL}}$ input and Cursor eontrol are still active. This allows downward compatibility to the HPDL-2416.

Mechanical and Electrical Considerations

The HDLX-2416 is an 18 pin DIP package that can be stacked horizontally and vertically to create arrays of any size. The HDLX-2416 is designed to operate continuously from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for all possible input conditions.

The HDLX-2416 is assembled by die attaching and wire bonding 140 LEDs and a CMOS IC to a high temperature printed circuit board. A polycarbonate lens is placed over the PC board creating an air gap environment for the LED wire bonds. Backfill epoxy environmentally seals the display package. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering.

The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HDLX2416 should be stored in antistatic tubes or conductive material. During assembly a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats. made of synthetic material should be avoided since they are prone to static charge build-up.

Input current latchup is caused when the CMOS inputs are subjected either to a voltage below ground ($\mathrm{V}_{\text {in }}<$ ground) or to a voltage higher than $V_{D D}\left(V_{i n}>\right.$ $V_{D D}$) and when a high current is forced into the input. 'Io prevent input current latchup and ESD
damage, unused inputs should be connected either to ground or to V_{pD}. Voltages should not be applied to the inputs until $V_{D D}$ has been applied to the display. Transient input voltages should be eliminated.

Soldering and Post Solder Cleaning Instructions for the HDLX-2416

The HDLX-2416 may be hand soldered or wave soldered with SN63 solder. When hand soldering it is recommended that an electronically temperature controlled and securely grounded soldering iron be used. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be set at $245^{\circ} \mathrm{C}$ $\pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$, and dwell in the wave should be set between $11 / 2$ to 3 seconds for optimum soldering. The preheat temperature should not exceed $110^{\circ} \mathrm{C}$ $\left(230^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.

Post solder cleaning may be performed with a solvent or aqueous process. For solvent cleaning, Allied Chemical's Genesolv DES, or DuPont's Freon TE may be used. These solvents are azeotropes of trichlorotrifluroethane FC-113 with low concentrations of ethanol (5\%). The maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes. Parts should not be handled until dry and cool. Solvents containing high concentrations of alcohols such as methanol, ketones such as acetone or chlorinated solvent should not
be used as they will chemically attack the polycarbonate lens. Solvents containing trichloroethane FC-111 or FC-112 and trichloroethylene (TCE) are also not recommended.

An aqueous cleaning process may be used. A saponifier, such as Kester bio-kleen Formula 5799 or its equivalent, may be added to the wash cycle of an aqueous process to remove rosin flux residues. Organic acid flux residues must be thoroughly removed by an aqueous cleaning process to prevent corrosion of the leads and solder connections. The optimum water temperature is $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. The maximum cumulative exposure of the HDLX-2416 to wash and rinse cycles should not exceed 15 minutes. For additional information on soldering and post solder cleaning, see Application Note 1027.

Contrast Enhancement

The objective of contrast enhancement is to provide good
readability in the end user's ambient lighting conditions. The concept is to employ both luminance and chrominance contrast techniques. These enhance readability by having the OFF-dots blend into the display background and the ON -
dots vividly stand out against the same background. Contrast enhancement may be achieved by using one of the following filters listed below. For additional information on contrast enhancement, see Application Note 1015.

HDLR-2416: Panelgraphic RUBY RED 60 SGL Homalite H100-1605 RED 3M Louvered Filter R6610 RED or N0210 GRAY

HDLO-2416: Panelgraphic SCARLET RED 65 or GRAY 10 SGL Homalite H100-1670 RED or -1266 GRAY 3M Louvered Filter R6310 RED or N0210 GRAY

HDLA-2416: Panelgraphic AMBER 23, AMBER 26 or GRAY 10 SGL Homalite H100-1709 AMBER or -1266 GRAY 3M Louvered Filter A6010 or N0210 GRAY

HDLY-2416: Panelgraphic YELLOW 27 or GRAY 10 SGL Homalite H100-1720 AMBER or -1266 GRAY 3M Louvered Filter A5910 AMBER or N0210 GRAY

HDLG-2416: Panelgraphic GREEN 48
SGL Homalite H100-1440 GREEN
3M Louvered Filter G5610 GREEN or N0210 GRAY

Four Character Smart Alphanumeric Display

Technical Data

Features

- Smart Alphanumeric Display
Built-in RAM, ASCII Decoder and LED Drive Circuitry
- Wide Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Fast Access Time 160 ns
- Excellent ESD Protection Built-in Input Protection Diodes
- CMOS IC for Low Power Consumption
- Full TTL Compatibility Over Operating Temperature Range $\mathrm{V}_{\mathrm{L}}=0.8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{HH}}=2.0 \mathrm{~V}$
- Wave Solderable
- Rugged Package Construction
- End-Stackable
- Wide Viewing Angle

Description

The HPDL-1414 and 2416 are smart, four character, sixteensegment, red GaAsP displays. The HPDL-1414 has a character height of $2.85 \mathrm{~mm}\left(0.112^{\prime \prime}\right)$. The

HPDL-2416 has a character height of $4.10 \mathrm{~mm}\left(0.160^{\prime \prime}\right)$. The on-board CMOS IC contains memory, ASCII decoder, multiplexing circuitry and drivers. The monolithic LED characters are magnified by an immersion lens which increases both character size and luminous intensity. The encapsulated dual-in-line package provides a rugged, environmentally sealed unit.

The HPDL-1414 and 2416 incorporate many improvements over competitive products. They have a wide operating temperature range, very fast IC access time, and improved ESD protection. The displays are also fully TTL compatible, wave solderable, and highly reliable. These displays are ideally suited for industrial and commercial applications where a good-looking, easy-to-use alphanumeric display is required.

Typical Applications

- Portable Data Entry Devices
- Medical Equipment
- Process Control Equipment
- Test Equipment
- Industrial Instrumentation
- Computer Peripherals
- Telecommunication Instrumentation

[^16]
Absolute Maximum Ratings

Supply Voltage, V_{DD} to Ground \qquad -0.5 V to 7.0 V
Input Voltage, Any Pin to Ground -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Free Air Operating Temperature Range, $\mathrm{T}_{\mathrm{A}}{ }^{[1]} \ldots-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity (non-condensing) at $65^{\circ} \mathrm{C}$ 90\%
Storage Temperature, T_{s} \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Solder Temperature, 1.59 mm (0.063 in .)
below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$. $260^{\circ} \mathrm{C}$
ESD Protection © $1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$....................... $\mathrm{V}_{\mathrm{z}}=2 \mathrm{kV}$ (each Pin)

Note:

1. Free air operating temperature range (HPDL-2416 only):

$\mathrm{T}_{\wedge}>75^{\circ} \mathrm{C}$	No Cursors On	$\mathrm{T}_{\wedge} \leq 60^{\circ} \mathrm{C}$	3 Cursors On
$\mathrm{T}_{\wedge}^{\wedge} \leq 75^{\circ} \mathrm{C}$	1 Cursor On	$\mathrm{T}_{\mathrm{A}} \leq 55^{\circ} \mathrm{C}$	4 Cursors On
$\mathrm{T}_{\mathrm{A}} \leq 68^{\circ} \mathrm{C}$	2 Cursors On		

Package Dimensions

HPDL-1414

PIN		PIN	
NO.	FUNCTION	NO.	FUNCTION
1	D $_{5}$ DATA INPUT	7	GND
2	D $_{4}$ DATA INPUT	8	D $_{0}$ DATA INPUT
3	WR WRITE	9	D $_{1}$ DATA INPUT
4	A_{1} DIGIT SELECT	10	D $_{2}$ DATA INPUT
5	A_{0} DIGIT SELECT	11	D $_{3}$ DATA INPUT
6	$V_{\text {DD }}$	12	D $_{6}$ DATA INPUT

NOTES:

1. UNLESS OTHERWISE SPECIPED, THE TOLERANCE ON ALL DIMENSIONS IS $0.254 \mathbf{m m}(0.010 \mathrm{in}).$.
2. DIMENSIONS IN mm (inches).

HPDL-2416

NOTES:

1. UNLESS OTHERWISE SPECIFED, THE TOLERANCE ON ALL DIMENSIONS IS $0.254 \mathbf{~ m m}(0.010 \mathrm{in}$). 2. DIMENSIONS IN mm (inches).

Recommended Operating Conditions

Parameter	Sym.	Min.	Nom.	Max.	Units
Supply Voltage	V_{DD}	4.5	5.0	5.5	V

DC Electrical Characteristics Over Operating Temperature Range

Parameter	Sym.	Min.	$\begin{aligned} & \mathbf{2 5}{ }^{\circ} \mathrm{C} \\ & \text { Typ. } \\ & \hline \end{aligned}$	$25^{\circ} \mathrm{C}$ Max.	Max. ${ }^{[1]}$	Units	Test Conditions
Input Current HPDL-1414	I_{L}		17	30	50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \overline{\mathrm{BL}}=0.8 \mathrm{~V}$
HPDL-2416			17	30	40	$\mu \mathrm{A}$	
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{DD}} \text { Blank } \\ & \text { HPDL-1414 } \end{aligned}$	$\mathrm{I}_{\mathrm{DD}}(\overline{\mathrm{BL}})$		1.2	2.3	4.0	mA	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \overline{\mathrm{BL}}=0.8 \mathrm{~V}$
HPDL-2416			1.5	3.5	8.0	mA	
$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} 4 \text { Digits ON } \\ & \text { (10 Segments/digit) }{ }^{[2,3]} \\ & \text { HPDL-1414 } \end{aligned}$	I_{DD}		70	90	130	mA	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
HPDL-2416			85	115	170	mA	
$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \text { 4 Digits ON Cursor }{ }^{[4]} \text { HPDL-2416 } \end{aligned}$	$\mathrm{I}_{\mathrm{DD}}(\mathrm{CU})$		125	165	232	mA	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
Input Voltage High	V_{H}	2.0			V_{DD}	V	
Input Voltage Low	V_{L}	GND			0.8	V	
Power Dissipation ${ }^{[5]}$ HPDL-1414 HPDL-2416	P_{D}		350	450	715	mW	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
			425	575	910	mW	

Notes:

1. $\mathrm{V}_{\mathrm{Dp}}=5.5 \mathrm{~V}$.
2. "\%" illuminated in all four characters.
3. Measured at five seconds.
4. Cursor character is sixteen segments and DP ON.
5. Power Dissipation $=\left(\mathrm{V}_{\mathrm{DD}}\right)\left(\mathrm{I}_{\mathrm{DD}}\right)$ for 10 segments ON .

Optical Characteristics at $\mathbf{2 5}^{\circ} \mathbf{C}^{[6]}$

Parameter	Sym.	Min.	Typ.	Units	Test Conditions
Peak Luminous Intensity per Digit, 8 segments ON (character average) HPDL-1414	I_{v} Peak	0.4	1.0	mcd	$\underset{\mathrm{DD}}{\mathrm{~V}_{\mathrm{DN}}}=5.0 \mathrm{~V}$ illuminated in all 4 digits
HPDL-2416		0.5	1.25	mcd	
Peak Wavelength	$\lambda_{\text {Peak }}$		655	nm	
Dominant Wavelength	$\lambda_{\text {d }}$		640	nm	
Off Axis Viewing Angle HPDL-1414			± 40	degrees	
HPDL-2416			± 50	degrees	

Note:
6. Refers to the initial case temperature of the device immediately prior to the light measurement.

AC Timing Characteristics Over Operating Temperature Range at $\mathbf{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$

Parameter	Symbol	$20^{\circ} \mathrm{C} \mathrm{t}_{\text {MIN }}$	$25^{\circ} \mathrm{C} \mathrm{t}_{\text {MiN }}$	$70^{\circ} \mathrm{C} \mathrm{t}_{\text {miN }}$	Units
Address Setup Time	$\mathrm{t}_{\text {As }}$	90	115	150	ns
Write Delay Time	$\mathrm{t}_{\text {wD }}$	10	15	20	ns
Write Time	t_{w}	80	100	130	ns
Data Setup Time	t_{Ds}	40	60	80	ns
Data Hold Time	t_{DH}	40	45	50	ns
Address Hold Time	t_{AH}	40	45	50	ns
Chip Enable Hold Time ${ }^{[1]}$	$\mathrm{t}_{\text {cer }}$	40	45	50	ns
Chip Enable Setup Time ${ }^{[1]}$	$\mathrm{t}_{\text {ces }}$	90	115	150	ns
Clear Time ${ }^{[1]}$	$\mathrm{t}_{\text {cLR }}$	2.4	3.5	4.0	ms
Access Time		130	160	200	ns
Refresh Rate		420-790	310-630	270-550	Hz

Note:

1. HPDL-24 16 only.

Timing Diagram

Character Set

Bits	$\begin{array}{\|l} 0_{3} \\ 0_{2} \\ 0_{2} \\ 0_{0} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 1 \end{array}$	$\begin{array}{\|l\|l} 0 \\ 0 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{\|l} 1 \\ 1 \\ 0 \\ 0 \\ \hline \end{array}$	$\stackrel{1}{1}$	！	$\begin{array}{r} 1 \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{array}{\|l} 1 \\ 0 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}\right.$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & i \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	1
$\mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	Hex	\bigcirc	1	2	3	4	5	${ }^{6}$	7	8	，	A	в	c	－	E	
010	2	（tpoeel	$!$	＂	\pm	鴀	多	』	，	＜	＞	＊	＋	，	－		1
011	3	\square	1	已	\exists	4	5	\square	7	日	9	－	，	\angle	＝	$>$	ア
100	4	可	月	日	［	D	E	F	\square	H	I	J	K	L	M	N	\square
101	5	尸	\square	尺	5	T	\sqcup	V	W	X	Y	Z	［	\backslash	］	\wedge	－

Magnified Character Font Description

HPDL－1414

HPDL－2416

Relative Luminous Intensity vs．Temperature

Electrical Description Display Internal Block Diagram HPDL-1414
Figure 1 shows the internal block diagram of the HPDL1414. It consists of two parts: the display LEDs and the CMOS IC. The CMOS IC consists of a four-word ASCII memory, a 64-word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal
operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. Seven-bit ASCII data is stored in RAM. Since the display uses a 64character decoder, half of the possible 128 input combinations are invalid. For each display location where $D_{5}=D_{6}$ in the

ASCII RAM, the display character is blanked.

Data Entry HPDL-1414

Figure 2 shows a truth table for the HPDL-1414. Data is loaded into the display through the DATA inputs ($\mathrm{D}_{6}-\mathrm{D}_{0}$), ADDRESS inputs $\left(\mathrm{A}_{1}-\mathrm{A}_{0}\right)$, and WRITE (WR). After a character has been written to memory, the IC decodes the ASCII data, drives the display and refreshes it without any external hardware or software.

Figure 1. HPDL-1414 Internal Block Diagram.

$\overline{\text { WR }}$	A_{1}	A_{0}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	DIG_{3} DIG $_{2}$ DIG $_{1}$ DIG $_{0}$			
L	L	L	a	a	a	a	a	a	a	NC	NC	NC	A
L	L	H	b	b	b	b	b	b	b	NC	NC	B	NC
L	H	L	c	c	c	c	c	c	c	NC	[NC	NC
L	H	H	d	d	d	d	d	d	d	1	NC	NC	NC
H	X	X	X	X	X	X	X	X	x	Previously Written Data			

```
L = LOGIC LOW INPUT
H = LOGIC HIGH INPUT
X = DON'T CARE
"a" = ASCII CODE CORRESPONDING TO SYMBOL "月
NC = NO CHANGE
```

Figure 2. HPDL-1414 Write Truth Table.

Display Internal Block Diagram HPDL-2416

Figure 3 shows the internal block diagram for the HPDL2416 display. The CMOS IC consists of a four-word ASCII memory, a four-word cursor memory, a 64-word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. For each display location, the cursor enable (CUE) selects whether the data from the ASCII RAM $(C U E=0)$ or the stored cursor (CUE = 1) is to be displayed. The cursor character is denoted by all sixteen segments and the DP ON. Seven-bit ASCII data is stored in RAM. Since the display utilizes a 64-character decoder, half of the possible 128 input combinations are invalid. For each display location where
$\mathrm{D}_{5}=\mathrm{D}_{6}$ in the ASCII RAM, the display character is blanked. The entire display is blanked when $\overline{\mathrm{BL}}=0$.

Data is loaded into the display through the data inputs (D_{6} D_{0}), address inputs (A_{1}, A_{0}), chip enables ($\mathrm{CE}_{1}, \mathrm{CE}_{2}$), cursor select (CU), and write (WR). The cursor select $(\overline{\mathrm{CU}})$ determines whether data is stored in the ASCII RAM $\overline{(C U}=1)$ or cursor memory $(\mathrm{CU}=0)$. When $\mathrm{CE}_{1}=$ $\mathrm{CE}_{2}=\mathrm{WR}=0$ and $\overline{\mathrm{CU}}=1$, the information on the data inputs is stored in the ASCII RAM at the location specified by the address inputs ($\mathrm{A}_{1}, \mathrm{~A}_{0}$). When $\mathrm{CE}_{1}=\overline{\mathrm{CE}}_{2}=\overline{\mathrm{WR}}=0$ and $\overline{\mathrm{CU}}=$ 0 , information on the data input, D_{0}, is stored in the cursor at the location specified by the address inputs ($\mathrm{A}_{1}, \mathrm{~A}_{0}$). If $\mathrm{D}_{0}=1$, a cursor character is stored in the cursor memory. If $\mathrm{D}_{0}=0, a$ previously stored cursor character will be removed from the cursor memory.

If the clear input ($\overline{\mathrm{CLR})}$ equals zero for one internal display cycle (4 ms minimum), the data in the ASCII RAM will be rewritten with zeroes and the display will be blanked. Note
that the blanking input (BL) must be equal to logical one during this time.

Data Entry HPDL-2416

Figure 4 shows a truth table for the HPDL-2416 display. Setting the chip enables ($\mathrm{CE}_{1}, \mathrm{CE}_{2}$) to their low state and the cursor select $(\overline{\mathrm{CU}})$ to its high state will enable data loading. The desired data inputs $\left(\mathrm{D}_{6}-\mathrm{D}_{0}\right)$ and address inputs (A_{1}, A_{0}) as well as the chip enables ($\mathrm{CE}_{1}, \overline{\mathrm{CE}}_{2}$) and cursor select ($\overline{\mathrm{CU})}$ must be held stable during the write cycle to ensure that the correct data is stored into the display. Valid ASCII data codes are shown in Figure 1. The display accepts standard seven-bit ASCII data. Note that $D_{6} \neq D_{5}$ for the codes shown in Figure 4. If $D_{6}=D_{5}$ during the write cycle, then a blank will be stored in the display. Data can be loaded into the display in any order. Note that when $A_{1}=A_{0}=0$, data is stored in the furthest righthand display location.

Cursor Entry HPDL-2416

As shown in Figure 4, setting the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}_{2}}$) to their low state and the cursor select (CU) to its low state will enable cursor loading. The cursor character is indicated by the display symbol having all 16 segments and the DP ON. The least significant data input $\left(\mathrm{D}_{0}\right)$, the address inputs ($\left.\mathrm{A}_{1}, \mathrm{~A}_{0}\right)$, the chip enables ($\overline{\mathrm{CE}_{1}}, \overline{\mathrm{CE}_{2}}$), and the cursor select ($\overline{\mathrm{CU})}$ must be held stable during the write cycle to ensure that the correct data is stored in the display. If D_{0} is in a low state during the write cycle, then a cursor character will be removed at the indicated location. If D_{0} is in a high state during the write

Figure 3. HPDL-2416 Internal Block Diagram.
cycle，then a cursor character will be stored at the indicated location．The presence or absence of a cursor character does not affect the ASCII data stored at that location．Again， when $A_{1}=A_{0}=0$ ，the cursor character is stored in the furthest right－hand display location．

All stored cursor characters are displayed if the cursor enable （CUE）is high．Similarly，the stored ASCII data words are displayed，regardless of the cursor characters，if the cursor enable（CUE）is low．The cursor enable（CUE）has no effect on the storage or removal of the cursor characters within the display．A flashing cursor is
displayed by pulsing the cursor enable（CUE）．For applications not requiring a cursor，the cursor enable（CUE）can be connected to ground and the cursor select（CU）can be connected to V_{cc} ．This inhibits the cursor function and allows only ASCII data to be loaded into the display．


```
L = LOGIC LOW INPUT "a" = ASCII CODE CORRESPONDING TO SYMBOL "A"
H= LOGIC HIGH INPUT NC = NO CHANGE
X = DON'T CARE = CURSOR CHARACTER (ALL SEGMENTS ON)
```

Figure 4a．Cursor／Data Memory Write Truth Table．

Function	$\overline{B L}$	$\overline{C L R}$	CUE	$\overline{\text { Cu }}$	$\overline{C E}_{1}$	$\overline{\mathbf{C E}}_{2}$	$\overline{W R}$	DIG_{3}	DIG 2	DIG ${ }_{1}$	DIG ${ }_{0}$	
CUE	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { 有 } \end{aligned}$	$\begin{gathered} \text { H } \\ \text { 困 } \end{gathered}$	$\begin{aligned} & {[} \\ & \text { 灰 } \end{aligned}$	$\begin{gathered} 7 \\ \text { 灰 } \end{gathered}$	Display previously written data Display previously written cursor			
Clear		L OTE： owing data is	R shou he las cleared	X uld be WRI	X held I cycle	X w for to en	X^{*} ms ure	$\left[\begin{array}{c} -1 \\ \hline \end{array}\right.$	נـ	$\left[\begin{array}{l} {[} \end{array}\right.$	$\left[\begin{array}{l} 1 \\ {[-]} \end{array}\right.$	Clear data memory，cursor memory unchanged
Blanking	L	X	X	X	X	X	X	［－］	［7］	［］	［－］	Blank display，data and cursor memories unchanged．

Figure 4b．Displayed Data Truth Table．

Display Clear HPDL-2416

As shown in Figure 4, the ASCII data stored in the display will be cleared if the clear (CLR) is held low and the blanking input (BL) is held high for 4 ms minimum. The cursor memory is not affected by the clear (CLR) input. Cursor characters can be stored or removed even while the clear (CLR) is low. Note that the display will be cleared regardless of the state of the chip enables ($\mathrm{CE}_{1}, \mathrm{CE}_{2}$). However, to ensure that all four display characters are cleared, CLR should be held low for 4 ms following the last write cycle.

Display Blank HPDL-2416

As shown in Figure 4, the display will be blanked if the blanking input $(\overline{\mathrm{BL}})$ is held low. Note that the display will be blanked regardless of the state of the chip enables $\left(\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}\right)$ or write (WR) inputs. The ASCII data stored in the display and the cursor memory are not affected by the blanking input. ASCII data and cursor data can be stored even while the blanking input (BL) is low. Note that while the blanking input (BL) is low, the clear (CLR) function is inhibited. A flashing display can be obtained by applying a low frequency square wave to the blanking input (BL). Because the blanking input ($\overline{\mathrm{BL}}$) also resets the internal display multiplex counter, the frequency applied to the blanking input (BL) should be much slower than the display multiplex rate. Finally, dimming of the display through the blanking input (BL) is not recommended.

For further application
information please consult
Application Note 1026.

Optical Considerations/ Contrast Enhancement

 The HPDL-1414 and HPDL2416 displays use a precision aspheric immersion lens to provide excellent readability and low off-axis distortion. For the HPDL-1414, the aspheric lens produces a magnified character height of 2.85 mm (0.112 in .) and a viewing angle of $\pm 40^{\circ}$. For the HPDL-2416, the aspheric lens produces a magnified character height of 4.1 mm (0.160 in .) and a viewing angle of $\pm 50^{\circ}$. These features provide excellent readability at distances up to 1.5 metres (4 feet) for the HPDL-1414 and 2 metres (6 feet) for the HPDL-2416.Each HPDL-1414/2416 display is tested for luminous intensity and marked with an intensity category on the side of the display package. To ensure intensity matching for multiple package applications, mixing intensity categories for a given panel is not recommended.

The HPDL-1414/2416 display is designed to provide maximum contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60, Panelgraphic Dark Red 63, SGL Homalite H100-1650, Rohm and Haas 2423, Chequers Engraving 118, and 3M R6510. For further information on contrast enhancement, see Hewlett-Packard Application Note 1015.

Mechanical and Electrical Considerations

'The HPDL-1414/2416 are dual in-line packages that can be stacked horizontally and
vertically to create arrays of any size. These displays are designed to operate continuously between $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with a maximum of 10 segments on per digit.

During continuous operation of all four Cursors the operating temperature should be limited to $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. At temperatures above $+55^{\circ} \mathrm{C}$, the maximum number of Cursors illuminated continuously should be reduced as follows: No Cursors illuminated at operating temperatures above $75^{\circ} \mathrm{C}$. One Cursor can be illuminated continuously at operating temperatures below $75^{\circ} \mathrm{C}$. Two Cursors can be illuminated continuously at operating temperatures below $68^{\circ} \mathrm{C}$. Three Cursors can be illuminated continuously at operating temperatures below $60^{\circ} \mathrm{C}$.

The HPDL-1414/2416 are assembled by die attaching and wire bonding the four GaAsP/ GaAs monolithic LED chips and the CMOS IC to a high temperature printed circuit board. An immersion lens is formed by placing the PC board assembly into a nylon lens filled with epoxy. A plastic cap creates an air gap to protect the CMOS IC. Backfill epoxy environmentally seals the display package. This package construction provides the display with a high tolerance to temperature cycling.

The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be ūsed. Priō̃ to ūse, the IIPDL1414/2416 should be stored in
anti-static tubes or conductive material. During assembly a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static charge build-up. Input current latchup is caused when the CMOS inputs are subjected either to a voltage below ground ($\mathrm{V}_{\text {IN }}$ < ground) or to a voltage higher than V_{DD} ($\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{DD}}$) and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{DD}. Voltages should not be applied to the inputs until V_{DD} has been applied to the display. Transient input voltages should be eliminated.

Soldering and Post Solder Cleaning

 InstructionsThe HPDL-1414/2416 may be hand soldered or wave soldered with SN63 solder. Hand soldering may be safely performed only with an electronically temperature-controlled and securely grounded soldering iron. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$, and the dwell in the wave should be set at $1-1 / 2$ to 3 seconds for optimum soldering. Preheat temperature should not exceed $93^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.

Post solder cleaning may be performed with a solvent or aqueous process. For solvent cleaning, Allied Chemical Genesolv DES, Baron Blakeslee Blaco-Tron TES or DuPont Freon TE can only be used. These solvents are azeotropes of trichlorotrifluoroethane FC-113 with low concentrations of ethanol (5\%). The maximum exposure time in the solvent vapors at boiling temperature should not exceed 2 minutes. Solvents containing high concentrations of alcohols, pure alcohols, isopropanol or acetone should not be used as they will chemically attack the nylon lens. Solvents containing trichloroethane FC-111 or FC112 and trichloroethylene (TCE) are not recommended.

An aqueous cleaning process is highly recommended. A saponifier, such as Kester-Biokleen Formula 5799 or equivalent, may be added to the wash cycle of an aqueous process to remove rosin flux residues. Organic acid flux residues must be thoroughly removed by an aqueous cleaning process to prevent corrosion of the leads and solder connections. The optimum water temperature is $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. The maximum cumulative exposure of the HPDL-2416 to wash and rinse cycles should not exceed 15 minutes.

CMOS 5x7 Alphanumeric Displays

Technical Data

Features

- On-Board Low Power

CMOS IC:
Integrated Shift Register with
Constant Current LED
Drivers

- Wide Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Compact Glass Ceramic 4 Character Package: HCMS-200X Series End Stackable HCMS-230X Series
X-Y Stackable
- Five Colors: Standard Red High Efficiency Red Orange
Yellow
High Performance Green
- 5 X 7 LED Matrix Displays Full ASCII Set
- Two Character Heights:
3.8 mm (0.15 inch)
5.0 mm (0.20 inch)
- Wide Viewing Angle:

X Axis $= \pm 50^{\circ}$
Y Axis $= \pm 65^{\circ}$

- Long Viewing Distance:

HCMS-200X Series to 2.6
Meters (8.6 Feet)
HCMS-230X Series to 3.5
Meters (11.5 Feet)

- Categorized for Luminous Intensity
- HCMS-2001/-2003, HCMS-2301/-2303: Categorized for Color

Typical Applications
 - Commercial Avionics

- Instrumentation
- Medical Instruments
- Business Machines

Description

The HCMS-200X and HCMS230 X series are 5×7 LED four character displays contained in 12 pin dual-in-line packages designed for displaying alphanumeric information. The character height for the HCMS-200X series displays is 3.8 mm (0.15

HCMS-200X Series HCMS-230X Series

inch), and for the HCMS-230X series displays the character height is 5.0 mm (0.20 inch). These displays are available in all five LED colors: standard red, high efficiency red, orange, yellow and high performance green. The HCMS-200X series displays are end stackable and the HCMS-230X series displays are end/row stackable.

Display Selection Table

Part Number	Character Size	LED Color
HCMS-2000	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	Standard Red
HCMS-2001	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	Yellow
HCMS-2002	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	High-Efficiency Red
HCMS-2003	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	High-Performance Green
HCMS-2004	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	Orange
HCMS-2300	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	Standard Red
HCMS-2301	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	Yellow
HCMS-2302	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	High-Efficiency Red
HCMS-2303	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	High-Performance Green
HCMS-2304	$5.0 \mathrm{~mm}(0.20$ inchin)	Orā̃ge

ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED.

These displays are designed with on-board CMOS integrated circuits for use in applications where conservation of power is important. The two CMOS ICs form an on-board serial-in-parallel-out 28-bit shift register with constant current output LED row drivers. Decoded column data is clocked into the
on-board shift register for each refresh cycle. Full character display is achieved with external column strobing.

Compatibility with HDSP200X/230X TTL IC Series Displays

The HCMS-200X, HCMS-230X CMOS IC displays are "drop-in"

Package Dimensions

HCMS-230X Series
Absolute Maximum Ratings
Supply Voltage V_{DD} to Ground -0.3 V to 7.0 V
Data Input, Data Output, V_{B} -0.3 V to V_{DD}
Column Input Voltage, $\mathrm{V}_{\mathrm{coL}}$ -0.3 V to V_{DD}
Free Air Operating Temperature Range, T_{A} $.40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range, T_{S} $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Maximum Allowable Package Power Dissipation, $\mathrm{P}_{\mathrm{D}}{ }^{[1,2]}$HCMS-2000/-2001/-2002/-2003/-2004 at $T_{A}=78^{\circ} \mathrm{C}$............0.79 Watts
HCMS-2300 at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ 0.79 Watts
HCMS-2301/-2302/-2303/-2304 at T ${ }_{\mathrm{A}}=85^{\circ} \mathrm{C}$ 0.92 Watts
Maximum Solder Temperature1.59 mm ($0.0633^{\prime \prime}$) Below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$$260^{\circ} \mathrm{C}$
ESD Protection (1) $1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$

\qquad

$$
V_{\mathrm{z}}=4 \mathrm{kV}(\text { each pin })
$$

Notes:

1. Maximum allowable power dissipation is derived from $\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{COL}}=3.5 \mathrm{~V}, 20$ LEDs on per character, $20 \% \mathrm{DF}$.
2. The power dissipation for these displays should be derated as follows: HCMS-200X series derate above $78^{\circ} \mathrm{C}$ at $18 \mathrm{~mW} /{ }^{\circ} \mathrm{C}, \mathrm{R} \theta_{\mathrm{J}-\mathrm{A}}=60^{\circ} \mathrm{C} / \mathrm{W}$. HCMS-230X series may be operated without derating up to $T_{A}=85^{\circ} \mathrm{C}$, $R \theta_{J-A}=45^{\circ} \mathrm{C} / \mathrm{W}$.
Deratings based on $\mathrm{R} \theta_{\mathrm{PC}-\mathrm{A}}=35^{\circ} \mathrm{C} / \mathrm{W}$ per display for printed circuit board assembly.
See Figure 1 for power derating.

Recommended Operating Conditions Over

 Operating Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$| Parameter | Symbol | Min. | Typ. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $\mathrm{V}_{\text {DD }}$ | 4.75 | 5.00 | 5.25 | V |
| Data Out Current, Low State | I_{OD} | | | 1.6 | mA |
| Data Out Current, High State | I_{OH} | | | -0.5 | mA |
| Column Input Voltage | $\mathrm{V}_{\text {coL }}$ | 2.75 | 3.0 | 3.5 | V |
| Setup Time | $\mathrm{t}_{\text {SETUP }}$ | 10 | | | ns |
| Hold Time | $\mathrm{t}_{\text {HoLD }}$ | 25 | | | ns |
| Clock Pulse Width High | $\mathrm{t}_{\text {WH(CLOCK }}$ | 50 | | | ns |
| Clock Pulse Width Low | $\mathrm{t}_{\text {WLCLOCK }}$ | 50 | | | ns |
| Clock High to Low Transition | $\mathrm{t}_{\text {THL }}$ | | | 200 | ns |
| Clock Frequency | $\mathrm{f}_{\text {CLOCK }}$ | | | 5 | MHz |

Electrical Characteristics Over Operating Temperature Range

$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Conditions	Min.	Typ.*	Max.	Units
Supply Current, Dynamic ${ }^{[1]}$	$\mathrm{I}_{\mathrm{DDD}}$	$\mathrm{f}_{\text {CLOCK }}=5 \mathrm{MHz}$		6.2	7.8	mA
Supply Current, Static ${ }^{[2]}$	$\begin{aligned} & \mathrm{I}_{\mathrm{DDSoff}} \\ & \mathrm{I}_{\mathrm{DDS} \text { on }} \end{aligned}$	$\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}$		$\begin{aligned} & 1.8 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.6 \end{aligned}$	mA
Column Input Current		$\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$			10	$\mu \mathrm{A}$
HCMS-2000/-2001/-2002/-2003/-2004 HCMS-2300 HCMS-2301/-2302/-2303/-2304	$\mathrm{I}_{\text {coL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 310 \\ & 310 \\ & 360 \end{aligned}$	$\begin{aligned} & 384 \\ & 384 \\ & 451 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Input Logic High Data, V_{B}, Clock	V_{H}	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$	2.0			V
Input Logic Low Data, V_{B}, Clock	V_{L}	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$			0.8	V
Input Current Data, Clock V_{B}	$\mathrm{I}_{\text {I }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V} \\ 0<\mathrm{V}_{\mathrm{I}}<5.25 \mathrm{~V} \\ 0<\mathrm{V}_{\mathrm{B}}<5.25 \mathrm{~V} \end{gathered}$	$\begin{aligned} & -10 \\ & -40 \end{aligned}$		$\begin{gathered} +1 \\ 0 \end{gathered}$	$\mu \mathrm{A}$
Data Out Voltage	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{CoL}}=0 \mathrm{~mA} \end{gathered}$	2.4	4.2		V
	$\mathrm{V}_{\text {oL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{oL}}=1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CoL}}=0 \mathrm{~mA} \end{aligned}$		0.2	0.4	V
Power Dissipation Per Package ${ }^{[3]}$ HCMS-2000/-2001/-2002/-2003/-2004 HCMS-2300 HCMS-2301/-2302/-2303/-2304	P_{D}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CoL}}=3.5 \mathrm{~V} \\ 17.5 \% \mathrm{DF} \\ \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V} \\ 15 \mathrm{LEDs} \text { ON } \end{gathered}$ per Character		$\begin{aligned} & 414 \\ & 414 \end{aligned}$		mW
```Thermal Resistance IC Junction-to-Pin \({ }^{[4]}\) HCMS-2000/-2001/-2002/-2003/-2004 HCMS-2300/-2301/-2302/-2303/-2304```	$\mathrm{R} \theta_{\text {J-PIN }}$			$\begin{aligned} & 25 \\ & 10 \end{aligned}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$

*All typical values specified at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Notes:

1. $\mathrm{I}_{\mathrm{PD}}$ Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5 MHz , the display is not illuminated.
2. $\mathrm{I}_{\mathrm{pD}}$ Static is the IC current after column data is loaded and not being clocked through the on-board shift register.
3. Four characters are illuminated with a typical ASCII character composed of 15 dots per character.
4. IC junction temperature $\mathrm{T}_{\mathrm{J}}(\mathrm{IC})=\left(\mathrm{P}_{\mathrm{D}}\right)\left(\mathrm{R} \theta_{\mathrm{J}-\mathrm{PIN}}+\mathrm{R} \theta_{\mathrm{PC}-\mathrm{A}}\right)+\mathrm{T}_{\mathrm{A}}$

Optical Characteristics at T $\mathbf{A}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$
Standard Red HCMS-2000/-2300

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Units
Peak Luminous		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$				
Intensity per HCMS-2000		$\mathrm{V}_{\mathrm{coL}}=3.5 \mathrm{~V}$	105	200		$\mu \mathrm{~cd}$
LED ${ }^{[5,9]}$ HCMS-2300	$\mathrm{I}_{\mathrm{vPEAK}}$	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$				
(Character Average)	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]}$	130	300			
Dominant Wavelength ${ }^{[8]}$	$\lambda_{\mathrm{d}}$			639		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$			655		nm

Yellow HCMS-2001/-2301

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Units
Peak Luminous		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$				
Intensity per HCMS-2001		$\mathrm{V}_{\mathrm{COL}}=3.5 \mathrm{~V}$	400	750		$\mu \mathrm{~cd}$
LED $^{[5,9]}$ HCMS-2301	$\mathrm{I}_{\mathrm{vPEAK}}$	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$   (Character Average)	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]}$	650	1140	
Dominant Wavelength ${ }^{[6,8]}$	$\lambda_{\mathrm{d}}$			585		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$			583		nm

High Efficiency Red HCMS-2002/-2302

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Unit
Peak Luminous		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$				
Intensity per HCMS-2002		$\mathrm{V}_{\mathrm{COL}}=3.5 \mathrm{~V}$	400	1430		ucd
LED $^{[5,9]}$ HCMS-2302	$\mathrm{I}_{\mathrm{vPEAK}}$	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$	650	1430		
(Character Average)		$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]}$				
Dominant Wavelength ${ }^{[8]}$	$\lambda_{\mathrm{d}}$			625		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$			635		nm

High Performance Green HCMS-2003/-2303

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Units
Peak Luminous		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$				
Intensity per HCMS-2003		$\mathrm{V}_{\mathrm{COL}}=3.5 \mathrm{~V}$	850	1550		$\mu \mathrm{~cd}$
LED ${ }^{[5,9]}$ HCMS-2303	$\mathrm{I}_{\mathrm{vPEAK}}$	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$	1280	2410		
(Character Average) $\quad \mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]}$						
Dominant Wavelength ${ }^{[6,8]}$	$\lambda_{\mathrm{d}}$			574		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$			568		nm

Orange HCMS-2004/-2304

Description	Symbol	Test Condition	Min.	Typ.*	Max.	Units
Peak Luminous		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$				
Intensity per HCMS-2004		$\mathrm{V}_{\mathrm{COL}}=3.5 \mathrm{~V}$	400	1430		$\mu \mathrm{~cd}$
LED						
(Character Average)	$\mathrm{I}_{\mathrm{vPEAK}}$	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$   $\mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]}$	650	1430		
Dominant Wavelength ${ }^{[8]}$					602	
Peak Wavelength	$\lambda_{\mathrm{d}}$			600	nm	

*All typical values specified at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Notes:
5. These LED displays are categorized for luminous intensity, with the intensity category designated by a letter code on the back of the package.
6. The HCMS-2001/-2301 and HCMS-2003/-2303 are categorized for color with the color category designated by a number on the back of the package.
7. $\mathrm{T}_{\mathrm{i}}$ refers to the initial case temperature of the display immediately prior to the light measurement.
8. Dominant wavelength, $\lambda_{\text {d }}$, is derived from the CIE Chromaticity Diagram, and represents the single wavelength which defines the color of the device.
9. The luminous sterance of the individual LED pixels may be calculated using the following equations: $\mathrm{L}_{\mathrm{v}}\left(\mathrm{cd} / \mathrm{m}^{2}\right)=\mathrm{I}_{\mathrm{v}}($ Candela $) * \mathrm{DF} / \mathrm{A}(\text { Metre })^{2}$
$\mathrm{L}_{\mathrm{v}}$ (Footlamberts) $=\pi \mathrm{I}(\text { Candela })^{*} \mathrm{DF} / \mathrm{A}(\text { Foot })^{2}$
Where: $\mathrm{A}=\mathrm{LED}$ pixel area $=5.3 \times 10^{-8} \mathrm{M}^{2}$ or $5.8 \times 10^{-7} \mathrm{ft}^{2}$
$\mathrm{DF}=$ LED on-time duty factor

Switching Characteristics, $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0 ^ { \circ }} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$\mathrm{v}_{\mathrm{HH}}$	Parameter	Condition	Typ.	Max.	Units
cLock	$\mathrm{f}_{\text {clock }}$ CLOCK Rate			5	MHz
	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$   Propagation Delay   CLOCK to DATA OUT	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=2.4 \mathrm{k} \Omega \end{gathered}$		105	ns
DATA OUT	$\begin{aligned} & \mathrm{t}_{\mathrm{OFF}} \\ & \mathrm{~V}_{\mathrm{B}}(0.4 \mathrm{~V}) \text { to } \\ & \text { Display OFF } \\ & \mathrm{t}_{\mathrm{ON}} \\ & \mathrm{~V}_{\mathrm{B}}(2.4 \mathrm{~V}) \text { to } \\ & \text { Display ON } \end{aligned}$		4 1	5 2	$\mu \mathrm{s}$



Figure 1. Maximum Allowable Power Dissipation vs Ambient Temperature as a Function of Thermal Resistance Junction-to-Ambient, $R \theta_{\text {J.A }}$. Derated Operation Assumes $R \theta_{\text {PC-A }}=35^{\circ} \mathrm{C} / \mathrm{W}$ Per Display for the Printed Circuit Board. TJ (IC) MAX $=125^{\circ} \mathrm{C}$.

## Electrical Description

Each display device contains four 5x7 LED dot matrix characters and two CMOS integrated circuits, as shown in Figure 4. The two CMOS integrated circuits form an on-board 28 bit serial-in-parallel-out shift register that will accept standard TTL logic levels. The Data Input, pin 12, is connected to bit position 1 and the Data Output, pin 7, is connected to bit position 28. The shift register outputs control constant current sinking LED row drivers. The nominal current sink per LED driver is 11mA for the HCMS-200X displays, 13 mA for the HCMS230X. A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.

The electrical configuration of these CMOS IC alphanumeric duisplays allows for an effective


Figure 2. Relative Luminous Intensity vs Display Pin Temperature
interface to a display controller circuit that supplies decoded character information. The row data for a given column (one 7 bit byte per character) is loaded (bit serial) into the on-board 28 bit shift register with high to low transitions of the Clock input. To load decoded character information into the display, column data for character 4 is loaded first and the column data for character 1 is loaded last in the following manner. The 7 data bits for column 1, character 4, are loaded into the on-board shift register. Next, the 7 data bits for column 1, character 3, are loaded into the shift register, shifting the character 4 data over one character position. This process is repeated for the other two characters until all 28 bits of column data (four 7 bit bytes of character column data) are loaded into the on-board shift register. Then the column 1 input, $\mathrm{V}_{\mathrm{COL}}$ pin 1 , is energized to illuminate column 1 in all


Figure 3. Peak Column Current vs Column Voltage
four characters. This process is repeated for columns $2,3,4$ and 5. All $\mathrm{V}_{\mathrm{CoL}}$ inputs should be at logic low to insure the display is off when loading data. The display will be blanked when the blanking input $V_{B}$, pin 8 , is at logic low regardless of the outputs of the shift register or whether one of the $V_{\text {COL }}$ inputs is energized.

Refer to Application Note 1016 for drive circuit information.

## ESD Susceptibility

The HCMS-200X/-230X series displays have an ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C. It is recommended that normal CMOS handling precautions be observed with these devices.


Figure 4. Block Diagram of an HCMS-2XXX Series LED Alphanumeric Display.

## Soldering and Post Solder Cleaning

These displays may be soldered with a standard wave solder process using either an RMA flux and solvent cleaning or an OA flux and aqueous cleaning.
For optimum soldering, the solder wave temperature should be $245^{\circ} \mathrm{C}$ and the dwell time for any display lead passing through the wave should be $11 /$ 2 to 2 seconds. The recommended solvent for post solder cleaning is Genesolv DES, manufactured by Allied Chemical. For aqueous cleaning, a water temperature of $60^{\circ} \mathrm{C}$
( $140^{\circ} \mathrm{F}$ ) with an immersion time not exceeding 15 minutes is recommended. For more detailed information, refer to Application Note 1027 Soldering LED Components.

## Contrast Enhancement

When used with the proper contrast enhancement filters, the HCMS-200X/-230X series displays are readable in bright ambients. Refer to Application Note 1029 Luminous Contrast and Sunlight Readability of the HDSP-238X Series Alphanumeric Displays for Military Applications for contrast en-
hancement in bright ambients. Refer to Application Note 1015 Contrast Enhancement Techniques for LED Displays for information on contrast enhancement in moderate ambients.

## Controller Circuits, Power Calculations and Display Dimming

Refer to Application Note 1016 Using the HDSP-2000 Alphanumeric Display Family for information on controller circuits to drive these displays, how to do power calculations and a technique for display dimming.

# Large 5 X 7 Dot Matrix Alphanumeric Displays 17.3/26.5 mm Character Heights <br> <br> Technical Data 

 <br> <br> Technical Data}

## Features

- Multiple Colors Available
- Large Character Height
- 5 X 7 Dot Matrix Font
- Viewable Up to 18 Meters ( 26.5 mm Display)
- X-Y Stackable
- Ideal for Graphics Panels
- Available in Common Row Anode and Common Row Cathode Configurations
- AlGaAs Displays Suitable for Low Power or Bright Ambients

Typical Intensity 1650 $\mu \mathrm{cd}$ at 2 mA Average Drive Current

- Categorized for Intensity
- Mechanically Rugged
- Green Categorized for Color


## Description

The large $5 \times 7$ dot matrix alphanumeric display family consists of 26.5 mm ( 1.04 inch ) and 17.3 mm ( 0.68 inch) character height packages. These devices have excellent viewability; the 26.5 mm character can be read at up to 18 meters ( 12 meters for the 0.68 inch part).

The 26.5 mm font has a 10.2 mm ( 0.4 inch) dual-in-line (DIP) configuration, while the 17.3 mm font has an industry standard 7.6 mm ( 0.3 inch) DIP configuration.

The HDSP-L203/4503 can be ordered with a smart driver IC. Information about the IC is available in the HDSP-211X

HDSP-4701
HDSP-4703
HDSP-4401
HDSP-4403
HDSP-L101
HDSP-L103
HDSP-M101
HDSP-M103 HDSP-5103

data sheet. For ordering information see the HP Smart Display Sets data sheet.

Applications include electronic instrumentation, computer peripherals, point of sale terminals, weighing scales, and industrial electronics.

## Devices

Standard   Red	AlGaAs   Red	High   Efficiency   Red	High   Performance   Green	Description
HDSP-4701	HDSP-L101	HDSP-L201	HDSP-5401	17.3 mm Common Row Anode
HDSP-4703	HDSP-L103	HDSP-L203	HDSP-5403	17.3 mm Common Row Cathode
HDSP-4401	HDSP-M101	HDSP-4501	HDSP-5101	26.5 mm Common Row Anode
HDSP-4403	HDSP-M103	HDSP-4503	HDSP-5103	26.5 mm Common Row Cathode

## Package Dimensions

## HDSP-470X/L10X/L20X/540X Series



NOTES:

1. ALL DIMENSIONS IN MILLIMETRES (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. A NOTCH ON SCRAMBLER SIDE DENOTES

PIN 1.
4. FOR GREEN ONLY.


## HDSP-440X/M10X/450X/510X Series



## Internal Circuit Diagrams

## HDSP-4401/M101/4501/5101 COMMON ANODE ROW

HDSP-4403/M103/4503/5103 COMMON CATHODE ROW

HDSP-4701/L101/L201/5401 COMMON ANODE ROW

HDSP-4703/L103/L203/5403 COMMON CATHODE ROW


## Absolute Maximum Ratings at $\mathbf{2 5}^{\circ} \mathrm{C}$

Description	HDSP-470X   440X Series	HDSP-L10X/   M10X Series	HDSP-L20X   450X Series	HDSP-540X   510X Series
Average Power per Dot   $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{[1]}$	75 mW			
Peak Forward Current per Dot   $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{[1,2]}$	125 mA	125 mA	90 mA	90 mA
Average Forward Current per Dot   $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)^{[1,3]}$	32 mA	23 mA	15 mA	15 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Lead Solder Temperature   (1.59 mm $[0.062$ in.] below   seating plane $)$	$260^{\circ} \mathrm{C}$ for 3 s			

## Notes:

1. Average power is based on 20 dots per character. Total package power dissipation should not exceed 1.5 W .
2. Do not exceed maximum average current per dot.
3. For the HDSP-440X/470X series displays, derate maximum average current above $35^{\circ} \mathrm{C}$ at $0.43 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For the IIDSP-L10X/ M10X series displays, derate maximum average current above $35^{\circ} \mathrm{C}$ at $0.31 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For the HDSP-L20X/450X series and HDSP-540X/510X series displays, derate maximum average current above $35^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. This derating is based on a device mounted in a socket having a thermal resistance junction to ambient of $50^{\circ} \mathrm{C} / \mathrm{W}$ per package.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$
Standard Red HDSP-440X/470X Series

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Dot ${ }^{[4]}$   (Digit Average)   HDSP-470X ( 17.3 mm )   HDSP-440X ( 26.5 mm )	$\mathrm{I}_{\mathrm{v}}$	100 mA pk: 1 of 5   Duty Factor ( 20 mA Avg.)	360	770		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			655		nm
Dominant Wavelength ${ }^{[5]}$	$\lambda_{\text {d }}$			640		nm
Forward Voltage	$\mathrm{V}_{\mathrm{F}}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		1.8	2.2	V
Reverse Voltage ${ }^{[6]}$	$\mathrm{V}_{\mathrm{R}}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	12		V
Temperature Coefficient of $\mathrm{V}_{\mathrm{F}}$	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\prime} \mathrm{C}$			-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin per package HDSP-470X HDSP-440X	$\mathrm{R} \theta_{\text {J-PIN }}$			15		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \text { PACK } \end{aligned}$

## AlGaAs Red HDSP-L10X/M10X Series

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Dot ${ }^{[4]}$   (Digit Average)   HDSP-L10X ( 17.3 mm )   HDSP-M10X ( 26.5 mm )	$\mathrm{I}_{\mathrm{v}}$	10 mA pk : 1 of 5   Duty Factor ( 2 mA Avg.)	$\begin{aligned} & 730 \\ & \hline 760 \end{aligned}$	$\frac{1650}{1850}$		$\mu \mathrm{cd}$
Luminous Intensity/Dot ${ }^{[4]}$   (Digit Average)   HDSP-L10X   HDSP-M10X	$\mathrm{I}_{\mathrm{v}}$	30 mA pk : 1 of 14   Duty Factor ( 2.1 mA Avg.)		$\frac{1750}{1980}$		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			645		nm
Dominant Wavelength ${ }^{[5]}$	$\lambda_{\text {d }}$			637		nm
Forward Voltage	$\mathrm{V}_{\mathrm{F}}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.7	2.1	V
Reverse Voltage ${ }^{[6]}$	$\mathrm{V}_{\mathrm{R}}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	15.0		V
Temperature Coefficient of $\mathrm{V}_{\mathrm{F}}$	$\Delta \mathrm{V}_{\mathrm{F}}{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV} / \mathrm{C}$
Thermal Resistance LED Junction-to-Pin per package HDSP-L10X HDSP-M10X	$\mathrm{R} \theta_{\text {J-PIN }}$			20		${ }^{\circ} \mathrm{C} / \mathrm{W} /$   PACK

High Efficiency Red HDSP-450X/L20X Series

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
$\begin{aligned} & \hline \text { Luminous Intensity/Dot }{ }^{[4]} \\ & \text { (Digit Average) } \\ & \text { HDSP-L20X }(17.3 \mathrm{~mm}) \\ & \text { HDSP-450X }(26.5 \mathrm{~mm}) \end{aligned}$	$\mathrm{I}_{\mathrm{v}}$	$\begin{aligned} & 50 \mathrm{~mA} \text { pk: } 1 \text { of } 5 \\ & \text { Duty Factor ( } 10 \mathrm{~mA} \text { Avg.) } \end{aligned}$	$\begin{aligned} & 1150 \\ & \hline 1400 \end{aligned}$	$\begin{array}{\|l\|} \hline 2800 \\ \hline 3500 \\ \hline \end{array}$		$\mu \mathrm{cd}$
```Luminous Intensity/Dot \({ }^{[4]}\) (Digit Average) HDSP-L20X HDSP-450X```	$\mathrm{I}_{\mathrm{v}}$	$\begin{aligned} & 30 \mathrm{~mA} \text { pk: } 1 \text { of } 14 \\ & \text { Duty Factor ( } 2.1 \mathrm{~mA} \text { Avg.) } \end{aligned}$		740		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			635		nm
Dominant Wavelength ${ }^{[5]}$	$\lambda_{\text {d }}$			626		nm
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$		2.6	3.5	V
Reverse Voltage ${ }^{[6]}$	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	25.0		V
Temperature Coefficient of V_{F}	$\Delta \mathrm{V}_{\mathrm{F}}{ }^{\prime} \mathrm{C}$			-2.0		$\mathrm{mV}{ }^{\rho} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin per package HDSP-L20X HDSP-450X	$\mathrm{R} \theta_{\text {J-PIN }}$			15		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ PACK

High Performance Green HDSP-540X/510X Series

Description	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Luminous Intensity/Dot ${ }^{[4]}$ (Digit Average) HDSP-540X (17.3 mm) HDSP-510X (26.5 mm)	I_{v}	$50 \mathrm{~mA} \mathrm{pk}: 1$ of 5 Duty Factor (10 mA Avg.)	$\frac{860}{1000}$	$\begin{aligned} & 2700 \\ & \hline 3100 \end{aligned}$		$\mu \mathrm{cd}$
Luminous Intensity/Dot ${ }^{[4]}$ (Digit Average) HDSP-540X HDSP-510X	I_{v}	30 mA pk : 1 of 14 Duty Factor (2.1 mA Avg.)		$\frac{570}{630}$		$\mu \mathrm{cd}$
Peak Wavelength	$\lambda_{\text {PEAK }}$			566		nm
Dominant Wavelength ${ }^{[5,7]}$	$\lambda_{\text {d }}$			571		nm
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$		2.6	3.5	V
Reverse Voltage ${ }^{[6]}$	V_{R}	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	3.0	25.0		V
Temperature Coefficient of V_{F}	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$			-2.0		$\mathrm{mV}{ }^{\circ} \mathrm{C}$
Thermal Resistance LED Junction-to-Pin per package HDSP-540X HDSP-510X	$\mathrm{R} \theta_{\text {J-PIN }}$			15		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{PACK} \end{aligned}$

Notes:

4. The displays are categorized for luminous intensity with the intensity category designated by a letter on the left hand side of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual dot intensities.
5. The dominant wavelength is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
6. Typical specification for reference only. Do not exceed absolute maximum ratings.
7. The displays are categorized for dominant wavelength with the category designated by a number adjacent to the intensity category letter.

Figure 1. Maximum Allowable Average Current Per Dot as a Function of Ambient Temperature.

Operational Considerations

Electrical Description

These display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual dots.

These display devices are well suited for strobed operation. The typical forward voltage values can be scaled from Figure 2. These values should be used to calculate the current

Figure 2. Forward Current vs. Forward Voltage.
limiting resistor value and the typical power dissipation. Expected maximum V_{F} values, for driver circuit design and maximum power dissipation, may be calculated using the following $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}$ models:

Red (HDSP-440X/470X):

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}^{2}=1.55 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(6.5 \Omega) \\
& \text { For }_{\text {Peak }} \geq 5 \mathrm{~mA} \\
& \text { AlGaAs Red } \\
& \text { (HDSP-L10X/M10X): } \\
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega) \\
& \text { For }_{\text {Peak }} \leq 20 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)
\end{aligned}
$$

Figure 3. Relative Efficiency (Luminous Intensity per Unit Dot) vs. Peak Current per Dot.

For $\mathrm{I}_{\text {Paak }} \geq 20 \mathrm{~mA}$
HER (HDSP-450X/L20X):

$$
\mathrm{V}_{\mathrm{F}} \text { MAX }=1.75 \mathrm{~V}+\mathrm{I}_{\mathrm{p}_{\text {rak }}}(35 \Omega)
$$

$$
\text { For } \mathrm{I}_{\mathrm{p}_{\text {cuek }}} \geq 5 \mathrm{~mA}
$$

Green (HDSP-540X/510X):

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}_{1}=1.75 \mathrm{~V}+\mathrm{I}_{\mathrm{P} \text { reak }}(38 \Omega 2) \\
& \text { For }_{\text {Peak }} \geq 5 \mathrm{~mA}
\end{aligned}
$$

Figure 3 allows the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:
$\mathrm{I}_{\mathrm{v}} \mathrm{AVG}=\left(\mathrm{I}_{\mathrm{F}} \mathrm{AVG} / \mathrm{I}_{\mathrm{F}} \mathrm{AVG}\right.$ DATA
SHEET $)\left(\eta_{\text {peak }}\right)\left(\mathrm{I}_{\mathrm{v}}\right.$ DATA SHEET $)$

Where:
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}$ is the desired time averaged LED current.
$I_{F} A V G$ DATA SHEET is the time averaged data sheet test current for I_{v} DATA SHEET.
$\eta_{\text {peak }}$ is the relative efficiency at the peak current, scaled from Figure 3.
I_{v} DATA SHEET is the time averaged data sheet luminous intensity, resulting from $I_{F} A V G$ DATA SHEET.
I_{v} AVG is the calculated time averaged luminous intensity resulting from I_{F} AVG.

For example, what is the luminous intensity of an AlGaAs Red (HDSP-L10X) driven at 50 mA peak $1 / 5$ duty factor?
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=50 \mathrm{~mA} * 0.2=10 \mathrm{~mA}$
I_{F} AVG DATA SHEET $=2 \mathrm{~mA}$
$\eta_{\text {peak }}=0.98$
I_{v} DATA SHEET $=1650 \mu \mathrm{~cd}$
Therefore
$\mathrm{I}_{\mathrm{v}} \mathrm{AVG}=(10 \mathrm{~mA} / 2 \mathrm{~mA})(0.98)$ $(1650 \mu \mathrm{~cd})=8085 \mu \mathrm{~cd}$

Circuit Design

Smart IC Circuit
HDSP-L203/4503 displays can
be ordered with a smart IC driver. Information about the IC is available in the HDSP-211X data sheet. For ordering information see the HP Smart Displays Sets data sheet. Contact your HP field sales engineer or an authorized HP distributor for information about ordering this IC with the other parts.

Figure 4 shows how to connect one IC to drive eight 5×7 displays.

Coded Data Controller
Figure 5 shows a circuit designed to display eight characters of ASCII text. ASCII coded data is stored in a local 128×8 RAM. After the microprocessor has loaded the RAM, this circuit provides all the necessary signals to decode and display eight characters. With minor modifications the circuit can drive up to 128 display characters. The RAM used in this circuit is an MCM6810P with the address and data inputs isolated with tristate buffers. This allows the RAM to be accessed either by the microprocessor or by the local scanning electronics. The protocol is arranged such that the microprocessor always takes precedence over the local scanning electronics.

The Motorola 6810 RAM stores 8 bytes of ASCII data which is continuously read, decoded, and displayed. The ASCII data from the RAM is decoded by the Motorola 6674128 ASCII character decoder. The 6674 decoder has five column outputs which are gated to the Sprague UCN5832A 32 -bit shift register data input via a 74LS151 multiplexer. Strobing of the display is accomplished via the 74LS90, 74LS393, and 74LS197 counter string.

The 74LS197 is used as a divide by 7 counter. Output Q_{D} resets the counter, sets output Q_{A} to logic 1, and sets outputs Q_{B}, Q_{C}, and Q_{D} to logic 0. 74LS197 outputs $\mathbf{Q}_{A}, \mathbf{Q}_{B}$, and \mathbf{Q}_{C} synchronize the row drivers and the row data entry into the shift register. Row drivers are sequentially turned on and off so only one row driver is on at a given time.

The 74LS393 counter is used as a divide by 64 counter. This counter has two functions. The first is to provide the character address to be decoded. Outputs $1 Q_{A}, 1 Q_{B}$, and $1 Q_{C}$ supply the address to the RAM. The second is to generate a control signal. This signal simultaneously clocks the 74LS197 and disables the row drivers and shift register outputs. It also provides one of the logic signals needed to enable the system clock to clock data into the shift register. Outputs $1 Q_{D}, 2 Q_{A}$, and $2 Q_{B}$ are gated to create this signal. The clock is enabled for 1 count and disabled for 7 counts. Thus, the overall display duty factor is $(7 / 8)(1 / 7)=12.5 \%$.

The 74LS90 is connected as a divide by 5 cascaded into a divide by 2 for an effective divide by 10 counter. Outputs Q_{B}, Q_{C}, and Q_{D} are used to convert the parallel output from the character generator to serial input for entry into the UCN5832 shift register. Output Q_{A} in combination with the system clock and the gated 74LS393 counter outputs clock data into the shift register. When character data is loaded into the shift register, output Q_{A} alternates between allowing data to be loaded and providing enough time for data to propagate from the 74LS393 counter through the tristate buffers, RAM, character generator, and multiplexer.

This circuit can be used with the HDSP-4701 by changing the display pin assignments. HDSP4X03 and HDSP-5X03 devices require a change of both the shift register and drive transistors. The shift register can be changed to a Sprague

Figure 4. Low Current Circuit to Refresh Eight 5×7 Displays. HDSP-4503 (HDSP-L203) Display Pin Numbers Are Denoted as XX(XX).

Figure 5. Coded Data Controller Circuit.

UCN-5818. This part has different pin assignments than the UCN-5832. For further details consult the Sprague data sheet. The MJE700 Darlington transistors need to be replaced with suitable npn Darlington transistors.

Thermal Considerations

The device thermal resistance may be used to calculate the junction temperature of the central LED. The equation below calculates the junction temperature of the central (hottest) LED.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{J}} & =\mathrm{T}_{\mathrm{A}}+\left(\mathbf{P}_{\mathrm{D}}\right)\left(\mathrm{R}_{\mathrm{J} \cdot \mathrm{~A}}\right)(\mathrm{N}) \\
\mathbf{P}_{\mathrm{D}} & =\left(\mathrm{V}_{\mathrm{F}} \mathrm{MAX}\right)\left(\mathrm{I}_{\mathrm{F}} \mathrm{AVG}\right) \\
\mathrm{R} \theta_{\mathrm{J} \cdot \mathrm{~A}} & =\mathrm{R} \theta_{\mathrm{JPIN}}+\mathrm{R} \theta_{\mathrm{PIN}-\mathrm{A}}
\end{aligned}
$$

T_{J} is the junction temperature of the central LED.
T_{A} is the ambient temperature.
P_{D}^{A} is the power dissipated by one LED.
N is the number of LEDs ON per character.
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}$ is calculated using the appropriate V_{F} model.
$R \theta_{\mathrm{JA}}$ is the package thermal resistance from the central LED to the ambient.
$R \theta_{\text {J-PIN }}$ is the package thermal resistance from the central LED to pin.
$\mathrm{R} \theta_{\text {PIN:A }}$ is the package thermal resistance from the pin to the ambient.

For example, what is the maximum ambient temperature an HDSP-L10X can operate with the following conditions:
$\mathrm{I}_{\mathrm{PEAK}}=125 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=10 \mathrm{~mA}$
$\mathrm{R} \theta_{\mathrm{J}-\mathrm{A}}=50^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{N}=35$
TJMAX $=110^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{F}} \mathrm{MAX} & =2.0 \mathrm{~V}+(0.125 \mathrm{~A})(10) \\
& =3.25 \mathrm{~V} \\
\mathrm{P}_{\mathrm{D}} & =(3.25 \mathrm{~V})(0.01 \mathrm{~A}) \\
& =0.0325 \mathrm{~W} \\
\mathrm{~T}_{\mathrm{A}} & =110^{\circ} \mathrm{C}- \\
& \left(50^{\circ} \mathrm{C} / \mathrm{W}\right)(0.0325 \mathrm{~W})(35) \\
& =53^{\circ} \mathrm{C}
\end{aligned}
$$

The maximum number of dots ON for the ASCII character set is 20 . What is the maximum ambient temperature an HDSPL10X can operate with the following conditions:

$$
\begin{aligned}
& \mathrm{I}_{\text {PEAK }}=125 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{F}} \mathrm{AVG}=10 \mathrm{~mA} \\
& \mathrm{R} \theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{~N}=20 \\
& \mathrm{~T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C} \\
& \\
& \mathrm{~V}_{\mathrm{F}} \mathrm{MAX}=3.25 \mathrm{~V} \\
& \mathrm{P}_{\mathrm{D}}=0.0325 \mathrm{~W} \\
& \mathrm{~T}_{\mathrm{A}}=110^{\circ} \mathrm{C}- \\
& \\
& =\left(50^{\circ} \mathrm{C} / \mathrm{W}\right)(0.0325 \mathrm{~W})(20) \\
& =77^{\circ} \mathrm{C}
\end{aligned}
$$

Therefore, the maximum ambient temperature can be increased by reducing the average number of dots ON from 35 to 20 dots ON per display.

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance the readability. This is accomplished by having the OFF dots blend into the display background and the ON dots stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the
following suggested filters:
HDSP-440X/470X/L10X/M10X
Panelgraphic RUBY RED 60
SGL-HOMALITE H100-1605 RED
3M Louvered Filter R6610 RED OR N0210 GRAY

HDSP-450X/L20X
Panelgraphic SCARLET RED 65
SGL-Homalite H100-1670 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or N0210 GRAY

HDSP-540X/510X
Panelgraphic GREEN 48
SGL-Homalite H100-1440
GREEN or H100-1250 GRAY
3M Louvered Filter YG5610 GREEN or N0210 GRAY

For further information on contrast enhancement please see Application Note 1015.

For further information on soldering LEDs please refer to Application Note 1027.

HEWLETT
PACKARD

Low Current Seven Segment Displays Technical Data

Features

- Low Power Consumption
- Industry Standard Size
- Industry Standard Pinout
- Choice of Character Size
$7.6 \mathrm{~mm}(0.30 \mathrm{in}), 10 \mathrm{~mm}(0.40$
in), 10.9 mm (0.43 in), 14.2
mm (0.56 in), 20 mm (0.8 in)
- Choice of Colors

AlGaAs Red, High Efficiency
Red (HER), Yellow, Green

- Excellent Appearance Evenly Lighted Segments $\pm 50^{\circ}$ Viewing Angle
- Design Flexibility Common Anode or Common Cathode
Single and Dual Digits Left and Right Hand Decimal Points
± 1. Overflow Character
- Categorized for Luminous Intensity
Yellow and Green Categorized for Color Use of Like Categories Yields a Uniform Display
- Excellent for Long Digit String Multiplexing

Description

These low current seven segment displays are designed for applications requiring low power consumption. They are tested and selected for their excellent low current characteristics to ensure that the segments are matched at low currents. Drive currents as low as 1 mA per segment are available.

Pin for pin equivalent displays are also available in a standard current or high light ambient design. The standard current displays are available in all colors and are ideal for most applications. The high light ambient displays are ideal for sunlight ambients or long string lengths. For additional information see the 7.6 mm Micro Bright Seven Segment Displays, 10 mm Seven Segment Displays, $7.6 \mathrm{~mm} / 10.9 \mathrm{~mm}$ Seven Segment Displays, 14.2 mm Seven Segment Displays, 20 mm Seven Segment Displays, or High Light Ambient Seven Segment Displays data sheets.

HDSP-3350, 3351, 3353, 3356
HDSP-5551, 5553, 5557, 5558
HDSP-7511, 7513, 7517, 7518
HDSP-A101, A103, A107, A108
HDSP-A801, A803, A807, A808
HDSP-A901, A903, A907, A908
HDSP-E100, E101, E103, E106
HDSP-F101, F103, F107, F108
HDSP-H101, H103, H107, H108
HDSP-K121, K123
HDSP-N100, N101, N103, N105, N106

Devices

AlGaAs HDSP-	HER HDSP-	Yellow HDSP-	Green HDSP-	Description	Package Drawing
A101	7511	A801	A901	7.6 mm Common Anode Right Hand Decimal	A
A103	7513	A803	A903	7.6 mm Common Cathode Right Hand Decimal	B
A107	7517	A807	A907	7.6 mm Common Anode ± 1. Overflow	C
A108	7518	A808	A908	7.6 mm Common Cathode ± 1. Overflow	D
F101				10 mm Common Anode Right Hand Decimal	E
F103				10 mm Common Cathode Right Hand Decimal	F
F107				10 mm Common Anode ± 1. Overflow	G
F108				10 mm Common Cathode ± 1. Overflow	H
E100	3350			10.9 mm Common Anode Left Hand Decimal	I
E101	3351			10.9 mm Common Anode Right Hand Decimal	J
E103	3353			10.9 mm Common Cathode Right Hand Decimal	K
E106	3356			10.9 mm Universal ± 1. Overflow	L
H101	5551			14.2 mm Common Anode Right Hand Decimal	M
H103	5553			14.2 mm Common Cathode Right Hand Decimal	N
H107	5557			14.2 mm Common Anode ± 1. Overflow	O
H108	5558			14.2 mm Common Cathode ± 1. Overflow	P
K121				14.2 mm Two Digit Common Anode Right Hand Decimal	R
K123				14.2 mm Two Digit Common Cathode Right Hand Decimal	S
N100				20 mm Common Anode Left Hand Decimal	Q
N101				20 mm Common Anode Right Hand Decimal	T
N103				20 mm Common Cathode Right Hand Decimal	
N105				20 mm Common Cathode Left Hand Decimal	U
N106				V	

Note:

1. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagrams L or W.

Package Dimensions

A, B

A, B, C, D

PIN	FUNCTION			
	A	B	C	D
1	ANODE [4]	CATHODE ${ }^{\text {(5) }}$	ANODE [4]	CATHODE ${ }^{\text {(5) }}$
2	CATHODE \dagger	ANODE f	CATHODE PLUS	ANODE PLUS
3	CATHODE 9	ANODE 9	CATHODE MINUS	ANODE MINUS
4	CATHODE	ANODE e	NC	NC
5	CATHODE d	ANODE d	NC	NC
6	ANODE [4]	CATHODE [5]	ANODE [4]	CATHODE[5]
7	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP
8	CATHODE C	ANODE c	CATHODE c	ANODE c
9	CATHODE b	ANODE b	CATHODE b	ANODE b
10	CATHODE a	ANODE a	NC	NC

NOTES:

1. ALL DIMENSIONS IN MLLUMETRES (INCHES).
2. MAXIMUM.
3. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
4. REDUNDANT ANODES.
5. REDUNDANT CATHODES.

MITERED CORNER FOR

C, D

Package Dimensions (continued)

E, F, G, H

G. H

PIN	FUNCTION			
	E	F	G	H
1	ANODE ${ }^{\text {a }}$	CATHODE ${ }^{(0]}$	ANODE ${ }^{4}$	CATHODE ${ }^{(1)}$
2	CATHODE f	ANODEf	CATHODE PLUS	ANODE PLUS
3	CATHODE g	ANODE g	CATHODE MNUS	ANODE MHNUS
4	CATHODE ${ }^{\text {e }}$	ANODE	NC	NC
5	CATHODE d	ANODE d	NC	NC
6	ANODEI ${ }^{\text {d }}$	CATHODE ${ }^{(0)}$	ANODE ${ }^{[1]}$	CATHODE ${ }^{(6)}$
7	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP
8	CATHODE C	ANODE C	CATHODE c	ANODE c
9	CATHODE b	ANODE b	CATHODE b	ANODE b
10	CATHODE a	ANODE a	NC	NC

NOTES:

1. ALL DIMENSIONS IN MLLUMETRES (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. FOR YELLOW AND GREEN SERIES PRODUCT ONLY.
4. REDUNDANT ANODES.
5. REDUNDANT CATHODES.

Package Dimensions (continued)

I

J, K

END VIEW

SIDE VIEW

NOTES:

1. ALL DIMENSIONS IN MLLLMETRES (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. REDUNDANT ANODES.
4. UNUSED dp POSITION.
5. SEE INTERNAL CIRCUIT DIAGRAM.
6. REDUNDANT CATHODES.
7. SEE PART NUMBER TABLE FOR L.H.D.P. AND R.H.D.P. DESIGNATION.

Package Dimensions (continued)

PIN	FUNCTION			
	M	N	0	P
1	CATHODE	ANODE	CATHODE C	ANODE c
2	CATHODE d	ANODE d	ANODE c.d	CATHODE c.d
3	ANODE 4	CATHODE 5	CATHODE b	ANODE b
4	CATHODE C	ANODE C	ANODE a, b. DP	CATHODE a.b. DP
5	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP
6	CATHODE b	ANODE b	CATHODE a	ANODE a
7	CATHODE a	ANODE a	ANODE a.b. DP	CATHODE a.b. DP
8	ANODE 4	CATHODE 5	ANODE c, d	CATHODE c. d
9	CATHODE f	ANODE f	CATHODE d	ANODE d
10.	CATHODE g	ANODE g	NO PIN	NO PIN

FRONT VIEW O, P

NOTES:

1. ALL DIMENSIONS IN MLLLMETRES (INCHES).
2. MAXIMUM.
3. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
4. REDUNDANT ANODES.
5. REDUNDANT CATHODES.

Package Dimensions (continued)

NOTES:

1. ALL DIMENSIONS IN MLLLMETRES (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. REDUNDANT ANODES.
4. UNUSED dp POSITION.
5. SEE INTERNAL CIRCUIT DIAGRAM.
6. REDUNDANT CATHODES.
7. SEE PART NUMBER TABLE FOR L.H.D.P. AND R.H.D.P. DESIGNATION.

Package Dimensions (continued)

TOP END VIEW R, S

FRONT VIEW R, S

Internal Circuit Diagram

A, E

B, F

C, G

D, H

Internal Circuit Diagram (continued)

$\frac{2}{3}$
$\frac{2}{2}$
$\frac{2}{2}$
$\frac{2}{4}$
$\frac{1}{6}$
$\frac{5}{0}$
0

Internal Circuit Diagram (continued)

s

Absolute Maximum Ratings

Description	AlGaAs Red HDSP-A101/E100/ H101/K120/N100 Series	HER HDSP-751X 335X/555X Series	$\begin{gathered} \text { Yellow } \\ \text { HDSP-A801 } \\ \text { Series } \end{gathered}$	$\begin{gathered} \text { Green } \\ \text { HDSP-A901 } \\ \text { Series } \end{gathered}$	Units
Average Power per Segment or DP	37	52		64	mW
Peak Forward Current per Segment or DP	45				mA
DC Forward Current per Segment or DP	$15^{[1]}$	$15^{[2]}$			mA
Operating Temperature Range	-20 to +100	-40 to +100			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100				${ }^{\circ} \mathrm{C}$
Reverse Voltage per Segment or DP	3.0				V
Lead Solder Temperature for 3 Seconds (1.59 mm [0.63 in .] below seating plane)	260				${ }^{\circ} \mathrm{C}$

Notes:

1. Derate above $91^{\circ} \mathrm{C}$ at $0.53 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate HER/Yellow above $80^{\circ} \mathrm{C}$ at $0.38 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ and Green above $71^{\circ} \mathrm{C}$ at $0.31 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
AlGaAs Red

Device Series HDSP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
A101	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	315	600		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				3600			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
F101			330	650			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				3900			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
E100			390	650			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				3900			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
H101, K121			400	700			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				4200			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
N100			270	590			$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				3500			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
All Devices	Forward Voltage/Segment or DP	V_{F}		1.6		V	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$
				1.7			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
				1.8	2.2		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{Pk}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}}{ }^{\circ} \mathrm{C}$		$-2 \mathrm{mV}$		$\mathrm{mV}^{\circ} \mathrm{C}$	
A101	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		255		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	
F101				320			
E100				340			
H101, K121				400			
N100				430			

High Efficiency Red

Device Series HDSP	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
7511	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	160	270		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
				1050			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
3350, 5551			200	300			$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
				1200			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
			270	370			$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
				1480			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
All Devices	Forward Voltage/Segment or DP	V_{F}		1.6		V	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$
				1.7			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
				2.1	2.5		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{Pk}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		626		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\prime} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
7511	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
3350				280			
5551				345			

Yellow

Device Series HDSP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
A801	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	250	420		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$
				1300			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.7		V	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$
				1.8			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
				2.1	2.5		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{Pk}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		583		nm	
	Dominant Wavelength ${ }^{[3,5]}$	$\lambda_{\text {d }}$	581.5	585	592.5	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \boldsymbol{\theta}_{\text {J.PIN }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Green

Device Series HDSP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
A901	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	250	475		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$
				1500			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.9		V	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$
				2.0			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
				2.1	2.5		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \mathrm{Pk}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		566		nm	
	Dominant Wavelength ${ }^{[3,5]}$	$\lambda_{\text {d }}$		571	577	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \boldsymbol{\theta}_{\text {J-PIN }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

1. Device case temperature is $25^{\circ} \mathrm{C}$ prior to the intensity measurement.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. The yellow (HDSP-A800) and Green (HDSP-A900) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

AlGaAs Red

Figure 1. Maximum Allowable Average or DC Current vs. Ambient Temperature.

Figure 3. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Forward Current vs. Forward Voltage.

Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Yellow, Green

Figure 5. Maximum Allowable Average or DC Current vs. Ambient Temperature.

Figure 7. Relative Luminous Intensity vs. DC Forward Current.

Figure 6. Forward Current vs. Forward Voltage.

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Electrical/Optical

These displays use light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The AlGaAs Red HDSP-X100 series LEDs use double heterojunction AlGaAs on a GaAs substrate. HER HDSP-7510/3350/5550 and Yellow HDSP-A800 series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HDSP-A900 series LEDs use a liquid phase GaP epitaxial layer on GaP.

The typical forward voltage values can be scaled from Figures 2 and 6. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation, may be calculated using the following $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}$ models:

AlGaAs Red HDSP-X100 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}$
HER (HDSP-7510/3350/5550)
and Yellow (HDSP-A801) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6+\mathrm{I}_{\text {Peak }}(45 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.75+\mathrm{I}_{\text {Peak }}(38 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}$
Green (HDSP-A901) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(50 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \geq 4 \mathrm{~mA}$
Figures 4 and 8 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates
intensity at different peak and average currents:

Where:
$\mathrm{I}_{\mathrm{v}} A V G$ is the desired time averaged luminous intensity resulting from I_{F} AVG.
$I_{\mathrm{F}} \mathrm{AVG}$ is the desired time averaged LED current.
I_{F} AVG DATA SHEET is the data sheet test current for Iv DATA SHEET.
$\eta_{\text {peak }}$ is the relative efficiency at the peak current, scaled from Figure 4 or 8.
I_{v} DATA SHEET is the data sheet luminous intensity, resulting from I_{F} AVG DATA SHEET.

For example, what is the luminous intensity of an HDSP7511 driven at 20 mA peak $1 / 5$ duty factor?
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=(50 \mathrm{~mA})(0.2)=4 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}} A V G$ DATA SHEET $=2 \mathrm{~mA}$
$\eta_{\text {Peak }}=2.6$
$I_{\mathrm{v}}^{\text {Peak }}$ DATA SHEET $=270 \boldsymbol{\mu c d}$
Therefore

$$
\begin{gathered}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}=(4 \mathrm{~mA} / 2 \mathrm{~mA})(2.6)(270 \\
\mu \mathrm{cd})=1400 \mu \mathrm{~cd}
\end{gathered}
$$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance the readability. This is accomplished by having the OFF dots blend into the display background and the ON dots stand out vividly against this same background. Therefore, these display devices are
assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the following suggested filters:

AlGaAs Red (HDSP-X100)
Panelgraphic RUBY RED 60
SGL-Homalite H100-1605 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

HER (HDSP-7510/3550/5550)
Panelgraphic SCARLET RED 65
SGL-Homalite H100-1670 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

Yellow (HDSP-A801)
Panelgraphic YELLOW 27 or GRAY 10
SGL-Homalite H100-1720 AMBER or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

Green (HDSP-A901)
Panelgraphic GREEN 48
SGL-Homalite H100-1440 GREEN or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

For further information on contrast enhancement please see Application Note 1015.

Mechanical

Specifially developed plastics are used to optimize the displays optical performance. These plastics restrict the solvents that may be used for cleaning. Only mixtures of Freon (F113) and alcohol should be used for vapor cleaning processes. Total immersion time
in the vapors is two minutes. Some suggested mixtures are Freon TE, Arklone A or K, or Genesolv DI-15 or DE-15. A $60^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$) water cleaning process may also be used. This process includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or
equivalent), a water rinse, and a thorough air dry. Room temperature cleaning may be done with Freon T-E35 or TP35, Ethanol, Isopropanol, or water with a mild detergent.

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the
chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

7.6 mm (0.3 inch) Micro Bright Seven Segment Displays

Technical Data

Features

- Available with Colon for Clock Display
- Compact Package 0.300×0.500 inches Leads on 2.54 mm (0.1 inch) Centers
- Choice of Colors Red, AlGaAs Red, High Efficiency Red, Yellow, Green
- Excellent Appearance Evenly Lighted Segments Mitered Corners on Segments Gray Package Gives Optimum Contrast $\pm 50^{\circ}$ Viewing Angle
- Design Flexibility Common Anode or Common Cathode

Right Hand Decimal Point ± 1. Overflow Character

- Categorized for Luminous Intensity
Yellow and Green Categorized for Color Use of Like Categories Yields a Uniform Display
- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color Selection Available See Intensity and Color Selected Displays Data Sheet
- Sunlight Viewable AlGaAs

HDSP-7301, 7311, 7302, 7303, 7313, 7304, 7307, 7317, 7308, 7318
HDSP-A151, A153, A157, $A 158$ HDSP-7501, 7502, 7503, 7504, 7507, 7508 HDSP-7401, 7402, 7403, 7404, 7407, 7408
HDSP-7801, 7802, 7803, 7804, 7807, 7808

Devices

$\begin{gathered} \text { Red } \\ \text { HDSP. } \end{gathered}$	AlGaAs ${ }^{[1]}$ HDSP.	$\begin{aligned} & \mathrm{HER}^{[1]} \\ & \text { HDSP. } \end{aligned}$	Yellow ${ }^{[1]}$ HDSP.	Green ${ }^{[1]}$ HDSP.	Description	Package Drawing
$\begin{aligned} & 7301 \\ & 7311 \end{aligned}$	A151	7501	7401	7801	Common Anode Right Hand Decimal	A
7302		7502	7402	7802	Common Anode Right Hand Decimal, Colon	B
$\begin{aligned} & 7303 \\ & 7313 \end{aligned}$	A153	7503	7403	7803	Common Cathode Right Hand Decimal	C
7304		7504	7404	7804	Common Cathode Right Hand Decimal, Colon	D
$\begin{array}{r} \hline 7307 \\ 7317 \\ \hline \end{array}$	A157	7507	7407	7807	Common Anode ± 1. Overflow	E
$\begin{aligned} & 7308 \\ & 7318 \end{aligned}$	A158	7508	7408	7808	Common Cathode ± 1. Overflow	F

[^17]pinout. Both the numeric and ± 1. overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays
are ideal for portable applications. For additional information see the Low Current Seven Segment Displays.

Package Dimensions

A, C

B, D

MITERED CORNER FOR

PIN	FUNCTION					
	A	B	C	D	E	F
1	ANODE[4]	CATHODE COLON	CATHODE ${ }^{\text {[5] }}$	ANODE COLON	ANODE[4]	CATHODE [5]
2	CATHODE f	CATHODE f	ANODE f	ANODE f	CATHODE PLUS	ANODE PLUS
3	CATHODE g	CATHODE g	ANODE g	ANODE g	CATHODE MINUS	ANODE MINUS
4	CATHODE E	CATHODE E	ANODE e	ANODE e	NC	NC
5	CATHODE d	CATHODE d	ANODE d	ANODE d	NC	NC
6	ANODE[4]	ANODE	CATHODE [5]	CATHODE	ANODE [4]	CATHODE [5]
7	CATHODE DP	CATHODE DP	ANODE DP	ANODE DP	CATHODE DP	ANODE DP
8	CATHODE c	CATHODE c	ANODE c	ANODE c	CATHODE c	ANODE c
9	CATHODE b	CATHODE b	ANODE b	ANODE b	CATHODE b	ANODE b
10	CATHODE a	CATHODE a	ANODE a	ANODE a	NC	NC

Internal Circuit Diagram

Absolute Maximum Ratings

Description	Red HDSP-7300 Series	AlGaAs Red HDSP-A150 Series	HER HDSP-7500 Series	Yellow HDSP-7400 Series	$\begin{gathered} \text { Green } \\ \text { HDSP-7800 } \\ \text { Series } \end{gathered}$	Units
Average Power per Segment or DP	82	96	105	80	105	mW
Peak Forward Current per Segment or DP	$150^{(1)}$	$160^{[3]}$	$90^{(5)}$	$60^{(7)}$	$90^{\text {[s] }}$	mA
DC Forward Current per Segment or DP	$25^{[2]}$	$40^{(4]}$	$30^{[6]}$	$20^{\text {[8] }}$	$30^{10]}$	mA
Operating Temperature Range	-40 to +100	-20 to $+100^{[11]}$	-40 to +100			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100					${ }^{\circ} \mathrm{C}$
Reverse Voltage per Segment or DP	3.0					V
Lead Solder Temperature for 3 Seconds (1.59 mm [0.063 in .] below seating plane)	260					${ }^{\circ} \mathrm{C}$

Notes:

1. See Figure 1 to establish pulsed conditions.
2. Derate above $80^{\circ} \mathrm{C}$ at $0.63 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
3. See Figure 2 to establish pulsed conditions.
4. Derate above $46^{\circ} \mathrm{C}$ at $0.54 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
5. See Figure 7 to establish pulsed conditions.
6. Derate above $53^{\circ} \mathrm{C}$ at $0.45 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
7. See Figure 8 to establish pulsed conditions.
8. Derate above $81^{\circ} \mathrm{C}$ at $0.52 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
9. See Figure 9 to establish pulsed conditions.
10. Derate above $39^{\circ} \mathrm{C}$ at $0.37 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
11. For operation below $-20^{\circ} \mathrm{C}$, contact your local HP components sales office or an authorized distributor.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\mathbf{\circ}} \mathrm{C}$

Red

Device Series HDSP	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
7300	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	600	1100		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
				500			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
7310			770	1355			$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
				610			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		655		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		640		nm	
All	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	12		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV}^{\prime}{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{Re}_{\text {J.PIN }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

AlGaAs Red

Device Series HDSP-	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
A151	Luminous Intensity/Segment ${ }^{[1,2,5]}$ (Digit Average)	I_{v}	6.9	14.0		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.8		V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
				2.0	3.0	V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
	Reverse-Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J.PIN }}$		255		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

High Efficiency Red

Device Series HDSP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
7501	Luminous Intensity/Segment ${ }^{[1,2,6]}$ (Digit Average)	I_{v}	360	980		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
				5390			$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.0	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		626		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	R $\mathrm{J}_{\text {-PIN }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

Yellow

Device Series HDSP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
7401	Luminous Intensity/Segment ${ }^{[1,2,7]}$ (Digit Average)	I_{v}	225	480		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
				2740			$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.2	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		583		nm	
	Dominant Wavelength ${ }^{[3,9]}$	$\lambda_{\text {d }}$	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	50.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		200		${ }^{\circ} \mathrm{C} /$ W/Seg	

High Performance Green

Device Series HDSP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
7801	Luminous Intensity/Segment ${ }^{[1,2,8]}$ (Digit Average)	I_{v}	570	1480		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
				3400			$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		566		nm	
	Dominant Wavelength ${ }^{[3,9]}$	$\lambda_{\text {d }}$		571	577	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	50.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\mathrm{J} \text {-PIN }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

Notes:

1. Case temperature of device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation the AlGaAs HDSP-A101 series displays are recommended.
6. For low current operation the HER HDSP-7511 series displays are recommended.
7. For low current operation the Yellow HDSP-A801 series displays are recommended.
8. For low current operation the Green HDSP-A901 series displays are recommended.
9. The yellow (HDSP-7400) and Green (HDSP-7800) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Figure 1. Maximum Tolerable Peak
Current vs. Pulse Duration - Red.

$T_{A}-A M B I E N T$ TEMPERATURE $-{ }^{\circ} \mathrm{C}$
Figure 3. Maximum Allowable DC Current per Segment as a Function of Ambient Temperature.

Figure 5. Relative Luminous Intensity ve. DC Forward Current.

Figure 2. Maximum Allowed Peak Current vs. Pulse Duration - AlGaAs Red.

Figure 4. Forward Current vs. Forward Voltage.

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration - HER.

Figure 9. Allowable Peak Current vs. Pulse Duration - Green.

Figure 8. Maximum Tolerable Peak
Current vs. Pulse Duration - Yellow.

Figure 10. Maximum Allowable DC Current per Segment as a Function of Ambient Temperature.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Electrical/Optical

These displays use light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The Red HDSP7300 series LEDs use a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The AlGaAs Red HDSP-A150 series LEDs use double heterojunction AlGaAs on a GaAs substrate. HER HDSP-7500 and Yellow HDSP7400 series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HDSP7800 series LEDs use a liquid phase GaP epitaxial layer on GaP.

These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 4 and 11. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation, may be
calculated using the following V_{F} MAX models:

Red HDSP-7300 series

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega) \\
& \text { For: } \mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}
\end{aligned}
$$

AlGaAs Red HDSP-A150 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $20 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 100 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.27 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(7.2 \Omega)$
For $\mathrm{I}_{\text {Peak }} \geq 100 \mathrm{~mA}$
HER (HDSP-7500) and Yellow (7400) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6+\mathrm{I}_{\text {Peak }}(45 \Omega)$
For: $5 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.75+\mathrm{I}_{\text {Peak }}(38 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}$
Green (HDSP-7800) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0+\mathrm{I}_{\text {Peak }}(50 \Omega)$
For: $I_{\text {Peak }} \geq 5 \mathrm{~mA}$
Figures 6 and 13 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:
$\begin{aligned} \mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & \left(\mathrm{I}_{\mathrm{p}} \text { AVG/I } \mathrm{I}_{\mathrm{F}} \text { AVG DATA }\right. \\ & \underset{\text { SHEET })\left(\eta_{\text {peak }}\right)\left(\mathrm{I}_{\mathrm{v}} \text { DATA }\right.}{ } \\ & \text { SHEET })\end{aligned}$
Where:
$\mathrm{I}_{\mathrm{v}} \mathrm{AVG}$ is the calculated time averaged luminous intensity resulting from I_{F} AVG.
$I_{F} A V G$ is the desired time averaged LED current.
I_{F} AVG DATA SHEET is the data sheet test current for I DATA SHEET.
$\eta_{\text {peak }}$ is the relative efficiency at the peak current, scaled from Figure 6 or 13.
I_{v} DATA SHEET is the data sheet luminous intensity, resulting from I_{F} AVG DATA SHEET.

For example, what is the luminous intensity of an HDSP7500 driven at 50 mA peak $1 / 5$ duty factor?
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=(50 \mathrm{~mA})(0.2)=10 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}} A V G$ DATA SHEET $=5 \mathrm{~mA}$
$\eta_{\text {Peak }}=1.62$
$\mathrm{I}_{\mathrm{v}}^{\text {Deak }}$ DATA SHEET $=980 \mu \mathrm{~cd}$
Therefore

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & (10 \mathrm{~mA} / 5 \mathrm{~mA}) \\
& (1.62)(980 \mu \mathrm{~cd}) \\
= & 1587 \mu \mathrm{~cd}
\end{aligned}
$$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance the readability. This is accomplished by having the OFF dots blend into the display background and the ON dots stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the following suggested filters:

Red and AlGaAs Red (HDSP7300/A150)
Panelgraphic RUBY RED 60
SGL-Homalite H100-1605 RED
3M Louvered Filter R6310 RED or ND0220 GRAY

HER (HDSP-7500)
Panelgraphic SCARLET RED 65
SGL-Homalite H100-1670 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

Yellow (HDSP-7400)
Panelgraphic YELLOW 27 or GRAY 10
SGL-Homalite H100-1720 AMBER or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

Green (HDSP-7800)
Panelgraphic GREEN 48
SGL-Homalite H100-1440 GREEN or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

For further information on contrast enhancement please see Application Note 1015.

Mechanical

Specially developed plastics are used to optimize the displays optical performance. These plastics restrict the solvents that may be used for cleaning.

Only mixtures of Freon (F113) and alcohol should be used for vapor cleaning processes. Total immersion time in the vapors is two minutes. Some suggested mixtures are Freon TE, Arklone A or K, or Genesolv DES. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used. This process includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a water rinse, and a thorough air dry. Room temperature cleaning may be done with Freon T-E35 or TP35, Ethanol, Isopropanol, or water with a mild detergent.

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For further information on soldering LEDs please refer to Application Note 1027.

10 mm (0.40 inch) Seven Segment Displays

Technical Data

Features

- Industry Standard Size
- Industry Standard Pinout 7.6 mm (0.3 inch) DIP Leads on 2.54 mm (0.1 inch) Centers
- Choice of Colors Red, AlGaAs Red, High Efficiency Red, Orange, Yellow, Green
- Excellent Appearance

Evenly Lighted Segments
Mitered Corners on Segments
Gray Package Gives
Optimum Contrast $\pm 50^{\circ}$ Viewing Angle

- Design Flexibility

Common Anode or Common Cathode Right Hand Decimal Point ± 1. Overflow Character

- Categorized for Luminous Intensity
Yellow and Green Categorized for Color
Use of Like Categories Yields a Uniform Display
- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color Selection Option
- Sunlight Viewable AlGaAs

Description

The 10 mm (0.40 inch) LED seven segment displays are HP's most space-efficient character size. They are designed for viewing distances up to 4.5

HDSP-F001, F003, F007, F008
HDSP-F151, F153, F157, F158 HDSP-F201, F203, F207, F208
HDSP-F301, F303, F307, F308
HDSP-F401, F403, F407, F408
HDSP-F501, F503, F507, F508

metres (15 feet). These devices use an industry standard size package and pinout. Both the numeric and ± 1. overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

Typical applications include instruments, point of sale terminals, and appliances.

Devices

Red HDSP-	AlGaAs Red HDP-	HER HDSP-	Orange HDSP-	Yellow HDSP-	Green HDSP-	Description	Package Drawing
F001	F151	F201	F401	F301	F501	Common Anode Right Hand Decimal	A
F003	F153	F203	F403	F303	F503	Common Cathode Right Hand Decimal	B
F007	F157	F207	F407	F307	F507	Common Anode ± 1. Overflow	C
F008	F158	F208	F408	F308	F508	Common Cathode ± 1. Overflow	D

[^18]
Package Dimensions

NOTES:

1. ALL DIMENSIONS IN MLLIMETRES (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY. 3. FOR YELLOW AND GREEN SERIES PRODUCT ONLY.

Internal Circuit Diagram

A

B

C

D

PIN	FUNCTION			
	A	B	C	D
1	ANODE ${ }^{\text {(1) }}$	CATHODE ${ }^{[2]}$	ANODE ${ }^{[1]}$	CATHODE ${ }^{[2]}$
2	CATHODEf	ANODE f	CATHODE PLUS	ANODE PLUS
3	CATHODEg	ANODEg	CATHODE MINUS	ANODE MINUS
4	CATHODE	ANODE	NC	NC
5	CATHODE d	ANODE d	NC	NC
6	ANODE ${ }^{\text {[1 }}$	CATHODE ${ }^{[1]}$	ANODE ${ }^{1]}$	CATHODE [2]
7	CATHODE DP	ANODE DP	CATHODE DP	ANODE DP
8	CATHODE	ANODE c	CATHODE c	ANODE c
9	CATHODE b	ANODE b	CATHODE b	ANODE b
10	CATHODE a	ANODE a	NC	NC

NOTES: 1. REDUNDANT ANODES 2. REDUNDANT CATHODES

Absolute Maximum Ratings

Description	$\begin{gathered} \text { Red } \\ \text { HDSP-F00X } \\ \text { Series } \end{gathered}$	AlGaAs Red HDSP-F15X Series	HER/Orange HDSP-F20X/ F40X Series	Yellow HDSP-F30X Series	$\begin{array}{\|c\|} \hline \text { Green } \\ \text { HDSP-F50X } \\ \text { Series } \end{array}$	Units
Average Power per Segment or DP	82	96	105	80	105	mW
Peak Forward Current per Segment or DP	$150^{[1]}$	$160^{(3)}$	$90^{[6]}$	$60^{[7]}$	$90^{\text {[9] }}$	mA
DC Forward Current per Segment or DP	$25^{(2)}$	$40^{(4]}$	$30^{[6]}$	$20^{\text {[8] }}$	$30^{(10]}$	mA
Operating Temperature Range	-40 to +100	-20 to $+100^{(11)}$	-40 to +100			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100					${ }^{\circ} \mathrm{C}$
Reverse Voltage per Segment or DP	3.0					V
Lead Solder Temperature for 3 Seconds (1.59 mm [0.63 in .] below seating plane)	260					${ }^{\circ} \mathrm{C}$

Notes:

1. See Figure 1 to establish pulsed conditions.
2. Derate above $80^{\circ} \mathrm{C}$ at $0.63 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. See Figure 2 to establish pulsed conditions.
4. Derate above $46^{\circ} \mathrm{C}$ at $0.54 \mathrm{~mA}^{\circ} \mathrm{C}$.
5. See Figure 7 to establish pulsed conditions.
6. Derate above $53^{\circ} \mathrm{C}$ at $0.45 \mathrm{~mA}^{\circ} \mathrm{C}$.
7. See Figure 8 to establish pulsed conditions.
8. Derate above $81^{\circ} \mathrm{C}$ at $0.52 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
9. See Figure 9 to establish pulsed conditions.
10. Derate above $39^{\circ} \mathrm{C}$ at $0.37 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
11. For operation below $-20^{\circ} \mathrm{C}$, contact your local HP components sales office or an authorized distributor.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$

Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{aligned} & \text { HDSP- } \\ & \text { F00X } \end{aligned}$	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	650	1200		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		655		nm	
	Dominant Wavelength ${ }^{[3]}$	λ_{d}		640		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	12		V	$\mathrm{I}_{\mathrm{F}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		320		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

AlGaAs Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{aligned} & \text { HDSP- } \\ & \text { F15X } \end{aligned}$	Luminous Intensity/Segment ${ }^{[1,2,5]}$ (Digit Average)	I_{v}	7.5	15.0		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		320		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

High Efficiency Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{aligned} & \text { HDSP- } \\ & \text { F20X } \end{aligned}$	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	420	1200		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.0	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	
	Dominant Wavelength ${ }^{[3]}$	λ_{d}		626		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-PIN }}$		320		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

Orange

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{aligned} & \text { HDSP- } \\ & \text { F40X } \end{aligned}$	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	420	1200		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.0	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		600		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		603		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\mathrm{J} \text {-PIN }}$		320		${ }^{\circ} \mathrm{C} /$ W/Seg	

Yellow

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{aligned} & \text { HDSP- } \\ & \text { F30X } \end{aligned}$	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	290	800		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.2	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		583		nm	
	Dominant Wavelength ${ }^{[3,6]}$	$\lambda_{\text {d }}$	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	40		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\mathrm{J} \text {-PIN }}$		320		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

High Performance Green

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{gathered} \text { HDSP- } \\ \text { F50X } \end{gathered}$	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	820	2100		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		566		nm	
	Dominant Wavelength ${ }^{[3,6]}$	$\lambda_{\text {d }}$		571	577	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	50		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		320		${ }^{\circ} \mathrm{C} /$ W/Seg	

Notes:

1. Case temperature of device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AlGaAs HDSP-F10X series displays are recommended. They are tested at $1 \mathrm{mAdc} / \mathrm{segment}$ and are pin for pin compatible with the HDSP-F15X series.
6. The Yellow (HDSP-F30X) series and Green (HDSP-F50X) series displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

RED, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration - Red.

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration - AlGaAs Red.

Figure 4. Forward Current vs. Forward Voltage.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

HER, Orange, Yellow, Green

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration - HER, Orange.

Figure 9. Maximum Tolerable Peak Current vs. Pulse Duration - Green.

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration - Yellow.

Figure 10. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 11. Forward Current vs. Forward Voltage.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Electrical/Optical

These displays use light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The Red HDSPF00X series LEDs use a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The AlGaAs Red HDSP-F15X series LEDS use double heterojunction AlGaAs on a GaAs substrate. HER HDSP-F20X, Orange HDSPF40X, and Yellow HDSP-F30X series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HDSP-F50X series LEDs use a liquid phase Gap epitaxial layer on GaP.

These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 4 and 11. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

Red HDSP-F00X series

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega) \\
& \text { For: } \mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}
\end{aligned}
$$

AlGaAs Red HDSP-F15X series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $20 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 100 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.27 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(7.2 \Omega)$
For $I_{\text {Peak }} \geq 100 \mathrm{~mA}$
HER HDSP-F20X, Orange
HDSP-F40X, and Yellow HDSP-
F30X series

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6+\mathrm{I}_{\text {Peak }}(45 \Omega) \\
& \text { For: } 5 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{F}} \mathrm{MAX}=1.75+\mathrm{I}_{\text {Peak }}(38 \Omega) \\
& \text { For: } \mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}
\end{aligned}
$$

Green HDSP-F50X series

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0+\mathrm{I}_{\text {Peak }}(50 \Omega) \\
& \text { For: } \mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}
\end{aligned}
$$

Figures 6 and 13 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

Where:
$\mathrm{I}_{\mathrm{v}} \mathrm{AVG}$ is the calculated time averaged luminous intensity resulting from I_{F} AVG.
$I_{F} A V G$ is the desired time averaged LED current.
I_{F} AVG DATA SHEET is the data sheet test current for I_{v} DATA SHEET.
$\eta_{\text {peakk }}$ is the relative efficiency at the peak current, scaled from Figure 6 or 13.
I_{v} DATA SHEET is the data sheet luminous intensity, resulting from I_{F} AVG DATA SHEET.

For example, what is the luminous intensity of an HDSPF201 driven at 50 mA peak $1 / 5$ duty factor?
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=(50 \mathrm{~mA})(0.2)=10 \mathrm{~mA}$
I_{F} AVG DATA SHEET $=5 \mathrm{~mA}$
$\eta_{\text {Peak }}=1.63$
I_{v} DATA SHEET $=1200 \mu \mathrm{~cd}$
Therefore
$\begin{aligned} \mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & (10 \mathrm{~mA} / 5 \mathrm{~mA}) \\ & (1.63)(1200 \mu \mathrm{~cd}) \\ = & 3912 \mu \mathrm{~cd}\end{aligned}$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept
is to employ both luminance and chrominance contrast techniques to enhance the readability. This is accomplished by having the OFF dots blend into the display background and the ON dots stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the following suggested filters:

Red (HDSP-F00X) and AlGaAs Red (HDSP-F15X)
Panelgraphic RUBY RED 60, or GRAY 10
SGL-Homalite H100-1605 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

HER (HDSP-F20X)
Panelgraphic SCARLET RED 65, or GRAY 10
SGL-Homalite H100-1670 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

Yellow (HDSP-F30X)
Panelgraphic YELLOW 27 or GRAY 10
SGL-Homalite H100-1720 AMBER or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

Orange (HDSP-F40X)
Panelgraphic AMBER 23, AMBER 26, or GRAY 10
SGL-Homalite H100-1709 AMBER or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

Green (HDSP-F50X)
Panelgraphic GREEN 48, or GRAY 10
SGL-Homalite H100-1440 GREEN or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY
For further information on contrast enhancement please see Application Note 1015.

Mechanical

Specially developed plastics are used to optimize the displays optical performance. These plastics restrict the solvents that may be used for cleaning. Only mixtures of Freon (F113) and alcohol should be used for vapor cleaning processes. Total immersion time in the vapors is two minutes. Some suggested mixtures are Freon TE, Arklone A or K, or Genesolv DI-15 or DE-15. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used. This process includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a water rinse, and a thorough air dry. Room temperature cleaning may be done with Freon T-E35 or T-P35, Ethanol, Isopropanol, or water with a mild detergent.

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

$7.6 \mathrm{~mm}(0.3 \mathrm{inch}) / 10.9 \mathrm{~mm}$ (0.43 inch) Seven Segment Displays

Technical Data

Features

- Industry Standard Size
- Industry Standard Pinout 7.62 mm (0.300 inch) DIP Leads on 2.54 mm (0.100 inch) Centers
- Choice of Colors Red, AlGaAs Red, High Efficiency Red, Yellow, Green
- Excellent Appearance Evenly Lighted Segments Gray Package Gives Optimum Contrast $\pm 50^{\circ}$ Viewing Angle
- Design Flexibility Common Anode or Common Cathode Single Digits
Left or Right Hand Decimal Point
± 1. Overflow Character
- Categorized for Luminous Intensity
Yellow and Green Categorized for Color Use of Like Categories Yields a Uniform Display
- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color

Selection Available
See Intensity and Color
Selected Displays Data Sheet

- Sunlight Viewable AlGaAs

Description

The 7.6 mm (0.3 inch) and 10.9 mm (0.43 inch) LED seven segment displays are designed
5082-7610, 7611, 7613,
$7616,7620,7621,7623$,
$7626,7650,7651,7653$,
$7656,7660,7661,7663$,
$7666,7730,7731,7736$,
$7740,7750,7751,7756$,
7760
HDSP-3600, 3601, 3603,
$\mathbf{3 6 0 6}, 4600,4601,4603$,
4606, E150, E151, E153,
E156

for viewing distances up to 3 metres (10 feet) and 5 metres (16 feet). These devices use an industry standard size package and pinouts. All devices are available as either common anode or common cathode.

Devices

Red 5082-	AlGaAs Red HDSP-	HER [1] 5082-	Yellow 5082-	Green HDSP-	Description	Package Drawing
7730		7610	7620	3600	7.6 mm Common Anode Left Hand Decimal	A
7731		7611	7621	3601	7.6 mm Common Anode Right Hand Decimal	B
7740		7613	7623	3603	7.6 mm Common Cathode Right Hand Decimal	C
7736		7616	7626	3606	7.6 mm Universal ± 1. Overflow Right Hand Decimal ${ }^{[2]}$	D
7750	E150	7650	7660	4600	10.9 mm Common Anode Left Hand Decimal	E
7751	E151	7651	7661	4601	10.9 mm Common Anode Right Hand Decimal	F
7760	E153	7653	7663	4603	10.9 mm Common Cathode Right Hand Decimal	G
7756	E156	7656	7666	4606	10.9 mm Universal ± 1. Overflow Right Hand Decimal ${ }^{[2]}$	H

[^19]These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current or high light ambient design. The
low current displays are ideal for portable applications. The high light ambient displays are ideal for high light ambients or long string lengths. For
additional information see the Low Current Seven Segment Displays, or High Light Ambient Seven Segment Displays data sheets.

Package Dimensions

A,B,C

A,B,D SIDE

END VIEW

D

C SIDE

F,G FRONT VIEW

A,B,C,D END

H NOTE 4

FUNCTION				
PIN	E	F	G	H
1	CATHODE-a	CATHODE-a	ANODE-a	CATHODE-d
2	CATHODE-f	CATHODE-f	ANODE-f	ANODE-d
3	ANODE ${ }^{\text {[1] }}$	ANODE ${ }^{(31}$	CATHODE ${ }^{(6)}$	NO PIN
4	NO PIN	NO PIN	NO PIN	CATHODE-c
5	NO PIN	NO PIN	NO PIN	CATHODE-e
6	CATHODE-dp	NO CONN. ${ }^{[5]}$	NO CONN. ${ }^{[5]}$	ANODE-e
7	CATHODE-e	CATHODE-e	ANODE-e	ANODE-c
8	CATHODE-d	CATHODE-d	ANODE-d	ANODE-dp
9	NO CONN. ${ }^{[5]}$	CATHODE-dp	ANODE-dp	CATHODE-dp
10	CATHODE-C	CATHODE-c	ANODE-c	CATHODE-b
11	CATHODE-g	CATHODE-g	ANODE-g	CATHODE-a
12	NO PIN	NO PIN	NO PIN	NO PIN
13	CATHODE-b	CATHODE-b	ANODE-b	ANODE-a
14	ANODE ${ }^{[3]}$	ANODE ${ }^{[3]}$	CATHODE ${ }^{[6]}$	ANODE-b

Internal Circuit Diagram

G

H

Absolute Maximum Ratings

Description	$\begin{gathered} \text { Red } \\ \text { 5082-7700 } \\ \text { Series } \end{gathered}$	AlGaAs Red HDSP-E150 Series	$\begin{gathered} \text { HER } \\ \text { 5082-7610/ } \\ 7650 \text { Series } \end{gathered}$	Yellow 5082-7620/ 7660 Series	$\begin{array}{\|c} \hline \text { Green } \\ \text { HDSP-3600 } \\ \text { 4600 Series } \end{array}$	Units
Average Power per Segment or DP	82	96	105	80	105	mW
Peak Forward Current per Segment or DP	$150{ }^{(1)}$	$160^{(3)}$	$90^{\text {[6] }}$	$60^{(7)}$	$90^{\text {[8] }}$	mA
DC Forward Current per Segment or DP	$25^{[2]}$	$40^{(4]}$	$30^{\text {[8] }}$	$20^{\text {[8] }}$	$30^{10]}$	mA
Operating Temperature Range	-40 to +100	-20 to $+100^{[11]}$	-40 to +100			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100					${ }^{\circ} \mathrm{C}$
Reverse Voltage per Segment or DP	3.0					V
Lead Solder Temperature for 3 Seconds (1.59 mm [0.063 in .] below seating plane	260					${ }^{\circ} \mathrm{C}$

Notes:

1. See Figure 1 to establish pulsed conditions.
2. Derate above $80^{\circ} \mathrm{C}$ at $0.63 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
3. See Figure 2 to establish pulsed conditions.
4. Derate above $46^{\circ} \mathrm{C}$ at $0.54 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
5. See Figure 7 to establish pulsed conditions.
6. Derate above $53^{\circ} \mathrm{C}$ at $0.45 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
7. See Figure 8 to establish pulsed conditions.
8. Derate above $81^{\circ} \mathrm{C}$ at $0.52 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
9. See Figure 9 to establish pulsed conditions.
10. Derate above $39^{\circ} \mathrm{C}$ at $0.37 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
11. For operation below $-20^{\circ} \mathrm{C}$, contact your local HP components sales office or an authorized distributor.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
5082-7730	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	360	770		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
5082-7750			360	1100		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
All	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		655		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		640		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	12		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		280		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

AlGaAs Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\underset{\text { E150 }}{\text { HDSP- }}$	Luminous Intensity/Segment ${ }^{[1,2,5]}$ (Digit Average)	I_{v}	8.5	15.0		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.8		V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
				2.0	3.0	V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\mathrm{J}-\mathrm{PIN}}$		340		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

High Efficiency Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
5082-7610	Luminous Intensity/Segment ${ }^{[1,2,6]}$ (Digit Average)	I_{v}	340	800		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
5082-7650			340	1115		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
All	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		626		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J.PIN }}$		280		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Yellow

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
5082-7620	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	205	620		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
5082-7660			290	835		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
All	Forward Voltage/Segment or DP	V_{F}		2.2	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		583		nm	
	Dominant Wavelength ${ }^{[3,7]}$	$\lambda_{\text {d }}$	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	40		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-PIN }}$		280		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

High Performance Green

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
HDSP-3600	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	570	1800		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
HDSP-4600			460	1750		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
All	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		566		nm	
	Dominant Wavelength ${ }^{[3,7]}$	$\lambda_{\text {d }}$		571	577	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	50		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		280		${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{Seg}$	

Notes:

1. Device case temperature is $25^{\circ} \mathrm{C}$ prior to the intensity measurement.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AlGaAs HDSP-E10X series displays are recommended. They are tested at 1 mA dc/segment and are pin for pin compatible with the HDSP-E15X series.
6. For low current operation, the HER HDSP-335X series displays are recommended. They are tested at 2 mA dc/segment and are pin for pin compatible with the 5082-7650 series.
7. The Yellow (5082-7620/7660) and Green (HDSP-3600/4600) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration - Red.

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 5. Relative Luminous
Intensity vs. DC Forward Current.

Figure 2. Maximum Allowed Peak Current vs. Pulse Duration - AlGaAs Red.

V_{F}-FORWARD VOLTAGE-V
Figure 4. Forward Current vs. Forward Voltage.

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration - HER Series.

Figure 9. Allowable Peak Current vs. Pulse Duration - Green Series.

Figure 8. Maximum Tolerable Peak Current vs. Pulse Duration - Yellow Series.

$$
\text { TA }_{A} \text { - AMBIENT TEMPERATURE }-{ }^{\circ} \mathbf{C}
$$

Figure 10. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 11. Forward Current vs. Forward Voltage.

Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Figure 13. Relative Luminous Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Electrical/Optical

These displays use light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The Red 5082-7730/7750 series LEDs use a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The AlGaAs Red HDSP-E150 series LEDs use double heterojunction AlGaAs on a GaAs substrate. HER 5082-7610/7650 and Yellow 5082-7620/7660 series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HDSP-3600/4600 series LEDs use a liquid phase GaP epitaxial layer on GaP.

These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 4 and 11. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation may be calculated using the following V_{F} MAX models:

Red 5082-7730/7750 series $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$ For: $\mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}$

AlGaAs Red HDSP-E150 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$ For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$ For: $20 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 100 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.27 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(7.2 \Omega)$ For $\mathrm{I}_{\text {Peak }} \geq 100 \mathrm{~mA}$

HER (5082-7610/7650) and Yellow (5082-7620/7660) series $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6+\mathrm{I}_{\text {Peak }}(45 \Omega)$ For: $5 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.75+\mathrm{I}_{\text {Peak }}(38 \Omega)$ For: $\mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}$

Green (HDSP-3600/4600) series

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0+\mathrm{I}_{\text {Peak }}(50 \Omega) \\
& \text { For: } \mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}
\end{aligned}
$$

Figures 6 and 13 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & \left(\mathrm{I}_{\mathrm{p}} \text { AVG } / \mathrm{I}_{\mathrm{p}}\right. \text { AVG DATA } \\
& \text { SHEET) }\left(\eta_{\text {peak }}\right)\left(\mathrm{I}_{\mathrm{v}}\right. \text { DATA } \\
& \text { SHEET) }
\end{aligned}
$$

Where:
$\mathrm{I}_{\mathrm{v}} \mathrm{AVG}$ is the calculated time averaged luminous intensity resulting from $\mathrm{I}_{\mathrm{F}} \mathrm{AVG}$.
$I_{F} A V G$ is the desired time averaged LED current.
I_{F} AVG DATA SHEET is the data sheet test current for I ${ }^{\text {D DATA SHEET. }}$
$\eta_{\text {peak }}$ is the relative efficiency at the peak current, scaled from Figure 6 or 13.
I_{v} DATA SHEET is the data sheet luminous intensity, resulting from I_{F} AVG DATA SHEET.

For example, what is the luminous intensity of a 5082 -
7610 driven at 50 mA peak $1 / 5$ duty factor?
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=(50 \mathrm{~mA})(0.2)=10 \mathrm{~mA}$
I_{F} AVG DATA SHEET $=5 \mathrm{~mA}$
$\eta_{\text {Peak }}=1.62$
I_{v} DATA SHEET $=800 \mu \mathrm{~cd}$
Therefore

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & (10 \mathrm{~mA} / 5 \mathrm{~mA}) \\
& (1.62)(800 \mu \mathrm{~cd}) \\
= & 2592 \mu \mathrm{~cd}
\end{aligned}
$$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance the readability. This is accomplished by having the OFF dots blend into the display background and the ON dots stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the following suggested filters:

Red and AlGaAs Red (5082-7730/7750/HDSP-E150)
Panelgraphic RUBY RED 60 SGL-Homalite H100-1605 RED
3M Louvered Filter R6310 RED or ND0220 GRAY

HER (5082-7610/7650)
Panelgraphic SCARLET RED 65
SGL-Homalite H100-1670 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

Yellow (5082-7620/7660)
Panelgraphic YELLOW 27 or GRAY 10
SGL-Homalite H100-1720 AMBER or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

Green (HDSP-3600/4600)
Panelgraphic GREEN 48
SGL-Homalite H100-1440 GREEN or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

For further information on contrast enhancement please see Application Note 1015.

Mechanical

Specially developed plastics are used to optimize the displays optical performance. These plastics restrict the solvents that may be used for cleaning. Only mixtures of Freon (F113) and alcohol should be used for vapor cleaning processes. Total immersion time in the vapors is two minutes. Some suggested mixtures are Freon TE, Arklone A or K, or Genesolv DES. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning
process may also be used. This process includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a water rinse, and a thorough air dry. Room temperature cleaning may be done with Freon T-E35 or TP35, Ethanol, Isopropanol, or water with a mild detergent.

Cleaning agents from the ketone family (acetone, methyl
ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For further information on soldering LEDs please refer to Application Note 1027.

14.2 mm (0.56 inch) Seven Segment Displays

Technical Data

Features

- Industry Standard Size
- Industry Standard Pinout 15.24 mm (0.6 in .) DIP Leads on 2.54 mm (0.1 in .) Centers
- Choice of Colors

Red, AlGaAs Red, High
Efficiency Red, Yellow, Green

- Excellent Appearance

Evenly Lighted Segments
Mitered Corners on Segments
Gray Package Gives Optimum
Contrast
$\pm 50^{\circ}$ Viewing Angle

- Design Flexibility

Common Anode or Common Cathode
Single and Dual Digits Right Hand Decimal Point ± 1. Overflow Character

- Categorized for Luminous Intensity
Yellow and Green Categorized for Color
Use of Like Categories Yields a Uniform Display
- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing
- Intensity and Color Selection Option
See Intensity and Color
Selected Displays Data Sheet
- Sunlight Viewable AlGaAs

Description

The 14.2 mm (0.56 inch) LED seven segment displays are designed for viewing distances

HDSP-5301, 5303, 5307, 5308, 5321, 5323
HDSP-H151, H153, H157, H158
HDSP-5501, 5503, 5507, 5508, 5521, 5527
HDSP-5701, 5703, 5707, 5708, 5721, 5723
HDSP-5601, 5603, 5607, 5608, 5621, 5623
up to 7 metres (23 feet). These devices use and industry standard size package and pinout. Both the numeric and ± 1 overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.

Devices

Red HDSP-	AlGaAs Red HDSP_[1]	HER HDSP-[1]	Yellow HDSP-	Green HDSP-	Description	Package Drawing
5301	H151	5501	5701	5601	Common Anode Right Hand Decimal	A
5303	H153	5503	5703	5603	Common Cathode Right Hand Decimal	B
5307	H157	5507	5707	5607	Common Anode ± 1. Overflow	C
5308	H158	5508	5708	5608	Common Cathode ± 1. Overflow	D
5321		5521	5721	5621	Two Digit Common Anode Right Hand Decimal	E
5323		5523	5723	5623	Two Digit Common Cathode Right Hand Decimal	F

[^20]These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays
are ideal for portable applications. For additional information see the Low Current Seven Segment Displays data sheet.

Package Dimensions

Internal Circuit Diagram

C

Absolute Maximum Ratings

Description	Red HDSP-5300 Series	AlGaAs Red HDSP-H150 Series	HER HDSP-5500 Series	Yellow HDSP-5700 Series	Green HDSP-5600 Series	Units
Average Power per Segment or DP	82	96	105	80	105	mW
Peak Forward Current per Segment or DP	$150{ }^{[1]}$	$160^{[3]}$	$90^{\text {(5] }}$	$60^{[7]}$	$90^{[8]}$	mA
DC Forward Current per Segment or DP	$25^{[2]}$	$40^{(4)}$	$30^{[6]}$	$20^{\text {[8] }}$	$30^{10]}$	mA
Operating Temperature Range	-40 to +100	-20 to $+100^{[11]}$	-40 to +100			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-55 to +100					${ }^{\circ} \mathrm{C}$
Reverse Voltage per Segment or DP	3.0					V
Lead Solder Temperature for 3 Seconds (1.59 mm [0.63 in .] below seating plane)	260					${ }^{\circ} \mathrm{C}$

Notes:

1. See Figure 1 to establish pulsed conditions.
2. Derate above $80^{\circ} \mathrm{C}$ at $0.63 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
3. See Figure 2 to establish pulsed conditions.
4. Derate above $46^{\circ} \mathrm{C}$ at $0.54 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
5. See Figure 7 to establish pulsed conditions.
6. Derate above $53^{\circ} \mathrm{C}$ at $0.45 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
7. See Figure 8 to establish pulsed conditions.
8. Derate above $81^{\circ} \mathrm{C}$ at $0.52 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
9. See Figure 9 to establish pulsed conditions.
10. Derate above $39^{\circ} \mathrm{C}$ at $0.37 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
11. For operation below $-20^{\circ} \mathrm{C}$, contact your local HP components sales office or an authorized distributor.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
Red

Device Series HDSP	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
5300	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	600	1300		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
				1400			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \text { Peak: } \\ & 1 \text { of } 5 \mathrm{df} \end{aligned}$
	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		655		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		640		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	12		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}}{ }^{\prime} \mathrm{C}$		-2		$\mathrm{mV}^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	R $\theta_{\text {J-Pin }}$		345		$\begin{gathered} \hline{ }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$	

AlGaAs Red

Device Series HDSP	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
H150	Luminous Intensity/Segment ${ }^{[1,2,5]}$ (Digit Average)	I_{v}	9.1	16.0		med	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.8		V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
				2.0	3.0		$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of $\mathrm{V}_{\mathrm{F}} /$ Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}}{ }^{\prime} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	R $\theta_{\text {J-Pin }}$		400		$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$	

High Efficiency Red

Device Series HDSP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
5500	Luminous Intensity/Segment ${ }^{[1,2,6]}$ (Digit Average)	I_{v}	900	2800		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
				3700			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA} \text { Peak: } \\ & 1 \text { of } 6 \mathrm{df} \end{aligned}$
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		626		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	30		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}}{ }^{\prime} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-Pin }}$		345		${ }^{\circ} \mathrm{C} / \mathrm{W} /$	

Yellow

Device Series HDSP	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
5700	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	600	1800		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
				2750			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA} \text { Peak: } \\ & 1 \text { of } 6 \mathrm{df} \end{aligned}$
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		583		nm	
	Dominant Wavelength ${ }^{[3,7]}$	$\lambda_{\text {d }}$	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	40		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV}^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$R \theta_{\text {J-Pin }}$		345		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$	

High Performance Green

Device Series HDSP.	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
5600	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average) ${ }^{\text {- }}$	I_{v}	900	2500		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
				3100			$I_{F}=60 \mathrm{~mA} \text { Peak: }$ 1 of 6 df
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		566		nm	
	Dominant Wavelength ${ }^{[3,7]}$	$\lambda_{\text {d }}$		571	577	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	50		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\mathrm{J}-\mathrm{Pin}}$		345		$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$	

Notes:

1. Device case temperature is $25^{\circ} \mathrm{C}$ prior to the intensity measurement.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AlGaAs HDSP-H10X series displays are recommended. They are tested at 1 mA de/segment and are pin for pin compatible with the HDSP-H15X series.
6. For low current operation, the HER HDSP-555X series displays are recommended. They are tested at 2 mA de/segment and are pin for pin compatible with the HDSP-550X series.
7. The Yellow (HDSP-5700) and Green (HDSP-5600) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration - Red.

Figure 2. Maximum Tolerable Peak Current vs. Pulse Duration - AlGaAs Red.

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

IF - FORWARD CURRENT PER SEGMENT - mA
Figure 5. Relative Luminous Intensity vs. DC Forward Current.

HER, Yellow, Green

Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration - HER.

Figure 4. Forward Current vs. Forward Voltage.

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

t_{p} - PULSE DURATION - $\mu \mathrm{s}$
Figure 8. Maximum Tolerable Peak
Current vs. Pulse Duration - Yellow.

Figure 9. Maximum Tolerable Peak Current vs. Pulse Duration - Green.

\mathbf{V}_{F}-FORWARD VOLTAGE - V
Figure 11. Forward Current vs. Forward Voltage.

Figure 13. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Figure 10. Maximum Allowable DC Current vs. Ambient Temperature.

$I_{\text {F - FORWARD CURRENT PER SEGMENT - MA }}$
Figure 12. Relative Luminous Intensity vs. DC Forward Current.

Electrical/Optical

These displays use light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The Red HDSP5300 series LEDs use a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The AlGaAs Red HDSP-H150 series LEDs use double heterojunction AlGaAs on a GaAs substrate. HER HDSP-5500 and Yellow HDSP5700 series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HDSP5600 series LEDs use a liquid phase GaP epitaxial layer on GaP.

These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 4 and 11. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX models:

Red HDSP-5300 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $\mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}$
AlGaAs Red HDSP-H150 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $20 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 100 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.27 \mathrm{~V}+\mathrm{I}_{\text {Peak }}$
(7.2 Ω)

For $\mathrm{I}_{\text {Peak }} \geq 100 \mathrm{~mA}$

HER (HDSP-5500) and Yellow
(5700) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6+\mathrm{I}_{\text {Peak }}(45 \Omega)$ For: $5 \mathrm{~mA} \leq \mathrm{I}_{\text {peak }} \leq 20 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.75+\mathrm{I}_{\text {Peak }}(38 \Omega)$ For: $\mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}$

> Green (HDSP-5600) series
> V_{F} MAX $=2.0+\mathrm{I}_{\text {Peak }}(50 \Omega)$
> For: $\mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}$

Figures 6 and 13 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & \left(\mathrm{I}_{\mathrm{F}} \mathrm{AVG} / /_{\mathrm{F}}\right. \text { AVG DATA } \\
& \text { SHEET })\left(\eta_{\text {peak }}\right)\left(\mathrm{I}_{\mathrm{v}}\right. \text { DATA } \\
& \text { SHEET })
\end{aligned}
$$

Where:
$\mathrm{I}_{\mathrm{v}} \mathrm{AVG}$ is the calculated time averaged luminous intensity resulting from I_{F} AVG.
$I_{F} A V G$ is the desired time averaged LED current.
I_{F} AVG DATA SHEET is the data sheet test current for I_{v} DATA SHEET.
$\eta_{\text {peak }}$ is the relative efficiency at the peak current, scaled from Figure 6 or 13.
I_{v} DATA SHEET is the data sheet luminous intensity, resulting from I_{F} AVG DATA SHEET.

For example, what is the luminous intensity of an HDSP5500 driven at 50 mA peak $1 / 5$ duty factor?
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=(50 \mathrm{~mA}) \bullet(0.2)=10 \mathrm{~mA}$
I_{F} AVG DATA SHEET $=10 \mathrm{~mA}$
$\eta_{\text {Peak }}=1.3$
$\mathrm{I}_{\mathrm{v}}^{\text {Deak }}$ ATA SHEET $=2800 \mu \mathrm{~cd}$
Therefore

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & (10 \mathrm{~mA} / 10 \mathrm{~mA}) \\
& (1.3)(2800 \mu \mathrm{~cd}) \\
= & 3640 \mu \mathrm{~cd}
\end{aligned}
$$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance the readability. This is accomplished by having the OFF dots blend into the display background and the ON dots stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the following suggested filters:

Red and AlGaAs Red (HDSP5300/H150)
Panelgraphic RUBY RED 60
SGL-Homalite H100-1605 RED
3M Louvered Filter R6310 RED or ND0220 GRAY

HER (HDSP-5500)
Panelgraphic SCARLET RED 65
SGL-Homalite H100-1670 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

Yellow (HDSP-5700)
Panelgraphic YELLOW 27 or GRAY 10
SGL-Homalite H100-1720 AMBER or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

Green (HDSP-5600)
Panelgraphic GREEN 48
SGL-Homalite H100-1440 GREEN or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

For further information on contrast enhancement please see Application Note 1015.

Mechanical

Specially developed plastics are used to optimize the displays optical performance. These plastics restrict the solvents that may be used for cleaning. Only mixtures of Freon (F113) and alcohol should be used for vapor cleaning processes. Total immersion time in the vapors is two minutes. Some suggested mixtures are Freon TE, Arklone A or K, or Genesolv DES. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used. This process includes a neutralizer rinse (3\% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a water rinse, and a thorough air dry. Room temperature cleaning may be done with Freon T-E35 or TP35, Ethanol, Isopropanol, or water with a mild detergent.

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For further information on soldering LEDs please refer to Application Note 1027.

20 mm (0.8 inch) Seven Segment Displays

Technical Data

Features

- Industry Standard Size
- Industry Standard Pinout 15.24 mm (0.6 in .) DIP Leads on 2.54 mm (0.1 in .) Centers
- Choice of Colors Red, AlGaAs Red, High Efficiency Red, Yellow, Green
- Excellent Appearance Evenly Lighted Segments Mitered Corners on Segments Gray Package Gives Optimum Contrast $\pm 50^{\circ}$ Viewing Angle
- Design Flexibility

Common Anode or Common Cathode
Left and Right Hand Decimal Points
± 1. Overflow Character

- Categorized for Luminous Intensity
Yellow and Green

Categorized for Color Use of Like Categories Yields a Uniform Display

- High Light Output
- High Peak Current
- Excellent for Long Digit String Multiplexing Intensity and Color Selection Option
See Intensity and Color Selected Displays Data Sheet
- Sunlight Viewable AlGaAs

Description

The 20 mm (0.8 inch) LED seven segment displays are designed for viewing distances up to 10 metres (33 feet). These devices use an industry standard size package and pinout. All devices are available as either common anode or common cathode.

HDSP-3400, 3401, 3403, 3405, 3406
HDSP-N150, N151, N153, N155, N156
HDSP-3900, 3901, 3903, 3905, 3906
HDSP-4200, 4201, 4203, 4205, 4206
HDSP-8600, 8601, 8603, 8605, 8606

These displays are ideal for most applications. Pin for pin equivalent displays are also available in a low current design. The low current displays are ideal for portable applications. For additional information see the Low Current Seven Segment Displays data sheet.

Devices

Red HDSP-	AlGaAs HDSP-	HER HDSP-	Yellow HDSP-	Green HDSP-	Description	Package Drawing
3400	N150	3900	4200	8600	Common Anode Left Hand Decimal	A
3401	N151	3901	4201	8601	Common Anode Right Hand Decimal	B
3403	N153	3903	4203	8603	Common Cathode Right Hand Decimal	C
3405	N155	3905	4205	8605	Common Cathode Left Hand Decimal	D
3406	N156	3906	4206	8606	Universal ± 1. Overflow ${ }^{[2]}$	E

Notes:

1. These displays are recommended for high ambient light operation. Please refer to the HDSP-N10X AlGaAs data sheet for low current operation.
2. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram E.

Package Dimensions

FRONT VIEW A, D

FRONT VIEW B, C

FRONT VIEW E

END VIEW

SIDE VIEW

NOTES:

1. DIMENSIONS IN MILLIMETERS AND (INCHES).
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY
3. REDUNDANT ANODES.
4. UNUSED dp POSITION.
5. SEE INTERNAL CIRCUIT DIAGRAM.
6. REDUNDANT CATHODES.
7. FOR HDSP-4200/-8600 SERIES PRODUCT ONLY.

Internal Circuit Diagram

A

B

C

D

E

Absolute Maximum Ratings

| $\begin{array}{c}\text { Description }\end{array}$ | $\begin{array}{c}\text { Red } \\ \text { HDSP-3400 } \\ \text { Series }\end{array}$ | $\begin{array}{c}\text { AlGaAs Red } \\ \text { HDSP-N150 } \\ \text { Series }\end{array}$ | $\begin{array}{c}\text { HER } \\ \text { HDSP-3900 } \\ \text { Series }\end{array}$ | $\begin{array}{c}\text { Yellow } \\ \text { HDSP-4200 } \\ \text { Series }\end{array}$ | $\begin{array}{c}\text { Green } \\ \text { HDSP-8600 } \\ \text { Series }\end{array}$ | Units |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |$\}$

Notes:

1. See Figure 1 to establish pulsed conditions.
2. Derate above $45^{\circ} \mathrm{C}$ at $0.83 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. See Figure 2 to establish pulsed conditions.
4. Derate above $55^{\circ} \mathrm{C}$ at $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
5. See Figure 7 to establish pulsed conditions.
6. Derate above $50^{\circ} \mathrm{C}$ at $0.73 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
7. See Figure 8 to establish pulsed conditions.
8. Derate above $50^{\circ} \mathrm{C}$ at $0.54 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{gathered} \text { HDSP- } \\ 3400 \end{gathered}$	Luminous Intensity/Segment ${ }^{11,2]}$ (Digit Average)	I_{v}	500	1200		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.6	2.0	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {peak }}$		655		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		640		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	20		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}}{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	R $\theta_{\text {J.PIN }}$		375		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

AlGaAs Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{gathered} \text { HDSP- } \\ \text { N15P- } \end{gathered}$	Luminous Intensity/Segment ${ }^{[1,2,5]}$ (Digit Average)	I_{v}	6.0	14.0		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		1.8		V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
				2.0	3.0	v	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	15		v	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}}{ }^{\prime} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \mathrm{\theta}_{\text {J.PIN }}$		430		$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$	

High Efficiency Red

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{aligned} & \text { HDSP- } \\ & 3900 \end{aligned}$	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	$\mathrm{I}_{\text {v }}$	3350	7000		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$ Peak: 1 of 5 df
				4800		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.6	3.5	V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		635		nm	
	Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		626		nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	25		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV}^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{Re}_{\text {J.PIN }}$		375		$\begin{gathered} \hline{ }^{\circ} \mathrm{C} / \mathrm{W} / \\ \mathrm{Seg} \end{gathered}$	\%

Yellow

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{gathered} \text { HDSP- } \\ 4200 \end{gathered}$	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	2200	7000		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$ Peak: 1 of 5 df
				3400		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Forward Voltage/Segment or DP	V_{F}		2.6	3.5	V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {peak }}$		583		nm	
	Dominant Wavelength ${ }^{[3,6]}$	$\lambda_{\text {d }}$	581.5	586	592.5	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	25.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		375		$\begin{aligned} & \text { } \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$	

Green

Device Series	Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{gathered} \text { HDSP- } \\ 8600 \end{gathered}$	Luminous Intensity/Segment ${ }^{[1,2]}$ (Digit Average)	I_{v}	680	1500		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
				1960		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$ Peak: 1 of 5 df
	Forward Voltage/Segment or DP	V_{F}		2.1	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		566		nm	
	Dominant Wavelength ${ }^{[3,6]}$	$\lambda_{\text {d }}$		571	577	nm	
	Reverse Voltage/Segment or DP ${ }^{[4]}$	V_{R}	3.0	50.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Temperature Coefficient of V_{F} /Segment or DP	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Thermal Resistance LED Junction-to-Pin	$\mathrm{R} \theta_{\text {J-PIN }}$		375		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} / \\ & \mathrm{Seg} \end{aligned}$	

Notes:

1. Case temperature of the device immediately prior to the intensity measurement is $25^{\circ} \mathrm{C}$.
2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.
3. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.
5. For low current operation, the AlGaAs Red HDSP-N100 series displays are recommended. They are tested at 1 mA de/ segment and are pin for pin compatible with the HDSP-N150 series.
6. The Yellow (HDSP-4200) and Green (HDSP-8600) displays are categorized for dominant wavelength. The category is designated by a number adjacent to the luminous intensity category letter.

Red, AlGaAs Red

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration - Red.

Figure 3. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

Figure 2. Maximum Allowed Peak Current vs. Pulse Duration - AlGaAs Red.

Figure 4. Forward Current vs. Forward Voltage.

Figure 6. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

HER, Yellow, Green

Figure 7. Maximum Allowed Peak Current vs. Pulse Duration - HER, Yellow.

Figure 9. Maximum Allowable DC Current vs. Ambient Temperature.

Figure 8. Maximum Allowed Peak Current vs. Pulse Duration - Green.

Figure 10. Forward Current vs. Forward Voltage.

Figure 12. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

Electrical/Optical

These displays use light emitting diodes, with the light from each LED optically stretched to form individual segments and decimal points. The Red HDSP3400 series LEDs use a p-n junction diffused into a GaAsP epitaxial layer on a GaAs substrate. The AlGaAs Red HDSP-N150 series LEDs use double heterojunction AlGaAs on a GaAs substrate. HER HDSP-3900 and Yellow HDSP4200 series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HDSP-8600 series LEDs use a liquid phase GaP epitaxial layer on GaP.

These displays are designed for strobed operation. The typical forward voltage values can be scaled from Figures 4 and 10. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation, may be calculated using the following $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}$ models:

Red HDSP-3400 series

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega) \\
& \text { For: } \mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}
\end{aligned}
$$

AlGaAs Red HDSP-N150 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$
For: $\mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega)$
For: $20 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 100 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.27 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(7.2 \Omega)$
For $I_{\text {Peak }} \geq 100 \mathrm{~mA}$
HER (HDSP-3900) and Yellow
(HDSP-4200) series

$$
\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.9+\mathrm{I}_{\text {Peak }}(21.8 \Omega)
$$

For: $10 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 30 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.15+\mathrm{I}_{\text {Peak }}(13.5 \Omega)$ For: $I_{\text {Peak }} \geq 30 \mathrm{~mA}$

Green (HDSP-8600) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(50 \Omega)$

$$
\text { For: } \mathrm{I}_{\text {Peak }}>5 \mathrm{~mA}
$$

Figures 6 and 12 allow the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & \left(\mathrm{I}_{\mathrm{F}} \text { AVG } / I_{\mathrm{F}}\right. \text { AVG DATA } \\
& \text { SHEET })\left(\eta_{\text {peak }}\right)\left(\mathrm{I}_{\mathrm{V}}\right. \text { DATA } \\
& \mathrm{SHEET})
\end{aligned}
$$

Where:
$I_{V} A V G$ is the calculated time averaged luminous intensity resulting from I_{F} AVG
$I_{F} A V G$ is the desired time averaged LED current
$I_{F} A V G$ DATA SHEET is the data sheet test current for I DATA SHEET
$\eta_{\text {peak }}$ is the relative efficiency at the peak current, scaled from Figure 6 or 12
I_{v} DATA SHEET is the data sheet luminous intensity, resulting from I_{F} AVG DATA SHEET

For example, what is the luminous intensity of an HER HDSP-3900 driven at 135 mA peak $1 / 6$ duty factor?
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=(135 \mathrm{~mA})(1 / 6)=$ 22.5 mA
$I_{F} A V G$ DATA SHEET $=20 \mathrm{~mA}$
$\eta_{\text {Peak }}=1.03$
I_{v} DATA SHEET $=7000 \mu \mathrm{~cd}$
Therefore

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & (22.5 \mathrm{~mA} / 20 \mathrm{~mA}) \\
& (1.03)(7000 \mu \mathrm{~cd}) \\
= & 8111 \mu \mathrm{~cd}
\end{aligned}
$$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance the readability. This is accomplished by having the OFF dots blend into the display background and the ON dots stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the following suggested filters:

Red and AlGaAs Red (HDSP3400/N150)
Panelgraphic RUBY RED 60
SGL-Homalite H100-1605 RED
3M Louvered Filter R6310 RED
or ND0220 GRAY
HER (HDSP-3900)
Panelgraphic SCARLET RED 65
SGL-Homalite H100-1670 RED or H100-1250 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

Yellow (HDSP-4200)
Panelgraphic YELLOW 27 or GRAY 10
SGL-Homalite H100-1720 AMBER or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

Green (HDSP-8600)
Panelgraphic GREEN 48
SGL-Homalite H100-1440 GREEN or H100-1250 GRAY
3M Louvered Filter ND0220 GRAY

For further information on contrast enhancement please see Application Note 1015.

Mechanical

Specifially developed plastics are used to optimize the displays optical performance. These plastics restrict the solvents that may be used for cleaning. Only mixtures of Freon (F113) and alcohol should be used for vapor cleaning processes. Total immersion time in the vapors is two minutes. Some suggested mixtures are Freon TE, Arklone A or K, or Genesolv DES. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used. This process includes a
neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a water rinse, and a thorough air dry. Room temperature cleaning may be done with Freon T-E35 or T-P35, Ethanol, Isopropanol, or water with a mild detergent.

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For further information on soldering LEDs please refer to Application Note 1027.

2.3 Inch AlGaAs Red 5×8 Dot Matrix Alphanumeric Displays

Technical Data

Features

- Very Large Character Height
- Easily Expandable to Larger Displays
- X-Y Stackable
- Wide Viewing Angle
- Ideal for Graphics Panels
- Exceptional Brightness

HDSP-P15X Series Designed for High Ambient Light Conditions

- Categorized for Intensity
- Mechanically Rugged

Description

The large 5×8 dot matrix alphanumeric display uses newly developed Double Heterojunction (DH) AlGaAs/

GaAs material technology. This LED material has outstanding light output efficiency over a wide range of drive currents. The color is deep red at the dominant wavelength of 637 nanometres. The 2.3 inch (58.4 mm) display is ideal for applications such as graphics displays and moving message panels.

The HDSP-P10X and HDSPP15X have different optical characteristics that are optimized for different applications. The HDSP-P10X and HDSP-P15X displays differ in the amount of diffusant. The HDSP-P10X uses a large amount of diffusant. This causes the dots to have a

HDSP-P101/HDSP-P151 HDSP-P103/HDSP-P153

uniform appearance across the light emitting area. The HDSPP15X uses a smaller amount of diffusant. This causes the dots to appear brightest in the center. The HDSP-P15X is designed for high ambient light conditions or long viewing distances, where brightness is more important than uniformity.
Absolute Maximum Ratings at $\mathbf{2 5}^{\mathbf{\circ}} \mathbf{C}$
Average Power per Dot 36 mW
Peak Forward Current per Dot ${ }^{[1]}$ 125 mA
Average Forward Current per Dot 11 mA
Operating Temperature Range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Reverse Voltage per Dot 3 V
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 3 sec .
(1.59 mm [1/16 inch] below seating plane)
Note:

1. Do not exceed maximum average current per dot.

Package Dimensions

Internal Circuit Diagram

Electrical/Optical Characteristics at $\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathbf{C}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity/Dot (Digit Average) ${ }^{[1]}$ HDSP-P101 HDSP-P151 ${ }^{[2]}$	I_{v}	5000	12000		$\mu \mathrm{cd}$	$I_{F}=50 \mathrm{~mA}: 1 / 5 \text { duty }$ factor (10 mA Avg.)
		6000	15000			
Peak Wavelength	$\lambda_{\text {PEAK }}$		645		nm	
Dominant Wavelength ${ }^{[3]}$	$\lambda_{\text {d }}$		637		nm	
Forward Voltage/Dot	V_{F}		1.9	2.5	V	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
Reverse Voltage/Dot ${ }^{[4]}$	V_{R}	3.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Temperature Coefficient of V_{F} /Dot	$\Delta \mathrm{V}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$		-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Thermal Resistance LED Junction-to-Pin per Package	$\mathrm{R} \theta_{\text {J-PIN }}$		18		${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Pack	

Notes:

1. The displays are categorized for luminous intensity with the intensity category designated by a letter on the bottom end of the package. The luminous intensity minimum and categories are determined by computing the numerical average of the individual dot intensities.
2. The HDSP-P151 is designed for high ambient light operation. Mixing the HDSP-P101 and the HDSP-P151 displays may cause digit to digit mismatch.
3. The dominant wavelength, λ_{d}, is derived from the C.I.E. Chromaticity diagram and is that single wavelength which defines the color of the device.
4. Typical specification for reference only. Do not exceed absolute maximum ratings.

Figure 1. Maximum Allowable Average Current per Dot vs. Ambient Temperature. T_{J} MAX $=110^{\circ} \mathrm{C}$.

Figure 2. Forward Current vs. Forward Voltage.

Figure 3. Relative Luminous Efficiency (per Dot) vs. Peak Current per Dot.

Operational

 Considerations
Electrical Description

These display devices are composed of light emitting diodes, with the light from each LED optically stretched to form individual dots.

These display devices are well suited for strobed operation. The typical forward voltage can be scaled from Figure 2. These values should be used to calculate the current limiting resistor value and the typical power dissipation. Expected maximum V_{F} values, for driver circuit design and maximum power dissipation, may be calculated using the following V_{F} MAX model:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega) \\
& \text { For: } \mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(10 \Omega) \\
& \text { For: } \mathrm{I}_{\text {Peak }} \geq 20 \mathrm{~mA}
\end{aligned}
$$

Figure 3 allows the designer to calculate the luminous intensity at different peak and average currents. The following equation calculates intensity at different peak and average currents:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & \left(\mathrm{I}_{\mathrm{F}} \text { AVG/I } I_{\mathrm{F}}\right. \text { AVG DATA } \\
& {\text { SHEEE })\left(\eta_{\text {peak }}\right)\left(\mathrm{I}_{\mathrm{v}}\right. \text { DATA }}^{\text {SHEET })}
\end{aligned}
$$

Where:
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}$ is the desired time averaged LED current.
I_{F} AVG DATA SHEET is the time averaged data sheet test current for I_{v} DATA SHEET.
$\eta_{\text {peak }}$ is the relative efficiency at the peak current, scaled from Figure 3.
$\mathrm{I}_{\mathrm{v}} \mathrm{AVG}$ is the calculated time averaged luminous intensity resulting from I_{F} AVG.

For example, what is the
luminous intensity of an
AlGaAs Red (HDSP-P15X)
driven at 100 mA peak $1 / 100$
duty factor?
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=(100 \mathrm{~mA})(0.01)=1 \mathrm{~mA}$
I_{F} AVG DATA SHEET $=10 \mathrm{~mA}$
$\eta_{\text {Peak }}=0.97$
I_{v} DATA SHEET $=15000 \boldsymbol{\mu \mathrm { cd }}$
Therefore

$$
\begin{aligned}
\mathrm{I}_{\mathrm{v}} \mathrm{AVG}= & (1 \mathrm{~mA} / 10 \mathrm{~mA})(0.97) \\
& (15000 \mu \mathrm{~cd}) \\
= & 1455 \mu \mathrm{~cd}
\end{aligned}
$$

Thermal Considerations

The device thermal resistance may be used to calculate the junction temperature of the central LED. The following equation calculates the junction temperature of the central (hottest) LED.
$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}}\right)\left(\mathrm{R} \theta_{\mathrm{J}-\mathrm{A}}\right)(\mathrm{N})$
$P_{\mathrm{D}}=\left(\mathrm{V}_{\mathrm{F}} \mathrm{MAX}\right)\left(\mathrm{I}_{\mathrm{F}} \mathrm{AVG}\right)$
$R \theta_{\text {J-A }}=R \theta_{\text {J-PIN }}+R \theta_{\text {PIN-A }}$
T_{J} is the junction temperature of the central LED.
T_{A} is the ambient temperature.
P_{D} is the power dissipated by one LED.
N is the number of LEDs on per character.
V_{F} MAX is calculated using the appropriate V_{F} model.
$R \theta_{J-A}$ is the package thermal resistance from the central LED to the ambient.
$R \theta_{\text {J-PIN }}$ is the package thermal resistance from the central LED to the pin.
$R \theta_{\text {pin }-\mathrm{A}}$ is the thermal resistance from the pin to the ambient.

For example, what is the maximum ambient temperature an HDSP-P1XX can operate with the following conditions:
$\mathrm{I}_{\text {Peak }}=125 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=11 \mathrm{~mA}$
$R \theta_{J-A}=50^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{N}=40$
$\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+(0.125 \mathrm{~A})$
$(10 \Omega)=3.25 \mathrm{~V}$
$P_{D}=(3.25 \mathrm{~V})(0.011 \mathrm{~A})$
$=0.03575 \mathrm{~W}$
$\mathrm{T}_{\mathrm{A}}=110^{\circ} \mathrm{C}-\left(50^{\circ} \mathrm{C} / \mathrm{W}\right)$
$(0.03575)(40)=38.5^{\circ} \mathrm{C}$
The maximum number of dots on for the ASCII character set is 20 . What is the maximum ambient temperature an HDSPP1XX can operate with the following conditions:
$\mathrm{I}_{\text {Peak }}=125 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{F}} \mathrm{AVG}=11 \mathrm{~mA}$
$R \theta_{J-A}=50^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{N}=20$
$\mathrm{T}_{\mathrm{J}} \mathrm{MAX}=110^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+(0.125 \mathrm{~A})$
$(10 \Omega)=3.25 \mathrm{~V}$
$\mathbf{P}_{\mathrm{D}}=(3.25 \mathrm{~V})(0.011 \mathrm{~A})$
$=0.03575 \mathrm{~W}$
$\mathrm{T}_{\mathrm{A}}=110^{\circ} \mathrm{C}-\left(50^{\circ} \mathrm{C} / \mathrm{W}\right)$

$$
(0.03575)(20)=74.3^{\circ} \mathrm{C}
$$

Contrast Enhancement

The objective of contrast enhancement is to provide good display readability in the end use ambient light. The concept is to employ both luminance and chrominance contrast techniques to enhance the readability. This is accomplished by having the OFF dots blend into the display background and the ON dots stand out vividly against this same background. Therefore, these display devices are assembled with a gray package and matching encapsulating epoxy in the dots.

Contrast enhancement may be achieved by using one of the following suggested filters:

Panelgraphic RUBY RED 60 or GRAY 10
SGL-Homalite H100-1605 RED or H100-1650 GRAY
3M Louvered Filter R6310 RED or ND0220 GRAY

For further information on contrast enhancement please see Application Note 1015.

Mechanical

Specially developed plastics are used to optimize the displays
optical performance. These plastics restrict the solvents that may be used for cleaning. Only mixtures of Freon (F113) and alcohol should be used for vapor cleaning processes. Total immersion time in the vapors is two minutes. Some suggested mixtures are Freon TE, Arklone A or K, or Genesolv DI-15 or DE-15. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used. This process includes a neutralizer rinse (3% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a water rinse, and a thorough air dry.

Room temperature cleaning may be done with Freon T-E35 or T-P35, Ethanol, Isopropanol, or water with a mild detergent.

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

Features

- NUMERIC

5082-7300/-7302
$0-9$, Test State, Minus Sign, Blank States, Decimal Point 7300 Right Hand D. P. 7302 Left Hand D.P.

- HEXADECIMAL 5082-7340 0-9, A-F, Base 16 Operation, Blanking Control, Conserves Power, No Decimal Point
- TTL COMPATIBLE
- INCLUDES DECODER/DRIVER WITH MEMORY 8421 Positive Logic Input
- 4×7 DOT MATRIX ARRAY

Shaped Character, Excellent Readability

- STANDARD DUAL-IN-LINE PACKAGE INCLUDING CONTRAST FILTER
$15.2 \mathrm{~mm} \times 10.2 \mathrm{~mm}$ (0.6 inch $\times 0.4$ inch)
- CATEGORIZED FOR LUMINOUS INTENSITY

Description

The HP 5082-7300 series solid state numeric and hexadecimal displays with on-board decoder/driver and memory provide 7.4 mm (0.29 inch) displays for reliable, low-cost methods of displaying digital information.
The 5082-7300 numeric display decodes positive 8421 BCD logic inputs into characters 0-9, a "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.

Package Dimensions

Pin	Function	
	5082-7300 and 7302 Numeric	5082-7340 Hexadecimal
	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal Point	Blanking Control
5	Latch Enable	Latch Enable
6	Ground	Ground
7	VCC	VCC
8	Input 1	Input 1

Notes:

1. Dimensions in millimeters and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is $\pm 0.38 \mathrm{~mm}(\pm 0.015$ inch).
3. Digit center line is $\pm 0.25 \mathrm{~mm}$ (± 0.01 inch) from package center line.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	T_{s}	-40	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, case ${ }^{[1,2]}$	T_{C}	-20	+85	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	V_{CC}	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	+7.0	V
Voltage applied to blanking input ${ }^{(7)}$	V_{B}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Maximum solder temperature at $1.59 m m ~(.062$ inch $)$ below seating plane; $t \leqslant 5$ seconds		230	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Operating temperature, case	T_{C}	-20		+85	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	120			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {SETUP }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\text {HOLD }}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\text {TLL }}$			200	nsec

Electrical/Optical Characteristics ($\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	I_{Cc}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (characters " 5 ." or "B" displayed)		112	170	mA
Power dissipation	P_{T}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(5,6)}$	Iv	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	32	70		$\mu \mathrm{cd}$
Logic low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	V_{IH}		2.0			V
Enable low-voltage; data being entered	$V_{\text {EL }}$				0.8	V
Enable high-voltage; data not being entered	$V_{\text {EH }}$		2.0			V
Blanking low-voltage; display not blanked ${ }^{(7)}$	$\mathrm{V}_{\text {BL }}$				0.8	V
Blanking high-voltage; display blanked	$\mathrm{V}_{\text {BH }}$		3.5			V
Blanking low-level input current ${ }^{(7)}$	$\mathrm{I}_{\text {BL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			20	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{(7)}$	$\mathrm{I}_{\text {BH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BH}}=4.5 \mathrm{~V}$			2.0	mA
Logic low-level input current	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	I_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			+250	$\mu \mathrm{A}$
Enable low-level input current	I_{EL}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	I_{EH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+250	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {PEAK }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	$\lambda_{\text {d }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight				0.8		gm

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}^{\prime} ; \Theta_{\mathrm{JC}}=$ $15^{\circ} \mathrm{C} / \mathrm{W} ; 2 . \Theta_{\mathrm{CA}}$ of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$. 3.Voltage values are with respect to device ground, pin 6. 4. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0$ Volts, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 5 . These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific case temperature, $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{C}}\right)$ may be calculated from this relationship: $\mathrm{IV}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{C}}\right)=I_{V}\left(25^{\circ} \mathrm{C}\right)$ e $\left[-0.0188 /{ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{C}}-25^{\circ} \mathrm{C}\right)\right]$ 7. Applies only to 7340.8 . The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Figure 1. Timing Diagram of 5082-7300 Series Logic.

Tc - CASE TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 4. Typical Blanking Control Input Current vs. Temperature, 5082-7340.

Figure 2. Block Diagram of 5082-7300 Series Logic.

Figure 5. Typical Latch Enable Input Current vs. Voltage for the 50827300 Series Devices.

- blanking voltage - V

Figure 3. Typical Blanking Control Current vs. Voltage for 5082-7340.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage for the 5082-7300 Series Devices. Decimal Point Applies to 5082-7300 and -7302 Only.

TRUTH TABLE					
BCD DATA ${ }^{\text {(1] }}$				5082-7300/7302	5082-7340
X_{8}	X_{4}	X_{2}	X_{1}		
L.	L	L	L	\cdots	\cdots
L	L	L	H	!	\vdots
L	L	Hi	L	\cdots	\cdots
L.	L	H	H	\cdots	\cdots
L	H	L	L	! :	\vdots
L	H	L	H	!...	\%...
L	H	H	L	\cdots	\%
L	H	H	H	\cdots	$\stackrel{\square}{\square}$
H	L	L	L	\because	\because
H	L	L	H	\because	\because
H	L	H	L	\cdots	\cdots
H	L	H	H	(BLANK)	\cdots
H	H	L	L	(BLANK)	\cdots
H	H	L	H	\cdots	\cdots
H	H	H	L	(BLANK)	\%...
H	H	H	H	(BLANK)	!
DECIMALPT. ${ }^{\text {[2] }}$			ON		$V_{D P}=L$
			OFF		$V_{D P}=H$
ENABLE ${ }^{[1]}$			LOAD DATA		$V_{E}=L$
			LATCH DATA		$V_{E}=H$
BLANKING ${ }^{[3]}$			DISPLAY-ON		$V_{B}=L$
			DISPLAY-OFF		$V_{B}=H$

Notes:

1. $H=$ Logic High; $L=$ Logic Low. With the enable input at logic high changes in BCD input logic levels or D.P. input have no effect upon display memory, displayed character, or D.P.
2. The decimal point input, DP, pertains only to the 5082-7300 and 5082-7302 displays.
3. The blanking control input, B, pertains only to the 5082-7340 hexadecimal display. Blanking input has no effect upon display memory.

Solid State Over Range Display

For display applications requiring a \pm, 1 , or decimal point designation, the 5082-7304 over range display is available. This display module comes in the same package as the 5082-7300 series numeric display and is completely compatible with it.

Package Dimensions

TRUTH TABLE FOR 5082-7304

CHARACTER	PIN			
	$\mathbf{1}$	2,3	4	$\mathbf{8}$
+	H	X	X	H
-	L	X	X	H
1	X	H	X	X
Decimal Point	X	X	H	X
Blank	L	L	L	L

NOTES: L: Line switching transistor in Fiqure 7 cutoff. H : Line switching transistor in Figure 7 saturated. X: 'Don't care'

Recommended Operating Conditions

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voltage	$V_{\text {CC }}$	4.5	5.0	5.5	V
Forward current, each LED	$I_{\text {F }}$		5.0	10	mA

NOTE:
LED current must be externally limited. Refer to Figure 7 for recommended resistor values.

Figure 7. Typical Driving Circuit for 5082-7304

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Storage temperature, ambient	$\mathrm{T}_{\mathbf{S}}$	-40	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, case	T_{C}	-20	+85	${ }^{\circ} \mathrm{C}$
Forward current, each LED	I_{F}		10	mA
Reverse voltage, each LED	$\mathrm{V}_{\mathbf{R}}$		4	V

Electrical/Optical Characteristics

5082-7358 ($\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified)

DESCRIPTION	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.6	2.0	V
Power dissipation	P_{T}	$I_{F}=10 \mathrm{~mA}$ all diodes lit		250	320	mW
Luminous Intensity per LED (digit average)	I_{ν}	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	32	70		$\mu \mathrm{cd}$
Peak wavelength	$\lambda_{\text {peak }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength	λd	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight			:	0.8		gm

HEXADECIMAL AND NUMERIC DISPLAYS FOR INDUSTRIAL APPLICATIONS

Features

- CERAMIC/GLASS PACKAGE
- ADDED RELIABILITY
- NUMERIC 5082-7356/-7357 0-9, Test State, Minus Sign, Blank States, Decimal Point

7356 Right Hand D.P., 7357 Left Hand D.P.

- HEXADECIMAL 5082-7359

0-9, A-F, Base 16 Operation, Blanking Control, Conserves Power, No Decimal Point

- TTL COMPATIBLE
- INCLUDES DECODER/DRIVER WITH MEMORY 8421 Positive Logic Input
- 4×7 DOT MATRIX ARRAY Shaped Character, Excellent Readability
- STANDARD DUAL-IN-LINE PACKAGE $15.2 \mathrm{~mm} \times 10.2 \mathrm{~mm}$ (0.6 inch $\times 0.4$ inch)
- CATEGORIZED FOR LUMINOUS INTENSITY Description
The HP 5082-735X series solid state numeric and hexadecimal displays with on-board decoder/driver and memory provide 7.4 mm (0.29 inch) displays for use in adverse industrial environments.
The 5082-7356 numeric display decodes positive 8421 BCD logic inputs into characters 0-9 "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.

Package Dimensions

The 5082-7357 is the same as the 5082-7356, except that the decimal point is located on the left-hand side of the digit.
The 5082-7359 hexadecimal display decodes positive 8421 logic inputs into 16 states, 0-9 and A-F. In place of the decimal point an input is provided for blanking the display (all LED's off), without losing the contents of the memory. Applications include terminals and computer systems using the base-16 character set.
The 5082-7358 is a (± 1) overrange display including a right-hand decimal point.

Applications

Typical applications include control systems, instrumentation, communication systems, and transportation equipment.

END View

NOTES:

1. Dimensions in millimeters and (inches).
2. Unless otherwise specified, the tolerance on all dimensions is $\pm 0.38 \mathrm{~mm}$ ($\pm 0.015 \mathrm{in}$.)
3. Digit center line is $\pm 0.25 \mathrm{~mm}(\pm 0.01 \mathrm{in}$.) from package center line.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient ${ }^{(1,2)}$	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	V_{CC}	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	+7.0	V
Voltage applied to blanking input ${ }^{(7)}$	V_{B}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Maximum solder temperature at $1.59 \mathrm{~mm}(.062$ inch $)$ below seating plane; $\mathrm{t} \leqslant 5$ seconds		260	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Operating temperature, ambient	T_{A}	-55		+85	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {SETUP }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\text {HoLD }}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\mathrm{TLH}}$			200	nsec

Electrical/Optical Characteristics
($T_{A}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	Icc	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (characters " 5 ." or "B" displayed)		112	170	mA
Power dissipation	P_{T}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(5,6)}$	Iv	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	85		$\mu \mathrm{cd}$
Logic low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	$\mathrm{V}_{\text {IH }}$		2.0			V
Enable low-voltage; data being entered	$V_{\text {EL }}$				0.8	V
Enable high-voltage; data not being entered	$\mathrm{V}_{\text {EH }}$		2.0			V
Blanking low-voltage; display not blanked ${ }^{(7)}$	$\mathrm{V}_{\text {BL }}$				0.8	V
Blanking high-voltage; display blanked ${ }^{(7)}$	$\mathrm{V}_{\text {BH }}$		3.5			V
Blanking low-level input current ${ }^{(7)}$	$\mathrm{I}_{\text {BL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			50	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{(7)}$	$\mathrm{I}_{\text {BH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {BH }}=4.5 \mathrm{~V}$			1.0	mA
Logic low-level input current	$\mathrm{IIL}^{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	I_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			+100	$\mu \mathrm{A}$
Enable low-level input current	I_{EL}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	I_{EH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+130	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {PEAK }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	$\lambda_{\text {d }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		640		nm
Weight				1.0		gm

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$; $\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W} ; 2 . \Theta_{\mathrm{CA}}$ of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$. 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Volts}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 5. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific ambient temperature, $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)$, may be calculated from this relationship: $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)=\mathrm{I}_{\mathrm{V}\left(25^{\circ} \mathrm{C}\right)}(.985)\left[\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right]$ 7. Applies only to 7359. 8. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Figure 1. Timing Diagram of 5082-735X Series Logic.

Figure 2. Block Diagram of 5082-735X Series Logic.

Figure 3. Typical Blanking Control Current vs. Voltage for 50827359.

Figure 4. Typical Blanking Control Input Current vs. Amblent Temperature for 5082-7359.

Figure 5. Typical Latch Enable Input Current vs. Voltage.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.

Figure 7. Typical Logic and Enable Low Input Current vs. Ambient Temperature.

Figure 8. Typical Logic and Enable High Input Current vs. Ambient Temperature.

Operational Considerations

ELECTRICAL

The 5082-735X series devices use a modified 4×7 dot matrix of light emitting diodes (LED's) to display decimal/hexadecimal numeric information. The LED's are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.
The blanking control input on the 5082-7395 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 3.5 volts. This may be easily achieved by using an open collector TTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where N is the number of digits:

$$
R_{\text {blank }}=\left(\mathrm{V}_{\mathrm{cc}}-3.5 \mathrm{~V}\right) /[\mathrm{N}(1.0 \mathrm{~mA})]
$$

The decimal point input is active low true and this data is latched into the display memory in the same fashion as is the BCD data. The decimal point LED is driven by the onboard IC.
The ESD susceptibility of these IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

MECHANICAL

These displays are designed for use in adverse industrial environments.

These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a case-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C} /$ watt as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

CONTRAST ENHANCEMENT

The 5082-735X displays have been designed to provide the maximum posible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60 and Dark Red 63, SGL Homalite H100-1605, 3M Light Control Film and Polaroid HRCP Red Circular Polarizing Filter. For further information see Hewlett-Packard Application Note 964.

Solid State Over Range Display

For display applications requiring a \pm, 1 , or decimal point designation, the 5082-7358 over range display is available. This display module comes in the same package as the 5082-735X series numeric display and is completely compatible with it.

Package Dimensions

NOTES

1. DIMENSIONS IN MILLIMETERS AND (INCHES).
2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS $\pm 0.38 \mathrm{MM}(\pm 0.015$ INCHES

Figure 9. Typical Driving Circuit.

TRUTH TABLE

CHARACTER	PIN			
	$\mathbf{1}$	$\mathbf{2 , 3}$	$\mathbf{4}$	$\mathbf{8}$
+	H	X	X	H
-	L	X	X	H
$\mathbf{1}$	X	H	X	X
Decimal Point	X	X	H	X
Blank	L	L	L	L

NOTES: L: Line switching transistor in Figure 9 cutoff.
H : Line switching transistor in Figure 9 saturated.
X: 'Don't care'

Electrical/Optical Characteristics

5082-7358 ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified)

DESCRIPTION	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.6	2.0	V
Power dissipation	P_{T}	$I_{F}=10 \mathrm{~mA}$ all diodes lit		280	320	mW
Luminous Intensity per LED (digit average)	I_{ν}	$\begin{aligned} & I_{F}=6 \mathrm{~mA} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	40	85		$\mu \mathrm{cd}$
Peak wavelength	$\lambda_{\text {peak }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength	λd	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight				1.0		gm

Recommended Operating Conditions

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voltage	$V_{\text {CC }}$	4.5	5.0	5.5	V
Forward current, each LED	I_{F}		5.0	10	MA

NOTE:
LED current must be externally limited. Refer to Figure 9 for recommended resistor values.

Absolute Maximum Ratings

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Storage temperature, ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Forward current, each LED	I_{F}		10	mA
Reverse voltage, each LED	V_{R}		4	V

Features

- THREE COLORS High-Efficiency Red Yellow
High Performance Green
- three character options

Numeric
Hexadecimal
Over Range

- TWO HIGH-EFFICIENCY RED OPTIONS Low Power
High Brightness
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- MEMORY LATCH/DECODER/DRIVER TTL Compatible
- 4x7 DOT MATRIX CHARACTER
- CATEGORIZED FOR LUMINOUS INTENSITY
- YELLOW AND GREEN CATEGORIZED FOR COLOR

Typical Applications

- INDUSTRIAL EQUIPMENT
- COMPUTER PERITHERALS
- INSTRUMENTATION
- TELECOMMUNICATION EQUIPMENT

Devices

Description

These solid state display devices are designed and tested for use in adverse industrial environments. The character height is 7.4 mm (0.29 inch). The numeric and hexadecimal devices incorporate an on-board IC that contains the data memory, decoder and display driver functions.
The numeric devices decode positive BCD logic into characters " $0-9$ ", a "一" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, " $0-9, A-F$ ". An input is provided on the hexadecimal devices to blank the display (all LED's off) without losing the contents of the memory.
The over range device displays " ± 1 " and right hand decimal point and is typically driven via external switching transistors.

Part Number HDSP-	Color	Description	Front View
0760 0761 0762 0763	High-Efficiency Red Low Power	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
$\begin{aligned} & 0770 \\ & 0771 \\ & 0772 \\ & 0763 \end{aligned}$	High-Efficiency Red High Brightness	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$
$\begin{aligned} & \hline 0860 \\ & 0861 \\ & 0862 \\ & 0863 \end{aligned}$	Yellow	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \hline \end{aligned}$
$\begin{aligned} & 0960 \\ & 0961 \\ & 0962 \\ & 0963 \end{aligned}$	Green	Numeric, Right Hand DP Numeric, Left Hand DP Hexadecimal Over Range ± 1	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$

Package Dimensions

Figure 1. Timing Diagram

Figure 2. Logic Block Diagram

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	T_{S}	-65	+100	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient $\|1\|$	T_{A}	-55	+85	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{[2]}$	V_{CC}	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Voltage applied to blanking input ${ }^{[2]}$	V_{B}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Maximum solder temperature at $1.59 \mathrm{~mm}(.062$ inch below seating plane; $\mathrm{t} \leqslant 5$ seconds	260	${ }^{\circ} \mathrm{C}$		

Recommended Operating Conditions

Description	Symbol $^{\prime 2 \mid}$	Min.	Nom.	Max.	Unit
Supply Voltage ${ }^{\|2\|}$	V_{CC}	4.5	5.0	5.5	V
Operating temperature, ambient ${ }^{\|1\|}$	T_{A}	-55		+85	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\mathrm{SETUP}}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\mathrm{HOLD}}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\mathrm{TLH}}$			1.0	msec

Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Device	Description	Symbol	Min.	Typ.	Max.	Unit
HDSP-0760 Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	Iv	65	140		$\mu \mathrm{cd}$
	Peak Wavelength	λ \PEAK		635		nm
	Dominant Wavelength\|5]	λd		626		nm
HDSP-0770 Series	Luminous Intensity per LED (Digit Average) ${ }^{\|3,4\|}$	Iv	260	620		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		635		nm
	Dominant Wavelength ${ }^{[5]}$	λ_{d}		626		nm
HDSP-0860 Series	Luminous Intensity per LED (Digit Average) ${ }^{(3,4]}$	Iv	215	490		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		583		nm
	Dominant Wavelength ${ }^{[5,6]}$	λ_{d}		585		nm
HDSP-0960 Series	Luminous Intensity per LED (Digit Average) ${ }^{\|3,4\|}$	IV	298	1100		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		568		nm
	Dominant Wavelength ${ }^{[5,6]}$	λ_{d}		574		nm

Notes:

1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is $\mathrm{R} \theta \mathrm{JA}=50^{\circ} \mathrm{C} / \mathrm{W} /$ device. The device package thermal resistance is R $\theta_{J-\text { PIN }}=15^{\circ} \mathrm{C} / \mathrm{W} /$ device. The thermal resistance device pin-to-ambient through the PC board should not exceed $35^{\circ} \mathrm{C} / \mathrm{W} /$ device for operation at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$.
2. Voltage values are with respect to device ground, pin 6.
3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to $25^{\circ} \mathrm{C}$.

Electrical Characteristics; $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Notes:
4. The luminous intensity at a specific operating ambient temperature, Iv (T_{A}) may be approximated from the following expotential equation: $\operatorname{lv}\left(T_{A}=\operatorname{lv}\left(25^{\circ} C\right) e^{i k\left(T_{A}-25^{\circ} C\right) \mid}\right.$.

Device	\mathbf{K}
HDSP-0760 Series HDSP-0770 Series	$-0.0131 /{ }^{\circ} \mathrm{C}$
HDSP-0860 Series	$-0.0112 /{ }^{\circ} \mathrm{C}$
HDSP-0960 Series	$-0.0104 /{ }^{\circ} \mathrm{C}$

5. The dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
6. The HDSP-0860 and HDSP-0960 series devices are categorized as to dominant wavelength with the category designated by a number on the back side of the display package.
7. All typical values at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Operational Considerations

ELECTRICAL

These devices use a modified 4×7 dot matrix of light emitting diode to display decimal/hexadecimal numeric information. The high efficiency red and yellow LED's are GaAsP epitaxial layer on a GaP transparent substrate. The green LED's are GaP epitaxial layer on a GaP transparent substrate. The LED's are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is
blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

MECHANICAL

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+85^{\circ} \mathrm{C}$, it is important to maintain a cast-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ watt/device as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixutres formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

CONTRAST ENHANCEMENT

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an
appropriate contrast enhancement filter. The following filters are suggested:

Display Color	Ambient Lighting		
	Dim	Moderate	Bright
HDSP-0860 Series Yellow	Panelgraphic Yellow 27 Chequers Amber 107	Polaroid HNCP 37 3M Light Control Film Panelgraphic Gray 10	Polaroid Gray HNCP10 HOYA Yellowish-Orange HLF-608-3Y Marks Gray MCP-0301-8-10
HDSP-0760 Series HDSP-0770 Series High Efficiency Red	Panelgraphic Ruby Red 60 Chequers Red 112	Chequers Grey 105	Polaroid Gray HNCP10 HOYA Reddish-Orange HLF-608-5R Marks Gray MCP-0301-8-10 Marks Reddish-Orange MCP-0201-2-22
HDSP-0960 Series HP Green	Panelgraphic Green 48 Chequers Green 107		Polaroid Gray HNCP10 HOYA Yellow-Green HLF-608-1G Marks Yellow-Green MCP-0101-5-12

Over Range Display

The over range devices display " ± 1 " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Package Dimensions

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	Ts_{s}	-65	+100	${ }^{\circ} \mathrm{C}$
Operating Temperature Ambient	T_{A}	-55	+85	${ }^{\circ} \mathrm{C}$
Forward Current, Each LED	IF_{F}		10	mA
Reverse Voltage, Each LED	$\mathrm{V}_{\mathbf{R}}$		5	V

Pin	Function
1	Plus
2	Numeral One
3	Numeral One
4	DP.
5	Open
6	Open
7	VCC
8	Minus/Plus

FRONT VIEW
Note:

1. Dimensions in millimetres and (inches).

Character	Pin			
	$\mathbf{1}$	2,3	$\mathbf{4}$	$\mathbf{8}$
+	1	X	X	1
-	0	X	X	1
1	X	1	X	X
Decimal Point	X	X	1	X
Blank	0	0	0	0

Notes:

0 : Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X: 'don't care'

Figure 3. Typical Driving Circuit

Recommended

Operating Conditions vcc = 5.ov

Device	Forward Current Per LED, mA	Resistor Value		
		$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	
HDSP-0763Low Power High Brightness 2.8 1300 200 300 HDSP-0863$\quad 8 \quad 360$	47	68		
HDSP-0963	8	360	36	56

Luminous Intensity Per LED

(Digit Average) ${ }^{|3,4|}$ at $T_{A}=25^{\circ} \mathrm{C}$

Device	Test Conditions	Min.	Typ.	Units
HDSP-0763	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$	65	140	$\mu \mathrm{~cd}$
	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		620	$\mu \mathrm{~cd}$
HDSP-0863	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	215	490	$\mu \mathrm{~cd}$
HDSP-0963	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	298	1100	$\mu \mathrm{~cd}$

Electrical Characteristics; $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Device	Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
HDSP-0763	Power Dissipation (all LED's Illuminated	P_{T}	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$		72		mW
			$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		224	282	
	Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$		1.6		V
			$\mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}$		1.75	2.2	
HDSP-0863	Power Dissipation (all LED's Illuminated	P_{T}	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		237	282	mW
	Forward Voltage per LED	V_{F}			1.90	2.2	V
HDSP-0963	Power Dissipation (all LED's Illuminated	Pt	$\mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}$		243	282	mW
	Forward Voltage per LED	V_{F}			1.85	2.2	V

Features

- ON-BOARD LOW POWER, EASY TO INTERFACE CMOS IC INCLUDES DECODER, DRIVER AND 4-BIT MEMORY
- DISPLAYS 4 X 7 DOT MATRIX HEXADECIMAL CHARACTERS DIRECTLY FROM 4 BIT DATA
- OPERATES FROM 5 VOLT SUPPLY
- CONSTANT CURRENT DRIVERS
- STANDARD 14 PIN DUAL-IN-LINE PACKAGE INCLUDING CONTRAST ENHANCEMENT FILTER
- CATEGORIZED FOR LUMINOUS INTENSITY
- WIDE VIEWING ANGLE
- STURDY ROUND LEADS
- SUITABLE FOR AUTOMATIC INSERTION

Description

The HTIL-311A is a single character red $4 X 7$ dot matrix display with an on-board CMOS IC to accept, store and display 4-bit binary data. This display decodes positive 4-bit binary data into 16 states, $0-9$ and A-F. The character height is 6.86 mm (0.27 inch). The LEDs and IC are attached to a substrate which is enclosed by a plastic cap and backfill, creating an air gap environment for the LEDs and

IC. The encapsulated dual-in-line package construction provides a rugged, environmentally sealed unit. The display may be stacked in either the X or Y direction to create either single or multiline systems. The bullet ended round pins are easy to insert in either PC boards or sockets.

Applications

- INSTRUMENTATION
- COMPUTERS AND PERIPHERALS
- STATUS INDICATORS
- telecommunications

Package Dimensions

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Units
Storage Temperature, Ambient	T_{S}	-25	+85	${ }^{\circ} \mathrm{C}$
Operating Case Temperature[1]	T_{C}	0	+85	${ }^{\circ} \mathrm{C}$
IC Supply Voltage to Ground	V_{DD}		7.0	V
Input Voltage, any Pin to Ground	V_{IN}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Maximum Solder Temperature at $1.59 \mathrm{~mm}(0.063$ in) below seating plane; $\mathrm{t} \leq 5$ sec.			260	${ }^{\circ} \mathrm{C}$
ESD Protection @ $1.5 \mathrm{~K} \Omega, 160 \mathrm{pF}$ (each pin)	V_{Z}		2	kV

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Units
IC Supply Voltage	V_{DD}	4.5	5.0	5.5	V
Decimal Point Current	I_{DP}		5.0	20.0	mA
Latch Pulse Width	t_{L}	40			ns
Data Setup Time to Rising Edge of Latch Pulse	t_{S}	50			ns
Data Hold Time After Rising Edge of Latch Pulse	t_{H}	40			ns
Latch Pulse Rise Time	t_{R}			200	ns

Electrical/Optical Characteristics
 Over Operating Temperature Range
 (Unless Otherwise Specified)

Description	Symbol	Min.	$\begin{aligned} & \text { Typ.[2] } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Max.	Units	Test Condition
I_{DD} Current (Blank)	$\mathrm{I}_{\mathrm{DD}(\mathrm{BLK})}$		3.0	5.0	mA	$\begin{aligned} & V_{D D}=B L K=5.5 \mathrm{~V} ; \\ & I_{F(D P)}=0 \mathrm{~mA} \\ & \text { All other inputs }=0 \mathrm{~V} \end{aligned}$
IDD 14 Dots	$\mathrm{I}_{\mathrm{DD}(0)}$		74	$90^{[9]}$	mA	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V} ; \\ & I_{F(D P}=5 \mathrm{~mA} \\ & \text { All other inputs }=0 \mathrm{~V} \end{aligned}$
Decimal Point Forward Voltage ${ }^{[3]}$	$\mathrm{V}_{\text {F(DP) }}$		1.5		V	$\mathrm{II}_{\mathrm{F}(\mathrm{DP})}=5 \mathrm{~mA}$
Input Voltage High	$\mathrm{V}_{\text {IH }}$	2.0			V	$V_{D D}=4.5-5.5 \mathrm{~V}$
Input Voltage Low	$\mathrm{V}_{\text {IL }}$			0.8	V	$\mathrm{V}_{\mathrm{DD}}=4.5-5.5 \mathrm{~V}$
Input Current	1 IN	-10		10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}-\mathrm{V}_{\mathrm{DD}}$
Luminous Intensity Average per Character LED ${ }^{[4,5,6,7]}$	Iv	35	100		$\mu \mathrm{cd}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
Luminous Intensity Each Decimal Point[4]	IV	35	100		$\mu \mathrm{cd}$	$\mathrm{I}_{\mathrm{F}(\mathrm{DP})}=5.0 \mathrm{~mA}$
Peak Wavelength[4]	λ_{P}		655		nm	
Dominant Wavelength ${ }^{[4,7,8]}$	λ_{D}		640		nm	
Spectral Bandwidth	$\lambda_{\text {W }}$		24		nm	
Thermal Resistance	$\theta_{J C}$		48		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

1. Case temperature is the surface temperature of the plastic measured directly over the integrated circuit. Forced air cooling may be required to maintain this temperature. Maximum IC junction temperature should not exceed $125^{\circ} \mathrm{C}$.
2. Typicals measured at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{F}(\mathrm{DP})}$ is not tested. See Figure 3 for forward voltage versus forward current.
4. Measured at $25^{\circ} \mathrm{C}$ case temperature.
5. This parameter is measured with " A " displayed, then again with " E " displayed.
6. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the side of the display.
7. See Figure 4 for relative luminous intensity versus ambient temperature. See Figure 5 for relative luminous intensity versus logic supply voltage.
8. The dominant wavelength, λ_{D}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
9. Measured at 5 seconds.

Figure 1. HTIL-311A Internal Block Diagram

Figure 2. Timing Diagram

Figure 3. Forward Current vs. Forward Voltage

Figure 4. Relative Luminous Intensity vs. Logic Supply Voltage

Figure 5. Relative Luminous Intensity vs. Case Temperature

Pin Function

LATCH STROBE INPUT (pin 5)

L: Data inputs are transferred to the decoder and displayed. H : Data at $D_{0}-D_{3}$ is stored. Stored character is displayed regardless of the input data changes. Data stored in the latch is not affected by the blanking input.

BLANKING INPUT (BLK, pin 8)

L : Character is displayed.
H: Display is blanked, except for the decimal points. The display will be blanked regardless of the state of the other inputs. The blanking input may be used to dim the display by pulse width modulation of this input.

DATA INPUTS ($D_{0}-D_{3}$, pins $3,2,13,12$)

Four bit hexadecimal data is entered into the latch via the data inputs.

DECIMAL POINT CATHODES (pins 4, 10)

The anodes of the left and right decimal points are connected to $V_{\text {DD. }}$. To illuminate the decimal point, the decimal point cathode must be connected to ground with a resistor or other current limiting device.

OPEN PIN (pin 1)

DISPLAY SUPPLY (VD, pin 14)

This input supplies power to the LEDs and the IC.

GROUND (GND, pin 7)

This is the display ground.

INSERTION INTO A SOCKET

During insertion into a socket, care must be taken to apply pressure only along the edges of the display window. Pressure applied at the center of the window may cause it to deform sufficiently to damage LED and IC wire bonds.

TRUTH TABLE

Blanking	Latch	Data Input				Character Displayed
		D3	D2	D1	D0	
L	L	L	L	L	L	!
L	L	L	L	L	H	-
L	L	L	L	H	L	\cdots
L	L	L	L	H	H	\cdots
L	L	L	H	L	L]
L	L	L	H	L	H	!
L	L	L	H	H	L	:
L	L	L	H	H	H	,
L	L	H	L	L	L	\%
L	L	H	L	L	H	\%
L	L	H	L	H	L	\%
L	L	H	L	H	H	\%
L	L	H	H	L	L	:'"
L	L	H	H	L	H]
L	L	H	H	H	L	".
L	L	H	H	H	H	$\stackrel{-}{ }$
L	H	X	X	X	X	NOTE 1
H	L	X	X	X	X	NOTE 2
H	H	X	X	X	X	NOTE 3

$L=V_{I L} ; H=V_{I H} ; 0 V<X<V_{D D}$

Notes:

1. The character stored in the Latch will be displayed. The contents of the Latch will remain unchanged.
2. The display will be blanked, except for the decimal points. The Latch will be updated based on the current logic levels present at the data inputs.
3. The display, except for the decimal points, will be blanked. The contents of the Latch will remain unchanged.

Hermetic Displays

Hermetic Displays

Military Grade Displays

Hewlett-Packard families of military grade numeric and alphanumeric LED displays are screened to the requirements of MIL-D-87157. MIL-D-87157 is the general specification for LED display devices and defines four screening levels for hermetic and nonhermetic devices, termed "Quality Levels".

Quality Level A: Hermetic displays with 100% screening and Group A, B, and C testing.
Quality Level B: Hermetic displays with Group A, B, and C testing, but without 100% screening.
Quality Level C: Nonhermetic displays with 100% screening and Group A, B, and C testing.
Quality Level D: Nonhermetic displays with Group A, B, and C testing, but without 100% screening.

The 4N5X series single digit dot matrix numeric and hexadecimal displays are listed on the MIL-D-87157 Qualified Parts List (QPL) under the number series M871570010XAAX.

Displays with TXV part numbers are 100% screened with Group A testing. Displays with TXVB part numbers are 100% screened to Quality Level A.

The applicable MIL-D-87157 screening tables are detailed on each display data sheet.

High Reliability Displays

In addition to Hewlett-Packard commercial solid state displays, Hewlett-Packard offers a complete line of hermetic packages for high reliability military and aerospace applications. These packages consist of numeric and hexadecimal displays, $5 \times 7 \operatorname{dot}$ matrix alphanumeric displays with extended temperature ranges, and fully intelligent monolithic 16 segment displays with extended temperature ranges and on board CMOS ICs. Similar to the commercial display product selection, the high reliability display products are offered in a variety of character sizes and colors: standard red, high efficiency red, yellow, and high
performance green. Orange displays are sometimes available upon request.

Hewlett-Packard offers three different testing programs for the high reliability conscious display customer. These programs include DESC Qualification on the MIL-D-87157 for the hermetically sealed 4N51-4N54 hexadecimal and numeric displays; and two levels of inhouse high reliability testing programs that conform or a modification to MIL-D-87157 Quality Level A Test Tables for all other high reliability display products. Please refer to the individual data sheets for a complete description of each display's testing program.

Integrated numeric and hexadecimal displays (with onboard ICs) solve the designer's decoding/driving problems. They are available in plastic packages for general purpose usage, ceramic/glass packages for industrial applications, and hermetic packages for high reliability applications. This family of displays has been designed for ease of use in a wide range of environments.

Hermetic Alphanumeric Displays

Device	P/N	Description	Color	Application	Page No.
	$\begin{gathered} \text { HDSP-2131 } \\ \text { HDSP-2131 TXV } \\ \text { HDSP-2131 TXVB } \end{gathered}$	5.0 mm (0.20 in.) 5×7 Eight Character Smart Alphanumeric Display Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Yellow	- Military Equipment - Military Avionics - Military Ground Support Systems - Military Telecommunications	4-166
	HDSP-2132 HDSP-2132 TXV HDSP-2132 TXVB		High Efficiency Red		
	HDSP-2133 HDSP-2133 TXV HDSP-2133 TXVB		High Performance Green		
	HDSP-2179 HDSP-2179 TXV HDSP-2179 TXVB		Orange		
	HMDL-2416 HMDL-2416 TXV HMDL-2416 TXVB	4.1 mm (0.16 in.) Four Character Monolithic Smart Alphanumeric Display Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Red	- Military Equipment - High Reliability Applications - Military Telecommunications	4-185
	HCMS-2351 HCMS-2351 TXV HCMS-2351 TXVB	5.0 mm (0.20 in .) 5×7 Four Character Alphanumeric Sunlight Viewable Display CMOS IC Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A Mil-D-87157	Yellow	- Military Avionics - Military Cockpit - Military Ground Support Systems	4-195
	HCMS-2352 HCMS-2352 TXV HCMS-2352 TXVB		High Efficiency Red		
	$\begin{array}{\|c\|} \text { HCMS-2353 } \\ \text { HCMS-2353 TXV } \\ \text { HCMS-2353 TXVB } \end{array}$		High Performance Green		
	HCMS-2354 HCMS-2354 TXV HCMS-2354 TXVB		Orange		

Bold Type - New Product
*Contact your local Sales Representative for information regarding this product. (See section 9.)

Hermetic Alphanumeric Displays (Continued)

Device	P/N	Description	Color	Application	Page No.
	HCMS-2010 HCMS-2010 TXV HCMS-2010 TXVB	3.7 mm (0.15 in.) 5×7 Four Character Alphanumeric CMOS IC Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Red, Red Glass Contrast Filter	- Extended temperature applications requiring high reliability. - I/O Terminals - Avionics	4-195
	HCMS-2011 HCMS-2011 TXV HCMS-2011 TXVB		Yellow		
	HCMS-2012 HCMS-2012 TXV HCMS-2012 TXVB		High Efficiency Red		
	HCMS-2013 HCMS-2013 TXV HCMS-2013 TXVB		High Performance Green		
	HCMS-2310 HCMS-2310 TXV HCMS-2310 TXVB	5.0 mm (0.20 in .) 5×7 Four Character Alphanumeric CMOS IC 12 Pin Ceramic 6.35 mm (0.25 in.) DIP with untinted glass lens Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Standard Red	- Military Equipment - Avionics - High Rel Industrial Equipment	
	HCMS-2311 HCMS-2311 TXV HCMS-2311 TXVB		Yellow		
	HCMS-2312 HCMS-2312 TXV HCMS-2312 TXVB		High Efficiency Red		
	HCMS-2313 HCMS-2313 TXV HCMS-2313 TXVB		High Performance Green		
	HCMS-2314 HCMS-2314 TXV HCMS-2314 TXVB		Orange		
	$\begin{gathered} \text { HDSP-2351 } \\ \text { HDSP-2351 TXV } \\ \text { HDSP-2351 TXVB } \end{gathered}$	4.87 mm (0.19 in.) 5×7 Four Character Alphanumeric Sunlight Viewable Display Operating Temperature Range: $-55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C}$	Yellow	- Military Avionics - Military Cockpit - Military Ground Support Systems	*
	$\begin{gathered} \text { HDSP-2352 } \\ \text { HDSP-2352 TXV } \\ \text { HDSP-2352 TXVB } \end{gathered}$		High Efficiency Red		
	HDSP-2353 HDSP-2353 TXV HDSP-2353 TXVB		High Performance Green		

[^21]Hermetic Alphanumeric Displays (Continued)

Device	P/N	Description	Color	Application	Page No.
$\left\{\begin{array}{cc}\square \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots\end{array}\right\}$	$\begin{gathered} \text { HDSP-2010 } \\ \text { HDSP-2010 TXV } \\ \text { HDSP-2010 TXVB } \end{gathered}$	3.7 mm (0.15 in .) 5×7 Four Character Alphanumeric Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Red, Red Glass Contrast Filter	- Extended temperature applications requiring high reliability - 1/O Terminals - Avionics For further information see Application Note 1016.	*
	HDSP-2310 HDSP-2310 TXV HDSP-2310 TXVB HDSP-2311 HDSP-2311 TXV HDSP-2311 TXVB HDSP-2312 HDSP-2312 TXV HDSP-2312 TXVB HDSP-2313 HDSP-2313 TXV HDSP-2313 TXVB	5.0 mm (0.20 in.) 5×7 Four Character Alphanumeric 12 Pin Ceramic 6.35 mm (0.25 in.) DIP with untinted glass lens Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ True Hermetic Seal TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Standard Red Yellow High Efficiency Red High Performance Green	- Military Equipment - Avionics - High Rel Industrial Equipment	*
	HDSP-2450 HDSP-2450 TXV HDSP-2450 TXVB HDSP-2451 HDSP-2451 TXV HDSP-2451 TXVB HDSP-2452 HDSP-2452 TXV HDSP-2452 TXVB HDSP-2453 HDSP-2453 TXV HDSP-2453 TXVB	6.9 mm (0.27 in .) 5×7 Four Character Alphanumeric 28 Pin Ceramic 15.24 mm (0.6 in.) DIP Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ True Hermetic Seal TXV - Hi Rel Screened TXVB - Hi Rel Screened to Level A MIL-D-87157	Red Yellow High Efficiency Red High Performance Green	- Military Equipment - High Reliability Applications - Avionics - Ground Support, Cockpit, Shipboard Systems	*

[^22]Hermetic Hexadecimal and Numeric Dot Matrix Displays

[^23]Hermetic Hexadecimal and Numeric Dot Matrix Displays (Continued)

Device	P/N	Description	Package	Application	Page No.
(See previous page)	HDSP-0791 (A) HDSP-0791 TXV HDSP-0791 TXVB	Numeric RHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157	High Efficiency Red High Brightness	- Ground, Airborne, Shipboard Equipment - Fire Control Systems - Space Flight Systems - Other High Reliability Uses	4-215
	HDSP-0792 (B) HDSP-0792 TXV HDSP-0792 TXVB	Numeric LHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			
	$\begin{aligned} & \text { HDSP-0783 } \\ & \text { (D) } \\ & \text { HDSP-0783 } \\ & \text { TXV } \\ & \text { HDSP-0783 } \\ & \text { TXVB } \end{aligned}$	Overrange ± 1 TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			
	$\begin{aligned} & \text { HDSP-0794 } \\ & \text { (C) } \\ & \text { HDSP-0794 } \\ & \text { TXV } \\ & \text { HDSP-0794 } \\ & \text { TXVB } \end{aligned}$	Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			
	HDSP-0881 (A) HDSP-0881 TXV HDSP-0881 TXVB	Numeric RHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157	Yellow		
	HDSP-0882 (B) HDSP-0882 TXV HDSP-0882 TXVB	Numeric LHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			
	$\begin{aligned} & \text { HDSP-0883 } \\ & \text { (D) } \\ & \text { HDSP-0883 } \\ & \text { TXV } \\ & \text { HDSP-0883 } \\ & \text { TXVB } \end{aligned}$	Overrange ± 1 TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			
	$\begin{aligned} & \text { HDSP-0884 } \\ & \text { (C) } \\ & \text { HDSP-0884 } \\ & \text { TXV } \\ & \text { HDSP-0884 } \\ & \text { TXVB } \end{aligned}$	Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			

Hermetic Hexadecimal and Numeric Dot Matrix Displays (Continued)

Device	P/N	Description	Package	Application	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
(See previous page)	HDSP-0981 (A) HDSP-0981 TXV HDSP-0981 TXVB	Numeric RHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157	High Performance Green	- Ground, Airborne, Shipboard Equipment - Fire Control Systems - Space Flight Systems - Other High Reliability Uses	4-215
	$\begin{gathered} \text { HDSP-0982 } \\ \text { (B) } \\ \text { HDSP-0982 } \\ \text { TXV } \\ \text { HDSP-0982 } \\ \text { TXVB } \end{gathered}$	Numeric LHDP, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			
	$\begin{gathered} \text { HDSP-0983 } \\ \text { (C) } \\ \text { HDSP-0983 } \\ \text { TXV } \\ \text { HDSP-0983 } \\ \text { TXVB } \end{gathered}$	Overrange ± 1 TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			
	HDSP-0984 (D) HDSP-0984 TXV HDSP-0984 TXVB	Hexadecimal, Built-in Decoder/Driver Memory TXV Hi Rel Screened TXVB Hi Rel Screened to Level A Mil-D-87157			

Eight Character 5.0 mm (0.2 inch) Hermetic Smart 5×7 Alphanumeric Displays For Military Applications

Technical Data

Features

- Wide Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- True Hermetic Package for Yellow, Orange and High Efficiency Red Displays ${ }^{[1]}$
- TXVB Version Conforms to MIL-D-87157 Quality Level A Test Tables
- Smart Alphanumeric Display On-Board CMOS IC Built-In RAM
ASCII Decoder
LED Drive Circuitry
- 128 ASCII Character Set
- 16 User Definable Characters
- Programmable Features

Individual Flashing
Character
Full Display Blinking
Multi-Level Dimming and
Blanking
Self Test
Clear Function

- Read/Write Capability
- Full TTL Compatibility
- HDSP-2131/-2133/-2179 Useable in Night Vision Lighting Applications
- Categorized for Luminous Intensity
- HDSP-2131/2133 Categorized for Color
- Excellent ESD Protection
- Wave Solderable
- X-Y Stackable

Description

The HDSP-2131 (yellow), HDSP-2179 (orange), HDSP-2132 (high efficiency red) and the HDSP-2133 (green) are eight-digit, 5×7 dot matrix, alphanumeric displays. The 5.0 mm (0.2 inch) high characters are packaged in a standard 7.64 mm (0.30 inch) 32 pin DIP. The on-board CMOS IC has the ability to decode 128 ASCII characters, which are permanently stored in ROM. In addition, 16 programmable symbols may be

HDSP-2131/2131TXV/ 2131TXVB HDSP-2132/2132TXV/ 2132TXVB HDSP-2133/2133TXV/ 2133TXVB HDSP-2179/2179TXV/ 2179TXVB

stored in an on-board RAM. Seven brightness levels provide versatility in adjusting the display intensity and power consumption. The HDSP-213X is designed for standard microprocessor interface techniques. The display and special features are accessed through a bidirectional eight-bit data bus. These features make the HDSP-213X ideally suited for applications where an hermetic, low power alphanumeric display is required.

Devices

Yellow	High Efficiency Red	High Performance Green	Orange
HDSP-2131	HDSP-2132	HDSP-2133	HDSP-2179
HDSP-2131TXV	HDSP-2132TXV	HDSP-2133TXV	HDSP-2179TXV
HDSP-2131TXVB	HDSP-2132TXVB	HDSP-2133TXVB	HDSP-2179TXVB

Note: 1. The HDSP-2133 high peformance green displays conform to MIL-D-87157 hermeticity requirements.

Package Dimensions

1. All dimensions are in mm (inches).
2. Unless otherwise specified tolerance is $\pm 0.30 \mathrm{~mm}$ (± 0.015).
3. For green and yellow devices only.
4. Leads are copper alloy, solder dipped.

Absolute Maximum Ratings

Supply Voltage, V_{DD} to Ground ${ }^{[1]} \ldots .-0.3 ~ t o ~ 7.0 ~ V ~$

Input Voltage, Any Pin to Ground.......................... - 0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Free Air Operating Temperature Range, $\mathrm{T}_{\mathrm{A}} \ldots \ldots \ldots \ldots \ldots . .55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, T_{S}
HDSP-2131/-2132/-2179 .. $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HDSP-2133... $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Maximum Solder Temperature 1.59 mm
(0.063 in.) Below Seating Plane, $\mathrm{t}<5 \mathrm{sec}$ $260^{\circ} \mathrm{C}$
ESD Protection @ $1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$
\qquad

Notes:

1. Maximum Voltage is with no LEDs illuminated.
2. 20 dots ON in all locations at full brightness.

Character Set

Recommended Operating Conditions

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Supply Voltage	V_{DD}	4.5	5.0	5.5	V

Electrical Characteristics Over Operating Temperature Range

$4.5<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$ (unless otherwise specified)

Parameter	Symbol	Min.	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Typ. }{ }^{[1]} \end{gathered}$	$\begin{gathered} \mathbf{2 5}{ }^{\circ} \mathbf{C} \\ \text { Max. }{ }^{[1]} \end{gathered}$	Max. ${ }^{[2]}$	Units	Test Conditions
Input Leakage (Input without pullup)	I_{1}	-10.0			+10.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \text { to } \mathrm{V}_{\mathrm{DD}}, \\ & \text { pins }, \\ & \mathrm{A}_{0}-\mathrm{A}_{4} \end{aligned}$
Input Current (Input with pullup)	I_{IP}	-30.0	11	18	30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{iv}}=0 \text { to } \mathrm{V}_{\mathrm{DD}},$ pins RST, CLS, WR, RD, CE, FL
I_{DD} Blank	I_{DD} (BLK)		0.5	3.0	4.0	mA	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$
$\mathrm{I}_{\mathrm{DD}} 8$ digits 12 dots/character ${ }^{[3]}$	$\mathrm{I}_{\mathrm{DD}}(\mathrm{V})$		200	255	330	mA	"V" on in all 8 locations
$\mathrm{I}_{\mathrm{DD}} 8$ digits 20 dots/character ${ }^{[3]}$	I_{DD} (\#)		300	370	430	mA	"\#" on in all 8 locations
Input Voltage High	V_{H}	2.0			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}} \\ & +0.3 \end{aligned}$	V	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
Input Voltage Low	V_{IL}	$\begin{gathered} \text { GND } \\ -0.3 \mathrm{~V} \\ \hline \end{gathered}$			0.8	V	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$
Output Voltage High	V_{OH}	2.4				V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A} \end{aligned}$
Output Voltage Low $D_{0}-D_{7}$	$\mathrm{V}_{\text {oL }}$				0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$
Output Voltage Low CLK					0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{oL}}=40 \mu \mathrm{~A} \end{aligned}$
Thermal Resistance IC Junction-to-PIN	$\mathrm{R} \theta_{\text {J-PiN }}$		11			${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Notes:

1. $\mathrm{V}_{\mathrm{pd}}=5.0 \mathrm{~V}$.
2. Maximum $I_{D D}$ occurs at $-55^{\circ} \mathrm{C}$.
3. Average $I_{D D}$ measured at full brightness. See Table 2 in Control Word Section for $I_{D D}$ at lower brightness levels. Peak $I_{D D}=28 / 15 \times$ Average $I_{D D}(\#)$.

Optical Characteristics at $\mathbf{2 5}^{\circ} \mathbf{C}^{[4]}$
$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ at Full Brightness
High Efficiency Red HDSP-2132

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		635	nm
Dominant Wavelength	λ_{d}		626	nm

Orange HDSP-2179

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		600	nm
Dominant Wavelength	λ_{d}		602	nm

Yellow HDSP-2131

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		583	nm
Dominant Wavelength	λ_{d}		585	nm

High Performance Green HDSP-2133

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{v}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$		568	nm
Dominant Wavelength	λ_{d}		574	nm

Note:

4. Refers to the initial case temperature of the device immediately prior to the light measurement.

AC Timing Characteristics Over Temperature Range

$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V unless otherwise specified.

Reference Number	Symbol	Description	Min. ${ }^{[1]}$	Units
1	$\mathrm{t}_{\text {ACC }}$	Display Access Time Write Read	$\begin{aligned} & 210 \\ & 230 \end{aligned}$	ns
2	$\mathrm{t}_{\text {ACS }}$	Address Setup Time to Chip Enable	10	ns
3	t_{CE}	Chip Enable Active Time ${ }^{[2,3]}$ Write Read	$\begin{aligned} & 140 \\ & 160 \\ & \hline \end{aligned}$	ns
4	$\mathrm{t}_{\text {ACH }}$	Address Hold Time to Chip Enable	20	ns
5	$\mathrm{t}_{\text {CER }}$	Chip Enable Recovery Time	60	ns
6	$\mathrm{t}_{\text {CES }}$	Chip Enable Active Prior to Rising Edge of ${ }^{[1,2]}$ Write Read	$\begin{aligned} & 140 \\ & 160 \end{aligned}$	ns
7	$\mathrm{t}_{\text {CEH }}$	Chip Enable Hold Time to Rising Edge of Read/Write Signal ${ }^{[2,3]}$	0	ns
8	t_{w}	Write Active Time ${ }^{[2,3]}$	100	ns
9	t_{wd}	Data Valid Prior to Rising Edge of Write Signal	50	ns
10	t_{DH}	Data Write Hold Time	20	ns
11	t_{R}	Chip Enable Active Prior to Valid Data	160	ns
12	t_{RD}	Read Active Prior to Valid Data	75	ns
13	t_{DF}	Read Data Float Delay	10	ns
	$\mathrm{t}_{\text {RC }}$	Reset Active Time ${ }^{[4]}$	300	ns

Notes:

1. Worst case values occur at an IC junction temperature of $125^{\circ} \mathrm{C}$.
2. For designers who do not need to read from the display, the Read line can be tied to V_{DD} and the Write and Chip Enable lines can be tied together.
3. Changing the logic levels of the Address lines when $\overline{C E}=" 0$ " may cause erroneous data to be entered into the Character RAM, regardless of the logic levels of the $\overline{W R}$ and $\overline{R D}$ lines.
4. The display must not be accessed until after 3 clock pulses ($110 \mu \mathrm{~s}$ min. using the internal refresh clock) after the rising edge of the reset line.

Symbol	Description	$\mathbf{2 5}^{\circ} \mathbf{C}$ Typical	Minimum $^{[1]}$	Units
$\mathrm{F}_{\mathrm{OSC}}$	Oscillator Frequency	57	28	kHz
$\mathrm{F}_{\mathrm{RF}}{ }^{[5]}$	Display Refresh Rate	256	128	Hz
$\mathrm{~F}_{\mathrm{FL}}{ }^{[6]}$	Character Flash Rate	2	1	Hz
$\mathrm{t}_{\mathrm{ST}}{ }^{[7]}$	Self Test Cycle Time	4.6	9.2	Sec

Notes:

5. $\mathrm{F}_{\mathrm{RF}}=\mathrm{F}_{\mathrm{OSC}} / 224$
6. $\mathrm{F}_{\mathrm{FL}}=\mathrm{F}_{\mathrm{OSC}} / 28,672$
7. $\mathrm{t}_{\mathrm{ST}}=262,144 / \mathrm{F}_{\mathrm{OSC}}$

Write Cycle Timing Diagram

Read Cycle Timing Diagram

INPUT PULSE LEVELS: 0.6 V TO 2.4 V
OUTPUT REFERENCE LEVELS: 0.6 V TO 2.2 V
OUTPUT LOADING $=1 \mathrm{TTL}$ LOAD AND 100 pF .

Character Font

Relative Luminous Intensity vs. Temperature

Electrical Description

Pin Function
RESET ($\overline{\operatorname{RST}}$, pin 5) Reset initializes the display.
FLASH ($\overline{\mathrm{FL}}$, pin 27) $\quad \overline{\mathrm{FL}}$ low indicates an access to the Flash RAM and is unaffected by the state of address lines $\mathrm{A}_{3}-\mathrm{A}_{4}$.

ADDRESS INPUTS
($\mathrm{A}_{0}-\mathrm{A}_{4}$, pins $28-32$)

CLOCK SELECT
(CLS, pin 1)
CLOCK INPUT/OUTPUT (CLK, pin 2)

WRITE ($\overline{\mathrm{WR}}, \operatorname{pin} 3$)
CHIP ENABLE ($\overline{\mathrm{CE}}$, pin 4)
$\operatorname{READ}(\overline{\mathrm{RD}}, \operatorname{pin} 6)$
DATA Bus ($\mathrm{D}_{0}-\mathrm{D}_{7}$,
pins 11-14, 19-22)
$\mathrm{GND}_{\text {(SUPPLY) }}($ pin 17)
$\mathrm{GND}_{\text {(LoGIC) }}($ pin 18)
$\mathrm{V}_{\mathrm{DD}(\text { PowER })}(\mathrm{pin} 16)$

Each location in memory has a distinct address. Address inputs ($\mathrm{A}_{0}-\mathrm{A}_{2}$) select a specific location in the Character RAM, the Flash RAM or a particular row in the UDC (User-Defined Character) RAM. $\mathrm{A}_{3}-\mathrm{A}_{4}$ are used to select which section of memory is accessed. Table 1 shows the logic levels needed to access each section of memory.
Table 1. Logic Levels to Access Memory

$\overline{\mathrm{FL}}$	A_{4}	$\mathrm{~A}_{3}$	Section of Memory	$\mathrm{A}_{2} \quad \mathrm{~A}_{1} \quad \mathrm{~A}_{0}$
0	X	X	Flash RAM	Character Address
1	0	0	UDC Address Register	Don't Care
1	0	1	UDC RAM	Row Address
1	1	0	Control Word Register	Don't Care
1	1	1	Character RAM	Character Address

This input is used to select either an internal or external clock source.

Outputs the master clock $(\mathrm{CLS}=1)$ or inputs a clock $(\mathrm{CLS}=0)$ for slave displays.

Data is written into the display when the $\overline{\mathrm{WR}}$ input is low and the $\overline{\mathrm{CE}}$ input is low.
This input must be at a logic low to read or write data to the display and must go high between each read and write cycle.
Data is read from the display when the $\overline{\mathrm{RD}}$ input is low and the $\overline{\mathrm{CE}}$ input is low.
The Data bus is used to read from or write to the display.
This is the analog ground for the LED drivers.
This is the digital ground for internal logic.
This is the positive power supply input.

Figure 1. HDSP-213X Internal Block Diagram.

Display Internal Block Diagram

Figure 1 shows the internal block diagram of the HDSP213X display. The CMOS IC consists of an 8 byte Character

RAM, an 8 bit Flash RAM, a 128 character ASCII decoder, a 16 character UDC RAM, a UDC Address Register, a Control Word Register, and the refresh circuitry necessary to syn-
chronize the decoding and driving of eight $5 \times 7 \operatorname{dot}$ matrix characters. The major user accessible portions of the display are listed below:

Character RAM
Flash RAM
User-Defined Character RAM (UDC RAM)
User-defined Character
Address Register
(UDC Address Register)
Control Word Register

This RAM stores either ASCII character data or a UDC RAM address.

This is a 1×8 RAM which stores Flash data.
This RAM stores the dot pattern for custom characters.

This register is used to provide the address to the UDC RAM when the user is writing or reading a custom character.

This register allows the user to adjust the display brightness, flash individual characters, blink, self test or clear the display.

Character Ram

Figure 2 shows the logic levels needed to access the HDSP-213X Character RAM. During a normal access the $\overline{\mathrm{CE}}$ $=" 0$ " and either $\overline{\mathrm{RD}}=" 0$ " or $\overline{\mathrm{WR}}$ = "0". However, erroneous data may be written into the Character RAM if the Address lines are unstable when $\overline{\mathrm{CE}}=$ " 0 " regardless of the logic levels of the $\overline{R D}$ or $\overline{\mathrm{WR}}$ lines. Address lines $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the location in the Character RAM. Two types of data can be stored in each Character RAM location: an ASCII code or a UDC RAM address. Data bit D_{7} is used to differentiate between an ASCII character and a UDC RAM address. $D_{7}=0$ enables the ASCII decoder and $D_{7}=1$ enables the UDC RAM. $\mathrm{D}_{0}-\mathrm{D}_{6}$ are used to input ASCII data and $D_{0}-D_{3}$ are used to input a UDC address.

UNDEFINED
WRITE TO DISPLAY READ FROM DISPLAY undefined

CONTROL SIGNALS

Character ram address

CHARACTER RAM DATA FORMAT

display
$0=$ LOGIC $0 ; 1=$ LOGIC $1 ; x=$ DO NOT CARE
Figure 2. Logic Levels to Access the Character RAM.

UDC RAM and UDC Address

Register

Figure 3 shows the logic levels needed to access the UDC RAM and the UDC Address Register. The UDC Address Register is eight bits wide. The lower four bits $\left(D_{0}-D_{3}\right)$ are used to select one of the 16 UDC locations. The upper four bits $\left(D_{4}-D_{7}\right)$ are not used. Once the UDC address has been stored in the UDC Address Register, the UDC RAM can be accessed.

To completely specify a 5×7 character requires eight write cycles. One cycle is used to store the UDC RAM address in the UDC Address Register. Seven cycles are used to store dot data in the UDC RAM. Data is entered by rows. One cycle is needed to access each row. Figure 4 shows the organization of a UDC character assuming the symbol to be stored is an " F ". $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the row to be accessed and $D_{0}-D_{4}$ are used to transmit the row dot data. The upper three bits $\left(D_{5}{ }^{-}\right.$ D_{7}) are ignored. D_{0} (least significant bit) corresponds to the right most column of the 5×7 matrix and D_{4} (most significant bit) corresponds to the left most column of the 5×7 matrix.

Flash RAM

Figure 5 shows the logic levels needed to access the Flash RAM. The Flash RAM has one bit associated with each location of the Character RAM. The Flash input is used to select the Flash RAM. Address lines $\mathrm{A}_{3}-\mathrm{A}_{4}$ are ignored. Address lines $\mathrm{A}_{0}-\mathrm{A}_{2}$ are used to select the location in the Flash RAM to store the attribute. D_{0} is used to store or remove the flash attribute. $D_{0}=$ " 1 " stores the attribute and $\mathrm{D}_{0}=$ " 0 " removes the attribute.

UNDEFINED
WRITE TO DISPLAY READ FROM DISPLAY UNDEFINED

CONTROL SIGNALS

UDC ADDRESS REGISTER DATA FORMAT

UNDEFINED
WRITE TO DISPLAY READ FROM DISPLAY UNDEFINED

CONTROL SIGNALS

UDC RAM ADDRESS

Figure 3. Logic Levels to Access a UDC Character.

Figure 4. Data to Load "F"' into the UDC RAM.

When the attribute is enabled through bit 3 of the Control Word and a " 1 " is stored in the Flash RAM, the corresponding character will flash at approximately 2 Hz . The actual rate is
dependent on the clock frequency. For an external clock the flash rate can be calculated by dividing the clock frequency by 28,672 .

UNDEFINED
WRITE TO DISPLAY READ FROM DISPLAY UNDEFINED

Figure 5. Logic Levels to Access the Flash RAM.

Control Word Register

Figure 6 shows how to access the Control Word Register. This is an eight bit register which performs five functions. They are Brightness control, Flash RAM control, Blinking, Self Test and Clear. Each function is independent of the others. However, all bits are updated during each Control Word write cycle.

Brightness (Bits 0-2)

Bits 0-2 of the Control Word adjust the brightness of the display. Bits $0-2$ are interpreted as a three bit binary code with code (000) corresponding to maximum brightness and code (111) corresponding to a blanked display. In addition to varying the display brightness, bits 0-2 also vary the average value of $\mathrm{I}_{\mathrm{DD}} . \mathrm{I}_{\mathrm{DD}}$ can be calculated at any brightness level by multiplying the percent brightness level by the value of I_{DD} at the 100% brightness level. These values of I_{DD} are shown in Table 2.

Flash Function (Bit 3)

Bit 3 determines whether the flashing character attribute is on or off. When bit 3 is a " 1 ", the output of the Flash RAM is checked. If the content of a location in the Flash RAM is a " 1 ", the associated digit will flash at

Table 2. Current Requirements at Different Brightness Levels

Symbol	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$	$\boldsymbol{\%}$ Brightness	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ Typical	Units
$\mathrm{I}_{\mathrm{DD}}(\mathrm{V})$	0	0	0	100	200	mA
	0	0	1	80	160	mA
	0	1	0	53	106	mA
	0	1	1	40	80	mA
	1	0	0	27	54	mA
	1	0	1	20	40	mA
	1	1	0	13	26	mA

approximately 2 Hz . For an external clock, the blink rate can be calculated by driving the clock frequency by 28,672 . If the flash enable bit of the Control Word is a " 0 ", the content of the Flash RAM is ignored. To use this function with multiple display systems see the Reset section.

Blink Function (Bit 4)

Bit 4 of the Control Word is used to synchronize blinking of
all eight digits of the display. When this bit is a " 1 " all eight digits of the display will blink at approximately 2 Hz . The actual rate is dependent on the clock frequency. For an external clock, the blink rate can be calculated by dividing the clock frequency by 28,672 . This function will override the Flash function when it is active. To use this function with multiple display systems see the Reset section.

Self Test Function (Bits 5, 6) Bit 6 of the Control Word Register is used to initiate the self test function. Results of the internal self test are stored in bit 5 of the Control Word. Bit 5 is a read only bit where bit $5=$ " 1 " indicates a passed self test and bit $5=" 0$ " indicates a failed self test.

Setting bit 6 to a logic 1 will start the self test function. The built-in self test function of the IC consists of two internal routines which exercises major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a checksum on the output. If the checksum agrees with the correct value, bit 5 is set to " 1 ". The second routine provides a visual test of the LEDs using the drive circuitry. This is accomplished by writing checkered and inverse checkered patterns to the display. Each pattern is displayed for approximately 2 seconds.

During the self test function the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock period by 262,144 . For example, assume a clock frequency of 58 KHz , then the time to execute the self test function frequency is equal to $(262,144 / 58,000)=4.5$ second duration.

At the end of the self test function, the Character RAM is loaded with blanks, the Control Word Register is set to zeros except for bit 5 , and the Flash RAM is cleared and the UDC Address Register is set to all ones.

ClearFunction(Bit7)

Bit 7 of the Control Word will clear the Character RAM and the Flash RAM. Setting bit 7 to a "1" will start the clear function. Three clock cycles ($110 \mu \mathrm{~s}$ \min. using the internal refresh clock) are required to complete the clear function. The display must not be accessed while the display is being cleared. When the clear function has been completed, bit 7 will be reset to a " 0 ". The ASCII character code for a space $(20 \mathrm{H})$ will be loaded into the Character RAM to blank the display and the Flash RAM will be loaded with "0"s. The UDC RAM, UDC Address Register, and the remainder of the Control Word are unaffected.

Display Reset

Figure 7 shows the logic levels needed to Reset the display. The display should be Reset on Power-up. The external Reset clears the Character RAM, Flash RAM, Control Word and resets the internal counters. After the rising edge of the Reset signal, three clock cycles ($110 \mu \mathrm{~s}$ min. using the internal refresh clock) are required to complete the reset sequence. The display must not be accessed while the display is being reset. The ASCII Character code for a space $(20 \mathrm{H})$ will be loaded into the Character RAM to blank the display. The Flash RAM and Control Word Register are loaded with all " 0 "s. The UDC RAM and UDC Address

Figure 7. Logic Levels to Reset the Display.

Register are unaffected. All displays which operate with the same clock source must be simultaneously reset to synchronize the Flashing and Blinking functions.

Mechanical and Electrical Considerations

 The HDSP-213X is a 32 pin dual-in-line package with 24 external pins, which can be stacked horizontally and vertically to create arrays of any size. The HDSP-213X is designed to operate continuously from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with a maximum of 20 dots ON per character. Illuminating all thirty-five dots at full brightness is not recommended.The HDSP-213X is assembled by die attaching and wire bonding 280 LED chips and a CMOS IC to a ceramic substrate. A glass window is placed over the ceramic substrate creating an air gap over the LED wire bonds. A second glass window creates an air gap over the CMOS IC. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering and visual inspection of the IC.

Figure 8. Maximum Power Dissipa-
tion vs. Ambient Temperature Derating Based on TJMAX $=125^{\circ} \mathrm{C}$.

The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HDSP-213X should be stored in antistatic packages or conductive material. During assembly, a grounded conductive work area should be used, and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided since they are prone to static charge buildup. Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground ($\mathrm{V}_{\mathrm{IN}}<$ ground) or to a voltage higher than $V_{D D}\left(V_{I N}>V_{D D}\right)$ and when a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{DD}. Voltages should not be applied to the inputs until V_{DD} has been applied to the display. Transient input voltages should be eliminated.

Thermal
 Considerations

The HDSP-213X has been designed to provide a low thermal resistance path from the CMOS IC to the 24 package pins. This heat is then typically conducted through the traces of the user's printed circuit board to free air. For most applications no additional heatsinking is required.

The maximum operating IC junction temperature is $125^{\circ} \mathrm{C}$. The maximum IC junction temperature can be calculated using the following equation:

$$
\begin{aligned}
& \mathrm{T}_{J}(\mathrm{IC}) \mathrm{MAX}=\mathrm{T}_{\mathrm{A}} \\
& \quad+\left(\mathrm{P}_{\mathrm{D}} \mathrm{MAX}\right)\left(\mathrm{R} \theta_{\mathrm{J} \cdot \mathrm{PIN}}+\mathrm{R} \theta_{\mathrm{PIN}-\mathrm{A}}\right)
\end{aligned}
$$

Where

$$
P_{D} M A X=\left(V_{D D} M A X\right)\left(I_{D D} M A X\right)
$$

$\mathrm{I}_{\mathrm{DD}} \mathrm{MAX}=370 \mathrm{~mA}$ with 20 dots ON in eight character locations at $25^{\circ} \mathrm{C}$ ambient. This value is from the Electrical Characteristics table.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}} \mathrm{MAX}=(5.5 \mathrm{~V})(0.370 \mathrm{~A}) \\
& =2.04 \mathrm{~W}
\end{aligned}
$$

Ground Connections

Two ground pins are provided to keep the internal IC logic ground clean. The designer can, when necessary, route the ana\log ground for the LED drivers separately from the logic ground until an appropriate ground plane is available. On long interconnects between the display and the host system, the designer can keep voltage drops on the analog ground from affecting the display logic levels by isolating the two grounds.

The logic ground should be connected to the same ground potential as the logic interface circuitry. The analog ground and the logic ground should be connected at a common ground which can withstand the current introduced by the switching LED drivers. When separate ground connections are used, the analog ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltage below -0.3 V can cause all dots to be on. Voltage above +0.3 V can cause dimming and dot mismatch.

ESD Susceptibility

These displays have ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C.

Soldering and Post Solder Cleaning Instructions for the HDSP-213X

The HDSP-213X may be hand soldered or wave soldered with SN63 solder. When hand soldering it is recommended that an electronically temperature controlled and securely grounded soldering iron be used. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosinbased RMA flux can be used. The solder wave temperature should be set at $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ($473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}$), and dwell in the wave should be set between $1-1 / 2$ to 3 seconds for optimum soldering. The preheat temperature should not exceed $105^{\circ} \mathrm{C}$ $\left(221^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.

Post solder cleaning may be performed using water or Freon/ alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling temperature is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, Genesolv DES, and water.

An aqueous cleaning process may be used. A saponifier, such as Kester Bio-Kleen Formula 5799 or its equivalent, may be added to the wash cycle of an aqueous process to remove rosin flux residues. Organic acid flux residues must be thoroughly removed by an aqueous cleaning process to prevent corrosion of the leads and solder connections. The optimum water temper-
ature is $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. The maximum cumulative exposure of the HDSP-213X to wash and rinse cycles should not exceed 15 minutes. For additional information on soldering and post solder cleaning, see Application Note 1027.

High Reliability Testing

Two standard high reliability testing programs are available. The TXVB program is in conformance with MIL-D-87157 level A Test Tables. The TXVB product is tested to Tables I, II, IIIa and IVa. The TXV program is an HP modification to the full conformance program and offers the 100% screening of Quality Level A, Table I, and Group A, Table II.

Contrast Enhancement

When used with the proper contrast enhancement filters, the HCMS-213X series displays are readable daylight ambients. Refer to Application Note 1029 Luminous Contrast and Sunlight Readability of the HDSP238X Series Alphanumeric Displays for Military Applications for information on contrast enhancement for daylight ambients. Refer to Application Note 1015 Contrast Enhancement Techniques for LED Displays for information on contrast enhancement in moderate ambients.

Night Vision Lighting

When used with the proper NVG/DV filters, the HDSP-2131, HDSP-2179 and

HDSP-2133 may be used in night vision lighting applications. The HDSP-2131 (yellow), HDSP-2179 (orange) displays are used as master caution and warning indicators. The HDSP2133 (high performance green) displays are used for general instrumentation. For a list of NVG/DV filters and a discussion on night vision lighting technology, refer to Application Note 1030 LED Displays and Indicators and Night Vision Imaging System Lighting. An external dimming circuit must be used to dim these displays to night vision lighting levels to meet NVIS radiance requirements. Refer to AN 1039 Dimming HDSP-213X Displays to Meet Night Vision Lighting Levels.
100% Screening
Table I. Quality Level A of MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7512-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}^{[3]}$, Time $=24$ hours
3. Temperature Cycling	1051	Condition $\mathrm{B}^{[4]}$, 10 cycles, 15 minute dwell
4. Constant Acceleration	2006	10,000 Gs at $Y_{1} \& Y_{2}$ orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C or $\mathrm{K}^{[5]}$
7. Interim Electrical/ Optical Tests ${ }^{[2]}$	-	$\mathrm{I}_{\mathrm{DD}}(\mathrm{BLK}), \mathrm{I}_{\mathrm{DD}}(\mathrm{~V}), \mathrm{I}_{\mathrm{DD}}(\#), \mathrm{I}_{\mathrm{H}}, \mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{V}}$ $\text { and Visual Function } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
8. Burn- $\mathrm{In}^{[1]}$	1015	Condition B at $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, cycle through character set 1 per second, $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$, Time $=160$ hours
9. Final Electrical Test ${ }^{[2]}$	-	Same as step 7
10. Delta Determinations	-	$\mathrm{I}_{\mathrm{DD}}(\mathrm{V}) \& \mathrm{I}_{\mathrm{DD}}(\#)= \pm 10 \%, \mathrm{I}_{\mathrm{V}}=-20 \%$
11. External Visual ${ }^{[1]}$	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics.
3. $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ for HDSP-2133.
4. $T_{A}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ for HDSP-2133.
5. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HDSP-2133.

Table II. Group A Electrical Tests - MIL-D-87157

Subgroup Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}^{[1]}$	$\mathrm{I}_{\mathrm{DD}}(\mathrm{BLK}), \mathrm{I}_{\mathrm{DD}}(\mathrm{~V}), \mathrm{I}_{\mathrm{DD}}(\#), \mathrm{I}_{\mathrm{HH}}, \mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{V}},$ and function test	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{[1]}$	Same as Subgroup 1 except delete I_{v} and visual function. $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{[1]}$	Same as Subgroup 1 except delete I_{v} and visual function. $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not applicable		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883, Method 2009	7

Notes:

1. Limits and conditions are per the electrical/optical characteristics.

Table IIIa. Group B Electrical Tests - MIL-D-87157

Subgroup Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices 0 Failures
Internal Visual and Design Verification ${ }^{[1]}$	$2075{ }^{[6]}$		1 Device 0 Failures
Subgroup $2^{[2,3]}$ Solderability ${ }^{[7]}$	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock Temperature Cycle	1051	Condition B1, 15 minute dwell	LTPD $=15$
Moisture Resistance ${ }^{[4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or $\mathrm{K}^{[8]}$	
Electrical/Optical Endpoints ${ }^{[5]}$	-	$\begin{aligned} & \mathrm{I}_{\mathrm{DD}}(\mathrm{BLK}), \mathrm{I}_{\mathrm{DD}}(\mathrm{~V}), \mathrm{I}_{\mathrm{DD}}(\#), \mathrm{I}_{\mathrm{HH}}, \mathrm{I}_{\mathrm{L}}, \\ & \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{V}} \& \text { function, } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	
Subgroup 4 Operating Life Test 340 hrs	1027	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} @ \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	LTPD $=10$
Electrical/Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3	
Subgroup 5 Non-Operating Storage Life Test 340 hrs	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}^{[9]}$	LTPD $=10$
Electrical/Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3	

Notes:

1. Visual inspection is performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend for one cycle.
5. Limits and conditions as per the electrical/optical characteristics.
6. Equivalent to MIL-STD-883, Method 2014.
7. The steam aging is not performed on gold plated leads.
8. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HDSP-2133.
9. $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ for HDSP-2133.

Table IVa. Group C, Class A and B of MIL-D-87157

Subgroup Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup $1^{[1]}$ Physical Dimensions	2066		2 Devices 0 Failures
Subgroup $2^{[2]}$ Lead Integrity ${ }^{[7,9]}$	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or K ${ }^{[10]}$	
Subgroup 3 Shock	2016	1500 G . Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation $\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$	LTPD $=15$
Vibration Variable Frequency	2056		
Constant Acceleration	2006	10,000G at $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ orientation	
External Visual ${ }^{[4]}$	1010 or 1011		
Electrical/Optical Endpoints ${ }^{[8]}$	-	$\mathrm{I}_{\mathrm{DD}}(\mathrm{BLK}), \mathrm{I}_{\mathrm{DD}}(\mathrm{V}), \mathrm{I}_{\mathrm{DD}}(\#), \mathrm{I}_{\mathrm{H}}$, $\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}, \mathrm{I}_{\mathrm{V}}$ and Visual Function, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup $4^{[1,3]}$ Salt Atmosphere	1041		LTPD $=15$
External Visual ${ }^{[4]}$	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{[5]}$	2037	Condition A	$\begin{gathered} \text { LTPD }=20 \\ \mathrm{C}=0 \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{[6]}$	1026	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	$\lambda=10$
Electrical/Optical Endpoints ${ }^{[6]}$	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.
9. Initial conditioning is a 15° inward bend for three cycles.
10. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HDSP-2133.

Features

- WIDE OPERATING TEMPERATURE RANGE $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- TRUE HERMETIC PACKAGE
- TXVB VERSION CONFORMS TO MIL-D-87157 QUALITY LEVEL A TEST TABLES
- CMOS IC FOR LOW POWER CONSUMPTION
- SMART ALPHANUMERIC DISPLAY Built-in RAM, ASCII Decoder, and LED Drive Circuitry
- VERY FAST ACCESS TIME, 160 ns
- EXCELLENT ESD PROTECTION Built-in Protective Diodes
- FULL TTL COMPATIBILITY OVER OPERATING TEMPERATURE RANGE
- END-STACKABLE
- WIDE VIEWING ANGLE
- WAVE SOLDERABLE

Description

The HMDL-2416 is a smart $3.8 \mathrm{~mm}\left(0.15^{\prime \prime}\right)$ four character, sixteen segment red GaAsP display. It is contained in a hermetic 18 pin dual-in-line, glass sealed ceramic package. The on-board CMOS IC contains memory, ASCII decoder, multiplexing circuitry, and drivers. It has a wide operating temperature range, and is fully TTL compatible, wave solderable, and highly reliable. This display is ideally suited for military and high reliability industrial applications where a rugged, reliable, easy-to-use alphanumeric display is required.

Typical Applications

- MILITARY EQUIPMENT
- AVIONICS
- HIGH RELIABILITY INDUSTRIAL EQUIPMENT

Absolute Maximum Ratings

Supply Voltage, V_{CC} to Ground $\ldots \ldots . . .{ }^{-} .0 .5 \mathrm{~V}$ to 7.0 V
Input Voltage,
Any Pin to Ground $\ldots \ldots . \ldots \ldots . . .$.
Free Air Operating
Temperature Range, $\mathrm{T}_{\mathrm{A}} \ldots \ldots \ldots \ldots . .-55^{\circ}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\mathrm{S}} \ldots \ldots5^{\circ}$ to $+125^{\circ} \mathrm{C}$
Maximum Solder Temperature, $1.59 \mathrm{~mm}(0.063 \mathrm{in}$.
below Seating Plane, $\mathrm{t}<5 \mathrm{sec} . \ldots260^{\circ} \mathrm{C}$

ESD WARNING: The HMDL-2416 is implemented in a standard CMOS process with diode protection of all inputs. The ESD susceptibility of this IC device is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK263. Standard precautions for handling CMOS devices should be observed.

Package Dimensions

Recommended Operating Conditions

Parameter	Symbol	Min.	Nom.	Max.	Units
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input Voltage High	V_{IH}	2.0			V
Input Voltage Low	V_{IL}			0.8	V

DC Electrical Characteristics Over Operating Temperature Range typical values

Parameter	Symbol	Units	$\mathbf{- 5 5}{ }^{\circ} \mathbf{C}$	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$+\mathbf{1 0 0}{ }^{\circ} \mathbf{C}$	Test Condition
$\mathrm{I}_{\mathrm{CC}} 4$ digits on (10 seg/digit) ${ }^{[1,2]}$	I_{CC}	mA	120	85	70	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
I_{CC} Cursor ${ }^{[2,3,4]}$	$\mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{CU}})$	mA	170	125	105	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
I_{CC} Blank	$\mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{BL}})$	mA	1.8	1.5	1.3	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ $\overline{\mathrm{BL}}=0.8 \mathrm{~V}$
Input Current, Max.	I_{IL}	$\mu \mathrm{A}$	22	17	12	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ $\mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$
Thermal Resistance Junction to Case	$\mathrm{R}_{\mathrm{J}-\mathrm{C}}$	${ }^{\circ} \mathrm{C} / \mathrm{W} /$ Device		20		

GUARANTEED VALUES

Parameter	Symbol	Units	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$	Maximum Over Operating Temperature Range $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$
${ }^{\text {CC }} 4$ digits on ($10 \mathrm{seg} /$ digit) ${ }^{[1,2]}$	ICC	mA	115	167
$\mathrm{I}_{\text {CC }}$ Cursor $[2,3,4]$	$\mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{CU}})$	mA	165	225
$I_{\text {CC }}$ Blank	$I_{C C}(\overline{B L})$	mA	3.5	8.0
Input Current, Max.	$I_{\text {IL }}$	$\mu \mathrm{A}$	30	40
Power Dissipation[5]	$P_{\text {D }}$	mW	575	918
Leak Rate	LR	$\mathrm{cc} / \mathrm{sec}$		5×10^{-8}

Notes:

1. "\%" illuminated in all four characters.
2. Cursor operates continuously over operating temperature range.
3. Measured at five seconds.
4. Power dissipation $=V_{C C} \cdot I_{C C}(10$ seg. $)$.
5. Cursor character is sixteen segments and DP on.

AC Timing Characteristics Over Temperature at $\mathrm{VCC}=4.5 \mathrm{~V}^{[11}$

Symbol	Description	$\begin{gathered} -20^{\circ} \mathrm{C} \\ \mathbf{t}_{\text {MIN }} \end{gathered}$	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \mathbf{t}_{\text {MIN }} \end{gathered}$	$\begin{gathered} 70^{\circ} \mathrm{C} \\ \mathrm{t}_{\text {MIN }} \end{gathered}$	Units
$1 \mathrm{t}_{\text {AS }}$	Address Setup Time	90	115	150	ns
$2 \mathrm{t}_{\text {WD }}$	Write Delay Time	10	15	20	ns
$3 \mathrm{t}_{\mathrm{w}}$	Write Time	80	100	130	ns
$4 \mathrm{t}_{\mathrm{DS}}$	Data Setup Time	40	60	80	ns
$5 \mathrm{t}_{\mathrm{DH}}$	Data Hold Time	40	45	50	ns
$6 \mathrm{t}_{\text {AH }}$	Address Hold Time	40	45	50	ns
$7 \mathrm{t}_{\text {CEH }}$	Chip Enable Hold Time	40	45	50	ns
$8 \mathrm{t}_{\text {CES }}$	Chip Enable Setup Time	90	115	150	ns
$9 \mathrm{t}_{\text {CLR }}$	Clear Time	2.4	3.5	4.0	ms
$10 \mathrm{t}_{\text {ACC }}$	Access Time	130	160	200	ns
	Refresh Rate	420-790	310-630	270-550	Hz

Note: 1. These parameters are guaranteed by design but are not tested.
Optical Characteristics

Parameter	Symbol	Test Condition	Min.	Typ.	Units
Peak Luminous Intensity per digit, 8 segments on (character average)	I_{V} Peak	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ "*" illuminated in all 4 digits $\left(25^{\circ} \mathrm{C}\right)$	0.2	0.6	mcd
Peak Wavelength	λ peak			655	nm
Dominant Wavelength	λ_{d}			640	nm
Off Axis Viewing Angle				± 65	degrees
Digit Size				3.81	mm

Timing Diagram

Character Font Description

Relative Luminous Intensity vs. Temperature

Electrical Description

Display Internal Block Diagram

Figure 1 shows the internal block diagram for the HMDL-2416 display. The CMOS IC consists of a four word ASCII memory, a four-word cursor memory, a 64-word character generator, 17 segment drivers, four digit drivers, and the scanning circuitry necessary to multiplex the four monolithic LED characters. In normal operation, the divide-by-four counter sequentially accesses each of the four RAM locations and simultaneously enables the appropriate display digit driver. The output of the RAM is decoded by the character generator which, in turn, enables the appropriate display segment drivers. For each display location, the cursor enable (CUE) selects whether the data from the ASCII RAM (CUE $=0$) or the stored cursor (CUE $=1$) is to be displayed. The cursor character is denoted by all sixteen segments and the DP ON. Seven-bit ASCII data is stored in RAM. Since the display utilizes a 64-character decoder, half of the possible 128 input combinations are invalid. For each display location where $D_{5}=D_{6}$ in the ASCII RAM, the display character is blanked. The entire display is blanked when $\overline{\mathrm{BL}}=0$.
Data is loaded into the display through the data inputs ($D_{6}-D_{0}$), digit selects (A_{1}, A_{0}), chip enables ($\overline{C E}_{1}, \overline{C E}_{2}$, cursor select ($\overline{\mathrm{CU}}$), and write ($\overline{\mathrm{WR}}$). The cursor select ($\overline{\mathrm{CU}}$) determines whether data is stored in the ASCII RAM ($\overline{\mathrm{CU}}=$ 1) or cursor memory $(\overline{\mathrm{CU}}=0)$. When $\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}=\overline{\mathrm{WR}}=0$ and $\overline{C U}=1$, the information on the data inputs is stored in the ASCII RAM at the location specified by the digit selects $\left(A_{1}, A_{0}\right)$. When $\overline{C E}_{1}=\overline{C E}_{2}=\overline{W R}=0$ and $\overline{C U}=0$, the information on the data input, D_{0}, is stored in the cursor at the location specified by the digit selects $\left(A_{1}, A_{0}\right)$. If $D_{0}=1$, a cursor character is stored in the cursor memory. If $D_{0}=$ 0 , a previously stored cursor character will be removed from the cursor memory.
If the clear input ($\overline{\mathrm{CLR}}$) equals zero for one internal display cycle (4 ms minimum), the data in the ASCII RAM will be rewritten with zeroes and the display will be blanked. Note that the blanking input ($\overline{\mathrm{BL}}$) must be equal to logical one during this time.

Data Entry

Figure 2 shows a truth table for the HMDL-2416 display. Setting the chip enables $\left(\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}\right)$ to their low state and the cursor select $(\overline{\mathrm{CU}})$ to its high state will enable data loading. The desired data inputs $\left(D_{6}-D_{0}\right)$ and address inputs (A_{1}, A_{0}) as well as the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and cursor select $(\overline{C U})$ must be held stable during the write cycle to ensure that the correct data is stored into the display. Valid ASCII data codes are shown in Figure 3. The display accepts standard seven-bit ASCII data. Note that $D_{6}=\bar{D}_{5}$ for the codes shown in Figure 2. If $\mathrm{D}_{6}=\mathrm{D}_{5}$ during the write cycle, then a blank will be stored in the display. Data can be loaded into the display in any order. Note that when A_{1} $=A_{0}=0$, data is stored in the furthest right-hand display location.

Cursor Entry

As shown in Figure 2, setting the chip enables ($\left.\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}\right)$ to their low state and the cursor select ($\overline{\mathrm{CU}}$) to its low state will enable cursor loading. The cursor character is indicated by the display symbol having all 16 segments and the DP ON. The least significant data input (D_{0}), the digit selects ($\mathrm{A}_{1}, \mathrm{~A}_{0}$), the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$), and the cursor select ($\overline{\mathrm{CU}})$ must be held stable during the write cycle to ensure that the correct data is stored in the display. If D_{0} is in a low state during the write cycle, then a cursor character will be removed at the indicated location. If D_{0} is in a high state during the write cycle, then a cursor character will be stored at the indicated location. The presence or absence of a cursor character does not affect the ASCII data stored at that location. Again, when $A_{1}=A_{0}=0$, the cursor character is stored in the furthest right-hand display location.
All stored cursor characters are displayed if the cursor enable (CUE) is high. Similarly, the stored ASCII data words are displayed, regardless of the cursor characters, if the cursor enable (CUE) is low. The cursor enable (CUE) has no effect on the storage or removal of the cursor characters within the display. A flashing cursor is displayed by pulsing the cursor enable (CUE). For applications not requiring a cursor, the cursor enable (CUE) can be connected to ground and the cursor select ($\overline{\mathrm{CU}}$) can be connected to Vcc. This inhibits the cursor function and allows only ASCII data to be loaded into the display.

Figure 1. HMDL-2416 Internal Block Diagram

Display Clear

As shown in Figure 2，the ASCII data stored in the display will be cleared if the clear（ $\overline{\mathrm{CLR}}$ ）is held low and the blank－ ing input（ $\overline{\mathrm{BL}}$ ）is held high for 4 ms minimum．The cursor memory is not affected by the clear（ $\overline{\mathrm{CLR}}$ ）input．Cursor characters can be stored or removed even while the clear $(\overline{\mathrm{CLR}})$ is low．Note that the display will be cleared regardless of the state of the chip enables（ $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ ）．However，to ensure that all four display characters are cleared，$\overline{\mathrm{CLR}}$ should be held low for 4 ms following the last write cycle．

Display Blank

As shown in Figure 2，the display will be blanked if the blanking input（ $\overline{\mathrm{BL}})$ is held low．Note that the display will be blanked regardless of the state of the chip enables $\left(\overline{\mathrm{CE}}_{1}\right.$ ，
$\overline{\mathrm{CE}}_{2}$ ）or write（ $(\overline{\mathrm{WR}})$ inputs．The ASCII data stored in the dis－ play and the cursor memory are not affected by the blanking input．ASCII data and cursor data can be stored even while the blanking input（ $\overline{\mathrm{BL}}$ ）is low．Note that while the blanking input（ $\overline{\mathrm{BL}}$ ）is low，the clear（ $\overline{\mathrm{CLR}}$ ）function is inhi－ bited．A flashing display can be obtained by applying a low frequency square wave to the blanking input（ $\overline{B L}$ ）．Because the blanking input（ $\overline{\mathrm{BL}}$ ）also resets the internal display mul－ tiplex counter，the frequency applied to the blanking input $(\overline{\mathrm{BL}})$ should be much slower than the display multiplex rate． Finally，dimming of the display through the blanking input $(\overline{\mathrm{BL}})$ is not recommended．

For further application information please consult Applica－ tion Note 1026.

Function	$\overline{\text { BL }}$	$\overline{\text { CLR }}$	CUE	$\overline{\mathbf{C u}}$	$\overline{\mathrm{CE}}_{1}$	$\overline{\mathrm{CE}}_{2}$	$\overline{\text { WR }}$	A_{1}	A_{0}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	$\mathrm{DIG}_{3} \mathrm{DIG}_{2} \mathrm{DIG}_{1}$ DIG $_{0}$		
Write Data	L	X	X	H	L	L	L	L	L	a	a	a	a	a	a	a	NC NC	NC	
								L	H	b	b	b	b	b	b	b	NC NC	B	NC
Memory	X	H	X	H	L	L	L	H	L	c	c	c	c	c	c	c	NC［	NC	NC
								H	H	d	d	d	d	d	d	d	1 NC	NC	NC
Disable	X	X	X	H	X	X	H		X X	X	X	X	X	X	X	X	Previously Written Data		
Data	X	X	X	H	X	H	X												
Memory Write	\underline{x}	x	x	H	！	X	x												
Write	X	X	X	L	L	L	L	L	L	X	X	X	X	X	X	H	NC NC	NC	柬
Cursor								1	H	X	X	X	X	X	X	H	NC NC	＊	NC
								H	L	X	X	X	X	X	X	H	NC	NC	NC
								H	H	X	X	X	X	X	X	H	团 NC	NC	NC
Clear	X	X	X	L	L	L	L	L	L	X	X	X	X	X	X	L	NC NC		
Cursor								L	H	X	X	X	X	X	X	L	NC ${ }^{\text {NC }}$		NC
								H	L	X	X	X	X	X	X	L	NC［－］	NC	NC
								H	H	X	X	X	X	X	X	L	${ }^{-1}$－${ }^{\text {a }}$	NC	NC
Disable	X	X	X	L	X	X	H	X	X	X	X	X	X	X	X	X	Previously	y Writ	
Cursor	X	X	X	L	X	H	X										Cursor		
Memory	X	X	X	L	H	X	X												

L＝LOGIC LOW INPUT＂a＂＝ASCII CODE CORRESPONDING TO SYMBOL＂A＂
$\mathrm{H}=$ LOGIC HIGH INPUT $\quad \mathrm{NC}=$ NO CHANGE
$\mathrm{X}=$ DON＇T CARE \quad＝CURSOR CHARACTER（ALL SEGMENTS ON）
Figure 2a．Cursor／Data Memory Write Truth Table

Function	$\overline{B L}$	$\overline{C L R}$	CUE	$\overline{\text { Cu }}$	$\overline{C E}_{1}$	$\overline{C E}_{2}$	$\overline{W R}$	DIG_{3}	DIG_{2}	DIG_{1}	DIG 0	
CUE	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & X \end{aligned}$	R 困	$\begin{gathered} \text { H } \\ \text { W } \end{gathered}$	$\stackrel{\Sigma}{\Sigma}$	$\begin{aligned} & 7 \\ & \text { W } \end{aligned}$	Display previously written data Display previously written cursor
Clear		L TE： wing data is	X R sh the las cleare	X uld b WRI	X held cycl	X w for to en	X^{*} ms ure	$\left[\begin{array}{l} -1 \end{array}\right]$	$\left[\begin{array}{l} {[-]} \end{array}\right.$	$\left[\begin{array}{l} {[-]} \end{array}\right.$	$\left[\begin{array}{ll} {[1]} \\ \hline \end{array}\right.$	Clear data memory，cursor memory unchanged
Blanking	L	X	X	X	X	X	X	［－］	${ }^{-7}$	［－］	［－］	Blank display，data and cursor memories unchanged．

Figure 2b．Displayed Data Truth Table

Figure 3. HPDL-2416 ASCII Character Set

Mechanical and Electrical Considerations

The HMDL-2416 is an 18 pin dual-in-line package, that can be stacked horizontally and vertically to create arrays of any size. The HMDL-2416 is designed to operate continuously from -55° to $+100^{\circ} \mathrm{C}$ for all possible input conditions including the illuminated cursor in all four character locations. The HMDL-2416 is assembled by die attaching and wire bonding the four GaAsP/GaAs monolithic LED chips and the CMOS IC to a 18 lead ceramic-glass dual-inline package. It is designed either to plug into DIP sockets or to solder into PC boards.

The inputs of the CMOS IC are protected against static discharge and input current latchup. However, for best results standard CMOS handling precautions should be used. Prior to use, the HMDL-2416 should be stored in anti-static tubes or conductive material. During assembly, a grounded conductive work area should be used. The assembly personnel should use conductive wrist straps. Lab coats made of synthetic materials should be avoided since they are prone to static charge build-up. Input current latchup is caused when the CMOS inputs are subjected to a voltage either below ground ($\mathrm{V}_{\text {IN }}<$ ground) or to a higher voltage than $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{V}_{I N}>\mathrm{V}_{\mathrm{CC}}\right)$ and a high current is forced into the input. To prevent input current latchup and ESD damage, unused inputs should be connected either to ground or to V_{CC}, voltages should not be applied to the inputs until V_{CC} has been applied to the display, and transient input voltages should be eliminated.

Soldering and Post Solder Cleaning Instructions for the HMDL-2416

The HMDL-2416 may be hand soldered or wave soldered with SN63 solder. Hand soldering may be safely performed only with an electronically temperature-controlled and securely grounded soldering iron. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux or a water soluble organic acid (OA) flux can be used. The solder wave temperature should be $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$, and the dwell in the wave should be set at $11 / 2$ to 3 seconds for optimum soldering.
Post solder cleaning may be accomplished using water or Freon/alcohol mixtures formulated for vapor cleaning processing or Freon/alcohol mixtures formulated for room temperature cleaning. Freon/alcohol vapor cleaning processing for up to 2 minutes in vapors at boiling is permissible. Suggested solvents include Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15, Genesolv DES, and water.
For further information on soldering, refer to Application Note 1027, "Soldering LED Components".

Optical Considerations/ Contrast Enhancement

Each HMDL-2416 display is tested for luminous intensity and marked with an intensity category on the back of the display package. To ensure intensity matching for multiple package applications, all displays for a given panel should have the same category.

The HMDL-2416 display is designed to provide maximum contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Dark Red 63, SGL Homalite H100-1650, Rohm and Haas 2423, Chequers Engraving 118, and 3M R6510. For further information on contrast enhancement, see Hewlett-Packard Application Note 1015.

High Reliability Testing

Two standard high reliability testing programs are available. The TXVB program is in conformance with MIL-D-87157 level A Test Tables. The TXVB product is tested to Tables I, II, IIIa, and IVa. The TXV program is an HP modification to the full conformance program and offers the 100% screening of Quality Level A, Table I, and Group A, Table II.

Part Marking System

		With Tables Standard Product			
WMDL Table I and II	I, II, IIIa, IVa		$	$	HMDL-2416TXVB
:---:					

100\% Screening

Table I. Quality Level A of MIL-D-87157

Test Screen	MIL-STD-750 ivieùnod	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7235-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours
3. Temperature Cycling	1051	Condition B, 10 cycles, 15 min . dwell
4. Constant Acceleration	2006	5,000 G's at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C or K
7. Interim Electrical/Optical Tests[2]	-	$\begin{aligned} & I_{C C}, I_{V} @ V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
8. Burn-In ${ }^{11]}$	1015	$\begin{aligned} & \text { Condition } \mathrm{B} \text { at } \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & T_{A}=100^{\circ} \mathrm{C} \\ & t=160 \text { hours } \end{aligned}$
9. Final Electrical Test ${ }^{[2]}$	-	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \%, \mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{CU}}), \mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{BL}}) \\ & \mathrm{I}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{V}} @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
10. Delta Determinations	-	$\begin{aligned} & \Delta \mathrm{I}_{\mathrm{CC}}= \pm 10 \% \\ & \Delta \mathrm{I}_{\mathrm{V}}=-20 \% \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
11. External Visual[1]	2009	

Notes:

1. MIL-STD-883 Test Method Applies
2. Limits and conditions are per the electrical optical characteristics.

Table II. Group A Electrical Tests - MIL-D-87157

Subgroup/Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}\|1\|$	$\mathrm{I}_{\mathrm{CC}} \%, \mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{CU}}), \mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{BL}}), \mathrm{I}_{\mathrm{IL}}, \mathrm{IV}_{\mathrm{V}}$ and visual function @ $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{11}$	Same as Subgroup 1, except delete I_{V} and visual function, $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{11}$	Same as Subgroup 1, except delete Iv and visual function, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not applicable		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883, Method 2009	7

Note:

1. Limits and conditions are per the electrical/optical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157

Subgroup/Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification[1]	2075[6]		1 Device/ 0 Failures
Subgroup 2[2,3] Solderability	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B1, 15 minute dwell	LTPD $=15$
Moisture Resistance ${ }^{[4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or K	
Electrical/Optical Endpoints[5]	-	$\mathrm{I}_{\mathrm{CC}} \%, \mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{CU}}), \mathrm{I}_{\mathrm{CC}}(\overline{\mathrm{BL}}), \mathrm{I}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{V}}$ @ $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and visual function. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs .)	1027	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	LTPD $=10$
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs)	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	LTPD = 10
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	

Notes:

1. Visual inspection is performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend for one cycle.
5. Limits and conditions are per the electrical/optical characteristics.
6. Equivalent to MIL-STD-883, Method 2014.

Table IVa. Group C, Class A and B of MIL-D-87157

Subgroup/Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Physical Dimensions	2066		2 Devices/ 0 Failures
Subgroup 2 ${ }^{[2]}$ Lead Integrity $[7,9]$	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or K	
Subgroup 3 Shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Z_{1}	LTPD = 15
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	5,000 G's at Y_{1} orientation	
External Visual[4]	1010 or 1011		
Electrical/Optical Endpoints[8]	-	$I_{C C} \%, I_{C C}(\overline{C U}), I_{C C}(\overline{B L}), I_{I L}, I_{V}$ $@ V_{C C}=5.0 \mathrm{~V}$ and visual function. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD = 15
External Visual[4]	1010 or 1011		
Subgroup 5 Bond Strength[5]	2037	Condition A	$\begin{gathered} \angle T P D=20 \\ \quad C=0 \end{gathered}$
Subgroup 6 Operating Life Test[6]	1026	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C} @ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\lambda=10$
Electrical/Optical Endpoints[8]	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements. the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.
9. Initial conditioning is a 15° inward bend for three cycles.

CMOS Hermetic Extended Temperature Range 5x7 Alphanumeric Displays

Technical Data

Features

- On-Board Low Power CMOS IC
Integrated Shift Register with Constant Current LED Drivers
- Wide Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- HI-REL Screening per MIL-D-87157
Quality Level A TXV or TVXB
- Hermetic Package
- Compact Glass Ceramic 4 Character Package HCMS-201X Series End Stackable
HCMS-231X/-235X
Series X-Y Stackable
- HCMS-235X Series are Sunlight Viewable
- Five Colors

Standard Red
High Efficiency Red
Orange
Yellow
High Performance Green

- 5x7 LED Matrix Displays Full ASCII Set
- Two Character Heights
3.8 mm (0.15 inch)
5.0 mm (0.20 inch)
- Wide Viewing Angle

X Axis $= \pm 50^{\circ}$
Y Axis $= \pm 65^{\circ}$

- Long Viewing Distance HCMS-201X Series to 2.6 Meters (8.6 Feet) HCMS-231X/-235X Series to 3.5 Meters(11.5 Feet)
- Categorized for Luminous Intensity
- HCMS-2011/2013 HCMS-2311/-2313/-2314 HCMS-2351/-2353/-2354
Useable in Night Vision Lighting Applications
- HCMS-2011/-2013, HCMS-2311/-2313 and HCMS-2351/-2353: Categorized for Color

Typical Applications

- Military Avionics
- Communications Systems
- Radar Systems
- Fire Control Systems

HCMS-201X/201XTXV/
201XTXVB Series HCMS-231X/231XTXV/ 231XTXVB

Sunlight Viewable

Series HCMS-235X/ 235XTXV/235XTXVB Series

Description

The HCMS-201X, HCMS-231X and the sunlight viewable HCMS-235X series are 5x7 LED four character displays contained in 12 pin dual-in-line packages designed for displaying alphanumeric information. The character height for the HCMS-201X series displays is 3.8 mm (0.15 inch), and for the HCMS-231X and HCMS-235X series displays the character height is 5.0 mm (0.20 inch). The HCMS-201X series displays are available in four LED colors: standard red, high efficiency red, yellow and high performance green. The HCMS-231X series are available in all five

LED colors. The HCMS-235X series displays are available in four LED colors: high efficiency red, orange, yellow and high performance green. The HCMS201X series displays are end stackable. The HCMS-231X and HCMS-235X series displays are end/row stackable.

These displays are designed with on-board CMOS integrated
circuits for use in applications where conservation of power is important. The two CMOS ICs form an on-board 28-bit serial-in-parallel-out shift register with constant current output LED row drivers. Decoded column data is clocked into the on-board shift register for each refresh cycle. Full character display is achieved with external column strobing.

Compatibility with HDSP-201X/-231X/-235X TTL IC Series Displays The HCMS-201X, HCMS-231X and HCMS-235X CMOS IC displays are "drop-in" replacements for the equivalent HDSP-201X, HDSP-231X and HDSP-235X TTL IC displays. The 12 pin glass/ceramic package configuration, four digit character matrix and pin functions are identical.

Display Selection Table

Part Number	Character Size	LED Color
HCMS-2010/2010TXV/2010TXVB	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	Standard Red
HCMS-2011/2011TXV/2011TXVB	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	Yellow
HCMS-2012/2012TXV/2012TXVB	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	High-Efficiency Red
HCMS-2013/2013TXV/2013TXVB	$3.8 \mathrm{~mm}(0.15 \mathrm{inch})$	High-Performance Green
HCMS-2310/2310TXV/2310TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	Standard Red
HCMS-2311/2311TXV/2311TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	Yellow
HCMS-2312/2312TXV/2312TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	High-Efficiency Red
HCMS-2313/2313TXV/2313TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	High-Performance Green
HCMS-2314/2314TXV/2314TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	Orange
Sunlight Viewable Displays		
HCMS-2351/2351TXV/2351TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	Yellow
HCMS-2352/2352TXV/2352TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	High-Efficiency Red
HCMS-2353/2353TXV/2353TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	High-Performance Green
HCMS-2354/2354TXV/2354TXVB	$5.0 \mathrm{~mm}(0.20 \mathrm{inch})$	Orange

[^24]
Package Dimensions

HCMS-201X Series

Absolute Maximum Ratings
Supply Voltage V_{DD} to Ground 0.3 V to 7.0 V
Data Input, Data Output, V_{B} -0.3 V to V_{DD}
Column Input Voltage, $\mathrm{V}_{\mathrm{COL}}$
$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Free Air Operating Temperature Range, T_{A} $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature Range, T_{S} $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HCMS-2310/-2311/-2312/-2314HCMS-2351/-2352/-2354
Storage Temperature Range, T_{S} $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
HCMS-2010/-2011/-2012/-2013
HCMS-2313
HCMS-2353
Maximum Allowable Package Power Dissipation, $\mathrm{P}_{\mathrm{D}}{ }^{[1,2]}$HCMS-2010/-2011/-2012/-2013 at T $\mathrm{A}_{\mathrm{A}}=83^{\circ} \mathrm{C}$
\qquad
ESD Protection @ 1.5k $\Omega, 100 \mathrm{pf}$

\qquad
$\mathrm{V}_{\mathrm{z}}=4 \mathrm{kV}$ (each pin)

Notes:

1. Maximum allowable power dissipation is derived from $\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}$, $\mathrm{V}_{\text {CoL }}=3.5 \mathrm{~V}, 20$ LEDs ON per character, $20 \% \mathrm{DF}$.
2. The power dissipation for these displays should be derated as follows: HCMS-201X series derate above $83^{\circ} \mathrm{C}$ at $17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}, \mathrm{R} \theta_{\mathrm{J}-\mathrm{A}}=60^{\circ} \mathrm{C} / \mathrm{W}$ HCMS-231X series derate above $88^{\circ} \mathrm{C}$ at $22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}, \mathrm{R} \theta_{\mathrm{JAA}}^{\mathrm{J}}=45^{\circ} \mathrm{C} / \mathrm{W}$ HCMS-325X series derate above $71^{\circ} \mathrm{C}$ at $23 \mathrm{~mW} /{ }^{\circ} \mathrm{C}, \mathrm{R} \theta_{\mathrm{J} \cdot \mathrm{A}}=45^{\circ} \mathrm{C} / \mathrm{W}$.
Deratings based on $\mathrm{R} \theta_{\mathrm{pc}-\mathrm{A}}=35^{\circ} \mathrm{C} / \mathrm{W}$ per display for printed circuit board assembly.
See Figure 1 for power derating based on lower $R \theta_{J-A}$ values.

Recommended Operating Conditions
Over Operating Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Units
Supply Voltage	V_{D}	4.75	5.00	5.25	V
Data Out Current, Low State	I_{OL}			1.6	mA
Data Out Current, High State	I_{OH}			-0.5	mA
Column Input Voltage	$\mathrm{V}_{\mathrm{coL}}$	2.75	3.0	3.5	V
Setup Time	$\mathrm{t}_{\text {SETUP }}$	10			ns
Hold Time	$\mathrm{t}_{\text {HoL }}$	25			ns
Clock Pulse Width High	$t_{\text {wh(clock }}$	50			ns
Clock Pulse Width Low	$\mathrm{t}_{\text {wLCLlock }}$	50			ns
Clock High to Low Transition	$\mathrm{t}_{\text {THL }}$			200	ns
Clock Frequency	$\mathrm{f}_{\text {clock }}$			5	MHz

Electrical Characteristics
Over Operating Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $+100^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	Min.	Typ.*	Max.	Units
Supply Current, Dynamic ${ }^{[1]}$	$\mathrm{I}_{\text {DDD }}$	$\mathrm{f}_{\text {CLOCK }}=5 \mathrm{MHz}$		6.2	7.8	mA
Supply Current, Static ${ }^{[2]}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{DDSoff}} \\ & \mathrm{I}_{\mathrm{DDSon}} \end{aligned}$	$\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V}$		$\begin{aligned} & 1.8 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline 2.6 \\ & 3.3 \end{aligned}$	mA
Column Input Current		$\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$			10	$\mu \mathrm{A}$
HCMS-2010/-2011/-2012/-2013 HCMS-2310/-2311/-2312/-2313/-2314 HCMS-2351/-2352/-2353/-2354	$\mathrm{I}_{\text {col }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 310 \\ & 360 \\ & 500 \end{aligned}$	$\begin{aligned} & 384 \\ & 451 \\ & 650 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Input Logic High Data, V_{B}, Clock	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$	2.0			V
Input Logic Low Data, V_{B}, Clock	V_{L}	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$			0.8	V
Input Current Data, Clock V_{B}	I_{I}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V} \\ 0 \leq \mathrm{V}_{\mathrm{I}} \leq 5.25 \mathrm{~V} \\ 0 \leq \mathrm{V}_{\mathrm{v}} \leq 5.25 \mathrm{~V} \end{gathered}$	$\begin{aligned} & -10 \\ & -40 \end{aligned}$		$\begin{gathered} +10 \\ 0 \end{gathered}$	$\mu \mathrm{A}$
Data Out Voltage	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{COL}}=0 \mathrm{~mA} \end{gathered}$	2.4	4.2		V
	$\mathrm{V}_{\text {oL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{oL}}=1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CoL}}=0 \mathrm{~mA} \end{aligned}$		0.2	0.4	V
$\begin{aligned} & \text { Power Dissipation Per Package }{ }^{[3]} \\ & \text { HCMS-2010/-2011/-2012/-2013 } \\ & \text { HCMS-2310/-2311/-2312/-2313/-2314 } \\ & \text { HCMS-2351/-2352/-2353/-2354 } \end{aligned}$	P_{D}	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} \\ 17.5 \% \mathrm{DF} \\ \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V} \end{gathered}$ 15 LEDs ON per Character		$\begin{aligned} & 414 \\ & 481 \\ & 668 \end{aligned}$		mW
Thermal Resistance IC Junction-to- Pin $^{[4]}$ HCMS-2010/-2011/-2012/-2013 HCMS-2310/-2311/-2312/-2313/-2314 HCMS-2351/-2352/-2353/-2354	$R \theta_{\text {J-PIN }}$			$\begin{aligned} & 25 \\ & 10 \\ & 10 \end{aligned}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Leak Rate					5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$

*All typical values specified at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Notes:

1. I_{pD} Dynamic is the IC current while clocking column data through the on-board shift register at a clock frequency of 5 MHz , the display is not illuminated.
2. $I_{p D}$ Static is the IC current after column data is loaded and not being clocked through the on-board shift register.
3. Four characters are illuminated with a typical ASCII character composed of 15 dots per character.
4. IC junction temperature $T_{J}(I C)=\left(P_{D}\right)\left(R \theta_{J-P I N}+R \theta_{P C-A}\right)+T_{A}$

Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Standard Red HCMS-2010/-2310

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Peak Luminous		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$				
Intensity per HCMS-2010		$\mathrm{V}_{\mathrm{CoL}}^{\mathrm{DD}}=3.5 \mathrm{~V}$	105	200		$\mu \mathrm{cd}$
LED ${ }^{[5,9]}$ HCMS-2310	$\mathrm{I}_{\text {vPEAK }}$	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$	220	370		
(Character Average)		$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}{ }^{[7]}$				
Dominant Wavelength ${ }^{[8]}$	$\lambda_{\text {d }}$			639		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$			655		nm

Yellow HCMS-2011/-2311/-2351

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Peak Luminous Intensity ner HCMS-2011 LED (Character HCMS-2311 Average) HCMS-2351	$\mathrm{I}_{\text {vPEAK }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{coL}}=3.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]} \end{gathered}$	$\begin{array}{r} 400 \\ 650 \\ 2400 \end{array}$	$\begin{gathered} 750 \\ 1140 \\ 3400 \end{gathered}$		$\mu \mathrm{cd}$
Dominant Wavelength ${ }^{[6,8]}$	$\lambda_{\text {d }}$			585		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$			583		nm

High Efficiency Red HCMS-2012/-2312/-2352

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Peak Luminous	$\mathrm{I}_{\text {veEAK }}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$				$\mu \mathrm{cd}$
Intensity per HCMS-2012		$\mathrm{V}_{\text {coL }}=3.5 \mathrm{~V}$	400	1430		
LED ${ }^{[5,9]}$ HCMS-2312		$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$	650	1430		
(Character Average) \quad HCMS-2352		$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]}$	1920	2850		
Dominant Wavelength ${ }^{[8]}$	$\lambda_{\text {d }}$			625		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$			635		nm

High Performance Green HCMS-2013/-2313/-2353

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Peak Luminous		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$				
Intensity per HCMS-2013		$\mathrm{V}_{\mathrm{COL}}=3.5 \mathrm{~V}$	850	1550		
LED $^{[5,9]}$ HCMS-2313	$\mathrm{I}_{\mathrm{vPEAK}}$	$\mathrm{V}_{\mathrm{B}}=2.4 \mathrm{~V}$	1280	2410		$\mu \mathrm{~cd}$
(Character HCMS-2353		$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]}$	2400	3000		
Average)				574		nm
Dominant Wavelength ${ }^{[6,8]}$	λ_{d}			568		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$					

Orange HCMS-2314/-2354

Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
Peak Luminous Intensity per LED ${ }^{[5,9]}$ HCMS-2314 (Character HCMS-2354 Average)	$\mathrm{I}_{\text {vPEAK }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=2.4 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{i}}=25^{\circ} \mathrm{C}^{[7]} \end{gathered}$	$\begin{gathered} 650 \\ 1920 \end{gathered}$	$\begin{aligned} & 1430 \\ & 2850 \end{aligned}$		$\mu \mathrm{cd}$
Dominant Wavelength ${ }^{[8]}$	$\lambda_{\text {d }}$			602		nm
Peak Wavelength	$\lambda_{\text {PEAK }}$			600		nm

All typical values specified at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Notes:
5. These LED displays are categorized for luminous intensity, with the intensity category designated by a letter code on the back of the package.
6. The HCMS-2011/-2311/-2351 and HCMS-2013/-2313/-2353 are categorized for color with the color category designated by a number on the back of the package.
7. Ti refers to the initial case temperature of the display immediately prior to the light measurement.
8. Dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram, and represents the single wavelength which defines the color of the device.
9. The luminous sterance of the individual LED pixels may be calculated using the following equations:
$L_{v}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)=1_{\mathrm{v}}(\text { Candela })^{*}$ DF/A(Metre) ${ }^{2}$
L_{v} (Footlamberts) $=\pi \mathrm{I}^{2}($ Candela $) * \mathrm{DF} / \mathrm{A}(\text { Foot })^{2}$
Where: $A=L E D$ pixel area $=5.3 \times 10^{-8} \mathrm{M}^{2}$ or $5.8 \times 10^{-7} \mathrm{ft}^{2}$
DF = LED on-time duty factor

Switching Characteristics, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Parameter	Condition	Typ.	Max.	Units
$\mathrm{f}_{\text {cleck }}$ CLOCK Rate			5	MHz
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PH}}$ Propagation Delay CLOCK to DATA OUT	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2.4 \mathrm{k} \Omega \end{aligned}$		105	ns
$\begin{aligned} & \mathrm{t}_{\text {OFF }} \\ & \mathrm{V}_{\mathrm{B}}(0.4 \mathrm{~V}) \text { to } \\ & \text { Display OFF } \\ & \mathrm{t}_{\text {ON }} \\ & \mathrm{V}_{\mathrm{B}}(2.4 \mathrm{~V}) \text { to } \\ & \text { Display ON } \end{aligned}$		4	5 2	$\mu \mathrm{s}$

Figure 1. Maximum Allowable Power Dissipation vs Ambient Temperature as a Function of Thermal Resistance Junction-to-Ambient, $\mathrm{R}_{\mathrm{J}-\mathrm{A}}$. Derated Operation Assumes $R \theta_{\text {PC-A }}=35^{\circ} \mathrm{C} / \mathrm{W}^{\mathrm{W}}$ per Display for Printed Circuit Board. $\mathrm{T}_{\mathrm{J}}(\mathrm{IC})$ MAX $=130^{\circ} \mathrm{C}$. $\mathrm{R}^{\mathrm{J}}{ }_{\mathrm{J}-\mathrm{A}}\left(\mathbf{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}\right)$
$=22^{\circ}{ }^{\circ} /{ }^{\circ}$ W for HCMS-235X Series $=32^{\circ} \mathrm{C} / \mathrm{W}$ for HCMS-231X Series $=38^{\circ} \mathrm{C} / \mathrm{W}$ for HCMS-201X Series

Electrical Description

Each display device contains four 5×7 LED dot matrix characters and two CMOS integrated circuits, as shown in Figure 4. The two CMOS integrated circuits form an on-board 28 bit serial-in-parallel-out shift register that will accept standard TTL logic levels. The Data Input, pin 12, is connected to bit position 1 and the Data Output, pin 7, is connected to bit position 28 . The shift register outputs control constant current sinking LED row drivers. The nominal current sink per LED driver is 11 mA for the HCMS201X displays, 13 mA for the HCMS-231X displays and 18 mA for the HCMS-235X displays. A logic 1 stored in the shift register enables the corresponding LED row driver and a logic 0 stored in the shift register disables the corresponding LED row driver.

The electrical configuration of these CMOS IC alphanumeric displays allows for an effective

Figure 2. Relative Luminous Intensity vs Display Pin Temperature

Figure 3. Peak Column Current vs Column Voltage
columns 2, 3, 4 and 5. All $\mathrm{V}_{\mathrm{COL}}$ inputs should be at logic low to insure the display is off when loading data. The display will be blanked when the blanking input V_{B}, pin 8 , is at logic low regardless of the outputs of the shift register or whether one of the $\mathrm{V}_{\mathrm{COL}}$ inputs is energized.

Refer to Application Note 1016 for drive circuit information.

ESD Susceptibility

The HCMS-201X/-231X/-235X series displays have an ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C. It is recommended that normal CMOS handling precautions be observed with these devices.

Soldering and Post Solder Cleaning

These displays may be soldered with a standard wave solder process using either an RMA flux and solvent cleaning or an OA flux and aqueous cleaning.

Figure 4. Block Diagram of an HCMS-2XXX Series LED Alphanumeric Display.

For optimum soldering, the solder wave temperature should be $245^{\circ} \mathrm{C}$ and the dwell time for any display lead passing through the wave should be $11 / 2$ to 2 seconds. The recommended solvent for post solder cleaning is Genesolv DES, manufactured by Allied Chemical. For aqueous cleaning, a water temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ with an immersion time not exceeding 15 minutes is recommended. For more detailed information, refer to Application Note 1027 Soldering LED Components.

Contrast Enhancement
When used with the proper contrast enhancement filters, the HCMS-235X series displays are readable in sunlight and the HCMS-201X/231X series dis-
plays are readable in daylight ambients. Refer to Application Note 1029 Luminous Contrast and Sunlight Readability of the HDSP-238X Series Alphanumeric Displays for Military Applications for information on contrast enhancement for sunlight and daylight ambients. Refer to Application Note 1015 Contrast Enhancement Techniques for LED Displays for information on contrast enhancement in moderate ambients.

Night Vision Lighting

 When used with the proper NVG/DV filters, the HCMS-2311/-2351 and HCMS-2133/2353 displays may be used in night vision lighting applications. The HCMS-2311/-2351 (yellow) displays are used asmaster caution and warning indicators. The HCMS-2313/2353 (high performance green) displays are used for general instrumentation. For a list of NVG/DV filters and a discussion on night vision lighting technology, refer to Application Note 1030 LED Displays and Indicators and Night Vision Imaging System Lighting.

Controller Circuits, Power Calculations and Display Dimming

Refer to Application Note 1016
Using the HDSP-2000
Alphanumeric Display Family for information on controller circuits to drive these displays, how to do power calculations and a technique for display dimming.

Table I. Quality Level A of MIL-D-87157-100\% Screening

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7512-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours $^{[3]}$
3. Temperature Cycling	1051	Condition B, 10 cycles, 15 minute dwell
4. Constant Acceleration	2006	$10,000 \mathrm{G}$'s at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C or $\mathrm{K}^{[4]}$
7. Interim Electrical/ Optical Tests ${ }^{[1]}$	-	$\mathrm{I}_{\mathrm{DD}}\left(\right.$ at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V), $\mathrm{I}_{\mathrm{COL}}$ (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V) $\mathrm{I}_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), I_{IL} (V), Clock and Data $\mathrm{In}), \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$ and $\mathrm{I}_{\text {vPEAK }} . \mathrm{V}_{\mathrm{IH}}$ and V_{IL} inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
8. Burn-In ${ }^{[1]}$	1015	Condition B at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ LED ON-Time Duty Factor $=5 \%, 35$ Dots Onf, $\mathrm{t}=160$ hours
9. Final Electrical Test ${ }^{[2]}$	-	Same as step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta \mathrm{I}_{\mathrm{DD}}= \pm 6 \mathrm{~mA}, \Delta \mathrm{I}_{\mathrm{IH}} \text { (clock) }= \pm 10 \mu \mathrm{~A}, \\ & \Delta \mathrm{I}_{\mathrm{IH}} \text { (Data In) }= \pm 10 \mu \mathrm{~A} \\ & \Delta \mathrm{I}_{\mathrm{OH}}= \pm 10 \% \text { of initial value, and } \\ & \Delta \mathrm{I}_{\mathrm{v}}=-20 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
11. External Visual ${ }^{[1]}$	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{OL} tests are the inverse of V_{OH} and V_{OL} specified in the electrical characteristics.
3. $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ for HCMS-2013/-2313/-2353.
4. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HCMS-2013/-2313/-2353.

Table II. Group A Electrical Tests - MIL-D-87157

Subgroup Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}^{[1]}$	$\mathrm{I}_{\mathrm{DD}}\left(\right.$ at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V$), \mathrm{I}_{\mathrm{COL}}\left(\right.$ at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V) $\mathrm{I}_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), $\mathrm{I}_{\mathrm{IL}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), $\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$ Visual Function and $\mathrm{I}_{\text {VPEAK }} . \mathrm{V}_{\mathrm{IH}}$ and V_{IL} inputs are guaranteed by the electronic shift register test.	5
Subgroup 2 DC Electrical Tests at High Temperature ${ }^{[1]}$	Same as Subgroup 1 except delete I_{v} and visual function, $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperature ${ }^{[1]}$	Same as Subgroup 1 except delete I_{v} and visual function, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not tested		
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883, Method 2009	7

Notes:

1. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{OL} tests are the inverse of V_{OH} and V_{OL} specified in the electrical characteristics.

Table IIIa. Group B, Class A and B of MIL-D-87157

Subgroup Test	$\underset{\substack{\text { Method }}}{\text { MIL-STD-750 }}$	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification ${ }^{[1]}$	$2075{ }^{[7]}$		1 Device/ 0 Failures
Subgroup 2 ${ }^{[2,3]}$ Solderability	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B1, 15 minute dwell	LTPD $=15$
Moisture Resistance ${ }^{[4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or $\mathrm{K}^{[8]}$	
Electrical/Optical Endpoints ${ }^{[5]}$	-	$\mathrm{I}_{\mathrm{DD}}\left(\right.$ at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V$), \mathrm{I}_{\mathrm{coL}}$ (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V$), \mathrm{I}_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Cock and Data In), $\mathrm{I}_{\mathrm{IL}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), $\mathrm{I}_{\text {OH }}, \mathrm{I}_{\mathrm{OL}}$ Visual Function and $\mathrm{I}_{\text {VPEAK }}$. V_{IH} and V_{IL} inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs .)	1027	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}$, $\mathrm{V}_{\mathrm{coL}}=3.5 \mathrm{~V}$, LED ON-Time Duty Factor =5\%,35 Dots On	LTPD $=10$
Electrical/Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3	
Subgroup 5 Non-Operating Storage Life Test (340 hrs .)	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}^{[6]}$	LTPD $=10$
Electrica//Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3	

Notes:

1. Visual inspection is performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend for one cycle.
5. Limits and conditions are per the electrical/optical characteristics. The $I_{O H}$ and $I_{O L}$ tests are the inverse of $V_{O H}$ and $V_{O L}$ specified in the electrical characteristics.
6. $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ for HCMS-2013/-2313/-2353.
7. Equivalent to MIL-STD-883, Method 2014.
8. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HCMS-2013/-2313/-2353.

Table IVa. Group C, Class A and B of MIL-D-87157

Subgroup Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Physical Dimensions	2066		2 Devices/ 0 Failures
Subgroup $2^{[2]}$ Lead Integrity ${ }^{[7,9]}$	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or $\mathrm{K}^{[10]}$	
Subgroup 3 Shock	2016	1500G. Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation $\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$	LTPD $=15$
Vibration Variable Frequency	2056		
Constant Acceleration	2006	$10,000 \mathrm{G}$ at Y_{1} orientation	
External Visual ${ }^{[4]}$	1010 or 1011		
Electrical/ Optical Endpoints ${ }^{[8]}$	-	$\mathrm{I}_{\mathrm{DD}}\left(\right.$ (at $\mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}$ and 2.4 V$), \mathrm{I}_{\mathrm{COL}}\left(\mathrm{at} \mathrm{V}_{\mathrm{B}}=0.4 \mathrm{~V}\right.$ and 2.4 V$), \mathrm{I}_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In$)$, $\mathrm{I}_{\mathrm{IL}}\left(\mathrm{V}_{\mathrm{B}}\right.$, Clock and Data In), $\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$, Visual Function and $I_{\text {VPEAK }} \cdot V_{I H}$ and $V_{I L}$ inputs are guaranteed by the electronic shift register test. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup $4^{[1,3]}$ Salt Atmosphere	1041		LTPD $=15$
External Visual ${ }^{[4]}$	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{[5]}$	2037	Condition A	$\begin{gathered} L T P D=20 \\ (C=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{[6]}$	1026	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C} \text { at } \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{B}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{COL}}=3.5 \mathrm{~V}$ LED ON-Time Duty Factor $=5 \%, 35$ Dots On	$\lambda=10$
Electrical/Optical Endpoints ${ }^{[8]}$	-	Same as Subgroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C life test requirements. In such cases either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics. The I_{OH} and I_{OL} tests are the inverse of V_{OH} and V_{OL} specified in the electrical specifications.
9. Initial conditioning is a 15° inward bend for three cycles.
10. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HCMS-2013/-2313/-2353.

Features

- MILITARY QUALIFIED LISTED ON MIL-D-87157 QPL
- TRUE HERMETIC PACKAGE
- TXV VERSION AVAILABLE
- THREE CHARACTER OPTIONS Numeric, Hexadecimal, Over Range
- 4×7 DOT MATRIX CHARACTER
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- HIGH TEMPERATURE STABILIZED
- SOLDER DIPPED LEADS
- MEMORY LATCH/DECODER/DRIVER TTL Compatible
- CATEGORIZED FOR LUMINOUS INTENSITY

Description

These standard red solid state displays have a 7.4 mm (0.29 inch) dot matrix character and an on-board IC with data memory latch/decoder and LED drivers in a glass/ ceramic package. These devices utilize a solder glass frit seal and conform to the hermeticity requirements of MIL-D-87157, the general specification for LED displays. These 4N5X series displays are designed for use in military and aerospace applications.
These military qualified displays are designated as M87157/ 00101 AAX through -/00104AAX in the MIL-D-87157 Qualified Parts List (QPL). The letter designations at the end of the

part numbers are defined as follows: "A" signifies MIL-D87157 Quality Level A. "A" signifies solder dipped leads, " X " signifies the luminous intensity category.
The 4N51 numeric display decodes positive 8421 BCD logic inputs into characters $0-9$, a "-" sign, a test pattern, and four blanks in the invalid BCD states. The unit employs a right-hand decimal point.
The 4 N 52 is the same as the 4 N 51 except that the decimal point is located on the left-hand side of the digit.
The 4N54 hexadecimal display decodes positive 8421 logic inputs into 16 states, $0-9$ and A-F. In place of the decimal point an input is provided for blankirig the display (all LED's off), without losing the contents of the memory. The $4 N 53$ is a " ± 1." overrange display, including a righthand decimal point.

Package Dimensions*

END VIEW

PIN	FUNCTION	
	4N51 4N52 NUMERIC	4N54 HEXA- DECIMAL
	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal point	Blanking control
5	Latch enable	Latch enable
6	Ground	Ground
7	VCC	VCC
8	Input 1	Input 1

NOTES:

1. Dimensions in miltimetres and (inches). 2. Unless otherwise specified, the tolerance on all dimensions is $\pm .38 \mathrm{~mm}\left(\pm .015^{\prime \prime}\right)$
2. Digit center line is $\pm .25 \mathrm{~mm}\left(\pm .01^{\prime \prime}\right)$ from package center line.
3. Solder dipped leads
4. See over range package drawing for HP standard marking

Absolute Maximum Ratings*

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient ${ }^{(1,2)}$	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{(3)}$	V_{CC}	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Voltage applied to blanking input ${ }^{(7)}$	V_{B}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V
Maximum solder temperature at $1.59 m m(.062$ inch $)$ below seating plane; $\mathrm{t} \leqslant 5$ seconds		260	${ }^{\circ} \mathrm{C}$	

Recommended Operating Conditions*

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage	$V_{c c}$	4.5	5.0	5.5	V
Operating temperature, ambient ${ }^{(1,2)}$	T_{A}	-55		+100	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	tw	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {SETUP }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\text {HOLD }}$	50			nsec
Enatile pulise rise time	$\dot{t}_{\text {TLH }}$			200	nsec

Electrical/Optical Characteristics ${ }^{*} \tau_{A}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$, unless otherwise specified)

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{(4)}$	Max.	Unit
Supply Current	Icc	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Characters " 5 ." or "B")		112	170	mA
Power dissipation	P_{T}			560	935	mW
Luminous intensity per LED (Digit average) ${ }^{(5,6)}$	I_{v}	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	85		$\mu \mathrm{cd}$
Logic low-level input voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$			0.8	V
Logic high-level input voltage	V_{IH}		2.0			V
Enable low-voltage; data being entered	V_{EL}				0.8	V
Enable high-voltage; data not being entered	$V_{\text {EH }}$		2.0			V
Blanking low-voltage; display not blanked ${ }^{(7)}$	$V_{\text {BL }}$				0.8	V
Blanking high-voltage; display blanked (7)	$V_{\text {BH }}$		3.5			V
Blanking low-level input current ${ }^{(7)}$	$\mathrm{I}_{\text {BL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BL}}=0.8 \mathrm{~V}$			50	$\mu \mathrm{A}$
Blanking high-level input current ${ }^{(7)}$	I_{BH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {BH }}=4.5 \mathrm{~V}$			1.0	mA
Logic low-level input current	I_{IL}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-1.6	mA
Logic high-level input current	I_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			+100	$\mu \mathrm{A}$
Enable low-level input current	$\mathrm{I}_{\text {EL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0.4 \mathrm{~V}$			-1.6	mA
Enable high-level input current	I_{EH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}}=2.4 \mathrm{~V}$			+130	$\mu \mathrm{A}$
Peak wavelength	$\lambda_{\text {PEAK }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength ${ }^{(8)}$	$\lambda_{\text {d }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		640		nm
Weight **				1.0		gm
Leak Rate					5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: $\Theta_{\mathrm{IA}}=50^{\circ} \mathrm{C} / \mathrm{W}$; $\Theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W}$. 2. Θ_{CA} of a mounted display should not exceed $35^{\circ} \mathrm{C} / \mathrm{W}$ for operation up to $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$. 3. Voltage values are with respect to device ground, pin 6. 4. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Volts}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 5. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The luminous intensity at a specific ambient temperature, $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)$, may be calculated from this relationship: $\mathrm{I}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}\right)=\operatorname{lv}_{\left(25^{\circ} \mathrm{C}\right)}(.985)\left[\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right]$ 7. Applies only to 4 N 54 . 8 . The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Figure 1. Timing Diagram of 4N51-4N54 Series Logic.

Figure 2. Block Diagram of 4N51-4N54 Series Logic.

TRUTH TABLE					
BCD DATA ${ }^{[1]}$				4N51 AND 4N52	4N54
X_{8}	X_{4}	X_{2}	X_{1}		
L	L	L	L	\cdots	$\ddot{\square}$
L	L	L	H	\vdots	\vdots
L	L	H	L	:	: $\begin{aligned} & \text { … } \\ & \vdots\end{aligned}$
L	L	H	H	$\cdots:$	\cdots
L.	H	L	L	\vdots	!
L	H	L	H	!...:	!
L	H	H	L	\cdots	\cdots
L	H	H	H	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$
H	L	L	L	\cdots	\because
H	L	L	H	\%	\%
H	L	H	L	\%	\cdots
H	L	H	H	(BLANK)	曲:
H	H	L.	L	(BLANK)	\cdots
H	H	L	H	"':
H	H	H	L	(BLANK)	!
H	H	H	H	(BLANK)	":"
DECIMALPT. ${ }^{[2]}$			ON		$V_{D P}=L$
			OFF		$V_{D P}=H$
ENABLE ${ }^{[1]}$			LOAD DATA		$V_{E}=L$
			LATCH DATA		$V_{E}=H$
BLANKING ${ }^{[3]}$			DISPLAY-ON		$V_{B}=L$
			DISPLAY-OFF		$V_{B}=H$

Notes:

1. $H=$ Logic High; $L=$ Logic Low. With the enable input at logic high changes in BCD input logic levels or D.P. input have no effect upon display memory, displayed character, or D.P.
2. The decimal point input, DP, pertains only to the 4 N51 and 4 N52 displays.
3. The blanking control input, B, pertains only to the 4 N54 hexadecimal display. Blanking input has no effect upon display memory.

Figure 3. Typical Blanking Control Current vs. Voltage for 4 N 54 .

Figure 4. Typical Blanking Control Input Current vs. Ambient Temperature for 4 N 54 .

Figure 5. Typical Latch Enable Input Current vs. Voltage.

Figure 6. Typical Logic and Decimal Point Input Current vs. Voltage.

Figure 7. Typical Logic and Enable Low Input Current vs. Ambient Temperature.

Figure 8. Typical Logic and Enable High Input Current vs. Ambient Temperature.

Operational Considerations

ELECTRICAL

The 4N51-4N54 series devices use a modified 4×7 dot matrix of light emitting diodes (LED's) to display decimal/hexadecimal numeric information. The LED's are driven by constant current drivers. BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. To avoid the latching of erroneous information, the enable pulse rise time should not exceed 200 nanoseconds. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.
The blanking control input on the 4 N 54 display blanks (turns off) the displayed hexadecimal information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 3.5 volts. This may be easily achieved by using an open collector TTL gate and a pull-up resistor. For example, (1/6) 7416 hexinverter buffer/driver and a 120 ohm pull-up resistor will provide sufficient drive to blank eight displays. The size of the blanking pull-up resistor may be calculated from the following formula, where N is the number of digits:

$$
R_{\text {blank }}=\left(\mathrm{V}_{\mathrm{cc}}-3.5 \mathrm{~V}\right) /[\mathrm{N}(1.0 \mathrm{~mA})]
$$

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.
The ESD susceptibility of the IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

MECHANICAL

4N51-4N54 series displays are hermetically tested for use in environments which require a high reliability device. These displays are designed and tested to meet a helium
leak rate of $5 \times 10^{-8} \mathrm{CC} / \mathrm{SEC}$ and a fluorocarbon gross leak bubble test.
These displays may be mounted by soldering directly to a printed circuit board or inserted into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.
The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a case-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ /watt as measured on top of display pin 3.

Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

PRECONDITIONING

4N51-4N54 series displays are 100\% preconditioned by 24 hour storage at $125^{\circ} \mathrm{C}$.

CONTRAST ENHANCEMENT

The 4N51-4N54 displays have been designed to provide the maximum posible ON/OFF contrast when placed behind an appropriate contrast enhancement filter. Some suggested filters are Panelgraphic Ruby Red 60 and Dark Red 63, SGL Homalite H100-1605, 3M Light Control Film and Polaroid HRCP Red Circular Polarizing Filter. For further information see Hewlett-Packard Application Note 1015.

Solid State Over Range Display

For display applications requiring a \pm, 1 , or decimal point designation, the 4 N53 over range display is available. This display module comes in the same package as the 4 N51-4N54 series numeric display and is completely compatible with it.

Package Dimensions*

Figure 9. Typical Driving Circuit.

TRUTH TABLE

CHARACTER	PIN			
	$\mathbf{1}$	$\mathbf{2 , 3}$	$\mathbf{4}$	$\mathbf{8}$
+	H	X	X	H
-	L	X	X	H
$\mathbf{1}$	X	H	X	X
Decimal Point	X	X	H	X
Blank	L	L	L	L

NOTES: L: Line switching transistor in Figure 9 cutoff.
H : Line switching transistor in Figure 9 saturated.
X: 'Don't care'

Electrical/Optical Characteristics*

$4 N 53\left(T_{A}=-55^{\circ} \mathrm{C}\right.$ to $+100^{\circ} \mathrm{C}$, Unless Otherwise Specified)

DESCRIPTION	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.6	2.0	V
Power dissipation	$\mathrm{P}_{\text {T }}$	$I_{F}=10 \mathrm{~mA}$ all diodes lit		280	320	mW
Luminous Intensity per LED (digit average)	I_{ν}	$\begin{aligned} & I_{F}=6 \mathrm{~mA} \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	40	85		$\mu \mathrm{cd}$
Peak wavelength	$\lambda_{\text {peak }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		655		nm
Dominant Wavelength	λd	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		640		nm
Weight * *				1.0		gm

Recommended Operating Conditions*

	SYMBOL	MIN	NOM	MAX	UNIT
LED supply voltage	$V_{\text {CC }}$	4.5	5.0	5.5	V
Forward current, each LED	I_{F}		5.0	10	mA

NOTE:

LED current must be externally limited. Refer to Figure 9 for recommended resistor values.
*JEDEC Registered Data. **Non Registered Data.

Absolute Maximum Ratings*

DESCRIPTION	SYMBOL	MIN.	MAX.	UNIT
Storage temperature, ambient	$\mathrm{T}_{\mathbf{S}}$	-65	+125	${ }^{\circ} \mathrm{C}$
Operating temperature, ambient	$\mathrm{T}_{\mathbf{A}}$	-55	+100	${ }^{\circ} \mathrm{C}$
Forward current, each LED	I_{F}		10	mA
Reverse voltage, each LED	$\mathrm{V}_{\mathbf{R}}$		4	V

High Reliability Testing

Two standard reliability testing programs are available. The military program provides QPL parts that comply to MIL-D-87157 Quality Level A, per Tables I, II, IIIa, and IVa. A second program is an HP modification to the full conformance program and offers the 100% screening portion of Level A, Table I, and Group A, Table II. In addition, a MIL-D-87157 Level B equivalent testing program is available upon request.

PART MARKING SYSTEM

Standard Product	With Table I and II	With Tables I, II, IIIa and IVa
PREFERRED PART NUMBER SYSTEM		
4N51	4N51TXV	M87157/00101AAX
4N52	4N52TXV	M87157/00102AAX
4N54	4N54TXV	M87157/00104AAX
4N53	4N53TXV	M87157/00103AAX

100\% Screening
TABLE I.
QUALITY LEVEL A OF MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7572-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours
3. Temperature Cycling	1051	Condition B, 10 Cycles, 15 Min . Dwell
4. Constant Acceleration	2006	10,000 G's at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C or K
7. Interim Electrical/Optical Tests ${ }^{[2]}$	-	Iv, Icc, IbL, Ibh, IEL, IEH, ILL, and IIH $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
8. Burn-In 1,3$]$	1015	Condition B at Vcc $=5 \mathrm{~V}$ and cycle through logic at 1 character per second. $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{t}=160$ hours
9. Final Electrical Test ${ }^{[2]}$	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta l v=-20 \%, \Delta l \mathrm{lcC}= \pm 10 \mathrm{~mA}, \Delta \mathrm{l}_{\mathrm{IH}}= \pm 10 \mu \mathrm{~A} \\ & \text { and } \Delta l_{E H}= \pm 13 \mu \mathrm{~A} \end{aligned}$
11. External Visual[1]	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics.
3. Burn-in for the over range display shall use Condition B at a nominal $I_{F}=8 \mathrm{~mA}$ per LED, with all LEDs illuminated for $t=160$ hours minimum.

TABLE II
GROUP A ELECTRICAL TESTS - MIL-D-87157

Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}^{[1]}$	Iv, ICC, IBL, IBH, IEL, IEH, IIL, and IIH and visual function, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5
Subgroup 2 DC Electrical Tests at High Temperature $[1]$	Same as Subgroup 1, except delete Iv and visual function. $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperaturel 1$]$	Same as Subgroup 1, except delete IV and visual function. $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not applicable		7
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883, Method 2009	7

[^25]TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification ${ }^{[1]}$	$2075[7]$		1 Device/ 0 Failures
Subgroup 2[2,3] Solderability	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD $=15$
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B1, 15 Min. Dwell	LTPD $=15$
Moisture Resistance ${ }^{4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or K	
Electrical/Optical Endpoints[5]	-	$\mathrm{Iv}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{BL}}, \mathrm{I}_{\mathrm{BH}}, \mathrm{I}_{\mathrm{EL}}, \mathrm{I}_{\mathrm{EH}}, \mathrm{IIL}$ IIH and visual function. $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs.) ${ }^{[6]}$	1027	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and cycling through logic at 1 character per second.	LTPD = 10
Electrical/Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3.	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs .)	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	LTPD = 10
Electrical/Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3	

Notes:

1. Visual inspection performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend, one cycle.
5. Limits and conditions are per the electrical/optical characteristics.
6. Burn-in for the over range display shall use Condition B at a nominal $I_{F}=8 \mathrm{~mA}$ per LED, with all LEDs illuminated for $t=160$ hours minimum.
7. Equivalent to MIL-STD-883, Method 2014.

TABLE IVa
 GROUP C, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Physical Dimensions	2066		2 Devices/ 0 Failures
Subgroup 2[2,7,9] Lead Integrity	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or K	
Subgroup 3 Shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation X_{1}, Y_{1}, Z_{1}	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000G at Y_{1} orientation	
External Visual[4]	1010 or 1011		
Electrical/Optical Endpoints[8]	-	Iv, ICc, IBL, IBH, IEL, IEH, IIL, IIH and visual Function, $T_{A}=25^{\circ} \mathrm{C}$	
Subgroup 4[1,3] Salt Atmosphere	1041		LTPD $=15$
External Visual ${ }^{[4]}$	1010 or 1011	*	
Subgroup 5 Bond Strength ${ }^{[5]}$	2037	Condition A	$\begin{gathered} \text { LTPD }=20 \\ (C=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{[6]}$	1026	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	$\lambda=10$
Electrical/Optical Endpoints ${ }^{[8]}$	-	Same as Subgroup 3	

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C Life Test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.
9. Initial conditioning is a 15° inward bend, three cycles.

HERMETIC, NUMERIC AND HEXADECIMAL DISPLAYS FOR MILITARY APPLICATIONS

HIGH EFFICIENCY RED
Low Power HDSP-078X/078XTXV/078XTXVB High Brightness YELLOW HDSP-079X/079XTXV/079XTXVB HDSP-088X/088XTXV/088XTXVB HDSP-098X/098XTXV/098XTXVB

Features

- CONFORM TO MIL-D-87157, QUALITY LEVEL A TEST TABLES
- TRUE HERMETIC PACKAGE FOR HIGH EFFICIENCY RED AND YELLOW[1]
- TXV AND TXVB VERSIONS AVAILABLE
- THREE CHARACTER OPTIONS

Numeric, Hexadecimal, Over Range

- THREE COLORS

High Efficiency Red, Yellow,
High Performance Green

- 4×7 DOT MATRIX CHARACTER
- HIGH EFFICIENCY RED, YELLOW, AND HIGH PERFORMANCE GREEN
- TWO HIGH EFFICIENCY RED OPTIONS Low Power, High Brightness
- PERFORMANCE GUARANTEED OVER TEMPERATURE
- HIGH TEMPERATURE STABILIZED
- GOLD PLATED LEADS
- MEMORY LATCH/DECODER/DRIVER TTL Compatible
- CATEGORIZED FOR LUMINOUS INTENSITY

Description
These solid state displays have a 7.4 mm (0.29 inch) dot matrix character and an onboard IC with data memory latch/decoder and LED drivers in a glass/ceramic package.

The hermetic HDSP-078X,-079X/-088X displays utilize a solder glass frit seal. The HDSP-098X displays utilize an epoxy glass-to-ceramic seal. All packages conform to the hermeticity requirements of MIL-D-87157, the general specification for LED displays. These displays are designed for use in military and aerospace applications.
The numeric devices decode positive BCD logic into characters "0-9", a "-" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, " $0-9, A-F$ ". An input is provided on the hexadecimal devices to blank the display (all LEDs off) without losing the contents of the memory.
The over range device displays " ± 1 " and right hand decimal point and is typically driven via external switching transistors.

Note:

1. The HDSP-098X high performance green displays are epoxy sealed and conform to MIL-D-87157 hermeticity requirements.

Devices

Part Number HDSP-	Color	Description	Front View
0781/0781TXV/0781TXVB 0782/0782TXV/0782TXVB 0783/0783TXV/0783TXVB 0784/0784TXV/0784TXVB	High-Efficiency Red Low Power	Numeric, Right Hand DP Numeric, Left Hand DP Over Range ± 1 Hexadecimal	$\begin{aligned} & \hline A \\ & B \\ & C \\ & D \end{aligned}$
0791/0791TXV/0791TXVB 0792/0792TXV/0792TXVB 0783/0783TXV/0783TXVB 0794/0794TXV/0794TXVB	High-Efficiency Red High Brightness	Numeric, Right Hand DP Numeric, Left Hand DP Over Range ± 1 Hexadecimal	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
0881/0881TXV/0881TXVB 0882/0882TXV/0882TXVB 0883/0883TXV/0883TXVB 0884/0884TXV/0884TXVB	Yellow	Numeric, Right Hand DP Numeric, Left Hand DP Over Range ± 1 Hexadecimal	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$
0981/0981TXV/0981TXVB 0982/0982TXV/0982TXVB 0983/0983TXV/0983TXVB 0984/0984TXV/0984TXVB	High Performance Green	Numeric, Right Hand DP Numeric, Left Hand DP Over Range ± 1 Hexadecimal	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$

Package Dimensions

FRONT VIEW B

FRONT VIEW D

END VIEW

PIN	FUNCTION	
	NUMERIC	HEXA. DECIMAL
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal point	Blanking control
5	Latch enable	Latch enable
6	Ground	Ground
7	$V_{\text {CC }}$	$V_{\text {CC }}$
8	Input 1	Input 1

Notes:

1. Dimensions in millimetres and (inches). 2. Unless otherwise specified, the tolerance on all dimensions is $\pm .38 \mathrm{~mm}\left(\pm .015^{\prime \prime}\right)$
. Digit center line is $\pm .25 \mathrm{~mm}\left(\pm .01^{\prime \prime}\right)$ from package center line.
Solder dipped leads.
Color code for HDSP-088X/-098X series.

Figure 1. Timing Diagram

TRUTH TABLE					
BCD DATA ${ }^{[1]}$				NUMERIC	HEXADECIMAL
X_{8}	X_{4}	X_{2}	X_{1}		
L	L	L	L		\because
L	L	L	H	\vdots	;
L	L	H	L	$\begin{aligned} & \because \\ & \vdots \\ & \vdots \end{aligned}$	\cdots
L	L	H	H	\cdots	\cdots
L	H	L	L	!.	! :
L	H	L	H	!....	! \ldots
L	H	H	L	\cdots	\cdots
L	H	H	H	\cdots	$\stackrel{\square}{\square}$
H	L	L	L	\cdots	
H	L	L	H	\%	\%
H	L.	H	L	\cdots	\because
H	L	H	H	(BLANK)	\cdots
H	H	L	L	(BLANK)	\cdots
H	H	L	H	\ldots	
H	H	H	L	(BLANK)	\cdots
H	H	H	H	(BLANK)	:-
DECIMAL PT. ${ }^{[2]}$			ON		$V_{D P}=L$
			OFF		$V_{D P}=H$
ENABLE ${ }^{[1]}$			LOAD DATA		$V_{E}=L$
			LATCH DATA		$V_{E}=H$
BLANKING ${ }^{[3]}$			DISPLAY-ON		$V_{B}=\mathrm{L}$
			DISPLAY-OFF		$V_{B}=H$

Notes:

1. $H=$ Logic High; $L=$ Logic Low. With the enable input at logic high changes in BCD input logic levels have no effect upon display memory, displayed character, or DP
2. The decimal point input, DP, pertains only to the numeric displays.
3. The blanking control input, B, pertains only to the hexadecimal displays. Blanking input has no effect upon display memory.

Figure 2. Logic Block Diagram

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage temperature, ambient HDSP-078X/-079X/-088X	Ts	-65	+125	${ }^{\circ} \mathrm{C}$
HDSP-098X		-55	+100	
Operating temperature, ambient ${ }^{[1]}$	$\mathrm{T}_{\text {A }}$	-55	+100	${ }^{\circ} \mathrm{C}$
Supply voltage ${ }^{[2]}$	$V_{\text {CC }}$	-0.5	+7.0	V
Voltage applied to input logic, dp and enable pins	$V_{1}, V_{D P}, V_{E}$	-0.5	V_{cc}	V
Voltage applied to blanking input ${ }^{[2]}$	$V_{\text {R }}$	-0.5	$V_{\text {cc }}$	V
Maximum solder temperature at 1.59 mm (0.062 inch) below seating plane: $t \leq 5$ seconds			260	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage ${ }^{[2]}$	V_{CC}	4.5	5.0	5.5	V
Operating temperature, ambient ${ }^{[1]}$	T_{A}	-55		+100	${ }^{\circ} \mathrm{C}$
Enable Pulse Width	t_{w}	100			nsec
Time data must be held before positive transition of enable line	$\mathrm{t}_{\text {SETTP }}$	50			nsec
Time data must be held after positive transition of enable line	$\mathrm{t}_{\mathrm{HOLL}}$	50			nsec
Enable pulse rise time	$\mathrm{t}_{\mathrm{TL.H}}$			1.0	msec

Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Device	Description	Symbol	Min.	Typ.	Max.	Unit
HDSP-078X Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	IV	65	140		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		635		nm
	Dominant Wavelength[5]	λ_{d}		626		nm
HDSP-079X Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	IV	260	620		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		635		nm
	Dominant Wavelength ${ }^{\text {[5] }}$	λ_{d}		626		nm
HDSP-088X Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	Iv	215	490		$\mu \mathrm{cd}$
	Peak Wavelength	λ PEAK		583		nm
	Dominant Wavelength ${ }^{[5,6]}$	λd		585		nm
HDSP-098X Series	Luminous Intensity per LED (Digit Average) ${ }^{[3,4]}$	I_{V}	298	1100		$\mu \mathrm{cd}$
	Peak Wavelength	$\lambda_{\text {PEAK }}$		568		nm
	Dominant Wavelength	λ_{d}		574		nm

Notes:

[^26]
Electrical Characteristics; ($\mathrm{T}_{\mathrm{A}}=.55^{\circ} \mathrm{C}$ to $\left.+100^{\circ} \mathrm{C}\right)$

Description		Symbol	Test Conditions	Min.	Typ. ${ }^{[7]}$	Max.	Unit
Supply Current	HDSP-078X Series	Icc	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Characters " 5 ." or " B " displayed		78	105	mA
	HDSP-079X/-088X/ -098x Series				120	175	
Power Dissipation	HDSP-078X Series	PT	$V_{C C}=5.5 \mathrm{~V}$ Characters " 5 ." or " B " displayed		390	573	
	$\begin{aligned} & \text { HDSP-079X/-088X/ } \\ & \text {-098X Series } \end{aligned}$				690	963	mW
Logic, Enable and Blanking Low-Level Input Voltage		VIL	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$			0.8	V
Logic, Enable High-Level Input Voltage		V_{IH}		2.0			V
Blanking High Voltage; Display Blanked		VBH		2.3			V
Logic and Enable Low-Level Input Current		IIL	$\mathrm{Vcc}=5.5 \mathrm{~V}$			-1.6	mA
Blanking Low-Level Input Current		IBL	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Logic, Enable and Blanking High-Level Input Current		IIH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V} \end{aligned}$			+40	$\mu \mathrm{A}$
Weight					1.0		gm
Leak Rate						5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$.

Notes:
4. The luminous intensity at a specific operating ambient temperature, $I_{V}\left(T_{A}\right)$ may be approximated from the following expotential equation: $\operatorname{IV}_{\mathrm{V}}\left(\mathrm{T}_{\mathrm{A}}=\operatorname{IV}\left(25^{\circ} \mathrm{C}\right) \mathrm{e}^{\left[k\left(\mathrm{~T}_{\mathrm{A}}-25^{\circ} \mathrm{C}\right)\right] \text {. }}\right.$

Device	\mathbf{K}
HDSP-078X Series HDSP-079X Series	$-0.0131 /{ }^{\circ} \mathrm{C}$
HDSP-088X Series	$-0.0112 /{ }^{\circ} \mathrm{C}$
HDSP-098X Series	$-0.0104 /{ }^{\circ} \mathrm{C}$

Operational Considerations

ELECTRICAL

These devices use a modified 4×7 dot matrix of light emitting diodes to display decimal/hexadecimal numeric information. The high efficiency red and yellow displays use GaAsP/GaP LEDs and the high performance green displays use GaP/GaP LEDs. The LEDs are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at 6.7 MHz rate.
The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the onboard IC.
The blanking control input on the hexadecimal displays blanks (turns off the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
The ESD susceptibility of the IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK263.
5. The dominant wavelength, λ_{d}, is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
6. The HDSP-088X and HDSP-098X series devices are categorized as to dominant wavelength with the category disignated by a number on the back side of the display package.
7. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

MECHANICAL

These displays are hermetically sealed for use in environments that require a high reliability device. These displays are designed and tested to meet a helium leak rate of 5 x $10^{-8} \mathrm{cc} / \mathrm{sec}$.
These displays may be mounted by soldering directly to a printed circuit board or insertion into a socket. The lead-tolead pin spacing is $2.54 \mathrm{~mm}(0.100 \mathrm{inch})$ and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.
The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a base-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ watt/device as measured on top of display pin 3.
Post solder cleaning may be accomplished using water, Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/alcohol mixtures formulated for room temperature cleaning. Suggested solvents: Freon TF, Freon TE, Genesolv DI-15, Genesolv DE-15.

PRECONDITIONING

These displays are 100% preconditioned by 24 hour storage at $125^{\circ} \mathrm{C}$, at $100^{\circ} \mathrm{C}$ for the HDSP-098X Series.

CONTRAST ENHANCEMENT

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. The following filters are suggested:

Display Color	Ambient Lighting		
	Dim	Moderate	Bright
HDSP-088X Yellow	Panelgraphic Yellow 27 Chequers Amber 107	Polaroid HNCP 37 3M Light Control Film Panelgraphic Gray 10	Polaroid Gray HNCP10 HOYA Yellowish-Orange HLF-608-3Y Marks Gray MCP-0301-8-10
HDSP-078X/-079X HER	Panelgraphic Ruby Red 60 Chequers Red 112	Chequers Grey 105	Polaroid Gray HNCP10 HOYA Reddish-Orange HLF-608-5R Marks Gray MCP-0301-8-10 Marks Reddish-Orange MCP-0201-2-22
HDSP-098X HP Green	Panelgraphic Green 48 Chequers Green 107		Polaroid Gray HNCP10 HOYA Yellow-Green HLF-608-1G Marks Yellow-Green MCP-0101-5-12

Over Range Display

The over range devices display " ± 1 " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient	Ts_{s}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating Temperature Ambient	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Forward Current, Each LED	IF_{F}		10	mA
Reverse Voltage, Each LED	V_{R}		5	V

Character	Pin			
	$\mathbf{1}$	$\mathbf{2 , 3}$	$\mathbf{4}$	$\mathbf{8}$
+	1	X	X	1
-	0	X	X	1
$\mathbf{1}$	X	1	X	X
Decimal Point	X	X	1	X
Blank	0	0	0	0

Notes:

0 : Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
x : 'don't care'

Package Dimensions

Note:

1. Dimensions in millimetres and (inches).

Figure 3. Typical Driving Circuit

Luminous Intensity Per LED

(Digit Average) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Device	Test Conditions	Min.	Typ.	Units
HDSP-0783	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$	65	140	$\mu \mathrm{~cd}$
	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		620	$\mu \mathrm{~cd}$
HDSP-0883	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	215	490	$\mu \mathrm{~cd}$
HDSP-0983	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	298	1100	$\mu \mathrm{~cd}$

Recommended
Operating Conditions vcc $=5.0 \mathrm{ov}$

Device	Forward Current Per LED, $\mathbf{~ m A}$	Resistor Value		
	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	
HDSP-0783Low Power High Brightness 2.8 1300 200 300				
HDSP-0883	8	360	47	68
HDSP-0983	8	360	36	56

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

Device	Description	Symbol	Test Condition	Min.	Typ.	Max.	Units
HDSP-0783	Power Dissipation (all LEDs Illuminated)	P_{t}	$\mathrm{IF}_{\mathrm{F}}=2.8 \mathrm{~mA}$		72		mW
			$\mathrm{IF}_{\mathrm{F}}=8 \mathrm{~mA}$		224	282	
	Forward Voltage per LED	V_{F}	$\mathrm{IF}_{\mathrm{F}}=2.8 \mathrm{~mA}$		1.6		V
			$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		1.75	2.2	
HDSP-0883	Power Dissipation (all LEDs Illuminated)	P_{T}	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		237	282	mW
	Forward Voltage per LED	V_{F}			1.90	2.2	V
HDSP-0983	Power Dissipation (all IEDs i!luminated)	P_{T}	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		243	282	mW
	Forward Voltage per LED	V_{F}			1.85	2.2	V

High Reliability Testing

Two standard reliability testing programs are available. The TXVB program is in conformance with Quality Level A Test Tables of MIL-D-87157 for hermetically sealed displays with 100% screening tests. A TXVB product is tested to Tables I , II, IIIa, and IVa, A second program is an HP modification to the full conformance program and offers the 100% screening portion of Level A, Table I, and Group A, Table II.

PART MARKING SYSTEM

Standard Product	With Table I and II	With Tables I, II, IIla and IVa
HDSP-078X	HDSP-078XTXV	HDSP-078XTXVB
HDSP-079X	HDSP-079XTXV	HDSP-079XTXVB
HDSP-088X	HDSP-088XTXV	HDSP-088XTXVB
HDSP-098X	HDSP-098XTXV	HDSP-098XTXVB

TABLE I. QUALITY LEVEL A OF MIL-D-87157

Test Screen	MIL-STD-750 Method	Conditions
1. Precap Visual	2072	Interpreted by HP Procedure 5956-7572-52
2. High Temperature Storage	1032	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, Time $=24$ hours ${ }^{[4]}$
3. Temperature Cycling	1051	Condition B, 10 Cycles, 15 Min. Dwell
4. Constant Acceleration	2006	$10,000 \mathrm{G}$ at Y_{1} orientation
5. Fine Leak	1071	Condition H
6. Gross Leak	1071	Condition C or $\mathrm{K}^{[5]}$
7. Interim Electrical/Optical Tests ${ }^{[2]}$	-	Iv, Icc, Ibl, Ibh, IEL, IEH, IIL, and IIH $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
8. Burn-In $11,3 \mid$	1015	Condition B at $\mathrm{VCC}=5 \mathrm{~V}$ and cycle through logic at 1 character per second. $T_{A}=100^{\circ} \mathrm{C}, \mathrm{t}=160$ hours
9. Final Electrical Test ${ }^{(2 \mid}$	-	Same as Step 7
10. Delta Determinations	-	$\begin{aligned} & \Delta \mathrm{lv}=-20 \%, \Delta \mathrm{l} \mathrm{CC}= \pm 10 \mathrm{~mA}, \Delta \mathrm{IH}= \pm 10 \mu \mathrm{~A} \\ & \text { and } \Delta \mathrm{I} \mathrm{EH}= \pm 13 \mu \mathrm{~A} \end{aligned}$
11. External Visual ${ }^{1 /}$	2009	

Notes:

1. MIL-STD-883 Test Method applies.
2. Limits and conditions are per the electrical/optical characteristics.
3. Burn-in for the over range display shall use Condition B at a nominal $I_{F}=8 \mathrm{~mA}$ per LED, with all LEDs illuminated for $T=160$ hours minimum.
4. $T_{A}=+100^{\circ} \mathrm{C}$ for HDSP-098X Series.
5. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HDSP-098X Series.

TABLE II
GROUP A ELECTRICAL TESTS - MIL-D-87157

Test	Parameters	LTPD
Subgroup 1 DC Electrical Tests at $25^{\circ} \mathrm{C}^{[1]}$	IV, ICC, IBL, IBH, IEL, IEH, IIL, and IIH and visual function, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5
Subgroup 2 DC Electrical Tests at High Temperaturel 1$]$	Same as Subgroup 1, except delete IV and visual function. $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	7
Subgroup 3 DC Electrical Tests at Low Temperaturel 1$]$	Same as Subgroup 1, except delete IV and visual function. $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	7
Subgroup 4, 5, and 6 not applicable		5
Subgroup 7 Optical and Functional Tests at $25^{\circ} \mathrm{C}$	Satisfied by Subgroup 1	5
Subgroup 8 External Visual	MIL-STD-883, Method 2009	7

Notes:

1. Limits and conditions are per the electrical/optical characteristics.

TABLE IIIa
GROUP B, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Resistance to Solvents	1022		4 Devices/ 0 Failures
Internal Visual and Design Verification[1]	$2075{ }^{[7]}$		1 Device/ 0 Failures
Subgroup 2[2,3] Solderability	2026	$\mathrm{T}_{\mathrm{A}}=245^{\circ} \mathrm{C}$ for 5 seconds	LTPD = 15
Subgroup 3 Thermal Shock (Temp. Cycle)	1051	Condition B1, 15 min . Dwell	LTPD = 15
Moisture Resistance ${ }^{4]}$	1021		
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or $\mathrm{K}^{[9]}$	
Electrical/Optical Endpoints[5]	-	Iv, Icc, Ibl, Ibh, Iel, Ieh, Ill, Ith and visual function. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4 Operating Life Test (340 hrs.) ${ }^{[6]}$	1027	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and cycling through logic at 1 character per second.	LTPD = 10
Electrical/Optical Endpoints ${ }^{[5]}$	-	Same as Subgroup 3.	
Subgroup 5 Non-operating (Storage) Life Test (340 hrs.)	1032	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}^{[7,8]}$	LTPD = 10
Electrical/Optical Endpoints[5]	-	Same as Subgroup 3	

Notes:

1. Visual inspection performed through the display window.
2. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
3. The LTPD applies to the number of leads inspected except in no case shall less than 3 displays be used to provide the number of leads required.
4. Initial conditioning is a 15° inward bend, one cycle.
5. Limits and conditions are per the electrical/optical characteristics.
6. Burn-in for the over range display shall use Condition B at a nominal $I_{F} \pm 8 \mathrm{~mA}$ with ' + ' illuminated for $t=160$ hours.
7. Equivalent to MIL-STD-883, Method 2014.
8. $T_{A}=+100^{\circ} \mathrm{C}$ for HDSP-098X Series.
9. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HDSP-098X Series.

TABLE IVa
GROUP C, CLASS A AND B OF MIL-D-87157

Test	MIL-STD-750 Method	Conditions	Sample Size
Subgroup 1 Physical Dimensions	2066		2 Devices/ 0 Failures
Subgroup 2[2,7,9] Lead Integrity	2004	Condition B2	LTPD $=15$
Fine Leak	1071	Condition H	
Gross Leak	1071	Condition C or K ${ }^{[10]}$	
Subgroup 3 Shock	2016	1500G, Time $=0.5 \mathrm{~ms}, 5$ blows in each orientation $\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$	LTPD $=15$
Vibration, Variable Frequency	2056		
Constant Acceleration	2006	10,000G at Y_{1} orientation	
External Visual ${ }^{4]}$	1010 or 1011		
Electrical/Optical Endpoints ${ }^{\text {8] }}$	-	Iv, Icc, Ibl, Ibh, Iel, IEh, Ill, IIh and visual Function, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 4[1,3] Sait Âtmosphere	1031		LTPD $=15$
External Visual ${ }^{\text {[4] }}$	1010 or 1011		
Subgroup 5 Bond Strength ${ }^{\|5\|}$	2037	Condition A	$\begin{gathered} \text { LTPD }=20 \\ \quad(\mathrm{C}=0) \end{gathered}$
Subgroup 6 Operating Life Test ${ }^{[6]}$	1026	$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$	$\lambda=10$
Electrical/Optical Endpoints ${ }^{\text {8 }}{ }^{\text {] }}$	-	Same as Subyroup 3	

Notes:

1. Whenever electrical/optical tests are not required as endpoints, electrical rejects may be used.
2. The LTPD applies to the number of leads inspected except in no case shall less than three displays be used to provide the number of leads required.
3. Solderability samples shall not be used.
4. Visual requirements shall be as specified in MIL-STD-883, Methods 1010 or 1011.
5. Displays may be selected prior to seal.
6. If a given inspection lot undergoing Group B inspection has been selected to satisfy Group C inspection requirements, the 340 hour life tests may be continued on test to 1000 hours in order to satisfy the Group C Life Test requirements. In such cases, either the 340 hour endpoint measurements shall be made a basis for Group B lot acceptance or the 1000 hour endpoint measurement shall be used as the basis for both Group B and Group C acceptance.
7. MIL-STD-883 test method applies.
8. Limits and conditions are per the electrical/optical characteristics.
9. Initial conditioning is a 15° inward bend, 3 cycles.
10. Fluid temperature $=+100^{\circ} \mathrm{C}$ for HDSP-098X Series.

Fiber Optics

- Fiber Optic Transmitter/Receiver Components
- Cables, Connectors, and Accessories

Fiber Optics

HP's Commitment

Hewlett-Packard has been committed to Fiber Optics since the introduction of our first link in 1978. Years of technological experience with LED emitters, detectors, integrated circuits, precision optical packaging, and optical fiber qualify HP to provide practical solutions for your application needs.

HP's unique combination of technologies and high volume manufacturing processes provide you with high quality transmitter and receiver components to meet a wide variety of computer, local area network, telecommunication, and industrial communication needs.

Three major families of fiber optic components offer a wide range of application solutions. Each family is designed to match HP's technology to your application requirements resulting in minimum cost and maximum reliability. The design and specification of each of these families allow easy design-in and provide guaranteed performance.

Hewlett-Packard's method of specification assures guaranteed link performance and easy design-in. The transmitter optical power and receiver sensitivity are specified at the end of a length of test cable. These specifications take into account variations over temperature and connector tolerances. All families of components incorporate the fiber optic connector receptacle in the transmitter and receiver packages. Factory alignment of the emitter/detector inside the package minimizes the variation of coupled optical power, resulting in smaller dynamic range requirements for the receiver. The guaranteed distance and data rates for various transmitter/receiver pairs are shown in the following selection guide.

Hewlett-Packard offers a choice of fiber optic cable, either glass fiber or plastic, simplex or duplex, factory connectored or bulk. Connector attachment has been designed for your production line economy.

Versatile Link Components

Low cost and ease of use make this family of link components well suited for applications connecting computers to terminals, printers, plotters, test equipment, medical equipment, and industrial control equipment. These links utilize 665 nm technology and 1 mm diameter plastic fiber cable. Assembling the plastic snap-in connectors onto the cable is extremely easy. The HFBR-0501 evaluation kit contains a complete working link including transmitter, receiver, five metres of connectored cable, extra connectors, polishing kit, and technical literature.

Low Cost Miniature Link Components

This family offers a wide range of price/performance choice for computers, central office switch, PBX, local area network, and industrial-control applications. These components utilize 820 nm technology and glass or plastic clad silica fiber cable. The unique design of the lensed optical coupling system makes this family of components extremely reliable. The dual-in-line package
requires no mounting hardware. The package is designed for auto insertion and wave soldering. The components are available for use with industry standard ST* or SMA connectors. Specifications are provided for four fiber sizes: $62.5 / 125 \mu \mathrm{~m}$, $50 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, and 200 $\mu \mathrm{m}$ Plastic Clad Silica (PCS) cable. Evaluation kits are available for both ST and SMA connectors. A transmitter, receiver, connectored cable, and technical literature are contained in the evaluation kits.

1300 nm Module Components

Hewlett-Packard began the development of 1300 nm materials and device technology in the early 1980s based on the need for greater performance and reliability in the local area fiber optic component market. After many years of development, Hewlett-Packard is proud to introduce its new family of 1300 nm transmitters and receivers. These components are available for use with the industry standard ST* connector. The precision stainless steel bore assures that the ST* connector ferrule tip will be optimally aligned with the optics of the module.

Hewlett-Packard's long tradition of quality and reliability is insured by the vertical integration of this new product family. The 1300 nm LED, PIN, and three custom bipolar integrated circuits (IC) used in these products have been developed and are manufactured by HP. Hewlett-Packard's manufacturing and test facilities provide consistent performance and
high volume capability. A driver IC allows the 1300 nm LED to translate ECL signals into an optical signal. On the other end of the link, the PIN receiver converts the optical pulses into electrical signals. These signals are processed in HewlettPackard's module through preamplifier and quantizer ICs before being transferred as an ECL signal to the external circuitry.

New General Purpose High Speed Transmitter and Receiver Pair

HP now offers two varieties of high speed, general purpose 1300 nm components. They are specified for applications between 10-160 MBd (HFBR$1160 / 2100$) or $10-200 \mathrm{MBd}$ (HFBR-1160/2100). Alternate sources of supply are available to those designers who require multiple sources.

New FDDI Transmitter and Receiver Pair

Hewlett-Packard's first Fiber Distributed Data Interface (FDDI) compatible transmitter and receiver pair, the HFBR1125/2125 parts are fully characterized and guaranteed to meet or exceed the optoelectronic requirements of the FDDI Local Area Network Standard. Drawing on Hewlett-Packard's experience in the test and measurement field, the outgoing production tests for the module guarantee interoperability with other FDDI compatible components.

The modules use a shifted ECL interface and are directly compatible with the FDDI PHY
integrated circuits available today. Designed for FDDI stations with minimum board space, the component pair has a sufficient power budget to allow for optical bypass switches.

1300 nm Products under Development

FDDI Transceiver
The second generation of FDDI optical components from Hewlett-Packard is packaged in a transceiver module with a PMD-compatible MIC receptacle. The module is directly compatible with FDDI PHY integrated circuits. It uses the same LED, PIN, and integrated circuits as the individual transmitter and receiver modules.

The Hewlett-Packard transceiver is packaged in a dual-in-line package with two rows of 11 pins. Several suppliers have commited to supply FDDI transceivers in this package assuring multiple sources of supply. The HP transceiver has been Beta Site tested during mid-1990. Product release is targeted for the fourth quarter 1990. Contact your local field sales engineer for more information.

[^27]
HP Fiber Optic Performance Characteristics

The charts on this page illustrate the performance ranges of Hewlett-Packard's fiber optic components. Both charts are coded by family. To determine which family is appropriate for your design, use the distance/ data rate chart (Figure 1). The performance of each family
incorporates the entire area below each boundary. Specific component choices and their associated optical-power budget are indicated in Figure 2.

The optical-power budget is determined by subtracting the receiver sensitivity (dBm) from the transmitter optical output power (dBm). The distance specification can be calculated simply by dividing the optical-
power budget (dBm) by the cable attenuation ($\mathrm{dB} / \mathrm{km}$).

The newer transmitter/receiver product families provide the designer with significantly improved price/performance benefits over older products. These newer product families have been specifically designed for easy use in high volume manufacturing operations.

Figure 1

VERSATILE LINK				LOW COST MINIATURE				FUTURE 1300 nm MODULES	
TRANSMITTERS ${ }^{[3]}$									
$\lambda=665 \mathrm{~nm}$ HFBR1521/153	$\begin{gathered} \lambda=665 \mathrm{~nm} \\ \text { HFBR- } \\ 1522 / 1532 \end{gathered}$	$\begin{gathered} \lambda=665 \mathrm{~nm} \\ \text { HFBR- } \\ 1524 / 1534 \end{gathered}$	$\begin{gathered} \lambda=665 \mathrm{~nm} \\ \text { HFBR- } \\ 1523 / 1533 \end{gathered}$	$\begin{gathered} \lambda=820 \mathrm{~nm} \\ \text { HFBR- } \\ 1402 / 1412 \end{gathered}$	$\begin{gathered} \lambda=820 \mathrm{~nm} \\ \text { HFBR- } \\ 1402 / 1412 \end{gathered}$	$\begin{gathered} \lambda=820 \mathrm{~nm} \\ \text { HFBR- } \\ 1404 / 1414 \end{gathered}$	$\begin{gathered} \lambda=820 \mathrm{~nm} \\ \text { HFBR- } \\ 1404 / 1414 \end{gathered}$	$\begin{gathered} \lambda=1300 \mathrm{~nm} \\ \mathrm{HFB}-1125 \end{gathered}$	$\begin{gathered} \lambda=1300 \mathrm{~nm} \\ \text { HFBR-1100 } \end{gathered}$
COUPLED OPTICAL POWER (dBm)									

NOTES:

1. Optical power budget calculations are at $25^{\circ} \mathrm{C}$.
2. For Link performance with other fiber sizes contact your local HP sales office.
3. All transmitters are LEDs except for 1300 nm modules which include a driver IC.

[^28]*Distance is limited by a combination of fiber bandwidth and transmitter optical rise/fall time and LED spectral width.

Versatile Link Family

		: Dual-in-line package rs, specified for 1 mm e, wave solderable.	horizontal and vertic a. plastic fiber. TTL	mounting, plastic compatible output	
Product/Part Numbers					Page No.
Evaluation Kit HFBR-0501			HFBR1524 Transm Receiver. 5 metre connectors, bulkhe polishing kit, literatu	FBR-2524 ored cable, through adapter,	511
Transmitter/Receiver Pairs					
5 MBd High Performance Link	Horizontal HFBR-1521/2521	Vertical HFBR-1531/2531	Distance* 40 m	Data Rate 5 MBd	
1 MBd High Performance Link	HFBR-1522/2522	HFBR-1532/2532	65 m	1 MBd	
1 MBd Standard Performance Link	HFBR-1524/2524	HFBR-1534/2534	35 m	1 MBd	
40 KBd Extended Distance Link	HFBR-1523/2523	HFBR-1533/2533	125 m	40 KBd	
Low Current Link Photo Interrupter Link	HFBR-1523/2523	HFBR-1533/2523	40 m	40 KBd	
	HFBR-1523/2523 HFBR-1522/2522	HFBR-1533/2523 HFBR-1532/2532		$\begin{aligned} & 20 \mathrm{KHz} \\ & 500 \mathrm{KHz} \end{aligned}$	
Plastic Fiber Cable Available in 1 meter increments (yyy m)					
Attenuation Sim	Simplex	Duplex			
Standard HF	HFBR-PUSyyy	HFBR-PUDyyy	Unconnectored cab		
Standard HF	HFBR-PNSyyy	HFBR-PNDyyy	Simplex connector		
Standard H	HFBR-PLSyyy	HFBR-PLDyy	Latching simplex co	ored cable	
Standard N.	N.A.	HFBR-PMDyyy	Duplex connectore		
	N.A.	HFBR-PLDyyy	Latching duplex co	red cable	
Improved	HFBR-QUSyyy	N.A.	Unconnectored cab		
Improved	HFBR-QNSyyy	N.A.	Simplex connector		
	HFBR-QLS-yyy	N.A.	Latching simplex C	ored cable	
Connectors					
	Simplex Standard	HFBR-4501	Gray connector/crim		
		HFBR-4511	Blue connector/crim		
	Simplex Latching	HFBR-4503	Gray connector/crim		
		HFBR-4513	Blue connector/crim		
	Duplex Standard	HFBR-4506	Parchment connec	pring	
	Duplex Latching	HFBR-4516	Parchment connec	pring	

*Link performance at $25^{\circ} \mathrm{C}$, improved attenuation cable.

Versatile Link Family (continued)

Polishing Kit HFBR-4593Plastic polishing fixture (used for all connectores), abrasive paper, lapping film.	$5-11$	
Bulkhead Feedthrough/in-line splice HFBR-4505 HFBR-4515	Gray bulkhead feedthrough adapter Blue bulkhead feedthrough adapter	

Low Cost Miniature Link Family

	Features: Dual-in-line package, interfaces directly with ST or SMA connectors, specified for use with $50 / 125 \mu \mathrm{~m}, 62.5 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$ Plastic Coated Silica (PCS) fiber. Auto insertable, wave solderable, no mounting hardware required.			
Product/Part Numbers		Descrip		Page No.
Evaluation Kits HFBR-0410 (ST) HFBR-0400 (SMA)		HFBR-1412 transmitter, HFBR connectored $62.5 / 125 \mu \mathrm{~m}$ cab HFBR-1402 transmitter, HFBR connectored $1,000 \mu \mathrm{~m}$ (plastic	r, 3 meter er, 2 meter ture.	5-35
Transmitters/Receivers HFBR-14X2 Standard Transmitter HFBR-14X4 High Power Transmitter HFBR-24X2 5 MBd Receiver HFBR-24X4 25 MHz Receiver HFBR-24X6 125 MHz Receiver		Optimized for large size fiber $200 \mu \mathrm{~m}$ PCS Optimized for small size fiber or $62.5 / 125 \mu \mathrm{~m}$	$40 \mu \mathrm{~m}$ and $5 \mu \mathrm{~m}$	5-46
		TTLICMOS compatible receiv sensitivity	\&Bm	5-51
		PIN-preamp receiver for signa PIN-preamp receiver for signa	5 MBd 50 MBd	$\begin{aligned} & 5-54 \\ & 5-58 \end{aligned}$
Transmitter/Receiver Pairs HFBR-14X2/24X2		Optical Power Budget-	Data Rate	
		20.5 dB ($200 \mu \mathrm{~m}$ fiber) 15 dB ($100 / 140 \mu \mathrm{~m}$ fiber)	$\begin{aligned} & 5 \mathrm{MBd} \\ & 5 \mathrm{MBd} \end{aligned}$	5-46/51
HFBR-14X4/24X2		15 dB ($62.5 / 125 \mu \mathrm{~m}$ fiber) $10.5 \mathrm{~dB}(50 / 125 \mu \mathrm{~m}$ fiber)	$5 \text { MBd }$ $5 \mathrm{MBd}$	
HFBR-14X2/24X4		18 dB ($100 / 140 \mu \mathrm{~m}$ fiber) 13.5 dB ($100 / 140 \mu \mathrm{~m}$ fiber)	$\begin{gathered} 5 \mathrm{MBd} \\ 30 \mathrm{MBd} \end{gathered}$	5-46/55
HFBR-14X4/24×4		$18 \mathrm{~dB}(62.5 / 125 \mu \mathrm{~m}$ fiber) 13.5 dB ($62.5 / 125 \mu \mathrm{~m}$ fiber)	$\begin{aligned} & 5 \mathrm{MBd} \\ & 30 \mathrm{MBd} \end{aligned}$	
HFBR-14X2/24X6		21 dB ($100 / 140 \mu \mathrm{~m}$ fiber) $19 \mathrm{~dB}(100 / 140 \mu \mathrm{~m}$ fiber)	$\begin{aligned} & 30 \mathrm{MBd} \\ & 150 \mathrm{MBd} \end{aligned}$	5-46/58
HFBR-14X4/24X6		$21 \mathrm{~dB}(62.5 / 125 \mu \mathrm{~m}$ fiber) $19 \mathrm{~dB}(62.5 / 125 \mu \mathrm{~m}$ fiber)	$\begin{aligned} & 30 \mathrm{MBd} \\ & 150 \mathrm{MBd} \end{aligned}$	

[^29]
Low Cost Miniature Link Family (continued)

Mechanical Styles	Description	Page
HFBR-XX0X	SMA housed product	
HFBR-XX3X	SMA port product, bent leads	
HFBR-XX5X	SMA port product, straight leads	
HFBR-XX0XC	HFBR-XX0X with Conductive Port Option (RX only)	
HFBR-XX3XC	HFBR-XXX with Conductive Port Option (RX only)	
HFBR-XX5XC	HFBR-XX5X with Conductive Port Option (RX only)	
HFBR-XX1X	ST housed product (not recommended for new designs)	
HFBR-XX4X	ST port product, bent leads (not recommended for new designs)	
HFBR-XX6X	ST port product, straight leads (not recommended for new designs)	
HFBR-XX1XT	HFBR-XX1X with Threaded ST Option (recommended for new designs)	
HFBR-XX4XT	HFBR-XX4X with Threaded ST Option (recommended for new designs)	
HFBR-X6XT	HFBR-XX6X with Threaded ST Option (recommended for new designs)	
HFBR-XX1XTC	HFBR-XX1XT with Conductive Port Option (RX only)	
HFBR-XX4XTC	HFBR-XX4XT with Conductive Port Option (RX only)	
HFBR-XX6XTC	HFBR-XX6XT with Conductive Port Option (RX only)	

1300 nm Transmitter/Receiver Module Link Family

	Features: Dual-in-line package, interfaces directly with ST^{*} connectors, specified for use with $62.5 / 125 \mu \mathrm{~m}$ and $50 / 125 \mu \mathrm{~m}$ fiber. Single +5 V power supply and shifted ECL logic interface.			
Product/Part Numbers		Description		$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
Transmitter/Receiver Pairs 200 MBd link 160 MBd link FDDI link	HFBR-1100/2100 HFBR-1160/2100 HFBR-1125/2125	$\begin{gathered} \text { Distance } \\ 2 \mathrm{~km} \\ 2 \mathrm{~km} \\ 2 \mathrm{~km} \end{gathered}$	Data Rate	
			200 MBd	5-116
			160 MBd	
			125 MBd	5-125

*ST(R) is a registered trademark of AT\&T for Lightware Cable Connectors.

1300 nm Transceiver Module Link Family

*ST(R) is a registered trademark of AT\&T for Lightware Cable Connectors.

ST and SMA Connectored Cable

Part Number	Description								Page No.
	Fiber Size			Connector Style			Cable Type		
	100/140/.30	62.5/125/.275	50/125/18	SMA	ST	Unconnectored	Single Channel	Dual Channel	
HFBR-AWSyyy	x			x			X		5-67
HFBR-AWDyyy	X							X	
HFBR-AXSyyy	X				X		X		
HFBR-AXDyy	X				X			X	
HFBR-AUSyyy	X					X	X		
HFBR-AUDyyy	X					X		X	
HFBR-BWSyyy		x		x			x		
HFBR-BWDyy		X		X				X	
HFBR-BXSyy		X			X		X		
HFBR-BXDyy		X			X			X	
HFBR-BUSyyy		X				X	X		
HFBR-BUDYy		X				X		X	
HFBR-CXSyyy*			X		X		X		

*Note: All cable assemblies except for HFBR-CXSyyy are available in 1 metre increments from 1 metre to 999 metres and 100 metre increments from 1 km to 2 km . HFBR-CXSyyy is available in 1 and 10 metre lengths only. Eg. yyy $=050$ designates 50 metres and $\mathrm{yyy}=1 \mathrm{~K} 5$ designates 1.5 km .

	Features: Operate with 1 mm dia. plastic fiber, plastic snap-in connector compatible (standard simplex only). TTL compatible output. FOR NEW DESIGNS: Refer to the Versatile Link Family on page 5-6 to achieve the best price/performance value.			
Product/Part Numbers		Description		Page No.
Transmitter/Receiver Pairs		Distance*	Data Rate*	5-72
5 MBd link	HFBR-1510/2501	40 metre	5 MBd	
1 MBd Link	HFBR-1502/-2502	65 metre	1 MBd	
Extended Distance Link	HFBR-1512/-2503	125 metre	40 kBd	
Low Current Link	HFBR-1512/-2503	40 metre	40 kBd	
Photo Interrupter Link	$\begin{aligned} & \text { HFBR-1512/-2503 } \\ & \text { HFBR-1502/-2502 } \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$	$\begin{gathered} 20 \mathrm{kHz} \\ 500 \mathrm{kHz} \end{gathered}$	

"Linik periormance at $25^{\circ} \mathrm{C}$, improved attenuation cabie.

Miniature Link Family

[^30]
Features

- LOW COST FIBER OPTIC COMPONENTS

- GUARANTEED LINK PERFORMANCE OVER TEMPERATURE
High Speed Links: dc to 5 MBd
Extended Distance Links: up to 82 m
Low Current Link: 6 mA Peak Supply Current
Low Cost Standard Link: dc to 1 MBd
Photo Interrupter Link
- COMPACT, LOW PROFILE PACKAGES

Horizontal and Vertical Mounting
"N-plex" Stackable
Flame Retardant

- EASY TO USE RECEIVERS

TTL, CMOS Compatible Output Level
High Noise Immunity

- EASY CONNECTORING

Simplex, Duplex and Latching Connectors
Flame Retardant Material

- LOW LOSS PLASTIC CABLE

Selected Super Low Loss Simplex
Simplex and Zip Cord Style Duplex
Flame Retardant

- NO OPTICAL DESIGN REQUIRED
- AUTO-INSERTABLE AND WAVE SOLDERABLE
- DEMONSTRATED RELIABILITY @ $40^{\circ} \mathrm{C}$ EXCEEDS 2 MILLION HOURS MTBF

Description

The Versatile Link series is a complete family of fiber optic link components for applications requiring a low cost solution. The HFBR-0501 series includes transmitters, receivers, connectors and cable specified for easy design. This series of components is ideal for solving problems with voltage isolation/insulation, EMI/RFI immunity or data security. The Link design is simplified by the logic compatible receivers and complete specifications for each component. No optical design is necessary. The key optical and electrical parameters of links configured with the HFBR-0501 family are fully guaranteed from 0° to $70^{\circ} \mathrm{C}$. A wide variety of package configurations and connectors provide the designer with numerous mechanical solutions to meet application requirements. The transmitter and receiver components have been designed for use in high volume/low cost assembly processes such as autoinsertion and wave scldering.

Versatile Link Applications

- Reduction of lightning/voltage transient susceptability
- Motor controller triggering
- Data communications and Local Area Networks
- Electromagnetic Compatibility (EMC) for regulated systems: FCC, VDE, CSA, etc.
- Tempest-secure data processing equipment
- Isolation in test and measurement instruments
- Error free signalling for industrial and manufacturing equipment
- Automotive communications and control networks
- Power supply control
- Communication and isolation in medical instruments
- Noise immune communication in audio and video equipment
- Remote photo interrupter for office and industrial equipment
- Robotics communication
- PC to peripheral links

Link Selection Guide

Specific Product Numbers and Component Selection Guide on page 23.

Versatile Link		Guaranteed Minimum Link Length Metres				Typical Link LengthMetres		Page
		$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$				
		Standard Cable	Improved Cable	Standard Cable	Improved Cable	Standard Cable	Improved Cable	
High Performance	5 MBd	12	17	17	24	35	40	5-14
High Performance	1 MBd	24	34	30	41	50	65	5-14
Low Current Link	40 kBd	8	11	-	-	30	35	5-14
Extended Distance Link	40 kBd	60	82	65	90	100	125	5-14
Standard	1 MBd	5	7	11	15	30	40	5-14
Photo Interrupter	500 kHz	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	5-20
Evaluation Kit	1 MBd (Standard)	Contents: Horizontal transmitter, horizontal receiver packages; 5 metres of simplex cable with simplex and simplex latching connectors installed; individual connectors: simplex, duplex, simplex latching, bulkhead adapter; polishing tool, abrasive paper, literature.						5-34

Versatile Link Product Family

5 MBd, 1 MBd and 40 kBd FIBER OPTIC LINKS

Simplex Link - Horizontal Packages

Duplex Link - Combination of Horizontal \& Vertical Packages

Simplex Link - Vertical Packages

N-Plex Link - Combinations
Table of Contents
Versatile Link Product Description 5-13
Designing with Versatile Link 5-13
Manufacturing with Versatile Link 5-14
Versatile Link Performance
High Performance 5 MBd Link 5-14
High Performance 1 MBd Link 5-14
Low Current Extended Distance 40 kBd Link 5-14
Standard 1 MBd Link 5-14
Versatile Link Design Considerations 5-17
Photo-Interrupter Link 5-20
Versatile Link Mechanical Dimensions 5-25
Transmitter Specifications 5-27
Receiver Specifications 5-29
Cable Specifications 5-20
Connector Descriptions 5-33
Connector Specifications 5-33
Connectoring 5-22
Ordering Guide 5-34

Versatile Link Product Description

Mechanical: The compact Versatile Link package is made of a flame retardant material (UL V-0) in a standard, eight pin dual-in-line package (DIP) with 7.6 millimetre (0.3 inch) pin spacing. Vertical and horizontal mountable parts are available. These low profile Versatile Link packages are stackable and are enclosed to provide a dust resistant seal. Snap action simplex, simplex latching, duplex, and duplex latching connectors are offered with simplex or duplex cables.

Electrical: Transmitters incorporate a 660 nanometre light emitting diode (LED). Receivers include a monolithic dc coupled, digital IC receiver with open collector Schottky output transistor. An internal pullup resistor is available for use in the HFBR-25X1/2/4 receivers. Transmitter and receiver are compatible with standard TTL circuitry. A shield has been integrated into the receiver IC to provide additional, localized noise immunity.
Optical: Internal optics have been optimized for use with 1 mm diameter plastic optical fiber. Versatile Link specifications incorporate all component interface losses. Therefore, the need of optical calculations for common link applications is eliminated.

Optical power budget is graphically displayed to facilitate electrical design for customized links.

Designing with Versatile Link

When designing with Versatile Link, the following topics should be considered:

Distance and Data Rate

Distances and data rates guaranteed with Versatile Link depend upon the Versatile Link transmitter/receiver pair chosen. See the Versatile Link guide (page 5-14)

Typically, a data rate requirement is first specified. This determines the choice of the $5 \mathrm{MBd}, 1 \mathrm{MBd}$ or 40 kBd Versatile Link components. Distances guaranteed with Versatile Link then depend upon choice of cable, specific drive condition and circuit configuration. Extended distance operation is possible with pulsed operation of the LED (see Figure $2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}, 2 \mathrm{~d}$, 2 e and 2 f dotted lines.)

Drive circuits are described on page 5-17. Cable is discussed on page 5-29. Pulsed operation of the LED at larger current will result in increased pulse width distortion of the receiver output signal.
Versatile Link can also be used as a photo interrupter at frequencies up to 500 KHz . This is described on page 10.

Package Orientation

As shown in the photograph, Versatile Link is available in vertical and horizontal packages. Performance and pinouts for the two packages are identical. To provide additional attachment support for the Vertical Versatile Link housing, the designer has the option of using a self-tapping screw through a printed circuit board into a mounting hole at the bottom of the package. For most applications this is not necessary.

Package Housing Color

Versatile Link components and simplex connectors are color coded to eliminate confusion when making connections. The HFBR-15X1/2/4 transmitters are gray, and the HFBR-25X1/2/3/4 receivers are blue. The HFBR-15X3 transmitter is black.
All of the above transmitters and receivers are also available in black versions for special applications. These black components, combined with black fiber optic cable, form a "black link" which has superior immunity to external light. The black link is appropriate where improved housing opacity is required due to very bright ambient light or bright flashes of light. Black link components are otherwise identical to blue and gray components.

Connector Style

As shown, Versatile Link can be used with snap-in connectors: simplex, simplex latching, duplex, and duplex latching.
The simplex connector is intended for applications requiring simple, stable connection capability with a moderate retention force. The simplex latching connector provides similar convenience with a larger retention force. Connector/cable retention force can be improved by using a RTV adhesive within the connector. A suggested adhesive is 3M Company product: RTV-739.
The duplex connector connects a cable containing two fibers to two similar Versatile Link components. A lockout feature ensures the connection can be made in only one orientation. The duplex connector is intended for Versatile Link components " n-plexed" together, as discussed in the next section.

N -plexing

Versatile Link components can be stacked or interlocked (n-plexed) together to minimize use of printed circuit board space and to provide efficient, dual connections via the duplex connector. Up to eight identical package styles can be n-plexed and inserted by hand into a printed circuit board without difficulty. However, auto-insertability of stacked units becomes limited when more than two packages are n-plexed together.

Cable

Two cable versions are available: Simplex (single channel) and color coded duplex (dual channel). Each version of the cable is flame retardant (UL VW-1) and of low optical loss.
Two grades of the simplex cable are available: standard cable and improved cable. Improved cable is recommended for applications requiring longer distance needs, as reflected in the Link Selection Guide on page 5-12. Flexible cable construction allows simple cable installation techniques. Cables are discussed in detail on page 5-29.

Accessories

A variety of accessories are available. The bulkhead feed-
through adapter discussed on page 5-30 can be used to mate two simplex snap-in connectors. It can be used either as a splice or a panel feedthrough for a panel thickness $<4.1 \mathrm{~mm}$ (0.16 inch).
Several accessories are offered to help with proper fiber/ connector polishing. These are shown on page 5-31.

Manufacturing with Versatile Link

Non-stacked Versatile Link parts require no special handling during assembly of units onto printed circuit boards. Versatile Link components are auto-insertable. When wave soldering is performed with Versatile Link components, an optical port plug is recommended to be used to prevent contamination of the port. Water soluble fluxes, not rosin based fluxes, are recommended for use with Versatile Link components.
Refer to the Connectoring Section on page 5-33 for details of connectors and cable connectoring.

Versatile Link Performance

5 MEGABITS PER SECOND (NRZ)
 1 MEGABIT PER SECOND (NRZ) 40 KILOBITS PER SECOND (NRZ)

The 5 Megabaud (MBd) Versatile Link is guaranteed to perform from dc to $5 \mathrm{Mb} / \mathrm{s}$ (megabits per second, NRZ). Distances up to 17 metres are guaranteed when the transmitter is driven with a current of 60 milliamperes. This represents worst case performance throughout the temperature range of 0 to 70 degrees centigrade. With the required drive circuit of Figure 1b and at 60 milliamp drive current, the 1 Megabaud Versatile Link has guaranteed performance over 0 to 70 degrees centigrade from dc to $1 \mathrm{Mb} / \mathrm{s}$ (NRZ) up to 34 metres.
The low current link requires only 6 mA peak supply current for the transmitter and receiver combined to achieve an 11 metre link. Extended distances up to 82 metres can
be achieved at a maximum transmitter drive current of 60 mA peak. The 40 kBd Versatile Link is guaranteed to perform from dc to $40 \mathrm{~kb} / \mathrm{s}$ (NRZ) over 0° to $70^{\circ} \mathrm{C}$ up to the distances just described.

Receivers are compatible with LSTTL, TTL, CMOS logic levels and offer a choice of an internal pull-up resistor or an open collector output. Horizontal or vertical packages provide identical performance and are compatible with simplex, simplex latching, duplex, and duplex latching connectors. Refer to the connector section (page 5-30) and the cable section (page 5-29) for further information about these products. A list of specific part numbers is found below and in the Selection Guide on page 5-11.

VERSATILE LINK GUIDE

Versatile Link		Unit	Horizontal Package	Vertical Package	Cable Link Length		
		Standard Cable			Improved Cable		
High Performance	5 MBd		T_{X}	HFBR-1521	HFBR-1531	12 metres	17 metres
		R_{X}	HFBR-2521	HFBR-2531			
High Performance	1 MBd	T_{X}	HFBR-1522	HFBR-1532	24 metres	34 metres	
		R_{X}	HFBR-2522	HFBR-2532			
Low Current/ Extended Distance	40 kBd	$\begin{aligned} & T_{X} \\ & R_{X} \end{aligned}$	HFBR-1523 HFBR-2523	HFBR-1533 HFBR-2533	8 metres/ 60 metres	11 metres/ 82 metres	
Standard	1 MBd	T_{X}	HFBR-1524	HFBR-1534	5 metres	7 metres	
		R_{X}	HFBR-2524	HFBR-2534			

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min.	Max.	Units	Ref.
Ambient Temperature		TA	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current		If PK	10	750	mA	Note 1,8
Avg. Forward Current		If AV		60	mA	
Receiver Supply Voltage	HFBR-25X3	Vcc	4.50	5.50	V	Note 2
	HFBR-25X1/25X2/25X4		4.75	5.25		
Output Voltage	HFBR-25X3	Vo		Vcc	V	
	HFBR-25X1/25X2/25X4			18		
Fanout (TTL)	HFBR-25X3	N		1		
	HFBR-25X1/25X2/25X4			5		

SYSTEM PERFORMANCE Under recommended operating conditions unless otherwise specified

	Parameter	Symbol	Min.	Typ. ${ }^{5]}$	Max.	Units	Conditions	Ref.
High Performance 5 MBd	Data Rate		dc		5	MBd	BER $\leq 10^{-9}$, PRBS: $2^{7}-1$	
	Link DistancewithStandard Cable	ℓ	12			m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$	Fig. 2a Note 7
			17	35		m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	Link Distance with Improved Cable	ℓ	17			m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$	Fig. 2b Note 7
			24	40		m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	Propagation Delay	$t_{\text {PLH }}$		80	140	ns	$\begin{aligned} & R_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \ell=0.5 \text { metre } \\ & -21.6 \leq \mathrm{P}_{\mathrm{R}} \leq-9.5 \mathrm{dBm} \end{aligned}$	Fig. 3, 5 Notes 3, 6
		$t_{\text {PHL }}$		50	140	ns		
	Pulse Width Distortion	t_{D}		30		ns	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-15 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 3, 4 Note 4
High Performance 1 MBd	Data Rate		dc		1	MBd	BER $\leq 10^{-9}$, PRBS: $2^{7}-1$	
	Link Distance with Standard Cable	ℓ	24			m	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}$	Fig. 2a Notes 1, 7, 8
			30	50		m	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
			30			m	$\mathrm{I}_{\mathrm{FPK}}=120 \mathrm{~mA}$ 50%	
			36	60		m	$\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Factor	
	Link Distance with Improved Cable	ℓ	34			m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$	Fig. 2b Notes 1, 7, 8
			41	65		m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
			44			m	$\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA}$	
			51	75		m	$\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Factor	
	Propagation Delay	$t_{\text {PLH }}$		180	250	ns	$\begin{aligned} & R_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \ell=0.5 \text { metre } \\ & \mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm} \end{aligned}$	Fig. 3, 5 Notes 3, 8
		$t_{\text {PHL }}$		100	140	ns		
	Pulse Width Distortion	t_{D}		80		ns	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 3, 4 Notes 4, 8

SYSTEM PERFORMANCE Under recommended operating conditions unless otherwise specified.

Link	Parameter	Symbol	Min.	Typ. ${ }^{\text {[5] }}$	Max.	Units	Conditions	Ref.
Low Current/ Extended Distance 40 kBd	Data Rate		dc		40	kBd	BER $\leq 10^{-9}$, PRBS: 2^{7-1}	
	Link DistancewithStandard Cable	ℓ	8	30		m	$\mathrm{I}_{\mathrm{Fdc}}=2 \mathrm{~mA}$	Fig. 2c Note 7
			60	100		m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$	
	Link DistancewithImproved Cable	ℓ	11	35		m	$\mathrm{I}_{\text {Fdc }}=2 \mathrm{~mA}$	Fig. 2d Note 7
			82	125		m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$	
	Propagation Delay	$t_{\text {PLH }}$		4		$\mu \mathrm{S}$	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =3.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & =1 \text { metre } \\ \mathrm{P}_{\mathrm{R}} & =-25 \mathrm{dBm} \end{aligned}$	Fig. 3, 7 Note 3
		$\mathrm{t}_{\text {PHL }}$		2.5		$\mu \mathrm{s}$		
	Pulse Width Distortion	t_{D}			7.0	$\mu \mathrm{S}$	$\begin{aligned} & -39 \leq P_{R} \leq-14 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 3, 6 Note 4
Standard 1 MBd	Data Rate		dc		1	MBd	BER $\leq 10^{-9}$, PRBS: 2^{7-1}	
	Link Distance with Standard Cable	ℓ	5			m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$	Fig. 2e Notes 1, 7, 8
			11	30		m	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
			12			m	$I_{\text {FPK }}=120 \mathrm{~mA}$ 50%	
			18	40		m	$!_{\text {FFK }}-120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ \| Factor $^{\text {a }}$	
	Link Distance with Improved Cable	ℓ	7			m	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$	Fig. $2 f$ Notes 1, 7, 8
			15	40		m	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
			17			m	 $\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA}$ 50%	
			25	50		m	$\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Factor	
	Propagation Delay	$t_{\text {PLH }}$		180	250	ns	$\begin{aligned} & R_{L}=560 \Omega, C_{L}=30 \mathrm{pF} \\ & \ell=0.5 \text { metre } \\ & P_{R}=-20 \mathrm{dBm} \end{aligned}$	Fig. 3, 5 Notes 3, 8
		$t_{\text {PHL }}$		100	140	ns		
	Pulse Width Distortion	t_{D}		80		ns	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 3, 4 Notes 4, 8

Notes:

1. For $\mathrm{I}_{\mathrm{FPK}}>80 \mathrm{~mA}$, the duty factor must be such as to keep $\mathrm{I}_{\text {FDC }} \leq 80 \mathrm{~mA}$. In addition, for $\mathrm{I}_{\text {FPK }}>80 \mathrm{~mA}$, the following rules for pulse width apply:

IFPK $\leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms}$
$I_{\text {FPK }} \geq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mu \mathrm{~s}$, period $\geq 20 \mu \mathrm{~S}$.
2. It is essential that a bypass capacitor, $0.1 \mu \mathrm{~F}$ ceramic, be connected from pin 2 to pin 3 of the HFBR-25X1/25X2/25X4 receivers and from pin 2 to pin 4 of the HFBR-25X3 receiver. Total lead length between both ends of the capacitor and the supply pins should not exceed 20 mm .
3. The propagation delay for one metre of cable is typically 5 ns .
4. $t_{D}=t_{P L H}-t_{P H L}$.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. Typical propagation delay is measured at $P_{R}=-15 \mathrm{dBm}$.
7. Estimated typical link life expectancy at $40^{\circ} \mathrm{C}$ exceeds 10 years at 60 mA .
8. Pulsed LED operation at $\mathrm{I}_{\text {FPK }}>80 \mathrm{~mA}$ will cause increased link $t_{\text {PLH }}$ propagation delay time. This extended $t_{P L H}$ time contributes to increased pulse width distortion of the receiver output signal.
9. Pins 5 and 8 of both the transmitter and receiver are for mounting and retaining purposes only. Do not electrically connect pin 5 and/or pin 8.

Versatile Link Design Considerations

Simple interface circuits for $5 \mathrm{MBd}, 1 \mathrm{MBd}$ and 40 kBd applications are shown in Figure 1. The value of the transmitter drive current depends upon the desired link distance. This is shown in Figures 2a through 2f. After selecting a value of transmitter drive current, I_{F}, the value of R1 can be determined with the aid of Figures 1a, 1b and 1 d . Note that the 5 MBd and 40 kBd Versatile Links can have an overdrive and underdrive limit for the chosen value of I_{F} while the 1 MBd Versatile Link has only an underdrive limit. Dotted lines in Figures 2a through $2 f$
represent pulsed operation for extended link distance requirements. For the 1 MBd interface circuit, the R1C1 time constant must be $>75 \mathrm{~ns}$. Conditions described in Note 1 must be met for pulsed operation. Refer to Note 8 for performance comments when pulsed operation is used.
All specifications are guardbanded for worst case conditions between 0 to 70 degrees centigrade. All tolerances and variations (including end-of-life transmitter power, receiver sensitivity, coupling variances, connector and cable variations) are taken into account.

Figure 1a. Typical 5 MBd Interface Circuit;

1c. Electrical Pin Assignments for 5 MBd and 1 MBd Transmitters and Receivers

1d. Typical 40 kBd Interface Circuit;

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	T_{x}	R_{x}
1	ANODE	Vo
2	CATHODE	GND
3	OPEN	OPEN
4	OPEN	V_{cc}
5	DO NOT CONNECT*	DO NOT CONNECT*
6	-	
7	- ${ }^{-}$N NOT CONNECT*	DO NOT CONNECT*

*SEE NOTE 9 PG. 6

1e. Electrical Pin Assignments for 40 kBd Transmitters and Receivers

Figure 2a. Guaranteed System Performance for the HFBR-15X1/25X1 and HFBR-15X2/25X2 Links with Standard Cable

Figure 2c. Guaranteed System Performance for the HFBR-15X3/25X3 Link with Standard Cable

Figure 2e. Guaranteed System Performance for the HFBR-15X4/25X4 Link with Standard Cable

Figure 2b. Guaranteed System Performance for the HFBR-15X1/25X1 and HFBR-15X2/25X2 Links with Improved Cable

Figure 2d. Guaranteed System Performance for the HFBR-15X3/25X3 Link with Improved Cable

Figure 2f. Guaranteed System Performance for the HFBR-15X4/25X4 Link with Improved Cable

A) 40 kBd PROPAGATION DELAY TEST CIRCUIT

Figure 3. Propagation Delay Test Circuits and Waveforms: a) $\mathbf{4 0} \mathbf{k B d}$, b) $\mathbf{5}$ MBd, c) $\mathbf{1} \mathbf{M B d}$, d) Test Waveforms

Figure 4. Typical HFBR-15X1/25X1, HFBR-15X2/25X2 and HFBR-15X4/25X4 Link Pulse Width Distortion vs. Optical Power

Figure 5. Typical HFBR-15X1/25X1, HFBR-15X2/25X2 and HFBR-15X4/25X4 Link Propagation Delay vs. Optical Power

Figure 6. Typical HFBR-15X3/25X3 Link Pulse Width Distortion vs. Optical Power

Figure 7. Typical HFBR-15X3/25X3 Link Propagation Delay vs. Optical Power

Versatile Link Photo Interrupter

20 KHz ($\mathbf{4 0} \mathbf{~ k B d) ~ L I N K , ~} 500 \mathrm{kHz}$ (1 MBd) LINK

Versatile Link may be used as a photo-interrupter in optical switches, shaft position sensors, velocity sensors, position sensors, and other similar applications. This link is particularly useful where high voltage, electrical noise, or explosive environments prohibit the use of electromechanical or optoelectronic sensors. The $20 \mathrm{kHz}(40 \mathrm{kBd})$ transmitter/receiver pair has an optical power budget of 25 dB . The 500 kHz (1 MBd) transmitter/receiver pair has an optical power budget of 10 dB . Total system losses (cable attenuation, air gap loss, etc.) must not exceed the link optical power budget.

RECOMMENDED OPERATING CONDITIONS

Recommended operating conditions are identical to those of the Low Current/Extended Distance and High Performance 1 MBd links. Refer to page 5-15.

SYSTEM PERFORMANCE

These specification apply when using Standard and Improved cable and, unless otherwise specified, under recommended operating conditions. Refer to the appropriate link data on pages 5-17 and 5-18 for additional design information.

Parameter	Min.	Typ.[1]	Max.	Units	Conditions	Ref.
HFBR-15X3/25X3						
Max. Count Frequency	dc		20	kHz		
Optical Power Budget	25.4			dB	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Note 2
	27.8	34		dB	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
HFBR-15X2/25X2						
Max. Count Frequency	dc		500	kHz		
Optical Power Budget	10.4			dB	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Note 2
	12.8	15.6		dB	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	

1. Typical data is at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
2. Optical Power Budget $=P_{T}$ min. $=P_{R}(L)$ min. Refer to page $X X$ for additional design information.

Photo Interrupter Link Design Considerations

The fiber optic Transmitter/Receiver pair is intended for applications where the photo interrupter must be physically separated from the optoelectronic emitter and detector. This separation would be useful where high voltage, electrical noise or explosive environments prohibit the use of electronic devices. To ensure reliable long term operation, link design for this application should operate with an ample optical power margin $\alpha_{M} \geq 3 \mathrm{~dB}$, since the exposed fiber ends are subject to environmental contamination that will increase the optical attenuation of the slot with time. A graph of air gap separation versus attenuation for clean fiber ends with minimum radial error $\leq 0.127 \mathrm{~mm}$ (0.005 inches) and angular error ($\leq 3.0^{\circ}$) is provided in Figure 8.

The following equations can be used to determine the
transmitter output power, P_{T}, for both the overdrive and underdrive cases. Overdrive is defined as a condition where excessive optical power is delivered to the receiver. The first equation calculates, for a predetermined link length and slot attenuation, the maximum P_{T} in order not to overdrive the receiver. The second equation defines the minimum P_{T} allowed for link operation to prevent underdrive condition from occurring, where α_{0} is the fiber attenuation.
$\begin{array}{ll}\mathrm{P}_{\mathrm{T}}(\mathrm{MAX})-\mathrm{P}_{\mathrm{R}}(\mathrm{MAX}) \leq \alpha_{\mathrm{OMIN}} \ell+\alpha_{\text {SLOT }} & \text { Eq. } 1 \\ \mathrm{P}_{\mathrm{T}}(\mathrm{MIN})-\mathrm{P}_{\mathrm{RL}}(\mathrm{MIN}) \geq \alpha_{\mathrm{OMAX}} \ell+\alpha_{\mathrm{SLOT}}+\alpha_{\mathrm{M}} & \text { Eq. } 2\end{array}$
Once $\mathrm{P}_{\mathrm{T}}(\mathrm{MIN})$ has been determined in the second equation for a specific link length (ℓ), slot attenuation ($\alpha_{\text {SLOT }}$) and margin $\left(\alpha_{M}\right)$. Figure 9 can then be used to find I_{F}.

Figure 8. Typical Loss vs. Axial Separation.
 vs. Transmitter $I_{F}\left(0-70^{\circ} \mathrm{C}\right)$

Versatile Link Mechanical Dimensions
All dimensions in mm (inches).
All dimensions $\pm 0.25 \mathrm{~mm}$ unless otherwise specified. HORIZONTAL MODULES

HFBR-1521/1522/1524 (GRAY), HFBR-1523 (BLACK)
HFBR-2521/2522/2523/2524 (BLUE)

VERTICAL MODULES
HFBR-1531/1532/1534 (GRAY, HFBR-1533 (BLACK)

HFBR-4501 (GRAY)/4511 (BLUE) SIMPLEX CONNECTOR

CONNECTORS DIFFER ONLY IN COLOR

HFBR-4516 (PARCHMENT) DUPLEX LATCHING CONNECTOR

HFRR-4503 (GRAY)/4543 (BL'UE) SHAPLEK LATCHANG CONNECTOR

HFBR-4506 (PARCHMENT) DUPLEX CONNECTOR

BULKHEAD FEEDTHROUGH WITH TWO HFBR-4501/4511 CONNECTORS

PANEL MOUNTING - BULKHEAD FEEDTHROUGH
three types of panel/bulkhead holes can be used.
DIMENSIONS IN mm (INCHES)
ALL DIMENSIONS $\div 0.2 \mathrm{~mm}$

'D' hole $7.9(0.312)$ DIA. MIN.

7.9 (0.312) $7.9(0.312)$
HOLE MIN.

HFBR-4505 (GRAY)/4515 (BLUE) ADAPTERS

FIBER OPTIC CABLE DIMENSIONS

DIMENSIONS IN MILLIMETRES AND (INCHES)

Versatile Link Printed Circuit Board Layout Dimensions

ELECTRICAL PIN FUNCTIONS

PIN NO.	TRANSMITTERS	RECEIVERS	RECEIVER
	HFBR-15XX	EXCLUDING HFBR-25X3	HFBR-25X3
$\mathbf{1}$	ANODE	Vo	V $_{0}$
2	CATHODE	GROUND	GROUND
3	OPEN	V cc $^{\text {OPEN }}$	OPEN
$\mathbf{4}$	OPEN	RL	VcC
5	DO NOT CONNECT	DO NOT CONNECT	DO NOT CONNECT
8	DO NOT CONNECT	DO NOT CONNECT	DO NOT CONNECT

Interlocked (Stacked) Assemblies

STACKING HORIZONTAL MODULES

STACKING VERTICAL MODULES

Recommended stacking assembly of horizontal packages is easily accomplished by placing units upside down with pins facing upward. Initially engage the interlocking mechanism by sliding the L bracket body from above into the L slot body of the lower package. Lay the partially interlocked units on a flat surface and push down with a thin, rigid, rectangular edged object to bring all stacked units into uniform alignment. This technique prevents potential harm that could occur to fingers and hands of assemblers from the package pins. Refer to Figure 1 below that illustrates this assembly. Stacked horizontal packages can be disengaged should there be a need to do so. Repeated stacking and unstacking causes no damage to individual units.

Recommended stacking of vertical packages is to hold two vertical units, one in each hand, with the pins facing away from the assembler and the optical ports located in the bottom front of each unit. Engage completely, the L bracket unit from above into the lower L slot unit. Package to package a!!gnment is eas!!y insured by laying the fu!!, flat, bottom side of the assembled units onto a flat surface pushing with a finger the two packages into complete, parallel alignment. The thin rectangular edged tool, used for horizontal package alignment, is not needed with the vertical packages. Stacked vertical packages can be disengaged should there be a need to do so. Repeated stacking and unstacking causes no damage to individual units.

Figure 11. Interlocked (Stacked) Horizontal or Vertical Packages.

Versatile Link Transmitters

HFBR-1521/1531 (5 MBd - High Performance)
HFBR-152X/153X SERIES TRANSMITTERS
HFBR-1522/1532 (1 MBd - High Performance) HFBR-1523/1533 (40 kBd - Low Current/Extended Distance)
HFBR-1524/1534 (1 MBd - Standard)

Versatile Link transmitters incorporate a 660 nanometre LED in a horizontal or vertical housing. The HFBR-15X3 transmitter housing is black. HFBR-15X1/2/4 standard housings are gray, but black versions are available. The transmitters can be easily interfaced to standard TTL or CMOS logic. The optical output power of the HFBR$152 \mathrm{X} / 153 \mathrm{X}$ series is specified at the end of 0.5 m of cable. The mechanical and electrical pin spacing and connections are identical for both the horizontal and vertical packages.

*SEE NOTE 7

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Ref.
Storage Temperature		$\mathrm{T}_{\text {S }}$	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature		$\mathrm{T}_{\text {A }}$	0	+70	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec.	
Peak Forward Input Current		$\mathrm{I}_{\text {FPK }}$		1000	mA	Note 2
DC Forward Input Current		$\mathrm{I}_{\text {FDC }}$		80	mA	
Reverse Input Voltage		V_{R}		5	V	

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{5]}$	Max.	Units	Conditions	Ref.
Transmitter Output Optical Power	HFBR-15X1	P_{T}	-16.5		-7.6	dBm	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Fig. 2 Notes 3, 4
			-14.3		-8.0	dBm	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	HFBR-15X2 and HFBR-15X3	P_{T}	-13.6		-4.5	dBm	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
			-11.2		-5.1	dBm	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	HFBR-15X3	P_{T}	-35.5			dBm	$\mathrm{I}_{\text {Fdc }}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
	HFBR-15X4	P_{T}	-17.8		-4.5	dBm	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
			-15.5		-5.1	dBm	$\mathrm{I}_{\text {Fdc }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Output Optical Power Temperature Coefficient		$\frac{\Delta \mathrm{P}_{\mathrm{T}}}{\Delta \mathrm{~T}}$		-0.85		$\% /{ }^{\circ} \mathrm{C}$		
Peak Emission Wavelength		$\lambda_{\text {PK }}$		660		nm		
Forward Voltage		V_{F}	1.45	1.67	2.02	V	$\mathrm{I}_{\mathrm{Fdc}}=60 \mathrm{~mA}$	
Forward Voltage Temperature Coefficient		$\frac{\Delta V_{F}}{\Delta T}$		-1.37		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		Fig. 1
Effective Diameter		$\mathrm{D}_{\text {T }}$		1		mm		
Numerical Aperture		N.A.		0.5				
Reverse Input Breakdown Voltage		$V_{B R}$	5.0	11.0		V	$\mathrm{I}_{\text {Fdc }}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Diode Capacitance		C_{O}		86		pF	$V_{F}=0, f=1 \mathrm{MHz}$	
Rise Time		tr_{r}		80		ns	10% to 90%, $\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	Note 6
Fall Time		t_{f}		40		ns		

Notes:

1. 1.6 mm below seating plane.
2. $1 \mu \mathrm{~s}$ pulse, $20 \mu \mathrm{~s}$ period.
3. Measured at the end of 0.5 m Standard Fiber Optic Cable with large area detector.
4. Optical power, $\mathrm{P}(\mathrm{dBm})=10 \log [\mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}]$.
5. Typical data is at $25^{\circ} \mathrm{C}$.
6. Rise and fall times are measured with a voltage pulse driving the transmitter and a series connected 50 ohm load. A wide bandwidth optical to electrical waveform analyzer (trans-

Figure 12. Typical Forward Voltage vs. Drive current for HFBR-152X/153X Series Transmitters.
ducer), terminated to a 50 ohm input of a wide bandwidth oscilloscope, is used for this response time measurement.
7. Pins 5 and 8 of the transmitter are for mounting and retaining purposes only. Do not electrically connect pin 5 and/or pin 8.

WARNING: When viewed under some conditions, the optical port of the Transmitter may expose the eye beyond the Maximum Permissible Exposure recommended in ANSI Z-136-1, 1981. Under most viewing conditions there is no eye hazard.

Figure 13. Normalized HFBR-152X/153X Series Transmitter Typical Output Optical Power vs. Drive Current.

Versatile Link Receivers

HFBR-2521/2531 (5 MBd - High Performance)
HFBR-2522/2532 (1 MBd - High Performance) HFBR-2524/2534 (1 MBd - Standard)

The Versatile Link receivers feature a shielded, integrated photodetector and a wide bandwidth dc amplifier with high EMI immunity. A Schottky clamped open-collector output transistor allows interfacing to common logic families and enables "wired-OR" circuit designs. The open collector output is specified up to 18 V . An integrated 1000 ohm resistor internally connected to $V_{C C}$ may be externally connected to provide a pull-up for ease of use with +5 V logic. Under

HFBR-25X1/25X2/25X4 RECEIVER
DO NOT CONNECT* ${ }^{5}$

*SEE NOTE 7 pulsed LED current operation ($\mathrm{I}_{\mathrm{F}}>80 \mathrm{~mA}$), the combination of a high optical power level and the optical falling edge of the LED transmitter will result in increased pulse width distortion of the receiver output signal. The standard receiver housings are blue; black versions are available.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Ref.	
Storage Temperature	T_{S}	-40	+75	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec.	
Supply Voltage	V_{CC}	-0.5	7	V	Note 6	
Output Collector Current	I_{O}		25	mA		
Output Collector Power Dissipation	P_{OD}		40	mW		
Output Voltage	V_{O}	-0.5	18	V		
Pullup Voltage	V_{RL}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V		

Electrical/Optical Characteristics

Parameter		Symbol	Min.	Typ. ${ }^{\text {[5] }}$	Max.	Units	Conditions	Ref.
Receiver Input Optical Power Level for Logic "0"	HFBR-2521 and HFBR-2531	$\mathrm{P}_{\mathrm{R}(\mathrm{L})}$	-21.6		-9.5	dBm	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	Notes 2,$\text { 3, } 8$
			-21.6		-8.7	dBm	$\begin{aligned} 25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OL}} & =0.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OL}} & =8 \mathrm{~mA} \end{aligned}$	
	HFBR-2522 and HFBR-2532	$\mathrm{P}_{\mathrm{R}(\mathrm{L})}$	-24			dBm	$\begin{aligned} & V_{O L}=0.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~m} . \mathrm{A} \end{aligned}$	Notes 2,$3,8,9$
			-24			dBm	$\begin{aligned} 25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OL}} & =0.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OL}} & =8 \mathrm{~mA} \end{aligned}$	
	HFBR-2524 and HFBR-2534	$\mathrm{P}_{\mathrm{R}(\mathrm{L})}$	-20			dBm	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	Notes 2,$3,8,9$
			-20			dBm	$\begin{aligned} 25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OL}} & =0.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OL}} & =8 \mathrm{~mA} \end{aligned}$	
Input Optical Power Level for Logic "1"		$\mathrm{PR}_{\mathrm{R}(\mathrm{H})}$			-43	dBm	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=5.25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}} \leq 250 \mu \mathrm{~A} \end{aligned}$	Note 2
High Level Output Current		IOH		5	250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=18 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0$	Note 4
Low Level Output Voltage		V_{OL}		0.4	0.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{R}(\mathrm{~L}) \mathrm{MIN}} \end{aligned}$	Note 4
High Level Supply Current		$\mathrm{I}_{\mathrm{CCH}}$		3.5	6.3	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$	Note 4
Low Level Supply Current		1 CCL		6.2	10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{R}}=-12.5 \mathrm{dBm} \end{aligned}$	Note 4
Effective Diameter		D_{R}		1		mm		
Numerical Aperture		N.A.		0.5				
Internal Pull-Up Resistor		R_{L}	680	1000	1700	Ohms		

Notes:

1. 1.6 mm below seating plan.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log [\mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}]$.
3. Measured at the end of Fiber Optic Cable with large area detector. detector.
4. R_{L} is open.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. It is essential that a bypass capacitor $0.01 \mu \mathrm{~F}$ be connected from pin 2 to pin 3 of the receiver. Total lead length between both ends
7. Pulsed LED operation at $I_{F}>80 \mathrm{~mA}$ will cause increased link $t_{P L H}$ propagation delay time. This extended $\mathrm{t}_{\mathrm{PLH}}$ time contributes to increased pulse width distortion of the receiver output signal.
8. The LED driver circuit of Figure 1b (Link Design Considerations)
is required for 1 MBd operation of the HFBR-2522/2532/2524/2534.

High Sensitivity Receiver

HFBR-25X3

The blue plastic HFBR-25X3 Receiver module has a sensitivity of -39 dBm . It features an integrated photodetector and dc amplifier with high EMI immunity. The output is an open collector with a $150 \mu \mathrm{~A}$ internal current source pullup and is compatible with TTL/LSTTL and most CMOS logic families. For minimum rise time add an external pullup resistor of at least 3.3 K ohms. Vcc must be greater than or equal to the supply voltage for the pull-up resistor.

HFBR-25X3 RECEIVER
DO NOT CONNECT*

DO NOT CONNECT*
*SEE NOTE $\&$

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Ref.
Storage Temperature		Is	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	0	+70	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Supply Voltage		Vcc	-0.5	7	V	Note 7
Output Collector Current (Average)		Io	-1	5	mA	
Output Collector Power Dissipation		Pod		25	mW	
Output Voltage		Vo	-0.5	Vcc	V	

Electrical/Optical CharacteristicS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.5 \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. (5)	Max.	Units	Conditions	Ref.
Receiver Input Optical Power Level for Logic "0"	$\begin{gathered} \text { HFBR-2523 } \\ \text { and } \\ \text { HFBR-2533 } \end{gathered}$	PR (L)	-39		-13.7	dBm	$\begin{aligned} & \mathrm{VO}=\mathrm{VOL} \\ & \mathrm{lOL}=3.2 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \text { Note } \\ 2,3,4 \end{gathered}$
			-39		-13.3	dBm	$\begin{aligned} 25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}} & =\mathrm{V}_{\mathrm{OL}} \\ \mathrm{IOL} & =3.2 \mathrm{~mA} \end{aligned}$	
Input Optical Power Level for Logic "1"		$\mathrm{PR}(\mathrm{H})$			-53	dBm	$\begin{aligned} & \mathrm{VOH}=5.5 \mathrm{~V}, \\ & \mathrm{lOH} \leq 40 \mu \mathrm{~A} \end{aligned}$	Note 2
High Level Output Voltage		VOH	2.4			V	$\begin{aligned} & \mathrm{IOH}=-40 \mu \mathrm{~A}, \\ & \mathrm{PR}=0 \mu \mathrm{~W} \end{aligned}$	
Low Level Output Voltage		Vol			0.4	V	$\begin{aligned} & \mathrm{IOL}=3.2 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{RL}} \mathrm{MIN} \end{aligned}$	Note 6
High Level Supply Current		ICCH		1.2	1.9	mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$	
Low Level Supply Current		ICCL		2.9	3.7	mA	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & P_{R} \geq P_{R L}(\mathrm{MIN}) \end{aligned}$	Note 6
Effective Diameter		DR		1		mm		
Numerical Aperture		N.A.		0.5				

Notes:

1. 1.6 mm below seating plan.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
3. Measured at the end of Fiber Optic Cable with large area detector.
4. Because of the very high sensitivity of the HFBR-25X3, the digita output may switch in response to ambient light levels when a cable is not occupying the receiver optical port. The designer should take care to filter out signals from this source if they pose a hazard to the system.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. Including current in 3.3 K pull-up resistor.
7. It is recommended that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic be connected from pin 2 to pin 4 of the receiver.
8. Pins 5 and 8 are for mounting and retaining purposes only. Do not electrically connect pin 5 and/or pin 8.

Plastic Fiber Optic Cable

Simplex Fiber Optic Cable is constructed of a single step index plastic fiber sheathed in a plastic jacket. Duplex Fiber Optic Cable has two plastic fibers, each in a cable of construction similar to the Simplex Cable, joined with a web. The individual channels are identified by a marking on one channel of the cable. The Improved Fiber Optic Cable is identical to the Standard Cable except that the attenuation is lower.

These cables are UL recognized components and pass UL VW-1 flame retardancy specification. Safe cable properties in flammable environments, along with non-conductive electrical characteristics of the cable may make the use of conduit unnecessary. Plastic cable is available unconnectored or connectored. Refer to page 5-34 for part numbers. numbers.

SIMPLEX CABLE

dUPLEX CABLE

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Ref.	
Storage Temperature	T_{S}	-40	+75	${ }^{\circ} \mathrm{C}$		
Installation Temperature	T_{I}	-20	+70	${ }^{\circ} \mathrm{C}$		
Short Term Tensile Force	Single Channel	F_{T}		50	N	Note 1
Short Term Bend Radius	F_{T}		100	N		
Long Term Bend Radius	r	10		mm	Note 2	
Long Term Tensile Load	r	35		mm		
Flexing	F_{T}		1	N		
Impact			1000	Cycles	Note 3	

Electrical/Optical CharacteristiCS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{5}$]	Max.	Units	Conditions	Ref.
Cable Attenuation	Standard Cable	α_{0}	0.19	0.31	0.43	dB/m	Source is HFBR-152X/153X $(660 \mathrm{~nm}), \quad \ell=20 \mathrm{~m}$	Note 7
	Improved Cable		0.19	0.25	0.31			
Numerical Aperture		N.A.		0.5			$\ell>2 \mathrm{~m}$	
Diameter, Core		D_{C}		1.0		mm		
Diameter, Jacket		D_{J}		2.2		mm	Simplex Cable	
Travel Time Constant		ℓ / v		5.0		$\mathrm{nsec} / \mathrm{m}$		Note 6
Mass per Unit Length/Channel		m / l		4.6		g / m	Without Connectors	
Cable Leakage Current		L		12		nA	$50 \mathrm{kV}, \ell=0.3 \mathrm{~m}$	

Notes:

1. Less than 30 minutes.
2. Less than 1 hour, non-operating.
3. 90° bend on 10 mm radius mandrel. Bend radius is the radius of the mandrel around which the cable is bent
4. Tested at 1 impact according to MIL-STD-1678, Method 2030, Procedure 1.
5. Typical data is at $25^{\circ} \mathrm{C}$.
6. Travel time constant is the reciprocal of the group velocity for propagation of optical power. Group velocity is $v=c / n$, where c is the
velocity of light in space ($3 \times 10^{8} \mathrm{~m} / \mathrm{s}$) and n equals effective core index of refraction. Unit length of cable is ℓ
7. In addition to standard Hewlett-Packard 100% product testing, HP provides additional margin to ensure link performance. Under certain conditions, cable installation and improper connectoring may reduce performance. Contact Hewlett-Packard for recommendations.
8. Improved cable is avaitable in 500 metre spools and in factoryconnectored lengths less than 100 metres.

Versatile Link Fiber Optic Connectors

CONNECTORS
 FEEDTHROUGH/SPLICE POLISHING TOOLS

Versatile Link transmitters and receivers are compatible with three connector styles; simplex, simplex latching, and duplex. All connectors provide a snap-action when mated to Versatile Link components. Simplex connectors are color coded to match with transmitter and receiver color coding. Duplex connectors are keyed so that proper orientation is ensured. When removing a connector from a module, pull at the connector body. Do not pull on the cable alone. The same, quick and simple connectoring technique is used with all connectors and cable. This technique is described on page 18. Note that simplex and duplex crimp rings are different.

Simplex Connector Styles

HFBR-4501/4511 - Simplex
The simplex connector provides a quick and stable connection for applications that require a component to provide retention force of 8 newtons (1.8 lb). These connectors are available in colors of gray (HFBR-4501) or blue (HFBR-4511).
HFBR-4503/4513 - Simplex Latching
The simplex latching connector is designed for rugged applications requiring greater retention force, 80 N (18 lbs), than that provided by a simplex connector. When inserting the simplex latching connector into a module, the connector latch mechanism should be aligned with the top surface of the horizontal module, or with the tall vertical side of the vertical module. Misorientation of an inserted latching connector into either module housing will not result in a positive latch. The connector is released by depressing the rear section of the connector lever, and then pulling the connector assembly away from the module housing.
If the cable/connector will be used at elevated operating temperatures or experience frequent and wide temperature c./cling effects, the cable/connector attachment can be strengthened by applying a RTV adhesive within the connector. A recommended adhesive is GE Company RTV128. In most applications, use of RTV is unnecessary. The simplex latching connector is available in gray (HFBR4503) or blue (HFBR-4513)

Duplex Connector HFBR-4506 - Duplex
Duplex connectors provide convenient duplex cable termination and are keyed to prevent incorrect connection. The duplex connector is compatible with dual combinations of identical Versatile Link components (e.g., two horizontal transmitters, two vertical receivers, a horizontal transmitter and a horizontal receiver, etc.). A duplex connector cannot connect to two different packages simultaneously. The duplex connector is an off-white color.

Feedthrough/Splice HFBR-4505/4515 - Adapter
The HFBR-4505/4515 adapter mates two simplex connectors for panel/bulkhead feedthrough of plastic fiber cable. Maximum panel thickness is 4.1 mm (0.16 inch). This adapter can serve as a cable in-line splice using two simplex connectors. The colors of the adapters are gray (HFBR4505) and blue (HFBR-4515). The adapter is not compatible with the duplex or simplex latching connectors.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	
Nut Torque HFBR-4505/4515	T_{N}		0.7	$\mathrm{~N}-\mathrm{m}$	1
		100	OzF-in		

Notes:

1. Recommended nut torque is $0.57 \mathrm{~N}-\mathrm{m}(80 \mathrm{OzF}-\mathrm{in})$.

HFBR-4501 (GRAY)/4511 (BLUE) SIMPLEX CONNECTOR

HFBR-4503 (GRAY)/4513 (BLUE) SIMPLEX LATCHING CONNECTOR

HFBR-4506 (PARCHMENT) DUPLEX CONNECTOR

HFBR-4516 (PARCHMENT) DUPLEX LATCHING CONNECTOR

HFBR-4505 (GRAY)/4515 (BLUE) ADAPTER

Connector Applications

ATTACHMENT TO HEWLETT-PACKARD HFBR-152X/153X/252X/253X VERSATILE LINK FIBER OPTIC COMPONENTS

BULKHEAD FEEDTHROUGH OR PANEL MOUNTING FOR HFBR-4501/4511 SIMPLEX CONNECTORS

DIMENSIONS IN MILLIMETRES (INCHES)

Connector Mechanical/Optical Characteristics 25º $^{\circ}$ Unless Otherwise Specified.

Parameter	Part Number		Sym.	Min.	Typ.	Max.	Units	Ref.
Retention Force Connector to HFBR-152X 153X/ 252X/253X Modules	Simplex	HFBR-4501/4511	$\mathrm{F}_{\mathrm{R}-\mathrm{C}}$	7	8		N	Note 4
	Simplex Latching	HFBR-4503/4513		47	80			
	Duplex	HFBR-4506		7	12			
	Duplex Latching	HFBR-4516		50	80			
Tensile Force Connector to Cable	Simplex	HFBR-4501/4511	F_{T}	8.5	22		N	Notes 3, 4
	Simplex Latching	HFBR-4503/4513		8.5	22			
	Duplex	HFBR-4506		14	35			
	Duplex Latching	HFBR-4516		14	35			
Adapter Connector to Connector Loss	HiFBR-450ิ5/4515 with ifiche $4501 / 451 i$		${ }^{\alpha} \mathrm{CC}$	0.7	i. 5	2.8	dB	Notes 1,5
Retention Force Connector to Adapter	HFBR-4505/4515 with HFBR-4501/4511		$\mathrm{F}_{\mathrm{R}-\mathrm{B}}$	7	8		N	Note 4
Insertion Force Connector to HFBR-152X/153X/ 252X/253X Modules	Simplex	HFBR-4501/4511	F_{1}		8	12	N	Notes 2, 4
	Simplex Latching	HFBR-4503/4513			16	35		
	Duplex	HFBR-4506			13	46		
	Duplex Latching	HFBR-4516			22	51		

Notes:

1. Factory polish or field polish per recommended procedure.
2. No perceivable reduction in insertion force was observed after 2000 insertions. Destructive insertion force was typically at 178 N (40 lbs).
3. For applications where frequent temperature cycling over temperature extremes is expected please contact Hewlett-Packard for alternate connectoring techniques.
4. All mechanical forces were measured after units were stored at $70^{\circ} \mathrm{C}$ for 168 hours and returned to $25^{\circ} \mathrm{C}$ for one hour.
5. Minimum and maximum limits of α_{CC} are for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range. Typical value of α_{CC} is at $25^{\circ} \mathrm{C}$.

Connectoring

The following easy procedure describes how to make cable terminations. It is ideal for both field and factory installation. If a high volume connectoring technique is required please contact your Hewlett-Packard sales engineer for the recommended procedure and equipment.
Connectoring the cable is accomplished with the HewlettPackard HFBR-4593 Polishing Kit consisting of a Polishing Fixture, 600 grit abrasive paper and $3-\mu \mathrm{m}$ pink lapping film (3M Company, OC3-14). No adhesive material is needed to secure the cable in the connector, and the connector can be used immediately after polishing. Improved connector to cable attachment can be achieved with the use of a RTV (GE Company, RTV-128) adhesive for frequent, extreme temperature cycling environments or for elevated temperature operation.

Connectors may be easily installed on the cable ends with readily available tools. Materials needed for the terminating procedure are:

1) Hewlett-Packard Plastic Fiber Optic Cable
2) HFBR-4593 Polishing Kit
3) HFBR-4501/4503 Gray Simplex/Simplex Latching Connector and Silver Color Crimp Ring
4) HFBR-4511/4513 Blue Simplex/Simplex Latching Connector and Silver Color Crimp Ring
5) HFBR-4506 Parchment Duplex Connector and Duplex Crimp Ring
6) Industrial Razor Blade or Wire Cutters
7) 16 Gauge Latching Wire Strippers
8) Crimp Tool, HFBR-4597

Step 1

The zip cord structure of the duplex cable permits easy separation of the channels. The channels should be separated approximately 50 mm (2.0 in .) back from the ends to permit connectoring and polishing.

After cutting the cable to the desired length, strip off approximately 7 mm (0.3 in .) of the outer jacket with the 16 gauge wire strippers. Excess webbing on duplex cable may have to be trimmed to allow the simplex or simplex latching connector to slide over the cable.

When using the duplex connector and duplex cable, the separated duplex cable must be stripped to equal lengths on each cable. This allows easy and proper seating of the cable into the duplex connector.

Step 2

Place the crimp ring and connector over the end of the cable; the fiber should protrude about 3 mm (0.12 in .) through the end of the connector. Carefully position the ring so that it is entirely on the connector with the rim of the crimp ring flush with the connector, leaving a small space between the crimp ring and the flange. Then crimp the ring in place with the crimping tool. One crimp tool is used for all connector crimping requirements.
Note: Place the gray connector on the cable end to be connected to the transmitter and the blue connector on the cable end to be connected to the receiver to maintain the color coding (both connectors are the same mechanically). For duplex connector and duplex cable application, align the color coded side of the cable with the appropriate ferrule of the duplex connector in order to match connections to the respective optical ports. The simplex connector crimp ring cannot be used with the duplex connector. The duplex connector crimp ring cannot be used with the simplex or simplex latching connectors. The simplex crimp has a dull lustre; the duplex ring is shiny and has a thinner wall.

Step 3

Any excess fiber protuding from the connector end may be cut off; however, the trimmed fiber should extend at least 1.5 mm (0.06 in .) from the connector end.

Insert the connector fully into the polishing fixture with the trimmed fiber protruding from the bottom of the fixture. This plastic polishing fixture can be used to polish two simplex connectors or two simplex latching connectors simultaneously, or one duplex connector.

Note: The four dots on the bottom of the polishing fixture are wear indicators. Replace the polishing fixture when any dot is no longer visible.
Place the 600 grit abrasive paper on a flat smooth surface. Pressing down on the connector, polish the fiber and the connector using a figure eight pattern of strokes until the connector is flush with the bottom of the polishing fixture. Wipe the connector and fixture with a clean cloth or tissue.

Step 4

Place the flush connector and polishing fixture on the dull side of the 3 micron pink lapping film and continue to polish the fiber and connector for approximately 25 strokes. The fiber end should be flat, smooth and clean.

The cable is now ready for use.
Note: Use of the pink lapping film fine polishing step results in approximately $2 d B$ improvement in coupling performance of either a transmitter-receiver link or a bulkhead/splice over 600 grit polish alone. This fine polish is comparable to Hewlett-Packard factory polish. The fine polishing step may be omitted where an extra $2 d B$ of optical power is not essential, as with short link lengths. Proper polishing of the tip of the fiber/connector face results in a tip diameter between 2.8 mm (0.110 in .) minimum and 3.2 mm (0.125 in .) maximum.

For simultaneous multiple connector polishing techniques please contact Hewlett-Packard.

HFBR-4593 POLISHING KIT

Ordering Guide

TRANSMITTERS (T_{x})/RECEIVERS ($\mathbf{R}_{\mathbf{x}}$)
Pages 5-24/5-27

Versatile Link	Unit	Horizontal Modules	Vertical Modules
5 MBd High Performance	Tx	HFBR-2521	HFBR-2531
1 MBd High Performance	T_{x}	HFBR-2522	HFBR-2532
40 kBd Low Current/ Extended Distance	Tx	HFBR-2523	HFBR-2533
1 MBd Standard	T_{x}	HFBR-2524	HFBR-2534
5 MBd High Performance	R_{X}	HFBR-1521	HFBR-1531
1 MBd High Performance	R_{X}	HFBR-1522	HFBR-1532
40 kBd Low Current/			
Extended Distance	R_{X}	HFBR-1523	HFBR-1533
1 MBd Standard	$\mathrm{R}_{\mathbf{X}}$	HFBR-1524	HFBR-1534

CONNECTORS
Page 5-30

HFBR-4501	Gray Simplex Connector/Crimp Ring
HFBR-4511	Blue Simplex Connector/Crimp Ring
HFBR-4503	Gray Simplex Latching Connector with
	Crimp Ring
HFBR-4513	Blue Simplex Latching Connector with Crimp Ring
HFBR-4506	Parchment Duplex Connector with HFBR-4516
	Parchmenent Duplex Latching Connector with Crimp Ring
HFBR-4505	Gray Adapter
HFBR-4515	Blue Adapter

EVALUATION KIT, HFBR-0501 CONTENTS:

HFBR-1524	Transmitter
HFBR-2524	Receiver
HFBR-4501	Gray Simplex Connector with Crimp
	Ring
HFBR-4506	Duplex Connector with Crimp Ring
-	5 metres of Connectored Simplex Cable with Blue Simplex and Gray Simplex Latching Connectors
HFBR-4513	Blue Simplex Latching Connector with
	Crimp Ring
HFBR-4505	Gray Adapter
-	Polishing Tool and 600 grit paper
HFBR-0501	Data Sheet and Brochure

ACCESSORIES

HFBR-4522	500 Port Plugs
HFBR-4525	1000 Simplex Crimp Rings
HFBR-4526	500 Duplex Crimp Rings
HFBR-4593	Polishing Kit (one polishing tool, two pieces 600 grit abrasive paper, and two pieces 3- μ m lapping film).
HFBR-4597	Crimping Tool

A Note About Ordering Cable

Four steps are required to determine the proper part number for a desired cable.
Step 1 Select Standard or Improved Cable.
As explained on page 5-29, two levels of attenuation are available: Standard and Improved.
Step 2 Select the connector style.
Connector styles are described on page 5-30.
Step 3 Select Simplex or Duplex.
Step 4 Determine the cable length.
To determine the appropriate part number, select the letter corresponding to your selection and fill in the following:

For example:
HFBR-PUD500 is a Standard Attenuation, Unconnectored, Duplex, 500 metre cable.
HFBR-QLS001 is an Improved Attenuation, Latching Simplex Connectored, Simplex, 1 metre cable.

HFBR-PMD010 is a Standard Attenuation, Standard Duplex Connectored, Duplex, 10 metre cable.
HFBR-PND100 is a Standard Attenuation, Standard Simplex Connectored, Duplex, 100 metre cable.

Note: 0.1 metre Standard Attenuation Simplex lengths are available; 0.5 metre Standard Attenuation Simplex and Duplex lengths are also available. The lengths are ordered as HFBR-xxx1DM or HFBR-xxx5DM.

ATTENTION: Pre-connectored simplex cables have oppositely colored (GRAY vs. BLUE) connectors at the opposite ends of the same fiber; although oppositely colored, the connectors are mechanically identical. For duplex cables with simplex connectors, the same rule applies to each fiber; also, the side-by-side fibers at each end of the cable have oppositely colored connectors. For duplex cables with duplex connectors similar rules apply, so the connectors at opposite ends are oppositely keyed relative to the marked fiber in a duplex cable.

Low Cost, Miniature Fiber Optic Components with ST* and SMA Ports

Technical Data

Features

- Low Cost Transmitters and Receivers
- Choice of ST or SMA Ports
- 820 Nanometre Wavelength Technology
- Signal Rates up to 150 Megabaud
- Link Distances up to 4 Kilometres
- Specified with $50 / 125 \mu \mathrm{~m}$, $62.5 / 125 \mu \mathrm{~m}, 100 / 140 \mu \mathrm{~m}$, and $200 \mu \mathrm{~m}$ PCS Fiber Sizes
- Repeatable ST

Connections within 0.2 dB Typical

- Unique Optical Port Design for Efficient Coupling
- Auto-Insertable and Wave Solderable
- No Board Mounting Hardware Required
- Wide Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- AlGaAs Emitters 100\% Burn-In Ensures High Reliability
- Demonstrated Reliability (1840 ${ }^{\circ} \mathrm{C}$ Exceeds 4 Million Hours MTBF

Applications

- Local Area Networks
- Computer to Peripheral Links
- Computer Monitor Links
- Digital Cross Connect Links
- Central Office Switch Links
- PBX Links
- Video Links
- Modems and Multiplexers
- Suitable for Tempest Systems

Description

The HFBR-0400 Series of components is designed to provide cost effective, high performance fiber optic communication links for information systems and industrial applications with link distances of up to 4 kilometres. With the latest addition to the HFBR-0400 series, the 125 MHz analog receiver, data rates of up to 150 megabaud are attainable.

Transmitters and receivers are directly compatible with popular "industry-standard" connectors:

HFBR-0400 ST* and SMA Series

ST and SMA. They are completely specified with multiple fiber sizes; including $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}, 100 /$ $140 \mu \mathrm{~m}$, and $200 \mu \mathrm{~m}$.

Complete evaluation kits are available for ST and SMA product offerings; including transmitter, receiver, connectored cable, and technical literature. In addition, ST and SMA connectored cables are available.

HFBR-0400 Series Selection Guide

Description	SMA Series $^{[1]}$	SMA Conductive Port $^{[1]}$	ST Series $^{[2]}$	Threaded Port $^{[2]}$	ST Threaded, Conductive
Standard Transmitter	HFBR-1402	-	HFBR-1412	HFBR-1412T	-
High Power Transmitter	HFBR-1404	-	HFBR-1414	HFBR1414T	-
$\mathbf{5 M B d}$ TTL Receiver	HFBR-2402	HFBR-2402C	HFBR-2412	HFBR-2412T	HFBR-2412TC
25 MHz Analog Receiver	HFBR-2404	HFBR-2404C	HFBR-2414	HFBR-2414T	HFBR-2414TC
125 MHz Analog Receiver	HFBR-2406	HFBR-2406C	HFBR-2416	HFBR-2416T	HFBR-2416TC
Evaluation Kit (5 MBd)	HFBR-0400	-	HFBR-0410	-	-

Notes:

1. These products are also available unhoused. HFBR-xx3x references port product with bent leads and HFBR-xx5x references port product with straight leads.
2. These products are also available unhoused. HFBR-xx4x references port product with bent leads and HFBR-vx6x references port product with straight leads.

Literature Guide

Title	Description
HFBR-0400 Series Reliability Data	Transmitter \& Receiver Reliability Data
Application Bulletin 73	Low-Cost Fiber Optic Transmitter \& Receiver Interface Circuits
Application Bulletin 78	Low-Cost Fiber Optic Links for Digital Applications up to 150 MBd
Application Note 1038	Low-Cost Components for IEEE 802.3 Fiber Optic Inter-Repeater Links
Technical Brief 105	ST Connector/Cable Guide
Technical Brief 101	Fiber Optic SMA Connector Technology
HFBR-0400 ST and SMA Series	Transmitter \& Receiver Specifications

Contact your local HP components sales office to obtain these publications.

Package Information

All HFBR-0400 Series
transmitters and receivers are housed in a low-cost, dual-inline package that is made of high strength, heat resistant, chemically resistant, and UL V-O flame retardant plastic. The transmitters are easily identified by the light grey color connector port. The receivers are easily identified by the dark grey color connector port. (Black color for conductive port.) The package is designed for autoinsertion and wave soldering so it is ideal for high volume production applications.

Handling and Design

Information

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path.

[^31]

Figure 1. HFBR-0400 ST Series Cross-Sectional View

Link Design Considerations

The HFBR-14XX transmitter and the HFBR-24XX receiver can be used to design fiber optic data links that operate with 50 / $125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}, 100 /$ $140 \mu \mathrm{~m}$ and $200 \mu \mathrm{~m}$ PCS fiber cables.

The HFBR-14X2 standard transmitter and the HFBR-24X2 receiver are suitable for systems requiring up to 5 MBd and 2 Km . For higher data rate or longer
distance, the HFBR-14X4 high power transmitter and/or the HFBR-24X4 receiver should be considered.

5 MBd Logic Link Design

 The HFBR-14X4/24X2 Logic Link is guaranteed to work with $62.5 / 125 \mu \mathrm{~m}$ fiber optic cable over the entire range of 0 to 1200 metres at a data rate of dc to 5 MBd , with arbitrary data format and typically less than 25% pulse width distortion, when the transmitter is driven with $\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=115 \mathrm{Ohm}$as shown in Figure 2. If it is desired to economize on power or achieve lower pulse distortion, then a lower drive current (I_{F}) may be used. The following example will illustrate the technique for optimizing I_{F}

Example: Maximum distance required $=400$ metres. From Figure 3 the drive current should be 15 mA . From the transmitter data $\mathrm{V}_{\mathrm{F}}=1.5 \mathrm{~V}$ (max.) as shown in Figure 9.

$$
\begin{aligned}
\mathrm{R}_{1} & =\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{F}}}{\mathrm{I}_{\mathrm{F}}}=\frac{5 \mathrm{~V}-1.5 \mathrm{~V}}{15 \mathrm{~mA}} \\
& =233 \mathrm{ohm}
\end{aligned}
$$

The curves in Figures 3, 4, and 5 are constructed assuming no in-line splice or any additional system loss. Should the link consist of any in-line splices, these curves can still be used to calculate link limits provided they are shifted by the additional system loss in dB. For example, with 20 mA of transmitter drive current, 1.6 km link distance is achievable. With 2 dB of additional system loss, 1.2 km link distance is achievable.

5 MBd Link Performance

NOTE:
IT IS ESSENTIAL THAT A BYPASS CAPACITOR ($0.01 \mu \mathrm{~F}$ TO $0.1 \mu \mathrm{~F}$ CERAMIC) BE CONNECTED FROM PIN 2 TO PIN 7 OF THE RECEIVER. TOTAL LEAD LENGTH BETWEEN BOTH ENDS OF THE CAPACITOR AND THE PINS SHOULD NOT EXCEED 20 mm .

Figure 2. Typical Circuit Configuration

Figure 3. HFBR-1414/HFBR-2412 Link Design Limits with $62.5 / 125 \mu \mathrm{~m}$ Cable

Figure 4. HFBR-14X2/HFBR-24X2 Link Design Limits with $100 / 140 \mu \mathrm{~m}$ Cable

Figure 5. HFBR-14X4/HFBR-24X2 Link Design Limits with $50 / 125 \mu \mathrm{~m}$ Cable

Figure 6. Propagation Delay through System with One Metre of Cable

Figure 7. Typical Distortion of NRZ EYE-pattern with Pseudo Random Data at $5 \mathrm{Mb} / \mathrm{s}$ (see Note 2)

Figure 8. System Propagation Delay Test Circuit and Waveform Timing Definitions

Logic Link Design up to 35 MBd

For data rates up to 35 MBd , or longer distance, the HFBR-14X4 high power transmitter and/or the HFBR-24X4 receiver can be used. The table on the following page summarizes the typical performance of a 30 MBd link. For more details, please refer to HP Application Bulletin 73 (5954-8415). If circuit design assistance is needed, please contact your local HewlettPackard Components Field Sales Engineer.

Logic Link Design up to 150 MBd

For data rates of up to 150 MBd , the HFBR-14XX transmitters and the HFBR-24X6 receiver can be used. The table on the following page summarizes the typical performance of a 100 MBd link. For more details, please refer to HP Application Bulletin 78. If circuit design assistance is needed, please contact your local HewlettPackard Components Field Sales Engineer.

Cable Selection

The HFBR-0400 Series can be used with fiber sizes such as $50 / 125 \mu \mathrm{~m}, 62.5 / 125 \mu \mathrm{~m}$, $100 / 140 \mu \mathrm{~m}, 200 \mu \mathrm{~m}$ PCS, and $1000 \mu \mathrm{~m}$ Plastic. Before selecting a fiber type, several parameters need to be carefully evaluated.

The bandwidth and attenuation $(\mathrm{dB} / \mathrm{km})$ of the selected fiber, in conjunction with the amount of optical power coupled into it will determine the achievable link length. The parameters that will significantly affect the optical power coupled into the fiber are as follows:
a. Fiber Core Diameter. As the core diameter is increased, the optical power coupled increases, leveling off at about $250 \mu \mathrm{~m}$ diameter.
b. Numerical Aperture (NA). As the NA is increased, the optical power coupled increases, leveling off at an NA of about 0.34 .

In addition to the optical parameters, the environmental performance of the selected fiber/cable must be evaluated. Finally, the ease of installing connectors on the selected fiber/ cable must be considered.

ST connectored fiber optic cable is available from a variety of manufacturers and distributors, including those listed in HP Technical Brief 105; ST Connector/Cable Guide. For ST Evaluation Cables from Hewlett-Packard, please refer to page 12.

5 MBd Link Performance $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified
$\left.\begin{array}{|l|c|c|c|c|c|c|c|}\hline \text { Parameter } & \text { Symbol }^{\text {Min. }} & \text { Typ. }{ }^{[1]} & \text { Max. } & \text { Units } & \text { Conditions } & \text { Reference } \\ \hline \begin{array}{l}\text { Optical Power Budget } \\ \text { w/50/125 } \mu \mathrm{m} \text { Fiber }\end{array} & \text { OPB }_{50} & 4.2 & 9.6 & & \mathrm{~dB} & \begin{array}{l}\text { HFBR-14X4/24X2 } \\ \mathrm{w} / 50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.2\end{array} & \\ \hline \begin{array}{l}\text { Optical Power Budget } \\ \text { w/62.5/125 } \mu \mathrm{m} \text { Fiber }\end{array} & \text { OPB }_{62.5} & 8.0 & 15.0 & & \mathrm{~dB} & \begin{array}{l}\text { HFBR-14X4/24X2 } \\ \mathrm{w} / 62.5 / 125 ~\end{array} \mathrm{~m}, \mathrm{NA}=0.27\end{array}\right]$.

Notes:

1. Typical data at T $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \mathrm{dc}, \mathrm{P}_{\mathrm{B}}=27.0 \mathrm{dBm}$.
2. Synchronous data rate limit is based on these assumptions: a) 50% duty factor modulation, e.g., Manchester I or BiPhase Manchester II; b) continuous data; c) PLL Phase Lock Loop demodulation; d) TTL threshold.

Asynchronous data rate limit is based on these assumptions: a) NRZ data; b) arbitrary timing-no duty factor restriction; c) TTL threshold.

The EYE pattern describes the timing range within which there is no uncertainty of the logic state, relative to a specific threshold, due to either noise or intersymbol prop. delay effects.

30 MBd Link Performance (see Application Bulletin 73 for details)

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Units	Conditions
Optical Power Budget w/50/125 $\mu \mathrm{m}$ Fiber	OPB ${ }_{50}$		9.7		dB	HFBR-14X4/24X4 $\mathrm{w} / 50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.2$
Optical Power Budget w/62.5/125 $\mu \mathrm{m}$ Fiber	$\mathrm{OPB}_{62.5}$		13.5		dB	HFBR-14X4/24X4 $\mathrm{w} / 62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.27$
Optical Power Budget w/100/140 $\mu \mathrm{m}$ Fiber	OPB_{100}		13.5		dB	$\begin{aligned} & \text { HFBR-14X } 2 / 24 \mathrm{X} 4 \\ & \mathrm{w} / 100 / 140 \mu \mathrm{~m}, \mathrm{NA}=0.30 \end{aligned}$
Optical Power Budget w/200 $\mu \mathrm{m}$ PCS Fiber	OPB_{200}		19		dB	$\begin{aligned} & \mathrm{HFBR}-14 \mathrm{X} 4 / 24 \mathrm{X} 4 \\ & \mathrm{w} / 200 \mu \mathrm{~m} \text { PCS, } \mathrm{NA}=0.40 \end{aligned}$
Data Format NRZ		dc	30		MBaud	Reference AB 73 for circuit details, Note 2, 3
Propagation Delay LOW to HIGH	$\mathrm{t}_{\text {PLH }}$		12		nsec	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{P}_{\mathrm{R}}=-13 \mathrm{dBm} \text { Peak } \end{aligned}$
Propagation Delay HIGH to LOW	$\mathrm{t}_{\text {PHL }}$		8		nsec	
System Pulse Width Distortion	$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\mathrm{PHL}}$		4		nsec	$=1.0$ metre
Bit Error Rate	BER			10^{-9}		Data Rate ≤ 30 MBaud $\mathrm{P}_{\mathrm{R}}>-25.5 \mathrm{dBm}$ Peak

Notes:

1. Typical data at $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ dc.
2. This circuit utilizes the LT1016 comparator from Linear Technology Corporation. If operated at 5 MBd , an additional 4.5 dB of optical power budget can be obtained.
3. If HFBR-24X4 is replaced with the HFBR-24X6, an additional 5.5 dB of optical power budget can be obtained at 30 MHz NRZ .

100 MBd Link Performance (see Application Bulletin 78 for details)

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Units	Conditions
Optical Power Budget w/50/125 $\mu \mathrm{m}$ Fiber	OPB_{50}		14.7		dB	$\begin{aligned} & \text { HFBR-14X4/24X6 } \\ & \mathrm{w} / 50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.2 \end{aligned}$
Optical Power Budget w/62.5/125 $\mu \mathrm{m}$ Fiber	$\mathrm{OPB}_{62.5}$		19		dB	$\begin{aligned} & \text { HFBR-14X4/24X6 } \\ & \mathrm{w} / 62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.27 \end{aligned}$
Optical Power Budget w/100/140 $\mu \mathrm{m}$ Fiber	OPB_{100}		19		dB	$\begin{aligned} & \text { HFBR-14X2/24X6 } \\ & \mathrm{w} / 100 / 140 \mu \mathrm{~m}, \mathrm{NA}=0.30 \end{aligned}$
Optical Power Budget w/200 $\mu \mathrm{m}$ PCS Fiber	OPB_{200}		24		dB	$\begin{aligned} & \mathrm{HFBR}-14 \mathrm{X} 2 / 24 \mathrm{X} 6 \\ & \mathrm{w} / 200 \mu \mathrm{~m} \text { PCS, NA }=0.40 \end{aligned}$
Data Format 20\% to 80\% Duty Factor			100		MBaud	Reference AB 78 for circuit details, Note 2
Propagation Delay LOW to HIGH	$\mathrm{t}_{\text {PLH }}$		5		nsec	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & P_{R}=-7 \mathrm{dBm} \text { Peak } \end{aligned}$$=1.0 \text { metre }$
Propagation Delay HIGH to LOW	$\mathrm{t}_{\text {PHL }}$		4		nsec	
System Pulse Width Distortion	$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\mathrm{tHL}}$		1		nsec	
Bit Error Rate	BER			10^{-9}		Data Rate ≤ 100 MBaud $\mathrm{P}_{\mathrm{R}}>-31 \mathrm{dBm}$ Peak

Notes:

1. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \mathrm{dc}, \mathrm{V}_{\mathrm{cc}}=0(\mathrm{ECL})$.
2. The optical power budgets at 100 MBd were measured with an unrestricted receiver, without a Nyquist filter. A 10116 ECL line receiver was used in the receiver digitizing circuit. If unnecessary bandwidth is eliminated by low-pass filtering, an additional 2 dB of link budget is attainable at 30 MBd .

ST Evaluation Kit

The HFBR-0410 kit is a simple and inexpensive way to demonstrate the performance of Hewlett-Packard's HFBR-0400 ST Series transmitters and receivers.

The HFBR-0410 ST Evaluation Kit contains the following items:

- One HFBR-1412 transmitter
- One HFBR-2412 five megabaud TTL receiver
- Three metres of ST connectored $62.5 / 125 \mu \mathrm{~m}$ fiber optic cable with low cost plastic ferrules
- HFBR-0400 Series data sheets
- HP Application Bulletin 73
- ST connector and cable data sheets

To order an ST Evaluation Kit, please specify HFBR-0410, Quantity 1.

SMA Evaluation Kit

The HFBR-0400 kit is a simple and inexpensive way to demonstrate the performance of Hewlett-Packard's HFBR-0400 SMA Series transmitters and receivers.

The HFBR-0400 SMA Evaluation Kit contains the following items:

- One HFBR-1402 transmitter
- One HFBR-2402 five megabaud TTL receiver
- Two metres of SMA connectored $1000 \mu \mathrm{~m}$ plastic core fiber optic cable
- HFBR-0400 Series data sheets
- HP Application Bulletin 73

To order an SMA Evaluation Kit, please specify HFBR-0400, Quantity 1.

Mechanical Dimensions
 HFBR-0400 SMA Series

HFBR-X40X

HFBR-X43X

HFBR-X45X

NOTE: ALL DIMENSIONS IN MILLIMETRES AND (INCHES)

HFBR-X46X

HFBR-X44X

Mechanical Dimensions

HFBR-0400T Threaded
ST Series

HFBR-X41XT

HFBR-X44XT

HFBR-X46XT

Panel Mounting Hardware

HFBR-4401

HFBR-4411

(Each HFBR-4401 and HFBR-4411 kit consists of 100 nuts and 100 washers.)

Recommended

Chemicals for

Cleaning/Degreasing

 HFBR-0400 ProductsAlcohols (methyl, isopropyl, isobutyl)
Aliphatics (hexane, heptane)
Other (soap solution, naphtha)
(Do not use partially halogenated hydrocarbons (such as 1.1.1 trichloroethane), ketones (such as MEK), acetone, chloroform, ethyl acetate, methylene dichloride, phenol, methylene chloride, or N methylpyrolldone. Also, HP does not recommend the use of cleaners that use halogenated hydrocarbons because of their potential environmental harm.)

Transmitters

Receivers

High Speed Low Cost Fiber Optic Transmitter

Technical Data

Description

The HFBR-14XX fiber optic transmitter contains an 820 nm GaAlAs emitter capable of efficiently launching optical power into four different optical fiber sizes: $50 / 125 \mu \mathrm{~m}, 62.5 / 125$ $\mu \mathrm{m}, 100 / 140 \mu \mathrm{~m}$, and $200 \mu \mathrm{~m}$ PCS. This allows the designer flexibility in choosing the fiber size. The HFBR-14XX is designed to operate with the Hewlett-Packard HFBR-24XX fiber optic receivers.

The HFBR-14XX transmitter's high coupling efficiency allows the emitter to be driven at low current levels resulting in low power consumption and
increased reliability of the transmitter. The HFBR-14X4 high power transmitter is optimized for small size fiber and typically can launch -15.8 dBm optical power @ 60 mA into $50 / 125 \mu \mathrm{~m}$ fiber and -12 dBm into $62.5 / 125 \mu \mathrm{~m}$ fiber. The HFBR-14X2 standard transmitter typically can couple -11.5 dBm of optical power (C) 60 mA into $100 / 140 \mu \mathrm{~m}$ fiber cable. It is ideal for large size fiber such as $100 / 140 \mu \mathrm{~m}$. The high power level is useful for systems where star couplers, taps, or inline connectors create large fixed losses.

HFBR-14X2 and HFBR-14X4 Series

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference	
Storage Temperature	$\mathrm{T}_{\mathbf{s}}$	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	
	Time			10	sec	
Forward Input Current	Peak	$\mathrm{I}_{\mathrm{FPK}}$		200	mA	Note 1
	DC	$\mathrm{I}_{\mathrm{FDC}}$		100	mA	
Reverse Input Voltage	V_{BR}		1.8	V		

Consistent coupling efficiency is assured by the double-lens optical system (Figure 1). Power coupled into any of the three fiber types varies less than 5 dB from part to part at a given drive current and temperature. The benefit of this is reduced dynamic range requirements on the receiver.

CAUTION: The small junction sizes inherent to the design of this component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Electrical /Optical Specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{[2]}$	Max.	Units	Conditions	Reference
Forward Voltage	V_{F}	1.48	1.70	2.09	V	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	Figure 9
			1.84			$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	
Forward Voltage Temperature Coefficient	$\mathrm{V}_{\mathrm{F}} / \mathrm{T}$		-0.22		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	Figure 9
		-0.18			$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		
Reverse Input Voltage	V_{BR}	1.8	3.8		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	
Peak Emission Wavelength	λ_{P}	792	820	852	nm		Figure 12
Full Width Half Maximum	FWHM		45	75	nm		Figure 12
Diode Capacitance	C_{T}		55		pF	$\mathrm{V}=0$,	$\mathrm{f}=1 \mathrm{MHz}$
Optical Power Temperature Coefficient	$\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$		-0.006		$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}=60 \mathrm{~mA}$	
		-0.010			$\mathrm{I}=100 \mathrm{~mA}$		
Thermal Resistance	θ_{JA}		260		${ }^{\circ} \mathrm{C} / \mathrm{W}$		Notes 3, 8
Numerical Aperture (HFBR - 14X4)	$\mathrm{NA}_{14 \times 4}$		0.31				
Numerical Aperture (HFBR - 14X2)	$\mathrm{NA}_{14 \times 2}$		0.49				
Optical Port Diameter (HFBR - 14X4)	$\mathrm{D}_{14 \times 4}$		150		$\mu \mathrm{~m}$		Note 4
Optical Port Diameter (HFBR - 14X2)	$\mathrm{D}_{14 \times 2}$		290		$\mu \mathrm{~m}$		Note 4

Electrical / Optical Specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified HFBR-14X4 Peak Output Power Measured Out of 1m of Cable

HFBR-14X2 Peak Output Power Measured Out of 1m of Cable

WARNING: Obbserving the transmitter output power under magnification may cause injury to the eye. When viewed with the unaided eye, the infrared output is radiologically safe. However, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.

Dynamic Characteristics

Parameter	Symbol	Min.	Typ. ${ }^{[2]}$	Max.	Units	Conditions	Reference
Rise Time, Fall Time $(10 \%$ to $90 \%)$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		4.0	6.5	nsec	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$ No Pre-bias	Note 7, Figure 13
Rise Time, Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		3.0		nsec	$\mathrm{I}_{\mathrm{F}}=10$ to 100 mA	Note 7, Figure 11
Pulse Width Distortion	PWD		0.5		nsec		Figure 11

Notes:

1. For $\mathrm{I}_{\mathrm{FPK}}>100 \mathrm{~mA}$, the time duration should not exceed 2 ns .
2. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit board.
4. D_{T} is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.
5. P_{r} is measured with a large area detector at the end of 1 metre of mode stripped cable, with an ST^{*} precision ceramic ferrule (MIL-STD-83522/13) for HFBR-1412/1414, and with an SMA 905 precision ceramic ferrule for HFBR-1402/1404. This approximates a standard test connector.
6. When changing $\mu \mathrm{W}$ to dBm , the optical power is referenced to $1 \mathrm{~mW}(1000 \mu \mathrm{~W})$. Optical Power $P(\mathrm{dBm})=10 \log P(\mu \mathrm{~W}) /$ $1000 \mu \mathrm{~W}$.
7. Pre-bias is recommended if signal rate $>10 \mathrm{MBd}$, see recommended drive circuit in Figure 11.
8. Pins 2, 6 and 7 are welded to the anode header connection to minimize the thermal resistance from junction to ambient. To further reduce the thermal resistance, the anode trace should be made as large as is consistent with good RF circuit design.
9. Fiber NA is measured at the end of 2 metres of mode stripped fiber, using the far-field pattern. NA is defined as the sine of the half angle, determined at 5% of the peak intensity point. When using other manufacturer's fiber cable, results will vary due to differing NA values and specification methods.

Recommended
 Drive Circuits

The circuit used to supply current to the LED transmitter can significantly influence the optical switching characteristics of the LED. The optical rise/fall times and propagations delays can be improved by using certain circuit techniques.

The LED drive circuit shown in Figure 11 uses current-peaking
to reduce the typical rise/fall times of the LED and a small pre-bias voltage to minimize propagation delay differences that cause pulse-width distortion. The circuit will typically produce rise/fall times of 3 ns , and a total jitter including pulse-width distortion of less than 2 ns . This circuit is recommended for applications requiring low edge jitter or high-speed data transmission at
signal rates of up to 125 MBd . Component values for this circuit can be calculated for different LED drive currents using the equations shown below.

For additional details about LED drive circuits, the reader is encouraged to read HewlettPackard Application Bulletin 78 and Application Note 1038.
$\mathrm{R}_{\mathrm{y}}(\Omega)=\frac{\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{F}}\right)+3.97\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{F}}-1.6 \mathrm{~V}\right)}{\mathrm{I}_{\mathrm{F}_{\mathrm{ON}}}(\mathrm{A})}$
$\mathrm{R}_{\mathrm{x}_{1}}(\Omega)=\frac{1}{2}\left(\frac{\mathrm{R}_{\mathrm{y}}}{3.97}\right)$
$\mathrm{R}_{\mathrm{Eq}}(\Omega)=\mathrm{R}_{\mathrm{x}_{1}}-1$
$R_{x_{2}}=R_{x_{3}}=R_{x_{4}}=3\left(R_{E Q_{2}}\right)$
$\mathrm{C}(\mathrm{pF})=\frac{2000(\mathrm{ps})}{\mathrm{R}_{\mathrm{x}_{1}}(\Omega)}$
Example for $\mathrm{I}_{\mathrm{F}_{\mathrm{ON}}}=100 \mathrm{~mA}$: V_{F} can be obtained from Figure $9{ }^{(=1.84 ~ V)}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{y}}=\frac{(5-1.84)+3.97(5-1.79-1.6)}{0.100} \\
& \mathrm{R}_{\mathrm{y}}=\frac{3.16+6.39}{0.100}=95.5 \Omega \\
& \mathrm{R}_{\mathrm{x}_{1}}=\frac{1}{2}\left(\frac{\mathrm{R}_{\mathrm{y}}}{3.97}\right)=12.0 \Omega \\
& \mathrm{R}_{\mathrm{EQ}_{2}}=12.0-1=11.0 \Omega \\
& \mathrm{R}_{\mathrm{x}_{2}}=\mathrm{R}_{\mathrm{x}_{3}}=\mathrm{R}_{\mathrm{x}_{4}}=3(11.0)=33.0 \Omega \\
& \mathrm{C}=\frac{2,000 \mathrm{pS}}{12.0 \Omega}=167 \mathrm{pF}
\end{aligned}
$$

Figure 9. Forward Voltage and Current Characteristics.

Figure 11. Recommended Drive Circuit.

Figure 10. Normalized Transmitter Output vs. Forward Current.

Figure 12. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$.

Figure 13. Test Circuit for Measuring $\mathbf{t}_{\mathbf{r}}, \mathrm{t}_{\mathrm{f}}$.

5 MBd Low Cost Fiber Optic Receiver

Technical Data

Description

The HFBR-24X2 fiber optic receiver is designed to operate with the Hewlett-Packard HFBR-14XX fiber optic transmitter and $50 / 125 \mu \mathrm{~m}$, $62.5 / 125 \mu \mathrm{~m}$, and $100 / 140 \mu \mathrm{~m}$ fiber optic cable. Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size.

The HFBR-24X2 receiver incorporates an integrated photo IC containing a photodetector and dc amplifier driving an open-collector Schottky output transistor. The HFBR-24X2 is designed for direct interfacing to popular
logic families. The absence of an internal pull-up resistor allows the open-collector output to be used with logic families such as CMOS requiring voltage excursions much higher than V_{Cc}.

Both the open-collector "Data" output Pin 6 and $V_{C C} \operatorname{Pin} 2$ are referenced to "Com" Pin 3, 7. The "Data" output allows busing, strobing and wired "OR" circuit configurations. The transmitter is designed to operate from a single +5 V supply. It is essential that a bypass capacitor ($0.1 \mu \mathrm{~F}$ ceramic) be connected from Pin $2\left(\mathrm{~V}_{\mathrm{Cc}}\right)$ to Pin 3 (circuit common) of the receiver.

CAUTION: The small junction sizes inherent to the design of this component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

HFBR-24X2 Series

Housed Product

вотtOM VIEW
_ PIN 1 INDICATOR

PIN	FUNCTION
$1+$	N.C.
2	V.CC (5 V)
3^{\cdot}	COMMON
$4 \dagger$	N.C.
$5 \dagger$	N.C.
6	DATA
7^{*}	COMMON
$8 \dagger$	N.C.

*PINS 3 AND 7 ARE ELECTRICALLY
CONNECTED TO HEADER
tPINS 1, 4, 5, AND 8 ARE ELECTRICALLY CONNECTED

Unhoused Product

PIN	FUNCTION
1	V $_{\text {CC }}(5 \mathrm{~V}$)
2	COMMON
3	DATA
4	COMMON

BOTTOM VIEW

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference
Storage Temperature	$\mathrm{T}_{\mathbf{s}}$	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$
Supply Voltage	Time			10	sec
Note 1					
Output Current	V_{cc}	-0.5	7.0	V	
Output Voltage	I_{O}		25	mA	
Output Collector Power Dissipation	V_{o}	-0.5	18.0	V	
Fan Out (TTL)	$\mathrm{P}_{\mathrm{OAV}}$		40	mW	

Electrical / Optical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified;
Fiber sizes with core diameter $\leq 100 \mu \mathrm{~m}$ and $\mathrm{NA} \leq 0.35,4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

Parameter	Symbol	Min.	Typ. ${ }^{[3]}$	Max.	Units	Conditions	Reference
High Level Output Current	I_{OH}		5	250	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=18 \mathrm{~V}$ $\mathrm{P}_{\mathrm{R}}<-40 \mathrm{dBm}$	
Low Level Output Voltage	V_{OL}		0.4	0.5	V	$\mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$ $\mathrm{P}_{\mathrm{R}}>-24 \mathrm{dBm}$	
High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}$		3.5	6.3	mA	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}$ $\mathrm{P}_{\mathrm{R}}<-40 \mathrm{dBm}$	
Low Level Supply Current	$\mathrm{I}_{\mathrm{CCL}}$		6.2	10	mA	$\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}$ $\mathrm{P}_{\mathrm{R}}>-24 \mathrm{dBm}$	
Equivalent N.A.	NA		0.50				
Optical Port Diameter	D_{R}		400		$\mu \mathrm{~m}$		Note 4

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified; $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.25 \mathrm{~V}$; BER $\leq 10^{-9}$

Parameter	Symbol	Min.	Typ. ${ }^{[3]}$	Max.	Units	Conditions	Reference
Peak Input Power Level Logic HIGH	$\mathrm{P}_{\text {RH }}$			$\begin{gathered} -40 \\ 0.1 \end{gathered}$	dBm $\mu \mathrm{W}$	$\lambda_{\mathrm{P}}=820 \mathrm{~nm}$	Note 5
Peak Input Power Level Logic LOW	P_{RL}	-25.4		-9.2	dBm	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	Note 5
		2.9		120	$\mu \mathrm{W}$		
		-24.0		-10.0	dBm	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	
		4.0		100	$\mu \mathrm{W}$		
Propagation Delay LOW to HIGH	$\mathrm{t}_{\text {PLHR }}$		65		nsec	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{P}_{\mathrm{R}}=-21 \mathrm{dBm}, \\ & \text { Data Rate }= \\ & 5 \text { MBd } \end{aligned}$	Note 6
Propagation Delay HIGH to LOW	$\mathrm{t}_{\text {PHLR }}$		49		nsec		

Notes:

1. 2.0 mm from where leads enter case.
$2.8 \mathrm{~mA} \operatorname{load}(5 \times 1.6 \mathrm{~mA}), \mathrm{R}_{\mathrm{L}}=560 \Omega$.
2. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{Vdc}$.
3. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
4. Measured at the end of $100 / 140 \mu \mathrm{~m}$ fiber optic cable with large area detector.
5. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials between delays imposed on falling and rising edges.
As the cable length is increased, the propagation delays increase at 5 ns per metre of length. Data rate, as limited by pulse width distortion, is not affected by increasing cable length if the optical power level at the receiver is maintained.

25 MHz Low Cost Fiber Optic Receiver

Technical Data

Description

The HFBR-24X4 fiber optic receiver is designed to operate with the Hewlett-Packard HFBR-14XX fiber optic transmitters and $50 / 125 \mu \mathrm{~m}$, $62.5 / 125 \mu \mathrm{~m}$, and $100 / 140 \mu \mathrm{~m}$ fiber optic cable. Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size.

The receiver output is an analog signal that can be optimized for a variety of distance/data rate requirements. Low-cost external components can be used to convert the analog output to logic compatible signal levels for various data formats and data rates up to 35 MBaud. This distance/data rate tradeoff results in increased optical power budget at lower data rates which can be used for additional distance or splices.

The HFBR-24X4 receiver contains a PIN photodiode and
low noise transimpedance preamplifier integrated circuit with an inverting output (see note 3). The HFBR-24X4 receives an optical signal and converts it to an analog voltage. The output is a buffered emitter-follower. Because the signal amplitude from the HFBR-24X4 receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates. A receiver dynamic range of 15 dB over temperature is achievable (assuming $10^{-9} \mathrm{BER}$). For very noisy environments, the conductive port option is recommended.

The frequency response is typically dc to 25 MHz . Although the HFBR-24X4 is an analog receiver, it is easily made compatible with digital systems. Please refer to Application Bulletin 73 for simple and inexpensive circuits that operate up to 35 MBd .

HFBR-24X4 Series

Housed Product

вотtом VIEW

PIN	FUNCTION
$1+$	N.C.
2	SIGNAL
$3 \cdot$	COMMON
$4+$	N.C.
$5+$	N.C.
6	VCC $(5 \mathrm{~V})$
7^{*}	COMMON
$8+$	N.C.

- PINS 3 AND 7 ARE ELECTRICALLY CONNECTED TO HEADER +PINS 1, 4, 5, AND 8 ARE ELECTRICALLY CONNECTED

Unhoused Product

Simplified Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference	
Storage Temperature	T_{S}	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 1
Signal Pin Voltage	Time			10	sec	
Supply Voltage						$\mathrm{V}_{\text {SIGNAL }}$

Electrical /Optical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cC}} \leq 5.25 \mathrm{~V} ; \mathrm{R}_{\mathrm{LOAD}}=511 \Omega$; Fiber sizes with core diameter $\leq 100 \mu \mathrm{~m}$, and N.A. ≤ 0.35 unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{[5]}$	Max.	Units	Conditions	Reference
Responsivity	R_{P}	5.1	7	10.9	$\mathrm{mV} / \mu \mathrm{W}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { @ } 820 \mathrm{~nm} \end{aligned}$	Figure 14
		4.6		12.3	$\mathrm{mV} / \mu \mathrm{W}$		
RMS Output Noise Voltage	$\mathrm{V}_{\text {No }}$		0.30	0.36	mV	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$	Figure 15
				0.43	mV	$\mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$	
Equivalent Optical Noise Input Power (RMS)	P_{N}		-43.7	-40.3	dBm		
			0.042	0.094	$\mu \mathrm{W}$		
Feak Input Power	P_{R}			-12.6	d Bm	$\overline{\mathrm{T}}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Note 2
				55	$\mu \mathrm{W}$		
				-14	dBm		
				40	$\mu \mathrm{W}$		
Output Impedance	Z_{o}		20		Ω	Test Frequency = $20 \mathrm{MHz}$	
DC Output Voltage	$\mathrm{V}_{\text {ode }}$		0.7		V	$\mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$	Note 3
Power Supply Current	I_{cc}		3.4	6.0	mA	$\mathrm{R}_{\text {LOAD }}=\infty$	
Equivalent N.A.	NA		0.35				
Equivalent Diameter	D_{R}		250		$\mu \mathrm{m}$		Note 4

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.25 \mathrm{~V} ; \mathrm{R}_{\mathrm{LOAD}}=511 \Omega, \mathrm{C}_{\text {LOAD }}=13 \mathrm{pF}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ..$^{[5]}$	Max.	Units	Conditions	Reference
Rise/Fall Time, 10% to 90%	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		14	19.5	ns	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{P}_{\mathrm{R}}=10 \mu \mathrm{~W}$ Peak	Note 6
Pulse Width Distortion	$\mathrm{t}_{\mathrm{phl}}-\mathrm{t}_{\mathrm{plh}}$			2	ns	$\mathrm{P}_{\mathrm{R}}=40 \mu \mathrm{~W}$ Peak	
			26	ns			
Overshoot			10		$\%$	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Note 7
Bandwidth (Electrical)	BW_{e}		25		MHz	-3 dB Electrical	
Power Supply Rejection Ratio (Referred to Output)	PSRR		50		dB	at 1 MHz	Figure 16 Note 8
Bandwidth - Rise Time Product			0.35		$\mathrm{~Hz} \cdot \mathrm{~s}$		

Notes:

1. 2.0 mm from where leads enter case.
2. If $P_{R}>40 \mu \mathrm{~W}$, then pulse width distortion may increase. At $P_{i n}=80 \mu \mathrm{~W}$ and $T_{A}=85^{\circ} \mathrm{C}$, some units have exhibited as much as 100 ns pulse width distortion.
3. $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{ODC}}-\left(\mathrm{R}_{\mathrm{P}} \times \mathrm{P}_{\mathrm{R}}\right)$.
4. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
5. Typical specifications are for operation at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$.
6. Input optical signal is assumed to have $10 \%-90 \%$ rise and fall times of less than 6 ns .
7. Percent overshoot is defined as: $\left(\frac{\mathrm{V}_{\mathrm{PK}}-\mathrm{V}_{100 \%}}{\mathrm{~V}_{100 \%}}\right) \times 100 \%$.
8. Output referred P.S.R.R. is defined as $20 \log \left(\frac{V_{\text {POWERBUPPLYRIPPLE }}}{V_{\text {OUTRIPPLE }}}\right)$.

Figure 14. Receiver Spectral Response Normalized to $\mathbf{8 2 0} \mathbf{n m}$.

f- FREQUENCY - MHz
Figure 15. Receiver Noise Spectral Density.

Figure 16. Receiver Power Supply Rejection vs. Frequency.

125 MHz Low Cost Fiber Optic Receiver

Technical Data

Description

The HFBR-24X6 fiber optic receiver is designed to operate with the Hewlett-Packard HFBR-14XX fiber optic transmitters and $50 / 125 \mu \mathrm{~m}$, $62.5 / 125 \mu \mathrm{~m}$, and $100 / 140 \mu \mathrm{~m}$ fiber optic cable. Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size for core diameters of $100 \mu \mathrm{~m}$ or less.

The receiver output is an analog signal which allows follow-on circuitry to be optimized for a variety of distance/data rate requirements. Low-cost external components can be used to convert the analog output to logic compatible signal levels for various data formats and data rates up to 150 MBd . This distance/data rate tradeoff results in increased optical power budget at lower data rates which can be used for additional distance or splices.

HFBR-24X6 Series

The HFBR-24X6 receiver contains a PIN photodiode and low noise transimpedance preamplifier integrated circuit. The HFBR-24X6 receives an optical signal and converts it to an analog voltage. The output is a buffered emitter-follower. Because the signal amplitude from the HFBR-24X6 receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates. For very noisy environments, the conductive port option is recommended. A receiver dynamic range of 23 dB over temperature is achievable (assuming $10^{-9} \mathrm{BER}$). Because the maximum receiver input power is 6 dB larger and the noise is 2 dB lower over temperature than HP's HFBR24 X 425 MHz receiver, the HFBR-24X6 is well suited for more demanding link designs that require wide receiver dynamic range.

[^32]The frequency response is typically dc to 125 MHz . Although the HFBR-24X6 is an analog receiver, it is easily made compatible with digital systems. Please refer to Application Bulletin 78 for simple and inexpensive circuits that operate up to 150 MBd .

The recommended ac coupled receiver circuit is shown in Figure 17. It is essential that a 10 ohm resistor be connected between V_{EE} and the power supply, and a $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor be connected between the power supply and ground.

Simplified Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference
Storage Temperature	T_{s}	-55	+85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$
Note 1					
	Time			10	sec
Supply Voltage	$\mathrm{V}_{\text {SIGNAL }}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V	
Output Current	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	-0.5	6.0	V	

Electrical / Optical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ;-5.45 \mathrm{~V} \leq$ Supply Voltage $\leq-4.75 \mathrm{~V}$, $R_{\text {LOAD }}=511 \Omega$, Fiber sizes with core diameter $\leq 100 \mu \mathrm{~m}$, and N.A. ≤ 0.35 unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Units	Conditions	Reference
Responsivity	R_{P}	5.3	7	9.6	$\mathrm{mV} / \mu \mathrm{W}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (1) } 820 \mathrm{~nm}, 50 \mathrm{MHz} \end{aligned}$	Note 3, 4
		4.5		11.5	$\mathrm{mV} / \mu \mathrm{W}$	© $820 \mathrm{~nm}, 50 \mathrm{MHz}$	
RMS Output Noise Voltage	$\mathrm{V}_{\text {No }}$		0.40	0.59	mV	Bandwidth Filtered @ 75 MHz $\mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$	Note 5
				0.70	mV	Unfiltered Bandwidth $P_{R}=0 \mu W$	Figure 18
Equivalent Optical Noise Input Power (RMS)	P_{N}		-43.0	-41.4	dBm	Bandwidth Filtered © 75 MHz	
			0.050	0.065	$\mu \mathrm{W}$		
Peak Input Power	P_{R}			-7.6	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Figure 19 Note 6
				175	$\mu \mathrm{W}$		
				-8.2	dBm		
				150	$\mu \mathrm{W}$		
Output Impedance	$\mathrm{Z}_{\text {o }}$		30		Ω	Test Frequency $=$ 50 MHz	
DC Output Voltage	$\mathrm{V}_{\text {ode }}$	-4.2	-3.1	-2.4	V	$\mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$	
Power Supply Current	I_{EE}		9	15	mA	$\mathrm{R}_{\text {LOAD }}=\infty$	
Equivalent N.A.	NA		0.35				
Equivalent Diameter	$\mathrm{D}_{\text {R }}$		324		$\mu \mathrm{m}$		Note 7

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ;-5.45 \mathrm{~V} \leq$ Supply Voltage $\leq-4.75 \mathrm{~V} ; \mathrm{R}_{\mathrm{LOAD}}=511 \Omega$, $\mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{[8]}$	Max.	Units	Conditions	Reference
Rise/Fall Time 10% to 90%	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		3.3	6.3	ns	$\mathrm{P}_{\mathrm{R}}=100 \mu \mathrm{~W}$	Figure 20
Pulse Width Distortion	PWD		0.4	2.5	ns	$\mathrm{P}_{\mathrm{R}}=150 \mu \mathrm{~W}$ Peak	Note 8, Figure 19
Overshoot			2		\%	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=5 \mu \mathrm{~W} \text { Peak, } \\ & \mathrm{t}_{\mathrm{r}_{\text {qutioel }}}=1.5 \mathrm{~ns} \end{aligned}$	Note 9
Bandwidth (Electrical)	BW_{e}		125		MHz	-3 dB Electrical	
Power Supply Rejection Ratio	PSRR		20		dB	(B) 10 MHz	Note 10
Bandwidth - Rise Time Product			0.41		$\mathrm{Hz} \cdot \mathrm{s}$		Note 11

Notes:

1. 2.0 mm from where leads enter case.
2. Typical specifications are for operation at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}$.
3. For $200 \mu \mathrm{~m}$ PCS fibers, typical responsivity will be $6 \mathrm{mV} / \mu \mathrm{W}$. Other parameters will change as well.
4. Pin \#2 should be ac coupled to a 511 ohm load. Load capacitance must be less than 5 pF .
5. Measured with a 3 pole Bessel filter with a $75 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth. Recommended receiver filters for various bandwidths are provided in Application Bulletin 78.
6. Overdrive is defined at $P W D=2.5 \mathrm{~ns}$.
7. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
8. Measured with a 10 ns pulse width, 50% duty cycle, at the 50% amplitude point of the waveform.
9. Percent overshoot is defined as: $\left(\frac{\mathrm{V}_{\mathrm{PK}}-\mathrm{V}_{100 \%}}{\mathrm{~V}_{100 \%}}\right) \times 100 \%$.
10. Output referred P.S.R.R. is defined as $20 \log \left(\frac{\mathrm{~V}_{\text {POWER SUPPLY RIPPLE }}}{\mathrm{V}_{\text {out RIPPLE }}}\right)$
11. The conversion factor for the rise time to bandwidth is 0.41 since the HFBR-24X6 has a second order bandwidth limiting characteristic.

Figure 17. Recommended ac Coupled Receiver Circuit (See AB 78 and AN 1038 for More Information)

Figure 19. Typical Pulse Width
Distortion vs. Peak Input Power

Figure 18. Typical Spectral Noise Density vs. Frequency

Figure 20. Typical Rise and Fall Times vs. Temperature

Conductive Port Option for Low Cost Miniature Link Components

Technical Data

OPTION C

Features

- Withstands Electro-static Discharge (ESD) of 25 kV to the Port
- Significantly Decreases Effect of Electro-magnetic Interference (EMI) on Receiver Sensitivity
- Available with Both SMA and Threaded ST Styled Port Receivers
- Allows the Designer to Separate the Signal and Conductive Port Grounds

Description

The conductive port option for the Low Cost Miniature Link component family consists of a grounding path from the conductive port to four grounding pins as shown in the package outline drawing. Signal ground is separate from the four grounding pins to give the designer more flexibility. This option is available with all SMA and ST panel mount styled port receivers. Electrical/optical performance of the receivers is not affected by the conductive port. Refer to the HFBR-0400 data sheets for more information.

Applications

HP recommends that the designer use separate ground paths for the signal ground and the conductive port ground in order to minimize the effects of coupled noise on the receiver circuitry. If the designer notices that extreme noise is present on the system chassis, care should be taken to electrically isolate the conductive port from the chassis.

In the case of ESD, the conductive port option does not alleviate the need for system recovery procedures. This option ensures

Package Outline

that a 25 kV ESD event entering through the connector port will not cause catastrophic failure, but does not guarantee errorfree performance.

Pin	Function
1	Port Ground Pin
2	Part Dependent
3	Part Dependent
4	Port Ground Pin
5	Port Ground Pin
6	Part Dependent
7	Part Dependent
8	Port Ground Pin

Reliability Information

Low Cost Miniature Link components with the Conductive Port Option are as reliable as standard HFBR-0400 components. The following tests were performed to verify the mechanical reliability of this option.

Ordering Information

To order the Conductive Port Option with a particular receiver component, place a "C" after the base part number. For example, to order an HFBR2406 with this option, order an HFBR-2406C. As another example, to order an HFBR2416 T with this option, order an HFBR-2416TC.

This option is available with the following part numbers:

HFBR-2402
HFBR-2404
HFBR-2406
HFBR-2412T HFBR-2452
HFBR-2414T HFBR-2454
HFBR-2416T HFBR-2456
$\begin{array}{ll}\text { HFBR-2432 } & \text { HFBR-2462T } \\ \text { HFBR-2434 } & \text { HFBR-2464T }\end{array}$
HFBR-2436 HFBR-2466T

Mechanical and Environmental Tests ${ }^{[1]}$

Test	MIL-STD-883/ Other Reference	Test Conditions	Units Tested	Total Failed
Temperature Cycling	1010 Condition B	$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ 15 min . dwell/ $/ 5 \mathrm{~min}$. transfer 100 cycles	70	0
Thermal Shock	1011 Condition B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 5 min . dwell/ 10 sec . transfer 500 cycles	45	0
High Temp. Storage	$\begin{gathered} 1008 \\ \text { Condition B } \\ \hline \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	50	0
Mechanical Shock	2002 Condition B	$\begin{aligned} & 1500 \mathrm{~g} / 0.5 \mathrm{~ms} \\ & 5 \text { impacts each axis } \end{aligned}$	40	0
Port ${ }^{[2]}$ Strength	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$6 \mathrm{Kg}-\mathrm{cm}$ no port damage	20	0
Seal Dye Penetrant (Zyglo)	1014 Condition D	45 psi, 10 Hours No leakage into microelectronic cavity	15	0
Solderability	2003	$245^{\circ} \mathrm{C}$	10	0
Resistance to Solvents	2015	3 one min. immersion brush after solvent	13	0
Chemical Resistance	-	5 minutes in Acetone, Methanol, Boiling Water	12	0
Temperature-Humidity	-	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{RH}=85 \% \\ & \text { Biased, } 500 \text { hours } \end{aligned}$	30	0
Lead Integrity	$\begin{gathered} 2004 \\ \text { Condition B2 } \end{gathered}$	8 Oz . Wt. to each lead tested for three 90° arcs of the case	16	0

Notes:

1. Tests were performed on both SMA and ST products with the conductive port option.
2. The Port Strength test was designed to address the concerns with hand tightening the SMA connector to the fiber optic port. The limit is set to a level beyond most reasonable hand fastening loading.

Threaded ST Port Option for Low Cost Miniature Link Components

Technical Data

Features

- Threading Allows ST Styled Port Components to be Panel Mounted
- Compatible with all Current Makes of ST Multimode Connectors
- Mechanical Dimensions are Compliant with MIL-STD-83522/13

Description

Low Cost Miniature Link components with the Threaded ST Port Option come with 0.2 inch (5.1 mm) of $3 / 8-32$ UNEF2A threads on the port. This option is available with all HFBR-0400, ST styled port components. Components with this option retain the same superior electrical/optical and mechanical performance as that of the base HFBR-0400 components. Refer to the HFBR-0400 data sheets for more information on electrical/optical performance and the HFBR-0400 Reliability data sheet for more information on mechanical durability.

OPTION T

(Recommended for New Designs)

Package Outline

Housed Product

Panel Mounting

Low Cost Miniature Link components with the Threaded ST Port Option are suitable for panel mounting to chasis walls. The maximum wall thickness possible when using nuts and washers from the HFBR-4411 kit is 0.11 inch $(2.8 \mathrm{~mm})$.

Package Outline

Port Product

NOTE: ALL DIMENSIONS IN MILLIMETRES AND (INCHES)

Ordering Information

To order the Threaded ST Port Option with a particular component, place a " T " after the base part number. For example, to order an HFBR-2416 with this option, order an HFBR-2416T.

This option is available with the following part numbers:

HFBR-1412 HFBR-2416
HFBR-1414 HFBR-2442
HFBR-1442 HFBR-2444
HFBR-1444 HFBR-2446
HFBR-1462 HFBR-2462
HFBR-1464 HFBR-2464
HFBR-2412 HFBR-2466
HFBR-2414

NOTE: ALL DIMENSIONS IN MILLIMETRES AND (INCHES)

Figure 2. Recommended Cut-out for Panel Mounting.

NOTE: ALL DIMENSIONS IN MILLIMETRES AND (INCHES) INTERNAL TOOTH LOCK WASHER

Glass Fiber-Optic Cable/ Connector Assemblies

Technical Data

Features

- Choice of ST or SMA Connectors
- Connectors Factory Installed and Tested
- Choice of $50 / 125 \mu \mathrm{~m}, 62.5 /$ $125 \mu \mathrm{~m}$ or $100 / 140 \mu \mathrm{~m}$ Fiber
- Tight Jacket Construction
- UL Recognized, Meets OFNR Listing (UL 1666)
- Parameters Optimized for Data Communication Applications

Description

HP connectored cable assemblies are available in various industry standard sizes and styles. The designer may choose among $50 / 125 \mu \mathrm{~m}$, $62.5 / 125 \mu \mathrm{~m}$ and $100 / 140 \mu \mathrm{~m}$ cable and ST and SMA connectors ($50 / 125 \mu \mathrm{~m}$ is available with only ST connectors in one- and tenmetre lengths). These cable assemblies have been specified for use with HP's 820 nm and 1300 nm fiber-optic transmitters and receivers and are ideal for various data communication applications.

Each cable assembly has been factory assembled and 100% tested according to industrystandard procedures. Therefore, designers can be assured that they are receiving the highest possible quality cable assemblies for their prototyping, testing or production needs.

Ordering Information ${ }^{[1]}$

-

B - 62.5/125 $\mu \mathrm{m}$
C $-50 / 125 \mu \mathrm{~m}^{*}$

Connector Code
U - unconnectored
W - SMA connector
X - ST connector

[^33]
Order Examples

HFBR-AWS050, quantity 1: one 50 m simplex, $100 / 140 \mu \mathrm{~m}$ cable assembly with SMA connectors

HFBR-BXD2K0, quantity 2: two 2 km duplex, $62.5 / 125 \mu \mathrm{~m}$ cable assemblies with ST connectors

HFBR-BUS1K5, quantity 3: three 1.5 km simplex, $62.5 / 125$ $\mu \mathrm{m}$ unconnectored cables

Cable Length Tolerances

Cable Length (metres)	Tolerance
$1-10$	$+10 /-0 \%$
$11-100$	$+1 /-0$ metre
>100	$+1 /-0 \%$

Cable Information

Temperature Ratings

Parameter	Min.	Max.	Unit
Storage Temperature	-40	+70	${ }^{\circ} \mathrm{C}$
Operating Temperature	-20	+70	${ }^{\circ} \mathrm{C}$

Mechanical Specifications ($25^{\circ} \mathbf{C}$)

Parameter	Single Channel	Dual Channel	Unit	Conditions	Note
Maximum Tensile Load Short Term	500	1000	N		
Long Term	300	500	N		2
Minimum Bend Radius Short Term	5.0	5.0	cm	500 N Tensile Load	
Long Term	3.0	3.0	cm	300 N Tensile Load	
Crush Resistance	750	750	$\mathrm{~N} / \mathrm{cm}$	EIA-455-41	
Impact Resistance	1000	1000	cycles	EIA-455-25 @ 1.6 N-m	
Flex Resistance	7500	7500	cycles	EIA-455-104	
Maximum Vertical Rise	1000	1000	m		

Mechanical Dimensions

	$\mathbf{5 0 / 1 2 5} \mu \mathrm{m}$	$\mathbf{6 2 . 5 / 1 2 5} \mu \mathrm{m}$	$\mathbf{1 0 0 / 1 4 0} \mu \mathrm{m}$
Core Diameter $(\mu \mathrm{m})$	50	62.5	100
Cladding Diameter $(\mu \mathrm{m})$	125	125	140
Buffer Diameter $(\mu \mathrm{m})$	900	900	900
Cable Outside Diameter (mm) Single Channel	2.9		
Dual Channel	2.9×5.8	2.9	2.9

Optical Specifications ($850 \mathrm{~nm} / \mathbf{1 3 0 0} \mathbf{n m}$)

	$\mathbf{5 0 / 1 2 5} \mu \mathrm{m}$	$\mathbf{6 2 . 5 / 1 2 5} \mu \mathrm{m}$	$\mathbf{1 0 0 / 1 4 0} \mu \mathrm{m}$	Conditions
Maximum Attenuation (dB/km)	$5.0 / 4.0$	$5.0 / 3.0$	$6.0 / 5.0$	EIA-455-46
Typical Attenuation (dB/km)	$4.0 / 2.0$	$4.5 / 2.0$	$5.5 / 3.5$	
Minimum Modal Bandwidth (MHz-km)	$400 / 400$	$160 / 200$	$100 / 100$	EIA-455-30
Typical 3dB Optical Bandwidth- Length Product (MHz-km)	$41 / 250$	$40 / 180$	$38 / 95$	
Numerical Aperture	0.20	0.275	0.29	EIA-455-47 method A,B,C

Figure 1. Cable Construction Diagram.

Connector/Mating Adapter Information

Ordering Information

Part Number	Description	Reference
HFBR-4001	$100 / 140 \mu \mathrm{~m}$ SMA style piece part connector	Note 4, Fig. 2
HFBR-4002	$62.5 / 125 \mu \mathrm{~m}$ SMA style piece part connector	Note 4, Fig. 2
HFBR-4003	$100 / 140 \mu \mathrm{~m}$ ST style piece part connector	Note 4, Fig. 3
HFBR-4004	$62.5 / 125 \mu \mathrm{~m}$ ST style piece part connector	Note 4, Fig. 3
HFBR-4409	SMA style mating adapter (nuts/washers incl.)	Fig. 4
HFBR-4419	ST style mating adapter (nut/washer incl.)	Fig. 5

Mating Adapter Mechanical/Optical Specifications

	Max.	Units	Conditions	Note
SMA Mating Adapter				
Fixed Loss $\left(\alpha_{\mathrm{F}}\right)$	2	dB	$50 / 125 \mu \mathrm{~m}$ fiber	5
	2	dB	$62.5 / 125 \mu \mathrm{~m}$ fiber	5
	2	dB	$100 / 140 \mu \mathrm{~m}$ fiber	5
ST Mating Adapter				
Fixed Loss $\left(\alpha_{\mathrm{F}}\right)$	1	dB	$50 / 125 \mu \mathrm{~m}$ fiber	5
	1	dB	$62.5 / 125 \mu \mathrm{~m}$ fiber	5
	1	dB	$100 / 140 \mu \mathrm{~m}$ fiber	5

Mechanical Dimensions ${ }^{[6]}$

Figure 2. HFBR-4001 and HFBR-4002 SMA Style Connector.

Figure 4. HFBR-4409 SMA Style Mating Adapter.

Figure 3. HFBR-4003 and HFBR-4004 ST Style Connector.

Figure 5. HFBR-4419 ST Style Mating Adapter.

Notes:

1. HP is in the process of obsoleting the following part numbers and does not recommend their use for new designs: HFBR-AHDxxx and HFBRAHSxxx cable assemblies, the HFBR-4000 connector, the HFBR3099 mating adapter, and HFBR0100/0101/0102 connectoring kits. Please contact your local HP components representative for more information.
2. Short term is ≤ 6 hours.
3. Calculations are based on worst case parameters of HP 820 nm and 1300 nm optical components.
4. Recommended connectoring kit: OFTI 400 Series Field Installation Kit.
5. Fixed losses (length independent) apply only to the use of mating adapters in link design calculations. Fixed losses at transmitter/receiver interfaces are included in HP transmitter/receiver optical specifications.
6. Dimensions in millimetres (inches).
SNAP-IN FIBER OPTIC LINKS TRANSMITTERS, RECEIVERS, CABLE AND CONNECTORS

HFBR-0500 SERIES

Features

- GUARANTEED LINK PERFORMANCE OVER TEMPERATURE
High Speed Links: dc to 5 MBd
Extended Distance Links up to 82 m
Low Current Links: 6 mA Peak Supply Current for an 8 m Link
Photo Interrupters
- LOW COST PLASTIC DUAL-IN-LINE PACKAGE
- EASY FIELD CONNECTORING
- EASY TO USE RECEIVERS:

Logic Compatible Output Level
Single +5 V Receiver Power Supply
High Noise Immunity

- LOW LOSS PLASTIC CABLE:

Selected Super Low Loss Simplex Cable
Simplex and Zip Cord Style Duplex Cable

Applications

- HIGH VOLTAGE ISOLATION
- SECURE DATA COMMUNICATIONS
- REMOTE PHOTO INTERRUPTER
- LOW CURRENT LINKS
- INTER/INTRA-SYSTEM LINKS
- STATIC PROTECTION
- EMC REGULATED SYSTEMS (FCC, VDE)

Description

The HFBR-0500 series is a complete family of fiber optic link components for configuring low-cost control, data transmission, and photo interrupter links. These components are designed to mate with plastic snap-in connectors and low-cost plastic cable.* Link design is simplified by the logic compatible receivers and the ease of connectoring the plastic fiber cable. The key parameters of links configured with the HFBR-0500 family are fully guaranteed.

* Cable is available in standard low loss and selected super low loss varieties.

Link Selection Guide

GUARANTEED LINKS

	Data Rate	Guaranteed Link Length$0-70^{\circ} \mathrm{C}$		Typical Link Lengths $25^{\circ} \mathrm{C}$		Transmitter	Receiver	Page
		Standard Cable	Improved Cable	Standard Cable	Improved Cable			
5 MBd Link	5 MBd	12	17	35 m	40 m	HFBR-1510	HFBR-2501	5-74
1 MBd Link	1 MBd	24	34	50 m	65 m	HFBR-1502	HFBR-2502	5-76
Low Current Link	40 kBd	8	11	30 m	35 m	HFBR-1512	HFBR-2503	5-78
Extended Distance Link	40 kBd	60	82	100 m	125 m	HFBR-1512	HFBR-2503	5-78
Photo Interrupter	20 kHz	N/A	N/A	N/A	N/A	HFBR-1512	HFBR-2503	5-80
Link	500 kHz	N/A	N/A	N/A	N/A	HFBR-1502	HFBR-2502	5-80

Component Selection Guide

TRANSMITTERS

	Minimum Output Optical Power 0 to $70^{\circ} \mathrm{C}$	Peak Emission Wavelength	Page
HFBR-1510	$-16.5 \mathrm{dBm}$	665 nm	5-82
HFBR-1502	-13.6 dBm	665 nm	5-82
HFBR-1512	$-13.6 \mathrm{dBm}$	665 nm	5-82

RECEIVERS

	Sensitivity 0 to $70^{\circ} \mathrm{C}$	Data Rate	Page
HFBR-2501	-21.6 dBm	5 MBd	5-83
HFBR-2502	-24 dBm	1 MBd	5-83
HFBR-2503	-39 dBm	40 kBd	5-85

CABLES

Please refer to page 15 (of the Versatile Link Fiber Optics Data Sheet) for cable specifications.

CONNECTORS

Page 5-86
HFBR-4501 Gray Connector/Crimp Ring HFBR-4511 Blue Connector/Crimp Ring HFBR-4595 Polishing Kit
Polishing Fixture - Abrasive Paper
HFBR-4596 Polishing Fixture
Bulkhead Feedthrough/In-Line Splice HFBR-4505 Gray HFBR-4515 Blue

Mechanical Dimensions
Page 5-88

5 MBd Link

HFBR-1510 AND HFBR-2501

The dc to 5 MBd link is guaranteed over temperature to operate up to 17 m with a transmitter drive current of 60 mA . This link uses the 665 nm HFBR-1510 Transmitter, the

HFBR-2501 Receiver, and Plastic Cable. The receiver compatible with LSTTL/TTL/CMOS logic levels offers a choice of internal pull-up or open collector output.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Units	Ref.
Ambient Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current	$\mathrm{I}_{\mathrm{FPK}}$	10	750	mA	Note 1
Avg. Forward Current	$\mathrm{I}_{\mathrm{FAV}}$		60	mA	
Receiver Supply Voltage	V_{CC}	4.75	5.25	V	Note 2
Fan-Out (TTL)	N		5		

SYSTEM PERFORMANCE Using Standard Cable under recommended operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{\text {[5] }}$	Max.	Units	Conditions	Ref.
Data Rate		dc		5	MBd	BER $\leq 10-9$	
Transmission Distance Standard Cable	ℓ	$\begin{aligned} & 12 \\ & 17 \end{aligned}$	35		$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & I_{F P K}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{FPK}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$	
Transmission Distance Improved Cable		$\begin{aligned} & 17 \\ & 24 \end{aligned}$	40		$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & I_{F P K}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C} \\ & I_{F P K}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C} \end{aligned}$	
Propagation Delay	tpLH tphL	.	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	$\begin{aligned} & 140 \\ & 140 \\ & \hline \end{aligned}$	ns ns	$\begin{aligned} & R_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ & \mathrm{P}_{\mathrm{R}}=-21.6 \leq \mathrm{P}_{\mathrm{R}} \leq-9.5 \mathrm{dBm} \end{aligned}$	Fig. 4, 5 Note 3
Pulse Width Distortion	to		30		ns	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-15 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 4, 6 Note 4
EMI Immunity			8000		V/m	$\mathrm{BER} \leq 10^{-9}$	

Notes: 1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $I_{F A V} \leq 80 \mathrm{~mA}$. In addition, for $\mathrm{I}_{\mathrm{FPK}}>80 \mathrm{~mA}$, the following rules for pulse width apply: $I_{F P K} \leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms} \quad \mathrm{I}_{\text {FPK }}>160 \mathrm{~mA}$: Pulse width $\leq 1 \mu \mathrm{~S}$
2. It is essential that a bypass capacitor $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. The propagation delay of 1 m of cable (5 ns) is included.
4. $T_{D}=t_{P L H}-t_{P H L}$.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Link Design Considerations

The HFBR-1510/2501 Transmitter/Receiver pair is guaranteed for operation at data rates up to 5 MBd over link distances from 0 to 12 metres with standard cable and from 0 to 17 metres with improved cable. The value of transmitter drive current, I_{F}, depends on the link distance as shown in Figures 2 and 3. Note that there is an upper as well as a lower limit on the value of I_{F} for any given
distance. The dotted lines in Figures 2 and 3 represent pulsed operation. When operating in the pulsed mode, the conditions in Note 1 must be met. After selecting a value of the transmitter drive current I_{F}, the value of R_{1} in Figure 1 can be calculated as follows:

$$
R_{1}=\frac{V_{C C}-V_{F}}{I_{F}}
$$

Figure 1. Typical Circuit Operation ($\mathbf{5} \mathbf{M B d} \leq 12 \mathrm{~m}$)

Figure 2. Guaranteed System Performance with HFBR-1510 and HFBR-2501, Standard Cable

Figure 3. Guaranteed System Performance with HFBR-1510 and HFBR-2501, Improved Cable

Figure 4. A.C. Test Circuit

Figure 5. HFBR-1510/2501 Link Pulse Width Distortion vs. Optical Power

Figure 6. HFBR-1510/2501 Link Propagation Delay vs. Optical Power

1 MBd Link hfbr-1502 AND hfbr-2502

The dc to 1 MBd link is guaranteed over temperature to operate from 0 to 34 m with a transmitter drive current of 60 mA . This link uses the 665 nm HFBR-1502 Transmitter,
the HFBR-2502 Receiver, and Improved Cable. The receiver is compatible with LSTTL/TTL/CMOS logic levels and offers a choice of an internal pull-up or open collector output.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Units	Ref.
Ambient Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current	$\mathrm{I}_{\mathrm{FPK}}$	10	750	mA	Note 1
Avg. Forward Current	$\mathrm{I}_{\mathrm{FAV}}$		60	mA	
Receiver Supply Voltage	V_{CC}	4.75	5.25	V	Note 2
Fan-Out (TTL)	N		5		

SYSTEM PERFORMANCE Using Standard Cable under recommended operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{[5]}$	Max.	Units	Conditions	Ref.
Data Rate		dc		1	MBd	$\mathrm{BER} \leq 10^{-9}$	
Transmission Distance Standard Cable	ℓ	24			m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		30	50		m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Transmission Distance Improved Cable	ℓ	34			m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		41	65		m	IFPK $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Transmission Distance Standard Cable	$\bar{\chi}$	30				$!$ грк $=120 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		36	60			$\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Transmission Distance Improved Cable	ℓ	41				$\mathrm{I}_{\text {FPK }}=120 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		50	75			$\mathrm{IFPKK}=120 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
Propagation Delay	tpLH		180	250	ns	$\mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	Fig. 4, 5 Note 3
	tPHL		100	140	ns	$\mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm}$	
Pulse Width Distortion	to		80		ns	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=-24 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 4, 6 Note 4
EMI Immunity			8000		V/m	BER $\leq 10^{-9}$	

Notes: 1. For $I_{F P K}>80 \mathrm{~mA}$, the duty factor must be such as to keep $\mathrm{I}_{F A V} \leq 80 \mathrm{~mA}$. In addition, for $\mathrm{I}_{\mathrm{FPK}}>80 \mathrm{~mA}$, the following rules for pulse width apply: $\mathrm{I}_{\text {FPK }} \leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms} \quad \mathrm{I}_{\text {FPK }}>160 \mathrm{~mA}$: Pulse width $\leq 1 \mu \mathrm{~s}$
2. It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. The propagation delay of 1 m of cable (5 ns) is included.
4. $T_{D}=t_{P L H}-t_{P H L}$.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Link Design Considerations

The HFBR-1502/2502 Transmitter/Receiver pair is guaranteed for operation at data rates up to 1 MBd over link distances from 0 to 24 metres with standard cable and from 0 to 34 metres with improved cable. The value of transmitter drive current, I_{F}, depends on the link distance as shown in Figures 2 and 3. Note that there is a lower limit on the value of I_{F} for any given distance. The dotted lines in Figures 2 and 3 represent pulsed operation. When
operating in the pulsed mode, the conditions in Note 1 must be met. After selecting a value of the transmitter drive current I_{F}, the value of R_{1} in Figure 1 can be calculated as follows:

$$
R_{1}=\frac{V_{C C}-V_{F}-V_{O L}(75451)}{I_{F}}
$$

For the HFBR-1502/2502 pair, the value of the capacitor, C_{1} (Figure 1) must be chosen such that $R_{1} C_{1} \geq 75$ ns.

Figure 1. Typical Circuit Operation ($\mathbf{1} \mathbf{~ M B d} \leq \mathbf{2 4} \mathbf{~ m}$)

Figure 2. Guaranteed System Performance with HFBR-1502 and HFBR-2502, Standard Cable

Figure 3. Guaranteed System Performance with HFBR-1502 and HFBR-2502, Improved Cable

Figure 5. HFBR-1502/2502 Link Pulse Width Distortion vs. Optical Power

Figure 6. HFBR-1502/2502 Link Propagation Delay vs. Optical Power

Low Current/Extended Distance Link

HFBR-1512 AND HFBR-2503

The low current link requires only 6 mA peak supply current for the transmitter and receiver combined to achieve an 11 m link. Extended distances up to 82 m can be achieved at a maximum transmitter drive current of 60 mA peak. This link can be driven with TTL/LSTTL and most CMOS logic gates.

The black plastic housing of the HFBR-1512 Transmitter is designed to prevent the penetration of ambient light into the cable through the transmitter. This prevents the sensitive receiver from being triggered by ambient light pulses.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Units	Ref.
Ambient Temperature	TA $_{A}$	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current	IF PK	2	120	mA	Note 1
Avg. Forward Current	IF AV		60	mA	
Receiver Supply Voltage	VCC	4.5	5.5	V	
Output Voltage	VO		VCC	Note 2	
Fan-Out (TTL)	N		1	V	

SYSTEM PERFORMANCE Using Standard Cable under recommended operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{5]}$	Max.	Units	Conditions	Ref.
Data Rate		dc		40	kBd	tD $\leq 7.0 \mu \mathrm{~s}$	
Transmission Distance Standard Cable	ℓ	8	30		m	$\mathrm{I}_{\mathrm{FPK}}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		60	100		m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
Transmission Distance Improved Cable	ℓ	11	35		m	IFPK $=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
		82	125		m	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
Propagation Delay	tple		4		$\mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	Fig. 4, 5 Note 3
	tPHL		2.5		$\mu \mathrm{S}$	$\mathrm{P}_{\mathrm{R}}=-25 \mathrm{dBm}$	
Pulse Width Distortion	to			7.0	$\mu \mathrm{S}$	$\begin{aligned} & -39 \leq \mathrm{P}_{\mathrm{R}} \leq-14 \mathrm{dBm} \\ & \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$	Fig. 4, 6 Note 4
Bit Error Rate	BER		10-9			$\mathrm{P}_{\mathrm{R}}=-30 \mathrm{dBm}$	
EMI Immunity			5000		V / m	$\mathrm{P}_{\mathrm{R}}=0 \mathrm{~mW}$	

Notes:

1. For IFPK $>80 \mathrm{~mA}$, the duty factor must be such as to keep IFAV $\leq 80 \mathrm{~mA}$. In addition, if IFAV $>80 \mathrm{~mA}$, then the pulse width must be equal to or less than 1 ms .
2. It is recommended that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 3 to pin 4 of the receiver.
3. The propagation delay of 1 m of cable (5 ns) is included.
4. $\mathrm{t}_{\mathrm{D}}=$ tPLH - tphL. 5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$.

Link Design Considerations

The HFBR-1512/2503 Transmitter/Receiver pair is guaranteed for operation at data rates up to 40 kBd for transmitter drives as low as 2 mA . The value of transmitter drive current, IF, depends on the link distance as shown in Figures 2 and 3 . Note that there is an upper as well as a lower limit on

the value of I_{F} for any given distance. After selecting a value of the transmitter drive current IF, the value of R_{1} in Figure 1 can be calculated as follows:

Figure 1. Typical Circuit Operation (40 kBd)

Figure 2. Guaranteed System Performance with HFBR-1512 and HFBR-2503, Standard Cable

Figure 3. Guaranteed System Performance with HFBR-1512 and HFBR-2503, Improved Cable

Figure 4. A.C. Test Circuit

Figure 5. HFBR-1512/2503 Link Pulse Width Distortion vs. Optical Power

Figure 6. HFBR-1512/2503 Link Propagation Delay vs. Optical Power

Photo Interrupter Links

HFBR-1502/2502
HFBR-1512/2503

These links may be used in optical switches, shaft position sensors, and velocity sensors. They are particularly useful where high voltage, electrical noise, or explosive environments prohibit the use of electromechanical or optoelectronic sensors.

The HFBR-1512/2503 link (20 kHz) has an optical power budget of 24 dB , and the HFBR-1502/2502 link (500 kHz) budget is 10 dB . Total system losses (cable attenuation, airgap loss, etc) must not exceed the link optical power budget.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Min.	Max.	Units	Ref.
Ambient Temperature		TA	0	70	${ }^{\circ} \mathrm{C}$	
Transmitter Peak Forward Current		If PK	10	750	mA	Note 1
Avg. Forward Current		If AV		60	mA	
Receiver Supply Voltage	HFBR-2503	Vcc	4.50	5.50	V	
	HFBR-2502		4.75	5.25		Note 2
Output Voltage	HFBR-2503	Vo		Vcc	V	
	HFBR-2502			18		
Fanout (TTL)	HFBR-2503			1		
	HFBR-2502			5		

SYSTEM PERFORMANCE

See HFBR-1502/2502 link data sheet (page 5) and HFBR-1512/2503 link data sheet (page 7) for more design information. These specifications apply when using Standard Cable and, unless otherwise specified, under recommended operating conditions.

Parameter	Symbol	Min.	Typ. ${ }^{\text {[5] }}$	Max.	Units	Conditions	Ref.
HFBR-1512/HFBR-2503							
Max. Count Frequency		dc		20	kHz		
Optical Power Budget		25.4			dB	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Note 3, 4
		27.8	34		dB	$\mathrm{I}_{\text {FPK }}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
HFBR-1502, HFBR-2502							
Max. Count Frequency		dc		500	kHz		
Optical Power Budget		10.4			dB	$I_{\text {FPK }}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Note 3
		12.8	15.6		dB	IFPK $=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	

Notes:

1. For IFPK $>80 \mathrm{~mA}$, the duty factor must be such as to keep $\mathrm{I}_{\text {FAV }} \leq 80 \mathrm{~mA}$. In addition, for IFPK $>80 \mathrm{~mA}$, the following rules for pulse width apply:

IFPK $\leq 160 \mathrm{~mA}$: Pulse width $\leq 1 \mathrm{~ms}$
IFPK $>160 \mathrm{~mA}$: Pulse width $\leq 1 \mu \mathrm{~s}$
2. A bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) connected from pin 3 to pin 4 of the receiver is recommended for the HFBR-2503 and essential for the HFBR-2502. For the HFBR-2502, the total lead length between both ends of the capacitor and the pins should not exceed 20 mm .
3. Optical Power Budget $=P_{T}$ Min. $-P_{R(L)}$ Min. Refer to HFBR-1502/1512 data sheet, page 11 ;HFBR-2502 data sheet, page 12; and HFBR-2503 data sheet, page 14 for additional design information.
4. In addition to a minimum power budget, care should be taken to avoid overdriving the HFBR-2503 receiver with too much optical power. For this reason power levels into the receiver should be kept less than -13.7 dBm to eliminate any overdrive with the recommended operating conditions.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Link Design Considerations

The HFBR-1512/2503 and HFBR-1502/2502 Transmitter/ Receiver pairs are intended for applications where the photo interrupter must be physically separate from the optoelectronic emitter and detector. This separation would be useful where high voltage, electrical noise or explosive environments prohibit the use of electronic devices. To ensure reliable long term operation, links designed for this application should operate with an ample optical power margin $\propto_{M} \geq 3 \mathrm{~dB}$, since the exposed fiber ends are subject to environmental contamination that will increase the optical attenuation of the slot with time. A graph of air gap separation versus attenuation for clean fiber ends with minimum radial error ≤ 0.005 inches (0.127 mm) and angular error ($\leq 3.0^{\circ}$) is provided in Figure 2. The following equations can
now be used to determine the transmitter output power, P_{T}, for both the overdrive and minimum drive cases. Overdrive is defined as a condition where excessive optical power is delivered to the receiver. The first equation enables the maximum Pt that will not result in receiver overdrive to be calculated for a predetermined link length and slot attenuation. The second equation defines the minimum PT_{T} allowed for link operation.
$\mathrm{PT}_{\mathrm{T}}(\mathrm{MAX})-\mathrm{PR}_{\mathrm{R}}(\mathrm{MAX}) \leq \alpha$ O MIN $\ell+\alpha$ SLOT
Eq. 1
PT (MIN) - PRL (MIN) $\geq \alpha$ O MAX $\ell+\alpha$ SLOT $+\alpha$ M
Eq. 2
Once Pt_{T} (MIN) has been determined in the second equation for a specific link length (ℓ), slot attenuation (α SLOT) and margin ($\alpha \mathrm{M}$), Figure 3 can then be used to find I_{F}.

Figure 1. Typical Slot Interrupter Configuration. Refer to 1 MBd or Low Current Links for Schematic Diagrams

Figure 2. Typical Loss vs. Axial Separation

Figure 3. Typical HFBR-1502/1512 Optical Output Power vs. Transmitter $\mathrm{I}_{\mathrm{F}}\left(0-70^{\circ} \mathrm{C}\right)$

665 nm Transmitters

HFBR-1502/HFBR-1510 and HFBR-1512

The HFBR-1510/1502/1512 Transmitter modules incorporate a 665 nm LED emitting at a low attenuation wavelength for the HFBR-3510/3610 plastic fiber optic cable. The transmitters can be easily interfaced to standard TTL logic. The optical power output of the HFBR-1510/1512/1502 is specified at the end of 0.5 m of cable. The HFBR-1512 output optical power is tested and guaranteed at low drive currents.

HFBR-1510/1512/1502 Transmitter

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Ref.	
Storage Temperature	TS	-40	+75	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec.	
Peak Forward Input Current	IF PK		1000	mA	Note 2	
Average Forward Input Current	IF AV		80	mA		
Reverse Input Voltage	V_{R}		5	V		

Electrical/Optical Characteristics $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Unless otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{[5]}$	Max.	Units	Conditions	Ref.
Transmitter Output Optical Power	HFBR-1510	PT	-16.5		-7.6	dBm	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	Fig. 2 Note 4 Note 3
			-14.3		-8.0	dBm	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	HFBR-1502 and HFBR-1512	PT	-13.6		-4.5	dBm	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
			-11.2		-5.1	dBm	$\mathrm{IF}_{\mathrm{F}}=60 \mathrm{~mA}, 25^{\circ} \mathrm{C}$	
	HFBR-1512	PT	-35.5			dBm	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, 0-70^{\circ} \mathrm{C}$	
Output Optical Power Temperature Coefficient		$\frac{\Delta \mathrm{P}_{\mathrm{T}}}{\Delta \mathrm{T}}$		-0.026		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$		
Peak Emission Wavelength		$\lambda \mathrm{PK}$		665		nm		
Forward Voltage		V_{F}	1.45	1.67	2.02	V	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$	
Forward Voltage Temperature Coefficient		$\frac{\Delta V_{F}}{\Delta T}$		-1.37		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		Fig. 1
Effective Diameter		DT		1		mm		
Numerical Aperture		N.A.		0.5				
Reverse Input Breakdown Voltage		VBR	5.0	12.4		V	$\mathrm{IF}_{F}=-10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Diode Capacitance		Co		86		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$	
Rise and Fall Time		$\mathrm{t}_{\mathrm{R}, \mathrm{tF}}$		50		ns	10\% to 90\%	

Notes:

1. 1.6 mm below seating plane.
2. $1 \mu \mathrm{~s}$ pulse, 20μ s period.
3. Measured at the end of 0.5 m standard Fiber Optic Cable with large area detector.
4. Optical power, $\mathrm{P}(\mathrm{dBm})=10 \mathrm{Log} \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
5. Typical data is at $25^{\circ} \mathrm{C}$.

WARNING. When viewed under some conditions, the optical port of the Transmitter may expose the eye beyond the Maximum Permissible Exposure recommended in ANSI Z-136-1, 1981. Under most viewing conditions there is no eye hazard.

Figure 1. Typical Forward Voltage vs. Drive Current for HFBR-1510/1502/1512

Figure 2. Normalized HFBR-1510/1502/1512 Typical Output Optical Power vs. Drive Current

Receivers

HFBR-2501 (5 MBd) and HFBR-2502 (1 MBd)

The HFBR-2501/2502 Receiver modules feature a shielded integrated photodetector and wide bandwidth DC amplifier for high EMI immunity. A Schottky clamped open-collector output transistor allows interfacing to common logic families and enables "wired-OR" circuit designs. The open collector output is specified up to 18 V . An integrated 1000 ohm resistor internally connected to Vcc may be externally jumpered to provide a pull-up for ease-of-use with +5 V logic. The combination of high optical power levels and fast transitions falling edge could result in distortion of the output signal (HFBR-2502 only), that could lead to multiple triggering of following circuitry.

HFBR-2501/2502 Receiver

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Ref.	
Storage Temperature	TS_{S}	-40	+75	${ }^{\circ} \mathrm{C}$		
Operating Temperature	TA_{A}	0	+70	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Supply Voltage	V CC	-0.5	7	V	Note 6	
Output Collector Current	IO		25	mA		
Output Collector Power Dissipation	POD		40	mW		
Output Voltage	VO_{O}	-0.5	18	V		
Pullup Voltage	V_{RL}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V		

Electrical/Optical Characteristics
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. ${ }^{\text {[5] }}$	Max.	Units	Conditions	Ref.
Receiver Input Optical Power Level for Logic "0"	HFBR-2501	PR (L)	-21.6		-9.5	dBm	$\begin{array}{r} 0-70^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ \mathrm{IOL}=8 \mathrm{~mA} \end{array}$	Note 2, 3
			-21.6		-8.7	dBm	$\begin{array}{r} 25^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ \mathrm{lOL}=8 \mathrm{~mA} \end{array}$	
	HFBR-2502	PR (L)	-24			dBm	$\begin{array}{r} 0-70^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ \mathrm{lOL}=8 \mathrm{~mA} \end{array}$	
			-24			dBm	$\begin{array}{r} 25^{\circ} \mathrm{C}, \mathrm{VOL}=0.5 \mathrm{~V} \\ \mathrm{lOL}=8 \mathrm{~mA} \end{array}$	
Input Optical Power Level for Logic "1"		$\mathrm{PR}_{\mathrm{R}}(\mathrm{H})$			-43	dBm	$\begin{aligned} & \mathrm{VOH}=5.25 \mathrm{~V}, \\ & \mathrm{IOH} \leq 250 \mu \mathrm{~A} \end{aligned}$	Note 2
High Level Output Current		IOH		5	250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=18 \mathrm{~V}, \mathrm{P}_{\mathrm{R}}=0$	Note 4
Low Level Output Voltage		Vol		0.4	0.5	V	$\begin{aligned} & \mathrm{IOL}=8 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{RL}} \mathrm{MIN} \end{aligned}$	Note 4
High Level Supply Current		ICCH		3.5	6.3	mA	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$	Note 4
Low Level Supply Current		ICCL		6.2	10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{R}}=-12.5 \mathrm{dBm} \end{aligned}$	Note 4
Effective Diameter		DR		1		mm		
Numerical Aperture		N.A.R		0.5				
Internal Pull-Up Resistor		RL	680	1000	1700	Ohms		

Notes:

1. 1.6 mm below seating plane.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10$ Log $\mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
3. Measured at the end of standard Fiber Optic Cable with large area detector.
4. R_{L} is open.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. It is essential that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ be connected from pin 3 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .

High Sensitivity Receiver

HFBR-2503

The blue plastic HFBR-2503 Receiver module has a sensitivity of -39 dBm . It features an integrated photodetector and DC amplifier for high EMI immunity. The output is an open collector with a $150 \mu \mathrm{~A}$ internal current source pullup and is compatible with TTL/LSTTL and most CMOS logic families. For minimum rise time add an external pullup resistor of at least 3.3 K ohms. Vcc must be greater than or equal to the supply voltage for the pull-up resistor.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Ref.	
Storage Temperature	TS_{S}	-40	+75	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Supply Voltage	$\mathrm{VCC}_{\mathrm{CD}}$	-0.5	7	V	Note 7	
Output Collector Current (Average)	lo	-1	5	mA		
Output Collector Power Dissipation	PoD		25	mW		
Output Voltage	VO_{O}	-0.5	$\mathrm{~V}_{\mathrm{cc}}$	V		

Electrical/Optical CharacteristicS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 4.5 \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5$ Unless Otherwise Specified

Parameter		Symbol	Min.	Typ. (5)	Max.	Units	Conditions	Ref.
Receiver Input Optical Power Level for Logic "0"	HFBR-2503	PR (L)	-39		-13.7	dBm	$\begin{aligned} 0-70^{\circ} \mathrm{C}, \mathrm{VO}_{\mathrm{O}} & =\mathrm{V}_{\mathrm{OL}} \\ \mathrm{IOL} & =3.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { Note } \\ & 2,3,4 \end{aligned}$
			-39		-13.3	dBm	$\begin{aligned} 25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}} & =\mathrm{V}_{\mathrm{OL}} \\ \mathrm{lOL} & =3.2 \mathrm{~mA} \end{aligned}$	
Input Optical Power Level for Logic "1"		$\mathrm{PR}(\mathrm{H})$			-53	dBm	$\begin{aligned} & \mathrm{VOH}=5.5 \mathrm{~V} \\ & \mathrm{l} \mathrm{OH} \leq 40 \mu \mathrm{~A} \end{aligned}$	Note 2
High Level Output Voltage		V OH	2.4			V	$\begin{aligned} & \mathrm{IOH}=-40 \mu \mathrm{~A}, \\ & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$	
Low Level Output Voltage		VOL			0.4	V	$\begin{aligned} & \mathrm{IOL}=3.2 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{RL}} \mathrm{MIN} \end{aligned}$	Note 6
High Level Supply Current		ICCH		1.2	1.9	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{PR}=0 \mu \mathrm{~W}$	
Low Level Supply Current		ICCL		2.9	3.7	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & P_{\mathrm{R}} \geq P_{\mathrm{RL}}(\mathrm{MIN}) \end{aligned}$	Note 6
Effective Diameter		DR		1		mm		
Numerical Aperture		N.A.R		0.5				

Notes:

1. 1.6 mm below seating plane.
2. Optical flux, $\mathrm{P}(\mathrm{dBm})=10 \log \mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}$.
3. Measured at the end of the standard Fiber Optic Cable with large area detector.
4. Because of the very high sensitivity of the HFBR-2503, the digital output may switch in response to ambient light levels when a cable is not occupying the receiver optical port. The designer should take care to filter out signals from this source if they pose a hazard to the system.
5. Typical data is at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
6. Including current in 3.3 K pull-up resistor.
7. It is recommended that a bypass capacitor $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic be connected from pin 3 to pin 4 of the receiver.

Snap-in Fiber Optic Connector, Bulkhead Feedthrough/Splice and Polishing Tools

HFBR-4501/4511 CONNECTORS
HFBR-4505/4515 BULKHEAD FEEDTHROUGHS
The HFBR-4501 and HFBR-4511 snap-in connectors terminate low cost plastic fiber cable and mate with the Hewlett-Packard HFBR-0500 family of fiber optic transmitters and receivers. They are quick and easy to install. The metal crimp ring provides strong and stable cable retention and the polishing technique ensures a smooth optical finish which results in consistently high optical coupling efficiency.
The HFBR-4505 and HFBR-4515 bulkhead feedthroughs mate two snap-in connectors and can be used either as an in-line splice or as a panel feedthrough for plastic fiber cable. The connector to connector loss is low and repeatable.

HFBR-4501 (GRAY)/4511 (BLUE) CONNECTOR

HFBR-4505 (GRAY)/4515 (BLUE) BULKHEAD FEEDTHROUGH

HFBR-4595 POLISHING KIT

Applications

- CONNECTOR

TERMINATION FOR HEWLETT-PACKARD PLASTIC FIBER OPTIC CABLE

INTERFACE TO HEWLETT-PACKARD HFBR-15XX/25XX SNAP-IN FIBER OPTIC LINK COMPONENTS

- BULKHEAD FEEDTHROUGH

BULKHEAD FEEDTHROUGH OR PANEL MOUNTING OF HFBR-45XX CONNECTORS

IN-LINE SPLICE FOR PLASTIC FIBER OPTIC CABLE

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	TS_{S}	-40	+75	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	0	+70	${ }^{\circ} \mathrm{C}$	
Nut Torque HFBR-4505/4515	TN_{N}		$\frac{0.7}{100}$	$\frac{\mathrm{~N}-\mathrm{m}}{\mathrm{OzF}_{-1 \mathrm{~N}}}$	1

Notes:

1. Recommended nut torque is $\frac{0.57}{80} \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{OzF}-\mathrm{IN}}$

Mechanical/Optical CharacteristicS 0° to $70^{\circ} \mathrm{C}$ Unless Otherwise Specified.

Typical Data at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Note
Retention Force Connector/Module HFBR-4501/4511 to HFBR-15XX/25XX	FRC				N	
Tensile Force Connector/Cable	FT		6.8	22		N
HFBR-4505/4515 Conn. to Conn. Loss	α CC	0.7	1.5	2.8	dB	2,3
Retention Force Connector/ Bulkhead HFBR-4501/4511 to HFBR-4505/4515	FRB		7.8		N	

Notes:

2. Factory polish or field polish per recommended procedure.
3. Module to connector insertion loss is factored into the transmitter output optical power and the receiver input optical power level specifications.
Note:
For applications where frequent temperature cycling over extremes is expected please contact Hewlett-Packard for alternate connectoring techniques.

Cable Terminations

The following easy procedure describes how to make cable terminations. It is ideal for both field and factory installaiton. If a high volume connectoring technique is required please contact your Hewlett-Packard sales engineer for the recommended procedure and equipment.
Connectoring the cable is accomplished with the HewlettPackard HFBR-4595 Polishing Kit consisting of a Polishing Fixture and 600 grit abrasive paper and 3 micron pink lapping film (3M Company, OC3-14). No adhesive material is needed to secure the cable in the connector, and the connector can be used immediately after polishing.
Connectors may be easily installed on the cable ends with readily available tools. Materials needed for the terminating procedure are:

1) Plastic Fiber Optic Cable
2) HFBR-4595 Polishing Kit
3) HFBR-4501 Gray Connector and Crimp Ring
4) HFBR-4511 Blue Connector and Crimp Ring
5) Industrial razor blade or wire cutters
6) 16 gauge latching wire strippers
7) Crimp Tool, AMP 90364-2

Step 1

The zip cord structure of the duplex cable permits easy separation of the channels. The channels should be separated approximately 50 mm (2.0 in .) back from the ends to permit connecting and polishing.
After cutting the cable to the desired length, strip off approximately $7 \mathrm{~mm}(0.3 \mathrm{in})$ of the outer jacket with the 16 gauge wire strippers. Excess webbing on duplex cable may have to be trimmed to allow the connector to slide over the cable.

Step 2

Place the crimp ring and connector over the end of the cable; the fiber should protrude about 3 mm (0.12 in .) through the end of the connector. Carefully position the ring so that it is entirely on the connector and then crimp the ring in place with the crimping tool.
Note: Place the gray connector on the cable end to be connected to the transmitter and the blue connector on the cable end to be connected to the receiver to maintain the color coding (both connectors are the same mechanically).

Step 3

Any excess fiber protruding from the connector end may be cut off; however, the trimmed fiber should extend at least 1.5 mm (0.06 in .) from the connector end.
Insert the connector fully into the polishing fixture with the connector end protruding from the bottom of the fixture.
For high volume connectoring use the hardened steel HFBR-4596 polishing fixture.
Note: The four dots on the bottom of the polishing fixture are wear indicators. Replace the polishing fixture when any dot is no longer visible.
Place the 600 grit abrasive paper on a flat smooth surface. Pressing down on the connector, polish the fiber and the connector until the connector is flush with the end of the polishing fixture. Wipe the connector and fixture with a clean cloth or tissue.

Step 4

Place the flush connector and polishing fixture on the dull side of the 3 micron pink lapping film and continue to polish the fiber and connector for approximately 25 strokes. The fiber end should be flat, smooth and clean.
The cable can now be used.
Note: Use of the pink lapping film fine polishing step results in approximately a $2 d B$ improvement in coupling performance of either a transmitter-receiver link or a bulkhead/splice over 600 grit polish alone. This polish is comparable to Hewlett-Packard's factory polish. The fine polishing step may be omitted where an extra $2 d B$ of optical power is not essential as with short link lengths.

Mechanical Dimensions all dimensions in $m m$ linchess. All dimensions $\pm 0.25 \mathrm{~mm}$ unless otherwise specified.

HFBR-15XX (GRAY OR BLACK)/250X (BLUE) MODULE

BULKHEAD FEEDTHROUGH WITH TWO HFBR-4501/4511 CONNECTORS

HFBR-4501 (GRAY)/4511 (BLUE) CONNECTOR

CONNECTORS DIFFER ONLY IN COLOR

HFBR-4505 (GRAY)/4515 (BLUE) BULKHEAD FEEDTHROUGH

BULKHEAD FEEDTHROUGHS DIFFER ONLY IN COLOR

Simplex
Duplex

DIMENSIONS IN mm (INCHES) ALL DIMENSIONS $\pm 0.2 \mathrm{~mm}$ UNLESS NOTED.

Features

- DC TO 5 MBAUD DATA RATE
- MAXIMUM LINK LENGTH 625 Metres (Guaranteed) 1600 Metres (Typical)
- TTL/CMOS COMPATIBLE OUTPUT
- MINIATURE, RUGGED METAL PACKAGE
- SINGLE +5V RECEIVER POWER SUPPLY
- INTERNALLY SHIELDED RECEIVER FOR EMI/RFI IMMUNITY
- PCB AND PANEL MOUNTABLE
- LOW POWER CONSUMPTION

Applications

- EMC REGULATED SYSTEMS (FCC, VDE)
- EXPLOSION PROOF SYSTEMS IN OIL INDUSTRY/CHEMICAL PROCESS CONTROL INDUSTRY
- SECURE DATA COMMUNICATIONS
- WEIGHT SENSITIVE SYSTEMS (e.g. Avionics, Mobile Stations)
- HIGH VOLTAGE ISOLATION IN POWER GENERATION

Description

The HFBR-1202 Transmitter and HFBR-2202 Receiver are SMA style connector compatible fiber optic link components. Distances to 1600 metres at data rates up to 5 MBaud are achievable with these components.
The HFBR-1202 Transmitter contains a high efficiency GaAIAs emitter operating at 820 nm . Consistent coupling

efficiency is assured by factory alignment of the LED with the optical axis of the package. Power coupled into the fiber varies less that 4 dB from part to part at a given temperature and drive current. The benefit of this is reduced dynamic range requirements on the receiver.
The HFBR-2202 Receiver incorporates a photo IC containing a photodetector and dc amplifier. An open collector Schottky transistor on the IC provides logic compatibility. The combination of an internal EMI shield, the metal package and an isolated case ground provides excellent immunity to EMI/RFI. For unusually severe EMI/ESD environments, a snap-on metal shield is available. The receiver is easily identified by the black epoxy backfill.
The HFBR-1202 Transmitter and HFBR-2202 Receiver are compatible with SMA style connectors, types A and B (see Figure 11.

Mechanical Dimensions

HFBR-1202 TRANSMITTER

DIMENSIONS IN MILLIMETRES (INCHES)
UNLESS OTHERWISE SPECIFIED, THE TOLERANCES ARE:
$. X \pm .51 \mathrm{~mm}(. X X \pm .02 \mathrm{IN})$
$. \mathrm{XX} \pm .13 \mathrm{~mm}(. X X X \pm .005 \mathrm{iN})$

System Design Considerations

The Miniature Fiber Optic Logic Link is guaranteed to work over the entire range of 0 to 625 metres at a data rate of dc -5 MBd , with arbitrary data format and typically less than 25% pulse width distortion, if the Transmitter is driven with IF $=40 \mathrm{~mA}, \mathrm{R}_{1}=82 \Omega$. If it is desired to economize on power or achieve lower pulse distortion, then a lower drive current (IF) may be used. The following example will illustrate the technique for optimizing I_{F}.
EXAMPLE: Maximum distance required $=250$ metres. From Figure 2 the worst case drive current $=20 \mathrm{~mA}$. From the Transmitter data $-V_{F}=1.8 \mathrm{~V}$ (max.).

$$
R_{1}=\frac{V_{C C}-V_{F}}{I_{F}}=\frac{5-1.8 V}{20 \mathrm{~mA}}=160 \Omega
$$

The optical power margin between the typical and worst case curves (Figure 2) at 250 metres is 4 dB . To calculate the worst case pulse width distortion at 250 metres, see Figure 8. The power into the Receiver is $P_{R L}+4 \mathrm{~dB}=-20 \mathrm{dBm}$. Therefore, the typical distortion is 40 ns or 20% at 5 MBd .

CABLE SELECTION

The link performance specifications on the following page are based on using cables that contain glass-clad silica fibers with a $100 \mu \mathrm{~m}$ core diameter and $140 \mu \mathrm{~m}$ cladding diameter. This fiber type is now a user accepted standard for local data communications links (RS-458, Class I, Type B). The HFBR-1202 Transmitter and HFBR-2202 Receiver are optimized for use with the $100 / 140 \mu \mathrm{~m}$ fiber. There is, however, no fundamental restriction against using other fiber types. Before selecting an alternate fiber type, several parameter need to be carefully evaluated.
will significantly affect the optical power coupled into the fiber are as follows:
a. Fiber Core Diameter. As the core diameter is increased, the optical power coupled increases, leveling off at about $250 \mu \mathrm{~m}$ diameter.
b. Numerical Aperture (NA). As the NA is increased, the optical power coupled increases, leveling off at an NA of about 0.34.
c. Index Profile (α). The Index profile parameter of fibers varies from 2 (fully graded index) to infinite (step index). Some gains in coupled optical power can be achieved at the expense of bandwidth, when α is increased.
In addition to the optical parameters, the environmental performance of the selected fiber/cable must be evaluated. Finally, the ease of installing connectors on the selected fiber/cable must be considered. Given the large number of parameters that must be evaluated when using a nonstandard fiber, it is recommended that the $100 / 140 \mu \mathrm{~m}$ fiber be used unless unusual circumstances warrant the use of an alternate fiber/cable type.

SMA STYLE CONNECTORS

The HFBR-1202/2202 is compatible with either the Type A or Type B SMA style fiber optic connector (see Figure 11). The basic difference between the two connectors is the plastic half-sleeve on the stepped ferrule tip of the Type B connector. This step provides the capability to use a full length plastic sleeve to ensure good alignment of two connectors for an inline splice. Hewlett-Packard offers connectored cable that utilizes the Type A connector system because of the inherent environmental advantages of motal-to-motal interfaces.

Typical Circuit Configuration

NOTE:
IT IS ESSENTIAL THAT A BYPASS CAPACITOR ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ CERAMIC) BE CONNECTED FROM PIN 2 TO PIN 4 OF THE RECEIVER. TOTAL LEAD LENGTH BETWEEN BOTH ENDS OF THE CAPACITOR
AND THE PINS SHOULD NOT EXCEED 20 mm .

Figure 1.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Reference
TRANSMITTER					
Ambient Temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Peak Forward Input Current	IF, PK		40	mA	Note 7
Average Forward Input Current	Ifav		40	mA	Note 7
RECEIVER					
Ambient Temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	Vcc	4.75	5.25	V	
Fan Out (TTL)	N		5		Note 3, Fig. 1
CABLE (see SMA connectored					

System Performance $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min. ${ }^{[1]}$	Typ.	Max.	Units	Conditions	Reference
Transmission Distance	ℓ	625	1600		Metres		Fig. 2, Note 9
Data Rate Synchronous		dc		5	MBaud		Note 10
Asynchronous		dc		2.5	MBaud		Note 10, Fig. 8
Propagation Delay LOW to HIGH	tPLH		82		nsec	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{P}_{\mathrm{R}}=-21 \mathrm{dBm} \\ & \mathrm{I}_{\mathrm{F}, \mathrm{PK}}=15 \mathrm{~mA} \\ & \ell=1 \text { metre } \end{aligned}$	Fig. 7, 8, 9
Propagation Delay HIGH to LOW	tPHL		55		nsec		
System Pulse Width Distortion	tD		27		nsec		
Bit Error Rate	BER			10^{-9}		Data Rate $\leq 5 \mathrm{MBaud}$ $P_{R}>-24 \mathrm{dBm}(4 \mu \mathrm{~W})$	

NOMOGRAPH dBm $-\mu$ W CONVERSION

Figure 2. System Performance: HFBR-1202/HFBR-2202 with HP's $100 / 140 \mu \mathrm{~m}$ fiber cable

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Reference	
Storage Temperature	T_{S}	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	Note 13	
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 2
	Time			10	sec	
Forward Input Current	Peak	$\mathrm{IF}_{\mathrm{F}, \mathrm{PK}}$		40	mA	Note 7
	Average	$\mathrm{IF}_{\mathrm{F}, \mathrm{AV}}$		40	mA	
Reverse Input Voltage						

Electrical/Optical CharacteristiCS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.[1]	Max.	Units	Conditions	Reference
Forward Voltage	V_{F}		1.5	1.8	V	$\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$	Figure 5
Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$		-0.91		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$	Figure 5
Reverse Breakdown Voltage	VBR	2.5	4.0		V	$\mathrm{IR}=100 \mu \mathrm{~A}$	
Numerical Aperture	NA		. 34				
Optical Port Diameter	DT		250		$\mu \mathrm{m}$		Note 11
Peak Emission Wavelength	λP		820		nm		Figure 6
Peak Output Optical Power Coupled into HFBR-3000 Fiber Cable/Connector Assembly, 100/140 $\mu \mathrm{m}$	Pт	-17	-16	-13	dBm	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3 Notes 4. 15
		20	25	50	$\mu \mathrm{W}$		
		-18		-12.3	dBm	$\begin{aligned} & I_{F}=40 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C} \end{aligned}$	
		15.8		59	$\mu \mathrm{W}$		
Output Optical Power Coupled into 50/125 $\mu \mathrm{m}$ Fiber	PT		-24		dBm	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3 Notes 14, 15
			4		$\mu \mathrm{W}$		
Output Optical Power Coupled into Siecor 100/140 $\mu \mathrm{m}$ Fiber Cable or Equivalent	PT		-18		dBm	$\begin{aligned} & I_{F}=40 \mathrm{~mA} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	Figure 3 Notes 15, 16
Optical Power Temperature Coefficient	$\Delta \mathrm{P}_{\mathrm{T}} / \Delta \mathrm{T}$		-. 017		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$		Figure 4

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Units	Conditions	Reference
Propagation Delay LOW to HIGH	tPLH		17		nsec	IF PK $=10 \mathrm{~mA}$	Note 8 Figure 7
Propagation Delay HIGH to LOW	tPHL		6		nsec		

Notes:

1. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ dc.
2. 2.0 mm from where leads enter case
3. 8 mA load $(5 \times 1.6 \mathrm{~mA}) . \mathrm{RL}_{\mathrm{L}}=560 \Omega$.
4. Measured at the end of 1.0 metre HP's $100 / 140 \mu \mathrm{~m}$ Fiber Optic Cable with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.28 , measured at the end of greater than 300 metres length of fiber, the NA being defined as the sine of the half angle determined by the 10% intensity points.
5. Measured at the end of HP's $100 / 140 \mu \mathrm{~m}$ Fiber Optic Cable with large area detector.
6. When changing microwatts to dBm , the optical flux is referenced to one milliwatt ($1000 \mu \mathrm{~W}$).
$P(\mu W)$
Optical Flux, $P(d B m)=10 \log \frac{P(\mu W)}{1000 \mu W}$
7. IFPK should not be less than 10 mA in the "ON" state. This is to avoid the long turn-on time that occurs at low input current. Ifav may be arbitrarily low, as there is no duty factor restriction.

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the infrared output is radiologically safe; however, when
viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in
ANSI Z136.1-1981.

HFBR/2202 RECEIVER

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference	
Storage Temperature	Ts_{s}	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 2
	Time			10	sec	
Supply Voltage	Vcc	-0.5	+7.0	V		
Output Current	IO		25	mA		
Output Voltage	VO_{O}	-0.5	+18.0	V		
Output Collector Power Dissipation	Po, AV		40	mW		

HFBR/2202 RECEIVER

Electrical/Optical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $4.75 \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{\|1\|}$	Max.	Units	Conditions	Reference
High Level Output Current	IOH		5	250	$\mu \mathrm{~A}$	$\mathrm{VO}=18 \mathrm{~V}$ $\mathrm{P}_{\mathrm{R}}<-40 \mathrm{dBm}$	
Low Level Output Voltage	VOL		0.4	0.5	V	$\mathrm{IO}=8 \mathrm{~mA}$ $\mathrm{PR}_{\mathrm{R}}>-24 \mathrm{dBm}$	
High Level Supply Current	ICCH		3.5	6.3	mA	$\mathrm{VCC}=5.25 \mathrm{~V}$ $\mathrm{PR}_{\mathrm{R}}<-40 \mathrm{dBm}$	
!ow Level Supply Current	ICCL		6.2	10	mA	$\mathrm{VCC}=5.25 \mathrm{~V}$ $\mathrm{PR}_{\mathrm{R}}>-24 \mathrm{dBm}$	
Optical Port Diameter	DR		700		$\mu \mathrm{~m}$		Note 12
Numerical Aperture	NA		.32				

Dynamic Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $4.75 \leq \mathrm{V} \mathrm{CC} \leq 5.25 \mathrm{~V}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Units	Conditions	Reference
Input Power Level Logic HIGH	PRH			$\begin{gathered} -40 \\ 0.1 \end{gathered}$	$\begin{gathered} \mathrm{dBm} \\ \mu \mathrm{~W} \end{gathered}$	$\lambda \mathrm{P}=820 \mathrm{~nm}$	Note 5
Input Power Level Logic LOW	PRL	-25.4		-11.2	dBm	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Fig. 4, Note 5
		2.9		76	$\mu \mathrm{W}$		
		-24		-12.0	dBm	$-40<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	
		4.0		63	$\mu \mathrm{W}$		
Propagation Delay LOW to HIGH	tPLHR		65		nsec	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{R}}=-21 \mathrm{dBm}$	Note 8, Fig. 7
Propagation Delay HIGH to LOW	tPhLR		49		nsec		

Notes:

8. Propagation delay through the system is the result of several sequentially-occurring phenomena. Consequently it is a combination of data-rate-limiting effects and of transmission-time effects. Because of this, the data-rate limit of the system must be described in terms of time differentials between delays imposed on falling and rising edges.
As the cable length is increased, the propagation delays increase at 5 ns per metre of length increase. Data rate, as limited by pulse width distortion, is not affected by increasing cable length if the optical power level at the Receiver is maintained
9. Worst case system performance is based on worst case performance of individual components: transmitter at $+85^{\circ} \mathrm{C}$, receiver at $-40^{\circ} \mathrm{C}$ and cable at- $20^{\circ} \mathrm{C}$.
10. Synchronous data rate limit is based on these assumptions: fa) 50% duty factor modulation, e.g. Manchester I or BiPhase (Manchester II.; (b) continuous data; (c) PLL (Phase Lock Loop demodulation; (d) TTL threshold.
Asynchronous data rate limit is based on these assumptions: (a) NRZ data; (b) arbitrary timing - no duty factor restriction; (c) TTL threshold.

The EYE pattern describes the timing range within which there is no uncertainty of the logic state, relative to a specific threshold, due to either noise or intersymbol (prop. delay) effects.
11. D_{T} is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of its maximum.
12. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
13. HP's $100 / 140 \mu \mathrm{~m}$ Fiber Cable is specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
14. Measured at the end of 1.0 metre $50 / 125 \mu \mathrm{~m}$ fiber with large area detector and cladding modes stripped, approximating a Standard Test Fiber. The fiber NA is 0.21 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5% of peak intensity points.
15. Output Optical Power into connectored fiber cable other than HP's Fiber Optic Cable/Connector Assemblies may be different than specified because of mechanical tolerances of the connector, quality of the fiber surface, and other variables.
16. Measured at the end of 1.0 metre Siecor $100 / 140 \mu \mathrm{~m}$ fiber cable or equivalent, with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.275 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5% of peak intensity points.

Figure 3. Normalized Transmitter Output vs. Forward Current

Figure 6. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$

Figure 4. Normalized Thermal Effects in Transmitter Output, Receiver Threshold, and Link Performance (Relative Threshold)

Figure 7. Propagation Delay through System with One Metre of Cable

Figure 5. Forward Voltage and Current Characteristics for the Transmitter LED.

Figure 8. Worst-Case Distortion of NRZ EYE-pattern with Pseudo Random Data at $5 \mathrm{Mb} / \mathrm{s}$. (see note 10)

Figure 9. System Propagation Delay Test Circuit and Waveform Timing Definitions

Typical Circuit Configuration

HFBR-1201 TRANSMITTER

Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {™ }}$ on a cotton swab also works well.

HFBR-2201 RECEIVER

It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from pin 2 to pin 4 of the receiver. Total lead length between both ends of the capacitor and the pins should not exceed 20 mm .

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support
the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

HFBR-1202 TRANSMITTER
1.95 (.078) DIA. HOLES ACCEPT A

2-56 SELF TAPPING SCREW

HFBR-2202 RECEIVER
1.95 (.078) DIA. HOLES ACCEPT A

2-56 SELF TAPPING SCREW

THREAD FLAT

TRANSMITTER PCB LAYOUT DIMENSIONS

RECEIVER PCB LAYOUT DIMENSIONS

Figure 13. Mounting Dimensions DIMENSIONS IN MILLIMETRES (INCHES).

Ordering Guide

Transmitter: HFBR-1202 (SMA Connector Compatible)

Receiver: HFBR-2202 (SMA Connector Compatible)

Mounting
Hardware: HFBR-4202 (SMA Connector Compatible)

> HIGH EFFICIENCY
> FIBER OPTIC TRANSMITTER

HFBR-1204

Features

- OPTICAL POWER COUPLED INTO $100 / 140 \mu \mathrm{~m}$ FIBER CABLE
-9.8 dBm Guaranteed at $25^{\circ} \mathrm{C}$

-7.4 dBm Typical

- FACTORY ALIGNED OPTICS
- RUGGED MINIATURE PACKAGE
- COMPATIBLE WITH SMA CONNECTORS

Description

The HFBR-1204 Fiber Optic Transmitter contains an etchedwell 820 nm GaAIAs emitter capable of coupling greater than -10 dBm of optical power into HP's $100 / 140 \mu \mathrm{~m}$ SMA connectored cable assemblies. This high power level is useful for fiber lengths greater than 1 km , or systems where star couplers, taps, or in-line connectors create large fixed losses.

Consistent coupling efficiency is assured by factory alignment of the LED with the mechanical axis of the package connector port. Power coupled into the fiber varies less than 5 dB from part to part at a given drive current and temperature. The benefit of this is reduced dynamic range requirements on the receiver.
High coupling efficiency allows the emitters to be driven at low current levels resulting in low power consumption and increased reliability of the transmitter. Another advantage of the high coupling efficiency is that a significant amount of power can still be launched into smaller fiber such as $50 / 125 \mu \mathrm{~m}$ (-19.1 dBm typ.).
The HFBR-1204 transmitter is housed in a rugged miniature package. The lens is suspended to avoid mechanical contact with the active devices. This assures improved reliability by eliminating mechanical stress on the die due to the lens. For increased ESD protection and design flexibility, both the anode and cathode are insulated from the case.

HFBR-1204 is compatible with SMA style connectors. The low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking. A complete mounting hardware package (HFBR-4202) is available for horizontal mounting on PCBs, including a snap-on metal shield for harsh EMI/ESD environments.

Figure 1. Cross Sectional View

Mechanical Dimensions

HFBR-1204

DIMENSIONS IN MILLIMETRES (INCHES)

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Reference	
Storage Temperature	T_{S}	-55	+85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	Note 4	
Lead Soldering Cycle	Temp.			+260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Forward Input Current	Peak	$\mathrm{I}_{\mathrm{F}, \mathrm{PK}}$		100	mA	
	Average	$\mathrm{IF}_{\mathrm{F}, \mathrm{AV}}$		100	mA	
Reverse Input Voltage	V_{R}		1.0	V		
Voltage, Case-to-Junction	V_{C}		25	V		

Electrical/Optical Characteristics $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified

WARNING: OBSERVING THE TRANSMITTER OUTPUT POWER UNDER MAGNIFICATION MAY CAUSE INJURY TO THE EYE. When viewed with the unaided eye, the

Notes:

1. 2.0 mm from where leads enter case.
2. Typical data at $T_{A}=25^{\circ} \mathrm{C}$.
3. D_{T} is measured at the plane of the fiber face and defines a diameter where the optical power density is within 10 dB of the maximum.
4. HP's $100 / 140 \mu \mathrm{~m}$ fiber cable specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
5. Output Optical Power into connectored fiber cable other than HP's Cable/Connector Assemblies may be different than specified
infrared output is radiologically safe; however, when viewed under magnification, precaution should be taken to avoid exceeding the limits recommended in ANSI Z136.1-1981.
because of mechanical tolerances of the connector, quality of the fiber surface and other variables.
6. Measured at the end of 1.0 metre of HP's $100 / 140 \mu \mathrm{~m}$ Fiber Optic Cable with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.28 , measured at the end of greater than 300 metres length of fiber, the NA being defined as the sine of the half angle determined by the 5% intensity points.
7. Measured at the end of 1.0 metre $50 / 125 \mu \mathrm{~m}$ fiber with large area detector and cladding modes stripped, approximating a Standard Test Fiber. The fiber NA is 0.21 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5% of peak intensity points.
8. When changing microwatts to dBm , the optical power is referenced to 1 milliwatt ($1000 \mu \mathrm{~W}$).

Optical Power, $\mathbf{P}(\mathrm{dBm})=10 \log \mathbf{P}(\mu \mathrm{~W}) / 1000 \mu \mathrm{~W}$
9. Thermal resistance is measured with the transmitter coupled to a connector assembly and mounted on a printed circuit board with the HFBR-4202 mounting hardware.
10. Measured with a 1 mA pre-bias current and terminated into a 50 ohm load.
11. Measured at the end of 1.0 metre Siecor $100 / 140 \mu \mathrm{~m}$ fiber cable or equivalent, with large area detector and cladding modes stripped, terminated with the appropriate type of connector. This assembly approximates a Standard Test Fiber. The fiber NA is 0.275 , measured at the end of a 2.0 metre length, the NA being defined as the sine of the half angle determined by the 5% of peak intensity points.

Figure 3. Normalized Thermal Effects in Transmitter Output

Figure 5. Transmitter Spectrum Normalized to the Peak at $25^{\circ} \mathrm{C}$

Ordering Guide

Transmitter: HFBR-1204 (SMA Connector Compatible)

[^34]
Mounting
 Hardware: HFBR-4202 (SMA Connector Compatible)

Fiber Optic Cable - see data sheets

High Speed Operation

Rise and fall times can be improved by using a pre-bias current and "speed-up" capacitor. A 1 mA pre-bias current will significantly reduce the junction capacitance and will couple less than -34 dBm of optical power into the fiber cable. The TTL compatible circuit in Figure 7 using a speed-up capacitor will provide typical rise and fall times of 10 ns .

$$
\begin{aligned}
& I_{\text {PEAK }}=100 \mathrm{~mA}=\frac{V_{C C}-V_{F}}{34.9 \Omega} \\
& I_{A V G}=78 \mathrm{~mA}=\frac{V_{C C}-V_{F}}{34.9+10 \Omega}
\end{aligned}
$$

Figure 6. Test Circuit for Measuring $\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$

Figure 7. High Speed TTL Circuit

Link Design

With transmitter performance specified as power in dBm into a fiber of particular properties (core size, NA, and index profile), and receiver performance given in terms of the power in dBm radiated from the same kind of fiber, then the link design equation is simply:
(1) $\mathrm{P}_{\mathrm{T}}-\ell \cdot \alpha_{\mathrm{O}}=\mathrm{PR}_{\mathrm{R}}$
where
$\mathrm{P}_{\mathrm{T}}=$ transmitter power into fiber (dBm)
$\ell=$ fiber (cable) length (km)
$\alpha_{\mathrm{O}}=$ fiber attenuation ($\mathrm{dB} / \mathrm{km}$)
$P_{R}=$ receiver power, from fiber, (dBm)
For transmitter input current in the range from 10 to 100 mA , the power varies approximately linearly:
(2) $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{o}}+10 \log (1 / \mathrm{lo})$
where
$\mathrm{P}_{\mathrm{o}}=$ transmitter power specification (dBm) at I_{0}
$\mathrm{I}_{\mathrm{o}}=$ specified transmitter current (100 mA)
$\mathrm{I}=$ selected transmitter current (mA)
To allow for the dynamic range limits of proper receiver performance, it is necessary that a link with maximum transmitter power and minimum attenuation does not OVERDRIVE the receiver and that minimum transmitter power with maximum attenuation does not UNDERDRIVE it. These limits can be expressed in a combination of the two equations above:
(3) Po MAX $+10 \log \left(I_{\text {MAX }} / I_{0}\right)-\ell * \alpha_{O}$ MIN $<P_{R}$ MAX
(4) Po min $+10 \log \left(I_{\text {min }} / I_{0}\right)-\quad \ell * \alpha_{O}$ MAX $>$ PR MIN 2
where

$$
\begin{aligned}
\mathrm{P}_{\mathrm{O} \text { MAX },} \mathrm{P}_{\mathrm{OMIN}}= & \text { max., min. specified power from } \\
& \text { transmitter }(\mathrm{dBm}) \text { at } \mathrm{I}=\mathrm{I}_{\mathrm{o}}
\end{aligned}
$$

A more useful form of these equations comes from solving them for the current ratio, expressed in dB :
(5) $10 \log \left(I_{\text {MAX }} / I_{0}\right)<P_{R}$ MAX - PO MAX $+\ell \cdot \alpha_{\text {OMIN }}$
(6) $10 \log \left(I_{\text {MIN }} / I_{0}\right)>P_{R}$ MIN $-P_{O}$ MIN $+\ell \cdot x_{O}$ MAX

These are plotted in Figure 8 as the OVERDRIVE I.INL: and UNDERDRIVE LINE, respectively for the following components:
HFBR-1204 Transmitter -11.2 $<\mathrm{P}_{\mathrm{T}}<-4 \mathrm{dBm}$ HFBR-2204 Receiver (25 MHz) $-28.5<\mathrm{P}_{\mathrm{R}}<12.6 \mathrm{dBm}$ HFBR-2204 Receiver (2.5 MHz) $-35.5<\mathrm{P}_{\mathrm{R}}<-12.6 \mathrm{dBm}$ HP's $100 / 140 \mu \mathrm{~m}$ Fiber Cable $4<\propto_{\mathrm{O}}<8 \mathrm{~dB} / \mathrm{km}$

Figure 8. Link Design Limits.

These design equations take account only of the power loss due to attenuation. The specifications for the receiver and transmitter include loss effects in end connectors. If the system has other fixed losses, such as from directional couplers or additional in-line connectors, the effect is to shift both OVERDRIVE and UNDERDRIVE lines upward by the amount of the additional loss ratio.

Features

- DATA RATES UP TO 40 MBd
- HIGH OPTICAL COUPLING EFFICIENCY
- RUGGED, MINIATURE METAL PACKAGE
- COMPATIBLE WITH SMA STYLE CONNECTORS
- VERSATILE ANALOG RECEIVER OUTPUT
- 25 MHz ANALOG BANDWIDTH

Applications

- DATA ACQUISITION AND PROCESS CONTROL
- SECURE DATA COMMUNICATION
- EMC REGULATED SYSTEMS (FCC/VDE)
- EXPLOSION PROOF SYSTEMS
- WEIGHT SENSITIVE SYSTEMS (e.g., AVIONICS, MOBILE STATIONS)
- VIDEO TRANSMISSION

Description

The HFBR-2204 Receiver is capable of data rates up to 40 MBd at distances greater than 1 km when used with cable and HFBR-1202/4 Transmitters. The HFBR-2204 Receivers contains a discrete PIN photodiode and preamplifier IC.

The signal from this simple analog receiver can be optimized for a variety of transmission requirements. For example, the circuits in Application Bulletin 73 add low-cost external components to achieve logic compatible signal levels optimized for various data formats and data rates.
Each of these fiber optic components uses the same rugged, lensed, miniature package. This package assures a consistent, efficient optical coupling between the active devices and the optical fiber.

The HFBR-2204 Receiver is compatible with SMA style connectors, types A and B (see Figure 11 and HP's $100 / 140 \mu \mathrm{~m}$ SMA connectored cable assemblies. HP's $100 / 140 \mu \mathrm{~m}$ fiber ootic cable can be ordered with or without connectors.

Mechanical Dimensions

DIMENSIONS IN MILLIMETRES (INICHES)
UNLESS OTHERWISE SPECIFIED, THE TOLERANCES ARE:
$. X \pm .51 \mathrm{~mm}(: X X \pm .02 \mathrm{IN})$
$. X X \pm .13 \mathrm{~mm}(. X X X \pm .005 \mathrm{IN})$

Electrical Description

The HFBR-2204 Fiber Optic Receiver contains a PIN photodiode and low noise transimpedance pre-amplifier hybrid circuit with an inverting output (see note 10). The HFBR2204 receives an optical signal and converts it ot an analog voltage. The output is a buffered emitter-follower. Because the signal amplitude from the HFBR-2204 Receiver is much larger than from a simple PIN photodiode, it is less susceptible to EMI, especially at high signal rates.
The frequency response is typically dc to 25 MHz . Although the HFBR-2204 is an analog receiver, it is easily made compatible with digital systems (see Application Bulletin 73). Separate case and signal ground leads are provided for maximum design flexibility.
It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic) be connected from Pin $4\left(\mathrm{~V}_{\mathrm{CC}}\right)$ to Pin 3 (circuit common) of the receiver. Total lead length between both ends of the capacitor and the pins should be less than 20 mm .

Mechanical Description

The HFBR-2204 Fiber Optic Receiver is housed in a miniature package intended for use with HP's $100 / 140 \mu \mathrm{~m}$ SMA connectored cable assemblies. This package has important performance advantages:

1. Precision mechanical design and assembly procedures assure the user of consistent high efficiency optical coupling.
2. The lens is suspended to avoid contact with the active devices, thereby assuring improved reliability.
3. The versatile miniature package is easy to mount. This low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking.
A complete mounting hardware package is available for horizontal PCB applications, including a snap-on metal shield for harsh EMI/ESD environments.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; Methanol or Freon on a cotton swab also works well.

Note:

When installing connectored cable on the optical port, do not use excessive force to tighten the nut. Finger tightening is sufficient to ensure connectoring integrity, while use of a wrench may cause damage to the connector or the optics.

System Design Considerations

For additional information, see Application Bulletin 73.

OPTICAL POWER BUDGETING

The HFBR-2204 Fiber Optic Receivers when used with the HFBR-1202 Fiber Optic Transmitter can be operated at a signalling rate of more than 40 MBd over a distance greater than 1000 metres (assuming $8 \mathrm{~dB} / \mathrm{km}$ cable attenuation). For shorter transmission distances, power consumption can be reduced by decreasing Transmitter drive current At a lower data rate, the transmission distance may be increased by applying bandwidth-filtering at the output of the 11863

Figure 1. Cross Sectional View

2204 Receiver; since noise is reduced as the square root of the bandwidth, the sensitivity of the circuit is proportionately improved provided these two conditions are met:
a. input-referred noise of the follow on circuit is well below the filtered noise of the Receiver
b. logic comparator threshold is reduced in the same proportion as the noise reduction
As an example, consider a link with a maximum data rate of 10 MBd (e.g., $5 \mathrm{Mb} / \mathrm{s}$ Manchester); this requires a 3 dB bandwidth of only 5 MHz . For this example, the input-referred rms noise voltage of the follow-on circuit is 0.03 mV . The equivalent optical noise power of the complete receiver ($\mathrm{PNO}_{\mathrm{NO}}$) is given by:

$$
\begin{aligned}
& P_{N O}=\left[\left(\mathrm{VNO}_{\mathrm{NO}}\right)^{2}(\mathrm{~B} / \mathrm{BO})+\left(\mathrm{V}_{\mathrm{NI}}\right)^{2}\right]^{0.5} / \mathrm{RP}_{\mathrm{P}} \\
& \mathrm{~V}_{\mathrm{NO}}=\text { rms output noise voltage of the HFBR-2203/04 }
\end{aligned}
$$

Note that noise adds in an rms fashion, and that the square of the rms noise voltage of the HFBR-2204 is reduced by the bandwidth ratio, B / Bu.

From the receiver data (Electrical/Optical Characteristics) taking worst-case values, and applying NO bandwidth filtering ($B / B o=1$):
$P_{N O}=\frac{\left[(0.43)^{2}+(0.03)^{2}\right]^{0.5} \mathrm{mV}}{4.6 \mathrm{mV} / \mu \mathrm{W}}=0.094 \mu \mathrm{~W}$ or -40.3 dBm
To ensure a bit error rate less than 10-9 requires the signal power to be 12 times larger (+11 dB) than the rms noise as referred to the Receiver input. The minimum Receiver input power is then:

$$
P_{\text {RMIN }}=P_{\text {NO }}+11 \mathrm{~dB}=-29.3 \mathrm{dBm}
$$

With the application of a 5 MHz low-pass filter, the bandwidth ratio becomes:

$$
\mathrm{B} / \mathrm{Bo}=5 \mathrm{MHz} / 25 \mathrm{MHz}=0.2
$$

Note that 25 MHz should be used for the total noise bandwidth of the HFBR-2204. Inserting this value of the bandwidth ratio in the expressions for $P_{\text {NO }}$ and $P_{\text {RMIN }}$ above yields the results:

$$
P_{\mathrm{NO}}=0.042 \mu \mathrm{~W} \text { or }-43.8 \mathrm{dBm} \text { and } \mathrm{P}_{\mathrm{RMIN}}=-32.8 \mathrm{dBm}
$$

Given the HFBR-1202 Transmitter optical power $\mathrm{P}_{\mathrm{T}}=$ -18 dBm at $\mathrm{I}_{\mathrm{F}}=40 \mathrm{~mA}$, and allowing a 3 dB margin, a
minimum optical power budget of 11.8 dB is obtained:

$$
[-18 \mathrm{dBm}-3 \mathrm{~dB}-(-32.8 \mathrm{dBm})]=11.8 \mathrm{~dB}
$$

Using $8 \mathrm{~dB} / \mathrm{km}$ optical fiber, this translates into a minimum link length of 1475 metres (typical link power budget for this configuration is approximately 17.2 dB or 3130 metres with $5.5 \mathrm{~dB} / \mathrm{km}$ fiber).

BANDWIDTH

The bandwidth of the HFBR-2204 is typically 25 MHz . Over the entire temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, the rise and fall times vary in an approximately linear fashion with temperature. Under worst case conditions, tr_{r} and tf_{f} may reach a maximum of 26 ns , which translates to a 3 dB bandwidth of:

$$
f_{3 \mathrm{~dB}} \simeq \frac{350}{t_{\mathrm{r}}}=\frac{350}{26 \mathrm{~ns}}=13.5 \mathrm{MHz}
$$

The receiver response is essentially that of a single-pole system, rolling off at 6 dB /octave. In order for the receiver to operate up to 40 MBd even though its worst case 3 dB bandwidth is 13.5 MHz , the received optical power must be increased by 3 dB to compensate for the restricted receiver transmission bandwidth.

PRINTED CIRCUIT BOARD LAYOUT

When operating at data rates above 10 MBd , standard PC board precautions should be taken. Lead lengths greater than 20 mm should be avoided whenever possible and a ground plane should be used. Although transmission line techniques are not required, wire wrap and plug boards are not recommended.

OPERATION WITH HEWLETT-PACKARD TRANSMITTERS

Hewlett-Packard offers two transmitters compatible with the HFBR-2204 Link performance with each transmitter is shown below for $25^{\circ} \mathrm{C}$ operation with HP's $100 / 140 \mu \mathrm{~m}$ glass fiber cable. See product data sheets for further information.

	HFBR-1202 -17 dBm Coupled Optical Power	HFBR-1204 -9.8 dBm Coupled Optical Power
HFBR-2204	1200 m	2100 m
-27 dBm Sensitivity	40 MBd	40 MBd
HFBR-2204	1800 M	2800 M
-32 dBm Sensitivity	10 MBd	10 MBd

HFBR-2204 RECEIVER

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Reference	
Storage Temperature	TS_{S}	-55	85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	Note 9	
Lead Soldering Cycle	Temp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Case Voltage	VCASE		25	V		
Signal Pin Voltage	VSIGNAL	-0.5	1	V		
Supply Voltage	VCC	-0.5	7.0	V		

HFBR-2204 RECEIVER

Electrical/Optical Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \quad 4.75 \leq \mathrm{V}_{C C} \leq 5.25 ; \quad$ RLOAD $=511 \Omega$ unless otherwise specified

Parameter	Symbol	Min.	Typ ${ }^{[4]}$	Max.	Unit	Conditions	Reference
Responsivitity	RP	5.1	7	10.9	$\mathrm{mV} / \mu \mathrm{W}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { at } 820 \mathrm{~nm} \end{aligned}$	Note 10 Figure 3
		4.6		12.3	$\mathrm{mV} / \mu \mathrm{W}$	$-40 \leq T_{A} \leq+85^{\circ} \mathrm{C}$	
RMS Output Noise Voltage	V_{NO}		. 30	. 36	mV	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=0 \mu \mathrm{~W} \end{aligned}$	Figures 4, 7
				. 43	mV	$\begin{aligned} & -40 \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=0 \mu \mathrm{~W} \end{aligned}$	
Peak Input Power	Pr			-12.6	dBm	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Note 2
				55	$\mu \mathrm{W}$		
				-14	dBm	$-40 \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	
				40	$\mu \mathrm{W}$		
Output Impedance	Zo		20		Ω	$\begin{aligned} & \text { Test Frequency = } \\ & 20 \mathrm{MHz} \end{aligned}$	
DC Output Voltage	Vodc		. 7		V	PIN $=0 \mu \mathrm{~W}$	
Power Supply Current	Icc		3.4	6.0	mA	RLOAD $=\infty$	
Equivalent N.A.	NA		. 35				
Equivalent Diameter	DR		250		$\mu \mathrm{m}$		Note 3
Equivalent Optical Noise			-43.7	-40.3	dBm		
Input Power	PN_{N}		. 042	. 094	$\mu \mathrm{W}$		

Dynamic Characteristics

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \quad 4.75 \leq \mathrm{VCC} \leq 5.25 ; \quad$ RLOAD $=511 \Omega$, CLOAD $=13 \mathrm{pF}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[7]}$	Max.	Units	Conditions	Reference
Rise/Fall Time, 10% to 90%	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}$		14	19.5	ns	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{PIN}=10 \mu \mathrm{~W} \text { Peak } \end{aligned}$	Note 5
				26	ns	$-40 \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	Figures 8, 9
Pulse Width Distortion	$\mathrm{tphl}^{-} \mathrm{t}_{\text {plh }}$			2	ns	PiN $=40 \mu$ W Peak	Figure 9
Overshoot			4		\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Note 6 Figures 8, 9
Bandwidth			25		MHz		
Power Supply Rejection Ratio (Referred to Output)	PSRR		50		dB	at 2 MHz	Note 7 Figures 5, 6

Notes:

1. 2.0 mm from where leads enter case.
2. If $\mathrm{Pin}<40 \mu \mathrm{~W}$, then pulse width distortion may increase. At $\mathrm{Pin}=80 \mu \mathrm{~W}$ and $\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$, some units have exhibited as much as 100 ns pulse width distortion.

Notes (cont.):
3. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
4. Typical specifications are for operation at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5.0 \mathrm{~V}$.
5. Input optical signal is assumed to have $10 \%-90 \%$ rise and fall times of less than 6 ns .
6. Percent overshoot is defined as:

$$
\frac{V_{P K}-V_{100} \%}{V_{100} \%} \times 100 \% \quad \text { See Figure } 16
$$

7. Output referred P.S.R.R. is defined as

$$
20 \log \left(\frac{\text { VPOWER SUPPLY RIPPLE }}{\text { VOUT RIPPLE }}\right)
$$

8. It is essential that a bypass capacitor ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic $)$ be connected from pin $4\left(\mathrm{~V}_{c c}\right)$ to pin 3 (circuit common) of the receiver. Total lead length between both ends of the capacitor and the pins should be less than 20 mm .
9. HP's $100 / 140 \mu \mathrm{~m}$ fiber cable is specified at a narrower temperature range, $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
10. $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {ODC }}-(\operatorname{RP} \times \mathrm{PIN})$.

Figure 3. Recelver Spectral Response Normalized to $\mathbf{8 2 0} \mathbf{~ n m}$

Figure 4. Receiver Noise Spectral Density

Figure 5. Receiver Power Supply Rej. vs. Freq.

Figure 6. Power Supply Rejection Test Circuit

Figure 7. RMS Output Noise Voltage Test Circuit

Figure 8. Rise and Fall Time Test Circuit

Figure 9. Waveform Timing Definitions

Figure 10. Mounting Dimensions

SMA STYLE CONNECTORS

TYPE A
(Used in HP's SMA Connectored Cable Assemblies).

Figure 11. Fiber Optic Connector Styles

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support
the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

MOUNTING HARDWARE: HFBR-4202 (HFBR-2204)
1 EMI/ESD SHIELD
1 1/4-36 NUT
1 1/4×. 005 INCH WASHER
2 2-56 SELF TAPPING SCREWS
1 MOUNTING BRACKET

Ordering Guide

Transmitter:	HFBR-1202 (SMA Connector Compatible)
	HFBR-1204 (SMA Connector Compatible)
Receiver:	HFBR-2204 (SMA Connector Compatible)

Mounting
Hardware: HFBR-4202 (SMA Connector Compatible)

PIN PHOTODIODE FIBER OPTIC RECEIVER

Features

- GUARANTEED PERFORMANCE: 60 MHz Bandwidth at 5 V Reverse Bias
Low Capacitance: Less than 1.6 pF 0.29 A/W Minimum Responsivity Low Dark Current: Less than 500 pA
- MATES DIRECTLY WITH SMA STYLE CONNECTORS
- RUGGED, ISOLATED MINIATURE METAL PACKAGE WITH FACTORY ALIGNED OPTICS

Applications

- HIGH SPEED FIBER OPTIC LINKS
- WIDE BANDWIDTH ANALOG FIBER OPTIC LINKS
- HIGH SENSITIVITY, LOW BANDWIDTH LINKS
- OPTICAL POWER SENSOR

Description

The HFBR-2208 Fiber Optic Receiver is a silicon PIN photodiode mounted in a rugged metal package. Well suited for high speed applications, the HFBR-2208 Fiber Optic Receiver has low capacitance and low noise. The high coupling efficiency of the miniature package provides a minimum of 0.29 A/W responsivity. Receiver responsivity includes the optical power lost in coupling light from the fiber onto the PIN photodiode as well as the responsivity of the PIN photodiode itself.
HFBR-2208 mates with SMA style connectors.
The HFBR-2208 is a member of the family of transmitters and receivers which use the miniature package. HP also offers connectored and unconnectored $100 / 140 \mu \mathrm{~m}$ fiber cable in simplex and duplex configurations.

Cross Sectional View

Mechanical Dimensions

HFBR-2208 SMA STYLE COMPATIBLE

DIMENSIONS IN MILLIMETRES (INCHES)

HFBR-2208 PIN PHOTODIODE

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Reference	
Storage Temperature	TS_{S}	-55	85	${ }^{\circ} \mathrm{C}$		
Operating Temperature	T_{A}	-55	85	${ }^{\circ} \mathrm{C}$		
Lead Soldering Cycle	Temp.			260	${ }^{\circ} \mathrm{C}$	Note 1
	Time			10	sec	
Reverse Bias Voltage						
Voltage, Case-to-Junction	V_{R}	-0.5	50	V		

HFBR-2208 PIN PHOTODIODE

Electrical/Optical Characteristics

$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm}$ at 820 nm unless otherwise specified. Typical data at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions		Reference
Effective Optical Port DC Responsivity	Rp	0.29	0.38	0.40	A/W	HP's $100 / 140 \mu \mathrm{~m}$ Fiber$\text { N.A. }=0.3, g=2$		Fig. 1, 2, 3, 8
Dark Current	ID		50	500	pA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} \end{aligned}$	Fig. 4, 9
Noise Equivalent Power	NEP			$\begin{aligned} & 3.4 x \\ & 10^{-14} \end{aligned}$	$\frac{w}{\sqrt{H z}}$			Note 5
Total Capacitance	CT		1.3	1.6	pF			Fig. 5
Series Resistance	RS		5	15	Ω			
Equivalent N.A.	NA		0.4					
Equivalent Diameter	DR		250		$\mu \mathrm{m}$			Note 3
Case Isolation Resistance	Rcase	1			$\mathrm{M} \Omega$	$\mathrm{V}_{\mathrm{C}}=100 \mathrm{~V}$		Note 2, Fig. 9

Dynamic Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{LOAD}}=50 \Omega, \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm}$ at 820 nm unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Reference
3 dB Bandwidth	BW	60	100		MHz	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	Fig. 6,7
		150	250			$\mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V}$	Fig. 10

Notes:

1. 2.0 mm from where leads enter case.
2. $\mathrm{V}_{\mathrm{C}}(100 \mathrm{~V})$ is applied simultaneously to Pin 2 and $\operatorname{Pin} 3$ with respect to Pin 1.
3. D_{R} is the effective diameter of the detector image on the plane of the fiber face. The numerical value is the product of the actual detector diameter and the lens magnification.
4. Rise/Fall time is calculated from the equation:

$$
\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\frac{350}{3 \mathrm{~dB} \mathrm{BW}(\mathrm{MHz})} \mathrm{ns}
$$

5. For $(\lambda, f, \Delta f)=(820 \mathrm{~nm}, 100 \mathrm{~Hz}, 6 \mathrm{~Hz})$ where f is the frequency for a spot noise measurement and Δf is the noise bandwidth, NEP is the optical flux required for unity signal/noise ratio normalized for bandwidth.

Thus:

$$
N E P=\frac{\operatorname{lN} / \sqrt{\Delta f}}{R p}
$$

where $\ln / \sqrt{\Delta f}$ is the bandwidth - normalized noise current computed from the shot noise formula:
$\mathrm{IN} / \sqrt{\Delta f}=\sqrt{2 \mathrm{qID}}=17.9 \times 10^{-15} \sqrt{1 \mathrm{D}}(\mathrm{A} / \sqrt{\mathrm{Hz}})$ where ID is $n A$.
6. Relative incremental response is defined as:

$$
\frac{\Delta R_{P}}{R_{P}} \times 100 \%=\frac{R_{A C}\left(P_{R}\right)-R_{A C}(-25 d B m)}{R_{A C}(-25 d B m)} \times 100 \%
$$

[^35]$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V} ; \mathrm{P}_{\mathrm{R}}=-20 \mathrm{dBm}$ at $820 \mathrm{~nm} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Figure 1. Normalized Responsivity vs. Wavelength

TA - AMBIENT TEMPERATURE - ${ }^{\circ} \mathrm{C}$
Figure 4. Dark Current vs. Ambient Temperature

Figure 2. Normalized Responsivity vs. Ambient Temperature

V_{R} - REVERSE VOLTAGE - V
Figure 5. Capacitance vs. Reverse Voltage

Figure 3. Responsivity vs. Reverse Voltage

Figure 6. 3 dB Bandwidth vs. Reverse Voltage

Figure 7. Normalized Bandwidth vs. Ambient Temperature

Figure 8. Linearity Characteristic vs. Optical Power

Figure 9. Test Set-up

Figure 10. Bandwidth Measurement Set-up

Mechanical Description

The HFBR-2208 fiber optic receivers are housed in rugged metal packages intended for use with the SMA style connectored fiber cables. The low profile package is designed for direct mounting on printed circuit boards or through panels without additional heat sinking. A flat on the mounting threads of the device is provided to prevent rotation in all mounting configurations and to provide an orientation reference for the pin-out. Hardware is available for horizontal mounting applications on printed circuit boards. The hardware consists of a stainless steel mounting bracket fastened directly to the printed circuit board with two stainless steel self-tapping screws and a nut and washer.for fastening the device in the bracket. A metal
shield which snaps directly on the mounting bracket is also available for unusually severe EMI/ESD environments. When mounted in the horizontal configuration, the overall height of the component conforms with guidelines allowing printed circuit board spacing on $12.7 \mathrm{~mm}(0.500)$ centers. A thorough environmental characterization has been performed on these products. The test data as well as information regarding operation beyond the specified limits is available from any Hewlett-Packard sales office.
Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air often is sufficient to remove particles of dirt; methanol or Freon ${ }^{\text {TM }}$ on a cotton swab also works well.

Horizontal PCB Mounting

Mounting at the edge of a printed circuit board with the lock nut overhanging the edge is recommended.
When bending the leads, avoid sharp bends right where the lead enters the backfill. Use needle nose pliers to support the leads at the base of the package and bend the leads as desired.

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean.

Application Information

NOISE FREE PROPERTIES

The noise current of the HFBR-2208 is negligible. This is a direct result of the exceptionally low leakage current, in accordance with the shot noise formula $l_{N}=\left(2 q l_{D} \Delta f\right)^{1 / 2}$. Since the leakage current does not exceed 500 picoamps at a reverse bias of 20 volts, shot noise current is less than $9.8 \times 10^{-15} \mathrm{amp} \mathrm{Hz}-1 / 2$ at this voltage.
Excess noise is also very low, appearing only at frequencies below 10 Hz , and varying approximately as $1 / \mathrm{f}$. When the output of the diode is observed in a load, thermal noise of the load resistance $\left(R_{L}\right)$ is $1.28 \times 10^{-10}\left(R_{L}\right)^{-1 / 2} \times(\Delta f)^{1 / 2}$ at $25^{\circ} \mathrm{C}$, and far exceeds the diode shot noise for load resistance less than 100 megohms. Thus in high frequency operation where low values of load resistance are required for high cut-off frequency, the HFBR-2208 contributes virtually no noise to the system.

HIGH SPEED PROPERTIES

High speed operation is possible since the HFBR-2208 has low capacitance and wide bandwidth at a low reverse bias.

Figure 11. Photodiode Equivalent Circuit

Is = Signal current $\approx 0.38 \mu \mathrm{~A} / \mu \mathrm{W} \times \mathrm{PR}$
$\mathrm{I}_{\mathrm{N}}=$ Shot noise current
$<9.8 \times 10^{-15} \mathrm{amps} / \mathrm{Hz}^{1 / 2}$
ID $=$ Dark current
$<500 \times 10^{-12} \mathrm{amps}$ at 20 V dc bias
Rp $=10^{11} \Omega$
$R_{S}=<50 \Omega$

LINEAR OPERATION

Operation of the photodiode is most linear when operated with a current amplifier as shown in Figure 12.

Figure 12. Linear Operation

Lowest noise is obtained with $\mathrm{E}_{\mathrm{C}}=0$. but higher speed and wider dynamic range are obtained if $5<\mathrm{E}_{\mathrm{C}}<20$ volts. The amplifier should have as high an input resistance as possible to permit high loop gain. If the photodiode is reversed, bias should also be reversed.

HFBR-2208 RECEIVER
1.95 (.078) DIA. HOLES ACCEPT A

2-56 SELF TAPPING SCREW

RECEIVER PCB LAYOUT DIMENSIONS

SMA STYLE CONNECTORS
TYPE B
(Type B is not available from HP)

DIMENSIONS IN MILLIMETRES (INCHES).

Ordering Guide

Receivers: HFBR-2208 (SMA Connector Compatible)

Transmitters: HFBR-1202
HFBR-1204 (see data sheets)

Mounting \quad HFBR-4202 (SMA Connector Compatible)
Hardware:

SMA STYLE CONNECTORS

TYPE A
(Used on HP's $100 / 140 \mu \mathrm{~m}$ fiber optic cable)

Fiber Optic Cable

Hewlett-Packard offers connectored or unconnectored 100/140 $\mu \mathrm{m}$ fiber cables in simplex or duplex configurations. See data sheets for details.

1300 nm General Purpose Transmitter and Receiver

Technical Data

Features

- Data Rates from 10 MBd to 200 MBd
- Link Lengths of 2 km at 200 MBd
- Single +5 V Power Supply
- Shifted ECL Logic Interface
- High Immunity to EMI/ RFI and ESD
- High Reliability
- ST ${ }^{\text {© }}$ Style Fiber Optic Connector
- Multiple Sources of Supply
- Directly Compatible with TAXIchip ${ }^{\text {TM }} * *$ Encode/ Decode Circuits

Applications

- General Purpose Serial Data Links with Encoded Data Rates of $\mathbf{1 0} \mathbf{~ M B d}$ to 200 MBd
- Multimode Telecommunication Links at T3, and T3C Rates
- SONET Multimode Links at STS-1 and STS-3c Rates
- High Speed Computer to Disc or Tape Memory Interconnects
- Proprietary Local Area Networks
- High Speed Multiplexer Interconnects
- Digital Graphics and Digital Video Transmission Links

Description

The general purpose transmitter and receiver products described in this data sheet are members of a growing family of 1300 nm technology fiber optic products available from Hewlett-Packard. These products supply the performance necessary for the system designer who seeks to develop data links using multimode fiber that will have distance capability beyond that obtainable with first window (820 nm wavelength) products. Link lengths of 2000 meters are possible at 200 MBd data rates with margin to spare for in-line connection losses. Longer distances are possible depending on data rate and the number of in-line connections. The performance of both the transmitter and receiver

Transmitter HFBR-1100 Transmitter HFBR-1160 Receiver HFBR-2100

products are guaranteed over the operating temperature and power supply voltage ranges found in most commercial equipment with sufficient margin to allow for substantial equipment mission-life and configuration flexibility.

Hewlett-Packard is a vertically integrated supplier. The 1300 nm LED and PIN devices along with the three custom bipolar integrated circuits(ICs) used in these products have been developed and manufactured by Hewlett-Packard. The assembly and testing of the transmitter and receiver products is performed in facilities wholly owned and operated by HewlettPackard.

[^36]**TAXIchip ${ }^{\text {TM }}$ is a trademark of Advanced Micro Devices, Inc.

Figure 1. Outline Drawing.

Transmitters - HFBR-1100 and HFBR-1160
The transmitters use a 1300 nm InGaAsP LED and a single, custom silicon bipolar LED driver integrated circuit. The LED is an advanced planar device with an integral etched lens that provides efficient coupling to multimode fibers when combined with the Hewlett-Packard custom optical subassembly. The driver circuit provides temperature compensation for a predictable output optical power over the recommended operating temperature range. It also maintains a steady power supply current due to internal loads which conduct the LED drive current when logic " 0 s " are being transmitted to
minimize creation of high frequency noise on power supply lines. The data input to the transmitter is differential, 100 K ECL compatible, referenced (shifted) to operate from a +5 volt supply. The HFBR-1100 is specified to operate from dc to 200 MBd and the HFBR-1160 is specified from dc to 160 MBd .

Receiver - HFBR-2100

The receiver uses a 1300 nm InGaAs PIN photodiode and two custom silicon bipolar integrated circuits. The PIN is a planar top-illuminated device which provides ease of assembly into the Hewlett-Packard custom optical subassembly. The preamplifier IC is mounted in the optical subassembly with the PIN detector to maximize
the receiver sensitivity. This sensitivity is guaranteed over a wide time-window in the data output eye-pattern. This assures performance with various clock recovery circuitry. The second IC, a quantizer, provides the final pulse shaping for the logic output and the Signal Detect functions. Both the data and Signal Detect logic outputs are differential, 100 K ECL compatible, referenced (shifted) to a +5 volt power supply. The HFBR-2100 is specified for operation from 10 to 200 MBd and is compatible with both the HFBR-1100 and HFBR-1160 transmitters.

NOTE: THE CASE IS INTERNALLY CONNECTED TO SIGNAL GROUND PINS.

Figure 2. Pin Assignments.

Package

The overall package concept for the Hewlett-Packard general purpose transmitter and receiver products consists of three basic elements: the optical subassembly, the electrical subassembly, and the overall housing and connector port. The objective of the design is to provide consistent optoelectronic performance in commercial equipment environments over extended equipment mission-lifetimes.

The optical subassembly contains either the 1300 nm LED or the 1300 nm PIN and preamplifier devices in a hermetic enclosure which is actively aligned to a GRIN rod optical element in the precision stainless steel ferrule-bore. This active alignment provides optimal optical performance for both the transmitters and the receiver. The precision stainless steel bore assures that the $\mathrm{ST}^{\text {® }}$ connector ferrule tip containing the fiber will be precisely positioned relative to the focal point of the optics.

The electrical subassembly is a multilayer, ceramic substrate containing the driver or quantizer integrated circuits along with various surfacemounted passive components. This multilayer substrate provides optimum electrical performance with good noise immunity and noise emission suppression.

The housing and connector port are die-cast zinc with nickel plating. Zinc is used for its excellent thermal conductivity which maintains the junction temperatures of the active semiconductors at the lowest levels possible for high reliability and long mission-life. The optical subassembly with its precision stainless steel connector ferrule bore fits into the $\mathrm{ST}^{\text {® }}$ style bayonet connector port. The electrical and optical subassembly signal grounds are connected to the zinc housing for maximum shielding. The electrical and optical subassemblies are mounted into the zinc housing and epoxy sealed for environmental protection. The optical port is protected with an easily removable, high temperature, vinyl cap for protection from contamination during assembly onto circuit boards and shipment to the end-user site.

Figure 3. Block Diagrams.

Application Assistance

The Applications Engineering group in the Hewlett Packard Optical Communication Division is available to assist with the analysis of the performance of these products within a given circuit design. The effects of various dataencoding schemes and cable plants can be analyzed to predict the system performance for a particular data link.

Assistance is also available to obtain the best performance from these parts with appropriate board layout techniques for these high signaling rates. Figure 8 provides a good example of a decoupling scheme that works well with these products. Contact your local Hewlett-Packard sales representative to obtain this assistance.

Product Reliability Data

Various environmental and life tests have been performed on these products and these tests are ongoing. Contact your local Hewlett-Packard sales representative to obtain copies of the summaries of these test results as they become available.
ST ${ }^{}$ is a registered trademark of AT\&T for Lightguide Cable Connectors

General Purpose Transmitter and Receiver

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Storage Temperature	T_{s}	-40		100	${ }^{\circ} \mathrm{C}$	
Operating Temperature-Ambient	T_{A}	-10		80	${ }^{\circ} \mathrm{C}$	Note 1
Lead Soldering Temperature	$\mathrm{T}_{\text {soLD }}$			270	${ }^{\circ} \mathrm{C}$	
Lead Soldering Time	$\mathrm{t}_{\text {soLD }}$			4	sec.	
Supply Voltage	V_{cc}	-0.5		7.0	V	Note 2
Data Input Voltage	V_{I}	-0.5		Vec	V	
Differential Input Voltage	V_{D}			1.4	V	Note 3
Output Current	I_{o}			50	mA	Note 4

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Operating Temperature-Ambient	T_{A}	0		70	${ }^{\circ} \mathrm{C}$	Note 1
Supply Voltage	V_{CC}	4.75		5.25	V	Note 2
Supply Voltage - ECL Driver	$\mathrm{V}_{\mathrm{CCA}}$	4.75		5.25	V	Note 2
Supply Voltage - PIN	V_{PD}	4.75		5.25	V	Note 2
Data Input Voltage - Low	$\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{CC}}$	-1.810		-1.475	V	
Data Input Voltage - High	$\mathrm{V}_{\mathrm{HH}}-\mathrm{V}_{\mathrm{CC}}$	-1.165		-0.880	V	
Data Input Current - Low	I_{H}	-350			$\mu \mathrm{~A}$	
Data Input Current - High	I_{HH}			350	$\mu \mathrm{~A}$	
Data and Signal Detect Output Load	R_{L}		50		Ω	Note 5
Signaling Rate						
HFBR-1100/2100	f_{S}	10		200	MBd	Note 6, Figures 4, 5
HFBR-1160/2100	f_{S}	10		160	MBd	Note 6, Figure 4

General Purpose Transmitter

General Purpose Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Supply Current	I_{CC}		220	270	mA	Note 7
Power Dissipation	$\mathrm{P}_{\text {DIss }}$		1.1	1.4	W	
Threshold Voltage	$\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{CC}}$	-1.420		-1.240	V	Note 8

General Purpose Transmitter Optical Characteristics
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V)

Parameter	Sym.	Min.	Typ.	Max.	Unit	Reference
```Output Optical Power HFBR-1100 \(62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.275\) Fiber \(50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.20\) Fiber```	$\begin{aligned} & \mathrm{P}_{\mathrm{o}} \\ & \mathrm{P}_{\mathrm{o}} \\ & \hline \end{aligned}$	-19	$\begin{array}{r} -16 \\ -20 \\ \hline \end{array}$	-14	dBm avg dBm avg	Note 9   Note 10
$\begin{aligned} & \text { HFBR- } 1160 \\ & 62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.275 \text { Fiber } \\ & 50 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.20 \text { Fiber } \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{o}} \\ & \mathrm{P}_{\mathrm{o}} \\ & \hline \end{aligned}$	-19	$\begin{aligned} & -16 \\ & -20 \end{aligned}$	-14	dBm avg dBm avg	Note 11   Note 10
Output Optical Power Temperature Coefficient	$\frac{\Delta \mathrm{P}_{\mathrm{o}}}{\Delta \mathrm{~T}}$		-0.015	-0.02	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	
Optical Extinction Ratio			$\begin{aligned} & \hline 0.01 \\ & -40 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ -20 \\ \hline \end{gathered}$	$\begin{gathered} \% \\ \text { dB } \end{gathered}$	Note 12
Center Wavelength	$\lambda_{\text {c }}$	1260	1300	1380	nm	Note 13
Spectral Width - FWHM	$\Delta \lambda$		130	170	nm	Note 14
Optical Rise Time HFBR-1100	$\mathrm{t}_{\mathrm{r}}$		1.2	2.5	ns	Note 15
HFBR-1160	$\mathrm{t}_{\mathrm{r}}$		1.2	3.1	ns	Note 15
Optical Fall Time   HFBR-1100	$\mathrm{t}_{\mathrm{f}}$		2.3	2.5	ns	Note 15
HFBR-1160	$\mathrm{t}_{\mathrm{f}}$		2.3	3.1	ns	Note 15
Duty Cycle Distortion	DCD		0.10	0.35	ns pk-to-pk	Note 16
Data Dependent Jitter	DDJ		0.05	0.25	ns pk-to-pk	Note 17

## General Purpose Receiver

General Purpose Receiver Optical Characteristics
( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cC}}=4.75 \mathrm{~V}$ to 5.25 V )

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Input Optical Power   Minimum at Window   Edge	$\mathrm{P}_{\text {IN Min (W) }}$		-34	-30.5	dBm avg	Note 18   Figures 5, 6
Minimum at Center   Maximum $\mathrm{P}_{\text {IN Min (C) }}$		-35.5	-32.0	dBm avg	Note 19   Figures 4, 5, 6	
Operating Wavelength	$\mathrm{P}_{\text {IN Max }}$	-14.5	-13		dBm avg	Note 19
Signal Detect   Asserted	1260		1380	nm		
Deasserted	$\mathrm{P}_{\mathrm{A}}$	$\mathrm{P}_{\mathrm{D}}+1.5 \mathrm{~dB}$	-34.5	-32	dBm avg	Note 20   Figure 7
Hysteresis	$\mathrm{P}_{\mathrm{D}}$	-45	-37		dBm avg	Note 21   Figure 7

## General Purpose Receiver

General Purpose Receiver Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Supply Current	$\mathrm{I}_{\mathrm{cc}}$		70	100	mA	Note 22
Supply Current	$\mathrm{I}_{\mathrm{CCA}}$		30	40	mA	Note 22
Supply Current - PIN DIODE	$\mathrm{I}_{\mathrm{PD}}$		35	500	$\mu \mathrm{A}$	Note 23
Power Dissipation	$\mathrm{P}_{\text {DISS }}$		0.3	0.5	W	Note 24
Data Output Voltage - Low	$\mathrm{V}_{\mathrm{oL}}-\mathrm{V}_{\mathrm{cc}}$	-1.840		-1.620	V	Note 25
Data Output Voltage - High	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{cc}}$	-1.045		-0.880	V	Note 25
Data Output Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.35	0.7	1.3	ns	Note 26
Data Output Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.35	0.7	1.3	ns	Note 26
Duty Cycle Distortion	DCD		0.15	0.4	ns pk-to-pk	Note 27
Data Dependent Jitter	DDJ		0.40	1.0	ns pk-to-pk	Note 28
Signal Detect						
Output Voltage - Low	$\mathrm{V}_{\text {OL }}-\mathrm{V}_{\text {cc }}$	-1.840		-1.620	V	Note 25
Output Voltage - High	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{CC}}$	-1.045		-0.880	V	Note 25
Output Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.35	1.0	1.6	ns	Note 29
Output Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.35	1.0	1.6	ns	Note 29
Assert Time (off to on)	$\mathrm{t}_{\text {sD-ON }}$	0	75	150	$\mu \mathrm{s}$	Note 20 Figure 7
Deassert Time (on to off)	$\mathrm{t}_{\text {SD. } \text {-FF }}$	0	190	350	$\mu \mathrm{s}$	Note 21 Figure 7

## Notes:

1. This maximum rating applies to still air environments around the transmitter and the receiver.
2. When component testing these products all supply voltages should be applied simultaneously to avoid damage to the part.
3. This is the maximum voltage that can be applied across the Differential Transmitter Data Inputs to prevent damage to the input ESD protection circuit.
4. When component testing these products do not short the receiver data or signal detect outputs directly to ground to avoid damage to the part.
5. The outputs are terminated with 50 ohms connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$.
6. The specified signaling rate guarantees operation of the transmitter and receiver link to the full conditions described in the Electrical and Optical Characteristics sections. Specifically, the link bit error ratio will be equal to or better than $10^{-12}$ for pseudo-random-bit-sequences (PRBS) of $2^{7}$ 1 data patterns with a $50 \%$ duty factor. The HFBR-1100 transmitter is capable of dc to 200 MBd operation. The HFBR-1160 is capable of operation from dc to 160 MBd. The HFBR-2100 receiver is internally ac-coupled which limits the lower signaling rate to 10 MBd . For purposes of definition, the symbol rate $f_{s}$ (Baud), also called signaling rate, is the reciprocal of the shortest symbol time. Data rate (bits $/ \mathrm{sec}$ ) is the symbol rate divided by the encoding factor used to encode the data (symbols/bit).
7. The power supply current needed to operate the transmitter is provided to differential ECL circuitry. This circuitry maintains a nearly constant current flow from the power supply. Constant current operation helps to prevent unwanted electrical noise from being generated, whether the noise is conducted or emitted, to neighboring receiver or logic circuitry.
8. This value is measured with an output load $\mathrm{R}_{\mathrm{L}}=10$ kohms.
9. These optical power values are measured with the following conditions;

- At the Beginning Of Life (BOL).
- Over the specified operating voltage and temperature ranges.
- With a data input of 200 MBd ( 100 MHz ) square wave.
- At the end of one meter of noted optical fiber with cladding modes removed.
- The average power value can be converted to a peak power value by adding 3 dB .
- Higher output optical power transmitters are available on special request.

10. This transmitter is available on special request with coupled optical power guaranteed into $50 / 125 \mu \mathrm{~m}$ fiber cables. The value will depend on the specific NA of the $50 / 125 \mu \mathrm{~m}$ fiber used.
11. These optical power values are measured with the following conditions;

- At the Beginning Of Life (BOL).
- Over the specified operating voltage and temperature ranges.
- With a data input of 160 MBd
( 80 MHz ) square wave.
- At the end of one meter of noted optical fiber with cladding modes removed. The average power value can be converted to a peak power value by adding 3 dB . Higher output optical power transmitters are available on special request.

12. This value of Optical Extinction Ratio is the ratio of the steady state optical power in the logic-low state to the steady state optical power in the logic-high state.
13. The temperature coefficient of the center wavelength is typically $+0.37 \mathrm{~nm} /{ }^{\circ} \mathrm{C}$.
14. The temperature coefficient of the spectral width is typically $+0.25 \mathrm{~nm} /{ }^{\circ} \mathrm{C}$.
15. The optical rise and fall times are measured from $10 \%$ to $90 \%$ when the transmitter is driven by 12.5 MHz square wave data input.
16. Duty Cycle Distortion is measured at a $50 \%$ threshold using a 200 MBd ( 100 MHz ) square wave input signal. The input optical power level is -20 dBm average.
17. Data Dependent Jitter is specified with a $2^{7}-1$ PRBS input signal at 200 MBd . The input optical power level is -20 dBm average.
18. The Input Optical Power range from -31 dBm average to -14 dBm average is the range over which the receiver is guaranteed to provide a Data Output with a Bit Error Rate (BER) better than or equal to $1 \times 10^{-12}$. The measurement conditions are stated below.

- At the Beginning Of Life (BOL).
- Over the specified operating temperature and voltage ranges.
- Input symbol pattern is $2^{7}-1$ PRBS at 200 MBd .
- Sampled over the range from the center of the symbol $\pm 1.0 \mathrm{~ns}$.
- Input optical signal rise/fall times are approximately $1 \mathrm{~ns} / 2 \mathrm{~ns}$.

19. All conditions of Note 18 apply except that the measurement is made at the center of the symbol with no window time-width.
20 . This value is measured during the transition from low to high levels of input optical power.
20. This value is measured during the transition from high to low levels of input optical power.
21. These values are measured with the outputs terminated into 50 ohms connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$.
22. Measured at $P_{I N}=-14 \mathrm{dBm}$ average.
23. The power dissipation value is the power dissipated in the receiver itself. Power dissipation is calculated as the sum of the products of supply voltage and supply currents, minus the sum of the products of the output voltages and currents.
24. These values are measured with respect to $\mathrm{V}_{\text {cc }}$ with the output terminated into 50 ohms connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$. The minimum values are corrected for +5.25 V operation for 100 K ECL values that are usually specified at -4.8 V operation.
25. The output rise and fall times are measured between $20 \%$ and $80 \%$ levels with the output connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$ through 50 ohms.
26. Duty Cycle Distortion is measured at a $50 \%$ threshold using a 200 $\operatorname{MBd}(100 \mathrm{MHz})$ square wave input signal. The input optical power level is -20 dBm average.
27. Data Dependent Jitter is specified with a $2^{7}-1$ PRBS input signal at 200 MBd . The input optical power level is -20 dBm average.
28. The output rise and fall times are measured between $20 \%$ and $80 \%$ levels with the output connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$ through 50 ohms.


CONDITIONS:

1. $P_{\text {IN }}$ NORMALIZED $\left(~ \Delta P_{\text {IN }}=0 \mathrm{~dB}\right)$ TO $P_{\text {IN } \operatorname{Min}}(C)$ AT 200 MBd AT CENTER OF SYMBOL.
2. $\Delta P_{\text {IN }}=P_{\text {IN }} @$ MBd - $P_{\text {IN }} @ 200 \mathrm{MBd}$
3. $\triangle P_{I N}=P_{\text {IN }} @$ MBd - PIN @ 200 MBd
4. TEST DATA PATTERN IS PRBS $2^{7}-1$.
5. TEST DATA
6. BER $=10^{-12}$
7. $\mathrm{BER}^{2}=10^{-12}$
8. $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.
9. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
10. $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{Vdc}$
11. $V_{c c}=5 \mathrm{Vdc}$
12. INPUT OPTICAL RISE/FALL TIMES $=1.2 \mathrm{~ns} / 2.3 \mathrm{~ns}$

Figure 4. Relative Input Optical Power vs. Signaling Rate.


## CONDITIONS:

1. PIN IS NORMALIZED ( $\Delta \mathrm{P}_{\text {IN Min }}$ (C) AT CENTER OF SYMBOL.
2. $\Delta P_{\text {IN }}=P_{\text {IN }} @ t_{\text {s }}-P_{\text {IN }} @ t_{\text {center }}$
3. TEST DATA PATTERN IS PRBS 2.7-1@ 200 MBd
4. $B E R=10^{-12}$
5. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
6. $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{Vdc}$
7. INPUT OPTICAL RISE/FALL TIMES $=1.2 \mathrm{~ns} / 2.3 \mathrm{~ns}$

Figure 6. Relative Input Optical Power vs. Sampling Time Position.


## CONDITIONS:

1. $P_{\text {IN }}$ IS NORMALIZED $\left(\Delta P_{\text {IN }}=0 \mathrm{~dB}\right)$ TO $P_{\text {IN } \operatorname{Min}}(w)$ WITH BER $=10^{-12}$ AND WINDOW TIME-WIDTH OF $\pm 1.0 \mathrm{~ns}$ EITHER SIDE OF SYMBOL CENTER. 2. $\Delta P_{\text {IN }}=P_{\text {IN }} @$ BER $-P_{\text {IN }} @ 10^{-12}$ BER
2. $\Delta P_{\text {in }}=P_{\text {in }} @$ BER - $P_{\text {in }} @ 10^{-12}$ BER
3. 200 MBd TEST DATA PATTERN IS PRBS $2^{-7}-1$
4. 200 MBd
5. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
6. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
7. $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}$
8. INPUT OPTICAL RISE/FALL TIMES $=1.2 \mathrm{~ns} / 2.3 \mathrm{~ns}$

Figure 5. Typical Bit Error Rate vs. Relative Input Optical Power.

Figure 7. Signal Detect Thresholds and Timing.


RESISTORS IN OHMS. CAPACITORS IN MICROFARADS. INDUCTORS IN MICROHENRIES.
5. USE HIGH-FREQUENCY MONOLITHIC CERAMIC BYPASS CAPACITORS AND LOW SERIES dc

RESISTANCE INDUCTORS. FERRITE INDUCTORS CAN BE USED. LOCATE POWER SUPPLY FILTER RESISTANCE INDUCTORS. FERRITE INDUCTORS
COMPONENTS CLOSE TO FIBER OPTIC DEVICES. CAUTION: DO NOT DIRECTLY CONNECT FIBER OPTIC MODULE ECL OUT
DETECT, SIGNAL DETECT) TO GROUND WITHOUT PROPER CURRENT LIMITING IMPEDANCE.
ALL POWER SUPPLY VOLTAGES FOR THE FIBER OPTIC RECEIVER OR TRANSMITTER SHOULD BE
APPLIED SIMULTANEOUSLY TO PREVENT POSSIBLE DAMAGE TO THE DEVICE.
8. DEVICE GROUND PINS SHOULD BE DIRECTLY AND INDIVIDUALLY CONNECTED TO GROUND.

Figure 8. Recommended Decoupling Circuit Diagram.

# 1300 nm FDDI Transmitter and Receiver 

Technical Data

## Features

- Full Compliance with FDDI PMD Standard Performance Requirements
- Single +5 V Power Supply
- Shifted ECL Logic Interface Directly Compatible with FDDI PHY Integrated Circuits
- Directly Compatible with TAXIChip ${ }^{\text {TM }}$ * Encode/ Decode Circuits
- High Reliability
- ST ${ }^{\text {B** }}$ Style Fiber Optic Connector
- High Immunity to EMI/RFI and ESD


## Applications

- FDDI Single or Dual Attachment Stations
- FDDI Bridges, Routers and Concentrators
- FDDI Backbone Servers
- FDDI Workstations
- FDDI Stations With Internal Optical Bypass Switches to Minimize Board Space
- FDDI Stations With Packaging That Does Not Allow The Use of The FDDI Media Interface Connector (MIC)
- Non-FDDI Proprietary Data Links


## Description

The FDDI $\dagger$ transmitter and receiver described in this data sheet are members of a growing family of 1300 nm technology fiber optic products available from Hewlett-Packard. These FDDI transmitter and receiver products supply the performance necessary for the system designer who seeks to develop equipment with fully compliant FDDI interfaces per the FDDI Physical Layer Medium
Dependent (PMD) standard. The performance of both the transmitter and receiver are guaranteed over the operating temperature and power supply voltage ranges found in most commercial equipment with sufficient margin over the FDDI

Transmitter HFBR-1125 Receiver HFBR-2125


PMD requirements to allow for substantial equipment missionlife and configuration flexibility.

Hewlett-Packard is a vertically integrated supplier. The 1300 nm LED and PIN devices along with the three custom bipolar integrated circuits (ICs) used in these products have been developed and manufactured by Hewlett-Packard. The assembly and testing of the transmitter and receiver products is performed in facilities wholly owned and operated by Hewlett-Packard.

[^37]

Figure 1. Outline Drawing.

## Transmitter - HFBR-1125

 The HFBR-1125 transmitter uses a 1300 nm InGaAsP LED and a single, custom silicon bipolar LED driver integrated circuit. The LED is an advanced planar device with an integral etched lens that provides efficient coupling to multimode fibers when combined with the Hewlett-Packard custom optical subassembly. The driver circuit provides temperature compensation for a predictable output optical power over the recommended operating temperature range. It also maintains a steady power supply current due to internal loads which conduct the LEDdrive current when logic "0s" are being transmitted to minimize creation of high frequency noise on power supply lines. The data input to the transmitter is differential, 100 K ECL compatible, referenced (shifted) to operate from $a+5$ volt supply.

## Receiver - HFBR-2125

The HFBR-2125 receiver uses a 1300 nm InGaAs PIN photodiode and two custom silicon bipolar integrated circuits. The PIN is a planar top-illuminated device which provides ease of assembly into the Hewlett-Packard custom optical subassembly. The preamplifier IC is mounted in
the optical subassembly with the PIN detector to maximize the receiver sensitivity. This sensitivity is guaranteed over a wide time-window in the data output eye-pattern. This assures performance with the clock recovery circuit when any possible FDDI input optical signal condition exists. The second IC, a quantizer, provides the final pulse shaping for the logic output and the Signal Detect function. Both the data and Signal Detect logic cutputs are differential, 100 K ECL compatible, referenced (shifted) to $a+5$ volt power supply.

note: THE CASE IS INTERNALLY CONNECTED TO SIGNAL GROUND PINS.

Figure 2. Pin Assignments.

## Package

The overall package concept for the Hewlett-Packard FDDI transmitter and receiver consists of three basic elements: the optical subassembly, the electrical subassembly and the overall housing and connector port. The objective of the design is to provide consistent optoelectronic performance in commercial equipment environments over extended equipment mission-lifetimes.

The optical subassembly contains either the 1300 nm LED or the 1300 nm PIN and preamplifier devices in a hermetic enclosure which is actively aligned to a GRIN rod optical element in the precision stainless steel ferrule-bore. This active alignment provides optimal optical performance for both the transmitter and receiver. The precision stainless steel bore assures that the $\mathrm{ST}^{\star}$ connector ferrule tip containing the fiber will be precisely positioned relative to the focal point of the optics.

The electrical subassembly is a multilayer, ceramic substrate containing the driver or quantizer integrated circuits along with various surfacemounted passive components. This multilayer substrate provides optimum electrical performance with good noise immunity and noise emission suppression.

The housing and connector port are die-cast zinc with nickel plating. Zinc is used for its excellent thermal conductivity which maintains the junction temperatures of the active semiconductors at the lowest levels possible for high reliability and long mission-life. The optical subassembly with its precision stainless steel connector ferrule bore fits into the $\mathbf{S T}^{\infty}$ style bayonet connector port. The electrical and optical subassembly signal grounds are connected to the zinc housing for maximum shielding. The electrical and optical subassemblies are mounted into the zinc housing and epoxy sealed for environmental protection. The optical port is protected with an easily removable, high temperature, vinyl cap for protection from contamination during assembly onto circuit boards and shipment to the end-user site.


Figure 3. Block Diagrams.

## Application Assistance

The Applications Engineering group in the Hewlett Packard Optical Communication Division is available to assist with the analysis of the performance of these products within a given circuit design. The effects of various data-encoding schemes and cable plants can be analyzed to predict the system performance for a particular data link.

Assistance is also available to obtain the best performance from these parts with appropriate board layout techniques for these high signaling rates. Figure 10 provides a good example of a decoupling scheme that works well with these products. Contact your local Hewlett-Packard sales representative to obtain this assistance.

## Product Reliability Data

Various environmental and life tests have been performed on these products and these tests are ongoing. Contact your local Hewlett-Packard sales representative to obtain copies of the summaries of these test results as they become available.

## FDDI Transmitter and Receiver

## Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Storage Temperature	$\mathrm{T}_{\mathrm{s}}$	-40		100	${ }^{\circ} \mathrm{C}$	
Operating Temperature-Ambient	$\mathrm{T}_{\mathrm{A}}$	-10		80	${ }^{\circ} \mathrm{C}$	Note 1
Lead Soldering Temperature	$\mathrm{T}_{\text {sold }}$			270	${ }^{\circ} \mathrm{C}$	
Lead Soldering Time	$\mathrm{t}_{\text {soLD }}$			4	sec.	
Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	-0.5		7.0	V	Note 2
Data Input Voltage	$\mathrm{V}_{\mathrm{I}}$	-0.5		$\mathrm{~V}_{\mathrm{cc}}$	V	
Differential Input Voltage	$\mathrm{V}_{\mathrm{D}}$			1.4	V	Note 3
Output Current	$\mathrm{I}_{\mathrm{o}}$			50	mA	Note 4

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Operating Temperature-Ambient	T ${ }_{\text {A }}$	0		70	${ }^{\circ} \mathrm{C}$	Note 1
Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	4.75		5.25	V	Note 2
Supply Voltage - ECL Driver	$\mathrm{V}_{\mathrm{cca}}$	4.75		5.25	V	Note 2
Supply Voltage - PIN	$\mathrm{V}_{\mathrm{PD}}$	4.75		5.25	V	Note 2
Data Input Voltage - Low	$\mathrm{V}_{\mathrm{LL}}-\mathrm{V}_{\mathrm{cc}}$	-1.810		-1.475	V	
Data Input Voltage - High	$\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{cc}}$	-1.165		-0.880	V	
Data Input Current - Low	$\mathrm{I}_{\mathrm{L}}$	-350			$\mu \mathrm{A}$	
Data Input Current - High	$\mathrm{I}_{\mathrm{H}}$			350	$\mu \mathrm{A}$	
Data and Signal Detect Output Load	$\mathrm{R}_{\mathrm{L}}$		50		$\Omega$	Note 5
Signaling Rate	$\mathrm{f}_{\mathrm{s}}$	10		125	MBd	Note 6   Figures 4, 5

## FDDI Transmitter

FDDI Transmitter Electrical Characteristics
( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V )

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Supply Current	$\mathrm{I}_{\mathrm{cC}}$		220	270	mA	Note 7
Power Dissipation	$\mathrm{P}_{\mathrm{DISs}}$		1.1	1.4	W	
Threshold Voltage	$\mathrm{V}_{\mathrm{BB}}-\mathrm{V}_{\mathrm{cC}}$	-1.420		-1.240	V	Note 8

FDDI Transmitter Optical Characteristics
( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V )

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Output Optical Power   $62.5 / 125 \mu \mathrm{~m}$, NA $=0.275$ Fiber	$\mathrm{P}_{\mathrm{o}}$	-18.5	-16	-14	dBm avg	Note 9
$50 / 125 \mu \mathrm{~m}$, NA = 0.20 Fiber	$\mathrm{P}_{\mathrm{o}}$		-20		dBm avg	Note 9, 10
Output Optical Power   Temperature Coefficient	$\frac{\Delta \mathrm{P}_{\mathrm{o}}}{\Delta \mathrm{T}}$		-0.015	-0.02	$\mathrm{~dB} /{ }^{\circ} \mathrm{C}$	
Optical Extinction Ratio			.01   -40	10   -10	$\%$   dB	Note 11
Center Wavelength	$\lambda_{\mathrm{c}}$	1270	1300	1380	nm	Note 12   Figure 6
Spectral Width - FWHM	$\Delta \lambda$		130	170	nm	Note 13   Figure 6
Optical Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.6	2.1	3.5	ns	Note 14   Figures 6, 7
Optical Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.6	2.7	3.5	ns	Note 14   Figures 6, 7
Duty Cycle Distortion	DCD		0.07	0.6	ns pk-to-pk	Note 15
Data Dependent Jitter	DDJ		0.20	0.6	ns pk-to-pk	Note 16
Random Jitter	RJ		0.01	0.69	ns pk-to-pk	Note 17

## FDDI Receiver

## FDDI Receiver Optical Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}$ to 5.25 V )

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Input Optical Power   Minimum at Window Edge	$\mathrm{P}_{\text {IN Min }}(\mathrm{W})$					
Minimum at Center	$\mathrm{P}_{\text {IN Min }}(\mathrm{C})$		-35.3	-32.1	dBm avg	Note 18   Figure 8
Maximum	$\mathrm{P}_{\text {IN Max }}$	-14	-13		dBm avg	Note 19
Operating Wavelength	$\lambda$	1270		1380	nm	
Signal Detect   Asserted   Deasserted   Hysteresis$\quad \mathrm{P}_{\mathrm{A}}$	$\mathrm{P}_{\mathrm{D}}+1.5 \mathrm{~dB}$	-36.2	-33.5	dBm avg	Note 20, 31   Figure 9	

FDDI Receiver Electrical Characteristics
( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V )

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Supply Current	$\mathrm{I}_{\mathrm{cc}}$		70	100	mA	Note 22
Supply Current	$\mathrm{I}_{\text {CCA }}$		30	40	mA	Note 22
Supply Current - PIN Diode	$\mathrm{I}_{\mathrm{PD}}$		35	500	$\mu \mathrm{A}$	Note 23
Power Dissipation	$\mathrm{P}_{\text {DISs }}$		0.3	0.5	W	Note 24
Data Output Voltage - Low	$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{cc}}$	-1.840		-1.620	V	Note 25
Data Output Voltage - High	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{Cc}}$	-1.045		-0.880	V	Note 25
Data Output Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.35	0.7	1.3	ns	Note 26
Data Output Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.35	0.7	1.3	ns	Note 26
Duty Cycle Distortion	DCD		0.08	0.4	ns pk-to-pk	Note 27
Data Dependent Jitter	DDJ		0.40	1.0	ns pk-to-pk	Note 28
Random Jitter	RJ			2.14	ns pk-to-pk	Note 29
Signal Detect						
Output Voltage - Low	$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{Cc}}$	-1.840		-1.620	V	Note 25
Output Voltage - High	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{CC}}$	-1.045		-0.880	V	Note 25
Output Rise Time	$\mathrm{t}_{\mathrm{r}}$	0.35	1.0	1.6	ns	Note 30
Output Fall Time	$\mathrm{t}_{\mathrm{f}}$	0.35	1.0	1.6	ns	Note 30
Assert Time (off to on)	AS_Max	0	75	100	$\mu \mathrm{s}$	Note 20, 31 Figure 9
Deassert Time (on to off)	ANS_Max	0	190	350	$\mu \mathrm{s}$	Note 21, 32 Figure 9

## Notes:

1. This maximum rating applies to still air environments around the transmitter and receiver.
2. When component testing these products all supply voltages should be applied simultaneously to avoid damage to the part.
3. This is the maximum voltage that can be applied across the Differential Transmitter Data Inputs to prevent damage to the input ESD protection circuit.
4. When component testing these products do not short the receiver data or signal detect outputs directly to ground to avoid damage to the part.
5. The outputs are terminated with 50 ohms connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$.
6. The specified signaling rate of 10 MBd to 125 MBd guarantees operation of the transmitter and receiver link to the full conditions listed in the FDDI Physical Layer Medium Dependent standard. Specifically, the link bit error ratio will be equal to or better than $2.5 \times$ $10^{-10}$ for any valid FDDI pattern. The transmitter section of the link is capable of dc to 125 MBd operation. The receiver is internally ac-coupled which limits the lower signaling rate to 10 MBd . For purposes of definition, the symbol rate (Baud), also called signaling rate, $f_{8}$, is the reciprocal of the shortest symbol time. Data rate (bits/sec) is the symbol rate divided by the encoding factor used to encode the data (symbols/bit).
7. The power supply current needed to operate the transmitter is provided to differential ECL circuitry. This circuitry maintains a nearly constant current flow from the power supply. Constant current operation helps to prevent unwanted electrical noise from being generated, whether the noise is conducted or emitted, to neighboring receiver or logic circuitry.
8. This value is measured with an output load $\mathrm{R}_{\mathrm{L}}=10 \mathrm{kohms}$.
9. These optical power values are measured with the following conditions;

- At the Beginning Of Life (BOL).
- Over the specified operating voltage and temperature ranges.
- With HALT Line State, ( 12.5 MHz ) square-wave, input signal.
- At the end of one meter of noted optical fiber with cladding modes removed.

The average power value can be converted to a peak power value by adding 3 dB .

Higher output optical power transmitters are available on special request.
10. This transmitter is available on special request with coupled optical power guaranteed into $50 / 125 \mu \mathrm{~m}$ fiber cables. The value will depend on the specific NA of the $50 / 125 \mu \mathrm{~m}$ fiber used.
11. The Extinction Ratio is a measure of the modulation depth of the optical signal. The data " 0 " output optical power is compared to the data " 1 " peak output optical power and expressed as a percentage. With the transmitter driven by a HALT Line State ( 12.5 MHz square-wave) the optical signal is detected with a receiver that linearly converts optical power to voltage, the extinction ratio is the ratio of the voltage of the " 0 " level compared to the voltage at the " 1 " level expressed as a percentage.
12. This parameter complies with the FDDI PMD requirements for the tradeoffs between center wavelength, spectral width, and rise/fall times shown in Figure 6. The temperature coefficient of the center wavelength is typically $+0.37 \mathrm{~nm} /{ }^{\circ} \mathrm{C}$.
13. This parameter complies with the FDDI PMD requirements for the tradeoffs between center wavelength, spectral width, and rise/fall times shown in Figure 6. The temperature coefficient of the spectral width is typically $+0.25 \mathrm{~nm} /{ }^{\circ} \mathrm{C}$.
14. This parameter complies with the FDDI PMD requirements for the tradeoffs between center wavelength, spectral width, and rise/fall times shown in Figure 6. This parameter also complies with the optical pulse envelope shown in Figure 7. The optical rise and fall times are measured from $10 \%$ to $90 \%$ when the transmitter is driven by the FDDI HALT Line State logic input signal.
15. Duty Cycle Distortion is measured at a $50 \%$ threshold using an IDLE Line State, 125 MBd ( 62.5 MHz ) square-wave, input signal.
16. Data Dependent Jitter is specified with the FDDI test pattern described in FDDI PMD Appendix A. 5.
17. Random Jitter is specified with an IDLE Line State, 125 MBd ( 62.5 MHz ) square-wave, input signal.
18. The Input Optical Power dynamic range, from the maximum value of " $\mathrm{P}_{\text {IN Min }}(\mathrm{W})$ " to the minimum value of " $\mathrm{P}_{\text {IN Max }}^{\text {Min }}$ ", is the range over which the receiver is guaranteed to provide output data with a Bit Error Rate (BER) better than or equal to $2.5 \times 10^{-10}$. The BER will be better than or equal to $1 \times 10^{-12}$ at input optical power levels greater than the maximum " $\mathrm{P}_{\text {IN Min }}(\mathrm{W})$ " plus approximately 0.8 dB with this Hewlett-Packard receiver. This is 1.2 dB better than required by the FDDI PMD. The measurement conditions are stated below.

- At the Beginning of Life (BOL)
- Over the specified operating temperature and voltage ranges
- Input symbol pattern is the FDDI test pattern defined in FDDI PMD Appendix A. 5 with 4B/5B NRZI encoded data that contains a baseline wander effect of 50 $\mathbf{k H z}$. Baseline wander is the alternation of data that contains a low frequency variation in the data pattern.
- Input optical rise and fall times are approximately 1 ns and 2 ns respectively.
- Sampled over the range from the center of the symbol $\pm 2.3 \mathrm{~ns}$. This is because a window time-width of 4.6 ns is the worst case allowed between the FDDI PMD Active Input Interface and the FDDI PHY PM_Data.indication input per the example in FDDI PMD Appendix E. This window timewidth value is based upon a nearly ideal input optical signal presented to the receiver, i.e., no DCD, insignificant DDJ and RJ and fast optical rise and fall times. Per the Appendix E example the receiver is allowed to contribute a peak-to-peak jitter of $\mathrm{DCD}(0.4 \mathrm{~ns})+\mathrm{DDJ}(1.0 \mathrm{~ns})+$ $\mathrm{RJ}(2.14 \mathrm{~ns}$ pk-pk) $=3.54 \mathrm{~ns}$. The valid data window time-width then becomes $8.0 \mathrm{~ns}-3.54 \mathrm{~ns}=$ 4.46 ns , or conservatively 4.6 ns .

19. All conditions of Note 18 apply except that the measurement is made at the center of the symbol with no window time-width.
20. This value is measured during the transition from low to high levels of input optical power.
21. This value is measured during the transition from high to low levels of input optical power. The minimum value will be either -45 dBm average or when the input optical power yields a BER of $10^{-2}$ or less which ever power is higher.
22. These values are measured with the outputs terminated into 50 ohms connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$.
23. Measured at $P_{i N}=-14 \mathrm{dBm}$ average.
24. The power dissipation value is the power dissipated in the receiver itself. Power dissipation is calculated as the sum of the products of supply voltage and supply currents, minus the sum of the products of the output voltages and currents.
25 . These values are measured with respect to $V_{c c}$ with the output terminated into 50 ohms connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$. The minimum values are corrected for +5.25 V operation for 100 K ECL values that are usually specified at -4.8 V operation.
25. The output rise and fall times are measured between $20 \%$ and $80 \%$ levels with the output connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$ through 50 ohms.
26. Duty Cycle Distortion is measured at a $50 \%$ threshold using an IDLE pattern, 125 MBd ( 62.5 MHz ) square-wave, input signal. The input optical power level is -20 dBm average.
27. Data Dependent Jitter is specified with the FDDI test pattern described in PMD Appendix A.5. The input optical power level is -20 dBm average.
28. Random Jitter is specified with an IDLE Line State pattern, 125 MBd ( 62.5 MHz ) square-wave, input signal. The input optical power level is at maximum " $P_{\text {IN Min }}(W)$ ".
29. The output rise and fall times are measured between $20 \%$ and $80 \%$ levels with the output connected to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$ through 50 ohms.
30. The Signal Detect output shall be asserted within $100 \mu$ s after a step increase of the Input Optical Power. The step will be from a low Input Optical Power, $\leq-45 \mathrm{dBm}$, into the range between greater than $P_{A}$ and -14 dBm . The BER of the receiver output will be less than $10^{-2}$ from $15 \mu \mathrm{~s}$ (LS_Max) after Signal Detect has been asserted. See Figure 9 for more information.
31. Signal detect output shall be deasserted within $350 \mu \mathrm{~s}$ after a step decrease in the Input Optical Power from a level which is the lower of; -31 dBm or $\mathrm{P}_{\mathrm{D}}+4 \mathrm{~dB}\left(\mathrm{P}_{\mathrm{D}}\right.$ is the power level at which signal detect was deasserted), to a power level of -45 dBm or less. This step decrease will have occurred in less than 8 ns . The receiver output will have a BER of $10^{-2}$ or less for a period of $12 \mu$ s or until signal detect is deasserted. The input data stream is Quiet symbols. Also, signal detect will be deasserted within a maximum of $350 \mu \mathrm{~s}$ after the BER of the receiver output degrades below $10^{-2}$ for an input optical data stream that decays with a negative ramp function instead of a step function. See Figure 9 for more information.


CONDITIONS:

1. $P_{\text {IN }}$ NORMALIZED ( $\Delta P_{\text {IN }}=0 \mathrm{~dB}$ ) TO $P_{\text {IN }}$ Min $(C)$ AT 125 MBd AT CENTER OF SYMBOL
2. $\Delta P_{\text {IN }}=P_{\text {IN }} @$ MBd $-P_{\text {IN }} @ 125 \mathrm{MBd}$
3. FDDI PMD APPENDIX A. 5125 MBd TEST PATTERN WITH 50 kHz BASELINE WANDER
4. $\mathrm{BER}=2.5 \times 10^{-10}$
5. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
6. $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{Vdc}$
7. INPUT OPTICAL. RISE/FALL TIMES $=1.0 \mathrm{~ns} / 2.1 \mathrm{~ns}$

Figure 4. Relative Input Optical Power vs. Signaling Rate.


CONDITIONS:

1. $P_{\text {IN }}$ IS NORMALIZED $\left(~ \Delta P_{\text {IN }}=0 \mathrm{~dB}\right)$ AT $P_{\text {IN Min }}(W)$ WITH BER $=2.5 \times 10^{-10}$ AND WINDOW TIME-WIDTH OF $\pm 2.3 \mathrm{~ns}$ EITHER SIDE OF SYMBOL CENTER
2. $\Delta P_{\text {iN }}=P_{\text {IN }} @$ BER - $P_{\text {iN }} @ 2.5 \times 10^{-10}$ BER
3. FDDI PMD APPENDIX A. 5125 MBd TEST PATTERN WITH 50 kHz BASELINE WANDER.
4. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
5. $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{Vdc}$
6. INPUT OPTICAL RISE/FALL TIMES $=1.0 \mathrm{~ns} / 2.1 \mathrm{~ns}$

Figure 6. Transmitter Output Optical Spectral Width (FWHM) vs. Transmitter Output Optical Center Wavelength.


HEWLETT PACKARD FDDI TRANSMITTER TEST RESULTS OF $\lambda_{c}, \Delta \lambda$ AND $t_{t / f}$ ARE CORRELATED AND COMPLY WITH THE ALLOWED SPECTRAL WIDTH AS A FUNCTION OF CENTER WAVELENGTH FOR VARIOUS RISE AND FALL TIMES. KEFERENCE FIGURE 5-1 OF FDDI PMD.

Figure 5. Typical Bit Error Rate vs. Relative Input Optical Power.


THE OUTPUT OPTICAL PULSE SHAPE SHALL FIT WITHIN THE BOUNDARIES OF THE PULSE ENVELOPE. FOR RISE AND FALL TIME MEASUREMENTS, THE MAXIMUM POSITIVE AND MINIMUM NEGATIVE WAVEFORM EXCURSIONS IN THE ZERO AND 100\% TIME INTERVALS SHALL BE CENTERED AROUND THE 0.0 AND 1.00 LEVELS, RESPECTIVELY. A MINIMUM BANDWIDTH RANGE OF 100 kHz TO 750 MHz IS REQUIRED FOR THE MEASUREMENT EQUIPMENT USED TO EVALUATE THE PULSE ENVELOPE.

Figure 7. Output Optical Pulse Envelope.


## CONDITIONS:

1. PIN IS NORMALIZED TO $P_{\text {IN Min }}$ (C) AT CENTER OF SYMBOL.
2. $\Delta P_{\text {IN }}=P_{\text {IN }} @ t_{\text {s }}-P_{\text {IN }} @ t_{\text {center }}$
3. FDDI PMD APPENDIX A. 5125 MBd TEST PATTERN

WITH 50 kHz BASELINE WANDER.
4. $\mathrm{BER}=2.5 \times 10^{-10}$
5. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
6. $V_{c C}=5 \mathrm{Vdc}$
7. INPUT OPTICAL RISE/FALL TIMES $=1.0 \mathrm{~ns} / 2.1 \mathrm{~ns}$

Figure 8. Relative Input Optical
Power vs. Sampling Time
Position.


AS_MAX-MAXIMUM ACQUISITION TIME (SIGNAL).
AS_MAX IS THE MAXIMUM SIGNAL_DETECT ASSERTION TIME FOR THE STATION. AS_MAX SHALL NOT EXCEED $100.0 \mu \mathrm{~s}$. THE DEFAULT VALUE OF AS_MAX IS $100.0 \mu \mathrm{~s}$.
ANS_MAX-MAXIMUM ACQUISITION TIME (NO SIGNAL).
ANS_MAX IS THE MAXIMUM SIGNAL_DETECT DEASSERTION TIME FOR A STATION. ANS_MAX SHALL NOT EXCEED $350 \mu \mathrm{~s}$. THE DEFAULT VALUE OF ANS_MAX IS $350 \mu \mathrm{~s}$.

Figure 9. Signal Detect Thresholds and Timing.
 PERFORMANCE.
4. RESISTORS IN OHMS. CAPACITORS IN MICROFARADS. INDUCTORS IN MICROHENRIES
5. USE HIGH-FREQUENCY MONOLITHIC CERAMIC BYPASS CAPACITORS AND LOW SERIES dc

RESISTANCE INDUCTORS. FERRITE INDUCTORS CAN BE USED. LOCATE POWER SUPPLY FILTER, COMPONENTS CLOSE TO FIBER OPTIC DEVICES.
6. CAUTION: DO NOT DIRECTLY CONNECT FIBER OPTIC MODULE ECL OUTPUTS (DATA, $\overline{\text { DATA }}$, SIGNAL DETECT, SIGNAL DETECT) TO GROUND WITHOUT PROPER CURRENT LIMITING IMPEDANCE.
7. ALL POWER SUPPLY VOLTAGES FOR THE FIBER OPTIC RECEIVER OR TRANSMITTER SHOULD BE ALL POWER SUPPLY VOLTAGES FOR THE FIBER OPTIC RECEIVER OR TRANSM
APPLIED SIMULTANEOUSLY TO PREVENT POSSIBLE DAMAGE TO THE DEVICE.
APPLIED SIMULTANEOUSLY TO PREVENT POSSIBLE DAMAGE TO THE DEVICE.
DEVICE GROUND PINS SHOULD BE DIRECTLY AND INDIVIDUALLY CONNECTED TO GROUND.

Figure 10. Recommended Decoupling Circuit Diagram.


## Optocouplers

- High Speed Optocouplers
- Low Current Optocouplers
- High Gain Optocouplers
- Application Specific Optocouplers
- Hermetic Optocouplers (pg 6-203)



## Optocouplers

## Plastic Optocouplers

Put an end to erroneous data, false control signals, and damaged circuits with HP's line of high-performance plastic optocouplers. There are six basic families of optocouplers to choose from: high-speed logic gate, high-speed transistor output, high-gain, high-speed CMOS logic-tologic, AC/DC-to-logic interface, and 20 mA current loop. All plastic optocouplers are UL approved and have a withstand voltage of $2500 \mathrm{Vrms} / 1$ minute as a standard feature. A 5000 Vrms/ 1 minute option is available on selected families. VDE 0883 approval has been obtained for our entire line of plastic optocouplers. Also available are two surface mount options for our standard package.

New this year are two new packages and a new optocoupler family. A true surface mount SO-8 package is available for all 6 N series optocouplers, the HCPL-2601/ 11, and the HCPL-4502/3.

A VDE 0884 approved version of the $6 \mathrm{~N} 135 / 6$ and $6 \mathrm{~N} 138 / 9$
optocouplers has been designed to meet safety requirements worldwide. The CNW135/6 and CNW138/9 optocouplers feature a "widebody" package to ensure conformance to stringent creepage and clearance requirements.

The HCPL-7100 is the first optocoupler of our new CMOS family. This optocoupler combines the latest CMOS IC technology, a new high-speed AlGaAs LED and an optimized light coupling system to achieve outstanding performance with very low power consumption.

Common mode noise rejection has been improved on several of our optocouplers. Enhanced performance up to $15 \mathrm{kV} / \mu \mathrm{s}$ and a Vcm of 1500 volts are available.

Hewlett-Packard offers a new miniature solid-state relay featuring withstand voltages of 200 V ; and current rating of 40 mA . This 4 pin dual in-line package (DIP) product offers the reliability and long life required in instrumentation, telecommunication, and
industrial control applications. The HSSR-8200 replaces electromechanical relays now used in signal and low power switching applications.

Furthermore, with HewlettPackard's solid-state relays you get lower power dissipation as a result of the 1 mA control current requirement. The HSSR-8200 features an output with very low leakage current, offset voltage, and capacitance which permits the design of multiplexers that require greater measurement accuracy.

A Selection Flowchart has been added immediately following this introduction to facilitate selection of the correct optocoupler or solid state relay for your application.

## Product Safety Regulations and Optocouplers

Optocouplers are frequently used to optically connect a signal line to an electrical circuit in a piece of equipment. Besides providing signal isolation, the optocoupler may be used to provide high voltage insulation. It does this by preventing voltage transients on
a signal line from affecting the equipment, and by preventing high voltage powerline transients, which may be present inside the box, from reaching an equipment user.

Because optocouplers perform this safety function, they are regulated by many national safety agencies. They can be regulated in two ways: at a component level, as UL (US) and VDE (West Germany) do and at an electrical system or sub-system level. Additional national agencies that have regulations concerning optocouplers include BSI (UK), CSA (Canada), and FEI (Finland).

The key items that are regulated are insulation integrity under an array of use conditions, flammability, and in the case of telecommunications applications, ability to protect the telecom network and equipment connected to it. Different types of equipment have different levels of requirements.

## Insulation <br> Coordination

The equipment designer selecting an optocoupler to provide insulation uses the principles of insulation coordination found in the IEC 664 and 664A ( 1980 and 1981). The optocoupler must block both the working voltage and allowable transients. The driving factors are power line (or working) voltage, installation classification, and pollution degree. The higher the installation class, the higher the magnitude of transient voltages
on the line can be. The power line voltage and the max rated impulse value together determine the CLEARANCE (distance through air between input metal and output metal).

The power line voltage, pollution degree, and CTI (comparative tracking index) of the molding compound determine the CREEPAGE, (minimum distance along the surface of the package from input metal to output metal). Pollution degree comes from the end-use application and corresponds to the conductivity of dust, dirt, water, etc. that the optocoupler may be exposed to. The higher the CTI, the more resistant the material is to electrical arc tracking, so the creepage distances can be smaller.

## VDE 0883 and 0884

There are currently two VDE standards that govern optocouplers, VDE 0883 and its successor, VDE 0884. As of January 1990 VDE 0883 approval will no longer be granted for new equipment. A grandfather clause will be in effect for two years to allow time for recertification under VDE 0884. There are two basic differences between the standards: the dielectric voltage test and the manner in which the parts are evaluated for equipment applications. The production dielectric test in VDE 0883 is a one-minute withstand test of four times the working voltage plus one kilovolt AC. The production test in VDE 0884 is a more sensitive test which measures partial discharge carried out at a lower
voltage to guarantee the integrity of the insulation. Parts submitted under VDE 0883 would also be evaluated for suitability for various equipment applications. Each equipment standard is listed separately on the optocoupler license. This will no longer be the case under VDE 0884. VDE 0884 is a safety standard, VDE 0883 was not. The partial discharge testing of VDE 0884 more thoroughly guarantees the insulation integrity than VDE 0883 could. VDE supplies a letter saying which equipment standards the VDE 0884 optocoupler is suitable for.

Currently, all Hewlett-Packard plastic bipolar optocouplers are certified to VDE 0883 and UL 1577. In addition, the CNW family of "widebody" optocouplers and the HCPL7100 CMOS optocoupler are certified to VDE 0884 and have received other approvals from agencies worldwide.

Please see the data sheets of these products for a complete list.

## Optocoupler for Safe Electrical Separation per VDE 0884

Optocouplers providing safe electrical separation per VDE 0884 do so only within the safety-limiting values to which they are qualified. Protective cut-out switches must be used to ensure that the safety limits are not exceeded.

The partial discharge measurement ensures that no partial discharge will occur
during operation at maximum allowable working insulation voltage ( $\mathrm{V}_{\text {Initial }}$ ). Prolonged partial discharge degrades the insulation material and can lead to high voltage breakdown.

The Mains Voltage and Installation Class desired determines the required voltages for Type and Production testing. For example, if the mains voltage is 300 volts and the Installation

Class desired is Class III, then $\mathrm{V}_{\text {intital }}$ must be 2828 Vrms ( 4000 V peak). $\mathrm{V}_{\mathrm{PR}}$ is determined from the value of $\mathrm{V}_{\text {Iorm }}$. See Figure 1 and Table 1 below.

TIME - TEST VOLTAGE DIAGRAM IN ACC. WITH VDE 0884

PROCEDURE A)
(FOR TYPE AND SAMPLING TESTS. DESTRUCTIVE TESTS)


$$
\begin{aligned}
& \text { PROCEDURE B) } \\
& \text { (FOR 100\% PRODUCTION TESTING) } \\
& t_{3}, t_{4}=0.1 \mathrm{~s} \\
& t_{p} \text { (MEASURING TIME FOR } \\
& \begin{aligned}
\text { PARTIAL DISCHARGE) } & =1 \mathrm{~s} \\
& =1.2 \mathrm{~s}
\end{aligned}
\end{aligned}
$$



Figure 1.

## Table 1.

Mains Voltage (RMS) $V_{\text {IORM }}$	Preferred Insulation Test Voltages for Service Class ( $\mathrm{V}_{\text {intital }}$ )							
	PEAK	RMS	PEAK	RMS	PEAK	RMS	PEAK	RMS
	(VAC)		(VAC)		(VAC)		(VAC)	
50	330	233	500	353	800	565	1500	1060
100	500	353	800	565	1500	1060	2500	1767
150	800	656	1500	1060	2500	1767	4000	2828
300	1500	1060	2500	1767	4000	2828	6000	4242
600	2500	1767	4000	2828	6000	4242	8000	5656
1000	4000	2828	6000	4242	8000	5656	12000	8484

Either the peak AC or the RMS ac test voltage can be used in this test. In the case of the AOT VISO-700 tester the RMS test voltage has to be used because test voltage settings are in RMS.

## Definition of Terms Used in the Qualification Test Diagram

## Term Name

Definition
$\mathrm{V}_{\text {initial }} \quad$ Maximum test voltage applied to device under test. This voltage is determined from the Mains Voltage rating and the preferred insulation test voltage by service class.
$\mathrm{V}_{\mathrm{PR}} \quad$ Test voltage applied to the device to verify isolation capacity. This voltage is usually 1.2 times the mains rating ( $\mathrm{V}_{\text {IORM }}$ ) for Procedure a and 1.6 times $\mathrm{V}_{\text {IORM }}$ for Procedure b.
$\mathrm{V}_{\text {IORM }} \quad$ Maximum continuous voltage which may be applied to device. Also known as the mains voltage in Table 2, above.
$\mathrm{T}_{\mathrm{p}} \quad$ Test time for partial discharge testing and equals 60 seconds.
$T$ (ini) Time at $\mathrm{V}_{\text {Intila }}$ test voltage and equals 10 seconds.
T1, T2, T3, T4 These test times are preset by the VISO-700 and are not to be adjusted.
Pass/Fail No leakage failures and no unit to have more than 5 pC Partial Discharge during Criteria

## Optocoupler and Solid State Relay Selection Flowchart




High-Speed Logic Gate Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Guaranteed CMR		Withstand   Test   Voltage/   Regulatory   Approval	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-2200	3 State Output Low Input Current Optically Coupled Logic Gate $V_{c c}=20 \mathrm{~V}$ Max.	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface	$5 \mathrm{Mb} / \mathrm{s}$	$1000 \mathrm{~V} / \mu \mathrm{s} @$   $\mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}$$\|$$5000 \mathrm{~V} / \mu \mathrm{s} @$   $\mathrm{~V}_{\mathrm{CM}}=800 \mathrm{~V}$	1.6 mA	$\begin{array}{\|c} 2500 \mathrm{Vac} / \\ 1 \mathrm{~min} . \\ \\ \text { VDE } 0883 \end{array}$	6-17
	HCPL-2201   HCPL-2211	Low Input Current Optically Coupled Logic Gate $\mathrm{V}_{\mathrm{cc}}=20 \mathrm{~V}$ Max.			$\left.\begin{array}{\|c\|} \hline 1000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \end{array} \right\rvert\, \begin{gathered} 5000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{CM}}=800 \mathrm{~V} \end{gathered}$			6-22
	HCPL-2202   HCPL-2212		Motor Controls, Switch-mode Power Supplies, Electrically Noisy Environments		1000 V/us @ $\begin{array}{\|c\|} \hline V_{C M}=50 \mathrm{~V} \\ \hline 5000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{CM}}=800 \mathrm{~V} \\ \hline \end{array}$			
	HCPL-2231	Dual Channel Low Input Current Optically Coupled Logic Gate $V_{c C}=20 \mathrm{~V}$ Max.	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface   Motor Controls, Switch-mode Power Supplies, Electrically Noisy Environments	$5 \mathrm{Mb} / \mathrm{s}$	$\begin{array}{\|c\|} 1000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{cm}}=50 \mathrm{~V} \end{array} \left\lvert\, \begin{gathered} \\ \hline 5000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{cM}}=800 \mathrm{~V} \end{gathered}\right.$	1.8 mA	$2500 \mathrm{Vac} /$ 1 min.   VDE 0883	$6-27$
	HCPL-2300	Very Low Input   Current, High Speed   Optocoupler	High Speed, Long   Distance Line   Receiver, Computer   Peripheral Interfaces,   CMOS Logic   Interface	$8 \mathrm{Mb} / \mathrm{s}$	$100 \mathrm{~V} / \mu \mathrm{s}$ @ $V_{C M}=50 \mathrm{~V}$	0.5 mA	$\begin{gathered} 2500 \mathrm{Vac} / \\ 1 \mathrm{~min} . \\ \\ \text { VDE } 0883 \end{gathered}$	6-32
	HCPL-2400	20 MBaud, High Common Mode Rejection, Optically Coupled Logic Gate 3 State Output	Very High Speed   Logic Isolation,   I/O and Parallel-to-   Serial Conversion   Motor Controls,   Switch-mode Power   Supplies,   Electrically Noisy   Environments	$40 \mathrm{Mb} / \mathrm{s}$	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \\ \\ 1000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{CM}}=300 \mathrm{~V} \end{gathered}$	4.0 mA	$\begin{gathered} 2500 \mathrm{Vac} / \\ 1 \mathrm{~min} . \\ \\ \text { VDE } 0883 \end{gathered}$	6-39

High-Speed Logic Gate Optocouplers (Continued)


High-Speed Logic Gate Optocouplers (Continued)

Device		Description   Dual Channel, High Common Mode Rejection, Optically Coupled Logic Gate	Application	Typical Data Rate [NRZ]	Guaranteed CMR	Specified Input Current	Withstand   Test   Voltage/   Regulatory   Approval	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-2631		High Speed   Logic Ground Isolation   Motor Controls, Switch-mode Power Supplies, Electrically Noisy Environments	$10 \mathrm{Mb} / \mathrm{s}$	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V} \end{gathered}$   $5 \mathrm{KV} / \mu \mathrm{s}$ @ $V_{C M}=1000 \mathrm{~V}$	5.0 mA	$\begin{gathered} 2500 \mathrm{Vac} / \\ 1 \mathrm{~min} . \\ 5000 \mathrm{Vac} / \\ 1 \mathrm{~min} . \\ \\ \text { VDE } 0883 \end{gathered}$	6-68

## Small Outline High-Speed Logic Gate Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Guaranteed CMR	Specified Input Current	Withstand Test Voltagel Regulatory Approval	Page No.
	HCPL-0600	Small Outline Optically Coupled Logic Gate	Line Receiver, High Speed Ground Isolation	$10 \mathrm{Mb} / \mathrm{s}$	$\begin{gathered} >100 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{cm}}=10 \mathrm{~V} \\ \text { (Typical) } \end{gathered}$	5.0 mA	$2500 \mathrm{Vac} /$ 1 min.	6-74
	HCPL-0601	Small Outline High CMR, Optically Coupled Logic Gate	High Speed Logic   Ground Isolation   Motor Controls, Switch-mode Power Supplies,   Electrically Noisy   Environments		$\left.\begin{array}{\|c\|} \hline 1000 \mathrm{~V} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{cm}}=50 \mathrm{~V} \end{array} \right\rvert\, \begin{gathered} 5 \mathrm{KV} / \mu \mathrm{s} @ \\ \mathrm{~V}_{\mathrm{cM}}=1000 \mathrm{~V} \end{gathered}$			

[^38]High-Speed Transistor Output Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Current   Transfer   Ratio	Specified Input Current	Withstand   Test   Voltage $i$   Regulatory   Approval	Page No.
	6N135	Transistor Output	Line Receiver, Analog Circuits, TTLCMOS, TTLLSTTL Ground Isolation	$1 \mathrm{Mb} / \mathrm{s}$	7\% Min.	16 mA	$2500 \mathrm{Vac} /$ 1 min. $5000 \mathrm{Vac} /$ 1 min. (Option 020)   VDE 0883	6-80
	6N136				19\% Min.			
	HCPL-4502	Pin 7 Not Connected						
	HCPL-4503	Pin 7 Not Connected, Very High CMR	Electrically Noisy Environments					
	HCPL-2502				15-22\%			
	HCPL-2530	Dual Channel Transistor Output	Line Receiver, Analog Circuits, TTLCMOS, TTLASTTL Ground Isolation	$1 \mathrm{Mb} / \mathrm{s}$	7\% Min.	16 mA	$2500 \mathrm{Vac} /$   1 min $5000 \mathrm{Vac} /$ 1 min (Option 020)   VDE 0883	6-87
	HCPL-2531				19\% Min.			

Small Outline High-Speed Transistor Output Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Current Transfer Ratio	Specified Input Current	Withstand Test Voltage/ Regulatory Approval	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-0500	Small Outline Transistor Output	Line Receiver, Analog Circuits, TTLCMOS, TTLASTTL Ground Isolation	$1 \mathrm{Mb} / \mathrm{s}$	7\% Min.	16 mA	$\begin{gathered} 2500 \mathrm{Vac} / \\ 1 \mathrm{~min} . \end{gathered}$	6-93
	HCPL-0501				19\% Min.			
	HCPL-0452	Pin 7 Not Connected						
	HCPL-0453	Small Outline   Ultra High CMR   Transistor Output   (Pin 7 Not   Connected)	Motor Controls, Switch-mode Power Supplies, Electrically Noisy Environments					

Widebody High-Speed Transistor Output Optocouplers

Device		Description   Transistor Output Widebody (4e pitch) Package	Application	Typical Data Rate [NRZ]	Current Transfer Ratio		Withstand Voltage/ Regulatory Approval	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	CNW135   CNW136		High Voltage Insulation   Line Receiver   Feedback Element in Switch-mode Power Supplies	$1 \mathrm{Mb} / \mathrm{s}$	7\% Min.	16 mA	$5000 \mathrm{Vac} /$   1 min.      UL 1577   VDE 0804,   0805,0806,   0883,0884,   0860,0750   IEC 65,   380,950,   335,435,   601   BSI 415,   7002	6-100

High Gain Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Current   Transfer   Ratio	Specified Input   Current	Withstand   Test   Voltage/   Regulatory   Approval	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	6N138	Low Saturation Voltage, High Gain Output, $V_{c C}=7 \mathrm{~V}$ Max.	Line Receiver, Low Current Ground Isolation, TTL/TTL, LSTTLTTL, CMOS/TTL	$100 \mathrm{~kb} / \mathrm{s}$	300\% Min.	1.6 mA	$2500 \mathrm{Vac} /$ 1 min . $5000 \mathrm{Vac} /$ 1 min. (Option 020)   VDE 0883	6-107
	6N139	Low Saturation   Voltage,   High Gain Output, $V_{C C}=18 \mathrm{~V}$ Max.	Line Receiver, Ulitra Low Current Ground Isolation, CMOS/ LSTTL, CMOS/TTL, CMOS/CMOS		400\% Min.	0.5 mA		
	HCPL-2730	Dual Channel, High Gain, $V_{c C}=7 \mathrm{~V}$ Max.	Line Receiver, Polarity Sensing, Low Current Ground Isolation	$100 \mathrm{~kb} / \mathrm{s}$	300\% Min.	1.6 mA	$2500 \mathrm{Vac} /$ 1 min. $5000 \mathrm{Vac} /$ 1 min. (Option 020)   VDE 0883	6-112
	HCPL-2731	Dual Channel, High Gain, $V_{C c}=18 \mathrm{~V}$ Max.			400\% Min.	0.5 mA		
	4N45	Darlington Output $V_{c c}=7 \mathrm{~V}$ Max.	AC Isolation, Relay-Logic Isolation	$3 \mathrm{~kb} / \mathrm{s}$	250\% Min.	1.0 mA		6-117
	4N46	Darlington Output, $V_{C C}=20 \mathrm{~V}$ Max.			$350 \%$ Min.	0.5 mA		

Small Outline High Gain Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Current Transfer Ratio		Withstand Test Voltage/ Regulatory Approval	Page   No.
	HCPL-0700	Small Outline Low Saturation Voltage, High Gain Output, $\mathrm{V}_{\mathrm{cc}}=7 \mathrm{~V}$ Max.	Line Receiver, Low Current Ground Isolation, TTL/TTL, LSTTLTTL, CMOS/TTL	$100 \mathrm{~kb} / \mathrm{s}$	300\% Min.	1.6 mA	$\begin{gathered} 2500 \mathrm{Vac} / \\ 1 \mathrm{~min} \end{gathered}$	6-122
	HCPL-0701	Small Outline Low Saturation Voltage, High Gain Output, $V_{c c}=18 \mathrm{~V}$ Max.	Line Receiver, Ultra Low Current Ground Isolation, CMOS/LSTTL, CMOS/TTL, CMOS/CMOS		400\% Min.	0.5 mA		

Widebody High Gain Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Current Transfer Ratio	Specified Input   Current	Withstand   Test   Voltage/   Regulatory   Approval	Page No.
	CNW138	Low Saturation Voltage, High Gain Output, $V_{c c}=7 \mathrm{~V}$ Max. Widebody (4e pitch) Package	Line Receiver, Low Current Ground Isolation, TTLTTTL, LSTTLTTL, CMOS/TTL	$100 \mathrm{~kb} / \mathrm{s}$	300\% Min.	1.6 mA	$\left\lvert\, \begin{gathered} 5000 \mathrm{Vac} / \\ 1 \mathrm{~min} \\ \\ \text { UL } 1577 \\ \text { VDE 0804, } \\ 0805,0806, \end{gathered}\right.$	6-128
	CNW139	Low Saturation   Voltage,   High Gain Output, $V_{c c}=18 \mathrm{~V}$ Max.   Widebody (4e   pitch) Package	Line Receiver, Ultra Low Current Ground Isolation, TTL/TTL, LSTTLTTL, CMOS/TTL		400\% Min.	0.5 mA	$\begin{gathered} 0860,0750 \\ \text { IEC } 65, \\ 380,950, \\ 335,435, \\ 601 \\ \text { BSI } 415, \\ 7002 \end{gathered}$	

Bold Type - New Product

High-Speed CMOS Optocoupler

Device		Description	Application	Data Rate [NRZ]	Guaranteed CMR	Total   Power   Supply   Current	Withstand   Voltage/   Regulatory   Approval	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-7100	High-Speed, Low Power 3 State Output   CMOS IC   Technology	Computer-   Peripheral Interface   Digital Isolation for A/D, D/A   Converters, Motor Control, Power Inverter, +5 V Compatibility CMOS and TTL Logic	15 MBd	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{s} \\ @ \\ 50 \mathrm{VV}_{\mathrm{CM}} \end{gathered}$	10 mA (Typical)	$2500 \mathrm{Vac} /$   1 min   UL 1577   VDE 0700,   0804, 0884,   0160	6-135

Ultra High-Speed CMOS Optocoupler

Device		Description	Application	Data Rate [NRZ]	Guaranteed CMR	Total   Power Supply Current	Withstand Voltage/ Regulatory Approval	Page   No.
	HCPL-7101	High-Speed, Low Power 3 State Output   CMOS IC   Technology	Computer-   Peripheral Interface   Digital Isolation for   A/D, D/A   Converters,   Motor Control,   Power Inverter,   +5 V Compatibility   CMOS and TTL   Logic	50 MBd	$\begin{gathered} 2000 \mathrm{~V} / \mu \mathrm{s} \\ @ \\ 200 \mathrm{~V} \mathrm{~V}_{\mathrm{CM}} \end{gathered}$	10 mA (Typical)	$2500 \mathrm{Vac} /$   1 min   UL 1577   VDE 0804,   0884, 0160	6-147

Bold Type - New Product

Wideband Analog/Video Optocoupler

Device		Description	Application	Typical Bandwidth	Differential Gain	Linearity	Withstand   Test   Voltage/   Regulatory   Approval	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-4562	Wideband Analog/ Video Optocoupler	Video Isolation, Feedback Element in Switch-mode Power Supplies	17 MHz	$\pm 1 \%$	0.25\%	$\begin{gathered} 2500 \mathrm{Vac} / \\ 1 \mathrm{~min} \\ 5000 \mathrm{Vac} / \\ 1 \mathrm{~min} \\ \text { (option 020) } \end{gathered}$	6-159

AC/DC to Logic Interface Optocouplers

Device		Description	Application	Operating Frequency	Input   Threshold   Current	Output Current	Withstand   Test   Voltage/   Regulatory   Approval	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
	HCPL-3700	AC/DC to Logic   Threshold Sensing Interface Optocoupler   Low Input Current	Limit Switch Sensing, Low Voltage Detector, Relay Contact Monitor	4 KHz	$2.5 \mathrm{~mA} \mathrm{TH}^{+}$   $1.3 \mathrm{~mA} \mathrm{TH}^{-}$   $1.2 \mathrm{~mA} \mathrm{TH}^{+}$   $0.6 \mathrm{~mA} \mathrm{TH}^{-}$	4.2 mA	$2500 \mathrm{Vac} /$ 1 min $5000 \mathrm{Vac} /$ 1 min (Option $020)$ VDE 0883	6-165

## 20 mA Current Loop Optocouplers

Device		Description	Application	Typical Data   Rates	Input   Characteristics	Output Characteristics	Withstand   Test   Voltage/   Regulatory   Approval	Page No.
	HCPL-4100	Optically Coupled 20 mA Current Loop   Transmitter	Isolated 20 mA   Current Loop in:   - Computer   Peripherals   - Industrial Control   Equipment   - Data Communication Equipment	20 kBd (at 400 metres)	TTL/CMOS	27 V Max.   Compli-   ance Voltage	$\begin{gathered} 2500 \mathrm{Vac} / \\ 1 \mathrm{~min} \end{gathered}$	6-175
	HCPL-4200	Optically Coupled 20 mA Current Loop Receiver			6.5 mA Typ.   Threshold Current	3 State Output	$\begin{array}{\|c\|} \hline 2500 \mathrm{Vacl} \\ 1 \mathrm{~min} \end{array}$	6-183

Optocoupler Options

Option	Description	Page
020	Special construction and testing to ensure the capability to withstand 5000 V ac input to output for one minute. Testing is   recognized by Underwriters Laboratories, Inc. (File No. E55361). This specification is required by U.L. in some   applications where working voltages can exceed $220 \mathrm{~V} \mathrm{ac}$.	$6-191$
100	Surface mountable optocoupler in a standard sized dual-in-line package with leads trimmed (butt joint). Provides an   optocoupler which is compatible with surface mounting processes.	$6-193$
300	Surface mountable optocoupler in a standard sized dual-in-line package with gull wing leads. Provides an optocoupler   which is compatible with surface mounting processes.	

## Plastic Solid State Relay

Device		Application	Output   Withstand   Voltage	Output   On-   Resistance	Maximum   Load   Current	Maximum   Off-State   Leakage	Input   Output   Insulation	Page   No.
	HSSR-8200	  Measurement, Analog   Multiplexers, \& Reed Relay   Replacement	200 V	$160 \Omega$	40 mA	0.25 nA	3 kV dc	$6-195$

Bold Type - New Product
Hermetic Optocouplers Selection Guide (see pg. 6-214).

# LOW INPUT CURRENT LOGIC GATE 



## Features

- VERY HIGH COMMON MODE REJECTION $2.5 \mathrm{KV} / \mu \mathrm{s}$ AT 400 V V CM GUARANTEED (HCPL-2219)
- COMPATIBLE WITH LSTTL, TTL, AND CMOS LOGIC
- WIDE Vcc RANGE (4.5 TO 20 VOLTS)
- 2.5 MBAUD GUARANTEED OVER TEMPERATURE
- LOW INPUT CURRENT ( 1.6 mA )
- THREE STATE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- GUARANTEED PERFORMANCE FROM $0^{\circ} \mathrm{C}$ TO $+85^{\circ}$ C
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL AVAILABLE
- MIL-STD-1772 VERSION AVAILABLE (HCPL-5200/1)
Applications
- Isolation of High Speed Logic Systems
- Computer-Peripheral Interfaces
- Microprocessor System Interfaces
- Ground Loop Elimination
- Pulse Transformer Replacement
- Isolated Buss Driver
- High Speed Line Receiver


## Description

The HCPL-2200 is an optically coupled logic gate that combines a GaAsP LED and an integrated high gain photon

detector. The detector has a three state output stage and has a detector threshold with hysteresis. The three state output eliminates the need for a pullup resistor and allows for direct drive of data busses. The hysteresis provides differential mode noise immunity and eliminates the potential for output signal chatter. The detector IC has an internal shield that provides a guaranteed common mode transient immunity of 1,000 volts $/ \mu \mathrm{sec}$. Higher CMR specifications are available upon request.
The Electrical and Switching Characteristics of the HCPL2200 are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The HCPL-2200 is guaranteed to operate over a VCC range of 4.5 volts to 20 volts. Low If and wide Vcc range allow compatibility with TTL, LSTTL, and CMOS logic. Low If and low Icc result in lower power consumption compared to other high speed optocouplers. Logic signals are transmitted with a typical propagation delay of 160 nsec:
The HCPL-2200 is useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	20	Volts
Enable Voltage High	$\mathrm{V}_{\mathrm{EH}}$	2.0	20	Volts
Enable Voltage Low	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	Volts
Forward Input Current	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	$1.6^{\star}$	5	mA
Forward Input Current	$\mathrm{I}_{\mathrm{F}(\mathrm{OFF})}$	-	0.1	mA
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0	$85[1]$	${ }^{\circ} \mathrm{C}$
Fan Out	N		4	$\mathrm{TTL}^{\text {Loads }}$

*The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a $20 \%$ CTR degradation guardband.

## Recommended Circuit Design



Figure 1. Recommended LSTTL to LSTTL Circuit

## Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$ )
Storage Temperature ................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ............... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}[1]$
Lead Solder Temperature ................ $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Average Forward Input Current - IF .............. 10 mA
Peak Transient Input Current - IF $I_{F} \ldots \ldots . . \ldots . . .$. ........... 1A
( $\leq 1 \mu$ s Pulse Width, 300 pps )
Reverse Input Voltage ................ 5 V
Supply Voltage - VCC . . . . . . . . . . . . . 0.0 V min., 20 V max.
Three State Enable Voltage
$-V_{E}$
-0.5 V min., 20 V max.
Output Voltage - Vo
Total Package Power
Dissipation - $P$
-0.5 V min., 20 V max.

Average Output Current - Io
$210 \mathrm{~mW}{ }^{[1]}$ 25 mA

## Electrical Specifications

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}{ }^{[1]} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EH}} \leq 20 \mathrm{~V}, 0.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EL}} \leq 0.8 \mathrm{~V}$,
$0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{OFF})} \leq 0.1 \mathrm{~mA}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified. See note 7 .


## Switching Specifications

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}{ }^{|1|} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}$,
$0.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{OFF})} \leq 0.1 \mathrm{~mA}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output Level	tPHL		210		ns	Without Peaking Capacitor	6,7	4,5
			160	300		With Peaking Capacitor		
Propagation Delay Time to Logic High Output Level	tPLH		170		ns	Without Peaking Capacitor	6,7	4,5
			115	300		With Peaking Capacitor		
Output Enable Time to Logic High	tPZH		25		ns		8,10	
Output Enable Time to Logic Low	tPZL		28		ns		8,9	
Output Disable Time from Logic High	tPhZ		105		ns		8,10	
Output Disable Time from Logic Low	tplZ		60		ns		8,9	
Output Rise Time (10-90\%)	$\mathrm{tr}_{r}$		55		ns		6,11	
Output Fall Time (90-10\%)	$\mathrm{tf}_{f}$		15		ns		6,11	


Parameter	Symbol	Device	Min.	Units	Test Conditions		Figure	Note
Logic High Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	HCPL-2200	1,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	12	6
		HCPL-2219	2,500	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=400 \mathrm{~V}$			
Logic Low Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	HCPL-2200	1,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	12	6
		HCPL-2219	2,500	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=400 \mathrm{~V}$			

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	$\mathrm{L}(\mathrm{IO} 1)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	$\mathrm{L}(\mathrm{IO} 2)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109



Figure 2. Typical Logic Low Output Voltage vs. Temperature


Figure 3. Typical Logic High Output Current vs. Temperature



Figure 11. Typical Rise, Fall Time vs. Temperature


Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms


Figure 13. LSTTL to CMOS Interface Circuit


Figure 14. Recommended LED
Drive Circuit


Figure 15. Series LED Drive with Open Collector Gate (4.7 k $\Omega$ Resistor Shunts $\mathrm{I}_{\mathrm{OH}}$ from the LED)

The 120 pF capacitor may be omitted in applications where 500 ns propagation delay is sufficient.

## Notes:

1. Derate total package power dissipation, $P$, linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins $1,2,3$ and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The tPLH propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The tpHL propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.3 V point on the
trailing edge of the output pulse.
5. When the peaking capacitor is omitted, propagation delay times may increase by 100 ns .
6. $C M_{\mathrm{L}}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ( $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ). $C M_{H}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ( $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ).
7. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.

## (hp <br> HEWLETT PACKARD

## LOGIC GATE OPTOCOUPLER



## Features

- VERY HIGH COMMON MODE REJECTION, $5 \mathrm{kV} / \mu \mathrm{s}$ AT 300 V GUARANTEED (HCPL-2211/12)
- WIDE Vcc RANGE (4.5 TO 20 VOLTS)
- 300 ns PROPAGATION DELAY GUARANTEED OVER THE FULL TEMPERATURE RANGE
- 5 MBd TYPICAL SIGNAL RATE
- LOW INPUT CURRENT ( 1.6 mA )
- TOTEM POLE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- GUARANTEED PERFORMANCE FROM $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL PENDING


## Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- MICROPROCESSOR SYSTEM INTERFACES
- GROUND LOOP ELIMINATION
- PULSE TRANSFORMER REPLACEMENT
- HIGH SPEED LINE RECEIVER



## Description

The HCPL-2201/02/11/12 are single-channel, opticallycoupled logic gates. The detectors have totem pole output stages and optical receiver input stages with built-in Schmitt triggers to provide logic-compatible waveforms, eliminating the need for additional waveshaping.
A superior internal shield on the HCPL-2211/12 guarantees common mode transient immunity of $5,000 \mathrm{~V} / \mu \mathrm{s}$ at a common mode voltage of 300 volts.
The electrical and switching characteristics of the HCPL$2201 / 02 / 11 / 12$ are guaranteed from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and a $\mathrm{V}_{\mathrm{CC}}$ from 4.5 volts to 20 volts. Low $\mathrm{I}_{\mathrm{F}}$ and wide $\mathrm{V}_{\mathrm{CC}}$ range allow compatibility with TTL, LSTTL, and CMOS logic and result in lower power consumption compared to other high speed couplers. Logic signals are transmitted with a typical propagation delay of 150 ns .

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	20	Volts
Forward Input Current	$\mathrm{I}_{\mathrm{F} \text { (ON) }}$	$1.6^{*}$	5	mA
Forward Input Voltage	$\mathrm{V}_{\mathrm{F} \text { (OFF) }}$	-	0.8	Volts
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$
Fan Out	N		4	TTL Loads

*The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20\% CTR degradation guardband.

## Recommended Circuit Design <br> Absolute Maximum Ratings



Figure 1. Recommended LSTTL to LSTTL Circuit

## Electrical Specifications

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$, unless otherwise specified. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. See Note 7 .


Switching Specifications $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}$,
$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output Level	$\mathrm{t}_{\text {PHL }}$		150		ns	Without Peaking Capacitor	6,7	4
			150	300		With Peaking Capacitor		
Propagation Delay Time to Logic High Output Level	$t_{\text {PLH }}$		110		ns	Without Peaking Capacitor	6,7	4
			90	300		With Peaking Capacitor		
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$		30		ns		6, 9	
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$		7		ns		6, 9	


Parameter	Symbol	Device	Min.	Units	Test Conditions		Figure	Note
Logic High Common Mode Transient Immunity	$\left\|C M_{H}\right\|$	$\begin{aligned} & \text { HCPL-2201 } \\ & \text { HCPL-2202 } \\ & \hline \end{aligned}$	1,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	10	5
		$\begin{aligned} & \text { HCPL-2211 } \\ & \text { HCPL-2212 } \end{aligned}$	5,000	$\mathrm{V} / \mu \mathrm{S}$	$\|\mathrm{Vcm}\|=300 \mathrm{~V}$			
Logic Low Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	$\begin{aligned} & \text { HCPL-2201 } \\ & \text { HCPL-2202 } \end{aligned}$	1,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & V_{F}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	10	5
		$\begin{aligned} & \hline \text { HCPL-2211 } \\ & \text { HCPL-2212 } \end{aligned}$	5,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=300 \mathrm{~V}$			

## Insulation Related Specifications

Parameter	Symbol	Min.	Units	Conditions
Min. External Air Gap (Clearance)	L (IO1)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	L (IO2)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		$I I \mathrm{a}$		Material Group DIN VDE 0109



Figure 2. Typical Logic Low Output Voltage vs. Temperature


Figure 3. Typical Logic High Output Current vs. Temperature


Figure 4. Output Voltage vs. Forward Input Current


Figure 5. Typical Input Diode Forward Characteristic


Figure 8. Typical Logic High Output Voltage vs. Supply Voltage


Figure 6. Circuit for $\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\text {PHL }}, \mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$


Figure 9. Typical Rise, Fall Time vs. Temperature


Figure 7. Typical Propagation Delays vs. Temperature


Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms


Figure 11. Typical Input Threshold Current vs. Temperature


Figure 13. Alternative LED Drive Circuit


Figure 12. LSTTL to CMOS Interface Circuit


Figure 14. Series LED Drive with Open Collector Gate ( $4.7 \mathrm{k} \Omega$ Resistor Shunts $\mathrm{l}_{\mathrm{OH}}$ from the LED)

## Notes:

1. Derate total package power dissipation, P , linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins $5,6,7$ and 8 shorted together.
4. The $t_{\text {PLH }}$ propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The tpHL propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
5. $\mathrm{CM}_{\mathrm{L}}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V} . \mathrm{CM}_{\mathrm{H}}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$.
6. For HCPL-2202/12, $V_{O}$ is on pin 6.
7. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.

## VERY HIGH CMR, WIDE VCC DUAL LOGIC GATE OPTOCOUPLER



## Features

- VERY HIGH COMMON MODE REJECTION 5 kV/ $\mu \mathrm{s}$ AT 300 V GUARANTEED (HCPL-2232)
- WIDE VCc RANGE (4.5 TO 20 VOLTS)
- 300 ns PROPAGATION DELAY GUARANTEED OVER THE FULL TEMPERATURE RANGE
- 5 MBd TYPICAL SIGNAL RATE
- LOW INPUT CURRENT (1.8 mA)
- TOTEM POLE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- GUARANTEED PERFORMANCE FROM $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL AVAILABLE
- MIL-STD-1772 VERSION AVAILABLE (HCPL-5230/1)


## Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- MICROPROCESSOR SYSTEM INTERFACES
- GROUND LOOP ELIMINATION
- PULSE TRANSFORMER REPLACEMENT
- HIGH SPEED LINE RECEIVER


## Recommended Circuit Design



## Absolute Maximum Ratings

Storage Temperature . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature . . . . . . . . . . . . . . . . . . . $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature . . . . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Average Forward Input Current - $I_{F}$
$10 \mathrm{~mA}{ }^{[1]}$

( $\leq 1 \mu \mathrm{~s}$ Pulse Width, 300 pps )
Reverse Input Voltage .................................... 5 V [1]
Supply Voltage - $\mathrm{V}_{\mathrm{CC}} \ldots . . . . . . . . . . . . .0 .0 \mathrm{~V}$ min., 20 V max.
Output Voltage $-\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . .$.
Total Package Power Dissipation
.294 mW
Output Power Dissipation - Po per Channel . . . . . . . . . Fig. 8
Average Output Current - Io per Channel .......... 25 mA

Figure 1. Recommended LSTTL to LSTTL Circuit

## Electrical Specifications

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.8 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$, unless otherwise specified.
All Typicals at $T_{A}=25^{\circ} \mathrm{C}$. See note 7 .


Switching Specifications $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 1.8 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}$,
$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F} \text { (OFF) }} \leq 0.8 \mathrm{~V}$. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output Level	$\mathrm{t}_{\mathrm{PHL}}$		150		ns	Without Peaking Capacitor	6,7	1, 4
			150	300		With Peaking Capacitor		
Propagation Delay Time to Logic High Output Level	$t_{\text {PLH }}$		110		ns	Without Peaking Capacitor	6,7	1,4
			90	300		With Peaking Capacitor		
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$		30		ns		6,10	1
Output Fall Time (90-10\%)	$t_{f}$		7		ns		6, 10	1


Parameter	Symbol	Device	Min.	Units	Test Conditions		Figure	Note
Logic High Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	HCPL-2231	1,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{F}=1.8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	11	1,5
		HCPL-2232	5,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=300 \mathrm{~V}$			
Logic Low Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	HCPL-2231	1,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=50 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	11	, 5
		HCPL-2232	5,000	$\mathrm{V} / \mu \mathrm{s}$	$\|\mathrm{Vcm}\|=300 \mathrm{~V}$			

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	$\mathrm{L}(\mathrm{IO} 1)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	$\mathrm{L}(\mathrm{IO} 2)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109



Figure 2. Typical Logic Low Output Voltage vs. Temperature


Figure 3. Typical Logic High Output Current vs. Temperature


Figure 4. Output Voltage vs. Forward Input Current


Figure 5. Typical Input Diode Forward Characteristic


Figure 8. Maximum Output Power per Channel vs. Supply Voltage


Note: Channel one shown.

Figure 6. Circuit for $\mathbf{t P L H}, \mathbf{t}_{\text {PHL }}, \mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$


Figure 9. Typical Logic High Output Voltage vs. Supply Voltage


Figure 7. Typical Propagation Delays vs. Temperature


Figure 10. Typical Rise, Fall Time vs. Temperature


Figure 11. Test Circuit for Common Mode Transient Immunity and Typical Waveforms


Figure 12. Typical Input Threshold Current vs. Temperature


NOTE: CHANNEL ONE SHOWN

Figure 13. LSTTL to CMOS Interface Circuit


Figure 14. Alternate LED Drive Circuit

Figure 15. Series LED Drive with Open Collector Gate
$\left(4.7 \mathrm{k} \Omega\right.$ Resistor Shunts $\mathrm{I}_{\mathrm{OH}}$ from the LED)
Figure 15. Series LED Drive with Open Collector Gate
(4.7 k $\Omega$ Resistor Shunts $\mathrm{I}_{\mathrm{OH}}$ from the LED)


## Notes:

1. Each channel.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The $t_{\text {PLH }}$ propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The $t_{\text {PHL }}$ propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
5. $\mathrm{CM}_{\mathrm{L}}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V} . \mathrm{CM}_{\mathrm{H}}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$.
6. Measured between pins 1 and 2, shorted together, and pins 3 and 4, shorted together.
7. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.


Figure 1. Schematic


## Features

- GUARANTEED LOW THRESHOLDS: $I_{F}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}} \leq$ 1.5 V
- HIGH SPEED: GUARANTEED 5 MBd OVER TEMPERATURE
- VERSATILE: COMPATIBLE WITH TTL, LSTTL AND CMOS
- MORE EFFICIENT 820 nm AIGaAs LED
- INTERNAL SHIELD FOR GUARANTEED COMMON MODE REJECTION
- SCHOTTKY CLAMPED, OPEN COLLECTOR OUTPUT WITH OPTIONAL INTEGRATED PULL-UP RESISTOR
- STATIC AND DYNAMIC PERFORMANCE GUARANTEED FROM $-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$
- SPECIAL SELECTION FOR LOW FORWARD CURRENT APPLICATIONS ( $\left.\mathrm{I}_{\mathrm{F}} \geq 150 \mu \mathrm{~A}\right)$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL AVAILABLE


## Applications

- GROUND LOOP ELIMINATION
- COMPUTER-PERIPHERAL INTERFACES
- LEVEL SHIFTING
- MICROPROCESSOR SYSTEM INTERFACES
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- RS-232-C INTERFACE
- HIGH SPEED, LONG DISTANCE ISOLATED LINE RECEIVER


## Description

The HCPL-2300 optocoupler combines an 820 nm AIGaAs photon emitting diode with an integrated high gain photon detector. This combination of Hewlett-Packard designed and manufactured semiconductor devices brings new high performance capabilities to designers of isolated logic and data communication circuits.

The new low current, high speed AIGaAs emitter manufactured with a unique diffused junction, has the virtue of fast rise and fall times at low drive currents. Figure 6 illustrates the propagation delay vs. input current characteristic. These unique characteristics enable this device to be used in an RS-232-C interface with ground loop isolation and improved common mode rejection. As a line receiver, the HCPL2300 will operate over longer line lengths for a given data rate because of lower $I_{F}$ and $V_{F}$ specifications.

The output of the shielded integrated detector circuit is an open collector Schottky clamped transistor. The shield, which shunts capacitively coupled common mode noise to ground, provides a guaranteed transient immunity specification of $100 \mathrm{~V} / \mu \mathrm{s}$. The output circuit includes an optional integrated 1000 Ohm pull-up resistor for the open collector. This gives designers the flexibility to use the internal resistor for pull-up to five volt logic or to use an external resistor for 18 volt CMOS logic.

The Electrical and Switching Characteristics of the HCPL2300 are guaranteed over a temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. This enables the user to confidently design a circuit which will operate under a broad range of operating conditions.

## Recommended Operating Conditions

	Sym.	Min.	Max.	Units	
Input Voltage, Low Level		$\mathrm{V}_{\mathrm{FL}}$	-2.5	0.8	V
Input Current   High Level	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			0.5	1.0
mA					
	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		0.5	0.75	
Supply Voltage, Output	$\mathrm{V}_{\mathrm{CC}}$	4.75	5.25	V	
Fan Out (TTL Load)	N		5		
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$	


$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 2. Typical Input Diode Forward Characteristic.

## Absolute Maximum Ratings

(No derating required)

Parameter	Symbol	Min.	Max.	Units	Reference
Storage Temperature	Ts	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$	
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{~s} .(1.6 \mathrm{~mm}$ below seating plane)				
Average Forward Input Current	If		5	mA	See Note 2
Reverse Input Voltage	$\mathrm{V}_{\mathrm{R}}$		3.5	V	
Supply Voltage	VCC	0.0	7.0	V	
Pull-up Resistor Voltage	VRL	-0.5	Vcc	V	
Output Collector Current	Io	-25	25	mA	
Input Power Dissipation	Pl		10	mW	
Output Collector Power Dissipation	Po		40	mW	
Output Collector Voltage	Vo	-0.5	18	V	

## Electrical Specifications

For $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{FL}} \leq 0.8 \mathrm{~V}$, unless otherwise specified.
All typicals at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=5 \mathrm{~V}$, unless otherwise specified. See note 1 .


## Switching Specifications

For $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{FH}} \leq 0.75 \mathrm{~mA}$;
For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{FH}} \leq 1.0 \mathrm{~mA}$; With $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{FL}} \leq 0.8 \mathrm{~V}$, unless otherwise specified.
All typicals at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{FH}}=0.625 \mathrm{~mA}$, unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Propagation Delay Time to Logic High Output Level	tple		95		ns	$\mathrm{Cp}_{\mathrm{p}}=0 \mathrm{pF}$	5, 6, 8	4,8
			85	160		$\mathrm{CP}_{\mathrm{p}}=20 \mathrm{pF}$	5,8	
Propagation Delay Time to Logic Low Output Level	tPHL		110		ns	$\mathrm{CP}_{\mathrm{p}}=0 \mathrm{pF}$	5, 6, 8	5,8
			35	200		$\mathrm{Cp}=20 \mathrm{pF}$	5, 8	
Output Rise Time (10-90\%)	tr		40		ns	$\mathrm{CP}_{\mathrm{P}}=20 \mathrm{pF}$	7,8	8
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$		20		ns			
Common Mode Transient Immunity at High Output Level	CMH\|	100	400		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V} \text { (peak) }, \\ & \mathrm{V}_{\mathrm{O}}(\text { min. })=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$	9,10	6
Common Mode Transient Immunity at Low Output Level	CML	100	400		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}$ (peak),   $\mathrm{V}_{\mathrm{O}}($ max. $)=0.8 \mathrm{~V}$,   $\mathrm{R}_{\mathrm{L}}=560 \Omega, \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$	9, 10	7

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	L(IO1)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	L(IO2)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		111 a		Material Group DIN VDE 0109



Figure 3. Typical Output Voltage vs. Forward Input Current vs. Temperature.


Figure 4. Typical Logic High Output Current vs. Temperature.


$$
\begin{aligned}
& \text { tpLH- }^{\mathrm{D}-\left\{\begin{array}{l}
-0.5 \mathrm{~mA} \text { то } 1.0 \mathrm{~mA}, C_{p}=20 \mathrm{pF} \\
\mathrm{E}=0.5 \mathrm{~mA} \text { то } 0.75 \mathrm{~mA}, C_{p}=20 \mathrm{pF} \\
\mathrm{~F}=1.0 \mathrm{~mA}, C_{p}=0 \mathrm{pF} \\
=0
\end{array}\right.}
\end{aligned}
$$

Figure 5. Typical Propagation Delay vs. Temperature and Forward Current With and Without Application of a Peaking Capacitor.


Figure 6. Typical Propagation Delay vs. Forward Current.


Figure 7. Typical Rise, Fall Time vs. Temperature.


INPUT IF

OUTPUT $V_{0}$


Figure 8. Test Circuit for $\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathbf{f}}$.


Figure 9. Typical Common Mode Transient Immunity vs. Common Mode Transient Amplitude.


*SEE NOTES 6, 7.

Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

## Applications

The HCPL-2300 optocoupler has the unique combination of low 0.5 mA LED operating drive current at a 5 MBd speed performance. Low power supply current requirement of 10 mA maximum and the ability to provide isolation between logic systems fulfills numerous applications ranging from logic level translations, line receiver and party line receiver applications, microprocessor I/O port isolation, etc. The open collector output allows for wired-OR arrangement. Specific interface circuits are illustrated in Figures 11 through 18 with corresponding component values, performance data and recommended layout.

For $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range, a mid range LED forward current ( $\mathrm{I}_{\mathrm{F}}$ ) of 0.625 mA is recommended in order to prevent overdriving the integrated circuit detector due to increased LED efficiency at temperatures between $0^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$. For narrower temperature range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, a suggested operating LED current of 0.75 mA is recommended for the mid range operating point and for minimal propagation delay skew. A peaking capacitance of 20 pF in parallei with the current limiting resistor for the LED shortens tPHL by approximately $33 \%$ and tPLH by $13 \%$. Maintaining LED forward voltage ( $\mathrm{V}_{\mathrm{F}}$ ) below 0.8 V will guarantee that the HCPL- 2300 output is off.
The recommended shunt drive technique for TTL/LSTTL/ CMOS of Figure 11 provides for optimal speed performance, no leakage current path through the LED, and reduced common mode influences associated with series switching of a "floating" LED. Alternate series drive techniques with either an active CMOS inverter or an open col-
lector TTL/LSTTL inverter are illustrated in Figures 12 and 13 respectively. Open collector leakage current of $250 \mu \mathrm{~A}$ has been compensated by the 3.16 K Ohms resistor (Figure 13) at the expense of twice the operating forward current.

An application of the HCPL-2300 as an unbalanced line receiver for use in long line twisted wire pair communication links is shown in Figure 14. Low LED $I_{F}$ and $V_{F}$ allow longer line length, higher speed and multiple stations on the line in comparison to higher $I_{F}, V_{F}$ optocouplers. Greater speed performance along with nearly infinite common mode immunity are achieved via the balanced split phase circuit of Figure 15. Basic balanced (differential line receiver can be accomplished with one HCPL-2300 in Figure 15 , but with a typical $400 \mathrm{~V} / \mu \mathrm{s}$ common mode immunity. Data rate versus distance for both the above unbalanced and balanced line receiver applications are compared in Figure 16. The RS-232-C interface circuit of Figure 17 provides guaranteed minimum common mode immunity of $100 \mathrm{~V} / \mu \mathrm{s}$ while maintaining the $2: 1$ dynamic range of $I_{F}$.
A recommended layout for use with an internal 1000 Ohms resistor or an external pull-up resistor and required $V_{C C}$ bypass capacitor is given in Figure 18. $\mathrm{V}_{\mathrm{CC} 1}$ is used with an external pull-up resistor for output voltage levels $\left(\mathrm{V}_{\mathrm{O}}\right)$ greater than or equal to 5 V . As illustrated in Figure 18, an optional $\mathrm{V}_{\mathrm{CC}}$ and GND trace can be located between the input and the output leads of the HCPL-2300 to provide additional noise immunity at the compromise of insulation capability ( $\mathrm{V}_{1-\mathrm{O}}$ ).


$V_{I N}$   $V_{D C}$	$V_{C C 1}$   $V_{D C}$	$R_{1}$   $k \Omega$	$R_{\mathrm{L}}$   $\mathrm{k} \Omega$	$V_{\mathrm{CC} 2}$   $V_{D C}$
5	5	6.19	1   (INTERNAL)	5
10	10	14.7	2.37	10
15	15	21.5	3.16	15

[^39]Figure 11. Recommended Shunt Drive Circuit for Interfacing Between TTL/LSTTL/CMOS Logic Systems.


Figure 12. Active CMOS Series Drive Circuit.


Figure 13. Series Drive from Open Collector TTL/LSTTL Units.


Figure 14. Application of HCPL-2300 as Isolated, Unbalanced Line Receiver(s).


Figure 15. Application of Two HCPL-2300 Units Operating as an Isolated, High Speed, Balanced, Split Phase Line Receiver with Significantly Enhanced Common Mode Immunity.


Figure 16. Typical Point to Point data Rate vs. Length of Line for Unbalanced (Figure 14) and Balanced (Figure 15) Line Receivers using HCPL-2300 Optocouplers.

*SEE NOTE 1

Figure 18. Recommended Printed Circuit Board Layout.


Figure 17. RS-232-C Interface Circuit with HCPL-2300. $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$.

## NOTES:

1. Bypassing the power supply line is required with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 18. The power supply bus for the optocoupler(s) should be separate from the bus for any active loads, otherwise a larger value of bypass capacitor (up to $0.1 \mu \mathrm{~F}$ ) may be needed to suppress regenerative feedback via the power supply.
2. Peaking circuits may produce transient input currents up to 100 mA , 500 ns maximum pulse width, provided average current does not exceed 5 mA .
3. Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The tple propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The tphl propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. $\mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., Vout > 2.0 V ).
7. $C M_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., Vout < 0.8 V ).
8. $C_{p}$ is the peaking capacitance. Refer to test circuit in Figure 8.

## 20 M BAUD HIGH CMR LOGIC GATE OPTOCOUPLER



## Features

- HIGH SPEED: 40 MBd TYPICAL DATA RATE
- HIGH COMMON MODE REJECTION
- HCPL-2400 $=1 \mathrm{kV} / \mu \mathrm{s}$ @ $50 \mathrm{~V}_{\mathrm{CM}}$
- HCPL-2411 = $\mathbf{1 k V} / \mu \mathrm{S}$ @ $300 \mathrm{~V}_{\mathrm{CM}}$
- AC PERFORMANCE GUARANTEED OVER temperature
- COMPATIBLE WITH TTL, STTL, LSTTL, AND HCMOS LOGIC FAMILIES
- HIGH SPEED AIGaAs EMITTER
- THREE STATE OUTPUT (NO PULL-UP RESISTOR REQUIRED)
- HIGH POWER SUPPLY NOISE IMMUNITY
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL AVAILABLE
- MIL-STD-1772 VERSION AVAILABLE (HCPL-5400/1)


## Applications

- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- ISOLATED BUS DRIVER (NETWORKING APPLICATIONS)
- SWITCHING POWER SUPPLIES
- GROUND LOOP ELIMINATION
- HIGH SPEED DISK DRIVE I/O
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- PULSE TRANSFORMER REPLACEMENT



## Description

The HCPL-2400/11 high speed optocouplers combine an 820 nm AIGaAs light emitting diode with a high speed photo-detector. This combination results in very high data rate capability and low input current. The three state output eliminates the need for a pull-up resistor and allows for direct drive of data buses. The hysteresis provides differential mode noise immunity and minimizes the potential for output signal chatter. Improved power supply rejection minimizes the need for special power supply bypassing precautions.

The electrical and switching characteristics of the HCPL$2400 / 11$ are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

The HCPL-2400/11 are compatible with TTL, STTL, LSTTL and HCMOS logic families. When Schottky type TTL devices (STTL) are used, a data rate performance of 20 MBd over temperature is guaranteed when using the application circuit of Figure 13. Typical data rates are 40 MBd .

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.75	5.25	Volts
Input Current (High)	$\mathrm{IF}_{(\mathrm{ON})}$	4	8	mA
Input Voltage (Low)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-	0.8	Volts
Enable Voltage (Low)	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	Volts
Enable Voltage (High)	$\mathrm{V}_{\mathrm{EH}}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	Volts
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0	$70^{\circ}$	${ }^{\circ} \mathrm{C}$
Fan Out	N		5	TTL Loads

## Absolute Maximum Ratings

(No derating required up to $85^{\circ} \mathrm{C}$ )

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Ts	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	TA	-40	85	${ }^{\circ} \mathrm{C}$	
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{~s} .(1.6 \mathrm{~mm}$ below seating plane)				
Average Forward Input Current	IF		10.0	mA	
Peak Forward Input Current	IFPK		20.0	mA	9
Reverse Input Voltage	$V_{R}$		3.0	V	
Supply Voltage	Vcc	0	7.0	V	
Three State Enable Voltage	$\mathrm{V}_{\mathrm{E}}$	-0.5	10.0	V	
Average Output Collector Current	10	-25.0	25.0	mA	
Output Collector Voltage	Vo	-0.5	10.0	V	
Output Collector Power Dissipation	Po		40.0	mW	

## Electrical Specifications

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 8 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{E H} \leq 5.25,0 \mathrm{~V} \leq \mathrm{V}_{E L} \leq 0.8 \mathrm{~V}$,
$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$ except where noted. All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}^{\left(\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=6.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=0 \mathrm{~V} \text { except where noted. See note } 9 .\right.}$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
Logic Low Output Voltage	VOL			0.5	Volts	$\mathrm{loL}=8.0 \mathrm{~mA}$ ( 5 TTL Loads)	1	
Logic High Output Voltage	VOH	2.4			Volts	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	2	
Output Leakage Current	Іонн			100	$\mu \mathrm{A}$	  $\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{F}}=0.8 \mathrm{~V}$		
Logic High Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0			Volts			
Logic Low Enable Voltage	$V_{E L}$			0.8	Volts			
Logic High Enable Current	IEH			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{E}}=2.4 \mathrm{~V}$		
				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{E}}=5.25 \mathrm{~V}$		
Logic Low Enable Current	lel		-0.28	-0.4	mA	$\mathrm{V}_{\mathrm{E}}=0.4 \mathrm{~V}$		
Logic Low Supply Current	ICCL		19	26	mA	$\mathrm{VCC}=5.25 \mathrm{~V}$		
Logic High Supply Current	Icch		17	26	mA	$\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$		
High Impedance State Supply Current	Íccz		22	28	mA	$\begin{aligned} & \mathrm{VCC}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=5.25 \mathrm{~V} \end{aligned}$		
High Impedance State	lozl			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		
Output Current	Iozh			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \quad \mathrm{VE}_{\mathrm{E}}=2 \mathrm{~V}$		
	Iozh			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$		
Logic Low Short Circuit Output Current	IosL		52		mA	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V} \quad \mathrm{IF}=8 \mathrm{~mA}$		1
Logic High Short Circuit Output Current	Iosh		-45		mA	$\mathrm{V} C \mathrm{C}=5.25 \mathrm{~V}$ $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$,    $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$		1
Input Current Hysteresis	Ihys		0.25		mA	$\mathrm{Vcc}=5 \mathrm{~V}$	3	
Input Forward Voltage	$V_{F}$	1.1	1.3	1.5	Volts	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 既 $=8 \mathrm{~mA}$	4	
Input Reverse Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}$	3.0   2.0	5.0		Volts	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.44		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA}$	4	
Input-Output Insulation	VISO	2500			$V_{\text {RMS }}$	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		2
Input-Output Resistance	RI-O		$10^{12}$		ohms	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}$		2
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{l}-\mathrm{O}}=0 \mathrm{Vdc}$		2
Input Capacitance	$\mathrm{Cin}^{\text {a }}$		20		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$, Pins 2 and 3		

## Switching Specifications

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 0.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EN}} \leq 0.8 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}} \leq 8.0 \mathrm{~mA}$. All typicals $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{F}}=6.0 \mathrm{~mA}$ except where noted.

Parameter	Symbol		Min.	Typ.	Max.	Units	Test Conditio		Figure	Note
Propagation Delay Time to Logic Low Output Level	${ }_{\text {tPHL }}$				55	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7.0 \mathrm{~m}$		5, 6, 7	4
			15	33	60	ns			5,6,7	3
Propagation Delay Time to Logic High Output Level	${ }^{\text {tPLH }}$				55	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7.0 \mathrm{~m}$		5,6,7	4
			15	30	60	ns			5, 6, 7	3
Pulse Width Distortion	$\left\|\mathrm{t}_{\mathrm{PHL}}{ }^{-\mathrm{t}_{\mathrm{PLH}}}\right\|$			2	15	ns	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7.0 \mathrm{~m}$		5, 8	4
				3	25	ns			5, 8	
Propagation Delay Skew	$t_{\text {PSK }}$				35	ns			15, 16	5
Output Rise Time	$t_{r}$			20		ns			5	
Output Fall Time	$\mathrm{t}_{\mathrm{f}}$			10		ns			5	
Output Enable Time to Logic High	$t_{\text {PZH }}$			15		ns			9, 10	
Output Enable Time to Logic Low	$t_{\text {PZL }}$			30		ns			9, 10	
Output Disable Time from Logic High	$\mathrm{t}_{\mathrm{PHZ}}$			20		ns			9, 10	
Output Disable Time from Logic Low	$t_{\text {PLZ }}$			15		ns			9, 10	
Logic High Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	2400	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}$			
		2411	1000			$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=300 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{F}}=0$	11	6
Logic Low Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	2400	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$	11	6
		2411	1000			$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=300 \mathrm{~V}$			
Power Supply Noise Immunity	PSNI			0.5		$V_{p-p}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$,	$\mathrm{Hz} \leq \mathrm{F}_{\text {AC }} \leq 50 \mathrm{MHz}$		7

## Insulation Related Specifications

Parameter	Symbol	Value	Units	
Min. External Air Gap (Clearance)	$\mathrm{L}(\mathrm{IO} 1)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	$\mathrm{L}(\mathrm{IO} 2)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112NDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109

## Notes:

1. Duration of output short circuit time not to exceed 10 ms .
2. Device considered a two terminal device: pins $1-4$ shorted together, and pins 5-8 shorted together.
3. tPHL propagation delay is measured from the $50 \%$ level on the rising edge of the input current pulse to the 1.5 V level on the falling edge of the output pulse. The tpLh propagation delay is measured from the $50 \%$ level on the falling edge of the input current pulse to the 1.5 V level on the rising edge of the output pulse.
4. This specification simulates the worst case operating conditions of the HCPL-2400/11 over the recommended operating temperature and Vcc range with the suggested applications circuit of Figure 13.
5. Propagation delay skew is discussed later in this data sheet.
6. $\mathrm{CMH}_{\mathrm{H}}$ is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic high state ( $\mathrm{V}_{\mathrm{O}(\mathrm{MIN})}>2.0 \mathrm{~V}$ ). CML is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{O}}(\mathrm{MAX})<0.8 \mathrm{~V}\right)$.
7. Power Supply Noise Immunity is the peak to peak amplitude of the ac ripple voltage on the $V_{C C}$ line that the device will withstand and still remain in the desired logic state. For desired logic high state, $\mathrm{V}_{\mathrm{OH}(\mathrm{MIN})}>2.0 \mathrm{~V}$, and for desired logic low state, $\mathrm{V}_{\mathrm{OL}(\mathrm{MAX})}<0.8$ volts.
8. Peak Forward Input Current pulse width < $50 \mu \mathrm{~s}$ at 1 KHz maximum repetition rate.
9 . Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.


Figure 1. Typical Logic Low Output Voltage vs. Logic Low Output Current


IOH - LOGIC HIGH OUTPUT CURRENT - mA

Figure 2. Typical Logic High Output Voltage vs. Logic High Output Current

$I_{F}$ - INPUT FORWARD CURRENT - mA

Figure 3. Typical Output Voltage vs. Input Forward Current


Figure 4. Typical Diode Input Forward Current Characteristic


Figure 5. Test Circuit for $t_{\text {PLH }}, t_{\text {PHL }}, t_{r}$, and $t_{f}$


Figure 6. Typical Propagation Delay vs. Ambient Temperature


Figure 7. Typical Propagation Delay vs. Input Forward Current


Figure 8. Typical Pulse Width Distortion vs. Ambient Temperature


ALL. DIODES ARE 1 N916 OR EQUIVALENT
C1 = $\mathbf{3 0} \mathrm{pF}$ INCLUDING PROBE AND JIG CAPACITANCE.

Figure 9. Test Circuit for $\mathrm{t}_{\mathrm{PHZ}}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PLZ}}$ and $\mathrm{t}_{\mathrm{PZL}}$.
*MUST BE LOCATED < 1 cm FROM DEVICE UNDER TEST.
**SEE NOTE 6 .
$+\mathrm{C}_{\mathrm{L}}$ IS APPROXIMATELY 15 pF , WHICH INCLUDES PROBE AND
STRAY WIRING CAPACITANCE.

Figure 11. Test Diagram for Common Mode Transient Immunity and Typical Waveforms



Figure 10. Typical Enable Propagation Delay vs. Ambient Temperature

## Applications



Figure 13. Recommended 20 MBd HCPL-2400/11 Interface Circuit


Figure 14. Alternative HCPL-2400/11 Interface Circuit

## Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew

Propagation delay is a figure of merit which describes how quickly a logic signal propagates through a system. The propagation delay from low to high ( $t_{\text {pLH }}$ ) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low ( $\mathrm{t}_{\mathrm{PHL}}$ ) is the amount of time required for the input signal to propagate to the output, causing the output to change from high to low (see Figure 5).

Pulse-width distortion (PWD) results when $t_{\text {PLH }}$ and $t_{\text {PHL }}$ differ in value. PWD is defined as the difference between $t_{\text {PLH }}$ and $t_{\text {PHL }}$ and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of $20-30 \%$ of the minimum pulse width is tolerable; the exact figure depends on the particular application (RS232, RS422, T-1, etc.).

Propagation delay skew, $t_{\text {PSK }}$, is an important parameter to consider in parallel data applications where synchronization of signals on parallel data lines is a concern. If the parallel data is being sent through a group of optocouplers, differences in propagation delays will cause the data to arrive at the outputs of the optocouplers at different times. If this difference in propagation delays is large enough, it will determine the maximum rate at which parallel data can be sent through the optocouplers.

Propagation delay skew is defined as the difference between the minimum and maximum propagation delays, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$, for any given group of optocouplers which are operating under the same conditions (i.e., the same drive current, supply voltage, output load, and operating temperature). As illustrated in Figure 15, if the inputs of a group of


Figure 15. Illustration of Propagation Delay Skew - $\boldsymbol{t}_{\text {PSK }}$.
optocouplers are switched either ON or OFF at the same time, $t_{\text {PSK }}$ is the difference between the shortest propagation delay, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$, and the longest propagation delay, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$.

As mentioned earlier, $t_{\text {PSK }}$ can determine the maximum parallel data transmission rate. Figure 16 is the timing diagram of a typical parallel data application with both the clock and the data lines being sent through optocouplers. The figure shows data and clock signals at the inputs and outputs of the optocouplers. To obtain the maximum data transmission rate, both edges of the clock signal are being used to clock the data; if only one edge were used, the clock signal would need to be twice as fast.

Propagation delay skew represents the uncertainty of where an edge might be after being sent through an optocoupler. Figure 16 shows that there will be uncertainty in both the data and the clock lines. It is important that these two areas of uncertainty not overlap, otherwise the clock signal might arrive before all of the data outputs have settled, or some of the data outputs may start to change before the clock signal has arrived. From these considerations, the absolute minimum pulse width that can be sent through optocouplers in a parallel application is twice $t_{\text {PSK }}$. A cautious design should use a slightly longer pulse width to ensure that any additional uncertainty in the rest of the circuit does not cause a problem.

The HCPL-2400/11 optocouplers offer the advantages of guaranteed specifications for propagation delays, pulsewidth distortion, and propagation delay skew over the recommended temperature, input current, and power supply ranges.


Figure 16. Parallel Data Transmission Example.


Figure 17. Modulation Code Selections

## Application Circuit

A recommended LED drive circuit is shown in Figure 13. This circuit utilizes several techniques to minimize the total pulse-width distortion at the output of the optocoupler. By using two inverting TTL gates connected in series, the inherent pulse-width distortion of each gate cancels the distortion of the other gate. For best results, the two series-connected gates should be from the same package.

The circuit in Figure 13 also uses techniques known as prebias and peaking to enhance the performance of the optocoupler LED. Prebias is a small forward voltage applied to the LED when the LED is off. This small prebias voltage partially charges the junction capacitance of the LED, allowing the LED to turn on more quickly. The speed of the LED is further increased by applying momentary current peaks to the LED during the turn-on and turn-off transitions of the drive current. These peak currents help
to charge and discharge the capacitances of the LED more quickly, shortening the time required for the LED to turn on and off.

Switching performance of the HCPL-2400/11 optocouplers is not sensitive to the TTL logic farmily used in the recommended drive circuit. The typical and worst-case switching parameters given in the data sheet can be met using common 74LS TTL inverting gates or buffers. Use of faster TTL families will slightly reduce the overall propagation delays from the input of the drive circuit to the output of the optocoupler, but will not necessarily result in lower pulse-width distortion or propagation delay skew. This reduction in overall propagation delays is due to shorter delays in the drive circuit, not to changes in the propagation delays of the optocoupler; optocoupler propagation delays are not affected by the speed of the logic used in the drive circuit.


Figure 18. Typical HCPL-2400/11 Output Schematic


## Features

- VDE 0883 APPROVAL AVAILABLE
- HIGH SPEED: 40 MBd TYPICAL DATA RATE
- HIGH COMMON MODE REJECTION $1000 \mathrm{~V} / \mu \mathrm{s}$ GUARANTEED MINIMUM COMMON MODE TRANSIENT IMMUNITY
- AC PERFORMANCE GUARANTEED OVER TEMPERATURE
- COMPATIBLE WITH TTL, STTL, LSTTL, AND HCMOS LOGIC FAMILIES
- HIGH SPEED AIGaAs EMITTER
- TOTEM POLE OUTPUT (NO PULLUP RESISTOR REQUIRED)
- HIGH POWER SUPPLY NOISE IMMUNITY
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- MIL-STD-1772 VERSION AVAILABLE (HCPL-5430/1)
Applications
- ISOLATION OF HIGH SPEED LOGIC SYSTEMS
- COMPUTER-PERIPHERAL INTERFACES
- SWITCHING POWER SUPPLIES
- GROUND LOOP ELIMINATION
- HIGH SPEED DISK DRIVE I/O
- DIGITAL ISOLATION FOR A/D, D/A CONVERSION
- PULSE TRANSFORMER REPLACEMENT



## Description

The HCPL-2430 high speed optocoupler combines an 820 nm AIGaAs LED with a high speed photo detector. This combination results in very high data rate capability and low input current. The totem pole output eliminates the need for a pull-up resistor.
The detectors have totem pole output stages and optical receiver input stages with built-in Schmitt triggers to provide logic compatible waveforms, eliminating the need for additional waveshaping. Improved power supply rejection minimizes the need for special power supply bypassing precautions; however, it is still recommended as good design practice.
The electrical and switching characteristics of the HCPL2430 are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
The HCPL-2430 is compatible with TTL, STTL, LSTTL and HCMOS logic families. A data rate performance of 20 MBd over temperature is guaranteed when using the application circuit of Figure 10. Typical data rates are 40 MBd

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.75	5.25	Volts
Input Current (High)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	4	8	mA
Input Voltage (Low)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-	0.8	Volts
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0	$70^{\circ}$	${ }^{\circ} \mathrm{C}$
Fan Out	N		5	TTL   Loads

Absolute Maximum Ratings (No derating required up to $70^{\circ} \mathrm{C}$ )

Parameter	Symbol	Minimum	Maximum	Units	Notes	
Storage Temperature	$\mathrm{T}_{\mathrm{S}}$	-55	125	${ }^{\circ} \mathrm{C}$		
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$		
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{~s} .(1.6 \mathrm{~mm}$ below seating plane $)$					
Average Forward Input Current	$\mathrm{I}_{\mathrm{F}}$		10.0	mA		
Peak Forward Input Current	$\mathrm{I}_{\mathrm{FPK}}$		20.0	mA	10	
Reverse Input Voltage	$\mathrm{V}_{\mathrm{R}}$		3.0	V		
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$		0	7.0	V	
Total Package Power Dissipation	P		350	mW	11	
Average Output Collector Current	$\mathrm{I}_{\mathrm{O}}$	-25.0	25.0	mA		
Output Collector Voltage	$\mathrm{V}_{\mathrm{O}}$	-0.5	10.0	V		
Output Collector Power Dissipation	$\mathrm{P}_{\mathrm{O}}$		40.0	mW		

## Electrical Specifications

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 8 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$ except where noted.
All Typicals at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=6.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=0 \mathrm{~V}$ except where noted. See note 12.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions		Fig.	Notes
Logic Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$			0.5	Volts	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$ (5 TTL Loads)		1,3	1
Logic High Output Voltage	V OH	$\begin{aligned} & 2.4 \\ & 2.7 \end{aligned}$			Volts	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \end{aligned}$		2,3	1
- Output Leakage Current	IOHH			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=5.25 \mathrm{~V}$	$V_{F}=0.8 \mathrm{~V}$		1
Logic Low Supply Current	$\mathrm{I}_{\text {CCL }}$		34	46	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$			12
Logic High Supply Current	$\mathrm{I}_{\mathrm{CCH}}$		32	42	mA				
Logic Low Short Circuit Output Current	IosL		60		mA	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{t}_{\mathrm{F}}=8 \mathrm{~mA}$		1,2
Logic High Short Circuit Output Current	IOSH		-51		mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{GND} \end{aligned}$		1,2
Input Forward Voltage	$V_{F}$	1.10	1.3	1.50	Volts	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	4	1
		1.0		1.55					
I Input Reverse Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}$	3.0	5		Volts	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		1
		2.0							
Input Diode Forward Voltage Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.34		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA}$		4	
Input-Output Insulation	$\mathrm{V}_{\text {ISO }}$	2500			$V_{\text {RMS }}$	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} . \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			3
Resistance Input-Output	$\mathrm{R}_{1-\mathrm{O}}$		$10^{12}$		ohms	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$			3
Capacitance Input-Output	$\mathrm{C}_{1-0}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{1-\mathrm{O}}=0 \mathrm{Vdc}$			3
Input Capacitance	$\mathrm{C}_{\text {IN }}$		20		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$, Pins 2 and 3			
Input-Input Insulation Leakage Current	$1 / 1$		0.005		$\mu \mathrm{A}$	Relative Humidity $=45 \%$ $t=5 \mathrm{~s}, \mathrm{~V}_{1-1}=500 \mathrm{~V}$			11
Resistance (Input-Input)	$\mathrm{R}_{1-1}$		$10^{11}$		$\Omega$	$\mathrm{V}_{1-1}=500 \mathrm{~V}$			11
Capacitance (Input-Input)	$\mathrm{C}_{1-1}$		0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$			11

## Switching Specifications

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 4 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}} \leq 8.0 \mathrm{~mA}$. All Typicals $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=6.0 \mathrm{~mA}$
unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to   Logic Low Output Level	$\mathrm{t}_{\mathrm{PHL}}$		33	60	ns		$5,6,7$	1,4
Propagation Delay Time to   Logic High Output Level	$\mathrm{t}_{\text {PLH }}$		30	60	ns		$5,6,7$	1,4
Pulse Width Distortion	$\left\|\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right\|$		5	25	ns		5,8	
Propagation Delay Skew	$\mathrm{t}_{\mathrm{PSK}}$			35	ns		11,12	
Output Rise Time	$\mathrm{t}_{\mathrm{r}}$		12		ns		5	
Output Fall Time	$\mathrm{t}_{\mathrm{f}}$		10		ns		5	
Logic High Common Mode   Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	1000	10,000		$\mathrm{~V} / \mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}$	9	7
Logic Low Common Mode   Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	1000	10,000		$\mathrm{~V} / \mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$,   $\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}$	9	7
Power Supply Noise   Immunity	PSNI		0.5		$\mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$,   $48 \mathrm{~Hz} \leq \mathrm{F}_{\mathrm{AC}} \leq 50 \mathrm{MHz}$		8

## Insulation Related Specifications

Parameter	Symbol	Value	Units	
Min. External Air Gap (Clearance)	$\mathrm{L}(\mathrm{IO1)}$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	$\mathrm{L}(\mathrm{IO} 2)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112NDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109

## Notes:

1. Each channel.
2. Duration of output short circuit time should not exceed 10 ms .
3. Device considered a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
4. The $t_{\text {PLH }}$ propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The $t_{\text {PHL }}$ propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
5. The typical data shown is indicative of what can be expected using the application circuit in Figure 11.
6. Propagation delay skew is discussed later in this data sheet.
7. $\mathrm{CM}_{\mathrm{H}}$ is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic high state $\left(\mathrm{V}_{\mathrm{O} \text { (MIN) }}>2.0 \mathrm{~V}\right) . \mathrm{CM}_{\mathrm{L}}$ is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{O}}^{(\mathrm{MAX})}<0.8 \mathrm{~V}\right)$.
8. Power Supply Noise Immunity is the peak to peak amplitude of the ac ripple voltage on the $V_{C C}$ line that the device will withstand and still remain in the desired logic state. For desired logic high state, $\mathrm{V}_{\mathrm{OH}(\mathrm{MIN})}>2.0 \mathrm{~V}$, and for desired logic low state, $\left(\mathrm{V}_{\mathrm{OL}(\text { MAX })}<0.8 \mathrm{~V}\right)$.
9. Peak Forward Input Current pulse width $<50 \mu$ s at 1 KHz maximum repetition rate.
10. Derate power dissipation above $70^{\circ} \mathrm{C}$ at $6.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
11. Measured between pins 1 and 2, shorted together, and pins 3 and 4, shorted together.
12. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.


Figure 1. Typical Logic Low Output Voltage vs. Logic Low Output Current


Figure 3. Typical Output Voltage vs. Input Forward Current


Figure 5. Test Circuit for $t_{\text {PLH }}, t_{\text {PHL }}, t_{r}$ and $t_{t}$


Figure 2. Typical Logic High Output Voltage vs. Logic High Output Current


Figure 4. Typical Diode Input Forward Current Characteristic


Figure 6. Typical Propagation Delay vs. Ambient Temperature


Figure 7. Typical Propagation Delay vs. Input Forward Current

*MUST BE LOCATED < 1 cm FROM DEVICE UNDER TEST.

* 'SEE NOTE' 7.
$+C_{L}$ IS APPROXIMATELY 15 pF , WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE.

Figure 9. Test Diagram for Common Mode Transient Immunity and Typical Waveforms


Figure 8. Typical Pulse Width Distortion vs. Ambient Temperature


Figure 10. Recommended 20 Mbd HCPL-2430 Interface Circuit.

## Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew

Propagation delay is a figure of merit which describes how quickly a logic signal propagates through a system. The propagation delay from low to high ( $\mathrm{t}_{\mathrm{PLH}}$ ) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low ( $\mathrm{t}_{\mathrm{PHL}}$ ) is the amount of time required for the input signal to propagate to the output, causing the output to change from high to low (see Figure 5)

Pulse-width distortion (PWD) results when $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{t}_{\text {PHL }}$ differ in value. PWD is defined as the difference between $t_{P L H}$ and $t_{P H L}$ and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of $20-30 \%$ of the minimum pulse width is tolerable; the exact figure depends on the particular application (RS232, RS422, T-1, etc.).

Propagation delay skew, $\mathrm{t}_{\text {PSK, }}$, is an important parameter to consider in parallel data applications where synchronization of signals on parallel data lines is a concern. If the parallel data is being sent through a group of optocouplers, differences in propagation delays will cause the data to arrive at the outputs of the optocouplers at different times. If this difference in propagation delays is large enough, it will determine the maximum rate at which parallel data can be sent through the optocouplers.

Propagation delay skew is defined as the difference between the minimum and maximum propagation delays, either $t_{\text {PLH }}$ or $\mathrm{t}_{\mathrm{PHL}}$, for any given group of optocouplers which are operating under the same conditions (i.e., the same drive current, supply voltage, output load, and operating temper-
ature). As illustrated in Figure 11, if the inputs of a group of optocouplers are switched either ON or OFF at the same time, $\mathrm{t}_{\mathrm{PSK}}$ is the difference between the shortest propagation delay, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$, and the longest propagation delay, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$.

As mentioned earlier, $t_{\text {PSK }}$ can determine the maximum parallel data transmission rate. Figure 12 is the timing diagram of a typical parallel data application with both the clock and the data lines being sent through optocouplers. The figure shows data and clock signals at the inputs and outputs of the optocouplers. To obtain the maximum data transmission rate, both edges of the clock signal are being used to clock the data; if only one edge were used, the clock signal would need to be twice as fast.

Propagation delay skew represents the uncertainty of where an edge might be after being sent through an optocoupler. Figure 12 shows that there will be uncertainty in both the data and the clock lines. It is important that these two areas of uncertainty not overlap, otherwise the clock signal might arrive before all of the data outputs have settled, or some of the data outputs may start to change before the clock signal has arrived. From these considerations, the absolute minimum pulse width that can be sent through optocouplers in a parallel application is twice $t_{\text {PSK. }}$. A cautious design should use a slightly longer pulse width to ensure that any additional uncertainty in the rest of the circuit does not cause a problem.
The HCPL-2430 optocoupler offers the advantages of guaranteed specifications for propagation delays, pulsewidth distortion and propagation delay skew over the recommended temperature, input current, and power supply ranges.


Figure 11. Illustration of Propagation Delay Skew - $\mathbf{t P S K}_{\text {. }}$


Figure 12. Parallel Data Transmission Example.

## Application Circuit

A recommended LED drive circuit is shown in Figure 11. This circuit utilizes several techniques to minimize the total pulse-width distortion at the output of the optocoupler. By using two inverting TTL gates connected in series, the inherent pulse-width distortion of each gate cancels the distortion of the other gate. For best results, the two series-connected gates should be from the same package.

The circuit in Figure 11 also uses techniques known as prebias and peaking to enhance the performance of the optocoupler L.ED. Prebias is a small forward voltage applied to the LED when the LED is off. This small prebias voltage partially charges the junction capacitance of the LED, allowing the LED to turn on more quickly. The speed of the LED is further increased by applying momentary current peaks to the LED during the turn-on and turn-off transistions of the drive current. These peak currents help
to charge and discharge the capacitances of the LED more quickly, shortening the time required for the LED to turn on and off.

Switching performance of the HCPL-2430 optocoupler is not sensitive to the TTL logic family used in the recommended drive circuit. The typical and worst-case switching parameters given in the data sheet can be met using common 74LS TTL inverting gates or buffers. Use of faster TTL families will slightly reduce the overall propagation delays from the input of the drive circuit to the output of the optocoupler, but will not necessarily result in lower pulse-width distortion or propagation delay skew. This reduction in overall propagation delays is due to shorter delays in the drive circuit, not to changes in the propagation delays of the optocoupler; optocoupler propagation delays are not affected by the speed of the logic used in the drive circuit.

# High CMR, High Speed TTL Compatible Optocoupler 

## Technical Data

## Features

- Internal Shield for High
Common Mode Rejection
(CMR)

HCPL-2601: $1000 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}$
HCPL-2611: $5000 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$

- High Speed: 10 MBd Typical
- LSTTL/TTLL Compatible
- Low Input Current Capability: 5 mA
- Guaranteed ac and dc Performance over Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Strobable Output
- Recognized Under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltages of 2500 VAC, 1 Minute and 5000 VAC, 1 Minute (Option 020)
- Hermetic Equivalent Device Available (HCPL5600/1)
- VDE 0883 Approval Available
*JEDEC Registered Data (The HCPL2601 and HCPL-2611 are not registered.)


## Description

The 6N137/HCPL-2601/11 optically coupled gates combine a GaAsP light emitting diode and an integrated high gain photo detector. An enable input allows the detector to be strobed. The output of the detector I.C. is an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transientimmunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$ for the 2601 , and $5000 \mathrm{~V} / \mu \mathrm{s}$ with the 2611.

## Outline Drawing*



[^40]
## Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Switching Power Supply
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement

Schematic


Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	$\mathrm{I}_{\mathrm{FL}}$	0	250	$\mu \mathrm{~A}$
Input Current, High Level	$\mathrm{I}_{\mathrm{FH}}{ }^{*}$	5	15	mA
Supply Voltage, Output	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.5	V
High Level Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V
Low Level Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	V
Fan Out (TTL Load)	N		8	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0	70	${ }^{\circ} \mathrm{C}$

*The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used for best performance and to permit at least a $20 \%$ CTR degradation guardband.
Absolute Maximum Ratings(No Derating Required up to $85^{\circ} \mathrm{C}$ )
Storage Temperature ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ..... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Forward Input Current - $\mathrm{I}_{\mathrm{F}}$ (see Note 2) ..... 20 mA
Reverse Input Voltage ..... 5 V
Supply Voltage - $\mathrm{V}_{\mathrm{c}}$ 7 V (1 Minute Maximum)Enable Input Voltage - $V_{E}$5.5 V
(Not to exceed $\mathrm{V}_{\mathrm{cc}}$ by more than 500 mV )
Output Collector Current - Io ..... 50 mA
Output Collector Power Dissipation ..... 85 mW
Output Collector Voltage - $\mathrm{V}_{0}$ ..... 7 V
(Selection for higher output voltages up to 20 V is available.)

## Electrical Characteristics

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ) unless otherwise specified. (See note 1.)

Parameter	Sym.	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	$\mathrm{I}_{\mathrm{OH}}{ }^{*}$		8	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$	1	13
Low Level Output Voltage	$\mathrm{V}_{\text {oL }}{ }^{*}$		0.4	0.6	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}} \text { (Sinking) }=13 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|c} \hline 2,4, \\ 14 \\ \hline \end{array}$	
High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}{ }^{*}$		7.5	10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		14
Low Level Supply Current	$\mathrm{I}_{\mathrm{cCL}} *$		10	13	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		15
High Level Enable Current	$\mathrm{I}_{\text {EH }}$		-0.8		mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$		
Low Level Enable Current	$\mathrm{IEL}^{*}$		-1.1	-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$		16
High Level Enable Voltage	$\mathrm{V}_{\text {EH }}$	2.0			V			11
Low Level Enable Voltage	$\mathrm{V}_{\text {EL }}$			0.8	V			
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}$		1.5	1.75* ${ }^{\text {* }}$ (1.80	V	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	3, 13	
Input Reverse   Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}{ }^{*}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$		
Input Diode   Temperature   Coefficient	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	13	
Input-Output   Insulation	$\mathrm{V}_{\text {ISO }}$	2500			$\mathrm{V}_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{MIN}$		12
OPT 020	$\mathrm{V}_{\text {Iso }}$	5000			$\mathrm{V}_{\text {RMS }}$			
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{H} \mathrm{O}}$		$10^{12}$		$\Omega$	$\mathrm{V}_{\mathrm{I} \mathrm{O}}=500 \mathrm{~V}$		3
Capacitance (Input-Output)	$\mathrm{C}_{\mathrm{IO}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		3

## Switching Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$ unless otherwise specified.

*JEDEC registered data for the 6N137.
${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Notes:

1. Bypassing of the power supply line is required, with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 15. The power supply bus for the optocoupler(s) should be separate from the bus for any active loads.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 20 mA .
3. Device considered a two terminal device: pins $1,2,3$ and 4 shorted together, and pins $5,6,7$ and 8 shorted together.
4. The $\mathrm{t}_{\text {PIL }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The $\mathrm{t}_{\text {pHL }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. The $t_{\text {BLH }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
7. The $\mathrm{t}_{\text {eHL }}$ enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
8. $\mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\text {out }}>2.0 \mathrm{~V}$ ).
9. $\mathrm{CM}_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{OUT}}<0.8 \mathrm{~V}$ ).
10. For sinusoidal voltages,

$$
\left(\frac{I d v_{c M}{ }^{\prime}}{d t}\right)_{\max }=\pi f_{\mathrm{CM}} \mathrm{~V}_{\mathrm{CM}}(\mathrm{p}-\mathrm{p})
$$

11. No external pull up is required for a high logic state on the enable input.
12. See Option 020 data sheet for more information.
13. The JEDEC registration for the 6 N 137 specifies a maximum $\mathrm{I}_{\mathrm{OH}}$ of $250 \mu \mathrm{~A}$. HP guarantees a maximum $\mathrm{I}_{\mathrm{OH}}$ of $100 \mu \mathrm{~A}$.
14. The JEDEC registration for the 6 N 137 specifies a maximum $\mathrm{I}_{\mathrm{cch}}$ of 15 mA . HP guarantees a maximum $\mathrm{I}_{\mathrm{cch}}$ of 10 mA .
15. The JEDEC registration for the 6 N 137 specifies a maximum $\mathrm{I}_{\mathrm{ccL}}$ of 18 mA . HP guarantees a maximum $\mathrm{I}_{\text {ccL }}$ of 13 mA .
16. The JEDEC registration for the 6 N 137 specifies a maximum $\mathrm{I}_{\mathrm{EL}}$ of -2.0 mA . HP guarantees a maximum $\mathrm{I}_{\mathrm{EL}}$ of -1.6 mA .


Figure 1. High Level Output Current vs. Temperature.


Figure 4. Output Voltage vs. Forward Input Current.


Figure 6. Propagation Delay vs. Temperature.


Figure 2. Low Level Output Voltage vs. Temperature.

$V_{F}$-FORWARD VOLTAGE - VOLTS
Figure 3. Input Diode Forward Characteristic.


Figure 5. Test Circuit for $\mathrm{t}_{\mathrm{PHL}}$ and $\mathrm{t}_{\mathrm{PLI}}{ }^{* *}$ **JEDEC Registered Data


Figure 7. Propagation Delay ( $\mathrm{t}_{\text {PLH }}$ ) vs. Pulse Input Current.

$I_{\text {F }}$-PULSE INPUT CURRENT - mA
Figure 8. Propagation Delay ( $t_{\text {PHL }}$ ) vs. Pulse Input Current.


Figure 9. Test Circuit for $t_{\text {ehl }}$ and $t_{\text {elh }}$.


Figure 11. Rise and Fall Time vs. Temperature.


Figure 10. Enable Propagation Delay vs. Temperature.


Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 13. Temperature Coefficient of Forward Voltage vs. Input Current.


Figure 14. Input Threshold Current vs. Temperature.


Figure 15. Recommended Printed Circuit Board Layout.

# High CMR Line Receiver Optocoupler 

## Technical Data

## Features

- Internal Shield for High Common Mode Rejection (CMR)
HCPL-2602: $1000 \mathrm{~V} / \mu \mathrm{s}$ at
$V_{C M}=50 \mathrm{~V}$
HCPL-2612: $3500 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{CM}}=300 \mathrm{~V}$
- Line Termination Included - No Extra Circuitry Required
- Accepts a Broad Range of Drive Conditions
- LED Protection Minimizes LED Efficiency
Degradation
- High Speed: 10 MBd (Limited by Transmission
Line in Many
Applications)
- Guaranteed ac and dc Performance Over Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- External Base Lead Allows "LED Peaking" and LED Current Adjustment
- Recognized Under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltages of 2500 VAC.
- VDE 0883 Approval Pending


## - Hermetic Equivalent Device Available (HCPL1930/1)

## Description

The HCPL-2602/12 optically coupled line receivers combine a GaAsP light emitting diode, an input current regulator and an integrated high gain photo detector. The input regulator serves as a line termination for line receiver applications. It clamps the line voltage and

HCPL-2602
HCPL-2612

## Outline Drawing



DC specifications are defined similar to TTL logic. The optocoupler ac and dc operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ allowing trouble-free interfacing with digital logic circuits. An input current of 5 mA will sink an eight gate fan-out (TTL) at the output.

The HCPL-2602/12 are useful as line receivers in high noise environments that conventional line receivers cannot tolerate. The higher LED threshold voltage provides improved immunity to differential noise and the internally shielded detector provides orders of magnitude improvement in common mode rejection with little or no sacrifice in speed.

## Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Current Sensing
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement


## Schematic



## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	$\mathrm{I}_{\mathrm{L}}$	0	250	$\mu \mathrm{~A}$
Input Current, High Level	$\mathrm{I}_{\mathrm{H}}$	$5^{*}$	60	mA
Supply Voltage, Output	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.5	V
High Level Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V
Low Level Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	V
Fan Out (TTL Load)	N		8	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0	70	${ }^{\circ} \mathrm{C}$

*The initial switching threshold is 5 mA or less. It is recommended that an input current between 6.3 mA and 10 mA be used to obtain best performance and to provide at least $20 \%$ LED degradation guardband.
Absolute Maximum Ratings(No derating required up to $85^{\circ} \mathrm{C}$ )Storage Temperature$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ..... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Forward Input Current - I ..... 60 mA
Reverse Input Current ..... 60 mA
Supply Voltage - $\mathrm{V}_{\mathrm{cc}}$ (1 Minute Maximum) ..... 7 V
Enable Input Voltage - $\mathrm{V}_{\mathrm{E}}$ ..... 5.5 V
(Not to exceed $\mathrm{V}_{\mathrm{Cc}}$ by more than 500 mV )
Output Collector Current - $\mathrm{I}_{\mathrm{o}}$ ..... 25 mA
Output Collector Power Dissipation ..... 40 mW
Output Collector Voltage $-\mathrm{V}_{\mathrm{o}}{ }^{* *}$ ..... 7 V
Input Current, Pin 4 ..... $\pm 10 \mathrm{~mA}$
**Selection for higher output voltages up to 20 V is available.

## Electrical Characteristics

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ) unless otherwise specified. See note 1 .

Parameter	Sym.	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	$\mathrm{I}_{\mathrm{OH}}$		8	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{I}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$	1	
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$		0.4	0.6	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}} \text { (Sinking) }=13 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2,4, \\ 13 \end{gathered}$	
High Level Supply Current	$\mathrm{I}_{\text {cCH }}$		7.5	10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Supply Current	$\mathrm{I}_{\text {cCL }}$		10	13	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		
High Level Enable Current	$\mathrm{I}_{\text {EH }}$		-0.8		mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$		
Low Level Enable Current	$\mathrm{I}_{\text {EL }}$		-1.1	-1.6	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$		
High Level Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0			V			10
Low Level Enable Voltage	$\mathrm{V}_{\text {EL }}$			0.8	V			
Input Voltage	$\mathrm{V}_{\mathrm{I}}$		2.0	2.4	V	$\mathrm{I}_{\mathrm{I}}=5 \mathrm{~mA}$	3	
			2.3	2.7		$\mathrm{I}_{\mathrm{L}}=60 \mathrm{~mA}$		
Input Reverse Voltage	$\mathrm{V}_{\mathrm{R}}$		0.75	0.95	V	$\mathrm{I}_{\mathrm{R}}=5 \mathrm{~mA}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$\mathrm{V}_{\mathrm{I}}=0, \mathrm{f}=1 \mathrm{MHz}$		
Input-Output Insulation	$\mathrm{V}_{\text {ISo }}$	2500			$\mathrm{V}_{\text {RMS }}$	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		2
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{I} \text { - }}$		$10^{12}$		$\Omega$	$\mathrm{V}_{\text {I. }}=500 \mathrm{~V}$		2
Capacitance (Input-Output)	$\mathrm{C}_{\mathrm{I} \mathrm{O}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		2

${ }^{*}$ All typicals at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Notes:

1. Bypassing of the power supply line is required, with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 14. The power supply bus for the optocoupler(s) should be separate from the bus for any active loads.
2. Device considered a two terminal device: pins $1,2,3$ and 4 shorted together, and pins $5,6,7$ and 8 shorted together.
3. The $t_{\text {pLL }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
4. The $\mathrm{t}_{\text {pH }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
5. The $t_{\text {ELH }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The $t_{\text {ehL }}$ enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.

## Switching Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=7.5 \mathrm{~mA}$, unless otherwise specified.

*All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap   (Clearance)	L (IO1)	$\geq 7$	mm	Measured from input terminals to   output terminals
Min. External Tracking Path   (Creepage)	L (IO2)	$\geq 7$	mm	Measured from input terminals to   output terminals
Min. Internal Plastic Gap   (Clearance)		0.08	mm	Through insulation distance   conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group   (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109

7. $\mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\text {out }}>2.0 \mathrm{~V}$ ).
8. $\mathrm{CM}_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\text {out }}<0.8 \mathrm{~V}$ ).
9. For sinu soidal voltages,

$$
\left(\frac{\left|d v_{\mathrm{CM}}\right|}{\mathrm{dt}}\right)_{\max }=\pi \mathrm{f}_{\mathrm{CM}} \mathrm{~V}_{\mathrm{CM}}(\mathrm{p}-\mathrm{p})
$$

10. No external pull up is required for a high logic state on the enable input.


Figure 1. High Level Output Current vs. Temperature.


Figure 2. Low Level Output Voltage vs. Temperature.


Figure 3. Input Characteristics.


Figure 4. Output Voltage vs. Forward Input Current.


Figure 7. Propagation Delay ( $\mathrm{t}_{\text {pLII }}$ ) vs. Pulse Input Current.


Figure 5. Test Circuit for $t_{\text {PHL }}$ and $\mathbf{t}_{\text {PLH }}$.


Figure 8. Propagation Delay ( $\mathrm{t}_{\mathrm{PHI}}$ ) vs. Pulse Input Current.


Figure 6. Propagation Delay vs. Temperature.


Figure 9. Test Circuit for $t_{\text {enl }}$ and $\mathbf{t}_{\text {ELH }}{ }^{\text {. }}$


Figure 10. Enable Propagation Delay vs. Temperature.


Figure 13. Input Threshold Current vs. Temperature.

## Using the HCPL-2602/12 Line Receiver Optocouplers

The primary objectives to fulfill when connecting an optocoupler to a transmission line are to provide a minimum, but not excessive, LED current and to properly terminate the line. The internal regulator in the HCPL2602/12 simplifies this task. Excess current from variable drive conditions such as line length variations, line driver differences and power supply


Figure 11. Rise and Fall Time vs. Temperature.


Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 14. Recommended Printed Circuit Board Layout.
fluctuations are shunted by the regulator. In fact, with the LED current regulated, the line current can be increased to improve the immunity of the system to differential-modenoise and to enhance the data rate capability. The designer must keep in mind the 60 mA input current maximum rating of the HCPL-2602/12 in such cases, and may need to use series limiting or shunting to prevent overstress.

Design of the termination circuit is also simplified; in most cases the transmission line can simply be connected directly to the input terminals of the HCPL-2602/12 without the need for additional series or shunt resistors. If reversing line drive is used it may be desirable to use two HCPL-2602/12 or an external Schottky diode to optimize data rate.

## Polarity Non-Reversing Drive

High data rates can be obtained with the HCPL-2602/12 with polarity non-reversing drive. Figure (a) illustrates how a 74S140 line driver can be used with the HCPL-2602/12 and shielded, twisted pair or coax cable without any additional components. There are some reflections due to the "active termination" but they do not interfere with circuit performance because the regulator clamps the line voltage. At longer line lengths $\mathrm{t}_{\mathrm{PLH}}$ increases faster than $t_{\text {PHIL }}$ since the switching threshold is not exactly halfway between asymptotic line conditions. If optimum data rate is desired, a series resistor and peaking capacitor can be used to equalize $t_{\text {PLH }}$ and $t_{\text {PII }}$. In general, the peaking capacitance should be as large as possible; however, if it is too large it may keep the regulator from achieving turn-off during the negative (or zero) excursions of the input signal. A safe rule:
make $\mathrm{C} \leq 16 \mathrm{t}$
where:
C = peaking capacitance in picofarads
$t=$ data bit interval in nanoseconds

## Polarity Reversing Drive

A single HCPL-2602/12 can also be used with polarity reversing drive (Figure b). Current reversal is obtained by way of the substrate isolation diode (substrate to collector). Some reduction of data rate occurs, however, because the substrate
diode stores charge, which must be removed when the current changes to the forward direction. The effect of this is a longer $t_{\text {PHL }}$. This effect can be eliminated and data rate improved considerably by use of a Schottky diode on the input of the HCPL-2602/12.

For optimum noise rejection as well as balanced delays a splitphase termination should be used along with a flip-flop at the output (Figure c). The result of current reversal in split-phase operation is seen in Figure (c) with switches $A$ and $B$ both OPEN. The coupler inputs are then connected in ANTISERIES; however, because of the higher steady-state termination voltage, in comparison to the single HCPL-2602/12 termination, the forward current in the substrate diode is lower and consequently there is less junction charge to deal with when switching.

Closing switch B with A open is done mainly to enhance common mode rejection, but also reduces propagation delay slightly because line-to-line capacitance offers a slight peaking effect. With switches A and B both CLOSED, the shield acts as a current return path which prevents either input substrate diode from becoming reversed biased. Thus the data rate is optimized as shown in Figure (c).

## Improved Noise Rejection

Use of additional logic at the output of two HCPL-2602/12s, operated in the split phase
termination, will greatly improve system noise rejection in addition to balancing propagation delays as discussed earlier.

A NAND flip-flop offers infinite common mode rejection (CMR) for NEGATIVELY sloped common mode transients but requires $t_{\text {PH }}>t_{\text {PLH }}$ for proper operation. A NOR flip-flop has infinite CMR for POSITIVELY sloped transients but requires $\mathrm{t}_{\text {PHL }}<\mathrm{t}_{\text {PLH }}$ for proper operation. An exclusive-OR flip-flop has infinite CMR for common mode transients of EITHER polarity and operates with either $\mathrm{t}_{\text {PHL }}>\mathrm{t}_{\text {PLH }}$ or $\mathrm{t}_{\text {PHL }}<\mathrm{t}_{\text {PLH }}$.

With the line driver and transmission line shown in Figure (c), $\mathrm{t}_{\text {PHI }}>\mathrm{t}_{\text {PLH }}$, so NAND gates are preferred in the R-S flip-flop. A higher drive amplitude or different circuit configuration could make $\mathrm{t}_{\text {PHL }}<\mathrm{t}_{\text {PLH }}$, in which case NOR gates would be preferred. If it is not known whether $\mathrm{t}_{\text {PHL }}>\mathrm{t}_{\text {PLII }}$ or $\mathrm{t}_{\text {PHL }}<\mathrm{t}_{\text {PLH }}$, or if the drive conditions may vary over the boundary for these conditions, the exclusive-OR flip-flop of Figure (d) should be used.

## RS-422 and RS-423

Line drivers designed for RS422 and RS-423 generally provide adequate voltage and current for operating the HCPL2602/12. Most drivers also have characteristics allowing the HCPL-2602/12 to be connected directly to the driver terminals. Worst case drive conditions, however, would require current shunting to prevent overstress of the HCPL-2602/12.


Figure a. Polarity Non-Reversing.


Figure b. Polarity Reversing, Single Ended.


Figure c. Polarity Reversing, Split Phase.


Figure d. Flip-Flop Configurations.

# Dual Channel High CMR High Speed TTL Compatible Optocoupler 

## Technical Data

## Features

- Internal Shield for High Common Mode Rejection (CMR)
HCPL-2631: $1000 \mathrm{~V} / \mu \mathrm{s}$ ()
$V_{\mathrm{CM}}=50 \mathrm{~V}$
HCPL-4661: $5000 \mathrm{~V} / \mu \mathrm{s}$ @ $\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$
- High Density Packaging
- Low Input Current Capability: 5 mA
- High Speed: 10 MBd Typical
- LSTTL and TTL Compatible
- Guaranteed AC and DC Performance Over Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Recognized Under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltages of 2500 VAC, 1 Minute.
- VDE 0883 Approval Pending
- Hermetic Equivalent Device Available (HCPL5630/1)


## Description

The HCPL-2630/HCPL-2631/ 4661 are dual channel optically coupled logic gates that combine GaAsP light emitting diodes and integrated high gain photodetectors. The photons are collected in the detector by a photodiode and the current is amplified by a high gain linear amplifier that drives a Schottky clamped open collector output transistor. Each circuit is temperature, current and voltage compensated. The internal shield provides a guaranteed

HCPL-2630
HCPL-2631
HCPL-4661
common mode transient immunity specification of $1000 \mathrm{~V} /$ $\mu \mathrm{s}$ for the 2631 , and $5000 \mathrm{~V} / \mu \mathrm{s}$ with the HCPL-4661.

The unique design provides maximum AC and DC circuit isolation while achieving LSTTL and TTL compatibility. The optocoupler AC and DC operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The dual channel design minimizes space and results in increased convenience.

## Outline Drawing



The HCPL-2630/2631/4661 are recommended for high speed logic interfacing, input/output buffering, and for use as line receivers in environments that conventional line receivers cannot tolerate. The HCPL2630/2631/4661 can be used for the digital programming of machine control systems, motors and floating power supplies. The internal shield makes the HCPL-2631/4661 ideal for use in extremely high ground or induced noise environments.

## Applications

- Isolation of High Speed Logic Systems
- Microprocessor System Interfaces
- Isolated Line Receiver
- Computer-Peripheral Interfaces
- Ground Loop Elimination
- Digital Isolation for A/D, D/A Conversion


Figure 1. Schematic.

## Recommended Operation Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level   Each Channel	$\mathrm{I}_{\mathrm{FL}}$	0	250	$\mu \mathrm{~A}$
Input Current, High Level   Each Channel	$\mathrm{I}_{\mathrm{FH}}{ }^{*}$	5	15	mA
Supply Voltage, Output	$\mathrm{V}_{\mathrm{cc}}$	4.5	5.5	V
Fan Out (TTL Load)   Each Channel	N		8	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0	70	${ }^{\circ} \mathrm{C}$

*The initial switching threshold is 5 mA or less. It is recommended that input current between 6.3 mA and 10 mA be used to obtain best performance and to provide at least a $20 \%$ LED degradation guardband.
Absolute Maximum Ratings
(No Derating Required up to $85^{\circ} \mathrm{C}$ )Storage Temperature$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Average Forward
Input Current (each channel, See note 2) ..... 15 mA
Reverse Input Voltage (each channel) ..... 5 V
Supply Voltage - $\mathrm{V}_{\mathrm{cc}}$ (1 Minute Maximum) ..... 7 V
Output Collector Current - $\mathrm{I}_{\mathrm{O}}$ (each channel) ..... 16 mA
Output Collector Voltage $-\mathrm{V}_{\mathrm{o}}$ (each channel)** ..... 7 V
Output Collector Power Dissipation (each channel) ..... 60 mW

[^41]
## Electrical Characteristics

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ) unless otherwise specified. See note 1 .

Parameter	Sym.	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	$\mathrm{I}_{\mathrm{OH}}$		8	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A} \end{aligned}$	2	3
Low Level Output Voltage	$\mathrm{V}_{\text {oL }}$		0.4	0.6	V	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{oL}} \text { (Sinking) }=13 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 3,5, \\ 14 \end{gathered}$	3
High Level Supply Current	$\mathrm{I}_{\text {cch }}$		10	15	mA	$\mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$   (Both Channels)		
Low Level Supply Current	$\mathrm{I}_{\text {ccl }}$		16	21	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$   (Both Channels)		
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}$		1.5	1.75	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4	3
				1.80		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$,		3
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$		3
Input Diode Temperature Coefficient	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{T}_{\mathrm{A}}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	12	
Input-Output Insulation	$\mathrm{V}_{\text {ISO }}$	2500			$\mathrm{V}_{\text {RMS }}$	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{Min} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		
Input-Input Leakage Current	$\mathrm{I}_{\mathrm{H}}$		0.005		$\mu \mathrm{A}$	Relative $\begin{gathered} \text { Humidity }=45 \% \\ \mathrm{t}=5 \mathrm{~s}, \mathrm{~V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{~V} \end{gathered}$		5
Resistance   (Input-Input)	$\mathrm{R}_{\mathrm{II}}$		$10^{11}$		$\Omega$	$\mathrm{V}_{\mathrm{IH}}=500 \mathrm{~V}$		
Capacitance   (Input-Input)	$\mathrm{C}_{\mathrm{I} \text { I }}$		0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$		
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{I} \mathrm{O}}$		$10^{12}$		$\Omega$	$\mathrm{V}_{\mathrm{L} \mathrm{O}}=500 \mathrm{~V}$		
Capacitance (Input-Output)	$\mathrm{C}_{\mathrm{⿺} \text { - }}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		

*All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$, unless otherwise specified.

Parameter	Symbol	Device	Min.	Typ.*	Max.	Units	Test Conditions		Fig.	Note
Propagation Delay Time to High Output Level	$\mathrm{t}_{\text {PLH }}$			45	75		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	6, 7, 8	3, 6
					100	ns				
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$			55	75	ns	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6, 7, 9	3, 7
					100	ns				
Pulse Width Distortion	$\left\|t_{\text {PHL }}-\mathrm{t}_{\mathrm{PLH}}\right\|$			14		ns				
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$			20		ns			10	3
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$			15		ns			10	3
Common Mode		HCPL-2630		100			$\mathrm{V}_{\mathrm{cm}}=10 \mathrm{~V}$	$\mathrm{V}_{\text {OMIN }}=2 \mathrm{~V}$,		
Immunity at High	${ }^{\prime} \mathrm{CM}_{\mathrm{H}} \mathrm{I}$	HCPL-2631	1000	10,000		V/ $\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{cm}}=50 \mathrm{~V}$	0 mA ,	11	3, 8,
		HCPL-4661	5000	10,000			$\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$			
Common Mode		HCPL-2630		300			$\mathrm{V}_{\mathrm{cm}}=10 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}(\text { max })}=0.8 \mathrm{~V}$,		
Immunity at Low	$1 \mathrm{CM}_{\mathrm{L}}$ \|	HCPL-2631	1000	10,000		$\mathrm{V} / \mathrm{\mu s}$	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}$	7.5 mA	11	3, 9,
		HCPL-4661	5000	10,000			$\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$			

*All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap   (Clearance)	L (IO1)	$\geq 7$	mm	Measured from input terminals to   output terminals
Min. External Tracking Path   (Creepage)	L (IO2)	$\geq 7$	mm	Measured from input terminals to   output terminals
Min. Internal Plastic Gap   (Clearance)		0.08	mm	Through insulation distance   conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group   (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109

## Notes:

1. Bypassing of the power supply line is required, with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 15. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm . The power supply bus for the optocoupler(s) should be separate from the bus for any active loads.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 15 mA .
3. Each channel.
4. Measured between pins $1,2,3$, and 4 shorted together, and pins 5, 6, 7 , and 8 shorted together.
5. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
6. The $t_{\text {pLh }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
7. The $t_{\text {pHL }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
8. $\mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\text {our }}>2.0 \mathrm{~V}$ ).
9. $\mathrm{CM}_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\text {out }}>0.8 \mathrm{~V}$ ).
10. For sinusoidal voltages,

$$
\left(\frac{\left|\mathrm{dv}_{\mathrm{cM}}\right|}{\mathrm{dt}}\right)_{\max }=\pi \mathrm{f}_{\mathrm{cM}} \mathrm{~V}_{\mathrm{cM}}(\mathrm{p}-\mathrm{p})
$$

11. As illustrated in Figure 15 the $V_{c c}$ and GND traces can be located between the input and the output leads of the HCPL-2630/2631/4661 to provide additional noise immunity at the compromise of insulation capability.


Figure 2. High Level Output Current vs. Temperature.


Figure 5. Output Voltage vs. Forward Input Current.


Figure 7. Propagation Delay vs. Temperature.


Figure 3. Low Level Output Voltage vs. Temperature.


Figure 4. Input Diode Forward Characteristic.


Figure 6. Test Circuit for $\mathrm{t}_{\text {PIIL }}$ and $\mathrm{t}_{\text {PLII }}$ (See Note 3).


Figure 8. Propagation Delay ( $t_{\text {PLU }}$ ) vs. Pulse Input Current.


Figure 9. Propagation Delay ( $t_{\text {PHL }}$ ) vs. Pulse Input Current.


Figure 10. Rise and Fall Time vs. Temperature.

*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.

Figure 13. Recommended TTL/
LSTTL to TTL/LSTTL Interface
Circuit.


Figure 12. Temperature Coefficient of Forward Voltage vs. Input Current.


Figure 14. Input Threshold Current vs. Temperature.


Figure 15. Recommended Printed Circuit Board Layout.
See notes 1, 11.

# Small Outline High CMR, High Speed, Logic Gate Optocouplers <br> <br> Technical Data 

 <br> <br> Technical Data}

## Features

- Surface Mountable
- Industry Standard SOIC-8 Footprint
- Compatible with Infrared Vapor Phase Reflow and Wave Soldering Processes
- Internal Shield for High Common Mode Rejection (CMR)
HCPL-0601: $1000 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}$
HCPL-0611: $5000 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$
- High Speed: 10 Mbd Typical
- LSTTL/TTL Compatible
- Low Input Current Required: 5 mA
- Guaranteed ac and dc Performance Over Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Strobable Output
- Recognized under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltage of $\mathbf{2 5 0 0}$ Vac, 1 Minute


## Description

These small outline high CMR, high speed, logic gate optocouplers are single channel devices in an industry standard SOIC-8 footprint. They are electrically equivalent to the following HP optocouplers:

Small Outline Standard DIP
HCPL-0600 6N137
HCPL-0601 HCPL-2601
HCPL-0611 HCPL-2611

HCPL-0600
HCPL-0601
HCPL-0611

## Outline Drawing*



The SOIC-8 package does not require "through holes" in a PCB. This package occupies approximately one-third the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

The HCPL-0600/01/11 optically coupled gates combine a GaAsP light emitting diode and an assembly of this component to prevent damage and/or degradation which may be induced by ESD.
integrated high gain photon detector. An enable input allows the detector to be strobed. The output of the detector I.C. is an open-collector Schottky-clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification for the HCPL-0601/11.

This unique design provides maximum ac and dc circuit isolation while achieving TTL compatibility. The optocoupler ac and dc operational parameters are guaranteed from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ allowing trouble free system performance.

The HCPL-0600/01/11 are suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

## Applications

- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Switching Power Supply
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement


## Schematic



A 0.01 TO $0.1 \mu \mathrm{~F}$ BYPASS CAPACITOR MUST BE CONNECTED BETWEEN
PINS 8 AND 5 (See Note 1).

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	$\mathrm{I}_{\mathrm{FL}}$	0	250	$\mu \mathrm{~A}$
Input Current, High Level	$\mathrm{I}_{\mathrm{FH}}{ }^{*}$	5	15	mA
Supply Voltage, Output	$\mathrm{V}_{\mathrm{cc}}$	4.5	5.5	V
High Level Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0	$\mathrm{~V}_{\mathrm{cC}}$	V
Low Level Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	V
Fan Out (TTL Load)	N		8	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0	70	${ }^{\circ} \mathrm{C}$

*The initial switching threshold is 5 mA or less. It is recommended that an input current between 6.3 mA and 10 mA be used to obtain best performance and to provide at least $20 \%$ LED degradation guardband.
Absolute Maximum Ratings(No Derating Required up to $85^{\circ} \mathrm{C}$ )Storage Temperature
$\qquad$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ..... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Infrared and Vapor Phase Reflow Temperature $215^{\circ} \mathrm{C}$ for 90 s
Forward Input Current - $\mathrm{I}_{\mathrm{F}}$ (see Note 2) ..... 20 mA
Reverse Input Voltage ..... 5 V
Supply Voltage - $\mathrm{V}_{\mathrm{CC}}$ 7 V (1 Minute Maximum)
Enable Input Voltage - $\mathrm{V}_{\mathrm{E}}$ ..... 5.5 VOutput Collector Current - $\mathrm{I}_{\mathrm{o}}$.................................................. 50 mA
Output Collector Power Dissipation ..... 85 mW
Output Collector Voltage - $\mathrm{V}_{\mathrm{O}}$ (see Note 12) ..... 7 V

## Electrical Characteristics

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified. (See note 1.)

Parameter	Symbol	Min.	Typ.*	Max.	Units	Conditions	Fig.	Note
High Level Output Current	$\mathrm{I}_{\mathrm{OH}}$		8	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$	1	
Low Level Output Voltage	$\mathrm{V}_{\text {oL }}$		0.4	0.6	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2,4, \\ 14 \end{gathered}$	
High Level Supply Current	$\mathrm{I}_{\text {cCH }}$		7.5	10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		
Low Level Supply Current	$\mathrm{I}_{\text {ccL }}$		10	13	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \end{aligned}$		
High Level Enable Current	$\mathrm{I}_{\mathrm{EH}}$		-0.8		mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$		
Low Level Enable Current	$\mathrm{I}_{\text {EL }}$		-1.1	-1.6	mA	$\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$		
High Level Enable Voltage	$\mathrm{V}_{\text {EH }}$	2.0			V			11
Low Level Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$			0.8	V			
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}$		1.5	$\begin{aligned} & 1.75 \\ & \hline 1.85 \end{aligned}$	V	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	3,13	
Input Reverse   Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$		
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Input-Output Insulation	$\mathrm{V}_{\text {ISO }}$	2500			$\mathrm{V}_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{MIN}$		3
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{I} \mathrm{O}}$		$10^{14}$		$\Omega$	$\mathrm{V}_{\mathrm{I} \mathrm{O}}=500 \mathrm{~V}$		3
Capacitance (Input-Output)	$\mathrm{C}_{\text {Lo }}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		3

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$.

## Switching Specifications

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Device	Min.	Typ.*	Max.	Units	Test Conditions		Fig.	Note
Propagation Delay Time to High Output Level	$\mathrm{t}_{\text {PLH }}$			45	75	ns	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5, 6,7,8	4
					100	ns				
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$			55	75	ns	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5
					100	ns	$\mathrm{R}_{\mathrm{L}}=350 \Omega$		5, 6, 7,9	
Pulse Width Distortion	$\left\|t_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right\|$			14		ns				4, 5
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$			20		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		11	
Output Fall Time ( $90-10 \%$ )	$\mathrm{t}_{\mathrm{f}}$			15		ns			11	
Propagation Delay   Time of Enable from $V_{E H}$ to $V_{E L}$	$\mathrm{t}_{\text {ELH }}$			30		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}} \end{aligned}$	$\begin{aligned} & =15 \mathrm{pF}, \\ & =3 \mathrm{~V} \end{aligned}$	9, 10	6
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$	$\mathrm{t}_{\text {EHL }}$			25		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{C}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EH}} \end{aligned}$	$\begin{aligned} & =15 \mathrm{pF}, \\ & =3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10, \\ & 11 \end{aligned}$	7
		HCPL-0600		100			$\mathrm{V}_{\mathrm{cm}}=10 \mathrm{~V}$			
Transient	$1 \mathrm{CM}_{\mathrm{H}}$ \|	HCPL-0601	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{cm}}=50 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=350 \Omega,$	13	8, 10
Output Level		HCPL-0611	5,000				$\mathrm{V}_{\mathrm{cm}}=1000 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \end{aligned}$		
		HCPL-0600		300			$\mathrm{V}_{\mathrm{cm}}=10 \mathrm{~V}$			
Transient	$\mathrm{ICM}_{\mathrm{L}} \mathrm{l}$	HCPL-0601	1000	10,000		V/ $/ \mathrm{s}$	$\mathrm{V}_{\mathrm{cm}}=50 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OMAX}}^{\mathrm{O}(\mathrm{MAX}}=0.8 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}= \end{aligned}$	13	9, 10
Immunity at Low Output Level		HCPL-0611	5,000				$\mathrm{V}_{\mathrm{cm}}=1000 \mathrm{~V}$			

${ }^{*}$ All typicals are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Notes:

1. Bypassing of the power supply line is required with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler. The power supply bus for the optocoupler(s) should be separate from the bus for any active loads.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 20 mA .
3. Device considered a two terminal device: pins $1,2,3$ and 4 shorted together, and pins $5,6,7$ and 8 shorted together.
4. The $t_{\text {pLH }}$ propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
5. The $t_{\text {PHL }}$ propagation delay is measured from the 3.75 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
6. The $\mathrm{t}_{\text {ELH }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
7. The $t_{\text {EHL }}$ enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
8. $\mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\text {out }}>2.0 \mathrm{~V}$ ).
9. $\mathrm{CM}_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\text {out }}<0.8 \mathrm{~V}$ ).
10. For sinusoidal voltages,

$$
\left(\frac{\left|d v_{\mathrm{CM}}\right|}{\mathrm{dt}}\right)_{\max }=\pi f_{\mathrm{CM}} V_{\mathrm{CM}}(\mathrm{p}-\mathrm{p})
$$

11. No external pull up is required for a high logic state on the enable input.
12. Selection for higher output voltages up to 20 V is available.


Figure 1. High Level Output Current vs. Temperature.


Figure 2. Low Level Output Voltage vs. Temperature.


Figure 3. Input Diode Forward Characteristic.


Figure 4. Output Voltage vs. Forward Input Current.


Figure 5. Test Circuit for $\mathrm{t}_{\text {PGL }}$ and $\mathbf{t}_{\text {PLH }}$.


Figure 6. Propagation Delay vs. Temperature.


Figure 7. Propagation Delay ( $\mathrm{t}_{\mathrm{PLH}}$ ) vs. Pulse Input Current.


Figure 8. Propagation Delay ( $\mathrm{t}_{\mathrm{PHL}}$ ) vs. Pulse Input Current.


Figure 9. Test Circuit for $\mathrm{t}_{\text {ehL }}$ and $\mathbf{t}_{\mathrm{ELH}}{ }^{\text {. }}$


Figure 12. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 10. Enable Propagation Delay vs. Temperature.


Figure 13. Temperature Coefficient of Forward Voltage vs. Input Current.


Figure 11. Rise and Fall Time vs. Temperature.


Figure 14. Input Threshold Current vs. Temperature.

# High Speed Optocouplers Technical Data 

## Features

- Very High Common Mode Transient Immunity: 15000 $\mathrm{V} / \mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{cm}}=1500 \mathrm{~V}$ Guaranteed (HCPL-4503)
- High Speed: $1 \mathrm{Mb} / \mathrm{s}$
- TTL Compatible
- Guaranteed ac and dc Performance Over Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Open Collector Output
- Recognized under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltages of 2500 Vac, 1 Minute and 5000 Vac, 1 Minute (Option 020).
- VDE 0883 Approval Pending


## Description

These diode-transistor optocouplers use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connections for
the photodiode bias and output transistor collector increase the speed up to a hundred times over that of a conventional photo-transistor coupler by reducing the base-collector capacitance.

The 6N135 is for use in TTL/ CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for

6N135
6N136
HCPL-2502
HCPL-4502
HCPL-4503
the 6 N 135 is $7 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The 6 N 136 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a 5.6 $\mathrm{k} \Omega$ pull-up resistor. CTR of the 6 N 136 is $19 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

## Outline Drawing


*See notes, following page.

[^42]The HCPL-2502 is suitable for use in applications where matched or known CTR is desired such as in the feedback path of switch-mode power supplies. CTR is 15 to $22 \%$ at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The HCPL-4502 provides the electrical and switching performance of the 6 N 136 with increased ESD protection.

The HCPL-4503 is an HCPL-4502 with increased common mode transient immunity of $15000 \mathrm{~V} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=1500$ guaranteed.

## Applications

- Video Signal Isolation
- Line Receivers - High common mode transient immunity ( $>1000 \mathrm{~V} / \mu \mathrm{s}$ ) and low inputoutput capacitance ( 0.6 pF ).
- High Speed Logic Ground Isolation - TTL/TTL, TTL/ LTTL, TTL/CMOS, TTL/ LSTTL.
- Replace Slow Phototransistor Isolators - Pins 2-7 of the 6N135/6 series conform to pins 1-6 of 6 pin phototransistor couplers. Pin 8 can be tied to any available bias voltage of 1.5 V to 30 V for high speed operation.
- Replace Pulse Transformers - Save board space and weight
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.
Absolute Maximum RatingsStorage Temperature *$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature* $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Lead Solder Temperature* $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Average Input Current - $\mathrm{I}_{\mathrm{F}}{ }^{*}$ ..... $25 \mathrm{~mA}^{[1]}$
Peak Input Current - $\mathrm{I}_{\mathrm{F}}{ }^{*}$ ..... $50 \mathrm{~mA}^{[2]}$
( $50 \%$ duty cycle, 1 ms pulse width)
Peak Transient Input Current - $\mathrm{I}_{\mathrm{F}}$ * ..... 1.0 A
( $\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps )
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}{ }^{*}(\operatorname{Pin} 3-2)$ ..... 5 V
Input Power Dissipation* ..... $45 \mathrm{~mW}^{[3]}$
Average Output Current - $\mathrm{I}_{\mathrm{o}}{ }^{*}(\operatorname{Pin} 6)$ ..... 8 mA
Peak Output Current* ..... 16 mA
Emitter-Base Reverse Voltage * ..... 5 V
(Pin 5-7, except HCPL-4502/3)
Output Voltage* - $\mathrm{V}_{\mathrm{o}}(\operatorname{Pin} 6-5)$ ..... -0.5 V to 15 V
Supply Voltage* $\mathrm{V}_{\mathrm{Cc}}$ (Pin 8-5) ..... -0.5 V to 15 V
Output Voltage - $\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 6-5)$ ..... -0.5 V to 20 V
Supply Voltage - $\mathrm{V}_{\mathrm{cc}}$ (Pin 8-5) ..... -0.5 V to 30 V
Base Current - $\mathrm{I}_{\mathrm{B}}$ * (Pin 7, except HCPL-4502/3) ..... 5 mA
Output Power Dissipation* ..... $100 \mathrm{~mW}^{[4]}$

[^43]
## Electrical Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified. See note 13 .

Parameter	Symbol	Device	Min.	Typ.**	Max.	Units	Test Conditions			Fig.	Note	
Current   Transfer   Ratio	CTR*	6N135	7	18	50	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1,2 \\ 4 \end{gathered}$	5,11	
			5	19				$\mathrm{V}_{\mathrm{o}}=0.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{p}}=$				
		6N136HCPL-4502HCPL-4503	19	24	50	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{cc}}$				
			15	25				$\mathrm{V}_{0}=0.5 \mathrm{~V}$				
		HCPL-2502	15	18	22	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}$				
Logic Low   Output   Voltage	$\mathrm{V}_{\text {oL }}$	6N135	0.1		0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{0}=1.1 \mathrm{~mA}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$			
					0.5			$\mathrm{I}_{0}=0.8 \mathrm{~mA}$				
		$\begin{aligned} & \text { 6N136 } \\ & \text { HCPL-2502 } \\ & \text { HCPL-4502 } \\ & \text { HCPL-4503 } \end{aligned}$		0.1	0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{o}}=3.0 \mathrm{~mA} \mathrm{~V}_{\mathrm{cc}}$				
					0.5			$\mathrm{I}_{\mathrm{o}}=2.4 \mathrm{~mA}$				
Logic High Output Current	$\mathrm{I}_{\mathrm{OH}}{ }^{*}$			0.003	0.5	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	6		
				0.01	1		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=15.0 \mathrm{~V}$				
					50							
Logic Low Supply Current	$\mathrm{I}_{\text {ccl }}$			50	200	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V} \end{aligned}$				13	
Logic High Supply Current	$\mathrm{I}_{\mathrm{cch}}{ }^{*}$			0.02	1	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{g}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0 \text { pen, } \\ & \mathrm{V}_{\mathrm{cc}}=15 \mathrm{~V} \end{aligned}$			13	
					2							
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}{ }^{*}$			1.5	1.7	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		3		
					1.8							
Input Reverse   Breakdown   Voltage	$\mathrm{BV}_{\mathrm{R}}{ }^{*}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$					
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.6		$\mathrm{mV}^{{ }^{\circ} \mathrm{C}}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$					
Input   Capacitance	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}$,	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$				
Input-Output   Insulation   Voltage	$\mathrm{V}_{180}$		2500			$\mathrm{V}_{\text {RMs }}$	$\begin{aligned} & \mathrm{RH}<50 \%, \mathrm{t}=1 \mathrm{~min} ., \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$				6	
		OPT. 020	5000			$\mathrm{V}_{\text {RM8 }}$						
Resistance (Input-Output)	$\mathrm{R}_{\text {I. } 0}$			$10^{12}$		$\Omega$	$\mathrm{V}_{\mathrm{I} .0}=500 \mathrm{~V}$	Vdc			6	
Capacitance (Input-Output)	$\mathrm{C}_{\text {I. }}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$				6	
Transistor DC Current Gain	$\mathbf{h}_{\text {FE }}$			150			$\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=3 \mathrm{~mA}$					
				130			$\mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V}, \mathrm{Ib}=20 \mu \mathrm{~A}$					

*For JEDEC registered parts. $\quad{ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$ unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions		Fig.	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\mathrm{PHL}}{ }^{*}$	6N135		0.2	1.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\begin{gathered} 5,9, \\ 11 \end{gathered}$	8, 9
					2.0					
		6N136   HCPL-2502   HCPL-4502   HCPL-4503		0.2	0.8		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
					1.0					
					1.5		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Propagation Delay		6 N 135		1.3	2.0					
at Output		6N136			0.8	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$11$	
		HCPL-4503			1.0					
		6N135		1			$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$		
Common Mode   Transient   Immunity	' $\mathrm{CM}_{\mathrm{H}}$ '	6N136 HCPL-2502 HCPL-4502		1		kV/ $/ \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		10	7,8,9
Level Output		HCPL-4503	15	30			$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{I}_{\mathrm{p}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$		
		6N135		1			$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$		
Common Mode   Transient Immunity	$\mathbf{I C M}_{\mathrm{L}}{ }^{\text {I }}$	$\begin{gathered} \text { 6N136 } \\ \text { HCPL-2502 } \\ \text { HCPL-4502 } \end{gathered}$		1		kV/ $/ \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		10	7,8,9
Level Output		HCPL-4503	15	30			$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{cm}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$		
Bandwidth	BW			9		MHz	See Test Cir	cuit	7, 8	10

## *For JEDEC registered parts.

${ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times 100 .
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{d} \mathrm{V}_{\mathrm{cs}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ).
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.
11. The JEDEC registration for the 6 N 136 specifies a minimum CTR of $15 \%$. HP guarantees a minimum CTR of $19 \%$.
12. See Option 020 data sheet for more information.
13. Use of a $0.1 \mu \mathrm{f}$ bypass capacitor connected between pins 5 and 8 is recommended.

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap   (Clearance)	L(I01)	$\geq 7$	mm	Measured from input terminals to output   terminals
Min. External Tracking   Path (Creepage)	L(I02)	$\geq 7$	mm	Measured from input terminals to output   terminals
Min. Internal Plastic   Gap (Clearance)		0.08	mm	Insulation thickness between emitter and   detector
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group   (Per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109


$\mathrm{V}_{\mathrm{o}}$ - output voltage - V

Figure 1. DC and Pulsed Transfer Characteristics.


Figure 3. Input Current vs. Forward Voltage.


Figure 2. Current Transfer Ratio vs. Input Current.


Figure 4. Current Transfer Ratio vs. Temperature.


Figure 5. Propagation Delay vs. Temperature.


Figure 6. Logic High Output Current vs. Temperature.


Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.


Figure 8. Frequency Response.


Figure 9. Switching Test Circuit.*


Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.


Figure 11. Propagation Delay Time vs. Load Resistance.

[^44]

## Features

- HIGH SPEED: 1 Mb/s
- TTL COMPATIBLE
- VERY HIGH COMMON MODE TRANSIENT IMMUNITY: $15000 \mathrm{~V} / \mu \mathrm{s} @ \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}$ GUARANTEED (HCPL-4534)
- HIGH DENSITY PACKAGING
- 3 MHz BANDWIDTH
- OPEN COLLECTOR OUTPUTS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL AVAILABLE
- MIL-STD-1772 VERSION AVAILABLE (HCPL-5530/31)


## Description

These dual optocouplers contain a pair of light emitting diodes and integrated photo detectors with electrical insulation between input and output. Separate connection for the photodiode bias and output transistor collectors increase the speed up to a hundred times that of a conventional phototransistor coupler by reducing the basecollector capacitance.
The HCPL-2530 is for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the -2530 is $7 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The HCPL-2531 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL
load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR of the -2531 is $19 \%$ minimum at $I_{F}=16 \mathrm{~mA}$.

The HCPL-4534 is an HCPL-2531 with increased common mode transient immunity of $15000 \mathrm{~V} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=$ 1500 V guaranteed.

## Applications

- Line Receivers - High common mode transient immuni $(>1000 \mathrm{~V} / \mu \mathrm{s}$ ) and low input-output capacitance ( 0.6 pF ).
- High Speed Logic Ground Isolation - TTL/TTL, TTI LTTL, TTL/CMOS, TTL/LSTTL.
- Replace Pulse Transformers - Save board space and weigh
- Analog Signal Ground Isolation - Integrated photon d tector provides improved linearity over phototransistor type.
- Polarity Sensing.
- Isolated Analog Amplifier - Dual channel packaging enhances thermal tracking.


## Absolute Maximum Ratings


## Electrical Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified. See note 13 .

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions			Fig.	Note	
Current Transfer Ratio	CTR	HCPL-2530	7	18	50	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	$\begin{aligned} & I_{F}=16 \mathrm{~mA}, \\ & V_{C C}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1,2 \\ & 4 \end{aligned}$	5,6	
			5					$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				
		HCPL-2531   HCPL-4534	19	24	50	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{0}=0.4 \mathrm{~V}$				
			15					$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				
Logic Low Output Voltage	$\mathrm{V}_{\text {OL }}$	HCPL-2530		0.1	0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{0}=1.1 \mathrm{~mA}$	$\begin{aligned} & I_{F}=16 \mathrm{~mA}, \\ & V_{C C}=4.5 \mathrm{~V} \end{aligned}$	1	5	
					0.5			$\mathrm{I}_{0}=0.8 \mathrm{~mA}$				
		$\begin{aligned} & \text { HCPL-2531 } \\ & \text { HCPL-4534 } \end{aligned}$		0.1	0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$10=3.0 \mathrm{~mA}$				
					0.5			$\mathrm{I}_{\mathrm{O}}=2.4 \mathrm{~mA}$				
Logic High Output Current	$\mathrm{IOH}^{\text {I }}$			0.003	0.5	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	6	5	
							$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{C C}=15.0 \mathrm{~V}$				
					50							
Logic Low Supply Current	I CCL			100	400	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{C C}=15 \mathrm{~V}$					
Logic High Supply Current	ICCH			0.05	4	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{Open}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$					
Input Forward Voltage	$V_{F}$			1.5	1.7	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		3	5	
					1.8							
Input Reverse Breakdown Voltage	$B V_{R}$		5			V	$I_{R}=10 \mu \mathrm{~A}$				5	
Temperature Coetficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.6		$\begin{aligned} & \mathrm{mV} / \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$					
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$				5	
Input-Output Insulation Voltage	VISO		2500			$V_{\text {RMS }}$	$\mathrm{RH}<50 \%, \mathrm{t}=1 \mathrm{~min} ., \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				7	
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$			$10^{12}$		$\Omega$	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$				7	
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$				7	
Input-Input Insulation Leakage Current	1-1			0.005		$\mu \mathrm{A}$	$45 \%$ Relative Humidity, $t=5 \mathrm{~s}$   $\mathrm{V}_{1-1}=500 \mathrm{Vdc}$				8	
Resistance (Input-Input)	$R_{1-1}$			$10^{11}$		$\Omega$	$\mathrm{V}_{1-1}=500 \mathrm{Vdc}$				8	
Capacitance (Input-Input)	$\mathrm{C}_{1-1}$			0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$				8	

*All typicals at $25^{\circ} \mathrm{C}$.

## Switching Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$, unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions		Fig.	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	HCPL-2530		0.2	1.5	$\mu \mathrm{S}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		$\begin{gathered} 5,9 \\ 11 \end{gathered}$	10, 11
					2.0			R $=4.1 \mathrm{k} \Omega$		
		$\begin{aligned} & \text { HCPL-2531 } \\ & \text { HCPL-4534 } \end{aligned}$		0.2	0.8		$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
					1.0					
Propagation Delay Time to Logic High at Output	$t_{\text {PLH }}$	HCPL-2530		1.3	1.5	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\begin{gathered} 5,9 \\ 11 \end{gathered}$	10, 11
					2.0					
		$\begin{aligned} & \text { HCPL-2531 } \\ & \text { HCPL-4534 } \end{aligned}$		0.6	0.8		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
					1.0					
Common Mode Transient Immunity at Logic High Level Output	$\left\|C M_{H}\right\|$	HCPL-2530		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{C M}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \hline \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & T_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{C M}=1500 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	10	$\begin{gathered} 9,10 \\ 11 \end{gathered}$
		HCPL-2531		1000			$R_{L}=1.9 \mathrm{k} \Omega$			
		HCPL-4534		15000			$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$			
Common Mode   Transient Immunity at Logic Low Level Output	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	HCPL-2530		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & T_{A}=25^{\circ} \mathrm{C}, \\ & V_{C M}=10 \mathrm{~V}_{\text {P-P }} \end{aligned}$	10	$\begin{gathered} 9,10 \\ 11 \end{gathered}$
		HCPL-2531		1000			$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$			
		HCPL-4534		15000			$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$		

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	L(IO1)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	L(IO2)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109

## Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Each channel.
6. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times $100 \%$.
7. Device considered a two-terminal device: Pins 1,2,3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}}$ /dt on the leading edge of the
common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
10. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
11. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
12. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
13. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.


Figure 1. DC and Pulsed Transfer Characteristics.

Figure 3. Input Current vs. Forward Voltage.


Figure 2. Current Transfer Ratio vs. Input Current.


Figure 4. Current Transfer Ratio vs. Temperature.


Figure 5. Propagation Delay vs. Temperature.


Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.


Figure 6. Logic High Output Current vs. Temperature.


Figure 8. Frequency Response.


Figure 9. Switching Test Circuit.


Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.


Figure 11. Propagation Delay Time vs. Load Resistance.

## Small Outline High Speed Optocouplers

## Technical Data

## HCPL-0500 <br> HCPL-0501 <br> HCPL-0452 <br> HCPL-0453

## Features

- Surface Mountable
- Industry Standard SOIC-8

Footprint

- Compatible with Infrared Vapor Phase Reflow and
Wave Soldering Processes
- Very High Common Mode

Transient Immunity: $15000 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
Guaranteed (HCPL-0453)

- High Speed: 1 Mb/s
- TTL Compatible
- Guaranteed ac and dc Performance Over Temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Open Collector Output
- Recognized Under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltage of 2500 VAC, 1 Minute


## Description

These small outline high CMR, high speed, logic gate optocouplers are single channel devices in an industry standard SOIC-8 footprint. They are electrically equivalent to the following HP optocouplers:
Small Outline

Standard DIP
HCPL-0500

HCPL-0501
6N136
HCPL-0452
HCPL-4502
HCPL-0453
HCPL-4503
The SOIC-8 package does not
require "through holes" in a
PCB. This package occupies
approximately one-third the
footprint area of the standard
dual-in-line package. The lead
profile is designed to be
compatible with standard
surface mount processes.

Outline Drawing*

*Sce notes, following page. ESD.

The HCPL-0500 is for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the HCPL-0500 is $7 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The HCPL-0501 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR of the HCPL-0501 is $19 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The HCPL-0452 provides the electrical and switching performance of the HCPL-0501 with increased ESD protection.

The HCPL-0453 is an HCPL-0452 with increased common mode transient immunity of $15000 \mathrm{~V} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ guaranteed.

## Applications

- Video Signal Isolation
- Line Receivers - High common mode transient immunity ( $>1000 \mathrm{~V} / \mu \mathrm{s}$ ) and low input-output capacitance ( 0.6 pF ).
- High Speed Logic Ground Isolation - TTL/TTL, TTL/ LTTL, TTL/CMOS, TTL/ LSTTL.
- Replace Slow Phototransistor Isolators - Pins 2-7 of the HCPL-0500/0501 series conform to pins 1-6 of 6 pin phototransistor couplers. Pin 8 can be tied to any available bias voltage of 1.5 V to 30 V for high speed operation.
- Replace Pulse Transformers - Save board space and weight
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.
Absolute Maximum RatingsStorage Temperature
$\qquad$$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ..... $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Infrared and Vapor Phase Reflow Temperature $215^{\circ} \mathrm{C}$ for 90 s
Average Input Current - $\mathrm{I}_{\mathrm{F}}$ ..... $25 \mathrm{~mA}^{[1]}$
Peak Input Current - $\mathrm{I}_{\mathrm{F}}$. ..... $50 \mathrm{~mA}^{[2]}$
( $50 \%$ duty cycle, 1 ms pulse width)
Peak Transient Input Current - $\mathrm{I}_{\mathrm{F}}$ ..... 1.0 A
( $\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps )
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ (Pin 3-2) ..... 5 V
Input Power Dissipation ..... $45 \mathrm{~mW}^{33}$
Average Output Current - $\mathrm{I}_{\mathrm{o}}$ (Pin 6) ..... 8 mA
Peak Output Current ..... 16 mA
Emitter-Base Reverse Voltage ..... 5 V
(Pin 5-7, except HCPL-0452/3)
Output Voltage $-\mathrm{V}_{\mathrm{o}}(\operatorname{Pin} 6-5)$ ..... -0.5 V to 20 V
Supply Voltage - $\mathrm{V}_{\text {cc }}$ (Pin 8-5) ..... -0.5 V to 30 V
Base Current - $\mathrm{I}_{\mathrm{B}}$ (Pin 7, except HCPL-0452/3) ..... 5 mA
Output Power Dissipation ..... $100 \mathrm{~mW}^{[4]}$


## Electrical Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), unless otherwise specified. (See note 11.)

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Specifications

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$ unless otherwise specified.

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Notes:

1. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $I_{p}$, times 100.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together. The $2500 \mathrm{Vac} / 1$ MINUTE CAPABILITY IS VALIDATED by a factory $3200 \mathrm{Vac} / 1$ sccond dielectric voltage withstand test.
7. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{0}>2.0 \mathrm{~V}$ ). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ).
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
10. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.
11. Use of a $0.1 \mu$ f bypass capacitor connected between pins 5 and 8 is recommended.


Vo-OUTPUT VOLTAGE - V

$V_{F}$-FOWARD VOLTAGE - VOLTS

Figure 3. Input Current vs. Forward Voltage.

Figure 5. Propagation Delay vs. Temperature.


Figure 2. Current Transfer Ratio vs. Input Current.


TA - TEMPERATURE - C

Figure 4. Current Transfer Ratio vs. Temperature.


RL-LOAD RESISTANCE-K $\Omega$

Figure 6. Propagation Delay Time vs. Load Resistance.


Figure 7. Logic High Output Current vs. Temperature.


Figure 8. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.



Figure 9. Frequency Response.


Figure 10. Switching Test Circuit.


Figure 11. Test Circuit for Transient Immunity and Typical Waveforms.

# High Speed Optocouplers Technical Data 

## Features

- 5000 Vrms/ 1 Minute Insulation Withstand Capability
- Worldwide Safety

Approval
UL1577 (File No. E55361)
VDE 883/884/860/805/806/
804/750
BS 415/7002/6301
IEC 65/380/950/335/435/601

- High Speed: 1 Mbit/s
- TTL Compatible
- Performance Guaranteed Over Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Pin Compatible with 6N135/6 and HCPL-4502


## Applications

- High Voltage Insulation
- Video Signal Isolation
- Feedback Element in Switched Mode Power Supplies
- Line Receivers: >1000 V/us common mode transient immunity and low inputoutput capacitance of 0.6 pF
- High Speed Logic Ground Isolation - TTL/TTL, TTL/ CMOS, TTL/LSTTL
- Replaces Pulse Transformers
- Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type
- Replaces Slow Phototransistor Isolators - Pins 2-7 of the CNW 135/6 conforms to pins 1-6 of 6 pin phototransistor couplers. Pin 8 can be tied to any available bias voltage of 1.5 V to 30 V for high speed operation


## Package Outline



DIMENSIONS IN MILLIMETERS AND (INCHES)

CNW135
CNW136
CNW4502

## Description

These devices are high voltage and fast switching optocouplers consisting of an AlGaAs LED and a silicon photodetector. A wide body encapsulation is used to provide creepage and clearance dimensions suitable for safety approval by regulatory agencies worldwide.

The CNW135 is for use in TTL/ CMOS, TTL/LSTTL or wide bandwidth analog applications.

Current transfer ratio (CTR) for the CNW135 is 7\% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The CNW136 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a 5.6 K pullup resistor. CTR of the CNW136 is $19 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The CNW4502 provides the electrical and switching performance of the CNW 136, increased ESD protection and increased transient immunity.

## Regulatory Information

The CNW135/6 features a wide body 8 PIN DIP. This package was specifically designed to meet regulatory requirements worldwide. The CNW135/6 has been approved by the following organizations:

UL - Covered under UL component recognition FILE E55361
VDE - Approved according to VDE 0883/6.80
VDE 0884/08.87 certification pending
Reference voltage (VDE 0110b Tab. 4): 500 V AC/600 V DC
Complied for reinforced insulation at 250 V AC with: DIN IEC 380/VDE 0806/8.81
DIN IEC 435/VDE 0805 "ENTWURF" Nov 84 DIN 57804/VDE 0804/1.83 (isolation group C) DIN VDE 0860/8.86/HD 195 S4 DIN IEC 601 Teil 1/VDE 0750 Teil 1/5.82
NORDIC - Tested for applications (reinforced insulation) - Class II applications for plugable apparatus in normal tight execution.
-SETI-SEMKO-NEMKO-DEMKO-According to IEC 65-IEC380-IEC950-IEC335
BSI - Certification according to BS415:1979, BS7002:1989 and BS6301: 1987 pending
BABT - Certification pending
Absolute Maximum RatingsStorage TemperatureOperating Temperature$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$$-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s(up to seating plane)
Average Input Current - $\mathrm{I}_{\mathrm{F}}$ ..... 100 mA
Peak Transient Input Current - $\mathrm{I}_{\mathrm{F}}$ ..... 1.0 A
( $\leq 1 \mu \mathrm{~s}$ pulse width, 300 Hz )
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ (Pin 3-2) ..... 5 V
Input Power Dissipation (up to $70^{\circ} \mathrm{C}$ ) ..... 250 mW *
Average Output Current - $\mathrm{I}_{\mathrm{O}}$ (Pin 6) ..... 10 mA
Emitter-Base Reverse Voltage (Pin 5-7) ..... 5 V
Output Voltage - $\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 6-5)$ ..... 0.5 V to 20 V
Supply Voltage - $\mathrm{V}_{\mathrm{cc}}$ (Pin 8-5) ..... -0.5 V to 30 V
Base Current - $I_{B}$ (Pin 7, except HCPL-4502) ..... 5 mA
Output Power Dissipation ..... 100 mW
*Dcrate at $5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operating temperatures above $70^{\circ} \mathrm{C}$.

[^45]
## Schematic


**Note: For CNW4502, Pin 7 is not connected.

VDE 0884 Insulation Characteristics - Pending Approval

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0109/12.83, Table 1 for rated mains voltage $\leq 600 \mathrm{~V}_{\mathrm{RMS}}$ for rated mains voltage $\leq 1000 \mathrm{~V}_{\text {RMS }}$		$\begin{aligned} & \text { I-IV } \\ & \text { I-III } \end{aligned}$	
Climatic Classification		55/150/21	
Pollution Degree (DIN VDE 0109/12.83)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	1000	$\mathrm{V}_{\text {RMS }}$
Input to Output Test Voltage, Method b* $\mathrm{V}_{\mathrm{PR}}=1.6 \times \mathrm{V}_{\text {IORM }}, 100 \%$ Production Test with $\mathrm{tp}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{PR}}$	1600	$\mathrm{V}_{\text {RMS }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\mathrm{PR}}=1.2 \times \mathrm{V}_{\mathrm{IORM}}$, Type and sample test, $\mathrm{tp}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\text {PR }}$	1200	$\mathrm{V}_{\text {RMS }}$
Highest Allowable Overvoltage* (Transient Overvoltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$ )	$\mathrm{V}_{\text {TR }}$	8000	$\mathrm{V}_{\mathrm{PK}}$
Safety-Limiting Values   (Maximum values allowed in the event of a failure, also see Figure 9)   Case Temperature   Current (Input Current $\mathrm{I}_{\mathrm{F}}, \mathrm{P}_{\mathrm{SI}}=0$ )   Output Power (obtained by setting pin $8=5.5 \mathrm{~V}$, pins 7, 6, 5 = ground)	$\begin{gathered} \mathrm{T}_{\mathrm{SI}} \\ \mathrm{I}_{\mathrm{SI}} \\ \mathrm{P}_{\mathrm{SI}, \text { OUTPUT }} \\ \hline \end{gathered}$	$\begin{aligned} & 175 \\ & 400 \\ & 700 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{\mathrm{sp}}, \mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$	$\mathrm{R}_{\text {IS }}$	$\geq 10^{9}$	ohm

*Refer to the front of the optocoupler section of the 1991 Designer's Catalog, under regulatory information, (VDE 0884) for a detailed description.

Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuts in the application.

Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap   (clearance)	L(IO1)	9.6	mm	Measured from input terminals to output   terminals
Min. External Tracking   Path (creepage)	L(IO2)	10.0	mm	Measured from input terminals to output   terminals
Min. Internal Plastic Gap   (clearance)		1.0	mm	Through insulation distance   conductor to conductor
Tracking Resistance	CTI	175	volts	DIN IEC 112/VDE 0303 PART 1
Isolation Group   (per DIN VDE 0109)		IIIa		Material group (DIN VDE 0109)

## Electrical Specifications

Over Recommended Temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified. (See note 8.)

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Specifications

Over Recommended Temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$, unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test	nditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	CNW135		0.3	1.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 5,8 \\ 11 \end{gathered}$	4,5
					2.0			$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$		
		CNW136   CNW4502		0.4	0.8		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
					1.0					
Propagation Delay Time to Logic High at Output	$\mathrm{t}_{\text {PLH }}$	CNW135		0.6	1.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\begin{gathered} 5,8 \\ 11 \end{gathered}$	4, 5
					2.0					
		CNW136   CNW4502		0.35	0.8		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
					1.0					
Common Mode Transient Immunity at Logic High Level Output	ICM ${ }_{\text {H }}$	CNW135	1,000			$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{cM}}=10 \mathrm{~V} \end{aligned}$	12	3, 4, 5
		CNW136   CNW4502	1,000				$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$			
Common Mode Transient Immunity at Logic Low Level Output	$1 \mathrm{CM}_{\mathrm{L}} \mathrm{l}$	CNW135	1,000			$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{cM}}=10 \mathrm{~V} \end{aligned}$	12	3,4,5
		CNW136   CNW4502	1,000				$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$			
Bandwidth	BW	CNW135 CNW136		11		MHz	See Test Cir		7,10	6

*All typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Notes:

1. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times 100.
2. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
3. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse $\mathrm{V}_{\mathrm{cM}}$, to assure that the output will remain in a Logic High state (i.e. $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ) Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}}$ dt on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e. $\mathrm{V}_{\mathrm{o}}>0.8 \mathrm{~V}$ ).
4. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.

5 . The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
6. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
7. Each product is tested by applying an isolation test voltage of 6000 Vrms for 2 seconds. This test is in accordance with UL1577 and is performed in addition to the tests shown in the VDE0884 INSULATION CHARACTERISTICS TABLE.
8. Use of a $0.1 \mu$ f bypass capacitor connected between pins 5 and 8 is recommended for operation.


Figure 1. DC and Pulsed Transfer Characteristics.


Figure 4. Current Transfer Ratio vs Temperature.


Figure 7. Small-Signal Current Transfer Ratio vs Quiescent Input Current.


Figure 2. Current Transfer Ratio vs Input Current


Figure 5. Propagation Delay vs Temperature.


Figure 8. Propagation Delay Time vs Load Resistance.


Figure 3. Input Current vs Forward Voltage.


Figure 6. Logic High Output Current vs Temperature.


Figure 9. Dependence of Safety Maximum Ratings with Ambient Temperature.


Figure 10. Frequency Response.


Figure 12. Test Circuit for Transient Immunity and Typical Waveforms.



## Features

- HIGH CURRENT TRANSFER RATIO - 2000\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- TTL COMPATIBLE OUTPUT - 0.1 V VoL TYPICAL
- PERFORMANCE GUARANTEED OVER TEMPERATURE $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ BASE ACCESS ALLOWS GAIN BANDWIDTH ADJUSTMENT
- HIGH OUTPUT CURRENT - $\mathbf{6 0} \mathrm{mA}$
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE AND 5000 Vac, 1 MINUTE (OPTION 020)
- VDE 0883 APPROVAL AVAILABLE
- MIL-STD-1772 VERSION AVAILABLE (HCPL-5700/1) Description
These high gain series couplers use a Light Emitting Diode and an integrated high gain photo detector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltages and high speed operation. Where desired the $\mathrm{V}_{\mathrm{C}}$ and $\mathrm{V}_{\mathrm{O}}$ terminals may be tied together to achieve conventional photodarlington operation. A base access terminal allows a gain bandwidth adjustment to be made.
The 6N139 is for use in CMOS, LSTTL or other low power applications. A $400 \%$ minimum current transfer ratio is guaranteed over a $0-70^{\circ} \mathrm{C}$ operating range for only 0.5 mA of LED current.
The 6N138 is designed for use mainly in TTL applications. Current Transfer Ratio is $300 \%$ minimum over $0-70^{\circ} \mathrm{C}$ for an LED current of 1.6 mA [1 TTL Unit load (U.L.)]. A 300\% minimum CTR enables operation with 1 U.L. out with a $2.2 \mathrm{k} \Omega$ pull-up resistor.
Selection for lower input current down to $250 \mu \mathrm{~A}$ is available upon request.



## Applications

- Ground Isolate Most Logic Families - TTL/TTL, CMOS/ TTL, CMOS/CMOS, LSTTL/TTL, CMOS/LSTTTL
- Low Input Current Line Receiver - Long Line or Party line
- EIA RS-232C Line Receiver
- Telephone Ring Detector
- 117 V ac Line Voltage Status Indicator - Low Input Power Dissipation
- Low Power Systems - Ground Isolation


## Absolute Maximum Ratings*

(No Derating Required up to $85^{\circ} \mathrm{C}$ )
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature** . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature . . . . . . . . . . . . . . . $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)

Peak Input Current - $I_{F}$.............................. 40 mA
( $50 \%$ duty cycle, 1 ms pulse width)
Peak Transient Input Current - $I_{F} \ldots \ldots \ldots \ldots \ldots$................. A
( $\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps )

Input Power Dissipation ............................ . 35 mW
Output Current - Io (Pin 6) ......................... . . 60 mA
Emitter-Base Reverse Voltage (Pin 5-7) . . . . . . . . . . . . 0.5 V
Supply and Output Voltage - $\mathrm{V}_{\mathrm{CC}}\left(\right.$ Pin 8-5), $\mathrm{V}_{\mathrm{O}}$ (Pin 6-5)
6N138 .......................................... -0.5 to 7 V

6N139 ......................................... . . 0.5 to 18 V
Output Power Dissipation ........................ 100 mW

[^46]*JEDEC Registered Data.
${ }^{* *} 0^{\circ}$ to $70^{\circ}$ on JEDEC Registration.

## Electrical Specifications

Over recommended temperature ( $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), unless otherwise specified. (See note 7.)

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	6N139	$\begin{aligned} & 400^{*} \\ & 500^{*} \end{aligned}$	$\begin{aligned} & 2000 \\ & 1600 \end{aligned}$	$\begin{aligned} & 3500 \\ & 2600 \end{aligned}$	\%	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$	2, 3	1, 2
		6N138	$30{ }^{*}$	1600	2600	\%	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$		
Logic Low Output Voltage	VOL	6N139		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, I_{O}=8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=5 \mathrm{~mA}, I_{O}=15 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=12 \mathrm{~mA}, I_{O}=24 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$	1	2
		6N138		0.1	0.4	$\checkmark$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=4.8 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$		
Logic High Output Current	Іон	6N139		0.05	100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$		2
		6N138		0.1	250	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{C C}=7 \mathrm{~V}$		
Logic Low Supply Current	ICCL			0.4	1.5	mA	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{C C}=18 \mathrm{~V}$		2
Logic High Supply Current	ICCH			0.01	10	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$		2
Input Forward Voltage	$V_{F}$			1.4	1.7*	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4	
					1.75		- $I_{F}=1.6 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}{ }^{*}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Temperature   Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I_{F}=1.6 \mathrm{~mA}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		
Input-Output   Insulation $\qquad$	$V_{\text {ISO }}$		2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} ., \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3
Option 020	$\mathrm{V}_{\text {ISO }}$		5000						
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$			$10^{12}$		$\Omega$	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}$		3
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$			0.6		pF	$f=1 \mathrm{MHz}$		3

## Switching Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), unless otherwise specified.

Parameter	Symbol	Device	Min.	Typ.**	Max.	Units	Test Conditions		Figure	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	6N139		5	25*	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$	5,6,7	2,4
					30			$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$		
				0.2	1*		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$		
					2			$\mathrm{R}_{\mathrm{L}}=270 \Omega$		
		6N138		1.6	10*		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		
					15			$\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$		
Propagation Delay Time to Logic High at Output	$\mathrm{t}_{\text {PLH }}$	6N139		18	60*	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$	5,6,7	2,4
					90			$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$		
				2	7*		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$		
			$\cdots$		10			$\mathrm{R}_{\mathrm{L}}=270 \Omega$		
		6N138		10	35*		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		
					50			$\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$		
Common Mode Transient Immunity at Logic High Output	\| $\mathrm{CM}_{\mathrm{H}}$ \|			500	-	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \\ & \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=10 \end{aligned}$	$A=25^{\circ} \mathrm{C}$	8	5,6
Common Mode Transient Immunity at Logic Low Output	$\mid \mathrm{CM}_{\mathrm{L}}{ }^{\text {l }}$			500		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~m} \\ & R_{L}=2.2 \mathrm{k} \\ & \left\|V_{C M}\right\|=10 \end{aligned}$	$T_{A}=25^{\circ} \mathrm{C}$	8	5,6

*JEDEC registered data.
${ }^{* *} \mathrm{All}$ typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted.

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	L(IO1)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	L(IO2)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		Illa		Material Group DIN VDE 0109

1. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $I_{F}$, times $100 \%$.
2. Pin 7 Open.
3. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
4. Use of a resistor between pin 5 and 7 will decrease gain and delay time. See Application Note 951-1 for more details.
5. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $d V_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $V_{c m}$, to assure that the output will remain in a Logic High state (i.e., $V_{O}>2.0 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
6. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge) a series resistor, $\mathrm{R}_{\mathrm{CC}}$, should be included to protect the detector IC from destructively high surge currents. The recommended value is $R_{C C}=220 \Omega$.
7. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.


Figure 1. 6N138/6N139 DC Transfer Characteristics


Figure 2. Current Transfer Ratio vs Forward Current 6N138/6N139


Figure 3. 6N138/6N139 Output Current vs Input Diode Forward Current


Figure 5. Propagation Delay vs. Temperature.


Figure 4. Input Diode Forward Current vs. Forward Voltage.


Figure 6. Non Saturated Rise and Fall Times vs. Load Resistance.


Figure 7. Switching Test Circuit.*


Figure 8. Test Circuit for Transient Immunity and Typical Waveforms.

# DUAL LOW INPUT CURRENT, HIGH GAIN OPTOCOUPLERS 



## Features

- HIGH CURRENT TRANSFER RATIO - 1800\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- LOW OUTPUT SATURATION VOLTAGE - 0.1 V TYPICAL
- HIGH DENSITY PACKAGING
- PERFORMANCE GUARANTEED OVER $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ TEMPERATURE RANGE
- LSTTL COMPATIBLE
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL AVAILABLE
- MIL-STD VERSION AVAILABLE (HCPL-5730/1)



## Applications

- Digital Logic Ground Isolation
- Telephone Ring Detector
- EIA RS-232C Line Receiver
- Low Input Current Line Receiver - Long Line or Party Line
- Microprocessor Bus Isolation
- Current Loop Receiver
- Polarity Sensing
- Level Shifting
- Line Voltage Status Indicator - Low input Power Dissipation
rent of only 0.5 mA making it ideal for use in low input current application such as MOS, CMOS and low power logic interfacing or RS232C data transmission systems. In addition, the high CTR and high output current capability make this device extremely useful in applications where a high fanout is required. Compatibility with high voltage CMOS logic systems is guaranteed by the $18 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}$ specifications and by testing output high leakage ( $\mathrm{IOH}_{\mathrm{OH}}$ ) at 18 V .
The HCPL-2730 is specified at an input current of 1.6 mA and has a $7 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}$ rating. The $300 \%$ minimum CTR allows TTL to TTL interfacing at this input current.
Important specifications such as CTR, leakage current and output saturation voltage are guaranteed over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range to allow trouble-free system operation. Selection for lower input current down to 250 $\mu \mathrm{A}$ is available upon request.


## Electrical Specifications

(Over recommended temperature $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise specified.) See note 12.

Parameter	Sym.	Device HCPL-	Min.	Typ.*	Max.	Units	Test Conditions		Fig.	Note
Current Transfer Ratio	CTR	2731	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1600 \end{aligned}$	$\begin{aligned} & 3500 \\ & 2600 \end{aligned}$	\%	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=1.6 \mathrm{~mA}, V_{O}=0.4 \mathrm{~V}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$		2, 3	6,7
		2730	300	1600	2600	\%	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			
Logic Low Output Voltage	VoL	2731		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, I_{O}=8 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=5 \mathrm{~mA}, I_{O}=15 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \\ & I_{F}=12 \mathrm{~mA}, I_{O}=24 \mathrm{~mA}, V_{C C}=4.5 \mathrm{~V} \end{aligned}$		1	6
		2730		0.1	0.4	V	$I_{F}=1.6 \mathrm{~mA}, I_{O}=4.8 \mathrm{~mA}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}$			
Logic High Output Current	IOH	2731		0.005	100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$			6
		2730		0.01	250	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{C C}=7 \mathrm{~V}$			
Logic Low Supply Current	ICCL	2731		1.2	3	mA	$\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	$\mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=1.6 \mathrm{~mA}$	5	
		2730		0.9			$\mathrm{V}_{\text {CC }}=7 \mathrm{~V}$	$\mathrm{V}_{01}=\mathrm{V}_{02}=$ Open		
Logic High	ICCH	2731		0.005	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	$\mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA}$	5	
Supply Current		2730		0.004			$\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$	$\mathrm{V}_{01}=\mathrm{V}_{02}=$ Open		
Input Forward Voltage	$V_{F}$			1.4	1.7	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	4	6
					1.75					
Input Reverse Breakdown Voltage	$B V_{R}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$			6
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I_{F}=1.6 \mathrm{~mA}$			6
Input Capacitance	$\mathrm{CIN}^{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$			6
Input-Output Insulation	VISO		2500			$V_{\text {RMS }}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} ., \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			8
Resistance (Input-Output)	$\mathrm{R}_{1-0}$			$10^{12}$		$\Omega$	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}$			8
Capacitance (Input-Output)	$\mathrm{C}_{1-\mathrm{O}}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$			8
Input-Input Insulation Leakage Current	$I_{1-1}$			0.005		$\mu \mathrm{A}$	45\% Relative Humidity, $\mathrm{t}=5 \mathrm{~s}$, $V_{1-1}=500 \mathrm{VDC}$			9
Resistance (Input-Input)	$\mathbf{R}_{1-1}$			$10^{11}$		$\Omega$	$V_{1-1}=500 \mathrm{VDC}$			9
Capacitance (Input-Input)	$\mathrm{C}_{1-1}$			0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$			9

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified.

Parameter	Sym.	Device HCPL-	Min.	Typ.*	Max.	Units	Test	onditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	2731		25	100	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, \\ & R_{L}=4.7 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 6,7, \\ & 8,9 \end{aligned}$	6
					120					
		2730/1		5	20		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, \\ & R_{L}=2.2 \mathrm{k} \Omega \end{aligned}$		
					25					
				0.5	2		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=12 \mathrm{~mA}, \\ & R_{L}=270 \Omega \end{aligned}$		
					3					
Propagation Delay Time to Logic High at Output	$t_{\text {PLH }}$	2731		10	60	$\mu \mathrm{S}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, \\ & R_{L}=4.7 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 7,8 \\ 9 \end{gathered}$	6
					90					
		2730/1		10	35		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, \\ & R_{L}=2.2 \mathrm{k} \Omega \end{aligned}$		
					50					
				1	10		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=12 \mathrm{~mA}, \\ & R_{L}=270 \Omega \end{aligned}$		
					15					
Common Mode Transient Immunity at Logic High Output	$\left\|C M_{H}\right\|$			500		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=0 \mathrm{~mA}, R_{L}=2.2 \mathrm{k} \Omega \\ & \left\|V_{C M}\right\|=10 \mathrm{~V}_{P-P} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		10	$\begin{gathered} 6,10 \\ 11 \end{gathered}$
Common Mode Transient Immunity at Logic Low Output	$\left\|C M_{L}\right\|$			500		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA} \\ & \left\|V_{C M}\right\|=10 \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega \\ & \mathrm{P}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	10	$\begin{gathered} 6,10 \\ 11 \end{gathered}$

*All typicals at $25^{\circ} \mathrm{C}$

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	$\mathrm{L}(\mathrm{IO} 1)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	$\mathrm{L}(\mathrm{IO} 2)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIla		Material Group DIN VDE 0109

## NOTES:

1. Derate linearly above 50 C free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above 50 C free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $35^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Piri 5 should be the most negative voltage at the detector side.
5. Derate linearly above $35^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Output power is collector output power plus supply power.
6. Each channel.
7. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I O , to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times $100 \%$.
8. Device considered a two-terminal device: Pins $1,2,3$, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
9. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
10. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{d} \mathrm{V}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse $V_{\mathrm{CM}}$, to assure that the output will remain in Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ).
11. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, $\mathrm{R}_{\mathrm{CC}}$, should be included to protect the detector IC from destructively high surge currents. The recommended value is $R_{C C}=110 \Omega$.
12. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.

## Absolute Maximum Ratings


Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$
(each channel)
5V

Input Power Dissipation
(each channel) . . . . . . . . . . . . . . . . . . . . $35 \mathrm{~mW}{ }^{[2]}$
Output Current - $I_{0}$
(each channel) ......................... $60 \mathrm{~mA}^{[3]}$
Supply and Output Voltage - $\mathrm{V}_{\mathrm{CC}}(\operatorname{Pin} 8-5), \mathrm{V}_{\mathrm{O}}(\mathrm{Pin}$ $7,6-5)^{[4]}$
HCPL-2730
-0.5 to 7 V
HCPL-2731 . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 18V
Output Power Dissipation
(each channel)
$100 \mathrm{~mW}^{[5]}$


Vo - OUTPUT VOLTAGE - V

Figure 1. DC Transfer Characteristics (HCPL-2730/HCPL-2731)


Figure 4. Input Diode Forward Current vs. Forward Voltage.


Figure 2. Current Transfer Ratio vs. Forward Current


Figure 5. Supply Current Per Channel vs. Input Diode Forward Current.


Figure 3. Output Current vs. Input Diode Forward Current


Figure 6. Propagation Delay To Logic Low vs. Pulse Period.


Figure 7. Propagation Delay vs. Temperature.


Figure 8. Propagation Delay vs. Input Diode Forward Current.


Figure 9. Switching Test Circuit.


Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

# LOW INPUT CURRENT, HIGH GAIN OPTOCOUPLER 



Schematic

## Features

- HIGH CURRENT TRANSFER RATIO - 1500\% TYPICAL
- LOW INPUT CURRENT REQUIREMENT - 0.5 mA
- PERFORMANCE GUARANTEED OVER $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range
- INTERNAL BASE-EMITTER RESISTOR MINIMIZES OUTPUT LEAKAGE
- GAIN-BANDWIDTH ADJUSTMENT PIN
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL AVAILABLE


## Description

The 4N45/46 optocouplers contain a GaAsP light emitting diode optically coupled to a high gain photodetector IC.
The excellent performance over temperature results from the inclusion of an integrated emitter-base bypass resistor which shunts photodiode and first stage leakage currents to ground. External access to the second stage base provides better noise rejection than a conventional photodarlington detector. An external resistor or capacitor at the base can be added to make a gain-bandwidth or input current threshold adjustment. The base lead can also be used for feedback.
The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of CTR degradation over time.
The 4 N 46 has a $350 \%$ minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing. Compatibility with high voltage CMOS logic systems is assured by the 20 V minimum breakdown voltage of the output transistor and by the guaranteed maximum output leakage $\left(\mathrm{I}_{\mathrm{OH}}\right)$ at 18 V .
The 4 N 45 has a $250 \%$ minimum CTR at 1.0 mA input current and a 7 V minimum breakdown voltage rating.
Selection for lower input current down to $250 \mu \mathrm{~A}$ is available upon request.
*JEDEC Registered Data.
**JEDEC Registered up to $70^{\circ} \mathrm{C}$


## Applications

## - Telephone Ring Detector

- Digital Logic Ground Isolation
- Low Input Current Line Receiver
- Line Voltage Status Indicator - Low Input Power Dissipation
- Logic to Reed Relay Interface
- Level Shifting
- Interface Between Logic Families


## Absolute Maximum Ratings*

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature** ................. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Lead Solder Temperature ............... $260^{\circ} \mathrm{C}$ for 10 s . ( 1.6 mm below seating plane)
Average Input Current $-I_{F}$ ..... 20 mA [1]
Peak Input Current - $I_{F}$ ..... 40 mA
( $50 \%$ duty cycle, 1 ms pulse width)Peak Transient Input Current - $I_{F}$1.0A
( $\leqslant 1 \mu$ s pulse width, 300 pps )
Reverse Input Voltage $-\mathrm{V}_{\mathrm{R}}$ ..... 5V
Input Power Dissipation ..... $35 \mathrm{~mW}^{[2]}$
Output Current - $\mathrm{I}_{\mathrm{O}}$ (Pin 5) ..... $60 \mathrm{~mA}^{\text {[3] }}$
Emitter-Base Reverse Voltage (Pins 4-6) ..... 0.5 V
Output Voltage - $\mathrm{V}_{\mathrm{O}}($ Pin 5-4)
4N45 ..... -0.5 to 7 V
4N46 ..... -0.5 to 20 V
Output Power Dissipation ..... $100 \mathrm{~mW}{ }^{[4]}$
See notes, following page

[^47]
## Electrical Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	4N46	$\begin{aligned} & 350^{*} \\ & 500^{*} \\ & 200^{*} \\ & \hline \end{aligned}$	$\begin{gathered} 1500 \\ 1500 \\ 600 \\ \hline \end{gathered}$	$\begin{aligned} & 3200 \\ & 2000 \\ & 1000 \\ & \hline \end{aligned}$	\%	$\begin{aligned} & I_{F}=0.5 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=1.0 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=10 \mathrm{~mA}, V_{O}=1.2 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 3,4 \\ 10,11 \end{gathered}$	5,6
		4N45	$\begin{aligned} & 250^{*} \\ & 200^{*} \end{aligned}$	$\begin{gathered} 1200 \\ 500 \end{gathered}$	$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	\%	$\begin{aligned} & I_{F}=1.0 \mathrm{~mA}, V_{O}=1.0 \mathrm{~V} \\ & I_{F}=10 \mathrm{~mA}, V_{O}=1.2 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	VOL	4N46		$\begin{aligned} & 0.90 \\ & 0.92 \\ & 0.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.2 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=1.75 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=5.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$	2	6
		4N45		$\begin{aligned} & 0.90 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=2.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$		
Logic High Output Current	$\mathrm{IOH}^{*}$	4N46		0.001	100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=18 \mathrm{~V}$		6
		4N45		0.001	250	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$		
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}$			1.4	1.7*	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	
					1.75		$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$		
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}{ }^{*}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Capacitance	$\mathrm{C}_{\mathrm{IN}}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		
Input-Output Insulation	VISO		2500			VRMS	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} ., \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		7
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$			$10^{12}$		$\Omega$	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}$		7
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		7

## Switching Specifications

(Over recommended temperature $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

*JEDEC Registered Data.
**All typicals at $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

# Insulation Related Specifications 

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	$\mathrm{L}(\mathrm{IO} 1)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	$\mathrm{L}(\mathrm{IO} 2)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		Illa		Material Group DIN VDE 0109

## NOTES:

1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.4 \mathrm{~mA} / /^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, $I_{O}$, to the forward LED input current, If, times 100\%.
6. Pin 6 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3 shorted together and Pins 4,5, and 6 shorted together.
8. Use of a resistor between pin 4 and 6 will decrease gain and delay time. (See Figures 10 and 12).
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV} \mathrm{cm} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.5 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<2.5 \mathrm{~V}$ ).

$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 1. Input Diode Forward Current vs. Forward Voltage.


Figure 4. Current Transfer Ratio vs. Input Current.


Figure 2. Typical DC Transfer Characteristics.


Figure 5. Propagation Delay vs. Forward Current.


Figure 3. Output Current vs. Input Current.


Figure 6. Propagation Delay vs. Temperature.


Figure 7. Propagation Delay vs Load Resistor.


Figure 8. Switching Test Circuit


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.


Figure 10. External Base
Resistor, $\mathbf{R}_{\mathbf{X}}$


Figure 11. Effect of $\mathrm{R}_{\mathrm{X}}$ On
Current Transfer Ratio


Figure 12. Effect of $R_{X} O n$ Propagation Delay

## Applications



TTL Interface


Line Voltage Monitor


Analog Signal Isolation


NOTE: AN INTEGRATOR MAY BE REQUIRED AT THE OUTPUT TO ELIMINATE DIALING PULSES AND LINE TRANSIENTS.

Telephone Ring Detector


CMOS Interface

## CHARACTERISTICS

$R_{\text {IN }} \approx 30 \mathrm{MS} 2, R_{\text {OUT }} \approx 50 \Omega 2$
$\mathrm{V}_{\text {IN (MAX.) }}=\mathrm{V}_{\mathrm{CC}_{1}}-1 \mathrm{~V}$, LINEARITY BETTER THAN 5\%
DESIGN COMMENTS
R $_{1}$ - NOT CRITICAL $\left(\ll \frac{V_{I N}(\text { MAX. })-\left(-V_{C C_{1}}\right)-V_{B E}}{I_{F} \text { (MAX.) }}\right) h_{F E} \mathbf{o}_{3}$
$R_{2}$ - NOT CRITICAL (OMIT IF 0.2 TO 0.3V OFFSET IS TOLERABLE)
$R_{4}>\frac{V_{\text {IN (MAX.) }}+V_{\text {BE }}}{1 \mathrm{~mA}}$
$R_{5}>\frac{V_{\text {IN (MAX.) }}}{2.5 \mathrm{~mA}}$

NOTE: ADJUST $R_{3}$ SO $V_{O U T}=V_{I N} A T V_{I N}=\frac{V_{I N}(M A X .)}{2}$

# Small Outline Low Input Current, High Gain Optocouplers Technical Data 

## Features

- Surface Mountable
- Industry Standard SOIC-8 Footprint
- Compatible With Infrared Vapor Phase Reflow and
Wave Soldering Processes
- High Current Transfer

Ratio - 2000\% Typical

- Low Input Current

Requirement - 0.5 mA

- TTL Compatible Output $0.1 \mathrm{~V} \mathrm{~V}_{\text {oL }}$ Typical
- Guaranteed ac and dc Performance Over Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Base Access Allows Gain Bandwidth Adjustment
- High Output Current - 60 mA
- Recognized Under The Component Program Of U.L. (File No. E55361) For Dielectric Withstand Proof Test Voltage Of $\mathbf{2 5 0 0}$ VAC, 1 Minute


## Description

These small outline, low input
current, high gain optocouplers are single channel devices in an industry standard SOIC-8 footprint. They are electrically equivalent to the following HP optocouplers:

Small Outline	Standard DIP
HCPL-0700	6N138
HCPL-0701	6N139

The SOIC-8 package does not require "through holes" in a

HCPL-0700
HCPL-0701

## Outline Drawing*



[^48]ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltages and high speed operation. Where desired the $\mathrm{V}_{\mathrm{cc}}$ and $\mathrm{V}_{\mathrm{o}}$ terminals may be tied together to achieve conventional photodarlington operation. A base access terminal allows a gain bandwidth adjustment to be made.

The HCPL-0701 is for use in CMOS, LSTTL or other low power applications. A 400\% minimum current transfer ratio is guaranteed over a $0-70^{\circ} \mathrm{C}$ operating range for only 0.5 mA of LED current.

The HCPL-0700 is designed for use mainly in TTL applications. Current Transfer Ratio is $300 \%$ minimum over $0-70^{\circ} \mathrm{C}$ for an LED current of 1.6 mA [1 TTL Unit Load (U.L.)]. A 300\% minimum CTR enables operation with 1 U.L. out with a $2.2 \mathrm{k} \Omega$ pull-up resistor.

## Schematic

## Applications

- Ground Isolate Most Logic Families - TTL/TTLL, CMOS/TTL, CMOS/CMOS, LSTTL/TTL, CMOS/LSTTL
- Low Input Current Line Receiver - Long Line or Party Line
- EIA RS-232C Line Receiver
- Telephone Ring Detector
- 117 V ac Line Voltage Status Indicator - Low Input Power Dissipation
- Low Power Systems Low Power System
Ground Isolation

Absolute Maximum Ratings(No Derating Required Up To $85^{\circ} \mathrm{C}$ )Storage Temperature$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ..... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Infrared and Vapor Phase Reflow Temperature ..... $215^{\circ} \mathrm{C}$ for 90 s
Average Input Current - $I_{F}$ ..... 20 mA
Peak Input Current - $\mathrm{I}_{\mathrm{F}}$ ..... 40 mA
(50\% duty cycle, 1 ms pulse width)
Peak Transient Input Current - $\mathrm{I}_{\mathrm{F}}$ ..... 1.0 A
( $\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps )
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ ..... 5 V
Input Power Dissipation ..... 35 mW
Output Current - $\mathrm{I}_{0}$ (Pin 6) ..... 60 mA
Emitter-Base Reverse Voltage (Pin 5-7) ..... 0.5 V
Supply and Output Voltage - $\mathrm{V}_{\mathrm{cc}}$ (Pin 8-5), $\mathrm{V}_{\mathrm{o}}$ (Pin 6-5) HCPL-0700 ..... -0.5 V to 7 V
HCPL-0701 ..... -0.5 V to 18 V
Output Power Dissipation ..... 100 mW


## Electrical Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), unless otherwise specified. (See note 7.)

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current   Transfer Ratio	CTR	HCPL-0701	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 2000 \\ & 1600 \end{aligned}$	$\begin{aligned} & 3500 \\ & 2600 \end{aligned}$	\%	$\begin{aligned} & \mathrm{I}_{\mathrm{p}}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	2, 3	1, 2,
		HCPL-0700	300	1600	2600	\%	$\mathrm{I}_{\mathrm{p}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}$		
Logic Low   Output   Voltage	$\mathrm{V}_{\text {OL }}$	HCPL-0701		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{r}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{o}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{p}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{o}}=15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \mathrm{I}_{\mathrm{o}}=24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1	2
		HCPL-0700		0.1	0.4	V	$\mathrm{I}_{\mathrm{p}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{o}}=4.8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}$		
Logic High Output Current	$\mathrm{I}_{\mathrm{OH}}$	HCPL-0701		0.05	100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V}$		2
		HCPL-0700		0.1	250	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{p}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=7 \mathrm{~V}$		
Logic Low   Supply Current	$\mathrm{I}_{\mathrm{ccL}}$			0.4	1.5	mA	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=$ Open, $\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V}$		2
Logic High Supply Current	$\mathrm{I}_{\mathrm{cch}}$			0.01	10	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0$ pen, $\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V}$		2
Input   Forward   Voltage	$\mathrm{V}_{\mathrm{F}}$			1.4	$\frac{1.7}{1.75}$	V	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	4	
Input Reverse Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$			-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		
Input-Output Insulation	$\mathrm{V}_{180}$	2500				$\mathrm{V}_{\text {RMB }}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$.		3
Resistance (Input-Output)	$\mathrm{R}_{1.0}$			$10^{12}$		$\Omega$	$\mathrm{V}_{\mathrm{t} .0}=500 \mathrm{~V} \mathrm{dc}$		3
Capacitance   (Input-Output)	$\mathrm{C}_{\text {I. }}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		3

*All typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, unless otherwise noted.

## Switching Specifications

Over recommended temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$, unless otherwise specified.

*All typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Notes:

1. DC CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, $\mathrm{I}_{\mathrm{o}}$, to the forward LED input current, $I_{\text {F }}$, times 100.
2. Pin 7 open.
3. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together and pins $5,6,7$, and 8 shorted together.
4. Use of a resistor between pin 5 and 7 will decrease gain and delay time. See Application Note 951-1 for more details.
5. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{cu}}$, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{0}>2.0 \mathrm{~V}$ ). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cs}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ).
6. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge) a series resistor, $\mathrm{R}_{\mathrm{cc}}$, should be included to protect the detector IC from destructively high surge currents. The recommended value is $\mathrm{R}_{\mathrm{cc}}=220 \Omega$.
7. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.

$V_{O}$ - OUTPUT VOLTAGE - $V$

Figure 1. HCPL-0700/0701 DC Transfer Characteristics.


Figure 3. HCPL-0700/0701 Output Current vs. Input Diode Forward Current.


Figure 5. Propagation Delay vs. Temperature.


Figure 2. Current Transfer Ratio vs. Forward Current HCPL-0700/0701.


Figure 4. Input Diode Forward Current vs. Forward Voltage.


Figure 6. Non-Saturated Rise and Fall Times vs. Load Resistance.


Figure 7. Switching Test Circuit.


Figure 8. Test Circuit for Transient Immunity and Typical Waveforms.

# Low Input Current, High Gain Optocouplers Technical Data 

## Features

- 5000 Vrms/ 1 Minute Insulation Withstand Capability
- Worldwide Safety

Approval
UL1577 (File No. E55361)
VDE 883/884/804/805/806/ 860/750
IEC 65/380/950/335/435/601
BS 415/7002/6301

- High Current Transfer Ratio - 3000\% Typical
- Low Input Current Requirement - 0.5 mA
- TTL Compatible Output $0.1 \mathrm{~V} \mathrm{~V}_{\mathrm{oL}}$ Typical
- Performance Guaranteed Over Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Base Access Allows Gain Bandwidth Adjustment
- High Output Current 60 mA
- Pin Compatible with 6N138/9

Applications

- High Voltage Insulation
- Low Input Current Line Receiver
- Ground Isolation - TTL/ TTL, CMOS/TTL, CMOS/ CMOS, LSTTL/TTL, CMOS/ LSTTL
- EIA RS-232C Line Receiver
- Telephone Ring Detector
- AC Line Voltage Sensing
- Low Power Systems

CNW138
CNW139

## Package Outline



A widebody encapsulation is used to provide creepage and clearance dimensions suitable for safety approval by regulatory agencies worldwide.

The CNW139 is for use in CMOS, LSTTL or other low power applications. A 400\% minimum current transfer ratio is guaranteed over a $0-70^{\circ} \mathrm{C}$ operating range for only 0.5 mA of LED current.

The CNW138 is designed for use mainly in TTL applications. Current Transfer Ratio is 300\% minimum over $0-70^{\circ} \mathrm{C}$ for an LED current of 1.6 mA ( 1 TTL load). A $300 \%$ minimum CTR enables operation with a fanout of 1 TTL Load using a $2.2 \mathrm{k} \Omega$ pull-up resistor.

## Regulatory Information

The CNW138/9 features a wide body DIL 8 encapsulation. This package was specifically designed to meet regulatory insulation requirements worldwide. The CNW138/9 has been approved by the following organizations:
UL - Covered under UL component recognition FILE E55361
VDE - Approved according to VDE 0883/6.80
VDE 0884/08.87 certification pending
Reference voltage (VDE 0110b Tab. 4): 500 V AC/ 600 V DC
Complied for reinforced insulation at 250 V AC with:
DIN IEC 380/VDE 0806/8.81
DIN IEC 435/VDE 0805 "ENTWURF" Nov 84
DIN 57804/VDE 0804/1.83 (insulation group C)
DIN VDE 0860/8.86/HD 195 S4
DIN IEC 601 Teil 1/VDE 0750 Teil 1/5.82
NORDIC - Tested for applications (reinforced insulation) - Class II applications for plugable apparatus in normal tight execution.
-SETI-SEMKO-NEMKO-DEMKO-According to IEC 65-IEC380-IEC950-IEC335
BSI - Certification according to BS415:1979, BS7002:1989 and BS6301:1987 pending
BABT - Certification pending
Absolute Maximum Ratings
Storage Temperature ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ..... $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
(up to seating plane)
Average Input Current - $\mathrm{I}_{\mathrm{F}}$ ..... 100 mA
Peak Transient Input Current - $I_{F}$ ..... 1.0 A
( $\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps )
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ ..... 5 V
Input Power Dissipation (up to $70^{\circ} \mathrm{C}$ ) ..... 250 mW *
Output Current - $\mathrm{I}_{\mathrm{o}}$ (Pin 6) ..... 60 mA
Emitter-Base Reverse Voltage (Pin 5-7) ..... 0.5 V
Supply and Output Voltage - $\mathrm{V}_{\mathrm{cc}}$ (Pin 8-5), $\mathrm{V}_{\mathrm{o}}$ (Pin 6-5)
CNW138 ..... -0.5 to 7 V
CNW139 ..... -0.5 to 18 V
Output Power Dissipation ..... 100 mW
${ }^{*}$ Derate at $5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operating temperatures above $70^{\circ} \mathrm{C}$.

[^49]

## VDE 0884 Insulation Characteristics - Pending Approval

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0109/12.83, Table 1 for rated mains voltage $\leq 600 \mathrm{~V}_{\mathrm{RMS}}$ for rated mains voltage $\leq 1000 \mathrm{~V}_{\text {RMS }}$		$\begin{aligned} & \text { I-IV } \\ & \text { I-III } \end{aligned}$	
Climatic Classification		55/150/21	
Pollution Degree (DIN VDE 0109/12.83)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	1000	$\mathrm{V}_{\mathrm{RMS}}$
$\begin{aligned} & \text { Input to Output Test Voltage, Method b* } \\ & \mathrm{V}_{\mathrm{PR}}=1.6 \times \mathrm{V}_{\mathrm{IorM}}, 100 \% \text { Production Test with } \mathrm{tp}=1 \mathrm{sec} \text {, } \\ & \text { Partial Discharge }<5 \mathrm{pC} \end{aligned}$	$\mathrm{V}_{\mathrm{PR}}$	1600	$\mathrm{V}_{\mathrm{RMS}}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\mathrm{PR}}=1.2 \times \mathrm{V}_{\text {IORM }}$, Type and sample test, $\mathrm{tp}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{PR}}$	1200	$\mathrm{V}_{\mathrm{RMS}}$
Highest Allowable Overvoltage* (Transient Overvoltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$ )	$\mathrm{V}_{\text {TR }}$	8000	$\mathrm{V}_{\mathrm{PK}}$
Safety-Limiting Values   (Maximum values allowed in the event of a failure, also see   Figure 10)   Case Temperature   Current (Input Current $\mathrm{I}_{\mathrm{F}}, \mathrm{P}_{\mathrm{SI}}=0$ )   Output Power (obtained by setting pin $8=5.5 \mathrm{~V}$, pins 7, 6, 5 = ground)	$\begin{gathered} \mathrm{T}_{\mathrm{SI}} \\ \mathrm{I}_{\mathrm{SI}} \\ \mathrm{P}_{\mathrm{SI}, \text { output }} \end{gathered}$	$\begin{aligned} & 175 \\ & 400 \\ & 700 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$
Insulation Resistance at $\mathrm{T}_{\mathrm{sp}}, \mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$	$\mathrm{R}_{\text {IS }}$	$\geq 10^{9}$	ohm

*Refer to the front of the optocoupler section of the 1991 Designer's Catalog, under regulatory information, (VDE 0884) for a detailed description.

Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap   (clearance)	L(IO1)	9.6	mm	Measured from input terminals to   output terminals
Min. External Tracking Path	L(IO2)	10.0	mm	Measured from input terminals to   output terminals
Min. Internal Plastic Gap   (clearance)		1.0	mm	Through insulation distance   conductor to conductor
Tracking Resistance	CTI	175	volts	DIN IEC 112/VDE 0303 PART 1
Isolation Group   (per DIN VDE 0109)		IIIa		Material Group (DIN VDE 0109)

## Electrical Specifications

Over Recommended Temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ) unless otherwise specified. (See note 7.)

*All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Switching Specifications

Over Recommended Temperature ( $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified.

Parameter	Symbol	Device	Min.	Typ.**	Max.	Units	Test Conditions		Fig.	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	CNW139		7	2530	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega \end{aligned}$	5,11	2, 4
			0.3		1		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{g}}=12 \mathrm{~mA} \\ & \mathrm{R},=270 \Omega \end{aligned}$	7, 11	
					1.1					
					10		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		
		CNW 138		2	11				6, 11	
					60		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$,		
		CNW139			115				5, 11	
Time to Logic High	$\mathrm{t}_{\mathrm{PLH}}$			35	7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$=12 \mathrm{~mA}$		2, 4
				3.5	11				7,11	
					35		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$=1.6 \mathrm{~mA}$		
		CNW138		20	70			$\Omega$	6, 11	
Common Mode Transient Immunity at Logic High Output	$1 \mathrm{CM}_{\mathrm{H}} \mathrm{I}$		500			$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{g}}=0 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{cc}}=0 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & =2.2 \mathrm{k} \Omega, \\ & =10 \mathrm{~V}, \end{aligned}$	12	5,6
Common Mode Transient Immunity at Logic Low Output	$\mathrm{ICM}_{\mathrm{L}} \mathrm{I}$		500			$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{cc}}=0 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L}=2.2 \mathrm{k} \Omega, \\ & =10 \mathrm{~V}, \end{aligned}$	12	5,6

*All typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Notes:

1. DC CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, $\mathrm{I}_{0}$, to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times 100 .
2. Pin 7 Open.
3. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
4. Use of a resistor between pin 5 and 7 will decrease gain and delay time. See Application Note 951-1 for more details.
5. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic High state (i.e. $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ) Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{c m} d t$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cm}}$, to assure that the output will remain in a Logic Low state (i.e. $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ).
6. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, $\mathrm{R}_{\mathrm{cc}}$, should be included to protect the detector IC from destructively high surge currents. The recommended value is

$$
R_{\mathrm{cc}} \approx \frac{1 \mathrm{~V}}{0.15 \mathrm{I}_{\mathrm{F}}(\mathrm{~mA})} \mathrm{k} \Omega
$$

7. Use of a 0.1 mf bypass capacitor connected betweens pin 5 and 8 is recommended for operation.
8. Each product is tested by applying an isolation test voltage of 6000 Vrms for 2 seconds. This test is in accordance with UL1577 and is performed in addition to the tests shown in the VDE 0884 INSULATION CHARACTERISTICS TABLE.


Figure 1. CNW138/9 DC Transfer Characteristics.


Figure 4. Input Diode Forward Current vs. Forward Voltage.


Figure 7. Propagation Delay vs. Temperature.


Figure 2. Current Transfer Ratio vs. Forward Current CNW138/9.


Figure 5. Propagation Delay vs. Temperature.


Figure 8. Forward Voltage vs. Temperature.


Figure 3. CNW 138/9 Output vs. Input Diode Forward Current.


Figure 6. Propagation Delay vs. Temperature.


Figure 9. Logic Low Supply Current vs. Forward Current, CNW139.


Figure 10. Dependence of Safety Maximum Ratings with Ambient Temperature.


Figure 11. Switching Test Circuit.


Figure 12. Test Circuit for Transient Immunity and Typical Waveforms.

## High Speed CMOS Optocoupler

## Technical Data

## Features

- CMOS IC Technology
- Compatibility with All +5 V

CMOS and TTL Logic
Families

- No External Components

Required for Logic
Interface

- High Speed: 15 MBd Guaranteed
- Low Power Consumption
- World Wide Safety

Approval
UL 1577
VDE 0884/0700/0804/ 0860/0160
EN 60950

- 3-State Output
- 3750 Vac/1 Minute Dielectric Withstand


## Applications

- Multiplexed Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Instrument Input/Output Isolation
- Motor Control
- Power Inverter


## Description

The HCPL-7100 optocoupler combines the latest CMOS IC technology, a new high-speed high-efficiency AlGaAs LED, and an optimized light coupling system to achieve outstanding performance with very low power consumption. It requires only two bypass capacitors for complete CMOS/TTL compatibility.

Basic building blocks of the HCPL-7100 are a CMOS LED driver IC, an AlGaAs LED, and and a CMOS detector IC. A CMOS or TTL logic input signal controls the LED driver IC which supplies current to the LED. The detector IC incorporates an integrated photodiode, a high-speed transimpedance amplifier and a voltage comparator with hysteresis. The 3 -state

HCPL-7100
output is CMOS and TTL compatible and is controlled by the output enable pin, $\mathrm{V}_{\mathrm{OE}}$.

The HCPL-7100 consumes very little power, due to the CMOS IC technology and the light coupling system. The entire optocoupler typically uses only 10 mA of supply current, including the LED current.

World wide safety approval and $3750 \mathrm{Vac} / 1$ minute dielectric withstand is achieved with a new packaging process.

The HCPL-7100 provides the user with an easy-to-use CMOS or TTL compatible optocoupler ideally suited for a variety of applications where high speed and low power consumption are desired.

## Schematic



CAUTION: The small device geometries inherent to the design of this CMOS component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

## Regulatory Information

The HCPL-7100 has been approved by the following organizations:
UL
Covered under UL component recognition FILE E55361
VDE
Approved according to VDE 0884/08.87
Can be used for safe electrical separation between AC mains
and SELV (safety extra-low voltage) in equipment according to the following specifications:

DIN VDE 0700 part 1/09.86
DIN VDE 0804/05.89
DIN VDE 0860/05.89/HD 195 S4
DIN VDE 0160/05.88
EN 60 950/09.87 (CENELEC)
Reference voltage (VDE 0110b
Tab 4): 650 Vac

## VDE 0884 Insulation Characteristics

Description	Symbol	Characteristic	Unit
$\begin{array}{l}\text { Installation classification per DIN VDE 0109/12.83, } \\ \text { Table } 1 \\ \text { for rated mains voltage } \leq 300 \mathrm{~V}_{\mathrm{RMS}} \\ \text { for rated mains voltage } \leq 600 \mathrm{~V}_{\mathrm{RMS}}\end{array}$			
Climatic Classification	I-IV		
I-III			

[^50]
## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External air gap   (clearance)	L(IO1)	$>7$	mm	Measured from input terminals to   output terminals
Min. External tracking path   (creepage)	L(IO2)	8.0	mm	Measured from input terminals to   output terminals
Min. Internal plastic gap   (clearance)		0.5	mm	Through insulation distance   conductor to conductor
Tracking resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group   (per DIN VDE 0109)		III a		Material Group DIN VDE 0109

## Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	$\mathrm{T}_{\mathrm{S}}$	-55	125	${ }^{\circ} \mathrm{C}$
Supply Voltages	$\mathrm{V}_{\mathrm{DD} 1,2}$	0.0	5.5	V
Input Voltage	$\mathrm{V}_{\mathrm{I}}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 1}+0.5$	V
Output Voltage	$\mathrm{V}_{\mathrm{O}}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 2}+0.5$	V
Output Enable Voltage	$\mathrm{V}_{\mathrm{OE}}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 2}+0.5$	V
Average Output Current	$\mathrm{I}_{\mathrm{O}}$		25	mA
Package Power Dissipation	$\mathrm{P}_{\mathrm{PD}}$		125	mW
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 1.6 \mathrm{~mm}$ below seating plane			

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$	Ambient Temperature
Supply Voltages	$\mathrm{V}_{\mathrm{DD} 1,2}$	4.5	5.5	V	
Logic High Input Voltage	$\mathrm{V}_{\mathrm{H}}$	2.0	$\mathrm{~V}_{\mathrm{DD} 1}$	V	
Logic Low Input Voltage	$\mathrm{V}_{\mathrm{I}}$	0.0	0.8	V	
Logic High Output   Enable Voltage	$\mathrm{V}_{\mathrm{OEH}}$	2.0	$\mathrm{~V}_{\mathrm{DD} 2}$	V	Output in high impedance   state
Logic Low Output   Enable Voltage	$\mathrm{V}_{\mathrm{OEL}}$	0.0	0.8	V	Output enabled
Input Signal Rise and   Fall Times	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		1	ms	
TTL Fanout	N		6		Standard Loads

## Outline Drawing



DIMENSIONS IN MILLIMETERS AND (INCHES)
*Pin 3 is the anode of the internal LED and must be left unconnected for guaranteed data sheet performance.

## Electrical Specifications

Guaranteed across recommended operating conditions. Test conditions represent worst case values for the parameter under test. Test conditions that are not specified can be anywhere within their operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V supplies unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions		Fig.	Note
Logic Low Input Supply Current	$\mathrm{I}_{\mathrm{DD1L}}$		5.2	10.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$			1
Logic High Input Supply Current	$\mathrm{I}_{\mathrm{DD1} 1 \mathrm{H}}$		0.3	0.6	mA	$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$		1
			0.9	1.6		$\mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$			
Logic Low   Output   Supply Current	$\mathrm{I}_{\mathrm{DD2L}}$		5.0	9.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OBL}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$			
Logic High Output Supply Current	$\mathrm{I}_{\mathrm{DD2H}}$		5.2	9.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \\ & \hline \end{aligned}$			
Tri-State	$\mathrm{I}_{\mathrm{DD} 22}$		5.1	9.0	mA	$\mathrm{V}_{\text {OE }}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V}$		
Supply Current			5.6	10.0		$\mathrm{V}_{\text {OE }}=2.0 \mathrm{~V}$			
Input Current	$\mathrm{I}_{1}$	-1		1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{DD} 1}=5.5 \mathrm{~V} \end{aligned}$			
Output Enable Current	$\mathrm{I}_{\text {OE }}$	-1		1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{DD} 2} \text { or GND } \\ & \mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V} \end{aligned}$			
Logic High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	4.4	5.0		V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$		6	
Logic High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	4.0	4.8		v	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$		6	

## Electrical Specifications (cont.)

Guaranteed across recommended operating conditions. Test conditions represent worst case values for the parameter under test. Test conditions that are not specified can be anywhere within their operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V supplies unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Logic High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	3.7	4.7		V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=-6.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \hline \end{aligned}$	6	
Logic High Output Current	$\mathrm{I}_{\mathrm{OH}}$	-7.5	-25		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$	6	
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$		0.0	0.1	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DDD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \hline \end{aligned}$	5	
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$		0.1	0.3	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{o}}=4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{B}}, \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$	5	
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$		0.15	0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=6.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{U}}, \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \hline \end{aligned}$	5	
Logic Low Output Current	$\mathrm{I}_{\text {LL }}$	10.5	23		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=0.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$	5	
High Impedance State Output Current	$\mathrm{I}_{\mathrm{oz}}$	-5		5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEH}}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD} 2} \text { or GND } \end{aligned}$		
Insulation Voltage	$\mathrm{V}_{\text {ISo }}$	3750			$\mathrm{V}_{\text {RMS }}$	$\begin{aligned} & \mathrm{t}=1 \text { minute } \\ & \mathrm{RH} \leq 50 \% \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		2,3
Input Capacitance	$\mathrm{C}_{\text {I }}$		4.3		pF	$\mathrm{f}=1 \mathrm{MHz}$		4
Input-Output Resistance	$\mathrm{R}_{\text {I- }}$		$10^{13}$		Ohms	$\mathrm{V}_{\mathrm{L} \mathrm{O}}=500 \mathrm{~V}_{\mathrm{DC}}$		2
Input-Output Capacitance	$\mathrm{C}_{\text {Io }}$		0.7		pF	$\mathrm{f}=1 \mathrm{MHz}$		2

## Switching Specifications

Guaranteed across recommended operating conditions. Test conditions represent worst case values for the parameter under test. Test conditions that are not specified can be anywhere within their operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V supplies unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Propagation Delay   Time to Logic   Low Output	$\mathrm{t}_{\text {PILI }}$			70	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	7	5,6
				70	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { TTL Signal Levels } \end{aligned}$		
Propagation Delay Time to Logic High Output	$\mathrm{t}_{\text {PLH }}$			70	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { CMOS Signal Levels } \end{aligned}$	7	5, 6
				70	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { TTL Signal Levels } \end{aligned}$		
Pulse Width Distortion $\left\|t_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right\|$	PWD			20	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { CMOS Signal Levels } \end{aligned}$	7	6,7
				20	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		
Data Rate		15			MBd	\% PWD < 30\%		8
Output Rise Time (10-90\%)	$\mathrm{t}_{\text {R }}$		12		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { CMOS Signal Levels } \end{aligned}$	7	
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{F}}$		8		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { CMOS Signal Levels } \end{aligned}$	7	
Propagation Delay Time From Output Enabled to Logic High Output	$\mathrm{t}_{\text {PZH }}$		13		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { CMOS Signal Levels } \end{aligned}$	8	6
			12		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		
Propagation Delay Time From Output Enabled to Logic Low Output	$\mathrm{t}_{\text {PLL }}$		11		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	8	6
			10		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		
Propagation Delay Time From Logic High to Output Disabled	$\mathrm{t}_{\text {PII }}$		12		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	8	6
			12		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		

## Switching Specifications (cont.)

Guaranteed across recommended operating conditions. Test conditions represent worst case values for the parameter under test. Test conditions that are not specified can be anywhere within their operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V supplies unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Propagation Delay   Time From Logic Low   to Output Disabled	$\mathrm{t}_{\mathrm{PLZ}}$		9		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	8	6

## Notes:

1. The LED is OFF when the $V_{1}$ is high and ON when $V_{I}$ is low.
2. Device considered a two terminal device; pins 1-4 shorted together and pins 5-8 shorted together.
3. This is a proof test.
4. $C_{I}$ is the capacitance measured at pin $2\left(V_{1}\right)$.
5. $t_{\text {pHL }}$ propagation delay is measured from the $50 \%$ level on the falling edge of the $V_{1}$ signal to the logic switching level of the $\mathrm{V}_{\mathrm{o}}$ signal. $\mathrm{t}_{\mathrm{PLH}}$ propagation delay is measured from the $50 \%$ level on the rising edge of the $\mathrm{V}_{\mathrm{I}}$ signal to the logic switching level of the $V_{o}$ signal.
6. The logic switching levels are 1.5 V for TTL signals $(0-3 \mathrm{~V})$ and 2.5 V for CMOS signals ( $0-5 \mathrm{~V}$ ).
7. PWD is defined as $I t_{P H L}-t_{P L H} I$. \%PWD (percent pulse width distortion) is equal to PWD in ns divided by symbol duration (bit length) in ns.
8. Minimum data rate is calculated as follows: $\% \mathrm{PWD} / \mathrm{PWD}$ where $\% \mathrm{PWD}$ is typically chosen by the design engineer ( $30 \%$ is common).
9. $\mathrm{CM}_{\mathrm{H}}$ is the maximum common mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{o}}>3.2 \mathrm{~V}$. $\mathrm{CM}_{\mathrm{L}}$ is the maximum common mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common mode voltage slew rates apply to both rising and falling common mode voltage edges.
10. Unloaded dynamic power dissipation is calculated as follows: $C_{P D} \bullet V_{D D}{ }^{2} \bullet f+I_{D D} \bullet V_{D D}$ where $f$ is switching frequency in MHz .

## HCPL-7100 Application Information

The HCPL-7100 is extremely easy to use. Because the optocoupler uses high-speed CMOS IC technology, the inputs and output are fully compatible with all +5 V TTL and CMOS logic.

TTL or CMOS logic can be connected directly to the inputs and output; no external interface circuitry is required.

As shown in Figure 1, the only external components required for proper operation are two ceramic bypass capacitors.

Capacitor values should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. For each capacitor, the total lead length between both ends of the capacitor and the power-supply pins should not exceed 20 mm . Figure 2 illustrates the recommended printed circuit board layout for the HCPL-7100.


Figure 1. HCPL-7100 Recommended Application Circuit.


Figure 2. HCPL-7100 Recommended Printed Circuit Board Layout.


Figure 3. Typical Output Voltage vs. Input Voltage.


Figure 4. Typical Input Voltage Switching Threshold vs. Input Supply Voltage.


Figure 5. Typical Logic Low Output Voltage vs. Logic Low Output Current.


Figure 6. Typical Logic High Output Voltage vs. Logic High Output Current.


Figure 7. Test Circuit for Propagation Delay, Rise Time and Fall Time.


Figure 8. Test Circuit for 3-State Output Enable and Disable Propagation Delays.



OUTPUT, $\mathrm{V}_{\mathrm{o}}$


Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 10. Typical Common Mode Transient Immunity vs. Common Mode Transient Voltage.


Figure 11. Dependence of Safety-Limiting Data on Ambient Temperature.

# Ultra High Speed CMOS Optocoupler 

Technical Data

## Features

- Ultra High Speed: 50 MBd Guaranteed
- Lowest Power-Delay Product Available
- CMOS IC Technology
- Compatible with All CMOS and TTL +5 V Logic Families
- No External Components Required for Logic Interface
- Low Power Consumption
- World Wide Safety Approval UL 1577 VDE 0884/0804/0160
- 2500 Vac/1 Minute Dielectric Withstand
- 3-State Output
- High Common Mode Transient Immunity: $>2000 \mathrm{~V} / \mu \mathrm{s}$ © 200 V Vcm


## Applications

- Microprocessor System Interface
- Multiplexed Data Transmission
- Digital Isolation for A/D, D/A Conversion
- Computer-Peripheral Interface
- Isolated Line Receiver


## Description

The HCPL-7101 ultra highspeed optocoupler utilizes CMOS IC technology, a new high-speed AlGaAs LED and an optimized light coupling system to achieve 50 MBd data rates with very low power consumption.

Both the LED driver IC and the detector IC have been designed using the state-of-the-art CMOS IC technology. The light coupling system and the highspeed high efficiency AlGaAs LED provide optimum light coupling from the LED to the integrated photodiode at minimal power levels. The LED driver IC can be controlled by either CMOS or TTL input logic signals. Pre-biasing and

HCPL-7101
peaking circuitry in the driver IC ensure maximum speed from the LED. In addition, the internal LED drive current is compensated for LED degradation.

The detector IC incorporates an integrated photodiode, a highspeed transimpedance amplifier and a voltage comparator with hysteresis. The 3 -state output is CMOS and TTL compatible and is controlled by the output enable pin, $\mathrm{V}_{\mathrm{oE}}$.

The HCPL-7101 provides the user with an easy-to-use ultra high-speed and low-power optocoupler. Compatibility with CMOS and TTL logic makes it ideally suited for a variety of applications.

## Regulatory Information

The HCPL-7101 has been approved by the following organizations:
UL
Covered under UL component recognition FILE E55361
VDE
Approved according to VDE 0884/08.87

Can be used for safe electrical separation between AC mains and SELV (safety extra-low voltage) in equipment according to the following specifications:

DIN VDE 0804/05.89
DIN VDE 0160/05.88
Reference voltage (VDE 0110b
Tab 4): 650 Vac

## VDE 0884 Insulation Characteristics

Description	Symbol	Characteristic	Unit
$\begin{array}{l}\text { Installation classification per DIN VDE 0109/12.83, } \\ \text { Table } 1 \\ \text { for rated mains voltage } \leq 300 \mathrm{~V}_{\mathrm{RMS}} \\ \text { for rated mains voltage } \leq 600 \mathrm{~V}_{\mathrm{RMS}}\end{array}$			
Climatic Classification		I-IV	
I-III			

[^51]
## Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External air gap   (clearance)	L (IO1)	$>7$	mm	Measured from input terminals to   output terminals
Min. External tracking path   (creepage)	L (IO2)	8.0	mm	Measured from input terminals to   output terminals
Min. Internal plastic gap   (clearance)		0.5	mm	Through insulation distance   conductor to conductor
Tracking resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group   (per DIN VDE 0109)		III a		Material Group DIN VDE 0109

## Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	$\mathrm{T}_{\mathrm{S}}$	-55	125	${ }^{\circ} \mathrm{C}$
Supply Voltages	$\mathrm{V}_{\mathrm{DD} 1,2}$	0.0	5.5	V
Input Voltage	$\mathrm{V}_{\mathrm{I}}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 1}+0.5$	V
Output Voltage	$\mathrm{V}_{\mathrm{O}}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 2}+0.5$	V
Output Enable Voltage	$\mathrm{V}_{\mathrm{OE}}$	-0.5	$\mathrm{~V}_{\mathrm{DD} 2}+0.5$	V
Average Output Current	$\mathrm{I}_{\mathrm{O}}$		25	mA
Package Power Dissipation	$\mathrm{P}_{\mathrm{PD}}$		220	mW
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 1.6 \mathrm{~mm}$ below seating plane			

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Test Conditions
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$	Ambient Temperature
Supply Voltages	$\mathrm{V}_{\mathrm{DD} 1,2}$	4.5	5.5	V	
Logic High Input Voltage	$\mathrm{V}_{\mathrm{II}}$	2.0	$\mathrm{~V}_{\mathrm{DD} 1}$	V	
Logic Low Input Voltage	$\mathrm{V}_{\mathrm{IL}}$	0.0	0.8	V	
Logic High Output   Enable Voltage	$\mathrm{V}_{\mathrm{OEII}}$	2.0	$\mathrm{~V}_{\mathrm{DD} 2}$	V	Output in high impedance   state
Logic Low Output   Enable Voltage	$\mathrm{V}_{\mathrm{OEL}}$	0.0	0.8	V	Output enabled
Input Signal Rise and   Fall Times	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{r}}$		1	ms	
TTL Fanout	N		6		Standard Loads

## Outline Drawing


*Pin 3 is the anode of the internal LED and must be left unconnected for guaranteed data sheet performance.

## Electrical Specifications

Guaranteed across recommended operating conditions. Test conditions represent worst case values for the parameter under test. Test conditions that are not specified can be anywhere within their operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V supplies unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions		Fig.	Note
Logic Low Input Supply Current	$\mathrm{I}_{\mathrm{DD1L}}$		5.2	10.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$			1
Logic High Input Supply Current	$\mathrm{I}_{\text {DD1H }}$		0.3	0.6	mA	$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V}$		1
			0.9	1.6		$\mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$			
Logic Low   Output   Supply Current	$\mathrm{I}_{\mathrm{DD} 2 \mathrm{~L}}$		5.0	9.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$			
Logic High   Output   Supply Current	$\mathrm{I}_{\mathrm{DD} 2 \mathrm{H}}$		5.2	9.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \\ & \hline \end{aligned}$			
Tri-State	$\mathrm{I}_{\mathrm{DD} 2 \mathrm{Z}}$		5.1	9.0	mA	$\mathrm{V}_{\mathrm{OE}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V}$		
Supply Current			5.6	10.0		$\mathrm{V}_{\mathrm{OE}}=2.0 \mathrm{~V}$			
Input Current	$\mathrm{I}_{1}$	-1		1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}_{1} \text { or GND }} \\ & \mathrm{V}_{\mathrm{DD} 1}=5.5 \mathrm{~V} \end{aligned}$			
Output Enable Current	$\mathrm{I}_{\mathrm{OE}}$	-1		1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{DD} 2} \text { or GND } \\ & \mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V} \end{aligned}$			
Logic High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	4.4	5.0		V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$		6	

## Electrical Specifications (cont.)

Guaranteed across recommended operating conditions. Test conditions represent worst case values for the parameter under test. Test conditions that are not specified can be anywhere within their operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V supplies unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Logic High Output   Voltage	$\mathrm{V}_{\mathrm{OH}}$	4.0	4.8		V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$	6	
Logic High Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	3.7	4.7		V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=-6.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{HI}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$	6	
Logic High Output Current	$\mathrm{I}_{\mathrm{OH}}$	-7.5	-25		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$	6	
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$		0.0	0.1	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \end{aligned}$	5	
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$		0.1	0.3	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{U}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \hline \end{aligned}$	5	
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$		0.15	0.4	V	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=6.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \hline \end{aligned}$	5	
Logic Low Output Current	$\mathrm{I}_{\text {OL }}$	10.5	23		mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{OE}}=\mathrm{V}_{\mathrm{OEL}} \\ & \hline \end{aligned}$	5	
High Impedance State Output Current	$\mathrm{I}_{\mathrm{OZ}}$	-5		5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OO}}=\mathrm{V}_{\mathrm{OEH},} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD} 2} \text { or } \mathrm{GND} \end{aligned}$		
Insulation Voltage	$\mathrm{V}_{\text {ISo }}$	3750			$\mathrm{V}_{\text {RMS }}$	$\begin{aligned} & \mathrm{t}=1 \text { minute } \\ & \mathrm{RH} \leq 50 \% \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		2, 3
Input Capacitance	$\mathrm{C}_{\mathrm{I}}$		4.3		pF	$\mathrm{f}=1 \mathrm{MHz}$		4
Input-Output Resistance	$\mathrm{R}_{\text {I- }}$		$10^{13}$		Ohms	$\mathrm{V}_{\mathrm{L}-\mathrm{O}}=500 \mathrm{~V}_{\mathrm{DC}}$		2
Input-Output Capacitance	$\mathrm{C}_{\text {L. }}$		0.7		pF	$\mathrm{f}=1 \mathrm{MHz}$		2

## Switching Specifications

Guaranteed across recommended operating conditions. Test conditions represent worst case values for the parameter under test. Test conditions that are not specified can be anywhere within their operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V supplies unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low Output	$\mathrm{t}_{\text {PHL }}$		28	40	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	7, 8	5, 6
				40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		
Propagation Delay Time to Logic High Output	$\mathrm{t}_{\text {PLH }}$		27	40	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	7, 8	5, 6
				40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		
Pulse Width Distortion$\left\|t_{\mathrm{PH}}-\mathrm{t}_{\mathrm{PLH}}\right\|$	PWD		2	6	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	7, 9	6, 7
				6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		
Data Rate		50	65		MBd	\% PWD < 30\%		8
Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$			10	ns		10	9
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{R}}$		10		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	7	
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{F}}$		7		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	7	
Random Jitter	RJ		50		ps rms	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0-5 \mathrm{~V} \text { square } \\ & \text { wave, } \mathrm{f}=25 \mathrm{MHz} \text {, } \\ & \text { input rise/fall } \\ & \text { time }=5 \mathrm{~ns} . \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} . \\ & \mathrm{TTL}^{2} \text { threshold levels. } \end{aligned}$		\%
Propagation Delay Time From Output Enabled to Logic High Output	$\mathrm{t}_{\text {PZH }}$		13		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { CMOS Signal Levels } \end{aligned}$	12	6
			12		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \text { TTL Signal Levels } \end{aligned}$		
Propagation Delay Time From Output Enabled to Logic Low Output	$\mathrm{t}_{\text {PZL }}$		11		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	12	6
			10		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		
Propagation Delay Time From Logic High to Output Disabled	$\mathrm{t}_{\mathrm{PHZ}}$		12		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	12	6
			12		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$   TTL Signal Levels		

## Switching Specifications (cont.)

Guaranteed across recommended operating conditions. Test conditions represent worst case values for the parameter under test. Test conditions that are not specified can be anywhere within their operating range. All typicals are at $25^{\circ} \mathrm{C}$ and 5 V supplies unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Propagation Delay Time From Logic Low to Output Disabled	$\mathrm{t}_{\mathrm{PLZ}}$		9		ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   CMOS Signal Levels	12	6
			11		ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.5 \mathrm{pF} \\ & \text { TTL Signal Levels } \end{aligned}$		
Common Mode   Transient Immunity at Logic High Output	$\mathrm{ICM}_{\mathrm{H}} \mathrm{I}$	2000			V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cM}}=200 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{o}}>3.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 13, \\ & 14 \end{aligned}$	10
Common Mode   Transient Immunity at Logic Low Output	$\mathrm{ICM}_{\mathrm{L}}$ \|	2000			V/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=200 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{O}}<0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 13, \\ & 14 \end{aligned}$	10
Input Dynamic Power Dissipation Capacitance	$\mathrm{C}_{\text {PD1 }}$		68		pF			11
Output Dynamic Power Dissipation Capacitance	$\mathrm{C}_{\text {PD2 }}$		10		pF			11

## Notes:

1. The LED is $O F F$ when the $V_{I}$ is high and $O N$ when $V_{I}$ is low.
2. Device considered a two terminal device; pins 1-4 shorted together and pins 5-8 shorted together.
3. This is a proof test.
4. $\mathrm{C}_{1}$ is the capacitance measured at pin $2\left(\mathrm{~V}_{\mathrm{I}}\right)$.
5. $\mathrm{t}_{\text {РнL }}$ propagation delay is measured from the $50 \%$ level on the falling edge of the $\mathrm{V}_{1}$ signal to the logic switching level of the $V_{o}$ signal. $t_{P H}$ propagation delay is measured from the $50 \%$ level on the rising edge of the $V_{1}$ signal to the logic switching level of the $V_{o}$ signal.
6. The logic switching levels are 1.5 V for TTL signals ( $0-3 \mathrm{~V}$ ) and 2.5 V for CMOS signals ( $0-5 \mathrm{~V}$ ).
7. PWD is defined as $\mid \mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}} \mathrm{I}$. \%PWD (percent pulse width distortion) is equal to PWD in ns divided by symbol duration (bit length) in ns.
8. Minimum data rate is calculated as follows: \%PWD/PWD where \%PWD is typically chosen by the design engineer ( $30 \%$ is common).
9. $t_{\text {PSK }}$ is equal to the worst case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that will be seen between units at any given temperature within the operating condition range.
10. $\mathrm{CM}_{\mathrm{H}}$ is the maximum common mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{o}}>3.2 \mathrm{~V}$. $\mathrm{CM}_{\mathrm{L}}$ is the maximum common mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$. The common mode voltage slew rates apply to both rising and falling common mode voltage edges.
11. Unloaded dynamic power dissipation is calculated as follows: $C_{P D} \bullet V_{D D}{ }^{2} \cdot f+I_{D D} \cdot V_{D D}$ where $f$ is switching frequency in MHz.

## HCPL-7101 Application Information

The HCPL-7101 is extremely easy to use. Because the optocoupler uses high-speed CMOS IC technology, the inputs and output are fully compatible with all +5 V TTL and CMOS logic.

TTL or CMOS logic can be connected directly to the inputs and output; no external interface circuitry is required.

As shown in Figure 1, the only external components required for proper operation are two ceramic bypass capacitors.

Capacitor values should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. For each capacitor, the total lead length between both ends of the capacitor and the power-supply pins should not exceed 20 mm . Figure 2 illustrates the recommended printed circuit board layout for the HCPL-7101.

## Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew

Propagation delay is a figure of merit which describes how quickly a logic signal propagates through a system. The propagation delay from low to high ( $\mathrm{t}_{\text {PLH }}$ ) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low ( $t_{\text {PII }}$ ) is the amount of time required for the input signal to propagate to the output, causing the output to change from high to low (see Figure 7).

Pulse-width distortion (PWD) results when $t_{\text {PLH }}$ and $t_{\text {PILL }}$ differ in value. PWD is defined as the difference bewteen $t_{\text {PLH }}$ and $t_{\text {PHL }}$ and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of $20-30 \%$ of the minimum pulse width is tolerable; the exact figure depends on the particular application (RS232, RS422, T-1, etc.).

Propagation delay skew, $\mathrm{t}_{\mathrm{PSK}}$, is an important parameter to consider in parallel data applications where synchronization of signals on parallel data lines is a concern. If the parallel data is being sent through a group of optocouplers, differences in propagation delays will cause the data to arrive at the outputs of the optocouplers at different times. If this difference in propagation delays is large enough, it will determine the
maximum rate at which parallel data can be sent through the optocouplers.

Propagation delay skew is defined as the difference between the minimum and maximum propagation delays, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$, for any given group of optocouplers which are operating under the same conditions (i.e., the same supply voltage, output load, and operating temperature). As illustrated in Figure 10, if the inputs of a group of optocouplers are switched either ON or OFF at the same time, $\mathrm{t}_{\text {PSK }}$ is the difference between the shortest propagation delay, either $t_{\text {PLH }}$ or $\mathrm{t}_{\mathrm{PIL}}$, and the longest propagation delay, either $\mathrm{t}_{\text {PLH }}$ or $\mathrm{t}_{\text {PIII }}$.

As mentioned earlier, $\mathrm{t}_{\text {PSK }}$ can determine the maximum parallel data transmission rate. Figure 11 is the timing diagram of a typical parallel data application with both the clock and the data lines being sent through optocouplers. The figure shows data and clock signals at the inputs and outputs of the optocouplers. To obtain the maximum data transmission rate, both edges of the clock signal are being used to clock the data; if only one edge were used, the clock signal would need to be twice as fast.

Propagation delay skew represents the uncertainty of where an edge might be after being sent through an optocoupler. Figure 11 shows that there will be uncertainty in both the data and the clock lines. It is important that these two areas of uncertainty not overlap, otherwise the clock signal might
arrive before all of the data outputs have settled, or some of the data outputs may start to change before the clock signal has arrived. From these considerations, the absolute minimum pulse width that can be sent through optocouplers in a parallel application is twice $\mathrm{t}_{\text {PSK }}$. A cautious design should use a slightly longer pulse width to ensure that any additional uncertainty in the rest of the circuit does not cause a problem.

The HCPL-7101 optocoupler offers the advantages of guaranteed specifications for propagation delays, pulse-width distortion and propagation delay skew over the recommended temperature, and power supply ranges.


Figure 1. HCPL-7101 Recommended Application Circuit.


Figure 2. HCPL-7101 Recommended Printed Circuit Board Layout.


Figure 3. Typical Output Voltage vs. Input Voltage.


Figure 4. Typical Input Voltage Switching Threshold vs. Input Supply Voltage.


Figure 5. Typical Logic Low Output Voltage vs. Logic Low Output Current.


Figure 6. Typical Logic High Output Voltage vs. Logic High Output Current.


Figure 7. Test Circuit for Propagation Delay, Rise Time and Fall Time.



Figure 9. Typical Pulse Width Distortion vs. Temperature.


Figure 10. Propagation Delay Skew Waveform.



Figure 12. Test Circuit for 3-State Output Enable and Disable Propagation Delays.


Figure 13. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 14. Typical Common Mode Transient Immunity vs. Common Mode Transient Voltage.


Figure 15. Dependence of Safety-Limiting Data on Ambient Temperature.


## Features

- WIDE BANDWIDTH: 17 MHz ${ }^{[1]}$
- HIGH VOLTAGE GAIN: 2.0[1]
- LOW TEMPERATURE COEFFICIENT ( $G_{v}$ ): $-0.3 \%$ PER ${ }^{\circ}{ }^{\text {C }}{ }^{11]}$
- HIGHLY LINEAR AT LOW DRIVE CURRENTS
- HIGH-SPEED AIGaAs EMITTER
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF VOLTAGES OF 2500 VAC, 1 MINUTE AND 5000 VAC, 1 MINUTE (OPTION 020).
- VDE 0883 APPROVAL AVAILABLE Description
The HCPL-4562 optocoupler provides wide-bandwidth isolation for analog signals. It is ideal for video isolation when combined with its application circuit (Figure 4). High linearity and low phase shift are achieved through an 820 nm AIGaAs emitter, combined with a high-speed detector.


## Applications

- VIDEO ISOLATION FOR THE FOLLOWING STANDARDS/FORMATS: NTSC, PAL, SECAM, S-VHS, ANALOG RGB
- LOW-DRIVE-CURRENT FEEDBACK ELEMENT IN SWITCHING POWER SUPPLIES, e.g. FOR ISDN NETWORKS
- A/D CONVERTER SIGNAL ISOLATION
- ANALOG SIGNAL GROUND ISOLATION



## Recommended Operating Conditions

Operating Temperature ..... $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Quiescent Input Current - $I_{F_{Q}}$ ..... 6 mA
Peak Input Current - $I_{F}$ ..... 10 mA
Absolute Maximum Ratings
Storage Temperature ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature ..... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Average Input Current $-I_{F}$ ..... 12 mADC
Peak Input Current - $I_{F}$ ..... 18.6 mA
Effective Input Current - $I_{F}$ ..... 12.9 mA rms
Supply Voltage - $\mathrm{V}_{\mathrm{CC}}$ (Pin 8-5) ..... -0.3 V to 30 V
Output Voltage - $\mathrm{V}_{\mathrm{O}}$ (Pin 6-5) ..... -0.3 V to 20 V
Reverse Input Voltage $-\mathrm{V}_{\mathrm{R}}$ (Pin 3-2) ..... 1.8 V
Emitter-Base Reverse Voltage (Pin 5-7) ..... 5 V
Peak Output Current - $\mathrm{I}_{\mathrm{O}}$ (Pin 6) ..... 16 mA
Average Output Current - $I_{O}(\operatorname{Pin} 6)$ ..... 8 mA
Base Current $-!_{\mathrm{B}}($ Pin 7$)$ ..... 5 mA
Output Power Dissipation[2] ..... 100 mW

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

## DC Electrical Specifications $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Notes
Base Photo Current	$I_{\text {PB }}$	13	$\begin{gathered} 32 \\ 19.2 \end{gathered}$	65	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & I_{F}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PB}} \geq 5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PB}} \geq 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2,6 \\ & 2,6 \end{aligned}$	
$\mathrm{I}_{\mathrm{PB}}$ Temperature Coefficient	$\Delta \mathrm{l}_{\mathrm{PB}} / \Delta \mathrm{T}$		-0.3		\%/ ${ }^{\circ} \mathrm{C}$	$2 \mathrm{~mA}<\mathrm{I}_{\mathrm{F}}<10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PB}} \geq 5 \mathrm{~V}$	2	
$\mathrm{I}_{\mathrm{PB}}$ Nonlinearity			0.25		\%	$2 \mathrm{~mA}<\mathrm{I}_{\mathrm{F}}<10 \mathrm{~mA}$	2, 6	3
Input Forward Voltage	$V_{F}$	1.1	1.3	1.6	V	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	5	
Input Reverse Breakdown Voltage	$B V_{R}$	1.8	5		V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Transistor Current Gain	$\mathrm{h}_{\text {FE }}$	60	160			$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=1.25 \mathrm{~V}$		
Current Transfer Ratio	CTR		45		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PB}} \geq 5 \mathrm{~V} \end{aligned}$	8,9	4
DC Output Voltage	$\mathrm{V}_{\mathrm{O}}$		4.25		V	$\mathrm{G}_{\mathrm{V}}=2, \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}$	4, 15	
Input-Output Resistance	$\mathrm{R}_{1-\mathrm{O}}$		$10^{12}$		$\Omega$	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V}$		5
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		5
Input-Output Insulation	$\mathrm{V}_{\text {ISO }}$	2500			VRMS	$\mathrm{R}_{\mathrm{H}} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$.		5
OPTION 020	$\mathrm{V}_{\text {ISO }}$	5000						

## Small-Signal Characteristics ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Notes
Voltage Gain	$\mathrm{G}_{\mathrm{V}}(0.1 \mathrm{MHz})$	0.8	2.0	4.2		$\mathrm{v}_{\text {IN }}=1 \mathrm{~V}_{\mathrm{p} \text {-p }}$	1	6
$G_{v}$ Temperature Coefficient	$\Delta \mathrm{G}_{\mathrm{v}} / \Delta \mathrm{T}$		-0.3		\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{v}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}=0.1 \mathrm{MHz}$	1, 11	
Base Photo Current Variation	$\begin{gathered} \Delta \mathrm{i}_{\mathrm{PB}} \\ (6 \mathrm{MHz}) \end{gathered}$		1.1	3.0	-dB	$\begin{aligned} & \mathrm{I}_{\mathrm{FQ}}=6 \mathrm{~mA}, \mathrm{v}_{I N}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & \mathrm{f}_{\mathrm{REF}}=0.1 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 3,10 \\ 12 \end{gathered}$	
-3 dB Frequency ( $\mathrm{i}_{\mathrm{PB}}$ )	$\mathrm{i}_{\mathrm{PB}}(-3 \mathrm{~dB})$	6	15		M Hz	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{f}_{\mathrm{REF}}=0.1 \mathrm{MHz}, \\ & \mathrm{I}_{\mathrm{FQ}}=6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 3,10, \\ 12 \end{gathered}$	7
-3 dB Frequency ( $\mathrm{G}_{\mathrm{V}}$ )	$\mathrm{G}_{\mathrm{v}}(-3 \mathrm{~dB})$	6	17		MHz	$\mathrm{v}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}_{\mathrm{REF}}=0.1 \mathrm{MHz}$	1, 11	7
Gain Variation	$\Delta \mathrm{G}_{\mathrm{v}}(6 \mathrm{MHz})$		0.8		-dB	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}, \mathrm{v}_{I N}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & \mathrm{f}_{\mathrm{REF}}=0.1 \mathrm{MHz} \end{aligned}$	1, 11	
			1.1	3.0	-dB	$\mathrm{v}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{f}_{\text {REF }}=0.1 \mathrm{MHz}$	1,11	
			1.5		-dB	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & \mathrm{f}_{\mathrm{REF}}=0.1 \mathrm{MHz} \end{aligned}$	1, 11	
	$\begin{gathered} \Delta G_{V} \\ (10 \mathrm{MHz}) \end{gathered}$		1.15		-dB	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p},}, \mathrm{f}_{\text {REF }}=0.1 \mathrm{MHz}$	1, 11	
Differential Gain			$\pm 1$		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{Fac}}=0.7 \mathrm{~mA} \mathrm{pk}-\mathrm{pk}, \\ & \mathrm{I}_{\mathrm{Fdc}}=3 \text { to } 9 \mathrm{~mA}, \\ & \mathrm{f}=3.58 \mathrm{MHz} \end{aligned}$	3, 7	8
Differential Phase			$\pm 1$		deg.	$\begin{aligned} & \mathrm{I}_{\mathrm{Fac}}=0.7 \mathrm{~mA} \mathrm{pk-pk}, \\ & \mathrm{I}_{\mathrm{Fdc}}=3 \text { to } 9 \mathrm{~mA}, \\ & \mathrm{f}=3.58 \mathrm{MHz} \end{aligned}$	3, 7	9
Total Harmonic Distortion	THD		2.5		\%	$\begin{aligned} & f=3.58 \mathrm{MHz}, G_{V}=2, \\ & V_{I N}=1 V_{p-p}, I_{F Q}=6 \mathrm{~mA} \end{aligned}$	4	10
Output Noise Voltage	$\mathrm{V}_{\text {ONOISE }}$		950		$\mu \mathrm{V}$ RMS	10 Hz to 10 MHz	1	
Isolation Mode Rejection Ratio	IMRR		122		dB	$f=120 \mathrm{~Hz}, \mathrm{G}_{\mathrm{V}}=2$	14	11

# Insulation Related Specifications 

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap (Clearance)	L(IO1)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	L(IO2)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/NDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIla		Material Group DIN VDE 0109

## Notes:

1. When used in the circuit of Figure 1 or Figure $4 ; \mathrm{G}_{\mathrm{V}}=\mathrm{v}_{\mathrm{OUT}} / \mathrm{v}_{\mathrm{IN}}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Maximum variation from the best fit line of $I_{P B}$ vs. $I_{F}$ expressed as a percentage of the peak-to-peak full-scale output.
4. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, $I_{O}$, to the forward LED input current, $I_{F}$, times 100\%.
5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
6. Flat-band small-signal voltage gain.
7. The frequency at which the gain is 3 dB below the flat-band gain.
8. Differential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range.
9. Differential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given range.
10. TOTAL HARMONIC DISTORTION is defined as the square root of the sum of the square of each harmonic distortion component.
11. ISOLATION MODE REJECTION RATIO, a measure of the optocoupler's ability to reject signals or noise that may exist between input and output terminals, is defined by $\left(v_{O U T} / v_{I N}\right) /\left(v_{O U T} / v_{I M}\right)$, where $v_{I M}$ is the isolation mode voltage signal.


NOTE: ALL RESISTORS ARE $1 \%$ TOLERANCE; EXCEPT $\mathbf{R}_{4}(162 \Omega \pm 0.5 \Omega)$.
Figure 1. Gain and Bandwidth Test Circuit


Figure 2. Base Photo Current Test Circuit
Figure 3. Base Photo Current Frequency Response Test Circuit


Figure 4. Recommended Isolated Video Interface Circuit


Figure 5. Input Current vs. Forward Voltage

$I_{\text {F }}$ - INPUT CURRENT - mA

Figure 7. Small-Signal Response vs. Input Current


Figure 6. Base Photo Current vs. Input Current


Figure 8. Current Transfer Ratio vs. Temperature


Figure 9. Current Transfer Ratio vs. Input Current


Figure 11. Normalized Voltage Gain vs. Frequency


Figure 13. Phase vs. Frequency


Figure 10. Base Photo Current Variation vs. Bias Conditions


Figure 12. Normalized Base Photo Current vs. Frequency


Figure 14. Isolation Mode Rejection Ratio vs. Frequency


Figure 15. DC Output Voltage vs. Transistor Current Gain


Figure 16. Output Buffer Stage for Low Impedance Loads

## Design Considerations of the Application Circuit

The application circuit in Figure 4 incorporates several features that help maximize the bandwidth performance of the HCPL-4562. Most important of these features is peaked response of the detector circuit that helps extend the frequency range over which the voltage gain is relatively constant. The number of gain stages, the overall circuit topology and the choice of DC bias points are all consequences of the desire to maximize bandwidth performance.
To use the circuit, first select $R_{1}$ to set $V_{E}$ for the desired LED quiescent current by:

$$
\begin{equation*}
I_{F Q}=\frac{V_{E}}{R_{4}} \cong \frac{G_{V} V_{E} R_{10}}{\left(\partial I_{P B} / \partial I_{F}\right) R_{7} R_{9}} \tag{1}
\end{equation*}
$$

For a constant value of $\mathrm{v}_{1 N_{p-p}}$ the circuit topology (adjusting the gain with $R_{4}$ ) preserves linearity by keeping the modulation factor (MF) dependent only on $V_{E}$.

$$
\begin{align*}
& i_{F_{p-p}} \cong V_{I N} / R_{4}  \tag{2}\\
& \frac{i_{F_{p-p}}}{I_{F Q}} \cong \frac{i_{P B_{p-p}}}{I_{P B Q}}=\frac{v_{I N_{p-p}}}{V_{E}}  \tag{3}\\
& \text { Modulation Factor (MF) } \frac{i_{F_{(p-p)}}}{2 I_{F Q}} \cong \frac{v_{i N_{p-p}}}{2 V_{E}} \tag{4}
\end{align*}
$$

For a given $G_{V}, V_{E}$, and $V_{C C}$, $D C$ output voltage will vary only with $\mathrm{h}_{\mathrm{FEX}}$.

$$
\begin{equation*}
V_{O}=V_{C C}-V_{B_{E}}-\frac{R_{9}}{R_{10}}\left(V_{B E X}-\left(I_{P B Q}-I_{B X Q}\right) R_{7}\right) \tag{5}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{PBQ}} \cong \frac{\mathrm{G}_{V} V_{E} R_{10}}{R_{7} R_{9}} \tag{6}
\end{equation*}
$$

and,

$$
I_{B X Q} \cong \frac{V_{C C}-2 V_{B E}}{R_{6} h_{F E X}}
$$

Figure 15 shows the dependency of the DC output voltage on $h_{\text {FEX }}$.
For $9 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<12 \mathrm{~V}$, select the value of $\mathrm{R}_{11}$ such that

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}_{04}} \cong \frac{\mathrm{~V}_{\mathrm{O}}}{\mathrm{R}_{11}} \leq \frac{4.25 \mathrm{~V}}{470 \Omega} \leq 9.0 \mathrm{~mA} \tag{8}
\end{equation*}
$$

The voltage gain of the second stage $\left(Q_{3}\right)$ is approximately equal to:

$$
\begin{equation*}
\frac{R_{9}}{R_{10}} * \frac{1}{1+s R_{9}\left[C_{C Q_{3}}+\frac{1}{2 \pi R_{11}^{\prime} f_{T_{4}}}\right]} \tag{9}
\end{equation*}
$$

Increasing $R_{11}^{\prime}\left(R_{11}^{\prime}\right.$ includes the parallel combination of $R_{11}$ and the load impedance) or reducing $R_{9}$ (keeping $\mathrm{R}_{9} / \mathrm{R}_{10}$ ratio constant) will improve the bandwidth.
If it is necessary to drive a low impedance load, bandwidth may also be preserved by adding an additional emitter following the buffer stage ( $Q_{5}$ in Figure 16), in which case $\mathrm{R}_{11}$ can be increased to set $\mathrm{I}_{\mathrm{CQ}_{4}} \cong 2 \mathrm{~mA}$.
Finally, adjust $R_{4}$ to achieve the desired voltage gain.

$$
\begin{equation*}
G_{V} \cong \frac{v_{\mathrm{OUT}}}{v_{I N}} \cong \frac{\partial I_{P B}}{\partial I_{F}}\left[\frac{R_{7} R_{9}}{R_{4} R_{10}}\right] \tag{10}
\end{equation*}
$$

where typically $\frac{\partial I_{P B}}{\partial I_{F}}=0.0032$
Definition:
$\mathrm{G}_{\mathrm{V}}=$ Voltage Gain
$I_{F Q}=$ Quiescent LED forward current
$\mathrm{i}_{\mathrm{F}_{\mathrm{p}-\mathrm{p}}}=$ Peak-to-peak small signal LED forward current
$v_{1 N_{p-p}}=$ Peak-to-peak small signal input voltage
$\mathrm{i}_{\mathrm{PB}_{p-p}}=$ Peak-to-peak small signal base photo current
$I_{P B Q}=$ Quiescent base photo current
$V_{B E X}=$ Base-Emitter voltage of HCPL-4562 transistor
$\mathrm{I}_{\mathrm{BXQ}}=$ Quiescent base current of HCPL-4562 transistor
$\mathrm{h}_{\mathrm{FEX}}=$ Current Gain (IC/IB) of HCPL-4562 transistor
$V_{E}=$ Voltage across emitter degeneration resistor $R_{4}$
$f_{T_{4}}=$ Unity gain frequency of $Q_{4}$
$\mathrm{C}_{\mathrm{CQ}_{3}}=$ Effective capacitance from collector of $Q_{3}$ to ground

## AC/DC to Logic Interface Optocoupler

## Technical Data

## Features

- Standard and Low Input Current (HCPL-3760)
Versions
- AC or DC Input
- Programmable Sense Voltage
- Hysteresis
- Logic Compatible Output
- Thresholds Guaranteed Over Temperature
- Thresholds Independent of LED Degradation
- Recognized Under the Component Program of U.L. (File No. E55361) for Dielectric Withstand Proof Test Voltages of $\mathbf{2 5 0 0}$ VAC, 1 Minute
- VDE 0883 Approval Available


## Applications

- Limit Switch Sensing
- Low Voltage Detector
- 5 V-240 V AC/DC Voltage Sensing
- Relay Contact Monitor
- Relay Coil Voltage Monitor
- Current Sensing
- Microprocessor Interfacing


## Description

The HCPL-3700 and HCPL3760 are voltage/current threshold detection optocouplers. The HCPL-3760 is a low-current version of the HCPL-3700. To obtain lower current operation, the HCPL-3760 uses a highefficiency AlGaAs LED which provides higher light output at lower drive currents. Both devices utilize threshold sensing input buffer ICs which permit control of threshold levels over a wide range of input voltages with a single external resistor.

The input buffer incorporates

HCPL-3700 HCPL-3760
threshold sensing is done prior to driving the LED, variations in optical coupling from the LED to the detector will have no effect on the threshold levels.

The HCPL-3700's input buffer IC has a nominal turn on threshold of $2.5 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{TH}}+\right)$ and 3.7 volts ( $\mathrm{V}_{\text {TH }}+$ ).

The buffer IC for the HCPL3760 was redesigned to permit a lower input current. The nominal turn on threshold for the HCPL- 3760 is $1.2 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{TH}}+\right.$ ) and 3.7 volts ( $\mathrm{V}_{\mathrm{TH}}+$ ).

The high gain output stage features an open collector output providing both TTL compatible saturation voltages and CMOS compatible breakdown voltages.

## Schematic



Absolute Maximum Ratings (No derating required up to $70^{\circ} \mathrm{C}$ )

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		$\mathrm{T}_{\text {S }}$	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature		TA	-40	85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temperature			260	${ }^{\circ} \mathrm{C}$	1
	Time			10	sec	
Input Current	Average	$\mathrm{I}_{\text {IN }}$		50	mA	2
	Surge			140		2, 3
	Transient			500		
Input Voltage (Pins 2-3)		$\mathrm{V}_{\text {IN }}$	-0.5		V	
Input Power Dissipation		$\mathrm{P}_{\text {IN }}$		230	mW	4
Total Package Power Dissipation		P		305	mW	5
Output Power Dissipation		$\mathrm{P}_{\mathrm{o}}$		210	mW	6
Output Current	Average	$\mathrm{I}_{0}$		30	mA	7
Supply Voltage (Pins 8-5)		$\mathrm{V}_{\mathrm{cc}}$	-0.5	20	V	
Output Voltage (Pins 6-5)		$\mathrm{V}_{\mathrm{o}}$	-0.5	20	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	2	18	V	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0	70	${ }^{\circ} \mathrm{C}$	
Operating Frequency	f	0	4	KHz	8

## Electrical Specifications

Over Recommended Temperature $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Unless Otherwise Specified.


## Electrical Specifications (Continued)

Parameter	Sym.	Device	Min.	Typ. ${ }^{[0]}$	Max.	Units	Conditions	Fig.	Note
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$			0.1	0.4	V	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{oL}}=4.2 \mathrm{~mA}$	5	14
Logic High Output Current	$\mathrm{I}_{\mathrm{OH}}$				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V}$		14
		HCPL-3700		1.2	4				
Logic Low Supply Current	$\mathrm{I}_{\mathrm{ccL}}$	HCPL-3760		0.7	3	mA	$\begin{aligned} & \mathrm{V}_{2}-\mathrm{V}_{3}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=\mathrm{Open} ; \\ & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$		
Logic High Supply Current	$\mathrm{I}_{\mathrm{cch}}$			0.002	4	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=0$ Open	4	14
Input-Output Insulation	$\mathrm{V}_{\text {Iso }}$		2500			$\mathrm{V}_{\text {RMs }}$	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		16
Input-Output   Resistance	$\mathrm{R}_{\mathrm{I} .0}$			$10^{12}$		$\Omega$	$\mathrm{V}_{1.0}=500 \mathrm{VDC}$		
Input-Output Capacitance	$\mathrm{C}_{1.0}$			0.6		pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{t}-\mathrm{O}}=0 \mathrm{VDC}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$			50		pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{iN}}=0 \mathrm{~V}$   Pins 2 \& 3, Pins 1 \& 4 Open		

*For JEDEC registered parts.

## Switching Specifications

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ Unless Otherwise Specified

Parameter	Sym.	Device	Min.	Typ.	Max.	Units	Test Conditions		Fig.	Note	
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	HCPL-3700		4.0	15.0	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		6, 9	10	
		HCPL-3760		4.5							
Propagation Delay Time to Logic High at Output	$\mathrm{t}_{\text {PLH }}$	HCPL-3700		10.0	40.0	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$			11	
		HCPL-3760		8.0							
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$	HCPL-3700		20		V/ $\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		7		
		HCPL-3760		14							
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$	HCPL-3700		0.3		$\mathrm{V} / \mathrm{\mu s}$	$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$				
		HCPL-3760		0.4							
Common Mode Transient Immunity at Logic Low Output	$\mathrm{ICM}_{\mathrm{H}} \mathrm{I}$			4000		V/is	$\begin{aligned} & \mathrm{I}_{\mathrm{IN}}=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O} \text { min }}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1400 \mathrm{~V} \end{aligned}$			8,10	12, 13
Common Mode Transient Immunity at Logic High Output	$\mathrm{ICM}_{\mathrm{L}} \mathrm{l}$	HCPL-3700		600		$\mathrm{V} / \mathrm{\mu s}$	$\mathrm{I}_{\text {IN }}=3.11 \mathrm{~mA}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{O} \max }=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=140 \mathrm{~V} \end{aligned}$			
		HCPL-3760					$\mathrm{I}_{\mathrm{IN}}=1.56 \mathrm{~mA}$				

Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap   (Clearance)	L (IO1)	$\geq 7$	mm	Measured from input terminals to   output terminals
Min. External Tracking Path   (Creepage)	L (IO2)	$\geq 7$	mm	Measured from input terminals to   output terminals
Min. Internal Plastic Gap   (Clearance)		0.08	mm	Through insulation distance conductor   to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112NDE 0303 Part 1
Isolation Group   (per DIN VDE 0109)	IIa		Material Group DIN VDE 0109	

## Notes:

1. Measured at a point 1.6 mm below seating plane.
2. Current into/out of any single lead.
3. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is $10 \mu \mathrm{~s}$ at 120 Hz pulse repetition rate. Note that maximum input power, $\mathrm{P}_{1 \mathrm{~N}}$, must be observed.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Maximum input power dissipation of 230 mW allows an input IC junction temperature of $125^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{A}=70^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta_{\mathrm{JA} 1}=240^{\circ} \mathrm{C} \mathrm{W}$. Excessive $\mathrm{P}_{\mathrm{IN}}$ and $\mathrm{T}_{\mathrm{J}}$ may result in IC chip degradation.
5. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
6. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $3.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Maximum output power dissipation of 210 mW allows an output IC junction temperature of $125^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta_{\mathrm{JAO}}=265^{\circ} \mathrm{C} / \mathrm{W}$.
7. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.6 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
8. Maximum operating frequency is defined when output waveform Pin 6 obtains only $90 \%$ of $V_{c c}$ with $R_{L}=4.7 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}$ using a 5 V square wave input signal.
9. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ unless otherwise stated.
10. The $t_{\text {phL }}$ propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse ( $1 \mu \mathrm{~s}$ rise time) to the 1.5 V level on the leading edge of the output pulse (see Figure 9).
11. The $t_{\text {pLH }}$ propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input pulse ( $1 \mu \mathrm{~s}$ fall time) to the 1.5 V level on the trailing edge of the output pulse (see Figure 9).
12. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm} / \mathrm{d}}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{cw}}$, to insure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm} / \mathrm{d}}$ on the trailing edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{cw}}$, to insure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{0}<0.8 \mathrm{~V}$ ). See Figure 10.
13. In applications where $d V_{\text {cm/dt }}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge), a series resistor, $R_{c c}$, should be included to protect the detector IC from destructively high surge currents. The recommended value for $R_{c c}$ is $240 \Omega$ per volt of allowable drop in $\mathrm{V}_{\mathrm{cc}}$ (between Pin 8 and $\mathrm{V}_{\mathrm{cc}}$ ) with a minimum value of $240 \Omega$.
14. Logic low output level at Pin 6 occurs under the conditions of $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{TH}}$ as well as the range of $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{TH}}$ once $\mathrm{V}_{\text {IN }}$ has exceeded $\mathrm{V}_{\mathrm{TH}+}$. Logic high output level at Pin 6 occurs under the conditions of $\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{TH}-}$ as well as the range of $\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{TH}+}$ once $V_{\text {IN }}$ has decreased below $V_{\text {TH }}$.
15. AC voltage is instantaneous voltage.
16. Device considered a two terminal device: Pins 1, 2, 3, 4 connected together, and Pins 5, 6, 7, 8 connected together.


Figure 1. Typical Input Characteristics, $I_{\text {IN }}$ vs. $V_{\text {IN }}$ (AC Voltage is Instantaneous Value).


	DEVICE	TH.	TH_	INPUT CONNNECTION
$\mathrm{I}_{\text {т }}$	HCPL-3700	2.5 mA	1.3 mA	$\begin{gathered} \text { PINS 2, } 3 \\ \text { OR 1, } 4 \end{gathered}$
	HCPL-3760	1.2 mA	0.6 mA	
$\mathbf{V}_{\text {TM (4a) }}$	BOTH	3.7 V	2.6 V	PINS 2, 3
$V_{\text {TH(-a) }}$	BOTH	4.9 V	3.8 V	PINS 1, 4

Figure 2. Typical Transfer Characteristics.


Figure 3. Typical DC Threshold Levels vs. Temperature.


Figure 4. Typical High Level Supply Current, $I_{\text {cch }}$ vs. Temperature.

HCPL-3700


HCPL-3760


Figure 5. Typical Input Current, $I_{\text {IN }}$, and Low Level Output Voltage, $\mathbf{V}_{\mathrm{OL}}$, vs. Temperature.

HCPL-3700


HCPL-3760


Figure 6. Typical Propagation Delay vs. Temperature.

HCPL-3700


Figure 7. Typical Rise, Fall Times vs. Temperature.

$V_{C M}$ - COMMON MODE TRANSIENT AMPLITUDE - V
Figure 8. Common Mode Transient Immunity vs. Common Mode Transient Amplitude.


Figure 9. Switching Test Circuit.

HCPL-3760



Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 11. Typical External Threshold Characteristics, V $\pm$ vs. $\mathbf{R}_{\mathbf{x}}$.


Figure 12. External Threshold Voltage Level Selection.

## Electrical

## Considerations

The HCPL-3700/3760
optocouplers have internal temperature compensated, predictable voltage and current threshold points which allow selection of an external resistor, $\mathrm{R}_{\mathrm{x}}$, to determine larger external threshold voltage levels. For a desired external threshold voltage, $\mathrm{V}_{\mathrm{t}}$, a corresponding typical value of $\mathrm{R}_{\mathrm{x}}$ can be obtained from Figure 11. Specific calculation of $\mathrm{R}_{\mathrm{x}}$ can be obtained from Equation (1). Specification of both $\mathrm{V}_{+}$and $\mathrm{V}_{\text {. voltage }}$ threshold levels simultaneously can be obtained by the use of $R_{x}$ and $\mathrm{R}_{\mathrm{p}}$ as shown in Figure 12 and determined by Equations (2) and (3).
$\mathrm{R}_{\mathrm{x}}$ can provide over-current transient protection by limiting input current during a transient condition. For monitoring contacts of a relay or switch, the HCPL-3700/3760 in combination with $\mathrm{R}_{\mathrm{x}}$ and $\mathrm{R}_{\mathrm{p}}$ can be used to allow a specific current to be conducted through the contacts for cleaning purposes (wetting current).

The choice of which input voltage clamp level to choose depends upon the application of this device (see Figure 1). It is recommended that the low
clamp condition be used when possible. The low clamp condition in conjunction with the low input current feature will ensure extremely low input power dissipation.

In applications where $\mathrm{dV}_{\mathrm{CM} / \mathrm{dt}}$ may be extremely large (such as static discharge), a series resistor, $\mathrm{R}_{\mathrm{cc}}$, should be connected in series with $\mathrm{V}_{\mathrm{cc}}$ and Pin 8 to protect the detector IC from destructively high surge currents. See Note 13 for determination of $R_{c c}$. In addition, it is recommended that a ceramic disc bypass capacitor of $0.01 \mu \mathrm{f}$ be placed between Pins 8 and 5 to reduce the effect of power supply noise.

For interfacing AC signals to TTL systems, output low pass filtering can be performed with a pullup resistor of $1.5 \mathrm{k} \Omega$ and $20 \mu$ f capacitor. This application requires a Schmitt trigger gate to avoid slow rise time chatter problems. For AC input applications, a filter capacitor can be placed across the DC input terminals for either signal or transient filtering.

Either AC (Pins 1, 4) or DC (Pins 2, 3) input can be used to determine external threshold levels.

For one specifically selected external threshold voltage level $\mathrm{V}_{+}$or $\mathrm{V}_{\mathrm{u}}, \mathrm{R}_{\mathrm{x}}$ can be determined without use of $R_{p}$ via

$$
\begin{equation*}
\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{V}_{+}-\mathrm{V}_{(-)} \mathrm{V}_{\mathrm{TH}_{(-)}}}{\mathrm{I}_{(-)}} \tag{1}
\end{equation*}
$$

For two specifically selected external threshold voltage levels, $\mathrm{V}_{+}$and V . the use of $\mathrm{R}_{\mathrm{x}}$ and $R_{p}$ will permit this selection via equations (2), (3) provided the following conditions are met. If the denominator of equation (2) is positive, then
$\frac{\mathrm{V}_{+}}{\mathrm{V}_{-}} \geq \frac{\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{\mathrm{TH}-}}$ and $\frac{\mathrm{V}_{+}-\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{-}-\mathrm{V}_{\mathrm{TH}-}}<\frac{\mathrm{I}_{\mathrm{TH}+}}{\mathrm{I}_{\mathrm{TH}-}}$
Conversely, if the denominator of equation (2) is negative, then

$$
\begin{aligned}
& \frac{\mathrm{V}_{+}}{\mathrm{V}_{-}} \leq \frac{\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{\mathrm{TH}-}} \text { and } \frac{\mathrm{V}_{+}-\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{-}-\mathrm{V}_{\mathrm{TH}-}}>\frac{\mathrm{I}_{\mathrm{TH}+}}{\mathrm{I}_{\mathrm{TH}-}} \\
& \mathrm{R}_{\mathrm{X}}=\frac{\mathrm{V}_{\mathrm{TH}-}\left(\mathrm{V}_{+}\right)-\mathrm{V}_{\mathrm{TH}+}\left(\mathrm{V}_{-}\right)}{\mathrm{I}_{\mathrm{TH}+}\left(\mathrm{V}_{\mathrm{TH}}\right)-\mathrm{I}_{\mathrm{TH}-}\left(\mathrm{V}_{\mathrm{TH}+}\right)}(2) \\
& \mathrm{R}_{\mathrm{p}}=\frac{\mathrm{V}_{\mathrm{TH}-}\left(\mathrm{V}_{+}\right)-\mathrm{V}_{\mathrm{TH}+}\left(\mathrm{V}_{+}\right)}{\mathrm{I}_{\mathrm{TH}+}\left(\mathrm{V}_{-}-\mathrm{V}_{\mathrm{TH}}\right)+\mathrm{I}_{\mathrm{TH}-}\left(\mathrm{V}_{\mathrm{TH}+}-\mathrm{V}_{+}\right)}
\end{aligned}
$$

## OPTICALLY COUPLED 20 mA CURRENT LOOP TRANSMITTER


*CURRENT LOOP CONVENTION $H=$ MARK: $I_{0} \geq 12 \mathrm{~mA}$, $L=S P A C E: I_{0} \leq 2 \mathrm{~mA}$.

## Features

- GUARANTEED 20 mA LOOP PARAMETERS
- DATA INPUT COMPATIBLE WITH LSTTL, TTL AND CMOS LOGIC
- GUARANTEED PERFORMANCE OVER TEMPERATURE ( $0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$ )
- INTERNAL SHIELD FOR HIGH COMMON MODE REJECTION
- 20 KBaud DATA RATE AT 400 METRES LINE LENGTH
- GUARANTEED ON AND OFF OUTPUT CURRENT LEVELS
- RECOGNIZED UNDER THE COMPONENT PROGRAM OF U.L. (FILE NO. E55361) FOR DIELECTRIC WITHSTAND PROOF TEST VOLTAGES OF 2500 Vac, 1 MINUTE
- VDE 0883 APPROVAL PENDING
- OPTICALLY COUPLED 20 mA CURRENT LOOP RECEIVER, HCPL-4200, ALSO AVAILABLE.


## Applications

- IMPLEMENT AN ISOLATED 20 mA CURRENT LOOP TRANSMITTER IN:

Computer Peripherals Industrial Control Equipment Data Communications Equipment

OUTLINE DRAWING*


## Description

The HCPL-4100 optocoupler is designed to operate as a transmitter in equipment using the 20 mA current loop. 20 mA current loop systems conventionally signal a logic high state by transmitting 20 mA of loop current (MARK), and signal a logic low state by allowing no more than a few milliamperes of loop current (SPACE). Optical coupling of the signal from the logic input to the 20 mA current loop breaks ground loops and provides very high immunity to common mode interference.

The HCPL-4100 data input is compatible with LSTTL, TTL, and CMOS logic gates. The input integrated circuit drives a GaAsP LED. The light emitted by the LED is sensed by a second integrated circuit that allows 20 mA to pass with a voltage drop of less than 2.7 volts when no light is emitted and allows less than 2 mA to pass when light is emitted. The transmitter output is capable of withstanding 27 volts. The input integrated circuit provides a controlled amount of LED drive current and takes into account LED light output degradation. The internal shield allows a guaranteed $1000 \mathrm{~V} / \mu \mathrm{s}$ common mode transient immunity.

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply   Voltage	$\mathrm{VCC}_{\mathrm{CC}}$	4.5	20	Volts
Input Voltage Low	$\mathrm{VIL}_{\mathrm{IL}}$	0	0.8	Volts
Input Voltage High	$\mathrm{V}_{\mathrm{IH}}$	2.0	20	Volts
Operating   Temperature	$\mathrm{T}_{\mathrm{A}}$	0	70	${ }^{\circ} \mathrm{C}$
Output Voltage	$\mathrm{V}_{\mathrm{O}}$	0	27	Volts
Output Current	Io	0	24	mA

## Absolute Maximum Ratings

## (No Derating Required up to $55^{\circ} \mathrm{C}$ )

Storage Temperature ................... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Operating Temperature . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Lead Solder Temperature ............. $260^{\circ} \mathrm{C}$ for 10 sec.
( 1.6 mm below seating plane)
Supply Voltage - Vcc . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 20 V
Average Output Current - Io ......... - 30 mA to 30 mA
Peak Output Current - Io ............ . internally limited
Output Voltage - Vo ....................... $\quad-0.4 \mathrm{~V}$ to 27 V
Input Voltage - V 1 . ......................... -0.5 V to 20 V
Input Power Dissipation - Pl ................ 265 mW [1]
Output Power Dissipation - Po .............. $125 \mathrm{~mW}{ }^{[2]}$
Total Power Dissipation - P .................. $360 \mathrm{~mW}{ }^{[3]}$

## Electrical Specifications

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted. See note 12.


Notes:

1. Derate linearly above $55^{\circ} \mathrm{C}$ free air temperature at a rate of $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Proper application of the derating factors will prevent IC junction temperatures from exceeding $125^{\circ} \mathrm{C}$ for ambient temperatures up to $85^{\circ} \mathrm{C}$.
2. Derate linearly above a free-air temperature of $70^{\circ} \mathrm{C}$ at a rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. A significant amount of power may be dissipated in the HCPL-4100 output circuit during the transition from the SPACE state to the MARK state when driving a data line or capacitive load (Соит). The average power dissipation during the transition can be estimated from the following equation which assumes a linear discharge of a capacitive load: $\mathrm{P}=\mathrm{Isc}_{\mathrm{sc}}\left(\mathrm{V}_{S O}+\mathrm{V}_{\mathrm{MO}}\right) / 2$, where $\mathrm{V}_{\mathrm{so}}$ is the output voltage in the SPACE state. The duration of this transition can be estimated as $t=$ Cout $\left(V_{S O}-V_{M O}\right) / I s c$. For typical applications driving twisted pair data lines with NRZ data as shown in Figure 11, the transition time will be less than $10 \%$ of one bit time.
3. Derate linearly above $55^{\circ} \mathrm{C}$ free-air temperature at a rate of $5.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The maximum current that will flow into the output in the mark state ( 1 sc ) is internally limited to protect the device. The duration of the output short circuit shall not exceed 10 ms
5. The device is considered a two terminal device, pins $1,2,3$, and 4 are connected together, and pins $5,6,7$, and 8 are connected together.

## Switching Specifications

for $0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 20 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted

Parameter	Symbol	Min.	Typ.	Max.	Units	Testing Conditions	Fig.	Note
Propagation Delay Time to Logic High Output Level	tPLH		0.3	1.6	$\mu \mathrm{S}$	$\mathrm{Co}=1000 \mathrm{pF}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{lo}=20 \mathrm{~mA}$	4,5,6	6
Propagation Delay Time to Logic Low Output Level	tPHL		0.2	1.0	$\mu \mathrm{S}$	$\mathrm{Co}_{\mathrm{o}}=1000 \mathrm{pF}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{lo}=20 \mathrm{~mA}$	4,5,6	7
Propagation Delay Time Skew	tPLH-tPHL		0.1		$\mu \mathrm{S}$	$\mathrm{lo}=20 \mathrm{~mA}$		
Output Rise Time (10-90\%)	$\mathrm{tr}_{r}$		16		ns	$\mathrm{IC}=20 \mathrm{~mA}, \mathrm{Co}=1000 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$.	5,7	8
Output Fall Time (90-10\%)	$t_{f}$		23		ns	$\mathrm{IO}=20 \mathrm{~mA}, \mathrm{Co}^{\prime}=1000 \mathrm{pF}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$.	5,7	9
Common Mode   Transient Immunity at Logic High Output Level	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	1,000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}(\text { peak }), \mathrm{VCC}=5 \mathrm{~V} \\ & \mathrm{IO}(\mathrm{~min} .)=12 \mathrm{~mA} \end{aligned}$	8, 9	10
Common Mode   Transient Immunity at Logic Low Output Level	CML	1,000	10,000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{1}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}(\text { peak }), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \text { lo }(\text { max. })=3 \mathrm{~mA} \end{aligned}$	8,9	11

## Insulation Related Specifications

Parameter	Symbol	Min.	Units	Conditions
Min. External Air Gap (Clearance)	L (IO1)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	L (IO2)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		IIIa		Material Group DIN VDE 0109

Notes:
6. The $t_{\text {PLH }}$ propagation delay is measured from the 1.3 volt level on the leading edge of the input pulse to the 10 mA level on the leading edge of the output pulse.
7. The $t_{P H L}$ propagation delay is measured from the 1.3 volt level on the trailing edge of the input pulse to the 10 mA level on the trailing edge of the output pulse.
8. The rise time, $\mathrm{t}_{\mathrm{r}}$, is measured from the $10 \%$ to the $90 \%$ level on the rising edge of the output current pulse.
9. The fall time, $\mathrm{t}_{\mathrm{f}}$, is measured from the $90 \%$ to the $10 \%$ level on the falling edge of the output current pulse.
10. The common mode transient immunity in the logic high level is the maximum (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, that can be sustained with the output in a Mark (" $\mathrm{H}^{\prime}$ ) state ( $\mathrm{i} . \mathrm{e} ., \mathrm{I}_{\mathrm{O}}>12 \mathrm{~mA}$ ).
11. The common mode transient immunity in the logic low level is the maximum (negative) $d V_{C M} / d t$ on the leading edge of the common mode pulse, $V_{C M}$, that can be sustained with the output in a Space (" $L$ ") state (i.e., $I_{O}>3 \mathrm{~mA}$ ).
12. Use of́ a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.


Figure 1. Typical Mark State Output Voltage vs. Temperature


Figure 3. Typical Space State Output Current vs. Temperature


Figure 5. Waveforms for $\mathbf{t P L H}^{2}, \mathbf{t}_{\text {PHL }}, \mathbf{t}_{\mathbf{r}}$, and $\mathbf{t}_{\mathbf{f}}$


Figure 2. Typical Output Voltage vs. Output Current in Mark State


Figure 4. Test Circuit for $\mathbf{t P L H}^{\text {, }}$, $\mathbf{t P H}^{\prime}, \mathbf{t}_{\mathbf{r}}$, and $\mathbf{t}_{\mathbf{f}}$


Figure 6. Typical Propagation Delay vs. Temperature


Figure 7. Typical Rise, Fall Times vs. Temperature


Figure 8. Test Circuit for Common Mode Transient Immunity


Figure 9. Typical Waveforms for Common Mode Transient Immunity

## Applications

Data transfer between equipment which employs current loop circuits can be accomplished via one of three configurations: simplex, half duplex or full duplex communication. With these configurations, point to point and multidrop arrangements are possible. The appropriate configuration to use depends upon data rate, number of stations, number and length of lines, direction of data flow, protocol, current source location and voltage compliance value, etc.

## SIMPLEX

The simplex configuration, whether point to point or multidrop, gives unidirectional data flow from transmitter(s) to receiver. This is the simplest configuration for use in long line length (two wire), moderate data rate, and low current source compliance level applications. A block diagram of simplex point to point arrangement is given in Figure 10 for the HCPL-4100 transmitter optocoupler.


Figure 10. Simplex Point to Point Current Loop System Configuration

Major factors which limit maximum data rate performance for a simplex loop are the location and compliance voltage of the loop current source as well as the total line capacitance. Application of the HCPL-4100 transmitter in a simplex loop necessitates that a non-isolated active receiver (containing current source) be used at the opposite end of the current loop. With long line length, large line capacitance will need to be charged to the compliance voltage level of the current source before the receiver loop current decreases to zero. This effect limits upper data rate performance. Slower data rates will occur with larger compliance voltage levels. The maximum compliance level is determined by the transmitter breakdown characteristic. In addition, adequate compliance of the current source must be available for voltage drops across station(s) during the MARK state in multidrop applications for long line lengths.
In a simplex multidrop application with multiple HCPL4100 transmitters and one non-isolated active receiver, priority of transmitters must be established.
A recommended non-isolated active receiver circuit which can be used with the HCPL-4100 in point to point or in multidrop 20 mA current loop applications is given in Figure 11. This non-isolated active receiver current threshold must be chosen properly in order to provide adequate noise immunity as well as not to detect SPACE state current (bias current) of the HCPL-4100 transmitter. The receiver input threshold current is Vth/Rth $\approx 10 \mathrm{~mA}$. A simple transistor current source provides a nominal 20 mA loop current over a Vcc compliance range of 6 V dc to 27 V dc. A resistor can be used in place of the constant current source for simple applications where the wire loop
distance and number of stations on the loop are fixed. A minimum transmitter output load capacitance of 1000 pF is required between pins 3 and 4 to ensure absolute stability.
Length of the current loop (one direction) versus minimum required DC supply voltage, VCC, of the circuit in Figure 11 is graphically illustrated in Figure 12. Multidrop configurations will require larger $V_{C C}$ than Figure 12 predicts in order to account for additional station terminal voltage drops.


L = LOOP LENGTH (ONE DIRECTION) METRES
Figure 12. Miminum Required Supply Voltage, $\mathbf{V}_{\mathrm{cc}}$, vs. Loop Length for Current Loop Circuit of Figure 12


Figure 11. Recommended Non-Isolated Active Receiver with HCPL-4100 Isolated Transmitter for Simplex Point to Point 20 mA Current Loop


L - LOOP LENGTH (ONE DIRECTION) - METRES
Figure 13. Typical Data Rate vs. Distance and Supply Voltage

Typical data rate performance versus distance is illustrated in Figure 13 for the combination of a non-isolated active receiver and HCPL-4100 optically coupled current loop transmitter shown in Figure 11. Curves are shown for $25 \%$ distortion data rate at different VCc values. $25 \%$ distortion data rate is defined as that rate at which $25 \%$ distortion occurs to output bit interval with respect to the input bit interval. Maximum data rate (dotted line) is restricted by device characteristics. An input Non-Return-to-Zero (NRZ) test waveform of 16 bits ( 0000001011111101 ) was used for data rate distortion measurements. Enhanced speed performance of the loop system can be obtained with lower VCC supply levels, as illustrated in Figure 13. In addition, when loop current is supplied through a resistor instead of by a current source, an additional series termination resistance equal to the characteristic line impedance can be used at the HCPL4100 transmitter end to enhance speed of response by approximately $20 \%$.

The cable used contained five pairs of unshielded, twisted, 22 AWG wire (Dearborn \#862205). Loop current is 20 mA nominal. Input and output logic supply voltages are 5 V dc.


## FULL DUPLEX

Full duplex point to point communication of Figure 14 uses a four wire system to provide simultaneous, bidirectional data communication between local and remote equipment. Basic application uses two simplex point to point loops which have two separate, active, non-isolated units at one common end of the loops. The other end of each loop is isolated.
As Figure 14 illustrates, the combination of HewlettPackard current loop optocouplers, HCPL-4100 transmitter and HCPL-4200 receiver, can be used at the isolated end of current loops. Cross talk and common mode coupling are greatly reduced when optical isolation is implemented at the same end of both loops, as shown. Full duplex data rate is limited by the non-isolated active receiver current loop. Comments mentioned under simplex configuration apply to the full duplex case. Consult the HCPL-4200 receiver optocoupler data sheet for specified device performance.

## HALF DUPLEX

The half duplex configuration, whether point to point or multidrop, gives non-simultaneous bidirectional data flow from transmitters to receivers shown in Figures 15a and 15b. This configuration allows the use of two wires to carry data back and forth between local and remote units. However, protocol must be used to determine which specific transmitter can operate at any given time. Maximum data rate for a half duplex system is limited by the loop current charging time. These considerations were explained in the Simplex configuration section.
Figures $15 a$ and 15b illustrate half duplex application for the combination of HCPL-4100/-4200 optocouplers. The unique and complementary designs of the HCPL-4100 transmitter and HCPL-4200 receiver optocouplers provide many designed-in benefits. For example, total optical isolation at one end of the current loop is easily accomplished, which results in substantial removal of common mode influences, elimination of ground potential differences and reduction of power supply requirements. With this combination of HCPL-4100/-4200 optocouplers, specific current loop noise immunity is provided, i.e., minimum SPACE state current noise immunity is 1 mA , MARK state noise immunity is 8 mA .

Voltage compliance of the current source must be of an adequate level for operating all units in the loop while not exceeding 27 V dc, the maximum breakdown voltage for the HCPL-4100. Note that the HCPL-4100 transmitter will allow output loop current to conduct when input Vcc power is off. Consult the HCPL-4200 receiver optocoupler data sheet for specified device performance.
For more informaton about the HCPL-4100/-4200 optocouplers, consult Application Note 1018.

Figure 14. Full Duplex Point to Point Current Loop System Configuration


Figure 15. Half Duplex Current Loop System Configurations for (a) Point to Point, (b) Multidrop


## Description

The HCPL-4200 optocoupler is designed to operate as a receiver in equipment using the 20 mA Current Loop. 20 mA current loop systems conventionally signal a logic high state by transmitting 20 mA of loop current (MARK), and signal a logic low state by allowing no more than a few milliamperes of loop current (SPACE). Optical coupling of the signal from the 20 mA current loop to the logic output breaks ground loops and provides for a very high common mode rejection. The HCPL-4200 aids in the design process by providing guaranteed thresholds for logic high state and logic low state for the current loop, providing an LSTTL, TTL, or CMOS compatible logic interface, and providing guaranteed common mode rejection. The buffer circuit on the current loop side of the HCPL-4200 provides typically 0.8 mA of hysteresis which increases the immunity to common mode and differential mode noise. The buffer also provides a controlled amount of LED drive current which takes into account LED light output degradation. The internal shield allows a guaranteed $1000 \mathrm{~V} / \mu \mathrm{S}$ common mode transient immunity.

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply   Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	20	Volts
Forward Input   Current (SPACE)	ISI	0	2.0	mA
Forward Input   Current (MARK)	$\mathrm{I}_{\mathrm{MI}}$	14	24	mA
Operating   Temperature	$\mathrm{TA}_{\mathrm{A}}$	0	70	${ }^{\circ} \mathrm{C}$
Fan Out	N	0	4	TTL Loads
Logic Low   Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	Volts
Logic High   Enable VoItage	$\mathrm{V}_{\mathrm{EH}}$	2.0	20	Volts

## Absolute Maximum Ratings

(No Derating Required up to $70^{\circ} \mathrm{C}$ )

Storage Temperature . ............... - $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
Operating Temperature . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	
Lead Solder Temperature .....   ( 1.6 mm	$260^{\circ} \mathrm{C}$ for 10 sec. the seating plane)
Supply Voltage - Vcc	0 V to 20 V
Average Input Current - II	-30 mA to 30 mA
Peak Transient Input Current - II	$0.5 \mathrm{~A}^{[1]}$
Enable Input Voltage - $\mathrm{V}_{\mathrm{E}}$	-0.5 V to 20 V
Output Voltage - Vo	-0.5 V to 20 V
Average Output Current - Io	25 mA
Input Power Dissipation - $\mathrm{P}_{1}$	$90 \mathrm{~mW}{ }^{[2]}$
Output Power Dissipation - Po	$210 \mathrm{~mW}{ }^{[3]}$
Total Power Dissipation - P	255 mW [4]

## Electrical Specifications

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.8 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted.
See note 13 .

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions		Fig.	Note
Mark State Input Current	IMI	12			mA			1,2,3	
Mark State Input Voltage	$\mathrm{V}_{\mathrm{MI}}$		2.52	2.75	Volts	$11=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{E}}=$ Don't Care	3, 4	
Space State Input Current	ISI			3	mA			1,2,3	
Space State Input Voltage	$\mathrm{V}_{\text {si }}$		1.6	2.2	Volts	$\mathrm{I}_{1}=0.5$ to 2.0 mA	$\mathrm{V}_{\mathrm{E}}=$ Don't Care	1,3	
Input Hysteresis Current	lhys	0.3	0.8		mA			1	
Logic Low Output Voltage	VOL			0.5	Volts	$\mathrm{IOL}=6.4 \mathrm{~mA} 4$ T	L Loads) $\mathrm{I}=3 \mathrm{~mA}$	5	
Logic High Output Voltage	VOH	2.4			Volts	$1 \mathrm{IOH}=-2.6 \mathrm{~mA}$,	$\mathrm{I}=12 \mathrm{~mA}$	6	
Output Leakage Current	Іонн			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	$1 \mathrm{l}=20 \mathrm{~mA}$		
(Vout > Vcc)	H			500	$\mu \mathrm{A}$	$\mathrm{V} 0=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		
Logic High Enable Voltage	VEH	2.0			Volts				
Logic Low Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$			0.8	Volts				
				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{E}}=2.7 \mathrm{~V}$			
Current	leh			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{E}}=5.5 \mathrm{~V}$			
			. 004	250	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{E}}=20 \mathrm{~V}$			
Logic Low Enable Current	IEL			-0.32	mA	$\mathrm{V}_{\mathrm{E}}=0.4 \mathrm{~V}$			
Logic Low Supply	Icct		4.5	6.0	mA	$\mathrm{Vcc}=5.5 \mathrm{~V}$	$\mathrm{l}=0 \mathrm{~mA}$		
Current			5.25	7.5	mA	$\mathrm{V}_{\mathrm{cc}}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{E}}=$ Don't Care		
Logic High Supply	Icch		2.7	4.5	mA	$\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}$	$1 \mathrm{l}=20 \mathrm{~mA}$		
Current			3.1	6.0	mA	$\mathrm{Vcc}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{E}}=$ Don't Care		
	lozl			-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{E}}=2.0 \mathrm{~V}, \mathrm{l}=20 \mathrm{~mA}$		
High Impedance State				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			
Output Current	lozh			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			
				500	$\mu \mathrm{A}$	$\mathrm{V}_{0}=20 \mathrm{~V}$			
Logic Low Short	los	25			mA	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$			
Circuit Output Current		40			mA	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{cc}}=20 \mathrm{~V}$	$\mathrm{I}_{1}=0 \mathrm{~mA}$		5
Logic High Short	IOSH	-10			mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	$\mathrm{I}=20 \mathrm{~mA}$		5
Circuit Output Current		-25			mA	$\mathrm{Vcc}=20 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$		
Input-Output Insulation	$V_{\text {ISO }}$	2500			$\mathrm{V}_{\text {RMS }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{H}} \leq 50 \%, \mathrm{t}=1 \mathrm{~m} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			6
Input-Output Resistance	Ri-O		$10^{12}$		ohms	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$			6
Input-Output Capacitance	$\mathrm{CH}-\mathrm{O}$		1.0		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{1-\mathrm{O}}=$	0 V dc		6
Input Capacitance	CIN		120		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{I}}=0$	V dc, Pins 1 and 2		

## Switching Specifications

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V} C \mathrm{C} \leq 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.8 \mathrm{~V}$, all typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{VCC}=5 \mathrm{~V}$ unless otherwise noted

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note		
Propagation Delay Time to Logic High Output Level	tPLH		0.23	1.6	$\mu \mathrm{S}$	$\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7, 8, 9	7		
Propagation Delay Time to Logic Low Output Level	tPHL		0.17	1.0	$\mu \mathrm{S}$	$\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7, 8, 9	8		
Propagation Delay Time Skew	tPLH-tPHL		60		ns	$\mathrm{I}_{1}=20 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$	7, 8, 9			
Output Enable Time to Logic Low Level	tPZL		25		ns	$\mathrm{I}=0 \mathrm{~mA}, \mathrm{CLL}^{\prime}=15 \mathrm{pF}$	$\begin{gathered} 11,12, \\ 14 \\ \hline \end{gathered}$			
Output Enable Time to Logic High Level	tpZH		28		ns	$\mathrm{I}=20 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$	$\begin{gathered} 11,12 \\ 13 \end{gathered}$			
Output Disable Time from Logic Low Level	tplZ		60		ns	$\mathrm{I}=0 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$	$\begin{gathered} 11,12, \\ 14 \end{gathered}$			
Output Disable Time from Logic High Level	tPHZ		105		ns	$\mathrm{I}_{\mathrm{I}}=20 \mathrm{~mA}, \mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$	$\begin{gathered} 11,12, \\ 13 \end{gathered}$			
Output Rise Time (10-90\%)	tr		55		ns	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7, 8, 10	9		
Output Fall Time (90-10\%)	$t_{f}$		15		ns	$\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7, 8, 10	10		
Common Mode   Transient Immunity at Logic High Output Level	$\|\mathrm{CMH}\|$	1,000	10,000		$\mathrm{V} / \mu \mathrm{S}$	$\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak) } \\ & I_{I}=12 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	15, 16	11		
Common Mode   Transient Immunity at Logic Low Output Level	\|CML		1,000	10,000		$\mathrm{V} / \mu \mathrm{S}$	$\begin{aligned} & V_{C M}=50 \mathrm{~V} \text { (peak) } \\ & \\|_{1}=3 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	15, 16	12	

## Insulation Related Specifications

Parameter	Symbol	Min.	Units	Conditions
Min. External Air Gap (Clearance)	L (IO1)	$\geq 7$	mm	Measured from input terminals to output terminals
Min. External Tracking Path (Creepage)	$\mathrm{L}(\mathrm{IO} 2)$	$\geq 7$	mm	Measured from input terminals to output terminals
Min. Internal Plastic Gap (Clearance)		0.08	mm	Through insulation distance conductor to conductor
Tracking Resistance	CTI	175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group (per DIN VDE 0109)		11 a		Material Group DIN VDE 0109

## NOTES:

1. $\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps .
2. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Proper application of the derating factors will prevent IC junction temperatures from exceeding $125^{\circ} \mathrm{C}$ for ambient temperatures up to $85^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $3.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $4.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Duration of output short circuit time shall not exceed 10 ms .
6. The device is considered a two terminal device, pins $1,2,3$, and 4 are connected together and pins $5,6,7$, and 8 are connected together.
7. The $t_{\text {PLH }}$ propagation delay is measured from the 10 mA level on the leading edge of the input pulse to the 1.3 V level on the leading edge of the output pulse.
8. The $t_{\text {PHL }}$ propagation delay is measured from the 10 mA level on the trailing edge of the input pulse to the 1.3 V level on the trailing edge of the output pulse.
9. The rise time, $\mathrm{t}_{\mathrm{r}}$, is measured from the $10 \%$ to the $90 \%$ level on the rising edge of the output logic pulse.
10. The fall time, $\mathrm{t}_{\mathrm{f}}$, is measured from the $90 \%$ to the $10 \%$ level on the falling edge of the output logic pulse.
11. Common mode transient immunity in the logic high level is the maximum (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, which can be sustained with the output voltage in the logic high state (i.e., $\mathrm{V}_{\mathrm{O}} \geq 2 \mathrm{~V}$ ).
12. Common mode transient immunity in the logic low level is the maximum (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, which can be sustained with the output voltage in the logic low state (i.e., $\mathrm{V}_{\mathrm{O}} \geq 0.8 \mathrm{~V}$ ).
13. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 5 and 8 is recommended.


Figure 1. Typical Output Voltage vs. Loop Current


Figure 4. Typical Input Voltage vs. Temperature


Figure 2. Typical Current Switching Threshold vs. Temperature


Figure 5. Typical Logic Low Output Voltage vs. Temperature


Figure 3. Typical Input Loop Voltage vs. Input Current


Figure 6. Typical Logic High Output Current vs. Temperature

$V_{I N}=5$ VOLT, $100 \mathrm{KHz} 10 \%$ DUTY CYCLE $\quad C_{L}=15 \mathrm{pF}$ INCLUDING PROBE D1 - D4 ARE 1N916 OR 1N3064 AND JIG CAPACITANCE
Figure 7. Test Circuit for tpHL, tPLH, $\mathbf{t}_{\mathrm{r}}$, and $\mathbf{t}_{\mathbf{f}}$


Figure 8. Waveforms for $\mathbf{t P H L}^{\prime}$, tPLH, $\mathbf{t}_{\mathbf{r}}$, and $\mathbf{t}_{\mathrm{f}}$


Figure 9. Typical Propagation Delay vs. Temperature




Figure 13. Typical Logic High Enable Propagation Delay vs. Temperature


Figure 10. Typical Rise, Fall Time vs. Temperature


Figure 12. Waveforms for tpZH, tpZL, tphZ, and tpLZ


Figure 14. Typical Logic Low Enable Propagation Delay vs. Temperature



Figure 15. Test Circuit for Common Mode Transient Immunity

## Applications

Data transfer between equipment which employs current loop circuits can be accomplished via one of three configurations: simplex, half duplex or full duplex communication. With these configurations, point-to-point and multidrop arrangements are possible. The appropriate configuration to use depends upon data rate, number of stations, number and length of lines, direction of data flow, protocol, current source location and voltage compliance value, etc.

## SIMPLEX

The simplex configuration, whether point to point or multidrop, gives unidirectional data flow from transmitter to receiver(s). This is the simplest configuration for use in long line length (two wire), for high data rate, and low current source compliance level applications. Block diagrams of simplex point-to-point and multidrop arrangements are given in Figures 16a and 16b respectively for the HCPL4200 receiver optocoupler.
For the highest data rate performance in a current loop, the configuration of a non-isolated active transmitter (containing current source) transmitting data to a remote isolated receiver(s) should be used. When the current
source is located at the transmitter end, the loop is charged approximately to $\mathrm{V}_{\mathrm{MI}}(2.5 \mathrm{~V}$ ). Alternatively, when the current source is located at the receiver end, the loop is charged to the full compliance voltage level. The lower the charged voltage level the faster the data rate will be. In the configurations of Figures $16 a$ and 16b, data rate is independent of the current source voltage compliance level. An adequate compliance level of current source must be available for voltage drops across station(s) during the MARK state in multidrop applications or for long line length. The maximum compliance level is determined by the transmitter breakdown characteristic.
A recommended non-isolated active transmitter circuit which can be used with the HCPL-4200 in point-to-point or in multidrop 20 mA current loop applications is given in Figure 18. The current source is controlled via a standard TTL 7407 buffer to provide high output impedance of current source in both the ON and OFF states. This non-isolated active transmitter provides a nominal 20 mA loop current for the listed values of $\mathrm{V}_{\mathrm{CC}}$, R2 and R3 in Figure 17.


Figure 16. Simplex Current Loop System Configurations for (a) Point-to-Point, (b) Multidrop


Figure 17. Recommended Non-Isolated Active Transmitter with HCPL-4200 Isolated Receiver for Simplex Point-to-Point 20 mA Current Loop

Length of current loop (one direction) versus minimum required DC supply voltage, $\mathrm{V}_{\mathrm{CC}}$, of the circuit in Figure 17 is graphically illustrated in Figure 18. Multidrop configurations will require larger $\mathrm{V}_{\mathrm{CC}}$ than Figure 18 predicts in order to account for additional station terminal voltage drops.

Typical data rate performance versus distance is illustrated in Figure 19 for the combination of a non-isolated active transmitter and HCPL-4200 optically coupled current loop receiver shown in Figure 17. Curves are shown for 10\% and $25 \%$ distortion data rate. $10 \%$ (25\%) distortion data rate is defined as that rate at which $10 \%$ (25\%) distortion occurs to output bit interval with respect to input bit interval. An input Non-Return-to-Zero (NRZ) test waveform of 16 bits ( 0000001011111101 ) was used for data rate distortion measurements. Data rate is independent of current source supply voltage, VCC.
The cable used contained five pairs of unshielded, twisted, 22 AWG wire (Dearborn \#862205). Loop current is 20 mA nominal. Input and output logic supply voltages are 5 V dc.

## FULL DUPLEX

The full duplex point-to-point communication of Figure 20 uses a four wire system to provide simultaneous, bidirectional data communication between local and remote

Figure 18. Minimum Required Supply Voltage, $\mathbf{V}_{\mathbf{C C}}$, vs. Loop Length for Current Loop Circuit of Figure 18
equipment. The basic application uses two simplex point-to-point loops which have two separate, active, nonisolated units at one common end of the loops. The other end of each loop is isolated.
As Figure 20 illustrates, the combination of HewlettPackard current loop optocouplers, HCPL-4100 transmitter and HCPL-4200 receiver, can be used at the isolated end of current loops. Cross talk and common mode coupling are greatly reduced when optical isolation is implemented at the same end of both loops, as shown. The full duplex data rate is limited by the non-isolated active receiver current loop. Comments mentioned under simplex configuration apply to the full duplex case. Consult the HCPL-4100 transmitter optocoupler data sheet for specified device performance.

## HALF DUPLEX

The half duplex configuration, whether point-to-point or multidrop, gives non-simultaneous bidirectional data flow from transmitters to receivers shown in Figures 21a and 21b. This configuration allows the use of two wires to carry data back and forth between local and remote units. However, protocol must be used to determine which specific transmitter can operate at any given time. Maximum data rate for a half duplex system is limited by the loop current charging time. These considerations were explained in the Simplex configuration section.


Figure 20. Full Duplex Point-to-Point Current Loop System Configuration
Figures 21a and 21b illustrate half duplex application for the combination of HCPL-4100/-4200 optocouplers. The unique and complementary designs of the HCPL-4100 transmitter and HCPL-4200 receiver optocouplers provide many designed-in benefits. For example, total optical iso-
lation at one end of the current loop is easily accomplished, which results in substantial removal of common mode influences, elimination of ground potential differences and reduction of power supply requirements. With this combination of HCPL-4100/-4200 optocouplers, specific current loop noise immunity is provided, i.e., minimum SPACE state current noise immunity is 1 mA , MARK state noise immunity is 8 mA .
Voltage compliance of the current source must be of an adequate level for operating all units in the loop while not exceeding 27 V dc, the maximum breakdown voltage for the HCPL-4100. Note that the HCPL-4100 transmitter will allow loop current to conduct when input $\mathrm{V}_{\mathrm{Cc}}$ power is off. Consult the HCPL-4100 transmitter optocoupler data sheet for specified device performance.
For more information about the HCPL-4100/-4200 optocouplers, consult Application Note 1018.


Figure 21. Half Duplex Current Loop System Configurations for (a) Point-to-Point, (b) Multidrop

# Optocoupler Option for 5000 Vac/ 1 Minute Requirement Technical Data 

## OPTION 020

## Features

- Special Construction and Testing
- UL Recognition for 5000 Vac/1 Minute Requirement (File No. E55361)


## Description

Option 020 consists of special construction on a wide range of Hewlett-Packard plastic optocouplers. After assembly, each unit is subjected to an equivalent electrical performance test to ensure its capability to withstand 5000 Vac input to output for one minute. This test is recognized by Underwriters Laboratory as proof that these components may be used in many high voltage applications.

## Applications

Dielectric withstand voltage ratings are required by Underwriters Laboratory when components are used in certain types of electronic equipment. The voltage rating depends on the type of electronic equipment and the specific application within the equipment. The 5000

Vac/1 Minute dielectric withstand voltage rating provided by Option 020 offers excellent high voltage input to output protection. Some applicable UL documents are listed below.


UL Spec   Number	Specification Title
1577	Standard for Optical Isolators Applications
114	Appliance and Business Equipment
347	High Voltage Industrial Control Equipment
478	Information Processing and Business Equipment
508	Industrial Control Equipment
544	Medical and Dental Equipment
698	Industrial Control Equipment for Use in
773	Hazardous Locations   913
Plug-in, Locking Type Photocontrols   Intrinsically Safe Apparatus and Associated   Apparatus	
1016	Standard for Energy Management Equipment   1244
Power Supplies   Electrical and Electronic Measuring and   Testing Equipment	

## Specifications

All specifications for optocouplers remain unchanged when this option is ordered.

## Ordering Information

To obtain this high voltage capability on plastic optocouplers order the standard part number and Option 020.

Examples:
6N135 HCPL-2601
Option 020 Option 020

This option is currently available on the following plastic optocouplers.

6N135/6
6N137
6N138/9
HCPL-2601/11
HCPL-4562
HCPL-4502/3
Contact your local HP Sales Representative concerning availability of this option for optocouplers not listed.

# Surface Mount Options for Optocouplers 

## Technical Data

## Features

- Surface Mountable
- Leads Trimmed for a Butt Joint Connection (Option 100)
- Leads Formed to a Gull

Wing Profile (Option 300)

- Compatible with Vapor Phase Reflow and Wave Soldering Process
- Meets All Electrical Specifications of Corresponding Standard Part Numbers
- Available for All Optocouplers in Plastic Packages

Option 100 Drawing


## Description

Option 100 is an optocoupler in a standard sized dual-in-line package, with trimmed leads (butt joint). The distance from the printed circuit board (PCB), to the bottom of the optocoupler package, will be typically 0.035 inches. The height of the optocoupler package is typically 0.150 inches, leaving a distance of 0.185 inches from PCB to the top of the optocoupler package.

Option 300 is an optocoupler in a standard dual-in-line package with gull wing leads. The lead profile is designed to be

Option 100/300

## Applications

Both options enable electronic component assemblers to include Hewlett-Packard optocouplers on a PCB that utilizes surface mount assembly processes. These options do not require "through holes" in a PCB. This reduces board costs, while potentially increasing assembly rates and increasing component density per board.
compatible with standard surface mount processes. These optocouplers, particularly the duals, allow efficient utilization of valuable board space.
ompent desity per board

## Option 300 Drawing




## Specifications

All electrical specifications for optocouplers remain unchanged when this option is ordered. In addition, the device will withstand typical vapor phase reflow soldering conditions of $215^{\circ} \mathrm{C}$ for 30 seconds, and wave solder immersion for 5 seconds at $260^{\circ} \mathrm{C}$.

## Ordering Information

Both options are available for all optocouplers in plastic packages. To obtain these options, order the standard part number and Option 100 or 300.

## Examples:

6N136 HCPL-2200
Option 100 Option 300

# 200-Volt/160-Ohm, 1 Form A Small-Signal Solid State Relay 

## Technical Data

## Features

- Compact Solid-State BiDirectional Signal Switch
- Normally-Off Single-Pole Relay Function (1 Form A)
- Very High Output OffImpedance: $\mathbf{1 0 , 0 0 0}$ Gigaohms Typical at $25^{\circ} \mathrm{C}$
- Very Low Output Offset Voltage: < $0.5 \mu \mathrm{~V}$
- 200-Volt Output Withstand Voltage
- High-Transient Immunity: $>2000 \mathrm{~V} / \mu \mathrm{s}$
- Monolithic High-Voltage IC
- Operating Range: $-40^{\circ} \mathrm{C}$ to +85C
- Very Low Input Current ( 1 mA ); CMOS Compatibility
- High-Speed Switching: 50 $\mu \mathrm{s}$ Typical
- 160-Ohm Maximum OnResistance at $25^{\circ} \mathrm{C}$
- Surface Mount Option
- 8-kV ESD Immunity: MIL-STD-883 Method 3015
- Input-to-Output Insulation Voltage: 2500 Vac, 1 Minute
- UL Certification Pending


## Applications

- Relay Scanners \& Analog Input Modules of Data Acquisition Systems
- Analog Input Modules of Programmable Logic Controllers
- Relay Multiplexers of High-Performance Voltmeters
- Telecommunication Test Instruments
- Functional Tester of Board Test Equipment
- Analog Signal Multiplexer
- Flying Capacitor Multiplexer
- Reed Relay Replacement


## Outline Drawing



## Description

The HSSR-8200 consists of a high-voltage integrated circuit optically coupled with a light emitting diode. This device is a solid-state replacement for single-pole, normally-open electromechanical relays used for general purpose switching of analog signals.

The light-emitting diode controls the ON/OFF function of the solid-state relay. The detector contains high voltage MOS transistors and a high speed photosensitive drive circuit. This relay has superior OFF impedance, very low output offset voltage and input drive current.

The electrical and switching characteristics of the HSSR8200 are specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The low $\mathrm{I}_{\mathrm{F}}$ allows compatibility with TTL, LSTTL, and CMOS logic resulting in low power consumption compared to other solid state and mechanical relays.

Schematic



Recommended Operating Conditions

Description	Symbol	Min.	Max.	Units
Input Current (ON)	$\mathrm{I}_{\text {FoN) }}$	$\mathbf{1}$	$\mathbf{5}$	mA
Input Voltage (OFF)	$\mathrm{V}_{\text {Foof) }}$	$\mathbf{0}$	0.8	$\mathrm{Volt}^{(0)}$
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	+85	${ }^{\circ} \mathrm{C}$


Absolute Maximum Ratings	
Storage Temperature............................................. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature	$215^{\circ} \mathrm{C}$ for 30 s ; Reflow Solder $260^{\circ} \mathrm{C}$ for 5 s ; Wave Solder
Average Input Current - $\mathrm{I}_{\mathrm{F}}$	10 mA
Repetitive Peak Input Current - $\mathrm{I}_{\mathrm{F}}$	.. 20 mA ; 50\% Duty Cycle
Transient Peak Input Current - $\mathrm{I}_{\mathrm{F}}$. ( $\leq 1 \mu$ s pulse wid	.................................. 100 mA ;   1 kHz Pulse Repetition Rate)
Reverse Input Voltage	$\ldots .5 \mathrm{~V}$
Average Output Current	. $40 \mathrm{~mA}^{[1]}$
Input-Output Insulation Voltage	$2500 \mathrm{VAC}^{[6]}$
Output Power Dissipation	.. $320 \mathrm{~mW}{ }^{[2]}$
Output Voltage - $\mathrm{V}_{0}$	-200 V to 200 V



R1-REQUIRED CURRENT-LIMITING RESISTOR FOR $I_{F(O N)}=1 \mathrm{~mA}$
R2-PULL-UP RESISTOR FOR $V_{F(O F F)}<\mathbf{8 0 0} \mathbf{m V}$; IF ( $\left.\mathrm{VCC}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{OH}}\right)<\mathbf{8 0 0} \mathrm{mV}$, OMIT R2
R3, C- OPTIONAL PEAKING CIRCUIT FOR $I_{F(P K)}=5 \mathrm{~mA}$, toN $<200 \mu \mathrm{~s}$

Figure 1. Recommended Input Circuit

## Electrical Specifications

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 5 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$, and all Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless
otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Notes
Output Withstand Voltage	$\mid \mathrm{V}_{\text {OOFF) }} \mathrm{l}$	200	245		V	$\mathrm{I}_{\mathrm{o}}=1 \mu \mathrm{~A}$		5
Output On-Resistance	$\mathrm{R}_{\text {(ON) }}$	70	125	160	$\Omega$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{O}}=1 \mathrm{MA} \end{aligned}$	$\begin{gathered} 2,3 \\ 4 \end{gathered}$	
		40	125	250		$\mathrm{I}_{\mathrm{o}}=1 \mathrm{MA}$		
		30	100	200		$\mathrm{I}_{\mathrm{o}}=40 \mathrm{~mA}$		
Output On-Current Rating	$\mathrm{II}_{\mathrm{OON})} \mathrm{l}$			40	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{o}} \leq 8 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}} \leq 40^{\circ} \mathrm{C} \end{aligned}$		1
Output Off-Resistance	$\mathrm{R}_{\text {(OFF) }}$	50	10,000		G $\Omega$	$\mathrm{V}_{\mathrm{O}}=200 \mathrm{~V}$	5	6
Output Off-Leakage Current	$\mathrm{I}_{\text {O(OFF) }}$		0.02	4.0	nA	$\mathrm{V}_{\mathrm{o}}=200 \mathrm{~V}$	5	
Output Off-Capacitance	$\mathrm{C}_{\text {(OFF) }}$			4.5	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	6	
Output Offset Voltage	$\mathrm{V}_{\mathrm{ocos})}$	$\begin{gathered} \text { Note } \\ 3 \end{gathered}$	-0.2	$\begin{gathered} \text { Note } \\ 3 \end{gathered}$	$\mu \mathrm{V}$	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	$\begin{gathered} 7,16, \\ 17 \end{gathered}$	3
			-1.3			$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$\mathrm{V}_{\mathrm{R}}$	5	45		V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Diode   Temperature Coefficient	$\mathrm{dV} \mathrm{F}_{\mathrm{F}} / \mathrm{dT}$		-1.75		$\begin{gathered} \mathrm{mV} / \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$		
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}$	1.0	1.2	1.85	V	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	8	
Input Capacitance	$\mathrm{C}_{\text {IN }}$		21		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V} ; \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		
Input-Output Insulation	$\mathrm{V}_{\text {Iso }}$	2500			$\mathrm{V}_{\text {RMS }}$	$\begin{aligned} & \mathrm{RH}=45 \%, \\ & \mathrm{t}=1 \min ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		4,5
Input-Output Capacitance	$\mathrm{C}_{\text {I-o }}$		0.6	1.0	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{I}-\mathrm{o}}=0 \mathrm{~V} ; \\ & \mathrm{f}=1 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		4
Input-Output Resistance	$\mathrm{R}_{\text {I- }}$	100	100,000		G $\Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}-\mathrm{o}}=500 \mathrm{VDC} ; \\ & \mathrm{t}=1 \mathrm{~min} ; \\ & \mathrm{RH}=45 \% \end{aligned}$		4

## Switching Specifications

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{FON})} \leq 5 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{FOFF})} \leq 0.8 \mathrm{~V}$, and all Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.



Figure 2. Typical On State I.V Characteristics.


Figure 4. Typical Output Resistance vs. Temperature.


Figure 3. Typical Output Resistance vs. Input Current.


Figure 5. Typical Output Leakage vs. Temperature.


Figure 6. Typical Output Capacitance vs. Output Voltage.


Figure 8. Typical Input Forward Current vs. Forward Voltage.


Figure 7. Output Offset Voltage Distribution.


Figure 9. Switching Test Circuit for $\mathbf{t}_{\text {ON }}, \mathbf{t}_{\text {OFF }}$.


Figure 10. Typical $t_{\text {on }}$ and $t_{\text {ofF }}$ vs. Input Current.


Figure 12. Normalized $t_{\text {ON }}$ and $t_{\text {ofF }}$ vs. Temperature.


Figure 11. $\mathrm{t}_{\mathrm{oN}}$ and $\mathrm{t}_{\text {opF }}$ vs. Output Voltage.


Figure 13. Output Transient Rejection Test Circuit.


Figure 14. Input-Output Transient Rejection.


EITHER-POLARITY INPUTS:
$\mathrm{D}_{\mathrm{S}}$ - DUAL-POLARITY BREAKDOWN DEVICE, $\mathrm{V}_{\mathrm{S}}<0.5 \mathrm{~V}_{\mathrm{O}}$ (OFF) SINGLE-POLARITY INPUTS:
$\mathrm{D}_{\mathrm{S}}$ - UNI-POLAR BREAKDOWN DEVICE, $\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{O}}$ (OFF)

Figure 15. Over-Voltage Protection in Multiplexer Applications.


Figure 16. Differential Output Connections to Minimize Offset Voltage Effects.


Figure 17. Voltage Offset Test Setup.

## Notes:

1. Derate linearly above $40^{\circ} \mathrm{C}$ at a rate of $0.3 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $60^{\circ} \mathrm{C}$ at a rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. $\mathrm{V}_{\mathrm{O}(\mathrm{OS})}$ is a function of $\mathrm{I}_{\mathrm{FON}}$, and is defined between pins 8 and 5 with pin 5 as reference. $\mathrm{V}_{\mathrm{OO}(\mathrm{OS})}$ must be measured in a stable ambient. See Figure 7 for variation of $\mathrm{V}_{\mathrm{OOS})}$ around the typical value.
4. Device considered a two terminal device: pins 1 and 4 shorted together, and pins 5 and 8 shorted together.
5. For higher withstand voltage rating and regulatory certification, please contact your HP Field Sales Engineer.
6. $\mathrm{R}_{\text {(OFF) }}$ is defined as $\mathrm{V}_{\text {O(OFF) }} / \mathrm{I}_{\text {OOFF) }}$

Hermetic Optocouplers

## Hermetic Optocouplers

Choose from Hewlett-Packard's broad line of high performance hermetic optocouplers to meet your military, aerospace, and high reliability applications. There are three ceramic package styles to choose from: 8 and 16 pin dual in-line packages, and a 20 terminal leadless chip carrier (LCC) package. Available in each package style are four basic families of optocouplers: high gain, high speed transistor, high speed logic gate, and several application specific devices. Most 8 pin units allow a choice of either single or dual channels. Three functional device types are offered in dual channel configuration in the 16 pin package. Also in the 16 pin package are two functional types in four channel configuration. The LCC catalog products are all two channel optocouplers.

HP's hermetic optocouplers are classified by the Department of Defense as hybrid microcircuits and are manufactured and tested on a MIL-STD-1772 certified and qualified line. Our facilities and assembly processes meet MIL-H-38534 class $B$, and we have listing on QML-38534.

All product families are represented by standard (commercial grade) units and by high reliability tested units. The hi-rel parts are tested to MIL-STD-883 class B. Most hirel tested parts are also offered with recognized DESC part numbers either from DESC Drawings, Standard Military Drawings (SMDs), or from DESC's new, "One Part, One Part Numbering System". All hi-rel parts are tested and guaranteed over the full military temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

New this year is the expanded list and wide variety of optocouplers in three package styles. Our complete line of products offered in 20 terminal LCC were released in 1989. Released in 1990 are the transistor output devices and the expanded line of logic gate units in 8 pin DIP. And, to give you more opportunities to use recognized DESC parts, we now offer 13 devices under DESC drawings with more to come.

## Hermetic Optocoupler

 Product Screening and Quality Conformance Test Program (MIL-STD-883 Class B)The following 100\% Screening and Quality Conformance Inspection programs show in detail the capabilities of our hermetic optocouplers. MIL-H38534 Quality assurance
requirements are in accordance with Option 2 for all testing programs (Methods 5008 and 2017). Hewlett-Packard further exercises a testing option as allowed by MIL-STD-883, Method 5008, Par. 3.1a which states that "hybrid and multichip microcircuits, which are contained in packages having an inner seal perimeter of less than 2.0 inches", may be tested
in accordance with the requirements of MIL-STD-883, Methods 5004 and 5005, with a change to the internal visual from Method 2010 to Method 2017. All devices marked /883B and DESC Drawing parts have standardized test programs suitable for product used in military, aerospace, and other high reliability applications and are the preferred devices by systems contractors.

100\% Screening MIL-STD-883, Method 5004 (Class B Devices)

Test	Method	Conditions
1. Precap Internal Visual	$2017 \& 2032$	
2. Temperature Cycling	1010	Condition C, $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 10$ cycles
3. Constant Acceleration	2001	Condition A, 5 KG 's
4. Fine Leak	1014	Condition A
5. Gross Leak	1014	Condition C
6. Interim Electrical Test	-	Optional
7. Burn-In	1015	Condition B, Time $=160$ hours, min. T $A=125^{\circ} \mathrm{C}$
8. Final Electrical Test   Electrical Test		Group A Subgroup 1, 5\% PDA   Group A, Subgroups 2, 3, 9
9. External Visual	2009	

## Quality Conformance Inspection

Group A electrical tests are product dependent and are given in the individual device data sheets. Group A and B testing is performed on each inspection lot.

Group A Testing, MIL-STD-883, Method 5005 (Class B Devices) Quantity/Accept Number $=116 / 0$

Subgroup 1   Static tests at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
Subgroup 2	
Static tests at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	
Subgroup 3	
	Static tests at T ${ }_{\text {A }}=-55^{\circ} \mathrm{C}$
Subgroup 4	
Dynamic test at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (where applicable)	
Subgroups 5, 6, 7, and 8a \& 8b	
These subgroups are non-applicable to this device type	
Subgroup 9	
	Switching tests at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Subgroup 10	
Switching tests at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	
Subgroup 11	
	Switching Tests at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$

Subgroup 1
Static tests at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

## Subgroup 2

Static tests at $T_{A}=+125^{\circ} \mathrm{C}$

## suroup

Subgroup 4
Dynamic test at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (where applicable)

## Subgroups 5, 6, 7, and 8a \& 8b

These subgroups are non-applicable to this device type

## Subgroup 9

Switching tests at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Subgroup 10
Switching tests at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
Subgroup 11
Switching Tests at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$

Group B Testing, MIL-STD-883, Method 5005 (Class B Devices)

Test	Method	Conditions	Quantity/   Accept No.
Subgroup 2   Resistance to Solvents	2015		4 Devices   (no failures)
Subgroup 3   Solderability	2003	Soldering temperature of $245 \pm 5^{\circ} \mathrm{C}$   for 10 seconds	$22 / 0$ leads   3 devices minimum
Subgroup 5   Bond Strength   Thermocompression   (performed prior to seal)	2011	Test Condition D	$15 / 0$ wires

Group $C$ testing is performed on a periodic basis from current manufacturing every three months.

Group C Testing, MIL-STD-883, Method 5005 (Class B Devices)

Test	Method	Conditions	Quantity/   Accept No.
Subgroup 1 Steady State Life Test	1005	Cond. B, time $=1000$ hours total $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	45/0
Endpoint Electricals at 1000 hours		Group A, Subgroup 1,2,3	

Group $D$ testing is performed on a periodic basis from current manufacturing every six months.

Group D Testing, MIL-STD-883, Method 5005 (Class B Devices)

Test	Method	Conditions	Quantity/   Accept No.
Subgroup 1 Physical Dimensions	2016		15/0
Subgroup 2 Lead Integrity	2004	Test Cond. B2   (Test Cond. D for LCCs)	15/0
Subgroup 3 Thermal Shock	1011	Cond. B, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ 15 cycles min.	15/0
Temperature Cycling	1010	Cond. C, $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 100 cycles min.	
Moisture Resistance	1004		
Fine Leak	1014	Cond. A	
Gross Leak	1014	Cond. C	
Visual Examination		Per visual criteria of methods $1004,1010$	
Endpoint Electricals		Group A, Subgroup 1,2,3	

Group D Testing, MIL-STD-883, Method 5005 (Class B Devices), Continued

Test	Method	Conditions	Quantity/   Accept No.
Subgroup 4 Mechanical Shock	2002	Cond. B, $1500 \mathrm{G}, \mathrm{t}=0.5 \mathrm{~ms}$,   5 blows in each orientation	15/0
Vibration Variable Frequency	2007	Cond. A	
Constant Acceleration	2001	Cond. A, 5 KGs	
Fine Leak	1014	Cond. A	
Gross Leak	1014	Cond. C	
Visual Examination	1010	Per visual criteria of Method 1010	
Endpoint Electricals		Group A, Subgroup 1,2,3	
Subgroup 5 Salt Atmosphere	1009	Cond. A min.	15/0
Fine Leak	1014	Cond. A	
Gross Leak	1014	Cond. C	
Visual Examination	1009	Per visual criteria of Method 1009	
Subgroup 6 Internal Water Vapor Content	1018	$5,000 \mathrm{ppm}$ maximum water content at $100^{\circ} \mathrm{C}$	$3 / 0$ or 5/1
Subgroup 7   Adhesion of Lead Finish (not required for LCCs)	2025		15/0 leads   3 devices minimum

Controlling Government Specifications and Standards
MIL-H-38534 General Specification for Hybrid Microcircuits
All Hewlett-Packard /883B, DESC Drawing and SMD products are in full compliance with the applicable parts of MIL-H-38534.

MIL-STD-883 Test Methods and Procedures for Microelectronics
Hewlett-Packard's testing of all hermetic hybrid products is in compliance with current revisions, requirements and test methods of MIL-STD-883 class B.

MIL-STD-1772 Certification Requirements for Hybrid Microcircuit Facilities and Lines
Our hermetic optocoupler line is certified and parts are qualified to MIL-STD-1772. Certification to MIL-STD-1772 must exist before a part can be marked with 883B or with a DESC SMD number.

#  <br> MIL-STD-1772 <br> Hyghrid Alitracirruit © $\mathbb{C r t i f i f a t i o n}$ 

por<br>CLASS B<br>is hereby acourded to

HEWLETT-PACKARD
OPTICAL COMMUNICATION DIVISION

In accordance with MIL-M-38510 and Appendix G, all assembly operations shall be performed at the Optical Communication Division in San Jose, and MIL-STD-883, Test Methods 5004 and 5005 testing shall be performed at Hewlett-Packard's facilities as outlined in DESC letter E0M-87-563, dated 3 Apr 87 . This certification is limited to those processes and materials reviewed by the qualifying activity. This certification is being issued in conjunction with DESC lctter EQ (E2M-87-562), dated 3 Apr 87 .

The certification is valid untid terminated by asitten notification from the qualifying activity. The normal heriod for this cerlification is one year from 3 Apt 87.


## DESC Part Number Systems ${ }^{[1]}$

DESC Drawings ${ }^{[2]}$


## Standard Military Drawings (SMD)



One Part - One Part Number System ${ }^{[3]}$


Notes:

1. The numbering system used was current when any particular part was numbered.
2. DESC Drawings do not contain the prefix 5962.
3. Class Designators H, and K of MIL-H-38534 are equivalent to class levels B and S of MIL-M-38510 respectively.

Hermetic Optocoupler Selection Flowchart



High-Speed Logic Gate Optocouplers

Device		Description	Application	Typical Data Rate   [NRZ]	Common Mode	Specified Input Current	Withstand Test Voltage*	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
$8 \text { pin DIP }$	HCPL-5200	Single Channel, Hermetically Sealed Wide Supply Voltage Optocoupler	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface	5 M bit/s	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{s} \\ \text { at } \\ \mathrm{Vcm}=50 \mathrm{~V} \end{gathered}$	2.8 mA	1500 Vdc	6-222
	HCPL-5201	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Class B } \end{aligned}$	Military/High Reliability					
	5962-8876801PC	DESC Approved HCPL-5201						
8 pin DIP	HCPL-5230	Dual Channel, Hermetically Sealed Wide Supply Voltage Optocoupler	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface					
	HCPL-5231	MIL-STD-883   Class B Part	Military/High Reliability					
	5962-8876901PC	DESC Approved HCPL-5231						
20 Terminal LCC	HCPL-6230	Dual Channel, Hermetically Sealed Wide Supply Voltage Optocoupler	High Speed Logic Ground Isolation, LSTTL, TTL, CMOS Logic Interface					
	HCPL-6231	MIL-STD-883   Class B Part	Military/High Reliability					
	TBD	DESC Approved HCPL-6231						
$8 \text { pin DIP }$	HCPL-5400	Single Channel, Hermetically Sealed High Speed Optocoupler	High Speed Logic Isolation, A/D and Parallel/Serial Conversion	$40 \mathrm{M} \mathrm{bit/s}$	$500 \mathrm{~V} / \mathrm{hs}$   at $\mathrm{Vcm}=50 \mathrm{~V}$	6-10 mA	1500 Vdc	6-236
	HCPL-5401	MIL-STD-883   Class B Part	Military/High Reliability					
	5962-8957001PC	DESC Approved HCPL-5401						

[^52]High-Speed Logic Gate Optocouplers (Continued)

Device		Description	Application	Typical Data Rate [NRZ]	Common Mode	Specified Input   Current	Withstand   Test Voltage*	Page No.
8 pin DIP	HCPL-5430	Dual Channel, Hermetically Sealed High Speed Optocoupler	High Speed Logic Isolation, Communications, Networks, Computers	$40 \mathrm{Mbit} / \mathrm{s}$	$\begin{gathered} 500 \mathrm{~V} / \mu \mathrm{s} \\ \text { at } \\ \mathrm{Vcm}=50 \mathrm{~V} \end{gathered}$	6-10 mA	1500 Vdc	6-236
	HCPL-5431	MIL-STD-883   Class B Part	Military/High Reliability					
	5962-8957101PC	DESC Approved HCPL-5431						
20 Terminal LCC	HCPL-6430	Dual Channel, Hermetically Sealed High Speed Optocoupler	High Speed Logic Isolation, Communications, Networks, Computers					
	HCPL-6431	MIL-STD-883   Class B Part	Military/High Reliability					
	5962-89571022A	DESC Approved HCPL-6431						
16 pin DIP	6N134	Dual Channel, Hermetically Sealed Optically Coupled Logic Gate	Line Receiver, Ground Isolation for High Reliability Systems	$10 \mathrm{M} \mathrm{bit/s}$	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{s} \\ \text { at } \\ \mathrm{Vcm}=50 \mathrm{~V} \end{gathered}$	10 mA	1500 Vdc	6-251
	6N134/883B	MIL-STD-883   Class B Part	Military/High Reliability					
	8102801EC	DESC Approved 6N134/883B						
8 pin DIP	HCPL-5600	Single Channel, Hermetically Sealed Optically Coupled Logic Gate	Line Receiver, Ground Isolation for High Reliability Systems					6-257
	HCPL-5601	MIL-STD-883   Class B Part	Military/High Reliability					
	TBD	DESC Approved HCPL-5601						

Bold Type - New Product

High-Speed Logic Gate Optocouplers (Continued)

Device		Description	Application	Typical Data Rate [NRZ]	Common Mode	Specified Input Current	Withstand Test Voltage*	$\begin{array}{\|c\|} \text { Page } \\ \text { No. } \end{array}$
8 pin DIP	HCPL-5630	Dual Channel, Hermetically Sealed Optically Coupled Logic Gate	Line Receiver, Ground Isolation for High Reliability Systems	10 M bit/s	$\begin{gathered} 1000 \mathrm{~V} / \mathrm{ss} \\ \text { at } \\ \mathrm{Vcm}=50 \mathrm{~V} \end{gathered}$	10 mA	1500 Vdc	6-257
	HCPL-5631	MIL-STD-883   Class B Part	Military/High Reliability					
	TBD	$\begin{aligned} & \text { DESC Approved } \\ & \text { HCPL-5631 } \end{aligned}$						
20 Terminal LCC	HCPL-6630	Dual Channel, Hermetically Sealed Optically Coupled Logic Gate	Line Receiver, Ground Isolation for High Reliability Systems					
	HCPL-6631	MIL-STD-883 Class B Part	Military/High Reliability					
	TBD	DESC Approved HCPL-6631						
16 pin DIP	HCPL-1930	Dual Channel, Hermetically Sealed High CMR Line Receiver Optocoupler	Line Receiver, High Speed Logic Ground Isolation in High Ground or Induced Noise Environments	10M bit/s	$\begin{gathered} 1000 \mathrm{~V} / \mu \mathrm{s} \\ \text { at } \\ \mathrm{Vcm}=50 \mathrm{~V} \end{gathered}$	10 mA	1500 Vdc	6-265
	HCPL-1931	$\begin{array}{\|l} \text { MIL-STD-883 } \\ \text { Class B Part } \end{array}$	Military/High Reliability					
	5962-8957201EC	$\begin{aligned} & \text { DESC Approved } \\ & \text { HCPL-1931 } \end{aligned}$						

[^53]High Gain Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Current   Transfer Ratio	Specified Input Current	Withstand Test Voltage	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
$16 \text { pin DIP }$	6N140A	Hermetically Sealed Package Containing 4 Low Input Current High Gain Optocouplers	Line Receiver, Low Power Ground Isolation for High Reliability Systems	100k bit/s	300\% Min.	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & \text { to } \\ & 5.0 \mathrm{~mA} \end{aligned}$	1500 Vdc	6-273
	6N140A/883B	MIL-STD-883 Class B Part	Military/High Reliability					
	8302401EC	DESC Approved 6N140A/883B						
8 pin DIP	HCPL-5700	Single Channel, Hermetically Sealed High Gain Optocoupler	Line Receiver, Low Current Ground Isolation. TTLTTL, LSTTLTTL, CMOS/TTL					6-280
	HCPL-5701	MIL-STD-883   Class B Part	Military/High Reliability					
	5962-8981001PC	DESC Approved HCPL-5701						
8 pin DIP	HCPL-5730	Dual Channel, Hermetically Sealed, High Gain Optocoupler	Line Receiver, Polarity Sensing, Low Current Ground Isolation					
	HCPL-5731	MIL-STD-883 Class B Part	Military/High Reliability					
	5962-8978501PC	DESC Approved HCPL-5731						
	HCPL-6730	Dual Channel, Hermetically Sealed High Gain Optocoupler	Line Receiver, Polarity Sensing, Low Current Ground Isolation					
	HCPL-6731	MIL-STD-883   Class B Part	Military/High Reliability					
20 Terminal LCC	5962-89785022A	DESC Approved HCPL-6731						

Bold Type - New Product

AC/DC to Logic Interface Optocoupler

Device		Description	Application	Typical Data Rate	Input Threshold Current	Output Current	Withstand   Test   Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
8 pin DIP	HCPL-5760	Single Channel Hermetically Sealed Threshold Sensing Optocoupler	Limit Switch Sensing, Low Voltage Detector Relay Contact Monitor	10 kHz	$\begin{aligned} & 2.5 \mathrm{~mA} \mathrm{TH}+ \\ & 1.3 \mathrm{~mA} \mathrm{TH} \end{aligned}$	2.6 mA	1500 Vdc	6-290
	HCPL-5761	MIL-STD-883   Class B Part	Military/High Reliability					
	5962-8947701PC	DESC Approved HCPL-5761						

High Speed Transistor Optocouplers

Device		Description	Application	Typical Data Rate [NRZ]	Current   Transfer   Ratio	Specified Input Current	Withstand   Test   Voltage	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
$16 \text { pin DIP }$	4N55	Dual Channel Hermetically Sealed Analog Optical Coupler	Line Receiver, Analog Signal Ground Isolation, Switching Power Supply Feedback Element	700k bit/s	$9 \%$ Min.	16 mA	1500 Vdc	6-298
	4N55/883B	MIL-STD-883   Class B Part	Military/High Reliability					
	5962-8767901EC	DESC Approved 4N55/883B						
	HCPL-5500	Single Channel Hermetically Sealed Analog Optical Coupler	Line Receiver, Analog Signal Ground Isolation, Switching Power Supply Feedback Element					6-305
	HCPL-5501	MIL-STD-883   Class B Part	Military/High Reliability					
$8 \text { pin DIP }$	TBD	DESC Approved HCPL-5501						

[^54]High Speed Transistor Optocouplers (Continued)

Device		Description	Application	Typical Data Rate [NRZ]	Current   Transfer Ratio	Specified Input Current	Withstand   Test Voltage	Page No.
8 pin DIP	HCPL-5530	Dual Channel, Hermetically Sealed Analog Optical Coupler	Line Receiver, Analog Signal Ground Isolation, Switching Power Supply Feedback Element	700k bit/s	9\% Min.	16 mA	1500 Vdc	6-305
	HCPL-5531	MIL-STD-883   Class B Part	Military/High Reliability					
	TBD	DESC Approved HCPL-5531						
	HCPL-6530	Dual Channel, Hermetically Sealed Analog Optical Coupler	Line Receiver, Analog Signal Ground Isolation, Switching Power Supply Feedback Element					
	HCPL-6531	MIL-STD-883 Class B Part	Military/High Reliability					
20 Terminal LCC	TBD	DESC Approved HCPL-6531						

Bold Type - New Product

Hermetic Optocoupler Options


Hermetic High Performance Optocouplers
Functionally Equivalent Part Types

Package Style	16 PIN DIP		8 PIN DIP		20 Terminal LCC	Closest Equivalent Plastic
	Quad (4)	Dual   (2)	Dual   (2)	Single (1)	Dual   (2)	Single (1)
High Gain Output, Low Input Current	$\begin{gathered} \text { 6N140A } \\ \text { 6N140A/883B } \\ \text { 8302401EC } \end{gathered}$		$\begin{gathered} \text { HCPL-5730 } \\ \text { HCPL-5731 } \\ 5962-8978501 P C \end{gathered}$	$\begin{gathered} \text { HCPL-5700 } \\ \text { HCPL-5701 } \\ 5962-8981001 P C \end{gathered}$	$\begin{gathered} \text { HCPL-6730 } \\ \text { HCPL-6731 } \\ 5962-89785022 \text { A } \end{gathered}$	6N138 6N139
Transistor Output		$\begin{gathered} \text { 4N55 } \\ \text { 4N55/883B } \\ 5962-8767901 E C \end{gathered}$	HCPL-5530 HCPL-5531	HCPL-5500   HCPL-5501	HCPL-6530   HCPL-6531	$\begin{aligned} & 6 \mathrm{~N} 135 \\ & 6 \mathrm{~N} 136 \end{aligned}$
High Speed Logic Output, 10 Mbaud	Special PN	6N134 6N134/883B 8102801EC	HCPL-5630   HCPL-5631	HCPL-5600   HCPL-5601	HCPL-6630   HCPL-6631	$\begin{gathered} \text { HCPL-2601 } \\ \text { 6N137 } \end{gathered}$
High Speed Logic, Input Regulation		$\begin{gathered} \text { HCPL-1930 } \\ \text { HCPL-1931 } \\ \text { 5962-8957201EC } \end{gathered}$	Special PN	Special PN	Special PN	HCPL-2602
Wide Vcc from 4.5 to 20 Volts			$\begin{gathered} \text { HCPL-5230 } \\ \text { HCPL-5231 } \\ 5962-8876901 \text { PC } \end{gathered}$	$\begin{gathered} \text { HCPL-5200 } \\ \text { HCPL-5201 } \\ 5962-8876801 \text { PC } \end{gathered}$	HCPL-6230   HCPL-6231	HCPL-2200
Very High Speed Logic, 20 Mbaud			$\begin{gathered} \text { HCPL-5430 } \\ \text { HCPL-5431 } \\ 5962-8957101 P C \end{gathered}$	$\begin{gathered} \text { HCPL-5400 } \\ \text { HCPL-5401 } \\ 5962-8957001 P C \end{gathered}$	$\begin{gathered} \text { HCPL-6430 } \\ \text { HCPL-6431 } \\ 5962-89571022 A \end{gathered}$	HCPL-2400
AC/DC Logic Interface				$\begin{gathered} \text { HCPL-5760 } \\ \text { HCPL-5761 } \\ \text { 5962-8947701PC } \end{gathered}$	Special PN Single	HCPL-3700

Standard type refers to standard parts
Bold type refers to 883B parts
Italic type refers to DESC Drawing parts
3/90
HIGHOC5

## Wide Supply Voltage, High CMR, Hermetically Sealed Optocoupler

## Technical Data

## Features

- DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Hermetically Sealed Packages
- Performance Guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature Range
- MIL-STD-883 Class B Testing
- Wide $\mathbf{V}_{\mathrm{cc}}$ Range
( 4.5 to 20 V )
- 300 ns Maximum Propagation Delay
- Compatible with LSTTL, TTL, and CMOS Logic
- High Common Mode Rejection-1000 V/ $\mu \mathrm{s}$ Guaranteed
- 1500 Vdc Withstand Test Voltage
- Three State Output Available
- HCPL-2200 Function Compatibility


## Applications

- Military/High Reliability Systems
- Isolation of High Speed Logic Systems
- Computer-Peripheral Interfaces

Outline Drawings
8 PIN CERAMIC DUAL IN-LINE PACKAGE

8 Pin Dual In-Line

Package
HCPL-5200
HCPL-5201 (883B)
5962 8876801PC
HCPL-5230
HCPL-5231 (883B)
5962 8876901PC
20 Terminal Leadless
Chip Carrier
HCPL-6230
HCPL-6231 (883B)

- Microprocessor System Interfaces
- Ground Loop Elimination
- Pulse Transformer Replacement
- Isolated Bus Driver (Single Channel)
- High Speed Line Receiver


20 TERMINAL CERAMIC LEADLESS CHIP CARRIER



## Description

The HCPL-5200, HCPL-5201, and 59628876801 PC are single channel, logic gate optocouplers. The HCPL-5230, HCPL-5231 and 59628876901 PC are dual channel units made from the same chip sets. All six products are in eight pin hermetic dual in-line packages. These units are capable of operation and storage over the full military temperature ranges and can be purchased as either single or dual channel standard product (HCPL-5200 and HCPL-5230 respectively), with full MIL-STD-883 Class Level B testing (HCPL-5201 and HCPL-5231 respectively), or from the DESC Standard Military Drawings (SMDs) 5962-88768 and 596288769 as ( 59628876801 PC or 5962 8876901PC respectively). All parts are normally shipped with gold plated leads. They are also available with solder dipped leads by replacing C with A in the SMD part \#, or by adding option \#200 to the part number for non-SMD parts.

The HCPL-6230 and HCPL6231 parts are in twenty terminal hermetic, ceramic, leadless chip carriers. The standard part is HCPL-6230. The product with full MIL-STD883 Class Level B testing is HCPL-6231. These dual channel devices are configured and function as two independent single channels. Devices are delivered with solder dipped terminals as a standard feature. Units may also be purchased with gold-plated terminals.

Each channel contains an AlGaAs light emitting diode optically coupled to an integrated high gain photon detector. The detector has a threshold with hysteresis. The hysteresis provides differential mode noise immunity and eliminates the potential for output signal chatter. The detector in the single channel units has a three state output stage which allows for direct connection to data buses. The detector IC has an electric
shield that provides a guaranteed common mode transient immunity of 1,000 Volts/ $\mu \mathrm{sec}$. Improved power supply rejection eliminates the need for special power supply bypass precautions.

All devices are guaranteed to operate over a $\mathrm{V}_{\mathrm{CC}}$ range of 4.5 Volts to 20 Volts. Low $\mathrm{I}_{\mathrm{F}}$ and wide $\mathrm{V}_{\mathrm{cc}}$ range allow compatibility with TTL, LSTTL, and CMOS. Logic low $\mathrm{I}_{\mathrm{F}}$ and low $\mathrm{I}_{\mathrm{CC}}$ result in lower power consumption compared to other high speed optocouplers. Logic signals are transmitted with a typical propagation delay of 100 nsec when used in the circuit of Figure 11.

These units are useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.

The test programs on the 5962 8876801PC and 5962 8876901 PC are in compliance with DESC (SMDs) 5962-88768 and 5962-88769 respectively. The electrical characteristics
table shows Group A Subgroup testing requirements from these drawings.

All devices are manufactured and tested on a MIL-STD-1772
certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H38534.

## Schematics

8 PIN CERAMIC DIP SINGLE CHANNEL SCHEMATIC


DETECTOR IC INTERNAL
ELECTRICAL SHIELD

8 PIN CERAMIC DIP DUAL CHANNEL SCHEMATIC


20 TERMINAL CERAMIC LEADLESS CHIP CARRIER SCHEMATIC


## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	4.5	20	Volts
Input Current (High)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	2	8	mA
Input Voltage (Low)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	0	0.8	Volts
Fan Out	N		4	TTL Loads

## Single Channel Product Only

Enable Voltage High	$\mathrm{V}_{\mathrm{EH}}$	2.0	20	Volts
Enable Voltage Low	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	Volts

Absolute Maximum Ratings
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Case Temperature - $\mathrm{T}_{\mathrm{c}}$ ..... $+170^{\circ} \mathrm{C}$
Lead Solder Temperature ..... $260^{\circ} \mathrm{C}$ for 10 s
Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ ) ..... $+175^{\circ} \mathrm{C}$
Average Forward Current - $I_{\text {FAvg }}$ ..... 8 mA
Peak Input Current - $\mathrm{I}_{\mathrm{FPK}}$ ..... $20 \mathrm{~mA}^{[1]}$
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ ..... 5 V
Supply Voltage - $\mathrm{V}_{\mathrm{cc}}$ ..... 0.0 V min., 20 V max.
Average Output Current - $\mathrm{I}_{\mathrm{o}}$ (per channel) ..... 15 mA
Output Voltage - $\mathrm{V}_{\mathrm{o}}$ -0.3 V min., 20 V max.
Total Package Power Dissipation - $\mathrm{P}_{\mathrm{d}}$ (per channel) ..... 200 mW
Single Channel Product Only
Three State Enable Voltage - $\mathrm{V}_{\mathrm{E}}$.-0.3 V min., 20 V max.

## Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified. For $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cC}} \leq 20 \mathrm{~V}, 2 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 8 \mathrm{~mA}, 0 \mathrm{~V} \leq$ $\mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.8 \mathrm{~V}$

Parameter		Sym.	Test Condi	tions		Group A Subgroups ${ }^{[11]}$	Min.	Typ.*	Max.	Units	Fig.	Notes	
Logic Low Output Voltage		$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{oL}}=6.4 \mathrm{~mA}$	(4 TT	Loads)	1, 2, 3			0.5	Volts	1,3	2	
Logic High Output Voltage		$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA} \\ & \left(* * \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{cc}}-2.1 \mathrm{~V}\right) \end{aligned}$			1,2,3	2.4	**		Volts	2,3	2	
		$\mathrm{I}_{\mathrm{OH}}=-0.32 \mathrm{~mA}$	NA		31		Volts						
Output Leakage Current$\left(\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\mathrm{cc}}\right)$			$\mathrm{I}_{\text {OH }}$	$\mathrm{V}_{\mathrm{o}}=5.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$		1,2,3			100	$\mu \mathrm{A}$		2
		$\mathrm{V}_{\mathrm{o}}=20 \mathrm{~V}$						500	$\mu \mathrm{A}$				
Logic Low   Supply   Current	Single Channel (5962-88768)	$\mathrm{I}_{\text {ccL }}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=\text { Don't Care } \end{aligned}$		1,2,3			4.5	6.0	mA		
			$\mathrm{V}_{\mathrm{cc}}=20 \mathrm{~V}$				5.3	7.5	mA				
	Dual Channel (5962-88769)		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{F} 1}=\mathrm{V}_{\mathrm{F} 2}=0 \mathrm{~V}$			1,2,3		9.0	12.0	mA		
			$\mathrm{V}_{\mathrm{cc}}=20 \mathrm{~V}$					10.6	15	mA			
Logic High   Supply   Current	Single   Channel   (5962-88768)	$\mathrm{I}_{\text {cch }}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{E}}=\text { Don't Care } \end{aligned}$		1, 2, 3		2.9	4.5	mA			
			$\mathrm{V}_{\text {cc }}=20 \mathrm{~V}$				3.3	6.0	mA				
	Dual   Channel   (5962-88769)		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=8 \mathrm{~mA}$			1,2,3		5.8	9.0	mA		
			$\mathrm{V}_{\mathrm{cc}}=20 \mathrm{~V}$					6.6	12.0	mA			
Logic Low Short Circuit Output Current		$\mathrm{I}_{\text {osL }}$	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=5$	5 V	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	1,2,3	20			mA		2, 3	
		$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=2$		35					mA				
Logic High Short Circuit Output Current			$\mathrm{I}_{\text {O8H }}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{o}}=\mathrm{GND} \end{aligned}$	1, 2, 3			-10	mA		2, 3
		$\mathrm{V}_{\text {cc }}=20 \mathrm{~V}$							-25	mA			
Input Forward Voltage		$\mathrm{V}_{\mathrm{F}}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$			1, 2, 3	1.0	1.3	1.8	Volts	4	2	
Input Reverse Breakdown Voltage		$\mathrm{V}_{\mathrm{R}}$	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$			1, 2, 3	3			Volts		2	
Input-Output Insulation		$\mathrm{I}_{\mathrm{t} \text { O }}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{t} . \mathrm{o}}=1500 \mathrm{Vdc} \end{aligned}$			1			1	$\mu \mathrm{A}$		4,5	
Propagation Delay Time to Logic Low Output Level		$\mathrm{t}_{\text {PHL }}$				9, 10, 11		173	300	ns	5, 6,	2,6	
Propagation Delay Time to Logic High Output Level		$\mathrm{t}_{\text {PLH }}$				9, 10, 11		118	300	ns	5, 6,	2, 6	
Logic High   Common Mode   Transient Immunity		$1 \mathrm{CM}_{\mathrm{H}} \mathrm{I}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P}} \end{aligned}$			9	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	9	2, 7	
Logic Low   Common Mode   Transient Immunity		ICM ${ }_{\text {L }}$ '	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cM}}=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$			9	1000	10,000		$\mathrm{V} / \mathrm{\mu s}$	9	2, 7	

Electrical Characteristics Single Channel Product Only
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.
For $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{FOFF})} \leq 0.8 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 20 \mathrm{~V}, 2 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 8 \mathrm{~mA}, 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EH}} \leq 20 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EL}} \leq 0.8 \mathrm{~V}$ unless otherwise specified.

*All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=5 \mathrm{~mA}$ unless otherwise specified.

## Typical Characteristics

All typical values are at $\left.\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right), \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=5 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Test Conditions	Typ.	Units	Fig.	Notes
Input Current Hysteresis	$\mathrm{I}_{\mathrm{HYS}}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0.07	mA	3	2
Input Diode Temperature Coefficient	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	-1.25	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		2
	$\frac{\Delta \mathrm{~T}_{\mathrm{A}}}{}$					
Input-Output Resistance	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	$\mathrm{V}_{\mathrm{I} . \mathrm{O}}=500 \mathrm{Vdc}$	$10^{13}$	$\Omega$		2,8
Input-Output Capacitance	$\mathrm{C}_{\mathrm{I} . \mathrm{O}}$	$\mathrm{f}=1 \mathrm{MHz}$	2.0	pF		2,8
Input Capacitance	$\mathrm{C}_{\mathrm{IN}}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	20	pF		2,10
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$		45	ns	5,7	2
Output Fall Time ( $90-10 \%)$	$\mathrm{t}_{\mathrm{f}}$		10	ns	5,7	2

## Single Channel Product Only

Output Enable Time to Logic High	$\mathrm{t}_{\mathrm{PZH}}$		30	ns	8	
Output Enable Time to Logic Low	$\mathrm{t}_{\mathrm{PZL}}$		30	ns	8	
Output Disable Time from Logic High	$\mathrm{t}_{\mathrm{pHZ}}$		45	ns	8	
Output Disable Time from Logic Low	$\mathrm{t}_{\mathrm{PLZ}}$		55	ns	8	

## Dual Channel Product Only

Input-Input Insulation Leakage Current-	$\mathrm{I}_{\mathrm{I}-\mathrm{I}}$	$45 \%$ Relative Humidity,   $\mathrm{V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,   $\mathrm{t}=5 \mathrm{~s}$	0.5	nA		9
Resistance (Input-Input)	$\mathrm{R}_{\mathrm{I}-\mathrm{I}}$	$\mathrm{V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{Vdc}$	$10^{13}$	$\Omega$		9
Capacitance (Input-Input)	$\mathrm{C}_{\mathrm{I}-\mathrm{I}}$	$\mathrm{f}=1 \mathrm{MHz}$	1.5	pF		9

## Notes:

1. Peak Forward Input Current pulse width $<50 \mu \mathrm{~s}$ at 1 KHz maximum repetition rate.
2. Each channel.
3. Duration of output short circuit time not to exceed 10 ms .
4. Device considered a two terminal device: for 8 pin DIP, pins 1 through 4 are shorted together, and pins 5 through 8 are shorted together; for LCC, terminals 19, 20, 1,2,3 are shorted together, and terminals 7 through 15 are shorted together.
5. This is a momentary withstand test, not an operating condition.
6. $\mathrm{t}_{\text {PHL }}$ propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The $t_{\text {PLH }}$ propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse.
7. $\mathrm{CM}_{\mathrm{L}}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}\right) . \mathrm{CM}_{\mathrm{H}}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ( $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ).
8. Measured between each input pair shorted together and all outputs for that channel shorted together.
9. Measured between adjacent input pairs shorted together, i.e., for 8 pin DIP, between pins 1 and 2 shorted together and pins 3 and 4 shorted together; for LCC, between terminals 19 and 20 shorted together, and terminals 2 and 3 shorted together.
10. Zero-bias capacitance measured between the LED anode and cathode.
11. Standard parts receive $100 \%$ testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and $/ 883 \mathrm{~B}$ parts receive $100 \%$ testing at 25,125 , and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9,2 and 10, 3 and 11, respectively).


Figure 1. Typical Logic Low Output Voltage vs. Temperature


Figure 3. Output Voltage vs. Forward Input Current


Figure 2. Typical Logic High Output Current vs. Temperature


Figure 4. Typical Diode Input Forward Characteristic


Figure 5. Test Circuit for $t_{\text {PLI }}, t_{\text {PHL }}, t_{\mathbf{r}}$, and $t_{t}$


Figure 6. Typical Propagation Delay vs. Temperature


Figure 7. Typical Rise, Fall Time vs. Temperature


Figure 8. Test Circuit for $t_{\text {PEZ }}, t_{\text {PZZ }}, t_{\text {PLZ }}$, and $t_{\text {PZL }}$


Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms


Figure 10. LSTTL to CMOS Interface Circuit.


Figure 11. Recommended LED Drive Circuit.


Figure 12. Series LED Drive with Open Collector Gate (4.02 kת Resistor Shunts $I_{o H}$ from the LED)


Figure 13. Recommended LSTTL to LSTTLL Circuit

## Part Numbering System

Commercial   Product	Class B   Product	SMD Product
HCPL-5200	HCPL-5201	5962 8876801PC
HCPL-5230	HCPL-5231	5962 8876901PC
HCPL-6230	HCPL-6231	By Request

SMD 59628876801 PC , SMD 59628876901 PC , and MIL-STD-883 Class B Test Program
Hewlett-Packard's 883B
Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC SMD 5962-88768 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design
rules and elements of the same microcircuit group.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883.

## Clarifications:

I. $100 \%$ screening per MIL-STD-883, Method 5004 constant accelera-tion-Condition A not E.
II. Quality Conformance Inspection per MIL-STD883, Method 5005, Group A, $B, C$, and $D$.
Group A-See Electrical
Characteristics Table.
Group B-No change.
Group C-No change.
Group D-Constant Acceleration Condition A not E.


Figure 14. Single Channel Operating Circuit for Burn-in and Steady State Life Tests


Figure 15. Dual Channel Operating Circuit for Burn-in and Steady State Life Tests


Figure 16. Operating Circuit for Burn-In and Steady State Life Tests

## Very High Speed, Hermetically Sealed Optocoupler

## Technical Data

## Features

- DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Hermetically Sealed Packages
- Performance Guaranteed Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient Temperature Range
- MIL-STD-883 Class B Testing
- High Speed Guaranteed Over Temperature
- 60 ns Maximum Propagation Delay
- 35 ns Maximum Pulse Width Distortion
- High Common Mode Rejection-500 V/ $\mu \mathrm{s}$ Guaranteed
- Compatible with TTL, STTL, LSTTL and HCMOS Logic Families
- Three State Output (No Pull-Up Resistor Required) - (5400/1 Only)
- HCPL-2400 Function Compatibility
- 1500 Vde Withstand Test Voltage

Applications

- Military/High Reliability Systems
- Isolation of High Speed Logic Systems
- Computer-Peripheral Interfaces
- Isolated Bus Driver (Networking Applications) - (5400/1 Only)

8- pin Dual
In-Line Package HCPL-5400 HCPL-5401 (883B) 5962-8957001PC
HCPL-5430
HCPL-5431 (883B)
5962-8957101PC
20 Terminal Leadless
Chip Carrier
HCPL-6430
HCPL-6431 (883B)
5962-89571022A

- Switching Power Supplies
- Ground Loop Elimination
- High Speed Disk Drive I/O
- Digital Isolation for A/D, D/A Conversion
- Pulse Transformer Replacement

Outline Drawings<br>8 PIN CERAMIC DUAL-IN-LINE PACKAGE



DIMENSIONS IN MILLIMETERS AND (INCHES). *DETECTOR IC INTERNAL ELECTRICAL SHIELD


## Description

The HCPL-5400, HCPL-5401, and $5962-8957001 \mathrm{PC}$ are single channel, logic gate optocouplers. The HCPL-5430, HCPL-5431, and 5962-8957101PC are dual channel units made from the same chip sets. All six products are in 8 pin hermetic dual inline packages. These units are capable of operation and storage over the full military temperature ranges and can be purchased as either single or dual channel standard product (HCPL-5400 and HCPL-5430 respectively), with full MIL-STD-883 Class Level B testing (HCPL-5401 and HCPL-5431 respectively), or from the DESC Standard Military Drawings (SMDs) 5962-89570 and 596289571 as (5962-8957001PC or 5962-8957101PC respectively). All parts are normally shipped with gold plated leads. They are also available with solder dipped leads by replacing C with A in the SMD part \#, or by adding option \#200 to the part number for non-SMD parts.

The HCPL-6430, HCPL-6431, and 5962-89571022A are dual channel parts in twenty terminal hermetic, ceramic, leadless chip carriers. The standard part is HCPL-6430. The product with full MIL-STD883 Class Level B testing is HCPL-6431. The DESC SMD part is $5962-89571022 \mathrm{~A}$. All three products are configured and function as two independent single channels without enable. Devices are delivered with solder-dipped terminals as a standard feature. Units may also be purchased with gold-plated terminals.

All devices are manufactured and tested on a MIL-STD-1772 certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H38534.

Each channel contains an AlGaAs light emitting diode which is optically coupled to an integrated high gain photon
detector. This combination results in very high data rate capability. The detector has a threshold with hysteresis. The hysteresis provides typically 0.25 mA of differential mode noise immunity and minimizes the potential for output signal chatter. The detector in the single channel units has a three state output stage which eliminates the need for a pullup resistor and allows for direct drive of a data bus.

All nine units are compatible with TTL, STTL, LSTTL, and HCMOS logic families. The 35 ns pulse width distortion specification guarantees a 10 mBaud signaling rate at $+125^{\circ} \mathrm{C}$ with $35 \%$ pulse width distortion. Figures 11 through 16 show recommended circuits for reducing pulse width distortion and optimizing the signal rate of the product.

[^55]
## Schematics

## 8 PIN CERAMIC DIP SINGLE CHANNEL SCHEMATIC



TRUTH TABLE

(POSITIVE LOGIC)		
INPUT	ENABLE	OUTPUT
H (ON)	L	L
L (OFF)	L	H
H (ON)	H	Z
L (OFF)	H	Z

8 PIN CERAMIC DIP DUAL CHANNEL SCHEMATIC


$$
\begin{aligned}
& \text { TRUTH TABLE } \\
& \text { (POSITIVE LOGIC) } \\
& \begin{array}{|c|c|}
\hline \text { INPUT } & \text { OUTPUT } \\
\hline \text { H (ON) } & \text { L } \\
\text { L (OFF) } & \text { H } \\
\hline
\end{array}
\end{aligned}
$$

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	4.75	5.25	Volts
Input Current (High)	$\mathrm{I}_{\text {F(ON) }}$	6	10	mA
Input Voltage (Low)	$\mathrm{V}_{\text {F(OFF) }}$	-	0.7	Volts
Fan Out (each channel)	N	-	5	TTL Loads

## Single Channel Product Only

Enable Voltage (Low)	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	Volts
Enable Voltage (High)	$\mathrm{V}_{\mathrm{EH}}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	Volts

Absolute Maximum Ratings
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Case Temperature - $\mathrm{T}_{\mathrm{c}}$$+170^{\circ} \mathrm{C}$
Lead Solder Temperature ..... $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Average Forward Current - $\mathrm{I}_{\mathrm{Fav}}$ ..... 10 mA
Peak Input Current - $\mathrm{I}_{\mathrm{F}}$ ..... $20 \mathrm{~mA}^{[1]}$
Reverse Input Voltage $-\mathrm{V}_{\mathrm{R}}$ ..... 5 V
Supply Voltage - $\mathrm{V}_{\mathrm{cc}}$

$\qquad$
0 V min., 7.0 V max.
Average Output Current - $\mathrm{I}_{\mathrm{o}}$ -25 mA min., 25 mA max.
Output Voltage - $\mathrm{V}_{\mathrm{o}}$ -0.5 V min., 10 V max.
Output Power Dissipation - $P_{0}$ (per channel) ..... 130 mW
Total Package Power Dissipation $P_{d}$ ..... 400 mW
Single Channel Product OnlyThree State Enable Voltage - $\mathrm{V}_{\mathrm{E}}$-0.5 V min., 10 V max.

## Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{FON})} \leq 10 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{FOFF})} \leq 0.7 \mathrm{~V}$, unless otherwise specified.

Parameter		Sym.	Test Conditions	Group $A^{[10]}$ Subgroup	Min.	Typ.*	Max.	Units	Fig.	Notes
Logic Low Output Voltage		$\mathrm{V}_{\mathrm{OL}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \\ & (5 \mathrm{TTL} \text { Loads }) \end{aligned}$	1, 2, 3			0.5	Volts	1	9
Logic High Output Voltage		$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	1, 2, 3	2.4			Volts	2	9
Output Leakage Current		$\mathrm{I}_{\mathrm{OHH}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{F}}=0.7 \mathrm{~V} \end{aligned}$	1, 2, 3			100	$\mu \mathbf{A}$		9
Logic Low Supply Current	Single   Channel	$\mathrm{I}_{\mathbf{c c L}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V} \text { (Single } \\ & \text { Channel Only) } \end{aligned}$	1, 2, 3		19	26	mA		
	Dual   Channel					38	52			14
Logic High Supply Current	Single   Channel	$\mathrm{I}_{\mathbf{c C H}}$		1, 2, 3		17	26	mA		
	Dual   Channel					34	52			14
Input Forward Voltage		$\mathrm{V}_{\mathrm{F}}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1,2,3	1.0	1.35	1.85	Volts	4	9
Input Reverse Breakdown Voltage		$\mathrm{V}_{\mathrm{R}}$	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	1, 2, 3	3.0	7.0		Volts		9
Input-Output Insulation Leakage Current		$\mathrm{I}_{\mathrm{I} . \mathrm{O}}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{I} . \mathrm{o}}=1500 \mathrm{Vdc} \end{aligned}$	1			1	$\mu \mathrm{A}$		2, 3
Propagation Delay Time Logic Low Output Level		$\mathrm{t}_{\mathrm{PHL}}$		9, 10, 11		33	60	ns	$\begin{gathered} 5,6, \\ 7 \end{gathered}$	4,9
Propagation Delay Time Logic High Output Level		$\mathrm{t}_{\text {PLH }}$		9, 10, 11		30	60	ns	$\begin{array}{\|c\|} \hline 5,6, \\ 7 \end{array}$	4,9
Pulse Width Distortion		PWD		9, 10, 11		3	35	ns	$\begin{gathered} 5,6, \\ 7 \end{gathered}$	4, 9
Logic High   Common Mode Transient Immunity		$\mathbf{I C M}_{\mathrm{H}} \mathrm{I}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \\ & \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	9, 10, 11	500	3000		$\mathrm{V} / \mu \mathrm{s}$	11	$\begin{gathered} 5,9 \\ 11 \end{gathered}$
Logic Low   Common Mode   Transient Immunity		$1 \mathrm{CM}_{\mathrm{L}} \mathbf{I}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P}} \end{aligned}$	9, 10, 11	500	3000		$\mathrm{V} / \mathrm{\mu s}$	11	$\begin{gathered} 5,9 \\ 11 \end{gathered}$

## Guaranteed Performance

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Propagation Delay Skew	$\mathrm{t}_{\text {PSK }}$				30		ns	10	12,13

## Electrical Characteristics (continued)

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, 6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F} \text { (ON) }} \leq 10 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{F}(\mathrm{OFF})} \leq 0.7 \mathrm{~V}$, unless otherwise specified.

## Single Channel Product Only

Parameter	Sym.	Test Conditions		Group $A^{[10]}$   Subgroup	Min.	Typ.*	Max.	Units	Fig.	Notes
Logic High Enable   Voltage	$\mathrm{V}_{\text {EH }}$			1, 2, 3	2.0			Volts		
Logic Low Enable Voltage	$\mathrm{V}_{\text {EL }}$			1, 2, 3			0.8	Volts		
Logic High Enable Current	$\mathrm{I}_{\mathrm{EH}}$	$\mathrm{V}_{\mathrm{E}}=2.4 \mathrm{~V}$		1, 2, 3			20	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{E}}=5.25 \mathrm{~V}$,		1, 2, 3			100	$\mu \mathrm{A}$		
Logic Low Enable Current	$\mathrm{I}_{\mathrm{EL}}$	$\mathrm{V}_{\mathrm{E}}=0.4 \mathrm{~V}$		1, 2, 3		-0.28	-0.4	mA		
High Impedance State Supply Current	$\mathrm{I}_{\mathrm{ccz}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{E}}=5.25 \mathrm{~V} \end{aligned}$		1, 2, 3		22	28	mA		
High Impedance State Output Current	$\mathrm{I}_{\text {ozL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{E}}=2 \mathrm{~V} \end{aligned}$		1, 2, 3			-20	$\mu \mathrm{A}$		
	$\mathrm{I}_{\text {OZH }}$	$\mathrm{V}_{\mathrm{o}}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{E}}=2 \mathrm{~V}$	1,2,3			20	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{o}}=5.25 \mathrm{~V}$					100	$\mu \mathrm{A}$		

*All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$ except where noted.

## Typical Characteristics

All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Typical	Units	Test Conditions	Figure	Note
Input Current Hysteresis	$\mathrm{I}_{\mathrm{HYB}}$	0.25	mA	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	3	
Input Diode Temperature Coefficient	$\frac{\Delta V_{F}}{\Delta T_{A}}$	-1.11	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{P}}=10 \mathrm{~mA}$	4	
Input-Output Resistance	$\mathrm{R}_{\text {1.0 }}$	$10^{12}$	$\Omega$	$\mathrm{V}_{\text {1.0 }}=500 \mathrm{Vdc}$		2
Input-Output Capacitance	$\mathrm{C}_{\text {L. } 0}$	0.6	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{1.0}=0 \mathrm{Vdc}$		2
Logic Low Short Circuit Output Current	$\mathrm{I}_{\text {osL }}$	65	mA	$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		6,9
Logic High Short Circuit Output Current	$\mathrm{I}_{\text {osh }}$	-50	mA	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{p}}=0 \mathrm{~mA}, \mathrm{~V}_{0}=\mathrm{GND}$		6,9
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$	15	ns		5	
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$	10	ns		5	
Power Supply Noise Immunity	PSNI	0.5	$\mathrm{V}_{\text {P.P }}$	$48 \mathrm{~Hz} \leq \mathrm{f}_{\text {ac }} \leq 50 \mathrm{MHz}$		7
Single Channel Product Only						
Input Capacitance	$\mathrm{C}_{\text {IN }}$	15	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$, Pins 2 and 3		
Output Enable Time to Logic High	$\mathrm{t}_{\text {PZH }}$	15	ns		8,9	
Output Enable Time to Logic Low	$\mathrm{t}_{\text {PzL }}$	30	ns		8,9	
Output Disable Time from Logic High	$\mathrm{t}_{\mathrm{PHZ}}$	20	ns		8,9	
Output Disable Time from Logic Low	$\mathrm{t}_{\mathrm{pLZ}}$	15	ns		8, 9	
Dual Channel Product Only						
Input Capacitance	$\mathrm{C}_{\text {IN }}$	15	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V}$, Pins 1 and 2, Pins 3 and 4		
Input-Input Capacitance	$\mathrm{C}_{\text {1. }}$	1.3	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		8
Input-Input Leakage Current	$\mathrm{I}_{\text {I-I }}$	0.5	nA	$\mathrm{V}_{\mathrm{I} .}=500 \mathrm{Vdc}, \mathbf{4 5 \%} \mathrm{RH}$		8
Input-Input Resistance	$\mathbf{R}_{\text {I- }}$	$10^{12}$	ohms	$\mathrm{V}_{1-1}=500 \mathrm{Vdc}$		8

## Notes:

1. Not to exceed $5 \%$ duty factor, not to exceed $50 \mu$ sec pulse width.
2. Device considered a two terminal device: for 8 pin DIP, pins 1 through 4 are shorted together, and pins 5 through 8 are shorted together; for LCC, terminals 19, 20, 1, 2, 3 are shorted together, and terminals 7 through 15 are shorted together.
3. This is a momentary withstand test, not an operating condition.
4. $\mathrm{t}_{\text {pHL }}$ propagation delay is measured from the $50 \%$ level on the rising edge of the input current pulse to the 1.5 V level on the falling edge of the output pulse. The $t_{\text {PLH }}$ propagation delay is measured from the $50 \%$ level on the falling edge of the input current pulse to the 1.5 V level on the rising edge of the output pulse. Pulse width distortion, $\mathrm{PWD}=\left|\mathrm{t}_{\mathrm{PHL}} \mathrm{L}_{\mathrm{PLH}}\right|$.
5. $\mathrm{CM}_{\mathrm{H}}$ is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state ( $\mathrm{V}_{\text {OMIN }}>2.0 \mathrm{~V}$ ). $\mathrm{CM}_{\mathrm{L}}$ is the maximum slew rate of common mode voltage that can be sustained with the output voltage in the logic low state $\left(\mathrm{V}_{\mathrm{OMAX}}<0.8 \mathrm{~V}\right)$.
6. Duration of output short circuit time not to exceed 10 ms .
7. Power Supply Noise Immunity is the peak to peak amplitude of the ac ripple voltage on the $\mathrm{V}_{\mathrm{cc}}$ line that the device will withstand and still remain in the desired logic state. For desired logic high state, $\mathrm{V}_{\mathrm{OH}(\mathrm{miN})}>2.0 \mathrm{~V}$, and for desired logic low state, $\mathrm{V}_{\mathrm{OL}(\mathrm{MAX})}<0.8$ volts.
8. Measured between adjacent input pairs shorted together; i.e., for 8 pin DIP, between pins 1 and 2 shorted together and pins 3 and 4 shorted together; for LCC, between terminals 19 and 20 shorted together, and terminals 2 and 3 shorted together.
9. Each channel.
10. Standard parts receive $100 \%$ testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and/883B parts receive $100 \%$ testing at 25,125 , and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
11. Subgroups 10 and 11 shall be tested as part of device initial characterization and after design and process changes. Subgroups 10 and 11 shall be guaranteed to the limits specified for all lots not specifically tested. Subgroup 9 shall be tested with every lot.
12. Propagation delay skew is defined as the difference between the minimum and maximum propagation delays for any given group of HCPL-540X, HCPL-543X, and HCPL-643X optocouplers that are all switching at the same time under the same operating conditions. The minimum propagation delay is the shortest delay, either $\mathrm{t}_{\text {PLH }}$ or $\mathrm{t}_{\text {PHL }}$, of any of the optocouplers; the maximum delay is the longest delay, either $\mathrm{t}_{\mathrm{PLH}}$ or $\mathrm{t}_{\text {PHL }}$, of any of the optocouplers. For more application information see HCPL-2430 data sheet.
13. Propagation delay skew is indirectly tested and guaranteed through guardbanding of the minimum and maximum $\mathrm{t}_{\mathrm{PHL}}$ and $t_{\text {PLH }}$ limits.
14. The HCPL-6430 and HCPL-6431 dual channel parts function as two independent single channel units. Use the single channel parameter limits.


Figure 1. Typical Logic Low Output Voltage vs. Logic Low Output Current.


Figure 3. Typical Output Voltage vs. Input Forward Current.


Figure 2. Typical Logic High Output Voltage vs. Logic High Output Current.


Figure 4. Typical Diode Input Forward Current Characteristic.


Figure 5. Test Circuit for $\mathbf{t}_{\text {PLI }}, t_{\text {PHL }}, t_{\mathbf{r}}$, and $\mathbf{t}_{\mathbf{r}}$


Figure 6. Typical Propagation Delay vs. Ambient Temperature.


Figure 7. Typical Propagation Delay vs. Input Forward Current.


Figure 8. Test Circuit for $\mathbf{t}_{\text {PHZ }}, \mathbf{t}_{\mathbf{P Z H}}, \mathbf{t}_{\mathrm{PLLZ}}$, and $\mathbf{t}_{\mathrm{PZL}}$. (Single Channel Product Only).

Figure 10. Propagation Delay Skew, $\mathrm{t}_{\text {pg }}$, Waveform.



Figure 9. Typical Enable Propagation Delay vs. Ambient Temperature. (Single Channel Product Only).

*TOTAL LEAD LENGTH < 10 mm FROM DEVICE UNDER TEST. **SEE NOTE 5.
${ }^{\dagger} \mathrm{C}_{\mathrm{L}}$ IS APPROXIMATELY 15 pF , WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE.

Figure 11. Test Diagram for Common Mode Transient Immunity and Typical Waveforms.



Figure 12. Single Channel Operating Circuit for Burn-In and Steady State Life Tests.

Figure 13. Dual Channel Operating Circuit for Burn-In and Steady State Life Tests.


Figure 14. Operating Circuit for Burn-In and Steady State Life Tests.

Part Numbering System

Commercial   Product	Class B   Product	SMD Product
HCPL-5400	HCPL-5401	$5962-8957001$ PC
HCPL-5430	HCPL-5431	$5962-8957101$ PC
HCPL-6430	HCPL-6431	$5962-89571022 A$

SMD 5962-8957001PC, SMD 5962-8957101PC, SMD 5962-89571022A, and MIL-STD-883 Class B Test Programs
Hewlett-Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC SMDs 5962-89570 and 596289571 for Hewlett-Packard Optocouplers from the same generic families using the same manufacturing processes, design rules and elements of the same microcircuit groups.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883.

## Clarifications:

I. $100 \%$ screening per MIL-STD-883, Method 5004 constant accelera-tion-Condition A not E.
II. Quality Conformance Inspection per MIL-STD883, Method 5005, Group A, B, C, and D.
Group A-See Electrical Characteristics Table.
Group B-No change.
Group C-No change.
Group D-Constant Acceleration Condition A not E.

## Data Rate and PulseWidth Distortion Definitions

Propagation delay is a figure of merit which describes the finite amount of time required for a system to translate information from input to output when shifting logic levels. Propagation delay from low to high ( $\mathrm{t}_{\mathrm{PLH}}$ ) specifies the amount of time required for a system's output to change from a Logic 0 to a Logic 1, when given a stimulus at the input. Propagation delay from high to low ( $\mathrm{t}_{\mathrm{PH}}$ ) specifies the amount of time required for a system's output to change from a Logic 1 to a Logic 0 , when given a stimulus at the input (see Figure 5).

When $t_{\text {PLH }}$ and $t_{\text {PHL }}$ differ in value, pulse width distortion results. Pulse width distortion is defined as $\left|t_{\text {PHL }}-\mathrm{t}_{\mathrm{PLLH}}\right|$ and determines the maximum data rate capability of a distortionlimited system. Maximum pulse width distortion on the order of $25-35 \%$ is typically used when specifying the maximum data rate capabilities of systems. The exact figure depends on the particular application (RS-232, PCM, T-1, etc.).

These high performance optocouplers offer the advantages of specified propagation delay ( $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$ ), and pulsewidth distortion ( $\left|\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}\right|$ ) over temperature and power supply voltage ranges.

## Applications



Figure 15. Recommended HCPL-5400 Interface Circuit.


Figure 16. Alternative HCPL-5400 Interface Circuit.


Figure 17. Recommended HCPL-5430 Interface Circuit.


Figure 18. Alternative HCPL-5430 Interface Circuit.


Figure 19. Recommended HCPL-6430 Interface Circuit.


Figure 20. Alternative HCPL-6430 Interface Circuit.

## Dual Channel High CMR High Speed Hermetically Sealed Optocouplers

## Technical Data

6 N134
6N134/883B 8102801EC

## Features

- DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Hermetically Sealed 8-pin Dual In-Line Package
- Performance Guaranteed Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature Range
- MIL-STD-883 Class B Testing
- Internal Shield for Higher CMR
- 1500 Vdc Withstand Test Voltage
- High Radiation Immunity
- HCPL-2631, HCPL-56XX, 66XX Function
Compatibility


## Description

The 6N134, 6N134/883B, and 8102801EC units are
hermetically sealed, high CMR, high speed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product ( 6 N 134 ), with full MIL-STD-883 Class

Level B testing ( $6 \mathrm{~N} 134 / 883 \mathrm{~B}$ ) or from the DESC Drawing 81028 as ( 8102801 EC ). All three products are dual channel in sixteen pin hermetic dual in-line packages. These parts are normally shipped with gold platted leads. They are also available with solder dipped leads by replacing $C$ with $A$ in the DESC part \#, or by adding option \#200 to the part number for non-DESC parts.

Each channel contains a GaAsP light emitting diode which is optically coupled to an integrated high speed photon detector. The output of the detector is an open collector Schottky clamped transistor. Internal shields provide a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$. Selection for higher CMR values are available by special request.

## Outline Drawing



[^56]This unique optocoupler design provides maximum dc and ac circuit isolation between each input and output while achieving TTL circuit compatibility. These optocouplers operate such that a minimum input current of 10 mA in each channel will sink a six gate fanout ( 10 mA ) at the output with 4.5 to 5.5 V $\mathrm{V}_{\mathrm{cC}}$ applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec .

The test program performed on the 8102801 EC is in compliance with DESC Drawing 81028. The electrical characteristics table shows Group A Subgroup testing requirements from this drawing.

All devices are manufactured and tested on a MIL-STD-1772
certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H-38534.

## Applications

- Military/High Reliability Systems


## Schematic



NOTE:
A 0.01 TO $0.1 \mu \mathrm{~F}$ BYPASS CAPACITOR MUST BE CONNECTED BETWEEN PINS 15 AND 10.

## Absolute Maximum Ratings

Storage Temperature ............................................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ........................................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 seconds) ............................. $+260^{\circ} \mathrm{C}$
Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )...................................................... $+175^{\circ} \mathrm{C}$
Peak Forward Input Current
(each channel)
40 mA ( $\leq 1 \mathrm{~ms}$ Duration)
Average Input Forward Current (each channel)...................... 20 mA
Input Power Dissipation (each channel)................................. 35 mW
Reverse Input Voltage (each channel) .......................................... 5 V
Supply Voltage - V cc .......................................... 7 V (1 minute max.)
Output Current - $\mathrm{I}_{\mathrm{O}}$ (each channel)......................................... 25 mA
Output Power Dissipation (each channel) .............................. 40 mW
Output Voltage - $\mathrm{V}_{\mathrm{o}}$ (each channel)............................................ 7 V*
Total Power Dissipation (both channels)............................... 350 mW
*Selection for higher output voltages up to 20 V is available.

## Recommended Operating Conditions

Parameter	Symbol	Minimum	Maximum	Units
Input Current, Low Level, Each Channel	$\mathrm{I}_{\mathrm{FL}}$	0	250	$\mu \mathrm{~A}$
Input Current, High Level, Each Channel	$\mathrm{I}_{\mathrm{FH}}$	$12.5^{*}$	16	mA
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.5	V
Fan Out (TTL Load), Each Channel	N		6	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-55	125	${ }^{\circ} \mathrm{C}$

* 12.5 mA condition permits at least $20 \%$ CTR degradation guardband. Initial switching threshold is 10 mA or less.


## Electrical Specifications

Test	Symbol	Conditions	Group A Subgroups ${ }^{[11]}$	Limits			Unit	Fig.	Note
				Min.	Typ.**	Max.			
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}{ }^{*}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{oL}}=10 \mathrm{~mA} \end{aligned}$	1, 2, 3	-	0.4	0.6	V	4	1, 9
Current Transfer Ratio	$\mathrm{h}_{\mathrm{F}}$ CTR	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	100		-	\%		1
High Level Output Current	$\mathrm{I}_{\mathrm{OH}}{ }^{*}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A} \end{aligned}$	1, 2, 3	-	5	250	$\mu \mathrm{Adc}$		1
High Level Supply Current	$\mathrm{I}_{\mathrm{cch}}{ }^{*}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{F}_{1}}=\mathrm{I}_{\mathrm{F}_{2}}=0 \mathrm{~mA}$	1, 2, 3	-	18	28	mA dc		
Low Level Supply Current	$\mathrm{I}_{\text {ccL }}{ }^{*}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{F}_{1}}=\mathrm{I}_{\mathrm{F}_{2}}=20 \mathrm{~mA}$	1, 2, 3	-	26	36	mA dc		
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}{ }^{*}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	1, 2	-	1.55	1.75	V dc	1	1
			3	-		1.85			
Input Reverse Breakdown Voltage	$\mathrm{V}_{\mathrm{BR}}{ }^{*}$	$\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$	1, 2, 3	5.0		-	V dc		1
Input to Output Insulation Leakage Current	$\mathrm{I}_{1.0}{ }^{*}$	$\begin{aligned} & \mathrm{V}_{10}=1500 \mathrm{~V} \text { dc } \\ & \text { Relative Humidity }=45 \% \\ & \mathrm{t}=5 \text { seconds } \end{aligned}$	1	-		1.0	$\mu \mathrm{A} \mathrm{dc}$		2, 10
Capacitance   Between   Input/Output	$\mathrm{C}_{\text {L-0 }}$	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	4	-		4.0	pF		3
Propagation Delay	$\mathrm{t}_{\text {PLH }}{ }^{*}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA} \end{aligned}$	9	-		100	ns	2,3	1, 5
High Output Level			10, 11	-		140			
Propagation Delay	$\mathrm{t}_{\text {PHL }}{ }^{*}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA} \end{aligned}$	9	-		100	ns	2, 3	1,6
Low Output Level			10, 11	-		120			
Output Rise Time	$\mathrm{t}_{\text {LH }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA} \end{aligned}$	9, 10, 11	-		90	ns		
Output Fall Time	$\mathrm{t}_{\mathrm{HL}}$			-		40			
Common Mode   Transient   Immunity at   High Output Level	$\mathrm{ICM}_{\mathrm{H}} \mathrm{I}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V} \text { (peak); } \\ & \mathrm{V}_{\mathrm{o}}=2 \mathrm{~V} \text { minimum; } \\ & \mathrm{R}_{\mathrm{L}}=510 \Omega ; \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$	9, 10, 11	1000	10000	-	$\mathrm{V} \mu \mathrm{s}$	6	1,7, 11, 12
Common Mode   Transient   Immunity at   Low Output Level	$\mathrm{ICM}_{\mathrm{L}} \mathbf{l}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V} \text { (peak); } \\ & \mathrm{V}_{\mathrm{o}}=0.8 \mathrm{~V} \text { minimum; } \\ & \mathrm{R}_{\mathrm{L}}=510 \Omega ; \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	9, 10, 11	1000	10000	-	$\mathrm{V} \mu \mathrm{s}$	6	1,8, 11, 12

*For JEDEC registered parts. $\quad{ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Typical Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ), $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ each channel

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$		1
Input Diode Temperature Coefficient	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1
Resistance (Input-Output)	$\mathrm{R}_{\text {I. }}$		$10^{12}$		$\Omega$	$\mathrm{V}_{\text {IO }}=500 \mathrm{~V}$		3
Input-Input Leakage Current	$\mathrm{I}_{\mathrm{I} \text { I }}$		0.5		nA	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & \mathrm{~V}_{\mathrm{I} \mathrm{I}}=500 \mathrm{~V}, \mathrm{t}=5 \mathrm{~s} \end{aligned}$		4
Resistance (Input-Input)	$\mathrm{R}_{\mathrm{H}}$		$10^{12}$		$\Omega$	$\mathrm{V}_{\mathrm{IH}}=500 \mathrm{~V}$		4
Capacitance (Input-Input)	$\mathrm{C}_{\mathrm{II}}$		0.55		pF	$\mathrm{f}=1 \mathrm{MHz}$		4
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$		35		ns	$\mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		1
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$		35		ns	$\mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA}$		

## Notes:

1. Each channel.
2. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
3. Mcasured between pins 1 and 2 or 5 and 6 shorted together, and pins $10,12,14$ and 15 shorted together.
4. Measured between pins 1 and 2 shorted together, and pins 5 and 6 shorted together.
5. The $\mathrm{t}_{\mathrm{pLH}_{\text {L }}}$ propagation delay is measured form the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The $t_{\text {pHL }}$ propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
7. $\mathrm{CM}_{\mathrm{H}}$ is the max. tolerable common mode transient to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\mathrm{o}}>$ 2.0 V ).
8. $\mathrm{CM}_{\mathrm{L}}$ is the max. tolerable common mode transient to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ).
9. It is essential that a bypass capacitor ( $0.1 \mu \mathrm{~F}$, ceramic) be connected from pin 10 to pin 15 . Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm .
10. This is a momentary withstand test, not an operating condition.
11. Standard parts receive $100 \%$ testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and $/ 883 \mathrm{~B}$ parts receive $100 \%$ testing at 25,125 , and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9,2 and 10,3 and 11 , respectively).
12. Subgroups 10 and 11 shall be tested as part of device initial characterization and after design and process changes. Subgroups 10 and 11 shall be guaranteed to the limits specified in table I for all lots not specifically tested. Subgroup 9 shall be tested with every lot.


Figure 1. Input Diode Forward Current vs. Forward Voltage


* $\mathrm{C}_{1}$ INCLUDES PROBE AND STRAY WIRING CAPACITANCE.


Figure 2. Test Circuit for $\mathbf{t}_{\text {PEL }}$ and $\mathbf{t}_{\text {PLI }}{ }^{*}$


$I_{F}$ - INPUT DIODE FORWARD CURRENT - mA
Figure 4. Input-Output Characteristics


Figure 3. Propagation Delay, $t_{\text {PHL }}$ and $t_{\text {PLH }}$ vs. Pulse Input Current, $\mathrm{I}_{\mathrm{FH}}$


Figure 5. Propagation Delay vs. Temperature



Figure 7. Operating Circuit for Burn-In and Steady State Life Tests

Figure 6. Typical Common Mode Rejection Characteristics/Circuit

## SMD 8102801EC and MIL-STD-883 Class B Test Program

Hewlett-Packard's 883B
Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 81028 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD883.

## 6N134/883B

Clarifications:
I. $100 \%$ screening per MIL-STD-883, Method 5004 constant acceleration Condition A not E.

## Part Numbering System

Commercial Product	Class B Product	SMD Product
6 N134	6 N134/883B	8102801 EC

II. Quality Conformance

Inspection per MIL-STD-883, Method 5005, Group A, B, C, and D.
Group A - See Electrical
Characteristics
Table.
Group B - No change.
Group C - No change.
Group D-Constant
Acceleration -
Condition A not E.

For more information call:
United States: 1-800-752-0900*
Or write:
Hewlett-Packard Components Customer Information Center Building 49 AV
19310 Pruneridge Avenue
Cupertino, California 95014
Canada: (416) 678-9430*
Europe: (49) 7031/14-0*
Far East: (65) 271-9444*
Japan: (81) 03-331-6111*
Elsewhere in the world: (415) 857-5027*
*Or call your local HP sales office listed in your telephone directory. Ask for a Components representative.

Data Subject to Change
Copyright © 1990 Hewlett-Packard Co.
Printed in U.S.A.
5952-0000 (7/90)

# High CMR High Speed Hermetically Sealed Optocouplers 

## Features

- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Performance Guaranteed Over - $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient Temperature Range
- MIL-STD-883 Class B Testing
- High Speed: 10M Bit/s
- Internal Shield for High CMR
- Open Collector Outputs
- 1500 Vdc Withstand Test Voltage
- High Radiation Immunity
- 6N134, 6N137, HCPL-2601, HCPL-2630/31 Function Compatibility


## Applications

- Military/High Reliability Systems
- Isolated Input Line Receiver
- Isolated Output Line Driver
- System Test Equipment Isolation
- Digital Logic Ground Isolation
- Computer-Peripheral Interface
- Level Shifting
- Vehicle Command/Control Isolation

HCPL-5600
HCPL-5601 (883B)
HCPL-5630
HCPL-5631 (883B)
(8-pin Dual In-Line Package)
HCPL-6630
HCPL-6631 (883B)
(20 Terminal Leadless Chip Carrier)


## Description

These units are single and dual channel, hermetically sealed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product or with full MIL-STD883 Class Level B testing. All devices are manufactured and tested on a MIL-STD-1772 certified line and are included in the DESC Qualified Manu-
facturers List (QML) in accordance with requirements for MIL-H-38534.

The HCPL-5600, 5601, 5630 and 5631 are in 8 Pin ceramic DIPs configured as either single or dual channel devices. The standard products are HCPL5600 and HCPL-5630. The products with full MIL-STD-883 Class Level B testing are HCPL-5601 and HCPL-5631.

## Outline Drawings

8 Pin Ceramic DIP Dual Channel Schematic


The HCPL-6630 and

HCPL-6631 parts are in twenty terminal hermetic, ceramic, leadless chip carriers. The standard part is HCPL-6630. The product with full MIL-STD883 Class Level B testing is HCPL-6631. These dual channel devices are configured and function as two independent single channels. Devices are delivered with solder dipped terminals as a standard feature. Units may also be purchased with gold plated terminals.

Each channel contains a light emitting diode optically coupled to an inverting gate providing 1500 Vdc electrical isolation between input and output. The output of the detector is an open collector schottky clamped transistor. Internal shields provide a guaranteed common mode transient immunity specification of $1000 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{VCM}=$ 50 V . Selection for higher CMR values are available by special request. Contact your local HP field sales engineer for ordering information.

8 Pin Ceramic DIP

note:
A 0.01 TO $0.1 \mu$ F BYPASS CAPACITOR
MUST BE CONNECTED BETWEEN
PINS 8 AND 5.
see note 10.
TRUTH TABLE
(POSITIVE LOGIC)

INPUT	ENABLE	OUTPUT
H (on)	H	L
L (off)	H	H
H (on)	L	H
L (off)	L	H

This unique design provides maximum D.C. and A.C. circuit isolation while achieving TTL circuit compatibility. The optocoupler operational parameters are guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, such that a minimum input current of 10 mA per channel will sink a six gate fanout $(10 \mathrm{~mA})$ at the output with 4.5 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$ applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec.

8 Pin Ceramic DIP


NOTE:
A 0.01 TO $0.1 \mu$ F BYPASS CAPACITOR MUST BE CONNECTED BETWEEN PINS 8 AND 5.

External to the unit, a $0.01 \mu \mathrm{~F}$ bypass capacitor must be connected between $\mathrm{V}_{\mathrm{cc}}$ and ground. A capacitor immediately adjacent to each optocoupler is necessary. The power supply bus for the optocoupler(s) should be separate from the bus for any active loads, otherwise a larger value of the bypass capacitor (up to $0.1 \mu \mathrm{~F}$ ) may be needed to suppress regenerative feedback via the power supply.

## 20 Terminal Ceramic Leadless Chip

 Carrier Schematic

## NOTE:

A . 01 TO $0.1 \mu \mathrm{~F}$ BYPASS CAPACITOR
MUST BE CONNECTED BETWEEN
TERMINALS 7 AND 10 AND
BETWEEN 12 AND 15.
TRUTH TABLE
(POSITIVE LOGIC)

INPUT	OUTPUT
H (on)	L
L(off)	H

*DETECTOR IC INTERNAL ELECTRICAL SHIELD

## Recommended Operating Conditions

Parameter	Sym.	Min.	Max.	Units
Input Current,   Low Level   Each Channel	$\mathrm{I}_{\mathrm{FL}}$	0	250	$\mu \mathrm{~A}$
Input Current,   High Level   Each Channel	$\mathrm{I}_{\mathrm{FH}}$	$12.5^{\dagger}$	16	mA
Supply Voltage,   Output	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.5	V
Fan Out   (TTL Load)   Each Channel	N		6	

Single Channel Product Only (see note 10)

High Level   Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V
Low Level   Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	V

$\dagger 12.5 \mathrm{~mA}$ condition permits at least $20 \%$ CTR degradation guardband. Initial switching threshold is 10 mA or less.
Absolute Maximum Ratings
(No derating required up to $+125^{\circ} \mathrm{C}$ )Storage Temperature$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature ..... $175^{\circ} \mathrm{C}$
Lead Solder Temperature ..... $260^{\circ} \mathrm{C}$ for 10 s
Peak Foward Input Current
(each channel)

$\qquad$
.40 mA ( $\leq 1 \mathrm{~ms}$ Duration)
Average Input Foward Current(each channel)20 mA
Input Power Dissipation (each channel) ..... 35 mW
Reverse Input Voltage (each channel) ..... 5 V
Supply Voltage - $\mathrm{V}_{\mathrm{cc}} \ldots . .7 \mathrm{~V}$ (1 minute maximum)
Output Current, $\mathrm{I}_{\mathrm{o}}$ (each channel) ..... 25 mA
Output Power Dissipation(each channel)40 mW
Output Voltage, $\mathrm{V}_{\mathrm{o}}$ (each channel) ..... 7 V
Total Package Power Dissipation ..... 350 mW
Single Channel Product Only Enable Input Voltage - $\mathrm{V}_{\mathrm{E}}$ ..... 5.5 V
ESD Classification HCPL-5600/01 ..... Class 1
HCPL-5630/31 and 6630/31

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified

Parameter		Sym.	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note	
High Level Output Current		$\mathrm{I}_{\mathrm{OH}}$		20	250	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A} \end{aligned}$	3	1	
Low Level Output Voltage		$\mathrm{V}_{\mathrm{OL}}$		0.3	0.6	V	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}(\text { Sinking })=10 \mathrm{~mA} \end{aligned}$	1	1,9	
Logic High Supply Current	Single Channel	$\mathrm{I}_{\mathrm{cch}}$		9	14	mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$		1	
	Dual Channel			18	28	mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$		6	
Logic Low   Supply   Current	Single Channel	$\mathrm{I}_{\mathrm{cCL}}$		13	18	mA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1	
	Dual Channel			26	36	mA	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		6	
Input Forward Voltage		$\mathrm{V}_{\mathrm{F}}$		1.5	1.9	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	2	1	
Input Reverse Breakdown Voltage		$\mathrm{BV}_{\mathrm{R}}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		1	
Input-Output Leakage Current		$\mathrm{I}_{\mathrm{I}-\mathrm{o}}$	$\because$		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I} . \mathrm{o}}=1500 \mathrm{Vdc}$   Relative Humidity $=45 \%$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}$		2,8	
Propagation Delay Time to High Output Level		$\mathrm{t}_{\mathrm{PLH}}$		60	100	ns	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{R}_{\mathrm{L}}=510 \Omega$,	4,5	1,5	
				140	$-55 \text { to }+125^{\circ} \mathrm{C} \mid \mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA},$					
Propagation Delay Time to Low Output Level			$\mathrm{t}_{\text {PHL }}$		55	100	ns			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$
					120	-55 to $+125^{\circ} \mathrm{C}$				
Common Mode Transient Immunity at High Output Level		${ }^{\prime} \mathrm{CM}_{\mathrm{H}} \mathrm{l}$	1000	>10000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V} \text { (peak), } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{o}}(\min .)=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \end{aligned}$	8	1,7	
Common Mode   Transient Immunity at High Output Level		$\mathrm{ICM}_{\mathrm{L}} \mathrm{I}$	1000	>10000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}(\text { peak }), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}(\min .)=0.8 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	8	1, 7	

## Single Channel Product Only

Low Level Enable Current	$\mathrm{I}_{\mathrm{EL}}$		-1.45	-2.0	mA	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$		
High Level Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0			V		10	
Low Level Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$			0.8	V			

*All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Typical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$

Parameter	Sym.	Typ.	Units	Test Conditions	Fig.	Note
Input Capacitance	$\mathrm{C}_{\mathrm{IN}}$	60	pF	$\mathrm{V}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$		1
Input Diode Temperature   Coefficient	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{}$	-1.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{I} \cdot \mathrm{o}}$	$10^{12}$	$\Omega$	$\mathrm{~V}_{\mathrm{I}-\mathrm{o}}=500 \mathrm{~V}$		
Capacitance (Input-Output)	$\mathrm{C}_{\mathrm{I}-\mathrm{o}}$	1.0	pF	$\mathrm{f}=1 \mathrm{MHz}$	2	
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$	35	ns	$\mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$   $\mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA}$		1,3
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$	35	ns			

## Single Channel Product Only

Propagation Delay Time of   Enable from $\mathrm{V}_{\mathrm{EH}}$ to $\mathrm{V}_{\mathrm{EL}}$	$\mathrm{t}_{\mathrm{ELH}}$	35	ns	$\mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,   $\mathrm{I}_{\mathrm{F}}=13 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V}$,   $\mathrm{V}_{\mathrm{EL}}=0 \mathrm{~V}$	6,7	1,11
Propagation Delay time of   Enable from $\mathrm{V}_{\mathrm{EL}}$ to $\mathrm{V}_{\mathrm{EH}}$	$\mathrm{t}_{\mathrm{EHL}}$	35	ns		6,7	1,12

Dual Channel Products Only

Input-Input   Leakage Current	$\mathrm{I}_{\mathrm{I}-\mathrm{I}}$	0.5	nA	Relative Humidity $=45 \%$   $\mathrm{~V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{~V}, \mathrm{t}=5 \mathrm{~s}$		4
Resistance (Input-Input)	$\mathrm{R}_{\mathrm{I}-\mathrm{I}}$	$10^{12}$	$\Omega$	$\mathrm{~V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{~V}$	4	
Capacitance (Input-Input)	$\mathrm{C}_{\mathrm{I}-\mathrm{I}}$	0.55	pF	$\mathrm{f}=1 \mathrm{MHz}$	4	

## Notes:

1. Each channel of a dual channel device.
2. Device considered a two-terminal device: for 8 pin DIP, pins 1 through 4 are shorted together, and pins 5 through 8 are shorted together; for LCC, terminals $19,20,1,2,3$ are shorted together, and terminals 7 through 15 are shorted together.
3. Measured between each input pair shorted together and all outputs for that channel shorted together.
4. Measured between adjacent input pairs shorted together; i.e., for 8 pin DIP, between pins 1 and 2 shorted together and pins 3 and 4 shorted together; for LCC, between terminals 19 and 20 shorted together, and terminals 2 and 3 shorted together.
5. $\mathrm{t}_{\text {PHL }}$ propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse. The $t_{\text {PLH }}$ propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The HCPL-6630 and HCPL-6631 dual channel parts function as two independent single channel units. Use the single channel parameter limits.
7. $\mathrm{CM}_{\mathrm{L}}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ( $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ). $\mathrm{CM}_{\mathrm{H}}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ( $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ).
8. This is a momentary withstand test, not an operating condition.
9. It is essential that a bypass capacitor ( .01 to $0.1 \mu \mathrm{~F}$, ceramic) be connected from $\mathrm{V}_{\mathrm{cc}}$ to ground. Total lead length between both ends of this external capacitor and the isolator pins should not exceed 20 mm .
10. No external pull up is required for a high logic state on the enable input.
11. The $\mathrm{t}_{\text {ELH }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
12. The $t_{\text {RHL }}$ enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.

$I_{F}$ - INPUT DIODE FORWARD CURRENT - mA
Figure 1. Input-Output Characteristics.

Figure 4. Propagation Delay vs. Temperature.


Figure 6. Enable Propagation Delay vs. Temperature.

$V_{F}$ - FORWARD VOLTAGE - VOLTS
Figure 2. Input Diode Forward Characteristic.


Figure 3. High Level Output Current vs. Temperature.


Figure 5. Test Circuit for $\mathrm{t}_{\text {PLIL }}$ and $\mathrm{t}_{\text {PLI }}$.


Figure 7. Test Circuit for $\mathrm{t}_{\text {ehl }}$ and $\mathrm{t}_{\text {eLI }}$.


Figure 8. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.


Figure 9. Single Channel Operating Circuit for Burn-In and Steady State Life Tests.


Figure 10. Dual Channel Operating Circuit for Burn-In and Steady-State Life Tests.


Figure 11. Operating Circuit for Burn-In and Steady State Life Tests.

## MIL-STD-883 Class B Test Program

Hewlett-Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 81028 for the equivalent H.P. Optocoupler.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883.

## Clarifications:

I. $100 \%$ screening per MIL-STD-883, Method 5004 constant acceleration Condition A not E.
II. Quality Conformance

Inspection per MIL-STD883, Method 5005, Group A, $B, C$, and $D$.
Group A - See table for specific electrical tests.
Group B - No change.
Group C - No change.
Group D-Constant
Acceleration - Condition A not E.

Part Numbering System

Commercial Product	Class B Product
HCPL-5600	HCPL-5601
HCPL-5630	HCPL-5631
HCPL-6630	HCPL-6631

Group A - Electrical Tests
Quantity/Accept No. $=116 / 0$

Single and Dual Channel Product	Single Channel Product
Subgroup 1   *Static tests at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}-\mathrm{V}_{\mathrm{OL}}, \mathrm{BV}_{\mathrm{R}}, \mathrm{I}_{\mathrm{OH}}$, $\mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}, \mathrm{V}_{\mathrm{F}}, \mathrm{I}_{\mathrm{L} \mathrm{O}}$	$\mathrm{I}_{\mathrm{EL}}, \mathrm{V}_{\mathrm{EH}}, \mathrm{V}_{\mathrm{EL}}$
Subgroup 2   ${ }^{*}$ Static tests at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}-\mathrm{V}_{\mathrm{OL}}, \mathrm{BV}_{\mathrm{R}}, \mathrm{I}_{\mathrm{OH}}$, $\mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}, \mathrm{V}_{\mathrm{F}}$	$\mathrm{I}_{\mathrm{EL}}, \mathrm{V}_{\mathrm{EH}}, \mathrm{V}_{\mathrm{EL}}$
Subgroup 3   *Static tests at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}-\mathrm{V}_{\mathrm{OL}}, \mathrm{BV}_{\mathrm{R}}, \mathrm{I}_{\mathrm{OH}}$, $\mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}, \mathrm{V}_{\mathrm{F}}$	$\mathrm{I}_{\mathrm{EL}}, \mathrm{V}_{\mathrm{EH}}, \mathrm{V}_{\mathrm{EL}}$
Subgroup 4, 5, 6, 7, 8A and 8B   These subgroups are not applicable to this device type.	
Subgroup 9   ${ }^{*}$ Switching tests at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}$ $\left\|\mathrm{CM}_{\mathrm{H}}\right\|,\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	
Subgroup 10   *Switching tests at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}$	
Subgroup 11   *Switching tests at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}$	

[^57]
# Dual Channel Line Receiver Hermetic Optocoupler 

## Technical Data

## Features

- DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772


## Certified Line

- QML-MIL-H-38534
- Hermetically Sealed 8-pin Dual In-Line Package
- Performance Guaranteed Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature Range
- MIL-STD-883 Class B Testing
- High Speed - $10 \mathrm{Mb} / \mathrm{s}$
- Accepts a Broad Range of Drive Conditions
- Adaptive Line Termination Included
- Internal Shield Provides Excellent Common Mode Rejection
- External Base Lead Allows 'LED Peaking" and LED Current Adjustment
- 1500 Vdc Withstand Test Voltage
- High Radiation Immunity
- HCPL-2602 Function

Compatibility

## Description

The HCPL-1930, HCPL-1931, and $5962-8957201 \mathrm{EC}$ units are dual channel, hermetically sealed, high CMR, line receiver optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product (HCPL-1930), with full

HCPL-1930
HCPL-1931 (883B) 5962-8957201EC

## Outline Drawing

MIL-STD-883 Class Level B testing (HCPL-1931), or from the DESC Standard Military Drawing (SMD) 5962-89572 as (5962-8957201EC). All three products are sixteen pin hermetic dual in-line packages. They are normally shipped with gold plated leads. They are also available with solder dipped leads by replacing $C$ with $A$ in

the SMD part \#, or by adding option \#200 to the part number for non-DESC parts.

Each unit contains two independent channels, consisting of a GaAsP light emitting diode, an input current regulator, and an integrated high gain photon detector. The input regulator serves as a line termination for line receiver applications. It clamps the line voltage and regulates the LED current so line reflections do not interfere with circuit performance. The regulator allows a typical LED current of 12.5 mA before it starts to shunt excess current. The output of the detector IC is an open collector Schottky clamped transistor. An enable input gates the detector. The internal detector shield provides a guaranteed common mode transient immunity specification of $+1000 \mathrm{~V} / \mu \mathrm{sec}$.

DC specifications are compatible with TTL logic and are guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ allowing trouble-free interfacing with digital logic circuits. An input current of 10 mA will sink a six gate fan-out (TTL) at the output with a typical propagation delay from input to output of only 45 nsec .

## Schematic



The test program performed on the $5962-8957201 \mathrm{EC}$ is in compliance with DESC (SMD) 5962-89572. The electrical characteristics table shows Group A Subgroup testing requirements from this drawing.

All devices are manufactured and tested on a MIL-STD-1772 certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H38534.

## Applications

- Military/High Reliability Systems
- Isolated Line Receiver
- Simplex/Multiplex Data Transmission
- Computer-Peripheral Interface
- Microprocessor System Interface
- Digital Isolation for A/D, D/A Conversion
- Current Sensing
- Instrument Input/Output Isolation
- Ground Loop Elimination
- Pulse Transformer Replacement

[^58]
## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	$\mathrm{I}_{\mathrm{L}}$	0	250	$\mu \mathrm{~A}$
Input Current, High Level*	$\mathrm{I}_{\mathrm{H}}$	12.5	60	mA
Supply Voltage, Output	$\mathrm{V}_{\mathrm{cC}}$	4.5	5.5	V
High Level Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V
Low Level Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	V
Fan Out (TTL Load)	N		6	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-55	125	${ }^{\circ} \mathrm{C}$

* 12.5 mA condition permits at least $20 \%$ CTR degradation guardband. Initial switching threshold is 10 mA or less.
Absolute Maximum Ratings
Storage Temperature ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature ..... $260^{\circ} \mathrm{C}$ for 10 s
1.6 mm below seating plane
Forward Input Current - $I_{I}$ (each channel)$60 \mathrm{~mA}^{2}$
Reverse Input Current ..... 60 mA
Supply Voltage - $\mathrm{V}_{\mathrm{Cc}}$ 7 V 1 Minute Maximum
Enable Input Voltage - $\mathrm{V}_{\mathrm{E}}$ (each channel) ..... 5.5 V
Not to exceed $V_{\text {cc }}$ by more than 500 mV
Output Collector Current - $\mathrm{I}_{\mathrm{o}}$ (each channel) ..... 25 mA
Output Collector Power Dissipation (each channel) ..... 40 mW
Output Collector Voltage - $\mathrm{V}_{\mathrm{o}}$ (each channel) ..... 7 V
Total Package Power Dissipation ..... 564 mW
Total Input Power Dissipation (each channel) ..... 168 mW


## Electrical Specifications

Parameter	Symbol	Test Conditions	Group A Subgroups ${ }^{[15]}$	Limits			Units	Fig.	Note
				Min.	Typ.*	Max.			
High Level Output Current	$\mathrm{I}_{\mathrm{OH}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{I}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V} \end{aligned}$	1, 2, 3		20	250	$\mu \mathrm{A}$	3	3
Low Level Output Voltage	$\mathrm{V}_{\text {oL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{l}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}} \text { (Sinking) }=10 \mathrm{~mA} \end{aligned}$	1, 2, 3		0.3	0.6	V	1	3
Input Voltage	$\mathrm{V}_{1}$	$\mathrm{I}_{1}=10 \mathrm{~mA}$.	1,2,3		2.2	2.6	V	2	3
		$\mathrm{I}_{\mathrm{I}}=60 \mathrm{~mA}$			2.35	2.75			
Input Reverse Voltage	$\mathrm{V}_{\mathrm{R}}$	$\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$	1, 2, 3		0.8	1.10	V		3
Low Level Enable Current	$\mathrm{I}_{\mathrm{EL}}$	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$	1,2.3		-1.45	$-2.0$	mA		3
High Level Enable Voltage	$\mathrm{V}_{\text {EH }}$		1, 2, 3	2.0			V		3,12
Low Level Enable Voltage	$\mathrm{V}_{\text {EL }}$		1, 2, 3			0.8	V		3
High Level Supply Current	$\mathrm{I}_{\mathrm{cch}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=0, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \text { both channels } \end{aligned}$	1, 2, 3		21	28	mA		
Low Level Supply Current	$\mathrm{I}_{\mathrm{cc} \text { L }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{L}}=60 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V} \text { both channels } \end{aligned}$	1, 2, 3		27	36	mA		
Input-Output   Insulation   Leakage Current	$\mathrm{I}_{1.0}$	$\begin{aligned} & \text { Relative Humidity }=45 \% \\ & \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=1500 \mathrm{Vdc} \end{aligned}$	1			1	$\mu \mathrm{A}$		4
Propagation Delay Time to High Output Level	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{I}}=13 \mathrm{~mA} \end{aligned}$	9		55	100	ns	4, 5	3,5
			10, 11			140			
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{I}}=13 \mathrm{~mA} \end{aligned}$	9		60	100	ns	4,5	3,6
			10, 11			120			
Common Mode   Transient   Immunity at High Output Level	$\mathrm{ICM}_{\mathrm{H}} \mathrm{I}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V} \text { (peak), } \\ & \mathrm{V}_{\mathrm{o}}(\min .)=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=510 \Omega ; \mathrm{I}_{\mathrm{l}}=0 \mathrm{~mA} \end{aligned}$	9, 10, 11	1000	10,000		$\mathrm{V} / \mu \mathrm{s}$	8,9	$\begin{gathered} 3,9 \\ 14 \end{gathered}$
Common Mode   Transient   Immunity at   Low Output Level	$\mathrm{ICM}_{\mathrm{L}} \mathrm{l}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cM}}=50 \mathrm{~V}(\text { peak }), \\ & \mathrm{V}_{\mathrm{o}}(\max .)=0.8 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=510 \Omega ; \mathrm{I}_{\mathrm{t}}=10 \mathrm{~mA} \end{aligned}$	9, 10, 11	1000	10,000		V/ $/ \mathrm{s}$	8,9	$\begin{gathered} 3,10 \\ 14 \end{gathered}$

[^59]
## Typical Specifications

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Typ.	Units	Test Conditions	Fig.	Note
Resistance (Input-Output)	$\mathrm{R}_{1.0}$	$10^{12}$	$\Omega$	$\mathrm{V}_{\mathrm{t} . \mathrm{o}}=500 \mathrm{~V} \mathrm{dc}$		3, 13
Capacitance (Input-Output)	$\mathrm{C}_{\text {I. }}$	1.7	pF	$\mathrm{f}=1 \mathrm{MHz}$		3, 13
Input-Input Insulation Leakage Current	$\mathrm{I}_{1-1}$	0.5	nA	45\% Relative Humidity, $\mathrm{V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{Vdc}, \mathrm{t}=5 \mathrm{~s}$		11
Resistance (Input-Input)	$\mathrm{R}_{\text {I- }}$	$10^{12}$	$\Omega$	$\mathrm{V}_{1-1}=500 \mathrm{Vdc}$		11
Capacitance (Input-Input)	$\mathrm{C}_{1-1}$	0.55	pF	$\mathrm{f}=1 \mathrm{MHz}$		11
Propagation Delay Time of Enable from $V_{E H}$ to $V_{E L}$	$\mathrm{t}_{\text {ELH }}$	35	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{t}}=13 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V} \end{aligned}$	6, 7	3, 7
Propagation Delay Time of Enable from $V_{E L}$ to $V_{E H}$	$\mathrm{t}_{\text {EHL }}$	35	ns		6,7	3, 8
Output Rise Time ( $10-90 \%$ )	$\mathrm{t}_{\mathrm{r}}$	30	ns	$\mathrm{R}_{\mathrm{L}}=510 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{I}_{\mathrm{L}}=13 \mathrm{~mA}$		3
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$	24	ns			3
Input Capacitance	$\mathrm{C}_{1}$	60	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{I}}=0 \text {, }$   PINS 1 to 2 or 5 to 6		3

## Notes:

1. Bypassing of the power supply line is required, with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each isolator. The power supply bus for the isolators should be separate from the bus for any active loads, otherwise additional bypass capacitance may be needed to suppress regenerative feedback via the power supply.
2. Derate linearly at $1.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$.
3. Each channel.
4. Device considered a two terminal device: pins 1 through 8 are shorted together, and pins 9 through 16 are shorted together.
5. The $\mathrm{t}_{\text {pLH }}$ propagation delay is measured form the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
6. The $\mathrm{t}_{\text {phL }}$ propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
7. The $\mathrm{t}_{\text {eLH }}$ enable propagation delay is measured from the 1.5 V point on the trailing edge of the enable input pulse to the 1.5 V point on the trailing edge of the output pulse.
8. The $\mathrm{t}_{\mathrm{EHL}}$ enable propagation delay is measured from the 1.5 V point on the leading edge of the enable input pulse to the 1.5 V point on the leading edge of the output pulse.
9. $\mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state, i.e. $\mathrm{V}_{\text {our }}>2.0 \mathrm{~V}$.
10. $\mathrm{CM}_{\mathrm{L}}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state, i.e. $\mathrm{V}_{\text {out }}<0.8 \mathrm{~V}$.
11. Measured between adjacent input leads shorted together, i.e. between 1,2 and 4 shorted together and pins 5,6 and 8 shorted together.
12. No external pull up is required for a high logic state on the enable input.
13. Measured between pins 1 and 2 or 5 and 6 shorted together, and pins 10 through 15 shorted together.
14. Subgroups 10 and 11 shall be tested as part of device initial characterization and after design and process changes. Subgroup 9 shall be tested with every lot.
15. Standard parts receive $100 \%$ testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and $/ 883 \mathrm{~B}$ parts receive $100 \%$ testing at 25,125 , and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9,2 and 10, 3 and 11, respectively).


Figure 1. Input-Output
Characteristics.


Figure 4. Propagation Delay vs. Temperature.


Figure 6. Enable Propagation Delay vs. Temperature.


Figure 2. Input Characteristics.


Figure 5. Test Circuit for $t_{\text {PHL }}$ and $\mathbf{t}_{\text {PLI }}$.


Figure 7. Test Circuit for $\mathrm{t}_{\text {ghl }}$ and
$\mathrm{t}_{\mathrm{ELI}}$.


Figure 8. Typical Common Mode Transient Immunity.

## SMD 5962-8957201EC and MIL-STD-883 Class B Test Program

Hewlett-Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC SMD 5962-89572 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD883.

## 1931/883B <br> Clarifications:

I. 100\% screening per MIL-STD-883, Method 5004 constant acceleration Condition A not E.


Figure 9. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A, B, C, and $D$.
Group A - See Electrical
Characteristics Table.

## Part Numbering System

Commercial Product	Class B Product	SMD Product
HCPL-1930	HCPL-1931	$5962-8957201 \mathrm{EC}$



Figure 10. Burn In Circuit.

## Application Circuits*



	$R=\mathbf{0}, \mathrm{C}=$ OPEN				$\mathrm{R}=33 \Omega, \mathrm{C}=$ OPEN		$\mathrm{R}=33 \Omega \Omega, \mathrm{C}=390 \mathrm{pF}$	UNITS		
$\ell$	$<1$	150	300	$<1$	150	300	$<1$	150	300	m
$\mathbf{t}_{\text {PHL }}$	42	27	121	43	47	171	28	37	146	nsec
$\mathbf{t}_{\text {PLH }}$	31	121	296	31	31	71	26	11	46	nsec

PROPAGATION DELAY TIMES SHOWN EXCLUDE DRIVER AND LINE DELAYS.
Figure A, Polarity Non-Reversing.


Figure $\mathbf{A}_{2}$. Polarity Reversing, Split Phase.


NAND flip flop tolerates simultaneously HIGH inputs; NOR flip flop tolerates simultaneously LOW inputs; EXCLUSIVEOR flip flop tolerates simultaneously HIGH OR LOW inputs without causing either of the outputs to change.

EXCLUSIVE-OR FLIP FLOP
*FOR A DESCRIPTION OF THESE CIRCUITS SEE HCPL-2602 DATA SHEET.
Figure A $_{2}$. Flop-Flop Configurations.

# Hermetically Sealed Four Channel Low Input Current Optocoupler 

## Technical Data

## Features

- DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Hermetically Sealed 8-Pin Dual In-Line Package
- Performance Guaranteed Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature Range
- MIL-STD-883 Class B Testing
- Internal Shield for Higher CMR
- Low Input Current Requirement: 0.5 mA
- High Current Transfer Ratio: 1500\% Typical
- Low Output Saturation Voltage: 0.1 V Typical
- Low Power Consumption
- 1500 VDC Withstand Test Voltage
- High Radiation Immunity
- 6N138/9, HCPL-57XX, 67XX Function Compatibility


## Applications

- Military/High Reliability Systems
- Isolated Input Line Receiver

System Test Equipment Isolation

- Digital Logic Ground Isolation
- EIA RS-232C Line Receiver
- Microprocessor System Interface
- Current Loop Receiver
- Level Shifting
- Process Control Input/ Output Isolation


## Outline Drawing

6N140A
6N140A/883B 8302401EC

Schematic




## Description

The 6N140A is an EIA registered hybrid microcircuit which is capable of operation over the full military temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and is electrically and functionally identical to the 6 N140 part. It is an advanced replacement unit for the 6N140. The better performance results from an improved integrated bypass resistor which shunts photodiode and first stage leakage currents. All products within this family have this advanced feature and can be purchased as either a standard product (6N140A), with full MIL-STD883 Class Level B testing ( $6 \mathrm{~N} 140 \mathrm{~A} / 883 \mathrm{~B}$ ) or as parts compliant to DESC Drawing 83024 as (8302401EC). All parts are normally shipped with gold plated leads. They are also available with solder dipped leads by replacing C with A in the DESC part number, or by adding Option 200 to the part number for non-DESC parts.

All three products are in sixteen-pin hermetic dual inline packages. Each part contains four GaAsP light emitting diodes, each of which is optically coupled to a corresponding integrated high gain photon detector. The high gain output stage features an open collector output providing both lower output saturation voltage and higher speed operation than possible with conventional photodarlington type optocouplers. Also, the separate $\mathrm{V}_{\mathrm{cc}}$ pin can be strobed low as an output disable or operated with supply voltages as low as 2.0 V without adversely affecting the parametric performance.

The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of CTR
degradation over time.
These products have a $300 \%$ minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing or RS-232C data transmission systems. Compatibility with high voltage CMOS logic systems is assured by the $18 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$ and by the guaranteed maximum output leakage (IOH) at 18 V . The
shallow depth of the IC photodiode provides better radiation immunity than conventional phototransistor optocouplers.

The test program performed on the 8302401 EC is in compliance with DESC Drawing 83024. The electrical characteristics table shows Group A Subgroup testing requirements from this drawing.

All devices are manufactured and tested on a MIL-STD-1772 certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H38534.

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Voltage, Low Level   (Each Channel)	$\mathrm{V}_{\mathrm{F}, \mathrm{ofF}}$		0.8	V
Input Current, High Level   (Each Channel)	$\mathrm{I}_{\mathrm{F}, \mathrm{ON}}$	0.5	5	mA
Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	2.0	18	V

Absolute Maximum Ratings
Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature ..... $260^{\circ} \mathrm{C}$ for 10 s
( 1.6 mm below seating plane)
Output Current, $\mathrm{I}_{\mathrm{O}}$ (each channel) ..... 40 mA
Output Voltage, $\mathrm{V}_{\mathrm{o}}$ (each channel) ..... -0.5 to $20 \mathrm{~V}^{[1]}$
Supply Voltage, $\mathrm{V}_{\text {cc }}$ ..... -0.5 to $20 \mathrm{~V}^{[1]}$
Output Power Dissipation (each channel) ..... $50 \mathrm{~mW}^{[2]}$
Peak Input Current (each channel, $\leq 1 \mathrm{~ms}$ duration) ..... 20 mA
Average Input Current, $\mathrm{I}_{\mathrm{F}}$ (each channel) ..... $10 \mathrm{~mA}^{[3]}$
Reverse Input Voltage, $\mathrm{V}_{\mathrm{R}}$ (each channel) ..... 5 V

Electrical Characteristics

Parameter	Sym.	Test Conditions	Group $\mathbf{A}^{[14]}$ Subgroups	Limits			Unit	Fig.	Note
				Min.	Typ.**	Max.			
Current Transfer Ratio	$\mathrm{h}_{\mathrm{F}(\mathrm{CTR})}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1, 2, 3	300	1500		\%	3	4,5
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1, 2, 3	300	1000		\%		4,5
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1, 2, 3	200	500		\%		4,5
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{oL}}=1.5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1, 2, 3		0.1	0.4	V	2	4
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{oL}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1, 2, 3		0.2	0.4	V		4
Logic High Output Current	$\mathrm{I}_{\mathrm{OH}}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V} \end{aligned}$	1, 2, 3		0.001	250	$\mu \mathrm{A}$		4
	$\mathrm{I}_{\mathrm{OHX}}$		1, 2, 3			250	$\mu \mathrm{A}$		4,6
Logic Low Supply Current	$\mathrm{I}_{\mathrm{ccL}}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}_{1}}=\mathrm{I}_{\mathrm{F}_{2}}=\mathrm{I}_{\mathrm{F} 3}=\mathrm{I}_{\mathrm{F} 4}=1.6 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cC}}=18 \mathrm{~V} \end{aligned}$	1, 2, 3		1.7	4	mA		
Logic High Supply Current	$\mathrm{I}_{\mathrm{ccH}}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=\mathrm{I}_{\mathrm{F} 3}=\mathrm{I}_{\mathrm{F} 4}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V} \end{aligned}$	1, 2, 3		0.001	40	$\mu \mathrm{A}$		
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}{ }^{*}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	1,2		1.44	1.7	V	1	4
			3			1.8	V		4
Input Reverse Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}{ }^{*}$	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	1, 2, 3	5			V		4
Input-Output   Insulation   Leakage Current	$\mathrm{I}_{1.0}{ }^{*}$	45\% Relative Humidity, $\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{t}-\mathrm{o}}=1500 \mathrm{VDC} \end{aligned}$	1			1.0	$\mu \mathrm{A}$		7,12
Capacitance Between Input-Output	$\mathrm{C}_{1.0}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	4			4	pF		4,8
Propagation Delay Time To Logic High At Output	$\mathrm{t}_{\text {PLa }}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	9, 10, 11		6	60	$\mu \mathrm{s}$	8	4
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	9		4	20	$\mu \mathrm{s}$		4
			10, 11			30	$\mu \mathrm{s}$		4
Propagation Delay Time To Logic Low At Output	$\mathrm{t}_{\text {PHL }}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	9, 10, 11		30	100	$\mu \mathrm{s}$	8	4
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	9		2	5	$\mu \mathrm{s}$		4
			10, 11			10	$\mu \mathrm{s}$		4
Common Mode Transient Immunity At Logic High Level Output	$1 \mathrm{CM}_{\mathrm{H}} \mathrm{I}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega \\ & \mathrm{IV}_{\mathrm{cm}} \mathrm{I}=25 \mathrm{~V}_{\mathrm{P} . \mathrm{p}} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \\ & \hline \end{aligned}$	9, 10, 11	500	1000		$\mathrm{V} / \mu \mathrm{s}$	9	4, 9, 11, 15
Common Mode Transient Immunity At Logic Low Level Output	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{cM}} \mathrm{I}=25 \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P}} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	9, 10, 11	500	1000		V/ $\mu \mathrm{s}$	9	$\begin{gathered} 4,10 \\ 11 \\ 15 \end{gathered}$

## Typical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ Each Channel

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Resistance (Input-Output)	$\mathrm{R}_{1.0}$		$10^{12}$		$\Omega$	$\mathrm{V}_{1.0}=500 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4,8
Input-Input Insulation Leakage Current	$\mathrm{I}_{1-1}$		0.5		$n \mathrm{n}$	45\% Relative Humidity, $\mathrm{V}_{1-1}=500$ VDC $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}$		13
Resistance (Input-Input)	$\mathrm{R}_{1.1}$		$10^{12}$		$\Omega$	$\mathrm{V}_{\mathrm{L}-\mathrm{I}}=500 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13
Capacitance (Input-Input)	$\mathrm{C}_{1.1}$		1		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		-1.8		$\underset{{ }^{\circ} \mathrm{C}}{\mathrm{mV}}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		4
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4

## Notes:

1. Pin 10 should be the most negative voltage at the detector side. Keeping $\mathrm{V}_{\mathrm{cc}}$ as low as possible, but greater than 2.0 volts, will provide lowest total $\mathrm{I}_{\mathrm{OH}}$ over temperature.
2. Output power is collector output power plus one fourth of total supply power. Derate at $1.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
3. Derate $\mathrm{I}_{\mathrm{F}}$ at $0.33 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
4. Each channel.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $I_{F}$, times $100 \%$.
6. $\mathrm{I}_{\text {OHX }}$ is the leakage current resulting from channel to channel optical crosstalk. $\mathrm{I}_{\mathrm{F}}=2 \mu \mathrm{~A}$ for channel under test. For all other channels, $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$.
7. Device considered a two-terminal device: Pins 1 through 8 are shorted together and pins 9 through 16 are shorted together.
8. Measured between the LED anode and cathode shorted together and pins 10 through 15 shorted together.
9. $\mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{0}>$ 2.0 V ).
10. $\mathrm{CM}_{L}$ is the maximum tolerable common mode transient to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{0}<$ 0.8 V ).
11. In applications where $d V / d t$ may exceed $50,000 \mathrm{~V} \mu \mathrm{~s}$ (such as a static discharge) a series resistor, $\mathbf{R}_{\mathrm{cc}}$, should be included to protect the detector ICs from destructively high surge currents. The recommended value is

$$
R_{c c} \approx \frac{1 \mathrm{~V}}{0.6 \mathrm{I}_{\mathrm{F}}(\mathrm{~mA})} \mathrm{k} \Omega
$$

12. This is a momentary withstand test, not an operating condition.
13. Measured between adjacent input pairs shorted together, i.e., between pins 1 and 2 shorted together, and pins 3 and 4 shorted together, etc.
14. Standard parts receive $100 \%$ testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and $/ 883 \mathrm{~B}$ parts receive $100 \%$ testing at 25,125 , and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
15. Subgroups 10 and 11 shall be tested as part of device initial characterization and after design and process changes. Subgroups 10 and 11 shall be guaranteed to the limits specified in Table I for all lots not specifically tested. Subgroup 9 shall be tested with every lot.


Figure 1. Input Diode Forward Current vs Forward Voltage.


Figure 3. Normalized Current Transfer Ratio vs Input Diode Forward Current.


Figure 5. Propagation Delay to Logic Low vs Input Pulse Period.


Figure 2. Normalized DC Transfer Characteristics.


Figure 4. Normalized Supply Current vs Input Diode Forward Current.


Figure 6. Propagation Delay vs Temperature.


Figure 7. Propagation Delay vs Input Diode Forward Current.


Figure 8. Switching Test Circuit (f, $\mathbf{t}_{\mathbf{p}}$ not JEDEC registered).*


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.


Figure 10. Recommended Drive Circuitry Using TTL OpenCollector Logic.

## SMD 8302401EC and MIL-STD-883 Class B Test Program

Hewlett-Packard's 883B
Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawings 83024 for an H.P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD883.

## 6N140A/883B Clarifications:

I. $100 \%$ screening per MIL-STD-883, Method 5004 constant accelerationcondition A not E.
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A, B, C, and D.

Group A-See Electrical Characteristics Table.
Group B-No change.
Group C-No change.
Group D-Constant
Acceleration-Condition A not E.

## Part Numbering System

Commercial Product	Class B Product	SMD Product
6N140A	6N140A/883B	8302401EC



Figure 11. Operating Circuit for Burn-In and Steady State Life Tests.

## Low Input Current, High Gain, Hermetically Sealed Optocoupler

## Technical Data

## Features

- DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Hermetically Sealed Packages
- Performance Guaranteed Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature Range
- MIL-STD-883 Class B Testing
- Low Input Current Requirement: 0.5 mA
- High Current Transfer Ratio: 1500\% Typical
- Low Output Saturation Voltage: 0.11 V Typical
- 1500 Vdc Withstand Test Voltage
- Low Power Consumption
- High Radiation Immunity
- Function Compatibility with 6N138/9, HCPL-2730/ 31, and 6N140A
- 2-18 Volt $V_{c c}$ Range

Applications

- Military/High Reliability Systems
- Telephone Ring Detection
- Microprocessor System Interface
- EIA RS-232-C Line Receiver
- Level Shifting


## Outline Drawings

8-pin Dual In-Line Package HCPL-5700
HCPL-5701 (883B)
5962-8981001PC
HCPL-5730
HCPL-5731 (883B)
5962-8978501 PC
20 Terminal Leadless Chip
Carrier
HCPL-6730
HCPL-6731 (883B)
5962-89785022A

- Digital Logic Ground Isolation
- Current Loop Receiver
- Isolated Input Line Receiver
- System Test Equipment Isolation
- Process Control Input/ Output Isolation




## Description

The HCPL-5700, HCPL-5701, and $5962-8981001 \mathrm{PC}$ are single channel, low input current, high gain optocouplers. The HCPL5730, HCPL-5731 and 59628978501PC are dual channel units made from the same chip sets. All six products are in eight pin hermetic dual in-line packages. These units are capable of operation and storage over the full military temperature ranges and can be purchased as either single or dual channel standard product (HCPL-5700 and HCPL-5730 respectively), with full MIL-STD-883 Class Level B testing (HCPL-5701 and HCPL-5731 respectively), or from the DESC Standard Military Drawings (SMDs) 5962-89810 and 596289785 as ( $5962-8981001 \mathrm{PC}$ or 5962-8978501PC respectively). All parts are normally shipped with gold plated leads. They are also available with solder dipped leads by replacing $C$ with A in the SMD part number, or by adding Option 200 to the part number for nonSMD parts.


8 PIN CERAMIC DIP SINGLE CHANNEL SCHEMATIC


8 PIN CERAMIC DIP DUAL CHANNEL SCHEMATIC


The HCPL-6730, HCPL-6731, and 8962-89785022A are dual channel parts in twenty terminal hermetic, ceramic, leadless chip carriers. The standard part is HCPL-6730. The product with full MIL-STD883 Class Level B testing is HCPL-6731. The DESC SMD part is 5962-89785022A. All three products are configured and function as two independent single channels. Devices are delivered with solder dipped terminals as a standard feature. Units may also be purchased with gold plated terminals.

All devices are manufactured and tested on a MIL-STD-1772 certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H38534.

Each channel contains a GaAsP light emitting diode optically coupled to an integrated high gain photon detector. The high gain output stage features an open collector output providing both lower saturation voltage and higher signaling speed than possible with conventional photo-Darlington optocouplers.

The supply voltage can be operated as low as 2.0 V without adversely affecting the parametric performance.

These devices have a 300\% minimum CTR at an input current of only 0.5 mA making them ideal for use in low input current applications such as MOS, CMOS, low power logic interfaces or line receivers.

Compatibility with high voltage CMOS logic systems is assured by the 18 V VCC, VOH current and the guaranteed maximum output leakage current at 18 V . The shallow depth and small junctions offered by the IC process provides better radiation immunity than conventional phototransistor optocouplers.

Upon special request, the following device selections can be made: CTR minimum of up to $600 \%$ at 0.5 mA , lower drive currents to 0.1 mA , and lower output leakage current levels to $100 \mu \mathrm{~A}$.
Absolute Maximum RatingsStorage Temperature Range$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ..... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature ..... $260^{\circ} \mathrm{C}$ for 10 s
Output Current, $\mathrm{I}_{\mathrm{o}}$ (each channel) ..... 40 mA
Output Voltage, $\mathrm{V}_{\mathrm{o}}$ (each channel) ..... -0.5 to $20 \mathrm{~V}^{[1]}$
Supply Voltage $\mathrm{V}_{\mathrm{cc}}$ ..... -0.5 to $20 \mathrm{~V}^{[1]}$
Output Power Dissipation (each channel) ..... $50 \mathrm{~mW}^{[2]}$
Peak Input Current (each channel, $\leq 1 \mathrm{~ms}$ duration) ..... 20 mA
Average Input Current, $\mathrm{I}_{\mathrm{F}}$ (each channel) ..... $10 \mathrm{~mA}^{[3]}$
Reverse Input Voltage, $\mathrm{V}_{\mathrm{R}}$ (each channel) ..... 5 V

[^60]
## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Voltage, Low Level   (Each Channel)	$\mathrm{V}_{\mathrm{F}, \text { ofr }}$		0.8	V
Input Current, High Level   (Each Channel)	$\mathrm{I}_{\mathrm{F}, \mathrm{ON}}$	0.5	5	mA
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	2.0	18	V

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-\mathbf{5 5 ^ { \circ }} \mathbf{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified

Parameter		Sym.	Test Conditions	Group $A^{[14]}$   Subgroups	Min.	Typ.*	Max.	Units	Fig.	Notes	
Current Transfer Ratio		CTR	$\begin{aligned} & \mathrm{I}_{\mathrm{p}}=0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1, 2, 3	300	1500		\%	3	4,5	
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	300		1000						
		$\begin{aligned} & \mathrm{I}_{\mathrm{p}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	200		500						
Logic Low Output Voltage			$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{o}}=1.5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	1, 2, 3		0.11	0.4	V	2	4
		$\begin{aligned} & \mathrm{I}_{\mathrm{p}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{o}}=4.8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$				0.13	0.4				
		$\begin{aligned} & \mathrm{I}_{\mathrm{y}}=5.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{o}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$				0.16	0.4				
Logic High Output Current			$\mathrm{I}_{\mathrm{OHX}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2 \mu \mathrm{~A} \text { (Channel Under } \\ & \text { Test) } \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { (Other Channel) } \\ & \mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V} \end{aligned}$	1, 2, 3		0.001		$\mu \mathrm{A}$		6
		$\mathrm{I}_{\mathrm{OH}}$				250					
Logic Low Supply Current	Single Channel	$\mathrm{I}_{\text {ccl }}$	$\mathrm{I}_{\mathrm{p}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V}$	1, 2, 3		1.0	2	mA	4	16	
	Dual Channel		$\begin{aligned} & \mathrm{I}_{\mathrm{P}_{1}}=\mathrm{I}_{\mathrm{r}_{2}}=1.6 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V} \end{aligned}$				4				
Logic High Supply Current	Single Channel	$\mathrm{I}_{\mathrm{cch}}$	$\mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\text {cc }}=18 \mathrm{~V}$	1, 2, 3		0.001	20	$\mu \mathrm{A}$		16	
	Dual Channel		$\mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{p} 2}=0, \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V}$				40				
Input   Forward   Voltage	8 Pin DIP Devices	$\mathbf{V}_{\mathbf{F}}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$	1	1.0	1.44	1.7	V	1	4	
				2			1.7				
				3			1.8				
	20 Terminal   Devices			1, 2, 3	1.0		1.8				
Input Reverse Breakdown Voltage		$\mathrm{BV}_{\mathrm{R}}$	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	1, 2, 3	5			V		4	
Input-Output   Insulation   Leakage Current		$\mathrm{I}_{1.0}$	45\% Relative Humidity, $\mathrm{t}=5 \mathrm{~s}, \mathrm{~V}_{\mathrm{I} .0}=1500 \mathrm{Vdc}$	1			1.0	$\mu \mathrm{A}$		7, 13	

*All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Electrical Characteristics (continued)

Parameter	Sym.	Test Conditions	Group $\mathrm{A}^{[14]}$   Subgroups	Min.	Typ.*	Max.	Units	Fig.	Notes
Propagation Delay Time to Logic High at Output	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$	9, 10, 11		17	60	$\mu \mathrm{s}$	7,8	4
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$			14	50			
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$			8	30			
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$	9, 10, 11		10	100	$\mu \mathrm{s}$	7, 8	4
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$			5	30			
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=680 \Omega, \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \end{aligned}$			2	10			
Common Mode Transient Immunity at Logic High Level Output	$1 \mathrm{CM}_{\mathrm{H}} \mathrm{I}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{cM}} \mathrm{I}=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	9, 10, 11	500	$\geq 2000$		$\mathrm{V} / \mu \mathrm{s}$	9	$\begin{gathered} 4,10 \\ 12 \\ 15 \end{gathered}$
Common Mode Transient   Immunity at Logic   Low Level Output	$\mathrm{ICM}_{\mathrm{L}} \mathrm{l}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{cm}} \mathrm{I}=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	9, 10, 11	500	$\geq 1000$		$\mathrm{V} / \mathrm{\mu s}$	9	$\begin{gathered} 4,11, \\ 12 \\ 15 \end{gathered}$

${ }^{*}$ All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## Typical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Parameter	Symbol	Typical	Units	Test Conditions	Figure	Note
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	$10^{12}$	$\Omega$	$\mathrm{~V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{Vdc}$		4,8
Capacitance (Input-Input)	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	2.0	pF	$\mathrm{f}=1 \mathrm{MHz}$		4,8
Temperature Coefficient of   Forward Voltage	$\Delta \mathrm{V}_{\mathrm{F}}$	-1.8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		4
Input Capacitance	$\Delta \mathrm{T}_{\mathrm{A}}$		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		4

## Dual Channel Product Only

\(\left.$$
\begin{array}{|l|c|c|c|l|c|c|}\hline \begin{array}{l}\text { Input-Output Insulation Leakage } \\
\text { Current }\end{array}
$$ \& \mathrm{I}_{\mathrm{I}-\mathrm{I}} \& 0.5 \& \mathrm{nA} \& \begin{array}{l}45 \% Relative Humidity, <br>
\mathrm{V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{Vdc} <br>

\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}\end{array} \& \& 9\end{array}\right]\)| (Input-Input) |
| :--- |

## Notes:

1. GND Pin should be the most negative voltage at the detector side. Keeping $\mathrm{V}_{\mathrm{cc}}$ as low as possible, but greater than 2.0 V , will provide lowest total $\mathrm{I}_{\mathrm{OH}}$ over temperature.
2. Output power is collector output power plus total supply power for the single channel device. For the dual channel device, output power is collector output power plus one half the total supply power. Derate at $1.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
3. Derate $I_{p}$ at $0.33 \mathrm{~mA}^{\circ} \mathrm{C}$ above $110^{\circ} \mathrm{C}$.
4. Each channel.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $I_{F}$, times $100 \%$.
6. $I_{\mathrm{OHX}}$ is the leakage current resulting from channel to channel optical crosstalk. $\mathrm{I}_{\mathrm{F}}=2 \mu \mathrm{~A}$ for channel under test. For all other channels, $I_{p}=10 \mathrm{~mA}$.
7. Device considered a two-terminal device: For 8 pin DIP, pins 1 through 4 are shorted together, and pins 5 through 8 are shorted together; for LCC, terminals $19,20,1,2,3$ are shorted together, and terminals 7 through 15 are shorted together.
8. Measured between each input pair shorted together, and all outputs for that channel shorted together.
9. Measured between adjacent input pairs shorted together; i.e., for 8 pin DIP, between pins 1 and 2 shorted together and pins 3 and 4 shorted together; for LCC, between terminals 19 and 20 shorted together, and terminals 2 and 3 shorted together.
10. $\mathrm{CM}_{\mathrm{H}}$ is the maximum tolerable common mode transient to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\mathrm{o}}>$ 2.0 V ).
11. $\mathrm{CM}_{\mathrm{L}}$ is the maximum tolerable common mode transient to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{o}}<$ 0.8 V ).
12. In applications where $d V / d t$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as a static discharge) a series resistor, $R_{\mathrm{cc}}$, should be included to protect the detector ICs from destructively high surge currents. The recommended value is

$$
R_{c c} \approx \frac{1 V}{0.15 I_{\mathrm{p}}(\mathrm{~mA})} \mathrm{k} \Omega
$$

for single channel;

$$
R_{c c}=\frac{1 \mathrm{~V}}{0.3 \mathrm{I}_{\mathrm{p}}(\mathrm{~mA})} \mathrm{k} \Omega
$$

for dual channel.
13. This is a momentary withstand test, not an operating condition.
14. Standard parts receive $100 \%$ testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and $/ 883 \mathrm{~B}$ parts receive $100 \%$ testing at 25, 125, and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
15. Subgroups 10 and 11 shall be tested as part of device initial characterization and after design and process changes. Subgroups 10 and 11 shall be guaranteed to the limits specified in Table I for all lots not specifically tested. Subgroup 9 shall be tested with every lot.
16. The HCPL-6730 and HCPL-6731 dual channel parts function as two independent single channel units. Use the single channel parameter limits.


Figure 1. Input Diode Forward Current vs. Forward Voltage.


Figure 2. Normalized DC Transfer Characteristics.


Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.


Figure 5. Propagation Delay to Logic Low vs. Input Pulse Period.


Figure 4. Normalized Supply Current vs. Input Diode Forward Current.


Figure 6. Propagation Delay vs. Temperature.


Figure 7. Propagation Delay vs. Input Diode Forward Current.

*SEE NOTE 12.

Figure 8. Switching Test Circuit.


Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.



Figure 10. Recommended Drive Circuitry Using TTL Open-Collector Logic.

SMD 5962-8981001PC
SMD 5962-8978501PC SMD 5962-89785022A and MIL-STD-883 Class B Test Programs
Hewlett-Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC SMDs 5962-89810 and 596289785 for Hewlett-Packard Optocouplers from the same generic families using the same manufacturing processes, design rules and elements of the same microcircuit groups.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD883.

## Clarifications:

I. $100 \%$ screening per MIL-STD-883, Method 5004 constant acceleration-

Part Numbering System

Commercial Product	Class B Product	SMD Product
HCPL-5700	HCPL-5701	$5962-8981001$ PC
HCPL-5730	HCPL-5731	$5962-8978501$ PC
HCPL-6730	HCPL-6731	$5962-89785022 \mathrm{~A}$



Figure 11. Single Channel Operating Circuit for Burn-In and Steady State Life Tests.


Figure 12. Dual Channel Operating Circuit for Burn-in and Steady State Life Tests.


Figure 13. Operating Circuit for Burn-in and Steady State Life Tests.

## AC/DC to Logic Interface Hermetically Sealed Optocouplers

## Technical Data

## Features

- DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Hermetically Sealed 8-pin Dual In-Line Packages
- Performance Guaranteed Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient Temperature Range
- MIL-STD-883 Class B Testing
- ac or de Input
- Programmable Sense Voltage
- Hysteresis
- HCPL-3700 Operating Compatibility
- Logic Compatible Output
- 1500 Vdc Withstand Test Voltage
- Thresholds Guaranteed Over Temperature
- Thresholds Independent of LED Characteristics


## Applications

- Military/High Reliability Systems
- Limit Switch Sensing
- Low Voltage Detector
- ac/dc Voltage Sensing
- Relay Contact Monitor
- Relay Coil Voltage Monitor
- Current Sensing
- Microprocessor Interface
- Telephone Ring Detection


## Schematic



INPUT	OUTPUT
$H\left(V_{\text {TH }}<V_{\text {dc }}\right)($ on)	$L$
$\underline{L} \mathbf{V}_{\text {dc }}<\mathbf{V}_{\text {TH }}$ ) ( Off )	H

## Outline Drawing



DIMENSIONS IN MILLIMETERS AND (INCHES).

## Description

The HCPL-5760, HCPL-5761, and 5962-8947701PC are single channel, hermetically sealed, voltage/current threshold detection optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either standard product (HCPL-5760), with full MIL-STD-883 Class Level B testing (HCPL-5761), or from the DESC Standard Military Drawings (SMD) 596289477 as (5962-8947701PC). All three products are in eight pin hermetic dual in-line packages. They are normally shipped with gold plated leads. They are also available with solder dipped leads by replacing $C$ with $A$ in the SMD part \#, or by adding option \#200 to the part number for non-SMD parts.

Each unit contains a light emitting diode (LED), a threshold sensing input buffer IC, and a high gain photon detector to provide an optocoupler which permits adjustable external threshold levels. The input buffer circuit has a nominal turn on threshold of $2.5 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{TH}}\right)$ and 3.6 volts $\left(\mathrm{V}_{\mathrm{TH}+}\right)$. The addition of one or more external attenuation resistors permits the use of this device over a wide range of input voltages and currents. Threshold sensing prior to the LED and detector elements minimizes effects of different optical gain and LED variations over operating life (CTR degradation). Hysteresis is also provided in the buffer for extra
noise immunity and switching stability.

The buffer circuit is designed with internal clamping diodes to protect the circuitry and LED from a wide range of overvoltage and over-current transients while the diode bridge enables easy use with ac voltage input.

These units combine several unique functions in a single package, providing the user with an ideal component for computer input boards and other applications where a predetermined input threshold optocoupler level is desirable.

The high gain output stage
features an open collector output providing both TTL compatible saturation voltages and CMOS compatible breakdown voltages.

The test program performed on the 5962-8947701PC is in compliance with DESC (SMD) 5962-89477. The electrical characteristcis table shows Group A Subgroup testing requirements from this drawing.

All devices are manufactured and tested on a MIL-STD-1772 certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H38534.

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply	$\mathrm{V}_{\mathrm{cc}}$	3.0	18	V
Operating Frequency ${ }^{[1]}$	f	0	10	KHz

Absolute Maximum RatingsStorage Temperature Range$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ..... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Solder Temperature ..... $260^{\circ} \mathrm{C}$ for $10 \mathrm{~s}^{[2]}$
Average Input Current - $\mathrm{I}_{\mathrm{IN}}$ ..... $15 \mathrm{~mA}^{[3]}$
Surge Input Current - I $\mathrm{I}_{\mathrm{IN}, \mathrm{SG}}$ ..... $140 \mathrm{~mA}^{[3,4]}$
Peak Transient Input Current - $\mathrm{I}_{\text {IN,PK }}$ ..... $500 \mathrm{~mA}^{[3,4]}$
Input Power Dissipation - $\mathrm{P}_{\mathrm{n}}$ ..... $.195 \mathrm{~mW}^{[5]}$
Total Package Power Dissipation - $\mathrm{P}_{\mathrm{d}}$ ..... 260 mW
Output Power Dissipation - $\mathrm{P}_{\mathrm{o}}$ ..... 65 mW
Average Output Current - $\mathrm{I}_{\mathrm{O}}$ ..... 40 mA
Supply Voltage , $\mathrm{V}_{\text {cc }}$ (Pins 8-5)

$\qquad$
. 0.5 min ., 20 V max.
Output Voltage, $\mathrm{V}_{\mathrm{o}}$ (Pins 6-5) -0.5 min., 20 V max.

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter		Symbol	Conditions	Group $A^{[16]}$ Subgroup	Min.	Typ.*	Max.	Units	Fig.	Note
Input Threshold Current		$\mathrm{I}_{\text {TH }+}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{TH}} ; \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{o}} \geq 2.6 \mathrm{~mA} \end{aligned}$	1, 2, 3	1.75	2.5	3.20	mA	1,2	7
		$\mathrm{I}_{\mathrm{TH}}$.	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{TH}} ; \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}} \leq 250 \mu \mathrm{~A} \end{aligned}$	1,2,3	0.93	1.3	1.62	mA		
Input   Threshold   Voltage	dc (Pins 2, 3)	$\mathrm{V}_{\mathrm{TH}+}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{2}-\mathrm{V}_{3} ; \text { Pins } 1 \\ & \& 40 \text { pen } \\ & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{o}} \geq 2.6 \mathrm{~mA} \end{aligned}$	1, 2, 3	3.18	3.6	4.10	V		
		$\mathrm{V}_{\text {TH }}$.	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{2}-\mathrm{V}_{3} ; \text { Pins } 1 \\ & \& 4 \text { Open } \\ & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=2.4 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{o}} \leq 250 \mu \mathrm{~A} \end{aligned}$	1, 2, 3	1.90	2.5	3.00	V		
	ac   (Pins 1, 4)	$\mathrm{V}_{\mathrm{TH}+}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{IV}_{1}-\mathrm{V}_{4} \mathrm{I} ; \text { Pins } \\ & 2 \& 3 \mathrm{Open} \\ & \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{o}} \geq 2.6 \mathrm{~mA} \end{aligned}$	1, 2, 3	3.79	5.0	5.62	V		7, 8
		$\mathrm{V}_{\text {тH. }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{IV}_{1}-\mathrm{V}_{\mathrm{A}} ; \text { Pins } 2 \\ & \& 3 \text { Open } \\ & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=2.4 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{o}} \leq 250 \mu \mathrm{~A} \end{aligned}$	1, 2, 3	2.57	3.7	4.52	V		
Input Clamp Voltage		$\mathrm{V}_{\mathrm{IHC} 1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{HCC}}=\mathrm{V}_{2}-\mathrm{V}_{3} ; \\ & \mathrm{V}_{3}=\mathrm{GND} ; \\ & \mathrm{I}_{1 \mathrm{~N}}=10 \mathrm{~mA} ; \text { Pin } 1 \& 4 \\ & \text { Connected to Pin } 3 \end{aligned}$	1,2,3	5.3	5.9	6.7	V	3	15
		$\mathrm{V}_{\text {IHC2 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IHC}_{2}}=\mathrm{IV}_{1}-\mathrm{V}_{4} \mathrm{I} ; \\ & \mathrm{II}_{\mathrm{IN}} \mathrm{I}=10 \mathrm{~mA} ; \\ & \text { Pins } 2 \text { \& } 3 \text { Open } \end{aligned}$	1, 2, 3	6.0	6.6	7.4	V		
		$\mathrm{V}_{\mathrm{IHC3}}$	$\begin{aligned} & \mathrm{V}_{\text {IHC }}=\mathrm{V}_{2}-\mathrm{V}_{3} ; \\ & \mathrm{V}_{3}=\mathrm{GND} ; \\ & \mathrm{I}_{1 \mathrm{~N}}=15 \mathrm{~mA} ; \\ & \text { Pins } 1 \& 4 \text { Open } \end{aligned}$	1,2,3		12.0	13.0	V		
Input Current		$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{2}-\mathrm{V}_{3}=5.0 \mathrm{~V} \text {; }$   Pins $1 \& 4$ Open	1, 2, 3	3.0	3.9	4.5	mA	4	
Logic Low Output Voltage		$\mathrm{V}_{\text {oL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{oL}}=2.6 \mathrm{~mA} \\ & \hline \end{aligned}$	1, 2, 3		0.05	0.4	V	4	7
Logic High Output Current		$\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V}$	1,2,3			250	$\mu \mathrm{A}$		
Logic Low Supply Current		$\mathrm{I}_{\text {ccl }}$	$\begin{aligned} & \mathrm{V}_{2}-\mathrm{V}_{3}=5.0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{o}}=0 \text { ppen; } \mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V} \end{aligned}$	1, 2, 3		0.8	3.0	mA		
Logic High Supply Current		$\mathrm{I}_{\mathrm{cch}}$	$\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=$ Open	1, 2, 3		0.001	20	$\mu \mathbf{A}$	5	
Input-Output Insulation		$\mathrm{I}_{1.0}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s} ; \\ & \mathrm{V}_{1.0}=1500 \mathrm{Vdc} ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1			1	$\mu \mathrm{A}$		9,10

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified (continued).

Parameter	Symbol	Conditions		Group $A^{[16]}$   Subgroup	Min.	Typ.*	Max.	Units	Fig.	Note
Propagation Delay Time to Logic Low Output Level	$\mathrm{t}_{\text {PHL }}$	$\mathrm{R}_{\mathrm{L}}=1.8 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		9, 10, 11		4	20	$\mu 8$	6,7	6,11
Propagation Delay Time to Logic High Output Level	$\mathrm{t}_{\text {PLH }}$	$\mathrm{R}_{\mathrm{L}}=1.8 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		9, 10, 11		8	40	$\mu \mathrm{s}$		6,12
Logic High Common   Mode Transient   Immunity	${ }^{\prime} \mathrm{CM}_{\mathrm{H}} \mathrm{I}$	$\mathrm{V}_{\mathrm{cm}}=50 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{AN}}=0 \mathrm{~mA} \end{aligned}$	9	1000	$\geq 10,000$		$\mathrm{V} / \mu \mathrm{s}$	8	13, 14
		$\mathrm{V}_{\mathrm{cM}}=450 \mathrm{~V}$				$\geq 10,000$				
Logic Low Common Mode Transient Immunity	$1 \mathrm{CM}_{\mathrm{L}} \mathrm{l}$	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{IN}}=4 \mathrm{~mA} \end{aligned}$	9	1000	25,000		V/ $\mu \mathrm{s}$		
		$\mathrm{V}_{\mathrm{CM}}=250 \mathrm{~V}$				$\geq 5,000$				

${ }^{*}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ unless otherwise noted.

input voltage or current

Figure 1. Typical Transfer Characteristics.


Figure 2. Typical dc Threshold Levels vs. Temperature

Typical Characteristics All typical values are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified.

Parameter	Symbol	Typ.	Units	Conditions	Fig.	Note
Hysteresis	$\mathrm{I}_{\mathrm{HYS}}$	1.2	mA	$\mathrm{I}_{\mathrm{HYS}}=\mathrm{I}_{\mathrm{TH}+}-\mathrm{I}_{\text {TH. }}$	1	
	$\mathrm{V}_{\mathrm{HYS}}$	1.1	V	$\mathrm{V}_{\mathrm{HYS}}=\mathrm{V}_{\text {TH }+}-\mathrm{V}_{\text {TH }}$		
Input Clamp Voltage	$\mathrm{V}_{\mathrm{HC}}$	-0.76	V	$\begin{aligned} & \mathrm{V}_{\mathrm{HC}}=\mathrm{V}_{2}-\mathrm{V}_{3} ; \mathrm{V}_{3}=\mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{IN}}=-10 \mathrm{~mA} \end{aligned}$		
Bridge Diode Forward Voltage	$\mathrm{V}_{\mathrm{D} 1,2}$	0.62		$\mathrm{I}_{\mathrm{IN}}=3 \mathrm{~mA}$ (see schematic)		
	$\mathrm{V}_{\mathrm{D} 3,4}$	0.73				
Input-Output Resistance	$\mathrm{R}_{\text {L. }}$	$10^{12}$	$\Omega$	$\mathrm{V}_{\mathrm{i} \mathrm{O}}=500 \mathrm{Vdc}$		9
Input-Output Capacitance	$\mathrm{C}_{\text {Lo }}$	2.0	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{L} \mathrm{O}}=0 \mathrm{Vdc}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$	50	pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V},$   Pins 2 \& 3, Pins 1 \& 4 Open		
Output Rise Time (10-90\%)	$\mathrm{t}_{\mathrm{r}}$	10	$\mu \mathrm{s}$		7	
Output Fall Time (90-10\%)	$\mathrm{t}_{\mathrm{f}}$	0.5	$\mu \mathrm{s}$		7	

## Notes:

1. Maximum operating frequency is defined when output waveform (Pin 6) attains only $90 \%$ of $V_{C C}$ with $R_{L}=$ $1.8 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ using a 5 V square wave input signal.
2. Measured at a point 1.6 mm below seating plane.
3. Current into/out of any single lead.
4. Surge input current duration is 3 ms at 120 Hz pulse repetition rate. Transient input current duration is $10 \mu \mathrm{~s}$ at 120 Hz pulse repetition rate. Note that maximum input power, $\mathrm{P}_{\mathrm{IN}}$, must be observed.
5. Derate linearly above $100^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.26 \mathrm{~mW} /$ ${ }^{\circ} \mathrm{C}$. Maximum input power dissipation of 195 mW allows an input IC junction temperature of $150^{\circ} \mathrm{C}$ at an ambient temperature of $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ with a typical thermal resistance from junction to ambient of $\theta_{\mathrm{JAi}}=235^{\circ} \mathrm{C} / \mathrm{W}$. The typical thermal resistance from junction to case is equal to $170^{\circ} \mathrm{C} / \mathrm{W}$. Excessive $\mathrm{P}_{\mathrm{IN}}$ and $\mathrm{T}_{\mathrm{J}}$ may result in device degradation.
6. The $1.8 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $4.7 \mathrm{k} \Omega$ pull-up resistor.
7. Logic low output level at Pin 6 occurs under the conditions of $\mathrm{V}_{\text {IN }} \geq$ $\mathrm{V}_{\mathrm{TH}_{+}}$as well as the range of $\mathrm{V}_{\mathrm{VN}}>$ $\mathrm{V}_{\mathrm{TH}} \mathrm{TH}^{-}$once $\mathrm{V}_{\mathrm{IN}}$ has exceeded $\mathrm{V}_{\mathrm{TH}+}$. Logic high output level at Pin 6 occurs under the conditions of $\mathrm{V}_{\text {IN }} \leq$ $\mathrm{V}_{\text {TH }}$ as well as the range of $\mathrm{V}_{\text {IN }}<$ $\mathrm{V}_{\mathrm{TH}+}^{\mathrm{TH}-}$ once $\mathrm{V}_{\mathrm{IN}}$ has decreased below
8. The ac voltage is instantaneous voltage.
9. Device considered a two terminal device: Pins 1, 2, 3, 4 connected together, Pins 5, 6, 78 connected together.
10. This is a momentary withstand test, not an operating condition.
11. The $t_{\text {PHL }}$ propagation delay is measured from the 2.5 V level of the leading edge of a 5.0 V input pulse ( $1 \mu$ s rise time) to the 1.5 V level on the leading edge of the output pulse (see Figure 7).
12. The $t_{\text {PLH }}$ propagation delay is measured from the 2.5 V level of the trailing edge of a 5.0 V input pulse ( $1 \mu \mathrm{~s}$ fall time) to the 1.5 V level on the trailing edge of the output pulse (see Figure 7).
13. Common mode transient immunity in Logic High level is the maximum
tolerable $\mathrm{dV}_{\mathrm{CM} / \mathrm{dat}}$ of the common mode voltage, ${ }_{C M}$, to ensure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$ ).
Common mode transient immunity in Logic Low level is the maximum tolerable $\mathrm{dV}_{\mathrm{cmadt}}$ of the common mode voltage, $\mathrm{V}_{\mathrm{CM}}$, to ensure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$ ). See figure 8.
14. In applications were $\mathrm{d} V_{\mathrm{CM} / \mathrm{dt}}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge), a series resistor, $\mathrm{R}_{\mathrm{CC}}$, should be included to protect the detector IC from destructively high surge currents. The recommended value for $R_{c c}$ is $240 \Omega$ per volt of allowable drop in $\mathrm{V}_{\mathrm{cc}}$ (between Pin 8 and $\mathrm{V}_{\mathrm{Cc}}$ ) with a minimum value of $240 \Omega$.
15. $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ are Schottky diodes; $\mathrm{D}_{3}$ and $\mathrm{D}_{4}$ are zener diodes.
16. Standard parts receive $100 \%$ testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and $/ 883 \mathrm{~B}$ parts receive $100 \%$ testing at 25,125 , and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9, 2 and 10,3 and 11, respectively.)


Figure 3. Typical Input Characteristics, $I_{\text {IN }}$ vs. $V_{\text {IN }}$ (ac Voltage Is Instantaneous Value.)


Figure 5. Typical High Level Supply Current, $\mathrm{I}_{\text {ccu }}$ vs. Temperature.


Figure 7. Switching Test Circuit.


Figure 4. Typical Input Current, $I_{1 N}$, and Low Level Output Voltage, $\mathrm{V}_{\text {oL }}$, vs. Temperature.


Figure 6. Typical Propagation Delay vs. Temperature.


* ${ }^{*} \mathrm{C}_{\mathrm{L}}$ IS 15 pF , WHICH INCLUDES PROBE, AND STRAY WIRING CAPACITANCE.


Figure 8. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.

## SMD 5962-8947701PC and MIL-STD-883 Class B Test Program

Hewlett-Packard's 883B
Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC SMD 5962-89477 for an H. P. Optocoupler from the same generic family using the same manufacturing process, design rules and elements of the same microcircuit group.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD883.

## 5761/883B Clarifications:

I. $100 \%$ screening per MIL-STD-883, Method 5004 constant acceleration-Condition A not E.
II. Quality Conformance Inspection per MIL-STD-883, Method 5005, Group A, B, C, and D.
Group A-See Electrical Characteristics Table.
Group B-No change. Group C-No change. Group D-Constant AccelerationCondition A not E.

## Electrical Considerations

The HCPL-5760, HCPL-5761, or 5962-8947701PC optocoupler has internal temperature compensated, predictable voltage and current threshold points which allow selection of an external resistor, $\mathrm{R}_{\mathrm{x}}$, to determine larger external threshold voltage levels. For a

## Part Numbering System

Commercial Product	Class B Product	SMD Product
HCPL-5760	HCPL-5761	$5962-8947701$ PC



Figure 9. Operating Circuit for Burn-In and Steady State Life Tests
desired external threshold voltage, $\mathrm{V}_{\mathrm{t}}$, a corresponding typical value of Rx can be obtained from Figure 10. Specific calculation of $\mathrm{R}_{\mathrm{x}}$ can be obtained from Equation (1) of Figure 11. Specification of both $\mathrm{V}_{+}$and V . voltage threshold levels simultaneously can be obtained by the use of $R_{x}$ and $R_{p}$ as shown in Figure 11 and determined by Equations (2) and (3).

Rx can provide over-current transient protection by limiting input current during a transient condition. For monitoring contacts with a relay or switch, the HCPL-5760/1, or 59628947701PC combination with $\mathrm{R}_{\mathrm{x}}$ and $R_{p}$ can be used to allow a specific current to be conducted through the contacts for cleaning purposes (wetting current).

The choice of which input voltage clamp level to choose depends upon the application of this device (see Figure 3). It is recommended that the low clamp condition be used when


Figure 10. Typical External Threshold Characteristic, $\mathbf{V}_{ \pm}$vs. $R_{x}$
possible to lower the input power dissipation as well as the LED current, which minimizes LED degradation over time.

In applications where $d V_{C M / d t}$ may be extremely large (such as static discharge), a series resistor, $\mathrm{R}_{\mathrm{CC}}$, should be connected in series with $V_{C C}$ and Pin 8 to protect the detector IC from destructively high surge currents. See note 14 for determination of $\mathrm{R}_{\mathrm{cc}}$. In addition, it is recommended that a ceramic disc bypass capacitor of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ be placed between Pins 8 and 5 to reduce the effect of power supply noise.


Figure 11. External Threshold Voltage Level Selection

For interfacing ac signals to TTL systems, output low pass filtering can be performed with a pullup resistor of $1.5 \mathrm{k} \Omega$ and $20 \mu \mathrm{~F}$ capacitor. This application requires a Schmitt trigger gate to avoid slow rise time chatter problems. For ac input applications, a filter capacitor can be placed across the dc input terminals for either signal or transient filtering.

Either ac (Pins 1, 4) or dc (Pins 2,3 ) input can be used to determine external threshold levels.

For one specifically selected external threshold voltage level $V_{f}$ or $V_{-}, R_{x}$ can be determined without use of $R_{p}$ via

$$
\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{V}_{(-)}-\mathrm{V}_{\mathrm{TH}+}(-)}{\mathrm{I}_{\mathrm{TH}_{+}}}
$$

For two specifically selected external threshold voltage levels, $V_{+}$and $V_{-}$, the use of $R_{x}$ and $R_{p}$ will permit this selection via equations (2), (3) provided the following conditions are met:
$\frac{\mathrm{V}_{+}}{\mathrm{V}_{-}} \geq \frac{\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{\mathrm{TH}-}}$ and $\frac{\mathrm{V}_{+}-\mathrm{V}_{\mathrm{TH}+}}{\mathrm{V}_{-}-\mathrm{V}_{\mathrm{TH}-}}<\frac{\mathrm{I}_{\mathrm{TH}+}}{\mathrm{I}_{\mathrm{TH}}}$

$$
\mathrm{R}_{\mathrm{x}}=\frac{\mathrm{V}_{\mathrm{TH}-}\left(\mathrm{V}_{+}\right)-\mathrm{V}_{\mathrm{TH}+}\left(\mathrm{V}_{-}\right)}{\mathrm{I}_{\mathrm{TH}+}\left(\mathrm{V}_{\mathrm{TH}-}\right)-\mathrm{I}_{\mathrm{TH}-}\left(\mathrm{V}_{\mathrm{TH}+}\right)}
$$

$R_{p}=$

$$
\begin{equation*}
\mathrm{V}_{\mathrm{TH}-}\left(\mathrm{V}_{+}\right)-\mathrm{V}_{\mathrm{TH}+}(\mathrm{V}) \tag{3}
\end{equation*}
$$

$\mathrm{I}_{\mathrm{TH}+}\left(\mathrm{V}_{-}-\mathrm{V}_{\mathrm{TH}}\right)+\mathrm{I}_{\mathrm{TH}}{ }^{\left(\mathrm{V}_{\mathrm{TH}+}-\mathrm{V}_{+}\right)}$

See Application Note 1004 for more information.

## Dual Channel Hermetically Sealed Transistor Output Optocoupler

## Technical Data

## Features

- DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Hermetically Sealed 8-pin Dual In-Line Package
- Performance Guaranteed Over - $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Ambient Temperature Range
- MIL-STD-883 Class B Testing
- Dual Isolated Channels
- High Speed: Typically 400kBit/s
- $2-\mathrm{MHz}$ Bandwidth
- Open Collector Outputs
- 2-18 Volt $V_{\text {cc }}$ Range
- 1500 Vdc Withstand Test Voltage
- High Radiation Immunity
- HCPL-2530/2531, HCPL55XX, 65XX Function Compatibility


## Applications

- Military/High Reliability Systems
- Line Receivers
- Digital Logic Ground Isolation
- Analog Signal Ground Isolation
- Switching Power Supply Feedback Element
- Vehicle Command/Control
- System Test Equipment
- Level Shifting


## Description

The 4N55, 4N55/883B, and 5962-8767901EC units consist of two completely independent transistor output optocouplers. The products are capable of

4N55
4N55/883B
5962-8767901EC

## Outline Drawing



DIMENSIONS IN MILLIMETERS AND (INCHES)

operation and storage over the full military temperature range and can be purchased as either a standard product (4N55), with full MIL-STD-883 Class Level B testing (4N55/883B) or from the DESC Standard Military Drawing (SMD) 5962-87679 as (5962-8767901EC). All three products are assembled in hermetic, sixteen pin dual inline packages. These parts are

normally shipped with gold plated leads. They are also available with solder dipped leads by replacing C with A in the DESC part \#, or by adding option \#200 to the part number for non DESC parts.

Each channel has a GaAsP light emitting diode which is optically coupled to an integrated photon detector. Separate connections for the photodiodes and output transistor collectors improve the speed up to a hundred times that of a conventional phototransistor optocoupler by reducing the base-collector capacitance.

These devices are suitable for wide bandwidth analog applications, as well as for interfacing TTL to LSTTL or CMOS. Current Transfer Ratio (CTR) is $9 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$. The $18 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$ capability will enable the designer to interface any TTL family to CMOS. The availability of the base lead allows optimized gain/bandwidth adjustment in analog applications. The shallow depth of the IC photodiode provides

## Schematic


better radiation immunity than conventional phototransistor couplers.

The test program performed on the $5962-8767901 \mathrm{EC}$ is in compliance with DESC (SMD) 5962-87679. The Electrical Characteristics Table shows Group A Subgroup testing requirements from this drawing.

All devices are manufactured and tested on a MIL-STI - $177^{\circ}$ certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H38534.

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	$\mathrm{I}_{\mathrm{FL}}$		250	$\mu \mathrm{~A}$
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	2	18	V
Operating Temperature	$\mathrm{T}_{\mathrm{C}}$	-55	+125	${ }^{\circ} \mathrm{C}$
Input Current, High Level	$\mathrm{I}_{\mathrm{F}, \mathrm{H}}$	12	20	mA

## Absolute Maximum Ratings

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Solder Temperature $.260^{\circ} \mathrm{C}$ for 10 s . ( 1.6 mm below seating plane)
Average Input Current - $\mathrm{I}_{\mathrm{F}}$ (each channel) 20 mA
Peak Input Current - $I_{F}$ (each channel, $\leq 1 \mathrm{~ms}$ duration) 40 mA
Reverse Input Voltage - $\mathrm{V}_{\mathrm{R}}$ (each channel) .................................. 5 V
Input Power Dissipation (each channel).................................. 36 mW
Average Output Current - $I_{0}$ (each channel) ............................ 8 mA
Peak Output Current - $\mathrm{I}_{\mathrm{O}}$ (each channel)............................... 16 mA

Output Voltage - $\mathrm{V}_{0}$ (each channel)............................ 0.5 V to 20 V
Emitter Base Reverse Voltage - $\mathrm{V}_{\text {ево }}$.........................................3.0 V
Base Current - $\mathrm{I}_{\mathrm{B}}$ (each channel) ............................................... 5 mA
Output Power Dissipation (each channel) ................................ 50 mW
Derate linearly above $100^{\circ} \mathrm{C}$ free air temperature
at a rate of $1.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## Electrical Characteristics

Parameter	Sym.	Test Conditions ${ }^{[3]}$	Group A Subgroups ${ }^{[10]}$	Limits			Units	Fig.	Note
				Min.	Typ.**	Max.			
Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}{ }^{*}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	1, 2, 3		1.55	1.80	Vdc	1	1
Reverse Breakdown Voltage	$\mathrm{BV}_{\mathrm{R}}{ }^{*}$	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	1,2, 3	5.0			Vdc		1
Coupled High Level Output Current	$\mathrm{I}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{F}}=0, \mathrm{I}_{\mathrm{F}}$ (other channel) $=20 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V}$	1, 2, 3		10	100	$\mu \mathrm{Adc}$	4	1
Output Leakage Current	$\mathrm{I}_{\text {OLEAK }}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}} \text { (other } \\ & \text { channel) }=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V} \\ & \hline \end{aligned}$	1, 2, 3		30	250	$\mu \mathrm{Adc}$	4	1
Current Transfer Ratio	CTR*	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{o}}=0.4 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA} \\ & \hline \end{aligned}$	1, 2, 3	9	20		\%	2, 3	1,2
Input to Output Insulation Leakage Current	$\mathrm{I}_{\mathrm{I} / 0}{ }^{*}$	$\begin{aligned} & \mathrm{T}_{\mathrm{c}}=+25^{\circ} \mathrm{C} ; \\ & \mathrm{V}_{1 / \mathrm{O}}=1500 \mathrm{Vdc} \\ & \text { Relative humidity }=45 \% ; \\ & \mathrm{t}=5 \mathrm{~s} \end{aligned}$	1			1.0	$\mu \mathrm{Adc}$		3, 9
Supply Current High Level	$\mathrm{I}_{\mathrm{cch}}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}} \text { (other } \\ & \text { channel) }=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V} \end{aligned}$	1, 2, 3		0.1	10	$\mu \mathrm{A} \mathrm{dc}$		1
Supply Current Low Level	$\mathrm{I}_{\mathrm{ccL}}{ }^{*}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}_{1}}=\mathrm{I}_{\mathrm{F}_{2}}=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V} \end{aligned}$	1, 2, 3		35	200	$\mu \mathrm{Adc}$	5	1
Propagation Delay Time		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	9, 10, 11				$\mu \mathrm{s}$	6,9	1
HIGH to LOW	$\mathrm{t}_{\mathrm{PHL}}{ }^{*}$				0.4	2			
LOW to HIGH	$\mathrm{t}_{\mathrm{PLLH}}{ }^{*}$				1.0	6			

[^61]
## Typical Characteristics

Parameter	Symbol	Typ.	Units	Test Conditions	Fig.	Note
Temperature Coefficient of Forward Voltage	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$	-1.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1
Input Capacitance	$\mathrm{C}_{\text {IN }}$	60	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{Vdc}$		1
Input-Output Resistance	$\mathrm{R}_{\text {L- }}$	$10^{12}$	$\Omega$	$\mathrm{V}_{\mathrm{I} .0}=500 \mathrm{Vdc}$		1
Input-Output Capacitance	$\mathrm{C}_{\text {Lo }}$	1.0	pF	$\mathrm{f}=1 \mathrm{MHz}$		1,4
Input-Input Insulation Leakage Current	$\mathrm{I}_{\mathrm{H}}$	1	pA	45\% Relative Humidity, $\mathrm{V}_{\mathrm{IH}}=500 \mathrm{Vdc}, \mathrm{t}=5 \mathrm{~s}$		5
Input-Input Capacitance	$\mathrm{C}_{\text {II }}$	0.55	pF	$\mathrm{f}=1 \mathrm{MHz}$		5
Transistor DC Current Gain	$\mathrm{h}_{\text {FE }}$	150	-	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=3 \mathrm{~mA}$		1
Small Signal Current Transfer Ratio	$\frac{\Delta \mathrm{I}_{0}}{\Delta \mathrm{I}_{\mathrm{F}}}$	21	\%	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V}$	7	1
Common Mode Transient Immunity at Logic High Level Output	$\mathrm{ICM}_{\mathrm{H}}{ }^{\text {I }}$	1000	V/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~V}_{\mathrm{O}}(\min .)=2.0 \mathrm{~V} \\ & \hline \end{aligned}$	10	1,6
Common Mode Transient Immunity at Logic Low Level Output	$1 \mathrm{CM}_{\mathrm{L}} \mid$	1000	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~V}_{\mathrm{O}}(\text { max. })=0.8 \mathrm{~V} \end{aligned}$	10	1,7
Bandwidth	BW	9	MHz		8	8

Notes:

1. Each channel.
2. Current Transfer Ratio is defined as the ratio of output collector current, $\mathrm{I}_{\mathrm{o}}$, to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times $100 \%$. CTR is known to degrade slightly over the unit's lifetime as a function of input current, temperature, signal duty cycle and system on time. Refer to Application Note 1002 for more detail. In short it is recommended that designers allow at least $20-25 \%$ guardband for CTR degradation.
3. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
4. Measured between each input pair shorted together and the output pins for that channel shorted together.
5. Measured between pins 3 and 4 shorted together and pins 7 and 8 shorted together.
6. $\mathrm{CM}_{\mathrm{H}}$ is the steepest slope ( $\mathrm{dV} / \mathrm{dt}$ ) on the leading edge of the common mode pulse, $\mathrm{V}_{\mathrm{C}}$, for which the output will remain in the logic high state (i.e., $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ).
7. $\mathrm{CM}_{\mathrm{L}}$ is the steepest slope ( $\mathrm{dV} / \mathrm{dt}$ ) on the trailing edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, for which the output will remain in the logic low state (i.e., $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ).
8. Bandwidth is the frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
9. This is a momentary withstand test, not an operating condition.
10. Standard parts receive $100 \%$ testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD and $/ 883 \mathrm{~B}$ parts receive $100 \%$ testing at 25,125 , and $-55^{\circ} \mathrm{C}$ (Subgroups 1 and 9,2 and 10, 3 and 11, respectively).


Figure 1. Input Diode Forward Current vs. Forward Voltage.


Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.


Figure 5. Logic Low Supply Current vs. Input Diode Forward Current.


Figure 2. DC and Pulsed Transfer Characteristic.


Figure 4. Logic High Output Current vs. Temperature.


Figure 6. Propagation Delay vs. Temperature.


Figure 7. Normalized Small Signal Current Transfer


Figure 8a. Frequency Response. Ratio vs. Quiescent Input Current.


Figure 8b. Frequency Response.


10\% DUTY CYCLE
$1 / \mathrm{f} \leqslant 100 \mu \mathrm{~s}$

Figure 9. Switching Test Circuit.*
*JEDEC Registercd Data.


SWITCH AT B: $I_{F}=16 \mathrm{~mA}$


Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.


LOGIC FAMILY	LSTTL	CMOS	
DEVICE NO.	$54 L S 14$	CD40106BM	
$\mathrm{V}_{\mathrm{cc}}$	5 V	5 V	15 V
$\mathrm{R}_{\mathrm{L}} 5 \%$ TOLERANCE	$18 \mathrm{k} \Omega^{\star}$	$8.2 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$

*THE EQUIVALENT OUTPUT LOAD RESISTANCE IS AFFECTED BY THE LSTTL INPUT CURRENT AND IS APPROXIMATELY $8.2 \mathrm{k} \Omega$.

This is a worst case design which takes into account $25 \%$ degradation of CTR. See App. Note 1002 to assess actual degradation and lifetime.

Figure 11. Recommended Logic Interface.

## SMD 5962-8767901EC and MIL-STD-883 Class B Test Program

Hewlett-Packard's 883B
Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC SMD 5962-87679 for an HP Optocoupler from the same generic family using the same manufacturing process, design rules, and elements of the same microcircuit group.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD883.

4N55/883B Clarifications:
I. $100 \%$ screening per MIL-STD-883, Method 5004 constant accelera-tion-Condition A not E.
II. Quality Conformance Inspection per MIL-STD883, Method 5005, Group A, B, C, and D.

Group A-See Electrical Characteristics Table.
Grcup B-No change.
Group C-No change.
Group D-Constant AccelerationCondition A not E.

## Part Numbering System

Commercial Product	Class B Product	SMD Product
4 N 55	$4 N 55 / 883 \mathrm{~B}$	$5962-8767901 \mathrm{EC}$



Figure 12. Operating Circuit for Burn-in and Steady State Life Tests.

## Transistor Output, Hermetically Sealed Optocoupler

Technical Data

## Features

- Manufactured and Tested on a MIL-STD-1772
Certified Line
- QML-MIL-H-38534
- Performance Guaranteed Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature Range
- MIL-STD-883 Class B Testing
- High Speed: Typically $400 \mathrm{kbit} / \mathrm{s}$
- 9 MHz Bandwidth
- Open Collector Outputs
- 1500 Vdc Withstand Test Voltage
- High Radiation Immunity
- 4N55, 6N135/6, HCPL-2530/31 Function Compatibility
- 2-18 Volt $V_{c c}$ Range


## Applications

- Military/High Reliability Systems
- Isolated Input Line Receiver
- Isolated Output Line Driver
- System Test Equipment Isolation
- Digital Logic Ground Isolation
- Current Loop Receiver
- Level Shifting
- Analog Signal Ground Isolation
- Vehicle Command/Control
- Switching Power Supply Feedback Element


## Description

These units are single and dual channel, hermetically sealed optocouplers. The products are capable of operation and storage over the full military temperature range and can be purchased as either a standard product or with full MIL-STD883 Class Level B testing. All devices are manufactured and tested on a MIL-STD-1772 certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H-38534.

The HCPL-5500, 5501, 5530 and 5531 are in a 8 Pin ceramic DIP configured as either single or dual channel devices. The standard products are HCPL5500 and HCPL-5530. The products with full MIL-STD-883 Class Level B testing are HCPL-5501 and HCPL-5531.

The HCPL-6530 and HCPL-6531 parts are in twenty terminal hermetic, ceramic, leadless chip carriers. The standard part is HCPL-6530. The product with full MIL-STD883 Class Level B testing is HCPL-6531. These dual channel devices are configured and function as two independent single channels. Devices are delivered with solder dipped terminals as a standard feature. Units may also be purchased with gold plated terminals.

HCPL-5500
HCPL-5501 (883B)
HCPL-5530
HCPL-5531 (883B)
(8-pin Dual In-Line Package)
HCPL-6530
HCPL-6531 (883B)
(20 Terminal Leadless Chip Carrier)

Each channel contains a light emitting diode optically coupled to an integrated photon detector providing 1500 Vdc electrical isolation between input and output. Separate connections for the photodiodes and output transistor collectors improve the speed up to a hundred times that of a conventional phototransistor optocoupler by reducing the base-collector capacitance. These devices are suitable for wide bandwidth analog applications, as well as for interfacing TTL to LSTTL or CMOS. Current Transfer Ratio (CTR) is $9 \%$ minimum at $\mathrm{I}_{\mathrm{F}}=16$ mA over the full military operating temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The $18 \mathrm{VV}_{\mathrm{cc}}$ capability will enable the designer to interface any TTL family to CMOS. The availability of the base lead allows optimized gain/ bandwidth adjustment in analog applications. The shallow depth of the IC photodiode provides better radiation immunity than conventional phototransistor couplers.

These products are also available with the transistor base node unconnected to improve common mode noise immunity and ESD susceptibility. In addition, higher CTR minimums are available by special request. Contact your local HP Field Sales Engineer for ordering information.

## Outline Drawings

## 8-pin Ceramic Dual In-Line Package




HCPL-5500 HCPL-5501


HCPL-5530 HCPL-5531

DIMENSIONS IN MILLIMETERS AND (INCHES). *DETECTOR IC INTERNAL ELECTRICAL SHIELD

## 20 Terminal Ceramic Leadless Chip Carrier



8 PIN Ceramic DIP


8 PIN Ceramic DIP
dUAL CHANNEL SCHEMATIC


## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	$\mathrm{I}_{\mathrm{FL}}$		250	$\mu \mathrm{~A}$
Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	2	18	V

Absolute Maximum Ratings

Storage Temperature ............................................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Solder Temperature ..... $260^{\circ} \mathrm{C}$ for 10 s
Average Input Current, $I_{F}$ each channel ..... 20 mA
Peak Input Current, $\mathrm{I}_{\mathrm{F}}$ each channel, $\leq 1 \mathrm{~ms}$ duration ..... 40 mA
Reverse Input Voltage, $\mathrm{V}_{\mathrm{R}}$ each channel ..... 3 V
Average Output Current, $I_{o}$ each channel ..... 8 mA
Peak Output Current, $I_{o}$ each channel ..... 16 mA
Supply Voltage, $\mathrm{V}_{\text {cc }}$ each channel ..... -0.5 V to 20 V
Output Voltage, $\mathrm{V}_{\mathrm{o}}$ each channel ..... -0.5 V to 20 V
Input Power Dissipation, each channel ..... 36 mW
Output Power Dissipation, each channel ..... 50 mW
ESD Classification ..... Class 1
ESD Classification (HCPL-5530/1) ..... Class 3
(MIL-STD-883, Method 3015)
Single Channel Product Only
Emitter Base Reverse Voltage. $\mathrm{V}_{\text {eво }}$.......................................... 3.0 V
Base Current, $\mathrm{I}_{\mathrm{B}}$ each channel ..... 5 mA

CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and degradation which may be induced by ESD.

20 Terminal Ceramic Leadless Chip Carrier Schematic


* DETECTOR IC INTERNAL ELECTRICAL SHIELD

Electrical Characteristics TA $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified

Parameter		Sym.	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio		CTR	9	20		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cC}}=4.5 \mathrm{~V} \end{aligned}$	2, 3	$\begin{gathered} 1,2 \\ 10 \end{gathered}$
Logic High   Output Current		$\mathrm{I}_{\mathrm{OH}}$		5	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0, \\ & \mathrm{I}_{\mathrm{F}}(\text { other channel })=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$	4	1
Output Leakage Current Dual Channel		$\mathrm{I}_{\mathrm{OH} 1}$		30	250	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{F}}(\text { other channel })=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$	4	1
Logic Low   Supply   Current	Single   Channel	$\mathrm{I}_{\mathrm{CCL}}$		35	200	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V}$	5	1
	Dual   Channel			70	400		$\begin{aligned} & \mathrm{I}_{\mathrm{F}_{1}}=\mathrm{I}_{\mathrm{F} 2}=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$		4
Logic High   Supply   Current	Single   Channel	$\mathrm{I}_{\mathrm{CCH}}$		0.1	10	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=18 \mathrm{~V}$		1
	Dual Channel			0.2	20		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{F}} \text { (other channel) }=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=18 \mathrm{~V} \end{aligned}$		4
Input Forward Voltage		$\mathrm{V}_{\mathrm{F}}$		1.55	1.9	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	1	1
Input Reverse Breakdown Voltage		$\mathrm{B}_{\mathrm{vR}}$	3			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		1
Input-Output Insulation Leakage Current		$\mathrm{I}_{\mathrm{I} .0}$			1.0	$\mu \mathrm{A}$	45\% Relative Humidity, $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{I} . \mathrm{O}}=1500 \mathrm{Vdc} \end{aligned}$		3, 9
Propagation Delay Time to Logic High at Output		$\mathrm{t}_{\text {PLH }}$		1.0	6.0	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	6, 9	1, 6
Propagation Delay Time to Logic Low at Output		$\mathrm{t}_{\text {PHL }}$		0.4	2.0	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cC}}=5 \mathrm{~V} \end{aligned}$	6, 9	1, 6

*All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Typical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V}$

Parameter	Sym.	Typ.	Units	Test Conditions	Fig.	Note
Temperature Coefficient of Forward Voltage	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$	-1.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		1
Input Capacitance	$\mathrm{C}_{\text {in }}$	60	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		1
Resistance (Input-Output)	$\mathrm{R}_{\text {I- } \mathrm{O}}$	$10^{12}$	$\Omega$	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{Vdc}$		3
Capacitance (Input-Output)	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	1.0	pF	$\mathrm{f}=1 \mathrm{MHz}$		1, 11
Transistor DC Current Gain	$\mathrm{h}_{\mathrm{FE}}$	250	-	$\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=3 \mathrm{~mA}$		1
Small Signal Current Transfer Ratio	$\frac{\Delta \mathrm{I}_{\mathrm{o}}}{\Delta \mathrm{I}_{\mathrm{F}}}$	21	\%	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V}$	7	1
Bandwidth	BW	9	MHz		8	8
Common Mode Transient Immunity At Logic High Level Output	$\mathrm{ICM}_{\mathrm{H}} \mathrm{l}$	1000	$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$	10	1,7
Common Mode Transient Immunity At Logic Low Level Output	$\mathrm{CM}_{L} \mid$	-1000	$\mathrm{V} / \mathrm{H}_{\mathrm{s}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$	10	1,7

Dual Channel Product Only

Input-Input Insulation   Leakage Current	$\mathrm{I}_{\mathrm{I}-\mathrm{I}}$	1	pA	$45 \%$ Relative Humidity,   $\mathrm{V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{Vdc}, \mathrm{t}=5 \mathrm{~s}$		5,9
Capacitance (Input-Input)	$\mathrm{C}_{\mathrm{I}-\mathrm{I}}$	0.8	pF	$\mathrm{f}=1 \mathrm{MHz}$		5
Resistance (Input-Input)	$\mathrm{R}_{\mathrm{II}}$	$10^{12}$	$\Omega$	$\mathrm{~V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{Vdc}$		5

## Notes:

1. Each channel of a dual channel device.
2. Current Transfer Ratio is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $I_{F}$, times $100 \%$. CTR is known to degrade slightly over the unit's lifetime as a function of input current, temperature, signal duty cycle, and system on time. Refer to Application Note 1002 for more detail. In short, it is recommended that designers allow at least $20-25 \%$ guardband for CTR degradation.
3. Device considered a two-terminal device: for 8 pin DIP, pins 1 through 4 are shorted together, and pins 5 through 8 are shorted together; for LCC, terminals $19,20,1,2,3$ are shorted together, and terminals 7 through 15 are shorted together.
4. The HCPL-6530 and HCPL-6531 dual channel parts function as two independent single channel units. Use the single channel parameter limits.
5. Measured between adjacent input pairs shorted together; i.e., for 8 pin DIP, between pins 1 and 2 shorted together and pins 3 and 4 shorted together; for LCC, between terminals 19 and 20 shorted together, and terminals 2 and 3 shorted together.
6. $\mathrm{t}_{\mathrm{PHL}}$ propagation delay is measured from the $50 \%$ point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse. The $t_{\text {pLH }}$ propagation delay is measured from the $50 \%$ point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
7. $\mathrm{CM}_{\mathrm{L}}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ( $\mathrm{V}_{0}<0.8 \mathrm{~V}$ ). $\mathrm{CM}_{4}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ( $\mathrm{V}_{0}>2.0 \mathrm{~V}$ ).
8. Bandwidth is the frequency at which the ac output voltage is 3 dB below the low frequency asymptote. For the HCPL-5530 the typical bandwidth is 2 MHz .
9. This is a momentary withstand test, not an operating condition.
10. Higher CTR minimums are available to support special applications.
11. Measured between each input pair shorted together and all outputs for that channel shorted together.


Figure 1. Input Diode Forward Characteristic.


Figure 4. Logic High Output Current vs. Temperature.


Figure 7. Normalized Small Signal Current Transfer Ratio vs. Quiescent Input Current.


Figure 2. DC and Pulsed Transfer Characteristic.


Figure 5. Logic Low Supply Current vs. Input Diode Forward Current.


Figure 3. Normalized Current Transfer Ratio vs. Input Diode Forward Current.


Figure 6. Propagation Delay vs. Temperature.




Figure 8. Frequency Response.


Figure 9. Switching Test Circuit.


Figure. 10. Test Circuit for Transient Immunity and Typical Waveforms.


LOGIC FAMILY	LSTTL	CMOS	
DEVICE NO.	$54 L S 14$	CD40106BM	
$V_{\text {CC }}$	5 V	5 V	15 V
$R_{\mathrm{L}} 5 \%$   TOLERANCE	$18 \mathrm{~K} \Omega^{*}$	$8.2 \mathrm{~K} \Omega$	$22 \mathrm{~K} \Omega$

-THE EQUIVALENT OUTPUT LOAD RESISTANCE IS AFFECTED BY THE LSTTL INPUT CURRENT AND IS APPROXIMATELY 8.2 K $\Omega$

This is a worst case design which takes into account 25\%
degradation of CTR. See App. Note 1002 to assess actual
degradation and lifetime.

Figure 11. Recommended Logic Interface.

## MIL-STD-883 Class B

## Test Program

Hewlett-Packard's 883B Optocouplers are in compliance with MIL-STD-883, Revision C. Deviations listed below are specifically allowed in DESC drawing 5962-87679 for the equivalent H.P. Optocoupler.

Testing consists of $100 \%$ screening to Method 5004 and quality conformance inspection to Method 5005 of MIL-STD-883.

## Clarifications:

I. $100 \%$ screening per MIL-STD-883, Method 5004 constant accelera-tion-Condition A not E.
II. Quality Conformance Inspection per MIL-STD883, Method 5005, Group A, $\mathrm{B}, \mathrm{C}$, and D .
Group A-See table below for specific electrical tests.
Group B-No change.
Group C-No change.
Group D-Constant Accelera-tion-Condition A not E.

## Part Numbering System

Commercial Product	Class B Product
HCPL-5500	HCPL-5501
HCPL-5530	HCPL-5531
HCPL-6530	HCPL-6531

## Group A - Electrical Tests

Quantity/Accept No. $=116 / 0$

Single and Dual Channel Product	Dual Channel Product
Subgroup 1   Static tests at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}-\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}, \mathrm{B}_{\mathrm{VR}}$, $\mathrm{V}_{\mathrm{F}}, \mathrm{I}_{\mathrm{L} . \mathrm{O}}$ and $\mathrm{CTR}^{*}$	$\mathrm{I}_{\mathrm{OH} 1}$
Subgroup 2   Static tests at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}-\mathrm{I}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{F}}, \mathrm{I}_{\mathrm{CCL}}$, $\mathrm{I}_{\mathrm{CCH}}, \mathrm{B}_{\mathrm{VR}}$ and CTR*	$\mathrm{I}_{\mathrm{OH1}}$
Subgroup 3   Static tests at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}-\mathrm{I}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{F}}, \mathrm{I}_{\mathrm{CCL}}$, $\mathrm{I}_{\mathrm{CCH}}, \mathrm{B}_{\mathrm{VR}}$ and CTR*	$\mathrm{I}_{\mathrm{OH} 1}$
Subgroup 4, 5, 6, 7, 8A and 8B   These subgroups are not applicable to this device type.	
Subgroup 9   Switching tests at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{PH}}, \mathrm{t}_{\mathrm{PLH}}{ }^{*}$	
Subgroup 10   Switching tests at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}{ }^{*}$	
Subgroup 11   Switching tests at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}{ }^{*}$	

[^62]

Figure 12. Single Channel Operating Circuit for BurnIn and Steady State Life Tests.


Figure 13. Dual Channel Operating Circuit for Burn-In and Steady State Life Tests.


Figure 14. Operating Circuit for Burn-In and Steady State Life Tests.

## Electrophotographic Products



## Electrophotographic Products

Hewlett-Packard's Electrophotographic Products consist of LED Printheads and LED Erase Bars which are used to expose the image and to erase the image, respectively, on the photoreceptor in Non-Impact Plain Paper Printers, Copiers, and FAX machines using the Electrophotographic process.

## LED Printheads

The LED Printhead can replace the Laser which is the principal part of the Raster Output Scanner (ROS) system of the electrophotographic non-impact printers (NIP). The choice of using either a laser or a LED Printhead is dictated by the speed, cost, and performance trade-offs. Some of the advantages of LED Printheads include:

1. Compact size
2. High speed, high power capability
3. No moving parts, solid state reliability
4. Wavelength can be modified as a special option to match the photoreceptor characteristics
5. Precise pixel placement, registration

Hewlett-Packard's binary LED Printheads are a series of compact, efficient, uniform, linear LED arrays with onboard integrated data registers and precise LED drivers. These HP printheads are suitable for use in electrophotographic NIPs, digital copiers, universal office machines, and FAX machines. HP offers its binary LED Printheads in common LED array lengths of 8.5 inches (A4 size) and 12 inches (A3 size).

The resolution choices are 300
DPI ( 8.5 and 12 inch LED array lengths), 406 DPI ( 12 inch length), and 480 DPI ( 12
inch length) where DPI is Dots Per Inch. For these LED
Printheads, HP uses a modular design construction consisting of tiles aligned and mounted on a mother substrate to form a single LED row of thousands of pixels. The exact number of pixels depends on the length and resolution (DPI) of the printhead. A precision aligned SELFOC® array lens can be rigidly mounted over the LED linear array of thousands of pixels to focus the LED light output power (LOP) onto the photoreceptor of the electrophotographic machine. The A4 size 300 DPI printhead is supplied with a mounted SLA-20 SELFOC ${ }^{\circledR}$ lens. The A3 size 300 DPI, 406 DPI and 480 DPI printheads are supplied without a SELFOC®lens, but the lenses can be added as a special option.

Table 1 gives some of the optical/ electrical parameters and characteristics of HP's LED Printheads.

Table 1. Optical/Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Type of LED Printhead	Length of LED Array (mm)	Number   of   LED   Pixels	Light Peak Wavelength ( nm )   (See Note 1)	Radiant Output Intensity (see Note 2) ( $\mu \mathrm{W} / \mathrm{sr} / \mathrm{pixel}$ )	Radiant Output   Intensity Variation	Max.   Clock   Frequency (MHz)	LED Supply Voltage (volts)	Nominal   Operating Current (mA/pixel)
300 DPI	219	2592	$660 \pm 10$	3-6	See Note 3	10	$5 \pm 5 \%$	5
300 DPI	303	3584	$685 \pm 8$	6-8	See Note 4	10	$5 \pm 5 \%$	4
406 DPI	304	4864	$685 \pm 8$	6-8	See Note 4	10	$5 \pm 5 \%$	4
480 DPI	298	5632	$685 \pm 8$	6-8	See Note 4	10	$5 \pm 5 \%$	4

[SELFOC ${ }^{( }$- Registered trademark of Nippon Sheet Glass Co. Ltd.]

## Notes:

1. The wavelength can be changed in special options.
2. Far-field measurement with a glass cover over the LED array but without a mounted SELFOC ${ }^{(18)}$ lens.
3. Intensity Variation
(a) Pixel intensity variation

Max Values
(b) Group intensity variation
(average of 4 pixels versus adjacent group of 4)
Eg. LED 1, 2, 3, 4, vs. 5, 6, 7, 8 vs. $9,10,11,12 \ldots$
4. Intensity Variation
(a) Pixel intensity variation

Max Values
(b) Group intensity variation
(average of 8 pixels versus adjacent group of 8 ) Eg. LED 1, 2, 3, 4, 5, 6, 7, 8
vs. $9,10,11,12,13,14,15,16$
vs. $17,18,19,20,21,22,23,24$

## Custom Options Available

1. Upon request, the following wavelengths are available: 660 nm and 710 nm for the A4 size $300 \mathrm{DPI} ; 660 \mathrm{~nm}, 685$ nm and 710 nm for the A 3 size $300 \mathrm{DPI}, 406 \mathrm{DPI}$ and 480 DPI LED Printheads.
2. "With/without" lens options and different types of lens options (SLA-20, SLA-12) are offered upon request for the LED Printheads.

## Outline Drawings of LED Printheads

300 DPI, 8.5 inches (A4 size)


300 DPI, 406 DPI, 480 DPI (All are 12 inches - A3 size)


NOTE: 1. HEXP-RTOO . . ARRAY LENGTH $304.0 \pm 5 \mathrm{~mm}$.


300 DPI, 8.5 inches (A4 size)


300 DPI, 406 DPI, 480 DPI 12 inches (A3 size)

## Future LED Printheads

The following types of LED Printheads are in product development at HewlettPackard. Please contact your local Hewlett-Packard field sales engineer for more information.

1. Large format: 2 foot and 3 foot binary LED Printheads.
2. Grayscale 400 DPI LED Printheads with the following features:
a. 64 levels of gray ( 6 bits )
b. $\pm 2 \%$ accuracy of exposure
c. Exposed length of 306 mm ( 12 inches) or 4820 pixels
d. Built in Light Output Power Monitor
3. Narrow Profile Options

## LED Erase Bars

The LED Erase Bar is an ideal illuminator source which is finding widespread application in the copiers and printers which use the electrophotographic process. Some of the advantages of LED Erase Bars include:

1. High reliability.
2. Uniformity of light output
3. Compact size
4. Low voltage/low power
5. Addressability - Segmented and fully addressable erase bars allow precise, electronic control of which pixels are illuminated.
6. Patented optical design HP's design tailors the pixel's beam profile for optimal performance.
7. Variety of wavelengths - The LED wavelength can be chosen to best match a photoreceptor's sensitivity.
8. On-Board electronics - For high-density addressable erase bars, on-board custom LED driver ICs simplify the electronics interface.

HP offers $\mathbf{3}$ families of LED Erase Bars:

Type of   Erase Bar	Erase Function	Choices of   Wavelength   Emitted by   Erase Bar (nm)
1. On/Off	Pre-clean, Pre-transfer,	655,635,
	Interdocument	610,565
2. Addressable,	Interdocument, Edge	655,635,
Segmented,	Fade Out, Edit	610,565
10 DPI		
3. High Resolution,   25 DPI, OBIC	Edit, Color highlight	655

Hewlett-Packard LED Erase Bars employ a hybrid construction consisting of LED dice, electronic components and optical elements in a compact assembly. The light from each LED pixel is focused to a sharp image at the specified working distance. This HP patented optical technique maintains high uniformity and very low stray light.

Table 2 gives some of the optical/electrical parameters and characteristics of HP's LED Erase Bars.

Table 2. Optical/Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Type of LED Erase Bar	Length   of LED   Array   (mm)	$\begin{array}{\|c\|} \hline \text { Number } \\ \text { of } \\ \text { LED } \\ \text { Pixels } \end{array}$	Light Peak Wavelength (nm)   (See Note 1)	Typical Light Output (see Notes $2 \& 3)$	Transverse Beam Width (mm)	Detector   Height   Above   LED Array (mm)	Radiant Output Intensity Variation	LED   Drive Condition	Test Current per LED mA/LED
On/Off	312	120	$\begin{aligned} & 655 \\ & 635 \\ & 610 \\ & 565 \end{aligned}$	$1700 \mu \mathrm{~W} / \mathrm{cm}$   $450 \mu \mathrm{~W} / \mathrm{cm}$   $130 \mu \mathrm{~W} / \mathrm{cm}$   $95 \mu \mathrm{~W} / \mathrm{cm}$	3	4	$\pm 10 \%$	22.5 Vdc	25 dc
10 DPI   Addressable	310	124	$\begin{aligned} & 655 \\ & 635 \\ & 610 \\ & 565 \end{aligned}$	$500 \mu \mathrm{~W} / \mathrm{cm}$   $175 \mu \mathrm{~W} / \mathrm{cm}$ $50 \mu \mathrm{~W} / \mathrm{cm}$ $40 \mu \mathrm{~W} / \mathrm{cm}$	2.7	1.05	$\pm 30 \%$	Multiplex	12 avg .
$25 \text { DPI }$   Addressable	358	352	655	$800 \mu \mathrm{~W} / \mathrm{cm}^{2}$	1.1	1.5	$\pm 45 \%$	Digital	5 dc

## Notes:

1. As of this writing, not all products are released in all the wavelengths shown.
2. The light output figures for on/off and 10 DPI addressable bars are given in $\mu \mathrm{W} / \mathrm{cm}$. This is the total radiometric flux emitted per unit of length of the bar. It is typically measured using a $1 \mathrm{~mm} \times 20 \mathrm{~mm}$ slit detector oriented perpendicular to the length of the erase bar.
3. The light output figure for 25 DPI addressable bars is an irradiance measurement, specified in $\mu \mathrm{W} / \mathrm{cm}^{2}$. This figure is computed by dividing the total flux emitted from a pixel by the area of its square projected image. That image area is defined by the $50 \%$ peak power points at the specified detector height above the LED array.

## Custom Options <br> Available

HP can design and manufacture custom LED Erase Bars to different optica//electrical specifications and/or different mechanical designs from the ones shown. Please furnish a drawing and specification to your local HP field sales engineer.

## Outline Drawings of LED Erase Bars



## 10 DPI Addressable



25 DPI Addressable


## Future LED Erase Bars

The following types of LED Erase Bars are in product development at HewlettPackard. Please contact your local Hewlett-Packard field sales engineer for more information.

1. Future LED Erase Bar designs driven by customers' needs.
2. Anticipated variations including length, on-board electronics, optical performance, narrower mechanical profiles.


# 406 DPI LED Optical Printhead 

## Technical Data

## Features <br> - High Optical Power and Efficiency <br> - Electronically Trimmed and Programmed to Guarantee Excellent Uniformity

- Designed to Write Image or Background
- Noise Tolerant Interface
- High Data Input Rates
- Custom Wavelengths Available


## Description

The HEXP-RT00 represents a 12" LED optical binary printhead. Each printhead consists of:

- A $4864 \times 1$ array of LED pixels at a 406 dpi resolution
- Four serial data line inputs
- A differential line interface


## Special Options:

- 660 nm and 710 nm peak wavelengths are available upon request
- A selfoc lens can be provided upon request


## Applications

- Electrophotographic printers to over 100 pages/ minute
- High performance editing copiers
- Universal printer/copiers
- High performance facsimile printers
- General purpose optical Raster Output Systems

Reliable operation in high speed applications is achieved by a combination of conservative thermal design, efficient LED materials, careful design of power distribution, and use of individual precision current source drivers.

## HEXP-RT00



## Selection Guide

406 dpi ( 16 dots $/ \mathrm{mm}$ ) Resolution 11.97 inches ( 304 mm ) Image Width

685 nm Wavelength	HEXP-RT00

## Mechanical Drawing



## Mechanical Characteristics

Emitter Parameters	
Emitter Size $\quad 40 \mu \mathrm{~m}$	$40 \mu \mathrm{~m} \pm 6 \mu \mathrm{mx} 50 \mu \mathrm{~m} \pm 6 \mu \mathrm{~m}$
Emitter Pitch	$62.5 \mu \mathrm{~m} \pm 5 \mu \mathrm{~m}$
Number of Emitters	- 4864
Emitter Tolerances	
Emitter Pitch Error	
a. Xe Chip to Chip	$\pm 10 \mu \mathrm{~m}$
b. Ye Chip to Chip	$25 \mu \mathrm{~m}$ Max
c. Ye Over Entire Head	$150 \mu \mathrm{~m}$ Max
Emitter Height Error	
a. Ze Chip to Adjacent Chip	$25 \mu \mathrm{~m}$
b. Ze Max to Min Over Entire Head	Head $\quad 150 \mu \mathrm{~m}$

## Orientation and Conventions

## A. Printhead Orientation

CONNECTOR J1: DIGITAL SIGNALS CONNECTOR J2: POWER AND GROUND


Figure 1: Printhead Top Side View

## B. Connector Location and Orientation



Figure 2: Connector Pinout Top Side View

## Specifications Summary

## Absolute Maximum Ratings*

All voltages referenced to Gnd. Driver Outputs Not Enabled.
Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$ $\qquad$ -0.3 to 6.0 V
Input Voltage, Any Pin to Ground .......................... 0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Maximum Operating Duty Factor38\%
Free Air Operating Temperature Range, $\mathrm{T}_{\mathrm{A}}$ ..... $+15^{\circ} \mathrm{C}$ to $+43^{\circ} \mathrm{C}$
Operating Humidity (Non-condensing)
$5 \%$ to $90 \% \mathrm{RH}$

Storage Temperature Range, $\mathrm{T}_{\mathrm{s}} \ldots . . . . .-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ at $50 \%$ max RH

[^63]
## Recommended Operating Conditions*

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Supply Voltage $^{[1]}$	$\mathrm{V}_{\mathrm{DD}}$	4.75	5.0	5.25	V

*Recommended operating conditions define the limits between which the functionality of the product is guaranteed.

## Note:

1. Power supply rise time to be less than 10 ms .

## Optical Characteristics*

Output Characteristics   $\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\right)$	HEXP-RT00
Light Wavelength	$685 \pm 8 \mathrm{~nm}$
Average Printhead Intensity	$6.0 \mu \mathrm{~W} / \mathrm{sr} /$ pixel Min
$.0 \mu \mathrm{~W} / \mathrm{sr} /$ pixel Typical	

*Unless specified otherwise, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0$ volts.

Intensity Variation	Max Values
Pixel Intensity Variation	$\pm 20 \%$
Group Intensity Variation (Average of 8 pixels vs. adjacent group of 8)	$\pm 8 \%$
Maximum Load Intensity Variation (One pixel on to same pixel with all pixels   on at time $=0^{+}$)	$\pm 2 \%$
Thermally Induced Average Intensity Variation (Average intensity at time $=0^{+}$and   $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, compared to average intensity at thermal equilibrium, $1 / 3$ on, $38 \% \mathrm{DF}$,   $\mathrm{T}_{\mathrm{A}}=43^{\circ} \mathrm{C}$, and minimum air flow $=600$ liters/min)	$\pm 10 \%$

*Unless specified otherwise, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0$ volts.

DC Characteristics Over Operating Range*

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Supply Current (All pixels on)	$\mathrm{I}_{\mathrm{DD}}$			$35^{[1]}$	A, peak
Pixel Current	$\mathrm{I}_{\text {pix }}$		4	7	mA, peak
Input Differential Voltage (CLK $\pm, \overline{\mathrm{LAT}} \pm, \overline{\mathrm{OE}} \pm$ and DATA $\pm$ ) and RST $\pm$   Hi Level (V+ - V-)   Lo Level (V- - V+)	$\begin{aligned} & \mathrm{V}_{\mathrm{TH}} \\ & \mathrm{~V}_{\mathrm{TL}} \end{aligned}$	-200		200	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\begin{aligned} & \text { Input Current into } \mathrm{V}+ \\ & \text { (CLK }+, \mathrm{LAT}^{2} \pm \text {, and DATA } \pm \text { ) } \\ & \mathrm{V}_{+}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}-=\mathrm{Gnd} \\ & \mathrm{~V}+=\mathrm{Gnd}, \mathrm{~V}-=\mathrm{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Iih } \\ \text { Iil } \end{gathered}$	$\begin{gathered} 44 \\ -56 \end{gathered}$	$\begin{array}{r} 50 \\ -50 \end{array}$	$\begin{gathered} 56 \\ -44 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Input Current into } V+\overline{\mathrm{OE}} \\ & \mathrm{~V}_{+}=\mathrm{V}_{\mathrm{cC}}, V-=G n d \\ & \mathrm{~V}+=\mathrm{Gnd}^{2}, \mathrm{~V}-=\mathrm{V}_{\mathrm{cc}} \end{aligned}$	$\begin{gathered} \text { Iih } \\ \text { Iil } \end{gathered}$	$\begin{array}{r} 44 \\ -61 \end{array}$	$\begin{array}{r} 50 \\ -55 \end{array}$	$\begin{array}{r} 56 \\ -49 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Input Current into } \mathrm{V}+\mathrm{RST} \\ & \mathrm{~V}+=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}-=\mathrm{Gnd} \\ & \mathrm{~V}+=\mathrm{Gnd}^{2}, \mathrm{~V}-=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{gathered} \text { Iih } \\ \text { Iil } \end{gathered}$	$\begin{aligned} & .1 \\ & -3 \end{aligned}$	$\begin{aligned} & .25 \\ & -5 \end{aligned}$	$\begin{aligned} & .6 \\ & -7 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Hysteresis	Vhys		50		mV

*Unless specified otherwise, $\min / \max$ limits apply across the temperature range and supply voltage range. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0$ volts.

## Note:

1. Maximum peak current at thermal equilibrium $\left(\mathrm{T}_{\mathrm{A}}=43^{\circ} \mathrm{C}, \mathrm{DF}=38 \%, 1 / 3\right.$ pixels on and a minimum air flow of 600 liters/ minute.

AC Switching Characteristics Over Operating Range*

Parameter	Symbol	Minimum	Typical	Maximum	Units
CLK Period	$\mathrm{t}_{\text {cLK }}$	100			ns
CLK Frequency	$\mathrm{f}_{\text {cLK }}$			10	MHz
CLK Hold High Time	$\mathrm{t}_{\mathrm{CH}}$	45	50	55	ns
CLK Hold Low Time	$\mathrm{t}_{\mathrm{CL}}$	45	50	55	ns
Data Setup Time Prior to CLK	$\mathrm{t}_{\mathrm{DS}}$	25			ns
Data Hold Time After CLK	$\mathrm{t}_{\mathrm{DH}}$	25			ns
$\overline{\text { LAT Active Delay After CLK }}$	$\mathrm{t}_{\mathrm{LD}}$	25			ns
LAT Inactive Before CLK	$\mathrm{t}_{\mathrm{LC}}$	25			ns
$\overline{\overline{\text { LAT }}}$ Hold Low Time	$\mathrm{t}_{\text {LL }}$	50			ns
OE Active Delay After LAT	$\mathrm{t}_{\text {ED }}$	25			ns
OE Active Low Time	$\mathrm{t}_{\text {EL }}$			50	ms
Light Output Delay After QEActive	$\mathrm{t}_{\text {LON }}$			300	ns
Light Output Delay After OE Disable	$\mathrm{t}_{\text {LOFF }}$			300	ns
Light Output Rise Time	$\mathrm{t}_{\text {LR }}$			200	ns
Light Output Fall Time	$\mathrm{t}_{\mathrm{LF}}$			200	ns

*Unless specified otherwise, $\min / \max$ limits apply across the temperature range and supply voltage range. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5.0$ volts.

## Timing Diagram



## Applications



## Applications

Because technology is growing and changing so rapidly, HP's commitment to customers includes an extensive applications department. In an effort to anticipate design needs and answer design questions, this team of engineers has published a complete library of applications literature.

All of the Application Notes, Bulletins and Technical Briefs listed here, are available from your local HP Sales Office or nearest HP Components Authorized Distributor or Representative (see section 9), or by calling our Customer Information Center at 1-800-7520900.

## Motion Sensing \& Control Products

## AN 1011

Design and Operational Considerations for the HEDS-5000 Incremental Shaft Encoder
This application note is directed toward the system designer using the HEDS-5000 and HEDS-6000 modular incremental shaft encoders. First the note briefly analyzes the theory of design and operation of the HEDS-5000 and HEDS-6000. A practical approach to design considerations and an error analysis provide an in depth treatment of the relationship between motor mechanical parameters and encoding error accumulation. Several design examples demonstrate the analysis techniques presented. Operation considerations for assembly, test, trouble shooting and repair are presented. Finally, some circuits and software concepts are introduced which will be useful in interfacing the shaft encoder to a digital or microprocessor based system. Appendix A summarizes the uses and advantages of various
encoder technologies while Appendix B provides guidance for selecting DC motors suitable for use with the HEDS-5000 and HEDS-6000.

Ordering No. 5953-9393
AN 1025
Applications and Circuit Design for the HEDS-7500 Series Digital

## Potentiometer

This application note demonstrates some of the uses for the Hewlett-Packard HEDS-7500 series digital potentiometer, explains how a digital potentiometer works, and explains some of the advantages of a digital potentiometer over a standard resistive potentiometer. In addition, this application note provides some examples of circuitry which will interface the digital potentiometer to a microprocessor, and provides mechanical design considerations and available options for the HEDS-7500 series digital potentiometer.

Ordering No. 5954-8485


#### Abstract

AN 1032 Design of the HCTL-1000's Digital Filter Parameters by the Combination Method Digital closed loop motion control systems employing a dedicated IC as a controller are becoming increasingly popular as a solution to the need for controlled velocity and positioning systems. Hewlett-Packard's HCTL-1000 is a general purpose motion control IC which has been designed for this type of closed loop systems. A digital compensator has been designed into the HCTL-1000 to provide a stable response to an input command. This application note explains how the combination method can be used for calculation of the HCTL-1000's digital compensation filter parameters to provide a stable, closed loop position control system.


Ordering No. 5954-8455

## Light Bars \& Bar Graph Arrays

AN 1007
Bar Graph Array
Applications
This application note begins with a description of the manufacturing process used to construct the 10 element array. Next is a discussion of the package design and basic electrical configuration and how they affect designing with the bar graph array. Mechanical information including pin spacing and wave soldering recommendations are made.

Display interface techniques of two basic types are thoroughly discussed. The first of these two drive schemes is applicable in systems requiring display of analog signals in a bar graph format. The second major drive technique interfaces bar graph arrays in systems where the data is of a digital nature. Examples of microprocessor controlled bar graph arrays are presented.

Summarized for the design engineer are tables of available integrated circuits for use with bar graph arrays. Finally, a list of recommended filters is included.

Ordering No. 5953-0452

## AN 1012

## Methods of Legend Fabrication

Hewlett-Packard LED Light Bar Modules inscribed with fixed messages or symbols can be used as economical annunciators. Annunciators are often used in front panels to convey the status of a system, to indicate a selected mode of operation, or to indicate the next step in a sequence. This application note discusses alternative ways the message or
symbols (legends) can be designed. A selection matrix is provided to assist in the selection of the most appropriate method of legend fabrication. Each fabrication method is explained in detail along with mounting and attachment techniques. Finally, prevention of cross-talk is discussed for legend areas of a multisegmented light bar.

Ordering No. 5953-0478

## Solid State Lamps

AB 74
Option 002 Tape and Reel LED Lamps
Hewlett-Packard Option 002 tape and reel LED lamps have straight leads on standard 2.54 mm ( 0.100 inch) center spacing. These lamps may be autoinserted into printed circuit boards with most radial autoinsertion equipment. However, it is important to have the proper plated through hole size and spacing, in the printed circuit to assure high insertion yields.

This application bulletin details the specific information on the printed board plated through hole size, spacing, and tolerances necessary to assure high insertion yields of Option 002 LED lamps with 0.46 mm ( 0.018 inch ) square leads.

Ordering No. 5954-8402
AN 1005
Operational Considerations
for LED Lamps and Display
Devices In the design of a display system which incorporates LED lamps and display devices, the objective is to achieve an optimum between light output, power dissipation, reliability, and operating life. The perform-
ance characteristics and capabilities of each LED device must be known and understood so that an optimum design can be achieved. The primary source for this information is the LED device data sheet. The data sheet typically contains Electrical/Optical Characteristics that list the performance of the device and Absolute Maximum Ratings in conjunction with characteristic curves and other data which describe the capabilities of the device. A thorough understanding of this information and its intended use provides the basis for achieving an optimum design. This application note presents an in-depth discussion of the theory and use of the electrical and optical information contained within a data sheet. Two designs using this information in the form of numerical examples are presented, one for dc operation and one for pulsed (strobed) operation.

Ordering No. 5953-0419

[^64]packages, defines device failures, and discusses parameters affecting useful life, failure rates, and mechanical test performance.

Ordering Number 5953-7784

## AN 1021

Utilizing LED Lamps Packaged on Tape and Reel
Hewlett-Packard offers many of its LED lamps packaged on tape and reel for radial insertion by automatic equipment during high volume production of PC board assemblies.

This application note is a guide to the use of tape and reel LED lamps in the automatic insertion process. Discussed are the LED lamp tape and reel configuration, the radial lead insertion process, PC board design considerations, a method to maintain LED lamp alignment during soldering, and lamp stand-off height information.

AN 1027
Soldering LED Components The modern printed circuit board is assembled with a wide variety of semiconductor components. These components may include LED lamps and displays in combination with other components. The quantity of solder connections will be many times the component count. Therefore, the solder connections must be good on the first pass through the soldering process. The effectiveness of the soldering process is a function of the care and attention paid to the details of the process. It is important for display system designers and PC board assembly engineers to understand the aspects of the soldering process and how they relate to LED components to assure high yields.

This application note provides an in-depth discussion on the aspects of the soldering process and how they relate to LED lamps and display components, with the objective of being to serve as a guide towards achieving high yields for solder connections.

Ordering No. 5954-0893
AN 1028
Surface Mount Subminiature LED Lamps Modern printed circuit boards are being assembled with surface mounted components, replacing through hole mounted components in many traditional applications. Hewlett-Packard has surface mount options for its HLMP-6000/7000 series of subminiature LED lamps, Options 011 and 013 for "gull wing" leads, and Option 021 for "yoke" leads, for inverted mounting.

This application note provides information on how to surface mount and vapor phase reflow solder these surface mount subminiature LED lamps.

Ordering No. 5954-0902

## Solid State Displays

AN 1006
Seven Segment LED Display Applications
This application note begins with a detailed explanation of the two basic product lines that Hewlett-Packard offers in the seven segment display market. This discussion includes mechanical construction techniques, character heights, and typical areas of application. The two major display drive techniques, dc and strobed, are covered. The resultant tradeoffs of cost, power, and ease of use
are discussed. This is followed by several typical instrument applications including counters, digital voltmeters, and microprocessor interface applications. Several different microprocessor based drive techniques are presented incorporating both the monolithic and the large seven segment LED displays.

The application note contains a discussion of intensity and color considerations made necessary if the devices are to be end stacked. Hewlett-Packard has made several advances in the area of sunlight viewability of LED displays. The basic theory is discussed and recommendations made for achieving viewability in direct sunlight. Information concerning display mounting, soldering, and cleaning is presented. Finally, an extensive set of tables has been compiled to aid the designer in choosing the correct hardware to match a particular application. These tables include seven segment decoder/ drivers, digit drivers, LSI chips designed for use with LEDs, printed circuit board edge connectors, and filtering materials.

Ordering No. 5953-0439
AN 1015
Contrast Enhancement
Techniques for LED
Displays
Contrast enhancement is
essential to assure readability of
LED displays in a variety of
indoor and outdoor ambients.
Plastic filters are typically used
for contrast enhancement with
indoor lighting and glass
circular polarized filters are
typically used to achieve
readability in sunlight
ambients.

AN 1015
Contrast Enhancement Techniques for LED Displays
Contrast enhancement is essential to assure readability of LED displays in a variety of indoor and outdoor ambients. Plastic filters are typically used for contrast enhancement with indoor lighting and glass circular polarized filters are typically used to achieve readability in sunlight ambients.

This application note discusses contrast enhancement technology for both indoor and outdoor ambients, the theory of Discrimination Index and provides a list of tested contrast enhancement filters and filter manufacturers.

Ordering No. 5953-7788
AN 1016
Using the HDSP-2000 Alphanumeric Display Family
The HDSP-2000 family of alphanumeric display products provides the designer with a variety of easy-to-use display modules with on board integrated circuit drivers. The HDSP-2000 family has been expanded to provide three display sizes with character heights ranging from 3.8 mm ( 0.15 in .) to $6.9 \mathrm{~mm}(0.27 \mathrm{in}$.), four display colors, and both commercial and military versions. These displays can be arranged to create both single line and multiple line alphanumeric panels.

This note is intended to serve as a design and application guide for users of the HDSP-2000 family of alphanumeric display devices. It covers the theory of the device design and operation, considerations for specific circuit designs, thermal management, power derating and heat sinking, and intensity modulation techniques.

Ordering No. 5953-7787

AN 1026
Designing with HewlettPackard's Smart Display the HPDL-2416
The trend in LED Alphanumeric displays is to simplify a designer's job as much as possible by incorporating on board character storage, ASCII character generation, and multiplexing within the display. The HPDL-2416 is a four character alphanumeric display which incorporates a 64 character ASCII decoder and an on board CMOS IC to perform these functions. This application note is intended to serve as a design and application guide for users of the HPDL-2416. The information presented will cover electrical description, electrical design considerations, interfacing to micro-processors, preprogrammed message systems, mechanical and electrical handling, and contrast enhancement.

Ordering No. 5954-0886
AN 1029
Luminous Contrast and Sunlight Readability of the HDSP-238X Series LED Alphanumeric Displays for Military Applications Military specifications for avionics and other kinds of electronics that require readability in sunlight use specific definitions for luminous contrast. The concept of chrominance contrast and the theory of Discrimination Index (see HewlettPackard Application Note 1015) are not used by the military as a means of determining readability in sunlight. Thus, the military requirements for readability in sunlight are based solely on luminous contrast measurements. This application note discusses the
luminous contrasts used by military specifications, describes anti-reflection/circular polarized filters designed for use with the HDSP-238X series sunlight viewable LED displays, and presents luminous contrast data for various HDSP-238X display/ filter combinations.

Ordering No. 5954-0923

## AN1030 <br> LED Displays and Indicators and Night Vision Imaging System Lighting

This application note introduces the concept of night vision imaging. It discusses GEN II and GEN III ANVIS and Cat's Eyes night vision goggles. NVG compatibility problems and compatible lighting objectives for aircraft cockpits are discussed. It illustrates the use of NVG filters with high performance green and yellow LEDs to obtain NVG compatibility. Various aspects of MIL-L85762A, as they apply to LEDs, are discussed. Calculated NVIS Radiance values are presented for high performance green and yellow LED/NVG/DV filter combinations. A discussion of the U.S. Army's NVG Secure Lighting Program and the objectives of the CECOM SOW are included. Information on dimming LED displays is presented. Daylight readability with NVG/DV filters is also discussed.

Ordering No. 5954-2245

## AN 1031

## Front Panel Design

In many applications designers are faced with the problem of how to match the perceived brightness of an assortment of seven segment displays, light bars, linear arrays, and lamps on the same front panel. To simplify this problem HewlettPackard has introduced S02 option selected parts. S02 option selected parts provide a restricted range of luminous intensity for a given part number. This application note is written as a design guide to matching the perceived brightness of LED displays and lamps on a front panel. The procedure shown in the application note will enable the designer to calculate the needed display drive currents (either dc or pulsed) for a given ambient light level and specified filter. Two technques are explained. The first is how to calculate the drive currents to insure minimum acceptable brightness. The second is how to calculate the drive currents to match the display on the front panel to a known display.

## Ordering No. 5954-0933

## AN 1033

Designing with the HDSP211X Smart Display Family
Hewlett-Packard's smart alphanumeric display, the HDSP-211X, is built to simplify the user's display design. Each HDSP-211X has an onboard CMOS IC which displays eight characters. All of the IC features are software driven. These features include 128 character ASCII decoder, 16 user-defined symbols, seven brightness levels, flashing
characters, a self test, and all of the circuitry needed to decode, drive, and refresh eight $5 \times 7$ dot matrix characters.

This application note discusses how to interface the HDSP211X display to either a Motorola 6808 or an Intel 8085 microprocessor. A 32 character display interface is explained for each microprocessor. The note includes a detailed description of the hardware and software. The software illustrates how the user-defined symbols and a string of ASCII characters are loaded into the display.

Ordering No. 5954-8424

## AN 1039

Dimming HDSP-213X
Displays to Meet Night Vision Lighting Levels

## Abstract

For normal operation, the seven programmable dimming levels available with the HDSP-213X military grade displays are sufficient. However, the displays must be dimmed well below the lowest available onboard programmable dimming level to meet the requirements for night vision imaging system (NVIS) lighting. This application note describes a circuit that will dim HDSP-213X displays to luminance levels sufficient to meet NVIS lighting requirements.

Ordering No. 5952-0708

## Fiber Optics

AB 65
Using 50/125 $\mu \mathrm{m}$ Optical
Fiber with Hewlett-Packard Components
Applications Bulletin 65 explains factors that influence the power coupled into various fiber diameters and numerical apertures. Test results showing coupled power from HP LED sources into $100 / 140 \mu$ metre and $50 / 125 \mu$ metre fiber are included.

Ordering No. 5953-9370

## AB 71

200- $\mu \mathrm{m}$ PCS Fiber with Hewlett-Packard FiberOptic Transmitters and Receivers
A description of the properties of $200-\mu \mathrm{m}$ PCS fiber is given and the performance when used with Hewlett-Packard fiber optic components is described in the form of graphs and tables.

Ordering No. 5954-1021


#### Abstract

AB 73 Low-cost Fiber-Optic Transmitter and Receiver Interface Circuits This bulletin provides assistance in designing circuits to interface Hewlett-Packard HFBR-0400 low-cost miniature fiber-optic components with TTL I/O for applications at data rates up to 35 MBD . The TTL $\mathrm{T}_{\mathrm{x}} / \mathrm{R}_{\mathrm{x}}$ circuits presented in this applications bulletin have been designed, built, and tested. They are suitable for a wide range of applications. The HFBR-0400 fiber-optic components are compatible with either SMA or ST style connectors. The concepts illustrated in this bulletin are applicable to both types.


## AB78

Low-Cost Fiber-Optic Links for Digital Applications up to 150 MBd
The HFBR-2406 and HFBR2416 are high-speed, low-cost linear light-to-voltage converters with typical bandwidths of 125 MHz . These components can be used to make fiber-optic links for both analog and digital applications. Since the range of possible uses is so varied, this Application Bulletin concentrates on a specific digital application. The application is one of the most prevalent for the HFBR-24X6: the transmission of encoded digital signals, otherwise known as run-length limited* data.

Ordering No. 5954-8478

## AN 1022

High Speed Fiber-Optic Link Design with Discrete Components
As the technology of fiber-optic communication matures, design considerations for large volume applications focus as much on cost and reliability as bandwidth and bit-error-rate. This application note describes a 100 MBd fiber-optic communication link which was implemented with low-cost, non-exotic technology, including LED transmitter, PIN photodiode detector, off-the-shelf ICs, and discrete components, laid out on epoxy-glass circuit boards.

Ordering No. 5954-0979

AN 1035
Versatile Link
The Versatile Link Application Note describes how fiber optics can be used to solve different types of application problems, introduces Hewlett-Packard's Versatile Link plastic fiber-optic components, and shows how to design a working fiber-optic link using the Versatile Link. It also includes several additional application circuits to help the designer obtain maximum performance from the Versatile Link

Ordering No. 5954-2191
AN 1038
Low Cost Components for IEEE 802.3 Fiber-Optic Inter-Repeater Links The HFBR-0400 family of low cost high performance components can be combined with inexpensive support circuits to construct the Fiber-Optic InterRepeater Links (FOIRL) described in the IEEE 802.3 standard. The recommendations shown in this Application Note can also be used to construct 20 MBd optical links which are suited for a variety of point-topoint data communication applications.

Ordering No. 5954-2215

## TB 101

Fiber-Optic SMA Connector Technology
Technical Brief 101 discusses tradeoffs between various SMA connector techniques and provides a contact matrix of manufacturers versus SMA connector type.

Ordering No. 5954-1004

TB 102
Fiber/Cable Selection for LED Based Local Communications Systems Technical Brief 102 is intended to assist the first time user of fiber optics with the selection of a fiber cable that best meets desired system requirements. Issues discussed in Technical Brief 102 include: Tradeoffs between various fiber types, the effect of LED emitters on fiber performance, coupled power versus numerical aperture and factors that influence cable selection. A contact matrix that lists fiber cable manufacturers versus cable type is also included.

Ordering No. 5954-1004

## TB 104

Baseband Video Transmission with Low Cost Fiber-Optic Components
The transmission of video signals over fiber-optic links offers several advantages relative to comparable wire distribution systems. Technical Brief 104 describes simple $T_{x} / R_{x}$ circuits providing $20 \mathrm{MHz}, 3 \mathrm{~dB}$ bandwidth for high resolution analog video transmission.

Ordering No. 5954-1025

## TB 105

ST Connector/Cable Guide A fairly recent development by AT\&T is the ST* Connector, and its rapid acceptance by users of fiber-optic components is an indication that it may soon become a standard connector.

Technical Brief 105 provides a quick comparison between the SMA and the ST style connector. A table at the end lists some suppliers of the ST style connectored cables.

## Optocouplers

## AN 69

CMOS Circuit Design Using
Hewlett-Packard
Optocouplers
Within this application bulletin are CMOS isolation interface circuits for use with the various low input current, HewlettPackard optocouplers, specifically, the HCPL-2200/ 2300/2731 and 6N139 devices. Advantages of and recommendations for different input and output circuit configurations are given in tabular form for low power operation at various signalling rates.

Ordering No. 5953-9384

## AN 947

Digital Data Transmission Using Optically Coupled Isolators
Optocouplers make ideal line receivers for digital data transmission applications. They are especially useful for elimination of common mode interference between two isolated data transmission systems. This application note describes design considerations and circuit techniques with special emphasis on selection of line drivers, transmission lines, and line receiver termination for optimum data rate and common mode rejection. Both resistive and active terminations are described in detail. Specific techniques are described for multiplexing applications, and for common mode rejection and data rate enhancement.

Ordering No. 5954-7759

AN 951-1
Applications for Low Input Current, High Gain Optocouplers
Optocouplers are useful in line receivers, logic isolation, power lines, medical equipment, and telephone lines. This note discusses use of the $6 \mathrm{~N} 138 / 9$ series high CTR optocouplers in each of these areas.

Ordering No. 5953-8430
AN 951-2
Linear Applications of Optocouplers
Although optocouplers are not inherently linear, the separate photodiodes used in HewlettPackard optocouplers provide better linearity as well as higher speed of response than phototransistor detectors.

Linearity enhancement by use of paired optocouplers is described with specific circuit examples offering DC-to- 25 KHz response. These examples illustrate the relative merits of differential and servo techniques.

A circuit with linear AC response to 10 MHz is also described for analog optocouplers having the photodiode terminals externally accessible.

Digital techniques of voltage-tofrequency conversion and pulse width modulation are discussed. Their linearity is quite independent of optocoupler linearity but require use of high speed optocouplers for low distortion.

Ordering No. 5954-8430

## AN 1002 <br> Consideration of CTR Variations in Optocoupler Circuit Designs

A persistent, and sometimes crucial, concern of designers using optocouplers is that of the current transfer ratio, CTR, changing with time. The change, or CTR degradation, must be accounted for if long, functional lifetime of a system is to be guaranteed. This application note will discuss a number of different sources for this degradation.

Ordering No. 5953-7799

## AN 1004 <br> Threshold Sensing for Industrial Control Systems with the HCPL- 3700 Interface Optocoupler Interfacing from industrial control systems to logic systems is a necessary operation in order

 to monitor system progress. This interfacing is found if process control systems, programmable controllers, microprocessor subsystems which monitor limit and proximity switches, environmental sensors and ac line status; in switching power supplies for detection of ac power loss; in power back up systems which need an early warning of power loss in order to save special microprocessor memory information or switch to battery operation, etc. Applications of the HCPL-3700 interface optocoupler are addressed in this note. The isolation and threshold detection capability of the HCPL- 3700 allows it to provide unique features which no other optocoupler can provide. Addressed in this note are the advantages of using this optocoupler for isolating systems as well as the device characteristics, dc/ac operational performance withand without filtering, simple calculations for setting desired thresholds, and four typical application examples for the HCPL-3700. Additional coverage is given to protection considerations for the optocoupler from the standpoint of power transients, thermal conditions, and electrical safety requirements of the industrial control environment.

Ordering No. 5953-0406

## AN 1018 <br> Designing with the HCPL4100 and HCPL-4200

 Current Loop Optocoupler Digital current loops provide unique advantages of large noise immunity and long distance communication at low cost. Applications are wide and varied for current loops, but one of the critical concerns of a loop system is to provide a predictable, reliable, and isolated interface with the loop. The HCPL-4100 (transmitter) and HCPL-4200 (receiver) optocouplers provide for easy interfacing to and from a current loop with minimal design effort. Within this application note a complete description of the HCPL-4100/ 4200 devices is given along with applications for digital, 20 mA , simplex, half duplex, and full duplex loops. These loops can be either point-to-point or multidrop configurations. Factors which affect data performance are discussed. Circuit arrangements with specific data performance are given in graphical and tabular form.Ordering No. 5953-9359

## AN 1023 <br> Radiation Immunity of Hewlett-Packard <br> Optocouplers

Opening with a quotation from MIL-HDBK-279 describing optocouplers containing photodiodes as superior to optocouplers containing phototransistors, the text describes the properties of ionizing radiation (particles and photons) and how it affects the performance of optocouplers. Graphs show degradation of CTR (Current Transfer Ratio) in the 6 N 140 as a function of gamma total dose (up to 1000 $\operatorname{rad}[\mathrm{Si}]$ and as a function of total neutron fluence (up to $6 \times 1012 \mathrm{n} / \mathrm{cm} 2$ ). A table gives radiation hardness requirements for various military requirements.

Ordering No. 5954-1003

## AN 1024

Ring Detection with the HCPL-3700 Optocoupler With the increased use of modems, automatic phone answering equipment, private automatic branch exchange (PABX) systems, etc., low-cost, reliable, isolated ring detection becomes important to many electronic equipment manufacturers. This application note addresses the definition of ringing requirements (U.S.A. and Europe), applications of the HCPL-3700 optocoupler as a simple, but effective, ring detector. A design example is shown with calculations to illustrate proper use of the HCPL-3700. Features which are integrated into the HCPL-3700 provide for predictable detection, protection and isolation when compared to other optocoupler techniques.

AN 1036
Solid State Relay
Introduction and Applications
A brief opening describes SSRs (Solid State Relays), their advantages relative to EMRs (Electro Magnetic Relays); and their classification according to contact characteristics. There follows a description of HSSR8200 "control" and "contact" properties. Arrangement of the contacts for signal switching, multiplexing, gain switching, and low-level sensing are discussed. Circuit suggestions and design rules are given for operation of the "control" LED. Schematics and design rules for overvoltage protection of the open contacts are presented.

Ordering No. 5954-2200
TB 103
High Speed Optocouplers vs. Pulse Transformers For high speed signaling with Ground loop isolation, pulse transformers are often used. Here are summarized briefly the difficulties encountered in the use of pulse transformers, such as rise-time, sag, and interwinding capacitance. A table summarizes the parameters of Hewlett-Packard optocouplers designed for high speed signaling. A second table summarizes the advantages of using these optocouplers instead of pulse transformers.

Ordering No. 5954-1017


## Appendix

- Ordering Information
- HP Components Authorized Distributor and Representative Directory
- HP Components U.S. Sales and Service Offices
- HP International Sales and Service Offices


## Ordering Information, After Sales Service

## How to Order

To order any component in this catalog or additional applications information, call the HP office nearest you and ask for a Components representative. A complete listing of the U.S. sales offices is on page 9-7; offices located outside of the U.S. are listed on page 9-8.

A world-wide listing of HP authorized distributors is on page 9-3. These distributors can offer off-the-shelf delivery for most HP components.

If you need technical assistance, please call our Customer Information Center at 1-800-752-0900.

## Warranty

HP's Components are warranted against defects in material and workmanship for a period of one year from the date of shipment (in the case of designated Fiber Optic products, 90 days from the date of shipment). If HP receives notice of such defects during the warranty period, HP will repair or, at its option, replace components that prove to be defective in material or workmanship under proper use during the warranty period. This warranty extends only to HP customers.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

The foregoing limitation of liability shall not apply in the event that any HP product sold hereunder is determined by a court of competent jurisdiction to be defective and to have directly caused bodily injury, death, or property damage; provided, that in no event shall HP's liability for property damage exceed the greater of $\$ 50,000$ or the purchase price of the specific product that caused such damage.

# HP Components Authorized Distributor and Representative Directory 

## United States

Alabama	350 McCormick Avenue
Hall-Mark Electronics 4900 Bradford Drive	Costa Mesa 92626 (714) 754-6100
Huntsville 35805	
(205) 837-8700	Hamilton/Avnet (Corp) 10950 W. Washington Blvd.
Hamilton/Avnet	Culver City 90230
4940 Research Drive N.W.	(213) 558-2000
Huntsville 35805 (205) 837-7210	Hamilton/Avnet 1361 "B" West 190th Street
Schweber Electronics	Gardena 90248
4910 Corporate Drive, Suite J	(213) 217-6700
Huntsville 35805	Hamilton/Avnet
	4103 Northgate Blvd.
Arizona	Sacramento 95834
Hall-Mark Electronics	(916) 925-2216
4637 S. 36th Place	Hamilton/Avnet
Phoenix 85040	4545 Viewridge Avenue
(602) 437-1200	San Diego 92123
Hamilton/Avnet	(619) 571-7510
30 S. McKemy Road	Hamilton/Avnet
Chandler 85226	
(602) 961-6400	1175 Bordeaux Drive Sunnyvale 94086
Schweber Electronics	(408) 743-3300
2415 W. Erie Drive	
Tempe 85282	26707 W. Agoura Road
(602) 431-0030	26707 W. Agoura Road
California	(818) 880-9686
Hall-Mark Electronics	Schweber Electronics
9420 Topanga Canyon Blvd.	6 Cromwell, Suite 100
Chatsworth 91331	Irvine 92718
(818) 773-4500	(714) 587-0404
Hall-Mark Electronics	Schweber Electronics
1 Mauchly	3265 Ramos Circle, Suite 100
Irvine 92718	Sacramento 95827
(714) 727-6000	(916) 364-0222
Hall-Mark Electronics	Schweber Electronics
580 Menlo Drive, Suite 2	5575 Ruffin Rd.
Rocklin 95677 (Sacramento)	Suite 250
(916) 624-9781	San Diego 92121
Hall-Mark Electronics	(619) 432-7171
3878 Ruffin Road	
San Diego 92123	Schweber Electronics
(619) 268-1201	90 East Tasman Drive
	(408) 432-7171
Hall-Mark Electronics	
2105 Lundy Avenue	Colorado
San Jose 95131	
(408) 432-4000	$12503 \text { East Euclid Dr. }$
Hamilton/Avnet	Suite 20
21150 Califa Street	Englewood 80111
Woodland Hills 91367	(303) 790-1662
(818) 594-0404	Hamilton/Avnet
Hamilton/Avnet	9605 Maroon Circle
3170 Pullman Street	Suite 200
Costa Mesa 92626	Englewood 80112


Schweber Electronics	Hamilton/Avnet
61 Inverness Drive East	5825 D. Peachtree Corners East
Suite 105	Norcross 30092
Englewood 80112 (303) 799-0258	(404) 447-7500
	Schweber Electronics
Connecticut	20 Technology Parkway South
Hall-Mark Electronics	Suite 375
615 West Johnson Ave., Bldg. \#3	Norcross 30092
Cheshire 06410	(404) 449-9170
(203) 271-2844	Illinois
Hamilton/Avnet	Hall-Mark Electronics
Commerce Drive	210 Mittel Drive
Commerce Industrial Park	Wood Dale 60191
Danbury 06810	(312) 860-3800
(203) 797-2800	
	Hamilton/Avnet
Schweber Electronics	1130 Thorndale Avenue
115 Hurley Farms	Bensenville 60106
Oxford 06483	(616) 243-8805
(203) 264-4700	
	Newark Electronics
Florida	4801 N. Ravenswood Ave.
Hall-Mark Electronics	Chicago 60640-4496
489 Semoran Blvd.	(1-800) 367-3573
Suite 145	
Casselberry 32707 (Orlando)	Schweber Electronics
(407) 830-5855	945 N. Plum Grove Road Suite A-G
Hall-Mark Electronics	Schaumberg 60173
10491 72nd St. North	(708) 330-3722
Largo 34647 (Tampa Bay) (813) 541-7440	Indiana
	Hall-Mark Electronics
Hall-Mark Electronics	4275 W. 96th Street
3161 S.W. 15th St. (McNabb Road).	Indianapolis 46268
Pompano Beach 33069-4806 (Ft.	(317) 872-8875
Lauderdale)	
(305) 971-9280	Hamilton/Avnet
	485 Gradle Drive
Hamilton/Avnet	Carmel 46032
6801 N.W. 15th Way	(317) 844-9533
Ft. Lauderdale 33309	
(407) 971-2900	Schweber Electronics
	9265 Counselors Row
Hamilton/Avnet	Suite 100
4247 Tech Drive North	Indianapolis 46240
St. Petersburg 33702	(317) 843-1050
(813) 572-4346	
	Iowa
Hamilton/Avnet	Hamilton/Avnet
7079 University Blvd.	915 33rd Avenue S.W.
Winter Park 32792 (Orlando)	Cedar Rapids 52404
(407) 628-3888	(319) 393-0033
Schweber Electronics	Schweber Electronics
317 S. North Lake Blvd.	5270 North Park Place N.E.
Suite 1024	Cedar Rapids 52402
Altamonte Springs 31701   (407) 331-7555	(319) 373-1417
	Kansas
Schweber Electronics	Hall-Mark Electronics
1200 N. Newport Center Drive	10809 Lakeview Drive
Deerfield Beach 33442	Lenexa 66215
(305) 421-6633 -	(913) 888-4747
Georgia	Hamilton/Avnet
Hall-Mark Electronics	15313 West 95th St.
6410 Atlantic Boulevard	Lenexa 66219
Suite 115	(913) 541-7921

Schweber Electronics
Drive East
(303)

Connecticut
Hall-Mark Electronics
15 West Johnson Ave., Bldg. \#3
(203)

Hamilton/Avnet
Commerce Drive

Danbury 1800

Schweber Electronics
15 Hurley Farms
Oxford 06483
264-4700

Hall-Mark Electronics
489 Semoran Blvd.
Suite 145
(407) 830-5855

Hall-Mark Electronics
0491 72nd St. North
Largo 34647 (Tampa Bay)

Hall-Mark Electronics
3161 S.W. 15th St. (McNabb Road)
Lauderdale)
(305) 971-9280
milton/Avnet
801 N.W. 15th Way
Ft. Lauderdale 33309

Hamilton/Avnet
4247 Tech Drive North
(813) 572-4346

Hamilton/Avnet
079 University Blvd
Winter Park 32792 (Orlando)

Schweber Electronics
317 S. North Lake Blvd.
te 1024
Altamonte Springs 31701

Schweber Electronics
1200 N. Newport Center Drive
33442

Georgia
Aall-Mark Electronics
Suite 115
Norcross 30071
(404) 447-8000

Hamilton/Avnet
5825 D. Peachtree Corners East
orcross 30092

Schweber Electronics
20 Technology Parkway South
Suite 375
404) 449-9170

## Illinois

Hall-Mark Electronics
210 Mittel Drive
(312) 860-3800
(616)

Newark Electronics
4801 N. Ravenswood Ave.
Chicago 60640-4496

Schweber Electronics . Plum Grove Roa
(708) 330-3722

## Indiana

a75 W 96th Strect
4275 W. 96th Street
(317) 872-8875

Hamilton/Avnet
485 Gradle Drive
Carmel 46032

Schweber Electronics Counselors Row Suite 100
Indianapolis 46240

Hamilton/Avnet
915 33rd Avenue S.W.
dar Rapids 52404

Schweber Electronics
270 North Park Place N.E
(319) 373-1417

## Kansas

rk Electronics
Lenexa 66215

Hamilton/Avnet

Lenexa 66219
(913) 541-7921

Schweber Electronics 10300 W. 103rd Street Suite 200
Overland Park 66214
(913) 492-2922

## Kentucky

Hamilton Avnet
805 A Newton Circle
Lexington 40511
(606) 259-1475

## Maryland

Hall-Mark Electronics 10240 Old Columbia Road
Columbia 21046
(301) 988-9800

Hamilton/Avnet
6822 Oak Hall Lane
Columbia 21045
(301) 995-3522

Schweber Electronics 9800 J Patuxent Woods Drive
Columbia 21046
(301) 596-7800

Massachusetts
Hall-Mark Electronics
6 Cook Street
Billerica 01821
(617) 935-9777

Hamilton/Avnet
10D Centennial Drive
Peabody 01960
(508) 532-3701

Schweber Electronics
301 Ballardvale St.
Wilmington 01887
(508) 694-9100

Michigan
Hall-Mark Electronics
38027 Schoolcraft Road
Livonia 48150 (Detroit)
(313) 462-1205

Hamilton/Avnet
2876 28th St. S.W.
Suite 5
Grandville 49418
(616) 531-0345

Hamilton/Avnet
41650 Gardenbrook, Suite 100
Novi 48375
(313) 347-4271

Schweber Electronics
31478 Industrial Road, Suite 3
Livonia 48150
(313) 525-8100

Minnesota
Hall-Mark Electronics
10300 Valley View Road
Suite 101
Eden Prairie 55344
(612) 941-2600

Hamilton/Avnet
12400 Whitewater Road
Minnetonka 55343
(612) 932-0600

Schweber Electronics
10100 Viking Dr.
Suite 100
Eden Prairie 55344
(612) 941-5280

Missouri
Hall-Mark Electronics
3783 Rider Trail So.
Earth City 63045
(314) 291-5350

Hamilton/Avnet
741 Goddard
Chestfield 63017
(314) 537-1600

Schweber Electronics
502 Earth City Expwy
Suite 203
Earth City 63045
(314) 739-0526

New Jersey
Hall-Mark Electronics
200 Lanidex Center
2nd F1.
Parsippany 07054
(201) 515-3000

Hall-Mark Electronics
11000 Midlantic Drive, Suite 5
Mt. Laurel 08054
(609) 235-1900

Hamilton/Avnet
1 Keystone Avenue, Bldg. 36
Cherry Hill 08003
(609) 424-0118

Hamilton/Avnet
10 Industrial Road
Fairfield 07006
(201) 575-3390

Schweber Electronics
43 Route 46 East
Pine Brook 07058
(201) 227-7880

Schweber Electronics
1000 Briggs Rd.
Suite 200
Mt. Laurel 08054
609) 273-7900

New Mexico
Hamilton/Avnet
5659 Jefferson St. N.E., Suite A
Albuquerque 87109
(505) 345-0001

New York
Hall-Mark Electronics
6605 Pittsford-Palmyra Rd.
Suite E8
Fairport 14450 (Rochester)
(716) 425-3300

Hall-Mark Electronics
3075 Veterans Memorial Hwy.
(516) 737-0600 (Long Island)

Hamilton/Avnet
933 Motor Park Way
Hauppauge 11788
(516) 434-7421

Hamilton/Avnet
2060 Town Line Road
Rochester 14623
(716) 272-2729

Hamilton/Avnet
103 Twin Oaks Drive
Syracuse 13208
(315) 434-2438

Hamilton/Avnet
1065 Old Country Road
Suite 211A
Westbury 11590
(516) 997-6868

Schweber Electronics
120 Commerce Drive
Hauppauge 11788
(516) 231-2500

Schweber Electronics
1160 m Pittsford-Victor Road
Pittsford 14534
(716) 383-8020

Schweber Electronics (Corp)
P.O. Box 1032

Jericho Turnpike
Westbury 11590-0212
(516) 876-4000

## North Carolina

Hall-Mark Electronics
5234 Green's Dairy Road
Raleigh 27604
(919) 872-0712

Hamilton/Avnet
3510 Spring Forest Road
Raleigh 27604
(919) 878-0810

Schweber Electronics
1 North Commerce Center
5285 North Boulevard
Raleigh 27604
(919) 876-0000

Ohio
Hall-Mark Electronics
5821 Harper Road
Solon 44139
(Cleveland)
(216) 349-4632

Hall-Mark Electronics
400 E. Wilson Bridge Rd.
Suite S
Worthington 43085 (Columbus)
(614) 888-3313

Hamilton/Avnet
954 Senate Drive
Dayton 45459
(513) 439-6700

Hamilton/Avnet
30325 Bainbridge Road, Bldg. A
Solon 44139 (Cleveland)
(216) 349-4910

Hamilton/Avnet
2600 Corporate Exchange Dr.
Suite 180
Columbus 43231
(614) 882-7389

Schweber Electronics
23880 Commerce Park Road
Beachwood 44122 (Cleveland)
(216) 464-2970

Schweber Electronics
7333 Paragon Road
Suite 170
Dayton 45459
(513) 439-1800

## Oklahoma

Hall-Mark Electronics
5411 S. 125th East Ave.
Suite 305
Tulsa 74146
(918) $254-6110$

Hamilton/Avnet
12121 E. 51st Street
Suite 102A
Tulsa 74146
(918) 252-7297

Schweber Electronics 4150 S. 100th East Ave.
Tulsa 74146
(918) 622-8000

## Oregon

Almac Electronics
1885 N.W. 169th Place
Beaverton 97006
(503) 629-8090

Hamilton/Avnet
9409 SW Nimbus
(Lake Oswego area)
Beaverton, 97003
(503) 526-6202

Pennsylvania
Hamilton/Avnet
213 Executive Dr.
Mars 16046
(412) 772-1881

Schweber Electronics
1000 R.I.D.C. Plaza
Suite 203
Pittsburgh 15238
(412) 963-6807

Puerto Rico
Hamilton/Avnet Electronics
C/O Oriental Federal Savings Bank
Avenida Las Cumbras Y
Emiliano Pol
Rio Piedras, P.R. 00926
(809) 731-1110

## Texas

Hall-Mark Electronics
12211 Technology Blvd.
Austin 78727
(512) 258-8848

Hall-Mark Electronics (Corp.)
11333 Pagemill Drive
Dallas 75243
(214) 343-5000

Hall-Mark Electronics
11420 Pagemill Road
Dallas 75243
(214) 553-4300

Hall-Mark Electronics
8000 Westglen
Houston 77063
(713) 781-6100

Hamilton/Avnet
1807A West Braker Lane
Austin 78758
(512) 837-8911

Hamilton/Avnet
4004 Belt Line Road, Suite 200
Dallas 75244
(214) 308-8111

## Hamilton/Avnet

4850 Wright Road
Stafford 77477
(713) 240-7733

Schweber Electronics
11500 Metrics Blvd.
Suite 410
Austin 78758
(512) 339-0088

Schweber Electronics
15167 Businces Ave.
Dallas 75244
(214) 247-6300

Schweber Electronics	Washington	Hamilton/Avnet	Hamilton/Avnet
10625 Richmond Avenue	Almac Electronics	Redmond Science Park	20875 Crossroads Circle
Suite 100	14360 S.E. Eastgate Way	Building C	Suite
Houston 77042	Bellevue $98007-6458$	17761 N.E. 78th Place	Waukesha 53186
(713) $784-3600$	$(206) 643-9992$		Redmond 98052

## International

## Australia

VSI Electronics Pty. Ltd.
16 Dickson Avenue
Artarmon, N.S.W. 2064
(61) 24394655

VSI Electronics Pty. Ltd.
Suite 9, Argyle Street
Cnr. Sandgde Road, Argyle St.
Breakfast Creek
QLD 4010
(61) 72625200

VSI Electronics Pty. Ltd.
Unit 1
25 Brisbane Street
East Perth, W.A. 6000
(61) 93288499

VSI Electronics Pty. Ltd.
6/417 Ferntree Gully Road Mt. Waverley
Melbourne, Victoria 3149
(61) 35436445

VSI Electronics Pty. Ltd.
Office 4
116 Melbourne Street
North Adelaide
South Australia 5006
(61) 82674333

## Austria

EBV Elektronik
Diefenbachgasse 35/6
1150 Wien
Tel: (0222) 8941774
Transistor V.m.b.H. \& Co KG
Auhofstr. 41A
1130 Wien
Tel: (0222) 829451

## Belgium

Lemaire/Rodelco SA
Limburg Stirum 243
1810 Wemmel
Tel: (02) 4600271
EBV Electronik
Excelsiorlaan 35
Avenue Excelsior 35
1930 Zaventem
Tel: (02) 7209936

## Canada

Hamilton/Avnet Electronics Ltd. 2550 Boundary Road
Burnaby, BC V5M 3Z3
(604) 437-6667

Hamilton/Avnet Electronics Ltd. 2816 21st Street NE
Calgary, Alberta T2E 6Z2
(403) 250-9380

Hamilton/Avnet Electronics Ltd.
6845 Rexwood Drive
Units 3-5
Mississauga, Ontario L4V 1R2 (416) 677-7432

Hamilton/Avnet Electronics Ltd.
190 Colonnade Road
Nepean, Ontario K7E 7J5
(613) 226-1700

Hamilton/Avnet Electronics Ltd. 2795 Rue Halpern
St. Laurent, Quebec H4S 1P8
(514) 335-1000

Hi-Tech Sales Limited (REP)
8523 132nd Street
Surrey, BC V3W 4N8
(604) 596-1886

Hi-Tech Sales Limited (REP)
\#17-360 Keewatin Street
Winnipeg, Manitoba R2X 2 Y3
(204) 694-0000

Zentronics, Ltd.
1355 Meyerside
Mississauga, Ontario
L5T 1C9
(416) 564-9600

Zentronics, Ltd.
6815 - 8th Street N.E.
Suite 100
Calgary, Alberta T2E 7H7
(403) 295-8714

Zentronics, Ltd.
155 Colonnade Road
Units 17-18
Nepean, Ontario K2E 7K1
(613) 226-8840

Zentronics, Ltd.
108-1140 Bridgeport Road
Richmond, BC V6X 1T2
(604) 273-5575

Zentronics, Ltd.
817 McCaffrey Street
St. Laurent, Quebec H4T 1N3
(514) 737-9700

Zentronics, Ltd.
60-1313 Border Street
Winnipeg, Manitoba R3H 0X4
(204) 775-8661

## Denmark

Interelko A/S
Silovej 38
2690 Karìslunde
Tel: (053) 140700

## Finland

Field OY
Niittylanpolku 10
00620 Helsinki
Tel: (0) 7571011

## France

Almex
Zone industrielle d'Antony
48, rue de l'Aubepine
92160 Antony cedex
Tel: (1) 46662112

## Feutrier

62, rue des Gemeaux
Silic 580
94653 Rungis Cedex
Tel: (1) 49784848
S.C.A.I.B. S.A.

80, rue d'Arcueil
Silic 137
94523 Rungis Cedex
Tel: (1) 46872313
Jermyn/Generim
73-79 rue des Solets
Silic 585
94663 Rungis Cedex
Tel: (1) 49784900

## Germany

Ing. Buero K.-H. Dreyer
Flensburger Str. 3
2380 Schleswig
Tel: (04621) 24055
EBV-Elektronik GmbH
Hans-Pinsel-Str. 4
8013 Haar bei Munchen
Tel: (089) 6110510
Jermyn GmbH
Im Dachsstuck 9
6250 Limburg 4
Tel: (06431) 508-0
Sasco GmbH
Hermann-Oberth-Str. 16
8011 Putzbrunn bei Munchen
Tel: (089) 46 11-0
Farnell
Electronic Components
Grunwalder Weg 30
8024 Deisenhofen
Tel: (089) 6130301

Greece
Micronics Ltd.
46, Kritis Street
16451 Argyroupolis/Athens
Tel: (01) 9951815

## Hong Kong

CET Ltd. (REP)
22/F Chuang's Finance Centre
81-85, Lockhart Road
Wanchai, Hong Kong
(852) 5200922

## India

Blue Star Ltd. (REP)
11A, Magarath Road
Bangalore 560025
(91) 812575668

Blue Star Ltd. (REP)
Sahas
414/2 Veer Savarkar Marg
Prabhadevi
Bombay 400025
(91) 224306155

Blue Star Ltd. (REP)
13 Community Centre
New Friends Colony
New Delhi 110065
(91) 11-683-9262

Blue Star Ltd. (REP)
2-2-47/1108 Bolarum Road
Secunderabad 500003
(91) 842-72057

Israel
Computation \& Measurement
Systems (Ltd.)
11, Hashlosha Street
P.O. Box 25089

Tel-Aviv 67060
Tel: (03) 5880301
Telsys Ltd.
Atidim, Industrial Park, Bldg. 3
Dvora Hanevia Street, Neve Sharet
61431 Tel-Aviv
Tel: (03) 492001

## Italy

Celdis Italiana S.P.A.
Via Fratelli Gracchi, 36
20092 Cinisello Balsamo (Mi)
Tel: (02) 618391

Japan
Ryoyo Electro Corporation
Konwa Bldg.
10-12-22, Tsukiji
Chuo-ku, Tokyo 104
(81) 3-546-5011

Ryoyo Electro Corporation Nisshin Shokuhin Bldg. 4-1-1, Nishi-Nagajima
Yodogawa-ku, Osaka 532 (81) 6-302-5371

Ryoyo Electro Corporation Daisan Nippon Office Bldg. 2-3-20, Ichiban-cho,
Sendai-shi, Miyagi 980 (81) 22-266-3800

Ryoyo Electro Corporation Nagoya AT Bldg
1-18-22, Nishiki, Naka-ku, Nagoya-shi, Aichi 460 (81) 52-203-0277

Ryoyo Electro Corporation Shin-Kyoto Center Bldg. 614, Higashi Shiokouji, Shimokyou-ku
Kyoto-shi, Kyoto 600
(81) 75-371-5751

Ryoyo Electro Corporation Chiyodaseimei Nara Bldg. 10-1, Kouten-cho, Nara-shi, Nara 630
(81) 742-22-0077

Ryoyo Electro Corporation Fukuoka MID Bldg.
1-9-3, Hakata Ekimae, Hakata-ku, Fukuoka-shi, Fukuoka 812
(81) 92-474-4311

Tokyo Electron Limited
2-30-7, Sumiyoshi-cho
Fuchu-shi, Tokyo 183
(81) 423-33-8404

Tokyo Electron Limited
Sumitomoseimei Shin-Osaka Bldg. 4-1-14, Miyahara, Yodogawa-ku, Osaka-shi, Osaka 532
(81) 6-339-0263

Tokyo Electron Limited
Nagoya Fukutoku Bldg.
3-23-13, Meieki, Nakamura-ku,
Nagoya-shi, Aichi 450
(81) 52-562-0825

Tokyo Electron Limited Hakata-Ekimae Daiichiseimei Bldg. 1-4-1, Hakata-Ekimae, Hakata-ku,
Fukuoka-shi, Fukuoka 812
(81) 92-474-4121

Tokyo Electron Limited TEL Bldg.
1 chome, Higashikatamachi, Midoriku,
Yokohama-shi, Kanagawa 226
(81) 45-471-8811

## Korea

Panwest Co., Ltd. (REP)
2nd Floor, Jeil Life Insurance
New Building
1303-16 Seocho-Dong
Seocho-ku, Seoul
(82) 2-5520341

Malaysia
DCP (M) SDN BHD
402, Wisma Explanade
43 Green Hall
10200 Penang
(60) 4-377269

Netherlands
Diode Nederland
Meidoornkade 22
3992 AE Houten
Tel: (03403) 91234
EBV Elektronik
Planetenbaan 2
3606 AK Maarssenbroek
Tel: (03465) 62353
New Zealand
VSI Electronics (NZ) Ltd.
7 Beasley Ave.
Penrose
Auckland
(64) 9 596-603

VSI Electronics (NZ) Ltd.
295 Cashel Street
Christchurch
(64) 3 660-928

VSI Electronics (NZ) Ltd.
Flanders Arcade
71 High Street
Lower Hutt
(64) 4 694-560

## Norway

OTE Komponent
Stromsveien 323
P.O. Box 200

Leirdal
1011 Oslo 10
Tel: (02) 306600

## Portugal

Diode Portugal
Rua Castilho, 39
11, G
1200 Lisboa
Tel: (01)571390
Singapore
Dynamar Computer Products
PTE Ltd. (REP)
109 Defu Lane 10
Off Hougang Avenue 3
Singapore 1953
(65) 2813388

So. Africa
Advanced Semiconductor Devices (Pty) Ltd.
P.O. Box 2944

Johannesburg 2000, S.A.
(011) 8025250

## Spain

Diode Espana
Calle Orense 34
1A Planta
28020 Madrid
Tel: (01) 5553686

## Sweden

ITT Multikomponent AB
Ankdammsgatan 32
Box 1330
17126 Solna
Tel: (08) 830020
Traco AB
Vinthundsvagen 157
Box 103
12322 Farsta
Tel: (08) 930000

## Switzerland

Fabrimex AG
Kirchenweg 5
8032 Zurich
Tel: (01) 3868686
Basix fur Elektronik AG
Hardturmstr. 181
Postfach
8010 Zurich
Tel: (01) 2761111
Taiwan (Republic of China)
Morrihan International Inc.
No. 57, 8th Floor
Yang Shen Shan Yet Building
337 Fu Hsing North Road
Taipei, Taiwan
(886) 27522200

## Turkey

Empa
Elektronik Mamulleri
Pazarlama A.S.
Florya is Merkezi
Besyol Londra Asfalt 1
34630 Florya- Istanbul
Tel: (901) 5806561
United Kingdom
Jermyn Distribution,
Vestry Estate,
Sevenoaks,
Kent.
TN14 5EU
(0732-450144)
Celdis Limited,
37/39 Loverock Road,
Reading,
Berkshire.
RG3 1ED
(0734-585171)
S.T.C. Electronic Services,

Edinburgh Way,
Harlow,
Essex.
CM20 2DF
(0279-441144)
Macro Marketing Limited,
Burnham Lane,
Slough,
Berkshire.
SL1 6LN
(0628-604422)
Farnell Electronic Components Limited,
Canal Road,
Leeds.
LS12 2TU
(0532-636311)
Anglia Microwave,
Radford Way Business Centre,
Radford Way,
Billericay,
Essex.
CM12 0BZ
(0277-630000)

## Yugoslavia

Elektrotehna
DoJunel, TOZD ELZAS
Poljanska 25
61000 Ljubljana
Tel: (061) 318663

# Authorized Distributors for Microwave Test Accessories (MTA) 

## France

ELEXIENCE
9 , rue des Petits-Ruisseaux
F-91370 VERRIERE LE BUISSON
Tel: 1/60 119471

Germany
PARZICH G.m.b.H.
Karwendel Strasse 8
D-8911 PUERGEN
Tel: 08196/70 21

United Kingdom
ANGLIA MICROWAVE
Radford Way Business Centre
Radford Way
UK-BILLERICAY (Essex) CM12 0BZ
Tel: 0044277630000

## U.S. Sales Listing

## Alabama

620 Discovery Dr.
Huntsville 35806
Tel: 205-830-2000

## Arizona

8080 Pointe Parkway West Phoenix 85044
Tel: 602-273-8000
3400 E. Britannia Dr.
Bldg. C, Suite 124
Tucson 85706
Tel: 602-573-7400

## California

26701 West Agoura Rd.
Calabasas 91302
Tel: 818-880-3400
1421 So. Manhattan Ave.
Fullerton 92631
Tel: 714-999-6700
5651 W. Manchester Ave.
Los Angeles 90045
Tel: 213-337-8000
9606 Aero Dr.
San Diego 92123
Tel: 619-279-3200
3003 Scott Blvd.
Santa Clara 95054
Tel: 408-988-7000

## 4244 So. Market Court,

Suite A
Sacramento 95834
Tel: 916-929-7222

Colorado
24 Inverness Place East
Englewood 80112
Tel: 303-649-5000
Connecticut
3 Parklands Dr.
Darien 06820
Tel: 203-656-0040
115 Glastonbury Blvd.
Glastonbury 06033
Tel: 203-633-8100

Florida
5900 N. Andrews Ave.
Ft. Lauderdale 33309
Tel: 305-938-9800
6177 Lake Ellenor Dr.
Orlando 32809
Tel: 407-859-2900
5550 W. Idlewild Ave.,
Suite 150
Tampa 33634
Tel: 813-884-3282

## Georgia

1995 North Park Place Atlanta 30339
Tel: 404-955-1500
Illinois
5201 Tollview Dr.
Rolling Meadows 60008
Tel: 708-255-9800
Indiana
11911 N. Meridian St. Carmel 46032
Tel: 317-844-4100

Maryland
3701 Koppers St.
Baltimore 21227
Tel: 301-644-5800
Massachusetts
1775 Minuteman Rd.
Andover 01810
Tel: 508-682-1500
Michigan
39550 Orchard Hill Place
Novi 48050
Tel: 313-349-9200
Minnesota
2025 W. Larpenteur Ave.
St. Paul 55113
Tel: 612-644-1100
Missouri
6601 Winchester Ave.
Kansas City 64133
Tel: 816-737-0071
New Jersey
W. 120 Century Rd.

Paramus 07652
Tel: 201-599-5000
New Mexico
7801 Jefferson St. N.E.
Albuquerque 87184
Tel: 505-823-6100
New York
200 Cross Keys Office Park
Fairport 14450
Tel: 716-223-9950
7 Old Sod Farm Rd.
Melville 11747
Tel: 516-753-0555

North Carolina
305 Gregson Dr.
Cary 27511
Tel: 919-467-6600
Ohio
7887 Washington Village
Dayton 45459
Tel: 513-433-2223
15885 Sprague Rd.
Strongsville 44136
Tel: 216-243-7300
Oregon
9255 S.W. Pioneer Court
Wilsonville 97070
Tel: 503-682-8000
Pennsylvania
2750 Monroe Blvd.
Valley Forge 19482
Tel: 215-666-9000
Texas
9050 Capital of Texas Hwy. North
Austin 78759
Tel: 512-346-3855
930 E. Campbell Rd.
Richardson 75081
Tel: 214-231-6101

## Washington

15815 S.E. 37th St.
Bellevue 98006
Tel: 206-643-4000

## Hewlett-Packard Components International Sales Offices

Austria and Eastern Region<br>Hewlett-Packard<br>Lieblgasse 1<br>P.O. Box 72<br>A-1222 Vienna<br>Tel: 43/2 22/25 00266<br>Belgium/Luxembourg<br>Hewlett-Packard<br>Boulevard de la Woluwe 100<br>Woluwedal<br>B-1200 Brussels<br>Tel: 32/2/7 613111<br>Denmark/Norway<br>Hewlett-Packard A/S<br>Kongevejen 25<br>DK-3460 Birkerod<br>Tel: 45/42/81 6640<br>Far East<br>Hewlett-Packard<br>Singapore (Sales) Pte Ltd.<br>150 Beach Road \#29-00<br>Gateway West<br>Singapore 0718<br>Tel: (65) 2919088<br>Finland<br>Hewlett-Packard OY<br>Piispankalliontie 17<br>SF-02200 Espoo<br>Tel: 358/0/8 8721


[^0]:    * Typical values specified at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$.

[^1]:    Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies. $2.7 \mathrm{k} \Omega$ pull-up resistors required for HEDS-5540 and 5640 .

[^2]:    *General formula for determining AC characteristics for other clock frequencies (clk), between 100 kHz and 2 MHz .

[^3]:    Pulse Width Modulation (PWM) Output Port (Pulse, Sign)
    The PWM port consists of the Pulse and Sign pins. The PWM port outputs the motor command as a pulse width modulated signal with the correct polarity. This topic is further discussed in the "Register Section" under "PWM Motor Command Register R09H".

[^4]:    *Contact your local Sales Representative for information regarding this product. (See Section 9.)

[^5]:    Bold Type - New Product

[^6]:    Bold Type - New Product

[^7]:    NOTES:

    1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
    2. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (.040') DOWN THE LEADS.
[^8]:    NOTES:

[^9]:    *Panel mount versions of all of the above are available per the selection matrix on the next page.

[^10]:    NOTES:

    1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
    2. GOLD-PLATED KOVAR LEADS.
    3. PACKAGE WEIGHT OF LAMP ALONE IS . $25-.40$ GRAMS.
[^11]:    *Contact your local Sales Representative for information regarding this product. (See Section 9.)

[^12]:    *Contact your local Sales Representative for information regarding this product. (See Section 9.)

[^13]:    *Katakana is a simplified version of the Japanese alphabet.

[^14]:     WITH THE HDLX-2416

[^15]:    

[^16]:    ESD WARNING: STANDARD CMOS HANDLING PRECAUTIONS SHOULD BE OBSERVED WITH THE HPDL-1414 AND HPDL-2416.

[^17]:    Note:

    1. These displays are recommended for high ambient light operation. Please refer to the HDSP-A10X AlGaAs, HDSP-335X HER, HDSP-A80X Yellow, and HDSP-A90X Green data sheet for low current operation.
[^18]:    Note:

    1. These displays are recommended for high ambient light operation. Please refer to the HDSP-F10X Data sheet for low current operation.
[^19]:    Notes:

    1. These displays are recommended for high ambient light operation. Please refer to the HDSP-E10X AlGaAs and HDSP-335X
    HER data sheet for low current operation.
    2. Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram H.
[^20]:    Note:

    1. These displays are recommended for high ambient light operation. Please refer to the HDSP-H10X/K12X AlGaAs and HDSP. 555X HER data sheet for low current operation.
[^21]:    *Contact your local Sales Representative for information regarding this product. (See section 9.)

[^22]:    *Contact your local Sales Representative for information regarding this product. (See section 9.)

[^23]:    ${ }^{[1]}$ Military Approved and Qualified for High Reliability Applications.

[^24]:    Note:
    Basic part numbers (ie. HCMS-2351) are without hi-rel screening. Part numbers with TXV or TXVB suffix (ie. HCMS-2351TXV) are with hi-rel screening per MIL-D-87157, Quality Level A.

[^25]:    1. Limits and conditions are per the electrical/optical characteristics.
[^26]:    1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is $\mathrm{R} \theta \mathrm{JA}=50^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{device}$ The device package thermal resistance is $R \theta_{J}-P I N=15^{\circ} \mathrm{C} / \mathrm{W} /$ device. The thermal resistance device pin-to-ambient through the PC board should not exceed $35^{\circ} \mathrm{C} / \mathrm{W} /$ device for operation at $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$.
    2. Voltage values are with respect to device ground, pin 6.
    3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to $25^{\circ} \mathrm{C}$.
[^27]:    *ST (R) is a registered trademark of AT\&T for Lightguide Cable Connectors.

[^28]:    Future 1300 nm modules are discussed on page 8-3.

[^29]:    *Link performance at 25 C .

[^30]:    *Link performance at $25^{\circ} \mathrm{C}$.

[^31]:    CAUTION: The small junction sizes inherent to the design of these components increases the components' susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of these components to prevent damage and/or degradation which may be induced by ESD.

[^32]:    CAUTION: The small junction sizes inherent to the design of this component increases the component's susceptibility to damage from electrostatic discharse (ESD). It is adviscd that normal static precautions be tzhen in l.and'ing and assembly of this component to prevent damage and/or degradation which may be i.lıucel by ESD.

[^33]:    *Available only in single channel one- and ten-metre lengths with ST connectors.

[^34]:    Receiver: HFBR-2202 (5 MBaud, SMA Connector) HFBR-2204 (40 Mbaud, SMA Connector Compatible)

[^35]:    where:
    $R_{A C}=$ Small signal $A C(20 \mathrm{MHz},-30 \mathrm{dBm})$ response $\mathrm{P}_{\mathrm{R}}=\mathrm{DC}$ optical power incident on port.

[^36]:    *ST ${ }^{*}$ is a registered trademark of AT\&T for Lightguide Cable Connectors.

[^37]:    *TAXIchip ${ }^{\text {TM }}$ is a trademark of Advanced Micro Devices, Inc.
    **ST ${ }^{*}$ is a registered trademark of AT\&T for Lightguide Cable Connectors.
    tFDDI represents Fiber Distributed Data Interface. The FDDI Physical Layer Medium Dependent (PMD) document has been approved as International Standard for Organization (ISO) Developmental International Standard (DIS) 9314-3.

[^38]:    Bold Type - New Product

[^39]:    *SCHOTTKY DIODE (HP 5082-2800, OR EQUIVALENT) AND 20 pF CAPACITOR ARE NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.

[^40]:    DIMENSIONS IN MILLIMETRES AND (INCHES).

[^41]:    **Selection for higher output voltages up to 20 V is available.

[^42]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^43]:    *JEDEC Registered Data (The HCPL-2502 and HCPL-4502/3 are not registered.)

[^44]:    *JEDEC Registered Data

[^45]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to da mage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assemby of this component to prevent damage and/or degradation which may be induced by ESD.

[^46]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^47]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^48]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^49]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^50]:    *Refer to the front of the optocoupler section in the 1991 Optoelectronics Designer's Catalog, under regulatory information, (VDE 0884) for a detailed description.
    **This part may also be used in Pollution Degree 3 environments where the rated mains voltage is $\leq 300 \mathrm{~V}_{\mathrm{RMB}}$ (per DIN VDE 0109/12.83).

[^51]:    *Refer to the front of the optocoupler section in the 1991 Optoelectronics Designer's Catalog, under regulatory information, (VDE 0884) for a detailed description.
    **This part may also be used in Pollution Degree 3 environments where the rated mains voltage is $\leq 300$ V RMs $^{\text {(per DIN VDE }}$ 0109/12.83).

[^52]:    Bold Type - New Product

[^53]:    Bold Type - New Product

[^54]:    Bold Type - New Product

[^55]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^56]:    DIMENSIONS IN MILLIMETERS AND (INCHES)

[^57]:    *Limits and conditions per Electrical Characteristics.

[^58]:    CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

[^59]:    *All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^60]:    Reverse Input Voltage, $\mathbf{V}_{\mathbf{R}}$ (each channel) .

[^61]:    *JEDEC Registered Data.
    ${ }^{* *}$ All typical values are at $\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^62]:    *Limits and conditions per Electrical Characteristics

[^63]:    *Permanent device failure may occur if parts are stressed beyond these limits. Device reliability may be affected by extended exposure to absolute maximum ratings. Functionality at or above these limits is not guaranteed.

[^64]:    AN 1017
    LED Solid State Reliability
    Light emitting diode display technology offers many attractive features including multiple display colors, sunlight readability, and a continuously variable intensity adjustment. One of the most common reasons that LED displays are designed into an application, however, is the high level of reliability of the LED display. Hewlett-Packard has taken a leadership role in setting reliability standards for LED displays and documenting reliability performance.

    This note explains how to use the reliability data sheets published for HP LED indicators and displays. It describes the LED indicator and display

